IBM Operating System/360

Assembler Language

This publication contains preliminary
specifications for the IBM Operating
System/360 Assembler Language.

The assembler language is a symbolic
programming language used to write programs
for the IBM System/360. The language pro-
vides a convenient means for representing
the machine instructions and related data
necessary to program the IBM Systemn/360.
The IBM Operating System/360 Assembler Pro-
gram processes the language and provides
auxiliary functions useful in the prepara-
tion and documentation of a program, and
includes facilities for processing the
assembler macro language.

Part I of this publication describes the
assembler language.

Part II of this publication describes an
extension of the assembler language -- the
macro lanqguage -- used to define macro-
instructions.

File No. S360-21
Form C28-6514-3

R

PREFACE

This publication is a reference manual
for the programmer using the assembler
language and its features.

Part I of this publication presents
information common to all parts of the
language followed by specific information
concerning the symbolic machine instruction
codes and the assembler program functions
provided for the programmer's use. Part II
contains a description of the macro
language and procedures for its use.

Appendixes A through J follow Part II.
Appendixes A through F are associated with
Part I and present such items as a summary
chart for constants (Appendix F), instruc-
tion listings, character set representa-
tions, and other aids to programming.

Appendix G contains macro-language summary
N3 v =3

charts, and ppendix H discusses table
capacities for various elements of the

language. Appendix I is a sample program,
and Appendix J 1is a features comparison
chart of System/360 assemblers.

MINOR REVISION (April 1965)

This publication is
C28-6514-2.

Knowledge of IBM System/360 machine
operations, particularly storage
addressing, data formats, and machine
instruction formats and functions, is

prerequisite to using this publication, as
is experience with programming concepts and
techniques or completion of basic courses
of instruction in these areas. IBM
System/360 machine operations are discussed
in the publication IBM System/360: Princi-
ples of Operation, Form A22-6821.

The following publications are referred
to in this publication.

e IBM System/360: Introduction

IBM Systems/360: Linkage Editor

e IBM System/360: Control Program Ser-
vices

e IBM System/360: Concepts and Facilities

mrmde men S ICN - = - ——
IBM System/360: Data Management

The publication form numbers not shown
may be obtained in the publication IBM
System/360: Introduction, Form C28-6534.

a minor revision of the previous
It supersedes the previous edition but does not make it obsolete.

edition, Form

This publication reflects minor technical changes in the Assembler Language.
These changes are indicated by a vertical bar to the left of the changed text.

This publication was prepared for production using an IBM computer to update

the text

print chain.

and to control the page and 1line format.
photo-offset printing were obtained from an IBM 1403 Printer

Page impressions for

using a special

Copies of this and other IBM publications can be obtained through IBM Branch

Offices.

A form for readers' comments appears at the back of this publication.
any additional comments

be mailed directly to IBM. Address

It may
concerning this

publication to the IBM Corporation, Programming Systems Publications, Department

D58, PO Box 390, Poughkeepsie, N.Y. 12602

© 1964 by International Business Machines Corporation.

SECTION 1: INTRODUCTION o« « « & « « &
Compatibility « « « « « &

The Assembler Language . . . «
Machine Operation Codes .
Assembler Operation Codes
Macro-Instructions . . .

The As

.
.
.

sembler Program
Basic Functions .« « « « « o «

Programmer AidS o« « o o« o o o o o o @
Operating System Relationships . . .
SECTION 2: GENERAL INFORMATION . . .

Assembler Language Coding Conventions
Coding FOXM « o « o « « o o &«
Continuation Lines . . « « .
Statement Boundaries
Statement Format
Identification-Sequence Fleld
Summary of Statement Format .
Character Set « ¢ « ¢« ¢« ¢ « &

Assembler Language Structure

Terms and Expressions . . .
TEYMS o o o o o o s o o
SymbolsS « ¢ « o o «
Self-Defining Terms .
Location Counter Referen
therals o o o .« =

o s e 0
Q L T T
LR Y S |
o e o e @
[S T T Y

e

Symbol Length Attrl ute Referen

Terms in Parentheses . « « o
EXPresSsSionS . « o o o o o o o o @
Evaluation of Expressions . . .
Absolute and Relocatable
EXPresSSionsS « « o « o o o o »

SECTION 3: ADDRESSING -- PROGRAM
SECTIONING AND LINKING « +« « ¢« « « &«

Addre351ng e o o o
Addresses -- Exp11c1t and Implled
Base Register Instructions
USING -- Use Base Address
Register . « ¢ ¢ ¢ o ¢ o o o @
DROP -- Drop Base Register
Programming with the USING
Instruction . « ¢« ¢ ¢ ¢« ¢ ¢ ¢ & @
Relative AAAressing . « « « « « «

Program Sectioning and Linking . . .

Control SectionsS « v« o« « « o « o o
Control Section Location

Assignment . « « ¢ ¢ o o o o o

First Control Section . « . « « &

START -- Start Assembly . « . .

(]

CSECT -- Identify Control Section

Unnamed Control Section

DSECT -- Identify Dummy Section .

(Yo ¥= RV V] 0

23
23
23
23

23

CONTENTS

COM -- Define Blank Common Control
Section ¢« ¢« ¢ ¢ ¢ 2 o o o o 2 « o &
Symbolic Linkages . « o« « o« « «
ENTRY -- Identify Entry-Point Symbol
EXTRN -- Identlfy External Symbol .
Addressing External Control
Sections « ¢ ¢ ¢ ¢ ¢ 4 e o s o

SECTION 4: MACHINE-INSTRUCTIONS

Machine-Instruction Statements
Instruction Alignment and
Checking « . . . e s o o e o o
Operand Fields and Subflelds « o o o
Lengths -- Explicit and Implied

Machine-Instruction Mnemonic Codes
Machine-Instruction Examples .

RR Format . . .

RX Format .

RS Format .

SI Format .

SS Format .

e & o 8 o @
e & & 0 & 0
¢ & & & o 0o

e 0 o 0
e 0 o 0
* o e
*» s s
o & o 0
DI T }
* o 5 o 0

Extended Mnemonic CodesS ¢« ¢ « o o o o o

SECTION 5: ASSEMBLER INSTRUCTION
STATEMENTS ¢ ¢ o o o o o o o o o o o «

Symbol Definition Instruction . « « . .
EQU -- EQUATE SYMBOL . o « « o o o «

Data Definition Instructions
DC -- DEFINE CONSTANT .+ o « o o o o
Operand Subfield 1: Duplication
Factor e o o o o o
Operand Subfleld 2- TYPE o o
Operand Subfield 3: Modifiers .

Cperand Subfield U4: Constant

DS -~ Define Storage « « « « « « &
Special Uses of the Duplication
Factor
CCW -- Define Channel Command Word

e 0 & o @

Listing Control Instructions . . .
TITLE -- Identify Assembly Output
EJECT -- Start New Page . « « o .
SPACE -- Space Listing . « « « . .
PRINT -- Print Optional Data . . .

Program Control Instructions . . .
ICTL -- Input Format Control . .
ISEQ -- Input Sequence Checking
PUNCH -- Punch a Card . . .
REPRO -- Reproduce Following Card
ORG -- Set Location Counter . . .
LTORG -- Begin Literal Pool ., . .

Special Addressing Consideration

Duplicate Literals . . « « o« o &
CNOP -- Conditional No Operation . .
COPY -- Copy Predefined Source

Coding . . « e o o o o o o o »
END -- End Assembly © o o o o o = o

SECTION 6: INTRODUCTION TO THE MACRO
IANGUAGE » « « « « o o o « o o« o o« &

The Macro-Instruction Statement . . .
The Macro-Definition . . « &« « ¢ « &«
The Macro Library . ¢« e« o« o« o o o « o
System Macro-Instructions . « « « « &
Varying the Generated Statements . .
Variable Symbols . . . « o o
Types of Variable Symbols e o o
Assigning Values to Variable
Symbols . . . « o e o o o @
Global SET Symbols e o o o o o
Organization of this Part of the
Publication .« ¢ « o o o o o o o o o

SECTION 7: HOW TO PREPARE
MACRO-DEFINITIONS .« « ¢ « o o o o =

MACRO -- Macro-Definition Header . .
MEND -- Macro-Definition Trailer . .

Macro-Instruction Prototype . . .
Statement Format . ¢« « o ¢ « &

Model Statements .« « « « o o o o o o

Symbolic Parameters . . . e o o o o

Concatenating Symbollc Parameters

with Other Characters or Other
Symbolic Parameters
Comments Statements . « « « « «
Copy Statements « ¢« « « « ¢ ¢ o o «

SECTION 8: HOW TO WRITE
MACRO-INSTRUCTIONS « « ¢ o o « « « o«

Macro-Instruction Operands . « « « «
Statement Format . « « ¢« ¢ o o o o o
Omitted Operands . « « ¢ « o o o o =
Operand Sublists . &« ¢ o o« o« o o « &
Inner Macro-Instructions . . « « . .
Levels Of Macro-Instructions

SECTION 9: HOW TO WRITE CONDITIONAL
ASSEMBLY INSTRUCTIONS .« « « o « o »

SET Symbols « « .+ e o o o s o o o
Defining SET Symbols e o o o
Using Variable Symbols

Attributes c e e o o =
Type Attrlbute (T) e o o s o @

61
61
61
62
62
62

62
62

62
62

63

64
64
64

64
65

65
66
67
68
68

69
69
70
70
70
71

72

73

73
73
73

74
75

Length (L'), Scaling (S'), and

Integer (I') Attributes . . .
Count Attribute (K') e o o o o
Number Attribute (N')
Assigning Attributes to Symbols

Sequence SymbOlS =« « o o « o o o o o

ICLA, ICLB,LCLC -- Define SET Symbols

SETA -- Set Arithmetic . . - o o
Evaluation of Arlthmetlc

EXPreSSionS o« o « o o o o o «
Using SETA Symbols . .

SETC -- Set Character . . .
Type Attribute . . .
Character Expression
Substring Notation .
Using SETC Symbols .

¢ & s 0o
e & o 0
e o o o o
e o o o 0
e 8 2 0

SETB -- Set Binary . « « o « « » « «

Evaluation of Logical

Using SETB Symbols . . . « « .
AIF -- Conditional Branch . « « « . .
AGO -- Unconditional Branch
ANQOP -- Assembly No Operation
Conditional Assembly Elements

SECTION 10: EXTENDED FEATURES
MACRO LANGUAGE o « « o o = s o o o @

MEXIT -- Macro-Definition Exit . . .
MNOTE -- Request for Error Message .

Global and Local Variable Symbols . .
Defining Local and Global SET

Symbols« .
Using Global and Local SET
Symbols « o o

Subscripted SET Symbols c ° o

SYSTEM VARIABLE SYMBOLS . . « o o
§SYSNDX —- Macro-Instructlon
IndeX =« o o o o « o o o o o @
§SYSECT -- Current Control
Section <« o« ¢ o o o o o o .
§SYSLIST -- Macro—Instructlon
Operand .« « o« « ¢ o o o o o o

Keyword Macro-Definitions And
Instructions e« o o o s o o
Keyword Prototype o o o o o o e
Keyword Macro-Instruction . . .
Mixed-Mode Macro-Definitions and
INStructions « ¢« « o o o ¢ o o o o o
Mixed-Mode Prototype . « « « «
Mixed-Mode Macro-Instruction .

Macro-Definition Compatibility . . .

e o 0 4

Expressions

75
76
76
76
77
78
78

78
79

80
80
80
81
82
83
84
85
85
86

87

88
88
88
89
30

90
92

93
93
94
95

95
96
96

97
98
98

98

APPENDIX A: CHARACTER CODES 103 APPENDIX H: INTERNAL TABLE CAPACITIES . 125

APPENDIX B: MACHINE-INSTRUCTION The Symbol Table . « . . . e o o 125
MNEMONIC CODES o« o « « = « o »« o« « « « 104 Symbol Table Permanent Area - « o 126

Extended Mnemonic Instruction -
COAECS =« o o o o o o o = =« « « =« 107 Set Symbol Value Table . « « « « « « . 126

APPENDIX C: ASSEMBLER INSTRUCTIONS . . 109 Macro Definition Value Table 127

APPENDIX D: MACHINE-INSTRUCTION FORMAT 110 APPENDIX I: SAMPLE PROGRAM 129
APPENDIX E: HEXADECIMAL-DECIMAL NUMBER APPENDIX J: ASSEMBLER
CONVERSION TABLE & = « « « o « = « « « 112 LANGUAGES--FEATURES COMPARISON CHART . 132

APPENDIX F: SUMMARY OF CONSTANTS . . . 117

APPENDIX G: MACRO LANGUAGE SUMMARY . . 118 INDEX o o o o = o o« =« o = = s « o« « o« « 136

PART I -- THE ASSEMBLER LANGUAGE

SECTION 1:

SECTION 2:

SECTION 3:

SECTION 4:

SECTION 5:

INTRODUCTION

GENERAL INFORMATION

ADDRESSING AND PROGRAM SECTIONING AND

MACHINE INSTRUCTIONS

ASSEMBLER INSTRUCTIONS

LINKING

Computer programs may be expressed in
machine language, i.e., language directly
interpreted by the computer, or in a sym-
bolic language, which is much more meaning-
ful to the programmer. The symbolic lan-—
guage, however, must be translated into
machine language before the computer can
execute the program. This function is
accomplished by an associated processing
program.

Of the various symbolic programming lan-
guages, assembler languages are closest to
machine language in form and content.

The assembler language discussed in this
manual is a symbolic programming language
for the IBM System/360. It enables the
programmer to use all 1IBM System/360
machine functions, as if he were coding in
System/360 machine language.

The assembler program that processes the
language translates symbolic instructions
into machine-language instructions, assigns
storage locations, and performs auxiliary
functions necessary to produce an executa-
ble machine-language program.

Compatibility

Operating System/360 assemblers assemble
source programs written in the Basic Pro-
gramming Support/360: Basic Assembler Lan-
guage and the IBM 7090/70%4 Support Package
for IBM System/360 assembler language.
Operating Systen/360 assemblers also assem-
ble other Systems/360 assembler languages,
with the following exceptions:

1. The XFR assembler instruction is con-
sidered an invalid mnemonic operation
code by Operating System/360 assem-
blers.

2. The assignment, size, and ordering of
literal pools may differ among the
assemblers.

Differences in the macro 1language for

Systenv/360 assemblers are described in Sec-
tion 10 of this publication.

THE ASSEMBLER LANGUAGE

The basis of the assembler language is a
collection of mnemonic symbols which rep-
resent:

SECTION 1: INTRODUCTION

1. System/360 machine-language operation
codes.

2. Operations (auxiliary functions) to be
performed by the assembler program.

The 1language is augmented by other sym-
bols, supplied by the programmer, and used
to represent storage addresses or data.
Symbcis are easier to and
than their machine-language equivalents.
Use of symbols greatly reduces programming
effort and error.

rnAa

—marale
rememoer ToGe

The programmer may also create a type of
instruction called a macro-instruction. A
mnemonic symbol, supplied by the
programmer, Serves as the operation code of
the instruction.

Machine Qperation Codes

The assembler language provides mnemonic
machine-instruction operation codes for all
machine instructions in the IBM System/360
Universal Instruction Set, and extended
mnemonic operation codes for the condi-
tional branch instruction. ’

Assembler Operation Codes

The assembler language also contains
mnemonic assembler-instruction operation
codes, used to specify auxiliary functions
to be performed by the assembler program.
These are instructions to the assembler
program itself and, with a few exceptions,
do not 1result in the generation of any
machine-language code by the assembler pro-
gram.

Macro-Instructions

The assembler language enables the pro-
grammer to define and use macro-
instructions, if so desired.

Macro-instructions are represented by an
operation code which, in turn, actually
stands for a sequence of machine and/or
assembler instructions that accomplish the
desired function.

Introduction 9

Macro-instructions used in preparing an
assembler language source program fall into
two categories: system macro-instructions,
provided by IBM, which relate the object
program to components of the operating
system, and macro-instructions created by
the programmer specifically for use in the
program at hand, or for incorporation in a
library, available for future use.

Programmer-created macro-instructions
are used to simplify the writing of a
program and/or to ensure that a standard
sequence of instructions is used to
accomplish a desired function.

For instance, the logic of a program may
require the same instruction sequence to be
executed again and again. Rather than code
this entire sequence each time it is
needed, the programmer creates a macro-
instruction to represent the sequence, and
then each time the sequence is needed, the
programmer simply codes the macro-
instruction statement. During assembly,
the sequence of instructions represented by
the macro-instruction is inserted in the
object program.

Part II of this publication discusses

the language and procedures for defining
and using macro-instructions.

THE_ASSEMBLER PROGRAM

The assembler program, also referred to

as the “assembler,"™ processes the source
statements written in the assembler
language.

Basic Functions

Processing involves the translation of
source statements into machine 1language,
the assignment of storage locations to
instructions and other elements of the
program, and the performance of the auxil-
iary assembler program functions designated
by the programmer. The output of the
assembler program is the object program, a
machine-language equivalent of ¢the source
program. The program furnishes a printed
listing of the source statements and object
program statements and additional informa-
tion useful to the programmer in analyzing
his program, such as error indications.
The object program is in the format
required by the linkage editor component of
Operating System/360. (See the 1linkage
editor publication.)

10

The amount of main and secondary storage
allocated to the assembler program for use
during processing determines the maximum
number of certain language elements that
may be present in the source program. For
a discussion of these dependencies, see
Appendix H.

PROGRAMMER AIDS

The assembler program provides auxiliary
functions that assist the programmer in
checking and documenting programs, in con-
trolling address assignment, in segmenting
a program, in data and symbol definition,
in generating macro-instructions, and in
controlling the assembly program itself.
Mnemonic codes, specifying these functions,
are provided in the language.

Variety in Data Representation: Decimal,
binary, hexadecimal, or character represen-
tation of machine-language binary values
may be employed by the programmer in writ-
ing source statements. The programmer se-
lects the representation best suited to his
purpose.

Base Register Address Calculation: As dis-
cussed in the IBM System/360 Principles of
Operation manual, the System/360 addressing
scheme requires the designation of a base
register (containing a base address value)
and a displacement value in specifying a
storage location. The assembler assumes
the clerical burden of calculating storage
addresses in these terms for the symbolic
addresses used by the programmer. The
programmer retains control of base register
usage and the values entered therein.

Relocatability: The object programs pro-
duced by the assembler are in a format
enabling relocation from the originally
assigned storage area to any other suitable
area.

Sectioning and Linking: The assembler lan-
guage and program provide facilities for
partitioning an assembly into one or more
parts called control sections. Control
sections may be added or deleted when
loading the object program. Because con-
trol sections do not have to be loaded
contiguously in storage, a sectioned pro-
gram may be loaded and executed even though
a continuous block of storage large enough
to accommodate the entire program may not
be available.

The 1linking facilities of the assembler
language and program allow symbols to be
defined in one assembly and referred to in
another, thus effecting a 1link between
separately assembled programs. This per-

mits reference to data and/or transfer of
control between programs. A discussion of
sectioning and 1linking is contained in
Section 3 under the heading, "Program Sec-
tioning and Linking.*

Program Listings: A listing of the source
program statements and the resulting object
program statements 1is produced by the
assembier for each source program it assem-
bles. The programmer can partly control
the form and content of the listing.

Error Indications: B&As a source program is
assembled, it 1s analyzed for actual or
potential errors in the use of the assem-
bler language. Detected errors are indi-
cated in the program listing.

OPERATING SYSTEM RELATIONSHIPS

The assembler program is a component of
the 1IBM Operating System/360 and, as such,

functions under control of the operating
system. The operating system provides the
assembler with input/output, 1library, and
other services needed in assembling a
source program. In a 1like manner, the
object program produced by the assembler
will normally operate under control of the
operating system and depend on it for
input/output and other services. In writ-
ing the source program, the programmer must
include statements requesting the desired
functions from the operating system. These
statements are discussed in the control
program services publication.

During assembly, the assembler will
create the proper 1linkage between the
object program and the specified service
components of the operating system. The
introduction and the concepts and facili-
ties publications provide further informa-
tion on operating system relationships.

Input/ocutput considerations are dis-
cussed in the data management publication.

Introduction 1

SECTION 2: GENERAL INFORMATION

This section presents information about
assembler language coding conventions,
assembler source statement structure,

addressing, and the sectioning and 1linking
of programs.

ASSEMBLER LANGUAGE CODING CONVENTIONS

This subsection discusses the general
coding conventions associated with use of
the assembler language.

2-1), provided by IBM. One line of coding
on the form is punched into one card. The
vertical columns on the form correspond to
card columns.

Space is provided on the form for pro-
gram identification and instructions to
keypunch operators. None of this informa-
tion is punched into a card.

The body of the form (Figure 2-1) is

composed of two fields: the statement
field, columns 1--71, and the
identification-sequence field, columns

73--80. The identification-sequence field
is not part of a statement and is discussed

following the subsection "Statement
Coding Form Format."
The entries (i.e., coding) composing a
A source program is a sequence of source statement occupy columns 1--71 of a
statements that are punched into cards. statement 1line and, if needed, columns
These statements may be written on the 16--71 of two successive continuation
standard coding form, X28-6509 (Figure lines.
IBM IBM System/360 Assembler Coding Form a4
PROGRAM PUNCHING GRAPHIC PAGE OF
PROGRAMMER DaTE INSTRUCTIONS PUNCH CARD ELECTRO NUMBER
STATEMENT) .
Nome. Oparaticn Operond Commants Sequanc
i 8 0 1% 20 25 30 35 o 45 50 55 &0 &5 7 73 L
T T T T H T T T i i R] | i ‘1
L . e NI BN A S R | L . L
L N ‘ i EERREN : | Ll
T i | i !
L i ‘]
iR , | L e
—— — A
; ; \ i : ! ‘ L
, ‘ ‘ | < e ;
R | I NN
BEEENERNER , ‘ r
R fl P i ERER 1
[o1 o j
} | | i : | | i B
ERE] RN i i
Il i L o } i ‘
P | BEEEN ‘ ‘ : | | |l , |
, = T | il BB I ,
I J 1‘ i T T T T ;] t -
i : L i L : | i .
: RN : | L Ll ‘ !
L L EREREN RN BN N |
s ! L [] il E
L I ‘ L
[H ‘\ l
S % !
, : : e s O -t 7
FENEERA RN 1 BN Ll « t E

Figure 2-1. Coding Form

12

Continuation Lines

When it is
statement on another 1line
rules apply.

necessary to continue a
the following

1. Enter a character (not blank, and not
part of the statement coding) in

B column 72 of the statement line.

2. Continue the statement on the next
line, starting in column 16. All
columns to the left of column 16 must

: be blank.

3. When more than one 1iine is needed,
each line to be continued must have a
character (not blank, and not part of
the statement coding) entered in
column 72.

Statement Boundaries

' Source statements are normally contained

in columns 1 -- 71 of statement 1lines and
columns 16 -- 71 of any continuation lines.
Therefore, columns 1, 71, and 16 are

referred to as the “begin," "end," and
"continue" columns, respectively. This
convention may be altered by use of the
Input Format Control (ICTL) assembler
instruction discussed later in this publi-

cation. The continuation character, if
used, always immediately follows the "end"

column.

Statement Format

Statements may consist of one to four
entries in the statement field. They are,
from 1left to right: a name entry, an
operation entry, an operand entry, and a
comments entry. These entries must be
separated by one or more blanks, and must
be written in the order stated.

The coding form (Figure 2-1) is ruled to
provide an eight-character name field, a
five-character operation field, and a
56-character operand and/or comments field.

If desired, the programmer may disregard
these boundaries and write the name,
operation, operand, and comment entries in
other positions, subject to the following
rules:

1. The entries must not extend beyond
statement boundaries (either the con-
ventional boundaries, or as designated

by the programmer via the ICTL
instruction) .
2. The entries must be in proper

sequence, as stated above.

3. The entries must be separated by one
or more blanks.

4. If used, a name entry must be written
starting in the begin column.

5. The name and operation entries must be
completed in the first 1line of the
statement, including at least onmne
blank following the operation entry.

A description of the oper
operand, and comments entries follows

mama
licquiT g

Name Entries: The name entry is a symbol
created by the programmer to identify a
statement. A name entry is usually option-
al. The symbol must consist of eight
characters or less, and be entered with the
first character appearing in the begin
column. If the begin column is blank, the
assembler program assumes no name has been
entered. No blanks may appear in the
symbol.

Operation Entries: The operation entry is
the mnemonic operation code specifying the
machine operation or assembler functions
desired. An operation entry is mandatory
and must appear in the first statement
line, starting at least one position to the
right of the begin column. Valid mnemonic
operation codes for machine and assembler
operations are contained in Appendixes B
and C of this publication. Valid operation
codes consist of five characters or 1less
for machine or assembler operation codes,
and eight characters or 1less for macro-
instruction operation codes. No blanks may
appear within the operation entry.

Operand Entries: Operand entries are the
coding that identifies and describes data
to be acted upon by the instruction, by
indicating such things as storage
locations, masks, storage-area lengths, or

types of data.

Depending on the needs of the
instruction, one or more operands may be
written. Operands are required for all
machine instructions.

Operands must be separated by commas and
no blanks may intervene between operands
and the commas that separate them.

The operands may not contain embedded
blanks except as follows:

If character representation is
used to specify a constant, a
literal, or immediate data in an
operand, the character string may
contain blanks, e.g., C'AB D'.

Comments Entries: Comments are descriptive
items of information about the program that
are to be inserted in the program 1listing.

General Information 13

All valid characters (see "Character Set"

in this section), including blanks may be
used in writing a comment. The entry
cannot extend beyond the end column

(normally colunin 71), and a blank must
separate it from the operand.

An entire line may be used for a comment

by placing an asterisk in the begin column.
Extensive comments entries may be written
by using a series of lines with an asterisk
in the begin column of each 1line or by
using the aforementioned continuation
lines.

In statements where an optional operand
entry is omitted but a comments entry is
desired, the absence of the operand entry
must be indicated by a comma preceded and
followed by one or more blanks, as follows:

T T
Name |Operation |Operand
i 4

U ——
-
VR Sy

T
|END , COMMENT
L

I
i

Statement Example: The following example
illustrates the use of name, operation,
operand, and comments entries. A compare
instruction has been named by the symbol
COMP; the operation entry (CR) is the
mnemonic operation code for a register-to-
register compare operation, and the two
operands (5,6) designate the two general
registers whose contents are to be
compared. The comments entry reminds the
programmer that he is comparing "new sum"
to "o0ld" with this instruction.

r T L
|Name |Operation |Operand
1

e e e e vend

+
jcoMP |CR |5,6 NEW SUM TO OLD
L L 4

Identification-Sequence Field

The identification-sequence field of the
coding form (columns 73 -- 80) is used to
enter program identification and/or
statement sequence characters. The entry
is optional. If the field, or a portion of
it, is used for program identification, the
identification is punched in the statement
cards, and reproduced in the printed list-
ing of the source program.

To aid in keeping source statements in
order, the programmer may code an ascending
sequence of characters in this field or a
portion of it. These characters are

14

punched into their respective cards, and,
during assembly, the programmer may request
the assembler to verify this sequence by
use of the Input Sequence Checking (ISEQ)
assembler instruction. This instruction is
discussed in Section 5 under "Program Con-
trol Instructions."”

Summary of Statement Format

The entries in a statement must always
be separated by at least one blank and must
be in the following order: name, operation,
operand (s) , comment.

Every statement requires an operation
entry. Name and comment entries are
optional. Operand entries are required for
all machine instructions and most assembler
instructions.

The name and operation entries must be
completed in the first statement 1line,
including at least one blank following the
operation entry.

The name and operation entries must not

contain blanks. Operand entries must not
have blanks preceding or following the
commas that separate them.

A name entry must always start in the

"begin" column.

If the column after the end column is
blank, the next line must start a new
statement. If the column after the end
column is not blank, the following 1line
will be treated as a continuation line.

All entries must be contained within the

designated begin, end, and continue column
boundaries.

Character Set

Source statements are written using the
following characters:

Letters A through Z, and $, #, a
Digits 0 through 9
Special

Characters + - , = . * () ' / & blank

These characters are represented by the
card punch combinations and internal bit
configurations 1listed in Appendix A. 1In
addition, any of the remainder of the 256
punch combinations may be designated in a
character self-defining term or character
constant.

ASSEMBLER LANGUAGE STRUCTURE

The basic structure of the language can
be stated as follows.

A source statement is composed of:

e A name entry (optional).
e An operation entry (mandatory).
¢ An operand entry (usually required) .

A name entry is:
e A symbol.
An operation entry is:

e A mnemonic operation code representing
a machine-, assembler, or macro
instruction.

An operand entry is:

e One or more operands composed of one or
more expressions, which, in turn, are
composed of a term or an arithmetic
combination of terms.

Operands of machine instructions gener-
ally represent such things as storage loca-
tions, general registers, immediate data,
or constant values. Operands of assembler
instructions provide the information needed
by the assembler program in order to per-
form the designated operation.

Figure 2-2 depicts this structure.
Terms shown 1in Figure 2-2 are classed as
absolute or relocatable. Terms are abso-
lute or relocatable due to the effect of
program relocation upon them. Program
relocation is the 1loading of the object
program into storage locations other than
those originally assigned by the assembler
program. A term is absolute if its value
does not change upon relocation. A term is
relocatable if its value changes upon relo-
cation.

The following subsection "Terms and
Expressions® discusses these items as out-
Yined in Figure 2-2.

TERMS AND EXPRESSIONS
TERMS
Every term represents a value. This

value may be assigned by the assembler
program (symbols, symbel length attribute,
location counter reference) or may be

inherent in the term itself
term, literal).

(self-defining

An arithmetic combination of terms is
reduced to a single value by the assembler
progranm.

The following material discusses each

type of term and the rules for its use.

Symbols

A symbol is a character or combination
of characters used to represent addresses
or arbitrary values.

Symbols, through their use as names and
in operands, provide the programmer with an
efficient way to name and reference a
program element. A symbol, created by the
programmer for use as a name entry and in
an operand, must conform to these rules:

1. The symbol must not consist of more
than eight characters. The first
character must be a letter. The other
characters may be letters, digits, or
a combination of the two.

2. No special characters may be included
in a symbol.

3. ©No blanks are allowed in a symbol.

The following are valid symbols:

READER Loop2 aBU
A23456 N $a1
X4F2 S4 #56

The following
the reasons noted:

symbols are invalid, for

256B (first character is not
alphabetic)

RECORDAREA2 (more than eight characters)

BCD*34 (contains a special character
-*)

IN AREA (contains a blank)

DEFINING SYMBOLS: The assembler program
assigns a value to each symbol appearing as
a name entry in a source statement. The
values assigned to symbols naming storage
areas, instructions, constants, and control
sections represent the addresses of the
leftmost bytes of the storage fields con-
taining the named items. Since the
addresses of these items may change upon
program relocation, the symbols naming them
are considered relocatable terms.

General Information 15

Operand Entry

Name Entry Operation Entry|
. isa
isa Mnemonic Operands
Symbol Operation Code one or more
VAN that are|{composed of an
7 \
/
y N\
Y N
v AN
Machi Assemble
Insrch;?:n lns:ucfio:l Exp or Exp (Exp) or | Bxp(Exp, Exp)
is la
or
Arithmetic
Term Combination
of Terms
—
as |follows
/)r
which may be
any one of ATop ATop... — RT+ RT+ ...
the following -7
or
— AT+ RT+ ...
or
A Symbol A . A Location A Literal Symbol Length
e.g., BETA Self-Defining Counter Refer- e.g.,=F'1259" Attribute Refer
(AT o’r RT) Term ence e.g.,* . ,(RT) ence e.g., — RT+ AT+ ..,
(AT (RT) L'Symbol (AT)
which may be Legend:
::zf:?li\:li:n Exp = Expression; AT = Absolute Term; RT = Relocatable Term
9 Arithmetic Operators (op):
+oeens Addition
- eeees Subtraction
* e Multiplication
VAR Division
Decimal Hexadecimal Binary Character
e.g.,15 e.g., X'C4' e.g.,B'101* e.g.,C'ABY'

Figure 2-2.

16

Assembler Language Structure -- Machine and Assembler Instructions

A symbol used as a name entry in the
Equate Symbol (EQU) assembler instruction
is assigned the value designated in the
operand entry of the instruction. Since
the operand entry may represent a relocata-
ble value or an absolute i.e.,
non-changing) value, the symbol is consid-
ered a relocatable term or an absolute term
depending upon the value it is equated to.

The value of a symbol may not be nega-
tive and may not exceed 224-1.

A svmbol is said to be defined when it
appears as the name of a source statement.
(A special case of symbol definition is
discussed in Section 3, in the subsection
"Program Sectioning and Linking.")

Symbol definition also involves the
assignment of a length attribute to the
symbol. (The assembler program maintains
an internal table -- the symbol table -- in
which the values and attributes of symbols
are kept. When the assembler program
encounters a symbol in an operand, it
refers to the table for the values asso-
ciated with the symbol.) The length attri-
bute of a symbol is the size, in bytes, of
the storage field whose address is rep-
resented by the symbol. For example, a
symbol naming an instruction that occupies
four bytes of storage has a length attri-
bute of four.

PREVIOUSLY DEFINED SYMBOLS: Some instruc-
tions require that a symbol appearing in
the cperand entry be previously defined.
This simply means that the symbol, before
its use in an operand, must have appeared
as a name entry in a prior statement.

GENERAL RESTRICTIONS ON SYMBOLS: A symbol
may be defined only once in an assembly.
That 1is, each symbol used as the name of a
statement must be unique to that assembly.
However, a symbol may be used in the name
field more than once as a control section
name (i.e., defined in the START, CSECT, or
DSECT assembler statements described in
Section 3) because the coding of a control
section may be suspended and then resumed
at any subsequent point. The CSECT or
DSECT statement that resumes the section
must be named by the same symbol that
initially named the section; thus, the
symbol that names the section must be
repeated. Such usage is not considered to
be duplication of a symbol definition.

Self-Defining Terms

A self-defining term is one whose value
is inherent in the term. It is not
assigned a value by the assembler program.

For example, the decimal self-defining term
-- 15 -- represents a value of fifteen.

There are four types of self-defining
terms: decimal, hexadecimal, binary, and
character. Use of these terms is spoken of
as decimal, hexadecimal, binary, or charac-
ter representation of the machine language
binary value or bit configuration they
represent.

Self-defining terms are classed as abso-
lute terms since the values they represent
do not change upon program relocation.

USING SELF-DEFINING TERMS: Self-defining
terms are the means of specifying machine
values or bit configurations without equat-
ing the values to symbol and using the
symbols.

Self-defining terms may be used to spec-
ify such program elements as immediate
data, masks, registers, addresses, and
address increments. The type of term se-
lected (decimal, hexadecimal, binary, or
character) will depend on what is being
specified.

The use of a self-defining term is quite
distinct from the use of data constants or

literals. When a self-defining term is
used in a machine-instruction statement,
its value is assembled into the
instruction. When a data constant or

literal is specified in the operand of an
instruction, its address is assembled into
the instruction.

Decimal Self-Defining Term: A decimal term
is simply an unsigned decimal number writ-
ten as a sequence of decimal digits. High-
oxrder zZeros may be used (e.g.,007).
Limitations on the value of the term depend
on its use. For example, a decimal term
that designates a general register should
have a value between 0 and 15 inclusively;
one that represents an address should not
exceed the size of storage. 1In any case, a
decimal term may not consist of more than
eight digits, or exceed 16,777,215 (224-1) .
A decimal term is assembled as its binary

equivalent. Some examples of decimal self-
defining terms are: 8, 147, 4092, 00021.

Hexadecimal Self-defining Term: A
hexadecimal self-defining term is an

unsigned hexadecimal number written as a
sequence of hexadecimal digits. The digits
must be enclosed in single quotation marks
and preceded by the ietter X: X'"C49'.

Each hexadecimal digit is assembled as
its four-bit binary equivalent. Thus, a
hexadecimal term used to represent an
eight-bit mask would consist of two hexa-
decimal digits. The maximum value of a
hexadecimal term is X'FFFFFF'.

General Information 17

The hexadecimal digits and their bit

patterns are as follows:

0- 0000 4- 0100 8- 1000 C- 1100
1- 0001 5- 0101 9- 1001 D~ 1101
2- 0010 6- 0110 A- 1010 E- 1110
3- 0011 7- 0111 B- 1011 F~ 1111

A table for converting from hexadecimal
representation to decimal representation is
provided in Appendix E.

Binary Self-Defining Term: A binary self-
defining term is written as an unsigned
sequence of 1s and 0s enclosed in single
quotation marks and preceded by the letter
B, as follows: B"'10001101%1°'. This term
would appear in storage as shown, occupying
one byte. A binary term may have up to 24
bits represented.

Binary representation is used primarily
in designating bit patterns of masks or in
logical operations.

The following example illustrates a
binary term used as a mask in a Test Under
Mask (TM) instruction. The contents of
GAMMA are to be tested, bit by bit, against
the pattern of bits represented by the

binary term.

r L T
[Name |Operation |Operand
L F L

b e e omre.

r T T
(ALPHA |TM |GAMMA,B*'10101101"
L 1 1

Character Self-Defining Term: A character
self-defining term consists of one to three
characters enclosed by single quotation
marks. It must be preceded by the letter
C. All letters, decimal digits, and spe-
cial characters may be used in a character
term. In addition, any of the remainder of
the 256 punch combinations may be designat-
ed in a character self-defining term.
Examples of character self-defining terms
are as follows:

ce/ ce ¢
C'ABC’ c'13®

(blank)

Because of the use of quotes in the
assembler language and ampersands in the
macro language as syntactic characters, the
following rule must be observed when using
these characters in a character term.

For each single quotation mark or amper-
sand desired in a character term, two
single quotation marks or ampersands must
be written. For example, the character
value A'# would be written as 'A''#', while
a single quotation mark followed by a blank

18

and another single quotation mark would be
written as **'' ''',

Each character in the character sequence
is assembled as its eight-bit code equiva-
lent (see Appendix A). The two quotation
marks or ampersands that must be used to
represent a single quotation mark or amper-
sand within the character sequence are
assembled as a single quotation mark or
ampersand.

Location Counter Reference

The programmer may refer to the current
value of the Location Counter at any place
in a program, by using an asterisk in an
operand. The asterisk represents the loca-
tion of the first byte of currently availa-
ble storage (i.e., after any required
boundary adjustment). Using an asterisk in
a machine-instruction statement is the same
as placing a symbol in the name field of
the statement and then using that symbol as
an operand of the statement. Because a
Location Counter is maintained for each
control section, a Location Counter ref-
erence designates the Location Counter for
the section in which the reference appears.

A reference to the Location Counter may

be made in a 1literal address constant
(i.e., the asterisk may be used in an
address constant specified in 1literal
form) . The address of the instruction

containing the 1literal is used for the
value of the Location Counter. A Location
Counter reference may not be wused in a
statement which requires the use of a
predefined symbol, with the exception of
the EQU and ORG assembler instructions.

The Location Counter: A Location Counter

is used to assign storage addresses to
program statements. It is the assembler
program's equivalent of the instruction
counter in the computer. As each machine
instruction or data area is assembled, the
Location Counter is first adjusted to the
proper boundary for the item, if adjustment
is necessary, and then incremented by the
length of the assembled item. Thus, it
always points to the next available loca-
tion. If the statement is named by a
symbol, the value attribute of the symbol
is the value of the Location Counter after
boundary adjustment, but before addition of
the length.

The assembler maintains a Location
Counter for each control section of the
program and manipulates each Location
Counter as previously described. Source
statements for each section are assigned
addresses from the Location Counter for

that section. The Location Counter for
each successively declared control section
assigns locations in consecutively higher
areas of storage. Thus, if a program has
multiple control sections, all statements
identified as belonging to the first con-
trol section will be assigned from the
Location Counter for section 1, the state-
ments for the second control section will
be assigned from the Location Counter for
section 2, etc. This procedure is followed
whether the statements from different con-
trol sections are interspersed or written
in control section sequence.

The Location Counter setting can be
controlled by using the START and ORG
assembler instructions, which are described
in Sections 3 and 5 respectively. The
counter affected by either of these assem-
bler instructions is the counter for the
control section in which they appear. The
maximum value for the Location Counter is
224-1,

Literals

A literal term is one of three basic
ways to introduce data into a program. It
is simply a constant preceded by an equal
sign (5 .

A 1literal represents data rather than a
reference to data. The appearance of a
literal in a source statement directs the
assembler program to assemble the value
specified by the literal, store this value
in a "literal pool", and place the address
of the storage field containing the value
in the operand field of the assembled
source statement.

Literals provide a means of entering
constants (such as numbers for calculation,
addresses, indexing factors, or words or
phrases for printing out a message) into a
program by specifying the constant in the
operand of the instruction in which it is
used. This is in contrast to using the DC
assembler instruction to enter the data
into the program, and then using the name
of the DC instruction in the operand. Only
one literal 1is allowed in a machine-
instruction statement.

A literal term may not be combined with
any other terms.

A literal may not be used as the
receiving field of an instruction that
modifies storage.

A 1literal may not be specified in an
address constant (see Section 5, DC--Define
Constant) .

The instruction coded below shows one

use of a literal.

[} L] . 1 1

| Name |Operation |Operand |

e — : {

iGAMMA |L |10,=F*274°* i

L L L J
The statement GAMMA is a load instruc-

tion using a literal as the second operand.
When assembled, the second operand of the
instruction will be +the address at which
the binary value represented by F'274' is
stored.

In general, literals may be used wherev-
er a storage address is permitted as an
operand. They may not, however, be used in
any assembler instruction that requires the
use of a previously defined symbol. Liter-
als are considered relocatable, because the
address of the 1literal, rather than the
literal itself, will be assembled in the
statement that employs a 1literal. The
assembler generates the literals, collects
them, and places them in a specific area of
storage, as explained in the subsection
"The Literal Pool." A literal is not to be
confused with the immediate data in an SI
instruction. Immediate data is assembled
into the instruction.

Literal Format: The assembler requires a
description of the type of literal being
specified as well as the 1literal itself.
This descriptive information assists the
assembler in assembling the literal cor-
rectly. The descriptive portion of the
literal must indicate the format in which

T4+ mav
L auay

+n ha acaamhlaAd
LU UT aooTiuliTle

o Sanadand L]
[LCuliovaur e B RS

also specify the length the constant is to
occupy.

The method of describing and specifying
a constant as a literal is nearly identical
to the method of specifying it in the
operand of a DC assembler instruction. The
major difference is that the literal must
start with an equal sign (), which indi-
cates to the assembler that a 1literal
follows. The reader 1is referred to the
discussion of the DC assembler instruction
operand format (Section 5) for the means of
specifying a literal. The type of 1literal
designated in an instruction is not checked
for correspondence with the operation code
jof the instruction.

Some examples of literals are:

=A (BETA) -— address constant literal.

=F*'1234* - a fixed-point number with
a length of four bytes.

=C'ABC' - a character literal.

General Information 19

The Literal Pool: The 1literals processed
by the assembler are collected and placed
in a special area called the literal pool,
and the location of the literal, rather
than the literal itself, is assembled in
the statement employing a 1literal. The
positioning of the 1literal pool may be
controlied by the programmer, if he so
desires. Unless otherwise specified, the
literal pool 1is placed at the end of the
first control section.

The programmer may also specify that
multiple literal pools be created.
However, the sequence in which literals are
ordered within the pool 1is controlled by
the assembler. Further information on
positioning the literal pool (s) is in Sec-
tion 5 under "LTORG--Begin Literal Pool."

Symbol Length Attribute Reference

The length attribute of a symbol may be
used as a term. Reference to the attribute
is made by coding L' followed by the
symbol, as in:

L'BETA

The length attribute of BETA will be
substituted for the term. The following
example illustrates the use of L'symbol in
moving a character constant into either the
high-order or 1low-order end of a storage
field.

example, the
and B2 are men-

For ease in following the
length attributes of A1

tioned. However, keep in mind that the
L'symbol term makes coding such as this
possible in situations where lengths are

unknown.

F T] 1
| Name |Operation |Operand |
N [l i ¥
r T H H
{a1 |DS jcL8 |
| B2 IDC |CL2'AB" |
{HIORD |MVC {A1(L'B2) ,B2 |
|LOORD |MVC |A1+4L"A1-1"B2 (L"B2) ,B2|
[4L 4L J

A1 names a storage field eight bytes in
length and is assigned a 1length attribute
of eight. B2 names a character constant
two bytes in length and is assigned a
length attribute of two. The statement
. named HIORD moves the contents of B2 into
the leftmost two bytes of A1. The term
L'B2 in parentheses provides the 1length
specification required by the instruction.
When the instruction is assembled, the
length is placed in the proper field of the
machine instruction.

20

The statement named LOORD moves the
contents of B2 into the rightmost two bytes
of A1l. The combination of terms
A1+L'A1-L'B2 results in the addition of the
length of A1 to the beginning address of
A1, and the subtraction of the length of B2
from this value. The result is the address
of the seventh byte in field A1. The
constant represented by B2 is moved into Al
starting at this address. L'B2 in
parentheses provides length specification
as in HIORD.

Terms in Parentheses

Terms in parentheses are reduced to a
single value; thus, the terms in parenthe-
ses, in effect, become a single term.

Arithmetically combined terms, enclosed
in parentheses, may be used in combination
with terms outside the parentheses, as
follows:

14+BETA~ (GAMMA-LAMBDA)

When the assembler program encounters
terms in parentheses in combination with
other terms, it first reduces the combina-
tion of terms inside the parentheses to a
single value which may be absolute or
relocatable, depending on +the combination
of terms. This value then is used in
reducing the rest of the combination to
another single value.

Terms in parentheses may be included
within a set of terms in parentheses:

A+B- (C+D- (E+F) +10)

The innermost set of terms in parenthe-
ses 1is evaluated first. Five levels of
parentheses are allowed. An arithmetic
combination of terms is evaluated as de-
scribed in the next section ™“Expressions."

EXPRESSIONS

This subsection discusses the expres-
sions used in coding operand entries for
source statements. Two types of expres-
sions, absolute and relocatable, are pre-
sented along with the rules for determining
these attributes of an expression.

As shown in Figure 2-2, an expression is
composed of a single term or an arithmetic
combination of terms. The following are
examples of valid expressions:

* BETA*10
AREA1+X"2D" B*101°

*¢32 C'ARC'

N-25 29

FIELD+#332 L*FIELD
FIELD LAMBDA+GAMMA
(EXIT-ENTRY+1) +GO TEN/TWO
=F'1234"

ALPHA-BETA/ (10+AREA*L*FIELD) - 100

The rules for coding expressions are:

1. An expression may not start with an
arithmetic operator (#-7%) .
Therefore, the expression -A+BETA is
invalid. However, the expression

0-A+BETA is valid.

2. An expression may not contain two
terms or two operators in succession.

3. BAn expression may not consist of more
than 16 terms.

4. An expression may not have more
five levels of parentheses.

5. A multi-term expression may not con-
tain a literal.

than

Evaluation of Expressions

expression, e.g., 29,
takes on the value of

A single term
BETA, *, L"'SYMBOL,
the term involved.

A multi-term expression, e.g., BETA+10,
ENTRY-EXIT, 25%10+A/B, is reduced to a
single value, as follows:

1. Each term is given its value.

2. Arithmetic operations are performed
ieft +to right. Multiplication and

division are done before addition and
subtraction, e.g., A+B*C is evaluated
as A+ (B*C), not (A+B)#*C. The computed
result is the value of the expression.

3. Division always yields an integer
result; any fractional portion of the
result is dropped. E.g., 172#%10
vields a zero result, whereas 10%1/2
yields 5.

4. Division by zero is valid and yields a
zero result.

Parenthesized malti-term expressions
used in an expression are processed before
the rest of the terms in the expression,
e.g., in the expression A+BETA* (CON-10),
the term CON-10 is evaluated first and the
resulting value used in computing the final
value of the expression.

Final values of expressions representing
storage addresses are never greater than
2324-1; however, intermediate results may
have a maximum value of 237-1,

Absolute and Relocatable Expressions

ABSOLUTE EXPRESSION:

An expression is called absolute if its
value is unaffected by program relocation.

An expression is called relocatable if
its value changes upon program relocation.

The two types of expressions, absolute
and relocatable, take on these charac-
teristics from the term or terms composing
them. The following discusses
this relationship.

. s _ -
material

An absolute expres-
sion may be an absolute term or any arith-
metic combination of absolute terms. An
absolute term may be an absolute symbol,
any of the self-defining terms, or the
length attribute reference. As indicated
in Figure 2-2, all arithmetic operations
are permitted between absolute terms.

An absolute expression may contain relo-
catable terms (RT) -- alone or in combina-
tion with absolute terms (AT) -- under the
following conditions:

1. There must be an even number of relo-
catable terms in the expression.

2. The relocatable terms must be paired.
Each pair of terms must have the same
relocatability attribute, i.e., they
appear in the same control section in
this assembly (see "Program Sectioning
and Linking," Section 3). Each pair
must consist of terms with opposite
signs. The paired terms do not have
to be contiguous, e.g., RT+AT-RT.

3. No relocatable term may enter into a

multiply or divide operation. Thus,
RT-RT*10 is invalid. However,
(RT-RT) #10 is valid.

The pairing of relocatable terms (with

opposite signs and the same relocatability
attribute) cancels the effect of
relocation. Therefore the value represent-

ed by the paired terms remains constant,
regardless of program relocation. For
example, in the absolute expression A-Y+X,
A is an absolute term, and X and Y are
relocatable terms with the same relocat-
ability attribute. If A equals 50, Y
equals 25, and X equals 10, the vwvalue of
the expression would be 35. If X and Y are
relocated by a factor of 100 their values
would then be 125 and 110. However, the
expression would still evaluate as 35
(50-125+110=35) .

to a

An absolute expression reduces

single absolute value.

General Information 21

The following examples illustrate abso-
lute expressions. A is an absolute term; X
and Y are relocatable terms with the same
relocatability attribute.

A-Y+X

A

A*A

X-Y+A

*-Y (a reference to the Location Counter
must be paired with another relocata-
ble term from the same control
section, i.e., with the same relocat-
ability attribute)

RELOCATABLE EXPRESSIONS: A relocatable
expression is one whose value would change
by n if the program in which it appears is
relocated n bytes away from its originally
assigned area of storage. Aall relocatable
expressions must have a positive value.

A relocatable expression may be a relo-
catable term. A relocatable expression may
contain relocatable terms -- alone or in
combination with absolute terms -- under
the following conditions:

1. There must be an odd number of reloca-
table terms.

2. All the relocatable terms but one must
be paired. Pairing is described in
"Absolute Expression."”

3. The unpaired term must not be directly
preceded by a minus sign.

4. No relocatable term may enter into a

22

multiply or divide operation.
5. A relocatable expression must have a
positive value.

A relocatable expression reduces to a
single relocatable value. This value is
the wvalue of the o0dd relocatable term,
adjusted by the values represented by the
absolute terms ands/or paired relocatable
terms associated with it.

For example, in the expression W-X+W-10,
W and X are relocatable terms with the same
relocatability attribute. If initially W
equals 10 and X equals 5, the value of the
expression is 5. However, upon relocation
this wvalue will change. If a relocation
factor of 100 is applied, the value of the
expression 1is 105. Note that the value of
the paired terms, W-X, remains constant at
5 regardless of relocation. Thus, the new
value of the expression, 105, is the result
of the value of the odd term (W) adjusted
by the values of W-X and 10.

The following examples illustrate relo-
catable expressions. A is an absolute
term, W and X are relocatable terms with
the same relocatability attribute, ¥ is a
relocatable term with a different relocat-
ability attribute.

Y-32%A W-X+* =F*1234" (literal)
W-X+Y A*R+W-W+Y
* (reference to W-X+W

Location Counter) Y

SECTION 3: ADDRESSING -- PROGRAM SECTIONING AND LINKING

ADDRESSING

The System/360 addressing technique
requires the use of a base register, which
contains the base address, and a displace-
ment, which is added to the contents of the
base register. The programmer may specify
a symbolic address and request the assem-
bler to determine its storage address in
terms of a base register and a
displacement. The programmer may rely on
the assembler to perform this service for
him by indicating which general registers
are available for assignment and what
values the assembler may assume each con-
tains. The programmer may use as many oOr
as few registers for this purpose as he
desires. The only requirement is that, at
the point of reference, a register contain-
ing an address from the same control sec-
tion is available, and that this address is
less than or equal to the address of the
item to which the reference is being made.
The difference between the two addresses
may not exceed 4095 bytes.

ADDRESSES -- EXPLICIT AND IMPLIED

An address is composed of a displacement
plus the contents of a base register. (iIn
i the case of RX instructions, +the contents
of an index register are also used to
derive the address.)

The programmer writes an explicit
address by specifying the displacement and
the base register number. In designating
explicit addresses a base register may not
be combined with a relocatable symbol.

He writes an implied address by speci-
fying an absolute or relocatable address.
The assembler has the facility to select a
base register and compute a displacement,
thereby generating an explicit address from
an implied address, provided that it has
been informed (1) what base registers are
available to it and (2) what each contains.
The programmer conveys this information to
the assembler through the USING and DROP
assembler instructions.

BASE REGISTER INSTRUCTIONS

The USING and DROP assembler instruc-
tions enable programmers tO use expressions
representing implied addresses as operands
of machine-instruction statements, leaving
the assignment of base registers and the
calculation of displacements %¢ the assen-
bler.

In order to use symbols in the operand
field of machine-instruction statements,
the programmer must (1) indicate to the
assembler, by means of a USING statement,
that one or more general registers are
available for wuse as base registers, (2)
specify, by means of the USING statement,
what value each base register contains, and
(3) 1load each base register with the value
he has specified for it.

A program must have at least one USING
statement for each control section to be
addressed.

Having the assembler determine base reg-
isters and displacements relieves the pro-
grammexr of separating each address into a
displacement value and a base address
value. This feature of the assembler will
eliminate a 1likely source of programming
errors, thus reducing the time required to
check out programs. To take advantage of
this feature, the programmer uses the USING
and DRCP instructions described in this
subsection. The principal discussion of
this feature follows the description of
both instructions.

USING -- Use Base Address Register

The USING instruction indicates that one
or more general registers are available for
use as base registers. This instruction
also states the base address values that
the assembler may assume will be in the
registers at object time. Note that a
USING instruction does not load the reg-
isters specified. It is the programmer's
responsibility to see that the specified
base address values are placed into the
registers. Suggested 1loading methods are
described in the subsection "Programming
with the USING Instruction." The format of
the USING instruction statement is:

Addressing -- Program Sectioning and Linking 23

{ L] L] 1
| Name |Operation |Operand |
L i 1 ¥ |
) T T 1
Blank	[USING	From 2-17 expressions
		of the form v,r1,
	{r2,r3,...,xr16é	
L 1 L J

Operand v must be an absolute or reloca-
table expression. No literals are permit-
ted. Operand v specifies a value that the
assembler can use as a base address. The
other operands must be absolute
expressions. The operand r1 specifies the
general register that can be assumed to
contain the base address represented by
operand v. Operands r2, r3, r4, . .
specify registers that can be assumed to
contain v+4096, v+8192, v+12288, . . or
respectively. The values of the operands
rl, r2, r3, <.., r16 must be between 0 and
15. For example, the statement:

T v
Name |Operation |Operand
1 4

o o iy e g
b . s s

T T
|usiNG [*,12,13
1 1

tells the assembler it may assume that the
current value of the Location Counter will
be in general register 12 at object time,
and that the current value of the Location
Counter, incremented by 4096, will be in
general register 13 at object time.

If the programmer changes the value in a
base register currently being used, and
wishes the assembler to compute displace-
ment from this value, the assembler must be
told the new value by means of another
USING statement. In the following sequence
the assembler first assumes that the value
of ALPHA is in register 9. The second
statement then causes the assembler to
assume that ALPHA+1000 is the value in
register 9.

assumes that register 0 contains the value
zero. Subsequent registers specified in
the same statement are assumed to have the
values 4096, 8192, etc. The assembler
therefore places all subsequent effective
addresses less than 4096 in the displace-
ment field and uses zero for the base
register field.

Note: 1If register 0 is made available by a
USING instruction, the program is not relo-
catable, despite the fact that the value
specified by operand v must be relocatable.
However, the programmer is able to make the
program relocatable at some future time by:
1. Replacing register 0 in the USING
statement.
2. Loading the register with a relocata-
ble value.
3. Reassembling the program.

DROP -- Drop Base Register

The DROP instruction specifies a pre-
viously available register that may no
longer be used as a base register. The
format of the DROP instruction statement is
as follows:

r T T 1
| Name | Operation |Operand |
t 1 + i
Blank	DROP	Up to 16 absolute
		expressions of the
		form r1,r2,
	lr3,...,x16 i	
L 1 L J

The expressions indicate general reg-
isters previously named in a USING state-
ment that are now unavailable for base
addressing. The following statement, for
example, prevents the assembler from wusing
registers 7 and 11:

T 1 T 1 r L) L] 1

{Name |Operation |Operand | |Name |Operation |Operand i

t + + i + t i

{ | USING jALPHA,9 | { | DROP 17,11 |

l ' . I I [R 1 L 4
| . I I
| | USING |ALPHA+1000,9 |

L 1 L 4 It is not necessary to use a DROP

statement when the base address in - a reg-

ister is changed by a USING statement; nor

A USING statement may specify general are DROP statements needed at the end of

register 0 as a base register only if
operand v is a relocatable expression in
the first control section of the program.
If general register 0 is specified, it must
be operand r1. In this case, the assembler

24

the source program.

A register made unavailable by a DROP
instruction can be made available again by
a subsequent USING instruction.

PROGRAMMING WITH THE USING INSTRUCTION

The USING (and DROP) instructions may be
used anywhere in a program, as often as
needed, to indicate the general registers
that are available for use as base reg-
isters and the base address values the
assembler may assume each contains at ex-
ecution time. Whenever an address is spec-
jfied in a machine-instruction statement,
the assembler determines whether there is
an available register containing a suitable
hase address. A register is considered
available for a relocatable address if it
was loaded with a relocatable value that is
in the same control section as the address.
A register with an absolute value is avail-
able only for absolute addresses. In ei-
ther case, the base address is considered
suitable only if it is less than or equal

tion named LAST is within 4095 bytes of
FIRST.

In Fiqure 3-1, the BALR and LM instruc-
tions load registers 2-5. The USING
instruction indicates to the assembler that
these registers are available as base reg-
isters for addressing a maximum of 16,384
consecutive bytes of storage, beginning
with the location named HERE. The numher
of addressable bytes may be increased or
decreased by altering the number of reg-
isters designated by the USING and 1M
instructions and the number of

constants specified in the DC

address
instruction.

to the address of the item to which the

reference is made. The difference between RELATIVE ADDRESSING
the +two addresses may not exceed #4095

bytes.

Relative addressing is the technique of
addressing instructions and data areas by
designating their location in relation to

[-— T 1 the Location Counter or to some symbolic
|Name |Operation |Operand { location. This type of addressing is
-—4 $ 4 always in bytes, never in bits, words, ox
|BEGIN |BALR 12,0 | instructions. Thus, the expression *+4
| |USING 1*,2 | specifies an address that is four bytes
{|FIRST | . | | greater than the current value of the
i | - | | Location Counter. In the sequence of
| | . | | instructions shown in the following
| LAST | . | | example, the 1location of the CR machine
! |END | BEGIN | instruction can be expressed in two ways,
L 1 1 4 ALPHA+2 or BETA-4, because all of the
mnemonics in the example are for 2-byte
In the preceding sequence, the BALR instructions in the RR format.
instruction 1loads register 2 with the
address of the first storage location
immediateiy folliowing. In this case, it is i T - 1
the address of the instruction named FIRST. | Name | Operation |Operand |
The USING instruction indicates to the ¢ } + |
assembler that register 2 contains this |ALPHA |IR 13,4 |
location. When employing this method, the | |CR |4,6 |
USING instruction must immediately follow] | BCR 1,14 |
the BALR instruction. No other USING or | BETA | AR 12,3 |
load instructions are required if the loca- L 1 L 4
T T T 1
| Name | Operation |Operand |
t t 1 .
BEGIN	BALR 12,0	
	USING	HERE,2,3,4,5
HERE	1M 13,5,BASEADDR	
	B	FIRST
BASEADDR	DC {A (HERE+4096, HERE+8192, HERE+12288) {	
FIRST	-	
I		
	-	
LAST [i	
	END	BEGIN
L —_ L i
Figure 3-1. Multiple Base Register Assignment

Addressing -- Program Sectioning and Linking 25

PROGRAM SECTIONING AND LINKING

It is often convenient, or necessary, to
write a large program in sections. The
sections may be assembled separately, then
combined subsequently into one object pro-
gram. The assembler provides facilities
for creating multisectioned programs and
symbolically linking separately assembled
programs or program sections. The combined
number of control sections and dummy sec-
tions plus the number of unique symbols in
EXTRN statements and V-type address con-
stants may not exceed 255. (EXTRN state-
ments are discussed in this section; V-type
constants in Section 5 under the DC --
Define Constant assembler instruction.) If
the same symbol appears in a V-type address
constant and in the name field of a CSECT
or DSECT statement, it is counted as two
symbols.

Sectioning a program is optional, and
many programs can best be written without
sectioning them. The programmer writing an
unsectioned program need not concern him-
self with the subsequent discussion of
program sections, which are called control
sections. He need not employ the CSECT
instruction, which is used to identify the
contrcl sections of a multisection program.
Similarly, he need not concern himself with
the discussion of symbolic linkages if his
program neither requires a linkage to nor
receives a 1linkage from another program.
He may, however, wish to identify the
program and/or specify a tentative starting
location for it, both of which may be done
by using the START instruction. He may
also want to employ the dummy section

feature obtained by using the DSECT
instruction.
Note: Program sectioning and 1linking is

closely related to the specification of
base registers for each control section.
Sectioning and linking examples are provid-
ed under the heading "Addressing External
Control Sections."”

CONTROL SECTIONS

The concept of program sectioning is a
consideration at coding time, assembly
time, and load time. To the programmer, a
program is a logical unit. He may want to
divide it into sections called control
sections; if so, he writes it in such a way
that control passes properly from one sec-
tion to another regardless of the relative
physical position cf the sections in stor-
age. A control section is a block of
coding that can be relocated, independently
of other coding, at 1load time without

26

altering or impairing the operating logic
of the program. It is normally identified
by the CSECT instruction. However, if it
is desired to specify a tentative starting
location, the START instruction may be used
to identify the first control section.

To the assembler, there is no such thing

as a program; instead, there is an
assembly, which consists of one or more
control sections. (However, the terms

assembly and program are often used inter-
changeably.) An unsectioned program is
treated as a single control section. To
the 1linkage editor, there are no programs,
only control sections that must be fash-
ioned into an object program.

The output of the assembler consists of
the assembled control sections and a con-
trol dictionary. The control dictionary
contains information the 1linkage editor
needs in order to complete cross-
referencing between control sections, as it
combines them into an object program. The
linkage editor can take control sections
from various assemblies and combine them
properly with the help of the corresponding
control dictionaries. Successful
combination of separately assembled control
sections depends on the techniques used to
provide symbolic linkages between the con-
trol sections.

Whether the programmer writes an unsec-
tioned program, a multisection program, or
part of a multisection program, he still
knows what eventually will be entered into
storage, because he has described storage
symbolically. He may not know where each
section appears in storage, but he does
know what storage contains. There 1is no
constant relationship between control sec-
tions. Thus, knowing the location of one
control section does not make another con-
trol section addressable by relative
addressing techniques.

Control Section Location Assignment

Control section contents can be inter-
mixed because the assembler provides a
Location Counter for each control section.
Locations are assigned to control sections
in such a way that the sections are placed
in storage consecutively, in the same order
as they first occur in the program. Each
control section subsequent to the first
begins at the next available double-word
boundary.

FIRST CONTROL SECTION
The first control section of a program
has the following special properties.

1. Its tentative loading location may be
specified as an absolute value.

2. It normally contains the 1literals
requested in the program, although
their positioning can be altered.

This is further explained under the
discussion of the LTORG assembler
instruction.

START -- Start Assembly

The START instruction may be used to
give a name to the first (or only) control
section of a program. There may be only
one START instruction in an assembly. It
may also be used to specify a tentative
starting 1liocation for the program. The
format of the START instruction statement
is as follows:

r T T 1
| Name | Operation |Operand |
N | iy J
1 T T 3
|A symbol |START |A self-defining |
|or blank | |term or blank |
L L L J

If a symbol names the START instruction,
the symbol is established as the name of
the control section. If not, the control
section 1is considered to be unnamed. All
subsequent statements are assembled as part
of that controli section. This continues
until a CSECT instruction identifying a
different control section or a DSECT
instruction is encountered. A CSECT
instruction named by the same symbol that
names a START instruction is considered to
identify the continuation of the control
section first identified by the START.
Similarly, an unnamed CSECT that occurs in
a program initiated by an unnamed START is
considered to identify the continuation of
the unnamed control section.

The symbol in the name field is a wvalid
relocatable symbol whose value represents
the address of the first byte of the
control section. It has a length attribute
of one.

The assembler uses the self-defining
value specified by the operand as the
tentative starting location of the program.
This value must be divisible by eight. For
example, either of the following
statements:

| program at zero.

L) T L 1
| Name |Operation |Operand |
L 1 4 4

1 1
|PROG2 | START | 2040 i
|PROG2 |START | X" 7F8" |
L L L J

could be used to assign the name PROG2 to
the first control section and to indicate
an initial assembly location of 2040. If
the operand is omitted, the assembler sets
the tentative starting 1location of the
The Location Counter is
set at the next double-word boundary when
the value of the START operand is not
divisible by eight.

Note: The START instruction may not be
preceded by any type of assembler language
statement that may either affect or depend
upon the setting of the Location Counter.

CSECT -- Identify Control Section

The CSECT instruction identifies the
beginning or the continuation of a control

section. The format of the CSECT instruc-
tion statement is as follows:

T T T 1
| Name |Operation |Operand |
[l 4 } 4
L} T T 1
{A symbol |CSECT |Not used; should |
|or blank | |be blank |
L N S J

If a symbol names the CSECT instruction,
the symbol is established as the name of
the control section; otherwise the section
is considered to be unnamed. All state-
ments following the CSECT are assembled as
part of that control section until a state-
ment identifying a different control sec-
tion is encountered (i.e., another CSECT or
a DSECT instruction).

The symbol in the name field is a wvalid
relocatable symbol whose value represents
the address of the first byte of the
control section. It has a length attribute
of one.

Several CSECT statements with the same
name may appear within a program. The
first is considered to identify the begin-
ning of the control section; the rest
identify the resumption of the section.
Thus, statements from different control
sections may be interspersed. They are
properly assembled (assigned contiguous
storage locations) as long as the state-
ments from the various control sections are

Addressing -- Program Sectioning and Linking 27

jidentified by the appropriate CSECT

instructions.

Unnamed Control Section

If neither a named CSECT instruction nor
START instruction appears at the beginning
of the program, the assembler dJdetermines

that it is to assemble an unnamed control
section as the first (or only) control
section. There may be only one unnamed

control section in a program. If one is
initiated and is then followed by a named
control section, any subsequent unnamed
CSECT statements are considered to resume
the unnamed control section. If it is
desired to write a small program that is
unsectioned, the program does not need to
contain a CSECT instruction.

DSECT -~ Identify Dummy Section

A dummy section represents a control
section that is assembled but is not part
of the object program. A dummy section is
a convenient means of describing the layout
of an area of storage without actually
reserving the storage. (It is assumed that
the storage is reserved either by some
other part of this assembly or else by
another assembly.) The DSECT instruction
identifies the beginning or resumption of a
dummy section. More than one dummy section
may be defined per assembly, but each . must
be named. The format of the DSECT instruc-
tion statement is as follows:

L Ll T 1
| Name |Cperation |Operand |
L i 4 J
¥ T] 1
|A symbol |DSECT |Not used; should |
| | |be blank i
L L 4 J

The symbol in the name field is a valid

relocatable symbol whose value represents
the first byte of the section. It has a
length attribute of one.

Program statements belonging to dummy
sections may be interspersed throughout the
program or may be written as a unit. 1In
either case, the appropriate DSECT instruc-
tion should precede each set of statements.
When multiple DSECT instructions with the
same name are encountered, the first is
considered to initiate the dummy section
and the rest to continue it.

28

Symbols that name statements in a dummy
section may be used in USING instructions.
Therefore, they may be used in program
elements (e.g., machine-instructions and
data definitions) that specify storage
addresses. An example illustrating the use
of a dummy section appears subsequently
under “Addressing Dummy Sections."

Note: A symbol that names a statement in a
dummy section may be used in an A-type
address constant only if it is paired with
another symbol (with the opposite sign)
from the same dummy section.

DUMMY SECTION LOCATION ASSIGNMENT: A Loca-
tion Counter is wused to determine the
relative locations of named program ele-
ments in a dummy section. The Location
Counter is always set to =zero at the
beginning of the dummy section, and the
location values assigned to symbols that
name statements in the dummy section are
relative to the initial statement in the
section.

ADDRESSING DUMMY SECTICNS: The programmer
may wish to describe the format of an area
whose storage location will not be deter-
mined until the program is executed. He
can describe the format of the area in a
dummy section, and he can use symbols
defined in the dummy section as the oper-
ands of machine instructions. To effect
references to the storage area, he does the
following:

1. Provides a USING statement specifying
both a general register that the
assembler can assign to the machiner

- instructions as a base register and a
value from the dummy section that the
assembler may assume the register con-
tains.

2. Ensures that the same register is
loaded with the actual address of the
storage area.

The values assigned to symbols defined
in a dummy section are relative to the
initial statement of the section. Thus,
all machine-instructions which refer to
names defined in the dummy section will, at
execution time, refer to storage locations
relative to the address 1loaded into the
register.

An example 1is shown in the following
coding. Assume that two independent assem-
blies (assembly 1 and assembly 2) have been
loaded and are to be executed as a single
overall program. Assembly 1 is an input
routine that places a record in a specified
area of storage, places the address of the
input area containing the record in general
register 3, and branches to assembly 2.
Assembly 2 processes the record. The cod-

ing shown in the example is from assembly
2.

The input area is described in assembly
2 by the DSECT control section named
INAREA. Portions of the input area (i.e.,
record) that the programmer wishes to work
with are named in the DSECT control section
as shown. The assembler instruction USING
INAREA,3 designates general register 3 as
the base register to be used in addressing
the DSECT control section, and that general
register 3 is assumed to contain the
address of INAREA.

Assembly 1, during execution, loads the
actual beginning address of the input area
in general register 3. Because the symbols
used in the DSECT section are defined
relative to the initial statement in the
section, the address values they represent,
will, at the time of program execution, be

the actual storage locations of the input
area.

L} T T L]
| Name |Operation |Operand |
i 1 L]
1 T ¥ 1
ASMBLY2	CSECT	
BEGIN	BALR 12,0	
	USING	*,2
	-	
	.	
	us1	INAREA, 3 i
{cLI	INCODE,C*A"	
	BE	ATYPE
1 1 1

i] b ' !
I I | |
ATYPE	MVC	WORKA , INPUTA
	MVC	WORKB, INPUTB
	.	
I .		
WORRA	DS	CL20
WORKB	DS	CL18
I -		
	-	I
INAREA	DSECT	
INCODE	DS {CL1	
INPUTA	DS	CL20
INPUTB	DS	CL18
I	-	
	END !	
L L L ¥

COM -- DEFINE BLANK COMMON CONTROL SECTION

The COM assembler instruction identifies
and reserves a common area of storage that
may be referred to by independent assem-
blies that have been linked and loaded for
execution as one overall program.

Only one blank common control section
can be designated in an assembly.

When several assemblies are loaded, each
designating a common control section, the
amount o¢©f storage reserved is equal to the

longest common control section. The format
is:

T L . T a
| Name |Cperation |Operand |
k 1 + 1
|Blank |COM |Blank i
! | | |
L L L I]

The common area may be broken up into
subfields through wuse of the DS and DC
assembler instructions. Names of subfields
are defined relative to the beginning of
the common section, as in the DSECT control
section.

No instructions or constants appearing
in a common control section are assembled.
Data can only be placed in a common control
section through execution of the program.

If the assignment of common storage is
done in the same manner by each independent
assembly, reference to a location in common
by any assembly results in the same loca-
tion being referenced. When assembled,
blank common location assignment starts on
the next double word boundary after the
highest tentative location assigned to the
assembly.

SYMBOLIC LINKAGES

Symbols may be defined in omne program
and referred to in another, thus effecting
symbolic 1linkages between independently
assembled programs. The 1linkages can be
effected only if the assembler is able to
provide information about the linkage sym-
bols to the linkage editor, which resolves
these linkage references at load time. The
assembler places the necessary information
in the control dictionary on the basis of
the linkage symbols identified by the ENTRY
and EXTRN instructions. Note that these
symbolic linkages are described as linkages
between independent assemblies; more spe-
cifically, they are linkages between inde-
pendently assembled control sections.

In the program where the linkage symbol
is defined (i.e., used as a name), it must
also be identified to the assembler by
means of the ENTRY assembler instruction.
It is identified as a symbol that names an
entry point, which means that another pro-
gram will use that symbol in order to
effect a branch operation or a data ref-

Addressing -- Program Sectioning and Linking 29

erence. The assembler places this informa-
tion in the control dictionary.

Similarly, the program that uses a sym—
bol defined in some other program must
identify it by the EXTRN assembler instruc-
tion. It is identified as an extermally
defined symbol (i.e., defined in another
program) that is used to effect linkage to

the point of definition. The assembler
places this information in the control
dictionary.

Another way to obtain symbolic linkages,
is by using the V-type address constant.
The subsection "Data Definition
Instructions®™ in Section 5 contains the
details pertinent to writing a V-type
address constant. It is sufficient here to
note that this constant may be considered
an indirect linkage point. It 1is created
from an externally defined symbol, but that
symbol does not have to be identified by an
EXTRN statement. The V-type address con-
stant may be used for external branch
references (i.e., for effecting branches to
other programs). It may not be used for
external data references (i.e., for refer-
ring to data in other programs) .

ENTRY —-- IDENTIFY ENTRY-POINT SYMBOL

The ENTRY instruction identifies linkage
symbols that are defined in this program
but may be used by some other program. The
format of the ENTRY instruction statement
is as follows:

2
o
8
o

T T
|Operation |Operand
1 4

¢
|One or more reloca-
| table symbols,

| separated by

| commas, that also

| appear as state-
|ment names

1

Blank |ENTRY

R ——
T ——
b e e . . s st sk w—— gl

A program may contain a maximum of 100
entry symbols.

The symbols in the ENTRY operand field
may be used as operands by other programs.
An ENTRY statement operand may not contain
a symbol defined in an unnamed control
section, a qummy section or blank commen.
The following example identifies the state-
ments named SINE and COSINE as entry points
to the program.

30

3 1 T 1
| Name |Operation |Operand |
L ¥ |

] |

ENTRY | SINE,COSINE |

1 J

Note: The name of a control section does

not have to be identified by an ENTRY
instruction when another program uses it as
an entry point. The assembler automat-
jcally places information on control sec-
tion names in the control dictionary.

EXTRN -- IDENTIFY EXTERNAL SYMBOL

The EXTRN instruction identifies linkage
symbols that are used by this program but
defined in some other program. Each exter-

nal symbol must be identified; this
includes symbols that name control
sections. The format of the EXTRN instruc-

tion statement is as follows:

[]
eration |Operand
4

w2
B
o

]
[
=)
~

T

|One or more
|relocatable

| symbols, separ-
|ated by commas
L

o o s At s S mnne: =

|Op

4

}

| EXTRN
I

|

|

L

N e

The symbols in the operand field may not
appear as names of statements in this
program. The following example identifies
three external symbols that have been used
as operands in this program but are defined
in some other program.

T T T 1
| Name |Operation |Operand |
% R + |
r 1 T 1
| | EXTRN | RATEBL, PAYCALC |
| | EXTRN | WITHCALC |
L 4 4 J

An example that employs the EXTRN
instruction arpears subsequently under

"Addressing External Control Sections."

Note: A V-type address constant does not
have to be defined by an EXTRN statement.

Note: When external symbols are used in an
expression they may not be paired. Each
external symbol must be considered as hav-
ing a unique relocatability attribute.

Addressing External Control Sections

A common way for a program to link to an
external control section is to:

1. Create a V-type address constant with
the name of the external symbol.

2. load the constant into a general reg-
ister and branch to the control sec-
tion via the register.

L] L] . LD 1
| Name |Operation |Operand i
_ 1 R i —— 4
MAINPROG |CSECT I [
BEGIN | BALR 12,0 |
jusinG |*,2 |

| - | |

| . | |

{L |3,VCON |

| BALR 11,3 |

- | |

I .	
vcoN jpC	V (SINE)
	END
L 'y J

| BEGIN
[}

to 1link to +the control
the preceding coding

For example,
section named SINE,
might be used.

An external symbol naming data may be
referred to as follows:

1. Identify the external symbol with the
EXTRN instruction, and create an
address constant from the symbol.

2. Load the constant into a general reg-
ister, and use the register for base
addressing.

For example, to wuse an area named
RATETBL, which is in another control sec-
tion, the following coding might be used:

r R . T h]
lName lOperatlon 10perand }
 } 1 1 1
| MAINPROG |CSECT]

| BEGIN | BALR 12,0

| | USING j*,2

| I . | |
| I . {

| | EXTRN RATETBL

| | |
| |- |

| L i 4, RATEADDR

| |USING |RATETBL, 4 |
| Ia 3,RATETBL

| | .

| 1 .]
|RATEADDR |DC | A (RATETBL) |
| | END | BEGIN i
i L L y]

Addressing -- Program Sectioning and Linking 31

SECTION 4: MACHINE-INSTRUCTIONS

This section discusses the coding of the
machine-instructions represented in the
assembler language. The reader is reminded
that the functions of each machine-
instruction are discussed in the principles
of operation manual (see Preface).

MACHINE~INSTRUCTION STATEMENTS

Machine-instructions may be represented
symbolically as assembler language
statements. The symbolic format of each
varies according to the actual machine-
instruction format, of which there are
five: RR, RX, RS, SI, and SS. Within each

basic format, further variations are
possible.

The symbolic format of a machine-
instruction is similar to, but does not
duplicate, its actual format. Appendix D

illustrates machine format for the five
classes of instructions. A mnemonic opera-
tion code is written in the operation
field, and one or more operands are written
in the operand field. Comments may be
appended to a machine-instruction statement
as previously explained in Section 1.

Any machine-instruction statement may be
named by a symbol, which other assembler
statements can use as an operand. The
value attribute of the symbol is the
address of the leftmost byte assigned to
the assembled instruction. The length
attribute of the symbol depends on the
basic instruction format, as follows:

Basic Format Length Attribute
RR
RX
RS
SI
Ss

AEEEN

Instruction Alignment and Checking

All machine-instructions are aligned
automatically by the assembler on half-word
boundaries. If any statement that causes
information to be assembled requires align-
ment, the bytes skipped are filled with
hexadecimal zeros. All expressions that
specify storage addresses are checked to
insure that they refer to appropriate
boundaries for the instructions in which

32

they are used. Register numbers are also
checked to make sure that they specify the
proper registers, as follows:

1. Floating-point instructions must spec-
ify floating-point registers 0, 2, 4,
or 6.

2. Double-shift, full-word multiply, and
divide instructions must specify an
even-numbered general register in the
first operand.

OPERAND FIELDS AND SUBFIELDS

Some symbolic operands are written as a
single field and other operands are written
as a field followed by one or two
subfields. For example, addresses consist
of the contents of a base register and a
displacement. An operand that specifies a
base and displacement is written as a
displacement field followed by a base reg-
ister subfield, as follows: 40(5). 1In the
RX format, both an index register subfield
and a base register subfield are written as
follows: 40(3,5) . In the SS format, both a
length subfield and a base register sub-
field are written as follows: 40 (21,5).

Appendix D shows two types of addressing

formats for RX, RS, SI, and SS
instructions. In each case, the first type
shows the method of specifying an address

explicitly, as a base register and dis-
placement. The second type indicates how
to specify an implied address as an expres-
sion.

For example, a load multiple instruction
(RS format) may have either of the follow-
ing symbolic operands:

R1,R3,D2(B2) - -
R1,R3,S82 - -

explicit address
implied address

Whereas D2 and B2 must be represented by
absolute expressions, S2 may be represented
either by a relocatable or an absolute
expression.

In order to use implied addresses, the
following rules must be observed:

1. The base register assembler instruc-
tions (USING and DROP) must be used.

2. An explicit base register designation
must not accompany the implied
address.

For example, assume that FIELD is a
relocatable symbol, which has been assigned
a value of 7400. Assume alsc that the
assembler has been notified (by a USING
instruction) that general register 12 cur-
rently contains a relocatable value of 4096
and is available as a base register. The
following example shows a machine-
instruction statement as it would be
written in assembler language and as it
would be assembled. Note that the value of
D2 is the difference between 7400 and 4096
and that X2 is assembled as zero, since it
was omitted. The assembled instruction is
presented in decimal:

Assembler statement:
ST 4,FIELD

Assembled instruction:

X2 B2 D2
3304

Op.Code R1
50 4 0 12

An address may be specified explicitly
as a base register and displacement (and
index register for RX instructions) by the
formats shown in the first column of Table
4-1. The address may be specified as an
implied address by the formats shown in the
second column. Observe that the two stor-
age addresses required by the SS instruc-
tions are presented separately; an implied
address may be used for one while an
explicit address is used for the other.

*A zero must be

- desired to omit an index
specification in an RX
address.

supplied when it is
register
explicit

Table 4-1. Details of Address Specifi-
cation
1 3 L) s 1
| Type |Explicit Address| Implied Address |
1 4 i 1
L T T 1
| RX |D2(X2,B2) | S2(x2) |
| D2 (0,B2) * | s2 |
| RS |D2(B2) | s2 1
| SI |D1(BY) | s1 |
{ ss {D1(L1,BY | s1(1) |
| | D1 (L,B1) | S1(L) |
| | D2 (L.2,B2) | s2(12) {
L A L J
| |
| |
| |
I |
L J

A comma must be written to separate
operands. Parentheses must be written to
enclose a subfield or subfields, and a
comma must be written to separate two
subfields within parentheses. When paren-
theses are used to enclose one subfield,
and the subfield is omitted, the parenthe-
ses must be omitted. In the case of two
subfields that are separated by a comma and

enclosed by parentheses, the following

rules apply:

1. If both subfields are omitted, the
separating comma and the parentheses
must also be omitted.

L 2,48 (4,5)

L 2,FIELD (implied address)

2. If the first subfield in the seguence
is omitted, the comma that separates
it from the second subfield is
written. The parentheses must also be
written.

MVvC 32 (16,5) ,FIELD2
MVC BETA(,5) ,FIELD2 (implied length)

3. In the RX class of instructions if the
index register subfield is not used,

but the base register is specified,
the first subfield (index register)
must be specified as zero. It may not

be omitted.

L 2,48 (4,5)
L 2,48 (0,5)

4., If the second subfield in the sequence
is omitted, the comma that separates
it from the first subfield must be
omitted. The parentheses must be
written.

MVC 32(16,5) ,FIELD2
MVC FIELD1 (16) ,FIELD2 (implied

address)

Fields and subfields in a symbolic oper-
and may be represented either by absolute
or by relocatable expressions, depending on
what the field requires. (An expression
has been defined as consisting of one term
or a series of arithmetically combined
terms.,) Refer to Appendix D for a detailed
description of field requirements.

Note: Blanks may not appear in an operand
unless provided by a character self-
defining term or a character 1literal.
Thus, blanks may not intervene between
fields and the comma separators, between

parentheses and fields, etc.

LENGTHS -- EXPLICIT AND IMPLIED

The 1length field in SS instructions can
be explicit or implied. To imply a length,
the programmer omits a 1length field from
the operand. The omission indicates that
the length field is either of the
following:

1. The length attribute of the expression

Machine-Instructions 33

specifying the displacement, if an
explicit base and displacement have
been written.

2. The length attribute of the expression
specifying the effective address, if
the base and displacement have been
implied.

In either case, the length attribute for
an expression is the length of the leftmost
term in the expression.

By contrast, an explicit 1length is
written by the programmer in the operand as
an absolute expression. The explicit
length overrides any implied length.

Whether the length is explicit or
implied, it is always an effective 1length.
The value inserted into the length field of
the assembled instruction is one less than
the effective length in the machine-
instruction statement.

Note: If a 1length field of =zero is
desired, the length may be stated as zero
or one.

To summarize, the length required in an
SS instruction may be specified explicitly
by the formats shown in the first column of
Table 4-2 or may be implied by the formats
shown in the second column. Observe that
the two 1lengths required in one of the SS
instruction formats are presented
separately. 2An implied length may be used
for one while an explicit length is used
for the other.

Table 4-2. Details of Length Specification

in SS Instructions

L A 1
| Explicit Length | Implied Length i
L +]
) L] 1
| D1(L1,B1) | D1(,B1) |
| s1(@1) | s1 I
| D1(L,B1) | D1(,BY) i
st	s1
D2 (L2,B2)	D2(,B2)
s2(12)	s2
t AL J

MACHINE-INSTRUCTION MNEMONIC CODES

The mnemonic operation codes (shown in
Appendix B) are designed to be easily
remembered codes that indicate the func-
tions of the instructions. The normal
format of the code is shown below; the
items 1in brackets are not necessarily pre-
sent in all codes:

Verb [Modifier]

[Data Type] [Machine Format]

34

The verb, which is usually one or two
characters, specifies the function. For
example, A represents Add , and MV rep-
resents Move. The function may be further
defined by a modifier. For example, the
modifier L indicates a logical function, as
in AL for Add Logical.

Mnemonic codes for functions involving
data usually indicate the data types, by
letters that correspond to those for the
data types in the DC assembler instruction
(see Section 5). Furthermore, letters U
and W have been added to indicate short and
long, unnormalized floating-point opera-
tions, respectively. For example, AE indi-
cates Add Normalized Short, whereas AU
indicates Add Unnormalized Short. Where
applicable, full-word fixed-point data is
implied if the data type is omitted.

The letters R and I are added to the
codes to indicate, respectively, RR and SI
machine instruction formats. Thus, AER
indicates Add Normalized Short in the RR
format. Functions involving character and
decimal data types imply the SS format.

MACHINE-INSTRUCTION EXAMPLES

The examples that follow are grouped
according to machine-instruction format.
They illustrate the various symbolic oper-
and formats. All symbols employed in the
examples must be assumed to be defined
elsewhere in the same assembly. All sym-
bols that specify register numbers and
lengths must be assumed to be equated
elsewhere to absolute values.

Implied addressing, control section
addressing, and the function of the USING
assembler instruction are not considered
here. For discussion of these considera-
tions and for examples of coding sequences
that illustrate then, the reader is
referred to Section 3, "Program Sectioning

and Linking® and "Base Register Instruc-
tions."

RR _Format

) L] L3 1
| Name |Operation |Operand |
t t + i
ALPHA1	LR 11,2	
ALPHA2	LR	REG1,REG2
BETA	SPM	15
GAMMA1	SVC {250	
GAMMA2	SVC	TEN
L L L S |

The operands of ALPHA1, BETA, and GAMMA1
are decimal self-defining values, which are
categorized as absolute expressicns. The
operands of ALPHA2 and GAMMA2 are symbols
that are equated elsewhere ¢to absolute
values.

RX Format

] T T h)
| Name |Operation |Operand]
| | | |
L 1 L 4

T 1
|ALPHA1 |L (1,39 (4,10) i
|ALPHA2 L |REG1,39 (4, TEN) |
|BETA1 L {2, ZETA (4) |
| BETA2 |L | REG2, ZETA (REGY) |
jGAMMA1 L |2,2ETA |
|GAMMA2 |L |REG2, ZETA |
| GARMMA3 |L 12,=F*1000° i
!LAMBDA1 lL 13,20(0,5) !

Both ALPHA instructions specify explicit
addresses; REG1 and TEN are absolute sym-
bols. Both BETA instructions specify
implied addresses, and both use index reg-
isters. Indexing is omitted from the GAMMA
instructions. GAMMA1 and GAMMA2 specify
implied addresses. The second operand of
GAMMA3 is a literal. LAMBDA1 specifies no

indexing.
RS Format
r 1] 1
| Name |Operation |Operand |
¢ + t {
ALPHA1	BXH 11,2,20 (14)	
ALPHA2	BXH	REG1,REG2, 20 (REGD)
ALPHA3	BXH {REG1, REG2, ZETA	
ALPHAU	SLL	REG2, 15 I
{ALPHAS |SLL {REG2, 0 (15) |
L L 4 d
Whereas ALPHA1 and ALPHA2 specify ex-
plicit addresses, ALPHA3 specifies an
implied address. ALPHAY is a shift
instruction shifting the contents of REG2
left 15 Dbit positions. ALPHAS is a shift
instruction shifting the contents of REG2

left by the value contained in general
register 15,

SI_Format

¥ T L] 1
| Name |Operation |Operand |
L [} iy 4
g T T 94
|ALPHA1 |CLI j40(9) ,X*40° i
ALPHA2	CLI	40 (REG9) ,TEN
BETA1	CLI	ZETA, TEN
BETAZ2	CLI	ZETA,C'A"
GAMMA1	SIO 40 (9 i	
GAMMA2	SIO 10 (9)	
{GAMMA3	SIO	40 (0)
GAMMAL	SIO	ZETA]

The ALPHA instructions and GAMMA1-GAMMA3
specify explicit addresses, whereas the
BETA instructions and GAMMAU specify
implied addresses. GAMMA2 specifies a dis-
placement of zero. GAMMA3 does not specify
a base register.

S Format

T Ll T
| Name |Operation|Operand
L i L

140 (9,8) ,30(6,7)
{40 (NINE,REGS) ,30 (L6,7)

L3 T
|ALPHA1 |AP
|ALPHA2 |AP

R |
|
i
|
|ALPHA3 |AP |FIELD2,FIELD1 |
|ALPHA4 |AP |FIELD2 (9) ,FIELD1 (6) I
| BETA |AP |FIELD2 (9) ,FIELD1 1
|GAMMA1 |MVC |40 (9,8) ,30 (7) i
|GAMMA2 |MVC |40 (NINE,REGS) ,DEC (7) |
|GAMMA3 |MVC |FIELD2,FIELD1 I
|GAMMALG |MVC |FIELD2 (9) ,FIELD1 |
[| L L d

ALPHA1, ALPHA2, GAMMA1, and GAMMA2 spec-
ify explicit lengths and addresses. ALPHA3
and GAMMA3 specify both implied length and
implied addresses. ALPHA4 and GAMMAU spec-
ify explicit length and implied addresses.
BETA specifies an explicit length for
FIELD2 and an implied length for FIELD1;
both addresses are implied.

EXTENDED MNEMONIC CODES

For the convenience of the programmer,
the assembler provides extended mnemonic
codes, which allow conditional branches to
be specified mnemonically as well as
through the use of the BC machine-
instruction. These extended mnemonic codes
specify both the machine branch instruction
and the condition on which the branch is to
occur. The codes are not part of the
universal set of machine-instructions, but

Machine-Instructions 35

1]
|Extended Code

{
|[B D2 (x2,B2)

Meaning

Branch Unconditional

| BR R2 Branch Unconditional (RR format) BCR 15,R2
|NOP D2 (X2,B2) No Operation BC 0,D2(x2,B2)
| NOPR R2 No Operation (RR format) BCR 0,R2

Used After Compare Instructions

BH D2 (X2,B2) Branch on High

BL D2 (X2,B2) Branch on Low

|BE D2 (X2,B2) Branch on Equal
|BNH D2 (X2,B2) Branch on Not High
|BNL D2 (X2,B2) Branch on Not Low
|BNE D2 (X2,B2) Branch on Not Equal

Used After Arithmetic Instructions

|

!

|BO D2 (X2,B2) Branch on Overflow
| BP D2 (X2,B2) Branch on Plus

| BM D2 (X2,B2) Branch on Minus
|BZ D2 (X2,B2) Branch on Zero

|

| Used After Test Under Mask Instructions
|

|BO D2 (X2, B2) Branch if Ones

| BM D2 (X2,B2) Branch if Mixed
|B2Z D2 (X2,B2) Branch if Zeros

L

Machine-Instruction

BC 15,D2(X2,B2)

BC 2,D2 (X2,B2)
BC 4,D2 (X2,B2)
BC 8,D2 (X2,B2)
BC 13,D2 (Xx2,B2)
BC 11,D2 (X2,B2)]
BC 7,D2 (X2,B2)

— e S . S . st S (s @, s sl

BC 1,D2 (X2,B2)
BC 2,D2 (X2,B2)
BC 4,D2 (X2,B2)
BC 8,D2 (X2,B2)

BC 1,D2 (X2,B2)
BC 4,D2 (X2,B2)
BC 8,D2 (X2,B2)

e EEp——

Figure 4-1, Extended Mnemonic Codes

are translated by the assembler into the
corresponding operation and condition
combinations.

The allowable extended mnemonic codes
and their operand formats are shown in
Figure 4-1, together with their machine-
instruction equivalents. Unless otherwise
noted, all extended mnemonics shown are for
instructions in the RX format. Note that
the only difference between the operand
fields of the extended mnemonics and those
of their machine-instruction equivalents is
the absence of the R1 field and the comma
that separates it from the rest of the
operand field. The extended mnemonic list,
like the machine-instruction 1list, shows

explicit address formats only. Each
address can also be specified as an implied
address. Examples illustrating instruc-

tions using extended mnemonic codes follow
the list of extended mnemonics.

In the following examples, which illus-
trate the use of extended mnemonics, it is
to be assumed that the symbol GO is defined
elsewhere in the program.

36

Name peration |Operand

o

|40 (3,6)
140 (0,6)
1GO (3)
|GO

|4

1

Wowww | O

o e o e . i, S e,
R e e s S
o H e

N

The first two instructions specify an
unconditional branch to an explicit
address. The address in the first case is
the sum of the contents of base register 6,
the contents of index register 3, and the
displacement 4#0; the address in the second
instruction is not indexed. The third
instruction specifies a branch on low to
the address implied by GO as indexed by the
contents of index register 3; the fourth
instruction does not specify an index reg-
ister. The last instruction is an uncondi-
tional branch to the address contained in
register 4.

Just as machine instructions are used to
request the computer to perform a sequence
of operations during program execution
time, so assembler instructions are
requests to the assembler to perform cer-
tain operations during the assembly.
Assembler-instruction statements, in
contrast to machine-instruction statements,
do not always cause machine-instructions to
be included in the assembled program.
Some, such as DS and DC, generate no
instructions but do cause storage areas to
be set aside for constants and other data.
Others, such as EQU and SPACE, are effec-
tive only at assembly time; they generate
nothing in the assembled program and have
no effect on the Location Counter.

The following is a 1list of all the

assembler instructions.

Symbol Definition Instruction
EQU - Equate Symbol

Data Definition Instructions

DC - Define Constant

DS - Define Storage

CCW - Define Channel Command Word

* Program Sectioning and Linking Instruc-
ticns
START - Start Assembly
CSECT - Identify Control Section
DSECT - Identify Dummy Section
ENTRY - Identify Entry-Point Symbol
EXTRN - Identify External Symbol
COM - Identify Blank Common Comtrol
Section

* Base Register Instructions
USING - Use Base Address Register
"DROP - Drop Base Address Register

Listing Control Instructions
TITLE - Identify Assembly Output
EJECT - Start New Page

SPACE - Space Listing

PRINT - Print Optional Data

Program Control Instructions

ICTL - Input Format Control

ISEQ - Input Sequence Checking

ORG Set Location Counter

LTORG - Begin Literal Pool

CNOP - Conditional No Operation
COPY - Copy Predefined Source Coding
END - End Assembly

PUNCH Punch a Card

REPRO - Reproduce Following Card

* Discussed in Section 3.

SECTION 5: ASSEMBLER INSTRUCTION STATEMENTS

SYMBOL DEFINITION INSTRUCTION

EQU -- EQUATE SYMBOL

The EQU instruction is used to define a
symbol by assigning to it the attributes of
an expression in th operand field. The
format of the EQU instruction statement is
as follows:

1] T L'
| Name |Operation |Operand
1 L L

ks s i e el

T T T
|A symbol |EQU {An expression
L 1 4

The expression in the operand field may
be absolute or relocatable. Any symbols
appearing in the expression must be pre-
viously defined.

The symbol in the name field is given
the same attributes as the expression in
the operand field. The length attribute of
the symbol is that of the leftmost (or
only) term of the expression. The value
attribute of the symbol is the value of the
expression.

The EQU instruction is the means of
equating symbols to register numbers,
immediate data, and other arbitrary values.
The following examples illustrate how this
might be done:

r v i | 1
|Name |Operation |Operand |
I s 1 3
r T T 1
|REG2 |EQU |2 (general register) |
|TEST |EQU |X*3F* (immediate data) |
L A L d

To reduce programming time, the program-
mer can equate symbols to frequently used

expressions and then use the symbols as
operands in place of the expressions.
Thus, in the statement

1 T T]
| Name |Operation |Operand |
b 4 { {
| | | |
|FIELD |EQU | ALPHA-BETA+GAMMA |
L L L 3

Assembler-Instructions 37

FIELD is defined as ALPHA-BETA+GAMMA and
may be used in place of it. Note, however,
that ALPHA, BETA, and GAMMA must all be
previously defined.

DATA DEFINITION INSTRUCTIONS

There are three data definition instruc-
tion statements: Define Constant (DO) ,
Define Storage (DS), and Define Channel
Command Word (CCW).

These statements are used to enter data
constants into storage, to define and re-
serve areas of storage, and to specify the
contents of channel command words. The
statements may be named by symbols so that
other program statements can refer to the
fields generated from them. The discussion
of the DC instruction is far more extensive
than that of the DS instruction, because
the DS instruction is written in the same
format as the DC instruction and may speci-
fy some or all of the information that the
DC instruction provides. Only the function
and treatment of the statements vary. For
this reason, the DC instruction is present-
ed first and discussed in more detail than
the DS instruction.

DC -~ DEFINE CONSTANT

The DC instruction is used to provide
constant data in storage. It may specify
one constant or a series of constants,
thereby relieving the programmer of the
necessity to write a separate data defini-
tion statement for each constant desired.
Furthermore, a variety of constants may be
specified: fixed-point, floating-point,
decimal, hexadecimal, character, and stor-
age addresses. (Data constants are gener-
ally called constants unless they are
created from storage addresses, in which
case they are called address constants.)

The format of the DC instruction statement
is as follows:

r T L 1
{ Name |Operation |Operand |
L 4 1]
L) T 1 1
A symbol	DC	One or more
or blank	joperands in	
[the format	
	jdescribed	
		below, each {
		separated by
		a comma
L 1 L 3

w
[

Each operand consists of four subfields;
the first three describe the constant (some
or all may be omitted, depending on the
constant) , and the fourth subfield provides
the constant or constants. Note that more
than one constant may be specified in the
fourth subfield for most types of
constants. Each constant so specified must
be of the same type; the descriptive sub-
fields that precede the constants apply to
all of them. No blanks may occur within
any of the subfields (unless provided as
characters in a character constant), nor
may they occur between the subfields of an
operand. Similarly, blanks may not occur
between operands and the commas that sepa-
rate them when multiple operands are being
specified.

The subfields of each DC operand are
written in the following sequence:

1 2 3 4
Dupli- Type Modifiers Constant (s)
cation
Factor

Although the constants specified in one
operand must have the same characteristics,
each operand may specify different types of
constants. For example, in a DC instruc-
tion with three operands, the first operand
might specify four decimal constants, the
second a floating-point constant, and the
third a character constant.

The symbol that names the DC instruction
is the name of the constant (or first

constant if the instruction specifies more
than one) . Relative addressing (e.g.,
SYMBOL+2) may be used to address the var-

ious constants 1if more than one has been
specified, because the number of bytes
allocated to each constant can be deter-
mined.

The value attribute of the symbol naming
the DC instruction is the address of the
leftmost byte (after alignment) of the
first, or only, constant. The 1length
attribute depends on two things: the type
of constant being defined and the presence
of a length specification. Implied lengths
are assumed for the various constant types
in the absence of a length specification.
If more than one constant is defined, the
length attribute is the 1length in bytes
(specified or implied) of the first con-
stant.

Boundary alignment also varies according
to the type of constant being specified and
the presence of a length specification.
Some constant types are only aligned to a
byte boundary, but the DS instruction can
be used to force any type of word boundary
alignment for them. This is explained
under "DS -- Define Storage.,” Other con-

stants are aligned at various word boundar-
ies (half, full, or double) in the absence
of a length specification. If 1length is
specified, no boundary alignment occurs for
such constants.

Bytes that must be skipped in orxrder to
align the field at the proper boundary are
not considered to be part of the constant.
In other words, the Location <Counter is
incremented to reflect the proper boundary
(if any incrementing is necessary) before
the address value 1is established. Thus,
the symbol naming the c¢onstant will not
receive a value attribute that is the
location of a skipped byte.

Any bytes skipped in aligning statements
that do not cause information to be assem-
bled are not zeroed. Thus bytes skipped to
align a statement such as DC F'123' are
zeroed, and bytes skipped to align a state-
ment such as DS F'123" are not zeroed.

Appendix F summarizes, in chart €form,
the information concerning constants that
is presented in this section.

LITERAL DEFINITIONS: The reader is remind-
ed that the discussion of 1literals as
machine-instruction operands (in Section 2)
referred him to the description of the DC
operand for the method of writing a literal
operand. All subsequent operand specifi-
cations are applicable to writing literals,
the only differences being:

1. The 1literal is preceded by an = sign.

2. Multiple operands may not be
specified.

3. Unsigned decimal values may be used to
express the duplication factor and all
modifier values.

4. The duplication factor may not be
zero.

5. S-type address constants may not be
specified.

Examples of 1literals appear throughout
the balance of the DC instruction discus-

sion.

Operand Subfield 1: Duplication Factor

The duplication factor may be omitted.
If specified, it causes the constant (s) to
be generated the number of times indicated
by the factor. The factor may be specified
either by an unsigned decimal value or by a
positive absolute expression that is
enclosed by parentheses. The duplication
factor is applied after the constant is

address

assembled. All symbols in the expression
must be previously defined.

Note +that a duplication factor of zero
is permitted except in a 1literal and
achieves the same result as it would in a
DS instruction. See "Forcing Alignment"
under "DS -- Define Storage."

A de o o
NuLe e

If duplication is specified for an

constant containing a Location
Counter reference, the value of the Loca-
tion Counter used in each duplication is

- Py -~ +_ - 1. 1 = en de Lo
incremented by the length of the constant.

Operand Subfield 2: Type

The type subfield defines the type of
constant being specified. From the type
specification, the assembler determines how
it is to interpret the constant and trans-
late it into the appropriate machine
format. The type is specified by a single-
letter code as shown in Figure 5-1.

Further information about these
constants is provided in the discussion of
the constants themselves under "Operand
Subfield 4: Constant.”

Operand Subfieid 3: Modifiexs

Modifiers describe the length in bytes
desired for a constant (in contrast to an
implied length), and the scaling and expo-
nent for the constant. If multiple modifi-
ers are written, they must appear in this
sequence: length, scale, exponent. Each is
written and used as described in the fol-
lowing text.

LENGTH MODIFIER: This is written as Ln,
where n is either an unsigned decimal value
or an absolute expression enclosed by pa-
rentheses. Any symbols in the expression
must be previously defined. The value of n
represents the number of bytes of storage
that are assembled for the constant. The
maximum value permitted for +the 1length
modifiers supplied for the various types of
constants is summarized in Appendix F.

This table also indicates +the implied
length for each type of constant; the
implied 1length is used unless a length

modifier is present. A length modifier may
be specified for any type of constant.
However, no boundary alignment will be
provided when a length modifier is given.

Assembler-Instructions 39

4-bit code for each hexadecimal digit

Value of address; normally a full word
Value of address; normally a half word
Base register and displacement value;

symbol addresses; each
address normally a full word

r

|

| Code Type of Constant Machine Format

|

| cC Character 8-bit code for each character
| X Hexadecimal

| B Binary binary format

| F Fixed-point Signed, fixed-point binary format;
| normally a full word

| H Fixed-point Signed, fixed-point binary format;
| normally a half word

| E Floating-point Short floating-point format;
| normally a full word

| D Floating-point Long floating-point format;

| normally a double word

| P Decimal Packed decimal format

| 2 Decimal Zoned decimal format

| A Address

| ¥ Address

| s Address

| a half word

| v Address Space reserved for external

|

|

L

b s e — — — — — — — —— — —— — — — — — — —— w— ——]

Figure 5-1. Type Codes for Constants

Bit-Length Specification: The length of a
constant, in bits, is specified by L.n,
where n is specified as stated above and
represents the number of bits in storage
into which the constant is to be assembled.
The value of n may exceed eight and is
interpreted to mean an integral number of
bytes plus so many bits. For example, L.20
is interpreted as a 1length of two bytes
plus four bits.

Assembly of the first or only constant
with bit-length specification starts on a
byte boundary. The constant is placed in
the high or low order end of the field
depending on the type of constant being
specified. The constant is padded or trun-
cated to fit the field. If the assembled
length does not leave the Location Counter
set at a byte boundary, and another bit
length constant does not follow, the
remainder of the last byte used is filled
with zeros. This leaves the location
counter set at the next byte boundary.
Figure 5-2 shows a fixed-point constant
with a specified bit-length of 13, as
coded, and as it would appear in storage.
Note that the constant has been padded on
the left to bring it to its designated
13-bit length.

As coded:

In storage:

byte byte byte
padding

0001001000011000

N rm— —
579 £ill

Figure 5-2. Bit-Length Specification
(Single Constant)

The implied 1length of BLCON is two
bytes. A reference to BLCON would cause
the entire two bytes to be referenced.

When bit-length specification is used in
association with multiple constants (see
"Operand Subfield 4: Constant" following) ,
each succeeding constant in the 1list is
assembled starting at the next available
bit. Figure 5-3 illustrates this.

As coded:

1 3 T ¥
| Name |Operation |Operand
I i i

r v T
| Name { Operation|Operand
} 4

e e el s s

1) T T
|BLCON |DC [FL.13'579"
[1 1

N

T T
BLMCON |DC |FL.10'673,21,57"
1 L

40

In storage:

byte hyte byte byte
; paddin padding i
{1010100J010000010101000 11100104

e

673 21 57 £ill

Bit-Length Specifi

Figure 5-3. <
(Multiple Constants

ation
)

The symbol used as a name entry in a DC
assembler instruction takes on the length
attribute of the first constant in the
list, <therefore the implied 1length of
BILMCON in Figure 5-3 is two bytes.

If duplication is specified, £filling
occurs once at the end of the field occu-
pied by the duplicated constant (s).

When bit-length specification is used in
association with multiple coperands, assem-
bly of the constant(s) in each succeeding

operand starts at the next available bit.
Figure 5-4 illustrates this.
As coded:

r T T 1
| | Oper-| |
| Name |ation|Operand |
e S -4
|BLMOCON|DC |FL.7'9',CL.10'AB",XL.14°'C4"* |
L | i R

In storage:

byt byte byte bvte byte
adding paddi
—— r— e,
0010011100000111000000110001000
e et g A
9 I A cu £i11
A plus
first two
bits of B

Bit-Length Specification
(Multiple Operands)

Figure 5-4,

In Figure 5-4, three different types of
constants have been specified, one to an
operand. Note that the character constant
'AB' which normally would occupy 16 bits is
truncated on the right to fit the 10-bit
field designated. Note that filling occurs
only at the end of the field occupied by
all the constants.

SCALE MODIFIER: This modifier is written

as Sn, where n is either a decimal value or
an absolute expression enclosed by paren-
theses. Any symbol in the expression must
be previously defined. The decimal value
or the parenthesized expression may be
preceded by a sign; if none is present, a
plus sign is assumed. The maximum values
for scale modifiers are summarized in
Appendix F.

A scale modifier may be used with fixed-
point (F, H) and floating-point (E, D)
constants only. It is used to specify the
amount of internal scaling that is desired,
as follows.

Scale Modifier for Fixed-Point Constants:
the scale modifier specifies the power of
two by which the constant must be
multiplied after it has been converted to
its binary representation. Just as multi-
plication of a decimal number by a power of
10 causes the decimal point to move, multi-
plication of a binary number by a power of
two causes the binary point to move. This
multiplication has the effect of moving the
binary point away from its assumed position
in the binary field; the assumed position
being to the right of the rightmost posi-
tion.

Thus, the scale modifier indicates ei-
ther of the following: (1) the number of
binary positions to be occupied by the
fractional portion of the binary number, or
(2) the number of binary positions to be
deleted from the integral portion of the
binary number. A positive scale of x
shifts the integral portion of the number x
binary positions to the left, thereby re-
serving the rightmost x binary positions
for the fractional portion. A negative
scale shifts the integral portion of the
number right, thereby deleting rightmost
integral positions. If a scale modifier
does not accompany a fixed-point constant

containing a fractional part, the fraction-

al part is lost.

In all cases where positions are lost
because of scaling (or the 1lack of
scaling) , rounding occurs in the leftmost
bit of the lost portion. The rounding is
reflected in the rightmost position saved.

Scale Modifier for Floating-Point

Constants:

Only a positive scale modifier
may be used with a floating-point constant.
It indicates the number of hexadecimal
positions that the fraction is to be shift-
ed to the right. Note that this shift
amount is in terms of hexadecimal
positions, each of which is four binary
positions. (A positive scaling actually
indicates that the point is to be moved to
the 1left. However, a floating-point con-
stant is always converted to a fraction,

Assembler-Instructions

&

which is hexadecimally normalized. The
point is assumed to be at the left of the
leftmost position in the field. Since the
point cannot be moved left, the fraction is
shifted right.)

Thus, scaling that is specified for a
floating-point constant provides an assem-
bled fraction that is unnormalized, i.e.,
contains hexadecimal zeros in the leftmost
positions of the fraction. When the frac-

tion is shifted, the exponent is adjusted
accordingly to retain the correct
magnitude. When hexadecimal positions are

lost, rounding occurs in the leftmost hexa-
decimal position of the lost portion. The
rounding is reflected in the rightmost
hexadecimal position saved.

EXPONENT MODIFIER: This modifier is writ-
ten as En, where n 1is either a decimal
value or an absolute expression enclosed by
parentheses. Any symbols in the expression
must be previously defined. The decimal
value or the parenthesized expression may
be preceded by a sign; if none is present,
a plus sign is assumed. The maximum values
for exponent modifiers are summarized in
Appendix F.

An exponent modifier may be used with
fixed-point (F, H) and floating-point (E,
D) constants only. The modifier denotes
the power of 10 by which the constant is to
be multiplied before its conversion to the
proper internal format.

This modifier is not to be confused with
the exponent of the constant itself, which
is specified as part of the constant and is
explained under “Operand Subfield 4: Con-

stant." Both are denoted in the same
fashion, as En. The exponent modifier
affects each constant in the operand,

whereas the exponent written as part of the
constant only pertains to that constant.
Thus, a constant may be specified with an
exponent of +2, and an exponent modifier of
+5 may precede the constant. In effect,
the constant has an exponent of +7.

Note that there is a maximum value, both
positive and negative, listed in Appendix F
for exponents. This applies both to expo-
nent modifier and exponents specified as
part of the constant, or to their sum if
both are specified.

Operand Subfield 4: Constant

This subfield supplies the constant (or
constants) described by the subfields that
precede it. A data constant (all types
except A,Y,S,and V) is enclosed by single
qguotation marks. An address constant

42

(types A, ¥, S, and V) is enclosed by
parentheses. To specify two or more con-
stants in the subfield, the constants must
be separated by commas and the entire
sequence of constants must be enclosed by
the appropriate delimiters (i.e., single
quotation marks or parentheses). Thus, the
format for specifying the constant(s) is
one of the following:

Single Multiple

Constant Constants#*

constant" ‘constant,...,constant’
(constant) (constant, ...,constant)

* Not permitted for character, hexadecimal,
and binary constants.

All constant types except character (C),
hexadecimal (¥), binary (B), packed decimal
(P), and zoned decimal (Z), are aligned on
the proper boundary, as shown in Appendix
F, unless a length modifier is specified.
In the presence of a 1length modifier, no
boundary alignment is performed. If an
operand specifies more than one constant,
any necessary alignment applies to the
first constant only. Thus, for an operand
that provides five full-word constants, the
first would be aligned on a full-word
boundary, and the rest would automatically

fall on full-word boundaries.

The total storage requirement of an
operand is the product of the length times
the number of constants in the operand
times the duplication factor (if present)
plus any bytes skipped for boundary align-
ment of the first constant. If more than
one operand is present, the storage
requirement 1is derived by summing the
requirements for each operand.

If an address constant contains a Loca-
tion Counter reference, the Location Count-
er value that is used is the storage
address of the first byte the constant will
occupy. Thus, if several address constants
in the same instruction refer to the Loca-
tion Counter, the value of the Location
Counter varies from constant to constant.

Similarly, if a single constant is speci-
fied (@nd it is a Location Counter
reference) with a duplication factor, the

constant is duplicated with a varying Loca-
tion Counter value.

The subsequent text describes each of
the constant types and provides examples.

Character Constant -- C: Any of the valid

256 punch combinations may be designated in
a character constant. Only one character
constant may be specified per operand.
Since multiple constants within an operand
are separated by commas, an attempt to
specify two character constants would

result in interpreting the comma separating
them as a character.

Special consideraticon must be given to
representing quotation marks and ampersands
as characters. Each single quotation mark
or ampersand desired as a character in the
constant must be represented by a pair of
single guotation marks or ampersands. Only
one single quotation mark or ampersand
appears in storage.

The maximum 1length of a character con-
stant is 256 bytes. No boundary alignment
is performed. Each character is translated
into one byte. Double quotation marks or
double ampersands count as one character.
If no length modifier is given, the size in
bytes of the character constant is equal to
the number of characters in the constant.
If a 1length modifier is provided, the
result varies as follows:

1. If the number of characters in the
constant exceeds the specified length,
as many rightmost bytes as necessary
are dropped.

2. If the number of characters is less
than the specified length, the excess

rightmost bytes are filled with
blanks.
In the following example, the length

attribute of FIELD is 12:

] T T
| Name [Operation |Operand
L 1 i

b e sodirs e

1 T 1
|FIELD |DC |C'TOTAL IS 110°
L L L

However, in this next example, the
length attribute is 15, and three blanks
appear in storage to the right of the zero:

) v T 1
| Name |Operation |Operand |
} 1 1 3
L b T 1
{FIELD |DC |CL15'TOTAL IS 110' |
L 1 1 3

In the next example, the length attri-

bute of FIELD is 12, although 13 characters
appear in the operand. The two ampersands
count as only one byte.

ame Operation Operand

N
FIELD DC C'TOTAL is €§10°

e e g e
o s s, e s
o e o o s o]
VR SAp—

Note that in the next example, a length
of four has been specified, but there are
five characters in the constant.

13 T
| Name Operation |Operand
L i

S S
AP SAp—-

) T
|FIELD |DC | 3CL4 * ABCDE*
L L

The generated constant would be:

M
X

ABCDABCDABCD

On the other hand, if the length had
been specified as six instead of four, the
generated constant would have been:
ABCDE ABCDE ABCDE

Note that the same constant could be
specified as a literal.

| Operation
4

1
{mve
L

1
Name | Operand
i

P e e s oy
b e s s i)

T
| AREA (12) ,=3CL4 'ABCDE"
L

Hexadecimal Constant -- X: A hexadecimal

constant consists of one or more of the
hexadecimal digits, which are 0-9 and A-F.
Only one hexadecimal constant may be speci-
fied per operand. The maximum length of a
hexadecimal constant is 256 bytes (512
hexadecimal digits). No word boundary
alignment is performed.

Constants that contain an even number of
hexadecimal digits are translated as one
byte per pair of digits. If an odd number
of digits is specified, the leftmost byte
has the leftmost four bits filled with a
hexadecimal 2zero, while the rightmost four
bits contain the odd (first) digit.

'If no length modifier is given, the
implied 1length of the constant is half the
number of hexadecimal digits in the con-
stant (assuming that a hexadecimal zero is
added to an odd number of digits). If a
length modifier is given, the constant is
handled as follows:

1. If the number of hexadecimal digit
pairs exceeds the specified length,
the necessary leftmost bits (ands/or
bytes) are dropped.

2. If the number of hexadecimal digit
pairs is less than the specified
length, the necessary bits (and/or
bytes) are added to the left and
filled with hexadecimal zeros.

Assembler-Instructions 43

An eight-digit hexadecimal constant pro-
vides a convenient way to set the bit
pattern of a full binary word. The con-
stant in the following example would set
the first and third bytes of a word to 1s:

Al T

Name |Operation |Operand
4 1
1]

o e s . e

N

|
| DS |OF
TEST |DC |X"FFOOFFO00"
&4 1
The DS 1instruction sets the location

counter to a full word-boundary.

The next example uses a hexadecimal
constant as a literal and inserts 1s into
bits 24 through 31 of register 5.

T L T
|Name |Operation |Operand |
- [l

1
ic |5,=X"FF*
L

AS ~3 & a

In the following example, +the digit A
would be dropped, because five hexadecimal
digits are specified for a length of two
bytes:

T T L] 1
| Name | Operation |Operand |
} 4 1 4
¥ T T 1
|ALPHACON |DC | 3XL2"A6FLE" i
| | I |
L L L ;|

The resulting constant would be 6FU4E,

which would occupy the specified two bytes.
It would then be duplicated three times, as
requested by the duplication factor. If it
had merely been specified as X'A6FUE', the
resulting constant would have had a hexa-
decimal zero in the leftmost position:

OAG6FUE

Binary Constant -- B: A binary constant is
written using 1s and 0s enclosed in quota-
tion marks. Only one binary constant may
be specified in an operand. Duplication
and length may be specified. The maximum
length of a binary constant is 256 bytes.

The implied length of a binary constant
is the number of bytes occupied by the
constant including any padding necessary.
Padding or truncation takes place on the
left. The padding bit used is a O.

44

The following example shows the coding
used to designate a binary constant. BCON
would have a length attribute of one.

¥ T T
| Name |Operation |Operand
L 1 1

1

|
.3 T T) 1‘
| BCON {DC [B*11011101° i
|BTRUNC |DC [BL1*100100011" |
| BPAD |pC [BL1'101° I
t - 41 i}

BTRUNC would assemble with the 1leftmost
bit truncated, as follows:

00100011

BPAD would assemble with five zeros as
padding, as follows:

00000101

Fixed-Point Constants -- F and H: A fixed-
point constant is written as a decimal
number, which may be followed by a decimal
exponent if desired. The number may be an

integer, a fraction, or a mixed number
(i.e., one with integral and fractional
portions) . The format of the constant is

as folliows:

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number, or it may be
omitted, in which case the number is
assumed to be an integer. A positive
sign is assumed if an unsigned number
is specified. Unless a scale modifier
accompanies a mixed number or
fraction, the fractional portion is
lost, as explained under "Subfield 3:
Modifiers."

2. The exponent is optional. If
specified, it is written immediately
after the number as En, where n is an
optionally signed decimal value speci-
fying the exponent of the factor 10.
The exponent may be in the range -85
to +75. If an unsigned exponent is
specified, a plus sign is assumed.
The exponent causes the value of the
constant to be adjusted by the power
of 10 that it specifies before the
constant is converted to its binary
form.

The number is converted to its binary
equivalent and is assembled as a full-word
or half-word, depending on whether the type
is specified as F or H. It is aligned at
the proper full-word or half-word boundary
if a length is not specified. An implied
length of four bytes is assumed for a
full-word (F) and two bytes for a half-word
(H) . However, any length up to and includ-

ing eight bytes may be specified for either
type of constant by a length modifier, in
which case no boundary aligament cccurs.

Maximum and minimam values, exclusive of
scaling, for fixed-point constants are:

Length Max Min
8 263-1 -263
4 2311 -231
2 215-1 -218
1 27-1 -27

The binary number occupies the rightmost
portion of the field in which it is placed.
The unoccupied portion (i.e., the leftmost
bits) is filled with the sign. That is,
the setting of the bit designating the sign
is the setting for the bits in the unused
portion of the field. If the value of the
number exceeds the 1length, the necessary
leftmost bits are dropped. A negative
number is carried in 2s complement form.

If the rightmost portion of +the number
must be dropped as a result of scale
modifiers, rounding occurs. Any duplica-
tion factor that is present is applied
after the constant 1is converted to its
binary format and assembled into the proper
number of bytes.

A field of three full-words is generated
from the statement shown below. The loca-
tion attribute of CONWRD is the address of
the leftmost byte of the first word, and
the length attribute is four, the implied
length for a full-word fixed-point
constant. The expression CONWRD+4 could be
used to address the second constant (second
word) in the field.

~ T T
| Name |Operation |Operand
L [l i

b o et e et

H
|CONWRD |DC |3F* 658474
L L. 1

The next statement causes the generation
of a two-byte field containing a negative
constant. Notice that scaling has been
specified in order to reserve six bits for
the fractional portion of the constant.

] L) v
| Name |Operation |Operand
L 4 i

e e ol e

———1 T
|HALFCON |DC |HS6'-25.93"
L 4 4

The next constant (3.50) is multiplied
by 10 to the -2 before being converted to
its binary format. The scale modifier

reserves twelve bits for the fractional

portion.

T 1 ¥
| Name |Operation |Operand
[N i i

e

{FULLCON |DC {HS12°3.50E-2"
| 8 L L

The same constant could be specified as
a literal:

) L] T
|Name |Operation |Operand
4 J]

b s i s

T ¥
|AH (7,=HS12*3.50E-2*
4. 1

The final example specifies three con-
stants. Notice that the scale modifier
requests four bits for the fractional por-

tion of each constant. The four bits are
provided whether or not the fraction
exists.

r T . Al

| Name |Operation |Operand

L 1 -4

L S

1 T T
| THREECON |DC |FS4'10,25.3,100°
L 1 L

Floating-Point Constants -=- E and D: A

floating-point constant is written as a
decimal number, which may be followed by a
decimal exponent, if desired. The number
may be an integer, a fraction, or a mixed

number (i.e., one with integral and frac-
tional portions). The format ¢f the con-

stant is as follows:

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number, or it may be
omitted, in which case, the number is
assumed to be an integer. A positive
sign is assumed if an unsigned number
is specified.

2. The exponent is optional. If speci-
fied, it is written immediately after
the number as En, where n is an
optionally signed decimal value speci-
fying the exponent of the factor 10.
The exponent may be in the range -85
to +75. If an unsigned exponent is
specified, a plus sign is assumed.

Machine format for a floating-point num- -
ber is in two parts: the portion containing
the exponent, which is sometimes called the
characteristic, followed by the portion
containing the fraction, which is sometimes

Assembler-Instructions us

called the mantissa. Therefore, the number
specified as a floating-point constant must
be converted to a fraction before it can be
translated into the proper format. For
example, the constant 27.35E2 represents
the number 27.35 times 10 to the 2nd.
Represented as a fraction, it would be
«2735 times 10 to the 4th, the exponent
having been modified to reflect the shift-
ing of the decimal point. The exponent may
also be affected by the presence of an
exponent modifier, as explained under
"Operand Subfield 3: Modifiers." Thus, the
exponent is also altered before being
translated into machine format. Once the
constant is converted into the proper expo-
nent and fraction, each is translated into
its binary equivalent and arranged in
machine floating-point format.

The translated constant is placed in a
full word or a double word, depending on
whether the type is specified as E or D.
It is aligned at the proper word or double
word boundary if a length is not specified.
An implied length of four bytes is assumed
for a full word (E) and eight bytes is
assumed for a double word (D). However,
any length up to and including eight bytes
may be specified for either type of con-
stant by a length modifier, in which case
no poundary alignment occurs.

Within the portion of the floating-point
field allocated to the fraction, the hexa-
decimal point is assumed to be to the left
of the leftmost hexadecimal digit, and the
fraction occupies the leftmost portion of
the field. The fraction is normalized (no
leading hexadecimal zeros), unless scaling
is specified. If the rightmost portion of
the fraction must be dropped because of
length or scale modifiers, rounding will
occur. Negative fractions are carried in
true representation, not inm the 2s comple-
ment form.

Any of the following statements could be

used to specify U46.415 as a positive,
full-word, floating-point constant; the
last is a machine-instruction statement

with a literal operand. Note that the last
two constants contain an exponent modifier.

L) 1 T 1
|Name |Operation |Operand |
F ¢ $ {
| |DC |E*'46.415" |
i |DC |E*46415E-3" |
| |DC |E*+464_.15E-1" |
| | DC JE"+.46415E+2" |
| | DC |EE2*.46415" i
i |AE |6,=EE2".46415" |
L 4 4 J

The following would each be generated as
double-word floating-point constants.

4e

r T
| Name | Operand
i 4

Operation
DC

o e = — o
R Ly

L T
|FLOAT |DE+4*+46,-3.729,+473"
L L

Decimal Constants -- P and Z: A decimal

constant is written as a signed or unsigned
decimal value. If the sign is omitted, a
plus sign 1is assumed. The decimal point
may be written wherever desired or may be
omitted. Scaling and exponent modifiers
may not be specified for decimal constants.
The maximum length of a decimal constant is
16 bytes. No word boundary alignment is
performed.

The placement of a decimal point in the
definition does not affect the assembly of
the constant in any way, because, unlike
fixed-point and floating-point constants, a
decimal constant is not converted to its
binary equivalent. The fact that a decimal
constant is an integer, a fraction, or a
mixed number is not pertinent to its gener-
ation. Furthermore, the decimal point is
not assembled into the constant. The pro-
grammer may determine proper decimal point
alignment either by defining his data so
that the point is aligned or by selecting
machine-instructions that will operate on
the data properly (i.e., shift it for
purposes of alignment) .

If zoned decimal format is specified
(Z) , each decimal digit is translated into
one byte. The translation is done accord-
ing to the character set shown in Appendix
A. The rightmost byte contains the sign as
well as the rightmost digit. For packed
decimal format (P), each pair of decimal
digits is translated into one byte. The
rightmost digit and the sign are translated
into the rightmost byte. The bit configu-
ration for the digits is identical to the
configurations for the hexadecimal digits
0-9 as shown in Section 3 under
"Hexadecimal Self-Defining Value." Forx
both packed and zoned decimals, a plus sign
is translated into the hexadecimal digit C,
and a minus sign into the digit D.

If an even number of packed decimal
digits is specified, one digit will be left
unpaired, because the rightmost digit is
paired with the sign. Therefore, in the
leftmost byte, the leftmost four bits will
be set to zeros and the rightmost four bits
will contain the odd (first) digit.

If no 1length modifier is given, the
implied length for either constant is the
number of bytes the constant occupies
(taking into account the format, sign, and
possible addition of zero bits for packed
decimals) . If a length modifier is given,
the constant is handled as follows:

1. If the constant requires fewer bytes
than the length specifies, the neces-
sary number of bytes is added toc the
left. For zoned decimal format, the
decimal digit zerc is placed in each
added byte. For packed decimals, the
bits of each added byte are set to
Zero.

2. If the constant requires more bytes
than the length specifies, the neces-
sary number of leftmost digits or
pairs of digits is dropped, depending
on which format is specified.

Examples of decimal constant definitions
follow.

r T T 1
|Name |Operation |Operand |
t 1 + i
	DC	P*+1.25"
	DC	2*-5u3"*
	DC	2*79.68°
{ | pC |PL3°79.68" |
L IR L J

The following statement specifies both
packed and zoned decimal constants. The
length modifier applies to each constant in
the first operand (i.e., to each packed
decimal constant) . Note +that a 1literal
could not specify both operands.

T T
| Name |Operation |Operand i
L 4 } 4
v T T 1
|DECIMALS |DC |PL8*+25.8,~3874, |
| i [+2.3'2*+80,-3.72"* |
L L L 4

The last example illustrates the use of
a packed decimal literal.

T T
Name |Operation |[Operand
1 i

[e Sy —
e L

T T
| UNPK | OUTAREA,=PL2*+25"
A i

ADDRESS CONSTANTS: An address constant is
a storage address that is translated into a
constant. Address constants are normally
used for initializing base registers to
facilitate the addressing of storage.
Furthermore, they provide the means of
communicating between control sections of a
multisection program. However, storage
addressing and control section communi-
cation are also dependent on the use of the
USING assembler instruction and the loading
of registers. Coding examples that illus-
trate these considerations are provided in

Section 3 under "Programming with the Using
Instruction.*

An address constant, unlike other types
of constants, is enclosed in parentheses.
If two or more address constants are speci-
fied in an operand, they are separated by
commas, and the entire sequence is enclosed
by parentheses. There are four types of
address constants: A, Y, S, and V.

Complex Relocatable Expressions: A complex
relocatable expression can only be used to
specify an A-type or Y-type address con-
stant. These expressions contain two or
more unpaired relocatable terms and/or a
negative relocatable term in addition to
any absolute or paired relocatable terms
that may be present. 1In contrast to relo-
catable expressions, complex relocatable
expressions may represent negative values,
A complex relocatable expression might con-
sist of external symbols (which cannot be
paired) and designate an address in an
independent assembly that is to be 1linked
and loaded with the assembly containing the
address constant.

A-Type Address Constant: This constant is
specified as an absolute, relocatable, orx
complex relocatable expression. (Remember
that an expression may be single term or
multiterm.) The value of the expression is
calculated as explained in Section 2, with
one exception. The maximum value of the
expression may be 231-1, The implied
length of an A-type constant is four bytes,
and the value is placed in the rightmost
portion. Alignment is to a full-word
boundary, unless a length is specified. A
length modifier may be used, in which case
no alignment will occur. The 1length that
may be specified depends on the type of
expression used for the constant; a lengtl
of .1-4 bytes may be used for an absolute
expression, while a length of 3-4 bytes may
be used for a relocatable or complex relo-
catable expression.

In the following examples, the field
generated from the statement named ACONST
contains four constants, each of which
occupies four bytes. Note that there is a
Location Counter reference in one. The
value of the Location Counter will be the

address of the first byte allocated to the
fourth constant. The second statement
shows the same set of constants specified
as literals i.e., address constant
literals).

4 T T 1
| Name |Operation |Operand |
J 1 4 4
T T T 1
ACONST	DC	A (108,L0O0P,
		END=STRT, *+4096)
	LM {4,7,=A(108,L00P,	
		END-STRT, *+4096) }
L i L

&
~l

Assembler-Instructions

Note: When the Location Counter reference
occurs in a literal, as in the LM instruc-
tion above, the value of the Location
Counter is the address of the first byte of
the instruction.

Y-Type Address Constant: A Y-type address
constant has the characteristics and format
of the A-type constant discussed above
except for the following:

1. The constant is assembled as a 16-bit
value and aligned to a half-word
boundary.

2. The implied length is two bytes.

3. The maximum length of a Y-type address
constant is two bytes. If 1length
specification is used, a length of two
bytes may be designated for a reloca-
table or complex expression and .1 to
2 bytes for an absolute expression.

Warning: Specification of relocatable Y-
type address constants two or less bytes in
length should be avoided in programs
destined to be executed on machines having
more than 32,767 bytes of storage capacity.
In any case Y-type address constants should
not be used in programs to be executed
under Operating System/360 control.

S-Type Address Constant: The S-type
address constant is used to store an
address in base-displacement form.

The constant may be
ways:

specified in two

1. As an absolute or relocatable expres-
sion, e.g., S(BETA).

2. As two absolute expressions, the first
of which represents the displacement
value and the second, the base reg-
ister, e.g., S(400(13)).

The address value represented by the
expression in (1) will be broken down by
the assembler into the proper base register
and displacement value. An S-type constant
is assembled as a half word and aligned on
a half-word boundary. The leftmost four
bits of the assembled constant represents
the base register designation, the remain-
ing 12 bits the displacement value.

If length specification is used, only
two bytes may be specified. S-type address
constants may not be specified as literals.

V-Type Address Constant: This constant is
used to reserve storage for the address of
an external symbol that is used for effect-
ing branches to other programs. The con-
stant may not be used for external data
references. The constant is specified as
one relocatable symbol, which need not be
identified by an EXTRN statement. Whatever
symbol is used is assumed to be an external

48

symbol by virtue of the fact that it is
supplied in a V-type address constant.

Note that specifying a symbol as the
operand of a V-type constant does not
constitute a definition of the symbol for
this assembly. The implied 1length of a
V-type address constant is four bytes, and
boundary alignment is to a full word. A
length modifier may be used to specify a
length of either three or four bytes, in
which case no such boundary alignment
occurs. In the following example, 12 bytes
will be reserved, because there are three

symbols. The value of each assembled con-
stant will be 2zero until the program is
loaded.

) 1] k)
| Name |Operation |Operand
L 4 i

N e

L] T T
|VCONST |DC | V (SORT, MERGE, CALC)
L 4 i

DS -~ DEFINE STORAGE

The DS instruction is used to reserve
areas of storage and to assign names to
those areas. The use of this instruction
is the preferred way of symbolically defin-
ing storage for work areas, input/output
areas, etc. The size of a storage area
that can be reserved by using the DS
instruction is limited only by the maximum
value of the Location Counter.

r T
| Name peration |Operand
L i

0
+

DS |One or more op-
|erands,separated
|by commas,writ-
|ten in the for-
|mat described in
|the following
| text
i

|A symbol
Jor blank

ORI S

o e e i e, e
Y e e

The format of the DS operand is identi-
cal to that of the DC operand; exactly the
same subfields are employed and are written
in exactly the same sequence as they are in
the DC operand. Although the formats are
identical, there are two differences in the
specification of subfields. They are:

1. The specification of data (subfield 4)
is optional in a DS operand, but it is
mandatory in a DC operand.

2. The maximum length that may be speci-
fied for character (C) and hexadecimal
(X) field types is 65,535 bytes rather
than 256 bytes.

If a DS operand specifies a constant in
subfield 4, and no length is specified in
subfield 3, the assembler determines the
length of the data and reserves the
appropriate amount of storage. It does not
assemble the constant. The ability to
specify data and have the assembler calcu-
late the storage area that would be
required for such data is a convenience to
the programmer. If he knows the general
format of the data that will be placed in
the storage area during program execution,
all he needs to do is show it as the fourth
subfield in a DS operand. The assembler
then determines the correct amount of stor-
age to be reserved, thus relieving the
programmer of length considerations.

If the DS instruction is named by a
symbol, its value attribute is the location
of the leftmost byte of the reserved area.
The length attribute of the symbol is the
length (implied or explicit) of the type of
data specified. Should the DS have a
series of operands, the 1length attribute
for the symbol is developed from the first
item in the first operand. Any positioning
required for aligning the storage area to
the proper type of boundary is done before
the address value is determined. Bytes
skipped for alignment are not set to zero.

Each field type (e.g., hexadecimal,
character, floating-point) is associated
with certain characteristics (these are
summarized in Appendix F) . The associated
characteristics will determine which field-
type code the programmer selects for the DS
operand and what other information he adds,
notably a 1length specification or a
duplication factor. For example, the E
floating-point field and the F fixed-point
field both have an implied length of four

bytes. The leftmost byte is aligned to a
full-word boundary. Thus, either code
could be specified if it were desired to

reserve four bytes of storage aligned to a
full-word boundary. To obtain a length of
eight bytes, one could specify either the E
or F field type with a length modifier of
eight. However, a duplication factor would
have to be used to reserve a larger area,
because the maximum length specification
for either type is eight bytes. Note also
that specifying 1length would cancel any
special boundary alignment.

In contrast, packed and zoned decimal (P
and 2), character (C), hexadecimal (X), and
binary (B) fields have an implied length of
one byte. Any of these codes, if used,
would have to be accompanied by a 1length
modifier, wunless just one byte is to be
reserved. Although no alignment occurs,
the use of C and X field types permits
greater latitude in length specifications,
]the maximum for either type being 65,535
bytes. (Note that this differs from the

maximum for these types in a DC
instruction.) Unless a field of one byte
is desired, either the 1length must be
specified for the C, X, P, Z, or B field
types, or else the data must be specified
(as the fourth subfield), so that the

assembler can calculate the length.

To define four 10-byte fields and one
100-byte field, the respective DS state-
ments might be as foll

1011 0WS2

r T T 1
jName |jOperation |[Operand {
L i 4. i
3 T ¥ 1
|FIELD |DS j4CL10 i
|AREA |DS ICL100 |
1 L i)

Although FIELD might have been specified
as one UO0-byte field, the preceding defini-
tion has the advantage of providing FIELD
with a length attribute of 10. This would
be pertinent when using FIELD as a SS
machine-instruction operand.

Additional examples of DS statements are
shown below:

r T T
|Name |Operation|Operand
i i i

1

|
1 3 4 T ‘ll
|ONE |DS |CL80 (one 80-byte field, |
| | | length attribute of 80 |
{TWO |DS {80C (80 one-byte fields, |
| | | length attribute of onej
| THREE | DS |6F (six full words, length|
i | | attribute of four) |
|FOUR |DS |D (one double word, length]|
i | | attribute of eight) |
IFIVE IDS {41 (four half-words, |
| l | length attribute of |
| | | two) |
L L L 4
Note: A DS statement causes the storage

area to be reserved but not set to zeros.
No assumption should be made as to the
contents of the reserved area.

Special Uses of the Duplication Factox

FORCING ALIGNMENT: The Location Counter
can be forced to a double-word, full-word,
or half-word boundary by using the
appropriate field type (e.g., D, F, or H)
with a duplication factor of zero. This
method may be wused to obtain boundary
alignment that otherwise would not be pro-
vided. For example, the following state-
ments would set the Location Counter to the

Assembler-Instructions 49

next double-word boundary and then reserve
storage space for a 128-byte field (whose
leftmost byte would be on a double-word
boundary) .

T L) T 1
[Name |Operation |Operand |
t 1 1 {
| |DS | oD]
|AREA |DS |CL128 |
L 1 L J

DEFINING FIELDS OF AN AREA: A DS instruc-
tion with a duplication factor of zero can
be used to assign a name to an area of
storage without actually reserving the
area., Additional DS and/or DC instructions
may then be used to reserve the area and
assign names to fields within the area (and
generate constants if DC is used).

For example, assume that 80-character
records are to be read into an area for
processing and that each record has the
following format:

Positions 5-10
Positions 11-30
Positions 31-36
DPnci+in s q';l_—sg

PSR R EpRe) 4¢3

Positions 55-62

Payroll Number
Employee Name
Date

Gross wages

Withholding Tax

The following example illustrates how DS
instructions might be used to assign a name
to the record area, then define the fields
of the area and allocate the storage for
them. Note that the first statement names
the entire area by defining the symbol
RDAREA; the statement gives RDAREA a length
attribute of 80 bytes, but does not reserve
any storage. Similarly, the fifth state-
ment names a 6-byte area by defining the
symbol DATE; the three subsequent state-
ments actually define the fields of DATE
and allocate storage for them. The second,

ninth, and 1last statements are used for
spacing purposes and, therefore, are not
named.

I T T 1
| Name |Operation |Operand |
i 1 i F]
1) T T |
|RDAREA |DS {0CL80 {
| | DS {CLu |
{PAYNO |DS |cL6 |
| NAME |Ds | CL20 |
|DATE |DS | OCL6 [
| DAY |DS |CL2 |
|MONTH |DS |cL2 {
|YEAR |DS {CL2 |
| |DS |CL10 |
{GROSS DS jcLs i
| FEDTAX |DS {CcL8 |
| | DS |CL18 |
t L L d

50

CCW -- DEFINE CHANNEL COMMAND WORD

The CCW instruction provides a conven-
ient way to define and generate an eight-
byte channel command word aligned at a
double-word boundary. The internal machine
format of a channel command word is shown
in Table 5-1. The format of the CCW
instruction statement is:

T k] R |
| Name |Operation|Operand
L 4 4

}
|Four operands,

| separated by commas,
|specifying the con-
|tents of the channel
|command word in

|the format
|described in the
|following text

L

+
iA symbol |CCW
jor blank|

b o e o e s e, s s i, e

T

|
|
|
|
|
I
L

All four operands must appear. They are
written, from left to right, as follows:

1. An absolute expression that specifies
the command code. This expression's
value is right-justified in byte 1.

2. An absolute or relocatable expression

specifying the data address. The
value of this expression is right-
justified in bytes 2-4.

3. An absolute expression that specifies

the flags for bits 32-36 and zeros for
bits 37-39. The value of this
expression is right-justified in byte
S. (Byte 6 is set to zero.)

4. An absolute expression that specifies
the count. The value of this expres-
sion is right-justified in bytes 7-8.

The following is an example of a CCW

statement:

L3 T . k) 1
|Name |[Operation [Operand |
1 [] 4]
L} T 13 1
| |CcCwW | 2,RERDAREA,X"48",80 {
L 1 L 4

Note that the form of the third operand
sets bits 37-39 to zero, as required. The
bit pattern of this operand is as follows:

If there is a symbol in the name field
of the CCW instruction, it is assigned the
address value of the leftmost byte of the
channel command word. The length attribute
of the symbol is eight.

Table 5-1. Channel Command Word

¥ 1 1
{Byte | Bits | Usage |
=t t 4
|t] 0-7 | Command code {
|2-4 | 8-31 | Data address |
{5 | 32-36 | Flags |
| | 37-39 | Must be zero i
{6 | 40-47 | Set to zero |
17-8 | 48-63 | Count |
L 1 1 3
LISTING CONTROL INSTRUCTIONS

The 1listing control instructions are
used to identify an assembly 1listing and
assembly output cards, to provide blank
lines in an assembly listing, and to desig-
nate how much detail is to be included in
an assembly listing. In no case are
instructions or constants generated in the
object program.

TITLE -— IDENTIFY ASSEMBLY OUTPUT

The TITLE instruction enables the pro-
grammer to identify the assembly listing
and assembly output cards. The format of
the TITLE instruction statement is as fol-
lows:

|
L 1

13 v L) 1
|Name |Operation |Operand]
L 3 J d
r T - 1
|Name |TITLE |A sequence of char- |
| or | |acte enclosed in |
i bilank i | b.l.ng e q‘\ic tation =

|

J

|marks
L

The name field may contain a name of

from one to four alphabetic or numeric
characters in any combination. The con-
tents of the name field are punched into

columns 73-76 of all the output caxrds for
the program except those produced by the
PUNCH and REPRO assembler instructions.
Only the first TITLE statement in a program
may have a name in the name field. The
name field of all subsequent TITLE state-
ments must be blank.

The operand field may contain up to 100
characters enclosed in single quotation
marks. The contents of the operand field
are printed at the top of each page of the
assembly listing.

A program may contain more than one
TITLE statement. Each TITLE statement pro-

vides the heading for pages in the assembly
listing that follow it, until another TITLE
statement is encountered. Additionally,
the first TITLE statement in a program
provides the heading for pages of the
assembly listing that precede it. Each
TITLE statement encountered after the first
one causes the listing to be advanced to a
new page (before the heading is printed).
For example, if the f£fo

11r\1 1
is the first TITLE statement to

VaasaTw

neo statement

59 cement

appear in a

program:

L k] . h |

|Name |Operation |Operand

L 1 i

1] T T

{PGM1 |TITLE | *"FIRST HEADING' |
L L i ¥ |

then PGM1 is punched into all of the output

cards (columns 73-76) and this heading
appears at the top of each page: FIRST
HEADING.

If the following statement occurs later
in the same program:

T
Name |Operation |Operand
4

'A NEW HEADING'

(= ey —
TP S——
R p——

1
| TITLE
L

then, PGM1 is still punched into the output
cards, but each following page begins with
the heading: A NEW HEADING.

| Note:

ANO L

The sequence number of the cards in
the output deck is contained in columns
77-80.

EJECT -- START NEW PAGE

The EJECT instruction causes the next
line of the listing to appear at the top of
a new page. This instruction provides a
convenient way to separate routines in the

program listing. The format of <the EJECT
instruction statement is as follows:

I T T 1
| Name |Operation |Operand |
L L i 4
) T 1 1
|Blank |EJECT |Not used; should be |
| | {blank |
L L 4 J

Assembler-Instructions 51

If the next line of the listing normally
appears at the top of a new page, the EJECT
statement has no effect. Two EJECT state-
ments may be used in succession to obtain a
completely blank page.

SPACE -- SPACE LISTING

The SPACE instruction is used to insert
one or more blank 1lines in the listing.
The format of the SPACE instruction state-
ment is as follows:

DATA - Constants are printed out in
full in the listing.
NODATA - Only the first eight bytes (16

hexadecimal digits) or the first
constant, whichever is shorter,
of the assembled data is printed
on the listing.

A program may contain any number of
PRINT statements. A PRINT statement con-
trols the printing of the assembly listing
until another PRINT statement is encoun-
tered.

Until the first PRINT statement (if any)
is encountered, the following is assumed:

T T T 1

| Name |Operation |Operand | r T T 1
} + + 4 |Name |Operation |Operand |
|Blank |SPACE |A decimal value | b } 4 |
i | |or blank [| | PRINT | ON, NODATA , GEN |
L L 4 4 L L L J

A decimal value is used to specify the
number of blank lines to be inserted in the
assembly listing. A blank operand causes
one blank 1line to be inserted. If this
value exceeds the number of lines remaining
on the listing page, the statement will
have the same effect as an EJECT statement.

PRINT -- PRINT OPTIONAL DATA

The PRINT instruction is used to control
printing of the assembly listing. The
format of the PRINT instruction statement
is:

L} T L)
| Name [Operation |Operand
L 4 i

—— b, e <)

T
|One to three operands

3 T
|Blank |[PRINT
t 4 L ¥

One to three of the following operands

are used:

ON - A listing is printed.

OFF - No listing is printed.

GEN - All statements generated by
macro-instructions are printed.

NOGEN - Statements generated by macro-
instructions are not printed.
However, the macro-instruction
itself will appear in the
listing.

52

For example, if the statement:

r T T 1
|Name |Operation [Operand !
t t i 1
| |DC |XL256°00° }
1 L L J
appears in a program, 256 bytes of zeros

are assembled. If the statement:

1 L]
Name |Operation |Operand
i 4o

o e g, e oy
e S

T T
| PRINT | DATA
1 L

is the last PRINT statement to appear
before the DC statement, all 256 bytes of
zeros are printed in the assembly listing.
However, if:

Ll L)
Name |[Operation |[Operand
i i

= o e
e e e e d

T L
| PRINT | NODATA
1 i

is the last PRINT statement to appear
before the DC statement, only eight bytes
of zeros are printed in the assembly list-
ing.

Whenever an operand is omitted, it is
assumed to be unchanged and continues
according to its last specification.

PROGRAM CONTROL_INSTRUCTIONS

The program control instructions are
used to specify the end of an assembly, to
set the Location Counter to a value or word
boundary, to insert previously written cod-
ing in the program, to specify the place-
ment of literals in storage, to check the
sequence of input cards, to indicate state-
ment format, and to punch a card. Except
for the CNOP and COPY instructions, none of

these assembler instructions generate
instructions or constants in the object
program.,

ICTL -- INPUT FORMAT CONTROL

The ICTL instruction allows the program-
mer to alter the normal format of his
source program statements. The ICTL state-
ment must precede all other statements in
the source program and may be used only
once. The format of the ICTL instruction
statement is as follows:

v T 1 1
| Name |Operation |Operand i
i [l i 4
L] T T 1
{Blank {ICTL | 1-3 decimal values of}
| | |the form b,e,c, |
L — L]

Operand b specifies the begin column of
the source statement. It must always be

specified, and must be from 1-40,
inclusive. Operand e specifies the end
column of the source statement. The end

column, when specified, must be from 41-80,
inclusive; when not specified, it is
assumed to be 71. The column after the end
column is used to indicate whether the next
card - is a continuation card. Operand c
specifies the continue column of the source
statement. The continue column, when spec-
ified, must be from 2-40 and must be
greater than b. If the continue column is
not specified, or if column 80 is specified
as the end column, the assembler assumes
that there are no continuation cards, and
all statements must be contained on a
single card.

If no ICTL statement is wused in the
source program, the assembler assumes that
1, 71, and 16 are the begin, end, and
continue columns, respectively.

The next example designates the begin
column as column 25. Since the end column
is not specified, it 1is assumed to be
column 71. No continuation cards are rec-

ognized because the continue column is not
specified.

3 R} ¥ 1
|Name |Operation |Operand |
L. 4 i d
U T T 1
i | ICTL |25 |
L L L J
ISEQ -- INPUT SEQUENCE CHECKING

The ISEQ instruction is used to check

The format of
as fol-

the sequence of input cards.
the ISEQ instruction statement is
lows:

-

Lg 1
| Name |Operation |Operand
} 4

T T
Blank| ISEQ | Two decimal values of

| {the form 1,r; or blank
1 L

s =
b o e e e

The operands 1 and r, respectively,
specify the leftmost and rightmost columns
of the field in the input cards to be
checked. Operand r must be equal to or
greater than operand 1. Columns to be
checked must not be between the "begin®" and
"end" columns.

Sequence checking begins with the first
card following the ISEQ statement. Compar-
ison of adjacent cards makes use of the
eight-bit internal collating sequence.

An ISEQ statement with a blank operand
terminates the operation. Checking may be
resumed with another ISEQ statement.

Sequence checking is only performed on
statements contained in the source program.
Statements inserted by the COPY assembler-
instruction or generated by a macro-
instruction are not checked for sequence.

PUNCH -- PUNCH A CARD

The PUNCH assembler-instruction causes
the data in the operand to be punched into
a card. One PUNCH statement produces one
punched card. As many PUNCH statements may
be used as are necessary. The format is:

Assembler-Instructions 53

T T T 1 1 T L) 1
| Name |Operation |Operand [| Name |Operation |Operand |
[4+ 4 4 L i 4 4
r T T 1 1} T T 1
|Blank |PUNCH | *"PUNCH A CARD' | |Blank |ORG |A relocatable ex- |
L -—-41 + 4 | | |pression or blank |

L L 1 d

Using character representation, the

operand is written as a string of up to 80 Bny symbols in the expression must have
characters enclosed in single quotation been previously defined. The unpaired
marks. All characters, including blank, relocatable symbol must be defined in the

are valid. The position immediately to the
right of the left quotation mark is regard-
ed as column one of the card to be punched.
The assembly program does not process the
data in the operand of a PUNCH statement
other than causing it to be punched in a
card.

If used, PUNCH statements must precede
all statements composing the first or only
control section of the program. The output
cards produced by PUNCH precede all other
cards in the object program card deck.

REPRO -- REPRODUCE FOLLOWING CARD

The REPRO assembler-instruction causes
data on the following statement line to be
punched into a card. The data is not
processed other than causing it to be
punched in a card. One REPRO instruction
produces one punched card. The REPRO
instruction may appear at any point in the
programe. REPRO statements that occur
before all statements composing the first
or only control section will punch cards
which precede the ESD cards of the object
deck. The format is:

r T L}
| Name | Operation |Operand
H 4 4

b s e e wd

v T T
|[Blank |REPRO | Blank
L 1 L

The line to be reproduced may contain
any combination of up to 80 valid charac-
ters. Characters may be entered starting
in column 1 and continue through column 80
of the line. Column 1 of the line corres-
ponds to column 1 of the card to be
punched.

ORG -~ SET LOCATION COUNTER

The ORG instruction is used to alter the
setting of the Location Counter for the
current control section. The format of the
ORG instruction statement is:

54

same control section in which the ORG

statement appears.

The Location Counter is set to the value
of the expression in the operand. If the
operand is omitted, the Location Counter is
set to a location that is one byte higher
than the maximum location assigned for the
control section up to this point.

An ORG statement must not be used to
specify a location below the beginning of
the control section in which it appears.
For example, the statement:

r T T
|Name |Operation |Operand
[N 4 $

e st el s sl

= = =

T T
| ORG | #-500
i 4

is invalid if it appears 1less than 500
bytes from the beginning of the current
control section.

If it is desired to reset the Location
Counter to a value that is one byte beyond
the highest location yet assigned (in the
control section), the following statement
would be used:

T
Name [Operation perand
1

- oy o
P—#’-E-i

T
| ORG
L

e

If previous ORG statements have reduced
the Location Counter for the purpose of
redefining a portion of the current control
section, an ORG statement with an omitted
operand can then be used to terminate the
effects of such statements and restore the
Location Counter to its highest setting
plus one.

LTORG ~-- BEGIN LITERAL POOL

The LTORG instruction causes all liter-
als thus far encountered in the source
program to be assembled at appropriate
boundaries starting at the first double-

LTORG
LTORG

word boundary following the
statement. The format of the
instruction statement is:

o 1

Name Operation |Operand |
4

1

Symbol | LTORG | Not used |
or i i
| blank | i
L L 1 J

The symbol represents the address of the
first byte of the literal pool. It has a
length attribute of one.

Special Addressing Consideration

Any literals used after the last LTORG
statement in a program are placed at the
end of the first control section. If there
are no LTORG statements in a program, all
literals used in the program are placed at
the end of the first control section. In
these circumstances the programmer must
ensure that the first control section is
always addressable. This means that the
base address register for the first control
section should not be changed through usage
in subsequent control sectioms. If the
programmer does not wish to reserve a
register for this purpose he may place a
LTORG statement at the end of each controel
section thereby ensuring that all 1literals
appearing in that section are addressable.

Duplicate Literals

If duplicate literals occur within the
range controlled by one LTORG statement,
only one literal is stored. Literals are
considered duplicates only if their speci-
fications are identical. A literal will be
stored, even if it appears to duplicate
another literal, if it is an A-type address
constant containing any reference to the
Location Counter.

The following examples illustrate how
the assembler stores pairs of literals, if
the placement of each pair is controlled by
the same LTORG statement.

X'FO°
Both are stored
c*oe

Both are stored

Both are stored

Identical; the first is stored

CNOP -~ CONDITIONAL NO OPERATION

The CNOP instruction allows the program-
mer to align an instruction at a specific
word Dboundary. If any bytes must be
skipped in order to align the instruction
properly, the assembler insures an unbroken
instruction flow by generating no-operation
instructions. This facility is useful in
creating calling seguences consisting of a
linkage tc a subroutine followed by parame-
ters such as channel command words (CCW) .

The CNOP instruction insures the align-
ment of the Location Counter setting to a
half-word, word, or double-word boundary.
If the Location Counter is already properly
aligned, the CNOP instruction has no
effect. If the specified alignment
requires the Location Counter to be incre-
mented, one to three no-operation instruc-
tions are generated, each of which uses two
bytes.

The format of the CNOP instruction
statement is as follows:
r T . L3 1
| Name |Operation |Operand |
[X 4 1 ___4‘
13 T T
|Blank |CNOP |Two absolute |
i i |expressions of {
i | |the form b,w |
L L 1 4
Any symbels used in the expressions in

the operand field must have been previously
defined.

Operand b specifies at which byte in a
word or double word the Location Counter is
to be set; b can be 0, 2, 4, or 6. Operand
w specifies whether byte b is in a word
(w=4) or double word (w=8). The following
pairs of b and w are valiad:

Assembler-Instructions 55

Double Word

f 1

| |

i J

T T 1

| Word | Word |

N 4 4

T T T T 1

| Half word | Half word | Half word | Half word |

¢ + T + T 1 T 1

| Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte]

% L 1 i 1 L L _=

j0,4 2,4 o,u 2,4 |

10,8 2,8 4,8 6,8 |

L 4

Figure 5-5. CNOP Alignment

b,w Specifies r T T 1
|Name |Operation |Operand |
L 4 4 J
1] T L] 1

0,4 Beginning of a word | | BCR 10,0 |

2,4 Middle of a word | | BCR 10,0 |

0,8 Beginning of a double word | | BCR 10,0 |

2,8 Second half word of a double word i | BALR 12,14 |

4,8 Middle (third half word) of a dou- L 1 1 3

ble word
6,8 Fourth half word of a double word
Figure 5-5 shows the position in a After the BALR instruction is generated,

double word that each of these pairs speci-
fies. Note that both 0,4 and 2,4 specify
two locations in a double word.

Assume that the Location Counter is
currently aligned at a double-word
boundary. Then the CNOP instruction in
this sequence:

L L) . 1 1
|Name |Operation |Operand |
t + t 4
| | cNoOP {0,8 |
| | BALR 12,14 |
L 4 L J

has no effect; it is merely printed in the
assembly listing. However, this sequence:

L LE T 1
|Name |Operation [Operand |
p—- t {
| | CNOP 16,8 |
| | BALR {2,14 |
L 4 1 J
causes three branch-on-conditions
(no-operations) to be generated, thus

aligning the BALR instruction at the last
half-word in a double word as follows:

56

double-word
unbroken

the Location Counter is at a
boundary, thereby insuring an
instruction flow.

COPY -- COPY PREDEFINED SOURCE CODING

The COPY instruction obtains source-
language coding from a library and includes

it in the program currently being
assembled. The format of the COPY
instruction statement is as follows:
r L . T b |
| Name |Operation |Operand |
L 4 1 4
v T T 1
|Blank |COPY |One symbol |
L L 4L J
The operand is a symbol that identifies

the section of coding to be copied.

The assembler inserts the requested cod-
ing immediately after the COPY statement
ment is encountered. The requested coding
may not contain another COPY statement.

If identical COPY statements are encoun-
tered, the coding they request is brought
into the program each time.

END -- END ASSEMBLY

instruction terminates the
assembly of a program. It may also desig-
nate a point in the program or in a
separately assembled program to which con-
trol may be transferred after the program

The END

The operand specifies the point to which
control is transferred when 1loading is
complete. This point is usually the first
machine-instruction in the program, as
shown in the following sequence.

is loaded. The END instruction must always r T T N
be the last statement in the source | Name | Operation |Operand |
program. ¢ ! 4 1
|NAME |CSECT i i

The format of the END instruction state- |AREA | DS |50F |
ment is as follows: | BEGIN |BALR 12,0 |
- - i {1 USING 1,2 !

1} L . T a] L LI i
| Name |Operation |Operand | | | . | |
5 t t 1 | | - I I
|Blank |END |A relocatable ex- | | | - | |
| | |pression or blank | i | END | BEGIN |
L 4 L J L L i 4

Assembler-Instructions 57

PART II

-- THE MACRO LANGUAGE

SECTION

SECTION

SECTION

SECTION

SECTION

(=2}
.

10:

INTRODUCTION TO THE MACRO LANGUAGE

HOW TO PREPARE MACRO-DEFINITIONS

HOW TO WRITE MACRO-INSTRUCTIONS

HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS

EXTENDED FEATURES OF THE MACRO LANGUAGE

59

The Operating System/360 macro language
is an extension of the Operating System/360
assembler language.

The macro language provides the program—
mer with a convenient way to write a
definition that can be used to generate a
desired sequence of assembler language
statements many times in one Or mOre Pro—
grams.

The definition is written only once, and
a single statement, a macro-instruction
statement, is written each time a program-
mer wants to generate the desired sequence
of assembler language statements.

This facility simplifies the coding of
programs, reduces the chance of committing
programming errors, and ensures that stand-
ard sequences of assembler language state-
ments are used to accomplish desired func-
tions.

An additional facility, called condi-
tional assembly, allows one to specify
assembler language statements which may or
may not be assembled, depending upon condi-
tions evaluated at assembly time. These
conditions are usually tests of values,
which may be dJdefined, set, changed, and
tested during the course of the assembly
itself. The conditional assembly facility
may be used without using macro-instruction
statements.

THE MACRO-INSTRUCTION STATEMENT

A macro-instruction statement
(hereinafter called a macro-instruction) is
a source program statement that is proc-
essed by the assembler, just as assembler
language statements are source program
statements that are processed by the assem-
bler.

The assembler generates a sequence of
assembler language statements for each
occurrence of the same macro-instruction.
The generated statements are then processed
like any other assembler language
statement.

Three types of macro-instructions may be
written. They are: positional, keyword,
and mixed-mode macro-instructions.

Positional macro-instructions permit the
programmer to write the operands of a

SECTION 6:

INTRODUCTION TO THE MACRO LANGUAGE

macro-instruction in a fixed order. Key-
word macro-instructions permit the program-
mer to write the operands of a macro-
instruction in a variable order. Mixed-
mode macro-instructions permit the
programmer to use the features of both
positional and keyword macro-instructions
in the same macro-instruction.

THE MACRO-DEFINITION

Before a macro-instruction can be assem-
bled, a macro-definition must be available
to the assembler.

A macro-definition is a set of state-
ments that provides the assembler with: (1)
the mnemonic operation code and the format
of the macro-instruction, and (2) the
sequence of statements the assembler gener-
ates when the macro-instruction appears in
the source program.

Every macro-definition consists of a
macro-definition header statement, a macro-
instruction prototype statement, one or
more model statements, COPY statements,
MEXIT, MNOTE, or conditional assembly
instructions, and a macro-definition trail-
er statement.

The macro-definition header and trailer
+hao ascemhlear +he

il SosCivacL vilic

respectively, of a

statements indicate to
beginning and end,
macro-definition.

The macro-instruction prototype state-
ment specifies the mnemonic operation code
and the format of the macro-instruction.

The model statements are wused by the
assembler to generate the assembler lan-
guage statements that replace each occur-
rence of the macro-instruction.

The COPY statements may be used to copy
model statements, MEXIT, MNOTE or condi-
tional assembly instructions from a system
library into a macro-definition.

The MEXIT instruction can be used to
terminate processing of a macro-definition.

The MNOTE instruction can be used to
generate an error message when the rules
for writing a particular macro-instruction
are violated.

Introduction to the Macro Language 61

The conditional assembly instructions

may be used to vary the sequence of state-
ments generated for each occurrence of a
macro-instruction. Conditional assembly

instructions may also be used outside
macro—-definitions, i.e., among the assem-
bler language statements in the program.

THE _MACRO LIBRARY

The same macro-definition may be made
available to more than one source program
by placing the macro-definition in the
macro library. The macro 1library is a
collection of macro-definitions that can be
used by all the assembler language programs
in an installation. Once a macro-
definition has been placed in the macro
library it may be used by writing its
corresponding macro-instruction in a source
program. The procedure for placing macro-
definitions in the macro 1library is
described in the data management publica-
tion.

SYSTEM MACRO-INSTRUCTIONS

The macro-instructions that correspond
to macro-definitions prepared by IBM are
called system macro-instructions. System
macro-instructions are described in the
control program services publication.

VARYING THE GENERATED STATEMENTS

Each time a macro-instruction appears in
the source program it is replaced by the
same Sequence of assembler language state-
ments, unless one oOr more conditional
assembly instructions appear in the macro-
definition. Conditional assembly
instructions are used +to vary the number
and format of the generated statements.

VARIABLE SYMBOLS

A variable symbol is a type of symbol
that is assigned different values by either
the programmer or the assembler. Thus,
variable symbols allow different values to
be assigned to one symbol. When the assem-
bler uses a macro-definition to determine
what statements are to replace a macro-
instruction, variable symbols in the model
statements are replaced with the values
assigned to them. By changing the values

62

assigned to variable symbols the programmer
has the ability to vary parts of the
generated statements.

A variable symbol 1is written as an
ampersand followed by from one through
seven letters and/or digits, the first of
which must be a letter. Elsewhere, two
ampersands must be used to represent an
ampersand.

Types of Variable Symbols

There are three types of variable
symbols: symbolic parameters, system vari-
able symbols, and SET symbols. The SET
symbols are further broken down into SETA
symbols, SETB symbols, and SETC symbols.
The three types of variable symbols differ
in the way they are assigned values.

Assigning Values to Variable Symbols

Symbolic parameters are assigned values
by the programmer each time he writes a
macro-instruction.

System variable symbols are assigned
values by the assembler each time it proc-
esses a macro-instruction.

SET symbols are assigned values by the

programmer by means of conditional assembly
instructions.

Global SET Symbols

The values assigned to SET symbols in
one macro-definition may be used to vary
the statements that appear in other macro-
definitions. All SET symbols used for this
purpose must be defined by the programmer
as global SET symbols. All other SET
symbols (i.e., those which may be used to
vary statements that appear in the same
macro-definition) must be defined by the
programmer as local SET symbols. Local SET

symbols and the other variable symbols
(that is, symbolic parameters and system
variable symbols) are local variable
symbols. Global SET symbols are global

variable symbols.

ORGANIZATION OF THIS PART OF THE
PUBLICATION

Sections 7 and 8 describe the basic
rules for preparing macro-definitions and
for writing macro-instructions.

Section 9 describes the rules for writ-
ing conditional assembly instructicns.

Section 10 describes additional features
of the macro language, including rules for
defining global SET symbols, preparing key-

word and mixed-mode macro-definitions, and
writing keyword and mixed-mode macro-
instructions.

Appendix G contains a reference summary
of the entire macro language.

Examples of the use of all of the
features of the language appear throughout
the remainder of the publication. These

avamnlaa +he use of varticular

T 11Tnatvrada
SXalpicsS daausSTIQTe <l \UST O particu

features. However, they are not meant to
show the full versatility of these
features.

Introduction to the Macro Language 63

SECTION 7: HOW TO PREPARE MACRO-DEFINITIONS

A macro-definition consists of:

1. A macro-definition header statement.
2. A macro-instruction prototype state-

ment.
3. One or more model statements, COPY
statements, MEXIT, MNOTE, or

conditional assembly instxuctions.
4. A macro-definition trailer statement.

Except for MEXIT, MNOTE, and conditional
assembly instructions, this section of the
publication describes all of the statements
that may be used to prepare macro-
definitions. Conditional assembly
instructions are described in Section 9.
MEXIT and MNOTE instructions are described
in Section 10.

Macro-definitions appearing in a source
program must appear before all PUNCH and
REPRO statements and all statements which
pertain to the first control section.
Specifically, only the 1listing control
instructions (EJECT, PRINT, SPACE, and
TITLEj, ICTL and ISEQ instructions, and
comments statements may occur before the
macro-definitions. All but the ICTL
instruction may appear between macro-
definitions if there is more than one
definition in the source program.

MACRO -- MACRO-DEFINITION HEADER

The macro-definition header statement
indicates the beginning of a macro-
definition. It must be the first statement
in every macro-definition. The format of
this statement is:

r T T
| Name |Operation |Operand
L 1 4+

O

¥ T T
|Blank |MACRO | Blank
L i 1

MEND =-- MACRO-DEFINITION TRAILER

The macro-definition trailer statement
indicates the end of a macro-definition.
It must be the 1last statement in every
macro-definition. The format of this
statement is:

64

r ¥ T
| Name |Operation |Operand
i R 4

+
|Blank
1

S e .

t 1
|Blank |MEND
L L

MACRO-INSTRUCTION PROTOTYPE

The macro-instruction prototype state-
ment (hereinafter called the prototype
statement) specifies the mnemonic operation
code and the format of all macro-
instructions that refer to the macro-
definition. It must be the second state-
ment of every macro-definition. The format
of this statement is:

T T
Name | Operation |Operand
i i

+
|A symbol

-

+
| Zero or more sym-
| bolic parameters,
| separated by com-

|mas
1

|A symbolic
| parameter
|or blank |
I |

1

L

e

The symbolic parameters are used in the
macro-definition to represent the name
field and operands of the corresponding
macro-instruction. A complete description
of symbolic parameters appears under "Model
Statements."

The name field of the prototype state-
ment may be blank or it may contain a
symbolic parameter.

The symbol in the operation field is the
mnemonic operation code that must appear in
all macro-instructions that refer to this
macro-definition. The mnemonic operation
code must not be the same as the mnemonic
operation code of another macro-definition
in the source program or of a machine
instruction or assembler instruction.

The operand field may contain zero or
more symbolic parameters separated by
commas.

The following is a prototype statement.

t T T T1
| Name |Oper-|Operand Comments| |
{ |ation| I |
r T Y 1 b + +-1
| Name |Operation |Operand | | NAME1 joP1 |OPERAND1 OPERAND2 ,OPERAN| X |
b + —_—4 4 | | |D3, THIS IS THE NORMAL iXj
| SNAME |MOVE | §TO, §FROM | | | | STATEMENT FORMAT I
L . L 4 ¢ + + +-1
| NAME2 |OP2 |OPERAND1, THIS IS THE AL|X|
| | | OPERAND2, OPERAND3, TERNA|X|
i i | TE STATEMENT VORMPm !
| + + +-4
|{NAME3 |OP3 |OPERAND1, THIS IS A COMB|X|
| i | OPERAND2, OPERAND3, OPERAN| X |
Statement Format j i {D4 ,OPERANDS INATION OF |X|
| | |BOTH STATEMENT FORMATS | |
L 1 L1
The prototype statement may be written
in a format different from that used for
assembler language statements. The normal
format is described in Part I of this
publication. The alternate format describ-
ed here allows the programmer to write an
operand on each line, and allows the inter- MODEL_STATEMENTS
spersing of operands and comments in the
statement.
Model statements are the macro-
definition statements from which the
In the alternate format, as in the desired sequences of assembler language
normal format, the name and operation statements are generated. One or more

fields must appear on the first line of the
statement, and at least one blank must
follow the operation field on that line.
Both types of statement formats may be used
in the same prototype statement.

The rules for using the alternate state-
ment format are:

1. If an operand is followed by a comma
and a blank, and the column after the

A —
end column contains a nonblank charac

ter, the operand field may be contin-
ued on the next line starting in the
continue column. More than one oper-
and may appear on the same line.

2. Comments may appear after the blank
that indicates the end of an operand,
up to and including the end column.

3. If the next 1line starts after the
continue column, the information
entered on the next line is considered
to be comments, and the operand field
is considered terminated. Any subse-
quent continuation lines are consid-
ered to contain only comments.

Note: A prototype statement may be written
on as many continuation lines as there are
operands.

The following examples illustrate: (1)
the normal statement format, (2) the alterxr-
nate statement format, and (3) the combina-
tion of both statement formats.

model statements may follow the prototype
statement. A model statement consists of
one to four fields. They are, from left to
right, the name, operation, operand, and
comments fields.

The name field may be blank, or it may
contain a symbol or symbolic parameter.

The operation field may contain any
machine or assembler instruction mnemonic
operation code, except COPY, END, ICTL,
ISEQ, PRINT, and START; or it may contain a
symbolic parameter. Variable symbols may
not be used to generate the following
mnemonic operation codes, nor may variable
symbols be used in the name and operand
fields of these instructions: COPY, END,
ICTL, ISEQ, PRINT, REPRO, and START. Vari-
able symbols may not be used to generate a
macro-instruction mnemonic operation code.
Although COPY statements may not be used as
model statements, they may be part of a
macro-definition. The use of COPY state-
ments is described under ®"COPY Statements."

The operand field may contain symbols,
symbolic parameters, or other combinations
of characters.

The comments field may contain any com-
bination of characters.

If a REPRO statement is used as a model

statement, the 1line following it must not
contain symbolic parameters.

How to Prepare Macro-Definitions 65

SYMBOLIC PARAMETERS

A symbolic parameter is a type of varia-
ble symbol that is assigned values by the
programmer when he writes a macro-
instruction. The programmer may vary
statements that are generated for each
occurrence of a macro-instruction by vary-
ing the values assigned to symbolic param-
eters.

A symbolic parameter consists of an
ampersand followed by from omne through
seven letters and/or digits, the first of
which must be a letter. Elsewhere, two
ampersands must be used to represent an
ampersand.

should not use §SYS as
of a symbolic

The programmer
the first four characters
parameter.

The following are valid symbolic param-
eters:

EREADER § LOOP2
€A23456 &N
EXUF2 &§S4

The following are invalid

rameters:

symbolic pa-

CARDAREA (first character is not an
ampersand)

(first character after
ampersand is not a
letter)

(more than seven characters
after the ampersand)

(contains a special charac-
ter other than initial
ampersand)

{contains a special charac-
ter, i.e., blank, other
than initial ampersand)

£§256B

EAREA2456

§BCDX%34

§IN AREA

Any symbolic parameters in a model
statement must appear in the prototype
statement of the macro-definition.

The following is an example of a macro-
definition. Note that the symbolic
parameters in the model statements appear
in the prototype statement.

) T 1 1
| Name |Operation |Operand |
b t t {
Header { | MACRO | |
Prototype|§NAME |MOVE | §TO, §FROM |
Model {§NAME |ST |2,SAVE |
Model i L |2, §FROM |
Model i |ST |2,6T0 i
Model | IL |2,SAVE |
Trailer | | MEND | |
L J L J

66

Symbolic parameters in model statements
are replaced by the characters of the
macro-instruction that correspond to the
symbolic parameters.

In the following example the characters
HERE, FIELDA, and FIELDB of the MOVE macro-
instruction correspond to the symbolic
parameters &§NAME, &TO, and &FROM, respec-
tively, of the MOVE prototype statement.

L]] T
|Name |Operation |Operand
R 1 [

S e

v T T
|HERE |MOVE |FIELDA,FIELDB
L AL XL

Any occurrence of the symbolic parame-
ters ENAME, &TO, and &FROM in a model
statement will be replaced by the charac-
ters HERE, FIELDA, and FIELDB,
respectively. If the preceding macro-
instruction was used in a source program,
the following assembler language statements
would be generated:

r T . T 1
!Name 10perat10n lOperand j
T [] T

|HERE |ST |2, SAVE |
| L {2,FIELDB |
| |sT |2,FIELDA |
I |L |2, SAVE |
L L L 4

The example below illustrates another
use of the MOVE macro-instruction using
different operands than those that' appear
in the preceding example.

¥ T T
| Name | Operation |Operand
L (] 1

1

|

J

L) T T 1

Macro |LABEL |MOVE | IN,OUT |
= t + i
Generated |[LABEL |ST | 2,SAVE |
Generated | | L {2,00T |
Generated| | sT |2,IN |
Generated| |L |2,SAVE |
L L L 4

1f a symbolic parameter appears in the
comments field of a model statement, it is
not replaced by the corresponding
characters of the macro-instruction.

Concatenating Symbolic Parameters with
Other Characters or Other Symbolic
Parameters

If a symbolic parameter in a model
statement is immediately preceded or fol-
lowed by other characters or another sym—
bolic parameter, the characters that cor-
respond to the symbolic parameter are com-
bined, in the generated statement, with the
other characters or the characters that
correspond to the other symbolic parameter.
This process is called concatenation.

The macro-definition, macro-instruction,
and generated statements in the following
example illustrate these rules.

T T
Name |Operation|Operand
4 $

e oy

1

|

4 } i

Header | | MACRO |
Prototype| §NAME |MOVE | 6TY, &P, 6§TO, §FROM|
Model | ENAME | STETY | 2, SAVEAREA |
Model | | LeTY |2, §PEFROM |
Model | | STETY |2, 8PETO i
Model | |L&TY | 2, SAVEAREA i
Trailer | | MEND | |
b=t ¥ {

Macro | HERE |MOVE |p,FIELD,A,B |
L 4 I 4

1] T T 1
Generated|HERE |STD |2, SAVEAREA |
Generated| |LD |2,FIELDB |
Generated] |STD |2,FIELDA |
Generated| |L.D | 2, SAVEAREA |
L L. i]

The symbolic parameter §TY 1is used in
each of the four model statements to vary
the mnemonic operation code of each of the
generated statements. The character D in
the macro-instruction corresponds to sym-
bolic parameter &TY. Since &TY is preceded
by other characters (i.e., ST and L) in the
model statements, the character that cor-
responds to &TY (i.e., D) 1is concatenated
with the other characters to form the

operation fields of the generated state-
ments.

The symbolic parameters &P, &TO, and
§FROM are used in two of the model state-

ments to vary part of the operand fields of

the corresponding generated statements.
The characters FIELD, A, and B correspond
to the symbolic parameters &P, §&TO, and

§FROM, respectively. Since £P is followed
by 6FROM in the second model statement, the
characters that correspond to them (i.e.,
FIELD and B) are concatenated to form part
of the operand field of the second generat-
ed statement. Similarly, FIELD and A are
concatenated to form part of the operand
field of the third generated statement.

If the programmer wishes to concatenate
a symbolic parameter with a letter, digit,
left parenthesis, or period fcilowing the
symbolic parameter he must immcdiately fol-
low the symbolic parameter with a pericd.
A period is optional if the symbolic param-
eter is to be concatenated with another
symbolic parameter, or a special character
other than a left parenthesis or another
period that follows it.

If a symbolic parameter is immediately
followed by a period, then the symbolic
parameter and the period are replaced by

the characters that correspond to the sym-
bolic parameter. A period that immediately
follows a symbolic parameter does not
appear in the generated statement.

The following macro-definition, macro-
instruction, and generated statements
jllustrate these rules.

f T T 1
| Name |Operation|Operand |
|] i 4
1 1 1
Header | | MACRO |
Prototype | &§NAME|MOVE |6P,§5,6R1,6R2 |
Model | ENAME| ST | 8R1,8S. (6R2) |
Model | |L |6R1,6P.B |
Model | |ST | 6R1,6P.A |
Model | iL {&R1,85. (6R2) |
Trailer | | MEND | |
p=—=--t t {
Macro | HERE |MOVE IFIELD,SAVE, 2.4 |
t i i 4
L) T T B
Generated |HERE |ST | 2, SAVE (4) [
Generated | | {2,FIELDB |
Generated | |ST |2, FIELDA |
Generated | |L | 2, SAVE (4) |
L i i H

The symbolic parameter &P is used in the
second and third model statements to vary
part - of the operand field of each of the
corresponding generated statements. The
characters FIELD of the macro-instruction
correspond to §&P. Since &P 1is to be
concatenated with a letter (i.e., B and A)
in each of the statements, a period immedi-
ately follows &P in each of the model
statements. The period does not appear in
the generated statements.

Similarly, symbolic parameter &S is used
in the first and fourth model statements to
vary the operand fields of the correspond-
ing generated statements. &S is followed
by a period in each of the model
statements, because it is to be concatenat-
ed with a 1left parenthesis. The period
does not appear in the generated
statements.

How to Prepare Macro-Definitions 67

Comments Statements

A model statement may be a comments
statement. A comments statement consists
of an asterisk in the begin column, fol-
lowed by comments. The comments statement
is used by the assembler to generate an
assembler language comments statement, just
as other model statements are used by the
assembler to generate assembler language
statements.

The programmer may also write comments
statements in a macro-definition which are
not to be generated. These statements must
have a period in the begin column, immedi-
ately followed by an asterisk and the
comments.

The first statement in the following
example will be used by the assembler to
generate a comments statement; the second
statement will not.

¥
| Name |Operation |Operand

* THIS STATEMENT WILL BE GENERATED
«* THIS ONE WILL NOT BE GENERATED

T e e

68

COPY STATEMENTS

COPY statements may be used to copy
model statements and MEXIT, MNOTE, and
conditional assembly instructions into a
macro-definition, Jjust as they may be used
outside macro-definitions to copy source
statements into an assembler language pro-
gram.

The format of this statement is:

r Ll T
| Name |Operation |Operand
i 4+ 4

N Y

L} T i)
|Blank |COPY |A symbol
L L . |

The symbol in the operand field iden-
tifies the section of coding to be copied.
Any statement that may be used in a macro-
definition may be part of the copied
coding, except MACRO, MEND, COPY, and
prototype statements.

A COPY statement is not a model state-
ment, since it is not used by the assembler

to generate a COPY statement.

The format of a macro-instruction is:

f T - T - 1
| Name | Operation {Operand i
b t t {
{A symbol |Mnemonic |Zero or more op- |
lor blank j|operation |erands, separated |
i jcode jby commas. i
L L i J

The name field of the macro-instruction
may contain a symbol. The symbol will not
be defined unless a symbolic parameter
appears in the name field of the prototype
and the same parameter appears in the name
field of a generated model statement.

The operation field contains the mnemon-
ic operation code of the macro-instruction.
The mnemonic operation code must be the
same as the mnemonic operation code of a
macro-definition in the source program or
in the macro library.

The macro-definition with the same mne-
monic operation code is used by the assem-
bler to process the macro-instruction. I1f
a macro-definition in the source program
and one in the macro library have the same
mnemonic operation code, the macro-
definition in the source program is used.

The placement and order of the operands
in the macro-instruction is determined by
the placement and order of the symbolic
parameters in the operand field of the
prototype statement.

MACRO-INSTRUCTION OPERANDS

Any combination of up to 255 characters
may be used as a macro-instruction operand
provided that ‘the following rules
concerning quotation marks, parentheses,
equal signs, ampersands, commas, and blanks
are observed.

Paired OQuotation Marks: An operand may
contain one or more quoted strings. A
quoted string is any sequence of characters
that begins and ends with a quotation mark
and contains an even number of quotation
marks.

The first quoted string starts with the
first quotation mark in the operand. Sub-
sequent quoted strings start with the first

SECTION 8: HOW TO WRITE MACRO-INSTRUCTIONS

quotation mark after the gquotation mark
that ends the previous quoted string.

A quoted string ends with the first
even-numbered quotation mark that is not
immediately followed by a guotation mark.

The first and last quotation marks of a

quoted string are called paired guotation
marks. The following example contains two
quoted strings. The first and fourth and

the fifth and sixth quotation marks are
each paired quotation marks.

!A! lBlchl

A quotation mark immediately preceded by
the letter L, and immediately followed by a
letter is not considered in determining
paired quotation marks. For instance, in
the following example the middle quotation
mark is not considered.

*L'SYMBOL'

Paired Parentheses: There must be an equal
number of left and right parentheses. The
nth left parenthesis must appear to the

left of the nth right parenthesis.

Paired parentheses are a left parenthe-
sis and a following right parenthesis with-
out any other parentheses intervening. If
there is more than one pair, each addition-
al pair is determined by removing any pairs
already recognized and reapplying the above
rule for paired parentheses. For instance,
in the following example the first and
fourth, the second and third, and the fifth
and sixth parentheses are each paired pa-
rentheses.

(2 (B) C) D (E)

A parenthesis that appears between
paired guotation marks is not considered in
determining paired parentheses. For
instance, in the following example the
middle parenthesis is not considered.

"""
Equal Signs: An equal sign can only occur

as the first character in an operand or
between paired quotation marks or paired

parentheses. The following examples illus-
trate these rules.

=F*'32°

‘Cc=pD*

E (F=G)

How to Write Macro-Instructions 69

Ampersands: Except as noted under "Inner
Macro-Instructions,"™ each sequence of con-
secutive ampersands must be an even number
of ampersands. The following example
illustrates this rule.

£6123¢888¢

Commas: A comma indicates the end of an
operand, unless it is placed between paired
guotation marks or paired parentheses. The
following example illustrates this rule.

@,ByC',"
Blanks: Except as noted unaer "Statement

Format," a blank indicates the end of the
operand field, unless it is placed between

paired quotation marks. The following

example illustrates this rule.

‘aBC'

The following are valid macro-

instruction operands:

SYMBOL A+2

123 (TO (8) , FROM)

X¥189A° 0(2,3)

* =F'4096"

L"NAME ABESE9

*TEN = 10" *PARENTHESIS IS) *

'QUOTE IS''* ‘COMMA IS ,*

The following are invalid macro-

instruction operands:

W*NAME (cdd number of quotation
marks)

5a) B {(number of left parentheses
does not equal number of
right parentheses)

{15 B) (blank not placed between

paired quotation marks)
(blank not placed between
paired quotation marks)

‘ONE* IS *'1°

STATEMENT FORMAT

Macro-instructions may be written using
the same alternate format that can be used
to write prototype statements. If this
format is used, a blank does not always
indicate the end of the operand field. The
alternate format is described in Section 7,
under the subsection "Macro-Instruction
Prototype.”

70

OMITTED OPERANDS

If an operand that appears in the proto-
type statement is omitted from the macro-
instruction, then the comma that would have
separated it from the next operand must be
present. If the last operand (s) is omitted
from a macro-instruction, then the comma (s)
separating the last operand(s) from the
next previous operand may be omitted.

The following example shows a macro-
instruction preceded by its corresponding
prototype statement. The macro-instruction
operands that correspond to the third and
sixth operands of the prototype statement
are omitted in this example.

L} T T 1
fName |Operation |Operand |
L 4 i 4
r ¥ 1 1
| | EXAMPLE |6A,8B,8C, 8D, EE, 6F [
l {EXAMPLE 117,*+4,,AREA,FIELD(6) J

If the symbolic parameter that

corresponds to an omitted operand is used
in a model statement, a null character
value replaces the symbolic parameter in
the generated statement, i.e., in effect

the symbolic parameter is removed.

For example, the first statement below
is a model statement that contains the
symbolic parameter &§C. If the operand that
corresponds to &C was omitted from the
macro-instruction, the second statement
below would be generated from the model
statement.

r)] L} 1
|Name |Operation {Operand |
L 1 4

r v H -1
| | MvC | THERE§C.25,THIS 1
| |MvC | THERE25, THIS |
L 1 i]

OPERAND SUBLISTS

An operand of a macro-instruction may be
a sublist.

Sublists provide the programmer with a
convenient way to refer to: (1) a collec-
tion of macro-instruction operands as a
single operand, or (2) a single operand in
a collection of operands.

A sublist consists of one or more oper-
ands separated by commas and enclosed in
paired parentheses. The entire sublist,

including the parentheses, is considered to
be one macro-instruction operand.

If a macro-instruction is written in the
alternate statement format, each sublist
operand may be written on a separate line;
the macro-instruction may be written on as
many lines as there are operands, including
sublist operands.

If &P1 is a symbolic parameter in a
prototype statement, and the correspondlng
operand of a macro-instruction is a
sublist, then &P1(n) may be used in a model
statement to refer to the nth operand of
the sublist, where n may be a decimal
integer, (n may also be any arithmetic
expression allowed in a SETA instruction.
The SETA instruction is described in Sec-
tion 9.)

For example, consider the following
macro-definition, macro-instruction, and
generated statements.

r T . T 1
|Name |Operation|Operand |
t ¢ ¥ {
Header { | MACRO { |
Prototype| | ADD | ENUM, §REG, §AREA |
Model | |L | EREG, §NUM (1) |
Model | ia | EREG, ENUM (2) |
Model | ia | SREG, §NUM (3) |
Model | |sT | §REG, AREA |
Trailer | | MEND | |
L iR 4 i
T T T 1
Macro | | ADD | &,8,C ,6,SUM |
Generated| |L 16,2 |
Generated| |A |6,B |
Generated| |a 16,C |
Generated| | sT |6,SUM |
L y e L 4

The operand of the macro-instruction
that corresponds to symbolic parameter &NUM
is a sublist. One of the operands in the
sublist is referred to in the operand field
of three of the model statements. For
example, &NUM(1) refers to the first oper-
and in the sublist corresponding to symbol-
ic parameter &NUM. The first operand of
the sublist is A. Therefore, A replaces

§NUM (1) to form part of the generated
statement.
Note: When referring to an operand in a

sublist, the left parenthesis of the sub-
list notation must immediately follow the
last character of the symbolic parameter,
€.g., &ENUM(1). A period should not be
placed between the left parenthesis and the
last character of the symbolic parameter.

A period may be used between these two
characters only when the programmer wants
to concatenate the 1left parenthesis with
the characters that the symbolic parameter
represents. The following example shows
what would be generated if a period
appeared between the left parenthesis and
the last character of the symbelic parame-
ter in the first model statement of the
ahove example.

L] T T
| Name | Operation|Operand

-||-

1

!

=1 T 1

Prototype| {ADD | ENUM, EREG, EAREA |
Model | |L | EREG , ENUM. (1) 1
L L i J

r T L) A}

Macro | | ADD | &,8,0 ,6,SUM |
-t } %

Generated | |L |6, @,B,C) (1) [
L L y N J

The symbolic parameter §NUM is used in
the operand field of the model statement.
The characters @a,B,C) of the macro-
instruction correspond to §NUM. Since &ENUM
is immediately followed by a period, &NUM
and the period are replaced by (4,B,C).
The period does not appear in the generated

statement. The resulting generated
statement is an invalid assembler language
statement.

INNER MACRO~INSTRUCTIONS

A macro-instruction may be used as a
model statement in a macro-definition.
Macro-instructions used as model statements
are called inner macro-instructions.

A macro-instruction that is not used as
a model statement is referred to as an
outer macro-instruction.

Any symbolic parameters used in an inner
macro-instruction are replaced by the cor-
responding characters of the outer macro-
instruction.

The macro-definition corresponding to an
inner macro-instruction is used to generate
the statements that replace the inner
macro-instruction.

The ADD macro-instruction of the pre-
vious example is used as an inner macro-
instruction instruction in the following
example.

The inner macro-instruction contains two

symbolic parameters, §S and &T. The
characters (X,Y,Z) and J of the macro-
instruction correspond to &S and &§T,

How to Write Macro-Instructions 71

respectively. Therefore, these characters
replace the symbolic parameters in the
operand field of the inner macro-
instruction.

The assembler then uses the macro-

definition that corresponds to the inner
macro-instruction to generate statements to
replace the inner macro-instruction. The
fourth through seventh generated statements
have been generated for the inner macro-
instruction.

r T T
| Name | Operation|Operand
4 4

\

|

k 1 1

Header i | MACRO i
Prototypel| | comp | 6R1,8R2,&S,8T, §U |
Model | |SR | 6R1,€R2 |
Model { |C | 6R1,8&T |
Model | | BNE | €U |
Inner { |ADD |6S,12,8T |
Model |60 |A |6R1,6T |
Trailer | | MEND | |
S t {

Macro |K | comp 10,11, (X,Y,2) ,J,K|
[t {
Generated| | SR 110,11 |
Generated| IC |10,J |
Generated| | BNE |K |
Generated| {L 112,X |
Generated| |A |12,Y |
Generated| H 112,2 i
Generated| |ST {12,d |
110,J I

L J

Generated|K |a
L L1

72

Note: An ampersand that is part of a
symbolic parameter is not considered in
determining whether a macro-instruction
operand contains an even number of consecu-
tive ampersands.

LEVELS OF MACRO-INSTRUCTIONS

A macro-definition that corresponds to
an outer macro-instruction may contain any
number of inner macro-instructions. The
outer macro-instruction is called a first
level macro-instruction. Each of the inner
macro-instructions is called a second level
macro-instruction.

The macro-definition that corresponds to
a second level macro-instruction may con-

tain any number of inner
macro-instructions. These macro-
instructions are called third level macro-

instructions, etc.

The number of levels of macro-
instructions that may be used depends upon
the complexity of the macro-definition and
the amount of storage available. This is
described in detail in Appendix H.

SECTION 9:

HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS

The conditional assembly instructions
allow the programmer to: (1) define and
assign values to SET symbols that can be
used to vary parts of generated statements,

and (2) vary the sequence of generated
statements. Thus, the programmer can use
these instructions to generate many

different sequences of statements from the

same macro-definition.

There are 12 conditional assembly

instructions, 9 of which are described in
this section. The other three conditional
assembly instructions -- GBLA, GBLB, and

GBLC -- are described in Section 10. The
instructions described in this section are:

LCLa SETA AIF
LCLB SETB AGO
LCLC SETC ANOP

All of the conditional assembly instruc-

tions may be used anywhere in an assembler
language source program. The primary use
of these instructions, however, is in
macro-definitions.

Where the use of an instruction outside
macro-definitions differs from its use
within macro-definitions, the difference is
described in the subsequent text.

The LCLA, LCLB, and ILCLC instructions
may be used to define and assign initial
values to SET symbols.

The SETA, SETB, and SETC instructions
may be wused to assign arithmetic, binary,
and character values, respectively, to SET
symbols. The SETB instruction is described
after the SETA and SETC instructions,
because the operand field of the SETB
instruction is a combination of the operand
fields of the SETA and SETC instructions.

The AIF, AGO, and ANOP instructions may
be used in conjunction with sequence sym-
bols to vary the sequence in which state-
ments are processed by the assembler. The
programmer can test attributes assigned by
the assembler to macro-instruction operands
to determine which statements are to be
processed.

Examples illustrating the use of each
conditional assembly instruction are
included throughout this section. A chart
summarizing the elements that can be used
in each instruction appears at the end of
this section.

SET SYMBOLS

SET symbols are one type of variable

symbol. The symbolic parameters discussed
in Section 7 are another type of variable
symbol. SET symbolis differ from symbolic

parameters in three ways: (1) where they
can be used in an assembler language source
program, (2) how they are assigned values,
and (3) whether or not the values assigned
to them can be changed.

Symbolic parameters can only be used in
macro—-definitions, whereas SET symbols can
be used inside and outside macro-
definitions.

Symbolic parameters are assigned values
when the programmer writes a macro-
instruction, whereas SET symbols are
assigned values when the programmer writes
SETA, SETB, and SETC conditional assembly
instructions.

Each symbolic parameter is assigned a
single value for one use of a macro-
definition, whereas the values assigned to
each SETA, SETB, and SETC symbol can change
during one use of a macro-definition.

Defining SET Symbols

SET symbols must be defined by the
programmer before they are used. When a
SET symbol is defined it 1is assigned an
initial value. SET symbols may be assigned
new values by means of the SETA, SETB, and
SETC instructions. A SET symbol is defined
when it appears in the operand field of an
LCIA, ICLB, or LCLC instruction.

Using Variable Symbols

The SETA, SETB, and SETC instructions
may be used to change the values assigned
to SETA, SETB, and SETC symbols,
respectively. When a SET symbol appears in
the name, operation, or operand field of a
statement, the current value of the SET
symbol (i.e., the last value assigned to
it) replaces the SET symbol in the state-
ment.

For example, if &A is a symbolic parame-
ter, and the corresponding characters of

Writing Conditional Assembly Instructions 73

the macro-instruction are the symbol HERE,
then HERE replaces each occurrence of &A in
the macro-definition. However, if &A is a
SET symbol, the value assigned to &A can be
changed, and a different value can replace
each occurrence of €A in the macro-
definition.

The same variable symbol may not be used
as a symbolic parameter and as a SET symbol
in the same macro-definition.

The following illustrates this rule.

T T T
| Name | Operation |Operand
L 1 1

R e

L] T T
| SNAME | MOVE | §TO, EFROM
L L L

If the statement above is a prototype

statement, then §&NAME, §TO, and §FROM may
not be used as SET symbols in the macro-
definition.

The same variable symbol may not be used
as two different types of SET symbols in
the same macro-definition. Similarly, the
same variable symbol may not be used as two
different +types of SET symbols outside
macro-definitions.

For example, if §A is a SETA symbol in a
macro-definition, it cannot be used as a
SETC symbol in that definition. Similarly,
if &A is a SETA symbol outside macro-
definitions, it cannot be used as a SETC
symbol outside macro-definitions.

The same variable symbol may be used in
two or more macro-definitions and outside
macro—-definitions. If such is the case,
the variable symbol will be considered a
different variable symbol each time it is
used.

For example, if &A is a variable symbol
(either SET symbol or symbolic parameter)
in one macro-definition, it can be used as
a variable symbol (either SET symbol or
symbolic parameter) in another definition.
Similarly, if &A is a variable symbol (SET
symbol or symbolic parameter) in a macro-
definition, it can be used as a SET symbol
outside macro-definitions.

All variable symbols may be concatenated
with other characters in the same way that
symbolic parameters may be concatenated
with other characters. The rules for
concatenating symbolic parameters with
other characters are in Section 7 under the
subsection "Model Statements.®

Variable symbols in macro-instructions

are replaced by the values assigned to
them, immediately prior to the start of

74

processing the definition. If a SET symbol
is used in the operand field of a macro-
instruction, and the value assigned to the
SET symbol is equivalent to the sublist
notation, the operand is not considered a
sublist.

ATTRIBUTES

attributes to
and to all

The assembler assigns
macro-instruction operands

literals and all symbols defined in the
program.

There are six kinds of attributes. They
are: type, length, scaling, integer,

count, and number. Each kind of attribute
is discussed in the paragraphs that follow.

If an outer macro-instruction operand is
a symbol or a literal, then the attributes
of the operand are the same as the corres-
ponding attributes of the symbol or
literal. The symbol must appear in the
name field of an assembler language state-
ment or in the operand field of an EXTRN
statement in the program. The statement
must be outside macro-definitions and must
not contain any variable symbols.

If an inner macro-instruction operand is
a symbolic parameter, then the attributes
of the operand are the same as the attri-
butes of the corresponding outer macro-
instruction operand.

If a macro-instruction operand is a
sublist, the programmer may refer to the
attributes of either the sublist or each
operand in the sublist. The type, length,
scaling, and integer attributes of a
sublist are the same as the corresponding
attributes of the first operand in the
sublist.

All the attributes of macro-instruction
operands may be referred to in conditional
assembly instructions within macro-
definitions. However, only the type,
length, scaling, and integer attributes of

symbols may be referred to in conditional
assembly instructions outside macro-
definitions. Attributes of symbols

appearing in the name field of generated
statements may not be referred to in condi-
tional assembly instructions inside or out-
side macro definitions.

Each attribute has a notation associated

with it. The notations are:
Attribute Notation
Type T*

Length L'
Scaling S

Integer It
Count K*
Number oM

The programmer may refer to an attribute
in the following ways:

1. In a statement that is outside macro-
definitions, he may write the notation
for the attribute immediately followed
by a symbol. (e.g., L'NAME refers to
the length attribute of the symbol

NAME.)
2. In a2 statement that is in 2a macro-
definition, he may write the notation

for the attribute immediately followed
by a symbolic parameter. (€<Gg. .,
L'§NAME refers to the length attribute
of the characters in the macro-
instruction that correspond to
symbolic parameter ENAME; L'ENAME (2)
refers to the length attribute of the
second operand in the sublist that
corresponds to symbolic parameter
ENAME.)

Type Attribute (T')

The type attribute of a macro-
instruction operand, a literal, or a symbol
is a letter. .

The following letters are used for
symbols that name DC and DS statements and
for outer macro-instruction operands that
are either literals or symbols that name DC
or DS statements.

A-type address constant,
implied length, aligned.
Binary constant.

Character constant.

Long floating-point constant,
implied length, aligned.

Short floating-point constant,
implied Yength, aligned.
Full-word fixed-point constant,
implied length, aligned.
Fixed-point constant, explicit
length.

Half-word fixed-point constant,
implied length, aligned.
Floating-point constant,
explicit length.

Packed decimal constant.

aA-, S-, V-, or Y-type address
constant, explicit length.
S-type address constant,
implied length, aligned.
V-type address constant,
implied length, aligned.
Hexadecimal constant.

Y-type address constant,
implied length, aligned.

Zoned decimal constant.

H ovaOow W

KM < W0 Www =" T @ 9o

(]

Fixed Point:

The following letters are used for sym-
bols (and outer macro-instruction operands
that are symbois) <that name statements
other than DC or DS statements, or that
appear in the operand field of an EXTRN
statement.

Machine instruction
Control section name
Macro-instruction
External symbol

CCW assembler instruction

THARUH

.
The followin lette used for inner

and outer macro-instruction operands only.

The followi ng letters are

N Self-defining term
0 Omitted operand

The following letter is used for symbols
whose attributes are not available, and for
inner and outer macro-instruction operands
that cannot be assigned any of the above
letters. This includes inner macro-
instruction operands that are symbols or
literals. This letter is also assigned to
symbols that name EQU statements.

8] Undefined

The programmer may refer to a type
attribute in the operand field of a SETC
instruction, or in character relations in
the operand fields of SETB or AIF
instructions.

Length (L"), Scaling (S'), and Integer (1°)
Attributes

- The length, scaling, and integer attri-
butes of macro-instruction operands, liter-
als, and symbols are numeric values.

The length attribute of a symbol (or of
a macro-instruction operand that is a
symbol) is as described in Part I of this
publication.

Conditional assembly instructions must
not refer to the length attributes of
symbols or macro-instruction operands whose
type attributes are the letters M, N, O, T,
or U.

Scaling and integer attributes are pro-
vided for fixed-point, floating-point, and
decimal literals and for symbols that name
fixed-point, floating-point, and decimal
fields.

The scaling attribute of a
fixed-point number is +the number of bits
occupied by the fractional portion of the
fixed-point number. The integer attribute
of a fixed-point number is the number of

Writing Conditional Assembly Instructions 75

bits occupied by the integral portion of
the fixed-point number.

Floating Point: The scaling attribute of a
floating-point number is the number of
hexadecimal zeros in the leftmost portion
of the fraction. The integer attribute of
a floating-point number is the number of
significant hexadecimal digits in the frac-
tion.

Decimal: The scaling attribute of a deci-
mal number is the number of decimal digits
to the right of the decimal point. The
integer attribute of a decimal number is
the number of decimal digits to the left of
the decimal point.

Scaling and integer attributes are
available for symbols and macro-instruction
operands only if their type attributes are
H, F, and G (fixed point); D, E, and K
(floating point); or P and Z (decimal).

The programmer may refer to the length,
scaling, and integer attributes in the
operand field of a SETA instruction, or in
arithmetic relations in the operand fields
of SETB or AIF instructions.

Count Attribute (K')

The programmer may refer to the count
attribute of macro-instruction operands
only.

The count attribute is a value equal to
the number of characters in the macro-
instruction operand, excluding commas. If
the operand is a sublist, the count
attribute includes the beginning and ending
parentheses and the commas within the sub-
list. The count attribute of an omitted
operand is zero.

If a macro-instruction operand contains
variable symbols, the characters that
replace the variable symbols, rather than
the variable symbols, are used to determine
the count attribute.

The programmer may refer to the count
attribute in the operand field of a SETA
instruction, or in arithmetic relations in
the operand fields of SETB and AIF instruc-
tions that are part of a macro-definition.

Number Attribute (N')

number
operands

The programmer may refer to the
attribute of macro-instruction
only.

76

The number attribute is a value equal to
the number of operands in an operand sub-
list. The number of operands in an operand
sublist is equal to one plus the number of
commas that indicate the end of an operand
in the sublist.

The following examples illustrates this
rule.

a,B,C,D,E 5 operands
*,.C,D,E) 5 operands
A,B,C,D) 4 operands
(-B,C,D,E) 5 operands
A,B,C,D,) 5 operands
&,s8,C,D,,) 6 operands

If the macro-instruction operand is not
a sublist, the number attribute is one. If
the macro-instruction operand is omitted,
the number attribute is zero.

The programmer may refer to the number
attribute in the operand field of a SETA
instruction, or in arithmetic relations in
the operand fields of SETB and AIF instruc-
tions that are part of a macro-definition.

Assigning Attributes to Symbols

The integer attribute is computed from
the length and scaling attributes.

Fixed Point: The integer attribute of a
fixed-point number is equal to eight times
the length attribute of the number minus
the scaling attribute minus one; i.e.,
I'=8+#L'-S'-1.

Each of the following statements defines
a fixed-point field. The length attribute
of HALFCON is 2, the scaling attribute is
6, and the integer attribute is 9. The
length attribute of ONECON is 4, the scal-
ing attribute is 8, and the integer attri-
bute is 23.

] T T
| Name |Operation |Operand
L L 4

+
|HS6'-25.93"
|FS8*100.3E-2"
i

r 1
{HALFCON |DC
|ONECON |DC
L L

e e

Floating Point: The integer attribute of a

floating-point number is equal to two times
the difference between the length attribute
of the number and one, minus the scaling
attribute; i.e., I'"=2%(L'-1)-S".

Each of the following statements defines
a floating-point field. The length attri-

bute of SHORT is 4, the scaling attribute
is 2, and the integer attribute is 4. The
iength attribute of LONG is 8, the scaling
attribute is 5, and the integer attribute
is 9.

r T T 1
| Name |Operation |Operand |
i i iR 4
|SHORT |DC {ES2°46.415" i
| LONG |DC |DS5'-3.729° |
[} 4L L J
Decimal: The integer attribute of a packed

decimal number is equal to two times the
length attribute of the number minus the
scaling attribute minus one; i.e.,
I'=2*L'-S*'-1. The integer attribute of a
zoned decimal number is equal to the dif-
ference between the 1length attribute and
the scaling attribute; i.e., I'=L'-S’.

Each of the following statements defines
a decimal field. The length attribute of
FIRST is 2, the scaling attribute is 2, and
the integer attribute is 1. The length
attribute of SECOND is 3, the scaling
attribute is 0, and the integer attribute
is 3. The length attribute of THIRD is 4,
the scaling attribute is 2, and the integer
attribute is 2. The 1length attribute of
FOURTH is 3, the scaling attribute is 2,
and the integer attribute is 3.

r T T 1
[Name !Operation EOperand !
) L T 1
| FIRST {pC |P*+1.25" i
| SECOND |DC {Z'-543" i
| THIRD {DC 12°79.68" |
|FOURTH |DC [P*79.68°* |
L i L]

SEQUENCE SYMBOLS

The name field of a statement may con-
tain a sequence symbol. Sequence symbols
provide the programmer with the ability to
vary the sequence in which statements are
processed by the assembler.

" A sequence symbol is used in the operand
field of an AIF or AGO statement to refer
to the statement named by the sequence
symbol.

A sequence symbol may be used in the
name field of any statement that does not

contain a symbol or SET symbol, except a
prototype statement, or a MACRO, LCILA,
LCLB, LCLC, GBLA, GBLB, or GBLC
instruction.

A sequence symbol consists of a period
followed Dby one through seven letters
andsor digits, the first of which must be a
letter.

The following are valid sequence
symbols:
«READER «A23456
.LOOP2 <X4F2
N -S4
The following are invalid sequence sym-
bols:
CARDAREA (first character is not
a period)
.246B (first character after
period is not a letter)
.AREAZ2456 (more than seven characters
after period)
.BCD%84 (contains a special character
other than initial period)
.IN AREA (contains a special

character, i.e., blank,
other than initial period)

If a sequence symbol appears in the name
field of a macro-instruction, and the cor-
responding prototype statement contains a
symbolic parameter in the name field, the
sequence symbol does not replace the sym-
bolic parameter wherever it is used in the
macro-definition.

The following example illustrates this
rule,

L} T . T 1

| Name |Operation |Operand |

k- + t :

i | MACRO i |

1 |ENAME |MOVE | §TO, EFROM |

2 |S§NAME |ST | 2, SAVEAREA |

| |L 12, §FROM |

| |sT |2,&TO I

| | & | 2, SAVEAREA |

| | MEND | |

t 1 + 1

3 |.SYM | MOVE | FIELDA,FIELDB |

¢ ¢ ¢ {

4 | | ST | 2, SAVEAREA |

i {L |2, FIELDB |

| |sT |2, FIELDA |

| 1L | 2, SAVEAREA |

L 4 4 J

The symbolic parameter ENAME is used in
the name field of the prototype statement
(statement 1) and the first model statement
(statement 2). In the macro-instruction
(statement 3) a sequence symbol (.SYM)
corresponds to the symbolic parameter
E§NAME. §&NAME is not replaced by .SYM, and,
therefore, the generated statement

Writing Conditional Assembly Instructions 77

(statement 4) does not contain an entry in
the name field.

LCLA,ICLB,LCLC -— DEFINE SET SYMBOLS

The format of these instructions is:

P T L) 1
| Name |Operation |Operand |
L i i d
) T T 1
Blank	ICLA,	One or more variable
	LCLB, or	symbols, that are
	LCLC	to be used as SET
		symbols, separated
		by commas
L i 1 4

The LCLA, LCLB, and LCLC instructions

are used to define
values to SETA, SETB, and SETC symbols,
respectively. The SETA, SETB, and SETC
symbols are assigned the initial values of
0, 0, and null character value, respective-
ly.

and assign initial

The programmer should not define any SET
symbol whose first four characters are
§SYS.

All LCILA, LCLB, or LCLC instructions in
a macro-definition must appear immediately
after the prototype statement, and all
GBLA, GBLB or GBLC instructions, or another
LCLA, LCLB, or LCLC instruction. All LClLa,
ICLB, or ICLC instructions outside macro-

definitions must appear after all macro-
definitions in the source program, after
all GBLA, GBLB, and GBLC instructions

outside macro-definitions, before all con-
ditional assembly instructions, and PUNCH
and REPRO statements outside macro-
definitions, and before the first control
section of the program.

SETA -- SET ARITHMETIC

The SETA instruction may be used to
assign an arithmetic value to a SETA
symbol. The format of this instruction is:
r T . T 1
| Name |jOperation |Operand |
[R 4 L
r T T “1
|A SETA |SETA {An arithmetic i
| symbol | |expression |
L ——— —te L d

78

The expression in the operand field is
evaluated as a signed 32-bit arithmetic
value which is assigned to the SETA symbol
in the name field. The minimum and maximum
allowable values of the expression are -231
and +231-1, respectively.

The expression may consist of one term
or an arithmetic combination of terms. The
terms that may be used alone or in
combination with each other are self-
defining terms, variable symbols, and the
length, scaling, integer, count, and number
attributes. Self-defining terms are
described in Part I of this publication.

Note: A SETC variable symbol may appear in
a SETA expression only if the value of the
SETC variable is one to eight decimal
digits. The decimal digits will be con-
verted to a positive arithmetic value.

The arithmetic operators that may be
used to combine the terms of an expression
are + (addition), - (subtraction),
* (multiplication), and / (division).

An expression may not contain two terms
or two operators in succession, nor may it
begin with an operator.

The following are valid operand fields
of SETA instructions:

EAREA+X'2D"' I'§N/25
§BETA*10 S§EXIT-S'&§ENTRY+1
L'EHERE+32 29

The following are invalid operand fields
of SETA instructions:

EAREAX'C" (two terms in succession)
EFIELD+- (two operators in succession)
-§DELTA*2 (begins with an operator)
*4+32 (begins with an operator;

two operators in succession)
NAME/ 15 (NAME is not a valid term)

Evaluation of Arithmetic Expressions

The procedure used to evaluate the
arithmetic expression in the operand field
of a SETA instruction is the same as that
used to evaluate arithmetic expressions in
assembler language statements. The only

difference between the two types of arith-
metic expressions is the terms that are
allowed in each expressiomn.

The following evaluation procedure is

used:
1. Each term is given its numerical
value.
2. The arithmetic operations are per-

formed moving from left +to right.
However, multiplication and/or divi-
sion are performed before addition and
subtraction.

3. The computed result is the value
assigned to the SETA symbol in the
name field.

The arithmetic expression in the operand
field of a SETA instruction may contain one
or more sequences of arithmetically com—
bined terms that are enclosed in parenthe-

ses. A sequence of parenthesized terms may
appear within another parenthesized
sequence.

The following are examples of SETA

instruction operand fields that contain
parenthesized sequences of terms.

(L' EHERE+32) %29
EAREA+X'2D'/ (EEXIT-S' EENTRY+1)
§BETA#10% (I'§N/25/ (§EXIT-S" §ENTRY+1))

The parenthesized portion or portions of
an arithmetic expression are evaluated
before the rest of the terms in the expres-
sion are evaluated. If a sequence of
parenthesized terms appears within another
parenthesized sequence, the innermost
sequence is evaluated first.

Using SETA Symbols

The arithmetic value assigned to a SETA
symbol is substituted for the SETA symbol
when it is used in the operand field of a
SETA instruction, or in arithmetic rela-
tions in the operand fields of SETB and AIF
instructions. If the SETA symbol is wused
in any other statement, the arithmetic
value is converted to an unsigned integer,
with leading zeros removed. If the value
is zero, it is converted to a single zero.

The following example illustrates this
rule:

r T T i)
{Name | Operation |Operand |
e t 1
| | MACRO | |
| SNAME | MOVE | §TO, 6FROM i
| | LCLA |67, 6B,8C,&D |
1 |&a | SETA | 10 |
2 |§B | SETA |12 |
3 j&C | SETA | 6A-&B |
4 |&D | SETA | ea+&C |
{E§NAME | ST | 2, SAVEAREA]
5 1 L | 2, §FROM&C |
6 | {sT |2, 8TOED 1
{ IL | 2, SAVEAREA |
| | MEND | i
e } {
(HERE |MOVE | FIELDA, FIELDB |
t t t i
| HERE | ST | 2, SAVEAREA |
| L {2,FIELDB2 |
| |sT | 2,FIELDAS |
| | L | 2, SAVEAREA |
L L L J

Statements 1 and 2 assign to the SETA
symbols &A and &B the arithmetic values +10
and +12, respectively. Therefore, state-
ment 3 assigns the SETA symbol §&C the
arithmetic value -2. When &C is used in
statement 5, the arithmetic value -2 is
converted to the unsigned integer 2. When
E€C is used in statement 4, however, the
arithmetic value -2 is used. Therefore, &D
is assigned the arithmetic value +8. When
&D is used in statement 6., the arithmetic
value +8 is converted to the unsigned
integer 8.

The following example shows how the
value assigned to a SETA symbol may be
changed in a macro-definition.

r T T 1
| Name | Operation |Operand |
i 4 L J
‘v T T 1
| | MACRO | [
| ENAME | MOVE | €TOS§FROM |
| | LCLA | €A |
1 |&A | SETA |5 |
| SNAME | ST | 2, SAVEAREA |
2 | L | 2, FROMEA |
3 j&A | SETA |8 |
4 | | ST {2, 8TOEA |
| |L | 2, SAVEAREA |
MEND
! ! ! !
r T T 1
| HERE | MOVE | FIELDA,FIELDB |
8 i] 4
1 T T 1
HERE	ST	2, SAVEAREA
	L	2, FIELDB5
	ST	2,FIELDAS
	L	2, SAVEAREA
L L L J

Writing Conditional Assembly Imstructions 79

Statement 1 assigns the arithmetic value
+5 to SETA symbol éA. 1In statement 2, €A
is converted to the unsigned integer 5.
Statement 3 assigns the arithmetic value +8
to EA. In statement U4, therefore, §A is
converted to the unsigned integer 8,
instead of 5.

A SETA symbol may be used with a symbol-
ic parameter to refer to an operand in an
operand sublist. If a SETA symbol is used
for this purpose it must have been assigned
a positive value.

Any expression that may be used in the
operand field of a SETA instruction may be
used to refer to an operand in an operand
sublist.

Sublists are described in Section 8

under "Operand Sublists.”

The following macro-definition may be
used to add the last operand in an operand
sublist to the first operand in an operand
sublist and store the result at the first

operand. A sample macro-instruction and
generated statements follow the macro-
definition.
r T 1 1
|Name |Operation |Operand |
b t t {
| | MACRO ! |
1| | ADDX | ENUMBER , §REG i
| jLCLA | §1AST i
2 |§LAST |SETA | N' § NUMBER i
| 1L | EREG, §NUMBER (1) |
3] A | EREG, ENUMBER (ELAST) |
| |ST | §REG, § NUMBER (1) i
i | MEND | |
b + i {
4| | ADDX | @,8,C,D,E),3 |
t + 1 1
| L 13,A |
| A I3,E |
| |ST {3,A |
L L i J

ENUMBER is the first symbolic parameter
in the operand field of the prototype
statement (statement 1) . The corresponding
characters, *,8,C,D,E), of the macro-
instruction (statement 4) are a sublist.
Statement 2 assigns to §LAST the arithmetic
value +5, which is equal to the number of
operands in the sublist. Therefore, in
statement 3, &ENUMBER (§LAST) is replaced by
the fifth operand of the sublist.

80

SETC_--_ SET CHARACTER

The SETC instruction is used to assign a
character value to a SETC symbol. The
format of this instruction is:

r T T)
!Name | Operation |Operand j
i 1
¥ L] T 1
A SETC | SETC | One operand, of |
{ symbol | | the form described |
| I I
L 1 J

| below
H N

The operand field may consist of the
type attribute, a character expression, a
substring notation, or a concatenation of

substring notations and character
expressions. A SETA symbol may appear in
the operand of a SETC statement. The

result is the character representation of
the decimal value, unsigned, with leading
zeros removed. If the value is 2zero, one
decimal zero is used.

Type Attribute

The character value assigned to a SETC
symbol may be a type attribute. If the
type attribute 1is used, it must appear
alone in the operand field. The following
example assigns to the SETC symbol &§TYPE
the letter that is the type attribute of
the macro-instruction operand that corre-
sponds to the symbolic parameter &ABC.

L 1] T
| Name | Operation |Operand
[N 4 i1

e

[} T T
|6TYPE |SETC | T*&ABC
L L L

Character Expression

A character expression consists of any
combination of characters enclosed in quo-
tation marks.

The character value enclosed in quota-
tion marks in the operand field is assigned
to the SETC symbol in the name field. The
maximum size character value that can be
assigned to a SETC symbol is eight charac-
ters.

Evaluation of Character Expressions: The
following statement assigns the character
value AB&4 to the SETC symbol EALPHA:

{ L] T 1
| Name |Operation |Operand |
i i (] — y)
v 1 T []
| EALPHA | SETC | "ABR4* I
L i i " |

More than one character expression may
be concatenated into a single character
expression by placing a period between the
terminating gquotation mark of one character
expression and the opening quotation mark
of the next character expression. For
example, either of the following statements
may be used to assign the character value
ABCDEF to the SETC symbol &BETA.

F) . T 1
| Name |Operation |Operand |
L 4 { 4
v 1 1 1
| SBETA |SETC | *ABCDEF" |
| EBETAR |SETC | *ABC'.'DEF" |
L L L y]

Two guotation marks must be used to
represent a quotation mark that is part of
a character expression.

The following statement assigns the
character value L'SYMBOL to the SETC symbol
S§LENGTH.

r v
| Name | Operation Operand
L 1

'L**SYMBOL’

o e e e o]
o e s s

L] g T
| SLENGTH |SETC
[L

Variable symbols may be concatenated
with other characters in the operand field
of a SETC instruction according to the
general rules for concatenating variable
symbols with other characters (see Section
7.

If &ALPHA has been assigned the charac-
ter value AB%4, the following statement may
be used to assign the character value
ABRURST to the variable symbol §GAMMA.

r T
| Name | Operation Operand
'y 4

e e o o
S S——-

r T
| 6GAMMA | SETC 'SALPHA.RST'
L n

Two ampersands must be used to represent
an ampersand that is not part of a variable
symbol. Both ampersands become part of the
character value assigned to the SETC
symbol. They are not replaced by a single
ampersand.

The following statement assigns the

character value HALF§§& to the SETC symbol
SAND.

) T . T 1
| Name {|Cperation |Operand |
b 4 + 1
| §AND | SETC | "HALF&é&" |
L i i J

Substring Notation

The character value assigned to a SETC
symbol may be a substring character value.
Substring character values permit the pro-
grammer to assign part of a character value
to a SETC symbol.

If the programmer wants to assign part
of a character value to a SETC symbol, he
must indicate to the assembler in the
operand field of a SETC instruction: (1)
the character value itself, and (2) the
part of the character value he wants to
assign to the SETC symbol. The combination
of (1) and (2) in the operand field of a
SETC instruction 1is called a substring
notation. The character value that is
assigned to the SETC symbol in the name
field is called a substring character
value.

Substring notation consists of a charac-
ter expression, immediately followed by two
arithmetic expressions that are separated
from each other by a comma and are enclosed
in parehtheses. The two arithmetic expres-
sions may be any expression that is allowed
in the operand field of a SETA instruction.

The first expression indicates the first
character in the character expression that
is to be assigned to the SETC symbol in the
name field. The second expression indi-
cates the number of consecutive characters
in the character expression (starting with
the character indicated by the first
expression) that are to be assigned to the
SETC symbol.

The maximum size substring character
value that can be assigned to a SETC symbol
is eight characters. The maximum size
character expression the substring charac-
ter value can be chosen from is 255 charac-
ters.

The following are valid substring nota-
tions:

*§ALPHA' (2, 5)

'ABX4* (6AREA+2, 1)
*§ALPHA.RST® (6, &3)
*ABCEGAMMA® (§A, 6AREA+2)

Writing Conditional Assembly Instructions 81

The following invalid

notations:

are substring

*¢BETA' (4, 6)
(blanks between character value
and arithmetic expressions)
‘L' *SYMBOL"' (142-§XYZ)
(only one arithmetic expression)
*ABXUEALPHA" (8 S§FIELD*2)
(arithmetic expressions
not separated by a comma)
'*BETA'4,6
(arithmetic expressions
not enclosed in parentheses)

Using SETC Symbols

The character value assigned to a SETC
symbol is substituted for the SETC symbol
when it is used in the name, operation, or
operand field of a statement.

For example, consider the following
macro-definition, macro-instruction, and
generated statements.)

H H R T 1
| Name |Operation |Operand |
b ¢ ¢ {
	MACRO	
§NAME	MOVE	§T0, §FROM
	ILCLC	EPREFIX
1	¢PREFIX	SETC
ENAME	ST	2, SAVEAREA
2	L	2, §PREFIX§FROM
3		ST
	L	2, SAVEAREA
	MEND I I	
' i N ¥		
L g T T L)		
HERE	MOVE	A,B
b $ t 1		
HERE	ST	2, SAVEAREA
L {2,FIELDB		
	ST {2,FIELDA	
{ L	2, SAVEAREA	
R 1 L 1		
Statement 1 assigns the character value
FIELD to the SETC symbol &PREFIX. In
statements 2 and 3, &PREFIX is replaced by
FIELD.
The following example shows how the
value assigned to a SETC symbol may be

changed in a macro-definition.

82

r T T 3
| Name |Operation |Operand |
; + + 1
	MACRO	
ENAME	MOVE	§TO, §FROM
	LCLC	8PREFIX
1	8PREFIX	SETC
§NAME	sT	2, SAVEAREA
2		L
3	§PREFIX	SETC
4		ST
i	L	2,SAVEAREA
	MEND ! [
; t -+ 1		
HERE	MOVE {a,B	
t t 1 i		
HERE	ST {2,SAVEAREA	
	L	2,FIELDB i
[|sT | 2,AREAA |
i L | 2, SAVEAREA |
L L N J

Statement 1 assigns the character value
FIELD to the SETC symbol &§PREFIX. There-
fore, &PREFIX 1is replaced by FIELD in
statement 2. Statement 3 assigns the char-
acter value AREA to &PREFIX. Therefore,
S§PREFIX is replaced by AREA, instead of
FIELD, in statement 4.

The following example illustrates the
use of a substring notation as the operand
field of a SETC instruction.

r T T 1
|Name |Operation |Operand |
b ¢ { {
[| MACRO | |
| §NAME | MOVE | §TO, EFROM I
I |LCcLC | §PREFIX |
1 |6PREFIX |SETC | *&TO" (1,5) |
| §NAME |sT | 2, SAVEAREA |
2 | |L |2, 6PREFIX§FROM |
| | ST |2,€TO |
| L | 2, SAVEAREA |
! | MEND | I
¢ t t {
| HERE | MOVE | FIELDA,B I
t 1 1 1
HERE	sT	2, SAVEAREA
	L	2,FIELDB
	ST	2,FIELDA
	L	2, SAVEAREA
L L L 4

Statement 1 assigns the substring char-
acter value FIELD (the first five charac-
ters corresponding to symbolic parameter
§TO) to the SETC symbol EPREFIX.
Therefore, FIELD replaces &PREFIX in state-
ment 2.

Concatentating Substring Notations and
Character Expressions: Substring notations
may be concatenated with character expres-
sions in the operand field of a SETC

instruction. If a substring notation fol-
lows a character expression, the two may be
concatenated by placing a pericd between
the terminating gquotation mark of the char-
acter expression and the opening quotation
mark of the substring notation.

For example, if SALPHA has been assigned
the character value ABR4, and &EBETA has
been assigned the character value ABCDEF,
then the following statement assigns &GAMMA
the character value ABXUBCD.

r T T
| Name |Operation |Operand
] { +

1
| *6ALPHA'."§BETA" (2, 3)
R

b e b —

T T
| EGAMMA | SETC
| 8 L

If a substring notation precedes a char-
acter expression or another substring nota-
tion, the two may be concatenated by writ-
ing the opening quotation mark of the
second item immediately after the closing
parenthesis of the substring notation.

‘"The programmer may optionally place a
period between the closing parenthesis of a
substring notation and the opening quota-
tion mark of the next item in the operand
field.

If §ALPHA has been assigned the charac-
ter value ABXY4, and &ABC has been assigned
the character value 5RS, either of the
following statements may be used to assign
§WORD the character value ABXU5RS.

v T T
|Name |Operation|Operand
[N 4 i

e e

r t + -

| §WORD | SETC | *€ALPHA® (1,4) * EABC®

| EWORD | SETC | ' €ALPHA® (1,4) '&ABC' (1, 3)
L i L

If a SETC symbol is used in the operand
field of a SETA instruction, the character
value assigned to the SETC symbol must be a
self-defining term.

If a SETA symbol is used in the operand
field of a SETC statement, the arithmetic
value is converted to an unsigned integer
with 1leading =zeros removed. If the value

is zero, it is converted to a single zero.
SETB -- SET BINARY

The SETB instruction may be used to
assign the binary value 0 or 1 to a SETB

symbol. The format of this instruction is:

I k) T 1
| Name |Operation|Operand |
L 1 4 4
t] i R
A SETB	SETB {A 0 or 2a 1, or a logi-	
symbol		cal expression en-
{	closed in parentheses	
L . 4 4

The operand field may contain a 0 or a 1
or a logical expression enciosed in paren-

theses. A logical expression is evaluated
to determine if it is true or false; the
SETB symbol in the name field is then

assigned the binary value i or 0 corres-
ponding to true or false, respectively.

A logical expression consists of one
term or a logical combination of terms.
The terms that may be used alone or in
combination with each other are arithmetic
relations, character relations, and SETB
symbols. The logical operators used to
combine the terms of an expression are AND,
OR, and NOT.

An expression may not contain two terms
in succession. A 1logical expression may
contain two operators in succession only if
the first operator is either AND or OR and
the second operator is NOT. A logical
expression may begin with the operator NOT.
It may not begin with the operators AND or
OR.

An arithmetic relation consists of two
arithmetic expressions connected by a rela-
tional operator. A character relation con-
sists of two character values connected by
a relational operator. The relational
operators are EQ (equal), NE (not equal),
LT (less than), GT (greater than), LE (less
than or equal), and GE (greater than or
equalj .

Any expression that may be used in the
operand field of a SETA instruction, may be
used as an arithmetic expression in the
operand field of a SETB instruction. Any-
thing that may be used in the operand field
of a SETC instruction, may be used as a
character value in the operand field of a
SETB instruction. This includes substring
and type attribute notations. The maximum
size of the character values that can be
compared is 255 characters. If the two
character vaiues are of unequal size, then
the smaller one will always compare less
than the larger one.

The relational operators must be immedi-
ately preceded and followed by at least one
blank. Each relation may or may not be
enclosed in parentheses. If a relation is
not enclosed in parentheses, it must be
separated from the logical operators by at
least one blank. A relation enclosed in
parentheses need not be separated by any

Writing Conditional Assembly Instructions 83

blanks from the logical operators.
However, blanks may be optionally placed
between 1logical operators and relations
enclosed in parentheses.

The following are valid operand fields
of SETB instructions:

1

(SEAREA+2 GT 29)

(*AB%4' EQ 'EALPHA')

(T*SABC NE T'&XYZ)

(T*§P12 EQ 'F')

(EAREA+2 GT 29 OR &B)

(NOT &B AND SAREA+X'2D' GT 29)

The following are invalid operand fields
of SETB instructions:

&B (not enclosed in parentheses)

(T*'€P12 EQ °*F' §B) .
(two terms in succession)
(*AB%4' EQ 'ALPHA' NOT &B)
(the NOT operator must be
preceded by AND or OR)
(AND T'§P12 EQ 'F')
(expression begins with AND)

Evaluation of lLogical Expressions

The following procedure is wused to
evaluate a logical expression in the oper-
and field of a SETB instruction:

1. Each term (i.e., arithmetic relation,
character relation, or SETB symbol) is
evaluated and given its logical value
(true or false).

2. The 1logical operations are performed
moving from left to right. However,
NOTs are performed before ANDs, and
ANDs are performed before ORs.

3. The computed result is the value
assigned to the SETB symbol in the
name field.

The logical expression in the operand
field of a SETB instruction may contain one
or more sequences of logically combined
terms that are enclosed in parentheses., A
sequence of parenthesized terms may appear
within another parenthesized sequence.

The following are examples of SETB
instruction operand fields that contain
parenthesized sequences of terms.

(NOT (§B AND SAREA+X'2D' GT 29))
(€B AND (T*'&P12 EQ *F' OR §B)

The parenthesized portion or portions of

a logical expression are evaluated before
the rest of the terms in the expression are

84

evaluated. If a sequence of parenthesized
terms appears within another parenthesized
sequence, the innermost sequence is evalu-
ated first.

Jsing SETB Symbols

The logical value assigned to a SETB
symbol is used for the SETB symbol appear-
ing in the operand field of an AIF instruc-
tion or another SETB instruction.

If a SETB symbol is used in the operand
field of a SETA instruction, or in arith-
metic relations in the operand fields of
AIF and SETB instructions, the binary
values 1 (true) and 0 (false) are converted
to the arithmetic wvalues +1 and +0, respec-
tively.

If a SETB symbol is used in the operand
field of a SETC instruction, in character
relations in the operand fields of AIF and
SETB instructions, or in any other state-
ment, the binary values 1 (true) and 0O
(false), are converted to the character
values 1 and 0, respectively.

The following example illustrates these
rules. It is assumed that L'6€TO EQ 4 is
true, and S'€TO EQ 0 is false.

I T T 1
| Name |Operation |Operand |
t t t {
| | MACRO | |
| ENAME | MOVE | §TO, EFROM {
| {LCLA | &A1 |
i | LCLB | 6B1,&B2]
| | LCLC {&C1 |
1 |§B1 | SETB | (L'6TO EQ W) |
2 |&B2 | SETB | (S'€TO EQ 0) I
3 |&At | SETA | €B1 |
4 jeCt | SETC |*éB2" |
	ST	2, SAVEAREA
	L	2, §FROMEA1
jsT	2, &TO&CH	
i	L	2, SAVEAREA
	MEND	
¢ t t i		
HERE	MOVE	FIELDA, FIELDB
N 4 4 4		
r T 1		
{HERE	ST	2, SAVEAREA
	L	2, FIELDB1 I
	sT	2,FIELDAO
i |L { 2, SAVEAREA [
. i L 4

Because the operand field of statement 1
is true, §&B1 is assigned the binary value
1. Therefore, the arithmetic value +1 is
substituted for &B1 in statement 3.
Because the operand field of statement 2 is

false, &B2 is assigned the binary value 0.
Therefore, the character value 0 is substi-
tuted for £B2 in statement 4.

ATF -- CONDITIONAL BRANCH

The AIF instruction is wused to condi-
tionally alter the sequence in which source

program statements are processed by the
assembler. The format of this instruction
is:

T T . T 1
| Name | Operation|Operand |
b 4 4 4
3 T T 1
|A se- |AIF |A logical expression |
{quence | {enclosed in paren- |
symbol or}		theses, immediately
blank		followed by a
		sequence symbol
L L L d

Any 1logical expression that may be used
in the operand field of a SETB instruction
may be used in the operand field of an AIF
instruction. The sequence symbol in the
operand field must immediately follow the
closing parenthesis of the logical expres-
sion.

The 1logical expression in the operand
field is evaluated to determine if it is
true or false. If the expression is true,
the statement named by the sequence symbol
in the operand field is the next statement
processed by the assembler. If the expres-
sion is false, the next sequential state-
ment is processed by the assembler.

The statement
symbol may precede or
instruction.

named by the sequence
follow the AIF

If an AIF instruction is in a macro-
definition, then the sequence symbol in the
operand field must appear in the name field
of a statement in the definition. If an
AIF instruction appears outside macro-
definitions, then the sequence symbol in
the operand field must appear in the name
field of a statement outside macro-
definitions.

The following are valid operand fields
of AIF instructions:

(SAREA+X'2D' GT 29) .READER
(T'6P12 EQ 'F') .THERE

The following are invalid operand fields
of AIF instructions:

(T'6ABC NE T'&XYZ) (no sequence symbol)

<XUF2
(T*6ABC NE T"'&XYZ)

(nc logical expression)
<XU4F2
(blanks between logical
expression and se-

quence symbol)

The following macro-definition may be
used to generate the statements needed to
move a full-word fixed-point number from
one storage area to another. The
statements will be generated only if the
type attribute of both storage areas is the
letter F.

r T T h |
| Name |Operation|Operand |
b=t ' 4
| |MACRO |
€N |MOVE |&T, 6F |
1 [AIF | (T'ST NE T'&F) .END |
2 | |AIF | (C'6T NE *F') .END |
3 &N |ST | 2, SAVEAREA |
| L [2,8F |
| (ST |2,6T |
} |L {2, SAVEAREA |
4 |.END |MEND | |
b 1 i J

The 1logical expression in the operand
field of statement 1 has the value true if
the type attributes of the two macro-
instruction operands are not equal. If the
type attributes are equal, the expression
has the liogical value false.

Therefore, if the type attributes are
not equal, statement 4 (the statement named
by the sequence symbol .END) is the next
statement processed by the assembler. If
the type attributes are equal, statement 2
(the next sequential statement) is
processed.

The logical expression in the operand
field of statement 2 has the value true if
the type attribute of the first macro-
instruction operand is not the letter F.
If the type attribute is the letter F, the
expression has the logical value false.

Therefore, if the type attribute is not
the letter F, statement 4 (the statement
named by the sequence symbol .END) is the
next statement processed by the assembler.
If the type attribute is the letter F,
statement 3 (the next sequential statement)
is processed.

AGO -- UNCONDITIONAL BRANCH

The AGO instruction is used to
unconditionally alter the sequence in which
source program statements are processed by

Writing Conditional Assembly Instructions 85

the assembler. The format of this instruc-

tion is:

r T T 1
Name [Operation|Operand |
4 4 4
T T 1
|A sequence|AGO |A sequence symbol |
symbol or | | |
blank | | |
L v "}
The statement named by the sequence
symbol in the operand £field is the next

statement processed by the assembler.
The statement named by the sequence

symbol may precede or follow the AGO
instruction.

If an AGO instruction is part of a
macro-definition, then the sequence symbol
in the operand field must appear in the
name field of a statement that is in that
definition. If an AGO instruction appears
outside macro-definitions, then the
sequence symbol in the operand field must
appear in the name field of a statement
outside macro-definitions.

The following example 1illustrates the
use of the AGO instruction.
¥ T . T 1
|Name |Operation|Operand |
b + + {
| [MACRO | |
| SNAME |MOVE |&T,&F (
1] |AIF | (T*6T EQ 'F") .FIRST |
2 | |aGo | -END {
3 | .FIRST|AIF | (T*&T NE T'&F) .END i
| SNAME |ST | 2, SAVEAREA |
I |L [2,6F [
{ |ST |2,6T |
| {L | 2, SAVEAREA |
4 |.END |MEND | {
L i 4 J
Statement 1 is used to determine if the
type attribute of the first macro-

instruction operand is the letter F. If
the type attribute is the letter F,
statement 3 is the next statement processed
by the assembler. If the type attribute is
not the letter F, statement 2 is the next
statement processed by the assembler.

Statement 2 is used to indicate to the
assembler that the next statement to be
processed is statement 4 (the statement
named by sequence symbol .END) .

86

ANOP -- ASSEMBLY NO OPERATION

The ANOP instruction facilitates condi-

tional and unconditional branching to
statements named by symbols or variable
symbols.

The format of this instruction is:

L} T
| Name Operation |Operand
[N]

' Blarl]:
l quence

L]
|
]
I T
|A se- | ANOP
I
|symbol |
t L

| SRR S g———

e e

If the programmer wants to use an AIF or
AGO instruction to branch to another state-
ment, he must place a sequence symbol in
the name field of the statement to which he
wants to branch. However, if the program-
mer has already entered a symbol or varia-
ble symbol in the name field of that
statement, he cannot place a sequence sym-
bol in the name field. Instead, the pro-
grammer must place an ANOP instruction
before the statement and then branch to the
ANQP instruction, This has the same effect
as branching to the statement immediately
after the ANOP instruction.

The following example illustrates the
use of the ANOP instruction.

L} T T 1
{Name | Operation |Operand |
¢ t t {
| | MACRO | |
|ENAME |MOVE | €T, €F |
i | LCLC | §TYPE |
1] |AIF | (T*6T EQ 'F') .FTYPE |
2 |6TYPE |SETC |'E’ |
3 |.FTYPE |ANOP | i
4 |§NAME |STSTYPE |2,SAVEAREA |
i | LETYPE |2,8F I
i |STETYPE [2,&T |
| | LETYPE | 2, SAVEAREA i
I | MEND | |
L i 4 y]
Statement 1 is used to determine if the
type attribute of the first macro-

instruction operand is the letter F. If
the type attribute is not the 1letter F,
statement 2 is the next statement processed
by the assembler. If the type attribute is
the letter F, statement 4 should be
processed next. However, since there is a
variable symbol (ENAME) in the name field
of statement 4, the required sequence sym-
bol (.FTYPE) cannot be placed in the name
field. Therefore, an ANOP instruction
(statement 3) must be placed before state-
ment 4.

Then, if the type attribute of the first
operand is the letter F, the next statement
processed by the assembler is the statement
named by sequence symbol .FTYPE. The value
of §TYPE retains its imnitial null character
value because the SETC instruction is not
processed. Since .FTYPE names an ANOP
instruction, the next statement processed
by the assembler is statement 4, the state-
ment following the ANOP instruction.

CONDITIONAL ASSEMBLY ELEMENTS

The above chart summarizes the elements
that can be used in each conditional assem-
bly instruction. Each row in this chart
indicates which elements can be used in a
single conditional assembly instruction.
Each column is used to indicate the condi-

tional assembly instructions in which a

particular element can be used.

The intersection of a column and a row
indicates whether an element can be used in
an instruction, and if so, in what fields
of the instruction the element can be used.
For example, the intersection of the first
row and the first column of the chart

indicates that symbolic parameters can be
used in the operand field of SETA instruc-
tions.

r T T b}
{ Variable Symbols | | |
| | Attributes | |
i | SET Symbols { | |
| r- 1 { 1
| S.P. | SETA | SETB | SETC | T* | L* | S* | I' | K* | N' { S.S. |
%' T L R 3 % T T T T T + 'Jl
| | | | | i | | { | | | |
] SETA | O | N O] O | O | {0 o (o o Jo | |
| | | | | | | | | | | | |
t + + + + + + + +-———-1 + + i
				i I						
SETB	O	©	N0	O j OY	02	02	02	02	02	
	{ {									
L 4 4 4 4 L 4 4 H 1 1 1 4										
) T T 1] T T T T T T T T b}										
	(A		
SETC ! 0 ! (o] ! 0 ! N,O ! 0 ! !										
i i i i i i i i i i i { i										
L IR i 1 4 L 4 4 i i L 4 ____‘I										
3 T T 1 T T T 1 T T T]										
]	i									
AIF	O	©	©O	O] 0O* 02	02	02	02	02	N,0	
					{					
L. 4 1 4 N L 4+ 4 e o . i i 4										
T T T T T t 1 [} + + T 1] A}										
										{
aGo										
i I 1 1 1 4 4 1 i 4 1 1 d										
T H T 1	4 T 1 1] T T 1 T 1									
					{					
ANOP										
]		
i L L 1. 4 1 L L. 1 L L L J										
I										
} * Only in character relatioms										
2 Only in arithmetic relations										
Abbreviations										
N is Name L' is Length Attribute K is Count Attribute										
O is Operand S' is Scaling Attribute N° is Number Attribute										
{ S.P. is Symbolic 1I' is Integer Attribute S.S. is Sequence Symbol										
Parameter										
L y)

Writing Conditional Assembly Instructions 87

SECTION 10: EXTENDED FEATURES OF THE MACRO LANGUAGE

The extended features of the macro 1lan-
guage allow the programmer to:

1. Terminate processing of a
definition.

2. Generate error messages.

3. Define global SET symbols.

4. Define subscripted SET symbols.

5. Use system variable symbols.

6. Prepare keyword and mixed-mode macro-

macro-

definitions and write keyword and
mixed-mode macro-instructions.
7. Use other System/360 macro-
definitions.
MEXIT -- MACRO-DEFINITION EXIT
The MEXIT instruction is used to indi-

cate to the assembler that it should termi-

nate processing of a macro-definition. The
format of this instruction is:

T T R Ll 1
| Name |Operation |Operand |
F t t {
A sequence	MEXIT	Blank
symbol or		
blank		
L L i J

The MEXIT instruction may only be used
in a macro-definition.

If the assembler processes an MEXIT
instruction that is in a macro-definition
corresponding to an outer macro-
instruction, the next statement processed
by the assembler 1is the next statement
outside macro-definitions.

If the assembler processes an MEXIT

instruction that is in a macro-definition
corresponding to a second or third level
macro-instruction, the next statement proc-
essed by the assembler is the next state-
ment after the second or third level macro-
instruction instruction in the macro-
definition, respectively.

MEXIT should not be confused with MEND.
MEND indicates the end of a macro-
definition. MEND must be the 1last

statement of every macro-definition,
including those that contain one or more
MEXIT instructions.

88

The following example illustrates the
use of the MEXIT instruction.
T L T 1
| Name | Operation |Operand |
L 1 P 4 4
v [} T 1
| | MACRO | |
| SNAME |MOVE | 6T, &F |
1] | AIF | (T*€T EQ 'F') .OK |
2 | | MEXIT | |
3 |.0K | ANOP] |
| ENAME | ST | 2, SAVEAREA |
I |L |2,&F |
| | sT |12,&T |
| L | 2, SAVEAREA |
I | MEND I I
L i L 4
Statement 1 is used to determine if the
type attribute of the first macro-

instruction operand is the letter F. It
the type attribute is the letter F, the
assembler processes the remainder o¢f the
macro-definition starting with statement 3.
If the type attribute is not the letter F,
the next statement processed by the
assembler 1is statement 2. Statement 2
indicates to the assembler that it is to
terminate processing of the macro-
definition.

MNOTE -- REQUEST FOR ERROR MESSAGE

The MNOTE instruction may be used to
request the assembler to generate an error

message. The format of this instruction
is:

r T . T

| Name | Operation|Operand

L 4 4

$
|A severity code,
| followed by

| |a comma, followed
| | | by any combination
| | |of characters en-
) | |closed in quo-
| i | tation marks.
L N L

r T

|A sequence|MNOTE
| symbol or |

| blank

b e v e w— —— o— el So—]

The MNOTE instruction may only be used
in a macro-definition.

The severity code may be a decimal
integer from 0 through 7. If the severity

code is omitted, 0 is assumed. The
severity code indicates the severity of the
error. A higher severity code indicates a
more serious error.

When an MNOTE instruction is processed
by the assembler, the characters enclosed
in quotation marks are provided in the
source program listing the same way that
other error messages are provided in the
program listing.

Two gquotation marks must be wused to
represent a quotation mark enclosed in
quotation marks in the operand field of an
MNOTE instruction. One quotation mark will
be listed for each pair of quotation marks

in the operand field.

If any variable symbols are used in the
operand field of an MNOTE instruction, they
will be replaced by the values assigned to
them.

Two ampersands must be used to represent
an ampersand that is not part of a variable
symbol in the operand field of an MNOTE
statement. One ampersand will be 1listed
for each pair of ampersands in the operand
field.

The following example illustrates the
use of the MNOTE instruction.

i |

r T h
|Name |Operation|Operand

|

-t -—1 4

| | MACRO | |

| §NAME | MOVE j&T, &F |
1 |AIF | (T*6T NE T'&F) .M1 i
2 | |AIF | (T"6T NE 'F') .M2 |
3 |SNAME|ST | 2, SAVEAREA |
| |L |2,8F |

{ |ST |2,&T |

| I | 2, SAVEAREA {

| | MEXIT i i

4 |.M1 |MNOTE | 'TYPE NOT SAME' |
| |MEXIT { i

S |.M2 |MNOTE | *TYPE NOT F' |
[| MEND | [

L 1 L J
Statement 1 is used to determine if the

type attributes of both macro-instruction
operands are the same. If they are, state-
ment 2 1is the next statement processed by
the assembler. If they are not, statement

4 is the next statement processed by the
assembler. Statement U4 causes an error
message -- TYPE NOT SAME -- to be printed

in the source program listing.

Statement 2 is used to determine if the

type attribute of the first macro-
instruction operand is the letter F. If
the type attribute is the 1letter F,

statement 3 is the next statement processed
by the assembler. 1If the attribute is not
the letter F, statement 5 1is the next
statement processed by the assembler.
Statement 5 causes an error message -- TYPE
NOT F -- to be printed in the source
program listing.

GLOBAL AND LOCAL VARIABLE SYMBOLS

The following local variable

symbols:

are

1. Symbolic parameters.
2. Local SET symbols.
3. System variable symbols.

Global SET symbols are the only global
variable symbols.

The GBILA, GBLB, and GBLC instructions
define global SET symbols, just as the
LCIA, ILCLB, and LCIC instructions define
the SET symbols described in Section 9.
Hereinafter, SET symbols defined by LCLA,
LCLB, and ICLC instructions will be called
local SET symbols.

Global SET symbols communicate values
between statements in one or more macro-
definitions and statements outside macro-
definitions. However, local SET symbols
communicate values between statements in
the same macro-definition, or between
statements outside macro-definitions.

If a local SET symbol is defined in two
or more macro-definitions, or in a macro-
definition and outside macro-definitions,
the SET symbol is considered to be a
different SET symbol in each case.
However, a global SET symbol is the same
SET symbol each place it is defined.

A SET symbol must be defined as a global

SET symbol in each macro-definition in
which it is to be used as a global SET
symbol. A SET symbol must be defined as a
global SET symbol outside macro-

definitions, if it is to be used as a
global SET symbol outside

macro-definitions.

If the same SET symbol is defined as a
global SET symbol in one or more places,
and as a local SET symbol elsewhere, it is
considered the same symbol wherever it is
defined as a global SET symbol, and a
different symbol wherever it is defined as
a local S=T symbol.

Extended Features of the Macro Language 89

Defining local and Global SET Symbols

Local SET symbols are defined when they
appear in the operand field of an LCLA,
ICLB, or LCILC instruction. These instruc-
tions are discussed in Section 9 under
"Defining SET Symbols."™

Global SET symbols are defined when they
appear in the operand field of a GBLA,
GBLB, or GBLC instruction. The formats of
these instructions are:

r T L} L
| Name |Operation|Operand |
L 4 1 4
r 1 . L) 1
Blank	GBLA,	One or more variable
	GBLB, or	symbols that are to be
	GBLC	used as SET symbols,
		separated by commas
t L 1 J

The GBLA, GBLB, and GBIC instructions

define global SETA, SETB, and SETC symbols,
respectively, and assign the same initial
values as the corresponding types of local
SET symbols. However, a global SET symbol
is assigned an initial value by only the
first GBLA, GBLB, or GBLC instruction proc-
essed in which the symbol appears. Subse-
quent GBLA, GBLB, or GBLC instructions
processed by the assembler do not affect
the value assigned to the SET symbol.

The programmer should not define any
global SET symbols whose first four charac-
ters are §SYS.

If a GBLA, GBLB, or GBLC instruction is
part of a macro-definition, it must immedi-
ately follow the prototype statement, or
another GBLA, GBLB, or GBLC instruction.
GBLA, GBLB, and GBLC instructions outside
macro-definitions must appear after all
macro-definitions in the source program,
before all conditional assembly instruc-
tions and PUNCH and REPRO statements out-
side macro-definitions, and before the
first control section of the program.

All GBLA, GBLB, and GBLC instructions in
a macro-definition must appear before all
LCILA, LCLB, and LCLC instructions in that
macro-definition. All GBLA, GBLB, and GBLC
instructions outside macro-definitions must
appear before all LCLA, LCLB, and LCLC
instructions outside macro-definitions.

Using Global and Local SET Symbols

illustrate the
Each

The following examples
use of global and local SET symbols.

90

example consists of two parts. The first
part is an assembler language source pro-
gram. The second part shows the statements
that would be generated by the assembler
after it processed the statements in the
source programe.

Example 1: This example illustrates how
the same SET symbol can be used to communi-
cate (1) values between statements in the
same macro-definitions, and (2) different
values between statements outside macro-
definitions.

T
Name | Operation Operand
i

L

| MACRO
| LOADA
| LCLA

| IR

| SETA
| MEND

|

|LCLA

| LOADA
| LR

| LOADA

2w

™
2

: z

15,87
EA+1

W -
™
i

=
™
»

FIRST

wn
S ——————

-
(S
™

B

] ws
e

Hy

[

W

4]

=]
M e d o
HOOOWM =
We &« &«
hWocoocl hm

[e e s e e o S i —— ——— ———— ———— — oo a—]
=]

e e s e e e el — —— — — —— — — — ——— —— i c—]

A 1is defined as a local SETA symbol in
a macro-definition (statement 1) and
outside macro-definitions (statement 4).
EA is wused twice within the macro-
definition (statements 2 and 3) and twice
outside macro-definitions (statements 5 and
6) .

Since &éA is a local SETA symbol in the
macro-definition and outside macro-
definitions, it is one SETA symbol in the
macro-definition, and another SETA symbol
outside macro-definitions. Therefore,
statement 3 (which is in the
macro-definition) does not affect the value
used for éA in statements 5 and 6 (which
are outside macro-definitions) .

Example 2: This example illustrates how a
SET symbol can be used to communicate
values between statements that are part of
a macro-definition and statements outside
macro-definitions.

r T T] r T 1 1

| Name |Operation |Operand | | Name | Operation |Operand |

t + + 1 { —=1 - 1

| | MACRO | | | MACRO | |

| §NAME | LOADA | | | §NAME | LOADA |]
1] | GBLA | €A | 1 | LCLA | éa |
2 |ENAME |LR |15,8A i 2 |ENAME |LR |15,8A |
3 |&A |SETA | 6A+1 | 3 |&a | SETA | 8a+1 {
| | MEND { { | | MEND { |

! ! | 1 1 | [|
4 | GBLA |sa | | MACRO | |
|FIRST |LOADA | | | LOADB | |
5] |LR 115,82 | 4 | | LCLA | éA |
! {LOADA ! I 51 | LR 115,6a !

6 | {LR 15,82 | 6 |&A | SETA | 6A+1 i
{ | END | FIRST | | MEND | I

¢ t S | | | |
|Fre<T |LR | 15,0 i |FIRST |LOADA | |

{ JLR]15,1 | | LOADB | |

| |LR 115,1 | | LOADA | |

| (IR [15.2 | I | LOADB [|

| | END | FIRST | | | END | FIRST |

L L L 4 I8 L L 4

L 3 T T B |

|FIRST |IR 115,0 |

{ | LR {15,0 |

| | LR [15,0 i

| | LR 115,0 |

&A is defined as a global SETA symbol in | | END |FIRST]

a macro-definition (statement 1) and out- L L L .|

side macro-definitions (statement &). A
is wused twice within the macro-definition
(statements 2 and 3) and twice outside
macro-definitions (statements 5 and 6).

Example 4: This example illustrates how a
SET symbol can be used to communicate
Since §&A is a global SETA symbol in the values between statements that are part of

macro-definition and outside macro- two different macro-definitions.
definitions, it is the same SETA symbol in
both cases. Therefore, statement 3 (which
is in the macro-definition) affects the

r T T b
value used for €A in statements 5 and 6 | Name |Operation |Operand |
(which are outside macro-definitions) . ¢ + + i

| | MACRO | |

|§NAME | LOADA i i
Example 3: This example illustrates how 1 | GBLA | éA i
the same SET symbol can be used to 2 |ENAME |LR 115,8A |
communicate: (1) values between statements 3 |&A | SETA | 6A+1 |
in one macro-definition, and (2) different | { MEND | |
values between statements in a different | | | {
macro-definition. | | MACRO | |

I | LOADB | |

4 | |GBLA | 6A |

€A is defined as a local SETA symbol in 5 1 | LR }115,¢8a |
two different macro-definitions (statements 6 |&A | SETA | 6A+1 |
1and 4). &A is wused twice within each | | MEND | |
macro-definition (statements 2, 3, 5, and | i | |
6) . |FIRST {LOADA i {
| | LOADB i |

Since &A is a local SETA symbol in each | | LOADA | |
macro-definition, it is one SETA symbol in | | LOADB | {
one macro-definition, and another SETA sym- | | END | FIRST i
bol in the other macro-definition. There- t + } {
fore, statement 3 (which is in one |FIRST |LR }15,0 |
macro-definition) does not affect the value | |LR |15,1 |
used for &A in statement 5 (which is in the | | LR 115,2 |
other macro-definition). Similarly, state- | | LR 115,3 |
ment 6 does not affect the value used for | | END | FIRST |
&A in statement 2. L 1 L 4

Extended Features of the Macro Language

(X~}
-

€A is defined as a global SETA symbol in
two different macro-definitions (statements
1 and 4). €A 1is used twice within each
macro-definition (statements 2, 3, 5 and
6) .

Since &A is a global SETA symbol in each
macro-definition, it is the same SETA sym-

bol in each macro-definition. Therefore,
statement 3 (which is in one
macro-definition) affects the wvalue used
for &A in statement 5 (which is in the

other macro-definition) . Similarly, state-
ment 6 affects the value used for &A in
statement 2.

Example 5: This example illustrates how
the same SET symbol can be used to communi-
cate: (1) values between statements in two
different macro-definitions, and (2) dif-
ferent values between statements outside
macro-definitions.

T
Name |Operation |Operand
|

}
| MACRO
| LOADA
|GBLA
| LR

{sETA

| MEND

:

WK -
an on
w2
@ - G0
>0
4+
-,
>

|

{ MACRO
| LOADB
|GBLA
{LR

| SETA
| MEND
|

|LCLA
| LOADA
| LOADB
LR

| LOADA
| LOADB
|LR
|END

[

™
»

15,6A
§A+1

aune

S ———
™
»

|
[
&
=]

+

FIRST |LR
{LR
{LR
|LR
{LR
|LR
| END
L

s e s . e, S s . . . S o T— - €Tt VA o — A —— —. —— — — T — —— —— ——— o o]
™
»

o e e i e e e . i e . e i . o . . i i . e, S, St S . . St . . P, . i, o,]

§A is defined as a global SETA symbol in
two different macro-definitions (statements
1 and 4) , but it is defined as a local SETA
symbol outside macro-definitions (statement
7. A is used twice within each macro-
definition and twice outside macro-
definitions (statements 2, 3, 5, 6, 8 and
9).

92

Since &éA is a global SETA symbol in each
macro-definition, it is the same SETA
symbol in each macro-definition. However,
since 6A is a 1local SETA symbol outside
macro-definitions, it 1is a different SETA
symbol outside macro-definitions.

Therefore, statement 3 (which is in one
macro-definition) affects the wvalue used
for &A in statement 5 (which is in the
other macro-definition), but it does not
affect the value used for éA in statements
8 and 9 (which are outside
macro-definitions) . Similarly, statement 6
affects the value used for &A in statement
2, but it does not affect the value used
for €A in statements 8 and 9.

Subscripted SET Symbols

Both global and local SET symbols may be
defined as subscripted SET symbols. The
local SET symbols defined in Section 9 were
all nonsubscripted SET symbols.

Subscripted SET symbols provide the pro-
grammer with a convenient way to wuse one

SET symbol plus a subscript to refer to
many arithmetic, binary, or character
values.

A subscripted SET symbol consists of a
SET symbol immediately followed by a sub-
script that 1is enclosed in parentheses.
The subscript may be any arithmetic expres-
sion that is allowed in the operand field
of a SETA statement.

The following are valid subscripted SET
symbols.

§READER (17)
§A23456 (554)
§XUF2 (25+£A2)

The following are

SET symbols.

EXUF2 (no subscript)

(25) (no SET symbol)

EXUF2 (25) (subscript does not
immediately follow
SET symbol)

invalid subscripted

Defining Subscripted SET Symbols: If the
programmer wants to use a subscripted SET
symbol, he must write in a GBLA, GBLB,
GBLC, LCLA, LCLB, or LCLC instruction, a
SET symbol immediately followed by a deci-
mal integer enclosed in parentheses. The
decimal integer, called a dimension, indi-
cates the number of SET variables associat-
ed with the SET symbol. Every variable
associated with a SET symbol is assigned an
initial value that is the same as the

initial value assigned to the corresponding
type of nonsubcripted SET symbol.

If a subscripted SET symbol is defined
as global, the same dimension must be used
with the SET symbol each time it is defined
as global.

The maximum dimension that can be used
with a SETA, SETB, or SETC symbol is 64,
255, and 64, respectively.

The following statements define the
global SET symbols §SBOX, &WBOX, and &PSW,
and the local SET symbol §TSW. §SBOX has
50 arithmetic variables associated with it,
E§WBOX has 20 character variables, &PSW and
ETSW each have 230 binary variables.

T T

Name |Operation |Operand
1 . +
T

f 1
| |
L i
[} L} 1
I | GBLA | 6 SBOX (50) |
i | GBLC | §WBOX (20) |
i | GBLB | 6PSW (230) |
i | ILCLB | £TSW (230) |
L y L 1

Using Subscripted SET Symbols: After the
programmer has associated a number of SET
variables with a SET symbol, he may assign
values to each of the variables and use
them in other statements.

If the statements in the previous exam-
pPle were part of a macro-definition, (and
€A was defined as a SETA symbol in the same
definition), the following statements could
be part of the same macro-definition.

r k) T L}
| Name |Operation |Operand |
L 1 1 ___{
3 1 T
1 |én | SETA {5 |
2 |&PSW(&A) |SETB | (6 LT 2) |
3 |&TSW(9) | SETB | (EPSW (8B)) |
4 |a 12,=F'&SBOX (45) * |
5 | |cLI | AREA, ' §WBOX (17) * |
Lt L L i

Statement 1 assigns the arithmetic value
5 to the nonsubscripted SETA symbol §A.
Statements 2 and 3 then assign the binary
value 0 to subscripted SETB symbols &PSW (5)
and &§TSW(9), respectively. Statements 4
and 5 generate statements that add the
7alue assigned to §&SBOX(45) to general
~egister 2, and compare the value assigned
to EWBOX (17) to the value stored at AREA,
respectively.

SYSTEM VARIABLE SYMBOLS

System variable symbols are local vari-
able symbols that are assigned values auto-
matically by the assembler. There are

three system variable symbols: §SYSNDX,
§SYSECT, and &SYSLIST. System variable
symbols may be used in the name, operation

and operand fields of statements in macro-
definitions, but not in statements outside
macro-definitions. They may not be defined
as symbolic parameters or SET symbols, nor
may they be assigned walues by SETA, SETB,
and SETC instructions.

§SYSNDX -- Macro-Instruction Index

The system variable symbol §&SYSNDX may
be concatenated with other characters to
create unique names for statements
generated from the same model statement.

§SYSNDX is assigned the four-digit num-
ber 0001 for the first macro-instruction
processed by the assembler, and it is
incremented by one for each subsequent
inner and outer macro-instruction
processed.

If &SYSNDX is used in a model statement,
SETC or MNOTE instruction, or a character
relation in a SETB or AIF instruction, the
value substituted for &§SYSNDX is the four-
digit number of the macro-instruction being
processed, including leading zeros.

it §SYSNDX appears in arithmetic
expressions {€.g., in the operand field of
a SETA instruction), the value used for
§SYSNDX is an arithmetic value.

Throughout one use of a
macro-definition, the value of &§SYSNDX may
be considered a constant, independent of
any inner macro-instruction in that defini-
tion.

The example in the next column illus-
trates these rules. It is assumed that the
first macro-instruction processed, OUTER 1,
is the 106th macro-instruction processed by
the assembler.

Statement 7 is the 106th macro-
instruction processed. Therefore, &SYSNDX
is assigned the number 0106 for that macro-
instruction. The number 0106 is
substituted for &SYSNDX when it is used in
statements 4 and 6. Statement 4 is used to
assign the character value 0106 to the SETC
symbol §&NDXNUM. Statement 6 1is used to
create the unique name B0106.

Extended Features of the Macro Language 93

r T T 1

| Name |Operation |Operand |

b + + |

| | MACRO | |

| | INNER1 | |

| |GBLC | € NDXNUM |

1 JAESYSNDX |SR 12,5 i
| |CR 12,5 !
2] | BE | BE NDXNUM i
3 |B | A6 SYSNDX i
| | MEND | |

| | | |

| | MACRO | |

| ENAME | OUTER1 | i

| |GBLC | § NDXNUM |

4 | sNDXNUM | SETC | * §SYSNDX" |
| §NAME | SR 12,4 i

| | AR 12,6 |

5 | | INNER1 | |
6 |B&SYSNDX |S |12,=F*1000" |
| | MEND | |

¢ ¢ ¢ {
7 |ALPHA | OUTER1 | |
8 |BETA | OUTER1 | |
————— ¢ } 4
|ALPHA | SR |2,4 |

| AR 12,6 |

120107 | SR 12,5 |

| {CR 12,5 I

| | BE |BO106 I

| |B |A0107 |
1B0106 1S {2,=F'"1000" {

| BETA { SR 12,4 |

| [AR 12,6 [
|A0109 | SR 12,5 |

| |CR 12,5 [

| | BE |B0O108 |

| |B |A0109 |
|B0108 IS |2,=F*'1000°"* |

L L ! J

Statement 5 is the 107th macro-
instruction processed. Therefore, §SYSNDX
is assigned the number 0107 for that macro-
instruction. The number 0107 is
substituted for §SYSNDX when it is used in
statements 1 and 3. The number 0106 is

substituted for the global SETC symbol
ENDXNUM in statement 2.

Statement 8 is the 108th macro-
instruction processed. Therefore, each

occurrence of §SYSNDX is replaced by the
number 0108. For example, statement 6 is
used to create the unique name B0108.

When statement 5 is used to process the
108th macro-instruction, statement 5
becomes the 109th macro-instruction proc-
essed. Therefore, each occurrence of
§SYSNDX is replaced by the number 0109.
For example, statement 1 is used to create
the unique name A0109.

94

§SYSECT -- Current Control Section

The system variable symbol &SYSECT may
be used to represent the name of the
control section in which a macro-
instruction appears. For each inner and
outer macro-instruction processed by the
assembler, &§SYSECT is assigned a value that
is the name of the control section in which
the macro-instruction appears.

When §SYSECT is
definition, the value

used in a macro-
substituted for

E§SYSECT 1is the name of the last CSECT,
DSECT, or START statement that occurs
before the macro-instruction. If no named
CSECT, DSECT, or START statements occur
before a macro-instruction, &SYSECT is

assigned a null character value for that

macro-instruction.

CSECT or DSECT statements processed in a
macro-definition affect the value for
§SYSECT for any subsequent inner macro-
instructions in that definition, and for

any other outer and inner macro-
instructions.
Throughout the use of a

macro-definition, the value of ESYSECT may
be considered a constant, independent of
any CSECT or DSECT statements or inner
macro-instructions in that definition.

The
rules.

next example illustrates these

Statement 8 is the last CSECT, DSECT, or
START statement processed before statement
9 1is processed. Therefore, §&SYSECT is
assigned the value MAINPROG for macro-
instruction OUTER1 in statement 9.
MAINPROG is substituted for &SYSECT when it
appears in statement 6.

Statement 3 is the last CSECT, DSECT, or

START statement processed before statement
4 is processed. Therefore, &SYSECT is
assigned the value CSOUT1 for macro-
instruction INNER in statement 4. CSoUT1

is substituted for &SYSECT when it appears
in statement 2.

Statement 1 is used to generate a CSECT
statement for statement 4. This is the
last CSECT, DSECT, or START statement that
appears before statement 5. Thexefore,
§SYSECT 1is assigned the value INA for
macro-instruction INNER in statement 5.
INA is substituted for &SYSECT when it
appears in statement 2.

T T 1
| Name |Operation |Operand {
- + + {
| |MACRO | |
| j INNER | §INCSECT |

1 |8§INCSECT |CSECT | |
2 | iDC |A (§SYSECT) |
| MEND | |

| | (

! IMACRO] |

| | OUTER1 | i

3 jcsouTt | CSECT | |
|DS {100C |

4 | INNER {INA !
5 | | INNER | INB |
6 | |DC | A (6SYSECT) |
' oo |

| MACRO | |

| | OUTER2 | |
71 |DC | A (§SYSECT) |
| | MEND | |

b t t {

8 |MAINPROG |CSECT | |
| | DS |200C |

9 | | OUTER1 | |
10 | | OUTER2 | |
t + 1 i
|MAINPROG |CSECT | |

| |DS |200C |
{CSOUT1 |CSECT | |

| | DS |100C |
|INA {CSECT | |

| | DC |A (CSOUT1) |

| INB |{CSECT |

{ | pC | A (INB) [

{ {DC |A (MAINPROG) |

i ipC {A (INB) i

L L i 4
Statement 1 is used to generate a CSECT
statement for statement 5. This is the
last CSECT, DSECT, or START statement that
appears before statement 10. Therefore,
§SYSECT is assigned +the value INB for
macro-instruction OUTER2 in statement 10.

INB 1is substituted for &SYSECT when it

appears in statement 7.

§SYSLIST -- Macro-Instruction Operand

The system variable symbol §&SYSLIST
provides the programmer with an alternative
to symbolic parameters for referring to
macro-instruction operands.

§SYSLIST and symbolic parameters may be
used in the same macro-definition.

§SYSLIST (n) may be used to refer to the
nth macro-instruction operand. In
addition, if the nth operand is a sublist,
then §SYSLIST (n,m) may be used to refer to
the mth operand in the sublist, where n and

m may be any arithmetic expressions allowed
in the operand field of a SETA statement.

The type, length, scaling, integer, and
count attributes of §SYSLIST (n) and
§SYSLIST (n,m) and the number attributes of
§SYSLIST(n) and &SYSLIST may be used in
conditional assembly instructions.
N*ESYSLIST may be used to refer to the
total number of operands in a macro-
instruction statement. N'&SYSLIST (n) may
be used to refer to the number of operands
in a sublist. If the nth operand is
omitted, N' is zero:; if the nth operand is
not a sublist, N' is one.

The following procedure is wused to
evaluate N'&§SYSLIST:

1. A sublist is
operand.

2. The number of operands equals one plus
the number of commas indicating the
end of an operand.

considered to be one

-

Attributes are discussed in Section 7

under "Attributes.”™

KEYWORD MACRO-DEFINITIONS AND INSTRUCTIONS

Keyword macro-definitions provide the
programmer with an alternate way of prepar-
ing macro-definitions.

A keyword macro-definition enables a
programmer to reduce the number of operands
in each macro-instruction that corresponds
to the definition, and to write the oper-
ands in any order.

The macro-instructions that correspon
to the macro-definitions described in Sec-

tion 7 (hereinafter calied positional
macro-instructions and positional macro-
definitions, respectively) require the

operands to be written in the same order as
the corresponding symbolic parameters in
the operand field of the prototype state-
ment.

In a keyword macro-definition, the pro-

grammer can assign standard values to any
symbolic parameters that appear in the
operand field of the prototype statement.

The standard value assigned to a symbolic
parameter is substituted for the symbolic
parameter, if the programmer does not write
anything in the operand field of the macro-
instruction to correspond to the symbolic
parameter.

When a keyword macro-instruction is
written, the programmer need only write one
operand for each symbolic parameter whose
value he wants to change.

Extended Features of the Macro Language 95

Keyword macro-definitions are prepared
the same way as positional macro-
definitions, except that the prototype
statement is written differently, and
€SYSLIST may not be used in the definition.
The rules for preparing positional macro-
definitions are in Section 7.

Keyword Prototype

The format of this statement is:

|below, separated
| by commas
1

L] T L 1
| Name |Operation |Operand {
[l | 1 4
L 4 T T 1
|A symbolic |A symbol |One or more |
| parameter | |operands of the |
Jor blank | |form described |
| | |
| | I
L L J

Each operand must consist of a symbolic
parameter, immediately followed by an equal

sign and optionally followed by a standard
value.
A standard value that is part of an

operand must immediately follow the equal
sign.

Anything that may be used as an operand
in a macro-instruction except variable
symbols, may be used as a standard value in
a keyword prototype statement. The rules
for forming valid macro-instruction oper-
ands are detailed in Section 8.

The following are valid keyword proto-
type operands.

§READER=
§LOOP2=SYMBOL
§SU==F'4096"

The following are invalid keyword proto-
type operands.

CARDAREA (no symbolic parameter)
§TYPE (no equal sign)
§TWO =123 (equal sign does not

immediately follow

symbolic parameter)
(standard value does

not immediately follow

equal sign)

EAREA= X'189A"

The following keyword prototype state-
ment contains a symbolic parameter in the
name field, and four operands in the oper-
and field. The first two operands contain
standard values. The mnemonic operation
code is MOVE.

96

T Ll
Name |Operation [Operand
4 4

o e Sy o oy
e e L

T T
&N | MOVE |éR=2,EA=S,E§T=,EF=
1 L

Keyword Macro-Instruction

After a programmer has prepared a key-

word macro-definition he may use it by
writing a keyword macro-instruction.
The format of a keyword macro-

instruction is:

T L
Name | Operation|Operand
3 i

e —
Jr S——

T T
|A symbol,|Mnemonic |Zero or more operands|
| sequence |operation|of the form described|

| symbol, {code |below, separated by |
|or blank | | cormas |
L L 1 J

Each operand consists of a keyword

immediately foilowed by an equal sign and
an optional value. Anything that may be
used as an operand in a positional macro-
instruction may be used as a value in a
keyword macro-instruction. The rules for
forming valid positional macro-instruction
operands are detailed in Section 8.

A keyword consists of one through seven
letters and digits, the first of which must
be a letter.

The keyword part of each keyword macro-
instruction operand must correspond to one
of the symbolic parameters that appears in
the operand field of the keyword prototype
statement. A keyword corresponds to a
symbolic parameter if the characters of the
keyword are identical to the characters of
the symbolic parameter that follow the
ampersand.

The following are valid keyword macro-
instruction operands.

LOOP2=SYMBOL
S4==F*4096"
TO=

The following are invalid keyword macro-
instruction operands.
§XU4F2=0(2,3) (keyword does not begin
with a letter)
(keyword is more than
seven characters)
(no keyword)

CARDAREA=A+2

=(TO (8) , (FROM))

The operands in a keyword macro-
instruction may be written in any order.
If an operand appeared in a keyword
prototype statement, a corresponding oper-
and does not have to appear in the keyword
macro-instruction. If an operand is omit-
ted, the comma that would have separated it
from the next operand need not be written.

The following rules are used to replace
symbolic parameters in the statements
keyword macro-definition.

the
of a

i. If a symbolic parameter appears in the
name field of the prototype statement,
and the name field of the macro-
instruction contains a symbol, the
symbolic parameter is replaced by the
symbol. If the name field of the
macro-instruction is blank or contains
a sequence symbol, the symbolic
parameter is replaced by a null char-
acter value.

2. If a symbolic parameter appears in the
operand field of the prototype state-
ment, and the macro-instruction con-
tains a keyword that corresponds to
the symbolic parameter, the value
assigned to the keyword replaces the
symbolic parameter.

3. If a symbolic parameter was assigned a
standard value by a prototype state-
ment, and the macro-instruction does
not contain a keyword that corresponds
to the symbolic parameter, the stand-
ard value assigned to the symbolic
parameter replaces the symbolic param-—
eter. Otherwise, the symbolic param—-
eter is replaced by a null character
value.

Note: If a standard value is a self-
defining term the type attribute assigned
to the standard value is the letter N. If
a standard value is omitted the type
attribute assigned to the standard value is
the letter O. . All other standard values
are assigned the type attribute U.

The following keyword macro-definition,
keyword macro-instruction, and generated
statements illustrate these rules.

Statement 1 assigns the standard values
2 and S to the symbolic parameters &R and
§A, respectively. Statement 6 assigns the
values FA, FB, and THERE to the keywords T,
F, and A, respectively. The symbol HERE is
used in the name field of statement 6.

Since a symbolic parameter (§N) appears
in the name field of the prototype state-
ment (statement 1), and the corresponding
characters (HERE) of the macro-instruction
(statement 6) are a symbol, &N is replaced
by HERE in statement 2.

v ¥ T
|Name |Operation |Operand
— ¢
| | MACRO

1 |§N |MOVE |6R=2, 6A=S, §T=, §F=

2 |&N | ST |6R,&A |

31 |L |6R,EF

4 j | ST [6R, T

5 |} |L |6R, 8A |
l | MEND ! !
t t t 1

6 |HERE |MOVE | T=FA,F=FB, A=THERE |
t } 1 i
|HERE |ST |2, THERE |
i iL i2,FB i
| | ST |2,Fa |
| |L | 2, THERE |
L i L J
Since &T appears in the operand field,

of statement 1, and statement 6 contains
the keyword (T) that corresponds to &T, the
value assigned to T (FA) replaces &T in
statement 4. Similarly, FB and THERE
replace éF and 6A in statement 3 and in
statements 2 and 5, respectively. Note
that the value assigned to §A in statement
6 1is used instead of the value assigned to
EA in statement 1.

Since &R appears in the operand field of
statement 1, and statement 6 does not
contain a corresponding keyword, the value
assigned to &R (2) , replaces R in state-
ments 2, 3, 4, and 5.

Operand Sublists: The value assigned to a
keyword and the standard value assigned to
a symbolic parameter may be an operand
sublist. Anything that may be used as an
operand sublist in a positional macro-
instruction may be used as a value in a
keyword macxro-instruction and as a standard
value in a keyword prototype statement.
The rules for forming valid operand
sublists are detailed in Section 8 under
"Operand Sublists."

Keyword Inner Macro-Instructions: Keyword
and positional inner macro-instructions may
be used as model statements in either
keyword or positional macro-definitions.

MIXED-MODE MACRO-DEFINITIONS AND

INSTRUCTIONS
Mixed-mode macro-definitions allow the
programmer to use the features of keyword

and positional macro-definitions in the

same macro-definition.
Mixed-mode macro-definitions are pre-

pared the same way as positional macro-
definitions, except that the prototype

Extended Features of the Macro Language 97

statement is written differently, and
§SYSLIST may not be used in the definition.
The rules for preparing positional macro-
definitions are in Section 7.

Mixed-Mode Prototype

The format of this statement is:

of the operand field is written in the same
way that the operand field of a positional
macro-instruction is written. The rules
for writing positional macro-instructions
are in Section 8.

The second part of the operand field
corresponds to the keyword prototype oper-
ands. This part of the operand field is
written in the same way that the operand
field of a keyword macro-instruction is
written. The rules for writing keyword

macro-instructions are described above
r T T 1 under "Keyword Macro-Instruction."
| Name |Operation |Operand |
b } + 4 The following mixed-mode macro-
|A symbolic |A symbol |Two or more oper-| definition, mixed-mode macro-instruction,
|parameter | |ands of the form | and generated statements illustrate these
|or blank | |described below, | facilities.
{ | | separated by |
| i | commas |
L L L ! r k] T 1
Name |Operation| Operand |
i | 4
1) T 1
The operands must be valid operands of | MACRO | |
positional and keyword prototype 1 |&N |MOVE | &TY,&P,&6R,ETO=,EF= |
statements. All the positional operands | 6N |STETY | &R,SAVE |
must precede the first keyword operand. LETY | &R,&PS&F |
The rules for forming positional operands STETY | &R,EPETO |
are discussed in Section 7, under LETY | &R,SAVE |
“Macro-Instruction Prototype." The rules } + 4 4
for forming keyword operands are discussed 2 |HERE |MOVE { H,,2,F=FB,TO=FA |
above under “Keyword Prototype.® [+ + |
| HERE STH | 2,SAVE |
The following sample mixed-mode | LH | 2,FB |
prototype statement contains three posi- | |STH | 2,FA |
tional operands and two keyword operands. | |LH | 2,SAVE |
L 4 L i)
v v T
| Name | Operation|Operand The prototype statement (statement 1)
i iR]

-
b v e e b

T h
&N | MOVE | §TY, &P, &R, ETO=, EF=
L L L

Mixed-Mode Macro-Instruction

The format of a mixed-mode macro-
instruction is:
I LB R T
| Name | Operation|Operand
L KR 4
1 2

T 1
|A symbol, |Mnemonic |Zero or more oper-
| sequence |operationjands of the form

L L

|symbol, |code | described below,
|or blank | | separated by

| | | commas

L L L

The operand field consists of two parts.
The first part corresponds to the
positional prototype operands. This part

98

contains three positional operands (§TY,&P,
and §&R) and two keyword operands (6TO and
§F) . In the macro-instruction (statement
2) the positional operands are written in
the same order as the positional operands
in the prototype statement (the second
operand is omitted) . The keyword operands
are written in an order that is different
from the order of keyword operands in the
prototype statement.

Mixed-mode inner macro-instructions may
be used as model statements in mixed-mode,

keyword, and positional macro-definitions.
Keyword and positional inner macro-
instructions may be used as model

statements in mixed-mode macro-definitions.

MACRO-DEFINITION COMPATIBILITY

Macro-definitions prepared for use with
the other System/360 assemblers having
macro language facilities may be used with
the Operating Systemn/360 assembler provided

that all SET symbols are defined in an will be processed by +the Operating
appropriate ICLB, GBLA, GBLB, or GBLC System/360 assembler the same way that the
statement. The AIFB and AGORB instructions AIF and AGO instructions are processed.

Extended Features of the Macro Language 99

APPENDIXES

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

CHARACTER CODES

MACHINE-INSTRUCTION MNEMONIC OPERATION CCDES

ASSEMBLER INSTRUCTIONS

MACHINE-INSTRUCTION FORMAT

HEXADECIMAL-DECIMAL NUMBER CCNVERSICN TABLE

SUMMARY OF CONSTANTS

MACRO LANGUAGE SUMMARY

INTERNAL TABLE CAPACITIES

SAMPLE PROGRAM

ASSEMBLER LANGUAGES--FEATURES COMPARISON CHART

Extended Features of the Macro Language

101

APPENDIX A: CHARACTER CODES

This appendix lists all System/360 card codes to which a printer graphic is assigned.
See the principles of operation manual for additional card codes and their internal
representation.

Card Printer Internal Card Printer Internal
Code Graphics Representation Code Graphics Representation
blank 01000000 11,1 J 1010601
12,8,3 . (period) 01001011 11,2 K 11010010
12,8,4 < 01001100 11,3 L 11010011
12,8,5 (01001101 11,4 M 11010100
12,8,6 + 01001110 11,5 N 11010101
& 01010000 11,6 0 11010110
11,8,3 $ 01011011 11,7 P 11010111
11,8,4 * 01011100 11,8 Q 11011000
11,8,5 } 01011101 11,9 R 11011001
1 - 01100000 0,2 S 11100010
0,1 / 01100001 0,3 T 11100011
0,8,3 . 01101011 0,4 U 11100100
0,8,4 % 01101100 0,5 v 11100101
8,3 # 01111011 0,6 W 11100110
8,4 a 01111100 0,7 X 11100111
8,5 ' (quote) 01111101 0,8 Y 11101000
8,6 = 01111110 0,9 Z 11101001
12,1 A 11000001 0 0 11110000
12,2 B 11000010 1 1 11110001
12,3 C 11000011 2 2 11110010
12,4 D 11000100 3 3 11110011
12,5 E 11000101 4 4 11110100
12,6 ¥ 11000110 5 5 11110101
12,7 G 11000111 6 6 11110110
12,8 H 11001000 7 7 11110111
12,9 I 11001001 8 8 11111000
9 9 11111001

Appendix A 103

APPENDIX B: MACHINE-INSTRUCTION MNEMONIC CODES

This appendix contains a table of the mnemonic operation codes for machine-
instructions, arranged by machine format and hexadecimal operation code, and an
alphabetical listing of the mnemonic operation codes.

The following list is an alphabetical listing of the mnemonic operation codes of all
the machine instructions that can be represented in assembler language. The column
headings in the list and the information each column provides are as follows:

Mnemonic Code: for the machine
instruction.

Instruction: This column contains the name of the
mnemonic.

Operation Code: This
operation code.

Basic Machine Format: This column gives the basic machine format of the instruction: RR,
RX, RS, SI or SS.

Operand Field Format: This column shows the symbolic format of the operand field for the
particular mnemonic.

This column gives the mnemonic operation code

instruction associated with the

column contains the hexadecimal equivalent of the actual machine

Opera- Basic Operand
Mnemonic tion Machine Field
Code Instruction Code Format Format
A Add 5A RX R1,D2 (X2,B2)
AD Add Normalized, Long 6A RX R1,D2 (X2,B2)
ADR Add Normalized, Long 2A RR R1,R2
AE Add Normalized, Short 7A RX R1,D2 (X2,B2)
AER Add Normalized, Short 3A RR R1,R2
AH Add Half Word 4n RX R1,D2 (X2,B2)
AL Add Logical SE RX R1,D2 (X2,B2)
ALR Add Logical 1E RR R1,R2
AP Add Decimal FA ss D1 (L.1,B1) ,D2(L2,B2)
AR Add 1A RR R1,R2
AU Add Unnormalized, Short 7E RX R1,D2 (X2,B2)
AUR Add Unnormalized, Short 3E RR R1,R2
AW Add Unnormalized, Long 6E RX R1,D2 (X2,B2)
AWR Add Unnormalized, Long 2E RR R1,R2
BAL Branch and Link 45 RX R1,D2 (X2,B2)
BALR Branch and Link 05 RR R1,R2
BC Branch on Condition 47 RX M1,D2 (X2,B2)
BCR Branch on Condition 07 RR M1,R2
BCT Branch on Count 46 RX R1,D2 (X2,B2)
BCTR Branch on Count 06 RR R1,R2
BXH Branch on Index High 86 RS R1,R3,D2(B2)
BXLE Branch on Index Low or Equal 87 RS R1,R3,D2(B2)
C Compare Algebraic 59 RX R1,D2 (X2,B2)
CD Compare, Long 69 RX R1,D2 (X2,B2)
CDR Compare, Long 29 RR R1,R2
CE Compare, Short 79 RX R1,D2 (X2,B2)
CER Compare, Short 39 RR R1,R2
cH Compare Half Word 49 RX R1,D2 (X2,B2)
CL Compare Logical 55 RX R1,D2 (X2,B2)
CLC Compare Logical D5 SS D1 (L,B1) ,D2 (B2)
CLI Compare Logical Immediate 95 SI D1(B1) ,I12
CLR Compare Logical 15 RR R1,R2
cp Compare Decimal F9 SS D1(L1,B1) ,D2(L2,B2)
CR Compare Algebraic 19 RR R1,R2
CVB Convert to Binary 4F RX R1,D2 (X2,B2)
CVD Convert to Decimal 4E RX R1,D2 (X2,B2)
D Divide 5D RX R1,D2 (X2,B2)
DD Divide, Long 6D RX R1,D2 (X2,B2)
DDR Divide, Long 2D RR R1,R2
DE Divide, Short 7D RX R1,D2 (X2,B2)

104

Appendix B: Machine-Instruction Mnemonic Codes (Continued)

Mnemonic

Code Instruction

DER Divide, Short

DP Divide Decimal

DR Divide

ED Edit

EDMK Edit and Mark

EX Execute

HDR Halve, Long

HER Halve, Short

HIO Halt I/0

IC Insert Character

ISK Insert Storage Key
L Load

LA Load Address

LCDR Load Complement, Long
LCER Load Complement, Short
LCR Load Complement

LD Load, Long

LDR Load, Long

LE Load, Short

LER Load, Short

LH Load Half Word

LM Load Multiple

LNDR Load Negative, Long
LNER Load Negative, Short
LNR Load Negative

LPDR Load Positive, Long
LPER Load Positive, Short
LPR Load Positive

LPSW Load PSW

LR Load

LTDR Load and Test, Long
LTER Load and Test, Short
LTR Load and Test

M Multiply

MD Multiply, Long

MDR Multiply, Long

ME Multiply, Short

MER Multiply, Short

MH Multiply Half Word
MP Multiply Decimal

MR Multiply

MVC Move Characters

MVI Move Immediate

MVN Move Numerics

MVO Move with Offset

MVZ Move Zones

N AND Logical

NC AND Logical

NI AND Logical Immediate
NR AND Logical

(o] OR Logical

oC OR Logical

01 OR Logical Immediate
OR OR Logical

PACK Pack

RDD Read Direct

S Subtract

SD Subtract Normalized, Long

Opera- Basic Operand

tion Machine Field

Code Format Format

3D RR R1,R2

FD SS p1(L1,B1) ,D2(L2,B2)
1D RR R1,R2

DE 58 D1{L,B1} ,D2 (B2)
DF sSs D1 (L,B1) ,D2 (B2)
Ly RX R1,D2 (X2,B2)

24 RR R1,R2

34 RR R1,R2

9E SI D1 (B1)

43 RX R1,D2 (X2,B2)

09 RR R1,R2

58 RX R1,D2 (X2,B2)

41 RX R1,D2 (X2,B2)

23 RR R1,R2

33 RR R1,R2

13 RR R1,R2

68 RX R1,D2 (X2,B2)

28 RR R1,R2

78 RX R1,D2 (X2,B2)

38 RR R1,R2

48 RX R1,D2 (X2,B2)

98 RS R1,R3,D2 (B2)

21 RR R1,R2

31 RR R1,R2

11 RR R1,R2

20 RR R1,R2

30 RR R1,R2

10 RR R1,R2

82 sI D1 (B1)

18 RR R1,R2

22 RR R1,R2

32 RR R1,R2

12 RR R1,R2

5C RX R1,D2 (X2,B2)

6C RX R1,D2 (X2,B2)

2C RR R1,R2

7C RX R1,D2 (X2,B2)

3C RR R1,R2

4c RX R1,D2 (X2,B2)

FC SS D1 (L1,B1) ,D2 (L2,B2)
1C RR R1,R2

D2 Sss D1 (L,B1) ,D2 (B2)
92 sI D1{BYH ,I2

D1 SS D1 (L,B1),D2 (B2)
F1 Ss Dp1(L1,BY) ,D2(L2,B2)
D3 ss D1 (L,B1) ,D2 (B2)
54 RX R1,D2 (X2,B2)

D4 ss p1(L,B1),D2 (B2)
9y sI D1(B1) ,I2

14 RR R1,R2

56 RX R1,D2 (X2,8B2)

D6 SS Dp1(L,B1),D2 (B2)
96 sI D1 (B1) ,I2

16 RR R1,R2

F2 Ss D1 (L1,B1) ,D2 (L2,B2)
85 sI D1 (81 ,I2

5B RX R1,D2 (X2,B2)

6B RX R1,D2 (X2,B2)

Appendix B

105

Appendix B: Machine-Instruction Mnemonic Codes (Continued)

106

Instruction

Subtract Normalized, Long
Subtract Normalized, Short
Subtract Normalized, Short
Subtract Half Word

Start 1/0

Subtract Logical

Shift Left Single Alegbraic
Shift Left Double Algebraic
Shift Left Double Logical
Shift Left Single Logical
Subtract Logical

Subtract Decimal

Set Program Mask

Subtract

Shift Right Single Algebraic
Shift Right Double Algebraic
Shift Right Double Logical
Shift Right Single Logical
Set System Key

Set System Mask

Store

Store Character

Store Long

Store Short

Store Half Word

Store Multiple

Subtract Unnormalized, Short
Subtract Unnormalized, Short
Supervisor Call

Subtract Unnormalized, Long
Subtract Unnormalized, Long
Test Channel

Test 1I/0

Test Under Mask

Translate

Translate and Test

Test and Set

Unpack

Write Direct

Exclusive OR

Exclusive OR

Exclusive OR, Immediate
Exclusive OR

zero and Add Decimal

Opera- Basic Operand

tion Machine Field

Code Format Format

2B RR R1,R2

7B RX R1,D2 (X2,B2)

3B RR R1,R2

4B RX R1,D2 (X2,B2)

9C SI D1 (B1)

SF RX R1,D2 (X2,B2)

8B RS R1,D2 (B2)

8F RS R1,D2 (B2)

8D RS R1,D2 (B2)

89 RS R1,D2 (B2)

1F RR R1,R2

FB SS D1 (L1,B1) ,D2(L2,B2)
o4 RR R1

1B RR R1,R2

8A RS R1,D2 (B2)

8E RS R1,D2 (B2)

8C RS R1,D2 (B2)

88 RS R1,D2 (B2)

08 RR R1,R2

80 SI D1 (B1)

50 RX R1,D2 (X2,B2)

42 RX R1,D2 (X2,B2)

60 RX R1,D2 {X2,B2)

70 RX R1,D2 (X2,B2)

40 RX R1,D2 (X2,B2)

30 RS R1,R3,D2(B2)

7F RX R1,D2 (X2,B2)

3F RR R1,R2

0A RR I

oF RX R1,D2 (X2,B2)

2F RR R1,R2

9F sI D1(B1)

9D SI D1 (B1)

91 sI D1 (B1) ,I2

DC SS b1 (L,B1) ,D2 (B2)
DD ss D1 (L,B1),D2 (B2)
93 SI D1(B1)

F3 Ss D1 (L1,B1) ,D2 (L2,B2)
84 SI D1(®B1) ,I2

57 RX R1,D2 (X2,B2)

D7 Ss D1(L,B1) ,D2 (B2)
97 SI D1 (B1) ,12

17 RR R1,R2

F8 SS D1(L1,B1) ,D2(L2,B2)

Extended Mnemonic Instruction Codes

Extended Code

Meaning

B
BR
NOP

NODD
ANV

BO
BP
BM
BZ

BO
BM
BZ

D2 (X2,B2)
R2
D2 (X2,B2)

Branch Unconditional
Branch Unconditional (RR format)
No Operation

Machine Instruction

BC 15,D2 (X2,B2)
BCR 15,R2
BC 0,D2 (X2,B2)

n2
p A

NAa Ornoara+sinn /DD
O VPeIQATIO o

Used After Compare Instructions

D2 {X2,B2}
D2 (X2,B2)
D2 (X2,B2)
D2 (X2,B2)
D2 (X2,B2)
D2 (X2,B2)

Branch
Branch
Branch
Branch
Branch

Branch

High
Low
Equal
Not High
Not Low

Not Equal

DA N DI
OV VR

L S S r Bl
4,D2 (X2,B2)
8,D2 (X2,B2)
13,D2 (X2,B2)
11,D2 (X2,B2)
7,D2 (X2,B2)

Used After Arithmetic Instructions

D2 (X2,B2)
D2 (X2,B2)
D2 (X2,B2)
D2 (X2, B2)

Branch on Overflow
Branch on Plus
Branch on Minus
Branch on Zero

Used After Test Under Mask Instructions

D2 (X2,B2)
D2 (X2,B2)
D2 (X2,B2)

Branch if Ones
Branch if Mixed
Branch if Zeros

BC 1,D2 (X2,B2)
BC 2,D2 (X2,B2)
BC 4,D2 (X2,B2)
BC 8,D2 (X2,B2)

BC 1,D2 (X2,B2)
BC 4,D2 (X2,B2)
BC 8,D2 (X2,B2)

Appendix B

107

801

| RR _Format I

l RX Format. |

Class Class
Fixed-Point Fixed-Point Fixed-Point
Branching and Fullword Floating-Point Floating-Point Halfword Fullword Floating-Point Floating-Point
Status Switching and Logical Long Short and Branching and Logical Long hort
~0x- ~1x- -2X= =3x- ’ =4x- ~-5x- —-6x— -7x- J
% X
0 Load Positive...... Load Positive......LPDR Load Positive...... 0 |Store........ . Store..eeceerosses ST StOre..evneernannns STD Store....eeceeesnss STE
1 Load Negative.. Load Negative.. .LNDR Load Negative. 1 | Load Address. .
2 Lead and Test.. Load and Test.. .LTDR Load and Test. 2 | store Character.
3 Load Complement....LCR Load Complement....LCDR Load Complement....LCER 3 | Insert Character.
4| Set Program Mask.. ANDuvevenevannannns Halve..... P HDR Halve......oevmunn. HER 4 | Execute....... AND.vsernenns <. N
5] Branch and Link.. Compare Logical 5 | Branch and Llnk.. Compare Logical....CL
6| Branch on Couat.. ORtsacrnnnsnnns 6 | Branch on Count.. [0) : T .
7| Branch/Condition Exclusive OR.. 7 | Branch/Condition. Exclusive OR.
8| set Key. Load.. P Load... .LDR Load. . 8 | Load..... . Load. . LOoAaG.eeceenannranns Load......
9| Insert Key Compare... Compare Compare. 9 | Compare. . . Compare.. Compare. Compare. .
A| Supervisor Call.....SVC Add....... Add N. Add N..... A |Add...... . Add...... Add N.... Add N......
B Subtract... Subtract N. Subtract.. B | Subtract..... «.+.SH Subtract.... Subtract N. Subtract N.
c Multiply... Multiply... Multiply. C | Multiply.MH Multiply... Multiply. Multiply.
D Divide..... Divide..... Divide.. D Divide . Divide.. Divide...
E add Logical Add U. Add U. E |{ Convert-pecimal....CVD Add Logical. Add U... Add U....
LF | Subtract Loglcal ..SLR Subtract U «..SWR Subtract |F_{ Convert-Binary.....CVB Subtract Loglcal .SL Subtract Subtract U.
|RS,SI Formatl lSS Format;
Class Class
Branching Fixed-Point
Status Switching Logical and
and Shifting Input-Qutput Logical Decimal
-8x~ -9x- ~Ax- -Bx~- l -Cx= =-Dx~ -Ex-— ~Fx— J
Set System Mask.....SSM Store Multiple.....STM
Test under Mask Move Numeric....
Load PSW....oaeunenn LPSW Move......ceoene Move Characters.

Im HOOQOENOETO U B WNHOIK

Diagnose

Write Direct
Read Direct.
Branch/High......
Branch/Low~-Egqual
shift Right SL..
Shift Left SL...
Shift Right S...
Shift Left S....
shift Right DL..
Shift Left DL..
shift Right D
shift Left D.SLDA

Operation Code Notes
u Unnormalized

Single

Double

Normalized

Single Logical

Double Logical

[

s
D
N
L
L

Test and Set...
AND...
Compare Logical....CLI

OR..«.. . NN) |

Exclusive < XT

Load Multlple......LM
veeesa..5I0

Start I-O..

Test Channel.......TCH

Pmuowbmmqmwhuuwcﬂ

Move Zone..

Excluslve [}

Translate.......... TR
Translate and Test. TRT
Edit.

Edit and Mark......EDMK

Compare.
Add......
Subtract.
Multiply.
Divide.....

symbol

symbol

symbol

symbol

symbol

symbol

Mnemonic Name Field

ccy An optional

CNOP blank

coM blank

(6{0)°2'¢ blank

CSECT An optional

DC An optional

DROP blank

DS An optional

DSECT A required symbol

EJECT blank

END blank

ENTRY blank

EQU A required symbol

EXTRN blank

ICTL blank

ISEQ blank

LTORG an optional

ORG blank

PRINT blank

PUNCH blank

REPRO blank

SPACE blank

START An optional

TITLE An optional
0-4 charact

USING blank

APPENDIX C: ASSEMBLER INSTRUCTIONS

Operand Field

Two absolute expressions, separated
by a comma

Not used; should be blank

One symbol

Not used; should be blank

One or more operands, separated by commas

One to sixteen absolute
expressions, separated by commas

One or more operands, separated by commas
Not used; should be blank

Not used; should be blank

A relocatable expression or blank

One or more relocatable
symbols, separated by commas

An absolute or relocatable expression

One or more relocatable
symbols, separated by commas

One to three decimal values,
separated by commas

Two decimal values, separated by a comma
Not used; should be blank

A relocatable expression or blank

One to three operands

1 to 80 characters enclosed

in single quotation marks

Not used; should be blank

A decimal term or blank

A self-defining term or blank

A sequence of characters,
enclosed in single quotation marks

An absolute or relocatable

expression followed by 1 to 16 absolute
expressions, separated by commas

Appendix C 109

APPENDIX D: MACHINE-INSTRUCTION FORMAT

Assembler Operand Applicable
Basic Machine Format Field Format Instructions
8 4 1y
Operation R1,R2 All RR instructions
Code R1|R2 except SPM and SVC
8 4 N
RR | Operation R1 SPM
Code R1
8 8
Operation
Code I I svC
(See notes 1,6, and 8)
8 4 |4 4 12
RX | Operation R1,D2 (X2,B2) All RX instructions
Code R1[X2| B2 | D2 R1,S2 (X2)
(See notes 1-4, and 7)
8 4 |4 4 12
Operation R1,R3,D2 (B2) BXH,BXLE,LM,STM
Code R1|R3 | B2| D2 R1,R3,S2
RS
8 4 4 12
Operation R1,D2(B2) All shift instructions
Code R1J]R3\] B2 | D2 R1,S52
(See notes 1-3, 7, and 8)
8 8 4 12 211l SI instructions
Operation D1 (B1) ,I2 except LPSW,SSM,
Code 12 B1| D1 S1,12 HIO,SIC,TIO,TCH,TS
SI
8 4 12
Operation D1(B1) LPSW,SSM,HIO,SIO,
Code B1| D1 S1 TI0,TCH, TS
(See notes 2, 3, and 6-8)
8 4 14 4 12 | 4 12
Operation D1 (L1,B1) ,D2(L2,B2) PACK,UNPK,MVO, AP,
Code L1{L2{ B1 | D1 |B2| D2} S1(L1) ,S2(L2) CP,DP,MP,SP, ZAP
SS
8 8 4 12 {4 12
Operation D1 (L,B1) ,D2 (B2) NC, 0C, XC,C1LC,MVC,MVN,
Code |L B1| D1 |B2| D2 S1(1),S2 MVZ,TR,TRT, ED, EDMK
{(See notes 2, 3, 5, and 7)

Notes for Appendix D:

1.

2.

3.

R1, R2, and R3 are absolute expressions that specify general or floating-point
registers. The general register numbers are 0 through 15; floating-point register
numbers are 0, 2, 4, and 6.

D1 and D2 are absolute expressions that specify displacements. A value of 0 - 4095
may be specified.

B1 and B2 are absolute expressions that specify base registers. Register numbers
are 0 - 15.

X2 is an absolute expression that specifies an index register. Register numbers
are 0 - 15. If B2 is specified, X2 must not be omitted; and when indexing is not
desired, X2 must be specified as 0.

L, L1, and L2 are absolute expressions that specify field lengths. An L expression
can specify a value of 1 - 256, L1 and L2 expressions can specify a value of 1 -
16. In all cases, the assembled value will be one less than the spec1f1ed value.

I and I2 are absolute expressions that provide immediate data. The value of the
expression may be 0 - 255,

S1 and S2 are absolute or relocatable expressions that specify an address.

RR, RS, and SI instruction fields that are crossed out in the machine formats are
not examined during instruction execution. The fields are not written in the

symbolic operand, but are assembled as binary zeros.

Appendix D m

APPENDIX E: HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

The table in this appendix provides for direct conversion of decimal and hexadecimal
numbers in these ranges:

Hexadecimal Decimal

000 to FFF 0000 to 4095

For numbers outside the range of the table, add the following values to the table

figures:

Hexadecimal Decimal

1000 4096

2000 8192

3000 12288

4000 16384

5000 204890

6000 24576

7000 28672

8000 32768

9000 36864

A000 40960

B00O 45056

Cco00 49152

D000 53248

E000 57344

F000 61440
x = 0 1 2 3 4] 6 7 8 9 A B c D E F
00x 0000 0001 0002 00063 0004 0005 0006 0007 0008 0003 0010 0011 0012 0013 0014 0015
01x 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0036 0031
02x 0032 0033 0034 0035 0036 0037 0038 0039 0040 004t 0042 0043 0044 0045 0046 0047
03x 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
oux 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
05x 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
06x 0096 0097 0098 0099 0100 0101 0162 6103 0104 0105 0106 0107 0708 0109 0110 0111
07x 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
08x 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09x 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0Ax 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0Bx 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
ocx 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0Dx 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
0Ex 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFx 02u0 0201 0242 0243 0244 02u5 0286 0247 0208 0249 0250 0251 0252 0253 0254 0255
10x 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
11x 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12x 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13x 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
14x 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
15x 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16x 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17x 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
18x 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
19x 0400 0401 0402 0403 OUO4 OLOS OQuO6 0407 0408 0409 0470 0411 0412 0413 0414 O41S
1ax 0416 0417 0418 O41° 0420 0421 0422 0423 0424 0425 0426 0427 0428 Q429 0430 0431
1Bx 0432 0533 0434 0435 0436 0437 0438 0439 0440 Qu4T 0442 04U3 0BG 0445 0446 044T
1cx 0448 0449 0450 0451 0452 0453 0454 0455 0456 Q457 0458 0459 0460 0467 0462 0463
1Dx Ou6l 0465 0466 O467 OU6B O4ED 0470 0471 Q472 Q473 0474 Q475 0476 0477 0478 0479
1Ex 0480 0481 0482 0483 0484 0485 0486 0487 0488 04SS9 0490 0491 0492 0493 0494 0495
1Fx 0436 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

112

20x
21x
22x
23x

24x
25x%
26x
27x

28x
29x
2Ax
2Bx

2Cx
2Dx
2Ex

A

rX

30x
31x
32x
33x

34x
35x
36x
37x

38x
39x
3Ax
3Bx

3Cx
3Dx
3Ex
3Fx

40x
41x
42x
43x

44x
45x
46x
47x

48x
49x
4Ax
4Bx

4Cx
4Dx
4Ex
4Fx

50x
51x
52x
53x

S54x
55x%
56x
57x

58x
59x
5ax
5Bx

5Cx
5Dx
5Ex
5Fx

0512
0528
0544
0560

0576
0592
0608
0624

0640
0656
0672
0688

0704
0720
0736

nrEn
virae

0768
0784
0800
0816

0832
0848
0864
0880

0896
0912
0928
0944

0960
0976
0992
1008

1024
1040
1056
1072

1088
1104
1120
1136

1152
1168
1184
1200

1216
1232
1248
1264

1280
1296
1312
1328

1344
1360
1376
1392

1408
1424
1440
1456

1472
1488
1504
1520

0513
0529
0545
0561

0577
0593
0609
0625

0641
0657
0673
0689

0705
0721
0737

ATca
urao

0769
0785
0801
0817

0833
0849
0865
0881

0897
0913
0929
0945

0961
0977
0993
1009

1025
1041
1057
1073

1089
1105
1121
1137

1153
1169
1185
1201

1217
1233
1249
1265

1281
1297
1313
1329

1345
1361
1377
1393

1409
1425
1441
1457

1473
1489
1505
1521

2

0514
0530
0546
0562

0578
0594
0610
0626

0642
0658
0674
0690

0706
0722
0738

nen
Urow

0770
0786
0802
0818

0834
0850
0866
0882

0898
0914
0930
0946

0962
0978
0994
1010

1026
1042
1058
1074

1090
1106
1122
1138

1154
1170
1186
1202

1218
1234
1250
1266

1282
1298
1314
1330

1346
1362
1378
1394

1410
1426
1442
1458

1474
1490
1506
1522

3

0515
0531
0547
0563

0579
0595
0611
0627

0643
0659
0675
0691

0707
0723
0739

n=cc
v7soo

077
0787
0803
0819

0835
0851
0867
0883

0899
0915
0931
0947

0963
0979
0995
1011

1027
1043
1059
1075

1091
1107
1123
1139

1155
17
1187
1203

1219
1235
1251
1267

1283
1299
1315
1331

1347
1363
1379
1395

1
1427
1443
1459

1475
1491
1507
1523

0516
0532
0548
0564

0580
0596
0612
0628

o644
0660
0676
0692

0708
0724
0740

amer
urs0

0772
0788
0804
0820

0836
0852
0868
088y

0900
0916
0932
0948

0964
0980
0996
1012

1028
1064
1060
1076

1092
1108
1124
1140

1156
1172
1188
1204

1220
1236
1252
1268

1284
1300
1316
1332

1348
1364
1380
1396

1412
1428
4y
1460

1476
1492
1508
1524

5

0517
0533
0549
0565

0581
0597
0613
0629

0645
0661
0677
0693

0709
0725
0741

Tt]

ViIoid

0773
0789
0805
0821

0837
0853
0869
0885

0901
0917
0933
0949

0965
0981
0997
1013

1029
1045
1061
1077

1093
1109
1125
1141

1157
1173
1189
1205

1221
1237
1253
1269

1285
1301
1317
1333

1349
1365
1381
1397

1413
1429
1445
1461

1477
1493
1509
1525

6

0518
0534
0550
0566

0582
0598
0614
0630

0646
0662
0678
0694

0710
0726
0742

AmE o

Vioo

0774
0790
0806
0822

0838
0854
0870
0886

0902
0918
0934
0950

0566
0982
0998
1014

1030
1046
1062
1078

1094
1110
1126
1142

1158
174
1190
1206

1222
1238
1254
1270

1286
1302
1318
1334

1350
1366
1382
1398

1414
1430
1446
1462

1478
1494
1510
1526

7

0519
0535
0551
0567

0583
0599
0615
0631

o647
0663
0679
0695

0711
0727
0743

Amco

vioo

0775
0791
0807
0823

0839
0855
0871
0887

0903
0919
0935
0951

0967
0983
0999
1015

1031
1047
1063
1079

1095
1111
1127
1143

1159
1175
1191
1207

1223
1239
1255
1271

1287
1303
1319
1335

1351
1367
1383
1399

1415
1431
1447
1463

1479
1495
1511
1527

0520
0536
0552
0568

0584
0600
0616
0632

0648
0664
0680
0696

0712
0728
0744

e PP

viov

0776
0792
08068
0824

0840
0856
0872
0888

0904
0920
0936
0952

0968
0984
1000
1016

1032
1048
1064
1080

1096
1112
1128
1148

1160
1176
1192
1208

1224
1240
1256
1272

1288
1304
1320
1336

1352
1368
1384
1400

16
1432
1448
1464

1480
1496
1512
1528

0521
0537
0553
0569

0585
0601
0617
0633

0649
0665
0681
0697

0713
0729
0745

A

vivi

0777
0793
0809
0825

0841
0857
0873
0889

0905
0921
0937
0953

0969
0985
1001
1017

1033
1049
1065
1081

1097
1113
1129
1145

1161
1177
1193
1209

1225
1241
1257
1273

1289
1305
1321
1337

1353
1369
1385
1401

1417
1433
449
1465

1481
1497
1513
1529

A

0522
0538
0554
0570

0586
0602
0618
0634

0650
0666
0682
0698

0714
0730
0746

vios

0778
0794
0810
0826

0842
0858
0874
0890

0906
0922
0938
0954

0570
0986
1002
1018

1034
1050
1066
1082

1098
1114
1130
1146

1162
1178
1194
1210

1226
1242
1258
1274

1290
1306
1322
1338

1354
1370
1386
1402

1418
1434
1450
1466

1482
1498
1514
1530

B

0523
0539
0555
0571

0587
0603
0619
0635

0651
0667
0683
0699

0715
0731
0747

G763

0779
0795
0811
0827

0843
0859
0875
0891

0907
0923
0939
0955

0971
0987
1003
10139

1035
1051
1067
1083

1099
1115
1131
1147

1163
1179
1195
1211

1227
1243
1259
1275

1291
1307
1323
1339

1355
1371
1387
1403

1419
1435
1451
1467

1483
1499
1515
1531

C

0524
0540
0556
0572

0588
0604
0620
0636

0652
0668
0684
0700

0716
0732
0748
0764

0780
0796
0812
0828

08uy
0860
0876
0892

0908
0924
0940
0956

0972
0988
1004
1020

1036
1052
1068
1084

1100
1116
1132
1148

1164
1180
1196
1212

1228
1244
1260
1276

1292
1308
1324
1340

1356
1372
1388
1404

1420
1436
1452
1468

1484
1500
1516
1532

D

0525
0541
0557
0573

0589
0605
0621
0637

0653
0669
0685
0701

0717
0733
0749
0765

0781
0797
0813
0829

0845
0861
0877
0893

0909
0925
0941
0957

0973
0989
1005
1021

1037
1053
1069
1085

1101
1117
1133
1149

1165
1181
1197
1213

1229
1245
1261
1277

1293
1309
1325
1341

1357
1373
1389
1405

1421
1437
1453
1469

1485
1501
1517
1533

E

0526
0542
0558
0574

0530
0606
0622
0638

0654
0670
0686
0702

0718

- 0734

0750

u/soo

0782
0798
0814
0830

0846
0862
0878
0894

0910
0926
0942
0958

0974
0990
1006
1022

1038
1054
1070
1086

1102
1118
1134
1150

1166
1182
1198
1214

1230
1246
1262
1278

1294
1310
1326
1342

1358
1374
1390
1406

22
1438
1454
1470

1486
1502
1518
1534

Appendix E

F

0527
0543
0559
0575

0591
0607
0623
0639

0655
0671
0687
0703

0719
0735
0751
0767

0783
0799
0815
0831

0847
0863
0879
0895

LN
0927
0943
0959

0975
0991
1007
1023

1039
1055
1071

1087

1103
1119
1135
1151

1167
1183
1199
1215

1231
1247
1263
1279

1295
131
1327
1343

1359
1375
1391
1407

1423
1439
1455
N

1487
1503
1519
1535

113

60x
61x
62x
63x

6U4x
65x
66x
67x

68x
69x
6Ax
6Bx

6Cx
6Dx
6Ex
6Fx

70x
71x
72x
73x

74x
75x
76x
T7x

78x
79x
7Ax
7Bx

TCx
7Dx
7Ex

TFx

80x
81x
82x
83x

84x
85x
86x
87x

88x
89x
8Ax
8Bx

8Cx
8Dx
8Ex
8Fx

90x
91x
92x
93x

94x
95x
96x
97x

98x
99x

9Bx

9Cx
9Dx
9Ex
9Fx

1536
1552
1568
1584

1600
1616
1632
1648

1664
1680
1696
1712

1728
1744
1760
1776

1792
1808
1824
1840

1856
1872
1888
1904

1920
1936
1952
1968

1984
2000
2016
2032

2048
2064
2080
2096

2112
2128
2144
2160

2176
2192
2208
2220

2240
2256
2272
2288

2304
2320
2336
2352

2368
2384
2400
2416

2432
2048
2464
2480

2496
2512
2528
2544

1537
1553
1569
1585

1601
1617
1633
1649

1665
1681
1697
1713

1729
1745
1761
1777

1793
1809
1825
1841

1857
1873
1889
1905

1921
1937
1953
1969

1985
2001
2017
2033

2049
2065
2081
2097

2113
2129
2185
2161

2177
2193
2209
2225

2241
2257
2273
2289

2305
2321
2337
2353

2369
2385
2401
2817

2433
2449
2465
2u81

2497
2513
2529
2545

2

1538
1554
1570
1586

1602
1618
1634
1650

1666
1682
1698
1714

1730
1746
1762
1778

1794
1810
1826
1842

1858
1874
1890
1906

1922
1938
1954
1970

1986
2002
2018
2034

2050
2066
2082
2098

2114
2130
2146
2162

2178
2194
2210
2226

2242
2258
2274
2290

2306
2322
2338
2354

2370
2386
2402
2418

2434
2450
2466
2482

2498
2514
2530
2546

3

1539
1555
1571
1587

1603
1619
1635
1651

1667
1683
1699
1715

1731
1747
1763
1779

1795
1811
1827
1843

1859
1875
1891
1907

1923
1939
1955
1971

1987
2003
2019
2035

2051
2067
2083
2099

2115
2131
2147
2163

2179
2195
2211
2227

2243
2259
2275
229

2307
2323
2339
2355

2371
2387
2403
24819

2435
2451
2467
2483

2499
2515
2531
2547

4

1540
1556
1572
1588

1604
1620
1636
1652

1668
1684
1700
1716

1732
1748
1764
1780

1796
1812
1828
1844

1860
1876
1892
1908

1924
1940
1956
1972

1988
2004
2020
2036

2052
2068
2084
2100

2116
2132
2148
2164

2180
2196
2212
2228

2244
2260
2276
2292

2308
2324
2340
2356

2372
2388
2404
2420

2436
2452
2468
2484

2500
2516
2532
2548

5

1541
1557
1573
1589

1605
1621
1637
1653

1669
1685
1701
1717

1733
1749
1765
1781

1797
1813
1829
1845

1861
1877
1893
1909

1925
1941
1957
1973

1989
2005
2021
2037

2053
2069
2085
2101

2117
2133
2149
2165

2181
2197
2213
2229

2245
2261
2277
2293

2309
2325
2341
2357

2373
2389
2405
2421

2437
2453
2469
2485

2501
2517
2533
2549

6

1542
1558
1574
1590

1606
1622
1638
1654

1670
1686
1702
1718

1734
1750
1766
1782

1798
1814
1830
1846

1862
1878
1894
1910

1926
1942
1958
1974

1990
2006
2022
2038

2054
2070
2086
2102

2118
2134
2150
2166

2182
2198
2214
2230

2246
2262
2278
2294

2310
2326
2342
2358

2374
2390
2406
2422

2438
2454
2470
2486

2502
2518
2534
2550

7

1543
1559
1575
1591

1607
1623
1639
1655

1671
1687
1703
1719

1735
1751
1767
1783

1799
1815
1831
1847

1863
1879
1895
1911

1927
1943
1959
1975

1991
2007
2023
2039

2055
2071
2087
2103

2119
2135
2151
2167

2183
2199
2215
2231

2247
2263
2279
2295

2311
2327
2343
2359

2375
2391
2407
2423

2439
2455
2471
2487

2503
2519
2535
2551

1544
1560
1576
1592

1608
1624
1640
1656

1672
1688
1704
1720

1736
1752
1768
1784

1800
1816
1832
1848

1864
1880
1896
1912

1928
1944
1960
1976

1992
2008
2024
2040

2056
2072
2088
2104

2120
2136
2152
2168

2184
2200
2216
2232

2248
2264
2280
2296

2312
2328
2344
2360

2376
2392
2408
2424

2440
2456
2472
2488

2504
2520
2536
2552

1545
1561
1577
1593

1609
1625
1641
1657

1673
1689
1705
1721

1737
1753
1769
1785

1801
1817
1833
1849

1865
1881
1897
1913

1929
1945
1961
1977

1993
2009
2025
2041

2057
2073
2089
2105

2121
2137
2153
2169

2185
2201
2217
2233

2249
2265
2281
2297

2313
2329
2345
2361

2377
2393
2409
2425

2441
2457
2473
2489

2505
2521
2537
2553

a

1546
1562
1578
1594

1610
1626
1642
1658

1674
1690
1706
1722

1738
1754
1770
1786

1802
1818
1834
1850

1866
1882
1898
1914

1930
1946
1962
1978

1994
2010
2026
2042

2058
2074
2090
2106

2122
2138
2154
2170

2186
2202
2218
2234

2250
2266
2282
2298

2314
2330
2346
2362

2378
239%4
2810
2426

20442
2458
2474
2490

2506
2522
2538
2554

B

1547
1563
1579
1595

1611
1627
1643
1659

1675
1691
1707
1723

1739
1755
1771
1787

1803
1819
1835
1851

1867
1883
1899
1915

1931
1947
1963
1979

1995
2011
2027
2043

2059
2075
2091
2107

2123
2139
2155
2171

2187
2203
2219
2235

2251
2267
2283
2299

2315
2331
2347
2363

2379
2395
2411
2427

2443
2459
2475
2491

2507
2523
2539
2555

C

1548
1564
1580
1596

1612
1628
1644
1660

1676
1692
1708
1724

1740
1756
1772
1788

1804
1820
1836
1852

1868
1884
1900
1916

1932
1948
1964
1980

1996
2012
2028
2044

2060
2076
2092
2108

2124
2140
2156
2172

2188
2204
2220
2236

2252
2268
2284
2300

2316
2332
2348
2364

2380
2396
2412
2428

2044
2460
2476
2492

2508
2524
2540
2556

D

1549
1565
1581
1597

1613
1629
1645
1661

1677
1693
1709
1725

1741
1757
1773
1789

1805
1821
1837
1853

1869
1885
1901
1917

1933
1949
1965
1981

1997
2013
2029
2045

2061
2077
2093
2109

2125
2141
2157
2173

2189
2205
2221
2237

2253
2269
2285
2301

2317
2333
2349
2365

2381
2397
2413
2429

2445
2461
2477
2493

2509
2525
2541
2557

E

1550
1566
1582
1598

1614
1630
16u46
1662

1678
1694
1710
1726

1742
1758
1774
1790

1806
1822
1838
1854

1870
1886
1902
1918

1934
1950
1966
1982

1998
2014
2030
2046

2062
2078
2094
2110

2126
2142
2158
2174

2190
2206
2222
2238

2254
2270
2286
2302

2318
2334
2350
2366

2382
2398
2414
2430

2446
2462
2478
2494

2510
2526
2542
2558

F

1551
1567
1583
1599

1615
1631
1647
1663

1679
1695
171
1727

1743
1759
1775
1791

1807
1823
1839
1855

1871
1887
1903
1919

1935
1951
1967
1983

1999
2015
2031
2047

2063
2079
2095
211

2127
2143
2159
2175

2191
2207
2223
2239

2255
22N
2287
2303

2319
2335
2351
2367

2383
2399
2415
2431

2447
2463
2479
2495

251
2527
2543
2559

Al0x
Alx
AZx
A3x

Alx
AS5x
Abx
ATx

A8x
A9x

ABX

ACx
ADx
AEX
AFx

BOx
Blx
B2x
B3x

Blx
BS5x
B6x
B7x

B8x
B9x

BBx

BCx
BDx
BEx
BFx

CO0x
Cix
C2x
C3x

Clx
C5x
Cé6x
C7x

C8x
C9x

CBx

CCx
CDx
CEx
CFx

DOx
Dix
D2x
D3x

Dlix
D5x
D6x
D7x

D8x
D9x
DAx
DBx

DCx
DDx
DEx
DFx

2560
2576
2552
2608

2624
2640
2656
2672

2688
2704
2720
2736

2752
2768

2784

2800

2816
2832
2848
2864

2880
2896
2912
2928

2941
2960
2976
2992

3008
3024
3040
3056

3072
3088
3104
3120

3136
3152
3168
3184

3200
3216
3232
3248

3264
3280
3296
3312

3328
3344
3360
3376

3392
3408
3424
3440

3456
3472
3488
3504

3520
3536
3552
3568

2561
2577
2593
2609

2625
2641
2657
2673

2689
2705
2721
2737

2753
2769

Zi0S

2801

2817
2833
2849
2865

2881
2897
2913
2929

2945
2961
2977
2993

3009
3025
3041
3057

3073
3089
3105
3121

3137
3153
3169
3185

3201
3217
3233
3249

3265
3281
3297
3313

3329
3345
3361
3377

3393
3409
3425
3441

3457
3473
3489
3505

3521
3537
3553
3569

2

2562
2578
2554
2610

2626
2642
2658
2674

2690
2706
2722
2738

2754
2770

2788
2802

2818
2834
2850
2866

2882
2898
2914
2930

2946
2962
2978
2994

3010
3026
3042
3058

3074
3090
3106
3122

3138
3154
3170
3186

3202
3218
3234
3250

3266
3282
3298
3314

3330
3346
3362
3378

3394
3410
3426
3442

3458
3474
3490
3506

3522
3538
3554
3570

3

2563
2579
2595
2611

2627
2643
2659
2675

2691
2707
2723
2739

2755
2771
2787
2803

2819
2835
2851
2867

2883
2899
2915
2931

2947
2963
2979
2995

3011
3027
3043
3059

3075
3091
3107
3123

3139
3155
3171
3187

3203
3219
3235
3251

3267
3283
3299
3315

3331
3347
3363
3379

3395
3411
3427
3443

3459
3475
3491
3507

3523
3539
3555
3571

4

2564
2580
2596
2612

2628
2644
2660
2676

2692
2708
272é
2740

2756
2772
278

2804

2820
2836
2852
2868

2884
2900
2916
2932

2948
2964
2980
2996

3012
3028
3044
3060

3076
3092
3108
3124

3140
3156
3172
3188

3204
3220
3236
3252

3268
3284
3300
3316

3332
3348
3364
3380

3396
3412
3428
3444

3460
3476
3492
3508

3524
3540
3556
3572

5

2565
2581
2597
2613

2629
2645
2661
2677

2693
2709
2725

2741

2757
2773

P TP
£i03

2805

2821
2837
2853
2869

2885
2901
2917
2933

2949
2965
2981
2997

3013
3029
3045
3061

3077
3093
3109
3125

314
3157
3173
3189

3205
3221
3237
3253

3269
3285
3301
3317

3333
3349
3365
3381

3397
3413
3429
3445

3461
3477
3493
3509

3525
3541
3557
3573

6

2566
2582
2598
2614

2630
2646
2662
2678

2694
2710

2728
2742

2758
2774
273¢

2806

2822
2838
2854
2870

2886
2902
2918
2934

2950
2966
2982
2998

3014
3030
3046
3062

3078
3094
3110
3126

3142
3158
3174
3190

3206
3222
3238
3254

3270
3286
3302
3318

3334
3350
3366
3382

3398
3414
3430
3446

3462
3478
3494
3510

3526
3542
3558
3574

7

2567
2583
25383
2615

2631
2647
2663
2679

2695
2711

2727
2743

2759
2775

A=A
£iZ

2807

2823
2839
2855
2871

2887
2903
2919
2935

2951
2967
2983
2999

3015
3031
3047
3063

3079
3095
3111
3127

3143
3159
3175
3191

3207
3223
3239
3255

3271
3287
3303
3319

3335
3351
3367
3383

3399
3415
3431
3447

3463
3479
3495
3511

3527
3543
3559
3575

2568
2584
2660
2616

2632
2648
2664
2680

2696
2712

2728
2744

2760
2776

Aaan
ziJz

2808

2824
2840
2856
2872

2888
2904
2920
2936

2952
2968
2984
3000

3016
3032
3048
3064

3080
3096
3112
3128

3144
3160
3176
3192

3208
3224
3240
3256

3272
3288
3304
3320

3336
3352
3368
3384

3400
3416
3432
3448

3464
3480
3496
3512

3528
3544
3560
3576

9

2569
2585
2601
2617

2633
2649
2665
2681

2697
2713

Li1L3

2745

2761
27717

a7ra2
i35

2809

2825
2841
2857
2873

2889
2905
2921
2937

2953
2969
2985
3001

3017
3033
3049
3065

3081
3097
3113
3129

3145
3161
3177
3193

3209
3225
3241
3257

3273
3289
3305
3321

3337
3353
3369
3385

3401
3417
3433
3449

3465
3481
3497
3513

3529
3545
3561
3577

A

2570
2586
26062
2618

2634
2650
2666
2682

2698
2714

4L 1oV

2746

2762
2778

a2 18
Lidw

2810

2826
2842
2858
2874

2890
2906
2922
2938

2954
2970
2986
3002

3018
3034
3050
3066

3082
3098
3114
3130

3146
3162
3178
3194

3210
3226
3242
3258

3274
3290
3306
3322

3338
3354
3370
3386

3402
3418
3434
3450

3466
3482
3498
3514

3530
3546
3562
3578

B

2571
2587
260

2619

2635
2651
2667
2683

2699
2715

Amaa

PR

2747

2763
2779
2795

2811

2827
2843
2859
2875

2891
2907
2923
2939

2955
2971
2987
3003

3019
3035
3051
3067

3083
3099
3115
3131

3147
3163
3179
3195

3211
3227
3243
3259

3275
3291
3307
3323

3339
3355
337
3387

3403
3419
3435
3451

3467
3483
3499
3515

3531
3547
3563
3579

C

2572
2588
2604
2620

2636
2652
2668
2684

2700
2716

Aman
Zidz

2748

2764
2780

270
2739

2812

2828
2844
2860
2876

2892
2908
2924
2940

2956
2972
2988
3004

3020
3036
3052
3068

3084
3100
3116
3132

3148
3164
3180
3196

3212
3228
3244
3260

3276
3292
3308
3324

3340
3356
3372
3388

3404
3420
3436
3452

3468
3484
3500
3516

3532
3548
3564
3580

D

2573
2589

260

2621

2637
2653
2669
2685

2701
2717

~Aman
VACK]

2749

2765
2781
2797

2813

2829
2845
2861
2877

2893
2909
2925
2941

2957
2973
2989
3005

3021
3037
3053
3069

3085
3101
3117
3133

3149
3165
3181
3197

3213
3229
3245
3261

3277
3293
3309
3325

3341
3357
3373
3389

3405
3421
3437
3453

3469
3485
3501
3517

3533
3549
3565
3581

E

2574
2590
2606
2622

2638
2654
2670
2686

2702
2718

Ao
Zio4

2750

2766
2782
2798
2814

2830
2846
2862
2878

2894
2910
2926
2942

2958
2974
2990
3006

3022
3038
3054
3070

3086
3102
3118
3134

3150
3166
3182
3198

3214
3230
3246
3262

3278
3294
3310
3326

3342
3358
3374
3390

3406
3422
3438
3454

3470
3486
3502
3518

3534
3550
3566
3582

Appendix E

F

2575
2591
2607
2623

2639
2655
2671
2687

2703
2719
2735

275

2767
2783
2733
2815

2831
2847
2863
2879

2895
2
2927
2943

2959
2975
2991
3007

3023
3039
3055
307

3087
3103
3119
3135

3151
3167
3183
3199

3215
3231
3247
3263

3279
3295
331
3327

3343
3359
3375
3391

3407
3423
3439
3455

3471
3487
3503
3519

3535
3551
3567
3583

115

EOx
Elx
E2x
E3x

E4x
ESx
E6x
E7x

E8x
E9x
EAx
EBx

ECx
EDx
EEx
EFx

FOx
Fix
F2x
F3x

Flux
F5x
F6x
Fi1x

F8x
FIx
FAx
FBx

FCx
FDx
FEx
FFx

116

3584
3600
3616
3632

3648
3664
3680
3696

3712
3728
3744
3760

37176
3792
3808
3824

3840
3856
3872
3888

3904
3920
3936
3952

3968
3984
4000
4016

4032
4048
406l
4080

3585
3601
3617
3633

3649
3665
3681
3697

3713
3729
3745
3761

3777
3793
3809
3825

3841
3857
3873
3889

3905
3921
3937
3953

3969
3985
4001
4017

4033
4049
4065
4081

2

3586
3602
3618
3634

3650
3666
3682
3698

3714
3730
3746
3762

37178
3794
3810
3826

3842
3858
3874
3890

3906
3922
3938
3954

3970
3986
4002
4018

4034
4050
4066
4082

3

3587
3603
3619
3635

3651
3667
3683
3699

3715
3731
3747
3763

3779
3795
3811
3827

3843
3859
3875
3891

3907
3923
3939
3955

3971
3987
4003
4019

4035
4051
4067
4083

n

3588
3604
3620
3636

3652
3668
3684
3700

3716
3732
3748
3764

3780
3796
3812
3828

3844
3860
3876
3892

3908
3924
3940
3956

3972
3988
4004
4020

4036
4052
4068
4084

5

3589
3605
3621
3637

3653
3669
3685
3701

37117
3733
3749
3765

3781
3797
3813
3829

38u5
3861
3877
3893

3909
3925
3941
3957

3973
3989
4005
4021

4037
4053
4069
4085

6

3590
3606
3622
3638

3654
3670
3686
3702

3718
3734
3750
3766

3782
3798
3814
3830

3846
3862
3878
3894

3910
3926
3942
3958

3974
3990
4006
4022

4038
4054
4070
4086

7

3591
3607
3623
3639

3655
3671
3687
3703

3719
3735
3751
3767

3783
3799
3815
3831

3847
3863
3879
3895

3911
3927
3943
3959

3975
3991
4007
4023

4039
4055
4071
4087

3592
3608
3624
3640

3656
3672
3688
3704

3720
3736
3752
3768

3784
3800
3816
3832

3848
3864
3880
3896

3912
3928
3944
3960

3976
3992
4008
4024

4040
4056
4072
4088

9

3593
3609
3625
3641

3657
3673
3689
3705

3721
3737
3753
3769

3785
3801
3817
3833

3849
3865
3881
3897

3913
3929
3945
3961

3977
3993
4009
4025

4041
4057
4073
4089

A

3594
3610
3626
3642

3658
3674
3690
3706

3722
3738
3754
3770

3786
3802
3818
3834

3850
3866
3882
3898

3914
3930
3946
3962

3978
3994
4010
4026

4042
4058
4074
4090

B

3595
3611
3627
3643

3659
3675
3691
3707

3723
3739
3755
3771

3787
3803
3819
3835

3851
3867
3883
3899

3915
3931
3947
3963

3979
3995
4011
4027

4043
4059
4075
4091

C

3596
3612
3628
3644

3660
3676
3692
3708

3724
3740
3756
3772

3788
3804
3820
3836

3852
3868
3884
3900

3916
3932
3948
3964

3980
3996
4012
4028

4ouL
4060
4076
4092

D

3597
3613
3629
3645

3661
3677
3693
3709

3725
3741
3757
3773

3789
3805
3821
3837

3853
3869
3885
3901

3917
3933
3949
3965

3981
3997
4013
4029

4045
4061
uo77
4093

E

3598
3614
3630
3646

3662
3678
3694
3710

3726
3742
3758
3774

37390
3806
3822
3838

3854
3870
3886
3902

3918
3934
3950
3966

3982
3998
4014
4030

4046
4062
4078
4094

F

3599
3615
3631
3647

3663
3679
3695
3711

3727
3743
3759
3775

3791
3807
3823
3839

3855
3871
3887
3903

3919
3935
3951
3967

3983
3999
4015
4031

4047
4063
4079
4095

SUMMARY OF CONSTANTS

APPENDIX F

o o e o s e v F g e T Y S T I S S G T M R S i W S T St S e S — et " o — o S i S W Sy o} e e e e Y — e o s o s S -
N § = Q
(=] “m o} -
ZO0OmHK | P + + - Q
oHQA | &8 + + + +) g Kol pel + P + + 4 LI
LS Nw L) o Y Y4 Y4 44 o o Yy L 44 W L 1] Py
H Qe 02) (0] [} [} (] s | [} Q Q L] [V} 18] o~
QM ~ - -~ ~ ~ ~ 2] ~ ~ ~ — ~— c..... M m
o i e e e e e e s o e e s e s e e e e et o e e e e i i e o e e e e e s s et e e s e e e e S e e e e o o -
o 0 (V0]
+ [(=]
% [£4 3 SO | W oo on @ .W.
Z 0 M OF O | Lo P Q
m ey O M | ~m = =N =} °
w0 1+ I+ JOoN™~™joN™ M_.. _W_Z
e v et s s s o oo s o e e e st ey s e s e ey ot s s — — it w— —— e S s i oo S e e e e S S Sfpoe — e o S e o i e e e fo] [=I
(] ow
| 0 ~ +
R [o} o] [o] (o} =]
23 A & + L + V] n o
Y m > a4
s nNw W | unw 28"} © OO0
© O QM O~ | M w ~ L Ted g
[T=%} I+ 1+ i+ I+ Q0o
|__v >N P 0o
e e L TE i SNUCpE SRS FRNURS: TP R unun —— - —— o e e s e e s e e e el D e ——— S— - ———" — — ———— —— [SRR —— © & QU
HE HMHO
i [=] g Qo
@gEZwn | | | | [| | | ' | 0 MM Dy
[e} M “m M o el) ~ ~ o - izl - Il + m. [S]
BCAMrE (] [)] Q Re Re te te te Re te Re te te & v...
MFT 3% a =) = 3 =) .ml ..ml ﬂl =] .ml =R .ml .ml .w o
own O [e] [¢] [¢] Bl Bl 8 g o EQulIEQAI EN] EQLl EQ g o m m“h
Y et L] e s e s et ey v s — o S o - —— — — e > — — <o o o — Ca i o o v e i a— v ——— ———— — v—] o e v v (o] ~ Q
=N 3} nowm
QO 1 QP
- (] o R el] [/} Qo
0] € 1 SPnun [~} Q oMY
[=] - g O | .Q “gna v (o] R | o
fd [J] o i o OV VamM [*)] o LA
- .ﬂ L - ~ ~ — - — [9] + .m oM [or b [2] — g o
7] Qn ™0 MS ms ms [Y] [] ms w e~ ;lpmx Q 1] L (LRSS
b D4 © e} N + + + g4 =K% + [J] c_.m (L] U oo ™ [] QA
B918 1591585/ 05810918% 159 109 08 20198 e utalnt] B 25
41} e} ﬂw.l ooy Q A D Q -~ Q -~ [[nm. em SMONPY ONX nm.] T~
0 4] S 1 QU imo 1o | O LeRo] _dd Lelle] < Q [S| OO0 OD L] o N.wm
e s s e o e e s i vy s — — i w——— T w——— e —— v— s w———— e iy D o em—— e — - e i ——— - —ercy v —— —— ot s sofues e e o] 4+
a— P [~) -~ 0
mu.u.. | [<3] [o} = [¢] = o] <] [¢] o] Q [o] [o} Q .|V_._ [o] m m...m .m..
O mm WP + + + + + + 2 + +$m N =} & o P m..]
a2 w0 0 0 ~ 10 o gl 0 Q
KO Ll Th} Ll Vs LadiTs] - - L ad Ll - \O = \O L - =1
[) * N e N [N} [X: (X<} *® " .~ = ™M =+ o~ o« N .u .f“m"..
m e e o o s e e 1 e o s e g . e s e < e = s s sy s e et o] o < e e e s e s s wofre e — s S— o v ———— i — e e e [0)] [« RT= IR Y]
=) [EEl]
Nl (0] R Y] m
M] L) /1] (421
O & Q [}] e} W QT] Q je] Lo o Lo M [~]
A s 0% 1Y 18 19318 38 % iI% 18 ig 1ws WOl o OHa
Ly Ls M
Y Q Q Q z a2 = Lol Q Q = = oS3 a3 Q w %m
Y e i oo e w U a—— o o — e —— o m—— - —— —— —— e cair Cp— o o — e e o i w— e . " — ——— — - —] e e e m [oJR<TR]
| i 2] n 4
Awd 73 el L | 3 | & Sag
[ld] [} Q QO ‘w [5} e P O
2 [Lo] o] o] o o] 0nwun ggopod
m“. = (] [} (] [} (] AmMm o g
L1 01] 0w o n o 0n e (o] n v e~ 09
Hed ™~ 1 m 3 o o o s | o~ = <] =] s | £ ™~ o~ a%slw._._
o s et s o ety e et 15 et i e . e ey e e W s e G e acn S e i i o el s e s aty v e Cout oo o Ry T o —— 1, v——————— — e s o ol P
=20 i
m m H4PEame
] H 1O L] m =) e} 2} (o] [sN) 03 A > “ 1%} Ll - an
-r- llllll e i cxmen ek w— — e — — g w——— oo G —— el v — o i w——— < —— ke Wi i ey ——— b ——— e — g ——— v v— b s s —— — w—— —— -d

|
|

117

Appendix F

APPENDIX G: MACRO LANGUAGE SUMMARY

The five charts in

this appendix

summarize the macro language described in

Part II of this

are:
1.

2.

publication. The charts

Chart 1 describes the name and operand
fields of each statement.

Chart 2 indicates which macro language
elements may be used in the name and

4.

5.

operand fields of each statement.
Chart 3 is a summary of the expres-
sions that may be used in macro lan-
guage statements.

Chart 4 is a summary of the attributes
that may be used in each expression.
Chart 5 is a summary of the variable
symbols that may be used in each
expression.

Chart 1. Statements

] T T 1
| Instruction | Name Field | Operand Field |
[. 4 4 ¥
1) T 1 1
| AGO |A sequence symbol |A sequence symbol |
{ |or blank | |
¢ ¢ ¢ 1
| AIF |A sequence symbol |2 logical expression enclosed in parentheses, |
| |or blank | immediately followed by a sequence symbol |
i i i 4
T T T 1
| ANOP |A sequence symbol | Blank |
L 4 4 i |
T 1] 1
| COPY |A sequence symbol |A symbol]
i jor biank i i
t | + {
| GBLA,GBLB,GBLC | Blank | One or more variable symbols that are to be |
| | |used as SET symbols, separated by commas3 |
i 4 4 4
¥ 1 T 1
| LCLA,LCLB,LCLC | Blank |One or more variable symbols that are to be |
] | |used as SET symbols, separated by commas3 |
In { 4 1
L) T T 1
| MACRO? | Blank | Blank |
t t t {
| MEND? |A sequence symbol | Blank |
{ {or blank | |
— ¢ 4 {
| MEXIT? |A sequence symbol | Blank |
| |or blank | |
t 1 t i
| MNOTE? |A sequence symbol |A severity code, followed by a comma, fol- |
| |or blank |lowed by any combination of characters en- |
| { jclosed in quotation marks |
L { } 4
v T T 1
| SETA |A SETA symbol |An arithmetic expression |
i 4 4 4
L} T T 1
| SETB |A SETB symbol |A 0 or a 1, or a logical expression enclosed |
1 | |in parentheses |
1 $ 1

SETC |A SETC symbol |A type attribute, a character expression, a |

| | | substring notation, or a concatenation of |
| | | character expressions and substring notations |
b i 4 5
T 1 T 1
i Model Statement {2 symbol, a variable |[Any combinaticn of characters {including |
(any assembler	symbol, a sequence	variable symbols)
language mnemonic	symbol, or blank, or aj	
operation code,	concatenation of	
except COPY, END,	variable symbols	
ICTL, ISEQ, PRINT,	and other characters	i
and START) S	that is equivalent	
	to a symbol	
F t + {		
Prototype	A symbolic	Zexro or more operands that are symbolic pa-
Statement	parameter or blank	rameters, separated by commas, followed by
		zero or more operands (separated by commas) {
		of the form symbolic parameter, equal sign,
		optional standard value i
L 4 L 4

{(Continued)

Appendix G 119

Chart 1. Statements (Continued)

T 1
Instruction |Name Field | Operand Field
L iR
T T
Macro-Instruction |A symbol, a variable |Zero or more positional operands separated by
Statement |symbol, a sequence | commas, followed by zero or more keyword
[symbol, or blank, or ajoperands (separated by commas) of the form
jconcatenation of | keyword, equal sign, value2

| variable symbols |
Jand other characters
|that is equivalent

|to a symbol 2

[l

T
Assembler |A symbol, a variable Any combination of characters (including
Statement4,S jsymbol, or blank, or a

jconcatenation of
|variable symbols and
Jother characters that
jis equivalent to a

|
|
|
1
|
Language |symbol, a sequence | variable symbols)

|
|
|
|
|

!symbol |

i

T T
May only be used as part of a macro-definition.
2 variable symbols appearing in a macro-instruction are replaced by their values
before the macro-instruction is processed.
3 SET symbols may be defined as subscripted SET symbols.
4 vVariable symbols may not be used to generate the following mnemonic operation
codes, nor may variable symbols be used in the name and operand fields of
these instructions: COPY, END, ICTL, ISEQ, PRINT, REPRO, and START. Variable
symbols may not be used to generate a macro-instruction mnemonic operation code.

DDA o= —2 11

The line following & REPRO statement may not contain variable symbols.

(L]

(o o i . S —— ——— — A rein G . SN . r— W . . G S S — A G— — ——— —

120

9 xtpuaddy

Lzl

Chart 2. Macro Language Elements

Variable Symbols
| Global SET Symbols | Local SET Symbols System Variable Symbols Attributes
Symbolic | | i | | | I Sequence
Statement| Parameter| SETA | SETB | SETC | SETA | SETB | SETC §SYSNDX | &SYSECT §SYSLIST Type Length Scaling Integer Count Numberxr Symbol
I
t
MACRO | | 1 | i | 1
h
Prototype| Name I | | | | | i
Statement| Operand | | | | |] |
\
GBLA | Operand | l i | [i
_— h
GBLB i | | Operand | | | | i
i
1
GBLC 1] | | Operand | [} |
LCLA | | 1 | Operand | |
LCLB I I i { } Operand |
LCLC] | i | i { Operand
Model Name | Name | Name { Name | Name | Name | Name Name Name Name Name
Statement| Operation| Operation| Operation| Operation| Operation| Operation| Operation Operation| Operation| Operation
Operand | Operand | Operand | Operand | Operand Operand | Operand Operand Operand Operand
CoPY | | | [| | Name
Inner Name | Name | Name | Name | Name | Name Name Name Name Name Name
Macro? Operand | Operand | Operand | Operand Opexrand Operand | Operand Operand Operand Operand
SETA | Name] | | Name | |
Operand3 | Operand | Operand® | Operand?® | Operand | Operand® | Operand? Operand Operand? Operand Operand Operand Operand COperand
SETB | | Name |] | Wame |
Operand® | Operand® | Operand | Operand® | Operand® | Operand | Operand® Operand® Operand“ Operand® Operand® Operand® Operand® Operands Operand® Operand®
SETC |] | Name { 1} | Name
Operand | Operand? | Operand® | Operand | Operand” | Operand® | Operand Operand Operand Operand Operand
AIF | | | | | { Name
Operand® | Operand® | Operand | Operand® | Operand® | Operand | Operand® Operande® Operand* Operands® Operand“ Operand® Operand® Operand® Operand® Operand®| Operand
AGO | | | | | | Name
| | | | | | Operand
ANOP | !] | | l Name
MEXIT | | | | | | Name
MNOTE Operand | Operand | Operand | Operand | Operand | Operand | Operand Operand Operand Operand Name
MEND | | | |) | Name
Quter | Name | Name | Name | Name | Name Name Name
Macro? | Operand | Operand | Operand | Operand | Operand | Operand
Assembler { Name | Name Name Name Name Name Name
Language | Operation| Operation| Operation| Operation| Operation| Operation
Statement | Operand | Operand | Operand | Operand | Opexand | Operand
1 Varjable symbols in macro-instructions are replaced by their valiues before processing.
a Only if value is self-defining term.
3 Converted to arithmetic +1 or +0.
4 Only in character relations.
L Only in arithmetic relations.
° Only in arithmetic or character relations.
k4 Converted to unsigned number.
% Converted to character 1 or 0.

122

Chart 3. Expressions

r T T L) 1
| Expression | Arithmetic Expressions | Character Expressions | Logical Expressions]
|3 4] 4 4
f T T H |
May	1. Self-defining terms	1. Any combination of	1. SETB symbols
contain	2. Length, scaling, i characters enclosed	2. Arithmetic re-	
	integer, count, and	in quotation marks	lations?
	number attributes	2. Any variable symbol	3. Character re- i
{ 3. SETA and SETB symbols	enclosed in quotation	lations=2	
{ 4. SETC symbols whose	marks		
i value is 1-8 decimal	3. A concatenation of		
i i digits	variable symbols and		
	5. Symbolic parameters	other characters i	
	if the corresponding	enclosed in quotation	
	operand is a self-	marks	
	defining term	4. A request for a type	
] 6. &SYSLIST (n) if the	attribute.		
[corresponding operand]
	is a self-defining		
	term	I	
	7. &SYSLIST (n,m) if the		
	corresponding operandj		
	is a self-defining		
	term		
I	8. &SYSNDX		!
¢ t + t 1			
Operators	+¢,—,+%, and 7/	concatenation, with a	AND, OR, and NOT]
are	parentheses permitted	period (.)	parentheses per-
{	i	mitted	
5 1 + + 1			
Range	=237 to +2231-1	0 through 255 characters	0 (false) or
of values			1 (true)
; t t t {			
May be	1. SETA operands	1« SETC operands3	1. SETB operands
{ used in	2. Arithmetic relations	2. Character relations2	2. AIF operands
{	3. Subscripted SET 1		
I	symbols [[
	4. €SYSLIST		
	5. Substring notation		
	6. Sublist notation		
P + t t ===			
* An arithmetic relation consists of two arithmetic expressions related by the			
operators GT, LT, EQ, NE, GE, or LE.			

| 2 A character relation consists of two character expressions related by the operator|
| GT, LT, EQ, NE, GE, or LE. The type attribute notation and the substring notation|
| may also be used in character relations. The maximum size of the character|
{ expressions that can be compared is 255 characters. If the two character|
| expressions are of unequal size, then the smaller one will always compare less than|
| the larger. |
| ® Maximum of eight characters will be assigned. |
L 3

Chart 4.

Attributes

] T
|Attribute |Notation

May be used with:

e e e,]

iMay be used only if
|type attribute is:
i

o e — oo

May be used in

2
B

TI

| Symbols outside
|macro-definitions;
|symbolic parameters,
| §SYSLIST (n) , and

| §SYSLIST (n,m) inside
|macro-definitions

1

(May always be used)

fields
2. Character
relations

1. SETC operand

——yan So. s S G s o . Sro

Length

L'

$
| Symbols outside
|macro-definitions;

| symbolic parameters,
| §SYSLIST (n) , and

| §SYSLIST (n,m) inside
|macro-definitions

(]

ithmetic
xpressions

SR

Scaling

Sl

}
{Symbols outside
|macro-definitions;
|symbolic parameters,
| €SYSLIST (n) , and

| €SYSLIST (n,m) inside
fmacro-definitions

i

H,F,G,D,E,K,P, and Z

Arithmetic
expressions

Integer

Il

T

|Symbols outside
|macro-definitions;
|symbolic parameters,
| §SYSLIST (n) , and

| 6SYSLIST (n,m) inside
|macro-definitions

[

H,F,G,D,E,K,P, and 2

e e e . s e e i i e S e . . o S S S S . St ;. S s . o]

Arithmetic
expressions

e it e Pt e S S S T — — s W—— —— — — T — . S— " ——— v——]

Count

Kl

+
|Symbolic parameters
|corresponding to
|macro-instruction
loperands, §SYSLIST

| n) , and &SYSLIST (n,m)

|inside macro-
jdefinitions
L

Any letter

Arithmetic
|expressions

Number

- o s S T — —— S — — — — . o — o— f— —— o— — Y — ——_ — — So——

o e e

fon e i s e e e ————— o —— . S — —— — v o S—— ——— —— o ———— — . S———— ——— —— —— e &

Nl

T

| Symbolic parameters,
{8SYSLIST, and

| §SYSLIST (n) inside
|macro-definitions

1

Any letter

o e e e e i e e v —— —

p-————n——-u-————-—
D
&R

é

M

ﬂ

ot

Q

b e e i s e v a— — — — v vk c—. po— e G — — i w— — r—— —— ——————— — . T——— rp— C— o o~ v wdin o s wd

Appendix G

123

124

Chart 5.

Variable Symbols

'} T L] 1 T 1
|Variable |]Defined by: |Initialized, |Value changed |[May be used in: |
| symbol | |or set to: | by: | |
8 i 4 1 } 4
¥ T T 1 T 1
Symbolic?	Prototype	Corresponding { (Constant	1. Arithmetic expressions	
parameter	statement	macro-instruction	throughout	if operand is self-
	joperand	definition)	defining term	
				2. Character expressions
b { t ¢ S re— -]				
{SETA JLCLA or GBLA	0	SETA [1. Arithmetic expressions		
l jinstruction		instruction	2. Character expressions	
L i 4 4 4 4				
3 1 T L} T h				
SETB	LCLB or GBLB	0	SETB {1. Arithmetic expressions}	
	instruction		instruction	[2. Character expressions
{				3. Logical expressions
L 4 i iR 4 4				
T 1 T T T 1				
SETC	LCLC or GBLC	[Null character	SETC	1. Arithmetic expressions
	instruction	value	instruction	if value is self-
	i		defining term]	
				2. Character expressions
L i i 4 4]				
L} T T L] T 1				
§SYSNDX?	The assembler	Macro-instruction	(Constant	1. Arithmetic expressions]
		index	throughout	2. Character expressions
		definition;		
	junique for			
{		each macro-		
l] ! !1nstruct10n) 1 J				
r T T L] 1				
ESYSECT? The assemblexr	Control section	(Constant	Character expressions	
{in which macro-	throughout			
Jinstruction	definition;			
= = lappears ,sgtcby CS?CT, : =				
DSECT, an				
			START)	
¢ $ } , + t — i				
§SYSLIST?	The assembler	Not applicable	Not applicable	N'&SYSLIST in arithmetic
				expressions
b t ¢ . ¢ O , -—=—				
§SYSLIST (n) '	The assembler	Corresponding	{(Constant	1. Arithmetic expressions
§SYSLIST (n,m) *		macro-instruction	throughout	if operand is self-
		operand	definition)	defining term
{ | | | |2. Character expressions |
b { { t t {
} * May only be used in macro-definitions. |
L H

APPENDIX H: INTERNAL TABLE CAPACITIES

Operating System/360 assemblers are designed to enhance the language features
available to the user, to maximize the size of programs that may be processed, and to
minimize assembly time for typical programs. To properly accomplish this, overall
processing limitations have been set. These are dependent upon the size of main storage
available to the assembler. The following discussions, concerning significant tables of
the assembler, are presented here so that the user may be aware of the generality,
flexibility, and sizeable capacity of Operating System/360 assemblers.

THE SYMBOL TABLE

The assembler maintains one table of not more than 64,100 bytes to hold all symbols,
variable symbols, and macro operation codes used by the program except sequence symbols,
local SET symbols used within macro definitions, and symbolic parameters. For each
unique symbol, an entry is made in this table, consisting of the symbol itself and
control information. The +type of entries that are made in this table and the size of
each entry are listed below.

Type Size of entry

Symbols 6 bytes average plus the symbol#
(9 bytes maximum plus the symbol#)

Macro instruction operation code 10 bytes plus the operation

(outer and inner used in the program) code*

Sequence Symbols 6 bytes plus the symbol#*

(outside macro definitions)

Local Set Symbols 3 bytes nonsubscripted, 4 bytes

(outside macro definitions) subscripted, plus the symbol#*

Global Set Symbols 6 bytes plus the symbol#

{(inside and outside macro definitions)
* one byte for each character
Assuming an average of six characters per symbol and a reasonable mix of the above

types, the number of entries that may be made in the symbol table before secondary
storage is used is summarized in Table H-1.

Table H-1. Symbol Table Capacity

(1) Assuming average of five characters per macro operation code
(2) Assuming average of six characters per symbol

r

| Number of

{ Main Main Unique Number of Total

| Storage Storage Total Macro Number of Symbols Number of
| Available Symbol Symbol Instructions Unique In Main Symbols

| To Table Table (Inside and Global Storage In Symbol
| Assembler Size Size Outside) (1) Symbols (2) Table (2) Table

| 12000 2100 64100 25 25 118 >5000

| 44000 30000 64100 100 100 2200 >5000

{ 80000 64100 64100 100 100 >5000 >5000

L

1

|

|

|

|The values shown in columns 4,5, and 6 are examples only. There can be a larger number
|of entries for a given type if the number of entries of another type is smaller.
L

b s v e s e . c——— — ——— —— — — — —)

Appendix H 125

Symbol Table Permanent Area

The assembler speeds processing by ensuring that certain entries in the symbol table
remain in main storage, even though other entries are placed in secondary storage. If
the entries exceed the capacity of the permanent area in main storage, the assembly is
terminated. If this occurs, the program can be assembled by specifying the alternate
mode of assembly, which handles the permanent area in a different manner.

The entries in the permanent area are macro instruction operation codes and global
SET symbols. The size of the entries are 10 bytes plus the operation code, and six
bytes plus the symbol, respectively. Assuming six-character symbols and an equal number
of macro instruction operation codes and global SET symbols, the capacity of the
permanent area is shown in Table H-2.

Table H-2. Symbol Table Permanent Area Capacity

| The values shown in columns 3 and 4 are examples only. There can be a larger number of
|macro-instructions, if the number of global SET symbols is smaller.
L

) 1
| Main Permanent Number of Number of |
| Storage Area of Unique Unique |
| Available to Symbol Macro- Global |
| Assembler Table Instructions Symbols |
| 12000 1600 59 59 i
| 44000 29000 1050 1050 |
t {
| |

|

|

i

SET SYMBOL VALUE TABLE

This value table is used to store the values associated with all global SET symbols
and certain local SET symbols. The entries are:

1. The values for all global SET symbols defined both inside and outside of macro
definitions.
2. The values of all local SET symbols defined outside of macro definitions.

Subscripted SET symbols require as many entries as the defined dimension of the
subscripted SET symbol. SETA values require four bytes; SETB, one bit (one-eighth of a
byte), and SETC, nine bytes. For each subscripted SET symbol, one byte to contain the
dimension is also required.

The SET Symbol Value Table (see Table H-3) allows a substantially larger number of
global SET symbol entries than the permanent area of the symbol table. Subscripting
global SET symbols allows the programmer to take advantage of this.

Table H-3 shows an assumed number of symbois and the implied average dimension
permitted by the value table. For the purpose of the value tables, the number of SET
values is equivalent to the number of unsubscripted SET symbols plus the sum of the
dimensions of subscripted SET symbols. Global SET symbols and local SET symbols that
occur outside macro definitions are treated alike.

126

Table H-3. SET Symbol Value Table Capacity

Implied
Main Maximum
Main Storage Number of Average For
Storage Available to Number of Global Dimension of
Available to SET Symbol Values Symbols Subscripted
Assembler Value Table Permitted (1) Assumed Symbols
12000 1500 500 50 10
44000 5000 1666 100 16
anann annnn 2222 10N 33

(1) Assuming two SETA and three SETB values for each SETC value, or an average of
three bytes per value.

The figures shown in column 3 are an average. The figures in columns 4 and 5 are

— i —— s -— ——— ——— —. T——— o}

examples only. There can be a large number of entries for a given type if the number|

.
!
|
|
|
|
|
(
[
i sUUUV [RVASAV Y] 3335 LY
¢
|
g
|
|
%
{ of entries of another type is smaller.

L

4

MACRO DEFINITION VALUE TABLE

This table is used to hold the values of local SET symbols within macro definitions,
the position of sequence symbols, the attribute values of any symbols referenced in an
outer macro instruction, and a pointer-value for each symbolic parameter. This table is
unique in that entries are removed from the table when they are no longer needed. As
processing of an inner or outer macro definition is completed, space assigned to that
definition is made available for processing of a later inner or outer macro definition.

When an inner macro-instruction occurs, the space required is the space for the macro
definition for both the inner and outer macro definitions. Subsequent levels of inner
macro-instructions may continue to occur until the space available for this table is
exhausted.

The sizes of the entries for the SET symbols are described with the preceding table.
In addition, each sequence symbol requires five bytes; the attribute values for each
symbol require four bytes, and each symbolic parameter requires four bytes in this
table.

Table H-4. Macro Definition Value Table Capacity

(1) Assuming two SETAs, three SETBs, and one SETC for six sequence symbols.
(2) One nest of active macro definition only.

r

i Assumed Implied

| Number of Number of
| Main Storage Symbols Sequence
| Storage Available In Outer Assumed Symbols

| Available To Macro- Average Macro Number of And Local
| To Definition Number of Instruction Symbolic SET

| Assembler Value Table Entries (1) Operands Parameters (2) Symbols (2)
| 12000 3000 750 200 100 450
| 44000 30000 7500 500 1000 6000
| 80000 60000 15000

| 200000 160000 40000

t

(

|

|

|The values in columns 3, 4, and 5 are examples only. There can be a larger number of
|entries for a given type, if the number of entries of another type is smaller.
L

b e e e e ol — —— —— — —— —— o — —)

Appendix H 127

If one assumes a macro definition contains an average of 30 symbolic parameters and a
combination of sequence symbols and local SET values not exceeding 150 (see assumption
(1) in Table H-4), then three levels of inner macro-instructions may be accommodated
with 12,000 available bytes of storage, and more than 33 levels with 44,000 bytes of
available storage.

If the average macro definition contains ten symbolic parameters and a combination of
sequence symbols and 1local SET values not exceeding 45 (see assumption (1) in Table
H-4) , then ten levels of macro-instructions may be accommodated with 12,000 available
bytes of storage.

While the capacity of this value table sets a practical limit of around 100 symbolic

parameters to one macro definition, there is also a limit of 200 operands (including
suboperands in a sublist) in any one macro-instruction.

128

APPENDIX I: SAMPLE PROGRAM

Given:

1. A TABLE with 15 entries, each 16 bytes long, having the following format:

T T 1 L 1
i NUMBER of items | SWITCHes I ADDRESS | NAME I

3 bytes 1 byte 4 bytes 8 bytes

2, A LIST of items, each 16 bytes long, having the following format:

1 A]
| NAME SWITCHes NUMBER of items i ADDRESS

8 bytes 1 byte 3 bytes 4 bytes

Find: Any of the items in the LIST which occur in the TABLE and put the SWITCHes,
NUMBER of items, and ADDRESS from that LIST entry into the corresponding TABLE
entry. If the LIST item does not occur in the TABLE, turn on the first bit in
the SWITCHes byte of the LIST entry.

The TABLE entries have been sorted by their NAME.

EXAM TITLE °‘SAMPLE PROGRAM®
: THIS IS THE MACRO-DEFINITION
’ MACRO
MOVE §TO, §FROM
:: DEFINE SETC SYMBOL
-t LCLC §TYPE
:: CHECK NUMBER OF OPERANDS
.f AIF (N*&SYSLIST NE 2} .ERROR1
:S CHECK TYPE ATTRIBUTES OF OPERANDS

AIF (T*'&€TO NE T'§&FROM) . ERROR2
AIF (T*€TO EQ 'C* OR T'ETO EQ 'G'" OR T'ETO EQ 'K') . TYPECGK
AIF (T*'6TO EQ °*D® OR T*6TO EQ *E' OR T'&TO EQ 'H') . TYPEDEH
AIF (T°6TO EQ *F') .MOVE
AGO +«ERROR3

«TYPEDEH ANOP

o ¥ ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL

o ¥

§TYPE SETC T'&§TO

«MOVE ANOP

* NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO
LETYPE 2, §FROM
STETYPE 2,8TO

MEXIT
o*
o ¥ CHECK LENGTH ATTRIBUTES OF OPERANDS
o
TYPECGK AIF (L'§TO NE L'EFROM OR L'&TO GT 256) .ERRORY
* NEXT STATEMENT GENERATED FOR MOVE MACRO
MVC §TO, §FROM
MEXIT

Appendix I 129

¥ ERROR MESSAGES FOR INVALID MOVE MACRO INSTRUCTIONS

:ERROR1 MNOTE 1, *IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATED®
«ERROR2 ﬁgg;g 1, "OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED'
«ERROR3 ﬁﬁg%g 1, *IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED'

- ERRORY §§§§£ 1, "IMPROPER OPERAND LENGTHS, NO STATEMENTS GENERATED'

*

MAIN ROUTINE

CSECT
BEGIN BALR R13,0 ESTABLISH ADDRESSABILITY OF PROGRAM
USING *,R13 AND TELL THE ASSEMBLER
LM R5,R7,=A (LISTAREA, 16 , LISTEND) LOAD LIST AREA PARAMETERS
USING LIST,R5 REGISTER 5 POINTS TO THE LIST
MORE BAL R14,SEARCH FIND LIST ENTRY IN TABLE
™ SWITCH,NONE CHECK TO SEE IF NAME WAS FOUND
BO NOTTHERE BRANCH IF NOT
USING TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY
MOVE TSWITCH,LSWITCH MOVE FUNCTIONS
* NEXT STATEMENT GENERATED FOR MOVE MACRO
MVC TSWITCH, LSWITCH
MOVE TNUMBER, LNUMBER FROM LIST ENTRY
* NEXT STATEMENT GENERATED FOR MOVE MACRO
MVC TNUMBER, LNUMBER
MOVE TADDRESS,LADDRESS TO TABLE ENTRY
* NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO
L 2, LADDRESS
ST 2, TADDRESS
BXLE R5,R6,MORE LOOP THROUGH THE LIST
STOP END OF PROGRAM
NOTTHERE OI LSWITCH, NONE TURN ON SWITCH IN LIST ENTRY
BXLE RS5,R6,MORE LOOP THROUGH THE LIST
STOP END OF PROGRAM
SWITCH DS X
NONE EQU X"80°'
*
* BINARY SEARCH ROUTINE
*
SEARCH NI SWITCH, 255-NONE TURN OFF NOT FOUND SWITCH
LM R1,R3,=F'128,4, 128" LOAD TABLE PARAMETERS
LA R1,TABIAREA-16 (R1) GET ADDRESS OF MIDDLE ENTRY
LOOP SRL R3,1 DIVIDE INCREMENT BY 2
CLC LNAME, TNAME COMPARE LIST ENTRY WITH TABLE ENTRY
BH HIGHER BRANCH IF SHOULD BE HIGHER IN TABLE
BCR 8,R14 EXIT IF FOUND
SR R1,R3 OTHERWISE IT IS LOWER IN THE TABLE X
SO SUBTRACT INCREMENT
BCT R2,LOOP LOOP 4 TIMES
B NOTFOUND ARGUMENT IS NOT IN THE TABLE
HIGHER AR R1,R3 ADD INCREMENT
BCT R2,LOOP LOOP 4 TIMES
NOTFOUND OI SWITCH, NONE TURN ON NOT FOUND SWITCH
BR R14 EXIT
*
* THIS IS THE TABLE
*
DS 0D

TABLAREA DC XL8'0',CL8"ALPHA®
DC XL8'0',CL8"'BETA"
DC XL8'0',CL8"DELTA'
DC XL8'0',CL8"EPSILON"
DC XL8'0',CL8"ETA®
DC XL8'0',CL8"GAMMA"

130

*
*
*
LISTAREA

LIsT
LNAME
LSWITCH
LNUMBER

LADDRESS
*

*

*

TABLE
TNUMBER
TSWITCH
TADDRESS
TNAME

THESE

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

THIS IS THE FORMAT DEFINITION OF LIST ENTRYS

DSECT
DS
DS
DS
DS

THIS IS THE FORMAT DEFINITION OF TABLE ENTRYS

DSECT
DS
DS

DS

DS
END

XL8'0°*,CL8'IOTA"
XL8'0',CL8"KAPPA"
XL8'0',CL8"LAMBDA"
XL8°0',CL8*MU"*
XL8'0',CL8*NU"*
XL8'0',CL8* OMICRON"®
XL8'0',CL8*PHI"
XL8'0',CL8*SIGMA"
XL8'0',CL8* ZETA"

CL8'LAMBDA',X"0A",FL3'29",A (BEGIN)
CL8'ZETA',X'05',FL3'5",A (LOOP)
CL8*THETA',X°02*,FL3'45",A (BEGIN
CL8'TAU',X'00",FL3'0*,A (1)
CL8'LIST',X'1F',FL3'456",A (0)
CL8'ALPHA',X'00',FL3'1*,A (123)

ARE THE SYMBOLIC REGISTERS

-k AN U N -

3
4

CL8
C
FL3
F

FL3
C

F
CL8
BEGIN

Appendix I

131

APPENDIX J:

ASSEMBLER LANGUAGES--FEATURES COMPARISON CHART

132

Features not shown below are common to all assemblers.

Dash = Not allowed.

In the chart:

as defined in Operating System/360 Assembler Language Manual.

r T . T Ll L] 1
| |Basic | [[[
	Programming	7090/7094		
Feature	Support/360:	Support	Other	
	Basic	Package	Systen/360	0S/360
	Assembler	Assembler {[Assemblers?!	Assembler	
i L 4 1 4 4				
[} T T T T 1				
{No. of Continuation Cards/Statement	0 { 0	1	2	
(exclusive of macro-instructions)				
£ 4 L 4 4 4				
¥ T T h) T 1				
Input Character Code {	BCD &			
	EBCDIC	EBCDIC	EBCDIC	EBCDIC
¢ + { t t {				
ELEMENTS: [
L 1 d 4 i y				
L} . T T T i 1				
Maximum Characters per symbol	6	6 i 8	8	
L 4 4 i 4 J				
¥ T T 1]]				
Character self-defining terms	1 Char.			
{ i only i X i X	x			
i 4 4] 1 4				
L} . . T L} T 1 1				
Binary self-defining terms	-	-	X	X
[4 4 4 1 d				
1 . T L T 1 1				
l Length attribute reference	--	-	X	X
b t ¢ $ ¢ 1				
Literals	--	-	X	X
L 4 4 4 4 d				
T R T T T h L)				
Extended mnemonics	-	X] X	X	
L 4 i i 4 4				
r R R T T T b 1				
Maximum Location Counter value	2v6—1	224—1	2241	224=1
L L 1 i 1 J				
LB I T 1 1 1				
Multiple Control Sections per assembly} -	-	X	X	
t + t { + 1				
EXPRESSIONS: {				
L i 1 4 4 4				
LB 1] T T T L}				
Operators { +-%	+-*/	=%/ [=%/		
L 4]] L 4				
0 1 T T T L)				
Number of terms	3	16	3	16
b t ¢ t t 4				
Number of parentheses	-	-	1 Level	5 Levels
L 4 i 4 i 4				
L L] T v T 1				
Complex relocatability	-	--	X	X
b 4 $ { ¢ {				
ASSEMBLER INSTRUCTIONS: {				
L 4 L 4 4 ¥
1) T T T 1 1
| DC and DS | | i | |
L 1 4 Il 4 4
L . . T T LI T 1
| Expressions allowed as modifiersj - | - | - | X !
b . t t ¢ { {
| Multiple operands | - | - | - | X |
F t + + ¢ {
| i | | Except | I
| Multiple constants in an operandj - i - | Address i X |
| | | | Consts. | 1
L L L iR 4 4

(Continued)

Appendix J: Assembler Languages--Features Comparison Chart (Continued)

et el e e el e

Appendix J

L} v 1 L] Ll 1
i |Basic | ! | |
| |Programming |[7090/7094 | | |
! Feature | Support/360: |Support |Other | |
| |Basic |Package |System/360 |0S/360 |
| |Assembler |Assembler |Assemblers? |Assembler |
8 4 4 H 4 3
f T T T T 1
{ Bit length specifications | - | - | - | X |
% t 1 ; | |
{ Scale modifier | -= i - H X i X i
L i 4 i] 1
13 . T T T T 1
| Exponent Modifier | - i - | X | X |
L i 4 4 [l 4
H ™ - L T T 1
| i Except j Except i i i
| DC types | B, P, 2, | B,V | X | X !
i | v, Y, s | | | |
L i i I 1 4
1 g T T T 1 1
| | Except | | Except | |
| DC duplication factor | A | X | S | X |
b 4 + 4 t {
‘ . [l | Except | [
] DC duplication factor of zero | -- | -- | S | X i
t { { t + i
| N | Except | | | |
i DC length modifier | H, E, D { X i X i X]
L 1 4 4 I 4
¥ T T T T 1
| | Only C, | Only C, | I |
| DS types | H F, D | 2, ¥, D | X] X |
L . y) 4 4 i i
L) . T T T T 1
| DS length modifier | Only C | Only C | X | X |
i 4 } 4 1 4
H H T 1 T 1
{ DS maximum length modifier | 256 ! 256] 256 165,535 |
i 4 4 } 4 4
T T T T T 1
| DS constant subfield permitted | -- | -—- | X | X |
t t 4 t t {
| copy I - T T |
t t ¢ ¢ ¢ {
| CSECT i -- | -- | X I I
[- 4 i 3
i 1 1 T 1
DSECT i -- i -] X [¢ |
4 i | } 4
T T T T 1
ISEQ | -- | -= | X | X |
1 + T T i
LTORG | -- | -- I X I X I
4 4 4 i J
T T T T 1
PRINT I -- | -— X | X |
4 4 i 4 J
T T T T 1
TITLE i -- | X | X | X i
] 4 .y 4 4
1 T 1 T 1
comM P I - 1 -] x l
i 1. i 4 4
1 T 1 T 1
| 1 oprnd | | I |
ICTL {f 1 or 25 | 1 oprnd | X | X |
| only | | I |
i 4 } 4 -_...4|

¥ T T +
| 2 oprnds |2-170prnds| | |
USING | oprnd 1 | oprnd 1 | 6 oprnds | X |
| reloc | reloc]] |
| only ! only | ! |
H t t t i
| 1 oprnd | | | |
DROP | only i X | 5 oprnds | X |
L 4 i i Jp— |
(Continued)

133

Appendix J: Assembler Languages--Features Comparison

Chart (Continued)

L] T L] 1 T 1

| |Basic | | | |

| |Programming |[7090/7094 | | |

| Feature | Support/360: |Support |Other i |

| |Basic | Package |Systems/360 |0S/360 |

| Assembler |Assembler |[Assemblers? |Assembler |

1 1 1 t 4

| oprnd 2 | | | |

CCw | reloc X | X | X |

| only | | |

) + ¢ : + 1

| no blank no blank | | |

ORG | oprnd oprnd | X | X |

¢ t t t ¢ 4

: ENTRY = 1 t{prnd 1 2prnd } 1 cl)prnd } . }

only only only

L) 4 4 1 4
L) T 1] T

i | max 14 | | | i

: EXTRN : 1 gprnd | 1 iprnd | 1 c1>prnd | X |

on on

| e Y O - ,'

r 1 H i 1 I

| | 2 dec | 2 dec | 2 dec | |

] CNOP | digits | digits | digits | X |

+ ¢ { !

PUNCH - | - | - | X |

t ¢ { {

REPRO | i | |

| - | - | X | X |

[, t i t ¢ 1

!Macro Instructions | - | - | X | X |

(Continued)

134

Appendix J: Assembler Languages--Features Comparison Chart (Continued)

r T 1 1
{ |Other | |
| Macro Language Features | System/360 |0OS/360 |
] |Assemblers? |Assembler |
| | I |
[[l 4 d
r N T T 1
|Operand Sublists | - | X |
i } 4 4
r T T 1
{Attributes of macro-instruction operands inside macro | | |
|definitions and symbols used in conditional assembly i == i X |
|instructions outside macro definitions. i | |
L L 4 i
L) T T]
| Subscripted SET symbols | - | X |
b = + i
[Maximum number of operands | 49 | 200 |
i 1 bR d
T 1 { i
{Conditional assembly instructions outside macro | - | X i
jdefinitions. | | |
t t t {
{Maximum number of SET symbols | | |
t ¢ t {
| global SETA | 16 | 2 |
b + : i
| global SETB | 128 | 2 |
b - + + {
| global SETC | 16 | 2]
t + t {
{ local SETA | 16 | 2 |
b= + + {
i local SETB | 128 | 2 |
i 4 4 4
L} T T 1
| local SETC | 0 | 2 |
L L i J
| ¥ Not including Model 20. |
| 2 The number of SET symbols permitted by the Operating System/360 Assembler |
i is variable, dependent upon available main storage. |
L L L J

Appendix J

135

§SYS, restrictions on use, 66,78,90
§SYSECT (see Current control section name)
ESYSLIST (see Macro-instruction operand)
§SYSNDX (see Macro-instruction index)
7090/7094 Support Package Assembler,
Absolute terms, 15
Address constants,
A-type, 47
Complex relocatable expressions, 47
Literals not allowed, 19
S—-type, U8
V-type, 48
Y-type, 48
Address specification, 33
Addressing
Dummy sections, 28
Explicit, 23
External control sections, 30
Implied, 23
Relative, 25
AGO instruction
Example, 86
Format of, 85
Inside macro-definitions, 85
Operand field of, 85
Cutside macro-definitions,
Sequence symbol in, 85
Use of, 85
AIF instruction
Example of, 85
Format of, 85
Inside macro-definitions, 85
Invalid operand fields of, 85
Logical expression in, 84
Operand field of, 84
Outside macro-definitions, 85
Sequence symbols in, 85
Use of, 85
Valid operand fields of, 85
Alignment, boundary
CNOP instruction for, 55
Machine instruction, 32
Ampersands in
Character expressions, 81
Macro-instruction operands, 69
MNOTE instruction, 89
Symbolic parameters, 66
Variable symbols, 62
ANOP instruction
Example of, 86
Format of, 86
Sequence symbol in, 86
Use of, 86
Arithmetic expressions
Arithmetic relations, 83
Evaluation procedure, 78
Invalid examples of, 78
Operand sublists, 79
Operators allowed, 78
Parenthesized terms in
evaluation of, 79
examples of, 79

7,132
47-48

o
w

136

SETA instruction, 78
SETB instruction, 83
Substring notation, 81
Terms allowed, 78
Valid examples of, 78
Arithmetic relations, 83
Arithmetic variable, 93
Assembler instructions
Statement, 37
Table, 109
Assembler language
Basic Programming Support, 9,132
Comparison chart, 132
Macro language, relation to, 61
Statement format, 13,14
Structure, 15,16
Assembler program
Basic functions, 10
Output, 26
Assembly, terminating an, 56
Assembly no operation (see ANOP
INSTRUCTION)
Attributes
How referred to, 75
inner macro-instruction operands,
Kinds of, 74
Notations, 74
Operand sublists, 74
Outer macro-instruction operands,

Summary chart of, 123
Symbols, 74
Use of, 74

(see also specific attributes)
Basic Programming Support Assembler,
Base registers .

Address calculation, 10,30,33

DROP instructions, 24

Loading of, 23

USING instructions, 23
Binary constant, 44
Binary self-defining term, 18
Binary variable, 93
Blanks

Logical expressions, 83

Macro-instruction operands, 70

CCW instruction, 50
Channel command word, defining, 50
Character codes, 102
Character constant, 42
Character expressions

Ampersands in, 81

Character relations, 83

Examples of, 80,81

Periods and, 80

Quotation marks in, 80

SETB instructions, 83

SETC instructions, 80
Character relations, 83
Character self-defining term, 18
Character set, 14,102

74

74

7,132

Character variable, 93
CNOP instruction, 55
Coding form, 12
COM instruction, 29
Commas, macro-instruction operands, 70
Comments statements
Example of, 14,68
Model statements, 67
Not generated, 68
Comparison chart, 132
Compatibility
Assembler language, §
Macro-definitions, 98
Complex relocatable expressions, 47
Concatenation
Character expressions,
Defined, 66
Examples of, 67
Substring notations, 82
Conditional assembly elements, summary
charts of, 87,121
Conditional assembly instructions
How to write, 73
Summary of, 87
Use of, 73
{(see also specific instructions)
Conditional branch (see AIF instruction)
Constants (see also specific types)
Defining (see DC instructions)
Summary of, 117
Continuation lines, 13
Control dictionary, 26
Conditional branch instruction, 35
Operand format, 35
Control section location assignment,
Control sections
Blank common, 29
CSECT instruction, 27
Defined, 26
First control section, properties of,
26
START instruction, 27
Unnamed, 27
COPY instruction, 56
COPY statements in macro-definitions
Format of, 68
Model statements, contrasted, 68
Operand field of, 68
Use of, 68
Count attribute
Defined, 76
Notation, 74
Operand sublists, 76
Use of, 76
Variable symbols, 76
CSECT instruction, symbol in, length
attribute of, 27
Current control section name (E§SYSECT)
Affected by CSECT, DSECT, START, 94
Example of, 95
Use of, 95

80,82

Data definition instructions, 38
Channel command words, 50
Constants, 38

Storages, 48

DC instruction, 38

Duplication factor operand subfield,

26

39

Operand subfield Modifiers, 39

Type operand subfield, 39
Length modifier, 39
Bit length specification, 40
Scale modifier, 41
Exponent modifier, &2

Constant operand subfield, 42
Address-constants (see Address

constants)
Binary constant, 44
Character constant, 42
Decimal-constants, 46
Fixed-point constants, 44
Floating-point constants, 44
Hexadecimal constant, 43
Type codes for, 40
Decimal constants, U6-47

Length modifier, 46

Length, maximum, U6

Packed, U6

Zoned, U6

Decimal field, integer attribute of, 77

Decimal self-defining terms, 17
Defining constants (see DC instruction)
Defining storage (see DC instruction,
DS instruction)
Defining symbols, 15
Dimension, subscripted SET symbols, 92
Displacements, 33
Double-shift instruction, 32
DROP instruction, 24,32
DS instruction, 48-50

Defining areas, 50

Forcing alignment, 49
DSECT instruction, 28
Dummy section location assignment,
Duplication factor, 39

Forcing alignment, 9

Effective address, length, 34

EJECT instruction, 51

END instruction, 57

ENTRY instruction, 30

Entry point symbol, identification of,
EQU instruction, 37

28,30

30

Equal signs, as macro-instruction operands,

69

Error message (see MNOTE instruction)

Explicit addressing, 23,33
Length, 34

Exponent modifiers, 42

Expressions, 20,30
Absolute, 33
Evaluation, 21
Relocatable, 33
Summary chart of, 122

Extended mnemonic codes,
Operand format, 36
Table, 107

35

External control section, addressing of,

30
External symbol, identification of, 30
EXTRN instruction, 30

First control section, 26
Fixed-point constants, 44-45
Format, 44
Positioning of, 45

Index

w

~J

Scaling, 45
Values, minimum and maximum, 45
Fixed-point field, integer attribute of,
76
Floating-point constat
Floating-point constants, 45-46
Alignment, U6
Format, 45
Scale modifiers, U6
Floating-point field, integer attribute
of, 76
Format control, input, 53

GBLA instruction
Format of, 90
Inside macro-definitions, 90
Outside macro-definitions, 90
Use of, 90
GBLB instruction
Format of, 90
Inside macro-definitions, 90
Outside macro-definitions, 90
Use of, 90
GBLC instruction
Format of, 90
Inside macro-definitions, 90
Outside macro-definitions, 90
Use of, 90
General register zero, base register
usage, 24
Generated statements, examples of, 66
Global SET symbols
Defining, 90
Examples of, 91,92
Local SET symbols, compared, 89
Using, 90
Global variable symbols
Types of, 89
(see also global SET symbols, sub-
scripted SET symbols)

Hexadecimal constants, 43

Hexadecimal-decimal conversion chart,
112-116

Hexadecimal self-defining terms, 17

I' (see Integer attribute)
ICTL instruction, 53
Identification-sequence field, 14
Identifying blank common control section,
29

Identifying assembly output, 51
Identify dummy section, 28
Implied addressing, 33

Length, 34
Implied length specification, 34
Inner macro-instruction

Defined, 71

Example of, 72

Symbolic parameters in, 71
Instruction alignment, 32
Integer attribute

Decimal fields, 76

Defined, 75

Examples of, 76,77

Fixed-point fields, 76

Floating-point fields, 76

How to compute, 76

138

Notation, 74
Restrictions on use, 76
Symbols, 75
Use of, 76

ISEQ instruction, 53

K' (see Count attribute)
Keyword
Defined, 96
Keyword macro-instruction, 96
Symbolic parameter and, 96
Keyword, inner macro-instructions used
in, 97
Keyword macro-definition
Positional macro-definitions, compared,
95
Use, 95
Keyword macro-instruction
Example of, 97
Format of, 96
Keywords in, 96
Operands, 96
Invalid examples, 96
Valid examples, 96
Operand sublists in, 97
Keyword prototype statement
Example of, 96
Format of, 96
Operands, 96
Invalid examples, 96
Valid Examples, 96
ac

Standard values

=2 Lol ViaawlS

L' (see Length attribute)
LCLA instruciton
Format of, 78
Use of, 178
LCLB instruction
Format of, 78
Use of, 78
LCLC instruciton
Format of, 78
Use of, 78
Lengths explicit and implied, 33,34
Length attribute
Defined, 34,75
Examples, 76,77
Notation, 74
Restrictions on use, 75
Symbols, 17,75
Use of, 76
Length modifier, 39
Bit-length specification, 40
Length subfield, 32
Library, copying coding from, 56
Linkage symbols (see also ENTRY instruc-
tion, EXTERNAL instruction)
Entry point symbol, 30
External symbol, 30
Linkage editor, and
use of, 29
Listing, spacing, 52
Listing control instructions, 51
Literal pools, 20,54
Literals, 19
Character, 33
DC instruction, used in, 19
Duplicate, 55

Format, 19
Literal pool, beginning, 54
Literal pools, multiple, 20
Local SET symbols
Defining, 90
Examples of, 90-92
Global SET symbols, compared, 89
Using, 90
Local variable symbols
Types of, 89
{see also local SET symbols)
(see also subscripted SET symbols)
Location counter, 37,42,48
Predefined symbols, 18
References to, 18
Setting, 54
Logical expressions
AIF instructions, 84
Arithmetic relations, 83
Blanks in, 83
Character relations, 83
Evaluation of, 84
Invalid examples of, 83
Logical operators in, 83
Parenthesized terms in
Evaluation of, 84
Examples of, 84
Relation operators in, 83
SETB instructions, 83
Terms allowed in, 83
Valid examples of, 83
LTORG instruction, 54

Machine-instructions, 32
Alignment and checking, 32
Literals, limits on, 19
Mnemonic operation codes, 34
Operand fields and subfields, 32
Symbolic operand formats, 34
Machine-instruction mnemonic codes, 34
Alphabetical listing, 104
By duration code, 108

MACRO
Format of, 64
Use, 64

Macro-definition
Compatibility, 98
Defined, 61
Example of, 66
How to prepare, 64
Keyword (see Keyword macro-defintion)
Mixed-mode (see Mixed-mode macro-
definition)
Placement in source program, 64
Use, 61
Value table, 127
Macro-definition exit (see MEXIT instruc-
tion)
Machine-instruction examples and format
RR, 32,34

RX, 32,35
RS, 32,35
sI, 32,35
ss, 32,35

Summary table, 111
Macro-definition header statement (see
MACRO)
Macro-definition trailer statement (see

MEND)
Macro-instruction
Defined, 61
Example of, 6%
Format of, 69
How to write, 69
Levels of, 72
Menmonic operation code, 69
Name field of, 69
Omitted operands, 70
Example, 70
Operand field of, 69
Operands
Ampersands, 69
Rlanks, 70
Commas, 70
Equal signs, 69
Paired parentheses, 69
Paired quotation marks, 69
Operand sublists, 70
Operation field of, 69
Statement format, 70
Types of, 61
Used as model statement, 71
Macro-instruction index (§SYSNDX)
AIF instruction, 93
Arithmetic expressions, 93
Character relation, 93
Example, 94
MNOTE instruction, 93
SETB instruction, 93
SETC instruction, 93
Use of, 93
Macro-instruction operand (&SYSLIST)
Attributes of, 95
Use of, 95
(see also symbolic parameters)

Macro-instruction prototype statement (see

Prototype statement)
Macro-instruction statement (see Macro-
instruction)
Macro language
Comparison chart, 135
Extended features of, 88
Relation to assembler language, 61

Sumrary, 87,118,121
Macro library defined, 62
MEND

Format of, 6u
MEXIT instruction, contrasted, 88
Use of, 64
MEXIT instruction
Example of, 88
Format of, 88
MEND, contrasted, 88
Use of, 88
Mixed-mode macro-definitions
Positional macro-definitions,
contrasted, 97
Use, 97
Mixed-mode macro-instruction
Example of, 98
Format of, 98
Operand field of, 98
Mixed-mode prototype statement
Example of, 98
Format of, 98
Operands of, 98

Index

-t
(V3]
L¥=]

Mnemonic operation codes, 32
Extended, 35
Machine-instruction, 34
Macro-instruction, 64

MNOTE instruction
Ampersands in, 89
Error message, 89
Example of, 389
Operand field of, 88
Quotation marks in, 89
Severity code, 88
Use of, 89

Model statements
Comments field of, 65
Comments statements, 67
Defined, 65
Name field of, 65
Operation field of, 65
Operand field of, 65
Use of, 65

N' (see Number attribute)
Name entries, 13
Number attribute
Defined, 76
Example of, 76
Notation, 76
Operand sublist, 76

Operands
Entries, 13
Fields, 32

Subfields, 32,33
Symbolic, 30,32,34
Operand sublist
Alternate statement format, 70
Defined, 70
Example of, 71
Use of, 70
Operating System, 11
Operation field, 32
ORG instruction, 54
Outer macro—-instruction defined, 71

Paired parentheses, 69
Paired quotation, 69
Parentheses in
Arithmetic expressions, 79
Logical expressions, 84
Macro-instruction operands, 69
Operand fields and subfields, 33
Paired, 69
Period in
Character expressions, 80
Comments statements, 68
Concatenation, 67
Sequence symbols, 77
Positional macro-definition (see Macro-
definition)
Positional macro-instruction (see Macro
definition)

Positional macro-instruction (see Macro-

instruction)

Previously defined symbols, 17
PRINT instruction, 52

Program control instructions, 52
Program listings, 11

Program sectioning and linking, 26

140

Prototype statement
Example of, 65
Format of, 64
Keyword (see Keyword prototype state-
ment)
Mixed-mode (see Mixed-mode prototype
statement)
Name field of, 64
Operand field of, 64
Operation field of, 64
Statement format, 65
Symbolic parameters in, 64
Use of, 64
PUNCH instruction, 53

Quotation marks in
Character expressions, 80
Macro-instrcution operands, 69
MNOTE instruction, 89

Quoted string, 69

Relocatability, 15,10
Attributes, 22,30
Program, general register zero, 24
Relocatable expressions, 22,32
In USING instructions, 24
Relocatable terms, 15
Pairing of, 21
In relocatable expressions, 22
Relative addressing, 25
REPRO instruction, 54
RR machine-instructicn fo
Length attribute, 32
Symbolic operands, 34
RS machine-instruction format, 32
Address specification, 33
Length attribute, 32
Symbolic operands, 34
RX machine-instruction format, 32
Address specification, 33
Length attribute, 32
Symbolic operands, 34

w
[\S]

rmat,

S' (see Scaling attribute)
Sample program, 129
Scale modifier
Fixed-point constants, 45
Floating-point constant, 46
Scaling attribute
Decimal fields, 76
Defined, 75
Examples of, 76,77
Fixed-point fields, 75
Floating-point fields, 76
Notation, 74
Restrictions on use, 76
Symbols, 75
Use of, 76
Self-defining terms, 17
(see also specific terms)
Sequence checking, 53
Sequence symbols
AGO instruction, 85
AIF instruction, 85
ANOP instruction, 86
How to write, 78
Invalid exzmples of, 78
Macro instruction, 78

Use of, 178
Valid examples of, 78
Set symbols
Assigning values to, 73
Defining, 73
Symbolic parameters, contrasted, 73
Use, 173
Value table, 126
(see also local SET symbols)
(see also global SET symbols)
{see also subscripted SET symbols)
SET variable, 92
SETA instruction
Examples of, 79,80
Format of, 78
Operand field of, 78
Evaluation procedure, 78
Operators allowed, 78
Parenthesized terms, 79
Terms allowed, 78
Valid examples of, 78
Operand sublist, 79
Example, 80
SETB instruction
Example of, 84
Format of, 83
Logical expression in, 83
Arithmetic relations, 83
Blanks in, 83
Character relations, 83
Evaluation of, 84
Operators allowed, 83
Terms allowed, 83
Operand field of, 83
Invalid examples of, 83
Valid examples of, 83
SETC instruction
Character expressions in, 80
Ampersands, 81
Periods, 80
Quotation marks, 80
Concatenation in
Character expressions, 80,82
Substring notations, 82
Examples of, 80-83
Format of, 80
Operand field of, 80
Substring notations in, 81
Arithmetic expressions in, 81
Character expressions in, 81
Invalid examples of, 81
Valid examples of, 81
Type attribute in, 80
Example of, 80
SETA symbol
AIF instruction, 79
Arithmetic relations, 83
Assigning values to, 73
Defining, 73
SETA instruction, 79
SETB instruction, 79
SETC instruction, 83
Using, 79
SETB symbol
AIF instruction, 84
Assigning values to, 73
Defining, 73
SETA instruction, 84

SETB instruction, 84
SETC instruction, 84
Using, 84
SETC symbol
Assigning values to, 73
Defining, 73
SETA instruction, 83
Using, 81
Severity code in MNOTE instruction, 88
SI machine-instruction format, 32
Address specification, 33
Length attribute, 32
Symbolic operands, 34
SPACE instruction, 52

SS machine-instruction format,
Address specification, 33
Length attribute, 32
Length field, 33
Symbolic operands, 34

Standard value
Attributes of, 97
Keyword prototype statement, 96

Start instruction
Positioning of, 27
Unnamed control sections, 28

Statements, 13,14
Boundaries, 13
Examples, 14
Macro-instructions, 70
Prototype, 65
Summary of, 119

Storage, defining (see DS instruction)

Sublist (see Operand sublist)

Subscripted SET symbols
Defining, 92

Examples, 93
Dimension of, 92
How to write, 92

22
S

Invalid examples of, 92
Subscript of, 92
Using, 93

Examples, 93

Valid examples of, 93
Substring notation

Arithmetic expressions in, 81

Character expression in, 81

How to write, 81

Invalid example of, 81

SETB instruction, 83

SETC instruction, 81

Valid examples of, 81
Symbol definition, EQU instruction for,
Symbols

Defining, 15

Length attributes, 32

Referring to, 20

Length, maximum, 15

Previously defined, 17

Restrictions, 17

Symbol table capacity, 125

Value attributes, 32
Symbolic linkages, 29
Symbolic operand formats, 34
Symbolic parameter

Comments field, 66

Concatenation of, 66

Defined, 65

How to write, 66

Index 141

Invalid examples of, 66

Model statements, 65

Prototype statement, 64

Replaced by, 66

Valid example of, 66
System macro-instructions defined, 62
System variable symbols

Assigned values by assembler, 93

Defined, 93

(see also specific system variable

symbols)

T* (see Type attribute)
Tables, internal, capacity of, 125
Terms
Expressions composed of, 15
In parentheses, 20
Pairing of, 21
TITLE instruction, 51
Type attribute
Defined, 75
Literals, 75

142

Macro-instruction operands, 75
Notation, 74

SETB instruction, 83

SETC instruction, 80

Symbols, 75

Use, 75

Unconditional branch (see AGO instruction)
Unnamed control section, 27
USING instruction, 23

Variable symbols

Assigning values to, 62

Defined, 62

How to write, 62

Summary chart of, 124

Types of, 62

Use, 62

See also specific variable symbols)
V-type address constant, 48

XFR instruction, 9

CUT ALONG LINE

READER'S COMMENTS

Title: IBM Operating System/360 Assembler Language

Form: C28-6514-3

—Clarification on page(s)
— Addition on page(s)

— _Deletion on page(s)

—— Error on page(s)

Explanation:

Is the material: Yes No

Basy to Read? _ _

Well organized? —_ _

Complete? _ -

Well illustrated? - _

Accurate? _ -

Suitable for its intended audience? —_ —_
How did you use this publication?

___As an introduction to the subject ___ For additional knowledge

Other fold

Please check the items that describe your position:

—— Customer personnel ——Operator ___Sales Representative

—— IBM personnel — Programmer —Systems Engineer

— Manager —Customer Engineer —Trainee

—— Systems Analyst — Instructor Other

Please check specific criticism(s), give page number(s),and explain below:

£fold

Name

Address

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

staple

C28-6514-3 a? ‘; 5
f

" fold fold

FIRST CLASS
PERMIT NO. 81

PCUGHKEEPSIE, N. Y.

bt o s e o — e

I
|
|
!
I
L

-
BUSINESS REPLY MAIL |
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A, | ARRRE

—_————=== -

RERRN
POSTAGE WILL BE PAID BY FIEIT

= e e

IBM CORPORATION T
P. O. BOX 390
POUGHKEEPSIE, N. Y. 12602 HErn

(RN RN
ERRAI

i
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS
DEPT. D58 NERAR]

fold . fold

TSI

®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

staple

