Systems Reference Library

IBM Systemn/360 Operating System

Assembler Language

This publication contains specifications
for the IBM System/360 Operating System
Assembler Language.

The assembler language is a symbolic
programming language used to write programs
for the IBM System/360. The language pro-
vides a convenient means for representing
the machine instructions and related data
necessary to program the IBM System/360.
The IBM System/360 Operating System Assem-
bler Program processes the language and
provides auxiliary functions useful in the
preparation and documentation of a program,
and includes facilities for processing the
assembler macro language.

Part I of this publication describes the
assembler language.

Part II of this publication describes an
extension of the assembler language -- the
macro language -- used to define macro-
instructions.

File No. S360-21
Form C28-6514-4

0S

Form C28-6514-4, Page Revised by TNL N28-2150, 7/1/66

PREFACE
This publication 4is a reference manual
for the programmer using the assembler

language and its features.

Part I of this publication presents
information common to all parts of the
language followed by specific information
concerning the symbolic machine instruction
codes and the assembler program functions
provided for the programmer's use. Part II
contains a description of the macro lan-
guage and procedures for its use.

Appendixes A through I follow Part II.
Appendixes A through F are associated with
Parts I and II and present such items as a
summary chart for constants, instruction
listings, character set representations,
and other aids to programming. Appendix G
contains macro-language summary charts, and
Appendix H is a sample program. Appendix I
is a features comparison chart of
System/360 assemblers.

Knowledge of IBM System/360 machine
operations, particularly storage address-
ing, data formats, and machine instruction
formats and functions, is prerequisite to
using this publication, as is experience
with programming concepts and techniques or
completion of basic courses of instruction

MAJOR REVISION (February 1966)

This publication is
C28-6514-3, which ic now obsolete.
in its entirety
changes are additional specifications to previously
one new conditional assembly instruction, ACTR,
appenaixes have been revised.

in

these areas. IBM System/360 machine

operations are discussed in the publication

IBM System/360:

Principles of Operation,

Form A22-6821.
assembling,
interpreting 1listings,
gramming considerations is provided in
System/360

Information on program
editing, executing,
and assembler pro-
IBM
Operating System: Assembler (E)

linkage

Programmer's Guide,

Form C28-6595.

since changes have been wade throughout.
existing
has been added,

to

a major revision of the previous edition,
This new edition should be

The following publications are referred

in this publication:

IBM System/360 Operating System: Intro-

duction, Form C28-6534

IBM System/360 Operating System: Linkage

Editor, Form C28-6538

IBM System/360 Operating System: Control

Program Services, Form C28-65u41

IBM System/360 Operating System: Con-

cepts and Facilities, Form C28-6535

IBM System/360 Operating Systemn:
Management, Form C28-6537

IBM System/360 Operating System:
ties, Form C28-6586

Data

Otili-

Form

reviewed

Most of the

material;

and the

Tiis publicaticn wes prepared for production using an IBM computer to

update the text and to control the and line
impressions for pnoto-offset printing

Printer using a special print chaein.

rage

format.
were obtained trom an IBM 1403

Page

Copies cf this and other IBM publications can be cbtained through IBM

Branch Offices.

4 form for readers®
It may pe mailed Adirectly to IEM. Address any
concerning this publication to the IBM Corporation,
Tfublications, Denartment DS, DC Rox 390,

© International Business Machines Corporation, 1964

Poughkeepsice, N.

comments appears at the back of this publication.
additional
I'rogramming Systems

comments

12602

Continuation Lines

continue a
following

When it 1is
statement on another
rules apply.

necessary to
line, the

1. Enter a continuation character (not
blank, and not part of the statement
coding) in column 72 of the line.

the next

2. Continue the statement on

line, starting in column 16. All
columns to the left of column 16 must
be blank.

3. When more than one line i3 needed,
each line to be continued must have a
character (not blank, and not part of

the statement coding) entered in
column 72.

4. Only two continuation 1lines may be
used for a statement except 1in a
macro-instruction, which allows as

many as necessary.

Statement Boundaries

Source statements are normally contained
in columns 1-71 of statement lines and
columns 16-71 of any continuation 1lines.
Therefore, columns 1, 71, and 16 are
referred to as the "begin," "end," and
"continue™ columns, respectively. (This
convention may be altered by use of the
Input Format Control (ICTL) assembler
instruction discussed later in this publi-
cation. The continuation character, if
used, always immediately follows the "end"
column.

Statement Format

Statements may consist of one to four
entries in the statement field. They are,
from left to right: a name entry, an
operation entry, an operand entry, and a
comments entry. These entries must be
separated by one or more blanks, and must
be written in the order stated.

The coding form (Figure 2-1) is ruled to
provide an 8-character name field, a
5-character operation field, and a
56-character operand and/or comments field.

If desired, the programmer may disregard
these boundaries and write the name,
operation, operand, and comment entries 1in
other positions, subject to the following
rules:

1. The entries must not extend Dbeyond
statement boundaries (either the con-
ventional boundaries, or as designated

by the programmer via the ICTL
instruction).
2. The entries must be in proper

sequence, as stated previously.

3. The entries must be separated by one
or more blanks.

4. If wused, a name entry must be written
starting in the begin column.

5. The name and operation entries must be
completed in the first 1line of the
statement, including at least one
blank following the operation entry.

A description of the name, operation,
operand, and comments entries follows:

Name Entries: The name entry is a symbol
created by the programmer +to identify a
statement. A name entry is usually option-
al. The symbol must consist of eight
characters or less, and be entered with the
first character appearing in the begin
column. If the begin column is blank, the
assembler program assumes no name has been
entered. No blanks may appear in the
symbol.

Operation Entries: The operation entry is
the mnemonic operation code specifying the
machine operation, assembler, or macro-
instruction operation desired. An
operation entry is mandatory and cannot
appear in a continuation line. It must
start at least one position to the right of
the begin column. Valid mnemonic operation
codes for machine and assembler operations
are contained in Appendixes D and E of this
publication. Valid operation codes consist
of five characters or fewer for machine or
assembler-instruction . operation codes, and
eight characters or fewer for macro-
instructicn operation codes. No blanks may
appear within the operation entry.

Operand Entries: Operand entries are the

coding that identifies and describes data
to be acted upon by the instruction, by
indicating such things as storage
locations, masks, storage-area lengths, or
types of data.

Depending on the needs of the instruc-

tion, one or more operands may be written.
Operands are required for all machine
instructions.

Operands must be separated by commas,

and no blanks may intervene between oper-
ands and the commas that separate them.

General Information 13

Form C28-6514-U4, Page Revised by TNL N28-2150,

The operands may not contain embedded
blanks, except as follows:

If character representation is
used to specify a constant, a
literal, or immediate data in an
operand, the character string may
contain blanks, e.g., C'A D'.

Comments Entries: Comments are descriptive
items of information about the program that
are to be inserted in the program listing.
All 256 valid characters (see "Character
Set" in this section), including blanks may
be used in writing a comment. The entry
may follow the operand entry and must be
separated from it by a blank; comments
entries cannot extend beyond the end column
(column 71).

An entire statement field may be used
for a comment by placing an asterisk in the
begin column. Extensive comments entries
may be written by using a series of 1lines
with an asterisk in the begin column of
each line or by using continuation lines.

In statements where an optional operand
entry is omitted but a comments entry is
desired, the absence of the operand entry
must be indicated by a comma preceded and
followed by one or more blanks, as follows:

]
| Name

b1 .
| | END |
L L 1

T T
|Operation |Operand
1 L

COMMENT

b e i e o

Statement Example: The following example
illustrates the wuse of name, operation,
operand, and comments entries. A compare

instruction has been named by the symbol
COMP; the operation entry (CR) 1is the
mnemonic operation code for a register-to-
register compare operation, and the two

operands (5,6) designate the two general
registers whose contents are to be
compared. The comments entry reminds the
programmer that he is comparing "new sum"

to "o0l1ld" with this instruction.

Ll 1] T
|Name |Operation |Operand
b 1 +
I
4L

5,6 NEW SUM TO OLD

b e i e

r T
|COMP |CR
L 4.

14

7/1/766

Identification-Sequence Field

The identification-sequence field of the
coding form (columns 73-80) is used to
enter program identification and/or state-
ment sequence characters. The entry is
optional. If the field, or a portion of
it, is used for program identification, the
identification is punched in the source
cards and reproduced in the printed listing
of the source progran.

To aid in keeping source statements in
order, the programmer may number the cards
in this field. These characters are
punched into their respective cards, and
during assembly the programmer may request
the assembler to verify this sequence by

use of the Input Sequence Checking (ISEQ)
assembler instruction. This instruction is
discussed in Section 5, under "Program
Control Instructions."
Summary of Statement Format

The entries in a statement must always

be separated by at least one blank and must
be in the following order: name, operation,
operand (s), comment.

Every statement requires an operation
entry. Name and comment entries are
optional. Operand entries are required for

all machine instructions and most assembler
instructions.

The name and operation entries must be
completed in the first statement 1line,
including at least one blank following the
operation entry.

The name and operation entries must not
contain blanks. Operand entries must not
have blanks preceding or following the
commas that separate them.

A name entry must always start in the
begin column.

If the column after the end column is
blank, the next 1line must start a new
statement. If the column after the end
column is not blank, the following 1line
will be treated as a continuation line.

All entries must be contained within the
designated begin, end, and continue column
boundaries.

14+BETA- (GAMMA-LAMBDA)

When the assembler program encounters
terms in parentheses in combination with
other terms, it first reduces the combina-
tion of terms inside the parentheses to a

single value which may be absolute or
relocatable, depending on the combination
of terms. This value then is used in
reducing the rest of the combination to

another single value.

Texrms 1in parentheses may be included
within a set of terms in parentheses:

A+B- (C+D-(E+F)+10)

The innermost set of terms in parenthe-
ses 1is evaluated first. Five levels of
parentheses are allowed; a level of paren-
theses 1is a left parenthesis and its cor-
responding right parenthesis. Parentheses
which occur as part of an operand format do
not count in this 1limit. An arithmetic
combination of terms is evaluated as de-
scribed in the next section "Expressions."

EXPRESSIONS

This subsection discusses the expres-
sions used in coding operand entries for
source statements. Two types of expres-
sions, absolute and relocatable, are pre-
sented along with the rules for determining
these attributes of an expression.

As shown in Figure 2-2, an expression is
composed of a single term or an arithmetic
combination of terms. The following are
examples of valid expressions:

* BETA*10
AREA1+X"' 2D" B*101°*

*+32 C'ABC'

N-25 29

FIELD+332 L'FIELD
FIELD LAMBDA+GAMMA
(EXIT-ENTRY+1) +GO TEN/TWO
=F'1234"

ALPHA-BETA/ (10+AREA*L"FIELD)-100
The rules for coding expressions are:

1. An expression may not start with an
arithmetic operator, (+-/%). There-
fore, the expression -A+BETA is inval-
id. However, the expression O0-A+BETA
is valid.

2. An expression may not contain two
terms or two operators in succession.

3. An expression may not consist of more
than 16 terms.

4. An expression may not have more than
five levels of parentheses.
5. A multi-term expression may not con-
tain a literal.
Evaluation of Expressions
A single term expression, e.g., 29,

BETA, *, L'SYMBOIL, takes on the wvalue of

the term involved.

A multi term expression,
ENTRY-EXIT, 25*%10+A/B, is
single value, as follows:

e.g., BETA+10,
reduced to a

1. Each term is given its value.

2. Every expression 1is computed to 32
bits.

3. Arithmetic operations are performed
left to right. Multiplication and
division are done before addition and

subtraction, e.g., A+B*C is evaluated
as A+(B*C), not (A+B)*C. The computed
result is the value of the expression.

4. Division always yields an integer
result; any fractional portion of the
result is dropped. E.g., 1/2%10
yields a zero result, whereas 10%1/2
yields 5.

5. Division by zero is valid and yields a
zero result.

Parenthesized multiterm expressions used
in an expression are processed before the
rest of the terms in the expression, e.g.,
in the expression A+BETA* (CON-10), the term
CON-10 is evaluated first and the resulting
value used in computing the final value of
the expression.

Negative values are carried in 2s com-
plement form. Final values of expressions
are the truncated rightmost 24 bits of the

results. The value of an expression before
truncation must be in the range -224
through 224-1. A negative result is con-

sidered to be a 3-byte
Intermediate results have a range of
through 231-1,.

positive value.
-231

Absolute and Relocatable Expressions

An expression is called absolute if its
value is unaffected by program relocation.

An expression is called relocatable if
its value changes upon program relocation.

General Information 21

The two types of expressions, absolute
and relocatable, take on these charac-
teristics from the term or terms composing
them.

ABSOLUTE EXPRESSION: An absolute expres-
sion may be an absolute term or any arith-
metic combination of absolute terms. An
absolute term may be a non-relocatable
symbol, any of the self-defining terms, or
the length attribute reference. As indi-
cated in Figure 2-2, all arithmetic opera-
tions are permitted between absolute terms.

An absolute expression may contain relo-
catable terms (RT) -- alone or in combina-
tion with absolute terms (AT) -- under the
following conditions:

1. There must be an even number of relo-
catable terms in the expression.

2. The relocatable terms must be paired.
Each pair of terms must have the same
relocatability attribute, i.e., they
appear in the same control section in
this assembly (see "Program Sectioning
and Linking," Section 3). Each pair
must consist of terms with opposite
signs. The paired terms do not have
to be contiguous, e.g., RT+AT-RT.

3. No relocatable term may enter into a

multiply or divide operation. Thus,

RT-RT*10 is invalid. However,

(RT-RT)*10 is valid.

The pairing of relocatable terms (with
opposite signs and the same relocatability
attribute) cancels the effect of reloca-
tion. Therefore the value represented by
the paired terms remains constant, regard-
less of program relocation. For example,
in the absolute expression A-Y+X, A 1is an
absolute term, and X and Y are relocatable
terms with the same relocatability attri-
bute. If A equals 50, Y equals 25, and X
equals 10, the value of the expression
would be 35. If X and Y are relocated by a
factor of 100 their values would then be
125 and 110. However, the expression would
still evaluate as 35 (50-125+110=35).

An absolute expression reduces to a
single absolute value.

The following examples illustrate abso-
lute expressions. A is an absolute term; X
and Y are relocatable terms with the same
relocatability attribute.

A-Y+X
A
A*A
X-Y+A

22

*-Y (a reference to the location counter
must be paired with another relocata-
ble term from the same control sec-
tion, i.e., with the same relocatabil-
ity attribute)

RELOCATABLE EXPRESSIONS: A relocatable

expression is one whose value would change
by n if the program in which it appears is
relocated n bytes away from its originally
assigned area of storage. All relocatable
expressions must have a positive value.

A relocatable expression may be a relo-
catable term. A relocatable expression may
contain relocatable terms -- alone or in
combination with absolute terms -- under
the following conditions:

1. There must be an odd number of reloca-
table terms.

2. All the relocatable terms but one must
be paired. Pairing is described in
"Absolute Expression."

3. The unpaired term must not be directly
preceded by a minus sign.

4, No relocatable term may enter
maltiply or divide operation.

into a

A relocatable expression reduces to a
single relocatable value. This value is
the value of the odd relocatable term,
adjusted by the values represented by the
absolute terms and/or paired relocatable
terms associated with it. The relocatabil-
ity attribute is that of the odd relocata-

ble term.

For example, in the expression W-X+W-10,
W and X are relocatable terms with the same
relocatability attribute. If initially W
equals 10 and X equals 5, the value of the
expression is 5. However, upon relocation
this value will change. If a relocation
factor of 100 is applied, the value of the
expression is 105. Note that the wvalue of
the paired terms, W-X, remains constant at
5 regardless of relocation. Thus, the new
value of the expression, 105, is the result
of the value of the odd term (W) adjusted
by the values of W-X and 10.

The following examples illustrate relo-
catable expressions. A is an absolute
term, W and X are relocatable terms with
the same relocatability attribute, Y is a
relocatable term with a different relocat-
ability attribute.

Y-32%A W-X+% =F'1234"'(literal)
W-X+Y A*A+W-W+Y
* (reference to W-X+W

location counter) Y

Form C28-6514-4, Page Revised by TNL N28-2150, 7/1/66

Just as machine instructions are used to
request the computer to perform a sequence
of operations during program execution
time, SO assembler instructions are
requests to the assembler to perform cer-
tain operations during the assembly.
Assembler-instruction statements, in
contrast to machine-instruction statements,
do not always cause machine-instructions to
be included 1in the assembled program.
Some, such as DS and DC, generate no
instructions but do cause storage areas to
be set aside for constants and other data.
Others, such as EQU and SPACE, are effec-
tive only at assembly time; they generate
nothing in the assembled program and have
no effect on the location counter.

The following is a 1list of assembler
instructions. ‘

Symbol Definition Instruction
EQU - Equate Symbol

Data Definition Instructions

DC =~ Define Constant

DS - Define Storage

CCW - Define Channel Command Word

¥ Program Sectioning and Linking Instruc-

tions

START - Start Assembly

CSECT - Identify Control Section

CXD - Cumulative Length of External
Dummy Section

DSECT - Identify Dummy Section

DXD - Define External Dummy Section

ENTRY - Identify Entry-Point Symbol

EXTRN - Identify External Symbol

COM - Identify Blank Common Control
Section

* Base Register Instructions
USING - Use Base Address Register

DROP - Drop Base Address Register
Listing Contxol Instructions

TITLE - Identify Assembly Output
EJECT - Start New Page

SPACE - Space Listing

PRINT - Print Optional Data

Program Control Instructions

ICTL =~ Input Format Control

ISEQ -~ Input Sequence Checking

ORG - Set Location Counter

LTORG - Begin Literal Pool

CNOP - Conditional No Operation
COPY - Copy Predefined Source Coding
END - End Assembly

PUNCH - Punch a Card

REPRO - Reprcduce Following Card

SECTION 5: ASSEMBLER INSTRUCTION STATEMENTS

* Discussed in Section 3.

SYMBOL DEFINITION INSTRUCTION

EQU -- EQUATE SYMBOL
. The EQU instruction is used to define a
symbol by assigning to it the 1length,

value, and relocatability attributes of an

expression in the operand field. The fox-
mat of the EQU instruction statement is as
follows:

r T T 1
| Name |Operation |Operand |
L [l 1 4
v T T . a
|A symbol |EQU |An expression |
L L L 1

The expression in the operand field may
be absolute or relocatable. Any symbols
appearing in the expression must be pre-
viously defined.

The symbol in the name field is given
the same length, value, and relocatibility
attributes as the expression in the operand
field. The length attribute of the symbol
is that of the leftmost (or only) term of
the expression. In the case of EQU to * or
to a self-defining term, the length _attri-
bute 1is 1. The value attribute of the
symbol is the value of the expression.

The EQU instruction is the means of
equating symbols to register numbers,
immediate data, and other arbitrary values.
The following examples illustrate how this
might be done:

T H X T 1
|Name |Operation |Operand |
t. 4 | 4
T T T n 1
|REG2 |EQU |2 (general register) |
| TEST |EQU |X*3F' (imnmediate data) |
L H i -d

To reduce programming time, thekprogram—
mer can equate symbols to frequently used

expressions and then wuse the symbols as
operands in place of the expressions.
Thus, in the statement: :

Assembler-Instructions 37

| S T D |
| Name |Operation |Operand |
p--——-—- T 1
| | I I
|FIELD |EQU | ALPHA-BETA+GAMMA [
b Lo —_—1 a
FIFLD 1is defined as ALPHA-BETA+GAMMA and

may be used in place of it. Note, however,
that ALPHA, BETA, and GAMMA must all be
previously defined. If the final result of
the expression 1is negative, it is treated
as if it were positive.

The assembler will assign a length
attribute of 1 in an EQU to * statement.

DATA DEFINITION INSTRUCTIONS

There are three data definition instruc-
tion statements: Define Constant (DC),
Define Storage (DS), and Define Channel
Command Word (CCW).

These statements are used to enter data
constants into storage, to define and re-

serve areas of storage, and to specify the
contents of channel command words. The
statements may be named by symbols so that

other program statements can refer to the
fields generated from them. The discussion
of the DC instruction is far more extensive
than that of the DS instruction, because
the DS instruction is written in the same
format as the DC instruction and may speci-
fy some or all of the information that the
DC instruction provides. Only the function
and treatment of the statements vary. For
this reason, the DC instruction is present-
ed first and discussed in more detail than
the DS instruction.

DC ~- DEFINE CONSTANT

The DC instruction is used to provide
constant data in storage. It may specify
one constant or a series of constants,
thereby relieving the programmer of the
necessity to write a separate data defini-
tion statement for each constant desired.
Furthermore, a variety of constants may be
specified: fixed-point, floating-point,
decimal, hexadecimal, character, and stor-
age addresses. (Data constants are gener-
ally called constants unless they are
created from storage addresses, in which
case they are called address constants.)
The format of the DC instruction statement
is as follows:

38

T T -
|Operation |Operand
I -

4
|One or more
|operands in
| | the format
| | described

| | below, each
| | separated by
| |a comma

L 1

|A symbol |DC
|or blank |

RPN R ———

o e o e e e

Each operand consists of four subfields:
the first three describe the constant, and
the fourth subfield provides the constant
or constants. The first and third sub-
fields may be omitted, but the second and
fourth must be specified. Note that more
than one constant may be specified in the
fourth subfield for most types of con-
stants. Each constant so specified must be
of the same type; the descriptive subfields
that precede the constants apply to all of
them. No blanks may occur within any of
the subfields (unless provided as charac-
ters in a character constant or a character
self-defining term), nor may they occur
between the subfields of an operand. Simi-
larly, blanks may not occur between oper-
ands and the commas that separate them when
multiple operands are being specified.

The subfields of each DC operand are
written in the following sequence:

1 2 3 4
Dupli- Type Modifiers Constant (s)
cation
Factor

Although the constants specified in one
operand must have the same characteristics,
each operand may specify different types of
constants. For example, in a DC instruc-
tion with three operands, the first operand
might specify four decimal constants, the
second a floating-point constant, and the
third a character constant.

The symbol that names the DC instruction
is the name of the constant (or first
constant 1f the instruction specifies more
than one) . Relative addressing (e.g.,
SYMBOL+2) may be used to address the var-
ious constants 1if more than one has been
specified, because the number of bytes
allocated to each constant can be deter-
mined.

The value attribute of the symbol naming
the DC instruction is the address of the
leftmost byte (after alignment) of the
first, or only, constant. The 1length
attribute depends on two things: the type
of constant being defined and the presence
of a length specification. Implied lengths
are assumed for the various constant types

The implied 1length of BLCON is two
bytes. A reference to BLCON would cause
the entire two bytes to be referenced.

When bit-length specification is used in
association with multiple constants (see
"Operand Subfield U4: Constant™ following),

each succeeding constant in the list is
assembled starting at the next available
bit. Figure 5-3 illustrates this.
As coded:

------- T T 1
| Name |Operation|Operand |
— T 1
| BLMCON |DC’ |FL.10'673,21,57" |
L L L 4

In storage:

byte byte byte byte byte

padding padding

1010100001000661 101000011100100
- N — i

— —

673 21 57 fill

Figure 5-3. Bit-Length Specification

(Multiple Constants)

The symbol used as a name entry in a DC
assembler instruction takes on the 1length
attribute of the first constant in the

list; therefore the implied 1length of
BLMCON in Figure 5-3 is two bytes.

If duplication is specified, filling
occurs once at the end of the field occu-
pied by the duplicated constant(s).

When bit-length specification is used in
association with multiple operands, assem-
bly of the constant(s) in each succeeding

operand starts at the next available bit.

Figure 5-4 illustrates this.
As coded:

r 1 T 1

| | Oper-| |

| Name |ation|Operand |

_ . + r

T |

| BLMOCON | DC |FL.7'9',CL.10"AB"' ,XL.14"Cl" |

[—_——d L PR J

In storage:

byte byte byte byte byte
adding paddi
P prm—'em—
000100111000001110000001120001000
S p— | — — -~ o
9 | A l Ccu fill
\-,d
A plus
first two
bits of B

Figure 5-4. Bit-Length Specification

(Multiple Operands)

In Figure 5-4, three different types of
constants have been specified, one to an
operand. Note that the character constant
'AB' which normally would occupy 16 bits is
truncated on the right to fit the 10-bit
field designated. Note that filling occurs
only at the end of the field occupied by
a2ll the constants.

SCALE MODIFIER: This modifier is written
as Sn, where n is either a decimal value or
an absolute expression enclosed by paren-
theses. Any symbol in the expression must
be previously defined. The decimal self-

defining term or the parenthesized
expression may be preceded by a sign; if
none is present, a plus sign is assumed.

The maximum values for scale modifiers are
summarized in Appendix F.

A scale modifier may be used with fixed-
point (F, H) and floating-point (E, D)
constants only. It is used to specify the
amount of internal scaling that is desired,
as follows.

Scale Modifier for Fixed-Point Constants:
the scale modifier specifies the power of
two by which the constant must be
multiplied after it has been converted to
its binary representation. Just as multi-
plication of a decimal number by a power of
10 causes the decimal point to move, multi-
plication of a binary number by a power of
two causes the binary point to move. This
rmultiplication has the effect of moving the
binary point away from its assumed position
in the binary field; the assumed position
being to the right of the rightmost posi-
tion. .

Thus, the scale modifier indicates ei-
ther of the following: (1) the number of
binary positions to be occupied by the
fractional portion of the binary number, or
(2) the number of binary positions to be
deleted from the integral portion of the
binary number. A positive scale of x
shifts the integral portion of the number x
binary positions to the left, thereby re-

Assembler-Instructions 41

Forw C2&-6514-4,

serving the rightmost x binary positions
for the fractional portion. A negative
scale shifts the integral portion of the
numper right, thereby deleting rightmost
integral positions. If a scale modifier
does not accompany a fixed-point constant
containing a fractional part, the fraction-
al part is lost.

In all cases where positions are lost
pecause of scaling (or the 1lack of
scaling), rounding occurs in the 1leftmost

bit of the lost portion. The rounding is
reflected in the rightmost position saved.

Scale Modifier for Floating-Point Con—
stants: Only a positive scale modifier may
be used with a floating-point constant. It
indicates the number of hexadecimal posi-
tions that the fraction is to be shifted to
the right. Note that this shift amount is
in terms of hexadecimal positions, each of
which is four binary positions. (A posi-
tive scaling actually indicates that the
point is to be moved to the left. However,
a floating-point constant 1is always con-
verted to a fraction, which is hexadeci-
mally normalized. The point is assumed to
be at the left of the leftmost position in
the field. Since the point cannot be moved
left, the fraction is shifted right.)

Thus, scaling that is specified for a
floating-point constant provides an assem-

bled fraction that is unnormalized, i.e.,
contains hexadecimal zeros in the leftmost
positions of the fraction. When the frac-

tion 1is shifted, the exponent is adjusted
accordingly to retain the correct magni-
tude. When hexadecimal positions are lost,
rounding occurs in the leftmost hexadecimal
position of the lost portion. The rounding
is reflected in the rightmost hexadecimal
position saved.

This modifier is writ-
is either a decimal

TXPONENT MODIFIER:
ten as En, where n

self-defining term or an absolute expres-
sion enclosed by parentheses. Any symbols
in the expression must be previously
defined. The decimal value or the paren-
thesized expression may be preceded by a
sign; if none is present, a plus sign is
assumed. The maximum values for exponent

modifiers are summarized in Appendix’F.

An exponent modifier may be used with
fixed-point (F, H) and floating-point (E,
D) constants only. The modifier denotes
the power of 10 by which the constant is to
be multiplied before its conversion to the
proper internal format.

This modifier is not to be confused with
the exponent of the constant itself, which
is specified as part of the constant and is
explained under "Operand Subfield 4: Con-
stant.”" The exponent modifier affects each

42

Page Revised by TNL N28-2150, 7/1/66

constant in the operand, whereas the expo-
nent written as part of the constant only
pertains to that constant. Thus, a con-
stant may be specified with an exponent of
+2, and an exponent modifier of +5 may
precede the constant. In effect, the con-
stant has an exponent of +7.

Note that there is a maximum value, both
positive and negative, listed in Appendix F
for exponents. This applies to the expo-
nent modifier and to the sum of the expo-
nent modifier and the exponent specified as
part of the constant.

Operand Subfield 4: Constant

This subfield supplies the constant (or
constants) described by the subfields that
precede it. A data constant (all types
except A,Y,S, Q and V) is enclosed by
apostrophes. An address constant (types A,
Y, S, Q and V) is enclosed by parentheses.
To specify two or more constants in the
subfield, the constants must be separated
by commas and the entire sequence of con-
stants must be enclosed by the appropriate
delimiters (i.e., apostrophes or
parentheses). Thus, the format for speci-
fying the constant(s) is one of the follow-
ing:

Single Multiple
Constant Constants*
*constant' *constant,...,constant’

(constant) (constant, ...,constant)
* Not permitted for character, hexadecimal,
and binary constants.

All constant types except character (C),
hexadecimal (X), binary (B), packed decimal
(P), and zoned decimal (Z), are aligned on
the proper boundary, as shown in Appendix
F, unless a length modifier is specified.
In the presence of a length modifier, no
boundary alignment 1is performed. If an
operand specifies more than one constant,
any necessary alignment applies to the
first constant only. Thus, for an operand
that provides five full-word constants, the
first would be aligned on a full-word
boundary, and the rest would automatically
fall on full-word boundaries.

The total storage requirement of an
operand 1is the product of the length times
the number of constants in the operand
times the duplication factor (if present)

plus any bytes skipped for boundary align-
ment of the first constant. If more than
one operand is present, the storage

requirement is derived by
requirements for each operand.

summing the

If an address constant contains a loca-
tion counter reference, the location count-
er value that 1is used 1is the storage
address of the first byte the constant will
occupy. Thus, if several address constants
in the same instruction refer to the loca-
tion counter, the wvalue of the 1location
counter varies from constant to constant.
Similarly, if a single constant is speci-
fied (and it is a location counter
reference) with a duplication factor, the
constant is duplicated with a varying loca-
tion counter value.

The following text describes each of the
constant types and provides examples.

Character Constant -- C: Any of the valid
256 punch combinations may be designated in
a character constant. Only one character
constant may be specified per operand.
Since multiple constants within an operand
are separated by commas, an attempt to
specify two character constants would
result in interpreting the comma separating
them as a character.

Special consideration must be given to
representing apostrophes and ampersands as
characters. Each single apostrophe or
ampersand desired as a character in the
constant must be represented by a pair of
apostrophes or ampersands. Only one apos-
trophe or ampersand appears in storage.

The maximum length of a character con-
stant 1is 256 bytes. No boundary alignment
is performed. Each character is translated
into one byte. Double apostrophes or dou-
ble ampersands count as one character. If
no length modifier is given, the size in
bytes of the character constant is equal to
the number of characters in the constant.
If- a 1length modifier is provided, the
result varies as follows:

1. If the number of characters in the
constant exceeds. the specified length,
as many rightmost bytes and/or bits as
necessary are dropped.

2. If the number of characters is 1less
than the specified length, the excess
rightmost bytes and/or bits are filled
with blanks.

In the following example, the 1length
attribute of FIELD is 12:
r - - T =1
| Name |Operation |Operand |
L 1 i
r - T 1
| FIELD |DC {C'TOTAL IS 110° i
IS D L J

However, in this next example, the
length attribute is 15, and three blanks
appear in storage to the right of the zero:

T T
| Name |Operation |Operand
I8] 1

b e s e

}
|CL15*'TOTAL IS 110

r T
|FIELD |DC
L L -4

In the next example, the 1length attri-
bute of FIELD is 12, although 13 characters
appear 1in the operand. The two ampersands
count as only one byte.

r T . T |
| Name |Operation |Operand |
¢ $ 1 {
|FIELD |DC |C*TOTAL IS 6&10°]
! | I I
L L L - J

Note that in the next example, a 1length
of four has been specified, but there are

five characters in the constant.

r T T
|Name |Operation |Operand
L 1 L

S S

f T T
|FIELD |DC | 3CL4*ABCDE"
L i I

The generated constant would be:
ABCDABCDABCD

On the other hand, if the 1length had
been specified as six instead of four, the
generated constant would have been:
ABCDE ABCDE ABCDE

Note that the same could be

specified as a literal.

constant

T T
Name |Operation |Operand
1)

1
|
i
4
|
i)

oo e . e <}

T T
|MVC |AREA(12) ,=3CL4 'ABCDE"
1 1

Hexadecimal Constant -- X: A hexadecimal
constant consists of one or more of the
hexadecimal digits, which are 0-9 and A-F.
Only one hexadecimal constant may be speci-
fied per operand. The maximum length of a
hexadecimal constant is 256 bytes (512
hexadecimal digits). No boundary alignment
is performed.

Constants that contain an even number of
hexadecimal digits are translated as one
byte per pair of digits. If an odd number

Assembler-Instructions 43

of digits is specified, the leftmost byte
has the 1leftmost four bits filled with a
hexadecimal zero, while the rightmost four
bits contain the odd (first) digit.

If no length modifier 1is given, the
implied length of the constant is half the
number of hexadecimal digits in the con-
stant (assuming that a hexadecimal zero is
added to an odd number of digits). If a
length modifier is given, the constant is
handled as follows:

1. If the number of hexadecimal digit
pairs exceeds the specified length,
the necessary leftmost bits (and/or
bytes) are dropped.

2. If the number of hexadecimal digit
pairs is 1less than the specified
length, the necessary bits (and/or
bytes) are added +to the 1left and

filled with hexadecimal zeros.

An eight-digit hexadecimal constant pro-
vides a convenient way to set the bit
pattern of a full binary word. The con-
stant in the following example would set
the first and third bytes of a word to 1s:

r -7 . T 1
| Name |Operation |Operand |
— -+ - i
| | DS |OF |
|TEST |DC | X*FFOOFF00"* |
L 4 1 4

The DS instruction sets the location
counter to a full word-boundary.

The next example uses a hexadecimal
constant as a literal and inserts 1s into
bits 24 through 31 of register 5.

r T R T 1
| Name |Operation |Operand |
— 1 1
| | IC |5,=X"'FF' |
L ——1 1 " |

In the following example, the digit A
would be dropped, because five hexadecimal
digits are specified for a length of two
bytes:

r - T T I
| Name |Operation |Operand |
1] 1
_______ T T 1

| ALPHACON |DC {3XL2'A6FLE'
| !]

44

The resulting constant would be 6F4E,
which would occupy the specified two bytes.
It would then be duplicated three times, as
requested by the duplication factor. If it
had merely been specified as X'A6F4E', the
resulting constant would have had a hexa-
decimal zero in the leftmost position:

OA6FUE

Binary Constant -- B: A binary constant is
written wusing 1s and 0s enclosed in apos-
trophes. Only one binary constant may be
specified in an operand. Duplication and
length may be specified. The maximum

length of a binary constant is 256 bytes.

The implied length of a binary constant
is the number of bytes occupied by the
constant including any padding necessary.
Padding or truncation -takes place on the

left. The padding bit used is a 0.

The following example shows the coding

used to designate a binary constant. BCON
would have a length attribute of 1.
r 1 - === 1
| Name |Operation |Operand |
F + ¥ 1
| BCON |DC |B'11011101" |
|BTRUNC |DC |BL1'100100011" |
| BPAD |DC |BL1'101" I
L L L R d

BTRUNC would assemble with the leftmost

bit truncated, as follows:
00100011

BPAD would assemble with five zeros as

padding, as follows:

00000101

Fixed-Point Constants -- F and H: A fixed-
point constant is written as a decimal

number, which may be followed by a decimal
exponent if desired. The number may be an
integer, a fraction, or a mixed number
(i.e., one with integral and fractional
portions). The format of the constant is
as follows:

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number, or it may be
omitted, in which case the number is
assumed to be an integer. A positive
sign is assumed if an unsigned number
is specified. Unless a scale modifier
accompanies a mixed number or frac-
tion, the fractional portion is lost,
as explained under "Subfield 3: Modi-
fiers."

2. The exponent is optional. If speci-

fied, it is written immediately after
the number as En, where n is an
optionally signed decimal self-

defining term specifying the exponent
of the factor 10. The exponent may be
in the range -85 to +75. If an
unsigned exponent is specified, a plus
sign is assumed. The exponent causes
the value of +the constant to be
adjusted by the power of 10 that it
specifies before the constant is con-
verted to its binary form. The expo-
nent may exceed the permissible range
for exponents, provided that the sum
of the exponent and the exponent modi-
fier does not exceed that range.

The number 1is converted to a binary

number, and scaling is performed if speci-
fied. The binary number is then rounded
and assembled into the proper field,
according to the specified or implied

length. The resulting number will not
differ from the exact value by more than
one in the last place. If the value of the
number exceeds the 1length specified or
implied, the sign is 1lost, the necessary
leftmost bits are truncated to the length
of the field, and the value is then assem-
bled into the whole field. Any duplication
factor that is present is applied after the
constant 1is assembled. A negative number
is carried in 2s complement form.

An implied Xength of four bytes is
assumed for a full-word (F) and two bytes
for a half-word (H), and the constant is

aligned to the proper full-word or half-
word if a length is not specified.
However, any length up to and including

eight bytes may be specified for either
type of constant by a length modifier, in
which case no boundary alignment occurs.

Maximum and minimum values, exclusive of
scaling, for fixed-point constants are:

Length Max Min
8 263-1 -263
4 2311 -231
2 2151 -215
1 27-1 -27

A field of three full-words is generated
from the statement shown below. The loca-
tion attribute of CONWRD is the address of
the leftmost byte of the first word, and
the length attribute is 4, the implied
length for a full-word fixed-point con-
stant. The expression CONWRD+4 could be
used to address the second constant (second
word) in the field.

T T k]
lName !Operation | Operand !
T - -]
|CONWRD |DC | 3F' 658474" |
I S § 1

The next statement causes the generation

of a two-byte field containing a negative
constant. Notice that scaling has been
specified in order to reserve six bits for

the fractional portion of the constant.

r T B 1
| Name |Operation |Operand |
1 1 J i |
¥ T T 1
|HALFCON |DC |HS6'-25.46" |
L i ———— L J

The next constant (3.50) is multiplied

by 10 to the -2 before being converted to
its binary format. The scale modifier

reserves 12 bits for the fractional por-
tion.

r T T

| Name |Operation |Operand

L 1 4

o e bt e

r T T
|FULLCON |DC |HS12'3.50E-2"
L [] i

The same constant could be specified as
a literal:

| I - T)|
|Name |Operation |Operand |
¢ } —4— 4
| | AH |7,=HS12'3.50E-2" |
I N _ J
The final example specifies three con-
stants. Notice that the scale modifier
requests four bits for the fractional por-
tion of each constant. The four bits are
provided whether or not the fraction
exists.
r - X T 1
| Name |Operation |Operand |
L 1 i 4
r T T 4
| THREECON |DC |FS4"10,25.3,100" |
L i N ——— O, J

Floating-Point Constants ~-- E and D: A

floating-point constant is written as a
decimal number, which may be followed by a
decimal exponent, if desired. The number
may be an integer, a fraction, or a mixed
number (i.e., one with integral and frac-
tional portions). The format of the con-
stant is as follows:

Assembler-Instructions us5

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number, or it may be omit-
ted, in which case, the number is
assumed to be an integer. A positive
sign 1is assumed if an unsigned number
is specified.

2. The exponent is optional. If speci-
fied, it is written immediately after
the number as En, where n is an
optionally signed decimal value speci-
fying the exponent of the factor 10.
The exponent may be in the range -85
to +75. If an unsigned exponent is
specified, a plus sign is assumed.
The exponent may exceed the permissi-
ble range for exponents, provided that
the sum of the exponent and the expo-
nent modifier does not exceed that
range.

Machine format for a floating-point num-
ber is in two parts: the portion containing
the exponent, which is sometimes called the
characteristic, followed by the portion
containing the fraction, which is sometimes
called the mantissa. Therefore, the number
specified as a floating-point constant must
be converted to a fraction before it can be
translated into the proper format. For
example, the constant 27.35E2 represents
the number 27.35 times 10 to the 2nd.
Represented as a fraction, it would be
.2735 times 10 to the 4th, the exponent
having been modified to reflect the shift-
ing of the decimal point. The exponent may
also be affected by the presence of an
exponent modifier, as explained under
"Operand Subfield 3: Modifiers."™ Thus, the
exponent is also altered before being
translated into machine format.

The exponent is then translated into its
binary equivalent, and the fraction is
converted to a binary number. Scaling is
performed if specified; if not, the frac-
tion 1is normalized (leading hexadecimal
zeros are removed). Rounding of the frac-
tion 1is then performed according to the
specified or implied length, and the number
is stored in the proper field. The result-
ing number will not differ from the exact
value by more than one in the last place.
Within the portion of the floating-point
field allocated to the fraction, the hexa-
decimal point is assumed to be to the 1left
of the leftmost hexadecimal digit, and the
fraction occupies the leftmost portion of
the field. Negative fractions are carried
in true representation, not in the 2s
complement form.

An implied 1length of four bytes is
assumed for a full word (E) and eight bytes
is assumed for a double word (D). The
constant 1is aligned at the proper word or

46

double-word boundary if a length is not
specified. However, any length up to and
including eight bytes may be specified for
either type of constant by a length modifi-
er, in which case no boundary alignment
occurs.

Any of the following statements could be
used to specify 46.415 as a positive,
full-word, floating-point constant; the
last is a machine-instruction statement
with a literal operand. Note that the last
two constants contain an exponent modifier.

r T T 1
|[Name |Operation |Operand |
¢ + + * 4
| {DC |E*46.415" |
| {DC |E'46415E-3" I
	DC	E'+464.15E-1"
	DC	E'+.46U15E+2"
	DC	EE2'.46415"
	AE	6,=EE2'.46415"
L. 1 L J

The following would each be generated as
double-word floating-point constants.

r k)
lName Operation EOperand |

r T I
|FLOAT |DC IDE+4" +46,-3.729,+473" |
L L1 L

—_——

Decimal Constants -- P and Z: A decimal
constant is written as a signed or unsigned
decimal wvalue. If the sign is omitted, a
plus sign is assumed. The decimal point
may be written wherever desired or may be
omitted. Scaling and exponent modifiers
may not be specified for decimal constants.
The maximum length of a decimal constant is
16 Dbytes. No word boundary alignment is
performed.

The placement of a decimal point in the
definition does not affect the assembly of
the constant in any way, because, unlike
fixed-point and floating-point constants, a
decimal constant 1is not converted to its
binary equivalent. The fact that a decimal
constant is an integer, a fraction, or a
mixed number is not pertinent to its gener-
ation. Furthermore, the decimal point is
not assembled into the constant. The pro-
grammer may determine proper decimal point
alignment either by defining his data so
that the point is aligned or by selecting
machine-instructions that will operate on

the data properly (i.e., shift it for
purposes of alignment).
If zoned decimal format is specified

(Z), each decimal digit is translated into

one byte. The translation is done accord-
ing to the character set shown in Appendix
A. The rightmost byte contains the sign as

well as the rightmost digit. For packed
decimal format (P), each pair of decimal
digits is translated into one byte. The

rightmost digit and the sign are translated
into the rightmost byte. The bit configu-
ration for the digits is identical to the

configurations for the hexadecimal digits .
0-9 as shown in Section 3 under
"Hexadecimal Self-Defining value." For

both packed and. zoned decimals, a plus sign
is translated into the hexadecimal digit C,
and a minus sign into the digit D.

If an even number of packed decimal
digits is specified, one digit will be left
unpaired because the rightmost digit is
paired with the sign. Therefore, in the
leftmost byte, the leftmost four bits will
be set to zeros and the rightmost four bits
will contain the odd (first) digit.

If no length modifier is given, the
implied length for either constant is the
number of bytes the constant occupies
(taking into account the format, sign, and
possible addition of zero bits for packed
decimals). If a length modifier is given,
the constant is handled as follows:

i. If the constant requires fewer bytes
than the length specifies, the neces-
sary number of bytes is added to the
left. For zoned decimal format, the
decimal digit zero is placed in each
added byte. For packed decimals, the
bits of each added byte are set to
Zero.

2. If the constant
than

requires more bytes
the length specifies, the neces-
sary number of leftmost digits or
pairs of digits is dropped, depending
on which format is specified.

Examples of decimal constant definitions
follow.

I -

|Operand]

—— ——4—- -
| |DC |P'+1.25" |
| | DC |z"-543" |
i |DC |2'79.68" |
i |DC |PL3'79.68" |
[—— 1 __ L — J
The following statement specifies both
packed and zoned decimal constants. The

length modifier applies to each constant in
the first operand (i.e., to each packed
decimal constant). Note that a literal
could not specify both operands.

r—-—

T L}
| Name |Operation |Operand
L 4
b $—-
|DECIMALS |DC
]

T
|PL8'+25.8,-3874,

|+2.3*,2'+80,-3.72"
L |

1
|
1
a
!
I |

| IS

The last example illustrates the use of
a packed decimal literal.

" — ;
|Name |Operation |[Operand |
p———t L 1
| | ONPK | OUTAREA, =PL2"+25" |
| I L L]

ADDRESS CONSTANTS: An address constant is
a storage address that is translated into a

constant. Address constants are normally
used for 1initializing base registers to
facilitate the addressing of storage.

Furthermore, they provide the means of
communicating between control sections of a
multisection program. However, storage
addressing and control section communi-
cation are also dependent on the use of the
USING assembler instruction and the loading
of registers. Coding examples that illus-
trate these considerations are provided in
Section 3 under "Programming with the Using
Instruction.”

An address constant, unlike other types
of constants, 1is enclosed in parentheses.
If two or more address constants are speci-
fied in an operand, they are separated by
commas, and the entire sequence is enclosed
by parentheses. There are four types of
address constants: A, Y, S, and V. A
relocatable address constant may not be
specified with bit lengths.

Complex Relocatable Expressions: A complex
relocatable expression can only be used to
specify an A-type or Y-type address con-
stant. These expressions contain two or
more unpaired relocatable terms and/or
negative relocatable terms in addition to
any absolute or paired relocatable terms
that may be present. A complex relocatable
expression might consist of external sym-
bols and designate an address in an inde-
pendent assembly that is to be linked and
loaded with the assembly containing the
address constant.

A-Type Address Constant: This constant is
specified as an absolute, relocatable, or
complex relocatable expression. (Remember
that an expression may be single term or
multiterm.) The value of the expression is
calculated to 32 bits as explained in
Section 2 with one exception: the maximum

Assembler-Instxructions 47

Form C28-651u4-U4, Page Revised by TNL N28-2150, 7/1/66

value of the expression may be 231-1, The

value 1is then truncated on the left, if
necessary, to the specified or implied
length of the field and assembled into the

rightmost bits of the field. The implied
length of an A-type constant is four bytes,
and alignment is to a full-word boundary
uniess a length is specified, in which case
no alignment will occur. The length that
may be specified depends on the type of
expression used for the constant; a length
of .1-4 Dbytes may be used for an absolute
expression, while a length of only 3 or U4
may be wused for a relocatable or complex
relocatable expression.

In the following examples, the field
generated from the statement named ACONST
contains four constants, each of which
occupies four bytes. Note that there is a
location counter reference in one. The
value of the location counter will be the
address of the first byte allocated to the
fourth constant. The second statement
shows the same set of constants specified
as literals (i.e., address constant
literals).

r T T
| Name |Operation |Operand
L 1 1

T T

ACONST |DC |A(108,L00P,
| | END-STRT, *+4096)
| LM |4,7,=A(108,LOOP,

| | END-STRT, *+4096)
L L

= e e e oy
[" S ——

Note: When the location counter reference
occurs in a literal, as in the LM instruc-
tion above, the wvalue of the location

counter is the address of the first byte of
the instruction.

¥-Type Address constant: A Y-type address
constant has much in common with the A-type
constant. It too is specified as an abso-
lute, relocatable, or complex relocatable
expression. The value of the expression is
also calculated to 32 bits as explained in
Section 2. However, the maximum value of
the expression may be only 215-1. The
value 1is then truncated, if necessary, to
the specified or implied 1length of the
field and assembled into the right-most
bits of the field. The implied length of a
Y-type constant is two bytes, and alignment
is to a half-word boundary unless a length
is specified, in which case no alignment
will occur. The maximum length of a Y-type

address constant is two bytes. If l1ength
specification 1is used, a 1length of two
bytes may be designated for a 1relocatable

or complex expression and .1 to 2 bytes for
an absolute expression.

48

Warning: Specification of relocatable Y-
type address constants should be avoided in
programs destined to be executed on
machines having more than 32,767 bytes of
storage cavacity. In any case Y-type
address constants should mnot be used in
programs to be executed under Operating
System/360 control.

S5-Type Address Constant: The S-type
address constant 1is used to store an
address in base-displacement form.

The constant may be
ways:

specified in two

1. As an absolute or relocatable
sion, e.g., S(BETA).

expres-

2., As two absolute expressions, the first
of which represents the displacement
value and the second, the base reg-
ister, e.g., S(400(13)).

The address value represented by the
expression in (1) will be broken down by
the assembler into the proper base register
and displacement value. An S-type constant
is assembled as a half word and aligned on
a half-word boundary. The leftmost four
bits of the assembled constant represents
the base register designation, the remain-
ing 12 bits the displacement value.

If length specification is used, only
two bytes may be specified. S-type address
constants may not be specified as literals.

Q-Type Address Constant: This constant is
used to reserve storage for the offset of
an external dummy section. This offset is
added to the address of the block of
storage allocated to external dummy sec-
tions to access the desired section. The
constant is specified as one relocatable
symbol which has been previously defined in
a DXD or DSECT statement. The implied
length of a Q-type address constant is four
bytes and boundary alignment is to a full
word; a length of 1-4 bytes may be speci-

fied. No bit length specification is per-
mitted in a Q-type comnstant. In the fol-
lowing example the constant VALUE has been

previously defined in a DXD or DSECT state-
ment. To access VALUE the value of A is
added to the base address of the block of
storage allocated for external dummy sec-
tions. Q-type address constants may not be
specified in literals.

r T T K
| Name |Operation |Operand |
- ¥ ¥ 1
R |DC |Q (VALUE) |
L— R L 4

Form C28-6514-4, Page Revised by TNL N28-2150, 7/1/66

V-Type Address Constant: This constant is
used to reserve storage for the address of
an external symbol that is used for effect-
ing branches to other programs. The con-
stant may not be used for external data
references. The constant is specified as
one relocatable symbol, which need not be
identified by an EXTRN statement. Whatever
symbol is used is assumed to be an external
symbol by virtue of the fact that it is
supplied in a V-type address constant.

Note that
operand of a

specifying a symbol as the
V-type constant does not

constitute a definition of the symbol for
this assembly. The implied 1length of a
V-type address constant is four bytes, and
boundary alignment is to a full word. A
length modifier may be used to specify a
length of either three or four bytes, in
which case no such boundary alignment
occurs. In the following example, 12 bytes
will be reserved, because there are three
symbols. The value of each assembled con-
stant will Dbe zero until the program is
loaded.

Assembler-Instructions 48.1

The one to three operands may include an
operand from each of the following groups:

1. ON

A listing is printed.

OFF No listing is printed.

2. GEN

All statements generated by
macro-instructions are print-
ed.

NOGEN

Statements generated by
macro-insructions are not
printed with the exception of
MNOTE with a severity code
(other than *) which will
print regardless of NOGEN.
However, the macro-
instruction itself will
appear in the listing.

3. DATA - Constants are printed out in
full in the listing.

NODATA - Only the leftmost eight bytes
are printed on the listing.

contain
A PRINT

any number of
statement con-

A program may
PRINT statements.

trols the printing of the assembly listing
until another PRINT statement is encoun-
tered.

Until the first PRINT statement (if any)
is encountered, the following is assumed:

r - T i
|Name |Operation |Operand |
— $ -
| | PRINT | ON, NODATA, GEN |
L X L]
For example, if the statement:
r T . T 1
|Name |Operation |Operand |
t t 4 |
| | DC | XL256'00" |
L L 1 J

appears in
are assembled.

a program, 256 bytes of zeros
If the statement:

r 1 L 1
|Name |Operation |Operand |
}

—————— ¥ —{
| | PRINT | DATA |
L e 4 J
is +the 1last PRINT statement to appear
before the DC statement, all 256 bytes of

zeros are printed in the assembly listing.
However, if:

r T T
|Name |Operation |Operand

p--- :

| PRINT | NODATA

L L L J
is +the 1last PRINT statement to appear

before the DC statement, only eight bytes
of zeros are printed in the assembly list-
ing.

Whenever an operand is omitted, it is
assumed to be unchanged and continues
according to its last specification.

The hierarchy of print control state-
ments is:

1. ON and OFF
2. GEN and NOGEN

3. DATA and NODATA

Thus with the following statement nothing
would be printed.

- T .) 1
|Name |Operation [Operand |
b ¢ 4 1
| | PRINT |OFF, DATA, GEN]
— L 1 ———— — J
PROGRAM CONTROIL INSTRUCTIONS

The program control instructions are

used to specify the end of an assembly, to
set the location counter to a value or word
boundary, to insert previously written cod-
ing in the program, to specify the place-
ment of literals in storage, to check the
sequence of input cards, to indicate state-
ment format, and to punch a card. Except
for the CNOP and COPY instructions, none of

these assembler instructions generate
instructions or constants in the object
program.

ICTL -- INPUT FORMAT CONTROL

The ICTL instruction allows the program-
mer to alter the normal format of his
source program statements. The ICTL state-
ment must precede all other statements in
the source program and may be used only
once. The format of the ICTL instruction
statement is as follows:

Assembler-Instructions 53

r T
[Name | Operation Operand |

8
| Blank ICTL |1-3 decimal values of

| |the form b, e,c
L L

Operand b specifies the begin column of
the source statement. It must always be
specified, and must be from 1-40, inclu-
sive. Operand e specifies the end column
of the source statement. The end column,
when specified, must be from 41-80, inclu-
sive; when not specified, it is assumed to
be 71. The column after the end column is
used to indicate whether the next card is a
continuation card. Operand c specifies the
continue column of the source statement.
The continue column, when specified, must
be from 2-40 and must be greater than b.
If the continue column is not specified, or
if column 80 1is specified as the end
column, the assembler assumes that there
are no continuation cards, and all state-
ments must be contained on a single card.
The operand forms b,,c and b, are invalid.

If no ICTL statement 1is used in the
source program, the assembler assumes that
1, 71, and 16 are the begin, end, and
continue columns, respectively.

The next example designates the begin
column as column 25. Since the end column
is not specified, it 1is assumed to be
column 71. No continuation cards are rec-
ognized because the continue column is not
specified.

L] L) 1
|Name |Operation |[Operand |
______ [N []
4
i { ICTL |25 |
L L]

ISEQ -- INPUT SEQUENCE CHECKING
The ISEQ instruction is used to check

The format of
fol-

the sequence of input cards.
the ISEQ instruction statement is as
lows:

r T T
| Name |Operation |Operand
[l

+
| Two decimal values of
|the form 1,r; or blank
L

| Blank| ISEQ
| |

L L

R

54

The operands 1 and r, respectively,
specify the leftmost and rightmost columns
of the field in the input cards to be
checked. Operand r must be equal to or
greater than operand 1. Columns to be
checked must not be between the begin and
end columns.

Sequence checking begins with the first
card following the ISEQ statement. Compar-
ison of adjacent cards makes use of the
eight-bit internal collating sequence.
(See Appendix A.) Each card checked must
be higher than the preceding card.

An ISEQ statement with a blank operand
terminates the operation. Checking may be
resumed with another ISEQ statement.

Sequence checking is only performed on
statements contained in the source program.
Statements inserted by the COPY assembler-
instruction or generated by a macro-
instruction are not checked for sequence.
Also macro-definitions in a macro 1library
are not checked.

PUNCH -- PUNCH A CARD

The PUNCH assembler-instruction causes
the data in the operand to be punched into
a card. One PUNCH statement produces one
punched card. As many PUNCH statements may
be used as are necessary. The format is:

r T h
| Name Operation |Operand |
L (1 E]
¥ T 1
Blank PUNCH	1 to 80 characters	
]	enclosed in apos-	
		trophes
L 1 L 1

Using character representation, the

operand is written as a string of up to 80
characters enclosed in apostrophes. All
characters, including blank, are valid.
The position immediately to the right of
the left apostrophe is regarded as column
one of the card to be punched. Substitu-
tion is performed for variable symbols in
the operand. Special consideration must be
given to representing apostrophes and
ampersands as characters. Each apostrophe
or ampersand desired as a character in the
constant must be represented by a pair of
apostrophes or ampersands. Only one apos-
trophe or ampersand appears in storage.

PUNCH statements may occur anywhere
within a program, except before macro defi-
nitions. They may occur within a macro
definition but not between the end of a

macro definition and the beginning of the
next macro definition. If a PUNCH state-
ment occurs before the first control sec-
tion, the resultant card will precede all
other cards in the object program card
deck; otherwise the card will be punched in
place. No sequence number or identifi-
cation is punched in the card.

REPRO -- REPRODUCE FOLLOWING CARD

The REPRO assembler-instruction causes
data on the following statement line to be
punched into a card. The data is not
processed; it is punched in a card, and no
substitution is performed for variable sym-
bols. No sequence number or identification
is punched on the card. One REPRO instruc-
tion produces one punched card. The REPRO
instruction may not appear before a macro
definition. REPRO statements that occur
before all statements composing the first
or only control section will punch cards
which precede all other cards of the object

deck. The format is:

i v .

| Name | Operation Operand

"]

[} T

|Blank |REPRO | Blank |
(% 4 4L J

The line to be reproduced may contain
any combination of up to 80 valid charac-
ters. Characters may be entered starting
in column 1 and continuing through column
80 of the 1line. Column 1 of the 1line
corresponds to c¢olumn 1 of the card to be
punched.

ORG -- SET LOCATION COUNTER

The ORG instruction is used to alter the
setting of the location counter for the
current control section. The format of the
ORG instruction statement is:

r T a]
Name Operation Operand
L 1 (] p

b s e i s s

v 1 T
|Blank |ORG |A relocatable ex-
| | | pression or blank
L —— L L
Any symbols in the expression must have
been previously defined. The unpaired

in the
ORG

relocatable symbol must be defined
same control section in which the
statement appears.

The location counter is set to the value
of the expression in the operand. If the
operand is omitted, the location counter is
set to the next available (unused) location
for that control section.

An ORG statement must not be used to
specify a location below the beginning of
the control section in which it appears.
The following is invalid if it appears less
than 500 bytes from the beginning of the
current control section.

r

Ll ¥
|Name |Operation |Operand
p-----—t +
| | START {1000
| | ORG | *-500
L L L
If it is desired to reset the location

counter to a value that is one byte beyond
the highest location yet assigned (in the
control section), the following statement
would be used:

Name Operation Operand

e ol

fom e e e
o e e e]

| ORG
L

If previous ORG statements have reduced
the location counter for the purpose of
redefining a portion of the current control
section, an ORG statement with an omitted
operand can then be used to terminate the

effects of such statements and restore the
location counter to its highest setting
plus one.

LTORG ~- BEGIN LITERAL POOL

The LTORG instruction causes all liter-
als since the previous LTORG (or start of
the program) to be assembled at appropriate

boundaries starting at the first double-
word boundary following the LTORG
statement. If no literals follow the LTORG
statement, alignment of the next instruc-

tion (which is not a LTORG instruction)
will occur. Bytes skipped are not zeroed.
The format of the LTORG instruction state-
ment is:

Assembler-Instructions 55

r T B T 1

!Name 1Operat10n loperand J
T T

|Symbol |LTORG |Not used |

|or [| |

| blank | | |

L L L ¥

The symbol represents the address of the
first byte of the literal pool. It has a
length attribute of 1.

Special Addressing Consideration

Any literals used after the last LTORG
statement in a program are placed at the
end of the first control section. If there
are no LTORG statements in a program, all
literals wused in the program are placed at
the end of the first control section. In
these circumstances the programmer must
ensure that the first control section is
always addressable. This means that the
base address register for the first control
section should not be changed through usage
in subsequent control sections. If the
programmexr does mnot wish to reserve a
register for this purpose, he may place a
LTORG statement at the end of each control
section thereby ensuring that all 1literals
appearing in that section are addressable.

Duplicate Literals

If duplicate literals occur within the
range controlled by one LTORG statement,
only one literal is stored. Literals are
considered duplicates only if their speci-
fications are identical. A literal will be
stored, even if it appears to duplicate
another literal, if it is an A-type address
constant containing any reference to the
location counter.

The following examples illustrate how
the assembler stores pairs of literals, if
the placement of each pair is controlled by
the same LTORG statement.

X'FO'

Both are stored
c'o’
XL3'0"

Both are stored
HL3'0"

56

A(*+l4)
Both are stored
A(*+4)

X' FFFF'
Identical; the first is stored
X'FFFF'

CNOP -- CONDITIONAL NO OPERATION

The CNOP instruction allows the program-

mer to align an instruction at a specific
half-word boundary. If any bytes must be
skipped in order to align the instruction

properly, the assembler ensures an unbroken
instruction flow by generating no-operation
instructions. This facility is useful in
creating calling sequences consisting of a
linkage to a subroutine followed by parame-
ters such as channel command words (CCW).

The CNOP instruction ensures the align-
ment of the location counter setting to a
half-word, woxrd, or double-word boundary.
If the location counter is already properly
aligned, the CNOP instruction has no
effect. If the specified alignment
requires the location counter to be incre-
mented, one to three no-operation instruc-
tions are generated, each of which uses two
bytes.

The format of +the CNOP instruction
statement is as follows:
r T - . T 1
| Name |Operation |Operand |
L 1 —————de ¥
v T a
Blank	CNOP	Two absolute
		expressions of
		the form b,w
L L. 1 J

Any symbols used in the expressions in
the operand field must have been previously
defined.

Operand b specifies at which byte in a
word or double word the location counter is
to be set; b can be 0, 2, 4, or 6. Operand
w specifies whether byte b is in a word
(w=4) or double word (w=8). The following
pairs of b and w are valid:

b,w Specifies

Beginning of a word

Middle of a word

Beginning of a double word

Second half word of a double word
Middle (third half word) of a dou-
ble word

Fourth half word of a double word

FyONO |
& W =W . W
oo E &

[)}
@

4

A macro-definition consists of:
1. A macro-definition header statement.

2. A macro-instruction prototype state-

ment.
3. 7exo or more model statements, COPY
statements, MEXIT, MNOTE, or

conditional assembly instructions.
4., A macro-definition trailer statement.

Except for MEXIT, MNOTE, and conditional
assembly instructions, this section of the
publication describes all of the statements
that may be used to prepare macro-
definitions. Conditional assembly
instructions are described in Section 9.
MEXIT and MNOTE instructions are described
in Section 10.

Macro-definitions appearing in a source

program must appear before all PUNCH and
REPRO statements and all statements which
pertain to the first control section.
Specifically, only the 1listing control
instructions (EJECT, PRINT, SPACE, and
TITLE), ICTL and ISEQ instructions, and
comments statements may occur before the
macro-definitions. All but the ICTL
instruction may appear between macro-

definitions if there is more than one
definition in the source program.
MACRO -- MACRO-DEFINITION HEADER

The macro-definition header statement
indicates the beginning of a macro-
definition. It must be the first statement

in every macro-definition. The format of

this statement is:

——————— - 1
| Name |Operation |Operand |
| - - 1
[}
|Blank | MACRO | Blank |
| I Lo —_—t 3
MEND -- MACRO-DEFINITION TRAILER

The macro-definition trailer statement
indicates the end of a macro-definition.

It must be the last statement in every

SECTION 7: HOW TO PREPARE MACRO-DEFINITIONS

macro-definition. The format of this
statement is:

r=——<= T . T 1
| Name |Operation |[Operand |
e — 1 .
|Blank |MEND | Blank |
| S i E L - J

MACRO-INSTRUCTION PROTOTYPE

The macro-instruction prototype state-
ment (hereafter called the prototype
statement) specifies the mnemonic operation

code and the format of all macro-
instructions that refer to +the macro-
definition. It must be the second state-

ment of every macro-definition. The format

of this statement is:

r———- T T - 1
| Name |Operation |Operand |
N L |

- T T s
|A symbolic |A symbol |Zero or more sym-|
|parameter | | bolic parameters, |
{or blank | | separated by com-|
| | | mas |
L L L J
The symbolic parameters are used in the

macro-definition to represent the name
field and operands of the corresponding
macro-instruction. A description of
symbolic parameters appears under "Symbolic
Parameters."

The name field of the
ment may be blank, or
symbolic parameter.

prototype state-
it may contain a

The symbol in the operation field is the
mnemonic operation code that must appear in
all macro-instructions that refer to this
macro-definition. The mnemonic operation
code must not be the same as the mnemonic
operation code of another macro-definition
in the source program or of a machine or
assembler instruction as listed in Appendix
G.

The operand field may contain 0 to 200
symbolic parameters separated by commas.
If there are no symbolic parameters, com-
ments may not appear.

How to Prepare Macro-Definitions 63

The following is a prototype statement.
| S — T - T -
| Name |Operation |Operand |
L i — |
L} T 1
| ENAME | MOVE | §TO, §FROM |
L L 4 4

Statement Format

statement may be written
in a format different from that used for
assembler language statements. The normal
format is described in Part I of this
publication. The alternate format describ-
ed here allows the programmer to write an
operand on each line, and allows the inter-
spersing of operands and comments in the

The prototype

statement.
In the alternate format, as in the
normal format, the name and operation

fields must appear on the first line of the
statement, and at least one blank must
follow the operation field on that line.
Both types of statement formats may be used
in the same prototype statement.

The rules for using the alternate state-
ment format are:

1. If an operand is followed by a comma
and a blank, and the column after the
end column contains a nonblank charac-
ter, the operand field may be contin-
ued on the next line starting in the
continue column. More than one oper-
and may appear on the same line.

2. Comments may appear after the blank
that indicates the end of an operand,
up to and including the end column.

3. If the next 1line starts after the
continue column, the information
entered on the next line is considered
comments, and the operand field is
considered terminated. Any subsequent
continuation lines are considered com-
ments.

Note: A prototype statement may be written
on as many continuation lines as necessary.
When using normal format, the operands of a
prototype statement must begin on the first
statement line or in the continue column of
the second line.

The following examples illustrate: (1)
the normal statement format, (2) the alter-
nate statement format, and (3) the combina-
tion of both statement formats.

64

r T T T1
|Name |Oper-|Operand Comments| |
| Jation]| |
t -1 1 -=1-1
| NAME1 |OP1 |OPERAND1,OPERAND2,OPERAN|X|
| | |D3 THIS IS THE NORMAL 1 X
| | | STATEMENT FORMAT |1
b=== P bt -1
| NAME2 |OP2 |OPERAND1, THIS IS THE AL|X|
| | | OPERAND2, OPERAND3, TERNA|X |
[| | TE STATEMENT FORMAT |
b= : 1 -1
NAME3	OP3	OPERAND1, THIS IS A COMB	X]
		OPERAND2, OPERAND3, OPERAN	X
		D4,OPERANDS5 INATION OF	X
] | |BOTH STATEMENT FORMATS | |
L L 1 L.
MODEL STATEMENTS

Model statements are the macro-
definition statements from which the
desired sequences of assembler language
statements are generated. Zero or more
model statements may follow the prototype
statement. A model statement consists of

one to four fields.
right, the name,
comments fields.

They are, from left to
operation, operand, and

The hame field may be blank, or it may
contain a symbol or symbolic parameter.
(Neither an * nor .* may be substituted in .
the begin column of a model statement.)

The operation entry may contain any
machine, or assembler instruction as listed
in Section 5, or macro-instruction mnemonic
operation code, except COPY, END, ICTL,
ISEQ, and PRINT; or it may contain a
variable symbol. Variable symbols may not
be used to generate the following mnemonic
operation codes, nor may variable symbols
be wused in the name and operand entries of
these instructions: COPY, END, ICTL, or
ISEQ. Variable symbols may not be used to
generate CSECT, DSECT, PRINT, REPRO, START
or macro-instruction mnemonic operation
codes. Variable symbols may not be used to
generate the name and operation code of the
ACTR instruction or operation codes naot
listed in Section 5.

Variable symbols may also be used out-
side macro-definitions to generate mnemonic
operation codes with the preceding restric-
tions. Although COPY statements may not be
used as model statements, they may be part
of a macro-definition. The use of COPY
statements is described under "COPY state-
ments."

The operand entry may contain ordinary
symbols or variable symbols. Model state-
ment fields must follow the rules for

the macro-instruction are the symbol HERE,
then HERE replaces each occurrence of €A in
the macro-definition. However, if &A is a
SET symbol, the value assigned to §A can be
changed, and a different value can replace
each occurrence of &A in the macro-
definition.

The same variable symbol may not be used
as a symbolic parameter and as a SET symbol
in the same macro-definition.

The following illustrates this rule.

S et S ==
| Name |Operation |Operand |
b — + ————i
| ENAME | MOVE | §TO, EFROM |
b L PR | J

If the statement above is a prototype
statement, then §NAME, &§TO, and &FROM may
not be used as SET symbols in the macro-
definition.

The same variable symbol may not be used
as two different types of SET symbols in
the same macro-definition. Similarly, the
same variable symbol may not be used as two
different types of SET symbols outside
macro-definitions.

For example, if &A is a SETA symbol in a
macro-definition, it cannot be used as a
SETC symbol in that definition. Similarly,
if A is a SETA symbol outside macro-
definitions, it cannot be used as a SETC
symbol outside macro-definitions.

The same variable symbol may be used in

two or more macro-definitions and outside
macro-definitions. If such 1is the case,
the variable symbol will be considered a

different variable symbol each time it is
used.

For example, if &A is a variable symbol
(either SET symbol or symbolic parameter)
in one macro-definition, it can be used as
a variable symbol (either SET symbol or
symbolic parameter) in another definition.
Similarly, if &A is a variable symbol (SET
symbol or symbolic parameter) in a macro-
definition, it can be used as a SET symbol
outside macro-definitions.

All variable symbols may be concatenated
with other characters in the same way that

symbolic parameters may be concatenated
with other characters. The rules for
concatenating symbolic parameters with

other characters are in Section 7 under the
subsection "Symbolic Parameters."

Variable symbols 1in macro-instructions
are replaced by the values assigned to
them, immediately prior to the start of
processing the definition. If a SET symbol

is used in the operand field of a macro-
instruction, and the value assigned to the
SET symbol is equivalent to the sublist
notation, the operand is not considered a
sublist.

ATTRIBUTES

The assembler assigns attributes to
macro-instruction operands and to symbols
in the program. These attributes may be
referred to only in conditional assembly
instructions.

There are six kinds of attributes. They
are: type, length, scaling, integer,
count, and number. Each kind of attribute
is discussed in the paragraphs that follow.

If an outer macro-instruction operand is
a symbol before substitution, then the
attributes of the operand are the same as
the corresponding attributes of the symbol.
The symbol must appear in the name field of
an assembler language statement or in the
operand field of an EXTRN statement in the
program. The statement must be outside
macro-definitions and must not contain any
variable symbols.

If an inner macro-instruction operand is
a symbolic parameter, then the attributes
of the operand are the same as the attri-
butes of the corresponding outer macro-
instruction operand.

If a macro-instruction operand is a
sublist, the programmer may refer to the
attributes of either the sublist or each
operand in the sublist. The type, 1length,
scaling, and integer attributes of a
sublist are the same as the corresponding

attributes of the first operand in the
sublist.

All the attributes of macro-instruction
operands may be referred to in conditional
assembly instructions within macro-
definitions. However, only the type,

length, scaling, and integer attributes of

symbols may be referred to in conditional
assembly instructions outside macro-
definitions. Symbols appearing in the name

field of generated statements are not

assigned attributes.

Each attribute has a notation associated

with it. The notations are:
Attribute Notation
Type T*

Length L’

Scaling s

Integer Ie

Count L

Number N

Writing Conditional Assembly Instructions 73

Form C28-6514-4, Page Revised by TNL N28-2150, 7/1/66

The programmer may refer to an attribute
in the following ways:

1. In a statement that is outside macro-
definitions, he may write the notation
for the attribute immediately followed
by a symbol. (e.g., T'NAME refers to
the type attribute of the symbol
NAME.)

2. In a statement that is in a macro-
definition, he may write the notation
for the attribute immediately followed
by a symbolic parameter. (e.qg.,
L'ENAME refers to the length attribute
of the characters in the macro-
instruction that correspond to
symbolic parameter §ENAME; L'E&ENAME(2)
refers to the length attribute of the
second operand in the sublist that
corresponds to symbolic parameter
ENAME.)

Type Attribute (T')

The type attribute of a macro-
instruction operand, or a symbol 1is a
letter.

The following letters are used for
symbols that name DC and DS statements and
for outer macro-instruction operands that
are symbols that name DC or DS statements.

A A-type address constant,

implied length, aligned,

CXD statement)

Binary constant.

Character constant.

Long floating-point constant,

implied length, aligned.

Short floating-point constant,

implied length, aligned.

F Full-word fixed-point constant,
implied length, aligned.

G Fixed-point constant, explicit

length.

Half-word fixed-point constant,

implied length, aligned.

Floating-point constant,

explicit length.

Packed decimal constant.

Q-type address constant, implied

length, aligned.

A-, S-, Q-, V-, or Y-type address

constant, explicit length.

S-type address constant,

implied length, aligned.

V-type address constant,

implied length, aligned.

Hexadecimal constant.

Y-type address constant,

implied length, aligned.

7 Zoned decimal constant.

(also in

Uow

=

=}

nw W O" R

KK <

The following letters are used for sym-
bols (and outer macro-instruction operands

74

that are symbols) that name statements
other than DC or DS statements, or that
appear in the operand field of an EXTRN
statement.

Machine instruction
Control section name
Macro-instruction
External symbol

CCW assembler instruction

SHRUH

The following letters are used for inner

and outer macro-instruction operands only.
N Self-defining term
(0] Omitted operand

The following 1letter is used for inner
and outer macro-instruction operands that
cannot pe assigned any of the above let-
ters. This includes inner macro-
instruction operands that are symbols.
This letter 1is also assigned to symbols
that name EQU and LTORG statements, to any
symbols occurring more than once in the
name field of source statements, and to all
symbols naming statements with expressions
as modifiers.

U Undefined

The attributes of A, B, C and D are
undefined in the following example:

1 1 1
lName lOperation lOperand !
r T T 1
(2 |DC |3FL (A-B)'75"
|B |DC | (A-B) F'15° |
|1C |DC |6X*1"]
|D |DC |FL(3-2)"'1" |
L L L 1

The programmer may refer to a type

attribute in the operand field of a SETC
instruction, or in character relations in
the operand fields of SETB or AIF
instructions.

Length (L"), Scaling (S'"), and Integer (I')

Attributes

The 1length, scaling, and integer attri-
butes of macro-instruction operands, and
symbols are numeric values.

The 1length attribute of a symbol (or of
a macro-instruction operand that is a
symbol) is as described in Part I of this
publication.

Conditional assembly instructions must
not refer to the length attributes of
symbols or macro-instruction operands whose
type attributes are the letters M, N, O, T,
or U.

The symbolic parameter ENAME is used in
the name field of the prototype statement
(statement 1) and the first model statement

(statement 2). In the macro-instruction
(statement 3) a sequence symbol (.SYM)
corresponds to the symbolic parameter

ENAME. §ENAME is not replaced by .SYM, and,
therefore, the generated statement
(statement U) does not contain an entry in
the name field.

LCIA,ICLB,ILCLC -- DEFINE SET SYMBOLS

The format of these instructions is:

| === T - 1
| Name |Operation |Operand |
———————t e -4]
rBlank | LCLA, |One or more variable 1
| |LCLB, or | symbols, that are |
| | LCLC |to be used as SET]
| | | symbols, separated |
] | |by commas |
S —— ¥ 1 4

The LCLA, LCLB, and LCLC instructions
are used to define and assign initial
values to SETA, SETB, and SETC symbols,
respectively. The SETA, SETB, and SETC

symbols are assigned the initial values of
0, 0, &nd null character value, respective-

ly.

The programmer should not define any SET
symbol whose first four characters are
§SYS.

All ICLA, LCLB, or LCLC instructions in
a macro-definition must appear immediately
after the prototype statement, and GBLA,
GBLB or GBLC instructions, or LCLA, LCLB,
or LCLC instructions. All LCLA, LCLB, or
LCLC instructions outside macro-definitions
must appear after all macro-definitions in
the source program, after all GBLA, GBLB,
and GBRIC instructions outside macro-
definitions, before all conditional
assembly instructions, and PUNCH and REPRO

statements outside macro-definitions, and
before the first control section of the
progranm.
SETA —-- SET ARITHMETIC

The SETA instruction may be used to
assign an arithmetic value to a SETA sym-

bol. The format of this instruction is:

- T] T 1
| Name |Operation |Operand |
L 1 —_—— 4
r T A
|A SETA |SETA |An arithmetic |
|symbol | | expression |
| IS, i L 1

The expression in the operand field is

evaluated as a signed 32-bit arithmetic
value which is assigned to the SETA symbol
in the name field. The minimum and maximum
allowable values of the expression are -231

and +231-1, respectively.
The expression may consist of one term
or an arithmetic combination of terms. The

terms that may be used alone or in combina-
tion with each other are self-defining
terms, variable symbels, and the 1length,
scaling, integer, count, and number attri-
butes. Self-defining terms are described
in Part I of this publication.

Note: A SETC variable symbol may appear in
a SETA expression only if the value of the
SETC variable is one to eight decimal
digits. The decimal digits will be con-
verted to a positive arithmetic value.

The arithmetic operators that may be
used to combine the terms of an expression
are + (addition), - (subtraction),
* (rultiplication), and / (division).

An expression may not contain two terms
or two operators in succession, nor may it
begin with an operator.

The following are valid operand fields
of SETA instructions:

EAREA+X' 2D’ I'6N/25
§BETA*10 EEXIT-S' §ENTRY+1
L' EHERE+32 29

The following are invalid operand fields
of SETA instructions:

EAREAX'C" (two terms in succession)
EFIELD+- (two operators in succession)
~&§DELTA*2 (begins with an operator)
*+32 (begins with an operator;

two operators in succession)
NAME/15 (NAME is not a valid term)

Evaluation of Arithmetic Expressions

The procedure used to evaluate the
arithmetic expression in the operand field
of a SETA instruction is the same as that

Writing Conditional Assembly Instructions 77

Form C28-6514-4, Page Revised by TNL N28-2150,

used to evaluate arithmetic expressions in
assembler language statements. The only
difference between the two types of arith-
metic expressions is the terms that are
allowed in each expression.

The following evaluation procedure is
used:
1. Each term is given its numerical
value.
2. The arithmetic operations are per-
formed moving from 1left to right.
However, multiplication and/or divi-

sion are performed before addition and
subtraction.

result 1is the value
SETA symbol in the

3. The computed
assigned to the
name field.

The arithmetic expression in the operand
field of a SETA instruction may contain one
or more sequences of arithmetically com-
bined terms that are enclosed in parenthe-
ses. A sequence of parenthesized terms may
appear within another parenthesized
sequence. Only five levels of parentheses
are allowed and an expression may not
consist of more than 16 terms. Parentheses
required for sublist notation, substring
notation, and subscript notation count
toward this limit.

The following are examples of SETA
instruction operand fields that contain
parenthesized sequences of terms.

(L' §HERE+32) *29
EAREA+X'2D'/(EEXIT-S'§ENTRY+1)
E§BETA*10*(I'EN/25/ (6EXIT-S' §ENTRY+1))

The parenthesized portiom or portions of
an arithmetic expression are evaluated
before the rest of the terms in the expres-
sion are evaluated. If a sequence of
parenthesized terms appears within another
parenthesized sequence, the innermost
sequence is evaluated first.

Using SETA Symbols

The arithmetic value assigned to a SETA
symbol is substituted for the SETA symbol
when it is wused in an arithmetic expres-
sion. If the SETA symbol is not used in an
arithmetic expression, the arithmetic value
is converted to an unsigned integer, with
leading zeros removed. If the value is
zero, it is converted to a single zero.

78

771766

The following example illustrates this
rule:
I Rl T 1
| Name |Operation |Operand |
b + ¢ 1
	MACRO	
ENAME	MOVE	§TO, §FROM
	LCLA	6A,8B,6C, &D
1	&A	SETA 110
2	&B	SETA 112
3	&C	SETA
4	&D	SETA
ENAME	ST	2, SAVEAREA [
5	L	2, §FROMEC 1
6		ST
[L	2, SAVEAREA
	MEND	{
b $ - {		
HERE	MOVE	FIELDA, FIELDB
[N } 1 4		
! 1 T 1		
HERE }	ST	2, SAVEAREA
	L	2, FIELDB2
	sT	2, FIELDAS
	L	2, SAVEAREA
L 1 L J

Statements 1 and 2 assign to the SETA
symbols &A and ‘6B the arithmetic values +10
and +12, respectively. Therefore, state-
ment 3 assigns the SETA symbol §&C the
arithmetic value -2. When §C is wused in
statement 5, the arithmetic value -2 is
converted to the unsigned integer 2. When
EC 1is wused 1in statement 4, however, the
arithmetic value -2 is used. Therefore, &D
is assigned the arithmetic value +8. When

€D is used in statement 6, the arithmetic
value +8 is converted to the unsigned
integer 8.

The following example shows how the

value assigned to a SETA symbol may be
changed in a macro-definition.

Operand

r T . T]
| Name | Operation | |
t $ 4o 1
| | MACRO | |
| ENAME | MOVE | €TO, §FROM |
| | LCLA |ea i
1 |&Aa | SETA) |
| ENAME |ST | 2, SAVEAREA |
2 | L | 2, EFROMEA
3 |&a | SETA |8 |
4| |ST 12, 6TOEA |
[|L | 2, SAVEAREA
| | MEND | |
¢ : e |
| HERE | MOVE | FIELDA, FIELDB |
[N 41 1 1
I 1 T 1
| HERE |ST | 2, SAVEARER |
| | L | 2, FIELDB5
| |sT | 2, FIELDAS |
| L | 2, SAVEAREA |
L 4 1 1

Therefore, if the type attribute is not
the 1letter F, statement 4 (the statement
named by the sequence symbol .END) is the
next statement processed by the assembler.
If the type attribute is the letter F,
statement 3 (the next sequential statement)
is processed.

AGO -- UNCONDITIONAL BRANCH

The AGO instruction is used to
unconditionally alter the sequence in which
source program or macro-definition state-
ments are processed by the assembler. The
assembler assigns a maximum count of 4096
AIF and AGO branches that may be executed
in the source program or in a macro-
definition. When a macro-definition calls
an inner macro-definition, the current
value of the count is saved and a new count
of 4096 is set wup for the inner macro-

definition. When processing in the inner
definition is completed and a return is
made to the higher definition, +the saved

count 1is restored. The format of this

instruction is:

r Y T L]
| Name | Operation|Operand |
1 L L d
L) T T 1
A sequence	AGO	A sequence symbol
symbol or		
blank		
L L 1 J

The statement named by the sequence

symbol in the operand field is the next
statement processed by the assembler.

The statement mnamed by the sequence
symbol may precede or follow the AGO
instruction.

If an AGO instruction is part of a
macro-definition, then the sequence symbol
in the operand field must appear in the
name field of a statement that is in that
definition. If an AGO instruction appears
outside macro-definitions, then the
sequence symbol in the operand field must
appear in the name field of a statement
outside macro-definitions.

The following example illustrates the
use of the AGO instruction.

r T T 1
|Name |Operation|Operand |
-——=1 ¢ 1

| MACRO | |

| ENAME |MOVE | €T, &F |
1| |ATF |(T'€T EQ 'F').FIRST |
2 |AGO | .END |
3 {.FIRST|AIF | (T*" €T NE T'é&F) .END [
| ENAME |ST | 2, SAVEAREA |

| |L |2, 6F |

| |sT |2,86T |

l |L | 2, SAVEAREA |

4 |.END |MEND | |
[. i L e e e e e e e e e e e e J

Statement 1 is used to determine if the
type attribute of the first macro-
instruction operand is the letter F. If
the type attribute is the 1letter F,
statement 3 is the next statement processed
by the assembler. If the type attribute is
not the letter F, statement 2 is +the next
statement processed by the assembler.

Statement 2 1is used to indicate to the
assembler 'that the next statement to be
processed is statement 4 (the statement
named by sequence symbol .END).

ACTR -~ CONDITIONAL ASSEMBLY LOOP COUNTER

The ACTR instruction is used to assign a
maximum count (different from the standard
count of 4096) to the number of AGO and AIF
branches executed within a macro-definition
or within the source program. The format
of this instruction is as follows:

r T 1
| Name |Operation|Operand |
1 4 i |
r - T 1
|Blank | ACTR |Any valid SETA |
| | |expression |
L L L]

This statement, which can only occur

immediately after the global and 1local
declarations, causes a counter to be set to
the value in the operand field. The coun-
ter 1is checked for =zero or a negative
value; if it is not zero or negative, it is
decremented by one each time an AGO or AIF
branch 1s executed. If the count is zero
before decrementing, the assembler will
take one of two actions:

1. If processing is being
inside a macro definition, the entire
nest of macro definitions will be
terminated and the next source state-
ment will be processed.

performed

Writing Conditional Assembly Instructions 85

2. If the source program is
essed,

being proc-
an END card will be generated.

An ACTR instruction in a macro-
definition affects only that definition; it
has no effect on the number of AIF and AGO
branches that may be executed in macro-
definitions called.

ANOP -- ASSEMBLY NO OPERATION

The ANOP instruction facilitates
conditional and unconditional branching to
statements named by symbols or variable
symbols.

The format of this instruction is:

r L) . T -
lName loperatlon lOperand }
r T T -

|A se- | ANOP |Blank |
Iquence | | |
| symbol | | |
L PR & L J— |

If the programmer wants to use an AIF or
AGO instruction to branch to another state-
ment, he must place a sequence symbol in
the name field of the statement to which he
wants to branch. However, if the program-
mer has already entered a symbol or varia-
ble symbol in the name field of that
statement, he cannot place a sequence sym-
bol in the name field. Instead, the pro-
grammer must place an ANOP instruction
before the statement and then branch to the
ANOP instruction. This has the same effect
as branching to the statement immediately
after the ANOP instruction.

The following example illustrates the
use of the ANOP instruction.

r T ¥ |
| Name |Operation |Operand |
b~ t 1 1
| | MACRO | |
| ENAME | MOVE | 6T, &F |
i | LCLC | §TYPE |
1 |AIF | (T*6T EQ "F").FTYPE |
2 |§TYPE |SETC |'E’ |
3 |.FTYPE |ANOP 1 I
4 |ENAME |STETYPE |2,SAVEAREA |
| | LETYPE 12,6F |
I | STETYPE |2,6T |
| | LETYPE |2, SAVEAREA I
[| MEND | |
b1 1 b

86

Statement 1 is used to determine if the

type attribute of the first macro-
instruction operand 1is the letter F. 1If
the type attribute is not the 1letter F,

statement 2 is the next statement processed
by the assembler. If the type attribute is
the letter F, statement 4 should be
processed next. However, since there is a
variable symbol (§NAME) in the name field
of statement 4, the required sequence sym-
bol (.FTYPE) cannot be placed in the name
field. Therefore, an ANOP instruction
(statement 3) must be placed before state-
ment 4.

Then, if the type attribute of the first
operand is the letter F, the next statement
processed by the assembler is the statement
named by sequence symbol .FTYPE. The value
of ETYPE retains its initial null character
value because the SETC instruction is not
processed. Since .FTYPE names an ANOP
instruction, the next statement processed
by the assembler is statement 4, the state-
ment following the ANOP instruction.

CONDITIONAL ASSEMBLY ELEMENTS

The following chart summarizes the ele-
ments that can be used in each conditional
assembly instruction. Each row in this
chart indicates which elements can be used

in a single conditional assembly instruc-
tion. Each column is used to indicate the
conditional assembly instructions in which

a particular element can be used.

The intersection of a column and a row
indicates whether an element can be used in
an instruction, and if so, in what fields
of the instruction the element can be used.
For example, the intersection of the first
row and the first column of the chart
indicates that symbolic parameters can be
used in the operand field of SETA instruc-
tions. For example, the intersection of
the first row and the first column of the
chart indicates that symbolic parameters
can be used in the operand field of SETA
instructions.

Program Interruption
Instruction Type ‘ff Possible Condition Code Set
Instruction LISTo [P [Op | Other] 00 ol 10 T
Add RX x|x|F Sum=0 Sum< 0 Sum >0 Overflow
Add RR F Sum=0 Sum< 0 Sum >0 Overflow
Add Decimal SS, Decimal x D x| x | Data |Sum=0 Sum<0 Sum >0 Overflow
Add Halfword RX x | x| F Sum=0 Sum <0 Sum >0 Overflow
Add Logical RX x | x sum=0 @ Sum 0@ Sum= 0| Sum 0
Add Logical RR Sum=0 @ Sum= 0@)| Sum= 0@ Sum 0 @
Add Normalized, Long RX,Floating Pt. |x {x{E x| B,C IR L M P
Add Normalized, Long RR, Floating Pt. x| E x| B,C IR L M P
Add Normalized, Short RX,Floating Pt. |[x|x]E x | B,C |R L M P
Add Normalized, Short RR,Floating Pt. x| E x| B,C |R L M P
Add Unnormalized, Long RX,Floating Pt. |x |x|E x | C R L M P
Add Unnormalized, Long RR,Floating Pt. x| E x | C R L M P
Add Unnormalized, Short RX,Floating Pt. [x x| E x | C R L M P
Add Unnormalized, Short RR,Floating Pt. x| E x| C R L M P
Add Logical RX x | x 4 K
And Logical SS x X J K
And Logical RR J K
And Logical Immediate Sl x x J K
Branch and Link RX N N N N
Branch and Link RR N N N N
Branch on Condition RX N N N N
Branch on Condition RR N N N N
Branch on Count RX N N N N
Branch on Count RR N N N N
Branch on Equal RX, Ext.Mnemonic N N N N
Branch on High RX, Ext.Mnemonic N N N N
Branch on Index High RX, Ext. Mnemonic! N N N N
Branch on Index Low or Equal] RX, Ext. Mnemonic N N N N
Branch on Low RX,Ext .Mnemonic N N N N
Branch if Mixed RX, Ext.Mnemonic N N N N
Branch on Minus RX ,Ext. Mnemonic N N N N
Branch on Not Equal RX, Ext.Mnemonic N N N N
Branch on Not High RX,Ext. Mnemonic N N N N
Branch on Not Low RX, Ext. Mnemonic N N N N
Branch on Not Minus RX, Ext.Mnemonic N N N N
Branch on Not Ones RX, Ext.Mnemonic| N N N N
Branch on Not Plus RX, Ext. Mnemonic]| N N N N
Branch on Not Zeros RX, Ext, Mnemonic N N N N
Branch if Ones RX, Ext. Mnemonic N N N N
Branch on Overflow RX, Ext.Mnemonic N N N N
Branch on Plus RX, Ext. Mnemonic N N N N
Branch if Zeros RX Ext.Mnemonic N N N N
Branch on Zero RX, Ext. Mnemonic N N N N
Branch Unconditional RX, Ext. Mnemonic; N N N N
Branch Unconditional RR, Ext. Mnemonic N N N N
Compare Algebraic RX x| x z AA BB
Compare Algebraic RR z AA BB
Compare Decimal SS,Decimal x x| DatafZ AA BB
Compare Halfword RX x| x Z AA BB
Compare Logical RX x| x Z AA BB
Compare Logical RX x| x Z AA BB
Compare Logical SS x z AA BB
Compare Logical immediate | SI x z AA BB
Compare, Long RX,Floating Pt. | x| x x Z AA BB
Compare, Long RR, Floating Pt. |x] x X Z AA
Compare, Short RX, Floating Pt. x x z AA
Compare, Short RR, Floating Pt. X x z AA
Convert to Binary RX X N N N
Convert to Decimal RX X N N N

Appendix D

118

Instruction oo | peration Operand Format
Code Code Explicit Implicit

Divide D 5D R1,D2(X2, B2) or R1,D2(,B2) R1, 52(X2) orR1,S2
Divide DR 1D R1,R2
Divide Decimal DP FD D1,(L1,B1),D2(L2,B2) S1(L1), S2(L2)or S1,52
Divide, Long DD 6D R1,D2(X2,B2),0r R1,D2(,B2) | R1,S2(X2) orRI1,S2
Divide, Long DDR 2D R1,R2
Divide, Short DE 7D R1,D2(X2, B2)or R1, D2(,B2) R1,52(X2) orRI1,S2
Divide, Short DER 3D RT1,R2
Edit ED DE DI(L,B1),D2(B2) S1(L), S2 or 51,52
Edit and Mark EDMK DF D1(L,B1),D2(B2) S1(L), 52 or S1,52
Exclusive Or X 57 R1,D2(X2,B2) or R1,D2(,B2) | R1,S2(X2) orRI1,S2
Exclusive Or XC D7 D1(L,B1),D2(B2) ST(L),S2 or S1,S2
Exclusive Or XR 17 R1,R2
Exclusive Or Immediate X1 97 D1(B1),12 S1,12
Execute EX 44 R1,D2(X2,B2) or R1, D2(, B2) R1,52(X2) RI1,S2
Halve, Long HDR 24 RT,R2
Halve, Short HER 34 RT,R2
Halt 1/0O HIO 9E D1(B1)
Insert Character IC 43 R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orRI,S2
Insert Storage Key ISK 09 R1,R2
Load L 58 R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orRI,S2
Load LR 18 R1,R2
Load Address LA 41 R1,D2(X2,B2) or R1,D2(,B2) | R1,S2(X2) orRI,S2
Load and Test LTR 12 R1,R2
Load and Test, Long LTDR 22 R1,R2
Load and Test, Short LTER 32 R1,R2
Load Complement LCR 13 R1,R2
Load Complement, Long LCDR 23 R1,R2
Load Complement, Short LCER 33 R1,R2
Load Halfword LH 48 R1,D2(X2,B2) or R1,D2(,B2) | R1,S2(X2) orRI,S2
Load, Long LD 68 R1,D2(X2,B2) or R1,D2(,B2) | R1,S2(X2) orR1,S2
Load, Long LDR 28 R1,R2
Load Multiple LM 98 R1,R3,D2(B2) R1,R3,S2
Load Negative LNR 11 R1,R2
Load Negative, Long LNDR 21 R1,R2
Load Negative, Short LNER 31 R1,R2
Load Positive LPR 10 R1,R2
Load Positive, Long LPDR 20 R1,R2
Load Positive, Short LPER 30 R1,R2
Load PSW LPSW 82 D1(B1)
Load, Short LE 78 R1,D2(X2,B2) or R1,D2(,B2) R1,52(X2) orRI,S2
Load, Short LER 38 R1,R2
Move Characters MVC D2 D1(L,B1), D2(B2) S1{L), S2 or S1,52
Move Immediate MVI 92 D1(B1),12 S1,12
Move Numerics MVN D1 D1(L,B1),D2(B2) S1(L), S2 or 51,52
Move with Offset MVYO F1 DI1(L1,B1),D2(L2,B2) ST(L1), S2(L2)or S1,52
Move Zones MVZ D3 D1(L,B1), D2(B2) S1{L), S2 or S1,52
Multiply M 5C R1,D2(X2,82)or R1,D2(,B2) R1,52(X2) orR1,52
Multiply MR 1C RT,R2
Multiply Decimal MP FC D1(L1,B1),D2(L2,B2) ST(LT), S2(L2) or S1,S2
Mulitply Halfword MH 4C R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orR1,S2
Multiply, Long MD 6C R1,D2(X2,B2) or R1, D2(,B2) R1,52(X2) orR1,S2
Multiply, Long MDR 2C RT,R2
Multiply, Short ME 7C R1,D2(X2,B2) or R1,D2(,B82) | R1,S2(X2) orRI1,52
Multiply, Short MER 3C RT,R2
No Operation NOP 47(BC 0) | D2(X2,B2) or D2(,B2) 52(X2) or S2

Operand Format (Divide)

a xtpusddy

€z

]RR Format ‘

|RX Format l

Class Class
Fixed-Point Fixed-Point Fixed-Point
Branching and Fullword Floating-Point Floating-Point Halfword Fullword Floating-Point Floating-Point
Status Switching and Logical Long Short and Branching and Logical Long Short
—0x- -1x- —2%~ -3%- —4x- -5x- -6x— =7X- I
% %
0 Load Positive...... LPR Load Positive...... Load Positive...... 0 Store..... ceesaaan JSTD StOr€....ceeeencescs .STE
1 Load Negative......LNR Load Negative... Load Negative.... 1 j Load Address...
2 Load and Test......LTR Load and Test... Load and Test.... 2 | store Character
3 Load Complement....LCR Load Complement. Load 3] Insert Character.
4| set Program Mask....SPM AND.ivieerenannannn Halve.....icovenennnn Halve 4 | Execute........ B
5| Branch and Link.....BALR 5 | Branch and Llnk
6| Branch on Count. -BCTR 6 | Branch on Count.
7| Branch/Condition .BCR Excluslve OR. 7 | Branch/Condition.
8| Set Key........ -SS8K Load.... Load.... 8 Load......
9| Insert Key... .ISK Compare. Compare. 9 Compare.
A| Supervisor Call.....SVC Add................AR Add N..............ADR Add N......... A . Add N...
B Subtract. Subtract N Subtract B | Subtract... Subtract.. Subtract N.. Subtract N.
[o] Multiply. Multiply.... Multiply.. C | Multiply.. Multiply.. Multiply.... Multiply...
D Divide... Divide...... Divide.... D ° Divide.... Divide.. . Divide.
E Add Loglcal.. Add U.vieinnnnnannn E | Convert-Decimal....CVD Add Logical... Add U... cees AGd U......
LF Subtract Logical...SLR Subtract U.........SWR Subtract........... LE | Convert-Binary..... CVB Subtract Logica Subtract U......... SW Subtract U.........
!RS,SI Formatl SS Format
Class Class
Branching Fixed-Point
Status Switching Logical and
and Shifting Input-Output Logical Decimal
-8x- ~9x- —AX- -Bx—] -Cx— -Dx- -Ex- -Fx— l
Set System Mask.....SSM Store Multiple..... STM
Test under Mask....TM Move Numeric....... MVN Move with Offset...MVO
Load PSW........LPSH Move.. Move Characters....MVC Pack . .PACK
Diagnose Test and Set. Move Zone. UnpackUNPK
Write Direct........ WRD AND..........
Read Direct.. «+++.RDD Compare Loglcal....CLI

[Frocowroouaunswn ok

Branch/High.........BXH

Branch/Low-Equal....BXLE
Shift
Shift
Shift
shift
shift Right DL.
Shift Left DL..
Shift Right D....
Shift Left D........

Operation Code Notes
Unnormalized
Single

Double
Normalized
Single Logical
Double Logical

Wouonnonn

S
D
N
L
L

............ eess 0T
Excluslve OR.......XI
Load Multiple......LM

Start I-O..........SIO
Test I-O..
Halt I-O..
Test Channel

PmoﬂmwwmumwthHow

Translate..........TR
Translate and Test.TRT
Edit..e.cueevnaes.ED
Edit and Mark......EDMK

Zero and Add.
Compare....
aAdd....
Subtract.
Multiply.
Divide

Form C28-6514-4,

APPENDIX E: ASSEMBLER INSTRUCTIONS

Page Revised by TNL N28-2150, 7/1/66

f T T)
|Operation| Name Entry | Operand Entry |
—_— + 4 _'
T T
|ACTR | Must not be present |An arithmetic SETA expression |
[N 4] ‘l
v 1 T
| AGO |A sequence symbol or not present|A sequence symbol |
I 1 1 4
v T T 1
|AIF |A sequence symbol or not present|A logical expression enclosed in parenthe-|
| | |ses, immediately followed by a sequencej
| | | symbol |
Il' = - } .'
| ANOP |A sequence symbol |Must not be present j
I 1]
T T T 1
|ccw |Any symbol or not present | Four operands, separated by commas |
(X 1 i |
- T T - 1
| CNOP |A sequence symbol or not present|Two absolute expressions, separated by aj
| | | comma |
b + + 1
|coM |A sequence symbol or not present|{Must not be present |
% 4] 4'
3 T +
jcopY |Mast not be present |A symbol |
L J 1| d
r) T 1
| CSECT |Any symbol or not present |Must not be present |
[1] 3
¥ T T 1
| CXD {Any symbol or not present |Must not be present |
% 1] i]
1} T T 1
|DC |Any symbol or not present |{One or more operands, separated by commas |
. 1 } 4
r T T 1
|DROP |A sequence symbol or not present|One to sixteen absolute expressions, sepa-|
| | |rated by commas |
F t $ 1
|DS |Any symbol or not present |One or more operands, separated by commas |
i 4 I |
T T T 1
| DSECT |A variable symbol or an |Must not be present |
| jordinary symbol | |
F + t 1
| DXD |A symbol |One or more operands, separated by commas |
I } IR N
T] T 1
|EJECT |A sequence symbol or not present|Must not be present |
[N 4 L 4
I T H o |
| END |A sequence symbol |A relocatable expression |
| |or not present |or not present |
[N 4 I ,’
v T T
| ENTRY |A sequence symbol or not present|One or more relocatable symbols, separated]
| | |by commas]
b + . ¥ . 1
| EQU |A variable symbol or an |An absolute or relocatable expression |
| |ordinary symbol | |
L J 4
1 3 T T '1
| EXTRN |A sequence symbol or not present|One or more relocatable symbols, separated|
| | | by commas |
L]] 4
[} T T 1
|GBLA |Must not be present |One or more variable symbols that are to be|
| | |used as SET symbols, separated by commas? |
R 1 | 1
v T T 1
| GBLB |Must not be present |]One or more variable symbols that are to be|
| | |used as SET symbols, separated by commas=2 |
L L R i |
T T T 1
GBLC Must not be present One or more variable symbols that are to be
p Yy
| | |used as SET symbols, separated by commas=2 |
N 4 1]
13 T) 1
| ICTL |Must not be present [One to three decimal values, separated by|
} | | commas |
L L 1 J

124

Form C28-6514-4, Page Revised by TNL N28-2150, 7/1/66

APPENDIX F: SUMMARY OF CONSTANTS

r T T T T T T T T 1
					NUMBER			
			LENGTH		OF CON-			TRUN-
	IMPLIED		MODI-		STANTS	RANGE	RANGE	CATION/
	LENGTH	ALIGN-	FIER	SPECIFIED	PER	FOR EX-	FOR	PADDING
TYPE	(BYTES)	MENT	RANGE	BY	OPERAND	PONENTS	SCALE	SIDE
- + +-—- 1 + + -1 + + 1
| C | as | byte | -1 to | characters | one | | | right |
| | needed | | 256 (1)| | | | | |
- - + —+ + } + + t 4
| X | as | byte | -1 to | hexadecimal | one | | | left |
| | needed | | 256 (1)} digits] | i | |
t—————- == + +- } } + + + 1
| B | as | byte | -1 to | binary | one | | | left |
| | needed | | 256 | digits | | | | |
p———— + +— -—+ + + + 1 + 1
| F | & | word | .1 to | decimal | multi- | -85 to | -187 to| left |
| |] | 8 | digits | ple | +75 | +3u46 | |
I e f e B } + + + {
| H | 2 - | half | .1 to | decimal | multi- | -85 to | -187 | left |
| | | word | 8 | digits | ple | +75 | +346 | |
b—————+ + + + f } + t i
| E | 4 | word | -1 to | decimal | multi- | -85 to | | right |
| | | | 8 | digits | ple’ | +75 | 0-14 | |
p———-—t-- + + + + + + t i
| D | 8 | double | .1 to | decimal | malti- | -85 to | | right |
| | | word | 8 | digits | ple | +75 | 0-14 | |
b——————4-- +-—— + + + } + + i
| P | as | byte | .1 to | decimal | malti- | | | left |
| | needed | | 16 | digits | ple |] | |
-1 + + + } + + + 1
| 2 | as | byte | .1 to | decimal | malti- | I | left |
| | needed | | 16 | digits | ple | | | |
L -4 1 L 4 1 [1 L 4
L) T 1) 1 T T 1 T T 1
| A | 4 | word | -1 to | any | malti- | | | left |
| | | | 4 (2) | expression | ple | | |]
L — + i 1 i I 4 1 "
) T T T T T T T 1
| Q | & | word | 2-4 | relocatable | one | | | left |
| | | | | symbol | | | | |
I — rommmmmmm $-- 4 ¥ + t : ¥ 1
| Vv | 4 | word | 3 oxr | relocatable | multi- | | | left |
| | [| o | symbol | ple | | | |
pommmt ¢ 4 { z : + ¢ 4
| s | 2 | half | 2 only | one absolute | multi- | | | |
| | | word | | or relocatab-| ple | | | |
| | | | | le expression| | | | |
| i | (| or two absol-| i | | |
| | | | | ute express- | | | | [
| | | | | ions: | | | | |
| | | | | exp (exp) | | | | |
e 1 ¥ ¥ : t $ + t 4
| ¥ | 2 | half | «1 to | any | malti- | | | left |
| | | word | 2 (2) | expression | ple | | | |
l. —d i L L 1 L L L. %
| |
|(1) In a DS assembler instruction C and X type constants may have 1length specification]|
| to 65535.) |
| (2) Bit 1length specification permitted with absolute expressions only. Relocatable]|
| A-type constants, 3 or 4 bytes only; relocatable Y-type constants, 2 bytes only. |
L 4

Appendix F 127

APPENDIX G: MACRO LANGUAGE SUMMARY

The four charts in this appendix summarize the macro language described in Part II of
this publication.

Chart 1 indicates which macro language elements may be used in the name and operand
entries of each statement.

Chart 2 is a summary of the expressions that may be wused in macro-instruction
statements.

Chart 3 is a summary of the attributes that may be used in each expression.

Chart 4 is a summary of the variable symbols that may be used in each expression.

Voriable Symbols
tribut
Global SET Symbols Local SET Symbols System Variable Symbols Attributes

Symbolic Sequence
Statement | Parameter SETA SETB SETC SETA SETB SETC | &SYSNDX | &SYSECT | &SYSLIST| Type Length Scaling | Integer Count | Number | Symbol
MACRO
Prototype Name
Statement Operand
GBLA Operand
GBLB Operand
GBLC Operand
LcLA Operand
LcLp Operand
LeLe Operand
Model Name Name Name Name Name Name Name Name Name |Name Name
Statement | Operation [Operation | Operation | Operation | Operation | Operation | Operation | Operation | Operation|Opsration

Operand | Operand | Operond | Operand | Operond | Operand | Operand | Operand | Operand |Operand
COPY Name
SETA Name Nome

Operand? | Operand | Operand® | Operand® | Operand | Operand® | Operand® | Operand Operand? Operand | Operand | Operand | Operand [Operand
SET8 Name Name 5

Operand® | Operand® | Operand | Operand® | Operand® | Operand | Operand® | Operand® | Operand®{Operand® | Operand* | Operand® | Operand | Operand® | Operand® |Operand®
SETC Name , g | Neme

Operand | Operand” | Operand8 | Operand | Operand” | Operand® | Operand [Operand | Operand |Operand | Operand
AIF 4 5 5 5 5 5 | oome

Operand® | Operand® | Operand | Operand® | Operand® | Operand | Operand® | Operand® | Operand#[Operandé | Operand® | Operand” | Operand” [Operand” { Operand> (Operand® { Operand
AGO Name

Operand

ACTR Operand? | Operand | Operand3 | Operand? | Operand | Operand® | Operand? | Operand Operand? Operand | Operand | Operand | Operand | Operand
ANOP Name
MEXIT Narme
MNOTE Operand | Operand Operand | Operand | Operand | Operand Operand | Operand Operand |Operand Name
MEND Narme
Outer Name Name Name Name Name Name Name
Macro Operand | Operand | Operand | Operand | Operand | Operand
Inner Name Name Nome Name Name Name Name Name Nome {Name Name
Macro Operand | Operand Operand | Operand | Operand | Operand Operand | Operand Operand {Operand
Assembler * | Name Name Name Name Name Name Name
Language Operation | Operation | Operation | Operation | Operation | Operation
Statement Operand | Operand | Operand | Operand |Operand | Operand
1. Varigble symbols in macro-instructions are replaced by their values before processing .
2. Only if value is self-defining term.
3. Converted to arithmetic +1 or +0.
4. Only in character relations.
5. Only in arithmetic rslations.
6. Only in arithmetic or character relations.
7. Converted to unsigned number.
8. Converted to character 1 or 0.
9. Only if one to eight decimal digits.

Chart 1. Macro Language Elements

128

APPENDIX I3

ASSEMBLER LANGUAGES--FEATURES COMPARISON CHART

Features not shown below are common to all assemblers.

Dash = Not allowed.

In the chart:

X As defined in Operating System/360 Assembler Language Manual .
I?:;;amming 2090/7094 BPS 8K Tape, | BOS 16K
Feature Support/360: | porfe’ [BOS 8K Disk | Disk/Tape Sssse/ 3%
,BA::Ie;bler Assembler Assemblers Assembler
No. of Continuation Cards/Statement 0 0 | 1 2
(exclusive of macro-instructions)
Input Character Code EBCDIC BCD & EBCDIC| EBCDIC EBCDIC EBCDIC
ELEMENTS:
Maximum Characters per symbol 6 6 8 8 8
Character self-defining terms 1 Char.only | X X X X
Binary self-defining terms - - - - X X X
Length attribute reference - - - - X X X
Literals - - - - X X X
Extended mnemonics - - X X X X
Maximum Location Counter value 216 2243 224 4 224 2241
Multiple Control Sections per assembly - - - - X X X
EXPRESSIONS:
Operators + =% +=*/ +=*/ + =%/ + =%/
Number of terms 3 16 3 8 16
Levels of parentheses - - - - 1 3 5
Complex relocatability - - - - X X X
ASSEMBLER INSTRUCTIONS:
DC and DS
Expressions allowed as modifiers - - - - - - X X
Multiple operands - - - - - - - - X
Multiple constants in an operand - - - - Except X X
Address
Consts.
Bit length specifications - - -- - - - = X
Scale modifier - - - - X X X
Exponent Modifier - - - - X X X
DC types Except Except X X X
B, P, Z B, V
V,Y, S
| DC duplication factor Except A X Except S X X

Appendix I

135

Basic

9 94 1
Programming ZS 0£r7f0 BPS 8K Tape, | BOS 16K 05/360
Support/360: P PE BOS 8K Disk | Disk/Tape Assembler
! ackage
Basic Assembler Assemblers Assembler
Assembler
DC duplication factor of zero - - - - Except S X X
DC length modifier Except X X X X
H, E, D
Only C,
DS types H, F, D X X X X
DS length modifer Only C Only C X X X
DS maximum length moditier 256 256 256 65,535 65,535
DS constant subfield permitted - - - - X X X
copY - - - - - - X X
CSECT - - - - X X X
DSECT - X X X X
ISEQ - - - - X X X
LTORG - - - - X X X
PRINT - - - - X X X
TITLE - - X X X X
COM - - - - - - X X
ICTL 1 operand 1 operand X X X
(lor25
only)
USING 2 operands | 2-17 operands| 6 operands X X
(operand 1 (operand 1
relocatable | relocatable
only) only)
DROP 1 operand X 5 operands X X
only
CcCwW operand 2 X X X X
(relocatable
only)
ORG no blank no blank X X X
operand operand
ENTRY 1 operand 1 operand 1 operand X X
only only only
EXTRN 1 operand 1 operand 1 operand X X
only (max 14) | only only
CNOP 2 decimal 2 decimal 2 decimal X X
digits digits digits
PUNCH - - - -- X X
REPRO - - - X X X
Macro Instructions -- - - X X X

136

§S5YS, restrictions on use 65,77,90
§SYSECT (see current control section name)
§SYSLIST (see macro-instruction operand)
£SYSNDX (see macro-instruction index)
7090/7094 support Package Assembler 7,135

Absolute terms 15

ACTR instruction
Format of 85
Inside macro-definitions 85
Outside macro-definitions 85

Use of 85
Address constants U47-48
A-type 47

Complex relocatable expressions 47
Literals not allowed 19
S-type 48
V-type 48
Y-type 48
Address specification 33
Addressing
Dummy sections 28
Explicit 23
External control sections 30
Implied 23
Relative 25
AGO instruction
Example of 85
Format of 85
Inside macro-definitions 85
Operand field of 85
Outside macro-definitions 85
Sequence symbol in 85
Use of 85
AIF instruction
Example of 84
Format of 84
Inside macro-definitions 84
Invalid operand fields of 84
Logical expression in 83
Operand field of 83
Outside macro-definitions 84
Sequence symbols in 85
Use of 84
valid operand fields of 84
Alignment, boundary
CNOP instruction for 56
Machine instruction 32
Ampersands in
Character expressions 80
Macro-instruction operands 68
MNOTE instruction 89
Symbolic parameters 65
Variable symbols 62
ANOP instruction
Example of 86
Format of 86
Sequence symbol in 86
Use of 86
Arithmetic expressions
Arithmetic relations 82
Evaluation procedure 77
Invalid examples of 77
Operand sublists 78
Operators allowed 77

Parenthesized terms in
evaluation of 78
examples of 78
SETA instruction 77
SETB instruction 82
Substring notation 80
Terms allowed 77
vValid examples of 77
Arithmetic relations 82
Arithmetic variable 93
Assembler instructions
Statement 37
Table 124
Assembler language
Basic Programming Support 9,135
Comparison chart 135
Macro language, relation to 61
Statement format 13,14
Structure 15,16
Assembler program
Basic functions 10
Output 26
Assembly, terminating an 57
Assembly no operation (see ANOP
instruction)
Attributes
How referred to 74

INDEX

Inner macro-instruction operands 73

Kinds of 73
Notations 73
Operand sublists 73

Outer macro-instruction operands 73

Summary chart of 130

Symbols 73

Use of 73

(see also specific attributes)

Basic Programming Support Assembler
Base registers
Address calculation 10,30,33
DROP instructions 24
Loading of 23
USING instructions 23
Binary constant 44
Binary self-defining term 18
Binary variable 93
Blanks
Logical expressions 82
Macro-instruction operands 69

CCW instruction 50
Channel command word, defining 51
Character codes 102
Character constant 43
Character expressions

Ampersands in 80

Character relations 82

Examples of 79,80

Periods and 79

Quotation marks in 79

SETB instructions 82

SETC instructions 79
Character relations 82
Character self-defining term 18
Character set 15,102

Index

7,135

139

Character variable 93
CNOP instruction 56
coding form 12
COM instruction 29
Commas, macro-instruction operands 69
Comments statements
Example of 14,67
Model statements 66
Not generated 67
Comparison chart 135
Compatibility
Assembler language 9
Macro-definitions 98
Complex relocatable expressions 47
Concatenation
Character expressions
Defined 65
Examples of 66
Substring notations 81
Conditional assembly elements, summary
charts of 87,129
Cconditional assembly instructions
How to write 72
Summary of 72
Use of 72
(see also specific instructions)
Conditional branch (see AIF instruction)
Conditional branch instruction 35
Operand format 35
Constants (see also specific types)
Defining (see DC instructions)
Summary of 127
Continuation lines 13
Control dictionary 26
control section location assignment 26
control sections
Blank common 29
CSECT instruction 27
Defined 26
First control section, properties of 26
START instruction 27
Unnamed 27
COPY instruction 57
COPY statements in macro-definitions
Format of 67
Model statements, contrasted 67
Operand field of 67
Use of 67
Count attribute
Defined 75
Notation 73
Operand sublists 75
Use of 75
Variable symbols 75
CSECT instruction, symbol in, length
attribute of 27
Current control section name (£SYSECT)
Affected by CSECT, DSECT, START 94
Example of 95
Use of 95

79,81

Data definition instructions 38
Channel command words 50
Constants 38
Storage 49

140

DC instruction 38
Constant operand subfield 42
Address-constant (see Address
constants)
Binary constant 44
Character constant 43
Decimal-constant 46
Fixed-point constant 44
Floating-point constant 45
Hexadecimal constant 43
Type codes for 40
Exponent modifier 42
Duplication factor operand subfield 39
Length modifier 39
Bit length specification 40
Operand subfield modifiers 39
Scale modifier 41
Type operand subfield 39
Decimal constants 46-47
Length, maximum 46
Length modifier 46
Packed 47
Zoned 47
Decimal field, integer attribute of 76
Decimal self-defining terms 18
Defining constants (see DC instruction)
Defining storage (see DC instruction,
DS instruction)
Defining symbols 17
Dimension, subscripted SET symbols 92
Displacements 33
Double-shift instruction 32
DROP instruction 24,32
DS instruction 49-50
Defining areas U9
Forcing alignment 49
DSECT instruction 28
Dummy section location assignment
Duplication factor 39
Forcing alignment 49

28,30

Effective address, length 34
EJECT instruction 52
END instruction 58
ENTRY instructionm 30
Entry point symbol, identification of 30
EQU instruction 37
Equal signs, as macro-instruction operands
68
Error message (see MNOTE instruction)
Explicit addressing 23,33
Length 34
Exponent modifiers 42
Expressions 20,30
Absolute 33
Evaluation 21
Relocatable 33
Summary chart of 129
Extended mnemonic codes 35
Operand format 36
External control section, addressing of 30
External symbol, identification of 30
EXTRN instruction 30

First control section 26
Fixed-point constants 44-45
Format 44
Positioning of 45

MNOTE instruction
Ampersands in 89
Error message 89
Example of 89
Operand field of 88
Quotation marks in 89
Severity code 88
Use of 89

Model statements
Comments field of 64
Comments statements 66
Defined 64
Name field of 64
Operand field of 64
Operation field of 64
Use of 64

N' (see Number attribute)
Name entries 13
Number attribute
Defined 75
Example of 75
Notation 75
Operand sublist 75

Operand sublist
Alternate statement format 69
Defined 69
Example of 70

Use of 69
Operands

Entries 13

Fields 32

Subfields 32,33
Symbolic 30,32,34
Operating system 11
Operation field 32
ORG instruction 55
Outer macro-instruction defined 70

Paired parentheses 68

Paired quotation 68

Parentheses in
Arithmetic expressions 78
Logical expressions 83
Macro-instruction operands 68
Operand fields and subfields 33
Paired 68

Period in
Character expressions 79
Comments statements 67
Concatenation 66
Sequence symbols 76

Positional macro-definition (see

macro-definition)

Positional macro-instruction (see

macro-definition and macro-instruction)

Previously defined symbols 17
PRINT instruction 52
Program control instructions 52
Program listings 11
Program sectioning and linking 26
Prototype statement

Example of 64

Format of 63

Keyword (see keyword prototype

statement)

Mixed-mode (see mixed-mode prototype

statement)

Name field of 63
Operand field of 63
Operation field of 63
Statement format 64
Symbolic parameters in 63
Use of 63

PUNCH instruction 54

Quotation marks in
Character expressions 79
Macro-instruction operands 68
MNOTE instruction 89

Quoted string 68

Relocatability 15,10
Attributes 22,30
Program, general register zero 24
Relocatable expressions 22,32
In USING instructions 24
Relocatable terms 15
Pairing of 21
In relocatable expressions 22
Relative addressing 25
REPRO instruction 55
RR machine-instruction format 32
Length attribute 32
Symbolic operands 34
RS machine-instruction format 32
Address specification 33
Length attribute 32
Symbolic operands 34
RX machine-instruction format 32
Address specification 33
Length attribute 32
Ssymbolic operands 34

S' (see scaling attribute)
Sample program 132
Scale modifier
Fixed—-point constants 45
Floating-point constants 45
Scaling attribute
Decimal fields 75
Defined 74
Examples of 75,76
Fixed-point fields 74
Floating-point fields 75
Notation 73
Restrictions on use 75
Symbols 74
Use of 75
Self-defining terms 17
(see also specific terms)
Sequence checking 54
Sequence symbols
AGO instruction 84
AIF instruction 84
ANOP instruction 85
How to write 77
Invalid examples of 77
Macro instruction 77
Use of 77
Vvalid examples of 77
Set symbols
Assigning values to 72
Defining 72

Symbolic parameters, constrasted 72

Index

143

Use 72
(see also local SET symbols, global SET
symbols, and subscripted SET symbols)
SET variable 92
SETA instruction
Examples of
Format of 77
Operand field of 77
Evaluation procedure 77
Operators allowed 77
Parenthesized terms 78
Terms allowed 77
Valid examples of 77
Operand sublist 78
Example 79
SETA symbol
ATIF instruction 78
Arithmetic relations 82
Assigning values to 72
Defining 72
SETA instruction 78
SETB instruction 78
SETC instruction 82
Using 78
SETB instruction
Example of 83
Format of 82
Logical expression in 82
Arithmetic relations 82
Blanks in 82
Character relations 82
Evaluation of 83
Operators allowed 82
Terms allowed 82
Operand field of 82
Invalid examples of 82
Valid examples of 82
SETB symbol
AIF instruction 83
Assigning values to 72
Defining 72
SETA instruction 83
SETB instruction 83
SETC instruction 83
Using 83
SETC instruction
Character expressions in 79
Ampersands 80
Periods 79
Quotation marks 79
Concatenation in
Character expressions
Substring notations 81
Examples of 79-82
Format of 79
Operand field of 79
Substring notations in 80
Arithmetic expressions in 80
Character expressions in 80
Invalid examples of 80
Valid examples of 80
Type attribute in 79
Example of 79
SETC symbol
Assigning values to 72
Defining 72
SETA instruction 82
Using 80

78,79

79,80

144

Severity code in MNOTE instruction 88
SI machine-instruction format 32
Address specification 33
Length attribute 32
Symbolic operands 34
SPACE instruction 52
SS machine-instruction format 32
Address specification 33
Length attribute 32
Length field 33
Symbolic operands 34
Standard value
Attributes of 97
Keyword prototype statement 96
START instruction
Positioning of 27
Unnamed control sections 28
Statements 13,14
Boundaries 13
Examples 14
Macro-instruction 69
Prototype 64
Summary of 128
Storage, defining (see DS instruction)
Sublist (see Operand sublist)
Subscripted SET symbols
Defining 92
Examples 93
Dimension of 92
How to write 92
Invalid examples of 92
Subscript of 92
Using 93
Examples 93
Valid examples of 93
Substring notation
Arithmetic expressions in 80
Character expression in 80
How to write 80
Invalid example of 81
SETB instruction 82
SETC instruction 81
Valid examples of 81
Symbol definition, EQU instruction for
Symbolic linkages 29
Symbolic operand formats 34
Symbolic parameter
Comments field 65
Concatenation of 65
Defined 64
How to write 65
Invalid examples of 65
Model statements 64
Prototype statement 63
Replaced by 65
Valid example of 65
Symbols
Defining 15
Length attributes 32
Referring to 20
Length, maximum 15
Previously defined 17
Restrictions 17
Value attributes 32
System macro-instructions defined 61
System variable symbols
Assigned values by assembler 93
Defined 93

17

