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This student text is an introduction to System/360
assembler language coding. It provides many examples of
short programs shown in assembled form. Some elementary
programming techniques and the specific instructions illus-
trated in the programs are discussed in simple, relatively
nontechnical terms. Much of the text is based on infor-
mation in IBM System/360 Principles of Operation
(GA22-6821). This includes a brief review of relevant
System/360 concepts and descriptions of selected assembler
language instructions for arithmetic, logical, and branching
operations. Standard (fixed-point), decimal, and floating-
point arithmetic are discussed. The book also includes an
elementary introduction to assembler language and the
assembler program, and chapters on base register addressing
and on program linkages and relocation. The coding of
many other common programming techniques, such as the
use of branches, loops, and counters, is shown. The use of
macro instructions is demonstrated, but not covered in
detail. Program flowcharting and input/output operations
are beyond the scope of the book.

The publication is a sampler rather than a comprehensive
textbook. It is intended for supplementary reading for the
student in a regular course of study on System/360 assem-
bler language coding, and for the novice programmer. In
general, the reader will find that the program examples are
quite simple at the beginning of each chapter, or major
subject division, and become progressively more complex.
If the going seems difficult, it is suggested that he simply
skip to the next subject and come back later.

The student should have access to two IBM System/360
System Reference Library (SRL) manuals for reference
purposes: the Principles of Operation and the assembler
specification manual for one of the System/360 operating
systems. (All publications and their form numbers are listed
at the end of the Preface.) He should also be familiar with
fundamental concepts of data processing and the basic
operating principles of System/360. Two IBM programmed
instruction (P.1.) courses, or their equivalent, are pre-
requisite to a. full understanding of this student text:

Preface

Computing System Fundamentals and Introduction to
System/360. The student who is not enrolled in a compre-
hensive programming course will find the P.I. book
Fundamentals of Programming a valuable guide to problem
analysis and program flowcharting.

The text and programs of this book have been revised
throughout, mainly to reflect changes in programming
conventions attributable to the development of System/360
operating systems. Chapter 1 is new, and several sections in
other chapters have been entirely rewritten. The sample
programs have been reassembled under the widely used
Disk Operating System (DOS). As far as possible, usages
limited to DOS have been avoided, and the programs and
text in general are applicable to System/360 models 25, 30,
40, 50, 65, and 75, under any of the operating systems.

IBM publications that may be useful to the student are:

IBM System{360 Principles of Operation (SRL manual
GA22-6821)

IBM System/360 Reference Data (card GX20-1703)

IBM  System{360 System Summary (SRL manual
GA22-6810)

Number Systems (Student Text GC20-1618)

Introduction to IBM System/360 Architecture (Student
Text GC20-1667) :

Introduction to System/360 (PI. Course GR29-0256
through -0259)

Computing System Fundamentals (P.1.
GR29-0280 through -0282)

Fundamentals of Programming P1. Course SR29-0019)

System/360 Assembler Language Coding (P.1. Course
SR29-0231 through -0235)

The form numbers of the assembler specification
manuals for the various System/360 programming systems
are:

Basic Programming Support (Tape System)-GC24-3335

Basic Operating System—GC24-3361

Tape Operating System

Disk Operating System GC24-3414

Operating System—GC28-6514

Course
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WHAT IS ASSEMBLER LANGUAGE?

Machine Language

A computer is a willing servant. It will invariably and
reliably do exactly what it is told to do, as long as it is told
in its own language. This is true of any computer. Let’s take
a quick look at the language that System/360—the machine
itself—understands.

If an IBM System/360 computer is given the instruction
1B67, it will subtract whatever amount is in register 7 from
the amount in register 6. When the operation is finished,
the contents of register 7 will be the same as they were
originally, but the contents of register 6 will be the
difference between the two original quantities. The code 1B
signifies to the computer (1) just what operation it is to
perform, (2) what format it can expect the two quantities
to be in, and (3) whether they are in registers or in main
storage. Specifically, 1B indicates that the computer is to
subtract two 32-bit binary numbers, both of which are in
registers. The two quantities to be operated on are called
operands. The one that is written first is called the first
operand and in this case is in register 6. The second operand
is in register 7.

The instruction 1B67 is in machine language. 1t is a
representation in the hexadecimal number system (base of
16) of the actual binary arrangement in the computer. The
. computer responds to it in a particular way because its
circuitry has been designed to do so whenever it senses this
combination of signals,

Let’s take another example of a machine language
instruction, say SA20B02A. The operation code 5A causes
the computer to add two 32-bit binary numbers (the first in
a register and the second in main storage) and to place the
result in the first operand location. In this case, the first

operand is in register 2, and the second operand is in main-

storage, beginning at the location designated by 0B02A.

Not many years ago all programs were written in
machine language. The most valuable tool the programmer
had was an eraser. He was concerned with an enormous
amount of clerical detail. He had to remember dozens of
numerical codes for the computer operations and try not to
make a mistake when using them. He had to keep track of
the storage space he used for instructions, data, and work
areas, and actually calculate any addresses he needed to
refer to in his program. Revising a program (a very frequent
occurrence then, as it is now), often meant changing every
address that followed the revisions. All this detail meant
many errors and much time spent on checking, calculating,
keeping tables, and other clerical tasks.

Chapter 1: Iintroduction

Assembler Language

The realization that the computer itself was better suited
than man for doing this type of clerical work led to the
development of assembler languages (each computer has its
own assembler language). In System/360 assembler langnage,
every operation code is written in alphabetic letters that are
easy to remember, called mnemonics, and the addresses of
locations in storage can be given symbolic names like PAY,
HOURS, and RATE by the programmer. The machine lan-
guage instruction 1B67 would be written in assembler
language as SR 6,7 (SR for Subtract Register). The instruc-
tion 5A20B02A might be A 2,CON (A for Add), with
another instruction to define CON as a certain value. We do
not have to say where it is—the computer will take care of
that. An assembler language program as prepared by a pro-
grammer is shown in Figure 1-1. The operations to be
performed start in column 10, the operands in column 16.

As we said at the beginning, however, the computer
cannot understand any language except its own machine
language. Therefore, a program that translates our symbolic
program into machine language or object code is needed.
Such a program, actually a component part of an IBM
System/360 operating system, is brought from the system
“library” into a separate area in main storage when needed,
and it does the job. This program is called an assembler.
Besides translating the problem program statements into
machine language, it calculates storage locations for all
instructions, keeps track of any symbols like CON that are
used, and performs a number of other necessary functions.
The program written by the programmer is not executed
during the assembly process; it will be executed later, after
further processing. Figure 1-2 shows the listing produced by
the assembler for our sample program.

Machine Instructions

All the columns to the left of the statement number (STMT)
column are in machine language. The LOC, ADDR1, and
ADDR2 columns have to do with address arithmetic
handled by the assembler, and will be discussed later. The
heart of our program has been translated into the code
headed OBJECT CODE. The circled area at the left con-
tains the code for every executable instruction in the entire
program. What we mean by an executable instruction is one
that, when the problem program is run, will tell the com-
puter to perform an actual operation in the machine itself.
Each of the executable instructions has a corresponding
System/360 machine operation code; these operation codes

Introduction 1



IBM System/360 Assembler Coding Form

X28-6509

PROGRAM PROM

A
PUNCHING GRAPHIC PAGE OF

JJ Jenves

PROGRAMMER DATE

CARD ELECTRO NUMBER

PUNCH

STATEMENT

oAD REG]S

7ER 2,

Figure 1-1. An assembler language program as prepared by the programmer

are represented by the first two characters (the first two
hexadecimal numbers, really) in the circled object code. In
the example, the executable instructions include one of the
branching instructions (BALR, op code 05), Load (L, op
code 58), Add (A, op code 5A), one of the Shift Left
instructions (SLA, op code 8B), Subtract (S, op code 5B),
Store (ST, op code 50), and so on. In assembler language,
the executable instructions are called machine instructions.

Not counting floating-point arithmetic instructions,
System/360 assembler language has about 100 different
machine instructions. It is fairly easy to recognize and
remember all of the mnemonics for them—certainly easier
than remembering the machine language operation codes.
Some other examples are C for Compare, CVD for Convert
to Decimal, SH for Subtract Halfword, STH for Store Half-
word, M for Multiply, and BC for Branch on Condition. A
full list of System/360 machine instructions appears in the
Appendix;; floating-point instructions are given in the chap-
ter on that subject. Each machine instruction and what it
does is described in complete detail in the IBM Systems
Reference Library (SRL) manual IBM System/360 Princi-
ples of Operation (A22-6821). Many will be described in
this bock in nontechnical language, but not in complete
detail.

Assembler Instructions

What about the TITLE, START, and USING instructions
that have not-generated any object code in the assembly

listing in Figure 1-2? The mnemonic TITLE does not even
show up at all (it was in the source program), but we see
that the assembly listing has the heading ILLUSTRATIVE
PROGRAM. TITLE is an instruction to the assembler that
tells it to print a heading or title at the top of each page in
the listing. Similarly, START and USING are instructions
to the assembler; these concern the addressing plan it is to
follow. Although they will affect the way in which the
assembler assigns addresses, they will have no direct func-
tion in the execution of the problem program. In contrast
to machine instructions, they are called assembler
instructions. They may be defined as instructions to the
assembler program itself,

Skipping the EOJ for the moment, we see the mme-
monics DC (Define Constant) and DS (Define Storage).
These two instructions are also assembler instructions. DC’s
generate object code for the values they define, but no
operation codes. DS’s actually reserve storage space of a
specific size, but they too do not generate operation codes.
In other words, DC’s cause the assembler to create object
code for actual values and DS’s reserve actual storage
spaces, but they do not themselves give rise to any action
during program execution. Instead, they are used for either
information or space by other instructions in the program.
If we look again at the assembly listing, we see that DATA,
CON, RESULT, etc., are operands of some of the execu-
table instructions.

Assembler-instruction mnemonics, which are also listed



ILLUSTRATIVE PROGRAM Machine instructions
in mackine language Machine instryctions
LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCé\STATEMENT in gssembler longuage
L PR
0001004+ 2 PROGA START 26‘3:
000100]0580 3 BEGIN ;. R 3
000102} 4. . N\ 4 USTN g
000102]582¢ 8023" 00124 5 . LOAD REGISTER 2
0001065420 BB2A ° oo12¢c 6 ) 3 ADD 10
000104} 8820 §001 00001 7 THIS HAS EFFECT OF MULTIPLYING BY 2
00010E}5B20 B026 00128 8 23DATA+4 | NOTE RELATIVE ADDRESSING
00011215020 BO2E 00130 9 ST 2,RESULT
0001165860 BO32 00134 10 L 64BINL
00011A}5A60 BD36 00138 11 64BIN2
00011E}4E60 BO3E 00140 12 6,DEC, * CONVERT TO DECIMAL
13 D END OF JOB
14+% 360N-CL-453, E0J CHANGE LEVEL 3-0
0001224 QA0E 15+
000124 00000019 16 DATA ; g
000128 0000000F 17 oc Fe159s
00012C 00000004 ' 18 CON nC Feio
000130 19 RESULT DS Foo
000134 0000000C 20 BIN1 nC Fr12y
000138 0000004E 21 BIN2 DC Fr7ge -
000140 22 DEC ~ DS b} A
000100 =¥ 23 END  BEGIN
Figure 1-2. Assembly listing of the program in Figure 1-1. The executable instructions (see text) are circled in both assembler language and

the machine language translation.

in the Appendix, generally suggest their purpose. USING
indicates a particular register to be used by the assembler
for keeping track of storage addresses, EJECT tells the
assembler to start a new page in the program listing, and
END to terminate the assembly program. Assembler instruc-
tions and the functions of the assembler program are
described fully in each of the SRL assembler language man-
uvals for the various IBM operating or programming support-
systems (see Preface for list). It should be explained that
variations of the System/360 assembler program are avail-
able for different operating systems and sizes of computers.
Basically, they all work similarly, but some are more flexi-
ble and versatile than others. Many differences do exist,
however, in the input/output (I/O) programming for
different systems. Largely for this reason, the subject of I/O
will not be covered in this book. ‘

Macro Instructions

In an entirely different category, System/360 assembler
language includes another type of instruction, called a
macro instruction or macro. If a programmer writes a series
of instructions for a routine that will be needed again and
again during the program, he does not have to code the
entire sequence each time. He can make up his own code
name to represent the sequence, and, by using his code
word in a single statement whenever it is needed, he can
cause the sequence of instructions to be assembled and
inserted. Incorporated in the system library, the sequence
can also be used in entirely separate programs and by all
programmers associated with a computer installation simply
by writing one statement in the source program. The mne-
monics used for macro instructions are often unique to an
installation. Some macros are prepared and supplied by IBM;

they have mnemonics like EQJ, READ, WRITE, OPEN,
CLOSE, WAIT, WAITF, DTFCD, DTFIS, etc. The
mnemonics for both the user-prepared and the IBM-
supplied macros constitute an extension to System/360
assembler language. '

The macros supplied by IBM are mainly for procedures
that affect other components of the IBM operating system,
like the supervisor and the input/output control system, and
they ensure accuracy and consistency in maintaining the
interrelations within the operating system. The EOJ (End of
Job) in the program example is a supervisor macro
instruction. It generates just two statements, which are
indicated in the listing by plus signs. The first is simply for
identification, and the second is the executable Supervisor
Call instruction (SVC, op code 0A).

Most I/O routines are long and complicated, and for any
particular device and operating system are programmed in
exactly the same way in program after program. Most of
the macros supplied by IBM are for these I/O routines. Some
of the Disk Operating System (DOS) macro instructions we
shall use in this book, besides EOQJ, are CALL, SAVE,
RETURN, and PDUMP. The book does not cover the
preparation of new macros, but shows, in the chapter on
subroutines, another method for reusing a sequence of
instructions. However, the programmer can save much time
and effort by using the macros that are already available in
his system library. Their use will also ensure accuracy and
standardization of frequently repeated procedures.

Summary

To summarize, these are the three kinds of instructions
used in System/360 assembler language, and what each does:
1. A machine instruction specifies an actual operation
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to be performed by the computer when the object program
is executed. The operation may be arithmetic, or the com-
parison, movement, or conversion of data, or performing a
branch. The instruction generates executable object code.

2. An assembler instruction specifies an instruction to
the assembler program itself and is effective only at
assembly time. It does not generate executable object code.

3. A macro instruction specifies a sequence of machine
and assembler instructions to perform a frequently needed
routine. The machine instructions generate executable
object code.

Why Learn Assembler Language?

The most important single thing to realize about assembler
language is that it enables the programmer to use all System/
360 machine functions as if he were coding in System/360
machine language. Of all the programming languages, it is
closest to machine language in form and content. The high-
level languages such as FORTRAN, COBOL, and PL/T are
problem-oriented rather than machine-oriented. Their lan-
guages are much like English or mathematical notation.
Depending on what is involved, one statement in these lan-
guages may be compiled into a series of two or eight or
fifty machine language instructions. The problem-oriented
languages have the advantage of letting the programmer
concentrate on what he wants to accomplish and not on
how it is to be done by the computer, and they may save
considerable time in programming, program modification,
and program testing. Choice of a programming language in
any given situation usually involves weighing the cost of

programming time against the cost of machine time. A com-
plex mathematical problem that can be run in a few
minutes and will be run only once is a very different
situation from a program that runs for several hours and
will be repeated every week.

Here we can appreciate one of the important advantages
of assembler language over the high-level languages: its effi-
cient use, in the hands of a skillful programmer, of
computer storage and time. High-level languages produce
generalized routines so that a wide range of data processing
needs can be met with a minimum of programming effort.
A routine can be written in assembler language exactly to
fit some particular data processing need, thus saving storage
space and execution time.

As we shall see in the course of this book, there are often
many ways of accomplishing the same data processing results.
Sometimes the overall programming requirements of a com-
puter installation strain its capacity. If the particular
problem arises of either not enough main storage space or
not enough processing time, the problem may be solved by
assembler language. In such a situation, its flexibility
permits the programmer to choose those programming
techniques that will provide just the kind of economy
needed—time or space.

A knowledge of assembler language has some important
benefits for a programmer working in a high-level language.
It can be helpful to him in analyzing and debugging
programs. It also enables him to include certain assembler
language routines in his program to meet special systems or
other requirements.



THE ASSEMBLER PROGRAM

The System Environment

As a first step in the assembly process, the handwritten
problem program has to be put into a form that can be read
by the computer system. Panched cards are frequently used;
they are convenient and easy to substitute in case of error.
The program is punched by a keypunch operator, each line
on a separate card. The original program and these cards are
called the source program, or the cards may be called the
source deck. The assembler program is loaded into main
storage and executed, using the source deck as input.

It is important to realize that the basic function of the
assembler is to translate the source program. It does not
execute the program. The final output of the assembler
program is called the object program. It contains the
machine language equivalent of the source program, and is
put on cards, tape, or disk by a system output device. It is
this object program that will later be subjected to further

 processing and will itself be executed. The assembler output
also includes several listings to aid the programmer, which
are produced by a line printer. Figure 1-3 shows the
assembly process in outline.

Before going into detail about the functions of the
assembler, it may be helpful to look at the overall system
environment into which a programmer-written. problem
program goes. As we already know, the assembler program
is a component of the IBM operating system. It functions
under the control of another, very important component,
the control program. (To avoid confusion in terminology,
perhaps it should be mentioned that the control program is
often referred to as the control system. The supervisor is
one element of the control program, and the most power-
ful. The job control program is another element.)

The System/360 control program is, in effect, a traffic
director. It supervises the movement of data, the assign-
ment of all the devices attached to the system, and the
scheduling of jobs. Working under a set of priorities for
various kinds of situations, it handles the flow of operations
in the central processing unit (CPU), with the aim of
keeping it constantly busy and the entire system at its most
productive level. The control program sees to it that needed
IBM processing programs, like the assembler program and
the linkage editor program, are brought from the system
library and loaded into main storage at the right time.
These two kinds of programs combined—that is, the control
program and the processing programs—make up what is
called the IBM operating system (or, for smaller instal-
lations, the IBM programming support system). With an
operating system at work, the programmer is relieved of
practically all concern about having on hand for either
processing or execution of his problem program the system
resources available at his installation.

Functions of the Assembler

During execution of the assembler program, the assembler
scans the source program statements a number of times. Its
first activities are to process any macro instructions it finds,
and to store the complete sequences of individual instruc-
tions generated by the macros. They are then standing by,
ready to be inserted into the assembled problem program at
the points indicated by the programmer. Afterwards, the
assembler proceeds to translate the one-for-one assembler
language statements into machine instructions.

Programmer writes source program,
named PROGA, on coding sheets.

Keypunch operator copies PROGA
source program on cards.

Assembler language translator
program is loaded into main storage.

MAIN STORAGE

Control program @
Assembler 3
program @ PROGA
object program

ONIOMIONONMONC,

PROGA object program and assembly
listings. Object program may be on
cards, tape, or disk.

@ Ml Assembler program <
PROGA source program is read into Handwritten @
a work area of the assembler program. source program PROGA PROGA
PROGA source program source program
. . V
Assembler program is executed, using
PROGA source program as input data.
Output of assembler program is

CENTRAL PROCESSING
UNIT (CPU)

Figure 1-3. Assembly of a problem program, PROGA. Note that PROGA is not executed during the assembly process.
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Briefly, here is how the assembler works. It reads source
statements as input data, checking for errors and flagging
them for further processing. At first, it translates the parts
of the input (such as operation codes) that do not need
further analysis or calculation. Meanwhile, it constructs a
table of all the symbols used, in which it collects, as it goes
along, such information as each symbol’s length, its value or
location, and the statements in which it is referred to. From
this table and other analyses of the source statements, the
assembler can then assign relative storage addresses to all
instructions, constants, and storage areas. It uses a location
counter for this purpose (see LOC column in Figure 1-2). It
does all the clerical work involved in maintaining the base
register addressing scheme of System/360 computers.
During its operations, the assembler continues to note
errors and to resolve any it can.

As shown in Figure 1-3, there are two kinds of output
from the assembler program. The primary output is the
object program in machine language; included with it is
certain information tabulated by the assembler, which is
needed for relocating the program to an actual main storage
location and for establishing links with separate programs.
(This information will later be passed on to the linkage
editor for the next step in the processing.) The other
output from the assembler is a series of printed listings that
are valuable to the programmer for documentation and
analysis of his program:

1. The listing of the program (samples of these will be
shown throughout this book) includes the original source
program statements side by side with the object program
instructions created from them. Most programmers work
from this assembly listing as soon as it is available, hardly
ever referring to their coding sheets again.

2. Probably next in interest to the programmer is the
diagnostics listing, which cites each statement in which an
error condition is encountered and includes a message des-
cribing the type of error.

3. The cross-reference listing shows the symbol table
compiled by the assembler.

4. The external symbol dictionary (ESD) describes any
references in the problem program needed for establishing
links with separate programs. It is possible for the pro-
grammer to combine his program with others, or to use
portions of separate programs, or to make certain portions
of his program available to other programs. The ESD is part
of the tabular information passed on to the linkage editor.

It always contains at least the name of the problem
program, its total length, and its starting address on the
assembler’s location counter.

5. The relocation dictionary (RLD) describes the
address constants that will be affected by program
relocation. This list is also passed on to the linkage editor.

We have now reached the end of the assembly process.
What happens next? Our object program is in relocatable
form, but it will not be executable until it has been
processed by the linkage editor.

Final Processing

The linkage editor program is another component of the IBM
operating system. Its functions, which will not be described
fully here, can provide great flexibility and economy in the
use of main storage. The linkage editor also makes it
possible for a long and complicated program to be divided
into separate sections, which can be programmed, assem-
bled, and debugged by different programmers, and then
linked together to be executed. The linkage editor is loaded
into main storage and operates as a separate program under
control of the control program, just as the assembler did.
Input to the linkage editor may be a single assembled pro-
gram or many separate programs. The linkage editor works
on one after the other, building up composite dictionaries
of ESD and RLD data to resolve all references between
individual programs and to set up necessary linkages. It also
searches the system library and retrieves any programs
referred to. It relocates the individual programs as necessary
in relation to each other, assigns the entire group to a
specific area of main storage, and modifies all necessary
address constants to the relocated values of their symbols.

After completion of the link-editing, our problem pro-
gram can be loaded into main storage and executed under
supervision of the control program. Unless specified other-
wise, each machine instruction is executed in sequence, one
after the other. If there is separate input data, it can be
brought in by I/O instructions in the program. Output—the
results of program execution—also requires I/O instructions.

The scope of this book does not go beyond the assembly
process. For a clear understanding of the detailed program
examples, however, it is essential for the reader to be able
to visualize at just what stage in the entire process each
action occurs. For this reason, the complete process from
programmer-written program to its final execution has been
outlined in this section.



USE OF THE CODING FORM

Assembler language programs are usually written on special
coding forms like the one in Figure 1-1, which will be
repeated here for convenience. Space is provided at the top
for program identification and instructions to keypunch
operators, but none of this information is punched into
cards.

The body of the form is completely keypunched in
corresponding columns of 80-column cards. Use of the
Identification-Sequence field (columns 73 — 80) is optional
and has no effect in the assembled program. Program identi-
fication and statement sequence numbers can be written in
part or all of the field. They are helpful for keeping the
source cards in order and will also appear on the assembly
listing. Indeed, the programmer can use an assembler
instruction (ISEQ) to request the assembler to check the
input sequence of these numbers.

The statement field is for our program instructions and
comments, which are normally limited to columns 1 — 71.
Each statement can be continued on one or more lines,
depending upon which assembler program is used. A state-
ment consists of:

1. A name entry (sometimes)

2. An operation entry (always)

3. An operand entry (usually)

4. Any comment we wish to make
It isn’t necessary to use the spacing shown on the form, since

the assembler permits nearly complete freedom of format.
However, lining up entries as shown makes it simpler to
read a program, and following the form permits the pro-
grammer to painlessly observe the few essential rules
required by the assembler.

Some of these rules are as follows. (1) The entries must be
in proper sequence. (2) If a name is used, it must begin in
column 1. (3) The entries must be separated by at least one
space, because a space (except in a comment or in certain
terms enclosed in single quotes) is the signal to the assem-
bler that it has reached the end of an entry. (4) Spaces must
not appear within an entry, except as noted. (5) A state-
ment must not extend beyond the statement boundaries,
normally columns 1 — 71.

We have been using that word “normally” because the
programmer can override the specific column designations
by an ICTL (Input Format Control) assembler instruction,
which can specify entirely different begin, end, and contin-
vation columns. A statement is normally continued on a
new line in column 16, with some character (often an X)
inserted in column 72 of the preceding line. Since the
normal spacing is generally the most convenient and is
easiest for a keypunch operator to follow, we shall use the
spacing indicated on the form throughout this book.

The purpose of using a name in a statement is to be able
to refer to it elsewhere. It is a symbol of eight characters or

IBM

IBM System/360 Assembler Coding Form

X28-6509-

PROGRAM FA o064

woowme___J J_ Jones

GRAPHIC. PAGE oF

‘CARD ELECTRO NUMBER

PUNCHING
INSTRUCTIONS

PUNCH

STATEMENT

REG/S

LR .

T
|

}« «» . TR ST PRI K s SO SNURU N

Figure 1-1. An assembler language program as prepared by the programmer
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less, created by the programmer. It may identify a program,
a location in storage, a specific value, or a point in the
program to which the programmer may plan to branch. As
we know, the assembler compiles a symbol table, keeping
track of where each name is defined and where each refer-
ence to itappears. These references occur when the name is
used as anoperand in an instruction.

Each instruction must include an operation entry, which
may be a machine, assembler, or macro mnemonic. They are
limited to five characters in length (some systems allow
longer macro mnemonics) and begin in column 10 of the
form.

Operand entries are always required for machine instruc-
tions and usually for assembler instructions. They begin in
column 16 and may be as long as necessary, up to the
maximum statement size the assembler can handle. An
operand entry is the coding that identifies and describes the
data to be acted upon by the instruction. All operands in a
statement must be separated from each other by commas,
without blank spaces.

Comments may be used freely, at the programmer’s

discretion, to document the . purpose of coding or the
approach used in the programming. These notes can be
helpful during debugging and other phases of program
checkout and also during later maintenance of a program.
They have no effect in the assembled program, but are only
printed in the assembly listing, If a programmer wishes to
include extensive notes in the printed record, he can use
entire lines just for comments by inserting an asterisk in
column 1 of each line. A comment that is part of an
instruction statement may begin anywhere beyond the
operand entry, provided there is at least one blank space
after the operand. Most programmers like to line up all
comments in some convenient column for easier reading.

A word of caution may be in order about leaving
“illegal” blanks in operand entries. If, in our sample pro-
gram, we were to write:

L 2, DATA LOAD REGISTER 2

the assembler, on finding a blank after the comma, would
interpret DATA as the first word of the comment and give
us an error message MISSING OPERAND.



AN ASSEMBLER LANGUAGE PROGRAM

Writing the Program

Let’s look at some of the actual instructions in the program
in Figure 1-1. This program does not have any particular
task to accomplish; it merely demonstrates the use of some
serviceable assembler language instructions. In later
chapters, each program example will be prefaced by a clear
statement of the problem to be solved, which is good
practice, but for now let’s just get started.

The TITLE assembler instruction in the first line will
cause a heading to be printed on every page of the assembly
listing. The heading will be ILLUSTRATIVE PROGRAM,
which is written within single quotes as the operand entry.

The START instruction specifies to the assembler what
the initial value of the location counter for this program
should be. Although zero is the usual practice, we specify
decimal 256, which is the equivalent of hexadecimal 100.
The assembler assumes in most cases that any numeral we
use in an operand is a decimal number, unless specified
otherwise. We are also using the START statement to give
our program a name, PROGA, which is another good
programming practice.

The next two instructions are important ones that will
appear in every program. To understand their effect, we had
better look at these two statements in the order in which they
will actually take effect. During assembly, the USING state-
ment will tell the assembler: (1) that it should use register 11

for address calculations and (2) that the address of the next

machine instruction, which is L. 2 DATA, will be in register
11 when PROGA is finally executed. To fulfill this promise,
the Branch and Link (BALR) will, when PROGA is

oo PROGA |
o TS JowEs Tom |

Nome ion Oparond

executed, actually put the address of the L 2DATA
instruction into register 11. The BALR and USING combin-
ation is generally the most efficient way of setting up a
register for use as a base register in the System/360
addressing scheme. This subject will be discussed in detail in
a separate chapter.

So much for the preliminaries. The body of the program
starts with the L 2,DATA instruction. L is the mnemonic for
the machine instruction Load, which in this case will place in -
register 2 the contents of a location in storage that has the -
symbolic address DATA. Looking down the coding sheet,
we see that DATA is in the name field of .a DC assembler
instruction that defines a constant value of 25, occupying
four bytes. The name DATA refers to the address of the
first byte; the length is implied by the F, for fullword.

The A 2,CON is a similar type of instruction. It adds to
register 2 the contents (that is, the constant value 10) of a
fullword that has its first byte at the symbolic location CON.

The next instruction (SLA 2,1) is quite different. SLA
stands for the algebraic Shift Left Single. The contents of
register 2 are to be shifted left one binary place. There is no
symbolic address in this case; the second operand simply
indicates the extent of the shift.

The Subtract instruction that comes next(S 2,DATA+4)

- includes an example of relative addressing: the address is

given relative to another address. This address is specified as

_ four bytes beyond DATA. Looking at the constant area of

the program, we see that four bytes (one fullword) beyond
DATA there is indeed another fullword constant, the
number 15,

The Store instruction (ST 2,RESULT) specifies that the
contents of register 2 are to be placed in a storage area with
the symbolic address RESULT. Looking below again, we
see RESULT in the name field of a DS for a fullword area.
As a machine operation, Store has one somewhat unusual
feature. In most System/360 machine instructions, the
result of an operation replaces the first operand. In Store,
however, the result is stored in the second operand
location. The same is also true of CVD, which we shall
come to shortly.

The following two statements, the Load and the Add,
present no new assembler language concepts. They will
form a sum in register 6, in the same way as before.

The Convert to Decimal (CVD) converts the contents of
register 6, which are binary, to a decimal number, and
stores the result in the eight-byte area beginning at DEC.
The operation of the machine instruction CVD requires
that this location be a doubleword, aligned on a double-
word boundary. More on this later.

The next instruction, EQJ, is a macro instruction that
will, after PROGA has been executed, return control to the
supervisor, so that the computer can immediately go on
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with other jobs. EOJ is the last executable (or machine)
instruction in our program example.

The DC’s and DS’s follow the executable part of the
program in a group, as is customary. These assembler instruc-
tions were discussed earlier in this chapter. Define Storage
(DS) is used to define and reserve an area of storage, which
may be used during execution of the program for work
areas or for storing a varying value. Define Constant (DC)
allows us to introduce specific data into a program (a con-
stant simply means an unchanging value).

Each DC and DS must have a type specification that
designates the particular data format in which it is to be
entered into internal machine storage. Some of the data
formats are the eight-bit character code (type C), the four-bit
hexadecimal code (type X), zoned decimal numbers (type Z),
packed decimal numbers (type P), and fixed-point binary
numbers (type F or H). A more complete list appears in the
Appendix and in the assembler language specification
manuals listed in the Preface. In the program at hand and in
Chapter 3, where we shall be studying System/360 fixed-
point binary operations, however, all the constants are type
F or H (the F is for fullword, H for halfword, implying
length as well as giving the type).

Fixed-point operations work on fixed-length operands
and in most systems require that they be located in storage
on halfword, fullword, or doubleword boundaries. In other
words, the addresses must be multiples of 2, 4, or 8. When
F or H is used to signify the length of a DC or DS (D for
doubleword may also be used in a DS), the assembler will
perform the necessary alignment, skipping a few bytes if
necessary. In our program all the F-type constants and areas
will be on four-byte boundaries. The DS at DEC will reserve
an eight-byte space, aligned on a doubleword boundary. If
the programmer modifies these terms, for example, by
specifying 2F instead of D, the assembler will not perform

alignment, and it becomes the programmer’s responsibility.

The END assembler instruction specifies that nothing
further follows, and it terminates the assembly process. The
END instruction must always be the last statement in a
source program.

The Assembly Listing

Let’s inspect the assembly listing, repeated here as Figure 14,
to see how the assembler handled things. We see that, except
for the TITLE statement, the original source program has
been reproduced without change on the righthand side of
the listing. The object code created from the source instruc-
tions is listed under that heading. The location counter
setting of each statement is shown in the leftmost column.
The address of the second operand in each instruction is
under the heading ADDR2. (All first operands here happen
to be in registers.) All entries to the left of the statement
number column are in the hexadecimal number system,
which is the alphabet, so to speak, of System/360 machine
language.

The assembler instructions TITLE, START, USING, and
END did not produce any object code, and, as we can see
from an inspection of the location counter readings, do not
use any space in the object program. The location shown on
each of these lines is simply the current setting of the
location counter, which, after assembly of each instruction
that will use storage space, was updated to show the next
available byte.

The START 256 sets the assembler’s location counter to
hexadecimal 000100, or 100. The object code that is
actually at location 100 (in bytes 100 and 101) and will be
at the equivalent location in core storage is 05BO, the
machine language translation of the BALR instruction. Hex
05 is the BALR operation code, B is register 11 (B is the

ILLUSTRATIVE PROGRAM

L0OC O0BJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT
000100 2 PROGA START 256
000100 05B0 3 BEGIN BALR 11,0
000102 & USING *,11
000102 5820 B022 00124 5 L 2,DATA LOAD REGISTER 2
000106 5A20 BO2A 0o012C 6 A 2,CON ADD 10
00010A 8820 0001 00001 7 SLA 2,1 THIS HAS EFFECT OF MULTIPLYING BY 2
00010E 5B20 BO26 00128 8 S 2,DATA+4 NOTE RELATIVE ADDRESSING
000112 5020 BO2E 00130 9 ST 24,RESULT
000116 5860 B0O32 00134 10 L 65B1IN1
Q0011A 5A60 BO036 00138 11 A 6,8IN2
00011E 4E60 BO3E 00140 12 cvD 6,DEC CONVERT TO DECIMAL

13 EQJ END OF JCB
14+% 360N-CL—-453 EOJ CHANGE LEVEL 3-0

000122 OAOE 15+ SvC 14
000124 00000019 16 DATA DC Fe25°
000128 0000000F 17 oC Fri5e
00012C 0000000A 18 CON DC Friot
000130 19 RESULT DS F
000134 0000000C 20 BINL DC Frize
000138 0000004E 21 BIN2 bcC Fr78°"
000140 22 DEC DS D
000100 23 END BEGIN

Figure 1-4. Assembly listing of the program in Figure 1-1
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hex equivalent of 11), and 0 is register zero (which means,
in effect, no register and no branching). This instruction is
in the RR (register-to-register) machine format, which has a
length of two bytes and looks like this in storage (contents
are shown here in hex rather than binary):

Op Code Regq Regp

0 5 B 0

112 15

0 78

The subscripts 1 and 2 refer, both here and in other instruc-
tion formats, to the first and second operands, In the RR
format both operands are in registers.

After the BALR was assembled, the location counter read
102, which was the next available byte, and stayed that
way until additional object code was generated. USING did
not generate object code, so 102 was the setiing when the
L 2DATA was assembled. The asterisk in the USING
means the current, updated location counter setting, which
at that point was 102.

The next instruction, Load, is the first that will actually
process program data. It is an RX (register-and-indexed-

storage) instruction, which has a machine format of four

bytes. It occupies bytes 102 to 105:

Op Code Regq Indexy Basep Displacementy

5 8 2 0 B 0 2 2
1516 19 20 31

[ 78 1112

In this format, the first operand is in a register, the second
in main storage. Reading the assembled bytes from left to
right, we have the op code 58 for Load and register 2 for
the register to be loaded, and the remaining code gives the
address of the second operand. Zero means there is no
index register, B (hex for 11) is the base register, and 022 is
the displacement in bytes. The effective address, formed by
the assembler, is the sum of the contents of the base regis-
ter (102), the contents of the index register (0 or no
register), and the displacement (022). These add up to
hexadecimal 124. Looking down to the assembled location
of DATA, we see that it is 124, as it should be.

The Add instruction that follows is also in the RX for-
mat, and again no index register is used. The base register
contents of 102 (258,0) plus the displacement of 02A (424)
gives a sum of 12C (300,,), which is the location of CON.

(The subscript 10 is used to indicate a number in the
decimal system. A subscript of 16 is used for hexadecimal,
and 2 for binary.)

SLA is in the RS (register-and-storage) machine
instruction format, also four bytes in length, and it is in
bytes 10A, 10B, 10C, and 10D.

Op Code  Regy Reg3 Basep  Displacementy
P
B 2 Vo4 o o o0 1
8 e
0 78 1112 1516 1920 31

The op code is 8B and the first operand is in register 2. The
next four bits are never used in a shift operation, the next
four could be used for a base register for the second
operand but are not in this case, and the final 001 merely
indicates a-shift of one binary place. No provision is made
for using an index register in this format. As we shall see
later, some RS instructions, like Branch on Index High
(BXH) and Store Multiple (STM), have a third operand.

The next five instructions are all in the RX format and
offer no new concepts. The reader may wish to brush up on
hexadecimal numbers and check that the displacements
have been computed correctly, taking into account the rela-
tive address in the Subtract. We can see even in this simple
example how much of the clerical burden the assembler
takes over by automatically assigning base registers and
calculating displacements. -

The assembled entries for the DC’s are simply the
requested constants, in hexadecimal. We note that the DS
entered nothing, but simply reserved space. A study of the
address for the doubleword constant at DEC shows that
boundary alignment was performed. The fullword constant
BIN2 was placed at 138. Counting in hexadecimal, BIN2
occupies four bytes: 138,139,13A,and 13B. Although 13C
was available for DEC, it is not on a doubleword boundary,
nor is 13D, 13E, or 13F. So the assembler skipped these
four bytes and assigned DEC to 140.

The END assembler instruction terminates the assembly
of the program. The operand indicates the point to which we .
wish control to be transferred when the program is loaded.
In this case, it is to our first instruction in the object
program, named BEGIN, where actual execution of the
program is to begin. Note that the location counter shows
the value 100 at the END statement.

Introduction 11



ERROR ANALYSIS BY THE ASSEMBLER

Certain kinds of programming errors can be detected rather
simply by the assembler. In fact, some errors make it
impossible for the assembler to generate an instruction and
complete the assembly. The assembler carries out the
assembly as completely as possible, regardless of the number
of errors, even if the first error detected makes it impossible
for the object program to be executed. The idea is that, if
there are more errors, the programmer needs to know about
all of them, not just the first one the assembler encounters.

Figure 1-5 is the assembly listing of a program written
deliberately with a number of errors in it, to demonstrate
what the assembler can do and how it announces its
findings. The first announcement is made on the program
listing itself, where every statement with a discernable error
is followed by a line prominently reading

When the programmer is warned of the existence of an
error, he can often see rather quickly what is wrong.
Looking over the listing in Figure 1-5, he would probably
notice at once that the comma between operands in state-
ment 9 is omitted, and that statement 19 is, from his point
of view (but not the assembler’s), a bundle of typographical
keypunching errors.

Some errors may not be so obvious. To help the pro-
grammer analyze them, the assembler prints a separate
listing of diagnostic messages. This is part of the output

from the assembler program, which was described earlier in
this chapter. The diagnostics listing for our program
example is shown in Figure 1-6. The assembler always gives
a summary message, shown at the bottom, of the total
number of statements in error. If no errors are found, the
happy message NO STATEMENTS FLAGGED IN THIS
ASSEMBLY is printed at the end of the symbol cross-
reference table, and no diagnostic listing is printed.

Let’s sce what the assembler has to tell us about statement
6. The message is on the first line of the diagnostics
listing: UNDEFINED OPERATION CODE.

We check the mnemonic for Shift Left Single and find of
course that we should have written SLA instead of SLS.
The assembler program cannot assume SLA was meant; we
might have meant SL, SLR, SLL, or any other valid opera-
tion code. Since it cannot tell what was intended, it flags
the statement and does not assemble the object code or

even assign space to the instruction.
The diagnostic message for statement 7 is UNDEFINED

SYMBOL. The undefined symbol is DATA4. This is
accepted as a valid symbol, since it follows all the rules
governing the writing of symbols. That is, it begins with a
letter, uses only letters and numbers, does not contain
special characters or blanks, and isn’t more than eight
characters. Looking at the symbols or names listed in the
source statements, we see we have defined DATA and
remember that we intended DATA+4 as the address of the

CHANGE LEVEL 3-0

LOC O0BJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT
000100 1 PROGC START 256
000100 05B0 2 BEGIN BALR 11,0
000102 3 USING *,11
000102 5820 BOlE 00120 4 L 2,DATA
000106 5A20 BO26 00128 5 A 2,CON

6 SLS 2,1
%*%% ERROR *%%
C0010A 0000 0000 00000 7 S 2+DATA4
k%% ERROR ek
00010E 5020 BO2A ooi2c 8 ST 2yRESULT
000112 0000 0000 00000 9 L 6BIN1
%%% ERROR %%
000116 S5A60 BOZE 00130 10 A 6,4BIN2
00011A 0000 0000 00000 11 CcCvD 64BIN1
k& ERROR **k*
12 EOQJ .
13¥% 360N-CL-453 EQJ
00011E OAOE - 14% sve 14
000120 00000019 15 DATA bc Fr251
000124 4CBO16EA 16 DC F'9876543210"
k%% ERROR *%kk
000128 0000000A 17 CON DC Frio"
00012C 18 RESULT DS
#%%k ERROR %%
00012C 0000 0000 00000 19 IN1 C 12
%% ERRQOR *%k%
000130 0000004E 20 BIN2 DC Fr78¢
000138 : 21 DEC DS D
000140 00000019 22 DATA DC F1252
* %% FRROR *%k%
000100 23 END BEGIN

Figure 1-5. Assembly listing of the program rewritten with deliberate errors
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STMT ERROR CODE MESSAGE

6 1JQ088 UNDEF INED OPERATION CODE
7 .1JQ024 UNDEFINED SYMBOL

g 1JQo39 INVALID DELIMITER

9 1JQ039 INVALID DELIMITER
11 1JQ024 UNDEF INED SYMBOL

16 1JQ017 DATA 1ITEM TOO LARGE

18 1JQ031 UNKNOWN TYPE
18 1JQO0S MISSING OPERAND

19 1JQ039 INVALID DELIMITER

19 14Q018 INVALID SYMBOL
22 14Q023 PREVIOUSLY DEFINED NAME

8 STATEMENTS FLAGGED IN THIS ASSEMBLY

DIAGNOSTICS

Figure 1-6. Assembly listing of diagnostic error messages for the program in Figure 1-5

next constant. To the assembler there is no relationship at
all between DATA4 and DATA; they are simply different
symbols. But if we write DATA+4, the assembler program
will recognize the plus sign as a special character that,
among other things, delimits the symbol DATA.
Confronted with DATAA4, the assembler does not assemble
the object code. This time, however, the valid mnemonic S
indicates that this instruction will be in RX format. So the
assembler assigns four bytes to the instruction.

In statement 9, the Load instruction, we already know
that our error was the omission of the comma in 6,BIN1.
This made the assembler give two identical diagnostic
messages: INVALID DELIMITER. From the mnemonic L,
the assembler anticipates an RX format, the L to be
followed by a register number, a comma, and a storage
operand. Finding a B instead of a comma probably led to
the first message. What about the second message? What
does it mean?

Here the error code in the second column of the diag-
nostic listing may help. The meaning of each message is
given in expanded form in a table of error codes in the
assembler manuals. (The letters I1JQ here simply stand for a
particular assembler program, the Disk Operating System D
assembler.) If we were to look up 1IJQO039 in the table, we
would find that it means “amy syntax error”. About a
dozen possibilities are listed. An invalid delimiter is the
usual error in assembler language syntax, hence the wording
of the message. Some other possibilities are (1) an unpaired
parenthesis, (2) an embedded blank, (3) a missing delimiter,
(4) a missing operand, and (5) a symbol beginning with
other than an alphabetic character. Well, the first two
obviously don’t apply to 6BIN1, and it would be difficult
and unrewarding to make a choice among the others,
especially considering the compounded error in the symbol
in statement 19. What the two messages signify is that there
is no reliable evidence of what was intended or just which
specification was really violated. The programmer is amply

warned that an error exists. It is his job to make his
intentions known.

UNDEFINED SYMBOL appears again for statement 11.
From the programmer’s viewpoint, a reverse situation exists
from the one in statement 7. This time the instruction
statement is as it should be, but the DC defining the symbol
shows IN1 instead of BIN1. There is no indication that
these are related in any way or that one is not correct.

Statement 16 elicits the message DATA ITEM TOO
LARGE. This is perfectly clear. The decimal value
9,876,543,210 cannbt be contained in a 32-bit binary full-
word, and the hexadecimal value shown as four bytes has
evidently been truncated.

Statement 18 was awarded two error messages:
UNKNOWN TYPE when the assembler program found no
type designation, and MISSING OPERAND when it
scanned further on. Jumping ahead for a moment, we find
that statement 22 has the message PREVIOUSLY
DEFINED NAME, and we see that DATA has already been
given in statement 15.

In statement 19 the first letter of each entry is omitted.
The messages are INVALID DELIMITER, which may mean
almost any error of syntax, and INVALID SYMBOL, which
apparently applies to the name IN1. What’s the matter with
IN1? It begins with a letter and violates no rules we know of.
It should be perfectly acceptable to the assembler. We are
the only ones who know it is misspelled. Also, when the
message UNKNOWN TYPE is available, why single out the
operand with its missing F as a syntax error? Four bytes of.
zeros have been generated. Why did the assembler assign a
specific length? Also, apparently no fault was found with
the mnemonic C. How is that? The point is precisely that C
is a valid operation code. So the assembler, being given this
definite “fact” (the most important single fact in any
instruction), performs its syntax scan and other operations
as if it were dealing with a Compare. The mnemonic C
indicates that the instruction is in the RX format requiring
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four bytes, that the first operand must be a number
between O and 15 followed by a comma, and that the
second operand may be a symbol. But the operand field of
this Compare instruction contains simply the characters
“12’”. This then is the “symbol” the second message
refers to. Indeed, both messages evidently apply to the
operand field. To the assembler program nothing is wrong
with the name or the operation code mnemonic.

For such reasons as these, the diagnostic messages given
by the assembler may often seem quite inaccurate from the
programmer’s point of view. In many cases, the assembler
simply does not have enough clues to pin down the precise
error, and the messages should not be taken literally. The
assembler program was designed to be as helpful as it can
be, and the messages are an effort to help the programmer
diagnose the trouble. Usually the error flag on the program

14

listing is enough. The programmer will be interested in the
message itself only when he cannot identify the mistake.

This review of how the assembler analyzes programming
errors should also make it clear that many errors are
beyond the power of the assembler even to recognize. When
we incorrectly write DATA4 for DATA+4, the assembler
can detect it, but not if DATA4 itself is a legitimate
symbol. If we write SLL for SLA, the assembler will assume
that SLL is what we mean; both are valid operation codes
with the same format. The ability of the assembler to
detect and analyze errors can be very helpful to the
programmer. However, the message NO STATEMENTS
FLAGGED IN THIS ASSEMBLY cannot be taken to mean
that a program has no errors or that it will necessarily
produce the right answers when it is executed.



MODIFYING AN ASSEMBLER LANGUAGE PROGRAM

After a program has been written, assembled, and com-
pletely debugged, it frequently happens that some change
must be made later. Many types of revisions are simple to
make in an assembler language program. But let us see what
happens to the locations of instructions and data when even
a minor change is made. We shall base the example on the
correct version of the program, as it appeared assembled in
Figure 1-4.

Let us suppose that for some unspecified reason it is
necessary to store the sum of BIN1 and BIN2 in binary
before converting it to decimal. We must insert an
instruction:

ST 6,BINANS

just before the CVD.

This is a rather simple sort of change and one that is
representative of the kind of modification made with routine
frequency on many programs. Yet it can have the effect of

changing almost every effective address in the program! The
insertion of the four-byte instruction “pushes down” the
storage spaces for the DC’s and DS’s, requiring a change in
the displacements of all the instructions that refer to the
constants.

Figure 1-7 is the assembly listing of the modified
program. Scanning down the assembled instructions, we see
that the displacements have been computed to reflect the
change in locations. Continuing the comparison, however,
we see that ADDR?2 and the displacement in the Convert to
Decimal instruction are the same as in the earlier version.
Has there been a mistake?

The answer is the boundary alignment of the double-
word constants. In the earlier version, it was necessary to
skip four bytes to provide an address for DEC that was on a
doubleword boundary. The inserted instruction, in effect,
filled that skipped space. The reassembly therefore left the
assembled address for DEC unchanged.

LOC OBJECT CODE ADDR1 ADDR2 STMT  SOURCE STATEMENT
000100 1 PROGB START 256
000100 0580 2 BEGIN BALR 11,0
000102 3 USING #*,11
000102 5820 BO26 00128 4 L 2,DATA LOAD REGISTER 2
000106 5A20 BO2E 00130 5 A 2,CON ADD 10
00010A 8B20 0001 00001 6 SLA 2,1 THIS HAS EFFECT OF MULTIPLYING BY 2
00010E 5820 BO2A 0012¢C 7 3 2 ,DATA+4" NOTE RELATIVE ADDRESSING
000112 5020 BO32 00134 8 ST 2 4RESULT
000116 5860 B036 00138 9 L 6,BIN1
00011A 5A60 BO3A 0013C 10 A 64BIN2
00011E 5060 B046 00148 11 ST 6 yBINANS
000122 4E60 BO3E 00140 12 CVD  6,DEC

13 EQJ END OF JOB
14+% 360N-CL-453 EOJ CHANGE LEVEL 3-0
000126 OAOE 15+ sVC 14
000128 00000019 16 DATA DC F125¢
00012C 0000CO00F 17 DC Fri5¢
000130 0000000A 18 CON nC Fr10*
000134 19 RESULT DS F
000138 0000000C 20 BIN1 DC Frize
00013C 0000004E 21 BIN2 DC Fe78
000140 22 DEC DS D
000148 23 BINANS DS F
000100 24 END  BEGIN
Figure 1-7. Assembly listing of the same program modified to store the binary contents of register 6
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The reader may find it helpful at this point to review some
basic facts about System/360 that are directly relevant to
assembler language programming. These are stated as briefly
as possible in this chapter and will serve mainly as a
reminder. A student who is familiar with the material may
skip any or all of the sections without loss. A student who
needs more than a reminder is urged to go back to the
textbook or course materials he originally studied for an
introduction to System/360.

The basic structure of a System/360 consists of main

MAIN STORAGE

Main storage is also called core or processor storage to
distinguish it from storage on tape, disk, or other auxiliary
devices. It is closely involved in the operation of the CPU,
although it may be either physically integrated with it or
constructed as a stand-alone unit. Capacity may be from
8,192 bytes to several million bytes, depending on the
system model. Protection features are available that make it
possible to protect the contents of main storage from access
or alteration.

In general, instructions and data are stored along with
each other in whatever order they are presented to the
machine. Particular areas of storage may be used over and
over again by a succession of programs or groups of
programs being executed. Each group overlays, or replaces,
the instructions and data of the one preceding. The pro-
grammer must therefore specify blanks or zeros where he
needs them; he can never assume he is writing on a clean
slate. During execution of his program, he can obtain a
printout or “dump” of an area of storage at any point in
the program by use of suitable instructions.

Bytes and Data Field Lengths

The system transmits information between main storage
and the CPU in units of eight bits, or a multiple of eight
bits at a time. Each eight-bit unit of information is called a
byte, the basic building block of all formats. A ninth bit,
the parity or check bit, is transmitted with each byte and
carries odd parity on the byte. The parity bit cannot be
affected by the program; its only purpose is to cause an
interruption when a parity error is detected. References in
this book to the size of data fields and registers exclude the
mention of the associated parity bits.

Chapter 2: System/360 Review

storage, a central processing unit (CPU), the selector and
multiplexor channels, and the input/output (I/O) devices
attached to the channels through control units. For basic
information that applies to the material in this book, we are
concerned principally with the CPU and main storage. In
this chapter, discussion will essentially be limited to these
machine units and their basic operating principles.

Since a knowledge of hexadecimal numbers is necessary
in assembler language programming, these will also be
explained. ‘

Bytes may be handled separately or grouped together in
fields. A halfword is a group of two consecutive bytes and
is the basic building block of instructions. A word is a
group of four consecutive bytes; a doubleword is a field
consisting of two words (Figure 2-1). The location of any
field or group of bytes is specified by the address of its
leftmost byte.

Byte

11000001

] 7

Halfword

J K
11010001j1101001 0

] 78 15

Word

| l B M 3
11001001/11000010/11010100J11110011

0 78 1516 | 2324 kb

Figure 2-1. Sample data formats

The length of fields is either implied by the operation to
be performed or stated explicitly as part of the instruction.
When the length is implied, the information is said to have a
fixed length, which can be either one, two, four, or eight
bytes.

When the length of a field is not implied by the
operation code, but is stated explicitly, the information is
said to have variable field length. This length can be varied
in one-byte increments.
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Within any program format or any fixed-length operand
format, the bits making up the format are consecutively
numbered from left to right starting with the number 0.

This general information on data formats and field
lengths will be supplemented later by further details.
Lengths and the specific form of the contents of the fields
are discussed in the section on the arithmetic and logical
unit, under the headings for logical operations and the
specific types of arithmetic.

Addressing

Byte locations in storage are consecutively numbered
starting with 0; each number is considered the address of
that byte. A group of bytes in storage is addressed by the
leftmost byte of the group. The number of bytes in the
group is either implied or explicitly defined by the
operation. The addressing arrangement uses a 24-bit binary
address to accommodate a maximum of 16,777,216 byte
addresses. This set of main-storage addresses includes some
locations reserved for the supervisor and other special
purposes. How storage addresses are generated is described
in the section on program execution.

The available storage is normally contiguously address-
able, starting at address 0. An addressing exception is
recognized when any part of an operand is located beyond
the maximum available capacity of an installation. Except
for a few instructions, the addressing exception is recog-
nized only when the data are actually used and not when
the operation is completed before using the data. The
addressing exception causes a program interruption.

Positioning on Integral Boundaries
Fixed-length fields, such as halfwords and doublewords,

18

must be located in main storage on an integral boundary for
that unit of information. A boundary is called integral for a
unit of information when its storage address is a multiple of
the length of the unit in bytes. For example, words (four
bytes) must be located in storage so that their address is a
multiple of the number 4. A halfword (two bytes) must
have an address that is a multiple of the number 2, and
doublewords (eight bytes) must have an address that is a
multiple of the number 8.

For greatest efficiency in storage addressing, address
arithmetic is done exclusively in binary. In binary, integral
boundaries for halfwords, words, and doublewords can be
specified only by the binary addresses in which one, two, or
three of the low-order bits, respectively, are zero (Figure 2-2).
For example, the integral boundary for a word is a binary
address in which the two low-order positions are zero.

Variable-length fields are not limited to integral bound-
aries, and may start on any byte location.

Low-order Four Bits of Binary Address

~10000,/0001 {0010 {0011 {0100 {0101 0110 |0111}1000|1001 | 1010

Byte | Byte | Byte | Byte | Byte |Byte | Byte | Byte | Byte | Byte | Byte

~

Halfword | Haolfword | Halfword | Halfword | Halfword
A g(v
Ny Word Word Word
Y 1
> Double Word Double Word

3y
[S

Figure 2-2. Integral boundaries for halfwords, words, and double-
words



CENTRAL PROCESSING UNIT

The central processing unit (Figure 2-3) contains the facili-
ties for addressing main storage, for fetching or storing
information, for arithmetic and logical processing of data,
for sequencing instructions in the desired order, and for
initiating the communication between storage and external
devices.

The system control section provides the normal CPU
control that guides the CPU through the functions necessary
to execute the instructions. The programmer-trainee will
probably be glad to know that the result of executing a
valid instruction is the same for each model of System/360.

Storage | I
Address |

MAIN STORAGE |

T

Instructions
Arithmetic and Logical Unit
Generated
Computer Add
System ress . . Variable- . .
Fixed-Point € Floating-Point
Control Operations aned-lrength Operations
Operations
WL
y
4
16 Floating-Point Registers
Generat
Registers

Figure 2-3. Functions of the central processing unit

General and Floating-Point Registers

The CPU provides 16 general registers for fixed-point
operands and four floating-point registers for floating-point
operands. Physically, these registers may be in special
circuitry, in a local storage unit, or in a separate area of
main storage. In each case, the address and functions of
these registers are identical.

The CPU can address information in 16 general registers.
The general registers can be used as index registers, in
address arithmetic and indexing, and as accumulators in
fixed-point arithmetic and logical operations. The registers
have a capacity of one word (32 bits). The general registers
are identified by numbers 0—15 and are specified by a
four-bit R field in an instruction (Figure 2-4). Some
instructions provide for addressing multiple general registers
by having several R fields.

For some operations, two adjacent general registers are
coupled together, providing a two-word capacity. In these
operations, the addressed register contains the high-order

operand bits and must have an even address, and the
implied register, containing the low-order operand bits, has
the next higher address.

R Field Reg No. General Registers Floating-Point Registers
|<~32 Bits—l r———— 64 Bits——»l
0000 o]
0001 1 3
0010 2 %
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
111 15

Figure 2-4. General and floating-point registers

Four floating-point registers are available for floating-
point operations. They are identified by the numbers 0, 2,
4, and 6 (Figure 2-4). These floating-point registers are two
words (64 bits) in length and can contain either a short
(one word) or a long (two words) floating-point operand. A
short operand occupies the high-order bits of a floating-
point register. The low-order portion of the register is ignored
and remains unchanged in short-precision arithmetic. The
instruction operation code determines which type of regis-
ter (general or floating-point) is to be used in an operation,
and if floating-point whether short or long precision.

Arithmetic and Logical Unit

The arithmetic and logical unit can process binary integers
and floating-point fractions of fixed length, decimal
integers of variable length, and logical information of either
fixed or variable length.

Arithmetic and logical operations performed by the CPU
fall into four classes: fixed-point arithmetic, decimal arith-
metic, floating-point arithmetic, and logical operations.
These classes differ in the data formats used, the registers
involved, the operations provided, and the way the field
length is stated. Data formats are discussed under each of
the headings in this section. General information on field
lengths was given in the section on main storage.

Fixed-Point Arithmetic

The basic arithmetic operand is the 32-bit fixed-point
binary number. Sixteen-bit halfword operands may be
specified in most operations for improved performance or
storage utilization (see Figure 2-5). To preserve precision,
some products and all dividends are 64 bits long. A
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fixed-point number is a signed value, recorded as a binary
integer. It is called fixed point because the programmer
determines the fixed positioning of the binary point.

In both halfword (16 bits) and word (32 bits) lengths,
the first bit position (0) holds the sign of the number. The
remaining bit positions (115 for halfwords and 1-31 for
fullwords) are used to designate the value of the number.

Positive fixed-point numbers are represented in true
binary form with a zero sign bit. Negative fixed-point
numbers are represented in two’s complement notation
with a one bit in the sign position. In all cases, the bits
between the sign bit and the leftmost significant bit of the
integer are the same as the sign bit (i.e. all zeros for
positive numbers, all ones for negative numbers). The
filled-in examples in Figure 2-5 show the equivalent of
decimal +62 and -62 in fixed-point halfwords.

Halfword
S Integer- J
01 15
Full Word
S Integer
01 31
0| 000 0000 0011 1110 | =+6239
11111 1111 1100 0010 | =-6219

Figure 2-5. Fixed-point number formats. In the example the nega-
tive number is in two’s complement notation

Because the 32-bit word size readily accommodates a
24-bit address, fixed-point arithmetic can be used both for
integer operand arithmetic and for address arithmetic. This
combined usage provides economy and permits the entire
fixed-point instruction set and several logical operations to
be used in address computation. Thus, multiplication,
shifting, and logical manipulation of address components
are possible.

Additions, subtractions, multiplications, divisions, and
comparisons are performed upon one operand in a register
and another operand either in a register or from storage.
Multiple-precision operation is made convenient by the
two’s-complement notation and by recognition of the carry
from one word to another. A word in one register or a
~ double word in a pair of adjacent registers may be shifted
left or right. A pair of conversion instructions—Convert to
Binary and Convert to Decimal—provides transition
between decimal and binary number bases without the use
of tables. Multiple-register loading and storing instructions
facilitate subroutine switching.
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Decimal Arithmetic

Decimal arithmetic lends itself to data processing procedures
that require few computational steps between the source
input and the documented output. This type of processing
is frequently found in commercial applications. Because of
the limited number of arithmetic operations performed on
each item of data, conversion from decimal to binary and
back to decimal is not justified, and the use of registers for
intermediate results yields no advantage over storage-to-
storage processing. Hence, decimal arithmetic is provided,
and both operands and results are located in storage.
Decimal arithmetic includes addition, subtraction, multipli-
cation, division, and comparison.

Decimal numbers are treated as signed integers with a
variable-fieldlength format from one to 16 bytes long.
Negative numbers are carried in true form.

The decimal digits 0—9 are represented in the four-bit
binary-coded-decimal (BCD) form by 0000—1001, respec-
tively, as follows.

Digit Binary Code Digit Binary Code
0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

The codes 1010—1111 are not valid as digits and are
reserved for sign codes. The sign codes generated in decimal
arithmetic depend upon the character set code used. When
the extended binary coded decimal interchange code
(EBCDIC) is used, the codes are 1100 for a plus sign and
1101 for a minus. (When the USASCII set, expanded to
eight bits, is preferred, the sign codes are 1010 and 1011.
The choice between the two code sets is determined by a
mode bit.)

Decimal operands and results are represented by four-bit
BCD digits packed two to a byte (see Figure 2-6). They
appear in fields of variable length and are accompanied by a
sign in the rightmost four bits of the low-order byte. Operand
fields may be located on any byte boundary, and may have
length up to 31 digits and sign (16 bytes). Operands
participating in an operation may have different lengths.
Packing of digits within a byte and use of variable-length
fields within storage results in efficient use of storage, in

High-order Byte Low-order Byte

—

Digit] Digit | Digit Digit | Digit | Digit | Digit | Sign

8 .9 7 3 2 +
1000|1001 [ 0111|0011 | 0010|1100

Byte 1 Byte 2 Byte 3

Figure 2-6. Packed decimal number format. The three-byte example
shows decimal value +89,732
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increased arithmetic performance, and in an improved rate
of data transmission between storage and files.

Decimal numbers may also appear in a zoned format in
the regular EBCDIC eight-bit alphameric character format
(Figure 2-7). This representation is required for I/O devices
that are character-set sensitive. A zoned format number
carries its sign in the leftmost four bits of the low-order
byte. The zoned format is not used in decimal arithmetic
operations. Instructions are provided for packing and
unpacking decimal numbers so that they may be changed
from the zoned to the packed format and vice versa.

High-order Byte Low-order Byte

R, S— _—— PSS o —
Zone| Digit | Zone Digit | Zone| Digit | Sign | Digit
8 9 7 3 + 2
1111} 1000 11]1 1001}1111] 0111|1111} 0011 {1100{ 0010
Byte 1 Byte 2 Byte 3 Byte 4 Byte b

Figure 2-7. Zoned decimal number format. The decimal number
+89,732 requires five bytes

Floating-Point Arithmetic

Floating-point numbers occur in either of two fixed-length
formats—short or long. These formats differ only in the
length of the fractions (Figure 2-8). They are described in
detail in the chapter on floating-point arithmetic.

Floating-point operands are either 32 or 64 bits long.
The short length permits a maximum number of operands to
be placed in storage and gives the shortest execution times.
The long length, used when higher precision is desired,
more than doubles the number of digits in each operand.

Four 64-bit floating-point registers are provided. Arith-
metic operations are performed with one operand in a register
and another either in a register or from storage. The result,
developed in a register, is generally of the same length as
the operands. The availability of several floating-point
registers eliminates much storing and loading of inter-
mediate results.

Short Floating-Point Number (One Word)

S| Characteristic Fraction

01 78 31
Long Floating-Point Number {Double Word)

S| Characteristic Fraction gg
01 78 63

Figure 2-8. Short and long floating-point number formats

Logical Operations and the EBCDIC Character Set

Logical information is handled as fixed- or variable-length
data. It is subject to such operations as comparison,
translation, editing, bit testing, and bit setting.

When used as a fixed-length operand, logical information
can consist of either one, four, or eight bytes and is
processed in the general registers (Figure 2-9).

A large portion of logical information consists of alpha-
betic or numeric character codes, called alphameric data,
and is used for communication with character-set sensitive
1/O devices. This information has the variable-field-length
format and can consist of up to 256 bytes (Figure 2-9). It is
processed storage to storage, left to right, an eight-bit byte
at a time.

The CPU can handle any eight-bit character set, although
certain restrictions are assumed in the decimal arithmetic
and editing operations. However, all character-set sensitive
I/O equipment will assume either the extended binary
coded decimal interchange code (EBCDIC) or the USA
Standard Code for Information Interchange (USASCII)
extended to eight bits. Use of EBCDIC is assumed through-
out this book.

-Fixed-Length Logical Operand (One, Four, or Eight Bytes)
l Logical Data !

Variable~Length Logical Operand (Up to 256 Bytes)
rCharcuci'er L Character
0 8

16

Figure 2-9. Fixed- and variable-length logical information

EBCDIC does not have a printed symbol, or graphic,
defined for all 256 eight-bit codes. When it is desirable to
represent all possible bit patterns, a hexadecimal represen-
tation may be used instead of the preferred eight-bit code.
The hexadecimal representation uses one graphic for a
four-bit code, and therefore, two graphics for an eight-bit
byte. The graphics 0—9 are used for codes 00001001 ; the
graphics A—F are used for codes 1010-1111. EBCDIC
eight-bit code for characters that can be represented by
well-known symbols is shown in Table 2-1. The hexa-
decimal equivalents and punched card code are also shown.
For other symbols, System/360 control characters, and
unassigned codes, see the complete 256-position EBCDIC
chart in the Appendix. It may be observed from the table
that the EBCDIC collating sequence for alphameric charac-
ters, from lower to higher binary values, is (1) special
characters, (2) lower case letters, (3) capital letters, and (4)
digits, with each group in its usual order.
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Table 2-1. Extended Binary Coded Decimal Interchange Code (EBCDIC) for Graphic Characters

Graphic EBCDIC Hex Punched Graphic EBCDIC Hex Punched
character 8-bit code equiv- card code character 8-bit code equiv- card code
Bit Positions alent Bit Positions alent
0123 4567 0123 4567

blank 0100 0000 40 no punches u 1010 0100 A4 11-0-4
¢ 0100 1010 4A 12-8-2 v 1010 0101 AS 11-0-5
. 0100 1011 4B 12-8-3 w 1010 0110 A6 11-0-6
( 0100 1101 4D 12-8-5 X 1010 0111 A7 11-0-7
+ 0100 1110 4E 12-8-6 y 1010 1000 A8 11-0-8
& 0101 0000 50 12 z 1010 1001 A9 11-0-9
! 0101 1010 S5A 11-8-2 A 1100 0001 Cl 1211
$ 0101 1011 5B 11-8-3 B 1100 o010 C2 12-2
* 0101 1100 5C 11-8-4 C 1100 0011 C3 12-3
) 0101 1101 5D 11-8-5 D 1100 0100 C4 12-4
; 0101 1110 SE 11-8-6 E 1100 0101 C5 12-5
- 0110 0000 60 11 F 1100 0110 Ceé 12-6
s 0110 1011 6B 0-8-3 G 1100 0111 Cc7 12-7
% 0110 1100 6C 0-8-4 H 1100 1000 C8 12-8
? 0110 1111 6F 0-8-7 I 1100 1001 Cc9 129
: 0111 1010 7A 8-2 J 1101 0001 D1 11-1
# 0111 1011 7B 83 K 1101 0010 D2 11-2
@ 0111 1100 7C 8-4 L 1101 0011 D3 11-3
’ 0111 1101 7D 8-5 M 1101 0100 D4 11-4
= 0111 1110 7E 8-6 N 1101 0101 D5 11-5
” 0111 1111 7F 8-7 (o} 1101 0110 D6 11-6
a 1000 0001 81 12-0-1 P 1101 0111 D7 117
b 1000 0010 82 12-0-2 Q 1101 1000 D8 11-8
c 1000 0011 83 12-0-3 R 1101 1001 D9 11-9
d 1000 0100 84 12-0-4 S 1110 0010 E2 0-2
e 1000 0101 85 12-0-5 T 1110 0011 E3 0-3
f 1000 0110 86 12-0-6 U 1110 0100 E4 04
g 1000 0111 87 12-0-7 v 1110 o101 E5 0-5
h 1000 1000 88 12-0-8 w 1110 0110 Eé6 0-6
i 1000 1001 89 12-0-9 X 1110 0111 E7 0-7
j 1001 0001 91 12-11-1 Y 1110 1000 E8 0-8
k 1001 0010 92 12-11-2 Z 1110 1001 E9 0-9
I 1001 0011 93 12-11-3 0 1111 0000 FO 0
m 1001 0100 94 12-11-4 1 1111 0001 F1 1
n 1001 0101 95 12-11-5 2 1111 0010 F2 2
o 1001 0110 96 12-11-6 3 1111 0011 F3 3
P 1001 0111 97 12-11-7 4 1111 0100 F4 4
q 1001 1000 98 12-11-8 5 1111 0101 FS 5
r 1001 1001 99 12-11-9 6 1111 0110 Fé6 6
s 1010 0010 A2 11-0-2 7 1111 0111 F7 7
t 1010 0011 A3 11-0-3 8 1111 1000 F8 8

9 1111 1001 F9 9
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PROGRAM EXECUTION

Interplay of equipment and program is an essential consi-
deration in System/360. The system is designed to operate
with a control program that coordinates and executes all
I/0 instructions, handles exceptional conditions, and super-
vises scheduling and execution of multiple programs.
System/360 provides for efficient switching from one pro-
gram to another, as well as for the relocation of programs in
storage. To the problem programmer, the control program
and the equipment are indistinguishable.

The CPU program consists of instructions, index words,
and control words that specify the operations to be
performed. Some of its functions will be discussed here.
The format of the machine instructions is basic to an
understanding of how the CPU executes them and how it
forms addresses of operands in main storage. A doubleworﬁ
called the program status word (PSW) contains detailed
information required by the CPU for proper program
execution: the instruction address, the condition code
setting, etc. It is stored at a fixed location. If a problem

program aborts and the contents of storage are printed out,.
the PSW can be inspected by the programmer. He will find ~

much information to help him analyze the trouble,
including a code that identifies the cause of the interruption.

The interruption system permits the CPU to respond
automatically to conditions arising outside of the system, in
I/O units, or in the CPU itself. Interruption switches the
CPU from one program to another by changing not only
the instruction address but all essential machine-status
information.

Programs are checked for correctness of instructions and
data as the instructions are executed. (The types of errors
involved are not detectable during assembly.) This policing
action distinguishes and identifies program errors and
machine errors. Thus, program errors cannot cause machine
checks: each of these types of error causes a different type
of interruption.

Sequential Instruction Execution

Normally, the operation of the CPU is controlled by
instructions taken in sequence. An instruction is fetched
from a location specified by the instruction address in the
current PSW. The instruction address is then increased by
the number of bytes in the instruction fetched to address
the next instruction in sequence. The instruction is then
executed and the same steps are repeated using the new
value of the instruction address.

A change from sequential operation may be caused by
branching, interruptions, etc.

Branching

The normal sequential execution of instructions is changed
when reference is made to a subroutine, when a two-way
choice is encountered, or when a segment of coding, such as

a loop, is to be repeated. All these tasks can be accom-
plished with branching instructions. Provision is made for
subroutine linkage, permitting not only the introduction of
a new instruction address but also the preservation of the
return address and associated information.

Decision-making is generally and symmetrically provided
by the Branch on Condition instruction. This instruction
inspects a two-bit condition code in the PSW, that reflects
the result of a majority of the arithmetic, logical, and I/O
operations. Each of these operations can set the code in any
one of four ways, and the conditional branch can specify
any of these four settings, or any combination of them, as
the criterion for branching.

" Loop control can be performed by the cond1t10nal
branch when it tests the outcome of address arithmetic and
counting operations. For some particularly frequent combin-
ations of arithmetic and tests, the instructions Branch on
Count and Branch on Index are provided. These branches,
being specialized, provide increased performance for these
tasks.

o

Instruction Format

The length of an instruction format can be one, two, or
three halfwords. It is related to the number of storage
addresses necessary to specify the location of all operands
in the operation. Operands may be located in registers or in
main storage, or may be a part of an instruction. An
instruction cohsisting of only one halfword causes no
reference to main storage. A two-halfword instruction
provides one storage-address specification; a three-halfword
instruction provides two storage-address specifications. All
instructions must be located in storage on integral bound-
aries for halfwords. Figure 2-10 shows the five basic
instruction formats, called RR, RX, RS, SI, and SS.

These format codes express, in general terms, the oper-
ation to be performed. RR denotes a register-to-register
operation; RX, a register-and-indexed-storage operation;
RS, a register-and-storage operation; SI, a storage and
immediate-operand operation; and SS, a storage-to-storage
operation. An immediate operand is one contained within
the instruction.

For purposes of describing the execution of instructions
in the SRL manual IBM System/360 Principles of Operation
(A22-6821), operands are designated as first and second
operands and, in the case of branch-on-index instructions,
third operands. These names refer to the manner in which
the operands participate. The operand to which a field in an
instruction format applies is generally denoted by the
number following the code name of the field, for example,
R;, By, Ly, Dy

In each format, the first instruction halfword consists of
two parts. The first byte contains the operation code. The
length and format of an instruction are specified by the
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first two bits of the operation code:

Bit Positions Instruction Instruction
(0-1 Length Format
00 One halfword RR
01 Two halfwords RX
10 Two halfwords RS or SI
11 Three halfwords SS

The second byte is used either as two 4-bit fields or asa
single 8-bit field. As shown in Figure 2-10, this byte can
contain the following information:

Four-bit operand register specification (Ry, Ry, or R3)

Four-bit index register specification (X;)

Four-bit operand length specification (L; or L,)

Eight-bit operand length specification (L)

Eight-bit byte of immediate data (I,)

In some instructions a four-bit field or the whole second
byte of the first halfword is ignored. In the Branch on
Condition instruction, which may be used in either the RR
or RX format, the first four bits of the second byte are
used as a 4-bit mask field (M, in the following diagram).
This mask tests the four settings of the condition code and
is used to determine whether a branch will or will not be
made.

RR [07 {BCR) | M1 I R2 !

[ 78 12 15
RX ld7 (BC) I M, l Xy I B, | D, l
0 78 1112 1516 1920 o3

Inall instructions, the second and third halfwords always
have the same format: four-bit base register designation (B,
or B,), followed by a 12-bit displacement (D, or D,).

Generation of Main Storage Addresses

To permit the ready relocation of program segments and to
provide for the flexible specifications of input, output, and
working areas, all instructions referring to main storage
have been given the capacity of employing a full address.

The address used to refer to main storage is generated
from the following numbers, all binary:

Base Address (B) is a 24-bit number contained in a
general register specified by the program in the B field of
the instruction. (One way to insert a base address into a
register is to specify a BALR operation at the beginning of
a program. The BALR operation does just that, getting the
address of the next sequential instruction from the current
program status word, no matter where the program may
have been relocated.) The B field is included in every
address specification. The base address can be used as a
means of relocation of programs and data. It provides for
addressing the entire main storage. The base address may
also be used for indexing purposes.

Index (X) is a 24-bit binary number contained in a
general register specified by the program in the X field of

24

First Halfword Second Halfword Third Halfword
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| !mmediate :
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|
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[} 78

Figure 2-10. Machine instruction formats

the instruction. It is included only in the address specified
by the RX instruction format; or it may simply be omitted
in an RX instruction. The RX format instructions permit
double indexing.

Displacement (D) is a 12-bit binary number contained in
the instruction format. It is included in every address
computation. The displacement provides for relative addres-
sing up to 4095 bytes beyond the base address, which is the
limit that can be expressed by 12 binary bits. In Chapter 1
we saw how the displacements were calculated by the
assembler from symbolic addresses written by the pro-
grammer.

We also saw that the three binary numbers are added
together to form the actual address. This sum is a 24-bit
number, which can be represented by six hexadecimal
digits.

The program may have zeros in the base address, index,
or displacement fields. A zero is used to indicate the
absence of the corresponding address component. A base or
index of zero implies that a zero quantity is to be used in
forming the address, regardless of the contents of general
register 0. Initialization, modification, and testing of base
addresses and indexes can be carried out by fixed-point
instructions, or by Branch and Link, Branch on Count, or
Branch on Index instructions.



Interruptions and the Program Status Word

To make maximum use of a modern data processing
system, some automatic procedure must be made available
to alert the system to an exceptional condition, the end
of an I/O operation, program errors, machine errors, etc.,
and send the system to the appropriate routine following
the detection of such an event. The system must have, in
effect, the ability to pause to answer the telephone and
then to resume the interrupted work. This automatic
procedure is called an interruption system.

It makes possible the operation of a system in a non-stop
environment and greatly aids the efficient use of 1/O
equipment. The desire to make the interruption procedure
as short and simple as possible means that the method of
switching between the interrupted program and the pro-
gram that services the interruption must be quite efficient.
It operates as follows:

The complete status of the System/360 is held in eight
bytes of information. This status information, which con-
~sists of the instruction address, condition code, storage
protection key, etc., is saved when an interruption occurs,
and is restored when the interruption has been serviced.

As soon as the interruption occurs, all the status infor-
mation, together with an identification of the cause of the
interruption, is combined into a doublew: alled the
program status word (PSW). &~

The PSW is stored at a fixed location, the address of which
depends on the type of interruption. The system then
automatically fetches a new PSW from a different fixed
location, the address of which is also dependent on the type
of interruption. Each class of interruption has two fixed
locations in main storage: one to receive the old PSW when
the interruption occurs, and the other to supply the new
PSW that governs the servicing of that class of interruption.

After the interruption has been serviced, a single instruc-
tion uses the stored PSW to reset the processing unit to the
status it had before the interruption.

Types of Interruptions

The interruption system separates interruptions into five
classes:

Supervisor Call interruptions are caused when the
processing program issues an instruction to turn over
control to the supervisor in the control program. The exact
reason for the call is shown in the old PSW.

External interruptions are caused by either an external
device requiring attention or by the system timer going past
Zero. .

Machine Check interruptions are caused by the machine-
checking circuits detecting a machine error. -

I/O interruptions are caused by an I/O unit ending an
operation or otherwise needing attention. Identification of

the device and channel causing the interruption is stored in
the old PSW; in addition, the status of the device and
channel is stored in a fixed location.

Program interruptions are caused by various kinds of
programming errors or unusual conditions resulting from
improper specification or use of instructions or data. The
exact type of error is shown in an interruption code in the

- PSW.

Finding the Source of a Program Interruption

When a program interruption occurs, provision is always
made to locate the instruction that was being interpreted
and to identify the exact type of error involved, so that the
programmer can make the necessary corrections. For this
information he must go to the PSW in a printout of storage
contents.

Fifteen interruption codes are used for the different
types of program interruptions, as follows.

Interruption Code Program Interruption Cause
1 00000001 Operation
2 00000010 Privileged operation
3 00000011 Execute
4 00000100 Protection
S 00000101 Addressing
6 00000110 Specification
7 00000111 Data
8 00001000 Fixed-point overflow
9 00001001 Fixed-point divide
10 00001010 Decimal overflow
11 00001011 Decimal divide
12 00001100 Exponent overflow
13 00001101 Exponent underflow
14 00001110 Significance
15 00001111 Floating-point divide

To take an example, one of the conditions that causes a
“data exception” to be recognized is an incorrect sign or
digit code in an operand used in decimal arithmetic. In this
case, the operation would be terminated, and all, part, or
none of the arithmetic result would be stored. Since the
result is unpredictable, it should not be used for further
computation. The interruption code, binary 0000 0111, or
hexadecimal 07, for a data exception would be recorded in
bit positions 24—31 of the program old PSW (always at
main storage location 40;¢).

The location of the instruction that was being inter-
preted when the interrupt occurred can also be determined
from an inspection of the old PSW. The instruction address,
which is found in bit positions 40—63 of the PSW, is for the
instruction to be executed next. To locate the preceding
instruction, all that is needed is to subtract its length in
bytes. This instruction length can be found in bit positions
32 and 33 of the PSW, recorded there in binary as 1, 2, or 3
halfwords.
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HEXADECIMAL NUMBERS

Hexadecimal Code

Hexadecimal numbers have been mentioned a number of
times. In Chapter 1 we used them to represent machine
language instructions, and we saw that the assembler listed
object code, location counter settings, and addresses in
hexadecimal numbers. In System/360 hexadecimal code is a
shorthand method of representing the internal binary zeros
and ones, one hex digit for each four binary bits.

Hex numbers are a convenient way for the assembler
language programmer to specify masks in testing and
branching operations, and to specify hexadecimal constants
(type X). Principally, he uses hexadecimal code to locate
and interpret the contents of storage, which may be printed
out when a program must be analyzed and debugged. In a
later chapter, we shall see some “dumps” of storage and
attempt to locate information in them.

Converting from binary to hex, or from hex to binary, is
simple. There are only 16 hex symbols, and their value is
based on the numerical value of four bits. We recall that
four bits in the binary number system can express all values
from zero to 15;9. We also recall that the position of each
bit determines its value:

Binary Decimal
0001 1
0010 2
0100 4
1000 8

Some people find it easier to remember these binary
positional values this way:

8 4 2 1

If we try the four bit values in various combinations, we
find that we can rather quickly discover how to count from
zero to the equivalent of decimal 15 in sequence. In order
to be able to represent these 16 values by a single symbol,
the letters A, B, C, D, E, and F are used for 10, 11, 12, 13,
14, and 15, respectively. The numbers 0—9 stand for
themselves. The entire four bit code is shown in Table 2-2.

Table 2-2. Hexadecimai Code

Binary Hexadecimal Decimal | Binary Hexadecimal Decimal
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

All kinds of information, data, instructions, etc., in
System/360 can be represented in hexadecimal code, two
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graphic hex symbols per byte. The same hex coding system
is used regardless of the code in which the information is
recorded internally. The internal information may be
EBCDIC characters, zoned decimal numbers, signed binary
numbers, the eight-bit code used for System/360 operation
codes, or any of the other codes and formats in use. All are
coded in some form of binary coding, and, since the
eight-bit byte is the basic unit of System/360, they can
readily be taken four bits at a time.

Let’s look at some examples. Each “box” represents a
byte. Binary bits are shown in groups of four for con-
venience.

1. EBCDIC characters

Characters I B M 3
Internal form 1100 1001 | 1100 0010 | 1101 0100 {1111 0011
Hex code C 9 C 2 D 4 F 3

2. Zoned decimal number

Decimal 8 9 7 3 + 2
Internal form 1111 1000|1111 1001 | 1111 0111 [ 1111 0011 | 1100 0010
Hex code F 8 F 9 F 7 F 3 Cc 2

3. Packed decimal number

Decimal 8 9 7 3 2 +
tnternal form { 1000 1001 | 0111 0011 { 0010 1100
Hex code 8 9 7 3 2 C

4. Signed binary number
(This fixed-point fullword is equivalent to decimal +89,732)
0000 0000 | 0000 0001 | 0101 1110 | 1000 0100
Hex code 0 0 [} 1 5 E 8 4

Internal form

The reader may wonder how, when he sees a hexa-
decimal printout of storage contents, he will be able to
interpret the different formats correctly. This is not a
problem, but does require care. The programmer can refer
to the assembly listing of the program. By tracing the
assembler addresses, he can calculate just where in main
storage each instruction or data item is. In some cases, the
format will have been specified explicitly. In others, he
must know which format is implied by use of particular
instructions or types of data.

Hexadecimal Number System

Turning back to the examples, we notice that internally the
characters and decimal numbers are, generally speaking,
coded separately in either four- or eight-bit binary codes.
The binary number in example 4, however, is recorded
internally in its actual value as an integer in a number
system with a base of 2. The 0’s and 1’s are the only digits
in this number system. Similarly, the hexadecimal equiva-
lent 15E84 is an integer in a valid number system with a base



of 16. Considering the binary and hex numbers in this
example in their entirety, they have exactly the same total
value. Each hex digit also equals the value of the four bits it
represents. We see from this that hex numbers can be used in
two different ways: (1) simply as a four-bit code into which
each internal half-byte is translated, and (2) both as a four-bit
code and as a valid number system with a base related in a
definite way to the base of the binary number system.

In the familiar decimal number system, the base is 10,
and there are ten digits, 0—9. In the decimal number 234,
we know that the 2, because of its position, equals 2 x 100,
or 200; the 3 equals 3 x 10, or 30; and the 4 equals 4 x 1,
or 4. The three values are in effect added together. We may
represent the place value of each digit in a whole number
(not a fractional or mixed number) in this way:

Power of base 10| 10% | 10% | 102 | 10! | 10

Value 10,000/ 1000 | 100 | 10 [ 1

In the same way, the binary number system has a base of
2 and has two digits, 0 and 1. Its place values are:

Powerofbase2 | 28| 27| 28|25 | 2% | 23 [ 22| 2" |2°

Value in decimal |256|128|64 132(16 | 8 |4 {12 | 1

The hexadecimal number system has a base of 16 and
has 16 digits, 0—9 and A—F. Its place values are:

4 3 2 1 0

16" | 16
16 | 1

16 16

4096

16
256

Power of base 16

Value in decimal {65,536

We may notice that there is a relationship between
binary and hexadecimal place values. Beyond the zeroth
power (this always equals 1), hex place values are exactly
four times greater than binary. This becomes clear when we
compare them up to 212=163:

211]210I 29,8 27[ 26l25 A
128]64,32

Power of base 2 | 2 23|22l21 20

Power of ‘base 16

Value in decimal

2048]1024]512 8 I 4 l 211

Table 2-3. Hexadecimal and Decimal Integer Conversion Table

It is this relationship that makes one hex digit equal
arithmetically to four binary bits, two hex digits equal to
two groups of four bits each, etc. All hex and binary digits
must of course be kept in correct place order.

Now we are ready to figure out some actual hexadecimal
values. Hex numbers are especially useful for calculating
main storage addresses and displacements. A storage
address, we may remember, is a 24-bit true binary number
internally, always represented externally by the machine as
six hexadecimal digits.

We shall use Table 2-3 for converting hex numbers to
decimal, and decimal to hex. It is for integers only. The
table shows eight places, each place being the position of a
hex digit, starting from the right.

The table shows the equivalent decimal value of each
hexadecimal digit in each hex position from 1 to 8. To
convert a hex number to decimal, it is necessary only to
find the value of each hex digit in the column correspon-
ding to its position, and to add them together. To convert
D34, to decimal, we start in column 3 because this is a
three-digit number. We find (1) D00;s = 3328, in column
3, (2) 3046 = 48,4 in column 2, and (3) 445 = 40 in column
1; then (4) summing the decimal values, we get

3328

48
4

338010 = D3416

To convert the five-digit number B60A6,¢ to decimal,
we follow the same procedure, beginning in column 5:

Hex Decimal
B0000 = 720 896
6000 = 24 576
000 = 0
A0 = 160

6 = 6
B60A6 745 638

Using the same table to convert a decimal number to
hexadecimal requires a rather different procedure. Let’s

HALF WORD HALF WORD
BYTE BYTE BYTE BYTE
BITS 0123 BITS 4567 BITS 0123 BITS 4567 BITS 0123 BITS 4567 BITS 0123 BITS 4567
Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal | Hex Decimal | Hex! Decimal [Hex Decimal
0 0l o 0 0 0 0 0 0 1] (o] 0 0 0 0 0
1 268,435,456 | 1 16,777,216 1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2| 536,870,912 | 2 | 33.554.432 | 2 2,097,052 | 2| 131,072 | 2 8,192 | 2 512 2 2 2 2
3 805,306,368 | 3 50,331,648 3 3,145,728 3 196, 608 3 12,288 3 768 3 48 3 3
4 11,073,741,824 | 4 67,108,864 4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 | 1.342,177,280 | 5 | 83,886,080 | 5 | 5,042,880 | 5 | 327,680 | 5 | 20,480 | 5| 1,280 5 80| 5 5
6 |1,610,612,736 | 6 100, 663,296 [ 6,291,456 6 393,216 6 24,576 3 1,536 é 96 [ 6
7 1 1.879,048,192 | 7 | 117,440,512 | 7 | 7,340,082 | 7 | 458.752 | 7 | 28,672 | 71 1,792 7 2 7 7
8 1 2,147,483,648 | 8 | 134,217.728 | 8 8,388,608 | 8 | 524,288 | 8 | 32,768 | 8| 2,048 8 128 g 8
9 12,415,919,104 | 9 150,994,944 9 9,437,184 9 89,824 9 36,864 9 2,304 9 144 9 9
A | 2,684.354.560 | A | 167,772,160 | A | 10,485.760 | A | 55,360 | A | 40,960 | A| 2.560 A 160 A 10
B | 2,952,790.016 | B | 184,549,376 | B | 11,534,336 | B | 720,896 | B | 45,056 | B 2.816 B 176 B 1
C3.221,225,42 | € | 200,326,552 | C | 12,582,912 | C | 786432 | C| #H.152 | C| 3.072 c 152 S 12
D | 3,489,660,928 | D | 218,103,808 | D | 13,631,488 | D | 851,968 | D] 53,248 | D| 3,328 b 208 D 13
E ]3,758,096,384 | E 234,881,024 E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F ] 4,026,531,840 | F 251,658,240 F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15
8 7 6 5 4 3 2 1
X20-8047
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take 3380, as an example. We look for the highest decimal

value in the table that will fit into 3380. The closest is.

3328,¢ in column 3, equal to the D. We make a note that
this corresponds to D00y and subtract, as shown below.
The closest value below the remainder (52;9) is 484 in
column 2, and we note it is equal to 30,5. Subtracting
again, we look for the best fit- into the remainder of 44,
ana find 449 1n column 1, equal to 4;5. Adding the hex
values, we get the result 3380 = D34, which we know from
our first conversion example is correct. (The best way to
check the result of a conversion is to reconvert. Any lost
zeros are likely to be found in the process.)

Decimal  Hex
3380
3328 = D00
52
48 = 30
4 = 4
D34

Without looking back, let’s convert 745,638,9to hexa-
decimal:

Decimal Hex
745 638 )

720 896 = B000O
24 742

24 576 = 6000
166

160 = A0

6 = 6

B60A6

The easiest way to find the decimal value of a long
binary number is to convert it to hex, and from hex to
decimal. Similarly, to find the binary value of a decimal

number, the decimal number should be converted to hex,

and from hex to binary. To get the binary equivalent of
745,638, we would convert it to hex as in the last

example and merely substitute the four-bit code for each:

hex digit in the result:
0 B 6 0 A 6
0000 101t 0110 0000 1010 0110

It is entirely feasible to perform all kinds of arithmetic
calculations in hexadecimal arithmetic. The rules are the
same as in decimal arithmetic. Most programmers prefer to
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convert hexadecimal values to decimal, however, do their
calculations in decimal, and then convert back to hex. This
can be done easily and quickly with the use of a conversion
table.

On the other hand, computer personnel often find it
useful to be able to do simple addition in hexadecimal.
Until they become proficient, they can simply count on
their fingers. The rules for carrying are the same as in
decimal addition. In decimal, the highest digit value is 9.
When 1 is added to 9, the result is O and a carry of 1. Or, as
we usually see it:

9 99 999
+1 +1 +1
10 100 1000

In hex, when 1 is added to the highest digit F, the result is
also 0 and a carry of 1:

F FF FFF
+1 +1 +1
10 (= 1659) 100 (= 256 19) 1000 (= 4096 1)

The following list of equivalent values may help to
crystallize the concepts of hexadecimal notation. Hex
numbers that end in zero are always multiples of 16. To
avoid confusion hex numbers like 10, 11, 12, etc., should
be read as “one zero, one one, one two,” and not as “ten,
eleven, twelve.”

Dec. Hex Dec. Hex Dec. Hex Dec. Hex
11 2 16 43 2B 80 50
2 2 23 17 4 2 81 sl
3 3 24 18 45 2D . .
4 4 25 19 46 2E
5 5 26 1A 47 2F . .
6 6 27 1B 48 30 94 SE
7 7 28 1C 49 31 95 SF
8 8 29 1D 50 32 % 60
9 9 30 1E 51 33 97 61

10 A 31 1IF 52 34 98 62
1 B 32 20 . . 99 63
12 C 33 21 : : 100 64
13 D 34, 2 . . : :
14 E 35 .23 gg gg . .
15 F 36 24 : :
6 10 37 25 64 40 240 FO
17 11 38 26 65 4l .

18 12 39 27 . : : :
19 13 40 28 : : 254 FE
20 14 41 29 78 4E 255  FF
21 15 42 2A 79  4F 256 100




This chapter introduces and - discusses some of the fixed-
point operations of the standard instruction set in the
System/360. These include the arithmetic and shifting
instructions as the central topic, with important consider-
ation also of certain logical operations (comparison,
branching), and loop methods.

Fixed-point instructions perform binary arithmetic on
fixed-length data of either a fullword or a halfword. The
use of registers for arithmetic and other operations is thus

ADDITION AND SUBTRACTION

For a first example we shall consider a simple inventory
calculation. We begin the calculation with an on-hand
quantity, a receipt quantity, and an issue quantity. We are
required to compute the new on-hand, according to the
formula:

new on-hand = old on-hand + receipts - issues

Using fairly obvious symbols for the four quantities, this
becomes:

NEWOH = OLDOH + RECPT - ISSUE

A program to carry out this calculation is shown in
Figure 3-1. We shall be concentrating on the four actual
processing instructions, but at the outset we shall display all
programs in logically complete form.

The assembler instruction PRINT NOGEN is used simply
to suppress printing of statements generated by macro
““"m's"tr"ffgtlom, such as the EOJ T macro, These statements and
"fﬁeffwstorage locations and" disptacements will still be part of
the object program; they will be omitted only from the
printed listing.

The next three lines of coding are rather standard
preliminaries; instructions of this character will appear at
the beginning of all but highly specialized programs. To
review briefly, the START establishes a reference point for
the assembly: the assembly listing (shown later) will
assuine that the first byte is to be loaded into 256 as
shown. The BALR (Branch and Link Register) and the
USING, as written here, together direct that register 11
shall be used as a base register wherever one is needed, and
inform the assembler that the base register at execution
time will contain the location of the first byte after the
USING.

Chapter 3: Fixed-Point Arithmetic

most convenient. As might be expected, the fixed-point
instruction set uses only these three instruction formats:
RR, RX, and RS.

In the course of presenting the instructions and con-
sidering programming methods used with the System/360,
we shall review the basic ideas of the machine organization
and operation.

The presentation will be almost entirely through the
medium of eight examples and a final extended case study.

ook STOCK
PROGRAMMER /& I J—O-Nés

Neme Operation
10

Operand
25

DC

Q]

ECPT

Figure 3-1. A program, written in assembler language, to perform a
simple computation in binary arithmetic

Now we reach the first processing instruction, where we
wish to concentrate our attention.

The Load instruction is classified as an RX format
instruction, which implies a number of facts about it:

1. The instruction itself takes up four bytes of storage.

2. The fields within the instruction are, from left to
right: the operation code (eight bits), the number of the
register to be loaded from storage (four bits), the number
of the register used as an index register (four bits), the
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number of the register used as a base register (four bits),
and the displacement (twelve bits).

3. The instruction involves a transfer of information
between storage and a general register.

4. The effective address of a byte in storage is formed by
adding the contents of the base register, the contents of the
index register, and the displacement. If register zero is
specified for an index register or a base register, a zero value
is used in the address computation, rather than whatever
register zero may contain.

The operation of the Load instruction is straightforward:
obtain a fullword (four bytes) from storage at the effective
address specified, and place the word in the general register
indicated. The effective address must refer to a fullword
boundary, which means that the address must be a multiple
of 4.

Let us consider the complete line of coding for the Load
instruction to see what each part does.

The letter L is the mnemonic operation code for Load;
this is converted by the assembler into the actual machine
operation code for Load, 58. The 3 is the number of the
general register we wish loaded with a word from storage.
OLDOH is the symbolic address of the word in storage to
be copied into general register 3. By writing the address in
this fashion, we have indicated that the assembler should
supply the base register and the displacement, and that we
do not wish indexing.

The assembly listing for this program is shown in Figure
3-2. Looking at the machine instruction assembled from
this symbolic instruction, and remembering that all num-
bers are shown in hexadecimal, we see that the operation
code is 58, the general register is 3, the index register is
zero, the base register is B ( = 11,9), and the displacement is
0124. Since the base register contains 102, the effective
address is 114, which is shown in the assembly listing under
ADDR?2 as the address of the second operand and which we
see is the location of OLDOH.

The Add instruction is also of the RX format. The
operation is to add the fullword at the storage address
specified, to the general register named. In our case, we

have, of course, named the same general register as in the
Load instruction, since the intent is to add OLDOH and
RECPT together. Looking at the assembled instruction, we
see that things have been handled much as they were with
the Load. Base register 11 has been assigned, there is no
index register, and the displacement has been computed to
give the effective address of the storage location associated
with RECPT (118).

After the execution of this instruction, register 3 will
contain the sum of the storage quantities identified in our
program by OLDOH and RECPT.

The Subtract instruction (S) in the next line subtracts
the quantity identified by the symbol ISSUE from the
quantity now standing in register 3. The format and general
operation of the instruction are very similar to Add.

Now we have the desired result in register 3. The prob-
lem statement required the result to be placed in another
location in storage, that is identified by the symbol
NEWOH. Placing the contents of a general register in stor-
age is the function of the Store instruction (operation code
ST). The general register contents are unchanged by the
operation. The format is again RX, so address formation is
as before.

This completes the actions required by the problem
statement, but we must now indicate what we want done
next. The System/360 forces a program organization that
keeps the machine in operation as much of the time as
possible. What we have shown here is an End of Job macro
instruction, which is used in the Disk Operating System
environment. As we saw in the preceding chapter, the EOJ
macro generates a Supervisor Call instruction, SVC 14, The
use of -this instruction assumes that there is in storage, at
the time of execution of this program, a control program
that runs the machine between jobs. We here indicate to the
supervisor that this program has no further need for the
machine.

The program in Figure 3-2 does not include any instruc-
tions for reading in data from an input device such as a card
reader or magnetic tape unit, or for printing out or
punching out the results of our calculations. Input and

LOC OBJECT CODE ADDR1 ADDR2 STMT
1
000100 2 STOCK
000100 05BO 3 BEGIN
000102 4
000102 5830 BO1l2 00114 5
000106 5A30 BOl6 00118 6
00010A 5B30 BO1lA 0011cC 7
00010E 5030 BOI1E 00120 8
9
000114 00000009 12 OLDOH
000118 00000004 13 RECPT
00011C 00000006 14 ISSUE
000120 15 NEWOH
000100 16

SOURCE STATEMENT

PRINT NOGEN

START 256
BALR 11,0
USING *,11

L 3,0LDOH
A 34RECPT
S 341ISSUE
ST 3,NEWOH
EOJ

DC Ftor

DC Fi4e

DC Fle!*

DS F

END BEGIN

Figure 3-2. The assembly listing of the program in Figure 3-1
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output instructions vary considerably in different systems,
depending upon the operating (or programming support)

system in use and the particular pieces of input/output:

equipment available at an installation.

In normal commercial practice, a computer program
would be used, not for calculations on just one set of data,
. but on large series of data that require similar treatment.
An example would be a program to calculate weekly pay
for several hundred employees of a company, and the data
would include the hours worked, pay rate, withholding
amounts, etc., for each of them. In our program examples,
our principal interest lies in how the assembler language
instructions work, and so we will generally use only one set
of specific values for the purpose of ﬂlustratmg what
happens in each step.

We have simply entered the illustrative values for the
input data with DC instructions, and reserved space for the
output with a DS. The F’s in the DC’s and the DS specify
fullwords of four bytes. The Load, Add, Subtract, and
Store instructions all operate on fullwords. As we shall see
in later examples, there are corresponding halfword
instructions.

The END instruction informs the assembler that the
termination of the program has been reached and specifies
in this case that the first instruction to be executed after
the program is loaded is the one with the name BEGIN,
that is, the BALR instruction.

By using either a suitable assembler language routine or
macro instruction, it is possible to get a “dump” of the
contents of the registers and selected areas of storage, and
get our data and results out of the machine. Such a routine
produced the numbers, converted to decimal, that are
shown in Figure 3-3. The four items, in sequence, are
OLDOH, RECPT, ISSUE, and NEWOH.

It might be interesting to run this program again with a
value of, say, 16 for ISSUE. We know that negative
fixed-point numbers are represented in two’s complement
form. Our output routine will make a conversion to true

0000009+ 0000004+ 0000006+ 0000007+

Figure 3-3. Output of the program of Figure 3-2. The four numbers
are OLDOH, RECPT, ISSUE, and NEWOH, in that
order.

numbers and sign, as shown in the first line of Figure 3-4.
In the second line, the same numbers are shown in hexa-
decimal as they normally appear in a dump.

We see that the first three numbers, which are positive,
have zeros before the significant digits. The last number,
which is negative, has 1’s to the left of the significant digit
(hexadecimal F equals binary 1111). If we were to write out
this hexadecimal number, FFFFFFFD, in the binary form
actually in storage, we would have thirty 1’s followed by
01. Recalling how two’s complement numbers are formed,
we see that the complement of this number is binary 11,
which equals decimal 3. Checking with the given data and
the formula, we see that this is the correct answer, and, of
course, the decimal value was printed out as a minus 3.

Naturally, if a negative result were actually obtained in
an inventory control program, it would indicate some kind
of trouble, probably bad data; it is not possible to issue
more than there are on hand plus what was received. A
realistic program would include a test for the possibility of
a negative result and the corrective action to be taken.

0000009+ 0000004+ 0000016+ 0000003-

00000009 00000004 00000010 FFFFFFED

Figure 34. Output of the same program with a value for ISSUE
that causes NEWOH to be negative. Values are shown in
decimal in the first line, hexadecimal in the second; the
value for NEWOH is in complement form.

Fixed-Point Arithmetic 31



MULTIPLICATION

For a simple example of fixed-point multiplication in the
System/360, consider the following problem. We are to
multiply an ISSUE quantity by a PRICE to get TOTAL. We
shall assume that PRICE is an integer, expressed in pennies.
The product will therefore also be in pennies. For instance,
an ISSUE of 5 and a PRICE of 25 would give a TOTAL of
125.

The program to do this multiplication is shown in Figure
3-5. The first four lines are the same as before. The Load
places the multiplicand in general register 5. The Multiply
(M) forms the product of what is in 5 and what is in the full
word identified by PRICE, and places the result, which
could of course be much longer than either of the factors,
in registers 4 and 5 combined. It is required that the general
register named in the Multiply be even numbered; if it is
not, a specification exception and an interrupt occur. The
multplicand must always be in the odd-numbered register
of an even-odd pair, such as 4 and 5 here. The multiplicand
in the odd register, and whatever may have been in the even
register, are both destroyed by the operation of the
Multiply.

After the product has been formed, we store it in
TOTAL on the assumption that the result does not exceed
the length of one register. The validity of such an assump-
tion, of course, is the responsibility of the programmer; if
in fact the product extended over into register 4, there
would be no automatic signal of the fact that the result in
TOTAL is not the complete product. If a product ex-
tending into the even register could be a legitimate
outcome, we would naturally have to arrange to store both
parts of the product.

Let us try this program with several sets of sample
factors in order to see precisely how the operation works.
Figure 3-6 shows the values of ISSUE, PRICE, TOTAL, and
the contents of register 4 and 5 after the completion of the
program. These were obtained by a dump routine and con-
verted to decimal. We see that the product of 7 and 23 is
indeed 161, as we might expect. This number is shown as
the contents of register 5, while register 4 is zero; the

ISSUE PRICE TOTAL
0000007+ 0000023+ 0000161+
REG 4 REG 5

0000000+ 0000161+

Figure 3-6. Output of the program of Figure 3-5

product was not long enough to extend into 4.

In Figure 3-7 the numbers are the same except that the 7
is negative. (This makes no sense in terms of the problem,
of course.) We see that TOTAL and register 5 are negative,
as expected, but what has happened to register 4? The
answer is that the product is a full 64 bits long; a negative
number has 1’s to the left of the leftmost significant digits.
Register 4 properly contained all 1’s which, considered as
part of the 64-bit product, are merely sign bits. But printed
as a separate number (which is pointless, in reality), a word
of all I’s represents -1 as shown. A printout not repro-
duced here substantiates what we have said: register 4
printed in hexadecimal form appears as eight F’s.

ISSUE PRICE TOTAL
0000007~ 0000023+ 0000161
REG 4 REG 5

0000001~ 0000161-

Figure 3-7. Output of the program with a negative value for ISSUE

In Figure 3-8 we see an example of what can happen
when the numbers entering the machine do not conform to
the assumptions made in setting up the program (that is,
the product would never extend into register 4). With both
factors being 87654, the product, in decimal, should be
7,683,223,716. This is too long to fit into register 5, so we
would expect TOTAL to contain only the equivalent of the
part of the product that appeared there. But we would
hardly have expected it to be negative! What happened?

LOC O0OBJECT CODE ADDR1 ADDR2 STMT
1
000100 2 GROSS
000100 0580 3 BEGIN
000102 4
000102 5850 BOOE 00110 5
000106 5C40 BOl2 00114 6
00010A 5050 BOl6 00118 7
8
000110 00000007 11 ISSUE
000114 00000017 12 PRICE
000118 13 TOTAL
000100 14

SOURCE STATEMENT

PRINT NOGEN

START 256
BALR 11,0
USING *,11

L 5. ISSUE
M 44PRICE
ST 5,TOTAL
EQJ

DC Frye

DC Ft231
DS F

END BEGIN

Figure 3-5. Assembly listing of a program to perform binary (fixed-point) multiplication
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The answer becomes apparent if we look at the product
as a hexadecimal number and note the part of it that would
appear in register 5. The complete product is 1C9F4B0A4,
that is, nine hexadecimal digits — a register can hold eight.
So the 1, preceded by seven hexadecimal zeros, would be
the contents of register 4, as shown. The part in register 5
begins with the hexadecimal digit C, which is 1100 in
binary. This means that the leftmost bit is 1, which, when
CI9F4B0A4 is taken as a number by itself, indicates a
negative number that is in two’s-complement notation!
Thus, in converting to decimal for Figure 3-8, System/360
performed as it was designed to do, recomplemented (to
hexadecimal 360B4F5C), and came up with the decimal
equivalent of that amount.

This recitation of troubles is not meant to suggest any
difficulty in using the System/360. Any programmer

appreciates the necessity of knowing a good deal about his
data and for testing it for validity if he is not sure of it. The
purpose in showing these slightly surprising results is simply
to clarify how the machine operates, especially since many
programmers will not have had previous contact with
complement representation of negative numbers.

ISSUE PRICE TOTAL
0087654+ 0087654+ 906710876—
REG 4 REG 5

0000001+ 906710876~

Figure 3-8. Output of the program with values for ISSUE and
PRICE that lead to a TOTAL too large to fit in a
fultword
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MULTIPLICATION AND DIVISION WITH
DECIMAL POINTS

The next example involves a little further practice with
multiplication, an application of the Divide instruction, and
a rather basic question of decimal point handling in binary.

The task is to increase a principal amount named PRINC
by an interest rate of 3%. The principal is stored in pennies
as in the previous example; for instance, 24.89 would be
stored simply as the integer 2489. Later program segments
would have to insert any “graphic” decimal point that
might be desired for printing; at this point we make a
mental note of the true situation, while pretending for
programming purposes at the moment that the unit of
currency is the penny.

One possible program is shown in Figure 3-9. (There are
other ways, as we shall see.) After the usual preliminaries
we load the principal into an odd-numbered register prepar-
atory to muliiplying, The interest rate is shown as 103,
which should be read as 1.03. This is a shortcut: instead of
multiplying the principal by 0.03 and adding the product to
the principal, we multiply the principal by 1.03. The result
is the same either way; our way saves an addition.

The absence of the decimal point is another matter. We
are saying here that instead of multiplying by 1.03, we will
multiply by 103; the product will be 100 times too large as
a result. It will be necessary in a subsequent step to divide
by 100 to correct for this. The reason for this is that there
is a question of how to represent a decimal fraction in
binary form. The question can be answered, as we shall see,
leading to a different program. For now, let us take what
seems at first to be the easy way out and stay with integers.

Using the sample principal mentioned above, 24.89, the
product after multiplication is 256367. We shall assume
that the product in all cases is short enough to be held in
register 5 alone.

We now wish to round off. We think of the product as
$25.6367; the desired rounded value is $25.64. Remem-

bering that the computer knows nothing of our behind-the-
scenes understanding about decimal points, all we have to
do to round off is to add 50 to the integer product. We will
think of the 50 as $0.0050, but to the computer it is 50.

Having done this, we need finally to divide by 100 to
correct for using 103 in place of 1.03. This requires the
Divide instruction, which as we might expect is a close
relative to the Multiply instruction. The dividend must be
in an even-odd pair of registers as a 64-bit number. This
requirement is already met by the way the Multiply leaves
the product in an even-odd pair (the machine was designed
to make it simple to follow a Multiply with a Divide). The
remainder is placed in the even register and the quotient in
the odd. Our quotient will be 2564 (we read: $25.64) and
the remainder will be 17 (we don’t care about this). The
quotient can now be stored back in the location for PRINC,
as required in the problem statement.

The question will occur to many: why was it necessary
to divide? Why not simply shift two places right to drop the
right two digits? The answer is, of course, that we could do
precisely that in decimal, but this is binary. Shifting one
place to the right in decimal divides the number by 10;
shifting one place to the right in binary divides the number
by 2. There is no number of binary shifts that divides a
number by a factor of decimal 100. Six places divides it by
64, and seven places by 128, With this way of approaching
the problem, we have no choice but to divide.

It should be kept clearly in mind that in all examples so
far we have explicitly stated that all quantities were to be
viewed for programming purposes as integers, whatever we
on the outside might understand by the digits. This was by
agreement, not necessity. We can work with binary num-
bers that are taken to have “binary points” elsewhere than
at the extreme right. Let us, for instance, attempt to
express the factor 1.03 as a binary number.

LOC OBJECT CODE ADDR1 ADDR2 STMT
1
000100 2 INTA
000100 0580 3 BEGIN
000102 4
000102 5850 BOl6 00118 5
000106 5C40 BO1lA 001l1cC 6
00010A 5A50 BOlE 00120 7
00010E 5040 B0Z22 00124 8
000112 5050 BOl6 00118 9
10
000118 00000989 13 PRINC
00011C 00000067 14 INT
000120 00000032 15 C50
000124 00000064 16 C100
000100 17

SOURCE STATEMENT

PRINT NOGEN

START 256
BALR 11,0
USING *,11

L 5,PRINC
M 44 INT

A 5,C50

D 4,C100
ST "5,PRINC
EOJ

DC F*2489'"
DC F*103°*

DC F¢50°
JC Ft*100"
END BEGIN

Figure 3-9. Assembly listing of a program involving binary multiplication and division with the result rounded off
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It may be recalled from a study of the conversion rules
that there will be in general no exact binary equivalent for a
decimal fraction. If we try 1.03 we get an infinitely
repeating binary fraction. The first twelve bits are

1.00000111101

The binary point is, of course, understood (by us).

If we enter such a number as the constant (which we
shall see how to do in a moment), we can multiply by it.
The machine cares nothing for our understood binary points,
and carries out the multiplication. We must then take into
account the understood binary point in the product, accor-
ding to a literal translation of familiar rules: the binary
point in the product will have as many places to the right as
the sum of the number of places to the right of the binary
points in the multiplier and in the multiplicand. If the con-
stant has eleven places to the right, as written above, and
the principal is still understood to be an integer (zero places),
then the product will have eleven places to the right.

Let us turn to Figure 3-10 to see how this much of the
revised program looks.

The Load is the same as before, as is the Multiply. The
constant used for multiplication is different, however.
Down at INT we see that the DC is

FS11'1.03'

The F stands for fullword, as before. The S stands for Scale
factor and is the number of binary places that are to be
reserved for the fractional part of the constant. We have
indicated eleven places as the number of bits to the right of
the binary point in the factor as we write it before.

The Add to round off js the same as before, but once
again the constant is different. What we have after the
multiplication this time is not an integer but a binary
fraction. To the left of the assumed binary point we have a
whole number of pennies; to the right a fractional part of a
penny. This time, to round off we need a constant that is
0.5 cent expressed in the same form as the fractional part

of our product. The Scale factor method shown gives this.
(In fact, the constant consists of a 1 followed by ten zeros.)

After rounding off we are left with eleven superfluous
bits at the right end of the product. These can be shifted
off the end of the register with a suitable shift instruction.
“Suitable” in this case means that the shift should be to the
right, it should involve a single register, and it should be an
algebraic shift so that if the number were negative, proper
sign bits would be shifted into the register. The instruction
is called Shift Right Single (SRA), in which we specify the
register first and then the number of positions of shift
desired. Bits shifted off the right end of the register are lost.
After the shift we are ready to store the result.

The point of doing all this is that we have replaced a
Divide with a Shift, and the latter is considerably faster
than the former. In some applications the difference in time
could be significant.

If we print the result, we get a surprise: the answer is
2563 ($25.63); rounding seems not to have taken place.
The trouble is that the binary “equivalent” of the decimal
number 1.03 was not exactly equivalent. To prove the
point, let us ask for 15 binary places in the fractional part
of the constant created for 1.03. We change the rounding
constant likewise, and make the shift 15 places. This time,
the printout shows 2564 ($25.64) as before.

The moral of this story is that decimal fractions do not
usually have exact binary equivalents. Computations that
are required to be exact to the penny should be done in
integer form, as in the first version of the program. (Even
though a larger number of bits led to a correct answer this
time, it would not always do so, particularly for larger
principal amounts.)

This means, in most situations, that it would be most
unwise to go the further possible step of representing penny
amounts as binary fractions. Unless approximate results are
acceptable, which they sometimes are, of course, the use of
anything but integer arithmetic leads to problems more
severe than they are worth.

LOC OBJECT CODE ADDR1 ADDR2 STMT  SOURCE

1 o
000100 2 INTB
000100 0580 3 BEGIN
000102 4
000102 5850 BO16 00118 5
000106 5C40 BO1A 0011C 6
00010A 5A50 BOLE 00120 7
00010E 8AS50 000B 00008 8
000112 5050 BOl6 00118 9

10
000118 000009BS 13 PRINC
00011C 0000083D 14 INT
000120 00000400 15 HALF
000100 16

STATEMENT

PRINT NOGEN
START 256

BALR 11,0
USING *,11

L 5+ PRINC

M 49 INT

A 54HALF
SRA 5:11

ST 54PRINC
EQJ

DC F12489"
DC FS11'1.03!
DC FS11t0.5°
END BEGIN

Figure 3-10. A different version of the program of Figure 3-9, using a scale modifier for constants
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Some readers may be wondering whether binary arith-
metic is worth the trouble. The answer is yes, of course.
Many applications of binary arithmetic raise none of the
questions suggested here and do not involve the possible
complications with complement form either. For the
straightforward cases, it is barely necessary to know
anything about the binary and complement matters. We
present examples like these to warn the unwary and to lay a
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foundation of understanding for those with problems where
the advantages of binary arithmetic are worth the care that
must be exercised in using it. It is true that many
applications will suggest staying with decimal arithmetic,
for users having the decimal instruction set, but even then
there will be more than a few occasions where binary
operations are the only ones that make sense from a stand-
point of time.



SHIFTING AND DATA MANIPULATION

Having introduced the shifting operation briefly in the
previous example, let us now turn to an application that
will involve considerably more shifting.

We begin with a fullword, supplied by some other pro-
gram, in which three data items are stored in binary form:

Bits Item name
0-11 A
12-23 B
24 — 31 C

We are required to separate the three data items and
store each in a separate halfword storage location, with
names for the latter as shown. All three numbers are
positive. .

The program shown in Figure 3-11 is a more or less
straightforward matter of shifting and storing, but a few
notes are necessary to make clear what is happening at
certain points.

The numbers in the Comments field are sample contents
of registers 6 and 7 as they would appear during execution
of the program if the original word were hexadecimal
78ABCDEEF. These sample values, of course, were entered
when the source program was punched; it is quite impos-
sible for the object program to print anything on the
assembly listing.

We begin by loading the fullword into an even-numbered
general register. This permits us to continue with a double-
length shift that moves bits from the named even-numbered
register into the adjacent odd-numbered register, which we
think of as being to the right. This is what “double” means
in Shift Right Double Logical (SRDL). The “logical” refers
to the handling of sign bits and means that zeros are
entered at the left of register 6. This is in contrast to the
“algebraic™ shifts, in which the bits entered at the left are

made to be the same as the original “sign bit”, that is, the
original leftmost bit. Here, we were guaranteed in the
problem statement that all three numbers are positive, so
we can ignore any question of what the leftmost bit in each
item might be. Whether it is zero or one, the number
represented is positive.

The SRDL moves the rightmost eight bits into register 7;
from there we move them to the right-hand end of the same
register, using a single-length logical shift that does not
affect register 6. What were originally the rightmost eight
bits of the fullword are now properly positioned in register
7 to be stored in a halfword location with the Store
Halfword (STH) instruction. The action here is to store the
rightmost 16 bits of the register named, in the two bytes
identified by the effective address. The register is not
disturbed by the operation of the instruction. This is an RX
format instruction; it could be indexed if we had occasion
to do so.

Now we again shift the two registers together to get the
twelve-bit B item into register 7. From there we move it on
over to the right-hand end of 7 and store it. A further shift
of what was originally the leftmost twelve bits is not
needed, since they are now in the right-hand end of 6, from
whence they may be stored.

Actually, the restriction to positive numbers is not too
difficult to remove. It would have to be agreed that the
leftmost bit of each item was its sign bit, that is, that in
generating the fullword each negative item was in com-
plement form and of such length as to fit in the item size
allotted. With this assumption, the program of Figure 3-12
properly expands the sign bits of the items and stores any
negative items in halfwords in complement form. The
“expansion” of the sign bit is one of the functions of an
algebraic shift, as noted above. The program must also be

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT
1 PRINT NOGEN
000100 2 SHIFTA START 256
000100 0580 3 BEGIN BALR 11,0
000102 4 USING *,11
000102 5860 BO22 00124 5 L 6 s FWORD 78ABCDEF 00000000
000106 8C60 0008 00008, 6 SRDL 6,8 0078ABCD EF000000
00010A 8870 0018 00018 7 SRL 1424 0078ABCD 000000EF
00010E 4070 BO2A oolL2C 8 STH 7,C 0078ABCD 000000EF
000112 8C60 0OOC 0000C 9 SRDL 6,12 0000078A BCDOOOOO
000116 8870 0014 00014 10 SRL 7,20 0000078A 00000BCD
00011A 4070 BO28 0012A 11 STH 7,8 0000078A 00000BCD
00011E 4060 BO26 00128 12 STH 64A 0000078A 00000BCD
13 E0J
000124 16 FWORD DS F
000128 17 A DS H
00012A 18 B DS H
00012¢C 19 C DS H
000100 20 END BEGIN
Figure 3-11. Assembly listing of a program to separate three quantities stored in one fullword
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LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT
1 PRINT NOGEN
000100 2 SHIFTB START 256
000100 05B0O 3 BEGIN BALR 11,0
000102 4 USING *,11
000102 5860 BO2A 0012C 5 L 64 FWORD T78ABCDEF 00000000
000106 8C60 0008 00008 6 SRDL 6,8 0078ABCD EF000000
00010A BAT70 0018 00018 7 SRA T124 0078ABCD FFFFFFEF
00010E 4070 BO32 00134 8 STH 7+C 0078ABCD FFFFFFEF
000112 8C60 000C 0000C 9 SRDL 6,12 0000078A BCDFFFFF
000116 BATO 0014 00014 10 SRA 7,20 0000078A FFFFFBCD
00011A 4070 BO30 00132 11 STH 7+8 0000078A FFFFFBCD
00011E 8C60 000C 0000C 12 SRDL 6,12 00000000 T8AFFFFF
000122 8A70 0014 00014 13 SRA T+20 00000000 0000078A
000126 4070 BO2E 00130 14 STH T,A 00000000 00000784
15 EOJ

00012C 18 FWORD DS F
000130 19 A DS H
000132 20 B DS H
000134 21 C DS H
000100 22 END BEGIN

Figure 3-12. Modified version of the program of Figure 3-11, making it operate correctly with negative quantities

changed to expand the sign of item A. The final two shifts
are added to do this. Actually, it could be done more
efficiently and these extra steps avoided simply by changing
the SRDL in statements 6 and 9 to the algebraic SRDA.
Figure 3-13 shows the output of the two programs for
the sample input word of 78ABCDEF. The three parts of
the combined word, in hexadecimal, were therefore 78A,
BCD, and EF. In the first line of Figure 3-13 we see that
these have been put into halfwords by the first program as
078A, OBCD and OOEF, that is, as three positive numbers.
In the second line we see that the second program, on the
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other hand, interpreted the second and third numbers as
negative because their leftmost bits were 1’s. The three
output halfwords-are 078A, FBCD, and FFEF, showing
that the sign bits of the numbers were properly expanded.

PROG SHIFTA 078A OBCD OOEF

PROG SHIFTB 078A FBCD FFEF

Figure 3-13. Output of the two programs executed with hexa-
decimal 78ABCDEF for the fullword



BRANCHES AND DECISION CODES

The Condition Code

Decisions and branching are important parts of data proc-
essing, and the programming methods by which these
operations are carried out are important aspects of the
programming task. The facilities offered by the System/360
are particularly powerful and flexible. The basic action is
the setting of the condition code by any of a large number
of instructions and the subsequent testing of the condition
code by a Branch on Condition instruction.

Many arithmetic, shift, and logical instructions have as a
part of their action the setting of the condition code to
indicate something about the result of the instruction’s
execution. For instance, after an Add instruction, the
cond1t10n code, mdlcates whether the sum éfé 91:0 posi-
five, n negatlve or too arge for the reglster ~After a Com are
~fistruction the condition code indicafes whetherwhe first
operand,.was.greater than, equal to, or less than the sécond
operand The meaning of each of the different states or
“Values of the condition code is specified in the description
of each instruction that affects the code. These descriptions
may be found in the System/360 Principles of Operation,
which also contains a complete tabulation of the instruc-
tions involved and the meaning of the condition codes.

The condition code occupies two bits (in the control
program area of storage). Two bits can, of course, be set in
just four ways: 00, 01, 10, and 11; and these four binary
settings are equal to decimal values 0, 1, 2, and 3, respec-
tively.

At any time after the condition code has been set by the
action of an instruction, it may be tested by using a Branch
on Condition (BC) instruction. In this instruction, which is
in the RX format, the four bits that in other instructions
designate a general register are here used for a mask that
designates in which states of the condition code we wish a
certain branch to occur.

The leftmost bit of the mask checks for a condition code
of zero, the next bit for code 1, the next for code 2, and
the rightmost for code 3. If the condition code is equal to
any of the values selected by the mask bit(s), the Branch is
taken. The correspondences between condition codes and
mask are summarized in Table 3-1.

Note that the mask bits correspond from left to right
with the four condition codes. Another way, perhaps easier
to remember, of summarizing this correspondence is as
follows:

Condition code
Mask used to test code

0123
8421

A BC instruction with a decimal mask of 12 (8+4) specifies

that a branch is to be made if the condition code is O or 1,
and is not to be made if the condition code is 2 or 3. A
mask of 7 (4+2+1) will cause a branch only if the condition
codeis 1,2, or 3.

A decimal mask value of zero makes the instruction test
for no condition codes; it thus becomes a no-operation

instruction. éain;a_slii)f/]itests for any condition code; it 1s
thus an uncofi 1t1.<').£111.£§_21_11£‘g_

T = SRR LA

Table 3-1. Masks for testing various states of the condition code

Condition

Mask bits Decimal value codes tested

0000 0 None

0001 1 3

0010 2 2

0011 3 2o0r3

0100 4 1

0101 5 lor3

0110 6 lor?2

0111 7 1,2,0r3

1000 8 0]

1001 9 Oor3

1010 10 Oor2

1011 11 0,2,0or3

1100 12 Oorl

1101 13 0,1,0r3

1110 14 0,1,0r2

1111 15 0,1,2,0r3

A Sorting Procedure

To see how some of these ideas are applied, consider a
simple example. We are given three fullword data items
named A, B, and C. They may be positive or negative. We
are required to change any negative values to positive, and
then to rearrange the three values in storage to make the
number in A the largest, the number in B the next largest,
and the number in C the smallest of the three. Figure 3-14
expresses the logic of the method that will be used here to
perform the sort; other ways are possible.

We first make all three numbers positive. A comparison
is then made between A and B; if A is the smaller, we
interchange the two values. Now we know that the value in
A is the larger of the two, whether it originally was or not.
A similar process compares A and C and interchanges if A is
smaller. Having done this, we know that what is in A is the
largest of the three. A final comparison of the numbers now
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Make
A,B,C
positive

>
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@

A< B

Interchange
AandB

>
v
[3)

AL C

Interchange
AandC

®
v
o

B<C

Interchange
BandC

o

Figure 3-14. Program flowchart of a method of sorting three num-
bers into descending sequence. Any negative numbers
are changed to positive before sorting.
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in B and C, and an interchange if necessary, gets the
“middie” number in B and the smallest in C.

The program of Figure 3-15 involves some instructions
that we have not used before. The Load Multiple (LM)
instruction begins loading fullwords from the specified
storage location. The first word goes into the first-named
register. Successive fullwords go into higher-numbered regis-
ters until the second-named register has been loaded. In the
program, the result of the LM instruction will be to place A
in2,Bin3,and Cin 4.

Now three Load Positive Register (LPR) instructions
change any negative numbers to positive, leaving any posi-
tive numbers unchanged. This is an RR format instruction,
meaning that both of its operands are registers. Here both
operands are the same register, as will frequently be the
case. The action is to take the value from a register, comple-
ment it if it is negative, and place the result back in the
same register. If it were necessary, two different registers
could of course be used.

Next comes a Compare Register (CR) instruction, which
is also in the RR format. This instruction does not change
the contents of either register, but simply sets the condition
code to zero if the two operands are the same, to 1 if the
first operand is low, and to 2 if the first operand is high.
(The comparison is algebraic, meaning that signs are taken
into account according to the rules of algebra, by which
any positive number is greater than any negative number.
We know that our numbers are by now all positive, so this
feature does not concern us.)

Next comes the Branch on Condition instruction, with a
mask of 10 (decimal) and a branch address of COMP2. The
mask of 10, checking with the table above, tests for condi-
tion code zero or 2. Following a Compare-type instruction,
these mean, respectively, that the first operand is equal to
or greater than the second operand. If the condition code is
either of these, we branch; otherwise the next instruction in
sequence is taken. The effect is: if the number in register 2
is already equal to or greater than the number in register 3,
we skip down to the second comparison, because A and B
are already in correct sequence.

The interchange, if it is necessary, is performed by
moving the contents of register 2 to register 6, moving 3 to
2, and finally moving 6 to 3. These transfers are made with
the Load Register (LR) instruction.

The remaining instructions repeat these operations twice
for the other comparisons. Finally, there is a Store Multiple
(STM) instruction to place the rearranged items back in the
original three locations, as required by the problem
statement. .

Figure 3-16 shows before-and-after values of A, B, and C
for six possible original orderings of the three values. Each
pair of lines is one set. These are hexadecimal numbers; the
original value of A in the last set is -3.



Loc

000100
000100
000102
000102
000106
000108
000104
00010C
00010E
000112
000114
000116
000118
00011A
00011E
000120
000122
000124
000126
00012A
0o012¢C
00012E
000130

000136
000138
00013C
.000140
000100

OBJECT CODE

0580

9824 BO36
1022
1033
1044
1923
47A0 BO16
1862
1823
1836
1924
47A0 B022
1862
1824
1846
1934
4TA0 BO2E
1863
1834
1846
9024 BO36

0000

00000001
00000002
00000003

ADDR1

ADDR2 STMT

00138

O~V HWN

00118 10

00124 15

00130 20

00138 24

SOURCE STATEMENT

SORT
BEGIN

COMP2

coMP3

ouT

PRINT NOGEN

START
BALR
USING
LM
LPR
LPR
LPR
CR

BC

LR

LR

LR

END

256
11,0
¥911
29440
2,2
3,3
be4
2,43
10,C0MP2
642
243
3,6
294
10,C0OMP3
642
2+4
446
3,4
10,0UT
643
34
446
2949 A

Fi1]e
Fl2'
Fe3e
BEGIN

LOAD REGISTERS WITH 3 NUMBERS
MAKE NUMBERS POSITIVE
COMPARE A AND 8B

INTERCHANGE IF NECESSARY

COMPARE A AND C

¥

L.

INTERCHANGE IF NECESSARY

COMPARE B AND C

INTERCHANGE IF NECESSARY

STORE SORTED VALUES

Figure 3-15. Assembly listing of a program to carry out the sorting procedure charted in Figure 3-14

INPUT1
QuUTPUTL

INPUT2
OUTPUT2

INPUT3
OUTPUT3

INPUT4
OUTPUT4

INPUTS
OUTPUTS

INPUTS
OUTPUTS

00000001
00000003

00000001
00000003

00000002
00000003

00000003
00000003

00000003
00000003

FFFFFFFD
00000003

00000002
00000002

00000003
00000002

00000001
00000002

00000002
00000002

00000001
00000002

00000002
00000002

00000003
00000001

00000002
00000001

00000003
00000001

00000001
00000001

00000002
00000001

00000001
00000001

Figure 3-16. Six sets of sample input and output for the program of Figure 3-15
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FURTHER DECISIONS:
THE SOCIAL SECURITY PROBLEM

In this application, which is presumably familiar to many
readers, we combine two decisions with some arithmetic
processing.

We are given a man’s earnings for a week (EARN), his
previous (“‘old”) year-to-date earnings (OLDYTD), and his
previous year-to-date Social Security tax (OLDFICA). We
are to compute his Social Security tax for this week (TAX),
his new year-to-date earnings (NEWYTD) and new Social
Security tax (NEWFICA). Assume the Social Security tax is
computegd,as 4.4% of earnings (with certain exclusions such
as sick pay, which we shall ignore) up to an annual limit on
taxable income of $7800. The program must decide
whether the employee has yet earned $7800 this year; if so,
he is exempt from further Social Security tax. Actually, the
situation is slightly more complex than that: if the man has
not yet earned $7800 before this week’s pay but, counting
this week’s pay, goes over $7800, only the portion of this
week’s pay that takes him up to the $7800 limit is taxable.

The flowchart of Figure 3-17 expresses the logic we have
just described. Figure 3-18 translates this logic into a pro-
gram illustrating in the process that there are many ways to
implement a flowchart.

We begin by loading the previous year-to-date into a
register, and from there immediately load it into another
register, in order to have it both places. This method saves a
little time over loading twice from storage. We add this
week’s earnings, giving the new year-to-date, which is
stored. Once this is done, we no longer need the same infor-
mation in register 6, so this register is free for any other
processing we will need to do. Now we compare the old
year-to-date with $7800. The Branch on Condition that
follows asks whether the condition code is 1, that is,
whether the first operand is low. This can be read: branch if
the old year-to-date was less than $7800. If the branch is
not taken, the old year-to-date was already over $7800, so
there is no tax to pay. We clear register 7, where the tax is
developed if there is any, by subtracting it from itself — the
fastest and simplest way to clear a register to zero. The
Branch on Condition with a mask of 15 is an unconditional
branch down to the final instructions where the tax is
stored and the Social Security updated.

If the branch is taken, there is a tax to be paid, but we
still need to know whether this week took the man over the
~ top. Accordingly, at the instruction labeled YES, we com-
pare the new year-to-date with $7800. The Branch on
Condition with a mask of 2 asks whether the first operand
— the new year-to-date — was greater than $7800. If so, it is
necessary to compute the tax on just that part of this
week’s pay that takes the total up to $7800. At OVER7S,
accordingly, we load register 7 with $7800 and subtract the
previous year-to-date; the difference is just the amount that
is taxable. If the branch was not taken, the full week’s
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NEWYTD
=O0LDYTD
+ EARN

Over $7800 before

this week OLDYTD

>7800

Under $7800

Over $7800 this week

Stilt under $7800

_ TAX = TAX = 4.4% of
TAX = $0.00 4.4% of EARN (7800-OLDYTD)
NEWFICA =
» OLDFICA + <
TAX

Figure 3-17. Program flowchart of a procedure for computing
Social Security tax

earnings are taxable, and they are therefore loaded into
register 7 and we branch unconditionally to MULT.

At that location is an instruction to multiply whatever is
in register 7 — either the full week’s pay or some part of it
— by 4.4%. This constant is entered as the integer 44. We
must think of this number as 0.044, however, remembering
that it is a fraction. The constant for rounding, HALF, is
therefore 500, and we remove all the excess decimals by
dividing by 1000. At this point the tax is in register 7 ready
to be stored by the instruction at STORE. This same Store
instruction is the one to which we branched if there was no
tax to pay, having cleared register 7. A final Add and Store
update the year-to-date Social Security.

This program fulfills the requirements of the problem
statement and does the processing described by the flow-
chart — but it is quite unacceptable. The problem is some-
thing not mentioned in the problem statement. Let us see
what the trouble is by looking at an example.



Suppose we have a man who earns $164.00 per week.
Multiplying by 0.044 and rounding to the nearest cent, we
get a Social Security tax of $7.22. In 47 weeks of working
at this rate, the man will accumulate year-to-date earnings
of $7708.00 and a year-to-date Social Security tax of
$339.34. Now in the next week his full earnings are not
taxable, but only the part that takes him up to $7800, or
$92.00; the tax on this amount is $4.05. Adding $4.05 to
his previous year-to-date Social Security, we get $343.39,
which is more than 4.4% of the $7800 maximum.

The difficulty is in the computation of the tax on one
week’s earnings. Before rounding, the product of $164.00
and 0.044 is $7.21600. When we round this to $7.22 we
add nearly half a cent. For each of the 47 weeks we are
adding nearly half a cent.

This would be inaccurate. Social Security tax is seldom
computed the way we have shown.

Fortunately, correcting the trouble is not only fairly
easy, but leads to a shorter program. The general approach
is to compute 4.4% of the new year-to-date earnings, then

compute the tax by subtracting from this the previous year-

“to-date Social Security. The effects of the rounding error
are thus balanced from week to week, and we are never
more than half a cent off in the accumulated total.

Consider the example given above. The first week of

the year, we get $7.22 as the tax. The second week, we
begin by computing 0.044 times $328.00, the new year-
to-date gross; this gives us $14.43 as the new year-to-date
Social Security, which we store. This week’s tax is $14.43
minus the previous year-to-date Social Security of $7.22,
or $7.21. In other words, where last week we were a
fraction of a cent high, now we are a fraction of a cent
low; the two tend to cancel each other. The offset may
not always be equal; however, we can never be more than
half a cent off.

The test for reaching the maximum taxable amount is
now made in terms of the tax instead of the earnings. We
compute the Social Security on the new year-to-date
earnings, then ask whether the result is greater than
$343.20. If so, the result is replaced by $343.20 and the
tax is computed as before, by subtracting the previous
year-to-date Social Security. If that was already $343.20,
that is, if the maximum had already been reached, then
the tax computed by this method is zero, as it should be.
If this week’s pay goes over the taxable limit, the tax is
the difference between the maximum tax and the amount
already paid, which is correct.

The program shown in Figure 3-19 should not be too
difficult to follow after the description of the process that
has just been given. The program is eight instructions

LOC O0BJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT
1 PRINT NOGEN
000100 2 FICAl START 256
000100 05BO 3 BEGIN BALR 11,0
000102 4 USING *,11
000102 5860 B052 00154 5 L 6,0LDYTD
000106 1856 6 LR 546
000108 5A6p BO4E 00150 7 A 6 yEARN
00010C 5060 BOS6 00158 8 ST 64 NEWYTD
000110 5950 BO66 00168 9 o 5,C7800
000114 4740 BO1C 0011E 10 ¢ BC 442YES
000118 1B77 11 SR Ta7
00011A 47F0 B040 00142 12 BC 15,STORE
00011E 5960 B066 00168 13 YES o 63C7800
000122 4720 BO2C 0012E 14 aC 2y OVERT8
000126 5870 BO4E 00150 15 L T+EARN
00012A 47F0 BO34 00136 16 BC 15, MULT
00012E 5870 B066 00168 17 OVER78 L 7,C7800
000132 5B70 BO52 00154 18 S 7,0LDYTD
000136 5C60 BO6A 0016C 19 MULT M 64C44
00013A 5A70 BO6E 00170 20 A T yHALF
00013E 5D60 BO72 00174 21 D 6 ¢ CHUN
000142 5070 BO62 00164 22 STORE ST T+ TAX
000146 5AT0 BO5A 0015C 23 A 740LDFICA
00014A 5070 BOSE 00160 24 ST T+NEWFICA
25 EOJ
000150 00004010 28 EARN DC F116400"
000154 000BBFDO 29 0OLDYTD DC F*770000°"
000158 30 NEWYTD DS F
00015C 00008408 31 OLDFICA DC F*33800"
000160 32 NEWFICA DS F
000164 33 TAX DS F
000168 000BE6EO 34 CT7800 DC F*780000°"
00016C 0000002C 35 C44 DC Ft441
. 000170 000001F4 36 HALF DC F'500!"
000174 O00O0O03ES 37 CHUN DC F*1000°*
000100 38 END BEGIN
Figure 3-18. Assembly listing of a program based on the flowchart in Figure 3-17
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shorter and considerably less complex. Both versions have
been tested with a variety of data; both give “correct”
results in that they do what we expect, although of course
the results are not identical.

The only new instruction used in this program is BL
UNDER, which means Branch on Low to the address
UNDER. BL is an extended mnemonic code; it is translated
by the assembler to the Branch on Condition operation
code (47) with a decimal mask of 4. Other extended

mnemonics used after Compare instructions are BH (Branch
on High) for BC 2, BE (Branch on Equal) for BC 8, BNH
(Branch on Not High) for BC 13, and so on. Additional
extended mnemonics can be used after arithmetic opera-
tions and Test under Mask instructions. They are supplied
with most System/360 assemblers and are a great conven-
ience in writing and checking conditional branching
instructions, since they specify the conditions. A full list is
given in the Appendix.

LOC O0OBJECT COLE ADDR1 ADDR2 STMT _ SOURCE STATEMENT
1 PRINT NOGEN
000[99 2 FICA2 START 256
000100 05B0 3 BEGIN BALR 11,0
000102 4 ‘ USING *,11
000102 5850 B036 00138 5 L 5,0LDYTD
000106 BA59 8032 00134 6 A 54, EARN
00010A 5050/B03A 0013C 7 ST 5.NEWYTD
00010E 5C40 BO4A 0014C 8 M 44,C44
000112 5A50 BO4E 00150 9 A 5yHALF
000116 5D40 BO52 00154 10 s} 4 3 CHUN
00011A 5950 BO56 00158 11 C 52 MAX
00011E 4740 BO24 00126 12 BL UNDER
000122 5850 BO056 00158 13 L 5+ MAX
000126 5050 BO42 00144 14 UNDER ST 5yNEWFICA
00012A 5850 BO3E 00140 15 S 5,0LDFICA
00012E 5050 BQ46 00148 16 STORE ST S, TAX
17 EQJ
000134 00004010 20 EARN DC F'16400°"
000138 000BBFDO 21 OLDYTD bDC FY770000°"
00013C 22 NEWYTD ns F
000140 00008408 23 OLDFICA ©DC F1'33800"
000144 24 NEWFICA DS F
000148 25 TAX DS F
00014C 0000002C 26 C44 bC Fr441
000150 000001F4 27 HALF DC F'500"
000154 000003ES8 28 CHUN DC Frio00°"
000158 00008610 29 MAX DC F*34220!
000100 30 END BEGIN
Figure 3-19. Assembly listing of a much better version of the program to calculate Social Security tax
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SIMPLE LOOPS: FINDING A SUM

A frequent programming requirement is to perform some
operation on a set of values arranged in some systematic
way in storage. We shall examine some of the coding
methods available for such operations in the System/360, in
terms of a very simple example.

For our illustrative problem, suppose that there are 20
fullwords in consecutive fullword locations starting with
the one identified by the symbol TABLE. We are required
to form the sum of the 20 numbers and place it in SUM.

We shall consider the three different ways of doing this.
All three involve the use of an index register to modify the
effective address in an instruction. The contents of the
index register are changed between repetitions of the loop.

The first version of the program is shown in Figure 3-20.
We shall use register 8 to accumulate the sum and register
11 as the index register. We want register 8 cleared to zero
so that the sum will be correct; as it happens, we want the
index register cleared to zero also. Both operations are done
with Subtract Register instructions.

Now comes the instruction that does the actual
computing. We add to register 8 the contents of some full-
word in storage. The first time through the loop we want to
add the word at TABLE. The instruction specifies that the
contents of index register 11 should be used in computing the
effective address — but we just made those contents zero, so
the effective address is that of the word at TABLE. The first

time through the loop, this instruction therefore adds the
word at TABLE to register 8, which was cleared to zero.

The next time through the loop, we want the fullword at
TABLE+4 added to register 8. This can be accomplished by
adding 4 to the index register. In this version of the pro-
gram, we do so with an Add instruction.

Now we are at the point in the program where a test for
completion must be made. The last of the 20 words is
located at TABLE+76. We are modifying before testing,
however. At the point where the loop has just been exe-
cuted with TABLE+76 for an effective address, we will now
have 80 in the index register. That is, therefore, the correct
constant to use in testing for completion. We do so with a
Compare, then Branch on Condition with a mask that asks
for a branch if the index was less than 80. We could use the
extended mnemonic code BL and write the branch
instruction as BL LOOP; the object program would be the
same.

The branch will be executed 19 times, giving 20 execu-
tions of the Add at 1.OOP. After that, the branch is not
executed, we store the total at SUM, and the program is
completed.

The reader will no doubt have recalled the customary
names for the parts of a loop. The part at the beginning that
gets the loop started is the initialization section; here, it
consists of the first two instructions. The part that does the

LOC O0BJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT
1 PRINT NOGEN
000100 2 SUMA START 256
000100 0530 3 BEGIN BALR 3,0
000102 4 USING *,3
000102 1888 5 SR 8,8
000104 18BB 6 SR 11,11
000106 5A8B 301A 0011C T LOOP A 8, TABLE(11)
00010A 5ABO 306E 00170 8 A 11,C4
00010E 5980 3072 00174 9 c 11,C80
000112 4740 3004 00106 10 B8C 4,L0CP
000116 5080 30€A 0016C 11 ST 8,SUM
12 EOJ

00011C 00000001 15 TABLE DC Frye
000120 00000002 16 DC Ft20
000124 00000003 17 DC Fe3s
000128 00000004 18 DC Frge
00012C 00000005 19 bC Ft50
000130 00000006 20 DC Free
000134 00000007 21 DC Fr7e
300138 00000008 22 oC Frge
00013C 00000009 23 DC Ftge
000140 0000000A 24 DC Fr10*
000144 00000008 25 nc Frile
000148 0000000C 26 DC Fri2e
00014C 0000000D 27 DC Fr13¢
000150 0000000E 28 DC F'l4"
000154 0000000F 29 oc Fv150
000158 00000010 30 DC Frlgee -
00015C 00000011 31 DC Fr17e
000160 00000012 32 DC Frig*
000164 00000013 33 bC Fti9t
000168 00000014 34 bDC Fr200
00016C 35 SUM DS F
0060170 00000004 36 C4 3] Et4r
000174 00000050 37 C80 DcC Ftg0!
000100 38 END BEGIN

Figure 3-20. First version of a program to form the sum of 20 numbers
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actual work of the loop is called the compute part, and here
consists of the Add at LOOP. The modification section
changes something between repetitions;here, it is the modifi-
cation of the index contents by the Add. The testing section
determines whether the action of the loop has been com-
pleted, and consists here of the Compare and the Branch on
Condition. The sequence of the last three sections is not
always as in this example. And as we shall see in the third
version, the modification and testing can often be combined
into one instruction.

The second version shortens the repeated section of the
loop by one instruction. Normally, we do not worry too
much about trying to get the last microsecond out of pro-
grams, but in heavily repeated parts it is worth some effort.

The method will require us to go “backward” through the
table, which in this particular example is permissible; some-
times, of course, it would not be. As shown in Figure 3-21 we
again clear register 8. This time, however, instead of loading
the index register (11) with zero, we use a new instruction,
Load Address, to put 76 in it. The Load Address (LA) simply
puts the address part of the instruction itself in the designated
register; there is no reference to storage whatsoever. In this
case, 76 is actually the displacement and there is no base or
index register. If we wanted to state this specifically, the
statement could be written LA 11,76(0,0).

Now when we execute the indexed Add instruction at
LOOP, the effective address is TABLE+76. Following this,
we subtract 4 from the index register. As it happens, the

execution of a Subtract sets the condition code. A condi-
tion code of zero indicates that the result was zero, 1
indicates a negm2 a posmve Tesult. (Ac\og’e
of 3 indicates an overilow — a result 106 Targe 16 hold in the

m correct an overflow cannot occur
here, so the possibility does not concern us.) We want to
branch back to LOOP as long as the result of the subtrac-
tion is either positive or zero, so the mask on the Branch on
Condition is 10: 8 picks condition code zero and 2 picks
up code 2.

The Store is as before.

Where in the first version there were four instructions in
the repeated portion of the loop, here there are three. The
final version reduces this number to the minimum, two.
The technique is to use the Branch on Index Low or Equal
instruction (BXLE), which is a combination of an Add, a
comparison, and a conditional branch.

Let us assume we have three registers set up as follows:
Register 9 will be the index; it initially contains zero.
Register 10 will contain the amount by which the index is
to be incremented each time around the loop, 4. Register
11 will contain the limit value, the value of the index which
is not to be exceeded, 76. If we have the instruction:

BXLE 9,10,LOOP

the action will be as follows: The contents of register 10 (4)
are added to register 9, which is the index and initially
contains zero. If the sum is less than or equal to the

LOC O0BJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT
1 PRINT NOGEN
000100 2 SUMB START 256
000100 0530 3 BEGIN BALR 3,0
000102 4 USING *,3
000102 1B88 5 SR 8,8
000104 41BO 004C 0004C 6 LA 11,76
000108 5A88B 3014 0011C 7 LooP A 8,TABLE(11)
00010C 5BBO 306E 00170 8 S 11,C4
000110 47A0 3006 00108 9 BC 10,L00P
000114 5080 306A 0016C 10 ST 8,SUM
11 EQJ

00011A 0000
00011C 00000001 14 TABLE DC Feie
000120 00000002 15 DC Fe2e
000124 00000003 16 DC Ft131
000128 00000004 17 bC Flge
00012C 00000005 18 bC Fi50
000130 00000006 19 DcC Fle!
000134 C0000007 20 DC Fe7e
000138 00000008 21 bC Feg?
00013C 00000009 22 DC Ft9r
000140 0000000A 23 DC F'10*
000144 00000008 24 3] Felle
000148 0000000C 25 DC Frize
00014C 00000000 26 DC Fr13:
000150 0000000E 27 29 Fiige
000154 0000000F 28 DC Fris5?
000158 00000010 29 DC Fri6*
00015C 00000011 30 bC Fri7e
000160 00000012 31 DC F'l8°
000164 00000013 32 DC Frige
000168 00000014 33 oC Fr20°
00016C 34 SUM DS F
000170 00000004 35 C4 0C Frge
000100 36 END BEGIN

Figure 3-21. Second version of program to form the sum of 20 numbers
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contents of register 11, the limit, the branch to LOOP is
taken; otherwise the next instruction in sequence is taken.

The instruction is written in assembler language in the
general form:

BXLE R1,R3,D2(B2)

Three factors, each of which must be located in a
register, are required by the BXLE instruction. An index
must be in the register specified by R1. An increment must
be in the register specified by R3. A limit value must also
be in a register but the register is not explicitly specified in
the instruction. The BXLE instruction will first add the
increment to the index. It will then compare the resultant
index against the limit. If the index is less than or equal to
the limit, a branch is taken to the location specified by
D2(B2); otherwise the next instruction in sequence is
taken. The register containing the limit value is always odd-
numbered and is chosen in the following way:

1. If the register specified by R3 is an even-numbered
register, the limit value is assumed to be in the next higher-
numbered register. If we have the instruction:

BXLE 9,10,LOOP

the limit value is in register 11, the next higher-numbered
register.
2. If the register specified by R3 is an odd-numbered

register, a third register is not used. In this case the BXLE
instruction assumes that R3 specifies the register to be used
for both the increment and the limit. If we have the
instruction:

BXLE 6,7,LOOP

register 7 will be used by BXLE as the source of the incre-
ment and the limit. ‘

At first glance this instruction seems more complicated
than it is. Let us turn to an example to see how it works.
Figure 3-22 is the final version of our summing loop.

We begin the program by loading the three registers that
will be used by the BXLE instruction (registers 9, 10, and
11), with the desired initial contents. We then proceed to
the Add instruction at LOOP, which is the same as in the
previous two versions. Next comes the BXLE, which
operates as described.

The operation of the BXLE instruction is most easily
remembered if we think in terms of three registers repre-
senting the index, the increment, and the limit, in that order.

For a sifuation where it is desired to work backwards, in
which case the increment would be negative, the Branch on
Index High (BXH) instruction is available.

The BXLE and BXH instructions are very powerful and
very flexible. They will find heavy use in many practical
applications, and are well worth the investment of effort
necessary to understand them fully.

LOC OBJECT CODE  ADDRL ADDR2 STMT  SOURCE STATEMENT

. /f? 1 PRINT NOGEN
000100 33' , 2 SUMC START 256 : \
000100 .0530 s /o L 3 BEGIN BALR 3,0~
000102 e 4 USTNG #,3° 2
000102 1B88 5 $R 8,8
000104 1B9Y. i 6 SR, 949
ooome@qﬁm ] 00004 7 LA 1044w
00010A ¥IBH' 0D4C 0004C 8 LA ° Ti,7e
00010€ 5A89 301A 0011C 9 LooP A 8+ TABLE(9)
000112 879A_B0OC 0010E 10 BXLE 9,10,L00P
000116 5080 5064 0016C 11 . ST 8,30m

T 12 B0
00011C 00000001 15 TABLE i e
000120 00000002 16 DC Froe
000124 00000003 17 pC Fr3t
000128 00000004 18 oC Frge
00012C 00000005 19 DC Frse
000130 00000006 20 oC Fre®
000134 00000007 21 DC F170
000138 00000008 22 DC Frge
00013C 00000009 23 bC Fros
000140 00000004 24 nC Fr10t
000144 00000008 25 DC Frile
000148 0000000C 26 DC Fr120
00014C 0000000D 27 DC Fri3e
000150 0000000E 28 DC F1140
000154 0000000F 29 DC F115°
000158 00000610 30 DC Ft16?
00015C 00000011 31 DC Eel7e
000160 00000012 32 DC Feige
000164 00000013 33 DC Fr1ge
000168 00000014 34 pC Fr20¢
00016C 35 SUM DS F
000100 36 END'  BEGIN

Figure 3-22. Third and shortest version of program to form the sum of 20 numbers, using the BXLE instruction
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CASE STUDY:
AVERAGING A LIST OF TEMPERATURES

In an attempt to draw together some of the things that have
been discussed in this chapter, we shall now consider a final
problem that involves several different concepts.

Suppose we have in storage a group of halfwords giving
the temperature, to the nearest degree, on each of the days
of a month. There may be 28, 29, 30, or 31 of them; the
number is given by a halfword named DAYS. The table of
temperatures begins at TEMP and continues for a total of
31 halfwords; if there are fewer than 31 days in the month
at hand, the last entries of the table are to be ignored. It is
possible that the temperature reading may be missing for
some days; a missed reading is indicated in storage by a
halfword of all 1’s. We are to form the average of the tem-
peratures for the month, using only as many good readings
as are found. If the entire table should happen to contain
bad readings, a halfword of all 1’s should be stored to indi-
cate that the average was not computed. In any case, we are
to store in NGOOD the number of good readings found.
The average should be rounded off to the nearest degree.

The program shown in Figure 3-23 uses the halfword

variations of a number of instructions that should be quite
familiar in their fullword forms.

Before analyzing the operation of the program, it may be
helpful to summarize the functions of the registers used,
which will often be a valuable thing for the programmer to
do.

Register Usage

3 Base register
4 Index register
5 Word of 1’s
6 Left half of dividend
7 Sum of temperatures—right half of dividend
8 Count of nonzero temperatures

10 Increment for BXLE

11 Limit for BXLE

The initialization consists of setting up the contents of
the seven registers used by the program. The first one to be
set to zero (6) is cleared by a Subtract Register, the others
by Load Registers from 6. The Load Halfword to get the

LOC OBJECT CODE ADCR1 ACDR2 STHT SOURCE STATEMENT
1 PRINT NOGEN
000100 2 AVGTEMP START 256
000100 0530 3. BEGIN BALR 3,0
000102 4 USING *,3
000102 4850 3094 c019¢6 S LH S9CNES
000106 1B66 ) SR 696
000108 1876 7 LR 796
00010A 1886 8 LR 846
00010C 41A0 0002 cccoz 9 LA 10,2
000110 4880 3096 00198 10 LH 11,DAYS
000114 4BBO 3092 00194 11 SH 11.,0NE
000118 8880 0001 00col 12 SLA 11,1
0CO11C 1846 13 LR 446
00011€E 4954 3054 00156 14 LooP CH S+ TEMP(4)
000122 4780 302C 0012E 15 BE ZERQ EXTENDED MNEMONIC FOR BC 8
000126 4AT4 3054 co156 16 AH T+ TEMP(4)
00012A 4AB0 3092 €0194 17 AH 8,CNE
00012E 8744 301C COllE 18 ZERO BXLE 4,10,L00P
000132 4080 309A co19C 19 STH 8,NGCOD
000136 1288 20 LTR 8,8
000138 4770 3040 co142 21 BNZ NOT EXTENDED MNEMONIC FOR BC 7
00013C 4050 3098 C0194A 22 STH 5¢AVER STORE ONES IF NO GOOD DATA
23 EQJ sToe
000142 8B70 0001 cocaol 26 NOT SLA Tel TO GET EXTRA BINARY PLACE IN QUOTIENT
000146 1068 27 DR 6,8 DIVIDE REGISTER
000148 4A70 3092 00194 28 AH 7:0NE ROUND OFF
00014C B8A70 0001 00C01 29 SRA 7s1 DROP THE EXTRA BIT
0C0150 4070 3098 CO19A 30 STH T+AVER FINAL RESULT
31 EQJ END OF JOB
000156 0001 34 TEMP DC H'1?
0C0158 0002 35 DC He2¢
CO015A 0003 36 oC H*3*
WWA-VW\.M
"‘5U0Tﬂ1T1DUTt""'-"—\./""“"""'~—\/-8v-//-\\-""UE'“N‘7T72ﬂ"‘\v""-.—-/‘-f-—.-—’45_/-~./“—n-——--r"-—v""‘

0CO18E 001D 61 ocC H'29°*
C00190 OO01lE 62 ocC H*30°*
C00192 OOLF 63 2108 H'31"
000194 0001 64 ONE DC H*'1"*
000196 FFFF 65 ONES oC X'FFFF*
000198 66 CAYS DS H
CC0194A 67 AVER [ H
00019C 68 NGOGD DS H
000100 69 END BEGIN

Figure 3-23. A program to compute average monthly temperature, which takes into account the possibility of omitted readings
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number of days into register 11 automatically expands the
halfword into a fullword, which would mean that the sign
bit of a negative number would be filled out. With correct
data, the word here cannot be negative, of course. The
number of days is to be used to terminate the summing
loop that adds up the temperatures. The loop should be
executed as many times as the number of days; it should be
repeated (after the first time) one less time than the
number of days. We accordingly subtract 1 from register 11
after loading it. ’ ,

Since the table of data consists of halfwords, the index
register will have to be incremented by 2 between loop
repetitions, and the proper limit value is two less than
double the number of days. We can double a number quite
simply by shifting left one place in a binary machine. (If
the table had consisted of fullwords, requiring an increment
of 4, a left shift of two places would multiply the number
of days by 4.)

In the working part of the loop we first check to see
whether the particular temperature is valid, by comparing
with the word of all 1’s that had been set up in register 5.
The Compare Halfword expands the halfword from storage
to a fullword by propagating the sign bit. This is necessary
to us, since the load halfword that put the word of all I’s in
register 5 did the same thing. We next branch on equal to
the instruction at ZERO, which would happen if the read-
ing was bad. If it was good, the branch is not taken; we add
in the temperature, add one to the count of good readings,
and then reach the BXLE.

The BXLE increments the index register (4) by 2 (which
is in 10) and checks whether the index is now the same as
what we put in 11. If the index is low or equal, meaning
that the list has not been exhausted, we branch back to

-LOOP to go around again.

When the loop is finished, we reach the Store