0S ALGOL (F) Compiler Logic

Program Numbers:'ZBUS—AL-531 (Compiler)
360S-LM-532 (Library Routines)

0S Release 21

This manual describes the internal logic of the
ALGOL (F) Compiler. It is intended for the use
of IBM field engineers, systems analysts and
programmers.

The ALGOL (F) Compiler is a processing program
of the IBM System/360 Operating System. It
translates a source module written in the ALGOL
language into an object module that can be
processed into an executable load module by the
Linkage Editor.

File Number S360-26
Order No. G®33-8000-0
Y

Program Logic

Page of GY33-8000-0
Revised January 15, 1972
By TNL GN33-8129

PREFACE

The IBM System/360 Operating System ALGOL
Compiler consists of ten phases, or load
modules. Chapter 1 of this manual provides
an introductory survey of the main
functions of the several phases. A more
detailed description of the individual
phases is provided in the subsequent chap-
ters, as follows:

Directory (IEXO00) Chapter 2
Initialization (IEX10) Chapter 3
Scan I/II (IEX1l) Chapter 4
Identifier Table Manipulation

(IEX20) Chapter 5
Diagnostic Output (IEX21) Chapter 9
Scan III (IEX30) Chapter 6
Diagnostic Output (IEX31) Chapter 9
Subscript Handling (IEX40) Chapter 7
Compilation Phase (IEX50) Chapter 8
Termination Phase (IEX51) Chapter 8

Two of the phases (Load Modules IEX21
and IEX31l) are devoted exclusively to the
editing and output of diagnostic messages.
Diagnostic output is also provided for in
the Termination Phase (Load Module IEX51).
The Error Message Editing Routine, which

First Edition (September 1967)

handles the output of diagnostic messages
in the three phases mentioned, is described
in Chapter 9.

Chapter 10 describes the ALGOL Library,
which consists of a set of load modules
representing standard I/O procedures,
mathematical functions, and the Fixed Stor-
age Area.

Chapter 11 describes the composition of
the object module generated by the Compiler,
and the organization of the load module at
execution time.

Other publications that will be useful
to the reader in understanding the Compiler
are:

0S ALGOL Language, Order No.GC28-6615

0S ALGOL Programmer's Guide,
Order No. GC33-4000

OS FORTRAN IV Library, Order No.
Order No. GC28-6596

This edition applies to release 21 of the IBM System/360
Operating System, and to all subsequent modifications unless
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the specifications herein;
before using this publication in connection with the operation
of IBM systems, consult the latest SRL Newsletter, Order No.
GN20-0360 for the editions that are applicable and current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line

format.

Page impressions for photo-offset printing were ob-

tained from an IBM 1403 printer using a special print chain.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving

your locality.

A form is provided at the back of this publication for

reader's comments.

If the form has been removed, comments

may be addressed to IBM Nordic Laboratory, Publications

Development, Box 962, S-181 09 Lidingd 9, Sweden.

become the property of IBM.

Comments

©Copyright International Business Machines Corporation 1967

CHAPTER 1: INTRODUCTION.

Purpose of the Compiler.

The Compiler and System/360 Operating

System. « « o o .

Machine System . « ¢« ¢ ¢ ¢ ¢ o« o &

Organlzatlon of the Compiler . . .
Directory (IEX00)
Initialization Phase (IEXlO). .
Scan I/II Phase (IEX11l)«
Identifier Table Manipulation P

(IEX20). « « « . « o e
Diagnostic Output (IEX21) « e o
Scan III Phase (IEX30).
Diagnostic Output (IEX31) . . .
Subscript Handling Phase (IEX40)
Compilation Phase (IEX50) . . .
Termination (IEX51) . . .
Diagnostic Output (IEX21,

and IEX51) . ¢ ¢ ¢ ¢ o o o o &
ALGOL Library . « « « « ¢ o « «

The JObject Module. . « <« « « « « &«
Input/dutput Activity. . « « « . .

Interphase Communication by Source
Text and Table. « « . .

Use of Main Storage. « « « « « « &
Area Occupied by Directory
Auxiliary Routines
The Common Work Area. . . « .«

o & s & & o

e o o o o

Area Occupied by Operative Module

Private Area Acguired by Operative

MOAULE « o« o ¢ o o o o o o s =«
Common AY€aA « « o e o o o « o @

ConventionS. « « ¢ « « o e 2 o o o

CHAPTER 2: DIRECTORY (IEX00) . . .

Purpose of the Directory

Organization of the Directory.
Control Section IEX00000. .
Initial Entry Routine. .
Final Exit Routine . . .
Program Interrupt Routine
(PIROUT). . . . « o o =
1/0 Erxror Routlne (SYNAD). .
Sysprint I/0 Error Routine
(SYNPR) = e o
End of Data Routlnes (EODADl,
EODAD2, EODAD3, AND EODADIN)
Print Subroutine (PRINT) . .
Data Control Blocks. . « « .

« s o o

e« o o o o o o (De o o o

o 2 o & & s o

e o s

13
13

CONTENTS

Control Section IEX00001 (Common
WOXk Brea) « « o« o o o o o o o
Register Save Area . « « «
DCB Address€S. « « « « = -
End of Data Exit Addresses .
Compiler Control Field
(HCOMPMOD) e « o o =« o o o &
Communication Area . « « «
Area Size Table (INBLKS) . .

Headline Storage Area (PAGEHEAD)

Preliminary Error Pool . . .
Data Control Blocks for SYSIN
and SYSUT1l. « « o « « o o «
TableS « ¢« o ¢ o« o o o« o o
Other Data . « « o« « « « o &«

CHAPTER 3: INITIALIZATION PHASE

(IEX10) & o o o o o o o o o o o @
Purpose of the Phase « . .
Execution of the SPIE Macro. . . .

Processing Compiler Options,
and Heading Information
Compiler Options. . . . «
DDNAmMES « « o o o o o o @
Heading Information . . .

Selection of Area Size Table
(FNDARSIZ): o « o o = o o o s o

Acquisition of Common Area . . .« .
Opening of Data Sets « « « « « «

CHAPTER 4: SCAN I/II PHASE (IEX11)

Purpose of the Phase

Scan I/II Phase Operations
Opening of Scopes . « « . .
Processing of Declarations and

Specifications « « ¢« ¢ ¢ o < .
Close of Scopes « « « ¢ o« ¢ o«
End of Phase. ¢« « « ¢ ¢ ¢« ¢ o @

Phase Input/Qutput « « « ¢« « « .« &

Identifier Table (ITAB). . « « . .
Identifier Entries.
Program Block Heading Entries .
For Statement Heading

Entries.

-

DDnames,

and Closing

¢ o & ,

Processing of the Identlfler Table.

Scope Identification
Scope Handling Stack.« .

Modification Level 1 Source Text .

Group Table (GPTAB). « « « « « = &

-

¢ o s * o

26
26
26
26
27
28
28
28
28
28
30
30

31
33

34
34
34
35
35
36
38

39
40

41
42

43
45

Scope Table (SPTAB). . ¢ ¢ o o o o« «
Program Block Number Table (PBTAB1).

Processing of Opening Source Text. .

Close of Scan I/II Phase
SWiECheS ¢ ¢ o ¢ o o o o o o o o o @

constituent Routines of Scan I/II
PhaSe o« o« o« o o o o o o o o o =
Phase Initialization. . .
Main Loop (TESTLOOP). . .
Blank (BLANK) . . . « .
Test and Transfer Operator
(TRANSOP): 4 4 o o o o o o« «
RIGHTPAR: « « o o o o« o o o «
POINT . . . « .
Decimal P01nt (DE POINT) .
Assignment (ASSIGN)

« o .
« o e

e & s 0
« s s o

Statement (STATE)
Apostrophe (APOSTROF) . . .
Scale Factor (SCALE).
Blank after Apostrophe (BLKAPOS).
Zeta after Apostrophe (ZETAAPO) .

Invalid Character after Apostrophe

(NPAFTAPO) 2 2 o o o o « o o o @
Colon (COLON) . & « o o o o
Label (LABEL)
Letter Delimiter (LETDEL) -
Semicolon (SEMCO and SEMC60).
Error Recording Routines. . .
Change Input Buffer (CIB) . .
Identifier Test (IDCHECK1l). . . .
Change Output Buffer (COB and

COBSPEC) v v o o o s o o o s o @
Delimiter (DELIMIT) -
Delimiter Error Routine (EROUT)
Type Specification (TYPESPEC) .
Comment (COMSPEC)
Opening Delimiter (STARTDEL).
Begin (BEGIN)
String (STRING)
Normal Action (NORMAL). . .
Boolean Constant (BOLCON) .

Goto-If (GIF) . « « o «
Then-Else-Do (TED). . . .
First Begin (FIRSTBE3). . .
Program Block (BEG1l Subroutlne

End (END) o o ¢ & ¢ o o « o &

Compound End (COMPDEND) . . .

For Statement End (FOREND). .
Program Block End (PBLCKEND
Subroutine).
Comment (COM)
For statement (FOR) . . .
Type Declaration (TYPE) .
Identifier Error (IER). .
Code Procedure (CODE) . .
Specification (SPEC). . .
(

s o o o
e & & Nre 0 ¢ 2 e e e s 0
¢ & 8 & & o e 8 e e

Parameter Specification
and IDCHECK) . . « . .
I'ype Array (TYPEARRY) .
Array Declaration (ARRAY)
Array/Switch List (LIST).
Point in List (PONTLST) .
Right Parenthesis in List
(RIGHTPARL) . ¢« ¢ o o o o o o o o

o o o & o (DN o o
=

e e b s e Ze s 0 s s e o
-

SPE

e & & 8 & & & o s e 4 & 8 o s e o

o & s s o

Left Parenthesis in List (LEFTPARL)

L N)

45

46

u6

46

48

Comma in List (COMMALST). . .
Colon in List (COLONLST). . .
Semicolon in List (SEMCLST) .

Slash in List (SLASHLST). .
Switch Declaration (SWITCH)
Procedure Declaration (PROCEDU
Procedure Identifier (PROCID)
Termination (EODADIN)
Generate Subroutine

)

e ¢ & ge e s e e

CHAPTER 5: IDENTIFIER TABLE
MANIPULATION PHASE (IEX20).

Purpose of the Phase

Identifier Table Manipulation Phase
OperationS. « « ¢ o ¢ o ¢ o o o o

Phase Input/Output « « « « &
Identifier Table (ITAB).
Program Block Table II (PBTAB2). . .

Constituent Routines of Identifier
Table Manipulation Phase.
Phase Initialization.
Identifier Scan (READBLK) . . .
Storage Allocation (ALLOSTOR) . .
Write Identifier Table (WRITITAB)
Print Identifier Table (ITABPRNT)
Termination (CLOSE) . « ¢ « « « =«

CHAPTER 6: SCAN III PHASE (IEX30). .

Purpose of the Phase

Scan III Phase Operations. .
Opening and Close of Blocks
Procedures « « « « ¢ o o .
Identifier Handling
Number Handling . «
Array Subscript Handling. .
Handling of Other Operators
Phase Termination

Phase Input/Output . . . « « . « .«
Processing of the Identifier Table .
Classification of For Statements . .
Processing of For Statements. . .
Detection of Operators in For

Liste o o« o o« o o o o s o o =
Recognition of Identifiers in

For Statements.
Optimizable Subscript Expressions. .
For Statement Table (FSTAB).«
Left Variable Table (LVTAB).
Subscript Table (SUTAB). « « « « o «
Critical Identifier Table (CRIDTAB).

Array Identifier Stack (ARIDSTAB). .
Modification Level 2 Source Text. ..

¢ o & o o o o

¢ s 0 o & 4

S o & 2 0,

69

69
70
70
70

78

79
80

80
80
81
81
82
82
82

84
84

SWitChesS & o« o ¢ o ¢« o o o o o o o =

Constituent Routines of Scan III Phase

Phase Initialization (INITIATE) .
General Test (GENTEST). « « «
Identifier Test (LETTER). . . .
ITAB Search (IDENT)
Identifier Classification (FOLI)
Noncritical Identifier (NOCRI).
Procesdure/Parameter (PROFU) . .
Switch/Label (SWILA). . . .
Critical Identifier (CRITI)
Make Cridtab Entry (CRIMA).
CRIDTAB Overflow (CRIFLOW).
Erase CRIDITAB (DELCRIV) . .
Update CRIDTAB (CRIFODEL)
Make LVTAB Entry (LETRAF)
Nonzero Digit (DISIT19) .
Zero Digit (DIGITO) . . .
Decimal Point (DECPOIN) .
Scale Factor (SCAFACT). .
Integer Conversion (INTCON)
Real Conversion (REALCON) .
Integer Handling (INTHAN) .
Real Handling (REALHAN) . .
Change Constant Pool (CPOLEX
Jutput TXT Record (TXTTRAF) .
Generate (GENTXT) « ¢« o o «
Apostrophe (RQUOTE). . . « . .
Block Begin (BETA). .« « « « «
Procedure Declaration (PIPHI)
Read ITAB Record (ITABMOVE) .
For Statement (FOR)
Program Block End (EPSILON)
For Statement End (ETA) . .
DO (DO) 4 & ¢ 4« 4« o o o o o
While (WHILE) . ¢« « ¢ o« o o«
Semicolon/Delta (SEMIDELT).
Opening Bracket (OPBRACK) .
Comma (COMMA) . . « « o «
Closing Bracket (CLOBRACK).
Scan Subscript (SOUCRIDEL) .
Subscript Test (SUSCRITE) .
Operand Test (OPERAND). . .
Multiplier-Operand (SUBMULT)
Make SUTAB Entry (SUTABENT)
Input Record End (ZETA) . .
Change Input Buffer (ICHA).
Code Procedure (GAMMA). . .
Program End (OMEGA) . . .
Other Operators (OTHOP) .
Letter Delimiter (RHO). ,

)

8 & 8 & 8 & ¢ 8 & & & & & & & 4 3 8 5 & 0 6 8 0 & & s s s s s o

Step (STEP) .« « « o «
Array (ARRAY) . . « . .
Switch (SWITCH) . . . «
Divide/Power (DIPOW) . . .
Change Output Buffer (OUCHA)
Incorrect Operand (INCOROP)
Store Error (MOVERRO) . . .
Move Operand (MOVE)
Check-Write (CHECK)
Write SUTAB/LVIAB Record (WRITE)

¢ & o & 8 8 o
@ 6 8 8 6 8 & 6 & & 8 & 8 8 5 6 0 & & 0 o 8 8 5 & & 2 o 8 4 5 0 s s 0 6 4 6 & 0 2 s s 2 s s s s 2 s

e & 4 8 & & & 8 & 8 8 s 8 & 2 8 84 6 & s s s 2 s & o s oo

.
)
o
.
.
.
.
-
.
.
.
-
-
3
.
.
.
-
3
.
.
.
.
.
.
.

CHAPTER 7: SUBSCRIPT HANDLING PHASE
(TEXHO0) © v o 4 o o « o o o o o o

Purpose of the Phase « « . « « ¢ « .

Subscript Handling Phase Operations.

-
.
.
3
-
.
-
3
.
-
.
.
-
.
-
L)
-
-
o
.
.
.
.
.
.
.
-
.
.
.
-
-
.
.
.
o
o
.
.
.
.
o
.
]
-
.
-
-
-
L]
-
o
.
.
e
.
.
.
.

.101
.101

.101

Phase Input/Output .

Optimization Table (OPTAB)

Subscript, Left Variable and For

Statement Tables. .

Constituent Routines
Handling Phase. . .
Initialization. .
Read SUTAB. . . .
Scan SUTAB. . . «

of Subscript

Sort SUTAB (SORTSU)
Read and Sort LVTAB

SORTLE1l)

s ~8 o o o »

Construct OPTAB (OPTAB)
Termination (TERMIN). .
Write OPTAB (OTACHA).

Read SUTAB/LVTAB

(READ)

Sort SUTAB/LVTAB (SORT)

4]
Qe o o
o]
[

e o & 8 & &

CHAPTER 8: COMPILATION PHASE

Purpose of the Phase

Compilation Phase Operations

Phase Input/Output .

-

Operator/Operand Stacks.

Control of Object Time Registers

Decision Matrices. .

3

Compile Time Register Use.

Constituent Routines of the

Compilation Phase .

Phase Initialization.
Scan to Next Operator (SNOT).

Compare (COMP). .

Blocks and Compound
Compiler Program

Compiler Program

Switches. . « . .

Compiler Program
Compiler Program
Compiler Program
Compiler Program
Compiler Program
Compiler Program

Labels. « « « « «

Compiler Program

Goto Statements .

Compiler Program

-

Compiler Program

Compiler Program

ArraySe. « « o« o o

.

e oo

¢ ¢ s o o s Hje s 0 e

“ e e

2

s & o 0 o 0

(IEX50)

.

-

.

Statements.
(CP0).
No.16 (CP1l6).

No.0

No.4 (CPu4).
No.85 (CP85).
No.56 (CP56).
No.59 (CP59).
No.41 (CP41).
No.38 (CP38).

No.1 (cP1).
No.6 (CP6).
No.56 (CP56)
No.62 (CP62)

~Array Declarations .
Subscripted Variables.
Compiler Program
Compiler Program
Compiler Program
Compiler Program No.51
Compiler Program
Compiler Program No.41
Compiler Program

Procedures . . « «

No.u4

No.52
No.36

No.54

No.38

(cpu).
(CP52).
(cp36).
(CP51).
(CP54) .
(cp41).
(Cp38).

s 8 § & 4 o

@ 8 & g 8 8 3 & g 8 3 b 5 & s g & g 6 4 & g & 4 a4 8 43 b 4

«102

103

.103

.103
.103
.105
.105
.106

.106
.106
«107
.107
107
.107

.108
-108
.108
110
.110
.113
.116
.116

.116
.118
<119
.119
120
.120
120
120
.121
<122
.122
<122
.122
.122
122
.122
.123
.123
.123
<123
124

125

.126
.127
127
.128
.128
«»130
130
.130

.131

Procedure Declaration . « « « « « « 131 Integer Power Routine (IUB1l) . . .160
Procedure Call. . . « « ¢ ¢ o« « « « 132 Real-Real Routine (DHEB2).160
Compiler Program No.4 (CP4). . . .133 Real-Integer Power Routine
Operand Recognizer (OPDREC). . . .134 (I1B1l). o o « o o o o« « o « « o« 160
Compiler Program No.16 (CP16). . .134 Real Power Routine (HOB1).161
Compiler Program No.64 (CP64). . .134 Compiler Program No.68 (CP68). . .161
Compiler Program No.57 (CP57). . .134
Semicolon Handling « « « « o o o « « « +161
Code ProcedureS. « « « o « « o« « « o « <135 Compiler Program No.24 (CP24). .. .161
Compiler Program No.83 (CP83). . .136 Compiler Program No.25 (CP25). . .161
Compiler Program No.23 (CP23). . .161
Standard Procedures. « « « « o« « « o « 136 Compiler Program No.7 (CP7). . . .161
Compiler Program No.64 (CP64). . .136
Compiler Program No.61 (CP61l). . .137 Context Switching. « « ¢ ¢ ¢ ¢ o« « « « <161
Compiler Program No.19 (CP19). . .161
For Statements . . « « . ¢ « ¢ « ¢ » « .138 Compiler Program No.22 (CP22). . .162
Counting LOOPS « « « « « « o « « .138 Compiler Program No.33 (CP33). . .162
Elementary LOOPS « « « « « « o« « 2139 Compiler Program No.70 (CP70). . .162
Normal LOOPS « « o o o o o« o « o o140 Compiler Program No.71 (CP71). . .162
Suabscript Optimization143
Compiler Program No.6 (CP6). . . .1l44 Logical Error Recognition.162
Compiler Program No.40 (CP40). . .144 Compiler Program No.26 (CP26). . .162
Compiler Program No.43 (CP43). . .147 Compiler Program No.27 (CP27). . .162
Compiler Program No.45 (CP45). . .147 Compiler Program No.28 (CP28). . .163
Compiler Program No.47 (CP47). . .147 Compiler Program No.29 (CP29). . .163
Compiler Program No.49 (CP49). . .148 Compiler Program No.30 (CP30). . .163
Subscript Initialization Routine Compiler Program No.31 (CP31). . .163
(DAG3 or USA1). « . « « &« « « « o1U48 Compiler Program No.72 (CP72). . .163
Subscript Incrementation Routine Compiler Program No.73 (CP73). . .163
(UVAL):e & & o ¢ o o o o o o o o« o151 Compiler Program No.74 (CP74). . .163
Compiler Program No.81 (CP81). . .151 Compiler Program No.75 (CP75). . .163
Compiler Program No.84 (CP84). . .163
Assignment Statements.151 Compiler Program No.86 (CP86). . .1l6u4
Compiler Program No.12 (CP12). . .151
Compiler Program No.21 (CP21). . .151 Close of Source Module « « .1l6U
Compiler Program No.20 (CP20). . .152 Compiler Program No.3 (CP3). . . .1l64
Conditional Statements153 Subroutine Pool. . « .« « ¢« ¢ ¢« « « « o« o164
Compiler Program No.8 (Cp8). . . .154 Change Input Buffer (JBUFFER). . .1l64
Compiler Program No.78 (CP78). . .154 Next OPTAB Entry (NXTOPT).1l6U4
Compiler Program No.17 (CP17). . .154 Error Recording (SERR)1l6U
Compiler Program No.18 (CP18). . .154 Conversion Integer-Real (TRINRE) .16u4
Conversion Real-Integer (TRREIN) .1l64
Conditional ExpressionS. . . . « « « « 154 Generate Object Code (GENERATE). .165
Compiler Program No.64 (CP64). . .156 Store Object Time Registers
Compiler Program No.80 (CP80). . .156 (CLEARRG) &« « « « s « « « « o« o« 2165
Compiler Program No.34 (CP34). . .156 Operand Recognizer (OPDREC). . . .165
Compiler Program No.65 (CP65). . .156 Update DSA Pointer (MAXCH)165
Compiler Program No.78 (CP78). . .156 Semicolon Handling (SCHDL)165
Compiler Program No.87 (CP87). . .156 ROUTINEL ¢ ¢ o ¢ « « o o o« s o o« 2165
Compiler Program No.79 (CP79). . .157 ROUTINEZ2 ¢ « o o o o « o« « « o o 2166
ROUTINE3 4 ¢ o o « o o o « o o« « 166
Boolean EXpPressions. « « « « « « o « » <157 ROUTINEY « o o o o ¢ o o o o o « <166
Compiler Program No.64 (CP64). . .158 ROUTINES o ¢ « o« o o o o o« o o « o166
Compiler Program No.65 (CP65). . .158 ROUTINEG « « « o o o o « « « o « <166
Compiler Program No.67 (CP67). . .158 ROUTINE7 « « o « o o o o« « o« o« « 2166
Compiler Program No.76 (CP76). . .158 ROUTINES « « o ¢ o o « o « « o « 166
Compiler Program No.77 (CP77). . .158 ROUTINEY . «. « « o « « o « o o« o 2166
ROUTINLIO « ¢« o ¢ o o o o« o o« o o« 2166
Arithmetic Expressions and Relations . .158 ROUTINLIL ¢« ¢ « « o o o o o « « o« 2166
Compiler Program No.64 (CP64). . .158 ROUTINI2 o ¢ o o o o o« « o o o « 2166
Compiler Program No.66 (CP66). . .158 ROUTINI3 o ¢ ¢ ¢ o o « o « o« « « o166
Compiler Program No.67 (CP67). . .159 ROUTINIL o & ¢ ¢ o ¢ o o o « « « o167
Compiler Program No.63 (CP63). . .159 ROUTINLIS ¢ ¢ ¢ ¢ o « o« o o o « « 167
Compiler Program No.68 (CP68). . .159 Program Block Number Handling
Compiler Program No.69 (CP69). . .159 (PBNHDL) e « o « o o o o o w « o <2167
Integer-Integer Routine (DHZB1l). .160 Parameterless Procedure
Integer Division Routine (ISB1l). .160 Statement (PLPRST). « « « « » « <167
Integer Multiplication Routine
(IPBl)e © ¢ o « o o o « o s « « 2160 Termination Phase (IEX51).167

Program Block Table IV
(PBTABY) . ©v ¢ ¢ o o o o o o
Label Address Table (LAT) . .
Data Set Table (DSTAB). . . .
Address Table and END Record
Statement of Object Time Storage
RequirementsS. . .« « ¢ o « o o &
Diagnostic Output . « « « « . .
End of compilation

CHAPTER 9: COMPILE TIME ERROR
DETECTION AND DIAGNOSTIC OUTPUT . . .

Error Detection. e e e s e
warnln; Errors (Severlty Code W).
Serious Errors (Severity Code S).

Scan I/II Phase (IEX11).
Identifier Table
Manipulation Phase
(IEX20) . o o o o o o o« @
Scan III Phase (IEX30) . .
Subscript Handling Phase
(IEX40) . . ¢ o o o « .
Compilation Phase (IEXSO).
Termination Phase (IEX51).
Terminating Errors {(severity Code

T) ¢ o o o o o o o o o o o o o o «

Diagnostic Output. . . . « . « . « . .
EXror PoOl « ¢ o o o « o o o o o « o &«

Message POOl « « « o « o o o o o o o =
Error Message « « « o . . « o o
Logic of the Exror Message Edltlng

Routine. « ¢« o« o ¢ o o o o o o o

CHAPTER 10: ALGOL LIBRARY. « . . « . .

Fixed Storage Area (IHIFSA). .
Common Data Area. « « « « .
Fixed Storage Area Routines

Initialization (ALGIN) .
Prologue (PROLOG). . . « .« &
Epilogue (EPILO3). .« . « « «
Call Actual Parameter, Part 1
(CAP1)e v &« o« o o o o o o o o «
Call Actual Parameter, Part 2
(CAP2). . . .« . e e s e s e
Value Call (VALUbALL). e e s e e
Return Routine (RETPROG)
Call Switch Element, Part 1
(CSHEL) ¢ ¢ ¢ ¢« o o o o a o o «
Call Switch Element, Part 2
(CSWE2) v v ¢ o o o« « o o o o @
Trace (TRACE). ¢ ¢ o« o o o o o «
Load Precompiled Procedure
(LOBDPP): ¢ & o o o o o o o o «
Standard Procedure Declaration
(SPDECL) e « « « « o« o o o« o
Get Main Storage (GETMSTO) . .
Program Interrupt (PIEROUT). .
FSAERR ¢ ¢ & e ¢ o o o o o o o«
Termination (ALGTRMN),
Integer to Real Conversion
(CNVIRD): o o « o o o o o« o« o «
Real to Integer Conversion
(CNVRDI/Z/ENTIER) « « « o o o o« «

Input/dutput Procedures. « « « « « . .

.167
.167
.168
.169

.169
.169
.169
.170
.170
.170

.170
.170

.170
.170
.170
.170
.17
.171
.171
.172

.172
.174

174
.176
.176
.176
.176
177
<177
.177
.177
.178
.178
.178
.178

.179
.179

.179
.179
.179
.179
.179
.179
.179
.179

.180

PUT/GET (IHIGPR)
PUT . . .
GET . . .
OUTPUT. .

INPUT . .

OPENGP.
CLOSEGP
OPENEXIT.
CAP1GP. .
THUNKOUT.
THUNKIN .

INARRAY/INTARRAY(IHIIAR)
INBARRAY (IHIIBA). . . .
INBOOLEAN (IHIBO). . . .
INREAL/ININTEGER (IHIIDE)
INSYMBOL (IHIISY). . . .
OUTREAL (IHISOR)
OUTREAL (IHILOR)
OUTARRAY (IHIOAR). . . .
OUTBARRAY (IHIOBA) . . .
OUTBOOLEAN (IHIOBO). . .
OUTINTEGER (IHIOIN). . .
OUTSTRING (IHIOST) . . .
OUTSYMBOL (IHIOSY) . . .
OUTTARRAY (IHIOTA) . . .

SYSACT (IHISYS).
SYSACT. « . .
SYSACT1 . .
SYSACT2
SYSACT3
SYSACTU4
SYSACTS
SYSACT6
SYSACT7
SYSACTS
SYSACTO .
SYSACT10.
SYSACT11.
SYSACT12.
SYSACT13.
SYSACTI14.
SYSACT15.

)
e & 8 o 8 & ¢ & ¢ & 4
. (] [} . . L] . . L] . L] . . .
.
e & s & 3 0 & o s s 0 s b
a8 s 8 4 s & s s e 8 s e
. L]

Subroutine Pool (IHIIOR)
CLEARNOTTAB
CLOSE . « .
CLOSEPE . .
CONVERT . .
DCBEXIT . .
ENDOFDATA .
ENTRYNOTTAB
EVDSN . . .
NEXTREC . . .
OPEN. o« o o o o o =«
SYNAD ¢« o« o o o o =«

« o e o a
s 0 e ¢ & 0
s & & & & & & o

S s & & & & s ¢ & 8 ¢ s s 0 s

s o e o s ¢ s

e o s 8 o & & 8 & 0

e 8 8 & s o 4 & e o o e s o & 8 & s & a4 8 o o s s & s

¢ 2 o 8 0 4 s 8 3 s e s .

¢ o o 4 o 4 & o4 b 0

¢ o & 4 3 0 o &

8 a2 o o 0 2 s ¢ 0

¢ o 8 4 6 4 8 & 4 8 4 o 4 0

.180
.180
.181
.181
.181
.181
.181
.181
.181
.181
.181

.181
.181
.182
.182
.182
.182
.182
.182
.182
.182
.182
.182
.183
.183

.183
.183
.183
.183
.183
.183
.183
.183
.183
.183
.184
.184
.184
.184
.184
.184
.184

.184
.184
.184
.185
.185
.185
.185
.185
.185
.185
.185
.185

Mathematical Standard Functions. . . .
Object Timé Error Routine (IHIERR) . .
CHAPTER 11: THE OBJECZT MODULE.
Object Module. . « ¢ « o ¢« ¢ o o o « &

Load Module. « . « ¢« & + &« o o =«
Object Time Tables.
Program Block Table (PBT)

Label Address Table (LAT)

Data Set Table (DSTAB). .

Note Table (NOTTAB). . . .

Data Storage Area (DS3) .
Storage Mapping Function (SMF

Return Address Stack (RAS) .

Object Time Register Use. . . .

e & o 4 o e & 2 s e

LI R T T T S

FLOWCHARTS <« o o o o ¢ o o o o o o o »

APPENDIX I-A: CHARACTER SET -- FIRST
TRANSLATION OF THE SOURCE MODULE IN
THE SCAN I/II PHASE . . ¢« « « « o «

APPENDIX I-B: CHARACTER SET --
MOCDIFICATION LEVEL 1 TEXT . . « . . o

APPENDIX I-C:
MOCIFICATION

CHARACTER SET -~
LEVEL 2 TEXT « « « « o &

APPENDIX I-D: CHARACZTER SET -- STACK
OPERATORS USED IN THE COMPILATION
PHRSE « o ¢ o o ¢ o o o o o o o o o o

APPENDIX II: INTERNAL REPRESENTATION
OF DPERANDS « ¢ ¢« ¢ 4o o ¢ o o o o o =

APPENDIX III: INTERNAL REPRESENTATION
OF STANDARD PROCEDURE DESIGNATORS . .

.185
.186
.187
.187
.188
.188
.188
.189
.190
.191
.191
.193
.193
.194

.196

.272

.272

.272

.273

.274

.275

APPENDIX IV: COMPILER CONTROL FIELD
(HCOMPMOD) e & ¢ o ¢ o o o o o o o o

APPENDIX V-A: PROGRAM CONTEXT MATRIX .

APPENDIX V-B: STATEMENT CONTEXT MATRIX
APPENDIX V-C: EXPRESSION CONTEXT
MATRIXe o o o o o o o o o o o o o o @

APPENDIX VI: COMPILE TIME ERROR
DETECTION « o ¢ « o o o o o o o o o @

APPENDIX VII: OBJECT TIME ERROR
DETECTION ¢ ¢ o o o « o o o o o o o

APPENDIX VIII: COMPILE TIME WORK AREA
SIZES, AS A FUNCTION OF THE SIZE
OPTION. o « +v o o o o o o o o o = o

APPENDIX IX-A: STORAGE MAPS OF THE
CONSTITUENT LOAD MODULES OF THE ALGOL
COMPILER. « « o o o o o o o o o o

IEX00 - Directory. . . . « .
IEX10 - Initialization Phase
IEX11 - Scan I/I1II Phase. . .
IEX20 - Identifier Table
Manipulation Phase. . . .

¢ o o
LI T

IEX21 - Diagnostic Output. . . .
IEX30 - Scan III Phase
IEX31 - Diagnostic Output. . . .
IEX40 - Subscript Handling Phase
IEX50 - Compilation Phase. . . .
IEX51 - Termination Phase. . . .

APPENDIX IX-B: STORAGE MAP OF THE
OBJECT MODULE (AT EXECUTION).

APPENDIX X: SUMMARY OF COMPILER
PROGRAMS. o ¢ o e o o o o o o o o o =

APPENDIX XI: INDEX OF ROUTINES

276
.278

. 279

.279

.280

. 283

. 285

.294

. 295

.296

. 307

Figure 1. Constituent phases of the
ALGOL Compiler. .« . « ¢ o o« o « o &
Figure 2. I/0 Activity by Data Set and
Phase « « « ¢« « « < &
Figure 3. Activity Table showing the
processing of source text and tables
by phas€. ¢« ¢ ¢« ¢« ¢ ¢ ¢ o o o o o o «

Figure 4. Use of main storage by
ALGOL Compiler. « . « ¢ ¢ ¢ o o « « &
Figure 5. Option, DDname and Heading
fields, and pointers. . . « o e e
Figure 6. PARMLIST Table entry for a
Compiler option key-word.
Figure 7. Scan I/II Phase. Diagram
illustrating functions.
Figure 8. Scan I/II Phase
Input/Output. . « « ¢ ¢ ¢« ¢ « o ¢ o .
Figure 9. Identifier Characteristic .
Figure 10. Identifier Table entry for
all identifiers except declared
array, procedure and switch
identifiers and labels.
Figure 11. Identifier Table entry as
constructed in the Scan I/II Phase
for a Jeclared array identifier . . .
Figure 12. Identifier Table entry for
a declared procedure identifier . . .
Figure 13. Identifier Table entry
constructed in the Scan I/II Phase
for a Jdeclared switch identifier. . .
Figure 14. 1Identifier Table Entry
constructed in the Scan I/II Phase
for a declared label.
Figure 15. Program block heading entry
Figure 16. Program block heading
entry, as transmitted to the SYSUT3
data S2t. ¢ ¢ ¢ e b e e e e e e e . e

Figure 17. For statement heading
BNEYY o« ¢ o o o o o o o o s o e o e =
Figure 18. For statement closing
eNELY « o o o ¢ o o o o o . o« .

Figure 19. Diagram 111ustrat1ng the
processing of the Identifier Table. .
Figure 20. Scope Handling Stack
operators « « ¢« ¢ ¢ ¢ e e e e e e 4 e
Figure 21. Group Table entries for a
for statement and for a block or
ProC2dUre « o « o o o o o s o o o o
Figure 22. One-byte Scope Table entry
Figure 23. One-byte Program Block
Number Table entry. « « . .
Figure 24. Chart showing the 1og1cal
flow in the search for the opening
delimiter .« ¢ ¢ ¢ ¢ ¢ o ¢ & o & o o o
Figure 25. Exits from Scan I/II Phase
Figure 26. Private Area acguired by
the Scan I/II Phase, showing pointers
initialized . .+ . ¢ . ¢« ¢ 4 o 4 o . .
Figure 27. Source text buffers and
POiNters. « « o + 4 ¢ 4 4 s e e o« . s
Figure 28. Heading Entry constructed
at initialization in Identifiet Table
for Program Block 0 . . . « « & « . .

14

17

18
19
27
27
32
35

37

37
38

38

38
39
39
39
39
%0
42
45
46
46
u7
49
52

53

53

FIGURES

Figure 29. Switches used in Scan I/II
PhaSe o« ¢ ¢ o o o o o o o« o o o o o o
Figure 30. Branch Address Table
BPRTAB. « ¢ o o o o o o o a s o o o =
Figure 31. KEYTAB keys used in
TRANSOP routine .« « « « « ¢ o « « «
Figure 32. Delimiter Table (WITAB) . .
Figure 33. Internal Names of boolean
constants 'TRUE' and 'FALSE'.
Figure 34. Identifier Table
Manipulation Phase. Diagram
illustrating the functions of the
principal constituent routines. . . .
Figure 35. 1Identifier Table
Manipulation Phase Input/Output . . .
Figure 36. Identifier Table (ITAB)
entry, showing the identifier's Data
Storage Area displacement address, as
inserted by the Identifier Table
Manipulation Phase in bytes 9 and 10,
for all identifiers except those of
declared procedures, switches and
labels. ¢« ¢ ¢ ¢ ¢ ¢ ¢ 4 v o o e e e .
Figure 37. Two-byte entry in Program
Block Table II (PBTAB2) . . « « « « .
Figure 38. Private Area acquired by
the Identifier Table Manipulation
Phase e e e e s e e e e
Figure 39. Scan III Phase. « « .« «
Figure 40. Scan III Phase 1nput/output
Figure 41. Function of pointers NOTER
and NOTEW in input/output operations
on the SYSUT3 data set. . « « « « « =
Figure 42. Diagram illustrating the
handling of Identifier Table (ITAB)
YeCOYXdS « o o o o o o o o o o e o .
Figure 43. Entry in Left Varlable
Table e & o o s e o e o o o e e » e
Figure uu. Fourteen—byte Subscript
Table entry e e e e e e e e
Figure 45. Entry in Crltlcal
Identifier Table (CRIDTAB).
Figure 46. Entry for an array
identifier in the Array Identifier
Stack (ARIDSTAB) e« « o o o o o o o o «
Figure 47. Private Area acquired by
Scan III Phase. « « .« « « « « . .
Flgure 48, Subscript Handling Phase. .
Figure 49. Subscript Handling Phase
Input/s7output. « « « ¢ ¢ o« o o o &
Figure 50. Optimization Table (OPTAB)
ENEYY o o o o ¢ o o ¢ ¢ o o o o o o o
Figure 51. Diagram illustrating use of
the private area. « « « « ¢« « « « « &
Figure 52. Compilation Phase. Diagram
illustrating phase operations
Figure 53. Compilation Phase
Input/output. « « « o o 4+ & o & + & =

. 55

. 70
. 71
< 72

. 76
. 78

. 78

. 79
. 82
. 83

. 83

. 84

. 87
.102

.103
104
.104
.109

.110

Figure 54. Diagram illustrating the
function of the Operator/Operand
StackS. ¢ ¢« ¢ ¢« 4 e e e 4 e e 4 e o

Figure 55. Five-byte operand
representing an intermediate value or
address contained in an object time
register or temporarily stored in the
register's reserved storage field in
a Data Storage Area.. « « « « « ¢ o .

Figure 56. Control Fields governing
use of object time general purpose
YEJIsSters ¢ o o o« o ¢ o ¢ o o o o o o

Figure 57. Control Fields governing
use of floating point registers,. . .

Figure 58. piagram showing the
compiler programs . « « « o o o o .

Figure 59. Private Area acquired by
Control Section IEX40001 for the
Compilation Phase (IEX50) . «

Figure 60. Entry in Program Block
Table III (PBTAB3). « « ¢ ¢ o o o «

Figure 61. Diagram showing code
generated for switch declaration and
switch designator « « .« . . .

Figure 62. Object Time Storage
Mapping Function of an array. . .

Figure 63. Code generated for declared
type procedure and procedure call . .

Figure 64. I/0 Table (IOTAB)

Figure 65. For statement
classification byte in the For
Statement Table «« .

Figure 66. Logical structure of the
code gsnerated for a Counting Loop. .

Figure 67. Logical structure of the
code generated for an Elementary Loop
Oor Normal LOOP. « o o o o o o o o o

Figurs 68. Logical structure of the
code generated for a Counting Loop. .

Figure 69. Logical structure of the
code generated for an Elementary Loop

Figure 70. Logical structure of the
code generated for an Elementary Loop

Figure 71. Entry in Subscript Table-C
(SUTABC) e &« o o o o o o o o o o o o @

112

.113

114
.115

.117

.118

.120

121
.125
.132
.138
.139

141

141
.142
.145
.146

.148

Figure 72. Logical structure of the
code generated for a Normal Loop. . .
Figure 73. Logical structure of code
generated for Elementary Loop or
NOrmal LOOP o o o o o o o o « o o o @
Figure 74. Composition and execution
sequence of Load Modules IEX21,
I1EX31, and IEX51, containing the
Error Message Editing Routine
(IEX60000)e ¢ ¢ « ¢ « o« o o o o o o =
Figure 75. Error pattern stored in
EXror PoOle ¢ ¢ o o o o o o o o o o o«
Figure 76. Message Pool entry.
Figure 77. Three-byte Insertion Code
in the Message Pool entry (see Figure
T6) o o o o o o o o o o o o o o o o o
Figure 78. Format of the printed error
MESSAGE « o o o o o o o o o o o o =
Figure 79. Four-byte parameter list
entry for a standard procedure call .
Figure 80. label of a PUT/GET record .
Figure 81. Module names of
mathematical standard functions
contained in the ALGOL Library. . . .
Figure 82. Composition of the object
MOdUlEe ¢ o« ¢ o o ¢ o o o o o o o o o
Figure 83. Sketch showing the
organization of the load module . . .
Figure 84. Object time Program Block
Table « ¢ ¢ ¢ ¢ ¢« ¢ ¢ ¢« ¢ o o o o o o«
Figure 85. Object time Label Address
Table (LAT) o o e e ee @
Figure 86. Content of the data set
entries and the PUT/GET Control Field
Figure 87. Entry in the object time
Note Table (NOTTAB) « ® s e
Figure 88. Content of the Data
Storage Area. . . e o .
Figure 89. Content of the 8- byte
storage field of a formal parameter
callede « ¢ ¢ o ¢ o o o o o o « o o @
Figure 90. Entry in the object time
Return Address Stack (RAS).
Figure 91. Object time register use. .

.149

150

.171
.172
172
<172
174
.180
.180
.186
.187
.188
.189
. 189
190
191

.192

.193

194
195

ALGOL Compiler - Overall Flow. . .
Directory (IEX00). « & o « & o o o«
Initialization Phase (IEX10) . . .
Scan I/II Phase (IEX11).
Identifier Table Manipulation Phase
(IEX20) & o« o o o o o o o o o o «

.197
.198
.201
.203

.215

Diagnostic Output (IEX21).
Scan III Phase (IEX30)
Diagnostic Output (IEX31).
Subscript Handling Phase (IEX40)
Compilation Phase (IEX50).
Termination Phase (IEX51).

ALGOL Library.

.

e & 5 & g o

CHARTS

.218
220
.234
.235
.238
262
< «265

TITLE CHANGES

Maintenance

Names of reference publications have been changed to reflect
their current titles.

Page of GY33-8000-0
Revised January 15, 1972
By TNL GN33-8129

SUMMARY OF AMENDMENTS

FOR GY33-8000-0
0S Release 21

11

PURPOSE_OF THE COMPILER

The 0S/360 ALGOL Compiler translates a
source program written in the 0S/360 ALGOL
Language into an object module which may be
linkage edited and executed by an IBM
systern/360 computer. The final load module
consists in part of code generated by the
Compiler and, in part, of routines (in load
module form) drawn from the ALGOL Library.
The Library is a data set containing AIGOL
standard I1I/0 procedures and mathematical
functions, as well as auxiliary routines
required by the object module at -execution
time. The Library routines are combined
with the generated code at linkage edit
time, to form an executable load module.

The Compiler prints out a listing of the
source module and of the Identifier Table,
if the SOURCE option is specified, and
prints out diagnostic messages reflecting
syntactical errors detected in the source
module, as well as other errors occurring
during compilation.

THE COMPILER AND SYSTEM/360 OPERATING
SYSTEM

The ALGOL Compiler is a processing pro-
gram of the System/360 Operating System.
It is executed under the control of the OS
Supervisor, and utilizes the I/O and other
services of the OS Control Program.

A compilation is executed as a job step
by means of the job control facilities of
the Operating System. The use of the
Compiler is explained in the 0S ALGOL

Programmer's Guide.

MACHINE .SYSTEM

The minimum machine configurat@on
required for execution of a compilation
using the ALGOL Compiler is as follows:

1. An IBM System/360 Model 30, 40, 50,
65, 75, or 91, or an IBM System/370
Model 135 (or higher) with the
scientific instruction set and at
least 64K bytes of main storage
capacity.

2. At least one direct access
input/output device; a printer; a con-

Page of GY33-8000-0
Revised January 15, 1972
By TNL GN33-8129

CHAPTER 1: INTRODUCTION
sole typewriter, and a sequential
device (magnetic tape unit or card
reader).

ORGANIZATION OF THE COMPILER

Figure 1 indicates the modular structure
of the ALGOL Compiler as well as the
essential operations performed in each of
the constituent phases. The Compiler con-
sists of ten 1load modules, the first of
which, called the Directcry, remains in
main storage throughout compilation. The
other nine modules, representing the work-
ing phases of the compiler, are loaded and
executed in sequence.

DIRECTORY (IEX00)

The Directory
assenmbled Commwon Work Area,
phases, as well as a number of auxiliary
routines providing interface with the
Operating System. The latter include the
initial entry and final exit routines which
receive control from, and return control
to, the Operating System.

consists of a pre-
used by all

INITIALIZATION PHASE (IEX10)

The Initialization Phase:

1. Sets up a control field in the Common
Work Area, reflecting the opticns
specified in the EXEC Statement invok-
ing the Compiler.

2. Determines the sizes
work areas required Ly the
phases.

of the private
individual

for a source
Exror

3. Acquires main storage
text input buffer and for the
Pool.

4. Opens data sets.
5. Executes a SPIE macro which specifies

the address of the program interrupt
routine in the Directory.

Chapter 1: Introduction 13

ALGOL COMPILER

* |EX40 also initializes
the Compilation Phase

ILabel Addr.Table |
[Error Pool . __

(including Object
Time Table Output
ond Diagnostic
Qutput)

EXEC
CALL/LINK/XCTL
ATTACH IEX00 IEX10
LINK INITIALIZATION
DIRECTORY PHASE
(A) (8)
RETURN ~ —————] SYSUTI SYSUT3
’ Modified Identifier
Source Text Table
XCrL (Modification (ITAB)
Level 1)
SYSIN IEXT1
Source
Module SCAN /11
PHASE
e
|-—=f MainStorage | |SYSLIN/ SYSPRINT
: Error Pool I [sysPuncH Source
Group Table | |eooo —— Module
R — XcTt | Scope Table | [FhRecerd Listing
| Main Storage | P.B. No. Table | ecords
® of Constant
| Error Pool | (I 1 ool
SYSUT3 |P.B. No. Table :_ 1EX20
|
ifi | S — -
hentifier IDENTIFIER
(ITAB) TABLE ‘
MANIPULATION F—m—— ——x
PHASE |- Moin Storage | SYSUT3 SYSPRINT
| Prog,Blk.ITobleH' Identifier Identifier
I Error Poo | | Table able
xcrt [, I NV Listing
______ 4 1EX21 SYSPRINT
| Main Storage | Py
iagnostic
| Error Pool - Messages ©)
a ! DIAGNOSTIC =
______ ouTeuT
(A) (8))
‘_KSGQ(T"d SYSU.T‘?' SYSUT2
Source Text {dentifier XCTL Modified
(Modification (ITAB) Source Text
(Vogifisation | \(TAB b (Modification
r Bl Level 2)
| Main Storage | 1EX30
IScope Table !
| Group Table =~
l L e J SCAN 1l
PHASE
ey |
|~ Moin Storage |
I Error Pool |
| For Statement | S—YS—L—I-N~/ SYSUT3.
XCTL | Table | |sysPuNcH Subscript
—————— 4 |TXT Records Table SUTAB)
of Commorc Left Variable
Pool Table (LVTAB)
[ataltta bl IEX31 SYSPRINT
| Main Storage | e~
! Error Pool [— Diagnostic
| Error Poo | DIAGNOSTIC | | Messages ©
L= - OUTPUT
(E)
SYsUT3 et ©)
Subscript [o S
Table (SUTAB) | Main Storage I sy, PT.S .
Left Varioble "For Statement | 1EX40 * Optimization
Table (LVTAB | S able
able) [Table Sreas)
SUBSCRIPT
HANDLING PHASE e ——— 9
©) &) —--1 Main Storage :
For Stat: t
SysuT2 SYSUT3 HTeble o
Modified Optimization ! |
Source Text Table | it 1 XCTL L= J
(Modification (OPTAB) |Main Storage | SYSLIN/
Level 2) | i
Prog.Blk.Table 11 SYSPUNCH
Ifor Statement 1EX50 —_—
ITable I TXT & RLD
[A o Records of
T | Generated
COMPILATION Object Code
PHASE e =1
[-—=={ Main Storage |
I Prog.Blk.Tcble il
1'1/O Toble |
Label Addr.Table| SYSPRINT SLIN
XCTL ' —
Storage END, ESD, TXT
Requirements 8 RLD
iagnostic M
ecords for
o —— 1EX51 Messages Leble Address,
[Main Storage | Program Block,
Iprog.Blk.Table 11l F =] TERMINATION Roto Set, and
11/O Table | PHASE Address Tables

RETURN |

Figure 1.

14

Constituent phases of the ALGOL Compiler

Directory

Contains entry and exit routines which receive
control from and return control to the Operating
System. Also contains Common Work Area for
inter-phase communication, as well as program
interrupt, SYNAD and EOD routines. Resident
in main storage during compilation.

In ation

Determines sizes of work areas acquired by the
individual phases, according to the SIZE option;
opens data sets; sets switches reflecting compila-
tion options; and acquires storage for an input
buffer and the Error Pool. Also executes the SPIE
macro-instruction.

Scan 1/11

Reads the source module and lists all valid identi-
fiers declared or specified in the source module in
the Identifier Table, together with descriptive in-
temal nomes; stores character strings in the Con-
stant Pool, replacing them in the output text by in-
teral names containing the strings relative ad-
dress; and generates TXT records of the strings
stored in the Constant Pool. Replaces all delimiter
words and multi-ct P Y by
symbols in the output text (called Modification
Level 1). Detects syntactical errors and records
them in the Error Pool. Prints out a listing of the
source module if the SOURCE option is specified.

Identifier Table Manipulation

Allocates object time storage addresses to all iden-
tifiers (other than declared procedure and switch
identifiers and labels) listed in the Identifier Table,
noting the relative addresses in the corresponding
intemal names in the table; records the total stor-
age allocation for identifiers declared or specified
in each block or procedure in Program Block Table
1; and records multiple declaration errors in the
Error Pool. Prints oot a listing of the Identifier
Table if the SOURCE option is specified.

Diagnostic Output

Edits the contents of the Error Pool and prints out
diagnostic messages reflecting the errors detected
by the preceding phases.

Scan Il

Reads the Modification Level 1 source text output
by Scan 1/1l and generates a new source text (Mod-
ification Level 2), in which extemally represented
operands in statements are replaced by the corre-
sponding intemal names in the Identifier Table.
Stores constants in the Constant Pool, replacing
them by intemal names containing the storoge ad-
dress, and generates TXT records of the Constant
Pool. Classifies for statements in the For Statement
Table and lists linear subscript expressions and left
variables in counting loop and elementary loop for
statements, in the Subscript Table and Left Vari-
able Table, respectively.

Diagnostic Output

Edits the contents of the Error Pool and prints out
diagnostic messages reflecting the errors detected
by the Scan |11 Phase.

Subscript Handling

Constructs the Optimization Table, listing optimiz-
able subscript expressions in for statements, in
which no term occurs as a left variable in the for
statement. Optimizable subscripts are identified by
comparing each term in the expressions listed in the
Subscript Table with the entries from the same for
statement in the Left Variable Table. Also re-clas-
sifies for statements in the For Statement Table.

Compilation

Reads the Modification Level 2 source text and gen-
erates an object module. Uses the For Statement
Table to determine the logical structure of the gen=-
erated code for each for statement. Uses the Opti-
mization Toble to generate code which pre-calcu-
lates a base address and an incremental displace-
ment for optimizable subscripts of arrays occurring
in for statements. Generates code to link precom-
piled standard functions and 1/O procedures in the
Library to the object module.

Termination

Generates TXT and RLD records of tables used by
the object module at execution time, as well as
ESD records for standard 1/O procedures and math-
ematical functions, and the END record. Edits and
prints out errors recorded in the Error Pool or prints
a statement of main storage requirements at object
time Releases main storage and returns control to
the exit routine in the Directory.

'SCAN I/II PHASE (IEX11)

The Scan I/II Phase reads the source
module and constructs the Identifier Table,
listing all identifiers declared or speci-
fied un the source module. The Identifier
Table is used in constructing a five-byte
internal name for each and every identifier
declared or specified in the source module.
In the case of declared labels, procedures,
and switches, the internal name
(constructed in its entirety in this phase)
contains the relative address of an entry
in the object time Label Address Table. In
the case of all other identifiers, the
internal name (constructed partly in this
phase and partly in the succeeding phase)
contains the relative address of an object

time storage field. The internal name
ultimately replaces all externally rep-
resented operands in the source text (see

Scan III Phase below).

The Scan I/I1I Phase also generates the
first of two intermediate transformations
of the source text, called Modification
Level 1. The principal changes reflected
in the first transformation include:

1. An initial translation of all charac-
ters to an internal code.

2. The removal of all tyre declaratioms
and specifications.

3. The replacement of ALGOL delimiter
words and multicharacter operators by
one-byte symbols.

IDENTIFIER TABLE MANIPULATION PHASE (IEX20)

The Identifier Table Manipulation Phase
processes the ldentifier Table constructed
by the Scan I/I1 Phase. To each identifier
listed in the table, excepting declared

procedure and switch identifiers and
labels, an object time storage field is
assigned, the relative address Lkeing

inserted in the corresponding entry in the
Identifier Table. This address specifies
the position of the identifiers storage
field, relative to the beginning of a Data
Storage Area. The Data Storage Area con-
sists of the total amount of object time
storage space allocated to all identifiers
declared or specified in the particular
block or procedure. The size of the Data
Storage Area allocated to each block and
procedure is recorded in Program Block
Table I1 and transmitted to the Compilation
Phase via the Common Work Area.

DIAGNOSTIC OUTPUT (IEX21)

See "Diagnostic Output" below.

SCAN III PHASE (IEX30)

The Scan III Phase reads the Modifica-
tion Level 1 text output by the Scan I/II
Phase and generates a further transforma-
tion of the source text (called Modifica-
tion Level 2). In this version, the exter-
nal names of orerands in statements are
replaced by the internal names constructed
for declared or specified identifiers in
the Identifier Table. Similarly, all ccn-

stants are rerlaced by internal names con-
taining a Constant Pool address. After
being stored in the Constant Pool, ccn-

stants are subsequently transferred to TIXT
records.

Logical features of all for statements
are detected and recorded in the For State-
ment Takle. BAmong other things, the For
Statement Table assigns each for statement
to one of three 1loop classificaticns
(Normal Loops, Counting loors and Elementa-
ry Loops). The loop classification speci-
fies the 1logical structure of the ccde
generated in the Compilaticn Phase for each
for statement.

Subscript expressions of arrays found in
for statements, classified counting Ioops
or Elementary Loops, are analyzed and
stored in the Subscrirt Takle, provided
they satisfy certain criteria with resgect
to the terms 1in the expression and their
linearity within the for statement. Inte-
ger left variables in Counting and Elemen-
tary Loops are listed in the Left Variakle
Table.

DIAGNOSTIC OUTPUT (IEX31)

See "Diagnostic Output" Lrelow.

SUBSCRIPT HANDLING PHASE (IEX40)

The Subscrirt Handling Phase constructs
the Optimization Table, listing those sub-
script expressions of arrays contained in
for statements, which can be optimized in
the code generated for for statements.
Optimization refers to the minimization of
computing time involved in addressing the
elements of an array.

Chapter 1: Introducticn 15

COMPILATION PHASE (IEX50)

The Compilation Phase reads the Modi-
fication Level 2 text output by the Scan
III Phase and generates object code to
perform the operations designated by state-
ments in the source module.

Operand addresses in the generated code
are obtained from the internal names of
operands in the Modification Level 2 text.
The logical structure of the object code
generated for a for statement is governed
by the particular for statement's loop
classification in the For Statement Takle.
Where a for statement contains optimizable
subscripts, the Optimization Table is used
in generating code which minimizes the
computing time involved in addressing array
elements.

TERMINATION (IEX51)

The Termination Phase constructs the
Data Set Table and Program Block Table 1IV;
generates TXT and RKRLD records for the
latter two tables and for the Label Address
Tabie; generates an END record as well as
ESD records for all Library routines to be
combined with the ooject module; processes
any errors detected in the Compilation
Phase; and terminates the Compiler bLy
releasing main storage and returning con-
trol to the invoking program via the Final
Exit routine in the Directory. The Termi-
nation Phase 1logically constitutes an
extension of the Compilation Phase and is
described in the same chapter, namely Chap-
ter 8.

DIAGNOSTIC OUTPUT (IEX21, IEX31, AND IEX51)

The compile time Error
Routine,

Message ‘diting
which forms a control section of
each of load modules IEX21, IEX31, and
IEX51, prints out diagnostic messages
reflecting errors detected by the preceding
rhase or phases in the source module. Any
errors detected are recorded by the parti-
cular phase in the Error Pool, in the form
of error patterns. At the conclusion of a
phase, the Error Message Editing Routine
processes the conteats of the Error Pool
and prints out appropriate diagnostic mes-
sages. Errors are classified as warning
errors, serious errors, - Or terminating
errors. The recognition by any phase of a
terminating error causes control to be

16

transferred directly to a terminating rou-
tine in the Termination Phase, after all
recorded errors have Leen printed out ty
the Error Message Editing Routine in the
appropriate diagnostic output module {(see
Figure 1).

ALGOL LIBRARY

The Library is a partitioned data set
(SYS1.ALGLIB) consisting of routines which
perform the standard mathematical functicns
and I/0 procedures defined in the ALGOL
Language. The appropriate routines, ccr-
respcending to the standard functions or I/0
procedures called in the source module, are
linked to the okject mcdule at linkage edit
time. ESD records to call standard func-
tions or I/0 prccedures are generated in
the Termination Phase.

also ccntains the Fixed
Storage Area, which consists of a set of
auxiliary routines and control fields
required for execution of the object
module. The auxiliary routines include the
Initialization and Termination routines, as

The Library

well as cther routines which acquire or
release main storage and administer the
calling of procedures. The Library is

further described in Chapter 10.

An object time Error Routine is provid-
ed, which forms a module of the
SYS1.LINKLIB data set. The Error Routine,
which is 1loaded only if an object time
error is detected, prints cut an appropri-
ate error message and terminates the object
program. The errcr routine is descriked in
Chapter 10.

THE OBJECT MOLDULE

The structure of the okject module is
descrikbed in Chapter 11.

INPUT/OUTPUT ACTIVITY

The data sets used by the Compiler are
indicated in Figure 1. I/C operations in
each of the several wcrking phases are
discussed in further detail in the relevant
chapters. The takle in Figure 2 summarizes
I/0 activity during compilation, in terms
of the macro instructicns issued.

—

Data Set Table

Phase Data Set
SYSIN SYSUTI SYSUT2 SYSUT3 SYSLIN SYSPRINT SYSPUNCH
Access method used: QSAM BSAM BSAM BSAM QSAM QSAM QSAM
1EX00 CLOSE" cLose” CLOSE" CLOSE" CLOSE”" %?se * cLOSE™
IEX10 OPEN OPEN OPEN OPEN OPEN (if used) OPEN OPEN (if used)
CLOSE™ CLOSE PUT
IEX GET WRITE WRITE PUT * PUT
CLOSE CHECK CHECK
1EX20 READ, CHECK "
WRITE, CHECK
NOTE,
POINT
IEX21 h
1EX30 READ WRITE CLOSE (T) PUT PUT
CHECK CHECK READ, CHECK
CLOSE WRITE, CHECK
NOTE, POINT
1EX31 "
1EX40 READ READ, CHECK
ICHECK POINT
WRITE, CHECK

IEX50 READ, CHECK READ, CHECK PUT PUT

EX51 PUT - puT

IEX51002 CLOSE”™ ICLOSE CLOSE CLOSE CLOSE CLOSE

* Data set closed in event of program interrupt or unrecoverable /O error.

** In each of the modules indicated, a call is made to the PRINT subroutine

in the Directory (IEX00), which executes the PUT macro instruction.
Figure 2. 1I/0 Activity by Data Set and Phase
INTERPHASE COMMUNICATION BY SOURCE TEXT AND Descriked in
TABLE Name of Table Chapter
Address Table 8

The source module is subjected to two Data Set Table (DSTAB) 8, 11
transformations before object code is gen- For Statement Table (FSTAB) 6
erated in the Compilation Phase. These Group Table (GPTAB) 4
transformed versicns of the source text are Identifier Table (ITAB) 4, 5, 6
named Modification Level 1 and Modification I/0 Table (IOTAR) 8
Level 2. They are described in Chapters 3 Label Address Takle (IAT) 8, 11
and 5, respectively. Modification Level 1 Left Variable Table (LVTAB) 6
is generated by the Scan I/II1 Phase, lModi- Optimization Table (OPTAB) 7
fication Level 2 by the Scan III Phase. Program Block Number Takle 4
Modification Level 2 forms the main input (PBTAB1)
to the Compilation Phase, which generates Program Block Table II 5
the ultimate object code. (PBTAB2)

Program Block Table III 8
(PBTAB3)

The Takles constructed in the several Program Block Takle IV (PBTAB4) 8, 11
phases and transmitted to one or more Scope Table (SPTAB) [}
subsequent phases are indicated in Figure Semicolon Table (SCTAB) 4
3. A detailed description of the functiocn Subscript Table (SUTAB) 6

and contents of each table is given in the
chapters indicated:

Charpter 1: Introduction 17

Text / Table Scan 1/l

Phase
(IEX11)

Identifier
able Ou)?wt
Manipulation| (IEX21)
Phase
(IEX20)

Initialization

Phase
(IEX10)

Diagnostic

(All tables except those marked by
asterisks are transmitted between
phases via the Common Work Area)

Scan Il
Phase
(IEX30)

Termination

Diagnostic
Phase
(IEX51)

Subsclript
Output Handling

[(] E)??iul) Phase
(IEX40)
-excluding
Compilation
Phase
Initialization

Compilafion

Phase
(IEX50)

Source Text * A
Address Table

Data Set Table (DSTAB)

For Statement Table (FSTAB)
Group Table (GPTAB)
Identifier Table (ITAB) * * C M
1/O Table (IOTAB)

Label Address Table (LAT)

Left Variable Table (LVTAB) * *
Optimization Table (OPTAB) * *

Program Block Number Table (PBTABI C T
Program Block Table Il (PBTAB2) C

Program Block Table 111 (PBTAB3)
Program Block Table IV (PBTABA4)
Scope Table (SPTAB)

Semicolon Table (SCTAB) C,T
Subscript Table (SUTAB)* *

c,w
c,w

-

* The source text is transmitted between phases via
extemal storage, unless the text is less than a full
buffer in length, In the latter case it is transmitted
by way of Source Text Buffer 1 in the Common Area.

** Table transmitted between phases by way of an ex-
temal storage device (see Figure 1).

g

C - Table constucted

Figure 3. Activity Table

USE_OF MAIN STORAGE

The storage maps in
the layout of routines
storage in each of
Compiler. In terms of
storage wutilized by
divided into five main

Appendix IX indicate
and tables in main
the phases of the
function, the main
the Compiler may be
areas:

1. Area occupied by auxiliary routines of

the Directory (Control Section
IEX00000)
2. Common Work Area (Control Section

IEX00001 of the Directory)
3. Areas occupied by the cperative phase
(the operative module)

4. Private area acquired by the operative
phase

5. Common Area occupied by the Error Pool
and Source Buffer 1

These areas are pictured in Figure 4.

18

A - Source Text transformed
B - Source Text terminated (object code generated)

M - Table completed or modified

T - Table utilized and terminated
W - Table transmitted to object module

showing the procesising of scurce text and takles Ly phase

AREA OCCUPIED BY LDIRECTORY AUXILIARY
ROUTINES

The compositicn of this control section,
which contains auxiliary routines interfac-

ing with the Orerating System, as well as
Data Control Blocks for all data sets
except SYSUT1 and SYSIN, remains unchanged
during compilation.
THE COMMON WORK AREA

The Common Work Area 1is an area of
approximately 3500 bytes, resident in main
storage throughout compilation. Except for

the lower 540 bytes, whose assignment is
fixed, the composition of the Common Wcrk
Area varies Dbetween rhases and is defined
by a Dummy Control Section in each phase.
The Comrmon Work Area functions as an inter-
phase conmunication and control area. It
contains a control field, initialized by
the Initialization Phase andéd modified in
the subsequent phases; a save area; a
general transmission area used for communi-
cating addresses, parameters and counters

used by all phases in common; and a general
work area. The general work area, which
represents the major part of the Common
Work Area, provides space for the construc-
tion and/or transmission between successive
phases of small-size tables. In the Scan
I/I1 Phase, an 80-byte field of the Common
Work Area is used for processing card-image
records of the (translated) source module.

Directory Routines and DCB”s

(Directory = 1EX00 - comprising
auxiliary routines and Common
Work Areaq, is resident in main
storage throughout compilation)

Common Work Area

(Composition defined by dummy
control section in each phase)

Operative Module

(IEX10, IEX11, 1EX20, 1EX21, IEX30, IEX31,
IEX40, 1EX50 and IEX51, in sequence)

(Modules loaded in sequence)

Private Area

(Variable - acquired by each
ase and released at phase
termination)

Common Area

(Acquired by Initialization
Phase - released at termina-

(Error Pool and Source Text Buffer 1) tion of compilation)

Use of main
Compiler

Figure 4. storage by ALGCL

AREA OCCUPIED BY OPERATIVE MODULE

The operative module, which varies in
size, is loaded adjacent to the Common Work
Area.

PRIVATE AREA ACQUIRED BY OPERATIVE MODULE

All of the phases of the Compiler,
except load modules IEX21 and IEX31
(diagnostic output modules), acquire a pri-

vate area for the construction of relative-
ly large size tables which are transferred
to external storage devices. The private
area is in every case released at crhase
termination. The private work areas are
described in the relevant chapters under
the heading "Initializaticn". In the Scan

I/II and Compilation Phases, the private
area provides space for one source text
buffer, while the Scan III Phase acquires

three buffers. (See Ccrmon Area.)

COMMON AREA

The Common Area is acquired Ly the
Initialization Phase and is not released
until Compiler terminaticn. It provides
space for the Error Pool and for Source
Buffer No. 1. The Common Area buffer is
provided in order to enakle the source text
to be transmitted between phases via wmain
storage, in the event the text occupies
less than a full buffer. If either or bcth
of the intermediate versions of the source
text exceeds the buffer length, the text is
transferred to external storage. 1In each
of the phases which process the source
text, one or mcre additional kuffers are
provided for in the private area acquired
(and subsequently released) by the rhase.
In the Scan I/II and Compilation Phases,
the private area contains one source buf-
fer, while in the Scan III Phase, the
private area contains three buffers.

In the Scan I/II Phase, the Modification
Level 1 text is assemkled and transmitted
to the Scan III Phase in the Common Area
buffer, unless the text exceeds the buffer
length. In the latter case, the text |is
transferred to SYSUT1, wusing the Cocmmon
Area buffer and the private area kuffer as
output buffers.

In the Scan III Phase, the Modification
Level 1 source text 1is processed in the
Common Area buffer (if the text was trans-
mitted in main stcrage), or alternatively,
in the Common Area buffer and a private
area buffer (if the text is input from the
SYSUT1 data set). The Mcdification Level 2
text 1is assembled in one (or two) buffers
in the private area and, if it exceeds the
buffer length, it is transferred to SYSUT2.
If the text is less than the kuffer length,
it is moved to the Common Area buffer,
before the private area is released, for
transmission to the Compilation Phase in
main storage.

In the Compilation Phase, the Modifica-
tion Level 2 source text is processed in
the Common Area buffer (if the entire text
was transmitted in main storage) or, alter-
natively, in the Common Area buffer and a

Chapter 1: Introduction 19

private area buffer (if the text was trans-
mitted on the SYSUT2 data set).

CONVENTIONS

The following conventions are

observed in

this manual:

1.

20

ALGOL delimiter words in the text of
a source module are represented in
the manner defined by the IBM
System/360 Operating System AIGOL
Language, e.g. 'BEGIN' or 'REAL'.

With certain exceptions,
characters in the internal code of
the Compiler, representing AIGOL
delimiter words, as well as other
conventional delimiters, are rep-
resented as in the following exam-
ples: Begin, Goto, Power, Or, Comma,
Decimal Point, Array. The same con-

one-kbyte

vention applies to operators used by
the Compiler internally, e.g. Beta,
Proc, Epsilon. Excert for the power,
assignment and scale factor operatcrs
(represented respectively as Eower,
Assign, and Scale Factor), arithmetic
and relational oprerators are rep-
resented by their commonly understccd
symbols, e.g. +, <, = . Parentheses
and brackets are also represented
symkolically, as in (,), [, 1. The
complete range of internal character
representation during the variocus
rhases o¢f the Ccmgiler is indicated
in the code tables in Appendices 1l1l-a
through 1-d.

Syntactical, logical, or orerational
errors detected during compilaticn
are identified Ly the serial nurker
in the corresponding diagnostic mes-
sage key. Thus, for example, the
error whose detection produces a
diagnostic message with the message
key IEXO034I, is identified in this
manual as "error No. 34."

PURPOSE OF THE DIRECTORY

The Directory (IEX00) is the first of
ten load modules of the ALGOL Compiler. It
is the first module to be loaded in main
storage, and unlike the other nine modules,
which are loaded, executed and then dis-
placed by the succeeding module, the Direc-
tory remains in main storage throughout
compilation.

The function of the Directory is:
1. To provide the requisite interface

between the Compiler, on the one hand,
and the invoking program and the Oper-

ating System, on the other. This
interface is provided by (a) the Ini-
tial Entry routine, which receives

control from the invoking program and
loads the next module (IEX10); and the
Final Exit routine, which returns con-
trol to the invoking program at the
close of the Termination Phase
(IEX51); (b) the Program Interrupt,
SYNAD and EODAD routines, which
receive control from the Operating
System in the event of an unexpected
interrupt and pass control to an
appropriate routine in the operative
phase; and (c) data control blocks for
data sets used by the compiler.

2. To provide a PRINT Subroutine, used in
conmon by several phases, which prints
out compilation output on the SYSPRINT
data set, on call from the operative
phase. The printed output includes
diagnostic messages indicating syntac-
tical errors detected in the source
module, and, depending on the Computer

options specified, 1listings of the
source module and the Identifier
Table.

3. To provide the Common Work Area, an

area of main storage used for the
transmission of tables, addresses and
other data between rhases. Among
other things, the Common Work Area
contains a common register save area,
a Control Field (HCOMPMOD -- see
Appendix IV) which governs operations
in each phase, and an Area Size Takle
which specifies the sizes of the pri-

vate areas acquired by the several
phases. The Control Field and Area
Size Table, which are initialized or

constructed by the 1Initialization
Phase (IEX11), reflect the Compiler
options specified by the user.

CHAPTER 2: DIRECTCRY (IEX00)

The Directory is loaded ky the invoking
program by means of a LOAD, XCTL, LINK, or

ATTACH macro instructicn, or Ly an EXEC
control card.
ORGANIZATION OF THE DIRECTCRY

The Directory consists of two control

sections, named IEX00000 and IEX00001, res-
pectively. Contrcl Section IEX00000 con-
tains the Initial Entry, Final Exit, Pro-
gram Interrurt, SYNAD, ECDAD, and Print
routines, as well as data control fklocks
for all except two of the data sets used by
the Compiler (the other two are contained
in the Common Work Area). Control Section
IEX00001 comprises the Common Work Area.

CONTROL SECTION IEXO00000
The principal components of Control Sec-

tion IEX00000 are as follows:

Initial Entxry Routine

The Initial Entry routine receives con-
trol from the invoking program. The rcu-
tine saves registers in the Invoker's save
area, loads register 13 with the address of
a save area in IEX00000, and executes a
LINK macro instruction to load and activate
the Initialization Phase (IEX10).

Final Exit Routine

The Final Exit routine is entered from
the Termination Phase (IEX51). Registers
are restored and control returned to the
Invoker by a RETURN macrc instruction.

Program Interrxrupt Routine (PIROUT)

PIROUT is activated by the control crro-
gram in the event of a program interrupt.
The address of PIROUT is specified by a
SPIE macro instruction in the Initializa-
tion Phase (IEX10).

Chagter 2: Directory (IEX00) 21

PIROUT records error No.209 in the Error
Pool (indicating a program interrupt) and
transfers control to a closing routine in
the operative phase, the address of which
is stored at a location named ERET in the
Common Work Area. ERET is updated by the
initialization routine (as well as by other
routines) in each of the several phases, so
as to indicate the correct entry point of
the closing routine in the particular
phase. A switch (TERR -- see Appendix 1IV)
turned on by PIROUT to indicate a terminat-
ing error, causes the terminating routine
in the operative phase to transfer control
to the Error Message Editing routine in the
next diagnostic output module (IEX21, 31,
or 51) for print-out of the errors recorded
in the Error Pool. The same TERR switch
causes the Error Message Editing Routine in
the particular diagnostic output module to
transfer control to the terminating routine
in the Termination Phase (IEX51), rather
than to the next successive phase.

Where a program interrupt occurs in the
closing routine of the operative phase (in
which case the same program interrupt will
recur after PIROUT has returned control to
the defective closing routine), PIROUT
exits directly to the terminating routine
in the Termination Phase.

PIROUT is temporarily replaced as the
program interrupt exit by the execution of

a second, SPIE macro instruction in the
initialization routine of the Scan III
Phase. The substitute routine provides for

special handling of exponent overflow and
underflow interrupts, but passes control to
PIROUT in all other cases. PIROUT is
restored as the program interrupt exit by a
final SPIE macro instruction in the closing
routine of the Scan III Phase.

I/0 Error Routine (SYNAD)

SYNAD is activated by the control pro-
gram in the event of an unrecoverable I/0
error involving the SYSIN, SYSLIN, SYs-
PUNCH, SYsSUT1, SYSUT2, and SYSUT3 data
sets. The address of the routine is stored
in the relevant DCBs.

The routine closes the affected DCB,
records errxor No. 210 in the Error Pool
(using the ddnaimre contained in the DCB),
sets the TERR switch on to indicate a
terminating error, and passes control to
the closing routine in the operative phase,
whose entry point 1is specified in the
location ERET. (See also Program Interrupt
Routine PIROUT).

22

Sysprint I/0 Error Routine (SYNPR)

The Sysprint I/0 Error Routine is acti-
vated by the control program in the event
of an unrecoverable I/0 error involving the
SYSPRINT data set. The address of the
routine is stored in the relevant DCB.

The routine turns on a switch named PRT
(Appendix IV) to indicate that the printer
is down, and then enters the SYNAD routine
to take the same actions as that taken for
all other data sets. The PRT switch (if
turned on) causes the Error Message Editing
routine to print out a single message (for
Error No. 210) on the console typewriter,
indicating that the printer is inoperative.

End of Data Routines (EODADI1,
EODAD3, AND EODADIN).

EODAD2,

The End of Data routines are entered
from the control program when a data input
operation from the SYSUT1, SYSUT2, SYSU1I3,
or SYSIN data set is terminated at the end
of the data set. The address of the
particular End of Data routine is stored in
the data set's DCB.

The End of Data routine lcads the entry
point of the appropriate ECD exit routine
in the operative phase, and then passes
control to that routine. The entry point
of the EOD exit routine is stored ky the
initialization routine in each phase which
processes a data set, at the appropriate
one of the 1lccations EODUT1, EODUT2,
EODUT3, and EODIN in the Common Work Area.
The phases which specify an EOD exit rou-
tine for an end of data condition, the data
sets involved, and the locations where the
entry points are stored, are as follows:

Phase Data_Set Storage Field for
EOD Exit
IEX11 SYSIN EODIN
IEX20 SYSUT3 EODUT3
IEX30 SYSUT1 ECDUT1
SYSUT3 ECDUT3
IEX40 SYSUT3 ECDUT3
IEX50 SYSUT2 ECDUT2
SYSUT3 ECDUT3
Note that End of Data exit routines for

SYSUT2 and SYSUT3 are specified koth in the
the Compilation Phase initialization <rou-
tine in 1IEX40, and at the start of IEX50
(see "Phase Initialization" in Chapter 8).

Print Subroutine (PRINT)

The PRINT subroutine prints out text on
the SYSPRINT data set on call from the
operative phase. Depending on the compiler
options specified, the sukroutine may ke
called by the following routines in the
modules indicated:

CIB (IEX11l) - Source module listing

PRINTITB (IEX20) - Identifier Table

listing

coT27 (IEX21, 31, 51)
sages

- Diagnostic mes-

PRINTT (IEX51)
requirements

- Object module storage

The text printed out includes front page
titles, headlines, as well as variakle
(compiler-generated) text. A single 1line
of text 1is printed by each call to PRINT.
After a page shift, one or more headlines
are printed at the top of the new page
before the next line of text is printed.
Text other than headlines is assembled by
the calling routine in a print buffer
previously specified by.PRINT (in register
1). Headlines are transmitted by the call-
ing routine in a Common Work Area field
named PAGEHEAD (which accommodates up to
three lines of text) and are subsequently
moved by PRINT to a print buffer for
output. The headlines are assembled at
PAGEHEAD during initialization of each par-
ticular phase.

PRINT maintains both a 1line and page
count, and inserts the control character in
the appropriate line of text to effect the
required page shift. Before a page is
shifted, the next line of text is temporar-
ily moved from the print buffer to a save
area, to enable the headline(s), together
with the page number, to be printed at the
top of a new page. Control characters
governing line spacing between headlines
are supplied by the calling routine in the
headlines.

These characters are used by PRINT to
add the correct increment to the 1line
count. The control character to effect a
standard single-space line change is
inserted by PRINT at the beginning of each
new print Dbuffer. Special page shifts,
e.g. following the title page, are speci-
fied by the calling routine by arbitrarily
raising the 1line count, maintained in the
Common Work Area. The calling routine may
also suppress one or more headlines by
inserting a special character at the begin-
ning of the particular headline.

Data Control Blocks

contains Data
the following

Control Section IEX00000
Control Blocks (DCBs) for
data sets:

SYSPRINT
SYSLIN
SYSPUNCH
SYSUT2
SYsUT3

The DCB addresses are 1listed in the
Common Work Area, fcllowing the register
save area. The foregoing data sets are
required throughout compilation. DCBs for
the SYSIN data set, which is not used after
the Scan I/II Phase (IEX11), and the SYSUT1
data set, which is not used after the Scan
III Phase (IEX30), are stored in the Ccrron
Work Area. Data Sets are opened Lky the
Initialization Phase (IEX10), which also
modifies the informaticn in the DCBs to
reflect special user requirements concern-
ing block sizes and record lengths.

CONTROL SECTION IEX00001 (COMMON WORK AREA)

The Commron Work Area 1is an area of
approximately 3500 bytes used by all ghases
of the Compiler, principally for the ccn-
struction and/or transmission ketween phas-
es of small-size tables, essential ccntrol
information, and address data. Except for
a limited number of fields which remrain
essentially unchanged throughout compila-
tion, the composition of the Common Wcrk
Area varies between phases. Its composi-
tion is defined by a dummy control section
in each phase. The general layout of
tables and other data in the Common Work
Area in each phase is indicated in the
storage maps in Arrendix IX-a.

The principal fields which remain fixed

in position in the Common Work Area are the
following.

Register Save Area

A standard format save area of 72 kytes,
addressed throughout compilation by Reg-
ister 13, is provided for saving registers
when control 1is passed to the control
program at any point during execution of
the phases IEX10-IEXS51.

Chapter 2: Directory (IEX00) 23

DCB Addresses

The addresses of the Data Control Blocks
of all seven data sets used by the Compiler
are recorded in the Common Work Area,
immediately below the general save area.

End of Data Exit Addresses

This field contains the entry point(s)
of the closing routine(s) to be entered in
the operative phase in the event of an End
of Data condition on any one of the data
sets SYSIN, SYSUT1l, SYSUT2, and SYSUT3.
The appropriate entry point is fetched from
this field by the EODAD routine in the
Directory when an EOD condition occurs.
The field is wupdated by each phase at
initialization so as to specify the correct
closing routine in the phase.

Compiler Control Field (HCOMPMOD)

A three-byte field in the Common Work
Area named HCOMPMOL is used as a Compiler
Control Field. All except one of the 24
binary positions in this field are used as
switches to govern operations in each phase
of the Compiler. The significance of each
switch is indicated in Appendix IV.

The Control Field, which is initialized
by the Initialization Phase (IEX10), indi-
cates, among other things, the Compiler
options specified by the wuser. It also
indicates significant error conditions
detected by any one phase, which may cause
the Compiler to enter Syntax Check Mode, or
alternatively, to terminate operations.
The compiler options are listed in Chapter
3.

Communication Area

The Communication Area contains address-
es, pointers, counters, and other informa-
tion wused by two or more phases in common.
The address information may be variakle (as
in the case of the program interrupt or I/0
error closing routine address at ERET,
which changes with each phase) or invaria-
ble (as in the case of the address of the
Common Area Source Text Buffer 1, stored at
SRCE12DD). Counters designate literal num-
ber values (e.g. the line count referenced
by the PRINT subroutine at LINCNT). Pcin-
ters designate address displacement values
which may be incremented by several phases

24

in succession (e.g. the pointer PRPT,
which 1is incremented in the Scan I/II and
Scan III Phases to indicate the displace-
ment of each point in the okject module,
beginning with the Constant Pool).

Area Size Table (INBLKS)

The Area Size Table specifies the sizes
of work areas or buffers acquired ky the
individual phases for the construction of
tables transferred to auxiliary storage.
It also specifies minimum block sizes for
certain data sets. The relevant entries in
the table are referenced by the initializa-
tion routines of the several phases, befcre
the GETMAIN instructicn for the particular
phase's private area is issued.

The Area Size Table is set up by the
Initialization Phase (IEX10), which deter-
mines the appropriate size for each wcrk
area, according to the SIZE option speci-
fied by the user. The table in Appendix
VIII shows the increase in work area sizes
as the value of the SIZE option increases.

Work areas for small-size tables trans-
mitted between rhases via the Common Work
Rrea are defined by a DS statement in the
dunmy control section defining the Common
Work Area in each phase.

Headline Storage Area (PAGEHEAD)

This area is provided for the headlines
used in the printed output of the indivi-
dual phases. The area accommodates up to
three 90-character headlines. The
appropriate headlines, which are stored in
the area at initialization of each rhase
generating printed output, are fetched by
the PRINT subroutine c¢n call from the
operative phase.

The ©principal ccntents of the variakle

part of the Common Work Area during the
several phases are as follcws.

Preliminary Errcr Pcol

A Preliminary Error Pool is provided in
the originally assembled Common Work Area,
for the recording of any errors which ray
cccur before the main Error Pool is
acquired by the Initialization Phase. Any
recorded errcrs are immediately moved to
the main Error Pool, after main storage for
the latter has been acquired. The Prelimi-

nary Error Pool is deleted after the close

of the Initialization Phase.

Data ontrol Blocks for SYSIN and SYSUT1

The DCBs for the SYSIN and SYSUT1 data
sets are stored in the variable part of the
Common Work Area, since the data sets are
not used beyond a certain point, and the
area occupied by the DCB's can be released
for other uses. The DCB for SYSIN is
deleted after the close of the SCAN I/II
Phase, while the DCB for SYSUT1 is deleted
after the close of the Scan III Phase.

Tables

The following tables are constructed &Ly
the several phases in the variable part of
the Common Work Area. A majority of these
is transmitted to at 1least one or more
subsequent phases via the Common Work Area.
A few are used locally only.

IEX11 P.B. No. Table (PBTABl)
Scope Table (SPTAB)
Group Table (GPTAB)
Semicolon Table (SCTAB) -- local
use
IEX20 Program Block Table II (PBTAB2)
IEX30 For Statement Takle (FSTAB)
IEX40 Address Table (ATAB) -- local use
IEX50 Program Block Table III (PBTAB3)
IEX51 Program Block Table IV (PBTABU4)

The akove 1list does not include thcse
tables which are transferred tc external
storage. The processing of all tables,

except those used locally, is indicated in
detail in Figure 3.

Other Data

The remainder of +the variakle part of
the Common Work Area is used in the various
phases for switches, addresses, counters,
and pointers of 1local significance only
(i.e. wused exclusively by the operative
phase). In the storage maps in Appendix
IX-a, these areas are identified as
"private work areas".

Chapter 2: Directory (IEX00) 25

CHAPTER 3:

INITIALIZATION PHASE (IEX10)

PURPOSE OF THE PHASE

1.

26

The Initialization Phase:

Saves registers used by the Initial
Entry Routine in the Directory, and
addresses a save area (by loading
register 13) for storing registers
when lower-level routines, e.g. in
the control program, are invoked by
any of the subsequent phases. The
save area addressed comprises the
first 72 bytes of the Common Work
Area.

Executes the SPIE macro, specifying
the PIROUT routine in the Directory as
the program interrupt exit.

Reads the options specified for the
Compiler by the invoking program and
turns on a set of switches in the
HCOMPMOD Control Field to reflect the
options specified.

Inserts ddnames (if any are specified
by the invoking program) in the cor-
responding Data Control Blocks.

Selects an Area Size Table, according
to the machine system capacity indi-
cated by +the SIZE option. The Area
Size Table specifies the main storage
space to be provided in each phase for
work areas and Dbuffers, as well as
maximum data set block sizes.

Acquires main storage for the Common
Area, containing the main Error Pool
and Source Buffer 1. Any errors
detected before the main Exror Pool is
acquired are recorded in the Prelimi-
nary Error Pool in the Common Work
Area.

Opens all data sets, after specifying
the addresses of Open-Exit routines in
the Data Control Blocks of the SYSIN,
SYSLIN, SYSPUNcH, and SYSPRINT data
sets, and after inserting block sizes
in the Data Control Blocks of the
SYSUT1 and SYSUT2 data sets (the klock
size 1is equal to the length of the
Source Text Buffer). Block sizes for
SYSIN, SYSLIN, SYSPUNCH, and SYSPRINT
are inserted by the particular Open-
Exit routine, using the block sizes
(if any) specified in the DD
statements, or the maximum block size
specified in the Area Size Table. The
block size for SYSUT3 is included in
the assembled Data Control Block.

The logic of the Initialization Phase is
outlined in Flowcharts 007-010 in the
Flowchart secticn. The following sections
describe the principal functions performred.

EXECUTION OF THE SPIE MACRC

At entry to the Initialization Phase,
after registers used by the Initial Entry
routine have been saved, and after Register
13 has been loaded with the address cf the
general save area in the Ccmmon Work Area,
a SPIE macro instruction is executed which
specifies the address of the Program Inter-
rupt Exit routine (PIROUT) in the Directcr-
y. By virtue of the SPIE macro instruc-
tion, the Operating System passes control
to PIROUT in the event of a program inter-
rupt. When entered (in the event of a
program interrupt), PIROUT passes control
to the routine whose address is stored at
the location named ERET in the Common Work
Area. ERET is updated in each phase so as
to indicate the address of the agpprorriate
closing routine in that phase. Immediately
after execution of the SPIE macro, the
address of the Initialization Phase closing
routine GOTOTERM is stored at ERET. GOTO-
TERM transfers control directly to the
Termination Phase (IEX51), after releasing
main storage and closing data sets.

GOTOTERM is subsequently replaced as the

program interrupt exit Ly OPEXERR and
GOTOEDIT (the 1latter exits to IEX21 for
output cof any recorded errors, Ltefore

transferring control to IEX51).

PROCESSING COMPILER OPTICNS,
HEADING INFORMATION

DDNAMES, AND

The Compiler may be invcked(a) ky means
of the job control EXEC statement, i.e.
using the facilities of the control pro-
gram, or {b) by a user-pade program. The
options open to the user, as well as the
concomittant obligations, insofar as the
execution of the Compiler is concerned,
differ under each of these alternatives.

Where the
EXEC statement,

Compiler 1is invoked ky the
the options specifiable are
limited tc the compiler control options
listed under "Compiler Options" below.
Under this alternative, the key-words rep-
resenting the compiler ortions specified

are assembled by the control program in an
option field addressed by a pointer. At
entry to the Compiler, the address of the
pointer is contained in Register 1.

Where the Compiler is invoked by a
user-made program, the user may specify (a)
any of the compiler options, (b) ddnames
for data sets, and (c¢) heading information,
consisting of an opening page number forxr
the printed output of the Compiler. Under
this alternative, it is the obligation of
the user to assemble the key-words rep-
resenting the compiler options exerciseqd,
ddnames (if any) specified, and the heading
information, in three separate fields of
main storage (hereafter called, respective-
ly, the option field, the ddname field, and
the heading field). Each field must ke
addressed by a pointer in a three-word
address list, and the address of the
address list must be contained in Register
1 when control is transferred to the Com-
piler.

Figure 5 pictures the arrangement of the
option, ddname and heading fields, and the
related pointers. The arrangement is com-
pletely analogous under both invocation
alternatives, except that in the case of
invocation by EXEC statement, the ddname

and heading fields are always vacant (the
latter fields may also be vacant under the
alternative invocation procedure). A
vacant field is indicated by the value zero

in the
in Register 1

corresponding pointers; value zerc
indicates that all three

fields are vacant. A vacant option field
indicates that the options exercised are
the default options.
Register 1 Address List 0 2 Option Field
A(Add. List) A (Op.fld.) <Length> | PROGRAM, SIZE = 51200, ...
A (DDn.fld.)
0 2 DDname Field —
A (Hdg.fld.) \<Lﬂlgﬂ\> SYSWRITE SYSLIB SYS...
Heading Field
Figure 5. Option, DDname and Heading
fields, and pointers
The first bit of each full-word pointer

in the address list functions as a flag, to
indicate whether or not the field currently
being processed is the 1last to contain
significant data. The bit is tested after
each field has been processed, to determine
whether the next field is to be processed.
Thus, for example, if the flag bit is on in
the option field pointer, indicating that
the ddname and heading fields are vacant,
the DDNAMES and HEADINFO routines, which

process the ddname and heading fields will
be bypassed. The address of the address
list is obtained from the Operating
System's save area, in which the contents
of Register 1 will have been stored after
entry to the Compiler.

COMPILER OPTIONS

The rrocessing of Compiler options con-
sists in reading the key-words listed in
the option field and in setting appropriate
switches in the HCOMPMOD Control Field
(Appendix 1IV) to reflect the particular
options specified.

The key-words representing valid options
which may be specified for a compilation
are as fcllows (the first key-word corres-
ponds to the default option):

SIZE = [a number =45056]
PROGRAM (PG) or PROCEDURE (PC)
SHORT (SP) cr LONG (LP)

SOURCE (S) or NOSQURCE (NS)
LOAD (L) or NOLOAD (NL)

NODECK (ND) DECK (D)

EBCDIC (EB) or Iso (I)

TEST (T) or NOTEST {(NT)

The letters within parentheses represent
the alternative (akbreviated) form in which
the option may be specified. The key-words
are recorded in the option field in EBCDIC
code and are serarated ky commas. Except
in the case of the SIZE option, each ortion
is identified Ly comparing the key-word
with a 1list of 28 possible key-words in a
table named PARMLIST.

0 1 10 14
r T k) - -
| <Key-word| |<NI/OI |
|length-1>| <key-word> |instructiocn>|
L L 4 ¥
Figure 6. PARMLIST Table entry for a Ccm-
piler ortion key-word
In additicn to the option key-word and

the key-word length (-1), each entry in the
PARMLIST Table contains a logical instruc-
tion (NI or OI) which, when executed, turns
on a specified switch in the HCCMENMCD
Control Field (Appendix IV). As soon as a

key-word in the PARMLIST Table is found
which matches the key-word in the option
field, the instruction in the table is

EXECUTEd, turning cn the aprropriate switch
in the Control Field and thus recording the
opticn specified.

The SIZE option is identified ky a CILI

instruction. After recognition, the size
specified is converted to binary and stored

Chapter 3: Initialization Phase (IEX10) 27

at SIZE, provided it is not less than the
minimum capacity required. The size is
subsequently referenced in selecting the
Area Size Takle (see below). If an option
is incorrectly specified, error No. 200 is
recorded in the Preliminary Error Pool in
the Common Work Area and the default option
is assumed. If the main storage size
specified is less than the minimum, error
No. 208 is recorded, and the minimum size
of 45,056 is assumed. The contents of the
Preliminary Error Pocl are subsequently
moved to the main Error Pool after the
Common Area has been acquired.

DDNAMES

The processing of ddnames consists in
transferring the ddnames (if any) from the
ddname field to the relevant Data Control
Blocks. Unless a ddname field is provided
in a user-written program which invokes the
Compiler, the ddname field is vacant (Data
Control Blocks contain the ddnames required
by the Compiler).

The ddnames, each consisting of a maxi-
mum of eight EBCDIC characters, will have
been entered in the ddname field in pres-
cribed positions, according to the physical
device involved. Data Ccontrol Block
addresses are listed, in corresponding
order and position, in the Common Work
Area, beginning at LINADD. This enables
the ddnames to be transferred to the
appropriate DCB in sequence.

HEADING INFORMATION

The heading information which may ke
specified, consists solely of a starting
page number for the printed output of the
Compiler. Where no page number 1is speci-
fied, page numbering begins with the number

-

The page number (if any) in the heading
field is moved to a counter named PAGECNT,
which is wupdated and referenced by the
PRINT subroutine in the Directory.

SELECTION OF AREA SIZE TABLE (FNDARSIZ)

With the exception of load modules
IEX10, IEX21, IEX31, and 1IEX51, each phase
of the Compiler acquires a private area
containing one or more work areas or buf-
fers for the construction, processing, or
output of working tables. The Initializa-

28

tion Phase (IEX10) acquires a Common Area
used by all phases (see kelow). N

To enable the Ccmpiler to adapt itself
flexibly to the available storage capacity,
the space allotment for certain work areas
is scaled to the capacity of the particular
machine system as specified in the SIZF
option, Twelve capacity levels are estab-
lished, beginning at 45,056 bytes and
graduated wupwards at increasing intervals,
up to a maximum of 999,999 bytes. At each
capacity level, specific area sizes are
defined for all work areas and buffers.
Capacity levels and area sizes are defined
by twelve Area Size Tables, the first of
which is named ARTAB.

The FNDARSIZ routine
appropriate Area Size Takle,
the machine capacity specified in the SIZE
option, and moves the takle to the Common
Work Area at the field beginning at INBLKS.
The table thus selected, which specifies
the main storage space to be acquired for
all work areas, is referenced by the rmain
working phases at initialization, kefore
the GETMAIN instruction for the phase's
private area is executed.

selects the
according to

In addition to work area sizes, the Area
Size Table also specifies the maximum blcck
sizes for the SYSIN, SYSPRINT, SYSLIN, and
SYSPUNCH data sets. The maximum blcck
sizes are referenced by the Open-Exit rcu-
tines (see below).

Appendix VIII shows the increase in the

size of work areas, buffers and maximum
block sizes as the SIZE cption increases.

ACQUISITION OF COMMON AREA

The Initialization Phase acquires a Com-~
mon Area containing Source Buffer No.l and
the Error Pool, in which compile time
errors detected in the several phases are
recorded. The sizes of the buffer and
Error Pcol are obtained from the Area Size
Takle. The use of Source Buffer No. 1 is
discussed under "Use of Main Storage" in
Chapter 1.

After acquisition of the Error Pool, the
contents (if any) of the Preliminary Exror
Pool in the Common Work Area are moved to
the newly acquired Errocr Pool.

OPENING OF DATA SETS

The Initialization Phase opens all data
sets used by the Compiler, namely SYSLIN,

SYSPRINT, SYSIN, SYSPUNCH, SYSUT1, SYSUT2,
and SYSUT3. The DCBs of SYSIN and SY¥YSUT1
are contained in the Common Work Area (this
facilitates the release of main storage for
other uses when the data set is no longer
needed after the Scan I/II and Scan III
Phases, respectively); all other DCBs are
contained in Control Section IEX00000 of
the Directory. DCB addresses are listed in
the Common Work Area, beginning at LINADD.

Immediately before the OPEN macro
instruction is executed, the addresses of
the Open-Exit routines INEXRT, LINEXRT,
PCHEXRT, and PRTEXRT are stored in the
SYSIN, SYSLIN, SYSPUNCH, and SYSPRINT DCBs.
The Open-Exit zroutines, which are entered
from the Operating System when the OPEN
macro instruction is issued, serve to veri-
fy that the block size (if any) specified,
is a multiple of the record length and does
not exceed the maximum specified in the
Area Size Table. If the block size is not
specified at invocation or if the klock
size 1is 1incorrectly specified, the Open-
Exit routine inserts the record length as
the block size. If the block size is
incorrectly specified, an error is
recorded, and in the case of SYSIN, the
NOGO switch (Appendix 1IV) is +turned on,
causing compilation to be subsequently ter-
minated. In the case of the SYSUT1 and
SYSUT2 data sets, the block size (equal to

the source buffer length specified in the
Area Size Table) is inserted directly,
before the OPEN macro instruction is
issued. In the case of SYSUT3, the block

size is specified in the DCB

time.

at assermbly

When control is recovered from the Oper-
ating gSystem OPEN routine, a test is nade
to determine if the SYSPRINT data set has
keen opened (in the negative case, Exrcr
No. 201 is reccrded and the PRTNC and NCGO
switches are turned on, causing compilaticn
to be terminated after +the error message
has been printed out by Load Module IEX21
on the console typewriter). If the data
set has been successfully orened, the date
is derived and edited from the systenr
clock, and the title "LEVEL 1 JUL 67 CS
ALGOL F DATE [datel" is printed on a new
page.

Tests are then made to determine if the
remaining data sets have been opened. If
all data sets have been correctly opened,
control is passed to the Scan I/II Phase
(IEX11). If any data set has not been
opened, an errxor is recorded, and in the
case of SYSIN, SYSUT1, SYSUT2, or SYSUTI3,
the NOGO and TERR switches are turned on,
causing compilation to be terminated after
recorded error messages have Leen printed
out by Load Module IEX21.

Chapter 3: Initialization Phase (IEX10) 29

CHAPTER 4: SCAN I/ITI PHASE (IEX11)

PURPOSE . OF THE PHASE

The purpose of the Scan I/II Phase is to
read the source module and perform the
following principal tasks.

1. To takulate and classify all wvalid
identifiers declared or specified in
the source module, in the Identifier
Table. Declared identifiers include
those designated by such declarators
as 'REAL', ‘'INTEGER', ‘ARRAY', or
'PROCEDURE', among others, as well as
labels. Specified identifiers are
formal parameters of procedures, spec-
ified in a procedure heading.

The Identifier Table, which is further
processed in the two subsequent phas-
es, facilitates the construction of
the internal names of identifiers and
the replacement of identifiers in the
source text by their internal names.
An identifier's internal name consists
of a five-byte unit containing a des-
criptive characteristic, a Program
Block Nuniber, and a displacement
address.

The Program Block Number specifies
(indirectly) a Data Storage Area, com-
prising the object time storage area
required for all identifiers declared
or specified in the particular block
or procedure. The displacement
address specifies (in the case of a
declared label, switch, or procedure
identifier) the displacement of an
entry in the object time Label Address
Table, or (in the case of all other
identifiers) the displacement of a
storage field in the particular Data
Storage Area.

The entries in the Identifier Table
consist of the identifier's external
name (represented by a maximum of six
characters translated to internal
code), followed by the five-byte
internal name described above. For
declared 1label, switch, and procedure
identifiers, the complete entry, com-
prising external and internal name, is
constructed by the present phase. For
all other identifiers, the present
phase enters the external name and
constructs all except the address part
of the internal name. The Data Stor-
age Area displacement address is
inserted in the entry by the Identifi-
er Table Manipulation Phase, in which

30

object time storage fields are allo-
cated to all identifiers listed in the
table, other than declared 1label,
switch, and procedure identifiers.

The Identifier Takle is terminated in
the Scan III Phase, when all external-
ly represented operands in the source
text are replaced by their internal
names in the takble.

To assign a serial Program Block Num-
ber to every block and procedure in
the source text. The same Prograr
Block Number appears in the internal
names of all identifiers declared or
specified in the particular klock or
procedure.

At object time, the Program Block
Number references an entry in the
Program Blcck Table, containing, among
other things, the size of a Data
Storage Area. In the okject code
generated by the Compilation Phase, an
operand 1is represented by the address
of the Data Storage Area (loaded in a
base register) and the displacement
contained in the operand's internal
name.

To generate a transformed source text,
called Mcdification Level 1. A second
transformation of the source text,
called Mcdificaticn Level 2, is gener-
ated by the Scan III Phase. The
changes reflected in the first trans-
formation include an initial one-for-
one translation of all characters in
the source text to the internal code,
the replacement of all ALGCL delimiter
words by one-byte orerators, and the
removal of declarations, excert
procedure, array, and switch declara-
tions, from the source text. These
and other changes are descriked in a
later section under the heading
"Modification Level 1 Source Text".

To store strings enclosed Ly string
quotes, '(' ')', in the Constant Pool,
and to replace the string in the
transformed source text by an internal
name referencing the location where
the string was stcred. All constants
other than strings are stored in the
Constant Pcol by the Scan III Phase.

To recognize syntactical errors in the
source module and to store appropriate
error patterns in the Error Pool. The
contents of the Error Pool are printed

out in the form of diagnostic messages
by the Error Message Editing routine
in the next module but one (IEX21),
after execution of the Identifier
Table Manipulation Phase.

6. To print a 1listing of the source
module, if the SOURCE option is speci-
fied.

7. To assign a serial Identifier Group
Number to every block, procedure, and
for statement in the source module.
The Identifier Group Number is used in
the Scan III Phase to verify the
validity of goto statements, and to
facilitate the <classification of for
statements (see Item 8).

8. To construct a Group Takle listing all
Identifier Group Numbers and identify-
ing each for statement represented in
the 1list. The Group Table is used in
the Scan III Phase, in classifying the
optimizability of for statements con-
taining goto statements which imply a
branch out of the for statement.

9. To construct a Scope Table indicating
the Program Block Number of the block
or procedure enclosing every for
statement. The Scope Table is used in
the Scan III Phase to ascertain if all
terms of subscript expressions of
array identifiers occurring in for
statements are valid (i.e. declared)
outside the for statement. This is
one of several conditions for sub-
script optimization.

10. To construct the Program Block Number
Table, indicating the Program Block
Number of the block or procedure
immediately enclosing every block and
procedure in the source program. The
table is constructed for purposes of
user-information and 1is wused in the
Identifier Manipulation Phase in the
print-out of the Identifier Table.

SCAN I/II PHASE OPERATIONS

The two primary functions of the Scan

I/11I Phase are:

1. To tabulate all identifiers declared
or specified in the source module, in
the Identifier Table.

2. To generate a transformed source text
(Modification Level 1).

these functions are per-
source text for

In principle,
formed by searching the

ALGOL delimiter words (e.g., 'BEGIN' or
'STEP'), as well as other multicharacter
operators (e.g., := or .,). If a delimiter

constitutes a declarator (e.g., "INTEGER'),
or a specificator, entries are made for the
immediately following identifiers in the
Identifier Table, after each identifier has
been checked for wvalidity. Otherwise, a
one-byte symbol representing the delimiter
is transferred to the output kuffer. Other
multicharacter operators are similarly
replaced by one-byte symkols. Statements,
containing externally represented operands
(identifiers) and cperators are transferred
unchanged, except that any delimiter words
and multicharacter operators within the
statement are replaced ky cne-kyte symkols.
(See "Modification Level 1 Source Text" 1in
this charpter.)

The following provides a general des-
cription of the wain cperations performed
in the Scan I/II Phase, illustrated grarhi-
cally by the diagram in Figure 7. The
description is intended to be read in
conjunction with the diagram.

At the extreme left of the diagram, it
will be seen that the source module (in
caxrd or card-image records, EBCDIC or ISC
code) is read from the SYSIN data set intc
an 80-byte field of the Common Work Area Ly
the CIB subroutine. Inmediately after
read-in, a cory of the record is moved tc a
print area (or a dummy print area, if the
SOURCE option was not specified), and the
record in the Work Area is then translated
to the internal code (Appendix I-a. Aprpen-
dix I-b shows the same character set,
expanded by the characters which replace
delimiter words). The untranslated source
text in the print area is used in printing
a listing of the scurce module. It is also
used to enable character strings to ke
stored in the Constant Pool in their origi-
nal EBCDIC or ISO code. The CIB sukrou-
tine, first activated at phase initializa-
tion, is subsequently called by any routine
which detects the record-end orerator Zeta
(the operator is inserted by CIB at the end
of each translated source record).

In the Work Area, the translated source
text is scanned by the TESTLOOP routine,
which searches for any of 14 different
characters. BAs scon as any one of these
characters 1is identified, TESTLOOP mcves
the preceding scanned characters +to the
Modification Level 1 text in an output
buffer, and then activates the appropriate
routine. The diagram indicates the rcu-
tines activated in the case of 12 of the 14
characters (the remaining two are the Blank
and the Invalid Character, which are, in
effect, ignored).

Chapter 4: Scan I/II Phase 31

43

., TRANSOP transfers the character or

7, < [.
/ [—replaces it, after testing the following
AN 1/1l PHASE (IEX11 2 07 Saraerer, RIGHTPAR eomsters the) and 1)
sets o pointer s Decimal Point
<roint> [-=POINT transfers the Deciml Point or =——=— = e
Assign operator or posses control to i
COLON or SEMCO. ! Assign
COLON trandiers the lon ond constructs § Commo, Assign
<Colon> [=an ent label
Akt T Tabs! Colon
Change Input Buffer (CIB) Table; replaces a letter uellmlrev by the Comma; .
Gets records from SYSIN info @ work or frafsfers the opera] Semicolon, Delta
area, moves them to a print area, then <Semicolon> * [F=SEMCO transfers i y
translates the records to internal code N feltg opegater; fﬁﬁgn;ggmrm the Scope | |
in the work area. CIB is called when ~ TESTLOOP scans the frans-
the record-end operator Zeta is Tared source fext for any of 14 procedure o for statement, ond activates ! ! assign) Change Output Buffer (COB)
encountered. characters, moves the in::vver\in PPropr h e WRITES records on SYS::" and
characters to the output buffer, then | addresses an altemate buffer.
(Common Work Area) ~activates the routine concerned. | ! (Operands, numbers & arithmetic
SysiN i I operators are transferred unchanged, SYsuT1
Work H | except for to intemal code)
e i [Seale lliesn Level
Source igit>, 5 i cale Foctor ource
Medsle | (SOURCE (NosouRee APOSTRO s ‘<D‘9">' ‘ : : Text
option, option searches for 1 it Ureil Wi -
(EBCDIC < R L cerond i | And, Step, Impl, Until, While, Equiv, p——
or I =) a digit or +/- sign i i Do, Then, Else, Goto, If, Or, Power, - see Appendix
code) B hr o NORMAL, TED and GIF ! Noo, <, >, 2,2,/ =,% 1-b)
i hesl— DEIMI identifies ';” [transfer o one-byte !
Print Area Dumm, T etk symbcl representing the =
IEAVEPNN;‘ Print Km] ?ﬁfém‘::dcorﬂ:cmié delimiter, from the GIF |
using the Delimiter Table. Delimiter Table. =stAT
i |_CiB getsa < BEGIN® Begin, For
Zeta = rew ocors o | [BEGIN' L <geGIN and =
the source text | FOR Begin (FOR - for (FOR)
into the work area i For statement Scope
SYSPRINT and retorns control ! - fhotem Teble
Source to TESTLOOP. I roc # % anlr?es? =
Module | Beto SPTAB
Listing |
: BEGI]
(Listing is printed 1 BEG! called onl
by Directory PRINT . (program Grouy Program Semicolor]
subroutine, on call 5 I (!:grsv d;'clur- block T_Ebl B_LI N e
from CIB) B | CBEGIN ,‘; headin loole ock Mo
oo i entries Table _
GRTAB PBTABI SCTAB (.Semncolo‘n count
eRRPOOL | inserted in heading
| Pi, Phi (procedure ond entry)
Syntactical errors detected in } Proc ?pe—zmcedure), Aray,
the source module by all rou~ Rl ROCEDUR; Switch.
tines are recorded in the form | <Declarators> f=paber RCXCE"‘J“ = u !
of error patterns in the Error | (PROCID - progrom Procedure, array and
Pool. The pattems are edited | §:’E'g§g, S,PSEHE"?%‘ES"'; VALUE block heading entries) switch identifiars frans-
and messages printed out by the | routines contruct entries for identi- ferred to Modification
Error Message Editing routine fiers in the Identifier Tabl Level 1 text in modi-
in IEX 21. | ers i entifier Table. Identifier fied form.
: (eclaredand /. — SYSUT3
specified identifier entries) | ——— Output i
t T (At the close of a block or proce- Buffer hentifier
| (Labels) | dure, PBLCKEND transfers an
| “END” F=enD —— 1TAB | Identifier Table record consisting
i i I of identifiers declared on speci-
| (for statement ied in the block or procedure
! L closing entries) ! to SYSUT3) o
Lo ——— t—— N “C=PBLCKEND :
AN] Eto]
\ \=FOREND
\\':COMPDEND o
(At end of data |
vieOSorona | Besel/~ — 1
E=JRINAT LA !
- OD routine) | (internal name)]/ |
F—STRING stores —T1 |
strings in the N Constants |0 - 15
Constant Pool Constant |
2R | & GENERATE generafes | SYSPUNCH;
Pool .| IXT recouds of the Comstont 4 i 3 SLI
ECK/L specifi utput tont
(Character strings 4|L B.,vf:‘:: Pool ra-
in external code) koroot] | cords and
record
“ TRUE- BOLCON transf (Intemal nome) ; z«:t& o X0 bt N
. . E tronsfers o (or s ifa If DECK and,
FALSE five-byte intemal name § terminating error {ow opfi':m/;m
referencing a location in has been detected) specified)

the Constant Pool where
binary 1and 0 are stored.

Figure 7. Scan I/II Phase. Diagram illustrating functions of principal constituent routines

For a majority of the characters, the
character 1is simply transferred to the
output buffer or replaced by another char-
acter, depending on the character which
follows. In the case of a colon, the COLON
routine may:

1. Transfer a
an entry in the Identifier
the preceding label;

Label Colon and construct
Table for

2. Replace a letter string by a Comma; or

3. Transfer the Assign orerator.

In the case of a semicolon, the SEMCO
routine inspects the Scope Handling Stack
to determine if the semicolon closes a
procedure or a for statement, and if so,
activates the appropriate subroutine
(PBLCKEND or FOREND) . See "Close of
Scopes". If a semicolon terminates a dec-
laration, SEMCO transfers the Delta opera-
tor to the Modification Level 1 text;
otherwise, the Semicolon operator is trans-
ferred.

The record-end operator Zeta causes TES-
TLOOP to call the CIB subroutine, which
reads in a new record and translates it to
the internal code.

The apostrophe leads into the Apostrophe
routine (APOSTROF). APOSTROF scans the
text immediately following the apostrophe,

for a digit or +/- sign, a second apos-
trophe, or one of a set of 1logical opera-
tors. A digit or +/- sign identifies the

apostrophe as the Scale Factor. A second
apostrophe indicates an ALGOL delimiter
word (that is, a string of 1letters or an
operator enclosed by apostrorhes). 1In this
case, the Delimiter routine (DELIMIT) is
entered. If the scan is terminated by a
logical operator (indicating that the clos-
ing apostrophe of a delimiter is missing),
the Delimiter Error routine (EROUT -- not
shown in the diagram) is activated. EROUT
differs from DELIMIT, described below, only
in point of procedural detail.

DELIMIT compares the characters enclosed
by apostrophes with a list of 38 delimiter
words in the Delimiter Table (WITAB) and
branches to the routine specified in the
table for the particular delimiter. A
majority of delimiters (21) lead into the
NORMAL, TED, or GIF routines, which simply
transfer the one-byte symbol in the Delimi-
ter Table to the Modification Level 1 text.
Declarators and specificators 1lead into
routines which construct entries in the
Identifier Table for the immediately fol-
lowing identifiers.

OPENING OF SCOPES

Whenever the delimiter opening a block,
a procedure, a for statement, or a compcund
statement is encountered, a one-kyte opera-
tor identifying the particular scope is
entered in the Scope Handling Stack. The
operators Beta (for a klock), Proc (for a
procedure), For (for a for statement), and

Begin (for a compound statement), are
stacked by the BEG1, PROCEDUR, FOR, and
BEGIN routines, respectively. Depending on

the structure of the kody of a procedure,
the operator Proc may subsequently be
replaced by the operators Proc* or Procc**
in the BEGIN, STATE, or FOCR routines. See
"Score Handling Stack".

At the beginning of every block and
procedure, a rprogram block heading entry,
containing a new Program Block Number, is
constructed in the Identifier Table. The
Program Block Number in the heading entry
is copied into the following identifier
entries representing identifiers declared
or specified in the particular klock or
procedure. Similarly, at the opening of
every for statement, a for statement head-
ing entry is ccnstructed in the Identifier
Table. The for statement heading entry is
subsequently deleted unless it is followed
by one or more identifier .entries rep-
resenting a label cr lakels declared inside
the particular for statement. In the lat-
ter case, a for statement closing entry is
made at the end of the for staterment.
Program block heading entries are con-
structed by BEG1l (for a block) and PROCID

(for a procedure); for statement heading
and closing entries by FOR and FOREND,
respectively.

The BEG1l subroutine, which stacks the

operator Beta and constructs the program
block heading entry at the orening of a new
block, is entered from any routine process-
ing the first declaration following the
delimiter 'BEGIN'. Entry to BEGl is gcv-
erned by a switch named BEGBIT, which is
turned on by the BEGIN routine, entered
from DELIMIT on recognition of the delimi-
ter 'BEGIN'. BEGBIT is tested in all
declaration-processing routines
(irmediately after entry from DELIMIT), and
if the switch is on, a call is made to BEG1
before the particular declaration is proc-
essed.

BEG1 and PROCEDUR also construct entries
in the Group Table, Prcgram Block Numker
Table, and Semicolon Table. FOR makes
entries in the Scope Takle and Group Takle.

Chapter 4: Scan I/1II Phase 33

PROCESSING OF DECILARATIONS AND
SPECIFICATIONS

In the construction of entries in the
Identifier Table for declared or specified
identifiers, the external name is copied
from the translated source text in the Work
Area, while the characteristic is inserted
by an MVI instruction or, in the case of

specified identifiers, copied from the
Delimiter Table.
Type declarations ('REAL', 'INTEGER',

and 'BOOLEAN') are processed by the TYPE
routine.

All type declarations are completely
removed from the Modification ILevel 1
source text, whereas procedure, switch and
array declarations are represented in the
modified source text by a one-byte declara-
tor, followed by the identifier(s), as well
as parameters, components, or dimensions.

Array and switch declarations are proc-
essed by the ARRAY, SWITCH, and LIST rou-
tines. The main function of the LIST
routine, which branches to several subkrou-
tines is to count the number of dimensions
or components of arrays and switches, and
to store this information in the appropri-
ate identifier entries.

Entries for declared procedure identifi-
ers are made by the PROCEDUR, PROCID, and
IDCHECK1 routines. The external names of
formal parameters in the parameter list
following a procedure identifier are coried
into the Identifier Table by the IDCHECK1
subroutine on call from PROCID. The char-
acteristics of formal rarameters are
entered subsequently when the specifi-
cations in the procedure heading are proc-
essed. The routines which process specifi-
cations include, firstly, the TYPE, VALUE,
SPEC, ARRAY, SWITCH, and PROCEDUR routines
(depending on the particular specificator),
and secondly, the SPECENT and IDCHECK rou-
tines (SPECENT is a special entry point of
IDCHECK) .

To distinguish between declarations and
specifications, a switch named PROBIT is
used. PROBIT is turned on by PROCEDUR, as
soon as a procedure declaration is recog-
nized, to signify that a procedure heading
has been entered. If a delimiter (say
'REAL') is subsequently encountered, the
condition PROBIT=1 signifies that the ‘deli-
miter 1is a specificator rather than a
declarator and causes the particular rou-
tine activated (TYPE in this case) to
branch directly to SPECENT.

After copying the appropriate charac-
teristic from the Delimiter Tabkle to a
standard storage location, SPECENT (ox

34

IDCHECK) compares each identifier following
the specificator ('REAL' in this example)
with the formal parameters rpreviously
copied into the Identifier Takle from the
parameter list, and when the matching iden-
tifier is found, moves the characteristic
into the identifier entry.

No part of the procedure heading except
the procedure identifier and the parameter
list is transferred +to the Modification
Level 1 text. Tyre-qualified procedure and
array declarations are rprocessed Ly the
TYPE, TYPPROC, or TYPARRAY, and PRCCEDUR cr
ARRAY routines, in that crder.

CLOSE OF SCOPES

When the delimiter "END' is encountered,
the END routine inspects the operator at
the top of the Scope Handling Stack and
calls an appropriate subroutine (PBLCKEND,
FOREND, or COMPDEND), according to the
stack operator detected.

END

PBICKEND is called if closes a

block or a procedure (indicated Ly the
stack orerators Beta, Proc, Proc* or
Proc**), PBLCKEND transfers the last klock

of entries in the Identifier Takle rep-
resenting identifiers declared or specified
in the closed bLlock cr rrocedure, to the
SYSUT3 data set; releases the stack opera-
tor; and transfers the closing operator
Epsilon to the Modification Level 1 text.

FOREND and COMPDEND (which are called if
the stack operator 1is For or Begin,

respectively), transfer the ~operators Eta
or End to the rmodified text, and release
the stack operator. FOREND may also ccn-
struct a for statement closing entry in the
Identifier Table, or delete the preceding
for statement heading entry.

The Scope Handling Stack is also
inspected by the SEMCO routine in case a
semicolon closes a procedure or a for
statement. In the affirmative case, the
PBLCKEND or FOREND subroutine is called.

END OF PHASE

The Termination routine (ECDADIN), which

closes the Scan I/II Phase, is normally
entered as an EOD (End of Data) routine
from the Operating Systen, after the

PBLCKEND subroutine has detected the final
exit from the cutermost sccpe of the source
module and has initiated a special scan cf
the closing text, designed to detect possi-
ble 1logical errors. EODADIN may alsc be
entered when a terminating error has Lkeen

detected in the source module, in which
case control is passed directly to Diag-
nostic Output Module IEX21, rather than to
the Identifier Table Manipulation Phase
(IEX20). The conditions under which EODAD-
IN is entered are described more fully
under "Close of Scan I/II Phase".

Flowcharts 011 and 012 in the Flowchart
Section indicate the logical arrangement of
the principal routines in the Scan I/II
Phase. All of the major routines illus-
trated in the diagram in Figure 7, namely
TESTLOOP, APOSTROF, and DELIMIT, can be
readily distinguished in the charts. The
various levels of zroutines entered from
each of these routines may be seen in both
the chart and the illustrative diagram.

The name of this phase, Scan I/II,
derives from the fact that the source
module is twice scanned in the phase, first
by the Change Input Buffer subroutine
(CIB), when the source text is translated
to the internal code, and second by TES-
TLOCP, APOSTROF, or some other lower 1level
routine.

PHASE INPUT/OUTPUT

Figure 8 pictures the data input to and
output from the Scan I/II Phase. The
figure also indicates the tables and other
data transmitted to the subsequent phases
via main storage.

Input consists of the source module on
the SYSIN data set (card reader, disk unit,
or magnetic tape unit). Input records, 80

characters in length, are read into the
Work Area (WA) by means of a GET macro
instruction.

The transformed source text

(Modification Level 1) output by the phase
is transferred to the SYSUT1 data set by a
WRITE macro instruction from two alternat-
ing output buffers in unblocked, fixed
length records. At phase termination, the
data set 1is closed by a Type T CLOSE (no
repositioning to the beginning of the data
set). Records are numbered serially from
0. In the event the transformed source
text occupies less than one full buffer, it
is transmitted to the Scan III Phase via
main storage.

The Identifier Table is transferred to
the SYSUT3 data set by means of a WRITE
macro instruction, in variable-length
records of up to 2000 bytes (181 Identifier
Table entries of eleven bytes each). Each
record comprises the set of identifiers
declared or specified in a block or proce-
dure. The record number, represented by

the Program Block Number of the klock or
procedure, and the record length are con-
tained in the first (heading) entry.

An ESD record for the object module and
TXT records of the strings stored in the
Constant Pool are generated on the SYSLIN
and/or SYSPUNCH data sets, rrovided the
options LOAD and/or DECK are specified in
the EXEC Jjob control statement. If the
source module is a precompiled procedure to
be stored on a partitioned data set, the
ESD record will contain the procedure name.
If the SOURCE option is specified, a list-
ing of the source module is printed out on
SYSPRINT.

Input Output
SYSUTI
Modification
Level 1 Source
Text
SYSUT3
Identifier Table
SYSIN
Source Module
SCAN I/11
PHASE
SYSLIN/SYSPUNCH
ESD record and
TXT records of
Constant Pool
| |
= Main Storage Il
| Error Pool |
| Group Table I
| Scope Table |
| Program Block |
Number Toble | SYSPRINT
[Modification
Level 1 Source | Source Module
L__\'if:]-— 1 Listing
* Source text transmitted in main storage if it
occupies less than a full buffer.

Figure 8. Scan I/II Phase Input/Cutput

IDENTIFIER TABLE (ITAf)

The Identifier Table (ITAB) is a working
record in which an internal form of operand
representation, facilitating later compila-
tion operations, is constructed for every
valid identifier declared or specified in
the source module. This internal represen-
tation, referred to as an identifier's
internal name, replaces all externally rer-
resented operands in the source module.
The replacement is made in the Scan III
Phase after the comstructicn of the Iden-
tifier Table has been completed by the
Identifier Table Manipulation Phase.

Chapter U4: Scan I/II Phgse 35

The entry constructed for an identifier,
called an identifier entry, is eleven kytes

in length. It contains up to six charac-
ters of the identifier's external name,
translated to internal code, and a five-

byte internal name. For declared procedure

and switch identifiers and 1labels, the
complete entry, comprising external and
internal mname, is constructed in the Scan

I/1II Phase. For all other identifiers, the
external name and all except the address
part of the internal name is constructed in
the present phase, the address part being

inserted in the Identifier Takle
Manipulation Phase.
Each set of identifier entries rep-

resenting identifiers declared or specified

in a block or procedure, is
program block heading entry. The heading
entry contains the Program Block Number
assigned to that block or procedure. At
the close of a block or rrocedure, the
block of entries relating to that block or
procedure is transferred as a record to the
SYSUT3 data set.

headed by a

Within a given block of entries, an
entry (or entries) representing a label (or
labels) declared inside one or more for
statements, is enclosed by one or more for
statement heading entries and a for state-
ment closing entry. The Identifier Group
Numbers in the for statement heading and
closing entries are used, in the Scan III
Phase, 1in detecting illegal branches into
for statements. (SWILA routine in IEX30.)
The processing of the Identifier Table is

described in further detail in a 1later
section.
IDENTIFIER ENTRIES

Figure 10 shows the content of the
eleven-byte entry constructed in the Scan

I/1I Phase for all identifiers except those
of declared arrays, procedures, switches,
and labels. The identifier's external
name, represented by a maximum of six
characters in internal code (Appendixes I-a
and I-b), is copied from the translated
source text in the Work Area, after the
full identifier has been checked for valid-
ity. If the identifier does not satisfy
the specifications of the 0S/360 ALGOL
Language with respect to validity, no entry
is made, and an error is recorded in the
Error Pool.

The two-byte characteristic, in the case
of declared identifiers, is provided by the
program (i.e. by an MVI instruction). In
the case of specified identifiers, the
characteristic is copied from the Delimiter
Table (see DELIMIT routine). If an array

36

or procedure identifier is type-qualified,
the characteristic is mcdified ky a logical
instruction to show the type.

The hexadecimal wvalue of the charac-

teristic for each tyre of identifier is
shown in the table in Appendix II. The
characteristic, which serves +to descrike

the identifier, is inspected in the subse-
quent rhases. Each of the kinary positicns
in the characteristic identifies {(when set
= 1) a particular characteristic of the
identifier. The significance identified
with each position is shown in Figure 9.
Bits 5 and 6 cf the first kyte are desig-
nated Special Use Bits because they may be
manipulated in the Scan III Phase if the
identifier is a critical identifier, that
is, if the identifier occurs in a for list.

First Byte (Byte 6 in identifier entry)

Bit No: Description

(See use of bits 0-2
in "Operator/Operand
Stacks" - Chapter 8)

0} Operand
1

Not used

Not used

No Assignment
Special Use 1
Special Use 2
String

Second Byte (Byte 7 in identifier entry)

NSO WN

Bit No: Description

Standard Procedure
Code Procedure
Call by Value
Call by Name }
Label
Array
Real
Integer

} Procedure

Simple
Variable

NoOoUusWNEHO

} Boolean

Figure 9. Identifier Characteristic

The Program Block Number (P.B.No.) is
coried from the prcgram klock heading entry
of the block or rrocedqure in which the
identifier is declared or specified.

With the exceptions already noted and
described more fully belcw, the 1last two
bytes of the identifier entry as construct-
ed in the Scan I/II Phase, are filled with
zeros. They are reserved for a relative
address which is inserted ky the Identifier
Takle Manipulation Phase. The address spe-
cifies the identifier's object time storage
field within the Data Storage Area provided
for the Dblock or procedure in which the
identifier was declared cr srecified.

Figure 11 shows the ccntent of the entry
constructed for a declared array identifi-
er. The external name, characteristic, and

Program Block Number are entered in the
manner described above. The number of
subscripts (or dimensions) of the array is
entered in the first half of byte 9. The
last one-and-a-half bytes, filled with
zeros in the Scan I/II Phase, are reserved
for the relative address of the array's
Storage Mapping Function in the particular
Data Storage Area. The address is inserted
in the Identifier Table Manipulation Phase.

The entry constructed for a declared
procedure identifier is shown in Figure 12.
The external name and characteristic are
entered in the manner described earlier. A
new Program Block Number is assigned to the
procedure. This same Program Block Number
appears in the immediately following pro-
gram block heading entry, which heads the
set of entries representing formal paramet-
ers specified in the procedure. The number
of parameters of the procedure is entered
in the first half of byte 9. The 1last
one-and-a-half Lytes of the entry contain
the relative address, referred to as the
Lakbel Numker (LN), of a four-byte entry
reserved in the object time Label Address
Table (IAT). At object time, the Label

address of the object code generated for
the procedure.

In the case of a declared type-
procedure, the heading entry which follcws
the procedure identifier entry is followed
ky a second entry for the procedure
identifier. The two identifier entries for
a type-procedure are identical, except that
in the entry which precedes the heading
entry, the first kyte of the characteristic
is equal to hexadecimal CA, while in the
entry which fcllows the heading entry, the
first byte of the characteristic is equal
to hexadecimal C2.

Figure 13 shows the entry constructed
for a declared switch identifier. The
entry is identifical with that for a
declared procedure identifier, except that
the first half of byte 9 contains the

nunmber of components of the switch, minus
one.
The entry constructed for a declared

label is shown in Figure 14. The entry
differs from that for a procedure identifi-
er only in that the first half of kyte 9 is

Address Table entry contains the absolute unused and set to zero.
0 6 8 9 11
| S T T T 1
| <External Name> | <Character-|<P.B.| (Reserved)|
| | istic>| No.>| |
L L A1 i
Lmmm——— (Internal Name)=--=---- >
<P.B.No.> = <Program Block Number>
(Reserved) =

of the identifiers's

object time

The last one-and-one-half kytes are reserved for the relative address

storage field -- inserted by the

Identifier Table Manipulation Phase

Figure 10. Identifier

Table entry for all identifiers excert declared array, procedure
and switch identifiers and labels

0 6 8 9 10 11
r T T T 1
| <External Name> | <Character-|<P.B. |<NOS> (Re- |
| | istic>| No.>| served) |
e e L L L]
Lmmm=—= (Internal Name)------ >
<P.B.No.> = <Program Block Number>
<NOS> = <Number of subscripts, minus one>
(Reserved) = The last one-and-one-half bytes are reserved for the relative address
of the array's Storage Mapping Function, inserted by the Identifier
Table Manipulation Phase.
Figure 11. Identifier Table entry as constructed in the Scan I/II Phase for a declared

array identifier

Chapter 4: Scan I/II Phase 37

0 6 8 9 10 11
r T) E) |
| <External Name> | <Character-|<P.B. | <NOP> <LN> |
| | istic>| No.>| |
L L L 4 J
Kmmm—— (Internal Name)------ >
<P.B.No.> = <Program Block

Number>
<NOP> = <Number of parameters>
<LN> = <Relative address of an
entry in Label Address

Table>
Figure 12. Identifier Table entry for a declared procedure identifier
0 6 8 9 10 11
r T L L3 1
| <External Name> | <Character-|<P.B.|NOC <LN> |
| | istic>| No.>|]
L L L L]
<=-===-- (Internal Name)~------ >

<P.B.No.> = <Program Block
Numker >
<NOC> = <Number of compcnents,
minus one>
<LN> = <Relative address of an
entry in Label Address

Table>
Figure 13. Identifier Table entry constructed in the Scan I/II Phase for a declared
switch identifier
0 6 8 9 10 11
r r T - L]
| <External Name> | <Character-|<P.B.] <LN> |
| | istic>] No.>| |
L 4 L L]
<==--== (Internal Name)=------ >
<P.B.No.> = <Program Block
Number >
<LN> = Relative address of an
entry in Lakel Address
Table>
Figure 14. Identifier Table Entry constructed in the Scan I/II Phase for a
label
PROGRAM BLOCK HEADING ENTRIES case, the bit is set = 1; in all other
cases, it is set = 0. The Identifier Grourp
Number (I.G.No.) and Program Block Numker
A program block heading entry heads (P.B.No.) are copied from two counters

every set of identifier entries represent-
identifiers declared or specified in a

ing

block or procedure.

(IGN and PBN). IGN is
every block, procedure, and for
while PBN is

procedures only.

Figure 15 indicates the content of the

incremented for
statement,
incremented for klocks and

eleven-byte program block heading entry.
The first eight bytes provide two four-byte
save areas, in which the contents of the
pointers LIGP and LPBP are stored, before
these pointers are set to the address of
the heading entry itself. The first bit of
byte 8 functions as a switch to indicate if
the scope is a type-procedure. In this

38

At the close of a block or procedure,
when the set of entries representing iden-
tifiers declared or specified in the blcck
or procedure is transferred to a utility
data set, the length of the record tc be
transferred and the semicolon count (coried
from the corresponding entry in the Semico-

lon Table) are inserted in the heading
entry, as indicated in Figure 16.

0 4 8 9 10 11
i T L) T s T T
| <LIGP> | <LPBP> [<K> <I.G.|<P.B.|
| | | No.>| No.>|
L | L 4 J
<LIGP> = <Address of preceding for statement or program
block heading entry>
<LPBP> = <Address of preceding program block heading
entry>
<K> = X'8' for a type-procedure;
X'0' in all other cases
Figure 15. Program block heading entry
0 2 5 6 8 9 10 11
r T T L) T T A
|<Record | |X*2B"' | <Semicolon |<K> <I.G.|<P.B. |
| length> | | | Count> | No.>| No.>|
L - 1 L L 4 J
Figure 16. Program block heading entry, as transmitted to the SYSUT3 data set

FOR STATEMENT HEADING AND CLOSING ENTRIES

A for statement heading entry is con-
structed in the Identifier Table as soon as
the delimiter FOR is encountered. If no
labels are declared inside the for state-
ment (or a nested for statement), the entry
is deleted at the close of the for state-
ment., If, however, any labels are declared
inside the for statement, a for statement
closing entry is constructed at the close
of the for statatement. Where a label is
declared inside a series of nested for
statements, the entry £for the declared
label is preceded by a heading entry for
each enclosing for statement, and is fol-
lowed by a single closing entry containing

the Identifier Grcup Number of the emkrac-

ing block or procedure.

The first four bytes of the for state-
ment heading entry are used as a save area
in which the contents of the pointer LIGP
are stored before that rointer is reset to

the address of the heading entry itself.
The Identifier Group Numker (I.G.No.) is
copied from the counter IGN, which is

incremented successively fcr every klock,
procedure, and for statement in the source
rodule.

The Identifier Group Number in the for
statement closing entry is copied from the
heading entry of the reentered scope.

0 4 5 6 8 9 10 11
r T T T T T -1
| <LIGP> I [X'2B"| | <I.G.No.> | |
L 1 1 1 41 i 3
<LIGP> = <Address of preceding for statement or
program block heading entry>

Figure 17. For statement heading entry

0 5 6 7 8 9 10 11
r T T T T T e |
| |X'2B' |X'FF'| | <I.G.No.> | l
L L L L L § J
Figure 18. For statement closing entry

Chapter 4: Scan I/II Phase 39

PROCESSING OF THE IDENTIFIER TABLE for statement closing entry is constructed

following the entry for the label. At the

close of a blcck or procedure, the set of
The diagram in Figure 19 illustrates the entries representing identifiers declared

processing of the Identifier Table in the or specified in the klock or procedure are
Scan I/II Phase. transferred to the SYSUT3 data set. The
transfer is handled by the PBRICKEND

At

entry to every block or procedure, a suproutine on call from the END or SEMCO
program block heading entry, containing a routine.

new Program Block Number, is constructed.

(In the case of a procedure, the heading A pointer named LPBP at all tires
entry is preceded by an entry containing addresses the heading entry of the current
the procedure identifier.) Program klock (embracing) block or procedure. LPBP is
heading entries are constructed by the BEG1 used

subroutine, on call from

declaration-processing routines, and by the 1. In copying the Program Block Nurmber

PROCID routine, entered from PROCEDUR. At
entry to a for statement, a for statement
heading entry is constructed by the FOR 2.
routine. At the close of a for statement,
the heading entry may be deleted, or if any
labels are declared in the for statement, a

into the following identifjier entries,

In transferring the Program Block Num-
ber of a reentered block to the Modi-
fication Level 1 text following the
operator Epsilon, which closes a klock

Source Module Block Structure Contents of Identifier Table Work Area in Scan I/Il Phase at Yarying Points in Source Module

(Letters refer to tabelled positions in block diagram at left)

a) b) <) d)) f) 9)

LPBP o
o {Artctzorin, [of-ires op op oN ON N)
moke heading for PBO ~= AITL Proc. Name?| | Proc. Nome*] | Proc. Nome] | Proc. Name| | Proc. Names| | Proc.Name] |
b) r—=. PBI (block or procedure) * - Tg-fLrer] ,[_{tfg; K 1% K ¢
\
=- AITL \ \ \
Declarations/Specifications \ \ | \
P.B.1 P.B.1 ! P81 | P.B.1 1 P.B.1 |
<) ! I, /I /
~— AL\ PBP
2F-lg 2 24 2\
d) | = PB2 (block) AITL \ \ \
P2 | p82 |1 P82 ||
Type, array declarations -8 ! 1 ,.‘
/
1 1
o) | | 12783 (procedure - nome PO) P3 I L ! e 3 /
3 wice 3 --{L,GP 3f- LPP
Specifications == AITL \
|
0 P.5.3 Pe.3 |l
/
g) (For statement) ~- AITL For Hdg. fo- LIGP
- AITL
LABEL:
h) o P ¥) i ” LPBP
h) -
oN 0 N 0 N 0 N 0»‘ 0 {LIGP
1
i) Proc.Name'| | Proc. Name*| | Proc.Nome®} | Proc.Nume"/l Proc. Nome*| ,' Proc.Name’
i) — PM4 (type-procedure - name P4) K 1 K 1K 18 1 ‘ !
\ \ \
ISPecsncanons \‘ \ \ ‘1 \
B]
k) o | P || P.B.1 '} Po] Pat] p.8.1 1
I}
/ ! / i to
/(LpBPY SYSUT3*
2 2 “{LIGP 2\ 2N 2 ! Z
\ \ r to
)} — \ \ \ | SYSUT3
P.B.2 ! P.B.2 P.B.2 ll ez | P.8.2 P.8.2 I
| ; H |
P ! P
3 i s P3 I P3 | P3 P3 [
3f-{LTen saR=AITL || P4 ! P4 / P4 P4 1
L ! b———— - " ‘_{LPBP n __{LPBP | y
) | LIGP TH1c S to
P.8.3 P.8.3 P4 P4 = SYSUT3
|
——— P.B.4 P.B.
For Hdg. - [For Hdg. | | PB4
JForfldg. i
Label | Lobel PR SO
For Close For Close
n b Loam L=—==H Srsuta
to
SYSUT3

* If the source module, as specified by the PROCEDURE opion, is o precompiled procedure, the heading entry for Program Block 0 is followed by an ent name, and at phase termina-
ining tl i ne i d to

ry ining the p piled proced d
tion, Program Block 0, e p ame, is LT3 Showever. the souece madule is o program, the heading entry for Program Block 0 is immediately followed by o heading entry for Pro-
gram Block 1, and Program Block 0 is not transferred to SYSUT3 at phase termination.

Figure 19, Diagram illustrating the processing of the Identifier Table in the Scan I/II Phas

40

or procedure (see

Identification"),

"Scope
and

3. In specifying the start of a record
when the block of identifiers is
transferred to the SYSUT3 data set at
the close of a block or procedure.

Pointer LIGP addresses the heading entry
of the current block or proceduxe, or the
heading entry of the current for statement.
Pointer LIGP is wused in transferring the
Identifier Group Number of the reentered
block, procedure, or for statement to the
Modification Level 1 text following the
operator Epsilon or Eta, which closes a
block, a procedure, or a for statement (see
"Scope Identification").

Pointer AITL addresses the next free
entry in the Identifier Takle.

When a program block heading entry is
constructed at entry to a new block or
procedure, the contents of LPBP and LIGP
are saved in the newly constructed heading
entry and both pointers are then reset to
point to the new heading entry (the
addresses saved in the heading entry Loth
point to the preceding program block head-
ing entry). 1If, subsequently, a for state-
ment is encountered in the block or proce-
dure, pointer LIGP is set to point to the
corresponding for statement heading entry
after its contents have been stored in the
for statement heading entry. In the case
of a series of nested for statements, this
procedure is repeated for each for state-
ment heading entry. At exit from each
enclosing for statement, LIGP is reloaded
with the address previously saved in the
last constructed heading entry until, at
reentry to the current (embracing) block or
procedure, LIGP again points to the corres-
ponding program block heading entry.

When the close of the current block or
procedure is reached, and the set of iden-
tifiers declared or specified in the block
or procedure have been transferred to the
SYSUT3 data set, the current entry pointer
AITL is 1reset to the beginning of the
vacated area (by setting AITL=LPBP), in
readiness for a further identifier entry or
for a new block or procedure. Pointers
LPBP and LIGP are then reloaded with the
addresses previously saved in the heading
entry of the closed block or procedure, so
that they now address the heading entry of
the reentered block or procedure.

SCOPE_IDENTIFICATION

In the transformed source text
(Modification Level 1) generated by the
Scan I/II Phase, each scope is identified
as to type, Ly distinguishing one-kyte
operators which replace the opening and
closing delimiters in the source module.
The opening and closing operators for each
type of scope are as fcllows:

Opening Closing

Scope Operator Operator
Block Beta (X'OD') Epsilon (X'2A')
Procedure Pi (X'OE') Epsilon (X'2A")
Type Phi (X'OF") Epsilon (X'2A')
Procedure
For For (X'18"') Eta (X'2B')
Statement
Compound Begin (X*'OC') End (X'2C")
Statement

The first delimiter ‘'BEGIN' which may

open the body cf a procedure is eliminated
in the Modification Level 1 text.

Every Lblock and procedure is assigned a
serial Program Block Numker. The Program
Block Numkber appears in all entries in the
Identifier Table rerresenting identifiers
declared or specified in the block or
procedure; it alsc arpears in the Modifica-
tion Level 1 text following the operator
which cpens a block or procedure.

Every block, procedure, and for state-

ment 1is assigned a serial Identifier Group
Number. The Identifier Group Numker
appears in the heading entries in the

Identifier Table; it also appears in the
Modification Level 1 text following the
opening cperator of a klock or for state-
ment. The identifier Group Number is used,
in the Scan III Phase, in detecting illegal
branches.

The Program Block Number and the Iden-
tifier Group Number of the reentered scope
also appear in the Modification Level 1
text following the orerator which closes
klocks, for statements, and procedures.
The following 1list indicates the Progranr
Block Number and/or Identifier Group Number
which follow the opening and closing opera-
tors.

Chagter 4: Scan I/II Phase 41

Scope
Block

Procedure
Type-

procedure

For
Statement

Compound
Statement

at the close of
every scope depends cn whether the scope is
a block, a procedure, a for statement, or a
Thus, at the close of
entries
Identifier Table rerresenting the
specified in the
block or procedure, is transferred to the
Epsilon
is transferred to the Modification Level 1
statement, a

Opening Close SCOPE HANDLING STACK
Beta<PBN><IGN> Epsilon
' <PBN>*<IGN>* The action required
Pi<IGN> Epsilon
<PBN>*<IGN>* compound statement.
a block or a procedure, the set of
Phi<IGN> Epsilon in the
<PBN>*<IGN>* identifiers declared or
FOr<IGN> Eta<IGN>* SYSUT3 data set, and the orperator
text. At the close of a for
Begin End

* PBN or IGN of the reentered scope

The Program Block Number (PBN) occupies one
byte, the Identifier Group Number (IGN) two

bytes.

closing entry may be made in the Identifier
Table and the operator Eta transferred. At
the close of a compound statement, the
operator End is simply transferred.

Owing to the fact that the same delimi-
ter ('BEGIN') opens both a block and ccm-
pound statement, and owing also to the fact
that procedures and for statements may ke
closed by the delimiters 'END' or a semico-
lon, depending on their structure, a method
of classifying each scope is required, so
as to specify both the delimiter to ke
identified as the closing delimiter and the

.
| stack Operator

Hex.

Significance

T

Stacked by|Released by

1

b e, e e od

——-
og}
[0}
e
]

2
o+
[s1]

)
]
(o]
Q
*

J
Ia}
[o}
Q

*

o
]
o]
Q
*

b2}
o]
a}

e o e o

,._.._
F
[
=g
v}

08

o4

10

ocC

14

18

00

r-——-—-—-—-—-——————-—-—-——-————————-——————————-}-—-‘-—q

Designates a compound statement, closed by
'END'.

Designates a block, closed by 'END'
Designates a procedure, closed by 'END*

The procedure body consists of an unlabelled
block or compound statement.

Designates a procedure, closed by a semicolon
or by 'END'. 'END' unconditicnally clcses the

embracing scope. The procedure body consists
of a procedure statement, a dummy statement
or a delimiter 'CODE'.

Designates a procedure, closed by a semicolon
'END' unconditionally closes the

or by 'END'.
embracing scope. The procedure body consists

of a labelled statement or block, or a single
assignment, goto, conditional or for statement.

Designates a for statement, closed by a semi-

colon or by "END'. A semicolon may close an
embracing procedure or for statement. 'END'
conditionally closes the emkracing scope.

Marks the bottom of the stack. ALPHA is stacked|Initiali-
only at phase initialization and released conly |zaticn

at phase termination

un-

BEGIN CCMPEND

BEGIN PBLCKEND

BEGIN PBLCKEND

PROCEDURE |PBLCKEND

e . s e s, . . e, S e, St e e s S S o S s St e

PBICKEND

PBLCKEND
!

|

}

| FOR FCREND

I

|

|

Terminaticn

I
I
|
|
I
|
I
|
I
|
|
I
|
|
I
!
|
|
|
|
|
|
I
|
!
|
I
|
I
|
|
I
|
KN

Figure 20.

42

Scope Handling Stack operators

Rt e S s oy T . S— T — . T g it o S — i, — s it it —— — —— — e, S— —

particular action to be taken at the close.
The device used for the classification of
scopes is the Scope Handling Stack.

The Scope Handling Stack employs a set
of six stack operators, each of which
identifies a characteristic scope struc-
ture. Whenever a delimiter is detected
which marks the opening of a new scope, an
appropriate operator is placed in the
stack. If, subsequently, some feature is
detected in the scope which indicates a
change in structure, the operator original-

ly placed in the stack 1is replaced by
another operator which correctly reflects
the structure of the scope. When the

delimiter specified by the stack operator
as the closing delimiter is encountered,
the operator is released from the stack.
In this way, all embracing scopes at every
point in the source module are classified
by the operators in the stack, the inner-
most scope being classified by the 1last
stack entry.

The 1list in Figure 20 indicates the
stack operators, their significance, and
the routines which stack and release the

operators.

Stack operators are tested in the SEMCO,
STATE, BEGIN, CODE, FOR, END, PBLCKEND,
ENDMISS, and COMPEND2 routines.

Begin 1is stacked when the delimiter
'BEGIN' is encountered, provided the stack
operator is not Proc. (Proc indicates that
the current scope is a procedure and hence
that the delimiter 'BEGIN' marks the open-
ing of the procedure body; in this eventu-
ality, Proc is replaced by Proc*). Until
released, Begin remains unchanged in the
stack unless a following declaration is
encountered (see Beta).

Beta replaces Begin if a declaration is
encountered immediately after the delimiter
'BEGIN'.

Proc is stacked whenever the delimiter
'PROCEDURE' 1is encountered. Proc may be
changed to Proc* or Proc**, depending on
the structure of the procedure body (see
Proc* and Proc**),

Proc* replaces Proc if +the procedure
body consists of an unlabeled block or
compound statement (indicated by the delim-
iter *BEGIN' following the procedure
heading).

Proc** replaces Proc if the procedure
body consists of a labeled statement or a
single statement other than a block or
compound statement (indicated by a lakel
preceding a colon, an assignment operator,
or by the delimiters 'GOTO', 'IF', or
‘FOR').

The stack operator is tested in the
SEMCO and END routines for every semicolon
and 'END' encountered. In principle, a
semicolon closes a scope if the scope is a
for statement or a procedure, the Lkody of
which consists of a single statement (other

than a compound statement or klock) or,
alternatively, a labeled statement. Nc
other scope may ke clcsed ky a semicolon.

This principle is reflected in the logic of
the SEMCO routine: the occurrence of a
semicolcn constitutes the close of a scope
only if the stack operator is For, Proc, or
Proc** (i.e., only if the scope has the
characteristics indicated by these
operators). For these three operators, the
PBICKEND or FOREND subroutine is activated.
For all other orerators, the semicolon does
not constitute the closing delimiter, and
the Semicolon operator is simply trans-
ferred to the output string. A single
semicolon may close a series of nested for
statements or the procedure embracing a fcr
statement. Fcr this reason, a further test
of the stack operator is made after the
operator For has been released.

The delimiter 'END' in every case con-
stitutes the clcse of the current scope.
"END' must close all blocks and compound
statements as well as procedures whcse
procedure body consists of an unlakeled
block or compound statement. YEND' also
closes for statements and procedures, oth-
erwise clcsed by a semicolon, where the
semicolon 1is omitted or supplanted by the
immediately following °*END' of an enclosing
scope. This reasoning is reflected in the
logic of the END routine. The occurrence
of 'END' marks the close of the current
scope for any stack operators except Alrha;
if the stack operator is Beta, Proc, Prcck*,
or Proc**, the PBICKEND subroutine is acti-
vated; if For, the FOREND subroutine; and
if Begin, the COMPDEND routine is entered.
A single 'END' may close a series of nested
for statements, or the procedure emkracing
a for statement, or a procedure of type
Proc or Proc**. For this reason, the stack

operator 1is tested anew, after the opera-
tors Proc, Proc**, and For have Leen
released.

MODIFICATION LEVEL 1 SOURCE TEXT

The Scan I/1II Phase generates a trans-
formed source text, called Modification
Level 1, which is transferred to the SYSUT1
data set and forms the primary input to the
Scan III Phase. The principal changes
reflected in the Modification 1Ievel I
source text are as follows:

are tran-
(EECDIC

1. Initially, all characters
slated from the external code

Charter 4: Scan I/II Phase 43

2.

44

or ISO) to an internal code (see
Appendix I-a). Over and above this
initial conversion, the following

additional changes are made.

ALGOL delimiter words are replaced by
one-byte symbols or eliminated, as
follows:

a. The delimiter words
'THEN', 'ELSE',
'STEP', 'UNTIL', 'WHILE',
'IMPL', 'OR', ' AND', *NOT',
'GREATER', 'NOTGREATER', *LESS",
'NOTLESS', 'EQUAL', 'NOTEQUAL',
and 'POWER' are replaced by unique
one-byte symbols. See Appendix
I-b.

'GOTO",
OFORI'

IIF!'
lDoI'
'EQUIV',

b. The delimiter 'BEGIN' is variously
represented by two symbols Begin
or Beta, or eliminated, depending
on the scope opened by the delimi-
ter. The delimiter 'END' is var-
iously represented by the symkols
End, Eta, or Epsilon, depending on
the scope closed by the delimiter.
See "Scope Identification" in this
chapter.

c. The declarators 'ARRAY' and
'SWITCH' are replaced by wunique
one-byte symbols, but the declara-
tor 'PROCEDURE' is variously rep-
resented by the symkols Pi or Phi,
according to whether the declara-
tor is preceded by a type qualifi-
er. The type declarators 'REAL',
'INTEGER', and 'BOCLEAN' are elim-
inated, as are the specificators
'STRING', 'LABEL', and 'VAIUE',
and the delimiters 'COMMENT' and
‘CODE'. See item 4 below.

All other delimiters (including
operators) are represented in the
Modification Level 2 text by one-byte
operators, or eliminated, as follows:

a. Dual-character arithmetic, rela-
tional, and logical operators are
replaced by one-byte symbols. No
change, beyond the initial trans-
lation to internal code, is made
in single-character operators.

b. The separators comma, colon, deci-
mal point, and := are uniquely
represented by one-byte symbols.
The semicolon 1is represented &Ly
the operator Semicolon, unless the
semicolon follows a declaration
(in which case it is replaced by
the operator Delta) or a comment
(in which case it is eliminated).
Semicolon or Delta is followed by
a two-byte Semicolon Count. If a
semicolon closes a declared proce-

dure, the orerator Delta is
preceded by the symkol Epsilon; if
a semicolon closes a for state-
ment, the operator Semicolon is
preceded by the symbol Eta.

A colon following a declared label
is rerresented Ly the operator
Label Colon. A lcne period is
eliminated, wunless it is preceded
or fcllowed Ly a digit or +/-
sign, in which case it is rep-
resented resented as a Deciral
Point. Apostrophes are eliminated
except when followed ky a digit or
+/~ sign (in which case the apos-
trophe is replaced Ly the Scale
Factor operator). The operator
Apostrorhe aprears in the Modi-
ficatiocn Level 1 text solely in
front of internal names represent-
ing character strings and 1lcgical
values. The rarentheses (and)
are transferred, except when they
occur in parameter delimiters
(which are rerlaced ky the Comma).
The brackets (/ and /) are
replaced by the symkols [and 1],
respectively. The string qucte
signs ' (' and ')' enclosing char-
acter strings, are eliminated.

Declarations are removed or trans-
ferred in modified fcrm, as indicated
below. All valid declared or speci-
fied identifiers are entered in the
Identifier Table.

a. Type declarations are eliminated
in their entirety from the Modi-
fication Level 1 text.

b. Array and switch declarations are
transferred in modified form. The
declaratcrs are represented ky
one-byte operators, the declared
identifiers by a maximum of six
characters in internal ccde,
together with switch components or
array dimensions.

c. Procedure declarations are trans-
ferred in modified form. The dec-
larator is represented by the sym-
bol Pi (if the procedure is not
type-qualified) or Phi (if the
procedure is type-qualified).
Procedure identifiers and the for-
mal parameters in parameter lists,
each represented by a maximum of
six characters, are transferred,
but the value and specification
parts of procedure headings are
eliminated. The delimiter °CODE",
representing the body of a ccde
procedure, is rerlaced ky the sym-
bol Gamma, followed Ly six charac-

ters of the code iden-

tifier.

procedure

d. Semicolons following all declara-
tions, whether the declaration is
represented in the Modification
Level 1 text or not, are rep-
resented by the operator Delta.

5. The principal
resented in the Modification
text are as follows:

remaining changes rep-
Level 1

a. Character strings are replaced by
five-byte internal names referenc-
ing the location where each string
was stored in the Constant Pool.

The internal name is preceded Ly
the Apostrophe operator.

b. The logical values °‘TRUE' and
'FALSE' are replaced by internal
names referencing the values one
and zero, respectively, in the

Constant Pool. The internal name
is preceded by the Apostrophe.

c. Number constants are transferred
unchanged, except for the transla-
tion to internal code mentioned in
item 1, and the replacement of the
point and apostrophe (representing
respectively, the decimal point
and the scale factor) by the Deci-
mal Point and Scale Factor opera-
tors.

d. Valid labels are transferred, but
the colon following a declared

label is replaced by the LlLakel
Colon.

e. Parameter delimiters of the form
)LETTERS: (are replaced by the
Comma. If a parameter delimiter

extends across two output buffers,
the symbol Rho is inserted at the
beginning of the second buffer,
indicating to the Scan III Phase
that the letters at the end of the
preceding record are to ke
replaced by the Comma.

f. The record-end operator Zeta is
inserted at the end of every out-
put record, except the last, in
which the character Omega marks
the end of the Modification Level
1 text.

All operands (identifiers) contained in
statements in the source module are trans-
ferred unchanged to the Modification level
1 text, except for the initial translation
to the internal code mentioned in item 1
above.

The table in Arpendix I-tk indicates the

complete scope of coded characters appear-
ing in the Modification Level 1 source
text.

GROUP TABLE (GPTAB)

The Group Table is constructed in the
Scan I/1II Phase and transmitted to the Scan
IIT Phase via the Common Work Area. A
three-byte entry 1is constructed for every
klock, procedure and for statement, indi-
cating the Identifier Group Numker
(I.G.No.) of the enclosing block, rroce-
dure, or for statement, and, in the event
the scope for which the entry is construct-
ed is a for statement, indicating its
serial For Statement Number incremented by
one (F.S.No.+1). The Grour Takle is used
in the Scan III Phase, in finding the
Identifier Group Number of the enclosing
scope, and in classifying the optimizakili-
ty of for statements containing goto state-
ments involving a branch out of the for
statement. Entries are referenced by Iden-
tifier Group Number.

0 2 3

Entry r - T 1
for a for|<I.G.No. of enclosing|<F.S.No.+1}|
statement| scope> |]of the fcrj
| | statement>|

—— i -4

Entry for T 1
a block |<I.G.No. of enclcsing|<all]
or | scope> | zeros>|
_ 1 —=d

procedure b—————

Figure 21. Group Table entries for a for

statement and for a klock or
procedure
SCOPE TABLE {(SPTAB)
The Scope Takle is ccnstructed in the

Scan I/II Phase and transmitted to the Scan
III Phase in main storage. A one-byte
entry is constructed for every for state-

ment, indicating the Program Block Numker
(P.B.No.) of the enclosing block or prcce-
dure. The Sccre Takle is used in the Scan

III Phase in determining whether all terms
of array subscript expressions cccurring in
for statements are declared outside the for
statement (i.e. nct in a klock enclosed Lty
the for statement).

Chargter 4: Scan I/II Phase 45

<P.B.No. of the block or procedure
enclosing the for statement>

[o oy
S

Figure 22. One-byte Scope Table entry

PROGRAM BLOCK NUMBER TABLE (PBTAB1)

The Program Block Number Table is con-
structed in the Scan I/II Phase and trans-
mitted to the Identifier Table Manipulation
Phase in main storage. A one-byte entry is
constructed for every block and procedure,
indicating the Program Block Number of the
enclosing block or procedure. The Program
Block Number Table 1is used in connection
with the print-out of the Identifier Takle
listing in the next phase, in which the
Program Block Number of the block or proce-
dure embracing each block and procedure is
shown.

0 1

.
| <P.B.No. of the block or procedure
| enclosing the block or procedure>

L

b e e

Figure 23. One-byte Program Block Number

Table entry

PROCESSING OF OPENING SOURCE TEXT

The source module as specified in the
EXEC statement may be a program or a
precompiled procedure. If +the source
module is a program, the operative
(programming) text in the source module
must be opened by the delimiter 'BEGIN'.
If the source module is a precompiled
procedure, the operative text in the source
module must Lke opened by the delimiter
'PROCEDURE' or by one of the delimiter
sequences 'REAL' 'PROCEDURE', ' INTEGER"
'PROCEDURE', or 'BOOLEAN' ‘PROCEDURE'.

Since the opening delimiter may be
preceded by comment, provision is made in
the Compiler to assure that, at the start,
all text is disregarded until the correct
delimiter or delimiter sequence is found.
To facilitate the search for the correct
opening delimiter, a number of special-
purpose routines, as well as a switch named
STARTBIT, are used.

STARTBIT = 0 (off) signifies that the
opening delimiter has not been found and

be

specifies, in general, that scanning for
the appropriate character sequence is to
continue. STARTBIT = 1 (on) signifies that
the opening delimiter has been found.

The chart in Figure 24 shows the logical
flow through the routines which process the
opening delimiter, and the function of the
STARTBIT. In the TESTLOOP routine the
condition STARTBIT off has the effect of
limiting the character search to an
apostrophe (the first of two apostrophes
enclosing a delimiter word). When an apcs-
trophe is found, contrcl is passed to
APOSTROF, which searches for the seccnd
apostrorhe and then Lkranches to DELIMIT.
In DELIMIT, the condition STARTBIT cff
causes a branch to a srecial-purpose rou-
tine, called STARTDEL, whose function is to

activate FIRSTBEG, PROCEDUR, or TYPE,
according tc whether the delimiter is
'BEGIN', 'PROCEDURE' or 'REAL', 'INTEGER',

cr ‘'BOOLEAN', respectively, and to return
control to TESTLOOP in all other cases. If
the source module is a rrogram and the
delimiter is 'BEGIN', STARTBIT is turned on
by FIRSTBEG, thus signifying that the cor-
rect opening delimiter has been found. If
the source module is a precompiled prcce-
dure and the delimiter is 'PROCEDURE' or
'<type>' 'PROCEDURE', STARTBIT is turned on
by PROCEDUR. In all cther cases, an error
is stored in the Error Pool, and contrcl
returned to the TESTLOOP, which continues
to scan for an apostrophe.

CLOSE OF SCAN I/II PHASE

The EODADIN routine, which closes the
Scan I/II Phase and which transfers control
to the succeeding phase, may be entered
under four main conditicns:

1. At the lcgical <close of the scurce
module, when the 1logical terminal
delimjter ('END' in most cases) has
closed the outermost scope of the
source module

2. When an unexpected End of Data condi-
tion occurs

3. When a terminating syntactical
is detected in the source module

€error

4. When a program interrupt or unrecover-
akle I/0 error occurs.

Charts A, B, C and D in Figure 25 show
the flow of ccntrecl through the various
routines before EODADIN is finally entered,
under the four conditicns mentioned.

TESTLOOP

O

Scan to next
significant

character

Opening
delimiter
found

/Brunch‘
accord. to ' »
S cher. 7
N

Y

i

(] '
(COLON, POINT, SEMCO, etc.

APOFTROF

Scan to next
significant
character
FBYTE = 00

Digit, Invalid character Aposh'opha Operator
SCALE and NPAFAPO DELIMIT EROUT
FBYTE
FO =?
00
Find P Find
delimiter .3"';‘;;’; delimiter
in table {entitie in Table
Opening Opening
delimiter: delimiter
found found
i No. 11 N
(Normal /'6unch\ ,’Brunch N,
processing) g ‘accord. to > & accord. to
(5 \ delimitey N, dehmlt/er/
\ / N,
Y STARTDEL Y
(Continue scanning F—————— o —————n Fo————— e —— Q
for opening delimiter)]] t 1] (]
(NORMAL, TED, GIF, etc.) (NORMAL, TED, GIF, etc.)
TYPPROC
“REAL~
“INTEGER”
“BEGIN- | “PROCEDURE* ‘BOOLEAN” <Any other delimiter>
L H |
FIRSTBEG PROCEDUR TYPE ERRB
- X . T
Outermost =
STARTBIT Record error STARTBIT =1 - Record error
o No. 42 scope PROCESD =1 FBYTE =FO No. 11
]
BEGI
. (Begin normal
?55'9" P.B.No (Continue scanning processing) (Commue scanning
ransfer Beta. for opening delimiter)

(Begin normal
processing)

Figure 24.

for opening delimiter)

Chart showing the logical flow in the search for the opening delimiter

and showing the function of the STARTBIT

In Chart A, the 1logical close of the
source niodule is detected by the PBLCKEND
subroutine (activated by the delimiter
'END' or a semicolon <closing a block or
procedure), when the stack operator Alpha
shows that the bottom of the Scope Handling
Stack has been reached, and that, accord-

ingly, the outermost scope of the
module has been closed.
tions, PBLCKEND specifies EODADIN as the
EOD routine; turns a switch named ENDEIT
on, and transfers contrcl to COMMEND, whose
function is to bypass any comment and to
find the semicolon (or the first apostrophe

source
under these condi-

Charter 4: Scan I/II Phase 47

of 'END' or 'ELSE') which terminates such
comment. If the terminating delimiter is a
semicolon, the condition ENDBIT=1 causes
control to be passed to READROUT, which
scans the remaining source text for any
characters other than a blank or the
record-end operator Zeta. If any signifi-
cant character 1is detected, an error is
recorded in the Error Pool by ERR9 before
control 1is passed to EODADIN; otherwise,
READROUT continues reading the remaining
source record (if any) until the Operating
System transfers control to EODADIN at End
of Data. The closing comment (if any) may
be terminated (incorrectly) by 'END' or
'ELSE'. When either of these delimiters
has been identified by the DELIMIT and
COMSPEC routines, control is passed to END
or TED, in which the condition ENDBIT=1
causes a branch to be taken to ERR9 before
EODADIN is entered.

In Chart B, the ENDMISS routine (which
is specified at phase initialization as the
EOD routine) is entered when the Operating
System has identified an unexpected End of

Data condition. ENDMISS activates the
PBLCKEND, FOREND, and/or TERMBGN routines
until all remaining entries of +the Iden-

tifier Table have
external storage

been transferred to
and all stack operators
have been released. Thereafter, an exror
message 1is stored in the Error Pool, and
control is passed to EODADIN.

In Chart ¢, the ERR4 subroutine is
called when a terminating error has keen
detected. ERR4 records the error in the
Error Pool and then transfers control,
through COMPFIN (which turns the TERR
switch on -- see Appendix IV), to EODADIN.
The condition TERR on causes EODADIN to
transfer control to Diagnostic Output
Module IEX 21, rather than to IEX20
(Identifier Table Manipulation Phase).

In Chart D, EODADIN is entered directly
from the Directory routine PIROUT in the
event of a program interrupt or an unrecov-
erable I/0 error. PIROUT, whose address is
specified in the SPIE macro instruction
executed in the Initialization Phase, pass-
es control to the routine whose address is
stored at ERET. ERET is updated at ini-
tialization of the Scan I/II Phase, to
specify the entry point of EODADIN.

SWITCHES
The Scan I/II Phase employs some 20
local switches, over and above the common

48

switches in the HCOMPMOD Control Field
(Appendix IV). The significance of the
various switches, all of which are located
in the Common Work Area, is indicated in
the 1list which follows. The first switch
in the list (FBYTE) comprises a full Lkyte,
which may have three hexadecimal values.
The remaining 19 switches are represented
by the binary pcsitions of three contigucus
tytes named BITS1, BITS2, and BITS3 (Figure
19), and may be either on (=1) or off (=0).

FBYTE X'00' (set =X'00' Ly APCSTROF)
signifies that no particular set
of delimiters is keing sought, and
specifies to DELIMIT that a normal
branch is to ke taken, according

to the delimiter identified.

1

X'FO° (set =X'FO0' by TYPE and
IDCHECK) signifies that one of the
delimiters 'REAL', 'INTEGER', oOr
'BOOLEAN' is followed by a second
apostrophe, indicating ancther
delimiter (which may logically
only be 'PROCEDURE' or 'ARRAY')
and specifies to DEIIMIT that
TYPESPEC is to ke entered.

= X'FF' (set =X'FF' by COVM) signifies
that an end ccmrwent is followed Ly
an apostrophe, indicating a delim-
iter word (which may 1logically
only be 'END' or 'ELSE'), and
specifies to DEILIMIT that COMSPEC
is to be entered.

BEGBIT:

on (turned on by the BEGIN routine)
identifies the fact that the delimi-
ter 'BEGIN' has been encountered and
specifies to all zroutines which
process declarations, namely TYPE,
PROCEDUR, SWITCH, and ARRAY, that
the BEGl subroutine is to ke <called
before any declarations are prcc-
essed. Arong other things, BEG1
assigns a new Program Block Nunber
and transmits the one-kyte operator
Beta to the outrut ruffer.

off (turned off by the BEGl subroutine)
specifies that +the BEG1 has keen
called and that the subroutine is
nct to be reactived until the delim-
iter 'BEGIN' opening a new block has
been identified.

PN

T

Chart A:

End of Scan 1/1l Phase - Normal Close of Source Module’s Outermost Scope

(END or SEMCO)

Chart B:

Chart C:

of a term

Chart D:

(OS at End of Data)

L

End of Scan

(Any routine on detection

1atin

PBLCKEND gSF:Otho COMMEND APOSTROF DELIMIT
erator
ENDBIT =1 = Alph Scan to next Scan to next Identify the
EOD = Alpho) semicolon | _Apostrophe,_ apostrophe - — ———{ delimiter
EODADIN _| or apostrophe
r r
L' Zeta _] |
I Semicolon |
l (ENDBIT = 1) i
I READROUT COMERR COMSPEC
I Search for any Scan to next Branch
significant =—=——=———] semicolon e — —— —] according to
l character (ENDBIT = 1) Any other delimiter
l delimiter
T e,
— ELSE
| 1 i
‘ TED
ENDBIT =1
l Zeta Zeta causes branch
I to ERR9.
| o —
l CIB ERR9 END
l Change Record ENDBIT =1
L—w- Input L.« error No. 39 |e——— causes branch
Buffer to ERR9
EODADIN
Freemain.
[} XCTL to
(End of Data) IEX 20
End of Scan |/l Phase - Unexpected End of Data
ENDMISS Beta, Proc
Inspect Proc %, Proc s For Begin_
stack operator 1 1 Y
TERBIT =1 PBLCKEND FOREND TERMBGN
Transfer ITAB. Release Release
l Alpha Release stack For Begin
operator -
EODADIN
Freemain. ¥ (TERBIT =1)]]
XCTL to
1EX 20
1/1l Phase - Terminating Error
error
ERR4 COMPFIN EODADIN
Record a TERR =1 Freemain .
terminating XCTL to
error 1EX 21 (TERR=1)

End of Scan

1/11 Phase - Program Interrupt or Unrecoverable 1/O Error

(from PIROUT i

n Directory)

EODADIN

Freemain.

Figure 25.

XCTL to
1EX 21 (TERR=1)

Exits from Scan I/II Phase

Chapter Uu:

L -]

“END”

Scan I/I1 Phase

49

PROBIT:

on

¢}

H

(turned on by the PROCEDUR routine)
signifies that a procedure heading
has been entered and specifies to
declaration-processing routines
that, until turned off, all declara-
tive delimiters such as 'INTEGER',
are to bLe processed as type speci-
fiers of formal parameters, as
opposed to type declarators.

(turned off by the STATE, BEGIN,
FOR, and CODE routines, when a
statement, or the delimiter 'BEGIN',
indicating the end of a procedure
heading, is identified) specifies to
declaration-processing routines
that, until turned on, all declara-
tive delimiters are to be processed
as type declarators, not as sgeci-
fiers.

DELTABIT:

on

[e]
H

IDBIT:

ARBIT:

50

o]

Hh

(turned on by declaration-processing
routines) identifies the fact that a
declaration has been detected and
specifies to the SEMCO routine that
the semicolon immediately following
is to be replaced in the output
string by the one-byte operator
Delta.

(turned off by the SEMCO <routine)
signifies that, unless subsequently
turned on, the next semicolon is to
be represented by the Semicolon
operator.

(turned on by the PROCID routine)
signifies that the next identifier
is the procedure identifier and spe-
cifies that a program block heading
entry is to be made in the Identifi-
er Table to mark the beginning of a
new identifier groug.

(turned off by the PROCID routine)
signifies that the procedure heading
entry has been made in the Identifi-
er Table and specifies that the
formal parameter part of the proce-
dure heading is being processed.

(turned on by the ARRAY routine)
signifies that an array declaration
has been identified and specifies to
all routines that the character
being processed forms part of an
array list.

(turned off upon identification of a
semicolon terminating an array dec-

laration and uron entry to the
SWITCH <routine) signifies +to all
routines that, unless turned on, the
character being rrocessed forms part
of a switch list.

LISTBIT:

(turned on by the ARRAY routine on
recognition of a comma following an
array identifier) signifies that the
next identifier is a continuation of
a list of declared array identifiers
with the same dimension list, and
specifies that a Comma is to be
transferred to the output kuffer to

separate the last identifier from
the next.
(turned off in the ARRAY routine)

has no significance.

(turned on by the ENDMISS routine
after ccntrol has keen passed to it
by the Operating System at End of
Data) specifies to the PBLCKEND sub-
routine that control is to ke
returned to ENDMISS.

(turned off at rhase initialization)
has no significance.

(turned on Ly the PBICKEND subrcu-
tine when a test shows that the
Scope Handling Stack is empty, indi-
cated by stack orerator Alpha) sig-
nals the final exit from the outer-
most scope of the scurce module, and
specifies that any remaining text in
the source module is to be disre-
garded, and that if any text, other
than comnrment, terminated Ly a semi-
colon colon, is found, error No. 43
is to be recorded.

(turned off at phase initializaticn)
signifies that the delimiter which
logically closes the source module
has not yet been reached.

(turned on in the COM routine) sge-
cifies to the COM routine that the
source string up to the next semico-
lon is to be deleted. The charac-
ters deleted may ke a segment of the
form: 'COMMENT' <comment>;.

(turned off by the COMMEND routine)
specifies that the source text up to
the next semicolon or the delimiter
'"ELSE' or 'END', is to be deleted.
This deletes:

1. Any comment enclosed as follows:
'END'<comment>' ELSE'/'END'/; or

2. An erroneous statement or dec-
laration (or portion thereof).

STARTBIT:

on

off

VALBIT:

on

off

PROBIT:

on

off

(turned on by the FIRSTBEG and PRO-
CEDUR routines) signifies that the
opening delimiter of the source
module has been found.

(turned off at phase termination)
signifies that the opening delimiter
of the source module has not been
found. See "Processing of Opening
Source Text".

(turned on by the VALUE routine)
signifies to the SPEC routine that a
value specification is being pro-
cessed.

(turned off in the IDCHECK routine)
signifies that, unless turned on, a
type specification (not a wvalue
specification) is being processed.

(turned on by EODADIN in the event
the source module is a precompiled
procedure) specifies to PBLCKEND
that control is to be returned to
EODADIN, after Program Block 0 in
the Identifier Takle has been trans-
ferred to the SYSUT3 data set.

(turned off at phase termination)
has no significance.

FRSTPUT:

on

(turned on by the GENERATE routine)
signifies that the first PUT
instruction has been issued, and
that the address of an output buffer
is available.

(turned off by the GENERATE routine)
signifies that the first PUT
instruction has not been issued.

ENDELSEBIT:

on

(turned on by the END routine when,
after the delimiter *'END' has closed
a block or compound statement, a
test shows that the stack operator
is For or Proc#*#*) signifies that the
embracing scope is a for statement
or a procedure which may be closed
by a semicolon, and specifies to the
COM routine that, if a semicolon is
found to terminate the comment fol-

lowing "END', a branch is to ke
taken to the COMPEND2 routine. The
latter activates the FCREND or
PBLCKEND subroutine, depending on
whether the stack operator is For or
Proc**.

(turned off by the END, COMPENL2,
and TED routines) has no signifi-
cance.

(turned on by ERR8) signifies that
error No. 11 has been recorded, and
that the error shculd not ke record-
ed again.

(turned off at ghase initialization)
signifies that error No. 11 has not
previously Lkeen recorded.

(turned on by PROCID) signifies that
the formal parameter 1list of a
declared rprocedure is Lkeing pro-
cessed and that the end of the list
has not keen reached; and specifies
to IER that control is to be
returned to PROCID after a defective
parameter has been processed.

(turned off by PRCCID when the semi-
colon following a formal parameter
list is found) has no particular
significance.

(turned on in CLOSE2) signifies that
main storage for the private area
has not keen acquired, and specifies
to EODADIN that a FREEMAIN macro
instruction is not required.

(turned cff at initialization) has
no particular significance.

(turned on in PBICKEND after the
first Identifier Table record has
been cutput on SYSUT3) signifies
that a CHECK macro instruction
should be issued kefore each sukse-
quent output operation.

(turned off at initialization) sig-
nifies that no previous output has
taken rlace on SYSUT3 and that,
accordingly, a CHECK macro instruc-
tion is not required kefore the next
output operation.

PROCESD:

(turned on in the PRCCEDUR routine)

Chapter 4: Scan I/1I Phase 51

signifies that the source module is
a precompiled procedure and speci-
fies to the PROCID routine that an
ESD record is to ke made for the
procedure name.

off (turned off by the PROCID routine)
signifies that the source module is
a program, or that the ESD record
for a precompiled procedure has been
generated.

CONSTITUENT ROUTINES OF SCAN I/II PHASE

The principal constituent routines of
the Scan I/II Phase are described below.
The page on which each routine is described
and the flowchart in the Flowchart Section
in which the general logic of the routine
is set forth may be found with the aid of
the Index in Appendix XI.

The position of the major routines in
the overall 1logical organization of the
phase may be determined by reference to
Flowcharts 011 and 012 in the Flowchart
Section.

PHASE INITIALIZATION

The Initialization routine gets main
storage for the private work area shown in
Figure 26; initializes pointers; specifies
EOD and program interrupt-I/O error rou-
tines; assembles headlines for the source
module 1listing; and activates the Change
Input Buffer subroutine (CIB). The routine
exits to TESTLOOP.

The entry point of the routine activated
in the event of a program interrupt or an
I/0 error (both of which terminate
compilation) is stored in ERET, the loca-
tion referenced by the Program Interrupt
routine (PIROUT) and the I/O Error routines
(SYNAD and SYNPR) in the Directory. The
entry point CLOSE2, specified at entry is

changed, after the GETMAIN instruction has
been issued, to EODADIN. Both CILOSE2 and
EODADIN close data sets and transfer con-

trol to Diagnostic Output Module IEX21.
EODADIN in addition releases main storage.

52

POOLLOC
AKOPOOL (Space reserved for constants 0 - 15,
SPCLT i stored in Cor:smm Pool at phase ter-

I mination - displacement 64)

! Constant Pool

(4096)

SP 1

| Scope Handling Stack

t (1000)
ATOPSTAK
AITABBUFF T Identifier Table Buffer

(2000)

ADDARI + 4

Source Buffer No, 2 *

AITAB

| (Heading entry for P.B.0 constructed
i Identifier Table (ITAB)*

MGESITL = ITAB length

ELI

* Area size specified by Area Size Table in Common Work Area. See Appendix V!II for the
variation in area sizes as a function of the SIZE option.

Figure 26. Private Area acquired bLy the
Scan I/II Phase, showing pcin-

ters initialized

The entry, ENDMISS, in the event of an
End of Data (EOD) condition on the SYSIN
data set is stored at EODIN, the 1locaticn
referenced by the End cf Data Exit routine
in the Directory.

The GETMAIN instructicn for the private
work area is executed after the total area
required has been computed. The area sizes
needed for the Identifier Table and Source
Buffer No. 2, which degend on the capacity
of the system used, are obtained fror the
Area Size Table entries named ITAB1OS and

SRCE1lS, respectively. The areas allocated
to the Constant Pool, Stack, and ITAPR
kuffer are fixed at 4096, 1000 and 2000

bytes, respectively, for all systems. The
various rointers initialized are shown in
Figure 26. A fuller explanation of the
pointers LPBP and LIGP is given under the
heading "Processing of the Identifier
Table".

r 1
r >| (Source Buffer No. 1) |
| L 3
0] 4 8 t t
r % T 1
ADDARI |A(Buff 1)|A(Buff 2)| EAP (Reg. 3) APE
L -4 1 , 1
l r - 1
0 1 e3> (Source Buffer No. 2) |
1 S
[mom 1
DISP | 0 or 4 |
 —— 4
Figure 27. ©Source text buffers and pointers

Source Buffer No. 2 is the second of
two buffers used for output of the modified
source text generated by the phase. Buffer
"No. 1 is set up in the Common Area by the
Initialization Phase, its beginning address
being stored at SRCE1ADD and its end
address at SRCE1END. The present initiali-
zation routine stores the addresses of both
buffers in an eight-byte field named ADDAR-
I, and then initializes the pointers EAP

(Register 3) and APE for Source Buffer No.
1 (see Figure 27). EAP and APE are updated
whenever buffers are exchanged by the

Change Output Buffer subroutine (COB). The
particular address loaded in EAP from
ADDARI is determined with the aid of a
control Dbyte named DISP (reset from 0 to 4
and vice versa just before EAP is updated),
which specifies the displacement (0 or #)
from ADDARI.

A heading entry (Figure 28) for Program
Block 0 (an arbitrarily defined Lklock
enclosing the source module) is constructed
in the Identifier Table. The current entry

position AITL is set to point to the next
free entry in the Identifier Table.

0 3 4 5 6 11
r 1 T T T 1
| | FF | | 2B | |
L L 1 1 L - J
Figure 28. Heading Entry constructed at

initialization in Identifier
Table for Program Block 0

The following dispositions are made in
the Common Work Area, in which the address-
es of the various tables and other fields
are defined by a dummy control section in
IEX11. The address of an 88-byte dummy
print area named SAVEPRNT is
APRINTAR. If the SOURCE option is not
specified, the Change Input Buffer subrou-
tine (CIB) moves each source record to
SAVEPRNT, in order that strings may be
stored in the Constant Pool in external
code. If, however, SOURCE is specified,
indicating that a 1listing of the source
module is to be printed, source records are

stored at

moved instead to a print Lkuffer specified
by the PRINT routine in the Directory. 1In
this case, the address in APRINTAR will be
replaced by the address cf the print kuf-
fer.

In preparation for the print-out of a
source module listing, the headlines
("SOURCE PROGRAM" for the first line and
"SC SOURCE STATEMENT" for the second 1line)
are moved to a field named PAGEHEAD in the
Common Work Area from the locations HDING1
and HDING2. The headlines are printed out
by the Directory PRINT subroutine, on call

from CIB, if the SOURCE ortion is speci-
fied.
The
BITS1 BITS2 BITS3
r—=1 =1 -=
0] |BEGBIT 0| |ENBIT 0| |E11BIT
F—1 -1 -1
1| |PROBIT 1| |COBIT 1| |FMBIT
_ - [—
2| |DELTABIT 2| |STARTBIT 2| |NOFREE
3] |IDBIT 3] |VALBIT 3] |FRSITB
F-—1 -
4] |ARBIT 4| |PBOBIT 4 PROCESD
5] |LISTBIT 5| |Not used 5 Not used
k-1 F-—1 -
6] |Not used 6| |FRSTPUT 6| |Not used
7| |TERBIT 7| |ENDELSEBIT 7| |Not used
L——J Lad —d
Figure 29. Switches used in Scan I/II
Phase
See "Switches" in this chapter.
The Program Block Counter (PBC), Iden-

tifier Group Counter (IGC), Semicolon Coun-
ter (SC), For Statement Counter (FSN), and
Output Record Counter (ONC) are initialized
at 0, and the first entries (0) for Program
Block 0 are wmade in the Program Block
Number Table (PETABl), Group Table (GPTAB),
and Score Table (SPTAB). The control

Chapter 4: Scan I/1I Phase 53

switches used in the phase, which are
contained in three bytes named BITS1,
BITS2, and BITS3, are zero-set. The
switches in each byte are shown in Figure
29. Their function and significance is
explained elsewhere in this chapter under
"Switches".

OPIN and LAPIN are the names of two
special-purpose output buffer pointers.
OPIN is always adjusted to point to the
character that may precede a label or begin
a parameter delimiter. These include
Begin, Beta, Do, Else, Delta, Semicolon,
and). At OPIN + 4 is noted the number of
the output record (ONC), in which the
character pointed at by OPIN is to be
found. LAPIN points to the first kyte
following that pointed at by OPIN, where
the letter string or label may begin. OPIN
and LAPIN may be separated by two or more
characters. OPIN and LAPIN are used when
declared 1labels are entered in the Iden-
tifier Table or when a letter string is
replaced by a Comma.

Teta <PBN><IGN> ;i <sc>
A A A A
| | I I
| I I

OPIN LAPIN OPIN IAPIN

Before exit to the TESTLOOP routine, the
Change Input Buffer subroutine (CIB) is
called. CIB activates the PRINT subroutine
in the Directory (if SOURCE is specified),
which, prints out the headlines assembled at
PAGEHEAD and returns with the address of
the print buffer. CIB then gets the first
record in the Work Area (WA), moves it to
the print buffer (or a dummy print area),
translates the record to internal code, and
returns control +to Initialization, after
having loaded the address of WA in REGI
(Register 1). In the TESTLOOP routine,
which is now entered, as well as in all
routines which scan or insrect characters
in the translated source text, REGI func-
tions as the Work Area pointer.

MAIN LOOP (TESTLOOP)

TESTLOOP scans the translated source
text in the Work Area, by means of a
Translate and Test instruction, for any one
of 14 characters assigned a nonzero func-
tion byte in Translation Table TESTTABL;
moves the scanned text to the output buf-
fer; and branches to the routine whose
address 1is specified in an entry of Branch
Address Takle BPRTAB. The displacement of
the entry in BPRTAB is given by the value
of the character's function byte.

54

Hexadecimal
Displacement

Content of Entry

All zeros

Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
cf
of
of
of
of
of

TRANSOP
TRANSOP
TRANSOP
TRANSOP
TRANSOP
TRANSOP
CCILCN
SEMCO
RIGHTPAR
BLANK
ERR1
POINT
APOSTROF
CIB
ASSIGN
DECPOINT
ERR5
BLKAPOS
NPAFTAPO
SCALE
CCLONLIST
SEMCLST
DELIMIT
ZETAAPO
EROUT
LEFTPARL
RIGHTPARL
PZETA
ASSIGN
DECPOINT
ERRS5A
COMMALST
POINLST
SLASHLST
CUCTE
SEMC60

Figure 30. Branch Address Takle BPRTAB

The function byte assigned by TESITABL

to each character,

from TESTLOOP, are as follows:

Character

Blank

*

/

(

>

<

Not

)

Point
Apostroghe
Colon
Semicolon
Invalid Character
Zeta

<All other
characters>

Function
Byte

28
o4

and the routines entered

Routine
Entered

BILANK
TRANSOP
"

RIGHTPAR
EFCINT
APOSTROF
COLON
SEMC60
ERR1

CIB

(No kranch,
scanning
continues)

The branching action just described is
dependent on the condition that the correct
delimiter word opening the source module
has been found (STARBIT=1) . See
"Processing of Opening Source Text".

The transfer of scanned source text from
the Work Area to the output buffer is
handled by MSBLOOP (Move Scanned Bytes
Loop) .

Branch Address Table BPRTAB is ref-
erenced by most routines which determine a
branch on the basis of a Translate and Test
instruction.

BLANK (BLANK)

BLANK steps the Work Area pointer REGI
to the next nonblank character and returns
control to the calling routine (TESTLOOP or
LIST). A scan, using Translation Table
BTABLE, is initiated if a string of klanks
is indicated by a second blank following
the first. BTABLE assigns function byte FF
to all characters except a bklank, which is
assigned a zero function byte.

TEST AND TRANSFER OPERATOR (TRANSOP)

TRANSOP determines if any of the charac-
ters ¥, /, (, <, >, or Not 1is associated
with an immediately following character,
and if so, transfers a one-byte operator
representing the two characters in comkina-
tion. Ootherwise, the character is trans-
ferred unchanged.

The determination is made by comparing
the succeeding character with a key, con-
tained in a table named XEYTAB (Figure 31).
The key used is specified by the function
byte assigned the particular character in
the TESTLOOP or LIST routines, from which
TRANSOP is entered.

Current Operator (CO) represents the
character in the source text which acti-
vates TRANSOP. The Expected Operator (EO)
is the character with which the succeeding
character is compared. The Resultant Oper-
ator (RO) represents the logical result of

CO in combination with EO. RO is trans-
ferred to the output buffer, if the suc-
ceeding character agrees with EO. co is

transferred if the succeeding character is
any character other than EO (excepting
blank, which is disregarded, and the

record-end operator Zeta, which causes the
CIB subroutine to be called).

Resultant Current Expected

Operator Orerator Operator
(RO) (co) (EO)
. T Ll T k]

Asterisk | Power | * | * |
i- t + i

Slash |] | / |)]
I 4 1 J
L 3 1 T 1

Left | [| (4 |

Parenthesis | | |]
{ + 1 i
T T T

Less than | < | < | = |
1 1 4 _4
3 T T

Greater than] 2 | > | = |
¢ $: 4

Not 1 # | | = |
[l L L 1

Figqure 31. KEYTAB keys used in TRANSCP

routine
RIGHTPAR

RIGHTPAR transers the) operator to the
output buffer, and sets the rointers CPIN
and LAPIN (see "Phase Initialization").

POINT

POINT inspects the character which fol-
lows a point, using a Translate and Test
instruction, and branches to one of six
routines according to +the wvalue of the
function byte assigned the character in
Translation Table PTTABILE. The address of
the routine entered is oktained from an
entry in Branch Address Table (BPRTAR),
whose displacement equals the value of the
assigned function byte.

The function byte assigned by PTTABLE to

each character, and the routines entered
from POINT, are as follows:
Function Routine
Character Byte Entered
<Digit 0-9> 40 DECPOINT
Equal Sign 3cC ASSIGN
Point ic . COLON
Comma 20 SEMCO
<Letter or 4y ERR5S
Delimiter>
Zeta 38 CIB
<All other 00 (No kranch,
charactexrs> scanning
continues)

Charter 4: Scan I/II Phase 55

DECIMAL POINT (DECPOINT)

DECPOINT transfers
operator.

the Decimal Point

ASSIGNMENT (ASSIGN)

ASSIGN transfers the Assign operator and
passes control to STATE.

STATEMENT (STATE)

STATE is entered when a statement, iden-
tified by an assignment operator or a
label, or by the delimiters 'GOTO', 'FOR',
or 'IF', has been recognized. It serves to
determine if the statement constitutes the
body of a procedure, and if so, to stack
the operator Proc in place of Proc** (see
"Scope Handling Stack").

APOSTROPHE (APOSTROF)

APOSTROF has the main function of deter-
mining if an apostroprhe opens a delimiter
or if it represents a scale factor. APOS-
TROF inspects the characters following the
apostrophe by means of a Translate and Test
instruction, and branches to one of six
routines, determined by the function kyte
assigned the particular character in Trans-
lation Table ATABLE. The branch is made
reference to Branch Address Table (BPRTAB).

The function byte assigned to each char-

acter in ATABLE, and the routines entered
from APOSTROF, are as follows:
Function Routine

Character Byte Entered
<pigit 0-9 or 50 SCALE
+/- sign>
Blank 48 BLKAPOS
Zeta 60 ZETAAPO
Invalid Character 4c NPAFTAPO
Apostrophe 5C DELIMIT
Not,Or,And,Comma,) 64 EROUT
or Point
<Any letter>, 00 (No branch,
/ or (scanning

continues)

As indicated above, letters are assigned
zero function bytes and are accordingly
by-passed in the scan. Thus, for examrle,
the letters separating the apostrophes in
the delimiter word 'BEGIN' would ke

56

typassed. The closing apostrophe, however,
would terminate the scanning creration, and
a branch would be taken +to the Deliriter
routine (DELIMIT).

The particular acticn taken Ly the
SCALE, NDAFAPO, DELIMIT, and ERCUT routines
is governed by a ccntrcl kyte called FBYTE,
which may have one of three hexadeciral
values: 00, FO, or FF. FBYTE is set to
X'00' in APOSTROF; to X'F0' in TYPE and
SPEC; and to X'FF' in COM. The functicn of
FBYTE 1is to specify whether or not a
specific choice of delimiter words is being

sought in the scource text. Thus, for
example, when the TYPE routine determines
that an apostrophe immediately follows cne

of the delimiters 'REAL', ‘'INTEGER', or
'BOOLEAN', indicating a second delimiter in
a sequence '<type>' 'PRCCEDURE' or '<type>'
'ARRAY', it sets FBYTE to X'F0' in order tc
specify that the following delimiter must
ke "PROCEDURE' or 'ARRAY', and that an
error 1is to ke recorded if any other
delimiter is found. TYPE then passes con-
trol to the APOSTROF routine (ky way of the
ENTRAPR entry point), which then enters
DELIMIT or EROUT. FBYTE="FO' causes DELIM-
IT or EROUT to pass control +to TYPESPEC,
which then determines if either of the
acceptable delimiters follows. When the
COM routine enccunters an apostrophe at the
end of a sequence of comment following
'END', indicating that a delimiter follcws,
it sets FBYTE to X'FF' tc specify that any
delimiter except "END" or "EISE" is toc be
disregarded, and rpasses control to the
APOSTROF routine Dby way of the ENTRAPR
entry point. In the DELIMIT and ERCUT
routines which are subsequently entered,
FBYTE=X'FF' causes a Yranch to COMSPEC,
which then determines if the following
delimiter is 'END' or 'ELSE®'. FBYTE=X'00"'
signifies generally that nc specific choice
of delimiter wcrds is keing sought. FRYTE
is set to X'00' by APOSTROF on entry from
TESTLOOP. When a specific choice of delim-
iters is sought, as in the conditions
described above, the APCSTRCF routine is
entered (from TYPE,SPEC, and COM) by way of
ENTRAPR, in which case FBYTE will have keen
previously set to X'F0' or X'FF'.

SCALE FACTOR (SCALE)

SCALE transfers the Scale Factor orera-
tor.

BLANK AFTER APOSTROPHE (BLKAPCS)

The source text is scanned, with the aid
of Translation Table BTABIE, to the next

non-blank character, after which the first
apostrophe and any following characters are
right-shifted by the number of blanks
scanned.

ZETA AFTER APOSTROPHE (ZETAAPO)

The first apostrophe and any following
characters are moved to a field named
WABEFOR in front of the Work Area, after
which a new source record is read in by the
CIB subroutine.

INVALID CHARACTER AFTER APOSTROPHE
(NPAFTAPO)

An error (No.l) is recorded, after which
BLKAPOS is activated, which moves the apos-

trophe and following characters right,
deleting the invalid character.
COLON (COLON)

The COLON routine leads into

ASSIGN,LETDEL, or IABEL according to wheth-
er the colon in the source text precedes an
equal sign, a 1left parenthesis, or any
other character, identifying respectively,
the assignment operator :=, a parareter
delimiter of the form J)LETTERS:(, or a
label, e.g., LABEL: xyz.

The character string representing a
label or a letter string is processed in
the output buffer (where it will have keen
transferred by the TESTLOOP routine before
control was passed to COLON on detection of
a colon), rather than in the Work Area.
The start of the character string is £found
with the aid of the pointers OPIN and LAPIN
(see "Phase Initialization"). OPIN always
points to the 1last transferred operator
which may precede a label or letter string.
LAPIN points to the first byte where a
label or letter string may begin (usually
the next byte to the right of that pointed
at by OPIN). Individual characters of a
label or parameter delimiter in the output
buffer are addressed with the aid of poin-
ter PIN.

LABEL (LABEL)

Provided the label does not begin in the
output buffer preceding the last one (in
which case the 1label exceeds the output

buffer length and compilation is
terminated), the lakel is checked for vali-
dity. If all characters of the 1label are
valid, up tc six characters of the label
are copied into an entry for the 1lakel in
the Identifier Table. If any one character
is 1invalid, Errxor No.8 cr 7 is recorded in
the Error Pool, and the Identifier Table
entry is erased, Ly a kranch to ITABCLEAR.

LETTER DELIMITER (LETDEL)

Beginning with the character pointed at
Ly pointer IAPIN, the character string in
the output buffer is checked. If all of
the characters are letters, in which case
the character string qualifies as a letter
delimiter, and if the 1letter delimiter
begins in the current output Lkuffer, a
Comma is transferred to the cutput tkuffer,
replacing the right parenthesis, and the
letter delimiter is deleted. 1If the letter
delimiter began in the preceding output
buffer, the operator Rho is transferred to

the first byte of the current output buf-
fer, and that part of the letter delimiter
in the current buffer 1is deleted. Rho

serves in the Scan III Phase to signal that
the irmediately preceding characters up to,
and including, the last right parenthesis
are to be deleted and replaced ky a Comma.

SEMICOLON (SEMCO AND SEMC60)

SEMCO: Depending on whether the semico-
lon in the source text terminates a state-
ment or a declaration (indicated by
DELTABIT=1), a Semicolon or Delta symkol is
transferred, followed by the current Semi-
colon Count. If the semicclon terminates a
statement (DELTABIT=0), the operator in the
Scope Handling Stack is tested to determine
if the semicolon closes a single-statement
procedure of a for statement. If so, the
PBLCKEND or FOREND subroutine is called.

SEMC60, entered on detection of the
single-character semicolon, turns on the
SET60 switch in the HCOMPMOD Control Field
(Appendix IV), before entering SEMCO.

ERROR RECORDING ROUTINES

The error recording routines, nared
below, administer the storage of error
patterns in the Error Pool. They are

called by the various routines of the Scan
I/II Phase on detection of syntactical
errors in the source text. A majority are

Chapter 4: Scan I/II Phase 57

subroutines which return control to the
calling routine after the error pattern has
been stored. Certain of the routines exit
to the TESTLOOP routine, while those rou-
tines which administer the storage of ter-
minating error patterns pass control (via
COMPFIN) to EODADIN, which transfers con-
trol to diagnostic output module IEX21.
The content of the error pattern is des-
cribed in Chapter 9.

The typical call to an error recording
subroutine has the form:

BAL REGB, <Error Routine Name>
DC X'041cC*

On entry to the called subroutine, REGB
contains the address of the immediately
following parameter list, the first byte of
which specifies the error pattern 1length
while the second byte specifies the error
number.

The typical return to the
tine
form:

calling rou-
from the called subroutine is of the

BC 15, 2 (0, REGB)

This specifies a return to the instruc-
tion following the parameter list in the
calling routine.

The error recording routines may bLe
divided into service routines and call
routines. Service routines are those which

actually store message patterns in the
Error Pool, or which handle the necessary
processing preliminary to the storage of
error patterns. Call routines are those
which receive calls for the recording of an
error and which, in turn, issue calls to
the - appropriate service routines. Call
routines may also move source text into an
error pattern at an address specified by a
service routine.

The service routines are the following:

ERRORl: sStores the first four bytes of
every Error Pool entry, containing the
entry length, error number, and semi-
colon count. The entry 1length and
error number are fetched from the
parameter list specified by the call-
ing routine. ERROR1l also updates the
Error Pool pointer (NEXTERR) in readi-
ness for the next entry, making allo-
wance for any source text to be subse-
quently inserted. The address of the
current Error Pool entry is transmit-
ted in REGY. In the event of an Error

Pool overflow, a branch is made to
ERRO.

ERRORL 1is actijivated every time an
error pattern is stored in the Error

58

Pool, except in the case of Error No.

ERROR2: Calculates the length of an iden-
tifier or delimiter addressed Ly a
pointer named IN and stores the length

in the parameter list of the calling
routine.
ERR2D: Activates ERROR2 (which computes an

identifier's or delimiter's length and

stores the length in a parameter
list), and ERROR1 (which stores the
length, error number and semicolon

count in an error pattern); moves the
identifier or delimiter addressed by
IN to the Error Pccl entry addressed
by REGY; and returns control to the
calling routine.
ERR2: Sets the ©pointer IN to the last
entry for an identifier in the Iden-
tifier Table, then branches +to ERR2D
(which stores the error pattern with
the aid of ERROR2 and ERRCR1l).

ERR2B: Sets the pointer IN to an entry in
the Identifier Takle for a procedure
identifier, then branches to ERR2D
(which stores the error pattern with
the aid of ERROR2 and ERROR1).

ERR2E: Sets the pointer IN to
called IDBUCKET (see
cation routine IDCHECK) containing a
procedure parameter, then branches tc
ERR2D (which stores the error pattern
with the aid of ERROR2 and ERROR1).

a location
Type Specifi-

of an erro-
location nared
sets pointer IN to that loca-
tion, and branches to ERR2D (which
stores the error rattern with the aid
of ERROR2 and ERROR1).

ERR2C: Moves six characters
neous deliriter to a
BUCKET,

ERR7: Activates ERRORL1 (which
length error mnumker and semicolon
count in an error pattern). ERR7 is
called where the errxcr pattern ccn-

tains no source text.

stores the

ERRO: Records a terminating error indicat-
ing an overflow of the Error Pcol, and
transfers control tc the terminating
routine EODADIN (via COMPFIN, which

turns the TERR switch on).

The call routines are descriked kelow.
Certain of the routines handle specific
errors and, in calling the service routine,
specify a parameter list for the particular
error. Other routines handle more than cne
error, the rparameter list keing specified
by the calling routine in which the error
is detected.

ERR1: Calls ERR7, specifying a parameter

list for Error No.l.
ERR3: Calls ERROR1, specifying a parameter
list for Error No.3, then moves the
characters previously stored at BUCKET
by the Colon routine into the error
pattern set up by ERRORI1l.
ERR4: Calls ERROR1 and passes control (via
COMPFIN) to the EODADIN routine. ERRY4
is called by numerous routines on
detection of any terminating error.
(See also "Close of sScan I/II Phase").

ERR5A: Calls ERROR1, specifying a paramet-
er list for Error No. 35.
ERR5: Calls ERROR1, specifying a parameter
list for Error No.2. Exits to TES-
TLOOP or LIST.
ERR6: Depending on two switches (which may
cause a branch to other routines),
calls ERROR1 and moves six characters
of a delimiter from the Work Area into
the error pattern set up by ERRORlL.
ERR8: Depending on a switch, calls ERROR1,
specifying a parameter list for Error
No.1ll. Exits to TESTLOOP or LIST.

ERR18: Calls ERROR1l, specifying a paramet-
er list for Error No. 18.

ERR9: Calls ERR7, then transfers control

to EODADIN (see also "Close of Scan

I/1I Phase").

ERROR10: Calls ERR2B, specifying a param-
eter 1list for Error No. 10 (which
indicates that certain parameters of a
procedure have not been specified).
On return, ERROR10 inserts an all-
purpose internal name in the
Identifier Table entries representing
the unspecified parameters.

ERR21: Stores the length of a declarative

delimiter in a parameter 1list for

Error No.21; calls ERROR1l, specifying

the parameter list; and then moves the

delimiter from the Delimiter Table
into +the error pattern set. up bLy
ERROR1.

CHANGE INPUT BUFFER (CIB)

CIB gets an 80-character record of the
source text from the SYSIN data set into
the Work Area (WA); copies the record into
a print buffer or a dummy print area; and
transiates the record in the Work Area to
the internal code (Appendix I-a). If the
SOURCE option is specified, a branch is

made to the PRINT subroutine in the Direc-
tory, which prints out the record previous-
ly moved to a print buffer, and transmits
the address of a new print buffer, to which
the newly obtained source record will be
moved. CIB is called ky all routines which
scan the source text, on recognition of the
recorded operator Zeta. The latter is
inserted by CIB at the end of each tran-
slated record in the Work Area.

In the event the source module is in ISO
code, each record is first translated to
EBCDIC code by searching for the characters

(,), =, + and the apostrophe (the only
characters whose representation differs
ktetween the EBCDIC and ISC codes) and

replacing these characters ky their EBCDIC
combinations. This conversion simplifies
the subsequent translation to internal code
and facilitates printing the source text on
the printer, in which the code implemented
is EBCDIC. :

The translation to internal code is made
with the aid of translation table TRLTAERLE,
and produces the character set shown in
Appendix I-a.

IDENTIFIER TEST (IDCHECK1)

IDCHECKl1 is entered from the PRCCID,
ARRYID, and SWITCH routines, after a test
has determined that the first character of
a procedure, array, or switch identifier is
a letter. IDCHECK1l transfers the letter to
an entry in the Identifier Takle and to the
output buffer; inspects the following char-
acters of the identifier, similarly trans-
ferring the next five characters, provided
they are letters or digits; and returns
control on detection of any character other
than a letter or digit.

CHANGE OUTPUT BUFFER (COB AND COBSPEC)

See also "Phase Initijalization".

COB determines if the last kyte kut omne
in the current output buffer has been
filled (by corparing pointer EAP (register
3) with buffer-end pointer APE), and if so,
transfers the buffer-end indicator Zeta to
the last byte pointed to Ly EAP; writes out
the current buffer (whose address is stored

at WADDARI); and resets pointers EAP and
APE to an alternate buffer, addressed Ly
ADDARI + DISP storing the address of the

new buffer at WADDARI. If the current
kuffer has not been filled, COB returns
control to the calling routine. CCE is

Chapter 4: Scan I/II Phase 59

called in advance of every transfer of one
or more characters to the output buffer.

COBSPEC, a special entry point of COB,
includes a test as to whether a variable
number of wunfilled bytes (two or more)
remain in the current buffer. The test
consists in comparing REGO (instead of EAP)
with APE, where REGO, preset by the calling
routine, indicates the current address
value of EAP, incremented by the required
number of bytes. COBSPEC is called when a
unit of data may not be split between
records (e.g. the three-byte unit trans-
ferred by SEMCO, containing the Semicolon
(or Delta) and the semicolon count).

DELIMITER (DELIMIT)

DELIMIT is entered from APOSTROF when
the second of two apostrophes enclosing a
delimiter word has been identified. DEILIM-
IT compares the characters enclosed bLy

apostrophes with a set of delimiter words
in the pelimiter Table (W1TAB -- Figure
32), and when the corresponding word has

been located, branches to the routine whose
address 1is specified in an entry of the

Branch Address Table (DELPRGTB). The dis-
placement of the entry in the Branch
Address Table is indicated opposite the

delimiter in the Delimiter Table.

The delimiter in the source text is
compared with the group of words in the
Delimiter Table having the same number of
characters. The length of the delimiter in
the source text is contained in REGL. The
particular word group in the Delimiter
Table, with which the comparison is to be
made, is found with the aid of a 1look-up
table (L1TAB) consisting of ten four-byte
entries each containing the address of the
particular word group. Thus, the address
of a given word group comprising words of
the same length (REGL) as the source delim-
iter, is <contained in the entry specified
by L1TAB + 4*%C(REGL). Within a given word
group, the entries for all words are uni-
form in length, being equal to the number
of characters in the word, plus three (a
two-byte characteristic or operator and a
one-byte displacement - the displacement of
the corresponding entry in the Branch
Address Table, DELPRGTAB). The number of
entries in the word group is indicated in
the byte preceding the word group (loaded
in REGY).

charac-
If the
charac-

If the apostrophes enclose no
ters, Error No. 12 is recorded.
apostrophes enclose more than ten

60

ters, or if the comparison descriked akove
produces no corresponding Delimiter Takle
entry, control is passed to the Deliriter
Error routine (EROUT).

After a delimiter has been correctly
identified, a test is made cof the STARTERIT
to determine if the correct delimiter oren-
ing the source module has keen found
(indicated by STARTBIT=1). If not, control
is passed to STARTDEL (see "Processing of
Cpening Source Text"). Otherwise, the rou-
tine corresponding to the delimiter iden-
tified is entered.

Before the comparison described above is
initiated, a test is made c¢f the switch
named FBYTE. FBYTE=X'FO0' signifies that
one of the delimiters 'PRCCEDURE' or
'ARRAY' is being sought; while FBYTE=X'FF'
signifies that one of the delimiters 'EISE'
or 'END' is being scught. In either of
these cases, control is passed to TYFESPEC
or COMSPEC (See also APOSTROF). otherwise
(FBYTE=X"'00'), a normal comparison is ini-
tiated.

DELIMITER ERROR ROUTINE (EROUT)

EROUT is entered frcm APOSTROF, when the
closing apostrophe of a delimiter word is
missing, and from DELIMIT, when a misspell-
ing is detected in a delimiter word. EROUT
compares the characters following the oren-
ing apostrophe with each of the words in
the Delimiter Table (W1TAB), moving dcwn-

ward through the table, and if a matching
word is found, branches to the routine
specified. (See DELIMIT routine). If no

matching delimiter is found, Error No.1ll4 is
recorded, the apostrcphe is disregarded,
and control is returned to TESTLOOP. The
comparison proceeds Ly comparing (1) the
first character of the defective delimiter
with each of the entries in the first wcrd
group of the Delimiter Takle, (2) the first
two characters with the entries in the
second wcrd group, (3) the first three
characters with the entries of the third
word group, and so c¢n, until a matching
delimiter word is found, or until the last
word group has keen compared.

The comparison is conditional on the
switch FBYTE=X'00"'. If FBYTE=X'FO0' or
X'FF', control is passed to TYPESPEC or
COMERR directly (see below).

After identification of a delimiter, the
same test of the STARTBIT is made as that
described under DELIMIT.

DELIMITER TABLE (WITAB)
Hexadecimal Representation
1 2 3 4 5 6 7 8
One-byte Opera- f§ No. of Entries in bOyr;:-:y ;e o%pojr;forhf:e_toyr;:l Displacement of Full-Word
tor Notation used || Word Group Characteristic for Specificators Enir; in Branch Address Table
in this Manual (First byte in or Null Operator (both DELPRGTAB, containing Entry Name of
Word Group No. Delimiter Word (see column 6) Word Group) Delimiter Word bytes = X 00”) Point of Routine Entered Routine Entered
! / / 02 03 04 00 00 NORMAL
- 06 00 00 04 STRING
2 - DO* Do 03 43 4E 1c 00 08 TED
S IE” " 48 45 10 00 oC GIF
- OR” Or 4E 51 22 00 00 NORMAL
3 “ END” 2) 04 44 4D 43 00 00 10 END
“FOR’ 3) 45 4E 51 00 00 14 FOR
- AND” And 40 4D 43 23 00 00 NORMAL
NOT Not 4D 4E 53 20 00 00 NORMAL
4 * REAL" 09 51 44 40 48 Cc2 12 18 TYPE
* STEP~ Step 52 53 44 4F 19 00 00 NORMAL
“THEN~ Then 53 47 44 4D 1E 00 08 TED
“ ELSE” Else 44 4B 52 44 1F 00 08 TED
* GOTO” Goto 46 4E 53 4E 17 00 oC GIF
“ TRUE” 53 51 54 44 07 00 4) 1c BOLCON
LESS” < 4B 44 52 52 " 00 00 NORMAL
- CODE” 3) 42 4E 43 44 00 00 20 CODE
“IMPL” Impl 48 4AC 4F 4B 21 00 00 NORMAL
5 “BEGIN” 2) 0A 41 44 46 48 4D 00 00 24 BEGIN
* UNTIL” Until 54 4D 53 48 4B 1A 00 00 NORMAL
* ARRAY~ 3) 40 51 51 40 58 CA 16 28 ARRAY
“VALUE~* 55 4B 54 44 00 00 2C VALUE
* LABEL” 4B 40 41 44 48 CA 18 30 SPEC
“ WHILE” While 56 47 48 4B 44 1B 0o 00 NORMAL
* FALSE* 45 40 4B 52 44 00 00 4) 1c BOLCON
* POWER” Power 4F 4E 56 44 51 05 00 00 NORMAL
*EQUAL"’ - 44 50 54 40 4B 10 00 00 NORMAL
- EQUIV” Equiv. 44 50 54 48 55 24 00 00 NORMAL
[|~ SWITCH" 3) 02 52 56 48 53 42 47 CA 1C 34 SWITCH
*STRING~ 52 53 51 48 4D 46 CB 10 30 SPEC
7 * INTEGER” 05 48 4D 53 44 46 44 51 Cc2 IR} 18 TYPE
“BOOLEAN" 41 4E 4E 4B 44 40 4D Cc2 13 18 TYPE
* COMMENT~ 42 4E 4C 4C 44 4D 53 00 00 38 COM
* NOTLESS” > 4D 4E 53 4B 44 52 52 15 00 00 NORMAL
- GREATER” > 46 51 44 40 53 44 51 12 00 00 NORMAL
8 * NOTEQUAL"” $ 01 4D 4E 53 44 50 54 40 4B 13 00 00 NORMAL
* PROCEDURE* 3) 01 4F 51 4E 42 44 43 54 51 44 CA DO 3C PROCEDUR
10 | - NOTGREATER” < 01 4D 4E 53 46 51 44 40 53 44 51 14 00 00 NORMAL
Notes: 1. For the specificators “ REAL*, “ ARRAY”, “LABEL", “ SWITCH*, “STRING~, “ INTEGER’, *BOOLEAN" and * PROCEDURE", the two-byte characteristic is copied into the Identifier Table entries of specified formal parameters.

In the case of all other delimiter words (except for TRUE” and “ FALSE* gmL all delimiters for which both bytes in the column = X“00”), the first byte is transferred to the Modification Level 1 text as a one-byte operator
representing the delimiter. The notation in column 3 indicates the name by which the operator is identified in the text.

Delimiter variously represented in the Modification Level 1 and 2 versions of source text by two or more one-byte operators, supplied by program. See "Scope Identification”, "Modification Level 1 Source Text"and Appendix I-b.
3. Delimiter represented in the Modification Level 1 text by one-byte operator supplied by program. See Appendix I-b and "Modification Level 1 Source Text".
4. First byte specifies the displacement of the constant O (False) or 1 (True) in Constant Pool No. 0.

oseyd II,/I ueds :4 x93deyd

19

Figure 32,

Delimiter Table (WITAB)

TYPE SPECIFICATION (TYPESPEC)

TYPESPEC is entered from DELIMIT and
EROUT by virtue of the switch FBYTE=X'F0'.
FBYTE is set to X'F0' by the TYPE routine
when a test shows that a type declarator
('REAL', * INTEGER', or *BOOLEAN') is
immediately followed by another apostroghe,

indicating a further delimiter. (Unless
the latter delimiter is 'PROCEDURE' or
'ARRAY', the source text is in error).

TYPE passes control to ENTRAPR (an entry
point of APOSTROF), which scans to the next
apostrorphe and branches to DELIMIT or
EROUT, which branch in turn to TYPESPEC on
finding FBYTE=X'F0'. TYPESPEC inspects the
delimiter and passes control to TYPPROC or
TYPEARRY, if the delimiter is 'PROCEDURE'
or ‘'ARRAY', respectively. If any other
delimiter is identified, control is passed
to the Identifier Erxrror routine IERSPEC.
The latter serves to bypass the defective
declaration and to record an error.

COMMENT (COMSPEC)

COMSPEC is entered from DELIMIT by vir-
tue of the switch FBYTE=X'FF'. FBYTE is
set to X'FF' by the COM routine when an
apostrophe is found in a sequence of com-
ment following ‘'END', indicating that the
comment is terminated by a delimiter word.
The. latter should be 'END' or 'ELSE'. COM
passes control to ENTRAPR (an entry point
of APOSTROF), which scans to the next
apostrophe and branches to DELIMIT, which
branches in turn to COMSPEC on finding
FBYTE=X'FF'. COMSPEC inspects the delimi-
ter and passes control to END or TED, if
the delimiter is 'END' or 'ELSE', If any
other delimiter is identified, control is
passed to COMCED2 (an entry point of the
COM routine). The latter continues to scan
to the next semicolon or apostrophe, disre-
garding the delimiter.

OPENING DELIMITER (STARTDEL)

See "Processing of Source Module Opening
Text".

BEGIN (BEGIN)

BEGIN is entered from DELIMIT and EROUT
on recognition of the delimiter 'BEGIN'.

BEGIN inspects the Scope Handling Stack
and, unless the stack operator is Proc,

62

transfers the operator Begin to the Modi-
fication Level 1 text, stacks Begin, and
turns the BEGBIT switch on.

If the stack oreratcr is Proc, indicat-
ing that the delimiter 'BEGIN' opens the
body of a procedure closed Ly 'END', the
stack operator Proc is rerlaced by Proc*
and the PROBIT switch turned off.

STRING (STRING)

STRING is entered from DEILIMIT and ERCUT
on recognition of the first of two string
quote signs '('...")' enclosing a character
string. STRING stores the enclosed charac-
ter string in the Constant Pool and trans-
fers a five~byte internal name, referencing
the location where the string is stored, to
the Modification Level 1 text. The inter-
nal name (see Appendix II) is preceded by
the Apostrophe operator.
in the Ccnstant

The string is stored

Pool in the external ccde (EBCDIC or ISO)
of the source module -- it is copied from
the print area (or dummy print area) tc

which each source module record is moved Ly
CIB, before the record is translated to the
internal code. sSee Figure 7.

NORMAL ACTION (NORMAL)

NORMAL is entered from DEIIMIT or ERCUT
when any cne of the following delimiters is

identified: '/', ‘'OR', ‘'AND', 'NCT',
'STEP', 'LESS', *UNTIL', 'NOTLESS',
'EQUAL', 'EQUIV', *IMPL', 'WHILE',
'GREATER', 'NOTEQUAL', and 'NCTGREATER®.

NORMAL transfers the corresponding one-byte
operator in the Delimiter Takle (Figure 32)
to the output buffer and returns control to
TESTLOOP or LIST.

BOOLEAN CONSTANT (BOICON)

BOLCON is entered from DEIIMIT or ERCUT
when the boolean constant 'TRUE' or 'FALSE®
is encountered. A five-kyte internal name
(Figure 33) is transferred to the output
buffer, indicating the character of the
boolean ccnstant, and referencing a loca-
tion in the Constant Pool where the ccn-
stant 0 (False) or 1 (True) is stored. The
internal name is preceded by the Apostrorhe
(X*'2E'), which signals the Scan III Phase
that an internal name follows.

(Character (Constant (Displacement)

istic) Pool)

0 1 2 3 4 5

r T) T 1 1
'TRUE' | €8 | 03 | 00 | 00 | 07 |

L 1 L 1 L J

r T T T T 1
'FALSE'] €8 | 03 | 00 | 00 | 0O

L L L L L]
Figure 33. Internal Names of boolean con-

stants 'TRUE' and 'FALSE'

GOTO-IF (GIF)

GIF is entered from DELIMIT or EROUT on
recognition of the delimiters 'GOTO' and
*IF'. The one-byte operator given in the
Delimiter Table (Figure 32) is transferred
to the output buffer and control passed to
STATE.

THEN-ELSE-DO (TED)

TED is entered from DELIMIT or EROUT on
recognition of the delimiters ‘THEN',
'ELSE', or 'DO'. A one-byte symbol rep-

resenting the delimiter in the Delimiter
Table (Figure 32) is transferred to the
output buffer. Before control is returned
to TESTLOOP or LIST, pointers OPIN and
LAPIN are set to point, respectively, to
the delimiter symbol transferred and to the
next byte in the output buffer (see "Phase
Initjalization").

FIRST BEGIN (FIRSTBEG) .

See "Processing of Source Module Opening
Text".

PROGRAM BLOCK (BEGl1 SUBROUTINE)

BEG1 is activated as soon as a new block
has been identified. It is entered from
all declaration-handling routines (e.gq.
TYPE, PROCEDUR, ARRAY) processing the first
declaration following the delimiter 'BEGIN'
(indicated by the switch BEGBIT=1). BEG1
constructs a program block heading entry in
the Identifier Table, containing a new
Program Block Number; resets the pointers
LPBP and LIGP to the new heading entry; and
replaces the operator Begin by Beta in the

output text and in the Scope Handling
Stack. It also constructs entries in the
Group Table, Program Block Number Table and
Semicolon Table.

END (END)

END is entered from DELIMIT or EROUT
when the delimiter 'END' is recognized.
Its function is to inspect the operator in
the Scope Handling Stack and to activate
the approrriate closing sukroutine, accord-
ing to the stack operator detected:

Stack Orerator Subroutine Activated

Beta, Proc

Proc*, Proc** PBLCKEND

Begin COMPDEND

For FOREND

Alpha ERR8 (see "Close of

Scan I/II Phase")

The subroutines are described below.

COMPOUND END (COMPDEND)

COMPDEND releases the stack operator
Begin and transfers the operator End to the
output text, marking the close of a com-
pound statement. See END.

FOR STATEMENT END (FOREND)

FOREND, which is entered from END and
SEMCO on detection of the delimiter 'END’
or a semicolon closing a for statement,
constructs a for statement closing entry in
the 1Identifier Table, if the closed for
statement contained a declared 1latel. If
the closed for statement contained no
declared 1labels, the for statement heading
entry is deleted. FOREND also transfers
the operator Eta, followed by the Identifi-
er Group Number, to the output text, and
releases the stack operator For. Pointer
LIGP is reset to pcint to the heading entry
of the reentered for statement, if any, or
to the heading entry of the enclosing klcck
or procedure.

Chagter 4: Scan I/II Phase 63

PROGRAM BLOCK END (PBLCKEND SUBROUTINE)

PBLCKEND, which is called by END and
SEMCO on detection of the delimiter 'END'
or a semicolon closing a block or proce-
dure, transfers the set of entries in the
Identifier Table representing identifiers
declared or specified in the Llock or
procedure to the SYSUT3 data set. The
program block heading entry which heads
this set of identifiers is indicated by the
pointer LPBP. Before the transfer is exe-
cuted, pointers LPBP and LIGP are reset to
the address of the heading entry corres-
ponding to the enclosing block or procedure
(see "Processing of Identifier Table").
PBLCKEND also transfers the operator Epsi-

ning continues until a semicolon is fcund.
This deletes all scurce text keginning with
the declarator and extending up to (but not
including) the next semicolon. When the
semicolon is found, SEMCO is entered.

FOR STATEMENT {(FOR)

FOR is entered from DELIMIT and EROUT on
recognition of the delimiter 'FCR'. A for
statement heading entry is constructed in
the Identifier Table and entries are made
in the Scope and Group Tables. If the
stack operator is Proc, it is replaced by
Proc**, The cperator For is stacked and

lon to the output text, followed by the
Program Block and Identifier Group Number
of the enclosing block, procedure or for
statement, and releases the stack operator.

COMMENT (COM)

COM has two main functions: to bypass
comments, and to delete (or bypass) erro-
neous declarations. The routine scans the
source text (using translation table
COMTABLE) for a semicolon, an apostrophe, a
blank, or Zeta. The function bytes
assigned these characters specify displace-
ments to subprograms of the COM routine.

There are three entry points: COM, COM-
MEND, and COMERR.

COM is entered from DELIMIT and ERCUT
when the delimiter 'COMMENT' has been
encountered. Scanning continues until a
semicolon is found. This deletes (or
bypasses) all source text beginning with
'COMMENT' and extending up to and including
the semicolon.

COMMEND is entered from END when a
comment of the following form is to ke
eliminated: 'END'<comment> "END'/;/ ‘'EISE'.
Scanning terminates when a semicolon or an
apostrophe is found, deleting the preceding
comment. In case a semicolon is found,
SEMCO is entered. If an apostrophe is
found, the switch FBYTE is set to X'FF' and
control passed to ENTRAPR (an entry point
of APOSTROF). APOSTROF scans to the next
apostrophe, branches to DELIMIT (or EROUT),
which branches to COMSPEC on finding
FBYTE=FF. COMSPEC inspects the delimiter
and branches to END or TED if the delimiter

is 'END' or 'ELSE', respectively. In all
other cases, COMEFRR is entered.

COMERR is entered from several
declaration-processing routines when an

erroneous declaration is identified. Scan-

64

transferred to the output text, followed Ly
a new Identifier Group Number.

TYPE DECLARATION (TYPE)

TYPE is entered from DELIMIT and ERCUT
on reccgniticn of any of the declarators
'REAL', 'INTEGER', or 'BCOLEAN'. The rcu-
tine makes an entry in the Identifier Takle
for each of the identifiers following the
declarator, provided the identifier is
valid. If any invalid character is fcund
in the identifier, control is passed to the
Identifier Errcr routine (IER), which
deletes the entry made in the Identifier
Table and records Error No. 5 or 16. If
the declarator is immediately followed Ly
another apostrophe, indicating a further
delimiter, the switch FBYTE is set = X'FO'
and ENTRAPR (an entry point of APCSTROF) is
entered.

At entry, the switches PROBIT and BEGRIT
are tested, in that order. If PROBIT=1,
indicating that the delimiter specifies a
formal parameter in a rrccedure heading,
control is passed to the SPECENT routine.
If BEGBIT=1, indicating that the declarator
represents the first declaration follcwing
'BEGIN' and that, accordingly, a new klock
has been entered; a call is made to the
BEGl1 subroutine (which assigns a new Pro-
gram Block Number) before entries for the
declared identifier(s) are mwade in the
Identifier Table.

IDENTIFIER ERROR (IER)

IER is entered from declaration- gprcc-
essing detection of a defect in a declared
identifier. The routine deletes all ox
part of an entry for the identifier in the
Identifier Table and records Error No. 5
or 16, depending on the éentry point (IER or

Form ¥33-8000-0, Page Revised by TNL Y¥33-8001, 12/15/67

IERSPEC) . It also skips over the source
text up the next comma, semicolon, or
right parenthesis, in the case of a formal
parameter list,

CODE PROCEDURE (CODE)

CODI: is entered from DELIMIT or EROUT on
recognition of the delimiter 'CODE', rep-
resenting the body of a code procedure.
The routine verifies that 'CODL' follows a
procedure heacding; modifies the charac=
teristic in the entry previously made (by
the PROCEDUR and PROCID routines) for the
procedure identifier in the Identifier
Table, so as to designate a code procedure,
and transfers up to six characters of the
procedure identifier, followed by two
Blanks, to the output text, preceded by the
operator Gamma., After finding the semico-
lon which should follow 'CODE', the
PBLCKEND subroutine is called and control

hen passed to SEMCO,

At entry, the switches PROBIT and BIGBI1
are tested, in that order, If PROBIT=1
indicating that the delimiter specifies a
formal parameter in a procedure heading,
control is passed to the SPECENT routine,
If BLGBIT=1, indicating thatthe declarator
represents the first delimiter following
'BEGIN', and that, accordingly, a new block
has been entered, a call is made to the
BEGlL subroutine (which assigns a new Pro-
gram Block Number) before processing con=-
tinues,

SPECIFICATION (SPZC)

SPEC is entered from DELIMIT or EROUT on
recognition of the specificators 'LABEL'
and 'STRING', 1Its function is to verify
that the specificators occur in a procedure
heading, If they do, control is passed to
the Type Specification routines (SPECENT
and IDCHECK), If not, Error No,25 is
recorded, and the declaration is skipped by
branching to COMERR,

VALUE (VALUE)

VALUE is entered from DELIMIT or EROUT
on recognition of the delimiter 'VALUE'

After testing the switch PROBIT to in-
sure that the delimiter occurs in a proce-
dure heading (signified by PROBIT=1), the
switch VALBIT is turned on and control is
passed to IDCHECK, The latter locates the
Identifier Table entry corresponding to
each formal parameter which follows'VALUL',
and, by virtue of VALBIT=1, sets the value
bit in the identifier characteristic (Fig-
ure 9) so as to designate a value-called
parameter,

PARAMETER SPLCIFICATION (SPECENT and
IDCHECK)

SPECCHNT is entered from TYPE, ARRAY,
SWITCH and PROCEDUR, when a specificator is
ancountered in a procedure heading (indi-
cated by PROBIT=1l), SPECENT moves the cor-
responding two-byte characteristic con=
tained in the Delimiter Table (Figure 32)
to a field named KB and then enters IDCHECK,

IDCHECK is entered from SPECENT and
from VALUE, IDCHECK”s function is to locate
the appropriate entry (entries) in the Iden-
tifier Table and a) to insert the charac-
teristic and Program Block Humber, or b) to
set the value Dbit in the characteristic,
(Before the value or specification parts of
a procedure heading are processed, the
external names of all formal parameters are
copied into a sequence of Identifier Table
entries, from the parameter list which fol-
lows the procedure identifier, The first of
these entries 1is addressed by the pointer
PRI¥PAR), The characteristic is inserted
by ORing the relevant bytes of the Identi-
fier Table entry with the contents of the
location KB.

TYPE ARRAY (TYPEARRY)

TYPEARRY is entered from TYPESPEC. when a
delimiter sequence of the type '<type> '
'ARRAY' has been identified., If PROBIT=1
(indicating the delimiter sequence occurs
in a procedure heading) control is passed
to IDCHECK which proceeds to complete the
Identifier Table entry for a type-array
parameter of a procedure. If BEGBIT=1
(indicating the delimiter sequence rep=
resents the first declaration following
'BEGIN', and that accordingly 'BEGIN' opens
a block), the BEGl subroutine is called,
Thereafter, control is passed to the ARRAY
routine (by way of ARRYDMEl), which con-
structs an entry for a type-array identifi-
er in the Identifier Table,

ARRAY DECLARATION (ARRAY)

ARRAY 'is entered from DELIMIT and EROUT
on recognition of the delimiter 'ARRAY',
The routine constructs an entry in the
Identifier Table for each array identifier
following the declarator (by call to the
IDCHECKl1 subroutine); and transfers the
operator Array to the output text, followed
by up to six characters of each identifier,
On recognition of the left bracket, (/,
marking the beginning of the dimension
list, the operator [is transferred to the
output text and control passed to the LIST
routine, The LIST routine analyzes the
dimension 1list, records a count of the
number of dimensions in the corresponding
Identifier Table entries, transfers the
dimension 1list to the output text, and
returns control to ARRAY if the dimension
list is followed by a further identifier,

Chapter 4: Scan I/II Phase 65

At entry, the switches PROBIT and BEGBIT
are tested, in that order. If PROBIT=1,
indicating that the delimiter specifies a
fornal parameter in a prccedure heading,
control 1is passed to the SPECENT routine.
If BEGBIT=1, indicating that the declarator
represents the first declaration following
'BEGIN' and that a new klock has keen
entered, a call is made to the BEG1l sukrou-
tine (which assigns a new Program Block
Number), before entries for the declared
array(s) are made in the Identifier Table.

ARRAY/SWITCiH LIST (LIST)

The LIST routine is entered from the
ARRAY and SWITCH routines upon recognition
of a dimension list in an array declaration
or a caomponent 1list in a switch declara-
tion. LIST scans the source text
(beginning with the first character foliow-
ing the left bracket in an array declara-
tion or the first character following the
assignment operator in a switch
declaration) for any one of 15 characters
assigned a non-zero function byte in Trans-
lation Table (ARTABLE); moves the scanned
text to the output buffer; and branches to
the routine whose address is specified in a
full-word entry of Branch Address Table
(BPRTAB) given by the value of the
character's function byte.

The function bytes assigned by ARTABL
to the character set and the routines
entered from LIST are as follows:

Function Routine
Character Byte Entered
Apostrophe 34 APOSTROF
* o4 TRANSOP
> 14 "
< 10 "
Not 18 "
Zeta 38 CIB
Blank 28 BILANK
Invalid 2C ERR1
Character’
Comma 80 COMMALST
/ 88 SLASHLST
) 6C RIGHTPARL
(68 LEFTPARL
Point 84 PONTLST
Colon 54 COLONLST
Semicolon 58 SEMCLST
<All other 00 (No branch,
characters> scanning

continues)

The latter seven routines recognize sep-
arators in a dimension on component list;
transfer representative oprerators to the
output buffer; count the number of dimen-
sions or components in a dimension or

66

corpcnent list; and reccrd the dimension
count or component count in the correspcnd-
ing Identifier Takle entries made Ly the
ARRAY or SWITCH routines for the array cr
switch identifiers. The actual dimensicns
in a dimension list or the components in a
component list are transferred to the cut-
put text by the LIST rcutine kefore kranch-
ing to the rcoutine concerned. The switch
ARBIT=1 srecifies an array dimension 1list,
while ARBIT=0 specifies a switch compcnent
list.

POINT IN LIST (PONTLST)

PONTLST inspects the character following
the point and passes control tc CCLONLST cr
SEMCLST or transfers a Decimal Point.

RIGHT PARENTHESIS IN LIST (RIGHTPARL)

RIGHTPARL transfers a right parenthesis
and decrements the kracket count.

LEFT PARENTHESIS IN LIST (LEFTPARL)

LEFTPARL transfers a left parenthesis or
a left bracket, [, representing (/, and
increments the kracket ccunt.

COMMA IN LIST (COMMALST)

COMMALST increments the dirension ccunt

and transfers the Comma operator.

COLON IN LIST (COLONLST)

Transfers a colon, provided it cccurs in
an array dirensicn list. If it occurs in a
switch component 1ist, the colon is disre-
garded and Error No.3 is recorded.

SEMICOLON IN LIST (SEMCLST)

SEMCLST stores the ccmponent count in
the Identifier Table entry specified Ly a
pointer named DIM, and transfers contrcl tc
SENMCO, after specifying the return address
of TESTLOOP. If the semicolon occurs in an
array dimension 1list, Errcr No.32 is

recorded, and the identifier

deleted.

entry is

SLASH IN LIST (SLASHLST)

SLASHLST inspects the character follow-
ing the slash and transfers the slash or a
right bracket, 1; enters the dimension
count for a declared array in the Identifi-
er Table entry indicated by pointer DIM;
and transfers control to ARRAY, SEMCO, or
COMERR, according to whether the character
following is a comma, a semicolon, or any
other character, excepting Zeta or a blank.

SWITCH DECLARATION (SWITCH)

SWITCH is entered from DELIMIT and EROUT
on recognition of the declarator 'SWITCH'.
SWITCH constructs an entry in the Identifi-
er Table for the identifier following the
declarator, and transfers up to six charac-
ters of the identifier to the output text,
preceded by the operator Switch. On detec-
tion of the assignment operator marking the
beginning of the component list, the Assign
operator is transferred and control passed
to the LIST routine. LIST transfers the
component 1list to the output text, counts
the number of components in the 1list, and
enters the component count in the Identifi-
er Table entry for the switch identifier.

At entry to the routine, the switches
PROBIT and BEGBIT are tested, in that
order. If PROBIT=1 (indicating that the
delimiter specifies a formal parameter in a
procedure heading), control is passed to
the SPECENT program. If BEGBIT=1
(indicating that the declarator represents
the first declaration following 'BEGIN' and
that, accordingly, a new block has keen
entered), the subroutine BEG1l is called
before entries for the declared switches
are made in the Identifier Table.

PROCEDURE DECLARATION (PROCEDUR)

PROCEDUR is entered from the DELIMIT and
EROUT routines on recognition of the delim-
iter 'PROCEDURE'. PROCEDUR makes entries
in the Group, Semicolon, and Program Block
Tables; transfers the operator Pi to the
output text and the Stack; inserts the
characteristic for a declared procedure
identifier into the next entry of the
Identifier Table; and passes control to
PROCID, which constructs an entry in the
Identifier Table, containing a new Program

Block Number fcr the prccedure identifier,
followed by a program block heading entry,
and copies the external names of the formal
parameters in the parameter list into the
following entries.

Initially, the PROBIT and BEGBIT switch-
es are tested, in that order. If PROBIT=1
(indicating that the delimiter °'PROCEDURE'
specifies a forral rarameter in a procedure
heading), control is passed directly tc
SPECENT. If BEGBIT=1] (indicating that the
delimiter represents the first declaration
following *BEGIN' and that, accordingly,
'BEGIN' opens a new block), a call is made
to the BEG1l subroutine.

PROCEDURE IDENTIFIER (PRCCID)

PROCID is entered from PROCEDUR when a
procedure declaration has keen encountered.
PROCID first constructs an entry in the
Identifier Table for the procedure iden-
tifier. The external name (up to six
characters) is copied into the entry and
transferred tc the output text ky call to
IDCHECK1. The characteristic for the pro-
cedure identifier will have been stored 1in
the entry by PROCEDUR. When a left paren-
thesis (opening a parameter 1list) or a
semicolon (following the identifier of a
parameterless procedure) is encountered, a
program block reading entry is constructed.
If the procedure is a type-procedure, a
second identifier entry for the procedure
identifier is made immediately after the
heading entry. The external names of the
formal parameters, represented by a maximum
of six characters, are now copied into the
following entries of the Identifier Table
and the cutput text. The two-kyte charac-
teristics of these rarameters are jinserted
immediately after, by the SPECENT routine
when the specifications in the procedure
heading are processed. Control is passed
to SEMCO as soon as a semicolon following
the closing right parenthesis of the param-
eter is encountered.

TERMINATION (EODADIN)

EODADIN is entered from:

1. PBLCKEND (via COMMEND and READRCUT)
when the stack operator Alpha (marking
the Dbottom of the Scope Handling
Stack) indicates that the outermost
score of the source module has been
clocsed;

2. ENDMISS when an unexpected End of Data
condition occurs;

Charter 4: Scan I/II Phase 67

3. PIROUT (in the Directory) when a pro-
gram interrupt or unrecoverable I/0
error occurs; and

4. ERRU when a terminating error is
detected in the source module.

See also "Close of Scan I/I1II Phase".

EODADIN transfers the closing operator
Omega to the Modification Level 1 text;
writes out the last record of the modified
source text (by calling COB), except when
the entire text occupies less than a full
buffer (in which case it is transmitted to
the Scan III Phase in the Common Area
buffer); generates TXT records of the char-
acter strings in the Ccnstant Pool (ky
calling the GENERATE - GENTXTS subroutine)
on the SYSPUNCH and/or SYSLIN data sets,
provided the DECK and/or LOAD options have
been specified; closes the SYSIN, SYSUT1,
and SYSUT3 data sets; releases main stor-

68

age; and transfers control to the Identifi-
er Table Manirulation Phase (IEX20), or, if
a terminating error has occurred, to Diag-
nostic Output Mcdule IEX21.

If the source module is a precompiled
procedure, Prcgram Block No. 0 in the
Identifier Table, containing an entry for
the procedure nare, is transferred to the
SYSUT3 data set (by call to PBLCKEND) and
an ESD record for the procedure name is
generated (by calling GENERATE-GENESD).
The precompiled procedure name will have
been stored in external code at the lcca-
tion named ESDPARAM by the PROCID routine.

GENERATE SUBROUTINE

See Chapter 8.

CHAPTER 5:

IDENTIFIER TABLE MANIPUIATION PHASE {IEX20)

PURPOSE OF THE PHASE

The nain purpose of the Identifier Takle
Manipulation Phase is to complete the con-
struction of the internal names of all
identifiers 1listed by the Scan I/II Phase
in the Identifier Table. Except in the
case of entries for declared procedure and
switch identifiers and labels, the last two

bytes of the internal name provide space
for the relative address of the
identifier's object time storage field
(Figure 36). The Identifier Table Manip-

ulation Phase assigns an object time stor-
age field to each identifier, and stores
the corresponding relative address in the
space provided in the identifier's intermnal
name.

The processing of the Identifier Table,
which forms the main input to the Identifi-
er Table Manipulation Phase, may be divided
into the following functions.

1. To search each group of identifiers in
the Identifier Table for repeated dec-
larations of the same identifier, and
to record appropriate error patterns
in the Error Pool.

2. To allocate object time storage fields
to the identifiers listed in the Iden-
tifier Table, and to record the rela-
tive address of each identifier's
assigned storage field in the
identifier's internal name. The rela-
tive address represents a displacement
from the beginning of a Data Storage
Area, comprising the total number of
bytes assigned to identifiers declared
or specified in the particular klock
or procedure.

3. To construct Program Block Table II
(PBTAB2), indicating the size of the
Data Storage Area required at object
time for every block and procedure in

the source module. Program Block
Table II is transmitted in main stor-
age to the Compilation Phase, in which

the space requirements recorded in the
table are augmented by additional
space allocations for the storage of
intermediate results.

4. To transmit the completed Identifier
Table (via SYSUT3) to the Scan III
Phase according to ascending Program
Block Number sequence.

5. To generate a printed listing of the

contents of the Identifier Takle, if
the SOURCE option has been specified.

IDENTIFIER TABLE MANIPUIATION PHASE
OPERATIONS

The diagram in Figure 34 illustrates the
principal operations performed in the Iden-
tifier Table Manipulation Phase. The
bracketed numbers in the following text

refer to the numbered rositions in the

diagram.

IDENTIFIER TABLE MANIPULATION PHASE (IEX20)

(Lists oddresses of
LZ*:“ 3:;;’;;;@ 3. Write ITAB (WRITITAB)
Outputs ITAB when all
1. Identifier Scan (READBLK) Block Number order) records have been processed.
B Address ecords are output in ascend-
Reads on [TAB record inta the work Table ing Program Block Number
area address in ATAB. Scans the re- = seauence, with the id of
cord for multiple declarations and . Pass
records errors in the Error Pool. Passes ATAB | g:i?::y:;l’;f edsog:‘hsf-
control to ALLOSTOR. | Option is mecifieds
|
SYSUT3 WGentifier Teble] SYSUT3
\dentifier | YWork Area | \dentifier
Toble t (ITAB)
(ITAB) | I
SR R S (Records in
Racords ot i Records gat Tn Program Block
rogram Blocl lumber order)
Number order) Nodber order)

2. Storage Allocation (ALLOSTOR) Error Pool SYSPRINT
Allocates a storage field in an Multiple dec Identifier
object time Data Storage Area for larations and Tabl,
each identifier in on ITAB record, other errors Listing
and records the relative address in 4. Print ITAB (ITABPRNT
the identifier’s ITAB entry. Stores Prints o listing of ITAB,
the total allocation for all identi- if the SOURCE option is
fiers, in PBTAB2, Retums fo Identi- cified, and onits 1o
fier Scan, unless the last record has ’ &St
been read, in which case control rogrom
is passed o WRITITAB. Block 5. Termination (CLOSE

Table Il Releases main storage and
PBTAB2 transfers control to Load
Module IEX21 (for output
of diagnostic messages re-
flecting errors recorded in
Ervor Pool),
| (xcTL 1o 1EX21)
1
Figure 34. Identifier Table Manipulation
Phase. Diagram illustrating

the functions of the princiral
constituent routines.

Identifier Table records (1) are read
into a work area and prccessed, one at a
time, in the order in which they were
stored on the SYSUT3 data set ky the Scan
I/11 Phase, that is, according to the
sequence in which the bklocks and procedures

were closed in the source module. To
enable the records toc be outprut in ascend-
ing Program Block Number sequence, the
address of each record 1is stored in the

Address Table (ATAB), in an entry deter-
mined by the record's Program Block Nurber.
Initially, each record is scanned Ly the
Identifier Scan routine to determine if
multiple declaraticns were made for the
same identifier.

Chapter 5: Identifier Table Manipulation Phase 69

After the record has been scanned and
appropriate errors recorded in the Error
Pool, the Storage Allocation routine (2)
allocates an object time storage field to
each identifier, and records the address of
the allocated bytes (relative to the begin-

ning of the 'Data Storage Area comprising
the total allocation for the block or
procedure) in the corresponding identifier
entry.

When all records of the Identifier Table
have been read in and processed in this
manner, the Identifier Table is (3)
retransferred to the SYSUT3 data set,
records being output in ascending Program
Block Number sequence. If the SOURCE
option was specified, (#4) a listing of the
Identifier Table is printed; otherwise, (5)
the termination routine (CLOSE) is entered.
CLOSE transfers control to the next phase.

PHASE INPUT/OUTPUT

Figure 35 pictures the data input to and
output from the Identifier Table Manipula-
tion Phase. The figure also shows the
tables transmitted to and from the phase in
main storage.

Input Output

r Main Storage -l
| Program Block Number
B

| Table — (PBTABI)
1 Error Pool

|

|

= SYSUT2
] Identifier Table
(ITAB)

SYSUT3]’

Identifier Table

(ITAB) IDENTIFIER TABLE
MANIPULATION
PHASE

SYSPRINT

Identifier Table
Listing (if
SOURCE

] Main_Storage ‘i wecifled)
II Program Block Table Il |
e) |
I I
! I
L1
Figure 35. Identifier Table Manipulation
Phase Input/Output
Identifier Table records (variakle

length) are read from the SYSUT3 data set
by a READ macro.

Output of the completed Identifier Takle
to SYSUT3 is initiated after all records of
the Scan I/II version have been read into
main storage and processed, and after the
data set has been closed by a Type T CLOSE.

70

The Identifier Table listing is compiled
by the ITABPRNT routine and printed on
SYSPRINT, line by line, by call to PRINT in
the Directory. Phase Input/Cutput

IDENTIFIER TABLE (ITAB)

Figure 36 shows the space provided (last
one-and-one-half bLytes) in the typical
identifier entry for the relative address
of an identifiexr's storage field in the
particular block's or procedure's object
time Data Storage Area. The figure is not
representative of identifier entries for
declared labels and declared procedure and
switch identifiers, in which the last 1 1/2
bytes contain a displacement address in the
object time Lakel Address Table, inserted
by the Scan I/II Phase.

0 6 8 9 10 11
r T T T 1
|<External |<Charac- |<PBN>|" <Disp> |
| Name> |teristic>| | |
L 4 4 L 1
Lmmmm———— Inserted ky Scan-==~==--= >

I/II Phase

<Disp> = <Displacement in the klock's or
procedure's Data Storage Area>

Figure 36. Identifier Table (ITAB) entry,
showing the identifier's Lata
Storage Area displacenent

address, as inserted Ly the
Identifier Table Manipulation
Phase in bytes 9 and 10, for
all identifiers except those of
declared procedures, switches
and lakels.

The Identifier Table is described more
fully in Chapter 4.

PROGRAM BIOCK TABLE II {(PBTAB2)

The Program Block Takle II (PETAER2)
indicates the total number of object time
storage bytes allocated in the Identifier
Takle Manipulation Phase to each klock and
procedure in the source module. PBTAB2 is
transmitted in wain stcrage to the Compila-
tion Phase, where it is transferred tc
Program Block Table III.

0 2
r 1
|<Total bytes allocated to the block or |
| procedure> |
L 1
Figure 37. Two-byte entry in Program Block
Table II (PBTAB2)

PBTAB2 is constructed by the ALLOSTOR

routine. The total storage allocation for

a particular block or procedure is stored
in the entry corresponding to the particu-
lar Program Block Number.

CONSTITUENT ROUTINES OF IDENTIFIER TABLE
MANIPULATION PHASE

The principal constituent routines of
the Identifier Table Manipulation Phase are
described below. The index in Appendix XI
indicates the page on which each routine is
described and the flowchart in the Flow-
chart Section in which the general logic of
the routine is set forth.

PHASE INITIALIZATION

The Initialization routine gets main
storage for the private work area shown in
Figure 38; initializes pointers and switch-
es; specifies EOD and program interrupt-I1/0

error routines; calls the PRINT subroutine
in the Directory, after assembling head-
lines for the Identifier Table listing,

provided the SOURCE option 1is specified,
and exits to READBLK (which reads in Iden-
tifier Table records from the SYSUT3 data
set).
The program interrupt-I/O error exit,
CLOSE2, is stored at ERET, a 1location in
the Common Work Area referenced bLy the
PIROUT routine in the Directory. The exit
is changed, after the GETMAIN instruction,

to CLOSE. CLOSE releases main storage and
transfers control to Diagnostic Module
IEX21, while CLOSE2 simply transfers con-

trol to IEX21.

The GETMAIN instruction for the private
work area is issued after the total area
required for the Identifier Table (ITAB)
and the Address Table (ATAB) has Leen
computed. The area allotted to the Iden-
tifier Table is fetched from the ITAB20S
entry in the Area Size Table in the Common
Work Area. The area provided for the
Address Table is fixed at 1024.

SAVEPB, SAVE, and BITS1 are three Common
Work Area 1locations defined by a dummy
control section in Load Module IEX20 (ITAR
Manipulation). SAVEPB is the name of the
Program Block Counter which is increrxented
by 1 in the Lastrec routine for every
Identifier Table record processed. SAVEPE
is compared with PBN (the program klock
count transmitted by the Scan I/II Phase in
the Cormon Work Area), and if the count is
identical (indicating that all Identifier
Table records have keen read in from SYSUT3
and processed), control is passed to WRITI-
TAB, which outputs the table on SYSUT3.

SAVE is a location used (ky the ITABPRNT
routine) in converting numerical data, in
connection with the print-out of the Iden-
tifier Table.

BITS1 contains a switch, named PRCCEIT.
PROCBIT=1 (turned on in the ITABPRNT rou-
tine on recognition of a procedure
identifier) signifies that the Identifier
Takle entry being processed is that of a
procedure identifier, and that the paramet-
er count in the internal name is the actual
count and should nct ke increased ky 1 when
the entry is printed out. PROCBIT=0 signi-
fies that the Identifier Takle entry keing
processed is that of an array or switch
identifier, and that the dimension count or
component count in the internal name rep-
resents the actual count, 1less one, and
should be increased by 1 when the entry is
printed out.

If the SOURCE ortion is specified, the
headlines "IDENTIFIER TABLE" for the first
line, "PBN SC PBN NAME TYPE DM DSP NAME
TYPE DM DSP NAME TYPE DM DSP" for the
second, and "SURR PR LN PR LN PR LN" for
the third line, are moved to a field named
PAGEHEAD in the Common Work Area. A call
is then made (via PRINTITB) to the PRINT
subroutine in the Directory, which prints
out the headings on a new rage. Resetting
to a new page is governed by presetting the
line count to 128 (in LINCNT) kefore call-
ing PRINT.

If short precision has been specified
(determined by testing the ING switch in
the HCOMPMOD Control Field), the value 4 is
stored in the half-word named C, displacing
the defined constant 8, and specifying tc
the ALLOSTOR routine that arithmetic iden-
tifiers are to be allocated four bytes
each. If short precision bhas not been
specified, C remains unchanged at 8, and
real (or floating point) identifiers will
accordingly be assigned eight kytes each.

Chapter 5: Identifier Table Manipulation Phase 71

(at initializa-

tion) AITAB Identifier Table (ITAB)

Work Area
READBLK Routine ALLOSTOR Routine
AIB (reg. 8) —e—— — e ————] te— AIB (reg. 8)

(An ITAB record)

RAID (reg.7) AKOM (reg.9)

AITAB —— e e e e e e etee—- A|TAB

(An ITAB record)

(at initialization)

ATABAD

Address Table (ATAB)
(1024)

=—1 RAID (reg. 9)
i

ITABPRNT Routine
—— — — — — ———————g=— AIB (reg. 8)

Notes:

1. In the READBLK routine AITAB initially
addresses the location in the Identifier Ta-
ble Work Area to which the next record is
read from SYSUT3. After read~-in of the re-
cord is complete, AlB is set equal to AITAB,
and AITAB is then incremented by the length
of the record (in the heading entry), so
that AIB and AITAB now point to Ke begin-
ning and end of the record. RAID addresses
successive identifier entries in the record,
moving ﬁrogresively through the record,
while AKOM addresses each of the entries
following RAID, with which the identifier
addressed by RAID is compared.

. In the ALLOSTOR routine, AIB and AITAB
point to the beginning and end of the re-
cord. RAID addresses successive identifier
entries in the record.

3. In the ITABPRNT routine, AIB and AITAB
point to the beginning and end of the re-
cord currently geing processed. For each
record processed, AIB and AITAB are set by

N

R
EGY (req. 10) | RAID (reg. 9) loading AIB with the address contained in
! the Address Table entry corresponding to the
——————————— 1. AITAB next sequential Program Block Number, and

then setting AITAB = AIB + (the length of
the ITAB record addressed by AIB, the length
being contained in the heading entry). Iden-
titiers are printed out in alphabetical order,
three on each line of printed text. To find
the next identifier in alphabetical order,
RAID and REGY are initializedat the first
identifier entry in the record. REGY then
addresses the following identifiers in tum,
each identifier being compared with the
identifier addressed by RAID, When REGY
addresses an identifier of higher alphabetical
order than RAID, RAID is reset to REGY.
This procedure is repeated until the end of
the record is reached, so that RAID now ad-
dresses the next identifier in alphabetical
order. After the identifier has been proces-
sed, it is deleted, by shifting the identifier
entries at the bottom of the record upward by
the entry length.

* Area size specified by Area Size Table in Common Work Area. See Appendix

VI for the variation in area sizes as a function of the SIZE option.

Figure 38.

IDENTIFIER SCAN (READBIK)

The Identifier Scan routine reads an
Identifier Table record from the SYSUT3
data set into the work area provided, and

searches the record for duplicate identifi-
ers. The search is made by comparing each
identifier in turn with all of the follow-
ing identifiers. If a duplicate identifier
is detected, Error No.45 is recorded, by
calling Eu43. For statement heading and
closing entries (identified by X'2B' in
byte 6) are disregarded. As soon as all
entries in the record have been scanned,
the ALLOSTOR routine is entered.

Records are read into the work area
location specified in AITAB. The address
in AITAB is stored in the Address Table
(ATAB) entry corresponding to the Program

72

Private Area acquired by the Identifier Table Manipulation Phase

Block Number of the record. The length of
this entry is then added tc the address in
AITAB, so that AITAB will point to the
location where 'the next record will ke
read. See Note 1 in Figure 38.

STORAGE ALLOCATION (ALLOSTOR)

ALLOSTOR allocates a specific number of
object time storage bkytes to each identifi-
er represented in an Identifier Takle
record (excepting declared procedure,
switch, and label identifiers), and records
the relative address of the bytes allocated
in the corresronding identifier entry.
This relative address specifies the dis-
placement in the Data Storage Area to ke
set up for the particular block or prcce-

dure at object time. When all the iden-
tifiers in a record have been processed,
the total number of bytes allocated is
recorded in an entry of Program Block Table
II (PBTAB2), corresponding to the Program
Block Number of the Dblock or procedure.
Control is returned to the READBLK routine
(which reads in the next Identifier Takle
record) if a further record remains to be
processed. This is indicated if the Pro-
gram Block Counter SAVEPB, stepped up for
every record processed, is less than the
program block count recorded in PBN by the

Scan I/II Phase. When SAVEPB=PBN, control
is passed to the WRITITAB routine.
The allocation for each type of iden-

tifier is as follows:
Identifier Eytes Precision
Real variables L Short

8 Long
Integer variables 4
Boolean variables 1
Arrays 4(NOS+6) Short

4 (NOS+6)+X Long

[X=4 if NOS is odd,
X=0 if NOS is evenl
Formal parameters 8
Declared labels, None
procedure and switch
Identifiers

NOS denotes the number of dimensions,
diminished by one, recorded in the Iden-
tifier Table entry for an array identifier.
The area allocated for arrays provides
space for a Storage Mapping Function (see
Figure 62). A 24-byte field is reserved at
the beginning of the Data Storage Area for
every block and procedure (except in the
case of <type>-procedures, for which the
area reserved is 32 bytes).

Object time storage space is allocated
with the aid of a set of displacement
pointers named DP (Double Word Pointer).
WP (Word Pointer), HP (Half Word Pointer),
and BP (Byte Pointer). These pointers are
zero-set at the beginning of every Iden-
tifier Table record. DP reflects the total
displacement at any point in terms of
double- words. It is incremented at doukle
and full-word boundaries by 4 or 8 bytes,

depending on the precision specified.
Where the allocation to be made for an
identifier is less than a double worg,

pointer BP, HP, or Wp may be set equal to

Chapter 5: Identifier Table Manipulation Phase

Page of GY33-8000-0
Revised January 15, 1972
By TNL GN33-8129

DP and incremented by one, two, or four
bytes, sc as tc minimize the number of
unused kytes. See Note 2 in Figure 38.

WRITE IDENTIFIER TABLE {WRITITAB)

WRITITAB is entered from ALLCSTCR when
all Identifier Table reccrds have been read

into main storage and processed. After
repositioning SYSUT3 by a Type T CLOSE,
WRITITAB transfers the Identifier Table

records in the work area tc the SYSUT3 data
set, in ascending Program Block Nurber
sequence. The address cf the record cor-
responding to the next sequential Program
Block Number (in REGZ) 1is determined by
reference to the Address Tabkle (ATAB) entry
for that Program Block Number. Control is
passed to the ITABPRNT routine when the
Program Block Number in REGZ equals the
program block count stored in PBN by the
Scan I/II Phase.

PRINT IDENTIFIER TABLE {(ITABPRNT)

ITABPRNT generates a listing of the
contents of the Identifier Table, contain-
ing the external name of each identifier
and indicating (by means of a system of
coded symbols) the characteristics of the
identifier. Output of the listing, whose
format is described in the 0OS ALGOL
Programmer's Guide, is dependent on the
SOURCE option being specified.

The identifier grcups are 1listed in
ascending Program Block Number sequence,
and within each group the identifiers are
listed in alphabetical order. See note in

Figure 38.

TERMINATION (CLOSE)

CLOSE releases the main storage area
occupied by the Identifier Table and the
Address Table, and transfers control to
Diagnostic Output Module IEX21 ({see Charter
9).

73

CHAPTER 6

SCAN IIT PHASE (IEX30)

PURPOSE OF THE PHASE

The purpose of the Scan III Phase is to
read the
output

Modification Level 1 source text
by the Scan I/II Phase and to

perform the following principal tasks:

1.

74

To replace the external names of all
identifiers in the modified source
text Dby their corresponding internal
names in the Identifier Table (see
Chapter 4).

To store constants in the source text
in the Constant Pool, and to replace
each constant by a five-byte intermal
name, referencing the location where
the constant is stored.

A constant is stored in the Constant
Pool in fixed or floating point rep-
resentation, depending on whether the
constant is an integer number or a
real number. TXT records of the con-
stants stored in the Constant Pool are

generated on the SYSLIN and/or SYS-
PUNCH data sets, according to the
Cormpiler options specified (see Item

2.

To construct the For Statement Table
(FSTAB), indicating the critical fea-
tures of every for statement in the
source text. The For Statement Takle,
which is transmitted to the two subse-
quent phases via main storage, serves
to determine the structure of the loop
generated in the object code for each
for statement. Among other things,
the For Statement Table assigns each
for statement to one of three loop
classifications (Normal Loop, Elemen-
tary Loop, or Counting Loop) and indi-
cates the character of the for 1ist
(e.g. if the for 1ist contains a step
or while element). It also indicates
if subscript optimization is to be
performed for optimizable array sub-
scripts in a for statement.

To construct the Subscript Table
(SUTAB) 1listing, under each for state-
ment, all subscript expressions of a
defined character occurring in the
iterated part of the for statement.

The expression must be of the type
+F*VtA, where V {is the controlled
variable, and the factor F and addend

A must be integer variables or con-

stants.

The Subscript Table is transmitted (on
the SYSUT3 data set) to the Sukscript
Handling Phase, in which optimizakle
subscript expressicns are identified
and copied into the Optimization Takle
(OPTAB) for transmission to the Ccrpi-
lation Phase. To ke ortimizakle, no
assignment may be made in the for
statement to the factor F or the
addend A in the subscript expressicn.
The test fcr optimizakility is per-
formed in the Subscript Handling Phase
by comparing the factor and addend
with the variables listed in the Left
Variable Takle (see next item).

To construct the Left Variable Table
(LVTAB), listing, under each for
statement, the integer left variables
in the iterated part cf the for state-
ment. The Left Variable Table is
transmitted (on the SYSUT3 data set)
to the Subscript Handling Phase. It
is used in identifying sukscript
expressions listed in the Sukscript
Table which are not optimizable (see
preceding item).

To generate a transformed source text
(called Modification Level 2). The
principal change made in this version
of the source text consists in the
replacement of externally represented
identifiers and constants by five-byte
internal names (see items 1 and 2).
Other changes are set forth under
"Modification Level 2 Source Text".

To replace the external names of
standard mathematical functions and
input/output procedures by five-byte
internal designators. The internal
designators are stored in the Iden-
tifier Table work area tky the Initial-
ization routine, before the first
record of the Identifier Table is read
into main storage from the SYSUT3 data
set.

To recognize syntactical errors in the
source text and to store arpropriate
error patterns in the Error Pool. The
contents of the Error Pool are printed
out in the form of diagnostic messages
by the Error Message Editing Routine
in the immediately following Diag-
nostic Output Module (IEX31).

To generate TXT records of the Cocn-
stant Pcol cn the SYSLIN and SYSPUNCH
data sets, if the LOAD and/or DECK
options have keen specified.

SCAN III PHASE OPERATIONS

The primary functions of the Scan III

Phase are:

1. To replace externally represented
operands in the Modification Level 1
text by their corresponding internal
names in the Identifier Table;

2. To store constants found in the Modi-
fication Level 1 text in the Constant
Pool and to replace the constants Ly
internal names; and

3. To detect critical logical features of
all for statements and record these in
the For Statement Table. A closely
related function is to 1list integer
left variables and linear subscripts
of arrays in for statements, in the
Left Variable and Subscript Tables.

The diagram in Figure 39 illustrates the
main operations performed in the Scan III
Phase (the overall logic of the phase is
indicated in Flowcharts 044 and 045 in the
Flowchart Section). The following descrip-
tion provides a brief comment on the
diagram.

The modified source text is scanned, in
the first instance, by the GENTEST routine,
which branches to approximately 30 other
routines, according to the character iden-
tified in the source text. Control is in
every case returned to GENTEST after the
required processing has been completed.

Modification Level 1 text records are
read from the SYSUT1 data set by the ICHA
subroutine, which is called by all routines
on detection of the record-end operator
Zeta. The Modification Level 2 text
records are output on SYSUT2 by the OUCHA
subroutine on call from all routines which
transfer operators and internal names to
the modified text.

OPENING AND CLOSE OF BLOCKS AND PROCEDURES

At the opening of a block or procedure
(indicated by the operators Beta, Pi or
Phi), the next sequential Identifier Table
record is read into the work area provided.
Records are read from the SYSUT3 data set
by the ITABMOVE subroutine, on call from
BETA or PIPHI. When the end of the current
(embracing) klock or procedure is reached
(indicated by the operator Epsilon), the
corresponding Identifier Table record in

the work area is deleted by EPSILON. This
procedure insures that the Identifier Takle
work area at all times contains those
identifiers which have been validly
declared or specified in the current klock
or procedure, as well as in all enclosing
blocks or procedures. The handling of the
Identifier Table is described more specifi-
cally in a later section.

IDENTIFIER HANDLING

A letter indicates the beginning of an
externally represented identifier. The
LETTER routine scans the following charac-

ters, and when the end of the identifier
has been found, kranches to IDENT. IDENT
initiates a comparison (between the iden-

tifier in the source text and the external
names contained in the entries in the
Identifier Table work area), designed to
locate an entry for the same identifier
declared or srecified in the current (or an
enclosing) block or procedure. 1f no
matching identifier is found in the Iden-
tifier Table, the identifier in the source
text 1is undefined: an error is recorded in
the Error Pool, the Corpiler enters Syntax
Check Mode (Chapter 9), and, after an
all-purpose internal name has Lkeen trans-
ferred to the Modification Level 2 text,
control is returned to GENTEST. If, howev-
er, a matching identifier is found in the
Identifier Table (indicating that the iden-
tifier was duly declared or specified)
control is passed to FOLI, which branches
to one of four routines (NOCRI, PROFU,
SWILA, and CRITI), according to the charac-
ter of the identifier, indicated Ly the
characteristic in the 1Identifier Takle
entry.

The main function of the NOCRI, PROFU,
SWILA, and CRITI routines is to determine
if the identifier in the source text is
contained in an embracing for statement
(that 4is, in the for 1list or in the
iterated part of an embracing fecr
statement); and if so, to make entries in
the Left Variable and/or critical Identifi-
er Tables; and to classify the emkracing
for statement(s) in the For Statement
Table, according tc whether the presence of
the particular type of identifier in the
for statement affects the logical structure
of the code to ke generated for the for
statement(s) in the Compilation Phase. The
processing of for statements is discussed
in more specific detail in a later secticn.
The SWILA routine, entered if the identifi-
er is a label or a switch, serves to verify
the validity of a branch.

Chapter 6: Scan III Phase 75

ARIDSTAB.

SUTAB

Commo,

CCOMMA and CLOBRACK determine if the Comma or]
follows o swbscript

SCAN I PHASE (IEX30)
Batg. A Bero, Pi, Phi
&l = IﬂA and PIPHI read in the next sequentiol Identi- —— e
i Fier Table record (by call to ITABMOVE).
Epsilon
EPSILON daltes the block of ot o
Fior Toble representing identifiers declored
o specified in th cloted block o procedure.
-
idantifi
<Any letter> LETTER scons 10 the end of an identi- s -
fier and enters IDENT. On retorn
NOCK!, 7ROFU, Wil
LETTER irondlers the identif Error
entifier Table 1o ————ont fool
ion Level 2 text. (Undectared
Identifiers,
defecive can-
IDENT seache he deniir Toble for i T
e __ the eniry contoining he some nome as
Ve e St nd e found, eners
1 FOLI. If no motching entry s
Idantifier Toble o aror i acrded o e Erar ol
ittty i ! Left Vorioble Table M'Lﬁ beind
BETA ond PIFHI” [_— i &",Jw..n'l"lc
Gk o
sysura l ———— =< ond CRITI)
sifier s sp—
Tt Gdemitior
ent
puiran Dronches occording 1 the idemtier type. 7 wiAs
(identifiers 1A
marked
pon-criticol) (Procedure Simple .
or formol voriabl or labe)
parvmntv) or array)
CHI deteines i th idnifa s contoined i o o i, ond
ok
CRINA;
) onters the identifier in CRIDTA o simple vprioble
Ident
e dunifa s contoined i the for |
" ent, ond in
NOCRI identifier in LVTAE 5 on integer left se, <n|kClIMA 1,.. NOCKI) Gt o elsties the SYSUT3.
varioble n o for atement. Renrms control to LETTER. forsorements Left
1 Loop(s), if o for listvidentifier other than the con- Vorioble
rolled vatable oceurs o o left verlgble i the for wota Toble
lod voriable o sata- Subscript
the controlled vriable occurs ogain in the same Table
for lst;
) Flemantry Loops) f the convolad vorighl sccurs i he
ot
PROFU embracing fo o) non-oprimiaable, if the conrolled verible occurs o1 o el
et Mooy Longles o el Variable in he for ot
tas CRIDTAB. Retums conirol 1o LETTER, Retums control to LETTER.
Tobl LA verifies the validity of a branch,
p————— - ith e id o he Grve Tl <l
Group Table the embrecing for sttaman () Elemen
g Loopls), 1 steremeos implies branch
e ywrr rstas L omretinelo of stotement(ond records
GENTEST branches volidbronches i o
iate
CRiTAS
T o OUCHA wri o out
Receives control from l:m arksthe cloced for stotement's for I 4 e taxt racords, on call
‘e routine entered, identifiers in the Identif from ol i oy which
ofter the character(s) ol s e comergorairg e | from olf : whic
cesied CRIDTAB. I e it butfer
sysuti sysur2
dificai ! STEP ond WHILE record the presence icari
lml 1 Step, While, Power,] of the operotors in o for list. DIPOW. Step, While, /, Power Lovel 2
Svree Toxt records the presence of the operator Source Text
T ;g'.,l« / in the embracing for list
| i ony .
ICHA reods in o record !
of the 1 For, Do
ol 10 Wil For, Do J=——"FOR ond DO set G switch to indicate, r
ol vt which pactivaly, entry 1o ond exit from o for list, | k
datact the record-end |
operator 2 i
|
¢ | OPBRACK determines if the [opens on arrey C
g T
|
+
i |
Arroy Identifier] |
Stack
| SUSCRITE - 10e COMMA
| ond CLOBRACK).
|
|
|
I
I

for statement, ond
fifier in
1 o
toined in on ing sbseript expression Subscript Toble WRITE write ou SUTAS
the conirl cords, on coll f
ambracing sibicHp! expravion. SUTABENT (wbroutine of

voriable oceurs in o non-optimizable subscript expreision.

sPTAB
Aoy, Switch
i | ARRAY and SWITCH set switche o indicote
d ognition of an array ot swifch decloration, Inbib-
.....,Cwbw.,,. processing uyormc CcOMMA
and
(extomal nories of code
procedures and five-byle
inemal e of harc-
o st
Qonng = GAMMA tronders the extermol name of o
strog TE he vt o o ghorac-
ter Cevel 1 ex 10 the
Covel 2 rext.
<Other operotors>
<Other apertors> == OTHOP tronsers he peraor 1o the Modifction
Level 2text.
(five-byte internol
. nomes of conslants)
[=—DIGIT 15, DIGIT0, DECPOIN and SCAFACT scon INTHAN ond REALHAN store o fixed point or floot-
the comstont, ond poss control ing peint comstontin the”Cortom Posi, ond o
INTEGN o7 FEALCON, dnich convert n integer fer o five-byte intemal name, representi
of real consiant 1o fixed or ﬂoun:? ot fom Wared congtent, 15 the Nediicarion Lovel 2 fext. Congant Fool
for ntaing INTHAN or BEALAN, 5t Constont Poo!
for ntaring INTHAN or BEALHAN el SYSUN
2Zete B ICHA reods in the next record of the Modificotion
Level 1 ext and returns control to GENTEST.
Pool
Onege
Onego I OMEGA et e ot ecrd f e Wodice-
e, Conton Pool, Sopcrit e REACHAN and OMEGA.

evel
o Lot Verioble Toble by colling OUCHA,
TXTTRAF and WRITE); releoses moin storoge; arid
transfers control to IEX31

(XCTL 1o 1€X31)

Figure 39, Scan III Phase.
Diagram illustrating the functions of the principal constituent routines

76

NOCRI, PROFU, SWIIA, and CRITI all
return control +to LETTER (directly if the
identifier is not contained in a for
statement) , LETTER thereafter transfers
the identifier's five-byte internal name to
the Modification Level 2 text, replacing
the external name in the Modification Level
1 text, and returns control to GENTEST.
The internal name is obtained from the
Identifier Table entry previously 1located
by IDENT. An overall survey of the
identifier-handling routines can be found
in the Flowchart Section with the aid of
the Index of Routines in Appendix XI.

NUMBER HANDLING

Constants in the Modification Level 1
text are handled, in the first instance, by
the DIGIT19, DIGITO, DECPOIN, and SCAFACT
routines. The function of these routines,
in the case of real constants (e.q.
457.725 or 0.0095'86), is to represent the
constant as the product of a mantissa (with
the decimal point immediately to the left
of the first significant digit) and a power
of ten. Thus the constants in the illus-
trations above would be represented as
0.457725 x 103 and 0.95 x 1084, When this
transformation 1is complete, control is
passed to the REALCON routine, the mantissa
being transmitted in a storage location and
the exponent in a register. REALCON con-
verts the constant, represented by the
mantissa and exponent, to floating point
representation in a register. Thereafter,
control is passed to the REALHAN routine,
which stores the constant in the Constant
Pool and transfers a five-byte internal
name, referencing the constant's storage
location, to the Modification Level 2 text.

Integer constants are handled by the
DIGIT19 and/or DIGITO routines. When the
last digit in the constant has been locat-

ed, control is passed to the INTCON rou-
tine. INTCON converts the constant to
fixed point notation in a register, and

exits to INTHAN, which stores the constant
in the Constant Pool and transfers a five-
byte internal name to the Modification
Level 2 text.

ARRAY SUBSCRIPT HANDLING

Subscript expressions, jdentified by the
operators [, Comma and 1, are handled Ly
the OPBRACK, COMMA, and CLOBRACK routines.
If a subscript expression relates to an
array in a for statement, an analysis of
the subscript expression is initiated to
determine if the subscript expression is

optimizable, that is, if the expression is
a linear expression satisfying certain
constraints (defined in a later section).
If the sukscript expression is ortimizakle,
the terms of the exrression, tcgether with
their signs and a serial number identifying
the for staterent, are entered in the
Sukscript Table.

HANDLING COF OTHER OPERATORS

For a majority of the operators in the
Modification Level 1 text, the processing
is limited to the transfer of the operator
to the Modificaticn Level 2 text (ky
OTHOP) . In the case of the operators For
and Do, a switch is turned on to indicate,
respectively, entry to and exit from a for
list, while the arrearance of the operators
Step, While, Power, or / in a for 1list is
recorded in the appropriate entry of the
For Statement Table. The Apostrophe opera-
tor indicates that the internal name of a
character string or a logical value fol-
lows, and in this case the internal name
alone is simply transferred to the Modi-
fication Level 2 text.

PHASE TERMINATION

The Scan III Phase 1is terminated on
recognition of the closing operator Cmega.
The OMEGA routine writes out the last
records of the Subscript and left Variakle
Tables, releases main storage, and trans-
fers control (XCTL) +to Diagnostic Output
Module IEX31 (Charter 9).

PHASE INPUT/OUTPUT

Figure 40 pictures the data input to and
output from the Scan III Phase. The figure
also indicates the takles transmitted via
main storage.

Chapter 6: Scan III Phase 77

Input Output
SYSLIN,
Constant Pool TXT
records (if LOAD
specified)
|
m——————— A
1 Main Storage |
! Scope Table (sPTAB) |
|
| Group Table (GPTAB) |
dification Level
I [Modifi Level 1|
sysurt ! Source Text *] | sysur2
ificati Modification
Vel Tborce R ——— Level 2 Source
Text Text
SCAN 1l
PHASE
SYSUT3 SYSUT3
Identifier Table Left Variable Table
(ITAB) (LVTAB)
—
| Subscript Table
| (SUTAB)
| Main Storage I
| For Statement Table
|
rror
: [Modification Level 2 }
f Source Text*]] SYSPUNCH
——— - Constant Pool TXT
records (if DECK
- specified)

* Source text transmitted in main storage if it
occupies less than a full buffer.

Figure 40. Scan III Phase input/output

The Modification Level 1 source text is
input from the SYSUT1 data set, unless the
text occupies less than a full buffer. 1In
the latter case the modified source text
will have been transmitted from the Scan
I/II Phase in main storage. Similarly, the
Modification Level 2 source text is output
on SYSUT2 or transmitted via main storage,
depending on whether the text occupies more
than or less than a full buffer.

Input of the Identifier Table (ITAB)
proceeds in parallel with output of the
Subscript Table (SUTAB) and the Left Varia-
ble Table (LVTAB) on the same data set
(SYsuT3). ITAB input is handled Ly the
ITABMOVE subroutine, while SUTAB and LVTAB
output is handled by the WRITE subroutine.
SUTAB and LVTAB records (fixed 1length =
buffer size) are output in random order,
accordingly as the respective buffer is
filled, starting at the SYSUT3 data set
address immediately following the last ITAB
record output by the Scan I/II Phase. The
data set address is saved at initialization
and transmitted to the Subscript Handling
Phase in readiness for input of the first
SUTAB/LVTAB record. To enable the records
to be differentiated in the Subscript Han-
dling phase, each output record contains a
leading four-byte key (SUTB in SUTAB
records, LVTB in LVTAB recorxds). Before
every input and output operation on SYSUT3,
a test 1is made in both the ITABMOVE and

78

WRITE subroutines, to determine if the
operation to be performed differs from the
last operation (i.e. input of ITAB or
output of SUTAB/LVTAB). If the operation
to be performed is the same as the 1last
performed operaticn, input/output is ini-
tiated directly from or to the current data
set position. If, however, the operation
to be performed differs from the last
performed operation, the data set position
of the 1last transferred record is saved
(with the aid of a NOTE macro) in c¢ne .of
the pointers NOTER or NOTEW (see Figure
41); the data set is then repositioned (by
a POINT macro) to the address previously
saved in NOTER/NOTEW; and input/output is
started at the data set address to which
SYSUT3 is positioned.

SYSUT3 ~ Notes:

ZO'TER , NOTER is updated by the WRITE sub-

d:l ase ¢ - ————— routine when the data set must be re-
a :’IS.F /:B positioned from an ITAB record to the
nex d 1 ——et-— |ITAB-~ next free record, for output of a SUTAB
L:c:ea d)° I or LVTAB record.
NOTEW SUTAB NOTEW is updated by the ITABMOVE
(data set subroutine when the data set must be re-
oddress for LVTAB positioned from the end of the last writ-
next output ten LVTAB or SUBTAB record, to the
operation) SUTAB beginning of the next ITAB record to be

read into main storage.

Figure 41. Functiocn of rointers NOTER and

NOTEW in input/output opera-
tions on the SYSUT3 data set

PROCESSING OF THE IDENTIFIER TABLE

A descripticn of the entries in the
Identifier Table (ITAB) is given in Charter
4. See also Appendix II.

In the Scan III Phase, externally reg-
resented operands in the source text are
replaced by their corresponding internal
names constructed in the Identifier Takle.

of the Identifier Takle
is approximately as follows. A new ITAB
record is read into a wcrk area from the
SYSUT3 data set, as soon as a new block or
procedure 1is encountered in the Modifica-
tion Level 1 source text. When the end of

The processing

a block or procedure is reached, the cocr-
responding record in main storage is
erased. In this way, the work area at all

times contains those identifiers which have
keen duly declared (whether in the current
scope or in an enclosing score) and which
may validly occur as operands at any given
point in the source module. Any operand in
the modified source text not represented by
an entry in the wecrk area represents an
undeclared identifier. :

When an operand is recognized in the
source text, it is compared with each of
the ITAB entries in the work area, kegin-
ning with the last, until an entry is found
which contains the same external name as
the operand in the source text. The inter-
nal name in the ITAB entry is then trans-
ferred to the Modification Level 2 text in
the output buffer, replacing the externally
represented operand in the Modification
Level 1 text. If no ITAB entry is found to
match the operand in the source text, an
all-purpose internal name is transferred to
the output text, Error No. 81 is recorded,
and the Compiler enters Syntax Check Mode
(Chapter 9).

An ITAB record is the work

read into

responding record is erased on detection of

the closing operator Epsilcn. The record
is erased (by the EPSILON routine) by

resetting a pointer (ZCURITEN) kack to the
end of the preceding record. Figure 42
illustrates the handling cf the Identifier
Takle in relation to the block structure of
a hypothetical source module.

CLASSIFICATION OF FOR STATEMENTS

Every for statement in the source module

is assigned to one of three mwain lcor

area on recognition of any of the operators classificatjons: Normal Lcops, Elementary
Beta, Pi or Phi, opening a block or a Locps, and Counting Lcogs. The loop clas-
procedure. Input is handled by the ITAB- sification, which is recorded in the For
MOVE subroutine on call from the BETA and Statement Takle, specifies the logical
PIPHI routines. (Records are arranged on structure of the code generated in the
the data set in ascending Program Block Compilaticn Phase for each for statement.
Number sequence -- the same sequence as The structure of the object code generated
blocks and procedures are opened (and for each of the variocus 1loop types is
numbered) in the source module). The cor- illustrated in Chapter 8 (Figures 66-72).
Contents of |dentifier Table Work Area in the Scan lIl Phase at Differing Points in Source Module
(Lettersrefer to labelled positions in block diagram at left)
Source Module Block Structure
a) b) c) d) e) f)
At Initialization move Std. Std. Std. Std. Std. Std.
in standard procedure Proc. Proc. Proc. Proc. Proc. Proc.
designators and read P.B.1 Desig- Desig- Desig- Desig- Desig- Desig-
) PBI (CHECK read-in of P.B.1; nators nators nators nators. nators |nators
set ZCURITEN to end of
.B.1; P.B.1 P.B.1 P.B.1 P.B.1 P.B.1 P.B.1
start read-in of P.B.2)
b) (CHECK (P52 ZCURITEN ZCURITEN
—— PB2 (CHE d-in of P.B.2;
set ZCUerefoENlta end of ZITREC :
P.B.2; P.B.2 P.B.2 P.B.2 P.B.2 P.B.2 P.B.2 |
start read-in of P.B.3) ZCURITEN ZCURITEN CURITEN }
¢)| | — PB3 (CHECK read-in of P.B.3; — f 1 1 |
set ZCURITEN to end of ZITREC I 1 H | \
.B.3; |
start read-in of P.B.4) | | P.B.4 | : :
P.B.3 P.B.3 l I(obst))- | J‘ =(|obs<;- " |
ete ete
" | ZCURITE! | | !
d| — Delete P.B.3 tH - e
) TEOREESS oot 5%) I Izimeec 1 :‘Z”REC’ 1 leimRee) ™y
ZCURITEN |
e)| | — PB4 (CHECK read-in of P.B.4; = ZITREC JE— : | i
move P.B.4 to end of P.B.2; ZITREC | (obso- | i ! !
set ZCURITEN to end of |lete) | | | :
P.B.4) P.B.4 P.B.4 | : h : \
| l
! ' I : |
L Lo
f) — (Delete P.B.4 by resetting ;""“ 3 -
ZCURITEN to end of P,B.2) Notes: see note 3)
1. At the opening of a block or procedure, BETA (or PIPHI) calls the ITABMOVE subroutine, which CHECKs read-in of the Identifier Table
) L_ (Delete P.B. 2 by resettin record for the newly entered block, and then sets pointer ZCURITEN so that it points to the last identifier entry in the record. The length
e ZCURITEN o end of P Bgl) by which ZCURITEN is incremented is contained in bytes 0 and 1 of the record” s heading entry. The length is stored ot ZCURITLE, after
o the length of the preceding record (in ZCURITLE) has been stored in bytes 6 and 7 of the heading entrz. At the same time, a READ macro
is executed which starts read-in of the record for the next sequential block or procedure. Pointer ZITREC points to the position where
this record will be stored (eleven bytes beyond ZCURITEN).
S (FREEMAIN) 2. At the close of a block or procedure, EPSILON resets pointer ZCURITEN to the end of the preceding Identifier Table record (which
corresponds to the reentered block or procedure), thus erasing the identifiers declared or specified in the newéy closed block. The
length by which ZCURITEN is decremented is the length of the closed Identifier Table record, contained in ZCURITLE.
3. In addition to the operations explained in ltem 1, a test is made, at the opening of a block or procedure, to determine if ZITREC >
ZCURITEN +11. The offirmative case indicates that the Identifier Table record for the newly entered block is separated from the record
for the enclosing block by an obsolete record, that is, an Identifier Table record of a preceding (closed) block or procedure. In this
case, the entire record for the newly entered block or procedure is moved upward so as to overlay the obsolete record and adjoin the end
of the record for the embracing bloi. The length of this move is the length of the obsolete record, which is contained in the heading
entry of the record to be moved.
Figure 42. Diagram illustrating the handling of Identifier Takle (ITAB) records
in the ITAB Work Area
Chapter 6: Scan III Phase 79

Normal Loop

A for statement is classified a Normal
Loop if any one of the following condi-
tions is detected:

1. The for statement contains a proce-
dure identifier (other than a stand-
ard mathematical function or a
standard output procedure).

2. An assignment is made in the for
statement to any identifier in the
for list ('FOR'.....'DO'), excepting
the controlled variable.

3. An array element occurs in the for
list.

4. The entries in the Critical Iden-
tifier Table (CRIDTAB), representing
the identifiers in the for list, are
deleted by reason of CRIDTAB over-
flow.

Elementary Loop

A for statement is classified an Elem-
entary Loop if any one of the following
conditions is detected:

1. A real operand occurs in the for
list.

2. Any one of the operators While or
Power occurs in the for list.

3. The controlled variable occurs in

the for statement (other

optimizable subscript expressions).

4. A goto statement implying a branch
out of the for statement, is con-
tained in the iterated statement.

Counting Loop

A for statement is classified a Count-
ing Loop if it does not qualify as a
Normal Loop or as an Elementary Loop.

PROCESSING OF FOR STATEMENTS

The processing of for statements in the
Scan III Phase consists in the detection of
the logical features listed above under the
three 1loop classifications, and in reg-
istering these features in the for
statement's classification byte in the For
Statement Table.

Processing operations may be divided
into (a) the detection of operators in for
lists; (b) the recognition of identifiers
in for statements (that is, in both the for

80

list and in the
statement).

iterated part of a for

Detection of Operators in For List

than in.

The presence of any of the operatcrs
Step, While, or Power in a for 1list is
detected by the routines STEP, WHILE, and
DIPOW. Their presence is recorded by bit
settings in the for statement's classifica-
tion byte in the For Statement Table.

Recognition of Identifiers in For

Statements

The recognition of the classes of iden-
tifiers in a for statement and their pcsi-
tion in the for statement as the controlled
variable and/or a 1left variable in the
iterated statement, is handled ky the rou-
tines entered from FOLI. sSee "Identifier
Handling" and Flowchart 056.

FOLI's function is to determine the
class of an identifier and to branch tc a
corresponding routine. The identifier
class is determined by inspection of the
Special Use Bits of the characteristic
(Figure 9) in the Identifier Takle entry
corresponding to the externally represented
identifier in +the Modification Level 1
text. The routines entered from FOLI,
according to the class cf identifier recog-
nized, are as follows:

NOCRI - a type-declared simple variable cr
an array

SWILA a lakel or switch

PROFU - a procedure or formal parameter
CRITI - a critical identifier

An identifier is termed a critical iden-
tifier if it cccurs in the for list of an
emkracing for statement, provided the iden-
tifier is a declared real, integer, cor
koolean simple variakle. As soon as an
identifier of this kind is encountered in a
for list, the Special Use Bits of the
characteristic in the corresponding Iden-
tifier Table entry, originally equal to
kinary 00, are set to binary 11, thus
marking the identifier critical and facili-
tating the subsequent recognition of criti-
cal identifiers in the iterated part of the
for statement. A critical identifier's
Special Use Bits are reset to binary 00
only at exit from the fcr statement.

NOCRI determines, by reference to a
switch byte set to various values on recog-
nition of the operators For and Io, if an
identifier occurs in a for 1list. If it
does, and if the identifier is a type
declared simple variable, NOCRI makes an
entry for the identifier in the Critical
Identifier Table (CRIDTAB), and then marks
the identifier "critical" in the Identifier
Table, in the manner explained akove.
These operations are performed by the CRIMA
subroutine, which also classifies the
enclosing for statement, according to the
character of the particular identifier.
NOCRI also makes an entry for the identifi-
er in the Left Variable Table by call to
LETRAF, if the identifier occurs as an
integer left variable in the for statement.

SWILA, which is entered in the case of a
switch or 1label, classifies the enclosing
for statement(s), if any, if a Jjump is
detected out of the for statement(s).

PROFU, which is entered in the case of a
procedure or formal parameter, classifies
the embracing for statement(s), if any, as
Normal Loops.

CRITI, which is entered in the case of a
critical identifier, classifies the enclos-
ing for statement(s) according to whether
an assignment is made to identifiers in the
for list, among other things.

A for statement may be reclassified if
the controlled variable occurs inside a
nonlinear subscript expression. This con-
dition is detected by the subroutines
(called by OPBRACK, COMMA, and CLOBRACK)
which process array subscript expressions
in for statements.

OPTIMIZABLE SUBSCRIPT EXPRESSIONS

A subscript expression of any array may
be described as a formula which specifies a
displacement (usually in terms of one or
more variables). If a subscripted variable
occurs in a for statement, and if the
controlled variable occurs as a variable in
one or more subscript expressions, each
subscript expression will specify a differ-
ent displacement for every value assigned
to the controlled variable (and hence for
every cycle of the for loop).

The optimization of a subscript expres-

sion in a for statement consists in the
generation of object code which precalcu-
lates (a) the initial wvalue of the suk-

script, and (b) a constant increment to be
added in each «cycle of the for 1loop.
Arrays and subscript optimization are dis-

cussed in detail in Chapter 8.

Optimization is possikle if the follow-

ing conditions are satisfied:

1. The subscript expression is optimiza-
ble, i.e., of the form *F*ViA, where
the factor F is an integer variable or
constant, V is the controlled variakle
in the for statement, and the addend 2
is an integer variakle or constant.
Optimizable subscript expressions are
entered in the Sukscript Takle.

2. The for statement is a Counting Loop
or an Elementary Loop in which nc
assignment is made in the iterated
statement to the controlled variakle.

From the foregcing, it is apparent that
subscript optimization is performed only in
the case of Counting Locps and Elementary
Loops.

A for statement may or may not contain
an array identifier. If an array does not
occur in a for statement, subscript optimi-
zation does not come into questjon., If,
however, one cr more arrays occur in a for
statement, subscript optimization may be
possible, depending on the for statement's
loop classification and on whether the
subscript expression is cf the tyre speci-
fied above.

Each for statement's classification byte
in the For Statement Takle, specifies if
optimization is to be perfcrmed for those
subscript expressions in the for statement
which are optimizable.

Subscript expressions are processed Ly
the OPBRACK, COMMA, and CLOBRACK routines.

FOR_STATEMENT TABLE (FSTAB)

As transmitted (via main storage) to the
Subscript Handling Phase (and thence to the
Compilation Phase), the For Statement Takle
(FSTAB) ccntains a classification kyte for
each for statement in the source module.
The classification byte indicates:

1. The for statement's classifica-
tion.

loop

2. The presence of the operators Step and
While in the for list.

3. Whether or not optimization is toc be
pexformed for ortimizakle sukscript
expressions in the for statement.

The foregoing information is indicated
by bit settings in each half of the classi-
fication byte, as follows:

Chapter 6: Scan II1I Phase 81

First Half X'F' For statement is a
(bits 0-3) : Normal Loop
x'g’ For statement is an
X2 Elementary Loop
xX'o" For statement is a
Counting Loop
X'y Subscript optimization
is not to be performed
Second Half X'8" For list contains a
(bits U4-7) : step element
X'y For 1list contains a

while element (in this
case, the for state-
ment is classified an
Elementary Loop).

A maximum of 255 bytes is provided for the
For Statement Table in the Common Work
Area.

The classification byte for a given for
statement may be modified or referenced by
several routines in the Scan III Phase,
including WHILE, STEP, and DIPOW, as well
as the routines entered from FOLI.

LEFT VARIABLE TABLE_(LVTAB)

As transmitted to the Subscript Handling
Phase, the Left Variable Table (LVTAB)
contains an entry for every integer left
variable occurring in the iterated part of
for statements in which subscript optimiza-
tion is possible. In the case of a series
of nested for statements, the entries made

for each for statement include all integer
left wvariables in the enclosed for
statement(s), including the controlled
variable(s).

0 1 4
T - 1
| <FSN> | <DSA address of |
| | left variable> |
L 1]
<FSN> = <Serial For Statement

Number >

<Last three bytes of
internal name, containing
Program Block Number and
displacement in object time
Data Storage Area>

<DSA address>

Figure 43. Entry in Left Variable Table

(LVTAB)

82

LVTAB is used in the Subscript Handling
Phase to identify those subscript expres-
sions 1listed in the Sukscript Takle which
are optimizable.

Entries are made in LVTAB by the LETRAF
subroutine. LVTAB is output to the SYSUT3
data set by the WRITE subroutine, on call
from NOCRI or CRIMA.

SUBSCRIPT TABLE (SUTAB)

As transmitted to the Sukscript Handling
Phase, the Subscript Table (SUTAB) contains
an entry for every cptimizakle sukscript
expression found in the iterated part of a
for statement.

Entries are made in SUTAB ky the SUTA-
BENT subroutine on call from SUSCRITE
(which is called in turn by the COMMA and
CLOBRACK routines).

SUTAB is output on the SYSUT3 data set
(in parallel with output of LVTAB and input
of ITAB) by the WRITE subroutine.

CRITICAL IDENTIFIER TABLE (CRIDTAB)

The Critical Identifier Takle provides a
temporary record of the critical identifi-
ers in the embracing for statement(s), that
is, the nonarray identifiers found in the
for list(s) of the emkracing for
statement(s). It is wused primarily in
deternmining if an identifier in the iterat-
ed part of a for statement also occurs as
the controlled variakle in the for 1list.
It also provides a means of identifying the
for statement, in whose for list a critical
identifier occurs. The latter function
assumes importance in the case of a series
of nested for statements, where an assign-
ment is made to a critical identifier which
occurs in the fcr list(s) of one or more
enclosing for statements. This condition
affects the 1lcgic of the enclosing for
statement (s), and must be reflected in the
For Statement Table.

Poca=N

0 1 4 7 10 11 12 14

r T T T 7T T ===

| <FSN>|<DSA address of | <DSA address of |<DSA address of |<X>|<RN>|<Rel. address]|

| | array identifier>| factor> | addend>] | | of left H

| | | | | | | kracket in |

| | l | | | | o/p buffer> |

L L [1 L 4 4 J
<FSN> = <For Statement Number>

<Last three kytes of identifier's
internal name containing Program
Block Number and disrlacement>

<DSA address>

<X>Bit 0 = <Sign of factor: 0 = +, 1 = ->
1 = <sign of addend: 0 = +, 1 = =>
2 =
3 = (used only in Subscript Handling
Phase)
4-7 = <Positional number of subscript>
<RN> = <Output record number in which the

left bracket following the array
jdentifier was put out>

Figure 44. Fourteen-byte Subscript Table entry
for an optimizable array sukscript expression in a for statement

0 1 4 5 7 9
r T T T T 1
| <FSN> | <DSA address of | <Flag>| <Address 1>|<Address 2>|
| | critical identifier> | | | |
L L 1 L L ——d
<FSN> <For Statement Number>

<DSA address> <Last three bytes of critical
identifier's intermnal name>
Identifier is controlled variable
CRIDTAB contains a preceding entry for
same identifier
This entry is the first or only entry
for the identifier
CRIDTAR contains a succeeding entry for
the same identifier

off = This entry is the last (or only) entry

for the identifier

<Flag>: Bit
Bit

on
on

Bit

0
1

Bit 1 off
2 on
2

Bit

<Address 1> =
First or only entry:
<Relative address of critical
identifier's ITAB entry>
Second or subsequent entry:
<Relative address of preceding CRIDTAB
entry for same identifier>

<Address 2> =
Any entry except the last:
<Relative address of succeeding CRIDTAB
entry for same identifier>
Last or only entry:
(Not used)

' Figure 45. Entry in Critical Identifier Table (CRIDTAB)

Chapter 6: Scan III Phase 83

An entry is made in CRIDTAB by the CRIMA
subroutine as soon as it is determined that
an identifier is contained in a for 1list.
At exit from a for statement, all entries
for identifiers in the for list are delet-
ed. If the same identifier occurs in the
for lists of a series of nested for state-
ments, each entry for that identifier is
flagged to show that there is a preceding
and/or succeeding entry for the same iden-
tifier. If a for statement is classified a
Normal Loop, all CRIDTAB entries for iden-
tifiers in the for list are deleted (by the
DELCRIV subroutine). In the event of CRID-
TAB overflow, the entries for the outermost
for statement are deleted (by the CRIFLOW
subroutine).

As indicated above, CRIDTAB lists the
identifiers in the for 1list(s) of the
embracing for statement(s), each entry

indicating, first, if the identifier is the
controlled variable, and second, if the
identifier occurs in any other embracing
for statement(s). As soon as it is detect-
ed (by NOCRI) that an identifier occurs in

a for 1list, the Special Use Bits (see
Figure 9) in the corresponding Identifier
Table (ITAB) entry for the identifier are

set to binary 11, to indicate that the
identifier is a critical identifier, and an
entry 1is made for the identifier in CRID-
TAB. The Special Use Bits remain set to
binary 11 until exit from the for state-
ment, or until the for statement is classi-
fied a Normal Loop, at which time they are
reset to their original value by the CRIFO-
DEL routine. When an operand is encoun-
tered in the iterated statement (or in the
same for 1ist) whose corresponding ITAB
entry shows that the identifier is a criti-
cal identifier, control is passed by FOLI
to the CRITI routine. CRITI locates the
corresponding entry in CRIDTAB, and then
proceeds to modify the classification byte
(in FSTAB) of the for statement(s) corres-
ponding to each entry for the identifier,
according to the particular circumstances
surrounding the identifier in the iterated
statement and in the for list. These may
show, for example, that the identifier
occurs as the controlled variable or as
some other variable in the for list; that
the identifier appears to the left of, or
to the right of, an assignment operator in
the iterated statement; or that the iden-
tifier appears only in a subscript exrres-
sion. Depending on the circumstances iden-
tified, the corresponding for statement's
classification byte may be modified to
change the loop classification, or tc spec-
ify that subscript optimization is or is
not possible.

84

ARRAY IDENTIFIER STACK (ARIDSTAB)

An entry is made in the Array Identifier
Stack for an array identifier in a for
statement when the opening kracket follow-
ing the identifier is encountered. The
entry is deleted when the Lracket which
closes the array 1list is found. In a
series of nested arrays (as, for example:
(ARRAY1 [K, ARRAY2[L, ARRAY3[M,N11l1), an
entry 1is made for each array, as soon as
the opening bracket for +the particular
array is recognized. The stack entries are
released as the relevant closing kracket is
identified, the 1last entry for the inner-
most nested array keing released first, the
entry for the embracing array being
released second, and so cn.

3 5 7

=T 1
<RN> | <Address>|
|
L

T

<DSA address of | <X>
array identifier>|
L

e —— O
p——- &

J

<DSA Address> <Last three bytes of
array identifier's
internal name>

<x> = <Positional number of
subscript component in
which the array occurs>
(set tc X'00" if the
array does not occur in
an emkracing array
list)

<Outrut record numker>
<Relative address of
orening tkracket in the
output record>

<RN>
<address>

Figure 46. Entry for an array identifier
in the Array Identifier Stack

(ARIDSTAB)

The Array Identifier Stack provides tem-
porary storage for information concerning
an array in a fcr statement. The recorded
information may subsequently be transferred
to one or more entries in the Sukscript
Takle, depending on whether the subscript
expression(s) in the array list are optimi-
zable. A subscript expression containing
an array is not optimizable, but the sub-
script expressions of the nested array may
ke optimizable.

MODIFICATION LEVEL 2 SOURCE TEXT

The Scan III Phase generates a seccnd
transformation of the source text, called
Modification Level 2 (the first transforma-
tion being that c¢f Modification Level 1,
produced by the Scan I/II Phase). The
Modification Level 2 text, which forms the

primary input to the Compilation Phase, is X'80°'
transferred to the SYSUT2 data set, unless
it occupies less than a full buffer, in
which case it 1is transmitted via Source
Text Buffer 1. The principal changes
reflected in the Modification Level 2

(set to X'80' Ly CRIMA after the
controlled variakle in a for state-
ment has been recognized) signifies
that a for list fcllowing the con-
trolled variable is being processed.

source text, as compared to Modification
Level 1, are as follows:

1. BAll externally represented operand
identifiers are replaced by five-byte
internal mnames (Appendix 1II). The
internal names are obtained from the
Identifier Table. Undeclared iden-
tifiers are replaced by an all-purpose
internal name.

2. Constants are replaced by five-byte
internal names specifying the type of
constant (real or integer) and the
field in the Constant Pool where the
constant is stored, and the Constant
Pool Number. Defective constants are
replaced by an all-purpose internal
name (Appendix II1).

3. The two-byte Identifier Group Number
following the operators which mark the
opening and closing of blocks, proce-
dures, and for statements in the Modi-
fication Level 1 text (see "“Scope
Identification" in Chapter 4) is elim-
inated in the Modification Level 2
text.

4. The Apostrophe preceding the internal
names of character strings and boolean
constants is removed, but the internal
names are transferred to the Modifica-
tion Level 2 text unchanged.

5. The operator Rho (inserted by the Scan
I/II Phase at the beginning of a
record when a parameter delimiter
extends across a buffer boundary) is
removed, together with the preceding
letter string. The right parenthesis
at the beginning of the letter string
is replaced by a Comma.

SWITCHES

The following switches are used in the
routines of the Scan III Phase.

ZFORTEST

X'00' (set to X'00' on detection of
operator Do) indicates that the
source text currently being processed
is not part of a for list.

X'CO0' (set to X'CO' on recognition of
operator For) signifies that a for
statement has been entered.

IOBYTE (Bits 0 thru 3 are named as

follows. They are tested and turned on
or off in the ITABMOVE, WRITE, and
CHECK subroutines).

READM=1 signifies that the last SYSUT3
operation was a READ.

WRITEM=1 signifies that the last
SYSUT3 operation was a WRITE.

READC=1 signifies that the last SYSUT3
operation was a CHECK following a
READ.

WRITEC=1 signifies that the last
SYSUT3 operation was a CHECK follow-
ing a WRITE.

SCATEST (Bits 0 thru U4 are named as
follows. They are tested and turned on
or off in the DIGIT19, DIGITO, DECPCIN,
SCAFACT, and REALCON routines).

SFSIGN=1 signifies that the Scale Fac-
tor is followed by a +/- sign.

SFLO=1 signifies that a scale factor
exponent contains cne or more leading
Zeros.

SF19=1 signifies that a significant
digit has been encountered in a scale
factor exronent.

SF=1 signifies that a scale factor has
been encountered as part of a real
nunber.

PRECERR=1 signifies that the precision
of a real constant exceeds the
machine capacity.

STATUS (Bits 0 and 4 are named as fcl-
lows. They are tested in the OPBRACK,
COMMA, and CLOBRACK routines.)

SARRAY=1 (turned on by ARRAY on detec-
tion of the operator Array) signifies
that an array declaration is being
processed.

SSWITCH=1 (turned on by SWITCH on
detection of the operator Switch)
signifies that a switch declaration
is being processed. SARRAY and
SSWITCH are both turned off by SEMI-
DELT at the close of the declaraticn.

ZCLOBRA

X'00*" (set to X*'00' by COMMA and

Chapter 6: Scan III Phase 85

OPBRACK on detection of the operators
[or comma in a subscript expression)

signifies that SUSCRITE is to be
called.
X'FF' (set to X'FF' by CLOBRACK On

detection of an array element in a
subscript expression) signifies that
the rest of the expression cannot ke
optimized and specifies that SUSCRITE
is not to be called.

ZILVoVv

X'00' The maximum capacity of SUTAB or
LVTAB has not yet been reached.

X'FF' (set to X'FF' in LETRAF and
SUTABENT) signifies that the maximum
capacity of LVTAB or SUTAB has been
reached, and specifies to SUSCRITE
and LETRAF that no more entries are
to be made in these tables.

CONSTITUENT ROUTINES OF SCAN III PHASE

The principal constituent zroutines of
the Scan III Phase are described below.
The Index of Routines in Appendix XI pro-
vides a guide to the flowchart in the
Flowchart Section and to the text in which
each routine is outlined.

PHASE INITIALIZATION (INITIATE)

The Initialization routine acquires main
storage for the private work area shown in
Figure 47; initializes pointers; issues a
SPIE macro to take care of exponent over-
flow and underflow interrupts; stores a set
of 28 standard procedure designators in the
Identifier Table (ITAB) work area; reads in
the first Modification Level 1 text record
from the SYSUT1 data set; and exits to the
GENTEST routine.

TERML is the address of the routine
entered in the event of a program interrupt
or input/output error. It is stored at
ERET, the location referenced by the Pro-
gram Interrupt routine (PIROUT) and the I/O
Error routines (SYNAD and SYNPR) in the
Directory. TERM1 is changed to TERM2 after
the GETMAIN macro has been issued.

86

A SPIE macrc is then issued to provide
for special handling of interrupts due to
exponent overflow or underflow. By execu-
tion of this macro, the Directory routine
PIROUT (the routine specified in the SPIE
macro executed in the Initialization Phase)
is replaced-as the program interrupt exit,
by a routine named INTERUPT. INTERUPT
determines the tyre of interrupt involved,
and if it is any interrupt other than an
exponent overflow, passes control to
PIROUT, which then passes control to the
entry address TERM2 stored at ERET (see
preceding paragragh). If, however, the
interrupt is due to exponent overflcw,
INTERUPT reccrds Exrror No. 82, disregards
the constant in the Modification Level 1
source text, transfers an all-purgcse
internal name to the Modification Level 2

text, and passes control to the GENTEST
routine.
The GETMAIN instruction is issued after

the area sizes for all work areas have keen

totalled. The area sizes are obtained fror
the Area Size Takle in the Common Wcrk
Area.

After initializing a pointer to Socurce

Text Input Buffer No. 1 in +the Common
Area, a call is made to the Change Input
Buffer subroutine (ICHA), provided the
CNEREC switch in the HCOMPMOD Control Field
shows that the source text has not Lkeen
transmitted from the Scan I/II Phase in
main storage. ICHA reads in the first
Modification Level 1 text recorxd.

A set of 28 eleven-kyte entries contain-
ing the external and internal names of all
ALGOL standard I/0 procedures and mathemat-
ical functions, is moved into the Identifi-
er Table area from a takle named FIXITAB.
Appendix III 1lists the internal names of
standard I/0 procedures and mathematical
functions.

After fetching
macro) the data set address
Identifier Table

(by means of a NOTE
of the 1last
(ITAB) record on SYSUT3,

and saving the address in NCTEW and
SULTSTRT, the data set is repositioned to
the first ITAB record, and a call is rade

to the ITABMOVE sukroutine, which reads in
the first record. The data set address in
NOTEW is referenced ky the WRITE sukroutine
in the present phase; SULTSTRT is ref-
erenced in the Subscript Handling Phase,
when SUTAB and LVTAB are read into main
storage.

—~

feet

ZKOPOOL

ZWP=ZDWP=ZLITSTA

(Zwp)
(ZDWP)

ZKOPEND
ZIBSTAO

ZCURITEN
Z|TREC

ZITEND
ZIN=ZIBREAD
(ZIN)

ZOUT=ZOBWORK

(Space reserved for strings stored

—) inSconl/ilPhase) |
Constant Pool (4096)
=5 ZTEXTCO
{
pe——

(Standard Procedure Designators)

Identifier Table (ITAB)*

o
i

Source Text Input Buffer No.2 *

ZFILE1 (ZOurT) T
ZFILE2]
ZFILE3
ZFILES ZOBWRITE
ZFILES
ZFILE9

PFA=PFANO

(PFA) T

ZSUTAPO=ZSUDAD
SUSTRT

(ZSUTAPO)

ZLEVA=ZLESTA=LVSTRT

(ZLEVA)

ZLEMAX

Source Text Output Buffer No. 1*

Source Text Output Buffer No. 2*

Critical Identifier Table (CRIDTAB)*

t

Subscript Table (SUTAB) *

T
t

Left Variable Table (LVTAB)*

* Area size specified by Area Size Table in Common Work Area. See
Appendix VIl for the variation in area sizes as a function of the SIZE

option.

Figure 47.

Notes:

1.

Source Text Input Buffer No. 1 is located in the
Common Area acquired by the Initialization Phase.
Its address is obtained from the Common Work Area
location SRCETADD and stored at ZIBRUN. In the
ICHA subroutine, input buffers are exchanged by
exchanging the contents of ZIBRUN and ZIBREAD
and setting ZINR=ZIBRUN, where the latter point
to the next record to be processed, while ZIBREAD
points to the alterate buffer into which read-in of
the following record has been started. The end of a
record is identified by the operator Zeta.

In the OUCHA subroutine, source text output buffers
are exchanged by exchanging the contents of
ZOBWORK and ZOBWRITE and setting ZOUT=
ZOBWORK, where the latter point to the vacant
buffer to be filled next, while ZOBWRITE points to
the alternate buffer from which output of a record
has been started. Pointers ZFILE1, ZFILE2, ,
ZFILE9 point to the end of the current buffer, less 1,
2,..... , 9 bytes.

In the Constant Pool, ZLITSTA points to the next free
entry, allowing for strings stored by the Scan 1/11
Phase. The displacement by ZLITSTA from the start of
the pool is obtained from the displacement pointer
PRPOINT, transmitted from Scan 1/11 in the Common
Work Area.

ZWP and ZDWP point to the next free entry ot a
word or double word boundary.

ZTEXTCO is set equal to ZWP + 56 after a TXT record
has been output. A TXT record is output as soon as
ZWP>ZTEXTCO.

In the Identifier Table, ZCURITEN points to the end
of the set of ITAB records representing identifiers
declared or specified in the embracing blocks and
procedures. ZITREC points fo the next entry.

A four-byte key is stored at the start of SUTAB and
LVTAB records. The key permits the Subscript Hand-
ling Phase to identify each record read from SYSUT3.

Prjvate Area acquired by Scan III Phase

Chapter 6:

Scan III Phase

87

GENERAL TEST (GENTEST)

GENTEST scans the Modification Level 1
text in the current input buffer by means
of a Translate and Test instruction, and
branches to one of 26 routines, according
to the function byte assigned the particu-
lar character in Translation Table GENER.
The function bytes assigned by GENER to the
character set and the routines entered from
GENTEST are as follows:

Function Routine
Character Byte Entered
<Any letter> 04 LETTER
<Any digit 1 - 9> 08 DIGIT19
<Digit 0> 0ocC DIGITO
Decimal Point 10 DECPOIN
Scale Factor 14 SCAFACT
Apostrophe 18 QUOTE
Beta 1C BETA
Pi, Phi 20 PIPHI
For 24 FOR
Epsilon 28 EPSILON
Eta 2C ETA
Do 30 DO
While 34 WHILE
Semicolon, Delta 38 SEMIDELT
[3C OPBRACK
Comma 40 COMMA
] (1) CLOBRACK
Zeta 48 ZETA
Gamma uc GAMMA
Oomega 50 OMEGA
+, =, *, +, (,), 54 OTHOP
<s >' <, 2, =, 0F,
Assign, Not, Impl, Or,
And, Equiv, Label Colon,
Begin, Goto, Until, If,
Then, Else, End, Power
Rho 58 RHO
Step 5C STEP
Array 60 ARRAY
Switch 64 SWITCH
Power,/ 68 DIPOW

IDENTIFIER TEST (LETTER)

See "Identifier Handling" in this chapter.

LETTER, which is entered from GENTEST on
recognition of a letter, scans the source
text to the next nonletter, nondigit char-
acter, and bkranches to one of four rou-
tines, according to the function kyte
assigned by Translation Table IDENTI. The
function bytes assigned to the character
set and the routines entered from LETTER
are as follows:

88

Routine
Entered

Function
Byte

Character

<Any letter or digit> 00 (No branch

scanning

continues)
Zeta o4 ZETALET
Rho 08 RHO
Decimal Pcint Oc ERROR1
Scale Factor, 10 IDENT
Apostrorhe

<All other operators>

Entry to IDENT signifies that an iden-
tifier in a valid context has keen encoun-
tered. IDENT searches the Identifier Takle
for the corresponding entry, and when the
entry is found, passes control to FOLI (see
below). Contrcl is suksequently returned
to LETTER1, which transfers the internal
name of the identifier to the Modification
Level 2 text, replacing the external name
in the Modification Level 1 text.

ZETALET exchanges source text buffers,
by call to the ICHA subroutine, and returns
contrcl to LETTER.

ERROR1 branches tc INCOROP, which
records Error Nc. 80, transfers an all-
purpose internal name tc the output text
and switches the Compiler to Syntax Check
Mode before returning control to GENTEST.

ITAB SEARCH (IDENT)

IDENT moves up to six characters of the
identifier in the source text to a field
named ZIDEX, and then compares the
identifier with the external names listed
in the Identifier Table. When a matching
entry is found, control is passed to the
Identifier Classification Routine (FOLI).
If an identical external name is not foungd,
the identifier in the source text is unde-
clared: Error No. 81 is recorded, Syntax
Check Mode is entered, and an all-purpose

internal name at ZALLPU is addressed. Ccn-
trol is then returned to LETTER (via
LETTER1) which transfers the internal name

to the output buffer, and
to GENTEST.

returns control

IDENTIFIER CLASSIFICATION (FCLI)

FOLI inspects the internal name located
by IDENT in the Identifier Takle, corres-
ponding to the identifier in the source

text, and branches to one of four routines,
according to the class of identifier desig-
nated by the Special Use Bits in the
characteristic (Figure 9):

}

Special Program
Use Bits Identifier Class Entered
00 Declared simple NOCRI
variable or array
identifier

01 Procedure identifier PROFU
or formal parameter

10 Label or switch SWILA
identifier

11 Critical Identifier CRITI
(the identifier occurs
in the for list of
the embracing for
statement)

Only the first three classes are rep-

resented in the Identifier Table as con-
structed in the Scan I/II and Identifier
Table Manipulation Phases. A declared
real, integer, or boolean simple variable
is <classed a critical identifier (the
fourth class) as soon as jit is detected in
a for list. 1In practical terms, this means
that the Special Use Bits of the corres-
ponding entry in the Identifier Table are
set to binary 11 and that an entry for the
identifier is made in the Critical Iden-
tifier Table. At exit from the for state-
ment, all identifiers in the for list are
restored to the noncritical class by reset-
ting the Special Use Bits of the corres-
ponding Identifier Table entries to 00, and
the entries in the Critical Identifier
Table for those identifiers are deleted.

NONCRITICAL IDENTIFIER (NOCRI)

NOCRI determines whether the identifier
encountered in the source text occurs in a
for list, in the iterated part of a for

statement, or outside a for statement. If
the identifier occurs in a for 1list
(indicated by ZFORTEST+# X'00'), a call is

made to the CRIMA subroutine, which sets
the Special Use Bits of the corresponding
Identifier Table entry to 11, classifying
it a critical identifier, and makes an
entry for the identifier in the Critical
Identifier Table. If the identifier occurs
in the iterated part of a for statement and
if it occurs as an integer left variable, a

call is made to the LETRAF subroutine,
which makes an entry in the Left Variatle
Table. If the identifier occurs outside a

for statement, control is returned to the
LETTER routine, which transfers the inter-
nal name in the corresponding Identifier
Table entry to the output text, replacing
the external name in the Modification Level
1 text.

PROCEDURE/PARAMETER (PROFU)

PROFU is entered when the FCLI routine
has detected a rrocedure identifier or a
formal parameter. PROFU erases all entries
(if any) in the Array Identifier Stack in
the event the procedure identifier or for-
mal parameter occurs in an array list; and,
if the procedure or formal parameter occurs
in a for statement (indicated ky entries in
the Critical Identifier Table), calls the
DELCRIV subroutine, which classifies the
embracing for statement(s) Normal Loops and
erases CRIDTAB. Control is returned to the
LETTER]1 routine, which transfers the inter-
nal name of the identifier to the outrput
text.

SWITCH/LABEL (SWIIA)

SWILA is entered when the FOLI routine
has identified a switch or label identifi-

er. The function of SWIIA is to determine
whether the 1label or switch implies a
branch out of the current scope. If so, it

is determined (by reference +to the Grougr
Table) if +the bkranch 1is into a scope
enclosing the current sccpe, or into a

scope enclosed Ly the current scope. In
the first case, the jump is valid, kut if
the current scope is a for statement, its
optimization is affected, and the corres-
ponding for statement's classification byte
is modified.

In the seccnd case, the kranch is inval-
id, as it is into a for statement, and an
error is recorded. In every case, control
is returned to the LETTER1 routine.

CRITICAL IDENTIFIER (CRITI)

CRITI is entered when the FOLI routine
has identified an orerand that is a criti-
cal identifier, i.e. the source identifier
occurs in the for list of an embracing for
statement. (An entry for the identifier
will have been previously made in the
Critical Identifier Takle). The action
taken depends on whether the operand occurs
in a for 1list or nct (indicated ky the
switch ZFORTEST).

Identifier in For List: A branch is made to

the CRIMA subroutine which constructs an
entry for the identifier in the Critical
Identier Table.

CRITI then searches the Critical Iden-
tifier Table for the previcus entry for the

Chapter 6: Scan III Phase 89

identifier. When the -earlier entry has
been found, the two entries are chained
together, the flag byte in each entry being
set so as to indicate respectively that the
entry is preceded or followed by another
entry for the same operand, and the rela-
tive address of the preceding or following
entry being stored in byte 5 and 6 or byte
7 and 8 (see Figure 45).

Tests are now made of the appropriate
bit in the flag-byte of the two entries to
determine whether or not the identifier
constitutes the controlled variable in the
respective for statements. The action
taken for the various alternatives is as
follows:

If the identifier occurs as the con-
trolled variable in the current for state-
ment as well as an enclosing for statement,
the classification byte in the For State-
ment Table for the enclosing for statement
is modified to show that subscript optimi-
zation is not possible. If the identifier
in the current for statement 1is the con-
trolled variable, but in the enclosing for
statement is not the controlled variable,
the enclosing for statement is classified a
Normal Loop.

If the identifier occurs twice in the
current for list (once as the controlled
variable), the current for statement is
classified a Normal Loop.

A test is now made to determine if the

preceding entry in the Critical Identifier
Tablie is chained to another preceding
entry. If it is, the for statement ref-

erenced by that entry is classified in the
For Statement Table in the manner descriked
above, according to the position of the
identifier in the current for statement and
in the enclosing for statement.

Identifiexr Not in For List: If the Array
Identifier Stack contains any entries,
indicating that the identifier occurs in a
subscript expression, control is returned
immediately to GENTEST. If, however, the
Array Identifier Stack is empty (indicated
by ZARSPO = ZARNO), the processing contin-
ues as follows:

A search 1is made in the Critical Iden-
tifier Table for the entry corresponding to
the identifier in the socurce text (the
search is made by comparing the contents of
bytes 1, 2, and 3 in the Critical Identifi-
er Table entries with the contents of bytes
8, 9, and 10 of the Identifier Table entry
previously located by IDENT).)

If the identifier in the source text is

a left variable (followed by :=), and if
the entry in the Critical Identifier Takle

20

indicates that the identifier occurs in the
for 1list as the contrclled variakle, the
classification ktyte of the corresponding
for statement is modified to show that
sukscript optimization is not possible. If

the identifier is a 1left variakle and
occurs in the for list as an operand other
than the contrclled variakle, the for

statement is classified a Normal Loop.

If the identifier in the source text is
not a left variakle but occurs in the for
list as the controlled variakle, the cur-
rent for statement is classified an Elexen-
tary Lcog. Nc entry is made in the For
Statement Table if the identifier occurs in
the for list as an orerand other than the
controlled variable.

After the action described above, ccn-
trol is returned to the IETTER routine,
which transfers the identifier's internal
name in the Identifier Table to the Modi-
fication Level 2 text.

MAKE CRIDTAB ENTRY (CRIMA)

CRIMA is entered when the NOCRI or CRITI
routine has determined that an identifier
occurs in a for list. Provided the iden-
tifier is not an array, CRIMA makes an
entry in the Critical Identifier Table,
indicating if the identifier is the con-
trolled variable or not; classifies the for
statement a Counting or Elementary Ioop,
depending on whether the identifier is an
integer or not; and changes the Special Use
Bits of the corresponding Identifier Takle
entry to mark the identifier a critical
identifier. If the for statement is
enclosed by another for statement, and the
identifier is a controlled integer varia-
ble, a call is made to the LETRAF subrocu-
tine, which makes an entry for the iden-
tifier in the Left Variakle Takle.

If the identifier is an array, the for
statement is classified a Normal Loop and a
call is made to the CRIFODEL subroutine,
which erases all entries in the Critical
Identifier Table for identifiers in the for
list of the for statement.

CRIDTAB OVERFLOW (CRIFLOW)

CRIFLOW is called by the CRIMA sukrou-
tine in the event of overflow of the
Critical Identifier Takle (CRIDTAB). CRI-
FLOW deletes all CRIDTAB entries for the
outermost enclosing for statement and clas-
sifies that for statement a Normal Loogp.

P

ERASE CRIDTAB (DELCRIV)

DELCRIV is called by the PROFU routine,
when it is determined that a procedure or a
formal parameter occurs in a for statement.
DELCRIV erases all entries in the Critical
Identifier Table, representing identifiers
in the for list(s) of the embracing for
statement(s); resets the Special Use Bits
of the corresponding Identifier Table
entries (to indicate they are mno longer
critical); and reclassifies the embracing
for statement(s) Normal Loops.

UPDATE CRIDTAB (CRIFODEL)

CRIFODEL is called by the ETA routine
and by the CRIMA subroutine when an array
has been encountered in a for statement.
CRIFODEL deletes the entries in the Criti-
Identifier Table for identifiers in the for
list.

MAKE LVTAB ENTRY (LETRAF)

LETRAF is called by NOCRI when a left
variable 1is encountered in the iterated
part of a for statement, and by CRIMA when
a controlled variable is identified and it
is determined that the current for state-
ment is enclosed by another for statement.
LETRAF makes one entry in the Left Variakle
Table (LVTAB) for the 1left variable, for
every for statement which emkraces the left
variable. If the LVTAB work area is
filled, the WRITE subroutine is called.

NONZERO DIGIT (DIGIT19)

See "Number Handling" in this chapter.

DIGIT19 is entered from GENTEST on
detection of any nonzero digit in the
Modification Level 1 text, and from DIGITO
on recognition of a nonzero digit following
a zero. DIGIT19 scans the source text to
the next nondigit character, using Transla-
tion Table DIG19, and branches to one of

six routines according to the assigned
function byte. The function bytes assigned
to the character set and the routines

entered from DIGIT19 are as follows:

Function Routine
Character Byte Entered
Decimal Point o4 DECPTM
Scale Factor 08 SCAFACTM
<Any Letter> ocC QCTCRLT
Apostrorhe
Zeta 10 ZETAM
Rho 14 RHO
<Any other character> 18 OTHER
<Any digit> 00 (No branch-
scanning
continues)
Before scanning is initiated, registers

are set to specify the address and 1length
of a 19-byte field named NUMBER to which
the digits of a constant are suksequently
moved.

DECPTM is entered when the Decimal Pcint
in a real ccnstant (e.q. 640.325) is
encountered. DECPTM moves the significant
integer digits (640 in the example) to the
19-byte field named NUMBER, computes the
number of digits moved in REXCORR (register
7), and branches to DECPOIN (see belcw).
The digit count in REXCORR 1is treated as
the exponent of a power-of-ten correction
factor which must be applied +to the ccn-
stant, regarded as a mantissa, with the
Decimal Point shifted to the 1left of the
high order digit. Thus, the constant
640.325 is treated as the rroduct .640325 x
103,

SCAFACTM is entered when the Scale Fac-
tor in a constant (e.g. 28°'45) is encoun-
tered. SCAFACTM moves the significant
digits preceding the Scale Factor to the
19-byte field named NUMBER, computes the

number of digits moved (in REXCORR), and
branches to SCAFACT (see below). The digit
count in REXCORR is treated as the exponent
of a power-of-ten correction factor which
must be applied to the mantissa in which
the implied decimal point has been shifted

to the 1left of the high-order digit. The
digit count 1is subsequently added (by
SCAFACT) to the exponent following the

Scale Factor.

QTORLT is entered if a constant contains
an invalid character or if a constant
occurs in an invalid context. QTORLT exits
to INCOROP, which records Error No. 80,
transfers an all-purpose internal name, and

returns to GENTEST after switching to Syn-
tax Check Mode. ZETAM exchanges input
buffers (after moving the preceding digits

to NUMBER and computing the digit count in
REXCORR) and returns to DIGIT19, which then
scans the remainder of the constant in the
new buffer.

RHO returns control directly to GENTEST,

disregarding the preceding digit(s). The
operator Rho signifies, in this particular

Chapter 6: Scan III Phase 91

context, that the preceding digit(s)
form(s) part of an invalid identifier that
is to be disregarded.

ZERO DIGIT (DIGITO)

DIGITO is entered from GENTEST when a
lone zero or a nonsignificant zero at the
beginning of a constant is encountered in
the Modification Level 1 text. DIGITO
scans the source text to the next nonzero
character, using Translaticn Table DIGO and
branches to one of seven routines, accord-
ing to the assigned function byte. The
function bytes assigned to the character
set and the routines entered from DIGITO
are as follows:

Function Routine
Character Byte Entered
<Nonzero digit> o4 DIG191
<Any Letter> 08 QTORLT
Apostrophe
Decimal Point 0ocC DECPOIN1
Scale Factor 10 SCAOQ
Zeta 14 ZETAOQ
Rho 18 RHO
<Any other character> 1cC OTHOPO
<Zero Digit> 00 (No branch-
scanning
continues)

Before scanning is initiated, registers
are set to specify the address and length
of a 19-byte field named NUMBER to which
the nonzero digits following the zero(s)
are subsequently moved.

DIG191 (an entry point of the DIGIT19
routine) is entered when a nonzero digit is
encountered in a constant (e.g.064) begin-
ning with zero.

DECPOINl1 (an entry point of the DECPOIN
routine) is entered when a Decimal Point is
encountered in a real constant (e.g.
0.325).

SCAO0 is entered when the Scale Factor is
encountered immediately following a zero
(e.g. 0'45). SCAO0 loads the value zero
(the equivalent value of a constant of this
type) and exits to the SCAFACT routine.

OTHOPO
is identified.

is entered when the integer zero
OTHOPO transfers a five-
byte internal name, referencing a location
in Constant Pool No. O where the constant
zero is stored, to the Modification Level 2
text and returns control to GENTEST.

CTORLT and RHO perform the same
functions as those described under the
DIGIT19 routine. ZETA0O exchanges input

buffers and returns control to DIGITO.

92

DECIMAL POINT (DECPOIN)

DECPOIN is entered

1. From GENTEST on recognition of the
Decimal Point at the begining of a
real constant (e.g. .325).

2. From DIGITO0O on recognition of the
Decimal Point following a zero (e.g.
0.325).

3. From DIGIT19 on recognition of the
Decimal Point in a real constant (e.qg.
640.325 or 1.325'45). In this case,
the integer digits will have «Lkeen
moved, before entry to DECPOIN, to a
19-byte field named NUMBER, and reg-
ister REXCORR will ccntain the expo-
nent of a power-of-ten correction fac-
tor to be applied to the constant,
regarded as a mantissa with the deci-
mal point shifted to the left of the
high order digit.

DECPOIN scans the source text to the
next character other than a 1-9 digit,
using Translation Takle DECPO, and branches
to one of five routines, according to the
assigned function byte. The function Lkytes

assigned to the character set and the
routines entered are as follows:

Function Routine
Character Byte Entered
<Digit Zero> ou DECPO
<Any letter>, Decimal 08 QTORLTP
Point or Agostrorhe
Scale Factor ocC DECPSCA
Zeta 10 DECPZETA
<Any other character> 14 DECPOT
<Any 1-9 Digit> 00 (No kranch-

scanning

continues)

Before scanning is initiated, registers
are set to specify the address and length
of a 19-byte field named NUMBER, to which
the digits fcllowing the Decimal Point are
subsequently moved.

DECPO is entered when any zerc following
the Decimal Point is enccuntered. Provided
the zero is not preceded by a significant
digit (as in 0.0325), DECPO decrements
REXCORR (register 7) for each zero follcw-
ing the Decimal Point, and returns to
DECPOIN. If the 2zero is rpreceded Ly a
significant digit (as in 6.0325 or 0.3025),
REXCORR is not decremented. The resulting
count, if any, in REXCORR is treated as the
(negative) exponent of a pcwer-of-ten cor-
rection factor tc be applied to the con-
stant, regarded as a mantissa with the
decimal point shifted immediately to the

left of the first nonzero digit. Thus, for Function Routine
example, the constant 0.0325 is regarded as Character Byte Entered
the product 0.325 * 10-%
<Any nonzero digit> ou SCA19
<Zero> 08 SCAZERC
DECPSCA is entered when the Scale Factor + or - oc SCASIGN
is encountered in a real constant (e.g. <Any Letter>, Decimal 10 SCAQL
1.325'+45 oxr 0.0125'-45). DECPSCA moves Point, Scale Factor
the decimal digits preceding the Scale or Apostrophe
Factor to the 19-byte field NUMBER, adjoin- Zeta 14 SCAZETA
ing the integer digits (if any) previously <Any other operator> 18 SCAOT
moved by DIGIT19, and passes control to
SCAFACT. DECPOT is entered when the end of SCA19, SCAZERO, and SCASIGN each set a
a decimal constant (e.g. 1.25) is iden- switch (named SF19, SFLO, and SFSIGN,
tified. Provided the constant is not zero, respectively) to indicate the detection in

DECPOT passes control to the REALCON rou-
tine. If the constant is equivalent to
zero, register XFLOAT is 1loaded with the

value zero, and control is passed to REAL-
HAN. QTORLTP and DECPZETA perform essen-
tially the same functions as QTORLT and

ZETAM in the DIGIT19 routine.

SCALE FACTOR (SCAFACT)

SCAFACT is entered:

1. from GENTEST on recognition of the
Scale Factor in a constant having no
mantissa (e.g. '45);

2. from DIGITO on recognition of the

Scale Factor following a zero mantissa
(e.g., 0'45);

3. from DIGIT19 on recognition of the
Scale Factor following an integer man-
tissa (e.g. 28'45); and

4. from DECPOIN on recognition of the
Scale Factor following a decimal man-
tissa (e.g. 1.325"'+45).

In both cases(3) and (4), the signifi-
cant digits of the mantissa will have been
moved, before entry to SCAFACT, to a
19-byte field named NUMBER, and register
REXCORR will contain the exponent of a
power-of-ten correction factor to be
applied to the mantissa, in which the
decimal point (expicit or implied) has Leen
shifted to the. left of the high-order
nonzero digit.

SCAFACT scans the source text, using a
Translate and Test instruction, and branch-
es to a routine determined by the assigned
function byte. The function bytes assigned
to the character set and the routines
entered are as follows:

the exponent following the Scale Factor of
(a) a nonzero digit, (b) a leading zero, or
(c) a leading +/- sign. These switches are

inspected in SCASIGN to determine if a +/-
sign marks the beginning or end of the
exponent, and in SCAOT to determine if the

exponent is syntactically correct. If a
+/- sign rrecedes the exponent (indicated
if none of the switches have been turned
on), SCASIGN stores the sign for use when
the exponent is converted to kinary (in
SCAOT). SCAOT in entered when the end of a
floating point constant (e.g. 28'45 or
1.325"+45) has been identified. SCROT
moves the digits of the exronent following
the Scale Factor to a nine-kyte field named
SCAWORK; converts the exponent (together
with the rreviously saved exponent sign) to
kinary form, and adds the resultant to the
exponent of the power-of-ten correction
factor (if any) in REXCORR. This action
has the effect of transforming a floating
point constant to a standard format, ccn-
sisting of a fractional mantissa, with the
decimal point shifted to the left of the
high-order nonzero digit, and an integer
exponent, where the mantissa is stored at
the 19-byte field NUMBER and the exponent
is contained in REXCORR.

SCAQL and SCAZETA crerform essentially
the same functions as QTCRIT and ZETAM in
the DIGIT19 routine.

INTEGER CONVERSION (INTCON)

INTCON converts an integer constant to
binary form (in register RBIN) and passes
control to INTHAN, which stores the con-
stant in the Constant Pool and transfers a
five-byte internal name representing the
constant, to the Modification Level 2 text.
If a constant exceeds ten digits, Error No.
83 is recorded, the constant is moved to
the 19-byte field NUMBER, and control is
passed to REALCON.

INTCON is entered from DIGIT19, the
limits of the constant in the source text
being specified by two rointers, its length
being contained in register REXCORR.

Chapter 6: Scan III Phase 93

REAL CONVERSION (REALCON)

REALCON converts a real constant to

floating point form (in floating point
register XFLOAT) and passes control to
REALHAN, which stores the constant in the

Constant Pool and transfers a five-kLyte
internal name respresenting the constant to
the Modification Level 2 text.

REALCON is entered

1. From DECPOIN when the end of a decimal
constant (e.g. 32.125) has been iden-
tified;

2. From SCAFACT when the end of a float-
ing point constant (e.g. 1.25'47) has
been identified; and

3. From INTCON when an integer constant
exceeds ten decimal digits or the
maximum range of a fixed point con-
stant.

At entry to REALCON, the constant to be
converted will have been transformed to the
standard format of a decimal matissa, with
the implied decimal point to the left of
the high order digit, and an integer expo-
nent (the constant being equal to: Mantissa
*10**Exponent) . The mantissa is stored in
decimal form in a 19-byte field named
NUMBER, while the exponent, in binary form,
is contained in REXCORR (register 7).

The conversion to floating point form
proceeds as follows:

1. The mantissa is tranformed to an inte-
ger mantissa, the implied decimal
point being shifted to the <right of
the lowest order digit, by subtracting
the number of digits in the mantissa
from the exponent in REXCORR.

2. The mantissa is converted to binary
and stored in the second four bytes of
an eight-byte field named ZFLOFIEL
containing the power-of-sixteen char-
acteristic of 78 (X'4E') in the high-
order byte. The contents of ZFLOFIEL
are then loaded (normalized) in
floating point register XFLOAT. The
characteristic of 78 (equivalent in
excess-64 notation to a power-of -
sixteen exponent of 14) is the
exponent required to compensate for an
implied 14-place leftward shift of the

radix point, i.e., from a position to
the right of the 1low-order mantissa
digit (see item 1). The charac-

teristic is reduced, when the mantissa
is normalized in XFLOAT, by the number
of hexadecimal places the high order
digit is shifted left.

94

3. The mantissa in XFLOAT is multirlied
by the hexadecimal equivalent of the
power-of-ten exponent in REXCORR. The
hexadecimal equivalent is obtained
from one of two frower-of-ten takles
named ZEXTABP and ZEXTABN, the formrer
for positive rowers of ten, the latter
for negative powers of ten. Each
table contains fifteen entries, the
first seven for exponents in the range
1 to %7, the 1last eight for the
exponents #8, 16, *24, and so on up
to #64. Multiplication of the mantis-
sa is carried out in one or more
steps, depending on whether the parti-
cular power-of-ten 1is exactly rep-

resented in the table. Thus, for
examrle, if the rpower-of-ten is 12
(decimal) the mantissa is multiplied

first by the equivalent of 104 and
secondly by the equivalent of 108,

INTEGER HANDLING (INTHAN)

INTHAN stores a fixed point constant
(contained in register RBIN) in the next
free entry of the Constant Pool, and trans-
fers a five-byte internal name to the
output text, referencing the location where
the constant is stcred. If the constant is
in the range 0 to 15 inclusive, the inter-
nal name references the relevant constant
previously stored in the Constant Pool in
the Scan I/II Phase. INTHAN is entered
from INTCON and from REALHAN if short
precision is specified for real constants.

REAL HANDLING {(REALHAN)

REALHAN stores a floating point constant
(transmitted in floating point register
XFLOAT) in the next free entry of the
Constant Pool and transfers a five-kyte
internal name, referencing the locaticn
where the constant is stored, to the Modi-
fication Level 2 text. If short precisicn
is specified, the constant in XFLCAT is
transferred to fixed roint register RBIN
and the INTHAN routine is entered. After
the constant has been stcred in the Con-
stant Pool, control is returned to GENTEST.

REALHAN is entered from REALCON.

CHANGE CONSTANT POOL (CPOLEX)

CPOLEX is <called by INTHAN and REALHAN
in the event the Ccnstant Pool is filled.
CPOLEX generates TXT records for the last

constants in the Pool, assigns a new Con-
stant Pool number, and resets pointers to
the beginning of the Pcol area.

OUTPUT TXT RECORD (TXTTRAF)

TXTTRAF is called by INTHAN and REALHAN
when the end of a 56-byte record in the
Constant Pool has been reached. TXTTRAF
updates Constant Pool pointers and calls
the GENTXT subroutine, if the LOAD and/or
DECK options are specified. GENTXT gener-
ates TXT records of the Constant Pool and
outputs the records on SYSLIN and/or SYS-
PUNCH.

GENERATE (GENTXT)

See Chapter 8.

APOSTROPHE (QUOTE)

QUOTE transfers the five-byte internal
name which follows the Apostrophe, to the
output buffer. The internal name referen-
ces a location in the Constant Pool where a
string or logical value was stored in the
Scan I/II Phase.

BLOCK BEGIN (BETA)

The operator Beta in the source text

opens a new block.

BETA calls the ITABMOVE subroutine,
which reads in the next Identifier Takle
record; and transfers Beta and the follow-
ing Program Block Number to the output
text.

PROCEDURE DECLARATION (PIPHI)

The operator Pi opens a declared proce-

dure, while Phi opens a declared <type> -
procedure.
PIPHI calls the ITABMOVE subroutine,

which reads in the next Identifier Table
record, and transfers Pi (or Phi) to the
output text.

READ ITAB RECORD (ITABMOVE)

ITABMOVE reads the next Identifier Table
record from the SYSUT3 data set into the
work area (see Figure 42) and resets a

pointer, ZCURITEN, to the end of the pre-
viously input record reprsenting identifi-
ers declared or specified in the newly

entered block or procedure. It is called
by BETA and PIPHI on recognition of the
operators Beta, Pi, or Phi, opening a new
block or procedure. See "Processing of the
Identifier Table".

Identifier Table (ITAB) records are
input from SYSUT3 in parallel with the
output of Subscript Table (SUTAB) and Left
Variable Table (LVTAB) records on the same
data set. For this reason, the data set
must be repositioned to the appropriate
ITAB record, before reading can begin, in
the event the immediately preceding opera-
tion involved ocutput of a SUTAB or LVIAB
record. See "Phase Input/Cutput"®.

FOR STATEMENT (FOR)

FOR sets the switch ZFORTEST=X'CO0', to
indicate that the next operand is the
controlled variable, and transfers the
operator For.

PROGRAM BLOCK END (EPSILON)

The operator Epsilon marks the close of
a block or prccedure.

EPSILON resets a pointer in the Iden-
tifier Table wcrk area so as to delete the
klock of identifier entries represeriting
identifiers declared or specified in the
klock or procedure closed by Epsilon. See
"Processing of the Identifier Takle" in
this chapter. Epsilon and the following
Program Block Number of the re-entered
klock are transferred to the output text.

FOR STATEMENT END (ETA)

The operator Eta in the input text marks
the close of a for statement.

ETA sets the switch ZFORTEST=X'00", to
indicate the exit from a for statement, and
calls the CRIFODEL sukroutine, which
deletes all entries in the critical Iden-
tifier Table for the indentifiers in the
closed for statement's for list. Eta is
then transferred.

Chapter 6: Scan III Phase 95

DO (DO)

Do sets the switch ZFORTEST = X'00', tco
indicate exit from a for list, and trans-
fers the operator Do.

WHILE (WHILE)

WHILE modifies the current for
statement's classification byte in the For
Statement Table (FSTAB) to indicate the
presence of a while element in the list,
and transfers the operator While to the
output text.

SEMICOLON/DELTA (SEMIDELT)

SEMIDELT transfers the Semicolon or
Delta operator, together with the following
semicolon count, to the output text, after
recording the semicolon count.

OPENING BRACKET (OPBRACK)

The opening bracket, [, marks the begin-
ning of an array list, if the SARRAY switch
is on.

If the array occurs in a for statement
(indicated by entries in CRIDTAB), OPBRACK
makes an entry for the array in the Array
Identifier Stack (ARIDSTAB), provided the
array does not occur in an embracing array
list, and transfers the opening bracket to
the output text. (The ARIDSTAB entry is
not deleted until the closing bracket is
encountered) .

If the array occurs in an enclosing
array list (indicated by the presence of an
entry in ARIDSTAB), a call is made to
SUCRIDEL, which scans the subscript expres-
sion in which the array occurs, to deter-
mine if it contains a controlled variakle,
and reclassifies the corresponding for
statement (s) to Elementary Lcops.

COMMA (COMMA)

The Comma marks the end of a subscript
expression in an array list.

If the array occurs in a for statement,

and if +the ZCLOBRA switch indicates that
optimization of the subscript expression is

96

possible, COMMA calls the SUSCRITE sukrou-
tine, which makes an entry in the Subscrirt

Table (SUTAB) for the subkscript expression
preceding the Comma, provided the sukscript
expression is optimizable (see
"Optimizable Subscript Expression").

If subscript optimizaticn is not possikle,
a call is made to SUCRIDEL, which scans the
subscript expression tc determine if it
contains a controlled variable, and, if so,
reclassifies the corresponding for
statement (s) to Elementary Loops.

CLOSING BRACKET (CLOBRACK)
The closing bracket, 1, marks the end of
an array list, if the SARRAY switch is cn.

list
and if

If the array occurs in a for
(indicated by an entry in ARIDSTAB),
subscript optimization is rossikle, a call
is made to SUSCRITE, which makes an entry
in the Subscript Table, provided the sub-
script expressicn is ortimizakle. If suk-
script optimization is not possible, a call
is made to SUCRIDEL, which scans the sub-

script expression to determine if it con-
tains a controlled variable, and if so,
reclassifies the corresronding for

statement(s) to Elementary Iloops.

If the Array Identifier Stack contains
more than one entry, indicating that the
current array occurs in an enclosing array
list, a switch is set tc indicate that
optimization of the embracing sukscript
expression is not possible.

SCAN SUBSCRIPT (SUCRIDEL)

SUCRIDEL is called Ly OPBRACK, CCMNA,
and CLOBRACK when it is determined that an
array occurs ir a sukscript expressicn of
another array. It is also called Ly SUS-
CRITE when an unoptimizable subscript is
found. Its function 1is to scan the suk-
script expression to determine if the ccn-
trolled variakle of an emkracing for state-
ment occurs in the expression, and if so,
to classify the relevant fcr statement an
Elementary Loop.

SUBSCRIPT TEST (SUSCRITE)

SUSCRITE is called Ly COMMA and CLCERACK
if a Comma c¢r closing kracket, 1, termi-
nates a subscript expression of an array in
a for statement (indicated ky one or more

entries in the Array Identifier Stack).
SUSCRITE determines if the subscript
expression is optimizable, and if so, makes
an entry for the expression in the Sub-
script Table - SUTAB (see Figure 4#4). To
be optimizable, the expression must be of
the +type +F*ViA, where the Factor F is an
integer variable or constant, V 1is the
controlled variable, and the addend A is an
integer variable or constant. Either F orxr
A may be a zero constant. If F and/or A
are variables, they must be declared out-
side the for statement in which the sub-
script expression occurs.

A subscript expression which satisfies
the requirements of optimizability may have
several forms. Thus, the factor, con-
trolled variable, and addend may appear in
positions which differ from the standard
form given above (e.g., V*FiA or A+F*V).
Alternatively the factor or addend may be

equal to =zero or one, as in the following
cases:

tF*V (addend = 0)

Vv (factor = 1, addend = 0)

A (factor = 0)

The subscript expression is processed in
the output buffer, where the internal names
of the operands in the expression will have
- been transferred, together with any opera-

tors, before entry to COMMA or CLOBRACK.
An entry will also have been made (by
OPBRACK) in the Array Identifier Stack for

the array identifier.

Each operand in the subscript expression

is inspected by the OPERAND subroutine,
which determines if +the operand is an
integer variable or constant, and if the

operand is a controlled variable. If it
is, the address of the corresponding entry
in the Critical Identifier Table is trans-
mitted in a register (OPPTR). If the
operand is not a controlled variable, CPPTR
contains the value 0. If an operand is not
an integer variable or constant, no entry

is made in SUTAB for the subscript expres-
sion.
When the factor (zero, one, or the

operand factor in the expression) or the
addend (zero, or the operand addend in the
expression) have been identified, each is
moved to a field named, respectively, FAC-
TOR and ADDEND. These fields will contain
the one-byte sign of the factor or addend
followed by the five-byte internal name of

the factor or addend found in the output
buffer. In case the factor or addend is
absent, the five-byte internal name of the

constant 0 or 1 is inserted.

The factor and addend are transferred
(from FACTOR and ADDEND) to an entry in the
Subscript Table by the SUTABENT subroutine.

Before SUTABENT is called, a test is made
of the for statement's classification kLyte
to determine if subscript optimization is
possible. A test is alsc made to determine
if the array identifier, factor, and addend
are declared cutside the for statement
(this 1is verified if the Program Blcck
Number of the array adentifier, factor, and
addend is equal to or less than the Program
Block Number in the Scope Table entry -
Figure 22 - corresponding to the for
statement). If all tests are positive, the
entry for the expression is made in the
Sukscript Table.

If a subscript expression occurs inside
a series of nested for statements, an entry
is made for each embracing for statement,
for which the ortimizakility and sccge
tests, described above, are satisfied.
This applies only when the factor = 0.

OPERAND TEST (OPERAND)

OPERAND is called by SUSCRITE and SUB-
MULT. Its function is tc determine if an
operand in a subkscript expression is an
integer variakle or constant, and if the
operand 1is a controlled variable. If the
operand is a «contrclled variakle, the
address of the corresponding entry in the
Critical Identifier Takle is transmitted in
register OPPTR. If the operand is nct a
controlled variakle, CPFPTR contains the
value zero.

In the event an operand is not an
integer operand or constant, CPERAND exits
(via SUSCRITE) to the SUCRIDEL sukroutine
(which scans the subscript expression for a
controlled variable and classifies the cor-

responding for statement(s) Elementary
Loops). Thereafter, SUSCRITE returns con-
trol to the calling routine (COMMA or

CLOBRACK) .

MULTIPLIER-OPERAND (SUBMULT)

SUBMULT is called by SUSCRITE when an
integer operand 1is followed by a multi-

plication sign (%). SUBMULT ascertains
(with the aid of OPERAND) if the orerand
following the multiplication sign 1is an

integer operand, and determines if either
(or both) of the operands on both sides cof
the multiplication sign is a controlled
variable. If either (or both) of the
operands 1is a controclled variakle, SUBMULT
stores the operand representing the factor
of the controlled variakle for the inner-
most for statement in the location named
FACTOR, and transmits the address of the

Charter 6: Scan III Phase 97

Critical Identifier Table entry for the
controlled variable in register CVR. If
neither of the operands is a controlled
variable, or if both operands represent the
same controlled variable, SUBMULT exits
(via SUSCRITE) to SUCRIDEL, and SUSCRITE
thereafter returns control to COMMA or
CLOBRACK.

MAKE SUTAB ENTRY (SUTABENT)

SUTABENT is called by SUSCRITE when an
entry for an optimizable subscript expres-
sion is to be made in the Subscript Table
(Figure 44). SUTABENT constructs the entry
as follows:

from Critical
addressed Ly

For Statement Number:
Identifier Table entry
CVR

Array identifier address: from last

Array Identifier Stack entry

Factor address: from the field named
FACTOR
Addend address: from the field named

ADDEND

Subscript Positional Number: from ZPOSIX

sign of factor and addend: from first
byte of FACTOR and ADDEND

Output record number and relative address
of opening bracket: from last Array
Identifier Stack entry

SUTABENT also outputs
when the work area has
calling WRITE.

a SUTAB recoxd
been filled, by

INPUT RECORD END (ZETA)

The operator Zeta marks the end of the
current Modification Level 1 source text
record.

ZETA calls the ICHA which
exchanges input buffers.

subroutine,

CHANGE INPUT BUFFER (ICHA)

ICHA is called on reccgnition of the
record-end character Zeta. ICHA reads in a
Modification Level 1 text record from the
SYSUT1 data set to overlay the already
processed record in the current buffer and

98

resets pointers to a previous input reccrd
in a second buffer.

CODE PROCEDURE (GAMMA)

The Gamma operator precedes a code fro-
cedure identifier in the Mcdification Level
1 source text.

GAMMA transfers an Arostrophe replacing
Gamma (X'3C'), together with the following
eight-byte external name. The external
name is the name by which the precompiled
procedure will be called in the okject code
generated by the Compilation Phase.

PROGRAM END (OMEGA)

The operator Omega marks the end of the
Modification Level 1 source text.

OMEGA closes the SYSUT1 data set, from
which the source text was input; writes out
the 1last Modification Level 2 text reccrd
on SYSUT2 (by calling OUCHA); and closes
SYSUT2 temporarily. If the entire Modi-
fication Level 2 text cccupies less than a
full buffer, it 1is transmitted to the
Compilation Phase via this buffer. The
last segment of the Constant Pool is trans-
ferred to the SYSIIN and/or SYSPUNCH data

sets (by calling TXTRAF), if the LOAD
and/oxr DECK options are specified
(indicated by switches in the HCOMPMOD

Control Field). The last (partial) reccrds
of the Subscrirt Takle (SUTAB) and lLeft
Variable Table (LVTAB) are output on SYSUT3
(by calling WRITE), after +the respective
lengths of these tables have keen stored in
ZSUTEN and ZLEVEN for use by the Subscrirt
Handling Phase. The main storage occupied
by all tables in the private work area is
released; and, after issuing a SPIE macrc
to restore the Directory routine PIROUT as
the program interrupt routine, control is
transferred +to Diagnostic Cutput Module
IEX31.

OTHER OPERATORS (OTHOP)

(see
text

OTHOP transfers the operator
GENTEST) to the Modificaticn Level 2
and returns to GENTEST.

e~

LETTER DELIMITER (RHO)

The operator Rho signifies that the
characters at the end of the preceding text
record formed (a) part of a parameter
delimiter or (b) part of an invalid iden-
tifier (see "Modification Level 2 Source
Text" in this chapter). In the first case,
RHO transfers a Comma to the Modification
Level 2 text to replace the parameter
delimiter. In the second case, the invalid
identifier is disregarded.

STEP (STEP)

STEP modifies the current for
statement's classification byte in the For
Statement Table (FSTAB) to indicate the
presence of the delimiter 'STEP', and

transfers the Step operator to the output
text.

ARRAY (ARRAY)

ARRAY turns on the SARRAY bit in the
STATUS byte, to indicate that an array
declaration has been encountered, and

transfers
text.

the Array operator to the output

SWITCH (SWITCH)

SWITCH turns on the SSWITCH bit in the
STATUS byte to indicate that a switch
declaration has been encountered, and
transfers the Switch operator to the output
text.

DIVIDE/POWER (DIPOW)

DIPOW, which is entered from GENTEST on
recognition of the operators Power and /,
determines if the operator occurs in a for
list, and if so, marks the corresponding
for statement's classification byte to show
the for statement is not a Counting Loop.
The operator 1is then transferred to the
Modification Level 2 text.

CHANGE OUTPUT BUFFER (CUCHA)

OUCHA resets pointers to a new Modifica-
tion Level 2 text output kuffer and trans-
fers the text in the current buffer to the
SYSUT2 data set. OUCHA is called Ly all
routines when the end of the kuffer has
been reached. If the buffer ends in the
middle of a subscript expression, the sub-
script expression, together with the
preceding bracket or comma, is transferred
to the new buffer, unless the sukscript is
unoptimizable. In the latter case, the
SUCRIDEL subroutine is called. Before the
WRITE instruction is issued, the record-end
operator Zeta is transferred to the next
byte in the output buffer, and pointers are
reset to the new buffer.

INCORRECT OPERAND (INCOROP)

INCOROP is entered from the LETTER,
DIGIT19, DIGITO, DECPOIN, SCAFACT, and
QUOTE routines when an illegal character is
encountered in an operand. INCCRCP search-
es for the end cf the operand (indicated Ly
an operator), moves the remainder of the
operand (by calling MOVE) to a field named
ZIDEX (the first part of the identifier
will have been transferred kefore entry to

INCOROP), calls the MOVERRO subroutine,
records an error in the Error Pcol, ccn-
taining up to twelve characters of the

erroneous operand, and transfers an all-
purpose internal name to the Modification
Level 2 text. Before returning control to
GENTEXT, the Compiler is switched to Syntax
Check Mode.

STORE ERROR (MOVERRO)

MOVERRO stores error patterns in the
Exrror Pool. It is called by INCOROP and by
other routines on detecticn of syntactical
errors in the Modification Level 1 text.
The content of the errcr pattern is
indicated in Figure 75.

MOVE OPERAND (MOVE)

MOVE transfers all or part of an exter-
nally represented operand to a field speci-
fied by the calling routine. It is called
by all routines which process identifiers
and numbers.

Chapter 6: Scan III Phase 99

CHECK-WRITE (CHECK)

CHECK executes a macro instruction to
check the 1last WRITE operation on the
SYSUT3 data set and sets a switch (IOBYTE)
to indicate a write-check.

100

WRITE SUTAB/LVTAB RECORD (WRITE)

WRITE outputs Subscript Table and Left
Variable Table records cn the SYSUT3 data
set. It 1is called by OMEGA, LETRAF, and
SUTABENT. See "Phase Input/Output”.

PURPOSE OF THE PHASE

The main purpose of the
dling Phase is to identify the array sub-
script expressions listed in the Subscript
Takle, for which subscript optimization can
be exercised in the for statements in which
the expressions occur, and to transfer
these subscript expressions to the Optimi-
zation Takle. The subscript expressions
listed in the Subscript Table are optimiza-
ble, to the extent that the expressions
satisfy certain constraints with respect to
the variakles and operators in the expres-
sion, and the linearity of the expression
in the particular for statement (these
constraints are explained in Chapter 6).
However, subscript optimization can only ke
exercised in the relevant for statement(s)
provided a further condition is satisfied.
This condition is that no assignment may be
made in the iterated part of the for
statement to any variable in the subscript
expression.

Subscript Han-

In the gsubscript Handling Phase, each
entry in the Subscript Table is compared
with the integer 1left variables of the
corresponding for statement listed in the
Left Variable Table. (To facilitate the
processing, the entries in both tables are
sorted according to ascending For Statement
Nupber, before the comparison is
initiated.) If an entry is found in the
Left Variakle Table for the same for state-
ment which matches either the factor or the

addend in the subscript expression, the
subscript expression contains variakles
which occur as 1left variables, .and the
expression 1is accordingly not optimizakle.

If no matching entry is found in the Left
Variable Table, the subscript expression is
optimizable. In this case, the entry in
the Subscript Table is transferred to the
Optimization Table.

Under certain conditions a Counting Loop
may qualify as a conditional Elementary
Loop. The Subscript Handling phase serves
to recognize this condition, and to change
the classification of a for statement
accordingly in the For Statement Table.
The specific condition for this change in
classification is that the addend A in a
linear subscript expression of the type
*F*V:iA occurs as left variable in the for
statement; and that +the factor F is a
nonzero constant or integer-declared varia-
ble, or that the factor occurs as a left
variable.

CHAPTER 7: SUBSCRIPT HANDLING PHASE (IEXA40)

In the Scan III Phase, certain for
statements are classified as ncn-
optimizable after entries have keen made in
the Subscript Table. These entries are
deleted in the Subscript Handling Phase
kefore construction of the Cptimizaticn
Table. They are identified ky reference to
the For Statement Table.

When a linear subscript expression
occurs inside two or more nested for state-
ments, the Subscript Table contains an
entry for each for statement. To prevent
the possibility of multirle entries for a
subscript expression being transferred tc
the Optimizaticn Takle, all multirle
entries in the Subscript Table are iden-
tified and aprropriately coded, kefore the
Optimization Table is constructed. Multi-
ple entries are coded at the same time as
the search for subscript expressions in
nonoptimizable for statements is performed.

SUBSCRIPT HANDLING PHASE OPERATICNS

Figure 48 1illustrates the sequence of
operations perfcrmed in the Sukscript Han-
dling Phase. In the comment which follows,
the nurbers in parentheses refer tc the
numbered positions in the diagram.

After initialization of the phase, (1)
the entire Subscript Table is read intc
main storage from the SYSUT3 data set.
Subscript Table records are intermixed with
Left Variable Takle reccrds on the data
set, and the entries may not be in ascend-
ing For Statement Numker order. The han-
dling of Subscript Table and Left Variakle
Table input by the READ subroutine is
discussed under "Phase Input/Output”.

When input of the Sukscript Takle is
complete, (2) a search of the table is
initiated to identify and flag for dele-
tion, any entries for subscripts contained
in for statements classified non-
optimizable in the For Statement Table. At
the samke time, multiple entries for
subscripts contained in nested for state-
ments are identified and coded.

On completion of the foregoing searxch,
(3) the entries in the Sukscript Takle are
sorted according to ascending For Statement
Number. The sorting oreration involves the
transfer of the table to a new work area.
After the SYSUT3 data set has keen reposi-
tioned, the Left Variable Table (4) is read

Chapter 7: Subscript Handling Phase 101

SUBSCRIPT HANDLING PHASE (IEX40)
: 2. Scan SUTAB

Deletes entries in the Sub-
script Table for subscripts

in for statements classified
non-optimizable. Codes
multiple entries for subscripts

6. Construct OPTAB

Compares the factor and addend in

each Subscript Table entry with the left
variables in the Left Variable Table, and
transfers the entry to the Optimization
Table if no matching left variable is

in nested for statements. found. Reclassifies for statements to Ele-
mentary Loops if a subscript is non-opti-
mizable and the Factor = 0. Calls OTACHA
1. READ subroutine For State- when an Optimization Table buffer has been
; nt Table ___r filled.
Reads in the Sub- — | ment lable | | e — ——
script Table. l_
FSTAB L]
Unsorted r Sorted
Subscript l Subscript
Table | Table
SYSUT3 SUTAB 3. SORT subroutine : SUTAB = Buffer - SYSUT3
Subscript Sorts the entries Optimiza-
I“?ls/(ijwﬁ) in the Subscirpt | tion Table
Tgbfe ariable] Table accordingto | (OPTAB)
nding For State-L_ . |
(LVTA®) Unsorted ment Number. Sorted Left Buffer
Left Vari- Variable
able Table Table
4. READ subroutine 5. SORT subroutine OTACHA subroutine
Reads in the Left Sorts the entries Writes Optimization
Variable Table in the Left Variable Table records on call
Table according to from Construct OPTAB,
ascending For State-
ment Number.
Figure 48. Subscript Handling Phase.
Diagram illustrating functions of principal constituent routines

into main storage and (5) the entries in
the table are sorted according to ascending
For Statement Number.

The Optimization Table (6) is construct-
ed by transferring those entries in the
Subscript Table, representing linear suk-
script expressions in for statements, which
are found to be optimizable in the particu-
lar for statement. A subscript expression
is optimizable if no assignment is made in
the for statement to either the addend or
the factor in the expression. This condi-
tion 1is verified by comparing both addend
and factor with all left variables in the
particular for statement, 1listed in the
Left Variable Table. If the condition for
optimizability is satisfied, the entry in
the subscript Table is transferred to the
Optimization Table.

I1f, however, a subscript expression is
not optimizable in the for statement, the
Subscript Table entry is disregarded. 1In
addition, the particular for statement is
classified an Elementary Loop, if an
assignment 1is made to the factor, or if an
assignment is made to the addend, and if

the factor is equal to zero.
The phase is terminated when all entries

in the Subscript Table have been processed.
The termination routine releases the pri-

102

vate area used by the phase and branches to
Control Section IEX40001, which initializes
the Compilation Phase (Charter 8).

PHASE INPUT/OUTPUT

The Subscript Table and Ieft Variakle
Takle are read into main storage from the
SYSUT3 data set inderendently, in two sep-
arate operaticns. (On the data set, SUTAB
and LVTAB records are stored in randomrw
order, beginning at a point following the
obsolete Identifier Table input to the Scan
IIT Phase). Before each read operation,
the data set 1is positioned (by a POINT
macro instruction) at the correct starting
address, stored by the Scan III Phase at
the location named SULTSTRT.

In each 1read operation, the recoxds
(both SUTAB and LVTAB records) are read
into the work area provided for the parti-
cular table involved. The records are
identified by a key in the first four bytes
(SUTB and LVTB, respectively). After a
record has been read in, the last fcur
bytes of the record are saved. The follow-
ing record is then read in, the key of the
record overlaying the last (saved) kytes of
the previous record. The key of the newly

P===N

s

read-in record is now inspected. If the
key shows that the record does not belong
to the desired table, it 1is overlayed by
the succeeding record. If, however, the
record belongs to the desired table, the
previously saved Dbytes of the preceding
record are reinserted, overlaying the key
of the last read-in record. The last four
bytes of the latter record are now saved
and a further record is read in.

Prior to output of the Optimization
Table on the same SYSUT3 data set, the data
set is repositioned to the start of the
data set by a type T CLOSE. At termination
of the phase, the data set is again reposi-
tioned in readiness for input to the Compi-
lation Phase.

|nEl Outﬂ'

For Statement Table

r
} Main Storoge
|

l (FSTAB)

|

1

1

SYSUT3 SYSUT3

Subscript Table Optimization
(SUTAB) SUBSCRIPT Table (OPTAB)
Left Variable HANDLING

Table (LVTAB) PHASE

—_——r

Main Storage

For Statement Table
(FSTAB)

| —

Subscript
Input/Output

Figure 49. Handling Phase

OPTIMIZATION TABLE (OPTAB)

The Optimization Table (OPTAB) is con-
structed by the Subscript Handling Phase
and transmitted to the Compilation Phase on
the SYSUT3 data set. The Optimization
Table lists the optimizable subscript
expressions found in for statements classi-
fied Counting Loops or Elementary Loops.
The entries in the Optimization Table are
copied from the Subscript Table (Figure
44), provided neither the factor nor the
addend in the subscript expression occurs
as a left variable in the particular for
statement. The entry in the Optimization
Table is virtually identical to the corres-
ponding entry in the Subscript Table,
except that the Chain Bits in Byte 10 of
the entry, set to binary 00 in the Scan III

Phase, may be equal to binary 00 or 10 in
the Optimization Table.

SUBSCRIPT, LEFT VARIABLE AND FOR STATEMENT
TABLES

The Sukscript Table (SUTAB), Left Varia-
ble Table (LVTAB), and For Statement Takle
(FSTAB) are described in Chapter 6.

CONSTITUENT ROUTINES OF SUBSCRIPT HANDLING
PHASE

The principal constituent routines of
the Subscript Handling Phase are descriked
below. The index in Appendix XI provides a
cross-reference between the descriptive
text and the relevant flowchart in the
Flowchart Section.

The position of the routines in the
overall logical organization of the phase
may be seen in Chart 072.

INITIALIZATION

The initialjzation routine acquires main
storage for the private area pictured in
Figure 51; sets a pointer to the beginning
of the private area; and specifies program
interrupt-I/0 error exit routines. The
Read SUTAB routine is then executed.

The size of the private area is computed
as follows: 2 x (Subscript Table) + 2 x
(Optimization’ Table buffer) + 8. The area
sizes are obtained from the Area Size Takle
in the Common Work Area.

The private area provides two storage
areas for +the Subscript Table, one for
input of the unsorted takle and one for the
sorted table. After the Subscript Table
has been sorted, the input area is used,
first, for input and sorting of the Left
Variable Table, and second, for Optimiza-
tion Table construction. Figure 51 illus-
trates the use of the private area in the
various stages of the Sukscript Handling
Phase.

The first program interrupt exit
TERMIN2, is stored in the 1location named
ERET, the address referenced by the PIROUT
routine in the Directory. TERMIN2 is
replaced by TERM1, after the GETMAIN
instruction is executed.

Chapter 7: Subscript Handling Phase 103

0 1 4 7 0 11 12 14

r T T T T T T h}

| | | | | | | <Rel. address |

| <FSN>| <DSA address of |<DSA address of |<DSA address of | <X> | <RN>| of [in |

| | array identifier>|factor> |addend> | | |c/p kuffer> |

L i 1] L 4 L J
<FSN> = <For Statement Number of outermost embracing for

statement

in which the

subscript expressicn is

<DSA address>

<X> Bit 0
Bit 1

Bit 2-3

Bits 4-7

<RN>

]

nonn

1]

optimizable>

<Last three bytes of identifier's internal name,
containing Program Blocck Number and displacement>

<Sign of factor: 1=+, 0=->

<Sign of addend: 1=+, 0=->
(Chain Bits:* Binary 10 or
Compilation Phase)

<Positional number of subscript>

00 -- not used in

<Source text record number in which subscript ex-
pression occurs>

*The use of the Chain Bits in the Subscrirt
Handling Phase is discussed under the "Scan SUTAB"
and "Construct OPTAB" routines.

Figure 50.

Optimization Table (OPTAB) entry

Private Area* during

Subscript Table Sorting

TSTART
ZSTAD=TSTART+4

RPO (reg.10) =
1

Subscript Table (SUTAB
(Unsorted)

ZSUTEN = length

RSUDEN
=REND (reg.9)

(Unused)

Subscript Table (SUTAB)

(Sorted)

ZSUDAD
=ZSORTSTA

I
WORKX +
(reg.3) 6
ZSUDEN

Private Area* during Left

Variable Table Sorting

Private Area* during

Optimization Table Sorting

TSTART ZOTAWRI
ZSTAD=TSTART | Left Variable Table Optimization Table
4 (LVTAB) (OpTAR)

(Unsorted) ZOTAFILL P ,Ufi?r 2T 5

“ptimization ‘able
uffer
ZLEVEN = length ZOTMAX (Unused)
REND (reg.9) ZLESTA
=ZSORTSTA . L .
—ZLESTA . Left Variable ijle eft Variable Table
] (LVIAB)** (LVTAB)
WORKX 4+~ (Sorted) (Sorted)
(reg.3) 1 RLV (reg.4) T
|

(Unused) (Unused)

ZSUDAD ZSUDAD
Subscript Table (SUTAB Subscript Table (SUTAB
(Sorted) (Sorted)
RSUPO 1
(reg. 6) \

ZSUDEN ZSUDEN

* The size of the private area is computed as 2% SUTAB + 2% OPTAB Buffer + 8, the work area sizes being specified by the Area Size Table in
the Common Work Area. See Appendix VIII for the Variation in area sizes as a function of the SIZE option.

#%|f the length of the Left Variable Table is less than twice the Optimization Table buffer length, the sorted Left Variable Table work area
begins at the end of Optimization Table Buffer 1 (ZOTMAX),

Figure 51.

104

Diagram illustrating use of the private area
acquired by the Subscript Handling Phase

READ SUTAB

Read SUTAB loads registers to specify
the number of records, record key (SUTB),
and record 1length of Subscript Table
records, and calls the READ subroutine,
which reads the Subscript Table into the
unsorted table work area. Scan SUTAB is

then entered.

SCAN SUTAB

Scan SUTAB deletes all entries in the
Subscript Table (Figure 44) for subscript
expressions in for statements which are

classified as non-optimizable. The routine

also identifies multiple entries for the
same subscript expression contained in
nested for statements, and adjusts the

Chain Bits in such entries to indicate if

to determine if subscript optimization
possible.
the first byte of the entry
X'FF', marking it for deletion,
test proceeds with the next entry.
is maintained of the
subsequent use in setting up the
the sorted Subscript Table.

area

is
If optimization is not possikle,
is set to
and the

A count
deleted bytes for
for

Each entry not flagged for deleticn is

compared with the succeeding entry,

to

determine if both entries refer to the same

subscript expression in
statements. In the affirmative
Chain Bits in byte 10 of

(originally equal to
according to the key below,
whether
for statement in which subscript
tion may be Fpossible,
statement. The second entry is
pared with the next entry,

comparision shows that the same
expression occurs

case,
each

to

then

two nested for

the
entry
kinary 00) are set,
indicate
the entry relates to the outermost
optimiza-
or to a nested for
ccm-
and if this

subscript
in a further nested for

the entry is followed by one or more statement, the Chain Bits in the second and
entries for the same subscript expression. third entries are set accordingly. This
comparison 1is repeated until the sequence
For every entry in the Subscript Takle, of entries for the same subscript expres-
a test is made of the classification byte sion in a series of nested for statements
in the For Statement Table, corresponding has been coded. The various Chain Bit
to the For Statement Number in the entry, settings are as fcllows:
r T T a
Multiple entries for subscript	Chain Bit]	
expressions enclosed by two or	[Settings	
more for statements:	(Binary)	Significance
l b + -—		
First entry] 10	Entry relates to outermost embracing for	
		statement in which subscript optimization
		may be possible. One or more subsequent
		entries exist.]
Second or intermediate	01	Entry relates to a nested for statement
entries		in which subscript optimization may ke
		possible. One or more subsequent entries
		exist.
Last entry	11	Entry relates to innermost mnested for
]	statement in which subscript optimization	
		may be possible. No suksequent entry
		exists.
Single entries	00	Entry relates to a single for statement in
		which subscript optimization may be possi-
		ble. No subsequent entry exists.
L L 1 d
This system of Chain Bit settings serves sorted) to determine if the entry for the

to insure that only one Subscript Table
entry is transferred to the Optimization
Table, namely the entry relating to the
outermost embracing for statement in which
the subscript expression is optimizakle.
The Chain Bits are inspected, and may ke
manipulated, in the Construct OPTAB routine
(entered after the entries have keen

subscript expression relating to an embrac-

ing for statement was transferred to the
Optimization Table.
Chapter 7: Sukscript Handling Phase 105

SORT SUTAB (SORTSU)

SORTSU sets pointers to specify the
addresses of the unsorted and sorted Sub-
script Takle work areas, as well as the

entry length, and calls the SORT subrou-
tine, which sorts the Subscript Table
entries by ascending For Statement Numker,

in the sorted work area. Pointers are then
set for the Optimization Table buffers
(Figure 51) and the SORTLE routine is
entered.

READ AND SORT LVTAB (SORTLE AND SORTLE1l)

SORTLE loads registers to specify the
number of records, the record key (LVTB),
and the record 1length of Left Variakle
Table records, and calls the READ subrou-
tine, which reads the Left Variable Takle
into the wunsorted table work area. Poin-
ters are then set to specify the addresses
of the unsorted and sorted Left Variable
Table work areas, as well as the entry
length, and a call is made to the SORT
subroutine, which sorts the Left Variable
Table entries by ascending For Statement
Number, in the sorted work area.

When sorting of the Left Variable Table
is complete, the SYSUT3 data set is closed
in readiness for output of the Optimization
Table.

CONSTRUCT OPTAB (OPTAB)

OPTAB compares the addend and factor in
each "active" entry of the Subscript Table
(Figure 44) with the left variables listed
in the Left Variable Table (Figure 43) for
the corresponding for statement, and if no
left variable is found which matches either
addend or factor, transfers the Subscript

Table entry to the Optimization Takle
(Figure 50). An entry in the Subscript
Table is said to be "active" if no preced-

ing entry for the same subscript expression
relating to an enclosing for statement was
transferred to the Optimization Table. An
"active" entry is indicated if the entry's
Chain Bits in Byte 10 are equal to binary
10 or 00. The entries transferred to the
Optimization Table represent the array sub-
script expressions for which subscript
optimization is exercised in the okject
code generated by the Compilation Phase for
the relevant for statements.

If a left variable is found which match-

es either the addend or the factor, the
Subscript Table entry is not transferred

106

(the subscript expression being ncn-
optimizable in the particular for
statement), and the for statement in which
the expression occurs is classified an
Elementary Loop, provided

1. The addend occurs as a left variable
in the for statement and th2 factor is
a zero constant; or

left

2. The factocr occurs as a variakle

in the for statement.

After the last entry in the Sukscript
Table has been processed, control is passed
to TERMIN.

Where an optimizakle sukscript
expression 1is enclosed by two or rmore
nested fcr statements classified Counting
or Elementary Loops, the Subscript Takle
contains an entry for each for statement
which embraces the sukscript expression.
With the aid of the Chain Bits in Byte 10
of the entry, the entries in the case of
such a chain of nested for staterents are
coded, before entry to OPTAB (see Scan
SUTAB routine), so as to indicate whether
the entry relates to the outermost for
statement or a nested for statement, and
hence, whether a suksequent entry exists.
ke possible in an embracing for statement,
optimization may be possible in one or mcre
nested for statements. When it is deter-
mined in OPTAB that a subscript expression
is not optimizable in a particular for
statement, a test is made to determine if
the Subscript Takle contains a further
entry for the same subscript expression in
a nested for statement. This is determined
by inspection of the entry's Chain Bits. A
subsequent entry is indicated if the cur-
rent entry's Chain Bits are equal to kinary
10 or 01. No subsequent entry is indicated
if the Chain Bit settings are equal to
binary 00 or 11.

In the event the current Subscript Table
entry's Chain Bits indicate that a sukse-
quent entry exists, a search is made for
the next entry representing the same suk-
script expression. The Chain Bit settings
in this subsequent entry must be equal to
binary 01 or 11, depending on whether the
entry relates to an intermediate nested for

statement, or the innermost nested for
statement (see Scan SUTAB routine). When
the entry has been located, its Chain BRits
are inverted (to binary 10 or 00). This

action sexves to identify that the entry is
now "active", i.e., that it relates

1. To the outermost emkracing for state-
ment in which the subscript expression
may be ortimizakle, or

2. To the last (innermost) for statement

in which the subscript expression may
be optimizable.

TERMINATION (TERMIN)

TERMIN writes out the last Cptimization
Table record (by call +to OTACHA), closes
the SYSUT3 data set, releases the main
storage acquired for the private area, and
passes control to the Initialization rou-
tine of +the Compilation Phase (Control
Section IEX40001), unless a terminating
error has occurred (indicated by the switch
TERR = 1). In the latter case, control is
transferred (by XCTL) to the Compiler ter-
mination routine in Load Module IEXS51.

WRITE OPTAB (OTACHA)

OTACHA provides the address of an alter-

nate output buffer, and writes out the
Optimization Table record in the current
buffer on the SYSUT3 data set. OTACHA is

called by the Construct OPTAB routine.

READ SUTAB/LVTAB (READ)

READ is <called by the Read SUTAB and
Read and Sort LVTAB routines. READ reads
the Subscript Table and Left Variable Table
from the SYSUT3 data set. See "Phase
Input/Output".

SORT SUTAB/LVTAB (SORT)

The SORT subroutine sorts the entries in
the Subscript Table and the Left Variakle

Table according to ascending For Statement
Number. SORT is called by SORTSU and
SORTLELl.

The parameters required by the SORT
subroutine in sorting the two tables are
specified as follows:

Start cof Unsorted Takle ZSTAD
End of Unsorted Table REND (Reg.9)
Start of Sorted Takle ZSORTSTA

Entry Length
(SUTAB-14; LVTAB-4)

RENTRY (Reg.11)

See also Figure 51.

Sorting consists in moving the entries
in the unsorted takle, cne Lty one, tc a
sorted area, so that the entries are
arranged in groups with a common For State-
ment Number. The sorting process consists
of the following steps:

1. Counting the number of entries in each
group of entries having a common For
Statement Number. Counting is carried
out by inspecting the For Statement
Number in each entry, moving sequen-
tially through the unsorted table, and
incrementing the count in a corres-
ponding half-word of the Entry Count
Table (ZCOSTA).

2. Constructing the Address Takle
(ZADSTA), containing the displacements
in the scorted takle where the first
entry in each group with a common For
Statement Numker will e moved. In
the case of the first group (For
Statement Number 0), the displacerent
of the first entry in the sorted takle
is equal to zero. In the case of all
subsequent groups, the displacement is
computed by multiplying the entry
length by the numker of entries in the
preceding group.

3. Moving the entries from the unsorted
table to the sorted table. The desti-
nation of each entry in the sorted
takle is specified by the start
address of the sorted takle, plus the
displacement contained in the corres-
ponding entry of the Address Takle.
After each move, the displacement in
the Address Table is incremented Ly
the entry 1length, so that the resul-
tant displacement specifies the rela-
tive address where the mnext entry
having the same For Statement Nunber
will be moved.

Chapter 7: Subscript Handling Phase 107

CHAPTER 8: COMPILATION PHASE (IEX50)

PURPOSE OF THE PHASE

The purpose of the Compilation Phase is
to read the Modification Level 2 text
produced by the Scan III Phase and to

generate an object module which will per-
form the operations indicated in the source
module.

Compilation is performed by approximate-
ly 60 individual compiler programs. The
‘compiler programs are activated by action
of two central routines (named SNOT - Scan
to Next Operator - and COMP-Compare), which
scan the Modification Level 2 text and
which branch to the appropriate compiler
program, according to the sequence of oper-
ators found in the source text.

For the most part +the object code is
determined by the individual operators (or
sequences of operators) in the source text.
In the case of for statements, however, the
overall structure of the code 1is governed
by the particular for statement's loop
classification in the For Statement Takle,
constructed in the Scan III Phase (Chapter
6). The same For Statement Table also
specifies, among other things, if subscript
optimization is to be performed for optimi-
zable subscript expressions contained in
for statements. Optimizable subscripts in
each for statement are listed in the Optim-
ization Table.

Operand addresses in the individual
instructions are obtained from the five-
byte internal names representing operands
in the source text.

Provided the requisite options have been
specified, TXT records of the object code
are generated on an external data set by a
subroutine (named GENERATE) on call from
the compiler programs.

For all ALGOL-defined I/0 procedures or
standard mathematical functions invoked in

the source module, ESD records are
generated to call the appropriate routines
from the ALGOL Library (Chapter 10).

Library routines are combined with the
object module by the Linkage Editor to form
an executable load module.

108

COMPILATION PHASE OPERATIONS

The Compilation Phase is initialized
mainly by a rcutine which forms a control
section (IEX40001) of Load Module IEXW40.
The initialization routine acquires main
storage for a private area and initializes
takles and constants in the Common Wcrk
Area and in the phase's private area. It
also initiates input of the first reccrds
of the Modification Level 2 text and the
Optimization Table from the SYSUT2 and
SYSUT3 data sets. After initialization has
Leen completed, control is transferred (by
XCTL to Load Module IEX50 (Compilaticn
Phase proger).

The following descrirtion rprovides a
brief survey of the basic operating frarme-
work of the Ccmpilation Phase, with special
reference to the illustrative diagram in
Figure 52. The logic of the okject code
generated is discussed in the later sec-
tions descriking the corpiler prograrns
under appropriate headings. Figure 53 pro-
vides a guide to the various compiler
programs.

Within the Comgpilation Phase, the SNOT
routine (Scan to Next Operator) receives
control after Load Module IEX50 has Lkeen
loaded, and proceeds to scan the Modifica-
tion Level 2 source text in the current
input buffer. Source text records are read

from the SYSUT2 data set ky the JBUFFER
subroutine, on call frcm SNOT (and certain
compiler programs) on detection of the

record-end operator Zeta. The scurce text
consists mainly of a sequence of one-kyte
operators and five-byte operands. Appendix
I-c indicates the internal representation
of all operators in the source text.
Appendix II indicates the contents of the
five-byte internal names of all operands
declared or specified in the source module.

SNOT scans the source text to the next
operator, stores the orerand (if any) which
precedes the operator in the Operand Stack,
and then enters the COMP rcutine (Compare).
CoMp's function is to activate the
appropriate comriler program, according to
the pair of operators in the source text
and in the Operator Stack.

COMP determines the compiler prcgram tc
ke entered, with the aid of one of three

decision matrices and a compiler program
Address Table. There are three decision
matrices: a Program Context Matrix, a

Statement Context Matrix and an Expression

P =uxN

COMPILATION PHASE (IEX50)

SYSUT3
Optimization Compiler Programs The compiler programs compile object code,
Tabl Input Buffer (2) S-ompiier Trograms |
able Outimizati T on the basis of the operators and operands in
Ta%'l':"m"on | —CPO — the Ogvel"fafor g\: Operand Stacks and in the
input er. Object code is transferred to
(The Optimization Table is used Pl the output buffer and the SYSPUNCH and /or
when code is generated to pre- — — SYSLIN data sets by call to GENERATE. The
calculate the base addresses of compiler programs also store operators and
optimizable array subscript ex~ |- CP4 — operands in the stacks. Control in most cases
pressions in for statements) is returned to SNOT,
L—cps —i
Operand —CP7 — :
SNOT (Scan to Next Operator) scans the Stack Subroutine Pool
source text to the next operator, stacks the -_— —CP8 —f SNOT
intervening operand (if any) in the Operand e e] ——=] COMP
Stack, and enters COMP, —CP12— GENERATE
SYSUT2 IBUFFER
pALAATS NXTOPT
Modification 1 | —CP16— :
Level 2 Input Buffer (2) \ i
Source Text Source Text ___———-—-—.-—-——_|___—-——-——————————— '
I 1
L COMP (Compoare) branches to the pil :
s tor) Program determined by the operator pair in
ource operator) the source 'e}):' and in the Operator Stack. : SYSLIN
D ines the piler program to be en- ==—
tered with the aid of the decision matrices, Tistack operator) ' Output Buffer SYSPUNCH
entered via the Column and Row Vectors. ' ——={ Object Code |1 Object Code
Gets the program”s address from the Address | ' lect Lode TXT andRLD
Table. | Records
‘ I Operator '
ety 1
I Address | Stock '
| Toble L— - —— -1
| —_— | GENERATE Generats TXT
I-‘—- ————— CP85—i records of object code, on
call from the compiler pro-
I —CP86— grams.
l —CP87 —
Column Vector
| Row Vector r—————— 1—r3
b ——— Program } 1 (XCTL to
| Context IEX51)
' Matrix l
I Column Vector For Statement
| Row Vector Joble
'- — 7] Statement
| Context
I Matrix
l Column Vector The For Statement 'Eable specifie.s
i Row V. each for statement’s loop classifi-
L ow Vector cation and indicates if optimization
———- . is to be performed for optimizable
Expression array subscript expressions in the
Cont_ex' for statement.
Matrix
Figure 52. Compilation Phase. Diagram illustrating phase operations
Context Matrix (Appendices V-a to V-c). the number of the aprrorriate compiler

The particular matrix referenced by COMP at program. The address of the compiler prc-
any particular point is determined by the gram is obtained from an entry in the
action of a compiler program at an earlier Address Table which corresponds to the
point in time. program number in the decision matrix.

The decision matrices specify a particu-
lar compiler program number for every pair Depending on the particular compiler

of operators in the source text and in the
Operator Stack. A decision matrix is
entered with the aid of a Row Vector and a
Column Vector. The Row Vector specifies a
displacement for the stack operator while
the Column Vector specifies a displacement
for +the source operator. The sum of these
displacements gives the displacement of an
element in the decision matrix containing

prcgram entered and on the source text, the
compiler program may:

1. Compile code in accordance with the
stack operatocr, using the address data
in the stack operand; release the
stack operator and cperand; and return
control to SNOT (or COMP); or

Chapter 8: Compilation Phase 109

2. Store the source operator in the Oper-
ator Stack, and return to SNOT; or

3. Release the stack operator and return
control to COMP or SNOT; or

4, Compile code in accordance with the
source operator, release one or more
operands, and return to SNOT.

The foregoing list indicates only a few
of the compilation actions taken ky the
compiler programs, and represents only a
small sample of the range of compilation
alternatives.

In practical terms, object code is gen-
erated by means of a call to an appropriate
entry point of +the GENERATE subroutine.
The call specifies the address and length
of a sequence of one or more instructions
appropriately edited by the compiler pro-
gram. Depending on the Compiler options
specified, GENERATE produces TXT records of
the object code on the SYSLIN and/or SYS-
PUNCH data sets.

Compilation is terminated in the Termi-
nation Phase (IEX51), which receives con-
trol from Load Module IEX50, when the CPEND
routine (entered from Compiler Program No.
3 on detection of the program-end operator
Omega) issues the XCTL macro instruction.

The Termination Phase generates ESD,
TXT, and RLD records for the object time
Program Block Table, Label Address Table,
Data Set Table, and Address Table, or, if
any errors were detected during the Compi-
lation Phase, prints out diagnostic messa-
ges for the errors recorded in the Exror
Pool. Control is returned to the final
exit routine in the Directory after main

storage has been released and data sets
closed.
PHASE INPUT/OUTPUT

Input/output operations in the three
modules (IEX40,IEX50 and IEX51) of the

Compilation Phase are represented in Figure
53. The same figure alsoc indicates the
tables transmitted between these modules
via main storage.

110

Main Storoge

|

Program Block Table Il
! For Statement Table
|
|

Compilation
o

se
Initialization

(IEX40001)

| Main Storage |
Program Block Table I1
} Program Block Table i1
For Statement Table |
| Decision Matrices |
Modification Level 2 |
|
1

Sysur2*
md.'I" 2camcm Source Text

Source Text Optimization Table

SYSLIN/SYSPUNCH

TXT and RLD
records of gene~
rated object
code

COMPILATION
PHASE
(IEX50)

Sysurs*

F—__L_—ﬂ

| Main Smgc
1 Program Block Table i1l

|
|
1/3 Table |
| Lobel Addres Toble
rror Pool |
|
|

Oiﬁmizaﬁon

SYSLIN/SYSPUNCH|

TXT, RLD, ESD
records of

Lobel Address Table
Program Block Tablel
Data Set Table
Address Table

END record

TERMINATION
PHASE
(IEX51)

SYSPRINT

Storage Require-

lsﬁlf! or
iagnostic

Messages

* The first two records of the source text and the Optimization Table
are reod into main storage by the Compilation Phase initialization
routine (Control Section IEX40001) in lood Module IEX40.

Figure 53, Compilation Phase Input/Output

The first two records of the Modifica-
tion Level 2 source text, and the Optimiza-
tion Table are read in by the initializa-
tion zroutine in Load Mcdule IEX40. All
subsequent input is handled by the JBUFFER
and NXTOPT subrcutines.

ESD, TXT, and RID records are output on

the SYSLIN and/or SYSPUNCH data sets by the
GENERATE subroutine.

OPERATOR/OPERAND STACKS

The Operator and Operand Stacks
opposite ends of a combined
Operator/Operand Stack area, acquired at
initialization of the Compilation Phase
(see Figure 59). When operators (one byte
in length) are entered in the Stack, a
pointer (OPTK) is incremented. When oper-
ands (five bytes in length) are entered in
the stack, a pointer (OPDK) is decremented.
Cperators are released Ly decrementing
OPTK, while operands are released by incre-
menting OPDK.

occupy

The function of the Operator and Operand
Stacks is to provide temporary storage for
operators and operands in the source text,
as well as for other special-purpose opera-
tors and operands originating in the com-
piler programs). In principle, a sequence
of operators and operands is stacked until
such time as an operator in the source text
is encountered which marks the end of a
defined 1logical entity or relationship and
which signifies that object code for one or
more of the preceding operators may be
generated. The stacking of operators and
operands is equivalent to deferring the
generation of object code until such time
as the logical meaning of an operator
sequence has been clarified.

Operators are stacked by a majority of
the compiler programs. Operands originat-
ing in the source text are stacked by the
SNOT routine, other special-purpose oper-
ands by the compiler programs.

Appendix I-d indicates the internal rep-
resentation of the various stack operators.
The operators are defined in the Explana-
tion accompanying Appendix I-d.

Appendix II indicates the content of the
five-byte operands representing identifiers
and constants in the source module, while
the notes accompanying Appendix X list the
special-purpose operands stacked by the
compiler programs.

In the object module generated by the
Compiler, the object time operands
(represented by addresses) include:

1. Operands specifically declared or
specified in the source module (e.q.
variakles, constants or labels); and

2. Intermediate values or addresses.
Intermediate values (or addresses)
represent the intermediate results

obtained at object time from opera-
tions (specified in the source module)
on operands. Intermediate values or
addresses may be contained in reg-

isters, or in Data Storage Area loca-
tions.

The above breakdown excludes a third

category, not considered here, comprising

operands involved in purely administrative

functions.

With certain exceptions, every operand
being processed by a compiler program,
whether the operand be a variable, a ccn-
stant, an address, or an intermediate value
or address, is represented by a correspcnd-
ing internal name in the Ogperand Stack,
pointing to a corresponding stcrage loca-
tion in an object time Data Storage Area ocr
an entry in the Lakel Address Tatle. As
soon as code is generated to load the value
or address of an cbject time operand in a
register, the corresponding operand in the
Operand Stack is modified to show the value
(address) in a register. A new storage
field (or save area) is' reserved for the
register in the current Data Storage Area
when the register is first assigned (see
"Control of Okject Time Registers"). If
the contents of the register are subse-
quently stored at okject time in the res-
erved storage field, the operand is
appropriately modified (see kelow). 1In the
same way, as soon as code is generated tc
move a value from cne Data Storage Area
field to another field reserved for an
intermediate result, the orerand is modi-
fied correspondingly. When an operand has
been processed in the object code, or when

a value or address in a register has keen
finally stored or disposed of (and the
register relinguished), the corresponding

entry in the Operand Stack is released.

In analogous manner, an operator is
released from the Operator Stack when code
has been generated in accordance with the
operator.

The handling of stack operators and
operands is 1illustrated ky the example in
Figure 54, which shows the code generated
when the semicolcon marking the close of a
simple arithmetic statement is encountered.
The operators and cperands in the statement
will have been entered in their respective
stacks as shown, befcre the sermicolon is
encountered. The illustration shows the
adjustments to both stacks, following each
step in the generation of code. The exam-
ple assumes that all operands in the state-
ment are variables and that they are all
declared in the embracing block.

Chapter 8: Compilation Phase 111

Identifiers A, B and C declared integer simple variables in the source module.

(In the Modification Level 2 text, the identifiers would be represented by the
5-byte internal names shown in the Opemnc; Stack below, and the operators
byt

Source Text:

yte operators, as in Appendix I-d.
Object Time Operand Stack
Data Storage Area 0 2 3 5
e 9 OPDK
| 1 ®) X°C031° <PBN> <DISP-B>
A 3
] . .
(A X°C0 31 <PBN> <DISP-A>
R)
@ ! ! © X-C031° <PBN> <DISP-C>
b—————— —
® | 1 | (Other operands)
H —_——————— | H
|
O
—————— - oPDK
1 | ®) X°C0 31" <PBN> <DISP-B>
b e —
! _‘ (A in REGX) X°90 31 <PBN> |<X> <DISP-X>
o ! _: ©) X“CO31" <PBN> <DISP-C>
®) | | (Other operands)
—————— -
©! !
——————
o ! !
| |
—————— - oPDK
;__ _: (A+Bin REGX X°90 31 <PBN> |<X> <DISP-X>
! ! © X-C0 31 <PEN> <DIsP-C>
————— —
@ ! (Other operands) ,
—————y |
® | !
————— —
©! !
p —.t- ————— _.!
(X) Lo -
—————— a OPDK T
| | | (Other operands) !
:— —————] | |
]
S
| |
(A)
P————— -
® ! !
o
I
©) [
Notes:
1. Pointers OPDK (reg. 9) and OPTK (reg. 10) point o the last entry in the DISP-X
Operand and Operator Stacks.
2. Displacement pointer P (reg. 7) indicates the displacement of the last reserved X

storage field in the object time Data Storage Area (DSA) of the current block
or procedure. Whenever a change in scope occurs, the PBNHDL subroutine
stores the contents of P, representing the DSA displacement for the last block
or procedure, in a corresponding entry of PBTAB2, and loads P with the DSA
displacement for the newly entered (or reentered) block or procedure, con-
tained in the corresponding entry of PBTAB2.

P is incremented whenever additional storage bytes are reserved in a Dato
Storage area, e.g. for an intermediate value or address in a register. P may
swbsequentlybe decremented, as in the f lustration, if code is not subsequently
generated to store an intermediate value (address) in the reserved storage field.

If, however, code is actually generated to store the intermediate value (address),
the displacement in P is stored (by the MAXCH subroutine) in a corresponding
entry of PBTAB3, thus recording the minimum length required (up to that particu=
lar point) for the particular Data Storage Area at object time.

3. Displacement pointer PRPOINT (reg. 6) indicates the displacement in bytes of
the next object code instruction to be generated, counted from the start of Con-
stant Pool No. 0. PRPOINT is updated by the GENERATE subroutine after every
segment of code is generated. In the compiler programs, the length in PRPOINT
is used as a relative address in specifying branch addresses (as well as addresses
of declared labels) in the object module. In such cases, the displacement in
PRPOINT is stored in the appropriate entries of the Label Address Table. At
linkage edit time, the relative addresses in the Label Address Table are conver-
ted to absolute addresses.

4. The abbreviations in the Operand Stack entries have the following significance.

PBN - Program Block Number of the block or procedure in which
the identifier is declared or specified.

DISP-A

DISP-B - Displacement of the identifier’s assigned storage field in the

DISP-C object time Data Storage Area.

Figure 54,

112

Object Code Operator Stack
:(Othor
,operators)
OPTK
n
1(Other
Toperators) |
OPTK
L REGX,<DISP-A>(CDSA) +
PRPOINT
(Other
OPTK
A REGX<DISP-A>(CDSA)
PRPOINT

OPTK —= Other |

|operofors)

ST REGX,<DISP-A> (CDSA),
'PRPOINT

Displacement of Register X s reserved storage field in the
object time Data Storage Area.

Number of the object time register containing the interme-
diate value. The register may be any oneof the registers avoil-
able for general computational use (see "Control of Object
Time Registers").

Conceming the characteristic in the first two bytes of the stack operand; see
the accompanying text. Compare also with Appendix II.

5. The notation in the illustrated object code has the following significance.

REGX

The name of the object time register whose number (X) is
contained in the stack operand. The register may be any
one of the registers available for general ional use
(see "Control of Object Time Registers").

The displacement of the identifier’s assigned storage field
in the object time Data Storage Area. The displacement is
obtained from the relevant stack operand.

The name of base register 10, containing the address of the
current Data Storage Area, i.e. the object time Data Stor-
age Area of the current block or procedure. CDSA appears
in all of the illustrated instructions because, inthe assumptions
of this simple case, all of the identifiers are declared in fi
immediately embracing block. If any one of the identifiers
had been declared outside the embracing block, the base
register in the instruction involved would have been GDSA
(reg. 9) == Global Data Storage Area. In the object module,
GDSA is always used to address the relevant Data Storage
Area, where an operand is not declared or specified in the
current block or procedure; CDSA at all times addresses the
current Data Storoge Area.

Diagram illustrating the function of the Operator/Operand Stacks

Figure 55 indicates the contents of the
operand representing an intermediate value
or address contained in a register or
contained in a Data Storage Area field,
i.e., the Data Storage Area of the block or
procedure having the Program Block Number
<PBN>.

2 3 4

5

- - T T -T - 1
<Characteristic>|<PBN>|<Reg.|<Displace- |
|
1

| | No.>|ment in DSA>
L L L -

e———- O

<Characteristic> - (See text)

<PBN> <Program Block Number of
the embracing klock or

procedure>

No.>

]

<Number of the

containing the inter-
mediate value/address>
or <zeros> 1if operand
in Data Storage Area

<Reg.

<Displacement in
DSA>

<Displacement of the
register's storage
field in the Data Stor-
age Area of the Lklock
or procedure indicated
by PBN>

Figure 55. Five-byte operand representing
an intermediate value or
address contained in an object
ime register or temporarily
stored in the register's res-
erved storage field in a Data
Storage Area.

Except for certain special-purpose orer-
ands, the location and type of every oper-
and at object time is indicated by specific
binary settings in the characteristic of
the relevant stack operand (namely, bits O,
1, and 2 of Byte 0). The significance of
the various settings is as follows:

Characteristic
Byte 0 Significance
(Bits 0, 1, 2) Operand represents:

110 a variable orx constant
with an assigned storage
field in a Dpata Storage
Area or a Constant Pool,
or the address of a

declared procedure, switch
or label with an assigned
entry in the Label Address
Table

100 a value contained in the
register indicated in the
operand

register.

010 an intermediate value ccn-
tained in a Data Storage
Area field

101 an address contained in
the register indicated in
the orerand

011 an address contained in a
Data Stcrage Area field

CONTROL OF OBJECT TIME REGISTERS

Of the 16 general purrose registers
available for use by the object module,
seven registers are restricted to specific
addressing functions. The remaining eight
general purpose registers, as well as all
four floating-roint registers, are availa-
kle for general computational or addressing
purposes. The division of register assign-
ments is as follows:

Available for general computational use
General Purpose Registers 0-7
(GPRO,...,GPR7)

Floating Point Registers 0,2,4, and 6
(FPRO, ... ,FPRY)

Available fcr general addressing use
General Purpose Register 8 (ADR)

Restricted to Specific Addressing Func-

tions
General Purpose Registers 9-15. The
use of each of these registers is

indicated in Charter 11, under "Okject
Time Register Use".

To provide for the logical and efficient
assignmwent of the registers availakle for
general computational and addressing use,
two systems of register control are emp-
loyed, one for general purpose registers,
the other for floating-point registers.
These control systems, which are administ-
ered by a set of sukroutines indicated
kelow, have two purposes:

1. To ensure that, whenever a competing
demand arises for the use of a given
register, any intermediate value con-
tained in that register is duly saved;
and

2. To minimize the numker of Store Reg-
ister instructions in the object
module (in other words, to maximize
the register holding time).

Figure 56 illustrates the control fields

used in the control of okject time general
purpose registers.

Chapter 8: Compilation Phase 113

Object Time General Purpose

in the object code

Registers 0 - 8
—_————— In use in object code
GPR 0: r [} X
[P |
| e |
GPR1: | [} X
| E R — -~
e ——— |
GR 22 | h X
Fixed Point Cycle Indicator (CII) [-
0 1 2 -
T T T .
1 0 (Number of last assigned GPR 3: | 1
I-———(AII zeros - unuwd)—‘] 0 ! ° [J general purpose reﬁisfer —
amleng registers 0 through 7
§ - last assigned register
Fixed Point Register Use Indicator (RIl) GPR 2) Fm———————
GPR 4: | |
[1 | .
T T Tololol1 111
(All zeros - unused)——== 1 1 0 4 0| 01 040§ 11
I 1 1 L Il 1 1 1 1 ——————a
(Registers: 8 7 6 5 4 3 2 1 0) GPR 5: L ______ -J|
[|
GPR 6: 1 |
______ -
m—————— -
GPR7: | 1
e e e e -
e
GPR 8: | | X
U S -
(ADR)
Fixed Point Operand Address Table (RUTI) Operand Stack® Object Time Data Storage Area
(of current block or procedure)
i | A
Entry for GPR 0: A (Stack operand) <Characteristic> | <PBN> <Displacemeni> | |
T] |
" 1 u H
: A tack d " 2 \
fnty for GFR 1 Srock sper) L [} (Storage fields reserved for identi~ 1
N "
Entry for GPR 2: A (Stack operand) ! : i fiers declared or specified in the :
E for GPR 3 " " 11 " | current block or procedure) 1
ntry for : !
N 4 p ;] I |
Entry for GPR 4: : :
T
N " 1 .
Entry for GPR 5: 8 I " :
Entry for GPR &: " S I N NG I N I
\ % ! Storage fields re-
Entry for GPR 7 0 [[N I N N ! reserved for object
! | time genei'al pur-
Entry for GPR 8: Altackeperand) [N N _: g:?:'q;d .‘:;:I?Jgsed
|

* i i ifically identified in the
The Operand Stack may at the same time contain operands fnot specifically din
fi;Jre)P?':opresenﬁng inal?lermedia'e values in object time floating point registers, and pointing
to 8-byte storage fields in the Data Storage Area - see Figure 57.

Figure 56.

————————— for the current
| block or procedure,
R | and for other
- | object time data,

Control Fields governing use of object time general purpose registers,

showing relationships to Operand Stack, Data Stcrage Area and registers

The two-byte Fixed Point Cycle Indicator
(CIT) indicates the number of the last
assigned register among general purpose
registers 0 through 7. When a register is
required for computational purposes, CII is
increased by one (or reset to 0 if CII=7).

The resulting number is the number of the
register to be used. This rotational
assignment of registers ensures a maximum

register
odd pair

holding time.
of registers

(Where an even or
is required for

114

integer division cr multiplication, CII may
ke increased by two).

The two-byte Fixed Point Register Use
Indicator (RII) indicates the registers
currently in use amcong general purpose
registers 0 through 8. A register in use
is indicated if the corresponding kit is
turned on. If the register is currently in
use, a Store Register instruction must kLe
generated before the register can be used
in the subsequent okject ccde (see kelow).

The 36-byte Fixed Point Operand Address
Table (RUTI) provides a full word for each
of registers 0 through 8. Whenever code is
generated to load a value (or address) in a
register, a four-byte storage field, or
save area, is reserved for the register in
the current Data Storage Area. The rela-
tive address of the save area is recorded
in the relevant Operand Stack entry, while
the address of the Operand Stack entry is
stored in the register's full-word entry in
the Operand Address Table (RUTI). If, when
a given register is to be used, the Reg-
ister Use Indicator (RII) shows that the
register is currently in use, code is first
generated to store the contents of the
register in the storage field specified by
the relevant Operand Stack entry. Thereaf-

ter, a new save area is reserved for the
register in the current Data Storage Area,
its displacement being recorded in the
current Operand Stack entry, and the

address of the Operand Stack entry Leing
stored in the appropriate entry of the
Operand Address Table (RUTI).

Floating Point Cycle Indicator (CIR)

1 2
L 1

e (All zeros - unused)————l 01 ‘ 0 llOJ
1

Floating Point Register Use Indicator (RIR)

1

d).
)

| 011
11
(Registers: 6 4 2 0

(All zeros -

=4
~ o

Floating Point Operand Address Table (RUTR) Operand Stack*

(Number of last assigned
floating point register - FPR 4)

When a register is released (i.e., as
soon as it 1is no 1lcnger needed), the
register's save area in the Current Data
Storage Area is relinquished, and the cor-
responding bit in the Register Use Indica-
tor (RII) is turned off. The Cycle Indica-
tor (CII) is reduced by one (or reset tc 7
if CII=0), and the Operand Address Takle
(RUTI) is unaffected.

Object time register control is
primarily by ROUTINE1,
through ROUTIN1S5.

handled
ROUTINE2, ...,

Figure 57 illustrates the control fields
used in the control of object time
floating-point registers. The function of
these fields is entirely anclogous to that
of the control fields which govern the

Entry for FPR 0: <Characteristic> | <PBN>

Entry for FPR 2:

A(Stack operand) N !
Entry for FPR 4: A(Stack d) " "

Entry for FPR 6:

N

* The Operand Stack may at the same time contain operands (not specifically identified in the
figure) represamir_ta intermediate values or addresses in object time generof purpose registers,
and pointing to 4-byte storage fields in the Data Stbrage Area - see Figure 56.

Figure 57.

assignment of general rurpose registers
(Figure 56).
Object Time Floating Point Registers 0,2, 4, 6
In_use in object
______________ 5
e [q s
FPR 2 E] X
______________ A
FPR 4: E B X
______________ |
FPR 6: L_.____..._.___.__.___J
Object Time Data Storage Area
(of current block or procedure)
<Displacement> :— -‘l
" | |
T - l (Storage fields reserved for identi- :
= | fiers declared or specified in the 1
: current block or procedure) :
- | |
— I I
| 1
| |
| .
I‘ ““““““““““““ | s field:
] r ! r;zrovgeed ;:r ;biecf
f———————— e —— o time general pur-
| pose and floating

point registers used
in the object code
- for the current
1 block or procedure,
I 4 and for other
|
-

object time data.

Control Fields governing use of floating point registers,

showing relationships to Operand Stack, Data Storage Area and registers

Chapter 8: Compilation Phase 115

DECISION MATRICES

The basic control framework of the Com-
pilation Phase is expressed by a set of
three decision matrices named the Program
Context Matrix, the Statement Context
Matrix and the Expression Context Matrix
(Appendices vV-a, V-b, and V-c). Each
matrix specifies a particular compiler pro-
gram to be activated (by the COMP rcutine)
for every possible pair of operators in the
source text and in the Operator Stack.

The operative decision matrix at any
particular point in time depends, in gener-
al, on the logical context of +the source
module currently being processed. Matrix
changes are effected by the compiler pro-
grams according to changes in logical con-
text, as indicated by the operators in the
source module. A switch from one matrix to
another 1is effected by incrementing or
decrementing the matrix base register CCT
(register 11). A prospective change to a
specific decision matrix may be specified
by the storage of an appropriate operator
(PRC, STC, or EXC) in the Operator Stack,
whose subsequent detection will cause the
relevant compiler program to switch to the
appropriate matrix.

The operative decision matrix is ref-
erenced (by the COMP routine) with the aid

of a Column Vector and a Row Vector. The
Column Vector consists of a series of
2-byte elements, each containing a dis-

placement value associated with
operator in the source text. The Row
Vector consists of a series of 2-byte
elements, each containing a displacement
value associated with any given operator in
the Operator Stack. The sum of the dis-
placements for the source operator and the
stack operator gives the disrlacement of an
appropriate half-word in the operative
decision matrix addressed by pointer CCT.
The half-word thus specified multiplied by
four contains the relative address of an
entry in the Address Table, containing the
absolute address of the relevant compiler
program.

any given

COMPILE TIME REGISTER USE

The general purpose registers are used
in the Compilation Phase as follows:

116

Register Register
Numbexr Name Use
0 (Vvariable) Variable use
1 (Variakle) Variakle use
2 (Variable) Variable use
3 (Variable) Variakle use
4 (Variable) Variable use
5 SBR Base register of the
Sukroutine Pool
6 PRPOINT Displacement Fpointer
to the next instruc-
tion in the generated
code
7 P Displacement pointer
tc the last reserved
storage field in the
ckject time Data
Storage Area of the
current block or pro-
cedure
8 SOURCE Pointer to the cur-
rent operator in the
Modification Level 2
source text
9 OPDK Pointer to the latest
entry in the Operand
Stack
10 OPTK Pointer to the latest
entry in the Cperator
Stack
11 CCT Base register of the
cperative decision
matrix
12 BASE Base register of the
operative compiler
program
13 WAREG Base register of the
Common Work Area
14 (Variable) Variabkle use
15 (Variable) Variable use

The use of registers 6 (PRPOINT), 7 (P),
9 (OPDK), and 10 (OPTK) is illustrated in
Figure 54.

CONSTITUENT ROUTINES OF THE COMPIIATICN
PHASE

The principal constituent routines of
the Compilation Phase are described belcw.
The relevant text and flowchart in which

each routine is discussed or outlined can
be found with the aid of the index in
Appendix XI. The diagram in Figure 58
provides a guide to the various routines

from the standpcint of the logical elements
of the source module processed bLy each
routine.

All primary control routines, i.e., all

routines entered directly from CCMP, are
referred to as "compiler programs". Sub-
sidiary routines are referred to as

"routines" or "subroutines".

COMPILATION PHASE
(1EXS0)

(from Subscript
Handling Phase) 1EX40001

Initialization Base
of Compilation register
Phase looding
|
XCTL to SNOT,
1EX50 SNOTSP
Scan o next
operator
1
COMP
Select
! GENERATE
compiler —t Transfer of
progrom object code to
T SYSLIN/SYSPUNCH
Poge 120
Blocks and Compound Statements CPo, CP16 l———\ QPoREC
Generation of
Poge 120 "1 actual parameter
Switch calls and parameter-|
Switches Declorations | CP4, CP85, CP56, CP59 less procedure calls
Switch
Desi CP41, CP38
TRINRE
e TRREIN
|| TRREIN
Lobels Label number coﬂvoe‘rsion
Declarations | CP1
calls
Foge 123]
Goto Statements 1___ ROUTINE1-15
LOVWPLC
L6, Chsb, CRE2 Object time
[=——={ register control
(FPoge 12 Generation of oper-
A ond looding and
Bovoys Declarations | CP4, CP52, CP36, CP5I, CP54) storing
Subscripted
Varicble CP4l, CP38 TARITHM
ARRTEST1
Poge 131 |] OPDTEST
Procedure Operand
Procedures [Declaration CP4, CP16 recognition
Procedure
Colls CPes4, CP57
&0 CLEARRG
Code Procedure | Register save
Code Procedures Declorations | CP4, CP83, CP16 generation
[Code Procedure
Calls CPea, CPS7
[Poge 136
Stondard Procedures Stondord MAXCH
Procedure Calls CP&4, CP61 Dato Storage Area
Poge 138
For Statements P6, CP4O, CP43, CP45, CP47, CPA9, CPBI }____..‘
SCHDL
Poge TST] PBNHDL
) Somioch
Assignment Statements CP12, CP20, CP21]__.. Count
- and Program Block
Number Handling
Foge TS]
Conditional Statements P8, CP78, CP17, CP18 l_._
ZTREER] SERR
Poge 12 Ervor recordi
Conditional Expressions P80, CP34, CP65, CP78, CPB7, CP79 I_..
Poge 158
Arithmeic Expressions P64, CP&S, CP67, CPE3, CP69, CP&B I——— Joreck
Input of Modifica-
[P 7 1 tion Level 2 source
ek text and Optimi-
Boolean Expressions 64, CP65, CP67, CP76, CP77, CP6B]____.- zation Table
Foge 161
e LATRES
Semicolon Handling 24, CP25, CP23, CP7 l-—-—- Label Address
Table entry
=TT reservation
Context Switching P19, CP22, CP33, CP70, CP71 I._..'
= Q call
. i P26, CP27, CP28, CP29, CP30, CP3l
Logical Error Recognition 72, CP73, CP74. CP75. CPBE "
[]
cras CPERRI | e
Close of Source Module cp3]._.J CPEND XCTL
IEX51000

Figure 58. Diagram showing the compiler programs
in relation to the logical elements of the source module

Chapter 8: Compilation Phase 117

A summary of the compiler programs,
showing, among other things, the stack
operators and operands at entry and exit,
errors detected, and subroutines called, is
provided in the table in Appendix X.

PHASE INITIALIZATION

Compilation Phase initialization is
divided between Control Section IEX40001 in
Load Module IEX40, and a short initializat-
ing routine at the start of Load Module
IEX50. Control Section IEX40001 acgquires
main storage for the private area pictured
in Figure 59; constructs Program Block
Table III in the Common Work Area; reads in
the first two records of the Modification
Level 2 source text and the Optimization
Table; and transfers contrcl (XCTL) to Load
Module IEX50.

The initializing routine at the start of
Load Module IEX50 addresses the Program
Context Matrix in the Common Work Area;
specifies new program interrupt, I/0O error
and End of Data exits; and enters the Scan
to Next Operator routine.

At entry to IEXH40001, the address of the
terminating routine INERR1 is stored at
ERET, the 1location referenced by the Pro-
gram Interrupt routine (PIROUT) and the I/O
Error Routines (SYNAD and S¥YNPR) in the
Directory. INERR1 1is replaced by INERR2
after the private area has been acquired.

The GETMAIN instruction for the private
area ‘pictured in Figure 59 is issued after
the area sizes of all work areas have kLeen
totalled. The area sizes are obtained from
the Area Size Table (see Chapter 3) in the
common Work Area, except in the case of the
Label Address Label, for which the area is
fixed at 4096 bytes.

Source Text Buffer 2 is acquired only if
the Modification Level 2 source text is to
be read into main storage from the SYSUT2
data set (i.e., the buffer is not acquired
if the entire source text was transmitted
by the Scan III Phase in Source Text Buffer
1 in the Common Area, indicated by the SPIC
switch in the HCOMPMOD Control Field).
Except for the first two records, which are
read in by Control Section IEX40001, Modi-
fication Level 2 text records are read from
the SYSUT2 data set by the JBUFFER subrou-
tine on call from SNOT (Scan to Next
Operator), and Compiler Programs 4, 51, and
66.

Similarly, buffers for the Optimization
Table are acquired only if the table was
constructed by the Subscript Handling
Phase, indicated by the OPT switch in the

118

HCOMPMOD Control Field.
first two records, which are read in by
Control Section IEX40001, ¢ptimization
Table records are read from the SYSUT3 data
set by the NXTOPT subroutine, on call from

Except for the

Compiler Programs 40, 47, and 49.
IBUF2
Source Text Buffer 2*
SOURCE —-=
OPBUF1
Optimization Table Buffer 1*
AOPTABE — =
OPUBF2
Optimization Table Buffer 2*
AOPTABE —-»
OPTK T
; ALPHA .
Operator Stack
! Operand Stack®
OPDK —L—
LATAB Label Address Table (4K)
(28 fullwords reserved
for object time address
_of standard procedures) _ _
(Space reserved for object time
addresses of labels, switches
and procedures declared in the
LN source module) _ _ _ _ _ _ _ _ |
*Area size specified by Area Size Table

in Common Work Area. See Appendix VIII
for the variation in area sizes as a
function of the SIZE option.
Figure 59. Private Area acquired by Ccn-
trol Secticn IEX40001 for the
Compilation Phase (IEX50)

The Operator and Operand Stacks occupy

opposite ends of a comkined
Operator/Operand Stack area. The handling
of +the Operatcr and Operand Stacks is

discussed elsewhere in this charpter.

P==N

~mEme

A total of 4096 bytes are allocated for
the Label Address Table. This includes
space for entries assigned in the Scan I/II
Phase to labels, switches, and procedures
declared in the source module. The remain-
der of the Label Address Table is used in
the Compilation Phase for branch addresses
produced by the Compiler in the okject
code. The displacement of the last
assigned entry is indicated by displacement
pointer LN (Label Number), transmitted from
the Scan I/1II Phase via the Common Work
Area.

The first 28 full-words in the lakel
Address Table are reserved for the object
time addresses of standard procedures which
may be called in the source module. At
initialization, the first bit in each full-
word is set = 1. 1If, subsequently, a call
for the standard procedure is detected, the
bit in the corresponding entry is reset to
0 (by Compiler Program No. 6L4). In the
Termination Phase, ESD records are
generated for all standard procedures which
were called, indicated by the first bit in
the entry keing equal to 0.

Program Block Table III is constructed
in the Common Work Area by transferring the
contents of each two-byte entry in Program
Block Table II (see Chapter 5) to the first
two bytes of the corresponding four-kyte
entry in Program Block Table III. The last
two bytes in the new entry are zero-set.

Program Block Table III is 1located in
the Common Work Area. In the same way,
space is provided for various other tables,
including:

Data Set Table (DSTAB)
I/0 Table (IOTAB)
Subscript Table (SUTABC)

The tables are described elsewhere in this
chapter.

As soon as the first two records of the
Modification Level 2 source text and the
Optimization Table have been READ (and
CHECKed) from the SYSUT2 and SYSUT3 data
sets, control 1is passed (by XCTL) to Load
Module IEX50 (Compilation Phase proper).
Before the respective READ instructions are
issued, the address of a point to be
entered in the event of an End of Data
conditon, is stored at EODUT2 and EODUT3 in
the Common Work Area, the locations ref-
erenced by the End of Data routines EODAD2
and EODAD3 in the Directory. If the entire
source text was transmitted by the Scan III
Phase in the Common Area buffer, or if no
Optimization Table was constructed
(indicated, respectively, by the SPIC and
OPT switches in the HCOMPMOD Control
Field), the corresponding READ and CHECK
macro instructions are bypassed.

On entry to Load Module 1IEX50, the
address of the terminating routine CPERR1
is stored at ERET, the location referenced
ky the Program Interrupt routine PIROUT and
the I/0 Error rcutines SYNAD and SYNPR in
the Directory. After loading register 11
(CCT) with the address of the Column Vector
of the Program Context Matrix (see Appendix
IV-a), the End of Data exits JB3 and NX4
are specified for +the SYSUT2 and SYSUT3
data sets, and the Scan to Next Operator
routine (SNOT) is entered.

SCAN TO NEXT OPERATOR (SNOT)

SNOT scans the Mcdification Level 2
source text to the immediately following
operator, and branches to COMP. The new
operator is addressed by pointer SOURCE

(register 8). If the cperator was preceded
by an operand, represented by a five-byte
internal name, the operand is stored in the
Operand Stack and a switch named OPDT is
turned on. OPDT is inspected ky the var-
ious compiler programs to determine whether
specific processing treatment of a preced-
ing operand 1is required, or to identify a
syntactical error condition.

In a majority of the compiler prograrns,
the exit (or return address) is that of
SNOT. In other compiler programs the
return address is SNCTSP (or SPEC), a
special entry point of COMP. In CP3,
entered on recognition of the program-end
operator Omega, the exit is to CPEND, which
transfers control to Load Module IEXS51.

SNOTSP 1is specified as the return
address where the operator may not logical-
ly be followed by an crerand. If an
operand follows, SNOTSP records Error No.
191, and continues to search for the next
operator.

In both SNOT and SNOTSP, a call is made
to the JBUFFER subroutine (which addresses
the alternate buffer containing a new
source text record), if the record-end
operator Zeta is detected.

COMPARE (COMP)

COMP fkranches to the compiler program
specified in the current decision matrix
for the particular pair of operators in the
source text and in the Operator Stack,
addressed respectively by pointers SOURCE
(register 8) and OPTK (register 10).

COMP is entered from SNOT, SNCTSP and
from certain compiler programs.

Chapter 8: Compilation Phase 119

BLOCKS AND COMPOUND STATEMENTS

Compiler Program No.O

(CP0)

Source Operator: Beta, Begin
(both stacked)

Stack Operator: Alpha, Beta, Pi, Phi,
Then-s, Else-s, Do or

Semicolon

Beta . opens a block, Begin a compound

statement.

For Beta, a call is made to CLEARREG
(which produces object code to save
registers), and code is then generated to

activate the Fixed
PROLOGP (see Library)

Storage Area routine
, which acquires a

Data Storage Area for the new block at
object time. Before exit to SNOT, a call
is made to PBNHDL, which loads register P
with the length (size) reserved for the

block's object time

Data Storage Area,

contained in Program Block Table III.

For Begin, the operator is stacked and
control returned to SNOT.

0 2 3 4
r . . T T 1
|<Size in bytes of |<Scope | <No. of |
| Data Storage Area>| Code> | paramet ers>|
L L 4 []
<Scope Code>:

X'00' - Block

X'04*' - Non-type procedure

X'08' - Type procedure

X'10' - Code procedure

<No. of parameters> =

Figure 60. Entry in

<Number of formal
parameters of a
procedure (zero for
a block)>

Program Block Takle

III (PBTAB3)

Compiler Progqram No.16

(CP16)

CASE A CASE B CASE C
Source Operator: Epsilon End Epsilon

Stack Operator: Beta

Begin Pi, Phi

(all

120

released)

CASE A: Epsilon closes a block. Code is
generated to call the Fixed Storage
Area routine EPILOGB, which releas-
es the Data Storage Area of the
block exited and activates the Data
Storage Area of the enclosing
block. The PBNHDL subroutine is
also called.

CASE B: End clcses a compound statement.
Begin is released.

CASE C: See "Procedures" below.

All cases: If the source orerator was
preceded by an operand (in which
case the ocperand logically rep-
resents a parameterless procedure
statement), a call is made to the
subroutine PLPRST, which generates
code to call the procedure.

SWITCHES

The object ccde generated in the case of
a switch consists of several separate (Lbut
interrelated) segrents. The first segment
comprises the code generated for the switch
declaration. The subsequent segments ccm-
prise the code generated for each switch
designator.

Figure 61 illustrates the code generated
for a declared switch having three simple
label components, and for a single gctc
statement containing a switch designator.
The figure also indicates the compiler
programs which generate the various seg-
ments of the object code, and the Fixed
Storage Area routines invoked in the okject
code. The latter are described more fully
in Chapter 10.

The code for a switch declaration ccn-
sists essentially of

1. 2An opening instruction to kranch
around the declaration,

2. A series of code sequences, one for
each component in the switch list, and
each ending with a branch to the Fixed
Storage Area routine CSWE2, and

3. A 1l1list of address constants, each
pointing to one of the preceding ccm-
ponent code sequences.

g

Source Text Fixed Storage Area Generated Code Compiler Program
N Routines .

(Declaration) “SWITCH,S:= L1, L2, L3; . CP4 (Switch) generates code to branch around the declora-
. :lon, T.e. the code for the components in the switch
: ist.
L BRR, <LN> (LAT) CP85 (Assign) stores the displacement (PRPOINT) of the next
BR BRR insfruction, in a stack operand, to represent the ad-
LAT) - dress of the first component code sequence.
<L1> L ADR, <LN> (LAT Lo P "
L GDSA, <PBN> (PBT) [cps6 s'ac'ks :he“leﬁ parenthesi and' W 'om'd,b o
B CSWEZ (FSA) context, 1t svic bcy ponent is represented by a
P P J
<Ll ADR, <LN> (LAT) CP59 (Comma or Delta) generates all :r part T\flu cocjje se-
CSWE2 reactivates the intervening lower L GDSA, <PBN> (PBT) quence Yor each component in e switch list, depen-
level Dan;'S;:noge A\’Oﬂ(i):hi‘ any; Sre|ouds B CSWE2 (FSA) i;n’? Ir:r;vjha.thor ‘the ?onvponerti is o"s;v':eple label or (;i
CDSA with the oddress of the Data Storage <13> L ADR, <LN> (LAT) a label, the cod P . !

e : , , e sequence generated by CP59 loads
frea of the block containing the switch, [GDSA, <PBN> (PBT) DR with 1o bl s, ot e o e Feed
designator; and retums to the retum address B CSWE?2 (FSA) Storage Area routine CSWE2. If the component is a
in STH complex designational expression (e.g. involving an

<Switch oddress> - — (Constant: number of components))| if clouse or a switch desig), the code to eval
T (Address Constant: <L1>) the expression and to load ADR with the component
L —(Address Constant: <L2>) address will have been generated by some other com-
(Address Constant: <13>) J piler progrom, before entry to CP59, and the code gen-
erated by CP59 will consist solely of the final branch to
CSWE2. CP59 also stores the displacement (PRPOINT)
of the next object code instruction in a stack operand,
to represent the address of the next switch component
code sequence. At the end of the switch list, CP59
generates a constant specifying the number of compo-
nents in the list, and an address constant for each com-
ponent, specifying the address of the corresponding
- code sequence. The displacement (PRPOINT) of this
L GDSA, 0 (PBT) list of constants is stored in the switch identifier’s La~
L BRR, 8(GDSA) bel Address Table entry. Lastly, the displacement of
L ADR, <LN> (LAT) the next instruction in the object code is stored in the
L GDSA, <PBN> (PBT) Label Address Table entry referenced in the branch in-
; CSWET1 deactivates the intervening higher a—nt o BAL STH, CSWE1 (FSA) J struction at the head of the declaration.
(Switch -Goto- s[2); level Data Storage Areals), if ony; loads [CP6 stacks the operator Goto - see " Goto Statements"]

CDSA with the address of the DSA where RETPROL (FSA) 1

designator in the switch is declared; and branches to the

goto statement) CP41 ([) switches to statement context and stacks the [.

relevant component code sequence. CP38 (1) generates code which loads BRR with the component
RETPROL erases the Data Storage Area(s) e number, loads GDSA with the address of the DSA where
if ony, of the block(s) exited; loads CDSA the switch is declared, loads ADR with the address of
with the address of the Data Storage Area the switch, and branches to the Fixed Storage Area
of the block containing the switch compo- routine CSWE1. If the switch identifier is a formal pa-
nent address; and bronches to the compo- rameter in a procedure body, the code will include a
nent address. call for the actual parameter (see "Procedures").
(To component \— [CP62 generates code to branch to the Fixed Storage Area
address) routine RETPROL - see "Goto Stokemems"?]g

Figure 61. Diagram showing code generated for switch declaration and switch designator

The opening branch instruction ensures that simple 1label address) in a register and
none of the component code sequences is returns (via the Fixed Storage Area routine
executed until a call for a switch compo- CSWE2) to the next instruction follcwing
nent is actually executed. The 1length of the call to CSWEl.

the code sequence depends on the complexity

of the component in the switch list.

The code for a switch designator con-
sists essentially of instructions to load
the component number specified in the
switch designator, and the switch address Compiler Program No.4 (CP4)
(the address of the address <constants in
the switch declaration), and to branch to
the Fixed Storage Area routine CSWEl. If

the switch identifier in a designational CASE A CASE B CASE C
expression is a formal parameter, the code
may be more involved (see "Procedures"). Source Operator: Switch, Array, Pi, Phi

(all stacked)
The object time starting point in the
execution of the code for a switch is the Stack Operator: Beta, Pi, Phi or Alpha
code corresponding to a switch designator
(in Figure 61, the starting point is marked CASE A: The source operator Switch marks

by a circled S). the beginning of a switch declara-

tion. Code is generated to kranch

When the code is executed, registers are around the object code to be subse-

loaded with the switch address and the quently generated for +the compo-

component number, and a Lkranch is then nents in the switch 1list. See
taken (via the Fixed Storage Area routine Figure 61.

CSWE1l) to the relevant component code

sequence in the declaration. The component CASE B: See "Arrays".
code sequence loads the component address

(in the illustration, the address 1is a CASE C: See "Prodedures".

Chapter 8: Compilation Phase 121

Compiler Program No.85 (CP85)

Source Operator: Assign
Stack Operator: Switch

The combination of source and stack
operators indicates the start of a switch
list in a switch declaration. The operator
Switch:= is stacked, replacing Switch, and
control is returned to SNOT.

Compiler Program No.56 (CP56)

CASE A CASE B
Source Operator: (
Stack Operator: Switch:= ox Goto
CASE A: The operator (in this context

indicates the beginning of a switch
component enclosed by parentheses.
The operator is stacked and a shift
made to the Expression Context
Matrix, before control is returned
to SNOT.

CASE B: See "Goto Statements".

Compiler Program No.59 (CP59)

Source Operator: Comma or Lelta
Stack Operator: Switch:= (released if
source operator = Delta)

Either source operator marks the end of
a component in a switch declaration. CP59
generates the code sequence indicated in
Figure 61 for the component. If the source
operator is Delta, indicating the last
component in the switch list, a constant,
representing the number of components in
the 1list, and a series of address con-
stants, each pointing to one of the preced-
ing component code sequences, are generat-
ed.

122

Compiler Program Nc.41 (CP41)

CASE A CASE B

Source Operator: [

Stack Operator: (See decision matrices =--
Appendixes V-a, V-b, V-c)

<Switch <Array
Identifier> Identifier>

Stack Operand:

CASE A: The orerators and the stack operand
identify a switch designator, e.g.,

sl2]. After stacking an operator
tc specify a return to the current
matrix, the Statement Context

Matrix is addressed and the source
operator is stacked. Control is
then returned to SNOT.

CASE B: See "Arrays".

Compiler Program No.38 (CP38)

CASE A CASE B

Source Operator: 1] Comma or 1}

Stack Operator: [[

Stack Operand: <Switch <Array
Identifier> Identifier>

CASE A: The source operator 1 follows a
component number or expression in a
switch designator. Code is gener-
ated to branch (via the Fixed Stcr-
age Area routine CSWEl) to the
component code sequence corresgond-
ing to the specified component num-
ber, as indicated in Figure 61.
The stack operators and all cper-
ands are released, a shift is made
to the decision matrix specified Ly
the next stack operator, and ccn-
trol is returned tc SNOT.

CASE B: See "Arrays".

IABELS

Compiler Program No.1l (CP1)

Source Operatcr:
Stack Operator:

Label Colon
Alpha, Beta, Pi, Phi,
Begin, Semicolon, Then-s,
Else-s or Do

The source operator follows a declared
label, represented by the operand at the
top of the Operand Stack.

The displacement (PRPOINT) of the next
instruction in the opnject module is stored
in the Label Address Table entry addressed
by the 1label operand, and the operand is
released. If the stack operator is Beta,
Pi, or Phi, a Semicolon is stacked in order
to ensure that an error is subsequently
recorded if a declaration follows.

GOTO STATEMENTS

Compilexr Program No.6 (CP6)

CASE A CASE B
Source Operator: Goto or For
Stack Operator: Begin, Do, Semicolon,

Then-s, or Else-s
CASE A: The source operator identifies a
goto statement. The operatcr is
stacked, a switch is made to the
Statement Context Matrix, and con-
trol is returned to SNOT.

CASE B: See "For Statements".

Compilexr Program No.56 (CP56)

CASE A CASE B
Source Operator: (
Stack Operator: Switch:= or Goto
CASE A: See "Switches".
CASE B: The source operator indicates the
beginning of a designational
expression. The operator is

stacked, a switch is made to the

Expression Context Matrix, and ccn-
trol is returned to SNOT.

Compiler Program No.62 (CP62)

Source Operator: Epsilon, Eta,
End, or Else

Goto

Semicolon,

Stack Orerator:

Any one of the source operatcrs wmarks the
end of a goto statement.

Code is generated to kranch to the
address designated by the stack operand,
either directly or via the Fixed Storage
Area routine RETPROL. The stack operand
may represent a simple label declared in
the current block or in some higher level
klcck, or an address contained in register
ADR representing the computed address cf a
designational expression other than a sim-
ple label.

In the last case register GDSA is loaded
with the address of the Data Storage Area
in which the lakel was declared.

If the operand represents a simple label
declared in the current block cr rrocedure,
code is generated to branch directly tc the
lakel address, loaded in register BERR. If
the operand represents a single lakel
declared in some higher 1level block or
procedure, the generated code loads the
lakel address in ADR, loads GLSA with the
address of the Data Storage Area corres-
ronding to the klock in which the label is
declared, and branches via RETPROL +to the
lakel address. If the operand represents
an address in ADR, the code branches to
that address via RETPROL. The latter rou-
tine releases the Data Storage Area of
every Lklock or procedure exited when the
branch is taken.

Chapter 8: Compilation Phase 123

ARRAYS

The address of any particular element, Als;,S>,S3s.--¢S¢), Of the array declared
AlL; :Uy,L2:U02,L3:U3,...,Lg:Ugl, may be expressed by the formula:

(a) address of AlsS;1,S2,S3se+4¢Sal

address of A[L;,Lo,Layes.Lgl

+

(S1-L4) {(U;-Lo+1) (U3=L3+1) ... (UgrLg+1) Py, }
+ (52-L3) {(U3-L3+1) (Uy-L,+1)...(Ug-Ly+1)Py, 3
+ (53-L3) {(U, -L +1) (Ug-Lo+1) ... (Ug=Ly+1) Py, 4}
+ e
+ (Sg=Lg) Py, .},

where
« = the number of subscripts in the array,
L;S5;5U;, LoSS,SU,, LaSS3SUs, ..., LgSSySUg,

AlL,,L2,L3,...,Lgl is the address of the first element, and
P¢+4 1is the length in kytes (1, 4, or 8) of each element.

The expressions within braces {...} in formula (a) are called address increment
factors, and represent the incremental displacement associated with an increment of 1 in

the particular subscript value. The address increment factor, P for any given

i+17?
subscript position i in the array Als;,s2,S3,--.,S,] is defined by

Pi = Pa+1 H (Uj—Lj+1)'
where Py ,4 = length of array element = address increment factor of the 1last sukscript
position, a .

Replacing the address increment factor expressions in the address formula (a) abcve,
by the notation P;, the following abbreviated form is obtained:

(b) address of AlS1,S2,S34«++¢Sq]
= address of AlL,;,Ls,L3 .. ,Lgl
+ (S3-L3)Po+(S,5-Ly)P3+(53-L3)P +...+(5q~Ly) Py 4 e
Expanding and rearranging:

(c) address of A(S;1,S2,S34+++sSq]

address of [L,,Lo,L3,.-+,L4]

(LiPo+LoP3+Il3Py+...+LaPy)
+ (S1Po+s,P3+S3P,+. .. +SqPg44) -
This may be reduced to
(d) address Of A(S1,S2,S34«++,Sqg]

o

= {addreSS of A[Ll,L2,L3'-..,La] - Z LiP‘+1 }
i=1

+ (S51Po+sS53Pa+sS3Py+...+5qPg44)

124

The quantity
represents a constant value,

enclosed by braces {...}
which holds

independently of the address of the parti-
cular array element. It 1is <called the
zero-base address of the array and rep-
resents the address of the array element

(an imaginary or actual element) with zero
subscripts. The zero-base address of an
array is computed at object time, and

stored in the array's Storage Mapping Func-
tion, by subtracting the calculated value
of the quantity

a
> ;P
i=1 I Tai1+1
from the absolute address of +the first

element in the array.

The address of any arbitrary array ele-
ment AlS,,S52,S3s+++¢Saql 1is determined at
object time by adding the calculated value
of the expression

(S1P2+S2P3+S3Pa+ .. +54Pg,)

to the zero-kase address.

Array Declarations

The primary function of the object code
gensratzd for every array declared in the
source module is:

1. To acquire main storage, sufficient to
accommodate all elements of the array;

2. To construct an object time Storage

Mapping Function (Figure 62) contain-
ing the array address, the zero-base
address, and the address increment
factors.

Se2 thz Fixed Storage Area routine VALU-
CALL (Chapter 10) concerning the treatment
of valus-called array parameters of proce-
dures.

Byte O
e . <Number of subscripts, a>
<All zeros, or the displacement in this Data Storage Area
of the Storage Mapping Function of the preceding array
4 declared in the current block >
<Array ‘s zero-base address,
Qa
i.e. address of A[L], L2, L3, ceey La]- §] LiPi+l>
8
<Address of first array element,
i.e. address ofA[L], Ly Lgs ooy L 1>
12
<Address of last array element + 1,
i.e. address ofA[U‘, Ug Uy, <oy Ug + 17>
16
<Size of array,
aQ
e Pr=Po iT=t1 U - L+ >
20
<Address increment factor for first subscript position,
a
i.e. P2=Po.+l iT=[2 (Ui - Li +1)>
24
<Address increment factor for second subscript position,
a
i.e. P3=Pa+] T_[(Ui - Li +1)>
i=3
20 +
4a-1) <Address increment factor for last subscript position but one,
i.e. Pu =Pa+1 (Ua -lg 1)>
20+
48 | <Address increment factor for last subscript position,
ie. Py = (length of array element, 1, 4 or 8 bytes) >
@ = Number of subscripts in the array A.
Li = Lower bound of the jth subscript.
Ui = Upper bound of the jth subscript.
Py41= Length of array element (= address increment
factor for last subscript).
Figure 62. Object Time Storage Mapping

Function of an array

The Storage Mapping Function for a par-
ticular array is constructed in the object
time Data Storage Area of the particular
block in which the array is declared. The
area acquired for the array, on the other
hand, is located outside the Data Storage
Area, in any part of main storage provided
by the control program. An array's storage
area is released, simultaneously with the
release of the particular block's or
procedure's Data Storage Area, at exit from
the block or procedure in which the array
is Jeclared.

Chapter 8: Compilation Phase 125

Array declarations are handled by CP4,

cp52, C°P36, <CP51, and CP54. The object
code which issues the GETMAIN instruction
for the array storage area and which con-

structs the array's Storage Mapping Func-
tion, 1is generated by CP51. The steps
follow=2d in this object time process are as
follows:

1. The range (U;j-L;j+1) of each dimension
of the declared array is computed and
stored in a corresponding four-byte
field of the Storage Mapping Function,
beyinniny at byte 16 for the first
dimension.

2. Ahen all of the array dimensions have
bean processed as in item (1), the
array element length Pg4+q4 (1, 4, or 8
bytes, Jdepending on whether the array
is a boolean, integer or real array)
is storsd in the 1last entry of the
Storage Mapping Function, to represent
the address increment factor P, for
the last dimension.

3. The address increment factors for
the renaining subscripts, and the
array size, are now computed and
stored in the Storage Mapping Func-
tion. The conputation consists in
multiplying the dimension range in
each entry (beginning with last entry
but onea and moving upward) by the
address increment factor in the entry
below, and storing the result in
the entry, displacing the previously
racorded dimension range. For a
three-dimnension array,
A[Ll:ul,Lz:Uz,L3:U3], with array ele-
ment length d, the contents of the
Storage Mapping Function from byte 16
onwards, after this computation, would
be as follows.

Byte Contents
16-19 Array Size, P1=P,(U;-L;+1)
20-23 P2=P3(U2‘L2+1)
24-27 P3=P“(03‘L3+1)
283-31 p,=d
At the same time, the product LjPj4,

is computed for each dimension and the
rasult added to a cumulative total, so
as to calculate the juantity

o

2 L;P;

- 5141
i=1

This quantity is used in deriving the
array's zerdo-base address (see item
5). The L; values are saved in conse-
cutive entries of the current Data
Storage Area.

4. Main

storage equal to the computed

126

array size is acquired, by call to the
Fixed storage Area routine GETMSTO,
and the addresses of the first element
and the last element + 1 of the array
are stored in bytes 8-11 and 12-15 of
the Storage Mapping Function. The
displacement of the Storage Mapping
Function in the current Data Storage
Area is recorded in bytes 12-15 of the
Data Storage Area (Figure 88), the
previous contents of bytes 13-15 being
moved to bytes 1-3 of the Storage
Mapping Function.

5. The zero-base address of the array

(= address of AlLs,La,LaseeesLlqal

o
-.Z Lipi +1),
=1

is derived by subtracting the computed
value of the quantity

[4
2 Lip
i=1 1+1

(see item 3) from the address of the
first element of the array (item 4).
The zero-base address 1is stored in
bytes 4-7 of the Storage Mapping Func-
tion.

6. The nunber of subscripts in the array

is stored in byte 0 of the Storage
Mapping Function.

Subscripted Variables

Subscripted variables in source module
statements are processed by CP41 and CP38.
The object code generated by these programs
depends primarily on whether the subscript-
ed variable occurs in an embracing for
statement, and if so, whether the sub-
scripted variable contains subscripts
optimized (precalculated) at entry to the
iterated part of the for statement. To be
optimizable, a subscript expression must be
of the type

(+F*V+3),

where F denotes a factor which must be an
integer variable or constant, V denotes the
for statement's controlled variable, and A
denotes an addend which must be an integer
variable or constant. F and/or A may be
zerd constants.

PresseN

Whers a for statement contains a sub-
scripted variable with one or more optimi-
zable subscripts, c¢ode 1is generated (see
"For Statzsments"), at entry to the iterated
part of the for statement, to compute (in
the next available register named NXTR) the
sum of the array's zero-base address and
the initial wvalue of the product s;P;,,
for every optimizable subscript in the
array, viz.

(2) ajdress of A[O,O,O,...,0]+2:s;Pi+1,
where s denotes the initial value of the
optimizable subscript and P;,, denotes the
address increment factor for the subscript
position., In addition, code is generated
to compute the cyclical address increment
for all optimized subscripts, to be added
to NXTR in each cycle of the for statement
(except the first), viz.

(£) D tF*Pj,, *(Step Value),

wvhere F denotes the factor in the sub-
script, Pj+1 denotes the address increment
factor, and (S5tep Value) denotes the incre-
ment to the controlled variable in each
cycle of the for statement. At object
time, the contents of NXTR in any given
cycle of the for statement will thus be

(g) address of A[0,0,0,...,0]+2:sfpi,,
+ (N-1) {2 £F*Pj,, *(Step Value)}
of executed

where N dendotes the number
cycles of the for statement.

CP41 is entered when the opening brack-
et, [, in a supscripted variable is encoun-
tered. If the subscripted variable occurs
in an smbracingy for statement and if the
subscripted variable contains one or more
optimiza23 (prescalculated) subscripts, CP41
generates code to 1oad the precalculated
adiress (expression (g) above) in a reg-
ister reserved to hold the address of the
subscripted variable.

1f, however, the subscripted variable
contains no optimized subscripts, CP4l1l gen-
erates code which simply loads the reserved

register with the array's zero-base
adiress.
CP38 1is entered when the Comma separat-

ing two subscripts, or the closing bracket,
], at the end of an array operand, is
encounterad. If the array subscript was
optimiza=3 (i.e., precalculated) in an
embracing for statement, CP38 generates no
objsct code for the sabscript. If, howev-
er, th2 subscript was not optimized, CP38
operates code to compute the product s;Pjs+q
for thes subscript and to add this product
to the address previously loaded (by CP#41)
in the reserved register.

The 1result of this treatment at object
time is to derive the particular array

element address, by adding the contrib-
utions of each subscript to the array's
zero-base address. If the subscripted
variable contains subscripts optimized in

an embracing for statement, the sum of the
zerd-base address and the initial contrib-
utions of the optimized subscripts is com-
puted at entry to the iterated part of the
for statement; the contributions of the
non-optimized subscripts, together with a
cyclical address increment for the optim-
ized subscripts, are added in each cycle of
the for statement. If the subscripted
variable contains no optimized subscripts,
on the other hand, the particular array
element address must be wholly derived in
each cycle by computing the contributions
of all subscripts and adding these to the
zero-base address.

Compiler Program No.4 (CP4)

CASE A CASE B CASE C

Source Operator: Switch Array Pi or Phi
Stack Operator: Beta, Pi, Phi, or Alpha

CASE A: See "Switches".

CASE B: The source operator identifies a
following array declaration. The
operator 1is stacked, the Statement
Context Matrix is addressed, and
control is returned to SNOT.

CASE C: See "Procedures".

Ccompiler Program No.52 (CP52)

Source Operator: Comma or [
Stack Operator: Array

The source operators represent delimi-
ters in an array declaration, e.g.,
‘ARRAY* A, B [1:10];. If the source opera-
tor is a Comma, a count of the array
identifiers associated with the following
bound pair list, is incremented. If the
source operator is the opening bracket [,
the operator # is stacked.

Chapter 8: Compilation Phase 127

Compiler. Program_ No.36_(CP36)

Source Operator: Colon

Stack Jperator: €

The source operator represents the colon
separating a bound pair in an array dec-
laration, the lower bound being represented
by the 1last entry in the Operand Stack.
Cods is gyenerated to store the lower bound
in the next entry in the Data Storage Area,
and the Colon-is stacked. If the related
stack operand shows that the lower bound is
not an integer, a call is first made to the
TRREIN subroutine, which generates code to
branch to the Fixed Storage Area routine
CNVRDI for conversion 2f the lower bound to
integer (fixed point) form.

Compiler Program No.51 (CP51)

Comma or]

Source Operator:

Stack Opesrator: Colon

The combination »>f source and stack
operators 1indicates that the 1last stack
operand represents the wupper bound of a
bound pair in an array declaration. The
operator and operand stacks and the source

text pointer are now adjusted, preparatory
to entering CP69 (via entry point DHZB1),
50 as to specify the operation

128

(Jpper Bound, Ui)-(LOWer Bound, L;)+1,

and of storing the resultant in the rele-
vant entry of the array's Storage Mapping
Function (Figure 62). The contents of the
operator and operand stacks after this
ad justment are as follows:

Operand Stack Operator Stack

0 5 0 1
B B 1 [—————- 2|
| <Lower Bound, U;> | | Array |
p--——- 1 b=~ {
| <Upper Bound, L;> | | & |
’ { e :
| <SMF-entry> | | For:= |
T v I e :
| <Array Identifier> |] - |
L —— 1 J

The contents of the source text pointer
SOURCE (register 8) are saved, and the
pointer is reset to address a special field
containing the following dummy Modification
Level 2 text:

e

| + |<Operand representing
the constant 1>
(S S _—
N

D

bo——
P —)

The sejuence of compiler programs and
routines subsequently entered, and the
actions taken, as a result of these adjust-
ments, is as follows:

Compiler Program/Routine

Operators at Exit:

Source Stack Source Stack
+ - CP69 (DHZB1) generates code to perform the + For:=
operation U;-Lj, releases the stack
operator -, and exits to COMP
+ For:= COMP branches to CP66, determined by the + +
operator pair + and For:=
CP66 stacks the source operator + and exits
to SNOT
+ + SNOT scans the dummy source text to the Do +
operator Do, stacks the operand rep-
resenting the constant 1, and exits to
COMP
Do + ZOMP branches to CP69, determined by the Do For:=
operator pair Do and +
ZP69 generates code to perform the operation
(U;-Lj)+1, releases the stack operator
+, and exits to COMP
Do For:= COMP branches to CP70, determined by the Do Assign
operator pair Do and Fox:=
ZP70 switches to the Statement Context
Matrix, and exits to COMP
COMP branches to CP43, determined by the
operator pair Do and For:=
CP43 replaces the stack operator For:= by
Assign and exits to CP20 (DB1C2)
Do Assign CP20 (DB1C2) generates code to store the Do ¢
dimension range, U;-Lj+l, in the Stor-
age Mapping Function entry addressed by
the relevant stack operand (see above),
releases the stack operator Assign, and
returns to CP51 (DERE2)
At re-entry to CP51, the source text array, and to f£ill in the data in the first

pointar SJOURCE is reloaded with the pre-
viously saved address of the source opera-
tor Comma or] in the current input buffer.
If the source operator is Comma, indicating
that a further bound pair follows, an entry
is res=2rved 1in the Data Storage Area for
the object time value of the lower bound to
be processed next, and control is returned
to SNOT. The lower and upper bounds will
subsegusntly be processed by CP36 and CP51,
in th2 manner Jescribed above.

If the source operator is the closing
bracket 1, indicating the end of the bound
pair 1list, CP51 now generates code to
compute the address increment factors for
each subscript position in the array, and
to store the factors in the appropriate
entrizs of the array's Storage Mapping
Fanction (Figure 62). Thereafter, the
stack operator [is released and code is
jensrat=2d to acquire a storage area for the

16 bytes of the Storage Mapping Function,
in the manner outlined at the beginning of
this section. A test is then made to
determine if 'the same bound pair 1list
defines a second array (as, for example, in
*ARRAY' a,bl1:10,1:10]1;). In this case,
code is generated to copy the first array's
Storage Mapping Function, from byte 16
onwards, into the second array's Storage
Mapping Function area. Code is then gener-
ated to acquire a storage area for the
second array and to complete the remainder
of the Storage Mapping Function. This
procedure 1is repeated for every array
defined by the bound pair list.

Lastly, the character following the
closing bracket is inspected. Logically,
the closiny bracket may be followed by a
_____ (as, for example, in 'ARRAY'
a,bl1:101, <c(1:100];) or by Delta, rep-
resenting the semicolon at the end of the

Chapter 8: Compilation Phase 129

jeclaration. Any other character following
the closing bracket would represent a syn-
tactical error. If the operator is a
Comma, control is passed to SNOT. The
programs subsequently entered from COMP
w#ill process the following array(s) and
bouni pair list(s). If any character other
than a Comma is Jetected, control is passed
to CZOMP, which then branches tp CP54 (if
the character is the operator Delta), or to
some other compiler program, which will
record the syntatical error.

Compiler Program N2.54 (CP54)

Sourcs Jperator:
Stack OJperator: Array [released]

Thea source and stack operators indicate
that the end of an array declaration has
bean rszached. A call is made to the SCHDL
subroutins (which uapdates the semicolon
count and generates a call to the Fixed
Storaje Area routine TRACE, if the TEST
option has been specified); the Program
Context Matrix is addressed, and control is
passed to SNOT.

Compiler Program No.U41 (CP41)

CASE A CASE B

Sources Operator: [

Stack Operator: (See matrices --
Appendixes V-a to V-c)

Stack Operand: <Switch <Array

identifier> identifier>

CASE A: See "Switches".

CASE B: A subscripted variable in a state-
ment has been encountered. After
stackiny an operator to specify a
return t> the current matrix, the
Statemnent Zontext Matrix is
addressed and the source operator
stacked.

A rejister is reserved to hold the
address of the array element. If
the subscripted variable contains
no subscripts optimized in an
embracing for statement (if any),
or if the array is a formal param-
eter, code 1is then generated to
load the register with the array's
zero-base address. If, however,
the subscripted wvariable contains
one or wdore subscripts optimized
(precalculated) 1in the embracing

130

for statement, code is generated to
load the reserved register with the
precalculated address {(expression
(g) above). The presence of an
optinized subscript is determined,
in the first instance, by verifying
whether SUTABC (Figure 71) contains
any entries (representing one or
more arrays in the embracing for
statement, containing optimized
subscripts), and in the second
instance, by comparing the position
of the carrent subscripted
variable's opening bracket in the
input buffer, with the position
noted in SUTABC of each of the
arrays listed. Where this compari-
son shows that SUTABC contains an
entry for the subscripted variable,
the same entry will contain the
address of an operand pointing to
the object time register (or the
Data Storage Area field) which con-
tains the precalculated address. A
test is then made of byte 7 of the
SUTABC entry to determine if the
first subscript has been optimized.
If so, the SMT switch in the HCOMP-
MOD Control Field is turned on,
indicating to the arithmetic com-
piler programs that no code should
be generated for any operators in
the subscript, and to CP38 that the
following subscript has been optim-
ized.

Compiler Program No.38 (CP38)

Source Operator:

CASE A CASE B

Comma or]

Stack Operator: [

Stack Operand:

CASE A:

CASE B:

<Switch <Array
Identifier> Identifier>

See "Switches".

Either source operator is preceded
by a subscript expression. The
closing bracket, 1, marks the end
of a subscripted variable.

Comma: If the HCOMPMOD switch CMT
shows that the subscript was not
optinized (CMT=0) in an embracing
for statement (if any), -code is
generated to compute (in register
BRR) the product of the subscript
value and the address increment
factor for the subscript position,
viz., SiPiyqr and to add this pro-
duct to the address. No code is
generated if the subscript was
optinized (CMT=1). 1In either case,

byte 7 of the relevant SUTABC entry
(Figure 71) is inspected to deter-
mine if the next subscript was
optimized, and CMI is set accord-
ingly.

J: The same code is generated for
the precedingy subscript as des-
cribed above, depending on whether
the subscript was optimized or not.
In addition, code is generated, if
the array identifier is a formal
parameter, to verify that the
dimensions of the actual and formal
parameters are equal. If the TEST
option has been specified, code is
jenerated to verify that the
address of the array element £falls
witnin the reserved storage area
for the array. Finally, the
operator [and the operands rep-
resenting the array identifier and
the last subscript are released, a
switch 1is made to the decision
matrix specified by the next stack
operator (also released), and con-
trol is passed to SNOTISP.

The object code generated for a proce-
dure comprises twd O>r more separate parts,
namely:

1. A s2gment of code representing the
declared procedure; and

2. One or more procedure calls, one for
2ach call to the procedure. The pro-
cedure call comprises a code seguence
for each actual paraneter (if any)
designated in the call and a branch to
the Fixed Storage Area routine PROLJS.
Whan the procsdare call is executed,
PROLOG acguires a Data Storage Area
for the procedure and then stores the
addresses of the actual parameter code
seguances in the storage fields res-
erved for the formal parameters in the
Data Storage Arsa. PROLOG then passes
control to the first instruction in
the procedure.

Figure 63 shows a part of the object
code generated for a declared type proce-
dare and for a call to the procedure. The

illustration also shows the compiler pro-
grams which jenerate the different parts of
the object code.

PROCEDURE DECLARATION

To ensure that a procedure 1is executed
only when specifically called, code is
first generated to cause a branch over the
procedure body.

The body of a declared procedure begins
with a series of two-byte constants
(characteristics) indicating the character
of the formal parameters (if any) specified
in the procedure heading. (Whenever the
procedure is called at object time, the
characteristics of the actual parameters
are compared with the characteristics of
the formal parameters, to ensure that the

actual parameters satisfy the specifi-
cations in the procedure heading.) The
characteristic(s) of the formal

parameter(s) are followed directly by cod-
ing representing the main operative func-
tions of the procedure, unless the proce-
dure contains one or more value-specified
parameters. In the latter case, the main
body of the procedure is preceded by coding
which fetches the value(s) or address(es)
of the corresponding value-specified actual
parameter(s) and stores the value(s) or
address(es) in the storage areas reserved
for the value-specified formal parameter(s)
in the procedure's Data Storage Area. This
operation 1is accomplished by calling the
appropriate actual parameter code
sequence(s) in the procedure call (via the
Fixed Storage Area routines CAP1l and CAP2)
and then calling the Fixed Storage Area
routine VALUCALL. The actual parameter
code seguence (whose address will have
previously been stored by PROLOG in the
fornal parameter's Data Storage Area field)
calculates the value or address of the
actual parameter, and loads ADR with the
address of the Data Storage Area field
containing the value (or, in the case of a
specified array with the address of a
Storage Mapping Function; or, in the case
of a specified 1label, with the 1label
address). VALUCALL transfers the value (or
address) to the formal parameter's Data
Storage Area field, displacing the pre-
viously stored actual parameter code
sequence address.

Chapter 8: Compilation Phase 131

Fixed Storage Area

Routines

Source Text

“REAL” X, Y, Z;

CAP1 deactivates the intervening lower level
Data Storage Area(s), if any; loads CDSA

with the address of the Data Storage Area of

the block containing the procedure call; and
branches to the actual parameter code sequence.
The address of the code sequence (stored in the

*REAL” *PROCEDURE” P(F1, F2);
“VALUE® F2;

“REAL” F1, F2;

* BEGIN-

formal parameter’s Data Storage Area field by

PROLOG - see below) is loaded in ADR by
executing the instruction which follows the call
to CAP1. L

VALUCALL stores the value of the actual para-
meter in the formal parameter’s Dota Storage
Area field, and returns control to the next in-

struction in the procedure heading.

CAP1 deactivates the intervening lower level
Data Storage Area(s), if any; loods CDSA
with the address of the Data Storage Area of

the block containing the procedure call; and
branches to the actual parameter code sequence.
The oddress of the code sequence (stored in the
formal paramter’s Data Storage Area field by
PROLOG - see below) is loaded in ADR by

P = Fl+F2

executing the instruction which follows the call
to CAPI.)

EPILOGP activates the Data Storage Area of the
logically or dynamically enclosing block or pro-
cedure; moves the computed value of o type pro-

“ END%; cedure to the Fixed Storage Area location

FCTVALST (addressed by ADR); releases the Data
Storage Area of the called procedure; and posses
control to the next instruction following the pro-

cedure call.

Z:=P(X,Y);

CAP2 reactivates the intervening higher level

Data Storage Area(s), if any; loads CDSA with
the address of the Data Storage Area of the block

containing the actual parameter call; and returns

control to the return address in BRR.

PROLOG acquires moir‘\ storage for the Data -—
Storage Area of the called procedure; stores the
addresses of the actual parameter code sequences

in the Data Storage Areq fields of the formal pa-
rameters; and branches to the first instruction in

the procedure.

Figure 63.

Within the procedure body, every formal
parameter called by name is represented by
a call to the corresponding actual paramet-
ar code ssquence (via CAP1 and CAP2). The
address of the relevant code seguence is
obtained from the formal parameter's Data

Storage Area field, where it is stored by
PROLOG when the particular call for the
procedure 1is executed. In the case of a

formal parameter called by wvalue in the
procedure body, the actunal value or address
of the parameter is simply fetched from the
formal parameter's Data Storage Area field,
where the value or address will have been
stored at entry to the procedure.

Thes close of the procedure body is
represented by a branch to the Fixed Stor-
age Arsa routine EPILO3P. EPILOGP releases

the Data Storage Area of the procedure and
passes control to the next instruction
followingy the procedare call. If the pro-
cedure called is a type procedure, EPILOGP

moves the calculated value of the procedure

132

Generated Code Compiler Program

L BRR, <LN> (LAT)
BR BRR

[DC H- <Characteristic of F1>*

DC H- <Characteristic of F2>~
BAL BRR, CAP1 (FSA)

DC H-<Displ. of entry for P in PBT>"
DC H’ <Dummy

L ADR,<DISP - F2> (CDSA)

BAL BRR VALKCAL (FSA)

DC H’<Displ. of F2’s field in DSA>"
DC H- <Characteristic of F2>

BAL BRR, CAPI (FSA)
DC

bpC <Dummy>"

L ADR, <DISP - F1>(CDSA)

L <GPR> 0 ADR;

A <GPR>,’<DISP - F2> (CDSA)
ST <GPR> <DISP - P> (CDSA)

B EPILOGP (FSA)

L ADR,<LN> (LAT)
BR ADR

LA
B CAP2 (FSA)

LA ADR, <DISP - Y>(CDSA)

B CAP2 (FSA)

MVT PROLPBN, <P.B.No. of P>

L ADR, <LN - P> (LAT)

BAL BAR, PROLOG (FSA)

DC A(<Address of X3 code sequence>)
DC H’< Characteristic of X>*

DC H*<Number of parameters, 2>
DC A(<Address of Y's code sequence>)
DC H°< Characteristic of Y>

DC H’<Dumm,
= MVC <DISP -

CP4 (Phi or Pi)generates code to branch around the code
representing the declared procedure, which begins with
one or more constants representing the characteristic(s)
of the formal parameter(s). If o parameter is value spec-
ified (as is F1 in this example), CP4 generates code,
first, to branch to the code sequence for the actual pa-
rameter (via the Fixed Storage Area routine CAP1),
and second, fo call the Fixed Storage Area routine
VALUCALL, which stores the value of the actual pa-
rometer in the formal parometer’s object time Data
Storage Area field.

[CP69 (+) calls OPDREC on recognition of the operand F1]
9!

OPDREC (called by most compiler programs whenever an op-
erand is encountered) generates code, in the case of a
formal parameter called by name, to branch to the code
sequence for the actual parameter (via the Fixed Stor-
age Area routine CAP1).

[CP69 generates code, on return from OPDREC, which loads
F1°s actual value (addressed by ADR) in a general pur-
pose register, adds F2’s actual value (contained in F2s
Data Storage Area field) to it, ond stores the result in
procedure g’s Data Storage Area field]

parometer>"

H-< Characteristic of F1>"
H-

—— CP16 (End)generates code to branch to the Fixed Storage
Area routine EPILOGP, which releases the procedure s
Data Storage Area. CP16 also stores the displacement
(PRPOINT) of the next object code instruction in the
Label Address Toble entry referenced in the branch in-
struction at the head of the procedure declaration.

}— P64 (Left Parenthesis) generates code to branch over the
followi for the actual p in
2

g code seq;
ADR, < DISP - X>(CDSA) the procedure call.
— CP57 (Comma or Right Parenthesis) generates all or part of a
code seq for each actual p in the proce-
dure call. In the simplest case, where (as in the illus-
tration) the actual parameters are simple variables
or constants, the code sequence loads ADR with
the address of the parameter, and branches (via
the Fixed Storage Area routine CAP2 to the next in-
struction in the procedure body, following the call for
the actual parameter. At the end of the list of actual
parameters, CP57 generates code to load ADR with the
address of the procedure and to branch to the Fixed
Storage Area routine PROLOG. The call to PROLOG
is preceded by an MV! instruction which specifies the
procedure’s Program Block Number (used by PROLOG
in accessing the appropriate entry of the object time
Program Block Table, containing the size of the re-
quired Data Storage Area). The call is followed by o
series of constants, specifying, omong other things,
the addresses of the preceding actual parameter code
sequences. At exit from CP57, the Operand Stack con-
tains an entry representing the function value of P(X,Y),
L the address of the value being in ADR.

[CP20 (Semicolon) generates code to move the computed value
oF The Type procedure P from the Fixed Storage Area
location FCTVALST (addressed by ADR) to the Dato
Storage Area field of the variable Z]

parameter >~ J
>(4, CDSA), O(ADR) —

Code generated for declared type procedure and procedure call

from the appropriate Data Storage Area
entry to a standard location in the Fixed
Storage Area, before releasing the type

procedure's Data Storage Area.

PROCEDURE CALL

The procedure call consists essentially
of a call to the procedure by way of the
Fixed Storage Area routine PROLOG. Among
other things, PROLOG acquires a Data Stor-
age Area for the procedure and then branch-
es to the code representing the procedure.
The Program Block Number and the address of
the procedure are transmitted to PROLOG by
instructions immediately preceding the
call. The Program Block Number specifies
the appropriate entry in the object time
Program Block Table (Figure 84) which con-
tains the size of the Data Storage Area to
be acguired by PROLOG for the procedure.

PN

If thes procedure call includes any
actual parameters, the «call to PROLOG is
preceied by a code sejuence for each actual
paramstzr. The code seguence, which is
only executed when called by the procedure,
computes the value or the address of the
actual parameter (where the actual paramet-
ear is not a simple variable or a constant),
loads ADR with the address of the actual
parama2ter, and returns control (via the
Fikxed Storage Area routine CAP2) to the
nzxt instruction in the procedure. A
branch instruction preceding the actual
parameter code sejuence(s) ensures that the
code ssaguences are not executed uantil
called by the procedure. The address(es)
of ths actual parameter code sequence(s)
and the characteristic(s) of the actual
paramatzr(s) ars stored in a series of
constants following the <call to PROLOG.
The first parameter entry contains the
number of actual parameters. PROLOG veri-
fiss tne compatibility of the formal and
actual parameters (by comparing
characteristics) and stores each parameter
codz ssgusnce address and characteristic in
the related formal parameter's storage
field in the Data Storage Area acguired for
the procedure. This enables the appropri-
ate actual parameter code sequence to be
accessed and executed whenever the actual
parameter is called by the procedure.

Compiler. Program No.4% (CPU4)

CASE A CASE B CASE C

Source OJparator: Switch Array Pi or Phi
[stacked]

Stack Dperator: Beta, Pi, Phi, or Alpha
CASE A: See "Switches".
CASE B: See "Arrays".

CASE C: The source operator indicates the
start of a procedure declaration.
Code is first generated to branch
around the code subseguently gjener-
ated for the declared procedure.
The branch instruction references a
na2w entry reserved in the Label
Address Table, in which the dis-
placement (PRPOINT) of the instruc-
tion following the end of the pro-
czdure 1is subsequently inserted by
CPl6. A scanning operation is then
initiated (by call to SNOPDOPR) to
locate the operator following the
procedure identifier. The operator
may be the left parenthesis preced-
ing a formal parameter list, or the
operator Delta marking the end of a
parameterless procedure heading.

In the latter case, control is
passed directly to COMP.

If the declared procedure is not
parameterless, a series of con-
stants 1is generated representing
the characteristics of the paramet-
ers in the formal parameter 1list.
At the same time, an entry is made
for each parameter in a table named
CBVTAB Called by Value Table),
which accommodates up to 15 three-
byte entries. The contents of the
CBVTAB entries, for each type of
formal parameter are as follows:

Non-label parameter called by
value:

0 1 3
I 1
|

J

r
| X'80* | <Characteristic>

Label parameter called by value:

0 1 3
.= T . 1
| X'C0" | <Characteristic> |
L L J
Parameter called by name:
0 3
r— 1
| <All zeros> |
Lee 4

The characteristics in the entries,
which are constructed in the order
in which the parameters occur, are
copied from +the internal names
representing the parameters in the
Modification Level 2 source text.

When all parameters in the formal
paraneter list have been processed
in the manner indicated, code is
generated for every value-called
parameter listed in CBVTAB, to
fetch the actual parameter value or
label address and to store the
value or address in the formal
paraneter's Data Storage Area
field. The basic elements of the
code generated for a non-label
value-called parameter are indicat-
ed in Figure 63. 1In the case of a
value-called 1label parameter, the
code consists of a call to the
corresponding actual parameter code
sequence (via the Fixed Storage
Area routines CAP1 and CAP2) fol-
lowed by instructions which store
the actual address (contained in
ADR) and the base address
(contained in GDSA) of the Data
Storage Area of the block where the

Chapter 8: Compilation Phase 133

label 1is declared, in the 8-byte
storaje field reserved for the
value-called parameter in the
procedure's Data Storage Area.
Ahen the end 2f the declared proce-
Jure heading is reached (indicated
by the operator Delta), control is
passed to COMP.

See "Subroutine Pool".

Compilar Progran

No.16_ (CP16)

Sources Dpesrator:
Stack OJpsesrator:

CASE A and B:

CASE A CASE B CASE C
Epsilon End Epsilon
Beta Begin Pi or Phi
[released]
See "Blocks and Compound

Statements".
_____ marks the close of a
declared procedure.

Code is generated to call the Fixed
Storage Area routine EPILOGP. The
displacement (PRPOINT) of the next
instruction in the object code is
stored in the Label Address Table
antry referenced by the branch
instruction preceding the procedure
body, specifying a branch over the
procedure (ZPU4). The procedure
type and the number of parameters
in the procedure (obtained from the
stack operand representing the pro-
cedure identifier) are noted in the
corresponding entry of Program
Block Table III (Figure 60) and a
call is made to PBNHODL.

(CPél)

Sourcs DJperator: (

Stack Operator:

134

(See descision matrices --
Appendices V-a, V-b, V-c)

CASE 2: The left parenthesis is preceded by
an operand representing a procedure
identifier and constituting a call
for the procedure. An operator is
stacked specifying a return to the
current decision matrix, the State-

ment Context Matrix 1is addressed
and c¢ode is generated to branch
past the code sequence(s) to be
subsequently generated (by CP57)
for the following actual
paramneter(s). To specify the

address of the first parameter, the
displacement (PRPOINT) of the next
instruction in the object code is
saved in an entry in the Operand
Stack. Before control is returned
to SNOT, the procedure bracket { is
stacked.
CASE B: The left parenthesis is preceded by
a standard procedure designator.
See "Standard Procedures".
CASE C: The left parenthesis is preceded by
an operator. See "Arithmetic
Expressions" and "Boolean
Expressions".

Compiler Program No.57 {(CP57)

Source Operator: Comma or)
Stack Operator: {

Either souarce
actual parameter

operator is preceded by an
in a procedure call.

CP57 generates all or
sequence for
parameter list,

part of a code
each parameter in the actual
depending on the type of
the parameter. If the actual parameter {an
expression) contains any arithmetic or
relational operators, the first part of the
coda sequence {to evaluate the expression)
will have been generated before entry to
CP57. At the end of the list of actual
parameters, Cp57 generates a call to the
procedure, by way of the Fixed Storage Area
routine PROLOG (see Figure 63).

The instructions generated by CP57 in
each actual parameter code sequence (each
of which terminates with a branch to the
Fixad Storage Area routine CAP2) depend on
the nature of the actual parameter, rep-
resented by the last stack operand.

Code Generated (followed in every
case by a branch to CAP2)

Integer, rsal or boolean expression

Striny identifier

ntegyer, real or boolean array identifier

Designational expression

Switch identifier

0

roca23urs identifier with no parameters

Procedure identifier with parameters

After each code sejuence has been gener-
ated, the displacement (PRPOINT) of the
next instruction in the object code is
stored ‘in an entry reserved in the Label
Address Table (addressed by a stack
operani) to represent the address of the
following code sequence. The addresses
thus recorded are stored in the form of
ajdiress constants in the parameter list
following the call t> PROLOS (see Figure
63). After the last code sequence has been
generated, the displacement of the follow-
iny instruction is stored in the Label
Address Table entry referenced by the
branch instruction (generated by CP6U4)
preceding the first code sequence.

CODE _PROCEDURES

The term "code procedure" is applied to
a declared procedure with a normal proce-
Jure heading, but with a procedure body
consisting solely of the word 'CODE'. The

|Call the actual parameter (call generated
| by OPDREC).

|

|Load ADR with the address of the value of
| the expression.

I
| Load ADR with the

|
| Load ADR with the

|Mapping Function.

address of the string.

address of the Storage

|Load ADR with the address of the label and
|GDSA with the address of the Data Storage
|airea corresponding to the block in which
Jthe label is declared.

|

|[Load ADR with the address of the switch
|and GDSA with the address of the Data
| Storage Area corresponding to the block in
|which the switch is declared.

|
|call the
| OPDREC) .

|
|Load ADR with the address

procedure (call generated by

of the proce-

|dure. Move the Program Block Number of
|the procedure to PROLPBN in the Fixed
| storage Area. Save registers PBT and LAT

|in PROLREG.

| Load ADR with the address of a constant in
|the actual parameter code sequence, rep=
lresenting the last 4 bytes of the standard
| procedure designator. Move block number 0

|to PROLPBN in the Fixed Storage Area.
i __

b e s e e S — S T e, T s S o, S e, i, T St S i, S il >) . S e, S o, St e, . e, it e, et 2

latter signifies that a precompiled routine

with the same name as the procedure iden-
tifier in the heading, is to be fetched
from the user's 1library of precompiled
procedures.

The generated code corresponding to the

heading of a

declared code procedure is

identical in form to that generated for the

heading of any non-code
Figure 63 and CP4).
‘CODE' representing the procedure
encountered,
Fixed Storage Area
loads
storage and
procedure's
Program Block Table (see Figure 84).

procedure
body
routine LOADPP,
address

records the

(see
When the delimiter
is
CP83 generates a call to the
which
the precompiled procedure into main
of the
entry point in the object time
The

call to LOADPP is executed at entry to the

block in which the procedure is

declared.

This ensures that the precompiled procedure

has been 1loaded into main storage in
advance of any call for it in the object
module.

Chapter 8: Compilation Phase

135

When the operator Epsilon,
close of the
encountered, CP16 does not generate a
to EPILOS as in the case of
procedures, but simply marks the appropri-
ate entry of Program Block Table III
(Figure 60) to show a code procedure and to
note the number of parameters. The precom-
piled procedure is DJELETEd (by EPILOG) at
exit from the block in which the code
procedure is declared.

marking the
declared code procedure, is
call
non-code

Ths object code implementing a call for
a code procedure is identical in form with
the cods for a non-code procedure call. It
consists of a call to the Fixed Storage
Area rouatine ' PRJOLOS. PROLOS acguires a
Data Storage Area for the code procedure,
stores the addresses >f the actual paramet-
ar code sesquences in the Data Storage Area
fields of the formal parameters, loads ADR
with th2 addrsss of the precompiled proce-
dure (contained in the relevant Program
Block Table =2=ntry) and branches to the
address in ADR. The latter action is taken
after Jdetermining (by inspection of the
Program Block Table entry) that the proce-
durs 1is a code procedure. The object time
reyisters PBT and LAT are also changed by
PROLOG to point to the tables contained in
the przcompilsd procedure load module.

Compiler Program N2.83 (CP83)

Sources Jpesrator: GCamma

Stack Operator: Pi, Phi, Beta

samma represents the body of a declared

code procedure. It is followed by an
8-bytes unit containing six characters of
the code procedure name and two blanks
(EBCDIC code).

CP83 generates a call to the Fixed
Storage Arsa routine LOADPP. The call is

followed by two parameters: the name of the
precompilad procedure and the displacement
of ths Program Block Table entry for the
code procedure.

The 3displacement (PRPOINT) of the call
in the object module is stored in the Label

Ajdress Tabls entry referenced by the
branch instruction generated by CP4 (see
"Procz3jures") at the head of the code

procedure declaration.

136

STANDARD PROCEDURES

Compiler Program No.64 (CP64)

Source Operator:

Stack Operator:

CASE A:

CASE B:

CASE C:

(See Decision Matrices =--
Appendices V-a, V-b, V=-c)

The source operator is preceded by
a procedure identifier. See
"Procedures".

The source operator is preceded by
a standard I/O procedure or mathe-
matical function designator
(Appendix III), representing a call
for the procedure or function.

To indicate that the standard pro-
cedure has been called in the
source module, the full word res-
erved for the address of the stand-
ard procedure in the Label Address
Table (displacement specified in
the 1last byte of a designator) is
flagged, by setting the first
bit = 0. Flagging the entry causes
an ESD and an RLD record to be
generated in the Termination Phase
(IEX51) for the called standard
procedure or function, ensuring
that the Library procedure will be
combined with the object module at

execution time. After the proce-
dure has been loaded, its entry
point address 1is stored in the

Label Address Table entry.

CP6U4 initiates a count, in a stack
operand, of the number of paramet-
ers in the standard procedure call.
In the same operand the displace-
ment (P) is stored of the next free
entry in the current Data Storage
Area in which a parameter list will
be constructed at object time. The
operand is referenced by CP61,
which generates the code to con-
struct the parameter 1list and to
call the standard I/0 procedure or
mathematical function. Before exit
to SNOT, the standard procedure
bracket (is stacked.

The source operator is preceded by
another operator. See "Arithmetic
Expressions" and "Boolean
Expressions".

Compiler Progran No.61 (CP61)

Sourc2 Jperator:
Stack Operator:

comma or)

Either sourcs operator is preceded by an
actual parameter in a call for a standard
I/0 procsiure or mathematical function.

Exczpt in the case of the standard
functions ABS, ENIIER, LENGTH, and SIGN,
CP61 g=nerates code which constructs a
parameter 1list (containing an entry for
2ach actual parameter in the procedure
call) in the «current Data Storage Area,
follow=d by code to 1load a register with

tha address of the parameter list and then
to branch to the Library procedure con-
carnel, viz.

L PARAM, <DIsP> (CDsSA)
L ENTRY, <LN> (LAT)
BALR RETURN, ENTRY

Th=2 s=scond instruction fetches the
address of the Library procedure from the
entry in the Label Address Table whose
displacemant (KLN>) 1is specified in the
last byte of the standard procedure or
function designator (Appendix III). The
Library procedure 1is combined with the
objac module at execution time, by virtue
of the E3SD record generated in the Termina-
tion Phass (IEX51) for the procedure nane
(see CP6U4 above).

Th2 parameter list entry constructed at
object time for each actual parameter in a
standarl procedurse or function call con-
sists of a full word containing a code byte
and thes address of the actual parameter (in
the last three bytes). The processing of
the actual parameters by CP61 depends, in
general, on whether the call is for (1) a

standard I/0 procedure, or (2) a standard

mathematical function.

1. A call for a standard 1I/0 procedure

includes two or three actual paramet-
ers. The character of these paramet-
ers and the parameter 1list entries
constructed at object time are indi-
cated in Chapter 11 under
"Input/Jutput Procedures".

The I/0 operation involved in the

standard procedure is noted in the I/0
Table (IOTAB -- Figure 64) opposite
the data set number (if any) specified
by the first parameter in the proce-
dure call. The I/0 Table is wused in
the construction of the Data Set Table

(see "Termination Phase" in this
chapter) .
2. A <call for a standard mathematical

function includes but one parameter.
Execution of the standard function
gives an arithmetic result.

For all standard function calls except
those of 'ENTIER', 'ABS', 'LENGTH' and
'SIGN', CP61 generates code to con-
struct a parameter entry in the cur-
rent Data Storage "Area for the actual
parameter, and to call the relevant
Library routine. In the case of
'ENTIER', the Fixed Storage Area
ENTIER routine is called. In the case
of 'AaBS', 'LENGTH', and 'SIGN', code
is generated to perform the function
in line.

Before exit to SNOTSP, the stack oper-
and representing the standard function
designator is replaced by an operand
representing the function value and
pointing to the register which con-
tains the value.

Chapter 8: Compilation Phase 137

Form Y¥33-8000-0,

A T B

Undetermined|
put/Get |

Figure 64, 1I/0 Table (IOTAB)

FOR_STATEMENTS

The logical structure of the code gener-
ated for a for statement is governed by the
for statement”s loop classification
(Counting Loop, Elementary Loop or Normal
Loop) in the For Statement Table, The For
Statement Table, which is constructed 1in
the Scan III Phase (Chapter 6) and trans-
mitted to the Compilation Phase via the
Common Work Area, contains a classification

byte for every for statement in the source
module, The classification byte (Figure
65) not only reflects specific logical
characteristics of the for statement, but
also specifies (by the pattern of bit-
settings in bhinary positions 0-3) the for
statement”s loop classification,
Counting_Loops

The principal characteristics of the

Counting Loop are:

1. The controlled variable does not occur
in the iterated part of the for
statement (other than in optimizable
subscript expressions);

2, The for 1list is limited to step ele-
ments and/or arithmetic elements, and
all operands in the for list are
constant whithin the for statement;

3, All operands in the for list are of

integer type.

138

Page Revised by TNL Y33-8001,

-7-—----T’E-___—
Output|Sysact]Sysact Sysact|8vsact |
| 4/13] 8 Ur\det.J Other l

———l ——— e

12/15/67

4, All subscript expressions contained in
the for statement which are functions
of the controlled variable are opti-
mized; so also are subscripts consist-
ing of constants or simple variables
to which no assignment is made in the
for statement, All other subscripts
are not optimized,

In the case of a step element, the first
two characteristics imply that the loop
count (or number of iterations) can be
calculated in advance, The formula used in
computing the loop count is

Loop Count=
(Test Value-Initial Value+Step Value)

Step Value

Since the loop count can be computed in
advance, the iterated statement may be
designed as a Branch on Count loop,

Furthermore, since the controlled varia-
ble is not a factor in the iterated state-
ment, no assignment need be made to it in
each iteration, If the controlled variable
occurs in a subscript expression (which
must be optimizable), its contribution is
pre-calculated in the form of a wuniform
address increment,

Figures 66 and 68 illustrate the logical
structure of the code generated for two
Counting Loopns, the first containing arith-
metic elemehts, the second containing step
elements,

oo

Form Y33-8000-0, Page Revised by TNL ¥33-8001, 12/15/67

r=- ——— m————————— A
' I
| BIT 0=1 if: |
the for 1list contains a while |
| element
the real division operator (/) 1
' appears in the for list
the power operator appears in |
I the for list ’
a real operand appears in the
‘ for list l
the controlled variable appears
' as a right wvariable in the
iterated part of the for state-
‘ ment (outside optimizable sub-
L script expressions J
BIT 1=1 if: !
| an assignment is made to the '
controlled variable in the
‘ iterated part of th for state- |
ment
e e e e e S

'-EIT 2=1 ifs

a label or switch identifier,
implying a jump out of the for ‘
statement, appears in the iter-=
ated part of the for statement

|
- iz - ~mm
[BIT 3=1 if:
an array identifier appears in
| the for list '
a procedure identifier or a
| formal parameter appears in the [
for statement
[an assignment is made to any l
for list identifier in the
| iterated part of the for state- l
ment
(Any one of these conditions qualifies l
the for statement as a Normal Loop. In
| this case, all of bits 0,1,2 and 3 are [
set=1)
BIT 4=1 if: l
the for 1list contains a while
element *
, BIT 5=1 if:
the for 1list contains a while l
L element
————————————— - - - ——————— - — —— -~ —— - -1
' BIT 6=1 specifies that the for state-
l ment contains subscript expres- |
sions to be optimized. (The
l bit 1is turned on only in the .
N Compilation Phase)
" BIT 7=1 specifies that the for 1ist 1
| contains two or more elements, ,
| (The bit is turned on only in
[the Compilation Phase)
-

» Loop Classification
COUNTING LOOP: Bits 0-3 a 0

ELEMENTARY LOOP: Bits 0-3 mixed 1 and 0

NORMAL LOOP:

Figure 65,

Bits 0-3 a

For statement classification
byte in the For Statement
Table

The main features of the code qenerat-

ed for a Counting Loon are:

1.

The code sequence representing each
for list element is executed once

only, and the sequence terminates
with a BALR instruction, which
branches to the iterated statement
and loads the address of the next
for list element, 1In the case of a
step element, the code sequence

tests for an endless loop and com-

putes the loop count (in reqgister
0), before branching to the iterated
statement,

The code sequence representing the
iterated statement, in the case of a
step element, is controlled by a
terminal Branch on Count instruc-
tion, which returns to the iterated
statment, or, if the step element

is exhausted, branches to the next
for 1list sequence (or to the exit
address) .

If the for statement contains sub-
scripted variables (arrays), the
addresses of the array elements are

derived in each iteration (except
the first) by the addition .of a
uniform increment to an initial (ox
base address, calculated in advance
of the first iteration (see

"Subscript Optimization" below).

Elementary Loops

The distinguishing characterisitcs of

the Elementary Loop are:

1.

An assignment may be made to the
controlled variable in the iterated
statement (the controlled variable
may also occur in the iterated
statement as a right variable),

The for list may contain real operands
or expressions containing the real
division or power operator.,

Subscript expressions in the for state-
ment are optimizable, provided no

assignment is made to any variable

except the controlled variable, in the

expression,

If an assignment is made to the con-

trolled variable in the iterated statement,
its value after any given number of itera-

tions cannot be predicted without reference
to the iterated statement., This
that, for a step element, the loop

implies
count

cannot be pre-calculated, and that accord-

ingly, the iterated statement
designed as a Branch on Count Loop. A test

cannot be

for exhaustion of the step element, involv-
ing the test value, the step value, and the

controlled variable, must be made in -each
iteration,

Chapter 8: Compilation Phase 139

This reguires that the controlied varia-
bls bz incremsnted ov the amount of the
step value in each iteration. Incremeri-
tation of the contrdl.ed variable is also
rejquired on the ground that the con-
trolled variable may occur in the iterat-
23 statesment as a right variable as well
as a factor in non-optimizable subscript
axpressions.

Figures 67, 69, 70, and 73 illustrate
the logical structure of the code gener-
ated for an Elementary Loop, the first
containingy arithmetic elements, the sec-
ond st=2p =2lesments, the third containing
step elements and an optimizable sub-
script expression, and the fourth con-
taining while elemnents.

The2 main features of the code generat-
ed for an Elementary LOOp are:

1. The code seguence initiating a step
2l=mant tests for an endless loop
and stores the step and test values
in tas current Data Storage Area.

2. The «controlled wvariable is incre-
mented oncs in each cycle of a step
element, and a test for exhaustion
of the step element, wusing the
storzd step and test values and the
controlled variable, is made before
2 branch is taken to the iterated
statement. The test is performed by
a2 Fixed Storage Area routine (BCR).

3. If tne for statement contains any
optimizable subscript expressions,
the expressions are optimized by
deriving a uniform address increment

which is added in each cycle to a

pra-calculated base address.

The principal characteristics of the
Normal Loop are:

1. An assignment mnay be made in the
itsrated statement to any variable
in the for 1list.

2. The step value nay be a function of
the controlled variable.

3. The for statement may contain a
procejure statement (which may
change the values of any one or more
of the for list variables).

140

4. No subscript expression is optimiza-
ble in the for statement.

Since an assignment may be made {.» any
variable in the for list, the step and
test values in a step element may vary
between iterations. This implies, first,
that the 1o0op count cannot be pre-
calculated without reference to the
iterated statement; and second, that in
each iteration,

a. The step and test values must be
calculated,

b. The controlled variable must be
incremented, and

c. A test for exhaustion of the
step element must be made.

Moreover, since the step value may be
a function of the controlled variable,
the step value must be calculated twice
in each iteration, once when the con-
trolled variable is incremented, and once
again, immediately afterwards, 1in order
to determine the sign of the step value.
The latter is reguired in order to per-
form the test for exhaustion of the step
elenent before branching to the iterated
statement, viz:

(Controlled Variable - Test Value)
¥(Sign of Step Value)>0

Figures 67, 72, and 73 illustrate the
logical structure of the code generated
for a Normal Loop, the first containing
arithmetic elements, the second contain-
ing step elements, and the third contain-
ing while elements.

The main features of the code generat-
ed for a Normal Loop are:

1. The step and test values are comput-
ed in each iteration, the step value
being computed twice (once for
incrementing the controlled varia-
ble, and once for determining the
sign o5f the step value).

2. The controlled variable is incre-
mented and a test for exhaustion of
the for list element is performed in
each iteration.

3. Array element addresses are computed
by = evaluating the full subscript
expression(s) in each cycle
(subscript optimization is not
possible).

=

Source Text: "FOR” V:=1, C DO~

Comment

1st Arithmetic Element
Base = Constant Pool
Controlled Variable (V) = Initial Value (1)

Branch and link to iterated statement (< LN - |>)

2nd Arithmetic Element

Controlled Variable (V) = Value (C)
Load exit address.

Iterated Statement (<LN - |
Store BRR in return address field.

Load return oddress and branch (to next
arithmetic element or to exit).

Exit (LN - X>)

Figure 66,

‘BEGIN.......... “END -

Object Code

L GDSA, 0 (PBT)
MVC <DISP - V> (4, CDSA),<DISP - 1> (GDSA)
L BRR, <LN - [>(LAT)

[BALR BRR, BRR

L BRR, <LN - X >(LAT)
[sT BRR, <DISP - R>(CDSA)

L BRR, <DISP - R>(CDSA)
— BR BRR]

[Next instruction followin
the end of the for stctemen?]

containing arithmetic elements

Source Text: “FOR” V:=1, A ‘DO~ “BEGIN"...

Comment

Lst Arithmetic Element

Base = Constant Pool

Controlled Variable (V) = Value 1.

Load address of iterated statement.

Compute address of next step ele-
ment and store in return address field.

2nd Arithmetic Element
Controlled Variable (V) = Value of A.

Move exit address to return address field.

Iterated Statement (<LN - 1>).

Load return address and branch (to
next arithmetic element or to exit)

Exit (LN - X>

figure 67.

Object Code

<
r|=MVC <DISP - V>(4, CDSA), <DISP - C>(CDSA)

CPé

CP40

L cp43

CP43
L CP47

Ccp81

Compiler Program

(Eor) stores the for statements classification byte (from
FSTAB) and F.S.No. in the Operand Stack.

(Assign) reserves entries in the Label Address Table for
the iterated statement address (LN - 1>) and the exit
address (LN - X>) and in the current Data Storage
Area for the return address field (<DISP - R>).

(Commg) generates code, for the first arithmetic element,
to assign the initial value to the controlled variable and
to branch and link to the iterated statement, loading the
address of the next arithmetic element.

(Do) enters CP47 ot DWITERS.

enerates an instruction for the last for list element,
which loads BRR with the exit address) as well as the
first instruction in the iterated statement (which stores
the address in BRR in the return address field).

(Etg - operator marking the close of the for statement)
generates the terminal instructions in the iterated state~
ment. In the case of an arithmetic element, these in-
structions cause a branch to the next for list sequence,
or to the exit address, depending on the address fetched
from the return address field.

Logical structure of the code generated for a Counting Loop

Compiler Program

CP6 (For) stores the for statement’s classification byte (from
FSTAB) and F.S.No. in the Operand Stack.

L GDSA, 0 (PBT)

MVC <DISP - V> (4, CDSA), <DISP - 1> (GDSA)

L BRR, <LN - | >(LAT)

BALR STH, 0

LA STH, 10 (STH)

ST STH, <DISP - R> (CDSA)

BR BRR J
MVC <DISP - V> (4, CDSA), <DISP - A>(CDSA))

MVC <DISP - R> (4, CDSA), <LN - X> (LAT)

[iterated statement

L BRR, <DISP - R>(CDSA)

[el2:]]

BR BRR]

[Next instruction following the end of the for
statement .

containing arithmetic elements

Chapter 8:

CP40

—— CP43

— CP43

(Assign) reserves entries in the Label Address Table for

the iterated statement address (<LN - 1>) and the exit
address (<LN - X>) and in the current Data Storage
Area for the return address field (<DISP - R>).

(Commg)generates code, for the first arithmetic ele-

ment, to assign the initial value to the controlled vari-
able, to load the iterated statement address, to compute
the address of the next for list sequence and store it in
the return address field, and to branch to the iterated
statement.

(Do) generates code, for the last arithmetic element, to

assign the initial value to the controlled variable and to
store the exit address in the return address field.

(Eta - operator marking the close of the for statement)

generates the terminal instructions of the iterated state-

ment,

which branch to the next for list sequence or to

the exit address, depending on the address contained in
the return address field.

Logical structure of the code generated for an Elementary Loop or Normal Loop

Compilation Phase 141

Source Text: ‘FOR” V:=1 °STEP- 1 “UNTIL® 5, 10 °STEP- 2 "UNTIL" 12 "DO” A[20V- l]:=0-,

Comment

1st Step Element
lm—;eﬁﬁn‘ool

Controlled Varicble (V) = Initial Value (1).
Step Value =0?
Store Step Value.

Loop Count = (Test Value
~ Initial Value
+ Step Value)
+ Step Value.

Branch to Test ond Initi

Eun = Eom'an' &ool,

Controlled Varicble (V) = Initial Value (1).

ze Entry.

Step Value =0?

Store Step Value.

Loop Count = (Test Value
- Initial Value
+Step Value)
4 Step Value.

Lood exit address.

in return address field.
Loop Count = 0?

Object Code

L GDSA, 0 (PBT)

MVC <DISP - V> (4, CDSA), <DISP - 1> (GDSA)

L 3, <DISP - 1 >(GDSA)
LTR STH, 3
BZ ENDLESL (FSA)
ST STH, <DISP - ST >(CDSA)
A STH, <DISP - 5 >(GDSA)
S STH, <DISP - V> (CDSA)
SRDA STH, 32
DR STH, 3
LR 0, BRR
L BRR, <LN - TI >(LAT)
—BALR BRR, BRR
—|=L GDsA, 0 (PT)

L 3, <DISP - 2>(GDSA)

LTR STH, 3

BZ ENDLESL (FSA)

ST STH, <DISP - ST> (CDSA)

A STH, <DISP - 12>(GDSA)

§ STH, <DISP - V> (CDSA)

SRDA STH, 32

DR STH, 3

LR 0, BRR

L BRR, <LN - X> (LAT)
Le-ST BRR, <DISP - R> (CDSA)

LR 0, 0

Subscriot Initiclizati
Zero-base oddress, odd A [0], from
Storage Mapping Function.

Addend A (-1)
As l’i +1 (m&dmd # oddress increment
factor)
AddA[0] -AsP.
Factor F (+2)
Fe Pi 1
Fe Pi 1
F nP; " v
Add A[0] -AsP, | +FeP eV
(= initial oddress of subscripted varicble)
FeP,
i+l
F.Pi 1 Step (= cyclical oddress increment)f

Store cyclical increment

(First cycle only).

Iterated Statement (<LN - I>)
ubscript incrementation

“ F-PH |nSnp)

Branch around subscript incrementation [

<IN - B>:
Base = Constant Pool

Af2ev-1]=0;

Branch on count to iterated statement. {

Lood return address and branch (to next
step element or to exit).

[=—=BCR 12, BRR

L <NXTR>, <DISP - SMF - A >+ 4 (CDSA)
L GDSA, 0 (P8T)

L BRR, <DISP - 1> (GDSA)

M STH, <DISP - SMF - A> + 20 (CDSA)
SR <NXTR>, BRR

L BRR, <DISP - 2> (GDSA)

M STH, <DISP - SMF - A>+ 20 (CDSA)
LR ADR, BRR

M STH, <DISP - V> (CDSA)

AR <NXTR>, BRR

LR BRR, ADR

M STH, <DISP - ST> (CDSA)

ST BRR, <DISP - IN> (CDSA)

L BRR, <LN - B>(LAT)

BR BRR

A <NXTR>, <DISP - IN> (CDSA)

LR ADR, <NXTR>

L GDSA, 0 (PBT)

MVC 0 (4, ADR), <DISP - 0> (GDSA)
L BRR, <LN - I> (LAT)

BCTR 0, BRR

L BRR, <DISP - R> (CDSA)

===BR BRR

Exit (<LN - X>)

_‘.[Next instruction following the end of the for
statement .

MVC <DISP - V >(4, CDSA), <DISP - 10> (GDSA)

.

Compiler Progrom

CP6 (Eor)stores the for statements classification byte (from
FSTAB) ond F.S.No. in the Operand Stack.

CP40 (Assign) reserves entries in the Label Address Table for
the iterated statement oddress (SLN ~ 1>) and the exit
oddress (<LN - X>) and in the current Data Storog
Area for the return address field (cDISP - R>), the step
value (DISP - ST>), and the cyclical orray address
increment. CP40 also locates the OPTAB entry for the
subscript ion to imized in the for

CP43 (Step) generates code, for the first step element, to essign
the initial value to the controlled voriable.

CP45 (Until) stacks the operator Until.

— CP47 (C%ma) generates code, for the first step element, (a) to

test for on endless loop, (b) to compute the loop count,
and (c) to branch and link o the Test and Initialize Entry
(<LN = Tb).

CP43 (Step) generates code, for the second step element, to
assign ?ho initial value to the controlled variable.

CP45 (Until) stacks the operator Until .

|— CP47 (Do) generates code, for the second element, (a) to test

for an endless loop, (b) to compute the loop count, and
(c) to load the exit address.

CP47 also generates the first instructions of the Test and
Initialize sequence (which store the retum address and
test for exhaustion of the step element). CP47 then calls -

Subscript Init, Routine makes an entry for the optimized
array in SUTABC and generates a subscript initialization
sequence which computes the_initial oddress of the sub~
scripted varioble, odd A [0] +S;” Pi + | and the cycli-
cal oddress increment.

FaP,, ' (Step Value).

On retum, CP47 generates code to branch around the
foll I'owing subscript addres incrementation sequence, and
calls -

Subscript Inc. Roytine generates code to add the cyclical

address increment to the precalculated subscripted variable
oddress.

CP41 ([) inspects SUTABC and sets a switch (CMT) to specify-to
CP69 (which normally processes the operators « and -) ond
CP38 (l) that the subscript hos been optimized (precalcu-
loted). See "Arrays" .

CP12 (Assign) stacks the operator Assign.

CP20 (Etg - operator marking the end of the for statement) gener-
ates ooer assign 'h?vuluc (0) specified in the source mod-
ubscripted variable.

ule to

CPB1 (Eta) generates code (1) to branch on count to the iterated
statement ond (2) to branch to the next step element or to
the exit oddress, depending on the oddress saved in the re-
tumn oddress field.

Figure 68, Logical structure of the code generated for a Counting Loop
containing step elements and optimizable subscript expression

142

A subscript expression of an array
identifizsr contained in the iterated part
of an embracing for statement is defined
to bz optimizable in that for statement
if the expression is 2f the form

TF*VER,

vhere F(Factor) is an integer variable or
constant, V is the controlled variable of
the embracing for statement, and
A(Addend) is an integer variable or con-
stant. TIwo conditions for optimization
of a subscript expression of the above
type are:

1. That the embraciny for statement be
a Counting Ldop or an Elementary
Loop; and

2. That no assignment be made in the
itsrated statement to any variable
in the subscript expression.

In the general case, the address of
any 3Jiven array element, Als;,s3,s53] is
given by

addAlss,52,531=addAl0,0,0]1+5,Po+5,P3+55P,

where adadaAl0,0,0] is the array's zero-
base address and s;Pj,,s the product of
the subscript and the address increment
factor for the subscript position. The
zero-base address and the address in-
crement factors are obtained from the
array's Storage Mappingy Function (Figure
62 - see "Arrays"). The product SjPj,,
repres2nts the contribution of the parti-
cular subscript to the displacement of
the array element from the zero-base
adiress.

The 3displacement contribution of any

linear (optimizable) subscript of the
form (F*V+RA) is
Sj Pj,, (F*V+AID; .

Thz change in the Jdisplacement contrib-
ution associated with a change (or
"step") in the value of the controlled
variabls V is

As; By
e '{F*(V+atep)+A}P
-{F*V+A}P;, ,

=F*Step*Pj,, .

1+1

If the controlled variable V changes
by a constant step value in a succession
of iterations, the change in the
subscript's displacement contribution,
F¥St2p*Pj+4 , 1s constant in each itera-

tion. I1f sfp“ —(E’*V'+A)PlH is the

subscript's displacement contribution in
the first iteration (where V' is the
initial value of the controlled
variable) , the displacement contribution
in the nth iteration is

I

s; P +(n-1)As; P;

1+
"2 revran B, | ¥in-1) (Festep*m;, ,).
An squivalent form is

(a) {s'Pj,, +(n-2)As; P;,, }+As; Pj, ,
={ (F#V'+R)P;, , +(n" 2)(F*step*P,+1)}
F*Step*P.,,.

Equation (a) expresses the subscript
optimization formula, which states that,
for an optimizable subscript:

1. the change in the subscript's dis-
placement contribution is constant
in each iteration, if the change (or
step) in the controlled variable is
constant, and is given by
Asj P, , “F*Step*pj,, (called the
cyclical address increment).

2. the subscript's displacement con-
tribution in each iteration is
obtained by adding the cyclical
address increment, F#*Step*pP;, ,, to
the subscript's dlsplacement con-
tribution in the preceding itera-
tion, viz:

(F*V'+R) Pj4 4 +(n-2) (F*Step*Pj ,).

The address of the array element
Als,,S2,53] in the nth iteration, where
subscripts s, and s, are optimizable and
subscript s; is non-optimizable, may be
expressed as

addals;,S2,5a)
in nth iteration

={aidA[0,0,0]1+55P,+5 Pa+ (n-2)
*(As,Po+As2P3) }*AS;_Pz"‘ASzPa"SsP“-

This states that the address of a
subscripted variable containing one or
more optimized subscripts is obtained in
each iteration of a step element, by
adding the cyclical address increments of
the optimized subscripts, viz.
Asj Pj,, =F*Step*P{,, , together with the
dlsplacement contributions of the non-
optimizable subscripts, viz. s;Pj,,, to
a pre-calculated address element, viz.
the expression in braces {...}. The
latter represents the sum of the array's
zero-base address, addal0,0,0], plus the
displacement contributions of the
optimized subscripts in the first itera-
tion, s{P,, =(F*V'+A)Pj,,, plus the cumu-
lative total of the cyclical address

increments, AsjP;,,=F*Step*P;, ,, added in

Chapter 8: Compilation Phase 143

the pre2cediny iterations for all optim-
ized subscripts.

In ths gesnerated object code, the
optimization 0of subscript expressions
comprises two phases: Subscript Initiali-
zation and Subscript Incrementation.

Subscript Initialization (illustrated
in Figures 65 and 70) is performed before
entry to the iterated statement. It
consists in computing (in any available
general purpose register <NXTR>) the sum
of the array's zero base address and the
displacement contributions of the optim-
ized subscripts for the first iteration,
thas (continuing the example above)

<NXTR>=addA [0, 0,0]1+s,{Ps+sP4;

and in 3eriving and storing {(in a field
in the current Data Storage Area,
<DISP-IN>) a cyclical address increment,
rapresenting the sum of the cyclical
displacement increments of all optimized
subscripts, to be added td> <NXTR> in each
subsagusnt iteration, thus

<DISP‘IN>=A51P3+ASZP3 .

Subscript Incrementation consists in
adding the cyclical address increment to
<NXTR>, thus

A <NXTR>, <DISP-IN>(CDSA).

Ahere the subscripted variable contains a
non-optimized subscript (as in the exam-
ple above), the displacement contribution
for th2 non-optimized subscript is added
to <NXTR> after the cbode to evaluate the
proiuct of the Ffull expression and the
subscript increment factor, viz. S{Pj4+q,
is executed inside the iterated state-
mant.

Compiler Program N2.6_ (CP6)

CASE A CASE B
Source Operator: Goto For
Stack Opsrator: Begin, Semicolon, Do,
Then-s or Else-s

CASE A: Sse "Goto Statements".

144

CASE A: For marks the beginning of a for
statement. The operator is
stacked and the Statement Context
Matrix addressed. Three Operand
Stack entries are reserved, in
the last of which the for
statement's classification byte
(OPTBYTE~Figure 65) and For
Statement Number are stored.

Compiler Program No.40 {(CP40Q)

Source Operator: Assign
Stack Operator: For

The Assign operator follows the con-
trolled variable, whose internal name has
been entered in the Operand Stack.

P40 stacks the operator For:= and
reserves two entries in the Label Address
Table and one or more storage fields in
the current Data Storage Area (depending
on the for statement's loop classifica-
tion, 1indicated by the classification
byte stored by CP6 in the stack), and
stores the displacements of these entries
in the stack operands reserved by CP6.
The Label Address Table entries, in which
the relative address of the iterated
statement and the exit address are subse-
quently inserted, will be referenced by
instructions generated subsequently by
other compiler programs (see Figures
66-70 and 72, 73). The Data Storage Area
fields reserved will be used at object
time for storing the return address and
the conditional entry address.

CP40 also searches the Optimization
Table to determine if the table contains
any entries for optimizable subscript
expressions contained in the for state-
ment (an entry is identified by comparing
the For Statement Number previously
entered in the stack by CP6, with the For
Statement Number in the first byte of the
Optimization Table entry - Figure 50).
If an entry is found, bit 6 (OPTB) of the
classification byte in the stack is
turned on, to indicate that code to
optimize the subscript expression is to
be generated.

#

Source Text: “‘FOR’V :=1 “STEP’ 1 “UNTIL* 5, 10 “STEP* 2 “UNTIL” 12 ‘DO~

Comment

Object Code

L GDSA, 0 (PBT)

MVC <DISP - V> (4, CDSA),
L STH, <DISP - 1>(GDSA)
LTR STH, STH

BZ ENDLESL (FSA)

BALR BRR, 0 —

Lst Step Element
Base = Constant Pool.
Controlled Variable (V) = Initial Value (1).

DISP - 1> (GDSA) }

Step Value = 0?

Compute and store the sign of the step SLL BRR, 1
s

ST BRR, <DISP - S> (CDSA)

Store the step value (1). ST STH, <DISP - ST> (CDSA) J

N

MVC <DISP - T> (4, CDSA),
L STH, <DISP - V>(CDSA)

Store the test value (5). DISP - 5> (GDSA)

Load controlled variable.

BALR BRR, 0
Compute the address of the step addition
sequence and store in retum address field. LA BRR, 12 (BRR) —
ST BRR, <DISP - R>(CDSA)
Branch oround step addition (First cycle). B 12 (BRR)
~|eL STH, <DISP - ST> (CDSA))
Step Addition
Add step value 1o controlled variable. A STH, <DISP - V> (CDSA)
ST STH, <DISP -V > (CDSA)
C STH, <DISP - T> (CDSA)
Branch fo iterated statement (<LN - |>) -
if step element not exhausted; otherwise ICADR, <DISP - $> (CDSA)
begin next step element (test performed L BRR, <LN - I> (LAT)

by Fixed Storage Area routine BCR).
[T—EX ADR, BCR (FSA)

2nd Step Element E

e e L GDSA, 0 (PBT)

MVC <DISP - V>(4, CDSA), <DISP - 10>(GDSA)

Controlled Varicble (V) = Initial Value (10).

L STH, <DISP - 2>(GDSA) I
Step Value = 07 LTR STH, STH
BZ ENDLESL (FSA)
BALR BRR, 0 —
Smrfve ond store the sign of the step SLL BRR, 1
ST BRR, <DISP - $> (CDSA)
Store the step value (2). ST STH, <DISP - ST> (CDSA) J
Store the test value (12). MVC <DISP - T> (4, CDSA), <DISP - 12> (GDSA)
Load controlled variable. L STH, <DISP - V> (CDSA)
(I| s B, 0
ot o et o e g cadton LA 8RR, 12 BRY) -
ST BRR, <DISP - R>(CDSA)
Branch around step addition (first cycle) X B 12 (BRR)
—HeL STH, <DISP - ST> (CDSA) J

Step Addition

Add step value to controlled varioble. A STH, <DISP - V> (CDSA)
ST STH, <DISP - V> (CDSA)
C STH, <DISP - T>(CDSA)

Branch to exit if step element exhausted; XI <DISP - $> (CDSA), X “E0°

otherwise execute iterated statement (test

performed by Fixed Storage Area routine IC ADR, <DISP - $>(CDSA)
BCR).

L BRR, <LN - X >(LAT)
[5=EX ADR, BCR (FSA)

e[Iterated statement

Iterated Statement (<LN - I»)

L BRR, <DISP - R>(CDSA)

Load return address and branch to step [

oddition. L— R BRR]
Exit (<LN - X>) [Next i ion folll g the end of the for
—_—" saaremm]

Figure 69, Logical structure of the code

containing step elements

“BEGIN” “END-;

Compiler Program

CP6 (For) stores the for statement ‘s classification byte (from
FSTAB) and F.S.No. in the Operand Stack.

CP40 (Assign) reserves entries in the Label Address Table for the
iterated statement address (LN -1>) and the exit address
(<LN - X>) and in the current Data Storage Area for the
return address field (<DISP - R>).

CP43 (Step) generates code, for the first step element, to assign
the initial value to the controlled variable,

CP45 (Until) generates code to test for an endless loop and to
store the step value.

CP47 (Comma) generates code to store the test value, to compute
and store the step addition address, to branch around the
step addition miumce (for the first cycle only), ond to
load the step valu

CP45 (entered from CP47) generates code to add the step value
to the controlled variable.

CP47 (reentered from CP45) generates code to compare the con-
trolled variable with the test value and to load the sign of
the step value.

CP49 (entered from CP47) generates code to load the iterated
statement address and to- invoke the Fixed Storage Area
routine BCR, which branches to the iterated statement if
the step element has not been exhausted.

CP43 (Step) generates code, for the second step element, to assign
the initial value to the controlled variable.

CP45 ntil) genem!es code to test for an endless loop and to store
e step value.

CP47 (Do) generates code to store the test value, to compute and
store the step addition address, and to branch around the step
addition sequence (for the first cycle only).

CP45 (entered from CP47) generates code to add the step value to
the controlled vonab?

CP47 (reentered from CP45) generates code to compare the controlled
variable with the test value.

CP49 (enuved from CP47) generates code to load the exit address and
to invoke the Fixed ? torage Area routine BCR, which branches
to the exit address if the step element is exhausted.

CP81 (E_re operator marking the close of the for statement) generates

code to branch to the step addition sequence.

generated for an Elementary Loop

Chapter 8: Compilation Phase

145

Source Text: “FOR” V

Comment

1st Step Element
tore Subscript Initialization address in
conditional entry field.

Base = Constant Pool .

Controlled variable (V) = Initial Value (1).

Step Volue = 02

Compute and store the sign of the step value.

Store the step value (1).
Store the test value (5).

Load controlled variable.

Compute the address of the step addition
sequence and store in the return oddress

field.

Branch around step addition (first cycle).

Steo Addition
Add step value to controlled variable.

Branch to conditional entry address (<LN -
SI>or <LN - |>) if step element not ex~
hausted; otherwise begin next step element
(test performed by Fixed Storage Area rou-
tine BCR)

2nd Step Element

Store itercted statement oddress in condi~
tional entry field.

Base = Constant Pool .

Controlled variable (V) = Initial value (10).

Steo value 0?

Compute and store the sign of the step
valve.

Store the steo value (2).
Store the test volue (12).
Load controlled variable.

Compute the address o the step addition
sequence and store in the return address
field.

Branch around step oddition (first cycle).

Steo Addition
Add step volue to controlled variable.

Branch to condifional entry address (<LN -
SI>or<LN - I>) if steo element not ex-
housted.

Load exit address and branch.

Subscript Initializotion (<N - Si>)
Change conditional entry fo lterated
Statement .

Zero-base ~ddress, odd A[0], from
Storage Mapping Function.

8ose ~ Constant Pool .

Addend A (- 1).

A # P; ;| (oddend * oddress increment
factor).

Add A[0] - AP,
Factor F (- 2)

F'Pi~l

F'Pi'l

Fabl =V

add A[0] - AsP,, |t FaP eV
(+ initial oddress of subscripted variable).
FePiy

FeP, . |*Step

(cyclical address increment.)

Store cyclical increment.

Branch around subscript incrementation
(first cycle only).

Iterated Stotement (<LN - |>)

Subscript Incrementation (+ F « P« Step)
<LN - B>:

Base = Constant Pool .

Al2ev-1] =0;

Load return address ond branch to step.
oddition sequence.

Exit (SLN - X=)

Figure 70.

“STEP* 1 “UNTIL® 5, 10 "STEP-2 “UNTIL"12 ‘DO* A[2lV - l] E

o] t Code

MVC <DISP - CE>(4, CDSA), <LN - S| >(LAT)
L GDSA, 0 (PBT)
MVC <DISP - V> (4, CDSA), <DISP - 1> (GDSA)
L STH, <DISP - 1> (GDSA)
LTR STH, STH
BZ ENDLESL (FSA)
BALR BRR, O
SLL BRR, 1
ST BRR, <DISP - > (CDSA)
ST STH, <DISP - ST> (CDSA)
MVC <DISP - T>(4, CDSA), <DISP - 5>(GDSA)
L STH, <DISP - V> (CDSA)
BALR BRR, 0
LA BRR, 12 (8RR)
ST BRR, <DISP - R> (CDSA)
—8 12 (BRR)

L STH, <DISP - ST> (CDSA)
A STH, <DISP - V> (CDSA)
ST STH, <DISP - V> (CDSA)

-C STH, <DISP - T>(CDSA)

IC ADR, <DISP - S> (CDSA)

L BRR, <DISP - CE > (CDSA)
[E=EX ADR, BCR (FSA)
MVC <DISP - CE>(4, CDSA), <LN - I> (LAT)
L GDSA, 0 (PBT)
MVC <DISP - V> (4, CDSA), <DISP - 10> (GDSA)
L STH, <DISP - 2> (GDSA)
LTR STH, STH
BZ ENDLESL (FSA)
BALR BRR, 0
SLL BRR, 1
ST BRR, <DISP - S> (CDSA)
ST STH, <DISP - ST> (CDSA)
MVC <DISP - T (4, CDSA), <DISP - 12 > (GDSA)
L STH, <DISP - V> (CDSA)
BALR BRR, 0
LA BRR, 12 (BRR)
ST BRR, <DISP - R>(CDSA)

8 12 (BRR)

_ L STH, <DISP - ST>(CDSA)
A STH, <DISP - V> (CDSA)
ST STH, <DISP - V> (CDSA)
C STH, <DISP - T> (CDSA)
IC ADR, <DISP - 5> (CDSA)
-‘ L BRR, <DISP - CE> (CDSA)

[FZEX ADR, BCR (FSA)

[L BRR, <LN - X> (LAT)
BR BRR

Le MVC <DISP - CE> (4, CDSA), <LN - I> (LAT)
L <NXTR>, <DISP - SMF - A>+ 4 (CDSA)
L GDSA, 0 (P8T)

L BRR, <DISP - 1> (GDSA)

M STH, <DISP - SMF - A>+ 20 (CDSA)
SR <NXTR>, BRR

L BRR, <DISP - 2>(GDSA)

M STH, <DISP - SMF - A>+ 20 (CDSA)
LR ADR, BRR

M STH, <DISP - V> (CDSA)

AR <NXTR>, BRR

LR BRR, ADR

M STH, <DISP - ST>(CDSA)

ST BRR, <DISP - IN>(CDSA)

L BRR, <LN - B>(LAT)

BR BRR

A <NXTR>, DISP-IN (CDSA)

LR ADR, <NXTR>

L GDSA, 0 (PBT)

MVC 0 (4, ADR), <DISP - 0> (GDSA)
L BRR, <DISP - R> (CDSA)

L—— BR BRR

L« [Next instruction following the end of the for
siatement]

Compiler Program

CP6 (For) stores the for statement s classification byte (from
FSTAB) and F.S.No. in the Operand Stack.

——— CP40 (Assign) reserves entries in the Label Address Table and

in the current Data Storage Area, and locates the OPTAB
entry for the subscript expression to be optimized in the
for statement. CP40 also generates cods store the
Suh&erirl Initialization oddress (<LN - SI>) in the con-
ditional entry address field.

CP43 (Step) generates code, for the first step element, to assign
the initial value to the controlled variable.

’— CP45 (Until) generates code to test for an endless loop and to
sfore the step value.

[CP47 (Comma) generates code to store the test value, to compute
and store the step addition oddress, and to branch around
the step addition sequence (for the first cycle only).

‘CP45 (entered from CP47) generates code to add the step value
to the controlled variable.

CP47 (entered from CP45) generates code to compare the con-
trolled variable with the test value and to load the sign of
the step value.

CP49 (entered from CP47) generates code to load the conditional
entry address and to invoke the Fixed S e Areo routine
BCR, which branches to the subscript initialization sequence
(for the first cycle) or to the iterated statement (for every
subsequent cycle) or to the next for list sequence (if the step
element is exhousted). CP49 olso generates code fo store the
iterated statement address in the conditional entry field.

CP43 (Step)
the

generates code, for the second step element, to assign
ial value to the controlled variable.

[~ CP45 (Until) generates code fo test for an endless loop and to store
the step value.

(— CP47 (Do) generates code to store the test value, to compute and
store the step addition sequence address, and to branch
around the step oddition sequence (for the first cycle only).

CP45 (entered from CP47) generates code to add the step value to
the controlled variable.

CP47 (reentered from CP45) generates code to compare the con-
trolled variable with the test value and to load the sign of
the step volue.

[T CP49 (entered from CP47) generates code to load the conditional
entry address, to invoke the Fixed Storage Arec routine BCR
(see above), to load the exit address and branch, and to
store the iterated statement address in the conditional entry
field.

t——— Subscript Init. Routine (entered from CP49) makes an entry
for the optimized subscript in SUTABC and g

initialization sequence which computes th
of the subscripted variable, add A[0] + S.

the cyclical address increment F o P, |

CP47 then generates code to branch around the following sub-
script incrementation sequence.

Subscript Inc. Routine (entered from CP47) generotes the

subscript incrementation sequence.

CP41 ([[) inspects SUTABC and sets a switch (CMT) to specify
1o CP69 (which normally processes the operators » and -)
and CP38 (]) that the subscript has been opfimized. See
"Arrays" .

QP12 (Assign) stacks the operator Assign.
P20 (Eta - end of for statement) generates code to assign the
value specified (0) to the subscripted variable.
CP81 (Etg) generates code to load the return address and branch
to the step addition sequence.

Logical structure of the code generated for an Elementary Loop
containing step elements and an optimizable subscript expression

Compiler Program_No.43 (CP43)

Source Operater: 3tep, While, Do, or Comma
Stack Operater: ¥or:=

Tha sourcz operator follows the ini-
tial value (represented by the last stack
oparanl) to bz assigned to the controlled
variable.

Except in the case of a Counting Loop
containing no subscript expressions
(indicated by bit 6, OPTB, in the for
statement's classification byte), code is

generated (by branching to CP20) to
assign the 1initial value to the con-
trolled variable (Figures 67-70 and 72,
73).

Depending on the source operator and
the loop classification, code is then
generated as illustrated in the figures

indicatz3 below.

Comma (end of an arithmetic element)
Counting Loop: Figure 66.
Elementary or Normal Loop: Figure 67.
Elementary Loop (with optimization):
Figure 70.

Do (end of an arithmetic element and of
the for 1list)
Counting Loop: CP47 is entered at
DWITERS. Figure 66.
Elementary Loop: Figure 67.

Step
Counting or Elementary Loop: Figure
68-70 (no code).
Normal Loop: Figure 72.

While
Elenentary or Normal Loop: Figure 73.

The stack operand representing the
initial wvalue of the controlled variable
is released, and, except in the case of
the Comma, the source operator is

stacked.

Compiler Program No.45 (CP45)

Sources Jperator
Stack OJperator

Until
Step

Until 1is preceded by the step value,
represented by the last operand in the
stack.

Depsndiny on the for statement's loop
classification, code 1is generated as
illuastrated in the figures indicated
below:

Counting Loop: Figure 68 (no code).
Elamentary Loop: Figures 69 and 70.
Normal Loop: Figure 72.

In every case, the operator
stacked, replacing the
Step.

Until is
stack operator

CP45 is also
DVH3) from CP47.

entered (at DVE2 and
See Figures 69 and 70.

Compiler Program No.47 (CP47)

Source Operator: Comma or Do
Stack Operator: Until

The source operator is preceded by the
test value, represented by the last stack
operand.

Depending on the for statement's loop
classification, code is generated as

illustrated in the figures indicated
below:
Counting Loop: Figure 68. The figure

illustrates a Counting Loop contain-
ingy step elements and an optimized
subscript expression. As indicated
in the figure, the subscript ini-
tialization and subscript incremen-
tation sequences are generated at
the end of the for list (indicated
by Do) by entry to the Subscript
Initialization Routine (DWG3) and
the Subscript Incrementation Routine
(UVAl) -- see below. Where sub-
script optimization is not required
(Bit 6 of the classification byte =
0), these routines are not entered.

Elementary Loop: Figures 69 and 70.
Both figures illustrate a Counting
Loop containing step elements, but
Figure 70 shows a Counting Loop
containing in addition an optimiza-
ble subscript expression. As indi-
cated in the figures, CPU47 enters
CP45 (at DVE2 or DVH3, depending on
whether the controlled variable is
integer or real) and exits to CP49
(at EMG1l). The 1latter calls the
Subscript Initialization and Increm-
entation routines, where necessary.

Normal Loop: Figure 72. The figure
shows that CP47 exits to CP49 (at
EMGl).

CP47 is also entered (at DWITERS) from
CP43 (Figure 66).
/

Chapter 8: Compilation Phase 147

Compiler Program N2.49 (CP49)

Source Jperator: Comma or Do
Stack JOpsrator: While

The source operator is preceded by a
boolean expression, representing the con-
dition specified in the while element.
The for statement must be an Elementary
or Normal Loop. Figure 73 illustrates
the codes jenerated for either of these
loop ~classifications, where the souarce
operator is Do, marking the end of the
for 1list, and where the for statement (an
Elementary Loop) contains no optimizable
subscript expressions. The code generat-
ed in the case of the Comma operator is
identical, except that the address loaded
before the conditional branch is that of
tha iterated statement. Where an Elemen-
tary Loop «contains optimnizable expres-
sions, the code generated by the Sub-
script Initialization and Incrementation
routinzs (USA1l and UVAl -- see below), on
call from CP49 is similar to that illus-
trated in Figure 70.

CP49 is also entered (at EXITERS) from
cpu3 and (at EMG1) from CPU7 (see Figures
69, 70 ani 72).

Subscript Initialization Routine (DWS3 or
UsAl)

This routine is entered from CP47 and
CP49 at the close of a for list

(injicated by the source operator Do),
when it is determined (by inspection of
bit 6 of the for statement's classifica-
tion byte "OPTBYTE' entered in the oper-
and stack by CP6) that the iterated
statement contains a subseript expression
to be optimized. On recognition of the
operator For, CP6 will have located the
first of one or more entries in the
Optimization Table (Figure 50) represent-
ing the subscript expression(s) to be
optimized in the for statement.

The Subscript Initialization Routine
constructs an entry in the Subscript
Table-C (SUTABC), Figure 71, for every
subscripted variable containing optimiza-
ble subscript expressions represented by
entries in the Optimization Table, pro-
vided no previous entry was made for the
same subscript in an enclosing for state-
ment or in the current for statement, and
gensrates a subscript initialization
sequence (see "Subscript Optimization"
above, and Figures 68 and 70).

Subscript Table-C is referenced by
CP4l1 and CP38 (see "Arrays"), which are
entered whenever the operators [and
Comma in a subscripted variable are
encountered. Its function is to enable
CP41 and CP38 to identify the subscript
expressions (if any) in a subscripted
variable which have been optimized, and,
if any subscripts have been optimized, to
enable CP38 to locate the stack operand
which specifies the object time register
(<KNXTR>) containing the pre-calculated
array element address.

0 1 2 4 9
r~—-—- -7 T E ettt 1
| <FSN>| <RN>|<Rel. address|<Address of stack|<Subscript |
| | | of [> | operand> position key>|
[I 1 N DU -1
<F3N> = <For Statement Number>
<RN> = <Number of the Modification Level 2

text record containing the operator
[which precedes the first subscript
of the subscripted wvariable in the

iterated statement>
<Relative address of the operator [
in the text record specified by

<Rzl. aidress
of [>
<RN> above>

<address of stack
operani>

element address>

<Subscript -

position key> positions 0-15,.

Figur=s 71.

148

<Address of the stack operand repre-
senting the pre-calculated array

(16 bits representing subscript
Bit=1 if the subscript has been optimized.)

Entry in Subscript Table-C (SUTABC)

Source Text: “FOR” V :=1 “STEP 1 ‘UNTIL* 5, 10 “STEP 2 “UNTIL” 12 ‘DO “BEGIN".......... ‘END

Comment Object Code Compiler Program

CP6 (Eor) stores the for statement “s classification byte and
F.S.No. in the Operand Stack .

1st Step Element I : ies i
E?_Er CP40 (Assign) reserves entries in the Label Address Table for the
nstant Pool . L GDSA, 0 (P8T) iterated statement oddress (<LN - |>) and the exit address
| Controlled variable (V) = Initial Value (1). MVC <DISP - V> (4, CDSA), <DISP - 1> (GDSA) N ke, ond In the current Data Storage Are for the
BALR STH, O ~CP43 (Step) generates code, for the first element, to assign the

initial value to the controlled variable and to compute and

Compute the retum address and store in the LA STH, 8 (STH) store the return address.

return oddress field.
STH STH, <DISP - R> (CDSA)

=L GDSA, 0 (PBT)
L STH, <DISP - 1> (GDSA)
LTR STH, STH
BALR BRR, O
Compute and store the sign of the step value.. BNZ 8 (BRR)
SR BRR, BRR
BCR BRR, O
SLL BRR, 1
(—CP45 (Until) generates code to compute and store the sign of the
ST BRR, <DISP - S> (CDSA) step value, to add the step value to the controlled variable,
and to compute the sign of the step value again.
L BRR, <LN - B>(LAT)
Xl <DISP - R>(CDSA), X ‘80"
BCR 4, BRR
A STH, <DISP - V>(CDSA)
ST STH, <DISP - V> (CDSA)
L BRR, <DISP - R> (CDSA)

Bypass the step oddition sequence when the
sign of the step value is computed again
after the controlled variable has been in-
cremented.

Add the step value to the controlled vari-
able.

Branch to compute the sign of the step
value again, before testing for exhaustion

of the step element . BR BRR
<LN - B>:r| L STH, <DISP - V> (CDSA)
C STH, <DISP - 5> (GDSA) t—~CP47 (Comma) generates code to compare the controlled variable
Branch to the iterated statement (LN -1 with the test value and to load the sign of the step value.
if the step element is not exhausted; other- IC ADR, <DISP - 5> (CDSA)
wise begin the next step element. 4

L BRR, <LN - I> (LAT)
t—~CP49 (entered from CP47) generates code to load the iterated

=EX ADR, BCR (FSA) statement address and to invoke the Fixed Storage Area
9nd Step Element E < routine BCR, which branches to the iterated statement if the
Base = Corstant Fool. L GDSA, 0 (PBT) step element has not been exhausted.
Controlled variable (V) = Initial Value (10) MVC <DISP - V> (4, CDSA), <DISP - 10> (CDSA)
1 BALR STH, 0 (~CP43 (Step) generates code, for the second step element, to assign
the initial value to the controlled variable and to compute
Compute and store the return address. LA STH, 8 (STH) and store the return address.

ST STH, <DISP - R>(CDSA)
L GDSA, 0 (PBT)
T L STH, <DISP - 2> (CDSA)
LTR STH, STH
BALR BRR, 0
Compute and store the sign of the step value. BNZ 8 (BRR)
SR BRR, BRR
BCR BRR, 0
SLL BRR, 1
}-CP45 (Until) generates code to compute and store the sign of the
ST BRR, <DISP - $> (CDSA) step valve, 1o add the step vaiue to the controlled variable,

and to compute the sign of the step value again.

Byposs the step addition sequence when the L BRR, <LN - B1> (LAT)

sign of thestep value is computed again o

uer the controlled variable hos been in- XI <DISP - R>(CDSA), X “80

cremented. \ BCR 4, BRR

Add the step value to the controlled vari- { A STH, <DISP - V> (CDSA)

cble. ST STH, <DISP - V> (CDSA)

Branch to compute the sign of the step L BRR, <DISP - R>(CDSA)

value again, before resting for exhaustion

of the step element . (~BR BRR J
<LN-BIf: L STH, <DISP - V> (CDSA)

C STH, <DISP - 12> (GDSA)
}~CP47 (Do) generates code to compare the controlled variable with

Branch to the exit address if the step XI <DISP - > (CDSA), X "E0~ the test value, to invert the sign of the step value and to
element is exhausted, otherwise execute load the inverted sign of the step value.
the iterated statement . IC ADR, <DISP - S> (CDSA)

L BRR, <LN - X> (LAT)
CP49 (entered from CP47) generates code to load the exit address

===EX ADR, BCR (FSA) and to invoke the Fixed Storage Area routine BCR, which
branches to the exit address o? the step element is exhousted.
Iterated Statement (<LN - I>): Lo[!umwed statement
Load return address and branch. L BRR, <DISP - R>(CDSA) pX
CP81 (Eta) generates code to branch to the retum address.
Ll——r BRe]
Exit (<LN - X>): L [Next instruction following the

end of the for statement.]

Figure 72. Logical structure of the code generated for a Normal Loop
containing step elements

Chapter 8: Compilation Phase 149

Form Y33-8000-0, Page Revised by TNL ¥33-8001, 12/15/67

Source Text: “FOR” V :=1 “WHILE* B “DO” “BEGIN-.......... “END~
Comment Object Code Compiler Program

CP6 (For) stores the for statement s classification byte (from
FSTAB) and'F.S.No. in the Operand Stack.

CP40 (Assign) reserves entries in the Label Address Table for
the Assign and Test address (<LN = AT >) and the exit
address (<LN - X>) and in the current Data Storage .
Area for the return address field (<DISP - R>).

MVC <DISP - V> (4, CDSA), <DISP - 1> (GDSA) CP43 (While) generates code to assign the value specified to

the controlled variable and to store the Assign and Test
MVC <DISP - R>(4, CDSA), <LN - AT> (LAT) address in the return address field.

Assign and Test (<LN - AT>)

Base = Constant Pool . — L GDSA, 0 (PBT)

Controlled Variable (V) = Value 1.

Store the Assign and Test address in the
return address field.

Test if B is true. TM <DISP - B> (CDSA), X “01°

Load the exit address. L BRR, <LN - X> (LAT) CP49 (Do) generates code to test the condition specified in the
while element and to enter the iterated statement if the

Branch to exit if B is false. F_BCR 8, BRR condition is true or to branch to the exit address if the
condition is false.

[terated statement

Load the retum oddress and branch to L BRR, <DISP - R> (CDSA)
Assign and Test. CP81 (Eta - operator marking the close of the for statement)
(— BR BRR] generates code to branch to the Assign and Test sequence.
Exit (<LN - X>) L—e [Next instruction following the end of the for
statement]

®rigure 73, Logical structure of cocde generated for Elementary Loop or Normal Loop
containing a while element

Initially, a search is made to deter- array”s Storage Mapping Function
mine if SUTABC contains any entries (Figure 62) being obtained from the
(indicating one or more optimized sub- OPTAB entry.
scripts in an enclosing for statement)
and, in this event, if there is an entry

for the same subscrinted variable For ecvery OPTAB entry which contains
(determined by comparina the record num- thilsame agdress data in bytes 11-13
ber and relative address in bytes 11-13 (all ~such entries representing
of the OPTAB entry previously located by optimizable subsgrlpt expressions of
CP40, with bytes 1-4 of the SUTABC the same subscripted variable), the
entry). The action taken depends on the corresponding bit in bytes 7 and 8
result of this test: of the SUTABC entry is turned on (to

specify the optimized subscript

position) and code is generated to
add the product (Addend) * (Address)
Increment Factor), AxPj,1 to <NXTR>
and to add the’ product

1. No entry for the subscripted varia-
ble is found in SUTABC,

A new entry is constructed in o
SUTABC, the contents of bytes 11-13 (Factor)* (Address Increment Factor),
. o £
of the OPTAB entry being copied into FxPjy) to ADR, When all of the
bytes 1-3 of the SUTABC entry, the OPTAB entrles for the same sub-
current For Statement Number into scripted variable have been pro=
byte 0. An object time register cessed in t@ls way, code is generat-
(KNXTR>) is reserved in which the ed to multiply the contents of ADR
pre-processed array element address by the initial value of the con-

will be calculated, and the address trolled variable and to add the
of a stack operand representing the result to NXTR , which now, contains
pre-processed address is entered in the quantity

the SUTABC entry,

Coce is generated to load <UXTR>
with the array”™s zero-base address
(ac¢daf0,0,0]), the address of the

aadaalo,0,01+ axp; +1+Z(F*Pi+'!)*v' .
Code 1is then generated to multiply
the contents of ADR by the step
value and to store the result,
(F*P j4)1)* Step, representing the

cyclical address increment, in the
current Data Storage Area.

If any other OPI'AB entries are found
r=lating to andother subscripted
variable in the carrent for state-
ment, a new SUTABZ entry is con-
structed and the pre-processed
address and cyclical address incre-
ment are computed in the manner
described.

2. An entry for the same subscripted
variable is found in SUTABC. This
indicates that a subscript initiali-
zation seguence was generated in an
2nclosiny for statement for one or
more subscripts of the same sub-
scripted wvariable. In this case,
the same SUTABC entry is used, the
contants of byte 0 being over-
Aritten with the current For
Statzment Number, and code is gener-
ated to 1oad <NXTR> with the pre-
viously calculated array element
ajjrsss, namnely

add A[0,0,0]+2A*Pi+1+E(F*Pi+1)*V'.
The object time 1location of this
pre-processed address is determined
with the aid of the operand address
in the SUTABC entry.

Subscript Incrementation Routine (UVA1l)

This routine is entered from CP47 and
CP49 ~hen address incrementation is
reguirzl for one or more optimized sub-

scripts (the for statement contains a
step 2l=ment). Code is generated to add
the cyclical address increment,

Z(F*Pj+4) ¥Step, to the
array element address.
and 70.

pre-processed
See Figures 68

Compiler Program N>.81 (CP81l)

Source Jperator: Eta
Stack Operator: Do

Eta marks the close of the current for
statement. CPBl1 generates the terminal
instructions of the iterated statement
(see Figures 66-7) and 72, 73) and
deletes all entries in SUTABC. All stack
operanlds relatiny to the current for
statement are released and the operator
Do is released.

ASSIGNMENT STATEMENTS

An assignment statement is implemented
essentially by a MOVE instruction or a
STORE instruction, whose effect 1is to
transfer the value of the expression to
the right of the assignment operator to
the Data Storage Area field of the oper-
and to the left of the assignment opera-
tor. The expression on the right may be

1. a simple variable or a constant
whose object time value is contained
in a Data Storage Area field, or

2. a complex expression, whose value

may be contained in a register or a
Data Storage Area field.

Compiler Program No.l1l2 (CP12)

Source Operator: Assign
Stack Operator: Begin, Semicolon, Then-s,
Else-s, or Do

The source operator identifies the
beginning of an assignment statement.

CP12's function is to test the charac-
teristic of the left variable
(represented by the stack operand) for
assignability, and to stack the Assign
operator. If the operand is a formal
parameter, in which case assignability
can only be determined at object time,
CP12 generates code to check for assigna-
bility by inspecting the characteristic
in the relevant actual parameter code
sequence (see "Procedures"). Thereafter,
a call is made to OPDREC which generates
code to call the actual parameter.

Compiler Projram No.21 (CP21)

Source Operator: Assign
Stack Operator: Assign

The operators identify a
assignment, e.g., a:=b:=c.

multiple

Jnless one or both of the last two
stack operands are all-purpose operands,
control 1is passed to CP12, in which the
last operand is tested for assignability.
The operand before last will have been
tested previously.

Chapter 8: Compilation Phase 151

Compiler Program No.20 (CP20)

Source Operator: Semicolon, Epsilon, Eta,
End or Else
Stack Operator: Assign

Th2 combination of source and stack
operators indicates the end of an assign-
ment statement. The last two stack oper-
ands represent the operands to the 1left
and right of the assignment operator.

CP20's function is to determine if the
operands are compatible (i.e., real-real,
integer-integer, real-integer, or
integer-real, or boolean-bodlean) and, if
ona is real and the other integer, to
Jenerats 3 call to the appropriate Fixed
Storage Area routine to convert the right
operanid to the same type as that of the
left opsrani. The call, where required,
is generated by TRINRE or TRREIN.

If both operands are boolean, and if
the right operand is a boolean constant,
the assignment of the value of the right
operand to the left variable 1is imple-
mented by an MVI instruction. 1In all
other cases (i.e., where the operands are
2 combination of real and/or integer, or
whers both operands are boolean, the
right operand being a boolean variable),
the assigynment is implemented by entry to
the Real-Real or Integer-Integer routine

152

of Compiler Program No.69 (CP69). The
latter routines generate code to store
(or move) the value of the right operand
(depending on whether the latter is con-
tained in a register) to the Data Storage
Area field of the 1left variable (the
object-time address of which is contained
in the stack operand before last). A
boolean assignment is handled by the
Real-Real routine, which generates the
necsssary move instruction (in the object
code, boolean operands are at no point
loajed into registers).

At re-entry to CP20 from CP69, the
Assign operator is released, and unless
the preceding stack operator is For, <%,
or Assign, control is passed to COMP,

after the 1last two stack operands have -

been released. The operator For indi-
cates that CP20 was entered from CP43 for
the special case of an assignment to the
controlled variable in a for statement
(se2 CP43 under "For Statements"). The
operator < indicates another special
case, in which CP20 is used in the
generation o5f code for an array declara-
tion (see CP51 wunder "Arrays"). The
operator Assign indicates a multiple
assignment, e.g., a:=b:=c, where the
assignment a:=b remains to be implement-
ed. The remaining assignment is generat-
ed by branching back to a point (BIEH4)
within CP20, after moving the last oper-
and downward (replacing b by c) so as to
specify the equivalent assignment a:=c.

P===N

CONDITIONAL STATEMENTS

The implementation of a conditional statement in the code generated by the compiler
may be demonstrated by the following example:

ee.;"IF' B>C 'THEN' A:=B+C "ELSE' A:=B-C;...

Sourcz2 Jp=rator Obiject Time Action Compiler Program
'IF Store occupied registers CP8 stacks If-s and switches to EXC
> CP67 stacks >
'THEN' Evaluate (B>Z). Store True CP59 releases >

or False in Data Storage
Area field.

Branch to E (below) if CP78 replaces If-s by Then-s and switches
B>C is False to PSC
CP12 stacks Assign
CP22 switches to EXC
CP66 stacks +
'ELSE’ Compute (B+C) CP69 releases +
CP70 switches to STC
CP71 switches to PGC

4+ oo

Store (B+C) at A CP20 releases Assign
Branch to F (below) CP17 replaces Then-s by Else-s

CP12 stacks Assign
CP22 switches to EXC
CP66 stacks - (minus)

1

H E: Conpute (B-C) CP69 releases - (minus)
CP70 switches to STC
CP70 switches to PGC
Store (B-C) at A CP20 releases Assign
F: [Next instructionl CP18 releases Else-s

The symbols EXC, PGC and STC represent, respectively, the Expression Context Matrix,
ths Program Context Matrix, and the Statement Context Matrix (Appendix V). The special
operators If-s, Then-s, and Else-s (see Appendix I-d) identify the delimiters ‘'IF',
'THEN', and 'ELSE' as relating to a conditional statement, as opposed to the same
delimit=rs occurring in boolean or conditional expressions.

Chapter 8: Compilation Phase 153

Compiler Program No.8 (CP8)

Source Jperator: If
Stack Operator: Begin, Semicolon, Else-s,

or D2
In the context identified by the stack
operator, If marks the beginning of a

conditional statement.

After stackingy the operator If-s and
addressing the Expression Context Matrix, a
call is made to the CLEARRG subroutine,

which 3jzn=2rates code to store all object-
time registers in use.
Compiler Projram No.78 (CP78)

CASE A CASE B
Source Operator: Then
Stack Operator: If-s If

CASE A: Then marks the end of an if clause
(*IF' (boolean expression) 'THEN')
in a conditional statement.

Code is generated to test the value
of the preceding boolean expression
(which may be a boolean variable or
constant, a boolean function
designator, a relation or a more
complex boolean expression) and, if
the value is False, to branch to
the first instruction representing
the alternative statement following

'ELSE' (or if there is no alterna-
tive statement, to the first
instruction representing the next
saquential statement). The branch

instruction references an entry in
the Label Address Table (reserved

by CP78) in which the relative
branch address will be stored by
CP17. wuUnless the boolean expres-

sion precediny 'THEN' is a simple
boolean variable or constant, code
will have been generated by other
compiler programs, before entry to
CP78, to evaluate the expression.

154

At entry to CP78, the stack operand
addresses a Data Storage Area field
in which the value of the boolean
expression will be stored at object
time.

Before control is returned to SNOT,
the stack operator If-s is replaced
by Then-s and the Program Context
Matrix is addressed.

CASE B: See "Conditional Expressions".

Compiler Program No.1l7 (CP17)

Source Operator: Else
Stack Operator:

Else precedes the second alternative in
a conditional statement.

CP17 replaces the stack operator Then-s
by Else-s and generates code to branch
around the immediately following sequence
representing the second alternative state-
ment. The code references a new entry in
the Label Address Table in which the rela-
tive branch address will be stored by CP18.

CP17 also stores the relative address
(PRPOINT) of the second alternative code
sequence in the Label Address Table entry

(addressed by a stack operand) previously
reserved by CP78.

Compiler Progyram No.18 (CP18)

Source Operator: Semicolon, Epsilon, Eta,
or End
Then-s or Else-s

Stack Operator:

The source operator marks the end of a
conditional statement.

CP18 releases the stack operator, stores
the displacement (PRPOINT) of the next
object code instruction in the Label Adress
Table entry reserved by CP17 (or CP78), and
exits to COMP.

CONDITIONAL EXPRESSIONS

The implementation of a conditional expression in the code generated by the Compiler
may be demonstrated by the following example:

eee; A:=B+('IF'B>C'THEN'C'ELSE'-C);...

Source Opsrator Object Time Action Comnpiler Program
= CP12 stacks Assign

CP22 switches to EXC
CP66 stacks +

+

(CP64 stacks (

‘IF* Store occupied registers CPB80 stacks If

> CP67 stacks >

'THEN' Evaluate (B>C). Store True CP69 releases >
or False in Data Storage
Area field
Branch to E{below). if CP78 replaces If by Then
(B>Z) is False

'ELSE' Load C. Branch to CP87 replaces Then by Else
F (below)

-(minus) CP66 stacks - (minus)

) E: Load -C CP69 releases - (minus)
Transfer -C to same CP79 releases Else
register as C

: F: Compute (B+/-C) CP68 releases (

CP69 releases +

CP70 switches to STC

CP71 switches to PGC
A:=(B+/-C) CP20 releases Assign

Ths abbreviations EXCZ, STC, and PGC represent the Expression Context Matrix, the
Statement Context Matrix and the Program Context Matrix, respectively.

Chapter 8: Compilation Phase 155

Compiler Program No.64 (CP64)

Source Operator:

Stack Operator: (See decision matrices)

CASE A: Sse "Procedures".

CASE B: See "sStandard Procedures"”.

CASE C: The source operator precedes a con-
ditional, boolean or arithmetic
expression. The source operator is
stacked.

Compilsr Program No.8) (CP80)

Source OJperator: If
Stack Operator: (

indicate
expression

The combination of operators
that If opens a conditional
enclosed by parentheses.

CLEARRG,
time reg-

Code is generated, by call to
to storz all occupied object
isters, and If is stacked.

Compiler Program No.34 (CP34)

Source Operator: If
Stack Oparator: (See Statement Context
Matrix -- Appendix V-b)

If opens a conditional
is stacksd and the Expression
Matrix is addressed.

expression. If
Context

Compiler Program_N>.65_ (CP65)

CASE A CASE B

Source Jperator: If or Not

Stack JOperator: If or If-s (See Expression
Context Matrix
-- App. V-c)

CASE A: If
inside an if
stacked.

opens a conditional expression
clause. If is

CASE B: See "Bodlean Expressions".

156

Compiler Program No.78_ (CP78)

CASE A CASE B
Source Operator: Then
Stack Operator: If-s If

CASE A: See "Conditional Statements".
CASE B: Then follows a boolean expression
in a conditional expression.

CP78 generates code to test the
value of the immediately preceding
boolean expression and to branch to
the first instruction representing
the second alternative expression
following ‘ELSE', if the value is
False. Unless the boolean expres-
sion consists solely of a boolean
variable or constant, code will
have been generated, before entry
to CP78, to evaluate the expression
and to store the value in a Data
Storage Area field. The object
time location of the stored value
is addressed by the stack operand.
The generated code references a new
entry in he Label Address Table, in
which the relative address of the

alternative statement will be sub-
sequently stored. Before exit to
SNOT, the stack operator If is

replaced by Then.

Compiler Program No.87 (CP87)

Source Operator: Else
Stack Operator: Then

Else follows a designational, arithmetic
or boolean expression representing the
first alternative in a conditional expres-
sion. CP87's function is to ensure (by
generating the requisite object code),
that:

for designational expressions, the
address value of the expression is
loaded in ADR.

for arithmetic expressions, the value
of the expression is 1loaded into a
fixed point or floating point register,
depending on whether the value is inte-
ger or real.

for boolean expressions, the value
(True or False) of the expression is
stored in a field in the current Data
Storage Area.

Ahere the expression 1is complex, code
will have been generated, before entry to
CP87, to evaluate the expression, and in
this case, the wvalue oOr address will
already be contained in the appropriate
rayister or Data Storage Area field. If
howsvar, the sxpression is a simple 1label,
an arithmetic constant or variable, or a
boolean constant or variable, CP87 gener-
ates a Load or Move instruction. In all
casss, the expression is represented by the
stack operand pointing to a Label Address
Table =ntry, a Data Storage Area field, or
a register.

CP37 also jenerates an unconditional
branca arouni the second alternative
expression which follows 'ELSE'. The code
refzrances 3 new entry in the Label Address
Table, in which the relative branch address
will subssquently be stored by CP79. In
addition, CP87 stores the displacement
(PRPOINT) of the next object code instruc-
tion in the Label Address Table entry
previously reserved by CP78, representing
the address of the second alternative
expression. Before exit to SNOT, the stack
operator Then is replaced by Else.

Compiler_ Program_No.7) (CP73)

Sourcz Opzsrator: (See Expression Context
Matrix -- App. V-c)
Stack JOperator: Else

The source operator marks the end of a
conditional expression. It is preceded by
a designational, arithmetic or boolean
expression representing the second alterna-
tive expression.

CP79's function is:

1. to gsnerate the necessary object code
such that, if the condition following
'IF' is False, the address or value of
the second alternative will be loaded
in the samne register (ADR in the case
of a2 Jdesignational expression), or
moved to the same Data Storage Area
field as that specified in the coding
for the first alternative expression
(see CP87 above); and

2. to generate, if necessary, a call to
the Fixed Storage Area integer-real
conversion routine, in the event one
of the alternative expressions is real
and the other is integer.

Th=s two alternative expressions are rep-
resented by the 1last two stack operands.
At exit from CP73, these operands are
replaced by a single operand which address-

es the object time register or Data Storage
Area field in which the address or value of
the particular alternative expression
(depending on the condition identified at
object time) will be contained after evalu-

ation of the complete conditional expres-
sion.
Finally, the displacement (PRPOINT) of

the next object code instruction is stored
in the Label Address Table entry specified
by an operand previously stacked by CP87,
representing the address of the uncondi-
tional branch following the first alterna-
tive expression, and the stack operator
Else is released.

BOOLEAN_EXPRESSIONS

Object time boolean operations
(specified in the source module by the
operators 'AND', 'OR', 'EQUIV', and *IMPL')

are performed in fields reserved for inter-
mediate results in the current Data Storage

Area (in the 1listing these fields are
referred to as "Object Stack entries").
When code to implement a boolean operator

is to be generated, a test is first made to
determine if the first operand constitutes:

1. a logical constant or a declared boo-
lean variable, or

2. an intermediate boolean value.

If the operand is a logical constant
('TRUE' or 'FALSE') or a declared boolean
variable (as in X'AND'Y), a field is res-
erved in the current Data Storage Area (by
incrementing pointer P -- see Figure 54)
and code is generated to move the operand
to the reserved field and to perform the
specified boolean operation in that field.
If, however, the operand is an intermediate
logical value, representing the value, say,
of a relation (as in A>B'AND'C>D), the
generated code will execute the specified
boolean operation in the Data Storage Area
field containing the intermediate value.

The operators 'AND' and 'OR' are imple-
mented directly by the corresponding
machine instructions. 'EQUIV' is imple-
mented by the combination Exclusive Or
(inversion) and Or, *IMPL' is implemented
by interchanging the operands and by Exclu-
sive Or (inversion) and Exclusive Or.
Where the second operand is a 1logical
constant (whose value is known at compile
time), the object code wutilizes immediate
instructions.

Chapter 8: Compilation Phase 157

Compiler Program No.64 (CP64)

Source Jperator:
Stack Jperator: (See decision matrices

-- Appendix V)
CASE A: See "Procedures".
CASE B: See "Standard Procedures".
CASE C: The source operator precedes an
arithmetic, boolean or conditional
expression. The Expression Context

Matrix is addressed and the source
operator stacked.

Compiler_ Program No.65_(CP65)

CASE A CASE B
Sources Jperator: If Not
Stack OJpesrator: If or If-s (See Expression
Context Matrix
--Appendix V-c)
CASE A: See "Conditional Expressions".
CASE B: The 1logical operator Not identifies
a boolean expression. Not is
stacked.

Source Opesrator: (See Expression Context

Matrix -- App. V-c)
Stack Opsrator: (See Expression Context
Matrix -- App. V-c)
The source operator (which may be an
arithmetic or relational operator or any

one of the 1logical operators And, Or,
Equiv, or Impl) is stacked.

Compiler Program N2.76_ (CP76)

Source Operator: (See Expression Context
Matrix -- App. V-c)
Stack Operator: And, Or, Eguiv, or Impl

The source oOperator indicates that the
opesration specified by the stack operator,
between the boolean operands represented by
the 1last two stack operands, may be imple-
manted.

158

CP76 generates code to perform the spec-
ified operation in a current Data Storage

Area field, and releases the stack opera-
tor. At exit to COMP, the stack operand
addresses the Data Storage Area field in

which the result (True or False) of the
operation will be contained at object time.

Compiler Program No.77 (CP77)

Source Operator: (See Expression Context
Matrix -- App. V-c)
Stack Operator: Not

T'he source operator is preceded by a
boolean operand (a constant, a variable or
a complex expression) to be operated on by
the stack operator Not. CP77 generates
cods to invert the 1logical value of the
operand in a current Data Storage Area
field, and releases the operator Not.

ARITHMETIC EXPRESSIONS AND RELATIONS

Compiler Projyram No.64 (CP64)

Source Operator: (
Stack Operator: (See decision matrices
-- Appendix V)

CASE A: See "Procedures".

CASE B: See "Code Procedures".

CASE C: The source operator precedes an
arithmetic, boolean or conditional
expression. The Expression Context

Matrix is addressed and the source
operator stacked.

Compiler Program No.66 (CP66)

Source Operator: + or -
Stack Operator: (See Expression Context
Matrix -- App. V-c)

If the source operator was preceded by
an operand, the operator is stacked. If,
however, the source operator was preceded
by an operator, and the source operator is
-(minus), the operator Monadic_ Minus is
stacked.

Sourcs Jperator: (See Expression Context

Matrix -- App. V-c)
Stack Jperator: (See Expression Context
Matrix -- App. V-c)

The source operator cannot be implement-
ed bzfore the fdllowing expressions and
operators are known. The source operator
is stacked.

Compiler Program No.63 (CP63)

(See Expression Context
Matrix -- App. V-c)
Monadic_Minus

Source OJperator:

Stack Opsrator:

Th2 monadic minus operator is implement-
ed by object code which 1oads the comple-
ment of the last stack operand. If the
operand was not previoasly loaded into a
rejyister, a load instruction 1is generated
before the 1load complement instraction is
yenerated. The stack operator is released.

Compiler Program No.68 (CP68)

Sourcs Jperator:)
Stack Operator: (

Th2 source operator marks the end of an

arithmetic, boolean, or conditional expres-
sion. Th2 stack operator is released.

Compilsr Program No.69 (CP69)

Soarce Jperator: (See Expression Context
Matrix -- App. V-c)
(See Expression Context

Matrix -- App. V-c¢)

Stack Operator:

The priority rules specify that the
arithmetic, relational or power operator in
the Jperator Stack shall be implemented.

CP69 handles the gjeneration of code for
all of the following:

Arithmetic operators: +,-,%,/, and +

R2lational operators: <,2,>,<,= and #

Assignment operator (Assign). Assign-
ment statements are processed ini-
tially by CP12 and CP20 (see
"Assignment Statements"), but the
object code to implement an
assignment 1is generated in most
cases by a subprogram of CP69

(Real-Real Routine or Integer-
Integer Routine), entered from
CP20.

The stack operator specifies an

operation between the operands on either
sidse of the operator (both of which must be
arithmetic), represented by the last two
operands in the Operand Stack. Each oper-
and is first inspected by the OPDREC sub-
routine, which determines if the operand is
a formal parameter or a parameterless pro-
cedure, and if so, generates code to call
the actual parameter code sequence or the
parameterless procedure (see "Procedures").

Depending on the stack operator and the
character of the operands (real or
integer), control is passed to one of
several major subprograms of CP69:

Integer-Integer Routine (DHZB1):
Both operands integer.
Operator: +, -, or any relatiomal
operator.

Integer Division Routine (ISB1)
Both operands integer.
Operator: + .

Integer Multiplication Routine (IPB1)
Both operands integer.
Operator: *.

Integer Power Routine (IUB1)
Both operands integer.
Operator: Power.

Real-Real Routine (DHEB2) :

First operand real, second operand
real or integer.

Operator: any relational operator.
If the second (or last) operand is
integer, a call is generated (by
the TRINRE subroutine) to the
Fixed Storage Area routine CNVIRD
for integer-to-real conversion.

Real-Integer Power Routine (I1B1)
First operand real, second operand
integer.

Operator: Power.

Real Power Routine (HOB1)
Second operand real, first operand
real or integer.

Operator: Power. If the first
operand is integer, a «call is
generated (by the TRINRE

subroutine) to the Fixed Storage

Chapter 8: compilation Phase 159

Area routine CNVIRD for integer-
to-real conversion.

indicated
the last

After code to implement the
opsration has been generated,
operator and operand in the Stack are
ralsasel, and (except in the case of an
assignment) the stack operand originally
representing the operand to the left of the
stack opsrator is modified to specify the
object time register or Data Storage Area
field containing the resalt of the
operation implemented.

Integer-Integer Routine (DHZB1)

This routine generates code, on call
from CP69, to implement the arithmetic
opesrators + and -, and the relational
operators <, 2, >, £, =, and #, connecting
two inteyer operanis. It is also entered
from CP20 for normal assignments (see
"Assignmnent Statements") and from CPS51 (see
"Arrays").

Except in the case of relational opera-
tors, object time operations are performed
in reyisters, and the routine handles the
jyeneration of object code to load an oper-
and (where neither operand is contained in
1 registar) by calling the appropriate
subroutinz2 in the Subroutine Pool.

In the case of relational operators, a
compare instruction is generated first and
a2 call is then made to the Relational
sabroutine (IMB1), which generates code to
move the value True or False (X'01' or
X'00'), dependiny on the condition code
set, to a field in the current Data Storage
Area.

In the case of an assignment operator, a
stors or move instruction is generated.

Intsjy=sr Division Routine (ISB1)

This routine generates code to implement
tha opsrator + connecting two integer oper-
ands, on call from CP69.

Before generating code to implement the

division operator, tests are made and
appropriate object code generated, to
ensurs that the first operand is loaded

into an even-numbered register and that the
naxt ojj-numbered register is free.

160

Integer Multiplication Routine (IPB1)

This routine generates code to implement
the operator * connecting two integer oper-
ands, on call from CP69. Before generating
code to implement the multiplication opera-
tor, tests are made and appropriate object
code generated, to ensure that one of the
operands is loaded into an odd-numbered
register and that the other operand is
loaded into the preceding even-numbered
register.

Integer Power Routine (IUB1)

This routine implements the power opera-
tor connecting two integer operands, on
call from CP69, by generating a call to the

standard Power function (Load Module
IHIFII) in the ALGOL Library (Chapter 10).
The code generated consists in part of

instructions which store the object time
addresses of the two operands (base and
exponent) in a parameter list in the cur-
rent Data Storage Area, in part of a
calling sequence, which loads the address
of the parameter list and branches to the
standard Power function.

Real-Real Routine (DHEB2)

This routine generates code, on call
from Cp69, to implement the arithmetic
operators +, -, *, and / and the relational
operators <, 5, >, 2, =, and # connecting
two operands, one (or both) of which is
real (before entry, code will have been
genarated to convert the non-real operand,

if any). The routine also generates code
to implement an assignment, on call from
CP2) (see "Assignment Statements"). The

implementation of operators is similar to
that of the Integer-Integer Routine, as
regards arithmetic as well as relational
operators, except that floating point reg-
isters are used.

Real-Integer Power Routine (I1B1l)

This routine implements the power opera-
tor connecting a real operand and an inte-
ger operand, on call from CP69, by generat-
ing a call to the standard Power function
(Load Module IHIFRI or IHIFDI, depending on
whether the precision of the base is short
or long) in the ALGOL Library. The code
generated is similar to that generated by
the Integer Power Routine (see above).

This routine implements the power opera-
tor connecting twdo real operands, on call
from CP69, by generating a call to the
standard Power function (Load Module IHIFRR
or IHIFDD, depending on whether the preci-
sion of the base is short or long) in the
ALGDL Library. The code generated is simi-
lar to that generated by the Integer Power
Routins (ses above).

Source Jperator:)
Stack Opsrator: (

Ths sourcz operator marks the close of
an arithmetic, boolean or conditional
axprassion enclosed by parentheses. The
stack operator is released.

SEMICOLON_HANDLING

Compiler Program No.24 (CP24)

Sourca Operator: Delta
Stack Operator: Beta, Pi or Phi

Delta represents the semicolon terminat-
iny a Jeclaration or a specification. A
call is made to the SCHDL subroutine, which
updates the Sz2micolon Count at SCSC and, if
the TEST option is specified, generates a
call to the Fixed Storage Area TRACE rou-
tine.

Compiler Program N2.25 (CP25)

Sources Jpsrator: Semicolon
Stack OJpsrator: Beta, Pi, Phi or Begin

The Semicolon marks the end of the first
statement in a block, procedure or compound
statement. The Semicdolon is stacked (to
2nsur2 that, if a further declaration fol-
lows, an error will be recorded by CP28)
and tha SCHDL subroutine is called (see
CP24 above). If the Semicolon was preceded
by an oparand (in which <case the operand
1logically represents a call for a paramet-
erless procedure), a call is made to the
PLPRST subroutine (which generates the
appropriate procedare call or records an
2rror) and the operand is released.

Compiler Program No.23 (CP23)

Source Operator: Semicolon, Epsilon, Eta
or End

Stack Operator: Semicolon

The source operator ends a statement in
a block, a procedure, a for statement or a
compound statement. If the source operator

is a Semicolon, the SCHDL subroutine is
called; otherwise the Semicolon in the
stack is released.

Compiler Projram No.7 (CP7)

Source Operator: Foxr, Goto, If, [, (or

Assign

Stack Operator: Beta, Pi, Phi
The source operator identifies the first
statement in a block or a procedure. A
Semicolon is stacked to ensure that, if a

declaration is subsequently encountered, an
error will be recorded by CP28.

CONTEXT SWITCHING

Each of the three decision matrices
(Appendix V) specifies the set of compiler
programs to be entered for all possible
pairs of source-stack operators within a
particular context of the source module,
identified as a program context, a state-
ment context and an expression context. As
soon as a change 1in context occurs
(signified by one or more critical source
operators), a corresponding change in deci-
sion matrix is indicated. The appropriate
change in matrix is effected by a particu-
lar compiler program specified in the cur-
rently operative matrix. (See "Decision
Matrices"™ in this chapter). After the
change has been effected, control is in
every case passed to COMP, which branches
to the compiler program specified in the
new matrix for the original operator pair.

Compiler Program No.19 (CP19)

Source Operator:

If
Stack Operator: Assign

Chapter 8: Compilation Phase 161

A change from program to statement con-
text 1is indicated. The Statement Context
Matrix is addressed.

Compilesr Program No.22 (CP22)

Source Jperator: (Any arithmetic, logical
or relational operator)
Stack Opsrator: B&ssi
A change from program to expression
context is indicated. The Expression Con-

text Matrix is addressed.

Compiler Program N2.33 (ZP33)

Source Operator: (Any arithmetic, logical
or relational operator)
(See sStatement Context

Matrix)

Stack OJpesrator:

A change from statement to0 expression
context is indicated. The Expression Con-
text Matrix is addressed.

Sourcs Oparator: (See Expression Context
Matrix -- App. V-c)
(See Expression Context

Matrix -- App. V-c)

Stack DJpsrator:

A change from
context is indicated.
text Matrix is addressed.

expression to statement
The Statement Con-

Compiler Program N2>.71 (CP71)

(See Statement Context
Matrix -- App. V-b)
(See statement Context
Matrix -- App. V-b)

Source Operator:

Stack Opsrator:

A change from statement to program con-
text is 1indicated. The Program Context
Matrix is addgessed.

162

LOGICAL ERROR_RECOGNITION

The following compiler programs are
entered on detection of operator/operand
sequences which are logically or syntacti-
cally incorrect. Their function is

1. to record the error in the Error Pool;

2. to switch the Compiler to Syntax Check
Mode (see Chapter 9), or, in one case
(crP84), to terminate compilation; and

3. to make appropriate adjustments to the
Operator/Operand Stack, so as to per-
mit syntax checking to proceed.
Errors are recorded by a branch to the
Error Recording Routine, which also
switches to Syntax Check Mode.

Compiler Program No.26 {(CP26)

Source Operator: Array, Switch, Pi or Phi

Stack Operator: Then-s, Else-s, Assign or
Semicolon
The source operator identifies a dec-

laration outside the block head, i.e.,
following or inside a statement. Error
No. 166 is recorded and all stack operators
and operands relating to the statement (if
any) in which the declaration occurs, are
relsased. The declaration will be pro-
cessed (syntax checked) by the compiler
projram subsequently entered.

Compiler Program No.27 (CP27)

(See decision matrices
-- Appendix V)
(See decision matrices
-- Appendix V)

Source Operator:

Stack Operator:

The stack and source operators represent
an improper operator sequence. Error
No. 194 or 195 (depending on whether the
operators are separated by an operand) is
recorded, and the Operator/Operand Stack is
adjusted, after release of the 1last stack
operator and operand (if any), according to
the next stack operator, to permit syntax
checking to proceed.

Compilgr Program No.28 (CP28)

Source Jp=srator:
Stack Opsrator:

elta
(See decision matrices
-- BAppendix V)

_____ dec-
laration, has been encountered outside the
block h=2ad. Error No. 166 is recorded, and
the Operator/dperand Stack is adjusted to

permit syntax checking to proceed.

Compiler Program N2.23 (CP29)

Stack Operator: Begin or Lo

A dsclaration outside a block head has
been encountered. Error No. 166 is record-
23 and control passel to CP4 for syntax
checking of the declaration.

Compiler Program No.30 . (CP30)

Label_Colon

(see Program Context
Matrix -- App. V-a)

Source Operator:
Stack Jperator:

A 1label has been incorrectly declared
inside 3 statement. If the Label Colon was
preceded by an operand (representing the
label), error No. 169 is recorded and the
Lab disregarded.
Otherwise, an internal compilation error is
indicated; control is passed to CP84, which
records error No. 173 and terminates compi-
lation.

Compiler Program No.31 (CZP31)

Soarcs Odperator: (See Program Context
Matrix -- App. V-a)
(see Program Context

Matrix -- App. V-a)

Stack Jperator:

The stack and source operators represent
an invalid operator sequence in the program
context. Error No. 160 or 161 is recorded,
3=peniiny on whether the operators are
separated by an operand, and the Expression
Context Matrix is addressed.

Compiler Program No.72 (CP72)

Source Operator: Else
Stack Operator: Else

The combination Else...Else is valid
only in a conditional expression (indicated
if the stack operator above Else is
Assign). In this case, control is passed
to CP79; otherwise, control is passed to
CP75, which records error No. 194 or 195.

Compiler Program No.73 (CP73)

Source Operator: If
Stack Operator: (See Expression Context
Matrix -- App. V-c)

The operator combination indicates that
the opening parenthesis which should
enclose the expression beginning with "“IF'
is missing. Error No. 160 or 161 is
recorded, and the operator (is stacked.

Compiler Program No.74 (CP74)

Source Operator:
Stack Operator:

(Any relational operator)
(Any relational operator)

A sequence of relational operators is
invalid. Error No. 160 or 161 is recorded
and the operator * is arbitrarily stacked,
in place of the source operator, in order
to permit syntax checking to proceed.

Compiler Program No.75 (CP75)

(See decision matrices
-- Appendix V)
(See decision matrices
-- Appendix V)

Source Operator:

Stack Operator:

The operator sejuences represented by
the stack and source operators is invalid.
Error No. 194 or 195 is recorded.

Compiler Program No.84 (CP84)

(See decision matrices
-- Appendix V)

Source Operator:

Chapter 8: Compilation Phase 163

(See decision matrices
-- Appendix V)

Stack OJperator:

Tha invalid operator sequence represent-
el by the stack and source operators indi-
cates that the source module contains one
or more fundamental logical defects. Error
No. 173 is recorded and the Compiler is
terminated, by exit to CPERRI1.

Compilzar Program No.86 (CP86)
Sources OJperator: Else
Stack Operator: If or If-s
Tha operator Then is missing in the
source text. Error No. 160 or 161 is

recorded and the operator Then or Then-s is
stacked, in place of Else.

CLOSE_OF_SOURCE_MODULE

Compiler Program No.3 (CP3)

Source Dperator DJmeja
Stack Operator: Alpha

Omes3a marks the end of the source
module. Providing the source module is not

EY precompiled procedare (determined by
inspection of the HCOMPMOD Control Field-
Appeniix 1IV), code is generated to branch
to the Termination Routine TERMIN in the
Fix=d Storage Area. CZontrol is then passed
to CPEND, the normal exit from IEX51. (See
"Subroutine Pool".)

SUBROUTINE_ POOL

Ths sSubroutine Pool, contained in
Control Section IEX50000, comprises the
subroutines used by mdst compiler programs

in common, as well as a short initializa-
tion routine and the scanning and decision-

makiny routines Scan to Next Operator
(SNOT) and Compare (COMP). The latter two
routines are described in an earlier

saction of this chapter.

Initialization

.Scan to-Next Operator (SNOT)

Compare - (COMP)

164

These routines are described elsewhere

in this Chapter.

Change Input Buffer (JBUFFER)

Re-sets a pointer (SOURCE-register 6) to
address a buffer containing a new record of
the Modification Level 2 text and READs a
further record from SYSUT2 into the alter-
nate buffer. Called by sSNOT, CP4, CP51,
and CP66 on recognition of the record-end
character Zeta.

Next OPTAB_Entry (NXTOPT)

Increments a pointer (AOPTABE) by 14
bytes to address the next entry in the
Optimization Table, and re-sets the pointer
to 3 new record where the end of the
carrent record has been reached. Called by
CP40, CP47, and CP49, when the Optimization
Table is being searched for subscript
expressions to be optimized in a for state-
ment.

Error Recording (SERR)

Stores an error pattern in the Error
Pool and sets the Syntax Check Mode switch
on in the HCOMPMOD Control Field, on call
from most compiler programs and subrou-
tines. The error pattern is described in
Chapter 9. There are five entry points,
depending on the length of source text to
be included in the wultimate diagnostic
message.

Conversion Integer—-Real {(TRINRE)

Senerates code to call the Fixed Storage
Area routine CNVIRD (which converts an
intager operand to real form in floating
point register 0) and modifies the stack
operand to represent a real operand con-
tained in FPRO. Called by CP20, CP47,
cp6l, CP69 and CP79.

Conversion Real-Integer (TRREIN)

Generates code to call the Fixed Storage
Area routine CNVRDI (which converts a real
operand to integer form in fixed point
register STH). Called by CP20, CP36, CP38,
and CP51.

Gznesrat2 Object Code (SENERATE)

Constructs TXT and RLD records of object
module instructions specified by the call-
iny compiler program, and outpuats the
records on the SYSLIN and/or SYSPUNCH data
sets, depending on the options (LOAD and/orxr
DECK) specified. The calling seguence in
the callingy compiler program is of the form

BAL INFORM, GENTXTU4(0,SBR)
<4-byte object instruction>

whars INFORM (register 2) loads the address
of the object instruction to be generated.

There are seven entry points
SENTXT4, GENTXTS6, SENTXTS, GENTXTP2,
SENTXI'P4, and GENRLD), each entry point
corresponding to a particular instruction
length. GENTXTP2 and GENIXIPU4 are used for
floatiny point instructions. GENTXTS is
used for object colde sequences of varying
length. The call to 3ENTXTS is of the form

(GENTXT2,

LA INFORM,
seguence>
BAL LENGTH, SENTXTS(0,SER)

DC H 'Length of instruction seguence’

<Label of instruction

T'he FENERATE subroutine is also included
in th2 Scan I/II and Scan III Phases (IEX1l1
and IEX30).

Store Object Time Registers (CLEARRG)

Senerates code (by calling ROUTIN13 and
ROUTINE9) to store fixed point and floating
point registers currently in use in the
object module, and updates the object time
reyister control fields (Figures 56 and
57). Called by CPO, CP1, CP8, CP34, CP38,
cPu0, cP57, CpP61, CP64, and CP8O.

dpa2rand Rscognizer (OPDREZ)

Inspacts the stack operand addressed by
OPDK (rzgyister 3) to determine if the
operand represents a formal parameter or a
parametarless procedure and generates code
as follows:

Jdperand Code generated

Formal parameter
called by name

Store occupied registers.
Branch to actual paramet-

er code seguence (see
Figure 63).
Formal parameter [2ad ADR with label
label called by address (contained in
value formal parameter's Data

Storage Area field speci-
fied in the stack
operand) .

Load ADR with address of
array (contained in

Formal parameter
array called by

value formal parameter's Data
Storage Area field speci-
fied in the stack
operand). Load GDSA with
Data Storage Area base
address.

Parameterless Store occupied registers.
procedure Call procedure (see Fig-
ure 63).

No code is generated if the operand is

not a formal parameter or a parameterless
procedure.

OPDREC 1is called by CP12, CP20, CP30,
cp36, CP38, CP40, CP41, CPu45, CP47, CPAu9,
cp51, CPS57, CP59, CP61, CP62, CP69, CP76,
cp77, cp78, cpP79, and CP87.

Update_DSA Pointer (MAXCH)
Records the current value of the dis-

placement pointer P (register 8) in the
Program Block Table III entry (Figure 60)
corresponding to the Program Block Number
of the current block or procedure, if the
value of P exceeds the displacement record-
ed. This records the size required, up to
the particular point, for the block's or
procedure's object-time Data Storage Area.

Semicolon_Handling (SCHDL)

Updates the semicolon count (by
at SCSC the

storing
semicolon number following a

Semicolon or Delta operator) and, if the
TEST option is specified, generates a
branch to the Fixed Storage Area TRACE

routine (Chapter 10). Called by CP23,
cpP24, CP25, CP28, CP54, and CP59 on detec-
tion of the Semicolon or Delta operator.

ROUTINE1

Inspects a non-address operand in the
Stack and stores the operand's base reg-
ister - number (6 or 7) and displacement at
VPLACE and WPLACE, respectively. Generates
a load instruction to load GDSA (register
6) with the appropriate Data Storage Area
base address if the operand's storage field
is contained in a Data Storage Area other
than that currently addressed by CDSA or
GDSA. Called by most compiler programs

Chapter 8: Compilation Phase 165

preparatory to editing an object code
instruction.
RQUTINE2

Genarates code to load an address oper-
and into a floating-point register.

Adjusts the stack operand and the object-
time register control fields (Figure 57).
Called by CP63, CP69, and CP87.

ROUTINE3

Inspects an address operand in the Stack
and stores the operand's register number
(9-ADR) and displacement (0) at VPLACE and
NPLACE, respactively. Generates a load
instruction, if the address is not in ADR,
and updates the object-time register
control field (Figure 56). Called by a
large number of compiler programs.

ROUTINEY

non-address
register.
object-

Senerates code to load a
operand into a floating-point
Adjusts the stack operand and the

time register control fields (Figure 57).
Called by CP63, CP69, and CP87.
ROUTINES

Sen=2rates code to 1load a non-address

operand into a general purpose register.
Ajjusts the stack operand and the object-
time