
Systems Reference Library

IBM System/360 Operating System

Assembler [F] Programmer's Guide

Program Number 3605-AS-037

File No. 8360-21
Order No. GC26-3756-4 OS

This publication complements the IBM System/360
Operating System Assembler Language publications.
It provides a guide to program assembling, linkage
editing, executing, interpreting listings, assem­
bler programming considerations, diagnostic
messages, and object output cards.

Information in this manual on IBM System/360
Model 195 should be used for planning purposes
only.

Page of GC26-3756.-4

Revised June 1, 19'70

By TNL GN33-8075

PREFACE ----

This publication is oriented to the F level
assembler program (the assembler) function­
ing in the IBM System/360 Operating System
(Primary Control Program, MFT, and MVT).

This publication is divided into an
introduction and four sections which de­
scribe the following:

1. Assembler options and data set require­
ments.

2. Use of IBM-provided cataloge~d procedures
for assembling; assembling and linkage
editing; assembling, linkage editing, and
executing assembler language source
programs.

3. Use and interpretation of the assembler
listing.

4. Programming considerations.

In addition, the appendixes provide a pro­
cedure for dynamic invocation of the assem­
bly, a list and explanation of object out­
put cards, and a sample program listing.

Other System Reference Library publica­
tions in th«:! IBM System/360 Operating
System series provide fuller, more detailed
discussions of the topics introduced in this
publication: a careful reading of the
publication JBM System/360 Operating System:
Concepts and Facilities, Order No. GC28-6535,
is recommended. Knowledge of the assembler
language is assumed. Where appropriate, the
reader is directed to the following publica­
tions:

IBM System/360 Operating S~3tem: Job
Control Language Reference, Order No.
GC28-6704

~IBM System/360 Operatin~ Sy;:;tem: Job
Control Language User-s Guide, Order No
GC28-6703

IBM System/360 Operating System: Linkage
Editor and Loader, Order No. GC28-6538

IBM System/360 Operating System:
Supervisor and Data Management Services,
Order No. GC28-6646

IBM System/360 Operating Svstem:
Supervisor and Data Management Macro
Instructions, Order No. GC28-6647

IBM System/360 Operating System: TESTRAN,
Order No. GC28-6648

IBM System/360 Operating System:
Messages and Codes, Order No. GC28-6631

IBM System/360 Operating System:
Assembler Language, Order No. GC28-6514

IBM System/360 Operating System:
Utilities, Order No. GC28-6586

IBM System/360 Operating System: FORTRAN
IV (E), Library Subprograms, Order No.
GC28-6596

IBM System/360 Operating System: System
Programmer-s Guide, Order No. GC28-6550

IBM System/360 Operating System: FORTRAN
IV (E) Programmer-s Guide, Order No.
GC28-6603

IBM System/360 Operating System: COBOL
(E) Programmer-s Guide, Order No.
GC24-5029

References to these publications are
usually by a short title, e.g., Linkage
Editor or Data Management Services.

This edition corresponds to Release 18 of the IBM System/360 Operating System. It is a major revision

of, and obsoletes, GC26-3756-3. The major changes are addition of System/360 lvlodel 85 programming

information and a cataloged procedure for the I.nader. Other changes are a new PARM field option (OS/DOS),
increase in maximum Set symbol dimension, cataloged procedure support for dedicated work files, and new assembler

statistics. Also, there are several editorial changes. An extensively modified page is denoted by the symbol •

next to the page :11umber.

Specifications contained herein are subject to change from time to time. Any such changes will be reported

in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM Branch Office

serving your locality.

A form is providE~d at the back of this publication for reader's comments. If the form has been removed,

address comments to IBM Nordic Laboratory, TE,chnical Communkations, Box 962, S-181 09 LidingO 9, Sweden.

©Copyright Inter:national Business Machines Corporation.- 1966 , 196 8, 196 9

Technical Newsletter

IBM SYSTEM/360 OPERATING SYSTEM
ASSEMBLER (F) PROGRAMMER'S GUIDE

File Number S360-21

Re: Order No. GC26-3756-4

This Newsletter No. GN 3 3-8 0 7 5

Dare June 1, 1970

Previous Newsletter Nos. None

This Technical Newsletter, a part of release 19 of IBM System/360
Operating System, provides replacement pages for IBM System/360
Operating System Assembler (F) Programmer's Guide (Order No.
GC26-3756-4). These replacement pages remain in effect for sub­
sequent releases unless specifically altered. Pages to be inserted
and/or removed are listed below.

Front Cover,ii
1-10

15,16
21-28
35,36
49,50

A change to the text or a small change to an illustration is indi­
cated by a vertical line to the left of the change; a changed or
added illustration is denoted by the symbol • to the left of the
caption.

Summary of Amendments

• Inclusion of information on Model 195 support.

• Data type designation for the L-type data constant in the
TESTRAN card.

• Minor technical corrections and editorial changes.

File this cover letter at the back of the manual to provide a
record of changes.

IBM Nordic Laboratory, Technical Communications, Box 962, Lidingo 9, Sweden

PRINTED. IN U.S.A.

INTRODUCTION • . . . • . •

ASSEMBLE$ OPTIONS AND DATA SET
REQUIREMENTS . · · · • • • ·

Assembler Options
Default Entry • • • • •

Assembler Data Set Requirements
Ddname SYSUTl, SYSUT2, SYSUT3 •
Ddnarne SYSIN . • • • • . · · •
Ddnarne SYSLIB . . . · · · ·
Ddname SYSPRINT • .
Ddname SYSPUNCH
Ddname SYSGO • • .

Defining Data Set Characteristics
Return Codes • • • . • • • • . . .

CATALOGED PROCEDURES . . • • · • ·
Cataloged Procedure for Assembly

(ASMFC) • • · . · • ·
cataloged Procedure for Assembly and

Linkage Editing (ASMFCL) · • • ·
cataloged Procedure for Asse~bly,
Linkage-Editing, and Execution
(ASMFCLG) • · · • · · · ·

cataloged Procedure for Assembly
and Loader Execution (ASMFCG)

overriding Statements in Cataloged
Procedures • . • . · · • ·

EXEC Statements .
DD Statements · . · .
Examples

1

2
2
2
2
3
3
3
3
3
3
3
5

6

6

7

8

9

9
9
9
9

ASSEMBLER LISTING 11
External Symbol Dictionary (ESD) . • • • 11
Source and Object Program 13
Relocation Dictionary . . . • . • 14
cross Reference . • • . • . . . • . 14
Diagnostics . . • • 15

PROGRAMMING CONSIDERATIONS • 16
Saving and Restoring General

Register Contents • 16
Program Termination . . • . . . • 16
PARM Field Access • . . . • • . 16

CONTENTS

Macro Definition Library Additions .16
Load Module Modification - Entry
Point Restatement .•......•.. 17

Object Module Linkage • • .17
Dictionary Size and Source Statement

Complexity • . •17
Dictionaries Used in Conditional
Assembly and Macro Instruction
Expansion • . .18

Global Dictiona~y at Collection
Time • . •19

Local Dictionaries at Collection
Time . • • . • .19

Global Dictionary at Generation
Time19

Local Dictionaries at Generation
Time • 20

Additional Dictionary Requirements .. 20
Correction of Dictionary Overflow ... 20

(symbol Table Overflow 21

iii

Source Statement Complexity 21
Macro Generation and Conditional

Assembly Limitation •.•.•.... 21
Assembler Portion Limitations .21

Model 91 Programming Considerations ... 21
Controlling Instruction Execution

Sequence .••...•...••... 22
Model 85 Programming Considerations .22

Extended-Precision Machine
Instructions. . • . . • . .22

OPSYN--Operation Code Equate
Instruction 22

Support of Unaligned Data. .23
Type L Data Constant ... 23

APPENDIX A. DIAGNOSTIC MESSAGES

APPENDIX B. OBJECT DECK OUTPUT .

APPENDIX C. ASSEMBLER F PROGRAM
LISTING.

APPENDIX D. DYNAMIC INVOCATION OF

.25

.35

... 38

THE ASSEMBLER 47

INDEX • . . .49

ILLUSTRATIONS ---------

1. Cataloqed Procedures for Assembly
(ASMFC) . . .

2. Cataloqed Procedure for Assembling
and Linkage Editing {ASMPCL)

3. Cataloqed Procedure for Assembly,
:Linkage Editing, and Execution
(ASMFCLG) ..

Tables
·-------·-··--·--

1. Data Set Characteristics
2. Return Codes
3. Device Naminq Conventions
4. 'rypes of ESD Entries
5. Global Dictionary Entrie~; at

Collection Time
6. Local Dictionary Entries at

Collect.ion Time

6

7

8

4
5
6

.11

. .19

.19

4. Cataloged Procedure for Assembly
and Loader Execution (ASMFCG)

5. Assembler Listing
6. Linkage Statements
7. Extended-Precision Floating

Point Format. . . • . . .
8. TESTRAN SYM Card Format ...

7. Global Dictionary Entries at
Generation Time

8. Local Dictionary Entries at
Generation Time

9. Macro Definition Local Dictionary
Parameter Table . . .

110. Extended-Precision and Rounding
Instructions .

iv

.10
. .12
.. 18

.23
•• 37

.20

.20

.20

.22

Through the medium of job control state­
ments, the progranuner specifies job
requirements directly to the operating
system, thus eliminating many of the
functions previously performed by the
operating personnel. The job consists
of one or more job steps. For example,
the job of assembling, linkage-editing,
and executing a source program involves
three job steps:

1. Translating the source program,
i.e., executing the assembler com­
ponent of the operating system to
produce an object module.

2. Processing the output of the as­
sembler, i.e., executing the
linkage-editor component of the
operating system to produce a load
module.

3. Executing the assembled and linkage­
edited program, i.e., executing the
load module.

A procedure is a sequence of job control
language statements specifying a job. Pro­
cedures may enter the system via the input
stream or from a library of procedures,

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

INTRODUCTION

which are previously defined and contained
in a procedure library. The input stream
is the flow of job control statements
and, optionally, input data entering the
system from one input device. At the
sequential scheduling system level of the
operating system, only one input stream
may exist at a time. (For a description
of the operating system environment see
IBM S stem 360 O eratin S stem: Con­
cepts and Facilities.

The job definition (JOB), execute
(EXEC), data definition (DD), and delimiter
(/*) job control statements are shown in
this publication as they are used to
specify assembler processing. Detailed
explanations of these statements are
given in IBM System/360 Operating System:

I Job Control Lansuage Reference.
Operating system factors influencing

program preparation, such as terminating
the program, saving and restoring general
registers, and linking of independently
produced object modules, are discussed in
Programming Considerations, as are guides
to determine whether assembler dictionary
sizes and complexity limitations of source
statements will be exceeded.

Introduction 1

Page of GC26-3756-4
Revised June 1, 19?0
By TNL GN33-8075

ASSEMBLER OPTIONS AND DATA SET REQUIREMENTS

ASSEMBLER OPTIONS

The programmer may specify the following
assembler options in the PARM== field of
the EXEC statement. They must appear
between two apostrophes, separated by commas
with no imbedded blanks. They can appear
in any order and, if an entry is ommitted, a
standard setting will be assumed as shown
below under "Default Entry."

'DECK LOAD, LIST TE.ST, XREF, ALGN OS RENT'
PARM- or or or LINECNT•nn,

'NODECK,NOLOACt,NOLIST,NOTEST,NOX REF. NOALGN,DOS,NORENT'

These options are defined as follows:
DECK -- The object module is placed on

the device specified in the SYSPUNCH DD
statement.

LOAD -- The object module is placed on
the device specified in the SYSGO DD
statement.

NOTE: Specification of the parameter
LOAD causes object output to be written
on a data SE~t with ddname SYSGO. This
action occurs independently of the output
on SYSPUNCH caused by the parameter DECK.
The output on SYSGO and SYSPUNCH is iden­
tical except. that SYSPUNCH is closed with
a disposi ticm of LEAVE, and SYSGO is
closed with a disposition of RE:READ.

LIST -- An assembler listing is produced.
TEST -- The object module contains the

special source symbol table required
by the b~st translator (TES'l~RAN)
routine.

XREF -- The assembler produces a cross­
referenc'~ table of . symbols as part· of
the listing.

RENT -- The assembler checks for a possible
coding v:i elation of program re­
enterabili ty.

The pref ix NO is used with the above
options to indicate which options are not
wanted.

LINECNT=nn This parameter spec~if ies the
number o:f lines to be printed between
headings in the listing. The permis­
sible range is 01 to 99 lines.

NOALGN -- The assembler suppresses the
diagnostic message IEU033 ALIGNMENT
ERROR if fixed point, floating point,

2

or logical data referenced by an instruc­
tion operand is not aligned on the
proper boundary. The message will be
produced, however, for references to
instructions (e.g., by a branch) which
are not aligned on the proper (halfword)
boundary. See the "Model 8!5 Programming

Considerations" section for information
on alignment requirements.

ALGN -- The assembler does not suppress the
alignment error diagnostic message.

OS -- The assembler will have complete
Operating System Assembler F capability.

DOS -- The assembler will behave like Disk
Operating System (DOS) ASSE~mbler F.
CXD, DXD, and OPSYN assembler operations
and Extended Precision (Model 85 and 195
only) machine operations will be treated
as undefined. L-type and Q-type DC and
DS statements will be treated as unknown
types and RLDs will appear in the Reloc­
ation Dictionary in order of their occur­
rence (unsorted) . The DOS option is in­
compatible with the LOAD, TEST, RENT, or
NOALGN options. If any of these options
are specified along with DOS, the assem­
bler generates a diagnostic message
(IEU078) and uses the default options
NOLOAD, NOTEST, NORENT, or ALGN.

If contradictory options are entered,
e.g., LIST, NOLIST, the rightmost option,
NOLIST, is used.

The following is an example of specify­
ing assembler options:

EXEC PGM•IEUASM,PARM='LOAD,NODECK,TEST'

DEFAULT ENTRY

If no options are specified, the assembler
assumes the following default entry.

PARM•'NOLOAD,DECK,LJST,NOTEST,XREF,LINECNT=55,ALGN,OS,NORENT'

The cataloged procedures discussed in
this guide assume the default entry. How­
ever, the programmer may override any or
all of the default options (see "Over­
riding Statements in Cataloged Proce­
dures").

ASSEMBLER DATA SET REQUIREMENTS

The assembler requires the following four
data sets:

e SYSUTl, SYSUT2, SYSUT3 utility data
sets used as intermediate external
storage.

• SYSIN -- an input data set containing
the source statements to be processed.

In addition to the above, four additional
data sets may be required:

• SYSLIB -- a data set containing macro
definitions (for macro definitions not
defined in the source program) and/or
source coding to be called for through
COPY assembler instructions.

• SYSPRINT -- a data set containing output
text for printing (unless NOLIST option
is specified) .

• SYSPUNCH -- a data set containing object
module output usually for punching (un­
less NODECK option is specified) .

• SYSGO -- a data set containing object
module output usually for the linkage
editor {only if LOAD option is specified).

The above data sets are described in the
following text. The ddname that must be
used in the DD statement describing the
data set appears as the heading for each
description.

Ddnames SYSUTl, SYSUT2, SYSUT3

These utility data sets are used by the
assembler as intermediate external storage
devices when processing the source pro­
gram. The input/output device{s) assigned
to these data sets must be capable of
sequential access to records. The as­
sembler does not support multi-volume
utility data sets. Refer to the Storage
Estimate manual for the space required.

Ddname SYSIN

This data set contains the input to the
assembler -- the source statements to be
processed. The input/output device as­
signed to this data set may be either the
device transmitting the input stream, or
anothe_r sequential input device designated
by the programmer. The DD statement
describing this data set appears in the
input stream. The IBM-supplied procedures
do not contain this statement.

Ddname SYSLIB

From this data set, the assembler obtains
macro definitions and assembler language
statements to be called by the COPY as­
sembler instruction. It is a partitioned
data set and each macro definition or
sequence of assembler statements is a
separate member, with the member name being
the macro instruction mnemonic or COPY
code name. The data set may be defined as
SYSl.MACLIB or a user's private macro
definition or COPY library. SYSl.MACLIB
contains macro definitions for the system
macro instructions provided by IBM. A
user's private library may be concatenated
with SYSl.MACLIB. The two libraries must

have the same attributes, i.e., the same
blocking factors, block sizes, and record
formats. The Job Control Language publica­
tion explains the concatenation of data
sets.

l)dname SYSPRINT

This data set is used by the assembler to
produce a listing. Output may be directed
to a printer, magnetic tape, or DASD. The
assembler uses the machine code carriage­
control characters for this data set.

Ddname SYS PUNCH

The assembler uses this data set to produce
the object module. The input/output unit
assigned to this data set may be either a
card punch or an intermediate storage de­
vice {capable of sequential access).

Ddname SYSGO

This is a DASD, magnetic tape, or card
punch data set used by the assembler. It
contains the same output text as SYSPUNCH.
It is used as input for the linkage editor
and may also be used as a punch device {see
NOTE under "Assembler Options").

DEFINING DATA SET CHARACTERISTICS

Before a data set can be made available
to a problem program, descriptive infor­
mation defining the data set must be
placed into a data control block for the
access routines. Sources of information
for the data control block are keyword
operands in the DCB macro instruction or,
in some cases, the DD statement, data set
label, or user's problem program. General
information concerning data set definition
is contained in the Data Management Services
manual (see Preface). Characteristics of
data sets supplied by the DCB macro instruc­
tion are described in the Data Management
Macro Instructions manual (see Preface).

The specific information that must be
supplied depends upon the data set organi­
zation and access method. The following
access methods are used to process the
assembler data sets:

Access Method Data Sets
QSAM {Queued Sequential) SYSPRINT, SYS­

PUNCH, SYSGO,
SYS IN

BSAM (Basic Sequential) SYSUTl, SYSUT2,
SYSUT3

BPAM (Basic Partitioned) SYS LIB

Table 1 summarizes the assembler ca pa-
bilities and restrictions on record length

Assembler Options and Data Set Requirements 3

Page of GC26-3756-4

Revised June 1, 1970

By TNL GN33-8075

• 'l'able 1. Data Set Characteristics

LRECL

RECFM

0

BLKSIZE

0

BUFNO

For
44K
availabilit y

For
calculating
core
requireme nts

--.--

SYSIN

'Fixed at 80

User mu·st specify
in LABEL or DD card

F, FS, FBS, FB,
FBST, FBT, FT,

FST

User must specify
in LABEL or DD card,
must be a multiple of
LRECL

Opti one.I; if
omitted 2 is used

BLKSIZE times
BUFNO can not be
greater than 3600

L 1 = BLKSl'ZE
times BUFNO

s y SUB

Fixed at 8 0

User
In LABE

U$t specify m
Lo r DO card

F, FB i=BT, FT

User m ust specify
in LABE or DD card,
must be a multiple of
LRECL

Set b y c1ssembler
to l

BLKS IZ f can not
be great er than 3600

~I

L2 =BL <S IZE

SYSPRINT

Fixed at 121

F and M set by
assembler, user may
specify B and/or T
in label or DD card

FM, FMB, FMT, FMBT

Optional, but must
be a multiple of
LRECL; If omitted
BLKSIZE=LRECL

Optional; if
omitted 2 is used

BLKSIZE times
BUF N 0 can not be
greater than 1210

L3 = BLKSIZE
times BUFNO

Minimum core required for the asse rnbler is the largest of the following:

SYSPUNCH SYSGO

Fixed at 80 Fixed at 80

F set by assemb- F set by assemb-
I er, user may spec- ler, user may spec-
ify Band/or T in ify B and/or T in
label or DD card label or DD card

F, FB, FT, FBT F, FB, FT, FBT

Optional, but must Optional, but must
be a multiple of be a multiple of
LRECL; if omitted LRECL; if omitted
BLKSIZE=LRECL BLKSIZE=LRECL

Optional; if Optional; if
omitted 3 is used for omitted 3 is used for
unit record and l for unit record and 1 for
other devices other devices

BLKSIZE times BLKSIZE times
BUF N 0 can not be BUFNO can not be
greater than 400 greater than 400

L4 = BLKSIZE L5 = BLKSIZE
times BUFNO times BUFNO

(1) 45056

(2) L1 + L2 + 41000

(3) L3 + L4 + L
5

+ 41000

4

0

CD
©

Maximum ·::ore that the assembler c •ln effectively use = L4 + LS + 535, 000

U = undefrned, F =fixed length records, B =blocked records, S =standard blocks,
T =track overflow, M =machine code carriaue control

Blocking is not allowed on unit record devicet. Blocking on other direct access can not
be greater than the track size unless T is specified on RECF M

For MVT einvironment add 5,000 for core re·qulred

A smaller blocksize rnay have to be specified for SYSLIB if global
or local dictionaries overflow. See item 4 under "Correction of
Dictionar:f Overflow."

SYSUTl
SYSUT2
SYSUT3

N/A

Fixed for U

User can not specify;
maximum of 3624
minimum of 1739

User can not specify;
either 1 or 2

and format, as well as the blocksize buff­
ering facilities available to the user. The
values shown in Table 1 are based upon the
minimum core requirements of Assembler F
(44K), which will allow a symbol table
length of approximately 7000 bytes. If
more than 44K is available, the block sizes
and buff er numbers can be increased. How­
ever, if the user specifies a combination
of blocking and buffering which does not
leave room for the symbol table, abnormal
termination of the task may occur (ABEND
804) when the assembler attempts to issue
a GETMAIN macro instruction.

In addition to the data set character­
istics shown in Table 1, the following
options are available to the user (refer to
the Supervisor and Data Management Macro
Instructions publication) . Options not
shown below are fixed by the assembler and
cannot be specified.

Data Sets Options

SYSIN, SYS?UNCH,
SYSPRINT, SYSGO

SYSUTl, 2, 3

RETURN CODES

r
DEVD (device type)
BFALN (buffer boundary

l
alignment)

BUFL (buffer length)
EROPT (error option)

l
DEVD (device type)
OPTCD (optional ser­

vice for validity
checking and
chained schettuling)

Table 2 shows the return codes issued by
the assembler for use with the COND=para­
meter of JOB or EXEC statements. The
COND= parameter is explained in IBM

ISystem/360 Operating System Job Control
Language Reference (GC28-6704).

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-807S

The return code issued by the assembler
is the highest severity code that is:

1. Associated with any error detected
by the assembler (see Appendix A for
diagnostic messages and severity
codes).

2. Associated with MNOTE messages pro­
duced by macro instructions.

3. Associated with an unrecoverable I/O
error occurrjng during the assembly.

If a permanent I/O error occurs on any of
the assembler files or a DD card for a
required data set is missing, a message is
printed on SYSPRINT (or on the operator's
console if the SYSPRINT DD card is missing
or if the I/O error is on SYSPRINT) and a
return with a user return code of 20 is
given by the assembler. This terminates
the assembly.

Table 2. Return Codes

Return
Code Explanation

0 No errors detected

4 Minor errors detected; successful program execution is
probable

8 Errors detected; unsuccessful program execution is possible

12 Serious errors detected; unsuccessful program execution is
probable

16 Critical errors detected; normal execution is impossible

20 Unrecoverable 1/0 error occurred during assembly or
missing data sets; assembly terminated

Assembler Options and Data Set Requirements 5

CATALOGED PROCEDURES

This section describes four IBM-provided
cataloged procedures: a procedure for as­
sembling (ASMFC) , a procedure for assem­
bling and linkage editing (AS~FCL) , and a
procedure for assembling, linkage editing,
and executing (ASMFCLG) , and a procedure
for assembling and loader-executing
(ASMFCG) . ~C'he procedures rely on conven­
tions regarding the naming of device
classes. These conventions, shown in Table
3, must be incorporated into the system
at system generation time.

Table 3. Device Naming Conventions

Device Classname Devices Assigned

SYS SQ

SYS DA

SY SCP

Any devices allowing
sequentia I •Jccess to records
for reading and writing

Direct-access devices

Card punches
---·----------------'-------·-------------...J

•ro use cataloged procedures 11 EXEC state­
ments naming the desired procedures are
placed in the input stream following the
JOB statement. Subsequently, the specified
cataloged procedure is brought from a
procedure library and merged into the in­
put stream.

1
llASM EXEC PGM=I EUASM,R EGION=50K

llSYSLIB DD DSNAME•=SYS1.MACLIB,DISP=SHR

llSYSUT1 DD DSNAME·=&SYSUT1,UNIT=SYSSQ,SJ>ACE=(1700,(400,50)),
II SEP=(SYSLIB)

4
llSYSUT2 DD DSNAME•=&SYSUT2,UNIT=SYSSO,Sl'ACE=(1700,(400,50))

5
llSYSUT3 DD DSNAME•=SYSUT3,SPACE=(1700,(400,50)),
II UNIT=(SYSSQ,SEP=(SYSUT2,SYSUT1,SYSLIB)l

6
llSYSPRINT DD SYSOUT=A

llSYSPUNCH DD SYSOUT=B

The S~stem Programmer's Guide discusses
the placing of procedures in the procedure
library.

CATALOGED PROCEDURE FOR ASSEMBLY (ASMFC)

This procedure requests the operating
system to load and execute the assembler.
The name ASMFC must be used to call this
procedure. The result of execution is an
object module, in punched card form, and
an assembler listing.

In the following example, input enters
via the input stream. The statements
entered in the input stream to use this
procedure are:

//jobname

//stepname

JOB

EXEC PROC= ASMFC

//ASM. SYSIN DD
I
I

source program statements
I
I

/* {delimiter statement)

The statements of the ASME'C procedure
are brought from the procedure library and
merged into the input stream.

Figure 1 shows the statements that make
up the ASMFC procedure.

x

x

PARM=• or COND=parameters may be added to this statement by the EXEC statement that -::alls the procedure (see Overriding Statements in
Cataloged Procedures). The system name IEUASM identifies Assembler F.

2
This statement identifi.es the macro library data set. The data set 11ame SYS1.MACLIB is an IBM designation.

3 4 5
These statements specify the assembler utility data sets. The device classname used here, SYSSQ, may represent a collection of tape

drives, or direct-access units, or both. The 110 units assigned to tli is name are specified by the installation when the system is generated.
A unit name, e.g., 231 'I may be substituted for SYSSQ. The DSNAME parameters guarantee use of Dedicated Workfiles if this feature is
part of the Scheduler.

The SEP=subparameter in statement 5 and the SPACE 3 parameter in statements 3, 4, and 5 are effective only if the device assigned is a
direct-access device: otherwise they are ignored. The space required is dependent on the make-up of the source program.
The Job Control Lang1.1age publication explains space allocation.

6
This statement defines the standard system output class, SYSOUT=A, as the destination for the assembler listing.

1
This statement describos the data set that will contain the object module produced by the assembler.

Pigure 1. Cataloged Procedure for Assembly (ASMFC)

6

CATALOGED PROCEDURE FOR ASSEMBLY AND
LINKAGE EDITING (ASMFCL)

This procedure consists of two job steps:
assembling and linkage editing. The name
ASMFCL must be used to call this procedure.
Execution of this procedure results in the
production of an assembler listing, a
linkage editor listing, and a load module.

The following example assumes input to
the assembler via the input job stream. It
also makes provision in the //LKED job step
for concatenating the input to the linkage
editor from the //ASM job step with any
additional linkage editor input in the in­
put job stream. This additional input can
be a previously produced object module
which is to be linked to the object module
produced by job step //ASM.

An example of the statements entered in
the input stream to use this procedure is:

//ASM EXEC PGM=IEUASM,PARM=LOAD,REGION=50K

llSYSLIB DD DSNAME=SYS1.MACLIB,DISP=•SHH

JOB

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

//jobname
//stepname
//ASM.SYSIN

EXEC PROC=ASMFCL
DD *
I
I
I

source program
1
statements

/*
//LKED.SYSIN

I
I

I
DD
I
I
I

object madule or
linkage editor
control statements

*

necessary only if linkage
editor is to combine modules
or read linkage editor control
information from the job stream

/*
The procedure is brought from the pro-

cedure library and merged into the input
stream.

Figure 2 shows the statements that make
up the ASMFCL procedure. Only those state­
ments not previously discussed are
explained.

llSYSUT1 DD DSNAM E=&SYSUT 1,UN IT=SYSSQ,SPACE=(1700,(400,50)) I x
II SEP=(SYSLIB)

llSYSUT2 DD DSNAME=&SYSUT2,UNIT=SYSSQ,SPACE=(1700,(400,50))

llSYSUT3 DD DSNAME=&SYSUT3,SPACE=(1700,(400,50)), x
II UNIT=(SYSSQ,SEP=(SYSUT2,SYSUT1,SYSLIB))

llSYSPRINT DD SYSOUT=A

llSYSPUNCH DD SYSOUT=B

llSYSGO DD DSNAME=&LOADSET,UNIT=SYSSO,SPACE=(S0,{200,50)), x
II DISP=(MOD,PASS)

2
llLKED EXEC PGM=IEWL,PARM=XREF,LIST,NCAL),REGION=96K, x
II COND=(8,LT,ASM)

3
llSYSLIN DD DSNAM E=&LOADSET,DISP=(OLD,DE LETE)

4
II DD DDNAME=SYSIN

5
llSYSLMOD DD DSNAME=&GOSET(GO),UNIT=SYSDA,SPACE-(1024,(50,20, 1)), x
II DISP=(MOD,PASS)

6
llSYSUT1 DD DSNAME=&SYSUT1 ,UN IT=(SYSDA,SEP=(SYSLI N,SYSLMOD)), x
II SPACE=(1024,(50,20))

7
llSYSPRINT DD SYSOUT=A

In this procedure the SYSGO DD statement describes a temporary data set -- the object module -- which is to be passed to the linkage editor.

2
This statement initiates linkage editor execution. The linkage editor options in the PARM=field cause the linkage editor to produce a
cross-reference table, module map, and a list of all control statements processed by the linkage editor. The NCAL option suppresses the
automatic library call function of the linkage editor.

3
This statement identifies the linkage editor input data set on the same one produced as output by the assembler.

4
This statement is used to concatenate any input to the linkage editor from the input stream with the input from the assembler.

5
This statement specifies the linkage-editor output data set (the load module). As specified, the data set will be deleted at the end of the job. If it is
desired to retain the load module, the DSNAME parameter must be respecified and a DISP parameter added. See Overriding Statements in Cataloged
Procedures. If the output of the linkage editor is to be retained, the DSNAME parameter must specify a library name and member name where the
load module is to be placed. The DISP parameter must specify either KEEP or CATLG.

6
This statement specifies the utility data set for the linkage editor.

7
This statement identifies the standard output class as the destination for the linkage editor listing.

• Figure 2. Cataloged Procedure for Assembling and Linkage Editing(ASMFCL)

Cataloged Procedures 7

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

JOB CATALOGED PROCEDURE FOR ASSEMBLY,
LINKAGE EDITING, AND EXECUTION
(ASMFCLG)

//jobname
//stepname
//ASM.SYSIN

EXEC PROC=ASMFCLG

This procedure consists of three job
steps: assembling, linkage editing, and
executing.

Figure 3 shows the statements that make
up the ASMFC:LG proicedure. Only those
statements not previously discussed are
explained in the figure.

DD *
I
I
I

source program statements
I
I

/* :
//LKED .SYSIN DD *

/*

I
I
I

object module or
linkage editor
control statements

I
I

necessary only if linkage
editor is to combine modules
or read linkage editor control
information from the job stream

The name l\SMFCLG must be used to call
.:his procedure. Assembler and linkage
editor listings are produced.

//GO .ddname
//GO.ddname
//GO.ddname

DD (parameters)

}

only if
DD (parameters)

The statements entered in the input
stream to use~ this procedure are~:

DD *
I
I
I

problem program input

necessary

2

3

I

/* I

//ASM EXEC PGM=I EUASM,PARM=LOAD,R EGION=50K

//SYSLIB DD OSNAME=SYS1 .MACLllB,DISP=SHR

//SYSUT1 DD IDSNAME=&SYSUT1,UNIT=SYSSO,SPACE=(1700,(400,50)), x
II SEP=(SYSLIB)

//SYSUT2 DD IDSNAME=&SYSUT2,Ul\llT=SYSSO,SPACE=(1700,(400,50))

//SYSUT3 DD DSNAME=&SYSUT3,SPACE=(1700,(400,50)), x
II UN IT=(SYSSO,SEP=(SYSUT2,SYSUT1 ,SYSLIB))

//SYSPRINT DD SYSOUT=A

//SYSPUNCH DD SYSOUT=B

//SYSGO DD DSNAME=&LOADSET,UNIT=SYSSO,SPACE=(B0,(200,50)), x
II DISP=(MOD,PASS)

//LKED EXEC PGM=IEWL,PARM=(XREF,LET,LIST,NCAL),REGION=96K, x
II COND=(8,LT,ASM)

//SYSLIN DD DSNAME=&LOADSET,DISP=(OLD,DELETE)
II DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=&GOSET(GO),UN IT=SYSDA,SPACE=(1024,(50,20, 1)), x
II DISP=(MOD,PASS)

//SYSUT1 DD DSNAME=&SYSUT1,UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD)), x
II SPACE=(1024,(50,2CI))

//SYSPRINT DD SYSOUT=A

//GO EXEC PGM=*.LKED.SYSLIV10D,COND=((8,L T,ASM),(4,LT,LKED))

----··---

The LET linkagE!·editor op1tion specified in this statement causes the linkage editor to mark the load module as executable even though errors were
encountered during processing.

2
The output of the linkage uditor is specified as a m1amber of a temporary data set, residing on a direct-access device, and is to be passed to a
succeeding job step.

3
This statement initiates execution of the assembled and linkage edited program. The notation *.LKED.SYSLMOD identifies the program to be
executed as being in the data set described in job step LKED by the DD statement named SYSLMOD. When running with MVT (Option 4) the
REGION param1eter can be calculated with the help ofthe Storage Estimates publication (see preface).

Figure 3. Cataloged Procedure for Assembly, Linkage Editing and Execution (ASMFCLG)

8

CATALOGED PROCEDURE FOR ASSEMBLY AND
LOADER-EXECUTION (ASMFCG)

This procedure consists of two job steps
assembling and loader-executing. The
result of loader-execution is a combina­
tion of link-editing and loading the
program for execution. Load modules for
program libraries are not produced.

Figure 4 shows the statements that make
up the ASMFCG procedure. Only those state­
ments not previously discussed are ex­
plained in the figure.

The name ASMFCG must be used to call
this procedure. Assembler and loader
listings are produced.

The statements entered in the input stream
to use this procedure are:

//jobname
//stepname
//ASM.SYSIN

/*
//GO.ddname
//GO.ddname
//GO.ddname

/*

JOB
EXEC

DD

source program

DD
DD
DD

PROC=ASMFCG
*

(parameters)
*

(parameters) I
problem program input

only
if
necessary

OVERRIDING STATEMENTS IN CATALOGED
PROCEDURES

Any parameter in a cataloged procedure can
be overridden except the PGM• parameter in
the EXEC statement. Such overriding of
statements or fields is effective only
for the duration of the job step in which
the statements appear. The statements,
as stored in the procedure library of the
system, remain unchanged.

Overriding for the purposes of re­
specification, addition, or nullification
is accomplished by including in the input
stream statements containing the desired
changes and identifying the statements
to be overridden.

EXEC Statements

The PARM= and COND= parameters can be added
or, if present, re-specified by including
in the EXEC statement calling the pro­
cedure the notation PARM.stepname=, or
COND.stepname=, followed by the desired
parameters. 11 Stepname 11 identifies the
EXEC statement within the procedure to
which the modification applies. Overriding
the PGM= parameter is not possible.

If the procedure consists of more than
one job step, a PARM.stepname= or COND.
stepname= parameter may be entered for
each step. The entries must be in order,
i.e., PARM.stepl=, PARM.step2=, etc.

DD Statements

All parameters in the operand field of DD
statements may be overridden by including
in the input stream (following the EXEC
card calling the procedure) a DD statement
with the notation //stepname.ddname in the
name field. "Stepname" refers to the job
step in which the statement identified by
11 ddname 11 appears.

Examples

+n the assembly procedure ASMFC (Figure 1) ,
the production of a punched object deck
could be suppressed and the UNIT= and SPACE=
parameters of data set SYSUTl re-specified,
by including the following statements in
the input stream:

//stepname EXEC PROC=ASMFC, x
II PARM. ASM=NODECK

llASM.SYSUTl DD UNIT=2311, x
II SPACE=(200 I (300, 40))

//ASM.SYSIN DD

In procedure ASMFCLG (Figure 3) , suppress­
ing production of an assembler listing and
adding the COND= parameter to the EXEC
statement, which specifies execution of the
linkage editor, may be desired. In this
case, the EXEC statement in the input
stream would appear as follows:

I lstepname
II

EXEC PROC=ASMFCLG,
PARM.ASM=(NOLIST ,LOAD),
COND. LKED=(8 LT ,stepname .ASM)

x
x

NOT.E: Overriding the LIST parameter ef­
fectively deletes the PARM=LOAD so this
must be repeated in the override statement.

For current execution of procedure
ASMFCLG, no assembler listing would be
produced, and execution of the linkage
•3di tor job step //LKED would be suppressed
if the return code issued by the assembler
(step ASM) was greater than 8. Using the
procedure ASMFCL (Figure 2) to:

1. Read input from a non-labeled 9-track
tape on unit 282 that has a standard
blocking factor of 10.

2. Put the output listing on a labeled tape
VOLID=TAPElO, with a data set name of
PROGl and a blocking factor of 5.

3. Block the SYSGO output of the assembler
and use it as input to the linkage edi­
tor with a blocking factor of 5.

Cataloged Procedures 9

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

//ASM EXEC

//SYSLIB DD

//SYSUT1 DD
II

//SYSUT2 DD

//SYSUT3 DD
II

//SYSPRINT DD

//SYSPUNCH DD

//SYSGO DD

//GO EXEC

2
//SYSLIN DD

3
//SYSLOUT DD

PGM=IEUASM,PARM=,'LOAD',REGION=,50K

DSNAME=SYS1.MACLIB,DISP=SHR

DSNAME=&SYSUT1,UNIT=SYSSO,SPACE=(1700,(400,50)), x
SEP=(SYSLIB)

DSNAME=&SYSUT2,UN IT=SYSSO,SPACE=(1700,(400,50))

DSNAME=&SYSUT3,SPACE=(1700,(400,50)), x
UNIT=(SYSSO,SEP=(SYSUT2,SYSUT1,SYSLIB))

SYSOUT=A

SYSOUT=B

DSNAME=&LOADSET,UNIT=SYSSO,SPACE=(S0,(200,50)), x
DISP=(MOD,PASS)

PGM=LOADER,PARIV='IVIAP,PRINT,NOCALL,LET'

DSNAME=&LOADSET,DISP=(OLD,DELETE)

SYSOUT=A

This statement iniitiates load:er-execution. The loader options in the PARM=field cause the loader to produce a map, print the map and diagnostics.
The NOCALL option is the same as NCAL for linkage editor and the LET option is the same as for linkage editor.

2 This statement defines the loader input data set as the same one produced as output by the assembler.

3 This statement idEmtifies the standard output claS!i as the destination for the loader listing.

Figure 4. Cataloged Procedure for Assembly and Loader-Execution (ASMFCG)

4. Link edit the module only if there are
no errors in the assembler, i.e., COND•O.

5. Link edit on to a previously allocated
and cataloged data set USE:::l. LIBRARY
with a member name of PROG, the input
stream appears as follows:

I ljobname JOB

I lstepname EXEC PROC=ASMFCL, x

I/ COND .LKED=(O,NE,steprame.ASM)

llASM.SYSPRINT DD DSl'.AME~PROG l, UNIT=TAPE, x
II VOLUME=SER=TAPE l 0, DCB (BLKSIZE=605)

l/ASM.SYSGO DD DCB~(BLKSIZE--=400)

/IASM.SYSIN DD UNIT=282, LABEL=(, NL), x
II DCB=,(RECFM=FSB, BLKSIZE =800)

//LKED.SYSIN DD D CB=stepnam e . AS M. SYS GO

I /LKED .SYSLMOD DD DSf'-JAME=USER. LIBRARY(PROG),DISPcOLD

/*

NOTE: The order of appearance of ddnames
within job steps ASM and LKED has been pre­
served. Thus, SYSPRINT precedes SYSGO with­
in step ASM. The ddname ASM.SYSIN was
placed last since SYSIN does not occur at
all within step ASM. These points are
covered in the section "Using Cataloged
Procedures" in the Job Control Language
manual.

I /stepname 1 EXEC PROC=ASMFC, PARM.ASM='LOAD'

llASM.SYSGO DD DSNAME=&LO AD SET, UN I T=SYSSQ,

II SPACE=(BO, (100,50)),

II DIS P=(MOD, PASS), DCB=(BLKS IZE=400)

llASM.SYSIN DD

I

source program l statements

/*
I /stepnome2 EXEC PROC=ASMFCLG

11 ASM. SYS GO DD DCB=(BLKSIZE=400), DISP=(MOD, PASS)

l/ASM.SYSIN DD

source program 2 statements

/*
l/LKED.SYSLIN DD DCB= BLKSIZE--=400

llLKED.SYSIN DD

ENTRY PROG

/*

//GO .ddname dd cords for GO step

x
x

To assemble two programs, link edit the
two assemblies into one load module and ex­
ecute the load module. Enterin9 at PROC, the
input stream appears as follows::

The Job Control Language Reference and
System Programmer~s Guide publications pro­
vide additional description of overriding
techniques.

10

The assembler listing (Figure 5) consists
of five sections, ordered as follows: ex­
ternal symbol dictionary items, the source
and object program statements, relocation
dictionary items, symbol cross reference
table, and diagnostic messages. In addi­
tion, three statistical messages may
appear in the listing:

1.

2.

3.

After the diagnostics, a statements­
flagged message indicates the total
number of statements in error. It
appears as follows: nnn STATEMENTS
FLAGGED IN THIS ASSEMBLY.
After the statements-flagged message,
the assembler prints the highest sever­
ity code encountered (if non-zero) •. ·
This is equal to the assembler return
code. The message appears as follows:
nn WAS HIGHEST SEVERITY CODE.
After the severity code, the assembler
prints a count of the number of
records read from SYSIN and from SYS­
LIB. It also prints the options for
the assembly. (See the section
"Assembler Options). These messages
appear as follows:

STATISTICS SOURCE RECORDS (SYSIN) =
nnnnn SOURCE RECORDS (SYSLIB)= nnnnn
OPTIONS IN EFFECT xxxx,xxxxxx, etc.

4. After the options in effect, the
assembler prints a count of lines
printed, which appears as follows: nnn
PRINTED LINES. This is a count of the
actual number of 121-byte records
generated by the assembler; it may be
less -than the total number of printed
and blank lines appearing on the list­
ing if the SPACE n assembler instruc­
tion is used. For a SPACE n that does
not cause an eject, the assembler
inserts n blank lines in the listing
by generating n/3 blank 121-byte
records -- rounded to the next lower
integer if a fraction results; e.g.,
for a SPACE 2, no blank records are
generated. The assembler does not
generate a blank record to force a
page eject.

In addition to the above items, the
assembler prints the deck identification
and current date on every page of the
listing. If the timer is available, the
assern.0ler prints the time of day to the
left ur the date on page 1 of the ESD
listing. This is the time when printing
starts, rather than the start of the assem­
bly, and is intended only to provide unique
identification for aasemblies made on the
same day. The time is printed as hh.rrrrn,

ASSEMBLER LISTING

where hh is the hour of the day (midnight
beginning at 00), and rrrrn is the number of
minutes past the hour.

EXTERNAL SYMBOL DICTIONARY (ESD)

This section of the listing contains the
external symbol dictionary information

f passed to the linkage-editor or loader in
the object module. The entries describe
the control sections, external references,
and entry points in the assembled program.
There are six types of entries, shown in
Table 4, along with their associated fields.
The circled numbers ref er to the corres­
ponding heading in the sample listing

I (Figure 5). The X's indicate entries
accompanying each type designation.

Table 4. Types of ESD Entries

<D (i) @ © @ @

SYMBOL TYPE ID ADDR LENGTH LD ID

x SD x x x -
x LD - x - x

x ER x - - -
- PC x x x -

- CM x x x -

x XD x x x -

1. This column contains the name of every
external dummy section, control sec­
tion, entry point, and external symbol.

2. This column contains the type desig­
nator for the entry, as shown in the
table. The type designators are defined
as:

SD--Names section definition. The sym­
bol appeared in the name field of
a CSECT or START statement.

LD--The symbol appeared as the operand
of the ENTRY statement.

ER--External reference. The symbol
appeared as the operand of an EXTRN
statement, or was defined as a V­
type address constant.

PC--Unnamed control section definition.
CM--Common control section definition.
XD--External dummy section (same as PR,

Pseudo Register in the Linkage Editor
manual) .

3. This column contains the external sym­
bol dictionary identification number
(ESDID) . The number is a unique two­
digi t hexadecimal number identifying

Assembler Listing 11

EXTERNAL SYMBOL DICTIONARY

@ 0 © (~) ©
EXAM Page I
SYMBOL TYPE ID ADDR LE,'IGTH LD ID 00. I 6 4/11/M

CD
SAMPLR SD OJ 000000 000388

0 ©
EXAM SAMPLE PROGRAM Page 3

@ @ @ @ ®
LOC OBJECT CODE ADDR 1 ADDR2 STMT SOURCE STATEMENT F J4FEB66 4/11/66

000000
000004
000005
OOOOOA
OOOOOE
000010

47FO FOOA OOOOA 59+BEGIN B 10(0, 15) BRANCH AROUND ID
05 60+ DC ALl(5)

C2C5C7C9D5 61+ DC CL5'BEGIN' IDENTIFIER @
90EC DOOC ooooc 62+ STM 14, 12, 12(13) SAVE REGISTERS

OSCO 63
64

BALR R12,0
USING *,Rl2

ESTABLISH ADDRESSABILITY OF PROGRAM
AND TELL THE ASSEMBLER WHAT BASE TO USE

SAMPL057
SAMPL058

0 RELOCATION DICTIONARY
EXAM

@
POS.ID

0
EXAM

@

01
01
01
01
01

@
REL.ID

01
01
01
01
01

@ ®
FLAGS ADDRESS

oc 0001FC
oc 00020C
oc 00021C
oc 0002D4
oc 000334

SYMBOL LEN VALUE DEFN REFERENCES

CROSS-REFERENCE

BEGIN 00004
EXIT 00004

000000
00007E

00059
00096

0156 0 158 1) 1 7 4 0184 0 186 0220
0111

HIGHER 00002
I HB0005 00001
IHB0005A 00002

----------·----
0

EXAM

@
STN\T

19
21

@
ERROR COCE

IEU025
IEU035

OOOOF4 00130 0125

00007B 00093 0090
00007C 00094 0089

DIAGNOSTICS

@
MESSAGE

NEAR OPERAND COLUMN 7--RELOCATABILITY ERROR
NEAR OPERAND COLUMN 9--ADDRESSABILITY ERROR

2 STATEMENTS FLAGGED IN THIS ASSEMBLY
8 WAS HIGHEST SEVERITY CODE
'STATISTICS* 5.0URCE RECORDS (SYSIN) = 225 '.;OURCE RECORDS (SYSLIB) = 5

Page

@
4/11/66

Page

@
4/11/66

Page

@
4/11/66

I I 'OPTIONS IN EFFECT* LIST, NODECK, NOLO.AD, NORENT, XREF, NOTEST, ALGN, OS, LINE CNT = 58
261 PR IN TED LI~~ ES

e r.,igure 5. AE;sembler Listing

the entry. It is used by the LD entry
of the ESD and by the relocation
dictionary for cross-referencing the
ESD.

4. This col"Gmn contains the address of the
symbol (hexadecimal notation) for SD­
and LD-type entries, and zeros for ER­
type entries. For PC- and C~-type
entries, it indicates the beginning
address of the control section. For
XD-type entries, it indicates the
alignment by printing a number one

12

less than the number of bytes in the
unit of alignment, e.g., 7 indicates
double word alignment.

5. This column contains the assembled
length, in bytes, of the control
section {hexadecimal notation).

6. This column contains, for LD-type
entries, the identification {ID)
number assigned to the ESD entry that
identifies the control section in
which the symbol was defined.

SOURCE AND OBJECT PROGRAM

This section of the listing documents
the source statements and the resulting
object program.

7. This is the four-character deck iden­
tification. It is the symbol that
appears in the name field of the first
TITLE statement. The assembler
prints the deck identification and
date {item 16) on every page of the
listing.

8. This is the information taken from the
operand field of a TITLE statement.

NOTE: TITLE, SPACE and EJECT state­
ments will not appear in the source
listing unless the statement is con­
tinued onto another card. Then the
£irst card of the statement is printed
However, any of these three types of
statements, if generated as macro in­
struction expansion, will never be
listed regardless of continuation.

9. Listing page number. Each section of
the listing starts with page 1.

10. This column contains the assembled
address {hexadecimal notation) of the
object code.

11. This column contains the object code
produced by the source statement. The
entries are always left-justified.
The notation is hexadecim?1_~ Entries
are machine instructions or assembled
constants. Machine instructions
are printed in full with a blank
inserted after every four digits
{two bytes). Constants may be only
partially printed {see the PRINT
assembler instruction in the As­
sembler Language publication)-.~

12. These two columns contain effective
addresses {the result of adping to­
gether a base register value and dis­
placement value):

a. The column headed ADDRl contains
the effective address for the
first operand of an SS in­
struction.

b. The column headed ADDR2 contains
the effective address of the
second operand of any instruc­
tion referencing storage.

Both address fields contain six
digits7 however, if the high-order
digit is a zero, it is not printed.

13. This column contains the statement
number. A plus sign {+) to the right
of the number indicates that the state­
ment was generated as the result of
macro instruction processing.

14. This column contains the source pro­
gram statement. The following items
apply to this section of the listing:

a.

b.

c.

d.

e.

f.

g.

h.

Source statements are listed,
including those brought into the
program by the COPY assembler
instruction, and including macro
definitions submitted with the
main program for assembly.
Listing control instructions are
not printed, except for the
following case: PRINT is listed
when PRINT ON is in effect and a
PRINT statement is encountered.
Macro definitions obtained from
SYSLIB are not listed.
The statements generated as the
result of a macro instruction
follow the macro instruction in
the listing.
Assembler or machine instructions
in the source program that con­
tain variable symbols are listed
twice: as they appear in the
source input, and with values
substituted for the variab.le
symbols.
Diagnostic messages are not list­
ed inline in the source and
object program section. An error
indicator, ***ERROR***, follows
the statement in error. The
message appears in the diagnostic
section of the listing.
MNOTE messages are listed inline
in the source and object program
section. An MNOTE indicator
appears in the diagnostic section
of the listing for MNOTE state­
ments other than MNOTE *. The
MNOTE message format is severity
code, message text.
The MNOTE * form of the MNOTE
statements results in an inline
message only. An MNOTE indicator
does not appear in the diagnostic
section of the listing.
When an error is found in a
programmer macro definition, it
is treated the same as any other
assembly error: the error
indication appears after the
statement in error, and a diag­
nostic is placed in the list of
diagnostics. However, when
an error is encounter~d during the
expansion of a macro instruction
(system- or programmer-defined) ,
the error indication appears in
place of the erroneous statement,
which is not listed. The error
indication follows the last
statement listed before the

Assembler Listing 13

i..

j.

k.

1.

m.

n.

o.

erroneous statement was en­
countered, and the associated
diagnostic message is placed in
the list of diagnostics.
Literals that have not been
assigned location~: by an LTOHG
statement appear in the listing
following the END statement.
Literals are identified by the
equal (=) sign preceding them.
If the END statement contains an
operand, the transfer address
appears in the location column
(LOC).
In the case of COM., CSECT, and
DSECT statements, tl1e location
field contains the beginning ad­
dress of these control sections,
i.e., the first occurrence.
In the case of EXTRN, ENTRY, and
DXD instructions, the location
field and object code field are
blank.
!?or a USING statement, the loca­
tion field contains the value of
the first operand.
Par LTORG and ORG statements, the
location field contains the loca-
tion assigned to the literal pool
or the value of the ORG operand.
For an EQU statement, the loca­
tion field contains the value
assigned.

p. Generated statements always
print in normal statement for­
mat. Because of this, it is
possible for a generated state­
ment to occupy thr1:!e or more con­
tinuation lines on the listing.
This is unlike source statements,
which are restrict<~d to two con­
tinuation lines.

15. This column contains the identifier
of the assembler (F) and the date
when this version was released by
Systems Development Division to DPD
Program Information Department.

16. Current date (date run is made).
17. Identification-sequence field from

the source statement.

RELOCATION DICTIONARY

This section of the listing contains the
relocation dictionary information passed
to the linkage editor in the object module.
The entries describe the address constants
in the assembled program that are affected
by .relocation.

1.4

18. This column contains the external
symbol dictionary ID nurnbE~r assigned
to the ESD entry that describes the
control section in which the address
constant is used as an operand.

19. This column contains the external sym­
bol dictionary ID number assigned to
the ESD entry that describes the con­
trol section in which the referenced
symbol is definedo

20. The two-digit hexadecimal number in
this column is interpreted as follows~

First Digit. A zero indicates that
the entry describes an A-type or
Y-type address constant. A one
indicates that the entry describes
a V-type address constant. A two
indicates that the entry describes
a Q-type address constant. A
three describes a CXD entry.
Second Digit. The first three bits
of this digit indicate the length
of the constant and whether the
base should be added or subtracted:

Bits 0 and 1 Bit 2
00 1 byte a-+
01 2 bytes 1 = -
10 3 bytes
11 4 bytes

21. This column contains the assembled ad­
dress of the field where the address
constant is stored.

CROSS REFERENCE

This section of the listing information
concerns symbols which are defined and
used in the program.

22. This column contains the symbols.
23. This column states the length (deci­

mal notation), in bytes, of the field
occupied by the symbol value.

24. This column contains either the ad­
dress the symbol represents, or a
value to which the symbol is equated.

25. This column contains the statement
number of the statement in which the
symbol was defined.

26. This column contains the statement
numbers of statements in which the
symbol appears as an operand. In the
case of a duplicate symbol, the assem­
bler fills this column with the mes­
sage:

****DUPLICATE****

The following notes apply to the
cross-reference section~

e Symbols appearing in V-type ad­
dress constants do not appear in
the cross-reference listing.

• A PRINT OFF listing control in­
struction does not affect the
production of the cross-reference
section of the listing.

• In the case of an undefined symbol,
the assembler fills columns 23, 24,
and 25 with the message:

****UNDEFINED****•

DIAGNOSTICS

This section contains the diagnostic mes­
sages issued as a result of error condi­
tions encountered in the program. The
text, severity code, and explanatory notes
for each message are contained in "Appendix
A".

27. This column contains the number of the
statement in error.

28. This column contains the message iden­
tifier.

29. This column contains the message, and,
in most cases, an operand column point­
er that indicates the vicinity of the
error. In the following example, the
approximate location of the addressa­
bility error occurred in the 9th col­
umn of the operand field:

Example:

STMT ERROR CODE MESSAGE

21 IEU035 NEAR OPERAND COLUMN 9 -- ADDRESSABILITY ERROR

The following notes apply to the diag­
nostic section:

Page of CC26-3756-4

Revised June 1, 1970
By TNL CN33-8075

• An MNOTE indicator of the form MNOTE
STATEMENT appears in the diagnostic
section if an MNOTE statement other
than I\1NOTE* is issued by a macro in­
struction. The MNOTE statement itself
is inline in the source and object
program section of the listing. The
operand field of an MNOTE* is printed
as a comment, but does not appear in
the diagnostic section.

• A message identifier consists of six
characters and is of the form:
IEUxxx

IEU identifies the issuing agent
as Assembler F, and xxx is a
unique number assigned to the
message.

NOTE: Editing errors in system macro defini­
tions (macro definitions included in a macro
library) are discovered when the macro defi­
nitions are read from the macro library.
This occurs after the END statement has been
read. They will therefore be flagged after
the END statement. If the programmer does
not know which of his system macros caused
an error it is necessary to punch all system
macro definitions used in the program,
including inner macro definitions, and insert
them in the program as programmer macro def i­
ni tions, since the programmer macro defini­
tions are flagged in-line. To aid in de­
bugging it is advisable to test all macro
definitions as programmer macro definitions
before incorporating them in a library as
system macro definitions.

Assembler Listing 15

This section consists of a number of dis­
crete subjects about assembler language
progranuning.

SAVING AND RESTORING GENERAL REGISTER
CONTENTS

A problem program should save the values
contained in the general registers upon com­
mencing execution and, upon completion, re­
store to the general registers these same
values. Thus, as control is passed from the
operating system to a problem program and,
in turn, to a subprogram, the status of the
registers us1~d by ·each program is preserved.
This is done throu1gh use of the SAVE and
RETURN system macro instructions.

The SAVE macro instruction should be the
first statement in the program. It stores
the contents of registers 14, 15, and 0
through 12 in an area provided by the pro­
gram that passes control. When a problem
program is given control, register 13
points to an area in which the ~reneral
register contents should be saved.

If the program calls any subprograms,
or uses any operating system services other
than GETMAIN, FREEMAIN, ATTACH, and XCTL,
it must first save the contents of register
13 and then load the address of an 18 full­
word save ariea into register 13 ~ This save
area is in the problem program and is used
by any subprograms or operating system
services called by the problem program.

At completion, the problem program re­
stores the contents of general registers
14, 15 and 0·-12 by use of the RETURN system
macro instrm~tion {which also indicates
program completion}. The contents of regis­
ter 13 must :be restored before execution of
the RETURN macro instruction.

The codin9 sequence that follows illus­
trates the basic process of saving and re­
storing the registers. A complete discus­
sion of the SAVE and RETURN macro instruc­
tions and the saving and restoring of
registers is contained in the Data Manage­
ment Services and Data Management Macro­
Instructions _publications (see Preface).

16

Operand Name I Operation
~·~--~ ---~~~·

BEGIN ! SAVE

ST
LA

L
RETURN

SAVEBLK . DC

(14, 12)

set up base register

13,SAVEBLK+4
13, SAVEBLK

13,SAVEBLK+4
(14, 12)
18F'O'

PROGRAM TERMINATION

Completion of an assembler source program
is indicated by using the RETURN system
macro instruction to pass control from the
terminating program to the program that in­
itiated it. The initiating program may be
the operating system or, if a subprogram is­
sued the RETURN, the program that called it.

In addition to indicating program com­
pletion and restoring registers, the RE­
TURN macro instruction may also pass a re­
turn code -- a condition indicator that
may be used by the program receiving control.
If the return is to the operating system,
the return code is compared against the
condition stated in the COND= parameter of
the JOB or EXEC statements. If return is
to another problem program, the return
code is available in general register 15,
and may be used as desired. Register 13
should be restored before issuing the RE­
TURN macro instruction.

The RETURN system macro instruction is
discussed in detail in the Supervisor and
Data Management Macro Instructions pub­
lication.

PARM FIELD ACCESS

Access to information in the PARM field of
an EXEC statement is gained through general
register 1. When control is given to the
problem program, general register 1 con­
tains the address of a full word which, in
turn, contains the address of the data area
containing the information.

The data area consists of a. halfword con­
taining the count (in binary) of the number
.of information characters, followed by the
information field. The information field is
aligned to a full-word boundary. The follow­
ing diagram illustrates this process.

General Register 1

Address of Full Word J Points
to Full Word

Address of Data Area J Points
to

Data Area

Count in Binary Information Fiel~

MACRO DEFINITION LIBRARY ADDITIONS

Source statement coding, to be retrieved
by the COPY assembler instruction, and

macro definitions may be added to the macro
library. The IEBUPDTE utility program is
used for this purpose. Details of this
program and its control statements are con­
tained in the Utilities publication. The
following sequence of job control state­
ments can be used to call the utility pro­
gram and identify the needed data sets.
It is assumed that the job control state­
ments, IEBUPDTE program control statements,
and data are to enter the system via the
input stream.

//jobname
//stepname
//SYSUTl
//SYSUT2
//SYSPRINT
//SYSIN

JOB
EXEC
DD
DD
DD
DD

PGM=IEBUPDTE, PARM=-MOD
DSNAME=SYSl .MACLIB,DISP=OLD
DSNAME=SYS l. MACLIB, DISP=OLD
SYSOUT==A

IEBUPDTE control statements and source statements or
macro-definitions to be added to the macro-library
(SYS l . MACLI B)

/* (delimiter statement)

LOAD MODULE MODIFICATION - ENTRY POINT
RESTATEMENJ.'

If the editing functions of the linkage
editor are to be used to modify a load
module, the entry point to the load module
must be restated when the load module is
reprocessed by the linkage editor. Other­
wise, the first byte of the first control
section processed by the linkage editor
will become ·the entry point. To enable
restatement of the original entry point,
or designation of a new entry point, the
entry point must have been identified
originally as an external symbol, i.e.,
appeared as an entry in the external
symbol dictionary. External symbol
identification is done automatically by
the assembler if the entry point is the
name of a control section or START state­
ment; otherwise, an assembler ENTRY state­
ment must be used to identify the entry
point name as an external symbol.

When a new object module is added to or
replaces part of the load module, the
entry point is restated in one of three
ways:

• By placing the entry point symbol in the
operand field of an EXTRN statement
and an END statement in the new object
module.

• By using an END statement in the new
object module to designate a new entry
point in the new object module.

• By using a linkage editor ENTRY state­
ment to designate either the original
entry point or a new entry point for
the load module.

Further discussion of load module entry
points is contained in the Linkage Editor
publication.

OBJECT MODULE LINKAGE

Object modules, whether Assembler-, FOR­
TRAN-, or COBOL-·generated, may be combined
by the linkage editor to produce a compo­
site load module, provided each object
module conforms to the data formats and
linkage conventions required. This topic
discusses the use of the CALL system macro
instruction to link an assembler language
11 main" program to subprograms produced by
FORTRAN and COBOL. The Supervisor and Data
Management Macro Instructions publication
contains additional details concerning
linkage conventions and the CALL system

'macro instruction.
I Figure 6 shows the statements used to

establish the assembler program linkage
to the called subprograms.

If any input/output operations are per­
formed by called subprograms, appropriate
DD statements for the data sets used by the
subprograms must be supplied. See the
FORTRAN IV (E) Programmer's Guide publica­
tion for explanation of the DD statements
used to describe data sets for FORTRAN pro­
grams and a description of the special FOR­
TRAN data set record formats. The COBOL
{E) Programmer's Guide publicaticn provides
DD statement information for COBOL programs.

DICTIONARY SIZE AND SOURCE STATEMENT COM­
PLEXI';rY

Tb.is section describes the composition of
the assembler dictionaries and their entry
sizes, and describes methods.for determin­
ing if the limits on source statement com­
plexity will be exceeded.

Dictionary entries, e.g., sequence sym­
bol names, prototype symbolic parameters,
vary in length. Therefore, the number of
entries a dictionary can hold is determined
by the types of entries.

Source statement complexity -- the num­
ber of symbols, characters, operators, de­
limiters, references to length attributes,
self-defining terms, literals, and expres­
sions appearing in a source statement -­
determines whether or not the source state-·
ment can be successfully processed.

Programming Considerations 17

SAVE (14, 12)

set up base register

ST 13,SVAREA+4
LA 15,SVAREA
ST 15,8(13)
LR 13, 15

2
CALL name, (Vl, V2, V3). VL

l 13,SVAREA+4
RETURN (14, 12)
DC l8F 101

DC (data)
DC (data)
DC (data)

3
4

SVAREA

5
Vl

6
V2
v~

END

This is on example of OS linkage convention. See the publicotiori Supervisor and Data Management Services for details.

2
The symbol used for" name" in this statement is:

a. The name of a subroutine or function, when the linkage is to a FORTRAN-written subprogram.

b. The name defined by the following COBOL statements in the procedure division:

ENTER LINKAGE. ENTRY' name'.

c. The name of a CSECT or START statement, cir c1 name used in the operand field of an ENTRY statement in an assembler subprogram.

The order in which the parameter list is written must reflect the order in which the called subprogram expects the argument. If the called routine is a
FORTRAN-written Function, the returned argument is not in the parameter list: a real or double precision function returns the value in floating point
register ~ an inl'eger function returns the value in general purpose register zero.

CAUTION: When linking to FORTRAN-written subprograms, consideration must be given to the storage requirements of IBCOM (FORTRAN execution-time
1/0 and interrupt h•:mdling routines) which accompanies the compiled FORTRAN subprogram. In some instances the call for IBCOM is not automatically
generated during th•e FORTRAl\I compilation. The FORTRAN IV Library publication provides information about IBCOM requirements and assembler state­
ments used to call llKOM.

FORTRAN - written subprograms and FORTRAN library subprograms allow variable-length parameter lists in linkages which call them; therefore all linkages
to FORTRAN subprograms are required to have the high-order bit in the last parameter in the linkage set to 1. COBOL-written subprograms have fixed­
length calling linkages; therefore, for COBOL the hi!}h-order bit in the last parameter need not be set to I.

3 .
This statement reserves the save area needed by the called subprogram, When control is passed to the subprogram, register 13 contains the address of this
area.

4 5 6 When linking to a FORTRAN or COBOL subprO!;Jram, the data formats declared in these statements are determined by the data formats required by
the FORTRAN or COBOL subprograms.

Figure 6. Linkage Statements

DICTIONARIES USED IN CONDITIONAL ASSEMBLY
AND MACRO INSTRUCTION EXPANSION

To accomplish macro instruction expansion
and conditional assembly, the assembler
constructs a general dictionary consisting
of two parts:: one global dictionary for
the entire programp and an area for all of
the local dictionaries.

The global dictionary contains one en­
try for each machine operation code, ex­
tended mnemonic operation code,, assembler
operation code, macro instruction, and
global SET variable symbol.

The local dictionary area consists of
one local dictionary for each different

18

macro definition in the program, and one
local dictionary for the main portion of
the program (those statements not within
a macro definition, also called "open
code."). The contents of the local dic­
tionaries are described in subsequent
paragraphs.

The capacity of the general dictionary
(global dictionary and all local diction­
aries) is up to 64 blocks of 1024 bytes
each. The division of the dictionary into
global and local sections is done dynami­
cally: as the global dictionary becomes
larger, it occupies blocks taken from the
local dictionary area. Thus, the global
dictionary is always core resident. As it

expands into the local dictionary area,
the local dictionaries may overflow onto
a utility file. The size of the diction­
aries in core depends upon core avail­
ability o The minimum core allocation is
three blocks for the global dictionary and
two blocks for each local dictionary.

Each block in the global and local
dictionaries contains complete entries.
Any entry not fitting into a block is
placed in the next block: the remaining
bytes in the current block are not used.

The global and local dictionaries take
two forms: one when the dictionary entries
are collected, i.e., picked up during the
initial scan of the source program, and
one during the actual conditional assembly
and macro generation, i.e., generation
time. The following text describes the
global and local dictionaries at both
collection time and generation time.

Global Dictionary at Collection Time

One global dictionary is built for the
entire program. It contains machine
operation codes, extended mnemonic opera­
tion codes, assembler operation codes,
OPSYN defined operation codes, macro
instruction mnemonics, and global SET
variable symbols. One entry is made
is shown in Table 5.

•Table 5. Global Dictionary Entries at
Collection Time

Entry Size
r---

** Each machine operation code 5 bytes plus mnemonic*

Each extended mnemonic operation
code or assembler operation** 6 bytes plus mnemonic*

Each macro mnemonic operation code 10 bytes plus mnemonic*

Each global SET variable symbol 7 bytes plus name*

*One byte is used for each character in the name or mnemonic.

**For the first two types of entries, a total of
06FE16 (179010) bytes of core is required.

Fixed overhead for this dictionary is:
8 bytes for the first block
4 bytes for each succeeding block
5 bytes for the last block

Local Dictionaries at Collection Time

For the main portion of the program (those
statements not within a macro definition),
one local dictionary is constructed in
which ordinary symbols, sequence symbols,
and local SET variable symbols are entered.
In addition, one local dictionary is con­
structed for each different macro defini­
tion in the program. These local diction­
aries contain one entry for each local SET
variable symbol, sequence symbol, and
prototype symbolic parameter declared
within the macro definition. If a sequence
symbol is defined before it is referenced,
an extra entry for the symbol is made.
Table 6 shows the size of each type of
entry.

•Table 6. Local Dictionary Entries at
Collection Time

Entry Size

Each sequence symbol 10 bytes plus name*

Each local SET variable symbol 7 bytes plus name*

Each prototype symbolic parameter 5 bytes plus name*

Each ordinary symbol
appearing in the main portion
of the program.

10 bytes plus name*

*One byte is used for each character in the name or mnemonic.

Fixed overhead for this dictionary is:
8 bytes for the first block (if in the

main program)
32 bytes for the first block (if· in a

macro definition)
4 bytes for each succeeding block
5 bytes for the last block

Global Dictionary at Generation Time

The sizes of the global dictionary entries
at generation time are shown in Table 7.

Programming Considerations 19

•Table 7. Global Dictionary Entries at
G1~neration Time

~--·--~i: __ n_tr_Y ______ -~+---~ --~-S-iz_e _____ _

I Each macro mnerr.onic operation code 3 bytes

Each global SETA symbol (dimensioned) 2 byte plus 4N*

Each global SETA symbol
(undimensioned) 4 bytes

Each global SETB symbol (dimensioned) 2 byte plus (N/8)* (N/8 is
rounded to the next highest
integer)

-···------------·,------------------·--
Each globe I SETB symbol
(undimensioned)

Each globe I SE TC symbol
(dimensioned)

1 bit

2,byte plus 9N*

··-·----,---------------+--------· --------------
Each global SETC symbol
(undimensioned) 9 bytes

*N = dimension

Fixed overhead for this dictionary is
4 bytes plus word alignment.

Local Dictionaries at Generation Time

Table 8 shows the sizes of the various
entries appearing in the local dictionaries
at generation time.

•Table 8. Local Dictionary Entries at
Generation Time

,.-.. ______
Entry

Each sequence symbc·I

Each loca I SETA symbol (dimensioned)
t---·

Each local SETA symbol
(undimensioned)

Each local SETB symbol (dimens,:oned)

1----·

Each local SEIB symbol
(undimens i oned)

Each local SETC symbol(dimensioned) ,__,.
Each loco I SETC syml:ol
(undimensioned)

Each ordinary symbol
appearing in the mairi portion
of the program. **

ize

5 bytes

2 byte plus I*

4 bytes

2 byte plus (N
he

/8)* (N/8 is
rounded to t next highest
integer)

l bit

2 byte plus ' ~N *

9 bytes

5 bytes

'---·---------------,,--- ----
*N=dimension

**These entries appear only in the main
program local dictionary.

20

F·ixed overhead for this dictionary is
20 bytes plus word alignment.

Additional Dictionary Requirements

The generation time global dictionary and
the generation time local dictionary for
the main portion of the program must be
resident in main storage.

In addition, if the program contains any
macro instructions, main storage is re­
quired for the largest local dictionary of
the macro definitions being processed.
Furthermore, during processing of macro
definitions containing inner macro instruc­
tions, main storage is required for the
generation time local dictionaries for the
inner macro instructions contained within
the macro definition.

In addition to those requirements speci­
fied for the local dictionary of the main
portion of the program, each macro def ini­
tion local dictionary requires space for
entries shown in Table 9.

Table 9. Macro Definition Local
Dictionary Parameter Table

Entry

Each character string (1)

Each hexadecimal, binary, decimal,
and character self-defining term (2)

Each symbol (3)

Each sub I ist

L
N
y

Size

3 bytes plus L

7 bytes plus L

9 bytes plus L

9 bytes plus 3N bytes plus Y

Length of BCD entry in bytes
Number of entries in sublist

E 1 + E2 + E3 + .•. En
where E =size of an entry (formats 1,2, and 3 above)

Fixed overhead for the macro definition
local dictionary parameter table is 22
bytes. Each nested macro instruction also
requires space in its local dictionary for
the following:

Parameter pointer list

Pointers to parameter
pointer list and
parameter table

8 bytes plus 2N
(N == the number
of operands)
8 bytes plus
word alignment

Correction of Dictionary Overf~low

If an assembly is terminated at collection
time with either a GLOBAL DICTIONARY FULL
message (IEU053) or a LOCAL DICTIONARY FULL

message (IEU054), the programmer can take
one or more of the following steps:

1.

2.

3.

4.

Split the assembly into two or more
parts and assemble each separately.
Allocate more core for the assembler
(the global and local dictionaries
together can occupy up to 64K) •
Run the assembly under Assembler E,
unless it includes features not
allowed by Assembler E. (Due to its
dictionary building algorithm, Assem­
bler E can handle more symbols with a
given size dictionary than can
Assembler F.)
Specify a smaller SYSLIB blocksize.
Thus, if BLKSIZE=3600, try BLKSIZE=
1800 or BLKSIZE=l200, reblock the
library to the size chosen, and try
the assembly again.

If the assembly is terminated at genera­
tion time with a GENERATION TIME DICTIONARY
AREA OVERFLOWED message (IEU068), the pro­
grammer should allocate more core to the
assembler and re-assemble his program. If
he cannot allocate more core to the assem­
bler, the programmer should split the
assembly into two or more parts and assem­
ble each separately.

SYMBOL TABLE OVERFLOW

Assembler performance can degrade when
the source text plus macro-generated
statements contains many ordinary sym­
bols. If these are more ordinary symbols
than will fit in the symbol table, the
assembler will make one or more additional
passes over the text. No symbols will be
lost, but assembly time will increase.

In general, the assembler can handle
400 ordinary symbols without overflow in
its minimum core (See Table 1). Because
of input and/or output blocking differ­
ences, minimum core varies. It is approxi­
mately 45,000 bytes for PCP, 49,000 bytes
for MFT, and 51,000 bytes for MVT. The
assembler can process one additional
symbol for each 18 bytes above minimum
core.

SOURCE STATEMENT COMPLEXITY

The complexity of a source statement is
limited both by the macro generator and the
assembler portions of the assembler. The
following topics provide the information
necessary to determine if statement­
complexi ty limitations for either portion
of the assembler are being exceeded.

Macro Generation and Conditional Assembly
Limitation

For any statement which

1. Is a conditional assembly statement,
2. Is a DC or DS statement,
3. Is an EXTRN statement,
4. Contains a sequence symbol or a

variable symbol,
5. Is not a macro instruction or proto­

type statement,

the total number of explicit occurrences of

1. Ordinary symbols (includes machine
mnemonics, assembler mnemonics, con­
ditional assembly mnemonics, and macro
instruction mnemonics),

2. Variable symbols,
3. Sequence symbols,

must not exceed 50 for the entire state­
ment.

For macro instructions and prototype
statements the number of occurrences of
ordinary symbols, variable symbols, and
sequence symbols must not exceed 50 in the
name and operation fields combined; or in
each operand unless the operand is a sub­
list, in which case the limit is applied
to each sublist operand. In any operand if
a character string has the same form as a
symbol, it is counted as a symbol.

Examples of Counts:

&82 SET8 (T'NAME EQ 'W')' count=3 (&82,SET8,NAME)

EXTRN A,8,C,&C count=5 (EXTRN,A,8,C,&C)

Assembler Portion Limitations

1. Generated statements may not exceed 236
characters. Statement length includes
name, operation, operand, and comments.
If a comments field exists, the blank
separating the operand and comments
field is included in the statement
length. The statement is truncated if
it exceeds 236 characters.

2. DC, DS, DXD, and literal DCs cannot
contain more than 32 operands per
statement.

SYSTEM/360 MODEL 91 PROGRAMMING CONSIDERA­
TIONS

The assembly language programmer should be
aware of the operational differences
between the Model 91 and other System/360
models. The Model 91 requires a simulation

Programming Considerations 21

Page of GC26-3756-4

Revised June 1, 1970

By TNL GN33-8075

routine to execute most decimal instructions
and it yields different floating-point in­
structions execution results. The Model 91
also decodes and executes instructions con­
currently ..

These and other coding and timing con­
siderations are discussed in detail in IBM
System/360 Model 91 Functional Character­
istics, Form A22-6907. Additional informa­
tion on how to control sequential and non­
sequential instruction execution is given
below.

Contro]._!J~Instruction Execution Sequence

The CPU maintains a logical consistency
with respect to its own operations, includ­
ing the beginning and ending of I/O opera­
tions, but it does not assume responsibility
for such consistency in the operations per­
formed by asynchronous units. Consequently,
for any asynchronous unit that depends upon
a strict adherence to sequential (or serial)
execution, a problem program must set up
its own procedures to ensure the proper
instruction sequence.

For a program section that requires the
serial or sequential execution of instruc­
tions, the following 'no-operation' in­
struction:

BCR M, 0 where M -:/- 0

causes the instruction decoder to halt,
and the instructions that have already been
decoded to be executed. (This action is
called a pipe-line drain.) On the Model 91,
this instruction ensures that all the in­
structions preceding it are executed before
the instruction suceeding it is decoded.
Use of this instruction should be minimized
since it may affect the performance of the
Model 91.

Isolating an instruction by preceding it
and succeeding it with a BCR instruction
eliminates multiple imprecise interruptions
from more than one instruction by virtue of
the pipe-line drain effect. However, since
multiple exceptions may occur in one in­
struction, this technique does not eliminate
a multiple imprecise interruption nor does it
change an imprecise interruption into a pre­
cise interruption. The use of the BCR in­
struction does not assure a programmer that
he can fix up an error situation. In general,
the only information available will be the
address of the BCR instruction. The length of
the instruction preceding the BCR instruction
is not recorded, and generally there is no
way to determine what that instruction is.

SYSTEM/360 MODEL 85 PROGRAMMING CONSIDER­
ATIONS

'

The Model 8~) has two special features avail­
able to the assembler languag,e programmer.

22

They are extended-precision (two doubleword)
floating point instructions and byte-oriented
(unaligned) operands. Detailed information
on these features is in the IBM System/360
Principles of Operation manual (GA22-6821).

Assembler F supports these features with
mnemonic operation codes for the extended­
prec is ion instructions, a two doubleword
data constant (DC) , an option for suppres­
sing the alignment error message, and an
assembler instruction for equating one op­
eration code to another. These assembler
features are explained in the following
paragraphs.

Extended-Precision Machine Instructions

The extended-precision arithmetic instruc­
tions and the rounding instructions of the
Model 85 are shown in Table 10. The data
format for extended operands of the AXR,
SXR, MXR, and LRDR instructions and for
extended results of the AXR, SXR, MXR, MXDR,
and MXD instructions is shown in Figure 7.
A complete description of these instructions
is in the Principles of Operation manual.

OPSYN--Operation Code Equate Instruction

A program containing the extended precision
instructions cannot be executed success­
fully on another System/360 model unless
those instructions are converted into others
that can be executed by the non-Model 85
machine. The OPSYN assembler instruction
helps provide a facility for doing this.

The format of the OPSYN statement is:

A OPSYN B

where A is the name field of the statement
and is a source code mnemonic; and B is an
existing machine instruction mnemonic, an

Table 10. Extended-Precision and Rounding
Instructions

Name Mnemonic ,Type 1Qp Code

ADD NORMALIZED (extended operands,
extended result) AXR RR 36

SUBTRACT NORMALIZED (extended
operands, extended result) SXR RR 37

MULTIPLY (extended operands,
extended result) MXR RR 26

MULTIPLY (long operands,
extended result) MXDR RR 27

MULTIPLY (long operands,
extended result) MXD RX 67

LOAD ROUNDED (extended to long) LRDR RR 25
LOAD ROUNDED (long to short) LRER RR 35

EXTENDED FLOATING POINT NUMBER (L)

Page of CC26-3756-4
Revised June 1, 1970
By TNL CN33-8075

7 BIT
CHA RAC
TERISTIC

HIGH ORDER HALF OF
112 BIT FRACTION

0 78 63

- LOW ORDER HALF OF
112 BIT FRACTION

0 78 63

Figure 7. Extended-Precision Floating Point Format

extended mnemonic code, an operation code
defined by a previous OPSYN statement, or
blank. The OPSYN statement assigns to A
all of the properties of B or, if B is blank,
removes A from the Assembler F Opcode Table.

If a programmer wishes to use, for exam­
ple, MXR (extended multiply) on a non-Model
85, he has at least two ways to do so:

1. The programmer can remove MXR from the
Assembler F Opcode Table and add a
macro instruction named MXR as a user
macro, in this manner:

2.

MXR OPSYN
MACRO
MXR

MEND

&Rl,&R2

The first statement removes MXR as a
machine instruction and allows the
programmer to define MXR as a macro
instruction: without the OPSYN state­
ment, Assembler F would continue to
assemble MXR as a machine instruction.
The programmer may approximate MXR by
"equating" it to MDR (multiply long):

MXR OPSYN MDR

The MDR instruction is then assembled
for each occurrence of MXR in the
source program. This allows him to
debug his routine on a non-Model 85
System/360 computer. Later, he can
remove the OPSYN statement, reassemble
the program, and run it on a Model 85.

Support of Unaligned Data

The Model 85 will execute unprivileged
RX- and RS- format instructions with fixed­
point, floating-point, or logical operands
that are not on integral boundaries.
Assembly of such instructions normally pro­
duces the diagnostic message "IEU033 Align­
ment Error". A new PARM option in the EXEC
statement for the Assembler F, ALGN or

NOALGN, makes it possible to suppress the
message and thereby obtain a "clean" assem'"'.'
bly listing. The object code is not
affected.

Note that an assembled program that
requires use of the byte-oriented operand
feature must be run on a Model 85 or 195
machine. Further, it cannot run success­
fully under the Operating System if it
violates any alignment restrictions imposed
by OS.

Type L Data Constant

A Define Constant operand type, L, has
been added to provide extended-precision
floating-point constants for the programmer.
It can be used as a Define Storage operand
or in a literal. Unless changed by a
length modifier, the Type L constant is 16
bytes long and is aligned on a double word
boundary. Its format is that of two
contiguous Type D constants, as shown in
Figure 7, except that it is assembled with
the sign of the second double word equal
to that of the first, and the characteris­
tic of the second equal to that of the

I first minus 14, modulo 128.

SYSTEM/360 MODEL 195 PROGRAMMING
CONSIDERATIONS

The Model 195 has the following special
features: concurrent instruction execution,
extended-precision (two doubleword) floating­
point instructions, and byte-oriented (un­
aligned) operands. The previous descriptions
of these features under "System/360 Model 91
Programming Considerations" and "System/360
Model 85 Programming Considerations" also
apply to the Model 195.

Detailed information on the Model 195
can be found in IBM System/360 Model 195
Functional Characteristics, Order No.
GA22-6943.
NOTE: The Model 195 does not need the decimal
simulator routine used by the Model 91.

Programming Considerations 23

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

APPENDIX A. DIAGNOSTIC MESSAGES

This appendix explains the messages issued by the assembler. A more detailed description,
including information on how the programmer can respond to a message, is included in
IBM System/360 Operating System Messages and Codes (GC28-6631) • Refer to this publication
before responding to any message or calling IBM.

IEUOOl

IEU002

IEU003

IEU004

IEU005

IEU006

IEU007

IEU008

IEU009

IEUOlO

IEUOll

IEU012

IEU013

IEU014

Message

DUPLICATION FACTOR
ERROR

RELOCATABLE DUPLI­
CATION FACTOR

LENGTH ERROR

RELOCATABLE LENGTH

S-TYPE CONSTANT IN
LITERAL

INVALID ORIGIN

LOCATION COUNTER
ERROR

INVALID DISPLACEMENT

MISSING OPERAND

INCORRECT REGISTER
SPECIFICATION

SCALE MODIFIER ERROR

RELOCATABLE SCALE
MODIFIER

EXPONENT MODIFIER
ERROR

RELOCATABLE EXPONENT
MODIFIER

Explanation

A duplication factor is not an absolute
expression, or is zero in a literal: * in
duplication factor expression; invalid syntax
in expression.

A relocatable expression has been used to
specify the duplication factor.

The length specification is out of permissible
range or specified invalidly: * in length
expression: invalid syntax in expression; no
left-parenthesis delimiter for expression.

A relocatable expression has been used to
specify length.

S-type address 9onstants may not be specified
in a literal.

The location counter has been reset to a value
less than the starting address of the control
section; ORG operand is not a simply relocatable
expression or specifies an address outside the
control section.

The location counter has exceeded 224 -1, or
passed out of control section in negative
direction (3 byte arithmetic}.

The displacement in an explicit address is not
an absolute value within the range of 0 to 4095.

Statement requires an operand entry and none is
present.

The value specifying the register is not an
absolute value within the range 0-15, an odd
register is specified where an even register
is required, or a register was used where none
can be specified.

The scale modifier is not an absolute express­
ion or is too large, negative scale modifier for
floating point, * in scale modifier expression;
invalid syntax or illegally specified scale
modifier.

A relocatable expression has been used to
specify the scale modifier.

The exponent is not specified as an absolute
expression or is out of range; * in exponent
modifier expression; invalid syntax; illegally
specified exponent modifier.

A relocatable expression has been used to
specify the exponent modifier.

Severity
Code

12

12

12

12

8

12

12

8

12

8

8

8

8

8

Appendix A. Diagnostic Messages 25

Code

IEU015

IEU016

IEU017

IEU018

TEU019

IF.U020

IEU021

IEU022

IEU023

IEU024

IEU025

IEU026

IEU027

IEU028

26

Messa~ Explanation
Severity

Code

INVl\LID LITERAL USAGE A valid literal is used illegally, e.g., it
specifies a receiving field or a register,
or it is a Q-type constant.

8

INVl\LID Nl\.ME A name entry is incorrectly specified, e.g., it 8

DATA ITEM TOO LARGE

INVfl,LID SYMBOL

EXTERNAL NAME ERROR

INVA,LID IMMEDIATE
FIELD

SYMBOL NO'l'
PREVIOUSLY DEFINED

ESDTABLE OVERFLOW

PREVIOUSLY DEFINED
NAME

UNDEFINED SYMBOL

RELOCATABILITY
ERROR

TOO MANY LEVELS OF
PARENTHESES

TOO MANY 'rERMS

REGISTER ~OT USED

contains more than 8 characters, it does not begin
with a letter, it has a special character imbedded,
or--if the statement is OPSYN--the name entry is
not an ordinary symbol or is an assembler operation
mnemonic.

The constant is too large for the data type
or for the explicit length; operand field
for packed DC exceeds 32 characters and for
zoned DC exceeds 16 characters (excluding
decimal points).

The symbol is specified invalidly, e.g., it is
longer than 8 characters or--if the statement is
OPSYN--the operand entry is not an ordinary sym­
bol or is an assembler operation mnemonic.

A CSECT and DSECT statement have the same
name, or a symbol is used more than once in
an EXTRN or the name field of DXD statements.

The value of the immediate operand exceeds 255,
or the operand requires more than one byte of
storage, or the operand is not an acceptable type.

An expression requiring that all symbols be pre­
viously defined contains at least one symbol not
previously defined.

The combined number of control sections and
dummy sections plus the number of unique
symbols in EXTRN statements and V-type con­
stants exceeds 255. (A DSECT which appears
as XD makes two entries).

The symbol which appears in the name field has
appeared in the name field of a previous
statement.

A symbol being referenced has not been defined
in the program.

A relocatable or complex relocatable expression
is specified where an absolute expression is
required, an absolute expression or complex
relocatable expression is specified where a
relocatable expression is required, or a reloca­
table term is involved in multiplication or
division.

An expression specifies more than 5 levels of
parentheses.

More than 16 terms are specified in an
expression.

A register specified in a DROP statement is not
currently in use.

8

8

8

8

8

12

8

8

8

12

12

4

IEU029

IEU030

IEU031

IEU032

·IEU033

IEU034

IEU035

IEU036

IEU037

IEU038

IEU039

IEU040

IEU041

IEU042

IEU043

IEU044

Message

CCW ERROR

INVALID CNOP

UNKNOWN TYPE

OP-CODE NOT ALLOWED
TO BE GENERATED

ALIGNMENT ERROR

INVALID OP-CODE

ADDRESSABILITY ERROR

(No message is
assigned to
this number)

MNOTE STATEMENT

ENTRY ERROR

INVALID DELIMITER

GENERATED RECORD
TOO LONG

UNDECLARED VARIABLE
SYMBOL

SINGLE TERM LOGICAL
EXPRESSION IS NOT
A SETB SYMBOL

SET SYMBOL
PREVIOUSLY DEFINED

SET SYMBOL USAGE
INCONSISTENT WITH
DECLARATION

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

Severity
Explanation Code

Bits 37-39 of the CCW are set to non-zero. 8

An invalid combination of operands is specified. 12

Incorrect type designation is specified in a DC, DS,
or literal. If the DOS option is specified, type Q 8
will be flagged as unknown. (See "Assembler Options".)

Operation code allowed only in source statement has 8
been obtained through substitution of a value for a
var iq.ble symbol.

Referenced address is not aligned to the proper 4
boundary for this instruction, e.g., START
operand not a multiple of 8.
NOTE: If a register is explicitly specified in the
reference, no message is issued, e.g., L 3,3(REG4)

Syntax error, e.g., more than 8 characters in 8
operation field, not followed by blank on first
card, missing.

The referenced address does not fall within the 8
range of a USING instruction.

This indicates that an MNOTE statement has been
generated from a macro definition. The text and
severity code of the MNOTE statement will be
found in line in the listing.

A symbol in the operand of an ENTRY statement
appears in more than one ENTRY statement, it is
undefined, it is defined in a dummy section or
in blank common, or it is equated to a symbol
defined by an EXTRN statement.

This message can be caused by any syntax error,
e.g., missing delimiter, special character used
which is not a valid delimiter, delimiter used
illegally, operand missing, i.e., nothing
between delimiters, unpaired parentheses,
imbedded blank in expression.

There are more than 236 characters in a
generated statement.

Variable symbol is not declared in a defined SET
symbol statement or in a macro prototype.

The single term logical expression has not been
declared as a SETB symbol.

Self-explanatory.

A SET symbol has been declared as undimensioned,
but is subscripted, or has been declared
dimensioned, but is unsubscripted.

Variable

8

12

12

8

8

8

8

Appendix A. Diagnostic Messages 27

Page of GC26-3756-4

Revised June 1, 1970

By n-rL GN33-8075

Code

IEU045

IEU046

IEU047

IEU048

IEU049

IEUOSO

IEU051

IEU052

IEU053

IEU054

IEU055

IEU056

IEU057

IEU058

IEU059

IEU060

28

Messaqe

ILLEGAL SYMBOLIC
PARAMETER

AT LEAST ONE RELOCAT­
ABLE Y TYPE CONSTANT
IN ASSEMBI. .. Y

SEQUENCE SYMBOL
PREVIOUSLY DEFINED

SYMBOLIC PARAMETER
PREVIOUSLY DEFINED OR
SYS'J~EM VARIABLE SYMBOL
DECLARED AS SYMBOLIC
PARl~METER

VARIABLE SYMBOL
MATCHES A PARAMETER

INCONSISTENT GLOBAL
DECLARATIONS

MACRO DEFINITION
PREVIOUSLY DEFINED

NAME FIELD CONTAINS
ILLEGAL SET SYMBOL

GLOBAL DICTIONARY
FULL

LOCAL DICTIONARY FULL

INV.~LID ASSEMBLER
OPTION (S) ON THE
EXECUTE CARD

ARITHMETIC OVERFLOW

SUBSCRIPT NOT
WITHIN DIMENSIONS

RE-·ENTRANT CHECK
FAILED

UNDEFINED SEQUENCE
SYMBOL

ILLEGAL ATTRIBUTE
NO'J~ATION

Explanation
Severity

Code

An attribute has been requested for a variable
symbol which is not a legal symbolic parameter.

One or more relocatable Y-type constants in
assembly; relocation may result in address
greater than 2 bytes in length.

Self-explanatory.

Self-explanatory.

Self-explanatory.

A global SET variable symbol, defined in more
than one macro definition or defined in a
macro definition and in the source program, is
inconsistent in SET type or dimension.

Prototype operation field is the same as a
machine or assembler instruction or a previous
prototype. This message is not produced when
a programmer macro matches a system macro. The
programmer macro will be assembled with no in­
dication of the corresponding system macro.

SET symbol in name field does not correspond
to SET statement type.

The global dictionary is full, assembly ter·­
minated. See Correction of Dictionary Over­
flow.

The local dictionary is full, current macro
aborted. If in open code, assembly terminated.
See Correction of Dictionary Overflow.

Self-explanatory.

The intermediate or final result of an ex~ress­
ion is not within the range of -231 to 23 -1.

&SYSLIST or symbolic parameter subscript exceeds
200, or is negative, or zero, or SET symbol
subscript exceeds dimension specified in LCL/GBL
statement.

An instruction has been detected, which, when
executed, might store data into a control section
or a common area. This message is generated only
when requested via control cards and merely
indicates a possible reentrant error.

Self-explanatory.

L', S', or I' requested for a parameter whose
type attribute does not allow these attributes
to be requested.

8

4

12

12

12

8

12

8

12

12

8

8

8

4

12

8

Code

IEU061

IEU062

IEU063

IEU064

IEU065

IEU066

IEU067

IEU068

IEU069

IEU070

IEU071

IEU072

IEU07 3

IEU074

IEU075

Message

ACTR COUNTER EXCEEDED

GENERATED STRING
GREATER THAN 255
CHARACTERS

EXPRESSION 1 OF SUB­
STRING IS ZERO OR
MINUS

EXPRESSION 2 OF SUB­
STRING IS ZERO OR
MINUS

INVALID OR ILLEGAL
TERM IN ARITHMETIC
EXPRESSION

UNDEFINED OR DUP­
LICATE KEYWORD
OPERAND OR EXCESSIVE
POSITIONAL OPERANDS

EXPRESSION 1 OF SUB­
STRING GREATER THAN
LENGTH OF CHARACTER
EXPRESSION

GENERATION TIME
DICTIONARY AREA
OVERFLOWED

VALUE OF EXPRESSION
2 OF SUBSTRING
GREATER THAN 8

FLOATING POINT
CHARACTERISTIC OUT
OF RANGE

ILLEGAL OCCURRENCE
OF LCL, GBL, OR
ACTR STATEMENT

ILLEGAL RANGE ON
ISEQ STATEMENT

ILLEGAL NAME FIELD

ILLEGAL STATEMENT
IN COPY CODE OR
SYSTEM MACRO

ILLEGAL STATEMENT
OUTSIDE OF A MACRO
DEFINITION

Explanation
Severity

Code

Self-explanatory, conditional assemblyterminated. 12

Self~explanatory.

Self-explanatory.

Self-explanatory.

The value of a SETC symbol used in the arith­
metic expression is not composed of decimal
digits, or the parameter is not a self-defining
term.

The same keyword operand occurs more than once
in the macro instruction; a keyword is not
defined in a prototype statement; in a mixed
mode macro instruction, more positional
operands are specified than are specified in
the prototype.

Self-explanatory.

See Correction of Dictionary Overflow and
Dictionary Size and Source Statement Complexity.

Self-explanatory.

Exponent too large for length of defining
field, exponent modifier has caused loss
of all significant digits.

LCL, GBL, or ACTR statement is not in proper
place in the program.

8

8

8

8

12

8

12

8

12

8

One or more columns to be sequence checked are be­
tween the "begin" and "end" columns of the statement.

4

Either a statement requires a name and the name
field is blank or a statement has a name which
should be blank or a name entry required to be
a sequence symbol is not a sequence symbol.

A statement brought in by a COPY statement is END,
ICTL, ISEQ, MACRO, MEND, or COPY. A model state­
mend in a system macro definition is END, ICTL,
ISEQ, or PRINT.

Statement allowed only in a macro definition
encountered in OPEN code, e.g., period asterisk
(.*), mnote statement.

8

8

8

Appendix A. Diagnostic Messaqes 29

Code

IIEU076

IEU077

IEU078

IEU079

IEU080

IEU081

IEU082

IEU083

IEU084

IEU085

IEU086

IEU087

IEU088

IEU089

30

SEQUENCE ERROR

ILLEGAL CONTINUATION
CA:RD

INCOMPATIBLE ASSEM­
BLER OPTIONS ON THE
EXECUTE CARD

ILLEGAL STATEMENT
IN MACRO DEFINITION

ILLEGAL START CARD

ILLEGAL FORMAT IN
GBL OR LCL STATE­
MENTS

ILLEGAL DIMENSION
SPECIFICATION IN GBL
OR LCL STATEMENT

SET STATEMENT NAME
FIELD NOT A VARIABLE
SY:'1BOL

ILLEGAL OPERAND FIELD
FORMAT

INVALID SYNTAX IN
EXPRESSION

ILLEGAL USAGE OF
SYSTEM VARIABLE
SY'1BOL

NO ENDING APOSTROPHE

UNDEFINED OPERATION
CODE

INVALID ATTRIBUTE
NOTATIOJ:\.

Explanation
Severity

Code

See "ISEQ--Input Sequence Checking" in the Assem­
bler Language manual.
Either there are too many continuation cards,
or there are non~blanks between the begin and
continue columns on the continuation card, or
a card not intended as continuation was treated
as such because of punch in continue column
of preceding card.
The DOS assembler option has been specified along
with the options LOAD, TEST, RENT, or NOALGN. The
assembler has used the default options NOLOAD,
NOTEST, NORENT or ALGN.
This operation is not allowed within a macro
definition.

Statements affecting or depending upon the
location counter have been encountered before
a START statement.

An operand is not a variable symbol.

Dimension is other than 1 to 2500.

Self-explanatory.

Syntax invalid, e.g., AIF statement operand
does not start with a left parenthesis; operand
of AGO is not a sequence symbol; operand of
PUNCH, TITLE, MNOTE not enclosed in quotes.

Invalid delimiter, too many terms in expression,
too many levels of parentheses, two operators
in succession, two terms in succession, or
illegal character.

A system variable symbol appears in the name
field of a SET statement, is declared in a GBL
or LCL statement, or is an unsubscripted
&SYSLIST in a context other than N'&SYSLIST.

There is an unpaired apostrophe or ampersand in
the statement.

Symbol in operation code field does not
correspond to a valid machine or assembler
operation code or to any operation code in a
macro prototype statement. If the statement
is OPSYN, the operand entry is not a defined
machine or extended operation code, or the
operand entry is omitted and the name entry
is not a defined machine or extended oper­
ation code. If the DOS option is in effect,
DXD and CXD operation codes will be flagged
as undefined. (See "Assembler Options".)

Syntax error inside a macro definition, e.g.,
the argument of the attribute reference is not
a symbolic parameter.

12

8

8

8

8

8

8

8

8

8

8

8

12

8

Code

IEU090

IEU091

IEU092

IEU093

IEU094

IEU095

IEU096

IEU097

IEU09 8

IEU099

Message

INVALID SUBSCRIPT

INVALID SELF-DEFINING
TERM

INVALID FORMAT FOR
VARIABLE SYMBOL

UNBALANCED PAREN~
THESIS OR EXCESSIVE
LEFT PARENTHESES

INVALID OR ILLEGAL
NAME OR OPERATION IN
PROTOTYPE STATEMENT

ENTRY TABLE OVERFLOW

MACRO INSTRUCTION OR
PROTOTYPE OPERAND
EXCEEDS 255 CHARAC­
TERS IN LENGTH

INVALID FORMAT IN
MACRO INSTRUCTION
OPERAND OR PROTOTYPE
PARAMETER

EXCESSIVE NUMBER OF
OPERANDS OR PARAM-:­
ETERS

POSITIONAL MACRO
INSTRUCTION OP~RAND,
PROTOTYPE PARAMETER
OR EXTRA COMMA
FOLLOWS KEYWORD

Severity
Explanation Code

Syntax error, e.g., double subscript where 8
single subscript is required or vice versa;
not right parenthesis after subscript.

Value is too large or is inconsistent with the 8
data type, e.g., severity code greater than 255.

The first character after the ampersand is not 8
alphabetic, or the variable symbol contains
more than 8 characters, or failure to use
double ampersand in TITLE card or character
self-defining term.

End of statement or card encountered before all 8
parenthesis levels are satisfied. May be caused
by embedded blank or other unexpected terminator,
or failure to have a punch in continuation
column.

Name not blank or variable symbol, or variable 12
symbol in name field is subscript~d, or violation
of rules for forming variable symbol (must be-
gin with ampersand (&) followed by 1-7 letters
and/or numbers first of which must be a letter) ,
or statement following 'MACRO' is not a valid
prototype statement.

Number·of ENTRY symbols, i.e., ENTRY instruc- 8
tion operands, exceeds 100.

Self-explanatory. 12

This message can be caused by: 12
1. Illegal "=".
2. A single '' & '' appears somewhere in the

standard value assigned to a prototype
keyword parameter.

3. First character of a prototype parameter
is not "&''.

4~ Prototype parameter is a subscripted
variable symbol.

5. Invalid use of alternate format in proto­
type statement, e.g.,

10
PROTO

or

16 72
&A, &B,

PROTO &A,&B, X
&C

6. Unintelligible prototype parameter, e.g.,
"&A*'' or •·&A& & . "

7. Illegal (non-assembler) character appears
in prototype parameter or macro instruction
operand.

Either the prototype has more than 200 param­
eters, or the macro instruction has more than
200 operands.

Self-explanatory.

12

12

Appendix A. Diagnostic Messages 31

Code

IEUlOO

IEUlOl

IEU102

IEU103

IEU104

IEU105

IEU106

IEU107

IEU108

IEU109

IEUllO

IEUlll

IEU112

IEU116

IEUll 7

32

S~['ATEMENT COMPLEXITY
EXCEEDED

EOD ON SYSIN

INVALID OR ILLEGAL
ICTL

ILLEGAL NAME IN
OPERAND FIELD OF
COPY CARD

COPY CODE NOT FOUND

EOD ON SYSTEM MACRO
LIBRARY

NOT NAME OF DSECT
OR DXD

INVALID OPERAND

PREMATURE EOD

PRECISION LOST

EXPRESSION VALUE
TOO LARGE

SYSGO DD CARD MISSING
NOLOAD OPTION USED

SYSPUNCH DD CARD
MISSING NODECK OPTION
USED

ILLEGAL OPSYN

OPSYN TABLE
OVERFLOW

Severity
Explanation Code

More than 32 operands in a DC, DS, DXD, or 8
literal DC, or more than 50 terms in a statement.

EOD before END card. 12

The operands of the ICTL are out of range, or
the ICTL is not the first statement in the
input deck.

Syntax error, e.g., symbol has more than 8
characters or has an illegal character.

The operand of a COPY statement specified
COPY text which cannot be found in the library.

EOD before MEND card.

Referenced symbol expected to be DSECT name,
but it is not.

Invalid syntax in DC operand, e.g., invalid
hexadecimal character in hexadecimal DC;
operand string too long for X, B, C, DC's;
operand unrecognizable, contains invalid value,
or incorrectly specified.

Indicates an internal assembler error; should
not occur.

Self-explanatory.

Value of expression greater than -16777216 to
+16777215.

Expressions in EQU and ORG statements are
flagged if (1) they include terms previously
defined as negative values, or (2) positive
terms give a result of more than three bytes
in magnitude. The error indication may be
erroneous due to (1) the treatment of negative
values as three-byte positive values, or (2)
the effect of large positive values on the
location counter if a control section begins
with a START statement having an operand greater
than zero, or a control section is divided
into subsections.

Self-explanatory.

Self-explanatory.

An explicit or implicit machine operation,
macro definition, or macro instruction preceded
this statement.

No room exists in symbol table for this and fol­
lowing OPSYN definitions; generated operation
codes may not be processed correctly.

16

12

12

12

8

4

16

8

8

16

16

8

8

Code

IEU997

IEU998

IEU999

Message Explanati<:>~

Severity
Code

SYSPRINT DD CARD Self~explanatory. Printed on console device. 0
MISSING NOLIST OPTION
USED

ASSEMBLY TERMINATED.
MISSING DATA SET FOR
(ddname)

ASSEMBLY TERMINATED,
jobname, stepname,
unit address, device
type, ddname, opera­
tion attempted,
error description

It is printed on SYSPRINT if possible, otherwise
it is printed on the console device.

Indicates a permanent I/O error. This message
is produced by a SYNADAF macro instruction. It is
printed on SYSPRINT if possible, otherwise on the
console device.

20

20

Appendix A. Diagnostic Messages 33

This page intentionally left blank.

4

TEXT (TXT) CARD FORMAT

The format of the TXT cards is as follows:

Columns

1
2-4
5
6-8

9-10
11-12

13-14
15-16
17-72
73-76

77-80

Contents

12-2-9 punch
TXT
Blank
Relative address of
instruction on card
Blank
Byte count -- number
bytes in information
field (cc 17-72)
Blank
ESDID

first

of

5'6-byte information field
Deck ID (from first TITLE
card)
Card sequence number

RLD CARD FORMAT

The format of the RLD card is as follows:

Columns

1
2-4
5-10
11-12

13-16
17-72

17-18
19-20
21
22-24

25-72
73-76

77-80

Contents

12-2-9 punch
RLD
Blank
Data field count -- number
of bytes of information in
data field (cc 17-72)
Blank
Data field:

Relocation ESDID
Position ESDID
Flag byte
Absolute address to be
relocated
Remaining RLD entries

Deck ID (from first TITLE
card)
Card sequence number

If the rightmost bit of the flag byte is
set, the following RLD entry has the
same Relocation ESDID and Position ESDID,
and this information will not be repeated;
if the rightmost bit of the flag byte is
not set, the next RLD entry has a different
Relocation ESDID and/or Position ESDID,
and both ESDIDs will be recorded.

For example, if the RLD Entries 1, 2,
and 3 of the program listing (Appendix C)
contain the following information:

Pos. Rel.
ES DID ES DID Flag Address

Entry 1 02 04 QC 000100
Entry 2 02 Q4 QC 0001Q4
Entry 3 03 01 QC 0008QO

APPENDIX B. OBJECT DECK OUTPUT

Columns 17-36 of the RLD card would ap­
pear as follows:

Entry 1 Entry 2 Entoy 3

Column: 1718192021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37-72

00 04 00 02 OD 00 01 00 oc 00 01 04 00 0 l 00 03 oc 00 08 00

r~ 1~ l~ ""----v--'
ESD ID's ESD ID's blanks

Flag Flag Flag
(set) (not (not

set) set)

ESD CARD FORMAT

The format of the ESD card is as follows:

Columns Contents

1
2-4
5-10
11-12

13-14
15-16

17-64

65-72
73-76

77-80

12-2-9 punch
ESD
Blank
Variable field count -­
number of bytes of informa­
tion in variable field
(cc 17-64)
Blank
ESDID of first SD, XD, CM,
PC, or ER in variable field
Variable field. One to
three 16-byte items of the
following format:
8 bytes Name, padded

1 byte

3 bytes
1 byte

3 bytes

Blank

with blanks
ESD type code
The hex value is:

00 SD
01 LD
02 ER
04 PC
05 CM
06 XD (PR)

Address
Alignment if XD;
otherwise blank
Length, LDID, or
blank

Deck ID (from first TITLE
card)
Card sequence number

END CARD FORMAT

The format of the END card is as follows:

Columns

1
2-4
5
6-8

Contents

12-2-9 punch
END
Blank
Entry address from operand
of END card in source deck
(blank if no operand)

Appendix B. Object Deck Output 35

Page of GC26-3756·-4
Revised June 1, 19/'0
By TNL GN33-8075

9-14
15-16

17-39
40-62

Blank
ESDID of entry point (blank
if no operand)
Blank
Version of the assembler
(e.g., F 14FEB66, time
of the assembly (hh.rnm),
and date of the assembly
(mm/dd/yy) . See
"Assembler List:_ng" sec­
tion.)

TESTRAN (SYM) CARD FORMAT

If requested by the user, the assembler
punches out symbolic information for TES­
TRAN concerning the assembled program.
This output appears ahead of all loader
text. The format of the card images for
TESTRAN output is as follows:

Columns -----

1
2-4
5-10
11-12

13-16
17-72
73-76

Contents

12-2-9 punch
SYM
Blank
Variable field count -­
number of bytes of text in
variable field (cc 17-72)
Blank
Variable field (see below)
Deck ID (from first TITLE
card)

77-80 Card sequence number
'l'he variable field (columns 17-72) con­

tains up to 56 bytes of TESTRAN text. The
i terns makinq the text are packe~d together,
consequently only the last card may con­
tain less than 56 bytes of text in the
variable field. ~rhe formats of a text
card and an individual text item are shown
in Figure 8. The contents of the fields
within an individual entry ar•e as follows:

1. Organization (1 byte)
Bit 0:

36

0 = non-data type
1 = data type

Bits 1-3 (if non-data type):
000 space
001 = control section

2.

3.

Bit 1 (if

Bit 2 (if

Bit 3 (if

Bit 4:

Bits 5-7:

010 dummy control section
011 common
100 instruction
101 ccw
data type):
0 = no multiplicity
1 = multiplicity (indicates

presence of M field)
data type)~
0 = independent (not a

packed or zoned decimal
constant)

1 = cluster (packed or
zoned decimal constant)

data type):
0 = no scaling
l·= scaling (indicates pres­

ence of S field)

0 name present
1 name not present

Length of name minus one
Address (3 bytes) - displacement from
base of control section
Symbol Name (0-8 bytes) symbolic
name of particular item

NOTE: The following fields are only pres­
ent for data-type items.

4. Data Type (1 byte) - contents in hex­
adecimal

00 character
04 hexadecimal
08 binary
10 fixed point, full
14 = fixed point, half
18 = floating point, short
lC = floating point, long
20 A-type or Q-type data
24 Y-type data
28 S-type data
2C V-type data
30 packed decimal
34 zoned decimal
38 L-type data

5. Length (2 bytes for character, hexa­
decimal, or binary items~ 1 byte for
other types) - length of data item
minus 1

6. Multiplicity - M field (3 bytes) -
equals 1 if not present

7. Scale - signed integer - S field (2
bytes) - present only for F, H, E, D,
P and Z type data, and only if scale
is non-zero.

2

12
2
9

4 5 10 ll 12 13 16 17

SYM blank

3

Entry
(complete or
end portion)

6

No.
of

bytes
of

text

2

Org. Address

3

blank

N complete entries
N ~ l

Variable size entries

Symbol Name

0-8

Figure 8. TESTRAN SYM Card Format

TESTRAN text - packed entries

Data

56

Entry
(complete or
head portion)

type Length
Mult.
factor

1-2 3

Scale Org.

2

Appendix B.

Symbol
Name

72 73 76 77

Deck Sequence
ID Number

4 4

Object Deck Output

ao

37

APPENDIX C. ASSEMBLER F PROG:RA.M LISTING

The Assembler F listing shown i:n
this appendix results from assembling
the source program documented in an
appendix to the Assembler Lang·u·~ publi­
cation. For easy reference to the
explanations that appear in the section

"The Assembler Listing," the headings on
the listing are numbered.

Since there were no errors in the
assembly, a diagnostic list was not pro­
duced. Each of the following pages repre­
sents one printer-produced listing page.

EXAM 00 0 0 © EXTERNAL SYMBOL DICTIONARY PAGE 1
SYMBOL TY Pt ID ADU~(LENGTH LO IO 00.16 4/ 1 l/6o

CD
SAMPLR SU 01 000000 0003iil:l

38

0
EXAM

@) @
LU~ ObJECl CUuE

@ @
ADORl ADDR2 STHT

1 **
2 **

PAGE

@ @ @
SOURCE STATEHl:NT F l4FEB66 4/11/66

THIS IS THE EXECUTABLE SAMPLE PROGRAM SHOWN IN THE SRL -
ASSEMBLER LANGUAGE MANUAL.

•
*

Appendix c. Assembler F Program Listing 39

0 (~
t:XAM SA"4PU. PRUGKAM

@) @ @
lLC !JBJbCT COOt: AOOfU AOlJR2

000000

PAGE

@) @ @ @
SHH SOURCE STATEMENT F l4FER66 4/ll/66

'• .
l· •
i' •
f:.,
...

H ..
ll ..
12 ..
u
l" ••
15 ••
16 ••
17
18 ••
19 ••
20 ••
21
ll
23
l"
l.5
26 .rYPEDEH
l.7 • ,.

2b ·'· £9 •••
30 £.rYPE
31 .J~OVE
32 •
33
34
35

36 -·~
37 ·''
38 -~·

PRINT DATA

THIS IS THE MACRO DEFINITION

MACKO
MOVE £.TO,t.FROM

DEFINE SETC SYMBOL

LCLC £.TYPE

CHECK NUMBER OF OPERANDS

Alf (N'£.SYSLIST NE 21.ERRORl

CHECK TYPE ATTRIBUTES OF OPERANDS

AIF
Alf
AIF
Alf
AGO
ANOP

(T'£.TO NE T1 &FROMl.EKROR2
IT'&TO EQ 'C 1 OR T't.TO EQ 'G' OR T1 &TO EQ 'K'l.TYPECGK
IT 1 £.TO EQ 1 0 1 OR T1 &TO EQ 'E' OR T1 &TO EQ 'H').TYPEDEH
(T 1 &TO E~ 'f'l.MOVE
.ERROR3

ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL

SHC T' f.TO
ANOP
NEXT r~o STATEMENTS GENERATED FOR MOVE MACRO
L&TYPE: 2o&FROM
ST&TYPE 2,E;.TO
ME:X IT

CHECK LENGTH ATTRIBUTES Of OPERANDS

39 .IYPECGK Alf (L 1 &TO NE L1 &FROM OR L1 &TO GT 2561.ERROR4
40 * NEXT STATEMENT GENERATED FOR MOVE MACRO
41 MVC &TO,&FROM
42 MEXIT
43 .~·
44 •••
45 •••

ERROR MESSAGES FOR INVALID HOVE MACRO INSTRUCTIONS

@sAMPL002
SAMPL003
SAMPL004
SAMPL005
SAMPL006
SAMPL007
SAMPL008
SAMPL009
SAMPLOlO
SAMPLOll
SAMPL012
SAMPL013
SAMPL014
SAMPL015
SAMPL016
SAMPL017
SAMPL018
SAMPL019
SAMPL020
SAMPL021
SAMPL022
SAMPL023
SAMPL024
SAMPL025
SAMPL026
SAMPL027
SAMPL028
SAMPL029
SAMPL030
SAMPL031
SAMPL032
SAMPL033
SAMPL034
SAMPL035
SAMPL036
SAMPL037
SAMPL038
SAMPL039
SAMPL040
SAMPL04l
SAMPL042
SAMPL043

46 .ERROR!
4"1

MNOH: lr'IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATED' SAMPL044

48 .E.RROR2
J~9

:50 .ERROR3
::ll
,,2 .ERROR4
'>3
')4 •

55 *
56 *
57 SAHPUt
58 BEGIN

MEXIT
MNOH:
MEXIT
HNOTE
MEXIT
MNOH:
MENO

l, 1 0PERANO TYPES DIFFERENT, NO STATEMENTS GENERATE0 1

l, 1 1HPROPER OPERAND TYPES, NO STATEMENTS GENERATED•

l, 1 1MPROPER OPERAND LENGTHS, NO STATEMENTS GENERATED'

MAIN ROUTINE

CSECT
SAVE 114,121.,•

SAMPL045
SAMPL046
SAMPL047
SAMPL04B
SAMPL049
SAMPL050
SAMPL051
SAMPL052
SAMPL053
SAMPL054
SAMPL055
SAMPL056

-----·--·---·-.. ·-.. ·--·---·-------·------·-·----·----------.. ----·--·------------------·----------

40

0 ©
EXAM SAMPLE: PKCJGtlAH

@ @ @
LUC UBJECT COLJE AOORl ADOR2

000000 47FO FOOA
000004 05
000005 C2L5C7C905
OOOOOA 901:L DOOC
000001: 05CO
000010
000010 !>OuO COBB
000014 9857 C390
000000
000018 45t:O C08E
OOOOlC 9180 C08C
000020 4710 COBO
000000

ooocc

OOOOA

ooooc

OOOC8
003AO

OOOCE:

oooco

000024 0200 lOOj !>008 00003 00008

00002A D202 1000 5009 00000 00009

000030 5t20 500C
000034 5020 1004
000038 675'6 C008
00003C 05Ef C240 COFO 00250
0000~2 4770 C07C
OOOO~o D55F C330 ClEO 00340
00004C 4770 C07C

000050
000050 4510 C06C
000054 0027
000056 0000
000058 C1E2E,2C5D4C203C5
000060 U940E2Cl04U703C5
000068 40il70906C709ClD4
000070 40t:2E4C3C3C5E2t2
000078 L6E4D3
000078
00007C
00007C OA23
00007E 5800 COB8

000082 98EC DOOC
000086 41FO 0000
OOOObA 07f-E

00008C
00008C 4510 COAA
000090 0029
000092 0000
000094 C1E2E2C5D4C203C5
00009C D940E2C1D4D7D3C5
OOOOA4 4007D906C7D9C104

ooooc
00004
00018
00100
OOOBC
OOlf 0
ooo8C

0007C

oooc8

ooooc
00000

OOOBA

@) @ @
STHT SOURCE STATEMENT F 14FEB66

59+BEGIN
60+
61+
62+
63
64
65
66
67
68 HORE
69
70
71
72
73+•
74+
75
76+•
77+
78
79+•
80+
81+
82 LISTLOOP
83
84
85
86
87
88+
89+
90+
91+
92+

93+IH60005
94+lH80005A
95+
96 EXIT
97
98+
99+

100+
101 •
102 NOTRlGHT
103+
104+NOTR1GHT
105+
106+
107+

6
DC
DC
STH
6ALR
USING
ST
LH
USING
BAL
TH
80
USING
HOVE
NEXT
HVC
HOVE
NEXT
HVC
HOVE
NEXT
L
ST
BXLE
CLC
BNE
CLC
BNE
WTO
CNOP
8AL
DC
DC
DC

10(0,151 BRANCH AROUND ID
All(5)
CL5 1 8EGIN 1 IDENTIFIER
14,12,12(131 SAVE REGISTERS
Rl2 1 0 ESTABLISH ADDRESSABILITY Of PROGRAM
•rR12 AND TELL THE ASSEMBLER WHAT BASE TO USE
13 1 SAVE13
R5,R7 1 =AILISTAREA,16,LlSTENOl LOAD LIST AREA PARAMETERS
LIST,R5 RE:GISTER 5 POINTS TO THE LIST
R14 1 SEARCH FIND LIST ENTRY IN TABLE
SWITCH,NONE CHECK TO SEE If NAME WAS FOUND
NOTTHERE BRANCH IF NOT
TA6LE 1 Rl REGISTER 1 NOW POINTS TO TABLE ENTRY
TSWITCH,LSWITCH HOVE FUNCTIONS

STATEMENT GENERATED FOR HOVE MACRO
TSWITCH, LSWITCH.
TNUHBER 9 LNUH8ER FROM LIST ENTRY

STATEMENT GENERATED FOR HOVE MACRO
TNUHBER,LNUMBER
TADDRESS 1 LAOORESS TU TABLE ENTRY

TWO STATEMENTS GENERATED FOR HOVE MACRO
2eLADD!tESS
21TAODRESS
R5,R6,HORE LOOP THROUGH THE LIST
TESTTABL(240l,TABLAREA
NOTRIGHT
TESTLIST(96leLISTAREA
NOTRIGHT
1 ASSEHBLER SAMPLE PROGRAM SUCCESSFUL'
0,4
1,IHB0005A BRANCH AROUND MESSAGE
AL2llHB0005-•l MESSAGE LENGTH
AL2l0l
C'ASSEMBLER SAMPLE PROGRAM SUCCESSFUL' MESSAGE

EQU •
OS OH
SVC 35 ISSUE SVC
L R13,SAVE13
RETURN 114,12),RC=O
LH 14 1 12,12(13) RESTORE THE REGISTERS
LA 15,0(0,0) LOAD RETURN CODE
BR 14 RETURN

WTO 1 ASSEHBLER SAMPLE PROGRAM UNSUCCESSFUL'
CNOP 0,4
BAL lelHB0007A BRANCH AROUND MESSAGE
DC AL2(1HB0007-•l MESSAGE LENGTH
DC AL2C0)
DC C'ASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL' MESSAGE

0
PAGE

®
4/11/66

@
SAHPL057
SAHPL058
SAMPL059
SA"IPL060
SAMPL061
SAHPL062
SAHPL063
SAMPL064
SAHPL065
SAHPL066

SAMPL067

SAMPL068

SAMPL069
SAMPL070
SAHPL071
SAHPL072
SAMPL073
SAMPL074

SAMPL075
SAHPL076

SAMPL077
SAMPL078

Appendix c. Assembler F Program Listing 41

42

0 (i)
EXAM SAMPLIJ PR06RAM

@ ~D @
LtJC OB.Jc(. r (.UUE AODRl AOOR2

OOOOAC 40c4D~c2c4C3C.JC5
0000b4 t2c2C6t4P~
000089
OOOOl:IA
OOOOtlA OA23
OOOOBC <t 71-0 C06E
ooooco 9680 5008
OOOOC.4 41fC C02tl
OOOOCt1 00000000
oooocc. 00
000080

00

00008

oooc.c

0007E

00038

003AC
OOOfO
COOOl

ooooc.c;
OOOOCE
000002
000000
OOOOOA
OOOOOt:
ooooc4
0000t:8

9471" COdC
9813 C39C.
4111 COEO
8030 000 l
0507 ,000
4720 COE4
078c

1008 00000 00008
OOOf 4

OOOOEA
OOOOt:l.
OOOOfO
0000f4
OOOOfb
OOOOfA
OOOOH

000100
000100
000108
000110
OOOlltl
000120
000128
000130
000138
000140
000148
0001,0
000158
000160
000168
000170
000118
000180
000188
000190
000198
OOOlAO

1813
4620 COCA
47f0 COEA
1Al3
462C COCA
9C>80 CO&C
07H

ooocc

OOOOOvClOOOOOOOOO
C 1030 lC.8Cl 40404 0
OOOOOOClOOOOOOOOO
C.2l.5E3C.l40404040
eoooocooooouoooo
C4C.503E3Cl404040
OOOOOCCIOOOOOOOOO
C~D7E2C903U60540

0000000000000000
C5i:3C H04040404()
0000000000000000
C 7Cl04D4Cl404040
0000000000000000
C906E3Cl404C4040
0000000000000000
D2Cl0707Cl404040
0000000000000000
D3Ll04C2C4Cl4040
0000000000000000
04E4404040404040
OCOOOOOOOOOOOOOCl

OOODA
OOOfA

OOOOA

@ @
SOURCE STATEMENT f l4FEB66

108-+lHB0007 EQU
l09-+l.H1:10007A OS
110-+ SVC
11.l ti
114! NlJTTHt:RE lJ I
11] B
ll'1 SAVE13 DC
11~; SWITCH OC
llt• l'<UNE EQU
11 j' •

•
OH
35 ISSUE SVC
E:XIT
LSWITCH,NONE
UST LOOP
f 1 0'
x•oo•
x•ao•

TURN ON SWITCH IN LIST ENTRY
GO BACK ANO LOOP

llU *
11<;1 •

BINARY SEARCH ROUTINE

12(1
121
122
123
124
125
126
127

Sl:ARCH

LOOP

NI
LM
LA
SRL
ClC
BH
BCR
SR

128 BCT
129 8
130 HIGHER AR
131 BCT
132 l'WTFOUNO 01
133 BR

SWITCH,255-NONE TURN Off NOT fOUNO SWITCH
Rl 1 R3,:f 1 1280 4,128 1 LOAD TABLE PARAMETERS
RlrTABlAREA-l61Rl) GET ADDRESS Of MIDDLE ENTRY
R3,l DIVIDE INCRcHENT BY 2
LNAHE,TNAHE COMPARE LIST ENTRY WITH TABLE
HlbHER BRANCH If SHOULD BE HIGHER IN
8rR14 EXIT If FOUND
Rl,R3 OTHERWISE IT JS LOWER IN THE

R2,LOOP
NUTfOUND
Rl ,R3
R2,LOOP
SWITCH, NONE
Rl4

SO SUBTRACT INCREMENT
LOOP 4 TIMES
ARGUMENT IS NOT IN THE TABLE
ADD INCREMENT
LOOP 4 TIMES
TURN ON NOT FOUND SWITCH
EXIT

134 •
135 •
136 •

THIS IS THE TABLE

137 OS
138 T'~BLAREA DC

139 DC

140 DC

141 DC

142 DC

143 DC

144 DC

145 DC

146 DC

147 DC

148 DC

OD
XL8'0 1 ,CL8 1 ALPHA 1

XLB'0',Cl8 1 BETA'

XL8'0',CL8 1 DELTA 1

Xl8'0 1 ,CL8 1 EPSILON 1

XL8 1 0 1 ,Cl8 1 ETA 1

Xl8 1 0 1 ,Cl8 1 GAMMA 1

Xl8 1 0',Cl8 1 10TA'

Xl8 1 0 1 ,Cl8 1 KAPPA'

XL8 1 0 1 ,Cl8 1 LAMBDA 1

XL8 1 0 1 ,CL8 1 NU 1

ENTRY
TABLE:

TABLE

®
PAGE 4

@
4111/66

@
SAMPL079
SAMPL080
SAMPL081
SAMPL082
SAMPL083
SAMPL084
SAMPL085
SAMPL086
SAMPL067

SAMPL088
SAMPLOB9
SAMPL090
SM4PL091
SAMPL092
SAMPL093
SAMPL094

XSAMPL095
SAMPL096
SAMPL097
SAMPL098
SAMPL099
SAMPL 100
SAMPllOl
SAMPL102
SAHPL103
SAMPll04
SAMPL105
SAMPL106
SAHPL107

SAMPL108

SAMPL109

SAHPlllO

SAHPLlll

SAMPL112

SAHPll 13

SAMPll 14

SAHPll 15

SAMPLl 16

SAMPLll 7

0 © ©
EXAM SAMPLE PkUGRAM PAGE 5

@) @ @ @ ® ® @
LGC UtlJECT CuOE AUDRl AOOR2 STMT SOURCE: STATEMENT F 14FEB66 4/11/66

0001A8 D5t4404040404040 @
OOOliW 0000000000000000 149 DC Xl8 1 0 1 ,CL8 1 0MICRON 1 SAMPLl 18
000lil8 U6U4C9C3D9Dou540
OOOlC.O 0000000000000000 150 DC XL8 1 0 1 ,CL8 1 PHI' SAHPL119
0001(.1:1 DlC8C94040404040
000100 0000000000000000 15,1 DC Xl8'0',Cl8 1 SIGMA 1 SAMPL120
OOOlDb t2C9C704C.1404040
OOOHO 0000000000000000 152 DC XL8 1 0',Cl8 1 ZETA 1 SAMPL121
OOOH.o tYL.5t3Cl40404040

153 * SAMPL122
154 * THIS IS THE LI ST SAMPL123
155 * SAHPL124

OOOlfO 03ClD4C2C4C.14040 156 LISTAREA DC CL8 1 LAMSDA 1 ,X 1 0A 1 ,FL3 1 29 1 ,AIBEGIN) SAMPL125
OOOlfd OAOOOOlDOOOOOOOO
000200 t 9C. 5E 3C l't0404040 157 DC CL8 1 ZETA•,x•o5•,FL3 1 5 1 ,AILOOP) SAMPL126
0002Ql:I 05000005000000DA
000210 t.3C.6C5f3C.1404040 158 DC CL8 1 THETA 1 ,x•o2•,FL3 1 45 1 ,AIBEGIN) SAMPL127
000218 o.wooo2000000000
000220 E..:IC.lt44040404040 159 DC Cl8 1 TAU•,x•oo•,Ft3•o•,A(l) SAMPL128
000.0!28 OCOOOOOOOOOOOOOl
000230 DJC.~E2E340404040 160 DC Cl8 1 LIST 1 1X1lf 1 1fl3 1 465 11AIOI SAHPL129
000231> lfOOClDlOOOOOOOO
OIJ0240 C.1U307C.l>C.l404040 161 LIS TEND DC CL8 1 AlPHA•,x•oo•,FL3'1 1 tAC123) SAMPL130
000248 0000000100000078

162 * SAMPL131
163 * THIS IS THE CONTROL TABLE SAHPL132
164 * SAMPL133

000250 165 OS OD SAMPLl.34
000250 0000010000000078 166 TESTTABL D(. Fl3 1 l 1 tX 1 00 1 ,Al123),Cl8 1 ALPHA' SAMPL135
000258 C 103D7C8Cl404040
000260 0000000000000000 167 oc Xl8 1 0 1 tCl8 1 8ETA 1 SAMPL136
000268 C2~5E3Cl404G4040
000270 ooooeooooooooooo 168 DC Xl8 1 0 1 ,CL8 1 DELTA 1 SAMPL137
00027b C4C.~D3t3Cl404040
000280 OCOOOGOOOOOOOODO 169 DC XL8 1 0 1 ,CL8'EPSILON 1 SAMPL138
00021:11> C5D7t2C.903060540
000290 0000000000000000 170 DC Xl8'0' tCL8 1 ETA 1 SAMPL139
000298 C.~t3Cl4040404040
0002AO 0000000000000000 171 DC Xl8 1 0 1 ,Cl8 1 GAHHA 1 SAMPLL40
0002A8 C7C.10404Cl404040
000260 OCOOOG00000-00000 172 DC Xl8 1 0 1 1Cl8' IOTA' SAMPL141
000.lBb C9u6E3Cl40404040
0002C.O 0000000000000000 173 DC Xl8'0 1 1CL8 1 KAPPA' SAMPL142
0002Ctl D2C.10707Cl404040
000200 OOOOlOOAOOOOOOOO 174 DC Fl3 1 29 1 ,X 1 0A 1 1Al8EGINl 1CL81LAHBDA 1 SAMPL143
000208 03C.104C2C4Cl4040
0002EO 0-000000000000000 175 DC XL8 1 0 1 tCL8 1 MU• SAMPL144
0002t8 04b4404040404040
0002FO 0000000000000000 176 DC Xl8 1 0 1 ,Cl8 1 NU 1 SAMPL145
0002f8 D5t.4404040404040
000300 0000000000000000 177 DC Xl8 1 0 1 tCl8 1 0HICRON 1 SAHPL146
000308 06D4C9C3D9060540
000310 OCiOOOOOOOOOOOOOO 178 DC Xl8 1 0'1Cl8 1 PHl 1 SAMPL147
000318 07C.8C94040404040

Xli~o•,CL8 1 SIGHA 1 000320 0000000000000000 179 DC SAMPL148

Appendix c. Assembler F Program Listing 43

0 (!) CV
E.itAM SAMPl E: PRUGkM4 PAGE 6

@) @ @ @ @ @ @
LUC OBJECT CUOt AODRl AODR2 STMf SOURCE STATEMENT F 14FEB66 4/11/66

000328 t2C9C 1'D4Cl4040"t0 @
U00330 OOOU05G5000000DA HiO DC FL3 15 1 1X'05 1 1A(LOOPl1CL8 1ZETA 1 SAMPL149
0003JCl E9C5C3C!404040ltO

18 l ~· SAMPLL50
u1;~ * THIS IS THE CONTROL LIST SAMPll 51
18.~ * SAMPL152

000340 03Cl04L..!C4Cl4040 l8•t TESTLIST DC Ll8 1 LAMBOA 1 1X10A 1 1FL3 1 29'1AIBEGINI SAMPL153
00034b OAOOOClOOOOOOOOO
0003!10 E9L5t3Cl404C4040 18!) DC CL8 1 ZETA 1 ,X 105 1 ,FL3 1 5 1 1AILOOPl SAMPLL 54
00035b 05000005000000DA
O<l0)60 t3C8C5E3C.l't040lt0 ltll> DC CL8 1 THETA 1 1X 1 82 1 1FL3 145 1 1AIBEGJN) SAMPL155
000308 d2000C2000000000
000370 UCU:4404C404040 181 DC CL8 1 TAU 1 ,X1 80 1 ,FL3 1 0 1 ,A(l) SAMPL156
00037& 8(;0-0000000000001
000380 03C9E:..!EJ404040•t0 188 DC CL8 1LIST 1 ,X 19f 1 ,FL3 1465 1 ,A(0) SAMPL157
000388 9fO-OC!llD100000000
000390 CHJ301C8C 1404040 189 UC CL8 1ALPHA 1,x100•,FL3 11 1 1All23l SAMPLL58
00039& 0000000l0000UU7B

190 ,., SAMPL159
l 9ii. ., THESE ARE THE SYMBOLIC REGISTERS SAMPL160
in .,

SAMPL161
000000 19] RO EQU 0 SAMPL162
000001 l9<t Rl EQU 1 SAMPL163
000002 19!) t<.2 tQU 2 SAMPL164
000003 l9b R3 Et;iU 3 SAMPL165
000005 19<1 R5 EQU 5 SAMPL166
000000 l9U Ro EQU 6 SAMPL167
000007 199 R7 EQU 7 SAMPLL68
oooooc 200 Rl2 EQU 12 SAMPL169
000000 201. IU3 EUU 13 SAMPll 70
OOOOOt 20<! lol.14 EQU 14 SAMPll 71
OOOOOF 203 Rl5 EQU 15 SAMPll 72

20~.
,., SAMPll 73

205 .. THIS JS THE: FORMAT DEFINITION OF LIST ENTRYS SAMPll 74
20<• .. SAMPL175

000000 20i' LIST DSECT SAMPll 76
000000 20U LNAME DS CL8 SAMPL177
000008 209 LSWITCH DS c SAMPLL 78
000009 210 LNUMBER OS fl3 SAMPL179
oooooc .£11. LAOORtSS OS F SAMPL180

21.i'. • SAMPll 81
213 • THIS JS THE FORMAT DEFINITION OF TABLE ENTRYS SAMPLL82
214 • SAMPLL83

oouooo 21!• TABLE DSECT SAMPL184
000000 2llt TNW48E:lol. OS FL.3 SAMPL185
000003 217 TSWITCH DS c SAMPL186
000004 2HI TAODRtSS OS F SAMPLL87
000008 £19 TNAME OS CL8 SAMPL188
000000 22(1 ENO BEGIN SAMPL189
000000
0003AO
0003AO
0003AO OOOOOlFO 221 =AllJSTAREA,16ollSTENOl
0003A4 0000008000000004 2.2.2" =F 1 12814.128 1
0003AC 00000080

44

0 G)
tXAM RELOCATION DICTIONARY PAGE

@ @ ® @ @
Pus.HJ REL.ID FLAG.S AOORl:SS 4/11/66

01 01 UC OOO!FC
ul 01 oc ooozoc
01 01 oc 00021C
01 01 oc 000204
01 01 oc 000334
01 01 oc 00034(.
01 01 oc 00035(.
01 01 oc 00036C
01 01 oc 0003AO

Appendix c. Assembler F Program Listing 45

(7) 0
£XM (;ROSS-REFIERE:NCE PAGE

® @ @ @ ® @
S'/Mbl.il U:h VALUE UHN REFERENCES 4/11/66

6l:GIN 0-000•f 000000 0059 0156 0158 0174 0184 011:16 0220
t:XIT OOOO•f 000071: 0096 0111
HlGHEk 000().2 000Cf4 0130 0125
1Hb0005 00001 OOOG76 0093 0090
IH60005A OOOC.2 00007C 0094 0089
1Htl0007 QOOOl 000069 0108 0105
JHl:I0007A 0()00,2 OOOOtlA 0109 0104
LADORl::SS OOOO•'t oooooc 0211 0080
UST OOOOL 000000 0207 0067
USTARt:A OOOC·B OOOlfO 0156 0066 00/i.5 0221
LISTENIJ oooc.!i 000240 0161 0066 0221
USTUJOP OOOO·'t 000038 0082 0113
lNAMt 0000.s 000000 0208 0124
l.NUM6t:R 00003 000009 0210 0077
LOOP OOOO·'t OOOOOA 0123 0128 OBJ 0157 0180 0185
l.Sld TCH 00001 000008 0209 0074 0112
MORE OOelO·lt 000018 0068 0082
NONE 00001 000080 0116 0069 0112 0120 0132
NOTf UUNIJ OOOO·lt OOOOFA 0132 0129
NLTKHiHT OOOO·lt OOOOBC 0104 008't 0086
NUJTHEIU: OVOC·lt ooooco 0112 0070
RO 00001 000000 0193
Rl 0-0001 000001 0194 0011 0121 0122 0122 0127 0130
IUL 00001 oooooc 0200 0063 0064
RU 00001 000000 0201 0096
IU4 00001 OOOOOE 0202 0068 01;1:6 0133
Rl5 00001 OOOOOf 0203
R2 00001 000002 0195 0128 0131
R3 00001 000003 0196 0121 Ola 0127 0130
R5 00001 000005 0197 0066 OOt17 0082
R6 OQOGl 000006 0198 0082
Rl 0-0001 000007 0199 0066
SAMPLR 00001 000000 0057 0220
SAVE13 OOOC't ooooca Oll't 0065 0096
.St:AKCH OOOC4 OOOOCE 0120 0068
.SWITCH 00001 ooooc.c 0115 0069 01;;:o 0132
TABLAREA OOOCB 000100 0138 0083 01.<'.2
TAtilE 00001 000000 0215 0071
TAOORl::SS 00004 000004 0218 0081
HSTU.ST 0-0008 000340 0184 0085
Tt:!>TTAbl 0-0003 000250 0166 0083
TNAMI: OOOOtl 000008 0219 0124
TfllUMbER 00003 000000 0216 0077
ISllll TCH 00001 000003 0217 0074

fllO STATl::ME:f'lVi FLAGGED IN THIS ASS E.MBL 'f
STATISTIC'.:> SUURCE HECORDS (SYS IN I = 225 SJURCE RECJROS ISYSLIBI = 40
Ol'TIUNS IN t:FFECT LIST, NO DECK, NULOAO, 'ORE'IT, XRE.F, NUTf ST, ALC,N, us, LINE:NT 58

351 PRI l\lTEO LINES

46

APPENDIX D. DYNAMIC INVOCATION OF THE ASSEMBLER

The Assembler can be invoked by a problem
program at execution time through the use
of the CALL, LINK, XCTL, or ATTACH macro
instructions. Ii the XCTL macro instruction
is used to invoke the Assembler, then no
user options may be stated. The Assembler
will use the standard default, as set during
system generation, for each option.

If the Assembler is invoked by CALL, LINK,
or ATTACH, the user may supply:

1) The Assembler options
2) The ddnames of the data sets to be used

during processing

Name Operation Operand

[symbol] CALL IEUASM, (optionlist

[,ddnamelist]), VL

rNK }
EP=IEUASM,

ATTACH PARAM=(optionlist

[,ddnamelist]), VL=l

EP - specifies the symbolic name of the
Assembler. The entry point at whibh
execution is to begin is determined by
the control program (from the library
directory entry) .

PARAM - specifies, as a sublist, address
parameters to be passed from the prob­
lem program to the Assembler. The
first word in the address parameter
list contains the address of the option
list. The second word contains the
address of the ddname list.

optionlist - specifies the address of a
variable length list containing the
options. This address must be written
even if no option list is provided.

The option list must begin on a
halfword boundary. The first two
bytes contain a count of the number of
bytes in the remainder of the list.
If no options are specified, the count
must be zero. The option list is free
form with each field separated by a
comma. No blanks or zeros should
appear in the list.

ddnamelist - specifies the address of a
variable length list containing al­
ternate ddnames for the data sets used
during compiler processing. If stand­
ard ddnames are used then this operand
may be omitted.

The ddname list must begin on a
halfword boundary. The first two
bytes contain a count of the number of
bytes in the remainder of the list.
Each name of less than eight bytes
must be left-justified and padded with
blanks. If an alternate ddname is
omitted, the standard name will be
assumed. If the name is omitted
within the list, the 8-byte entry must
contain binary zeros. Names can be
omitted from the end merely by shorten­
ing the list. The sequence of the 8-
byte entries in the ddname list is as
follows:

Entry Alternate Name

1 not applicable
2 not applicable
3 not applicable
4 SYS LIB
5 SYS IN
6 SYS PRINT
7 SYS PUNCH
8 SYSUTl
9 SYSUT2

10 SYSUT3
11 SYS GO

VL - specifies that the sign bit is to be
set to 1 in the last word of the
address parameter list.

Appendix D. Dynamic Invocation of the Assembler 47

This page intentionally left blan~.

48

Page of GC26-3756-4

Revised June 1, 1970
By TNL GN33-8075

INDEX

Indexes to systems reference library manuals are consolidated in the publication IBM System/360 Operating System

Systems Reference Library Master Index, Order No. GC28-6644, For additional information about any subject

listed below, refer to other publications listed for the same subject in the Master Index.

Access methods 3
BPAM (basic partitioned) 3
BSAM (basic sequential) 3
QSAM (queued sequential) 3

ASMFC, cataloged procedure for assembly 6
ASMFCG, cataloged procedure for assembly

and loader-execution 9
ASMFCL, cataloged procedure for assembly

and linkage editing 7
ASMFCLG, cataloged procedure for assembly,

linkage editing, and execution 8
Assembler cataloged procedures 6
Assembler data sets 2
Assembler dynamic invocation 47
Assembler listing 11

(see also program listing)
cross reference 14
diagnostics 15
external symbol dictionary 11
relocation dictionary 14
source and object program 13
statistical messages 11

Assembler options 2
default entry 2

Assembler portion limitations 21

Blocking and buffering information 5
BPAM (Basic Partitioned Access Method) 3
BSAM (Basic Sequential Access Method) 3

Cataloged procedures 6
for assembling (ASMFC) 6
for assembling and linkage editing

(ASMFCL) 7
for assembling, linkage editing, and
execution (ASMFCLG) 8

for assembling and loader-execution
(ASMFCG) 9

overriding 9
COND~ parameter 5, 7-9
Cross reference listing 14

Data support of unaligned 23
Data constants, Type L 23
Data sets 2-5

SYSGO 2,3
SYSIN 2,3
SYSLIB 2,3
SYSPRINT 2,3
SYSPUNCH 2,3
SYSUTl, SYSUT2, SYSUT3 2,3

DCB macro instruction 3
DD statements 9
ddnames 3
Default entry 2
Defining data set characteristics 3
Device naming conventions (Table 3) 6

Diagnostics
listing 15
messages 25-33

Dictionaries 18-20
additional requirements 20
global 18-20
local 18-20
overflow errors 20

Dictionary size and source statement
complexity 17

Dynamic invocation of the assembler
(Appendix D) 47

END card format 35
ESD card format 35
EXEC statements 9
External Symbol Dictionary (ESD)
listing 11

Global dictionary
at collection time 19
at generation time 19

IEBUPDAT utility program 17

Job control statements 1
Job steps 1

Linkage statements (Figure 5) 18
Listing, assembler 11
Load module modification - entry point
restatement 17

Loader-execution, ASMFCG cataloged
procedure 9

Local dictionary
at collection time 19
at generation time 20

Macro-definition library additions 16
Macro-definition local definition para­

meter table (Table 9) 20
Macro generation and conditional assembly

limitations 21
Messages

diagnostic 25-33
statistical 11

Model 85 Programming Considerations
extended precision machine
instructions 22

OPSYN instruction 22
Type L constant 23
unaligned data 23

Model 91 Programminq Considerations
Model 195 Programming Considerations

Object deck output
END card 35
ESD card 35

35-38

22,23

21
23

Index 49

Object deck output (continued)
RLD card 35
TESTRAN SYM card 36
TEXT (TXT) card 35

Object module linkage 17
OPSYN - operation code equate
instruction 22

Options, assembler 2
default entry 2

Overflow
dictionary 20
symbol table 21

Overriding statements in cataloged
procedures 9

PARM field access 16
PARM parameter 2,9
Procedure (definition) 1
Program listing, assembler F
Program termination 16

38-46

QSAM (Queuedl Sequential Access Method)

Relocation Dictionary listing 14
Return codes 5
RLD card format 31

50

3

Sample program listing 38-46
Saving and restoring general register
contents 16

Severity code
for diagnostic messages
relation to return code

Source and object program
listing 13

:25-33
.5

Source statement complexity 21
SPACE assembler instruction 11
Statistical messages 11
Symbol table, overflow 21
SYSGO 3
SYSIN 2,3
SYSLIB 2,3
SYSPRINT 2,3
SYSPUNCH 2,3
SYSUTl,2,3 2,3

TESTRAN (SYM) Card format 36
TEXT (TXT) card format 35
Type designators 11
Type L data constants 23
Types of ESD entries (Table 4) 11

Unaligned data, support of 23
Utility data sets 2,3

This page intentionally left blank.

5]

GC26-3756-4

International Busi:ness Machines Corporaticm
Data Processing D:ivision
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations; Plaza, New York, New York 10017
f International]

READER'S COMMENT FORM

IBM System/360 Operating System
Assembler [F] Programmer's Guide

GC26-37564

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires quali:flcation,

please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes

• Does this publication meet your needs? D
• Did you :find the material:

Easy to read and understand? D
Organized for convenient use? D
Complete? D
Well illustrated? D
Written for your technical level? D

No

D

D
D
D
D
D

• \Vhat is your occupation? --------------------------
• How do you use this publication?

As an introduction to the subject? D As an instructor in a class? D
For advanced knowledge of the subject? D As a student in a class? D
For information about operating procedures? D As a reference manual? D

Other--------------------------------~
• Please give speci:flc page and line references with your comments when appropriate.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

G C26-3756-4

YOUR COMMENTS, PLEASE

This publication is one of a series which serves as reference sources for systems analysts,

programmers and operato:rs of IBM systems. Your answers to the questions on the back of
this form together with your comments, will help us produce better publications for your
use. Each reply will be c:arefully reviewed by the persons responsible for writing and pub­
lishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving

your locality.

fold

Attention: Dept. 813

[
BUSINESS REPLY MAIL

NO POSTAGE S"T"AMP NECESSARY IF MAILED IN U.S. A.

-
PC>STAGE WILL BE PAID BY ...

I BM Corporation

1!1 :2 East Post Road

White Plains, N. Y. 10601

FIRST CLASS

PERMIT NO. 2078

SAN JOSE, CALIF.

fold

I --1
fold

®

International Bu::iiness Machines Corporation
Data Processing Division
112 East Past Raa1d 1 White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, NewYark, NewYairk 10017
[International]

fold

