
Systems Reference Library

File No. 8360-20
Form C28-6510-0

IBM System/36D Programming Systems Summary

This publication describes the general function
and application of the operating system and the
special support system of the IBM System/360.

The operatinQ system c6nsists of a comprehensive
set of commercial and scientific programming aids
operating under the supervisory control and
coordination of an integrated set of control
programs. The programming aids and control
programs of the operating system can be integrated
in various combinations with selected processing,
storage, and input/output facilities of the IBM
Computing System/360 to form a balanced total
system (the IBM System/360) for a particular range
of applications. The operating system can be used
to perform, individually or concurrently, several
types of processing, such as stacked job and
remote messaQe processing, on one or more
processing units. The programming aids include
assemblers having macro capabilities; program
compilers, including compilers that are capable of
compiling source programs written in FORTRAN,
COBOL, or a New Programming Language; a program
tester for debugging programs; input/output
control programs for use in remote message
processing, as well as sequential and
direct-access file processing; a report program
generator; a generalized sort/merge program; and
various utility programs.

The special support system consists of a set of
related control programs and programming aids that
are designed to provide early delivery of
programming support for small card, tape, or disk
configurations of the IBM Computing System/360.
The control programs and programming aids in this
system include input/output control programs;
assemblers; a FORTRAN compiler; a New
Programmin§ Language compiler; a report program
generator; sort/merge programs; utilit~ programs,
including program load and storage dump programs;
and a 7090/7094 support package that enables
programs written for the IBM System/360 in
basic assembler language to be assembled and
executed on the IBM 7090/7094 Data Processing
System.

The purpose of this publication is to serve as a general introduction to the
operating system and the special support system of the IBM System/360. The
publication is divided into two main sections. The first section describes
the operating system and the second section describes the special support
system. More comprehensive information on the operation characteristics of
these systems may be obtained by reference to the following publications~

!~~_~u~1~~L~§Q_QE~£~1!~g_~~1~~_EQBIB8~_b~~g~~g~,
Form C28-6515

!~~_~~~te~L~~QE~£~1!~g_~~~!~m_~2£!L~~£g~
frog£~m, Form C28-6518

!~~_~~1~~L36Q_QE~£atl~g_~~!~m_~1!11!~_f£2g£~m~,
Form C28-6519

Because of the man~ combinations of programming and computing facilities that
are possible with the IBM S~stem/360, no attempt is made in this summar~ to
relate the operating s~stem and special support facilities to detailed
machine requirements.

This publication was prepared for production using an IBM computer to update
the text and to control the page and line format. Page impressions for
photo-offset printing were obtained from an IBM 1403 Printer with a
120-character print chain containing upper and lower case letters, special
characters, and numerals.

Copies of this and other IBM publications can be obtained through IBM Branch
Offices.

A form has been provided at the back of this publication for readers'
comments. If the form has been detached, comments may be directed to an IBM
Systems Engineer or addressed to the IBM Corporation, Programming Systems
Publications, Dept. D58, PO Box 390, Poughkeepsie, N.Y. 12602.

©1964 by International Business Machines Corporation

OPERATING SySTEM ••• 5
Introduction ••• 5
A S~stem Tailored to Requirements •••••••••••••••••••••••••••••••• 6
Advanced Programming Facilities •••••••••••••••••••••••••••••••••• 7

FORTRAN Compilers ••• 8
New Programming Language Compiler ••••••••••••••••••••••••••• 8
COBOL Compiler •• 8
Assembler ••• 9
Program Tester •• 9
Report Program Generator •••••••••••••••••••••••••••••••••••• 9
Loader •• 9
Utilit~ Programs •• 9
Sort/Merge Program •• ~

Input/Output Control ••••••••••••••••••••••••••••••••••••••• 10
Program Execution Control •••••••••••••••••••••••••••••••••• 10
System Librarian ••• 10

Stacked Job Processing •• 11
Remote MessaQe Processing ••••••••••••••••••••••••••••••••••••••• 12
Peripheral Processing ••• 12
Multiprogramming •• 13

SPECIAL SUPPORT SySTEM •• 15
Introduction •• 15
Assemblers •• 15
FORTRAN Compiler •• 16
New Programming Language Compiler ••••••••••••••••••••••••••••••• 16
Report Program Generator •• 16
Input/Output Control Routines ••••••••••••••••••••••••••••••••••• 17
Sort/Merge Programs ••• 17
Utility Programs •• 17
IBM 7090/7094 Support Package ••••••••••••••••••••••••••••••••••• 17

The operating system consists of a comprehensive set of commercial and
scientific programming aids operating under supervisory control and
coordination of an integrated set of control programs. The number and types
of control programs and programming aids employed in the operating system
vary depending upon the short- and long-term requirements at a particular
installation. Each operating system consists of a selection of control
programs and programming aids that are closely integrated with a selection of
processing, storage, and input/output facilities to form a balanced total
system designed to satisfy specific requirements. Since data-processing
requirements may vary from day to day or hour to hour, the operating system
is designed to be easily modified or adjusted to reflect short-term as well
as long-term changes in requirements.

As data processing requirements at an installation increase, the operating
system, as well as the computing system, can easily be expanded in terms of
both performance and application. The ability to expand is inherent in the
design of both systems. It enables a smooth evolutionary expansion in
application and performance to be achieved without destroying compatibility
with existing programs and applications.

The operating system is designed for use throughout the world. For example,
it can handle sterling and other currency conventions and it can easily be
modified to use national character sets and to communicate with the operator
and programmer in national languages other than English. These features not
only enable the system to be easily tailored for use in a particular country
but also enable it to be adapted to data-processing activities that are
world-wide in scope.

A wide selection of advanced programming aids is -available for inclusion in
the operating system. These are designed to reduce the time, training,
expense, and manpower required to prepare and execute efficient production
programs on the Computing System/360. The programming aids may be used
singly or in combination to perform a variety of functions such as the
following:

1. Compiling machine-language object programs from source programs written
in a form of mathematical notation (FORTRAN), or a concise form of the
English language (COBOL), or a New Programming Language having features of
both FORTRAN and COBOL.

2. Assembling object programs from source programs written in a flexible,
easy-to-use, symbolic language.

3. Dynamically testing object programs for errors by providing the
programmer with a choice of easily interpreted storage displays that he can
specify using symbols and definitions that were used in the original source
program.

4. Generating programs for preparing reports from data file~.

5. Loading object programs into main storage; if necessary, combining
program segments that were individually compiled or assembled, using the same
or different source languages, and overlaying executed portions of a program
with portions yet to be executed.

6. Performing service and utility operations such as sorting data records,
or transferring data from one input/output device to another.

Operating System 5

6

7. Controlling and coordinating all input/output operations thereby
relieving the programmer of the task of writing complex input/output
routines.

8. Controlling the assignment of data files to input/output device~.

9. Providing a variety of services during the execution of a program that
are either specifically requested by the program or automatically provided
when a contingency occurs, such as the detection of an error.

10. Modifying or expanding the operating system itself to reflect changes in
requirements, to incorporate design improvements, or to incorporate user
programs.

Depending on the requirements at a particular installation, the operating
system can be tailored and used to control individually or concurrently
several types of data processing including the following:

~!££~~Q_~2Q_e!2£~~~1~g, in which the system is used to perform a continuous
series of unrelated jobs with little or no human intervention.

B~~2!~_~~~~~~_f~Q£~~~1~g, in which the data processing and programming
facilities of the IBM System/360 are extended to remote locations thereby
enabling the system to become a direct and integral part of the activity that
it supports.

f~~lEh~~~l_PrQ£~~~l~g, in which the system is used to perform supporting
functions such as the preparation of a common input file of jobs and the
conversion of data from one storage medium or input/output device to another.

Ql~~£!=~££~ss=Ell~_I~~~~~£!lQ~_E~Q£~~~l~g, in which a series of unsorted
transactions are processed against a master file located in direct-access
storage.

To take full advantage of the inherent speed, capacity, and flexibility of
the Computing System/360, the operating system is designed to schedule and
control several related or unrelated programs or routines runnin9
concurrently. These may consist of user programs as well as portions of the
operating system itself and may involve the same or different types of
processing. By efficiently allocating the available facilities of the system
to more than one program and by switching control from one program to another
as delays are encountered while waiting for occurrences, such as the
completion of an input/output operation, the operating system helps to ensure
that as much of the total system as possible is kept in productive operation.
Using this technique, the slack time in one program is taken up by another
and the total volume of work that is performed over a period of time is
significantlv increased.

The operating system is actually a composite of many programs which, like the
physical facilities of the Computing System/360, can be united in a variety
of combinations because they adhere to commonly established conventions for
intercommunication and control. When an operating system is generated for a
particular application only those control programs and programming aids that
are actually required need be included in the system. In addition, key parts
of the operating system contain built-in parameters that may be adjusted when
the system is generated to tailor it to a specific computing system
configuration and to specific requirements.

The programs that cons~itute an opera~ing sys~em for an in~~allation are
stored in a system library located in auxiliary storage. The system library
may be divided among several physical units in order to decrease the time

required to gain access to different parts of the system. Parts of the
operating system, after being brought into main storage, remain there over
extended periods of time to ensure continuous, coordinated operation of the
system and to monitor requests for services. Other parts of the system are
brought into main storage from the systems library for limited periods of
time to perform specific functions, such as loading a program.

After an operating system is generated and placed in use, it may be used to
modify itself from time to time in order to satisfy current requirements.
For example, if a programming aid, such as a particular program assembler, is
not required for some time, it may be removed from the system to conserve
space in the system library. In some cases, several programming aids of the
same general type, but having different features, storage requirements, and
performance characteristics, are available for inclusion in the system.
Several of these may be included in the operating system at the same time so
that the applications programmer can select from several programming aids of
a given type the one or more having the combination of performance
characteristics and features best suited to process his particular job.

Where applicable, the programming aids of the system are designed in such a
way that the programmer can, by means of optional control statements, cause
key operating characteristics to be temporarily modified to suit the
requirements of a particular job. However, in the absence of optional
control statements from the programmer, the programming aids normally operate
in a mode designed to satisfy the requirements of a majority of the users
thereby minimizing the number of statements that must be specified by the
programmer. Some programming aids, such as the generalized sort/merge
program, are designed so the programmer can, if necessary, easily incorporate
additional coding or replace coding to satisfy special requirements.

A programmer may incorporate his own programs and data as part of the
operating system for short or long periods of time depending on the frequency
at which the~ are used. Such programs may be in the nature of programming
aids designed for a specific installation or they may be in the nature of
production programs such as a payroll program. Production (user) programs
and programming aids, such as assemblers or compilers, are in fact equivalent
in that they are stored in the same format in the system library and are
written using the same conventions for communicating with one another and
with other parts of the operating system. Both are stored in the system
library in a format that enables them either to be loaded in preassigned
areas of main storage or to be reassigned by the operating system to other
areas of main storage. A problem program or programming aid may be
incorporated in the operating system for a single job or it may remain a part
of the system for an extended period of time and be used by many different
jobs.

Both the operating system and the computing system are designed to take
advantage of future developments and improvements in computer technolog~.
Conventions for intercommunication 'and control that are established in the
design of the operating system will enable it to be adapted to new techniques
and equipment and thereby grow in performance and application.

The operating system provides the programmer with a variety of programming
aids which he may use singly or in combination to process a particular job.
These programming aids may be supplemented in the future by others supplied
by users of the IBM System/360 or by IBM. Each of the several types of
programming aids supplied with the initial system is described briefly below.

Operating System 7

FORTRAN Compilers

FORTRAN compilers are provided in the operating system for use in compiling
object programs from source programs written in the FORTRAN language. The
FORTRAN language is a widely accepted and used language which was developed
and refined over a period of years through the combined efforts of IBM and
its customers. It closely resembles the language of mathematics and enables
engineers and scientists to define problems in a familiar, easy-to-use
notation. The language, together with its compiler, relieves the programmer
of the detailed work involved in programming problem solutions and thereby
reduces the training and time required to produce efficient workable
programs.

New Programming Language Compiler

Compilers can be included in the operating system for use in compiling object
programs from source programs written in a New Programming Language which has
some features that are characteristic of fORTRAN, and which also incorporates
some of the best features of other languages such as string manipulation,
data structures, dynamic storage allocation, asynchronous operations, a~ld

extensive editing capabilities.

This language is designed to take advantage of recent developments in
computer technology and to provide the programmer with a flexible
problem-oriented language for programming problems that can best be solved
using a combination of scientific and commercial computing techniques. It is
designed to be particularly useful for the increasing number of
semicommercial, semiscientific applications such as information retrieval and
command and control applications.

COBOL Compiler

8

The COBOL compiler is used to compile efficient production programs from
source programs written in COBOL. COBOL (COmmon Business Oriented Language)
is a concise well-defined language based on English that provides a
convenient method of producing programs to solve commercial data-processing
problems. Because it is based on English, COBOL is easy to learn and use.
This is illustrated by the following typical COBOL sentences:

SUBTRACT DEDUCTIONS fROM GROSS GIVING NET.

PERfORM TAX-CALCULATIONS.

WRITE MONTHLY-STATEMENT.

COBOL is a widely used language that was developed as a cooperative effort by
a number of computer manufacturers and users. IBM System/360 COBOL conitains
the usual COBOL facilities and, in addition, has been expanded to include the
following:

Report ~riter Facility

Sort facility

Source Program Library

Mass Storage Facility

Tele-Communication Facility

Assembler

An assembler is available for use in the operating system in assembling
object programs from source programs written in a flexible but easy-to-use
symbolic language. The assembler language is a versatile machine-oriented
language that can be used for a variety of applications, both commercial and
scientific. A number of facilities for assisting the programmer are provided
by the assembler. These include macro facilities as well as facilities for
defining constants, for defining data-storage areas, for referring to files
and storage locations symbolically, and for using literals.

Program Tester

A program tester is available that enables a program or part of a program to
be loaded and dynamically and selectively tested in accordance with simple
and concise specifications expressed in terms of symbols and definitions used
in the original source program. A variety of testing and monitoring
facilities are provided by the program tester including file and storage
display facilities designed to simplify the analysis of programming errors.

Report Program Generator

Loader

The Report Program Generator provides the programmer with an efficient,
easy-to-use facility for generating object programs which, in turn, are used
to produce reports from data files. The reports may range from a simple
listing of a card deck to a precisely arranged and edited tabulation of
calculated data from several input files.

The loader is used to load an object program into an available area of main
storage specified by the operating system. During the loading process any
subroutines from the system library that were explicitly called for or
implied in the source program are combined and loaded with the object
program. If necessary, the loader combines program segments that were
individually compiled or assembled, using the same or different source
languages, and overlays executed portions of a program with portions yet to
be executed.

Utility Programs

Utility programs are provided in the operating system for efficiently
performing a variety of operations involving the transfer of data from one
storage medium or input/output device to another. These programs are
available for use either by the operator or by other programs.

Sort/Merge Program

The sort/merge program is a generalized program that can be used to sort
and/or merge fixed- or variable-length records in ascending or descending
order. The sorting and merging can be performed using magnetic-tape and
direct-access storage devices for input, output, and intermediate storage.

Operating System 9

Input/Output Control

Input/output control programs are provided in the operating s~stem which
relieve the programmer of the task of writing complex input/output routines
b~ automaticall~ performing functions such as the blocking and unblockinq of
data records, the overlapping of processing with input and output, and the
preparation and checking of labels. Input/output control programs are
available for use in performing the following t~pe3 of processing:

1. Processing, in sequential order, either logical or ph~sical records on
magnetic-tape or direct-access storage.

2. Processing in nonsequential order records in direct-access storage.

3. Processing messages received from remote locations at unpredictable
intervals of time.

To ensure efficient and coordinated operation of the input/output resources
of the s~stem, some of the input/output control routines remain in main
storage over extended periods of time. Other routines are loaded from the
s~stem librar~ with the problem program. Onl~ those routines that are
actuall~ required b~ the program are loaded.

Program Execution Control

A variet~ of services ma~ be provided by the operating s~stem during the
execution of a program. These include services that are specificall~
requested b~ a program, such as performing a storage dump, or services that
are automaticall~ provided when a contingency occurs, such as diagnosing or
attempting a recovery from an error when it occurs. Among the services that
may be provided b~ the operating s~stem are the following:

1. Providing the time of da~ or other timing services such as keeping track
of a time interval during which or at which a particular operation is to be
performed.

2. Providing a snap or post-mortem storage dump of all or part of a program.

3. Providing standard procedures for diagnosing and attempting to recover
from error conditions and other conditions such as a floating-point overflow.

4. Providing accounting information on the use of machine and programming
facilities of the System/360.

5. Keeping a log of errors.

6. Providing a checkpoint recording of a program when computing s~stem
facilities must be reallocated to higher priorit~ programs, and providing
means for restarting such programs using the checkpoint recording.

7. Providing means for communicating with the operator.

System Librarian

10

The s~stem librarian ma~ be used to perform the following functions:

1. To assist in generating an operating s~stem tailored to the requirements
of an installation.

2. To change the operating s~stem, after it is generated, to reflect changes
in requirements, including the addition and deletion of programs in the
s~stem librar~.

3. To modif~ the operating s~stem to reflect design changes and
improvements.

The operating s~stem can be used to process a continuous series of unrelated
jobs with little or no operator intervention. B~ reducing the degree of
human participation in the mechanics of data processing, the operating s~stem
ensures that jobs are processed faster, more efficientl~, and are less
subject to human error. As a result, turnaround time, the interval between
the time a programmer submits a job for processing and the time he receives
results, can be significantl~ reduced.

In programming a job, the programmer ma~ emplo~ any logical combination of
the man~ programming aids within the operating system. The programmer, in
effect, controls and directs the processing of his job from his desk b~

inserting the proper control cards in his job deck. A job ma~ take man~
forms. It may be a source program written in FORTRAN language that is to be
compiled and executed, or it ma~ be a complex commercial job having several
segments involving a number of different programming aids and the passing of
files from one segment to another.

Before a particular job deck is processed, it is combined with other job
decks to form a single input file of unrelated jobs. To ensure more
efficient processing, the cards in the job file are normall~ read, blocked,
and copied on magnetic tape or direct-access storage preparator~ to the
actual processing of the jobs. This ma~ be done either off-line on a
Computing S~stem/360 functioning as an auxiliar~ to a larger S~stem/J60 that
will later process the jobs or it may be done on-line, concurrentl~ with job
processing or other t~pes of processinq. Once the input file of jobs is
prepared, the jobs can be processed efficientl~ b~ the operating system
without long, costl~ setup dela~s between jobs or job segments.

As the jobs are processed, output produced b~ the operating system is
normall~ stored in a common output file on magnetic-tape or direct-access
storage. The output file ma~ contain object programs compiled or assembled
b~ the operating system, source program listings, storage dump listings, and
messages for the programmer from the operating s~stem. When an output file
is completed, it is processed to produce printed listings and/or object
program card decks that are distributed to the programmers that initiated the
jobs. The output file ma~ be processed either on-line, concurrentl~ with
other t~pes of processing, or off-line on an auxiliar~ s~stem.

A programmer may place input data for an object program in the common input
file immediately following his job deck. The input data can either be
loaded with the program or be called into storage b~ the program as it is
required. Similarl~, output data produced b~ the program can be placed in
the common job output file. As a iesult of using the common s~stem files for
data input and output, no setup dela~s are incurred and input/output units
that would otherwise be required are available for other purposes. Since the
common input/output files are pre-established b~ the operating s~stem, the
programmer is relieved of defining the nature of the files.

If necessar~, a programmer ma~ define other files and specify that each be
assigned to a specific t~pe, or one of several types, of input/output or
direct-access storage devices. Each file is referred to s~mbolically b~ the
programmer and the actual assignment of a file to a device is performed by
the operating s~stem. Therefore, the programmer need not be aware of the
specific input/output configuration of the system, and a particular program
can be executed on systems with different input/output configurations,
provided enough devices of the specified types are available in a system.

Operating s~stem 11

12

The operator of the system, for the most part, performs relatively routine
functions, such as loading and unloading tape reels. Normally he is told
exactly what to do and when by means of a printout or display from the
operating system. If the operating system cannot complete a job or job
segment because of a programming error, it automatically skips to the next
job or job segment without intervention by the operator. However, the
operator can. at any time, communicate with the operating system or direct it
to perform certain functions. For example, he may indicate a change in the
status of an input/output device, or direct the operating system to institute
a new type of processing, such as processing messages from remote terminals,
that is to be performed concurrently with the stacked job processing.

The operating system can be used to process messages received from remote
loeations by way of communication lines and tele-communication equipment"
Remote message processing is, in effect, an extension of the full power of
the data-processing and programming facilities of the IBM System/360 to
remote locations. A message received from a remote location may be in the
nature of a request to the system for a particular service and may or may not
be accompanied by data. The requested service may be simply the routing of a
message to another remote location or it may be the processing of a job or
transaction similar to jobs and transactions that are received locally.

By extending the services of the system, via communication lines, directJly to
the user, the turnaround or response time of the system is reduced from hours
to seconds. Consequently, the system can directly participate in and control
various commercial and scientific activities as they are being carried OIl.

For example, the system may be used to centrally control a geographically
dispersed banking activity. In such a system master files containing account
records for thousands of depositors are stored in direct-access storage. By
entering pertinent data into the system, tellers at widely separated
locations can check balances, ·update passbook records, and handle other
similar transactions, all within a few seconds.

The system can also be applied to control similar activities in other
industries such as the insurance and sales industries. These activities may
be carried out within a single building, such as a department store, or, like
an insurance activity, be nationwide or even worldwide in scope. The system
may also be applied to directly control automatic processes such as are found
in the oil, steel, and papermaking industries. In the fields of education,
engineering, and research, the system may be used to control experiments
taking place at remote laboratories or to extend the use of advanced
programming and computing facilities to the desk of the student or enginE~er.

Remote message processing differs from more conventional types of data
processing mainly in the way in which information enters and leaves the
system. In short, the techniques for receiving and sending messages differ,
but not necessarily the data processing services that are called for by the
message. Messages from remote locations enter the system in random order at
unpredictable intervals and often demand a response from the system withi.n a
specified period of time. Therefore, the operating system contains special
input/output control programs for use in receiving and sending remote
messages, as well as control programs for scheduling and establishing
priorities for any data-processing services or tasks that are requested.

The operating system can be used to perform service functions such as the
preparation of a common input file of jobs, the processing of a common output
file produced by a series of jobs, and the conversion of data from one

storage medium or input/output device to another. Because these are
basically input/output functions that involve very little actual processing,
they are often performed on a ~ripheral computing system that serves as an
auxiliary to a larger system. This is normally done so that the extensive
data-processing facilities of the larger system can be more effectively and
efficiently employed on jobs that require such facilities. With the IBM
System/360, service functions can be performed on a peripheral computing
system that serves as an auxiliary to a larger system, or they can be
performed on one system concurrently with other types of processing, such as
stacked job processing, in a way that ensures that the data-processing
facilities of the system are efficiently employed. (Refer to the section
Multiprogramming.)

When peripheral and stacked job processing are performed concurrently, it is
possible to incorporate in the operating system optional features that are
designed to enable the operator to mount files for one job while other jobs
are being processed. As job card decks are read on the card reader and the
jobs are readied for continuous processing by placing them in auxiliary
storage, the operating system can examine each job to determine its
input/output requirements. By thus examining and keeping a running account
of future input/output requirements, the operating system can reassign an
input/output device to a new job as soon as it is released from a previous
job and at the same time provide the operator with any necessary instructions
for replacing files on input/output devices. As an optional feature, the
operating system can also change the order in which jobs are performed so
that the processing of one or more non-setup jobs, that is, jobs that do not
require special input files, precede the processing of setup jobs, thereby
providing the operator with additional time to mount files for the setup
jobs. These features reduce to a minimum the times during which the system
is idle and waiting for the operator to mount files before it can begin a
job.

One of the major ways in which operational efficiency is achieved in the IBM
System/360 is by multiprogramming~ Multiprogramming is a process by which
several related or unrelated programs or portions of programs are performed
concurrently, provided enough processing, storage, and input/output
facilities are available. While one program is awaiting an occurrence, such
as the completion of an input/output operation or the end of a time interval,
control of the processing unit is directed to another program in accordance
with a preestablished order or priority. The competition among several
programs for the processing, storage, input/output, and programming
facilities of the system helps to ensure that as much of the system as
possible is kept busy performing useful work as much of the time as possible.
As a result, the total throughput of the system, that is, the total volume of
work performed by the system during a given interval of time, is
significantlv increased.

Multiprogramming was a prime consideration in the design of the Computing
System/360. The design provides facilities for the efficient allocation,
scheduling, and dispatching of processing unit control, storage, and
input/output among programs being performed concurrently. Facilities are
also provided in the design for protecting one program from destruction or
interference by another program.

In addition to improving operational efficiency, multiprogramming has other
very important features in that it enables two or more different types of
data processing, such as stacked job processing and peripheral processing, to
be performed concurrently on the same system, both with one another and with
programs of the operating system itself. Thus, a single IBM System/360 can
be used to perform concurrently different types of processing that would
normally require separate special-purpose systems if they were to be

Operating System 13

performed with any degree of efficiency. It also enables a gradual
transition from one type of processing to another. For example, a system may
be applied initially to processing jobs and/or transactions that are entered
locally. Then, by gradually adding communication facilities, the services
of the system could be extended to the point of origin of the jobs or
transactions without costly disruptions. A system can also be used to
perform one type of processing during part of the day and then change over to
perform another type of processing or more than one type of processing
concurrently. For example, the system could perform stacked job and
peripheral processing during most of the day and only perform remote message
processing, either individually or concurrently, during business hours.

14

The special support system consists of a comprehensive set of related control
programs and programming aids which are designed for use with small card,
tape, or disk configurations of the Computing System/360. Although some of
these control programs and programming aids are similar to those provided in
the operatinQ system described in the first section of this publication, they
differ in that they do not operate under over-all control of supervisory
control programs that permit automatic transition from one job or job segment
to another.

The special support system contains the following control programs and
programming aids:

1. Assemblers for preparing machine-language object programs from source
programs written in a flexible, easy-to-use, symbolic language.

2. A FORTRAN IV compiler for compiling object programs from source programs
written in a form of mathematical notation.

3. A New Programming Language compiler for compiling object programs written
in a new programming language that has many advanced features.

4. A report program generator for generating object programs that prepare
reports from data files.

5. Input/output control routines which, when required, are inserted in
source programs as they are assembled, compiled, or generated, thereby
relieving the programmer of the task of coding complex input/output
operations.

6. A set of sort/merge programs for tape and disk configurations.

7. Utility programs, including programs for loading object programs, for
dumping the contents of main storage and for transferring and converting data
from one input/output or storage medium to another.

8. A 7090/7094 Support Package containing programs that simulate most of the
facilities of the Computing System/360 and thereby provide assistance in
achieving a smooth transition from other data-processing systems to the IBM
System/360.

These control programs and programming aids are designed to reduce the time,
expense, training, and manpower required to prepare and execute efficient
production programs on the smaller configurations of the IBM Computing
System/360. Each is described briefly in the following sections.

Assemblers are provided in the IBM System/360 special support system for
assembling machine-language object programs from source programs written in a
nonspecialized symbolic language adaptable to general, commercial, or
scientific applications. The Basic Ass<embler is designed~o~_ use in
card-only or card and magnetic-tape installations.

Special Support System 15

16

For larger tape or disk installations, assembler facilities are provided that
are similar to those provided for the operating system described in the :first
section of this publication.

A FORTRAN compiler is provided in the special support system for use in
compiling object programs from source programs written in FORTRAN language.
FORTRAN (FORmula TRANslation) is a specializeq language designed for use in
programming mathematical, engineering, and scientific problems. It enables
the user to write such programs in terms closely resembling those he uses in
stating the problems involved. Among the elements that may be used in
writing a FORTRAN statement are constants, variables, arithmetic expressions
and statements, and relational and logical expressions. The programmer also
can use input/output statements; control statements to direct the sequence of
operations; and subprogram statements that allow subroutines to be
incorporated into the main program.

The special support system FORTRAN is modeled after the FORTRAN IV languages
previously implemented on the IBM 1410/7010 systems, and is augmented to take
full advantage of the advanced features of the System/360.

The FORTRAN compiler accepts only card input. It translates source program
statements into an object program in relocatable format, suitable for
execution on a System/360~ The compiler produces diagnostic messages
pointing out any programming errors in the use of the language. At the
user's option, a listing of the source program is provided.

A compiler is provided in the special support system for use in compiling
object programs from source programs written in a New Programming Language.
This language has some features that are characteristic of FORTRA~ and also
incorporates some of the best features of other languages, such as string
manipulation, data structures, and extensive editing capabilities.

The New Programming Language for the special support system provides the
facilities of the one for the operating system described in the first section
of this publication that are appropriate for card-only configurations. This
new language is designed to provide the programmer with a flexible
problem-oriented language for programming problems that can best be solved
using a combination of scientific and commercial computing techniques.

The Report Program Generator provides the programmer with an efficient,
easy-to-use facility for generating object programs which, in turn, are used
to produce reports from data files. The reports may range from a simple
listing of a card deck to a precisely arranged and edited tabulation of
calculated data from more than one input file. The input files may be on
tape, disk, or cards. The Report Program Generator for the special support
system is similar to the one for the operating system described in the first
section of this pUblication.

Input/output control routines are provided in the special support system
which relieve the programmer of the task of writing complex input/output
routines for performing functions such as blocking and unblocking data
records, overlapping processing with input/output, preparing and checking
labels, and attempting to recover from error conditions. Calls can be made
to input/output routines using simple standard calling statements (such as
GET, PUT, OPEN, and CLOSE) in the source program. The routines required by a
program are inserted in the program as it is being assembled, compiled, or
generated.

Other, more basic, routines for use in operating input/output devices are
also provided in the special support system. These routines are described in
the publication I~~_~~~!~mL36Q_~E~£1~!_~YEEQr!_Y!1!1!~_ErQgr~m~, Form
C28-6505. These routines can be used to write a magnetic tape record or tape
mark, read a tape record, print a line or write a message on a printer, read
a card, print a card, rewind a magnetic tape unit, and backspace tape. Each
routine includes a procedure to handle errors in data transmission. A
special set of routines is also provided for card-only installations; it
includes the routines to read and punch a card, and to write a line or a
message.

A set of Sort/Merge Programs are provided in the system. These can be used
to sort and/or merge fixed- or variable-length records in ascending or
descending order. The sorting and merging can be performed using
magnetic-tape or disk configurations of the Computing System/360.

Utility Programs are provided in the special support system for performing
the following functions:

1. For loading object programs into preassigned areas of main storage.

2. For loading and, if necessary, relocating object programs or portions of
object programs.

3. For dumping the contents of all or part of main storage.

4. For efficiently performing a variety of operations involving the transfer
of data from one storage medium or input/output device to another. The
utility programs that perform these operations are similar to those for the
operating system described in the first section of this publication.

A special support system package is provided for use with the IBM 7090/7094
Data-Processing System. The package consists of three programs that enable a
user to assemble and test programs written in the IBM System/360
Basic Assembler language. It therefore enables a user to prepare programs
for an IBM System/360 prior to its actual delivery.

Special Support System 17

The programs of the 7090/7094 support package and their functions are as
follows:

1. An ~§§~mbl~_£~Qg~~~ that assembles programs written in the
Basic Assembler language, performs error checking, and produces program
listings.

2. A 2im~1~~~_£~Qg~~m that executes assembled object programs by simulating
a System/360 with up to 65K bytes of storage, the 1052 Printer-Keyboard,
1442-2 Card Read Punch, 1443-2 Printer, and 2400 Series Magnetic Tape Units.
Storage dump and trace routInes, output messages, and other facilities are
provided to aid the user in finding and correcting errors within his
programs.

3. An IBM 1401 1~£~!_f~2g~~m that accepts symbolic assembler or System/360
machine language programs on punched cards and writes them onto magnetic tape
for input to the 7090/7094 Assembly and Simulator programs.

18

READERS' COMMENTS

IBM System/360 Programming Systems Summary, Form C28-6510-0

Your comments regarding this pUblication will help us improve future editions. Please comment on the usefulness and readability
of the publication, suggest additions and deletions, and list specific errors and omissions.

USEF1JLNESS AND READABILITY

fold

SUGGESTED ADDITIONS AND DELETIONS

ERRORS AND OMISSIONS (give page numbers)

fold

Name ________________ _

Title or Position ___________ _

Address _______________ _

FOLD ON TWO LINES, STAPLE AND MAIL

No Postage Necessary if Mailed in U. S. A.

STAPL.E

C28-651 0-0

FOL.D FOLD

--- - - -- -- - ---- - -------------- ---------------

FOL.D

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAIL.ED IN U. II. A.

POSTAGE WIL.L. BE PAID BY

IBM CORPORATION

P. O. BOX 390

POUGHKEEPSIE, N. Y. 12602

A TTN: PROGRAMMING SYSTEMS PUBLICATIONS,

DEPT. D58

LU~~
(i)

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

:~;~~T C~~~I]

POUGHKEEPSIE, N.Y.

FOt_D

STAPLE

IIJ
Z

.J
l!)
Z
o
.J
(

I
:J
o

3/64:20M-HP
I
I
I
I
I

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20

