
--..- ------ ----- ~--- -. ---- - - -----_ .. ----_.-
A Programmer's Introduction
to IBM System/360
Assembler Language

Student Text

-~- ---"--- - ---- ----- -. -~-- - - --------
-~-.-

A Programmer's Introduction
to IBM System/360.
Assembler Language

Student Text

Minor Revision (August 1970)

This publication is a minor revision of Form SC20-1646-5 incorporating corrections made
on pages dated (8/70). The original publication is not obsoleted.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality. Address comments concerning the
contents of this publication to IBM Corporation, DPD Education Development -
Publications Services, Education Center, South Road, Poughkeepsie, New York 12602.

© Copyright International Business Machines Corporation 1956, 1969

This student text is an introduction to System/360
assembler language coding. It provides many examples of
short programs shown in assembled form. Some elementary
programming techniques and the specific instructions illus
trated in the programs are discussed in simple, relatively
nontechnical terms. Much of the text is based on infor
mation in IBM System/360 Principles of Operation
(GA22-6821). This includes a brief review of relevant
System/360 concepts and descriptions of selected assembler
language instructions for arithmetic, logical, and branching
operations. Standard (flXed-point) , decimal, and floating
point arithmetic are discussed. The book also includes an
elementary introduction to assembler language and the
assembler program, and chapters on base register addressing
and on program linkages and relocation. The coding of
many other common programming techniques, such as the
use of branches, loops, and counters, is shown. The use of
macro instructions is demonstrated, but not covered in
detail. Program flowcharting and input/output operations
are beyond the scope of the book.

The publication is a sampler rather than a comprehensive
textbook. It is intended for supplementary reading for the
student in a regular course of study on System/360 assem
bler language coding, and for the novice programmer. In
general, the reader will fmd that the program examples are
quite simple at the beginning of each chapter, or ·major
subject division, and become progressively more complex.
If the going seems difficult, it is suggested tltat he simply
skip to the next subject and come back later.

The student should have access to two IBM System/360
System Reference Library (SRL) manuals for reference
purposes: the Principles of Operation and the assembler
specification manual for one of the System/360 operating
systems. (All publications and their form numbers are listed
at the end of the Preface.) He should also be familiar with
fundamental concepts of data processing and the basic
operating principles of System/360. Two IBM programmed
instruction (p. I.) courses, or their equivalent, are pre
requisite to a. full understanding of this student text:

Preface

Computing System Fundamentals and Introduction to
System/360. The student who is not ehrolle~ in a compre
hensive programming course will tmd the P. I. book
Fundamentals of Programming a valuable guide to problem
analysis and program flowcharting.

The text and programs of this book have been revised
throughout, mainly to reflect changes in programming
conventions attributable to the development of System/360
operating systems. Chapter 1 is new, and several sections in
other chapters have been entirely rewritten. The sample
programs have been reassembled under the widely used
Disk Operating System (DOS). As far as possible, usages
limited to DOS have been avoided, and the programs and
text in general are applicable to System/360 models 25, 30,
40,50,65, and 75, under any of the operating systems.

IBM publications that may be useful to the student are:
IBM System/360 Principles of Operation (SRL manual

GA22-6821)
IBM System/360 Reference Data (card GX20-1703)
IBM System/360 System Summary (SRL manual

GA22-6810)
Number Systems (Student Text GC20-1618.)
Introduction to IBM System/360 Architecture (Student

Text GC20-1667) .
Introduction to System/360 (P J. Course GR29-0256

through -0259)
Computing System Fundamentals (p. I. Course

GR29-0280 through -0282)
Fundamentals of Programming P J. Course SR29-OO19)
System/360 Assembler Language Coding (p. I. Course

SR29-0231 through -0235)
The form numbers of the assembler specification

manuals for the various System/360 programming systems
are:

Basic Programming Support (Tape System)-GC24-3335
Basic Operating System-GC24-3361
Tape Operating System } 4
Disk Operating System GC24-341
Operating System-GC28-6514

iii

Contents

Chapter 1: Introduction .. 1
What Is Assembler Language? 1

Machine Language 1
Assembler Language . . . 1
Why Learn Assembler Language? . 4

The Assembler Program 5
The System Environment. . . 5
Functions of the Assembler 5
Final Processing 6

Use of the Coding Form 7
An Assembler Language Program 9

Writing the Program 9
The Assembly Listing 10

Error Analysis by the Assembler. 12
Modifying an Assembler Language Program . 15

Chapter 2: System/360 Review 17
Main Storage 17

Bytes and Data Field Lengths 17
Addressing 18
Positioning on Integral Boundaries. 18

Central Processing Unit 19
General and Floating-Point Registers . 19
Arithmetic and Logical Unit . . . 19

Program Execution 23
Sequential Instruction Execution. 23
Branching 23
Instruction Format. 23
Generation of Main Storage Addresses 24
Interruptions and the Program Status Word 25

Hexadecimal Numbers. 26
Hexadecimal Code 26
Hexadecimal Number System. . 26

Chapter 3: Fixed-Point Arithmetic . 29
Addition and Subtraction 29
Multiplication 32
Multiplication and Division with Decimal Points. 34
Shifting and Data Manipulation 37
Branches and Decision Codes 39

The Condition C~de 39
A Sorting Procedure 39

Further Decisions: The Social Security Problem 42
Simple Loops: Finding a Sum 45
Case Study: Averaging a List of Temperatures 48
Questions and Exercises. 50

Chapter 4: Programming with Base Registers and the
USING Instruction .. 51
The USING Instruction 51

iv

An Example. 52
More than One Base Register 54
Separate Base Registers for Instructions and Data.. 56
Questions and Exercises. 58

Chapter 5: Decimal Arithmetic . . . 60
Addition and Subtraction in Decimal 61
Decimal Multiplication .. 63
Decimal Division 64
Shifting of Decimal Fields. 66

Shifting to the Right . . 66
Shifting to the Left .. 67

Decimal Division with Shifting 68
Format and Base Conversions. 69
Decimal Comparison: Overtime Pay 71
The Social Security Problem in Decimal. 72
The "Indian" Problem. . 73
Questions and Exercises. 74

Chapter 6: Logical Operations on Characters and Bits. 75
Alphameric Comparison: An Address Sort 76
Logical Tests. 78

The Wallpaper Problem. 78
Setting Bits On and Off. 79

A Self-Checking Number Routine. 80
A Final Example. 82
Questions and Exercises 84

Chapter 7: Edit, Translate, and Execute Instructions. 85
The Edit Instruction. 86
The Edit and Mark Instruction.
The Translate Instruction

How it Works.
An Example

91
92
92
93

The Translate and Text Instruction and the Execute
Instruction 97

An Assembler Application of Translate and Test and
Execute

Processing Variable-Length Blocked Records
Questions and Exercises

Chapter 8: Subroutine Linkages and Program

100
102

. 105

Relocation. 107
Subroutine Linkages. . . . 108
Standard Linkage Registers 111
Program Relocation 115

The Linkage Editor. . . 115
The CALL and PDUMP Macros. 116
Reading a Dump 117

Communication between Separate Programs
Questions and Exercises

120 Appendix
124 System/360 Machine Instructions .

139
139
140
140
140
142
142

Condition Code Settings
Chapter 9: Floating-Point Arithmetic
Floating-Point Numbers . .
Floating-Point Instructions

125 Extended Mnemonic Codes
126 EBCDIC Chart
130 System/360 Assembler Instructions.
134 Types of Assembler Language Constants Questions and Exercises . .

Answers to Questions and Exercises 135 Index 143

FIGURES

Assembly Listings of Programs

1-2 PROGA
1-5 PROGC
1-7 PROGB
3-2 STOCK
3-5 GROSS
3-9 INTA
3-10 INTB
3-11 SHIFTA
3-12 SHIFTB

3-15 SORT
3-18 FICAI
3-19 FICA2
3-20 SUMA
3-21 SUMB
3-22 SUMC

3-23 AVGTEMP

4-1 PROGE
4-3 PROGF

4-4 LOOPA

5-3 STOCK 1
5-5 INTC

5-6 AVG

5-7 CONVERT

5-8 OTPAY

5-9 FICA3

5-10 INDIAN

6-1 SORTABC

The program in Figure 1-1 . 3
The program rewritten with deliberate errors 12
The same program modified to store the binary contents of register 6 . 15
The program in Figure 3-1 . 30
A program to perform binary (fixed-point) multiplication. 32
A program involving binary multiplication and division with the result rounded off. 34
A different version of the program of Figure 3-9, using a scale modifier for constants. 35
A program to separate three quantities stored in one fullword 37
Modified version of the program of Figure 3-11, making it operate correctly with negative

quantities. 38
A program to carry out the sorting procedure charted in Figure 3-14 . 41
A program based on the flowchart in Figure 3-17 43
A much better version of the program to calculate Social Security tax. 44
First version of a program to form the sum of 20 numbers 45
Second version of program to form the sum of 20 numbers 46
Third and shortest version of program to form the sum of 20 numbers, using the BXLE

instruction .. 47
A program to compute average monthly temperature, which takes into account the possibility

of omitted readings. .. 48
A program to show how the assembler calculates and supplies addresses of all storage operands ., 52
An incomplete program with an Origin (ORG) assembler instruction to simulate a length of

over 4096 bytes, thus requiring two base registers .. 54
Program with separate base registers for processing and data, showing how a base register can be

used to provide indexing for loop control 56
The decimal arithmetic program in Figure 5-2 .. 61
A program that performs decimal multiplication; step-by-step results to be expected during exe-

cution are shown in the comments field , 63
Assembled program showing decimal division and "shifting"; step-by-step results to be expected

during execution are included in the comments field .. 68
Assembled program showing various instructions for changing the format of data; contents of

registers 5 and 6 to be expected during execution are given in the comments field 69
Assembled program that computes a man's gross pay, including any overtime pay, in decimal

arithmetic; results expected during execution are shown in the comments field 71
Assembled program to calculate Social Security tax in decimal arithmetic; results expected

during execution are shown in the comments field .. 72
Assembled program to compute compound interest, with counting in binary and calculations in

decimal arithmetic . ,, 73
A program to sort three 13-character items into ascending sequence on keys in the middle of

each item ., 76

v

6-3 ACCTNO
6-6 FORMAT

7-14 SORTABC2

7-16 MAILLIST
7 -18 ASSMBLR

7-19 VARBLK

8-1 LINK 1
8-3 LINK2
8-5 LINK3
8-7 LINK4

8-11 MAIN 1

8-12 SUBR

9-7 SHORTFP

9-9 LONGFP

A self-checking account number routine that recalculates a check-digit and verifies it. 80
A program that checks a decimal field at NUMBER for validity and converts a composite field

at COMB into separate binary and packed decimal quantities 83
A program to sort three fields named A, B, and C into ascending sequence on file-character keys

in each field ... 95
A program to print names and addresses. .. 98
A program to break down the operands of an assembler language instruction into its constituent

parts, using TRT and EX .. 101
A program to prepare for printing a series of variable-length blocked records, each consisting of

four fields .. 103
Listing of a single program that consists of a main, or calling, routine and a subroutine. . . 108
The program of Figure 8-1 modified. to give the subroutine a choice between two return points 109
A program with a subroutine that averages a series of numbers 112
A slightly different version of the program in Figure 8-5, modified by use of two macro instruc-

tions, CALL and PDUMP 116
The same main program assembled separately; the EXTRN assembler instruction and the Load

macro have been added. .. 120
The same subroutine assembled separately; the START and ENTRY assembler instructions and

the PDUMP macro have been added .. 121
Assembly listing of a program to perform simple computations in short floating-point

arithmetic .. 131
Assembly listing of the same program as in Figure 9-7, modified to perform all computations in

long floating-point arithmetic. .. l33

Other Figures Useful for Reference

1-1 An assembler language program as prepared by the programmer 2,7
1-3 Assembly of a problem program, PROGA 5
1-6 Assembly listing of diagnostic error messages for the program in Figure 1-5 13
2-1 Sample data formats 17
2-2 Integral boundaries for halfwords, words, and doublewords 18
2-3 Functions of the central processing unit 19
2-4 General and floating-point registers 19
2-5 Fixed-point number formats . 20
2-6 Packed decimal·number format . . 20
2-7 Zoned decimal number format . . 21
2-8 Short and long floating-point number formats 21
2-9 Fixed- and variable-length logical information 21
2-10 Machine instruction formats 24
3-14 Program flowchart of a method of sorting three numbers into descending sequence 40
3-17 Program flowchart of a procedure for computing Social Security tax . 42
4-2 Symbol cross-reference table constructed and listed by the assembler 53
5-1 Formats of packed and zoned decimal numbers 60
6-4 Alphabetic input for COMB that can be viewed as two numbers: 12345678 and binary 11001010 82
6-5 A flowchart of the steps required to solve the problem 82
7-1 Results of Editing source data in left-hand column 86
7-2 Editing results with an asterisk as the flll character 87
7-3 Editing results with blank fill and the insertion of commas 87
7-4 Editing results with blank fill and the insertion of comma and decimal point . 87
7-5 Editing results with blank fill, comma and decimal point insertion, and significance starter. 88
7-6 Editing results with blank fill, comma and decimal point insertion, significance starter, and CR symbol for

negative numbers . 89
7-7 Same with asterisk fill . 89
7-8 Editing results showing the blanking of zero fields by the use of two additional instructions 89
7-9 Same with zero fields filled with asterisks . 89

vi

7-10 Examples of multiple edits . 90
7-11 Examples of the application of the Edit and Mark instruction to get a floating currency symbol 91
7-12 Baudot teletypewriter code . 92
7-13 Table for translation of Baudot code to EBCDIC . 93
8-8 Hex dump of registers and storage produced by execution of the PDUMP macro in the program in Figure 8-7 . 117
8-9 Hex dump of the program (Figure 8-7) loaded at 3000 118
8-10 Hex dump of the program (Figure 8-7) loaded at 4000 . 118
8-13 First dump produced by the subroutine in Figure 8-12, SUBR . 122
8-14 Second dump produced by the subroutine in Figure 8-12, SUBR. .. 122
8-15 Dump produced by the main program!n Figure 8-11, MAIN 1 122
9-1 Assembly listing of decimal integers specified as short floating-point constants. 127
9-2 A listing of the same examples as in Figure 9-1, showing them in the comments field in a form that is easy

to read . 128
9-3 The same values shown as negative numbers 128
9-4 Some fractional and mixed decimal numbers expressed as short floating-point constants 129
9-5 Some long floating-point constants . 129
9-6 Some decimal values with exponents expressed as floating-point constants 129

TABLES

2-1 Extended Binary Coded Decimal Interchange Code (EBCDIC) for Graphic Characters
2-2 Hexadecimal Code
2-3 Hexadecimal and Decimal Integer Conversion Table .
3-1 Masks for testing various states of the condition code
7 -1 Summary of Editing Functions . . "
8-1 DOS Linkage Registers
9-1 Equivalent Values of the Characteristics of Some Floating-Point Numbers
9-2 Instruction Set for the System/360 Floating-Point Feature

22
26
27
39
88

111
127
130

vii

WHAT IS ASSEMBLER LANGUAGE?

Machine Language

A computer is a willing servant. It will invariably and
reliably do exactly what it is told to do, as long as it is told
in its own language. This is true of any computer. Let's take
a quick look at the language that System/360-the machine
itself-understands.

If an IBM System/360 computer is given the instruction
1B67, it will subtract whatever amount is in register 7 from
the amount in register 6. When the operation is fmished,
the contents of register 7 will be the same as they were
originally, but the contents of register 6 will be the
difference between the two original quantities. The code 1B
signifies to the computer (1) just what operation it is to
perform, (2) what format it can expect the two quantities
to be in, and (3) whether they are in registers or in main
storage. Specifically, 1B indicates that the computer is to
subtract two 32-bit binary numbers, both of which are in
registers. The two quantities to be operated on are called
operands. The one that is written frrst is called the frrst
operand and in this case is in register 6. The second operand
is in register 7.

The instruction 1 B6 7 is in machine language. It is a
representation in the hexadecimal number system (base of
16) of the actual binary arrangement in the computer. The
computer responds to it in a particular way because its
circuitry has been designed to do so whenever it senses this
combination of signals.

Let's take another example of a machine language
instruction, say 5A20B02A. The operation code 5A causes
the computer to add two 32-bit binary numbers (the frrst in
a register and the second in main storage) and to place the
result in the first operand location. In this case, the frrst
operand is in register 2, and the second operand is in main
storage, beginning at the location designated by OB02A.

Not many years ago all programs were written in
machine language. The most valuable tool the programmer
had was an eraser. He was concerned with an enormous
amount of clerical detail. He had to remember dozens of
numerical codes for the computer operations and try not to
make a mistake when using them. He had to keep track of
the storage space he used for instructions, data, and work
areas, and actually calculate any addresses he needed to
refer to in his program. Revising a program (a very frequent
occurrence then, as it is now), often meant changing every
address that followed the revisions. All this detail meant
many errors and much time spent on checking, calculating,
keeping tables, and other clerical tasks.

Chapter 1: Introduction

Assembler Language

The realization that the computer itself was better suited
than man for doing this type of clerical work led to the
development of assembler languages (each comp~ter has its
own assembler language). In System/360 assembler language,
every operation code is written in alphabetic letters that are
easy to remember, called mnemonics, and the addresses of
locations in storage can be given symbolic names like PAY,
HOURS, and RATE by the programmer. The machine lan
guage instruction 1B67 would be written in assembler
language as SR 6,7 (SR for Subtract Register). The instruc
tion 5A20B02A might be A 2,CON (A for Add), with
another instruction to defme CON as a certain value. We do
not have to say where it is-the computer will take care of
that. An assembler language program as prepared by a pro
grammer is shown in Figure 1-1. The operations to be
performed start in column 10, the operands in column 16.

As we said at the beginning, however, the computer
cannot understand any language except its own machine
language. Therefore, a program that translates our symbolic
program into machine language or object code is needed.
Such a program, actually a component part of an IBM
System/360 operating system, is brought from the system
"library" into a separate area in main storage when needed,
and it does the job. This program is called an assembler.
Besides translating the problem program statements into
machine language, it calculates storage locations for all
instructions, keeps track of any symbols like CON that are
used, and performs a number of other necessary functions.
The program written by the programmer is not executed
during the assembly process; it will be executed later, after
further processing. Figure 1-2 shows the listing produced by
the assembler for our sample program.

Machine Instructions

All the columns to the left of the statement number (STMT)
column are in machine language. The LOC, ADDRl, and
ADDR2 columns have to do with address arithmetic
handled by the assembler, and will be discussed later. The
heart of our program has been translated into the code
headed OBJECT CODE. The circled area at the left con
tains the code for every executable instruction in the entire
program. What we mean by an executable instruction is one
that, when the problem program is run, will tell the com
puter to perform an actual operation in the machine itself.
Each of the executable instructions has a corresponding
System/360 machine operation code; these operation codes

Introduction 1

IBM Syot.ml3S0 Aaaamblar Coding Farm
X28-6509

Figure 1-1. An assembler language program as prepared by the programmer

are represented by the frrst two characters (the frrst two
hexadecimal numbers, really) in the circled object code. In
the example, the executable instructions include one of the
branching instructions (BALR, op code 05), Load (L, op
code 58), Add (A, op code SA), one of the Shift Left
instructions (SLA, op code 8B), Subtract (S, op code 5B),
Store (ST, op code 50), and so on. In assembler language,
the executable instructions are called machine instructions.

Not counting floating-point arithmetic instructions,
System/360 assembler language has about 100 different
machine instructions. I t is fairly easy to recognize and
remember all of the mnemonics for them-certainly easier
than remembering the machine language operation codes.
Some other examples are C for Compare, CVD for Convert
to Decimal, SH for Subtract Halfword, STH for Store Half
word, M for Multiply, and BC for Branch on Condition. A
full list of System/360 machine instructions appears in the
Appendix; floating-point instructions are given in the chap
ter on that subject. Each machine instruction and what it
does is described in complete detail in the IBM Systems
Reference Library (SRL) manual IBM System/360 Princi
ples of Operation (A22-6821). Many will be described in
this bock in nontechnical language, but not in complete
detail.

Assembler Instructions

What about the TITLE, START, and USING instructions
that have not· generated any object code in the assembly

2

listing in Figure 1-2? The mnemonic TITLE does not even
show up at all (it was in the source program), but we see
that the assembly listing has the heading ILLUSTRATIVE
PROGRAM. TITLE is an instruction to the assembler that
tells it to print a heading or title at the top of each page in
the listing. Similarly, START and USING are instructions
to the assembler; these concern the addressing plan it is to
follow. Although they will affect the way in which the
assembler assigns addresses, they will have no direct func
tion in the execution of the problem program. In contrast
to machine instructions, they are called assembler
instructions. They may be defmed as instructions to the
assembler program itself.

Skipping the EO] for the moment, we see the mne
monics DC (Defme Constant) and DS (Defme Storage).
These two instructions are also assembler instructions. DC's
generate object code for the values they define, but no
operation codes. DS's actually reserve storage space of a
specific size, but they too do not generate operation codes.
In other words, DC's cause the assembler to create object
code for actual values and DS's reserve actual storage
spaces, but they do not themselves give rise to any action
during program execution. Instead, they are used for either
information or space by other instructions in the program.
If we look again at the assembly listing, we see that DATA,
CON, RESULT, etc., are operands of some of the execu
table instructions.

Assembler-instruction mnemonics, which are also listed

LOC OBJECT CODE
,-.\-..---_../

000 100";:~
000100 05BO
000102 I' ,\
000102 5a2~ ~b2~\
0001065A'20 BCl2A
00Dl0t 8B20 0001
00010E 5B20 ~026
OOOlle 5020 aD2E
000116 5860 ~032
00011A 5A60 ~b36
0001lE" 4E60 ..B03E

000122 OAOE
000 124 \,;jo;';;o;';o 0~0~0~1 9~' ..,
000128 OOOOOOOF
00012C OOOOOOOA •
000130
000134 OOOOOOOC
000138 0000004E
000140 ,
000100 :~

Mflch/ne Instructions
in Machine language

00124
0012C
00001
00128
00130
00134
00138
00140

15+
16 DATA ~
17 DC
18 CON DC
19 RESULT DS
20 BINI DC
21 BIN2 DC

22 DEC ''''''' DS
23 ".~

F' t5"
F'lO' ' ,
F
F'12\'
F '78 '\.
D \
BEGIN

Machine instructions
in assembler IOf/!/uaStl

LOAD REGISTER 2
ADD 10
THIS HAS EFFECT OF MULTIPLYING BY 2
NOTE RELATIVE ADDRESSING

DEC IMAL

Figure 1-2. Assembly listing of the program in Figure 1-1. The executable instructions (see text) are circled in both assembler language and
the machine language translation.

in the Appendix, generally suggest their purpose. USING
indicates a particular register to be used by the assembler
for keeping track of storage addresses, EJECT tells the
assembler to start a new page in the program listing, and
END to terminate the assembly program. Assemblerinstruc
tions and the functions of the assembler program are
described fully in each of the SRL assembler language man
uals for the various IBM operating or programming support
systems (see Preface for list). It should be explained that
variations of the System/360 assembler program are avail
able for different operating systems and sizes of computers.
Basically, they all work similarly, but some are more flexi
ble and versatile than others. Many differences do exist,
however, in the input/output (I/O) programming for
different systems. Largely for this reason, the subject of I/O
will not be covered in this book.

Macro Instructions

In an entirely different category, System/360 assembler
language includes another type of instruction, called a
macro instruction or macro. If a programmer writes a series
of instructions for a routine that will be needed again and
again during the program, he does not have to code the
entire sequence each time. He can make up his own code
name to represent the sequence, and, by using his code
word in a single statement whenever it is needed, he can
cause the sequence of instructions to be assembled and
inserted. Incorporated in the system library, the sequence
can also be used in entirely separate programs and by all
programmers associated with a computer installation simply
by writing one statement in the source program. The mne
monics used for macro instructions are often unique to an
installation. Some macros are prepared and supplied by IBM;

they have mnemonics like EOJ, READ, WRITE, OPEN,
CLOSE, WAIT, WAITF, DTFCD, DTFIS, etc. The
mnemonics for both the user-prepared and the IBM
supplied macros constitute an extension to System/360
assembler language.

The macros supplied by IBM are mainly for procedures
that affect other components of the IBM operating system,
like the supelVisor and the input/output control system, and
they ensure accuracy and consistency in maintaining the
interrelations within the operating system. The EOJ (End of
Job) in the program example is a supelVisormacro
instruction. It generates just two statements, which are
indicated in the listing by plus signs. The frrst is simply for
identification, and the second is the executable SupelVisor
Call instruction (SVC, op code OA).

Most I/O routines are long and complicated, and for any
particular device and operating system are programmed in
exactly the same way in program after program. Most of
the macros supplied by IBM are for these I/O routines. Some
of the Disk Operating System (DOS) macro instructions we
shall use in this book, besides EOJ, are CALL, SAVE,
RETURN, and PDUMP. The book does not cover the
preparation of new macros, but shows, in the chapter on
subroutines, another method for reusing a sequence of
instructions. However, the programmer can save much time
and effort by using the macros that are already available in
his system library. Their use will also ensure accuracy and
standardization of frequently repeated procedures.

Summary

To summarize, these are the three kinds of instructions
used in System/360 assembler language, and what each does:

1. A machine instruction specifies an actual operation

Introduction 3

to be performed by the computer when the object program
is executed. The operation may be arithmetic, or the com
parison, movement, or conversion of data, or performing a
branch. The instruction generates executable object code.

2. An assembler instruction specifies an instruction to
the assembler program itself and is effective only at
assembly time. It does not generate executable object code.

3. A macro instruction specifies a sequence of machine
and assembler instructions to perform a frequently needed
routine. The machine instructions generate executable
object code.

Why Learn Assembler Language?

The most important single thing to realize about assembler
language is that it enables the programmer to use all System/
360 machine functions as if he were coding in System/360
machine language. Of all the programming languages, it is
closest to machine language in form and content. The high
level languages such as FORTRAN, COBOL, and PL/I are
problem-oriented rather than machine-oriented. Their lan
guages are much like English or mathematical notation.
Depending on what is involved, one statement in these lan
guages may be compiled into a series of two or eight or
fifty machine language instructions. The problem-oriented
languages have the advantage of letting the programmer
concentrate on what he wants to accomplish and not on
how it is to be done by the computer, and they may save
considerable time in programming, program modification,
and program testing. Choice of a programming language in
any given situation usually involves weighing the cost of

4

programming time against the cost of machine time. A com
plex mathematical problem that can be run in a few
minutes and will be run only once is a very different
situation from a program that runs for several hours and
will be repeated every week.

Here we can appreciate one of the important advantages
of assembler language over the high-level languages: its effi
cient use, in the hands of a skillful programmer, of
computer storage and time. High-level languages produce
generalized routines so that a wide range of data processing
needs can be met with a minimum of programming effort.
A routine can be written in assembler language exactly to
fit some particular data processing need, thus saving storage
space and execution time.

As we shall see in the course of this book, there are often
many ways of accomplishing the same data processing results.
Sometimes the overall programming requirements of a com
puter installation strain its capacity. If the particular
problem arises of either not enough main storage space or
not enough processing time, the problem may be solved by
assembler language. In such a situation, its flexibility
permits the programmer to choose those programming
techniques that will provide just the kind of economy
needed-time or space.

A knowledge of assembler language has some important
benefits for a programmer working in a high-level language.
It can be helpful to him in analyzing and debugging
programs. It also enables him to include certain assembler
language routines in his program to meet special systems or
other requirements.

THE ASSEMBLER PROGRAM

The System Environment

As a frrst step in the assembly process,· the handwritten
problem program has to be put into a form that can be read
by the computer system. PUnched cards are frequently used;
they are convenient and easy to substitute in case of error.
The program is punched by a keypunch operator, each line
on a separate card. The original program and these cards are
called the source program, or the cards may be called the
source deck. The assembler program is loaded into main
storage and executed, using the source deck as input.

It is important to realize that the basic function of the
assembler is to translate the source program. It does not
execute the program. The fmal output of the assembler
program is called the object program. It contains the
machine language equivalent of the source program, and is
put on cards, tape, or disk by a system output device. It is
this object program that will later be subjected to further
processing and will itself be executed. The assembler output
also includes several listings to aid the programmer, which
are produced by a line printer. Figure 1-3 shows the
assembly process in outline.

Before going into detail about the functions of the
assembler, it may be helpful to look at the overall system
environment into which a programmer-written. problem
program goes. As we already know, the assembler program
is a component of the IBM operating system. It functions
under the control of another, very important component,
the control program. (To avoid confusion in terminology,
perhaps it should be mentioned that the control program is
often referred to as the control system. The supervisor is
one element of the. control program, and the most power
ful. The job control program is another element.)

(2) Programmer writes source program,
named PROGA, on coding sheets.

0 Keypunch operator copies PROGA
source program on cards.

0) Assembler language translator
program is loaded into main storage.

0 PROGA source program is read into
a work area of the assembler program.

0 Assembler program is executed, using
PROGA source program as input data.

® Output of assembler program is
PROGA object program and assembly
listings. Object program may be on
cards, tape, or disk.

The System/360 control program is, in effect, a traffic
director. It supervises the movement of data, the assign
ment of all the devices attached to the system, and the
scheduling of jobs. Working under a set of priorities for
various kinds of situations, it handles the flow of operations
in the central processing unit (CPU), with the aim of
keeping it constantly busy and the entire system at its most
productive level. The control program sees to it that needed
IBM processing programs, like the assembler program and
the linkage editor program, are brought from the system
library and loaded into main storage at the right time.
These two kinds of programs combined-that is, the control
program and the processing programs-make up what is
called the IBM operating system (or, for smaller instal
lations, the IBM programming support system). With an
operating system at work, the programmer is relieved of
practically all concern about having on hand for either
processing or execution of his problem program the system
resources available at his installation.

Functions of the Assembler

During execution of the assembler program, the assembler
scans the source program statements a number of times. Its
frrst activities are to process any macro instructions it fmds,
and to store the complete sequences of individual instruc
tions generated by the macros. They are then standing by,
ready to be inserted into the assembled problem program at
the points indicated by the programmer. Afterwards, the
assembler proceeds to translate the one-for-one assembler
language statements into machine instructions.

MAIN STORAGE

Figure 1-3. Assembly of a problem program, PROGA. Note that PROGA is not executed during the assembly process.

Introduction 5

Briefly, here is how the assembler works. It reads source
statements as input data, checking for errors and flagging
them for further processing. At frrst, it translates the parts
of the input (such as operation codes) that do not need
further analysis or calculation. Meanwhile, it constructs a
table of all the symbols used, in which it collects, as it goes
along, such information as each symbol's length, its value or
location, and the statements in which it is referred to. From
this table and other analyses of the source statements, the
assembler can then assign relative storage addresses to all
instructions, constants, and storage areas. It uses a location
counter for this purpose (see LOC column in Figure 1-2). It
does all the clerical work involved in maintaining the base
register addressing scheme of System/360 computers.
During its operations, the assembler continues to note
errors and to resolve any it can.

As shown in Figure 1-3, there are two kinds of output
from the assembler program. The primary output is the
object program in machine language; included with it is
certain information tabulated by the assembler, which is
needed for relocating the program to an actual main storage
location and for establishing links with separate programs.
(This information will later be passed on to the linkage
editor for the next step in the processing.) The other
output from the assembler is a series of printed listings that
are valuable to the programmer for documentation and
analysis of his program:

1. The listing of the program (samples of these will be
shown throughout this book) includes the original source
program statements side by side with the object program
instructions created from them. Most programmers work
from this assembly listing as soon as it is available, hardly
ever referring to their coding sheets again.

2. Probably next in interest to the programmer is the
diagnostics listing, which cites each statement in which an
error condition is encountered and includes a message des
cribing the type of error.

3. The cross-reference listing shows the symbol table
compiled by the assembler.

4. The external symbol dictionary (ESD) describes any
references in the problem program needed for establishing
links with separate programs. It is possible for the pro
grammer to combine his program with others, or to use
portions of separate programs, or to make certain portions
of his program available to other programs. The ESD is part
of the tabular information passed on to the linkage editor.

6

It always contains at least the name of the problem
program, its total length, and its starting address on the
assembler's location counter.

S. The relocation dictionary (RLD) describes the
address constants that will be affected by program
relocation. This list is also passed on to the linkage editor.

We have now reached the end of the assembly process.
What happens next? Our object program is in relocatable
form, but it will not be executable until it has been
processed by the linkage editor.

Final Processing

The linkage editor program is another component of the IBM
operating system. Its functions, which will not be described
fully here, can provide great flexibility and economy in the
use of main storage. The linkage editor also makes it
possible for a long and complicated program to be divided
into separate sections, which can be programmed, assem
bled, and debugged by different programmers, and then
linked together to be executed. The linkage editor is loaded
into main storage and operates as a separate program under
control of the control program, just as the assembler did.
Input to the linkage editor may be a single assembled pro
gram or many separate programs. The linkage editor works
on one after the other, building up composite dictionaries
of ESD and RLD data to resolve all references between
individual programs and to set up necessary linkages. It also
searches the system library and retrieves any programs
referred to. It relocates the individual programs as necessary
in relation to each other, assigns the entire group to a
specific area of main storage, and modifies all necessary
address constants to the relocated values of their symbols.

After completion of the link-editing, our problem pro
gram can be loaded into main storage and executed under
supervision of the control program. Unless specified other
wise, each machine instruction is executed in sequence, one
after the other. If there is separate input data, it can be
brought in by I/O instructions in the program. Output-the
results of program execution-also requires I/O instructions.

The scope of this book does not go beyond the assembly
process. For a clear understanding of the detailed program
examples, however, it is essential for the reader to be able
to visualize at just what stage in the entire process each
action occurs. For this reason, the complete process from
programmer-written program to its fmal execution has been
outlined in this section.

USE OF THE CODING FORM

Assembler language programs are usually written on special
coding forms like the one in Figure 1-1, which will be
repeated here for convenience. Space is prOVided at the top
for program identification and instructions to keypunch
operators, but none of this information is punched into
cards.

The body of the form is completely keypunched in
corresponding columns of 80-column cards. Use of the
Identification-Sequence field (columns 73 - 80) is optional
and has no effect in the assembled program. Program identi
fication and statement sequence numbers can be written in
part or all of the field. They are helpful for keeping the
source cards in order and will also appear on the assembly
listing. Indeed, the programmer can use an assembler
instruction (ISEQ) to request the assembler to check the
input sequence of these numbers.

The statement field is for our program instructions and
comments, which are normally limited to columns 1 - 71.
Each statement can be continued on one or more lines,
depending upon which assembler program is used. A state
ment consists of:

1. A name entry (sometimes)
2. An operation entry (always)
3. An operand entry (usually)
4. Any comment we wish to make

It isn't necessary to use the spacing shown on the form, since

the assembler permits nearly complete freedom of format.
However, lining up entries as shown makes it simpler to
read a program, and following the form permits the pro
grammer to painlessly observe the few essential rules
required by the assembler.

Some of these rules are as follows. (1) The entries must be
in proper sequence. (2) If a name is used, it must begin in
column 1. (3) The entries must be separated by at least one
space, because a space (except in a comment or in certain
terms enclosed in single quotes) is the signal to the assem
bler that it has reached the end of an entry. (4) Spaces must
not appear within an entry, except as noted. (5) A state
ment must not extend beyond the statement boundaries,
normally columns 1 - 71.

We have been using that word "normally" because the
programmer can override the specific column designations
by an ICTL (Input Format Control) assembler instruction,
which can specify entirely different begin, end, and contin
uation columns. A statement is normally continued on a
new line in column 16, with some character (often an X)
inserted in column 72 of the preceding line. Since the
normal spacing is generally the most convenient and is
easiest for a keypunch operator to follow, we shall use the
spacing indicated on the form throughout this book.

The purpose of using a name in a statement is to be able
to refer to it elsewhere. It is a symbol of eight characters or

IBM IBM System/360 Assembler Coding Form

t-----<?---")~...>.::0G4~_3_-;;;:;;oo-------------r-----_j PUNCHING I GRAPHIC I J J. ~1IIe.S I DATE INSTRUCTIONS I PUNCH [

c.vp ~.lJE.C

~ 'P't~':, .::'

Il'S F

BIN2- U F'7i'
pee "

! !
, I

Ii i
!

! I

Figure 1-1. An assembler language program as prepared by the programmer

I [

I [

60

J: ,,:,';1':
, ,'.' :'" 1:;1::
f: :,liC

[

I
.LPAGE OF I CARD ELEQRO NUMBER

X28-6509

: :.' .:, --'-
: '. I ".' :', ..' ! I : : "

.':. ,': I
i

.:

:-:

Introduction 7

less, created by the programmer. It may identify a program,
a location in storage, a specific value, or a point in the
program to which the programmer may plan to branch. As
we know, the assembler compiles a symbol table, keeping
track of where each name is defmed and where each refer
ence to it appears. These references occur when the name is
used as an operand in an instruction.

Each instruction must include an operation entry, which
may be a machine, assembler, or macro mnemonic. They are
limited to fIVe characters in length (some systems allow
longer macro mnemonics) and begin in column 10 of the
form.

Operand entries are always required for machine instruc
tions and usually for assembler instructions. They begin in
column 16 and may be as long as necessary, up to the
maximum statement size the assembler can handle. An
operand entry is the coding that identifies and describes the
data to be acted upon by the instruction. All operands in a
statement must be separated from each other by commas,
without blank spaces.

Comments may be used freely, at the programmer's

8

discretion, to document the purpose of coding or the
approach used in the programming. These notes can be
helpful during debugging and other phases of program
checkout and also during later maintenance of a program.
They have no effect in the assembled program, but are only
printed in the assembly listing. If a programmer wishes to
include extensive notes in the printed record, he can use
entire lines just for comments by inserting an asterisk in
column 1 of each line. A comment that is part of an
instruction statement may begin anywhere beyond the
operand entry, provided there is at least one blank space
after the operand. Most programmers like to line up all
comments in some convenient column for easier reading.

A word of caution may be in order about leaving
"illegal" blanks in operand entries. If, in our sample pro
gram, we were to write:

L 2, DATA LOAD REGISTER 2

the assembler, on fmding a blank after the comma, would
interpret DATA as the fITst word of the comment and give
us an error message MISSING OPERAND.

AN ASSEMBLER LANGUAGE PROGRAM

Writing the Program

Let's look at some of the actual instructions in the program
in Figure 1-1. This program does not have any particular
task to accomplish; it merely demonstrates the use of some
serviceable assembler language instructions. In later
chapters, each program example will be prefaced by a clear
statement of the problem to be solved, which is good
practice, but for now let's just get started.

The TITLE assembler instruction in the fITst line will
cause a heading to be printed on every page of the assembly
listing. The heading will be ILLUSTRATIVE PROGRAM,
which is written within single quotes as the operand entry.

The START instruction specifies to the assembler what
the initial value of the location counter for this program
should be. Although zero is the usual practice, we specify
decimal 256, which is the equivalent of hexadecimal 100.
The assembler assumes in most cases that any numeral we
use in an operand is a decimal number, unless specified
otherwise. We are also using the START statement to give
our program a name, PROGA, which is another good
programming practice.

The next two instructions are important ones that will
appear in every program. To understand their effect, we had
better look at these two statements in the order in which they
will actually take effect. During assembly, the USING state
ment will tell the assembler: (1) that it should use register 11 _.
for address calculations and (2) that the address of the next '
machine instruction, which is L 2,DATA, will be in register
11 when PROGA is fmally executed. To fulfill this promise,
the Branch and Link (BALR) will, when PROGA is

executed, actually put the address of the L 2,DATA
instruction into register 11. The BALR and USING combin
ation is generally the most efficient way of setting up a
register for use as a base register in the System/360
addressing scheme. This subject will be discussed in detail in
a separate chapter.

So much for the preliminaries. The body of the program
starts with the L 2,DATA instruction. L is the mnemonic for
the machine instruction Load, which in this case will place in '
register 2 the contents of a location in stprage that has the -,
symbolic address DATA. Looking down the coding sheet,
we see that DATA is in the name field of.a DC assembler
instruction that defmes a constant value of 25, occupying
four bytes. The name DATA refers to the address of the
fITst byte; the length is implied by the F, for full word.

The A 2,CON is a similar type of instruction. It adds to
register 2 the contents (that is, the constant value 10) of a
fullword that has its fust byte at the symbolic location CON.

The next instruction (SLA 2,1) is quite different. SLA
stands for the algebraic Shift Left Single. The contents of
register 2 are to be shifted left one binary place. There is no
symbolic address in this case; the second operand simply
indicates the extent of the shift.

The Subtract instruction that comesnext(S 2,DATA+4)
includes an example of relative addressing: the address is
given relative to another address. This address is specified as
four bytes beyond DATA. Looking at the constant area of
the program, we see that four bytes (one full word) beyond
DATA there is indeed another fullword constant, the
number 15.

The Store instruction (ST 2,RESUL T) specifies that the
contents of register 2 are to be placed in a storage area with
the symbolic address RESULT. Looking below again, we
see RESULT in the name field of a DS for a fullword area.
As a machine operation, Store has one somewhat unusual
feature. In most System/360 machine instructions, the
result of an operation replaces the fITst operand. In Store,
however, the result is stored in the second operand
location. The same is also true of CVD, which we shall
come to shortly.

The following two statements, the Load and the Add,
present no new assembler language concepts. They will
form a sum in register 6, in the same way as before.

The Convert to Decimal (CVD) converts the contents of
register 6, which are binary, to a decimal number, and
stores the result in the eight-byte area beginning at DEC.
The operation of the machine instruction CVD requires
that this location be a doubleword, aligned on a double
word boundary. More on this later.

The next instruction, EOJ, is a macro instruction that
will, after PROGA has been executed, return control to the
supervisor, so that the computer can immediately go on

Introduction 9

with other jobs. EOJ is the last executable (or machine)
instruction in our program example.

The DC's and DS's follow the executable part of the
program in a group, as is customary. These assembler instruc
tions were discussed earlier in this chapter. Defme Storage
(DS) is used to defme and reserve an area of storage, which
may be used during execution of the program for work
areas or for storing a varying value. Defme Constant (DC)
allows us to introduce specific data into a program (a con
stant simply means an unchanging value).

Each DC and DS must have a type specification that
designates the particular data format in which it is to be
entered into internal machine storage. Some of the data
formats are the eight-bit character code (type C), the four-bit
hexadecimal code (type X), zoned decimal numbers (type Z),
packed decimal numbers (type P), and fixed-point binary
numbers (type F or H). A more complete list appears in the
Appendix and in the assembler language specification
manuals listed in the Preface. In the program at hand and in
Chapter 3, where we shall be studying System/360 fixed
point binary operations, however, all the constants are type
F or H (the F is for full word, H for halfword, implying
length as well as giving the type).

Fixed-point operatiot:ls work on flXed-length operands
and in most systems require that they be located in storage
on halfword, fullword, or doubleword boundaries. In other
words, the addresses must be multiples of 2, 4, or 8. When
F or H is used to signify the length of a DC or DS (D for
doubleword may also be used in a DS), the assembler will
perform the necessary alignment, skipping a few bytes if
necessary. In our program all the F -type constants and areas
will be on four-byte boundaries. The DS at DEC will reserve
an eight-byte space, aligned on a doubleword boundary. If
the programmer modifies these terms, for example, by
specifying 2F instead of D, the assembler will not perform

ILLUSTRATIVE PROGRAM

alignment, and it becomes the programmer's responsibility.
The END assembler instruction specifies that nothing

further follows, and it terminates the assembly process. The
END instruction must always be the last statement in a
source program.

The Assembly Listing

Let's inspect the assembly listing, repeated here as Figure 14,
to see how the assembler handled things. We see that, except
for the TITLE statement, the original source program has
been reproduced without change on the righthand side of
the listing. The object code created from the source instruc
tions is listed under that heading. The location counter
setting of each statement is shown in the leftmost column.
The address of the second operand in each instruction is
under the heading ADDR2. (All fust operands here happen
to be in registers.) All entries to the left of the statement
number column are in the hexadecimal number system,
which is the alphabet, so to speak, of System/360 machine
language.

The assembler instructions TITLE, START, USING, and
END did not produce any object code, and, as we can see
from an inspection of the location counter readings, do not
use any space in the object program. The location shown on
each of these lines is simply the current setting of the
location counter, which, after assembly of each instruction
that will use storage space, was updated to show the next
available byte.

The START 256 sets the assembler's location counter to
hexadecimal 000100, or 100-. The object code that is
actually at location 100 (in bytes 100 and 101) and will be
at the equivalent location in core storage is 05BO, the
machine language translation of the BALR instruction. Hex
05 is the BALR operation code, B is register 11 (B is the

LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT

000100 2 PROGA START 256
000100 05BO 3 BEGIN BALR 11 ,0
000102 4 USING *,11
000102 5820 B022 00124 5 L 2, DATA LOAD REG ISTER 2
000106 5A20 B02A 0012C 6 A 2,CON ADD 10
00010A 8B20 0001 00001 7 SLA 2,1 THIS HAS EFFECT OF MULTIPLYING BY 2
00010E 5B20 B026 00128 8 S 2,DATA+4 NOTE RELATIVE ADDRESSING
000112 5020 B02E 00130 9 ST 2,RESULT
000116 5860 B032 00134 10 L 6,BINl
OOOllA 5A60 B036 00138 11 A. 6,BIN2
OOOllE 4E60 B03E 00140 12 CVD 6,DEC CONVERT TO DECIMAL

13 EOJ END OF JOB
14+* 360N-CL-45j EOJ CHANGE LEVEL 3-0

000122 OAOE 15+ SVC 14
000124 00000019 16 DATA DC F' 25'
000128 OOOOOOOF 17 DC F '15'
00012C OOOOOOOA 18 CON DC F'10'
000130 19 RESULT OS F
000134 OOOOOOOC 20 BINI DC F' 12'
000138 0000004E 21 BIN2 DC F'78'
000140 22 DEC OS 0
000100 23 END BEGIN

Figure 1-4. Assembly listing of the program in Figure 1-1

10

hex equivalent of 11), and 0 is register zero (which means,
in effect, no register and no branching). This instruction is
in the RR (register-to-register) machine format, which has a
length of two bytes and looks like this in storage (contents
are shown here in hex rather than binary):

Op Code Reg1 Reg2

I 0 5 I S \ 0 \

o 7 8 11 12 15

The subscripts 1 and 2 refer, both here and in other instruc
tion formats, to the frrst and second operands. In the RR
format both operands are in registers.

After the BALR was assembled, the location counter read
102, which was the next available byte, and stayed that
way until additional object code was generated. USING did
not generate object code, so 102 was the setting when the
L 2,DATA was assembled. The asterisk in the USING
means the current, updated location counter setting, which
at that point was 102.

The next instruction, Load, is the fITst that will actually
process program data. It is an RX (register-and-indexed
storage) instruction, which has a machine format of four
bytes. It occupies bytes 102 to 105:

o p Code Reg1 Index2 Sase2 Displacement2

\5 8\21 0 \sI0 2 21
o 7 8 1112 1516 19 20 31

In this format, the first operand is in a register, the second
in main storage. Reading the assembled bytes from left to
right, we have the op code 58 for Load and register 2 for
the register to be loaded, and the remaining code giVes the
address of the second operand. Zero means there is no
index register, B (hex for 11) is the base register, and 022 is
the displacement in bytes. The effective address, formed by
the assembler, is the sum of the contents of the base regis
ter (102), the contents of the index register (O or no
register), and the displacement (022). These add up to
hexadecimal 124. Looking down to the· assembled location
of DATA, we see that it is 124, as it should be.

The Add instruction that follows is also in the RX for
mat, and again no index register is used. The base register
contents of 102 (258to) plus the displacement of02A (421O)
gives a sum of 12C (30Oto), which is the location of CON.

(The subscript lOis used to indicate a number in the
decimal system. A subscript of 16 is used for hexadecimal,
and 2 for binary.)

SLA is in the RS (register-and-storage) machine
instruction format, also four bytes in length, and it is in
bytes lOA, lOB, IOC, and 10D.

Op Code Reg1 Reg3 Sase2 Displacement2

I 8 S
o 7 8 1112 15 16 19 20 31

The op code is 8B and the fITst operand is in register 2. The
next four bits are never used in a shift· operation, the next
four could be used for a base register for the second
operand but are not in this case, and the fmal 001 merely
indicates a shift of one binary place. No provision is made
for using an index register in this format. As we shall see
later, some RS instructions, like Branch on Index High
(BXH) and Store Multiple (STM) , have a third operand.

The next five instructions are all in the RX format and
offer no new concepts. The reader may wish to brush up on
hexadecimal numbers and check that the displacements
have been computed correctly, taking into account the rela
tive address in the Subtract. We can see even in this simple
example how much of the clerical burden' the assembler
takes over by automatically assigning base registers and
calculating displacements.

The assembled entries for the DC's are simply the
requested constants, in hexadecimal. We note that the DS
entered nothing, but simply reserved space. A study of the
address for the double word constant at DEC shows that
boundary alignment was performed. The fullword constant
BIN2 was placed at 138. Counting in hexadecimal, BIN2
occupies four bytes: 138,139, 13A, and 13B. Although 13C
was available for DEC, it is not on a doubleword boundary,
nor is 13D, 13E, or 13F. So the assembler skipped these
four bytes and assigned DEC to 140.

The END assembler instruction terminates the assembly
of the program. The operand indicates the point to which we
wish control to be transferred when the program is loaded.
In this case, it is to our fITst instruction in the object
program, named BEGIN, where actual execution of the
program is to begin. Note that the location counter shows
the value 100 at the END statement.

Introduction 11

ERROR ANALYSIS BY THE ASSEMBLER

Certain kinds of programming errors can be detected rather
simply by the assembler. In fact, some errors make it
impossible for the assembler to generate an instruction and
complete the assembly. The assembler carries out the
assembly as completely as possible, regardless of the number
of errors, even if the first error detected makes it impossible
for the object program to be executed. The idea is that, if
there are more errors, the programmer needs to know about
all of them, not just the first one the assembler encounters.

Figure 1-5 is the assembly listing of a program written
deliberately with a number of errors in it, to demonstrate
what the assembler can do and how it announces its
findings. The first announcement is made on the program
listing itself, where every statement with a discernable error
is followed by a line prominently reading

*** ERROR ***
When the programmer is warned of the existence of an
error, he can often see rather quickly what is wrong.
Looking over the listing in Figure 1-5, he would probably
notice at once that the comma between operands in state
ment 9 is omitted, and that statement 19 is, from his point
of view (but not the assembler's), a bundle of typographical
keypunching errors.

Some errors may not be so obvious. To help the pro
grammer analyze them, the assembler prints a separate
listing of diagnostic messages. This is part of the output

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE

000100 1 PROGC
000100 05BO 2 BEGIN
000102 3
000102 5820 BOlE 00120 4
000106 5A20 B026 00128 5

6
*** ERROR ***

OOOlOA 0000 0000 00000 7
*** ERROR ***

00010E 5020 B02A 0012C 8
000112 0000 0000 00000 9

*** ERROR ***
000116 5A60 B02E 00130 10
00011A 0000 0000 00000 11

*** ERROR ***
12

from the assembler program, which was described earlier in
this chapter. The diagnostics listing for our program
example is shown in Figure 1-6. The assembler always gives
a summary message, shown at the bottom, of the total
number of statements in error. If no errors are found, the
happy message NO STATEMENTS FLAGGED IN THIS
ASSEMBLY is printed at the end of the symbol cross
reference table, and no diagnostic listing is printed.

Let's see what the assembler has to tell us about statement
6. The message is on the first line of the diagnostics
listing: UNDEFINED OPERATION CODE.

We check the mnemonic for Shift Left Single and find of
course that we should have written SLA instead of SLS.
The assembler program cannot assume SLA was meant; we
might have meant SL, SLR, SLL, or any other valid opera
tion code. Since it cannot tell what was intended, it flags
the statement and does not assemble the object code or
even assign space to the instruction.

The diagnostic message for statement 7 is UNDEFINED
SYMBOL. The undefined symbol is DATA4. This is
accepted as a valid symbol, since it follows all the rules
governing the writing of symbols. That is, it begins with a
letter, uses only letters and numbers, does not contain
special characters or blanks, and isn't more than eight
characters. Looking at the symbols or names listed in the
source statements, we see we have dermed DATA and
remember that we intended DATA+4 as the address of the

STATEMENT

START 256
BALR 11 ,0
USING *,11
L 2,DATA
A 2,CON
SLS 2,1

S 2,DATA4

ST 2,R.ESULT
L 6BIN1

A 6,BIN2
CVD 6,BIN1

EOJ
13.~ 360J\J-CL-453 EOJ CHANGE LEVEL 3-0

000 11 E crAOE 14'" SVC 1'4
000120 a O{) a (}O 19 15 DATA DC F'~5'

000124 4CB016EA 16 DC F'9876543210'
*** ERROR ***

000128 OOOOOOOA 17 CON DC F'lO'
00012C 18 RE SUL T DS

*** ERROR ***
00012C 0000 0000 00000 19 INI C '12 '

*** ERROR ***
000130 00000041: 20 BIN2 DC F'78'
000138 21 DEC DS D
000140 00000019 22 DATA DC F'25'

*** ERROR ***
000100 23 END BEGIN

Figure 1-5. Assembly listing of the program rewritten with deliberate errors

12

DIAGNOSTICS

STMT ERROR CODE MESSAGE

6 IJQ088 UNDEFINED OPERATI ON CODE
7 , IJQ024 UNDEF INED . SYMBOL
9 IJQ039 INVALID DELIMITER
9 IJQ039 INVALID DELIMITER

11 IJQ024 UNDEFINED SYMBOL
16 I JQO 17 DATA ITEM TOO LARGE
18 I J QO 31 UNKNOWN TYPE
18 IJQOO9 MISSING OPERAND
19 IJQ039 INVALID DELIMITER
19 I J QO 18 INVAL ID SYMBOL
22 IJQ023 PREVIOUSLY DEFINED NAME

8 STATEMENTS FLAGGED IN THIS ASSEMBLY

Figure 1-6. Assembly listing of diagnostic error messages for the program in Figure 1-5

next constant. To the assembler there is no relationship at
all between DATA4 and DATA; they are simply different
symbols. But if we write DATA+4, the assembler program
will recognize the plus sign as a special character that,
among other things, delimits the symbol DATA.
Confronted with DATA4, the assembler does not assemble
the object code. This time, however, the valid mnemonic S
indicates that this instruction will be in RX format. So the
assembler assigns four bytes to the instruction.

In statement 9, the Load instruction, we already know
that our error was the omission of the comma in 6,BINl.
This made the assembler give two identical diagnostic
messages: INVALID DELIMITER. From the mnemonic L,
the assembler anticipates an RX format, the L to be
followed by a register number, a comma, and a storage
operand. Finding a B instead of a comma probably led to
the first message. What about the second message? What
does it mean?

Here the error code in the second column of the diag
nostic listing may help. The meaning of each message is
given in expanded form in a table of error codes in the
assembler manuals. (The letters IJQ here simply stand for a
particular assembler program, the Disk Operating System D
assembler.) If we were to look up IJQ039 in the table, we
would find that it means "any syntax error". About a
dozen possibilities are listed. An invalid delimiter is the
usual error in assembler language syntax, hence the wording
of the message. Some other possibilities are (1) an unpaired
parenthesis, (2) an embedded blank, (3) a missing delimiter,
(4) a missing operand, and (5) a symbol beginning with
other than an alphabetic character. Well, the first two
obviously don't apply to 6BINl, and it would be difficult
and unrewarding to make a choice among the others,
especially considering the compounded error in the symbol
in statement 19. What the two messages signify is that there
is no reliable evidence of what was intended or just which
specification was really violated. The programmer is amply

warned that an error exists. It is his job to make his
intentions known.

UNDEFINED SYMBOL appears again for statement 11.
From the programmer's viewpoint, a reverse situation exists
from the one in statement 7. This time the instruction
statement is as it should be, but the DC defming the symbol
shows IN 1 instead of BIN 1. There is no indication that
these are related in any way or that one is not correct.

Statement 16 elicits the message DATA ITEM TOO
LARGE. This is perfectly clear. The decimal value
9,876,543,210' cannot be contained in a 32-bit binary full
word, and the hexadecimal value shown as four bytes has
evidently been truncated.

Statement 18 was awarded two error messages:
UNKNOWN TYPE when the assembler program found no
type designation, and MISSING OPERAND when it
scanned further on. Jumping ahead for a moment, we fmd
that statement 22 has the message PREVIOUSLY
DEFINED NAME, and we see that DATA has already been
given in statement 15.

In statement 19 the first letter of each entry is omitted.
The messages are INY ALID DELIMITER, which may mean
almost any error of syntax, and INVALID SYMBOL, which
apparently applies to the name INI. What's the matter with
IN I? It begins with a letter and violates no rules we know of.
It should be perfectly acceptable to the assembler. We are
the only ones who know it is misspelled. Also, when the
message UNKNOWN TYPE is available, why single out the
operand with its missing F as a syntax error? Four bytes of
zeros have been generated. Why did the assembler assign a
specific length? Also, apparently no fault was found with
the mnemonic C. How is that? The point is precisely that C
is a valid operation code. So the assembler, being given this
definite "fact" (the most important single fact in any
instruction), performs its syntax scan and other operations
as if it were dealing with a Compare. The mnemonic C
indicates that the instruction is in the RX format requiring

Introduction 13

four bytes, that the first operand must be a number
I

between 0 and 15 followed by a comma, and that the
second operand may be a symbol. But the operand field of
this Compare instruction contains simply the characters
" '12' ". This then is the "symbol" the second message
refers to. Indeed, both messages evidently apply to the
operand field. To the assembler program nothing is wrong
with the name or the operation code mnemonic.

For such reasons as these, the diagnostic messages given
by the assembler may often seem quite inaccurate from the
programmer's point of view. In many cases, the assembler
simply does not have enough clues to pin down the precise
error, and the messages should not be taken literally. The
assembler program was designed to be as helpful as it can
be, and the messages are an effort to help the programmer
diagnose the trouble. Usually the error flag on the program

14

listing is enough. The programmer will be interested in the
message itself only when he cannot identify the mistake.

This review of how the assembler analyzes programming
errors should also make it clear that many errors are
beyond the power of the assembler even to recognize. When
we incorrectly write DATA4 for DATA+4, the assembler
can detect it, but not if DATA4 itself is a legitimate
symbol. If we write SLL for SLA, the assembler will assume
that SLL is what we mean; both are valid operation codes
with the same format. The ability of the assembler to
detect and analyze errors can be very helpful to the
programmer. However, the message NO STATEMENTS
FLAGGED IN THIS ASSEMBLY cannot be taken to mean
that a program has no errors or that it will necessarily
produce the right answers when it is executed.

MODIFYING AN ASSEMBLER LANGUAGE PROGRAM

After a program has been written, assembled, and com
pletely debugged, it frequently happens that some change
must be made later. Many types of revisions are simple to
make in an assembler language program. But let us see what
happens to the locations of instructions and data when even
a minor change is made. We shall base the example on the
correct version of the program, as it appeared assembled in
Figure 1-4.

Let us suppose that for some unspecified reason it is
necessary to store the sum of BINI and BIN2 in binary
before converting it to decimal. We must insert an
instruction:

ST 6,BINANS

just before the CYD.
This is a rather simple sort of change and one that is

representative of the kind of modification made with routine
frequency on many programs. Yet it can have the effect of

changing almost every effective address in the program! The
insertion of the four-byte instruction "pushes down" the
storage spaces for the DC's and DS's, requiring a change in
the displacements of all the instructions that refer to the
constants.

Figure 1-7 is the assembly psting of the modified
program. Scanning down the a~embled instructions, we see
that the displacements have been computed to reflect the
change in locations. Continuing the comparison, however,
we see that ADDR2 and the displacement in the Convert to
Decimal instruction are the same as in the earlier version.
Has there been a mistake?

The answer is the boundary alignment of the double
word constants. In the earlier version, it was necessary to
skip four bytes to provide an address for DEC that was on a
double word boundary. The inserted instruction, in effect,
filled that skipped space. The reassembly therefore left the
assembled address for DEC unchanged.

LOC OBJECT CODE AOORI AODR2 STMT SOURCE STATEMENT

000100 1 PROGB START 256
000100 05BO 2 BEGIN BALR II ,0
000102 3 USING *,11
000102 5820 B026 00128 4 L 2,DATA LOAD REGISTER. 2
000106 5A20 B02E 00130 5 A 2,CON ADD 10
OOOlOA 8B20 0001 00001 6 SLA 2,1 THIS HAS EFFECT OF MULTIPLYING BY 2
00010E 5B20 B02A 0012C 7 S 2,DATA+4" NOTE RELATIVE ADDRESSING
000112 5020 B032 00134 8 ST 2,RESULT
000116 5860 B036 00138 9 L 6,BIN1
OOOIlA 5A60 B03A 0013C 10 A 6 ,BI N2
OOOllE 5060 B046 00148 II ST 6,BINANS
000122 4E60 B03E 00140 12 CVD 6, DEC

13 EOJ END OF JOB
14+* 360N-CL-453 EOJ CHANGE LEVEL 3-0

000126 OAOE 15+ SVC 14
000128 00000019 16 DATA DC F'25'
00012C OOOOOOOF 17 DC F '15'
000130 OOOOOOOA 18 CON DC F'10'
{l00 134 19 RESULT OS F
000138 OOOOOOOC 20 BINI DC F'12'
00013C 0000004E 21 BI N2 DC F '78'
000140 22 DEC OS 0
000148 23 BI NANS OS F
000100 24 END BEGIN

Figure 1-7. Assembly listing of the same program modified to store the binary contents of register 6

Introduction 15

The reader may fmd it helpful at this point to review some
basic facts about System/360 that are directly relevant to
assembler language programming. These are stated as briefly
as possible in this chapter and will serve mainly as a
reminder. A student who is familiar with the material may
skip any or all of the sections without loss. A student who
needs more than a reminder is urged to go back to the
textbook or course materials he originally studied for an
introduction to System/360.

The basic structure of a System/360 consists of main

MAIN STORAGE

Main storage is also called core or processor storage to
distinguish it from storage on tape, disk, or other auxiliary
devices. It is closely involved in the operation of the CPU,
although it may be either physically integrated with it or
constructed as a stand-alone unit. Capacity may be from
8,192 bytes to several million bytes, depending on the
system model. Protection features are available that make it
possible to protect the contents of main storage from access
or alteration.

In general, instructions and data are stored along with
each other in whatever order they are presented to the
machine., Particular areas of storage may be used over and
over again by a succession of programs or groups of
programs being executed. Each group overlays, or replaces,
the instructions and data of the one preceding. The pro
grammer must therefore specify blanks or zeros where he
needs them; he can never assume he is writing on a clean
slate. During execution of his program, he can obtain a
printout or "dump" of an area of storage at any point in
the program by use of suitable instructions.

Bytes and Data Field Lengths

The system transmits information between main storage
and the CPU in units of eight bits, or a multiple of eight
bits at a time. Each eight-bit unit of information is called a
byte, the basic building block of all formats. A ninth bit,
the parity or check bit, is transmitted with each byte and
carries odd parity on the byte. The parity bit cannot be
affected by the program; its only purpose is to cause an
interruption when a parity error is detected. References in
this book to the size of data fields and registers exclude the
mention of the associated parity bits.

Chapter 2: System/360 Review

storage, a central processing unit (CPU), the selector and
multiplexor channels, and the input/output (I/O) devices
attached to the channels through control units. For basic
information that applies to the material in this book, we are
concerned principally with the CPU and main storage. In
this chapter, discussion will essentially be limited to these
machine units and their basic operating principles.

Since a knowledge of hexadecimal numbers is necessary
in assembler language programming, these will also be
explained.

Bytes may be handled separately or grouped together in
fields. A halfword is a group of two consecutive bytes and
is the basic building block of instructions. A word is a
group of four consecutive bytes; a doubleword is a field
consisting of two words (Figure 2-1). The location of any
field or group of bytes is specified by the address of its
leftmost byte.

Byte

hlOO'OOOll
o

Halfword

7 8 15

Word

Figure 2-1. Sample data formats

The length of fields is either implied by the operation to
be performed or stated explicitly as part of the instruction.
When the length is implied, the information is said to have a
flXed length, which can be either one, two, four, or eight
bytes.

When the length of afield is not implied by the
operation code, but is stated explicitly, the information is
said to have variable field length. This length can be varied
in one-byte increments.

System/360 Review 17

Within any program fonnat or any flXed-length operand
format, the bits making up the fonnat are consecutively
numbered from left to right starting with the number O.

This general infonnation on data fonnats and field
lengths wi1l be supplemented later by further details.
Lengths and the specific form of the contents of the fields
are discussed in the section on the arithmetic and logical
unit, under the headings for logical operations and the
specific types of arithmetic ..

Addressing

Byte locations in storage are consecutively numbered
starting with 0; each number is considered the address of
that byte. A group of bytes in storage is addressed by the
leftmost byte of the group. The number of bytes in the
group is either implied or explicitly defined by the
operation. The addressing arrangement uses a 24-bit binary
address to accommodate a maximum of 16,777,216 byte
addresses. This set of main-storage addresses includes some
locations reserved for the supervisor and other special
purposes. How storage addresses are generated is described
in the section on program execution.

The available storage is normally contiguously address
able, starting at address O. An addressing exception is
recognized when any part of an operand is located beyond
the maximum available capacity of an installation. Except
for a few instructions, the addressing exception is recog
nized only when the data are actually used and not when
the operation is completed before using the data. The
addressing exception causes a program interruption.

Positioning on Integral Boundaries

Fixed-length fields, such as halfwords and doublewords,

18

must be located in main storage on an integral boundary for
that unit of infonnation. A boundary is called integral for a
unit of infonnation when its storage address is a multiple of
the length of the unit in bytes. For example, words (four
bytes) must be located in storage so that their address is a
multiple of the number 4. A halfword (two bytes) must
have an address that is a multiple of the number 2, and
doublewords (eight bytes) must have an address that is a
multiple of the number 8.

F or greatest efficiency in storage addressing, address
arithmetic is done exclusively in binary. In binary, integral
boundaries for halfwords, words, and doublewords can be
specified only by the binary addresses in which one, two, or
three of the low-order bits, respectively, are zero (Figure 2-2).
For example, the integral boundary for a word is a binary
address in which the two low-order positions are zero.

Variable-length fields are not limited to integral bound
aries, and may start on any byte location.

Low-order Four Bits of Binary Address

O~ 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte

,
l

Halfword Halfword Halfword Halfword Halfword ,
t

~
Word Word Word

l

L. Double Word Double Word ,
t

Figure 2-2. Integral boundaries for halfwords, words, and double
words

CENTRAL PROCESSING UNIT

The central processing unit (Figure 2-3) contains the facili
ties for addressing main storage, for fetching or storing
information, for arithmetic and logical processing of data,
for sequencing instructions in the desired order, and for
initiating the communication between storage and external
devices.

The system control section provides the normal CPU
control that guides the CPU through the functions necessary
to execute the instructions. The programmer-trainee will
probably be glad to know that the result of executing a
valid instruction is the same for each model of System/360.

Storage
Address

... Instructions ...

1----1
.. I MAIN STORAGE I
"I

__ --._J
.~

L

Arithmetic and Logical Unit
Computer Generated t-----"'T""----~------I

System ~ Address

Control
Fixed-Point
Operations

16
General
Registers

Variable
Fixed-Length
Operations

Floating-Point
Operations

"

I Floating-p:int Registers -1

Figure 2-3. Functions of the central processing unit

General and Floating-Point Registers

~he CPU provides 16 general registe.!§., for flXed-point
operands and \,\>ur flodtirig-poi'!!!egis!e.!J for floating-point
operands. Physic illy , these registers may be in special
circuitry, in a local storage unit, or in a separate area of
main storage. In each case, the address and functions of
these registers are identical.

The CPU can address information in 16 general registers.
The general registers can be used as index registers, in
address arithmetic and indexing, and as accumulators in
f:!Xed-point arithmetic and logical operations. The registers
have a capacity of one word (32 bits). The general registers
are identified by numbers 0-15 and are specified by a
four-bit R field in an instruction (Figure 2-4). Some
instructions provide for addressing multiple general registers
by having several R fields.

F or some operations, two adjacent general registers are
coupled together, providing a two-word capacity. In these
operations, the addressed register contains the high-order

operand bits and must have an even address, and the
implied register, containing the low-order operand bits, has
the next higher address.

R Field Reg No. General Registers Floating-Point Registers

132 Bits1 i64Bitsi

0000 0 1::::·'::::::;:;:::-:::::::::;::::::::::·-·:·-·:·1 E:-:-:-:·:·;·:·:-:·:·-·:·:·:-:·;·-·:·-·:·:·:·:·-·:·:·:·:.:.: :.:.:.;.:.:.:.:.;:::::::::::::::)

0001 1 1·:·:·:·:·····:·:·· ···:·····:···:·:-:·:::1

0010 2 1:-:-;.:.-:-,-:·:-:-:·:·:-:-:-:-;-:-;-:-:·:-;·;.:·:-:·;-:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: •.• :-:J

0011 3 ,.:::.:.; :.:.:.:.

0100 4 ;:::::::.:.:.:::.:.:.:.;.:.;.:.;.:.:.:.:.:.j .;.;.:.:.:.;.;.:.:.:.:.:.:.:.:.:.;.:.;.:.:.;.:.:.:.:.:.;.:.:.;.;.:.;.:.;.:.:.:.:.:.;.:.:.:.;.'

0101 5
0110 6 f;·:·;·;·······:·····;·:·:·:·:·:·:·;.:·:·:·:) t.::;:::::·:·:·:···························;···:·;·:·:.:.;.:.:.:.;.;.:.:.;.:.;.:.;.:.:.: ... ;.;'

0111 7 f:·;·:·:·-··_··········-··_··········:·-·:·:1

1000 8 t;::::·;···:·;·:·:·:·:-;·_··:·:·:·;·;·:·:-:j

1001 9 .;.:.:.;.:.;.;.;.:.;.;.:::-:::;::::::::::::j

1010 10 (.:-:.: .. _ _ _ -.:.:.:.:.j

1011 11 .:.:.;.:.:.:.:.:.:.:.:.:.:.:.;.;.:.:.:.;.:.j

1100 12 ;:;::;:.;::;;:;;.:.:.:.:;:.:.;.;.;.:.:.;.:.j

1101 13
1110 14 ,:,;-:,-,;,;,:,:,;,',;,'·;·;·;·;·:·;·;·;·;·:1

1111 15 .;.;.;.:.:-:.:.:.:.:-:.:.:.;.;.;.;.;.:.;.;.:'

Figure 2-4. General and floating-point registers

F our floating-point registers are available for floating
point operations. They are identified by the numbers 0, 2,
4, and 6 (Figure 24). These floating-point registers are two
words (64 bits) in length and can contain either a short
(one word) or a long (two words) floating-point operand. A
short operand occupies the high-order bits of a floating
point register. The low-order portion of the register is ignored
and remains unchanged in short-precision arithmetic. The
instruction operation code determines which type of regis
ter (general or floating-point) is to be used in an operation,
and if floating-point whether short or long precision.

Arithmetic and Logical Unit

The arithmetic and logical unit can process binary integers
and floating-point fractions of flXed length, decimal
integers of variable length, and logical information of either
flXed or variable length.

Arithmetic and logical operations performed by the CPU
fall into four classes: flXed-point arithmetic, decimal arith
metic, floating-point arithmetic, and logical operations.
These classes differ in the data formats used, the registers
involved, the operations provided, and the way the field
length is stated. Data formats are discussed under each of
the headings in this section. General information on field
lengths was given in the section on main storage.

Fixed-Point Arithmetic

The basic arithmetic operand is the 32-bit flXed-point
binary number. Sixteen-bit halfword operands may be
specified in most operations for improved performance or
storage utilization (see Figure 2-5). To preserve precision,
some products and all dividends are 64 bits long. A

System/360 Review 19

flXed-point number is a signed value, recorded as a binary
integer. It is called flXed point because the programmer
determines the flXed positioning of the binary point.

In both halfword (16 bits) and word (32 bits) lengths,
the fIrst bit position (0) holds the sign of the number. The
remaining bit positions (l-lS for halfwords and 1-31 for
fullwords) are used to designate the value of the number.

Positive fixed-point numbers are represented in true
binary fonn with a zero sign bit. Negative flXed-point
numbers are represented in two's complement notation
with a one bit in the sign position. In all cases, the bits
between the sign bit and the leftmost significant bit of the
integer are the same as the sign bit (i. e. all zeros for
positive numbers, all ones for negative numbers). The
filled-in examples in Figure 2-5 show the equivalent of
decimal +62 and -62 in flXed-point halfwords.

Halfword

I s I Integer-

o 1 15

Full Word

lsi Integer

o 1 31

10 1 000 0000 0011 1110 I = +6210

111111 1111 1100 0010 1=-6210

Figure 2-5. Fixed-point number formats. In the example the nega
tive number is in two's complement notation

Because the 32-bit word size readily accommodates a
24-bit address, fixed-point arithmetic can be used both for
integer operand arithmetic and for address arithmetic. This
combined usage provides economy and permits the entire
flXed-point instruction set and several logical operations to
be used in address computation. Thus, multiplication,
shifting, and logical manipulation of address components
are possible.

Additions, subtractions, multiplications, divisions, and
comparisons are perfonned upon one operand in a register
and another operand either in a register or from storage.
Multiple-precision operation is made convenient by the
two's-complement notation and by recognition of the carry
from one' word to another. A word in one register or a
double word in a pair of adjacent registers may be shifted
left or right. A pair of conversion instructions-Convert to
Binary and Convert to Decimal-provides transition
between decimal and binary number bases without the use
of tables. Multiple-register loading and storing instructions
facilitate subroutine switching.

20

Decimal Arithmetic

Decimal arithmetic lends itself to data processing procedures
that require few computational steps between the source
input and the documented output. This type of processing
is frequently found in commercial applications. Because of
the limited number of arithmetic operations perfonned on
each item of data, conversion from decimal to binary and
back to decimal is not justilled, and the use of registers for
intennediate results yields no advantage over storage-to
storage processing. Hence, decimal arithmetic is provided,
and both operands and results are located in storage.
Decimal arithmetic includes addition, subtraction, multipli
cation, division, and comparison.

Decimal numbers are treated as signed integers with a
variable-field-length format from one to 16 bytes long.
Negative numbers are carried in true fonn.

The decimal digits 0-9 are represented in the four-bit
binary-coded-decimal (BCD) fonn by 0000-1001, respec
tively, as follows.

Digit Binary Code Digit Binary Code
0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

The codes 1010-1111 are not valid as digits and are
reserved for sign codes. The sign codes generated in decimal
arithmetic depend upon the character set code used. When
the extended binary coded decimal interchange code
(EBCDIC) is used, the codes are 1100 for a plus sign and
1101 for a minus. (When the USASCII set, expanded to
eight bits, is preferred, the sign codes are 1010 and 1011.
The choice between the two code sets is determined by a
mode bit.)

Decimal operands and results are represented by four-bit
BCD digits packed two to a byte (see Figure 2-6). They
appear in fIelds of variable length and are accompanied by a
sign in the rightmost four bits of the low-order byte. Operand
fields may be located on any byte boundary, and may have
length up to 31 digits and sign (l6 bytes). Operands
participating in an operation may have different lengths.
Packing of digits within a byte and use of variable-length
fields within storage results in efficient use of storage, in

High-order Byte Low-order Byte

Figure 2-6. Packed decimal number format. The three-byte example
shows decimal value +89,732

(8/70)

increased arithmetic performance, and in an improved rate
of data transmission between storage and files.

Decimal numbers may also appear in a zoned format in
the regular EBCDIC eight-bit alphameric character format
(Figure 2-7). This representation is required for I/O devices
that are character-set sensitive. A zoned format number
carries its sign in the leftmost four bits of the low-order
byte. The zoned format is not used in decimal arithmetic
operations. Instructions are provided for packing and
unpacking decimal numbers so that they may be changed
from the zoned to the packed format and vice versa.

High-order Byte

,.-----A----.. ___ --...---......---f--.,--...,

I Zone I Digit I Zone I __ L-_..L..-_...L-_-'--_--L-_--I

8 9 7 3 + 2

11111 1000 11111 1001 1111 I 0111 1111 I 0011 1100 I 0010

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

Figure 2-7. Zoned decimal number format. The decimal number
+89,732 requires five bytes

Floating-Point Arithmetic

Floating-point numbers occur in either of two f1Xed-Iength
formats-short or long. These formats differ only in the
length of the fractions (Figure 2-8). They are described in
detail in the chapter on floating-point arithmetic.

Floating-point operands are either 32 or 64 bits long.
The short length permits a maximum number of operands to
be placed in storage and gives the shortest execution times.
The long length, used when higher precision is desired,
more than doubles the number of digits in each operand.

Four 64-bit floating-point registers are provided. Arith
metic operations are performed with one operand in a register
and another either in a register or from storage. The result,
developed in a register, is generally of the same length as
the operands. The availability of several floating-point
registers eliminates much storing and loading of inter
mediate results.

Short Floating-Point Number (One Word)

I S I Characteristic I Fraction

o 1 7 8 31

Long Floating-Point Number (Double Word)

LIS_·LI_c_h_ar_a_ct_e_ri_stic~I _____ F_ra_c_ti_on ___ ~~~ ______ ~
o 1 7 8 63

Figure 2-8. Short and long floating-point number formats

Logical Operations and the EBCDIC Character Set

Logical information is handled as fixed- or variable-length
data. It is subject to such operations as comparison,
translation, editing, bit testing, and bit setting.

When used as a f1Xed-Iength operand, logical information
can consist of either one, four, or eight bytes and is
processed in the general registers (Figure 2-9).

A-Iarge portion of logical information consists of alpha
betic or numeric character codes, called alphameric data,
and is used for communication with character-set sensitive
I/O devices. This information has the variable-field-length
format and can consist of up to 256 bytes (Figure 2-9). It is
processed storage to storage, left to right, an eight-bit byte
at a time.

The CPU can handle any eight-bit character set, although
certain restrictions are assumed in the decimal arithmetic
and editing operations. However, all character-set sensitive
I/O equipment will assume either the extended binary
coded decimal interchange code (EBCDIC) or the USA
Standard Code for Information Interchange (USASCII)
extended to eight bits. Use of EBCDIC is assumed through
out this book.

Fixed-Length Logical Operand (One, Four, or Eight Bytes)

Logical Data

Variable-Length Logical Operand (Up to 256 Bytes)
;....--------.

Character Character I - - ~ ~ ~ I Character

16

Figure 2-9. Fixed- and variable-length logical information

EBCDIC does not have a printed symbol, or graphic,
defined for all 256 eight-bit codes. When it is desirable to
represent all possible bit patterns, a hexadecimal represen
tation may be used instead of the preferred eight-bit code.
The hexadecimal representation uses one graphic for a
four-bit code, and therefore, two graphics for an eight-bit
byte. The graphics 0-9 are used for codes 0000-1001; the
graphics A-F are used for codes 1010-1111. EBCDIC
eight-bit code for characters that can be represented by
well-known symbols is shown in Table 2-1. The hexa
decimal equivalents and punched card code are also shown.
For other symbols, System/360 control characters, and
unassigned codes, see the complete 256-position EBCDIC
chart in the Appendix. It may be observed from the table
that the EBCDIC collating sequence for alphameric charac
ters, from lower to higher binary values, is (1) special
characters, (2) lower case letters, (3) capital letters, and (4)
digits, with each group in its usual order.

System/360 Review 21

Table 2-1. Extended Binary Coded Decimal Interchange Code (EBCDIC) for Graphic Characters

Graphic EBCDIC Hex Punched Graphic EBCDIC Hex Punched
character 8-bit code equiv- card code character 8-bit code equiv- card code

Bit Positions alent Bit Positions alent

0123 4567 0123 4567

blank 0100 0000 40 no punches u 1010 0100 A4 11-0-4
¢ 0100 1010 4A 12-8-2 v 1010 0101 A5 11-0-5

0100 1011 4B 12-8-3 w 1010 0110 A6 11-0-6
(0100 1101 4D 12-8-5 x 1010 0111 A7 11-0-7
+ 0100 1110 4E 12-8-6 y 1010 1000 A8 11-0-8
& 0101 0000 50 12 z 1010 1001 A9 11-0-9
! 0101 1010 5A 11-8-2 A 1100 0001 C1 12-1
$ 0101 1011 5B 11-8-3 B 1100 0010 C2 12-2

* 0101 1100 5C 11-8-4 C 1100 0011 C3 12-3
) 0101 1101 5D 11-8-5 D 1100 0100 C4 12-4
; 0101 1110 5E 11-8-6 E 1100 0101 C5 12-5
- 0110 0000 60 11 F 1100 0110 C6 12-6
, 0110 1011 6B 0-8-3 G 1100 0111 C7 12-7
% 0110 1100 6C 0-8-4 H 1100 1000 C8 12-8
? 0110 1111 6F 0-8-7 I 1100 1001 C9 12-9
: 0111 1010 7A 8-2 J 1101 0001 D1 11-1
0111 1011 7B 8-3 K 1101 0010 D2 11-2
@ 0111 1100 7C 8-4 L 1101 0011 D3 11-3
,

0111 1101 7D 8-5 M 1101 0100 D4 11-4
= 0111 1110 7E 8-6 N 1101 0101 D5 11-5
" 0111 1111 7F 8-7 0 1101 0110 D6 11-6
a 1000 0001 81 12-0-1 P 1101 0111 D7 11-7
b 1000 0010 82 12-0-2 Q 1101 1000 D8 11-8
c 1000 0011 83 12-0-3 R 1101 1001 D9 11-9
d 1000 0100 84 12-0-4 S 1110 0010 E2 0-2
e 1000 0101 85 12-0-5 T 1110 0011 E3 0-3
f 1000 0110 86 12-0-6 U 1110 0100 E4 0-4
g 1000 0111 87 12-0-7 V 1110 0101 E5 0-5
h 1000 1000 88 12-0-8 W 1110 0110 E6 0-6
i 1000 1001 89 12-0-9 X 1110 0111 E7 0-7
j 1001 0001 91 12-11-1 Y 1110 1000 E8 0-8
k 1001 0010 92 12-11-2 Z 1110 1001 E9 0-9
1 1001 0011 93 12-11-3 0 1111 0000 FO 0
m 1001 0100 94 12-11-4 1 1111 0001 F1 1
n 1001 0101 95 12-11-5 2 1111 0010 F2 2
0 1001 0110 96 12-11-6 3 1111 0011 F3 3
p 1001 0111 97 12-11-7 4 1111 0100 F4 4
q 1001 1000 98 12-11-8 5 1111 0101 F5 5
r 1001 1001 99 12-11-9 6 1111 0110 F6 6
s 1010 0010 A2 11-0-2 7 1111 0111 F7 7
t 1010 0011 A3 11-0-3 8 1111 1000 F8 8

9 1111 1001 F9 9

22

PROGRAM EXECUTION

Interplay of equipment and program is an essential consi- a loop, is to be repeated. All these tasks can be accom-
deration in System/360. The system is designed to operate plished with branching instructions. Provision is made for
with a control program that coordinates and executes all subroutine linkage, permitting not only the introduction of
I/O instructions, handles exceptional conditions, and super- a new instruction address but also the preservation of the
vises scheduling and execution of multiple programs. return address and associated information.
System/360 provides for efficient switching from one pro- Decision-making is generally and symmetrically provided
gram to another, as well as for the relocation of programs in by the Branch on Condition instruction. This instruction
storage. To the problem programmer, the control program inspects a two-bit condition code in the PSW, that reflects
and the equipment are indistinguishable. the result of a majority of the arithmetic, logical, and I/O

The CPU program consists of instructions, index words, operations. Each of these operations can set the code in any
and control words that specify the operations to be one of four ways, and the conditional branch can specify
performed. Some of its functions will be discussed here. any of these four settings, or any combination of them, as
The format of the machine instructions is basic to m;t _____ the criterion for branching.
understanding of how the CPU executes them and how it ", Loop control can be performed by the conditional
forms addresses of operands in main storage. A double word branch when it tests the outcome of address arithmetic and
called the program status word (pSW) contains detaile'd counting operations. For some particularly frequent combin-
information required by the CPU for proper program ations of arithmetic and tests, the instructions Branch on
execution: the instruction address, the condition code Count and Branch on Index are provided. These branches,
setting, etc. It is stored at a fIXed location. If a problem being specialized, provide increased performance for these
program aborts and the contents of storage are printed out,. tasks.
the PSW can be inspected by the programmer. He will find
much information to help him analyze the trouble,
including a code that identifies the cause of the interruption.

The interruption system permits the CPU to respond
automatically to conditions arising outside of the system, in
I/O units, or in the CPU itself. Interruption switches the
CPU from one program to another by changing not only
the instruction address but all essential machine-status
information.

Programs are checked for correctness of instructions and
data as the instructions are executed. (The types of errors
involved are not detectable during assembly.) This policing
action distinguishes and identifies program errors and
machine errors. Thus, program errors cannot cause machine
checks: each of these types of error causes a different type
of interruption.

Sequential Instruction Execution

Normally, the operation of the CPU is controlled by
instructions taken in sequence. An instruction is fetched
from a location specified by the instruction address in the
current PSW. The instruction address is then increased by
the number of bytes in the instruction fetched to address
the next instruction in sequence. The instruction is then
executed and the same steps are repeated using the new
value of the instruction address.

A change from sequential operation may be caused by
branching, interruptions, etc.

Branching

The normal sequential execution of instructions is changed
when reference is made to a subroutine, when a two-way
choice is encountered, or when a segment of coding, such as

Instruction Format

The length of an instruction format can be one, two, or
three halfwords. It is related to the number of storage
addresses necessary to specify the location of all operands
in the operation. Operands may be located in registers or in
main storage, or may be a part of an instruction. An
instruction consisting of only one halfword causes no
reference to main storage. A two-halfword instruction
provides one storage-address specification; a three-halfword
instruction provides two storage-address specifications. All
instructions must be located in storage on integral bound
aries for halfwords. Figure 2-10 shows the five basic
instruction formats, called RR, RX, RS, SI, and SS.

These format codes express, in general terms, the oper
ation to be performed. RR denotes a register-to-register
operation; RX, a register-and-indexed-storage operation;
RS, a register-and-storage operation; SI, a storage and
immediate-operand operation; and SS, a storage-to-storage
operation. An immediate operand is one contained within
the instruction.

F or purposes of describing the execution of instructions
in the SRL manual IBM System/360Principles o/Operation
(A22-6821), operands are designated as first and second
operands and, in the case of branch-on-index instructions,
third operands. These names refer to the manner in which
the operands participate. The operand to which a field in an
instruction format applies is generally denoted by the
number following the code name of the field, for example,
RJ,B h L2 ,D2 ·

In each format, the first instruction halfword consists of
two parts. The first byte contains the operation code. The
length and format of an instruction are specified by the

System/360 Review 23

frrst two bits of the operation code:

Bit Positions Instruction Instruction
(0-1) Length Format

00 One halfword RR
01 Two halfwords RX
10 Two halfwords RS or SI
11 Three halfwords SS

The second byte is used either as two 4-bit fields or as a
single 8-bit field. As shown in Figure 2-10, this byte can
contain the following information:

Four-bit operand register specification (Rh R2 , or R3)

Four-bit index register specification (X2)

Four-bit operand length specification (LI or L2)

Eight-bit operand length specification (L)
Eight-bit byte of immediate data (I 2)

In some instructions a four-bit field or the whole second
byte of the first halfword is ignored. In the Branch on
Condition instruction, which may be used in either the RR
or RX format, the first four bits of the second byte are
used as a 4-bit mask field (M I in the following diagram).
This mask tests the four settings of the condition code and
is used to determine whether a branch will or will not be
made.

RR I 07 (BCR) I M1 I R2 I
7 8 1112 15

RX I 47 (BC) I M1 I X2 I B2 I I
7 8 1112 15 16 19 20 31

In all instructions, the second and third halfwords always
have the same format: four-bit base register designation (Bl
or B2), followed by a 12-bit displacement (Dl or D2)'

Generation of Main Storage Addresses

To permit the ready relocation of program segments and to
provide for the flexible specifications of input, output, and
working areas, all instructions referring to main storage
have been given the capacity of employing a full address.

The address used to refer to main storage is generated
from the follOWing numbers, all binary:

Base Address (B) is a 24-bit number contained in a
general register specified by the program in the B field of
the instruction. (One way to insert a base address into a
register is to specify a BALR operation at the beginning of
a program. The BALR operation does just that, getting the
address of the next sequential instruction from the current
program status word, no matter where the program may
have been relocated.) The B field is included in every
address specification. The base address can be used as a
means of relocation of programs and data. It provides for
addressing the entire main storage. The base address may
also be used for indexing purposes.

Index (X) is a 24-bit binary number contained in a
general register specified by the program in the X field of

24

First Halfword Second Halfward

Byte1: Byte 2

Register Register
: Operand 1 Operand 2

RR i Op Code j~~
:0 7 8 11 12 15
I '
I ReQister Address of I

Operand 1 , Operand 2 :

Rx~i-o-pc-od-e~I!ZJ~R~1~=x=2~i=B2~1~~D=2==~1

51

RS

:0 7 8 11 12 15 16 19 20 31

,

I
:0
I
I
I ,

j
:0 ,
I

j

, I

: Immediate : Address of
I Operand I Operand 1
I~~

7 8 15 16 19 20 ,
Register Register Address of

31'
I

Operand 1 Operand 3 Operand 2 I

~I

78 111215161920

: Length, Address of
Operand 110perand 2 Operand 1
~'

Third Halfword

Address of
Operand 2

~ 7 8 1112 15 16 19 20 31 32 3536
55

Op Code

I Address of
I Length I Operand 1

FjB11
Address of
Operand 2

7 8 1112 1516 1920 31 32 35 36

Figure 2-10. Machin.e instruction formats

47
I
I

47

the instruction. It is included only in the address specified
by the RX instruction format; or it may simply be omitted
in an RX instruction. The RX format instructions permit
double indexing.

Displacement (D) is a 12-bit binary number contained in
the instruction format. It is included in every address
computation. The displacement provides for relative addres
sing up to 4095 bytes beyond the base address, which is the
limit that can be expressed by 12 binary bits. In Chapter 1
we saw how the displacements were calculated by the
assembler from symbolic addresses written by the pro
grammer.

We also saw that the three binary numbers are added
together to form the actual address. This sum is a 24-bit
number, which can be represented by six hexadecimal
digits.

The program may have zeros in the base address, index,
or displacement fields. A zero is used to indicate the
absence of the corresponding address component. A base or
index of zero implies that a zero quantity is to be used in
forming the address, regardless of the contents of general
register O. Initialization, modification, and testing of base
addresses and indexes can be carried out by fixed-point
instructions, or by Branch and Link, Branch on Count, or
Branch on Index instructions.

Interruptions and the Program Status Word

To make maximum use of a modern data processing
system, some automatic procedure must be made available
to alert the system to an exceptional condition, the end
of an I/O operation, program errors, machine errors, etc.,
and send the system to the appropriate routine following
the detection of such an event. The system must have, in
effect, the ability to pause to answer the telephone and
then to resume the interrupted work. This automatic
procedure is called an interruption system.

It makes possible the operation of a system in a non-stop
environment and greatly aids the efficient use of I/O
equipment. The desire to make the interruption procedure
as short and simple as possible means that the method- of
switching between the interrupted program and the pro
gram that services the interruption must be quite efficient.
It operates as follows:

The complete status of the System/360 is held in eight
bytes of information. This status information, which con
sists of the instruction address, condition code, storage
protection key, etc., is saved when an interruption occurs,
and is restored when the interruption has been serviced.

As soon as the interruption occurs, all the status infor
mation, together with an identification of the cauSe of the
interruption, is combined into a doubleword called the
program status word (pSW).1:::-

The PSW is stored at a fIXed location, the address of which
depends on the type of interruption. The system then
automatically fetches a new PSW from a different fIXed
location, the address of which is also dependent on the type
of interruption. Each class of interruption has two fIXed
locations in main storage: one to receive th~ old PS\:V when
the interruption occurs, and the other to supply the new
PSW that governs the servicing of that class of interruption.

After the interruption has been serviced, a single instruc
tion uses the stored PSW to reset the processing unit to the
status it had before the interruption.

Types of Interruptions

The interruption system separates interruptions into five
classes:

Supervisor Call interruptions are caused when the
processing program issues an instruction to turn over
control to the supervisor in the control program. The exact
reason for the call is shown in the old PSW.

External interruptions are caused by either an external
device requiring attention or by the system timer going past
zero.

Machine Check interruptions are caused by the machine
checking circuits detecting a machine error.

I/O interruptions are caused by an I/O unit ending an
operation or otherwise needing attention. Identification of

the device and channel causing the interruption is stored in
the old PSW; in addition, the status of the device and
channelis stored in a fIXed location.

Program interruptions are caused by various kinds of
programming errors or unusual conditions resulting from
improper specification or use of instructions or data. The
exact type of error is shown in an interruption code in the
PSW.

Finding the Source of a Program Interruption

When a program interruption occurs, proviSion is always
made to locate the instruction that was being interpreted
and to identify the exact type of error involved, so that the
programmer can make the necessary corrections. For this
information he must go to the PSW in a printout of storage
contents.

Fifteen interruption codes are used for the different
types of program interruptions, as follows.

Interruption Code Program Interruption Cause

1 00000001 Operation
2 00000010 Privileged operation
3 00000011 Execu te
4 00000100 Protection
5 00000101 Addressing
6 00000110 Specification
7 00000111 Data
8 00001000 Fixed-point overflow
9 00001001 Fixed-point divide

10 00001010 Decimal overflow
11 00001011 Decimal divide
12 00001100 Exponent overflow
13 00001101 Exponent underflow
14 00001110 Significance
15 00001111 Floating-point divide

To take an example, one of the conditions that causes a
"data exception" to be recognized is an incorrect sign or
digit code in an operand used in decimal arithmetic. In this
case, the operation would be terminated, and all, part, or
none of the arithmetic result would be stored. Since the
result is unpredictable, it should not be used for further
computation. The interruption code, binary 0000 0111, or
hexadecimal 07, for a data exception would be recorded in
bit positions 24-31 of the program old PSW (always at
main storage location 4010).

The location of the instruction that was being inter
preted when the interrupt occurred can also be determined
from an inspection of the old PSW. The instruction address,
which is found in bit positions 40-63 of the PSW, is for the
instruction to be executed next. To locate the preceding
instruction, all that is needed is to subtract its length in
bytes. This instruction length can be found in bit positions
32 and 33 of the PSW, recorded there in binary as 1,2, or 3
halfwords.

System/360 Review 25

HEXADECIMAL NUMBERS

Hexadecimal Code

Hexadecimal numbers have been mentioned a number of
times. In Chapter 1 we used them to represent machine
language instructions,and we saw that the assembler listed
object code, location counter settings, and addresses in
hexadecimal numbers. In System/360 hexadecimal code is a
shorthand method of representing the internal binary zeros
and ones, one hex digit for each four binary bits.

Hex numbers are a convenient way for the assembler
language programmer to specify masks in testing and
branching operations, and to specify hexadecimal constants
(type X). Principally, he uses hexadecimal code to locate
and interpret the contents of storage, which may be printed
out when a program must be analyzed and debugged. In a
later chapter, we shall see some "dumps" of storage and
attempt to locate information in them.

Converting from binary to hex, or from hex to binary, is
simple. There are only 16 hex symbols, and their value is
based on the numerical value of four bits. We recall that
four bits in the binary number system can express all values
from zero to 1510 , We also recall that the position of each
bit determines its value:

Binary

0001
0010
0100
1000

Decimal

1
2
4
8

Some people fmd it easier to remember these binary
positional values this way:

If we try the four bit values in various combinations, we
fmd that we can rather quickly discover how to count from
zero to the equivalent of decimal 15 in sequence. In order
to be able to represent these 16 values by a single symbol,
the letters A, B, C, D, E, and F are used for 10, 11, 12, 13,
14, and 15, respectively. The numbers 0-9 stand for
themselves. The entire four bit code is shown in Table 2-2.

Table 2-2. Hexadecimal Code

Binary Hexadecimal Decimal Binary Hexadecimal Decimal

0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

All kinds of information, data, instructions, etc., in
System/360 can be represented in hexadecimal code, two

26

graphic hex symbols per byte. The same hex coding system
is used regardless of the code in which the information is
recorded internally. The internal information may be
EBCDIC characters, zoned decimal numbers, signed binary
numbers, the eight-bit code used for System/360 operation
codes, or any of the other codes and formats in use. All are
coded in some form of binary coding, and, since the
eight-bit byte is the basic unit of System/360, they can
readily be taken four bits at a time.

Let's look at some examples. Each "box" represents a
byte. Binary bits are shown in groups of four for con
venience.

1. EBCDIC characters

Characters I B M 3

I nternal form 1100 1001 1100 0010 1101 0100 1111 0011

Hex code C 9 C 2 D 4 F 3

2. Zoned decimal number

Decimal 8 9 7 3 + 2

I nternal form 1111 1000 1111 1001 1111 0111 1111 0011 1100 0010

Hex code F 8 F 9 F 7 F 3 C 2

3. Packed decimal number

Decimal 8 9 7 3 2 +

I nternal form 1000 1001 0111 0011 0010 1100

Hex code 8 9 7 3 2 C

4. Signed binary number

(This fixed-point fullword is equivalent to decimal +89,732)

I nternal form

Hex code

The reader may wonder how, when he sees a hexa
decimal printout of storage contents, he will be able to
interpret the different formats correctly. This is not a
problem, but does require care. The programmer can refer
to the assembly listing of the program. By tracing the
assembler addresses, he can calculate just where in main
storage each instruction or data item is. In some cases, the
format will have been specified explicitly. In others, he
must know which format is implied by use of particular
instructions or types of data.

Hexadecimal Number System

Turning back to the examples, we notice that internally the
characters and decimal numbers are, generally speaking,
coded separately in either four- or eight-bit binary codes.
The binary number in example 4, however, is recorded
internally in its actual value as an integer in a number
system with a base of 2. The O's and 1 's are the only digits
in this number system. Similarly, the hexadecimal equiva
lent 15E84 is an integer in a valid number system with a base

of 16. Considering the binary and hex numbers in this
example in their entirety, they have exactly the same total
value. Each hex digit also equals the value of the four bits it
represents. We see from this that hex numbers can be used in
two different ways: (l) simply as a four-bit code into which
each internal half-byte is translated, and (2) both as a four-bit
code and as a valid number system with a base related in a
defmite way to the base of the binary number system.

In the familiar decimal number system, the base is 10,
and there are ten digits, 0-9. In the decimal number 234,
we know that the 2, because of its position, equals 2 x 100,
or 200; the 3 equals 3 x 10, or 30; and the 4 equals 4 x 1,
or 4. The three values are in effect added together. We may
represent the place value of each digit in a whole number
(not a fractional or mixed number) in this way:

In the same way, the binary number system has a base of
2 and has two digits, 0 and 1. Its place values are:

Power of base 2

Value in decimal

The hexadecimal number system has a base of 16 and
has 16 digits, 0-:9 and A - F. Its place values are:

We may notice that there is a relationship between
binary and hexadecimal place values. Beyond the zeroth
power (this always equals 1), hex place values are exactly
four times greater than binary. This becomes clear when we
compare them up to 212=16 3 :

Power of base 2 212 211 1210 1 29 28
2

7
12

6
12

5 24 2
3

/22/21 20

Power of base 16 163 162 161 160

Value in decimal 4096 2048110241512 256 128164132 16 8 I 4 I 2 1

Table 2-3. Hexadecimal and Decimal Integer Conversion Table

HALF WORD
BYTE BYTE

BITS 0123 BITS 4567 BITS 0123 BITS 4567
Hex Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 0 0 0 0 0 0
I 268,435 456 I 16,777,216 I 1,048,576 1 65 536
2 536,870,912 2 33,554,432 2 2,097,152 2 131,072
3 805 306,368 3 50 331 648 3 3,145,728 3 196,608
4 1 073 741,824 4 67 108 864 4 4 194,304 4 262 144
5 1,342,177 280 5 83886080 5 5,242,880 5 327680
6 1 610 612 736 6 100 663 296 6 6291,456 6 393 216
7 1 879 048 192 7 117 440 512 7 7 340,032 7 458 752
8 2 147 483 648 8 134 217,728 8 8,388,608 8 524288
9 2 415 919 104 9 150 994 944 9 9 437 184 9 589 824
A 2 684354560 A 167 772 160 A 10 485 760 A 655 360
B 2,952,790,016 B 184,549 376 B 11,534,336 B 720 896
C 3 221 225 472 C 201 326 592 C 12,582 912 C 786 432
D 3,489,660,928 D ! 218,103 808 D 13,631,488 D 851 968
E 3,758,096,384 E 234 881,024 E 14,680,064 E 917,504
F 4,026,531,840 F I 251,658,240 F 15,728,640 F 983,040

8 7 6 5
X20-8047

It is this relationship that makes one hex digit equal
arithmetically to four binary bits, two hex digits equal to
two groups of four bits each, etc. All hex and binary digits
must of course be kept in correct place order.

Now we are ready to figure out some actual hexadecimal
values. Hex numbers are especially useful for calculating
main storage addresses and displacements. A storage
address, we may remember, is a 24-bit true binary number
internally, always represented externally by the machine as
six hexadecimal digits.

We shall use Table 2-3 for converting hex numbers to
decimal, and decimal to hex. It is for integers only. The
table shows eight places, each place being the position of a
hex digit, starting from the right.

The table shows the equivalent decimal value of each
hexadecimal digit in each hex position from 1 to 8. To
convert a hex number to decimal, it is necessary only to
fmd the value of each hex digit in the column correspon
ding to its position, and to add them together. To convert
D34t6 to decimal, we start in column 3 because this is a
three-digit number. We fmd (1) DOOt6 = 332810 in column
3, (2) 3016 = 4810 in column 2, and (3) 416 = 410 in column
1 ; then (4) summing the decimal values, we get

3328
48

4

338Oto = D3416

To convert the five-digit number B60A616 to decimal,
we follow the same procedure, beginning in column 5:

Hex Decimal

BOOOO 720 896
6000 24 576

000 0
AO 160

6 6

B60A6 745 638

Using the same table to convert a decimal number to
hexadecimal requires a rather different procedure. Let's

HALF WORD
BYTE BYTE

BITS 0123 BITS 4567 BITS 0123 BITS 4567
Hex Decimal Hex Decimal Hex Decimal He~ Decimal

0 0 0 0 0 0 0 0
1 ~096 I 256 1 16 1 1
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 48 3 3
4 16,384 4 1,024 4 64 4 4
5 20,480 5 t.280 5 80 5 5
6 24,576 6 1~536 6 96 6 6
7 28,672 7 1 792 7 112 7 7
8 32,768 8 2~048 8 128 8 8
9 36864 9 2.304 9 JA.t 9 !L
A 40,960 A 2 560 A 160 A 10
B 45,056 B 2,816 B 176 B 11
C 49 152 C 3,072 C 192 C 12
D 53,248 D 3 328 D 208 D 13
E 57,344 E 3584 E 224 E 14
F 61,440 F 3,840 F 240 F 15

4 3 2 I

Systemj360 Review 27

take 338010 as an example. We look for the highest decimal
value in the table that will fit into 3380. The closest is
332810 in column 3, equal to the D. We make a note that
this corresponds to DO<>t6 and subtract, as shown below.
The closest value below the remainder (5210) is 4810 in
column 2, and we note it is equal to 3016 , Subtracting
again, we look for the best fit into the remainder of 410 ,
ano find 410 ill column 1, equal to 416 , Adding the hex
values, we get the result 3380 = D34, which we know from
our fust conversion example is correct. (The best way to
check the result of a conversion is to reconvert. Any lost
zeros are likely to be found in the process.)

Decimal Hex
3380
3328 DOO

52
48 30
4 4

D34

Without looking back, let's convert 745,6381Oto hexa
decimal:

Decimal Hex
745 638
720 896 BOOOO

24 742
24 576 6000

166
160 AO -

6 6
B60A6

The easiest way to fmd the decimal value of a long
binary number is to convert it to hex, and from hex to
decimal. Similarly, to find the binary value of a decimal
number, the decimal number should be converted to hex,
and from hex to binary. To get the binary equivalent of
745,63810 , we would convert it to hex as in the last
example and merely substitute the four-bit code for each '.
hex digit in the result:

o B 6 0 A 6
0000 1011 0110 0000 1010 0110

It is entirely feasible to perform all kinds of arithmetic
calculations in hexadecimal arithmetic. The rules are the
same as in decimal arithmetic. Most programmers prefer to

28

convert hexadecimal values to decimal, however, do their
calculations in decimal, and then convert back to hex. This
can be done easily and quickly with the use of a conversion
table.

On the other hand, computer personnel often find it
useful to be able to do simple addition in hexadecimal.
Until they become proficient, they can simply count on
their fmgers. The rules for carrying are the same as in
decimal addition. In decimal, the highest digit value is 9.
When 1 is added to 9, the result is 0 and a carry of 1. Or, as
we usually see it:

9
+1
10

99
+1

100

999
+1

1000

In hex, when 1 is added to the highest digit F, the result is
also 0 and a carry of 1 :

F
+1
10 (= 1610)

FF
+1

100 (= 256 10)

FFF
+1

1000 (= 4096 10)

The follOWing list of equivalent values may help to
crystallize the concepts of hexadecimal notation. Hex
numbers that end in zero are always multiples of 16. To
avoid confusion hex numbers like 10, 11, 12, etc., should
be read as "one zero, one one, one two," and not as "ten,
eleven, twelve."

Dec. Hex Dec. Hex Dec. Hex Dec. Hex

1 1 22 16 43 2B 80 50
2 2 23 17 44 2C 81 51
3 3 24 18 45 2D
4 4 25 19 46 2E
5 5 26 1A 47 2F
6 6 27 1B 48 30 94 5E
7 7 28 1C 49 31 95 5F
8 8 29 1D 50 32 % 60
9 9 30 IE 51 33 97 61

10 A 31 IF 52 34 98 62
11 B 32 20 99 63
12 C 33 21 100 64
13 D 34, 22
14 E 35 ~23 62 3E
15 F 36 24 63 3F

240 FO
16 10 37 25 64 40
17 11 38 26 65 41
18 12 39 27
19 13 40 28 254 FE
20 14 41 29 78 4E 255 FF
21 15 42 2A 79 4F 256 100

This chapter introduces and' discusses some of the flXed
point operations of the. standard instruction set in the
Systemj360. These include the arithmetic and shifting
instructions as the central topic, with important consider
ation also of certain logical operations (comparison,
branching), ,and loop methods.

Fixed-point instructions perform binary arithmetic on
flXed-Iength data of either a fullword or a halfword. The
use of registers for arithmetic and other operations is thus

ADDITION AND SUBTRACTION

For a first example we shall consider a simple inventory
calculation. We begin the calculation with an on-hand
quantity, a receipt quantity, and an issue quantity. We are
required to compute the new on-hand, according to the
formula:

new on-hand = old on-hand + receipts - issues

Using fairly obvious symbols for the four quantities, this
becomes:

NEWOH = OLDOH + RECPf - ISSUE

A program to carry out this calculation is shown in
Figure 3-1. We shall be concentrating on the four actual
processing instructions, but at the outset we shall display all
programs in logically complete form.

The assembler instruction PRINT NOGEN it2..~~.~,kn...2!x

~~:~:;~!;&ili~!'E~~;:a~T\7~f!;~f;~;rt~;;a
"A't1ieif"St~;'~g~'" i;c~tions~arurillspla:eem~nts will still be part of

the object program; they will be omitted only from the
printed listing.

The next three lines of coding are rather standard
preliminaries; instructioIl:s of this character will appear at
the beginning of all but highly specialized programs. To
review briefly, the START establishes a reference point for
the assembly: the assembly listmg (shown later) will
assume that the frrst byte is to be loaded into 256 as
shown. The BALR (Branch and Link Register) and the
USING, as written here, together direct that register 11
shall be used as a base register wherever one is needed, and
inform the assembler that the base register at execution
time will contain the location of the frrst byte after the
USING.

Chapter 3: Fixed-Point Arithmetic

most convenient. As might be expected, the flXed-point
instruction set uses only these three instruction formats:
RR, RX, and RS.

In the course of presenting the instructions and con
sidering. programming methods used with the Systemj360,
we shall review the basic ideas of the machine organization
and operation.

The presentation will be almost entirely through the
medium of eight examples and a final extended case study.

j
PROGRAM S~CK

PROGRAMMER J...:r. JON IES

~£,($zil,':/.' i :8~:fi~::' ; ?lllr,-19:t '.:' k;j .;;; '.' , :.\ ; 'L

'f/1SIW~ ~., It I !

)

1',:.,: ';;! ,:,;ii. /; $\17/1. :< I': ~~we.Hidlf.:; i.: .\ O:.::I..J'
l[·Ii ,:F .. ;'X:, ';~Oi1t,.!, I:T·,;;·,'.[,' i:.' ;!;·'I,:.t I
ot-il;o:1I ~C I let 9' I

~£JCPT l1>c P , 4' ,
lLssv£, ll>c. Ip' , I ,J

Ni;Wlifl.:i .. :: ;'\: ,: ;: .. l>S;:. ,:;: tj,;';':: . ,'; " ,\ .. '; . ' 't., : m.,
:<.' x. : ,-.:':.:r ; ;- Gil/) ,L :' 8C~-.r}.J '. .', /' ,,' ",;)
,(;,,i~ :L";~;:~;~; '. ~, .::;'Jj;;>:, ·2·'·.il

Figure 3-1. A program, written in assembler language, to perform a
simple computation in binary arithmetic

Now we reach the first processing instruction, where we
wish to concentrate our attention.

The Load instruction is classified as an RX format
instruction, which implies a number of facts about it:

1. The instruction itself takes up four bytes of storage.
2. The fields within the instruction are, from left to

right: the operation code (eight bits), the number of the
register to be loaded from storage (four bits), the number
of the register used as an index register (four bits), the

Fixed-Point Arithmetic 29

number of the register used as a base register (four bits),
and the displacement (twelve bits).

3. The instruction involves a transfer of information
between storage and a general register.

4. The effective address of a byte in storage is formed by
adding the contents of the base register, the contents of the
index register, and the displacement. If register zero is
specified for an index register or a base register, a zero value
is used in the address computation, rather than whatever
register zero may contain.

The operation of the Load instruction is straightforward:
obtain a fulIword (four bytes) from storage at the effective
address specified, and place the word in the general register
indicated. The effective address must refer to a fulIword
boundary, which means that the address must be a multiple
of 4.

Let us consider the complete line of coding for the Load
instruction to see what each part does.

The letter L is the mnemonic operation code for Load;
this is converted by the assembler into the actual machine
operation code for Load, 58. The 3 is the number of the
general register we wish loaded with a word from storage.
OLDOH is the symbolic address of the word in storage to
be copied into general register 3. By writing the address in
this fashion, we have indicated that the assembler should
supply the base register and the displacement, and that we
do not wish indexing.

The assembly listing for this program is shown in Figure
3-2. Looking at the machine instruction assembled from
this symbolic instruction, and remembering that all num
bers are shown in hexadecimal, we see that the operation
code is 58, the general register is 3, the index register is
zero, the base register is B (= 1110), and the displacement is
01216 , Since the base register contains 102, the effective
address is 114, which is shown in the assembly listing under
ADDR2 as the address of the second operand and which we
see is the location of OLOOH.

The Add instruction is also of the RX format. The
operation is to add the fulIword at the storage address
specified, to the general register named. In our case, we

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE

1
000100 2 STOCK
000100 05BO 3 BEGIN
000102 4
000102 5830 B012 00114 5
000106 5A30 B016 00118 6
OOOlOA 5B30 BOlA OOllC 7
OOOlOE 5030 BOlE 00120 8

9
000114 00000009 12 OLDOH
000118 00000004 13 RECPT
OOOllC 00000006 14 ISSUE
000120 15 NEWOH
000100 16

Figure 3-2. The assembly listing of the program in Figure 3-1

30

have, of course, named the same general register as in the
Load instruction, since the intent is to add OLOOH and
RECPT together. Looking at the assembled instruction, we
see that things have been handled much as they were with
the Load. Base register 11 has been assigned, there is no
index register, and the displacement has been computed to
give the effective address of the storage location associated
with RECPT (118).

After the execution of this instruction, register 3 will
contain the sum of the storage quantities identified in our
program by OLDOH and RECPT.

The Subtract instruction (S) in the next line subtracts
the quantity identified by the symbol ISSUE from the
quantity now standing in register 3. The format and general
operation of the instruction are very similar to Add.

Now we have the desired result in register 3. The prob
lem statement required the result to be placed in another
location in storage, that is identified by the symbol
NEWOH. Placing the contents of a general register in stor
age is the function of the Store instruction (operation code
ST). The general register contents are unchanged by the
operation. The format is again RX, so address formation is
as before.

This completes the actions required by the problem
statement, but we must now indicate what we want done
next. The System/360 forces a program organization that
keeps the machine in operation as much of the time as
possible. What we have shown here is an End of Job macro
instruction, which is used in the Disk Operating System
environment. As we saw in the preceding chapter, the EOJ
macro generates a Supervisor Call instruction, SVC 14. The
use of -this instruction assumes that there is in storage, at
the time of execution of this program, a control program
that runs the machine between jobs. We here indicate to the
supervisor that this program has no further need for the
machine.

The program in Figure 3-2 does not include any instruc
tions for reading in data from an input device such as a card
reader or magnetic tape unit, or for printing out or
punching out the results of our calculations. Input and

STATEMENT

PRINT NOGEN
START 256
BALR 1l ,0
USING *,11
L 3,OLOOH
A 3,RECPT
S 3,ISSUE
ST 3,NEWOH
EOJ
DC F'9'
DC F'4'
DC F '6'
DS F
END BEGIN

output instructions vary considerably in different systems,
depending upon the operating (or programming support)
system in use and the particular pieces of input/output
equipment available at an installation.

In normal commercial practice, a computer program
would be used, riot for calculations on just one set of data,
but on large series· of data that require similar treatment.
An example would be a program to calculate weekly pay
for several hundred employees of a company, and the data
would include the hours worked, pay rate, withholding
amounts, etc., for each of them. In our program examples,
our principal interest lies in how the assembler language
instructions work, and so we will generally use only one set
of specific values for the purpose of illustrating what
happens in each step.

We have simply entered the illustrative values for the
input data with DC instructions, and reserved space for the
output with a DS. The F's in the DC's and the DS specify
fullwords Qf four bytes. The Load, Add, Subtract, and
Store instructions all operate on fuUwords. As we shall see
in later examples, there are corresponding halfword
instructions.

The END instruction informs the assembler that the
termination of the program has been reached and specifies
in this case that the first instruction to be executed after
the program is loaded is the one with the name BEGIN,
that is, the BALR instruction.

By using either a suitable assembler language routine or
macrO instruction, it is possible to get a "dump" of the
contents of the registers and selected areas of storage, and
get Qur data and results out of the machine. Such a routine
produced the numbers, converted to decimal, that are
shown in Figure 3-3. The four items, in sequence, are
OLDOH, RECPT, ISSUE, and NEWOH.

It might be interesting to run this program again with a
value of, say, 16 for ISSUE. We know that negative
fixed-point numbers are represented in two's complement
form. Our output routine will make a conversion to true

0000009+ 0000004+ 0000006+ 0000007+

Figure 3-3. Output of the program of Figure 3-2. The four numbers
are OLDOH, RECPT, ISSUE, and NEWOH, in that
order.

numbers and sign, as shown in the frrst line of Figure 3-4.
In the second line, the same numbers are shown in hexa
decimal as they normally appear in a dump.

We see that the first three numbers, which are positive,
have zeros before the significant digits. The last number,
which is negative, has 1 's to the left of the significant digit
(hexadecimal F equals binary 1111). If we were to write out
this hexadecimal number, FFFFFFFD, in the binary form
actually in storage, we would have thirty 1 's followed by
01. Recalling how two's complement numbers are formed,
we see that the complement of this number is binary 11,
which equals decimal 3. Checking with the given data and
the formula, we see that this is the correct answer, and, of
course, the decimal value was printed out as a minus 3.

Naturally, if a negative result were actually obtained in
an inventory control program, it would indicate some kind
of trouble, probably bad data; it is not possible to issue
more than there are on hand plus what was received. A
realistic program would include a test for the possibility of
a negative result and the corrective action to be taken.

0000009+ 0000004+ 0000016+ 0000003-

00000009 00000004 00000010 FFFFFFFD

Figure 3-4. Output of the same program with a value for ISSUE
that causes NEWOH to be negative. Values are shown in
decimal in the fIrst line, hexadecimal in the second; the
value for NEWOH is in complement form.

Fixed-Point Arithmetic 31

MULTIPLICATION

For a simple example of fixed-point multiplication in the
System/360, consider the following problem. We are to
multiply an ISSUE quantity by a PRICE to get TOTAL. We
shall assume that PRICE is an integer, expressed in pennies.
The product will therefore also be in pennies. For instance,
an ISSUE of 5 and a PRICE of 25 would give a TOTAL of
125.

The program to do this multiplication is shown in Figure
3-5. The fust four lines are the same as before. The Load
places the multiplicand in general register 5. The Multiply
(M) forms the product of what is in 5 and what is in the full
word identified by PRICE, and places the result, which
could of course be much longer than either of the factors,
in registers 4 and 5 combined. It is required that the general
register named in the Multiply be even numbered; if it is
not, a specification exception and an interrupt occur. The
multplicand must always be in the odd-numbered register
of an even-odd pair, such as 4 and 5 here. The multiplicand
in the odd register, and whatever may have been in the even
register, are both destroyed by the operation of the
Multiply.

After the product has been formed, we store it in
TOTAL on the assumption that the result does not exceed
the length of one register. The validity of such an assump
tion, of course, is the responsibility of the programmer; if
in fact the product extended over into register 4, there
would be no automatic signal of the fact that the result in
TOTAL is not the complete product. If a product ex
tending into the even register could be a legitimate
outcome, we would naturally have to arrange to store both
parts of the product.

Let us try this program with several sets of sample
factors in order to see precisely how the operation works.
Figure 3-6 shows the values of ISSUE, PRICE, TOTAL, and
the contents of register 4 and 5 after the completion of the
program. These were obtained by a dump routine and con
verted to decimal. We see that the product of 7 and 23 is
indeed 161, as we might expect. This number is shown as
the contents of register 5, while register 4 is zero; the

lOC OBJECT CODE ADDR 1 ADDR2 STMT SOURCE

1
000100 2 GROSS
000100 05BO 3 BEGIN
000102 4
000102 5850 BOOE 001LO 5
000106 5C40 B012 00114 6
00010A 5050 B016 00118 7

8
000110 00000007 11 ISSUE
000 114 00000017 12 PRICE
000118 13 TOTAL
000100 14

ISSUE
0000007+

REG 4
0000000+

PRICE
0000023+

REG 5
0000161+

TOTAL
0000161+

Figure 3-6. Output of the program of Figure 3-5

product was not long enough to extend into 4.
In Figure 3-7 the numbers are the same except that the 7

is negative. (This makes no sense in terms of the problem,
of course.) We see that TOTAL and register 5 are negative,
as expected, but what has happened to register 4? The
answer is that the product is a full 64 bits long; a negative
number has 1 's to the left -of the leftmost significant digits.
Register 4 properly contained all 1 's which, considered as
part of the 64-bit product, are merely sign bits. But printed
as a separate number (which is pointless, in reality), a word
of all 1 's represents -1 as shown. A printout not repro
duced here substantiates what we have said: register 4
printed in hexadecimal form appears as eight F's.

ISSUE
00 00007-

REG 4
0000001-

PRICE
0000023+

REG 5
0000161-

TOTAL
0000161-

Figure 3-7. Output of the program with a negative value for ISSUE

In Figure 3-8 we see an example of what can happen
when the numbers entering the machine do not conform to
the assumptions made in setting up the program (that is,
the product would never extend into register 4). With both
factors being 87654, the product, in decimal, should be
7,683,223,716. This is too long to fit into register 5, so we
would expect TOTAL to contain only the equivalent of the
part of the product that appeared there. But we would
hardly have expected it to be negative! What happened?

STATEMENT

PRINT NOGEN
START 256
BAlR 11 ,0
USING *,11
l 5,ISSUE
M 4,PRICE
ST 5,TOTAl
EOJ
DC F'7'
DC F'23'
OS F
END BEGIN

Figure 3-5. Assembly listing of a program to perform binary (fIXed-point) multiplication

32

The answer becomes apparent if we look at the product
as a hexadecimal number and note the part of it that would
appear in register 5. The complete product is 1C9F4BOA4,
that is, nine hexadecimal digits - a register can hold eight.
So the 1, preceded by seven hexadecimal zeros, would be
the contents of register 4, as shown. The part in register 5
begins with the hexadecimal digit C, which is 1100 in
binary. This means that the leftmost bit is 1, which, when
C9F4BOA4 is taken as a number by itself, indicates a
negative number that is in two's-complement notation!
Thus, in converting to decimal for Figure 3-8, System/360
performed as it was designed to do, recomplemented (to
hexadecimal 360B4F5C), and came up with the decimal
equivalent of that amount.

This recitation of troubles is not meant to suggest any
difficulty in using the System/360. Any programmer

appreciates the necessity of knowing a good deal about his
data and for testing it for validity if he is not sure of it. The
purpose in showing these slightly surprising results is simply
to clarify how the machine operates, especially since many
programmers will not have had previous contact with
complement representation of negative numbers.

ISSUE
0081654+

REG 4
0000001+

PRICE
0081654+

REG 5
906110816-

TOTAL
906110816-

Figure 3-8. Output of the program with values for ISSUE and
PRICE that lead to a TOTAL too large to fit in a
fullword

Fixed-Point Arithmetic 33

MULTIPLICATION AND DIVISION WITH
DECIMAL POINTS

The next example involves a little further practice with
multiplication, an application of the Divide instruction, and
a rather basic question of decimal point handling in binary.

The task is to increase a principal amount named PRINC
by an interest rate of 3%. The principal is stored in pennies
as in the previous example; for instance, 24.89 would be
stored simply as the integer 2489. Later program segments
would have to insert any "graphic" decimal point that
might be desired for printing; at this point we make a
mental note of the true situation, while pretending for
programming purposes at the moment that the unit of
currency is the penny.

One possible program is shown in Figure 3-9. (There are
other ways, as we shall see.) After the usual preliminaries
we load the principal into an odd-numbered register prepar
atory {o~..!!l&. TheTnterest rate is shown as 103,
wfiiCffsnould be read as 1.03. This is a shortcut: instead of
multiplying the principal by 0.03 and adding the product to
the principal, we multiply the principal by 1.03. The result
is the same either way; our way saves an addition.

The absence of the decimal point is another matter. We
are saying here that instead of multiplying by 1.03, we will
multiply by 103; the product will be 100 times too large as
a result. It will be necessary in a subsequent step to divide
by 100 to correct for this. The reason for this is that there
is a question of how to represent a decimal fraction in
binary form. The question can be answered, as we shall see,
leading to a different program. For now, let us take what
seems at first to be the easy way out and stay with integers.

Using the sample principal mentioned above, 24.89, the
product after multiplication is 256367. We shall assume
that the product in all cases is short enough to be held in
register 5 alone.

We now wish to round off. We think of the product as
$25.6367; the desired rounded value is $25.64. Remem-

LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE

1
000100 2 INTA
000100 05BO 3 BEGIN
000102 4
000102 5850 B016 00118 5
000106 5C40 BOlA OOllC 6
00010A 5A50 BOlE 00120 7
00010E 5D40 B022 00124 8
000112 5050 B016 00118 9

10
000118 000009B9 13 PR I NC
00011C 00000067 14 I NT
000120 00000032 15 C50
000124 00000064 16 CI00
000100 17

bering that the computer knows nothing of our behind-the
scenes understanding about decimal points, all we have to
do to round off is to add 50 to the integer product. We will
think of the 50 as $0.0050, but to the computer it is 50.

Having done this, we need finally to divide by 100 to
correct for using 103 in place of 1.03. This requires the
Divide instruction, which as we might expect is a close
relative to the Multiply instruction. The dividend must be
in an even-odd pair of registers as a 64-bit number. This
requirement is already met by the way the Multiply leaves
the product in an even-odd pair (the machine was designed
to make it simple to follow a Multiply with a Divide). The
remainder is placed in the even register and the quotient in
the odd. Our quotient will be 2564 (we read: $ 25 .64) and
the remainder will be 17 (we don't care about this). The
quotient can now be stored back in the location for PRINC,
as required in the problem statement.

The question will occur to many: why was it necessary
to divide? Why not simply shift two places right to drop the
right two digits? The answer is, of course, that we could do
precisely that in decimal, but this is binary. Shifting one
place to the right in decimal divides the number by 10;
shifting one place to the right in binary divides the number
by 2. There is no number of binary shifts that divides a
number by a factor of decimal 100. Six places divides it by
64, and seven places by 128. With this way of approaching
the problem, we have no choice but to divide.

It should be kept clearly in mind that in all examples so
far we have explicitly stated that all quantities were to be
viewed for programming purposes as integers, whatever we
on the outside might understand by the digits. This was by
agreement, not necessity. We can work with binary num
bers that are taken to have "binary points" elsewhere than
at the extreme right. Let us, for instance, attempt to
express the factor 1.03 as a binary number.

STATEMENT

PRINT NOGEN
START 256
BALR 11 ,0
USING *,11
L 5,PRINC
M 4, I NT
A 5,C50
D 4,C100
ST 5,PRINC
EOJ
DC F'2489'
DC F'103'
DC F'50'
JC F'100'
END BEGIN

Figure 3-9. Assembly listing of a program involving binary multiplication and division with the result rounded off

34

I t may be recalled from a study of the conversion rules
that there will be in general no exact binary equivalent for a
decimal fraction. If we try 1.03 we get an infinitely
repeating binary fraction. The first twelve bits are

1.00000111101

The binary point is, of course, understood (by us).
If we enter such a number as the constant (which we

shall see how to do in a moment), we can multiply by it.
The machine cares nothing for our understood binary points,
and carries out the multiplication. We must then take into
account the understood binary point in the product, accor
ding to a literal translation of familiar rules: the binary
point in the product will have as many places to the right as
the sum of the number of places to the right of the binary
points in the multiplier and in the multiplicand. If the con
stant has eleven places to the right, as written above, and
the principal is still understood to be an integer (zero places),
then the product will have eleven places to the right.

Let us turn to Figure 3-10 to see how this much of the
revised program looks.

The Load is the same as before, as is the Multiply. The
constant used for multiplication is different, however.
Down at INT we see that the DC is

FSll'l.03'

The F stands for fullword, as before. The S stands for Scale
factor and is the number of binary places that are to be
reserved for the fractional part of the constant. We have
indicated eleven places as the number of bits to the right of
the binary point in the factor as we write it before.

The Add to round off is the same as before, but once
again the constant is different. What we have after the
multiplication this time is not an integer but a binary
fraction. To the left of the assumed binary point we have a
whole number of pennies; to the right a fractional part of a
penny. This time, to round off we need a constant that is
0.5 cent expressed in the same form as the fractional part

lOC OBJECT CODE ADDRI ADDR2 STMT SOURCE

1
000100 2 I'NTB
000100 05BO 3 BEGIN
000102 4
000102 5850 B016 00118 5
000106 5C40 BOlA OOllC 6
00010A 5A50 BOlE 00120 7
OOOlOE 8A50 OOOB OOOOB 8
000112 5050 B016 00118 9

10
000 118 000009B9 13 PRI NC
OOOlle 00000830 14 INT
000120 00000400 15 HALF
000100 16

of our product. The Scale factor method shown gives this.
(In fact, the constant consists of a 1 followed by ten zeros.)

After rounding off we are left with eleven superfluous
bits at the right end of the product. These can be shifted
off the end of the register with a suitable shift instruction.
"Suitable" in this case means that the shift should be to the
right, it should involve a single register, and it should be an
algebraic shift so that if the number were negative, proper
sign bits would be shifted into the register. The instruction
is called Shift Right Single (SRA), in which we specify the
register first and then the number of positions of shift
desired. Bits shifted off the right end of the register are lost.
After the shift we are ready to store the result.

The point of doing all this is that we have replaced a
Divide with a Shift, and the latter is considerably faster
than the former. In some applications the difference in time
could be Significant.

If we print the result, we get a surprise: the answer is
2563 ($25.63); rounding seems not to have taken place.
The trouble is that the binary "equivalent" of the decimal
number 1.03 was not exactly equivalent. To prove the
point, let us ask for 15 binary places in the fractional part
of the constarit created for 1.03. We change the rounding
constant likewise, and make the shift 15 places. This time,
the printout shows 2564 ($25.64) as before.

The moral of this story is that decimal fractions do not
usually have exact binary equivalents. Computations that
are required to be exact to the penny should be done in
integer form, as in the fust version of the program. (Even
though a larger number of bits led to a correct answer this
time, it would not always do so, particularly for larger
principal amounts.)

This means, in most situations, that it would be most
unwise to go the further possible step of representing penny
amounts as binary fractions. Unless approximate results are
acceptable, which they sometimes are, of course, the use of
anything but integer arithmetic leads to problems more
severe than they are worth.

STATEMENT

PRINT NOGEN
START 256
BAlR II ,0
USING *,11
L 5,PRINC
M 4,INT
A 5,HALF
SRA 5,11
ST 5,PRINC
EOJ
DC F'2489'
DC FSll'1.03'
DC FSll'0.5'
END BEGIN

Figure 3-10. A different version of the program of Figure 3-9, using a scale modifier for constants

Fixed-Point Arithmetic 35

Some readers may be wondering whether binary arith
metic is worth the trouble. The answer is yes, of course.
Many applications of binary arithmetic raise none of the
questions suggested here and do not involve the possible
complications with complement form either. For the
straightforward cases, it is barely necessary to know
anything about the binary and complement matters. We
present examples like these to warn the unwary and to lay a

36

foundation of understanding for those with problems where
the advantages of binary arithmetic are worth the care that
must be exercised in using it. It is true that many
applications will suggest staying with decimal arithmetic,
for users having the decimal instruction set, but even then
there will be more than a few occasions where binary
operations are the only ones that make sense from a stand
point of time.

SHIFTING AND DATA MANIPULATION

Having introduced the shifting operation briefly in the
previous example, let us now turn to an application that
will involve considerably more shifting.

We begin with a fullword, supplied by some other pro
gram, in which three data items are stored in binary form:

Bits
0-11

12- 23
24 - 31

Item name
A
B
C

We are required to separate the three data items and
store each in a separate halfword storage location, with
names for the latter as shown. All three numbers . are
positive ..

The program shown in Figure 3-11 is a more or less
straightforward matter of shifting and storing, but a few
notes are necessary to make clear what is happening at
certain points.

The numbers in the Comments field are sample contents
of registers 6 and 7 as they would appear during execution
of the program if the original word were hexadecimal
78ABCDEF. These sample values, of course, were entered
when the source program was punched; it is quite impos
sible for the object program to print anything on the
assembly listing.

We begin by loading the fullword into an even-numbered
general register. This permits us to continue with a double
length shift that moves bits from the named even-numbered
register into the adjacent odd-numbered register, which we
think of as being to the right. This is what "double" means
in Shift Right Double Logical (SRDL). The "logical" refers
to the handling of sign bits and means that zeros are
entered at the left of register 6. This is in contrast to the
"algebraic" shifts, in which the bits entered at the left are

LOC OBJECT CODE AOOR1 AODR2 STMT SOURCE

1
000100 2 SHIFTA
000100 05BO 3 BEGIN
000102 4
000102 5860 B022 00124 5
000106 8C60 0008 00008, 6
00010A 8870 0018 00018 7
00010E 4070 B02A 0012C 8
000112 8C60 OOOC OOOOC 9
000 116 8870 ·0014 00014 10
OOOllA 4070 8028 0012A 11
00011E 4060 B026 00128 12

13
000124 16 FWORO
000128 17 A
00012A 18 B
00012C 19 C
000100 20

made to be the same as the original "sign bit", that is, the
original leftmost bit. Here, we were guaranteed in the
problem statement that all three numbers are positive, so
we can ignore any question of what the leftmost bit in each
item might be. Whether it is zero or one, the number
represented is positive.

The SRDL moves the rightmost eight bits into register 7;
from there we move them to the right-hand end of the same
register, using a single-length logical shift that does not
affect register 6. What were originally the rightmost eight
bits of the full word are now properly positioned in register
7 to be stored in a halfword location with the Store
Halfword (STH) instruction. The action here is to store the
rightmost 16 bits of the register named, in the two bytes
identified by the effective address. The register is not
disturbed by the operation of the instruction. This is an RX
format instruction; it could be indexed if we had occasion
to do so.

Now we again shift the two registers together to get the
twelve-bit B item into register 7. From there we move it on
over to the right-hand end of 7 and store it. A further shift
of what was originally the leftmost twelve bits is not
needed, since they are now in the right-hand end of 6, from
whence they may be stored.

Actually, the restriction to positive numbers is not too
difficult to remove. It would have to be agreed that the
leftmost bit of each item was its sign bit, that is, that in
generating the fullword each negative item was in com
plement form and of such length as to fit in the item size
allotted. With this assumption, the program of Figure 3-12
properly expands the sign bits of the items and stores any
negative items in halfwords in complement form. The
"expansion" of the sign bit is one of the functions of an
algebraic shift, as noted above. The program must also be

STATEMENT

PRINT NOGEN
START 256
BALR 11,0
USING *,11
L 6,FWORO 78ABCDEF 000001)00
SROL 6,8 0078ABCO EFOOOOOO
SRL 7,24 0078ABCD OOOOOOEF
STH 7,C 0078ABCO OOOOOOEF
SRDL 6,12 0000078A BCOOOOOO
SRL 7,20 0000078A 000008CO
STH 7,B 0000078A OOOOOBCO
STH 6,A 0000078A OOOOOBCO
EOJ
OS F
OS H
OS H
OS H
END BEGIN

Figure 3-11. Assembly listing of a program to separate three quantities stored in one fullword

Fixed-Point Arithmetic 37

lOC OBJECT CODE ADDRl AODR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
000100 2 SHIFTB START 256
000100 05BO 3 BEGIN BAlR 11 ,0
000102 4 USING *,11
000102 5860 B02A 0012C 5 l 6, FWORD 78ABCOEF 00000000
000106 8C60 0008 00008 6 SRDL 6,8 0078ABCO EFOOOOOO
00010A 8A70 0018 00018 7 SRA 7,24 0078ABCD FFFFFFEF
00010E 4070 B032 00134 8 STH 7,C 0078ABCO FFFFFFEF
000112 8C60 OOOC OOOOC 9 SRDL 6,12 0000078A BCDFFFFF
000116 8A70 0014 00014 10 SRA 7,20 0000078A FFFFFBCO
00011A 4070 B030 00132 II STH 7,B 0000078A FFFFF8CO
OOOllE 8C60 OOOC OOOOC 12 SRDL 6,12 00000000 78AFFFFF
000122 8A70 0014 00014 13 SRA 7,20 00000000 0000078A
000126 4070 B02E 00130 14 STH 7,A 00000000 0000078A

15 EOJ
00012C 18 FWORO OS F
000130 19 A OS H
000132 20 B OS H
000134 21 C OS H
000100 22 END BEGIN

Figure 3-12. Modified version of the program of Figure 3-11, making it operate correctly with negative quantities

changed to expand the sign of item A. The final two shifts
are added to do this. Actually, it could be done more
efficiently and these extra steps avoided simply by changing
the SRDL in statements 6 and 9 to the algebraic SRDA.

Figure 3-13 shows the output of the two programs for
the sample input word of 78ABCDEF. The three parts of
the combined word, in hexadecimal, were therefore 78A,
BCD, and EF. In the first line of Figure 3-13 we see that
these have been put into halfwords by the first program as
078A, OBCD and OOEF, that is, as three positive numbers.
In the second line we see that the second program, on the

38

other hand, interpreted the second and third numbers as
negative because their leftmost bits were 1 'so The three
output halfwords· are 078A, FBCD, and FFEF, showing
that the sign bits of the numbers were properly expanded.

PROG SHIFTA 078A OBeD OOEF

PROG SHIFTB 078A FBCD FFEF

Figure 3:13. Output of the two programs executed with hexa
decimal 78ABCDEF for the fullword

BRANCHES AND DECISION CODES

The Condition Code

Decisions and branching are important parts of data proc
essing, and the programming methods by which these
operations are carried out are important aspects of the
programming task. The facilities offered by the System/360
are particularly powerful and flexible. The basic action is
the setting of the condition code by any of a large number
of instructions and the subsequent testing of the condition
code by a Branch on Condition instruction.

Many arithmetic, shift, and logical instructions have as a
part of their action the setting of the ~~!!2,~_f0<!e to
indicate something about the result of the instruction's
execution. For instance, after an Add instruction, the
condition. c.Q<:ly'.,igdicates whetflei'tn:"e ~llIn·~;as'z~~9,,-. pg~i-

p ~I",,~,j ,.u"",~~~~ o!....',' '. "-"""""""":~~"","~ ..,1,.,.'.' ' •• '0;."; ",.".", .' -,.~ : "'~_ ~' ,.~ ,""'.,,'I:I'.,"l'! •• ,..,,'..;..;:!_-<I ';..~,..,., ,,~ " " < .-'c " ¥#.<

tive-,negative,or t()oJ~~gefortheregist~F- After a C~mPar~
"illStrllciiO'n' th{(condition 'code 'in'dicates" whether thefi;'st

~

~was,grea1.eU~l1.!.~:t t2' ~r 1~!~!!,,!~~.2Jl~
operand. The meaning of eacnorthe different states or

varue's""~f the condition code is specified in the description
of each instruction that affects the code. These descriptions
may be found in the System/360 Principles of Operation,
which also contains a complete tabulation of the instruc
tions involved and the meaning of the condition codes.

The condition code occupies two bits (in the control
program area of storage). Two bits can, of course, be set in
just four ways: 00, 01, 10, and 11; and these four binary
settings are equal to decimal values 0, 1, 2, and 3, respec
tively.

At any time after the condition code has been set by the
action of an instruction, itmay be tested by using a Branch
on Condition (BC) instruction. In this instruction, which is
in the RX format, the four bits that in other instructions
designate a general register are here used for a mask that
designates in which states of the condition code we wish a
certain branch to occur.

The leftmost bit of the mask checks for a condition code
of zero, the next bit for code 1, the next for code 2, and
the rightmost for code 3. If the condition code is equal to
any of the values selected by the mask bit(s), the Branch is
taken. The correspondences between condition codes and
mask are summarized in Table 3-1.

Note that the mask bits correspond from left to right
with the four condition codes. Another way, perhaps easier
to remember, of summarizing this correspondence is as
follows:

Condition code o 2 3
Mask used to test code 842

A BC instruction with a decimal mask of 12 (8+4) specifies

that a branch is to be made if the condition code is 0 or 1,
and is not to be made if the condition code is 2 or 3. A
mask of 7 (4+ 2+ 1) will cause a branch only if the condition
code is 1, 2, or 3.

A decimal mask value of zero makes the instruction test
for no condition codes; it thus becomes a no-operation
instruction. A mask of.l.ltests for any condition code; it is

thus~~_:?~ -

Table 3-1. Masks for testing various states of the condi~on code

Condition
Mask bits Decimal value codes tested

0000 0 None
0001 1 3
0010 2 2
0011 3 2or3
0100 4 1
0101 5 1 or 3
0110 6 lor2
0111 7 1,2, or 3
1000 8 0
1001 9 Oor 3
1010 10 Oor2
1011 11 0,2, or 3
1100 12 Oor 1
1101 13 0,1, or 3
1110 14 0,1, or 2
1111 15 0,1,2, or 3

A Sorting Procedure

To see how some of these ideas are applied, consider a
simple example. We are given three fullword data items
named A, B, and C. They may be positive or negative. We
are required to change any negative values to positive, and
then to rearrange the three values in storage to make the
number in A the largest, the number in B the next largest,
and the number in C the smallest of the three. Figure 3-14
expresses the logic of the method that will be used here to
perform the sort; other ways are possible.

We first make all three numbers positive. A comparison
is then made between A and B; if A is the smaller, we
interchange the two values. Now we know that the value in
A is the larger of the two, whether it originally was or not.
A similar process compares A and C and interchanges if A is
smaller. Having done this, we know that what is in A is the
largest of the three. A fmal comparison of the numbers now

Fixed-Point Arithmetic 39

Make
A,B,C
positive

A< B

Interchange
A and B

A<C

Interchange
AandC

B<C

Interchange
Band C

Figure 3-14. Program flowchart of a method of sorting three num
bers into descending sequence. Any negative numbers
are changed to positive before sorting.

40

in B and C, and an interchange if necessary, gets the
"middle" number in B and the smallest in C.

The program of Figure 3-15 involves some instructions
that we have not used before. The Load Multiple (LM)
instruction begins loading fullwords from the specified
storage location. The first word goes into the first-named
register. Successive fullwords go into higher-numbered regis
ters until the second-named register has been loaded. In the
program, the result of the LM instruction will be to place A
in 2, B in 3, and C in 4.

Now three Load Positive Register (LPR) instructions
change any negative numbers to positive, leaving any posi
tive numbers unchanged. This is an RR format instruction,
meaning that both of its operands are registers. Here both
operands are the same register, as will frequently be the
case. The action is to take the value from a register, comple
ment it if it is negative, and place the result back in the
same register. If it were necessary, two different registers
could of course be used.

Next comes a Compare Register (CR) instruction, which
is also in the RRformat. Thisinstruction does not change
the contents of either register, but simply sets the condition
code to zero if the two operands are the same, to 1 if the
frrst operand is low, and to 2 if the first operand is high.
(The comparison is algebraic, meaning that signs are taken
into account according to the rules of algebra, by which
any positive number is greater than any negative number.
We know that our numbers are by now all positive, so this
feature does not concern us.)

Next comes the Branch on Condition instruction, with a
mask of 10 (decimal) and a branch address of COMP2. The
mask of 10, checking with the table above, tests for condi
tion code zero or 2. Following a Compare-type instruction,
these mean, respectively, that the first operand is equal to
or greater than the second operand. If the condition code is
either of these, we branch; otherwise the next instruction in
sequence is taken. The effect is: if the number in register 2
is already equal to or greater than the number in register 3,
we skip down to the second comparison, because A and B
are already in correct sequence.

The interchange, if it is necessary, is performed by
moving the contents of register 2 to register 6, moving 3 to
2, and finally moving 6 to 3. These transfers are made with
the Load Register (LR) instruction.

The remaining instructions repeat these operations twice
for the other comparisons. Finally, there is a Store Multiple
(STM) instruction to place the rearranged items back in the
original three locations, as required by the problem
statement.

Figure 3-16 shows before-and-after values of A, B, and C
for six possible original orderings of the three values. Each
pair of lines is one set. These are hexadecimal numbers; the
original value of A in the last set is -3.

LOC OBJECT CODE ADDRI ADDR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
000100 2 SORT START 256
000100 05BO 3 BEGIN BALR 11 ,0
000102 4 USING *,11
000102 9824 B036 00138 5 LM 2,4,A LOAD REGISTERS WITH 3 NUfoABE~S

000106 1022 6 LPR 2,2 MAKE NU M B E R S PO S IT I V E
000108 1033 7 LPR 3,3
00010A 1044 8 LPR 4,4
00010C 1923 9 CR 2,3 COMPARE A AND B
00010E 47AO B016 00118 19 BC 10,COMP2
000112 1862 11 LR 6,2 INTERCHANGE IF NECFSSARY
000114 1823 12 LR 2,3
000116 1836 13 LR 3,6
000118 1924 14 COMP2 CR 2,4 COMPARE A AND C
OOOllA 47AO B022 00124 15 Be 10,COMP3

IF NECF.SSty 000 11 E 1862 16 LR 6,2 INTERCHANGE
000120 1824 17 LR 2,4
000122 1846 18 LR 4,6
000124 1934 19 COMP3 CR 3,4 COMPARE BAND C
000126 47AO B02E 00130 20 BC 10,OUT
00012A 1863 21 LR 6,3 INTERCHANGE IF NECESSARY
00012C 1834 22 LR 3,4
00012E 1846 23 LR 4,6
000 130 9024 B036 00138 24 OUT STM 2,4,A STORE SORTED VALUES

25 EOJ
000136 0000
000138 00000001 28 A DC F' 1 '
00013C 00000002 29 B DC F' 2'

.000 140 00000003 30 C DC F'3'
000100 31 END BEGIN

Figure 3-15. Assembly listing of a program to carry out the sorting procedure charted in Figure 3-14

INPUT1 00000001 00000002 00000003
OUTPUT1 00000003 00000002 00000001

INPUT2 00000001 00000003 00000002
OUTPUT2 00000003 00000002 00000001

INPUT3 00000002 00000001 00000003
OUTPUT3 00000003 00000002 00000001

INPUT4 00000003 00000002 00000001
OUTPUT4 00000003 00000002 00000001

I NPUT5 00000003 000bOO01 00000002
OUTPUT5 00000003 00000002 00000001

INPUT6 FFFFFFFD 00000002 00000001
OUTPUT6 00000003 00000002 00000001

Figure 3-16. Six sets of sample input and output for the program of Figure 3-15

Fixed-Point Arithmetic 41

FURTHER DECISIONS:
THE SOCIAL SECURITY PROBLEM

In this application, which is presumably familiar to many
readers, we combine two decisions with some arithmetic
processing.

We are given a man's earnings for a week (EARN), his
previous ("old") year-to-date earnings (OLDYTD), and his
previous year-to-date Social Security tax (OLDFICA). We
are to compute his Social Security tax for this week (TAX),
his new year-to-date earnings (NEWYTD) and new Social
Security tax (NEWFICA). Assume the Social Security tax is
compute~s 4.4% of earnings (with certain exclusions such
as sick pay, which we shall ignore) up to an annual limit on
taxable income of $ 7800. The program must decide
whether the employee has yet earned $7800 this year; if so,
he is exempt from further Social Security tax. Actually, the
situation is slightly more complex than that: if the man has
not yet earned $7800 before this week's pay but, counting
this week's pay, goes over $7800, only the portion of this
week's pay that takes him up to the $ 7800 limit is taxable.

The flowchart of Figure 3-17 expresses the logic we have
just described. Figure 3-18 translates this logic into a pro
gram illustrating in the process that there are many ways to
implement a flowchart.

We begin by loading the previous year-to-date into a
register, and from there immediately load it into another
register, in order to have it both places. This method saves a
little time over loading twice from storage. We ~dd this
week's earnings, giving the new year-to-date, which is
stored. Once this is done, we no longer need the same infor
mation in register 6, so this register is free for any other
processing we will need to do. Now we compare the old
year-to-date with $ 7800. The Branch on Condition that
follows asks whether the condition code is 1, that is,
whether the first operand is low. This can be read: branch if
the old year-to-date was less than $7800. If the branch is
not taken, the old year-to-date was already over $7800, so
there is no tax to pay. We clear register 7, where the tax is
developed if there is any, by subtracting it from itself - the
fastest and simplest way to clear a register to zero. The
Branch on Condition with a mask of ISis an unconditional
branch down to the final instructions where the tax is
stored and the Social Security updated.

If the branch is taken, there is a tax to be paid, but we
still need to know whether this week took the man over the
top. Accordingly, at the instruction labeled YES, we com
pare the new year-to-date with $7800. The Branch on
Condition with a mask of 2 asks whether the first operand
- the new year-to-date - was greater than $7800. If so, it is
necessary to compute the tax on just that part of this
week's pay that takes the total up to $7800. At OVER78,
accordingly, we load register 7 with $7800 and subtract the
previous year-to-date; the difference is just the amount that
is taxable. If the branch was not taken, the full week's

42

Over $7800 before
this week

TAX = $0.00

NEWYTD
= OLDYTD
+ EARN

TAX =
4.4% of EARN

NEWFICA =
OLDFICA +
TAX

Over $7800 this week

TAX = 4.4% of
(7800-0LDYTD)

Figure 3-17. Program flowchart of a procedure for computing
Social Security tax

earnings are taxable, and they are therefore loaded into
register 7 and we branch unconditionally to MULT.

At that location is an instruction to multiply whatever is
in register 7 - either the full week's payor some part of it
- by 4.4%. This constant is entered as the integer 44. We
must think of this number as 0.044, however, remembering
that it is a fraction. The constant for rounding, HALF, is
therefore 500, and we remove all the excess decimals by
dividing by 1000. At this point the tax is in register 7 ready
to be stored by the instruction at STORE. This same Store
instruction is the one to which we branched if there was no
tax to pay, having cleared register 7. A final Add and Store
update the year-to-date Social Security.

This program fulfills the requirements of the problem
statement and does the processing described by the flow
chart - but it is quite unacceptable. The problem is some
thing not mentioned in the problem statement. Let us see
what the trouble is by looking at an example.

Suppose we have a man who earns $164.00 per week.
Multiplying by 0.044 and rounding to the nearest cent, we
get a Social Security tax of $ 7.22. In 47 weeks of working
at this rate, the man will accumulate year-to-date earnings
of $7708.00 and a year-to-date Social Security tax of
$339.34. Now in the next week his full earnings are not
taxable, but only the part that takes him up to $ 7800, or
$92.00; the tax on this amount is $4.05. Adding $4.05 to
his previous year-to-date Social Security, we get $343.39,
which is more than 4.4% of the $ 7800 maximum.

The difficulty is in the computation of the tax on one
week's earnings. Before rounding, the product of $164.00
and 0.044 is $7.21600. When we round this to $7.22 we
add nearly half a cent. For each of the 47 weeks we are
adding nearly half a cent.

This would be inaccurate. Social Security tax is seldom
computed the way we have shown.

Fortunately, correcting the trouble is not only fairly
easy, but leads to a shorter program. The general approach
is to compute 4.4% of the new year-to-date earnings, then
compute the tax by subtracting from this the previous year-,
to-date Social Security. The effects of the rounding error
are thus balanced from week to week, and we are never
more than half a cent off in the accumulated total.

Consider the example given above. The frrst week of

LOC OBJECT CODE ADDRI ADDR2 STMT SOURCE

1
000100 2 FICAI
000100 05BO 3 BEGIN
000102 4
000102 5860 B052 00154 5
000106 1856 6
000108 5A6p B04E 00150 7
00010C 5060 B056 00158 8
000 110 5950 B066 00168 9
000114 4740 BOIC OOllE 10
000118 IB77 II
OOOllA 47FO B040 00142 12
OOOllE 5960 B066 00168 13 YE S
000122 4720 B02C 0012E 14
000126 5870 B04E 00150 15
00012A 47FO B034 00136 16
00012E 5870 B066 00168 17 OVER78
000132 5B70 B052 00154 18
000136 5C60 B06A 0016C 19 MULT
OOO13A 5A70 B06E 00170 20
0OO13E 5D60 B072 00174 21
000142 5070 B062 00164 22 STORE
000146 5A70 B05A 0015C 23
00014A 5070 B05E 00160 24

25
000150 00004010 28 EARN
000154 OOOBBFDO 29 OLDYTD
000158 30 NEWYTD
00015C 00008408 31 OlDFICA
000160 32 NEWFICA
000164 33 TAX
000168 OOOBE6EO 34 C7800
00016C 0000002C 35 C44
000170 000001F4 36 HALF
000174 000003E8 37 CHUN
000100 38

the year, we get $7.22 as the tax. The second week, we
begin by computing 0.044 times $328.00, the new year
to-date gross; this gives us $14.43 _as the new year-to-date
Social Security, which we store. This week's tax is $14.43
minus the previous year-to-date Social Security of $7.22,
or $ 7.21. In other words, where last week we were a
fraction of a cent high, now we are a fraction of a cent
low; the two tend to cancel each other. The offset may
not always be equal; however, we can never be more than
half a cent off.

The test for reaching the maximum taxable amount is
now made in terms of the tax instead of the earnings. We
compute the Social Security on the new year-to-date
earnings, then ask whether the result is greater than
$343.20. If so, the result is replaced by $343.20 and the
tax is computed as before, by subtracting the previous
year-to-date Social Security. If that was already $343.20,
that is, if the max4num had already been reached, then
the tax computed by this method is zero, as it should be.
If this week's pay goes over the taxable limit, the tax is
the difference between the maximum tax and the amount
already paid, which is correct.

The program shown in Figure 3-19 should not be too
difficult to follow after the description of the process that
has just been given. The program is eight instructions

STATEMENT

PRINT NOGEN
START 256
BALR II ,0
USING *,11
L 6,OLDYTD
LR 5,6
A 6,EARN
ST 6,NEWYTD
C 5,C7800
BC 4,YES
SR 7,7
B,C 15,STORE
C 6~C7800
BC i,OVER78
L 7,EARN
BC 15,MULl
L 7,C7800
S 7,OLDYTD
M 6,C44
A 7,HALF
0 6,CHUN
ST 7, TAX
A 7,OLDFICA
ST 7,NEWFICA
EOJ
DC F'16400'
DC F'770000'
DS F
DC F'33800'
OS F
OS F
DC F '780000'
DC F'44'
DC F'500'
DC F'1000'
END BEGIN

Figure 3-18. Assembly listing of a program based on the flowchart in Figure 3-17

Fixed-Point Arithmetic 43

shorter and considerably less complex. Both versions have
been tested with a variety of data; both give "correct"
results in that they do what we expect, although of course
the results are not identical.

The only new instruction used in this program is BL
UNDER, which means Branch on Low to the address
UNDER. BL is an extended mnemonic code; it is translated
by the assembler to the Branch on Condition operation
code (47) with a decimal mask of 4. Other extended

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE

1
000100 2 FICA2
0001.60 05BO 3 BEGIN
00Oi02 4
000102 5850 B036 00138 5
000106 -5-A-5{) ,B032 00134 6
00010A 5050!B03A 0013C 7
00010E 5C40 B04A 0014C 8
000112 5A50 B04E 00150 9
000116 5040 6052 00154 10
00011A 5950 B056 00158 11
00011E 4740 B024 00126 12
000122 5850 B056 00158 13
000126 5050 B042 00144 14 UNDE~
00012A 5B50 B03E 00140 15
00012E 5050 B046 00148 16 STORE

17
000134 00004010 20 EARN
000138 OOOBBFDO 21 OLDYTD
000 l3C 22 NEWYTD
000140 00008408 23 OLDFICA
000144 24 NEWFICA
000148 25 TAX
00014C 000OO02C 26 C44
000150 000001F4 27 HALF
000154 00OO03E8 28 CHUN
000158 00008610 29 MAX
000100 30

mnemonics used after Compare instructions are BH (Branch
on High) for BC 2, BE (Branch on Equal) for BC 8, BNH
(Branch on Not High) for BC 13, and so on. Additional
extended mnemonics can be used after arithmetic opera
tions and Test under Mask instructions. They are supplied
with most System/360 assemblers and are a great conven
ience in writing and checking conditional branching
instructions, since they specify the conditions. A full list is
given in the Appendix.

STATEMENT

PRINT NOGEN
START 256
BALR 11 ,0
USING *,11
L 5,OLDYTD
A S,EARN
ST 5,NEWYTD
M 4,C44
A 5,HALF
D 4,CHUN
C 5,MAX
BL UNDER
L 5,MAX
ST 5,NEWFICA
S 5,OLDFICA
ST 5,TAX
EOJ
DC F'16400'
DC F'770000'
DS F
DC F'33800'
DS F
DS F
DC F'44'
DC F'500'
DC F'1000'
DC F'34320'
END BEG HI

Figure 3-19. Assembly listing of a much better version of the program to calculate Social Security tax

44

SIMPLE LOOPS: FINDING A SUM

A frequent programming requirement is to perform some
operation on a set of values arranged in some systematic
way in storage. We shall examine some of the coding
methods available for such operations in the System/360, in
terms of a very simple example.

For our illustrative problem, suppose that there are 20
fullwords in consecutive fullword locations starting with
the one identified by the symbol TABLE. We are required
to form the sum of the 20 numbers and place it in SUM.

We shall consider the three different ways of doing this.
All three involve the use of an index register to modify the
effective address in an instruction. The contents of the
index register are changed between repetitions of the loop.

The first version of the program is shown in Figure 3-20.
We shall use register 8 to accumulate the sum and register
11 as the index register. We want register 8 cleared to zero
so that the sum will be correct; as it happens, we want the
index register cleared to zero also. Both operations are done
with Subtract Register instructions.

Now comes the instruction that does the actual
computing. We add to register 8 the contents of some full
word in storage. The first time through the loop we want to
add the word at TABLE. The instruction specifies that the
contents of index register 11 should be used in computing the
effective address - but we just made those contents zero, so
the effective address is that of the word at TABLE. The first

time through the loop, this instruction therefore adds the
word at TABLE to register 8, which was cleared to zero.

The next time through the loop, we want the full word at
T ABLE+4 added to register 8. This can be accomplished by
adding 4 to the index register. In this version of the pro
gram, we do so with an Add instruction.

Now we are at the point in the program where a test for
completion must be made. The last of the 20 words is
located at TABLE+76. We are modifying before testing,
however. At the point where the loop has just been exe
cuted with TABLE+76 for anFeffective address, we will now
have 80 in the index register. That is, therefore, the correct
constant to use in testing for completion. We do so with a
Compare, then Branch on Condition witli a mask that asks
for a branch if the index was less than 80. We could use the
extended mnemonic code BL and write the branch
instruction as BL LOOP; the object program would be the
same.

The branch will be executed 19 times, giving 20 execu
tions of the Add at LOOP. After that, the branch is not
executed, we store the total at SUM, and the program is
completed.

The reader will no doubt have recalled the customary
names for the parts of a loop. The part at the beginning that
gets the loop started is the initialization section; here, it
consists of the first two instructions. The part that does the

LOC OBJ ECT CODE ADDRI ADDR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
000100 2 SUMA START 256
000100 0530 3 BEGIN BALR 3,0
000102 4 USING *,3
000102 IBS8 5 SR S,8
000104 IBBB 6 SR 11 ,11
000106 5ASB 301A OOllC 7 LOOP A S,TABLE(11)
00010A 5ABO 306E 00170 S A 11,C4
00010E 59BO 3072 00174 9 C II ,C80
000112 4740 3004 00106 10 BC 4,LO(1P
000116 50S0 306A 0016C 11 ST B,SUM

12 EOJ
000 lIC 00000001 15 TABLE DC F'l'
000120 00000002 16 DC F'2'
000124 00000003 17 DC F'3'
000128 00000004 18 DC F'4'
00012C 00000005 19 DC F' 5'
000130 00000006 20 DC F'6'
000134 00000007 21 DC F '7'
000138 00000008 22 DC F'S'
00013C 00000009 23 DC F'9'
000140 OOOOOOOA 24 DC F'lO'
000144 OOOOOOOB 25 DC F' 11 '
00014S OOOOOOOC 26 DC F'12'
00014C OOOOOOOD 27 DC F'13'
000150 OOOOOOOE 2S DC F'14'
000154 OOOOOOOF 29 DC F'15'
000158 00000010 30 DC F '16' '
00015C 00000011 31 DC F'17'
000160 00000012 32 DC F'lS'
000164 00000013 33 DC F'19'
000168 00000014 34 DC F'20'
00016C 35 SUM OS F
000170 00000004 36 C4 DC F'4'
000174 00000050 37 C80 DC F'SO'
000100 38 END BEGIN

Figure 3-20. First version of a program to form the sum of 20 numbers

Fixed-Point Arithmetic 45

actual work of the loop is called the compute part, and here
consists of the Add at LOOP. The modification section
changes something between repetitions; here, it is the modifi
cation of the index contents by the Add. The testing section
determines whether the action of the loop has been com
pleted, and consists here of the Compare and the Branch on
Condition. The sequence of the last three sections is not
always as in this example. And as we shall see in the third
version, the modification and testing can often be combined
into one instruction.

The second version shortens the repeated section of the
loop by one instruction. Normally, we do not worry too
much about trying to get the last microsecond out of pro
grams, but in heavily repeated parts it is worth some effort.

The method will require us to go "backward" through the
table, which in this particular example is permissible; some
times, of course, it would not be. As shown in Figure 3-21 we
again clear register 8. This time, however, instead of loading
the index register (11) with zero, we use a new instruction,
Load Address, to put 76 in it. The Load Address (LA) simply
pu ts the address part of the instruction itself in the designated
register; there is no reference to storage whatsoever. In this
case, 76 is actually the displacement and there is no base or
index register. If we wanted to state this specifically, the
statement could be written LA 11 ,76(0,0).

Now when we execute the indexed Add instruction at
LOOP, the effective address is TABLE+76. Following this,
we subtract 4 from the index register. As it happens, the

execution of a Subtract sets the condjtiQn code. A condi
tion code of zero indicates that the result was zero, 1

:d~C:~t~~~~~}=-;~~~~~f~~~
regtste'"r. If tileprogram'Is correct an overflow cannot occur
here, so the possibility does not concern us.) We want to
branch back to LOOP as long as the result of the subtrac
tion is either positive or zero, so the mask on the Branch on
Condition is 10: 8 picks condition code zero and 2 picks
up code 2.

The Store is as before.
Where in the first version there were four instructions in

the repeated portion of the loop, here there are three. The
final version reduces this number to the minimum, two.
The technique is to use the Branch on Index' Low or Equal
instruction (BXLE), which is a combination of an Add, a
comparison, and a conditional branch.

Let us assume we have three registers set up as follows:
Register 9 will be the index; it initially contains zero.
Register 10 will contain the amount by which the index is
to be incremented each time around the loop, 4. Register
11 will contain the limit value, the value of the index which
is not to be exceeded, 76. If we have the instruction:

BXLE 9,IO,LOOP

the action will be as follows: The contents of register 10 (4)
are added to register 9, which is the index and initially
contains zero. If the sum is less than or equal to the

laC OBJ EC T CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
000100 2 SUMB START 256
000100 0530 3 BEGIN BALR 3,0
000102 4 USING *,3
000102 1B88 5 SR 8,8
000104 41BO 004C 0004C 6 LA 11,76
000108 5A8B 301A OOllC 7 LOOP A 8,TABLE(llJ
OOOlOC 5BBO 306E 00170 8 S 11,C4
000110 47AO 3006 00108 9 BC 10,LOOP
000114 5080 306A 0016C 10 ST 8,SUM

11 EOJ
OOOllA 0000
000 lIC 00000001 14 TABLE DC F'l'
000120 00000002 15 DC F'2'
000124 00000003 16 DC F'3'
000128 00000004 17 DC F'4'
000I2C 00000005 18 DC F '5'
000130 00000006 19 DC F'6'
000134 00000007 20 DC F'7'
000138 00000008 21 DC F '8'
000I3C 00000009 22 DC F'9'
000140 OOOOOOOA 23 DC F '10'
000144 00000006 24 DC F ' II'
000148 OOOOOOOC 25 DC F' 12 '
00014C 00000000 26 DC F '13'
000150 OOOOOOOE 27 DC F'14'
000154 OOOOOOOF 28 DC F'15'
000158 00000010 29 DC F '16'
00015C 00000011 30 DC F' 17'
000160 00000012 31 DC F '18'
000164 00000013 32 DC F'19'
000168 00000014 33 DC F'20'
00016C 34 SUM DS F
000170 00000004 35 C4 DC F'4'
000100 36 END BEGIN

Figure 3-21. Second version of program to form the sum of 20 numbers

46

contents of register 11, the limit, the branch to LOOP is
taken; otherwise the next instruction in sequence is taken.

The instruction is written in assembler language in the
general form:

BXLE R1 ,R3,D2(B2)

Three factors, each of which must be located in a
register, are required by the BXLE instruction. An index
must be in the register specified by R1. An increment must
be in the register specified by R3. A limit value must also
be in a register but the register is not explicitly specified in
the instruction. The BXLE instruction will first add the
increment to the index. It will then compare the resultant
index against the limit. If the index is less than or equal to
the limit, a branch is taken to the location specified by
D2(B2); otherwise the next instruction in sequence is
taken. The register containing the limit value is always odd
numbered and is chosen in the following way:

1. If the register specified by R3 is an even-numbered
register, the limit value is assumed to be in the next higher
numbered register. If We have the instruction:

BXLE 9,1 ° ,LOOP

the limit value is in register 11, the next higher-numbered
register.

2. If the register specified by R3 is an odd-numbered

register, a third register is not used. In this case the BXLE
instruction assumes that R3 specifies the register to be used
for both the increment and the limit. If we have the
instruction:

BXLE 6,7,LOOP

register 7 will be used by BXLE as the source of the incre
ment and the limit.

At fITst glance this instruction seems more complicated
than it is. Let us turn to an example to see how it works.
Figure 3-22 is the fmal version of our summing loop.

We begin the program by loading the three registers that
will be used by the BXLE instruction (registers 9, 10, and
11), with the desired initial contents. We then proceed to
the Add instruction at LOOP, which is the same as in the
previous two versions. Next comes the BXLE, which
operates as described.

The operation of the BXLE instruction is most easily
remembered if we think in terms of three registers repre
senting the index,the increment, and theliinit, in that order.

F o~ a sifUation where it is desi~e-d to ~ backwards, in
which case the increment would be negative, the Branch on
Index High (BXH) instruction is available.

The BXLE and BXH instructions are very powerful and
very flexible. They will find heavy use in many practical
applications, and are well worth the investment of effort
necessary to understand them fully.

LOC OBJECT CODE ADDR 1 AOOR2 STMT SOURCE STATEMENT

K c::>&~
1 PRINT NOG~

000100
/0 2 SUMC STm 25~ 000100 .0530 , 3 BEGIN BAlR 3,0-

000)02 __ 4 US~'NG ',*,3'- .
000102 IB88 5 ~R 8,8,

000104~~ 6 SR 9,9-~"
000106 4 0 04 00004 7 lA 10',4 .. ·_··,
000 lOA BO' 004C -- 0004C 8 L,\ . 1"i , 16 \
00010~ 5AS9 ~OlA OOllC 9 -lOOP A 8, TA6LE(9)
000112 879A.aooc 0010E 10 BXlE 9,tO,[OOP
000116 5080'§'06A 0016C 11 ' ST 8,~M -.... "...~' .. ~,.-.:--.¥-- ,. 12 EOJ
OOOllC 00000001 15 TABLE 'oC""

F r
000120 00000002 16 DC F'2'
000124 00000003 17 DC F'3'
000128 00000004 18 DC F'4'
00012C 00000005 19 DC F'5'
000130 00000006 20 DC F'6'
000134 00000007 21 DC F'7'
000138 00000008 22 DC F'S'
00013C 00000009 23 DC F'9'
000140 OOOOOOOA 24 DC F ' 10'
000144 OOOOOOOB 25 DC F '11'
000148 OOOOOOOC 26 DC F '12'
00014C 00000000 27 DC F'13'
000150 OOOOOOOE 28 DC F'14'
000154 OOOOOOOF 29 DC F'15'
000158 00000010 30 DC F '16'
00015C 00000011 31 DC F'17'
000160 00000012 32 DC F'18'
000164 00000013 33 DC F'19'
000168 00000014 34 DC F'20'
00016C 35 SUM OS F
000100 36 END BEGIN

Figure 3-22. Third and shortest version of program to form the sum of 20 numbers, using the BXLE instruction

(8170) Fixed-Point Arithmetic 47

CASE STUDY:
AVERAGING A LIST OF TEMPERATURES

In an attempt to draw together some of the things that have
been discussed in this chapter, we shall now consider a final
problem that involves several different concepts.

Suppose we have in storage a group of halfwords giving
the temperature, to the nearest degree, on each of the days
of a month. There may be 28, 29, 30, or 31 of them; the
number is given by a halfword named DAYS. The table of
temperatures begins at TEMP and continues for a total of
31 halfwords; if there are fewer than 31 days in the month
at hand, the last entries of the table are to be ignored. It is
possible that the temperature reading may be missing for
some days; a missed reading is indicated in storage by a
halfword of all 1 'so We are to form the average of the tem
peratures for the month, using only as many good readings
as are found. If the entire table should happen to contain
bad readings, a halfword of all 1 's should be stored to indi
cate that the average was not computed. In any case, we are
to store in NGOOD the number of good readings found.
The average should be rounded off to the nearest degree.

The program shown in Figure 3-23 uses the half word

variations of a number of instructions that should be quite
familiar in their fullword forms.

Before analyzing the operation of the program, it may be
helpful to summarize the functions of the registers used,
which will often be a valuable thing for the programmer to
do.

Register
3
4
5
6
7
8

10
11

Usage
Base register
Index register
Word of 1's
Left half of dividend
Sum of temperatures-right' half of dividend
Count of nonzero temperatures
Increment for BXLE
Limit for BXLE

The initialization consists of setting up the contents of
the seven registers used. by the program. The first one to be'
set to zero (6) is cleared by a Subtract Register, the others
by Load Registers from 6. The Load Halfword to get the

LOC OBJECT CODE ACDR1 ACDR2 STMT SOURCE STATfMENT

1 PRINT NOGEI';
000100 2 AVGTEMP START 256
000100 0530 3, BEGIN BALR 3.0,
000102 It USING *.,]
000102 4850 3094 00196 5 LH 5,CNES
000106 IB66 6 SR 6.6
000108 1816 1 LR 1.6
00010A 1886 8 LR 8.6
00010C 41AO 0002 CCC02 9 LA 10.2
000110 48BO 3096 00198 10 LH 11.DAYS
0001L4 4BBO 3092 00 t<~4 11 SH 11.0NE
000118 8BBO 000 L 00C01 12 SLA 11.1
000 HC 1846 13 LR 4.6
00011E 4954 3054 00156 14 LOOP CH 5,TEMP(4)
000122 4180 302C 0012E 15 BE ZERO EXTENDED MNEMONIC FOR BC 8
000126 4A14 3054 00156 16 AH l,TEMP(4)
00012A 4A80 3092 C0194 11 AH 8,ONE
000IlE 874'" :J01C COllE 18 ZERO BXLE 4.10,LOOP
000132 4080 309A 0019C 19 STH 8.NGOOD
000136 1288 20 LTR 8.8
000138 4710 3040 00142 21 BNZ NOT EXTENDED MNE~ONIC FOR BC 1
00013C 4050 3098 0019A 22 STH 5,AVER STORE ONES IF NO GOOD DATA

23 EOJ STOP
000142 8B70 0001 OOCOI 26 NOT SLA 7,1 TO GET EXTRA BINARY PLACE IN QUOTIENT
000146 1068 21 OR 6,8 DIVIDE REGISTER
000148 4Al0 3092 00194 28 AH 7,ONE ROUND OFF
0001ltC 8Al0 0001 00001 29 SRA 1,1 DROP THE EXTRA BIT
000150 ItOl0 3098 C019A 30 S TH 1,AVER FINAL RESULT

31 EOJ END OF JOB
000156 0001 34 TEMP DC H'l'
000158 0002 35 DC H'l'
00015A 0003 36 DC H'3'
JlOill5C -DODlt. -- ...3.1 DC. ~4' - - --- ~ -
00018E 0010 61 DC H'29'
000190 001E 62 DC H'30'
000192 OOlF 63 DC H'31'
000194 0001 64 ONE DC H'l'
000196 FFFF 65 ONES DC X'FFFF'
000198 66 CAYS OS H
00019A 67 AVER OS H
00019C 68 NGOOD OS H
000100 69 END BEGIN

Figure 3-23. A program to compute average monthly temperature, which takes into account the possibility of omitted readings

48

number of days into register 11 automatically expands the
halfword into a fullword, which would mean that the sign
bit of a negative number would be filled out. With correct
data, the word here cannot be negative, of course. The
number of days is to be used to terminate the summing
loop that adds up the temperatures. The loop should be
executed as many times as the number of days; it should be
repeated (after the frrst time) one less time than the
number of days. We accordingly subtract 1 from register 11
after loading it.

Since the table of data consists of halfwords, the index
register will have to be incremented by 2 between loop
repetitions, and the proper limit value is two less than
double the number of days. We can double a number quite
simply by shifting left one place in a binary machine. (If
the table had consisted of fullwords, requiring an increment
of 4, a left shift of two places would multiply the number
of days by 4.)

In the working part of the loop we frrst check to see
whether the particular temperature is valid, by comparing
with the word of all 1 's that had been set up in register 5.
The Compare Halfword expands the halfword from storage
to a fullword by propagating the sign bit. This is necessary
to us, since the load halfword that put the word of all 1 's in
register 5 did the same thing. We next branch on equal to
the instruction at ZERO, which would happen if the read
ing was bad. If it was good, the branch is not taken; we add
in the temperature, add one to the count of good readings,
and then reach the BXLE.

The BXLE increments the index register (4) by 2 (which
is in 10) and checks whether the index is now the same as
what we put in 11. If the index is low or equal, meaning
that the list has not been exhausted, we branch back to

. LOOP to go around again.
When the loop is finished, we reach the Store Halfword

after the BXLE. Here we store the count of good readings
at NGOOD; this conceivably could be zero. Next we check
whether it was zero, using the Load and Test Register
instruction (LTR). With the two register designations being
the same, as they an~' here, the effect of this instruction is
to set the condition code according to the sign and magni
tude of the count in (register· 8. The Branch on Condition
instruction then asks whether the count was either positive
or negative and branches if so. If it was neither of these it
must have been zero, in which case we store the word of all
1 's for the average in AVER, and stop.

If there was at least one good reading, we are ready now
to compute the average. In order to be able to round off to
the nearest degree, it is necessary to arrange the division so
that the quotient has one binary place in it; this can be
done by shifting the dividend to the left one plact before
dividing. The division is done this time. with the Divide
Register instruction, since the desired divisor (the count) is
already in a register. Following the Divide Register we add
1 to the rightmost bit position of the quotient register to
round off. Having done so, we shift the quotient back to
the right to get rid of the extra bit and store the result.

Fixed-Point Arithmetic 49

QUESTIONS AND EXERCISES

1. The L, A, S, and ST instructions all operate on a
(fullword, halfword).
2. The first operand of an instruction usually specifies the
operand that (sends, receives) information.
3. In a ST instruction the fIrst operand specifies the oper
and that (sends, receives). Does the ST instruction, in this
respect, follow the general rule, or is it an exception to the
general rule?
4. Is the instruction M 7,QTY a legitimate instruction? If
not, why not?
5. The D instruction specifies _________ _
as the first operand, and the __________ _
as the second operand. After completion of the divide
operation, where is the quotient located? Where is the

(}

IDnderlocated?
6. ssume that a fullword area of storage (reserved by a

, to be addressed as XANDY, contains two positive
items as below:

x Y

XANDY-o 19 20 31

50

Write the program to store X in a fullword area in storage
~ed X, and Y in a halfword area in storage called Y.
(?~he instruction BC 5,ROUT3 would branch to ROUT3
0'the:

a. Condition code is 5.
b. Condition code is 1, 2, or 3.
c. Condition code is 1 or 3.

8. Write an instruction to branch unconditionally to an
instruction called NEWONE.
9. There are four fullwords named Xl, X2, X3, and X4
sequentially located in storage. Write one instruction that
loads these four fullwords into registers 2, 3, 4, and 5
respectively.
10. Write an instruction that clears register 5 to zero.

(U}) Consider the instruction named LOOP in Figure 3-20.
'ikfw will the effective address of TABLE(1I) be formed?

12. Write a single instruction that adds the contents of
register 6 to register 5, tests to see if the sum now in
register 5 is equal to or less than the contents of register 7,
and then branches to an instruction called NEWONE if the
answer is yes.

Chapter 4: Programming with Base Registers and the USING Instruction

A major programming feature of System/360 is the use of ,
base registers for addressing main storage. One advantage is
that compatibility is maintained between the small system
with its short addresses and the large system with its longer
addresses. The same instruction size and format accom
modates both. Also, through appropriate use of base
registers it is possible to relocate assembled programs
almost at will. Great flexibility in program organization is
thus achieved, since storage locations can be reassigned as
dictated by the needs of the particular "mixture" of
programs or program segments.

Base registers are thus deeply involved in programming
and in program execution. However, as we shall see, it is

THE USING INSTRUCTION

Automatic computation of the addresses of all operands in .'
main storage requires the programmer to supply two items·
of information to the assembler and one to the object
program.

With the USING instruction, the programmer tells the.
assembler:

1. Which general registers may be used as base registers
2. What each one will contain at the time the object

program is executed
With this information the assembler can do its work of
designating base registers and computing displacements.

It still remains to place in the base registers the values we
have promised the assembler will be there. This can in
principle be done in many ways, but the most common is
to use the Branch and Link Register instruction (BALR).
The general format of this instruction is:

BALRRl,R2

Rl receives the address of the next byte after the BALR;
R2 supplies a branch addreSs unless it is zero, in which case

possible to delegate to the assembler almost all the clerical
work of keeping track of base registers and computing
displacements. With a full understanding of these tech
niques, the programmer is able to leave the housekeeping to
the assembler where appropriate, and to employ more
sophisticated methods where needed.

In this chapter we shall see how the automatic tech
niques are called into operation and how the assembler
implements them; and we will explore a few slightly more
advanced techniques. As in so many other aspects of
programming, particular emphasis must be placed on the
question of when various actions occur: during assembly,
linkage editing, or program execution.

the next instruction in sequence is taken as usual. For our
purposes here, the second operand (R2) is always zero. For

, instance, in the illustrative program we shall be considering
shortly, we have an instruction:

BALR 11,0

This places in register 11 the address of the next byte after
the BALR, and there is no branch. Register 11 was
arbitrarily chosen as the base register for this program. It is
used as a base register for most of the programs in this text.
In actual practice, the choice of a base register cannot be a
completely arbitrary one. As mentioned earlier, most instal
lations fmd it necessary to establish rather rigid conventions
for register usage. In addition, the various operating systems
for System/360 make use of certain general registers for
supervisor routines, linkages between separate programs,
and other purposes. Under most operating systems, registers
2 through 11 are freely available to the programmer and
should be used to avoid any complication.

Programming with Base Registers and the USING Instruction 51

AN EXAMPLE

These ideas may be made more concrete by considering an
example. Figure 4-1 is an assembly listing of a program the
processing details of which do not concern us.

The START instruction specifies that the assembled first
byte of the program is location 25610= 10016 • We see that
the BALR instruction has in fact been placed 31t 100. (All
numbers in the object program area of the assembly listing
- on the left-hand side - are hexadecimal.) The BALR
instruction specifies that general purpose register 11 is to be
loaded with the address of the next machine instruction.
This, of course, is done at execution time by the machine.
The USING instruction, which is an assembler instruction
and takes no space in the object program, informs the
assembler that general purpose register ,11 is available for
use as a base register and will contain the address of the
next machine instruction, as signified by the asterisk. The
BALR is a two-byte instruction so the' next instruction, the
Load, is placed at 102. This number;'shown in the location
counter column in the USING statement, indicates what
the assembler assumed would be the contents of base
register 11.

Let us look at the Load instruction to see how the
assembler handled it. Reading from left to right the opera
tion code is 58, the register loaded with a word from
storage is number 2, no index register is specified, the base
register is B16 = 1110 , and the displacement is 02216 • With
base register 11 containing 102 and with a displacement of
22, we get an actual address of 12416 , as listed under
ADDR2. Looking down the listing we see that 124 is in fact
the address corresponding to the symbol DATA, as it
should be.

The Add instruction is similar. With base register 11
again automatically designated, we have a base address of

LOC OBJECT CODE ADDRI ADDR2 STMT SOURCE

1
000100 2 PROGE
000100 05BO 3 BEGIN
000102 4
000102 5820 B022 00124 5
000106 5A20 B02A 0012C 6
00010A 8B20 0001 00001 7
00010E 5B20 B026 00128 8
000112 5020 B02E 00130 9
000116 5860 B032 00134 10
00011A 5A60 B036 00138 11
OOOllE 4E60 B03E 00140 12

13
000124 00000019 16 DATA
000128 OOOOOOOF 17
00012C OOOOOOOA 18 TEN
000130 19 RESULT
000134 OOOOOOOC 20 BINI
000138 0OOOO04E 21 B I N2
000140 22 DEC
000100 23

102 and a displacement of 2A for an effective address of
12C, which is the address of the symbol TEN.

The Shift Left Algebraic instruction is a little different.
All shift instructions have~the RS format, with the index
portion unused, but they stillmust specify a base register.
Even though the effective "address" is never used for a
storage reference, it is possible to make effective use of a
variable number or positions of shift by varying the con
tents of the base register. In this program, however, such is
not the case and we need a base register designation of zen).
We see that this was done. The effective address is therefore
just the displacement of 1. The remainder of the program
presents no new base register concepts.

As always, __ it is most important to distinguish between
what is done at assembly time and what is done at
execution time. The assembler, in the example at hand, has
filled in base register numbers where needed and has com
puted displacements. These base register numbers and
displacements become part of the actual instructions, as
listed down the left side of the assembly listing. In carrying
out the assembly operations, the assembler had to know
what base register we wished to use and what we planned to
put in it; this information we provided with the USING.

The assembler cannot load the base register for the
execution of our program, since that can be done only
when the program is executed. We therefore provided the
BALR instruction, which, at execution time, places the
address of the next instruction into the specified register.
The remainder of the program can now be carried out, with
effective addresses being developed as intended.

The assembler program is actually processed in several
separate phases. One of its functions is to determine the
length and location of each instruction, area, and constant.

STATEMENT

PRINT NOGEN
START 256
BALR 11 ,0
USING *,11
l 2,DATA
A 2,TEN
SLA 2,1
S 2,DATA+4
ST 2,RESULT
L 6,BINl
A 6,BIN2
CVD 6,DEC
EOJ
DC F'25'
DC F' 15 '
DC F'10'
OS F
DC F' 12'
DC F'78'
OS 0
END BEGIN

Figure 4-1. Listing of a program to show how the assembler calculates and supplies addresses of all storage operands. The processing
performed is not intended to be realistic.

52

While doing this, the assembler constructs a symbol table.
As shown in Figure 4-2, this lists for each symbol used in
the program: its length in bytes, either its value or location
(VALUE), the number of the statement in which it is
defined (DEFN) , and all statements in which it is
referenced. With the length and location of each instruction
and the base register information provided by the program
mer in the USING instruction, the assembler is able, in a
later phase, to calculate the base register and displacement
and to list these and the actual assembled addresses of all
operands as they appear in Figure 4-1.

In our program, we said with the START instruction
that the fust byte of the program should be assembled at
location 25610 = 10016 . Everything said so far has assumed
that the program will actually be loaded at 1 0Ot6. This is
not so. In the first place, this location is within the low area
of main storage that is occupied by the supervisor and other
parts of the control program, and could not be used for
program execution. Parenthetically, it should be explained
that START 256 is not a standard programming practice.
We have chosen it for the examples in the ftrst few chapters
of this book to cause our assemblies to begin at some
positive value, simply for illustrative purposes. The usual
practice is to specify a zero START, which -greatly simpli
ftes the programmer's chore of calculating addresses, a
necessity when debugging a program.

The second r,eason that our program will not be loaded
at location 10016 is that, regardless of the location we give
in the START statement, our assembled object program is
in relocatable form and it is not executable until processed
by the linkage editor. The linkage editor is an IBM service
program that is part of the operating or programming
support system.

The linkage editor assigns the actual starting address in
main storage for each object program in ajob input stream,
and edits these into executable programs. It uses infor
mation supplied by the assembler regarding the length of

the program, its name (given in the START statement,
PROGE in this case), the assembled locations of any
relocatable address constants, and other details necessary to
perform the relocation;

When the program is in executable form, all statements,
constants, reserved storage spaces, etc.-, remain in the same
relative positions as in the assembly listing. Nothing needs
to be changed to make the object program operate correctly
from the new location or, at a later time, from still another
location. All that is involved is the relocation factor.

Suppose the linkage editor assigns location 320016 as the
starting address. When the program has been loaded, it begins
with execution of the BALR instruction. Now, what is the
address of the next instruction after the BALR? The answer
is 3202. This value goes into register 11 and becomes the
base address. The displacements in the assembled instruc
tions have not changed, of course. The effective address in
the Load instruction is now 3202 + 22 = 3224. With the
new starting location, 3224 is exactly where DATA
appears. All other addresses are correctly computed as well,
including the "address" in the Shift, which is completely
unchanged since no base register is used.

It is also possible for the programmer by use of a control
card to tell the linkage editor which starting location to
assign. A complete relocation of the program after assembly
is thus a simple matter. In more complex program struc
tures, the linkage editor has more work to do than this
example might suggest, but it is nevertheless feasible to
execute programs from whatever storage locations may be
convenient and available under any particular set of
circumstances.

As we have noted, this simplicity of program relocation
was one of the reasons for providing base registers in
System/360.

The techniques of program relocation and the functions
of the linkage editor will be discussed in more detail in the
chapter on subroutines and program relocation.

CROSS-REFERENCE

SYMBOL LEN VALUE DEFN

BEGIN 00002 000100 00003 0023
BINl 00004 000134 00020 0010
BIN2 00004 000138 00021 0011
DATA 00004 000124 00016 0005 0008
DEC 00008 000140 00022 0012
PROGE 00001 000100 00002
RESULT 00004 000130 00019 0009
TEN 00004 00012C 00018 0006

NO STATEMENTS FLAGGED IN THIS ASSEMBLY

Figure 4-2. Symbol cross-reference table constructed and listed by the assembler for the assembly in Figure 4-1

Programming with Base Registers and the USING Instruction 53

MORE THAN ONE BASE REGISTER

The displacement in an instruction is limited to a positive
number in the range 0-409510 = O-FFF 16, since this is the
limit that can be expressed in an unsigned 12-bit number.
This means that an effective address cannot be less than the
base address or more than 4095 greater, when an index
register is not being used. If a program must reference a
range of addresses greater than 4095, the easiest and most
common approach in routine programming is to use more
than one base register.

It should be noted, however, that it takes a rather large
program segment to exhaust the range of displacements
using one base register. With average length instructions, it
takes a full pad of coding paper to use up 4096 bytes: It
will usually be desirable to break a program this large into
smaller segments anyway, so it will probably be extremely
rare in practice to need more than one base register because
of program length. Long sections of storage for data or
results are another matter. Frequently it may be advanta
geous to assign one base register to the program and
another to data. This is done in the last example in this
chapter.

For now, to establish some basic ideas, let us make up a
program that does use more than 4096 bytes for combined
data and program. We shall not actually write an illustrative
program that large, but we can simulate the effect of such a
size by using the ORG assembler instruction to advance the
location counter.

The partial program shown in Figure 4-3 was designed
with the sole purpose of illustrating base register ideas; the
"processing" is not intended to be meaningful. After the
usual START, we have a BALR to load base register 11
with the address of the next instruction. The USING
instruction is slightly different this time. Instead of using an
asterisk to denote the address of the frrst byte of the

following instruction, we give that instruction a symbolic
name (HERE) and use the symbol. This gives exactly the
same effect with respect to register 11, and permits us to
refer to the contents of 11 in terms of a symbol, which we
shall need for loading register 9. (The choice of register 9
was arbitrary.)

In loading the second base register, we cannot use a
BALR; we want register 9 to contain not the address of the
next instruction, but 4096 more than whatever went into
11. To accomplish this we use an address constant, named
BASE in this case, which is written with the address
HERE+4096. We see that the constant BASE has been
assembled as we instruCted: hexadecimal 1102 is 1000
greater than the value of the symbol HERE, and 100016
= 409610.

Base register 9 will thus be loaded with 110216 at
execution time. This information is given to the assembler
with a USING that has the address HERE+4096.

It is worthwhile noting which base register was used in
the Load instruction that loaded base register 9: we see that
the base register is 11 (which contains 102) and there is a
displacement of A (+10 decimal). The effective address is
thus 1 OC, which we see is indeed the address of the constant
BASE. It is important to realize that at the time register 9 is
being loaded, the only base register available is 11; the
effective address of the instruction that loads 9 therefore
cannot be more than 4096 greater than the contents of 11.
Thus the address constant BASE cannot be at the end of
the entire program, which would be more than 4096 bytes
away. We have chosen to place it at almost the beginning
and branch around it. Other placements are possible, so
long as they do not cause the assembler to try to use a
displacement in the Load instruction at HERE that is
negative or greater than 4095.

laC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

000100 1 PROGF ST ART 256
000100 05BO 2 BEGIN BAlR 11,0
000102 3 USING HERE,ll
000102 5890 BOOA 0010C 4 HERE l 9,BASE
001102 5 USING HERE+4096,9
000106 47FO BOOE 00110 6 BC 15,FIRST
00010A 0000
00010C 00001102 7 BASE DC A(HERE+4096J
000110 5820 BFFE 01100 8 FIRST l 2,DATA
0001l45A20 900E 01110 9 A 2,TEN
000118 47FO 9002 01104 10 BC 15,SECOND
001100 11 ORG *+4068
001100 0000007B 12 DATA DC F'123'
001104 5830 BFFE 01100 13 SECOND l 3, OAT A
001108 5A 30 900E 01110 14 A 3,TEN
OOllOC 47FO BOOE 00110 15 Be 15,FIRST
00 III 0 OOOOOOOA 16 TEN De f'10'
000100 17 END BEGIN

Figure 4-3. Listing of an incomplete program with an Origin (ORG) assembler instruction to simulate a length of over 4096 bytes, thus
requiring two base registers

54

As an example of an attempt to use a negative displace
ment, suppose we were to put the address constant BASE
at the very beginning of the program; between the START
and the BALR: then the displacement in the Load would
need to be -6, which is impossible.

Following the constant BASE, we have two instructions
that are meant to suggest the processing steps of the
program, and then a branch to an instruction near the end.
F or the sake of illustration, we want the program to look as
though it is more than 4096 bytes long. This we can simulate
by an ORG that, in this case, advances the location counter
by 4068. This arbitrary-appearing number was chosen to
put DATA at the end of a 4096-byte segment controlled by
base register 11, which means that the following instruc
tions and data are referenced by base register 9.

Let us now investigate how the assembler assigned base
registers and computed displacements.

The next instruction is a Branch on Condition with a
mask of 15, which indicates a branch on any condition, or
an unconditional branch. This branch to FIRST involves a
location under the control of base register 11; if base
register 9 were specified, the displacement would have to be

negative. The Load at FIRST refers to DATA. The base is
11, with a large displacement of FFE16 = 409410 , The Add
refers to a location that is more than 4096 bytes away from
the beginning of the program, so base register 11 cannot be
used. We see that 9 has been indicated, with a displacement
of E16 = 1410 , The following Branch on Condition references
a storage location 2 greater than what was placed in register
9, so register 9 is the base and the displacement is 002.

Down at SECOND, the base registers and displacements
for getting DATA and TEN are exactly as they were before;
these matters are unaffected by the location of the
instructions. The assembled Branch on Condition to FIRST
is precisely the same as the assembled Branch on Condition
that appeared earlier just before BASE.

The essential concept is that the assembler assigns
whatever base register is necessary to get a displacement less
than 4096. If the program has been written so that two or
more base registers have contents that satisfy this rule, the
assembler chooses . the one that leads to the smallest
displacement. Later we shall see an instance in which this
rule for choosing base registers is important.

Programming with Base Registers and the USING Instruction 55

SEPARATE BASE REGISTERS FOR INSTRUCTIONS
AND DATA

We have suggested that it will be rare for a program segment
to be so long as to require more than one base register. On
the other hand, it may be fairly common to want separate
base registers for instructions and data, even though the
instructions take far fewer than 4096 bytes. How this can
happen is illustrated in the following problem.

Suppose we have six records in storage, each record
consisting of 80 characters. The six records are in consecutive
storage locations; the first of the 480 bytes has the symbolic
address DATA. Within each record there are eight fields of
ten characters each, named FIELDl, FIELD2, etc. Each
field is in packed decimal format. We are required to add
FIELDI and FIELD2 and place the result in FIELD3. The
other fIVe fields are not used in this program. This proces
sing is to be done for each of the six records, using a loop.

Now the question is, how do we attack the loop? The
arithmetic will use decimal instructions, which have the SS
format and do not provide for use of an index register. We
could write instructions to modify the displacement of
every instruction that refers to the records, but this is very
poor form if there is a better way available.

The solution proposed here is to modify the base register
contents to pick up the records in succession, which means
that between loop repetitions we will add 80 to the base
register. But now we have a new problem. If only one base
register is used, how do we modify its contents and still get
a correct base for Branch instructions and for references to
program constants? The simplest answer is probably

obvious: use two base registers, the second of which refers
only to the data processed by the loop.

A program is shown in Figure 4-4. The loading of base
registers is much as it was in Figure 4-3, except that this
time register 8 is loaded with the address corresponding to
DATA, rather than with 4096 more than what register 11
contained. As a matter of fact, it turns out that register 11
contains 10216 , and register 8 contains 12C16 • This will
mean that the first byte of the area named DATA could be
obtained by adding a displacement of 2A to register 11, or
by adding a displacement of zero to register 8. As we noted,
the assembler picks the way that gives the smaller displace
ment. It is essential for us to be able to depend on this fact.

We see also that in this program the address constant for
loading register 8 has been placed 'at the end of the
instructions rather than in the instruction stream. This is
permissible as long as we are sure that it is not more than
4096 bytes away from the beginning of the program, which
it obviously is not.

It is assumed, for the purposes of this illustration of base
register ideas, that the data is provided by another program
segment and will be used later by still another prpgram. We
therefore provide space for the data with DS instructions
that allot space for the required number of characters but
do not assemble constants to be entered. The DS for
DATA, in fact, does even less than that: it provides a
reference point for the symbol, but does not even reserve
space since a zero is written for the duplication factor. Thus

LOC OBJECT CODE ADDRI ADDR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
000100 2 LOOPA START 256
000100 05BO 3 BEGIN BALRI 11 ,0
000102 4 USING *,11
000102 5880 BOLE 00120 5 LOOPI L ~;'BASF'
00012C 6 USiNG DATA,8
000106 0209 8014 8000 00140 0012C 7 LOOP2 MVC FIELD3,FIELDl
00010C FA99 8014 800A 00140 00136 8 AP FIELD3,FIELD2
000112 5A80 B022 00124 9 A 8,EIGHTY
000116 5980 B026 00128 10 C 8,TEST
OOOllA 4770 B004 00106 11 BNE LOOP2

12 EOJ
000120 0000012C 15 BASE DC A(DATA')
000124 00000050 16 EIGHTY DC F'80'
000128 0000030C 17 TE ST DC A(oATA+480)
00012' 18 DATA' OS OF
00012CfW 19 FIELDI OS CLlO
000136- 20 FIELD2 OS CLlO
000140 21 FIELD3 OS CLlO
00014A 22 FI ELD4 OS eLlO
000154 23 FIELDS OS CLlO
0001SE 24 FIELD6 OS CLlO
000168 25 FIEL07 OS CLlO
000172 26 F I ELD8 OS CLlO
000 l7C 27 OS 5CL80
000100 28 END BEGIN

Figure 4-4. Program with separate base registers for processing and data, showing how a base register can be used to provide indexing for
loop control

56

DATA and FIELD! b~th refer to the same byte. The point
of this approach is to have DATA for a name for the entire
480-character storage area, and still use names for the fields
within the first record. An alternative approach would be to
use DATA as the name of the first field, DATA + 10 for the
second, DATA + 20 for the third, etc., but the loss of
meaningful names would be a disadvantage. Another alter
native would be to omit the entry for DATA and use
FIELDI wherever DATA appears earlier. This would also
be a little less meaningful, perhaps. The fmal DS reserves
400 bytes of storage for the remaining five records.

The Move Characters in~truction at LOOP2 moves the
first field to the third field location. Reading across the
assembled instruction, which we note is in the SS format,
we see: the actual operation code is D2, the length code is
09, the base register for the fITst operand is 8, the
displacement for the first operand is 014, the base register
for the second operand is also 8, and the displacement for
the second operand is zero. The length code of 9 is correct
for a field of length 10; the assembler picked up the implied
length from the DS entry for FIELD3, and subtracted 1
from the length to get the length code. Checking the
address calculations, we see that a base address of 12C plus
a displacement of 014 give an effective address of 140,
which is correct for FIELD3. A base address of 12C and a
displacement of zero give the address of FIELD 1.

The Add Decimal instruction that follows does the
required addition. This instruction has two length codes,
both 9 in this case, for two fields of length 10. The
displacement of OOA, together with the base address of
12C, correctly lead to 136, the address of FIELD2. The
addressing of FIELD3 is as before.

Now we are ready to add 80 to the base register
associated with DATA and go back to process more records
if more remain. We add 80 to base register 8 and then
compare with an address constant to test for completion of
the loop. What should the test constant be? Since we
modify before testing, and since there are 480 characters in
the six records, we should stop repeating if at this point the
base register contains a number 480 greater than what it
was to start. It was originally the equivalent of the symbol
DATA, so the test value ought to be DATA + 480, as
shown. The Branch on Not Equal here is the extended
mnemonic for BC 7. If the branch is not executed, we are
fmished and the next instruction ends the job.

If the program were written to use only one base

register, we would be in trouble with the address of the
Branch instruction. The assembler would assume a certain
value for the base register and compute a displacement
accordingly. After modifying the base register contents, we
would no longer have the desired branch address.

It is of course true that we are modifying the contents of
base register 8 also, but we have carefully arranged that it is
not used as a base for anything besides DATA. No con
fusion is caused, therefore, because we have "cheated" by
changing the contents of a base register from what we
promised the assember would be there. What we told the
assembler will lead correctly to the first record processed;
by the time the contents are actually changed during
execution, the assembler will no longer be on the scene to
know that anything happened.

In practice it would normally be necessary to process
many blocks of six records, not just one. In that case we
would have to get register 8 back to its starting value. This
is done simply by re-executing the Load instruction at
LOOPl.

If a program like this were to be executed, it is perhaps
obvious that something would have to be done during
loading to take care of the address constants at BASE and
TEST. It would clearly not be enough for the linkage editor
just to assign the initial program loading location. This
matter is properly handled by an automatic flagging of all
address constants in the relocation dictionary produced by
the assembler, and by suitable modifications performed by
the linkage editor.

In order to illustrate one last facet, suppose that there
were some compelling reason to place additional instruc
tions after DATA. This could be done by a Branch to them.
Suppose that within these additional instructions there were
Branches to locations within the new group. What would the
base register situation be? With the size of program and data
shown, either base register 11 or 8 could supply a displace
ment of acceptable size; the assembler could pick the one
leading to the smaller displacement, register 8. But the
contents of 8 change as the loop is executed; how can we tell
the assembler that 11 is wanted, not 8?

The answer is the DROP instruction, in which we would
say DROP 8 at the beginning of the new group of
instructions. This says to the assembler that general purpose
register 8 may no longer be used as a base register. The only
one left is then 11, so it is the one used, as desired.

Programming with Base Registers and the USING Instruction 57

QUESTIONS AND EXERCISES

Consider the following programs. Note that some of the 4. Assume that the program, when loaded for execution, is
program statements have been omitted from the listings. located starting at 320016 instead of 20016 . In the spaces
The locations assigned to each instruction, constant, and provided, list:
area are listed in hexadecimal, as in all program listings. The a. The locations into which each instruction, area, and
locations are such that you should have no difficulty with constant (that is, each statement) is loaded ..
hexadecimal arithmetic. Questions 1 to 4 refer to Figure 4-5. b. The value placed in register 11 at execution time.
1. In the program in Figure 4-5, c. The effective address computed at execution time for

a. What instruction informs the assembler that registe:::;r:.--:e=c,:h~e:::.:n~c;ir:.:c~le:.:d:..;0::Jp~e::::;r,:;:;an~.:.-.._~
11 is to be used as a base register, and tells the assembler 5. Consi er t e program in ~ __ ,.,...-z:;:

what value it must assume to be in that base register? provided, list:
b. What instruction causes register 11 to be loaded with a. The symbol table prepared by the assembler (symbol

the base address at execution time? and location only).
2. In the spaces provided in the diagram, b. The contents of base registers 9, 10, and 11 assumed

a. Write the value the assembler assumes to be in base by the assembler.
register 11. c. The base register and displacement for each encircled

b. Using the symbol table and answer 2a, write the base operand.
register and displacement appearing in the object instruc- d. The values actually placed in registers 9, 10, and 11 at
tion for each encircled operand. execution time, assuming the program is loaded at 100016 .

3. Using the specified base register and displacement, write e. The location of each statement at execution time.
(in the spaces provided) the effective address developed f. The effective address computed at execution time for
during assembly for each encircled operand. each encircled operand.

LOCATION
OF

STATEMENT

PROGG START 512

BEGIN BALR 11,0

USING *,11

L ~ 000202

A 2(liD 000206

S 2~ 000234

ST 2@SULD 000238

L 6([iliD 000252

DATA DC F '25" 000304

DC F'15' 000308

TEN DC F'10' 000324

RESULT DS F 000328

BIN1 DC F'12' 000344

END BEGIN

*Base and displacement remaIn the same as durUlg .s:.embl} .

Figure 4-5. Program for questions 1 to 4

58

During assembly

1\

STORAGE OPERAND

Base Displace-
Reg. ment Address

- -- ---

During execution with

program loaded at 320016
II

LOCATION ADDRESS
OF OF

STATEMENT STORAGE
OPERAND· VALUE LOADED IN

_------:::::::::'1 BASE REGISTER 11

SYMBOL LENGTH VALUE

BEGIN 02 000200

BIN1 04 000344

DATA 04 000304

RESULT

TEl'. 04

000328

000324

LOCATION
OF

STATEMENT

PROGH START 0

BEGIN BALR 11,0 000000

USING FIRST ,11

FIRST Be 15,SKIP 000002

DATA De F'3472' 000008

BASEl De A(FIRST+40961 000024

BASE2 De A(FIRST+8192) 000028

SKIP L 1cx:t§D 000104

USING FIRST+4096,10

L 9QASED 000108

USING FIRST+8192,9

Be 1~ 001504

LOOP A 4<@D 001898

LOOPB S 5,DATA 002204

Be ~ 002508

eK8 Be 8(hOOPl[) 002904
END BEGIN

*Base and displacement remain the same as during assembly.

Figure 4-6. Program for question 5

During assembly
1'1

STORAGE OPERAND

Base Displace-
Reg. ment Address

-- --- ---

-- --- ---

-- --- ---

-- --- ---

-- --- ---

-- --- ---

During execution with
program loaded at 100016

1'1

LOCATION ADDRESS
OF OF

STATEMENT STORAGE
OPERAND*

11

10

VALUE LOADED INTO
BASE REGISTERS

During During
assembly execution
(assumed) (actual)

SYMBOL VALUE

Programming with Base Registers and the USING Instruction 59

Chapter 5: Decimal Arithmetic

The decimal instruction set is an optional feature of
System/360, but one that most users elect. Besides making
it possible to do arithmetic in the more familiar decimal,
system, the decimal instruction set includes instructions for
editing data, that is, preparing data for printing by the
insertion of characters such as commas, periods, and dollar
signs. The decimal instruction set permits operations on,
variable length data since the operations are performed in
storage areas rather than in registers. It includes the
following instructions:

Add Decimal
Compare Decimal
Divide Decimal
Edit
Edit and Mark
Multiply Decimal
Subtract Decimal
Zero and Add
The student will find a detailed description of the basic

operation of these instructions in the System/360 Principles
of Operation. This chapter will provide examples of their
use in various problem situations and will attempt to show
how the programmer can make them a working part of his
strategy.

Data operated upon by instructions in the decimal set
must be in one of two forms, packed or zoned, depending
on the instruction. As a generalization, we can say that the
packed format is required for arithmetic and the zoned for
input/output. The two formats are shown in Figure 5-1.

Byte I I Byte Byte
I I I I

lr-D-i9-i-t"'"TI-D-i9-it--'-, D-i-9-it-'r-~ ~~-l Digit I Digit I Digit I Digit I Sign I

Byte I Byte Byte

I I I
,-\ z-o-n-e-r-\-Di-9-it--rl-z-on-e-'I-~ __ -' Digit \zone I Digit I Sign I Digit I
Figure 5-1. Formats of packed and zoned decimal numbers

In the packed format, two decimal digits are placed in
each byte except the rightmost of the field, which contains
a digit and the sign of the entire number. Digits and sign
occupy four bits each. The decimal digits 0-9 have the
binary codes 0000-1001. The codes 1010-1111 are not
valid as digits. In the sign position, the code combinations

60

1010, 11 00, 111 0, and 1111 are taken to mean plus, and
1011 and 1101 are recognized as minus. When a sign is
generated as a part of an arithmetic result, a plus is 1100
and a minus is 1101. As mentioned before, all reference to
binary codes in this book is to System/360 EBCDIC unless
another is specified.

In the zoned format the rightmost four bits of a byte are
called the numeric portion of the byte and contain a digit.
The leftmost four bits are called the zone and contain
either a zone code or, in the case of the rightmost byte, the
sign of the number. The codes for signs are treated as
described for the packed format. The code for all zones is
1111.

Decimal instructions have precise requirements that
operands be in packed or zoned format. The Pack and
Unpack instructions, standard instructions of the system,
are available for converting from one form to another. The
Move with Offset instruction, another of the standard
instructions, is often used for shifting factors used or
developed in decimal arithmetic operations. Instructions for
converting from binary to packed and from packed to
binary are also part of the standard instruction set. We shall
see examples of all of these operations later.

Decimal instructions use the SS (Storage-to-Storage)
format. The machine format is:

lop Code I Ll I L2 I 81 I D1 I 82 I D2 I
In assembler format, as written in the source program, the
sequence of an SS instruction is:

Op code D1(L1 ,B1),D2(L2,B2)

There are two addresses, both of course referring to core
storage. Each address is formed from a base register con
tents and a displacement. The address always refers to the
leftmost byte of an operand.

For each operand there is a separate length in most
cases. In the machine instruction, the length code may vary
between 0000 and 1111, or zero and 15. These correspond
to lengths of one to 16. In other words, the actual length is
one greater than what appears in the length code of the
object program. In assembler language programming,
lengths will quite often be implicit in the data definitions,
but when we do write an explicit length, it is the, actual
length. The generation of the proper code in the machine
instruction (one less than whatever we write) is the
function of the assembler.

With these preliminaries in mind, let us turn to an
example.

ADDITION AND SUBTRACTION IN DECIMAL

Let us take the fITst example used in the chapter on
fixed-point arithmetic and write it with decimal arithmetic.
The application is an inventory updating. We were given an
old on-hand (OLDOH), a number received (RECPT), and a
number issued (ISSUE); we were to compute the new
on-hand (NEWOH). For this program we shall assume that
all data entries are already in packed format and are four
bytes long. Four bytes can contain, in packed format, seven
decimal digits and the sign.

In Figure 5-2 let us look first at the data definitions. The
DC instructions for OLDOH, RECPT, and ISSUE and the
DS for NEWOH all have operands that start with PL4. The
P stands for packed format, and the L4 for a length of 4.
Lengths are always in bytes, never digits. This is our fITst
contact with a length modifier in a DC instruction. Here,
we are specifying that the constants must be four bytes
long. If we had omitted the length, the constant generated
by the assembler would have been as long as needed to hold
the data value we wrote, in this case one byte. (Length
modifiers are permitted for other types of data, too.)

Looking at the assembly listing in Figure 5-3, we see
that the DC entries have resulted in four-byte constants.
In each case,with the data shown, there are six zeros,
followed by a digit, followed by a hexadecimal C (binary
1100), which signifies a plus sign in EBCDIC.

Turning back to the instructions of the program, we
see the familiar PRINT, ST ART, BALR, and USING
instructions. Note that the ST ART instruction specifies
zero. This is the usual programming practice at most
computer installations, and we will follow it in this book
from now on. The START instruction simply tells the
assembler where to begin the program during assembly. The
linkage editor will assign the actual starting address later,
that is, the address in core storage at which the program
will be located during execution.

The first processing instruction is a new one, Move
Characters (MVC). This is an SS format instruction of a
slightly different sort: it moves from storage to storage, but

LaC OBJEC T CODE AODR1 AODR2 STMT SOURCE

1
000000 2 STOCKI
000000 05BO 3 BEGIN
000002 4
000002 0203 B020 B014 00022 00016 5
000008 FA33 B020 B018 00022 OOOlA 6
OOOOOE FB33 B020 BOIC 00022 OOOlE 7

8
000016 0000009C II OLDOH
OOOOlA 0000004C 12 RECPT
OOOOlE 0000006C 13 ISSUE
000022 14 NEWOH
000000 15

PROGRAM srt:Jc.K .t.

Figure 5-2. An assembler language program to perform a simple
calculation in arithmetic, using the System/360 decimal
instruction set

there is only one length, because the "sending" and
"receiving" fields must be of the same length. That length
may be from one to 256 bytes. Looking at the assembled
instruction, we see that a length code of 3 has been
supplied by the assembler; this is the correct code for a
length of four bytes. The length of the operands was
implied by the data definitions. It is also possible, and
frequently necessary, to write explicit lengths to override
what the assembler would infer.

The generation of an address from the base register
contents and the displacement is as before: for instance, for
OLDOH the base register contains 002, the displacement is
014; the sum of these is 016 which we see is the address for
OLDOH.

STATEMENT

PRINT NOGEN
START a
BALR 1l,0
US ING *,11
MVC NEWOH,OLOOH
AP NEWOH,RECPT
SP NEWOH, ISSUE
EOJ
DC PL4 1 9'
DC PL4 1 4 1

DC PL4'6'
OS Pl4
END BEGIN

Figure 5-3. Assembly listing of the decimal arithmetic program in Figure 5-2

Decimal Arithmetic 61

The purpose of the Move Characters instruction is to get
the old on-hand quantity into a location where we can
perform arithmetic without disturbing the original
quantity. The decimal instructions make no use of the
general registers (except, of course, to specify the base), so
we must provide storage locations for all data. We do not
wish to destroy the old on-hand, so we must arrange for the
arithmetic results to go somewhere else. In this case, the
obvious place is NEWOH, where we want the eventual
result anyway. In other problems, as we shall see, it is often
necessary to provide temporary working storage.

The Add Decimal (AP, for Add Packed) instruction adds
the quantity received to the old on-hand, which by now is
in NEWOH. Note that the result of an arithmetic operation
is always stored in the first operand location. The two fields
in an Add Decimal instruction need not be the same length,
since there are two length codes in the instruction. Here,

62

they are the same, as it happens. The Subtract Decimal (SP)
instruction deducts the quantity issued.

There is no need for something equivalent to a Store
instruction; every instruction already involves two storage
addresses, one of which receives the result.

The output in Figure 5-4 shows that the result has been
correctly computed.

0000009C 0000004C 0000006C 0000007C

Figure 5-4. Output of the program of Figure 5-3, showing OLDOH,
RECPT, ISSUE, AND NEWOH, in that order

DECIMAL MULTIPLICATION

F or a simple example of decimal multiplication, let us Mite
a program for the computation of a new principal amount.

We are given a principal (PRINC), here taken to be four
bytes, and an interest factor (INT), two bytes; we are to
compute the new principal amount after adding in the
year's interest. The interest rate of 3% is expressed as the
factor 1.03, so that a single multiplication does the whole
job. A program is shown in Figure 5-5.

The Multiply Decimal (MP) instruction takes the second
operand to be the multiplier; the ftrst operand initially
contains the multiplicand, and at the end of the operation
contains the product. However, we cannot begin with a
multiply instruction specifying PRINC as the multiplicand,
as we might be inclined, because extra space is required.
The first operand is required to have at least as many
high-order zeros as the size of the multiplier fteld. We need,
therefore, to move the principal to a working storage area
having extra positions at the left. These extra positions
must be cleared to zero before the multiplication starts.

The Zero and Add (ZAP) does just what we need. The
effect of the instruction is to clear the first operand
(pROD, in this case) to zero, then add the second operand
(PRINC) to it. PROD is two bytes longer than PRINC;
these extra four digit positions will be clear~d to zeros
before PRINC is added in. This provides the zeros needed
to satisfy the multiplication rule.

Now we multiply. With the sample data shown, the
result in PROD will be 00000256367C, as shown in the
comments fteld. We were regarding. 2489 as meaning
$24.89, and 103 as meaning 1.03, so there are four places
to the right of the understood decinial point in the product,
which we therefore regard as 0000025.6367 +. We would
now like to round this' off to $25.64. This can be done in a
number of ways. Here we simply add a constant (ROUND)
properly set up to add a 5 into the second place from the

right. The second operand in an Add Decimal instruction is
permitted to be shorter than the ftrst (which holds the
result). When this is done, any carries that occur are
properly propagated.

We are now ready to discard the, two digits at the right
end of the product. But this is not quite as simple as just
not moving them to PRINC, because if we did that, PRINC
would not be a legal operand in any subsequent arithmetic
operation, since it would not have a sign. Before moving the
result back to PRINC, therefore, we must move the sign
from where it is to the byte just to the left. This we can do
with a Move Numeric (MVN) instruction, which transmits
only the numeric portions of the bytes. The instruction
says: Take the numeric portion of the byte at PROD+5
(which is the rightmost byte of the PROD, and contains the
sign) and move it to the byte at PROD+4 (which is the byte
to the left and will be the rightmost byte of PRINC after
the next instruction); the fteld to be moved is one byte
long. The length for this instruction cannot be left to the
assembler; the implied length here would be 6 (the length
of PROD), which would destroy the result. The Move
Numeric instruction has only one length code, so we need
give only one explicit length.

Finally, we are ready to move the result to the fteld
where it is required to be at the end of the program,
PRINC .. Remember that PROD is six bytes long. The
leftmost byte contains two zeros, we assume, and the
maximum size of the result is taken to be seven digits. The
validity of such an assumption as always, is the responsi
bility of the programmer. The rightmost byte of PROD
contains a digit and sign that we now wish to drop. To
drop the leftmost byte, we Mite the address as PROD+l.
To drop the rightmost, we need a length of 4, which
happens to be the implied length of PRINC, so no explicit
length is necessary.

LOC OBJECT CODE ADDRI ADDR2 STMT SOURCE STATEMENT

000000
000000 05BO
000002

000002 F853 B026 B020 00028 00022
000008 FC51 B026 B024 00028 00026
OOOOOE FA51 B026 B02C 00028 0002E
000014 0100 B02A B02B 0002C 00020

00001A 0203 B020 B027 00022 00029

000022 0002489C
000026 103C
000028
00002E 050C
000000

1
2 INTC
3 BEGIN
4

5 *
6 *
7 *
8 *
9

10
11
12
13 *
14
15 *
16
19 PRI NC
20 I NT
21 PROD
22 ROUND
23

PRINT NOGEN
ST ART 0
BALR 11,0
USING *,11

ZAP PROO,PRINC
MP PROO,INT
AP PROD,ROUND
MVN PROD+4{lJ,PROD+5

MVC PRINC,PROD+l

EOJ
DC PL4'2489'
DC PL2' 103'
OS PL6
DC PL2' 50'
END BEGIN

NUMBERS BELOW SHOW CONTENTS
OF PROD AFTER INSTR IS EXECUTED
C IS PLUS SIGN IN PACKED FORMAT

00 00 00 02 48 9C
00 00 02 56 36 1e
00 00 02 56 41 7C
00 00 02 56 4C 1C

CONTENTS OF PRINC WILL BE
00 02 56 4C

Figure 5-5. Listing of a program that performs decimal multiplication. Step-by-step results to be expected during execution are shown in the
comments field.

Decimal Arithmetic 63

DECIMAL DIVISION

Some of the operations in working with the decimal
instruction set are different enough from similar operations
in other machines that it may be well to pause and consider
them in somewhat more detail than we have devoted to
other topics. Division is one such operation; Move instruc
tions, used as the equivalent of shifting and considered later
in the section on shifting of decimal fields, is another.

The Divide Decimal (DP) instruction is in the SS format.
The first operand is the dividend (the number divided into),
the second the divisor (the number divided by). After the
operation is completed, the first operand field holds the
quotient (at the left) and the remainder (at the right). The
remainder is the same length as the divisor. Let us see how
this description works out in an example.

Suppose we begin with the symbolic locations DIVID
and DIVIS as follows:

DIVIDbefore 0 0 0 0 0 4 2 4 6 +
DIVIS 0 3 1 +

We have indicated DIVID as a "before" value, because after
the division the same field will contain both the quotient
and the remainder. All operands are in packed format, as
with other decimal arithmetic operations. After executing
the instruction:

DP DIVID,DIVIS

the contents of DIVIS would be unchanged; the contents of
DIVID would be:

DIVIDafter 00 1 3 6 + 0 3 0 +

This means that 4246 divided by 31 in this way gives a
quotient of 136 and a remainder of 30. The divisor was two
bytes, so the remainder is two bytes. The quotient takes up
the remaining space in the first operand field.

The question of the lengths of the various fields can be
answered with a useful rule:

Number of bytes in dividend = number of bytes
in divisor + number of bytes in quotient

It is perhaps most common to know the number of
bytes in the divisor and the number desired in the quotient,
the question being how much space to allow in the dividend
in order to get the specified size of the quotient. If two of
the three lengths are known, the formula can be used to get
the length of the third.

Note that the formula is stated in terms of the number
of bytes, not the number of digits. The reason is that the
first operand field contains only one sign at the beginning,
when it is the dividend, but two afterward, when it contains
both quotient and remainder. This change would invalidate

64

a rule stated in terms of digits.
A very similar rule gives the relationship among decimal

points. If we agree that by "decimal places" we mean the
number of digits to the right of an assumed decimal point,
the rule is:

Number of places in dividend = number of places
in divisor + number of places in quotient

In the example given above, we assume that all quantities
are integers, that is, they have no decimal places. The rule
still holds, although in its most elementary form:

0=0+0

Let us see what the result would be if we were to arrange
the dividend of the example so that it has one decimal place:

DIVIDbefore 0 0 0 0 4 2 4 6 0 +

In other words, we now view the dividend as 4246.0. The
result is:

DIVID after 0 1 3 6 9 + 0 2 1 +

The rule says that the quotient should have one decimal
place: the dividend has one and the divisor has zero. The
quotient must therefore be interpreted as meaning 136.9.
(And if anything has to be done with the remainder, it
should be taken as meaning 2.1.)

Suppose the dividend were shifted one more place to the
left:

DIVIDbefore 0 0 0 4 2 4 6 0 0 +
DIVID after 1 3 6 9 6 + 0 2 4 +

This result should be read as 136.96.
What would happen if we tried to set up the dividend

with yet one more shift to the left? There is room in the
dividend - but there is no more space in the quotient field.
This constitutes a divide exception, which occurs whenever
the quotient is too large to fit in the field available to it. An
interrupt occurs.

It is possible to check for the possibility of a divide
exception, given sample numbers. To do this, the leftmost
digit position of the divisor is aligned with the second digit
position from the left of the dividend. When the divisor, so
aligned, is less than or equal to the dividend, a divide
exception will occur. Take the situation suggested:

DIVIDbefore 0 0 4 2 4 6 0 0 0 +
DIVIS 0 3 1 +

This is the alignment described by the rule. As aligned, the
divisor is smaller. We saw before that there would not be
enough room for the quotient.

This question does depend on the particular numbers
involved, of course. Suppose the quantities were aligned the
same way but that the dividend were 2246 instead of 4246:

DIVIDbefore 0 0 2 2 4 6 0 0 0 +
DIVIS 0 3 1 +

This is entirely acceptable.

To be completely confident that a divide exception
cannot occur, we have to know the maximum possible size of
the dividend and the minimum possible size of the divisor,
or we must know the maximum size of the quotient.

Further examples of decimal division will be given after
we have studied shifting, which is often needed to arrange the
dividend so as to give the necessary number of decimal
places.

Decimal Arithmetic 65

SHIFTING OF DECIMAL FIELDS

Shifting as such is not provided in System/360 decimal
operations. As in other variable-field-length computers, the
equivalent of shifting is performed by appropriate combin
ations of data movement instructions.

The matter is made somewhat more complex by the
factor of packed formats, with two digits per byte and with
the special status of the sign position. This is a small price
to pay for the increased storage economy of the two-digits
per-byte arrangement.

It is also necessary to exercise caution when overlapping
fields are to be manipulated, in order to be sure that no
data is destroyed. This is another occasion where it is
absolutely essential to remember that all operands are
addressed by the leftmost byte.

Shifting to the Right

Let us begin with the simplest type of shift: a decimal right
shift of an even number of places. Suppose that we have a
five-byte, nine-digit number in SOURCE; we are to move it
to a five-byte field named DEST with the last two digits
dropped and two zeros at the left. We can do this two
ways: with or without disturbing the original contents of
SOURCE. Let us do it first without disturbing them.

Suppose that the two fields originally contain:

SOURCE DEST
12 34 56 78 9S 55 55 55 55 55

The S stands for a plus or minus sign, whichever it might
be. The instructions for accomplishing the shift could be as
follows, where we have also shown the contents of the two
fields after the execution of each instruction:

SOURCE DEST
MVC

DEST+1(4),SOURCE 12 34 56 78 9S 55 12 34 56 78
MVN

DEST+4(1),SOURCE+4 12 34 56 78 9S 55 12 34 56 7S
MVC

DEST(l),ZERO 12 34 56 78 9S 00 12 34 56 7S

In the first Move Characters instruction, an explicit
length of 4 is stated; this length applies to both fields. With
the first operand address being DEST+ 1, the four bytes of
the destination are the rightmost four. The second operand
is given simply as SOURCE, so the four bytes there are the
leftmost. The last two digits (one byte) have been dropped.

But the sign has been dropped too, in the process. We
accordingly use a Move Numeric instruction to attach it to
the shifted number. This must be done with an explicit
length of one, to avoid disturbing any of the digits of
DEST. Both addresses must be written with the "+4" to
pick out the proper single character. Finally, we move one
byte of a constant named ZERO (not shown), which
contains zeros, to the first byte of DEST. This clears to
zero whatever may have been there before.

66

If the contents of SOURCE are no longer needed in their
original form, the following sequence is a bit shorter.

SOURCE DEST
MVN

SOURCE+3(1),SOURCE+4 12 34 56 7S 9S 55 55 55 55 55
ZAP
DEST,SOURCE(4) 12 34 56 7S 9S 00 12 34 56 7S

The Move Numeric moves the sign to the byte which will
contain the sign in the eventual result. The Zero and Add
picks up four bytes of SOURCE and adds them to DEST
after clearing DEST to zeros. The Zero and Add has two
length codes. For DEST we use the implied length of 5; for
SOURCE it is necessary to give an explicit length in order
to drop the last two digits.

Finally, suppose that for some reason it is necessary to
leave the shifted result in SOURCE, without resorting to
the expedient of simply moving the sign and appending
zeros at the left.

MVN SOURCE+3(l),SOURCE+4
ZAP SOURCE,SOURCE(4)

SOURCE
12 34 56 7S 9S
00 12 34 56 7S

The sign movement is as before. In the Zero and Add,
the second operand is given as SOURCE(4), which means a
four-byte field the leftmost byte of which has the address
SOURCE; this is just 12 34 56 7S. The frrst operand is
simply SOURCE, with its implied length of 5, which means
the whole field.

It is important to know that this type of overlap is
permitted when the frrst operand field is at least as long as the
second operand, but not when it is too short to contain all
significant digits of the second operand. A little study shows
that a violation of this rule would result in destroying bytes of
the second operand before they have been moved.

Let us now turn to a slightly more complex shift, one
that involves an odd number of places. This requires the use
of a special instruction designed for the purpose, the Move
with Offset. The action of this instruction can be described
as follows. The sign of the frrst operand is not disturbed;
the second operand is placed to the left and adjacent to the
four low-order bits (the sign bits) of the frrst operand. Any
unused high-order digit positions in the frrst operand are
filled with zeros.

Looking at an example, take the fields described in the
previous illustration, but suppose that the shift must be
three positions instead of two.

SOURCE DEST
MVO

DEST,SOURCE(3) 12 34 56 78 9S 00 01 23 45 65
MVN

DEST+4(1),SOURCE+4 12 34 56 78 9S 00 01 23 45 6S

In the Move with Offset, the second operand is given as
SOURCE(3), which picks up a three-byte field starting at

(8170)

the left, namely, the bytes containing 12 34 56. The first
operand is DEST, wiL1. its L'l1plied length of 5. The digits
12 34 56 are moved to DEST with an offset of four bits,
or one digit, leaving 00 01 23 45 65 in DEST; the right
most 5 is the one that was there to begin with. A fmal Move
Numeric attaches the source sigri to the destination field._

If the shift is required to leave the result in SOURCE,
only one instruction is needed, since the Move with Offset
instruction has no effect on the sign of the fITst operand,
and the left end of the receiving field is filled with zeros.

SOURCE
MVO SOURCE,SOURCE(3) 00 01 23 45 6S

The overlapping fields here cause no trouble, since again the
'movement is to the right of the original contents. (Actually,
overlap of any type is permitted; it is the programmer's
responsibility to make sure that the result is meaningful.)

Shifting to the Left

A shift to the left presents slightly different problems. This
time suppose that we have a source field of three bytes and
a destination of five.

Before SOURCE DEST
12 34 5S 99 99 99 99 99

Let us take our problem, to move the number at SOURCE
to DEST, with four zeros to the right at DEST, and with
DEST left ready to do arithmetic. An acceptable sequence
of instructions is shown below.

MVC DEST(3),SOURCE
MVC DEST+3(2),ZEROS
MVN DEST+4(1),DEST+2
MVN DEST+2(1),ZEROS

SOURCE
12 34 5S
12 34 5S
12 34 5S
12 34 5S

DEST
12 34 5S 99 99
12 34 5S 00 00
12 34 5S 00 OS
12 34 50 00 OS

The first Move Characters needs an explicit length on
DEST; otherwise, the length would, improperly for our
problem, be interpreted from DEST as 5. The last two
bytes of DEST are unaffected by the fITst Move; a second
clears them. A Move Numeric transfers the sign, and a
second Move Numeric clears the now extraneous sign that
went with the source data on the fITst Move Characters.

(8/70)

Another way to clear the extraneous sign is available,
using the And Immediate instruction. "Anding" two quan~
tities gives a result that has a one bit wherever both
operands had l's, and a zero elsewhere. For instance, if we
"And" 1100 and 1010, the result is 1000; only in the fust
bit position did both operands have ones. In the And
Immediate instruction (NI) , both operands are exactly eight
bits long. One of them is given by the byte specified by the
address; the other is contained in the instruction itself
(which is the reason for the term "immediate"). The result
replaces the byte specified in storage.

In the example at hand, we wish to leave the fITst four
bits of the byte at DEST+2 just as they were; this can be
done by placing ones in the corresponding positions in the
part of the instruction that will be "And-ed". (This is
usually called the mask.) We wish to make the right four
bits of DEST+2 zero, whatever they were before; this can
be done by placing zeros in that part of the mask. The
mask, in short, should be 1111 0000, ~xpressed in binary.
To write the instruction, we can either convert this to its
decimal equivalent 240, or, better, write it in hexadecimal,
X'FO'. In other words, we can replace the last instruction
with either of the following:

NI DEST+2,240
NI DEST+2,X'FO'

Finally, consider a shift to the left of an odd number of
places. For an example, take the data of the preceding
illustration, but suppose there are to be three zeros at the
right instead of four.

Before
MVC DEST(3),SOURCE
MVC DEST+3(2),ZEROS
MVN DEST+4(1),DEST+ 2
NI DEST+2,X'FO'
MVO DEST(4),DEST(3)

SOURCE
12 34 5S
12 34 5S
12 34 5S
12 34 5S
12 34 5S
12 34 5S

DEST
99 99 99 99 99
12 34 5S 99 99
12 34 5S 00 00
12 34 5S 00 OS
12 34 50 00 OS
01 23 45 00 OS

The first four instructions are just the same as in the
previous example, except that the And Immediate is substi
tuted for the Move Numeric. The final instruction now is a
Move with Offset that shifts one digit position to the right.

Decimal Arithmetic 67

DECIMAL DIVISION WITH SHIFTING

We are now prepared to approach a realistic problem in
decimal division.

Suppose that in a four-byte field named SUM we have
the total of the number of hours worked by all the
employees in a factory, given to tenths of an hour. In
NUMBER we have the number of employees included in
the sum; this is a two-byte number. We are to calculate the
average workweek, to tenths of an hour, rounded, and place
it in a two-byte location named AVERAG.

We begin the analysis of the problem knowing that the
dividend (SUM) has one decimal place to start, and the
divisor (NUMBER) has none. If we set up the division this
way, we would get a quotient having one place; this would
not permit rounding. Evidently we shall have to allow extra
places to the right. One more would be sufficient, but this
would involve a shift of an odd number of places; it would
be simpler for us and faster in the machine to make a shift
of two places and simply ignore the extra digit. The
dividend therefore should be set up like this:

XX XX XX XO 0+

The X's stand for any digits.
Now we turn to the rule stating that the number of

bytes in the dividend is equal to the number of bytes in the
divisor plus the number of bytes in the quotient. We know
that we. have two bytes in the divisor as it stands. The
quotient need be only three: there can be no more than
two digits before the decimal point, there will be three after
the decimal point, and there will be a sign. (There will be

three decimal places in the quotient because there are three
in the dividend and none in the divisor.) The dividend
evidently should be five bytes. As it happens - which will
by no means always be the case - that is just how long it
will be as the result of the shifting we decided upon.

With this much background, let us now look at the
program shown in Figure 5-6. We assume that it is permis
sible to destroy the original contents of SUM; if this were
not so, it would be a matter of one extra instruction to
move the contents of SUM to a working storage location.

Notice in the list of constants at the end of the program
that a one-byte constant named PAD has been established
just after, and therefore to the right of, SUM. Now, instead
of actually moving the contents of SUM in order to
accomplish a shift, we simply extend the field by one byte.
This is the function of the first two instructions. We have
assumed, reasonably enough, that the sum is always posi
tive, so a plus sign is moved with the first Move Characters,
and the original sign is simply erased with the And
Immediate.

The Divide Decimal might seem to carry the possibility
of a divide exception. We must fall back on a knowledge of
the data, which is the eventual foundation of any intelligent
programming. We simply observe that the average hours
worked would not be as great as 100 hours - and anything
less can be contained in the space provided.

Rounding is accomplished by adding 5 in the proper
position. We move the sign to where it is needed, and fmally
transfer the result to the specified location in storage.

LOC OBJECT CODE ADORI ADDR2 STMT SOURCE STATEMENT

000000
000000 OSBO
000002

000002 0200 B028 B02F 0002A 00031
000008 94FO B021 00029
OOOOOC FD41 B024 B029 00026 0002B
000012 FA21 B024 B020 00026 0002F
000018 0100 B025 B026 00021 00028
OOOOlE 0201 B02B B024 00020 00026

000026 0193648C
00002A
00002B 481C
000020
00002F 050e
000031 oe
000000

1
2 AVG
3 BEGIN
4
S *
6 *
1 *
8
9

10
11
12
13
14
11 SUM
18 PAD
19 NUMBER
20 AVERAG
21 ROUND
22 ZERO
23

PRINT NOGEN
START 0
BALR lltO
US ING *,11

NUMBERS BELOW SHOW CONTENTS
OF SUM AFTER INSTR IS EXECUTED

Mve SUM+411J.ZERO 01 93 64 8e oe
NI SUM+3,X'FO' 01 93 64 80 OC
DP SUM(S) ,NUMBER 39 16 3C 21 ge
AP SUM(3),ROUND 39 81 3e 21 9C
MVN SUM+UIJ.SUM+2 39 8e 3e 21 ge
MVC AVERAG, SUM AVERAG WILL BE 39 8C
EOJ
DC PL4'0193648'
OS PLl
DC PL2'481'
OS PL2
DC PL2'SO'
DC PL1' 0'
END BEGIN

Figure 5-6. Assembled program showing decimal division and "shifting". Step-by-step results to be expected during execution are included
in the comments field.

68

FORMAT AND BASE CONVERSIONS

It is often necessary to convert from zoned to packed
format and vice versa, and also to convert from binary to
decimal and vice versa. In this section, we shall examine a
program that has been constructed as an exercise in mani
pulating the form of data. For practice purposes, some new
instructions are introduced for these maneuvers, which
might be accomplished more simply in a realistic situation.

We are given a fullword named REG, in binary format.
Actual data for the three-byte field named PREM is read in
directly from an input card on which the sign is in the
high-order pOSition, instead of the low-order. That is, a
positive number was punched with a 12 zone over the
leftmost digit, and a minus number was punched with an 11
zone over the leftmost digit. We are required to place the
sum of REG and PREM in ANS, as a decimal number in the
normal zoned format, that is, with the sign in the zone of
the low-order byte. The zone bits that result in a byte in
storage from a 12 zone on the card, are the zone bits
required for a plus sign in the EBCDIC zoned format in
storage. An 11 zone likewise is translated into the correct
zone bits for a minus sign. Our problem, then, is simply to
move the zone bits of the high-order byte to the zone bits
of the low-order byte.

In the program of Figure 5-7 we have shown at the right
of the fITst half-dozen instructions the contents of the last
eight bit positions of registers 5 and 6, to aid in under
standing how the instructions operate on sample data
consisting of the three bytes:

1101 0011 1111 0111 11111001

With the card column assignments we have described,_ this is
the EBCDIC representation of -379.

The program begins with a new instruction: Insert
Character (IC). This is an RX format instruction that gets
one character (byte) from the specified storage location and
places it in the rightmost byte position of the register
named. The other hit positions of the register are not
disturbed. We do not know what might be in them, but it
will not matter, as it happens, since the following instruc
tion clears them. This is an And to erase the numeric bits of
the high-order character of our sample data.

Next we perform the similar operations on the low-order
byte, using register 6, except that this time we erase the
zone bits.

N ow we have in register 6 the numeric bits of the
low-order byte, and in register 5 the zone bits that are to be
attached to that byte. They can be combined with an Or
Register (OR) instruction. "Or-ing" two operands is a
bit-by-bit operation that results in a 1 wherever either
operand had aI, and zero where both had zero. The result
of this instruction is to combine the two groups of bits,
leaving the result in register 5. This now is the byte that we
want in the low-order position, so we use a Store Character
instruction (STC) to place it there.

Insert Character and Store Character do not require the
character to be on any sort of integral boundary. They are
the only index able instructions for which this is true. The
various decimal instructions do not require boundary align
ment either, of course, but they are not indexable. The two

LOC OBJ ECT CODE ADDR 1 ADDR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
000000 2 CONVERT START 0
000000 05BO 3 BEGIN BALR 11 ,0
000002 4 USING *,11

5 * LAST BYTE (BITS 24 TO 311 OF REGS 5
6 * AND 6 AFTER EXECUTION OF EACH INSTR
7 * IS SHOWN BELOW
8 *
9 * REG 5 REG 6

000002 4350 B03A 0003C 10 IC 5,PREM 1101 0011
000006 5450 B032 00034 11 N 5,MASKl 1101 0000
OOOOOA 4360 B03C 0003E 12 IC 6,PREM+2 1101 0000 1111 1001
OOOOOE 5460 B036 00038 13 N 6,MASK2 1101 0000 0000 1001
000012 1656 14 OR 5,6 1101 1001 0000 1001
000014 4250 B03C 0003E 15 STC 5,PREM+2 1101 1001 0000 1001
000018 F212 B03D B03A 0003F 0003C 16 PACK WORK,PREM
00001E 5860 B042 00044 17 L 6,REG
000022 4E60 B046 00048 18 CVD 6,DOUBLE
000026 FA71 B046 B03D 00048 0003F 19 AP DOUBLE,WORK
00002C F357 B04E B046 00050 00048 20 UNPK ANS,OOUBLE

21 EOJ
000034 24 DS OF
000034 OOOOOOFO 25 MASK1 DC X'OOOOOOFO'
000038 OOOOOOOF 26 MASK2 DC X'OOOOOOOF'
00003C 27 PREM OS ZL3
00003F 28 WORK DS PL2
000044 29 REG OS F
000048 30 DOUBLE OS 0
000050 31 ANS OS Zl6
000000 32 END BEGIN

Figure 5-7. Assembled program showing various instructions for changing the format of data. Contents of registers 5 and 6 to be expected
during execution are given in the comments field.

Decimal Arithmetic 69

And (N) instructions, however, do require their operands to
be on fullword boundaries. This is the purpose of the DS
OF before the DC's for the masks.

At this point we have merely got the sign where it is
expected to be in the zoned format of a decimal number.
Now we must convert from zoned to packed format, which
is the function of the PACK instruction. The second
operand names a field in zoned format; the fITst names the
field where the packed format should be stored. Both fields
carry length codes. Here, we are able to leave the lengths
implied: three bytes for PREM and two for WORK (two
bytes allow space enough for three digits and sign in packed
format). The PACK instruction ignores all zones except the
rightmost, which is taken to carry the sign. Therefore we
can leave the zone of the high-order byte as it was without
disturbing the operation.

70

With the PREM amount fmally in packed format, we are
almost ready to do the addition - but not quite, because
the REG amount is still in binary. The next instruction,
accordingly, is a Load followed by a Convert to Decimal
(CVD). Convert to Decimal takes the binary number in the
specified register and converts it to packed format decimal
in the location given, which must be aligned on a double
word boundary.

At last it is possible to do the addition, which is done in
decimal. A final instruction, Unpack (UNPK) , converts
back from packed to zoned, as required in the problem
statement. This will leave the final answer with the sign in
the zone bits of the low-order byte, which was stated to be
the desired position for whatever processing might follow.
If it were necessary to get the result into the same format as
PREM originally was, we could of course do so.

DECIMAL COMPARISON: OVERTIME PAY

Logical tests and decisions are as necessary in decimal
operations as elsewhere. System/360 provides a Compare
Decimal instruction, and the condition code is set as a
result of this and three decimal arithmetic instructions.

For an example we take the familiar calculation of gross
pay, with time-and-a-half for hours over 40. We have a
RATE, given in dollars and cents, and an HOURS, to tenths
of an hour. We are to place the total wages in GROSS.

There are several ways to approach the overtime compu
tation. We choose here to begin by figuring the pay at the
straight-time rate, on the full amount in HOURS. We then
inspect the hours worked, and if it was not over 40 the job
is finished. If there was overtime, we multiply the hours
over 40 by the pay rate, and multiply this product by
one-half to get the premium, which is then added to the
previous figure. Several other ways to arrange the sequence
of decisions and multiplications are obviously possible. This
one probably minimizes the computation time if most
employees do not work overtime; if most did work over
time, a different sequence might be a little better.

The program in Figure 5-8 begins with a three-instruction
sequence to set up the multiplicand in a work area,
multiply, and round. The Move with Offset instruction
drops one digit in the move; this is the extra digit that was
rounded off. The Move with Offset instruction does not
transmit the sign; we have shown GROSS as a DC to get a
plus sign there from the outset. Since the pay can never
properly be negative, the plus sign will simply remain there
throughout the operation of the program.

The Compare Decimal (CP) instruction is not greatly
different in concept from Compare instructions we have
seen previously. The two operands are compared algebrai
cally; the condition code is set depending on the relative
sizes of the two; neither operand is changed. The mask of
12 on the Branch on Condition will cause a branch if the
contents of HOURS are less than or equal to FORTY, in
which case there is no overtime to compute, and we simply
branch out to whatever follows.

If the man did work more than 40 hours, we compute
his pay on the amount over 40, then multiply by 5, which
we view as having a decimal point, that is, as being one-half.
This is done because we have already computed the straight
time pay on the amount over 40; now we need only to
compute the extra premium. After the mUltiplication by 5
we round off, using a different rounding constant this time
because the multiplication by 0.5 has added another deci
mal place. (It is necessary to check that WORK is long
enough to satisfy the rule about at least as many zeros as
the size of the multiplier. Assuming that no employee could
make $1000 in one week, the rule is satisfied.)

After a Move Numerics to move the sign, we can add the
rounded amount to GROSS to get the total pay. In the Add
Decimal, note the length of 3 to drop the last byte, which
after rounding is extraneous. We now reach the termination
of the program, the same point to which we transferred if
there was no overtime. In other words, both paths would
lead, in a real program, to the same continuation point.

LOC OBJECT CODE ADDRl ADOR2 STMT SOURCE STATEMENT

000000
000000 OSBO
000002

000002 F83l BOS6 BOSO 000S8 000S2
000008 FC3l BOS6 B04E 000S8 OOOSO
OOOOOE FA30 B056 BOSA 000S8 OOOSC
000014 F132 B052 BOS6 000S4 000S8
OOOOlA F9l1 BOSO BOSO 000S2 OOOSF
000020 47CO B04C 0004E
000024 F831 BOS6 BOSO 000S8 000S2
00002A FB3l B056 BOSD 000S8 OOOSF
000030 FC31 B056 B04E 000S8 OOOSO
000036 FC30 BOS6 BOSA 00058 OOOSC
00003C FA31 BOS6 60S6 000S8 OOOSD
000042 0100 B058 B059 OOOSA 00056
000048 FA32 B052 60S6 00054 00058

000050 17SC
0000S2 446C
0000S4 OOOOOOOC
000058
OOOOSC SC
OOOOSO OSOC
00005F 400C
000000

1
2 aT PAY
3 BEGlN
4
S *
6 *
7 *
8 *
9

10
11
12
13
14
15
16
11
18
19
20
21
22 OUT
2S RATE
26 HOURS
27 GROSS
28 WORK
29 FIVE
30 FIFTY
31 FORTY
32

PRINT NoGEN
START 0
BALR 11.0
USING *.11

NUM6ERS BELOW SHOW CONTENTS OF
FIRST OPERAND (WORK OR GROSS)
AFTER INSTRUCTION IS EXECUTED

ZAP WORK. HOURS 00 00 44 ~C
MP WORK, RAT E 00 78 OS OC
AP WORK,FIVE 00 78 05 SC
MVO GROSS,WORKI3) 00 07 80 SC
CP HOURS. FORTY
BC 12,OUT
ZAP WORK, HOURS 00 00 44 6C
SP WORK, FORTY 00 00 04 6C
MP WORK,RATE 00 08 OS OC
MP WORK. FIVE 00 40 25 OC
AP WORK,FIFTY 00 40 30 OC
MVN WORK+2(II.WORK+3 00 40 3C OC
AP GROSS .WoRK 131 00 08 20 8C
EOJ
DC PL2' 1. 7S'
DC PL2'44.6'
DC PL4'0'
OS Pl4
DC Pll' 5'
DC PL2'50"
DC Pl2"40.0'
END BEGIN

Figure 5-8. Assembled program that computes a man's gross pay, including any overtime pay, in decimal arithmetic. Results expected during
execu tion are shown in the comments field.

Decimal Arithmetic 71

THE SOCIAL SECURITY PROBLEM IN DECIMAL

For a little further practice in applying decimal operations,
we may rewrite the Social Security calculation of Figure
3-19 in the chapter on flXed-point operations. The logic of
the decimal program shown in Figure 5-9 is the same as that
of the earlier one. No new instructions are introduced, so a
few notes should be all that is required to explain the
program.

We begin by moving the old year-to-date to the new
year-to-date location. The purpose is simply to get one of
the two operands in the following addition where we want
the result to be. Following is a Zero and Add to get the new
year-to-date into 'Yorking location where we can continue the
processing witholJt disturbing the NEWYTD location. From
here on, the right side of Figure 5-9 shows the contents of
the WORK field for sample data as shown in the DC
instructions.

In the Multiply Decimal instruction that computes the
Social Security tax on the new year-to-date figure, we use a
constant for the 4.4% that has been set up with an extra
zero at the right. This was done to put the product in a
position where a Move with Offset would not be necessary.
As it has been done, after rounding and moving the sign, we
can carry out all following operations on the Social
Security amount on the second, third and fourth bytes of
WORK. Since the implied length from the DS is 6, an
explicit length must be given. The explicit length specifica
tions in the two Move Characters (statements 17 and 19)
are unnecessary, however, because NEWFICA and TAX are
defined as 3 bytes, and the assembler already has that
irtformation.

Except for the points discussed here, the operations
closely parallel the program in the earlier version.

lOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
000000 2 FICA3 START a
000000 05BO 3 BEGIN BAlR 11,0
000002 4 USING *.11
000002 0203 B04F B04B 00051 00041) 5 MVC NEWYTD,OlOYTD
000008 FA32 B04F B048 00051 0004A 6 AP NEWYTD,EARN

1 '" CONTENTS OF WORK AFTER EXECUTION
8 '" OF EACH INSTR ARE SHOWN BELOW
9 '" OOOOOE F853 B064 B04F 00066 00051 10 ZAP WORK.NEWYTD 00 00 07 86 40 OC

000014 FC51 B064 B05F 00066 00061 11 HP WORK,C44 00 34 60 16 00 OC
00001A FA52 B064 B061 00066 00063 12 AP WORK,HAlF 00 34 60 21 00 OC
000020 0100 B061 B069 00069 0006B 13 HVN WORK+3 (1) ,WORK+5 00 34 60 2C 00 OC
000026 F932 B064 B05e 00066 0005E 14 CP WORK(4) ,MAX 00 34 60 2C 00 OC
00002C 4140 B034 00036 15 BC 4,UNoER 00 34 60 2C 00 OC
000030 0202 B065 B05C 00061 0005E 16 HVC WORK+1 (3), MAX 00 34 32 OC 00 OC
000036 0202 B056 B065 00058 00067 11 UNDER HVC NEWFICA(3),WORK+1 00 34 32 OC 00 OC
00003C FB22 B065 B053 00061 00055 18 SP WORK+l(31,OLOFICA 00 00 52 OC 00 DC
000042 0202 B059 B065 0005B 00061 19 MVC TAX (3) ,WORK+1 00 00 52 OC 00 OC

20 EOJ
00004A 16400C 23 EARN DC Pl3'16400'
000040 0710000C 24 OLOYTO DC PL4'710000'
000051 25 NEWYTO OS Pl4
000055 33aooc 26 OLDFICA DC Pl3' 33800'
000058 21 NEWFICA OS Pl3
00005B 28 TAX OS PL3
00005E 34320C 29 MAX DC Pl3'34320'
000061 440C 30 C44 DC Pl2'440'
000063 05000C 31 HALF DC Pl3'5000'
000066 32 WORK OS Pl6
000000 33 END 8EGIN

Figure 5-9. Assembled program to calculate Social Security tax in decimal arithmetic. Results expected during execution are shown in the
comments field.

72

THE "INDIAN" PROBLEM

A certain programming exercise has been done by so many
generations of IBM students that it is a classic. We present it
here, worked out with the calculation in decimal and the
counting in binary.

The Indians sold Manhattan Island in 1627 for $24. If
the Indians had banked therr $24 in 1627, what
would their bank balance be in 1965 at a 3% interest
rate compounded annually?
To make the problem a little more interesting, let us

assume that the principal, $24,·the interest rate faCtor, 1.03,
and the number of years, 338, are all initially in zoned
format. The program of Figure 5-10 accordingly begins with
three PACK instructions to get from zoned to packed format.

The general scheme of the program will be to multiply the
principal by 1.03 as many times as there are years. In other
words, we shall go around a loop repeatedly, each time
performing a multiplication and subtracting 1 from a count.
When the count has been reduced to zero, the computation
of the balance is completed. This counting down from 338
to zero could, of course, be done in decimal, testing for
zero with a Compare Decimal instruction. It is better
programming practice, however, to remove time-consuming
operations from the repeated part of the loop wherever
possible. Doing the repeated combination of an Add
Decimal, a Compare Decimal, and a Branch on Condition is
much more time-consuming than another approach that is
available to us. This other way is to convert the years to
binary once, before entering the loop, then use a Branch on
Count (BCT) in the loop, a single instruction that will
subtract 1, test, and conditionally branch.

The fourth instruction of the program is therefore· a
Convert to Binary (CVB) instruction, which in our program

takes the doubleword at YEARSP and converts to a binary
number in register 4, The Convert to Binary instruction
requires an aligned doubleword operand, which is why the
DS for YEARSP was set up as it was instead of with a CL8.

The repeated part of the loop starts with a Multiply
Decimal that should by now be moderately familiar.
PRINCP was set up to be long enough to hold the size of
number that previous runnings of the program have shown
will be necessary. The programmer facing this problem
completely fresh would have to make some preliminary
calculations as to the possible size.

Now comes a familiar sequence of decimal instructions to
round, move the sign, and shift right two digits (one byte).
One might be tempted to replace the Move Characters and
Zero and Add instructions with a single one of the sort:

MVC PRINCP+ 1(6),PRINCP

thinking that a right-to-Ieft operation would permit this
sort of overlap. A check of the Principles of Operation
manual, howevet, discloses that Move Characters works
from left to right! The instruction suggested would there
fore propagate the leftmost character through the entire
field! This can be quite useful on occasion, and is per
mitted, but it is hardly what we want here. Overlapping
fields must be treated with caution.

The Branch on Count subtracts 1 from register 4; if the
result is not zero, a branch occurs. If the result is zero, the
next instruction in sequence is taken. The loop will be
carried out 338 times, as required.

A fma! Unpack instruction puts the result into a location
named BALANCE in zoned format. The answer obtained
by execution of our program is $523,998.22. Carrying the
calculations out to more decimal places would of course
give a more precise result.

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
000000 2 INDIAN START a
000000 05BO 3 BEGIN BALR 11,0
000002 4 USING *,11
000002 F263 B04A B040 0004C 00042 5 PACK PRINCP,PRINCZ
000008 F212 B051 B044 00053 00046 6 PACK I NTP, I NT Z
OOOOOE F272 B056 B047 00058 00049 7 PACK YEA R S P , YEAR Z
000014 4F40 B056 00058 8 CVB 4,YEARSP
000018 FC61 B04A B051 0004C 00053 9 LOOP MP PRINCP,INTP
00001E FA61 B04A BOSE 0004C 00060 10 AP PRINCP,ROUND
000024 0100 B04F B050 00051 00052 11 MVN PRINCP+5(11,PRINCP+6 MOVE SIGN
00002A D205 B060 B04A 00062 0004C 12 MVC TEMP,DRINCP DROP LOW-ORDER BYTE
000030 F865 804A B060 0004C 00062 13 ZAP PRINCP,TEMP
000036 4640 8016 00018 14 8CT 4,LOOP SUBTRACT 1 FROM REG 4
00003A F386 8066 804A 00068 0004C 15 UNPK BALANCE,PRINCP

16 EOJ
000042 F2F4FOCO 19 PR I NCZ DC ZL4'24.00'
000046 FIFOC3 20 I NTZ DC ZL3'1.03'
000049 F3F3C8 21 YEARZ DC ZL3'338'
00004C 22 PRINCP OS PL7
000053 23 I NTP DS PL2
000058 24 YEARSP DS D
000060 050C 25 ROUND OC PL2'50'
000062 26 TEMP OS PL6
000068 27 BALANCE OS ZL9
000000 28 END I:3EGIN

Figure 5-10. Assembled program to compute compound interest (the "Indian" problem), with counting in binary and calculations in
decimal arithmetic

Decimal Arithmetic 73

QUESTIONS AND EXERCISES

1 a. Write the assembler instruction to define a packed
decimal constant of 3 to be named CON3 and to occupy 5
bytes of storage.

b. Show how this constant appears on the assembly
listing.
2. A length code in an instruction is called implied if it is
supplied by the on the basis of
________ . An explicit length code is supplied
bythe ____________ __

3. An explicit length code is (equal to, one more than, one
less than) the actual number of bytes to be dealt with.
4. The length code in the object instruction is (equal to,
one more than, one less than) the actual number of bytes to
be dealt with.
Sa. In an MP instruction, the first operand specifies the
location of a storage area containing _______ _

b. Where is the product at the end of the multiplication?
6. If there were two successive DC statements of:

PRINC DC PL4'2489'
INT DC PLt 1 03'

and PRINC were assigned a location of 158:
a. Byte by byte, what would be in the storage locations

assigned to these constants?
b. To what storage location would the operand INT-2

refer?
7. A DP instruction specifies in its first operand the
location of the , and in its second
operand the location of the . Where
will the quotient and remainder be after, the completion of
a DP instruction?
8. Assume two fields:

SOURCE containing 66 55 44 33 22 11
DEST containing 11 22 33 44 55 6S (S = sign)

Show the contents of SOURCE and DEST after the
execution of the instructions below. In each case, assume
that before execution the contents of SOURCE and DEST
are as shown above.

a. MVC DEST+2(3) ,SOURCE
b. MVN DEST+3(1),DEST+5
c. MVO DEST ,SOURCE+2(2)

9. Assume the same fields (SOURCE and DEST) as given in
question 8.

Would the instruction ZAP DEST ,sOURCE be a legiti
mate one? If not, why not?

74

10. AssUme a 5-byte field called FACTOR, which contains
12345678 9S (S = sign)

a. Write the instruction or instructions to store the
leftmost 8 digits (12345678) and the sign in a 6-byte field
called RESULT.

b. Write the instruction or instructions to store the
leftmost 7 digits and the sign in RESULT.
11 a. The N I (And Immediate) instruction is a
_________ format instruction.

b. Write the NI instruction(s) that will change the
contents 'of a field named HOLD from 11 22 33 44 6S to
00223344 6S.

c. 11 22 33 44 6S to 11 22 33 04 6S.
12. What is the difference between the And Immediate and
Or Immediate instructions?
13. Decimal arithmetic can be performed only on (zoned
decimal, packed decimal) fields.
14. What instruction converts information from zoned
decimal to packed decimal form?
15. What instruction converts information from packed
decimal to zoned decimal form?
16. Write DC's to store the number 578 as:

a. A fIXed-point number.
b. A 3-byte zoned decimal number.
c. A 2-byte packed decimal number.

17. Write a DC to store the hexadecimal equivalent of
7510 •

18. Write an instruction that will place a byte named OLD
in the rightmost byte position of register 6 without dis
turbing the remaining positions of register 6.
19. Write an instruction that will store the contents of the
rightmost byte position of register 6 in a storage byte
named OLD.
20. Consider the following excerpts from an assembly
listing. Mask is located at 13E.

N 6,MASK

MASK DC X'OOOOOOOF'
a. Will the N 6,MASK instruction be successfully

executed? If not, why not?
b. If not, what statement or statements could be

inserted to correct the condition?
c. How could the DC itself be rewritten to correct the

situation?

(8170)

Chapter 6: Logical Operations on Characters and Bits

So far we have been dealing mainly with the arithmetic
operations of System/360. Now we turn to an area of
particular fascination to the programmer, one that opens up
a nearly unlimited range of flexibility and inventiveness in
the performance of his task. The logical operations of
System/360 provide means for the testing and manipulation
of data in a logical sense, rather than arithmetic or algebraic.
Among these special assembler language instructions are:
the Logical Compares, Test under Mask, some new Move
instructions, the Logical Shifts, Insert Character, Store
Character, and the highly versatile Ands, Ors, and Exclusive
Ors. One or more forms of each of these instructions, which
are part of the System/360 standard instruction set, will be
demonstrated in examples in this chapter. Other logical
instructions-the standard Translate and the decimal feature
Edit instructions-have such highly specialized functions
that they will be the subject of a separate chapter.

The most important thing for us to realize about the
logical instructions is that (except for the Edit instructions)
they treat all data as unsigned binary quantities, that is, all
bits are treated alike and no distinction is made between sign
and numeric bits. Remember the data format for a System/
360 flXed-point number, with its sign in the frrst bit? And
for a zoned or packed decimal number, with its sign in the
frrst four or last four bits of the final byte? Well, the logical
instructions are non-algebraic, and they treat all data as
unstructured logical quantities, not as numbers. Fixed
length data such as a word in a register is regarded this way:

o 31

Variable-length data in storage is looked at this way:

I byte I byte I ~ = = I byte I byte I
o 8 16

In practice, the operands are generally characters or groups
of bits.

Since the logical operations do not recognize any signs as
such, it is incumbent upon the programmer to know when
and where they are in his data. He can use signed numeric
data with whatever logical instructions may fill his needs as

long as he knows that any data examined will be regarded
strictly ·as a binary quantity. Some of the instructions do not
even examine data. The Move Numerics operation, for
example, which was designed as a convenient way of
moving just the numeric portions of zoned decimal numbers,
will move any group or groups of four bits that are in the right
location just as cheerfully as it moves valid numerics.

The programmer will fmd it important to differentiate
carefully between the action of the flXed-point Compare
and Shift instructions, which are algebraic, and the Logical
Compare and Shift instructions, which of course are not.
An L in the mnemonics of these logical instructions is a
convenience.

In logical operations, processing is performed bit by bit
from left to right, whereas arithmetic processing is generally
from right to left. Processing may be done either in storage or
in general registers. Some of the instructions may be used in a
choice of four different formats: RR, RX, SI,' or SS.
Operands may be four bits, a byte, a word, a doubleword,
or as many as 256 bytes for variable-length data in storage.
The programmer may select a single bit for attention. The
"Immediate" instructions (in the SI format) provide a
streamlined method of introducing one byte of immediate
data in the instruction statement itself. The action of most
of the logical instructions sets the condition code and thus
provides a basis for decision-making and branching.

Since the logical operations are covered in detail in the
System/360 Principles of Operation, these introductory
remarks are limited to generalizations, which give only a
hint of their range and flexibility. The student is urged to
consult the Principles of Operation . for precise descriptions
of their action, for useful programming suggestions, and for
examples of their use. He will fmd it rewarding reading.

The program example in the frrst section of this chapter
demonstrates a method for sorting three items into
ascending sequence. The next two sections will :show
examples of testing combinations of bits with a mask and of
setting specified bits on and off. Another program example
uses a self-checking number routine to illustrate logical
operations on a sequence of characters. A fmal example
demonstrates a series of bit and byte manipulations on
input data fields.

Logical Operations on Characters and Bits 75

ALPHAMERIC COMPARISON: AN ADDRESS SORT

A frequent requirement in commercial data processing is
the comparison of two alphameric quantities, such as names
or account numbers, for relative "magnitude". Sometimes
this is done to establish correspondence between records in
two files, both of which are in ascending sequence on the
name or account number, which is called the key. Another
common application is· in arranging a group of records into
ascending or descending sequence on keys contained in the
records. Let us consider this problem, which is usually
called sorting, although sequencing might in some ways be a
preferable term.

The problem will be to arrange three "records" of 13
characters each into ascending sequence on a five-character
key contained in the middle five positions of the record.
The rearranged records are to be moved to three new record
areas named SMALL, MEDIUM, and LARGE.

The basic operation in the program will be an alphameric
comparison of two five-character keys to determine relative
magnitude. This will be done with a Compare Logical
Character instruction (CLC). The word "logical" in the
name means that in comparing two characters, all possible
bit combinations are valid, and the comparison is made
purely on binary values. In a table of EBCDIC character
codes, we can see that, according to such a scheme, all
letters will be "smaller" than all digits; if punctuation
characters occur, they rank smaller than either letters or

digits. If we were working with the USASCII code, we
would fmd, on the other hand, that the positions of letters
and digits are just the opposite.

For our purposes here, we are not too concerned about
the intricacies of where the various characters are ranked by
the machine's collating sequence; all we really need to
know is that names will be correctly alphabetized and that
digits are consistently ranked somewhere.

The Compare Logical Character instruction is in the SS
format and operates on variable-length fields. There is one
length code, which applies to both operands. The compari
son is from left to right, and continues either until two
characters are found that are not the same, or until the end
of the fields is reached. As soon as two characters are found
to be different, there is no need to continue the comparison.
If we are comparing SMITH and SMYTH, we know that
SMITH is "smaller" as soon as the I and Y are compared,
regardless of what characters follow.

With this much preliminary, let us consider the program
in Figure 6-1. Perhaps we should begin by looking at the
storage allocation. We see DS entries for A, B, and C, the
three original records; these are 13 characters each. Next
come three entries that defme the addresses of A, B, and C,
as ADDRA, ADDRB, and ADDRC, respectively. When we
write ADDRA as the operand in a Load, what we get in the
register is not A, but its address. Finally, there are DS's for

LOC OBJECT CODE ADDRI AODR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
000000 2 SORT ABC START 0
000000 05BO 3 BEGIN BALR 11,0
000002 4 USING *,11
000002 9824 B012 00074 5 LM 2,4,ADDRA LOAD REGISTERS WITH ADDRESSES
000006 0504 2004 3004 00004 00004 6 CLC 4(5,2),4(3) COMPARE A WITH B
OOOOOC 47CO B014 00016 7 BC 12,)(BRANCH IF A ALREADY LE SS OR EQUAL
000010 1862 8 t"R 6",2 IF NOT EXCHANGE ADDRESSES OF A AND B
000012 1823 9 LR 2,3
000014 IB36 10 LR 3,6
000016 0504 2004 4004 00004 00004 11 X CLC 4(5,2),414) COMPARE A WITH C
00001C 47CO B024 00026 12 Be 12,Y BRANCH IF A ALREADY LESS OR EQUAL
000020 1862 13 LR 6,2 IF NOT EXCHANGE ADDRESSES OF A AND C
000022 1824 14 LR 2,4
000024 1846 15 LR 4,6
000026 0504 3004 4004 00004 00004 16 Y CLC 4(5,3),4141 COMPARE B WITH C
00002C 47CO B034 00036 17 BC 12,MOVE BRANCH IF B ALREADY LESS OR EQUAL
000030 1863 18 LR 6,3 IF NOT EXCHANGE ADDRESSES OF BAND C
000032 1834 19 LR 3,4
000034 1846 20 LR 4,6
000036 020C B07E 2000 00080 00000 21 MOVE MVC SMAll,0(2) ADDRESS OF SMALLEST IS NOW IN REG 2
00003C D20C B08B 3000 00080 00000 22 MVC MEDIUM,O(3) ADDRESS OF MEDIUM IS NOW IN REG 3
000042 D20C B098 4000 0009A 00000 23 MVC LARGE,0(4) ADDRESS OF LARGEST IS NOW IN REG 4

24 EOJ PROGRAM TERMINATION
00004A 27 A OS CLl3
000057 28 B OS CLl3
000064 29 C OS C1l3
000071 000000
000074 0000004A 30 ADORA DC AU)
000078 00000057 31 ADDRB DC AlB)
00007C 00000064 32 ADORC DC AIC)
000080 33 SMALL OS CLl3
000080 34 MEDIUM OS C1l3
00009A 35 LARGE OS Cll3
000000 36 END BEGIN

Figure 6-1. A program to sort three 13-character items into ascending sequence on keys in the middle of each item. The three items are in
A, B, and C, and when sorted will be placed in SMALL, MEDIUM, and LARGE.

76

SMALL, MEDIUM, and LARGE, where the results are to go.
The processing begi11s by loading the addresses of A, B,

and C into registers 2, 3, and 4, respectively, with a Load
Multiple. Now we begin a sequence of comparisons and (if
necessary) interchanges that will put the thfee quantities
into ascending sequence. We fITst compare A and B. If A is
already equal to or smaller than B, we do nothing; but, if A
is larger, we interchange the addresses of A and B. Let us
see how this works.

The Compare Logical Character (CLC) instruction
following the Load Multiple is written with explicit base
registers and explicit lengths. The general format of the
instruction is

CLC DI(LI,BI),D2(B2)

As we have written the instruction here, the displacement
for operand 1 is 4, the length of both operands is 5, the
base register for the first operand is 2, the displacement for
the second operand is 4, and the base register for the
second operand is 3. Exactly what character positions do
these addresses refer to? Remember that base register 2
contains the address of A. This base, plus a displacement of
4, gives the address of the fnth character. Since we said that
the key was to be the middle fIVe characters of each record,
what we have here is the address of the leftmost character
of the key of record A. The length of the key is given
explicitly as 5. Operand 2, likewise, gives the address of the
key of record B.

The Branch on Condition asks whether the flISt operand
(the key of A) was less than or equal to the second operand
(the key of B). If so, there is a branch down to the next
comparison, at X, since A and B are already in correct
sequence.

If the Branch is not taken, we reach the interchange of A
and B. Now, an actual interchange of two I3-character
records is a somewhat time-consuming operation; and, of
course, this example is only symbolic of real applications,
where the records to be sorted might be hundreds of
characters long. It is much faster to interchange the
addresses of A and B than to interchange the records
themselves; the addresses are only four characters instead of
13, and, as written here, they are in registers rather than in
storage. Three Load Register instructions, which are
executed very rapidly, carry out the interchange.

(8170)

Now, when we continue to the comparison at X, what is
the address situation? We know that we want to compare
whichever of A and B was the smaller with C. Accordingly,
we write addresses using base registers 2 and 4. We cannot
say whether 2 contains th~ address of A or B; but,
whichever it is, it is the address of the smaller of the two.
That is all we need to know. After this comparison and
(possible) interchange, we are guaranteeed that base register
2 contains the address of the smallest of the three numbers.

A fmal comparison using whatever addresses are by now
in registers 3 and 4 gives us the address of the "middle"
number in 3 and the address of the largest of the three in 4.

Now, at MOVE, we are able to write three instructions
that perform the rearrangement. In the fITst Move Characters,
we pick up the smallest, using whatever is in base register 2.
The displacement this time is zero; we want the entire 13
characters. The length can be left implicit this time; it will
be implied from SMALL, which is 13 characters long.

With the program loaded at 200<>t6, Figure 6-2 shows
the contents of registers 2, 3, and 4 at four points during
execution of the program: at the beginning, at X, at Y, and
at MOVE. The three actual data items used for A, B, and C,
in order, were I11ICCCCC1111, 2222BBBBB2222, and
3333AAAAA3333. In other words, the items were in
reverse order according to their keys.

In practical applications there are usually far too many
records to be sorted internally for the keys of all of them to
be held in base registers. On the other hand, the records are
ordinarily so long that it is a saving in time to work with
addresses held in storage rather than with the records
themselves. The basic concept suggested here can readily be
generalized.

AFTER EXECUTION
OF REG 2 REG 3 REG 4

STATEMENT 5 0000204A 00002057 00002064

STATEMENT 10 00002057 0000204A 00002064

STATEMENT 15 00002064 0000204A 00002057

STATEMENT 20 00002064 00002057 0000204A

Figure 6-2. The contents of registers 2, 3, and 4 at four points during
execution of the program in Figure 6-1, loaded at 2000

Logical Operations on Characters and Bits 77

LOGICAL TESTS

The Wallpaper Problem

Problems sometimes arise in which it is necessary to
work with combinations of logical tests, where each test is
of the yes-or-no variety. Such situations are often most
conveniently attacked as logical operations on sets of
binary variables. If the data can be suitably arranged, the
tests can sometimes be made very simply with the Test
under Mask (TM) instruction.

Consider the following problem. A wallpaper manufac
turer classifies his products according to the colors each
style contains. There are only four colors: red, blue, green,
and orange. For each style there is a group of four bits at
the right-hand side of a character named P ATTRN. These
bits represent, from left to right, the four colors, in the
order named. For each bit position, a 1 means that the style
contains the color, and a zero means that it does not. For
instance, 0001 means a style with orange only; 1010
describes a pattern with red and green, but no blue or
orange.

We wish to see how to set up instructions to answer
questions of the following sort:

Does this pattern have either red or green, or both?
Does this pattern have red, or green, or orange, or any

two of these, but not all three?
Does this pattern have both red and orange, whether or

not it has blue and/or green?
Does this pattern have neither green nor orange?
Does this pattern have red but not orange?
Let us consider these questions in order.
Red, or green, or both. Looking at the four color-bits,

we are interested in the first and third. If we let X stand for
a bit that we want to be aI, and D for a bit about which
we don't care, the required pattern is XDXD.

The Test under Mask instruction can handle this situa-
tion with just two instructions:

TM PATTRN,X'OA'
BC 5 ,YES

In the Test under Mask instruction, the OA is the mask,
written here in hexadecimal. Writing it out as a binary
number, we have 00001010. The two l's here pick out the
two bits in the character at P ATTRN that are to be tested.
The resulting condition codes have meanings as follows: a
code of zero means that all the selected bits were zero; a
code of 1 means that the selected bits were mixed zeros and
1 's; a condition code of 3 means that the selected bits were
all 1 'so (A condition code of 2 is not possible with this
instruction.) The question to be answered was: Does this
pattern contain either red, or green, or both? We have
selected the two bits that describe the presence or absence
of red and green. If the two bits selected were a mixture of
zeros and 1 's we have just one of the two colors in the
pattern. If the two bits selected were both 1 's, the pattern

78

contains both colors. Either situation answers the question
affirmatively. We accordingly write a Branch on Condition
instruction that tests for the presence of condition codes 1
or 3. (Remember that 8,4,2, and 1 in the Rl field of aBC
correspond to condition codes of 0, 1, 2, and 3, respec
tively. Branch on Condition with an Rl field of 5, there
fore, tests for a condition code of either 1 or 3.) At YES,
we assume there would be instructions to do whatever
action depended on an affirmative answer to the question.

Red, green or orange, but not all three. Here we need a
mask that tests bits according to this scheme: XDXX. The
necessary mask is 0000 1011, which is OB in hexadecimal.
The condition code that describes the wallpaper design
specified is 1: mixed zeros and 1 'so We want at least one 1,
and two would do, but we must have at least one zero
among the bits tested because the pattern must not have all
three colors. The required instructions are:

TM PATTRN,X'OB'
BC 4,YES

The conditional branch could equally well have been
written as the extended mnemonic used after Test under
Mask instructions, BM YES (BM means Branch if Mixed).

Both red and orange. This one is fairly simple. We pick
out bits according to XDDX, and then ask whether they are
all (both) 1 'so The instructions are:

TM PATTRN,X'09'
BC 1 ,YES (odJO YES)

Neither green nor orange. This is not very difficult,
either. The bits are shown by DDXX, and we want to know
whether they are all (both) zero. The instructions are:

TM PATTRN,X'03'
BC 8,YES (or BZ YES)

Red but not orange. This is a different problem that
cannot be done with a single Test under Mask. We turn to
the logical instructions And, and Exclusive Or. The bits in
question are shown as X's in XDDX. We want the leftmost
X to be aI, and the rightmost to be a zero.

We begin by moving PATTRN to WORK, where we may
destroy its original value. An And Immediate instruction
with an immediate portion of 09 (in binary: 00001001)
erases all bits except the ones we want. In the two positions
of interest, if there was a 1 before, there still is, and if there
was a zero, there still is. All other bit positions are
guaranteed to be zero. If the pattern is to pass the test,
there must now be exactly one 1 in WORK, and it must be
in this position: OOOOXOOO. Whether this is so could be
determined with a comparison or two Test under Mask
instructions. But let us continue with the logical operations.

Exclusive Or is a logical operation; like And and Or, it is

a bit-by-bit operation. In each bit position, the result is 1 if
the two operands had exactly one 1 in t..hat position; the
result bit is zero if both operand bits were zero or if both
were 1. Suppose we write an Exclusive Or Immediate in
which the immediate portion is 00001000; the 1 here is in
the position for red. The result after the Exclusive Or
Immediate will be zero in this position if there had been a
1, and vice versa.

In other words, if the result really 'were 00001000 after
the And Immediate, there would be all zeros after the
Exclusive Or Immediate. If, on the other hand, there were a
zero in the position for red, there would now be a 1. And if
there were a 1 in the position for orange, there would still
be a 1 there. In short, a zero result corresponds to an
answer of "yes, there is red but no orange". As it happens,
the various logical operations used here all set the condition
code; and, in the case of the Exclusive Or, a condition code
of zero means that the result was zero. The program can
thus be:

MVC WO~,PATTRN
NI WORK,X'09'
XI WORK,X'08'
BC 8,YES (or BZ YES)

Test under Mask is a most useful instruction where it
applies, and its usefulness is by no means limited to
color-blind wallpaper manufacturers. It is useful partly
because it is selective, testing only the bits specified by the
mask, and partly because it gives a three-way description of
the selected bits: all zero, mixed, or all 1 'so It does have the
drawback, however, that only one character can be tested at a
time.

If it were necessary to extend the application to cover,
say, 20 different yes-no descriptions, the Test under Mask
instruction could not be used, except in combinations that
would get rather involved. In such a situation, we would
turn instead to the RX forms of the logical instructions.
Mter moving the pattern to a register, which can hold a
32-bit pattern, we would use an And to "select" the bits of
interest. The operand of the And instruction would be a
fullword in storage that has l's where there are bits of
interest in the pattern.

What we do next depends on our answers to certain
questions.
Question: Were any of the selected bits 1 's?
Action: We need only test the condition code, which tells
whether the result was all zeros or had at least one 1.
Question: Were certain of the selected bits 1, with the
others being zero?
Action: We execute an Exclusive Or to change to zero the
bits that should be 1 's, then ask whether the result is all zero.

Working with larger groups of bits is thus seen not to be a
great deal more difficult than working with a single character.

(8170)

Setting Bits On and Off

A problem related to the one we have been considering is to
set a specified bit of a character or a word to be zero or 1. or
perhaps to reverse them from whatever they are. This mi~t
be necessary, for instance, if we were writing a program to
develop the wallpaper codes that we tested in the preceding
section.

Bearing in mind that fullword operands represent only a
minor amount of additional programming effort, let us see
how to carry out these operand operations on one-character
operands.

To set a specified bit to 1, an Or Immediate is sufficient.
Suppose that we are still working with a character named
P ATTRN, which now uses all eight bits; and that we want
1,3, 6, and 7 to be "on" (l). We are not interested in the
status of bits 0, 2,4, and 5. In other words, we want the
pattern to be DIDIDDll, where the D's stand for "don't

" "1 h h care or eave t em w atever they were". This action is
precisely what will result from an Or Immediate in which
the immediate part is 01010011 (53 hexadecimal). The Or
results in a 1 in any bit position in which either operand, or
both, had a 1. (The case of both having 1 is not excluded,
as in the Exclusive Or. The ordinary Or is sometimes called
the "inclusive" Or to distinguish between the two.)

The instruction could be

01 PATTRN,X'53'

If the required action is to set the same four bit-positions
to zero, regardless of their previous values, and leave the
others as they were, we would use an And Immediate with
zeros where we want zeros and 1 's where' we want the
previous contents undisturbed. The necessary immediate
portion is 10101100 (AC in hexadecimal). The instruction
is therefore

NI PATTRN,X'AC'

. The And places a 1 in bit positions in which both operand
bIts were 1, and zero elsewhere. Wherever we put zeros in
the immediate portion, therefore, there will be zeros in the
result, as required. Wherever we placed 1 's there will be a 1
if there was before, or a zero if there was a zero before.
This is exactly what we need.

Sometimes it is necessary to change a bit to 1 if it was
zero, and to zero if it was 1. This is called complementing a
bit. If we place 1 's in the immediate portion wherever we
want this complementing action, the Exclusive Or Imme
diate does precisely what is needed. Other bit positions will
be unchanged. Assuming we are still working with bits 1,3,
6, and 7, the instruction is

XI PATTRN,X'53'

Logical Operations on Characters and Bits 79

A SELF-CHECKING NUMBER ROUTINE

I t is fairly common practice in business to devise account
numbers for things like credit cards so that the number is
self -checking; This means that one of the digits is assigned
to provide a certain amount of protection against fraud and
clerical errors. This digit is assigned by some fixed sequence
of operations on the other digits.

We shall work in this section with a ten-digit account
number, the last (rightmost) of which is a check digit. This
digit is computed when the number is assigned. It consists
of the last digit of the sum found by adding together the
second, fourth, sixth, and eighth digits, together with three
times the sum of the first, third, fifth, seventh, and ninth
digits. For instance, if a nine-digit account number is
123456789, the check digit is the last digit of the sum

(2 + 4 + 6 + 8) + 3 (1 + 3 + 5 + 7 + 9) = 95

The last digit is five, so the complete account number
would be 1234567895.

There is a certain protection against fraud here; unless
the person attempting the fraud knows the system, there is
only one chance in ten that an invented account number
will be a valid one.

More important, perhaps, there is considerable protection
against clerical error. If anyone digit is miscopied, the
erroneous account number will not pass the check. Further
more, most transpositions of two adjacent digits will cause

the check to fail. For instance, the check digit for
132456789 would be

(3 + 4 + 6 + 8) + 3 (1 + 2 + 5 + 7 + 9) = 93

The computed check digit of 3 is obviously not the same as
the one in the number, so the account number is rejected as
invalid.

We wish now to study a program that will determine
whether an account number that has been entered into the
computer is valid. We begin the program with a nine-digit
account number in ACCT, in zoned format. Immediately
following ACCT is a one-digit check digit named CHECK,
also in zoned format.

In the program in Figure 6-3 we begin by loading register
3 with a 1. This will be used to determine whether a digit
should be multiplied by 3 or not, as we shall see below.
Register 4 is loaded with a 9; this is an index register, used to
get the digits in order from right to left. A Move Character
puts a signed zero in SUM where the sum of the digits will be
developed. A Subtract Register clears register 5 to zero.

At LOOP we begin the processing of digits. With index
register 4 containing 9, the effective address the first time
through the loop will be ACCT+8, which is the address of
the rightmost digit. The index is reduced by one each time
around the loop by the Branch on Count Instruction, so we
pick up the digits one at a time, from right to left, as stated.

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE ST ATEMENT

1 PRINT NOGEN
000000 2 ACCTNO START 0
000000 0560 3 BEGIN BALR 11,0
000002 4 USING *,11
000002 4130 0001 00001 5 LA 3,1 REG 3 WILL HAVE SIGN REVERSED IN LOOP
000006 4140 0009 00009 6 LA 4,9 COUNTER FOR 9 DIGITS IN NUMBER
OOOOOA 0201 B064 B066 00066 00068 7 MVC SUM, ZERO SUM OF DIGITS KEPT IN SUM
000010 1855 8 SR 5,5 CLEAR REG 5
000012 4354 B059 0005B 9 LOOP IC 5,ACCT-l(4) PICK UP 1 DIGIT OF INDEXED NUMBER
000016 8950 0004 00004 10 SLl 5,4 SHIFT lEFT 4 BITS
OOOOlA 5650 B06A 0006C 11 0 5,PLUS ATTACH A PACKED PLUS SIGN
OOOOIE 4250 B068 0006A 12 STC 5, DIGIT STORE IN TEMPORARY LOCATION
000022 FAlO B064 B068 00066 0006A 13 AP SUM,OIGIT ADD TO SUM OF DIGITS
000028 1333 14 lCR 3,3 REVERSE SIGN OF REG 3 I
00002A 4720 B038 0003A 15 BC 2,EVEN SKIP NEXT 2 INSTR ON PLUS ODD TIMES THRU
00002E FAI0 8064 B068 00066 0006A 16 AP SUM, DIGIT IF NOT SKIPPED ADD DIGIT TO SUM
000034 FAI0 8064 B068 00066 0006A 17 AP SUM, DIGIT SAME. HAS EFFECT OF MULTIPLYING BY 3
00003A 4640 BOlO 00012 18 EVEN BCT 4,LOOP BRANCH BACK IF NOT All DIGITS PROCESSED
00003E 4350 B063 00065 19 IC 5,ACCT+9 PUT CHECK DIGIT IN REG 5
000042 8950 0004 00004 20 SLL 5,4 SHIFT LEFT 4 BITS
000046 5650 B06A 0006C 21 0 5, PLUS ATTACH SIGN TO PUT IN SAME FORMAT AS SUM
00004A 4250 B064 00066 22 STC 5, SUM PUT ONE BYTE IN LEFT BYTE OF SUM
00004E 0500 B064 B065 00066 00067 23 ClC SUMI1J,SUM+1 IS THIS BYTE SAME AS CHECK DIGIT
000054 4770 B058 0005A 24 BNE ERROR BRANCH TO ERROR ROUTINE IF NOT EQUAL

25 OUT EOJ PROGRAM WOULD NORMAllY CONTINUE HERE
28 ERROR EOJ

00005C 31 ACCT OS Cl9
000065 32 CHECK OS Cll
000066 33 SUM OS Cl2
000068 OOOC 34 ZERO DC Pl2'0'
00006A 35 DIGIT OS Cll
00006C 36 OS OF
00006C OOOOOOOC 37 PLUS DC XL4'OC'
000000 38 END BEGIN

Figure 6-3. A self-checking account number routine that recalculates a check-digit and verifies it

80

The digit inserted in register 5 is shifted left four bits.
This puts the numeric part of the digit, which was in zoned
format, into the leftmost four bits of an eight-bit byte at
the right end of the register, and brings in four zeros at the
right. Or-ing with PLUS puts a plus sign into the rightmost
four bits (note that the machine code generated by this DC
is OOOOOOOC) , and we have a one-digit byte in correct
packed format for use with an Add Decimal. We therefore
put the assembled digit into a working storage location at
DIGIT and add it to SUM.

Now comes the question of whether or not this is a digit
that is to be multiplied by 3. The rule requiring digits to be
so multiplied can be stated thus: the fITst digit is multiplied
by 3; after that, every other digit is so multiplied. In other
words, we need some technique for getting a branch every
other time through the loop. The method shown here is to
reverse the sign of the contents of register 3 every time,
then to ask whether the result is positive. The fITst time
through we change a + 1 to -1; the answer is "no, the result
is not positive". The second time through we change a -1
to + 1, and the answer is "yes, the result is positive". The
third time through the + 1 gets changed back to -1, and the
answer is no. In short, every other time we ask whether the
result of reversing the sign of register 3 is positive, the
answer will be yes. We accordingly Branch on Condition to
EVEN if register 3 is positive. This means that for digits in
even positions 2, 4, 6, and 8, the two additional Add
Decimal instructions will be skipped. These, if they are

executed, have the effect of adding hI a digit three times
instead of once, which is equivalent to multiplying and
somewhat faster.

At EVEN we Branch on Count back to LOOP if, after
reducing the contents of 4 by one, the result is not zero.
The loop will therefore be executed the last time around
with 1 ill register 4, so the last digit picked up is at ACCT,
as it should be.

Once all 'nine digits have been added to sum, we are
ready to see whether the last digit of SUM is the same as
CHECK. But it isn't quite that simple; the digit at CHECK
is still. ~ zoned fonn'!t. We accordingly go through the steps
necessary to convert it to packed format, storing it for
comparison in the left byte of SUM, which we no longer
need. A Compare Logical Character with an explicit length
of one now determines whether the check digit that came
with the account number, which is now in SUM, is the same
as the computed check digit, which is now in SUM+l. We
have ended the error path as well as the normal path with
an End of Job macro instruction. In a real situation
additional steps would be included to enable inve:>tigation
of an invalid account pumber, and both paths wouk branch
back to LOOP to continue with the next account number
in the input stream.

There' are, of course, many other techniques for com
puting check digits which give greater protection or make
the check digit operations simpler.

Logical Operations on Characters and Bits 81

A FINAL EXAMPLE

We are given two numbers, NUMBER and COMB. NUMBER
is a seven-digit quantity in zoned format. We are to test
each of the seven numeric portions separately in order to be
certain that each represents a digit, that is, that the value of
the numeric portion is less than ten. If each character
contains a valid digit, we go on to the next test; if anyone
contains numeric bits not valid for a digit, we shall simply
go to an End of Job. After completing this test, we are to
check the zone bits of the rightmost byte of NUMBER to
be sure that it contains a sign. The other zone positions are
of no interest. As before, if there is an error condition, we
go to an EOJ.

Next, we start with an eight-byte composite field named
COMB. We shall assume for the purposes here that the
numeric portions of each byte all represent valid digits; if
this were questionable, they could be checked. The zones
of the eight bytes contain either plus or minus signs. A plus
sign is to be taken as meaning 1 and a minus sign as
meaning zero; we are to assemble a one-byte quantity that
contains a binary number formed from the signs. For
instance, Figure 6-4 shows a card field that could have pro
duced the data in COMB. If this field were viewed as an
alphabetic quantity in normal IBM card code, it would be
ABLMEOGQ. We want to view it, instead, as being a posi
tive number 12345678 together with a binary number
(contained in the zone punching area) of 11 001010. The
1 's and zeros here correspond to the zones: + + - -+ -+ -.
We are to separate the two items contained in COMB,
placing the number in NUMERC as a packed decimal num
ber and the zones in CODES as a one-byte binary number.

A flowchart showing the logic of this problem is shown
in Figure 6-5 and the program in Figure 6-6 does the
processing required. We start by placing a 7 in register 10,
for use as an index. Register 9 is cleared. The instructions

.. 1 1

.. 1 1
rC~OGCCCCCO~OOQOOOOQOCOCCOOOGnOQoooooaoooooo

I I 1 11' 11 11 111 1 1 11111111111 11111111 1 11111 1 1 11 1

: ~ 222 L 2 2 2 2 2 212 2 22 22 222222222 2 2 2 2 22 2 2 2 2 2 2 22 2 2 2

33:i 3 j 3333333313333333333333333333333333333333

(!44444414444414~4444444444444444444444444444

555 5 ~: 5 5 5 5 5 S 5 5 515 5 5 5 5 5 5 5 5555555555 5 ~ 5 5 S 5 5 555

t:, S 6 E b {2 6555660166 b 6 6 6 6 6 bE 6 66 6 6 6 6 6 6 6 6 6 6 & 6 6 E £

; , ,) 7 ' 1 7 0) :' 1 ~ ; , :' 117) ., 7 7 ; 7 7 1 7 7 7 J 7 1 7 7 -: 7 7 7 7 7 ' 7 7 7

t ~ 1 a e 8 B 8 3 B 3 8 8 0 '; 8 a 8 1 8 8 8 8 8 E 8 8 8 Ii B 8 8 8 S 8 8 S 8 B 8 8 8 8 8

; 9 ~ 3 9 5 9 Sj ; ~ 9 9 5 3 9 9 j 9 9 9 ~ 9 5 9 9 9 ~ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
: 4 : €. - 0 ~ .: .: ~: J q. :. ti t' ~8 .~ :c r ?? ,"2:4 :5 ~~ 7~ ~a 29 3~ ~. ~2 23 ~ .. 3~ 36::' 3839404142 43 44

Fig ... r:.: 6-4. Alphabetic input for COMB that can be viewed as two
nUI:1b~rs: 12345678 and binary 11001010

Check All Numeric
Portions of
NUMBER

forO-9

Check Zone in
Rightmost Byte

of NUMBER

Convert Zones
of COMB to

Binary

Store Binary
Code in
CODES

Make Sign
of COMB

a Plus

Pack COMB
in NUMERC

>N_O __ ~(End of JOb)

Figure 6-5. A flowchart of the steps required to solve the problem

from LOOP to OK pick up the digits in turn, strip off the
zone bits with a suitable And, and compare the numeric
portions with 10.

The instruction after OK picks up the rightmost byte of
NUMBER; this should have either a plus sign or a minus
sign. Another And, but with a different mask, strips off the
numeric portion and the rightmost bit of the sign; we do
not care whether the sign is plus or minus, a distinction

which is made in the rightmost bit of the sign. A compari
son then establishes whether the left three bits of the sign
are 110, which they should be for an EBCDIC sign.

At OK2 we are ready to go to work on the combined
digits and zones at COMB. In preparation for what follows,
we clear registers 8, 9, and 10. At LOOP2 there is a shift
before anything has been placed in the register shifted. The
idea is that we want to shift the contents of this register
seven times for eight bits. One way to accomplish this is to
place the shift instruction so that it has no net effect the
frrst time around.

The Insert Character is indexed with register 10, which
initially contains zero. We will therefore pick up the digits
from left to right this time. For each digit we use an And to
drop the numeric bits, then test against constants so as to
determine whether the sign is plus or minus. If it is neither,
we get out; there should be one or the other. If the sign is
plus, we branch to YES, where a 1 is added into register 9
- the one that we shifted at the beginning of the loop.

Whether the sign is plus or minus, we now reach NO, where
we add 1 to the index register and branch back to LOOP2 if
the contents are less than eight.

Now, when we branch back, we again shift the contents
of register 9 one position to the left. This means that each
time we again reach the beginning of this loop, whatever has
been assembled in register 9 so far is shifted left one place,
thereby making room for another bit at the rightmost
position of the register. Thus, when we fmally get out of
the loop and arrive at the Store Character, the last byte of
register 9 will contain a 1 in positions corresponding to plus
signs in COMB, and zeros in positions corresponding to
minus signs. The byte stored at CODES is just what the
problem statement required.

An And Immediate now erases the zone positions of the
rightmost byte of COMB, and an Or Immediate places a
plus sign there. The Pack instruction does not check zones,
except in the rightmost byte, so we can proceed to it
immediately, with no concern for the other zone positions.

LOC OBJECT CODE ADDRI ADDR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
000000 2 FORMAT START 0
000000 05BO 3 BEGIN BALR 11,0
000002 4 USING *,11
000002 41AO 0001 00001 5 LA 10,1 REG 10 IS USED AS AN INDEX
000006 IB99 6 SR 9,9 CLEAR REG 9
000008 439A B015 00011 7 LOOP IC 9, NUMBER-l(10) INSERT 1 DIGIT IN REG <}--INDEXED
OOOOOC 5490 B08E 00090 8 N 9,MASKl STRIP OFF SIGN
000010 5990 BOA2 000A4 9 C 9,TEN IS NUMBER LESS THAN 10
000014 4140 B018 OOOlA 10 BL OK BRANCH AROUND EOJ IF OK

11 EOJ NOT A DIGIT
0000 lA 46A 0 B 006 00008 14 OK BCT 10tLOOP REDUCE CONTENTS OF REG 10 BY 1 & BRANCH
00001E 4380 B01C 0007E 15 IC 8, NUMBER+6 IF HERE, ALL DIGITS CHECK~D OK
000022 5480 B092 00094 16 N 8,MASK2 STRIP OFF LAST DIGIT & FINAL SIGN BIT
000026 5980 B09A 0009C 11 C 8, PLUS COMPARE 3 REMAINING BITS WITH SIGN
00002A 4780 B02E 00030 18 BE OK2 BRANCH IF OK

19 EOJ NOT AN EBCDIC SIGN
000030 IB88 22 OK2 SR 8,8 CLEAR REG 8
000032 1898 23 LR 9,8 CLEAR REG 9 BY LOADING FROM REG 8
000034 l8A8 24 LR 10,8 CLEAR REG 10 BY LOADING FROM REG 8
000036 8B90 0001 00001 25 LOOP2 SLA 9,1 SHIFT REG 9 LEFT 1 BIT
00003A 438A B01D 0001F 26 IC 8,COMBI10) INSERT 1 BYTE IN REG 8--INDEXED
00003E 5480 B096 00098 21 N 8,MASK3 STRIP OFF DIGIT PART
000042 5980 B09A 0009C 28 C 8 t PLUS COMPARE WITH CODING FOR PLUS
000046 4180 B052 00054 29 BE YES BRANCH IF PLUS
00004A 5980 B09E OOOAO 30 C 8,MINUS COMPARE WITH CODING FOR MINUS
00004E 4180 B056 00058 31 BE NO BRANCH IF MINUS

32 EOJ NEITHER PLUS NOR MINUS
000054 5A90 BOA6 000A8 35 YES A 9,ONE IF PLUS ADD 1 TO CONTENTS OF REG 9
000058 5AAO BOA6 000A8 36 NO A lO,ONE ADD 1 TO REG 10 FOR LOOP TEST
00005C 59AO BOAA OOOAC 31 C 10,TEST COMPARE
000060 4110 B034 00036 38 BNE LOOP2 BRANCH BACK IF NOT FINISHED
000064 4290 B085 00081 39 STC 9,COOES STORE LAST BYTE OF REG 9
000068 940F B084 00086 40 NI COMB+1,X'OF' STRIP OFF OLD ZONE
00006C 96CO 6084 00086 41 or COM6+1,X'CO' ATTACH ZONED PLUS SIGN
000010 F241 6086 B07D 00088 0001F 42 PACK NUMERC t COMB CONVERT TO PACKED FORMAT

43 EOJ PROGRAM TERMINATION
000018 46 NUM6ER OS CL1
00001F 41 COMB OS CL8
000081 48 CODES DS CLl
000088 49 NUMERC OS CL5
000090 50 OS OF
000090 OOOOOOOF 51 MASK1 DC X'OOOOOOOF'
000094· OOOOOOEO 52 MASK2 DC X' 000000 EO '
000098 OOOOOOFO 53 MASK3 DC X'OOOOOOFO'
00009C OOOOOOCO 54 PLUS DC X'OOOOOOCO'
OOOOAO 00000000 55 MINUS DC X' 000000 DO'
0000A4 OOOOOOOA 56 TEN DC F ' I0'
0000A8 00000001 51 ONE DC F ' l'
OOOOAC 00000008 58 TEST DC F ' 8'
000000 59 END BEGIN

Figure 6-6. A program that checks a decimal field at NUMBER for validity and converts a composite field at COMB into separate binary and
packed decimal quantities. The flowchart in Figure 6-5 was used as a guide for the programming

Logical Operations on Characters and Bits 83

QUESTIONS AND EXERCISES

1. The byte at location KEY in main storage contains four
program switches in bit positions 4-7. Each of these bit
positions may be 1 (on) or 0 (off). Write an instruction that
will reverse the setting of the program switches and leave
bits 0-3 unchanged.
2. In the following byte, located at ADDR in main storage,
a 1 in a particular position shows the presence of a
characteristic and a zero its absence. Write instructions that
will branch to ANIMAL for owners of dogs or cats or both,
and proceed sequentially for all others.

XXOOOOOO

(not used) ---=r--~ I ~L-PigeOn fancier .--J canary owner
cat owner . 1 fish . d troplca I raIser

og owner parrot owner

3. Using the preceding, write instructions to branch to
LIST2 for owners of fish but not canaries, or canaries but
not fish.
4. Suppose location SUM contains 05432+ in packed
decimal format, and suppose that general register 2 initially
contains zero. Show what register 2 will contain (in hexa
decimal or binary) after:

a.IC 2,SUM
b.IC 2,SUM+2
c. IC 2,SUM+l

5. At most, the TM (Test Under Mask) instruction can test
________ bit{s) or ________ _

byte(s) with one instruction.
6. At most, the CLC (Compare Logical Character)
instruction can compare _________ bit(s) or
_________ byte(s) with one instruction.

7. The CLC instruction will successfully compare two
operands in only one of the following forms. Which is it?

a. Packed decimal numbers
b. Alphameric characters
c. Zoned decimal numbers

8. In the CLC instruction, comparison proceeds from left
to right, byte by byte, but ceases before the end of the
operand is reached, as soon as one of the following is
encountered (select one):

a. The EBCDIC sign code
b. A special character
c. An inequality
d. An improper zone code

9. Neglecting leading zeros, give in decimal the contents of
general register 5 after execution of each of the following:

a. LA 5,5

84

b.
c.
d.

LA
LA
LA

5,2
5,3(0,1)
5,FIELD

FIELD DS F
10. Write instructions to determine whether or not the
byte at main storage location FIELD contains a 5 (0000
0101 in binary).
11. In the following hypothetical program, the rows of
dots represent straightforward instruction sequences of any
reasonable length, whose nature need not concern us.

LA 2,10
LOOP

INST BC O,ADDR
INST+ 1 ,X'FO' 01

ADDR

BCT 2, LOOP
Which part of the BC instruction is addressed by the
relative address INST+ 1 ?
12. Bearing in mind that in question 11 the hexadecimal
immediate data X'FO' is simply a convenient way of
specifying binary 11110000 (or decimal 240), can you say
that the 01 (Or Immediate) instruction:

a. \t,1:!! be executed once and only once?
b. Causes certain instructions within the BCT loop to be

skipped on all but the first execution of the loop?
c. Alters the bit structure of a mask field?
d. Does all of the above?

13. Assume that the overall loop of the following sequence
will be executed a number of times. What will be the effect
of the XI (Exclusive Or) instruction?

LOOP
XI

INST BC
INST+1,X'FO'
O,ADDR

ADDR
BCT 5,LOOP

14. Suppose that general register 5 contains a number of
which only the high-order (leftmost) byte is of interest.
Write a logical instruction to zero the three low-order bytes,
together with any instructions necessary to define masks,
load other registers, etc., as required.

Chapter 7: Edit, Translate, and Execute Instructions

This chapter will be devoted to several highly specialized and
useful instructions that are part of the assembler language.
They call into play some new concepts, and their functions
and machine actions are different in many ways from any
of the instructions we have encountered so far. Since they
may be regarded as irregular verbs, so to speak, of System/
360 Assembler Language, we will subject each of them to
careful scrutiny.

The Execute (EX) instruction is a special type of
branching instruction that causes one other instruction in
main storage to be executed out of sequence without
actually branching to its location. Since Execute can also
modify the remote instruction before it is executed, it
offers considerable economy in the number of instructions
needed to achieve certain results.

The other instructions covered in this chapter are Edit,
Edit and Mark, Translate, and Translate and Test. These are
part of the System/360 logical operations discussed in the
preceding chapter. We begin with a detailed demonstration
of how the Edit, and the almost identical Edit and Mark,
instructions work. These two instructions are invaluable
aids to any programmer concerned with decimal arithmetic.
Translate· can be used for code conversion or to provide a
control function. The description of the Translate instruc
tion is necessary for an understanding of the Translate and
Test (TRT), which follows it. Detailed program examples
are included, with special emphasis on the use of the
powerful combination of TRT and EX in various applica
tions. The programmer will find many additional
applications for the techniques demonstrated in this chapter.

Edit, Translate, and Execute Instructions 85

THE EDIT INSTRUCTION

The Edit instruction is one of the most powerful in the
repertoire of the System/360. It is used in the preparation
of printed reports to give them a high degree of legibility
and therefore greater usefulness. It makes it possible, as we
shall see, to suppress nonsignificant zeros, insert commas
and decimal points, insert minus signs or credit symbols,
and specify where suppression of leading zeros should stop
for small numbers. All of these actions are done by the
machine in one left-to-right pass. The condition code can be
used to blank all-zero fields with two simple instructions.
A variation of the instruction, Edit and Mark, makes
possible the easy insertion of floating currency symbols.

We shall study the application and results of this highly
flexible instruction by applying it to successively more
complex situations.

We begin with a simple requirement to suppress leading
zeros; no punctuation is to be inserted. We have a field to
be edited, called DATA. It is four bytes long, and the decimal
data is in packed format. The packed format for data to be
edited is a requirement of the Edit (ED) instruction, which
is a decimal instruction. As we saw in an earlier chapter,
data used in decimal arithmetic operations is always in
packed format. If we happened to have source data in some
other form, we would have to pack it before editing.

The data to be edited is named as the second operand of
the Edit. The frrst operand must name a field containing a
"pattern" of characters that controls the editing; after
execution of the instruction, the location specified by the
frrst operand contains the edited result. (The original
pattern is destroyed by the editing process.) The pattern is
in zoned format, as is the result; the Edit instruction causes
the conversion of the data to be edited from packed to
zoned format, since zoned format is what is needed for
most output operations.

We said that in our example the data field to be edited
was four bytes long, that is, seven decimal digits and sign,
which we shall assume to be plus. The pattern must
accordingly be at least eight bytes long: seven for the digits
and one at the left to designate the "fill character". The fill
character is of our choosing, but is usually a blank. This is
the character that is substituted for nonsignificant zeros.

The leftmost character of the pattern in our case will be
the character blank (hexadecimal 40 in System/360 EBCDIC
coding). The other seven characters will contain hexa
decimal 20, a control character called a digit selector, which
is used to indicate to the Edit instruction that a digit from
the source data may go into the corresponding position.

Let us see how all this works out in our example.
Suppose we set up an eight-byte working storage field
named WORK into which we move the pattern (located in
an area called PATTRN). Then we will perform our edit
using WORK and DATA as the two operands. The two

86

instructions necessary to do the job are:

MVC WORK,PATTRN
ED WORK,DATA

After execution of the two instructions, WORK contains
our edited result. P ATTRN still contains the original pattern
and can transmit that original pattern to WORK for the
editing of any new value in DATA. At PATTRN there
should be the following characters, written here in hexa
decimal:

40 20 20 20 20 20 20 20

or as they would appear in an actual program, defined as a
hexadecimal constant:

P ATTRN DC X' 4020202020202020'

In EBCDIC, 40 is the hexadecimal code for a blank and 20
for the digit selector control character. Hex is used to
specify control characters, since there are no written or
printed symbols to represent them. In this section, all
patterns are shown exactly as they would appear in con
stants, except of course that the spaces would be closed up.

In our example, suppose that at DATA there is

00 01 00 Ot

The edited result would be

b b b b 1 000

where the b's stand for blanks. All zeros to the· left of the
frrst nonzero digit have been replaced by blanks; but
zeros to the right of the first nonzero digit have been
moved to WORK without change. This is the desired action.
Figure 7-1 shows a series of values for DATA and the
resultant edited results in WORK, using the pattern stated.
Note that the high-order position of WORK contains the fill
character, a blank. The values of DATA are packed decimal;
the edited results are changed during execution of the Edit
instruction to zoned decimal format.

BDDDDDDD
40 20 20 20 20 20 20 20

1234567
0120406
0012345
0001000
0000123
0000012
0000001
0000000

1234567
120406

12345
1000

123
12

1

Figure 7-1. Results of Editing source data in left-hand column. Two
lines at top give editing pattern in symbolic fonn (B
represents a blank, D a digit selector) and in hexa
decimal coding.

The fill character that we supply as the leftmost charac
ter of the pattern may be any character that we wish. It is
fairly common practice to print dollar amounts with aster
isks to the left of the first significant digit in order to
protect against fraudulent alteration. This is usually called
asterisk protection.

To do this, we need only change the leftmost character
of the pattern of the previous example. The hexadecimal
code for an asterisk is 5C; hence the new pattern is

5C 20 20 20 20 20 20 20

Figure 7-2 shows the edited results for the same DATA
values that we used in Figure 7-1.

*DDDDDDD
5C 20 20 20 20 20 20 20

1234561 *1234561
0120406 **120406
0012345 ***12345
0001000 ****1000
0000123 *****123
0000012 ******12
0000001 *******1
0000000 ********

Figure 7-2. Editing results with an asterisk as the fill character

Any characters in the pattern other than the digit
selector and two other control characters that we shall
study later are called message characters. They are not
replaced by digits from the data. Instead, they are either
replaced by the fill character (if a significant digit has not
been encountered yet), or left as they are (if a significant
digit has been found). Suppose, for instance, that we set up
a PATTRN as follows:

40 20 6B 20 20 20 6B 20 20 20

The 6B is hexadecimal coding for a comma, and it is a
message character. The edited result will contain commas in
the two positions shown, unless they are to the left of the
first nonzero digit, in which case they are suppressed.
Figure 7-3 shows the results for the same data values.

BD,DDD,DDD
40 20 6B 20 20 20 6B 20 20 20

1234561
0120406
0012345
0001000
0000123
0000012
0000001
0000000

1,234,561
120,406

12,345
1,000

123
12

1

Figure 7-3. Editing results with blank fill and the insertion of
commas

The message characters inserted are, naturally, not
limited to commas. A frequent application is to insert a
decimal point as well as commas. Let us assume that the
data values we have been using are now to be interpreted as
dollars-and-cents amounts. We need to arrange for a comma
to set off the thousands of dollars, and a decimal point to
designate cents. The characters in PATTRN, where 6B is a
comma and 4B is a decimal point, should be as follows:

40 20 20 6B 20 20 20 4B 20 20

The edited results this time are in Figure 7-4.
We see here something that would normally not be

desired: amounts under one dollar have been edited with
the decimal point suppressed. We would ordinarily prefer to
have the decimal point. This can be done by placing a
significance starter in the pattern. This control character,
which has the hexadecimal code 21, is either replaced by a
digit from the data or replaced by the fill character, just as
a digit selector is. The difference is that the operation
proceeds as though a significant digit had been found in the
position occupied by the significance starter. In other
words, succeeding characters to the right will not be
suppressed. (An exception to this generalization may occur
when we want to print sign indicators, a subject that will be
explored later.)

BDD,DDD.DD
40 20 20 6B 20 20 20 4B 20 20

1234561
0120406
0012345
0001000
0000123
0000012
0000001
0000000

12,345.61
1,204.06

123.45
10.00
1.23

12
1

Figure 7-4. Editing results with blank fill and the insertion of
comma and decimal point

The pattern for tills action, assuming we still want the
comma and decimal point as before, should be

40 20 20 6B 20 20 21 4B 20 20

The effect is this: if nothing but zeros has been found by
the time we reach the significance starter (hex 21) in a
left-to-right scan, the significance starter will turn on the
significance indicator. This indicator will cause succeeding
characters to be treated as though a nonzero digit had been
found. The result is that the decimal point will always be left
in the result, as will zeros to the right of the decimal point.
The edited results this time are shown in Figure 7-5.

One useful point to remember is that the total number
of digit selectors plus significance starters in the pattern
must equal the number of digits in the field to be edited.
Note that this is the case in all our examples.

Edit, Translate, and Execute Instructions 87

BDD,DDS.DD
40 20 20 6B 20 20 21 4B 20 20

1234567
0120406
0012345
0001000
0000123
0000012
0000001
0000000

12,345.67
1,204.06

123.45
10.00
1.23

.12

.01

.00

Figure 7-5. Editing results with blank fIll, comma and decimal point
insertion, and significance starter. In the symbolic
pattern, S stands for significance starter.

We can begin to get a little idea of how the machine does
its work on this instruction by noting that the significance
indicator is initially in the off state before the scan begins.
Scanning proceeds source digit by source digit. The signifi
cance indicator stays off until a nonzero data digit is found,
or until the significance starter is encountered; either event
causes the indicator to be turned on.

Source digits 1-9 always replace a digit selector or
significance starter, but whether a zero source digit will do
so depends upon the state of the significance indicator. If
the significance indicator is on, then we know that either a
significant digit was found at some previous character
position, or a significance starter has been encountered; in
either case, a zero from the source data is inserted. If the
significance indicator is off, we know that no significant
digit has been found so far during the scan; therefore, the
ffil character appears in the result, rather than a zero from
the data.

Table 7-1. Summary of Editing Functions

CONDITIONS

Pattern
Character

Digit selector

Significance starter

Field separator
Message character

Previous State of
Significance Indicator

off
off
off
on
on
off
off
off
off
on
on
*
off
on

Source Digit

0
1-9
1-9
0-9
0-9
0
0
1-9
1-9
0-9
0-9
**
**
**

It may be useful to refer to Table 7-1, which includes a
summary of how the state of the significance indicator
affects the editing operation under all conditions of conse
quence that you may encounter. The table also shows how
the significance indicator itself is affected.

In the table, the four columns at the left list all the
significant combinations of the four conditions that can be
encountered in the execution of the editing operation. The
two columns at the right under Results show the action
taken for each case - that is, the type of character placed
in the result field and the new setting of the significance
indicator. Use of the field separator will be discussed in a
later paragraph.

We have so far ignored the sign portion of the source
data, which (in the packed decimal format required for the
Edit instruction) is in the four low-order bits of the
rightmost byte. These bits are examined each time the Edit
instruction is executed. If the sign is plus, the significance
indicator will then be turned off, as shown in the table; if
the sign is minus, the significance indicator will be left on.
The information will not appear in the result, however, if
there are no further pattern characters to be scanned. As a
matter of fact, if any of the source fields in the examples
above had been negative, the results shown would have
been exactly the same.

Suppose, however, that pattern characters remain after
the sign position has been examined. The action of the
significance indicator in controlling the instruction con
tinues just as before, although the setting of the significance
indicator was accomplished by a different condition. There
are, of course, no more digits to move. Hence we will not
want to place digit selectors in the pattern in this position,

RESULTS

State of Significance
Low-Order Source Result Indicator at End of
Digit is a Plus Sign Character Digit Examination

* fill character off
no source digit on
yes source digit off
no source digit on
yes source digit off
no fill character on
yes fill character off
no source digit on
yes source digit off
no source digit on
yes source digit off
** fill character off
** fill character off
** message character on

*No effect on result character and new state of significance indicator.
**Not applicable because source digit is not examined.

88

but, rather, sign indicators, such as a minus sign or CR for
credit. The action taken with the characters in the pattern
is the same now as it was before: they remain unchanged if
the significance indicator is on, but are replaced by the fill
character if the significance indicator is off.

Let us set up a suitable pattern for the example data. Let
us print the letters CR for negative numbers, with one blank
between the rightmost digit and the C. In hexadecimal, CR
is C3 D9, so the pattern becomes

40 20 20 6B 20 20 21 4B 20 20 40 C3 D9

Figure 7 -6 shows the results for sample data values as
before, together with two negative values.

BDD,DDS.DDBCR
40 20 20 6B 20 20 21 4B 20 20 40 C3 D9

1234567
0120406
0012345
0001000
0000123
0000012
0000001
0000000

-0098765
-0000000

12,345.67
1,204.06

123.45
10.00
1.23

• 12
.01
e.00

987~65 CR
.00 CR

Figure 7-6. Editing results with blank. fill, comma and decimal point
insertion, significance starter, and CR symbol for nega
tive numbers

If we use an asterisk now as the fill character, positive
quantities will have three asterisks following the cents, as
shown in Figure 7-7. This mayor may not be desired. There
are other ways to handle the signs, as we shall see next.

We have seen above that an amount of zero prints in the
general form .00 when a significance starter is used. It may
in some cases be desirable to make such an amount print as
all blanks or all asterisks. This is very easily done by making
use of the way the condition code is set by execution of the
Edit instruction:

Code Instruction
o Result field is zero
1 Result field is less than zero
2 Result field is greater than zero

This means that after completion of the Edit we can make a
simple Branch on Condition test of the condition code and
move blanks· or asterisks to the result field if it is zero. The
movement is particularly simple because the fill character is
still there in the field and an overlapped Move Characters
instruction can be used as follows:

BC 6,8KIP
MVC WORK+1(12),WORK

SKIP

*DD,DDS.DDBCR
5C 20 20 6B 20 20 21 4B 20 20 40 C3 D9

1234567 *12,345.67***
0120406 **1,204.06***
0012345 ****123.45***
0001000 *****10.00***
0000123 ******1.23***
0000012 *******.12***
0000001 *******.01***
0000000 *******.00***

-0098765 ****987.65 CR
-0000000 *******.00 CR

Figure 7-7. Same with asterisk rill

The explicit length of 12 is based on the most recent
pattern, which has a total of 13 characters. The MVC, as
written, picks up the leftmost character and moves it to the
leftmost-plus-one position. It then picks up the leftmost
plus-one character and moves it to the leftmost-plus-two
position, etc., effect propagating the leftmost character
through the field. This is precisely what we want if the fill
character is the one to be substituted .

Figure 7-8 shows our familiar data values with zero fields
blanked, and Figure 7-9 shows them with zero fields filled
with asterisks. Only the fill character differs in the two
programs that would produce the results shown in Figures
7-8 and 7-9; the Edit, the Branch on Condition, and the
Move Characters are the same in both cases.

BDD ,DDS .DDBCR
40 20 20 6B 20 20 21 4B 20 20 40 C3 D9

1234567
0120406
0012345
0001000
0000123
0000012
0000001
0000000

-0098765
-0000000

12,345.67
1,204.06

123.45
10.00
1.23

.12

.01

987.65 CR

Figure 7-8. Editing results showing the blanking of zero fields by
the use of two additional instructions

*DD,DDS.DDBCR
5C 20 20 6B 20 20 21 4B 20 20 40 C3 D9

1234567 *12,345.67***
0120406 **1,204.06***
0012345 ****123.45***
0001000 *****10.00***
0000123 ******1.23***
0000012 *******.12***
0000001 *******.01***
0000000 *************

-0098765 ****987.65 CR
-0000000 *************

Figure 7-9. Same with zero fields filled with asterisks

Edit, Translate, and Execute Instructions 89

The condition code can also be used to distinguish
between positive and negative numbers when it is necessary
to present the sign in some manner that is not possible by
using the automatic features of the Edit. We might, for
instance, wish to test the condition code and use the results
of the test to place a plus sign or minus sign to the left of
the edited result.

The Edit instruction can be used to edit several fields
with one instruction. Doing so uses a fmal control charac
ter, the field separator (hexadecimal 22). This character is
replaced in the pattern by the fill character, and causes the
significance indicator to be set to the off state. The
characters following, both in the pattern and in the source
data, are handled as described for a single field. In other
words, it is possible to set up a pattern to edit a whole
series of quantities, even an entire line, with one instruc
tion. The packed source fields must, of course, be
contiguous in storage, but this is often no inconvenience.
One limitation is that the condition code, upon completion
of such an instruction, gives information only about the last
field encountered after a field separator.

Let us consider the example shown in Figure 7-10.
Suppose that at DATA we have a sequence of three fields.
The leftmost of the fields has four bytes, the next has
three, and the rightmost has five bytes. The first is to be
printed with commas separating groups of three digits. The
values are always positive and, therefore, no sign control is
desired. Zero values will be blank since we shall not use a
significance starter.

The second field is to be printed with three digits to the
right of the decimal point, with a significance starter to
force amounts less than 1 to be printed with a zero before
the decimal point. Positive quantities are to be printed
without a sign, and negative quantities are to be printed
with a minus sign immediately to the right of the number.

The third number is a dollar amount that could be as
great as $9,999,999.99. Commas and decimal point are
needed just as shown. Amounts less than $1 are to be

1234567C12345C123456789C 1,234,567 12.345

0123456C01234C012345678C 123,456 1.234

0010009COO123C001000000C 10,009 0.123

0004502C98007DOOOOO1210C 4,502 98.007-

0000800COOO12COOOOOOO06C 800 0.012

0000001COOO01DOOOOOOO01C 1 0.001-

OOOOOOOCOOOOOCOOOOOOOOOC 0.000

printed with the decimal point as the leftmost character.
Zero amounts are to be blanked. Signs are not to be printed.

There is to be at least one blank between the first and
second edited result, and at least three between the second
and third.

Let us write out the necessary pattern in shorthand
form, with b standing for a blank, d for digit selector, f for
field separator, s for significance starter, and other charac
ters for themselves:

bd,ddd,dddfsd.ddd-fbbd,ddd,dds.dd

The required blank between the first and second edited
result will be placed there by the replacement of the field
separator with the fill character. The significance starter in
the part of the pattern corresponding to the second field
will give the required handling of quantities less than 1. The
extra two blanks between the second and third results are
provided by the blanks in the part of the pattern correspon
ding to the third data item. (These are not treated as new
fill characters; only the leftmost character in the entire
pattern is so regarded.) Notice that the total of digit
selectors plus significance starters is equal to the number of
digits in each field to be edited.

Instructions to do the required actions are as follows:

MVC WORK,PATTRN
ED WORK,DATA
BC 6,SKIP
MVC WORK+30(3),WORK+18

SKIP

The choice of addresses in the final MVC that blanks a zero
field is somewhat arbitrary. We reason that if the entire
field is zero, the first three positions of it are surely blank
by now; hence a three-character MVC from there to the last
three positions of the field will be correct.

Figure 7-10 shows initial source data values and edited
results. The packed source fields must be adjacent as
shown; we address the leftmost character.

1,234,567.89

123,456.78

10,000.00

12.10

.06

.01

Figure 7-10. Examples of multiple edits. On each line the first field is a combination of three items; all three were edited with one Edit,
giving the three results shown to the right. The editing pattern is shown in the text.

90

THE EDIT AND MARK INSTRUCTION

The Edit and Mark instruction (EDMK) makes possible the
insertion of floating currency symbols. By this we mean the .
placement in the edited result of a dollar sign (or pound
sterling symbol) in the character position immediately to
the left of the frrst significant digit. This serves as protec
tion against alteration, since it leaves no blank spaces. It is a
somewhat more attractive way to provide protection than
the asterisk fill.

The operation of the instruction is precisely the same as
the Edit instruction, with one additional action. The execu
tion of the Edit and Mark places in register 1 the address of
the frrst significant digit. The currency symbol is need~d
one position to the left of the frrst significant digit.
Consequently, we subtract one from the contents of regis
ter 1 after the execution of the Edit and Mark and place a
dollar sign in that position.

There is one complication: if significance is forced by a
significance starter in the pattern, nothing is done with
register 1. Before going into the Edit and Mark, therefore,
we place in register 1 the address of the significance starter
plus one. Then, if nothing happens to register 1, we still get
the dollar sign in the desired position by using the proce
dure described above.

Let us suppose that we are again working with a
four-byte source data field, which we are to edit with a
comma, a decimal point, and CR for negative numbers.
Accordingly, the pattern (in shorthand form) should be

bdd,dds.ddbCR

The significance starter here is six positions to the right of the
leftmost character of the pattern. The complete program to
give the required editing and the floating dollar sign is as
follows:

MVC WORK,PATTRN
LA I,WORK+7
EDMK WORK,DATA
BCTR 1,0
MVI O(1),C'$'

The Load Address instruction as written places in register
1 the address of the position one beyond the significance
starter. If significance is forced, this address remains in
register 1, but otherwise the address of the frrst significant
digit is placed in register 1 as part of the execution of the
Edit and Mark. The Branch on Count Register instruction
with a second operand of zero reduces the frrst operand
register contents by.l and does not branch. There are, of
course, other ways to subtract 1 from the contents of
register 1, but this is the easiest and fastest. In the Move
Immediate instruction we write an explicit displacement of
zero and an explicit base register number of 1. The net
effect is to move one byte of immediate data, a dollar sign,
to the address specified by the base in register 1. This is the
desired action.

Figure 7-11 shows the effect-on sample data values. Zero
fields could be blanked by methods we have already
discussed.

BDD,DDS.DDBCR
40 20 20 6B 20 20 21 4B 20 20 40 C3 D9

1234561
0120406
0012345
0001000
0000123
0000012
0000001
0000000

-0098165
-0000000

$12,345.61
$1,204.06

$123.45
$10.00

$1.23
$.12
$.01
$.00

$981.65 CR
$.00 CR

Figure 7-11. Examples of the application of the Edit and Mark
instruction to get a floating currency symbol

Edit, Translate, and Execute Instructions 91

THE TRANSLATE INSTRUCTION

How It Works

Another powerful programming feature of System/360 is
the ability, through the Translate instruction, to convert
very rapidly from one coding system of eight or fewer bits
to another coding system. Using a conversion table, we can
convert a string of characters from one form to another at
speeds that compare favorably with that of decimal
addition.

Suppose that we have an input stream in which the data
is in proper arrangement for processing, but is in Baudot
teletypewriter code. Before System/360 can process the
input, it must be converted to EBCDIC. The Baudot code is
a five-bit code with shifting, which makes it the equivalent
of a six-bit code. For simplicity, we will omit control
characters, punctuation marks, and fractions; for our
purposes, they are "invalid". As shown in Figure 7-12, our
transmission receiving equipment adds two zero bits at the
beginning of each character, which do not change its binary
value, and converts the code signals into the equivalent
binary bit patterns shown in the illustration, so that our
input stream is in the necessary eight-bit bytes. It remains
for us to translate this stream into the corresponding
EBCDIC characters by programming.

The Translate instruction (TR) is in the SS format with
two storage operands. The frrst operand names the leftmost
byte of a field to be translated; this field may be from one
to 256 bytes in length. hi programming parlance, it is called
the argument. The second operand names the start of a list,
or table, that contains the characters of the code into which
we wish to make the translation. The table may be 256
bytes in length or it may be shorter. It is called the
/unction.

Our first step before using the Translate instruction is to
construct a table like the one in Figure 7-13. Note that it is 64
bytes in length, which is the maximum length of a six-bit

code (2 6 = 64), and provides us with one byte for every
binary value that we might receive. We give our table a
name, TABLE, so that we will be able to refer to its symbolic
storage address regardless of where it is. To create the table, a
DC statement like the following might be used. In this case,
we are arbitrarily filling the unused bytes with FF's.

TABLE DC X'FFE3FFD64OC8D5D4FFD3D9C7C9D7C3E5C5E9
..•......... F2FFFFF7FIFFFF'

Then, assuming each record is a maximum of 80 bytes in
length, we set up a storage area for the Baudot data that is
to be translated:

RECORD DS CL80

After moving the frrst input item to RECORD, the only
processing instruction that is necessary to convert it to
EBCDIC characters is:

TR RECORD,TABLE

The operation of this instruction is byte by byte, from left
to right, until the end of the frrst operand field. Like the other
logical instructions· we have studied, TR treats all data as
unstructured logical data, that is, as unsigned binary quan
tities. Say the first byte of RECORD is 0000 1010 (hex
OA), which is R in Baudot code. The machine action will be
to go to the address T ABLE+OA (that is, the byte at OA
within the table) and to replace the OA in RECORD by the
bit pattern it finds in that byte of the table. This is hex D9
or 1101 1001, which is R in EBCDIC. If the next Baudot
byte is 0010 1100 (hex 2C) for the numeral 8, it will be
replaced by the contents of the byte at TABLE+2C: hex
F8 or 1111 1000, which is 8 in EBCDIC. If the next
Baudot byte is either hex 04 or 24, a space, it will be
replaced by hex 40, the EBCDIC blank, which we placed in

BIT POSITIONS 4, 5,6, 7

BIT
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

POSITIONS HEX
0,1,2,3 VALUE- 0 1 2 3 4 5 6 7 8 9 A B C 0 E F

t

0000 0 T 0 sp H N M L R G I P C V

0001 1 E Z 0 B S y F X A W J U Q K

0010 2 5 9 sp 4 8 0

0011 3 3 6 2 7 1

Figure 7-12. Baudot teletypewriter code. This is a fIve-bit code that, with shifting, has the capacity of six bits, or 64 characters. Control
characters, punctuation marks, and fractions have been omitted.

92

Sqmbolic address 01' thIs bqte IS TABLE ThIS IS TABLE +07

I /
Address* 00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF

Contentst ;X l/{ ;% X 'X /C y(l/{ y{ l/(;X 7c ~
Address 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10 1E 1F

Contents X 7z 70 l/(X ;Yv c;{ 7x l/{ 7w l/{ /u /a X
Address 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F

Contents :x /s ;% X 7s 70
Address 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

Contents :x X :x ;X ;X
*Location of function byte within table, given in hex.
tContents of function byte. The actual bit configuration is shown in hex at upper left; character at lower right is EBCDIC
character represented by that bit pattern.

Figure 7-13. Table for translation of Baudot code to EBCDIC. Unused bytes may be filled with FF's to test for invalid characters.

the bytes at both TABLE+04 and TABLE+24.
There are some important things to note about our

translate table:
1. It contains the characters of the code into which we

are translating, the function bytes.
2. It is in order, not by the binary sequence of the

characters it contains, but by the binary sequence of the
characters of the code from which we are translating, the
argument bytes.

3. It is 64 bytes long, the length we determined was
equal to the maximum number of bit combinations we
might have to deal with in the Baudot code.

If we were confronted by the reverse situation and
needed to translate from EBCDIC to Baudot code, using
the same letters, numbers, and blanks as before, we would
have to construct a 256-byte table in order to have the
required indexing or referencing capacity to 256 different
addresses. (EBCDIC is an eight-bit code, and T = 256.) The
table would contain the 38 characters of interest to us, but
the contents of these function bytes would now have to be
in the Baudot code bit configuration, and they would be in
order by the sequence of the EBCDIC characters, which are
now the argument bytes.

We have not so far mentioned the unused function bytes
of our table in Figure 7-13. We could store blanks or zeros
as constants, but a better procedure is available to us,
especially when a code without validity checks, like the
Baudot, is transmitted. If we fill the spaces with a single
unused character, such as hex FF (1111 1111), all invalid
codes received would be translated to FF. After translation
of each record, it would then be very simple to scan it for

invalid characters by using a Compare Logical Immediate
instruction.

The Translate instruction may be used to convert any
characters of no more than eight bits to any other charac
ters, not necessarily from one standard code to another. It
may be used to perform a control function, as in the
program example in which we shall see the instruction at
work. At first glance, this program may seem to be rather
complicated, but it is simply a variation on an example of a
sorting technique that we discussed earlier.

An Example

In the example we shall use the Translate instruction to
accomplish a reversal of letters and digits in the collating
sequence. When we compare a letter and a digit in normal
EBCDIC coding the letter will always show as "smaller"
than the digit. We shall assume that, for some special
reason, it is necessary to arrange things so that letters sort
as "larger".

It should be realized that we need to reverse the ordering
of letters and digits as complete groups. It is therefore not
possible simply to reverse the paths taken on the compari
sons in the program. Consider an example. With EBCDIC
coding and the Compare Logical Character instruction, this
is the binary sequence, and the machine's normal collating
sequence, of the following five items:

ADAMS
JONES
SMITH
12345
56789

Edit, Translate, and Execute Instructions 93

We want to modify the sorted order to:

12345
56789
ADAMS
JONES
SMITH

If we were simply to reverse the paths taken after the
comparison, the sorted order would be:

56789
12345
SMITH
JONES
ADAMS

We shall see how, using the Translate instruction, we can
rearrange the letters and digits so that digits sort ahead of
letters, wh!e retaining normal numerical and alphabetical
order. The translated characters will be used only for the
sorting operation; we are not required to traIislate the
characters into anything that would be otherwise meaningful.

The only thing we need to do in setting up the table,
therefore, is to replace digits with something smaller than
what we replace letters with. There are, of course, a great
many ways to do this. In the program of Figure 7-14 we
have chosen a scheme for its simplicity. The digits 0-9 are
replaced by hexadecimal 01-10, A-I are replaced by
11-19, J-R by 21-29, and S-Z by 32-39. These replace
ments satisfy the one basic requirement, that digits sort
earlier than letters. The scheme also preserves the ordering
of the letters within the alphabet. The particular choices for
the letters are not critical, but they will seem reasonable to
someone familiar with punched cards.

The program begins with an unfamiliar operand in the
PRINT instruction, the assembler instruction that controls
the content of the assembly listing. The operand DATA has
the effect of causing constants to be printed out in full in
the listing. If DATA is omitted or NODATA is specified,
only the leftmost eight bytes of any constant will be
printed, no matter how large it may be. In actual pro
gramming, it is generally considered good practice to
include PRINT DATA routinely-and also to let generated
macro statements appear in full (by the use of GEN or the
omission of NOGEN in the PRINT statement). Then the
programmer will always have a complete listing for program
checking and debugging. A full explanation of the PRINT
instruction may be found in the assembler language refer
ence manual.

We are assuming, for the purposes of this program, that
the input stream contains nothing but letters and digits.
There are only 36 of these. The other 220 positions of the
table have been filled with blanks (represented by 40 in
EBCDIC), which is not quite representative of what we
might do in practice. In an actual application, if our data

94

had already been run and verified and we really knew that
nothing else could appear, we would use relative addressing
with a minus factor to reference the table, and would not
store the blanks at the beginning of the table. If, as is more
likely, we were concerned about the possibility of erroneous
data, we might use the full 256-byte table to check validity.

The task is to sort into the stated sequence three records
of 13 characters each, using as the sort key the middle five
characters of each record. In other words, the sorted
records, which are named A, B, and C, are to be in sequence
on their middle five characters after the execution of the
program.

In the program of Figure 7-14 we begin by moving the
keys to locations in which they can be translated; we do
not want to destroy the actual records. The working storage
areas have been named KEY A, etc. We shall see shortly why
these need to be 13 characters. The three Translate instruc
tions make the conversions of coding on the keys that we
have described in detail above. The original records are not
disturbed.

Now we load three general registers with the addresses of
A, B, and C, that is with A(A), A(B), and A(C). It is these
addresses that will be moved during the bulk of the sorting,
not the records themselves. The Compare Logical that
comes next must be studied carefully. The instruction says
that the frrst operand begins 43 bytes after the address
contained in register 2 and that the frrst operand is five
bytes long. Register 2 at this point contains the address of
A because of the Load Multiple just before this instruction.
Looking at the data layout, we see that 43 bytes past the
beginning of A is the beginning of the translated key of A.
Similarly, the second operand refers to the key of B. (Only
one length is required on this instruction.) We are thus
asking for a comparison between the translated key of A
and the translated key of B. If the key of A is already equal
to or smaller than the key of B, we Branch on Not High
down to X where the next ,comparison is made. If the key
of A is larger than the key of B, we proceed in sequence to
the three instructions that interchange the contents of
registers 2 and 3. This means that when we arrive at X,
register 2 contains the address of the smaller of the keys of
A and B, whether or not there was an interchange.

In the addressing scheme described in the preceding
paragraph, it is essential that there be a fixed relationship
between the address of an item and the address of its
translated key. In other words, the translated key of A in
KEY A has to be the same distance beyond A as the
translated key of B in KEYB is beyond B, and similarly
with KEYC and C, so that the same displacement of 43 can
be used for all three items. (This, in turn, is why KEYA,
KEYB, and KEYC were made 13 characters long even
though the keys are only five.) This addressing scheme is
necessary because on the second and third comparisons, we
will not know which keys are being compared-A, B, or C.

(8170)

LOC OBJECT CODE AODR1 ADDR2 STMT SOURCE STATEMENT

1 PRINT DATA,NOGEN
000000 2 SORTABC2 START 0
000000 05BO 3 BEGIN BALR 11.0
000002 4 USING *.11
000002 0204 B097 B070 00099 00072 5 MVC KEYA+4 (5). A+4 MOVE KEYS TO POSITION FOR TRANSLATE
000008 0204 BOA4 B070 000A6 0007F 6 MVC KEYB+4(5). B+4
OOOOOE 0204 BOB 1 B08A 000B3 0008C 7 MVC KEYC+4(5),C+4
000014 DC04 B097 BOED 00099 OOOEF 8 TR KEYA+4(5),TABLE TRANSLATE KEYS TO CHANGE COLLATE SEQ
00001A DC04 BOA4 BOED 000A6 OOOEF 9 TR KEYB+4(5),TABLE
000020 OC04 BOB 1 BOED 000B3 OOOEF 10 TR KEYC+4 (5).T ABL E
000026 9824 BOBA OOOBC 11 LM 2.4,ADDRA PUT ADDRESSES IN REGS 2, 3, 4
00002A 0504 202B 302B 0002B 0002B 12 CLC 43 (5,21.43 (31 COMPARE KEYA WITH KEYB
000030 47DO B038 0003A 13 BNH X BRANCH IF ALREADY IN SEQUENCE
000034 1862 14 LR 6,2 INTERCHANGE
000036 1823 15 LR 2,3
000038 1836 16 LR 3.6
00003A 0504 202B 402B 0002B 0002B 17 X CLC 43(5,2),43(4) COMPARE SMALLER OF A AND B WITH KEYC
000040 4700 B048 0004A 18 BNH Y BRANCH IF ALREADY IN SEQUENCE
000044 1862 19 LR 6,2 INTERCHANGE
000046 1824 20 LR 2,4
000048 1846 21 LR 4,6
0OO04A 0504 302B 402B 0002B 0002B 22 Y CLC 43(5,3),43 (41 COMPARE TWO LARGER KEYS
000050 4700 B058 0005A 23 BNH MOVE BRANCH IF ALREADY IN SEQUENCE
000054 1863 24 LR 6,3 INTERCHANGE
000056 1834 25 LR 3.4
000058 1846 26 LR 4,6
00005A D20C BOC6 2000 000C8 00000 27 MOVE MVC SMALL,O(2) MOVE USING ADDRESSES IN REGI STERS
000060 D20C BOD3 3000 00005 00000 28 MVC MEDIUM,O (3)

000066 020C BOEO 4000 000E2 00000 29 MVC LARGE,O(4)
30 EOJ

00006E 33 A DS C1l3
00007B 34 B OS C1l3
000088 35 C OS C1l3
000095 36 KEYA OS C1l3
0000A2 37 KEYB DS C1l3
OOOOAF 38 KEYC OS Cll3
OOOOSC 0000006E 39 ADORA DC A(A)
OOOOCO 0000007B 40 ADORB DC A(B)
0000(4 00000088 41 ADDRC DC AI()
0000C8 42 SMALL OS C1l3
000005 43 MEDIUM OS C1l3
0000E2 44 LARGE OS Cll3
OOOOEF 4040404040404040 45 TABLE DC Cl193' ,
0000F7 4040404040404040
OOOOFF 4040404040404040
000107 4040404040404040
OOOiOF 4040404040404040
000117 4040404040404040
OOOllF 4040404040404040
000127 4040404040404040
00012F 4040404040404040
000137 4040404040404040
OOO13F 4040404040404040
000147 4040404040404040
00014F 4040404040404040
000157 4040404040404040
00015F 4040404040404040
000167 4040404040404040
00016F 4040404040404040
000177 4040404040404040
00017F 4040404040404040
000181 4040404040404040
00018F 4040404040404040
000191 4040404040404040
00019F 4040404040404040
0001A7 4040404040404040
0001AF 40
0001BO 1112131415161718 46 DC X'111213141516171819'
0001B8 19
0001B9 40404040404040 47 DC CL7' ,
0001eo 2122232425262728 48 DC X'212223242526212829'
0001C8 29
0001C9 4040404040404040 49 DC Cl8' ,
000101 3233343536313839 50 DC X'3233343536373839'
000109 404040404040 51 DC CL6' .
000lDF 0102030405060708 52 DC X'01020304050607080910'
000lE7 0910
0OOlE9 404040404040 53 DC Cl6' ,
000000 54 END BEGIN

Figure 7-14. A program to sort three fields named A, B, and C into ascending sequence on me-character keys in each field. The Translate
instruction is used to make digits sort ahead of letters.

Edit, Translate, and Execute Instructions 95

We now carry out the same actions using the addresses in
registers 2 and 4, thus comparing the smaller of KEY A and
KEYB with KEYC. The two addresses are interchanged if
necessary, to make the address in register 2 that of the
smaller. After this sequence of instructions, therefore, we
can be positive that register 2 contains the address of the
smallest of the translated keys. The same set of actions on
registers 3 and 4 gets them in proper sequence.

Now we know that whatever rearrangements mayor
may not have been carried out, register 2 contains the
address of the smallest of the keys, register 3 the address of
the middle-sized, and register 4 the address of the largest.
We can therefore proceed to the three instructions that
place the proper three records in SMALL, MEDIUM, and
LARGE. For instance, the fIrst of these instructions, the
one at MOVE, says to move 13 characters from the address
given in register 2, whatever it may be, to SMALL. The
other two instructions do the same with registers 3 and 4.

Figure 7-15 shows the contents of registers 2,3, and 4 at
four points during the execution of the program: at the

96

beginning, at X, at Y, and at MOVE. The three actual data
items, in order, were:

11 11 SMITH 11 11
2222ADAMS2222
3333567893333

In other words, the original items were in reverse order to
the sequencing pattern we wanted.

AFTER EXECUTION
OF REG 2 REG 3 REG 4

STATEMENT 11 0000206E 0000207B 00002088

STATEMENT 16 0000207B 0000206E 00002088

STATEMENT 21 00002088 0000206E 0000207B

STATEMENT 26 00002088 0000207B 0000206E

Figure 7-15. The contents of registers 2, 3, and 4 during execution
of the program in Figure 7-14, loaded at 2000

THE TRANSLATE AND TEST INSTRUCTION AND
THE EXECUTE INSTRUCTION

The Translate and Test instruction (TRT) adds great power
to the processing capability of System/360. It is related to
the Translate instruction and has the same format, but is
very different in operation. It is used to scan a data field for
characters with a special meaning. Since it merits our close
attention, we shall study it in the three remaining programs
in this chapter.

As with Translate, we work with a table as the second
operand that is accessed exactly the same way. That is, a
frrst operand argument byte addresses a particular entry in
the table by an address computation. Once again the table
must be in order by the binary sequence of the code of the
source material, which in this and the following sections
will be standard EBCDIC input. This time, however, we
must put zeros in the table to indicate characters without
any special meaning and some nonzero value for each
character with a special meaning.

In further contrast to the Translate instruction, there is
no change in the argument bytes as a result of the TRT
operation, despite the "translate" in its name. Instead, the
argument bytes are merely inspected, byte by byte, from
left to right. If the frrst argument byte references a function
byte that is zero, the next argument byte is inspected, and
so forth. If all the function bytes that are referenced are
zero, the condition code is set to zero and the operation is
complete. However, if a nonzero function byte is refer
enced, the contents of that byte are placed by the machine
in register 2 and the address of the argument byte is placed
in register 1. The condition code is set to 1 or 2, and the
operation is terminated. A condition code of 1 indicates
that there are more argument bytes to inspect, a condition
code of 2 that the nonzero function byte is at the end of
the field. The programmer may then make use of the
information in the registers and in the condition code.

This means that we can inspect a complete stream of
argument bytes, looking for whatever interests us: error
characters, end-of-message codes, blanks and commas that
separate parts of a line, or whatever. The following problem
shows one way to use the instruction.

We are given the starting address of a string of characters
of unknown length. The string contains an unknown num
ber of names and addresses. Each name is of unknown
length; each address component is of unknown length;
there may be from one to four lines of address; we do not
know how many names and addresses there are. All we do
know is that after each "line" of information there is a
dollar sign ($), after the last line of an address there are two
dollar signs ($$), and at the end of the entire string there is
a dollar sign followed by an asterisk ($*). We are required
to set up each name and address in four lines named
LINE 1 , LINE2, UNE3, and LINE4. Any unused lines must
be blanked. When an address has been assembled in this

(8170)

manner, it is to be printed, after which we return to set up
and print the next address.

The table required for this application must be 256
bytes in length in order to reference the complete range of
EBCDIC binary values. It will consist of 254 zeros, with
entrie~only in positions 5B (91) and 5C (92), corresponding
to dollar sign and asterisk respectively. For-- the dollar sign
we have chosen to enter 01 and for asterisk 02. These
choices are highly arbitrary; as we shall see, any other two
numbers would be just as good. All we need to know about
the input stream is where the dollar signs and asterisks
appear; we care nothing about any other characters.

The program in Figure 7-16 begins by placing in register
3 the address of the frrst character of the input stream that
we shall break into names and addresses. On the assumption
that there is only one such stream to process, this instruc
tion is never repeated in this program. The next instruction
is returned to each time another name and address is to be
processed. It places a 4 in register 9 to be used as a guard
against incorrect input streams; if ever a name and address
would seem to require more than the four lines we have
allotted, the program will stop. The next Load Address
places in register 10 the address of the frrst line of the
output. The next two instructions are overlapping Move
Characters that clear to blanks the output areas. With
assumed line lengths of 120 characters, this makes 480
bytes to clear. Since the' maximum length in a Move
Characters is 256 bytes, two instructions are needed, each
clearing two lines. The frrst MVC instruction clears to
blanks the frrst two lines and the first position of the third
line. The second MVC instruction uses the blank now in the
frrst position of the third line to blank the remaining
positions of the third line and all of the fourth line.

Now we come to the Translate and Test. The frrst
operand starts at the address in register 3, which we set up
with the starting address of the input stream; it is stated to
be a maximum of 120 characters in length. The second
operand address names the table. If the input stream is
correct, a dollar sign will be found within 120 characters.
If, because of an error, there is no end-of-line dollar sign,
we will have a condition code of zero at the completion of
the execution of the instruction. A Branch on Zero,
accordingly, takes us to an error exit (this could also be
written as BC 8,ERROR).

In the normal case of fmding a dollar sign to indicate the
end of the frrst line, what do we have in the registers?
Register 1 contains the address of the dollar sign that
stopped the Translate and Test. We wish to do a little
arithmetic on this address without destroying it, so we move
it to register 4. Now we subtract from the address of the
dollar sign the address of the frrst character of the line. The
difference is the length of the line, in bytes. We are about

Edit, Translate, and Execute Instructions 97

LOC OBJECT CODE AOORI ADDR2 STMT SOURCE STATEMENT

OCOOOO
000000 05BO
000002
000002 IB22
OC0004 4130 823D
G00008 4190 0004
DODOOC 41AO B050
000010 02~0 B050 BOSC OOOSF
000016 02EE B14E B140 00150
oeOOlC 0077 3000 B30A 00000
e00022 4780 B054
000026 1841
000028 IB13
00002A 5BI0 B302
D0002E 4740 B044
000032 4410 B056
000036 4130 4001
OC003A 41AA 0078
00003E 4690 BOLA
000042 47FO B054
000046 0700

000048 4130 4001
OC004C S920 B306
OU0050 4770 B006

0023F
00C04
0005F
OOCSE
C014F
C030C
000S6

CC304
00046
000S8
ceOOI
C0078
0001C
C0056

OOCOI
CC308
00008

OC0058 0200 Aoeo 3000 00000 oeooo
00005E 40
00005F
000007
00014F
0001C7

00023F E204C9E3C85BC4C5
000247 E309D6C9E35B5BDI
OG024F 4B40C34B4001CIC3
000257 02E206055BFlf2F3
0002SF F44004CIC90540E2
000267 E309C5C5E35BC3C8
00026F C9C3CIC7D66B40C9
000277 03D3C9D5D6C9E2SB
00027F 58C64B40C3484009
oe0287 4B40CI05C4C~D9E2
U002BF 06C55BF5F5F34004
000297 CI0703C5400703Cl
OD029F C3C540CI07CI09E3
0002A7 04C505E340

n002AC F5C35BE6C8C9E3C5
0002B4 4007D3CIC90SE268
0002BC 4005C5E640E80609
0002C4 025BSBC44B40C44B
e002CC 40CIC4CL04E240Cl
000204 05C440C6CID4C903
00020C E85BFSFOFS40C709
0002E4 CIE3C8E20605seCl
C002EC 07E34B40F3F15BD9
OC02F4 C5CIC4C9D5C76B40
0002FC C7C5D5C54BSBSC
000303 00
000304 oooeOOOI
000308 00000002
oe030C OOOOOOCOOOOOOOOO
000314 0000000000000000
00031C 0000000000000000
000324 0000000000000000
00032C 0000000000000000
000334 OOOOOOOOOOCOOOOO
oe033C ooooooeoooocoOOO
000344 0000000000000000
OG034C 0000000000000000
0003S4 0000000000000000'
0003SC 0000000000000000
000364 000000
000367 0102
000369 0000000000000000
OG0371 OOOOOOCOOOOOOOOO
000379 0000000000000000
000381 0000000000000000

GCO f9 OOOC COOOOOOOOO
000401 OOCCOOCCOOCOOOOO
lJ00409 000000
0(;0000

1
2 MAILlIST
3 BEGIN
4
5
6
7 AGAIN
8
9

10
11 LOOP
12
13
14
15
16
17
18
19
20
21
22 OUT
23 •
24 •
25 •
26
27
28
29
32 ERROR
3S ,.VCINS
36 BLANK
37 lINEl
38 LINE2
39 lINE3
40 LINE4
41 NAME

42

43 ONE
44 ENDCGN
45 TABLE

46
47

48

PRINT
START
BALR
USING
SR
LA
LA
LA
MVC
,",VC
TRT
Bl
LR
SR
S
8M
EX
LA
LA
B~T
8
NOPR
• • •
LA
C
BNE
EOJ
EDJ
MVC
DC
OS
OS
OS
OS
DC

DC

DC
DC
DC

DC
DC

END

DATA,NOGEN
o
ll,O ·.11
2,2
3,NAME
9,4
10,lINEl
LINEl(241),BLANK
LINE3+1(2~9).LINE3
0(120,3) ,TABLE
ERROR
4,1
1,3
l,eNE
OUT
I,MVCINS
3,110,4)
10,120(10)
9,LOOP
ERROR
o

3,1(0,4)
2,ENDCON
AGAIN

010.10) .0(3)
CLl' ,
CLI20
CL 120
CLI20
ClI20
C·SMITHSDETROITSSJ.

ILLINOISSSF. C. R.

CLEAR REG FOR LATER COMPARE INSTR
PUT STARTING AODR OF RECORD IN REG
FOR ERROR CHECKING
INITIALIZE TO START OF FIRST LINE
BLANK LINES 1 & 2, 1ST POS LINE 3
BLANK BAL LINE 3 & LINE 4
SCAN RECORD FOR DELIMITER
BRANCH IF NO UELIMITER IN 120 CHARS
GET LENGTH CODE OF LINE

BRANCH IF 2 DELIMITERS IN SEQUENCE
MOVE LINE TO PRINTING POSITION
SET UP NEXT TRT
TO GET NEXT LINE
BRANCH UNLESS FIFTH LINE
MORE THAN 4 LINES
THE PRINT ROUTINE WOULD START HERE

SET UP FOR NEXT NAME & ADDRESS
SEE IF DELIMITER WAS AN ASTERISK
BRANCH IF NOT
ALL FINISHED IF HERE
ERROR STOP
EX INSTR ADDS LENGTH FROM REG 4

C. JACKSONSIZ34 MAIN STREETSCHICAGO,X
ANDERSONS553 MAPLE PLACE APARTMENT '

C'SCSWHITE PLAINS, NEW YORKSSD. D. ADAMS AND FAMILY$505 X
GRATHSONSAPT. 31SREADING, PENN.S.'

F'l'
F'2'
91X'00'

X'010Z'
163X'00'

BEGIN

Figure 7-16. A program to print names and addresses. The input stream contains an unknown number of names and addresses, each name
and address contains a variable number of lines, and each line is of variable length.

98

ready to execute a Move Characters instruction in which we
will use this computed address; but in the instruction itself
the length code is always one less than the actual length. So
we now subtract 1 from the difference residing in register 1.

What would it mean if this difference were now
negative? We shall see, in further analysis of the program,
that it would indicate the double dollar sign that denotes
the end of a name and address. We therefore Branch on
Minus (or BC 4) to OUT, where we would normally process
the completed name and address.

Let us review the status of things. We have in register 3
the starting address of a group of characters that should be
moved; in register lOwe have the address to which they
should be moved; in register 1 we have the correct length
code for a Move Characters instruction. We need either to
place that length code in an instruction - or do something
equivalent. "Something equivalent" is precisely what the
Execu te (EX) instruction provides. We say

EX I,MVCINS

This means to execute the instruction at the second
operand address named (MVCINS), after Or-ing together
the last eight bits of register 1 and the length code portion
of MVCINS. Looking down at MVCINS we see that a Move
Characters instruction has been set up to do all the things
just outlined as necessary, with the exception of the length.
The instruction set up at MVCINS says to move a group of
bytes starting at the address given in register 3 to another
location given by the address in register i O. Both displace
ments are zero, because the base addresses are exactly what
are wanted. The length code is zero in the instruction; the
actual length is supplied by the last eight bits of register 1.
One line of the complete name and address is thus moved
to a printing position.

The Execute instruction is a very serviceable tool in the
hands of a resourceful programmer, especially when it is used
in a loop that deals with varying conditions. It is an unusual
branching instruction that causes one instruction anywhere
in a program to be executed out of sequence. Then, unless
the remote instruction itself happens to be a successful
branch, the program continues with the next instruction
after the Execute. As we have seen, Execute can actually
modify the remote instruction before execution. It can
specify length codes, immediate data, register operands, or
whatever information goes into the second byte in the
format of the remote instruction. It does this by Or-ing
with the last eight bits of a register, which the programmer
may use to store information, do arithmetiC, or whatever.
We will see further examples of the Execute instruction in
the next two programs.

We are now about ready to go back for another look at
the input stream. To do that, register 3 must contain the
address of the next valid data character in the stream.
Register 4 contains almost what we need; it has the address
of the dollar sign just prior to the next valid character. We

accordingly use a Load Address instruction to get the
desired address into register 3. The instruction operates as
follows. The displacement of one is added to the contents
of the base register to get an effective address. (If an index
register had been specified, its contents would also have
been added in.) This address is then placed in register 3,
with no actual reference to storage. It would have been
legitimate to place the sum back in register 4, if that had
been desired. Load Address provides a fast and simple way
to add a small positive amount to a register.

In the next Load Address instruction we see register 10
being incremented by 120 by use of the method just
described. The purpose is to set up the next line as the
destination the next time around the loop. Finally we
Branch on Count back to inspect the input stream again. If
this 'would mean trying for a filth line, the branch is not
taken and we reach the error exit.

At OUT, which we reach on discovering either two
dollar signs in sequence or a dollar sign followed by an
asterisk, we would normally include a series of instructions
to print the output. Since input/output operations are
outside the scope of this book, we simply indicate by a
No-Operation instruction that this action would occur here
in the program. NOPR is an extended mnemonic for Branch
on Condition with a mask of zero, which never causes a
branch to occur.

Following the output operations we are ready to go back
for another name and address, unless this was the last one
in the stream. Whether that was the case can be determined
by looking at the function byte in register 2 to see whether
it is that produced by a dollar sign or by an asterisk, that is,
a lora 2 respectively. A comparison with ENDCON, which
contains a 2 in proper form for a comparison with a
fullword register, makes the determination. If the function
byte is not that produced from an asterisk, we Branch on
Not Equal back to AGAIN to repeat the whole process.
Otherwise we reach the normal exit from the program.

Figure 7-17 shows successive groups of output, based on
the input stream assembled with the program.

SMITH
DETROIT

J. C. JACKSON
1234 MAIN STREET
CHICAGO, ILLINOIS

F. C. R. ANDERSON
553 MAPLE PLACE APARTMENT 5C
WHITE PLAINS, NEW YORK

D. D. ADAMS AND FAMILY
505 GRATHSON
APT. 31
READING, PENN.

Figure 7-17. Four names and addresses produced by the program in
Figure 7-16

Edit, Translate, and Execute Instructions 99

AN ASSEMBLER APPLICATION OF TRANSLATE AND
TEST AND EXECUTE

Another example of the powerful combination provided by
the Translate and Test instruction with the Execute instruc
tion is provided by a simplified version of part of the work
an assembler must do.

We are given an input stream consisting of one type of
operand field in an assembler language program. The field
that we shall process will always consist of two operands:
the first will be a general register, the second a symbolic
address of not more than six letters. Relative addressing
with either an increment or a decrement mayor may not be
included in the second operand. Accordingly, our field will
start with one or two decimal digits, a comma, and from
one to six letters. After the final letter there will be
either: (1) a blank, or (2) a plus or a minus sign followed
by from one to four decimal digits and a blank.

We are required to place the register number in REG as a
binary number, to place the symbol in SYMBOL, and to
place in INC DEC the increment or decrement as a properly
signed binary number.

We are, of course, defining away a great deal of the
actual work of an assembler program, which must sort out
many different kinds of instructions and operands, and
errors too.

The task of the Translate and Test Instruction this time
will be to detect the "delimiters" that separate one part of
the operand field from another. The delimiters in the job as
we have defmed it are the comma, the plus sign or the
minus sign, and the blank. These set off register from
symbol, symbol from increment or decrement, and mark
the end of the address. We will need a translate table with
entries in the positions corresponding to these four
delimiters.

The input stream begins at symbolic location COL16, a
name chosen to suggest where the operand field might
begin on a card, although we realize that, in the System/
360 assembler language, it is not required to begin there.

The program of Figure 7-18 begins by clearing to blanks
the location set up for the symbol. This must be done
because we do not know whether the symbols we shall find
will always have six characters; therefore, any previous
contents of SYMBOL must be erased. A similar consider
ation applies to INCDEC. There may or may not be an
increment or decrement, hence we are required to place zero
there. It seems to be a little easier to clear INCDEC at the
beginning and then to leave it zero, if nothing is placed
there, rather than to clear it later if necessary. REG need
not be cleared; we will always place something there.

This time we construct the function table by entering a
constant of 256 bytes of zeros in storage, and use the Move
Immediate instruction to insert arbitrary values in the
EBCDIC positions corresponding to the four delimiters. To
find the correct positions, we need only read off the

100

hexadecimal values from an EBCDIC chart. For the
delimiters, a value of 1 is used for ablank, 2 for a comma, 3
for a plus sign, and 4 for a minus sign. When the program is
executed, these values will be moved into position in place
of zeros in TABLE, which will then be in storage, and of
course the values will be in the specified bytes before
execution of the TRT instructions.

Following a procedure somewhat similar to that used in
the name and address program of the preceding section, we
now place in register 3 the address of the leftmost character
of the stream. A Translate and Test will stop after two or
three characters, depending on whether the register number
has one or two digits. We now compute in register 4 the
proper length code, either zero or 1, and use an Execute to
carry out a Pack instruction that is stored at PCKINS. This
remote PACK takes its second operand from the address given
in register 3, its length from register 4, and places the result in
WORK. The latter was set up as a doubleword, so we may
now do a Convert to Binary, placing the result in register 5
from whence we store it in REG. The first required action
is complete.

We are now ready to get the symbol, after some
preliminaries. When we have found the delimiter after the
symbol (a blank, a plus, or a minus), it will be necessary to
comput~ the length of the symbol. In order to be able to do
this later, we need now to put in register 3 the address of
the first character of the symbol. This can be done with a
Load Address instruction using register 1 as a base and a
displacement of 1. The same scheme (base register 1 and
displacement of 1) gives the correct starting address for the
Translate and Test instruction also.

Once again, after completing the Translate and Test, we
compute the length of the symbol and use an Execute, this
time to move the symbol from its position in the input
stream to SYMBOL. When this has been done, we inspect
the delimiter. If it is a blank, signified by a function byte of
1 in the TABLE, we are fmished because there is no
increment or decrement.

If it is not a blank, then it must be either a plus or a
minus, always assuming for this example that there are no
errors. If it is a plus, we place a 2 in register 6; otherwise a
zero. The purpose of this will become clear in a moment.

At NEXT we once again place the address of the next
character in the stream in 3, this time to be able to compute
the length of the increment or decrement. The next six
instructions are much as they were before, resulting in the
value of the increment or decrement being placed in register 5
in binary. It will be positive; the sign was not included.

Now we come to an Execute instruction used in a rather
different way for a rather different purpose. We have
specified register zero for the Or-ing, which means that the
executed instruction is not modified. Then we have indexed

(8170)

t.he address of the instruction to be modified. We will
therefore execute either the instruction at MININS, if register
6 contains a zero, or the instruction two bytes later, if
register 6 contains 2. The net effect is to do nothing to
register 5 if the sign is plus, and to make register 5 negative
if the sign is minus.

Having done this, we store the contents of register 5 at

INCDEC and our assigned task is completed; we have placed
various parts of the operand in separate locations where they
can be separately addressed. In the real world of an
assembler, many more operations would have to be per
formed on this operand. Our small task of separating the
various parts of the operand would facilitate these further
operations.

LOC OBJECT CODE ADoRl AOOR2 STMT SOURCE STATEMENT

000000
000000
000002
000002
000008
OOOOOA
OOOOOE
000012
000016
00001.11.
0000 lE
000022
000028
00002A
00002C
000030
000034
000038
00003C
000040
000046
000048
00004A
00004E
000052
000056
00005A
00005E
000062
000066
00006A
00006E
000072
000078
00007A
00007C
000080
000084
000088
00008e

000092
000098
00009E
OOOOAO
0000A2
0000.11.8
OOOOAC
OOOOBO
0000B8
OOOOBE
ooooeo
0000C4
0000C8
OOOOCC
000000
000008
OOOOEO
0000E8
OOOOFO

05BO

0205
1922
5020
9201
9203
9204
9202
5830
DDOE
1841
1B43
5940
4440
4F50
5050
4131
0006
1841
IB43
51340
4440
5920
4780
5920
4780
4160
47FO
4160
4131
0004
1841
1B43
51340
4440
4F50
4406
5050

BOAO BOB6 000.11.2 000138

BOM OOOAC
B10E 00110
BIIC OOllE
B12E 00130
B 139 00 13B
BaBE OOOCO
BICE BOCE 00100 00000

BOC2
B090
BOAE
BOA6
0001
1001 BOCE 00001

BOC2
B096
BOC2
B08E
BOCA
B068
0000
BObC
0002
0001
1001 BOCE 00001

BOC2
B090
BOAE
B09C
BOAA

000C4
00092
000130
000.11.8
00001
00000

000C4
00098
000C4
00090
oooce
0006.11.
00000
0006E
00002
00001
00000

000C4
00092
000130
0009E
OOOAC

F270 BOAE 3000 OOOBO 00000
0200 BOAO 3000 000.11.2 00000
1155
1055

404040404040
0000
00000100
00000001
00000002
00000003
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

0001B8 0000000000000000
0001CO 0000000000000000
0001C8 0000000000000000
000100 FIF1bBC1C2C3C4C5
000108 Cb4EFIF2F3F440
000000

1
2 ASSMBLR
3 BEGIN
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 PLS
33 NEXT
34
35
36
37
38
39
40
41
42 OUT
45 PCKINS
4b MVCINS
47 MININS
48
49 SYMBOL
50 REG
51 INCOEC
52 WORK
53 BLANK

54 AC01l6
55 ONE
56 TWO
57 THREE
58 TABLE

59 COL16

bO

PRINT
START
BALR
USING
MVC
SR
ST
MVI
MVI
MVI
MVI
L
TRT
LR
SR
S
EX
CVB
ST
LA
TRT
LR
SR
S
EX
C
BE
C .
BE'
LA
B
LA
LA
TRT
LR
SR
S
EX
CVB
EX
ST
EOJ
PACK
MVC
LNR
LPR
OS
OS
OS
OS
DC

DC
DC
DC
DC
DC

DC

END

OATA,NOGEN
a
11,0
*,11
SYMI30L,BLANK
2,2
2,INCDEC
TABLE+X'40',X'Ol'
TABLE+X'4E',X'03'
TABLE+X'60',X'04'
TABLE+X'6B',X'02'
3, AC0116
(OLl6, TABLE
4,1
4,3
4,ONF
4, PCKINS
5,WORK
5,REG
3, l! 11
1(7,11 ,TABLE
4,1
4,3
4,ONE
4,MVCINS
2,ONE
OUT, .
2,THRE,~
PLS
6,0
NEXT
6,2
3.1(1)
1(5,ll,TABLE
4,1
4,3
4.0NE
4, PCKI NS
5,WORK
O,MININS(61
5,INCOEC

WORK,0(0,31
SYMBOL(O'j ,0!31
5,5
5,5
CL6
F
F
o
CLb' ,

A(COLlb)
F'l'
1"'2'
F',3' .'
25bX'OO'

C'11,ABCOEF+1234 '

BEGIN

CLEAR LOCATION FOR SYMBOL
CLEAR REGISTER 2
CLEAR SPACE FOR INCRE~ENT OR nECR
INSERT NONZERO VALUES IN TABLE

PUT STARTING ADDRESS IN REG 3
LOOK FOR FIRST DELIMITER
COMPUTF LENGTH CODE OF REG NUMBER

PACK REG NUMBER AND PLACE IN WORK
CONVERT TO BINARY ANO PUT IN REG 5
STORE REG NUMBER IN BINARY
SET UP FOR NEXT TRT
LOOK FOR NEXT DELIMITFR
COMPUTE LENGTH OF SYMBOL

PLACE RESULT IN SYMBOL
WAS DELIMITER A RLANK
BRANCH IF SO
WAS DELIMITER A PLUS SIGN
BRANCH IF SO
SET UP FOR LATER REMOTE INSTRUCTION

SET UP FOR LATER REMOTE INSTRUCTION
SET UP FOR NEXT TRT
LOOK FOR NEXT DELIMITER
COMPUTE LENGTH OF INCDEC

THIS IS INCREMENT OR DECREMENT
CONVERT TO BINAqy AND PUT IN REG 5
COMPLEMENT IF SIGN WAS MINUS
STORE RESULT
PROGRAM TERMINATION
EXECUTE INSTR ADOS LENGTH FROM REG 4
DITTO

Figure 7-18. A program to break down the operands of an assembler language instruction into its constituent parts, using TRT and EX

Edit, Translate, and Execute Instructions 101

PROCESSING VARIABLE-LENGTH
BLOCKED RECORDS

The following illustrative program applies techniques that
are highly useful in certain commerical applications, and
that the features of System/360 make particularly easy to
accomplish. The task is the processing of blocked tape
records (that is, many logical records in one physical block)
with a variable number of records per block and with
variable-length records. We shall take a record layout,
furthermore, that places certain frxed-length items after the
variable-length portion of the record.

Each record in a block to be processed by the program
of this example will contain four fields, with characteristics
as follows:

Field
DESC
ACCT
QOH
DOLL

Length
variable, at most 60 characters
7 characters
4 bytes
4 bytes

Type
alphameric
alphameric
binary
binary

The frrst field is a variable-length description of a stock
item; it is alphameric and at most 60 characters. The next
field is an account number, of exactly seven alphameric
characters. The third field is four bytes long. It is a binary
number giving the quantity on hand. The fourth and last
field is also a four-byte binary number giving the year-to
date sales of the stock item to the nearest dollar. However
long the description may be, its fmal character is always an
equal sign to serve as a sentinel marking the end of the
variable-length portion of the record. There is an unknown
number of records. Immediately following the last record is
another equal sign, which is the last character in the block.

We are required to process such a block, which we
assume has already been read into core storage. We are to
set up a line for printing that contains the account number,
the quantity on hand, the sales, and the description, in that
order. The numeric quantities are to be in zoned format.
After printing a line for each record in the block, we are to
print the total dollar sales from all records on a separate line.

The program is shown in Figure 7-19. After the usual
preliminaries we clear register 4 and store the resulting zero
in TOTAL in order to be sure that the accumulator for total
sales is zeroed. Register 7 is next loaded with the address of
the frrst character of the block; register 7 will always
contain the address of the frrst character of the next record
as the loop is repeated. The MVI instruction inserts a one in
the equal sign position of our translate table. This will
occur during execution, of course.

In the body of the loop we frrst blank out the space
assigned to the description because, in general, it will be
possible for a long description to be followed by a short
one; without a prior blanking, the end of the previous line
would still be there. The MVC instruction used here will
blank out the DESC area for its entire 60-byte implied

102

length provided that the frrst operand DESC in storage is
one byte to the right of the second operand BLANK.
Checking statements 50 and 51 of the assembly listing, we
see that this is so.

The Translate and Test instruction references a table in
which the only nonzero entry corresponds to an equal sign.
The effective address of the frrst operand in the Translate
and Test is just the contents of register 7 because the
explicit displacement is zero. The length of 60 sets a limit
on the search for an equal sign. If no equal sign is found
within 60 bytes, the condition code will be zero; a Branch
on Condition transfers to an error routine if this happens.

We now are ready to move the description from its place
in the block to the space from which it will be printed. This
can be done readily enough once we have available the
length code of the description. Register 1 after the
Translate and Test contains the address of the equal sign.
Subtracting from this address the address of the frrst byte
of the description gives the length of the description in bytes;
one less than this number is the length code of the
description. With this number in register 3, we can Execute
a remote Move Characters instruction that moves the
description from the block storage area to a location from
which it can be printed.

Just before doing so, however, we have a Branch on
Minus instruction to detect a negative number after the
computation of the length code of the description; this
would happen only if the first character of the· "descrip
tion" were an equal sign, which would signal the end of
the block.

Getting the account number from the block area to the
printing location is an easy matter. We know that the
account number begins one byte beyond the address of the
equal sign, which is contained in register 1. The effective
address of the account number is therefore just register 1 as a
base with a 1 for displacement. The address of the quantity
on hand is just eight bytes beyond the address in register 1.
Here we must be careful of word boundaries. The quantity on
hand was said to be a four-byte binary number, but,
because of the variable length of the description, it may not
be aligned on a word boundary in the block storage area.
We therefore use a Move Characters instruction to move it
to a temporary storage area that is defmitely aligned on a
word boundary. TEMPI is on a word boundary because the
DS says so.

Now this binary quantity can be loaded into a register
and converted to decimal in a doubleword. From here it is
unpacked to the location from which it will be printed,
named QOH.

The same sequence of operations gets the year-to-date
sales into DOLL. Because the sales are still in register 4 in
binary, they can be added to the total for the block.

lOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE ST AT EMENT

05BO

BOEE
B07A

B1E6 001E8

OOOFO
0007C

000000
000000
000002
000002
000004
000008
oooooe
OOOOoE
000012
000018
00001E
000022
000024
000026
00002A
00002E
000032
000038
oOo03E
000042
000046
00004C
000052
000056
ooo05A
000060
000064
000068

1B44
5040
5870
IB 11
9201
D23B
DD3B
4780
1831
IB37
5B 30
4740
4430
D206
0203
5840
4E4o
F377
0203
5840
4E4o
F377
5A4o
5040
4171

BoA3 BOA2 000A5 000A4
7000 B168 00000 0016A
B070 00072

B07E 00080
B06E 00070
B072 00074
B082 1001 00084 00001
BOE2 1008 000E4 00008
BOE2 000E4
BoE6 000E8
B08C BOE6 0008E 000E8
BOE2 100C 000E4 OOOOC
BOE2 000E4
BOE6 000E8
B097 BOE6 00099 000E8
BOEE OOOFO
BOEE oOOFO
0010 00010

00006C 47FO BOlO 00012

000074 0200 BoA3 7000 000A5 00000
00007A 0000
00007C 000000F4
000080 :)0000001
000084
00008B 404040
00008E
000096 404040
000099
OOOOAI 404040
0000A4 40
0000A5
0000E4
0000E8
OOOOFO
0000F4 C2C5E5C5D36B4OC2
OOOOFC D3E4C56B40F640C9
000104 D5C3C87E
000108 F1F2F3C1C2C3F4
00010F 000001CA
000113 000015CA
000117 ClD5C 7D3C 56B40D9
00011F C5C46B40F840C9D5
000127 C3C840C6D6D9C7C5
00012F C47E
000131 F2F3F4E7E8E9F7
000138 00001f4o
000 13C 000125CO
000140 C6D3C ID5C 7C 5fJB40
000148 F240C<JD5C3C86B40
000150 D4C1C7D5C5E2C9E4
000158 D47E
oo015A f7f5F3C7C8DIF8
000 161 OooOOOOC
000165 00001EBo
000169 1E
00016A 0000000000000000
000172 0000000000000000
00017A 0000000000000000
000182 0000000000000000
000l8A 0000000000000000

000242 OOOOOOOOOOOCoOOO
00024A 0000000000000000
000252 0000000000000000
00025A 0000000000000000
000262 0000000000000000
000000

1
2 VARBLK
3 BEGIN
4
5
6
7
8
9

10 AGAIN
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 *
31 *
32 *
33 *
34
35 OUT
38 ERROR
41 MVCINS

42 AFIRST
43 ONE
44 ACCT
45
46 QOH
47
48 DOll
49
50 BLANK
51 DESC
52 TEMPI
53 TEMP2
54 TOTAL
55 RECORD

56
57
58
59

60
61
62
63

64
65
66
67
68 TABLE

69

PRINT
ST ART
BALR
USING
SR
ST
L
SR
MVI
MVC
TRT
BC
LR
SR
S
BM
EX
MVC
MVC
l
eVD
UNPK
MVC;
l
CVD
UNPK
A
ST
LA

*
*
*
* B
EOJ
EOJ
MVC

DC
DC
DS
DC
DS
DC
DS
DC
DC
DS
DS
DS
OS
DC

DC
DC
DC
DC

DC
DC
DC
DC

DC
DC
DC
DC
DC

END

OAT A, NOGEN
a
11,0
*.11
4,4
4,TOTAL
7,AFIRST
1.1
TABLE+X'7E' .X'Ol'
DESC.BLANK
016o,7),TABLE
8, ERROR
3, 1
3,7
3,ONE
OUT
3,MVCINS
ACCT, 1 (11
TEMP1,81l)
4.TEMPl
4,TEMP2
QOH.TEMP2
TEMPl,12(1)

4.TEMP1
4,TEMP2
DOLL, T EMP2
4, TOT Al
4, TOTAL
7.16 (1)

AGAIN

DESC(0),0(7)

A(RECORD)
F'l'
CU
Cl3' ,
CL8
CL3' ,
CL8
CL3' •
C' ,
CL60
F
D
F

CLEAR REGISTER 4 TO ZEROS
PUT ZEROS IN TOTAL
PUT ADDRESS OF 1ST RECORD IN REG 7
CLEAR REGISTER 1
PUT 1 IN EQ SIGN POSITION OF TABLE
START OF RECORD lOOP
LOOK FOR SENTINEL
NO DELIMITER FOUND IN 60 CHARACTERS
COMPUTE LENGTH CODE OF DESCRIPTION

BRANCH IF EQ SIGN IS 1ST CHARACTER
MOVE DESCRIPTION FOR PRINTING
MOVE ACCOUNT NUMBER
MOVE QOH TO TEMPORARY STORAGE AREA
QOH TO REGISTER FOR PROCESSING
CONVERT TO DECIMAL
UNPACK AND MOVE FOR PRINTING
SAME PROCESSING FOR DOLLARS

ADD DOLLARS TO TOTAL

PUT ADDRESS OF NEXT RECORD IN REG 7
PRINT ROUTINE WLD BE INCLUDED HERE

GO BACK FOR NEXT RECORD
NORMAL END OF JOB
ERROR TERMINATION
EXECUTE INSTR ADDS LENGTH FROM REG 3

C' BEVEL, BLUE, 6 INCH='

C'123ABC4'
FL4'458'
Fl4'5578'
C'ANGlE, RED, 8 INCH FORGED='

C'234XYZ7'
Fl4'800o'
FL4'75200'
C· FLANGE, 2 INCH, MAGNES IUM='

C' 753GHJ8'
FL4'12'
Fl4'7856'
C'='
256X'OO'

BEGIN

Figure 7-19. A program to prepare for printing a series of variable-length blocked records, each consisting of four fields. Total dollar sales are
computed at the same time.

Edit, Translate, and Execute Instructions 103

This completes the actions needed to make our frrst line
of information ready for printing, and we would normally
include a printer output routine at this point. There may
still be another record in the block, so we branch back to
AGAIN to see whether there is. During execution, the
program will continue to go through the loop each time
there is another record. After the final record, the equal
sign delimiter that follows it will produce a result of -1 for
the length-code computation, and this will cause the
program to branch (on the Branch on Minus instruction) to
our EO] macro at OUT.

104

The sample block that appears at RECORD involves a
little bit of trickery. One of the essential aspects of the
assignment is that the binary fields appear in the block not
aligned on word boundaries. In real life such a block would
have been set up by a previous program. Here, in attemp
ting to set it up with DC entries, we run into the automatic
boundary alignment that is normally performed on full
words. This action can be overridden~ however, by specifying
a length modifier. A length of 4 is, of course, the same as the
implied length of a fullword; the whole purpose is to
prevent boundary alignment.

QUESTIONS AND EXERCISES

For questions 1-6, show the c(;mtents of WORK after the
execution of ED WORK,SOURCE. The characters in WORK
have the following meanings:

Character
B
S
D

C
R

*
F

1. WORK
SOURCE

2. WORK
SOURCE

3. WORK
SOURCE

4. WORK
SOURCE

5. WORK
SOURCE

6. WORK
SOURCE

Hexadecimal
Meaning Equivalent

Blank 40
Significance starter 21
Digit selector 20
Comma 6B
Decimal 4B
C C3 C3
R D9 D9

* 5C
Field separator 22

BDDDDDDD
0001540+
BDDDDDDDCR
0005721+
BDD,DDSDDBCR
0000001-
BDDD,DDCR
00000+
BSD,DDDDDCR
0000010+
BDD,DDS.DDCRFDD,DDSDDBCR
0010143-0000107-

7a. Write a DC named PATRN to set up the editing pattern
for a 9-digit amount to be printed a~ follows:

BX,xxx,xxx.XXBBB (for a positive amount)
BX,xxx,xxx.XXBCR (for a negative amount)

Insignificant zeros should print as blanks. However,
amounts less than one dollar must be punctuated with a
decimal point.

b. If SOURCE contains 00925OO01-and we execute
ED PATRN,sOURCE, what would PATRN then contain?

c. What would PATRN contain if EDMK instead of ED
were the operation?
8. PATRN DC X'4020206B2020214B20204OC3D9'

EDMK PATRN ,sOURCE
Assume SOURCE contains 0123456-. Choose the address

(8170)

that would be in bits 8-31 of general register 1 after execu
tion of the EDMK instruction:

a. PATRN
b. PATRN+1
c. PATRN+2
q. PATRN+3

9. Does the ED instruction affect general register I?
10. What would be in location AREA as a result of the
fo1l6wing operations?

AREA
TABLE

a. ABCD
b.DBCA
c. DCBA
d. ADBC
e. ACBD

DC X' 00020103'
DC C'ABCD'
TR AREA,TABLE

11. What would be in general registers 1 and 2 as a result of
the following operations:

AREA DC X' 00010203'
TABLE DC X'OOOOOlOO'

TRT AREA,TABLE
a. Address of AREA+3 and X'03' respectively
b. Address ofTABLE+2 and X'Ol' respectively
c. Address ofTABLE+3 and X'04' respectively
d. Address of AREA+2 and X'Ol' respectively

12. Assume the following sequence:

CONI DC F'l 0'
WORK DC CLI6'1234567899123456'
AREA DS CL20

L 2,CONl
MVI AREA,C' 0'
MVC AREA+1(19),AREA
EX 2,MOVE
B ROU2

MOVE MVC AREA(O),WORK
What will AREA contain after the instruction B ROU2 is

executed?
13. What would AREA contain if the EX instruction were
EXO,MOVE?

Edit, Translate, and Execute Instructions 105

Chapter 8: Subroutine Linkages and Program Relocation

Subroutines are an important element in programming.
Storage space is conserved when a subroutine at one storage
location is branched to from many points in a main section
instead of being inserted each time it is needed. Programming,
compilation, and debugging time are conserved when an
existing subroutine can be incorporated into a new program.

A subroutine is a set of instructions that performs a
particular function. I t may be used in more than one
program or more than once within a .single program.
Subroutines have been used in scientific programming for
many years. Common subroutines used are the sine, cosine,
and square root functions. Subroutines have now become
equally important in commercial programming. In many
cases, a main program may be little more than a sequence
of branches to subroutines, some of which may be used
many times, some only once. When a long and involved
program is to be written, it is frequently divided into a
number of separate subroutines to be written by different
programmers. After the general plan is determined, each
part may be relatively simple to program, and a consider
able saving of time can be achieved. Each section can be
assembled and debugged independently.

Subroutines may be classified as either "open" or
"closed". An open subroutine is included each time it is

required in the main program. The open su brou tine is not
normally branched to but is inserted into the main program
and as such has little or no difficulty communicating with
the main program. The closed subroutine, which is the kind
we shall investigate in this chapter, is included once in a
program and in storage no matter how many times it is
branched to. Since the subroutine may be entered from
many points in the main program, communication of data
teo the subroutine and of results back to the main program
can be a problem unless standards are set.

In this chapter we shall be concerned primarily with the
standards that have already been established for subroutine
communication. By demonstrating the techniques in actual
program examples, we shall answer questions like:

How does the subroutine know where to return in the
main program?
How does the main program pass data to the subroutine?
How does the subroutine pass results back to the main
program?
How can one program reference areas in another pro
gram that the assembler does not know about?

Much of the above is accomplished through register
addressing. For the rest we will look to functions of the
assembler and the linkage editor.

Subroutine Linkages and Program Relocation 107

SUBROUTINE LINKAGES

The basic idea of a subroutine is to put it in storage at one
place, then branch to it whenever its function is needed. If
we are using a square root subroutine, for instance, we put
it in one section of storage available for use as needed.
Then, at any point in the main program that we need to
take a square root, we branch to the square root sub
routine, compute the square root, and branch back to the
point in the main program where we left off.

This raises two questions: How does the subroutine
know where to return when its work is finished? How does
the main program provide the subroutine with information
on the location of the number to be processed and where
the result is to be left?

The question of where to return is answered by a linkage
that places in a register the address of the next instruction
after the one that branches to the subroutine. In System/
360 we do this with the Branch and Link Register (BALR)
instruction that we have seen so frequently for loading a
base register. But now we specify a second operand other
than zero, so that it really is a branch. The technique is to
place in a register, usually 15, the address of the first
instruction of the subroutine. Then, if we have chosen
register 14 to hold the link, we write the instruction
BALR 14,15. When executed, this instruction places in
register 14 the address of the next byte after the BALR,
and causes a branch to the address in register 15. At the end
of the subroutine it is merely necessary to specify an
unconditional branch to the address in register 14. This is
done with a Branch Register Unconditional (extended
mnemonic BR).

We can make these ideas much more clear by considering

an example. It is not our purpose now to explore new ideas
in information processing, so we chose an unrealistically
simple job for the subroutine to do: to double a number
by shifting it left one place. Communicating data and the
location of results between the main routine and the
subroutine is handled easily by placing the number to be
doubled in a register, in this case register 3, before the
branch to the subroutine, and leaving the doubled result in
register 3 on the return to the main program. Figure 8-1 is a
listing of a single program consisting of a main, or calling,
routine and a subroutine.

The START, BALR, and USING instructions in Figure
8-1 are still necessary; they are unchanged by the fact that a
subroutine will be used. Next comes the first processing
instruction of the main routine, to load register 3 with a
number that is to be doubled by the subroutine. Register
15 is then loaded with the address of the subroutine, using
an address constant, in preparation for branching to the
subroutine with the BALR.

Address constants, a subject we have not so far encoun
tered, provide a means of communicating between separate
parts of a program or between separately assembled
programs. We could have used other means in this single
assembly, but since address constants will appear throughout
the rest of this chapter, they are well worth some study. An
address constant (adcon for short) is a storage address that
is translated into a constant. Unlike other types of DC's, it
is enclosed in parentheses. We are particularly interested
here in two types of address constants: A and V.

An A-type address constant may be absolute (its value
does not change upon program relocation) or it may be

LOC OBJECT COCE ADDRi ACCR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
000000 2 lINKl START 0
000000 05BO 3 BEGIN BALR lI,O
000002 4 USING * 011
000002 5830 B022 OC024 5 L 3,FIRST FIRST NUMBER TO B~ DOUBLEC
000006 58FO BOlE 00020 6 L 15,ADSRI SUBROUTINE ACDRESS
OCOOOA 05EF 7 BALR 14.15 LINKAGE RETURN ADDRESS GOES INTO 14
OCOOOC 5030 B02A CCC2C 8 ST 3,Ar..;Sl RETURN POINT FROM SUBROUTINE
000010 5830 B026 OC028 9 L 3,SECOND SECOND NUMBER TO BE COUBLED
000014 5aFO BOlE C0020 10 L 15,ADSR1 SUBROUTINE ACCRESS AGAIN
000018 05EF 11 BAlR 14,15 LI NKAGE
OCOOIA 5030 B02E C0030 12 ST 3,ANS2 STORE SECOND RESULT

13 EOJ END OF JOB
000020 00000034 16 ADSRI DC A(SRII SUBROUTINE ACDRESS
000024 00000001 17 FIRST DC F' l'
OC0028 00000004 18 SECOND DC F'4'
De002C 19 ANS 1 OS F
000030 20 ANS2 OS F

21 * 22 * THI S IS THE END OF THE ~AIN PROGRAM
23 • THE SUBROUTINE ~AV USE ITS OWN BASE REGISTER
24 * WhICH ~UST BE LOADED Ar..;O IDENTIFIED
25 * OC0034 05AO 26 SR 1 BAlR 10,0

OC0036 27 USING ·,10
000036 8B30 0001 CCCOI 28 SLA 3,1 THIS IS THE eNLY PROCESSING INSTRUCTION
OOOOH 07FE 29 BR 14 UNCONDITIONAL BRANCH TO ~AIN ROUTINE
OCOOOO 30 END BEGI/\

Figure 8-1. Listing of a single program that consists of a main, or calling, routine and a subroutine. Standard linkage registers are used.

108

relocatable. The storage address is calculated by the assem
bler and is stored in binary integer form. If no length is
specified, it is stored as a fullword, aligned to a fullword
boundary. We note that in statement 16 the object code for
the DC named ADSRI is 00000034. The operandisA(SRl);
the A stands for address and the SRI in parentheses is the
same as the label of the first machine instruction in the
subroutine, which is at location 000034.

A V-type address constant, which we shall see later, is
similar to the A-type, but it must be relocatable. It is used
to reserve storage for the address of a symbol that is
defined in a program or program segment external to the
program it appears in. During assembly the V-type constant
is given a zero value, and it is placed in the assembler's
external symbol dictionary, to be resolved later by the
linkage editor.

The BALR as written in statement 11 takes its branch
address from register 15 and places in register 14 the address
of the next instruction. The Branch and Link (BAL)
instruction can sometimes be used instead of BALR,
thereby avoiding the loading of a register before branching.
The restriction is that the address of the subroutine must be
within the range of addresses of the current program base
register. This will not always be true, and will never be true
for separately assembled routines, as we shall discuss later.
BALR is probably a good habit even when not strictly
needed.

We have now branched to the subroutine, which in this
highly simplified example consists of just one processing
instruction. The contents of register 3 are shifted left one

place, which doubles the number, and the processing is
fmished. We are now ready to return to the instruction
following the BALR in the main routine. This address is
precisely what is in register 14 now, so an unconditional
branch to the address specified in register 14 is the correct
return. The BR instruction is unconditional.

On returning to the main routine, we store the doubled
number at ANS 1 and proceed to load another number into
register 3 for doubling by the subroutine. We again go
through the operations of loading register 15 with the
address of the subroutine and linking to it. Although it is
true that register 15 still has the address of the subroutine
in it from the last time, we prefer, even in this example, to
load it again as a matter of good programming habit.

Figure 8-2 shows the values of FIRST, SECOND, ANSI,
and ANS2, in that order, after the execution of the
program in Figure 8-1.

00000001 00000004 00000002 00000008

Figure 8-2. Values of FIRST, SECOND, ANS1, and ANS2, respec
tively, after execution of program in Figure 8-1

In Figure 8-3 we add a feature to the program. Shifting a
number left can, of course, result in loss of a bit from large
numbers. Let us arrange things so that such a loss would be
signaled back to the main routine as an error. Our method
of signaling may be as follows. If such a loss of information
occurs, the subroutine would return to the instruction after

LOC OBJECT CODE ADDRI ADOR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
oeoooo 2 LlfIoK2 START a
000000 05BO 3 BEGIN BALR ll.O
000002 4 L:SING *.11
000002 5830 B02E eCC30 5 L 3.FIRST FIRST NUMBER TO BE DOUBLED
000006 5aFO B02A CC02C 6 L 15,ADSRl SUBROUTINE ADORESS
OOOOOA 05EF 7 BALR 14,15 LINKAGE-RETURN ADDRESS
OOOOOC 47F0 B026 00028 8 B ERROR ERROR RETURN
000010 5030 B036 CCC38 q ST 3,"'I'\SI RETURN POINT FROM SUBROUTINE
000014 5830 B032 CC034 10 L 3.SECOND SECOND NUMBER TO BE DOUBLED
000018 S8FO BOZA 0002C II L 15.ADSRl SUBROUTINE ADDRESS AGAIN
OOOOIC OSEF 12 BALR 14,15 LINKAGE
OOOOlE 47F0 B026 CCC28 13 B ERRCR ERROR RETURN
000022 5030 B03A CCC3C 14 ST 3,ANS2 STORE SECOND RESULT

15 EOJ PROGRA~ TERMINATION
18 ERROR E OJ ERROR PROGRAM TERMINATION

00002A 0000
ooonc 00000040 21 ACSRI DC AI SR I}
000030 00000010 22 FIRST DC F'16'
OC0034 7FFFFFFF 23 SECOND DC X'7FFFFFFF'
OC0038 24 ANSI OS F
00003C 25 ANS2 OS F

26 *
27 * TH IS IS THE EI';O OF THE ~AIN PROGRAM
28 * THE SUBROUTINE ~AY USE ITS OWN BASE REGISTER
29 * wHICh MUST BE LOADED AfIoD IDENTIFIED
30 *

000040 05AO 31 SR 1 BALR 10.0
OC0042 32 LJS ING *,lC
000042 8B30 oeOl COGOI 33 SLA 3,1 THIS IS THE ONLY PROCESSII';G INS TRUC TlON
000046 4110 EOOO CCCOO l4 BO 010,14) GO TO ERROR RETURN
00004A 47FO E004 CCC04 35 B 410,14} UNCONCITIONAL BRANCH TO MAIN PROGRAM
OCOOOO 36 END BEGIN

Figure 8-3. The program of Figure 8-1 modified to give the subroutine a choice between two return points

Subroutine Linkages and Program Relocation 109

the BALR; if there is no loss of infonnation, the subroutine
would return to an instruction that is four bytes after the
BALR. In other words, the instruction after the BALR
would be executed only in the error condition, and it
would be called the e"or return. The normal return would
branch back beyond this point.

We shall insert in the program, following each BALR to
the subroutine, a branch to a routine labeled ERROR to
discontinue the program if the error arises. (In practical
applicatioris, of course, we would take some corrective
action rather than give up completely.) The choice of
whether to go back to the error return or the nonnal return
will be made by the subroutine. Figure 8-3 shows the modi
fications required. After shifting left, we execute a Branch
on Overflow (BO) instruction that tests the condition code
set by the Shift Left Single (SLA) instruction. If we have
overflowed, the branch is taken and the error return is

110

reached. If we have not overflowed, we go back to the
normal return, which is four bytes beyond the address in
register 14. This is done with a Branch Unconditional
instruction (extended mnemonic B) that uses register 14 for
a base register and has a displacement of 4.

Figure 84 shows the infonnation at the end of execu
tion of the program, with the values for FIRST, SECOND,
and ANS 1. A doubled value for SECOND has not been
stored, since the error return was taken and the instruction
(ST 3, ANS2) was never reached.

00000010 7FFFFFFF 00000020

Figure 8-4. Values of FIRST, SECOND, and ANSI, respectively,
after execution of the program in Figure 8-3. ANS2
was not stored because the error return was taken
during the doubling of SECOND.

STANDARD LINKAGE REGISTERS

So far we have seen a typical subroutine linkage in action,
with a variation that allows a choice between two return
points. Communication of data and results between the
main program and the subroutine was made easily because
the programmer knew which registers were used for what
purpose in both. Supposing they had been written by
different programmers?

To ease the problem of assuring proper communications
between program segments, which often are written by
different programmers, standard register assignments and
techniques have been defmed in each of the IBM operating
or programming support systems. (They are similar, but
not identical, in all System/360 operating systems.)
Standard register assignments in the Disk Operating System
(DOS) are shown in Table 8-1. The items in this chart will
be explained in the following pages of text, as their use is
discussed. These registers are used for the purposes shown,
both by programmers and by the DOS macros. The DOS
macros for subroutine linking are CALL, SAVE, and
RETURN.

Table 8-1. DOS Linkage Registers

Register Register
Number Function Contents

o Parameter register Parameters to be passed to the
su brou tine.

Parameter register Parameters to be passed to the

or su brou tine.

Parameter list Address of a parameter list to be
register passed to either the control pro-

gram or a user's subroutine.

13 Save area Address of the register save area
register to be used by the subroutine.

14 Return register Address of the location in the
main program to which control
should be returned after execu-
tion of the subroutine.

15 Entry point Address of the entry point in the
register subroutine.

Let us examine the standard linkage registers. We have
been using register 14 for the return register and register 15
for the entry point register. Data may be passed to a sub
routine using registers 0 and 1. However, a more common
practice is to use register 1 to hold the address of a parameter
list, because we usually have more data than will fit in two
registers. (The expression "parameter list" merely signifies a
list of numbers of any desired value.) The parameter list
may consist of either data or the addresses of data.
Addresses are used more often so that data of varying
lengths can be handled easily. One common technique is to
write the data and/or data addresses in the instruction

stream immediately following the BALR. This is a point
from which the subroutine can readily obtaillthem.

Figure 8-5 illustrates the use of most of these techniques
and includes a subroutine that averages a series of numbers.
The main program stores two series of numbers as lists in
consecutive full word locations. The average of each list is to
be calculated and stored, so the subroutine will be used
twice and each time will return to different points in the
main program. To simplify the averaging routine, each list
begins with the total number of entries in the list. Each list
is identified by its starting address. This address is to be
communicated to the subroutine, along with the address at
which the subroutine is to store the average.

There are several possible ways to give the necessary
information to the subroutine. We chose one that is repre
sentative, using BALR and A-type address constants:

BALR
DC
DC

1,15
A(LISTl)
A (AVER 1)

Link to subroutine
Address of first parameter list
Address of second parameter list

The address of the fITst word of the list and the address at
which the average should be stored will immediately follow
the BALR that branches to the subroutine. The subroutine
will be required to pick up the information it needs from
this parameter list. It can fmd it because it will have the
address of the first word after the BALR in register 1,
loaded there by the BALR. Of course, prior to this we had
to load the address of our subroutine entry point into
register 15. This was done by use of the L?ad Address (LA)
instruction. In addition the return address was loaded into
register 14. The return address must be carefully calculated
to assure that the proper return point is stored. This address
is the current value of the assembler's location counter at
the start of this instruction plus the length of the LA (4
bytes) plus the length of the BALR (2 bytes) plus the
length of the two address constants (8 bytes). This could
also have been accomplished by labelfug the return point
and using that in a Load Address instru_ction. In any case,
after we branch to the subroutine, register 1 contains the
address of the flIst DC in the parameter list.

What about register 13, and what is a "save area"?
Usually the subroutine will need to use the same registers
that are used in the main program, but for different
purposes. The main program may use the registers for base
addresses, index addresses, intermediate results, or other
data vital to the main program. To keep this data from
being destroyed by the subroutine it has become conven
tional to store the contents of these registers in an area
called a save area and defined by the main program. This
area is 18 words ill length in most System/360 systems and
its address is stored in register 13 prior to branching to the
subroutine. It is aligned on a doubleword boundary. In a
standard save area, word 1 is used only by PL/I. Words 2
and 3 are used to trace subroutines that are branched to by

Subroutine Linkages and Program Relocation 111

LaC OBJECT CODE ADDRI ACDR2 STMT SOURCE STA TEMENT

1 PRINT NOGEN
000000 2 LlNK3 START 0
OCOOOO 0580 3 BEGIN BALR 11,0
00C002 4 USING *, II
000002 4100 B086 COC88 5 LA 13, SAVEARE A ADDRESS OF SAVEAREA
000006 6 CNOP 2,4 CONDITIONAL NO-OP FOR ALIGNMENT
000006 41FO BoeE 00000 7 LA 15,AVER BRANCH ADDRESS
OCOOOA 41EO B016 CC018 8 LA 14,*+14 RETURN ADDRESS
OOOOOE OSH q BALR l,1S LINK TO SUBROUTlNE
000010 0000004C 10 DC AILISTlI ADDRESS OF FIRST PARAMETER LIST
OCOO14 0000007C 11 DC A(AVER11 ACCRESS OF RESULT
000018 S860 803E CC040 12 L 6,A GTHER PROCESSING
0000lC 51160 B042 oe044 13 A 6,B X
000020 S060 8046 00048 14 ST 6,C X
000024 41CO B086 CC088 15 LA 13,SAVEAREA ADDRESS OF SAVEAREA
OC0028 0700 16 CNOP 2,4 CONDITICNAL NO-OP FOR ALIGNMENT
00002A 41FO BOCE COCDO 11 LA lS,AVER
00002E 41EO B03A C003C 18 LA 14,*+14 RETURN ACDRESS
000032 051F 19 8ALR 1,15 LINK TO SUBROUTlNE
OCOO34 00000060 20 DC A(lIST21 ADDRESS OF SECOND PARAMETER LIST
0000~8 00000080 21 DC AIAVER21 ADDRESS OF RESULT

22 EOJ PROGRAM TERMINATION
00003E 0000
OC0040 00000038 25 A DC F'S6'
OC0044 00000040 26 B DC F'77'
000048 27 C OS F
00004C 00000004 28 LISTl DC F'4' NUMBER OF ENTRIES IN LIST 1
OCOOSO OOOOOOOA 29 DC F'10'
OC0054 oooeoooc 30 DC F'lZ'
oe0058 00000013 31 DC F'19'
OC005C OOOOOOOF 32 DC F'15'
000060 00000006 33 lIST2 DC F'6' NUMBER OF ENTRIES IN liST 2
OC0064 OOOOOOOB 34 DC F'll'
000068 00000002 35 DC F'2'
OCOO6C 00000004 36 DC F'4'
000070 FFFFFFFD 37 DC F'-3'
OC0074 00000005 38 DC F'5'
OC0078 FFFFFFFF 39 DC F'-l'
oooon 40 AVER 1 OS F
oe0080 41 AVER2 OS F
000088 42 SAVEAREA OS 90

43 *
44 * THE E~O OF THE MAIN PROGRA~
45 * 46 AVER SAVE (14,121 SAVE REGISTERS

000004 0590 49 BALR 9,0
oeOO06 50 USING *,9
000006 5851 0000 OOCOO 51 L 5.0111 STARTING ADDRESS
OOOODA 4160 0004 00C04 52 LA 6,4 INCREMENT
OCOOCE 5845 0000 cecoo 53 L 4,0(51 NU~BER OF ENTRIES
CUOOE2 1874 54 LR 7,4 Nu~BER OF ENTRIES
CCOOE4 8H70 OC02 ce002 55 SLA 7,] FOUR TIMES NUMBER OF ENTRIES
OOOOE8 lA75 56 AR 7,5 LIMIT
OOOOEA 5B70 903A 00110 57 S 7,=F'I' REDUCE BY 1 SO LOOP WILL NOT REPEAT
OCOOEE 1822 58 SR 2,2 CLEAR TO ZERO
OOOOFO lBB 59 SR 3,3 CLEAR TO ZERO
OOOOF] 5A35 0004 eee04 60 LOOP A 3,4(51 ACD A VALUE FROM THE LIST
OOOOF6 R756 90lC CCOF2 61 BXLE 5,6,LCOP
OOOOFA 1D24 62 DR 2,4 DIVIDE BY NUMBER OF TERMS
OOOOFC 5851 0004 00C04 63 L 5,411) PICK UP ADDRESS OF RESULT
OCOIOO 5035 0000 oecoo 64 ST 3,0(5) STORE RESULT

65 RET UR N (14, 12 I RETURN TO THE MAIN PROGRAM
000000 69 END BEGIN
000110 00000001 70 =F'1'

Figure 8-5. A program with a subroutine that averages a series of numbers. The subroutine will be used twice and will store the results at
AVERI and AVER2.

subroutines. Word 2 is the save area address of a preceding
rou tine. Word 3 is the save area address of a succeeding
routine. Words 4-18 are the contents of registers 14-12,
respectively-that is, all the general registers except register
13.

Note that early in the main program after the usual
preliminaries, we load register 13 with the address of the
save area. Then follows the CNOP (which we will discuss
later on), and the loading of the entry point and return
addresses. In the subroutine we begin by saving the contents

112

of the registers in the save area. This is accomplished through
the use of the SAVE macro in DOS, or by regular assembler
language Store instructions in systems where this macro is
not available. Register 14 is specified as the first register to
be stored, and all additional registers are stored simply by
specifying the last register to be stored. Thus the registers
are stored in the order 14, 15, then 0 through 12. The
instruction generated by the SAVE macro is STM 14, 12,
12(13). Therefore the registers are stored in the save area
(its address is designated by the contents of register 13)

starting at a point that is twelve bytes past the beginning of
the area (we recall that the flIst three words of the save area
are reserved for other data). Now the subroutine can use
the registers for its own purposes and, when its processing is
fmished, can restore the registers to their status when the
subroutine was entered. This entire procedure is nonnal
practice; it can almost never be assumed that any registers
are available to the subroutine unless their contents are flIst
saved.

Let's proceed with the work performed by the sub
routine. Statement 51 gets the address of LIST 1 by a Load
instruction in which the effective address is simply the con
tents of register 1. After execution of this LOAD, the
address in register 1 (OOOO4C) is placed in register 5 for
subsequent use. Stepping through the list will be done with
a Branch on Index Low or Equal instruction (BXLE), so we
proceed to set up the other parameters required. Register 6
is accordingly loaded with a 4, the increment between loca
tions that must be added on each repetition of the loop.
With register 6 containing the increment, register 7 must
contain the final address, that is, the starting address plus
four times the number of entries.

We load register 4 with the number of entries, which is
the flIst full word in each list. It is to be left in register 4 for
computing the average later. For purposes of controlling
the loop, we move it to register 7, shift left two places (in
effect multiplying by four), and add the starting address.
Since the BXLE will repeat the loop on an equal, we must
now reduce the value in register 7 by 1, using the literal
tenn =F' l' to introduce the value one. After clearing
registers 2 and 3, we are ready to go into the loop.

A literal tenn in assembler language is a way of intro
ducing data into a program in a machine instruction, and is
(in that one sense only) like immediate data in an SI
instruction. It is simply a constant preceded by an equal sign.
It represents data rather than a reference to data. It can be
used to enter a number for calculation, an address constant,
or words or phrases for printing out a message. Unlike
immediate data, a literal term is not assembled into the
instruction in which it appears. The assembler generates the
values of all literals in a program, collects them, and stores
them in a "pool," usually at the end of the program. Their
addresses, rather than their values, are assembled into the
instructions in which they are used, and so literals are
considered relocatable.

The Add instruction at LOOP uses as its address the
contents of register 5, which is the index register for the loop.
The address in register 5 is adjusted by 4 so that we will
address the first number to be averaged rather than the
number of entries. Between loop repetitions, register 5 is
incremented by the contents of register 6, which we set at 4.
Each time register 5 is lower than, or equal to, register 7 on
comparison, we will branch back to LOOP. The looping stops
when all entries in the list have been added to register 3.

To compute the average, which is simply a matter of
dividing the contents of registers 2 and 3 (the sum of all the
numbers in the list) by the contents of register 4 (the number
of entries in the list), a Divide Register instruction (DR) is
used. The quotient is the average, which is in register 3. We
are now ready to store the average; where does it go? The
answer is to be found by looking at the fullword address
that is four bytes beyond the address specified by the con
tents of register 1; the address of the average is placed in
register 5 by the Load. A Store instruction using this
address now completes the work of the subroutine. By use
of the RETURN macro, we restore the registers that had
been saved and branch back to the main routine.

The RETURN macro is coded identically to the SAVE
macro, that is, th~ operands are the starting and ending
registers to be restored, RETURN 14,12. It restores the
saved data to the specified registers and returns to the main
program via the return address in register 14. The coding
generated by the RETURN macro isa Load Multiple (LM)
instruction and an unconditional branch.

Back in the main routine, we do some simple processing
using register 6. We can use the same registers as w~ used in
the subroutine because the SAVE and RETURN macros
allow each section of programming to view the registers as
their own.

We then wish to average another list, LIST2. At statement
15, note that we must again place the address of the save
area in register 13 because we must enter the subroutine
again. The execution of the subroutine follows the same
lines as before, although this time it operates on different
data and places the result in a different place.

The CNO~ assembler instruction, which we have not dis
cussed so fai~ appears twice in the main program during the
preparations for each branch to the subroutine. The func
tion of the CNOP (Conditional No-Operation) is to make
sure that the two address constants appear in storage
immediately after the BALR.

If the instruction before the BALR ended on a fullword
boundary, the BALR (a two-byte instruction) would then
occupy the flIst two·bytes of the next word. The assembler,
automatically aligning on a fullword boundary an A-type
constant for which no length is specified, would skip two
bytes before locating the constant. Then, when the BALR
is executed, register 1 would contain the address of the
byte following the BALR instruction, but this address
would not be correct for the parameter list.

Before reaching the BALR we write the instruction CNOP
2,4. If the assembler's location counter is already set to a
value that is two bytes greater than a fullword boundary,
the CNOP is ignored, as is the case in statement 6. If not, as
is the case in statement 16, the assembler inserts a Branch
on Condition (BC) instruction with a mask of zero, which
never causes a branch and therefore is equivalent to a "No
Operation". It occupies two bytes and thus causes the para-

,Subroutine Linkages and Program Relocation 113

meter list to be located immediately following the BALR.
The CNOP in statement 6 has no effect; we see that the

location counter is already located as described by the
CNOP (that is, it is in the second half of a fullword-
0000(6). Therefore, no instruction is generated for the
CNOP. Note that the DC will be on a fullword boundary
without skipping any space between the BALR and the
address constant.

The CNOP' in statement 16 resulted in the creation of a
No-Operation instruction because the assembler's location
counter is at 000028, which is not two bytes beyond a
full word. If this had not been done, the assembler would
have placed the BALR at 000030 and the A-type constant
at 000034, thereby leaving a two-byte gap. The next byte
after the BALR (000032) would go into register 1. The
subroutine's ensuing attempt to call for a fullword from

114

000032 would have caused a specification exception and a
program interruption.

The CNOP could be used before or after the two LA
instructions that load the return and entry point addresses
into registers 14 and 15. We have used the CNOP ahead of
the two LA instructions in this program.

Figure 8-6 shows the two lists of numbers followed by the
average of each, as computed by the program in Figure 8-5.

10 12 19 15 14

11 2 4 -3 5 -1 3

Figure 8-6. The data and results of the program in Figure 8-6. The
last number in each line is the average.

PROGRAM RELOCATION

In an operating system environment, a program must be
processed by the linkage editor program before it can be
executed. During the process it is usually relocated, that is,
assigned a starting location in main storage other than the
locations assigned during assembly. Most programs a:r;e run
more than once. A standard subroutine may be stored in a
part of the system library in relocatable form and be used
very frequently. A different core location may be assigned
each time. We know that the storage location indicated by the
START assembler instruction is tentative. The locations
calculated by the assembler merely establish the relative
storage locations of data and instructions within a program.
Most programs are assembled relative to zero, but are never
executed there because of restrictions on the use of lower
core. System/360 was designed to run under a control pro
gram, and, under operating conditions, part of the control
program is always resident in the low region of main storage
for handling interruptions, error recovery routines, etc. In
many systems this occupies several thousand bytes.
Problem programs must be executed beyond this area.

Relocation is necessary for a number of other reasons
not of direct interest to the programmer. These are (1) the
overall storage requirements of other programs that are to
go into core at the same time and (2) various operating
considerations dependent upon the type of installation,
operating system environment, etc.

The Linkage Editor

When the capabilities of the linkage editor are added to
program relocatability, great programming efficiency can be
achieved by dividing a large program into separate sections
for coding. Each section can be written by a different
programmer and compiled and checked out separately. It is
even possible to code some of the subroutines in a different
programming language. Each part of the programming
operation is greatly simplified. Time is saved by having
several people work independently and simultaneously on
the program. When all the routines have been compiled,
they are in relocatable form and can be link edited in any
sequence. The linkage editor will assign storage locations
and match up all address references between the routines,
so that the entire program can be executed correctly as one
program. If it should be necessary to correct a routine, only
that one routine would have to be reassembled or recom
piled and then link edited again with the other routines.
This facility also makes it relatively simple to maintain a
large program that may have to be updated from time to
time.

The output of the assembler (or any language translator) is
called an object module. It may consist of a single program or
many. We should perhaps use the more exact term control
section. A control section is the smallest separately reloca
table unit of a program. It is an entity declared as such by

the programmer by use of the START statement or another
assembler instruction called CSECT. A program may consist
of one control section or many control sections.

In an operating system environment, an object module
has two major characteristics:

(1) It is relocatable. This means that all address constants
are in a form that can be modified to compensate for a change
in the starting location.

(2) It is not executable.
The object module may call for other object modules

assembled at other times and stored in the system library in
relocatable form. Programmers frequently indicate standard
I/O or other object modules to be included as subroutines
in a new program. This is perfectly feasible. The linkage
editor, which is a service program, will fmd all required
modules, process one after the other, and combine them
into a single, executable load module (or program phase, as
it is called in some systems).

In Chapter 1 we described the output of the assembler
program. The major items of input to the linkage editor
program are the object code (or text), the external symbol
dictionary (ESD) , and the relocation dictionary (RLD).
(Linkage editor control cards are also included, but will not
be covered in this book.)

The text consists of the actual instructions and data fields
of one or more control sections in the module. The diction
aries contain the information necessary for the linkage
editor to resolve references between different modules.

F or each control section in an assembly, the ESD contains
its length in bytes, assembled address, and any name given in .
the START or CSECT statement. Also included is infor
mation about any V-type address constants, external
references (a linkage symbol used in this control section but
defmed in another), and entry points (a linkage symbol
defmed in this control section but used in another).

The relocation dictionary contains all address constants
that appear in an assembly. RLD information includes (1) the
control section in which the adcon is used as an operand, (2)
the control section in which it is defmed, (3) whether it is a
V-type or other type, (4) how long it is, and (5) the assem
bled address where it is stored.

The linkage editor, working under control of the job
control program, builds up composite dictionaries of the
ESD and RLD data found in the object modules. It resolves
all linkages between different control sections as if they had
been assembled as one object module. It relocates each con
trol section as necessary and assigns the entire load module
(or program phase) to a contiguous area of main storage. It
adds the relocation factor to the location given by the
assembler's location counter at the start of each assembly.
I t modifies all relocatable address constants to contain the
relocated value of their symbols. (Except for adcons, no
address values within the instructions and data fields are

Subroutine Linkages and Program Relocation 115

changed during link editing. These remain in base and dis
placement form, as we shall see shortly in the dumps of the
next program.) The load module is constructed by building
the text in the form in which it will actually be loaded into
core; it is then executable and nonrelocatable.

The CALL and PDUMP Macros

Perhaps it would help to clarify just what happens during
program relocation if we could see our program in main
storage while it is being executed. We can do nearly that by
getting a "dump" of storage during execution. In this
section we shall see how a program appears, first relocated
to one area of storage and then to another. We shall use a
program almost identical to the last one, a main program
assembled with a subroutine.

In the last program, Figure 8-5, statements 6 through 11
and 16 through 21 were necessary to link to the subroutine,
communicate data both ways, and get back to the right
point in the main program. We had to be very careful about
boundary alignment and using the correct standard linkage
registers for the right functions. In DOS all of this can be
taken care of very simply by use of the CALL macro, which
generates instructions similar to the six statements in the
last program. In the program in Figure 8-7 CALL appears in
statements 7 and 18.

The CALL macro instruction was designed primarily for
use with separately assembled programs to pass control from
one program to a specified entry point in another. It works
equally well within a single assembly, however, because the
assembler and linkage editor carry out their functions just

LOC OBJECT CODE ADDR 1 ACDR2 STMT SOURCE STATEMENT

1 PRINT NOGEN
2 ENTRY AVER

OCOOOO 3 L1NK4 START 0
000000 05BO 4 BEGIN BALR 11 ,0
000002 5 uSING *,11
000002 41DO B08E CC090 6 LA 13,SAVEAREA ADDRESS OF SAVEAREA

7 CALL AVER,(LIST1,AVERl) LINK TO SUBROUTINE
000018 5860 B046 CC048 14 L 6,A OTHER PROCESSING
OOOOlC 5A60 B04A ce04C 15 A 6,B X
OC0020 5060 B04E cee50 16 ST 6,C)(

000024 4100 B08E eee90 17 LA 13,SAVEAREA ADDRESS OF SAVEAREA
18 CALL AVf.R.ILIST2,AVER2) LINK TO SUBROUTINE
25 PDUMP BEGIN,BEGIN+)('200' DUMP ROUTINE
30 EOJ PROGRA~ TERMINATION

000048 00000038 1 B A DC F'5c'
oe004C 000e004D 34 B DC F'77'
oe0050 ~ i= 35 C OS F
000054 00000004 36 L1STl DC F'4' NUMBER OF ENTRIES IN LIST 1
000058 OOOOOOOA -----.~-''''''' ... '~, ... 37 DC F'lO'
oe005C OOOOOOOC e1 L- 38 DC F'12'
000060 00000013 39 . DC F'19'
000064 OOOOOOOF 40 DC F'15'
Oe0068 00000006 41 LI S T2 DC F'6' NUMBER OF ENTRIES IN LIST 2
OC006C OOOOOOOB 42 DC F'll'
OC0070 00000002 43 DC F'2'
OC0074 00000004 44 DC F'4'
000078 FFFFFFFD 45 DC F'-3'
Oe007C 00000005 46 DC F'5'
Oe0080 FFFFFFfF 47 DC F'-l'
Oe0084 48 AVER 1 DS F
000088 49 AVER2 OS F
000Q90 50 SAVE AREA OS 90

51 *
52 * THE END OF THE MAIN PROGRAM
53 *
54 AVER SAVE 114,12) SAVE REGISTERS

OOOOCC 0590 57 BALR 9,0
OOOODE 58 USING *,9
OOOODE 5851 0000 00000 59 L 5,0(1) STARTING ADDRESS
0000E2 4160 0004 00004 60 LA 6,4 INCREMENT
0000E6 5845 0000 ceeoo 61 L 4,0(5) NUMBER OF ENTRIES
OCOOEA 1874 62 LR 7,4 NUMBER OF ENTRIES
OOOOEC 8B70 0002 00e02 63 SLA 7,2 41NUMBER OF ENTRIES)
OOOOFO lA75 64 AR 7,5 LIMIT
OeOOF2 5870 904E C012C 65 S 7,=F'I' REDUCE BY 1 SO LOOP ~ILl NOT REPEAT
0000F6 IB22 66 SR 2,2 CLEAR TO ZERO
OOOOF8 IB33 61 SR 3,3 CLEAR TO ZERO
OOOOFA 5A35 0004 00e04 68 LOOP A 3,4(5) ADO A VALUE FROM THE LIST
OOOOFE 8756 901C CeeFA 69 BXlE 5,6,lCOP
OCOI02 lC24 1e OR 2,4 DIVIDE BY NUMBER OF TERMS
000104 5851 0004 00e04 71 L 5,41 II PICK UP ADDRESS OF RESULT
000108 5035 0000 ceeoo 12 ST 3,0(5) STORE RESULT

73 RE rU'~N (14012) RETURN TO THE MAIN PROGRAM
oeoooo 11 END BEGI",
000118 5B5BC2C7C4E4D4D7 18 =CLS'$$BPDU,",P'
000120 000000eOOOOO0200 19 =AIBEGIN,BEGIN+X'200')
000128 00000000 80 =VIAVERI
OOOl2e 00000001 81 =F'l'

Figure 8-7. A slightly different version of the program in Figure 8-5, modified by use of two macro instructions, CALL and PDUMP

116

the same. As our program example is organized, the macro
requires (1) the symbolic address of the entry point
(AVER) as operand, which generates a V-type address
constant, and (2) the separate ENTRY AVER statement.
Since this is not a typical example of the ENTRY assembler
instruction, it would be preferable to wait for the next
program example before discussing it. The addresses of the
parameter lists also appear in the operand field of the
CALL macro, in parentheses, and will be in register 1 (the
parameter list register) when the called subroutine is entered.

The first three literals that appear at the end of the
assembly appeared in the instructions generated by the
PDUMP and CALL macros. As it was written, the CALL
generates a V-type address constant rather than the A-type.
We note that zeros and not the address of AVER are assem
bled in statement 80. This address will be supplied later by
the linkage editor.

Our plan for the program shown assembled in Figure 8-7 is
to have it link edited, and, using linkage editor control cards,
have it loaded and executed first at storage location 300016 ,

and then at 400016 • Re-assembly is not necessary. The linkage
editor can override these cards, but will accept the instruc
tions if they do not create a problem. Normally the
programmer is not involved in the question of where a pro
gram is to be loaded. The storage area from which a program
executes is properly an operational, not a programming,
decision.

The DOS PDUMP macro causes the system, during pro
gram execution, to print out a hexadecimal dump of all the
registers and any particular area of storage we are interested
in. Such a dump is often used for program checkout, and
learning to read one is a worthwhile exercise. We decide we
want to see the state of affairs in storage at just the point
when all calculations have been executed and the results
stored, so we insert the PDUMP just before the EOJ. It will
be reached just once, after the second execution of the
subroutine.

The programmer must supply two address expressions in
the operand field of the PDUMP to show the beginning and
end of the storage area wanted. One or both of the
addresses may be given in registers, but, since we want a
dump from two different core locations, we use symbolic

addresses. BEGIN will give us the beginning of the program,
and BEGIN+200 is more than enough space to take us
through to the end, as we know from the previous assembly
of a similar program. Execution of the PDUMP macro will
make no difference in execution of the program; processing
will continue with the next sequential instruction. (Some
other types of dumps result in termination of the program.)

Reading a Dump

Figure 8-8 shows the entire dump that was printed out (this
is done by a line printer) during the first execution of the
program in Figure 8-7. After ass~mbly the program was link
edited, loaded at 3000, and executed almost to the end.
The point at which we see the dump is immediately after
execution of the PDUMP macro. The EOJ macro instruc
tion has not yet been reached.

A hexadecimal format is used because it represents the
binary contents exactly. The contents.of all the registers are
shown at the top of the printout. General registers 0-7 are
in the first line, and 8-15 in the second, a fullword each.
The doubleword floating-point registers 0, 2, 4,. and 6 are in
the third line.

Next comes the hex dump of main storage. The Six-digit
column at the left shows the storage location of the first
byte in each line. There are 2016 (or 3210) bytes to a line,
divide4 into fullwords. Locating an address is simplified by
the wide space in the center of each line; the next byte
after this space is simply hex 10 beyond the location in the
lefthand column. For example, in the line that begins at
003020, the BO in the fifth fullword is at location 003030.
The last two bytes in this line are at 00303E and 00303F.
The entire storage area shown is from 003000 to 0031FF,
since the boundaries given in the PDUMP macro were
BEGIN and BEGIN+X'200'. Printing of repeated lines of
zeros at the end is suppressed.

At the extreme right, any alphameric characters in a line
are also represented in characters. In many cases this is very
helpful in interpreting the hexadecimal material and speeds
up analysis of a dump. It is not particularly useful in our
program, however, so the characters will be omitted to let
us get a closer look at the hex. The reader may wish to arm

GR 0-7 00003120 00003118 OOOOFFFF 00002800
GR 8-F 00004142 OA0407F1 00002810 40003002
FP REG 4431F800 8F5C28F5 4431F800 8F5C28F5

CCOOFF84 FFFFFF7C 00000085 00002798
CC003698 00003090 0000303C 00003008
4752FIE8 6828F5C1 02000000 80000000

003000 05B04100 B08E58FO B12641EO B016051F
003020 5060B04E 4100B08E 070058FO B12641EO
003040 4100B11E OA020AOE 00CCC038 00000040
003060 00C00013 OOOOOOOF 00000006 OOOOOOOB
003080 FFFFFFFF OOOOOOOE 00000003 OOOOOCOO
0030AO 00003008 00003000 60003034 OOOOFFFF
0030CO 00002798 00004142 OA0407F1 00002810
0030EO 00004160 00045845 00C01814 8B700002
003100 901C1024 58510004 50350000 98Ecoeoc
003120 00003000 00003200 00003008 OOOOOCOI
003140 00000000 --SAME--
0031EO 00000000 00000000 00000000 00000000

\

OC003054 00003084 5860B046 5A60B04A
BC3A051F 00003068 oe003088 4110B116
C0000085 00000004 OOOOOOOA OOOOOOOC
00000002 00000004 FFFFFFFO 00000005
OCOOOOOO 00000000 00000000 0000303C
OC002800 0000FF84 FFFFFF7C 00000085
40003002 00003698 90ECOOOC 05905851
1A755B70 904E1B22 IB335A35 00048156
01FEOOOO COOOCOOO 5B5BC207 C4E40401
oeoeoooo 00000000 00000000 00000000

00000000 00000000 00000000 00000000

••••••• 0 ••••••••
&- ••••••••• 0 ••••

••• Q •••• - •••••••
••••••••••• 1 ••••

•••••••• & •••••••
••••••••••• Q ••••

.......•. - ... -..

••••••••••• i ••••

•• $ •••••••••••••
•••••••• SSBPDUMP

.............•..

Figure 8-8. Hex dump of registers and storage produced by execution of the PDUMP macro in the program in Figure 8-7. At right, EBCDIC
characters are represented by characters.

Subroutine Linkages and Program Relocation 117

himself with the card IBM System/360 Reference Data (see
Preface), which is helpful for reading a dump.

entered into storage and the registers, instruction by
instruction and DC by DC, just as it appears in the object
code. This dump was printed after execution, -however, and
therefore the storage areas and registers affected by the
instructions have been altered in accordance with the opera
tions they specified.

Figures 8-9 and 8-10 show the dumps with the program
loaded first at 3000 and then at 4000. Key areas have been
labelled to help the reader tie the dump listing to the assem
bly listing. In Figure 8-9 at location 3000 is 05BO, which is
the object code for BALR 11,0. Next is 41DO B08E,
which is for the instruction LA 13,SAVEAREA (see assem
bly listing). Next is the first CALL. Next is 5860 B046 for
the instruction L 6,A. In this way, the entire program was

Let's see what happened when execution of this program
began. The linkage editor supplied the starting address 3000,
and the program was loaded starting there. BALR was
executed; it put the current address from the PSW (by now

BASE ATJlJRESS OF ~ET(JRN AlJORESS OF
8ALI? 11. 0 AVERt t AVER2 AOORESS SAVE AREA A1JOI?ESS S(JBR(}()rtNE

GR 0-7 ! 00003120\ 00003118 OCOOFFFF 0000.2800 I CCOOFF84 fFFFFFIC OQOO~Q!J00002798
GR 8-F t 000041421 OA0407Fl OCCC2810 4~~~ CC003698 e C03 9 a 0 0 30 8
F P REG I 443lF8001 8F5C28F5 443IF800 8F5C28F5 4 752F lEa 6828F5C 1 02000000 80000000_/sr CALL

003000 \Cj"S'"e:g41DOll BO 8 El?'8FOB.iT264HtO--fro.~r6051 1=----0 C C'03054 ®Jt[l9~ 5 A60 B04 A- 2ND CALI..
003020 'S-060B04E 4100B08E([[Q .. C·5"8Fo Brnm~3A051F O~06B 4110B116
001040 4100BIIE OA020AOE OCCCC038 00000040 CC000085 4 OOOOOOOA OOOOOOOC
003060 ooeooo 13L9~2.. 9_9. __ 0_2_9 ----,- - 00ceOC08 occoe002 06-000004 FFFFfFfo 00000005
003080 FFFFFFFF~OOOOOO OOOOOCOO ocooceoo 00000000 00000000 0000303C
0030AO 00003008 olloo3000"""60003034 OOOOFFFF 'f CCC02800 0000FF84 FFFFFF1C 00000085
0030CO 00002798 00004142 OA04C7F1 00002810 (40C03002 0000369~8 90ECOOOC 05905851
OOlOEO 00004160 C0045845 00001874 1 8B700002 1A755B70 904EIB2 IB335A35 00048756
003100 901CID?4 S8S1000~ S03soooo198ECOOOC 07FEooeo OOCOOOOO 5B5BC201 C4E40401
003120 .l2:CJ::q2~~!f6-<[:E(rqp3T(fo~r(rOQ..()30oJtI OOOOOCO 1 oeoooooo OOOOCOOO ceooocoo 00000000
003140 i 00000000 --SAME-- \ i

0031EO! 00000000 0000000: oeooooooloooooooo \ oeoooooo 00000000 00000000 00000000

2 AIJCONS A DCON LlST2 START OF LIST! START OF SUBROUTINE-
= A (BeGIN) ::. 1/(AVER) SAVE AREA THIS IS lOCATION 30D8
=A(BE(}/N+ X'200V

Figure 8-9. Hex dump of the program (Figure 8-7) loaded at 3000

8ALI? 11. 0 AV'E'RI t AV£RZ
BASE
AOORESS

AOl)RESS OF ~ET(JI?N A lJlJl?cSS OF
SAVE AREA AlJIJI<£S5 S(JBR(}()TINE

I,

GR 0-7 00004120i 00004118 OOOOFFFF OOOOFF84 O;'Qoo~ 000027=)
GR 8-F . 0000414210A0407F1 00002810 It~02 00003698 ;~:~::~ 0 40 0«0040Q..~Y
FP REG l 3f28F5C21! 8F5C28f5 3F28F5C2 8f5C28f5 49078C88 02000000 80000000 Isr CALL

004000 ~4100 B08~~1,F~~0~0~0~0,4,O,S4~O~O~O;0~4I08~~~~~5A60804A 2~~£1.. 004020 -50'60804E j 4100BO~[[f8f"Q=~';lrtr·,.,,!._,,_~ . 4110B116
004040 4100811E 1 0A020AOE 00000038 00000040 00000085 OOOOOOOC
004060 00000013\ OOOOOOOf -, --", 00000008 00000002,00000004 FFFffFfO 00000005

~~:m .. ~ ... ~.~m~: .. !~.~1~~~1 ~~mm rmm~~ II ~mm:rm~~m m~m~ 0040EO 00004160 00045845 00001874 88100002 lA755870 904EIB22 18335A35 00048756
004100 901CI024 58510004 50350000 98ECOOOC{ 07FEOOOOloOOOOOOO 5B5BC207 C4E40407
004120 ~O~O~-~90-,nr0-64~ 000000011 OOOOOOOO!OOOOOOOO 00000000 00000000
004140 , 00000000 --SAHE--j ! I

0041EO/ 00000000 00000000
1

00000000 00000000 00000000\00000000100000000 00000000

1 t., I I
2 AlJCONS A DCON UST2 START OF LIST 1 START OF S{J8RO{JTlNE-
= A (8€GIN) ::.I/(AVER) SAVE AREII THIS IS lOCATlON4008
= A (lI£GINt- X '200,)

Figure 8-10. Hex dump of the program (Figure 8-7) loaded at 4000

118

updated to the next available byte, 3002) into register 11
for use as a base address. We see that 3002 is still in register
11. (System/360 uses the rightmost 24 bits of a register for
its addressing scheme and ignores the leftmost byte. The 40
here has no effect.)

Next the LA (41DO B08E) puts the address of
SA VEAREA into register 13. This address in the instruction
is in the form of a base register and displacement. Will it be
correct now that the program has been relocated? The
address is arrived at by adding 003002 (the contents of base
register 11) and 08E (the displacement) = 003090. The
assembly shows 000090 for SA VEAREA, and we shall see
that this is where the SAVE macro stores the contents of
the registers.

Skipping the CALL, the next instruction (5860B046)
loads the value of A into register 6. It looks for A in location
003002 + 046 = 003048. In the assembly, at 000048, we have
a DC named A for a fullword of decimal value 56 (this is
hex 38), and that is the value at location 003048 in the
dump. Continuing in the same fashion with t.Ite next
instruction (5A60B04A), we see that B (7710 or 4D 16) is
added to A in register 6. The total in register 6, which is not
affected by any later instruction, is 85. This is the hex
equivalent of decimal 133, and it is correct. The next
instruction (5060B04E) does indeed store the total of 85 in
C, location 003002 + 04E = 003050. where a fullword was
reserved by aDS.

In this way it is entirely possible to follow the workings
of a program. Registers that are not used in a program may
have values left over from previous runs-the floating-point
registers here, for example. The contents of any register or

storage area that is used during a program will be the result
of the last processing in it before execution of the PDUMP.

To check on the matter of maintaining linkages when a
program is relocated, let's look at registers 11 (the base
register), 14 (the standard return register), and 15 (the stan
dard entry point register) in both dumps. These are different
by the amount 1000, the difference between a relocation
factor of 3000 and one of 4000. We also note that,
beginning at word 4 in the save area (this program does not
use words 1,2, and 3), we have the contents of registers 14,
15, and 0 through 12 as they were in each case when the
SAVE was executed. The code and data produced by the
CALL macro can be checked fairly closely by going back to
the assembly of the program in Figure 8-5. In this program
the CALL generated a V-type address constant for the
address of the subroutine, and it was assembled as 000000.
The linkage editor supplied the values 30D8 and 40D8 from
calculations on ESD and RLD data (although, as we know,
a V-type adcon is not really necessary in a single assembly).
The PDUMP generated two A-type adcons, and the linkage
editor supplied their new values simply by adding the relo
cation factor (3000 and 4000 in these examples) to the
assembled values.

We may also see, from a comparison of the instructions
and data constants in both dumps, that the linkage editor
does not change any assembled object code except for relo
cat able address constants. To fmd a storage address, the
CPU simply uses a base-plus-displacement calculation. No
matter where in main storage a program is loaded, the
relative locations of elements within the program always
remain the same.

Subroutine Linkages and Program Relocation 119

COMMUNICATION BETWEEN SEPARATE PROGRAMS

The preceding examples have shown how it is possible for a
program to keep track of addresses within itself during pro
gram relocation. We now tum to the important related
question: how do two programs that are assembled separ
ately keep track of addresses in each other, even if they are
both relocated by different amounts?

Let us investigate this question in terms of the program
in Figures 8-5 and 8-7. This time we shall assemble the main
program and the subroutine separately. This method allows
subroutines, written and tested separately, to be used in
any program. Out of the two assemblies we shall get two
object programs which we wish to be able to load at the
same time, relocating them by different amounts, and have
everything work just as it did before. Once again, we shall
use AVER as the entry point into the subroutine, but this
time the assembler will have no way of knowing its assem
bled location. In the single assembly in Figure 8-5, when we
wanted to load the address of AVER into register 15, the
assembler simply calculated a base-plus-displacement
address. If we were to take the main program part of Figure
8-5 and assemble it, AVER would be an undefined symbol,
and the assembly could not be completed.

We seem to need some way to say to the assembler:
"A VER is a symbol that is used in this program but defined
elsewhere. Whenever you find the symbol AVER, which
will be only in address constants, assemble zeros and mark
the location as one that will be supplied during the link
editing of the object program".

This is precisely what the assembler instruction EXTRN
does. We place the EXTRN at the beginning of the pro
gram, identify AVER in the operand field, and leave the
pame field blank. This will cause the action outlined above.
The symbol A VER will then be treated, not as an unde
fined symbol, but as an external symbol defined outside
this program.

Figure 8-11 is the assembly listing of the main program.
It includes the CALL macro instruction the same as before.
An assembler TITLE instruction has been used in order to
get identification (in this case, MAIN) into the object deck
in columns 73-76, thus distinguishing this object deck
from others. Just before the START is the EXTRN.
Nothing is printed on the program listing to describe the
action of the EXTRN. What it does is to cause an external
reference to be listed in the assembler's external symbol

:1AIN CALLING PROGRA!1 FOR SEPARATE ASSE1~BLY AND RELOCATION

LOC OBJECT COCE ACDR1 ACCR2 STMT SOURCE S TATEIoIENT

2 PRINT NOGEN
"3 EXTRN AVER

000000 4MAINl START a
oeoooo OSBO 5 BEGIN BALR II ,0
oeOO02 6 USING *,11
000002 4100 B096 00098 7 LA 13,SAVEAREA ADDRESS Of SAVEAREA

8 LOAD SUBR
14 CAll AVER,ILIST1,AVER11 LINK TO SUBROUTINE

000020 5860 B04E 00050 21 L 6,A OTHER PROCESSING
000024 SA60 BOS2 ocasio 22 A 6,B X
000028 5060 BOS6 ceOS8 23 ST 6,C X
00002C 4100 8096 00098 24 LA l3,SAVEAREA ADDRESS OF SAVEAREA

25 CALL AVER,ILIST2,AVER21 LINK TO SUBROUTINE
32 PDUMP BEGIN,BEGIN+X'200' CUIoIP ROUTINE
37 EOJ PROGRAM TERMINATION

000050 00000038 40 A DC F'S6'
000054 00000040 41 B DC F'77'
oeCOS8 42 e OS F
oooose 00000004 43 llSTl DC F'4' NUMBER OF ENTRIES IN LIST 1
000060 OOOOOOOA 44 OC F'lO'
oe0064 OOOOOOOC 45 DC F'12'
oe0068 00000013 46 DC F'19'
00006C OOOCOOOF 47 DC F'lS'
OC0070 00000006 48 II S T2 DC F'6' NUIoIBER OF ENTRIES IN LIST 2
oe0074 OOOOOOOB 49 DC F' 11 '
OC0078 00000002 SO DC F'2'
oe007C 00000004 51 DC F'4'
000080 FFFFFfFD 52 DC F'-3'
oe0084 00000005 53 DC F'S'
oe0088 FfFFFfFF 54 DC F'-I'
OC008C 55 AVERl OS F
000090 56 AVER2 OS F
000098 57 SAVE AREA OS 90

58 *
59 * THE END OF THE MAIN PRCGRAM
60 *

000000 61 END BEGIN
OOOOEO E2E4C2C940404040 62 =CL8'SUBR'
OCOOES 5B5BC2C7C4E4D407 63 =CL8'SSBPDUI1P'
OOOOFO 000eoooOOOC00200 64 =A(BEGIN,BEGIN+X'200')
oeoore OOOOOOCO 65 =V(AVER)

Figure 8-11. The same main program assembled separately. The EXTRN assembler instruction and the LOAD macro have been added.

120

dictionary. When the linkage editor encounters the named
symbol in another control section, it will resolve the ESD
item. It happens that the V-type address constant
=V(A VER) generated by the CALL macro is also entered in
the ESD (and the relocation dictionary), so we have some
duplication of effort here. Normally, with an EXTRN
statement, we would set up the linkage through use of an
A-type address constant.

The subroutine (Figure 8-12) has been assembled separ
ately with its own START statement. What about AVER,
which is defmed here by being used as the name of a
statement? Does the symbol have to be identified in any
way? The answer is yes, it does. If the subroutine had been
assembled just as it was in Figure 8-7, there would be
nothing to indicate to the assembler (and later to the link
age editor) that there was anything special about AVER.
But there is something special: this symbol is used in the
link editing process to supply information missing in the
main program. The assembler cannot know this without
explicit notification, because we are not assembling the two
programs at the same time. What is used is the ENTRY
assembler instruction, which says that the symbol given in
the operand field is used by some other program, but is
defmed in this one. AVER also appears in the program in
Figure 8-12 as the name of a statement, as required.

If AVER were the name of the program (that is, if it
were given in either a START or CSECT statement), it
would be listed in the ESD without further ado, and the
ENTRY statement would not be necessary. However, we
have chosen to name the subroutine SUBR. It is important,
for linkage purposes, for the subroutine to have a name.
The assembler can process an ENTRY statement that con-

SUDROUTINE FOR SEPARATE ASSEr1BLY AND RELOCATION

tains a symbol defmed in an unnamed control section~ but
the (DOS) linkage editor cannot process the resulting deck.

Except for the LOAD macro in the main program and
another PDUMP in the subroutine, the balance of the two
programs in Figures 8-11 and 8-12 is the same as before.
The subroutine, we recall, is to be entered twice. The
LOAD macro was used to bring in the separate subroutine
load module (or program phase), although this might have
been done by other means.

After completion of the assemblies, the two programs
were link edited, and the main program was loaded at 3000
and the subroutine at 4000. Execution produced three
dump printouts (Figures 8-13, 8-14, and 8-15). These are
shown in the order in which they were executed. Figure
8-13 shows a printout of the contents of the registers and
the storage area of interest produced by the PDUMP during
the first execution of the subroutine, Figure 8-14 during
the second execution. Figure 8-15 was produced by execu
tion of the PDUMP in the main program. Various locations
in the dumps are identified to help the reader follow the
sequence of operations in the registers and main storage, as
described below. A careful study of the dumps will help to
make clear exactly how communication between programs
is maintained and how control is returned to the correct
points, even with separate assembly and relocation by
different factors. This capacity is not limited to just two
programs or control sections. A subroutine may link to
another subroutine, which may link to another, etc. Also,
one control section can refer to many external symbols and
have many entry points from other programs.

The sequence of events, in brief, during execution of the
programs in Figures 8-11 and 8-12 was as follows. We can

LOC OBJECT CODE ADDRI AODR2 STMT SOURCE STATEMENT

2 PRINT NOGEI\
3 ENTRY AVER

000000 4 SUBR START 0
5 AVER SAVE (14,12) SAVE REGISTERS

000004 0590 8 BALR 9,0
000006 9 LSING *,9
000006 5851 0000 oecoo 10 L 5,0(1) STARTING ADDRESS
OOOOOA 4160 0004 OCC04 11 LA 6,4 INCREMENT
OCOOOE 5845 0000 cecoo 12 L 4,0(5) NUMBER OF ENTRIES
000012 1814 13 LR 1,4 NUMBER OF ENTRIES
000014 8B10 0002 00C02 14 SLA 1,2 4(NUMBER OF ENTRIES)
000018 lA15 15 AR 7,5 LIMIT
00001A 5B70 9052 CCC58 16 S 7,=F'I' REDUCE BY 1 SO LOOP wILL NOT REPEAT
00001E IB22 11 SR 2,2 CLEAR TO ZERO
000020 1B33 18 SR 3,3 CLEAR TO ZERO
000022 5A35 0004 CCC04 19 LOOP A 3,4(5) ADe A VALUE FROM THE LIST
000026 8156 901C CCC22 20 BXLE 5,6,LCOP
OC002A 1024 21 DR 2,4 OIVIDE BY NUMBER OF TERMS
00002e 5851 0004 00C04 22 L 5.4(11 ?ICK UP ADDRESS OF RESULT
000030 5035 0000 OCCOO 23 ST 3,0(5) STORE RESULT

24 PDUMP AVER,AVER+X'ICO'
29 RE TURN (14,12) RETURN TO THE MAIN PROGRA'"

000000 33 END AVER
000048 5B5BC207C4E4D4D7 34 =Cl8"UBPDU"P'
000050 0000000000000100 35 =A(AVER.AVER+X'100'1
OC0058 00000001 36 =F'l'

Figure 8-12. The same subroutine assembled separately. The START and ENTRY assembler instructions and the PDUMP macro have been
added;

Subroutine Linkages and Program Relocation 121

GR 0-1
GR 8-F
FP REG

0.0004050
00004142
4431F800

SU8R. 8ASE MAINf 845£ ADDRESS INCR£MENT END OF
A'O'Ol?E55 A VERI ADDRESS

\ ; t

'; \ , . \
0000404 oecooooo t~QiiQ:Q:gliD]J I
4 _~_OJLq) 0000281 0 4<tQ]]jfQ~'
8F5C28F5 4431F800 8F5C28F5

LIST' OF A'(ERt POR LOOP LOOP
// f

(QI.C:Q~dliQ~) 0 Jll,Olia 0 nQo(iQ~ 0 Q '
00003698 00003098 o"dOli):Qtt 00004000
4752FIE8 6828F5Cl 0200000 BOOOOOOO R£TURN

004000 f9ciECI:r~ 5851 00004160
004020 rTS335A=35 00048156 90 1C 1024
004040 I 000C01FE 00000000 . .5B5BC201
004060: 00000000 --SAME--4
0040EOI 00000000 oeooooo~/oooooooo

I ! i

00045845 00001814 8B100002 1A155B70 90521B22 IU){)I<ESS

~:~!~~~~){=~~~~g/~~~~:~~~ ~~g~~g~~ g~g~~~~~
OOOOOOOO! 00000000/00000000 00000000 00000000

I f
SAVE BAlt< 9,0 START OF ST 3) 0(5) STA~T OF POUMP MACRO
MACI<O liTERAl. POOl.

Figure 8-13. First dump produced by the subroutine in Figure 8-12, SUBR

GR 0-7
GR 8-F
FP REG

004000
004020
004040
004060
0040EO

SUBR BASE
AOD~ESS

MAINf 845£ ADDRESS INCR£MENT END OF
A DORES5 /./5T2 OF AVER 2 PORI LOOP LOOP \ / 1) AP'cR2

I
I

00004050 00004048)OCCCCOOO
00004142 6q{LQ~.Q.@ 00002810
4431F800 8F5C28F5 4431F800

90ECOOOC 05905851 00004160 00045845
lB335A35 00048756 901Cl024 58510C04
OOOC07FE 00000000 5B5BC201 C4E40401
00000000 --SAME--
00000000 00000000 OOOOCOOO OOOOOCOO

) ~iOJl.~ 0 c(003n9:d r",-_l,_- odWlilli1J
, 00003698 e0003098 0 00004000

4752F1E8 6828F5C1 02000000 60000000 ReTURN

CC001874 8B700002 1A755B10 905~~;;;--ADORESS
50350000 41109042 4100904A OA0298EC
OC004000 00004100 00000001 00000000

OCOOOOOO 00000000 00000000 00000000

Figure 8-14. Second dump produced by the subroutine in Figure 8-12, SUBR

GR 0-1
GR 8-F
FP REG

003000
003020
003040
003060
003080
0030AO
0030CO
0030EO
003100
0031EO

8ASE ADlJRESS OF RET(}RN ATJlJRESS OF
lOAV MA~O AOORESS SAVE AREA AODRESS 5tJ8ROf.JTIN€

! t J

000030FO 000030E8jOOOCFFFF OOp~ CCCOFF84 FFFFFF7 00000085 00002798~
00004142 OA0407Fl 00002810 40lQ.j 3 C0003698 0<iQ_03098 0 _<Ull.!t!Y O<:(Q1L,OOO)
4431F800 8F5C28F5 4431F800 8F5C28F5 4152F1E8 6828F5C1 02000000 BOOOOOOO

-"':"":'"!'>~"':: __ ~:-="'?"~:"=_.=-:"<:::_'(:::-~-:::_:::-._'= __ ' ____ '_.' _____ ' _, ________ d'ST CAL L
05 BO It 100 ,.11!LJLQQ.E.lfLQjLQAQ_!i5J1E9."_,",,,.,"jlJ=~~.!tl,E.Q.,JtOJ.f,Qll,f_Q_Q.QQ1Q2.~,~,Q~lQ9_1Q~ C}
5860B04E 5 6 6 4 096 070058FO BOF641EO 6042051F 00003070
00003090 /tJ=t91lQf.Q..,,~ 40eooo038 00000040 00000085 00000004
OOOOOOOA/'OOOOOOOC 00COG013 OOOOCCOF I 00000006 COOOOOOB 00000002 00000004
FFFFFFFO 00000005 FFFFFFFF {,glfQQ'Q'QQff./ (N--'-~ 00000000&1;100000000 00000000
00000000100003044 00004000/000000001\ 6co0303c,0000FFFFlo0002800 0000FF84
FFFFFF7C,I00000085 00c02798/00004142.,.1 '. OA0407Flf000028l01.40003002 00003698
E2E4C209 40404040 5B56C2011 C4E40401! \ occ030001 00003200100004000 00000000
00000000 --SAME-- ., : i 'I' i

00000000/00000000 OOOCOOOO, 000000001 \OCOOOOOO\OOOOOOOO\OOOOOOOO 00000000
J >,! ~;. '\ '*>.~w~, ~

I ' \
POUMP AVeRt EOJ ST4RT OF AVeR2 STAR'T OF

2 NO CIILL SAVE AREA

Figure 8-15. Dump produced by the main program in Figure 8-11, MAINI

122

follow these events fairly clearly in the dumps, remem
bering that each dump is produced at just one particular
point during processing.

1. The calling program MAIN1 began with execution of
the BALR 11,0 that is at 3000, then LA, then the LOAD
macro.

2. The LOAD caused the subroutine load module to be
entered into core beginning at 4000, and control to be
returned to MAIN 1.

3. Next, in MAIN 1 , execution of the CALL macro (see
Figure 8-5 for the actions included) branched to and turned
control over to the called program SUBR. It also informed
SUBR where to find the parameter list and where to place
the final result. We note that the last two fullwords in the
CALL macro, as shown in the dump in Figure 8-15, are the
addresses of LIST 1 and AVER 1.

4. SUBR was executed once, beginning with the SAVE
macro at 4000, which stored the existing contents of all the
general registers in the save area beginning at location 3098.
Every instruction in SUBR was executed in turn, including
repetitions of the loop, tluough the PDUMP macro. The
reader may wish here to go back to the discussion about the
subroutine in Figure 8-5 for a detailed review of the process
ing included.

5. The dump in Figure 8-13 was produced at this point.
We note that the averaging calculations in SUBR used regis
ters 2, 3, 4, 5, 6, and 7, and that its base address was in
register 9. All this is reflected in the contents of these regis
ters in Figure 8-13.

6. The final instruction in SUBR, the RETURN macro,
restored the original contents of the registers from the save
area and returned control to MAIN 1 at location 3020
(L 6,A in statement 14).

7. MAINI then did its processing in register 6, and
stored the result (85) at C (the fullword at 3058). It again

loaded the save area address in register 13 and executed the
second CALL.

8. Beginning at the same location as before (4000),
SUBR was executed again in its entirety. The contents of
the registers were stored, the registers used, and the con
tents restored in the same way; and then control was
returned to MAINI. The dump in Figure 8-14 was produced
before the registers were restored.

9. This time control was returned to MAINI at location
3044, where the PDUMP macro was immediately executed,
producing Figure 8-15. Next came the EO] at location
304E, and, with the Supervisor Call instruction (OAOE),
control went back to the control program.

The remaining coding in the dump in Figure 8-15 is not
executable, but consists of the constants and storage areas
we set up in the original program and also those generated
by the various macros. We note that the last item (at 30F8)
is a value of 4000 for =V(A VER), the address constant for
AVER. This was assembled as 00000000. The value was
supplied by the linkage editor.

Two observations can be made from this review of the
programs' execution. The frrst is that program "linkage is
closely related to the specification of base registers for each
program. Throughout execution, the base-plus-displacement
addressing system continues to work efficiently on the basis
of the values originally assigned by the assembler. Second,
communication between programs is easily maintained as
long as the data and addresses needed by each is in a known "
location. When routines are written by different program
mers and assembled separately, communication is simplified
by use of standard linkage registers for specific functions.
Although details differ in certain respects, the necessary :
linkages can be e~tablished similarly in all the operating
systems by use of either regular assembler language
instructions or macro instructions.

Subroutine Linkages and Program Relocation 123

QUESTIONS AND EXERCISES

1a. What functions does BALR 14,15 perform?
b. What functions does BAL 14,SUB perform?
c. What instruction is used to return to the main program

after either a. or b. above?
2. Match register numbers with their conventional usage.

REGISTER
1 a. return address

13 b. address of subroutine entry
14 c. save area address
15 d. address of parameter list

3. List 5 operations that are performed by the CALL
macro.
4. The CNOP updates the value in the instruction counter
during the fIrst phase of the assembly process. If the
counter is now at a value of 000402, what will it be after

124

each of the following:
a. CNOP 0,8
h. CNOP 0,4
c. CNOP 4,8
d. CNOP 6,8
e. CNOP 2,8
f. CNOP 2,4

Sa. What is generated by a SAVE (14, 12)?
h. What is generated by a RETURN (14,12)?

6a. When a program is branching to an instruction not
defined within the confines of that program, what instruc
tion is needed?

h. When a program is to be branched to from another
program, what may be used to identify the label of the
instruction to be executed first?

With the growing use of mathematical and statistical
methods to solve business and industrial problems, floating
point arithmetic, long the province of scientists and
engineers, is being used more and more by commercial
programmers. Although FORTRAN and PL/I are far more
efficient for the programmer who wants to solve a complex
mathematical problem, _ floating-point arithmetic can sim
plify programming in assembler language when the values
used in a computation cover a very wide range or are
unpredictable. This is so because, in floating-point opera
tions, the machine automatically keeps track of the decimal
or binary point and the alignment of intermediate arith
metic results. The programmer need not expend the time
and effort required to do this in involved decimal or binary
calculations.

Floating-point arithmetic may also save considerable
storage space when the values used are either very small or
very large. A value up to approximately 7 x 10

75
can be

expressed in just four bytes. That number is equivalent to 7
followed by 75 zeros. Represented in packed decimal, it
would use up over 30 bytes of storage. Since all floating
point numbers are exactly either four or eight bytes in
length (at the option of the programmer), he reaps some
additional benefits. He does not need to estimate the maxi
mum possible sizes of his data, intermediate results, and

Chapter 9: Floating-Point Arithmetic

fmal results for purposes of reserving sufficient space. Also,
he does not run the risk of losing high-order digits from a
-register. He can, in fact, perform most calculations almost
as directly as he would by hand.

The System/360 floating-point feature performs the
same arithmetic calculations as decimal and binary instruc
tions: addition, subtraction, multiplication, and division.
There are also similar instructions for comparing, loading,
and storing. Just one different kind of instruction is
included: the Halve instruction, which has the effect of
dividing by two. The entire floating-point instruction set,
although it may appear long and complicated (the list is
presented later in this chapter), consists only of variations
of these basic operations. These variations permit the pra
grammer to choose between (1) long-precision and short
precision numbers, (2) normalized and unnormalized
addition or subtraction, and (3) register-ta-register and
storage-ta-register operations.

This brief chapter describes how floating-point numbers
are represented in System/360, shows a few examples of
floating-point instructions, and explains the new terms used
in the preceding paragraph. It is a simplified introduction to
the subject for the non-mathematician who may have some
curiosity about floating-point operations or who may
anticipate using the floating-point feature.

Floating-Point Arithmetic 125

FLOATING-POINT NUMBERS

Floating-point numbers are expressed in a form similar to
that commonly used for scientific notation, which is a con
cise means of expressing very large or very small numbers.
For example, the mean distance from the earth to the sun is
roughly 93,000,000 miles. In scientific notation, we would
give this number as 9.3 . 107• This expression consists of
two factors, the significant digits multiplied by a power of
10. The exponent 7 indicates that the base lOis to be
multiplied by itself seven times, and this will give the entire
number the proper magnitude. The number base need not
be 10, but it is the most common a:nd the easiest for us to
understand. The base might be 2 or 8 or 9 or 12 or what
ever. In fact, in System/360 it is 16. Let's look at a couple
of other examples of scientific notation in base 10. A light
year, which is a common term for expressing large dis
tances, represents a distance of 5,880,000,000,000 (or
5.88 . 1012

) miles. A unit that may be used for measuring
the wavelength of light is 0.00000001 (or 0.1 . 10-7

)

centimeters.
A number in this form of notation is generally, but not

always, expressed with one integer to the left of the deci
mal point. Sometimes it is more convenient to place it else
where, either to make some numerical relationship clearer
or to simplify computation. In such a case, the exponent is
simply increased or decreased by the same number as the
number of places the decimal point is moved. The following
shows equivalent values for our three examples.

93,000,000 = 9.3 . 107 = 93.0· 106 = .93 . 108 = .093 . 109

5,880,000,000,000 = 5.88 .1012 = 5880.0· 109

= .588 . 1013 = .00588 . 1015

0.00000001 = .1 . 10-7 = 1.0· 10-8 = .01 . 10-6

= .000001 . 10-2

In System/360 a floating-point number, written as a
decimal number by the programmer, is converted internally
by the machine to a form very much like the underscored
examples. In these, the part of each value to the left of the
multiplication sign is a fractional quantity, without any
whole numbers before the decimal point. Note that the first
digit after the decimal point is a nonzero digit. A number in
this form is known as a normalized number. The final
example in each group of examples shows the form of an
unnormalized number, in which the fraction has one or
more high-order zeros.

Floating-point numbers are fixed in length, either a full
word (32 bits) for short precision or a doubleword (64 bits)

126

for long precision. The format of a short floating-point
number is as follows:

o 1

Characteristic (or
Exponent + 64)

7 8

Fraction

31

This format allows 24 bits for the fraction. A long floating
point number has the same arrangement, except that the
fraction is 56 bits in length:

Characteristic (or 0 Fraction
~S~_E_xp_o_n_en_t_+_6_4_)~ ________________ --J .

o 1 7 8 63

A value may be expressed in either short or long form; the
short form will give greater speed and use less space, the
long will give greater precision.

In either format, the first bit is the sign of the fraction, 0
for plus, 1 for minus, and indicates whether the entire num
ber is positive or negative. The next seven bits are used for
the exponent, which in System/360 is· called the character
istic by analogy with logarithms. The characteristic also
includes a sign (but in an indirect way that will be
explained shortly), giving us a plus exponent for large
values (over 1) and a minus for small values (below 1). For
example, 161 = 16 and 16-1 = 1/16. Similarly, _16'"1 = -16
and -16-1 = -1/16. The characteristic is a power of 16, of
course, not 10, and is a 7-bit binary number with a range of
values from 0 to 12710 , The fraction is expressed in hexa
decil1Ull digits, 6 digits for short precision and 14 forlong,
and in a normalized number its value is between 1/16 and
1. The fraction 1/16 is 0.1 in hexadecimal, with a bit
pattern of 0001. Note that normalization applies to hexa
decimal digits, not bits, and that the three high-order bits
may be zero. The decimal point does not appear in storage,
but is understood.

The method devised for indicating the sign of the charac
teristic in System/360 floating-point numbers is to use what
is called excess-64 notation. This avoids the complications
of a second sign. As we mentioned, seven bits can represent
a range of values from 0 to 127. If 6410 is always added to
the actual exponent, a range from -64 through +63 can be
represented without further indication of a sign. In this
scheme, a characteristic of 65 is equivalent to an exponent
of +1, 66 to +2, and so on up to 127, which is equivalent to
+63. In the low range, a characteristic of 63 is equivalent to
an exponent of -1, 62 to -2, and zero to -64. Table 9-1 is
given to help in understanding the actual value of some
frequently used characteristics.

Table 9-1. Equivalent Values of the Characteristics of Some
Floating-Point Numbers

Actual
Characteristic power Decimal value
Dec. Hex of 16 of characteristic

68 44 +4 65,536.0
67 43 +3 4,096.0
66 42 +2 256.0
65 41 +1 16.0
64 40 0 1.0
63 3F -1 0.0625 (or 1/16)
62 3E -2 0.00390625 (or 1/256)
61 3D -3 0.000244140625
60 3C -4 0.0000152587890625

Although the programmer does need to understand the
internal form of floating-point numbers, he will never have
to do the calculations to break down a value into its hexa
decimal exponent and fraction. The machine does that with
the greatest of ease. To enter a value into storage in an
instruction, the programmer need only defme a constant,
giving the value in 4ecimal (with or without a decimal
point) and specifying its type as E for a short floating-point
number or D for a long numbeL Here are some examples:

DC E'138.25'
DC E'138'
DC E'.00138'
DC E'9.3E+7'
DC D'9.3E+7'

The last two show how the expression 9.3 . 107 is specified
as a constant. The E inside the quotation marks simply
indicates an exponent.

Figures 9~1 through 9-6, which follow, show various
assembly listings. of DC entries of floating-point numbers.

000148 41100000
00014C 41200000
000150 41300000
000154 41900000
000158 41AOOOOO
00015C 41BObooo
000160 41FOOOOO
000164 42100000
000168 42110000
00016C 421FOcioo
000110 42200000
000114 42210000
000118 42FFOOOO
00011C 43100000
000180 43101000
000184 43FFFOOO
000188 44100000
00018C 44100100

Each constant is specified by a decimal number, which we
see may be an integer, a fraction, or a mixed number. A
decimal point may be placed before, within, or after the
number, or it may be omitted. A number without a decimal
point is assumed by the machine to be an integer. The
number may be signed or unsigned, and a number without a
sign is assumed to be positive.

The assembled object code for the floating-point num
bers appears at the left in the listings (see Figure 9-1). This
is a hexadecimal representation of the actual storage
contents. The first two digits represent the sign plus the
characteristic. The remaining digits represent the fraction.
The decimal pomt is understood and does not appear in
storage. The same numbers are shown in the comments
column in Figure 9-2 in a form that is easy to read. A plus
or minus sign is printed, depending upon whether the first
bit is a zero or a one. The two digits following the sign give
the characteristic, the frrst 4igit representing the value of
the frrst three bits of the seven-bit characteristic. A decimal
point (actually a hexadecimal point) is printed preceding
the fraction.

In these figures some of the decimal values specified are
integers between 1 and 15. We see that they are represented
in floating-point numbers by the corresponding hexa
decimal digit in the fraction, with a characteristic of 41. To
take the 9 as an example, +41.900000 should be considered
as

1 9
16 . 16'

Decimal 16 becomes +42.100000, which we consider as

2 1
16 '16-

Decimal 32 becomes +42.200000, or

2 2
16 '16'

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

E '1'
E'2'
E '3'
E '9'
E'10'
E'11'
E '15'
E'16'
E'11'
E'31'
E'32'
E'33'
E'255'
E'256'
E'251'
E'4095'
E'4096'
E'4091'

Figure 9-1. Assembly listing of decimal integers specified as short floating-point constants

Floating-Point Arithmetic 127

The same constants are specified in Figure 9-3 as nega
tive values. Looking at the actual storage values in the
object code column, we see that the first digit in these cases
is C. This represents the total of the fITst four bits of our
floating-point numbers. In other words, the value of the
sign bit (decimal 8) is added to the value of the first three
bits. of the characteristic. This is of no consequence when
the sign is plus and is a zero bit. When it is negative, how
ever, we get binary 1100 000 1 (or hexadecimal C 1, equal to
decimal 12 and 1) for a sign and characteristic of -41.
There is still another interesting fact to observe in these
representations of negative floating-point numbers. Note
that the values are all in true notation, and not in two's
complement form as in other types of System/360
arithmetic.

In Figure 9-4 we have some decimal numbers that are
fractional and mixed numbers, not integers. Decimal 0.5,
for instance, becomes hexadecimal +40.800000, which we
consider as

o 8
16 . 16.

000190 41100000
000194 41200000
000198 41300000
00019C 41900000
0001AO 41AOOOOO
0001A4 41BOOOOO
0001A8 41FOOOOO
0001AC 42100000
0001BO 42110000
0001B4 421FOOOO
a0011f8 42200000
0001BC 42210000
0001CO 42FFOOOO
0001C4 43100000
0001C8 43101000
0001CC 43FFFOOO
0001DO 44100000
0001D4 44100100

The decimal number 1.5 becomes +41.180000, or

1 24
16 . 162 •

I t is interesting to note that the simple decimal number 0.1
is transformed into a nontermmating hexadecimal fraction·
there is no exact hexadecimal representation for decimai
0.1. On the other hand, complex-looking decimal fractions
that happen to be negative powers of 16 are transformed
into particularly simple hexadecimal numbers, as
0.00390625 = +3F.100000.

Figure 9-5 shows a few long floating-point numbers. The
scheme is the same, the only difference being the presence
of eight additional hexadecimal digits, which make the frac
tion a total of 14 digits. This permits more accurate
representation of numbers that do not have an exact hexa
decimal representation and naturally permits much greater
precision when arithmetic is performed.

F~gure :-6 shows some examples of short and long
floatmg-pomt numbers specified by decimal numbers with
exponents. The decimal numbers are all in the form of our
examples of scientific notation at the beginning of this

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

"DC
DC

E'l'
E'2'
E'3'
E'9'
E'10'
E'll'
E'15'
E'16'
E'17'
E'31'
£'32'
E'33'
E'255 1
E'256 1
E'257'
E'4095'
E'4096'
E'4097'

+41.100000
+41.200000
+41.300000
+41.900000
+41.AOOOOO
+41.BOOOOO
+41.FOOOOO
+42.100000
+42.110000
+42.1FOOOO
+42.200000
+42.210000
+42.FFOOOO
+43.100000
+43.101000
+43.FFFOOO
+44.100000
+44.100100

Figure 9-2. A listing of the same examples as in Figure 9-1, showing them in the comments field in a form that is easy to read

000220 C1100000
000224 C1200000
000228 C1300000
00022C C1900000
000230 C1AOOOOO
000234 C1BOOOOO
000238 C1FOOOOO
00023C C2100000
000240 C2110000
000244 C21FOOOO
000248 C2200000
00024C C2210000
000250 C2FFOOOO
000254 C3100000
000258 C3101000
00025C C3FFFOOO
000260 C4100000
000264 C4100100

Figure 9-3. The same values shown as negative numbers

128

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

E'-l'
E'-2'
E'-3'
E'-9 1

E'-lO'
E'-ll'
E'-15 1
E'-16'
E'-17'
E'-311
E'-321
E'-33'
E'-255'
E'-256'
E'-257'
E 1-4095'
E'-4096'
E'-4097 1

-41.100000
-41.200000
-41.300000
-41.900000
-41.AOOOOO
-41.BOOOOO
-41.FOOOOO
-42.100000
-42.110000
-42.1FOOOO
-42.200000
-42.210000
-42.FFOOOO
-43.100000
-43.101000
-43.FFFOOO
-44.100000
-44.100100

section. In E'12.78E+8' the decimal value is 12.78' 108
,

which we see becomes +48.4C2CBC in hexadecimal. In
D'-0.OOOS7E-S' the decimal value is-0.000S7· 10-5 . This
like all the examples we have seen, is converted to a
floating-point number in normalized form, that is, with no
high-order zeros in the fraction. The fraction is always
normalized unless the programmer specifies a decimal num
ber with a scale factor. (Since scaling has not been discussed
in this book and is not needed for our elementary compu-

000268 40800000
00026C 41180000
000270 41140000
000274 41120000
000278 41110000
00027C 411COOOO
000280 411EOOOO
000284 411FOOOO
000288 4019999A
00028C 3F28F5C3
000290 3E418937
000294 3D68DB8C
000298 3CA7C5AC
00029C 4111999A
0002AO 40400000
0002A4 40100000
0002A8 3F100000

tations, it is suggested that a student interested in the
subject refer to his assembler specification manual.)

In reviewing the hexadecimal values given by the
assembler, we notice that in all the illustrations there are
some fractions in which the fIrst digit is 1. Hexadecimal 1,
of course, is equivalent to binary 000 1. It is important to
realize that normalization refers to hexadecimal digits
rather than to bits, and a normalized fraction may have as
many as three leading zero bits.

DC E'O.S' +40.800000
DC E'l.S' +41.180000
DC E'1.2S' +41.140000
DC E'1.12S' +41.120000
DC E'1.0625' +41.110000
DC E'1.75' +41.1COOOO
DC E'1.87S' +41.1EOOOO
DC E'1.9375' +41.1FOOOO
DC E'Ool' +40.19999A
DC E'O.Ol' +3F.28F5C3
DC E'O.OOl' +3E.418937
DC E'O.OOOl' +3D.68DB8C
DC E'O.OOOOl' +3C.A7CSAC
DC E'l.l' +41.11999A
DC E'0.2S' +40.400000
DC E'0.0625' +40.100000
DC E'0.00390625' +3F.100000

Figure 9-4. Some fractional and mixed decimal numbers expressed as short floating-point constants

0002B8 4110000000000000
0002CO 4120000000000000
0002C8 4210000000000000
0002DO 4980000000000000
0002D8 4BB3A73CE5B59000
0002EO 4080000000000000
0002E8 401999999999999A
0002FO 411199999999999A
0002F8 C11A86BD134658D5
000300 3E10000000000000

Figure 9-5. Some long. floating-point constants

000308 484C2CBC
00030C 5156BC76
000310 B819256E
000314 EABF9572
000318 7A25179157C93EC7
000320 173BDCF495A9703E
000328 D0891087B9F3A6EC
000330 BA187B375E0424FA
000338 401F9ADD3739635F

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
DC
DC
DC
DC
DC
DC

D'l'
D'2'
D'16'
D'34359738368'
D'12345678912345 ,
D'0.5'
D'O.l'
D'l.l'
D'-1.65789516'
D'0.000244140625'

E'12.78E+8'
E'lE+20'
E'-22.87035E-12'
E'-2.8E+50'
D'0.lE+70'
D'0.lE-49'
D'-9.87654321555E+18'
D'-0.00057E-5'
D'12345.6789E-5'

+41.10000000000000
+41.20000000000000
+42.10000000000000
+49.80000000000000
+4B.B3A73CE5B59000
+40.80000000000000
+40.1999999999999A
+41.1199999999999A
-41.1A86BD134658D5
+3E.10000000000000

+48.4C2CBC
+51.56BC76
-38.19256E
-6A.BF9S72
+7A.251791S7C93EC7
+17.3BDCF495A9703E
-50.891087B9F3A6EC
-3A.187B37SE0424FA
+40.1F9ADD3739635F

Figure 9-6. Some decimal values with exponents expressed as floating-point constants

Floating-Point Arithmetic 129

FLOATING-POINT INSTRUCTIONS

Four special registers, used only by the floating-point
instructions, are part of the System/360 floating-point
feature. They are 64 bits in length and are numbered 0, 2,
4, and 6. All 64 bits are used for long-precision operands
and results, and only 32 bits for short-precision (except for
the product in Multiply). Use of registers for floating-point
arithmetic avoids the many operations that would other
wise be necessary for storing and loading results and
operands. All floating-point operations are register-to
register (RR) or storage-to-register (RX), and most of the
instructions are available with a choice of either format.

All floating-point instructions are also available with a
choice between the use of long or short numbers. In
addition, the programmer may select an Add or Subtract
instruction in the execution of which the intermediate and
fmal results are normalized or are not normalized. All these
choices mean a long list of instructions in the floating-point
instruction set (as we see in Table 9-2~ there are eight separ
ate Add instructions), but the basic functions are simply to
Add, Subtract, Multiply, Divide, Halve, Compare, Store,
and Load. The Load instructions also provide the program
mer with the ability to control the signs of operands. Note
that the mnemonics of instructions for long precision are
distinguished by the letter D, and for short precision by the
letter E. In Add Unnormalized and Subtract Unnormalized,
these change to W and U.

Perhaps the best way to get an idea of how the instruc
tions actually operate is to study an example. Figure 9-7 is
an assembly listing of a program to evaluate the following
formula, using short precision throughout.

(
A+1L::£)2

Y = 3.17 _22D

The fIrst processing instruction is Load Short (LE) ,
which places the value of D in floating-point register 2. The
fact that the 2 in this instruction refers to a floating-point
register, rather than to a general purpose register, is implied
in the operation code; floating-point is understood by the
assembler when it encounters the code LE. This short oper
ation will load the left half of the double-length register,
leaving the low-order half unchanged. Any previous value in
the low-order 32 bits, will ordinarily have no signifIcant
effect on later operations.

The second instruction multiplies the contents of
floating-pomt register 2, which we just loaded, by the con
stant 2 in floating-point form. The result is left in the same
register, destroying the previous contents. No other register
is involved, in contrast to flXed-point multiplication. The
lower half of the floating-point register is involved,
however, because the entire register is used for the result of
a Multiply operation. In short precision, the fraction of the
product has 14 hexadecimal digits, of which at least two are
always zero.

130

Table 9-2. Instruction Set for the System/360 Floating-Point Feature

Name Mnemonic Format

Lo~d(Long) LDR RR
Load (Long) LD RX
Load (Short) LER RR
Load (Short) LE RX

*Load and Test (Long) LTDR RR
*Load and Test (Short) LTER RR
*Load Complement (Long) LCDR RR
*Load Complement (Short) LCER RR
*Load Positive (Long) LPDR RR
*Load Positive (Short) LPER RR
*Load Negative (Long) LNDR RR
*Load Negative (Short) LNER RR

* Add Normalized (Long) ADR RR
* Add Normalized (Long) AD RX
* Add Normalized (Short) AER RR
* Add Normalized (Short) AE RX
* Add Unnormalized (Long) AWR RR
* Add U nnormalized (Long) AW RX
* Add Unnormalized (Short) AUR RR
* Add Unnormalized (Short) AU RX

*Subtract Normalized (Long) SDR RR
*Subtract Normalized (Long) SD RX
*Subtract Normalized (Short) SER RR
*Subtract Normalized (Short) SE RX
*Subtract Unnormalized (Long) SWR RR
*Subtract Unnormalized (Long) SW RX
*Subtract Uimormalized (Short) SUR RR
*Subtract Unnormalized (Short) SU RX

*Compare (Long) CDR RR
*Compare (Long) CD RX
*Compare (Short) CER RR
*Compare (Short) CE RX

Halve (Long) HDR RR
Halve (Short) HER RR

Multiply (Long) MDR RR
Multiply (Long) MD RX
Multiply (Short) MER RR
Multiply (Short) ME RX

Divide (Long) DDR RR
Divide (Long) DD RX
Divide (Short) DER RR
Divide (Short) DE RX

S tore (Long) STD RX
Store (Short) STE RX

I *Operation sets condition code.

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

PRINT NOGEN
000000 2 SHORTFP ST ART a
000000 05BO 3 BEGIN BALR 11.0
000002 4 USING *.11
000002 7820 B032 00034 5 LE 2,D LOAD FLOATING POINT REGISTER 2 WITH 0
000006 7C20 B036 00038 6 ME 2,FTWO MULTIPLY 0 IN REGISTER 2 BY 2
OOOOOA 3322 7 LCER 2,2 REVERSE SIGN OF PRODUCT
OOOOOC 7A20 B03A 0003C 8 AE 2,CON1 ADD CONSTANT 3.17
000010 7840 B02A 0002C 9 LE 4,B LOAD FLOATING POINT REGISTER 4 WITH B
000014 7B40 B02E 00030 10 SE 4,C SUBTRACT C
000018 3444 11 HER 4,4 USE HALVE INSTRUCTION TO DIVIDE BY 2
00001A 7A40 B026 00028 12 AE 4,A ADO A
OOOOIE 3042 13 DER 4,2 DIVIDE NUMERATOR BY DENOMINATOR
000020 3C44 14 MER 4,4 SQUARE THE QUOTIENT
000022 7040 B03E 00040 15 STE 4,Y STORE THE FINAL RESULT

16 EOJ
000028 19 OS OF
000028 41123456 20 A DC E'1.1377772805'
00002C 43356800 21 B DC E'854.50'
000030 43252600 22 C DC E'594.3750'
000034 3E2D3EFD 23 D DC E'6.904E-4'
000038 41200000 24 FTWO DC E'2'
00003C 4132B852 25 CONI DC E'3.17'
000040 26 Y OS F
000000 27 END BEGIN

Figure 9-7. Assembly listing of a program to perform simple computations in short floating-point arithmetic

In the execution of a Multiply instruction, the machine
normalizes both operands, if the fractions have leading
zeros, before any arithmetic is performed. This is done by
shifting the fraction left until the leftmost hexadecimal
digit is a nonzero digit and reducing the characteristic by
the number of shifts required. When this is done before the
arithmetic process (as it is in both Multiply and Divide), the
action is called prenormalization. With both operands
prenormalized, the product will either be normalized
already or have at most one leading zero. In the latter case,
the product fraction is shifted left one hexadecimal posi
tion to postnormalize it, and the product characteristic is
reduced by one.

In floating-point multiplication, the arithmetic process is
very simple and follows the familiar rules for exponents.
I t consists of adding the characteristics and multiplying the
fractions. To illustrate the procedure, let's consider a simple
problem in base 10: to multiply 12,300 by 60. Expressed
with decimal exponents, this is (.123· 105) . (.6.102

).

Multiplying the fractions, we get .123 .. 6 = .0738. Adding
the exponents, we get 105+2 = 107 . Together, they give
. 0738 . 107 = 738,000. In System/360, of course, the
machine also has to subtract 64 from the characteristic of
an intermediate product because, with both operands in the
excess-64 notation, adding the characteristics gets the extra
64 into the product twice instead of once.

F or those who wish to follow the arithmetic in the pro
gram example, the details are given in Figure 9-8. Each line
shows the contents of the two registers used for computa
tion after the execution of each of the floating-point
instructions. The operation codes are given in the left-hand
column. The program used for this output specified the
addition of a point in printing the hexadecimal register con
tents. The decimal equivalents are in the usual form for
floating-point numbers and show the true value of the

exponents. The decimal numbers are not all exact equiva
lents, because exact equivalents of fractional quantities
often do not exist in base 10 and base 16. Inspection will
show that these discrepancies are small for most practical
purposes; they can be made much smaller by the use of
long precision, as will be seen later.

We noted before that the product fraction of a short
precision Multiply is 14 hexadecimal digits in length,
including some trailing zeros. Normally, after the ME opera
tion in Figure 9-8, we would expect to find at least some
nonzero dJgits in the low-order half of register 2. In this
case, however, the two fractions that are multiplied yield
only six significant digits (.2D3EFD x .200000 =
.SA 7DF A 000000), so the low-order half of the register
contains eight zeros. The more usual situation can be seen
in register 4 after execution of the MER instruction.

The next instruction in our program, the Load Comple
ment (RR), reverses the sign of the product as written here.
(The instruction can also be used with two different register
numbers.) It would of course be acceptable programming
practice to have stored the constant 2 as a negative number .

Now we add the constant' 3.17, using an Add Nor
malized instruction. Floating-point addition starts with a
comparison of the two operand characteristics; if they are
the same, addition of the fractions takes place immediately.
Otherwise, the fractional part of the number with the
smaller characteristic is shifted right, as many places as the
difference in characteristics, until they agree. When this is
done, the decimal points (hexadecimal points, really) are
"lined up", as addition requires. The fractions are then
added. The larger of the two characteristics becomes the
"provisional" characteristic of the sum; we say provisional
because it may have to be adjusted for a possible overflow
carry in the fraction or for postnormalization.

If the addition caused overflow of the fraction, the

Floating-Point Arithmetic 131

result fraction is now shifted right one place and the charac
teristic accordingly increased by 1. On the other hand, the
addition might have resulted in a sum with leading zeros,
which would happen if the operands were of about the
same size but of opposite sign, and the characteristic would
be decreased in the process of normalization.

If these actions cause the characteristic to go below or
above the range of zero to 127, exponent underflow or
overflow is signaled, and normally a program interruption
occurs. If addition or subtraction results in an all-zero frac
tion, the loss of significance is complete, which may in
some cases destroy the validity of all results of the compu
tation. If this happens without the problem originator's
knowledge, he may place confidence in results that are in
fact meaningless. For this reason, System/360 provides a
warning in the form of a significance exception, and a pro
gram interruption occurs, enabling the programmer to cope
with the situation in a subroutine. For certain types of
data, the programmer may wish to prevent an interruption,
and he can do so in case of an exponent underflow or a
significance exception. In' case of exponent overflow, how
ever, the interrupt action cannot be overridden.

With the values that have been entered in our sample
program, there will be no loss of significance or other
exceptions. To review what has been covered in the pro
gram so far, we have evaluated the denominator within the
parentheses. We leave the result in floating-point register 2
and turn now to an evaluation of the numerator.

In loading B and subtracting C, instructions are used that
are now familiar. Floating-point subtraction is just like
addition, with the sign of the second operand reversed
before adding the fractions. Since both addition and sub
traction are completely algebraic, and since either one can
involve any of the four combinations of signs of the
operands, they are truly very similar.

The division by 2 is handled in a rather different way
from what one might expect and illustrates an interesting
member of the floating-point instruction set. The Halve
instruction (HER) divides the second operand by 2 and
places the result in the first operand; both registers are the

FLOATING POINT REGISTER 2
OP CONTENTS IN HEX DEC EQUIVALENT

LE 3E.2D3EFO 00000000 +.6903999E-03
ME 3E.5A7DFA 00000000 +.1380800E-02
LCER BE.5A7DFA 00000000 -.1380800E-02
AE 41.32B2AA 00000000 +.3168619E+Ol

LE 41.32B2AA 00000000 +-.3168619E+Ol
SE 41.32B2AA 00000000 +.3168619E+-Ol
HER 41.32B2AA 00000000 +.3168619E+Ol
AE 41.32B2AA 00000000 +-.3168619E+-Ol

DER 41.32B2AA 00000000 +.3168619E+01
MER 41.32B2AA 00000000 +.3168619E+Cl
STE 41.32B2AA 00000000 +.3168619E+Ol

same here, as they so often are in using the RR-format
instructions. What actually happens is that the fraction part
is shifted right by one binary place, which is equivalent to
dividing by 2. If the consequence of this is an intermediate
result with all zeros in the flISt four bits of the fraction, the
fmal result is postnormalized.

The next instruction is another Add Normalized, the
details of which we discussed before. So far, however, we
have not mentioned a feature of System/360 floating-point
operations that is designed to increase the significance of
final results. It is called the guard digit. As we know, the
fractions in final results have six hexadecimal digits in short
precision, and 14 in long precision. Intermediate results
may have one additional significant low-order digit in the
Add, Subtract, Compare, Halve, and Multiply operations,
which participates in postnormalization of fmal results.
This extra digit materializes when right-shifting into the
guard digit position occurs during the operations named, as
in Adding, for example, when the two operands are lined
up with each other. When fmal results are subsequently
shifted left in the process of postnormalization, the guard
digit is simply included in the move.

At this point in our problem, we have the numerator in
floating-point register 4 and the denominator in register 2.
A Divide (RR, Short) places the quotient in register 4.
Floating-point division works as follows. Both operands are
prenormalized. Division of the fractions yields the quotient
fraction. The characteristic of the denominator (or divisor)
is subtracted from that of the numerator (or dividend)~ and
then 64,.0 'is added to get the characteristic back into
excess-64 form. The arithmetic process here is similar, but
opposite, to the Multiply instruction. In short-precision
Divide, the low-order half of the registers is ignored, and
the fraction of the result is six digits in length. Division of
two normalized six-digit fractions will always yield either
six or seven digits, never more or less. Postnormalization is
never necessary, but the quotient fraction may need to be
shifted right by one position and the characteristic
increased correspondingly by 1.

Our program now requires us to square the result of the

FLOATING POINT REGISTER 4
CONTENTS IN HEX DEC EQUI VALENT

00.000000 00000000 +.OOOOOOOE+OO
00.000000 00000000 +.OOOOOOOE+CO
00.000000 00000000 +.OOOOOOOE+CO
00.000000 00000000 +.OOOOOOOE+OO

43.356800 00000000 +-.8545000E+03
43.104200 00000000 +.2601250E+03
42.821000 00000000 +.1300625E+-03
42.833345 00000000 +.1312003E+03

42.2967F8 00000000 +.4140613E+02
43.6B277A 98040000 +.17l446743012~64SE+-~4

43.6B277A 98040000 +-.l714467430129646E+-04

Figure 9-8. The contents of floating-point registers 2 and 4 after execution of each of the short-precision instructions in the program in
Figure 9-7

132

division, wrJch is standing in register 4. A Multiply (RR,
Short), in which the quantity in register 4 is specified for
both operands, does the job. Finally, a Store puts the result
in the fullword storage location Y.

registers may be seen in Figure 9-10. Here the full capacity
of the registers is used in each operation, and the increase in
precision of the arithmetic results can readily be seen.
Except for the length of operands and results and the fact
that in short precision the low-order halves of the registers
are generally ignored, there is no difference in the execu
tion of the instructions for long and short precision.

Figure 9-9 shows a listing of the same program, with
identical decimal values, rewritten to do all processing in
long precision. Step-by-step changes in the contents of the

LoC OBJECT CODE ADDR1 ADDR2 STMT SOURCE ST ATEMENT

1 PRINT NOGEN
000000 2 LoNGFP START 0
000000 05BO 3 BEGIN BAlR 11,0
000002 4 USING *,11
000002 6820 B03E 00040 5 LD 2,0
000006 6C20 B046 00048 6 MO 2, FTWo
OOOOOA 2322 7 LCDR 2,2
OOOOOC 6A20 B04E 00050 8 AD 2,CONl
000010 6840 B02E 00030 9 LD 4,B
000014 6B40 B036 00038 10 SO. 4,C
000018 2444 11 HDR 4,4
0000 lA 6A40 B026 00028 12 AD 4,A
OOOOlE 2D42 13 DDR 4,2
000020 2C44 14 MDR 4,4
000022 6040 BOS6 00058 15 STD 4,Y

16 EOJ
000028 19 DS 00

LOAD FLOATING POINT REGISTER 2 WI TH D
MUL TIPl Y D IN REGISTER 2 BY 2
REVERSE SIGN OF PRODUCT
ADD CONSTANT 3.17
LOAD FLOATING POINT REGISTER 4 WI TH B
SUBTRACT C
USE HALVE INSTRUCTION TO DIVIDE BY 2
ADD A
DIVIDE NUMERATOR BY DENOMINATOR
SQUARE THE QUOTIENT
STORE THE FINAL RESULT

000028 4112345SF31EI1BO 20 A DC D'I.1317772805'
000030 4335680000000000 21 B DC 0'854.S0'
000038 4325260000000000 22 C DC D'S94.3750'
000040 3E2D3EF06BOI0972 23 0 DC 0'6.904E-4'
000048 4120000000000000 24 FTWO DC 0'2'
OOOOSO 4132B8S1EB851EB8 25 CONI DC 0'3.11'
000058 26 Y DS 0
000000 27 END BEGIN

Figure 9-9. Assembly listing of the same program as in Figure 9-7, modified to perform all computations in long floating-point arithmetic

oP

LD
MD
LCDR
AD

LD
SO
HDR
AD

DDR
MOR
STO

FLOATING POINT REGISTER
CONTENTS IN HEX

3E.203EFO 6BD10972
3E.5A7DFA D7A212E4
BE.5A7DFA D7A212E4
41.32B2AA OBD7A496

41.32B2AA OBD1A496
41.32B2AA OBD7A496
41.32B2AA OB07A496
41.32B2AA OB07A496

41.32B2AA OBD7A496
41.32B2AA OBD7A496
41.32B2AA OB07A496

2
DEC EQUIVALENT

+.6903999999999991E-03
+.1380199999999998E-~2

-.1380799999999998E-02
+.3168619199999997E+01

+.3168619199999997E+01
+.3168619199999997E+Ol
+.3168619199999997E+Ol
+.316861919999~991E+01

+.3168619199999997E+Ol
+.3168619199999997E+Ol
+.3168619199999997E+Ol

FLOATING POINT REGISTER 4
CONTENTS IN HEX DEC EQUIVALENT

00.000000 00000000 +.OOOOOOOOOOOOOOOOE+OO
00.000000 00000000 +.OOOOOOOOOOOOOOOOE+OO
00.000000 00000000 +.OOOOOOOOOOOOOOOOE+OO
00.000000 00000000 +.OOOOOOOOOOOOOOOOE+OO

43.356800 00000000 +.854500000COOOOOOE+03
43.104200 00000000 +.2601250000000000E+03
42.821000 00000000 +.130062S000000000E+03
42.833345 5F31EllB +.1312002772804998E+03

42.2967F8 86110C30 +.4140613592207608E+03
43.6B2770 4E08C861 +.1114468091997438E+04
43.68277D 4E08C861 +.1714468091997438E+04

Figure 9-10. The contents of floating-point registers 2 and 4 after execution of each of the long-precision instructions in the program in
Figure 9-9

Floating-Point Arithmetic 133

QUESTIONS AND EXERCISES

1. Write the DC instructions for the following short
floating-point numbers:

3.14159265
-2.78
38754 x 106

.00000278
-.000236 x 10-7

2. Write the DC instructions for the following long floating
point numbers:

3.141592653589793
-2.78
-0.003 x 10-3

3.8 X 1030

0.000000008
3. Show the hexadecimal form that the following DC
entries will generate in storage. (Note that 16777216 equals
166 and that .59604644 x 10-7 equals 16-7.)

DC E'32'
DC fi3i
DC E'16777216'
DC E '.59604644E-7'
DC E' -.59604644E-7'
DC E'-16777216'

134

4. After execution of each of the following sets of instruc
tions, what will be in the registers used?

a. LE 2,A
AE 2,B
HER 4,2

given A = 41789ABC and B = 41876544 in hexadecimal
short floating-point.

b. What would be the results of the same instructions if
A = 41200000 and B = 446oo044?

c. LE 6,A
SR 6,6

ADC E'15'
d. L 3,A

A 3,B

ADC E'1.0'
BOC X' 01000000'

5. Write a program segment to calculate the value of X in
short floating-point arithmetic and put it into storage:

X = A-(BxC)
A+(BxC)

Chapter 3: Fixed-Point Arithmetic

1. Fullword
2. Receives
3. Sends

Exception

Answers to Questions and Exercises

XANDY
X
Y

EOJ
DS
DS
DS
END

F
F
H
BEGIN

7. (c) Condition code is 1 or 3~
4. No. The fIrst operand must specify an even-numbered,

register for an even-odd pair.
8. BC 15,NEWONE·

The extended mnemonic equivalent is B NEWONE.
5. An even-numbered register of an even-odd pair that 9. LM 2,5,Xl

contains the dividend
Divisor
The quotient is in the odd-numbered register.
The remainder is in the even-numbered register.

6. START 256
BEGIN BALR 11,0

USING *,11
L 2,XANDY
SRDL 2,12-
SRL 3,20
ST 2,X
STH 3,Y

(Continued in next column)

During assembly
1\

10. SR 5,5
11. I t will be the sum of the contents of register 3 (the
base register), register 11 (the index register), and the
displacement.
12. BXLE 5,6,NEWONE

Chapter 4: Programming with Base Registers and the
USING Instruction

la. USING *,11
b. BALR 11,0

2,3, and 4. See illustration below.
5. See illustration on next page.

During execution with

program loaded at 320016

"
LOCATION STORAGE OPERAND LOCATION ADDRESS

OF OF OF
STATEMENT Base Displace- STATEMENT STORAGE

Reg. ment Address OPERAND* VALUE LOADED IN

PROGG START 512
BASE REGISTER 11

BEGIN BALR 11,0

USING *,11

L ~ 000202 /OJ. 000304-

A 2~ 000206 /1-1- OOOJ1.4-

S 2QOA T A+}) 000234 ~ 10& OOOaO$ ()O32~4 ooa308
ST 2([ESULj) 000238 B 116 00031.8 003238 {)OJ~28

L 6~ 000252 8 141. ()OO3# 0037.,2 003344-

DATA DC F'25' 000304 OOJ104-
DC F'15' 000308 OIJJ~OB

TEN DC F'10' 000324 IJ031JI
RESULT DS F 000328 003329

SYMBOL LENGTH VALUE

BIN1 DC F'12' 000344 0033/4 BEGIN 02 000200

BIN1 04 000344

DATA 04 000304
END BEGIN RESULT 04 000328

*Base and displacement remain the same as during assembly.
TEN 04 000324

Answers to questions 2, 3, and 4
Answers to Questions and Exercises 135

PROGH
BEGIN

FIRST
DATA

BASEl
BASEZ

SKIP

LOOP

LOOPB

CK8

START
BALR
USING
BC
DC

DC
DC

L
USING
L
USING

BC

A

S

BC

BC
END

tJ

11,0
FIRST,ll
15,SKIP
F'347Z'

A(FIRST+4096)
A(FIRST+819Z)

1~
FIRST+4096,10

9~
FIRST+819Z,9

4@ID

5,DATA

8(bOOPB=:>
BEGIN

LOCATION
OF

STATEMENT

000000

OOOOOZ

000008

0000Z4
0000Z8

000104

000108

001504

001898

00Z204

00Z508

00Z904

·Base and displacement remain the same as during assembly.

Answers to questions 5

Chapter 5: Decimal Arithmetic

la. CON3 DC PL5'3'
b. 000OOOO03C

2. Assem bIer
Data defmitions
Programmer

3. Equal to
4. One less than

During execution with
During assembly program loaded at 100016

1\ "
STORAGE OPERAND LOCATION ADDRESS

OF OF
Base Displace- STATEMENT STORAGE VALUE LOADED INTO
Reg. ment Address OPERAND· BASE REGISTERS

001000
During During
assembly execution
(assumed) (actual)

001001- 11 00000$ OO/oot
(JO/OO8 10 0010/11. 00200].

9 1J1J1P02 (J0300;"
OOIOJ.f
001028

e OJ7- 0000].4 001104- 001011-- --

8 026 OO(JOJB PO/lOB 0010J8

9 902 ()Ot9()4 00Ji04 003904-

B 006 OClIJOOB 002898 POI008 SYMBOL VALUE

O()3JO/

fL 896 001898 OOJSOB 001898

9 101. oottO/- 003904 ()OJjOj. -- ---

8AStl
BASE!
BEGIN
CK8
PArA
F/~;,r
I...OOP
LOOPB
SKIP

b. SOURCE 66 55 44 33 22 11
DEST 11 22 33 4S 55 6S

0000;'1-
000028
000000
(J02904
000008
000002-
001898
0011.04
00f)101

c. SOURCE 66 55 44 33 22 11 •
DEST 00 00 00 04 43 3S

9. No. The ZAP instruction, as all the decimal arithmetic
instructions and the decimal compare instructions, requires
a legitimate sign in the low-order byte of the "sending"
field.

Sa. The multiplicand in the low-order positions and zeros
in the high-order positions

lOa. MVN
MVO

b. MVN
ZAP

RESULT+5(1),FACTOR+4
RESULT ,F ACTOR(4)
FACTOR+3(1),FACTOR+4
RESULT,F ACTOR(4) b. In the storage area specified by the ftrst operand

6a. 00 02 48 9C 10 3C
158 159 15A 158 15C 15D

b. 15A
7. Storage are~ containing the dividend

Divisor
The quotient will be in the left portion of the divi

dend area, and the remainder in the right portion.
8a. SOURCE 66 55 44 33 22 11

DEST it 22 66 55 44 6S

136

lla. SI
b. NI HOLD,X'OO'
c. NI HOLD+3,X'OF'

12. In both cases, each bit position of the referenced
storage operand is analyzed against the corresponding bit
position· of the immediate portion of the instruction. The
storage byte referenced by the ftrst operand, after execution
will be:

a. For the And Immediate instruction, a 1 in each bit

(8/70)

position in which both operands had 1 s, and zeros else
where.

b. For the Or Immediate instruction a 1 in the bit posi
tions in which either or both operands had aI, and a zero
where both operands had zeros.
13. Packed decimal
14. PACK
15. UNPK (Unpack)
16a. DC F'S78' or DC H'S78'

b. DC ZL3' 578'
c. DC PL2'S78'

17. There are at least four ways to write the DC state
ment. Keep in mind that 4B is the hexadecimal equivalent
of 7510 •

a. DC F'7S' would generate the 4-byte constant:
00 00 00 4B.

b. DC H'7S' would gerierate the 2-byte constant:
00 4B.

c. DC X'4B' would generate the I-byte constant: 4B.
The advantage of methods a and b over method c is that

the programmer does not have to convert frorn decimal to
hexadecimal. A disadvantage is that more space is used than
is perhaps necessary.

d. The statement DC FLl'7S' would remove this
disadvantage since the characters Ll specify that the length
(L) of the constant is to be 1 byte. Thus a I-byte field of
4B would be generated. A point to remember is that when
a length is stated for an F-type constant no boundary align
ment is performed by the assembler.
18. IC 6,OLD
19. STC 6,OLD
20a. No. MASK is not located on a fullword boundary.
The N instruction requires the operand in storage to be on a
fullword boundary.

b. The statement DS OF could be inserted immediately
before the DC defIning MASK.

c. DC F'IS'

Chapter 6: Logical Operations on Characters and Bits

1. XI KEY,IS (immediate data in decimal)
XI KEY,X;OF' (immediate data in hexadecimal)
XI KEY,B'Ooo0l111' (immediate data in binary)

2. TM ADDR,X'30'
BC S,ANIMAL

3. TM ADDR,X'06'
Be 4,LIST2

There are many acceptable ways of performing tests such as
2 and 3. The TM instruction, where it can be used, has the
advantages of leaving storage unchanged and obviating the
need for registers or work areas.

4a. 05
b. 2C (the fmal C is the code for a plus sign)
c. 43

5. 8 bits, 1 byte
6. 2048 bits, 256 bytes
7. '(b) Alphameric characters. Despite their plausibility,

a and c are not correct in the general case because or"
possible difficulty with sign codes.

8. (c) An inequality. All codes are valid.
9. (a) 5, (b) 2, (c) 3 plus the contents of general regis- .

ter 1, (d) the computed effective address for FIELD, not
the word stored at that address
10. Among the many ways to solve this are the following:

CLC FIELD(I),FIVE
BC 6,NOTS'

,FIVE DC X'OS'
or:

CLI FIELD,X'OS'
BC 6,NOTS

or:
TM FIELD,X'OS'
BC 12,NOTS
TM FIELD,X'FA'
BC S,NOTS

11. The second byte of the BC instruction, containing the
mask Ml and index X2 fields.
12. (d) The 01 instruction changes the BC 0 instruction,
which never branches, to a BC 15 instruction, which
branches unconditionally. Hence, after the first time
around, the sequence between the BC and symbolic address
ADDR is always skipped.
13. The instruction sequence between the BC instruction
and the address ADDR will be alternately executed and
skipped.
14. N S,MASK

MASK DC X'FFOOOooO'

Chapter 7: Edit, Translate, and Execute Instructions

1. BBBB1540
2. BBBB5721BB
3. BBBBBBB.01BCR
4. BBBBBBBBB
5. BBO,OOO.10BB
6. BBBBl 01.43CRBBBBBB l.07BCR
7a. PATRN DC X'40206B2020206B20202l4B20204OC3D9'
b. BBBB92,500.01BCR
c. BBBB92,500.01BCR

8. (c) PATRN+2
9. No

10. (e) ACBD
11. (d) Address of AREA+2 and X'Ol' respectively

Answers to Questions and Exercises 137

12. 12345678991000000000 Chapter 9: Floating-Point Arithmetic

Area is frrst set to zeros by the MVI and MVC instructions.
The EX instruction frrst causes the low-order 8 bits of 1.
register 2 (OA) to be Or'd with the 8-bit length code portion
(00) of the Move instruction. The result of the Or'ing is a
length code of OA (lOin decimal). Since the object instruc-
tion length code is always one less than the number of bytes
to be affected, the Move instruction will cause 11 bytes to be
moved. 2.
13. 10000000000000000000

Chapter 8: Subroutine Linkages and Program Relocation

la. The return address is entered in Register 14, and an 3.
unconditional branch is made to the address in Register 15.

b. The return address is entered in Register 14, and an
unconditional branch is made to the location designated by
SUB.
c. BR 14

2. 1 d
13 c
14 a
15 b

3a. Assures alignment of address constants by use of a
CNOP.

b. Places the address of subroutine in Register 15
c. Places the address of return in Register 14
d. Sets up parameter list address by use of a BALR 1,15
e. Defmes as many address constants as there are in

parameter list.
4a. 000 408

b. 000 404
c. 000 404
d. 000 406
e. 000 402
f. 000 402

Sa. STM 14,12,12(13)
b. LM 14,12,12(13)

BR 14
6a. EXTRN assembler instruction

b. ENTRY assembler instruction

138

4a.

b.

c.

d.
5.

DC E'3.14159265'
DC E'-2.78'
DC E'38754E+6'

(DC E'3.8754E+ 1 0' is another possibility)
DC E'0.278E-5'
DC E' -2.36E-l1'
DC D'3.141592653589793'
DC D'-2.78'
DC D'-3E-6'
DC D'3.8E+30'
DC D'8E-9'
42200000
4220000000000000
47100000
3AI00oo0
BAI0oo00
C71OOOO0
Floating-point register 2:
Floating-point register 4:
Floating-point register 2:
Floating-point register 4:
Floating-point register 6:
General register 6:
General register 3:

LE 2,B
ME 2,C
LCER 4,2
AE 2,A
AE 4,A
DER 4,2
STE 4,x

A DS F
B DS F
C DS F
X DS F

42100000 ~
41800000 ~
446oo244~

443OO122~

41FOOooO ~
00000000
42100000

B in Reg. 2
B x C in Reg. 2
-(B x C) in Reg. 4
A+(B x C) in Reg. 2
A-(B x C) in Reg. 4
A-(B x C) 7 A+(B x C)
Store fmal result

SYSTEM/3GO MACHINE INSTRUCTIONS

STANDARD INSTRUCTION SET

NAME MNEMONIC TYPE CODE

* Add
* Add
* Add Halfword
* Add Logical
* Add Logical
* AND
* AND
* AND
* AND

Branch and Link
Branch and Link
Branch on Condition
Branch on Condition
Branch on Count
Branch on Count
Branch on Index High
Branch on Index

Low or Equal
* Compare
* Compare
* Compare Halfword
* Compare Logical
* Compare Logical
* Compare Logical
* Compare Logical

Convert to Binary
Convert to Decimal
Diagnose
Divide
Divide

* Exclusive OR
* Exclusive OR
* Exclusive OR
* Exclusive OR

Execute
* Halt I/O

Insert Character
Load
Load
Load Address

* Load and Test
* Load Complement

Load Halfword
Load Multiple

* Load Negative
* Load Positive
tLoadPSW

Move
Move
Move Numerics
Move with Offset
Move Zones
Multiply
Multiply
Multiply Halfword

*OR
*OR
*OR
*OR

Pack
t Set Program Mask

Set System Mask
* Shift Left Double
* Shift Left Single

Shift Left Double
Logical

Shift Left Single
Logical

* Shift Right Double
* Shift Right Single

Shift Right Double
Logical

Shift Right Single
Logical

* Start I/O
Store
Store Character
Store Halfword
Store Multiple

* Subtract
* Subtract

* Condition code is set

AR
A
AH
ALR
AL
NR
N
NI
NC
BALR
BAL
BCR
Be
BCTR
BCT
BXH

BXLE
CR
C
CH
CLR
CL
CLC
CLI
CVB
CVD

DR
D
XR
X
XI
XC
EX
HIO
IC
LR
L
LA
LTR
LCR
LH
LM
LNR
LPR
LPSW
MYI
MVC
MYN
MYO
MVZ
MR
M
MH
OR
o
OI
OC
PACK
SPM
SSM
SLDA
SLA

SLDL

SLL
SRDA
SRA

SRDL

SRL
SIO
ST
STC
STH
STM
SR
S

t New condition code is loaded

RR
RX
RX
RR
RX
RR
RX
SI
SS
RR
RX
RR
RX
RR
RX
RS

RS
RR
RX
RX
RR
RX
SS
SI
RX
RX
SI
RR
RX
RR
RX
SI
SS
RX
SI
RX
RR
RX
RX
RR
RR
RX
RS
RR
RR
SI
SI
SS
SS
SS
SS
RR
RX
RX
RR
RX
SI
SS
SS
RR
SI
RS
RS

RS

RS
RS
RS

RS

RS
SI
RX
RX
RX
RS
RR
RX

lA
SA
4A
IE
5E
14
54
94
D4
05
45
07
47
06
46
86

87
19
59
49
15
55
D5
95
4F
4E
83
1D
5D
17
57
97
D7
44
9E
43
18
58
41
12
13

48
98
11
10
82
92
D2
Dl
Fl
D3
lC
5C
4C
16
56
%
D6
F2
04
80
8F
8B

8D

89
8E
8A

8C

88
9C
50
42
40
90
1B
5B

OPERANDS
(Assembler Format)

Rl,R2
RI, D2 (X2, B2)
Rl, D2 (X2, B2)
Rl,R2
Rl, D2 (X2, B2)
Rl,R2
Rl, D2 (X2, B2)
Dl (BI),12
Dl (L, Bl), D2 (B2)
Rl,R2
Rl, D2 (X2, B2)
Ml,R2
Ml, D2 (X2, B2)
Rl,R2
Rl, D2 (X2, B2)
Rl, R3, D2 (B2)

Rl, R3, D2 (B2)
Rl,R2
Rl, D2 (X2, B2)
Rl, D2 (X2, B2)
Rl,R2
Rl, D2 (X2, B2)
Dl (L, Bl), D2 (B2)
Dl (Bl), 12
Rl, D2 (X2, B2)
Rl, D2 (X2, B2)

Rl,R2
Rl, D2 (X2, B2)
RI,R2
Rl, D2 (X2, B2)
Dl (BI), 12
Dl (L, Bl), D2 (B2)
Rl, D2 (X2, B2)
Dl (BI)
RI, D2 (X2, B2)
RI,R2
Rl, D2 (X2, B2)
Rl, D2 (X2, B2)
Rl,R2
Rl,R2
Rl, D2 (X2, B2)
Rl, R3, D2 (B2)
Rl,R2
Rl,R2
Dl (Bl)
Dl (Bl), 12
Dl (L, Bl), D2 (B2)
Dl (L, Bl), D2 (B2)
Dl (Ll, Bl), D2 (L2, B2)
Dl (L, Bl), D2 (B2)
Rl,R2
Rl, D2 (X2, B2)
RI, D2 (X2, B2)
Rl,R2
RI, D2 (X2, B2)
Dl (Bl), 12
DI (L, Bl), D2 (B2)
Dl (LI, Bl), D2 (L2, B2)
Rl
Dl (Bl)
Rl,D2(B2)
Rl, D2 (B2)

Rl,D2(B2)

Rl,D2 (B2)
Rl,D2(B2)
RI,D2 (B2)

Rl, D2 (B2)

Rl, D2 (B2)
Dl (Bl)
Rl, D2 (X2, B2)
Rl, D2 (X2, B2)
RI, D2 (X2, B2)
Rl, R3, D2 (B2)
Rl,R2
Rl, D2 (X2, B2)

NAME

* Subtract Halfword
* Subtract Logical
* Subtract Logical

Supervisor Call
* Test and Set
* Test Channel
* Testl/O
* Test Under Mask

Translate
* Translate and Test

Unpack

MNEMONIC TYPE

SH
SLR
SL
SVC
TS
TCH
no
TM
TR
TRT
UNPK

RX
RR
RX
RR
SI
SI
SI
SI
SS

-SS
SS

DECIMAL FEATURE INSTRUCTIONS

* Add Decimal
* Compare Decimal

Divide Decimal
* Edit
* Edit and Mark

Multiply Decimal
* Subtract Decimal
* Zero and Add

AP
CP
DP
ED
EDMK
MP
SP
ZAP

SS
SS
SS
SS
SS
SS
SS
SS

CODE

4B
IF
5F
OA
93
9F
9D
91
DC
DD
F3

FA
F9
FD
DE
DF
FC
FB
F8

DIRECT CONTROL FEATURE INSTRUCTIONS

Read Direct
Write Direct

RDD
WRD

SI
SI

PROTECTION FEATURE INSTRUCTIONS

Insert Storage Key
Set Storage Key

ISK
SSK

RR
RR

85
84

09
08

Appendix

OPERANDS
(Assembler Format)

Rl, D2 (X2, B2)
Rl, R2
RI, D2 (X2, B2)
I
Dl (Bl)
Dl (Bl)
DI (Bl)
Dl (Bl),12
DI (L, Bl), D2 (B2)
Dl (L, Bl), D2 (B2)
Dl (Ll, Bl), D2 (L2, B2)

Dl (Ll, Bl), D2 (L2, B2)
Dl (Ll, Bl),D2 (L2, B2)
Dl (Ll, Bl), D2 (L2, B2)
Dl (L, Bl), D2 (B2)
Dl (L, Bl), D2 (B2)
Dl (Ll, Bl), D2 (L2, B2)
DI (Ll, Bl), D2 (L2, B2)
Dl (Ll, Bl), D2 (L2, B2)

Dl (Bl), 12
Dl (Bl), 12

Rl,R2
Rl,R2

Floating-point feature instructions are listed in Chapter 9.

MACHINE FORMAT

First Halfword Second Halfword Third Halfword

Byte 1 Byte 2

Register Register
I Operand 1 Operand 2

RR i OpCode f:71~
:0 7 8 11 12 15

Re'gister Address of I

Operand 1 Operand 2 :

Rxrj -o-pc-od-e~jFc;J~1~x=2~I=B=2TI====02==~)
:0 7 S 11 12 15 16 19 20 31

, I

: Immediate : Address of
I Oper...,d I Operand 1 I

I I~~I

51 I Op Code I 12 I B1 I 01 I
1~,O------J7 L..S----15-'-1-6-1..L9-20-----....J

31
'

: Register Register Address of I

Operand 1 Operand 3 Operand 2 I

~I

R5 i Op Code I R1 I R3 I B2 I 02 I
:0 7 S 1112 1516 1920
I

: Length Address of Address of

ope~~nd1 I Operand 2

Address of

OpCode

Length I Operand 1

i:=cJ B11 01

78 1112 1516 1920

3132 3536

Address of
Operand 2

3132 3536

47
I

47

I
I

I

Appendix 139

CONDITION CQDE SETTINGS

Code State 0
Mask Bit Position 8 4

Fixed-Point Arithmetic

Add H/F zero <zero > zero overflow
Add Logical zero not zero zero not zero

no carry no carry carry carry
Compare H/F (A:B) equal A low A high
Load and Test zero <zero > zero carry
Load Complement zero <zero > zero overflow
Load Negative zero <zero
Load Positive zero > zero overflow
Shift Left Double zero <zero > zero overflow
Shift Left Single zero <zero > zero overflow
Shift Right Double zero <zero > zero
Shift Right Single zero <zero > zero
Subtract H/F zero <zero > zero overflow
Subtract Logical not zero zero not zero

no carry carry carry

Decimal Arithmetic

Add Decimal zero <zero > zero overflow
Compare Decimal (A:B) equal A low A high
Subtract Decimal zero <zero > zero overflow
Zero and Add zero <zero > zero overflow

Logical Operations

And zero not zero
Compare Logical (A:B) equal Alow A high
Edit zero <zero > zero
Edit and Mark zero <zero > zero
Exclusive Or zero not zero
Or zero not zero
Test Under Mask zero mixed one(s)
Translate and Test zero incomplete complete

EBCDIC CHART

The 256-position chart at the right, outlined by the heavy
black lines, shows the graphic characters and control char
acter representations for· the Extended Binary-Coded
Decimal Interchange Code (EBCDIC). The bit-position
numbers, bit patterns, hexadecimal representations and
card hole patterns for these and other possible EBCDIC
characters are also shown.

To fmd the card hole patterns for most characters, parti
tion the chart into four blocks as follows:

CJl
UJ

140

Block 1: Zone punches at top of table; digit
punches at left

Block 2: Zone punches at bottom of table;
digit punches at left

Block 3: Zone punches at top of table; digit
punches at right

Block 4: Zone punches at bottom of table;
digit punches at right

EXTENDED MNEMONIC CODES FOR THE BRANCH
ON CONDITION INSTRUCTION

Machine Instruction
Assembler Code Meaning Generated

B D2(X2,B2) Branch Unconditional BC I5,D2(X2,B2)
BR R2 Branch Unconditional BCR I5,R2

(RR format)
NOP D2(X2,B2) No Operation BC O,D2(X2,B2)
NOPR R2 No Operation (RR format) BCR O,R2

Used after compare instructions (A :B)

BH D2(X2,B2) Branch on High BC 2,D2(X2,B2)
BL D2(X2,B2) Branch on Low BC 4,D2(X2,B2)
BE D2(X2,B2) Branch on Equal BC 8,D2(X2,B2)
BNH D2(X2,B2) Branch on Not High BC 13,D2(X2,B2)
BNL D2(X2,B2) Branch on Not Low BC II,D2(X2,B2)
BNE D2(X2,B2) Branch on Not Equal BC 7,D2(X2,B2)

Used after arithmetic instructions

BO D2(X2,B2) Branch on Overflow BC 1,D2(X2,B2)
BP D2(X2,B2) Branch on Plus BC 2,D2(X2,B2)
BM D2(X2,B2) Branch on Minus BC 4,D2(X2,B2)
BZ D2(X2,B2) Branch on Zero Be 8,D2(X2,B2)
BNP D2(X2,B2) Branch on Not Plus BC 13,D2(X2,B2)
BNM D2(X2,B2) Branch on Not Minus BC 11,D2(X2,B2)
BNZ D2(X2,B2) Branch on Not Zero BC 7,D2(X2,B2)

Used after Test under Mask instructions

BO D2(X2,B2) Branch if Ones BC 1,D2(X2,B2)
BM D2(X2,B2) Branch if Mixed BC 4,D2(X2,B2)
BZ D2(X2,B2) Branch if Zeros BC 8,D2(X2,B2)
BNO D2(X2,B2) Branch if Not Ones BC 14,D2(X2,B2)

Fifteen positions, indicated by circled numbers, are excep
tions to the above arrangement. The card hole patterns for
these positions are given below the chart.

Following are some examples of the use of the EBCDIC
chart:

Character Type

PF Control Character
% Special Graphic
R Upper Case
a Lower Case

Control Character,
function nat yet
assigned

Bit Pattern

00 00 0100
01 10 1100
1101 1001
10000001
00 11 0000

..
Bit Positions
01234567

Hex Hole Pattern

Zone Punches I Digit Punches

o. 12 - 91_.

6C 0-8-.
09 111- 9
~1 12 - 01- 1
30 12 - II - 0 - 91- 8 - 1

I
1

EBCDIC CHART

00 01 10

0000
CD

NUL
CD

DLE

»

I 1\ SOH
">

DCI 0001 50S ®
/

0010 DC2 FS sYN

0011 TM

0100 RES BYP PN

0101 NL LF Rs

0110 Bs ETB UC

0111 IL ESC EOT

1000 CAN y

1001 EM

1010 SM ®

1011 CUI CU2 CU3

1100 IFS DC4 < @

1101 IGS ENQ NAK

1110 IRS ACK + >

1111

Card Hole Patterns (exceptions to punches shown in chart)

CD 12-0-9-8-1 CD No Punches CD 12-0

CD 12-11-9-8-1 CD 12 @ 11-0

CD 11-0-9-8-1 (]) II ® 0-8-2

CD 12-11-0-9-8-1 CD 12-11-0 @ 0

Control Character Representations

ACK
BEL
BS
BYP
CAN
CC
CR
CUI
CU2
CU3
DCI
DC2
DC4
DEL
OLE
OS
EM
ENQ

Ac know ledge
Bell
Bockspace
Bypass
Concel
Cursor Control
Corriage Return
Customer Use I
Customer Use 2
Customer Use 3
Device Control I
Device Control 2
Device Control 4
Delete
Data Link Escape
Digit Select
End of Medium
Enquiry

EOT
ESC
ETB
ETX
FF
FS
HT
IFS
IGs
IL
IRS
IUS
LC
LF
NAK
NL
NUL

End of Transmission
Escape
End of Transmission Block
End of Text
Form Feed
Field Separator
Horizontal Tab
Interchange Fi Ie Separator
Interchange Group Separator
Idle
Interchange Record Separator
Interchange Unit Separator
Lower Case
Line Feed
Negative Acknowledge
New Line
Null

PF
PN
RES
RS
SI
SM
SIv\M
SO
SOH
50S
SP
STX
SUB
SYN
TM
UC
VT

Punch Off
Punch On
Restore
Reader Stop
Shift In
Set Mode
Start of Manual Message
Shift Out
Start of Heading
Start of Significance
Space
Start of Text
Substitute
Synchronous Idle
Tape Mark
Upper Case
Vertical Tab

®
®
®

A

C

D

G

H

0-1

11-0-9-1

12-11

II

K

M

N

o

Q

®

U 4

V 5

w

x 7

Y

z 9

Special Graphic Characters

<
(

&

Cent Sign
Period, Decimal Point
Less-th~n Sign
Left Parenthesis
Plus Sign
Logical OR
Ampersand
Exclamation Point
Dollar Sign
Asterisk
Right Parenthesis
Semicolon
Logical NOT

/

%

>
?

@

Minus Sign, Hyphen
Slash
Camma
Percent
Underscore
Greater-than Sign
Question Mark
Colon
Number Sign
At Sign
Prime, Apostrophe
Equal Sign
Quotation Mark

Appendix 141

SYSTEM/360 ASSEMBLER INSTRUCTIONS

Following is a representative list of assembler instructions,
grouped according to use. The mnemonics used for condi
tional assembly and macro defInition are included simply to
clarify classifIcation of assembler instructions as a whole.
Information on these two subjects is given in the System/
360 Assembler Language manuals (see Preface). The
meaning of the extended mnemonics for the Branch on
Condition machine instructions, and the machine code
generated by each, appear elsewhere in this Appendix.

MNEMONIC MEANING

For symbol definition

EQU Equate Symbol

For data definition

DC Define Constant
DS Define Storage
CCW Define Channel Command Word

For program sectioning and linking

START Start Assembly
CSECT Identify Control Section
DSECT Identify Dummy Section
ENTRY Identify Entry-point Symbol
EXTRN Identify External Symbol
COM Identify Blank Common Control

Section

For base register assignment

USING Use Base Address Register
DROP Drop Base Address Register

For control of printed listings

TITLE Identify Assembly Output
EJECT Start New Page
SPACE Space Listing
PRINT Print Optional Data

For program control

ICTL Input Format Control
ISEQ Input Sequence Checking
ORG Set Location Counter
LTORG Begin Literal Pool
CNOP Conditional No Operation
COpy Copy Predefined Source Coding
END End Assembly
PUNCH Punch a Card
REPRO Reproduce Following Card

For macro definition

MACRO
MNOTE
MEXIT
MEND

142

MNEMONIC

For conditional assembly

GBLA
GBLB
GBLC
LCLA
LCLB
LCLC
SETA
SETB
SE'FC
AlF
AGO

Extended mnemonics for the BC and BCR machine
instructions

B
BR
NOP
NOPR
BH
BL
BE
BNH
BNL
BNE
BO
BP
BM
BZ
BNP
BNM
BNZ
BNO

TYPES OF ASSEMBLER LANGUAGE CONSTANTS

Code Type Machine Format

C Character 8-bit code for each character
X Hexadecimal 4-bit code for each hexadecimal digit
B Binary Binary
F Fixed-point Signed, fIxed-point binary; normally a

fullword
H Fixed-point Signed, fIxed-point binary; normally a

halfword
E Floating-poin t Short floating-point; normally a fullword
D Floating-point Long floating-point; normally a

doubleword
P Decimal Packed decimal
Z Decimal Zoned decimal
A Address Value of address; normally a fullword
y Address Value of address; normally a halfword
S Address Base register and displacement value;

a halfword
V Address Space reserved for external symbol

addresses; each address normally a fullword

In this index, assembler and macro instructions are identified
as such. Machine instructions are listed by name in capital
letters.

Adcon (see address constant)
ADD (A) 9,11,30,42-44,113

Incrementing an indexed address 45,4 7
ADD DECIMAL (AP) 57,62,71,73,81
ADD HALFWORD (AH) 48
ADD NORMALIZED (AD) 133
ADD NORMALIZED (AE) 131
Address arithmetic

Use of binary for 18,20
Address calculations by assembler 6,10,11,55,57
Address changes in program modification 15
Address constant

A-type 108,111,113,119
in examples 76,94,101,103,108,112,116
to load base register 54,56
Modification by linkage editor 57,115,119,123
for subroutine linkage 108
to test completion of loop 57
V-type 109,115,117,119

Address, effective 30,52
Addressing byte locations 18
Addressing main storage 9,18,19,24,30,51
Addressing registers 19
Address specification

Use of zero in 10,11,24,30
Alignment, boundary (see boundary alignment)
AND (N) 69,70,79,83
AND (immediate) (NI) 67,68,78,79,83
Argument 92,93,97
Arithmetic and logical unit 19
Arithmetic instructions, effect on condition code 140
Assembler coding form 7
Assembler instruction

In assembler language 2,4
List of 142

Assembler instructions mentioned in text
CNOP (conditional no operation) 113,114
CSECT (identify control section) 115
DC (defme constant) 2,10,11,31,127
DROP (drop base address register) 57
DS (defme storage) 2,10,11,31,56,61,70
ENTRY (identify entry-point symbol) 121
EJECT (start new page) 3
END (end assembly) 10,11,31
EXTRN (identify external symbol) 120
ICTL (input format control) 7

ISEQ (input sequence checking) 7
ORG (set location counter) 54,55
PRINT (print optional data) 29,94
START (start assembly) 9,61,115

Index

TITLE (identify assembly output) 2,9,120
USING (use base address register) 3,9,10,51-57

Assembler language
Basic concepts 9,10
Comparison with high-level languages 4
Description 1- 4
Types of instructions 3,4

Assembler program 1,5,6,52,53
"Assembler" program example 100,101
Asterisk in a comment, use of 8
Asterisk in an instruction, use of 11
Averaging problem 48,49,68

Base address 24,51,118,123
Base register 9,11,24,51-57,123

Use of zero 30
Base register range restriction 109
Base registers, use of multiple 54-57

Base address chosen by assembler 56
Baudot teletypewriter code 92
Binary arithmetic (see fixed-point operations)
Binary-coded decimal (BCD) data format 20
Binary -decimal number conversion 28
Binary fractions 35
Bit 17
Bit manipulation 82,83
Bits, setting on and off 79
Blanking storage area 100,102
Boundary alignment 10,15,18,102

Of DC's and DS's 10
Of machine instructions 23
Use ofCNOP instruction 113,114
Use of DS zero duplication factor 70

Branch if Zeros (BZ) extended mnemonic 99
BRANCH AND LINK (BAL) 109
BRANCH AND LINK (BALR) 9,10,24,51,52,108,109,111
Branching 23,39
BRANCH ON CONDITION (BC) 40,42-44,71,78;79,81

102
After COMPARE 45,76

BRANCH ON CONDITION (BC, BCR)
with EDIT 89
Extended mnemonic code 44,78,79,83,140
No-Operation (NOP, NOPR) 39,140
Test of condition code 39
Uses 23,24

Index 143

BRANCH ON COUNT (BCT) 23,73,80,83,99
BRANCH ON COUNT (BCTR) 23,91
Branch on Equal (BE) extended mnemonic 49
BRANCH ON INDEX HIGH (BXH) 23,4 7
BRANCH ON INDEX LOW OR EQUAL (BXLE) 23,

46-49,113
Branch on Low (BL) extended mnemonic 44
Branch on Minus (BM) extended mnemonic 99,102
Branch on Not Equal (BNE) extended mnemonic 99
Branch on Not High (BNH) extended mnemonic 94
Branch on Overflow (BO) extended mnemonic 110
Branch Unconditional (B) extended mnemonic 98,101

110,113
Branch Unconditional (BR) extended mnemonic 108
Branch, unconditional 39,42
Branching alternate times through loop 81
Branching by use of Execute instruction 99
Byte 17,18

CALL macro instruction 116,117,120,123
Calling program 108
Capacity of main storage 17
Capacity of registers 19
Central processing unit (CPU) 19
Character codes 21
Characteristic in floating-point number 126,127
Character testing and manipulation 80,82,83
Check bit 17
Check digit, use of 80
Clearing storage area to blanks 100,102
CNOP assembler instruction 113,114
Code conversion by use ofTR 92,93
Coding form, use of 7
Collating sequence, EBCDIC 21,76
Collating sequence, changing normal 93,94
Comma and decimal point insertion 86-88
Comments, use of 8
COMPARE (C) 42-44,45,83
COMPARE (CR) 40
CUMP ARE DECIMAL (CP) 71
C01v1P ARE HALFWORD (CH) 49
Compare instructions, logical contrasted to arithmetic

76
COMPARE LOGICAL (character) (CLC) 76,77,81,93,94
COMPARE LOGICAL (immediate) (CLI) 93
Comparison of alphanumeric characters 76,77
Complementing bits 79
Composite number problem 82,83
Condition code 23,39

144

after COMPARE 40
in EDIT 89
List of instructions that affect 130,139
Masks for testing 39
Summary of resul t settings 140
after TEST UNDER MASK 78
in TRT 97

Constant, address (see address constant)
Constants, assembling of

Effect of PRINT DATA on 94
Constants, types of 9,127,142
Control characters in EDIT 86-90
Control program 5,30,115,123
Control section 115
Conversion

Binary-hexadecimal-decimal numbers 26-28
Character codes 92,93
Zoned-packed formats 69,70,81

CONVERT TO BINARY (CVB) 73,100
CONVERT TO DECIMAL (CVD) 9,70,102
Core storage (see main storage)
Counter, location 6,9,10,54,115
CPU (central processing unit) operations 19
Cross-reference table 6,8,52
CSECT assembler instruction 115
Currency symbols, floating 91

Data constants (see DC assembler instruction)
Data exception 25
Data format 17,20-22,60,75,126

(See also individual types of data)
Data introduced in instructions 75,113
DC assembler instruction 2,10,11,31,127

Types of constants 142
Decimal-binary number conversion 28
Decimal data format 20,21,60
Decimal data manipulation 82,83
Decimal digits, clearing excess 63,71
Decimal feature instruction set 60,139
Decimal-hexadecimal number conversion 27,28
Decimal operations 20,21,60-73

Addition and subtraction 61-62
Comparison 71,72
Division 64,68
Effect on condition code 140
Format conversions 69,70
Multiplication 63
PrOviding storage locations for data 62
Requirement for packed format 21,60
"Shifting" 66-68

Decimal places, rule for number of 64,68
Decimal point and comma insertion 86-88
Decimal point in binary numbers 34,35
Decimal point in floating-point arithmetic 125,127
Decimal signs, clearing excess 67
Decision-making 23,39,42-44
Delimiters, scan of data fields for 97,100
Diagnostic messages 6,12-14
Dictionaries 6,115 (see also ESD and RLD)
Digit selector 86-90
Disk Operating System (DOS) macros 111
Displacement 11,24,51-5 7

Assignment of smallest 56

Restrictions in size and sign 54,55
DIVIDE (D) 34,42-44
DIVIDE (DDR) 133
DIVIDE DECIMAL (DP) 64,68

Before and after results of operation 64
DIVIDE (DER) 132
DIVIDE (DR) 49,113
Dollar amounts, editing of 87-91
Dollar sign, insertion of floating 91
DOS (Disk Operating System) macros 111
Doubleword 10,17,18
Doubling a binary number by shifting 49
DROP assembler instruction 57
DS assembler instruction 2,10,11,31

Length modifier in 61
Zero duplication factor in 56,70

Dumps, "reading" 117-119,121-123

EBCDIC character set 21,11
Collating sequence 21
Complete 256-position chart 140,141

EDIT AND MARK (EDMK) 85,86,91
Use of register 1 91

EDIT (ED) 85-90
Editing

Conditions and results, summary of 88
Dollar amounts 87-91
Multiple fields 90
Pattern, rule for length 87

EJECT assembler instruction 3
END assembler instruction 10,11 ,31
Entries on coding form, rules for 7,8
ENTRY assembler instruction 121
Entry point 121
Entry point register 111
EOJ (End of Job) macro instruction 3,9,30
Error analysis by assembler 12-14
Error code 13
Error detection by CPU 23
Error detection by use ofTRT 97
Error messages 12-14
Error return 110
ESD (external symbol dictionary) 6,109,115,119,121
Even, odd registers

in BXLE 46,47
in fIXed-point multiplication 32

Exception 25,32,114,132
Excess-64 notation 126
EXCLUSIVE OR (immediate) (XI) 79
EXCLUSIVE OR (XR) 78
EXCLUSIVE OR (XR, X, XI, XC) 78
Executable instructions 1,3
EXECUTE (EX) 85,99,100,102
Explicit length specification 60,61,77
Exponent 126,127,131
Exponent overflow and underflow 132

Extended binary coded decimal interchange code
(See EBCDIC character set)

Extended mnemonic code 44,78,79,83,140,142
Externai interruption 25
External references 115
External symbol 120,121
External symbol dictionary (ESD) 6,109,115,119,121
EXTRN assembler instruction 120

F (fullword) 31
Field length 17

Characters 21
Fixed-length (fIXed-point numbers) 20
Variable length (decimal numbers) 20

Field separator 90
Fill character 86-90
Fixed-length data, alignment of 10,18
Fixed-point operations 19,20,29-50

Addition 30
Decimal point in 34,35
Division 34,35
Effect on condition code 140
Multiplication 32,33,34,35
Number format 20,82
Subtraction 30

Floating currency symbols 91
Floating-point operations 21,125-133

Advantages of using 125
Constants 127-129
Instruction set 130
Number format 126-129
Registers 19,21,130

Flowchart, program 40,42,82
Format

Machine instruction 10,11,23,24,139 (see also RR,
RX, SI, RS, SS)

Data 17,20-22,60,75,126 (see also specific data
formats)

Fraction in floating-point number 126,127,130
Fullword 10,17,18,20,31
Function bytes 93,97
Function table 92-94,97,100

General registers (see registers, general)
Graphic characters 21 ,22,141
Guard digit 132

Halfword 10,17,18,20
Halfword operands, machine instructions using 48
HALVE (HDR) 133
HALVE (HER) 132
Hexadecimal code 10,11,21

For EBCDIC characters 22,86-93,141
F our-bit binary code 26
Interpreting in storage printout 26,117-119,121-123
Uses of 26,27

Index 145

Hexadecimal-decimal number conversion 27,28
Hexadecimal dump of storage area 117
Hexadecimal numbers 26-28,33

ICTL assembler instruction 7
Immediate operand 23,24,75,78,79
Implicit length 60,61,77
Indexed addressing 45,46
Index, limit value of 46,47,49
Index register 24,45,46,49,80,83
Index register zero 11
"Indian" problem 73
Initialization of program 48

INSERT CHARACTER (IC) 69,80,83
Instruction address 23

Next sequential In PSW 25
Length code in PSW 25

Instruction e){.ecution out of sequence 99
Instruction format 10,11,23,24,139

(See also RR, RX, SI, RS, and SS)
Instruction sets, System/360

Decimal feature 60,139
Floating-point feature 130
Standard 29,139

Integral boundaries 18
Interchanging addresses instead of records 77
Interchanging contents of registers 40,76,94
Interest problem

In decimal arithmetic 63
In fixed-point arithmetic 34,35
Using both decimal and binary 73

Interruption, program 25
Interruptions, types of 25
Interruption system 23,25
Invalid delimiter 13
Invalid symbol 13
Inventory problem

In decimal arithmetic 61
In fIxed-point arithmetic 29

I/O devices, requirement for zoned decimal format 21,60
I/O interruption 25
I/O operations

Use of DC's and DS's as substitute 31
ISEQ assembler instruction 7

Keys, sorting on 76,77,93-96

Leading zeros, suppression of 86-88
Left "shifting" in decimal operations 67
Length code in machine instructions 60,61
Length modifIer in DC 61
Limit value of index 46,47,49
Linkage editor 6,53,109,115-118,121,123
Linkage registers 111
Linkage subroutine 107-124

146

Listings produced by assembler 6
Literal 113,117
LOAD ADDRESS (LA) 46,47,48,80,91,97,100,111
LOAD AND TEST (LTR) 49
LOAD COMPLEMENT (LCDR) 133
LOAD-COMPLEMENT (LCER) 131
LOAD HALFWORD (LH) 48
LOAD (L) 9,11,29,30,42-44,70,113
LOAD (LD) 133
LOAD (LE) 130
Load location, program 53,117
LOAD (LR) 40,42,43,48
LOAD macro instruction 121,123
Load module 115,116
LOAD MULTIPLE (LM) 40,77
LOAD POSITIVE (LPR) 40
Location counter 6,9,10,54,115
Logical instructions, using RX forms of 79
Logical operations 21
Logical operations 75-104

Effect on condition code 140
Summary of 75

Long precision 130,133
Loop control 23
Looping with an index 45-49,80,83,113
Loop, parts of 45
Loop reiteration by loading of base address 57
Loops, counting in 73,80,81

Machine check interruption 25
Machine instruction format 10,11 ,23,24,139

(See also RR, RX, SI, RS, SS)
Machine instructions

In assembler language 1,4
(See name of individual instruction)

Machine instructions, list of 130,139
Machine language 1
Machine operations, basic concepts of 9,10
Macro instructions 3,4

Effect of PRINT instruction on listing 29,94
(See individual mnemonics)

Macros for subroutine linkage, DOS 111
Main storage 17,18

Addressing 24
Use of in decimal arithmetic 20

Main storage area, contents of, printed out 117,118,122
Mask

Use of hexadecimal code 26,69
Use in testing 24

Mask fIeld in machine instructions 24
Message characters 87-90
Mnemonics 1,2,3

Machine instructions, list of 139
Assembler instructions, list of 142

Mnemonic code, extended 44,78,79,83,140,142
MOVE (characters) (MVC) 57,61,66,68,73,77,86,90,94

Propagating character through field, use for 89,97,102
MOVE (immediate) ("Mvl) . 1 00
Move instructions, use for "shifting" decimal fields 66,67
MOVE NUMERICS (MVN) 63,66,71,73,75
MOVE WITH OFFSET (MVO) 60,66,67,71
MULTIPLY DECIMAL (MP) 63,73
MULTIPLY (M) 32-35,42-44
MULTIPLY (MD) 133
MULTIPLY (MDR) 133
MULTIPLY (ME) 130,131
MULTIPLY (MER) 133

Name of program
In CSECT statement 115
In START statement 9,115

Naming fields in a storage area 57
Negative fixed-point numbers 20,31,38
Negative floating-point numbers 128
No-Operation (NOP) extended mnemonic 113,114
No-Operation (NOPR) extended mnemonic 39,99,140
Normalization 131
Normalized number 126,129
Notation, scientific 126
Number base 27,126
Number of places in decimal division 64,68
Numerical place values in base 2, 10, and 16 27

Object code 1,5,10,115
Object deck 120
Object module 115
Object program 5,10
Operand 1,8,20,21,23
Operating system 5
Operation code 1,23,24
ORG assembler instruction 54,55
OR (immediate) (01) 79,83
OR(O) 69,81
Overflow in floating-pOint fraction 131,132
Overlapping fields in decimal operations 66,67,73
Overtime pay problem 71

PACK (PACK) 60,70,73,83,100
Packed decimal numbers 20,60,61,69,70,81
Parameter list 111 , 11 7
Parity bit 17
Pattern field in EDIT 86,87
PDUMP macro instruction 117,121
Pool, literal 113
Postnormalization - 131,132
Prenormalization 131,132
PRINT assembler instruction 29,94
Printout of storage area contents 117,118,122
Program checkout, use of dump for 117
Program execution 6,23-25,118-119,121-123

Use of main storage in 17
Program interruption 25

Program listing 6
Programming errors 11.-1 q.

Programming support system 5
Program phase 115
Program status word (pSW) 23-25
Propagating character through field 89,97,102
PSW (program status word) 23-25
Punch card patterns for EBCDIC code 22,140,141

Recomplement 33
Records, processing fixed-length 45
Records, processing fIXed-length blocked 56,57
Register contents shown in printout 117-119,121-123
Registers, floating-point 19,130
Registers, general 19,20

Available to programmer 51
Clearing to zero 42,45
Functions in a program summarized 48
Saving contents of 111,112
Specification 24
Standard assignments 111

Registers, general, use of
with BXLE instruction 46,47
in fIXed-point multiplication 46,47
by operating system 51
in shifting operations 37
for subroutine linkages 108,111

Registers 1 and 2, use of, by TRT 97
Register zero 10,11
Register 1, use of, by EDMK 91
Relative addressing 9
Relocatability 115
Relocation dictionary (RLD) 6,115,119
Relocation factor 53,115
Relocation, program 24,53,115-119
RETURN macro instruction 113,123
Return point, subroutine 108,110,111
Return register 111
Right "shifting" in decimal operations 66
RLD (relocation dictionary) 6,115,119
Rounding errors, accumulated 43
Rounding off 34,35,42,43,49

In decimal arithmetic 63,68,71
RR instruction format 11,23,24
RS instruction format 11,23,24
RX instruction format 11,23,24,29

Save area 111 , 112, 123
SAVE macro instruction 112,113
Scale factor

For binary constant 35
Scanning data fields for delimiters 97,100
Scientific notation 126
Sequential instruction execution 23
Setting bits on and off 79
Shifting, fIXed-point 34,37,38,113

Index 147

Shifting, logical contrasted to algebraic 37,38
"Shifting" of decimal fields 66,67
SHIFT LEFT SINGLE (algebraic) (SLA) 9,11,49,52,83,

110
SHIFT LEFT SINGLE LOGICAL (SLL) 80
SHIFT RIGHT DOUBLE (algebraic) (SRDA) 38
SHIFT RIGHT DOUBLE LOGICAL (SRDL) 37,38
SHIFT RIGHT SINGLE (algebraic) (SRA) 35,38
SHIFT RIGHT SINGlE LOGICAL (SRL) 37,38
Short precision 130
Sign bits

In algebraic shifting 35
In fixed-point numbers 20,32
In logical shifting 37
Propagation in halfword instructions 49

Sign control in EDIT 88
Significance exception 132
Significance indicator 87-90
Significance starter 87-91
Sign of numbers

EBCDIC 20
Fixed-point 20
Floating-point 126,128

SI instruction format 23,24,139
Social security tax problem

In decimal arithmetic 72,73
In fixed-point arithemtic 42-44

Sorting problem 39-41,76,77,93-96
Source deck 5
Source of program interruption, locating 2S
Source program 5
Specification exception 32,114
SS instruction format 23,24,56,60-73,139
Standard instruction set 29,139
Standard linkage registers 111
START assembler instruction 9,52,53,115

Use of zero in 61
Status, program (in PSW) 25
Storage addressing 18,24
Storage, main 17,18,20
STORE CHARACTER (STC) 69,80,83
STORE HALFWORD (STH) 37
STORE MULTIPLE (STM) 40,112
STORE (ST) 9,30,43,44,113
STORE (STD) 133
STORE (STE) 133
Subroutine 107-123

Assembled separately 120-122
Entry point 111
Program design 107
Register availability for 113
Relocatable 115

SUBTRACT DECIMAL (SP) 62
SUBTRACT HALFWORD (SH) 49
SUBTRACT NORMALIZED (SD) 133

148

SUBTRACT NORMALIZED (SE) 132
SUBTRACT (S) 9,30

Decrementing an indexed address 46
SUBTRACT (SR) 42,43,45,48,80,113
Supervisor 5
SUPERVISOR CALL (SVC) 30,123

Interruption 25
Suppression of leading zeros 86-88
Symbol (cross-reference) table 6,8,52
Symbolic address 9,24,30
Syntax error 13

Table, function 92-94,97,100
Table of decimal-hexadecimal values 28
Table requirements for Translate instruction 92,94
Table requirements for TRT instruction 97,100
Table, use ofMVI to insert values in 100,102
Teletypewriter code, Baudot 92
Testing bit combinations 78,79
Testing characters 82,83
Testing, terminating loop by 45
Testing the condition code 23,32
Tests

Of address arithmetic 23
Of counting 24
With masks 24

TEST UNDER MASK (TM) 78,79
TITLE assembler instruction 2,9,120
TRANSLATE AND TEST (TR) 85,97-104

Starting address for 100
Use to determine data length 102

Translate table 92-94
TRANSLATE (TR) 85,92-94
TRT table 97,100
Two's-complement notation 31,33
Type specification of constants 10,86,127,142

Undefined symbol 12,13
Unnormalized number 126
UNPACK (UNPK) 60,70,73,102
USASCII code 20,76
USING assembler instruction 3,9,10,51-57

Valid data, checking for 44,93
Variable-length data, use by SS-format instructions 60
Variable length of decimal data 20·

Wallpaper problem 78,79
Work areas in storage

Setting up in decimal operations 63,71

ZERO AND ADD (ZAP) 63,66,73
Zeros, suppression of leading 86-88
Zone and sign tests 82,83
Zoned decimal numbers 21,60

Conversion to packed 69,70,81

. .
."

READER'S COMMENT FORM
A Programmer's Introduction 8C20-1646-6

to IBM 8ystem/360 Assembler langUage

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

SC20-1646-6

FOLD

ATTENTION:

YOUR COMMENTS PLEASE

Your comments on the other side of this form will help us improve future editions of this
publication. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material.

Please note that requests for copies of publications and for assistance in utilizing your
IBM system should be directed to your IBM representative or the IBM branch office
serving your locality.

FOLD

FIRST CLASS
PERMIT NO. 142

POUGHKEEPSIE, NEW YORK

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY:

IBM Corporation
Education Center, Bldg. 005
South Road
Poughkeepsie, New York 12602

Education Development - Publications Services, Dept. 78L

I ••• "" •

FOLD FOLD

-------- - ---- ----- -. -~-- - - ----------- _ .. ®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York 10601
(USA only)

IBM World Trade Corporation
821 United Nations Plaza, New York, N.V. 10017
(International)

SC20-1646-6

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	replyA
	replyB
	xBack

