File No. S360-21
order No. GC26-3756-4 [[J§

Systems Reference Library

IBM System/360 Operating System
Assembler [F] Programmer's Guide

Program Number 360S-AS-037

This publication complements the IBM System/360
Operating System Assembler Language publications.
It provides a guide to program assembling, linkage
editing, executing, interpreting listings, assem—
bler programming considerations, diagnostic
messages, and object output cards.

Information in this manual on IBM System/360
Model 195 should be used for planning purposes
only.

Page of GC26-3756~4
Revised June 1, 1970
By TNL GN33-8075

PREFACE

This publication is oriented to the F level

assembler program (the assembler) function-

ing in the IBM System/360 Operating System

(Primary Control Program, MFT, and MVT).
This publication is divided into an

introduction and four sections which de-

scribe the following:

1. Assembler options and data set require-

ments.

Use of IBM-provided cataloged procedures

for assembling; assembling and linkage

editing; assembling, linkage editing,

executing assembler language source

programs.

Use and interpretation of the assembler

listing.

Programming considerations.

2.

and

3.
4.

In addition, the appendixes provide a pro-
cedure for dynamic invocation of the assem-
bly, a list and explanation of object out-
put cards, and a sample program listing.
Other System Reference Library publica-
tions in the IBM System/360 Operating
System series provide fuller, more detailed
discussions of the topics introduced in this
publication: a careful reading of the
publication IBM System/360 Operating System:

IBM System/360 Operating System: Linkage
Editor and Loader, Order No. GC28-6538

IBM System/360 Operating System:
Supervisor and Data Management Services,
Order No. GC28-6646

IBM System/360 Operating System:

Supervisor and Data Management Macro
Instructions, Order No. GC28-6647

IBM System/360 Operating System:
Order No. GC28-6648

TESTRAN,

IBM System/360 Operating System:
Messages and Codes, Order No. GC28-6631

IBM System/360 Operating System:
Assembler Language, Order No. GC28-6514

IBM System/360 Operating System:
Utilities, Order No. GC28~6586

IBM System/360 Operating System: FORTRAN
IV (E), Library Subprograms, Order No.
GC28-6596

IBM System/360 Operating System: System

Concepts and Facilities, Order No. GC28-6535,
is recommended. Knowledge of the assembler
language is assumed. Where appropriate, the
reader is directed to the following publica-
tions:

IBM System/360 Operating System: Job
Control Language Reference, Order No.
GC28-6704

IBM System/360 Operating System:
Estimates, Order No. GC28-6551

Storage

IBM System/360 Operating System: Job
Control Language User s Guide, Order No
GC28-6703

Fifth Edition (July, 1969)

This edition corresponds to Release 18 of the IBM System /360 Operating System.

Programmer s Guide, Order No. GC28-6550

IBM System/360 Operating System: FORTRAN
IV (E) Programmer” s Guide, Order No.
GC28-6603

IBM System/360 Operating System: COBOL
(E) Programmer” s Guide, Order No.
GC24-5029

References to these publications are
usually by a short title, e.g., Linkage
Editor or Data Management Services.

It is a major revision

of, and obsoletes, GC26-3756-3. The major changes are addition of System/360 Model 85 programming

information and a cataloged procedure for the Loader.

Other changes are a new PARM field option (OS/DOS),

increase in maximum Set symbol dimension, cataloged procedure support for dedicated work files, and new assembler

statistics, Also, there are several editorial changes.
next to the page mumber.

An extensively modified page is denoted by the symbol e

Specifications contained herein are subject to change from time to time. Any such changes will be reported

in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM Branch Office

serving your locality,

A form is provided at the back of this publication for reader’s comments.

If the form has been removed,

address comments to IBM Nordic Laboratory, Technical Communications, Box 962, S$-181 09 Lidingd 9, Sweden.

©Copyright International Business Machines Corporation:1966, 1968, 1969

. File Number S360-21
IBM Technical Newsletter
® . Re: Order No. GC26-3756-4

This Newsletter No. GN33-8075
Date June l] 1970

Previous Newsletter Nos. None

IBM SYSTEM/360 OPERATING SYSTEM
ASSEMBLER (F) PROGRAMMER'S GUIDE

This Technical Newsletter, a part of release 19 of IBM System/360
Operating System, provides replacement pages for IBM System/360
Operating System Assembler (F) Programmer's Guide (Order No.
GC26-3756~-4) . These replacement pages remain in effect for sub-
sequent releases unless specifically altered. Pages to be inserted
and/or removed are listed below.

Front Cover,ii
1-10
15,16
21-28
35,36
49,50

A change to the text or a small change to an illustration is indi-
cated by a vertical line to the left of the change; a changed or
added illustration is denoted by the symbol e to the left of the
caption.

Summary of Amendments

® Inclusion of information on Model 195 support.

Data type designation for the L-type data constant in the
TESTRAN card.

® Minor technical corrections and editorial changes.

File this cover letter at the back of the manual to provide a
record of changes.

IBM Nordic Laboratory, Technical Commaunications, Box 962, Lidingd 9, Sweden

PRINTED IN U.S.A.

INTRODUCTION &+ o ©« « o o o o + o o« =«

ASSEMBLER OPTIONS AND DATA SET
REQUIREMENTS . .« ¢ ¢ « o o o o &

Assembler Options

Default Entry e s e e o e s e e s

Assembler Data Set Requirements . .
Ddname SYSUT1l, SYSUT2, SYSUT3 . .
Ddname SYSIN .« & o o o o o o o &
Ddname SYSLIB &« &+ o o o o s o o &
Ddname SYSPRINT
Ddname SYSPUNCH + +« + .
Ddname SYSGO . . . e e e e e e

Defining Data Set Characterlstlcs .

Return Codes . . & v o o o o o o « &

CATALOGED PROCEDURES
Cataloged Procedure for Assembly
(ASMFC)
Cataloged Procedure for Assembly and
Linkage Editing (ASMFCL)
Cataloged Procedure for Assembly,
Linkage-Editing, and Execution
(ASMFCLG)
Cataloged Procedure for Assembly
and Loader Execution (ASMFCG) . .
Overriding Statements in Cataloged
Procedures . . e e e 4 e e s s .
EXEC Statements o v e e e e e e
DD Statements « .+ . . .
Examples . . ¢« ¢« ¢« ¢« « o s e e .

ASSEMBLER LISTING . « &« « « « « « &
External Symbol Dictionary .
Source and Object Program
Relocation Dictionary
Cross Reference + « + . . .
Diagnostics .+ « ¢ & & & ¢ & o 4 . .

PROGRAMMING CONSIDERATIONS
Saving and Restoring General
Register Contents o e e e e e e
Program Termination
PARM Field Access + « + . .

wwwwwwwh v N

16
16
16

|

iii

CONTENTS

Macro Definition Library Additions .
Load Module Modification - Entry

Point Restatement
Object Module Linkage . + + + + . . .
Dictionary Size and Source Statement

Complexity . . + . . + + o o o « o .

Dictionaries Used in Conditional
Assembly and Macro Instruction
Expansion

Global chtlonary at Collectlon

TiMEe v v v v 4 v ¢ v e e e e e .
Local Dictionaries at Collection
Time . . v & 4 v v v e e e e .
Global Dictionary at Generation
Time . . + v v v 4 4 e e e e . .
Local Dictionaries at Generation
Time .+ & & v ¢ v v 4 e e e e e

Additional Dictionary Requirements
Correction of Dictionary Overflow.
Symbol Table Overflow
Source Statement Complexity . .
Macro Generation and Condltlonal
Assembly Limitation
Assembler Portion Limitations . .
Model 91 Programming Considerations .
Controlling Instruction Execution
Sequence. . . ¢ . . 4 e s e e . .
Model 85 Programming Considerations .
Extended-Precision Machine
Instructions.
OPSYN--Operation Code Equate
Instruction . . e s e o .
Support of Unallgned Data. .
Type L Data Constant . . .

APPENDIX A. DIAGNOSTIC MESSAGES . .

APPENDIX B. OBJECT DECK OUTPUT

APPENDIX C. ASSEMBLER F PROGRAM
LISTING. « v o o o + .« .
APPENDIX D. DYNAMIC INVOCATION OF

THE ASSEMBLER

INDEX « . ¢ & o & o o o o« o o o o o @

.16

.17
.17

.17

.18
.19
.19
.19
.20
.20
.20
.21
.21
.21
.21
.21

.22
.22

.22
.22
.23
.23
.25

.35

.38

.47

.49

ILLUSTRATIONS

Flgures

Cataloged Procedures for Assembly
(ASMFC) . . . « . « . .

2. Cataloged Procedure for Assembllng
and Linkage Editing (ASMIPCL) .
3. Cataloged Procedure for Assembly,
Linkage Editing, and Execution
(ASMFCLG) « v « « « o o s+ o« o
Tables
1. Data Set Characteristics
2. Return Codes -
3. Device Naming Conventions . . .
4. Types of ESD Entries
5. Global Dictionary Entries at
Collection Time e .
6. Local Dictionary Entries at
Collection Time

iv

Cataloged Procedure for Assembly
and Loader Execution (ASMFCG) . .
Assembler Listing
Linkage Statements
Extended-Precision Floating
Point Format. e e e
TESTRAN SYM Card Format e e e e

Global Dictionary Entries at
Generation Time
Local Dictionary Entries at
Generation Time
Macro Definition Local chtlonary
Parameter Table
Extended-Precision and Roundlng
Instructions

.10
.12
.18

.23
.37

.20
.20
.20

.22

Through the medium of job control state-
ments, the programmer specifies job
requirements directly to the operating
system, thus eliminating many of the
functions previously performed by the
operating personnel. The job consists
of one or more job steps. For example,
the job of assembling, linkage-editing,
and executing a source program involves
three job steps:

1. Translating the source program,
i.e., executing the assembler com-
ponent of the operating system to
produce an object module.

2. Processing the output of the as-
sembler, i.e., executing the
linkage-editor component of the
operating system to produce a load
module.

3. Executing the assembled and linkage-
edited program, i.e., executing the
load module.

A procedure is a sequence of job control
language statements specifying a job. Pro-
cedures may enter the system via the input
stream or from a library of procedures,

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

INTRODUCTION

which are previously defined and contained
in a procedure library. The input stream
is the flow of job control statements
and, optionally, input data entering the
system from one input device. At the
sequential scheduling system level of the
operating system, only one input stream
may exist at a time. (For a description
of the operating system environment see
IBM System/360 Operating System: Con-
cepts and Facilities.)

The job definition (JOB), execute
(EXEC), data definition (DD), and delimiter
(/*) job control statements are shown in
this publication as they are used to
specify assembler processing. Detailed
explanations of these statements are
given in IBM System/360 Operating System:

| Job Control Language Reference.

Operating system factors influencing
program preparation, such as terminating
the program, saving and restoring general
registers, and linking of independently
produced object modules, are discussed in
Programming Considerations, as are guides
to determine whether assembler dictionary
sizes and complexity limitations of source
statements will be exceeded.

Introduction 1

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

ASSEMBLER OPTIONS AND DATA SET REQUIREMENTS

ASSEMBLER OFTIONS

The programmer may specify the
assembler options in the PARM=: field of

the EXEC statement. They must appear
between two apostrophes, separated by commas
with no imbedded blanks. They can appear

in any order and, if an entry is ommitted, a
standard setting will be assumed as shown
below under "Default Entry."

following

‘DECK LOAD, LIST TEST, XREF,
PARM= or or or or or
‘NODECK,NOLOAL, NOLIST NOTEST NOXREF,

ALGN OS RENT’
LINECNT=nn, or or or
NOALGN,DOS,NORENT'

These options are defined as follows:
DECK -- The object module is placed on
the device specified in the SYSPUNCH DD
statement.
LOAD -~ The object module is placed on
the device specified in the SYSGO DD
statement.

NOTE: Specification of the parameter
LOAD causes object output to be written
on a data set with ddname SYSGO. This
action occurs independently of the output
on SYSPUNCH caused by the parameter DECK.
The output on SYSGO and SYSPUNCH is iden-
tical except that SYSPUNCH is closed with
a disposition of LEAVE, and SYSGO is
closed with a disposition of REREAD.

LIST -- An assembler listing is produced.

TEST -- The object module contains the
special source symbol table required
by the test translator (TESTRAN)
routine.

XREF -- The assembler produces a crosg-
reference table of symbols as part of
the listing.

RENT -- The assembler checks for a possible
coding violation of program re-
enterability.

The prefix NO is used with the above
options to indicate which options are not
wanted.

LINECNT=nn This parameter specifies the
number of lines to be printed between
headings in the listing. The permis-
sible range is 01 to 99 lines.

NOALGN -- The assembler suppresses the
diagnostic message IEU033 ALIGNMENT
ERROR if fixed point, floating point,
or logical data referenced by an instruc-
tion operand is not aligned on the
proper boundary. The message will be
produced, however, for references to
instructions (e.g., by a branch) which
are not aligned on the proper (halfword)
boundary. See the "Model 85 Programming

Considerations" section for information
on alignment requirements.

ALGN -- The assembler does not suppress the
alignment error diagnostic message.

0S -- The assembler will have complete
Operating System Assembler F capability.

DOS -- The assembler will behave like Disk
Operating System (DOS) Assembler F.
CXD, DXD, and OPSYN assembler operations
and Extended Precision (Model 85 and 195
only) machine operations will be treated
as undefined. L-type and Q-type DC and
DS statements will be treated as unknown
types and RLDs will appear in the Reloc-
ation Dictionary in order of their occur-
rence (unsorted). The DOS option is in-
compatible with the LOAD, TEST, RENT, or
NOALGN options. If any of these options
are specified along with DOS, the assem-
bler generates a diagnostic message
(IEU078) and uses the default options
NOLOAD, NOTEST, NORENT, or ALGN.

If contradictory options are entered,
e.g., LIST, NOLIST, the rightmost option,
NOLIST, is used.

The following is an example of specify-
ing assembler options:

EXEC PGM=|EUASM,PARM='LOAD,NODECK,TEST'

DEFAULT ENTRY

If no options are specified, the assembler
assumes the following default entry.

PARM='NOLOAD,DECK,LIST,NOTEST,XREF,LINECNT=65ALGN,OS,NORENT'

The cataloged procedures discussed in
this guide assume the default entry. How-
ever, the programmer may override any or
all of the default options (see "Over-
riding Statements in Cataloged Proce-
dures") .

ASSEMBLER DATA SET REQUIREMENTS

The assembler requires the following four
data sets:

® SYSUT1, SYSUT2, SYSUT3 -- utility data
sets used as intermediate external
storage.

® SYSIN -- an input data set containing

the source statements to be processed.

In addition to the above, four additional

data sets may be required:

® SYSLIB -- a data set containing macro
definitions (for macro definitions not
defined in the source program) and/or
source coding to be called for through
COPY assembler instructions.

® SYSPRINT --- a data set containing output
text for printing (unless NOLIST option
is specified).

® SYSPUNCH -~ a data set containing object
module output usually for punching (un-
less NODECK option is specified).

® SYSGO -~ a data set containing object
module output usually for the linkage

editor (only if LOAD option is specified).

The above data sets are described in the
following text. The ddname that must be
used in the DD statement describing the
data set appears as the heading for each
description.

Ddnames SYSUT1, SYSUT2, SYSUT3

These utility data sets are used by the
assembler as intermediate external storage
devices when processing the source pro-
gram. The input/output device(s) assigned
to these data sets must be capable of
sequential access to records. The as-
sembler does not support multi-volume
utility data sets. Refer to the Storage
Estimate manual for the space required.

Ddname SYSIN

This data set contains the input to the
assembler -- the source statements to be
processed. The input/output device as-
signed to this data set may be either the
device transmitting the input stream, or
another sequential input device designated
by the programmer. The DD statement
describing this data set appears in the
input stream. The IBM-supplied procedures
do not contain this statement.

Ddname SYSLIB

From this data set, the assembler obtains
macro definitions and assembler language
statements to be called by the COPY as-
sembler instruction. It is a partitioned
data set and each macro definition or
sequence of assembler statements is a
separate member, with the member name being
the macro instruction mnemonic or COPY
code name. The data set may be defined as
SYS1.MACLIB or a user's private macro
definition or COPY library. SYS1.MACLIB
contains macro definitions for the system
macro instructions provided by IBM. A
user's private library may be concatenated
with SYS1.MACLIB. The two libraries must

have the same attributes, i.e., the same
blocking factors, block sizes, and record
formats. The Job Control Language publica-
tion explains the concatenation of data
sets.

Ddname SYSPRINT

This data set is used by the assembler to

produce a listing. Output may be directed
to a printer, magnetic tape, or DASD. The
assembler uses the machine code carriage-

control characters for this data set.

Ddname SYSPUNCH

The assembler uses this data set to produce
the object module. The input/output unit
assigned to this data set may be either a
card punch or an intermediate storage de-
vice (capable of sequential access).

Ddname SYSGO

This is a DASD, magnetic tape, or card
punch data set used by the assembler. It
contains the same output text as SYSPUNCH.
It is used as input for the linkage editor
and may also be used as a punch device (see
NOTE under "Assembler Options").

DEFINING DATA SET CHARACTERISTICS

Before a data set can be made available

to a problem program, descriptive infor-
mation defining the data set must be

placed into a data control block for the
access routines. Sources of information

for the data control block are keyword
operands in the DCB macro instruction or,

in some cases, the DD statement, data set
label, or user's problem program. General
information concerning data set definition
is contained in the Data Management Services
manual (see Preface). Characteristics of
data sets supplied by the DCB macro instruc-
tion are described in the Data Management
Macro Instructions manual (see Preface).

The specific information that must be
supplied depends upon the data set organi-
zation and access method. The following
access methods are used to process the
assembler data sets:

Access Method Data Sets
QSAM (Queued Sequential) SYSPRINT, SYS-
PUNCH, SYSGO,
SYSIN

BSAM (Basic Sequential) SYSUT1, SYSUT2,

SYSUT3
BPAM (Basic Partitioned) SYSLIB

Table 1 summarizes the assembler capa-
bilities and restrictions on record length

Assembler Options and Data Set Requirements 3

Page of GC26-3756-4
Revised June 1, 1970

By TNL GN33-8075

Table 1. Data Set Characteristics
SYSUTI
SYSIN SYSLIB SYSPRINT SYSPUNCH SYSGO SYSUT2
SYSUT3
LRECL Fixed at 80 Fixed at 80 Fixed at 121 Fixed at 80 Fixed at 80 N/A
User must specify User must specify F and M set by F set by assemb- F set by assemb- Fixed for U
in LABEL or DD card in LABEL or DD card | assembler, user may ler, user may spec- ler, user may spec-
RECFM specify B and/or T ify Band/or T in ify Band/or T in

@

F, FS, FBS, FB,
FBST, FBT, FT,
FST

F, Fb, FBT, FT

in fabel or DD card
FM, FMB, FMT, FMBT

label or DD card
F, FB, FT, FBT

label or DD card
F, FB, FT, FBT

BLKSIZE

®

User must specify
in LABEL or DD card,
must be a multiple of
LRECL

User must specify
in LABEL or DD card,
must be a multiple of
LRECL

Optional, but must
be a multiple of
LRECL; If omitted
BLKSIZE=LRECL

Optional, but must
be a multiple of
LRECL; if omitted
BLKSIZE=LRECL

Optional, but must
be a multiple of
LRECL; if omitted
BLKSIZE=LRECL

User can not specify;
maximum of 3624
minimum of 1739

Optional; if Set by assembler Optional; if Optional; if Optional, if User can not specify;

BUFNO omitted 2 is used to 1 omitted 2 is used omitted 3 is used for omitted 3 is used for [either 1 or 2
unit record and 1 for unit record and 1 for
other devices other devices

For BLKSIZE times BLKSIZE can not BLKSIZE times BLKSIZE times BLKSIZE times

44K BUFNO can not be be greater than 3600 | BUFNO can not be BUFNO can not be BUFNO can not be

availability greater than 3600 @) greater than 1210 greater than 400 greater than 400

For L1 = BLKSIZE L2 = BLKSIZE L3 = BLKSIZE L4 = BLKSIZE L5 = BLKSIZE

calculating times BUFNO times BUFNO times BUFNO times BUFNO

core

requirements

@ Minimum core required for the assembler is the largest of the following: (1} 45056

©

Maximum core that the assembler can effectively use =

@ L + 1L, + 41000

(3) L3+t 5

L, + L+ 535,000

4 T Lg+ 41000

O ® 0

or local dictionaries overflow.
Dictionary Overflow."

For MVT environment add 5,000 for core required

U = undefined, F = fixed length records, B = blocked records, S = standard blocks,
T = track overflow, M = machine code carrioge control

A smaller blocksize may have to be specified for SYSLIB if global
See item 4 under "Correction of

Blocking is not allowed on unit record devices. Blocking on other direct access can not
be greater than the track size unless T is specified on RECFM

and format, as well as the blocksize buff-
ering facilities available to the user. The
values shown in Table 1 are based upon the
minimum core requirements of Assembler F
(44K), which will allow a symbol table
length of approximately 7000 bytes. If
more than 44K is available, the block sizes
and buffer numbers can be increased. How-
ever, if the user specifies a combination
of blocking and buffering which does not
leave room for the symbol table, abnormal
termination of the task may occur (ABEND
804) when the assembler attempts to issue

a GETMAIN macro instruction.

In addition to the data set character-
istics shown in Table 1, the following
options are available to the user (refer to
the Supervisor and Data Management Macro
Instructions publication). Options not
shown below are fixed by the assembler and
cannot be specified.

Data Sets

Options

DEVD (device type)

SYSIN, SYSPUNCH,

SYSPRINT, SYSGO alignment)

BUFL (buffer length)
LEROPT (error option)
DEVD (device type)
OPTCD (optional ser-
vice for validity
checking and
chained scheduling)

sysuri, 2, 3 {

RETURN CODES

Table 2 shows the return codes issued by
the assembler for use with the COND=para-
meter of JOB or EXEC statements. The
COND= parameter is explained in IBM
System/360 Operating System Job Control
Langquage Reference (GC28-6704).

BFALN (buffer boundary

Page of GC26-3756-4
Revised June 1, 1970

By TNL GN33-8075

The return code issued by the assembler

is the highest severity code that is:

Associated with any error detected
by the assembler (see Appendix A for
diagnostic messages and severity
codes) .

Associated with MNOTE messages pro-
duced by macro instructions.
Associated with an unrecoverable I/O
error occurring during the assembly.

If a permanent I/O error occurs on any
the assembler files or a DD card for a
required data set is missing, a message is
printed on SYSPRINT (or on the operator's
console if the SYSPRINT DD card is missing
or if the I/O error is on SYSPRINT) and a
return with a user return code of 20 is
given by the assembler. This terminates
the assembly.

of

Table 2. Return Codes
Return
Code Explanation
0 No errors detected
4 Minor errors detected; successful program execution is
probable
8 Errors detected; unsuccessful program execution is possible
12 Serious errors detected; unsuccessful program execution is
probable
16 Critical errors detected; nomal execution is impossible
20 Unrecoverable 1/O error occurred during assembly or
missing data sets; assembly terminated

Assembler Options and Data Set Requirements 5

CATALOGED PROCEDURES

This section describes four IBM-provided
cataloged procedures: a procedure for as-
sembling (ASMFC), a procedure for assem-
bling and linkage editing (ASMFCL), and a
procedure for assembling, linkage editing,
and executing (ASMFCLG), and a procedure
for assembling and loader-executing
(ASMFCG) . The procedures rely on conven-
tions regarding the naming of device
classes. These conventions, shown in Table
3, must be incorporated into the system
at system generation time.

Table 3. Device Naming Conventions
Device Classname Devices Assigned
SYSSQ Any devices allowing
sequential access to records
for reading and writing
SYSDA Direct-access devices
SYSCP Card punches

To use cataloged procedures, EXEC state—
ments naming the desired procedures are
placed in the input stream following the
JOB statement. Subsequently, the specified
cataloged procedure is brought from a
procedure library and merged into the in-
put stream.

The System Programmer's Guide discusses
the placing of procedures in the procedure
library.

CATALOGED PROCEDURE FOR ASSEMBLY (ASMFC)

This procedure requests the operating
system to load and execute the assembler.
The name ASMFC must be used to call this
procedure. The result of execution is an
object module, in punched card form, and
an assembler listing.

In the following example, input enters
via the input stream. The statements
entered in the input stream to use this
procedure are:

//jobname JOB
//stepname EXEC PROC= ASMFC
//ASM.SYSIN DD *

|

source program statements
|

|
/* (delimiter statement)

The statements of the ASMFC procedure
are brought from the procedure library and
merged into the input stream.

Figure 1 shows the statements that make
up the ASMFC procedure.

1/ASM EXEC PGM=IEUASM,REGION=50K
2 //SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR
3 //1SYSUT1 DD DSNAME=&SYSUT1,UNIT=5YSSQ,SPACE=(1700,(400,50}),
1" SEP=(SYSLIB)
4 /1SYSUT2 DD DSNAME=&SYSUT2,UNIT=SYSSQ,SPACE=(1700,(400,50})
5 //8YSUT3 DD DSNAME=SYSUT3,SPACE=(1700,(400,50)),
1 UNIT=(SYSSQ,SEP=(SYSUT2,SYSUT1,SYSLIB))
6 //SYSPRINT DO SYSOUT=A
7 //ISYSPUNCH DD SYSOUT=B

Cataloged Procedures). The system name |EUASM identifies Assembler F.

345T

hese specify the

part of the Scheduler.

The Job Control Langwﬁ blicati ins space all

~

This statement describes the data set that will contain the object module produced by the assembler.

PARM= or COND=parameters may be added to this statement by the EXEC statement that zalls the procedure {see Overriding Statements in

This statement identifies the macro library data set. The data set name SYS1.MACLIB is an |BM designation.

utility data sets. The device classname used here, SYSSQ, may represent a collection of tape
drives, or direct-access units, or both. The 1/0 units assigned to this name are specified by the installation when the system is generated.
A unit name, e.g., 2311 may be substituted for SYSSQ. The DSNAME parameters guarantes use of Dedicated Workfiles if this feature is

The SEP=subparameter in statement 5 and the SPACE=parameter in statements 3, 4, and 5 are effective only if the device assigned is a
direct-access device: otherwise they are ignored. The space required is dependent on the make-up of the source program.

This statement defines the standard system output class, SYSOUT=A, as the destination for the assembler listing.

Figure 1.

Cataloged Procedure for Assembly (ASMFC)

CATALOGED PROCEDURE FOR ASSEMBLY AND
LINKAGE EDITING (ASMFCL)

This procedure consists of two job steps:
assembling and linkage editing. The name
ASMFCL must be used to call this procedure.
Execution of this procedure results in the
production of an assembler listing, a
linkage editor listing, and a load module.
The following example assumes input to
the assembler via the input job stream. It
also makes provision in the //LKED job step
for concatenating the input to the linkage
editor from the //ASM job step with any
additional linkage editor input in the in-
put job stream. This additional input can
be a previously produced object module
which is to be linked to the object module

Page of GC26-3756 -4
Revised June 1, 1970
By TNL GN33-8075

//jobname JOB
//stepname EXEC PROC=ASMFCL
//ASM.SYSIN D|D *

source program statements

[}

1

i
/* !
//AKED.SYSIN DD *

}

: necessary only if linkage
editor is to combine modules
or read linkage editor control
information from the job stream

object module or

linkage editor

control statements
/*

The procedure is brought from the pro-
cedure library and merged into the input
stream.

Figure 2 shows the statements that make

up the ASMFCL procedure. Only those state-

produced by job step //ASM.
ments not previously discussed are

An example of the statements entered in

the input stream to use this procedure is: explained.

//ASM EXEC PGM=IEUASM,PARM=LOAD,REGION=50K
//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD DSNAME=&SYSUT 1,UNIT=SYSSQ,SPACE=(1700,(400,50)), X
1/ SEP=(SYSLIB)
//SYSUT2 DD DSNAME=8&SYSUT2,UNIT=5YSSQ,SPACE=(1700,(400,50))
//SYSUT3 DD DSNAME=&SYSUT3,SPACE=(1700,(400,50)), X
" UNIT=(SYSSQ,SEP=(SYSUT2,SYSUT1,SYSLIB))
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD SYSOUT=B

! //SYSGO DD DSNAME=8&LOADSET,UNIT=SYSSQ,SPACE=(80,(200,50)), X
1/ DISP=(MOD,PASS)

2 //LKED EXEC PGM=IEWL,PARM=XREF,LIST NCAL),REGION=96K, X
1/ COND=(8,LT,ASM)

2 //SYSLIN DD DSNAME=&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN

5 //SYSLMOD DD DSNAME=&GOSET(GO),UNIT=SYSDA,SPACE-(1024,(50,20,1)), X
1/ DISP=(MOD,PASS)

| 6 //SYSUT1 DD DSNAME=&SYSUT1,UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD)), X

" SPACE=(1024,(50,20))

7 //SYSPRINT DD SYSOUT=A

! In this procedure the SYSGO DD statement describes a temporary data set -- the object module -- which is to be passed to the linkage editor.

2

This statement initiates linkage editor execution. The linkage editor options in the PARM=field cause the linkage editor to produce a
cross-reference table, module map, and a list of all control statements processed by the linkage editor. The NCAL option suppresses the
automatic library call function of the linkage editor.

This statement identifies the linkage editor input data set on the same one produced as output by the assembler.
This statement is used to concatenate any input to the linkage editor from the input stream with the input from the assembler.

This statement specifies the linkage-editor output data set (the load module). As specified, the data set will be deleted at the end of the job. Ifitis
desired to retain the load module, the DSNAME parameter must be respecified and a DISP parameter added. See Overriding Statements in Cataloged
Procedures. If the output of the linkage editor is to be retained, the DSNAME parameter must specify a library name and member name where the
load module is to be placed. The DISP parameter must specify either KEEP or CATLG.

This statement specifies the utility data set for the linkage editor.

7 . . e s
This statement identifies the standard output class as the destination for the linkage editor listing.

® Figure 2. Cataloged Procedure for Assembling and Linkage Editing (ASMFCL)

Cataloged Procedures 7

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

CATALOGED PROCEDURE FOR ASSEMBLY,
LINKAGE EDITING, AND EXECUTION
(ASMFCLG)

This procedure consists of thrge.job
steps: assembling, linkage editing, and
executing.

Figure 3 shows the statements that make
up the ASMFCLG procedure. Only those
statements not previously discussed are
explained in the figure.

The name ASMFCLG must be used to call
chis procedure. Assembler and linkage
editor listings are produced.

The statements entered in the input
stream to use this procedure are:

//jjobname Jos
//stepname EXEC PROC=ASMFCLG
//ASM.SYSIN DD *

]

'

'
source program statements

/*
//LKED.SYSIN DD *
|
l
object module or
linkage editor
control sta;emenrs

necessary only if linkage
editor is to combine modules
or read linkage editor control
y information from the job stream
*
1
//GO.ddname DD (parameters)
//GO.ddname DD (parameters)
//GO.ddname DD * only if
: necessary

!
problem program input
|

/* !
//IASM EXEC PGM=IEUASM,PARM=1.0AD,REGION=50K
//SYSLIB DD DSNAME=SYS1.MACL!B,DISP=SHR
//SYSUT1 DD DSNAME=&SYSUT1,UNIT=SYSSQ,SPACE=(1700,(400,50}), X
/i SEP=(SYSLIB)
//1SYSUT2 DD DSNAME=&SYSUT2,UNIT=5YSSQ,SPACE=(1700,(400,50))
//SYSUT3 DD DSNAME=&SYSUT3,SPACE=(1700,(400,50)), X
/! UNIT=(SYSSQ,SEP=(SYSUT2,SYSUT1,SYSLIB))
/ISYSPRINT DD S5YSOUT=A
//SYSPUNCH DD SYSOUT=B
//1SYSGO DD DSNAME=&L OADSET,UNIT=SYSSQ,SPACE=(80,(200,50)), X
/! DISP=(MOD,PASS)
1 //LKED EXEC PGM=IEWL,PARM=(XREF,LET,LIST,NCAL),REGION=96K, X
1 COND=(8,LT,ASM)
//SYSLIN DD DSNAME=&LOADSET,DISP=(OLD,DELETE)
" DD DDNAME=SYSIN
2 //SYSLMOD DD DSNAME=&GOSET(GO),UNIT=SYSDA SPACE=(1024,(50,20,1)), X
i DISP=(MOD,PASS)
//SYSUT1 DD DSNAME=&SYSUT1,UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD}), X
1/ SPACE=(1024,(50,20))
//SYSPRINT DD SYSOUT=A
3 /GO EXEC PGM=".LKED.SYSLMOD,COND={(8,LT,ASM),(4,LT,LKED))
! The LET linkage-editor option specified in this statement causes the linkage editor to mark the load module as executable even though errors were
encountered during processing.
2 The output of the linkage editor is specified as a member of a temporary data set, residing on a direct-access device, and is to be passed to a
succeeding job step.
3 This statement initiates execution of the assembled and linkage edited program. The notation *.LKED.SYSLMOD identifies the program to be
executed as being in the data set described in job step LKED by the DD statement named SYSLMOD. When running with MVT (Option 4) the
REGION parameter can be calculated with the help of the Storage Estimates publication (see preface).

Figure 3. Cataloged Procedure for Assembly, Linkage Editing and Executicn (ASMFCLG)

CATALOGED PROCEDURE FOR ASSEMBLY AND
LOADER-EXECUTION (ASMFCG)

This procedure consists of two job steps
assembling and loader-executing. The
result of loader-execution is a combina-
tion of link-editing and loading the
program for execution. Load modules for
program libraries are not produced.

Figure 4 shows the statements that make
up the ASMFCG procedure. Only those state-
ments not previously discussed are ex-
plained in the figure.

The name ASMFCG must be used to call
this procedure. Assembler and loader
listings are produced.

The statements entered in the input stream
to use this procedure are:

//jobname JOB
//stepname EXEC PROC=ASMFCG
/IASM.SYSIN DD *

source program

/*

//GO.ddname DD (parameters)

//GO.ddname DD (parameters) onl

//GO.ddname DD ¢ g
necessary

problem program input

/*

OVERRIDING STATEMENTS IN CATALOGED
PROCEDURES

Any parameter in a cataloged procedure can
be overridden except the PGM= parameter in
the EXEC statement. Such overriding of
statements or fields is effective only

for the duration of the job step in which
the statements appear. The statements,

as stored in the procedure library of the
system, remain unchanged.

Overriding for the purposes of re-
specification, addition, or nullification
is accomplished by including in the input
stream statements containing the desired
changes and identifying the statements
to be overridden.

EXEC Statements

The PARM= and COND= parameters can be added
or, if present, re-specified by including
in the EXEC statement calling the pro-
cedure the notation PARM,stepname=, or
COND. stepname=, followed by the desired
barameters. "Stepname" identifies the

EXEC statement within the procedure to
which the modification applies. Overriding
the PGM= parameter is not possible.

If the procedure consists of more than
one job step, a PARM,.,stepname= or COND.
stepname= parameter may be entered for
each step. The entries must be in order,
i.e., PARM.stepl=, PARM.step2=, etc.

DD Statements

All parameters in the operand field of DD
statements may be overridden by including
in the input stream (following the EXEC
card calling the procedure) a DD statement
with the notation //stepname.ddname in the
name field. "Stepname" refers to the job
step in which the statement identified by
"ddname" appears.

Examples

In the assembly procedure ASMFC (Figure 1),
the production of a punched object deck
could be suppressed and the UNIT= and SPACE=
parameters of data set SYSUTl1 re-specified,
by including the following statements in
the input stream:

//stepname EXEC PROC=ASMFC,

// PARM. ASM=NODECK
//ASM.SYSUTI DD UNIT=2311,

7/ SPACE=(200, (300, 40))
//ASM.SYSIN DD *

In procedure ASMFCLG (Figure 3), suppress-
ing production of an assembler listing and
adding the COND= parameter to the EXEC
statement, which specifies execution of the
linkage editor, may be desired. 1In this
case, the EXEC statement in the input
stream would appear as follows:

PROC=ASMFCLG, X
PARM.ASM=(NOLIST,LOAD), X
COND.LKED=(8 LT,stepname.ASM)

//stepname EXEC
/7

NOTE: Overriding the LIST parameter ef-
fectively deletes the PARM=LOAD so this
must be repeated in the override statement.

For current execution of procedure
ASMFCILG, no assembler listing would be
produced, and execution of the linkage
aditor job step //LKED would be suppressed
if the return code issued by the assembler
(step ASM) was greater than 8. Using the
procedure ASMFCL (Figure 2) to:

1. Read input from a non-labeled 9-track
tape on unit 282 that has a standard
blocking factor of 10.

2. Put the output listing on a labeled tape
VOLID=TAPE10, with a data set name of
PROG1l and a blocking factor of 5,

3. Block the SYSGO output of the assembler
and use it as input to the linkage edi-
tor with a blocking factor of 5.

Cataloged Procedures 9

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

/IASM EXEC PGM=IEUASM,PARM='LOAD’,REGION=50K

//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD DSNAME=&SYSUT1,UNIT=SYSSQ,SPACE=(1700,(400,50)), X
/" SEP=(SYSLIB)

//SYSUT2 DD DSNAME=&SYSUT2,UNIT=SYSSQ,SPACE=(1700,(400,50))

//SYSUT3 DD DSNAME=&SYSUT3,SPACE=(1700,(400,50)), X
/! UNIT=(SYSSQ,SEP={SYSUT2,SYSUT1,SYSLIB))

//SYSPRINT DD SYSOUT=A

//ISYSPUNCH DD SYSOUT=B

//SYSGO DD DSNAME=&LOADSET,UNIT=SYSSQ,SPACE=(80,(200,50)), X
Di1SP=(MOD,PASS)

//GO EXEC PGM=LOADER,PARM="MAP,PRINT,NOCALL,LET"

//SYSLIN DD DSNAME=&\ OADSET,DISP=(OLD,DELETE)

//SYSLOUT DD SYSOUT=A

This statement initiates loacer-execution. The loader options in the PARM=field cause the loader to produce a map, print the map and diagnostics.
The NOCALL option is the same as NCAL for linkage editor and the LET option is the same as for linkage editor.

2 This statement defines the loader input data set as the same one produced as output by the assembler.

This statement identifies the standard output class as the destination for the loader listing.

Figure 4. Cataloged Procedure for Assembly and Loader-Execution (ASMFCG)

4. Link edit the module only if there are //stepname 1 EXEC PROC=ASMFC, PARM.ASM='LOAD'

no irrors in the assembler11°ei1CONE'g' //ASM.SYSGO DD DSNAME=8LO ADSET, UNIT=SYS5Q, X
5. Link edit on to a previously allocate -

and cataloged data set USER.LIBRARY “ SPACE=(EO, (100,50)), X

with a member name of PROG, the input ” DISP=(MOD, PASS), DCB=(BLKSIZE=400)

stream appears as follows: //ASM.SYSIN DD *

)
)
// jobname JOB [
source program | statements
//stepname EXEC PROC=ASMFCL, X 1
// COND.LKED=(0,NE, steprame . ASM) /r :
//ASM.SYSPRINT DD DSNAME=PROGIT,UNIT=TAPE, X //stepname?2 EXEC PROC=ASMFCLG
/ VOLUME=SER=TAPET0, DCB~(BLKSIZE=605) //ASM.SYSGO DD DCB=(BLKSIZE=400), DISP=(MOD, PASS)
//ASM.SYSGO DD DCB=(BLKSIZE=400) //ASM.SYSIN DD *
//ASM.SYSIN DD UNIT=282,LABEL=(,NL), X '
7/ DCB=(RECFM=FS8, BLKSIZ£=800) '
//LKED.SYSIN DD DCB=stepname.ASM.SYSGO source program 2 statements
//LKED.SYSLMOD DD DSNAME=USER.LIBRARY(PROG),DISP=OLD '
1
/* ’ '
NOTE: The order of appearance of ddnames //\KED.SYSLIN DD DCB=BLKSIZE=400
within job steps ASM and LKED has been pre- //LKED.SYSIN DD *
served. Thus, SYSPRINT precedes SYSGO with- ENTRY PROG
in step ASM. The ddname ASM.SYSIN was /
placed last since SYSIN does not occur at o
all within step ASM. These points are //GO .ddname dd cards for GO step
covered in the section "Using Cataloged
Procedures" in the Job Control Language
manual. . .

To assemble two programs, link edit the | The Job Control Language Reference and
two assemblies into one load module and ex- System Programmer”s Guide publications pro-
ecute the load module. Entering at PROC, the vide additional description of overriding
input stream appears as follows: techniques.

10

The assembler listing (Figure 5) consists

of five sections,

ordered as follows: ex-

ternal symbol dictionary items, the source
and object program statements, relocation

dictionary items,
table,
tion,

symbol cross reference
and diagnostic messages. In addi-
three statistical messages may

appear in the listing:

1.

assembler prints
and current date
listing.
assembler prints
left & the date
listing.
starts,

bly,

After the diagnostics, a statements-
flagged message indicates the total
number of statements in error. It
appears as follows: nnn STATEMENTS
FLAGGED IN THIS ASSEMBLY.

After the statements-flagged message,
the assembler prints the highest sever-
ity code encountered (if non-zero).-
This is equal to the assembler return
code. The message appears as follows:
nn WAS HIGHEST SEVERITY CODE.

After the severity code, the assembler
prints a count of the number of
records read from SYSIN and from SYS-
LIB. It also prints the options for
the assembly. (See the section
"Assembler Options). These messages
appear as follows:

STATISTICS SOURCE RECORDS (SYSIN) =
nnnnn SOURCE RECORDS (SYSLIB)= nnnnn
OPTIONS IN EFFECT XXXX,XXXXXX, etc.

After the options in effect, the
assembler prints a count of lines
printed, which appears as follows: nnn
PRINTED LINES. This is a count of the
actual number of 121-byte records
generated by the assembler; it may be
less -than the total number of printed
and blank lines appearing on the list-
ing if the SPACE n assembler instruc-
tion is used. For a SPACE n that does
not cause an eject, the assembler
inserts n blank lines in the listing
by generating n/3 blank 12l1-byte
records -- rounded to the next lower
integer if a fraction results; e.g.,
for a SPACE 2, no blank records are
generated. The assembler does not
generate a blank record to force a
page eject.

In addition to the above items, the
the deck identification
on every page of the
timer is available, the
the time of day to the
on page 1 of the ESD

This is the time when printing
rather than the start of the assem-
and is intended only to provide unique

If the

identification for assemblies made on the

same day.

The time is printed as hh.mm,

ASSEMBLER LISTING

where hh is the hour of the day (midnight
beginning at 00), and mm is the number of
minutes past the hour.

EXTERNAL SYMBOL DICTIONARY (ESD)

This section of the listing contains the
external symbol dictionary information
P passed to the linkage-editor or loader in

the object module.
the control sections,

The entries describe
external references,

and entry points in the assembled program.

There are six types of entries,

shown in

Table 4, along with their associated fields.
The circled numbers refer to the corres-
ponding heading in the sample listing

| (Figure 5). The X's indicate entries
accompanying each type designation.

Table 4. Types of ESD Entries
0 @ ©) ® ® ©

SYMBOL | TYPE iD ADDR |LENGTH| LD ID

X SD X X X -

X LD - X - X

X ER X - - -

- PC X X X -

- cM X X X -

X XD X X X -

This column contains the name of every
external dummy section, control sec-
tion, entry point, and external symbol.
This column contains the type desig-
nator for the entry, as shown in the
table. The type designators are defined
as:

SD--Names section definition. The sym-
bol appeared in the name field of
a CSECT or START statement.

LD--The symbol appeared as the operand
of the ENTRY statement.

ER--External reference. The symbol
appeared as the operand of an EXTRN
statement, or was defined as a V-
type address constant.

PC--Unnamed control section definition.

CM~-~Common control section definition.

XD--External dummy section (same as PR,
Pseudo Register in the Linkage Editor
manual) .

This column contains the external sym-
bol dictionary identification number
(ESDID). The number is a unique two-
digit hexadecimal number identifying

Assembler Listing 11

oFi

12

EXTERNAL SYMBOL DICTIONARY
@0 &6 ©® O
EXAM Page 1
SYMBOL TYPE ID ADDR LENGTH LD ID 00.16 4/11/06
SAMPLR SO 01 000000 000388
EXAM SAMPLE PROGRAM Page. 3
@) ®@ ® @ ® O
LOC OBJECT CODE ADDR! ADDR2 STMT SOURCE STATEMENT F 14FEB6S6 4/11/66
000000 47F0 FOOA 0000A 59+BEGIN B 10(0,15) BRANCH AROUND ID
000004 05 60+ DC ALI(5)
000005 C2C5C7C9ID5 61+ DC CL5'BEGIN' IDENTIFIER @)
00000A 9OEC DOOC 0000C 62+ STM 14,12,12(13) SAVE REGISTERS
00000E 05CO 63 BALR RI2,0 ESTABLISH ADDRESSABILITY OF PROGRAM SAMPLO57
000010 64 USING *,R12 AND TELL THE ASSEMBLER WHAT BASE TO USE SAMPLO58
@ RELOCATION DICTIONARY ®
EXAM Page 1
@ @
POS.ID REL.ID FLAGS ADDRESS 4/11/66
o1 01 ocC 0001FC
o1 01 oc 00020C
01 01 e 00021C
o1 01 oC 000204
01 o1 oC 000334
@ CROSS-REFERENCE ®
EXAM Page 1
@ ® ® @
SYMBOL LEN VALUE DEFN REFERENCES 4/11/66
BEGIN 00004 000000 00059 0156 0158 0174 0184 0186 0220
EXIT 00004 00007E 00096 0111
HIGHER 00002 0000F4 00130 0125
IHBOOO5 00001 000078 00093 0090
IHBODOSA 00002 00007C 00094 0089
@ DIAGNOSTICS ®
EXAM Page 1
STMT ERROR CODE MESSAGE 4/11/66
19 IEU025 NEAR OPERAND COLUMN 7--RELOCATABILITY ERROR
2 1EU035 NEAR OPERAND COLUMN 9--ADDRESSABILITY ERROR
2 STATEMENTS FLAGGED IN THIS ASSEMBLY
8 WAS HIGHEST SEVERITY CODE
STATISTICS SOURCE RECORDS (SYSIN) = 225 SOURCE RECORDS (SYSLIB) = 5
OPTIONS IN EFFECT LIST, NODECK, NOLOAD, NORENT, XREF, NOTEST, ALGN, OS, LINE CNT = 58
261 PRINTED LINES
gure 5. Assembler Listing
the entry. It is used by the LD entry
of the ESD and by the relocation
dictionary for cross-referencing the
ESD. 5.
This column contains the address of the
symbol (hexadecimal notation) for SD-
and LD-type entries, and zeros for ER- 6

type entries. For PC- and CM-type
entries, it indicates the beginning
address of the control section. For
XD~-type entries, it indicates the
alignment by printing a number one

less than the number of bytes in the
unit of alignment, e.g., 7 indicates
double word alignment.

This column contains the assembled
length, in bytes, of the control
section (hexadecimal notation).

This column contains, for LD-type
entries, the identification (ID)
number assighed to the ESD entry that
identifies the control section in
which the symbol was defined.

SOURCE AND OBJECT PROGRAM 14.

This section of the listing documents
the source statements and the resulting
object program.

7. This is the four-character deck iden-
tification. It is the symbol that
appears in the name field of the first
TITLE statement. The assembler
prints the deck identification and
date (item 16) on every page of the
listing.

8. This is the information taken from the
operand field of a TITLE statement.

NOTE: TITLE, SPACE and EJECT state-
ments will not appear in the source
listing unless the statement is con-
tinued onto another card. Then the
first card of the statement is printed
However, any of these three types of
statements, if generated as macro in-
struction expansion, will never be
listed regardless of continuation.

9. Listing page number. Each section of
the listing starts with page 1.

10. This column contains the assembled
address (hexadecimal notation) of the
object code.

11. This column contains the object code
produced by the source statement. The
entries are always left-justified.
The notation is hexadecimel. Entries
are machine instructions or assembled
constants. Machine instructions
are printed in full with a blank
inserted after every four digits
(two bytes). Constants may be only
partially printed (see the PRINT
assembler instruction in the As-— |
sembler Language publication).

12. These two columns contain effective
addresses (the result of adding to- |
gether a base register value and dis-
placement value):

a. The column headed ADDR1 contains
the effective address for the
first operand of an SS in-
struction.

b. The column headed ADDR2 contains
the effective address of the
second operand of any instruc-
tion referencing storage.

Both address fields contain six
digits; however, if the high-order
digit is a zero, it is not printed.

13. This column contains the statement
number. A plus sign (+) to the right
of the number indicates that the state-
ment was generated as the result of
macro instruction processing.

This column contains the source pro-
gram statement. The following items
apply to this section of the listing:

a. Source statements are listed,
including those brought into the
program by the COPY assembler
instruction, and including macro
definitions submitted with the
main program for assembly.
Listing control instructions are
not printed, except for the
following case: PRINT is listed
when PRINT ON is in effect and a
PRINT statement is encountered.

b. Macro definitions obtained from
SYSLIB are not listed.

c. The statements generated as the
result of a macro instruction
follow the macro instruction in
the listing.

d. Assembler or machine instructions
in the source program that con-
tain variable symbols are listed
twice: as they appear in the
source input, and with values
substituted for the variahle
symbols.

e. Diagnostic messages are not list-
ed inline in the source and
object program section. An error
indicator, ***ERROR**%*, follows
the statement in error. The
message appears in the diagnostic
section of the listing.

f. MNOTE messages are listed inline
in the source and object program
section. An MNOTE indicator
appears in the diagnostic section
of the listing for MNOTE state-
ments other than MNOTE *. The
MNOTE message format is severity
code, message text.

g. The MNOTE * form of the MNOTE
statements results in an inline
message only. An MNOTE indicator
does not appear in the diagnostic
section of the listing.

h. When an error is found in a
programmer macro definition, it
is treated the same as any other
assembly error: the error
indication appears after the
statement in error, and a diag-
nostic is placed in the list of
diagnostics., However, when
an error is encountered during the
expansion of a macro instruction
(system~ or programmer-defined),
the error indication appears in
place of the erroneous statement,
which is not listed. The error
indication follows the last
statement listed before the

Assembler Listing 13

15.

le.
17.

erroneous statement was en-
countered, and the associated
diagnostic message is placed in
the list of diagnostics.

i. Literals that have not been
assigned locations by an LTORG
statement appear in the listing
following the END statement.
Literals are identified by the
equal (=) sign preceding them.

Je If the END statement contains an
operand, the transfer address
appears in the location column
(roc).

k. In the case of COM, CSECT, and
DSECT statements, the location
field contains the beginning ad-
dress of these control sections,
i.e., the first occurrence.

1. In the case of EXTRN, ENTRY, and
DXD instructions, the location
field and object code field are
blank.

m., For a USING statement, the loca-
tion field contains the value of
the first operand.

n. For LTORG and ORG statements, the
location field contains the loca-
tion assigned to the literal pool
or the value of the ORG operand.

O. For an EQU statement, the loca-
tion field contains the value
assigned.

pP-. Generated statements always
print in normal statement for-
mat. Because of this, it is
possible for a generated state-
ment to occupy three or more con-
tinuation lines on the listing.
This is unlike source statements,
which are restricted to two con-
tinuation lines.

This column contains the identifier

of the assembler (F) and the date

when this version was released by

Systems Development Division to DPD

Program Information Department.

Current date (date run is made).

Identification~sequence field from

the scurce statement.

RELOCATION DICTICONARY

This section of the listing contains the
relocation dictionary informestion passed
to the linkage editor in the object module.
The entries describe the address constants
in the assembled program that are affected
by relocation.

18.

14

This column contains the external
symbol dictionary ID number assigned
to the ESD entry that describes the
control section in which the address
constant is used as an operand.

19. This column contains the external sym-
bol dictionary ID number assigned to
the ESD entry that describes the con-
trol section in which the referenced
symbol is defined.

20. The two-digit hexadecimal number in
this column is interpreted as follows:

First Digit. A zero indicates that
the entry describes an A-type or
Y-type address constant. A one
indicates that the entry describes
a V-type address constant. A two
indicates that the entry describes
a Q-type address constant. A

three describes a CXD entry.

Second Digit. The first three bits
of this digit indicate the length
of the constant and whether the
base should be added or subtracted:

Bits 0 and 1 Bit 2
00 = 1 byte 0= +
01 = 2 bytes 1=~
10 = 3 bytes
11 = 4 bytes

21. This column contains the assembled ad-
dress of the field where the address
constant is stored.

CROSS REFERENCE

This section of the listing information
concerns symbols which are defined and
used in the program.

22, This column contains the symbols.

23. This column states the length (deci-
mal notation), in bytes, of the field
occupied by the symbol wvalue.

24, This column contains either the ad-
dress the symbol represents, or a
value to which the symbol is equated.

25. This column contains the statement
number of the statement in which the
symbol was defined.

26. This column contains the statement
numbers of statements in which the
symbol appears as an operand. In the
case of a duplicate symbol, the assem-
bler fills this column with the mes-
sage:

** %% DUPLICATE**%%

The following notes apply to the
cross-reference section:

° Symbols appearing in V-type ad-
dress constants do not appear in
the cross-reference listing.

® A PRINT OFF listing control in-
struction does not affect the
production of the cross-reference
section of the listing.

® In the case of an undefined symbol,
the assembler fills columns 23, 24,
and 25 with the message:

** % KUNDEF INED* *%% |

DIAGNOSTICS

This section contains the diagnostic mes-
sages issued as a result of error condi-
tions encountered in the program. The
text, severity code, and explanatory notes
for each message are contained in "Appendix
A",

27. This column contains the number of the
statement in error.

28. This column contains the message iden-
tifier.

29. This column contains the message, and,
in most cases, an operand column point-
er that indicates the vicinity of the
error. In the following example, the
approximate location of the addressa-
bility error occurred in the 9th col-
umn of the operand field:

Example:
STMT ERROR CODE ~ MESSAGE
21 IEU035 NEAR OPERAND COLUMN 9 -~ ADDRESSABILITY ERROR

The following notes apply to the diag-
nostic section:

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

® An MNOTE indicator of the form MNOTE
STATEMENT appears in the diagnostic
section if an MNOTE statement other
than MNOTE* is issued by a macro in-
struction. The MNOTE statement itself
is inline in the source and object
program section of the listing. The
operand field of an MNOTE* is printed
as a comment, but does not appear in
the diagnostic section.

® A message identifier consists of six
characters and is of the form:
TEUxxxX
IEU identifies the issuing agent
as Assembler F, and xXxx is a
unique number assigned to the
message.

NOTE: Editing errors in system macro defini-
tions (macro definitions included in a macro
library) are discovered when the macro defi-
nitions are read from the macro library.

This occurs after the END statement has been
read. They will therefore be flagged after
the END statement. If the programmer does
not know which of his system macros caused
an error it is necessary to punch all system
macro definitions used in the program,
including inner macro definitions, and insert
them in the program as programmer macro defi-
nitions, since the programmer macro defini-
tions are flagged in-line. To aid in de-
bugging it is advisable to test all macro
definitions as programmer macro definitions
before incorporating them in a library as
system macro definitions.

Assembler Listing 15

PROGRAMMING CONSIDERATIONS

This section consists of a number of dis-
crete subjects about assembler language
programming.

SAVING AND RESTORING GENERAL REGISTER
CONTENTS

A problem program should save the values
contained in the general registers upon com-
mencing execution and, upon completion, re-
store to the general registers these same
values. Thus, as control is passed from the
operating system to a problem program and,
in turn, to a subprogram, the status of the
registers used by each program is preserved.
This is done through use of the SAVE and
RETURN system macro instructions.

The SAVE macro instruction should be the
first statement in the program. It stores
the contents of registers 14, 15, and O
through 12 in an area provided by the pro-
gram that passes control. When a problem
program is given control, register 13
points to an area in which the general
register contents should be saved.

If the program calls any subprograms,
or uses any operating system services other
than GETMAIN, FREEMAIN, ATTACH, and XCTL,
it must first save the contents of register
13 and then load the address of an 18 full-
word save area into register 13. This save
area is in the problem program and is used
by any subprograms or operating system
services called by the problem program.

At completion, the problem program re-
stores the contents of general registers
14, 15 and 0-12 by use of the RETURN system
macro instruction (which also indicates
program completion). The contents of regis-
ter 13 must be restored before execution of
the RETURN macro instruction.

The coding sequence that follows illus-
trates the basic process of saving and re-
storing the registers. A complete discus-
sion of the SAVE and RETURN macro instruc-
tions and the saving and restoring of
registers is contained in the Data Manage-
ment Services and Data Management Macro-
Instructions publications (see Preface).

Naome Operation Operand

BEGIN | SAVE (14,12)
. set up base register
ST 13, SAVEBLK+4
LA 13,SAVEBLK
L 13, SAVEBLK+4
RETURN (14,12)

SAVEBLK | DC 18F'0’

16

PROGRAM TERMINATION

Completion of an assembler source program
is indicated by using the RETURN system
macro instruction to pass control from the
terminating program to the program that in-
itiated it. The initiating program may be
the operating system or, if a subprogram is-
sued the RETURN, the program that called it.

In addition to indicating program com-
pletion and restoring registers, the RE-
TURN macro instruction may also pass a re-
turn code -- a condition indicator that
may be used by the program receiving control.
If the return is to the operating system,
the return code is compared against the
condition stated in the COND= parameter of
the JOB or EXEC statements. If return is
to another problem program, the return
code is available in general register 15,
and may be used as desired. Register 13
should be restored before issuing the RE-
TURN macro instruction.

The RETURN system macro instruction is
discussed in detail in the Supervisor and
Data Management Macro Instructions pub-
lication.

PARM FIELD ACCESS

Access to information in the PARM field of
an EXEC statement is gained through general
register 1. When control is given to the
problem program, general register 1 con-
tains the address of a full word which, in
turn, contains the address of the data area
containing the information.

The data area consists of a halfword con-
taining the count (in binary) of the number
of information characters, followed by the
information field. The information field is
aligned to a full-word boundary. The follow-
ing diagram illustrates this process.

General Register 1

Address of Full Word

Points
to Full Word
L Address of Data Area -
Points
to
Data Area

Information Field

| Count in Binary

MACRO DEFINITION LIBRARY ADDITIONS

Source statement coding, to be retrieved
by the COPY assembler instruction, and

macro definitions may be added to the macro
library. The IEBUPDTE utility program is
used for this purpose. Details of this
program and its control statements are con-
tained in the Utilities publication. The
following sequence of job control state-—
ments can be used to call the utility pro-
gram and identify the needed data sets.

It is assumed that the job control state-
ments, IEBUPDTE program control statements,
and data are to enter the system via the
input stream.

//jobname JOB
stepname EXEC PGM=IEBUPDTE,PARM=MOD
SYSUT1 DD DSNAME=SYS1.MACLIB, DISP=OLD
SYSUT2 DD DSNAME=SYST. MACLIB, DISP=OLD
/SYSPRINT DD SYSOUT=A

//SYSIN DD

IEBUPDTE control statements and source statements or
macro-definitions to be added to the macro-library

(SYS1.MACLIB)

/* (delimiter statement)

LOAD MODULE MODIFICATION - ENTRY POINT
RESTATEMENY

If the editing functions of the linkage
editor are to be used to modify a load
module, the entry point to the load module
must be restated when the load module is
reprocessed by the linkage editor. Other-
wise, the first byte of the first control
section processed by the linkage editor
will become the entry point. To enable
restatement of the original entry point,
or designation of a new entry point, the
entry point must have been identified
originally as an external symbol, i.e.,
appeared as an entry in the external
symbol dictionary. External symbol
identification is done automatically by
the assembler if the entry point is the
name of a control section or START state-
ment; otherwise, an assembler ENTRY state-
ment must be used to identify the entry
point name as an external symbol,

When a new object module is added to or
replaces part of the load module, the
entry point is restated in one of three
ways:

® By placing the entry point symbol in the
operand field of an EXTRN statement
and an END statement in the new object
module.

® By using an END statement in the new
object module to designate a new entry
point in the new object module.

® By using a linkage editor ENTRY state-
ment to designate either the original
entry point or a new entry point for
the load module.

Purther discussion of load module entry
points is contained in the Linkage Editor
publication.

OBJECT MODULE LINKAGE

Object modules, whether Assembler-, FOR-
TRAN-, or COBOL-~generated, may be combined
by the linkage editor to produce a compo-
site load module, provided each object
module conforms to the data formats and
linkage conventions required. This topic
discusses the use of the CALL system macro
instruction to link an assembler language
"main" program to subprograms produced by
FORTRAN and COBOL. The Supervisor and Data
Management Macro Instructions publication
contains additional details concerning
linkage conventions and the CALL system
‘macro instruction.

Figure 6 shows the statements used to
establish the assembler program linkage
to the called subprograms.

If any input/output operations are per-
formed by called subprograms, appropriate
DD statements for the data sets used by the
subprograms must be supplied. See the
FORTRAN IV (E) Programmer's Guide publica-
tion for explanation of the DD statements
used to describe data sets for FORTRAN pro-
grams and a description of the special FOR-
TRAN data set record formats. The COBOL
(E) Programmer's Guide publicaticn provides
DD statement information for COBOL programs.

DICTIONARY SIZE AND SOURCE STATEMENT COM-
PLEXITY

This section describes the composition of
the assembler dictionaries and their entry
sizes, and describes methods for determin-
ing if the limits on source statement com-
plexity will be exceeded.

Dictionary entries, e.g., seguence sym-—
bol names, prototype symbolic parameters,
vary in length. Therefore, the number of
entries a dictionary can hold is determined
by the types of entries.

Source statement complexity -- the num-
ber of symbols, characters, operators, de-
limiters, references to length attributes,
self-defining terms, literals, and expres-
sions appearing in a source statement --
determines whether or not the source state-
ment can be successfully processed.

Programming Considerations 17

SAVE (14,12)

. set up base register

1 ST 13, SVAREA+4
LA 15, SVAREA
ST 15,8(13)
R 13,15

2

CALL name, (V1,V2,V3),VL

L 13,SVAREA+4
3 RETURN (14,12)
4 SVAREA DC 18F'0"
5 2 DC (data)
) V2 DC (data)
V3 DC (data)
END

This is an example of OS linkage convention. See the publication Supervisor and Data Management Services for details.

The symbol used for "name" in this statement is:

ENTER LINKAGE, ENTRY'name'.

a. The name of a subroutine or function, when the linkage is to @ FORTRAN-written subprogram.

b. The name defined by the following COBOL statements in the procedure division:

c. The name of a CSECT or START statement, or a name used in the operand field of an ENTRY statement in an assembler subprogram,

The order in which the parameter list is written must reflect the order in which the called subprogram expects the argument, If the called routine is a
FORTRAN-written function, the returned argument is not in the parameter list: a real or double precision function returns the value in floating point

register zero; an integer function returns the value in general purpose register zero,

CAUTION: When linking to FORTRAN-written subprograms, consideration must be given to the storage requirements of IBCOM (FORTRAN execution-time
1/O and interrupt handling routines) which accompanies the compiled FORTRAN subprogram. In some instances the call for IBCOM is not automatically
generated during the FORTRAN compilation, The FORTRAN IV Library publication provides information about IBCOM requirements and assembler state-
ments used to call IBCOM,

FORTRAN - written subprograms and FORTRAN library subprograms allow variable-length parameter lists in linkages which call them; therefore all linkages
to FORTRAN subprograms are required to have the high-order bit in the last parameter in the linkage set to 1, COBOL-written subprograms have fixed-
length calling linkages; therefore, for COBOL the high-order bit in the last parameter need not be set to 1.

3
This statement reserves the save area needed by the called subprogram. When control is passed to the subprogram, register 13 contains the address of this
area,

456 When linking to a FORTRAN or COBOL subprogram, the data formats declared in these statements are determined by the data formats réquired by

the FORTRAN or COBOL subprograms.

Figure 6. Linkage Statements

DICTIONARIES USED IN CONDITIONAI, ASSEMBLY
AND MACRO INSTRUCTION EXPANSION

To accomplish macro instruction expansion
and conditional assembly, the assembler
constructs a general dictionary consisting
of two parts: one global dictionary for
the entire program, and an area for all of
the local dictionaries.

The global dictionary contains one en-
try for each machine operation code, ex-
tended mnemonic operation code, assembler
operation code, macro instruction, and
global SET variable symbol.

The local dictionary area consists of
one local dictionary for each different

18

macro definition in the program, and one
local dictionary for the main portion of
the program (those statements not within
a macro definition, also called "open
code."). The contents of the local dic-
tionaries are described in subsegquent
paragraphs.

The capacity of the general dictionary
(global dictionary and all local diction-
aries) is up to 64 blocks of 1024 bytes
each. The division of the dictionary into
global and local sections is done dynami-
cally: as the global dictionary becomes
larger, it occupies blocks taken from the
local dictionary area. Thus, the global
dictionary is always core resident. As it

expands into the local dictionary area,
the local dictionaries may overflow onto

a utility file. The size of the diction-
aries in core depends upon core avail-
ability. The minimum core allocation is
three blocks for the global dictionary and
two blocks for each local dictionary.

Each block in the global and local
dictionaries contains complete entries.
Any entry not fitting into a block is
placed in the next block; the remaining
bytes in the current block are not used.

The global and local dictionaries take
two forms: one when the dictionary entries
are collected, i.e., picked up during the
initial scan of the source program, and
one during the actual conditional assembly
and macro generation, i.e., generation
time. The following text describes the
global and local dictionaries at both
collection time and generation time.

Global Dictionary at Collection Time

One global dictionary is built for the
entire program. It contains machine
operation codes, extended mnemonic opera-
tion codes, assembler operation codes,
OPSYN defined operation codes, macro
instruction mnemonics, and global SET
variable symbols. One entry is made

is shown in Table 5.

®Table 5. Global Dictionary Entries at

Collection Time

Entry Size

*

*
Each machine operation code 5 bytes plus mnemonic*

Each extended mnemonic operation

. ok .
code or assembler operation 6 bytes plus mnemonic*

Each macro mnemonic operation code | 10 bytes plus mnemonic*

Each global SET variable symbol 7 bytes plus name*

*One byte is used for each character in the name or mnemonic.

**For the first two types of entries, a total of
06FE]6 (179070) bytes of core is required.

Fixed overhead for this dictionary is:
8 bytes for the first block
4 bytes for each succeeding block
5 bytes for the last block

@®Table 6.

Local Dictionaries at Collection Time

For the main portion of the program (those
statements not within a macro definition),
one local dictionary is constructed in
which ordinary symbols, sequence symbols,
and local SET variable symbols are entered.
In addition, one local dictionary is con-
structed for each different macro defini-
tion in the program. These local diction-
aries contain one entry for each local SET
variable symbol, sequence symbol, and
prototype symbolic parameter declared
within the macro definition. If a sequence
symbol is defined before it is referenced,
an extra entry for the symbol is made.
Table 6 shows the size of each type of
entry.

Local Dictionary Entries at
Collection Time

Entry Size

Each sequence symbol 10 bytes plus name*

Each local SET variable symbol 7 bytes plus name*

Each prototype symbolic parameter 5 bytes plus name *

Each ordinary symbol
appearing in the main portion
of the program.

10 bytes plus name*

*One byte is used for each character in the name or mnemonic.

Fixed overhead for this dictionary is:
8 bytes for the first block (if in the
main program)
32 bytes for the first block (if in a
macro definition)
4 bytes for each succeeding block
5 bytes for the last block

Global Dictionary at Generation Time

The sizes of the global dictionary entries
at generation time are shown in Table 7.

Programming Considerations 19

®Table 7. Global Dictionary Entries at

Generation Time

Entry Size

Each macro mnemonic operation code | 3 bytes

Il Each global SETA symbol (dimensioned)| 2 byte plus 4N*

Each global SETA symbol

(undimensioned) 4 bytes

' Each global SETB symbol (dimensioned) | 2 byte plus (N/8)* (N/8 is
rounded to the next highest
integer)

Each global SETB symbol 1 bit
(undimensioned)

J| Each global SETC symbol

(dimensioned) 2.byte plus IN*

Each global SETC symbol

(undimensioned) 9 bytes

*N = dimension

Fixed overhead for this dictionary is
4 bytes plus word alignment.

Local Dictionaries at Generation Time

Table 8 shows the sizes of the various
entries appearing in the local dictionaries
at generation time.

®Table 8. Local Dictionary Entries at

Generation Time

Fixed overhead for this dictionary is
20 bytes plus word alignment,

Additional Dictionary Requirements

The generation time global dictionary and
the generation time local dictionary for
the main portion of the program must be
resident in main storage.

In addition, if the program contains any
macro instructions, main storage is re-
quired for the largest local dictionary of
the macro definitions being processed.
Furthermore, during processing of macro
definitions containing inner macro instruc-
tions, main storage is required for the
generation time local dictionaries for the
inner macro instructions contained within
the macro definition.

In addition to those requirements speci-
fied for the local dictionary of the main
portion of the program, each macro defini-
tion local dictionary requires space for
entries shown in Table 9.

Table 9. Macro Definition Local

Dictionary Parameter Table

Entry Size

Each character string (1) 3 bytes plus L

Each hexadecimal, binary, decimal,

and character self-defining tem (2) 7 bytes plus L

Each symbol (3) 9 bytes plus L

Each local SETA symbol

(undimensioned) 4 bytes

| | Each local SETB symbol (dimensioned) | 2 byte plus (N/8)* (N/8 is
rounded to the next highest

integer)

tach local SETB symbol 1 bit
(undimensioned)

' Each local SETC symbol(dimensioned) | 2 byte plus 9N*

Each local SETC symkol

(undimensioned) 9 bytes
Each ordinary symbol
appearing in the mair portion 5 bytes

of the program.**

*N=dimension
**These entries appear only in the main
program local dictionary.

20

Entry Size Each sublist 9 bytes plus 3N bytes plus Y-
Each sequence symbcl 5 bytes L = Length of BCD entry in bytes
N = Number of entries in sublist
] | Each local SETA symbol (dimensioned) | 2 byte plus 4N* Y = Ey+Ep+Eg+ ... E

where E = size of an entry (formats 1,2, and 3 above)

Fixed overhead for the macro definition
local dictionary parameter table is 22
bytes. Each nested macro instruction also
requires space in its local dictionary for
the following:

Parameter pointer list 8 bytes plus 2N
(N = the number
of operands)

8 bytes plus
word alignment

Pointers to parameter
pointer list and
parameter table

Correction of Dictionary Overflow

If an assembly is terminated at collection
time with either a GLOBAL DICTIONARY FULL
message (IEU053) or a LOCAL DICTIONARY FULL

message (IEU054), the programmer can take
one or more of the following steps:

1. Split the assembly into two or more
parts and assemble each separately.
2. Allocate more core for the assembler

(the global and local dictionaries
together can occupy up to 64K).

3. Run the assembly under Assembler E,
unless it includes features not
allowed by Assembler E. (Due to its
dictionary building algorithm, Assem-
bler E can handle more symbols with a
given size dictionary than can
Assembler F.)

4. Specify a smaller SYSLIB blocksize.
Thus, if BLKSIZE=3600, try BLKSIZE=
1800 or BLKSIZE=1200, reblock the
library to the size chosen, and try
the assembly again.

If the assembly is terminated at genera-
tion time with a GENERATION TIME DICTIONARY
AREA OVERFLOWED message (IEU068), the pro-
grammer should allocate more core to the
assembler and re-assemble his program. If
he cannot allocate more core to the assem-
bler, the programmer should split the
assembly into two or more parts and assem-—
ble each separately.

SYMBOL TABLE OVERFLOW

Assembler performance can degrade when
the source text plus macro-generated
statements contains many ordinary sym-
bols. If these are more ordinary symbols
than will fit in the symbol table, the
assembler will make one or more additional
passes over the text. No symbols will be
lost, but assembly time will increase.

In general, the assembler can handle
400 ordinary symbols without overflow in
its minimum core (See Table 1). Because
of input and/or output blocking differ-
ences, minimum core varies. It is approxi-
mately 45,000 bytes for PCP, 49,000 bytes
for MFT, and 51,000 bytes for MVT. The
assembler can process one additional
symbol for each 18 bytes above minimum
core.

SOURCE STATEMENT COMPLEXITY

The complexity of a source statement is
limited both by the macro generator and the
assembler portions of the assembler. The
following topics provide the information
necessary to determine if statement-
complexity limitations for either portion
of the assembler are being exceeded.

Macro Generation and Conditional Assembly
Limitation

For any statement which

Is a conditional assembly statement,

Is a DC or DS statement,

Is an EXTRN statement,

. Contains a sequence symbol or a
variable symbol,

5. 1Is not a macro instruction or proto-

type statement,

o> w N

the total number of explicit occurrences of

1. Ordinary symbols (includes machine
mnemonics, assembler mnemonics, con-
ditional assembly mnemonics, and macro
instruction mnemonics),

2. Variable symbols,

3. Sequence symbols,

must not exceed 50 for the entire state-
ment.

For macro instructions and prototype
statements the number of occurrences of
ordinary symbols, variable symbols, and
sequence symbols must not exceed 50 in the
name and operation fields combined; or in
each operand unless the operand is a sub-
list, in which case the limit is applied
to each sublist operand. In any operand if
a character string has the same form as a
symbol, it is counted as a symbol.

Examples of Counts:

&B2 SETB (T'NAME EQ 'W') count=3 (&B2,SETB, NAME)
EXTRN A,B,C,&C count=5 (EXTRN,A,B,C,&C)

Assembler Portion Limitations

1. Generated statements may not exceed 236
characters. Statement length includes
name, operation, operand, and comments.
If a comments field exists, the blank
separating the operand and comments
field is included in the statement
length. The statement is truncated if
it exceeds 236 characters.

2. DC, DS, DXD, and literal DCs cannot
contain more than 32 operands per
statement.

SYSTEM/360 MODEL 91 PROGRAMMING CONSIDERA-
TIONS

The assembly language programmer should be
aware of the operational differences
between the Model 91 and other System/360
models. The Model 91 requires a simulation

Programming Considerations 21

——

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

routine to execute most decimal instructions | They are extended-precision (two doubleword)

and it yields different floating-point in-
structions execution results. The Model 91
also decodes and executes instructions con-
currently.

These and other coding and timing con-
siderations are discussed in detail in IBM
System/360 Model 91 Functional Character-
istics, Form A22-6907. Additional informa-
tion on how to control sequential and non-
sequential instruction execution is given
below.

Controlling Instruction Execution Sequence

The CPU maintains a logical consistency
with respect to its own operations, includ-
ing the beginning and ending of I/0O opera-
tions, but it does not assume responsibility
for such consistency in the operations per-
formed by asynchronous units. Consequently,
for any asynchronous unit that depends upon
a strict adherence to sequential (or serial)
execution, a problem program must set up
its own procedures to ensure the proper
instruction sequence.

For a program section that requires the
serial or sequential execution of instruc-
tions, the following 'no-operation' in-
struction:

BCR M,0 where M # 0
causes the instruction decoder
and the instructions that have
decoded to be executed. (This action is
called a pipe-line drain.) On the Model 91,
this instruction ensures that all the in-
structions preceding it are executed before
the instruction suceeding it is decoded.

Use of this instruction should be minimdized
since it may affect the performance of the
Model 91.

Isolating an instruction by preceding it
and succeeding it with a BCR instruction
eliminates multiple imprecise interruptions
from more than one instruction by virtue of
the pipe-line drain effect. However, since
multiple exceptions may occur in one in-
struction, this technique does not eliminate
a multiple imprecise interruption nor does it
change an imprecise interruption into a pre-
cise interruption. The use of the BCR in-
struction does not assure a programmer that
he can fix up an error situation. In general,
the only information available will be the
address of the BCR instruction. The length of
the instruction preceding the BCR instruction
is not recorded, and generally there is no
way to determine what that instruction is.

to halt,
already been

SYSTEM/360 MODEL 85 PROGRAMMING CONSIDER-
ATIONS

The Model 85 has two special features avail-
able to the assembler language programmer.

22

floating point instructions and byte-oriented
(unaligned) operands. Detailed information
on these features is in the IBM System/360
Principles of Operation manual (GA22-6821).

Assembler F supports these features with
mnemonic operation codes for the extended-
precision instructions, a two doubleword
data constant (DC), an option for suppres-
sing the alignment error message, and an
assembler instruction for equating one op-
eration code to another. These assembler
features are explained in the following
paragraphs.

Extended-Precision Machine Instructions

The extended-precision arithmetic instruc-
tions and the rounding instructions of the
Model 85 are shown in Table 10. The data
format for extended operands of the AXR,
SXR, MXR, and LRDR instructions and for
extended results of the AXR, SXR, MXR, MXDR,
and MXD instructions is shown in Figure 7.

A complete description of these instructions
is in the Principles of Operation manual.

OPSYN-~-Operation Code Equate Instruction

A program containing the extended precision
instructions cannot be executed success-—
fully on another System/360 model unless
those instructions are converted into others
that can be executed by the non-Model 85
machine. The OPSYN assembler instruction
helps provide a facility for doing this.

The format of the OPSYN statement is:

A OPSYN B

where A is the name field of the statement
and is a source code mnemonic; and B is an
existing machine instruction mnemonic, an

Table 10. Extended-Precision and Rounding
Instructions
Name Mnemonic | Type |'Op Code
ADD NORMALIZED (extended operands,
extended result) AXR RR 36
SUBTRACT NORMALIZED (extended
operands, extended result) SXR RR 37
MULTIPLY (extended operands,
extended result) MXR RR 26
MULTIPLY (long operands,
extended result) MXDR { RR 27
MULTIPLY (long operands,
extended result) MXD RX 67
LOAD ROUNDED (extended to long) LRDR RR 25
LOAD ROUNDED (long to short) LRER RR 35

EXTENDED FLOATING POINT NUMBER (L)

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

7 BIT
CHARAC
TERISTIC

s 112 BIT

HIGH ORDER HALF OF

FRACTION

1] 78

63

1

LOW ORDER HALF OF
112 BIT FRACTION

0 78

Figure 7. Extended-Precision Floating Point

extended mnemonic code, an operation code
defined by a previous OPSYN statement, or
blank. The OPSYN statement assigns to A
all of the properties of B or, if B is blank,
removes A from the Assembler F Opcode Table.
If a programmer wishes to use, for exam-
ple, MXR (extended multiply) on a non-Model
85, he has at least two ways to do so:

1. The programmer can remove MXR from the
Assembler F Opcode Table and add a
macro instruction named MXR as a user
macro, in this manner:

MXR OPSYN
MACRO
MXR

&R1,&R2

MEND

The first statement removes MXR as a
machine instruction and allows the
programmer to define MXR as a macro
instruction; without the OPSYN state-
ment, Assembler F would continue to
assemble MXR as a machine instruction.
The programmer may approximate MXR by
"equating" it to MDR (multiply long):

MXR OPSYN MDR

The MDR instruction is then assembled
for each occurrence of MXR in the
source program. This allows him to
debug his routine on a non-Model 85
System/360 computer. Later, he can
remove the OPSYN statement, reassemble
the program, and run it on a Model 85.

Support of Unaligned Data

The Model 85 will execute unprivileged
RX- and RS- format instructions with fixed-
point, floating-point, or logical operands
that are not on integral boundaries.
Assembly of such instructions normally pro-
duces the diagnostic message "IEU033 Align-
ment Error". A new PARM option in the EXEC
statement for the Assembler F, ALGN or

63

Format

NOALGN, makes it possible to suppress the
message and thereby obtain a "clean" assem-
bly listing. The object code is not
affected.

Note that an assembled program that
requires use of the byte-oriented operand
feature must be run on a Model 85 or 195
machine. Further, it cannot run success~
fully under the Operating System if it
violates any alignment restrictions imposed
by O0S.

Type L Data Constant

A Define Constant operand type, L, has
been added to provide extended-precision
floating-point constants for the programmer.
It can be used as a Define Storage operand
or in a literal. Unless changed by a
length modifier, the Type L constant is 16
bytes long and is aligned on a double word
boundary. Its format is that of two
contiguous Type D constants, as shown in
Figure 7, except that it is assembled with
the sign of the second double word equal
to that of the first, and the characteris-
tic of the second equal to that of the

| first minus 14, modulo 128.

SYSTEM/360 MODEL 195 PROGRAMMING
CONSIDERATIONS

The Model 195 has the following. special
features: concurrent instruction execution,
extended-precision (two doubleword) floating-
point instructions, and byte-oriented (un-
aligned) operands. The previous descriptions
of these features under "System/360 Model 91
Programming Considerations" and "System/360
Model 85 Programming Considerations" also
apply to the Model 195.

Detailed information on the Model 195
can be found in IBM System/360 Model 195
Functional Characteristics, Order No.
GA22-6943.
NOTE: The Model 195 does not need the decimal

simulator routine used by the Model 91.

Programming Considerations 23

This appendix explains the messages issued by the assembler.

APPENDIX A.

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

DIAGNOSTIC MESSAGES

A more detailed description,

including information on how the programmer can respond to a message, is included in

IBM System/360 Operating System Messages and Codes (GC28-6631).

before responding to any message or calling IBM.

Refer to this publication

. Severity
Code Message Explanation Code
IEU001 DUPLICATION FACTOR A duplication factor is not an absolute 12
ERROR expression, or is zero in a literal: * in
duplication factor expression; invalid syntax
in expression.
IEUO02 RELOCATABLE DUPLI~- A relocatable expression has been used to 12
CATION FACTOR specify the duplication factor.

IEU003 LENGTH ERROR The length specification is out of permissible 12
range or specified invalidly: * in length
expression: invalid syntax in expression; no
left-parenthesis delimiter for expression.

IEU004 RELOCATABLE LENGTH A relocatable expression has been used to 12
specify length.

IEU005 S—-TYPE CONSTANT IN S-type address constants may not be specified 8

LITERAL in a literal.

IEU006 INVALID ORIGIN The location counter has been reset to a value 12
less than the starting address of the control
section; ORG operand is not a simply relocatable
expression or specifies an address outside the
control section.

IEU007 LOCATION COUNTER The location counter has exceeded 224—1, or 12

ERROR passed out of control section in negative
direction (3 byte arithmetic).

IEU008 INVALID DISPLACEMENT The displacement in an explicit address is not 8
an absolute value within the range of 0 to 4095.

TEU009 MISSING OPERAND %Ezgzgiﬁt requires an operand entry and none is 12

IEU010 INCORRECT REGISTER The value specifying the register is not an 8

SPECIFICATION absolute value within the range 0-13, an odd
register is specified where an even register
is required, or a register was used where none
can be specified.

IEUO011 SCALE MODIFIER ERROR The scale modifier is not an absolute express- 8
ion or is too large, negative scale modifier for
floating point, * in scale modifier expression;
invalid syntax or illegally specified scale
modifier.

IEUO012 RELOCATABLE SCALE A relocatable expression has been used to 8

MODIFIER specify the scale modifier.

IEU013 EXPONENT MODIFIER The exponent is not specified as an absolute 8

ERROR expression or is out of range; * in exponent
modifier expression; invalid syntax; illegally
specified exponent modifier.

IEUO0Ll4 RELOCATABLE EXPONENT A relocatable expression has been used to 8

MODIFIER

specify the exponent modifier.

Appendix A.

Diagnostic Messages

25

Code

IEU015

IEU016

IEUO0L17

IEUO018

TEUO019

IEU020

IEU021

TEU022

IEU023

IFU024

IEU025

IEUO026

IEU027

IEU028

26

Severity

Message Explanation Code
INVALID LITERAL USAGE A valid literal is used illegally, e.g., it 8

specifies a receiving field or a register,
or it is a Q-type constant.

INVALID NAME A name entry is incorrectly specified, e.g., it 8
contains more than 8 characters, it does not begin
with a letter, it has a special character imbedded,
or--if the statement is OPSYN--the name entry is
not an ordinary symbol or is an assembler operation
mnemonic.

DATA ITEM TOO LARGE The constant is too large for the data type 8
or for the explicit length; operand field
for packed DC exceeds 32 characters and for
zoned DC exceeds 16 characters (excluding
decimal points).

INVALID SYMBOL The symbol is specified invalidly, e.g., it is 8
longer than 8 characters or--if the statement is
OPSYN--the operand entry is not an ordinary sym-
bol or is an assembler operation mnemonic.

EXTERNAL NAME ERROR A CSECT and DSECT statement have the same 8
name, or a symbol is used more than once in
an EXTRN or the name field of DXD statements.

INVALID IMMEDIATE The value of the immediate operand exceeds 255, 8
FIELD or the operand requires more than one byte of
storage, or the operand is not an acceptable type.

SYMBOL NOT An expression requiring that all symbols be pre- 8
PREVIOUSLY DEFINED viously defined contains at least one symbol not
previously defined.

ESDTABLE OVERFLOW The combined number of control sections and 12
dummy sections plus the number of unique
symbols in EXTRN statements and V-type con-
stants exceeds 255. (A DSECT which appears
as XD makes two entries).

PREVIOUSLY DEFINED The symbol which appears in the name field has 8
NAME appeared in the name field of a previous
statement.
UNDEFINED SYMBOL A symbol being referenced has not been defined 8
in the program.
RELOCATABILITY A relocatable or complex relocatable expression 8
ERROR is specified where an absolute expression is

required, an absolute expression or complex
relocatable expression is specified where a
relocatable expression is required, or a reloca-
table term is involved in multiplication or

division.
TOO MANY LEVELS OF An expression specifies more than 5 levels of 12
PARENTHESES parentheses.
TOO MANY TERMS More than 16 terms are specified in an 12
expression.
REGISTER NOT USED A register specified in a DROP statement is not 4

currently in use.

Code
IEU029

IEU030

IEUO031

IEU032

-IEU033

IEU034

IEU035

IEU036

IEU037

IEUO38

IEU039

IEU040

IEU041

IEU042

IEU043

IEU044

Message
CCW ERROR

INVALID CNOP
UNKNOWN TYPE
OP-CODE NOT ALLOWED

TO BE GENERATED

ALIGNMENT ERROR

INVALID OP-CODE

ADDRESSABILITY ERROR

(No message is
assigned to
this number)

MNOTE STATEMENT

ENTRY ERROR

INVALID DELIMITER

GENERATED RECORD
TOO LONG

UNDECLARED VARIABLE
SYMBOL

SINGLE TERM LOGICAL
EXPRESSION IS NOT
A SETB SYMBOL

SET SYMBOL
PREVIOUSLY DEFINED

SET SYMBOL USAGE
INCONSISTENT WITH
DECLARATION

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

Severity

Explanation
Bits 37-39 of the CCW are set to non-zero.

An invalid combination of operands is specified.

Incorrect type designation is specified in a DC, DS,
or literal. If the DOS option is specified, type Q
will be flagged as unknown.

Operation code allowed only in source statement has
been obtained through substitution of a value for a
variable symbol.

Referenced address is not aligned to the proper
boundary for this instruction, e.g., START
operand not a multiple of 8.

NOTE: If a register is explicitly specified in the
reference, no message is issued, e.g., L 3,3(REG4)

Syntax error, e.g., more than 8 characters in
operation field, not followed by blank on first
card, missing.

The referenced address does not fall within the
range of a USING instruction.

This indicates that an MNOTE statement has been
generated from a macro definition. The text and
severity code of the MNOTE statement will be
found in line in the listing.

A symbol in the operand of an ENTRY statement
appears in more than one ENTRY statement, it is
undefined, it is defined in a dummy section or
in blank common, or it is equated to a symbol
defined by an EXTRN statement.

This message can be caused by any syntax error,
e.g., missing delimiter, special character used
which is not a valid delimiter, delimiter used
illegally, operand missing, i.e., nothing
between delimiters, unpaired parentheses,
imbedded blank in expression.

There are more than 236 characters in a
generated statement.

Variable symbol is not declared in a defined SET
symbol statement or in a macro prototype.

The single term logical expression has not been
declared as a SETB symbol.

Self-~explanatory.

A SET symbol has been declared as undimensioned,
but is subscripted, or has been declared
dimensioned, but is unsubscripted.

Appendix A.

(See "Assembler Options".

8

12

12

12

Diagnostic Messages

Code

Variable

27

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33-8075

Severity
Code Message Explanation Code
IEU045 ILLEGAL SYMBOLIC An attribute has been requested for a variable
PARAMETER symbol which is not a legal symbolic parameter., 8
IEU046 AT LEAST ONE RELOCAT- oOne or more relocatable Y-type constants in 4
ABLE Y TYPE CONSTANT assembly; relocation may result in address
IN ASSEMBLY greater than 2 bytes in length.
IEU047 SEQUENCE SYMBOL Self-explanatory. 12
PREVIOUSLY DEFINED
IEU048 SYMBOLIC PARAMETER Self-explanatory. 12
PREVIOUSLY DEFINED OR
SYSTEM VARIABLE SYMBOL
DECLARED AS SYMBOLIC
PARAMETER
IEU049 VARIABLE SYMBOL Self-explanatory. 12
MATCHES A PARAMETER
IEUO050 INCONSISTENT GLOBAL A global SET variable symbol, defined in more 8
DECLARATIONS than one macro definition or defined in a
macro definition and in the source program, is
inconsistent in SET type or dimension.
IEUO051 MACRO DEFINITION Prototype operation field is the same as a 12
PREVIOUSLY DEFINED machine or assembler instruction or a previous
prototype. This message is not produced when
a programmer macro matches a system macro. The
programmer macro will be assembled with no in-
dication of the corresponding system macro.
IEU052 NAME FIELD CONTAINS SET symbol in name field does not correspond 8
ILLEGAL SET SYMBOL to SET statement type.
IEU053 GLOBAL DICTIONARY The global dictionary is full, assembly ter-- 12
FULL minated. See Correction of Dictionary Over-
flow.
IEU0O54 LOCAL DICTIONARY FULL The local dictionary is full, current macro 12
aborted. If in open code, assembly terminated.
See Correction of Dictionary Overflow.
IEUO055 INVALID ASSEMBLER Self-explanatory. 8
OPTION(S) ON THE
EXECUTE CARD
IEU056 ARITHMETIC OVERFLOW The intermediate or final result of an exgress- 8
ion is not within the range of -231 o 231-1,
IEU057 SUBSCRIPT NOT &SYSLIST or symbolic parameter subscript exceeds 8
WITHIN DIMENSIONS 200, or is negative, or zero, or SET symbol
subscript exceeds dimension specified in LCL/GBL
statement.
IEU058 RE-ENTRANT CHECK An instruction has been detected, which, when 4
FAILED executed, might store data into a control section

or a common area. This message is generated only
when requested via control cards and merely
indicates a possible reentrant error.

TEU059 UNDEFINED SEQUENCE Self-explanatory. 12
SYMBOL

TEUO60 ILLEGAL ATTRIBUTE L', 8', or I' requested for a parameter whose 8
NOTATION type attribute does not allow these attributes

to be requested.

28

Code

IEU061

IEUO062

IEUO63

IEU064

IEU065

IEUO66

IEU067

IEU068

IEU069

IEU070

IEUO071

IEU072

IEU073

IEU074

IEUO075

Message
ACTR COUNTER EXCEEDED

GENERATED STRING
GREATER THAN 255
CHARACTERS

EXPRESSION 1 OF SUB-
STRING IS ZERO OR
MINUS

EXPRESSION 2 OF SUB-
STRING IS ZERO OR
MINUS

INVALID OR ILLEGAL
TERM IN ARITHMETIC
EXPRESSION

UNDEFINED OR DUP-
LICATE KEYWORD
OPERAND OR EXCESSIVE
POSITIONAL OPERANDS

EXPRESSION 1 OF SUB-
STRING GREATER THAN
LENGTH OF CHARACTER
EXPRESSION

GENERATION TIME
DICTIONARY AREA
OVERFLOWED

VALUE OF EXPRESSION
2 OF SUBSTRING
GREATER THAN 8

FLOATING POINT
CHARACTERISTIC OUT
OF RANGE

ILLEGAL OCCURRENCE
OF LCL, GBL, OR
ACTR STATEMENT

ILLEGAL RANGE ON
ISEQ STATEMENT

ILLEGAL NAME FIELD

ILLEGAL STATEMENT
IN COPY CODE OR
SYSTEM MACRO

ILLEGAL STATEMENT
OUTSIDE OF A MACRO
DEFINITION

Severity

Explanation Code
Self-explanatory, conditional assembly terminated. 12
Self-explanatory. 8
Self-explanatory. 8
Self-~explanatory. 8
The value of a SETC symbol used in the arith- 8
metic expression is not composed of decimal
digits, or the parameter is not a self-defining
term.
The same keyword operand occurs more than once 12
in the macro instruction; a keyword is not
defined in a prototype statement; in a mixed
mode macro instruction, more positional
operands are specified than are specified in
the prototype.
Self-explanatory. 8
See Correction of Dictionary Overflow and 12
Dictionary Size and Source Statement Complexity.
Self-explanatory. 8
Exponent too large for length of defining 12
field, exponent modifier has caused loss
of all significant digits.
ICL, GBL, or ACTR statement is not in proper 8
place in the program.
One or more columns to be sequence checked are be- 4

tween the "begin" and "end" columns of the statement.

Either a statement requires a name and the name 8
field is blank or a statement has a name which

should be blank or a name entry required to be

a sequence symbol is not a sequence symbol.

A statement brought in by a COPY statement is END, 8

ICTL, ISEQ, MACRO, MEND,

or COPY. A model state-

mend in a system macro definition is END, ICTL,

ISEQ, or PRINT.

Statement allowed only in a macro definition

encountered in OPEN code, e.g., period asterisk

(.*), mnote statement.

Appendix A.

Diagnostic Messages 29

Code

IEUQ76

IEUQ77

IEUO078

IEUO079

IEU080

IEU081

TEU082

IEU083

IEU084

TEU085

IEUO086

IEU087

TEU0E&8

IEU089

30

Message

SEQUENCE ERROR

ILLEGAL CONTINUATION
CARD

INCOMPATIBLE ASSEM-
BLER OPTIONS ON THE
EXECUTE CARD

ILLEGAL STATEMENT
IN MACRO DEFINITION

ILLEGAL START CARD

ILLEGAL FORMAT IN
GBL OR LCL STATE-
MENTS

ILLEGAL DIMENSTON
SPECIFICATION IN GBL
OR LCL STATEMENT

SET STATEMENT NAME
FIELD NOT A VARIABLE
SYMBOL

ILLEGAL OPERAND FIELD

FORMAT

INVALID SYNTAX IN
EXPRESSTION

ILLEGAL USAGE OF
SYSTEM VARIABLE
SYMBOL

NO ENDING APOSTROPHE

UNDEFINED OPERATION
CODE

INVALID ATTRIBUTE
NOTATION

Severity

Explanation Code
See "ISEQ--Input Sequence Checking" in the Assem- 12
bler Language manual.
Either there are too many continuation cards, 8

or there are non-blanks between the begin and
continue columns on the continuation card, or

a card not intended as continuation was treated
as such because of punch in continue column

of preceding card.

The DOS assembler option has been specified along
with the options LOAD, TEST, RENT, or NOALGN. The
assembler has used the default options NOLOAD,
NOTEST, NORENT or ALGN.

This operation is not allowed within a macro
definition.

Statements affecting or depending upon the
location counter have been encountered before
a START statement.

An operand is not a variable symbol.

Dimension is other than 1 to 2500.

Self-explanatory.

Syntax invalid, e.g., AIF statement operand
does not start with a left parenthesis; operand
of AGO is not a sequence symbol; operand of
PUNCH, TITLE, MNOTE not enclosed in guotes.

Invalid delimiter, too many terms in expression,
too many levels of parentheses, two operators

in succession, two terms in succession, or
illegal character.

A system variable symbol appears in the name
field of a SET statement, is declared in a GBL
or LCL statement, or is an unsubscripted
&SYSLIST in a context other than N'&SYSLIST.

There is an unpaired apostrophe or ampersand in
the statement.

Symbol in operation code field does not
correspond to a valid machine or assembler
operation code or to any operation code in a
macro prototype statement. If the statement
is OPSYN, the operand entry is not a defined
machine or extended operation code, or the
operand entry 1is omitted and the name entry
is not a defined machine or extended oper-
ation code. If the DOS option is in effect,
DXD and CXD operation codes will be flagged
as undefined. (See "Assembler Options".)

Syntax error inside a macro definition, e.g.,
the argument of the attribute reference is not
a symbolic parameter.

12

Code

IEU090

IEU091

TEU092

IEU093

IEU094

IEU095

IEU096

IEU097

IEU098

IEU099

Message

INVALID SUBSCRIPT

INVALID SELF-DEFINING
TERM

INVALID FORMAT FOR
VARIABLE SYMBOL

UNBALANCED PAREN-
THESIS OR EXCESSIVE
LEFT PARENTHESES

INVALID OR ILLEGAL
NAME OR OPERATION IN
PROTOTYPE STATEMENT

ENTRY TABLE OVERFLOW

MACRO INSTRUCTION OR
PROTOTYPE OPERAND
EXCEEDS 255 CHARAC-
TERS IN LENGTH

INVALID FORMAT IN
MACRO INSTRUCTION
OPERAND OR PROTOTYPE
PARAMETER

EXCESSIVE NUMBER OF
OPERANDS OR PARAM-
ETERS

POSITIONAL MACRO:
INSTRUCTION OPERAND,
PROTOTYPE PARAMETER
OR EXTRA COMMA
FOLLOWS KEYWORD

Severity
Explanation Code
Syntax error, e.g., double subscript where 8
sinagle subscript is required or vice versa;
not right parenthesis after subscript.

Value is too large or is inconsistent with the 8
data type, e.g., severity code greater than 255.

The first character after the ampersand is not 8
alphabetic, or the variable symbol contains

more than 8 characters, or failure to use

double ampersand in TITLE card or character
self-defining term.

End of statement or card encountered before all 8
parenthesis levels are satisfied. May be caused

by embedded blank or other unexpected terminator,

or failure to have a punch in continuation

column,

Name not blank or variable symbol, or variable 12
symbol in name field is subscripted, or violation

of rules for forming variable symbol (must be-

gin with ampersand (&) followed by 1-7 letters

and/or numbers first of which must be a letter),

or statement following 'MACRO' is not a valid
prototype statement.

Number of ENTRY symbols, i.e., ENTRY instruc- 8
tion operands, exceeds 100.

Self-explanatory. 12

This message can be caused by: 12
1. 1Illegal "=".
2. A single "&" appears somewhere in the
standard value assigned to a prototype
keyword parameter.
3. First character of a prototype parameter
is not "&".
4, Prototype parameter is a subscripted
variable symbol. \
5. Invalid use of alternate
type statement, e.qg.,

format in proto-

10 l6 72
PROTO &A , &B,
or
PROTO &A,&B, X
&C

6, Unintelligible prototype parameter, e.g.,
"&A*" or "&A&&."

7. Illegal (non-assembler) character appears
in prototype parameter or macro instruction
operand.

Either the prototype has more than 200 param- 12
eters, or the macro instruction has more than
200 operands.

Self-explanatory. 12

Appendix A. Diagnostic Messages 31

Code

IEU100

IEU101

IEU102

IEU103

TEUl04

IEUL105

IEU106

IEU107

IEU108

IEU109

IEU110

IEU11l1

IEUL12

IEUll6

IEU117

32

Message

—

STATEMENT COMPLEXITY
EXCEEDED

EOD ON SYSIN
INVALID OR ILLEGAL
ICTL

ILLEGAL NAME IN
OPERAND FIELD OF
COPY CARD

COPY CODE NOT FOUND
ECD ON SYSTEM MACRO
LIBRARY

NCT NAME OF DCECT
OR DXD

INVALID OPERAND

PREMATURE EOD

PRECISION LOST

EXPRESSION VALUE
TOO LARGE

SYSGO DD CARD MISSING
NOLOAD OPTION USED

SYSPUNCH DD CARD
MISSING NODECK OPTION
USED

ILLEGAL OPSYN

OPSYN TABLE
OVERFLOW

Explanation

More than 32 operands in a DC, DS, DXD, or

literal DC, or more than 50 terms in a statement.

EOD before END card.

The operands of the ICTL are out of range, or
the ICTL is not the first statement in the
input deck.

Syntax error, e.g., symbol has more than 8
characters or has an illegal character.

The operand of a COPY statement specified
COPY text which cannot be found in the library.

EOD before MEND card.

Referenced symbol expected to be DSECT name,
but it is not.

Invalid syntax in DC operand, e.g., invalid
hexadecimal character in hexadecimal DC;
operand string too long for X, B, C, DC's;
operand unrecognizable, contains invalid value,
or incorrectly specified.

Indicates an internal assembler error; should
not occur.

Self-explanatory.

Value of expression greater than -16777216 to
+16777215.

Expressions in EQU and ORG statements are
flagged if (1) they include terms previously
defined as negative values, or (2) positive
terms give a result of more than three bytes
in magnitude. The error indication may be
erroneous due to (1) the treatment of negative
values as three-byte positive values, or (2)
the effect of large positive values on the
location counter if a control section begins
with a START statement having an operand greater
than zero, or a control section is divided
into subsections.

Self-explanatory.

Self-explanatory.

An explicit or implicit machine operation,
macro definition, or macro instruction preceded
this statement.

No room exists in symbol table for this and fol-
lowing OPSYN definitions; generated operation
codes may not be processed correctly.

Severity
Code

8

12

le6

12

12

12

16

16

16

8

Code

IEU997

IEU998

IEU999

Message

SYSPRINT DD CARD

MISSING NOLIST OPTION

USED

ASSEMBLY TERMINATED.
MISSING DATA SET FOR
(ddname)

ASSEMBLY TERMINATED,
jobname, stepname,
unit address, device
type, ddname, opera-
tion attempted,
error description

Severity

Explanation ~ Code
Self-explanatory. Printed on console device. 0
It is printed on SYSPRINT if possible, otherwise 20

it is printed on the console device.

Indicates a permanent I1/0 error. This message 20
is produced by a SYNADAF macro instruction. It is
printed on SYSPRINT if possible, otherwise on the
console device.

Appendix A. Diagnostic Messages 33

This page intentionally left blank.

APPENDIX B. OBJECT DECK OUTPUT

TEXT (TXT) CARD FORMAT Columns 17-36 of the RLD card would ap-
pear as follows:
The format of the TXT cards is as follows: Entry 1 Entry 2 Entry 3
COlul’nIlS Contents Column: 17 18 19 20 21 22 23 24|25 26 27 28]29 30 31 32 33 34 35 36|37—=72
- - 00Jo4JooJozJonf ooJor]oofoc] eo]ai] o4 |oo] 1] 00 03]oc] oo JosJoo]
!, 12-2-9 punch oo Ton | haaen | | Awsen | 5010n | emen | s
5 Blank Flag Flag Flag
6-8 Relative address of first e et oo
. instruction on card
9-10 Blank ESD CARD FORMAT
11-12 Byte count -- number of
bytes in information The format of the ESD card is as follows:
field (cc 17-72)
13-14 Blank Columns Contents
15-16 ESDID
17-72 56-byte information field 1 12~2-9 punch
73-76 Deck ID (from first TITLE 2-4 ESD
card) 5-10 Blank
77-80 Card sequence number 11-~12 Variable field count -~
number of bytes of informa-
RLD CARD FORMAT tion in variable field
(ce 17-64)
The format of the RLD card is as follows: 13-14 Blank
15-16 ESDID of first SD, XD, CM,
Columns Contents PC, or ER in variable field
- 17-64 Variable field. One to
1 12-2-9 punch three 16-byte items of the
2-4 RLD following format:
5-10 Blank 8 bytes -- Name, padded
11-12 Data field count -- number with blanks
of bytes of information in 1 byte -- ESD type code
data field (cc 17-72) The hex value is:
13-16 Blank 00 SD
17-72 Data field: 01 LD
17-18 Relocation ESDID 02 ER
19-20 Position ESDID 04 PC
21 Flag byte 05 CM
22-24 Absolute address to be 06 XD (PR)
relocated 3 bytes -~ Address
25-72 Remaining RLD entries 1 byte -- Alignment if XD;
73-76 Deck ID (from first TITLE otherwise blank
card) 3 bytes -- Length, LDID, or
77-80 Card sequence number blank
. . , 65-72 Blank
If the rlghtmost bit of the flag byte is 73-76 Deck ID (from first TITLE
set, the fol;ow1ng RLD entry hag the card)
same Relocation ESDID and Position ESDID, 77-80 Card sequence nunber

and this information will not be repeated;
if the rightmost bit of the flag byte is
not set, the next RLD entry has a different RMZ
Relocation ESDID and/or Position ESDID, END CARD FO L
and both ESDIDs will be recorded :
A : d f :

For example, if the RLD Entries 1, 2, The format of the END card is as follows

and 3 of the program listing (Appendix C)

contain the following information: Columns Contents
Pos. Rel. 1 12-2-9 punch
ESDID ESDID Flag Address 2-4 END
5 Blank
Entry 1 02 04 oc 000100 6-8 Entry address from operand
Entry 2 02 04 oc 000104 of END card in source deck
Entry 3 03 01 ocC 000800 (blank if no operand)

Appendix B. Object Deck Output 35

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33..8075

9--14 Blank

15-16 ESDID of entry point (blank
if no operand)

Blank

Version of the assembler
(e.g., F 14FEB66, time

of the assembly (hh.mm),
and date of the assembly

17-39
40-62

(mm/dd/yy). See
"Assembler Listing" sec-
tion.)

TESTRAN (SYM) CARD FORMAT

If requested by the user, the assembler
punches out symbolic information for TES-
TRAN concerning the assembled program.
This output appears ahead of all loader

text. The format of the card images for
TESTRAN output is as follows:
Columns Contents
1 12~2-9 punch
2-4 SYM
5-10 Blank
11-12 Variable field count --
number of bytes cf text in
variable field (cc 17-72)
13-16 Blank
17-72 Variable field (see below)
73-76 Deck ID (from first TITLE
card)
77-80 Card sequence number

The variable field (columns 17-72) con-
tains up to 56 bytes of TESTRAN text. The
items making the text are packed together,
consequently only the last card may con-
tain less than 56 bytes of text in the
variable field. The formats of a text
card and an individual text item are shown
in Figure 8. The contents of the fields
within an individual entry are as follows:

1. Organization (1 byte)

Bit O:
0 = non-data type
1 = data type
Bits 1-3 (if non-data type):
000 = space
001 = control section

36

010 = dummy control section
011 = common

100 = instruction

101 = CCW

Bit 1 (if data type):

0 no multiplicity
multiplicity (indicates
presence of M field)
Bit 2 (if data type):

0 = independent (not a
packed or zoned decimal
constant)

1 = cluster (packed or
zoned decimal constant)

Bit 3 (if data type):

0 = no scaling

1-= scaling (indicates pres-
ence of S field)

[l

1

Bit 4:
0
1

name present
name not present

Bits 5-7:
Length of name minus one
2. Address (3 bytes) - displacement from
base of control section
3. Symbol Name (0-8 bytes) -~ symbolic
name of particular item

NOTE: The following fields are only pres-
ent for data-type items.

4. Data Type (1 byte) - contents in hex-

adecimal
00 = character
04 = hexadecimal
08 = binary
10 = fixed point, full
14 = fixed point, half
18 = floating point, short
1C = floating point, long
20 = A-type or Q-type data
24 = Y-type data
28 = S-type data
2C = V-type data
30 = packed decimal
34 = zoned decimal
38 = L-type data

5. Length (2 bytes for character, hexa-
decimal, or binary items; 1 byte for
other types) - length of data item
minus 1

6. Multiplicity - M field (3 bytes) -
equals 1 if not present

7. Scale - signed integer - S field (2
bytes) - present only for ¥, H, E, D,
P and Z type data, and only if scale
is non-zero.

1 2 45 10 111213 16 17 72 73 76 77 80
No.

12 of

21 SYM blank | bytes| blank TESTRAN text - packed entries Deck | Sequence

9 of D Number
text

1 3 2 4 56 4 4

Entry Entry

(complete or
end portion)

N complete entries
N =1

(complete or
head portion)

Variable size entries

Org. | Address Symbol N Dot || ength Mult. Scale | Or Symbol
rgo ym {o] ame type g chfor cale e que
1 3 0-8 1 1-2 3 2

Figure 8. TESTRAN SYM Card Format

Appendix B.

Object Deck Output

37

APPENDIX C. ASSEMBLER F PROGRAM LISTING

The Assembler F listing shown in "The Assembler Listing," the headings on
this appendix results from assembling the listing are numbered.

the source program documented in an Since there were no errors in the
appendix to the Assembler Language publi- assembly, a diagnostic list was not pro-
cation. For easy reference to the duced. Each of the following pages repre-
explanations that appear in the section sents one printer-produced listing page.

EXAM @ @ @ @ @ EXTERNAL SYMB3L DICTIONARY PAGE 1

SYMBUOL TYPE ID ADUR LENGTH LD ID 00.16 4/11/66

SAMPLR SLU 01 000000 000388

38

EXAM PAGE 1

© O ® ® @O ® @©

LOC OUBJECT Cuut ADDR1 ADDRZ STMT SOURCE STATEMENT F 14FEB66 4/11/66
1 *% THIS IS THE EXECUTABLE SAMPLE PROGRAM SHOWN IN THE SRL - *
2 *x ASSEMBLER LANGUAGE MANUAL. - *

Appendix C. Assembler F Program Listing 39

@

EXAM

@©

LLc

000000

®

SAMPLE PRUGRAM
D)
UBJECT CODE

@

AUDRL ADLRZ2 STMT

SOURCE

« TYPEDEH
-®

'k

ok

&TYPE
«MOVE

*

i
oW
o ¥
« TYPECGK
*

ot
-t
=
«ERROR 1

« ERROR2
«ERROR3
«ERROR4
x

*
*

SAMPLR
BEGIN

STATEMENT F 14FEB
PRINT DATA
THIS IS THE MACRO DEFINITION

MACRO

MOVE &TO,&FROM

DEFINE SETC SYMBOL

LCLC &TYPE

CHECK NUMBER OF OPERANDS

AlF {N'&SYSLIST NE 2).ERROR1

CHECK TYPE ATTRIBUTES OF OPERANDS

AlF (T*ETO NE T'&FROM).ERROR2

AlLF (T'&TO EQ *CY OR T'&TO EQ *G* OR T*'&TO EQ *K*).TYPECGK
AlIF (T'ETO EQ 'D* OR T'&TO EQ 'E' OR T*&TO EQ *H*).TYPEDEH
AlF {T'&TO EQ *F').MOVE

AGO «ERROR3

ANOP

ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL

SETC TU&T0

ANOP

NEXT TwO STATEMENTS GENERATED FOGR MUVE MACRO
LETYPE 2, &FROM

STETYPE 2,4&T0

MEXIT

CHECK LENGTH ATTRIBUTES OF OPERANDS

ALF (L'4TO NE L*&FROM OR L'&TO 6T 256).ERROR4
NEXT STATEMENT GENERATED FOR MOVE MACRO

MvC &ET0, £FROM

MEXIT

ERROR MESSAGES FOR INVALIU MOVE MACRO INSTRUCTIONS

MNOTE 1,°IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATE
MEXIT

MNOTE 1,'OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED®
MEXIT

MNOTE 1, IMPROPER OPERAND TYPES, ND STATEMENTS GENERATED®
MEXIT
MNOTE 1,'IMPROPER OPERAND LENGTHS,
MEND

NO STATEMENTS GENERATED®

MAIN ROUTINE

CSECT

SAVE (1l4¢12)s4¥

®

PAGE 2

®

66 4/11/766

@SAMPLOOZ

SAMPLOOD3
SAMPLOO4
SAMPLOOS
SAMPLOO6
SAMPLOO7
SAMPLOOSB
SAMPLOOY
SAMPLO10O
SAMPLO11
SAMPLOL2
SAMPLO13
SAMPLOL4
SAMPLO15
SAMPLO16
SAMPLO17
SAMPLOLS
SAMPLO19
SAMPLO20
SAMPLOZ1
SAMPLO22
SAMPLO23
SAMPLO24
SAMPLO25
SAMPLO26
SAMPLO27
SAMPLO28
SAMPLO29
SAMPLO30
SAMPLO31
SAMPLO32
SAMPLO33
SAMPLO34
SAMPLO35
SAMPLO36
SAMPLO37
SAMPLO38
SAMPLO39
SAMPLO4O
SAMPLO41
SAMPLO42
SAMPLO43
SAMPLO44
SAMPLO4S
SAMPLO46
SAMPLO47
SAMPLO48
SAMPLO49
SAMPLOSO
SAMPLOS1
SAMPL0S2
SAMPLOS3
SAMPLOS4
SAMPLOSS
SAMPLOS6

D*

40

@

EXAM SAMPLE PRUGRAM PAGE 3
LUC UBJUECT COLE ADDR1 ADDR2 STMT SOURCE STATEMENT F 14FEB66 4/1.1/66

000000 47FC FOOA 00004 59+BEGIN 8 10(0,15) BRANCH AROUND ID

000004 05 60+ oc AL1(5)

000005 €2L5CT7C9D5 61+ DC CL5*BEGIN® IDENTIFIER

OUOQUA 90EL DOOC 0000C 62+ STH 14412512413) SAVE REGISTERS

00000t ©5C0 63 BALR R12,0 ESTABLISH ADDRESSABILITY OF PROGRAM SAMPLOS7

000010 o4 USING *,R12 AND TELL THE ASSEMBLER WHAT BASE TO USE SAMPLOS8

000010 50uL0C COB8 000C8 65 ST 13,SAVEL3 SAMPLOS9

000014 9857 C390 003A0 66 LM R54RT7y=A(LISTAREA,164LISTEND) LOAD LIST AREA PARAMETERS SAMPLO60

0a0000 67 USING LIST,R5 REGISTER 5 POINTS TO THE LIST SAMPLOGL

000018 45c0 COs8E 000CE 68 MURE BAL R14,SEARCH FIND LIST ENTRY IN TABLE SAMPLD62

00001C 9180 COBC 000CC 69 ™ SWITCHsNONE CHECK TO SEE IF NAME WAS FOUND SAMPLO63

000020 4710 COBO ¢00Co 70 80 NOTTHERE BRANCH IF NOT SAMPLOG64

0000060 71 USING TABLEsR1 REGISTER 1 NOW POINTS TO TABLE ENTRY SAMPLO6S
72 MOVE TSWITCH,LSWITCH MOVE FUNCTIONS SAMPLO66
T3+% NEXT STATEMENT GENERATED FOR MOVE MACRO

000024 V200 1003 5008 00003 00008 T4+ MVC TSWITCHeLSWITCH
15 MOVE TNUMBER,LNUMBER FROM LIST ENTRY SAMPLO67
To+% NEXT STATEMENT GENERATED FOR MOVE MACRO

0U00ZA D202 1000 5009 00000 GOOO9 17+ MVC TNUMBER 9 LNUMBER
78 MOVE TADDRESSLADDRESS TU TABLE ENTRY SAMPLO68
T9+% NEXT TwO STATEMENTS GENERATED FOR MOVE MACRO

0000630 5&20 500C 0000C 80+ L 29LADDRESS

Q00034 5020 1004 00004 81+ ST 2y TADDRESS

000038 8756 (€008 00018 82 LISTLOOP BXLE R5,R6,MORE LOOP THROUGH THE LIST SAMPLO6S

00003C D5EF C240 COFO 00250 00100 83 cLe TESTTABL{240) ,TABLAREA SAMPLOT70

00U042 4770 CQ7C 0008C 84 BNE NOTRIGHT SAMPLO71

000046 D55F €330 C1lEO 00340 001FO 85 cLC TESTLIST(96)sLISTAREA SAMPLOT72

00004C 4770 COiC 0008C 86 BNE NOTRIGHT SAMPLO73
87 WI0 YASSEMBLER SAMPLE PROGRAM SUCCESSFUL® SAMPLO74

000050 88+ CNOP 0e4

000050 4510 COo6L 0007C 89+ BAL 1+IHBOOO5A BRANCH AROUND MESSAGE

000054 0027 90+ oc AL2(IHBO0OOS—%*) MESSAGE LENGTH

000056 0000 91+ DC AL2(0)

000058 C1lEzE2C5D4C2D3C5 92+ oC C*ASSEMBLER SAMPLE PROGRAM SUCCESSFUL' MESSAGE

000060 D940E2CLD4LTD3CS .

000068 40D7D9D6CT709C104

000070 40E2E4C3C3CHE2ER

000078 L6k4D3

000078 93+1HBO005 EQU *

00007C 94+1HBOOOSA DS OH

00007C 0AZ3 95+ SveC 35 ISSUE SVC

00007E 58U0 CoB8 oooCcs 96 EXIT L R13,SAVEL13 SAMPLOT7S
97 RETURN (14412),RC=0 SAMPLO76

000082 98EC D0OOC 0000C 98+ LN 149125,12(13) RESTORE THE REGISTERS

000086 41F0 0000 00000 99+ LA 15,0(0,0) LOAD RETURN CODE

00008A O7FE 100+ BR 14 RETURN
101 * SAMPLOTY
102 NOTRIGHT WTO *ASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL® SAMPLO78

00008C 103+ CNOP 0,4

00008C 4510 COAA 000BA 104 +NOTRIGHT BAL 1, IHBOOO7A BRANCH AROUND MESSAGE

000090 0029 105+ oC AL2({IHBOOO7-#*) MESSAGE LENGTH

000092 0000 106+ oc AL2(0)

000094 ClE2E2C504C203C5 107+ DC CYASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL' MESSAGE

00009C D940E2C1D4D7D3C5
0000A4 40D7D906CT70DSC1D4

Appendix C. Assembler F Program Listing 41

@

EXAM

LuC

0000AC
0000b4
ouooB9
0000BA
00008A
00008C
0000C0
0000Ls
0000Cs
0000CC
000080

000oLD
0000CE
000002
00006
000004
Q000bLE
0000E4
0000ks

Q000EA
0000EC
0000F0
000UF4
0000F6
0000FA
0000FE

000100
000100
000108
000110
000118
000120
000128
000130
000138
000140
000148
000150
000158
a00160
000168
000170
000178
000180
000168
000190
000198
0001A0

®

SAMPLE: PROGRAM
O

UBJECT CULE

4CE4DSE2E4C3C3C5
E2E2C6E4D?

0A23
47+0 CO6E
9680 5008
47FC CO28
00000000
(oY)

6o

S4T7F
9613
4111
88630
D507
4720
Q78E

Co8C
€39¢C
COEO
0001
5000
COE4

1813
4620
47F0
1413
402C
9680
07FE

coca
COEA

COcA
cosC

Q00000¢0000000000
C1lD3D7(8C1404040
6000000000000000
C205E3(140404040
€0000€0000000000
C4C5D3E3C1404040
00000€0000000000
CSDTE2C9D306D540
0060C00000000000
C5E3C 14040404040
000000C000000000
C7C10404C1404040
00000000000600000
CID6E3C1404C4040
0600060000000000
D2C1D707C1404040
0000000000000000
D3IC1D4C2C4C14040
0000000000000000
D4E4404040404040
GC00000000000000

00008

000CC

1008 00000

oo0occ

ADDR1 ADDR2

0007E

gou3s

003AC
000FO0
00001
g0008
C0OF4

auoba
000FA

0000A

13)
STHT

1038+
109+
110+
111
112
113
114
115
116
17
11¢
119

120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148

SOURCE STATEMENT

IHBOOO?7
1HBOO07A
MOTTHERE
SAVEL3
SHITCH
NUNE

*

*

*

SEARCH

Loop

HIGHER
NUTFOUND
*

*

*

TABLAREA

EQU
DS
SvC

B
ol
8
DC
oC
EQU

*

OH

35 ISSUE SVC
EXIT

LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY

LISTLOGP
Flo.
x*00*
xv80*

BINARY SEARCH ROUTINE

NI
LM
LA
SRL
cLc
8H
BCR
SR

BCT
B
AR
BCT
ol
BR

60 BACK AND LOOP

SWITCHy255—-NONE TURN OFF NOT FOUND SWITCH

R1,R3,=F*128,4,128"

R1sTABLAREA-16(R1)
R3,1

LNAME » TNAME
HILHER

8sR14

R14R3

R2,L00P
NUTFOUND
R1,R3
R2,L00P
SWITCH, NONE
R14

THIS 1S THE TABLE

[PEY
ol

oC
DC
nc
DnC
oC
o]
oc
DC
[+]9

nC

[o]]
XL8*0*,CLB'ALPHA"

XL8'0*,CLB*"BETA*

XL8'0*»CLB'DELTA"

XL8%0",CLB'EPSILON®

XL8'0",LLBYETA"
XLE°0',CLB'GAMMA®
XL8*0*,CLB* IOTA"
XL8'0",CLB'KAPPA!
XL8'0",CLB*LAMBDA
XLB8'O",CLB MU

XL8'0*,CLB'NU®

LOAD TABLE PARAMETERS

GET ADDRESS OF MIDOLE ENTRY

DIVIDE INCREMENT BY 2

COMPARE LIST ENTRY WITH TABLE ENTRY

BRANCH IF SHOULD BE HIGHER IN TABLE

EXIT IF FOUND

OTHERWISE IT IS LOWER IN THE TABLE
SO SUBTRACT INCREMENT

LOOP 4 TIMES

ARGUMENT IS NOT IN THE TABLE

ADD INCREMENT

LOOP 4 TIMES

TURN ON NOT FOUND SWITCH

EXIT

SAMPLOT9
SAMPLOSBO
SAMPLOS81
SAMPLOSB2
SAMPLOB3
SAMPLOB4
SAMPLOBS
SAMPLOBG
SAMPLOST

SAMPLOS8S
SAMPLO89
SAMPLO90
SAMPLO91
SAMPLO92
SAMPLO93
SAMPLO94
XSAMPLO95
SAMPLO96
SAMPLO97
SAMPLO98
SAMPLO99
SAMPL100
SAMPL10O1
SAMPLLO2
SAMPL103
SAMPL104
SAMPL105
SAMPL106
SAMPL1OT

SAMPL108
SAMPL109
SAMPL110
SAMPL111
SAMPL112
SAMPL113
SAMPL114
SAMPL11S
SAMPLL16

SAMPL11T

42

®

EXAM SAMPLE PRUGKRAM PAGE 5
LGC UBJECT CudE ADDR1 ADDR2 STMT SOURCE STATEMENT F 14FEB66 4/11/66
UV001A8 D5t4404040404040
000180 CVOV00000000V0000 149 DC XL8%0'yCLB*OMICRON® SAMPL118
000188 L6V4CICILIVEVS4U
0001C¢0 00U000C000000000 150 bec XL8'0*'yCLB PHI" SAMPL119
0001l DICEC 4040404040
000100 0000000000000000 151 V14 XL8%0*4CLBSIGMA" SAMPL120
00ULlD6 E2C9C7D4C1404040
00010 000000000000C0000 152 . oC XLB*0*yCLB ZETA® SAMPL121
0001lE8 £9(5E3C140404040
153 = SAMPL122
154 * THIS 1S THE LIST SAMPL123
155 *» SAMPL124
00U1F0 D3C1D4C2C4C 14040 156 LISTAREA DC CLB'LAMBDA® 4 X*0A® ,FL3129%,A(BEGIN) SANPL125
0001F8 0AGOOO1D0O000Q0000
CU0200 E9CLS5E3C140404040 157 oc CLBZETA' yX*05*4+FL3'5%,A(LOOP) SAMPL126
0002Q8 050000050000000A
00UZ10 E3CBC5E3C1404040 158 DC CLB*THETA',X'02'yFL3%45' ,A(BEGIN) SAMPLL27
000218 0200002000000000
000220 E3CLlE44040404040 159 DC CLB*TAU'y X*00*,FL3%0%,A{1) SAMPL1238
000£28 06000€0000000001
000230 D3CYE2E340404040 160 oC CLB'LIST' 4 X '1F*yFL3%465%,A(0) SAMPL129
000238 1F00CL1G100000000
000240 C1lU3DTCBCL14G4040 161 LISTEND 0OC CLBYALPHA' 4 X*00',FL3'1",A{123) SAMPL130
000248 060GGCG100000078
162 * SAMPL131
163 * THIS IS THE CONTROL TABLE SAMPL132
164 * SAMPL133
000250 165 DS oD SAMPL134
000250 00000G10000000078 166 TESTTABL DC FL3%1%4X%00',A(123),CL8 ALPHA" SAMPL13S
000258 C103D7C8C1404040
000260 0000000000000000 167 oC XL8°0",CLB'BETA" SAMPL136
000268 L2C5E3C1404C4040 2
000270 0000000000000000 168 ocC XL8'0*,CLB'DELTA’ SAMPL137
000278 C4L503E3C1404040
000280 0000CC0000000000 169 DC XL8°0'5CLB'EPSILON? SAMPL138
000288 L5D07E£20903060540
000290 0G000C0C0V000000 170 oc XL8%0*,CLBETA* SAMPL139
000298 C5t3C14040404040 .
0002AG 0006000000000000 171 oC XL8'0",CLB"GAMMA® SAMPL140
000248 C7C10D404C1404040
000280 0€000G0000000000 172 [XL8'0*,CLB" IOTA! SAMPL141
000286 C9LGE3CL140404040
0002¢0 00008000000060000 173 oC XLB0* o CLB'KAPPA? SAMPL142
0002C8 D2ClD7DTC1404040
000200 0000100A00000000 174 DC FL3'29¢ ,X*0A* ; A(BEGIN) ,CLB*LAMBDA" SAMPL143
000208 D3C1D4C2C4C14040 .
0002E0 0G0G000000000000 175 DC XL8'0%,CLB"MU* SAMPL144
G002E8 D4t44G4040404040
0002F0 0000000000000000 176 ocC XLB*0*yCL8*NU* SAMPL145
0002F8 D5£4404040404040
000300 0000000000000000 177 DC XL8°0%,CLB*OMICRON® SAMPL146
000308 D6L4LIC3DIDED540
000310 0G00000000000000 178 DC XLB*0*+CL8'PHI® SAMPL147
000318 D7C8CS94040404040 .
000320 G0000€0000000000 179 DC XLB*0*yCLB*SIGMA® ~ SAMPL148

Appendix C. Assembler F Program Listing 43

@

EXAM

Loc

000328
U00330
000338

QU0340
000346
000350
000356
000360
000368
000370
000378
000380
0gu3ss
000390
000398

a00000
000001
G00002
000003
000005
000006
000007
00000C
000000
00000k
QUQO00F

000000
000000
000008
000009
00000C

G0ub00
000000
000003
000004
000008
000000
600000
0003A0
0003A0
0003A0
000344
Q0Q3AC

®

SAMPLE PRUGRAM

®
UBJECT CULE

£2C9CTD4C1404040
G00U05G50000000A
ESC5E3C 140404040

D3C104L2C4C14040
GA000GC1000000000
E9L5E3C 140464040
0500000500000004
E3CBCSE3C1404040
82000C2D000Q00000
£3C1E4404C404040
8€00000000000001
D3C9E2E340404040
9F000101G0000000
Clb3017C8CL404040
06o0Qgool10000UOTB

000001F0
0000008000000004
000C0080

ADDR1 ADDRZz

STMT

180

181
182
183
184

185
l80
187
188
189

190
19i
192
193
194
19%
196
197
198
199
200
201
202
203
204
205
2006

208
209
210
211
212
213
214
21%
216
217
218
219
220

221
222

SOURCE STATEMENT

b
i
*
TESTLIST

RO

R1

k2

R3

RS

RO

R7

R12

R13

Rl4

R15

*

>

*

LIST
LNAME
LSWITCH
LNUMBER
LADDRESS
*

*

*

TABLE
TNUMBER
TSWITCH
TADDRESS
TNAME

oC

FL3%5¢,X*05", A(LDOP) 4CLB " ZETA"

THIS 1S THE CONTROL LIST

bC
ocC
DC
DC
oc

oc

THESE

EQU
EQU
EQU
EQu
EQU
EQU
EQU
EQU
EQU
EQU
EQU

THIS IS THE FORMAT DEFINITION OF LIST ENTRYS

DSECT
DS
DS
DS
0s

THIS IS THE FORMAT DEFINITION OF TABLE ENTRYS

DSECT
os
DS

0s

DS
END

CL8'LAMBDA',X*0A* ,FL3'29%, A{BEGIN)
CLB'ZETA'yX"05',FL3"S5",A(LOOP)
CLB*THETA® 9 X' 82y FL3'45',A(BEGIN)
CLB*TAU', X' 80°%,FL3'0',A(1)
CLBPLIST' 4 X*IF*4FL37465*,A(0)

CLBYALPHA® ¢ X*00",FL3*1*4A{123)

ARE THE SYMBOLIC REGISTERS

cLs
[
FL3
F

FL3

c

F

cL8
BEGIN

=A(LISTAREA,16+LISTEND)
=F*128+44128"

®

PAGE 6

. }

F 14FEB66 4/11/66

@

SAMPL149

@

SAMPL150
SAMPLLS51
SAMPL1S52
SAMPL153

SAMPL154
SAMPL155
SAMPL156
SAMPL157
SAMPL158

SAMPL159
SAMPL160O
SAMPL161
SAMPL162
SAMPL163
SAMPL164
SAMPL165
SAMPL166
SAMPL167
SAMPL168
SAMPL169
SAMPLLT7O
SAMPL171
SAMPLLT2
SAMPL173
SAMPL174
SAMPL175
SAMPL1T6
SAMPL177
SAMPL178
SAMPL179
SAMPL180O
SAMPL181
SAMPL1B2
SAMPL183
SAMPL184
SAMPL185
SAMPL186
SAMPL187
SAMPL188
SAMPL189

44

@

EXAM

PUS.IU REL.ID

o1
vl
01
01
0l
01
01
ol
[SF%

0l
Gl
Gl
o1
ol
o1
(D%
ol
ol

FLAGS

uc
oC
[e] 08
(19
[o] 8
oC
oc
oc
0

RELOCATION DICTIONARY

ADDRESS

0001FC
00020C
00021¢C
000204
000334
00034C
00035¢C
00036C
000340

Appendix C.

Assembler F Program Listing 45

@

EXAM CROSS—REFERENCE

® ® & ®

SYMbUL LEN VALUE UEFN REFERENCES

BEGIN 00004 600000 0059 0156 0158 0174 0184 0186 0220
EXIT 00004 00007t 0096 0111

HIGHER 000G2 000CF4 0130 0125

IHBOOO5 00001 000G78B 0093 0090

{HBOOGC5A 0006C2 00007C 0094 0089

iHBOQO7 0GQO1 000089 0108 0105

IHBOGO7A 00002 00008A 0109 0104

LADDRESS 00004 00GOOC 0211 0080

LIST 00001 000000 0207 0067

LISTAREA 000C8 0001F0 0156 0066 00&5 0221
LEISTENU 000C3 000240 Olel 0066 0221
LISTLGOP 000C4 000038 0082 o113

LNAME 00008 000000 0208 0124

LNUMBER 00003 000009 0210 0077

Laop 00004 0000LA 0123 0128 0121 0157 0180 0185
LSWITCH 0C0C1 000008 0209 0074 0112

MORE 00004 000018 0068 Qo082

NUNE 00001 000080 0Oll6 0069 0112 0120 0132

NGTFUUNC 000G4 00O0OFA 0132 0129
NLTKIGHT 0004 00008C 0104 0084 00¢&6
NUTTHERE 000C% Q000CO 0112 €070

RO 00001 000000 0193

R1 00601 000001 0194 0071 01zl 0122 0122 0127 0130
Rlz 0GU01 00000C 0200 0063 00c4

R13 00001 000000 0201 0090

Rl4 00001 00000E 0202 0068 0lzé 0133

R15 00001 00000F 0203

R2Z 0C001 000002 0195 0iz8 0131

R3 00001 000003 0196 0121 0lg3 0127 0130
R5 00001 000005 0197 0066 0067 0082

Ré 000Gl 000006 0198 0082

R7 00001 000007 0199 0066

SAMPLR 00001 000G00 0057 0220

SAVEL3 000C4 0000C8 Q114 0u65 0096
SEARCH 006G4 0000CE 0120 0068

SWITCH 00001 0000QCC 0115 0069 0120 0132
TABLAREA (000C8 000100 vul3s 0083 0122 .
TABLE 00001 000000 0215 0071

TADDRESS 00004 000004 0218 0081

TESTLIST 000C8 000340 0184 0085

TESTTABL 000C3 000250 0166 0083

TNAML 00008 000008 0219 0l24

TNUMBER 000CG3 Q0Q000 0216 0077

TSWITCH 00001 000C03 0217 0074

NO STATEMENTS FLAGGED IN THIS ASSEMBLY
STATISTICS SUJURCE RECURDS (SYSIN) = 225 SJURCE RECIRDS (SYSLIB) = 40

0OPTIGNS IN £FFECT LIST, NODECK, NULUAD, NIRENTy XREF, NUTEST, ALGNs USs LINECNT

351 PRINTED LINES

58

PAGE 1

4/11/766

46

APPENDIX D.

DYNAMIC INVOCATION OF THE ASSEMBLER

The Assembler can be invoked by a problem
program at execution time through the use
of the CALL, LINK, XCTL, or ATTACH macro
instructions. If the XCTL macro instruction
is used to invoke the Assembler, then no
user options may be stated. The Assembler
will use the standard default, as set during
system generation, for each option.

If the Assembler is invoked by CALL, LINK,
or ATTACH, the user may supply:

1) The Assembler options
2) The ddnames of the data sets to be used
during processing

Nome Operation Operand
[symbol] CALL IEUASM, (optionlist
[, ddnamelisf]), VL
’LINK EP=IEUASM,
ATTACH PARAM=(optionlist
[, ddnamelist]), VL=1

EP - specifies the symbolic name of the
Assembler. The entry point at which
execution is to begin is determined by
the control program (from the library
directory entry).

PARAM - specifies, as a sublist, address
parameters to be passed from the prob-
lem program to the Assembler. The
first word in the address parameter
list contains the address of the option
list. The second word contains the
address of the ddname list.

optionlist - specifies the address of a
variable length list containing the
options. This address must be written
even if no option list is provided.

Appendix D.

The option list must begin on a
halfword boundary. The first two
bytes contain a count of the number of
bytes in the remainder of the list.

If no options are specified, the count
must be zero. The option list is free
form with each field separated by a
comma. No blanks or zeros should
appear in the list.

ddnamelist - specifies the address of a
variable length list containing al-
ternate ddnames for the data sets used
during compiler processing. If stand-
ard ddnames are used then this operand
may be omitted.

The ddname list must begin on a
halfword boundary. The first two
bytes contain a count of the number of
bytes in the remainder of the list.
Each name of less than eight bytes
must be left-justified and padded with
blanks. If an alternate ddname is
omitted, the standard name will be
assumed. If the name is omitted
within the list, the 8-byte entry must
contain binary zeros. Names can be
omitted from the end merely by shorten-
ing the list. The sequence of the 8-
byte entries in the ddname list is as
follows:

Entry Alternate Name

not applicable
not applicable
not applicable
SYSLIB

SYSIN

SYSPRINT
SYSPUNCH
SYSUT1

SYSUT2

SYSUT3

SYSGO

HOWwWoOoaou & WN -

e

VL - specifies that the sign bit is to be
set to 1 in the last word of the

address parameter list.

Dynamic Invocation of the Assembler 47

This page intentionally left blank.

48

Page of GC26-3756-4
Revised June 1, 1970
By TNL GN33.8075

INDEX

Indexes to systems reference library manuals are consolidated in the publication IBM System/360 Operating System
Systems Reference Library Master Index, Order No, GC28-6644, For additional information about any subject
listed below, refer to other publications listed for the same subject in the Master Index.

Access methods 3 Diagnostics
BPAM (basic partitioned) 3 listing 15
BSAM (basic sequential) 3 messages 25-33
QSAM (queued sequential) 3 Dictionaries 18-20
ASMFC, cataloged procedure for assembly 6 additional requirements 20
ASMFCG, cataloged procedure for assembly global 18-20
and loader-execution 9 local 18-20
ASMFCL, cataloged procedure for assembly overflow errors 20
and linkage editing 7 Dictionary size and source statement
ASMFCLG, cataloged procedure for assembly, complexity 17
linkage editing, and execution 8 Dynamic invocation of the assembler
Assembler cataloged procedures 6 (Appendix D) 47
Assembler data sets 2
Assembler dynamic invocation 47 END card format 35
Assembler listing 11 ESD card format 35
(see also program listing) EXEC statements 9
cross reference 14 External Symbol Dictionary (ESD)
diagnostics 15 listing 11
external symbol dictionary 11
relocation dictionary 14 Global dictionary
source and object program 13 at collection time 19
statistical messages 11 at generation time 19
Assembler options 2
default entry 2 IEBUPDAT utility program 17

Assembler portion limitations 21
Job control statements 1

Blocking and buffering information 5 Job steps 1
BPAM (Basic Partitioned Access Method) 3
BSAM (Basic Sequential Access Method) 3 Linkage statements (Figure 5) 18

Listing, assembler 11
Load module modification - entry point

Cataloged procedures 6 restatement 17
for assembling (ASMFC) 6 Loader-execution, ASMFCG cataloged
for assembling and linkage editing procedure 9
(ASMFCL) 7 Local dictionary
for assembling, linkage editing, and at collection time 19
execution (ASMFCLG) 8 at generation time 20
for assembling and loader-execution
(ASMFCG) 9 Macro-definition library additions 16
overriding 9 Macro-definition local definition para-
COND= parameter 5, 7-9 meter table (Table 9) 20
Cross reference listing 14 Macro generation and conditional assembly
limitations 21
Data support of unaligned 23 Messages
Data constants, Type L 23 diagnostic 25-33
Data sets 2-5 statistical 11
SYSGO 2,3 Model 85 Programming Considerations 22,23
SYSIN 2,3 extended precision machine
SYSLIB 2,3 instructions 22
SYSPRINT 2,3 OPSYN instruction 22
SYSPUNCH 2,3 Type L constant 23
SYSUT1l, SYSUT2, SYSUT3 2,3 unaligned data 23
DCB macro instruction 3 Model 91 Programming Considerations 21
DD statements 9 | Model 195 Programming Considerations 23
ddnames 3
Default entry 2 Object deck output 35-38
Defining data set characteristics 3 END card 35
Device naming conventions (Table 3) 6 ESD card 35

Index 49

Object deck output (continued) Sample program listing 38-46

RLD card 35 Saving and restoring general register
TESTRAN SYM card 36 contents 16
TEXT (TXT) card 35 Severity code
Object module linkage 17 for diagnostic messages 25-33
OPSYN - operation code equate relation to return code 5
instruction 22 Source and object program
Options, assembler 2 listing 13
default entry 2 Source statement complexity 21
Overflow SPACE assembler instruction 11
dictionary 20 Statistical messages 11
symbol table 21 Symbol table, overflow 21
Overriding statements in cataloged SYSGO 3
procedures 9 SYSIN 2,3
SYSLIB 2,3
PARM field access 16 SYSPRINT 2,3
PARM parameter 2,9 SYSPUNCH 2,3
Procedure (definition) 1 sysuTl, 2,3 2,3
Program listing, assembler F 38-46
Program termination le6 TESTRAN (SYM) Card format 36

TEXT (TXT) card format 35
Type designators 11
QSAM (Queued Sequential Access Method) 3 Type L data constants 23
. Types of ESD entries (Table 4) 11
Relocation Dictionary listing 14
Return codes 5 Unaligned data, support of 23
RLD card format 31 Utility data sets 2,3

50

This page intentionally left blank.

GC26-3756-4

BN

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International |

- — . —— — ——— —— —— —— —— —— — — ——— — — — — — — . — — — — — — — — — —— — — — v — —— — — — —— — — —— — —— — - — —— — — — — — — — — — —— — —

READER'S COMMENT FORM

IBM System/360 Operating System GC26-37564
Assembler [F] Programmer's Guide

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes No
® Does this publication meet your needs? O O
® Did you find the material:
Easy to read and understand? O O
Organized for convenient use? O O
Complete? 1 O
Well illustrated? O O
Written for your technical level? O]
® What is your occupation?
® How do you use this publication?
As an introduction to the subject? O As an instructor in a class? []
For advanced knowledge of the subject? O As a student in a class? O
For information about operating procedures? [] As a reference manual? OJ
Other
® Please give specific page and line references with your comments when appropriate.
COMMENTS

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC26-3756-4

YOUR COMMENTS, PLEASE...

This publication is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of
this form together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

POSTAGE WILL BE PAID BY . . .

IBM Corporation
112 East Post Road
White Plains, N. Y. 10601

Attention: Dept. 813

JBIM

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

1BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International |

fold
FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.
T
[
[]
A
T
N
I
R
]
I
N
T
T
N
I
N
I
fold

