
File Number 1800-36
Order Number GC26-37,)3-1

Systems Reference Library

IBM 1800 Time-Sharing Executive System
Concepts and Techniques

The purpose of this publication is to describe the facilities provided
by the IBM 1800 Time-Sharing Executive (TSX) System, and to
explain the basic concepts and techniques underlying their use. It
is intended as a reference and guide for customer systems personnel
in the implementation of the TSX system.

The manual is divided into four sections. The first section serves as
an overall introduction to the TSX system. The second and third
sections describe the three main executive programs and discuss
some of the important design considerations that bear on the use
of standard TSX components. The final section provides selections
of programming techniques covering a wide spectrum of TSX usage.

The general approach taken is to explain each concept as it is
encountered, and, where possible, elucidate that concept by means
of an example. Numerous sample problems are included to acquaint
the programmer with recommended techniques of TSX programming.
A detailed TSX Sample System is specially provided as a tutorial
on all aspects of TSX design, usage and implementation.

PREFACE

This publication describes the facilities provided by
the IBM 1800 Time-Sharing Executive System, and
discusses the concepts and techniques underlying
their use. It is intended as a reference and guide for
customer systems personnel in the implementation of
the TSX system.

The manual is written in four progressive sections
where information in one section is sometimes
necessarily related to information in another section.
These comprise:

• Overview of the IBM 1800 Time-Sharing Executive
System

• Functions of Executive Programs

• System Design Considerations

• Programming Techniques

The approach taken is to explain each concept as it
is encountered. In some instances, a subject con
cept is necessarily included in a section prior to its
definition later on in that section or a subsequent
section. Sample problems are scattered throughout
the text as illustrative examples designed to clarify
concepts discussed and to familiarize the user with
recommended techniques. They should not be con
strued as models.

The first section gives a rapid survey of the TSX
system. It defines the executive system, its modes
of operation and system requirements; discusses
some of the basic TSX system concepts employed;
and describes the various components of the system,
and their inter-relationships to the total system.

The second section describes the three main
executive programs (TASK, the Sy~tem Director, and
the Nonprocess Monitor) in terms of their functions
and capabilities. Numerous examples are included
as demonstration of sound programming practice and
technique. Subjects discussed embrace: Program

Second Edition (June 1970)

Scheduling, Handling of Interrupts, Use of Interval
Timers, Use of Time-Sharing, Error Alert Control
and Procedures, and Nonprocess Monitor Usage.

The third section discusses some of the important
design considerations bearing on the use of standard
TSX system components such as the System Loader,
IBM Nonprocess System~ Temporary Assembled
Skeleton (TASK), and the System Director. Subjects
discussed include: Assignment of Interrupt Levels
and Restrictions, Level Work Areas, Disk System
Configuration, and the System Skeleton.

The final section incorporates selections of pro
gramming techniques covering a wide spectrum of
TSX uses. The purpose of this section is to aid the
programmer, acquaint him with recommended
techniques of TSX programming, and to help him to
build on the fundamentals discussed in earlier sec
tions of this manual. A detailed TSX Sample System
at the end of the section touches on every facet of
TSX design, use and implementation.

For details of TSX system generation procedures,
System Loader assignment cards, TASK and System
Director equate cards, and all Nonprocess Monitor
control cards, the user is referred to IBM 1800
Time-Sharing Executive System, Operating Pro
cedures, Order No. GC26-3754.

To derive maximum benefit from "Concepts and
Techniques", the user should have a working knowl
edge of the follow ing TSX support pUblications:

IBM 1800 Data AcqUisition and Control System,
Functional Characteristics, Order No. GA26-5918
IBM 1800 Assembler Language, Order No.
GC26-5882
IBM 1130/1800 Basic FORTRAN IV Language,
Order No. GC26-3715
IBM 1800 Operating Procedures, Order No.
GA26-5753
IBM 1130/1800 Plotter Subroutines, Order No.
GC26-3755
IBM 1800 Time- Sharing Executive System
Subroutine Library, Order No. GC 26-3723

This is a major revision of, and obsoletes, GC26-3703-0 and Technical Newsletters N33-8020, N33-8032,

N33-8039, N33-8063, GN33-8074. Changes to the text, and small changes to illustrations, are indicated

by a vertical line to the left of the change; changed or added illustrations are denoted by the symbol •

to the left of the caption.

This edition applies to version 3, modification 8, of IBM 1800 Time-Sharing Executive System and to

all subsequent modifications until otherwise indicated in new editions or Technical Newsletters. Changes

are periodically made to the specifications herein; before using this publication in connection with the

operation of IBM systems, consult the latest SRL Newsletter, Order No. GN26 -1800, for the editions
that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch

office serving your locality.

A form is provided at the back of this publication for reader's comments. If the form has been removed,

comments may be addressed to IBM Corporation, Programming Publications, Department D78, Monterey

and Cottle Roads, San Jose, California 95114.

© International Business Machines Corporation 1967,1970

OVERVIEW OF 11-:IE IBM 1800 TIME-SHARING EXECUTIVE

SYSTEM •••••••••••••••••••••••••••••••••

Introduction •••••••••••••••••••••••••••••••••
Minimum System Requirements ••••••••••••••••••

Modes of Operation ••••••••••••••••••••••••••

System Concept •••••••••••••••••••••••••••••••
Role of the Skeleton Executive •••••••••••••••••••

Time-Sharing ••••••••••••••••••••••••••••••
Versatility in System Configuration ••••••••••••••••

Concept of ;:1 Core Load ••••••••••••••••••••••••

3

3
3

4

5
5

Local Subprograms • 5

Reentrant Coding •••••••••••••••••••••••••••

Common Areas •••••••••••••••••••••••••••••

Multi-Level Programming ••••••••••••••••••••••

System Components •

Control Programs •
Processing Programs ••••••••••••••••••••••••••

FUNCTIONS OF EXECUTIVE PROGRAMS ••••••••.•••••

Temporary Assembled Skeleton (TASK) • •••••••••••••••

The System Director ••••••••••••••••••••••••••••

Program Scheduling ••••••••••••••••••••••••••

Handling of Interrupts •

Use of Interval Timers ••••••••••••••••• • • • • • ••

Use of the Operations Monitor ••••••••••••••••••••

EITor Alert Control •

The Nonprocess Monitor ••••••••••••••••••.••••••

Nonprocess Supervisor (SUP) •••••••••••••••••••••

Disk Utility Program (DUP) •••••••••••••••••.•••

FOR TRAN Compiler ••••••••••••••••••••••••••

Assembler ••••••••••••••••••••••••••••••••

Simulator Program •••••••••••••••••••••••••••
Summary of Nonprocess Monitor Control Cards •••••••••

Examples of Nonprocess Monitor Usage

6

6

7
7
8
9

12

12

13

14

27

42

59

59

71

72

74

74

74

75

77
79

SYSTEM DESIGN CONSIDERA TIONS ••••••••••••••••• 115

Temporary Assembled Skeleton (TASK) ••••••••••••••• 117

Task Equate Cards •• 117

Buffering of Messages to Disk •••••••••••••••••••• 119

Calculating Task Core Size ••••••••••••••••••••• 120

The IBM Nonprocess System • 121

System Loader Operation 123

Function of the *Assignment Cards ••••••••••••••••• 126

The *DEDIT Control Card •••••••••••••••••••••• 127

Summary of Assignment Card Restrictions •••••••••••• 128

Sector Break Records for Absolute Programs • • • • • • • • • • • 128

System Director. •• 130

Size of System Director • 131

Definition of Functions Required •••••••••••••••••• 133

Allocation of Internal and External InteITUpt Levels • • • • •• 134

Number of Call Count Subroutines Required by User' ••••• 147
Disk System Configuration •••••••••••••••••••••••• 147

Disk Organization' • 148

iii

CONTENTS·

The DEFINE CONFG Operation • • • • • • • • • • • • • • • • •• 151

Disk Cartridge Initialization. • • • • • • • • • • • • • • • • • •• 157

Summary of Disk Storage Requirements and

Assignment Restrictions •••••••••••••••••••• 159

System Skeleton •• 161

Constitution of the System Skeleton. • • • • • • • • • • • • •• 161

Skeleton Core Size. •• 164

Calculating Skeleton Core Size. • • • • • • • • • • • • • • • •• 172

Use of *INCLD Control Cards. • • • • • • • • • • • • • • • • •• 173

Summary of the Skeleton Build Process. • • • • • • • • • • •• 173

PROGRAMMING TECHNIQUES •••••••••••••••••••• 181

Writing Assembler Language Subroutines. • • • • • • • • • • • •• 181

LIBF Subroutines •• •• 182

Input/Output Subroutines. •• 182

Programming Subroutines Using Reentrant Coding. • • • • • •• 185

Need for Reentrant Coding •••••••••••••••••••• 185
Concept of Level Work Areas' • • • • • • • • • • • • • • • • •• 185

Mechanism for Reentrant Control ;....... • • • • • • •• 185

Masking Out the InteITUpts •• 186

Programming Notes ••••••••••••••••••••••••• 187

Writing User-Programs for Execution Under the TASK
Absolute Loader. •• 187

Program/Data Format· • • • • • • • . • • • • • • • • . • • • • •• 187

Absolute Loader Operation ••••••••••••••••••••• 188

Basic Concepts of Data Acquisition and Process Control
Systems (DACS) ••••••••••••••••••••••••••• 191

Introduction •• 191

Data Acquisition Systems ••••••••••••••••••••• 193

Operator Guide/Supervisory Control ••••••••••••••• 194

Direct Digital Control •••••••••••••••••••••••• 195

TSX Sample System ••••••••••••••••••••••••••• 195

System Design •••••••••••••••••••••• l ••••• 196
Periodic Program Scheduler •••••••••••••••••••• 197

Sample System Error Design •••••••••••••••••••• 197

Closed Loop Control •• 199

Operator Guide Control •• 200

System Design for Optimum Time-Sharing •••••••••• 200

Process Operator's Console • • • • • • • • • • . • • • • • • • • • • 200

System Documentation •• 203

Description of Sample System Flowchart •••••••••••• 203

Coding Techniques ••••••••••••••••••••••••• 203

System Generation •••••••••••••••••••••••••• 206

On-Line Output from the Sample System ••••••••••• 208

APPENDIX A. TSX SYSTEM COMPOSITION AND

CAPABILITIES ••••••••••••••••••••• 291

APPENDIX B. SUMMARY OF TSX CALL STA TEMENTS ••• 292

APPENDIX C. ASSEMBLER LANGUAGE TSX CALLS •••••• 294

APPENDIX D. CONTENTS OF TIlE FIXED AREA OF CORE· • 297

INDEX ••••••••••••••••••••••••••••••••••• 300

ILLUSTRA TIONS

Figures

1. IBM 1800 Time-Sharing Executive System •••.•••••• 2

2. A TSX On-Line System -- Illustrating the Skeleton

Executive •••••••••••••••••••••••.•••••• 4

3. Four Types of Core Loads Commonly U sed in TSX •••• 6
4. TASK Organization •••••••••••••••••••••••• 8
5. Correspondence between TASK and the System Skeleton. 12

6. Program or Event Sequence • • • • • • • • • • • • • • • • • •• 15

7. Illustrating Time Dependency •••••••••••.•••••• 16

8. Interrupt Initiation •••••••••••• '............ 16

9. Example of Multi-Level Programming. • • • • • • • • • •• 16

10. Use of Chaining (or Sequence-Type) Call Statements •• 19

11. Use of Queueing Statements •••••••••••••••••• 21

12. Illustrating a Method of Segmenting Mainlines Based on

Scheduling Requirements .••.••.•.••..••••.••• 22

13. Use of the CALL QIFON Statement •••••••••••••• 24

14. Use of the CALL VIAQ Statement • • • • • • ••• • • • • •• 25

15. Initial Core Load. •• 26

16. Mainline Core Load ALPHA. • • • • • • • • • • • • • • • • •• 26

1 7. Count Routine PEROD. • • • • • • • . • • • • • • • • • • • • •• 27
18. Priority Interrupt Level Structure and Assignment 28

19. Summary of Characteristics of Process Interrupt

Servicing Routines. • • • • • • • . • • • • • • • • • • 32

20. Use of the CALL INTEX, CALL DPART, and RETURN

Statements ••••••••••••••.•••••.•••••••• 34

21. Action of MIC During an Interrupt ..•••••••..•.• 36

22. Action of MIC During an Interrupt •••••••••••••• 37

23. Exit from MIC After an Interrupt has been Serviced ••• 38

24. Timer Locations in Core Storage. . . • • • • • • • • • • • •• 43

25. Subroutine A for Example 5 - - Queueing an Analog

Scan Program •••••••••.••.•••••••••••••• 47

26. General Problem Logic Flow -- Example 2 • • • • • • • •• 50

27. Action of EAC when an Error Occurs ••••••••••••• 69

27.1. Effects of Restart and Reload on Timers and Interrupts. • 71
28. The Nonprocess Monitor. • • • • • • • • • • • • • • • • • • •• 72

29. Illustrating Nonprocess Monitor Action During

Time-Sharing .••••••••.•••.•••• '. • •.• • • • • •• 73

30. Illustrating a JOB ••• ' •• 80

31. Assemble/Compile and Execute a Nonprocess

Core Load •• 81

32. Assemble and Execute a Nonprocess Program from

the Temporary Area. • 81

33. Compile and Store a Nonprocess Program in the

Relocatable Program Area (User Area) on Disk •••••• 82

34. Compile and Execute a Nonprocess Program from the

Core Load Area •••••••••••••••••••• 83

35. Delete a Process Mainline, Combination, or

Interrupt Core Load from the Core Load Area •••.•••• 84

36. Replacing a Nonprocess Core Load in the Core Load

Area ••••••••••••••••••••••••••••••• 85

37. Replace a Relocatable Program in the Relocatable

Program Area • . •• 86

38. On-Line Rebuilding of Process Core Loads ••••••••• 87

39. Reserving a File Area in the Core Load Area. • • • • • •• 97

40. Illustrating Various Card Arrangements in Dumping

a Program/Data to Nonprocess Working Storage,
Punched Cards, and the List Printer· , ••• ,. 98,

41. Reloading Core Loads to User Sequence • • • • • • • • • •• 99

iv

42.

43.

44.
45.

Dumping a Relocatable Program from the User Area. •• 100

Moving a Data File within the Core Load Area. • • • • •• 100

Reloadi ng a Program to Nonprocess Working Storage 100

Showing the Relationship of Local Groups or Blocks

to Associated Core Load within the Core Load Area
on Disk •••••••••••••••••• ,.. • • • • • • • • • • •• 101

46. Illustrating the Implementation of LOCALs • • • • • • • •• 102

47. Repacking User Area on Disk Drive 1 • • • • • • • • • • • •• 107

48. Repacking the Relocatable Subroutine Area

Following a Removal of Various Portions of the TSX

Subroutine Library. • • • • • • • ... •.• • • • • • • • • • • • •• 108

49. Reproduction of Cards 109

50. Dump LET/FLET of Disk Drives 0, 1 and 2 • • • • • • • •• 109

51. LET Entries •••••• '....................... 109

52. FLET Entries. •• 109

53. Cold Start for an On-Line System ••••••••••••••• 110

54. Relationship of Physical Disk Drive Units to
Logical Number •••••••.••.••••.•• ,........... 110

55. Cold Start for an Off-Line System. • • • • • • • • • • • • •• 111

56. Preparing a GUARD or Dummy Interrupt Core Load 112

57. Illustrating Logic of Console Interrupt ••••••••• • • 113

58. Illustrating Perpetual Time-Shared Nonprocess

Monitor Operation .,." ••• '.................. 114

59. System Generation Overview • • • • • • • • • • • • • • • • •• 116

60. TASK Source Deck and TASK Equate Cards. • • • • • • •• 117

61. A Set of TASK Equate Cards for the TSX Sample

System (see Programming Techniques) • • • • • • • • • • •• 117

62. The IBM N onprocess System. • • • • • • • •.• • • • • • • • • 121

63'. Sequence of Control Cards at System Load Time • • • •• 124

64. Disk Drive 0 after a System Load Operation •••••••• 124

65. System Director Source Deck and EQUA TE Cards. • • •• 131

66. Example of a Set of System Director Equate Cards •••• 132
67. Mainline Core Load Queue Table. • • • • •• • • ••. • • •• 132

68. Example of Interrupt Level Status Word Assignment. • •• 136

69. Layout of a Level Work Area. • • • • • • • • • • • • • • • •• 138

70. Interrupt Core Load Table. • • • • • • • • • • • • • • • • • •• 144

71. Disk Storage Unit Conversion Factors. • • • • • • • • • • •• 148

72. Disk Layout of a Single Disk Drive TSX System • • • • •• 149

73. Overview of the DEFINE CONFG Operation
(Disk Drive 0) •••••••••••••••••.••••••••• 152

74. Illustrating Direction of Disk Configuration. • • • • • • •• 153

75. Establishment of System Areas at High Address End

of a Disk. •• 153

76. Establishment of Message Buffer Area at System

Load Time ••••••••••••••••••••••••••••• 153

77. Illustrating Redefinition of the Message Buffer Area. • •• 153

78. Disk Layout of Disk Drive Zero for Example 1 ••••.•• 154

79. Definition of a Three-Drive TSX On-Line System

for Example 2 ••• , •.•••• , .••••• ,.' • • • • • • • • • • • • •• 156

80. Definition of a Three-Drive TSX Off-Line System
for Example 3 ••••••••••••••••••••••••••• 157

81 • Constitution of the System Skeleton ••••••••••••• 161

82. A Partial Dump following a Skeleton Build to

Illustrate the Program Name Table and the Executive
Transfer Vector ••••••••••••.•••••••••••••• 163

83. On-Line (Time-Sharing) System ••••••••••.••••• 164

84. On-Line (Non Time-Sharing) System· • • • • • • • • • • 165
85. Off-Line System •••• eo •.•••••• , • • • •. • • • • • • • • •• 165

86. Illustrating Relationship ofDP I/O Devices to'

Associated Function and Conversion Subroutines 166

87. Layout of the System Skeleton as it would appear at

Skeleton Build Time in NPWS and the Skeleton Area 174
Core Map for Initial and Rebuilt Skeleton ••••••••• 178

IBM 1800 Data Acquisition and Control System •••••• 193

Tables
1.
2.

3.

4.

5.
6.
7.
8.

Table of Available Timer Time Bases

Comparison of Timers ••••••••••••••••••••••
On-Line EAC Error Type Codes ••••••••••••••••
On-Line EAC Errors and Recovery Procedures

Monitor Control Cards ••••••••••••••••••••••

Loader Control Cards •

DUP Control Cards •••••••••••••••••.•••••••

FORTRAN Control Cards •••••••••••••••••••••

Program Listings

1. . ..•..•........•...••..•.••..••....•••
2.
3.

4.
5 •••••••••••••••••••••••••••••••••••••••

Examples

43

48

61

62

77
77
78

79

51

89

92

104

16P

Use of Timers ...•..•.•..•..••.•.•.•.•.•.••.••...•••..•.•.... 44

......•..•.•...•.......•.•...•..••...•....•...••.•....•.. 44

......•....•......•..•.•...............•.••..•.•.....•... 44

:J • •• 44

4 ••...•••...•...•.•.••.•.••.•.••....•...•.••..••••..•..••... 45

5 •.•.....•.......•.•.•.•....•..••••.•..•••.•••.••.•.•.•••... 46

Initiating of Time-Sharing••.•....... 48

1.•..........................•............ 48

2. . •.......•...•.•.•.••....•..•.•.•..•.•..•••.•.••.•••.•.•. 49

Use of Non-process Monitor .•..•...•......•...••..•.•.....•.... 79
1. Assemble and execute a non-process program from the Tempo-

rary User Area••..••..•....•...•....•••..•.•..•.•••••. 80
2. Compile and store a non-process program in the Relocatable

(or User) Area ..•..•••....•.............•.....••..•.••.... 81
3. Compile and execute a non-process program from the Core

Load Area•...•.............•................•.••... 82
4. Delete a mainline, combination or interrupt core load from

the Core Load Area ••••••••.•••...•..•••••••.•.•••••••.••• 84
5. Replace a non-process core load in the Core Load Area •..•...• 85

6. Replace a relocatable program in the User Area ..•••.••.•.•.. 85

7 A. On-line rebuilding of process core loads ••.•.....•......•.•.• 86

7. Changing the sequence of linked core loads (using *SEQCH) •.•. 86

8. De-bugging the Simulator •.•.•.•••.....•..•••.•••.•.••••••• 87
9. An example program whicn uses the Simulator ...•.......•.... 91

10. Reserving a file area in the Core Load Area ••••••••••••.....• 97

11. Dumping a program or data file from the Core Load Area .•.... 98

12. Loading a previously dumped core load back into the Core •...•.

Load Area ••• 98
13. Dumping a program from the Relocatable (or User) Area .•.•.•. 98

Moving a data file (or files) within the Core Load Area•.•• 99

ILoading a core load back into Non-process Working Storage •..•. 99

16. A program using LOCAL sub-programs •..•.•....•.•....•...... 102

17. Packing the User (Relocatable Program) Area •••••...•••••••••. 107

v

90. TSX Sample System Schematic Diagram •••••••••• 196

91 • 1800 Computer Process Simulator • • • • • • • • • • • • • •• 201

92. TSX Sample System Flow Chart • • • • • • • • • • • • • • •• 204

9. Assembler Control Cards •• 79

10. Simulator Control Cards •• 79
11 • Fixed Section of a Level Work Area. • • • • • • • • • • • •• 139

12. TSX Reentrant Subroutine Work Level Requirements ••• 140

13. Comparison of TDWA, DWRAD, and DLABL features •• 159

14. TSX Sample System Table of Variables • • • • • • • • • •• 205

15. Disk File Organization •••••••••••••••••••••• 205

16. Log Description ••••••••••••.••••••••••••• 206
17. Program Data Sheets •• 210

6 •••••••••••••

7 •••••••••••••
..........................
..........................

8 ••••••• , ••••••••••••••••••••••••••••••••

9 •••••••••••••••••••••••••••••••••.•••••
10.

170

183

189
221

280

1 8. How to reproduce cards .•.••••••••.•.••••...•.••........•.

19. Dumping a LET /FLET Table••••....•.......•......

20. How to call for a process core load externally

107

107
107

21. How to initiate a Nonprocess Monitor operation .••••..•••.•••. 11 0

22. How to terminate a Nonprocess Monitor operation•...... 111

23. Preparing a "guard" (or "dummy") interrupt core load ..•...•.. 111

24. Use of the Console Interrupt 111

25. Preparing a mainline for perpetual Time-Shared Nonprocess

Monitor operation , 112

Non-synchronous Periodic Scheduling •...••...•.•.•...........•. 26

How to use masks to "set up" designated levels•.... 40

1. How to mask levels•...........•......•......• 40

2. How to unmask levels ••...••...•.•.••..•.•.•..••••••••••. 40

3. How to unmask all levels•.....•..•...•..•.•.....•.. 40

4. How to mask some levels and unmask all others ...•......•..• 40

The use of LUN Numbers/lAC Codes•.. 126
Disk Configuration Operations ••.•........•.•••..•••..••.••••••• 154

1 ••.........•..•...•..•.•..............•.•................... 154

2 ••••••••••••••••••••.••••••.••••••••••••••••.•••.••••••••••• 155

3 •.•........••.•.••.•...•.........•......•....•........•..•.. 156

Disk Cartridge Initialisation, using DWRAD .•.•.•....•..........

4 •••.••••••.•••••••.•.•.•.••..•••••.•.••.•••.•••...•••••••••

5 ••..•...•.•••••••••••••••.•.••.•.•.•..••••.•...••.•.•......
6 • •••••••••• •••• •••••• •••••••••••••••••• •••••••••••••• Of ••••

157

158

158

158

Inclusion of Subroutines in the Skeleton••.•..•......•..•.. 164
1 •.•.•...•.•.•...•.......•....•...•.....•......•...•........ 167

2 ••• 169

CALL-type Subroutines•.••..•...•••..•........••.•..•.• 186

LIBF -type Subroutines •...........•.......•..•........••.....• 186

Masking and Unmasking to interrupts•.•....•....•.........• 186

Re-entrant Subroutines .•.•.•...•.....•..•...........•..•...•• 187

Writing User Programs for execution under TASK Absolute Loader.·. 187

OVERVIEW OF THE IBM 1800 TIME-SHARING EXECUTIVE SYSTEM

INTRODUCTION

With few exceptions, real-time applications are
distinguished from other applications by two chief
characteristics: 1) some process or operation going
on outside the computer system normally has a con
tinuous need for on-line communication with the sys
tem, 2) there is a requirement for the computing
system to keep pace with the associated process or
operation. These characteristics of the application
place some unique and stringent requirements on
real-time processing systems for use in the real
time environment.

Recognizing the formidable programming task
associated with a system of this scope, IBM has
developed the 1800 Time-Sharing Executive System
(TSX) which relieves the user of much of the re
quired programming effort by freeing him to con
centrate on the primary task of problem solution.
TSX is a FORTRAN-oriented disk-resident oper
ating system which permits the user to make opti
mum use of an IBM 1800 Data Acquisition and Con
trol System (DACS) for its primary purpose, the
control of processes and similar complex environ
ments, as well as providing him with an effective
off-line monitor system for data processing and
scientific computation. TSX improves greatly the
versatility of a Data Acquisition and Control Sys
tem (DACS) computer by making it possible for
background jobs to be processed when the real
time foreground task relinquishes control of the
processor-controller. It is through time- sharing
that idle computer time is minimized or eliminated.
Programs may be written in FORTRAN and/or
symbolic Assembler language.

Figure 1 introduces the capabilities of TSX in
generalized form.

MINIMUM SYSTEM REQUIREMENTS

To assist users in performing their initial system
generation, a standardized "starter" called System
Generation (SYSGEN) TASK is provided with each
installation which contains the basic elements
necessary for system generation in a form that will
be directly usable by a majority of users. SYSGEN
TASK is supplied in assembled object format as
part of the IBM Nonprocess System and consists of
the following:

• Nonprocess Monitor Linkages

• Skeleton Builder Linkages

• Absolute Loader

It is designed to support the following minimum
devices:

• 1 IBM 1801 or 1802 Processor-Controller with
a minimum of 8K words of core storage

• 1 IBM 2310 Disk Storage Unit with one disk drive

• 1 IBM 1442 Card Read Punch

• 1 IBM 1816 Keyboard Printer (that is, printer
portion only) or

• 1 IBM 1053 Printer

The user may employ additional I/O devices on his
system, but he must satisfy the above machine con
figuration requirements to use SYSGEN TASK. For
example, if he substitutes a 1443 Printer for a 1053
Printer or an 1816 Keyboard Printer, a card assem
bly of the TASK source deck to include this provision
becomes mandatory. As the "starter" system is a
limited version of the Temporary Assembled Skele
ton (TASK), it will neither buffer 1053 Printer mes
sages to disk, nor does it contain the trace and dulnp
utility functions.

Machine Features Supported

In addition to the above, the following optional ma
chine units and features are supported by the TSX
system:

• Additional core storage (up to a maximum of
32,768 words)

• Additional disk drives for IBM 2310 Disk Storage
Unit -- up to a maximum of three disk drives

• Additional IBM 1442 Card Read Punch Unit
(up to a maximum of 2)

• Additional IBM 1816 Printer Keyboard (up to a
maximum of 2)

• Additional IBM 1053 Printer Units (up to a total
of eight 1053s and 1816s)

Overview of the IBM 1800 Time-Sharing Executive System

NONPROCESS System MONITOR
Director

Supervises Execution

r-----.,
I I
I I
I I

of Nonprocess Pro- Supervises Execution of Process grams. It includes: I USER'S I
• Nonprocess

Supervisor
• Disk Uti I ities
• Fortran Compi ler -
• Assembler
• Simu lator

1 ,....-..-..--_------.... , ill

I

Programs. It includes:

Time-Sharing Control
Program Sequence Control
Master Interrupt Control
Interval Timer Control
Error Alert Control

- --

I PROCESS I
I PROGRAMS I
I I
I I L _____ ..J

I SUBROUTINE LIBRARY
USER'S ill
NON PROCESS I~ ----.... ~~I
PROGRAMS I

I
I _------_

Arithmetic, Input/Output
and Conversion

~--Ie- ~ ®/(;f).
~Console DiS_k ___ =.¥ . _
Paper Tape Typewriter

X-Y Plotter

Card Magnetic Tape Printer

I BM Programs _______ 4 User - Written Programs

Figure 1. IBM 1800 Time-Sharing Executive System

• Additional Data Channels (up to a total of 9) •
• Additional Interrupt Levels (up to a maximum of •

24) •
• Multiplexer Unit (Solid state and Relay)

• Analog-Digital Converter (up to a total of 2) •
• Digital-Analog Output •
• Digital Input •

2

Process, Input/Output

Customer Process Devices

Comparator

mM 1443 Printer Unit

mM 2401-2402 Magnetic Tape Units (maximum of
2)

IBM 1627 Plotter Unit

IBM 1054 Paper Tape Reader

mM 1055 Paper Tape Punch

MODES OF OPERATION

The IBM 1800 Time-Sharing Executive System con
sists essentially of two main parts: (1) a Skeleton
Executive and (2) a Nonprocess Monitor. It is
through the Skeleton Executive that process control
and data acquisition applications are serviced in
the on-line mode, while the Nonprocess Monitor
operates either in the time-shared mode or as an
independent programming system to provide data
processing functions in a standard off-line mode.
Each of these modes is brought into play by an ap
propriate and corresponding system generation
procedure. The user elects the option of construc
ting an on-line or off-line system tailored to indi
vidual requirements.

On-Line Mode

In real-time processing, inputs arrive randomly
from a process being monitored to the processor
controller. The computer rapidly responds to each
input usually by conveying an output back to the
process. This is in contrast with conventional batch
processing where groups of input data are processed
by passes through the computer. The notion of real
time usually implies that a processor-controller is
responding to inputs as they occur in the physical
world.

TSX operates in this mode under the control of
the Skeleton Executive. In an on-line environment,
user-written programs may monitor and/or control
a process operation at any time. The machine is
also permitted to be shared by process and non
process work: that is, batch work may be inter
leaved with other work. Whenever variable core is
not required for a process program, the Nonpro
cess Monitor may be brought into service. All
core loads and/or programs executed are accessed
from the system resident disk cartridge.

Off-Line Mode

The off-line TSX system operates in this mode
under the control of the Temporary Assembled
Skeleton (TASK) as a dedicated Nonprocess Moni
tor System. Typical off-line operations are assem
blies, compilations, disk utility functions, and the
execution of data processing programs.

An off-line system can be used to test problem
program s before they are permanently stored and
catalogued on the system cartridge, to execute
problem program s that require the full capacity of

available disk drives for data files, or to execute
problem program s that are used so infrequently that
their on-line storage is not justified. It is also used
to build an on-line disk resident system.

SYSTEM CONCEPT

ROLE OF THE SKELETON EXECUTIVE

The Skeleton Executive constitutes the framework of
an on-line TSX system, and must be resident in
permanent core storage before any continuous and
coordinated real-time processing can take place.
Other portions of the system are brought into core
from disk storage as they are required to perform
specific functions.

The Executive is extremely flexible and can be
assembled at system generation time so that no core
is wasted by selecting any of the numerous options
available. The user may include frequently-called
subroutines, fast response interrupt servicing rou
tines, and other user-written program s in the skele
ton to make the most effective use of his control
system.

A typical skeleton executive might consist of the
following parts as shown in Figure 2. The function
of each individual component will now be described.

Skeleton I/O. This is a set of input-output subrou
tines which provides a rapid and easy method for the
user to reference the various data processing input
output devices (e. g., card read punch, disk,
printer) for input or output of data. It includes:

• DISKN (Disk Storage Subroutine - performs all
reading from and writing to the IBM 2310 Disk
Storage Unit)

• TYPEN/WRTYN (Printer-Keyboard Subroutine -
transfers data to and from the IBM 1053 and
mM 1816 Printer-Keyboard)

• PRNTN (Printer Subroutine - handles all print
and carriage control functions relative to the
IBM 1443 Printer

These and other basic system routines make up the
Skeleton I/O package which corresponds to an iden
tical set of input-output subroutines used by TASK.
A description of each subroutine will be found else
where in the TSX Systems Reference Library.

Overview of the IB1:v11800 Time-Sharing Executive System 3

LOW CORE

SKELETON I/O

INSKEL COMMON

SYSTEM DIRECTOR

USER AND TSX SUBROUTINES

VARIABLE

CORE

HIGH CORE

Figure 2. A TSX On-Line System -- Illustl'ating the

Skeleton Executive

SKELETON
EXECUTIVE

INSKEL COMMON. A uniquely labelled common
area in the skeleton set aside for communications
among the various types of core loads used in the
system. It c::m be referenced by any process or
nonprocess program under the on-line system.

System Director. This is the nucleus of the Skele
ton Executive and controls all facets of process
monitoring. It directs the handling of interrupts
in a priority fashion determined by the user; super
vises the execution of any number of mainline core
loads or programs dictated by the process; ser
vices all error conditions with a minimum of dis
turbance to most processes under control; main
tains the 1800 interval timers; and makes the sys
tem available to the Nonprocess Monitor.

User-Written Programs. The user has the option
to include as many programs and subroutines as

4

possible in the skeleton for reasons of frequent
usage, rapid response, arid optimum utilization of
disk space. These may take the form of:

• Interrupt subroutines

• Timer subroutines

• Count subroutines

• Special trace and error subroutines

• IBM-supplied arithmetic, I/O, and other
subroutines

• Any other user-written subroutines

These are first compiled/assembled in relocatable
format and stored on disk; at skeleton build time,
they are relocated into the Skeleton Executive.

TIME-SHARING

In many industrial installations, the real-time con
trol system will not utilize all the computer time;
therefore, time will be available to perform back
ground jobs. Time-sharing techniques can thus be
employed when idle processor-controller time is
available in a given system environment to offer the
user the kind of service he requires. The notion
of time-sharing also implies the sharing of computer
resources, since not only time but primary and
secondary storage as well as most input-output
facilities are also shared.

When idle time is available in the IBM 1800 TSX
System, control can be automatically transferred to
an independent Nonprocess Monitor System which is
identical to any stack-job monitor system. All
assembling, compiling, simulating, and other sys
tem activities can now be executed under the control
of the Nonprocess Monitor. Performing such jobs
time-shared has a distinct advantage in that any time
not required for process control functions can be
used for data processing functions. Also, since
process control program s and strategies tend to
change, time- sharing makes it extremely desirable
to be able to modify these programs and strategies
at the on-line installation without taking the computer
off-line. It is through the time-sharing feature that
the utilization of the 1800 system is best optimized.

VERSATILITY IN SYSTEM CONFIGURATION

A modern real-time operating system must be
geared to change and diversity. The TSX system
itself can exist in an almost unlimited variety of
machine configurations: different installations will
typically have different configurations as well as
different applications. Moreover, the configura
tion at a given installation may frequently change.
If we look at application and configuration of an
operating system, we see that the operating sys
tem must cope with an unprecedented number of
environments. All of this puts a premium on sys
tem modularity and flexibility.

TSX gives the user the ability to define his con
figuration according to his exact needs: he is there
fore never bound to a fixed system. Furthermore,
after having specified and generated a particular
system, he is still free to move process and/or
nonprocess portions of his system from one disk
storage device to another.

In general, the input-output capability of the IBM
1800 Data Acquisition and Control System can be
backed up. For example, under program control, a
1053 Printer can have its messages automatically
switched to a back-up 1053 Printer; disk storage
drives can be logically switched or removed from
the system; and any device may be removed from
service if it continues to fail. This dual capacity
indicates that an installation may suffer from the
failure of one or more input-output devices, and
remain "on the air" under the most stringent usage
conditions. Hand-in-hand with this back-up capa
bility, a history of hardware device failures can be
examined at any time for maintenance purposes.

CONCEPT OF A CORE LOAD

In practice, the core storage size of a data acquisi
tion and control system is not sufficient to contain
(nor does it need contain) all of the instructions re
quired for the execution of all functions at anyone
time. Thus, the entire set of instructions must be
broken down into smaller pieces, and these pieces
be made available for immediate loading. To facili
tate rapid loading, they should be stored on disk in
executable core image format.

The technique of program segmentation is em
ployed in the TSX system where program s are
formed into smaller units called core loads. A
core load is, by definition, an executable program

or portion of a program which perform s some user
function. It is not necessarily a program in its en
tirety because this program may well be too large
to fit into variable core in one piece for execution.
The core load is unique in that it is stored on disk
in core load core image format to facilitate rapid
loading when it is called for execution.

Figure 3 illustrates the four types of core loads
commonly used in TSX. A core load may contain
other subroutines that are not associated with the
main program - that is, subroutines not otherwise
available in core (either included in the skeleton, or
in the form of load-on-call subprogram s) . A typical
core load may consist of a mainline or interrupt pro
gram, in-core interrupt subroutines, and all other
required subroutines that are not included with the
Skeleton Executive.

Core loads are important in real-time systems
for the following reasons:

• Real-time linkages are automatically built

• The core-load is permanently built and stored
on disk for rapid execution

• Core loads are called by name

• No compiling/assembling is needed at execution
time.

LOCAL SUBPROGRAMS

TSX provides a facility for loading subroutines at the
time they are called for in the execution of a program.
Such a subroutine is known as a LOCAL (load-on
call). All LOCALs called by the same mainline pro
gram in a core load use the same area of core stor
age by overlaying one another as they are called. A
copy of each LOCAL subprogram used with a core
load is kept on disk in core-image format together
with that core load (see Figure 3).

LOCALs thus allow the user to have, effectively,
a larger program executed in core than would other
wise be possible if all the subroutines were loaded
into core at the same time. There is no theoretical
limit to the number of LOCALs which the user wishes
to implement. This means a virtual extension of
variable core. Other advantages of this feature are
(a) the ability to read in subroutines, and (b) the
breakdown of core loads to the subroutine level.

Overview of the IBM 1800 Time-Sharing Executive System 5

Mainline
Core Load

Core Load Data Words

Interrupt Branch Table

FORTRAN I/O Table

Transfer Vectors

Interrupt Status Table

Program Name Table

LOCAL Parameter Table*

Defined Files Table*

Mainline
Program

LOCAL Loader*

All Called
Subroutines not in

Skeleton

In-Core Interrupt Routines*

LOCAL Subroutine
Area*

Combination
Core load

Core Load Data Words

Interrupt Branch Table

FORTRAN I/o Table

Transfer Vectors

Interrupt Stat JS Table

Program Name Table

LOCAL Parameter Table*

Defined Files Table*

Mainline
Program

LOCAL Loader*

All Called
Subroutines not in

Skeleton

I n-Core Interrupt Routines*

LOCAL Subroutine
Area*

*Optional

Interrupt
Core Load

Core Load Data Words

Interrupt Branch Table

FORTRAN I/O Table

Transfer Vectors

Program Name Table

LOCAL Parameter Table*

Defined Fi les Table*

Interrupt
Program

LOCAL Loader*

All Called
Subrouti nes not in

Skeleton

LOCAL Subroutine Area*

Nonprocess
Core Load

Core load Data Words

Interrupt Branch Table

FORTRAN I/O Table

Transfer Vectors

Program Name Table

LOCAL Parameter Table*

Defined Files Table*

Nonprocess
Program

LOCAL Loader*

All Called
Subroutines not in

Skeleton

LOCAL Subroutine
Area*

Figure 3. Four Types of Core Loads Commonly Used in TSX

6

REENTRANT CODING

One of the basic problems that arises in multi-level
programming is that different levels of operation re
quire the use of the same subroutine. If a method of
reentrant coding is not used, there is often a danger
that intermediate results might be destroyed. To
allow one subroutine to be entered at any time and
from any interrupt level, without loss or degradation
of results, a method of reentrant coding which uses
level work areas is devised for TSX.

All subroutines that are required on multiple
levels in TSX are fully reentrant. That is, they can
be called repeatedly by different interrupt subrou
tines at different levels; they are automatically re
enterable; and they automatically keep guard of the
partial results acquired when they were interrupted.
A single subroutine can be used simultaneously at
all 26 levels, while it is servicing any other level.
The automatic accounting of the partial results of
the subroutines is a very significant step forward
which is made possible through the programming
structure of TSX.

Some of the advantages of TSX reentrant coding
may be summarized as follows:

• All levels of operation may execute any given
reentrant subroutine

• The size of the overall system in core and on
disk is reduced. This is because (1) core loads
do not have to contain subroutines that are in
cluded in the Skeleton Executive, and (2) sub
routines included in core loads are smaller
than non-reentrant subroutines

• All subroutines can share the same area of core

• The system overhead time is reduced during the
loading of core loads because (1) core loads are
now smaller, and (2) they are performing more
functions

COMMON AREAS

Three unique areas of core storage are used for
FORTRAN COMMON storage within TSX. These
are

1. INSKEL COMMON
2. Normal COMMON
3. Interrupt COMMON

INSKEL COMMON has already been defined. To
assign a variable to this area, a special FORTRAN
statement, COMMON/INSKEL/, must be used. All
other attributes of the COMMON statement remain
the same. This area must be used for communica
tions between

• Core loads of a different type

• Interrupt core loads

• Combination core loads (if either is executed as
an interrupt core load)

• A special core load and the mainline core load
that calls it

• A mainline core load (which called a special
core load) and the core load that restores it

• A skeleton subroutine and any other subroutine
or core load

The normal COMMON area located at the high
address end of core storage can be referenced only
by mainline or nonprocess core loads. The normal
COMMON statement in a mainline, special, or non
process core load is used to refer to this area.
This area is saved and restored when special core
loads· or time-sharing operations are initiated or
terminated; i. e., communication between nonproc
ess core loads is possible.

The third area for COMMON is used only for in
terprogram communication for program s that form
an interrupt core load or, between combination core
loads when they are executed on the mainline level.
The normal COMMON statement in an interrupt or
combination core load is used to refer to this area.
The highest addressed location of this area must
be assigned by the user at system generation time,
and must be an even number. This assigned loca
tion is the high-address boundary of the variable
core storage area that is saved when an interrupt
core load is loaded for execution. Thus, it is
necessary to save only the area specified by the
user for interrupt core loads (not the whole variable
area).

MULTI-LEVEL PROGRAMMING

The interrupt structure of the 1800 system consists
of a total of 24 hardware levels with up to 16 inter
rupt signals per level. These can, of course, be

processed in a true priority sequence. A higher
level interrupt subroutine will always interrupt a
lower level interrupt subroutine, but beyond this,
the Skeleton Executive permits interrupts to be
"recorded" now for later processing.

The interrupt scheme within the Skeleton Execu
tive also provides a great amount of flexibility and
frees the user from most of the problems of servic
ing interrupts. Interrupt servicing subroutines may
be assigned in the following ways:

1. An interrupt subroutine which must be executed
immediately under any condition whatsoever can
be made a permanent part of the skeleton. That
is, the subroutine will always be in high-speed
core storage and will be executable in the order
of microseconds.

2. Those subroutines which are associated with a
given mainline program can be assigned in such
a way that they are always read into core stor
age with that mainline when it is loaded from
disk. The response time of a mainline inter
rupt routine is almost the same as that of a
skeleton interrupt routine only if the mainline
core load containing the interrupt routine is in
core when the interrupt occurs.

3. For low-priority subroutines, a core overlay
technique allows the user to call an interrupt
core load, bring it into core storage, save
what was in core storage, and on completion of
the interrupt process, restore core storage to
its original state. These multiple operations of
sequencing, saving, and replacing of core stor
age is automatically handled by the Skeleton
Executive. All that is required of the user is to
assign the priority. It should be mentioned that
the priority interrupt sequence can be changed,
at will, under program control.

The interrupt core load response time depends on
the size of the core load and the disk layout. It is
slower than the skeleton or mainline core load inter
rupts.

SYSTEM COMPONENTS

TSX components can be considered under two separ
ate group-headings: (1) control programs and (2)
processing program s.

In general, control programs govern the order in
which processing programs are executed, and pro
vide services that are required in common by the

Overview of the lmvr. ·1800 Time-Sharing Executive System 7

processing programs during their execution. A key
control program is the System Director which is
loaded into main storage (as part of the resident
Skeleton Executive) and remains there indefinitely
to ensure continuous coordinated operation of the
system. other parts of the system are brought into
main storage from secondary storage as they are
required to perform specific functions. Processing
programs consist of language translators and ser
vice programs that are provided by IBM to assist
the user, as well as problem program s that are
user-written and incorporated as part of the TSX
system. Both IBM and user programs have the
same functional relationship to the control programs.

CONTROL PROGRAMS

There are three control programs within the TSX
system:

Temporary Assembled Skeleton (TASK)
System Director
Nonprocess Supervisor

Temporary Assembled Skeleton (TASK)

TASK is a stand-alone disk oriented monitor pro
gram from which an on-line or off-line TSX system
is constructed. It performs three distinct functions:

• Supervises the generation of a disk oriented TSX
operating system according to user specifications.

• Supports a full monitor capability so that TSX
can be used as a data processing monitor system.

• Allows the user to load absolute programs into
core for execution, or to store them on disk.

Since real-time process control installation re
quirements vary from installation to installation, it
follows that each installation must be defined or
tailored to the specific system functional require
ments and input-output configuration of that installa
tion. The tailoring function, defined as system
generation, is carried out by TASK which provides
the facilities I for the creation and maintenance of a
monitor system composed of IBM and user-written
programs. The user specifies his system through
the medium of equate card$.

Figure 4 illustrates TASK organization in
simplified form.

8

The System Director

This control program forms the heart of the TSX
system and resides in core storage at all times as
part of the skeleton where all permanent areas are
storage-protected to ensure that they are not inad
vertently violated or altered.

The System Director directs the handling of proc
ess and data processing input-output interrupts, pro
vides timer control over the process, is responsible
for the orderly transfer of control from one core load
to the next, and handles the transfer of control be
tween the on-line and off-line modes. All process
core loads are in core-image format on disk and
are accessed at disk read speed.

The Director is read from disk only during a cold
start or reload (EAC) operation. Primary entry to
the System Director results from 1) internal and ex
ternal hardware interrupts, 2) TSX calls from user's
programs, and 3) errors.

SKELETON I/O

T AS K PROGRAM

SET

VCORE~--------------------~

VARIABLE

CORE

Figure 4. T ASK Organization

lASK

The Nonprocess Supervisor

The Nonprocess Supervisor directs the execution of
all nonprocess core loads which may be either IBM
supplied as part of the TSX package or user-written.
It normally operates in the time-sharing mode under
the control of the System Director, but it may also be
run as a dedicated off-line monitor system under
TASK.

Its main function is to recognize certain system
control cards and transfer control to the processing
program specified. It also initializes the nonprocess
system whenever a job control card is identified.

PROCESSING PROGRAMS

Processing programs consist of service programs
and language translators broken down as follows:

Service Program s

Cold Start Program
System Loader
Core Load Builder
Skeleton Builder
ruM TSX Subroutine Library
Disk Utility Program (DUP)

Language Translators

Assembler
FORTRAN Compiler
Simulator

Service Program s

Service programs include a group of loaders and
builders which serve as system generation aids, as
well as a disk utility program and a comprehensive
IBM TSX Subroutine Library.

Cold Start Program

This program loads the Skeleton Executive into core,
storage protects it, starts the real-time clock and
calls the user's initial core load for execution. This
operation places the System Director in control of
the on-line system.

System Loader

The primary functions of the System Loader are to
load the initial ruM TSX system onto the disk, build
an interrupt assignment table from user-supplied

control records, and prepare the disk layout for sys
tem operation. System assignment cards are used
to inform the System Loader of interrupt level assign
ment of I/O devices, interval timers, and process in
terrupts. The loader makes entries in a directory
called the Location Equivalence Table (LET) for each
component part of the IBM TSX system.

Core Load Builder

The Core Load Builder program combines a user
written relocatable program together with all refer
enced subroutines not included in the Skeleton Execu
ti ve into an executable core load for storage in the
Core Load Area on disk. Core loads may be of sev
eral types: process mainline, combination, inter
rupt, or nonprocess.

All process core loads must be built and stored on
disk prior to execution under control of an on-line
TSX system. Input to the Core Load Builder is sup
plied by the user in the form of control records which
contain the names of relocatable mainline programs,
interrupts to be recorded, data files used, interrupt
routines included as part of the core load, and LOCAL
(load-on-call) subprograms.

Using the data provided by the System Loader and
the Skeleton Builder, as well as information from pro
grams and subroutines, the Core Load Builder estab
lishes all subroutine linkages, hardware interrupt
servicing linkages, and the creation of certain com
munications areas which are integrated with instruc
tions to make up a core load.

Skeleton Builder

The Skeleton Builder program obtains its input from
user-assigned control records, programs, subrou
tines, and information from the System Loader to
construct the System Skeleton in core-image format
which is then stored on disk. The skeleton is read
into core for execution by a cold start operation. The
rebuilding of the skeleton is required whenever rou
tines are added or deleted, or other modifications
are made. It is the System Skeleton which constitutes
the Skeleton Executive.

IBM TSX Subroutine Library

This comprises a comprehensive set of reentrant
subroutines as well as a select set of non-reentrant
subroutines designed to aid the user in making ef
ficient use of the IBM 1800 Data AcqUisition and

Overview of the IBM. 1800 Time-Sharing Executive System 9

Control System. The library contains the
following:

• Data processing and process input-output sub
routines

• Conversion subroutines

• Arithmetic and functional subroutines

• FORTRAN input-output subroutines

• Miscellaneous subroutines

Data Processing and Process I/O Subroutines. Data
processing (printers, punches, etc.) and process
input-output (P I/O) subroutines provide a quick and
straightforward method for the programmer to refer
ence the various data processing, digital and analog
I/O devices for input or output of data. All I/O rou
tines may be called directly from FORTRAN: data
processing I/O subroutines may be called indirectly
by the use of FORTRAN I/O.

Conversion Subroutines. The design and operation of
the numerous input-output devices is such that many
of them impose a unique correspondence between
character representations in the external medium
and the associated bit configurations within the com
puter. Conversion subroutines convert inputs from
these devices into a form in which the computer can
operate and to prepare computed results for output
on various devices.

Arithmetic and Functional Subroutineso The arith
metic pnd functional group of subroutines includes a
selection of twenty-seven basic routines which are
most frequently required because of their general
applicability. The arithmetic library contains both
the routines that are visible to the FORTRAN pro
grammer, as well as the many routines that are
used by the FORTRAN compiler generated object
code, which may also be used by the Assembler pro
grammer.

FORTRAN I/O Subroutines. FORTRAN I/O subrou
tines provide a link between the FORTRAN object
code and the I/O devices. They support both stand
ard and extended precision.

10

Miscellaneous Subroutines. The miscellaneous group
provides the user with the ability to perform certain
machine operations using the FORTRAN language.
These include real-time, selective dump, trace, and
overlay routines.

Real-time subroutines are operational control rou
tines which service the Skeleton Executive in an on
line environment. Examples are TIMER (specify one
of two hardware interval timers for some periodic
activity), LEVEL (set one of twenty-four levels for
programmed interrupt use), and MASK (inhibit selec
tively one or more levels of interrupt).

Selective dump subroutines allow the user to print
chosen areas of core storage during the execution of
an object program. For example, DUMP will output
on the list printer, in hexadecimal or decimal format,
a certain portion of core storage; DUMPS will print
th e status of the 1800 (that is, status indicators,
contents of registers, and work areas).

The user may exercise the option of writing his
own mainline trace interrupt routine which can be
included in a core load to process a trace interrupt.
He might, for example, design such a routine to
monitor anum ber of conditions. The subroutine
TRPRT is available for use in tracing routines which
print a specified number of characters on the 1053/
1816 Keyboard Printer or 1443 Printer.

The TSX Subroutine Library also contains an over
lay routine called FLIP which serves to call LOCAL
(load-on-call) subprograms into core storage. All
LOCALs in a given core load are executed from the
same core storage locations; each LOCAL group
overlays the previous group.

In order to permit entry from multiple programs
and interrupt levels before completing computations
from a previous call, the arithmetic and functional
subroutines, and most of the I/O subroutines, are de
signed to be reentrant. That is, they can be entered
from a different level of machine operation despite
the fact that they may not have completed operation
on a previous level. Non-reentrant versions of the
arithmetic, functional, and conversion subroutines
are also supplied.

Disk Utility Program (DUP)

The Disk Utility Program is a comprehensive group
of generalized utility and maintenance routines de
signed to aid the user in the day-to-day operation of
the TSX system. By this means, the most frequently
required services of disk and data maintenance can be

performed with a minimum of effort. The TSX DUP
philosophy is to provide as much assistance as pos
sible to the user. DUP is a component part of the
Nonprocess Monitor.

DUP is called into service by the Nonprocess
Monitor Supervisor (SUP) whenever it recognizes a
DUP monitor control card. It is also automatically
summoned after the successful completion of an
assembly or FORTRAN compilation. DUP functions
can be summarized as follows:

1. It permits the user to store, modify, and refer
to programs and data using the compact and
economical direct-access disk storage facilities
of the system without regard to specific input
output configurations.

2. It allows the free interchange and use of pro
grams and data among programmers.

3. It provides a systematic method to identify and
locate programs and data, and systematic
methods to reference data after it is located.

All of these functions can be carried out while the
TSX system is on-line, as well as in the off-line
mode. Examples of DUP facilities include the fol
lowing:

• Change sequence of execution of core loads

• Replace a core load with another core load

• Create disk files

• Replace an object program already stored on
disk

• Build core loads (in conjunction with the Core
Load Builder)

• Define the disk configuration

• Dump data/program from one medium to another

• Delete a program, core load, or a data file from
the disk

• Pack a file on the disk to eliminate unused areas,
thus minimizing disk storage requirements

• Modify core loads on-line

Language Translators

Language translators assist a programmer by
enabling him to define a problem or an application
in a language form that can be readily learned and
understood. In the TSX system, the user may define
his problem solution or application

In a flexible easy-to-use symbolic language
Assembler language, and/or
In a form of mathematical notation - FORTRAN

Assembler

The Assembler program is a one-for-one disk
oriented symbolic type translator which assembles
object programs in machine language from source
programs written in symbolic language. It normally
resides on disk. The assembler accepts control
records and source program s in card form only.
Upon a successful assembly, the object program in
relocatable format is moved to disk where it is
permanently stored, or, alternatively, called for
execution. The Assem bIer Language is fully
described in the publication IBM 1800 Assembler
Language, Form C26-5882.

FORTRAN Compiler

The FORTRAN Compiler translates programs written
in the FORTRAN language into executable machine
language. The real-time TSX FORTRAN Compiler
permits the user to make the most of the digital and
analog I/O features using a higher level language,
while at the same time allowing background jobs to
be executed. Since FORTRAN is easily understood
by technical personnel, its availability in the TSX
system reduces Significantly the programming effort
required. For a full description of the FORTRAN
language, see IBM 1130/1800 Basic FORTRAN IV
Language, Form C26-3715.

Simulator

The Simulator is designed as a debugging aid which
allows the user to check out or test process and/or
nonprocess programs without disrupting normal TSX
system operation - that is, without taking the system
off line. It functions under the control of the Non
process Monitor.

Overview of the IBM 1800 Time-Sharing Executive System 11

FUNCTIONS OF EXECUTIVE PROGRAMS

This section describes the functions of the three
main executive programs which constitute an mM
1800 Time-Sharing Executive System, namely,

Temporary Assembled Skeleton (TASK)
System Itirector
Nonprocess Monitor

and discusses the concepts underlying their use.
Sample programs and coding are interspersed
throughout the text as demonstration of good pro
gramming practice and technique. Since the
Temporary Assembled Skeleton (TASK) is the first
program with which the user becomes involved in
the creation of an on-line or off-line TSX system, it
is discussed at the outset.

TEMPORARY ASSEMBLED SKELETON (TASK)

It has already been mentioned that TASK (Temporary
Assembled Skeleton) is a builder or "tailor" card
monitor system with strong disk capabilities from
which an off-line or on-line TSX system is construc
ted. The use of TASK, therefore, constitutes the

t
TASK

1
SKELETON I/O

TASK PROGRAM
SET

..... -----------+.VCORE

S KE LETON I/O

SYSTEM
DIRECTOR

intermediate stage in system generation towards
placing a system on-line. In an on-line TSX system,
TASK control ceases at cold start time when the
Sy stem Skeleton has been loaded into core storage.
In an off-line TSX system, TASK itself functions in
much the same fashion as a System Skeleton with
permanent time-sharing ..

For simplicity , TASK can be considered in two
parts (see Figure 4):

• Skeleton I/O

• TASK Program Set

Skeleton I/O

The Skeleton I/O is a collection of input-output and
general supporting subroutines that the TSX system
requires to be in core at all times. It is that por
tion of a user-configurated TASK which corresponds
exactly to the Skeleton I/O on an on-line TSX sys
tem.

Figure 5 illustrates this correspondence, as well
as the core layout, at two time periods of an on
line and an off-line system.

1
SYSTEM

SKELETON

VARIABLE

CORE

USER I S PROGRAMS

VCORE

VARIABLE

CORE

OFF-LINE SYSTEM ON-LINE SYSTEM

Figure 5. Correspondence between TASK and the System Skeleton

12

The I/O routines used by TASK form the basis of
the Skeleton I/O. These consist of the following:

• DISKN - Disk subroutine as used by TSX Oper
ating System

• TYPEN/WRTYN - Printer/Keyboard subroutine
as used by TSX Operating System

• PRNTN - Printer subroutine as used by TSX
Operating System

• CARDN - TASK only Card I/O subroutine

A description of each of the above subroutines
will be found in the TSX Systems Reference library.

Since the TSX system requires that at least one
disk be present on the 1800, DISKN must be in core
at all times. If the user has assigned a 1053 or 1816
to his machine, TYPEN/WRTYN must also reside
permanently in core. Although CARDN is in core
during TASK execution, it does not normally form a
part of the Skeleton I/O. The user must therefore
define whether or not CARDN is to be a component
part of his skeleton by means of the TASK equate
card CDINS. If it is not, CARDN automatically be
comes a part of the TASK Program set. It is through
the Skeleton I/O that an off-line system obtains full
monitor capabilities.

TASK Program Set

The TASK Program Set is that integral part of the
Temporary Assembled Skeleton which functions in a
similar manner to the System Director. It consists
of:

• TASK Master Interrupt Control (TMIC)

• TASK Director

• TASK Error Alert Control (TEAC)

• Absolute Loader function

• Load Monitor function

• Skeleton Build function

• TASK Conversion routines

• TASK Utilities

TMIC directs all I/O interrupts to their corre
sponding servicing routines and resets all process
interrupts, while TEAC processes errors that have
been found by other parts of TASK. The TASK Direc
tor initializes TASK and directs the execution of the
Absolute Loader function, Load Monitor function,
and the Skeleton Build function.

The Absolute Loader gives the user a facility to
load absolute assembled programs from cards to
core for execution. It can also be used for the stor
ing of user-written program s or data on disk. The
use of this function is discussed later in some detail
(see Programming Techniques). The Load Monitor
function serves to initialize the TSX Nonprocess
Monitor for execution. There are two conversion
routines: (1) TASK HOLEB converts hollerith input
to one or two EBCDIC characters per word output,
while (2) TASK EBPRT converts two characters per
word EBCDIC input to two characters per word, sys
tem, list, or EAC printer code.

A complete utility package comprised of full
trace, check/stop trace, four utility programs, and
a utility monitor can be included within TASK at
assembly time. The user elects this option through
equate cards.

Except in the case of a skeleton builder option, a
TASK disk load, or a cold start, TASK is loaded
with a 4-card TASK high core loader.

For a more complete description of TASK func
tions and system generation procedures, the user is
referred to the ruM 1800 Time-Sharing Executive
System, Operating Procedures, Form C26-3754.

Other considerations affecting the use of TASK
are discussed under System Design Considerations.

THE SYSTEM DIRECTOR

The System Director is the nucleus of the skeleton
executive of a TSX system, and always resides in
core as part of the skeleton to direct the handling
of interrupts, to load and execute core loads, to
expand usage of interval timers, and to process
errors. Primary entry to the System Director
derives from internal and external hardware inter
rupts, TSX calls from user's programs and errors.
Its principal component parts comprise the follow
ing:

Master Interrupt Control (MIC). This is a reentrant
control program which automatically directs all
internal, I/O, external, and programmed interrupts
to their proper interrupt servicing routines. Con
trol returns to MIC as long as unserviced interrupts
exist.

Functions of Executive Programs 13

Program Sequence Control (PSC). The Program
Sequence Control Program is responsible for orderly
transfer of control from one user-specified core load
to the next. A core load may also temporarily be
saved on disk pending the processing of anothe.r core
load. All PSC functions are restricted to process
mainline core loads.

Time-Sharing Control (TSC). This controls the
time-sharing of variable core between process and
nonprocess core loads by a core exchange method.
TSC is entered selectively from the execution of a
CALL SHARE statement or automatically by a CALL
VIAQ statement when the queue is empty.

Interval Timer Control (IT C) . ITC services all in
terrupts involving three machine timers A, B, and
C, nine programmed timers, and a programmed real
time clock. The programmed timers and the real
time clock are based on timer C. Timer C is reset
by the subtraction of a fixed value; accurate timing
is therefore kept, even when the response to the
timer interrupt itself may be delayed. It also ser
vices the "no-response routine" for the 1053/1816
printers in the Skeleton I/O. As an option, it also
services the Operations Monitor during nonprocess
execution. Periodic interrupts are generated from
interval timers rather than from the real time clock.
The programmed timers interrogate the Interrupt
Core Load Table (ICLT), but only skeleton count
routines are entered into. If there is no such routine,
the condition is recorded for later servicing.

Error Alert Control (EAC). The EAC program re
sides in core at all times, and is called to process
all error conditions whenever an error develops.
EAC

• optionally saves core for future reference

• optionally branches to a user-written error sub
routine (which may be included with each process
core load) for further error analysis

• prints an error diagnostic messag.e, and

• executes one of four possible error recovery
procedures

Mainline Core Load Queue Table. This is a stack
or pushdown list of names of mainline core loads
(and their respective prioritieS) that have been
queued (that is, put in line) for future execution.

14

Although the Queue Table forms part of the System
Director, the real-time TSX queue-calling state
ments (e. g., QUEUE, UNQ, QIFON and VIAQ) are
designed as subroutines which may be included in
the skeleton or with the mainline at the user's
discretion. Processing of a mainline is not sus
pended as a result of queueing a higher priority
mainline.

Level Work Areas. A level work area of 104 words
(in the skeleton) is required for

• each interrupt level used

• process mainlines

• nonprocess core loads, and

• internal errors

A level work area contains interrupt level instruc
tions, MIC linkages, and work areas. It is used to
allow recursive entry to those programs supplied by
IBM.

Each of the following System Director functions
will now be explained in some detail:

• Program Scheduling

• Handling of Interrupts

• Use of Interval Timers

• Use of Time-Sharing

• Use of the Operations Monitor

• Error Alert Control

PROGRAM SCHEDULING

Control processes may be classified under three
basic headings:

Program or event sequence
Time dependence
Interrupt initiation

In practice, a process may be a,combination of
all three categories, but is usually weighted more
heavily towards one. Rarely does a process lend it
. self to only one.

Figure 6 is a simplified version of a process
based totally on program sequence. An example
might be a crude-oil distillation unit in an oil refin
ery. A scan is made to see what the present status
is, tests and calculations are made to verify the in
formation, optimization towards a given product mix
is applied, required changes to process variables
are effected, data is recorded, etc. Each event
thus depends on the completion of previous events.

A process based on time is illustrated by Figure
7. This classification could be applied to a process
involving a solitary engine test stand. For example,
a given throttle position and resistance load are
set up. At specified time increments, one or more
variables are recorded, such as manifold pres-
sure, RPM, fuel flow, fuel level, oil temperature,
oil pressure, etc. When all the variables have been
recorded, the throttle position and/or load resistance
are changed and a subsequent timing cycle initiated.
Finally, when all specified combinations of throttle
and load resistance settings have been tested, the
system is initialized for another engine. Each event
in this situation depends on time.

Note that in practice, the servicing of a process
as depicted in Figure 7 is not necessarily sequen
tial in nature. Also, it is the actual time period
that schedules the servicing of an event. The man-

SPECIAL

Figure 6. Program or Event Sequence

ner in which servicing takes place is not dictated
by the type of program (e. g., mainline, interrupt
routine) which initiated the event.

The third classification is illustrated by Figure 8.
An example might be the input phase of a hospital
information system. With no input information, the
system switches over to the time-sharing mode or
remains idle. When, however, a patient enters
the hospital, certain historical information is
punched into cards. An interrupt is then initiated
by an operator. The interrupt recognition routine
sets up the card read program and the patient data
enters the system -- the system then returns to
time-sharing or to an idle condition. When, later,
a doctor requests medication for a certain patient,
in a specified quantity, at certain time increments
and duration, he sets up the proper information on
a manual entry unit and initiates an interrupt. The
interrupt recognition routine again calls the appro
priate program which reads in the manual entry,
verifies the information, enters it in the specified
files, and once again returns the system to the
time-sharing mode. lILa similar fashion, other
input information such as records and/or schedules
for dietary, patient status, laboratory, surgery,
etc., are entered. Events thus classified are in
itiated by interrupts.

•
• •

Figure 7.111ustratingTime Dependency

Functions of Executive Programs 15

INTERRUPT
RECOGNITION

ROUTINE

Figure 8. Interrupt Initiation

It is obvious from the foregoing that if each ap
plication illustrated were expanded to its complete
operating requirements, it would most likely con
sist of all three classifications to some degree. For
example, in Figure 6, an inventory log of input and
output material is given every hour. This is re-

HIGHER PRIORITY INTERRUPT
ON INTERRUPT LEVEL 1

HIGHER PRIORITY INTERRUPT
ON INTERRUPT LEVEL 2

INTERRUPT ON
INTERRUPT LEVEL 3

MAINLINE
LEVEL

Figure 9. Example of Multi-Level Processing

16

quired to update inventories, product costs, etc.
Also, an interrupt will occur whenever a heating
unit goes out of range. This will immediately
initiate a program to rectify the situation.

Multi-Level Control. A control system must be
able to immediately recognize certain situations of
a physical process. It must also be able to ignore
certain functions until they occur. In practice,
the first requirement is more critical. In either
case, the normal sequence of events will be inter
rupted until some action is taken. The situation
is further complicated if a second interrupt, more
critical than the first, occurs during the action
phase of the first interrupt. The servicing of the
first interrupt must obviously be suspended while
attention is given to the more critical interrupt.
Such a chain of interrupts may continue through
several iterations as shown in Figure 9. Upon
completion of the required action of each interrupt,
the previously interrupted action must be continued
until the system returns to normal. From this
brief picture of multi-level operations, we see
that program scheduling now becomes more com
plex. The user must now have the capability to
take immediate action, record the occurrence for
later action, or arrange for action to be taken as
soon as possible, but on a less critical level. To
do this, the user defines what is to be recognized
on each level and sets this up by machine configur
ations. Later his program sets up when action is
to be taken and at what level.

Program Scheduling Requirements

In a control system application, the scheduling of
programs to be executed on the normal or mainline
level constitutes the main problem. During certain
phases of a control system, the user will execute
programs in a set sequence. This type of sequence
may be set up by a program condition, an interrupt,
or a given time period. Sequencing or chaining of
programs mayor may not be required depending on
the user's specific application.

A direct sequence or chain of programs is re
quired for two separate situations. The first situ
ation is a set of programs whose functions must be
in a given order that cannot be interrupted except
for critical conditions. The second derives from a
program that is too large for core size available,
so it must be segmented into several separate
programs. These programs will now overlay each
other, and must therefore be scheduled in a fixed
sequence.

As illustrated in Figure 6, special sequences of
programs may also be required on the mainline level
under certain special conditions. These special
sequences are required under three conditions which
come under normal operation. The first requirement
is a sequence or chain of events that is common to
several different phases of a system. This is logic
ally equivalent to a subroutine which is called by
several programs: the main difference is that a
chain of programs is now being scheduled instead
of a subroutine. The next requirement occurs when
a situation is bordering a critical point, but is still
within the limits defined by the user. In this event,
the user may want a warning, but has no real need
to be alarmed. The third situation is similar except
that the user is alarmed and cannot therefore proceed
with the present sequence of programs until certain
conditions are met. This is a common situation in
process control where process inputs are not ac
ceptable and a special scan is set up until valid
variables are obtained. As a result, the normal
calculation, optimization, etc., are delayed but
will be resumed as soon as possible.

The requirements stated thus far are categorized
under program sequence since they have a definite
relationship and order. Three commands are used
to implement sequence control:

1. CALL CHAIN (specify the next program to be
executed)

2. CALL SPE CL (terminate the program, save
it on disk, and execute the next
program).

3. CALL BACK (return control to a program
which was partially executed).

Multi -process control, however, presents a new
scheduling problem. Since one control system is
used to control two or more processes, the definite
relationship and order of programs is normally
applicable within each process but not between
processes. However, each process must be able
to schedule its own programs in such a manner
that the control system can handle all schedules.
Also, because each process will normally contain
its own unique program sequences, one type of
,scheduling problem does not necessarily eliminate
another. It should also be understood that multi
level processing does not always dictate unrelated
program scheduling: all possible combinations must
be considered by a given program scheduling situ
ation. The queueing technique itself will not produce
such a system, but when combined with the priority
technique, the system becomes flexible enough for
any control system I s requirements. Four commands
permit this form of control:

1. CALL QUEUE (enter a core load into a waiting
queue)

2. CALL UNQ (remove a core load from a
waiting queue)

3. CALL VIAQ (call the highest priority core
load waiting in the queue to be
executed next in sequence).

4. CALL QIFON (interrogate recorded interrupts)

Program Sequence Control (PSC)

The center of the scheduling system is the Program
Sequence Control (PSC) Program which is perman
ently resident in core in an on-line TSX system
working under control of the System Skeleton. PSC
is a means by which mainline core loads are loaded
to core, and control transferred from one core load
to another, according to user specifications. The

Functions of Executive Programs 17

user sets up his requirements when he uses a chain
or sequence type CALL or a queueing-type CALL
statement. PSC performs the following functions:

• Loads all mainline core loads

• Saves and reloads the special core load

• Initializes the ICL Table for each core load

• Tests for errors in calls to load programs

Chaining or Sequence Technique

Chaining or sequence-type call statements permit the
programmer to control the order in which tasks are
performed, interrupts serviced, and off-line jobs
allowed. This control is important since the various
levels of control are necessarily carried out in se
quence and the order is critical. For example, an
optimizing routine too large for core storage can be
executed in segmented parts if the programmer has
control over their sequence. Three call sequences
are used in chaining: 1) CALL CHAIN, 2) CALL
SPECL, and 3) CALL BACK. Note that core load
names referenced by the CALL statement must also
be specified in a FORTRAN EXTERNAL statement.
A core load name cannot be the name of a component
subprogram of that core load. Figure 10 illustrates
the use of these call sequences.

Such statements may be freely embedded within
process programs written in FORTRAN or in the
Assembler language. Through the use of these
commands, within programs, the programmer can
control the frequency and order in which the various
levels of control are performed~ Even when the
various levels are not performed on a regular basis,
these commands allow control over the sequence.
Of equal importance is the ease by which sequence
is changed as the process control problem changes
with time.

CALL CHAIN --Normal Call

When a given core load is called for execution, the
user sets up the following statement:

18

CALL CHAIN (NAME)

where

CHAIN Entry to PSC
and NAME = Name assigned by user to the next

sequential core load to be executed

This normal call transfers control to PSC,
thereby terminating the current mainline core load
at its last logical statement. PSC then sets up a
disk function to read in the next mainline core
load specified by NAME into variable core, over
laying the present core load that contained the CALL
CHAIN statement. The new core load thus destroys
the previous core load. Once the core load is in
core, the disk I/O routine reverts to PSC, which
in turn passes control to the new core load.

CALL SPECL -- Special Call

The second type of core load sequence is similar to
the CALL CHAIN, except that the current core load
and its associated parameters must be saved. This
is set up as follows:

CALL SPECL (NAME)

where

SPE CL Special entry to PSC
and NAME = Name assigned by user to a

special core load to be executed
next

The special call suspends execution of the current
mainline core load and transfers control to PSC
which saves the present variable core area and the
return address, but no registers. This information
is written to the Special Save Area on disk. Once
the save operation is complete, the disk I/o rou
tine returns control to PSC. The operation pro
ceeds from this point exactly as in a CALL CHAIN.

Note that only one mainline core load can be
saved. Thus, if a CALL SPECL is used in a core

l Core Load A

CALL S~ECL (D)

~speCial Call

" Core Load D
CALL CHAIN (B)

It-Return to Saved

NO<mOI1
Mainline

C:~~CK)
Call

Core Load B)

CALL CHAIN (X)

-----SALL CHAIN (C) Normal ~

No,moli
Call Core Load X

Call Core Load C

CALL S,!ECL (F)

~S~~I CALL BACK
-
CALL CHAIN (E)

Normal/l#
Call r

Core LoadE

CALL SPECL (F)
ir - Core Load F

CALL CHAIN (A)

~ Return to Saved
Mainline

Figure 10. Use of Chaining (or Sequence-type) Call Statements

load that was referenced by another CALL SPE CL,
the mainline core load saved originally is lost. A
core load called by a CALL SPECL may, however,
chain to other core loads as long as these core loads
do not contain a CALL SPECL (see Figure 10).

CALL BACK -- Return Saved Mainline

In order to return to the saved core load, a third
call statement becomes necessary. This is used
only in conjunction with the special sequence function.
It is set up as follows:

CALL BACK

where

BACK Special entry to PSC

CALL BACK

CALL BACK transfers control to PSC which, in
turn, initiates a disk read operation to load
variable core with the information stored in the
Special Save Area on disk as the result of a CALL
SPECL. When the read operation is complete, the
disk I/O routine returns control to PSC, which in
turn transfers control to the restored core load,
which continues execution at the saved return ad
dress (that is, the statement following the CALL
SPECL statement).

It should be noted that a CALL BACK statement
is required only if the saved core load is to be
restored and continued. The user may well initiate
a new core load as the result of a special core load.
This new core load could then be referenced by a
CALL CHAIN or a CALL SPECL.

A core load is terminated or suspended as the
result of any of the three calls: CALL CHAIN,
CALL SPECL, or CALL BACK. CALL CHAIN and

Functions of Executive Programs 19

CALL BACK are the last logical statements executed
in a core load. However, a CALL SPECL will not
be last logical statement of a core load if a CALL
BACK has been executed to restore the saved core
load, and to continue execution following the CALL
SPECL statement.

Queueing and Priority Techniques

Queueing techniques normally use statistical methods
to control the number of queues. The rule that
governs the input and output order in which waiting
requests are serviced is usually based on an ordered
queue discipline -- that is, first-come, first-served.
Since we are considering the use of only one queue,
a first-come, first-served control is only valid for
a given priority. Therefore, as several priorities
are, in practice, required by most control system
applications, a priority technique must be enforced.
A priority-level is one of the most common ways of
classifying interrupt requests according to their
urgency. Note, however, that the urgency may
change as a function of the condition of the. servicing
system. For example, a request may be given a
higher level as waiting-time increases. Priorities
are assigned by the user to programs, processes,
and functions. The queueing and priority control
techniques employed combine to provide a flexible
method completely acceptable for scheduling un
related core loads. Although the call sequences to
be described are referred to as queueing calls, both
queueing and priority control are implied.

CALL QUEUE -- Insert into Queue

The first of four calls is used to place a core load
entry in the Core Load Queue Table (see System
Design Considerations: System Director), and to
continue with the execution of the present function.
The format of the call is:

where

QUEUE

NAME

p

20

CALL QUEUE (NAME, P, E)

Name of the subroutine that places
the specified core load in the Queue
Table.
Name of user-assigned core load
entry to be entered in the Queue
Table (and in FLET).
Integer expression, specifying
queue priority of core load NAME.
This may be 1-32767. One (1) is

the highest priority number.
E Designated error procedure to be

taken if the queue is full. In each
case, an appropriate error message
is printed (see Table 4: On-line
EAC Errors and Recovery Pro
cedures). The parameter is user
assigned as follows:

E = O. Ignore this call, and con
tinue execution as if the
core load had been queued.

E 1 through 32766. Replace the
lowest priority entry cur
rently in the queue with the
name and priority speci
fiedin this cali, if the
priority of that current
queue entry is lower (that
is, numerically larger)
than E. If there is no
queue entry with a lower
priority, execute the re
start core load specified
for this core load.

E = 32767. Execute a restart core
load.

Note: When two or more entries have
the same priority, the entry tl;
is at the lowest core storage .
location will be executed first.

In practice, E is always set to zero. The size
of the Queue Table should be redefined by the user
if it becomes saturated. The options listed under E
(above) are provided by the Error Alert Control
(EAC) program (described later).

Figures 11 and 12 illustrate the use of these
functions. In Figure 12, an example is given of a
series of mainlines which, if executed serially with
out interruption, would not allow queue testing for
an inordinate amount of time. In order to be able to
check the queue in some user-specified time period
to see if any high priority core loads need to be
executed, a program of the priority of the current
executing program is queued; a CALL SPECL is
then made to a core load that exits via a CALL
VIAQ. The VIAQ routine then checks the queue for
the highest priority program and executes it. When
the executed program is the core load queued by
core load A, a CALL BACK is performed which re
stores the original calling core load to execution
status. This technique is commonly employed to
break up the execution of a long program.

Entry to core load A via CALL VIAQ
when A is highest priority in queue ,or

CALL CHAIN (A), or CALL SPECL (A)

f A

CALL QUEUE (P, 30,1)

CALL QUEUE (8,20,0)

CALL VIAQ

f 8

CALL QUEUE (J, 10,0)

/

Occurrence of Process Interrupt
causes transfer of control to the
interrupt servicing routine.

CALL QUEUE (M, 20,0)

CALL VIAQ

~ J

J - continued

CALL QUEUE (N, 20, 0)

CALL VIAQ

~
CALL UNQ (M,20)
CALL UNQ (R 20)
CALL QUEUE (p, 10,0)

CALL VIAQ

J
At this point, the queue still contains at least
two entries for core load P and one for core
load N.

Figure 11. Use of Queueing Statements

X

(?/
i

•

When a CALL QUEUE statement is executed,
control is transferred to the real-time QUEUE
routine which tests for an entry in the Queue Table
with the identical name and priority as that specified
in the user calling statement. If such an entry exists,
a further entry will not be made -- a given core load
and priority cannot, by definition, appear more than
once in the Queue Table. However, the same core
load with varying priorities may appear once for
each unique priority.

If the entry is already in the queue, control is
passed to the next executable instruction following
the CALL QUEUE statement. If this is not the case,
the QUEUE routine tests for a Queue-Table-full
condition. If the table is full, control passes to
EAC which executes the function specified by the E

Interrupt Routine

CALL QUEUE (X, 2,0)

CALL INTEX

parameter. If the Queue-Table-full condition test
is not satisfied, the QUEUE routine will place the
core load entry in the Queue Table, and transfer
control to the next instruction following the CALL
QUEUE statement.

CALL QUEUE may be executed in a program
that was initiated by an interrupt or a specified
time interval, or as the result of a program de
cision. It should never be used as the last logical
statement of a core load since the QUEUE routine
returns control to the instruction immediately fol
lowing the CALL QUEUE. A CALL ENDTS (see
Use of Time-Sharing) statement is normally used
in conjunction with CALL QUEUE for time-sharing
systems. The main uses of CALL QUEUE can be
summarized thus:

Functions of Executive Programs 21

Problem: Repeated execution of queued core loads
during a given core load.

Solution: (The encircled numbers specify the sequence of operations.)

CALL CHAIN (B)

B

Note 1: The CAll SPECl statements cause core load A to be
saved before transferring to core load E via lines 3
and 8. The CAll BACK statement in core load R
causes core load A to be restored before the return
is made via lines 6 or 11.

CALL VIAQ

Continue execution of core loads until
a CAll VIAQ is executed and core load
R is highest priority in the queue.

R

CAll BACK

Note 2: Between lines 4 and 5 all core loads of priorities 1 and
2 will be executed; between lines 9 and 10 all core
loads of priorities 1 through 4 will be executed.

Figure 12. Illustrating a Method of Segm enting Mainlines Based on Scheduling Requirements

22

• To queue a core load from any program

• To queue a core load from any hardware opera
tional level

• To queue a core load when the user is unaware
what is presently in progress on anyone machine
level

• To queue a core load when the user is unaware
what machine levels are in progress, and

• To queue a core load that is not related to all
other core loads.

This is a very flexible command since related or
unrelated core loads can be scheduled on the basis
of time, a program decision, an interrupt, and from
any hardware operational level.

CALL UNQ -- Delete from the Queue

The reverse of queueing a core load entry is to
remove such an entry from the Queue Table in the
system. The statement which gives this ability is:

where

UNQ

NAME

P

CALL UNQ (NAME, P)

Name of the subroutine that removes
the specified mainline core load
entry from. the Queue Table
User-assigned name of mainlin8
core load entry to be removed
Priority status of user-assigned
core load NAME. This may be in
the range 1-32767.

Upon execution of a CALL UNQ statement, control
is transferred to the UNQ. subroutine which searches
the Queue Table for a similar entry of the same name
and priority. If such an entry is detected, it is re
moved (that is, deleted) from the Queue Table. If
the table does not contain a matching entry, the
Queue Table remains unchanged. In either case,
the UNQ subroutine returns control to the instruction
immediately following the CALL UNQ statement"
Like CALL QUEUE,. CALL UNQ may be executed at
any time and from any level of machine operation.
Note that no error parameter is required.

CALL QIFON -- Queue Core Load if Indicator is On

The third queueing-type call is the CALL QIFON
statement.

CALL QIFON (NAME, P, L, I, E)

where

NAME

P

E

L
I

User-assigned name of a mainline
core load
Priority status of each NAME, in
the range 1-32767.
Error parameter, as described for
CALL QUEUE
Interrupt priority level indicator
PISW bit position indicator or
CALL COUNT indicators

In TSX, a unique L and I combination parameter
is set up for each process interrupt, program
settable interrupt, and program interval timer rou
tine. The significance of this combination (which is
dependent on the user's machine configuration) is
given below:

L

0-23
0-23

(-)n

I

0-15
(-)n

0-31

Reference

Proces s interrupts
Programmed interrupts
(see CALL LEVEL)
Subprogram number for
CALL COUNT statements
(see Interval Timers)

Minus (-)n above refers to any minus number.

The CALL QIFON function is required only when
any of the above mentioned interrupts are set up to
be recorded (for delayed servicing). In general,
most interrupts call for immediate action, or as
soon as their appropriate servicing program can be
read from disk to variable core. Some interrupts,
however, must be recognized immediately, but do
not require action until a later time. The function
of delaying servicing is termed "recording": the
interrupt is then said to be "recorded". CALL
QIFON thus provides the user with the ability to
interrogate recorded interrupts only when he so
desires. It is the only way a recorded interrupt
can be serviced. Figure 13 illustrates the use of
this function.

The core load entries are queued only if their
respective interrupt record indicators are on. When
an indicator is on, the QIFON routine sets up the

Functions of Executive Programs 23

PROCESS CORE LOAD QIFON ROUTINE

CALL QIFON (NAME 1,35,6, 15,0) ____ +-__ --e~

CALL QIFON (NAME 2,8,0, 1,32767) ----+-----tI~

CALL QIFON (NAME 3,1,-1,22,32767) ---+------t-.c:

CALL QlFON (NAME 4,42,6,-1,0) ---------e..c

Figure 13. Use of the CAll QlFON Statement

proper information and then executes a CALL
QUEUE. If the Queue Table is not full, or the
replace error option is utilized, the QUEUE rou
tine returns control to QIFON which proceeds
with the interrogation of indicators until the QIFON
call is completed. A recorded interrupt indicator

24

YES

QUEUE ROUTINE

Queue

NAME 1
with a priority

f 3

Queue

NAME 2
with a priority

ueue
NAME 3

with a priority
of 1

Ouel.!e

NAME 4
with a priority

f

is automatically turned off (that is, cleared) when
ever the QIFON routine interrogates a program
indicator. Control is then passed to the next exe
cutable instruction following the CALL QIFON
statement, or as specified for error conditions
under E.

CALL QIFON may be used from any level of
machine operation. It should never be used as the
last logical statement of a core load.

CALL VIAQ -- Execute Highest Priority Core Load

The fourth and last queueing statement is

where

VIAQ

CALL VIAQ

Name of the subroutine that deter
mines the highest priority core load
entry in the Queue Table.

The CALL VIAQ statement, like CALL CHAIN,
and CALL BACK, is used as the last logical state
ment of a core load. When executed, control is
transferred to the VIAQ routine which interrogates
the Queue Table. If the table is empty, the process
is considered to be in an idle condition (that is, the
process does not require any action at this time.)
Since variable core is not utilized in this case, by
process core loads, control is passed to the Time
Sharing Control (TSC) program for nonprocess
work if there is work to do. The Nonprocess Moni
tor indicates that it has batch work to perform by the
execution of the Console Interrupt button, with sense
awitch 7 on. When the operator places a job stack in
the card hopper, he turns on sens e switch 7 and de
presses the Console Interrupt button. This informs
TSC that batch work is to be performed.

At the end of the job, the / / END OF ALL JOBS
card indicates no more batch work is to be performed
until the Console Interrupt button is again depressed.
This feature is provided to reduce the amount of
disk activity, and to give faster response to the
process whenever there is no nonprocess work for
execution.

The time-sharing operation, thus initiated, will
continue for the duration of time specified at system
generation time, or until it is terminated by a CALL
ENDTS statement. Note that a CALL VIAQ is auto
matically performed when time-sharing terminates.
If, therefore, an interrupt program has previously
placed a name in the queue, the named core load
will then be immediately executed (see also Use of
Time-Sharing). Figure 14 illustrates the use of this
calling statement.

Problem: All programs of a given priority must be
executed before a certain core load.

Solution:

A

A2

CAll QUEUE (A2, 2, 0)
CAll VIAQ

- I

Continue execution of core loads until a CALL VIAQ
is executed and core load A2 is the highest priority in
the queue. All core loads of priority 1 and 2 would
be completed before entering A2.

CALL QUEUE (A3, 4, 0)
CALL VIAQ

..

Continue execution of all core loads of priority 1, 2,
A3 3, and 4 until a CALL VIAQ calls A3.

CAll CHAIN (A4)

Figure 14. Use of the CAl.L VIAQ Statement

In normal operations, the queue might not be
empty, in which case the VIAQ routine obtains the
name of the entry with the highest priority. If
several entries have the same (highest) priority,
the first entry of that priority will be selected.

The VIAQ routine then sets up the proper infor
mation for a CALL CHAIN with the core load name
derived from the Queue Table, and passes control
to PSC to execute the CHAIN function exactly as if a
CALL CHAIN had been executed. Note that a core
load containing a CALL CHAIN statement is destroyed
by the core load it calls; a core load containing a
CALL VIAQ is, therefore, similarly overlaid in
core. The CALL VIAQ and CALL CHAIN commands
are similar except for the method of obtaining the
name of the core load to be called. Both calls, how
ever, have their own useful unique functions.

Functions of Executive Programs 25

GC26-3703-1
TNL: GN34-0036
Technical Change

Example of Non-synchronous Periodic Scheduling

The following example illustrates a simple technique
frequently used in a process control environment
whereby core loads can be executed on some periodic
time basis. This is known as non-synchronous per
iodic scheduling. The test case is not intended as a
model: it serves only to demonstrate program sched
uling techniques. The example is given In three easy
steps:

1. The Initial Core Load - - This is the initial
mainline core load named START which is read
into core by a cold start operation. The core
load first unmasks the system because cold
start enters the initial core load in an all-level
masked condition; it then sets a programmed
timer to initiate a continuous cycle of opera
tions (by calling the count routine :/1:0).

Figure 15 illustrates this core load. The use
of CALL CHAIN to call in another core load
(that is, ALPHA) is also shown.

2. Mainline Core Load ALPHA -- This is the
ALPHA core load called by the initial core load.
It is a mainline core load which prints out the
time of day (see Figure 16).

Figure 16 also shows the use of CALL VIAQ
to check the queue. If there is nothing in the
queue, the system establishes the time-sharing
mode (that is, the Nonprocess Monitor is
called).

If an / / END OF ALL JOBS has just been
executed, the VIAQ routine will wait until an
interrupt occurs to check the queue. Every
time this wait is interrupted, the operations
monitor will be reset.

If time-sharing is in progress (that is, the
Nonprocess Monitor is occupied), core is ex
changed and the Nonprocess Supervisor is read
into core, or alternatively, the interrupted non
process program is brought into core.

3. Count Routine PEROD -- This is the count rou
tine named PERon which is included in the Sys
tem Skeleton at system generation time.

26

It is entered by way of the Interval Timer
Control (ITC) program when the time period
specified in the initial core load START, or from
its own call, that is CALL COUNT (0, 1, 5), has
elapsed.

The function of PEROn is to end time-sharing
and to load ALPHA into the queue, so that when
time-sharing is ended and the queue is checked,
ALPHA will print out the time. It also restarts
the timer to repeat this cycle of operation (that
is, it starts the count again).

SAMPLE CODING FORM

Figure 15. Initial Core Load

SAMPLE CODING FORM

Figure 16. Mainline Core Load ALPHA

SAMPLE CODING FORM

Figure 17. Count Routine PEROn

HANDLING OF INTERRUPTS

Interrupt Philosophy

Basically, in all on-line real time control systems,
the processor-controller behaves in very much the
same fashion as a radar system. The real-time com
puter reacts to input data from a real world environ
ment and provides input data to correct or control
that environment. For example, a computer system
controlling a chemical process monitors the inputs
from measuring devices and instrumentation on the
operator's control panel. Later, the computer up
dates the control mechanisms and indicators to main
tain safe and efficient operation. Emergency condi
tions are also sensed and appropriate action initiated.
Instrument status sensing, data computation, and re
action control must occur within a specified interval
of time to prevent disruption of the process. How
well it is able to respond generally determines the
maximum capability of the on-line system. A sig
nificant component in the responsive ability of any
real time system is the inclusion of a powerful and
flexible multi-priority interrupt program.

Purpose of I/O Interrupts. There are two main
reasons for I/O interrupts:

1. To reduce system cost by reducing control cir
cuitry in I/O devices

2. To speed up job throughput, which is relatively
slow when compared with internal processing.

Consider a normal computer operation without
interrupts. Since the computer is basically a sequen
tial machine, it functions sequentially (or serially,
performing one job at a time). In the simple example
below,

INPUT1 - PROCESS1 - OUTPUT 1 - INPUT2 -
PROCESS2

when PROCESS1 is completed, the user must wait
until OUTPUT1 and INPUT2 are accomplished be
fore he can begin PROCESS2. This could be extreme
ly time-consuming.

Since the input device waits idly during PROCESS1
and OUTPUT1 time, the question arises: why should
this idle interval of time not be used to read in
INPUT2? This could be obviated with the use of I/O
interrupts. The I/O interrupt is based on the 'con
cept of keeping I/O devices active, thus, hopefully,
eliminating process delay caused by these devices.
The following sequence of events illustrates the type
of action that might be taken:

1. A mainline program initiates an I/O device
operation.

2. The program proceeds with its processing while
the I/O device is sending (or receiving) infor
mation.

3. When the I/O device has transferred its infor
mation, an interrupt signal is sent to the
Process Controller.

4. This interrupts the mainline program.
5. The interruption is serviced; that is, further

data is requested or sent.
6. The mainline resumes processing at the point

of interruption.
7. The cycle repeats itself during the execution

of the program.

Functions of Executive Programs 27

1800 Multi-Interrupt Priority Scheme. In the IBM
1800 Time-Sharing Executive System, the essential
elements of the multi -interrupt priority control
scheme consist of:

• A hardware priority structure

• Core store data areas for each interrupt level

• A Master Interrupt Control Program (MIC) which
recognizes, controls, and directs the servicing
of interrupts

The hardware priority structure provides for 3
fixed and up to 24 additional interrupt levels which
are assignable by the user to I/O, process, or
programmed interrupts, as shown in Figure 18.

The interrupt philosophy can be explained in the
following way. Because of the large number and
widely varying types of interrupt requests, it is often

PRIORITV DECIMAL
ILSW INTERRUPT

LEVELCi) ADDRESS

.~
Internal 1 8 Ves
Trace 26 9 No
CE 27 1@ No
Assigned 0 2 11 Ves
Levels 1 3 12 Ves

2 4 13 Ves
3 5 14 Ves
4 6 15 Ves

BASIC
5 7 16 Ves
6 8 17 Ves
7 9 18 Ves
8 10 19 Ves
9 11 20 Yes
10 12 21 Ves

11r 11 13 22 Ves
4,. 12 14 23 Ves

SPECIAL 13 15 24 Ves
FEATURE 14 16 25 Ves
GROUP 1 15 17' 26 Yes

+ 16 18 27 Ves
17 19 28 Ves • 18 20 29 Ves

SPECIAL 19 21 30 Ves
FEATURE 20 22 31 Ves

GlOUP 2
21 23 32 Ves
22 24 33 Yes
23 25 34 Ves

<D NOTE: 1 Highest priority
27 Lowest priority

3 Manually masked and unmasked by switch.

not desirable to cause a branch to a unique address
for each condition. For the same reasons, it is not
desirable to initiate one branch for all interrupt re
quests and to require the program to determine the
individual requests requiring service. Grouping the
numerous request lines into a number of priority
levels (see Figure 18) accomplishes two aims:

1. It allows all interrupt requests common to a
specific interrupt level to have the privilege of
interrupting immediately, if the only requests
present are of a lower priority level. Converse
ly, it permits interrupt requests connected to a
higher priority level to temporarily terminate
the servicing on a lower level and to immediate
ly interrupt to the higher priority level. Service
is returned to the initial request only after all
higher level requests have been serviced.

PISW (]) MASK & PROGRAM
I/O, TIMER, PROCESS

INTERRUPT:
ASSIGN'T UNMASK INTERRUPT

ASSIGNMENT ALLOWED

- No No No
- 0) No No

- No No No
2 Ves Ves Ves
3 Ves Ves Ves
4 Ves Ves Ves
5 Ves Ves Ves
6 Yes Yes Ves
7 Yes Ves Ves
8 Yes Yes Ves
9 Yes Ves Ves
10 Yes Yes Ves
11 Yes Yes Yes
12 Yes Ves Yes
13 Yes Ves Ves
14 Ves Yes Ves
15 Yes Ves Ves
16 Yes Yes Yes
17 Yes Ves Yes
18 Yes Ves Ves
19 Ves Ves Yes
20 Yes Ves Yes
21 Yes Ves Yes
22 Ves Ves Yes
23 Yes Yes Yes
24 Yes Ves Yes
25 Yes Ves Ves

~
24 PISW's Basic IBM 1800.

4 Return address in I-counter stored in decimal address 0010, but hardware-generated BSC addresses decimal address 0001.

Figure 18. Priority Interrupt Level Structure and Assignment

28

2. Since a unique branch can be defined for each
interrupt priority level, it is possible to com
bine many requests on a common priority level
and thereby use a common interrupt subroutine
to service many requests.

Each interrupt request line is thus positioned
into a table order of priority; the highest priority
being closest to the output, while the lowest priority
is farthest away. An interrupt request received at
a given level automatically causes the level to shift
from an uninterrupted to an interrupted state. If no
higher priority level is presently being served, the
scheme permits the request line to be activated. At
this time, a unique address associated with this
level is supplied to the system, which transfers
control to a core location determined by this address.
The mainline return address is now preserved and
entry made to the Master Interrupt Control Program
to direct the servicing of this interrupt. At comple
tion of servicing, control is returned to the point
of departure (see Figure 9).

In this way, every interrupt request is obeyed
immediately, provided no priority request is
presently in execution. The biggest advantage of
this method of priority level control is a near
optimum priority response. To guarantee. minimum
response time to alarm conditions, most process
interrupt servicing routines should be in core at
all times.

Characteristics of Interrupts

Interrupts can be classified into three broad types:

• I/O

• External (that is, process), and

• Programmed

Skeleton -resident interrupts operate on a true
priority basis from the 24 levels available. An
interrupt is, by definition, a hardware feature --
it is the machine hardware, not the Master Interrupt
Control Program which determines what level the
interrupt is on. As far as the problem programmer
is concerned, he has no control over the time of
occurrence of process interrupts. He has, however,
indirect control of their time response through
masking, recording, and the allocation of priority

levels. In general, interrupts are distinguishable
from one another only in the manner in which they
are serviced (see also ,§xstemDesign Considerations).

Priority Assignments. Some important considera
tions affecting priority assignments can be sum
marized thus:

• Each of the 24 levels can interrupt the mainline
program.

• Level 0 is the highest priority.

• Higher priority levels can interrupt lower
priority levels. Lower priority levels cannot
interrupt higher levels. This permits fast
access devices to interrupt slower ones.

• Hierarchy of machine operation:

Highest Interrupt level 0
1
2

•
•
•
•
•

23
Process Mainline

Lowest Nonprocess Mainline

• Interrupt levels may be masked by programming
means. Masking inhibits interrupts to the 1800.
The user is thus allowed to inhibit or permit
specified levels of interrupts, and to allow deter
mination of the status of interrupt levels -- that
is, whether they are inhibited or not -- at any
time. Through selective use of masking, data
channels can be kept in operation for the trans
mission of data into and out of core storage
while process interrupts are prevented from
occurring. This gives an increased efficiency
of execution of programs.

When a request line is unmasked, the Proces
sor-Controller is interruptible. Note that
although a level may be masked, the fact that the
interrupt has occurred is not lost. The function
of masking is used to delay recognition of an
interrupt.

Functions of Executive Programs 29

In practice, priorities must be assigned using the
interaction of functions with each other as a primary
basis. See also System Design Considerations:
System Director.

Types of Servicing Subroutines Used

An interrupt servicing subroutine may be

• An I/O device subroutine

• An interrupt subroutine included in the skeleton

• An interrupt routine included with a mainline

• A mainline core load

• An interrupt core load

The different options are provided to permit
flexibility in terms of both core storage and response
time requirements.

I/O Device Subroutines. An I/O device routine is a
routine that performs the second level of sensing of
a Device Status Word (DSW) or a Process Interrupt
Status Word (PISW). The first level of sensing the
Interrupt Level Status Word (ILSW) is carried out
by MIC. This means that any bit on the ILSW that
requires sensing at the second level may be executed
by an I/O device routine.

The majority of the I/O devices in the 1800 have
IBM-supplied device routines (e. g., disk, card/read
punch). Those that require sensing by the user at the
second level include the following:

• RPQ devices

• Special PISW's that the user may wish to sense
himself (e. g., multiple PISW groups per level)

• Any other I/O device (e. g., System/360 Channel
Adaptor)

These routines are entered with a BSC; they exit
by an indirect branch through word (90)10'

The appropriate entry reflecting the ILSW will be
assigned by the user on * Assignment control cards
to the System Loader at system generation time.

30

Subroutines that are entered from the I/O device
routine comprise count, timer, and process I/O
subroutines. They perform specific limited tasks
associated with the event that is occurring within
the I/O device (e. g., elapsed time on a particular
timer). Entry to the subroutine is made by a BSI;
the routine exits to its return statement by a BSC I
through the entry point. These subroutines are
included in the skeleton by *INCLD control cards.

Interrupt Subroutines included in the Skeleton. The
shortest response time (that is, the minimum time
before an interrupt servicing routine is entered
after the interrupt has been recognized) is obtained
by placing the routine in core with the System
Skeleton. The interrupt routine is included by
specifying a control card (*INCLD) at skeleton
build time. Like the interrupt core load, the in
core interrupt routine performs a limited task.
It is masked only for short periods of time by the
system during the execution of certain reentrant
coded routines. This period of time is normally
of the order of 20-30 instructions.

These routines are entered with a BSI; they
exit through a CA LL INTEX statement. Some of
the important factors governing their inclusion
in the skeleton area are discussed in detail in
System Design Considerations: System Skeleton.

Interrupt Routines included with a Mainline. Next
in length of response time to skeleton interrupt
routines are in -core routines loaded with the core
image mainlines. These are entered almost as
quickly as skeleton routines provided the mainline
is in progress when the interrupt occurs, but may
be forced to wait if the mainline is not in core.
This will be the case if a lower level interrupt
routine has been read over the mainline. The
length of delay involved would then be the balance
of the reading of the interrupt routine and the exe
cution of that routine and the read-back of the main
line. No immediate exchange to obtain the mainline
is done. If the interrupt that occurs has a routine
in the mainline and the interrupt is at a higher or
equal level to the interrupt being processed, the
interrupt core load assigned to this interrupt will
be read directly into core upon completion of the
interrupt core load being serviced.

An interrupt core load is always required before
any servicing of a process interrupt in-core with the

mainline can take place. If an interrupt core load
is not available, the event will be recorded even if an
interrupt servicing route is included with the main
line. The Master Interrupt Control (MIC) Program
first ascertains if an interrupt core load is available;
if it is, the ICL table is checked to see if the routine
is in the mainline; if it is not available, the event
is recorded. The interrupt routine is always ser
viced with the same masked status as an interrupt
core load.

Interrupt routines included with a mainline are
always entered by an indirect branch (BSI); they
exit through a CALL INTEX.

Mainline Core Loads. External (that is, process)
interrupts whose occurrences are recorded are
serviced with mainline core loads. The mainline
core load performing the servicing action is identi
cal to any other mainline core load, except that it
is queued for execution by a CALL QIFON statement.
Since it is a queued core load, it should have a CALL
VlAQ as its last logical statement. It could, of
course, be the first core load of a special series,
in which case it would end with a CALL CHAIN to
obtain the next core load in sequence, but a CALL
VIAQ must ultimately be executed.

Note that the only major difference between an
interrupt core load and a mainline core load used
for the servicing of recorded interrupts is in the
last logical statement used. This must be a CALL
INTEX for an interrupt core load and a CALL VIAQ
for a mainline core load.

If a process interrupt is immediately serviced on
some occasions and recorded on other occasions, it
would require two core loads (one for each function)
which would be identical in all respects except for
their last logical statement. To eliminate this dupli
cation of core loads, a special combination exit
statement (CALL DPART) is provided (see Exit
Procedures from Interrupt Servicing Routines). An
interrupt or mainline core load which terminates with
a CALL DPART is, by definition, a combination core
load.

The combination core load should not violate re
strictions placed on either mainline or interrupt
core loads. That is, mainline interrupt subroutines
are not allowed as part of this core load: only state
ments allowed in both mainline and interrupt pro
grams are permitted. See also Appendix B, Sum
mary of TSX Statements.

Interrupt Core Loads. The user may create inter
rupt core loads which are brought into core over the
mainline when the interrupt occurs. Interrupt core
loads are essentially disk-resident routines where
the response time is not a problem. They are re
quired for those interrupts that meet either of the
following conditions:

1. The user has specified the interrupt servicing
routine to be out-of-core.

2. The user has specified the interrupt servicing
routine to be in-core as part of a mainline
core load.

When this type of interrupt servicing routine is
executed, the area of core that the routine will
occupy is saved on disk before reading in the inter
rupt core load. The time for this save operation,
in addition to the time for the disk read operation
needed to get the interrupt core load, causes this
method of interrupt servicing to have the longest
response time. Once an interrupt servicing core
load has begun, it may be interrupted by a higher
level routine, only if the interrupt routine for this
higher level is in the skeleton on a higher level.

The use of interrupt core loads is normally re
stricted to the performance of a particular task at
a time, or the initiation of a task on a mainline level
which does not take an inordinate amount of time.
A typical example is the queueing of a sequence of
mainline core loads to accomplish the task that
originated an interrupt. The user should remember
that if his problem program is time-consuming, he
will, in the normal course of events, execute this
on the mainline level. The reason ;fpr this is that .
interrupt core loads cannot, by definition, interrupt
other interrupt core loads. This system restriction
is because of the disk exchange time that would be
required.

Interrupt core loads are built and assigned to a
particular process interrupt bit (PISW) on pro
grammed interrupt level. The core load then per
forms the servicing task or sets in motion the task
that will be required when this specific bit is
activated.

Note that this type of interrupt servicing routine
does not contain an Interrupt Status Table (1ST).
The reason is that the 1ST is used for updating the
Interrupt Core Load Table (ICLT), and the ICL table
is only updated from mainline core loads or from
combination core loads when these are executed at

Functions of Executive Programs 31

the mainline level. For the same reason, the
interrupt core load cannot include other routines
within it. Another explanation is that the programs
that might be included in an interrupt core load are
masked off during its execution.

speed, therefore, the Interrupt Save Area can be
made smaller.

Note also that interrupt core loads can communi
cate with mainline core loads (and combination core
loads when these are executed as interrupt core
loads) only through INSKEL COMMON. The inter
rupt core load itself contains a COMMON which is
located at the end of the Interrupt Save Area.

An interrupt core load is not necessarily the
length of variable core: it has a defined length
(see System Design Considerations: Disk System
Configuration). Hence, in contradistinction to
mainline core loads, all of variable core is not
needed because of the limited function performed
by this type of core load. To increase execution

Figure 19 gives a summary of the types, charac
teristics, and location of process interrupt servic
ing routines.

Type of Routine and Location

Skeleton Interrupt Routine

C ore Storage Location

Skeleton Area Variable Area

Mainline Interrupt Routine

Core Storage Location

Skeleton Area Variable Area

Interrupt Core Load

Core Storage Location

Skeleton Area Var.iable A(ea

Mainline Core Load

Core Storage Location

Skeleton Area Variable Area

Combination Core Load

Core Storage Location

Skeleton Area Variable Area

Permanently in core.
Normally high priority.

Characteristics

Can immediately interrupt lower priority routines, and
Interrupt Core loads if no Interrupt Core load is
assigned to that level.
Fastest interrupt response.
Must CALL INTEX as last logical statement.

Available almost as quickly as Skeleton Interrupt routines, if the mainline
is in-core.

Once execution is started, only interruptable by Skeleton Interrupt Routine
or internal interrupt.

Can be different with each mainline core load.
Interrupt core load is required.
Must CALL INTEX as last logical statement.

Large core area avai lab Ie.
Once execution is started, only interruptable by Skeleton Interrupt Routine

or internal interrupt.
Mainline or nonpracess program in operation at time of interrupt is saved

before and restored after Interrupt Core Load operation.
CALL INTEX is last logical statement used. Cannot include interrupt

routines for other interrupts.

targe core area available.
Can include interrupt routines.
Oueued for execution if record indicator is on when named in Q1FON statement.
If mainline core load is alway:> queued, last logical statement should be

CALL VIAQ.

Cannot violate any rules governing interrupt and mainline core loads.
Large core area available.
Queued for execution if record indicator is on when named in QIFON

statement.
CALL DPART is last logical statement used.

Figure 19. Summary of Characteristics of Process Interrupt Servicing Routines

32

Exit Procedures from Interrupt Servicing Routines

Three forms of exiting are used:

• CALL INTEX

• RETURN

• CALL DPART

CALL INTEX -- Interrupt Exit

All interrupt routines serviced on an interrupt level
must return control to MIC through a

CALL INTEX

statement. INTEX is the symbol for INTerrupt
EXit. CALL INTEX must be used as the last logi
cal Statement in skeleton interrupt routines. It
can also be used in interrupt core loads.

RETURN

Subprograms called by user-written interrupt
servicing routines must use a

RETURN

statement to return to the interrupt routine or may
return control directly to MIC.

CALL DPART -- Departure

CALL DPART causes the level of operation to be
tested for the following conditions:

• If the present level is an interrupt level, a
CALL INTEX is executed.

• Otherwise a CALL VIAQ is executed.

Thus CALL DPART eliminates duplication of
core loads. An interrupt that is sometimes directly
serviced, and sometimes recorded, can now be
serviced with the same core load. This core load
operates from an interrupt level when servicing
is specified; it is queued and operates from the
mainline level when the interrupt is specified as
recorded.

Figure 20 illustrates the use of the two exit
CALL and RETURN Statements.

Master Interrupt Control

Once an interrupt has been detected at the hardware
level, a reentrant control program, the Master
Interrupt Control (MIC) program, takes over the
control and servicing of that interrupt. The inter
rupt is first recognized by the interrogation of
certain indicators on a level.

The MIC routine is assembled as part of the
System Director at which time it origins out those
tables and coding not used by the system to user
specifications. MIC resides in core at all times
in an on-line TSX system when the computer is
operating under control of the System Skeleton.
It is designed to:

• Save the interrupted registers whenever an
interrupt is processed on the appropriate work
level

• Direct the interrupt to its servicing routine

• Restore the FORTRAN I/O buffers if required

• Restore the interrupted registers, and

• Return to the point of departure in the inter
rupted program.

Detailed Action of MIC when an Interrupt Occurs

Consider the train of events that follows when a
process interrupt is generated by an event within
a process control environment. Let us assume
that this interrupt was originally assigned (at
system generation time) by the user on an NB
(System Director) equate card to level zero.
Remember that an interrupt is, by definition, a
hardware feature, and that the user has limited
control over the time of occurrence of process
interrupts, except by masking, recording, and
the allocation of priority levels. Figures 21, 22
and 23 illustrate this action in Simplified form.

Entry to MIC.

1. In the 1800, an interrupt request is recognized
at the completion of the current instruction

Functions of Executive Programs 33

being executed within a mainline program. When
this happens, an indirect branch (BSI) to a fixed
word (location 11) in core takes place. This
word contains the start address of a level work
area associated with level 0 (see System Design
Considerations: System Director). A set of in
structions within this area then sets the level

The sequence of operations {specified by the encircled numbers} can be either
1, 2, 3, 4, 5, 6A, 68, 6C, 8, 9, 10, or 1, 2, 3, 4, 5, 7A, 78, 8, 9, 10.

Mainline Core Load

Occurrence of Process Interrupt
causes transfer of control to the
interrupt servicing routine.

busy, saves Index Registers 1, 2 and 3, and sets
Index Register 3 as a pointer to this work level
(at entry point + 8). It is through the level work
area that an interrupt formally enters MIC -
from now on, all references to the work area
and saved information is made through the
Index Register 3 address.

JOE

81LL

CALL 8ILL------+---C

SAM
CALL SAM

Figure 20. Use of the CAll. INTEX, CAll DPART, and RETURN Statements.

34

2. MIC is the entry point at which all process
(and I/O) interrupts enter the Master Control
Program for processing. The accumulator,
the status word, and the pseudo-accumulator,
are now saved for the particular level of inter
rupt being processed. The previous (that is,
last) work level address is also saved, and the
new (that is, current) work level address set
up for use by reentrant coded subroutines so
that they are aware of the address of the par
ticular work level they are required to use at
this particular time. Now that the registers
of the interrupted level have been saved and the
new level (0) address set up, the question of
determining which of 16 possible interrupts is
to be serviced on this level remains. This is
done by sensing the ILSW. If no bits are "on"
in the ILSW, a check is made to see whether
a programmed interrupt has been selected for
this level; if it has been, a transfer is made
to (A) in Figure 22, and the processing pro
cedure proceeds as for a process interrupt.
If no programmed interrupt is present, an exit
from MIC is made via (B) -- see Figure 23.

3. If a bit is on, a branch is made via the level
work area to the Interrupt Branch Table within
the mainline core load to determine whether
the interrupt is a process or I/O interrupt.

Each core load (mainline, combination,
interrupt, or nonprocess) must contain an
Interrupt Branch Table which provides the
means of routing each I/O, process, or pro
grammed interrupt to its appropriate servicing
routine. The table, built in reverse order as
shown in Figure 21, consists of single-word
entries, each of which contains either an entry
address to an I/O device servicing routine for
an I/O interrupt, or a fixed address within the
Skeleton for a process interrupt. The table is
initially built by the Skeleton Builder and Core
Load Builder to the specifications of the System
Loader. Its size is determined by the number
of bits on all interrupt levels used.

Since we are concerned with a process inter
rupt (LEVEL BIT 0 = PISW, see Figure 21)
level 0 will contain the entry pOint PRIE (that is,
the reentry point to MIC). (Note that if an I/O
interrupt were present instead, the I/O servic
ing routine is entered. The case of an I/O inter
rupt occurrence is discussed later).

4. The PISW derived from the work level is now
sensedo If no bits are on (that is, no event has
taken place within the process control environ
ment) the exit route (from MIC) is taken via (B).

If a bit is on, it is reset, and the address of
the ICL table associated with this particular
interrupt set up.

5. Now that the process interrupt is correctly
known, the option of processing must be inter
rogated and executed -- that is, we must now
determine what type of servicing this particular
process interrupt requires. Various tests are
performed to determine:

• Whether the interrupt is to be recorded

• Whether the interrupt servicing routine is
in core with the skeleton

• Whether the interrupt is to be serviced by
an out-of-core interrupt core load, or

• Whether the interrupt servicing routine is
in core with the mainline

in conjunction with entries made in the ICL
Table (see System Design Considerations: Sys
tem Director).

The first test ascertains whether this particu
lar interrupt is to be recorded. If it is, a sub
routine records the interrupt. If it is not to be
recorded, a check is made to see if the interrupt
servicing routine is included with the skeleton.
If it is, it is serviced by that subroutine. The
next test determines whether an interrupt core
load has been loaded to the disk to service this
interrupt. If it has not, the interrupt is auto
matically recorded. If it has, all interrupt
levels serviced by out-of-core routines will be
masked. This also prevents a user from un
masking any level that is asssociated with out
of-core interrupts.

A test is now made to determine if the inter
rupt servicing routine is in core with the main
line program. If it is in core with the mainline,
the mainline itself is in core, and we are not in
an exchange of variable core; the Index Register
is then set to the transfer vector, and the entry
point of the interrupt servicing routine is located
in the Interrupt Status Table. Entry points to
interrupts in core with the mainline are situated
in a table known as the Interrupt Status Table
(1ST). The format of the table consists of:

• One word indicating the length of the table
for each level

• One word for interrupts that are in core
wi th the mainline

Functions of Executive Programs 35

PRIORITY
INTERRUPT
LEVELS

I

2 13

3 14
4 15

• • • • • • • •

• • • • •

(SEE FIGURE 23)

Figure 21. Action of MIC During an Interrupt

36

LEVEL WORK AREAS

YES

(SEE FIGURE 22)

PROCESS INTERRUPT
ENTRY POINT

PRIE XIO PISW

INTERRUPT
BRANCH TABLE

• • • • • •
• • •

LEV3BITO

LEV2BITI

LEV2BITO

LEVI BITO

LEVOBITI

LEVOBITO

I/O ROUTINES
ENTRY POINT

-_._-
• -_._--_._-
• • • -_._-

BSC I 90

C

• •
• • •
•
• • •

1442

1053

PISW

1443

DISK

PISW

• One word for interrupts which are to be
recorded on a particular level

followed by as many words as are necessary to
contain the start address of interrupts in core
with the mainline. The size of the table is
determined by the user when he defined his
system.

If the interrupt is an out-of-core interrupt,
I/O must be completed in the mainline area
prior to either exchanging core, or, if we are
in an exchange, prior to reading in the inter
rupt core load. Once the interrupt core load
is read into core, Index Register 3 is set to
the transfer vector and the interrupt entered
for execution. An exchange means that variable
core has been saved in the Interrupt Save Area
on disk. The area exchanged will be the size of
the largest interrupt program specified by the
user.

Note that due to cycle stealing I/O, some
area may be either modified or recorded at the

I
I
I
I
I

RECORD
IT

YES
1 ,-------

__ +_1
I r----

(SEE FIGURE 23)

NO I I - _____ + ____ I
I
I

>-Y.;.;E;.;,S---IIL.....tI~ SERVICE
IT

MASK ALL
OUT-OF-CORE
INTERRUPTS

I

+

Figure 22. Action of MIC during an Interrupt (Continued)

I
I
I

_J

time the process interrupt occurred. This
means that out-of-core interrupts must always
be assigned to a priority level lower than all
I/O devices.

Exit from MIC. All process interrupt routines
terminate by a return CALL INTEX statement to
MIC. INTEX is the address to which interrupt
servicing routines return upon completion of their
processing. If the servicing routine just executed
was an out-of-core routine, all out-of-core inter
rupts are unmasked at this point to allow other out
of-core interrupts to occur, so that it is not necess
ary to carry out an exchange of variable core for
the servicing of that particular interrupt. For both
in-core-with-Skeleton and out-of-core routines a
common exit from MIC is taken via (C) and (B) - -
see Figure 21 and 23 - - if this is the last servicing
required (no further PISW bits on). Note that this
is also the exit path for all I/O interrupt routines.

If additional process interrupts are indicated

INTERRUPT
CORE LOAD
TABLE (lCLT)

""'4. IN-SKELETON

IN MAINLINE

~ RECORD

-0 RECORDED

-4
r'0RD COUNTI

START
--4 ADDRESS
I

SECTOR I
I

ADDRESS

I
I - -

YES

~

SAVE
CORE

GO TO START
ADDRESS OF
INTERRUPT
SERVICE
ROUTINE IN
MAINLINE

Functions of Executive Programs 31

(that is, more bits for PISW sensing are on) the
exit routine proceeds to (A) -- see Figure 22 - -
and the procedure continues in the normal fashion of
a process interrupt. A closed loop is thus main
tained until all process interrupts have been ser
viced, finally exiting through the common exit point
(C) for all categories of interrupts. At (C) a test
is made to see if a programmed interrupt is re
questing service on this level. If yes, the user's
interrupt servicing routine will be executed. This
routine will eventually exit to INTEX, and the test
at (C) will be made again. Since there can be only
one programmed interrupt per level, this time there

ALL INTERRUPTS

RESTORE
FORTRAN
I/O BUFFERS

MASK ALL
INTERRUPTS

RESTORE
REGISTERS

UNMASK
ALL
INTERRUPTS

XIO ALL
PROGRAMMED
INTERRUPTS

RETURN TO
INTERRUPTED
PROGRAM

PROCESS INTERRUPT

NO

C A

TEST FOR
PROGRAMMED
INTERRUPT
(See Figure 21)

Figure 23. Exit from MIC After an Interrupt Has Been Serviced

38

YES

will be a branch to (B). Here it is decided whether
variable core is to restored or not. If variable core
has been saved as the result of an interrupt on the
same interrupt level as the current level, all out
of-core levels are masked and variable core rw,
stored to its proper status which existed prior to
the interrupt. The system is then unmasked to the
user's level. If the current interrupt level is of
higher priority than the level on which variable
core was saved, no restoring is performed since
this will be done when the current level has been
left, and the lower priority interrupt level is
allowed to resume execution. (See Figure 23).

UNMASK ALL
OUT-OF-CORE
INTERRUPTS

MASK ALL
OUT -OF-CORE
INTERRUPTS

READ IN
MAINLINE

UNMASK ALL
OUT-OF-CORE
INTERRUPTS

TEST FOR
PROGRAMMED
INTERRUPT
(See Figure 21)

MASK ALL
OUT-OF-CORE
INTERRUPTS

READ IN
SAVED VCORE

UNMASK TO
USER'S LEVEL
(=LAST CALL
MASK OR CALL
UNMK)

The Case of I/O Interrupts. When an I/O device
interrupt occurs, a similar procedure to that dis
cussed in 1), 2), and 3) is adopted. In 3), it was
mentioned that in the case of an I/O interrupt, the
I/O servicing routine will be entered through its
entry point in the Interrupt Branch Table (IBT).
Some of the important aspects of the I/O device
routine are discussed elsewhere in this section.
The last instruction in an I/O device interrupt sub
routine is an indirect branch BSCI 90 back to MIC.
Before an exit is made through the common exit
pOint «B) -- see Figures 21 and 23) for all cate
gories of interrupts, a check is performed to deter
mine the presence of a programmed interrupt within
the two groups of possible programmed interrupts -
group 1 (levels 0-13) and group 2 (levels 14-23).
Only the bit associated with a level is tested. If a
programmed interrupt is present, a branch is made
to (A) and processing proceeds as for process inter
rupts. The I/O device interrupt, otherwise, under
takes to exit from MIC through the common route (B).

At this point, the FORTRAN I/O buffers are re
stored to their former state. All interrupt levels
are masked, Index Registers 1, 2, and 3, and the
accumulator, and words 54 and 55 are restored and
the system is unmasked to the user's level. Pro
grammed interrupts are now turned on (they were
previously turned off) and a return is made to the
interrupted mainline program.

Masking, Servicing, and Recording of Interrupts

An interrupt may occur at any time, but it will not
be recognized by MIC until the level on which it is
assigned is unmasked and of a higher priority than
the current level of machine operation. It is the
1800 hardware, not MIC, that determines which
level the interrupt is on. Interrupt levels are user
specified at system generation time. The user may

delay any interrupt from being recognized by
masking the level on which that interrupt has been
assigned. For example, it may be to his advantage
to delay the servicing of an interrupt to minimize
core exchanges such as when it is known that a pro
gram is short and the interrupt can wait. In another
situation, he may desire to prevent interrupts en-

tirely from occurring, such as when a routine can
not be reentrant and may be called from more than
one level. Once an interrupt has been recognized,
MIC will determine if it is to be (1) serviced im
mediately or (2) recorded for servicing at a later
time. ServiCing an interrupt may be delayed by
the user by Simply setting a record option on that
interrupt. The options of recording or servicing
interrupts immediately may be changed from one
mainline core load to another. This designation
is made when the core load is initially built. MIC
also services interrupts (a maximum of 384) in an
optimized sequence within the user's specifications.

Masking of Interrupts

Interrupts can be prevented from occurring by
masking. This is accomplished by using four
real-time subroutines provided in TSX:

• CALL MASK

• CALL UNMK

• CALL SAVMK

• CALL RESMK

Call Mask. CALL MASK can be used to lock out
for some time period those designated interrupt
levels on which the user does not want interrupts
to occur during some time-dependent programs.
This routine gives him the facility to inhibit or
mask out groups of interrupt levels (0-13; 14-23)
or selectively chosen interrupt levels. The
status of levels not designated remain unchanged.
The format of this statement is:

CALL MASK (I, J)

Where I and J are integer expressions which
designate the level(s) to be masked. Bits 0-13
of I refer to levels 0-13. Bits 0-9 of J refer
to levels 14-23. Each one bit specifies a level
to be masked. Both parameters are always
required.

Functions of Executive Programs 39

EXAMPLE 1. In this and following examples, DATA
statements are used in conjunction with the CALL
MASK and CALL UNMK statements to set up desig
nated levels. See IBM 1130/1800 Basic FORTRAN
IV Language, Form C26-3715.

The problem is to mask levels 5, 7, 11, 12, 21,
22 and 23.

DATA I, J/Z0518, ZOICO/

CALL MASK (I, J)

Call Unmask. CALL UNMK gives the user the abil
ity to unlock an interrupt level -- that is, it allows
interrupts to be recognized on a level. Thus, he
may, if he wishes, selectively allow or unmask
interrupts, one level at a time. This is a required
routine (and procedure) for the initial core load -
the first core load called into the system by the
Cold Start program. The statement format is

CALL UNMK (I, J)

Where 1 and J are integer expressions which
designate the levels to be unmasked within
the two groups of levels as for CALL MASK.

EXAMPLE 2. The problem is to unmask levels 1,
2, 3, 5, 12, and 21.

DATA I, J/Z7408, Z0100/

CALL UNMK (I, J)

From Examples 1 and 2 we see that

• Levels 1, 2, 3, 5, 12, and 21 are unmasked,

• Levels 7, 11, 22, and 23 are masked.

• Levels 4, 6, 8, 9, 10, 13-20 are unchanged.

The mask and unmask subroutines maintain a
current record of the interrupt level mask status.
This is necessary since the system sometimes
masks all levels and then restores the status of
these levels according to this record. The user
should always mask and unmask via these routines
to keep this recordcurrent.

EXAMPLE 3. The problem is to unmask all levels
(as at cold start time).

CALL UNMK (-1, -1)

40

Call Save Mask. CALL SAVMK allows the user to
save the masked condition (that is, the contents of
the current mask words) that existed prior to his
calling for masking. The statement format is:

CALL SA VMK (I, J)

Where 1 and J are integer variables that will
receive the contents of the retained mask words.

For example, a mainline has just masked cer
tain levels of interrupts. The user may not be
aware of this condition -- that is, he may not know
which bits are on (masked). So, he executes a
CALL SA VMK to save this condition prior to mask
ing those levels of interrupt he plans to have masked.
When he is ultimately ready to unmask these levels,
he executes a CALL RESMK which restores or re
turns the masked register to its original condition.
This acts, effectively, as a mask and unmask rou
tine and is closely analogous to the saving and re
storing of registers, etc., during the handling of
an interrupt.

Call Restore Mask. CALL RESMK is used to per
form a mask and unmask operation to restore the
interrupt mask register to its previously saved
condition. The variables used as parameters are
normally those named in a previous CALL SA VMK
statement. Its format is:

CALL RESMK (I, J)

Where 1 and J are as for CALL MASK, except
that each one bit specifies a level to be masked;
each zero bit specifies a level to be unmasked.

EXAMPLE 4. The problem is to mask levels 5, 7,
9, 10, and 12; unmask all other levels.

DATA I, J/Z0568, ZO/

CALL RESMK (I, J)

Restrictions. It is not possible to unmask an out-of
core interrupt level:

1. while an out-of-core interrupt level specified
on the System Director equate cards ICLLl-2
is. being serviced,

2. while a mainline core load is being loaded by
the Program Sequence Control (PSC) program
-- e. g. , by CALL CHAIN, CALL BACK,
CALL SPECL.

Servicing of Interrupts

In the servicing of interrupts, the answers to three
vital questions must be known:

1. What caused the interrupt?
2. How fast is its response?
3. How often does it occur?

In practice, the service action taken depends to
a large extent on the frequency of occurrence of an
interrupt, and the time required to service it -
that is, its servicing time span. There are, in
general, four approaches in servicing interrupts:

• The servicing routine may reside in the skeleton.

• It may be located on disk as an interrupt core
load.

• The user has the option to include the servicing
routine as an integral part of a mainline core
load.

• The user has the option to record the interrupt.
That is, he may delay its servicing until it is
cleared by a CALL CLEAR or serviced by a
CALL QIFON.

CALL CLEAR -- Clear Recorded Interrupts

The CALL CLEAR Statement is used to ignore or
clear interrupts which have occurred but which
were recorded for later servicing. The statement
format is:

CALL CLEAR (M, L, I, L, I,)

Where M = an integer constant which specifies
the number of parameters to follow.
If M = 0, all indicators specifying
the recorded status are changed to
indicate "not recorded".

L and I as for CALL QIFON (see Program
Scheduling) .

is serviced by an out-of-core interrupt core load.
This core load may, in turn, be made to queue a
mainline core load or a series of mainline core
loads to alter, say, the entire user control strategy.

Consider another example. A mainline core load
may begin a chain of operations by setting up a pro
grammed interrupt for a specific level. This inter
rupt may be recorded, or it may be immediately
serviced.

The user will always obtain rapid and immediate
servicing of interrupts if he (1) includes his inter
rupts as part of the System Skeleton, (2) does not
record these interrupts. Interrupts that reside in
core with the skeleton never require an exchange,
while those that are included with a mainline core
load may require an exchange if a nonprocess pro
gram is in memory on a time-sharing operation.
If, however, time-sharing is not being used (that is,
the mainline core load is in memory) or another
interrupt serviced by an interrupt core load is not in
progress, interrupts in core with the mainline core
load will be serviced almost immediately.

In general, therefore, interrupt servicing rou
tines should be short in execution time. The reason
for this is that the 1800 hardware locks out lower
priority level interrupts for whatever time that is
involved on that level. That portion of the inter
rupt routine that is not required for execution at
this priority level sho!lld, therefore, be carried
out either at the mainline level or at a lower priority
level.

If mainline core loads are used to service inter
rupts through the queueing technique, then the user
must ensure that his mainline core loads do not
remain in execution for a period of time that is
unacceptable to him prior to checking the Queue
Table. A mainline core load may be interrupted
by a CALL SPECL in such a core load (see Pro
gram Scheduling).

Recording of Interrupts

In general, interrupts may be recorded, that is,
deferred service, under any of three different sets
of circumstances:

1. When the user has one or more mainline core
CALL CLEAR can be used in any process loads that must be executed within a certain

program.
The above four general approaches provide a

variety of ways of handling a specific interrupt.
For example, an INSKEL interrupt routine may
set up a programmed interrupt for a level which

time span.
2. When the user is adjusting or optimizing the

process control and creating conditions which
would cause interrupts to occur, and he elects
to ignore them.

Functions of Executive Programs 41

3. The user may wish to record interrupts for
later servicing, but he prefers to do this
through a CALL QIFON procedure rather than
have them serviced on an interrupt level.

Interrupts to be recorded are entered on a
*RCORD control card (in any order) and assembled
at core load build time. The data set up in the card
is later placed into the Interrupt Core Load Table
from the Interrupt Status table (within each core
load) by PSC.

The 'lction of MIC when an interrupt occurs and
the procedural flow through its servicing has al
ready been described elsewhere in this section.

Rules Governing the Servicing of Interrupts

1. If an interrupt is serviced by a subroutine lo
cated in the variable area, it must be at a
lower priority level (higher number) than the
I/O device. This applies to:

Interrupt and combination core loads
Interrupt subroutines included with the
mainline

The exception to this rule is that an interrupt must
be on a level of priority lower than the I/O device
it intends to use except for the disk and the 1053
typewriter. DISKN and TYPEN are so written that
if either the disk or the typewriter detects that its
call was executed from a level with a higher priority,
it will remain in itself until the servicing operation
is completed. This is achieved by sensing the ap
propriate Device Status Word (DSW).

2. If a servicing routine does not use any I/O
device, it may be on any level, but the routine
must be in the skeleton -- not in the variable
area of core.

3. Interrupts on levels that are serviced by out
of-core interrupt core loads are serviced in
the masked mode so that they cannot be inter
rupted by another interrupt serviced by an out
of-core routine. Only one level of exchange
is maintained.

USE OF INTERVAL TIMERS

In most industrial control installations, some portion
of the control of the user's system will require re
sponse in time -- that is, the user may want to

42

schedule his programs periodically or at a specific
time of day. For example, he may wish to print a
shift log on a synchronous basis, say at 8 a. m. ,
4:30 p. m., and midnight each day; or he may take
periodic scans of his process instrumentation once
every five minutes; or there may be certain loops
to time out.

An interval timer is, by definition, a clocking
device which cycles a value contained in a full word
of main storage. It thus provides a computer sys
tem with the ability to read elapsed time in second
or millisecond increments, and to inform the system
when a specified period of time has passed.

A simple cyclic timer serves, in effect, both as
a basic interval counter and clock. In order to
measure an elapsed time interval, a predetermined
total count is loaded into the counter word storage
by program control and a count down to zero is
initiated. As the particular counter reaches zero,
an internal interrupt signal is sent to the system.

Information about elapsed time and local time
is often required by control computer systems to
initiate hourly logs, to time the period between con
trol actions on the process, for process data
updating, etc. The time of day is required for
printing logs, alarm records, and so on.

Clock interrupts can be used to start a scheduled
computer operation. For example, in the control of
a complex distillation plant process, periodic inter
rupts have been used to initiate the recalculation of
the reflux ratio required to maintain a desired sepa
ration in the tower. In this situation, control of a
dependent process quantity is possible through a
periodic reexamination of process conditions re
quiring extensive computer time.

To accomplish the above, the Interval Timer
Control (ITC) program provides for FORTRAN
language control of three hardware interval timers,
A, B, and C which operate on various user-specified
time bases (see Table 1). Timers A and Bare
available to the user, while Timer C is used ex
clUSively by TSX for time-sharing control purposes
and as a real-time clock. Furthermore, Timer C
is expanded into nine additional programmed interval
timers -- thus making available to the user a total
of 11 interval timers. As shown in Figure 24, each
interval timer is assigned a fixed location in core
storage.

ITC also performs three additional functions:

• Resets the Operations Monitor during time-sharing

• Tests for no response from 1053 printers

• Performs end of time-sharing

Name Core Stnrage Location

Machine Timers

A 00004

B 00005

C 00006

Programmed Timers

1 00062

2 00065

3 00068

4 00071

5 00074

6 00077

7 00080

8 00083

9 00086

Time-Sf-lO ring Clod. 00089

Figure 24. Timer Locations in Core Storage

The establishment of the two principal time bases,
the Primary (or Interrupt) Time Base and the Sec
ondary (or Programmed) Time Base, and their re
lationships to tho system are discussed in the section,
System Design Considerations: System Director.

Each timer is assigned to a wired-in time base
by the user at system generation time, selectable
from the table of available time bases given in
Table 1.

The. 125ms time base is available only on a 2usec
machine; the 128ms time base, only on a 4usec
machine. Each timer is assigned a permanent time
base by the user. Note that a different time base can
be selected for each timer, but all three timers (A,
B, and C) must be assigned to the same interrupt
level. In order to schedule programs based on hours,
minutes, or seconds, the wired-in time base for
interval timer C must be an even divisor of one
second (e. g., .5, 1, 2, 4, 8). The servicing of all
interrupts is controlled by ITC.

Hardware Timers A and B

CALL TIMER

In order to use timers A and B, the system pro
vides a basic call statement:

where

NAME

INT

CALL TIMER (NAME, I, INT)

Name of the user's subprogram
that is executed when the specified
time elapses. Note that NAME
must also appear in a FORTRAN
EXTERNAL statement (see IBM
1130/1800 Basic FORTRAN IV
Language, Form No. C26-3715).
An integer expression whose value
must be:

1 for Timer A (word 00004)
2 for Timer B (word 00005)

A user-assigned positive integer
expression which specifies the
number of interval counts before
the user's subprogram is executed.

The subprogram specified in a CALL TIMER
statement must be in core storage when the interrupt
generated by the timer is recognized. The interrupt
occurs when the time specified has elapsed, but it
is only recognized

1. When the level of current operation is lower
than the timer interrupt level, and

2. If the timer level is unmasked.

Table 1. Table of Available Timer Time Bases

Core Storage
Cycle Times

2 ,",sec

Available Time Bases (In Milliseconds)

.125

.25

64

128

Functions of Executive Programs 43

At the end of the elapsed time, the timer resets
itself. Note that, when zero time has been .reached,
the timer continues to operate -- that is, zero is not
a not-busy condition.

In the section System Design Considerations: ~
tem Director, it is pointed out that it is the user" s
responsibility to ensure that the mainline program
containing the call statement remain in core until
the end of the elapsed specified time -- that is,
until the timer times out. He achieves this either
by

1. including the subroutine named in the Call
Timer Statement in the Skeleton, or

2. masking out all out-of-core interrupt levels,
and forbiddin6 a core load exit until the timer
interrupts.

Unless previously loaded with the System Skele
ton, the subprogram is automatically loaded with
the calling mainline core load.

In addition, periodic programs (that is, programs
initiated by interval timers) should not, as a rule,
be executed on the timer level: they should make
use of the programmed interrupt technique.

The following examples assume that the timers
specified are called from only one level. If possible,
it is preferable not to share timers among two dif
ferent programs.

EXAMPLE 1. Assume hardware Timer A is wired
for the . 125ms time base.

CALL TIMER (SCANl, 1, 35)

When this statement is executed, ITC initializes
Timer A (by setting it to -35) and returns control
to the next executable instruction following the CALL
TIMER statement. When the Primary (or Interrupt)
Time Base (= 35 X .125 = 4.375ms) elapses, an
interrupt occurs and control passes to the subpro
gram named SCANI.

EXAMPLE 2. Assume hardware Timer A is wired
for the 1ms time base.

44

SAMPLE CODING FORM

If we assume that the Primary Time Base
(= 500ms) for statement 1 in the above coding
has not elapsed, the Timer A interrupt will occur
2ms after execution of statement 2 when subpro
gram MILL2 will be executed. Subprogram MIL5H
will never be executed because Timer A was reset
before the 500ms time elapsed. Although this con
dition can be prevented (see Example 3), its logic
can prove useful under certain practical conditions.

EXAMPLE 3. Assume identical conditions as for
Example 2. This example illustrates the use of the
LD functional subroutine in testing for a timer-busy
condition.

The format of this function is:

where

I

LD(I)

A user-assigned integer expres
si0n that specifies a core storage
address. The contents of this
address are moved to the accumu
lator. This permits a test for
busy, etc., of known locations
outside of the program area.
Timer storage locations are
given in Figure 24.

SAMPLE CODING FORM

" I, ", I! " ! I j" ,I" " I!, ,,1, ", I!" ,I" I , I, ' , ,I

Statement 2 tests if Timer A is busy. If it is
busy (that is, negative in core location 00004), a
programmed loop is activated until Timer A is no
longer busy (that is, when subprogram MIL5H
is executed) at which time statement 3 is processed.

EXAMPLE 4. Another example is given to illustrate
the use of the LD subroutine function for a test for
timer-busy condition.

This test is required if subprogram SUBR7 is not
, in the skeleton and time-sharing is utilized.
) In this example, statement 12 tests if Timer A is
busy, and waits until subprogram SUBR7 has been
executed before passing to the CALL VIAQ statement.

SAMPLE CODING FORM

NOTE: The execution of a machine interval timer
busy-test using the LD (I) functional subroutine in
an IF statement may fail to indicate the correct
busy status if (1) the timer interrupt occurs immedi
ately after the loading of the timer not-busy indi
cation (a zero), and (2), in servicing the interrupt,
the timer is reinitialized on another level.

Thus, when a timer is shared by different levels,
a solution (see below) would be to follow the first
busy-test by a second busy-test in order to prevent
an interrupt out of the busy-test.

SAMPLE CODING FORM

Notice that although the not-busy status remains
in the accumulator after the return from the inter
rupt, it will be initialized for testing in the following
load instruction.

Real-Time Clock

ITC also provides a programmed real-time clock
which keeps time on a 24-hour basis and is updated
each time Timer C decrements to zero (that is, it
is incremented from 00.000 to 23.999; then returns
to 00.000). The clock accuracy is a function of the
Primary (or Interrupt) Time Base discussed in the
section System Design Considerations: System
Director

CALL SETCL -- Set-up Programmed Real-time
Clock

Note that the clock is set at cold start time (a user
option), but if it is required to be set at any other
time through a user program, the following statement
is provided.

Functions of Executive Programs 45

where

I

CALL SE TCL (I)

A user-assigned integer expression
specifying the time of day setting
desired in hours and thousandths
of hours (e. g., 8 a. m. = 08000;
10.45 a. m. = 10750)

CALL CLOCK -- Read Programmed Real-time Clock

If the user desires to read the clock, say, for time
recording of his output to the printer, disk, etc., he
does so through a

where

I

CALL CLOCK (I)

A user-assigned integer variable
which indicates the core location
where the readout time is stored.

Note that the clock is also used by the Error Alert
Control (EAC) Program to time-stamp error mes
sages.

Programmed Timers

The mechanism of programmed timers is covered in
the section System Design Considerations: System
Director.

CALL COUNT

Programmed interval timers are controlled by the
following statement.

where

IN

46

CALL COUNT (IN, I, INB)

A user-assigned integer constant
or integer variable that specifies
the number of the program to be
executed or recorded when the speci.
fied time elapses. The number must
be in the range which is established
by the System Director NITPI and
and NITP2 EQU cards. Its maximum
size can be between 0 and 31. The

I

INB

number is assigned at System Skel
eton build time. Program numbers
are used instead of names to pro- I

vide the record interrupt option.
An integer expression, identifying
the number (1-9) of the program ...
med timer.
A user-assigned expression that
specifies the number of interval
counts before the called program
is executed. This number is a
function of the Secondary (or Pro
grammed) Time Base.

An additional programmed timer is used as the
time-sharing control timer for the allocation of time
slicing for non-process operations (see Use of Time
Sharing).

EXAMPLE 5. The problem is to queue an analog
scan program every five minutes with a priority of 7
if JTEST (a programmed indicator in INSKEL COM
MON) is set to zero; if it is non-zero, queue the
same program every minute with a priority of 1.

Assume the following:

1. Subroutine 19 is SUBROUTINE A which was in
cluded in the Skeleton at Skeleton build time by
an include card

*INCLD A/2703

thus assigning it as count routine number 19.
2. Primary Time Base = 8ms (Timer C wired

time base) X 125 (user-assigned number) =

1 second
Secondary Time Base = 1 (Primary Time Base)
X 15 (user-assigned number) = 15 seconds

To solve the problem, a CALL COUNT statement
must be given in a mainline core load, thus:

SAMPLE CODING FORM

This designates that subroutine 19 is to be called
in 5 minutes; thereafter, the subroutine calls itself
within the specified time period. Its coding is shown
in Figure 25.

SCAN is the name of a mainline core load that
will be executed at mainline level as the result of
a CALL VIAQ when SCAN is the highest priority
entry in the queue.

In order to effect immediate execution of the scan
routine, the CALL QUEUE statement may be re
placed by a CALL LEVEL statement to cause an
interrupt on a lower level. This allows the user
the flexibility of executing the SCAN routine either
as an interrupt core load, an INSKEL interrupt
servicing routine, or as a routine included with a
mainline. The advantage is that the timer interrupt
level is not tied up. It also gives the user the ability
to call other I/O devices within the SCAN routine.

If the time-sharing mode is not used, the CALL
ENDTS statement has no effect. If it is used, the
time-sharing clock is set to zero and a return made

SAMPLE CODING FORM

Figure 25. Subroutine A for Example 5 -- Queueing an Analog Scan ;program

to the calling program. See Use of Time-Sharing
for further action.

A further example is given elsewhere in this
section (see Program Scheduling).

Table 2 provides a ready comparison of the
salient features in the usage of interval timers
and programmed timers.

USE OF TIME-SHARING

In many industrial control installations, the user
will have a large amount of time that is not utilized
by the process being controlled. To allow him to
make effective use of this time, the time-sharing
feature of the TSX system gives him the ability to
compile, assemble, and simulate without taking
the system off-line. In this manner, low-priority
jobs are automatically interrupted whenever the need
arises to execute a higher-priority task. In addition,
the inclusion of this feature gives the user the capa
bility of modifying the logic of his control strategy.

Functions of Executive Programs 47

Table 2. Comparison of Timers

INTERVAL USED WHEN SUBROUTINE CANNOT BE
TIMERS SHORTER TIME CALLED MUST BE A RECORDED

1 & 2 BASE IS IN coRr'{T'Fr" INTERRUPT
SPECIFIED SKELETON OR

INCLUDED WITH
MAINLINE) WHEN

TIMER ELAPSES

PROGRAMMED USED WHEN SUBROUTINE MAY IF SUBROUTINE
TIMERS LONGER TIME OR MAY NOT BE IS NOT IN CORE,

BASE IS IN CORE WHEN IT IS HANDLED
NEEDED TIMER ELAPSES AS A RECORDED

(E.G., HOURS) INTERRUPT

Methods of Initiating Time-Sharing

Time-sharing can be initiated in two ways: selec
table method (CALL SHARE) and automatic method
(CALL VIAQ). '

Selectable Method -- CALL SHARE

The user will know at some predetermined point in
his program that he wishes to discontinue being in
the process mode for a specific period of time. He
therefore enters the time-sharing mode by the exe
cution of a CALL SHARE (that is, he gives up con
trol to the Nonprocess Monitor via the CALL
SHARE). This statement may be part of the user's
process program intended for those special appli
cations where time-sharing is desired without the
use of the queueing technique. Its format is as
follows:

CALL SHARE (1)

Where I is an integer expression which specifies the
number of time intervals allowed for the nonprocess
program operation. The basic time interval is
assigned by the user at system generation time (see
System Design Considerations - System Director;
also Use of Interval Timers).

The meaning of the I parameter is clarified by
the following example.

EXAMPLE 1. Assume that the secondary time base
is 15 seconds (see Use of Interval Timers). Then

48

SUBROUTINE IS EXIT WITH
EXECUTED ON A RETURN

INTERRUPT STATEMENT
LEVEL OF
INTERVAL

TIMERS

MAY BE EXIT WITH
EXECUTED ON A RETURN

INTERRUPT OR CALL
LEVEL OR VIAQ

MAINLINE LEVEL

Time-Sharing Required
Interval Requested Statement

1 minute CALL SHARE (4)
5 minutes CALL SHARE (20)

30 seconds CALL SHARE (2)
1. 75 minutes CALL SHARE (7)

The time-shared operation is terminated when
ever the time interval specified by the user has
elapsed; it is usually not terminated before. Thus,
if 1 minute of time-sharing is indicated, it is usually
1 minute before control is returned to the next exe
cutable instruction following the CALL SHARE
statement. The exchange time is not part of the 1
minute specification. This 1 minute is the length
of the time in the share mode. All interrupt time
is alloted against this 1 minute span.

Note that the Nonprocess Monitor will perform
a WAIT operation if there are no off-line jobs for
execution. Also, interrupts will be serviced as
they occur. If an interrupt routine recognizes a
need for the process program to resume operation,
it can terminate the time-sharing mode by executing
the following call:

CALL ENDTS

CALL ENDTS can be used only in an interrupt
routine where it sets the time-sharing clock to
indicate zero time. The first Timer C interrupt
that occurs after control is returned to the non
process program causes the time-sharing operation

to be terminated; control then reverts to the process
mainline program. Note also that whenever time
sharing is not in force the CALL ENDTS statement
is ineffective.

Automatic Method -- CALL VIAQ

The second method uses the queueing technique to
load a mainline or combination core load when the
Core Load Queue Table is empty, by executing a
CALL VIAQ (See Program Scheduling).

Note that a CALL VIAQ (when referenced) forces
a CALL SHARE statement for execution when the
queue is empty only if the user has indicated through
the use of the Console Interrupt button, with sense
switch 7 on, that batch work is to be carried out.
As a result, the process core load which is in
progress, or which has just been completed, is
saved on disk and control transferred to the Non
process Monitor (or the nonprocess core load if one
had been interrupted and stored on disk). The period
of time allocated to time-sharing is specified by the
user in a System Director equate card, TISHA, at
system generation time. The computer remains in
the nonprocess mode for this specified period unless
a CALL ENDTS is executed by an interrupt routine.

At the completion of the specified time, another
CALL VIAQ is automatically forced by the system.
If, in the meantime, a core load has been queued,
it is then executed. If the queue remains unchanged
(that is, nothing has been added to it), another time
sharing operation will be triggered.

If, at the end of a nonprocess job, the I I END OF
ALL JOBS card indicates that there is no further
nonprocess work for execution, the VIAQ routine
will WAIT until either some addition has been made
to the queue or the Console Interrupt (C. I.) button
is again depressed for the commencement of a new
nonprocess job.

This method of entering time-sharing is, in
practice, preferred to CALL SHARE. CALL SHARE
may, however, be desirable in certain special
situations.

Two additional functions performed by the Time
Sharing Control (TSC) program are CALL LINK
and CALL EXIT when these are referenced from
nonprocess programs.

EXAMPLE 2. (See Program Listing No.1). In
order to illustrate some of the many TSX usages
without complex FORTRAN I Assembler language
coding, the following example was devised. Note

that in this example, the system and list printers
have been defined as the same device (1443). In
actual practice, the system printer would be a
1053; the list printer, a 1443 or another 1053.

Three analog inputs, A, B, and C, are to be
read at 15-second intervals. After C has been
read, linear interpolation is used between point A
and point B, and between point B and point C. The
values A, B, and C are temperatures: the tempera
tures between A and B, and B and C are linear.
The point at which temperature A is taken is 25 feet
away from the point where temperature B is taken;
similarly for B and C.

A temperature histogram showing temperature
versus distance is to be printed on the list printer.

A nonprocess program is to be written which
simply lists numbers: this program is to be exe
cuted in the time-sharing mode.

Timer 2 is used to produce an interrupt every 15
seconds so that one of the three analog inputs may
be read.

The skeleton contains a timer service subroutine
for Timer 2, called SCAN, which calls programmed
interrupt level 7 when 15 seconds have elapsed
(that is, SCAN executes a CALL LEVE L (7». Timer
2 has a base (TBASE) of 1 millisecond.

The problem was solved under TSX using the in
skeleton subroutine SCAN and the following five core
loads:

COLDC
WAITe
READC
CALCC
SHOWC

Figure 26 illustrates the general problem logic
flow.

COLDC (referred to at execution time as C/L #1).
This is a mainline core load which is directly
called by the cold start program. Its primary
function is to unmask all interrupt levels, set
timer to 15 seconds, and chain to core load
WAITC.

WAITC (referred to at execution time as C/L #2).
This core load merely calls VIAQ which results
in either a queued program being executed, or
the beginning of time-sharing.

READC (referred to at execution time as C/L #3).
This is the solitary interrupt core load which is

Functions of Executive Programs 49

executed on level 7. The SCAN routine in skele
ton executes a programmed interrupt to level 7
each time the 15-second interval elapses. The
*STORECI control card for this core load contains
level and bit indicators equal to 2407 -- which
indicates programmed interrupt level 7.

When this core load is executed, an indicator
named lCNT, which is in INSKEL COMMON, is
interrogated. If this indicator is 1, the first
point A is read, timer 2 is reset (for another 15-
second interval), and the core load exits by way
of a CALL INTEX.

If the indicator is 2, the second point B is
read, the timer is reset, and the core load exits.

If the indicator is 3, the third point C is read,
the timer is reset, two core loads CALCC and

SCAN (INSKEL SIR)

CALL LEVEL (7)

COLOC (MAINLINE)

I

I
CALL TIMER(SCAN,2, 15000)

CALL CHAIN(WAITC)

WAITC (MAINLINE)

TESTS QUEUE AND
TIME-SHARES IF
EMPTY

CALL VIAQ

t

READC I (INTERRUPT)

CALL TIMER(SCAN,2, 15000)
CALL QUEUE(CALCC, 1 ,0)
CALL QUEUE(SHOWC,2,O)
CALL ENDTS
CALL INTEX

I

1
I

t I
CALec I (MAINLINE) t
CALL VIAQ

SHOWC

ICAll VIAO

Figure 26. General Problem Logic Flow -- Example 2

50

SHOWC are queued, time-sharing is terminated,
and the core load exits via a CALL INTEX.

CALCC (referred to at execution time at C/L #4).
CALCC takes the three analog readings, A, B,
and C, which have been stored in INSKEL COM
MON, interpolates and stores the 51 results
back into INSKE L COMMON.

The core load is executed by a CALL VIAQ.

SHOWC (referred to at execution time as C/L #5).
SHOWC takes the 51 interpolated results from
INSKE L COMMON and outputs a scaled histo
gram on the list printer. It then calls VIAQ.

NOTE: Each core load prints a message on entry
to and on exit from the core load itself. This
message identifies the core load as C/L 1, C/L 2,
C/L 3, C/L 4, or C/L 5.

This diagnostic message is accomplished by a
CALL-type FORTRAN subroutine which is included
in the skeleton. Its format is as follows:

CALL ENT (I, J)

where ENT is the name of this subroutine.
Either of two messages, depending on the
parameters I and J, will be printed:

A) ENTERED CIL NO.
B) EXITED C/L NO.

ENTERED will be printed when I = 1.
EXITED will be printed when I = 2.

J is the core load identification number as
follows:

J

J

J

J

J

1

2

3

4

5

COLDC

WAITC

READC

CALCC

SHOWC

The on-line results on the list printer (Program
Listing No.1) also clearly indicate when time
sharing has taken place.

PROGRAM LISTING NO.1: EXAMPLE 2

FLET

PACK LABEL
00000

.FIOS 001B
DUMMY 0092
IPRSV 4000

03AO
0488
05AC

IEPDM 7FFF
DUMIN 005A
.SKEL 0038

DUP FUNCTION COMPLETED

II JOB
II FOR COLDP
~IOCS(1443PRINTER)
*L1 ST ALL

03BIj
0489
05EO

EXTERNAL SCAN,WAITC
COMMON/INSKEL/Il,I2,I3,INCNT
CALL UNMK(-l,-l)
CALL ENT(l,1)
INCNT=1
CALL TIMER (SCAN,2,15000)
CALL ENT (2,1)
CALL CHAIN (WAITC)
END

VARIABLE ALLOCATIONS

IEPSV 0780
NONPR OOFO
.EPRG 0022

II =FFFF* 12 =FFFE* 13 =FFFD* INCNT=FFFC*

FEATURES SUPPORTED
ONE WORD INTEGERS
rocs

CALLED SUBPROGRAMS

0422
048A
Ob18

(Note: This is the state of FLET before compilations
begin)

IINSV 2280
NP 0098
ICLST 0780

0428
0488
Ob3A

INPSV 4000
90Ur-iY OOEC
.E OOFO

0444
048C
0488

.~lESS 0010
ISPSV 4000

0478
0578

SCAN WAITC UNMK ENT TIMER CHAIN PRNTN EBPRT

INTEGER CONSTANTS
1=0004 2=0005 15000=0006

CORE REOUIREMENTS FOR COLDP
COMMON 0 INSKEL COMMON 4 VARIABLES 4 PROGRAM 40

END OF COMPILATION

COLDP
DUP FUNCTION COMPLETED
II DUP
*STORECIM M COLDC COLDP COLDC
*GGENO

CLB, BUILD GOLDC

CORE LOAD MAP
TYPE NAME ARGl ARG2

*CDW TABLE 4002 OOOC
*IBT TABLE 400E 0010
*F IO TABLE 402B 0010
*ETV TABLE 403B OOOF
*VTV TABLE 404A 001E
*IST TABLE 40bB 003b
*PNT TABLE 409E OOOC
MAIN COLDP 40B1
PNT COLOC 40AO
PNT COLOC 40A4
CALL lJNMK 400b
CALL ENT 4130
CALL TIMER 415C
PNT WAITC 40A8
L1BF SUBIN 41B2 404A
L1BF COMGO 41EC 4040
L1BF MWRT 43G8 4050
L1BF MIDI 447E 4053
L1BF Mcm1P 4455 405b
L1BF IOU 487A 4059
CALL IOFIX 4932

Functions of Executive Programs 51

CALL BTlBT 4962
CALL SAVE 48CE
LIBF ADRCK 49C6 4()5C
LIBF FLOAT 4A18 405F
LIBF IF IX 4A34 4062
LIBF NORM 4A60 4065
CORE 4A8E 3572

CLB, COLDC LD XQ

o 45 CORE LOADS NOT FOUND
WAITC
DUP FUNCTION COMPLETED

II JOB
/I FOR WAITP
*LIST ALL
*IOCS (1443PRINTER)

CALL ENTll,2)
CALL ENT(2,2)
CALL VIAQ
END

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
ENT VIAQ PRNTN

INTEGER CONSTANTS
1=0000 2=0001

EBPRT

CORE REQUIREMENTS FOR WAITP
COMMON 0 INSKEL COMMON

END OF COMPILATION

WAITP
DUP FUNCTION COr-1PLETED
II DUP

o VARIABLES

*STORECIM M WAITC WAITP COLDC
*CCEND

CLB, BUILD WAITC

CORE LOAD MAP
TYPE NAME ARGI ARG2

*CDW TABLE 4002 OOOC
*IBT TABLE 400E 0010
*FIO TABLE 402B 0010
*ETV TABLE 403B OOOF
*VTV TABLE 404A 001E
*IST TABLE 4068 0036
*PNT TABLE 409E 0008
MAIN WAITP 40A8
PNT WAITC 40AO
PNT COLDC 40A4
CALL ENT 40CF
CALL VIAQ 40EE
LIBF SUBIN 414E 404A
LIBF COMGO 4188 4040
LIBF MWRT 4364 4050
LIBF MIDI 441A 4053
LIBF MCOMP 43Fl 4056
LIBF IOU 4816 4059
CALL IOFIX 48CE
CALL BTlST 48FE
CALL SAVE 486A
LIBF ADRCK 4962 405C
LIBF FLOAT 4984 405F
LIBF IFIX 4900 4062
LIBF NORM 49FC 4065
CORE 4A2A 3506

CLB, WAITC LD XQ

DUP FUNCTION COMPLETED

52

o PROGRAM

This I. a genuine TSX warning message. It Indicates
that core load WAITe was not built at this stage.

12

II JOB
II FUR READP
*IOCSI1443PRINTER)
*LlST ALL

EXTERNAL SCAN,CAlCC,SHOWC
COMMON/INSKEL/IAl,IA2,IA3,ICNT
CALL ENTll,3)
L=ICNT
GO TO 1,,10,lS),L
K=76
GO TO 20

10 K=79
GO TO 20

lS K=127
20 CALL AIPIO,JTEST)

GU TO 12,,30),JTEST
2, GU TO 20
30 CALL AIPI01000,ITEMP,K)
70 CALL AIPIO,JTEST)

GO TO 171,72),JTEST
71 GO TO 70
72 GO TO 13S,40,4S),L
35 IA1=ITEMP

GO TO 50
40 IA2=ITEMP

GO TO 50
45 IA3=ITENP
50 WRITEI3,100) ICNT

100 FORMAT I' ICNT=',I3)
ICNT=ICNT+1
CALL TIMeR ISCAN,2,15000)
GO TO IS5,55,55,60),ICNT

55 CALL ENTl2,3)
CALL INTEX

60 ICNT=l
CALL QUEUEICALCC,l,O)
CALL QUEUEISHOWC,2,0)
CALL ENDTS
CALL ENTI2,3)
CALL INTEX
END

VARIABLE ALLOCATIUNS
IA1 =FFFF* IA2 =FFFE* IA3 =FFFD* leNT =FFFC* L

STATEMENT ALLOCATIONS
100 =0000 5 =0023 10
35 =0057 40 ~OOSD 45

FEATURES SUPPORTED
ONE WORD INTEGERS
IDes

CALLED SUBPROGRAMS

=0029 15
=0063 SO

=002F 20
=0067- 5S

=0000 K

=0033 25
=0081 60

SCAN CALCC SHOWC ENT AlP TIMER INTEX QUEUE

INTEGER CONSTANTS
1=0004 3=000S 76=0006 79.=0007 127=0008

CORE REQUIREMENTS FOR READP
COMMON 0 INSKEL COMMON 4 VARIABLES 4 PROGRAM

END OF COMPILATION

READP
DUP FUNCTION COMPLETED
II OUP
*STORECIM READC READP 2407
*CCEND

CLB, BUILD READC

ROC ANINT 0023 LEV.O

CORE LOAD MAP
TYPE NAME ARG1 ARG2

=0001 JTEST=0002 ITEMP=0003

=0030 30
=0087

ENDTS COMGO

=003F 70

MWRT

=0044 71

~iCOMP MIDI

=004E 72

PRNTN

0=0009 1000=000A 2=000B 15000=000C

1S6

READe is an interrupt core locxf responding to a
programmed interrupt on level 07..

=OOSO

EBPRT

Functions of Executive Programs S3

*COW TABLE 40.0.2 DDDC
*IBT TABLE 4DDE 0.0.10
*FIO TABLE 4D2B 0.0.10.
*ETV TABLE 40.36 DDDF
*VTV TABLE 4D4A 0.0.21
*PNT TABLE 406C DDDC
MAIN READP 4D8C
PNT REAOC 4D6E
CALL ENT 4135
LI8F COMGO 4154 4D4A
CALL AlP 41A6
LIBF MWRT 435C 40.40
LIBF MIOt 4412 40.50.
LIBF MCOMP 43E9 40.53
CALL TIMER 48DE
CALL QUEUE 4864
PNT CALCC 40.72
PNT SHOWC 40.76
CALL ENOTS 4926
LIBF SUBIN 4930. 40.56
CALL QZDID 496A
CALL QZERQ 496E
LIBF AIPTN 49CC 40.59
LIBF IOU 4A4E 4D5C
CALL IOFIX 480.6
CALL 8Tl8T 4836
CALL SAVI:: 4AA2
LIeF AORCK 4B9A 4D5F
LIBF FLOAT 4BEC 40.62
LIBF IFIX 4CD8 40.65
CALL GAGED 4C34
CALL UNGAG 4C45
CALL ANINT 4C54
LIBF NORM 4090. 4068
CORE 40BE 1242

CLB, READC LD XQ

o 45 CORELOAOS NOT FOUND
CALCC SHOWC
OUP FUNCTION COMPLETED

II JOB
II FOR CALCP
*LI ST ALL
*IOCS (1443PRINTER)

D IMENS ION N (51)
COMMON/INSKEL/JI,J2,J3,ICNT,N
CALL ENT(1,4)
WRITE (3,6) J1,J2,J3

6 FORMAT (' READINGS',311D)
N(1l=J1
N(26)=J2
N(511=J3
DO 4 1=2,25

4 N (I) =N (1) + ((N (26) -N (I, , 125) * (I-I)
DO 5 1=27,50
N (I) =N (51) + ((N (26) -N (51)) 125) * (51-1)
WRITE (3,7) (N(I),I=1,51)

7 FORMAT (12110.)
CALL ENT(2,4)
CALL VIAQ
END

VARIABLE ALLOCATIONS
J1 =FFFF* J2 =FFFE*

STATEMENT ALLOCATIONS
6 =OO.OE 7 =0.0.17

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS

J3 =FFFD* ICNT

4 =OD3E 5

=FFFC*

=O.O.6A

ENT VIAQ ISTOX MWRT MCOMP MIOIX

54

N =FFFB* I =0.0.0.2

MIDI SUBSC PRNTN EBPRT

INTEGER CONSTANTS
1=0006 4=0007 3=0008 2.=0009

CORE REQUIREMENTS FOR CALCP
COMMON 0 INSKEL COMMON 56 VARIABLES

END OF COMPILATION

CALCP
DUP FUNCTION COMPLETED
I I DUP
*STORECIM M CALCC CALCP COLDC
*CCEND

CLB, BUILD CALCC

CORE LOAD MAP
TYPE NAME ARGI ARG2

*CDW TABLE 4002 OOOC
*18T TABLE 400E 001D
i.'F 10 TABLE 4028 0010
*ETV TABLE 403B OOOF
>:'VTV TABLE 404A 0027
*IST TABLE 4071 0036
*PNT TABLE 40A8 0008
MAIN CALCP 40CA
PNT CALCC 40AA
PNT COLDC 40AE
CALL ENT 417D
L1BF MWRT 4326 404A
LI SF MIDI 43DC 404D
LI SF MCOMP 4383 4050
LI BF ISTOX 47D8 4053
L1BF SUBSC 47F8 4056
L1BF MIOIX 43E8 4059
CALL VIAQ 4824
LI BF SUBIN 4884 405C
L18F COMGO 488E 405F
L1BF IOU 4910 4062
CALL IOFIX 49C8
CALL BTIBT 49F8
CALL SAVE 4964
L1BF ADRCK 4A5C 4065
L1BF FLOAT 4AAE 4068
LIBF IFIX 4ACA 406B
LIBF NORM 4AF6 406E
CORE 4B24 34DC

CLB, CALCC LD XQ

DUP FUNCTION COMPLETED

II JOB
II FOR SHOWP
*IOCS 11443PRINTER)
*LIST ALL

DIMENSION N(51),MI51),LI120)
COMMON/INSKEL/Il,I2,I3,ICNT,N
CALL ENTIl,5)
DO 2 IK=1,120

2 LI IK)=O
DO 3 1=1,51
MI=NII)/300

3 MI I)=IABSIMI)
DO 4 J=1,51
K=MIJ)/2

4 WRITE 13,100) J,ILlI),I=l,K)
100 FORMAT 113,IX,5812)

CALL ENT 12,5)
CALL VIAQ
END

VARIABLE ALLOCATIONS
11 =FFFF* 12 =FFFE* 13
J =OOAE K =OOAF

=FFFD* ICNT =FFFC* N

25=000A 27=000B 50=000C 51= OOOD

6 PROGRAM 170

=FFFB* M =0032 L =OOAA IK =OOAB =OOAC MI =OOAD

Functions of Executive Programs 55

STATEMENT AllOCATIONS
100 =OOBA 2 =00C7 3 =00E9 4 =0109

FEATURES SUPPORTED
ONE WORD INTEGERS
loCS

CAllED SUBPROGRAMS
ENT lABS VIAQ ISTOX MWRT MCoMP MIDIX MIDI SUBSC PRNTN EBPRT

INTEGER CONSTANTS
1=00B2 5=00B3 120=00B4 0=00B5 51=00B6 300=00B7 2=00B8 3=00B9

CORE REQUIREMENTS FOR SHOWP
COMMON 0 INSKEl COMMON 56 VAR IABLES 178 PROGRAM 128

END OF COMP I lA TI ON

SHoWP
DUP FUNCTION COMPLETED
II DUP
*STORECIM M SHOWC SHOWP COlDC
*CCEND

ClB, BUilD SHOWC

CORE lOAD MAP
TYPE NAME ARGI ARG2

*CDW TABLE 4002 OOOC
*16T TABLE 400E 0010
*FIO TABLE 402B 0010
*ETV TABLE 403B OOOF
*VTV TABLE 404A 0027
*IST TABLE 4071 0036
*PNT TABLE 40A8 0008
MAIN SHOWP 416F
PNT SHoWC 40AA
PNT COlDC 40AE
CAll ENT 41FF
L1BF SUBSC 421E 404A
L1BF ISToX 424A 4040
CAll lABS 426A
L1BF MWRT 440E 4050
L1BF MIDI 44C4 4053
L1BF MIDIX 4400 4056
L1BF MCoMP 449B 4059
CAll VIAQ 48CO
L1BF SUBIN 4920 405C
L1BF CoMGO 495A 405F
L1BF ADRCK 49AC 4062
L1BF IOU 49FE 4065
CAll IOFIX 4AB6
CALL BTlBT 4AE6
CAll SAVE 4A52
L1BF FLOAT 4B4A 4068
L1BF IFIX 4B66 406B
L1BF NORM 4B92 406E
CORE 4BCO 3440

ClB, SHOWC lD XO

DUP FUNCT IDN COMPLETED
*OUMPlET F

FlET

PACK lABEl
00000

.FIOS 001B 03AO IEPDM 7FFF 038B IEPSV 0780 0422 IINSV 2280 0428 INPSV 4000 0444 .MESS 0010 0478
DUMMY 0092 0488 oUMIN 005A 0489 NONPR OOFO 048A NP 0098 048B COloC OA8C 048C WA ITC OA28 0495
READC OoBC 049E CAlCC OB22 04A9 SHoWC OBBE 04B2 90UMY OOBC 04BC ISPSV 4000 0578 IPRSV 4000 05AC
.SKEL 0038 05EO .EPRG 0022 0618 IClST 0780 063A .E OOFO 0488

DUP FUNCTION COMPLETED

56

ENTERED C/l 1 EFTA
EXITED C/l 1 EFTA
ENTERED C/l 2 EFTA
EXITED C/l 2 EFTA

II JOB
II XHl NPJOB
*CCEND

ClB, ~UIlD NPJUB

ENTERED C/l
ICNT= 1

E),ITED C/l
ENTERED C/l

ICNT= 2
EX ITED C/l

ClB, NPJOB lD XQ

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

3

3
3

3

ENTERED C/l 3
ICNT= 3

EX ITED C/l 3
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

ENTERED C/l 4
READINGS 9000

9000 9120
10440 10560
11880 12000
13320 13440
14760 14880

EX ITED Cll 4
ENTERED C/l 5
ENTERED C/l 3

ICNT= 1
EX ITED C/l 3

1 o 0 0 0 000 0
2 o 0 0 0 000 0
3 o 0 0 0 000 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0

EFTA

EFTA
EFTA

EfTA

EFTA

EFTA

EFTA
12000

9240
10680
12120
13560
15000

EFTA
EFTA
EFTA

EFTA
0 000 0
0 000 0
0 000 0
0 0 0 0 0
0 0 0 0 0

15000
9360 9480 9600

10800 10920 11040
12240 12360 12480
13680 13800 13920

0 0
0 0
0 0
0 0
0 0

TIme-Sharing beglM here.

Interrupt core load on level 07 takes precedence over
nonprocess job. Programmed interrupt level 07
initiated from in-skeleton timer routine called SCAN.

During time-sharing, a nonprocess job is execUted and
prints out a pattem cl numbers in an increasing order
cl magnitude, as shown. This list of numbers is
interrupted by core loads (mainline process or inter
Npt process) at a higher level.

Third entry of core load READC calls end time-sharing
Time-sham'S terminates the next time timer C interrupts.

Core load" is executed from the QUEUE.

9720 9840 9960 10080 10200
11160 11280 11400 11520 11640
12600 12720 12840 12960 13080
14040 14160 14280 14400 14520

Core load 5 is executed from the QUEUE.

Core load 5 (SHOWC) prints histogram.

10320
11760
13200
14640

Functions of Executive Programs 57

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0
27 0
28 0
29 0
30
31 0
32 0
33 0
34 0
35 0
36 o 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0

ENTERED ell 3 EFTA During the printing of the histogrcm, interrupt core load
leNT= 2

EXITED ell 3 EFTA
READe is brought into core and executed.

37 o 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 () 0 0 0 0 0 0 0 0 0 0 0 0 (l 0 0 0 0 0 0 0 0
39 o 0
40 o 0
41 o 000
42 000
43 o 0
44 000
45 o 0
46 o 0
47 o 0
48 o 0
49 o 0
50 o 0
51 o 0 0 0 000 0 0 000 0 o 0 0 0 0 0 0 0 0 0 0 0

EX ITED ell 5 EFTA
40
41
42
43
44
45
46
47
48
49
50
51
52

ENTERED ell 3 EFTA
leNT= 3

EX ITED ell 3 EFTA
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

The cycle of events repeats Itself.

58

USE OF THE OPERATIONS MONITOR

The Operations Monitor is an optional watch-dog type
~imer device which warns the user when the proces
I~or-controller is not executing a predicted sequence
of instructions. This may be caused by power fail
ure, computer hang-up, or computer looping.

The watch-dog timer works on the principle that
a contact closes upon completion of a preset time
out period. When this occurs, a separately-powered
alarm or indicator (supplied by the user) is brought
into play. The time-out period is settable within the
range 5-30 seconds. Note that the time interval
selected must be greater than the secondary time
base specified by the Interval Timer Control (ITC)
program.

The user may also exercise the option of manual
or automatic reset of the Operations Monitor. This
option is specified in the OPMON equate card at
system generation time (see System Design Consid
erations: System Director). Automatic resetting
is undertaken by ITC during time-sharing operations.
If the Operations Monitor is used, it is the user's
responsibility to ensure that a reset (XIO) instruc
tion is executed frequently enough in hi s program so
as to prevent timeout during normal operation. If
the reset command is not given during the selected
interval, timeout occurs and the alarm circuit is
closed.

The Call Operations Monitor subroutine is used
~o reset the monitor. Its format is:

CALL OPMON

Consider the following example. A particular
program (say, a logging program) has been designed
for execution every 15 seconds, and therefore ideally
suited for Operations Monitor reset. If the program
is not, for some reason, executed within this allowed
time span, the Operations Monitor is set, causing an
alarm in the warning device the user has attached to
the Operations Monitor.

ERROR ALERT CONTROL

Error procedures in the IBM 1800 Time-Sharing
Executive System are provided by a program pack
age called the Error Alert Control (EAC) Program
which is designed to analyze errors that are:

1. Basic to the hardware, and
2. which may result from incorrect use of soft

ware program s.

Since errors affect all real-time systems, from
the largest to the smallest, the policy adopted
towards all errors is to keep the system on-line if
lat all possible, and to minimize operator decisions.

NOTE: On all entries to EAC, the system is placed
in a fully masked state. On exit from EAC, the
system mask registers are restored by the calling
program, or PSC, or MIC, or on a system reload,
by the cold start core load. All interrupts that
occurred while the system was masked are then
serviced.

Since EAC masks the whole system, thelia op
erations performed by EAC (saving of the part of
variable core where the disk resident parts of EAC
are to be read in, reading in EDP and error de
cision program, error update program if hardware
error, restoring of the saved area of variable core,
printing of the error message on the EAC printer)
cannot be overlapped. This means that the system
can be masked for quite long. For example, on an
error like "1443 not ready" the system will be
masked for about 3. 5 seconds (about 6 seconds if all
of core is dumped to the IEPDM area on disk for
later error analysis) with a 1053 typewriter as EAC
printer. With a 1443 as EAC printer these times
are about 2.5 and 4.0 seconds respectively. These
figures are for a 32K system with fast-access disk
units.

Features of EAC

Error Conditions Serviced

The Error Alert Control program provides error
recovery for the following conditions:

• An input/output error which persists despite
repeated corrective action by an I/O subroutine.

• Occurrence of an internal machine error (e. g. ,
invalid operation code, parity, storage protect
violation)

• Other control subroutine error conditions (e. g. ,
QUEUE, FORTRAN I/O)

Error Analysis Provisions

Provision is also made for the following features.

Dump of Core Storage to Disk. An optional dump of
all core storage to disk is provided if this option is
elected through the System Director equate card
DUMPI at system generation time. If, for example,
DUMPI is equated to 1, the DUMP routine is included
(at System Director assembly time) with the EAC
program package. This feature is only applicable to
subroutine type errors.

The DUMP routine writes core into the EDP
DUMP AREA (/EPDM) on disk. Before writing this
routine tests word 3 of fixed core. If it is negative,
core will not be dumped to IEPDM since a negative
value means either that the user has not set it (it is
initialized to -1) or that core has already been

Functions of Executive Programs 59

dumped to /EPDM on a previous entry to EAC. If
word 3 is non-negative but not equal to the actual
error code, no saving of core is performed. If
word 3 equals the actual error code, it is set nega
tive to prevent /EPDM from being overlaid by later
entries to EAC, and core is dumped to /EPDM.
Since permanent core may be storage protected, and
the disk routine must insert the sector address at
the start of each sector to be written, the dump
routine moves blocks of six sectors of permanent
core to variable core and copies it to disk. After
all of permanent core has been copied, that portion
of variable core used is restored.

The copied data on disk can now be dumped to an
output device by the DUP *DUMP function. The
data can also be dumped to cards by the EDMP
program for analysis by the dump analysis program
DMPAN.

User Error Subroutine. In a process program, EAC
branches to a user-written error subroutine if this
is included with the mainline core load. This action
is bypassed for internal machine errors, if an
error subroutine is not included and if a nonprocess
program is in core.

A user-written error subroutine can be optionally
included with each process core load. The purpose
of this subroutine is to allow the user to have con
trol before EAC overlays the variable area with the
disk portion of EAC. For example, there may be
special data or other information that the user wants
to save. Output, such as special core dumps, mes
sages, or contact operate functions, can also be
executed. The error subroutine cannot be written in
FORTRAN and mus t be a CALL type subroutine.

Before entering the user f s error subroutine,
error identification data is placed in words 00115-
00119. These words will contain the following:

Input/Output Errors

00115
00116

00117
00118

Queue Overflow

60

00115
00116

00117

00118

00119

Error type code
Address of illegal call or
address of the device table
Address of level work area
Address of originating call

Error type code
Word count of core load
named in CALL QUEUE
Sector address of core load
named in CALL QUEUE
Priority of core load named
in CALL QUEUE
Error parameter of core
load named in CALL QUEUE

The meaning of on-line EAC error type codes is
given in Table 3. Table 4 contains a description of
all on-line errors serviced by EAC, the format of
each EAC message printout, and corrective action
specifications.

A standard recovery procedure is executed by
EAC according to the type of error (see Table 4).
User options are specified in the same table (see
USER OPTION column). However, under certain
conditions, EAC overrides the user option. The
EAC option is always executed if an error subrou
tine is not used or the user does not· specify an op
tion. Options can be specified by the user before
returning to EAC by loading the A-register with -10
for S (RESTART) or -1 for 1& R (CONTINUE).

The last logical statement in the error subroutine
must be a BSC I entry to the error subroutine.

The core load named for the restart option can be
an error analysis core load, or it can be the first of
a new series of core loads. If queueing techniques

are used, the restart core load can be simply a
CALL VIAQ statement (CALL QUEUE can be exe
cuted in the restart core load or the err or subrou
tine).

The statements listed below cannot be used in an
error subroutine:

CALL BACK
CALL CHAIN
CALL DPART
CALL ENDTS
CALL EXIT
CALLINTEX
CALL LEVEL
CALL LINK
CALL MASK

CALL QIFON
CALL RESMK
CALL SAVMK
CALL SHARE
CALL SPECL
CALL UNMK
CALL VIAQ

Update Error Counters Maintained on Disk. For
each I/O unit on the system, a hardware counter is
maintained on the disk for printout to the Customer
Engineer for maintenance purposes.

Back-Up Capability for D. P. I/O Units. The option
of including backup units for the 1053 and the 1816,
as well as the logical removal of the 1443 from
service, can be specified at system generation time.
If backup is not provided, the 1053 printer will be
automatically removed from service when multiple
failures occur without taking the system off-line.

Backup for the EAC printer is achieved by defin
ing multiple EAC printers at TASK assembly time
(if the EAC printer is defined as a 1053). When an
output error occurs, or if the unit is not ready
(that is, interrupt response is not received), EAC
will logically disconnect the unit in error and substi-

tute the backup unit. When backup is initiated be
cause of a hardware malfunction, the message in
progress on the failing unit is not continued on the
backup device. When the error condition is cor
rected, the unit can be restored to its original
status by using the C. E. Interrupt routine. See
C. E. Interrupt Routine in the publication IBM 1800
Time-Sharing Executive System, Operating Proce
dures, Form C26-3754.

EAC Program Breakdown

EAC can be considered in terms of four component
parts; each component functions as a separate sub
program, the four parts remaining interdependent
insofar as the status information of the error (de
tected) is shared by all routines concerned. In
addition, EAC sets up a level work area for the use
of reentrant coded programs when it is processing

Functions of Executive Programs 60.1

eTable 3. On-Line EAC &ror Type Codes

EAC MESSAGE FORMAT

*INN CL.OCK AC-M PNAME LOCN

* - INDICATES PROCESS CORELOAD IN CORE
BLANK - INDICATES NON-PROCESS CORELOAD IN CORE

I - GENERAL I/O
P - PROCESS I/O
F - FORTRAN
Q - QUEUE
M - MASK
X - MISCELLANEOUS

NN - TWO DIGIT NUMBER INDICATING TYPE OF ERROR

CL.OCK - TIME IN THOUSANDTHS OF AN HOUR

AC - AREA CODE FOR THE ASSOCIATED I/O DEVICE
M - MODIFIER IF MORE THAN ONE FOR THAT AREA CODE

PNAME - NAME OF THE PROGRAM IN CORE AT THE TIME OF
THE MESSAGE (NOT NECESSARILY THE ONE WHICH
ORIGINATED THE CALL LEADING TO THE ERROR
CONDITION)

LOCN - LOCATION OF THE CALL

USER ERROR TYPE CODES FOR DP I/O

101 PARITY
102 STORAGE PROTECT
103 ILLEGAL CALL
104 NOT READY
105 / /BLANK CARD
106 FEED CHECK
107 READ-PUNCH CHECK
108 DA T A OVERRUN
109 WRITE SELECT
110 NO PRINT RESPONSE
III DATA ERROR
112 INVALID MESSAGE ON DISK
113 FILE PROTECT ERROR
114 TAPE ERROR
115 EXCESSIVE TAPE ERRORS
116 END OF TAPE
117 INVALID CALL TO ERROR ROUTINE
118 NO RESPONSE FROM DISK
119 INVALID DISK ADDRESS

USER ERROR TYPE CODES FOR PROCESS I/O

POI PARITY DATA OR COMMAND REJECT
P02 STORAGE PROTECT VIOLATION
P03 ILLEGAL CALL
P04 PARITY CONTROL
P05 OVERLAP CONFLICT
PI7 INVALID ERROR CODE

USER ERROR TYPE CODES FOR QUEUING

QOI ERROR OPTION IS ZERO - CALL IGNORED
Q02 ERROR OPTION NOT ZERO -

NO LOWER PRIORITY IN QUEUE
Q03 QUEUE ENTRY REPLACED BY NEW CALL QUEUE
Q04 QUEUE CALL NOT HONORED -

RESTART INITIATED
QI7 INVALID ERROR CODE

USER ERROR TYPE CODES FOR FORTRAN

F90 ILLEGAL ADDR COMPUTED IN AN INDEXED STORE
F91 ILLEGAL INT USED IN A COMPUTED GO TO

USER ERROR TYPE CODES FOR FORTRAN (CONTINUED)

DISK I/O
F92 FILE NOT DEFINED
F93 RECORD NUMBER TOO LARGE, ZERO OR NEGATIVE

NON-DISK I/O
F94 INPUT RECORD IS IN ERROR
F95 RANGE OF NUMERICAL VALUES IS IN ERROR
F96 OUTPUT FIELD TOO SMALL TO CONTAIN THE NUMBERS
F97 ILLEGAL UNIT REFERENCE
F98 REQUESTED RECORD EXCEEDS ALLOCATED BUFFER
F99 WORKING STORAGE AREA INSUFFICIENT FOR

DEFINED FILES
FI7 INVALID ERROR CODE

F87
F88
F89

MOl
M02
MI7

XOI
X02
X03
X04
XI7

UNEDITED I/O

ILLEGAL UNIT REFERENCE
READ LIST EXCEEDS LENGTH OF WR~TE LIST
RECORD DOES NOT EXIST FOR READ LIST
ELEMENT

USER ERROR TYPE CODES FOR MASK ROUTINES

ILLEGAL CALL RESMK
ILLEGAL CALL UNMK
INVALID ERROR CODE

USER ERROR TYPE CODES FOR PROGRAM
SEQUENCE CONTROL

ILLEGAL CALL BACK
INTERRUPT LEVEL ERROR
CORELOAD NOT LOADED ON DISK
RESTART CORELOAD NOT LOADED ON DISK
INVALID ERROR CODE

Functions of Executive Programs 61

Table 4. On-Line EAe Errors and Recovery Procedures

ERROR TYPE EAC USER ERROR MESSAGE
CODE CODE STAND. OPTION AND COMMENTS

DEC HEX EAC EXIT

1053/1816 PRINTER/KEYBOARD

00 00 103 S N ILLEGAL CALL
103 CL.OCK PNAME LOCN 1053

USER MUST CORRECT CALL IN PROGRAM
01 01 104 R,S S* 1053 NOT READY

104 CL.OCK AC-M PNAME 1053 NOT READY
CHECK FORMS

93 03 104 R,S R,S 1816 KEYBOARD NOT READY
104 CL.OCK AC-M PNAME 1816 NOT READY

MAKE READY
04 04 102 L N STORAGE PROTECT VIOLATION FROM 1816

102 CL.OCK AC-M PNAME 0000
USER MUST CHECK PROGRAM

05 05 101 S R KEYBOARD PARITY ERROR
101 CL.OCK AC-M PNAME 1816 PARITY

LAST CHARACTER TYPED MAY BE INVALID
06 06 101 I N* PRINTER PARITY ERROR

101 CL.OCK AC-M PNAME 1053 PARITY
AN ATTEMPT TO PRINT HAS BEEN MADE 2 TIMES

07 07 110 R N* NO PRINT RESPONSE
101 CL.OCK AC-M PNAME NO PRINT RESP

NO OP COMPLETE HAS BEEN RECEIVED
08 08 112 R N INVALID MESSAGE ON DISK

112 CL.OCK AC-M PNAME
THIS MESSAGE IS NOW LOST

1442 CARD READ-PUNCH

10 OA 103 S N ILLEGAL CALL TO 1442
103 CL.OCK PNAME LOCN 1442

USER MUST CORRECT CALL IN PROGRAM
11 OB LAST CARD
12 OC 101 R S PARITY ERROR

101 CL.OCK AC PNAME 0000 1442 PARITY
NON-PROCESS RUN OUT, RELOAD UN-READ CARDS

13 OD 102 L N STORAGE PROTECT VIOLATION
102 CL.OCK AC PNAME 0000

USER MUST CHEC K PROGRAM
14 OE 106 R S FEED CHECK

106 CL.OCK AC PNAME 1442 NOT READY
NON-PROCESS RUN OUT, RELOAD UN-READ CARDS

15 OF 108 DATA OVERRUN
108 CL.OCK AC PNAME 0000 1442 NOT READY

NON-PROCESS RUN OUT, RELOAD UN-READ CARDS
16 10 107 R S READ-PUNCH CHECK

107 CL.OCK AC PNAME 1442 NOT READY

17 11 105 S N
NON-PROCESS RUN OUT, RELOAD UN-READ CARDS
//BLAN K CARD

105 CL.OCK AC PNAME 0000
CONTROL CARD ENCOUNTERED - CHECK DECK

19 13 104 R S 1442 NOT READY
104 CL.OCK AC PNAME 1442 NOT READY

PRESS START ON UNIT

1054/1055 PAPER TAPE READER/PUNCH

20 14 103 S N ILLEGAL CALL
103 CL.OCK PNAME LOCN 1054

USER MUST CORRECT CALL IN PROGRAM
21 15 101 S I PUNCH PARITY ERROR

101 CL.OCK AC PNAME 0000 1055 PARITY
LAST CHARACTER OUT MAY BE INVALID

22 16 104 R,S S READER NOT READY
104 CL. OC K AC PNAME 1054 NOT READY

MAKE READY
23 17 104 R,S S PUNCH NOT READY

104 CL.OCK AC PNAME 1055 NOT READY
MAKE READY

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

I - CONTINUE AT THE POINT OF INTERRUPT
R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART

62

L - RELOAD
N - NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED

Table 4. On-Line EAe Errors and Recovery Procedures

ERROR TYPE EAC USER ERROR MESSAGE
CODE CODE STAND. OPTION AND COMMENTS

DEC HEX EAC EXIT

1054/i055 PAPER TAPE READER/PUNCH (Cont'd)

24 18 101 S I READER PARITY ERROR
101 CL.OCK AC PNAME 0000 1054 PARITY

LAST CHARACTER READ IN MAY BE IN ERROR
25 19 102 L N READER STORAGE PROTECT

102 CL.OCK AC PNAME 0000
USER MUST CHECK HIS PROGRAM FOR ERROR(S)

1810 DISK

30 1 E 103 S N ILLEGAL CALL
103 CL.OCK PNAME LOCN 1810

USER MUST CORRECT CALLING SEQUENCE
31 1 F 104 R S DISK NOT READY

104 CL.OCK AC PNAME 1810 NOT READY
MAKE READY

32 20 108 S I DATA OVERRUN
108 CL.OCK AC PNAME 0000 1810 HARDWARE ERROR

INVALID DATA FROM DISK AFTER 10 TRIES
LOCN = OOFF indicates a seek error

on fast access disks.
33 21 109 S I WRITE SELECT

109 CL.OCK AC PNAME 0000 1810 HARDWARE ERROR
STOP DISK AND START AGAIN TO RESET

34 22 111 S I DATA ERROR
111 CL.OCK AC PNAME 0000 1810 HARDWARE ERROR

EXCESSIVE WD CT FOR SECTOR OR MODULO 4 ERROR
35 23 102 L N STORAGE PROTECT ERROR

102 CL.OCK AC PNAME 0000

36 24 101 S
USER MUST CHECK HIS PROGRAM FORERROR(S)

I PARITY ERROR
101 Cl. OC K AC PNAME 0000 1810 HARDWARE ERROR

ERROR PERSISTS AFTER 10 TRIES
37 25 119 S N INVALID DISK ADDRESS

119 CL.OCK AC PNAME 0000
INVALID ADDRESS OR UNEXPECTED HOME BIT ON

38 26 113 S N FILE PROTECT ERROR
113 CL.OCK AC PNAME 0000

USER TRIED WRITING IN A FILE PROTECTED SECTOR
39 27 118 S N NO RESPONSE

118 CL.OCK AC PNAME 0000 1810 HARDWARE ERROR

1627 PLOTTER
DID NOT RECEIVE OR LOST RESPONSE FROM DISK

41 29 101 S I PARITY ERROR
101 CL.OCK AC PNAME 0000 1627 PARITY

NO ATTEMPT IS MADE TO REPLOT THE POINT
42 2A 104 R,S S NOT READY

104 CL.OCK AC PNAME 1627 NOT READY
MAKE READY

1443 PRI NTER

50 32 103 S N ILLEGAL CALL
103 CL.OCK PNAME LOCN 1443

USER MUST CORRECT CALL IN PROGRAM
53 35 110 R,S R, S NO PRINT RESPONSE

110 CL.OCK AC PNAME 1443 NOT READY
PUSH START ON THE PRINTER

54 36 101 S,I I PARITY ERROR OR SYNC CHECK
101 CL.OCK AC PNAME 0000 1443 PARITY

NO ATTEMPT IS MADE TO REPRINT THE LINE
55 37 104 R,S R,S NOT READY

104 CL.OCK AC PNAME 1443 NOT READY
PUSH RESET AFTER CORRECTING PRINTER ERROR THEN

PUSH START

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

I - CONTINUE AT THE POINT OF INTERRUPT
R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART
L - RELOAD
N - NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED

Functions of Executive Programs 63

GC26-3703-1
TNL: GN34-0036
Technical Change

Table 4. On-Line EAC Errors and Recovery Procedures

ERROR TYPE EAC USER
CODE CODE STAND. OPTION

DEC HEX EAC EXIT

ANALOG INPUT BASIC

60 3C P03 S N

61 3D P02 L N

62 3E P04 S N

63 3F POl S N

64 40 P05 S N

65 41 S N

66-68
P17 S N

DIGITAL INPUT BASIC

70 46 P03 S N

71 47 POl S N

72 48 P02 L N

73 49 S N

74-79
P17 S N

DIGITAL AND ANALOG OUTPUT BASIC

80 50 P03 S N

81 51 POl S N

82 52 S N

83-89
P17 S N

2402 MAG TAPE

90 5A 103 S N

91
92 5C 102 L N

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

- CONTINUE AT THE POINT OF INTERRUPT

ERROR MESSAGE
AND COMMENTS

ILLEGAL CALL
P03 CL.OCK PNAME LOCN AIN

ILLEGAL CALL SEQUENCE IN PROGRAM
STORAGE PROTECT VIOLATION

P02 CL.OCK AC PNAME 0000 AIN
WRITE INTO MEMORY PROTECTED LOCN ATTEMPTED
PARITY CONTROL ERROR OR A CAR CHECK

P04 CL. OCK AC PNAME 0000 AIN
PARITY ERROR ON DATA OR CONTROL CYCLE
PARITY DATA ERROR

POl CL.OCK AC PNAME 0000 AIN
PARITY ERROR DURING TRANSMISSION
OVERLAP CONFLICT

P05 CL. OC K AC PNAME 0000 AIN
RELAY POINTS IN RANDOM READ FUNCTION TOO CLOSE
TOGETHER
INTERMEDIATE INTERRUPT
DATA TRANSFER COMPLETED DURING CHAIN OPERATION
NOT USED
INVALID ERROR CODE

P17 CL.OCK PNAME AIN
INVALID ERROR CODE FROM EAC

ILLEGAL CALL
P03 CL.OCK PNAME LOCN DIN

ILLEGAL CALL SEQUENCE IN PROGRAM
PARITY ERROR OR COMMAND REJECT

POl CL.OCK AC PNAME 0000 DIN
DATA TRANSMITTED INCORRECTLY OR ILL. REQUEST
STORAGE PROTECT ERROR

P02 CL. OC K AC PNAME 0000 DIN
WRITE OPERATION TRIED IN MEMORY PROTECTED LOCN
INTERMEDIATE INTERRUPT
DATA TRANSFER COMPLETED DURING CHAIN OPERATION
NOT USED
INVALID ERROR CODE

P17 CL.OCK PNAME DIN
INVALID ERROR CODE FROM EAC

ILLEGAL CALL
P03 CL.OCK PNAME LOCN DAO

ILLEGAL CALLING SEQUENCE IN PROGRAM
PARITY ERROR OR COMMAND REJECT

POl CL.OCK AC PNAME 0000 DAO
DATA TRANSMITTED INCORRECTLY OR ILL. REQUEST
INTERMEDIATE INTERRUPT
DATA TRANSFER COMPLETED DURING CHAIN OPERATION
NOT USED
INVALID ERROR CODE

P17 CL.OCK PNAME DAO
INVALID ERROR CODE FROM EAC

ILLEGAL CALL
103 CL.OCK PNAME LOCN 2402

ILLEGAL CALL SEQUENCE IN PROGRAM
NOT USED
STORAGE PROTECT VIOLATION

102 CL.OCK AC PNAME 0000 2402
WRITE INTO MEMORY PROTE-CTED LOCN ATTEMPTED

- RETURN TO tHE ROUTINE WHICH DETECTED THE ERROR

64

- RESTART
L - RELOAD
N - NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED (Continued)

• Table 4. On-Line EAC Errors and Recovery Procedures

ERROR
CODE

DEC HEX

2402 MAG TAPE (Cent'd)

93 5D

94 5E

95 5F

96-97
98 62

99 63

FORTRAN

100 64

101 65

102 66

103 67

109 6D

104 68

105 69

106 6A

107 6B

108 6C

150 96

TYPE
CODE
EAC

113

115

114

104

116

117

F90

F91

F92

F93

F99

F94

F95

F96

F97

F98

F17

F87

EAC
STAND.
EXIT

R, S

USER
OPTION

N

N

DISK I/O

ERROR MESSAGE
AND COMMENTS

COMMAND REJECT
113CL.OCK AC PNAME 0000 2402-COMMAND REJ

ILL MT OPERATION REQUESTED. USER CHECK PROGRAM
EXCESSIVE TAPE ERRORS

115CL.OCKACPNAME 0000 2402-EXCESSERR
TOO MANY FAI LS ON THI S REE L. MOUNT NEW REE L
TAPE ERROR

114 C L. OC K AC PNAME 0000 2402-TAPE ERR DSW
DSW-DEVICE STATUS WORD
PARITY ERROR OR OTHER FAIL CONDITION
AFTER 100 READ ATTEMPTS OR 3 WRITE ATTEMPTS
NOT USED
NOT READY

104 CL.OCK AC-M PNAME 2402-NOT READY
MAKE READY
END OF TAPE

116 CL.OCK AC PNAME 0000 2402-END OF TAPE
OPERATION ATTEMPTED PAST END OF TAPE
INVALID ERROR CODE

117 CL. OCK PNAME MAG
INVALID ERROR CODE FROM EAC

ILLEGAL AD DR COMPUTED IN AN INDEXED STORE
SUBSCRIPTED VALUE OUTSIDE LIMITS OF ARRAY
F90CL.OCK PNAME LOCN
LOCN CONTAINS BASE ADDRESS OF ARRAY
I LLEGAL I NTEGER VALUE I N COMPUTED GO TO

F91 CL.OCK PNAME LOCN

N FILE NOT DEFINED
F92 CL. OCK PNAME LOCN

FI LE REQUESTED NOT DEFI NED IN DEFI NE FI LE
STATEMENT

LOCN CONTAINS RETURN ADDRESS
N REQUESTED FILE RECORD NUMBER TOO LARGE, ZERO, OR

NEGATIVE
F93 CL. OCK PNAME LOCN
LOCN CONTAINS RETURN ADDRESS

NON-DISK I/O
N WORKING STORAGE AREA INSUFFICIENT

FOR DEFI NE FI LES
F99 CL.OCK PNAME LOCN

LOCN CONTAINS RETURN ADDRESS
N INPUT RECORD IN ERROR

F94 CL.OCK PNAME LOCN
LOCN CONTAINS THE ADDRESS WITHIN THE I/O AREA

WHERE THE ERROR OCCURRED
ILLEGAL CHARACTER IN NUMERIC FIELD

OR ILLEGAL CONVERSION
N RANGE OF NUMERICAL VALUES IS IN ERROR

F95 CL.OCK PNAME LOCN
FIXED OR FLOATING PT NUMBER OUTSIDE DEFINED

LIMITS
N REQUESTED OUTPUT FIELD TOO SMALL

F96 CL.OCK PNAME LOCN
LOCN CONTAINS THE ADDRESS OF THE FlO TABLE

N ILLEGAL UNIT REFERENCE
F97 CL.OCK PNAME LOCN

LOCN CONTAINS THE ADDRESS OF THE FlO TABLE
UNIT NOT DEFINED IN IOU TABLE OR 10CS CONTROL

CARD
N REQUESTED RECORD EXCEEDS ALLOCATED BUFFER

F98 CL.OCK PNAME LOCN
LOCN CONTAINS THE ADDRESS OF THE FlO TABLE
RECORD SIZE TOO LARGE
INVALID ERROR CODE

F17 CL.OCK PNAME FOR
INVALID ERROR CODE FROM EAC

UNFORMATED I/O
N ILLEGAL UNIT REFERENCE

F87 CL.OCK PNAME LOCN
LOCN CONTAINS THE ADDRESS OF THE FlO TABLE
UNIT NOT DEFINED IN IOU TABLE, ON 10CS
CARD, OR FOR UNFORMATED I/O

Functions of Executive Programs 65

Table 4. On-Line EAC Fxrors and Recovery Procedures

ERROR TYPE EAC USER ERROR MESSAGE
CODE CODE STAND. OPTION AND COMMENTS

DEC HEX EAC EXIT

FORTRAN (Cont'd)

151 97 F88 S N READ LIST EXCEEDS LENGTH OF WRITE LIST
F88 CL.OCK PNAME LOCN

LOCN CONTAINS THE ADDRESS WITHIN THE I/O AREA
WHERE THE ERROR OCCURRED

LIST IN READ STATEMENT IS LONGER THAN
LIST IN CORRESPONDING WRITE STATEMENT

152 98 F89 S N RECORD DOES NOT EXIST FOR
READ LIST ELEMENT

F89 CL.OCK PNAME LOCN
LAST PHYSICAL RECORD OF LOGICAL RECORD
HAS BEEN EXHAUSTED

MISCELLANEOUS

110 6E X01 S N PSC CALL BAC K ERROR
X01 CL.OCK PNAME LOCN

CALL BACK TRIED BEFORE CALL SPECIAL
111 6F X03 S N . CORE LOAD NOT LOADED ON DISK

X03 CL. OC K PNAME COREN
COREN - CORELOAD NOT LOADED

112 70 X04 L N RESTART CORELOAD NOT LOADED ON DISK
X04 CL.OCK PNAME COREN

COREN - CORELOAD NOT LOADED
X17 INVALID ERROR CODE

X17 CL.OCK PNAME CLB
INVALID ERROR CODE FROM EAC

120 78 Q01 S N QUEUE CALL IGNORED
ERROR OPTION ZERO

Q01 CL.OCK WC SA P
WC- 5 DIGIT WORD COUNT
SA - 5 DIGIT SECTOR ADDRESS
P - 5 DIGIT PRIORITY

120 78 Q02 QUEUE CALL NOT HONORED-NO LOWER PRIORITY IN
QUEUE
ERR OPTION 1 TO 32766

Q02 CL.OCK WC SA P
120 78 Q03 QUEUE CALL HONORED-CALL ENTERED IN QUEUE

ERR OPTION 1 TO 32766
Q03 CL.OCK WC SA P

REPLACES WC SA P
120 78 Q04 QUEUE CALL NOT HONORED-RESTART INITIATED

ERR OPTION 32767
Q04 CL.OCK WC SA P

Q17 INVALID ERROR CODE
Q17 CL.OCK PNAME QUE

INVALID ERROR CODE FROM EAC
130 82 MOl S N CALL RESMK ERROR

MOl CL.OCK PNAME LOCN
ATTEMPT TO UNMASK OUT OF CORE INTERRUPT LEVEL
WHILE IN AN OUT OF CORE INTERRUPT PROGRAM

131 83 M02 S N CALL UNMK ERROR
M02 CL.OCK PNAME LOCN

ATTEMPT TO UNMASK OUT OF CORE INTERRUPT LEVEL
WHILE IN AN OUT OF CORE INTERRUPT PROGRAM

M17 INVALID ERROR CODE
M17 CL.OCK PNAME MSK

INVALID ERROR CODE FROM EAC
140 8C X02 S N I NTERRUPT LEVEL ERROR

X02 CL.OCK PNAME LOCN
ATTEMPT TO CALL LEVEL UNDEFINED FOR SYSTEM

X17 INVALID ERROR CODE
X17 CL.OCK PNAME LEV

INVALID ERROR CODE FROM EAC

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

I - CONTINUE AT THE POINT OF INTERRUPT
R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART

66

L - RELOAD
N - NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED

Table 4. On-Line EAC Errors and Recovery Procedures

INTERNAL ERRORS

CAR CHECK ERROR
996 CL.OCK PNAME OPTION

SKELETON - RELOAD
VARIABLE - RESTART

OP CODE VIOLATION
997 CL.OCK PNAME OPTION

SKELETON - RELOAD
VARIABLE - RESTART

STORAGE PROTECT VIOLATION
998 CL.OCK PNAME OPTION

SKELETON - RELOAD
VARIABLE - RELOAD

PARITY ERROR
999 CL.OCK PNAME OPTION

SKELETON - RELOAD
VARIABLE - RESTART

OPTION WILL BE RELOAD (IF ERROR IS IN
SKELETON), RESTART (VARIABLE CORE - ABORT OF
NONPROCESS JOB, OR USER'S RESTART CORE LOAD
IF PROCESS), OR COLD START (REQUIRED IF EAC
IS UNABLE TO RELOAD SYSTEM)

MULTIPLE ENTRANCE TO EAC
MLPT EAC

AN ERROR HAS OCCURRED WHILE EAC WAS PROCESSING
A PREVIOUS ERROR. MUST GO TO A COLD START.

NORMALLY THIS ERROR INDICATES THAT THE
SYSTEM DISK IS DOWN. THIS ERROR WILL ALSO
OCCUR IF AN ERROR OCCURS IN EAC WHILE EAC
IS ATTEMPTING TO PROCESS A SYSTEM ERROR.

LEGEND FOR EAC STANDARD EXIT AND USER OPTION:

I - CONTINUE AT THE POINT OF INTERRUPT
R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART
L - RELOAD
N - NO OPTION - MUST TAKE EAC EXIT
* - INTERNAL BACKUP ATTEMPTED

(Continued)

Functions of Executive Programs 67

an error. Note that the user cannot call from his
error subroutines any routine that utilizes more
than 14 words of the subroutine work area (a portion
of the level work area). This area is principally
used for those calls to disk and output printers used
by EAC. It may be increased in size if the user
elects to remove this restriction.

The EAC program is entered whenever an error
occurs or a condition arises that calls for operator
intervention. An error message is then given on the
EAC printer and the program takes one of five pos
sible exits after proper analysis has determined
which exit may be taken for the error in question.
Where more than one exit pertains to a given error
condition, the user has the option of specifying the
exit desired from his (user) error subroutine.

The four component parts are described below.

EAC In-Core. The in-core component of EAC is an
integral part of the System Director and resides in
core storage at all times. Its main function is to
channel one of the several possible types of errors
to a specific entry such that information relating to
this particular error is passed on correctly to the
analysis section. It also saves the current machine
status so that after an error has been processed,
the exit routine can return the machine back to the
user without loss of information. EAC in-core
also has the ability to dump variable core to disk if
this is specified by the user at System Director
assembly time (see System Design Considerations:
System Director). This program also determines
conditions such as process or nonprocess mode, in
valid operation code, parity errors, and user error
subroutine availability.

Error Disk Program (EDP). EDP resides perma
nently on disk, except when it is called to core by
the EAC in-core program. Once EDP is in core,
it takes the error information from the fixed area
and determines what type of error has arisen, the
approximate address at which it occurred, and the
appropriate error processing subroutine; prior to
this, the correct entry addresses for the conversion
and error routines are initialized. When the error
processing routine has completed its task, certain
information such as perform a Cold Start or Re
start, or this error was not corrected but we are
continuing the process, or this error has been
successfully corrected, etc., are passed to the
Exit component.

68

Error Decision Subroutines. These subroutines re
side on disk at all times until called to main core
by EDP to process a particular error. After the
error processing has taken place, a decision is made
on the type of recovery procedure required (e. g. ,
Continue processing, Restart, Reload). This infor
mation is then passed to the Exit component of EAG
for execution.

EAC Exit. This is the means by which a branch is
made to the recovery exit prescribed by the Error
Decision Subroutine. Note that there is no normal
exit from EAC.

Action of EAC When an Error Occurs

Consider the train of events that takes place when an
error occurs, as shown in the simplified block dia
gram, Figure 27. The error may be an Internal
Machine Error, a C. E. Interrupt, or a Miscellaneous
Subroutine Error which may be an error or condition
requiring outside intervention. Depending on the
type of error, one of three possible entries is made
to EAC, as follows:

Internal Errors:
C. E. Interrupt:
Miscellaneous Error:

EACOO
EAC01
EAC02

The explanatory paragraphs that follow are given in
an alphabetic sequence which corresponds exactly to
blocks within Figure 27.

A. An Internal Machine Error may be the result of:

• Parity

• An invalid operation code

• A storage protect violation, or

• A Channel Address Register (CAR) check

When such an error occurs, the hardware
generates a BSI indirect to EACOO through
word 8 where the processing procedure begins.
The return address, the status of the accumula
tor and its extension, the type of error and
certain registers are now saved, and the ma
chine put in a fully masked state. For each

A

INTERNAL
ERRORS

WRITE TO DISK
LAST 1800 WORDS
OF CORE. READ
IN ERROR DISK
PROGRAM

C

C. E.
INTERRUPT

NO

EAC CALL
ENTRY

DUMP CORE
TO DISK

BRANCH TO
USER ERROR
ROUTINE

t----------~ m~1 ~~~SAGE

BRING IN ERROR
RECORD ROUTINE
TO INCREMENT
COUNTER FOR
THAT SPECIFIC
DEVICE

Figure 27. Action of Me when an Error Occurs

Functions of Executive Programs 69

error level, EAC then sets up a work area
within the Fixed Area. Note that the user's
error routine (if included with his core load)
will be ignored on all internal machine errors
and nonprocess programs. A direct branch
is then made to the variable core procedure (G).

B. A C. E. Interrupt routine forms part of a TSX
on-line system to allow the user to check and
modify system unit assignments of 1053 output
printers, 1443 printers, and 2310 disk drives,
and to initiate backup procedures if and when
this becomes necessary. This is normally a
Customer Engineer responsibility. When the
C. E. LEVEL INTERRUPT toggle switch, lo
cated on the C. E. panel, is activated, a C. E.
interrupt occurs, forcing a BSI to that level,
and, after some processing, another BSI is
generated to an entry EACOI in EAC.

On entry to EAC01, the return address,
the status of the Accumulator and its extension,
and certain registers are now saved, and the
machine put in a fully masked state. A direct
branch· is then taken to G.

C. A Miscellaneous Error which is neither an
internal machine error nor a C. E. interrupt
may be either an error or a condition that re
quires outside intervention. For example, a
not-ready condition on an I/O device has arisen.
This condition has been detected by the I/O
routine, which then sets up an error code and
additional parameters in locations 115 through
119, and finally executes a BSI through location
120 to an entry EAC02 in EAC. On entry to
EAC02, the return address, the status of its
accumulator and its extension, and certain re
gisters are now saved, and the machine put in
a fully masked state.

D. If the dump-core-to-disk option was specified
by the user at System Director assembly time,
and the Selective Dump Word (word 3 of the
Fixed Area) matches the EAC Error Code, the
whole of core is written to the Error Dump
Area on disk for interrogation at a later date,
and the Selective Dump Word is overlayed
(replaced by -1). Only the latest error is kept
since there is only one Save Area.

E. A determination i"s now made if the core load in
error is a process core load.

F. If it is, a branch is made to the user's error
subroutine, if it has been included in the core
load, to allow him to perform such processing
as he may require for his particular system.
This also permits him to modify some system
options. Upon return from this routine, any
indicator that may have been set is saved. If it
is not a process core load, an exit is made to
the common variable core procedure at G.

G. At this point, DISKN is called in from the Skele-

70

ton to write out the last (1920)10 words of core,
and to read the Error Disk Program (EDP) into
this area. The EDP program is origined such
that it will always reside in the final (1920) 10
words of variable core. The very last 64010
words of EDP is the overlay area for the appro
priate Error Decision Subroutine when called.

H. Upon entering the Error Disk Program, an an
alysis is made to determine which Error Decis
ion Subroutine is to be used.

I. For an EACOO entry, the Level 0 routine is used;
for a C. E. Interrupt entry, the C. E. Interrupt
routine is used. If the entry was made through
EAC02, the routine used will be determined by
the error code stored in location 115 by the rou
tine which determined the error.

The appropriate Error Decision Subroutine
is now read into the upper (640)10 words of
core; it then builds and prints the error mes
sage on up to four output printers, as defined at
TASK assembly time, and sets a predetermined
exit indicator or the indicator set by the user's
error subroutine. A return is made to the EDP
program.

J and K. A hardware error check is now carried out.
Assuming that an internal machine error had
occurred, an error record routine is brought in
to increment (that is, update) a counter associa
ted with that particular piece of hardware. The
record of the hardware error is kept such that
when maintenance is required, the counter is out
put to inform the Customer Engineer how often
a particular hardware device has failed. Con
trol is then returned to EAC, and the stage set
for recovery action.

L. The system is now unmasked to the original
status by the user calling program, PSC, or MIC.

As shown in Figure 27, five types of recovery
action (as prescribed by the appropriate Error
Decision Routine) are possible.
1. Cold start
2. Continue
3. Reload
4. Restart, and
5. Exit through an interrupt level

Cold start. Whenever an error occurs which cannot
be corrected, EAC prints a cold start procedure
message, and comes to a wait state. For example,
consider a machine parity error which has occurred
when one of the 18 bits of information has been lost.
A parity error routine then attempts to clear the
error by successively loading and storing data into
the affected location. If the error persists after re
peated attempts at recovery, the routine prints the
location of the parity error, and comes to a wait.

Continue. The error is noted, but it is not of such
a nature as to interfere with the program in progress.
For example, the entry to EAC may have been a
C. E. Interrupt or a request to print a message for
outside intervention reflecting a not-ready state, a
non-fatal error, or a printer parity.

The "continue" recovery action implies that the
program proceeds at the point of interruption. Con
sider an I/O device which has just completed its
operation -- an interrupt is generated. This will
transfer control to the I/O routine which then deter
mines the correct error condition, and branches to
EAC. This exit option bypasses the I/O routine and
returns control to the point in the program at which
the interrupt developed.

Reload. The Reload recovery routine is brought into
core whenever it is suspected that some of the non
storage protected words in permanent core may have
been destroyed.

The routine saves the tables necessary for the
completion of previous core loads, having first veri
fied that these tables have not been destroyed. The
Skeleton (from disk) is then read by sectors into a
buffer area. Each word in the buffer is compared
with the corresponding word in core. If these words
are not identical, the word in core is overlayed by
the word in the buffer.

Upon completion of the Skeleton reload, various
conditions and indicators are initialized and the
routine exits by way of a CALL CHAIN to the initial
core load.

If a storage protected word is different to its
corresponding word on disk, because of a program
ming operation or hardware error, the Reload
recovery routine prints a message which gives the
address of the protected word, at the same time indi
cating that a cold start must be performed.

Note that if an error has occurred outside of the
Skeleton Area, the present core load is aborted and
the initial core load is read into main core for
execution.

The CAR error may be caused by incorrect usage
of the "XIO" instruction or incorrect chaining of
data tables, etc. This is always a reload condition.

Restart. An error has occurred which prohibits the
present core load from continuing. Three types of
"restart" are used:

1. If the error, such as an illegal call, occurred
in a process core load, the program in pro
gress is aborted and its restart core load is
called into core for execution.

2. If the error occurred in a nonprocess core
load, the job is aborted by calling in the Non
process Supervisor.

Changes to (t) on a RESTART on a RELOAD

Timer A, Timer B If the subroutine to Turned OFF

be entered when the

timer times out is

included in the Ske-

1eton' Timer A and

Timer B are left ON,

otherwise they are
turned OFF.

Timer C Left ON Set to -1 (shortest

time possible) and

turned ON

Real-time clock Unchanged Incremented by the

approximate reload

time (3400ms)

Programmed timers Unchanged Set to zero

1 - 9

Programmed inter- Unchanged Unchanged

rupts

External interrupts Unchanged Turned OFF

Started interrupt Aborted Aborted

routines

Figure 27.1. Effects of Restart and Reload on Timers and Interrupts.

3. If the error occurred in an interrupt core load,
this core load is aborted, and the restart core
load of the current process core load is called
for execution. This means that the user's re
start routines must be written in such a way as
to analyze his system and determine what pro
gram will be called for execution.

Exit through an Interrupt Level. A restart condition
has arisen on a level other than the mainline level.
The level on which the error occurred is terminated
and the Restart procedure taken when the mainline
level is reached.

THE NONPROCESS MONITOR

The Nonprocess Monitor (NPM) is an independent
programming system which is designed to function
in one of two possible modes within a TSX system:

• In the on-line mode, it operates under the control
of the System Director.

• It can also be roo in the off-line mode as a dedi
cated monitor system under TASK control.

The user elects either system (that is, an on-line
or off-line system) at system generation time (see
System Design Considerations).

The NPM serves a three-fold purpose:

Functions' of Executive Programs 71

1. It permits better computer utilization through
time-sharing.

2. It allows the user to compile, assemble, store,
delete, and modify programs with extreme flexi
bility. Because the system programs are resi
dent on disk, only source statements and data
cards are required to be read in.

3. It provides for job stacking at the Card Reader,
which is fast because less card handling is re
quired. A stacked-job environment permits
automatic and uninterrupted operation.

The primary function of the Nonprocess Monitor
is-i;o provide continuous processor-controller oper
ation during a sequence of jobs that might otherwise
involve several independent programming systems.
The monitor coordinates the processor-controller
activity by establishing a common communications
area in core storage, which is used by the various
programs that make up the monitor. It also guides

Functions of Executive Programs 71. 1

the transfer of control between monitor programs
and the user's programs. Operation is continuous
and setup time is reduced to a minimum, thereby
effecting a substantial time saving in processor
controller operation and allowing greater program
ming flexibility.

Figure 28 illustrates the five distinct but interde
pendent programs which make up the Nonprocess
Monitor.

NONPROCESS SUPERVISOR (SUP)

The Nonprocess Supervisor directs and controls the
execution of all nonprocess program s which may be
either mM - supplied as part of the TSX package
(e. g., FORTRAN Compiler, Assembler, Core Load
Builder, Disk Utility Program and Simulator) or
user-written. It is composed of several separate
but closely-related routines; its two principal com
ponents are:

• The Skeleton Supervisor, and

• The Monitor Control Record Analyzer

Skeleton Supervisor. This contains the requisite
direction and control logic for the orderly transition
of one program to another. The Skeleton Supervisor
is read into core storage whenever monitor system
operation is initially started, and provides the com
munications link between monitor programs and user
programs.

Monitor Control Record Analyzer. This component
of the Nonprocess Supervisor reads the monitor
control record, prints its contents on the list and/or
System Printer, and calls the appropriate monitor
program.

Analysis of monitor control records extends over
columns 1-5 only, except for the / / JOB card. Inval
id control records result in an error message and
cause an abort. Blank cards are bypassed and not
stacker-selected. The card I/O routine, CARDN, in
the skeleton is used; if CARDN is not included by the
user, the monitor program uses its own card I/O rou
tine. The / / JOB control record resets the abort in
dicator and the effective address for the Nonprocess
Working Storage on disk. It can also specify which of
logical disk drives 1 and 2 are expected to be opera
tional, and, accordingly, checks the labels on their
disk packs when indicated. The / / END control record
directs the Nonprocess Supervisor into a wait state.

72

---- T ime - Sharing

I Control Program
(TSC)

Nonprocess
Supervisor

I
1 I

Disk
Assembler FORTRAN Simulator Utility

Program Program Compiler Program

Figure 28. The Nonprocess Monitor

Specifically, the N onprocess Supervisor per
forms the following functions:

1. Analyzes all monitor control records (e. g. ,
/ / JOB, / / ASM, / / FOR)

2. Performs JOB initialization
3. Calls and transfers control to the requested

monitor program (e. g., FORTRAN Compiler,
Assembler)

4. Performs PAUS (that is WAIT) and END OF ALL
JOB functions when requested

5. Also analyzes control records for the Core
Load Builder following the / / XEQ, *STORECI
and *SIMULCI.

Method of Operation

The Nonprocess Supervisor, including all monitor
programs, must reside on logical disk drive zero
where it occupies 21 sectors (see System Design
Considerations: IBM Nonprocess System). The
first 168 words of the Disk Communications Area
(DCOM) of sector 00000 on this disk (the system disk
pack) contains the Nonprocess Communications Area
which provides the logical linkages between monitor
programs and user programs. This area holds ad
dress words, error indicators (used by DUP, FOR,
ASM, SUP, etc.), the name of the program or core
load being executed, as well as a loader for the
monitor programs.

DCOM is always brought into core each time a
/ / JOB control record is read. Certain words are
then initialized to reflect the current status of the
disk as reflected by LET /FLET. Note that recog
nition of a / / JOB control record by the Nonprocess

Supervisor also removes all temporary entries
from LET. Whenever a / / END or / / XEQ control
card is encountered, DCOM is written back to disk.

Entry to the Nonprocess Supervisor occurs
through a) Console Interrupt, b) a CALL SHARE (or
CALL VIAQ) statement in a process mainline, c)
FORTRAN Compiler, d) Simulator, or e) Disk Utility
Program.

In an on-line TSX system, process interrupts are
serviced as they occur, the interrupt servicing time
being applied against the time specified by the user
for nonprocess operations. As an example, assume
a process mainline calls for one minute of time
sharing. This one-minute span is the length of time
in the share mode. If, during this period, ten sec
onds are used up for process interrupt servicing,
only fifty seconds are actually available for nonproc
ess work.

If all nonprocess jobs are completed before the
end of the user-specified time, the Nonprocess Sup
ervisor program performs a WAIT operation for the
remainder of the time allotted. In other words, if
the CALL SHARE statement specified one minute of
time- sharing, control is not returned to the process
program until one minute has elapsed, or alternative
ly, a CALL ENDTS statement is executed by an inter
rupt routine (see Use of Time-Sharing).

Figure 29 illustrates, in simplified form, Non
process Monitor action during time-sharing.

If a nonprocess job is not completed before the
specified time is up, it is saved on the disk. When
the next CALL SHARE statement is executed, oper
ation of the nonprocess job is resumed at the point
of termination.

When an unfinished job is waiting, the CALL
SHARE statement causes it to be read in and execu
ted. Otherwise, the Nonprocess Supervisor pro
gram is read into core and determines, by checking
a program indicator located within the System
Director, if any time-sharing operations are to be
performed. This indicator is turned on by the execu
tion of a special console interrupt routine, supplied
with the system.

The following example illustrates a typical use of
the Nonprocess Monitor whenever nOnprocess jobs
are ready for execution.

1. Operator stacks jobs in Card Reader and starts
Reader.

2. Time-Sharing is typically initiated by an oper
ator interrupt, with a coded num ber set up in

Process I Nonprocess Monitor
Program

..----------, I
Nonprocess
Program

CALL
SHARE

(I)

Read-in
Unfinished
Job and
Continue
Execution

Wait until
time has
elapsed

Perform
Job

Figure 29. Illustrating Nonprocess Monitor Action during
Time-Sharing

the console switches to indicate a time-sharing
request.

3. Interrupt routine sets a program indicator to a
process mainline.

4. Process mainline calls for time-sharing when it
is idle. It specifies the time interval.

5. Nonprocess programs may be interrupted and
later continued by an external (that is, process)
interrupt or timer interrupt This will involve
an exchange to the disk save area if the inter
rupt program is not in core, or if the shared
period has timed out.

6. Nonprocess jobs are completed in sequence
until no jobs remain (program ends on a WAIT
instruction) or until / / END OF ALL JOBS
control record is reached.

7. During time-sharing, the Skeleton Supervisor
will be in transient core, identifying monitor
control records and initiating monitor pro
grams.

Functions of Executive Programs 73

DISK UTILITY PROGRAM (DUP)

DUP is a set of routines designed to aid the user in
the day-to-day maintenance of data and programs
on disk packs. That is, it has the capabilities of
storing, deleting, and outputting user's programs
as well as defining system and machine parameters.
It also updates the location equivalence table (LET)
and maintains other communications areas. The
Disk Utility Program is called into operation by a
/ / DUP monitor control record; it can be used on
line or off-line.

The / / DUP monitor control record must be fol
lowed by at least one DUP control statement that
selects the desired routine. DUP control statements
are identified by an asterisk in column 1. Columns
2 through 10 contain a symbolic code which identifies
the routine (e. g. *STORE, *DELETE, *SEQCH).
The columns following the coded routine name pro
vide additional information used by the routine itself.

Like the Nonprocess Supervisor, DUP must re
side on logical disk drive zero where it occupies
68 sectors. Primary entry to DUP derives from
a) Nonprocess Supervisor, b) FORTRAN Compiler,
c) Assembler, and d) Core Load Builder.

DUP uses the card I/O routine, CARDN, if this is
included in the skeleton; otherwise, it uses its own
card I/O routine. Blank cards are skipped and
stacker-selected when searching for control records.
Non-DUP or non-monitor control records result in
an error message. All DUP control records and
messages are printed on both the System and List
printers.

Essential data for most DUP functions to com
municate with a disk pack include the following:

• Disk sector addresses

• Numeric label in word 0, sector 0

• Disk Communications Area (DCOM) -- This pro
vides information on the size and location of
work storage areas, LET for the Relocatable
Program Area and FLET for the Core Load Area.

• Valid entries in LET/FLET

A list of all DUP functions is given in the Sum
mary of Nonprocess Monitor Control Records. See
also Examples of Nonprocess Monitor Usage.

74

FORTRAN COMPILER

The TSX FORTRAN Compiler is a disk-resident ver
sion of the 1800 card compiler, and occupies 103
sectors on logical disk drive zero. Provision is also
made for the user to easily make use of input-output,
conversion and arithmetic subroutines that are a part
of the TSX subroutine library. The FORTRAN
language is described in IBM 1130/1800 Basic
FORTRAN IV Language, Form C26-3715.

The / / FOR monitor control record is used to call
the FORTRAN compiler into operation, and to name
the mainline program. The compiler reads the con
trol records and source program in card form only.
After a successful compilation, the object program
in relocatable format is moved to the temporary area
on disk, and an entry (name and disk block count) is
made in LET. It can, henceforth, be called for exe
cution by an / / XEQ control record, or it can be
stored permanently in the Relocatable Program Area
by a DUP (*STORE) operation. All FORTRAN pro
grams are compiled in relocatable format. A list of
FORTRAN control records is given in the summary
at the end of this section.

ASSEMBLER

Th~ Assembler program for the 1800 TSX system is
a disk-resident version of the 1800 card assembler.
It is designed to translate source program statements
written in a symbolic format into a binary format
which may be stored and/or dumped by the Disk
Utility Program (DUP) , or executed directly from the
Nonprocess Work Storage on disk. The Assembler
Language is fully described in IBM 1800 Assembler
Language, Form C26-5882.

The Assembler program resides on logical drive
zero and occupies seven cylinders. Entry to it is
obtained via a / / ASM monitor control record. The
Assembler accepts control records and source pro
grams in card form only. Upon a successful assem
bly, the object program in relocatable format is
moved to the temporary area on disk where it can be
called for execution by a / / XEQ control record or
stored permanently in the Relocatable Program Area
by a DUP (*STORE) function. A list of Assembler
control records is given in the summary at the end
of this section.

SIMULATOR PROGRAM

The simulator is designed as a debugging aid which
allows the user to checkout or test process and/or
nonprocess program s without disrupting the normal
operations of the TSX system -- that is, without tak
ing the system off-line. It functions under the control
of the Nonprocess Monitor.

Each instruction in the object program is analyzed
for a valid operation code and format before its oper
ation is simulated. In addition, addresses of store
and branch instructions are checked to ensure that
the instruction would not alter anything outside of
the areas of the defined program, COMMON, INSKEL
COMMON, or the level work area, if they are act
ually executed on-line. Process input values may
be read from cards or derived from a random num
ber generator. Since System Skeleton routines are
used during simulation, it is mandatory that the
skeleton area be built before simulation of process
core loads can be performed.

Since the primary function of the Simulator is to
detect programming errors in the object project,
several optional debugging features are available to
aid the user. These include Snapshot, Branch Trace
and Dump. Simulated COMMON can be dumped on
cards so that a run can be executed in several dif
ferent parts. In addition, the branch and arithmetic
trace provided by the FORTRAN Compiler can be
operative in the simulator mode.

Simulation runs for process program s are called
by a DUP control record, *SIMULCI; runs for non
process programs are called by a / / SIM monitor
control record. Details of operating procedures and
stacked-input for a typical simulation run are des
cribed in IBM 1800 Time-Sharing Executive System,
Operating Procedures, Form C26-3754.

Subroutines

General Input/Output

Each time the Simulator encounters a user-called
sequence to an I/O subroutine, the location of the
calling sequence and the subroutine name are
printed on the List printer. Each time the Simulator
encounters a subroutine test function (I/O function
digit = 0), the following occurs: the first time a test
is encountered, a busy return is made; the second
time, a not busy return is made. Succeeding entries
alternately cause busy and not-busy returns.

Listed below are the general input/output subrou
tines (IBM-supplied) recognized by the Simulator,
and corresponding operations which the Simulator
performs:

SUBROUTINE

CARDN (Simulated card
subroutine)

DISKN (Simulated disk
subroutine)

MAGT (Simulated mag
netic tape subroutine)

PAPTN (Simulated paper
tape subroutine)

OPERATION

Read a card, feed a card, simulate
punch a card

Read disk, write disk, simulate
disk seek

Simulates all re ad, write, and
control functions relative to 2401
and 2402 magnetic tape units

Simulate reading paper tape, simu
late punching paper tape)

PLOTX (Simulated plotter Simulate plotter output
subroutine)

PRNTN (Simulated printer Print a line, simulate a carriage
subroutine) operation

TYPEN or WRYTN (Simulated Simulates printing on 1816 printer
printer keyboard subroutine) keyboard or 1053 printer

The Simulator requires that the card reader, disk,
and List printer be physically present on the system.

Process Input/Output

Call sequences which specify input from pulse input
points, digital input points, process contact points,
and analog input, may obtain input from two sources:
cards and a random number generator.

Data cards are used if samples of specific values
are desired; the points can be read in a nonprocess
program and punched into cards to be read by the
Simulator. Any value can be simulated when using
cards, but in order to obtain the desired results, the
input data must be sequenced according to the flow of
the process input subroutines called. In other words,
the card feature requires careful ordering of the
card deck.

A random number generator, within the Simulator
program, produces numbers that fall into a user
specified range. With this option, the user can em
ploy a wide variety of input data to check program
operation. A psuedo-process input environment can
also be created through the use of a random number
generator. All input values are printed on the list
printer as they are called.

In the program being simulated, call sequences
that specify output for the contact operate, pulse out
put, digital output, and digital-to-analog output fea-

Functions of Executive Programs 75

tures are printed when they are encountered. Input
call sequences, error messages, and data are
included in the printed output. This provides a com
plete chronological record of all that occurred dur
ing the simulation.

ffiM-supplied process input/output subroutines
are functionally simulated; that is, the subroutines'
call parameters are analyzed according to specifica
tions supplied in the form of control records. The
routine name, calling parameters, and data are
printed on the List printer. Listed below are the
process input/output subroutines recognized by the
Simulator, and corresponding operations which the
simulator performs. Special-condition returns are
also simulated.

SUBROUTINE

AIPTN or AIPN (Simulated
analog input point)

AIRN (Simulated analog
input random)

AISQN or AISN (Simulated
analog input sequential)

DAOP (Simulated digital
analog output)

DICMP (Simulated digital
inpuu read compare)

DIEXP (Simulated digital
inpuu read expand
function)

DINP (Simulated digital
inpuu hardware functions)

OPERATION

Simulates the read of a single
analog point

Simulates reading random analog
input points

Simulates reading sequential
analog data pqints

Simulates the transfer of digital
or analog information

Simulates the reading in of
digital input values under program
control and compares these values
to a table of user-supplied values.
Only the first compare error is
detected. A single entry to the
special routine is made with
appropriate indication. The
end-of-table interrupt will not
occur if a comparator error
occurs.

Simulates the reading in of a
digital input value and expands
it into 1, 2, 4, 8, or 16 words.

Simulates the reading in of
digital input values

Arithmetic and Conversion Subroutines

Copies of the IBM-supplied arithmetic and conver
sion subroutines are contained within the Simulator.
It is these copies that are executed when a call to an
arithmetic or conversion subroutine is encountered.
The requested operations are performed in a psuedo
processing environment maintained under control of
the Simulator.

76

General TSX Subroutines

When a call to a TSX control subroutine is recognized
by the Simulator, the subroutine name and its calling
sequence parameters are printed. There are two
categories of subroutines designed for control and
communication with the TSX system: the termination
class and the functional simulate class.

The following subroutines comprise the termina
tion class, and when encountered, cause the Simula
tor to execute the close-job procedure:

BACK
CHAIN
DPART
INTEX
LINK

PAUSE
SPECL
STOP
VIAQ
EXIT

The subroutines listed below comprise the func
tional simulate class, and when encountered, cause
the Simulator to simulate the function, i. e., they
analyze the call parameters for validity and print
the routine name, the calling parameters, and the
data contained within the subroutine.

CLEAR REMSK
COUNT SAVMK
ENDTS SETCL
LEVEL SHARE
MASK TIMER
OPMON UNMK
QIFON UNQ
QUEUE

U ser-Written Subroutines

User-written subroutines are simulated in the same
manner as mainline programs.

Common Area

The simulated COMMON area can be dumped on
cards whenever a program being simulated is ter
minated. The output cards can be used for input
to reload COMMON, thus providing communication
from one core load to another.

Restrictions

Restrictions placed upon the use of the Simulator
program are listed below:

1. Nonprocess work storage must be used if actual
data is to be transferred between disk and core.

2. Link or chain jobs must be simulated by pre
senting one core load at a time.

3. The Simulator utilizes LIBF and CALL instruc
tions for special purposes. When analyzing post
mortem dumps, the contents of LIBF and CALL
locations should be ignored by the user.

4. All I/O must be performed by Simulator sub
routines. An execute I/O (XIO) instruction is
not simulated but will be recorded on the List
printer.

5. A wait (WAIT) instruction will be recorded on
the list printer.

Table 5. Monitor Control Cards

Initial izes a nonprocess job

Reads the disk utility program into core for execution

Reads the user's programs into core for execution

Reads the Assembler into core for execution

Reads the FORTRAN compiler into core for execution

6. A storage protect setting instruction (STS with
both the F-bit and the 9th bit equal to zero) will
result in a termination.

7. An attempt to store into a skeleton area other
than the INSKEL COMMON and work level
areas will result in a termination.

8. Operation codes of 00, 38, 58, 78, and FF are
invalid and will result in a termination.

9. A subroutine I/O area parameter pointing to the
skeleton will result in a termination.

SUMMARY OF NONPROCESS MONITOR CONTROL
CARDS

Tables 5-10 give a brief summary of all Nonprocess
Monitor control cards. For details of card prepar
ation and their functions, see IBM 1800 Time-Sharing
Executive System, Operating Procedures, Form
C26-3754.

II JOB

IIDUP

IIXEQ

II ASM

II FOR

IlslM Reads the Simulator program into core allowing a nonprocess program to be simulated

II PAUS

II END or

Causes the system to WAIT

I I END OF ALL JOBS Signals the Nonprocess Supervisor that all nonprocess work is complete

Table 6. Loader Control Cards

*INCLD

*RCORD

*FILES

*LOCAL

*CCEND

Causes a named program to be included in the skeleton or in a mainline core load

Records interrupts that occur during the execution of process core loads

Provides for the designation of disk areas to be used by the FORTRAN program in which the files were defined

Permits groups pr blocks of subprograms to be loaded into core when they are called

Lost loader control card, calls the ~ore Load Builder

Functions of Executive Programs 77

Table 7. DUP Control Cards

*DEFINE

{

OCORE

NDISK

CONFG

REMOV

PAKDK

*DLABL

*STORE

*STOREDATA

*STORECI

*DUMP

*DUMPDATA

*DUMPLET

*DELET

*DWRAD

*STOREMD

*SEQCH

*SIMULCI

*DICLE

Specify the size of obi~ct core

Specify the number of disk drives on the system

Specify the system configuration with respect to disk areas

Allow the user to delete FORTRAN or the Assembler from the monitor disk

Pack relocatable programs into unused areas identified by *DELET

Lobels a disk pack and, if not system pack, writes addresses

Stores relocatable programs in the Relocatable Program Area (user or temporary) on disk

Stores blocks of data in Core Load (core image) Area on disk

Co uses a core load to be built and stored in the Core Load Area on disk

Dumps programs from the disk to the system I/O device or list printer

Dumps blocks of data as indicated in *DUMP

Dumps LET and/or FLET on the list printer

Replaces a program name in LET or FLET with the name 9DUMY thus making the program area avai lable to the
store function

Allows the user to write addresses on a specified area of disk

Allows the user to modify existing nonprocess core loads and relocatable programs without previously
deleting them

Used to change the sequence of existing core load linkages for process or non process cor.e loads

Reads the Simulator program into core, allowing a process program to be simulated

Allows the user to modify the interrupt core load table

Table 8. FORTRAN Control Cards

78

*IOCS (CARD, TYPEWRITER, KEYBOARD, 1443 PRINTER, PAPER TAPE,
MAGNETIC TAPE, DISK, PLOTTER)

** Header information to be printed on each compiler output page

*ONE WORD INTEGERS

*EXTENDED PRECISION

*ARITHMETIC TRACE

*TRANSFER TRACE

*lIST SOURCE PROGRAM

*LlST SUBPROGRAM NAMES

*LlST SYMBOL TABLE

*LJST ALL

*NONPROCfSS PROGRAM

* PUNCH

Delete any not used

(Store integer variables in one word) This function is automatic in
process programs.

(Store floating point variables and constants in 3 words insteod of 2)

(Switch 15 ON to print result of each assignment statement)

(Switch 15 ON to print value of IF or Computed GO TO)

(list source program as it is fecrd in)

(List subprograms called directly by compiled program)

(List symbols, statement numbers, cOJ'l§tants)

(list source program, subprogram names, symbol table)

(Identifies this compilation 05 a nonprocess program)

(Causes DUP to punch on object deck after successful compilation)

Table 9. Assembler Control Cards

*TWO PASS MODE Read source deck twice; must be specified when *LlST DECK or *LlST DECK E is specified, or when intermediate output fills
working storage

*LlST Print a listing on the principal printing device

*LlST DECK

*LlST DECK E

Punch a list deck on the principal I/O device (requires *TWO PASS MODE)

*PRINT SYMBOL TABLE

*PUNCH SYMBOL TABLE

*SAVE SYMBOL TABLE

*SYSTEM SYMBOL TABLE

Punch only error codes (cc 18-19) into source program list deck (requires *TWO PASS MODE)

Print a listing of the symbol table on the principal printing device

Punch a list deck of the symbol table on the principal I/O device

Save symbol table on disk as a system symbol table

Use system symbol table to initialize symbol table for this assembly

*PUNCH A relocatable binary deck will be punched by DUP following this assembly

*OVERFLOW SECTORS n n = number of sectors of non process working storoge allowed for symbol table overflow

*COMMON n n = fength of COMMON in words (decimal)

Table 10. Simulator Control Cards

*SNAP Displays up to 10 locations following execution of an instruction

*TRACE Traces or displays same information as for *SNAP

*DUMP Dumps simulated core storoge

*SAVE COMMON

*LOAD COMMON

PlJnches out binary deck af process and variable COMMON

DEFINES and analyzes COMMON from *SAVE COMMON OUTPUT deck

*XIO Suppresses printing of 10CC words referenced by XIO instruction

*WAIT Suppresses printing of WAIT instructions

*START SIMULATION Signals that all Simulator control cards have been read

*END DATA Terminates Simulator run

EXAMPLES OF NONPROCESS MONITOR USAGE

The prime purpose of this section is to illustrate a
few of the many possible uses of 1800 TSX features,
and to accentuate the many more possibilities based
upon the ability of the user to apply the basic con
cepts and techniques. Numerous sample programs
and coding examples are presented as demonstration
of good programming practice and technique. These
examples conform strictly to standard TSX coding
conventions.

The JOB

When a programmer is given a problem, he analyzes
that problem and defines a precise problem-solving
procedure: that is, he writes a program or a series
of programs. To the monitor system, executing a
mainline program (and any subroutines and subpro-

grams that it calls) is a job step. A job consists of
executing one or more job steps.

At its simplest, a job consists of one solitary job
step. For example, assembling or compiling a pro
gram is a job consisting of one job step. Similarly,
executing a FORTRAN mainline program to invert a
matrix is a job consisting of a single job step.

If the problem is complex, one job may consist
of a series of job steps. Such a job may include
multiple assemblies, compilations, disk utility
functions, and executions. A job always begins with
a / / JOB control card which is the first statement
in the sequence of control statements that describes
a job.

The JOB Deck

The input to the Nonprocess Monitor may consist of
one or more job decks. Each jou deck is preceded
by a / / JOB. The processing of each job deck is

Functions of Executive Programs 79

controlled by the Supervisor program as specified in
the monitor control cards. As an example, consider
the following stacked input arrangement (see Figure
30).

The above sequences will compile, store and
execute both program PROGI and program PROG2
provided that:

1. There are no source program errors, and
2. There is sufficient room in the Nonprocess

Work Storage area.

A source program error will cause the DUP
Store Operation to be bypassed for that program, and
all following / / XEQ requests preceding the next
/ / JOB card will be disregarded. This feature (that
is / / XEQ -- request disregard) can prove very use
ful when the successful execution of one program de
pends upon the successful completion of the previous
program. A combination such as this should be con
sidered as one job. The / / XEQ control cards should
not be separated by a / / JOB card. Note from Fig
ure 30 that it would not be necessary to store the two
programs if they were executed on a one-shot basis.

Assembling/Compiling Programs

Programs are of two types: process and nonprocess.
A process program is one that continuously monitors

SAMPLE CODING FORM

Figure 30. Illustrating a JOB

80

a control process. All application programs are,
by definition, process programs. A nonprocess
program, on the other hand, is not directly related
to the control process itself. An assem bIer pro
gram is an example of a nonprocess program: other
examples include compilers, data reduction, pay
roll, bookkeeping, simulation of new and existing
programs, and linear programming.

Process and nonprocess program s may be fur
ther classified as main programs or subroutines.
Subroutines can be subdivided into the following:
LIBF (library functions), CALL, Interrupt, IBM
supplied, and LOCAL subroutines.

In the off-line or time-sharing mode of operation,
the user may exercise any of four options in assem
bling/ compiling and executing a nonprocess program.
Figure 31 illustrates these approaches in simplified
form. A distinction should be drawn between proc
ess and nonprocess programs. The initial process
program can only be executed through a cold start
procedure for an on-line TSX system. If the proc
ess, mainline, or combination core load is already
disk-resident (in the Core Load Area) it is called
by a CALL CHAIN or CALL QUEUE.

EXAMPLE L ASSEMBLE AND EXECUTE A NON
PROCESS PROGRAM FROM THE TEMPORARY
AREA (see Figure 32).

The Assembler is unable to differentiate between
process and nonprocess programs -- these are
treated alike. Following assembly, the object pro
gram in relocatable format is moved to the tempor
ary area on disk, and its entry (name, word count,
and sector address) made in LET.

If the user desires to perform only an initial
check on his program, and not execute it, / / XEQ
and *CCEND are not required. If he plans to verify
the program logic and results (if any), he will exe
cute it. The presence of the / / XEQ and *CCEND
control cards calls in the Core Load Builder, and a
core load is built and executed. In addition, a list
ing of source statements as well as the correspond
ing object program, and a directory of all valid
labels used in the program can be obtained by speci
fying these options with the appropriate Assembler
control cards. The order in which programs are
assembled is important when the *SAVE SYMBOL
TABLE control card is used in assembling related
programs.

Note that the relocatable program will reside in
the temporary disk area until it is deleted by the
next / / JOB card. An *CCEND control card must
always follow an / / XEQ card if a relocatable
program is referenced in the / / XEQ card.

Store in -Relocating -Disk Area

,r
Store in Build Core

Disk Core - Loads -Image Area *STORECI

,r
"

EXECUTE ** EXECUTE ***
II XEQ FX IIXEQ

*CCEND

Note:

This is automatic if the assembly or compila
tion is successful.

ASSEMBLE
andlor

COMPILE

,.
Store in

Disk TEMP
Area*

,.
Build Core

Loads
*STORECI

" EXECUTE ***
IIXEQ
*CCEND

Execution occurs through a Cold Start, CALL LINK
or II XEQ.

*** Execution can only occur through a / / XEQ.

-~-

Figure 31. Assemble/Compile and Execute a Nonprocess Core Load

SAMPLE CODING FORM

Figure 32. Assemble and Execute a Nonprocess Program from the
Temporary Area

Store in
Disk Core

Image Area

" EXECUTE **
II XEQ FX

EXAMPLE 2. COMPILE AND STORE A NON
PROCESS PROGRAM IN THE RELOCATABLE PRO
GRAM (OR USER) AREA ON DISK (see Figure 33).

Unlike the Assembler, the Fortran Compiler dis
tinguishes between the two types of programs by the
absence or presence of the *NONPROCESS PROGRAM
control card. In a process program, each integer
variable automatically occupies one word of storage.
In a nonprocess program, however, the *ONE WORD
INTEGERS control card forces the compiler to allo
cate one word of storage to each integer variable; in
the absence of this card, the same allocation (that is,
two words) for real variables is made. In the case of
a large array, this could be prohibitive.

All FORTRAN programs are compiled in relocatable
format. Following compilation, the relocatable
object program is moved to the temporary disk area,
and an entry made in LET. It can now be called for
execution or loaded to the Relocatable Program (that
is, the User) Area on disk.

In Example 2, the relocatable program MAIN2 is
stored in the Relocatable Program (U ser) Area. The
actual storing of the program consists of physically
moving the program to its destination area (the User
Area) from the temporary area of Nonprocess Working

Functions of Executive Programs 81

SAMPLE CODING FORM

Figure 33. Compile and Store a Nonprocess Program in the
Relocatable Program Area (User Area) on Disk

Storage. When the storing operation is completed,
LET is updated and the communications and fixed
area parameters reset to reflect these changes.

Note that a store from the temporary (TEMP) area
to the permanent Relocatable Program Area causes
TEMP to be packed to reflect that program moved.
An exception exists when the program is the last
entry in TEMP or when there is only one TEMP pro
gram initially.

EXAMPLE 3. COMPILE AND EXECUTE A NON
PROCESS PROGRAM FROM THE CORE LOAD
AREA (see Figure 34).

This example illustrates the third and fourth options
which may be taken to assemble/compile and execute a
nonprocess program from the Core Load Area. Note
that subroutines TIMSB, ERROR, and PRINT are com
piled and stored in the User Area as these subroutines
are frequently referenced by this and other nonprocess
programs. In building process mainline and combina
tion core loads, it may not be necessary to store these
subroutines. The store core image routine is used to
store a program in core image form (as a core load)
in the core load area and to assign the core load a
name. By making column 9 of the *STORECI control
card non-blank, a map of the locations and names of
subroutines and subprogram s loaded with the core
load is obtained. When the nonprocess core load is
correctly built, DUP will search through its program
name table, find the name of the core load just built,
and add its disk address and word count to the table.
In addition, any programs referenced in this core

82

load name table are looked up in FLET and their
disk addresses and word counts added to the table.
The core load is then executed from the Core Load
Area. FX in columns 16 and 17 of the / / XEQ
monitor control card signifies that the input program
is in core image format and that FLET is to be
searched for this program name.

Deleting and Replacing Relocatable Program s,
Core Loads, and Data Files

The *DELETE function allows the user to delete any
named

Relocatable program
Mainline core load
Com bination core load
Interrupt core load
Nonprocess (or link) core load
Data file

from the disk. An entry of a program in LET or a
core load/data file in FLET takes the normal form

LET: I'--____ N_A_M_E ____ L..I D_I~_~_U_B~_O;:_K I

FlET: IL-___ N_A_M_E ___ '--_W_O_R_D_"'--S_E_C_TO_R---' _ COUNT ADDRESS

where each LET and FLET entry occupies three and
four words of disk space respectively. Whenever a
program or a core load is deleted, its NAME in LET
or FLET is replaced by the symbolic 9DUMY and
henceforth the system is no longer cognizant of this
program or core load. Furthermore, the area on
disk previously occupied by a program or core load
is now available for the storage of other programs,
core loads, or data files. These areas are available,
but only used after all previously available areas have
been used.

A core load may be deleted and, in addition, have
its reference replaced by another core load's word
count and sector address. The replacement core
load must be of the same type. That is, a mainline

SAMPLE CODING FORM

Figure 34. Compile and Execute a Nonprocess Program from the Core Load Area

Functions of Executive Programs 83

core load may be replaced by another mainline core
load, an interrupt c ~ ~"e load by an interrupt replace
ment core load, a combination core load by a re
placement core load, and a nonprocess core load by
a nonprocess replacement core load. Replacement
of the four types of core loads is governed by cer
tain rules which are summarized as follows. Note
that the replacement function within an *DELETE
operation does not alter the core load name, but only
its word count and sector address.

If a logical drive is specified in column 19 of the
*DELETE card, only that drive is searched for the
core load to be deleted. When the replacement
function is used and a logical drive is specified, also
the replacement core load must reside on that drive.
If no logical drive is specified all drives are
searched, starting with the temporary drive.

Combination and Interrupt Core Loads. In deleting a
combination or interrupt core load, all references to
this core load in the Program Name Table (PNT)
and/or Interrupt Core Load Table (ICLT) must be
replaced by a replacement core load name. Absence
of this specification in the control card invalidates
the deleting function. Furthermore, if an interrupt
core load or combination is used to service multiple
interrupts, all interrupt core load entries in the PN
Tables, Queue Table, and ICL Table are automatically
replaced with a single delete operation by specifying
9999 for the interrupt level and hit positions on the
control card (columns 39-42).

The rule is never to allow a previous serviceable
level and its bit indicator to remain unserviceable.

Mainline and Nonprocess (or Link) Core Loads. In
general, a mainline or nonprocess core load that is
not currently being called by other core loads does
not require replacement. If, however, it is still
being referenced in the Queue Table, the PNT within
the System Skeleton or some other PNT, deletion
is restricted because it is still necessary to maintain
this core load identity in the system. Note that a
nonprocess core load may be deleted without a re
placement core load even though it is still refer
enced. A negative value is then placed in the word
cOlmt position of the PNT entry in those core loads
referencing the deleted nonprocess core load. A
nonprocess core load is also referred to as a link.

Data Files. By definition, a data file is an area in
the Core Load Area established by an *STOREDATA
function with a D in column 11. Data files can be
deleted but not replaced. In deleting a data file from
the disk, the user should be aware that the system
does not check to see whether this data file is still
being referenced by currently executing core loads.
This means that if he wishes to delete a data file, he

84

has to ensure by some programming means that
there is no reference to this file: that is, no reading
from or writing to this file. If there is a reference,
there is a distinct possibility that core loads writing
to or reading from this file might destroy one or
more core loads sto:t'ed in the same location the
data file was located.

EXAMPLE 4. DE LETE A PROCESS MAINLINE,
COMBINA TION OR INTERRUPT CORE LOAD FROM
THE CORE LOAD AREA (see Figure 35).

In deleting a process mainline core load, the
user should ensure that this core load is not being
referenced or called by any other core load that may
in tum reference further core loads. If such a sit
uation exists, up to 14 names of calling core loads
will be listed; if the number of calling core loads
exceeds 14, any excess will not be indicated in the
error message. The solution here is to eradicate
the excess core loads from tbe Fixed Area, either
by a sequence change or a deletion.

The delete operation is merely one of removing
or eliminating an entry from the FLET table with a
system mnemonic name 9DUMY, indicating an un
used area on disk. Note that in a fresh (that is,
new) disk pack, the Core Load or Core Image Area
is initially represented in FLET by a 9DUMY
entry thus:

NAME (= 9DUMy)
SECTOR COUNT
SECTOR Address

Subsequent *STORECI operations will move this
entry. A delete simply replaces a core load with a
9DUMY. In practice, a delete is normally followed
by a replacement unless the core load being deleted
is considered "dead, " thus making its replacement
unnecessary.

Example 4 also demonstrates the use of
*DUMPLET as an effective programming tool. A
dumplet following a delete operation is good program
ming practice; it shows conclusively that a program

SAMPLE CODING FORM

Figure 35. Delete a Process Mainline, Combination, or Interrupt
Core Load from the Core Load Area

or core load is in fact removed from the FLET
table. For an understanding of LET/FLET tables,
the user is referred to the Systems Reference Li
brary: IBM 1800 Time-Sharing Executive System,
Operating Procedures, Appendix F, Form C26-3764.

In all three cases, the FLET table is searched for
the core load name to be deleted, and its replace
ment name. Any references to the old program in
the Program Name Table of all core loads are then
replaced with the word count and sector address of
the replacement core load. The old program name
is finally deleted from the FLET table.

In the case of combination and interrupt core
loads, the interrupt level and PISW bit position indi
cators are obtained from the card buffer, converted,
and stored in the nonprocess communications area.
The ICL Table is then updated.

Note also that in all cases, except for the deletion
or replacement of nonprocess programs, a check of
the queue in the skeleton is made to see if the pro
gram to be deleted or replaced is in the queue. If it
is, the queue is updated.

EXAMPLE 5. REPLACING A NONPROCESS CORE
LOAD IN THE CORE LOAD AREA (see Figure 36).
Like process mainline, combination and interrupt
core loads, a nonprocess core load can also be
deleted and replaced by an *DELETE operation (see
Figure 35).

A nonprocess core load can also be replaced by
storing a replacement core load to the Fixed Area, as
illustrated in Figure 36. The user can thus modify
existing nonprocess core loads without previously de
leting them.

SAMPLE CODING FORM

Figure 36. Replacing a Nonprocess Core Load in the Core Load Area

This is achieved by an *STOREMD operation. An
*STOREMD with a Fixed Area destination is exactly
equivalent to an *STORECI of a nonprocess core load
provided that

1. The replaced entry must be in FLET for a
Core Load Area

2. If the function is to modify the Core Load Area,
the existing FLET entry must be for a nonproc
ess core load.

A search through FLET is first made to see if
the replacement core load name is already an entry.
A further search is then made for a large enough
9DUMY entry to contain the core load. On a find,
the sector count of the 9DUMY is checked against the
required sector count. The check is successfully
terminated by locating a large enough entry on a
specified drive which can also take an additional
FLET entry. A successful find supplies a destina
tion sector address, and, if previously unknown, the
logical drive. Once it is determined that there is
space to store the core load, the core load Program
Name Table is updated.

Note that the replacement program can either be
in the temporary area (of Nonprocess Working Stor
age) or in the Relocatable Program (that is, User)
Area on disk. The name assigned to this program
must not be the same as that of the program to be
replaced. In Example 5, NAME1 and NAME2 desig
nate two different names. NAME1 (which was pre
viously resident in the Core Load Area) is deleted
from the Fixed Area and its entry in FLET removed.
The replacement core load NAME2 is stored in the
Core Load Area and its name, size in words, and
starting sector address then entered into the FLET
table.

EXAMPLE 6. REPLACE A RELOCATABLE PRO
GRAM IN THE USER AREA (RELOCATABLE PRO
GRAM AREA) (see Figure 37).

Figure 37 illustrates a sequence of control cards
that might be used to accomplish this. NAME1 is
the name of the replacement program being stored.
It must be compiled or assembled with the identical
name of the relocatable program being replaced
(that is, also NAMEl), and it must be the prime
entry point. This name must be in the temporary
area of Nonprocess Working Storage.

Note that the control card name for the existing
program to be replaced must have a LET entry of
the same name for a User Area replacement. The
replacement program will not overlay the current
program, but only cause it to be deleted from the
LET table. Thus, the size of a replacement pro
gram and the num ber of entry points in a relocatable-

Functions of Executive Programs 85

SAMPLE CODING FORM

Figure 37. Replace a Relocatable Program in the Relocatable
Program Area

program are governed only by the standard restric
tions on any *STORE operation, and not by the size
and number of entry points of the existing program.

Other than the above considerations, an *STORE
MD with a User Area destination is essentially equiv
alent to an ordinary *STORE function to the User
Area: the same coding is thus used for storing the
program. This procedure is mainly used for the
modification of existing user-written or ruM -sup
plied programs.

Changing Core Load Linkages. Through the *SEQCH
function, the user is given a powerful programming
tool to alter the sequence or order of existing core
load linkages for either process or nonprocess core
loads. This means that he can now modify a core
load Program Name Table such that all references
to a core load originally specified will subsequently
reference a replacement core load. Note that no
deletion of core loads takes place as in an *DELETE
with-replacement operation.

This is known as selective replacement, since
the existing referenced core load, the replacement
core load, . and all other core loads in which changes
are to be implemented are all specified.

Note also that the replacement and existing core
loads must be type-compatible. That is, a mainline
or combination core load may replace either a main
line or com binationcore load, but a nonprocess or
link core load may only be replaced and called by a
link. Process calls may emanate from any type of
core load.

86

EXAMPLE 7. CONSIDER THE FOLLOWING
SITUATION. In a typical operation, core loads
ALPHA, BETA!, and DELTA will call or reference
core load NAME! by a CALL QUEUE statement, thus:

CALL QUEUE (NAMEl, 1, 0)

The user now elects to replace NAME 1 by
NAME2 such that all further references to NAME!
by ALPHA, BETA!, and DELTA will be changed to
NAME2. NAME! can either be a combination or
mainline core load resident in the Core Load Area;
by definition, NAME2 must either be a combination
or mainline core load -- assume that it is also
stored (by an *STORECl) in the Core Load Area.
The following sequence of control cards may be
used to effect this change.

SAMPLE CODING FORM

This will modify the Program Name Table of
each of the core loads ALPHA, BETA!, and DELTA
so that whenever they call NAME!, the call will
refer to NAME2.

At this point in the operation, the user may have
no further use for this sequence change, and may
well delete core load NAME!, thus:

*DELETE M NAME!

In practice, however, he will probably not delete
NAME! but prefer to return to his original sequence,
thus:

*SEQCH NAME2 NAME!, ALPHA, BETA!, DELTA

Note that because of the type-compatibility be
tween existing and replacement core loads (mentioned
earlier), a restriction exists in the case of nonproc
ess core loads. If, for example, NAME! were a
nonprocess core load, then NAME2, ALPHA,
BETA!, and DELTA must, by definition, be also
nonprocess core loads.

EXAMPLE 7A. AN ALTERNATIVE METHOD (TO
THE *STOREMD FUNCTION) OF ON-LINE RE-

BUILDING OF PROCESS CORE LOADS. Figure 38
illustrates the technique employed, where

• CLAI is the core load name to be modified;
assume the core load is on disk. RELPR is the
relocatable program which has been modified.

• CLA2 is a temporary core load name used to
achieve proper deletion and replacement of the
new version of CLA1.

Debugging Core Loads using the Simulator

Several options are available to the user for the de
bugging of process and nonprocess programs. These
are summarized below:

Nonprocess Programs

1. Using TASK (with TASK EAC) in an off-line
system only.

2. Using the Simulator in an (a) off-line, or
(b) on-line system.

SAMPLE CODING FORM

Figure 38. On-Line Rebuilding of Process Core Loads

Process Programs

1. Using TASK (with TASK EAC) in an off-line
system only. To do this, the process program
must first be written as a nonprocess program;
when fully tested, it is reconstituted into a
process program for execution (in an on-line
environment) .

2. U sing the Simulator in either the on-line or
off-line environment.

The advantages of the Simulator as a debugging tool
lie mainly in

1. The powerful diagnostic messages printed by
the Simulator, which allow the user to deter
mine the logic flow of the program by noting
the subroutines called, and,

2. in the fact that a process or nonprocess core
load may be fully tested without taking the sys
tem off-line.

The following examples illustrate the simulation
of assembly language process programs.

EXAMPLE 8 (PROGRAM LISTING NO.2). This
program is written for the purpose of debugging the
Simulator. If the Simulator erred in the reading of
analog input cards, error messages would be
printed.

Actual simulation is initiated after the core load
build function has been completed. The first thing
done by the Simulator is to read the Simulator con
trol cards *XIO and *START SIMULATION. Note
that any other Simulator control cards, such as
*DUMP, *SNAP, etc., should precede the *START
SIMULA TION card: data cards should follow the
*START SIMULATION card. Since no control card
is used to describe the source of analog data, it is
assumed that this data will emanate from card input.

After reading the control cards, the Simulator
will proceed to interpret the instructions in the
user's program, exactly as in execution. The first
instruction being a LIBF AISQN, the Simulator
prints the S50 message, giving the name of the rou
tine and the absolute address of the LmF. The S20
message is printed by the Simulator AISQN routine

Functions of Executive Systems 87

and consists of a description of the calling sequence.
Since it is an analog input, a data card is read.
However, due to the fact that column 5 is blank,
the Simulator is not aware of the format of data on
this card and informs the user accordingly with the
S12 message. This is likewise the case with the
next two cards. Note that the Simulator is still in
the process of simulating the first AI~N call. It
will continue reading cards until it completes this
call. The next card read has a D in column 5, im
plying digital data input.

However, an absence of the E parameter in
column 72 signifies an end of data and thus the S15
message. Only the number +00123 is read into the
buffer since the word count is 2, one word of which
is the analog address.

Upon completion of the first LIBF, the busy test
is encountered. The Simulator will always take the
busy exit the first time through a busy test. The
second time through, it will exit at the not-busy in
struction. Thus, if the busy exit contains an MDX
back to the busy test, the Simulator output will show
two "goes" through the busy test, one after another,
as in the printout of the two S21 messages.

Next, in sequence, another LmF AISQN is encoun
tered. Again, the S50 message identifies the sub
routine and the absolute address of the LmF. The

88

S20 message gives the calling sequence. A card is
read with correct format and an E in column 72.
However, only the numbers 1234 and FF12 are
read, the first blank terminating the data. Since
the word count for AREA2 is four, there is insuf
ficient data on the cards to fill the buffer. Hence
the S16 message.

Note that an E in column 72 terminates the call
to the subroutine. Therefore, if there had been no
E in the last card read, the Simulator would have
tried to fill the buffer with data from the next card.
The busy test following this is then simulated.

The last call recognized is that to VIAQ, and
this terminates the job. The following S99 message
is a snapshot of the instruction which caused
termination.

Anytime a job is terminated, a snapshot is given
to allow the user to determine why the job was
terminated.

If the user had wished to see the status of regis
ters at some point of the program, a *SNAP or a
*TRACE card could have been added giving the rela
tive address (obtained from the assembly) of the
instruction. Note also that the WAIT instruction can
be used as a trace aid since the Simulator automatic
ally gives a snapshot of registers upon encountering
a WAIT.

PROGRAM LISTING NO. 2 -- EXAMPLE 8

II JOB
II * TEST CASE DB638 START
II ASM OB638

*LIST

0000 20 01262615
0001 0 1000
0002 1 0020
0003 0 3000
0004 20 01262615
0005 0
0006 0
0007 0
0008 01
OOOA 20
0008 0
oooC 1

0000
70FO
COlB
4C200017
01262615
1000
0024

0000 0 3000
OOOE 20 01262615
OOOF 0 0000
0010 0 70FO
0011 0 C016
0012 0 9073
0013 01 4C20001B
0015 30 25241600
0017 30 14162897
0019 1 0029
OOlA 0 70EF
0018 30 14162897
0010 lOOSE
001E 30 25241600
0020 0 0002
C021 0 1001
0022 0001
0023 0 0000
0024 0 0004
0025 0 1001
0026 0002
0028 0 AAAA
0029 0020
0039 0019
0046 OOlC
0054 0012
0050 0002
005E 0010
0060 0010
007C 0011
0085 0002
0086 0 AAAA
0088 0000

NO ERRORS
OB638

IN

*THIS TEST CHECKS ABILITY OF THE SIMULATOR TO
* 1. REJECT DATA CARDS WITH INCORRECT FORMAT
* 2. SKIP EXCESS DATA CARDS
* 3. SENSE INSUFFICIENT DATA IS SUPPLIED

* *PRINTER MESSAGES UPON SUCCESSFULL TEST SHOULD BE
* S12 UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
* S15 TOO MUCH DATA, READ CARDS UNTIL E IN COL 72
* S16 INSUFrICIENT DATA TO FILL 110 AREA, JOB
* CONTINUED
STAR T LI BFA I S QN

DC 11000
DC AREAl
WAIT

NExT LIBF
DC
MDX
LD
BSC L

NEXTl LIBF
DC
DC
WAIT

NEXT2 LIBF
DC
MDX
LD
S
BSC.
CALL

ERRI CALL
DC
MDX

ERR2 CALL
DC
CALL

AREAl DC
DC
BSS
DC

AREAl DC
DC
8SS
DC

ERRIP EBC
EBC
EBC
EBC
EBC

ERRlP EBC
EBC
EBC
EBC

CONST DC
END

ABOVE ASSEMBLY.

AISQN
10000
NEXT
AREAlf>3
ERR1.Z
AISQN
11000
AREAl

AISQN
10000
NEXT2
AREAlf>4
CONS T
ERR2.Z
VIAO
MESSP
ERR1P
NEXTl
MESSP
ERR2P
VIAO
l
11001
1
10000
4
11001
l
IAAAA

NOT EXECUTED

CHECK THAT NO MORE
THAN 1 DATA CARD WAS
USED FOR DATA.

NOT EXECUTED

CHECK THAT 110 AREA
ABOVE DATA CARDS WAS
NOT ZEROED.

• NOT SUCCESSFUL, EITHER CARD.
• WITH BAD FORMAT WAS NOT.
.RECOGNIZED OR TOO MANY DATA.
.CARDS WERE READ IN.
.ss.

NOT SUCCESSFUL, 110 AREA.
• ZEROED ABOVE AREA FOR WHICH •
.DATA WAS SUPPLIED.
.ss.
IAAAA
START

OUP FUNCTION COMPLETED
II OUP
*SIMULCIL M
*CCEND

CLB. BUlLL>

CORE LOAD
TYPE NAME

*cow TABLE
*lBT TABLE
*FIO TABLE
*ETV TABLE
*IST TABLE
*PNT TABLE
MAIN OB638
PNT OB638
PNT OB638
CALL VIAQ
CALL MESSP
CORE

OB638

MAP
AFlGl

3E82
3E8E
3EAB
3EBB
3FOF
3F46
3F4E
3F48
3F4C
3F06
4036
40BE

DB638

ARG2

OOOC
0010
0010
0054
0036
0008

3F42

DB638 DB638

Functions of Executive Programs 89

CLB. OB638 LD XO

*XIO
*START SIMULATION
S 50 3F4E AISON
S 20 CONTROL WORDtl000. 10 AREAt3FbE.SPECIAL ENTRY !3000
S 14 INPUT CARD t .AI ~11120-11134~025bl-19825~315b2
S 12 UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
S 14 INPUT CARD t *AI 12340210FF12FEDC
S 12 UNIDENTIFIABLE PROCESS INPUT DATA CARD READ
S 14 INPUT CARD t *AI 00001010010001100000011111111111
S 12 UNIDENTIFIABLE PROCESS INPUT OATA CARD READ
S 14 INPUT CARD t *AI 0 ~00123-00010~00127-02047
S 15 TOO MUCH DATA. READ CARDS UNTIL E IN COL 72
S 14 INPUT CARD t *AI H 12340210FF12FEDC
S 50 3F52 AISON
S 21 BUSY TEST
S 50 3F52 AISON
S 21 BUSY TEST
S 50 3F58 AISQN
S 20 CONTROL WORDt1000. 10 AREAt3F72.SPECIAL ENTRY !3000
S 14 INPUT CARD t *AI H 1234FF12 FEDC
S 16 INSUFFICIENT DATA TO FILL I/O AREA
S 50 3F5C AISON
S 21 BUSY TEST
S 50 3F5C AISON
S 21 BUSY TEST
S 56 TSX VIAO NOT EXECUTED
S 99 0015 3F63 3F65 5400 3FDb 0000 0000 0000 0000 0000 3F38

N08 ILLEG LDR CD
*END DATA
// *

90

DB638 END

E

E

EXAMPLE 9 (PROGRAM LISTING NO.3). The
Simulator control cards are read in and initializing
processes are begun. The three analog input cards
signify card input for data. Note that one or all of
these cards could have specified the random number
generator as an input source. Note also that in a pro
gram such as this, extreme care must be taken in
setting up the data cards, remembering that an E
parameter in column 72 terminates any attempt to
fill an analog buffer.

The S56 message reflects the call in the FORTRAN
program. Note that the parameters are also printed.
If either of these parameters had been improper, a
message would be printed accordingly.

The next block of four PRNTN calls refer to the
WRITE (M, 10) statement. A FORTRAN call to
output or input, generally, translates to several
calls to the I/O subroutine, including busy tests,
actual I/O, and special functions as in the carriage
control shown here. The line after S33 gives the
message which the user would see if the program
were executed.

The three CARDN calls listed next are the result
of the FORTRAN statement 20 READ (N, 30). The
card image in hexadecimal is printed and the busy
tests performed.

Next, in sequence, are four print calls: the re
sult of the FORTRAN statement 35 WRITE (M, 40).
Again, the line after S33 gives the users actual
printout.

Note that the FORTRAN statement at 30+1 is an
IF statement. The Simulation output gives no indica
tion of this because no major subroutines are called;
that is, the Simulator does not show when some
arithmetic function or subroutine is called. However,
all instructions of this statement have been simulated.

The first DAOP call in the Simulator output is the
result of the FORTRAN CALL DAC statement.

Again, a rundown of the calling sequence is given in
S20. The 810 message describes the type of output,
that is, random, sequential, etc. The four words
of analog output are given just ahead of the next
S50 message. The DAOP busy tests are a result
of the second DAC call.

Next, in sequence, is a series of analog input
calls, each one reading some point from cards.
These are a direct result of the analog input calls
in the FORTRAN program.

Again, there are four calls to the PRNTN routine:
the result of WRITE (M, 65).

At this point, the IF following statement 65 and
the IF at statement 90 force a return to statement
20 and a second "go" through the loop is simulated.
The message "GOT THIS FAR" is printed out a
second time, and for a third time, statement 20 is
executed and a card is read. At this point, the IF
at 30+1 forces a transfer to statement 120.

The CALL QUEUE, CALL SHARE, and CALL
VIAQ are then simulated by the S56 messages. Note
that in the case of CALL QUEUE, the name of the
called program TC152 is also printed out. A snap
shot of the terminating instruction is then printed.

Since the user included a *DUMP control card,
the program is dumped. The addresses are abso
lute. The address in statement S98 gives the abso
lute address of the first word of the user r S pro
gram. The XXXX at the end of the dump refers to
undefined core.

A dump of the transfer vector may be obtained by
using a negative number as the lower limit.

One method of tracing through a FORTRAN pro
gram is by strategic PAUSE (I) statements. When
the Simulator encounters such a statement, it will
print out the S56 PAUSE message together with the
appropriate parameter. Thus, some idea of pro
gram flow may be obtained.

Functions of Executive Programs 91

PROGRAM LISTING NO. 3 -- EXAMPLE 9

I I JUB
II *
1/ FOR TC152

A

*LIST ALL
*IOCS(1443 PRINTER
*ONE WORD INTEGERS
~* SIMULATOR TEST CASE 152

ExTERNAL TC152

SIMULATOR TEST CASE 152

OIMENSIQN NOUTACI0).INIC9).IN2CI0).IOICI0)
CALL UNMK(-I.-11
IXIT=O
N = 2
M = 3
ITOL = 20
WRITE (M.10)

10 FORMAT(24HlINTERLEAVEO AIP.AIS.AIR)
20 READCN.30) (NOUTAC 1).1=1.4). INl< 1). IN2C 1>, IXIT
30 FORMAT(616.Il)

Ir(IXIT) 120.35.120
3.5 WRITE CM.40) CNOlJTACI).I=I.4).INIC1).IN2CI)
40 FORMAT C IH .617)

CALL DAC (01101.NOUTAC1).NOUTAC5»
50 CALL DAC CO.J)

GOTO (50.60).J
60 CALL AlP (01000.JP.INIC1»

CALL AIS C02001.I01Cl).I01C3).IN2Cl»
CALL AIR (02001.101(1).IOIC2).IN2(1).IN2Cll,OC
CALL AIS (0200l.I01Cl).101C3l.IN2Cl»
CALL AIR (02001.IOl(I).IOIC2).IN2(1).IN2ell,OC
CALL AlP C01000.JP.INICl»
WRITE 04.65)

65 FORMATe13H GOT THIS FAR)
IF CIABSCIDlel)-NOUTAC3»-ITQL) 90.90.70

70 WRITE (M.80) 101(1)
80 FORMAT el0H 101(1) •• 17/17H OUT OF TOLERANCEC
90 IF (IABS(NOUTAC1)-JP)-ITOL) 20.20 .100

100 WRITE (M.ll0) JP
110 FORMAT (6H JP •• 17/17H OUT OF TOLERANCE)

GO TO 20
120 CALL QUEUE(TC152.1.5)

CALL SHARE(300)
CALL VIAQ

130 GO TO 130
END

VARIABLE ALLOCATIONS
NOUTA=OOOD INI =0016 IN2 =0020 101 =002A IXIT #002B N
JP =0031

STATEMENT ALLOCATIONS

00000000
00000010
00000030

00000050

00000060
00000070
00000080
00000090
00000100

00000130
00000140
00000150
00000160
00000170

00000200

00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320

00000330

#002C M #0020 ITOl #002E =002F J

10 =0040 30 =005B 40 =005F 65 =0064 80 #006D 110 #0080 20
70 =OIBB 90 =01C3 100 =0102 120 =OIDA 130 #01E5

#0083 35 #0006 50 =0106 60

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
TC152 UNMK OAC
MIOI SUBSC PRNTN

INTEGER CONSTANTS
1=0042 0=0043

300=004C

AlP
EBPRT

AIS

2=0044

CORE REQUIREMENTS FOR TC152

AIR

3=0045

COMMON 0 INSKEL COMMON o VARIABLES

END OF COMPILATION

TC152
DUP FUNCTION COMPLETED
II DUP
*DELET M TC152
TC152
025 NAME NOT IN l/F
*SIMULCIL M TC152 TC152 TC152
*INCLDTRACE/2800
*CCEND

CL6. BUILD TC152

CORE LOAD MAP
TYPE NAME ARGI ARG2

92

lABS QUEUE SHARE VIAQ COMGO MWRT MCOMP

20#0046 4#0047 1101#0048 1000#0049 2001=004A

66 PROGRAM 422

=0030

=01l0

MIOIX

5=0046

*CDW TABLE 3E82
UBT TABLE 3E8E
*FIO TABLE 3EAB
*ETV TABLE 3EBB
*VTV TABLE 3FOF
*IST TABLE 3F15
*PNT TABLE 3F4C
MAIN TC152 3FE9
PNT TC152 3F4E
PNT TC152 3F52
CALL UNMK 4140
CALL AlP 418A
CALL AIR 4188
CALL QUEUE 42CA
PNT TC152 3F56
CALL vIAa 438C
LIBF AIPTN 43EC
LIBF AIRN 446E
CORE 4544

CLB. TC152 LD XQ

*AIP C
*AIR C
*AIS C
*XIO
*DUMP 0000 7FFF
*START SIMULATION

OOOC
0010
0010
0054
0006
0036
OOOC

3FOF
3F12
3ABC

S 56 TSX UNMK NOT EXECUTED
DC FFFF
DC FFFF

S 50 293A PRNTN
S 34-0
S 50

LIST PRNTR CARRIAGE CONTROL WORD IS /3100
293C PRNTN

S 33-0 LIST PRNTR OUTPT CONTROL WORD I /2110
INTERLEAVED AIP.AIS.AIR
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2928 CARON
S 27-0 CARD .INPUT. WORD COUNT I
0000 0000 0000 0000 1000 2000
0000 0000 0000 1000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
S 50 292C CARON
S 21-0 BUSY TEST
S 50 292C CARON
S 21-0 BUSY TEST
S 50 293A PRNTN

80
0000
0200
0000
0000

0000
2000
0000
0000

S 34-0 LIST PRNTR CARRIAGE CONTROL WORD IS /3000
S 50 293C PRNTN
S 33-0 LIST PRNTR OUTPT CONTROL WORD I /2110

10 0 20 1 4096 4097
S 50
S 21-0
S 50
S 21-0
S 50

2940 PRNTN
LIST PRINTER BUSY TEST
2940 PRNTN
LIST PRINTER BUSY TEST
1A48 DAOP

0000
0010
0000
0000

0000
0080
0000
0000

0000
0000
0000
0000

2000
0000
0000
0000

0000
0200
0000
0000

S 20
S 10

CONTROL WORDI1010 .1/0 AREA ADDRESS. 3F61 ,SPECIAL RETURN ADDRESS! 3F11
WRITE OUTPUT - - - - - RANDOM ADDRESSING

WORD COUNTI/0004
0014 0000 OOOA

lA4S DAOP
BUSY TEST

lA48 DAOP
BUSY TEST

1A48 AlPTN
CONTROL WORDI1000 .AREA 13F89 .MULTIPLEXER ADDRESS! 0201
INPUT CARD I *AI 0 &00010

lA48 AlSQN
CONTROL WORD12000. 10 AREAI3F80.SPECIAL ENTRY !OOOO
INPUT CARD I *AI 0 &00020

lA4S AIRNN

0000
2000
0000
0000

0000
0010
0000
0000

E

E

0000
0040
0000
0000

0001
S 50
S 21
S 50
S 21
S 50
S 20
S 14
S 50
S 20
S 14
S 50
S 20
S 14
S 50
S 20
S 14
S 50
S 20
S 14
S 50
S 20

CONTROL WORDIIOOO .10 AREA ADDRESSI3F81,MUlTIPLEXER TABLE ADDRESS! 3F78,RELAY ADDR!OOOO
INPUT CARD I *AI 0 &00020 E

lA48 AISQN
CONTROL WORD12000. 10 AREAI3F80.SPECIAL ENTRY !OOOO
INPUT CARD I *AI D &00020

lA48 AIRNN
E

CONTROL WORDI1000 .10 AREA ADDRESSI3F81,MULTIPLEXER TABLE ADDRESS! 3F78,RElAY ADDR!OOOO
INPUT CARD I *AI 0 &00020 E

lA4S AlPTN
CONTROL WORDI1000 .AREA 13F89 .MULTIPLEXER ADDRESS! 0201

S 14 INPUT CARD • *AI 0 &00010 E

0800
0000
0000
0000

2000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

Functions of Executive Programs 93

S 50 293A PRNTN
S 34-0 LIST PRNTR CARRIAGE CONTROL WORD IS 13000
S 50 293C PRNTN
S 33-0 LIST PRNTR OUTPT CONTROL WORD I 12110
GOT THIS FAR
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST

.S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2928 CARON
S 27-0 CARD INPUT, WORD COUNT I 80
0000 0000 0000 0000 1000 2000 0000 0000
0000 0000 0000 1000 0000 0000 0200 2000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
S 50 292C CARON
S 21-0 BUSY TES T
S 50 292C CARON
S 21-0 BUSY TEST
S 50 293A PRNTN
S 34-0 LIST PRNTR CARRIAGE CONTROL WORD IS 13000
S 50 293C PRNTN
S 33-0 LIST PRNTR OUTPT CONTROL WORD I 12110

10 0 20 1 4096 4097
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 lA48 DAOP

0000
0010
0000
0000

0000
0080
0000
0000

0000
0000
0000
0000

2000
0000
0000
0000

0000
0200
0000
0000

S 20
S 10

CONTROL WORDII0I0 ,1/0 AREA ADDRESSI 3F61 ,SPECIAL RETURN ADDRESS! 3Fll
WRITE OUTPUT - - - - - RANDOM ADDRESSING

WORD COUNTI/0004
0001 0014 0000 OOOA
S 50 lA48 DAOP
S 21 BUSY TEST
S 50 1A48 DAOP
S 21 BUSY TEST
S 50 lA48 AIPTN
S 20 CONTROL WOROI!OOO ,AREA 13F89 ,MULTIPLEXER ADDRESS % 0201
S 14 INPUT CARD I *AI 0 &00010
S 50 lA48 AISON
S 20 CONTROL WORD12000, 10 AREAI3F80,SPECIAL ENTRY !OOOO
S 14 INPUT CARD I *AI 0 &00020
S 50 lA48 AIRNN

0000
2000
0000
0000

0000
0010
0000
0000

0000
0040
0000
0000

S 20 CONTROL WORDII000 ,10 AREA ADDRESSI3F81,MULTIPLEXER TABLE ADDRESS! 3F78,RELAY ADDR!OOOO
S 14 INPUT CARD I *AI D &00020 E
S 50 lA48 AISON
S 20 CONTROL WORD12000, 10 AREAI3F80,SPECIAL ENTRY %0000
S 14 INPUT CARD I *AI 0 &00020
S 50 1A48 AIRNN
S 20 CONTROL WORDII000 ,10 AREA ADDRESSI3F81,MULTIPLEXER TABLE ADDRESS! 3F78,RELAY ADDR!OOOO
S 14 INPUT CARD I *AI D &00020 E
S 50 lA48 AIPTN
S 20 CONTROL WORDI1000 ,AREA 13F89 ,MULTIPLEXER ADDRESS % 0201
S 14 INPUT CARD I *AI D &00010
S 50 293A PRNTN
S 34-0 LIST PRNTR CARRIAGE CONTROL WORD IS 13000
S 50 293C PRNTN
S 33-0 LIST PRNTR OUTPT CONTROL WORD I /2110
GOT THIS FAR
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2940 PRNTN
S 21-0 LIST PRINTER BUSY TEST
S 50 2928 CARON
S 27-0 CARD
0000 0000
0000
0000

0000
0000

INPUT, WORD COUNT I
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

0000 0000 0000 0000 0000
S 50 292C CARON
S 21-0 BUSY TES T
S 50 292C CARON
S 21-0 BUSY TES T
S 56 TSX QUEUE NOT ExECUTED

CALL TC152
DC 0001
DC 0005

S 56 TSX SHARE NOT EXECUTED
DC 012C

S 56 TSX VIAO NOT EXECUTED
S 99 01E3 4138 4130 5400
S 98 DUMP OF SIMULATED CORE

94

0000

438C
3F58

80
0000
0000
0000
0000

0001

0000
0000
0000
0000

0000

0000
0000
0000
0000

0000

0000
0000
0000
0000

0000

0000
0000
0000
0000

2803

0000
0000
0000
0000

3F38

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0800
0000
0000
0000

0000
1000
0000
0000

2000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

3F50 FFF2 0000 FFFF 0000 0000 0000 0000 0000
3F60 0000 0004 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

3F70 TO 3F7F CONTAI NS 0000
3F80 0002 0001 0028 0001 0002 0003 0014 0005 0002 0018 FFFO 0000 0000 0000 0000 0000
3F90 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0002 0003 0014 0004
3FAO 0440 03E8 0701 0005 012C 5018 F1C9 05E3 C509 03C5 C1E5 C5C4 40C1 C907 6BC1 C9E2
3FBO 6BC1 C909 BOOO 2006 9006 2001 B003 5001 6B40 2007 9006 8004 5000 40C7 06E3 40E3
3FCO C8C9 E240 C6C1 0940 8008 500A 40C9 C4F1 40F1 5040 7E40 2007 7000 5011 4006 E4E3
3FOO 4006 C640 E306 03C5 09C1 o5C3 C540 B012 5006 4001 0740 7E40 2007 7000 5011 4006
3FEO E4E3 4006 C640 E306 03C5 09C1 05C3 C540 BOlO 1010 9400 3F9A 0400 3F58 1010 9400
3FFO 3F9A 0400 3F5A 5400 4140 3F58 3F5A C400 3F9B 0400 3F83 C400 3F9C 0400 3F84 C400
4000 3F90 0400 3F85 C400 3F9E 0400 3F86 5392 3F85 3FA5 5395 53AA 3F84 3FB3 C400 3F9A
4010 0400 3F87 53A1 3F8A FFFF 3F87 8001 539E 3F65 7401 3F87 C400 3F87 9400 3F9F 4C08
4020 4012 6500 0000 539E 3F6E 539E 3F78 539B 3F83 5395 C400 3F83 4C20 4132 5392 3F85
4030 3FB7 C400 3F9A 0400 3F87 53A1 3F8A FFFF 3F87 8001 539E 3F65 7401 3F87 C400 3F87
4040 9400 3F9F 4C08 4035 6500 0000 539E 3F6E 539E 3F78 5395 6500 0000 7500 3F65 7000
4050 6000 405C 6500 FFFC 7500 3F65 7000 6000 4050 5480 3E36 3FAO 3F65 3F61 5480 3E36
4060 3F98 3F88 6580 3F88 53A4 0002 405E 4068 6500 0000 7500 3F6E 7000 6000 4073 5400
4070 418A 3FA1 3F89 3F6E 6500 0000 7500 3F82 7000 6000 408C 6500 FFFE 7500 3F82 7000
4080 6000 4080 6500 0000 7500 3F78 7000 6000 408E 5480 3E35 3FA2 3F82 3F80 3F78 6500
4090 0000 7500 3F82 7000 6000 40AE 6500 FFFF 7500 3F82 7000 6000 40AF 6500 0000 7500
40AO 3F78 7000 6000 40BO 6500 0000 7500 3F78 7000 6000 40&-1 5400 4188 3H2 3F82 3F81
40BO 3F78 3F78 3F9B 6500 0000 7500 3F82 7000 6000 40C8 6500 FFFE 7500 3F82 7000 6000
40CO 40CC 6500 0000 7500 3F78 7000 6000 40CO 5480 3E35 3FA2 3F82 3F80 3F78 6500 0000
4000 7500 3F8 2 7000 6000 40EO 6500 FFFF 7500 3F82 7000 6000 40EE 6500 0000 7500 3F78
40EO 7000 6000 40EF 6500 0000 7500 3F78 7000 6000 40FO 5400 41B8 3FA2 3F82 3F81 3F78
40FO 3F78 3F98 6500 0000 7500 3F6E 7000 6000 40FO 5400 418A 3FAl 3F89 3F6E 5392 3F85
4100 3FBC 5395 6500 0000 C500 3F82 6500 FFFE 9500 3F65 0400 3F58 5480 3E34 3F58 9400
4110 3F86 4C08 4118 5392 3F85 3FC5 6500 0000 539E 3F82 5395 6500 0000 C500 3F65 9400
4120 3F89 0400 3F58 5480 3E34 3F58 9400 3F86 4C08 400B 5392 3F85 3F08 539B 3F89 5395
4130 4COO 400B 5400 42CA 5400 3F56 3F9A 3FA3 5480 3E3E 3FA4 5400 438C 4COO 4130 0000
4140 0000 oCOO 0032 ocoo 0034 6934 6A35 6100 6680 4140 C132 F680 0000 0039 C134 F680
4150 0001 0036 C164 4C18 416B C680 0000 E16C 0173 C680 0001 E160 E973 4C18 416B C027
4160 E96C 0025 C025 E960 0023 CODA 0174 C021 0173 4480 0078 C12E EOlA 012E C16E E017
4170 016E C130 E015 0130 C16F E012 016F 7402 4140 6500 0000 6600 0000 OCOO 002E OCOO
4180 0030 Ocoo OOAO OCOO 00A2 4C80 4140 0000 0000 0083 40FB 4480 009A C824 5480 3E28
4190 4820 7019 C330 E010 901F 4818 700E 6680 0036 C200 033E C201 033F 7402 0036 C80E
41AO OB40 COOE 0342 4FOO 003A C009 033E C008 033F 4FOO 003A C007 5480 3E2A 0000 4480
4180 009B FOOO 5304 003C 3000 0000 5307 003C 40EC 4480 009A C8FA 5480 3E2B 0400 0037
41CO 0342 9052 0343 C330 E058 9054 4C18 426A C342 4808 7032 7401 0036 6680 0036 C200
4100 0340 8042 0341 C400 0037 1001 8400 0036 0400 0036 6580 0036 C330 E039 0400 0036
41EO C330 E03A 0330 C340 7400 0036 8020 033E CI00 0344 7400 0036 8027 033F 91FF 4830
41FO 700A C2FF 9200 4808 7006 E828 0345 7400 0036 7006 7032 6EOO 0036 C089 5480 3E2A
4200 C200 0680 0000 C100 0580 0000 C345 9000 0780 0041 74FF 0037 7015 C340 0680 FFFF
4210 C344 0580 FFFF 702F 0001 0002 OFFF 0020 1000 3000 4000 5000 FF1F FOOO COOO 0000
4220 4480 0098 7202 C200 0680 FFFO 80EO 0341 7102 C100 0580 FFFo 70C1 C343 4818 7042
4230 C342 4820 7044 C400 0037 900E 4820 70C8 C200 0680 0000 C100 0580 0000 C345 9004
4240 E005 0780 0041 C330 E005 4818 7007 C101 0342 C006 0343 C005 0344 7002 C801 OB42
4250 C330 EOC6 4820 702C 1010 0341 7102 6000 0036 1010 0340 CHO EOCO 90BC 4810 7006
4260 C330 E084 E8B5 0330 4FOO 003A C330 EOAE E8BO 70F9 C8B5 OB3E C330 EOA8 E8AC 0330
4270 4FOO 003A C345 EOA2 0680 0000 70CC 1804 0342 C345 9099 0680 0000 74FF 0037 70A2
4280 C330 4804 7011 6780 0067 5307 0000 70FO C03B 6680 42C4 6780 0068 0341 CI02 020A
4290 C103 020B 7102 70C2 6780 0067 5307 0001 70FO C02B 6680 42C5 70EE 0000 1010 1082
42AO OOOC 1081 4804 700B 1010 1080 0007 4400 0000 42AO 42AE 4C80 4290 0000 0000 C019
42BO OOFC 70F2 0000 1010 1082 OOOC 1081 4804 7000 1010 1080 0007 4400 0000 42C2 42C3
42Co 4C80 42B2 0000 0000 4290 4282 C002 OOFA 70FO 0003 0000 4480 009A 7401 0036 C400
4200 0036 807A 033A C780 003A 0342 C480 0036 0330 CF80 0030 4C08 42FE o83E 6680 007A
42EO C400 007A A068 1090 8400 0079 0400 0037 0341 1810 0343 6580 0037 C100 4C18 4302
42FO 833F 7015 7014 407C C100 B33F 7057 7056 C780 0042 7lFE B100 7060 706C 7403 0036
4300 4480 0098 6000 0037 C400 0037 0343 7lFO 72FF 70E3 4065 C343 4C18 4377 C780 0043
4310 4C20 434E C343 9039 0343 C341 9036 0341 C343 0400 0037 6680 0037 OCOO 002E OCOO
4320 0030 6EOO 0037 C341 9400 0037 4C08 4353 7203 C780 0042 8200 70F4 70F3 4041 8200
4330 7010 701C C780 0043 4C20 434E C343 0400 0037 6103 C200 0480 0037 1810 0200 7201
4340 7401 0037 71FF 70F6 72FO 6EOO 0037 C400 0037 0343 7002 0003 0001 0002 OCOO 002E
4350 OCOO 0030 7088 401C C780 0043 4C20 434E C343 0400 0037 C780 0042 0480 0037 7401
4360 0037 C33E 0480 0037 7401 0037 C33F 0480 0037 7094 OCOO 002E OCOO 0030 7102 7097
4370 0000 oCoo 0032 oCOO 0034 4C80 4370 6100 C780 0042 0176 CB3E 0974 COOO 0173 C33A
4380 80CB 0343 C780 0043 0343 C780 0043 0177 4480 0078 700E 0078 0000 6580 0079 7101
4390 6680 007A C100 0054 4C18 43C9 4047 6951 C100 004E 7102 CIOO 0040 7lFE 4038 72FF
43AO 7001 7008 7103 C100 4C18 439F C041 4036 B100 70EC 1000 4028 70F2 4030 &680 43E9
43BO C200 9036 4C20 4380 7202 C200 9033 4C20 4380 C200 002C 1810 0200 72FF C200 0026
43CO 1810 0200 72FF 0200 4012 4480 006A 0000 43E6 7103 72FF 70C6 C400 0029 4C08 1t305
4300 OOF6 5480 3E3E 43C7 7088 3000 7086 0000 OCOO 002E OCOO 0030 4C80 4307 0000 OCOO
43EO 0032 Ocoo 0034 4C80 430E 0000 0000 0000 0000 0000 0000 0000 0000 4480 OOAC 5480
43FO 3E29 7400 4402 700A C02C 1008 4C10 43F6 C480 4422 7001 C026 0005 0058 C480 0037
4400 617F 6600 0000 4804 721E 1804 0346 1804 0347 1804 4C20 4415 C204 4C20 4411 7401
4410 0037 7401 0037 5480 3E28 1801 4C04 4458 617F 0983 09B5 C204 4C08 4424 09AF 0961
4420 70F7 5480 3E44 FFFO C201 E1l3 0201 1010 0219 C346 lOOF 1808 8201 0201 C347 100E
4430 180B 8201 0201 7401 0037 C480 0037 0206 7401 0037 C480 0037 0200 C680 0000 1003
4440 4C28 4444 C105 7001 1010 8106 020A E106 0204 ClB8 021C C1E9 0217 7401 0037 C480
4450 0037 0213 OAOO C20B 4480 0062 0000 02lA COCA 0214 7086 OA14 C204 4C18 4464 C2lA
4460 4C08 4464 74FF 0007 7000 1010 020A 020C 0211 0204 020F 0219 021A 70A3 0000 1t480
4470 OOAC 5480 3E29 7400 4485 700B C021 1008 4C10 4470 C480 4499 7001 C016 000& 0400
4480 4529 617F C480 0037 6600 0000 4804 721E 1804 034C 1804 0340 1804 4C20 449A C204
4490 4C20 4494 7401 0037 7401 0037 5480 3E28 5480 3E44 01B7 1010 o34E 034F C03E 0580
44AO 0036 7lFB 703C 4080 44A9 44AB 44AA 44AE 44AO 4520 034F 034E 7001 034F 617F 0983
44BO 0985 C204 4C08 4467 09B1 0981 70F7 C34F 0219 7401 0037 C480 0037 0001 6500 0000

Functions of Executive Programs 95

44CO 6918 Cift{) 1001 4c02 44C8 4C28 44E5 7020 1001 1802 0001 7500 0000 7101 C100 F580
4400 0000 4C20 440F CI00 800A 0004 9005 4C18 44E8 6500 0000 70E5 0000 0001 0020 613C
44EO 6680 0037 4C80 0072 8000 1001 1802 0100 617F C480 0037 D206 C207 E113 E8EF 0?07
44FO C34C 100F 1808 8207 0207 C34D 100E 180B 8207 0207 7401 0037 C480 0037 0208 7401
4500 0037 C480 0037 0213 7401 0037 C480 0037 021B C1B8 021C C1E9 0217 C34E 4C04 451F
4510 C680 0018 4C20 4519 613C 6680 0037 4C80 0072 7401 0037 C4RO 0037 [)212 0201:\ OA06
4520 OA08 COOA 0214 COB9 0204 0211 C206 4480 0062 0000 021A 7013 FFFO OA14 C204 4C18
4530 4536 CZlA 4C08 4536 74FF 0007 7000 1010 020A OlOC 0211 0204 OlOF 0219 D21A 4COO
4540 4494 0000 0000 0000 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

4550 TO BF4F CONTAI NS xxx x
BF50 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

N04 READY READER

96

Data Manipulation

EXAMPLE 10. RESERVING A FILE AREA IN THE
CORE LOAD AREA. The only method of reserving
a file area in the Core Load Area on disk is through
an *STOREDATA function. Depending on the intent
and purpose of the user at the time this function is
performed, two options are open to him:

1. Create a file in the Core Load Area and store
directly into that file data input via the Card
Reader (D in column 11, RD in columns 13-14,
and FX in columns 17 -18) .

2. Create a file in the Core Load Area and store
into that file data from Nonprocess Working
Storage (D in column 11 and FX in columns
17-18). In this situation, information in Non
process Working Storage is physically moved to
a data block that starts at the beginning of the
next available sector in the Core Load Area.

3. Create a file area in the Core Load Area for
future use, such as an output file for a core load
program. The method of accomplishing this is
analogous to option 2 except that the data being
stored may be superfluous to the storing function.

To reserve a data file, therefore, implies that there
is movement of information or data which may be
valid or invalid. Note that the *STOREDATA func
tion transfers this information to disk without any
change of format.

To accomplish this, certain parameters must be
known to DUP and the Core Load Builder. These
are:

• Type of source input

• Logical drive number

• Destination area

• Name of data file

• Sector count and/or word count

Figure 39 gives the sequence of control cards that
might be used in a typical situation, where the source
input is data cards.

A data file, FILE1, one sector long, is reserved
in the Core Load Area, and given a FLET entry.
Since this is a data FLET entry,. the control card
sector count, or the sector equivalent of the word
count, is contained in the entry.

GC26-3703-1
TNL: GN34-0036
Technical Change

The DEFINE FILE statement (see IBM 1130/1800
Basic FORTRAN IV Language, Form C26-3715)
specifies to the FORTRAN Compiler the size and
quantity of disk data records within a file (or files)
that will be used for processing with a particular
program and its associated programs; in this exam
ple, one data block of 320 words is used. Since we
are storing data to be used by a FORTRAN program
from cards, the associated *FILES control record
must contain the identical name (that is, FILE1) of
the data block established by the *STOREDAT A
function. Note that it is from the *FILES card that
the Core Load Builder obtains the necessary data
(name, file number and drive code) to construct the
DEFINE FILE TABLE within a core load. This is a
three-word table which equates program defined file
numbers to symbolic disk data files specified on the
*FILES card.

We have seen that in moving data from the Non
process Working Storage to the Core Load Area, the
direction of movement is from the start of Non
process Working Storage on the disk drive specified.

SAMPLE CODING FORM

Figure 39. Reserving a File Area in the Core Load Area

Functions of Executive Programs 97

However, in .the case of data files referenced by
FORTRAN I/O in Nonprocess Working Storage, the
direction of movement starts from the end of Non
process Working Storage, and therefore the -ll-STORE
DAT A function cannot move a temporary data file
established by the execution of a FORTRAN-written
program.

EXAMPLE 11. DUMPING A PROGRAM OR DATA
FILE FROM THE CORE LOAD AREA. A program
or a block of data in the Core Load Area may be

1. moved to the Nonprocess Working Storage,
2. punched into cards, or
3. printed on the List Printer.

Figure 40 illustrates these three cases.
The primary difference between the two dump

functions, *DUMP and *DUMPDATA, lies in the
handling of relocatable programs. *DUMP converts
relocatable programs from disk system format
either to card system format when dumping to cards,
or to printer format when the List Printer is sel
ected as the I/O media. *DUMPDATA performs no
conversion and outputs a relocatable program as data
identical to its original format.

Programs and/or data in the Core Load Area are
assumed to be in disk core image format. The name
of the program or data file must always be given.

Note that when dumping from the Core Load Area
to punched cards, an *CCEND control card is punch
ed out as the last card in the output deck. This card
also contains the word and sector count needed in a
*STOREDATA operation. (Note also that, although
the *STOREDATA function requires that these counts
be contained in the control card, the punched-out
*CCEND card may be used in a subsequent store of
the dumped core load.) PN specifies the Card Punch
as the principal system output device, while PR
specifies the List Printer.

In the same fashion, it is also possible to dump a
mainline, combination, or interrupt core load to
Nonprocess Working Storage or to any available I/O
media.

EXAMPLE 12. LOADING A PROGRAM OR DATA
BACK INTO THE CORE LOAD AREA. One of the
features of the Disk Utility Program (DUP) is the
ability to load (that is, store) a previously built core
load, which has been dumped to cards by the
*DUMPDATA function, back to the Core Load Area.
One significant use of this ability is the reordering
(that is, rearrangemen~) of the position of core loads
within the Core Load Area.

98

Consider the following example. Core loads
ALPHA, BETA1, DELTA, and GAMMA reside in
this order-sequence in the Core Load Area. It is
desired, for chaining purposes, to use them at on
line time in some other arrangement: say, GAMMA,
BETA1, ALPHA, and DELTA. The four core loads
are first dumped to cards by a series of *DUMP
DATA operations, and then deleted from the Core
Load Area. A reload of the new sequence of core
loads is now performed in the order desired. The
result is a greater efficiency in the usage of the
disk by the reduction of disk seek time.

Figure 41 illustrates a possible card deck ar
rangement for this situation.

EXAMPLE 13. DUMPING A PROGRAM FROM THE
RELOCATABLE PROGRAM (OR USER) AREA. A
dump of a user-written or IBM program may be made
from the User Area to any of the following I/O media:

1. Nonprocess Working Storage (NPWS)
2. Punched cards
3. List Printer

SAMPLE CODING FORM

Figure 40. Illustrating Various Card AlTangements in Dumping a
Program/Data to Nonprocess Working Storage, Punched
Cards, and the List Printer

SAMPLE CODING FORM

Figure 41. Reloading Core Loads to User Sequence

Since the source specified is the User Area, a
LET search is performed. In dumping a program to
NPWS, a check is made to see if there is sufficient
space in the designated area; if so, a physical move
operation takes place. As mentioned earlier (see
Example 11) the *DUMP function converts relocatable
programs from disk system format to a format of the
I/O media selected. (Note that the print format to

list printer is identical for both *DUMPDA TA and
*DUMP).

Figure 42 gives a typical sequence of control
cards used.

Note that a relocatable program may also be
dumped from the Temporary Area to any I/O media.

A relocatable program dumped from the User
Area to punched cards may be later reloaded, if de
sired, to the User Area by an *STORE function.

EXAMPLE 14. MOVING A DATA FILE (OR FILES)
WITHIN THE CORE LOAD AREA. This is equivalent
to dumping a data file (or files) from one disk to
another -- that is, the copying of process data.

Figure 43 illustrates one possibility.

EXAMPLE 15. LOAD A PROGRAM/DATA BACK
INTO THE NONPROCESS WORKING STORAGE (see
Figure 44). A reloading operation implies that the
program or data to be reloaded is the product of an
*DUMP or *DUMPDATA function. That is, they
must be in binary format (54 words per card).

Data card input decks have seventy-two columns
of data. and a seven-column sequence number. Se
quence columns 78-80 are assumed to be numeric
(the first being 001) as punched during a *DUMP
DA TA function. In the reload operation, the card
deck is read and stored, and a check made for con
secutive sequence, modulo 1000. A sequence break
is interpreted as a potential end of the deck. If the
card' generating the break is a *CCEND card, the
*STOREDATA proceeds to store the card data
directly into its destination area.

Implementation of LOCALs

An introduction to the term "LOCALs" has already
been made in the introductory section: Overview
of the IBM 1800 Time-Sharing Executive System. A
local is classified in TSX as a subprogram or sub
routine that is associated with a given core load, but
not initially loaded with that core load. When a
call for a local is encountered during the execution
of the core load, the local is read in from the disk,
overlaying the area between the end of the core load
and the beginning of COMMON, unless the local is
already in core. Control is then passed to the local
routine.

Locals may be employed as individual subpro
grams or groups of SUbprograms. In the latter case,
whenever a call for a given local is encountered,
the entire group of which it is a mem ber is loaded.
Subsequent calls for other locals within the same
group may then be made without necessitating

Functions of Executive Programs 99

SAMPLE CODING FORM

Figure 42. Dumping a Relocatable Program from the User Area

SAMPLE CODING FORM

Figure 43. Moving a Data File within the Core Load Area

SAMPLE CODING FORM

Figure 44. Reloading a Program to Nonprocess Working Storage

100

reloading from disk. Since all local groups occupy
the same area in core, a call for a local in another
group will involve a load from disk of the new group,
overlaying the first group. At this point, another
call to a local in the first group will require reload
ing that group from disk. Local groups or blocks are
important for the following reasons: (1) specification
req uirements, (2) disk space utilization, and (3) disk
efficiency. The area of core used is directly propor
tional to the size of the largest block. Data is passed
to or from a local through its parameters, COMMON,
or working storage.

The only difference between a local and a normally
called subroutine is that a localized subroutine is not
assembled as part of a core load. After the associa
ted mainline program and all of its in-core subpro
grams (and their in-core subprograms) are relocated,
each local subprogram block is converted to core
image format and stored, sectorized, immediately
following the core image core load, as shown in the
schematic diagram below (Figure 45). See also
Figure 3.

One advantage of the local feature is that logical
subroutines can now be broken off from a large pro
gram. This means a virtual extension of core.
There is no theoretical limit to the number of local
ized subprograms that can be implemented: the user
can specify any number of locals within a group as
long as the sum total of all assembled relocatable
programs does not exceed the size of the Local Sub
routine Area.

Communications Linkages

At object time, locals are located between the end
of the main core load and COMMON. Linkage to and
from locals is accomplished via a loader called
FLIP (a miscellaneous subroutine within the TSX
Subroutine Library) as follows.

CALLS. A call to a local consists of a BSI L X,
where X is the location of a six-word entry in the
Local Parameter Table (LPT) which is built by the

"'"4~------CORE LOAD AREA --------I.~

CORE
LOAD

A

DATA
FILE

B

CORE
LOAD

C

CORE
LOAD

D

Figuxe 45. Showing the Relationship of Local Groups or Blocks to
Associated C~re Load within the Core Load Area on Disk

Core Load Builder as part of each core load in
which locals are specified. The table provides the
linkage between the core load and the localized sub
programs via the FLIP relocatable subroutine.
There is one entry in the LPT for each entry point in
the speCified local subroutines that are referenced
either on an *LOCAL control card, in the mainline
program, or in one of the other subroutines loca
lized in that group. Each LPT entry has the following
format:

WORD CONTENTS MEANING

X DC 0 A linkage word

X+1 BSI L Long BSI to FLIP routine
X+2 FLIP

X+3 WC Word count of the local
group with which this routine
is loaded

X+4 SA Sector address of the first
sector for the local group.
This address is relative to
the first local sector
for the core load

X+5 EP Absolute address of the
entry point when the local
group is loaded

The word at X is used for the return linkage;
X+1 and X+2 are executed to link to the FLIP routine
which uses the word count and sector address at
X+3 and X+4 to load the proper local group from
disk, if required. The necessity for loading is
based upon a comparison of the WC and SA words
with those of the local group currently in core. The
word at X+5 is the address of the entry point of the
local that is called. The FLIP routine stores the
return address, at X, into the entry point of the
local and then executes a branch to the instruction
folbwing the entry point (BSC L EP+1), thus simulating
a BSI into the localed subroutine.

LIBFs. A LIBF to a local consists of a short BSI to
an entry in the Variable Transfer Vector (VTV)
associated with each core load. The VTV logic then
executes a BSI L Y where Y is the first word of a
LPT block, similar to that just described.

Functions of Executive Programs 101

Restrictions on the Use of LOCALs

Certain rules apply with respect to the constitution of
locals, calling locals, and to calls made by locals.
These are summarized below under legal and illegal
uses.

Legal Uses

A mainline can call a local. Note that a mainline
(which can be a process, interrupt, combination,
or nonprocess core load) can, by definition, in
clude any subroutines loaded with the core load.
Although routines in the main core load can call
locals, all such calls must be completed (that is,
corresponding returns to the calling routine
made) before any call on a local in a second local
group can be made.

A local can call a mainline.

A local can call a skeleton subroutine.

A local can call a local provided both locals are
contained in the same local group.

illegal Uses

A local cannot call another local in a different
local group.

Due to the transient nature of local routines,
I/O routines cannot be designated as locals.

Conversion routines (e.g., HOLL, EBPA, PRT)
cannot be designated as locals.

Interrupt servicing subroutines cannot be desig
nated as locals.

In-skeleton subroutines cannot be used as locals.

Other Considerations

One other restriction in specifying subroutines as
locals is that if a subroutine has more than one entry,
i. e., EDBR, EDBRX, EDIV, and EDIVX, and more
than one entry point is called, then all called entry
points must be indicated on the *La CAL control card.

The user should also beware of hidden locals. If,
for example, A, B, and C are subroutines, and A
calls B, and B calls C, A and C should not be made
locals because C would be hidden from the relocatable
loader when A was prepared for loading, and on exe
cution, local C would destroy local A. To overcome
this problem, A and B, or Band C, or A, B, and C
could be named as locals.

If the Local Subroutine Area includes a device I/O
buffer area, no local should exit to a non -blocked

102

(that is, non-local) subprogram until it has tested
for a device routine not-busy status.

EXAMPLE 16. In certain application situations, por
tions of a problem program may not lend themselves
to segmentation into individual core loads. In order
to overcome this difficulty, by being able to contain
such a program in the available machine core size,
the local concept is immensely useful. The imple
mentation of the load-on-call facility means that
subroutines within the main body of a program can
be called into core on demand.

The following example has been devised to illus
trate this type of situation. It should not be construed
as a model.

Assume a 32K system with a 16K skeleton. If all
of FORTRAN I/O were used for all devices called by
the nonprocess program, NCATE, core size limita
tions require that FORTRAN I/O be localized (see
Figure 46). Since all FORTRAN I/O taken together

SKELETON

VCORE= /4000 ..
DIMENSION

MAINLINE
>-

ARITH. &FUNC. S/RS

IOF IX, IOU, SAVE ,MAGT

LOCALS }
/6164

/6890

COMMON

/7FFF

Figure 46. Illustrating the Implementation of LOCALs

MAINLINE
&

SUBROUTINES

UFIO,MFIO,
MDFIO, &
MDFND

would comprise approximately 3500 words, by local
izing them, the largest local block will be only ap
proximately 1600 words, and thus small enough to be
accommodated within the 1830 words available.

Note that subroutines common to FORTRAN I/O
(that is, called by FORTRAN I/O and not by the
mainline) are automatically included in the mainline
such that they may be shared. MAGT, being included

in the mainline, can be referenced by either MFIO
or UFIO.

Program Listing No. 4 also indicates the order of
control cards acceptable to the Core Load Builder.
For nonprocess programs, these must all be placed
between the * STORE CI (or / / XEQ) control card and
a *CCEND control card. Only the *RCORD control
is not allowed.

Functions of Executive Programs 103

PROGRAM LISTING NO.4: EXAMPLE 16

// JOB
// DUP
*STOREDATAD WSO FXO FILE2 2
DUP FUNCTION COMPLETED

// JOB
// FOR NCATE
*LI ST ALL
*NONPROCESS PROGRAM
*IOCS(CARD,1443 PRINTER,DISK,TAPE)
*ONE WORD INTEGERS
C
C NONPROCESS MAINLINE--FORTRAN I/O IS LOCALIZED
C --I/O SEGMENTATION IS ALWAYS DESIRABLE
C
C
C LARGE DIMENSION IMPLIES SIMULATION OF EXTRA CODE
C FOUND IN LARGE PROGRAM
C

C

C

C

DIMENSION SPACE(2000),ROOMI500)
COMMON ARRAY(2000),POINT(997),A,B,C

DEFINE FILE 1(320,1,U,IFILl)
DEFINE FILE 2(320,1,U,IFIL2)

CALL INOUTIU

C DO HIGHLY SOPHISTICATED PROGRAMMING
C

SPACE(l) = A*B/C+A**B*ATANICI-B**2
ROOMll) = ABS(AI*ALOG(B)*EXP(C*A)/IA*CnSIC)*TANH(B»

C
C USER-WRITTEN NON I/O DUMMY PROCESSING ROUTINES
C WHICH MIGHT BE LOCALIZED
C
C CALL COMPT
C CALL SURCH
C CALL SORT
C CALL CAMPH
C

C
CALL INOUT(2)

CALL EXIT
END

VARIABLE ALLOCATIONS
ARRAY(RC)=FFFE-F060 POINT(RCI=F05E-E896 AIRC)=E894

ROOMIR)=1392-0FAC IFILlII)=139E IFIL21·I Y=139F

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS

CALLED SUBPROGRAMS
INOUT FATAN FABS
FDVR FAXI

INTEGER CONSTANTS
1=13A2 2=13A3

FALOG FEXP FCOS FTANH FAXB

CORE REQUIREMENTS FOR NCATE
COMMON 6000 INSKEL COMMON o VARIABLES 5026 PROGRAM

END OF COMPILATION

NCATE
DUP FUNCTION COMPLETED
// FOR
*NONPROCESS PROGRAM
*ONE WORD INTEGERS
*L I ST ALL
C
C DO NOTHING I/O STATEMENTS FOR ILLUSTRATIVE PURPOSES ONLY
C

SUBROUTINE INOUT(I)
COMMON ARRAY(2000),POINTI997),A,B,C

C
GO TO I 1 , 2) , I

104

B(RC)=E892 C(RC)=E890 SPACE(R)=OFAA-OOOC

FADD FMPY FDIV FLf) FSTn FSTOX FSBR

88

C

C

C

READI2,3) A,R,C
F HID 12' 1)
RETlJRN

2 REA[)12'll ARRAY
WRITEl1'1) ARRAY
READ(5) A,3,C
~IRITE(6) A,B,C
ENf) FILE 6
BACKSPACE 5
REI"If\ID 6
RETURN

3 FORMATI3FIO.3)
END

VARIABLE ALLOCATIONS
ARRAYIRC)=FFFE-F060 POINTIRC)=F05F-F.A9~

STATEMENT ALLOCATIONS
3 =0004 1 =0012 2

FEATURES SUPPORTED
NONPROCESS
ONF WORn INTEGERS

CALLED SUBPROGRAMS

=0021

COMGO URED lH~RT lICOMP MRFD
~int\F MflFND

INTEGER CONSTANTS
2=0000 1=0001 5=0002

CORE REOUIREMENTS FOR INOlJT

AIRC)=FR94

MCOMP MIOF BCKSP

6=0003

COMMON 6000 INSKEL COMMON o VARIABLES o PROGRAM

END OF COMPILATION

INOUT
DUP FUNCTION COMPLETED
*STORECIL NCATE NCATF
*FILESI2,FILE2,0)
OLOCALIMDFIO,MDAF,MOAI,MOCOM,MnF,MOI,MDFX,MOIX.MDRFO.MOWRT,~nFND)

*LOCAL(MFIO,MRED,MWRT,MCOMP,MInAF,MIOAI,MInF.MIOI.MIOFX.MlnIX)
oLOCAL (UF IO, lIRED, UWRT, III 0 I, lJIOF, tJT OA I, lJ IOAF, lJ TOFX, II In T X .lJC(1MP)
~(CCEND

CLI~ , BUILD NCATE

CORE LOAD MAP
TYPE NM'E ARG1 ARG2

~'CD\oI TARLE 4002 OOOC
*18T TARLE 400E 0023
*FIO TARLE 4031 0010
~'ETV T MILE 4041 oooe
~~VTV TABLE 404D nOAE
oPNT TABLE 40FC 0004
*LPT TARLF 4100 OO~A

*[)FT TARLE 41BA OOOC
~1AIN NCATE 555E
PNT NCATE 40FE
CALL FLIP 55B4
LOCL MDFIO 4100 404f)
LOCL MOAF 4106 4050
LOCL MDAI 410C 40')3
LOCL MDCOM 4112 4056
LOCL MDF 4118 40')9
LOCL MDI 41lE 40,)C
LOCL MDFX 4124 405F
LOCL MDIX 412A 4062
LOCL MORED 4130 4065
LOCL MD'oIRT 4136 4068
LOCL MDFND 413C 4066
LOCL MFID 4142 406E
LOCL MRED 4148 4071
LOCL MWRT 414E 4074
LOCL MCD/oIP 4154 4077
LOCL MIOAF 415A 407A
LOCL MIDAI 4160 4070
LOCL MIOF 4166 40RO
LOCL MIOI 416C 40A3
LOCL MIDFX 4172 4086
LOCL MIOIX 4178 4089
LOCL UFID 417E 40BC

CIRC)=FR90

FOF RF"'Nf) SIIAH' tlJOF MORFn

74

Functions of Executive Programs lOS

LOCL UREO 41fl4 40RfO
LOCL UI,!RT 41RA 4092
LOCL UInl 4190 4095
LOCL UWF 4196 409R
LOCL UlnAI 419C 409B
LOCL UIOAF 41A2 409F.
LOCL UIOFX 41AR 40Al
LOCL UIOIX 41AE 401!.4
LOCL lJCOMP 41R4 40".7
CALL INOUT 5615
LI BF HI) 56RC 40/l.A
LIBF Ft,lPY 56D5 40 AD
LI BF FoIV 5717 40BO
LI BF FSTn 561'12 40R3
CALL FAXB 5781
CALL FATAf\! 57C2
LI BF FADD 5HRC 40B6
LI BF FAXI 590F 40B9
LI BF FSBR 586C 40BC
LI BF FSH1X 565R 40RF
CALL FARS 594E
CALL FALOr; 596A
CALL FFXP 59FF.
CALL Fcns 5A7A
CALL FTANH 5BOE
LIBF FDVR 575D 40C2
LI BF AoRCK 5B62 40C5
CALL BT2BT 5BC6
CALL SAVF. 5BE 2
CALL IOFIX 5C46
LI BF IOU 5C76 40C8
CALL BT HIT 5CCE
LI BF FLOAT 5D32 40CB
LI BF IF IX 5D4E 40CF
LI BF ~4 Ae; T 5D7A 4001
LI BF SURIN 5F9H 40n4
LI BF COMGO 5F02 4007
LIRF EOF 6050 40nA
LI BF BCKSP 6064 40no
LIBF RF.ldNO 6024 401"0
LI BF FARC 60BO 400
CALL FTNTR 60E4
CALL FTRTN 60FE
CALL FLN 597A
LI BF F~PYX 56DO 40E6
CALL FXPN 5AOE
LI BF XMDS 610E 40E9
LI BF FADDX 5886 40EC
LI BF FSlJBX 587R 40F.F
LIRF FDIVX 5712 40F2
LI RF FLoX 56B7 40F5
LI RF r,lnR~' 6136 40FR
CORE 6164 072C
CDr-I", 6890 1770

CLB, NG.ATE LO X(J

OUP FUNCTION COMPLETED

106

General Utility Functions

EXAMPLE 17. PACKING THE USER (RELOCATABLE
PROGRAM) AREA. It has been mentioned that during
a delete operation, the LET table is searched for the
na:t.ne of the program to be deleted and that entry re
placed by a 9DUMY. The space (that is, area) pre
viously occupied by the deleted program remains
unused until an *DEFlNE PAKDK operation has been
performed: it then becomes available for the storage
of other programs (through the *STORE function).
The user is therefore advised to repack relocatable
programs for optimum disk utilization at convenient
intervals.

When repacking is performed, the user should
ensure that a current record of disk storage exists
as a safeguard against any errors which might occur
while packing is in progress. The amount of time
involved in this operation is directly proportional to
the quantity of data moved. The sequence of control
cards for a typical packing operation is given in Fig
ure 47. Note that the *DEFINE PAKDK function
serves only to pack relocatable programs on disk.

Figure 48 illustrates how various portions of the
TSX subroutine library can be deleted or removed
from the disk if they are not needed for a given user
system. . The Relocatable Subroutine Area is then
packed to conserve disk space.

EXAMPLE 18. HOW TO REPRODUCE CARDS.
When the input to the *STOREDAT A function is in
card form, this function requires the card deck to be
sequenced, modulo 1000, i. e. 1001, 1002, 1003, etc ..
Any form of input may exist from columns 1-72, as
no conversion takes place. Fifty-four words are
stored from each source card. The last card of
the source input mus t be *CCEND.

SAMPLE CODING FORM

Figure 47. Repacking User Area on Disk Drive 1

This function may be used to reproduce source
decks prior to assembly (e. g. , the TASK source
deck), or compilation. An example of Card repro
duction is shown in Figure 49.

EXAMPLE 19. DUMPING A LET/FLET TABLE.
The *DUMPLET function is used to dump to the List
Printer the contents of the LET or FLET or both
tables for one or all drives specified during a partic
ular job. The control card sequence for a LET /
FLET dump is shOWl in Figure 50.

The format of a LET /FLET entry is summarized
in Figures 51 and 52. A detailed explanation of the
contents of both tables is given in the IBM 1800-
Time-Sharing Executive System, Operating Proce
dures, Form C26-3754.

EXAMPLE 20. HOW TO CALL FOR A PROCESS
CORE LOAD EXTERNALLY. Once an on-line TSX
system has been built, the question remains of in
itializing or starting system operation. This is only
possible through a cold start procedure -- Figure
53 illustrates a typical sequence of control cards for
a three-drive system.

The cold start program is supplied with the IBM
System and is normally resident on disk. It is read
into high-addressed core storage by a two-card
bootstrap (COLD START LOADER CARDS 1 and 2),
and control passed to its first executable instruction.
The Skeleton is then loaded to core storage, and
certain mask registers in the Fixed Area are set to
/FFFF thus forcing the Skeleton I/O routines to op
erate in a masked mode. Note that it is the user's
responsibility to unmask his system, according to
his configuration determined at system generation
time, through his initial (that is, first) process core
load.

The third control card in the sequence, the COLD
START name card, specifies
1. Whether or not storage protection is required

(1 or 0 in column 14).
2. Whether or not a request is made for the man

ual entry of the time of day (1 or 0 in Column 16).
3. The logical assignments of physical disk drives

on the system.
4. The name of the initial process core load.

If the storage protection option is elected, the
Skeleton I/O, the System Director, the Executive
Branch Table, and certain words in the Fixed Area
are protected against any user violation. When the

Functions of Executive Programs 107

// .JOB
// * THE FOLLOWING SET OF TSX MONITOR CONTROL CARDS IS USED
// * TO DELETE VARIOUS PARTS OF THE TSX SUBROUTINE LIBRARY IF THEY
// * ARE NOT NEEDED FOR A GIVEN USER-CONFIGURATED SYSTEM
// *
// *
// *
// *
// *
// *
// DUP
*DELET
// *
// *
//DUP
*DELET
*DELET
*DELET
// *
// *
//DUP
*DELET
*DELET
*DELET
*DELET
// *
// *
// DUP
*DELET
*DELET
*DELET
*DELET
*DELET
*DELET
*DELET
*OELET
*OELET
*OELET
*DELET
*DELET
*OELET
*OELET
*DELET
*DELET
// *
// *
// *
// OUP
*OELET
*OELET
*OELET
*DELET
*DELET
*OELET
*OELET
*DELET
*OELET
*DELET
*DELET
*DELET
*OELET
*DELET
*DELET
*OELET
*DELET
*OELE':
*OELET
// *
// *
// OUP
*OELET
*OELET
*DELET
*OELET
*OELET
*OELET
*OELET
*DELET
*OELET
*OELET
*DELET
*OELET
*OELET
*OELET
*OELET
*DELET
*DELET
*DELET
*OELET
*O.ELET
// .JOB

THE FIRST OELET ELIMINATES CARON IF THE USER HAS ASSEMBLEO
TASK WITH CARON INCLUDED--NOTE THAT FOR OFF-LINE SYSTEMS CARON
SHOULD BE INCLUOED IN TASK SINCE THIS SAVES EXECUTION TIME
CORE I.E. CDINS EQUATED TO 1

CARON
IF THE USER DOES NOT HAVE MAGNETIC TAPE ON HIS SYSTEM THE
FOLLOWING DELETS APPLY

MAGT
REWND
UFIO

IF THE USER DOES NOT HAVE PAPER TAPE ON H.lS SYSTEM
THE FOLLOWING DELETS APPLY

PAP TN
PAPEB
PAPHL
PAPPR

IF THE USER DOES NOT HAVE A PLOTTER ON HIS SYSTEM THE
FOLLOWING DELETS APPLY

FCHAR
SCALF
FGRID
FPLOT
ECHAR
SCALE
EGRID
EPLOT
POINT
FCHRX
FRULE
ECHRX
ERULE
XYPLT
PLOTI
PLOTX

IF THE USER IS BUILDING AN OFF-LINE SYSTEM THE FOLLOWING
DELETS APPLY--NOTE. DO NOT ASSEMBLE AND STORE THE SYSTEM
DIRECTOR

CLEAR
CLOCK
COUNT
OPART
ENOTS
LEVEL
MASK
OPMON
QIFON
QUEUE
RESMK
SAVMK
SETCL
TIMER
UNMI(

UNQ
VIAQ
CONHX
TRPRT

IF THE USER HAS NO PROCESS I/O ON HIS SYSTEM THE FOLLOWING
OELETS APPLY

AIPTN
AISON
AIRN
ANINT
OINP
OIEXT
DICMP
OAOP
lOPE
XSAVE
GAGEO
AlP
AIS
AIR
CS
CSC
CSX
DAC
QZERQ
QZOIO

// * THE SUBROUTINE AREA WILL NOW BE PACKED TO CONSERVE OISK SPACE
//OUP
*DEFINE PAKOK 0
// .JOB
// ~ND OF EXTRA SUBROUTINE OELETS

Figure 48. Repacking the Relocatable Subroutine Area Following a Removal of Various Portions of the TSX Subroutine Library

108

SAMPLE CODING FORM

Figure 49. Reproduction of Cards

SAMPLE CODING FORM

Figure SO. Dump LET/FLET of Disk Drives 0, 1 and 2

Note to Figure 52: In a FLET entry., the first two
bits in NAME are used to indicate the type of
entry:

Bit Values
00
01
10
11

Indication
data file
nonprocess core load
mainline core load
interrupt or combination core load

.TEMP YYYY L STARTING DISK BLOCK ADDRESS
OF • TEMP MUST BE A CYLINDER
BOUNDARY--

",,",-__ THE NEXT DISK BLOCK ADDRESS TO BE USED FOR
STORING RELOCATABLE PROGRAMS

WILL BE THE SAME AS • TEMP'S IF NOTHING IS
tiN .TEMP

~
fL.. ____ STARTING DISK BLOCK ADDRESS NPWS IS

ALWAYS AT LEAST A SECTOR BOUNDARY

L.-______ DISK BLOCK ADDRESS OF (END OF NPWS+1)
IS ALWAYS AT LEAST A SECTOR BOUNDARY

NAME XXXX Y Y Y Y

GARTING DISK BLOCK ADDRESS OF PROGRAM
OR AREA SPECIFIED

L...-__ DISK BLOCK COUNT OF PROGRAM

PROGRAM OR TABLE NAME

Figure 51. LET Entries

1 = COMBINATION C.L.h
0= INTERRUPT C.L. _ + lr------DISK DRIVE CODE 0,1,2

NAME

i
Program
Name

.E

xxx x

/r-1£ SECTOR ADDRESS

STARTING SECTOR ADDRESS
FOR THIS ENTRY

t---- WORD COUNT FOR/ENTRIES OR CORE LOADS

L..-___ SECTOR COUNT FOR (') ENTRIES,DATA FILES
OR 9DUMY

xxxx

STARTING SECTOR ADDRESS OF

CORE I MAGE AREA

....... ___ TOTAL NUMBER OF SECTORS USED FOR CORE

IMAGE PROGRAMS AND DATA FILES

Figure 52. FLET Entries

Functions of Executive Programs 109

SAMPLE CODING FORM

Figure 53. Cold Start for an On-Line System

clock option is selected, the user manually enters
the time of day in decimal hours and minutes
(switches 0-7 and 8-15 respectively): when CONSOLE
START is depressed, this is converted into hexadeci
mal hours and thousands of hours (see also System
Design Considerations: System Director).

The assignment of physical disk drive units in a
multi-disk system is based on a logical scheme to
give maximum flexibility, as shown in Figure 54.

Note that the physical arrangement of the disk
drive units (up to three) in a 2310 Disk Storage Unit
is fixed in the sequence: disk drive 2, disk drive 0,
and disk drive 1. Columns 18, 20, and 22 on the
COLD START name card always designate a logical
number sequence: 0, 1, and 2 in that order. These
columns are used at cold start time to establish a
relationship between a physical disk drive (either 2,
0, or 1) and its equivalent logical reference. For
example, a 1 punched in column 18 means that a pro
gram that references logical ° will refer to the
physical drive (disk drive 1) which was assigned at

PHYSICAL DISK
DRIVE UNIT

ARRANGEMENT
IN 2310 DISK

STORAGE UNIT

ASSIGNMENT
OF

PHYSICAL
DISK

DRIVE UNITS

COLD START NAME CARD

COL. 18 COL. 20 Cal. 22
(LOGICAL (LOGICAL (LOGICAL

NO. 0) NO.1) NO.2)

0 1 2

1 0 2

2 1 0

2 0 1

1 2 0

0 2 1

Figure 54. Relationship of Physical Disk Drive Units to Logical Number

110

cold start time to that logical number (0). In Fig
ure 53, physical disk drives 0, 1, and 2 have been
assigned to logical 0, 1, and 2 respectively. One of
the advantages of this flexibility in assigning physical
disk drives in a multi-disk system is backup capabil
ity.

EXAMPLE 21. HOW TO INITIATE A NONPROCESS
MONITOR OPERATION. In an on-line system:

• CALL SHARE from a mainline program only, or

• CALL VIAQ (when the queue is empty). This
forces a CALL SHARE.

CALL SHARE is deliberately used when time
sharing is desired at specific times and for specific
durations. The amount of time is specified by the I
parameter, and is variable depending upon the length
of time the user wishes to be away from his process
on the mainline level. This time is set in the pro
grammed timer run under Timer C. Time-sharing
is terminated when the timer returns to zero or is,
alternatively, set to zero by a CALL ENDTS state
ment (see also System Design Considerations:
System Director).

A CALL VIAQ when the Queue Table is empty
forces a CALL SHARE statement: the time used in
the CALL SHARE is the value set by TISHA (see
System Design Considerations: System Director;
also Use of Time-Sharing).

In an off-line system, Nonprocess Monitor oper
ation may be initiated by

1. A COLD START TASK procedure, or
2. Loading a TASK object deck to core with a

four-card High Core TASK Loader.

The COLD START TASK procedure is identical to
the on-line COLD START PROCEDURE (see Example
20), except that the TASK operating system is now

read into core storage (instead of the System Skele
ton). A typical sequence of control cards is shown
below (Figure 55).

An alternative method of starting an off-line sys
tem is to load a TASK object deck (previously assem
bled to user specification) to core-storage with a
four-card bootstrap loader (High Core TASK Loader).
The procedure is summarized below (see also IBM
1800 Time-Sharing Executive System, Operating
Procedures, Form C26-3754).

• Clear core. The 16 data switches may be set off,
or to some predeterminedyalue. Depress
CLEAR CORE and START buttons simultaneously.

• Depress STOP button

• Reset registers to zero. Depress RESET button.

• Ready Card Reader. Depress PROGRAM LOAD
on reader.

• Set Sense Switch 7 up. Depress CONSOLE
INTERRUPT.

• Depress START button (on response to sense
switches).

EXAMPLE 22. HOW TO TERMINATE A NONPROC
ESS MONITOR OPERATION (OFF-LINE SYSTEM
UNDER TASK CONTROL). Two methods are pos
sible:

1. Set Sense Switch 7 up
Depress CONSOLE INTERRUPT

This immediately aborts the current job being proc
essed, and proceeds to next stacked job.

2. Whenever the Card Reader is empty, the Non
process Supervisor will indicate this situation
by printing the following message:

SAMPLE CODING FORM

Figure 55. Cold Start for an Off-Line System

N04 READER READY

Place next stacked job deck on hopper.
Ready reader. Depress START.

Note: With sense switch 7 on, the Console Interrupt
routine is executed in fully masked mode.

EXAMPLE 23. PREPARING A GUARD (DUMMY)
INTERRUPT CORE LOAD. If an interrupt occurs on
a level designated as "out-of-core" and there is no
interrupt or combination core load associated with it,
the interrupt will be recorded automatically. To pre
vent this, it is good practice to provide a guard or
dummy interrupt core load to service all interrupts on
all assigned out-of-core interrupt levels until each
interrupt has its final interrupt core load built and
stored on disk. The substitute core load should give
some indication (such as a message) that the interrupt
has occurred.

In the example (Figure 56), levels 8, 9, 10, and
11 were defined as "out-of-core" interrupt levels by
the System Director equate cards ICLL1 and ICLL2.
The relocatable main program is identified by
GUARD located in the temporary portion of LET.
Its entry address is 5. The interrupt core load
is also identified by GUARD but is in FLET. The
DICLE statement specifies that GUARD is entered
in the ICL Table for each bit position on each level
assigned. When the named program is later de
leted and replaced by another program, all of the
ICLT entries will be replaced.

EXAMPLE 24. USE OF THE CONSOLE INTER
RUPT. The Console Interrupt is used by the system
and may also be used by the user.

The system uses the Console Interrupt with sense
switch 7 on either to abort a nonprocess job or to

Functions of Executive Programs 111

SAMPLE CODING FORM

Figure 56. Preparing a GUARD or Dummy Interrupt Core Load

commence Nonprocess Monitor action. This oper
ation is required after a / / JOB, / / END OF ALL
JOBS combination.

A block diagram of the generalized logic flow is
given in Figure 57.

The user may have an interrupt program executed
on a chosen level by depressing the Console Inter
rupt button with sense switch 7 off. The level is
assigned by the user on the equate card CONTA at
TASK assembly time.

The servicing routine or core load is written by
the user and handled in the same way as a program
med interrupt servicing routine, with appropriate
LLBB designations. It is through the programmed
interrupt servicing routine that the Console sensei
data switches are interrogated and which, in tum,
direct this routine to the course of action desired.

One of the functions the servicing routine or core
load must perform is to queue up a mainline core

112

load which will notify the Customer Engineer when
he can depress the C. E. Interrupt button for the re
moval or addition of I/O devices from the system;
and also to print out error counters where hardware
malfunctions have been recorded.

EXAMPLE 25. PREPARING A MAINLINE CORE
LOAD TO PERMIT PROLONGED EXECUTION OF
THE NONPROCESS MONITOR FOR THE DEBUG
GING OF PROCE SS PROGRAMS. The example
(Figure 58) illustrates the use of the CALL SHARE
statement which will continue to provide time for
Nonprocess Monitor operation when the increment I
for timesharing has expired and the mainline core
load is reentered.

This mainline core load will be specified in the
COLD START procedure when only nonprocess work
is to be accomplished.

SET
PROGRAM
INTERRUPT

NO

SET

SENSE SWITCH 7

DEPRESS
CONSOLE
INTERRUPT
BUnON

I o
I

CONSOLE
INTERRUPT

SERVIC ING SIR
IN SKELETON I/O

,

IS S/SW7
ON?

EXIT
VIA I/O RETURN

Figure 57. Illustrating Logic of Console Interrupt

YES

-

ABORT
NONPROCESS

JOB

Functions of Executive Programs 113

SAMPLE CODING FORM

Figure 58. Illustrating Perpetual Time-Shared Nonprocess Monitor Operation

114

In industrial control systems, individual user in
stallation requirements may vary from installation
to installation either in the hardware itself or in
dissimilarities inherent in the application. These
differences may take the form of:

• Different processes

• Special process I/O hardware

• Different input-output configurations

• Different core storage sizes

• Response time

• Throughput

• Priority considerations

This means that each installation must be defined
or tailored to the specific system function require
ments and input-output-configuration of that instal
lation. The tailoring function is defined as system
generation which provides the facilities for the
creation and maintenance of a monitored system
composed of IBM and user-written programs and
subroutines. The end product of system genera
tion is a disk-resident operating system which is
custom built to provide an efficient Executive Sys
tem for a specific machine environment.

In the IBM 1800 Time-Sharing Executive System,
the builder or "tailor" is a stand-alone monitor
program -called the Temporary Assembled Skeleton
(TASK). TASK permits a system to be constructed
on one or more disk cartridges from absolute and
relocatable program decks which contain the exe
cutable phases and the relocatable programs the
installation elects to include in its system. Further
more, the installation may modify the IBM-supplied
configuration, delete functions not required by the
installation and add installation -created functions
and programs. The modular design and availability
of many features and attachable units make possible
numerous IBM 1800 configurations tailored to indi
vidual application requirements.

SYSTEM DESIGN CONSIDERATIONS

System Generation

As noted above, System Generation is the process
of preparing a specially-tailored operating system
to match the machine configuration and operating
system options selected by the user. In general,
two types of systems may be generated:

1. An on-line system,
2. An off-line system.

On-line System

Anon-line system is one that responds continuously
to the demands of the real-time world. For ex
ample, in industrial process control systems, a
number of rapidly changing variables must be moni
tored, analyzed, and controlled at all times to
produce an optimum result. A TSX on-line system
implies a real-time operating system in which user
written programs continuously monitor and control
a process operation under the command of an execu
tive program (the System Director). The executive
provides a means of supervising the use of input
output data and communications channels, evaluating
and interpreting data, transmitting and storing in
formation and programs, detecting and correcting
errors, and interlacing time-sharing functions.
It also controls the system's response to various
optional requests, giving priority to emergency
demands and postponing low-priority requests that
may require considerable time to perform. Emer
gency actions can be scheduled at frequent intervals.
This immediate response is secured through the
medium of a powerful and flexible priority interrupt
system.

In the on-line mode, the executive also permits
the system to be time-shared (when free time is
available) by the controlled process and unrelated
nonprocess functions. This means that nonprocess
programs may be assembled, compiled, Simulated,
and debugged without interfering with the on-line
process. It is the rule rather than the exception
that process control programs are subject to change,
and it is a definite advantage to be able to implement
changes at the installation without taking the system
off-line.

System Design Considerations 115

Off-line System

An off-line system is completely unrelated to the
real-time world, its main purpose being the
handling of sequential job operations under the
control of a monitor system. A TSX off-line system,
by definition, constitutes a stack-job nonprocess
monitor system which functions under the direction
of TASK. In this mode, nonprocess operations such
as assemblies, compilations, disk utility operations,
and execution of user-written programs may be
performed.

System
16. Generation

Options
12,13,14,15

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Prepare The System Decks

Load System Generation TASK
and Write Disk Addresses

Load the IBM System
Decks

Assemble TASK

Assemble the System
Director

Define the System
Configuration

Assemble and/or Compi Ie
User Skeleton Subroutines

Build the System
Skeleton

Assemble and/or Compile
User Process Programs

Bui Id Process Core
Loads

Yes

11.1 Oo-Lin. Cold Stort

Figure 59. System Generation Overview

116

Since TASK core size is considerably less than
System Skeleton core size, core storage require
ments are less demanding for the off-line system.
Also, as the various disk save areas are not now
required, disk space is conserved. For those
users who do not plan to utilize time-sharing, a
nonprocess monitor system working under TASK
gives the ability to build coreloads for an on-line
system. It is from a non-process monitor system
that an on-line system is ultimately constructed.

Figure 59 is a pictorial representation of the steps
required for system generation.

------------,
I
I
I

____ ~ 2:1 ... ____ C_a_rd_As_Se_m_b_le_r __ --'

6.

14.

15.

13.

Note: The card assembler is
required only if your system
does not include the units
required by SYSGEN TASK.

Off-line .cold Start

Store Relocatable Programs
on Disk from Cards

For details of step-by-step system generation
operational procedures, the user is referred to the
System Reference Library, IBM 1800 Time-Sharing
Executive System, Operational Procedures, Form
C26-3754.

TEMPORARY ASSEMBLED SKELETON (TASK)

TASK EQUATE CARDS

Before TASK can be used to tailor a TSX system,
like the System Director, TASK itself has to be
assembled from a source deck. To do this, two
groups (Groups 1 and 2) of equate cards must be

_ physically placed in the TASK source deck to
define the particular system. The relationship
of the equate cards to the source deck is illustrated
in Figure 60.

The size of the assembled TASK is directly pro
portional to the number of TASK functions the user
elects to include in his system. For example, if
he decides to include the complete TASK utility
package which will assist him to debug his pro
grams prior to a skeleton build, he equates TRORG
to 1. If he decides to include CARDN in the Skele
ton I/O, he equates CDINS to 1. If he decides to
make use of the 1053/1816 backup capability, he

II JOB

Blank Cards
(2-3 inches)

TASK Group 1
EQUATE Cards

ABS

I I END OF ALL JOBS

END STPOO

Figure 60. TASK Source Deck and TASK Equate Cards

GC26-3703-1
TNL: GN34-0036
Technical Change

equates the BD1-BD8 cards accordingly to identify
the backup printer(s) assigned.

Like the System Director, TASK can be assem
bled with extreme flexibility so that no core is
wasted by selecting any of the numerous options
available. Furthermore, portions of the package
can be deleted. The user thus elects a configura
tion that best matches the functions required. This
is illustrated by the example given in Figure 61

*1 BM 1800 TSX SAMPLE SYSTEM TASK EQUATE CARDS
CORSZ EQU 32 OBJECT SIZE IS 32K
COMSZ EQU 01000 INSKEL COMMON SIZE IS 1000 WORDS
DORG1 EQU 1 NOT A ONE-DRIVE SYSTEM
DORG2 EQU 0 THIS IS A TWO-DRIVE SYSTEM
PRILO EQU 01 INTERRUPT LEVEL OF DRIVE ZERO IS 01
PRIL1 EQU 02 INTERRUPT LEVEL OF DRIVE ONE IS 02
PRIL2 EQU 00 THERE IS NO DRIVE TWO
TORG EQU 1 SYSTEM HAS 1816 KEYBOARD
TORG1 EQU 1 MORE THAN ONE 1053/1816 GROUP 1
TORG2 EQU 1 MORE THAN TWO 1053/1816 GROUP 2
TORG3 EQU 0 SYSTEM HAS THREE 1053/1816 GROUP 1
TORG4 EQU 1 ONE 1816 KEYBOARD GROUP 1
TORG5 EQU 0 NO 1816/1053 GROUP 2
TORG6 EQU 1 OTHER THAN ONE 1053/1816 GROUP 2
TORG7 EQU 1 OTHER THAN TWO 1053/1816 GROUP 2
TORG8 EQU 1 OTHER THAN THREE 1053/1816 GROUP 2
TORG9 EQU 0 NO 1816 KEYBOARD GROUP 2
TORGN EQU 1 SYSTEM HAS 1816/1053 PRINTERS
BLAST EQU 1 BLAST CMD ON 1053 AFTER NO RESPONSE
BZ1 EQU 090 MESS UNIT SIZE FOR 1053-1 GROUP 1
BZ2 EQU 090 MESS UNIT SIZE FOR 1053-2 GROUP 1
BZ3 EQU 090 MESS UNIT SIZE FOR 1053-3 GROUP 1
BZ4 EQU 090 MESS UNIT SIZE FOR 1053-4 GROUP 1
BZ5 EQU 090 MESS UNIT SIZE FOR 1053-1 GROUP 2
BZ6 EQU 090 MESS UNIT SIZE FOR 1053-2 GROUP 2
BZ7 EQU 090 MESS UNIT SIZE FOR 1053-3 GROUP 2
BZ8 EQU 090 MESS UNIT SIZE FOR 1053-4 GROUP 2
NOCYL EQU 20 20 CYLINDERS FOR MESS BUFF
NUMBE EQU 16 16 NONPROCESS MESS BUFF SECTORS
NOBUF EQU 1 DISK MESSAGE BUFFERING
TYPL1 EQU 04 1053/1816 GROUP 1 INT LEVEL 04
TYPL2 EQU 00 1053/1816 GROUP 2 INT LEVEL 00
INTK2 EQU 12 USER KB REQ RTN INT LEVEL KB1
INTK1 EQU 0 USER KB REQ RTN INT LEVEL KB2
PORG EQU 1 1443 PRINTER ON SYSTEM
LVPR1 EQU 05 1443 PRINTER INTERRUPT LEVEL 05
LORG1 EQU 1 LIST PRINTER IS 1443
SORG1 EQU 1 SYSTEM PRINTER IS 1443
SLORG EQU 1 CARD INEFFECTIVE SEE LORG1/S0RG1
ECPT1 EQU 0 EAC PRINTER IS A 1053
ECPT2 EQU 07 EAC COMBINATION EQUATE VALUE IS 7
ECPT3 EQU 0 EAC PRINTER IS A 1053 GROUP 1
CRDNO EQU 0 ONE 1442 ON SYSTEM
CDINS EQU 1 CARDN IS IN SKELETON I/O
ORLP1 EQU 1 OVERLAP ON ANALOG I/P BASIC
ORLP2 EQU 1 OVERLAP ON ANALOG I/P EXPANDER
PTSKP EQU 1 LOOPS UNTIL READY IN NONPROCESS MODE
NULEV EQU 16 15 INT LEVELS IN SYSTEM
MKLEV EQU 1 15 OR MORE INT LEVELS
CONTA EQU 14 LEVEL OF L!SER CONSOLE INT RTN IS14
PRICS EQU 0 STANDARD PRECISION IS USED
TRORG EQU 1 TASK UTI LlTY PACKAGE INCLUDED
TA01 EQU FULL TRACE INCLUDED
TA02 EQU CHECK STOP TRACE INCLUDED
TA03 EQU DISK DUMP INCLUDED
ONLIN EQU 1 ALL TASK FUNCTIONS ARE USED
BDT1 EQU DT2 1053-2 GROUP 1 BACK-UP UNIT
BDT2 EQU DT3 1053-3 GROUP 1 BACK-UP UNIT
BDT3 EQU DT1 1053-1 GROUP 1 BACK-UP UNIT
BDT4 EQU DT1 1053-1 GROUP 1 BACK-UP UNIT
BDT5 EQU DT1 1053-1 GROUP 1 BACK-UP UNIT
BDT6 EQU DT1 1053-1 GROUP 1 BACK-UP UNIT

Figure 6'1. A Set of TASK Equate Cards for the TSX Sample System
(see Programming Techniques)

System Design Considerations 117

which depicts a set of TASK equate cards chosen
for the TSX Sample System described in Program
ming Techniques. The significance of each of the
60 cards is clearly denoted. The majority of these
cards are self-explanatory; a few, however, call
for so;rne explanation. These include the following:

• NOBUF

• BZl-8

• NOCYL

• NUMBE

• INTK1

• INTK2

• CONTA

• ECPT2

• CDINS

• PRICS

• ONLIN

• COMSZ

NOBUF. This label indicates whether or not the
buffering of messages to disk is required. It should
be equated to zero if the user

1. Has a 16K - 32K system where very few
messages on all typewriters are printed

2. System is restricted in skeleton core space.

NOBUF should be equated to 1 if the user has a
16K - 32K system, and has adequate core space
(about 300 words) for the buffering feature in TYPEN.

BZl-8 (Message Unit Size). If the user has adequate
core space, makes efficient use of disk space, or if
he plans to print long messages, the message unit
size should be large. If, however, core space is
restricted, but there is sufficient disk space for a
number of sectors for the buffering of messages,
the message unit size should be small -- that is,
of the order of 20 - 40 words.

In general, increasing the buffer size results in
a more efficient use of disk space and a corresponding
less effective utilization of core storage (see Buffer
ing of Messages to Disk).

118

NOCYL. This should be basically equal to the
largest possible message capacity in disk cylin
ders at any point in time.

For example, assume that all messages for a
specific system are each less than 40 words long,
and that the message unit size for all 1053 printers
is 40 words. Then, if in any 10 minute period, the
user calls for 80 messages to be printed, NOCYL
should be equated to 10. That is, an 80-sector
buffer is reserved. Note that 8 words of core
storage are reserved for every increment of NOCYL
(see Buffering of Messages to Disk).

NUMBE. This specifies a limit for the buffering of
nonprocess messages. If at any moment, the num
ber of message buffer sectors in use for nonprocess
messages is equal to or greater than this number,
no further buffering of nonprocess messages will,
occur until the nonprocess buffer utilization drops
below NUMBE. NUMBE must not exceed NOCYLX8.

INTK1, INTK2. These equate cards specify the inter
rupt levels on which 1816 devices will be serviced on
a keyboard request interrupt. If an out-of-core
interrupt servicing program is to be used for this
purpose, INTK1 and INTK2 must be equated to
interrupt levels lower in priority than all other I/O
interrupt levels.
CONTA. The user must specify the level to be
program-interrupted for the servicing of the Con
sole Interrupt.

The interrupt servicing routine would then inter
rogate the sense/data switches to determine the
course of action required by the interrupt.

One of the uses of this routine is to queue up a
mainline core load that will enable the Customer
Engineer to utilize the C. E. Interrupt facility.
(See INTKY; also Examples of Nonprocess Monitor
Usage -- Example 24.)

ECPT2. If two 1053 Printers form part of the user's
valid system, he should always define (at least) these
two printers as EAC printers for backup purposes.
CDINS. For off-line systems, this should always be
equated to 1. Note that this saves about 300 words
of variable core. For on-line systems, this should
be zero unless the user plans to include in the skele
ton a subroutine which calls the 1442 card reader.
PRICS. The user must anticipate what type of arith
metic precision is required in his process programs.
He should remember that once this is defined, sub
routines used by process programs are assembled
with this same precision.

ON LIN . If the user plans to operate (only) an off
line disk monitor system, this should be equated
to zero. This gives the user 600 more words of
variable core.

COMSZ. This equate card specifies the size of
INSKEL COMMON. In an off-line system, this
card has no effect since INSKEL COMMON is
only present in an on-line system.

BUFFERING OF MESSAGES TO DISK

Efficient I/O handling is the most important single
factor in the effective utilization of processor time.
Input-output devices, being slow compared to the
internal speed of the processor, must be program
med to overlap their operation with mainline compu
tations whenever possible to

1. Greatly increase efficiency of I/O operations
2. Provide more throughput of data.

Consider the following situation. The incore
1053 Printer buffer (whose size is determined by
the TASK equate cards BZl-8) contained within the
D. P. I/O subroutine TYPEN is full, and the printer
is in the process of writing a message. If disk
buffering were provided, the next message called
would be temporarily stored on disk, and later re
turned to core when the current message is com
pleted. This means that the processor-controller
is not locked up and waiting for the input-output
operation to be completed, and is thus able to con
tinue with its processing.

The significance of disk buffering is that queueing
of output messages or information can now be easily
accomplished without putting excessive loads on core
size or disk access capabilities of the system.

Without disk buffering, the system becomes
printer-limited, and might deteriorate into a 15
character per second system.

We thus see that the buffering of messages to
disk is important for two reasons:

1. It maximizes processor time. That is, it
allows computing to continue after a call to
the printer is given.

2. It frees the user from having to optimize his
message requests, thus permitting more
effective use of the device.

The interrelationship between disk message buf
fering and total skeleton core requirements can be
shown by the following example.

Without buffering: Assume four 1053 Printers

With buffering:

Minimum message unit size
= 81 words

Total core = 324 words

Assume four 1053 Printers

Minimum message unit size
= 20 words

Add additional portion of
TYPEN = 300 words

Total core = 380 words

It is seen, in this example, that the user obtains
all the advantages of buffering at the small sacrifice
of 56 words.

Message Unit Size

The user must define the message unit size for the
1053 Printer(s) attached to his 1800 TSX System at
TASK assembly time. The printers may belong to
Group 1 or Group 2 on the condition that the maximum
number of 1053 Printers used does not exceed 8.

Message unit size is defined as somewhat larger
than the average size of the message or information
to be printed out. This may be within the range of
20-319 words which is dictated by the minimum and
maximum core sizes that may be specified for a
message buffer. In practice, an optimum size may
fall between 40 and 80 words (80 to 160 characters).

Definition of the message unit size is also depen
dent on whether messages to the 1053 Printer are to
be buffered.

If non-buffering is employed, the message must
never be greater than that defined for a message
unit. If the user plans to print out long messages
or a large number of messages; has adequate core
storage, and makes efficient use of disk space, the
message unit size should be large. Assuming
FORTRAN compilation is planned, the message unit
size should be at least 81 words (162 characters).

If buffering is preferred (because the user is
pressed for core storage, but has enough disk space
for a number of sectors for the buffering of mes
sages), the size of a message can be any length;
that is, greater than the size of the message unit.
The mes sage unit size can now be defined as small
as 20 words (40 characters).

In general, a large buffer size results in a more
efficient use of disk space and a corresponding less
effective utilization of core storage.

System Design Considerations 119

Determination of Disk Buffer Size

The following guide rules may be used for deter
mining the size of the disk buffer:

Rule 1. For random message requests, if the
user plans to print out less than 10,000
characters per hour on a single 1053
Printer, the device utilization will be less
than 20%. A large percentage of applica
tions falls into this category. In this situ
ation, for a single 1053 Printer, the user
will almost never require more than three
disk message buffer spaces.

Rule 2. If the user plans to print out a large number
of messages in a small interval of time
(e. g., data logging at 50 messag~s), he
will require a large number of disk message
spaces. The length of the log determines
how big the disk buffer shall be.

The following example illustrates a representative
calculation. Assume:

1. A 10 message-unit log at the end of every 15
minutes.

2. An average of 50 operational information mes
sage units per hour.

3. An average of 10 alarm message units per hour.
4. Message unit size for 1053 Printer (i. e., BZ1)

= 50 words.
5. Average length of messages = 30 words.

To handle a 10 message-unit log will probably
require 9 sectors; that is, as suming that all 10 mes
sages are called to be typed at the same instant of
time. The reason for the 9 is because 1 message is
moved directly to the output area, the remaining 9
being buffered on disk.

Let us further assume that the remaining 60 mes
sage units are randomly distributed across the hour
(that is, 10 in one 10 minute period, and perhaps none
in the next 10 minute period, etc.).

is

Then,
Number of characters typed 60 x 30 x 2

60 x 30 x 2
Time to type these characters=

15 x 60

4 minutes

The utilization of the 1053 Printer during the hour

4
60

6.67%

120

Therefore, the number of sectors required
for the messages sent at random is 3 (From Rule 1).

And the number of sectors required for the log
is 9 (From Rule 2). Total number of sectors re
quired is 9 + 3 = 12 sectors.

Now, assuming more than one typewriter is used,
sum the number of sectors needed for each addi
tional 1053 printer (computed as above). Let the
total overall number of sectors = X.

x + 7 .
Then NOCYL = complete cylmders

8
(ignore remainder)

In this example, NOCYL
12 + 7

8 = 2 com-

plete cylinders. If three extra 1053 printers were
included to handle random message requests, then
from Rule 2, six additional sectors will be required.

12 + 6 + 7
NOCYL now becomes = 3 com-

8
plete cylinders.

The user may also use the above guide rules to
compute nonprocess disk buffering. Assuming a
random message distribution pattern, each 1053
printer will require three sectors. Unless he has
excessive disk storage, nonprocess disk require
ments should be kept to a bare minimum.

CALCULATING TASK CORE SIZE

1. For an off-line system, the size of TASK is
calculated as follows:

TASK FIXED AREA
+ Disk device tables
+ DISKN
+ 1053 device tables
+ 1816 device tables
+ TYPEN
+ 1053-1443 Timing Response Routine
+ 1443 device table
+ PRNTN
+ Constants, work areas, etc.
+ CARDN (always included)
+ T ASK Program Set

Where

T ASK Program Set = 1690 + 8 X N + 653 X ONLIN

+ 200 X TRORG
+
+

221 X TA01 X TRORG
358 X TA02 X TRORG

+ 162 X TA03 X TRORG
+ 20 X MKLEV
+ 110 X DORGl

THE IBM NONPROCESS SYSTEM

TRORG, ONLIN, TAOl-3, DORG1, and MKLEV
are TASK equate cards.

The IBM Nonprocess System is a nonprocess system
deck which constitutes the major portion of the TSX
system. It is composed of control programs and a
complete package of IBM relocatable subroutines
necessary for the proper execution of the TSX sys
tem. A breakdown and brief description of each of

The remaining parameters have already been
given in the calculation for Skeleton I/O: see
System Design Considerations: System Director.

Once the system is built, the starting address
of variable core is found at word 66 hexadecimal
(102 decimal) of the Fixed Area. The label of
this location is $VCOR. For an on-line system,
the start address of variable core is equal to
VCORE.

its component parts in the order in which it is sup
plied and loaded to disk follows below (see Figure 62).

*DEDIT CONTROL
CARD FILLED IN

Cold Start Cards. The on-line or off-line system is
brought into operation by three cold start cards (two
Cold Start and one Name Card) which initiate the
Cold Start program. A cold start requires tha:t a

OTHER UTILITIES

BY USER~~..,.",.,..,=,..,.....,....="""""".,...,...,.",.-_ ,

DISK

RESIDENT

PROGRAMS

COLD START CARDS

Figure 62. The IBM Nonprocess System

NOTE: DISK RESIDENT
PROGRAMS COMPRISE THE
FOLLOWING:

LET
DCOM

BOOTSTRAP LOADER
NONPROCESS SUPERVISOR
CORE LOAD BUILDER
COLD START PROGRAM
DISK UTILITIES
ASSEMBLER
FORTRAN COMPILER
SIMULATOR
ERROR PROGRAMS
IBM TSX SUBROUTINE LIBRARY

System Design Considerations 121

minimum of one core load be resident in the core
load area on disk for execution. The name of the
initial core load as well as the logical assignments
of the physical disk drives are obtained from the
Name Card.

System Generation (SYSGEN) TASK and Loader
Cards. SYSGEN TASK is the "starter" system
which contains the basic minimum components for
initial system generation. It is loaded to memory
by a four-card TASK High Core Loader.

System Loader. The System Loader performs
three essential functions at system generation
time: It 1) loads the IBM Nonprocess System to
disk drive zero and file-protects this disk drive
from sector 0 to the start of Nonprocess Work
Storage, 2) builds the Assignment (AT) and Input
Output Unit (lOUT) Tables and stores them on disk
and 3) edits the disk and the Disk Communications
Area with a standard layout as a base for TSX non
process programs. It is also used for reload pur
poses and to make partial modification, if any, to
the TSX system.

Disk LET /FLET Tables. LET (Location Equivalence
Table) serves as a disk map for system programs,
subroutines, and relocatable programs. It contains
the name of each function and its size (that is, disk
block count, where 1 disk block = 20 words). Each
entry point in a subroutine has an entry in the LET
table. As the user stores his own relocatable pro
grams on the disk, entries for these programs are
also made in LET.

FLET (Fixed Location Equivalence Table) is a
map of core loads and data stored in the Process
Core Image Storage (or Core Load) Area, and the
Save Areas on disk.

Disk Communications Area (DCOM). DCOM is used
by all nonprocess system programs and is stored on
logical disk drive zero at sector 00000. It is essen
tially a disk communications map of vital information
needed by nonprocess system programs. Some
words within DCOM are used by process programs
such as Cold Start.

This area is brought into core each time a / / JOB
is read; certain words are then initialized to reflect
the current status of the disk as depicted by the LET /
FLET tables. Whenever a / / END or / / XEQ card
is encountered, DCOM is written back to disk.

Bootstrap for Nonprocess Supervisor. This is a
relocatable program that can be located anywhere in

122

core for anyone system.. When VCORE (the start
address of variable core) is established, its entry
point in variable core is fixed. The bootstrap
serves as a linkage between the System Director
or TASK, and the Nonprocess Supervisor. It is
updated during system generation by TASK, the
System Loader, and the Skeleton Builder program.
It always resides on sectors 1 and 2 of logical disk
drive zero.

Nonprocess Supervisor (SUP). This program directs
all nonprocess monitor operations. It decodes the
monitor control records in the stacked input for non
process jobs, and calls the appropriate monitor
program (Assembler, FORTRAN Compiler, Simu
lator, etc.) to perform the desired operation. The
supervisor provides continuous processor-controller
operation during a sequence of jobs that might other
wise involve several independent programming sys
tems. It also supervises the transfer of control
between monitor and user programs.

Core Load Builder (CLB). This program constructs
mainline, nonprocess and interrupt core loads from
user-written programs. Using data contained in
control records and in the program itself, the Core
Load Builder combines the mainline program, re
quired subroutines, generated work area tables and
transfer vectors into an executable core load.

Cold Start Program (CLST). This program initiates
the TSX system into operation. In an on-line sys
tem, it loads the System Skeleton to core and trans
fers control to the System Director. In an off-line
system, TASK is loaded to core, and control trans
ferred to the first executable instruction within
TASK.

Disk Utility Program (DUP). DUP is a set of rou
tines designed to aid the user in performing the
functions of disk maintenance. That is, it has the
capabilities of storing, deleting, and outputting user
programs, defining system and machine parameters,
and also of maintaining communications areas. DUP
also automatically updates the LET /FLET tables to
reflect all changes to the disk. It is called into
memory by the Nonprocess Supervisor.

Assembler (ASM). The Assembler is a disk-oriented
symbolic assembly program that translates programs
written in symbolic language into machine language.
Basically, it is a one-for-one type assembly pro
gram. Provision is also included for the user to
easily make use of input-output, conversion, and

arithmetic subroutines that form a part of the sub
routine library.

FORTRAN Compiler (FOR). This is a disk-oriented
program that translates programs written in the
FOR TRAN language into machine language, and
automatically provides for the calling of the appro
priate arithmetic, functional, conversion, and input
output subroutines.

Simulator (SIM). The Simulator provides the user
with the means for testing and debugging programs
without disruption to the on-line process.

Error Programs. This is a collection of error
subroutines called by the TSX Error Alert Control
(EAC) program. EAC is executed when an internal
or TSX detected error occurs. .

Subroutine Library. The Subroutine Library is a
package of IBM TSX and user-written subroutines
resident in the relocatable subroutine area of disk.
IBM TSX subroutines include: Real-time subrou
tines, Arithmetic and Functional subroutines, Con
version subroutines, FORTRAN I/O subroutines,
and DP I/O subroutines.

Skeleton Builder. The Skeleton Builder uses tables
constructed by the System Loader, user-assigned
control records, and user-specified programs and
subroutines to build the System Skeleton. The Sys
tem Skeleton constitutes that portion of the system
that remains in core during the execution of a TSX
on-line system.

Stand-alone Utilities. Five of these optional utility
routines can be loaded and executed only under the
control of TASK (in an OFF-line system) or the
System Director (in an ON-line system). The five
utilities are: TASK Card to Disk, TASK Disk to Card,
TASK Disk Patch, TASK Disk Duplication, and TASK
Disk Loader.

Two self-loading programs are included:
Relocatable Dump to Cards (CRDMP) and Relocatable
Dump (UT7 A).

A dump analysis program (DMPAN) is included.
It consists of two parts, DMPAI and DMPA2.

DMPAI must be loaded for execution by the TASK
absolute loader.

DMPA2 is loaded and executed as a non-process
core load.

System Director. This is the nucleus of the System
Skeleton. It maintains control over the on-line
process application by servicing all interrupts,
handling error conditions, providing timer control

over the process, and process program sequencing.
The System Director is supplied as a source deck.

TASK. T ASK is a "builder" operating system which
controls the system generation process, and provides
for the definition of the TSX system according to user
specifications. It is supplied in source format.

Note that control programs are supplied assem
bled in absolute format; subroutines, in relocatable
format. The System Director and TASK are the
only exceptions: they are supplied as source decks.

In its original form, the IBM Nonprocess System
does not contain those parameters which define and
differentiate a system currently under construction
from another, and is therefore unsatisfactory for
direct use by a customer installation. Variability
of interconnection of input-output devices is, how
ever, permitted at the hardware level, and it is
these variations which need to be communicated to
the I/O subroutines if correct and intended operation
is to be realized.

This communication is accomplished through the
medium of the System Loader which accepts as in
put a statement of the system configuration (including
the correlation between external device and inter
rupt identification, and internal hardware-sensed
codes) and the IBM Nonprocess System master deck.
To ready the IBM Nonprocess System for system
loading, data from assignment cards is integrated
into the master deck.

SYSTEM LOADER OPERATION

The System Loader assumes at system load time
that only one disk drive (logical disk drive 0) is
present on the system. After the IBM Nonprocess
System is loaded, the user has the option of reloca
ting certain disk areas (such as the Core Load Area,
Process Work Storage, etc.) to an auxiliary disk
drive or drives. This and other aspects of disk
organization are discussed in System Design Con
siderations: Disk System Configuration.

Three essential functions are accomplished
during a system load operation. These are:

• Loading the IBM Nonprocess System, including
the subroutine library, to disk

• Building various TSX operating tables

• Editing the disk layout

Loading the IBM Nonprocess System

A typical sequence in which the input programs
are loaded by the System Loader is given in Fig
ure 63.

System Design Considerations 123

cc 1 3 5 7 9 11 13 15 17

/ / s Y S T E M L 0 A D E R

* A S S I G N M E N T

}

Assignment
Cards

* C C E N D A S S I G N M E N T

* L D D S K L E T

* L D D S K D C 0 M

* L D D S K S U p

* L D D S K C L B

* L D D S K / c L S T

* L D D S K D U P

* L D D S K A S M

* L D D S K F 0 R

* L D D S K S I M

* L D D S K E P R G

* C C E N D S Y S T E M

* L D D S K S B R T

/ / * S Y D I R

* C C E N D S B R T

* D E D I T K C Y L

Figure 63. Sequence of Control Cards at System Load Time

Each program in the IBM Nonprocess System is
preceded by an *LDDSK Control card which is read
and analyzed by the System Loader. As a single
sector at a time of a program is accepted, the ap
propriate sector address to which it is written on
disk is determined by the first two words following
a sector break record. A sector break record is a
header record which serves two purposes:

• Enables the System Loader to establish a new
disk sector either at a relative or absolute
sector address

• Indicates if the phase of a program being read
in involves either a principal I/O device or a
principal print device, and, if any, which one.

Each phase within a program contains one sector
break record. For example, since the FORTRAN
Compiler is made up of 27 phases, it has 27 sector
break cards. Sector break records are supplied
in binary format (see IBM 1800 Time-Sharing Execu
tive System, Operating Procedures, Form C26-
3754. A separate discussion of sector break records
is given at the conclusion of this section).

124

As each program is loaded to disk, an entry in
the respective LET /FLET tables is updated accord
ingly. Note that the relocatable subroutine library
may include user-written subroutines provided they
are assembled/compiled by the TSX Assembler/
FORTRAN Compiler. During the System Load
stage, an error program within the System Loader
ensures proper handling of error situations. Fig
ure 64 reflects the layout of the IBM Nonprocess
System on logical disk drive 0 after a system load
operation.

Building the TSX Operating Tables

After the assignment cards have been read, two
tables are built: 1) the Assignment Table, 2) the
I/O Unit Table.

The input to the table-building phase are the
assignment cards which are prepared by the user
and merged with the IBM N onprocess System.

DCOM

MBT-AT

SKSUB

CLB

DUP

ASM

FOR

SIM

LET/FLET

IBM SUBROUTINE
LIBRARY

NONPROCESS
oJ

oJ WORK

STORAGE

MESSAGE BUFFER

ERROR PROGRAMS

CLST

.-
oJ

FILE
PROTECTED

LET
ENTRIES

-- -1 FLET

FILE ENTRIES

__ P~OJ=E~ __ j
Figure 64. Disk Drive 0 after a System Load Operation

The Assignment Table (AT) serves to inform the
Skeleton Builder (at Skeleton build time) which
I/O device or PISW is assigned to a specific ILSW
bit on a specific interrupt level. A I6-bit (lAC)
code entry is furnished for each ILSW bit, which
the Skeleton Builder later replaces by a branch ad
dress to transform it into the Master Branch Table
(MBT). The (AT) table is stored on disk in reveJ7se
sequence; that is, level zero in highest location,
etc. The number of AT entries and I/O interrupts
are counted during the table build process and stored
in sector 1 of logical drive zero.

The I/O Unit Table is constructed from the logi
cal unit number (LUN) and/or its associated inter
rupt assignment code (lAC). The table is 44 words
in length and is built in descending sequence; a
maximum of 19 entries is allowed. The IOU Table
is stored in the last 87 words of sector 2.

Editing the Disk Layout

The disk editing phase is entered after all absolute
(or core image) and relocatable programs have been
stored on disk, and the *DEDIT control, card has
been read.

The editing function initiates the disk and disk
communications area with a standard layout as a
base for TSX nonprocess programs. It uses LET /
FLET and DCOM as communications areas.

In order to fix the boundaries of the various disk
areas, certain information is required:

• Size of core of the Object Machine. This should
be specified on the *DEDIT control card; other
wise, the source core size is construed as object
core size.

• Size of Message Buffer. Note that the only area
definition made by the user before the IBM Non
process System is loaded is the length of the
message buffer. This must be specified on the
*DEDIT control card and should correspond to
NOCYL (TASK equate card) at TASK assembly
time. The calculation of message buffer size
is discussed at some length in the section System
Design Considerations: TASK.

• Size of IBM Nonprocess System areas. These
are made known to the System Loader after the
system is loaded to disk.

Note that the boundaries of the following areas:

Nonprocess Save Area
Process Save Area
Special Save Area

depend on the estimated size of the System Skele
ton (see System Design Considerations: Disk Sys
tem Configuration).

LET/FLET Entries. Fixed entries, derived from
control cards, exist in LET for the following:

Disk Communications Area (DCOM)
Master Branch Table/Assignment Table (MBT / AT)
Skeleton Subroutine Map (SK -SUB)
Nonprocess Supervisor (SUP)
Core Load Builder (CLB)
Disk Utility Program (DUP)
Assembler (ASM)
FORTRAN Compiler (FOR)
Simulator (SIM)

An entry for each subroutine is made while it
is being loaded.

FLET entries, on the other hand, are made
from computed and assumed sizes for the following:

Cold Start
Error Programs
Message Buffer

After these FLET entries have been made, the
. E entry of LET is updated to reflect the boundaries
of the Nonprocess Work Storage for the remaining
disk space available.

DCOM Entries. The first sector address of each
of the following areas are entered in DCOM:

Nonprocess Supervisor (SUP)
Disk Utility Program (DUP)
Assembler (ASM)
FORTRAN Compiler (FOR)
Simulator (SIM)
Location and Fixed Location Equivalence

Tables (LET/FLET)
Nonprocess Work Storage (NPWS)

System Design Considerations 125

FUNCTION OF THE * ASSIGNMENT CARDS

The assignment card serves to assign the various
I/O devices and machine functions to a particular
interrupt level and bit. Assignments are in the
form of interrupt assignment codes (lAC) which are
fixed for each device, and logical unit numbers
(LUN) which are selected by the user for linkage
to user-written FORTRAN programs.

Through the assignment card, the user

1. Assigns lAC codes to the various interrupt
levels and ILSW bits (within the level used
on the sys tem) .

2. Assigns L UN numbers as they are used in
user-written FORTRAN programs, to certain
data processing input-output (DP I/O) devices
by equating them to corresponding lAC codes.

Interrupt assignment codes uniquely define all
process interrupts, I/O devices, console interrupts,
and interval timers. They are fixed and may not be
changed by the user. Their values range from 00
through 63.

Logical unit numbers on the other hand are used
to identify DP I/O devices in user-written FORTRAN
programs, and are specified by the user at system
load time. The LUN's are entered into the I/O
Unit Table to permit communication of FORTRAN
programs with FORTRAN I/O at object time. Once
fixed, they cannot be changed without repeating the
Assignment Table building phase of the System
Loader and Skeleton rebuild under certain conditions,
as well as the recompilation of every user-written
FORTRAN program utilizing DP I/O devices
affected.

A maximum of 19 different LUN's is possible on
a TSX system with a full complement of I/O devices.
LUN values range from 01 through 44. Note that
no L UN may be assigned to more than one particular
device. In a minimum (8K) TSX system, it is ad
visable, for purposes of space conservation, to use
the lowest LUN numbers first, since the System
Loader will build a table providing space for all
LUN's up to the largest number assigned. Keeping
LUN numbers small, therefore, conserves core
storage. The reader should refer to IBM 1800
Time-Sharing Executive System, Operating Pro
cedures, Form C26-37Q4 for details of assignment
card formats and operational procedures.

Examples of the Use of LUN Numbers/lAC Codes.

Consider the following assignment cards:

126

EXAMPLE 1.

~131 1~161 191 11 1/14 11 1, !Ill 12 I ,13 17 1/191111, 1¢ISh 13131,1016/

Level 3 contains 6 ILSW bits. lAC 01 repre
sents an 1816/1053 printer which has a LUN of 41
assigned to it, while lAC 02, representing a 1442
card/read punch, has the same LUN as its lAC;
that is, it requires no LUN entry. The combination
37/01 represents another printer to which a LUN of
01 is assigned by the user; lAC 05 represents a
1627 plotter unit with the same LUN number as its
lAC code (that is, 05). lAC 33 represents a process
interrupt. lAC 08 represents a 2310 disk drive
which has no assignable L UN number.

EXAMPLE 2.

The 1816 keyboard on group 2 has a LUN of 1
while the second magnetic tape drive has a LUN of 9.

EXAMPLE 3.

IISYSTEMLOADER
*ASSIGNMENT
00 02 33,00
01 04 33,04,08,09
02 02 33,14
03 05 33,01,36,37,38
04 03 33,34,35
05 05 33,10,16,11,12
06 02 33,06/03
07 02 33,02
08 03 33,32,05/07
09 01 33
10 01 33
11 01 33
*CCEND ASSIGNMENT

DEVICE LEV

PISW 00
TI MERS 00
PISW 01
DISK-l 01
DISK-2 01
DISK-3 01
PISW 02
MAGT-l 02
PISW 03
TYP1Gl 03
TYP2Gl 03
TYP3Gl 03
TYP4Gl 03
PISW 04
COMP-l 04
COMP-2 04
PISW 05
ADC-l 05
ADC-2 05
DINP 05
DAOP 05
PISW 06
PRNT-l 06
PISW 07
CARD-l 07
PISW 08
CON SOL 08
PLOT-l 08
PISW 09
PISW 10
PISW 11

BIT

00
01
00
01
02
03
00
01
00
01
02
03
04
00
01
02
00
01
02
03
04
00
01
00
01
00
01
02
00
00
00

lAC LUN

33
00
33
04
08
09
33
14 14
33
01 01
36 36
37 37
38 38
33
34
35
33
10
16
11
12
33
06 03
33
02 02
33
32
05 07
33
33
33

YOU DEFINED 000018 liD DEVICES
AND A TOTAL OF 000031 ILSW BITS

This illustrates an example of user assignment
of I/O devices and process interrupts to 12 levels
of interrupts defined in a sample machine configu
ration given in System Design Considerations: Sys
tem Director.

Note that only two I/O devices have been assigned
LUN numbers:

1627 Plotter (lAC
1443 Printer (lAC

05)
06)

07
03

The remaining devices use their lAC codes (a
user option) as LUN's. Note also that process
interrupts and certain DP I/O devices have no
assignable LUN's. The map correlates each
process interrupt or device with its level, bit,
lAC code, and LUN (if any).

Note that IAC/LUN groups may contain either
the lAC code alone or a combination of the lAC
code and the LUN as assigned by the user to that
lAC (and separated by a slash). When the LUN
number is omitted, it means that either no LUN
is defined (that is, not assignable) or that the Sys
tem Loader considers the LUN to be identical to
the lAC code. The user has the option of assigning
the value of the corresponding lAC code to the LUN
for a particular device.

Devices with no Interrupt-entry on any Level

The 1816 Keyboard units on printer groups 1 and 2
and the second Magnetic Tape drive have no separate
defined interrupts, their interrupts being the same
as that of the first 1816/1053 printer and first mag
netic tape drive respectively. However, a LUN has
to be assigned to them whenever they are used in
connection with FORTRAN programs. In these
three special cases, a dummy interrupt level number
99 is defined, followed by a standard format entry
for bit count and IAC code. The dummy level 99
can be omitted should all three possible devices have
a L UN identical to their lAC code.

THE *DEDIT CONTROL CARD

The *DEDIT Control card starts the disk editing
phase: that is, it starts the function of editing the
layout of the disk during which time the System
Loader uses LET/FLET and DCOM as communi
cations areas. Some of the activities carried out

during this phase include (see Editing the Disk
Layout):

1. Initialization of the FLET area on disk
2. Calculation of the source core size
3. Entry of the object core size into the disk

communications area (DCOM)
4. Entry of message buffer size in cylinders

into DCOM
5. File protection of the IBM Nonprocess System

Parameters

Two important parameters must be specified by
the user:

1. Size of core of the object machine
2. Size of message buffer size

The calculation of the core size of the source
machine (that is, the machine on which the IBM
Nonprocess System is loaded) is achieved by
TASK and the result is stored in the Fixed Area
in core. The System Loader then places this result
in DCOM. The user may exercise the option to de
fine a different core size for the object machine
(that is, the machine on which the TSX system is
executed). This will also be stored in DCOM. If
the object core size is not specified'on the *DEDIT
card, the source core size will serve as object
core size.

As noted earlier, the only area definition made
by the user before the IBM Nonprocess System is
loaded is the definition of the length of the disk
message buffer. This is specified in cylinders in
the *DEDIT card and must equal NOCYL (TASK
equate card). The calculation of the size of the
message buffer is discussed in detail in System
Design Considerations: TASK.

An example of the use of the *DEDIT card is
given below:

*DEDIT 16K 011CYL

THE SOURCE CORE-SIZE IS 016384
THE OBJECT CORE-SIZE IS 016384

The *DEDIT control card is the last card recog
nized by the System Loader.

System Design Considerations 127

Reentering the Disk Edit Phase

The disk editing function permits a reentry by the
user after the IBM Nonprocess System is loaded
and control returned to· SYSTEM TASK. This may
be needed for:

1. Rebuilding the FLET table.
2. Changing the Message Buffer Size.
3. Changing Object Core Size.
4. Changing the assignment of LUN numbers, such

as, for example, if an error was made in the
user-assignment of an lAC or a LUN.

SUMMARY OF ASSIGNMENT CARD RESTRICTIONS

Assignment designation is governed by the following
rules:

1. A separate assignment card is used for each
interrupt level. Assignment cards may be
in any order of interrupt level number.

2. The number of IAC/LUN codes specified per
level must be equal to the number of interrupt
level status word (ILSW) bits used.

3. Only the lAC code 33 (for process interrupts)
may be used more than once. In the case of
LUN numbers, the same LUN cannot be assigned
to more than one device, nor can a device have
more than one LUN assigned to it.

4. For lAC codes 42, 43, and 44, a dummy inter
rupt level entry of 99 must be specified. These
refer to the 1816 keyboards on printer groups
1 and 2 and the second magnetic tape drive.

5. For RPQ devices, lAC codes 20 - 31 and 45 -
63 may be used. In any TSX system, lAC
codes 00, 02, 04, and 32 must be used; 01 or
06 must also be used.

6. If more than one group of process interrupts
are assigned to a particular level, the second
group must be treated as an RPQ device, given
an RPQ lAC code and a user-written ISS sub
routine to accommodate this device. The sub
routine will indicate to the System Loader which
lAC code it responds to; it will have to be core
resident at all times.

SECTOR BREAK RECORDS FOR ABSOLUTE
PROGRAMS

Absolute programs are generated by an absolute 1800
assembly and are loaded by the System loader, one

128

record at a time (taking into account all data breaks
and origin changes), to disk in true Core-Image
Format. That is, each program resides on disk
in exactly the same format in which it will reside
in core storage. Core-Image Format is also
called Data Format because a program thus stored
on disk can be transferred to core by a single call
(to DISKN) without any data manipulation. All IBM
system programs (e. g., Assembler, FORTRAN
Compiler, Simulator) are stored in this format.

However, it is from a header or sector break
record that the absolute loader portion of the Sys
tem Loader determines the sector address at which
succeeding data is to be stored. The sector within
which the data is to be stored is first read into
core, one word of data at a time, until that sector
in core is completed. When full, the 320-word
sector buffer is written to disk and the next sector
break record is read to locate the next sector to
be written.

Four types of Sector Break Records are used by
the System Loader:

Type 1
Type 2
Type 9
Type E

Note that Type F cards are "trailer" or "trans
fer" cards which occur at the end of a binary deck.
The format of each card is in the IBM 1800 Time
Sharing Executive System, Operating Procedures,
Form. C26-3754.

From each type of sector break record, the
System Loader interprets the sector address as
follows:

Type 1: As an absolute address.
Type 2: As a displacement from the last sector

loaded.
Type 9: As a displacement from the last abso

lutely defined sector address (that is,
defined by a Type 1 sector break record).

Type E is a special sector break record type
used only by the Simulator subroutine package. It
is treated by the System Loader like a Type 1, ex
cept that it causes data to be streamed to the disk
contiguously, ignoring data breaks brought about
by BSS' s; or by an ORG to the same location as
the data card immediately following the Type E
record.

The Type 1 sector break record is generated by
an ABS statement in an absolute assembly; Type 9

or Type E records must be inserted manually in
the object deck by the user. Type 2 sector break
records are generated during 1) assembly of
mainline-type programs without an ABS statement,
and 2) FORTRAN compilation of mainline pro
grams.

The sector address on disk to which the System
Loader begins writing the program is defined in the
second word of the program following the ABS and
first ORG statements. The first word may contain
any value; no word count is required. An example
is given below:

The first DC is at location /0538, the second
at /0539. The System Loader will start to load at
sector /0100. The first word of the sector is at
/053A -- the content of /0538 is not loaded to disk
since it does not constitute an integral part of the
program. If this program was later called from
the disk, the word count and sector address would
be specified by the AREA (portion) of the disk call
required at /0538 for proper execution.

If the first two words. of the program are followed
by another ORG statement, as shown below, the
program will be placed in a location on disk reflec
ting a displacement from the address defined by the
first ORG.

SAMPLE CODING FORM

I I I I I , , , I I I I I I I I I I I I I I I·' , I I I I ' I I ' , I I I I I I I 1 I I 1 I
II I I I I , ! , , I I I I 1 I I I I I I 1 I I 1 I I ,., I I I I I I I I I 1 I I I I 1 1 I 1 1 I 1 I

The program will be loaded starting at position
15 of sector /0100, leaving positions 0 through 14
at whatever value they previously had on disk. The
displacement D could have any value -- thus skip
ping over several sectors.

Note, however, that D cannot have a negative
value. This is a necessary requirement of the TSX
system which is designed such that it is impossible
to inadvertently destroy a program residing on pre
ceding sectors by back-origining. Thus, the lowest
origin in the program is required to be immediately
after the ABS statement. As shown below, this
constitutes, in no way, a system limitation. Note
that normal back origins, as they occur in every
program, are perfectly legal.

System Design Considerations 129

The program will be correctly located on disk
reflecting exactly the layout in core.

The following example illustrates an ERROR
STOP (System Loader error message - L05)
situation.

This is clearly illegal because whatever program
that was residing on sector /OOFF would be de
stroyed.

The final example below illustrates Type E sector
break record functioning:

SAMPLE CODING FORM

130

If this sequence is preceded by a Type 1 or
Type 9 sector break: record, the data up to the
second ORG would not appear on disk, but would be
overlaid by the second sequence. If, however, the
sequence is preceded by a Type E card, all the
data would appear on disk, and the data following
the second ORG statement would immediately follow
the first with no sector break being forced.

SYSTEM DIRECTOR

When the IBM Nonprocess System is loaded, assign
ment cards supply the System Loader with data which
relate to the interrupt level allocation of I/O units,
process interrupts, interval timers, etc. That is,
they provide a statement of the system and interrupt
configurations.

At System Director assembly time, the System
Director must also be tailored to meet the exact
requirements set by the user. These requirements
include:

1. Definition of the size of the System Director
2. Definition of functions required
3. The allocation of internal and external inter

rupt levels
4. The number of CALL Count routines to be

included by the user

Since the System Director must be assembled and
stored on disk before the TSX System Skeleton can
be built, some means must be employed to make the
System Director aware of these requirements. To
achieve this, a set of System Director EQUATE
cards (provided pre-punched by IBM) is prepared
by the user and physically placed in the System
Director source deck.. The resulting integrated
deck is then assembled under the control of an off
line nonprocess monitor. Figure 65 depicts the
physical I ela.tionship of the EQUATE cards to the
System Director Source Deck.

Figure 66 illustrates an example of a complete
set of System Director EQUATE cards. In terms
of definition requirements, the set can be broken
down into convenient subsets as follows:

/ / II END OF ALL JOBS

Blank Cards
. ~ (IIJO.

(2 inches) V 'STORE SYDIR

f IIDUP f-'
(END

I-'

/ /~~
(System Director / SOURCE Deck

'PRINT SYMBOL TABLE

I 'PUNCH
r-----

i'SYSTEM SYMBOL TABLE

('LIST

('OVERFLOW SECTORS 32 r-

(II ASM SYDIR -
(I I JOB

(. END' f-'

/ / f'"
I-'

(~ystem Director
EQUATE Cards -'

(ABS I
~

*SAVE SYMBOL TABLE

(*LlST

~

(II ASM SDEQU
--'

-'

II JOB

I-'

Figure 65. Slystem Director Source Deck and EQUATE Cards

r--

a) Size of System Director VCORE, NUQUE;
also a function of b),
c), and d)

b) Functions required ITCUS, TBASE,
(Interval Timer Control, CBASE, TIME1-2,
Time-Sharing, Opera- TISHA; TIMES;
tions Monitor, and OPMOI and DUMP1
Error Alert Control
(EAC) DUMP)

c) Allocation of internal NULEV, USEOO-23,
and external interrupt NBOO-23, NILOO-23,
levels NLWS1-2, and

ICLL1-2

d) Number of CALL Count NITP1-2
routines required by user

SIZE OF SYSTEM DIRE CTOR

Since the System Director is a component part of the
System Skeleton, it must be core-resident at all
times in an on-line system in order to respond to
the real-time world. Its required core size will,
however, vary according to the user I s machine con
figuration, process requirements, and other options.

For example, if the user specifies when the sys
tem is assembled that time-sharing is to be used,
the Time-Sharing Control (TSC) program will be
included in core. If he has no use for time-sharing,
TSC may be eliminated.

Similarly, if the user specifies that interval
timers are not used, the Interval Timer Control
(ITC) program as well as TSC may be eliminated.
It is a rule, however, that ITC must be in core if
time-sharing is utilized. The Program Sequence
Control (PSC), Error Alert Control (EAC), and
Master Interrupt Control (MIC) programs must
always be used, but each is variable in size accord
ing to the number of interrupt levels elected.

In addition, a work area is associated with each
interrupt level; for example, if the user elects 12
levels of interrupts, 12 work areas are required;
if he elects 24 levels, the System Director will re
quire 24 work areas. Three other additional work
areas are included: one each for Error, Mainline,
and N onprocess.

System Design Considerations 13(

NULEV EQU
USEOO EQU
USE01 EQU
USE02 EQU
USE03 EQU
USE04 EQU
USE05 EQU
USE06 EQU
USE07 EQU
USE08 EQU
USE09 EQU
USE10 EQU
USE11 EQU
USE12 EQU
USEl3 EQU
USE1'- EQU
USE15 EQU
USE16 EQU
USEI7 EQU
USEI8 EQU
USEI9 EQU
USE20 EQU
USE21 EQU
USE22 EQU
USE23 EQU
NBOO EQU
NB01 EQU
NB02 EQU
NB03 EQU
NB04 EQU
NB05 EQU
NB06 EQU
NB07 EQU
NB08 EQU
NB09 EQU
NBIO EQU
NB11 EQU
NBI2 EQU
NBI3 EQU
NBI'- EQU
NBI5 EQU
NBI6 EQU
NB17 EQU
NBl8 EQU
NBl9 EQU
NB20 EQU
NB21 EQU
NB22 EQU
NB23 EQU
NILOO EQU
NIL01 EQU
NIL02 EQU
NIL03 EQU
NIL04 EQU
NIL05 EQU
NIL06 EQU
NIL07 EQU
NIL08 EQU
NIL09 EQU
NILIO EQU
NILll EQU
NILI2 EQU
NILI3 EQU
NILI4 EQU
NILI5 EQU
NILI6 EQU
NIL17 EQU
NILI8 EQU
NIL19 EQU
NIL20 EQU
NIL21 EQU
NIL22 EQU
NIL23 EQU
NLIllSI EQU
NLIIIS2 EQU
NITPI EQU
NITP2 EQU
ICLLI EQU
ICLL2 EQU
ITCUS EQU
TBASE EQU
CBASE EQU
TIME1 EQU
TIME2 EQU
NORSP EQU
VCORE EQU
NUQUE EQU
DUMP1 EQU
OPMOI EQU
TISHA EQU
TIMES EQU

12

I
o
o
o
o
o
o
o
o
o
o
o
o
2
4

2
3
5
5
2
2
3

o
o
o
o
o
o
o
o
o
o
o
o

5
9
13
I
5
9
13
I
16
16
16
o
o
o
o
o
o
o
o
o
o
o
o
12
o
16
8
/007F
/FFFF
1
-500
I
/0000
/07DO
1
10000
50
I

I
32767
I

NUMBER OF LEVELS USED
I-LEVEL USED O-NOT USED

O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED
O-NOT USED

SYD00060
SYD00070
SYD00080
SYD00090
Syb00100
SYDOOIIO
SYDOOl20
SYDOOl30
SYDOOl40
SYDOOl50

I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED
I-LEVEL USED

O-NOT USED SYDOOl60
O-NOT USED SYDOOl70
O-NOT USED SYDOOl80
O-NOT USED SYDOOl90
O-NOT USED SYD00200
O-NOT USED SYD00210
O-NOT USED SYD00220
O-NOT USED SYD00230
O-NOT USED SYD00240
O-NOT USED SYD00250
O-NOT USED SYD00260
O-NOT USED SYD00270
O-NOT USED SYD00280
O-NOT USED SYD00290

I-LEVEL USED O-NOT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
l+HIGHEST ILSW BIT
l+HIGHEST ILSW BIT
I+HIGHEST ILSW BIT

USED
USED
USED

I+HIGHEST ILSW BIT = USED
I+HIGHEST ILSIII BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSW BIT USED
I+HIGHEST ILSIII BIT
I+HIGHEST ILSW BIT
I+HIGHEST ILSIII BIT
l+HIGHEST ILSIII BIT
I+HIGHEST ILSW BIT
I+HIGHEST ILSW BIT
I+HIGHEST ILSW BIT
I+HIGHEST ILSW BIT

USED
USED
USED
USED
USED
USED
USED
USED

l+HIGHEST ILSIII BIT = USED
l+HIGHEST ILSW BIT USED
l+HIGHEST ILSW BIT USED
I+HIGHEST ILSIII BIT
l+HIGHEST ILSIII BIT
l+HIGHEST ILSW SIT
l+HIGHEST ILSW BIT
l+HIGHEST PISW BIT
l+HIGHEST PISIII BIT
l+HIGHEST PISIII BIT
l+HIGHEST PISIII BIT

USED
USED
USED
USED
USED
USED
USED
USED

l+HIGHEST PISIII BIT USED
l+HIGHEST PISIII BIT USED
l+HIGHEST PISIII BIT USED
I+HIGHEST PISIII BIT USED
l+HIGHEST PISIII BIT USED
l+HIGHEST PISW BIT USED
I+HIGHEST PISW BIT USED
l+HIGHEST PISW BIT USED
l+HIGHEST PISW BIT USED
l+HIGHEST PISW BIT USED
l+HIGHEST PISW BIT USED
l+HIGHEST PISW BIT = USED
l+HIGHEST PISW BIT USED
l+HIGHEST PISW BIT
l+HIGHEST PISW BIT
l+HIGHEST PISW BIT
l+HIGHEST PISW BIT
l+HIGHEST PISW BIT
l+HIGHEST PISW BIT
l+HIGHEST PISW BIT

USED
USED
USED
USED
USED
USED
USED

SYD00300
SYD00310
SYD00320
SYD00330
SYD00340
SYD00350
SYD00360
SYD00370
SYD00380
SYD00390
SYD00400
SYD00410
SYD00420
SYD00430
SYD00440
SYD00450
SYD00460
SYD00470
SYD00480
SYD00490
SYD00500
SYD00510
SYD00520
SYD00530
SYD00540
SYD00550
SYD00560
SYD00570
SYD00580
SYD00590
SYD00600
SYD00610
SYD00620
SYD00630
SYD00640
SYD00650
SYD00660
SYD00670
SYD00680
SYD00690
SYD00700
SYD00710
SYD00720
SYD00730
SYD00740
SYD00750
SYD00760
SYD00770
SYD00780

NO. PROG. INT. GROUP 0-13 SYD00790
NO. PROG. INT. GROUP 1'--23 SYD00800
NO. COUNT SUBRS. GROUP 1 SYD00810
NO. COUNT SUBRS. GROUP 2 SYD00820
INT. CORELOAD LEVEL MASK SYD00830
INT. CORELOAD LEVEL MASK SYD00840
l-ITC USED O-NOT USED SYD00850
CLOCK BASE=MILSEC*TBASE SYD00860
COUNT BASE=MILS*TBASE*CBASESYD00870
TIMER C MILS*TBASE SYD00660
TIMER C MILS*TBASE SYD00890
NO-RESPONSE TIME BASE SYD00895
ADDR. 1ST WORD VARIABLE CORSYD00900
NUMBER OF QUEUE ENTRIES SYD00910
I-EAC DUMP USED O-NOT USED SYD00920
l-ITC RESETS O-USER RESETS SYD00930
TIME-SHARING PERIOD SYD00940
I-TSC USED O-TSC NOT USED SYD00950

Figure 66. Example of a Set of System Director Equate Cards

132

ENTRY 1 {

PRIORITY

WORD COUNT

SECTOR ADDRESS

PRIORITY

WORD COUNT

SECTOR ADDRESS
} ENTRY 2

v 1"'1..1

fL...---_f
Figure 67. Mainline Core Load Queue Table

Mainline Core Load Queue Table

Resident within MIC is a Queue Table made up of
three-word entries used for the stacking of main
line core loads requested for execution, as shown
in Figure 67.

Each time the QUEUE routine is called, an entry
is made in the queue if there is not a like entry of
equal priority and sector address already in the
queue. Entries are removed from the Queue Table
by the subroutines UNQ and VIAQ (see Program
Scheduling) .

The size of this table -- that is, its maximum
number of entries -- is specified by the user on
the NUQUE equate card. It should be large enough
so that the Queue Table shall not overflow under
normal operating conditions.

VCORE determines the starting address, which
must always be even, of the variable core area.
The appropriate value of VCORE can be arrived at
by calculating the size of the System Director,
Skeleton I/O and the user-written subroutines.

Calculating System Director Core Size

As discussed above, core size is a function of
several parameters which are in turn determined
by the number of features the user elects to include
in his TSX system. The computation of this value
in 16-bit words can be Simplified by using certain
equate card entries as multiplication factors as
shown below, where System Director Core Size
is given as a summation of the following (these
figures may change with modifications and versions
of the system):

1116

+ 220

+ 95

+ 109

+ 3

+ 2

+ 2

+ 2

+ 2

+ 2

+ 334

+ 66
+ 6

+ 8

(constant for MIC, PSC, and EAC and
their work areas)
(if ITC is included: that is, when
ITCUS = 1)
(if EAC dump is required: that is, when
DUMP1 = 1)
multiplied by the number of interrupt
levels (that is 109 x NULEV)
multiplied by the number of Queue
entries (that is, 3 x NUQUE)
multiplied by the number of process
interrupts (that is, 2 x sum of NILOO
through NIL23)
multiplied by the number of programmed
interrupts on levels 0 through 13 (that
is, 2 x NLWS1)
multiplied by the number of programmed
interrupts on levels 14 through 23 (that
is, 2 x NLWS2)
multiplied by the number of count sub
routines 0-15 (that is, 2 x NIPT1)
multiplied by the number of count sub
routines 16-31 (that is 2 x NIPT2)
(if TSC is included: that is, when
TIMES = 1)
(if more than 14 levels are used)
(if more than 14 levels are used and
ITC is included)
(if more than 14 levels and TSC is
included)

From the configuration set out in Figures 66
and 68, a typical calculation is deduced below.

System Director Core Size 1116
+ 220
+ 95

(109 x 12) + 1308
(50 x 3) + 150
(2 x 57) + 114
(2 x 12) + 24
(2 x 0) + 0
(2 x 16) + 32
(2 x 8) + 16
TSC + 334

3409 words

DEFINITION OF FUNCTIONS REQUIRED

Interval Timer Control

When the ITCUS label is equated to 1, the ITC pro
gram is included within the System Director and

serves to set up user-specified times and correct
linkages to the user's subprograms. Once this is
done, ITC will control the timers until one or more
specified intervals have elapsed, at which point
control is transferred to a user's subprogram.

Specifications for any timer may be set or
changed in relation to the timer base at any time
during an on-line process operation by the calling
sequence.

It was mentioned in Functions of Executive
Programs: The System Director, that a program
med real-time clock, a time-sharing control timer,
and nine programmed interval timers are controlled
(that is, updated) by the third machine interval timer
C. It is, however, the user's responsibility at
assembly time to establish:

1. A primary time base (TBASE) for the real
time clock; that is, how often the clock should
be updated.

2. A secondary time base (CBASE) for the pro
grammed timers and time-sharing control
timer.

Primary Time Base

This is that interval of time used to update the real
time clock, and is called the Interrupt Time Base.
It is the product of the wired-in hardware time base
and a number chosen by the user (TBASE) at assem
bly time, expressed as follows:

INTERRUPT TIME BASE = (WIRED-IN HARD
WARE TIME BASE) X (USED-ASSIGNED
NUMBER)

For example, if the machine interval timer C is
wired for a four millisecond time base and the real
time clock is to be updated every two seconds, the
user-assigned number can be calculated to be 500.
TBASE is thus equated to minus (-) 500. A negative
number is used because the interval timer is incre
mented in the positive direction, causing an inter
rupt when zero is reached. The primary time base
for the real-time clock in this example (that is,
how often it: is to be updated) is thus two seconds.

To enable ITC to keep track of elapsed time
since the last or previous interrupt occurred, a
double-word TIME1 and TIME2 is equated to the
hexadecimal equivalent of the interrupt time base.
This value is added to the real-time clock each time
an interval timer C interrupt occurs.

System Design Considerations 133

In the above example, TIME1 and TIME2 are
equated to /0000 and /07DO. The label TIME1
is always /0000 unless the calculated interrupt time
base exceeds 65,535 milliseconds.

The NORSP equate card is used to specify the
time period that elapses between no -response checks
of the 1053 and 1443 printers. NORSP must be a
positive decimal integer, ranging between 1 and 127,
and is the number of timer C interrupts that occur
before the no-response check is made. For example,
if timer C is wired to a four millisecond time base,
TBASE is equated to -500, and NORSP is equated to
one, two seconds will elapse between no-response
checks. NORSP should be adjusted to give a time
value between two and three seconds.

Secondary Time Base

The programmed timer base for the nine pro
grammed timers and time-sharing control timer
is a user-assigned multiple of the interrupt time
base established for the real-time clock, and ex
pressed as follows:

PROGRAMMED TIMER BASE = (INTERRUPT
TIME BASE) X (USER-ASSIGNED NUMBER)

For example, if the interrupt time base is fixed
at two seconds, and the user wants the programmed
timers to operate at 30-second intervals, the label
CBASE is equated to 15.

This base is used speCifically for the nine pro
grammed timers and the time-sharing control timer,
and is the smallest interval of time that can be
specified for the programmed timers or for time
sharing operations.

Time-Sharing

The TIMES label specifies at assembly time whether
or not time-sharing is to be used.

It was noted in the preceding section that the pro
grammed timer base is the smallest interval of time
that can be specified for programmed timing or
time-sharing operations. When time-sharing is
used, a user-assigned multiple of the programmed
timer base is established.

For example, if the programmed timer base is
fixed at 30 seconds and the user desires time-sharing
operations of two minutes' duration whenever the
queue is empty, the label TISHA is equated to 4.
Thus, the time-shared operation is terminated
whenever the time interval specified (in this case
two minutes) has elapsed. TISHA is identical to
the parameter I in the requesting CALL SHARE
statement in the mainline program. If the user

134

wishes to remain in time-sharing until some core
load name is put into the queue by an interrupt
program which uses CALL ENDTS, then TISHA may
be specified for the longest possible numerical value,
that is, 32767. The reason for this is to keep the
time-sharing function from exchanging core unneces
sarily at frequent intervals to check the Queue Table
when no entries have been put in the queue. This is
the recommended procedure.

Operations Monitor

The user may select an option in ITC to reset the
Operations Monitor (a hardware feature) during
nonprocess operations. He does this by equating
the OPMOI card to 1 or 0: a 1 indicates that the
monitor is to be reset by ITC; a 0 indicates that
the monitor is to be reset by user program control.
It should be noted that the N onprocess Monitor does
not incorporate the Operations Monitor reset instruc
tion. ITC will only execute the reset if time-sharing
is in progress.

Error Alert Control (EAC) Dump

The label DUMP1 gives the user the option of in
cluding the dump routine (dump core to disk) for
subsequent user error analysis. The functions of
EAC are explained in another section of this manual
(see Functions of Executive Programs: The System
Director).

ALLOCATION OF INTERNAL AND EXTERNAL
INTERRUPT LEVELS

Interrupts can be generated by events which originate
in the plant or the environment that is being con
trolled, or by conditions internal to the computer
hardware itself. These may be classified as exter
nal (or process) interrupts and internal interrupts.

Internal interrupts may be caused by an error
condition being detected, an input/output operation
being completed, an interval timer interrupt, a
computer operator setting a switch, etc.

External or process interrupts may be caused
by the closing of an electrical contact, a rise in
temperature above a set limit, etc.

Since the number of internal and external inter
rupts required by a part'icular system is decided
by the user, the System Director must be provided
with a labelled assignment of each interrupt used.

Interrupt Level s

A level of interrupt represents a degree of removal
from the normal computer mode. The multi
interrupt feature of the IBM 1800 Data Acquisition
and Control System is composed of a maximum of
24 levels, each level containing 16 request positions,
thus making available 384 interrupt lines to signal
the computer to halt the program being executed and
branch to unique hardware memory locations.

The number of interrupt levels (NULEV) planned
by a user is assigned contiguously to the 24 available
levels, starting from zero to 23. If, for example,
16 interrupt levels are elected by the user, levels
0-15 are used. The numerical value to which the
label NULEV is equated is always 1 plus the highest
numbered interrupt level used.

Priority assignments are necessary in order
that an order of precedence (that is, a level) can
be established among the several interrupt con
ditions. In configurating a multi-interrupt system,
the user should remember that certain I/O devices
such as the disk, magnetic tape, and timers re
quire high response capabilities. Other I/O devices
such as the list printer, typewriter, and card-reader
do not demand such a critical response.

In general, process interrupts (PISW's) are
assigned lower priority levels than data processing
and process I/O devices, except for process inter
rupts that do not require I/O and demand immediate
response or initiate extended operations at lower
levels through the programmed interrupt feature.
The reason process interrupts are assigned lower
priorities than I/O devices is that user-written sub
routines for the servicing of these process interrupts
can then utilize all I/O devices. I/O devices must
receive an operations complete interrupt, which
cannot occur if it is located on a lower priority
level than the level from which the I/O device is
called. Exceptions to this rule are the disk and the
1053 Printer where the I/O routine is so written
that it will remain within itself until the operation
is complete. These exceptions were allowed due
to EAC requirements, but should not, in general, be
considered as acceptable practice.

The amount of computer time required to service
a particular interrupt can influence its priority
assignment. If, for example, its servicing is rela
tively short, an interrupt may be accorded higher
priority than one which entails more elaborate
servicing procedures.

Those basic I/O devices that demand fast response
include the disk, magnetic tape, and timers. Be
cause the 1053 Printer uses the disk when it buffers
messages, the analog interrupts should be at a higher
level than the assignment of the 1053 Printers due to
a possible loss of comparator interrupts. It should

be pointed out that although fast response is not
normally required by the 1053 Printer, this device
should be assigned to a high enough interrupt level
to allow it to run continuously at a maximum rate.
Thus, typewriter messages will be serviced without
overloading the message buffer.

It is recommended that the Analog Input Com
parator feature be assigned to a higher priority
level than the Analog Input. The remaining I/O
devices do not possess any special characteristics
for assignment at a high level, except that they
must be at a level higher than the highest level
from which they are called, and at a higher level
than any assigned interrupt core load (see equate
card ICLLl, Figure 66).

Figure 68 (in conjunction with Figure 66) illus
trates how a multi-interrupt system configuration
might look in the IBM 1800 Data Acquisition and
Control System for a typical process control appli
cation. The example serves to convey some of the
principles noted above: it should not be taken as a
model.

The machine configuration chosen for this
example includes:

1 IBM 1802 Processor - Controller
16K words of core storage

1 IBM 2310 Disk Storage Unit with three
disk drives

1 IBM 2401 Magnetic Tape Unit
4 IBM 1053 Printer Units
1 IBM 1443 Printer Unit
1 IBM 1442 Card Read Punch Unit
1 IBM 1627 Plotter Unit
1 Analog Input Basic with Comparator
1 Analog Input Extended with Comparator
1 Digital Input
1 Digital and Analog Output

12 Interrupt levels

Other considerations are:

57 Process Interrupts (spread over 12 levels)
24 Count Servicing Subroutines
12 Programmed Interrupts
3 Timers
Queue Table size = 50

A group of process interrupts is assigned to
each of 12 levels, 0-11. Note that process inter
rupts are normally factory wired to terminals in

System Design Considerations 1 3S

INTERRUPT LEVEL STATUS WORD

o 3 4 5 6 7 8 9 10 11 12 13 14 15

o PISW TIMERS
1 A,B,C

PISW 2310/ 2310/ 2310/
2 1 2 3

2
PISW 2401

3

3
PISW

AIBC AlEC
4

4 PISW AlB AlE 01 DAO
5

5
PISW 1053/ 1053/ 1053/ 1053/

6 1 2 3 4

6
PISW 1443

7

7
PISW 1442

8

8
PISW C.I. 1627

9

9 PISW
10

10 PISW
11

11
PISW

12

INTERRUPT 12
LEVEL

13

14

15

16

NOTE
17 1. Interval Timers must be on a higher interrupt level

than the 2310, 1816/1053, 1442 and 1443 devices.

18 2. The 1816/1053s must be on a lower interrupt level
than the 231 Os.

19

20

21

22

23

Figure 68. Example of Interrupt Level Status Word Assignment

136

groups of 4 to corresponding bit positions of one or
more PISW's. In this example, only 1 process
interrupt is utilized on each of the levels 0-8, and
16 process interrupts on each of levels 9-11, giving
a total of 57 process interrupts.

The three timers A, B, and C are assigned to
the highest interrupt level (level 0) in order to
give them high response. They are thus placed to
interrupt any event or device in progress. With the
timers at this level, the timer servicing routines
should not be calling any I/O device, but should
make use of the programmed interrupt or queueing
a mainline technique for servicing requirements.
The reason for this is that it is not possible to call
an I/O device from a level of higher priority than
the I/O device being called (as already explained).
In addition, it is not desirable to remain on the
timer level for a period of time long enough to
cause the system to miss a timed-out interval of
higher priority than the one being processed.

Disk drives are assigned the next highest level
(level 1) in order that the sector-gap can be made;
that is, the disks can then operate at their maximum
speed without incurring the penalty of a full revolu
tion of disk time (40 ms.). The magnetic tape unit
is placed at the next level (level 2) also for the same
ability to service it at full capacity.

The Analog Input Basic with Comparator (AlB C)
and Analog Input Extended with Comparator (AlEC)
are recommended to be assigned a higher level
(level 3) than their corresponding Analog Input Basic
(AlB) and Analog Input Extended (AlE) devices
(level 4). They must always be assigned to a higher
level than the 1053 Printers.

The 1053 Printers are placed on level 5 because
they are continually active, but do not require
much execution time. Thus, assigning them above
the process interrupts give these devices the ability
to print while user's core loads are in execution.

The remaining devices present no real demand
problems, and are assigned to lower levels as shown
in Figure 68.

Summary of Interrupt Assignment Restrictions

For proper operation of the TSX system, the follow
ing interrupt assignment restrictions must be
observed:

1. All I/O device interrupts must be assigned
to a higher priority interrupt level than external
interrupts, unless the external interrupt is
serviced by a skeleton interrupt routine.

2. If external interrupts and I/O devices are both
assigned to the same level, the external inter
rupts must be serviced by skeleton interrupt
routines.

3. A skeleton interrupt routine cannot use an I/O
device whose interrupt is assigned to the same
or a lower priority level, except for the disk,
1053 Printer, and 1443 Printer; however, the
1053 test function cannot be used.

4. ILSW bits must be assigned contiguously, be
ginning with position O.

Interrupts Per Level

It has been noted that a level of interrupt repre
sents an order of precedence or priority, and that
each level contains a total of 16 request positions.

When one or more lines are connected to anyone
priority level, it is necessary by programming
means to identify the specific condition which caused
that interrupt level to request service. To do this,
a 16-bit word called the Interrupt Level Status Word
(ILSW) is used. The programmer does not specify
the ILSW in his instructions; this specification is
fixed. That is, one ILSW is hardware assigned to
each of 24 interrupt levels. Through the ILSW,
the operational status or condition of an I/O device
or process is revealed to the executive system.

The choice of interrupting I/O devices and/or
process conditions on a specific interrupt level is
specified by the user on the NBOO-23 equate cards.
If, for example, one process interrupt and four I/O
devices are assigned contiguously (starting from
bit zero) to level 10, the user equates NB10 to 5.
The NB label is always equated to a numerical value
equal to the rightmost bit (on the ILSW) plus 1 for
a level. If no devices or process interrupts are
assigned to a level, the label is equated to zero.
Note that the NBOO-23 equate cards must reflect
exactly the number of bits on the System Loader
assignment cards. Also, those levels that use
programmed interrupts only do not contain ILSW
bits; the NB cards for these levels are, therefore,
equated to zero.

Level Work Areas

Whenever an interrupt caused by an I/O, a process
interrupt, or a programmed interrupt occurs, an
indirect branch takes place to a fixed word in core.
This word contains the address of a communications
area known as a Level Work Area. There is one

System Design Considerations 137

work area per level of interrupt specified by the
user, and only those levels configurated by the user
will be assembled and will be available when the
System Skeleton is built. In addition, three addition
al work areas are always assigned to the system:
one each for Nonprocess Core Loads (if time-sharing
is used), Mainline (that is, Process) Core Loads,
and Errors (Trace and C. I. Interrupt). If time
sharing is not used, the Nonprocess work area is
origined out at System Director assembly time.

Briefly, the level work area serves as a means
of communications whenever the computer transfers
controJ. from one level of interrupt to another. The
address of the interrupted level is then saved and
the address of the work area for the current level
set up. When the level in progress has completed
its processing, the address of the interrupted level
is restored. This method of coding automatically
saves all reentrant coded subroutine work
areas.

Figure 69 illustrates the layout of a level work
area which is 104 words in length, but this may be
increased or decreased by the user (at System
Director assembly time), depending on the functions
related to each level of interrupt. Note that for
proper testing of errors and time-sharing, the MIC
work area portion should not be deleted.

-t ~ ~ ~~
~J.! '-J"?- ~ o~~O

r
I
I
I
I
I
I

I.
I
l
I
I
I

MIC WORK AREA
p«.' ~ ~~'? «.~

--r--r-il -r-
I : I II
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I

I I I I I
40 57

I
I
I
I
I I

l..- FIXED SEtTION --L-

Figure 69. Layout of a Level Work Area

138

Work levels are divided into two major sections:
a fixed section and an overlay section. Each word
in the fixed section is assigned to one specific pro
gram and may be core protected. The manner in
which it is assigned is shown in Table II.

Words in the overlay section may be assigned
to several different programs providing these pro
grams do not call one another. This section cannot
be core protected.

The overlay section begins with the 58th word of
a level work area (see Table 12). If this section is
used, the user is advised to reference this "start"
position with a label, thus eliminating extensive
program modification in the event the fixed section
has increased or decreased. If a modification is
required, the first word of the overlay section (the
58th word) will always be an even core location to
facilitate double load and store instructions, etc.
Also, programs using the overlay section should
always commence at the beginning, except those
programs that are called by a program already
using this area. For example, DP I/O programs
use the first 25 words of the overlay section; there
fore any program that requires storage locations in
this section and also calls a DP I/O routine cannot
use the first 25 words. The later program will thus
start at the 26th or 27th word of the section.

SUBROUTINE WORK AREA

OVERLAY SECTION

I
I
I
I
I
I
I

I
99

I
I
I
f

I
--J

Table 11. Fixed Section of a Level Work Area

WORD
POSITION

-4

-3

-2

-1

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

PROTECTION
STATUS

N

N

N

N

Y

Y

Y

Y

Y

Y

N

Y

N

Y

Y

Y

Y

N

N

N

N

N

N

N

N

CONTENTS

Save interrupt exit

Not used

Busy indicator address for UF 10: indicates
that unformatted I/O buffer has been saved
to disk and must'be restored by MIC.

UF 10 restore indicator; non-zero if a
restore is needed.

Address of word 5 of the IClT entry for this
level.

Address of word 1 {in-core-with-skeleton
indicator word} of the ICl T entry for this
level.

Address of word 2 {in-core-with-mainline
indicator word} of the IClT entry for this
level.

Address of word 3 (record indicator word) of
the IClT entry for this level.

Address of word 4 (recorded indicator word)
of the ICl T entry for this level.

Address of word 0 of this level work area

Status save location

level number

Entry point to interrupt level coding

STX sets this level busy

STX saves XR3

Sets XR3 to work level

Saves XR2

Saves XR 1

BSC long to MIC

BSC long indirect to interrupt via the
Master Branch Table.

MF 10 restore indicotor; non-zero if a
restore is needed

Busy indicator address for MFIO; also first
word of PISW 10CC.

Second word of PISW 10CC. This is a
standard PISW set-up by TSX for this level.
If the user wishes to sense a PISW other than
the standard for this level, Word 21 would
have to be modified by him. See SYSTEM
DESIGN CONSIDERATIONS, SYSTEM
DIRECTOR: PISW Assignment Restrictions.

Save location for XRl

Save location for XR2

Save location for XR3

level busy indicator. Positive, if the level
is busy; zero if not.

Save location for PISW sense

WORD PROTECTION
POSITION STATUS CONTENTS

27 N Save location for the address of the work level
in use at the time the interrupt occurred; i.e.,
word 68 16 of the Fixed Area in core.

28 N Save location for the A-register.

29 N Save location for the Q-register

30 N Save !ocation for WK4, word 36 16 of the Fixed
Area In core.

31 N Save !ocation for WK5, word 3716 of the Fixed
Area In core.

32 N CARDN indicator. If zero, detection of a / /
card causes an error.

33 N Save location for MDF 10 sector address on a
save operation

34 N Busy i ndi cat~r address for MDF 10

35 N File protect indicator; this must be set non-zero
prior to every write to a fi Ie-protected area.

36 N First word of IClT {in-core skeleton address}

37 N Second word of IClT (in-core mainline address)

38 N Third word of ICLl (RECORD address)

39 N Fourth word of ICl T (RECORDED address)

40 N Fifth word of IClT (first entry).
Words 36-40 constitute the work area used by
MIC. This area is loaded with addresses from the
ICl T entry for this level to inform the AllGO
routine how to handle the interrupt and/or where
to find the servicing routine or core load.

41-43 N Save locations for FORTRAN FAC (floating
accumulator)

44-49 N locations used by QZSAV/QZEXT to save and
restore:

A-register
Q-register
XRl
XR2
Carry and Overflow indicators
XR3

50-54 N locations used by TVSAV/TVEXT to save and
restore:

A-register
Q-register
XRl
XR2
Carry and Overflow indicators

55 N FORTRAN functional error indicator

56 N FORTRAN divide check indicator

57 N FORTRAN overflow indicator

System Design Considerations 139

Table 12. TSX Reentrant Subroutine Work Level Requirements

MASKED
A-REG.
QZSAV

! TVSAV

+ SUBROUTINES NOT REENTRANT • '. ~ , FIXED OVERLAY

FADD, FADDX, FSBR, FSBRX, FSUB, FSUBX X X 41-43, 52 58, 64-66
FALOG, FLN X X 41-43, 55 68, 69, 72
FATAN, FATN X X 41-43 68, 69, 70-71, 72-73, 74
FAVL, FABS X 41-43
FAXB, FAXBX X 41-43,46,48,49,55 73-79
FAXI, FAXIX X 42, 52, 55 67, 70-72
FDIV, FDIVX, FDVR, FDVRX X 41-43, 52, 56 58, 59, 64-66
FEXP, FXPN X 41-43 60-63
FLD, FLDX, FSTO, FSTOX X 41-43, 52 58, 89, 90
FMPY, FMPYX X 41-44, 52 58, 59, 64, 65
FSIN, FSINE, FCOS, FCOSN X X 41-43, 55 68, 69
FSQRT, FSQR X 41-43, 57 72
FTANH, FTNH X 41-43, 46, 48, 49 68-73
FTRTN, FTNTR X 80-84

EADD, EADDX, ESBR, ESBRX, ESUB, ESUBX X X 41-43, 52 58, 65-67
EALOG, ELN X X
EATAN, EATN X X
EAVL, EABS X
EAXB, EAXBX X

EAXI, EAXIX X 42, 52, 55 69, 72, 96, 97, 99
EDIV, EDIVX, EDVR, EDVRX X 41-43, 52, 56 76-80, 85
EEJ(P, EXPN X X 41-43

ELD, ELDX, ESTO, ESTOX X X 41-43 83-84
EMPY, EMPYX X 41-43, 52 64-66
ESIN, ESINE, ECOS, ECOSN X X NONE
ESQRT, ESQR X NONE
ETANH, ETNH X NONE
ETRTN, ETNTR X 52 92-97

ADRCK X 7
COMGG, COMGI X 59-63
DATSW X NONE
DVCHK X 56
ESIGN (EXTENDED PRECISION) X 41-43 70-75
FSIGN (STANDARD PRECISION) X 41-43 70-75
FCTST X 55
IOU X 59-63
ISIGN X NONE
ISTOX X 50, 52

LDFAC, STFAC, SBFAC, DVFAC X 42

MDFIO, MDAF, MDAI, MDCOM, MDF, MDFX,
MDI, MDIX, MDRED, MDWRT 41-43 70-92

MDFND X 72-75, 77
MFIO, MRED, MWRT, MCOMP, MIOAF,

MIOIX, MIOAI, MIOI, MIOFX, MIOF 19-20, 41-43, 55
MGOTO, MFIF, MIIF, MEIF X X 70-72, 74-78
MIAR, MIARX, MFAR, MFARX, MEAR, MEARX X 70, 71, 74-85, 89
OVERF X 57
PAUSE X NONE
SAVE, IOFIX X - 1, 7, 11, 19, 33, 34 70-73, 88, 93, 97
SLITE, SLiTT X NONE
SSWTC X NONE
STOP X NONE

140

Table 12. TSX Reentrant Subroutine Work Level Requirements

MASKED
A-REG.
QZSAV

~
TVSAV

• SUBROUTINES NOT REENTRANT ---, 1,
"

FIXED OVERLAY

SUBIN X 58-83

SUBSC X NONE

TSTOP X NONE

TSTRT X NONE

TTEST, TSET X NONE

UFIO, UFIOX, UIOIX, UCOMP, UIOI,
UIOF, UIOAI, UIOAF X -1, -2,55

TRACE (TRPNT) NONE

FARC X 41-43, 57

FBTD, FDTB X 41-43 58-89

FLOAT X 41-43, 50, 52, 53 59-62

FIXI, FIXIX X X 50-52, 55

lABS X NONE

lAND NONE

IEOR NONE

IFIX X X 41, 42, 50, 55

lOR NONE

LD NONE

NORM X 41-43 58

SNR X 42, 43

XDD X 42, 43, 50-54 66-75

XMD X 42, 43, 50, 51 58-65

XMDS X 42-44 58-59

XSQR X 44, 48 58, 59

DMPHX, DMP, DMPDC X NONE

DMPS, DMPST X 41-43

DPART X 7

ENDTS X NONE

LEVEL X NONE

MASK X NONE

OPMON NONE

QIFON X X 44-49 66, 67, 69-75, 77-84, 86-94

QUEUE X X 58, 61-63, 65-67

RESMK X NONE

SAVMK X NONE

SETCL X NONE

TIMER X NONE

UNMK X NONE

UNQ X X 58, 61-63, 66, 67

VIAQ X X NONE

COUNT X NONE

CLOCK X NONE

CLEAR X X 58, 61-67

CONHX X NONE

TRPRT X NONE

FLIP X 7

(Continued)

System Design Considerations 141

Table 12. TSX Reentrant Subroutine Work Level Requirements

MASKED
A-REG.
QZSAV

! TVSAV

• SUBROUTINES NOT REENTRANT --. ,r , FIXED OVERLAY

CARDN X X 32

PAPTN X 50-54

MAGT X NONE

PLOTX X X 65

REWIND/BC KSP/EOF X -2 66-68, 71-73, 75, 79, 85, 89

DAOP X X 70-75

AIPTN, AIPN X X 70, 71

AISQN, AISN X X 70-72, 74

AIRN X X 76-78

DIEXP X X 70-73

DICMP IS REENTRANT

DINP X X 50 70-72, 74, 75

ANINT, COMP1, AINTl, COMP2, AINT2 X NONE

AlP X 58, 61-66

AIS X 58, 61-71

AIR X 58, 61-69

CO, DO, PO, DAC X 58, 61-65

CS, VX, PI, DI X 58, 61-65

CSC, VSC, PIC, DIC IS REENTRANT

CSX, VSX, PIX, DIX X 58, 62-65

lOPE, OUSLY, ETS X 7

XSAVE, XEXIT, XLOAD X 7

GAGED, UNGAG X 54

QZERQ X NONE

QZ010 X 58-66

BTlBT X X NONE

BT2BT X NONE

BINDC X 50 61, 62

DCBIN X 50, 55 61

BINHX X 50 61

HXBIN X 50, 55 61

HOLEB X 55 61-65

HOLPR X 55 61-66

EBPRT X 55 61-60

PAPEB X 55 58-67

PAPHL X 55 58-66

PAPPR X 55 58-66

EBPA X NONE

PRT X NONE

FCHAR X NONE

SCALF X NONE

FGRID X NONE

FPLOT X NONE

ECHAR X NONE

SCALE X NONE

EGRID X NONE

EPLOT X NONE

POINT X NONE

FCHRX, FCHRI, WCHRI X NONE

FRULE, FMOVE, FINC X NONE

ECHRX, ECHRI, VCHRI X NONE

(Continued)

142

Table 12. TSX Reentrant Subroutine Work Level Requirements

MASKED
A-REG.
QZSAV

.~ TVSAV

~ SUBROUTINES NOT REENTRANT----y

ERULE, EMOVE, EINC X

XYPLT X

PLOTI, PLOTS X

SKELETON I/O

DISKN X

PRNTN X

TYPEN/WRTYN X

Table 12 illustrates the work level requirements
of TSX reentrant subroutines. These may depend
on various modification levels of the TSX system.
If absolute information is required, the current
listings should be referred to.

I

X

The five status columns (NOT REENTRANT,
TVSAV, QZSAV, A-REG, and MASKED) indicate
whether each subroutine is reentrant, and if it is,
what modes of reentry are used. For example, FADD
(Floating-point ADD) is reentrant since the first
column is blank; it uses TVSA V, but note that it
also masks all levels at one or more points within
the subroutine.

Some subroutines are reentrant, but do not use
any words in the level work area. ENDTS is such
an example. VIAQ is not reentrant; it does, how
ever, mask all levels to prevent the Queue Table
from being modified by QUEUE, QIFON, and UNQ
during several instructions.

Level work areas are defined by the USE labels
USEOO-23), the number of work areas being deter
mined by NULEV. If a USE label is equated to 1,
a work level is included on that level; if zero, no
work level is included. For example, if NULEV
= 7, USEOO-06 are all equated to 1; the remaining
USE cards being equated to zero.

See also: Programming Subroutines Using
Reentrant Coding.

Process Interrupts Per Level

Like the ILSW, the Process Interrupt Status Word
(PISW) is a 16-bit word associated with the use of
process interrupts. Process interrupts are phys
ically terminated on 16-position terminal blocks
within the 1800 system. The PISW indicators are
turned on or off by contact closures or voltage
shifts in the process. A total of 24 PISWs are
allowed in the system for normal usage. To provide
Jhe maximum number of interrupt levels for process

II
FIXED OVERLAY

NONE

NONE

NONE

35 58-69

70-80

70-80

(Concluded)

interrupts, one PISW could be assigned to each
ILSW. For multiple groups per level, see PISW
Assignment Restrictions.

The System Director must also be aware of the
number of process interrupt bits on each of the 24
hardware levels. This information is provided by
the user on the NILOO-23 equate cards. If, for
example, one process interrupt is assigned to inter
rupt level 10, the bit configuration for the PISW
for that level could be bits 0 to 15. For example,
if bits 0 to 7 are assigned, the NILI0 label will be
equated to 8. The NIL label will always be equated
to a numerical value equal to the rightmost PISW
process bit position used plus one. If no process
interrupts are assigned to a level, the label will be
equated to zero.

With this information, an interrupt core load table
(ICLT) is built which contains an entry for each
interrupt level assigned by the user plus two entries
for programmed interrupts and two entries for
count routines. The user specifies how many
process interrupts he has on a particular level and
only those words that are necessary to contain his
configuration are entered in the table.

Figure 70 illustrates a partial ICL table, for
one level, say level seven.

IN SKELETON represents the PISWbits of the
PISW associated with the level this entry serves. If
a subroutine is loaded as part of the skeleton to serve
a process interrupt, a bit is set up in this word which
corresponds to the bit on the PISW. For example, if
the user has a process interrupt on level 0, and this
PISW is wired such that when the interrupt occurs
the zero bit comes on, a bit is put into the correspond
ing zero bit of the IN SKELETON word of the level
zero ICLT entry.

The start address of the servicing routine is then
loaded into START ADDRESS.

IN MAmLINE CORELOAD and RECORD are set
up each time a mainline core load is read into core.
The former word specifies that the interrupt servicing

System Design Considerations 143

GC26-3703-1
TNL: GN34-0036
Technical Change

IN SKELETON

IN MAINLINE CORE LOAD

RECORD

RECORDED

FOR {

ST ART ADDRESS/WORD COUNT

BIT 0
SECTOR ADDRESS

,~

FOR {
BIT 15

SECTOR ADDRESS

START ADDRESS/WORD COUNT

Figure 70. Interrupt Core La ad Table

rl.l

routine is in with the core load. RECORD means
that the interrupt is not to be serviced, but only
an indication that it has occurred is to be set.

RECORDED is used whenever an interrupt has
been specified to be recorded during the processing
of core loads. In such an event, if the interrupt
occurs, the corresponding bit is set on by MIC and
the interrupt turned off. These indicators are reset
by the CALL QIFON and CALL CLEAR subroutines
when called by the user.

The first four words of the ICL table are fixed,
two additional words being required for each bit of
the PISW used (see Figure 70). ICL table size is
dictated by the NIL equate cards. In the example
given (see Figure 66), 57 process interrupts were
used; this required 258 words. If the maximum
possible number of process interrupts (384) were
utilized, 768 plus 4 (multiplied by the number of
levels used) words of storage would be required.

If the interrupt routine were not in the skeleton,
STAR T ADDRESS would contain the word count of
the routine on disk to service the interrupt. SEC
TOR ADDRESS would then contain the sector address
of this out-of-core interrupt core load.

It should be noted that a programmed interrupt
does not make use of a PISW bit for operational
indication. The indicator which specifies that a
programmed interrupt has occurred is set-up by
the user's routine in core when he does a Call
Level (see Programmed Interrupts).

144

PISW Assignment Restrictions

PISW (Process Interrupt Status Word) groups can be
assigned to interrupt levels either as a single group
per level or in multiple groups per level. For
proper operation of the TSX system, the following
rules and restrictions must be observed.

One Group Per Level

Normal usage of process interrupts requires that
only one group of process interrupts be assigned to
each interrupt level. Process interrupts assigned
in this way can each be serviced with separate inter
rupt routines. The servicing routines must reside
in the skeleton area only if their associated inter
rupt level is equal to or higher than any I/O device
interrupt level.

When only one PISW is connected to a level, the
correlation of the interrupt level number to the
PISW group number is as follows:

Interrupt PISW Second Word of IOCC
Level Group for PISW Sensing

0 1 /5F02
1 2 /5F03
2 3 /5F04
3 4 /5F05

• • •
• • •
• • •

22 23 /5F18
23 24 /5F19

Note that MIC performs the ILSW and PISW
sensing, and transfers control to the proper inter
rupt servicing routine.

Multiple Groups Per Level

In special cases, such as (1) when fast response is
desired, and (2) when each bit does not require a
unique program to service it (such as when all the
on-bits in a group might represent a particular code),
it is desirable to have more than one PISW group
assigned to an interrupt level. The PISW that is to be
sensed by the user must be assigned (on the * ASSIGN
MENT card at system generation time) as an RPQ
device, and the following restrictions mus,t be ob
served by the user's subroutine. It must:

1. Reside within the skeleton area

Service the interrupt as though it were an interrupt
from an RPQ device. Thus the subroutine must be
coded with an ISS (interrupt service subroutine)
statement with the lAC (interrupt assignment code)
number following the ISS statement matching the
RPQ number given to the PISW at system genera
tion time.

3. Sense all PISWs assigned to the level
4. Upon completion, exit to MIC via the I/O exit

(that is, BSC I 90).
When assigned in this way, there is no correla

tion restriction between the interrupt level number
and the PISW group number.

Combination PISW Assignments

It is also possible to combine the two assignment
methods and have some interrupt levels with only
one PISW each, and other levels with more than one
PISW. The same rules and restrictions for each
type outlined above still apply. For example, to
have two groups of four PISWs each assigned to
interrupt levels 4 and 5, one valid combination is:

Interrupt PISW Second Word of IOCC
Level Group for PISW Sensing

0 1 /5F02
1 2 /5F03
2 3 /5F04
3 4 /5F05
4 One or more User-Sensed

groups of PISWs
5 One or more User-Sensed

groups of PISW s
6 7 /5F08
7 8 /5F09

• • •
• • •
• • •

17 18 /5F13
18
19 Not assignable;

• usage assumed on

• levels 4 and 5 .

•
23

Any combination can be used for the PISW assign
ments on levels 4 and 5.

Note that the user is not restricted in assigning
multiple PISWs only to those levels which are not
sensed by MIC: they can be assigned to any level.
For example, if level 7 has the standard sense for

group of assigned PISWs, the user could include

GC26-3703-1
TNL: GN34-0036
Technical Change

on that level another group of PISWs which he de
sires to sense himself. User-written interrupt ser
vicing routines must be coded as an I/O ISS sub
routine.

For further information on the assignment of
process interrupts whose IOCCs are to be sensed
by user-written subroutines, refer to the following:
System Design Considerations: The IBM Nonprocess
System; Programming Techniques - Writing Assem
bler Language Subroutines; IBM 1800 Assembler
Language, (Form C26-5882).

Programmed Interrupts

CALL LEVEL -- Programmed Interrupt

External interrupt levels can also be programmed.
Programmed interrupts are initiated by the CALL
LEVEL statement, and follow the same basic rules
which pertain to process interrupts. The format
of this statement is as follows:

CALL LEVEL (L)

where

L is an integer constant 0-23 that specifies
the interrupt level desired

There can only be one programmed interrupt
routine per assignable interrupt level. The use of
the servicing routine may, however, be expanded
by setting a numeric value (integer) in Inskel COM
MON prior to a CALL LEVEL (L). The LEVEL
subroutine can then interrogate this value introduced
by the calling program. In this way, as many sub
routines per level as are desired can be provided.
CALL LEVEL, which can be used only in process
mainlines or interrupt programs, causes a pseudo
ILSW bit to be set in the programmed interrupt
10CC (locations 16010 and 16210)in the Fixed Area.
The 10CC bits are interrogated by MIC when an
interrupt occurs on a specific level. MIC always
reactivates those levels that have been specified
within the CALL statement, and which have not been
serviced.

The programmed interrupt is recognized immedi
ately when called from a lower level. When the
servicing routine finally exits to MIC, program
operation at the calling level is resumed with the
statement following the CALL LEVEL statement.

A programmed interrupt called from a higher
level is recognized after the calling program is
completed, and after any intervening interrupts are
serviced. If a level is called and any ILSW bit is
on when this level is recognized, the programmed
interrupt is recognized after the first ILSW "on"
bit is serviced.

System Design Considerations 145

The equate card NLSW1 is used to specify the
lowest priority level number (within the group 0-13)
plus 1 assigned to a programmed interrupt. Simi
larly, NLSW2 applies to the group 14-23. This
determines the number of programmed interrupts
'available to the user.

In the example given in Figure 66, the number 12
punched in columns 35-36 means that programmed
interrupt space in the ICL table has been allocated
for levels 0-11 (12 levels). NLSW2 is equated to O.

Consider a further example. Ten (10) program
med interrupts are required on levels 14-23; none
on levels 0-13. NLSW1 is equated to 0 and NLSW2
is equated to 10.

Note that there can only be one programmed
interrupt routine per interrupt level. The user need
not initially have programs on disk corresponding
to all levels of programmed interrupt stated. These
may be loaded later. Also note that all called levels
must be specified as used on corresponding USE EQU
cards.'

Out-of-Core Interrupt Levels

The user has also to determine those levels on which
interrupts will be serviced by out-of-core interrupt
core loads. Other interrupts on levels that are
serviced by out-of-core interrupt core loads are
masked so that they cannot interrupt another inter
rupt being serviced by a corresponding out-of-core
routine. Interrupts serviced by in -core routines
are not masked. Only one level of exchange is
maintained.

Interrupts that are in the skeleton should not be
on the same or lower level as out-of-core inter
rupts, unless those interrupts can be masked for
the period of time required to service the out-of
core interrupts.

The best practice for servicing interrupts is to
group those interrupts that are serviced by in
skeleton routines on higher priority levels than
interrupts which are serviced by interrupt core
loads. This is not, however, a restriction on the
system: in-skeleton routines may be intermixed
with interrupt core loads as long as the skeleton
routines can be masked for the period of time re
quired to service the interrupt core loads.

The user specifies'those interrupt levels he has
elected to be masked for the servicing of interrupt
core loads on two equate cards: ICLL1, ICLL2.
He may elect a single interrupt level or consecu
tively numbered interrupt levels within the two
groups of interrupt levels, 0-13 and 14-23. Even
though the highest priority out-of-core interrupt
level cannot be interrupted from another out- of-core
interrupt level, it must nevertheless be specified
in the ICLLI-2equate cards. This is because when
ever an exchange of variable core is to be carried

146

out, the ICLLI-2 values are used, together with the
user's current mask pattern, to mask the core
exchange routine. This prevents the core-exchange
routine from being interrupted by an out-of-core
interrupt when it is already busy on the mainline
or non-process level. Two examples illustrate
how the ICLLI-2 cards are used.

In the first example, assume

NULEV = 12
Three interrupt core load interrupt
levels are required (9, 10, and 11).

The equated representation is shown below:
HEX EQUIV

INT lEVEL

IClll

HEX EQUIV

INT lEVEL

ICll2

'0 o 7

Note that this corresponds to the machine con
figuration given in Figure 66.

In the second example, assume

NULEV = 24
Interrupt core load interrupt levels
7, 8, 9 and 19, 20 are required.

The example assumes that levels 10-18, 21-23
contain in-skeleton routines whose servicing can be
delayed until the interrupt core loads have been
serviced. Furthermore, if interrupt core loads on
levels 7 -9 are infrequently used, the normal servic
ing of in-skeleton interrupts (levels 10-18) would
not be inhibited during the servicing of interrupt
core loads on levels 19, 20.

As shown below, to obtain this, ICLLI is equated
to /01C3; ICLL2 to /063F.

HEX EQUIV

INT lEVEL
IClLl

HEX EQUIV

INT lEVEL

ICll2

o

o

C 3

6 3

NUMBER OF CALL COUNT SUBROUTINES
REQUIRED BY USER

Call Count subroutines are user-written servicing
routines which are assigned by *INCLD control cards
to be included in the skeleton area when the skeleton
is initially built. Their function is to service TSX
CALL COUNT statements.

Examples of the use of count routines are:

1. Scanning variables at periodic intervals
2. Initiating control adjustments at appropriate

times
3. Constructing a log

Count servicing may also be achieved by not in
cluding a subroutine. In such cases, the event is
only recorded during the normal processing of core
loads, and later serviced by a CALL QIFON or
CALL CLEAR statement in the mainline program.

In practice, count subroutines should have short
execution times and are normally only used to set
an indicator, such as the setting of a programmed
interrupt to some lower priority level, or queueing a
mainline core load. For example, if a count rou
tine is used to run a scan, the scan should be run
from a lower priority level. This means that the
count subroutine then sets a programmed interrupt:
the scan routine itself could be in the skeleton, in the
mainline or on the disk since programmed interrupts
have the same capabilities as process interrupts.
If a log is required, the log core load should be
queued from the count subroutine. This means that
the count subroutine calls QUEUE specifying a main
line core load. The log core load would then be exe
cuted in sequence according to the priority assigned
to it. If time-sharing is used, a CALL ENDTS
statement should be included within the count routine
immediately following the CALL QUE DE.

The number of count routines planned by the user
is punched in the NITP1 and NITP2 System Director
equate cards. For example, if the user elects to
use a total of 12 (Skeleton-included and recorded)
count routines in his system, NITP1 and NITP2 are
equated to 12 and 00, respectively. See also example
in Figure 66.

During System Director assembly time, an allo
cation of two words per entry is set up in the Inter
rupt Core Load Table for the start address of each
count routine, as illustrated in Figure 70.

If a count routine is included in the skeleton area,
the Skeleton Builder, at skeleton build time, places
its start address in the ICL table. On the other hand,

if a routine is not included in the skeleton area,
the numbered count only will be recorded during
the normal processing of core loads. That is, a
corresponding bit is "set on" by ITC in the ICL
table and the servicing timer for that event is
turned off. This means that the user may want to
"wait" on one of the count indicators to "come on"
(recorded) prior to servicing an event. This indi
cator is later reset by the CALL QIFON or CALL
CLEAR statement when requested by the user.

The size of the ICL table is determined at
assembly time from data given in the equate cards.
Its entries are inserted by the Skeleton Builder and
DUP. A maximum of 32 count routines is allowed.

DISK SYSTEM CONFIGURATION

Magnetic tape oriented systems are of value when
applied to pure data acquisition tasks where very
large storage requirements exist. It has been
found, however, where control is involved, that
core storage must be supplemented by a rotating
memory such as a disk file to operate an efficient
monitor program. The data transfer rate of 32K
words to and from each disk, the shorter seek time
and higher reliability of a disk file make it ideally
suited for process control and data acquisition
purposes.

In the IBM 1800 Time-Sharing Executive System,
the software design concept is based on the use of
a key unit -- a single, high-capacity disk storage
unit (the IBM 2310 Disk Storage Unit) as a program
ming systems residence device.

Conceptually, the disk is treated in much the
fashion as a reel of magnetic tape, and organized
in a sequential manner. Anyone segment of the
disk is quickly available by moving the access
mechanism directly to the starting point of a block
of information, and serially transferring data. This
approach also permits the user to easily store and/
or retrieve blocks of data such as core loads, pro
grams, matrices, and tables. The ability to read
and write data on the same device allows the user
to modify resident programs without the necessity
of a second storage unit, such as in magnetic tape
systems.

The disk cartridge is designed to permit rapid
interchange of disks under conditions which afford
adequate protection of recording surfaces. The
cartridge design also ensures precision control of
disk rotation at high speeds past the recording heads.

System Design Considerations 147

Up to three disk drives are available with the
1800 system. Typical disk uses include the fol
lowing:

1. The disk file is well suited for the storage of
executive programs, subroutine libraries,
diagnostic routines, etc., as well as the imple
mentation of the 1800 FORTRAN language.

2. As a storage device for recording raw data,
the disk file is extremely inexpensive, and
obviates the need for the more costly magnetic
tape drives.

3. As a device for storing edited or corrected data,
the removable disks can be transferred for
permanent storage or for use on another 1800
machine for off-line computations.

4. It can be included to allow additional working
storage for customer programs, or it can be
used as a "spare file" for greater reliability
and maintenance flexibility.

Furthermore, the disk cartridge allows each user
at a system installation to "customize" standard
programming packages, and to include his own sub
routines and programs according to his particular
needs. Tailoring resident-device characteristics
to match the performance of the processor-controller
makes it possible to balance the system for optimum
performance.

Changing Disk Cartridges

Under certain conditions it is necessary to change
disk cartridges containing data files.

The following procedure may be us ed to change disk
packs:

1. Print a message to inform the operator to
change the disk packs.

2.

3.

4.

5.

148

A user-written call to the PAUSE subroutine
can be used to put the system in a wait condi
tion. However, interrupts may still be servic
ed. Therefore, programs or files on the disk
to be changed should not be called.

Change dis k cartridges. The minimum time
required is about 2-1/2 minutes.

Press START.

Initialize the new disk pack by using the SEEK
HOME function. For details on the SEEK

HOME function see IBM 1800 TSX manual:
Subroutine Library; Form C26-3723
Chapter Disk Subroutine.

DISK ORGANIZATION

The 2315 Disk Cartridge is organized into 200 cyl
inders (plus three spare cylinders) of two tracks
each: one track per disk surface. For ease of
block handling, each track is further divided into
four sectors, each sector having a fixed length of
320 sixteen-bit words. The sector is defined as
the basic addressable unit of disk storage for reading
and writing.

Information is written on or read from the disk
by a pair of magnetic read/write heads, one head for
each surface of the disk. The three spare cylinders
ensure that the stated capacities are maintained for
the life of the cartridge.

Figure 71 illustrates the relationships between
bits, data words, disk blocks, sectors, tracks, and
cylinders for a disk storage unit.

l!fjD ~ Word Disk Block Sector Track Cylinder Disk

Bits 16 320 5,112 20,480 40,960 8,192,000

Data Words 20 320* 1,280 2,560 512,000

Disk Block 16 64 128 25,600

Sectors 4 8 1,600

Tracks 2 400

Cylinders 200

*These follow the first actual word of each sector, which is used for the address.

Figure 71. Disk Storage Unit Conversion Factors

Sector Numbering and File Protection

In the interest of providing disk features permitting
versatile and orderly control of disk operations,
two important conventions have been adopted which
govern sector-numbering and file protection. Suc
cessful use of the disk subroutine, DISKN, can be
expected only if user programs are built within the
framework of these conventions.

The primary concern of the conventions is the
safety of data recorded on the disk. To this end,
the file protection scheme plays a major role,
but only in a manner that is dependent upon the
sector-numbering technique. The latter contributes

to data safety by allowing the disk subroutine to
verify the correct positioning of the access arm
before it actually performs a write operation. This
verification requires that sector identification be
pre-recorded on each sector, and that subsequent
writing to the disk be accomplished in a manner that
preserves the existing identification. DISKN has
been written to comply with these requirements.

Sector Numbering

Each disk sector is assigned a logical address
from 0, 1, 1599 corresponding to the
sector's position in ascending sequence of cylin
der and sector numbers from cylinder zero (outer
most), sector zero through cylinder 199 (inner
most), sector 7. Since the disk cartridge is
divided into 1600 sectors, DISKN can now address
anyone of these sectors.

This sector address is recorded by a standard
TASK utility program (TDWA) in the sector's first
word, and occupies the rightmost eleven bit posi-

tions. Of these eleven positions, the three low
order positions serve to identify the sector (0-7)
within each cylinder. Utilization of this first word
for identification purposes diminishes the per sector
availability of data words to 320; transmission of
full sectors of data is therefore performed in units
of this amount.

File Protection

File protection is provided to guard against the
inadvertent destruction of previously recorded data.
This control can be achieved by having the normal
writing functions uniformly test the file-protected
status of cylinders they are about to write.

File protection is implemented in the TSX system
by defining any cylinder as being file protected or
not file protected. The DUP *DWRAD function is
used to designate file protection. If a cylinder is
file-protected, the sector address on that cylinder
will contain a one-bit in bit position zero of the
sector address word.

System Design Considerations 149

Disk Layout

The two hundred cylinders of a disk cartridge for
a single disk-drive TSX system are divided into
two major logical sections for system operation:
a nonprocess portion and a process portion as shown
in Figure 72. The nonprocess portion, known as
the IBM Systems Area, is used to store the integral
component parts of the IBM Nonprocess System as
discussed under System Design Considerations: The
IBM Nonprocess System.

Areas of disk storage contained within the process
portion will now be explained in some detail. These
areas are, in general, automatically assigned by the
system, but they vary in size depending upon the
disk system configuration and customer definition.
As will be shown later, some of these areas can
be modified, removed, or relocated to another
storage device.

User Area. The User Area is so called because it
is used to store user-written as well as IBM
furnished subroutines. It is variable in length and
is file-protected. It is divided into two component
areas:

1. Relocatable Subroutine Area -- an area where
all relocatable IBM and user-written subrou
tines are stored (not shown in Figure 72).

2. Relocatable Program Area -- an area where
all user-written nonprocess relocatable pro
grams are stored as a result of a DUP *STORE
control record function. This is a user-defined
area -- that is, its boundary increases or de
creases Nonprocess Work Storage as programs

are deleted or added respectively. The number
of sectors required for a program to be stored
is subtracted from the Nonprocess Work Stor
age if they are both assigned to the same disk
cartridge. When a program is deleted (by an

T iBM
FILE SYSTEMS PROTECTED

AREA

"
RELOCATABLE PROGRAM AREA

U
NONPROCESS WORK

STORAGE

ERROR DUMP AREA

ERROR SAVE AREA

NON-
PROTECTED NONPROCESS SAVE AREA

AREA
MESSAGE BUFFER

PROCESS WORK STORAGE

FORTRAN I/O SAVE AREA

"
I NTERRUPT SAVE AREA

4~
CORE LOAD

AREA

SPECIAL SAVE AREA

FI LE PROCESS SAVE AREA PROTECTED

~
SKELETON AREA

ERROR PROGRAMS

COLD START

Figure 72. Disk Layout of a Single Disk Driv~
TSX System

T
NONPROCESS

PORTION

1,
.~

PROCESS
PORTION

"

149.1

*DELETE function), a separate DUP *DEFINE
P AKDK operation must be performed to repack
the area. The reason for this is that the relo
catable program has not been overlaid and
packed -- the area it occupied is thus not avail
able for program storage. The *DEFINE
P AKDK operation will cause this area to be
incorporated into Nonprocess Work Storage.

The packing operation could be executed
each time an *DELETE function specified a
nonprocess program, but since this operation
need not be performed unless a shortage of
nonprocess area develops, and since the pack
ing takes some time, it is only carried out at
periodic intervals when the *DEFINE PAKDK
control record is processed. The user should,
howev~r, assure himself that he has a satis
factory audit trail in the event some informa
tion is lost during the running of the disk packing
operation.

Note that the area available for user programs
can be expanded by using the *DE FINE REMOV
function to remove the Simulator, Assembler, or
FOR TRAN Compiler. As an example, if all three
programs are removed, the nonprocess system will
be reduced to about 11 cylinders. A Relocatable
Program Area can be assigned to each of up to
three drives.

Nonprocess Work Storage (NPWS). This area is
always adjacent to the Relocatable Program Area,
and is used for temporary storage during the exe
cution of nonprocess programs. It is used exten
Sively during the operation of the Nonprocess Moni
tor. For example, it is used by the Assembler
during the assembly of a program and to store the
successfully assembled program in relocatable
format. In a FORTRAN nonprocess program, the
DEFINE FILE statement can refer to this area.
The Nonprocess Work Storage is variable in length,
and increases or decreases as programs are added
to or deleted from the Relocatable Program Area.
A NPWS area can be assigned to each of up to three
disk drives.

Error Dump Area (EPDM). When a machine error
occurs, the TSX Error Alert Control (EAC) pro
gram optionally writes all of core to this area on
disk. The number of sectors used is directly
proportional to object core size: a 32K object core
requires 103 sectors, 16K requires 52 sectors, and

150

8K requires 26 sectors. This is a user option
specified at system generation time.

Error Save Area (EPSV). This area is used when
EAC is executed to save the portion of variable core
used by the error detection program. An Error
Save Area of six sectors is always automatically
allocated when the E parameter (see The DEFINE
CONFG Operation) is specified. Only one such
area is required.

Nonprocess Save Area (NPSV). An area on disk
used to save a partially completed nonprocess
(time-shared) program that must be saved when
time-sharing is terminated. A NPSV equal to
variable core is always automatically assigned to
the disk. No such area is required if time-sharing
is inoperative.

Message Buffer (MESS). An area used to buffer
1053 messages when a WRITE to a 1053 occurs
while the 1053 is busy. Its length is established
at TASK assembly time (see System Design Con
siderations: TASK).

Process Work Storage (PRWS). Area used for
temporary data storage during the execution of
process programs. It is user-defined and can be
specified on each of up to three disks, but only one
such area can be specified in anyone *DEFINE
CONFG control record.

FORTRAN I/O Save Area (FrOS). Area used to
save the FORTRAN r/o buffer area when a higher
level interrupt uses FOR THAN r/o. The length
of this area is three sectors per interrupt level
using FORTRAN rio, plus three sectors if the
system has time sharing.

Interrupt Save Area (IN~V). An area of disk used
to save a user-specified variable area of core when
an out-of-core interrupt occurs. This is user
defined and mus t be equal in length to the largest
interrupt core load used. The area should also be
large enough to include the amount of COMMON
used for communications between the mainline and
the subprograms in the interrupt core load.

Core Load Area. An area of disk set aside for
the storage of core loads as a result of a DUP
*STORECloperation. Data files are also stored

here. The *FILES control record can refer to
data files located in this area.

All programs and data files stored in the Core
Load Area are assigned fixed disk locations. This
permits the disk location of a process program to
be kept with the calling program, and results in
faster access to the program. A Core Load Area
can be assigned to each disk.

Special Save Area (SPSV). An area of disk used to
save the variable area of core when a CALL SPE CL
is executed and time-sharing is inoperative.

Process Save Area (PRSV). Area used to store the
variable area of core when a CALL SHARE or a
CALL VIAQ (with an empty queue) is entered.

Skeleton Area (SKEL). Used to store a core image
copy of the TSX System Skeleton. See System
Design Considerations: System Skeleton.

Error Programs (EDP). This area is always re
quired, and is used to store the disk portion of the
TSX error analysis program. This program is
executed when a machine error occurs.

Cold Start (CLST). This area holds the TSX Cold
Start program -- which is the program that starts
the TSX system into operation by loading the System
Skeleton to core and transferring control to the
System Director.

THE DEFINE CONFG OPERATION

At an appropriate stage in system generation, the
establishment of the user's disk configuration and
changes to that configuration are performed using
the CONFG code in an *DEFINE operation. The
definition or redefinition of some of the parameters
consists of changing a stored value on disk.

In some cases, however, the results of the defi
nition are interrelated with the user's routines, and,
as a result, the Skeleton Builder must be executed
after these definitions are made. This is most
notably the case when the size of the System Skele
ton is changed to accommodate additional programs
or data areas and when system areas are moved as
a result of an increase of the core-image area.

Since this operation establishes the lengths of
several related disk areas, and since the user may
perform the redefinition several times before a
final determination of the contents of the System
Skeleton area is made, the DEFINE operation is
designed to establish all of these areas using a
small number of configuration control records.

*DE FINE CONFG Control Card

Figure 73 gives an overview of the DEFINE CONFG
operation for a single drive system. The *DE FINE
CONFG control card is used when the user's vari
able areas are established on disk. Several types
of definitions may be necessary depending upon
the information punched in the card.

The control card contains a field of consecutive
columns which are punched with a string of one or
two character codes that have special meaning in the
CONFG routine. These characters are each fol
lowed by a disk drive code to specify the drive(s)
where the areas are to be established.

The areas are normally taken from the highest
numbered sectors of Nonprocess Work Storage, and
in the same sequence as specified for that drive in
the string the user punched in the CONFG card (ex
cept for M on a one-drive system).

Other fields in the card permit the user to speci
fy lengths for areas that are not fixed by the system.
These include the length estimated for the System
Skeleton in core, the interrupt area utilized for
out-of-core interrupts, the core load area on disk,
the process work storage on disk, and the FORTRAN
I/O save area on disk.

The user must execute the DEFINE CONFG oper
ation before he builds his skeleton. If areas estab
lished by this definition turn out to be incorrect due
to miscalculation of user requirements, he will prob
ably have to re-define them, and if LSKEL is too
small and cannot be increased, rebuild his skeleton
since this will not be known until Skeleton build time.

Each CONFG control card can define up to 11
user-assigned disk areas. In practice, two or
three control cards should be necessary to define
even the most complex systems.

In referring to Figure 73, we note that the user
may employ up to nine different alpha characters
in any flexible order to specify a maximum of 11
user-assigned areas, each area being related to its
specific disk drive. Since we are primarily con-

System Design Consider ations 151

cerned with a one-disk system, disk drive zero
will be indicated.

Consider the general case of an *DE FINE
CONFG control card with all nine possible alpha
character codes punched in the first field, as
shown in Figure 73.

COLUMN 15

*DEFINE
CONFG

+
XO MO 10 FO PO NO D EO LSKEL

1

In executing the *DEFINE CONFG operation,
the define routine first establishes the legality
of the control card, then scans the field starting
at column 15, and interprets each alpha character
in turn from left to right. Simultaneously, it
establishes areas on the system disk drive

LlNSV LlCP LPWS FS

1 1 1 \
LENGTH OF LENGTH OF LENGTH OF LENGTH 0 F

RAGE
ERS

NUMBER OF
FORTRAN I/O
INTERRUPT
LEVELS (PLUS
ONE, IF TIME
SHARING IS
USED)

SKELETON
IN WORDS

1 r ,r , , r

,

-
..

..

.

..
-
-
-

.Figure 73. Overview of the DEFINE CONFG Operation (Disk Drive 0)

152

INTERRUPT CORE LOAD PROCESS
SAVE AREA AREA IN WORK STO
IN WORDS CYLINDERS IN CYLIND

DCOM

MBT-AT

SKELETON SUBROUTINE MAP

NONPROCESS SUPERVISOR

DISK UTILITY PROGRAM

ASSEMBLER

FORTRAN COMPILER

SIMULATOR

LET-FLET

SUBROUTINE LIBRARY

NONPROCESS
WORK

STORAGE

ERROR DUMP AREA

ERROR SAVE AREA

NONPROCESS SAVE AREA

PROCESS WOR K STORAGE

FORTRAN I/O SAVE AREA

INTERRUPT SAVE AREA

MESSAGE BUFFER

CORE LOAD AREA

SPECIAL SAVE AREA

PROCESS SAVE AREA

SKELETON

ERROR PROGRAMS

COLD START

FILE
PROTECTED

FILE
PROTECTED

specified in the exact sequence of parameters
punched in the card.

The disk is configurated from its highest ad
dress upwards, and definition of user-assigned
areas proceeds step-by-step vertically until the
scanning of the parameter columns is terminated
by a blank (see Figure 74)0

In initial system generation, that is, when a
new disk system is first created, certain system
areas are always established at the high address
end of disk by specifying the S parameter in column
15. These areas constitute a basic set of programs
and disk areas that are required by the system, and
are file-protected at all times. They are shown
below (Figure 75) in their correct sequence of
allocation.

Each of these programs and areas except the
Core Load Area must be defined for only one
drive in the system.

Note that the Special Save Area is included within
the specification of the S parameter, only if S is
immediately followed by an X in column 16.

At this point, a word of explanation is given on
the establishment of the Message Buffer Area
(MESS). This buffer (together with the Error Pro
grams and the Cold Start Program) is always de
fined at the time the IBM Nonprocess System object
deck is loaded to disk by the System Loader (which
computes the MESS length from data punched in the
*DEDIT and TASK equate card, NOCYL). Its proper
location at the high end of disk at the end of the
loading operation is shown in Figure 76.

At DEFINE CONFG time, the location of MESS
is redefined, that is, it is bodily moved to a dif
ferent location on the disk. For example, if the F
parameter immediately follows SXO in the control
card, MESS will be reflected as in Figure 77.

DISK

DRIVE

ZERO

HIGHEST
DISK ADDRESS - - - -------'-

DIRECTION
OF DISK
CONFIGURATION

Figure 74. Illustrating Direction of Disk Configuration

(rJ

CORE LOAD AREA

SPECIAL SAVE

PROCESS SAVE

SKELETON

ERROR PROGRAMS

COLD START

FILE
PROTECTED

_____ 1
Figure 75. Establishment of System Areas at High Address

End of a Disk

MESSAGE BUFFER

ERROR PROGRAMS

COLD START

Figure 76. Establishment of Message Buffer Area at System
Load Time

FORTRAN I/O SAVE

MESSAGE BUFFER

CORE LOAD AREA

SPECIAL SAVE

PROCESS SAVE

SKELETON

ERROR PROGRAMS

COLD START

FILE
PROTECTED

Figure 77. Illustrating "Redefinition of the Message Buffer Area

System Design Considerations 153

The Message Buffer Area always precedes the
Core Load Area on a one-drive system. Note,
however, that if MESS is not required, that is, no
provision is made for it in the *DEDIT control card,
M should not be specified in the *DEFINE CONFG
control card, and no redefinition of this area takes
place.

Examples of Disk Configurations

The following examples illustrate typical disk con
figuration operations.

EXAMPLE 1. Define a single drive disk system
such that logical disk drive zero shall contain the
following areas:

• Core Load Area: 30 cylinders

• Process Work Storage: 6 cylinders

• FORTRAN I/O Save Area: 4 sectors

• Interrupt Save Area: 2000 words

• Skeleton Area: 16, 000 words

• Message Buffer: 6 cylinders

• Error Dump Area

• Error Save Area

• Nonprocess Save Area

A 32K system is assumed.
It is the user's responsibility to specify the

lengths of the first six areas required: the DEFINE
CONFG function automatically computes and allo
cates the remaining three areas. Since a 32K
machine is used, an Error Dump Area equal to
object core size (32K) and a Nonprocess Save Area

154

equal to variable core (16K) are assigned to the
disk. An Error Save Area of six sectors is always
automatically allocated when the E parameter is
specified.

The control card sequence for this operation is:

SAMPLE CODING FORM

Figure 78 reflects the disk layout for disk drive zero
on completion of this function.

IBM SYSTEM ~ FILE PROTECTED

NON PROCESS
WOR K STORAGE

PROCESS
WOR K STORAGE

NON PROCESS SAVE

FOR I/O SAVE

E~ROR SAVE

ERROR DUMP

INTERRUPT SAVE

MESSAGE BUFFER

CORE LOAD
AREA

SPECIAL SAVE

PROCESS SAVE FILE PROTECTED

SKELETON

ERROR PROGRAMS

COLD START

Figure 78. Disk Layout of Disk Drive Zero for Example 1

EXAMPLE 2. Define a three-drive TSX on-line
system as follows:

Drive Zero

Drive 1

Drive 2

Label this disk cartridge: 13579
Core Load Area = 30 cylinders
Process Work Storage = 5 cylinders
FORTRAN I/O Save Area = 24 sectors
Skeleton Area = 16384 words
Nonprocess Save Area

Label this disk cartridge: 12345
Establish a LET/FLET area of 2 cyl
inders
Core Load Area = 100 cylinders
Process Work Storage = 10 cylinders
Message Buffer = 6 cylinders

Label this cartridge: 09876
Establish a LET/FLET area of 1 cylinder
Core Load Area = 125 cylinders
Interrupt Save Area = 2048 words
Error Dump Area
Error Save Area

A 32K system is assumed.
As this is a multi-drive system, the total num

ber of disk drives available to the system must be
defined. Remember that the System Loader
assumes at system load time that only one disk
drive (logical disk drive zero) is present on the
system; DCOM thus indicates only one disk drive.
The *DEFINE NDISK is therefore a redefinition of
the system: this must always be performed before
the skeleton is built.

Disk cartridges, other than that on logical drive
zero, which are intended for system usage are then
initialized by the DUP *DLABL function. Since
disk drives 1 and 2 have not previously been identi
fied as system drives, they are cleared (including
file-protect bits), disk addresses are written, a
LET/FLET area is established as specified, and a
label written on each disk cartridge. In the case
of disk drive 2, a one-cylinder LET /FLET area
is defined by default. Logical drive zero is re
labelled with 13759.

A separate *DE FINE CONFG control card must
be used for each disk cartridge if it is to contain a
Core Load Area and/or Process Work Storage.
Note that S is only used to specify a basic set of
system programs/areas, which includes the Core
Load Area, for the system drive (logical drive
zero). The parameter C, indicating a Core Load
Area, is only used for auxiliary disk drives (drives
1 and 2).

As pointed out in Example 1, it is the user's
responsibility to specify the lengths of the following:

Core Load Area
Process Work Storage
FORTRAN I/O Save Area
Interrupt Save Area
Skeleton Area
Message Buffer for 1053 Printer

The *DEFINE CONFG function automatically
computes and allocates disk storage for:

Error Dump Area
Error Save Area
Nonprocess Save Area
Nonprocess Working Storage

In our example, since a 32K machine is implied,
an Error Dump Area equal to object core size (32K) ,
and a Nonprocess Save Area equal to variable core
(16K) are allocated. An Error Save Area of six sec
tors is automatically set aside whenever E is speci
fied. Note that Message Buffer Size is determined by
the TASK equate card NOCYL at TASK assembly time.

Figure 79 reflects the layout of the three disks
following configuration.

The control record sequence for this multiple
operation is given below:

SAMPLE CODING FORM

Note: If different sys tem packs are us ed alternatively
with the same non-s ystem pack (for example,
if one system pack is used to store a program
onto a non-sys tem pack and another to delete
the same program), errors may arise if the
definitions of LSKEL in the system packs are
not equivalent.

System Design Considerations 155

LET/FLET

IBM SYSTEM

NONPROCESS

WORK
NONPROCESS

STORAGE
WORK

STORAGE

PROCESS
PROCESS WORK STORAGE

WORK

STORAGE
t'mNPROCESS SAVE AREA

FORTRAN I/O SAVE AREA

CORE LOAD AREA MESSAGE BUFFER

SPECIAL SAVE AREA

PROCESS SAVE AREA CORE

SKELETON LOAD

ERROR PROGRAMS AREA

COLD START

DISK DRIVE 0 DISK DRIVE 1

Figure 79. Definition of a Three-Drive TSX On-Line System for Example 2

EXAMPLE 3. Define a three-drive TSX off-line
system as follows:

Drive Zero

Drive 1

Drive 2

Core Load Area = 50 cylinders
T ASK Skeleton Area = 8000 words
Message Buffer Area = say 6 cylinders
Process Save Area

Label this disk pack: 12635
Establish a LET /FLET area of 2 cylinders
Core Load Area = 150 cylinders

Label this disk pack: 23764
Establish a LET /FLET area of 5 cylinders
Core Load Area = 50 cylinders

A 16K system is assumed.
The number of disk drives available to the off

line system is first defined, as in Example 2. Disk
drives 1 and 2 are then initialized, and LET /FLET
areas established (see Figure 80). Since each disk
cartridge is to contain a Core Load Area, a separ
ate control card is used to define each cartridge.
Note that the skeleton area on logical drive zero is
configurated to hold the TASK monitor system.

156

: 2 CYLS

10
CYLS

i
100

CYLS

~

LET/FLET

NONPROCESS

WORK

STORAGE

ERROR SAVE

ERROR DUMP

INTERRUPT SAVE

CORE

LOAD

AREA

DISK DRIVE 2

t 1 CYL

i
125

CYLS

~

~ = FILE PROTECTED AREA

Figure 80 reflects the disk layouts of the off-line
system.

The control record sequence is given below:

SAMPLE CODING FORM

LET/FLET

IBM
SYSTEM

NONPROCESS

WORK

STORAGE

NONPROCESS

WORK

STORAGE

CORE

LOAD

AREA
INTERRUPT SAVE

MESSAGE BUFFER

CORE LOAD AREA

PROCESS SAVE

TASK

ERROR PROGRAMS

COLD START

DISK DRIVE 0 DISK DRIVE 1

-l INDICATES FILE PROTECTED AREA

Figure 80. Definition of a Three-Drive TSX Off-Line System for Example 3

DISK CARTRIDGE INITIALIZATION

There are three programs within TSX concerned with
disk cartridge initialization.

• TASK DISK WRITE ADDRESS (TDWA, a TASK
utility program)

• DWRAD (a DUP function)

• DLABL (a DUP function)

A comparison of their features is given in Table
13 at the end of this section.

Use of TDWA

A disk cartridge cannot, by definition, be used for
processing functions unless it is first initialized by
TDWA. Thus, whenever a disk cartridge is initially
supplied, or is to be re-initialized, TDWA must be
used. This operation is carried out in the off-line
mode under TASK control (e. v., at system genera-
tion time). .

~ 5 CYL LET/FLET :5 CYL

I
150

CYL

NONPROCESS

WORK

STORAGE

CORE LOAD

AREA

DISK DRIVE 2

t
50

CYL

~

TDWA performs two basic functions: it (1) checks
the ability of the disk to record and reproduce infor
mation, and (2) writes addresses on the disk, flags
defective cylinders, zeroes all storage words, and
records the first sector of each defective cylinder on
sector zero of the disk cartridge which is file
protected. TDWA does not label the disk cartridge.

A practical example of the initialization of a two
disk-drive system is given in Programming Techni
ques: TSX Sample System. For TASK DISK WRITE
ADDRESS system procedures, see IBM 1800 Time
Sharing Executive System, Operating Procedures,
Form C26-3754.

Use ofDWRAD

DWRAD allows the user to perform in an on -line or
off-line mode the following functions:

• Rewrite sector addresses in any specified
cylinderized area on any disk cartridge

• Retain or save the contents of the sectors
indicated, if desired, for analysis purposes

System Design Considerations 157

• Zero from one to 199 cylinders as specified
(except cylinder zero)

• Enforce file protect or file unprotect on the
entire area specified

DWRAD does not label the disk cartridge.
As disk sector addresses may be inadvertently

modified or destroyed during the execution of user
programs, such as in the transfer of data to core
by a READ command, or by hardware failures,
DWRAD provides the user with the ability to rewrite
sector addresses of specified areas without recourse
to a re-initialization process by TDWA. Whenever
addresses in a certain area are destroyed, data can
not be retained or preserved in these sectors; the
area must be readdressed and the data zeroed.

The file protect/file unprotect feature is useful
in those situations where the user desires to en
force or remove file protection from a specified
disk file or systems area. He might, for example,
require to remove file protection from a certain
portion of the Core Load Area for Assembler
WRITE operations, and later restore file protection
to that area.

The following examples depict typical operations.

EXAMPLE 4. Two cylinders beginning at sector 408
and ending at sector 417 are to be file protected.
Assume that the disk cartridge is on disk drive zero.
Information on these cylinders is not to be changed.

SAMPLE CODING FORM

EXAMPLE 5. Two cylinders as specified in Exam
pIe 4 are to be file unprotected. Clear all sectors.
Assume that disk cartridge is on disk drive zero.

158

SAMPLE CODING FORM

Note that file protection (or the removal of file
protection) will only be effective if the disk drive
indicated (in column 11) is defined to be on the sys
tem. That is, it is specified on the / / JOB control
card.

EXAMPLE 6. Zero cylinders 2710 to 3210 with
file protection removed. Assume that disk cartridge
is on drive 2.

SAMPLE CODING FORM

Use of DLABL

Disk cartridges on disk drives other than logical
drive zero, and intended for system usage, must be
initialized by means of the DUP *DLABL function.

DLABL serves three purposes:

• Places a label on the cartridge

• Establishes a LET/FLET table

• If certain conditions are met, it also writes
addresses on an entire disk

D LABL places a numeric label, as specified by
the user on the *DLABL control card, in word zero
of sector zero on the disk cartridge. To prevent
users from inadvertently destroying the system, only
the label is written when the disk drive specified is
drive zero, and when the drive is a system drive.
All other data on these cartridges, including defec
tive cylinder addresses in sector zero, remain un
changed.

For all other disk cartridges, D LABL assumes
an unlabelled, pre-addressed disk cartridge. It then
clears the cartridge, including the file-protected
areas, but not including the defective cylinder ad
dresses in sector zero of cylinder zero; writes a
new label, if specified, in word one, sector zero of
the disk, and establishes a file-protected LET /FLET
area (LET in sector one, FLET in the last sector of
the LET /FLET cylinder area). Note that unless the
disk cartridge operated on is located on logical
drive zero, or a system drive specified on the
/ / JOB card, DLABL will erase all data as it
writes addresses, and always establish one file
protected cylinder.

The size of the LET /FLET area is determined
either by user specification on the DLABL control
card, or, if unspecified, automatically made to be
eight sectors.

Each DUP *DLABL function must be run as a
separate job; that is, each *D LABL control card
should be preceded by a / / JOB, / / DUP card com
bination, and should be followed by the next / / JOB
card. It can be performed in either the on-line or
off-line mode.

For typical DLABL operations, see Examples
2 and 3; also, Programming Techniques: TSX
Sample System.

Table 13. Comparison of TDWA, DWRAD, and DLABL Features

FEATURES TDWA DLABL DWRAD

ON SYSTEM OFF SYSTEM

CARTRIDGE YES NO NO NO TEST

ON-LINE
OR OFF-LINE BOTH BOTH BOTH

OFF-LINE

CLEARS YES

CARTRIDGE YES NO YES (BY SPEC.
CYLS.)

FILE PROT./
FILE PROT. FILE BOTH
CYL. ZERO NO (BY SPEC. FILE-UN PROT. ONLY UN PROTECTS CYLS.)

WRITES YES
SECTOR YES NO NO (BY SPEC.

ADDRESSES CYLS.)

WRITES NO YES YES NO LABEL

ESTABLISHES
LET/FLET NO NO YES NO

AREA

SUMMARY OF DISK STORAGE REQUIREMENTS
AND ASSIGNMENT RESTRICTIONS

1. Disk areas that are fixed and equal for all sys
terns, regardless of core size. These are il
lustrated below. Note that these areas con
stitute a basic nonprocess system.

DCOM

MBT-AT

SK SUB
} 1 CYLINDER

.SUP 11 SECTORS

.CLB 9 SECTORS

.DUP 64 SECTORS

.ASM 40 SECTORS

.FOR 104 SECTORS

.SIM 100 SECTORS

LET-FLET 1 CYLINDER

/EPSV 6 SECTORS

.EDP 30 SECTORS

/CLST 6 SECTORS

2. Disk areas that are not dependent upon core
size, but which may vary in disk storage
requirements

Relocatable Program Area. This will expand
or contract in size as relocatable programs are
added to or deleted from the system.

Nonprocess Work Storage. NPWS will increase
or decrease as relocatable programs and sub
routines are added to or deleted from the
system.

System Design Considerations 159

Message Buffer Area. The size of the Message
Buffer Area is computed by the user and speci
fied during system generation. The factors
which determine its size are discussed in System
Design Considerations: TASK.

Core Load Area. The size of the Core Load
Area is specified by the user at DEFINE CONFG
time.

System Skeleton Area. This is a copy of the
skeleton area of core; its size is determined
by the formula:

Skeleton Size = Total Core Size Minus Size
of Variable Core

FORTRAN I/O Save Area. The number of
sectors required for this area is determined by
the number of interrupt levels which use
FORTRAN I/O. See Disk Or,ganization.

3. Disk areas where storage requirements depend
upon the size of variable core. These include:

• Nonprocess Save Area

• Interrupt Save Area

• Special Save Area

• Process Save Area

4. Disk areas that must be assigned to logical
disk drive 0:

DCOM
MBT-AT
SK-SUB
SUP
CLB
DUP
ASM
FOR
SIM
IBM Subroutine Library

5. Disk areas that must be assigned to one disk
drive, but need not be assigned to logical disk
drive zero:

160

EPSV
CLST
INSV
ERPG
PRSV
SKEL

6. Disk areas that may be assigned to one disk
drive, but need not be assigned to logical disk
drive zero:

EPDM
NPSV
MESS
FIOS
SPSV

7. Disk areas that will be assigned to the same
disk drive, but need not be assigned to logical
disk drive zero:

PRSV
SKEL
ERPG
CLST

8. Disk areas that can be assigned to more than
one disk drive:

Relocatable Program Area
NPWS
PRWS
Core Load Area

9. Disk areas that must be assigned to every disk
drive:

LET/FLET

10. Disk File Protection
(a) Certain areas of the disk are file-protected.

This means that the user cannot write into
any of these areas at object time, although
he can update file-protected files by using
FORTRAN I/O only. System programs
can, however, write into file-protected
areas.

These areas include the following:

DCOM
MBT-AT
SK-SUB
SUP
CLB
DUP
ASM
FOR
LET/FLET
IBM Subroutine Library
Relocatable Program Area
Core Load Area
SPSV
PRSV
SKEL
EDP
CLST

(b)

(c)

User-written programs are stored in the
file-protected areas on disk. Programs
are written into (that is, added to the sys
tern) file-protected areas by the DUP
*STORE, *STOREMD, *STORECI, and
*STOREDA TA operations.
File-protected areas are fixed in size and
cannot be altered by the user.

SYSTEM SKELETON

In an on-line TSX system, a nucleus of supervisory
programs and their associated work areas and tables
must be permanently core-resident to obtain effic
ient and continuous operation. At the center of this
nucleus is the System Director which provides the
essential communications between core loads and
interrupt servicing routines. This framework of
programs is referred to as the System Skeleton.

TASK is used in conjunction with the Skeleton
Builder program to construct the in-core skeleton
as required for TSX system operation within the
limits prescribed by the user. The size and content
of the skeleton is dependent on the size of the object
machine, the size of user's process programs, and
the size of process core loads which the user may
plan to move in and out of core during system oper
ation. The skeleton can be considered as the per
manent part of all executable core loads.

For on-line processing to take place, the System
Skeleton must be loaded to core memory; this is
accomplished initially by the system cold start pro
gram.

CONSTITUTION OF THE SYSTEM SKELETON

Figure 81 illustrates the various component parts
that make up the System Skeleton. Each of these
parts and its function are explained below.

Fixed Area. This is effectively a systems commun
ications area containing information used by all TSX
system programs. It is initially assembled as part
of TASK. At skeleton build time, various values in
this area are initialized by the Skeleton Builder from
System Director input. A disk image of the Fixed
Area can be obtained by a disk dump of the first
sector of the Skeleton. See Appendix C: Contents
of the Fixed Area of Core.

FIXED AREA

SKELETON I/O

SKELETON COMMON

ICL TABLE
r------ ------

SYSTEM DIRECTOR

INTERRUPT SUBROUTINES

OTHER
USER

SUBROUTINES

PATCH AREA

PROGRAM NAME TABLE

EXECUTIVE TRANSFER VECTOR

EXECUTIVE BRANCH TABLE

SKELETON INTERRUPT BRANCH TABLE

Figure 81. Constitution of the System Skeleton

Skeleton I/O. An identical set of input-output routines
to that used by TASK forms the basis of Skeleton I/O.
This permits the user to perform various disk,
printer, and card utility functions (see System De
sign Considerations: TASK).

Skeleton Common. The maximum size of the Skele
ton Common area for an object machine is defined
and fixed by the user at TASK assembly time through
the equate card COMSZ. COMSZ may be zero or any
positive decimal value that will not cause the skeleton

System Design Considerations 161

size to exceed the start address of variable core
(that is, VCORE). TASK will determine the start
address and word count of this common area and
store them in words 156 and 157 in the Fixed Area.
INSKEL COMMON is the only common area that is
permanently core-resident. It provides communica
tions between various core load types, and those sub
routines included in the skeleton. When INSKEL COM
MON is referenced in a FORTRAN program, listed
variables are assigned addresses in Skeleton Common.
All other attributes of the COMMON, as used in the
FORTRAN language, are retained.

System Director. This forms the operating center of
the TSX system. It has the responsibility of direct
ing interrupt servicing, loading of user core loads,
supervising time-sharing, and servicing of interval
timers and error conditions. When the system is
operating under control of the System Director, con
trol is passed to it by TSX calls, interrupts, and
error conditions. The System Director is that por
tion of TSX, other than the Skeleton I/O, which must
be in core at all times in order to respond to a real
time environment. A detailed discussion of its func
tions is given in another section of this manual.

User Subroutines. The user has the option of includ
ing frequently called subroutines and high priority
interrupt routines in the skeleton. These may include:

• Skeleton subroutines

• Interrupt subroutines

• Programmed Interrupt subroutines

• Count subroutines

• User-written trace and error subroutines

• Timer subroutines

162

These programs must have previously been com
piled/assembled by the user and stored in relocatable
format in the Relocatable Program Area on disk.

In addition, if FORTRAN I/O is utilized, then those
conversion routines (e. g., HOLEB, EBPRT) neces
sary for its proper use must also be included in the
skeleton by having them specified on *INCLD control
cards. A detailed examination of some of the impor
tant considerations governing the inclusion of sub
routines in the skeleton is made later in this section.

Patch Area. This is the portion of core storage that
remains between the end of the subroutine area and
the Skeleton Program Name Table (PNT) which is
allowed (not explicitly defined) for the modification
of IBM and user programs within the skeleton. Its
size is determined by user requirements, but should,
in practice, be at least 100 words in length to allow
for future IBM modifications.

Program Name Table. This is the part of the skele
ton table area that maps (name, word count, and sec
tor address) all core loads referenced to Program
Sequence Control (PSC) by calls made by in-skeleton
subroutines. The symbolic name (SYDffi) in trunca
ted EBCDIC code for the System Director forms the
first entry in this table. See Figure 82.

Executive Transfer Vector (ETV). The Executive
Transfer Vector serves as a linkage between LffiF
type calls of a core load and corresponding routines
in the skeleton. It is originally constructed by TASK;
for each LIBF routine put into Skeleton I/O by TASK,
an entry is made into the ETV. At skeleton build
time, the Skeleton Builder inserts an entry into the
ETV for each entry point of each LIBF routine placed
in the skeleton, by extending the size of the original
ETV to reflect the entries for the included subroutines.

30BO
30CO
3000
3DEO
3DFO
3EOO
3EI0
3E20
3E30
3E40
3E50
3E60
3E70

3E80
3E90
3EAO
3EBO
3ECO
3EOO
3EEO
3EFO
3FOO

0000
OAEO
OA26
4480
3E59
28B6
4480
3E49
2C98
2305
2E3C
4COO
0000

0280
3E5E
3E5E
0000
0089
2':ifl2
4480
3E50
(JOOO

0000 122AO 4259
1361 2220 91A3
1382 2364 5544
0063 24A4 4480
25E2 4480 3E58
4480 3E53 lA61
3E4E 0000 4480
lA61 4480 3E48
28C8 28C8 28C8
IFF1 IFA9 2009
2046 2CFA 2C34
04F1 4COO 2000
OOOB 4COO 2FAA

cow

liUOI 4026 \ OO()2.
3E5E 3E5E 3E5E
3E6C 3E6A 3E68
4386 0000 0000
0000 4480 OOBA
4480 3F5A 25EO
3E55 0000 4480
OGOO 4480 3E4F
4480 3E4A 0000

0024 0000 220C 1572 OC2E
OAEO 13BA 7<'>14 5480 OADC
OB7A 13CC I 0000 4480 00B8
3E50 2600 4480 3E5C 25AE
2507 4480 31::57 250E 4480
4480 3E52 lA61 4480 3E51
3E40 2AFA 4480 3E4C 0000
0000 4480 3E47 13010 3001
2C21 2BCA 2BBC 2B60 2B52
lE90 IF63 108C 2D46 2EC4
2781 2~26 2ARA 2A7D 2A64
4COO 04F4 4COO OFOA 4COO
4COO 304C 4COO 313A 0000

0010 3E80 0010 OOSI OUbA
3E5E 3E5E 3E7E 0018 3E7A
3E5E 3E66 3E64 3E62 3E5E
0000 0000 7004 4383 0000
0000 4480 0063 239A 4480
4480 3E59 25E2 4480 3E58
3E54 28R6 4480 3E53 lA61
aooo 4480 3E4E 0000 4480
4480 3E49 IA61 4480 3E48

139C 1358 7C75 005E 13A6 1358 70BO
~ 13C3 0764 1105 116A 138E 0314 9563 SKELETON PNT

0000 4480 00B9 0000 4480 OOBA 0000
4480 3E5B 2502 4480 3E5A 25EO 4480
3E56 25E4 4480 3E55 0000 4480 3E54 ~ SKELETON ETV
29F7 4480 3E50 0000 4480 3E4F 0000
4480 3E4R 0000 4480 3E4A 0000 4480
2FFO 2860 2860 2B60 2EB6 2E 9C 2CEC
291C 28C8 2896 288C 27CA 2792 270C 14- SKELETON EBT
2800 2B05 2ABF 2E68 2A78 2AOO 2A5F
2A4A 79E6 28EE 28A8 2740 14COO 1DEF
0724 4COO 0727 4COO 072A 4COO oceo 4- SKIBT
(J003 4COO OflOO 0000 0014 4COO 304F --

CORE LOAD STARTS HERE

FORTRAN I/O

0003 ia3E8 134A 0010 000013E5E 3t5~14-
0003~3E5E 3E76 3E74 3E72 00013 3E6E
3E60 3E5E I 0 0 4::Hl3 00 4389

CORE LOAD IBT

0000" 7004 I 0000 4480 00B8 0000 4480
3E50 2600 4480 3E5C 25AE 4480 3E5B
25D7 4480 3E57 250E 4480 3E56 25F4 CORE LOAD ETV
4480 3E5? 1. AA 1 4480 3E51 29F7 448~1
3E40 2AFA 4480 3E4C 0000 4480 3E4B
0000 4480 3E47 JOOOO 0000 0000 0000

3FIO 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Figure 82. A Partial Dump Following a Skelelon Build 10 illustrate the Program Name Table and the Executive Transfer Veclor

Each entry in the ETV is three words long, cor
responding to the format of the VTV table associated
with each core load. When the skeleton build process
is completed, word 3 will contain the address of the
corresponding entry in the Executive Branch Table
(EBT).

The Executive Transfer Vector is, in reality, a
copy or duplicate of the ETV in all core loads, and
is effective only during disk-to-core transfers.

Figure 82 is given to provide a better insight of
the Program Name Table (PNT) and the Executive
Transfer Vector (ETV). It is a partial dump snap
shot of the skeleton built for the 1800 TSX-Sample
System (see Programming Techniques), and should
be studied in conjunction with the Skeleton Core Map.

Each entry in the PNT is four words in length.
Since the System Director is the first (and constitutes
the minimum) entry in a PNT, let us examine this
entry. From the dump we see

22AO 1=
4259 f

0024

0000

Name (SYDffi) of System Director
in truncated EBCDIC form

Number of words in PNT (hexadecimal
value)
Not used

Consider another entry, SCAN2. The dump
shows

220CI
1572

OC2E
139C

Name (SCAN2) of this core load
in truncated EBCDIC form

Core load word count
Disk drive and sector address where
core load resides

In turning to the ETV, we see that each entry is
three words long. Consider the entry DISKN. From
the dump we see

0000
4480
00B8

Entry point to the subroutine ETV entry
BSI indirect branch
Address where subroutine branches
through

Figure 82 also illustrates the Core Load Data
Words (CDW), the Core Load IBT, the Core Load
E TV, and the FORTRAN 110 table.

System Design Considerations 163

Executive Branch Table (EBT). A ma.p of all LIBF
and call subroutines in the user subroutine and Sys
tem Director areas of the skeleton. Each entry is
one word long. The EBT is employed as a transfer
vector: an indirect branch through the EBT is used
to enter the referenced subroutine.

Skeleton Interrupt Branch Table (SKIBT). A map of
all interrupt servicing subroutines in the skeleton.
It is used in conjunction with the Master Branch
Table (core load header words in sectors 1 and 2 on
disk) to guide the interrupt to its proper routine in
the skeleton. Each entry consists of a two-word
BSC instruction.

The table is built during skeleton build time by
entries put into the MBT. Word 2 of each entry is
filled by a word from the corresponding MBT entry,
while the location of the SKIBT entry itself replaces
the MBT entry.

SKE LETON CORE SIZE

The length of the skeleton in words is defined by the
user at DEFINE CONFG time, and given by the param
eter LSKEL (see System Design Considerations: Disk
System Configuration). LSKEL must be an even value
and is equal to the address of the first word in variable
core (VCORE).

In general, skeleton size is estimated by the user
after making allowances for the System Director,
Skeleton I/O, Skeleton Common, user-written sub
routines, and the PATCH area. Skeleton Common
and the PATCH area dimensions are determined by
exact user requirements. Some of the important fac
tors influencing skeleton size will now be considered.

Core Storage

The amount of core storage available determines the
number of features which can be included in a TSX
system (see System Design Considerations: System
Director). For example, is the system an off-line
or an on-line system? Is time-sharing required? Is
the Interval Timer Control feature used?

As a rule, in an on-line system using time-sharing,
variable core must be a minimum of 3692 words. For
example, in an 8K system, the maximum skeleton size
would then be 4500 words (see Figure 83).

If the time-sharing feature is not required in an on
line system, the in-core skeleton may occupy all of
core less 2500 words. This 2500-word restriction is
necessary because of space requirements for the Cold
Start and Error programs at the high end of core

164

storage (see Figure 84). Under this system, non
process work would have to be accomplished off-line
under TASK control (see Figure 85).

The maximum size of the skeleton is always dic
tated by the balance of core storage above the skele
ton: 3692 words minimum for Nonprocess Monitor
use, or for non time- sharing users, a minimum of
2500 words minimum for tho Cold Start and Error
programs.

It should be noted that too small a skeleton may
demand frequent disk exchanges requiring excessive
time, while too large a skeleton may reduce the var
iable space available for core loads and thus cause
over-segmentation.

Figures 83, 84, and 85 summarize these rules
for the on-line system (with time-sharing), on-line
system (non-time-sharing) and the off-line system.

Inclusion of Subroutines in the Skeleton

The user may elect to include interrupt and other
subroutines permanently in the skeleton for more
rapid system response. The criteria governing these
inclusions and the advantages gained thereby are dis
cussed below.

t veORE

I (/F1FO)

VARIABLE
CORE

(3692 WORDS)
MINIMUM

1

SKELETON I/O

SYSTEM

SKELETON

USED BY: CORE
LOADS I ASM , FOR I

SIM, CLB

f----- -- ------

SUP
DUP
FOR
ASM
SIM
CLB

Figure 83. On-Line (Time-Sharing) System

f
eDRE

2500
WORDS

MINIMUM
VARIABLE

CORE

+

SYSTEM

SKELETON

USED BY:

CORE LOADS

Figure 84. On-Line (Non TIme-Sharing) System

Response Time. The shortest response time (that is,
the minimum time before an interrupt servicing rou
tine is entered after a process or program interrupt
is recognized) is obtained by placing the servicing
routine in core with the skeleton. The main advantage
of having as many routines as possible permanently
resident in the skeleton is faster response time.

Commonly-used Subroutines. Subroutines which are
commonly enough referenced in core loads warrant in
clusion in the skeleton. The advantages derived are:

1. Better utilization of disk user area and core load
area. Every subroutine that is included in the
skeleton is commonly shared by the several core
loads referencing that subroutine. This means
that each core load no longer contains the called
subroutine, thus reducing core load length, and
hence disk space.

2. Since the length of individual core loads has been
shortened, less disk time is required to load the
core load.

SKELETON I/O

TASK

VCORE ~--------------------~

USED BY:

CORE LOADS
ASM
FOR
SIM
CLB

(/F1FO) r----- -----
VARIABLE

CORE
(3692 WORDS)

(MINIMUM)

1

SUP
DUP
FOR
ASM
CLB
SK. BLDR
SYS. LOADER
SIM
TASK UTILITIES

Figure 85. Off-Line System

3. The effect of having a larger skeleton produces
a disk space advantage. A larger Core Load
Area is now possible because save areas, that
is Special Save (SPSV), Process Save (PRSV)
and Nonprocess Save (NPSV) can be smaller. Of
necessity, the Interrupt Save (INSV) Area (as
defined by the DEFINE CONFG parameter (LINS)
can be no longer than the above-mentioned save
areas. It can now be smaller. Furthermore,
the user can now delete those subroutines that
are included in the skeleton from the user area.
This extra space on disk thus gained may be
utilized for other purposes such as work areas
and relocatable programs.

Subroutines Specified in the CALL TIMER Statement.
Timer servicing subroutines should, as a rule, al
ways be included in the skeleton. These subroutines
can perform some execution, but it is preferred, if
any I/O device is required, that they simply set a
programmed interrupt (by a CALL LEVEL (1)) or
queue a mainline core load and return control to lTC.

System Design Considerations 165

Consider for example where a mainline calls a timer
as follows:

EXTERNAL SUBI
CALL TIMER (SUBl, 1, INCRE)

The user is responsible to ensure that the mainline
that requested the CALL TIMER statement remain in
core until the end of the elapsed specified time (that
is, until the timer times out). One way of achieving
this is for him to mask out all out-of-core interrupt
levels a..ld not change core loads until the timer inter
rupts. He thereby ensures that the core load con
taining the subroutine SUBI remains in core.

If, however, he does not wish to remain in a
masked state, a second approach is to have previously
included SUBI in the skeleton. In this way, he does
not incur the penalty of waiting for the timer to inter
rupt, and also gains the advantage of 'not tying up var
iable core.

Count Subroutines. The Count subroutine is simply
another method of servicing an event. Unlike timer
interrupts, count interrupts may run off a different
time base, and utilize larger time intervals. If the
user plans to use the CALL COUNT statement, he
should remember that for immediate servicing of an
event, it is preferred that he set up these routines as
part of his skeleton. If he does not, the event can be
recorded and subsequently serviced by a CALL QIFON.

I/O Devices and their Associated Conversion Subrou
tines Required for FORTRAN DP I/O. On an on-line
TSX system, the normal DP I/O utility functions are
carried out by a package of skeleton I/O routines
which also forms the basis of input-output operations
in TASK. That is, the same set of I/O routines exist
in TASK and the System Skeleton. Since the TSX Sys
tem is a disk operating system, DISKN will be in core
(that is, in the skeleton) at all times. If a 1053 print
er or a 1816 keyboard/printer has been specified in the
assignment stage, TYPEN/WRTYN must also be per
manently in core. Similarly, if a 1443 printer has
been assigned, PRNTN must be resident in the skele
ton I/O area. These routines are automatically in
cluded in the System Skeleton at skeleton build time.

Although CARDN is always resident in core during
TASK execution, this routine is an optional part of the
Skeleton I/O, depending on user requirements. The
user must, however, define at TASK assembly time
(by equating CD INS to 1 or 0) whether or not CARDN
is to be in the skeleton. If it is not included, it will
be loaded as a part of those core loads which address
the card reader. Note that in this event, the non-

166

process components (such as the Assembler,
FORTRAN Compiler, etc.) use their own card I/O
routine.

If the user intends to do FORTRAN DP I/O from
the skeleton, he should ensure that the conversion
subroutine associated with any DP I/O device used by
skeleton subroutines be included in the skeleton. He
does this by means of an *INCLD control card at
skeleton build time which loads the appointed con
version routine from the IBM Subroutine Library.

Figure 86 shows the relationship between each
DP I/O device and its associated pair of function and
conversion subroutines. For example, the 1442 card/
read punch unit is associated with CARDN (its func
tion routine) and HOLEB (its conversion routine).
Note that there is no conversion routine for the 2401
magnetic tape drive: the conversion is by-passed.
Conversion routines should be consistent with the
precision required (that is, whether standard or ex
tended)as specified in the TASK equate card PRICS.

Inclusion of Explicit and Implicit Subroutines. In the
compilation of a FORTRAN problem program, the
compiler-generated machine language coding includes
a large number of branch instructions which transfer
control to subroutines during execution of that pro
gram. It is, in fact, the subroutines that perform the
majority of operations in any given problems. These
subroutines can be classified into two distinct types:
explicit, and implicit.

Explicit subroutines are those subroutines that
are clearly formulated or externally visible in a main
program. Implicit subroutines, on the other hand,
are those subroutines which are involved in the solu
tion of a problem program, but not externally revealed.

ASSOCIATED DP I/O
SUBROUTINES DEVICE

TYPEN 1053/1816 Keyboard Printer
EBPRT

CARDN 1442 Card/Read Punch
HOLEB

PRNTN 1443 Pri nte r
EBPRT

PAPTN 1054/1055 Paper Tape Reader &
PAPEB Punch

MAGT 2401 Magnetic Tape Unit

TYPEN 1816 Keyboard Unit
HOLEB

PLOTX 1627 Plotter Unit
ECHRI or
FCHRI

Figure 86. Illustrating Relationship of DP I/O Devices
to Associated Function and Conversion Subroutines

If the user plans to include FORTRAN subroutines
in the Skeleton, he should make adequate core space
allowance both for explicitly named and implicitly
called subroutines. The explicitly named user
written subroutine is included in the Skeleton by
specifying its name in an *INCLD control card at
skeleton build time, while any implicitly referenced
subroutines will be automatically loaded at the same
time.

The following two examples examine skeleton core
requirements for typical situations involving explicit
and implicit subroutines.

EXAMPLE 1 - FORTRAN CASE. Consider a main
program which is required:

1. To set up variables of a 10 by 10 matrix and
2. To call a user-written subroutine MSQRT which

is to compute the square root of each element
in the array.

Program Listing No. 5 shows the compilation
run, from which it can be seen that if the user
intends to include the subroutine MSQRT in the
skeleton, he should make appropriate skeleton
space allowances for the following:

(Explicit) MSQR T

(Implicit) FSQRT

FSTOX

SUBSC

SUBIN

(program + variable)
72 words

86 words

102 words

44 words

36 words

(Subroutines req. by FSQRT:)

FlVIPY = 65 words

FDIV = 106 words

FADD = 158 words

(Subroutines req. by FM:TY, FDIV, FADD:)

FARC = 52 words

NORl\1: = 44 words

FTRTN = 40 words

XMOO = 42 words

847 words

System Design Considerations 167

PROGRAM LISTING NO.5: EXAMPLE 1 -- FORTRAN CASE

II JOB
II FOR MATRX
*NONPROCESS PROGRAM
'~LIST ALL
C SAMPLE MAIN PROGRAM TO CALL A MATRIX SQUARE ROOT SUBROUTINE

DIMENSION VALUE(10,10J
N = 10
SUM = 0.0
DO 5 I=I,N
DO 5 J=I,N
SUM = SUM + 1.0
VALUE(I,J) = SUlvl
CALL MSQRT(VALUE,N)
CALL EXIT
END

VARIABLE ALLOCATIONS
VALUE(R)=00C6-0000 SUM(R)=00C8 N(I)=OOCA 1(1)=OOCC

STATEMENT ALLUCATIONS
5 =OOFO

FEATURES SUPPORTED
NONPROCESS

CALLED SUBPROGRAMS
MSQRT FADD FLO FSTO FSTOX SUBSC

REAL CONSTANTS
.OOOOOOE 00=0002 .100000E 01=0004

INTEGER CONSTANTS
10=0006 1=0007

CORE REQUIREMENTS FOR MATRX
COMMON 0 INSKEL COMMON

END OF COMPILATION

MATRX
DUP FUNCTION COMPLETED
II FOR i"IS(JRT
'~LI ST ALL
*NONPROCESS PROGRAM

SUBROUTINE MSQRT(A,N)

o VARIABLES

C USER WRITTEN MATRIX SQUARE RonT SUBROUTINE
DIMENSION A(10,10)
DO 1 I=l,N
DO 1 J=l,N
A (I, J) = SQR T (A (I ,J))
RETURN
END

VARIABLE ALLOCATIONS
I (I) =0000 J (I) =0002

STATEMENT ALLOCATIONS
1 =OOlA

FEATURES SUPPORTED
NONPROCESS

CALLED SUBPROGRAMS
FSQRT FSTOX SUBSC

INTEGER CONSTANTS
1=0006

SUBIN

CORE REQUIREMENTS FOR MSQRT
COMMON 0 INSKEL COMMON

END OF COMPILATION

MSQRT
DUP FUNCTION COMPLETED
*STORE MSQRT
MSQRT
DUP FUNCTION COMPLETED
*STORECIL MATRX MATRX
*CCEND

o VARIABLES

210 PROGRAM 66

6 PROGRAM 66

J(I)=OOCE

CLB, BUILD (II'IATRX

CORE LOAD MAP
TYPE NAME ARG 1 ARG2

*CDW TABLE 4002 OOOC
t,'1 BT TABLE 400E 0023
':'F 10 TABLE 4031 0010
t,'ETV TABLE 4041 OOOC
':'VTV TABLE 4040 0021
~'PNT TABLE 406E 0004
MAIN MATRX 414C
PNT MATRX 4070
LI BF FLO 41EA 4040
LI BF FSTO 41DO 4050
LI BF FAOO 421E 4053
LI BF SUBSC 429C 4056
LI BF FSTOX 4186 4059
CALL M S(.JRT 42DO
LI BF FARC 4310 405C
LI BF SUBIN 4344 405F
CALL FSQRT 4386
LI BF F~iPY 4309 4062
LI BF FLDX 41E5 4065
LI BF FOIVX 4416 4068
LI BF FADDX 4218 4066
CALL FTNTR 4480
CALL FTRTN 449A
CORE 44AA 3B56

CLB, MATRX LD XQ

DUP FUNCTION COi"1PLETEO
I I XEQ ~lATRX FX

II JOB
II END OF ALL JOBS

EXAMPLE 2 -- ASSEMBLER CASE. Consider a
main program which is required:

To call a user-written subroutine QUAD to
sol ve a quadratic equation

2
AX +BX+C=O

using the positive square root, and assuming
the quantity under the square root sign is
greater than zero.

From Program Listing No.6, it can be seen that
if the user intends to include QUAD in the skeleton,
adequate space allowances should be made for the
following:

(Explicit) QUAD = (program + variables)
82 words

FLD 102 words

FMPY 65 words

FSQR 86 words

FADD 158 words

FDIV 106 words

(Implicit) FARC 52 words

FTRTN= 40 words

XMDS 42 words

NORM 44 words

777 words

System Design Considerations 169

PROGRAM LISTING NO.6: EXAMPLE 2 -- ASSEMBLER CASE

II JOB
II ASM

*LIST

18901100
0000

0012
0000
0000
0002
0004
0006
0008
OOOA
oooe
OOOE
0010

00 00000000
00 00000000
00 00000000
00 00000000
00 00000000
00 00000000
00 40000083
00 40000082

0012 0
0013 01
0015 0
0016 01
0018 0
0019 01
001B 01
OOlD 0
001E 01
0020 0
0021 01
0023 01
0025 0
0026 01
0028 0

0002

0000
C4800012
D8FA
CC800010
D8E7
74010012
C4800012
D8F2
CC800010
D8E 1
74010012
C4800012
D8EA
CC800010
D8DB

0029 20 064C4000
002A 1 OOOE
002B 20 06517AOO
002C 1 0000
002D 20 068A3580
002E 1 0008

002F 20 064C4000
0030 1 0000
0031 20 06517AOO
0032 1 0004
0033 20 065UAOO
0034 1 OOOC
0035 20 068A3580
0036 1 OOOA
0037 20 064C4000
0038 1 0002
0039 20 06517AOO
003A 1 0002
003B 20 068A4080
003C 1 OOOA
003D 30 06898640
003F 20 068A4080
0040 1 0002

0041 20 06109940
0042 1 0008

0043 20 068A3580
0044 1 0006
0045 01 74010012
0047 01 C4800012
0049 0 DOC6
004A 0 C8BB
004B 01 DC800010
0040 01 74010012
004F 01 4C800012
0052

*
*
*
*
*
*
*
*
*
*
*

A
B
C
X
TEMPl
TEIViP2
FOUR
TWO
TEMP

* QUAD

*

*
*

*

*

ENT
BSS
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
BSS

DC
LD
STD
LDD
STD
MDX
LD
STD
LDD
STD
MDX
LD
STD
LDD
STD

LI BF
DC
LI BF
DC
LI BF
DC

LI BF
DC
LI BF
DC
LI BF
DC
LI BF
DC
LI BF
DC
LI BF
DC
LIBF
DC
CALL
LIBF
DC

LI BF
DC

LI BF
DC
MDX
LD
STO
LDD
STD
fviDX
BSC
END

E

L
I

NO ERRORS IN ABOVE ASSEMBLY.
QUAD
DUP FUNCTION COMPLETED
1/ ASM MAIN

*LIST

170

SAMPLE SUBROUTINE TO SHOW THE USE OF
IMPLICIT AND EXPLICIT SUBROUTINE
CALLS

THIS SUBROUTINE SOLVES A QUADRATIC
EQUATION

A*(X**21 + B*X + C = 0
USING THE POSITIVE SQUARE ROOT. AND
ASSUMING THE QUANTITY UNDER THE
SQUARE ROOT SIGN IS GREATER THAN ZERO

QUAD
o
0.0
0.0
0.0
0.0
0.0
0.0
4.0
2.0
2

o
QUAD
TEMP
TEMP
A
QUAD,1
QUAD
TEMP
TEMP
B
QUAD,1
QUAD
TEMP
TEMP
C

FLD
TWO
FMPY
A
FSTO
TEMPI

FLD
A
FMPY
C
FMPY
FOUR
FSTO
TEMP2
FLD
B
FMPY
B
FSUB
TEMP2
FSQR
FSUB
B

FDIV
TEMPI

FSTO
X
QUAD,l
QUAD
TEMP
X
TEMP
QUAD,l
QUAD

ARG A WILL BE STORED HERE
ARG B WILL BE STORED HERE
ARG C WILL BE STORED HERE
RESULT WILL BE STORED HERE

SET UP ARGUMENTS A.B.C

VALUES COME FROM MAIN PROG

TO CALCULATE DIVISOR 2*A
LOAD 2.0 INTO FAC

MULTIPLY 2.0 BY A TO GET
2.0*A
STORE DIVISOR TEMPORARILY

TO CALCULATE DIVIDEND = A +
SQUARE ROOT OF B**2 -4*A*C
LOAD A INTO FAC TO CALCU
LATE 4*A*C

STORE 4*A*C TEMPORARILY

LOAD B INTO FAC TO CALCU
LATE B**2 = B*B

HAVE B*B IN FAC. NOW TO
SUBTRACT 4*A*C

TAKE SQ.RT.OF B*B-4*A*C
SUBTRACT B FROM SOUARE ROOT
GET -8 +SQ.RT(B*B -4*A*C)
TO DIVIDE DIVIDEND BY 2*A

TO STORE RESULT IN X

* MAIN PROGRAM TO CALL SUBRflUTINE QUAD

0000 0000 BSS 0
0000 00 40000081 AA DEC 1.0
0002 00 600000B2 BB DEC 3.0
0004 00 40000082 CC DEC 2.0
0006 00 00000000 XX DEC 0.0 TO BE FILLED IN BY SUBR
0008 30 18901100 START CALL QUAD
OOOA 1 0000 DC AA
OOOB 1 0002 DC BB
oooe 1 0004 DC CC
0000 1 0006 DC XX
OOOE 0 3000 WAIT
OOOF 30 059C98CO EXIT
0012 0008 END START

NO ERRORS IN ABOVE ASSEMBLY.
MAIN
DUP FUNCTION COMPLETED
II XEQ MAIN L
*CCEND

CLB, BUILD MAIN

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*CDW TABLE 4002 OOOC
*IBT TABLE 400E 0023
*FIO TABLE 4031 0010
*ETV TABLE 4041 OOOC
*VTV TABLE 404D 0021
*PNT TABLE 406E 0004
MAIN MAIN 407A
PNT MAIN 4070
CALL QUAD 4096
LIBF FLO 413A 404D
LI BF FMPY 4153 4050
LIBF FSTO 4120 4053
LIBF FSUB 41A4 4056
CALL FSQR 4246
LIBF FAOD 41BO 4059
LIBF FDIV 4289 405C
LIBF FARC 42EE 405F
LIBF FSTOX 4006 4062
LIBF FLDX 4135 4065
LIBF FDIVX 4284 4068
LIBF FADDX 41AA 4066
CALL FTNTR 4322
CALL FTRTN 433C
CORE 434C 3CB4

CLB, MAIN LD XQ

II JOB
II END OF ALL JOBS

System Design CoDslderatioDs 171

CALCULATING SKELETON CORE SIZE

Skeleton Core Size can be arrived at by computing the value of the start address of variable core (VCORE), an
even number. VCORE is equal to a summation of:

SKELETON
+

I/O
INSKEL

COMMON
+

SYSTEM
DIRECTOR

+
USER'S

PROGRAMS
SKELETON

+ +
TABLES

PATCH
AREA

The manner in which the SYSTEM DIRECTOR is calculated has already been discussed (see System
Design Considerations: System Director). INSKEL COMMON, the PATCH AREA, and the USER'S
PROGRAMS are defined by the user.

SKELETON I/O = Fixed Area = 200 words
+Disk Device Tables = 66 words per drive
+DISKN = 900 + (12 + (9XDORG2» X DORG1 + 12 X MKLEV
+ 1053 Device Tables 14 + message unit size (add 1 if the message unit size is odd)

per 1053 and 1816
+ 1816 Device Tables 14 words per keyboard
+ TYPEN = 256 + (3XN) + (341 + (8XNOCYL» X NOBUF + (20 + (2XTORG»

X(1-NOBUF) + (418 + (8X(M-1») X TORG + 16XMKLEV
where N = number of 1053/1816s
and M = number of 1816s

+ 1053/1443 Timing Response Routine = 2 + (78XTORGN) + 22XPORG
+ 1443 Device Table = 14 words
+ PRNTN = 323 words + 16XMKLEV
+ Constants & Work Areas = 200 + 42XECPT1 + 27 (1-ECPT1)

where ECPT1 = 0 or 1 if EAC printer
is a 1053 or 1443 respectively

+ CARDN (if included) = 328 words + 23XCRDNO + 10XMKLEV

Note that NOBUF, TORG, TORGN, MKLEV, PORG, NOCYL, and ECPT1 are TASK equate cards.

SKELETON TABLES = Program Name Table = 4 + 4 X the number of called mainline and combination
core loads from the skeleton.

172

+ Executive Transfer Vector = 3 X the number of LIBF functions in the skeleton.
+ Executive Branch Table = 1 word per entry for each entry point for LIBF and

CALL Subroutines contained in the skeleton (excepting
Skeleton I/O).

+ Skeleton Interrupt Branch Table = 2 X the number of bits in all labels (that is,
ILSW words) NBOO-23.

USE OF *INCLD CONTROL CARDS

Before the System Skeleton can be built, it is a
condition that user-written subroutines and pro
grams intended for inclusion in the skeleton must
be assembled and/or compiled and stored on disk
in relocatable format. These are assigned to the
skeleton area by *INCLD control cards at skeleton
build time. The various types of subroutines that
are suitable candidates for inclusion have already
been mentioned elsewhere in this section.

Subroutines planned for tracing and/or error
options may also be included in the skeleton, but
it should be noted that they are not, as such, auto
matically functional, because these routines can
only be entered through linkages provided in the
individual core loads. In order to use them, there
fore, their names must appear in appropriate
*INCLD cards which must be present when building
those core loads where tracing or error options
are desired. Furthermore, in the case of error
subroutines, the entry is made only if the core
load is a process mainline, combination or interrupt
core load. If any nonprocess core load or monitor
function is in progress, the error routine will not
be included.

The following example is given to illustrate the
general use of *INCLD control cards in a typical
skeleton build operation. The sequence of control
cards is shown below:

SAMPLE CODING FORM

Five types of subroutines are considered:

• EBPRT and HOLEB are IBM Library Conversion
Subroutines. JOHNB is a special user-written
arithmetic subroutine.

• 10402/0402 serves as an interrupt servicing
subroutine for a process interrupt assigned
to level 04, bit 02.

• PGI05/2405 and PGI15/2501 are interrupt
servicing routines which service programmed
interrupts on levels 5 and 15 respectively.

• CNT04/2604 and CNT17/2701 are user-written
count routines #4 and #17 respectively.

• TRAC2, EROR1 and EROR2 are special user
written trace and error subroutines. Note that
at core load build time, these three subroutines
must be named by *INCLD cards in those core
loads selected for the trace and/or error options
in order to establish their linkages in the skele
ton. (If this is not done, no tracing or error
checking takes place.)

The flexibility in system usage and design
(in permitting a core load to be traced by a
special user-written trace routine other than
the trace routine normally included in the skele
ton) is a definite advantage as it is simpler to
modify a core load than to modify the skeleton.

SUMMARY OF THE SKELETON BUILD PROCESS

Before the System Skeleton can be built, several
prerequisite conditions must have been met. These
include:

• The IBM N onprocess System has been loaded.

• User-written subroutines required for residence
in the skeleton have been assembled/compiled
and stored on disk in relocatable format.

• The System Director has been assembled and
stored on disk in relocatable format.

• Disk file configuration has been defined.

• An Operating TASK (that is a user-configurated
T ASK) has been assembled and punched into
cards.

Briefly, the skeleton build function can be
broken down (in simplified form) into three sepa
rate steps:

1. TASK Initialization
2. Relocation of component parts
3. Building the Skeleton Tables

Figure 87 illustrates the skeleton build opera
tion as each sector of the skeleton is constructed
and relocated to the Skeleton Area on disk.

System Design Considerations 173

1

NONPROCESS

WORKING

STORAGE

J

FIXED AREA

SKELETON I/O

INSKEL COMMON

SYSTEM

DIRECTOR

INTERRUPT &
OTHER

SUBROUTINES

PATCH AREA

PROGRAM NAME
TABLE

EXECUTIVE TRANSFER
VECTOR

EXECUTIVE BRANCH
TABLE

SKELETON INTERRUPT
BRANC H TABLE

SKELETON

AREA

T T

FILE
PROTECTED

Figure 87. Layout of the System Skeleton as it would appear at Skeleton Build Time in NPWS and the Skeleton Area

174

TASK Initialization. TASK begins the skeleton
build function by initializing certain communications
areas which reside in sectors 1 - 4 on disk. These
areas include:

• Master Communications Words (MCW)

• Master Branch Table (MBT)

• Skeleton FORTRAN I/O Table (SFIO)

• Executive Transfer Vector (ETV)

• Skeleton Subroutine Name Table (SKSUB)

This step determines the amount of core storage
available between the high addressed end of TASK
and the first word of the Skeleton Builder: the
available core storage is cleared and subsequently
allocated to the various loading tables. The Skele
ton Subroutine Table (SKSUB) is then read from
disk into its allocated area in core. The Control
Record Entry Table (CRENT), which was con
structed by the Skeleton Build Supervisor phase
(SKA) , is read, one entry at a time. These are
analyzed and inserted into the appropriate tables.

Relocation of TSX Component Parts. The main
function of the skeleton build operation is the con
struction in core-image format in the Nonprocess
Working Storage on disk of the permanent part of
all core loads and to establish their linkages to
the System Director and various other IBM and
user-written programs. As each sector of the
skeleton is built it is written to the Nonprocess
Working Storage. The disk image of the completed
skeleton is finally physically moved to the Skeleton
Area of the process portion of disk and file pro
tected.

The Skeleton I/O is first written to a predefined
area in the Nonprocess Working Storage on the
temporary disk drive for later reference by the
Skeleton Builder.

The length and initial address of Skeleton Com
mon are now obtained from the Master Communi
cations Area, and the desired size of the Common
Area in the skeleton image cleared and reserved.
The upper boundary of this area is later set to
correspond with the starting address of the Sys
tem Director.

It was noted in System Design Considerations:
System Director that the System Director was

assembled and stored on disk prior to a skeleton
build. At this same time, space was allocated for
an Interrupt Core Load Table (ICLT), its size being
determined by user-specified NIL equate cards.
Using the System Director as the main program,
the Skeleton Builder constructs the skeleton in much
the same fashion that the Core Load Builder builds
a core load. Certain words in the ICL table (the
first header word and the first and second entry
words) associated with bits corresponding to those
interrupt subroutines resident in the skeleton are
now filled in. Later on, DUP makes the required
entries into the ICL table whenever it stores an
interrupt core load on disk.

User-written and other subroutines are now in
cluded in the skeleton image on disk following the
System Director.

The Patch area constitutes that portion of core
image that remains between the end of the subrou
tine area and the Skeleton Program Name Table.

Building the Skeleton Tables. During the final stage
of the skeleton build process, the four tables shown
in Figure 81 are modified and/or built from data
provided in the Master Communications Area and
user-specified *INCLD control cards. Note that
the tables are built and used by the Skeleton Builder
during the construction of the skeleton core load.
All of the loading tables are assembled in a descend
ing chain; that is, the first entry occupies higher
core locations than the second, the second higher
than the third, and so on. The details and function
of each table are given elsewhere in this section
(see Constitution of the System Skeleton).

For detailed step-by-step operational procedures
of the skeleton build process, the user should refer
to the IBM 1800 Time-Sharing Executive System,
Operating Procedures, Form C26-3754.

Rebuilding the System Skeleton

While relocatable programs can be deleted and re
placed on-line by the Nonprocess Monitor, it is
not possible to modify any features of the System
Skeleton on-line. Changes in the skeleton area
(including skeleton interrupt routines) will thus
require an off-line Skeleton rebuild.

The TSX Skeleton may be rebuilt at any time
by following the detailed procedures specified
for an initial Skeleton build in the IBM 1800 Time
Sharing Executive System, Operating Procedures,
Form C26-3754.

System Design Considerations 175

Since INSKEL COMMON is not open-ended,
the user may face the difficulty of adding to it
once it is defined. It is recommended that an
extra area should be reserved in INSKE L COM
MoN to allow for programming contingencies.
See Core Load Rebuild Conditions.

The Executive Branch Table (EBT) and the
Skeleton Interrupt Branch Table (SKIBT) have
already been described. These tables are pro
vided to allow the user to rebuild the System
Skeleton if he were modifying subroutines, changing
the logic flow or adding patches to the System Di
rector and TASK such that addresses in core loads
will still reference a fixed address in variable core.
An ability to shift the entry points of subroutines
within the Skeleton is thus available without the
necessity of rebuilding the referencing core loads.

If, however, the entry points within these tables
no longer pointed to the same subroutine, all core
loads must be rebuilt.

Core Load Rebuild Conditions

When the Skeleton is initially built, the entry points
to the in-core-with-skeleton interrupt routines are
placed in the ICL Table, and all other table entries
are cleared.

When this skeleton is later rebuilt, the in-core
with-skeleton entry points are substituted into the
proper areas; the word count and sector address
of out-of-core interrupt routines are then recovered
from the old skeleton and placed in their respec
tive table locations, provided that there is not al
ready an entry point there.

In a skeleton rebuild, it may not be necessary to
rebuild those core loads built under the previous
(old) Skeleton if the following conditions are met:

1. No previously included CALL or LIBF type
subroutines may be removed from the Skele
ton. An in -core interrupt (ICI) or a count
subroutine may be substituted, provided it
has the same number of entry points and
occupies the same relative position within
the Skeleton as the deleted subroutine. Any
core loads referencing the deleted subroutine
must be rebuilt.

2. No additional LIBF or ISS subroutine (disk
format types 3, 5, and 6) may be included in
the new Skeleton. In-core interrupt (ICI) and
CALL (type 4) subroutines may be added pro
vided the patch area is large enough to contain
the additions.

176

3. The number of entry points for included sub
routines may not be modified between in
clusions.

4. If TASK or the System Director is reassembled,
the number of interrupt levels used, the length
of INSKE L COMMON, and the length of the
Skeleton should not be altered.

Note that a change in the size of INSKEL
COMMON implies a reassembly of TASK.
Also, if the location of INSKE L COMMON
changes, all core loads using INSKE L COM
MoN must be rebuilt. If, for example, Skele
ton I/O changed in size, an adjustment in IN
SKE L COMMON size equal to the change in
the Skeleton I/O could eliminate the necessity
for rebuilding all core loads that use INSKE L
COMMON.

5. If there is to be any variation in the number
or order of *INCLD control cards, new *INCLD
control cards must be prepared using the pre
vious core map. They must specify (in order
of occurrence in the previous map) all ICI,
CALL, and LIBF names beginning with the
first map entry following

PNT SYDIR

An alternative is to use the original *INCLD
control cards in their original order. Addi
tional ICI and CALL subroutines may be speci
fied on following *INCLD control cards.

6. Following the rebuild process, a comparison
of the previous Skeleton and new Skeleton core
maps must show identical entry points (that
is, ARG2 -- see Figure 88) for those LIBF
and CALL map entries common to both skele
tons.

Example of Initial Skeleton Build and Skeleton Re
build

Fig-ure 88 illustrates the general sequence of control
cards, the Skeleton Core map, and the Interrupt
Core Load (ICLT) map for a typical skeleton build/
rebuild situation. A separate interpretation of these
maps is given at the end of this section.

In the initial skeleton:

• INT01/0000 is an interrupt servicing routine for
a process interrupt assigned to level 00, bit 00.

• INT02/2405 is an interrupt servicing routine
which services a programmed interrupt on
level 05.

• INT03/2500 services a programmed interrupt
on level 14.

• SUB01 is a special user-written arithmetic
subroutine.

• INT04/2600 is a user-written count routine
=#=00.

• MASK and EBPRT are IBM Library Subroutines.

The four K13 level 1 Skeleton Builder error
messages, following the ICL Table Map, are warn
ings to the user that core load names PML01,
PML02, CCL01, and CCL02 referenced by calls
in routines (e. g., CHAIN, SPECL, QUEUE) con
tained in the initial skeleton have not yet been
built, and, therefore, are not entered in FLET (see
IBM 1800 Time-Sharing Executive System, Opera
ting Procedures, Form C26-3754).

In the rebuilt skeleton:

• No major modifications are implemented.
Neither the Skeleton I/O nor INSKEL COMMON
are altered.

• Four implicit routines (and those explicit rou
tines referenced by these routines) are added.
These are:

1. SUB02 -- a user-written arithmetic routine.
2. INT05/2701 -- a user-written count rou

tine #17.

3. DPART and UNMK are IBM Library Sub
routines.

4. These additions constitute entries to the
ICL Table.

Note that SUB02 and INT05/2701 cannot refer
ence or call any LIBF function subroutines as this
violates the conditions stated (see Core Load Re
build Conditions).

The user should be aware that in rebuilding a
skeleton, the control cards must be in exact order
correspondence with the previous skeleton so that
routines will be loaded in the same order-sequence
and entry points in the transfer vector remain
valid.

Interpretation of the Skeleton Core Map and the
Interrupt Core Load Table (ICLT) Map

Skeleton Core Map

The Skeleton Builder always prints a map of the
assembled skeleton formatted as follows:

SKEL
TYPE

CORE
NAME

MAP
ARG1

(Page Heading)
ARG2 (Column Heading)

Type indicates the map entry type (e. g., LIBF,
CALL, PNT). Up to five alphameric characters
are allowed under NAME to describe a subroutine,
control program, etc. (e. g., DISKN, SYDIR).

System Design Considerations 177

Control Records For Initial Skeleton Build Control Records For Skeleton Rebuild

/ /JOB 1 X //JOB 1 X
//XEQ SKBLD //XEQ SKBLD
*INCLDINTOl/OOOO ,MASK ,EBPRT ,INT02/240S
* I NC LD SU BO I, IN T03/2S00, I NT04/2600

*INCLDINTOl/OOOO,MASK,EBPRT, INT02/240S
*INCLDSUB01,INT03/2S00,INT04/2600

*CCEND *INCLDSUB02,DPART ,INTOS/2701,UNMK
*CCEND

Skeleton Core Map Rebuilt Skeleton Core Map

SKEL CORE MAP SKEL CORE MAP
TYPE NAME ARG1 ARG2 TYPE NAME ARG1 ARG2

L1BF DISKN 021B 3EBB LlBF DISKN 021B 3EBB
L1BF TYPEN OS82 3EBE L1BF TYPEN OS82 3EBE
L1BF WRTYN OS82 3EBE L1BF WRTYN OS82 3EBE
L1BF PRNTN OA07 3EC1 L1BF PRNTN OA07 3EC1
L1BF CARDN OC71 3EC4 L1BF CARDN OC71 3EC4
CALL EXIT 1C9F 00B6 CALL EXIT 1C9F 0086
CALL LINK 1CA1 008E CALL LINK lCA1 008E
INSK ODD4 lOCI INSK ODD4 lOCI
PNT SYDIR 10C2 3E26 PNT SYDIR 10C2 3E22
ICI INT01 1F80 ICI INT01 1F80
ICI INT02 1F91 1005 ICI INT02 1F91 100S
ICI INT03 1F9E 1100 ICI INT03 1F9E 1100
ICI INT04 1FAF 1200 ICI INT04 1FAF 1200
CALL MASK 1FBA 3E44 ICI INT05 1FBD 1301
L1BF EBPRT 1FDC 3EC7 CALL MASK 1FCE 3E44
CALL SUB01 207D 3E43 L1BF EBPRT 1FFO 3EC7
CALL OUTTR 19DA 3E42 CALL SUB01 2091 3E43
CALL CHAIN 1BA7 3E41 CALL OUTTR 19DA 3E42
CALL INTEX 1AE1 3E40 CALL CHAIN 1BA7 3E41
CALL SHARE 1C4F 3E3F CALL INTEX 1AE1 3E40
CALL SPECL 1BEC 3E3E CALL SHARE 1C4F 3E3F
CALL BACK 1C03 3E3D CALL SPECL 1BEC 3E3E
CALL EACLK 1ED4 3E3C CALL BACK 1C03 3E3D
CALL QUEUE 2084 3E3B CALL EACLK 1ED4 3E3C
PNT PML01 3E2A CALL QUEUE 2098 3E3B
CALL UNQ 2146 3E3A CALL UNQ 21SA 3E3A
PNT PML02 3E2E CALL PRT 21AO 3E39
PNT CCL01 3E32 CALL SUB02 21EB 3E38
PNT CCL02 3E36 CALL DPART 21F4 3E37
CALL PRT 218C 3E39 CALL UNMK 2202 3E36
PTCH 2106 3E23 PNT PML01 3E26

PNT PML02 3E2A
PNT CCL01 3E2E
PNT CCL02 3E32

ICL TABLE MAP CALL QIFON 224C 3E3S
LLBB WC/EP SA ICLT CALL VIAQ 22E6 3E34

PTCH 234S 3E1F
0000 1F80 1 ICC
100S 1 F91 1296 ICL TABLE MAP
1100 1F9E 12AC LLBB WC/EP SA ICLT
1200 1FAF 12B4

0000 1F80 llCC
K13 PML01 LEV. 1 OSOl 017A 04C6 11FA

OA02 017A 04C8 1230
K13 PML02 LEV. 1 100S 1F91 1296

1100 1F9E 12AC
K13 CCL01 LEV. 1 1200 1FAF 12B4

1301 1FBD 12DA
K13 CCL02 LEV. 1

SKB, SYDIR LD XQ
SK6, SYDIR LD NX

Figure 88. Core Map for Initial and Rebuilt Skeleton

178

ARGl and ARG2 may contain either a four-digit
hexadecimal number or a blank field.

Program Name Table (PNT).

PNT NNNNN XXXX YYYY

The word count and disk address of the core load
named NNNNN which is referenced within the
skeleton are assigned to locations YYYY and
YYYY+l of the skeleton PN Table. The first PNT
entry is always the System Director where NNNNN
= SYDIR and XXXX is the initial core location of
the ICL Table pointer block which is identified in
the System Director listing by the symbolic name
-- COMA. The XXXX field is blank for all re
maining PNT entries.

In-core-with-Skeleton Interrupt (ICI).

ICI NNNNN XXXX LLBB

The entry point to the in-core-with-Skeleton inter
rupt servicing routine named NNNNN is at absolute
location XXXX. LLBB designate the interrupt level
and bit position within the ILSW for that associated
level.

If LL is less than the number of interrupt levels
(K) defined for the system, NNNNN is assigned to
service the process interrupt on PISW bit position
BB of level LL.

If LL = K or LL = K+l, NNNNN is assigned to
service a programmed interrupt on level BB or
BB+14 respectively. Note that BB is now used as
a level designation.

If LL = K+2 or LL = K+3, NNNNN has been
designated as count subroutine BB or BB+ 16 re
spectively. Note that BB is now used as a count
subroutine number in the range 0-31.

For an ICI assigned to level 0 on PISW bit posi
tion 0, ARG2 will be printed as a blank field.

Library Function Subroutines (LIB F).

LIBF NNNNN XXXX YYYY

The LIBF-type subroutine entry point named
NNNNN is at absolute location XXXX of the skele
ton. The corresponding three-word transfer vec
tor entry point will be at location YYYY in variable
core.

CALL-type Subroutines (CALL).

CALL NNNNN XXXX YYYY

The CALL-type subroutine entry point named
NNNNN is at absolute location XXXX of the skele
ton. The indirect entry point is at location YYYY
of the Skeleton Executive Branch Table (EBT).

INSKE L COMMON (INSK).

INSK xxxx YYYY

The low core storage boundary of INSKEL COM
MON is at absolute location XXXX of the skeleton.
The high boundary is at location YYYY.

Patch Area (PTCH).

PTCH XXXX YYYY

The patch area (that is, unused core locations)
extends from the absolute location, XXXX, of the
skeleton through location YYYY.

COMMON (COMM).

COMM XXXX YYYY

If any included subroutines contain references to
COMMON, allocation is made between absolute
locations XXXX and YYYY, using the standard
method. It should be noted that these locations
are in variable core; allowances must therefore
be made in all core loads for overlapping results.

Interrupt Core Load Table (ICLT) Map

The ICL Table map is printed to reveal any inter
rupt assignments made in the skeleton ICLT. Its
format is as follows:

ICL TABLE
LLBB

MAP
WC/EP SA ICLT (Column

Heading)

The interrupt level and bit assignment are indi
cated by a four-digit hexadecimal number under
LLBB. The two high-order digits contain the level;
the two low-order digits represent the bit assignment.

System Design Considerations 179

If the entry is an in-core-with-Skeleton routine,
the WC/EP column will contain the hexadecimal en
try point to this routine. The SA field will be blank.
The ICL Table absolute core location in which the
entry point is placed is indicated in the ICLT column.

When rebuilding the skeleton with the SA VE
ICL TABLE option, word counts and sector

180

addresses of any interrupt core loads are re
tained from the old ICLT. Their interrupt
assignments are indicated in the LLBB column.
The WC/EP and SA columns will contain their
word counts and disk addresses. The corres
ponding ICLT absolute core location is in the
ICLT column.

To broaden the scope of this manual, and to facilitate
its use by individuals of divergent backgrounds and
experience, selected material emphasizing recom
mended practice and technique in the implementation
of the IBM 1800 Time Sharing Executive System are
presented in this section. This material directly
supplements the concepts discussed so far in the
text.

A separate chapter (Basic Concepts of Data
Acquisition and Process Control Systems) is included
for a two-fold purpose: (1) as an introduction to the
TSX Sample System, and (2) to acquaint the inexper
ienced reader with the field of data acquisition and
process control system s. It is not intended as an
exhaustive study, and the reader is referred to
further sources of information on this vast subject.
The more experienced reader may prefer to scan
this portion of the section as refresher material, or
to skip it entirely.

The final chapter, TSX Sample System, is a com
prehensive step-by-step example of a working TSX
on-line system which touches on every aspect of TSX
system concepts, design, and usage.

WRITING ASSEMBLER LANGUAGE SUBROUTINES

This chapter provides guidance to the user in the
assembly and specification of user-written subrou
tines included either as additions or modifications to
the TSX system. User-written assembler language
subroutines must follow the writing specifications
outlined below.

The subroutine source statements shown in the
following examples should be preceded and followed
by the following control cards for the assembly
process.

II JOB
II ASM
*LIST
*PRINT SYMBOL TABLE

Subroutine Source Deck

II DUP
*STORE NAME

PROGRAMMING TECHNIQUES

Call Subroutines

At execution time, a CALL statement has
become a long insert and branch instruction
to the called subroutine.

If the called subroutine is in variable core, the
generated instruction points directly to the sub
routine.

If the called subroutine is in the skeleton the
generated instruction is indirect, pointing to the
subroutine via its entry in the Executive Branch
Table (EBT). However, if the CALL is also from
the skeleton, then a direct insert and branch
instruction is generated.

For example, a FORTRAN source statement

CALL SUB (I, J, K, 101)

or an Assembler language calling sequence

CALL
DC
DC
DC
DC

SUB
ADDRI
ADDRJ
ADDRK
ADCON

appears in core at execution time as

BSI
DC
DC
DC
DC

L SUB
ADDRI
ADDRJ
ADDRK
ADCON

if SUB is in variable core, and as

BSI
DC
DC
DC
DC

I ADDRH
ADDRI
ADDRJ
ADDRK
ADCON

if SUB is in the skeleton, where ADDRH is the
executive Branch Table entry for SUB, ADDRI,
ADDRJ, and ADDRK are the core addresses at
which the variable I, J, and K are stored, and
ADCON is the core address where the constant,
101, is stored.

Programming Techniques 181

Note that most subroutines entered by an
Assembler language calling sequence expect the
constants themselveFl to appear in the calling se
quence rather than the address of the constants.
Therefore, not all subroutines entered by a CALL
can be called from a FORTRAN program.

The following example illustrates how to define
the entry point, save the contents of the registers,
get the parameters, and return to the calling pro
gram. Three parameters are assumed to be in the
calling sequence.

lobel Operolion F T Operonds& Rernotkl

" 3233 H «I 4S " " " " ro

iH,L),N,C!I S A.M.P L £ .1' . .11, .L, dr

IE.NoT 5. II 8. ,p,E.F,I,If,E,$ EIVT,!{,Y PoorM7
S,(J,B, DC 0. S U.B,R,O (J T.z.tl.£, E tV.~1l Y P.O,I,NoT,

STO T.E.""P. SAYE A Af(,D ,f), R.£6[ST£,IlS
15.T.X. 1 X,R,1. + 1. SAy £ .I,Nof),E;X ,R-E.G I S r:£ R.s,
srx 2 XR.2fl" I I I

STl(13)(R,'j,+1.
LDX 11 'S,U,B, s £,T, .X,R.l T.O PoA IVII1 E T £. K,
L,D, 111 I~. G£,T, F,.l.Il.S.~ Poll RJIUH, T,E,R,
ST.O. P.A/M.1.
1L..o. lIt 1 G.E,~ S.E,(! D,N.D. P.A,li.A,H.E,7.E,K,
ST.O PoA,/?,A.2
i../), III 2 ,G.Er 7 N.I.A.D. P.A.IlA.H.E.T £. Ii.
STO PARA3
M.I),l(. 1 i), $,E.7 (J,P, ,7,0. R,ET,(J,/l,N. TO, MAIN.L.I
sn(11 $ 11.8. oF.O,L.L,O,WI,N.G. ,r,N,I,Il,D. P.A.RA,/II,E,T,EJi.

,D.X 113 t.~,3 S £.7 X.R.3 .. To. T.R.A.N.S.F £. R. I V,E C -r:OI~

* IF II/,N,Y ,L,I.8,F, ..z:,S, ,~O, ,B.£' ,HII,D£'
>/t, ,'W.Z,T H,I,N, 7,H.~ 0,.",. DA

t',
~, .E,){,E.(. (J,T,I.lJN'. .I,H.s.r,/f.lI.c. T:I.o.Jl.S.
/I-.U.S.E S 70 ~.t dJ. .7.0, ST.o.ll,E RESU.LT. .I.N .1, .E.r:C
.w..1J's.£., $.r.D. L IFF!'F .T.o. ,S, T.n,R, J:. ,)2 €OS UL.T. .I,N, FJ,R,S, T .. , ,w, OoR,!>, 1/),1', ,t"OJ/,MoO,N,
iK,W;,E, ,I,g,F F.L,/), ,(,O,Il, ,E,L./),), ,A,N.D,
l' DC D.A.rA, Ton, ,ST,D.PE. ££s,(J.LLIN. .F.A./'.
f!,
«, ,F.,ll.I.T. ,F.I?f)M. .S,U,RPn. ,.,... T E
X.R,t, L.D,J(, IL1 1-...-,., ,IUj.AJAD, .I.}/'DoE.X, Jl£'(I,I,S,T E,'(S.
>U?2 LD,l/., IL2 I .. -AI',
X~3 L.D,l/., L3 f.tI<,~ I/f

LD.D. T.EH.A J?£.L OA.D .• A, AN./), .G .• R.EG.I S T £..R.S
sse I S 1J,s. R.E.T.u/Mt. ~o ·4 T.N 'r '''-

ToE"',P, e.ss l€ 2
P.A.R.A.l DC Id.
PA,RA,2 DC 19>.
PAR.A. IDC I¢,

EN.D.

LmF SUBROUTINES

The source statements for. subroutines that are
called by a LIBF statement must be preceded by a
LIBR statement.

At execution time, the LIBF call has become
an insert and branch instruction indexed by index
register 3 (BSI 3 (DISP.)). A displacement is
generated that will point to the subroutines trans
fer vector entry during execution, when index
register 3 will point to the table itself.

If the LIBF call is to a subroutine in the
skeleton, the transfer vector entry is located in
the Executive Transfer Vector Table (ETV) and
contains an insert and branch indirect instruction
(BSI I) pointing to the subroutine via its
entry in the Executive Branch Table (EBT).

182

INIG,

If the LIBF call is to a subroutine in variable
core, the transfer vector entry is located in the
Variable Transfer Vector Tabl-e (VTV) and contains
an insert and branch direct instruction (BSI L)
pointing directly to the subroutine.

The following example illustrates a LIBF sub
routine and shows how to define the entry point,
save the machine status, get the address of the
parameter list, and return to the calling program.

lobel Operotlon f T Operonch&Remarlu

" " " "" " ~ " '" .,
JI.lH/.1i A.MP.L.E. L I.BF.

I*- .I.a.F Is. u.B.l , .s.o.{J.Il,C,t .f ',,"A ... ,,-

I>if.. Ib.f. PoA.R.A,l .fI.". .7 . . 4 .. '\." '" c," t

L I.B.1< LI.aF, ·""T"'."'. .I'.,A.R.D.
IE.N.T. IS,IJ.B.l, ,D.E.F,I.N.f .5, .E.N. r.1l y, Po ax .NoT.

IS.U,B.l DC .1<A .S.U.B.l .• ~MT.R.Y p.az}/,T.
Is,r.o, 'rr.E.M.P SA.V.E .• I1.A.t'.MI,ME. ,S.r.A. ToilS,

~ IS.ToX. 1 Ilf.R,l,~l T.H.A.T l.s. ,ToO. .B.c. U.s,c.D.
I.X. 11 5 U.B.l G €or. .A.I>.D./IlE.S.S .D,r, P.A.R.A .Lr.S.7

L 11 -.3. F.R.O.H. I.v.
S. 0 loIf,+,1.

I.X. iL L Iw.-.•. ,X.IlL PoO.z.NT.S, 1'.0. P.A.RA. L,x,S,r,
11 1m. .GoE.To D, iJ" ,,: T'LD

STO 1P.A.RA.1

"

"'.Il.lI. 1.1 1 SF,T .. /l,P. '!U.TolJ,~AJ ,A.D,D,P. z.1II. 's,u.B.l
'.T.'lt. U.B.Z

iii!.
IJi -< DD" , ... IN,£' .O.PEIi!.A,r,I,o,N,
XIU, D.X. 11 oIt'.-.ff. .IlE .. <;.T o.l!!.E. I.. r

• 00D. r.EM.p •
~. :5, 1'... S.UII.1. .IlE,Tou.R.1oJ T.O .M.IJ. T.1/., • 'r.Al.&.

ToE.MP. ~,5.s. IE 2..
P.~U,A.l I.e, r;.

.N.D,
J...J,....LL.L.

INPUT /OUTPUT SUBROUTINES

The procedures for writing input/output subroutines
are similar to those for CALL or LmF subroutines,
except that an ISS statement is used to define the en
try of the call section of the routine; also, the inter
rupt entry points must be defined.

The basic identification for the interrupt entry por
tion is the IAC code. There is a unique lAC code for
each ILSW bit that is turned on by an I/O interrupt.
At system generation time, the user defines the lAC
codes and their corresponding ILSW bit. The same
lAC code must be used when writing an I/O subroutine.

As stated previously, an ISS statement is used
to define the call entry point (only one call entry
point is permitted). If the subroutine is to be called
by a LIBF statement, the ISS statement must be
preceded by a LIBR statement. The LffiR state
ment is omitted if the subroutine is to be called by
using a CALL statement (the CALL statem·ent
method must be used if the subroutine is to be called
from a FORTRAN program). Following the ISS
statement, there must be a pair of DC statements
for each interrupt entry point. The first DC state
ment must define the lAC code for that entry, and the
second DC must define the address of the interrupt
entry point. This is followed by an ORG *-X where
X is the number of DC statements.

The following is an example of how a typical ISS
subroutine is written.

PROGRAM LISTING NO.7: SAMPLE CARD I/O ROUTINE

0000

0000 0
0001 1
0002 0
0003 1
0004

03059100

0002
003C
0011
003F

0000 0 0000
0001 00 448000AC

0003 00 65800037
0005 01 6600005A
0007 0 ClOD
0008 0 4804
0009 0 7208
OOOA 0 180C
OOOB 01 4C200012
0000 0 C204
OOOE 0 4818
OOOF 0 7101
0010 0 7101
0011 0 7025

0012 00
0014 00
0016 0
0017 01
0019 00
OOlB 00
0010 0
OOlE 0
001F 0

OC000032
OC000034
C204
4C18001F
OC00002E
OC000030
1000
70F3
OA04

H~NG SAMPLE CARD I/O ROUTINE CRDm 000
*** CRD00010 * SAMPLE CARD I/O ROUTINE * CRD00020
*** CRD00030 * * CR000040
* THIS SUBROUTINE IS A SAMPLE OF THE TSX I/O * CRD00050
t ROUTINES. IT IS CALLEP VIA LIBF. THE CALLING * CRD00060
* SEQUENCE IS * CRD00070
* * CRD00080
* LIBF CARD * CRD00090
* DC /XOOY CONTROL PARAMETER * CRD00100
* DC AREA I/O AREA ADDR * CRD001l0
* * CRD00120
* CONTROL PARAMETER IS COMPRISED OF 4 HEX DIGITS * CRD00130
* OF WHICH ONLY X AND Y ARE USED. * CRD00140
* * CRD00150
* X EQUAL 0 TEST FUNCTION-DO NOT * CRD00160
* INCLUDE AREA PARA * CRD00170
* X EQUAL 1 READ FUNCTION * CRD00180
* X EQUAL 2 PUNCH FUNCTION * CRD00190
* * CRD00200
* Y EQUAL 0 USE FIRST 1442 * CR0002l0
* Y EQUAL 1 USE SECOND 1442 * CR000220
* * CR000230
* * CR000240 * EXTERNAL REFERENCES TO FIXED AREA OF CORE * CRD00250
* * CR000260
* WORD FUNCTION * CR000270
* * CRD00280
* 7 GENERAL I/O BUSY INDICATOR * CR000290
* 46 USER MASK IOCC LEVELS 0-13 * CRD00300
* 48 USER MASK IOCC LEVELS 14-23 * CR000310
* 50 MASK ALL IOCC LEVELS 0-13 * CR000320
* 52 MASK ALL 10CC LEVELS 14-23 * CRD00330
* 55 LOCATION WHERE TVSAV PUTS RET ADDR * CRD00340
* 90 I/O SUBROUTINE ENTRY TO MIC * CRD00350
* 172 ENTRY POINT TO TVSAV * CRD00360
* 173 ENTRY POINT TO TVEXT * CRD00370
* * CRD00380
* NOTE THAT ON A PUNCH FUNCTION IT IS ASSUMED * CR000390
* THAT THE USER HAS THE END BIT SET IN THE * CRD00400
* LAST WORD TO BE PUNCHED. * CRD004l0
* * CRD00420
*** CRD00430 * CRD00440

*
*
*

*
*
* CARD

*
*
*
*

*
* CONTN

READY

LIBR SIGNIFIES THIS IS A LIBF CR000450
ISS 2 CARD 2 IS THE NO. OF INT CR000460

DC
DC
DC
DC
ORG

2
INTl
17
INT2

ENTRY POINTS CR000470
AND CARD IS LIBF CRD00480
ENTRY POINT CRD00490

1442-1 lAC CODE CRD00500
1442-1 INT ENTRY POINT CRD00510
1442-2 lAC CODE CRD00520
1442-2 INT ENTRY POINT CRD00530
CAUSES OVERLAY OF LO INFO CR000540

CALL SECTION OF SUBROUTINE
CRD00550
CR000560
CRD00570
CR000580
CR000590
CR000600
CRD006l0
CR000620
CR000630
CR000640
CR000650
CR000660
CRD00670
CROO{)680
CR000690
CR000700
CR000710
CRD00720
CRu00730
CRD00740
CRD00750
CR000760
CR000770
CR000780
CR000790
CR000800
CRD008l0
CRD00820
CRD00830
CR000840
CRD008S0
CR000860

DC 0
BS I 172

LOX 11 55
LOX L2 COl
LO Xl 0
BSC E
MDX 2 C02-COl
SRA 12
BSC L CONTN,Z
LO X2 BUSY
sse +-
MOX 1
MOX 1
MOX OUT

FUNCTION IS NOW A
XIO L 50
X IO L 52
LD X2 BUSY
SSC L READY,+
XIO L 46
XIO L 48
NOP
MDX CONTN
XIO X2 SENSE

L1BF ENTRY PO INT
CALL TVSAV TO SAVE MACH
INE REGISTERS AI'ff) ST'ATUS.
ALSO SETS WORD 55 TO POINT
TO FIRST PARAMETER--RETURN
ADDRESS.
XR1#LISF PARAMETERS
XR2#1442-1 DEVICE TABLE
DETERMINE 1~42 TO BE USED
SKIP IF FIRST 1442
INCREMENT TO POINT TO C02
IS THE FUNCTION A TEST
BRANCH IF"NOT A TEST
GET BUSY INDICATOR
SKIP IF ON
INCREMENT RET ADOR TO SKIP
TWO WORDS ON RET TO USER
BRANCH TO SET UP EXIT

READ OR PUNCH
MASK LEVELS 0-13
MASK LEVELS 14-23
GET BUSY INDICATOR
BRANCH IF IT IS TURNED OFF
UNMASK TO USER MASK TO
ALLOW CARD OP-COMPLETE

SEE IF ROUTINE STILL BUSY
LOOP UNTIL 1442 IS IN A

Programming Techniques 183

0020 01 4C0400lF
0022 0 COOO
0023 0 0204

0024 0 CI00
0025 0 180C
0026 01 4C040030

0028 0 CI0l
0029 0 0202
002A 0 OA02
002B 00 74010007
0020 0 1000
002!:: 0
002F 0

0030 0
0031 0
0032 a
0033 00
0035 0
0036 0

7101
7007

CI0l
0200
OAOO
74010007
1000
7101

0037 0 7101
003B 00 6D000037

003A 00 448000AD

003C 01 6600005A
003!:: 0 7002

003F 01 66000062

0041 0 OA06
0042 0 1002
0043 01 4CI00051
0045 0 3000
0046 0 OA04
0047 01 4C040046
0049 0 C200
004A 01 4C18004E
004C 0 OAOO
0040 0 7001
0041: 0 OA02
004F 00 4C80005A
0051 0 1010
0052 0 0200
0053 0 0202
0054 0 0204
005:; 00 14FF0007
005"' 0 1000
0058 00 4C80005A

005A 0000

005A 0 0000
005B a 1600
005C 0 0000
0050 0 1500
005t: 0 0000
005F 0 1700
0060 0 0000
0061 0 1701
0062 0000
0062 0 0000
0063 0 8EOO
0064 a 0000
0065 0
0066 0
006-' 0
0068 0
0069 0

0000
0002
0004
0004
0006
OOnA

184

8000
0000
8FOO
0000
8FOl

BSC READY,E READY CONDITION CRD00870
LD * TURN BUSY INDICATOR ON CRD00880
STO X2 BUSY TO INDICATE DEVICE BEING CRD00890

* USED CRD00900
LD Xl 0 GET FUNCTION PARAMETER CRD00910
SRA 12 TEST FOR READ OR PUNCH CRD00920
BSC L READ,E BRANCH IF FUNCTION IS REAO CRD00930

* FUNCTION IS PUNCH CRD00940
PUNCH LD Xl 1 GET SECOND PARAMETER CRD00950

STO X2 PH PUT AREA PARA IN PH IOCC CRD00960
XIO X2 PH START PUNCHING A CARD CRD00970
MDX L 7,1 INCREMENT GEN 110 BUSY IND CRD00980
NOP CRD00990
MDX 1 INCREMENT RET ADDR CRDOlOOO
MDX OUT GO TO EXIT CRDOl010

* FUNCTION IS A READ CRDOl020
READ LD Xl 1 GET SECOND PARAMETER CRD01030

STO X2 RD PUT AREA ADDR IN RD IOCC CRDOl040
XIO X2 RD START READING A CARD CRDOl050
MDX L 7,1 INCREMENT GEN 110 BUSY IND CRDOl060
NOP CRDOI070
MDX 1 1 INCREMENT RET ADDR CRD01080

* SETUP TO RETURN TO USER CR001090
OUT MDX 1 1 INCREMENT RET ADDR CRD01100

STX LI 55 55 NOW CONTAINS THE RETURN CRDOll10
* ADDRESS TO USER CRDOl120

BSI 173 ReTURN TO USER VIA TVEXT CRD01130
* CRDOl140
* INTERRUPT SECTION OF SUBROUTINE CRD01l50
* CR001l60
INTI LOX L2 COl XR2#1442-1. THIS IS CRD01170

MDX *+2 INTeRRUPT ENTRY POINT FOR CR001180
* 1442-1 CRD01l90
INT2 LOX L2 C02 XR2#1442-2. THIS IS CR001200
* INTERRUPT ENTRY POINT FOR CRD01210
" 1442-2 C RDOl220

XIO X2 SENSR SENSE DSW WITH RESET CRD01230
SLA 2 TEST FOR ERROR CRD01240
BSC L DONE,- BRANCH IF NO ERROR CRD01250
WAIT WAIT FOR USER TO RELOAD CD CRD01260

READX XIO X2 SE~SE LOOP UNTIL 1442 IS IN A CRD01270
BSC L READX,E READY CONDITION CRD01280
LD X2 RD TEST FOR LAST FUN A RD CRD01290
BSC L REDOP,+- BRANCH IF NOT READ CRD01300
XIO X2 RD REDO READ CRD01310
MDX *+1 EXIT TO MIC CRD01320

REDOP XIO X2 PH REDO PUNCH CRD01330
BSC I 90 RETURN TO MIC CRD01340

DONE SLA 16 CLEAR ALL INDICATORS CRD01350
STO X2 RD CLEAR READ IOCC CRD01360
STO X2 PH CLEAR PUNCH IOCC CRD01370
STO X2 BUSY CLEAR BUSY INDICATUR CRD013BO
MDX L 7,-1 DECREMENT GEN 110 BUSY IND CRD01390
NOP CRD01400
BSC 90 RETURN TO MIC CRD01410

* CRD01420
* DEVICE TABLES FUR 1442-1 AND 1442-2 CRD01430
* CRD01440
':' NOTE THAT THE NO. IN COLUNM 71 IS THE CRD01450
* DISPLACEMENT OF THAT WORD FROM THE START CRD01460
* OF THE DEVICE TABLE CRD01470

BSS E 0 DEVICE TABLE MUST BEGIN ON CRD01480
* AN EVEN AD DR BECAUSE OF CRD01490
* IDCC. CRD01500
COl DC 0 DEVICE TABLE FOR 1442-1 0 CRD01510

DC /1600 READ lOCC 1 CRD01520
DC 0 2 CRD01530
DC 11500 PUNCH IOCC 3 CRD01540
DC 0 8USY INDICATOR 4 CRD01550
DC 11700 SENSE IOCC 5 CRD01560
DC 0 6 CRQ01570
DC 11701 SENSE/RESET IOCC 7 CRD015BO
BSS 0 CRD01590

C02 DC 0 DEVICE TABLE FOR 1442-2 0 CRD01600

*

k,D

PH
BUSY
SENSE
SEt'lSR

DC IBEOO REAO IOCC 1 CRD01610
OC 0 2 CR001620
DC
DC
DC
DC
DC

18DOO
o
18F 00
o
/ 8F 01

PUNCH IDce
BUSY INDICATOR
SENSE IDCC

SENSE/RESET IDce

DEVICE TA~LE EQUATE~

EWU
eQU
EQU
EQU
EnU
END

a
2
4
4
6

READ IDee
PUNCH IDCC
BUSY INDICATUR
SENSE IDCC
Sl.:NSE/RESET lOCe

3 CRLJ01630
4 CRD01640
:; CRD01650
6 CRD01660
7 CRD01670

CRD016BO
CRD01690
CRD01700
CRDOl7l0
CRD01720
CROOl730
CRD01740
CRD01750
CRD01760

PROGRAMMING SUBROUTINES USING
REENTRANT CODING

NEED FOR REENTRANT CODING

One of the basic problems that arises in multi-level
programming is requirement of the same subroutine
by different levels of operation.

For example, the computer is servicing a main
line program which is executing a square-root sub
routine when an external interrupt occurs. The
hardware interrupt will automatically branch to an
address which will allow servicing of the interrupt.

The program that services the interrupt may also
require use of a square-root subroutine. If a method
of reentrant coding were not used, the identical
square-root subroutine would have to be in core
storage twice (once for each program that called it);
otherwise, the intermediate results which are needed
when the computer returns to complete the mainline
program would be destroyed by the interrupt program.

CONCEPT OF LEVEL WORK AREAS

To allow one subroutine to be entered at any time and
from any interrupt level, without loss of intermediate
results, a method of reentrant coding using level
,work 9.reas i R used.

Reentrant coding is defined as coding which
allows a program to be entered and executed from
different levels without destroying the intermediate
results.

The IBM 1800 TSX System provides features which
facilitate the coding of reentrant subroutines.

Each interrupt level specified by the user is pro
vided with a level work area of 104 locations, which
are reserved for the exclusive use of programs
operating on that priority level.

The first 62 of these locations are reserved for
specific routines (MIC, QZSAV, etc.) while the re
maining 42 locations are available to allow other
subroutines (arithmetic, functional, etc.), to main
tain their ability to reenter.

The start address of the level work area for any
priority level always appears in location LWA (fixed
location 10410 = 6816), If an index register is loaded
with the contents of this location, and all references
to temporary storage locations are indexed, 42
temporary storage locations are made available to
the subroutine for each level it may be operating on.

If the subroutine is reentered, different effective
addresses are generated for each such indexed
operand, and the reentry problem is solved.

The following sequence of instructions illustrates
how the contents of the A-register are saved in
TEMP in the level work area and later restored by
the instruction at LOAD:

Opernlion Op"rond~ & Rcmor~5

" "
L,IIlA £,Q,U 104-
TEMP E,Q,U 5,8

LOX It. L w'A WOR.K AREA AO~rTO ,)(,R,1.
STRE STO 1. T.EM,P SAVe: A - ieE:G I S T£~ 1/1/. T.E:MP

f----L-'~-++--'--'--__'_++__+_H_'~--'--L-'--'--'--'-L-L-'--'--'---'-~.......L...l........-j ! ! I I ,~--L....L_...L....

i--'---'---'--.L++~--'--+H_t-+-'---'---'----'---.L-'---'---'---'----'---'-'--'--'--"--'--...l.-...J..-L-1..--..L......L-L....L.....1.----L....L....._~ __ ...l...........

Should the subroutine be interrupted and re
entered, there will be no storage conflicts, since
the contents of LWA changes with each interrupt
level. Hence, the instructions at STRE and LOAD
reference different effective addresses for each
interrupt level.

MECHANISM FOR REENTRANT CONTROL

For each interrupt serviced, MIC (Master Interrupt
Control program) saves and subsequently restores
the contents of the A- and Q-registers, index regis
ters, machine status, and locations WK4 (5410 = 3616)
and WK5 (5510 = 3716), MIC also sets LWA to the
correct level work area address for each interrupt
level.

Since locations WK4 and WK5 are saved by MIC
for each interrupt level, these locations may also be
used for temporary storage by reentrant subroutines,
e. g., loading and storing of index registers. fur
thermore, these locations are also used for other
purposes, as explained below.

Protecting Entry and Return Addresses

The first location of a callable subroutine is set by a
BSI instruction. As with all fixed locations upon re
entry, this location may be changed and the return
address may be lost. The TSX System supplies two
pairs of subroutines which provide a method of
protecting the return address. They also perform
several additional functions useful for subroutines.

Programming Techniques 185

Subroutines Referenced by a CALL Instruction

Operation F T Operands & Remorb

tj),ZS A V E,Q,U 1. 54
Q,Z E,X,T E.Q.U 1. 55

5UBRT De (2l EItI7f(Y ToO CALI.. ,!?'O,UT,I,N,E, ,

f-L-L-L....L-f-f"'B""S""'I.L-f-j"'-Il-+-p"lo...,.z""ScA'-"-V'--'-L.J.-L-LJ.c= ,A ~L L:JL L.....J.!~, .~ Z. S,A, V, , • , , , , • , ,

! , " ! , , I , I I! I L I ! I I ! , ! , , !...L

E.XIT BSI I
L-LJ~'--'-~~LULUL-LJ~~~~~.~ I, !! I ! , , , t ,

The QZSAV subroutine saves the contents of in
dex registers 1, 2, and 3, the A- and Q-registers
and machine status and places the return address in
location WK4 (5410 = 3616), In addition, index

registers 1 and 3 are set to the first location of the
level work area, and index register 2 is set to
12710 = 7F 16'

The QZEXT subroutine restores the index regis
ters, machine status, and A- and Q-registers and
returns control to the calling routine via a BSC I WK4.
The address set in WK4 by QZSAV must, therefore,
be incremented by 1 for every parameter following
the CALL.

Subroutines Referenced by a LIBF Instruction

For subroutines referenced by a LmF (I-word BSI)
instruction through the transfer vector:

Operation Operands & Remorks

TVSAV £,o,u 117,2, !" !! 1« '" I " , !« I

T.V,£,)(,T E.Q.U 11 73

SUBRT DC

BSI I
, ! t I, I, I , '.1

EXIT BSI I
I I , , ! ! , ! ! ! ! I , ! ! ! -.L..L...LJ.' , ,! ,'!!,

TVEXT £XIT Ff(OM SUSItOU,T,I,N.E., '-'

The TVSA V subroutine saves the contents of
index registers 1 and 2, the A- and Q-registers, and
machine status and places the return address in
WK5 (5510 = 3716), In addition, index registers 1
and 3 are set to the first location of the level work
area, and index register 2 is set to 12710 = 7F 16'

The TVEXT subroutine restores the contents of
index registers 1 and 2, A- and Q-registers, and
machine status. Index register 3 is set to the
transfer vector location, and control is returned to
the calling routine via a BSC I WK5. The address
set in WK5 by TVSA V must, therefore, be incre
mented by 1 for every parameter following the LIBF.

186

Other Considerations

It should be understood that the use of QZSAV or
TVSA V does not obviate careful logic control. If
parameters follow the call to the subroutine, it is
the responsibility of the subroutine to obtain these
parameters and to adjust WK4 or WK5.

If subroutines are nested, that is, one subroutine
calls another, care must be exercised to save and
restore the storage locations used by QZSAV and
TVSA V across the nested call, as well as the return
address in WK4 or WK5. Furthermore, nested sub
routines must be plarmed so that the same locations
in the level work area are not used by more than one
subroutine.

Note that TVSAV, TVEXT, QZSAV, and QZEXT
are referenced by indirect BSI instructions and not
by CALL statements. The call to TVSAV or QZSAV
must be the first instruction executed in (and im
mediately following) the entry location, as illustrated.

MASKING OUT THE INTERRUPTS

Another method of providing reentrant coding is to
prevent the interrupts from being recognized.

In Assembler language, it is possible to use the
XIO command with the IOCC-masking words pro- .
vided by the TSX system. To mask all interrupt
levels completely, the following instructions may be
executed:

Label Operation F T Operands & Remarks

21 25 " JO 32 JJ "
., " " " ..

IM.S I(J. E.QU 5.O, L OC A T I ON.S OF
"'51(Z Efiiu 52 .M,AS,I(Ioce W.OROS

XIO L ~,SI(1. ,M,,, S K ALL I NoTE R.J(,,-, AT
XIO L ~,SK2 L£,VEl..S

"

To restore the interrupt mask status, the following
instructions may be executed:

Label Operation F T Operands & Remarks

" " 30 3233 " '"
., 50 ss "

M~5 1(.3 £'Q,U 4.~ L 0 CAr, (0 N.S O~ {/NoMASK.
M,S K4- e.Q.U 4,B .:r,oe,c. W.ORDS.

X.IO L. M,S K.3, .R,cSrORE; 1.N,r.c~~tI.PT

XIO L M,S.K.4 5TATUS

This particular method of reentrant coding is ef
fective and permissible, but is, in general, undesir
able. If interrupts are prevented from being recog
nized as may occur, the philosophy of the IBM 1800

65

interrupt system is defeated. However, for short
sequences of instructions, the method of masking out
the interrupts may be the fastest means of obtaining
reentrant coding.

PROGRAMMING NOTES

The following examples illustrate the different ap
proaches that may be used to write reentrant subrou
tines, and to explain the need for WK4 and WK5
(words 54 and 55 of the Fixed Area in core storage).
These words are saved by MIC in the same manner
that the accumulator and certain index registers are
preserved during the handling of an interrupt.

Both examples depict a method of storing what is
contained at the effective address reached by an
index register plus its displacement, loading that
value into another index register, and be reentrant.

label Operation F T Operands & Remarks

21 25 27 JO 3233 JS ., " " " "
I*; AlOAl R€t:N T~ AW 7: CAS£.

CO,N,S,7 1£.0.1./ 5:3
•
•
•

LD Ii It- ON.S T
S,O ~,-f-1.
LOX L2 *.-~

*, Kcc WrKA.N7 AP P.R.OA,C H /P.l

CONS.7 IE/J.I.I 53
SK.l ~!~,U 5.0

"

SK,2 £~.I.I 5 ,2 L...l......i...
S 1(.3 E).U 14-.'- I I I I I I I I I I t I I I I

51(4 £~,U 14.8

· · · ><IO L i1t,SKJ. oII,ASK ALL /NT,C,I{/{UPT.
XIO It MSK2 .L E" v,E" L S

It. ,a It CO,N.S I
5TO ttE-,+l
~.o.x. LZ ~.-,*
X,I,O L ~5K3 liiiMAS.K T.O U5€R.S
IX,I,O. L ~.l?.L~L..L1 I I , .M,A,S,K, ,S,T,Ir,T,lI,S, , , , 1 I I I I I

* RE",£. I" TI{ANT A PP.I?OACH #2

I.

C 0"'5.7 EG.lf. 53
• 1 · •

LD 1- COliS r
5 r.O L 5.4. LOCATION. OF". ,WK.4, L...l......i...

LDX lIz 5.+

WRITING USER-PROGRAMS FOR EXECUTION
UNDER THE TASK ABSOLUTE LOADER

The TASK Absolute Loader can be used to load pro
grams from cards to core for execution under TASK
or for the storing on disk of user-written programs

or data. The TSX system must be in the off-line
(nonprocess) mode. To call the absolute loader, load
or restart TASK and set sense switch 0 on.

PROGRAM/DATA FORMAT

The User programs and data must be assembled ab
solute and origined above the last address of TASK.
The object deck must be of the relocatable format
type, i. e., compressor output, not core image. The
execution address on the end-of-program card must
be the address of the first user instruction if the
program is to be executed, and must be the address
of the program word count if the program is to be
stored on disk. No LIBFs or CALLs are allowed in
the program, but any TASK subroutine (DISKN,
TYPEN, etc.) can be called as defined in TASK I/O
Subroutines. The TASK object program set is an
example of programs designed to run under the
absolute loader.

NOTE: When executing user-written absolute pro
gram s under TASK, it is best to use an off-line
cartridge, or a cartridge that does not contain the
TSX system, so that TSX system areas which are not
file protected are not destroyed. For example,
TASK uses sectors 05CO and up for buffering of 1053
messages. The upper limit of this area was estab
lished by the user at TASK assembly time.

The source deck format for executable program s
is

START

ABS
ORG
LD

User's
Program

ABC is a core
ABC address above the

last TASK address
(see NOTE below)

END START

The source deck format for data or program s
stored on disk is

ABS
ORG ABC

ABC is a core
address above the
last TASK address
(see NOTE below)

Programming Techniques 187

START

A

DC
DC

User's
Program/
Data

EQU
END

A-START-2
SECAD SECAD is the

first sector ad
dress where the
program is to
be stored.

*
START

NOTE: To insure that the program is always above
the end of TASK, let ABC be greater than or equal
to /FIFO. The highest address of the program must
be less than or equal to /FFFF.

It is the user's responsibility to recall the data
or program from the disk.

ABSOLUTE LOADER OPERATION

When TASK has been reloaded or restarted, the
following message is printed.

TASK 1800 TSX
SEN SW 0 ON FOR ABSOLUTE LOADER
SEN SW 1 ON FOR NONPROCESS MONITOR
SEN SW 2 ON FOR SKELETON BUILDER

1. Set Sense switch 0 on.
2. Place the program to be loaded in the card read

punch hopper. A stacked input is allowable.
3. Press reader START.
4. The user now has the option of selecting manual

or automatic mode before pressing Console
START.

188

Manual Mode

If data switch 15 IS off, the absolute loader operates
in the manual mode. After the program has been
loaded to core, the following message is printed.

DATA SW 0 ONLD DISK OFF EXECUTE

Set data switch 0 off and press console START to
execute the program just loaded. Set data switch 0
on and press Console START to write the program
or data to disk. If the program or data is written
to disk, the absolute loader starts reading the next
program in the card reader into core after perform
ing the disk write function.

Automatic Mode

If data switch 15 is on, the absolute loader operates
in the automatic mode. After loading the user's
program, the absolute loader executes it unless the
control card illustrated below has been placed in
front of the user's program. The format of the con
trol card is:

column 1 = 8
column 2 = +
column 4 = 9
column 13 = 1
all other columns = blank

The user can assemble this control card in his object
deck by placing the two source cards shown below
right after the ABS card in his source deck.

ORG
DC

40
1

If the program is loaded in automatic mode and the
control card has been included, the program will be
stored on disk and the next program in the reader
will be loaded.

The following (Program Listing No.8) is an
example of the loading and execution of an absolute
80-80 program using the TASK Absolute Loader.
Note that the program is assigned for the upper 4K
of core. The ABS card is used to indicate that this
is an absolute assembly. The start address is pres
ent in the END statement.

PROGRAM LISTING NO.8: TASK ABSOLUTE PROGRAM FOR DOING AN 80-80 LIST OF CARDS ON THE
LIST PRINTER

II JOB
II ASM LIST

*LI ST
;~PUNCH

*PRINT SYMBOL TABLE

0000
0070
003D
003A
003B
00A6
0020
0068

FIFO 00
FIF2 0
FIF3 0
FIF4 00
FIF6 00
FlF8 00
FIFA 0
FlFB 00
FIFD 0
FIFE 0
FIFF 0
F200 00
F202 0
F203 0
F204 00
F206 0
F207 0
F208 0
F209 0
F20A 00
F20C 00
F20E 00
F210 0
F211 0
F212 00
F214 0
F215 0
F216 0
F217 0
F218 0
F219 00
F21B 0
F21C 00
F21E 0
F21F 0
F220 0

67800068
COOO
0320
C40000A6
4C08FIFB
44800070
3100
44800030
1000
F291
0000
44800030
0000
70FC
4480003A
0000
F292
F292
0050
C40000A6
4C20F24F
44800070
0000
70FC
44800070
2000
F28F
0000
6114
69 Lf7
C500F2A5
F043
4C20F22A
71FF
70F9
6954

o 6114 F221
F222
F224
F225
F227
F228
F229
F22A
F22B
F22C
F22D 00
F22F 0
F230 0
F231 0
F232 0
F233 00
F235
F236
F237

00 C500F291
o F03A
00 4C20F22C
o 71FF
o 70F9
o 7001
o 694A
o 7001
o 6933

4480003B
0001
F292
F261
0028
44800070

o 0000
o 70FC
00 44800070

F239 0
F23A 0
F23B 0
F23C 0
F23D 00
F23F 00
F241 0
F242 0
F243 0
F244 0

2000
F260
0000
C038
4C08FIFB
44800038
0001
F2A6
F276
0028

ASS

*
*

TASK ABSOLUTE PROGRAM FOR DOING AN 80-80
LIST OF CARDS ON THE LIST

PRINTER.

*
*
*
* * ***

ORG
LSTPT EQU
CARON EfJU
HOLEB EQU
EBPRT EQU
$LORG EQU
CIND EQU
$ TV~IK EQU

START LDX
LD
STO
LD
BSC
851
DC

LOOP BSI
DC
DC
DC
BSI
DC
MDX
BSI
DC
DC
DC
DC
LD
BSC

PI053 BSI
DC
MDX
BSI
DC
DC
DC
LOX
STX

LPl LD
EOR
BSC
FIDX
i'lOX
STX
LOX

LP2 LD
EOR
BSC
l'iDX
iV1DX
HDX

NZl STX
MDX

NZ2 STX
BSI
DC
DC
DC
DC
BSI
DC
'''lOX
BSI
DC
DC
DC
LD
BSC
aSI
DC
DC
DC
DC

IFIFO
125
61
58
59
166
32
104

I 3 $TV\~K

X3 CIND
L $LORG
L LOOP,+

LSTPT
13100
CARON
/l000
IAREA
o
CARDf~
o
';'-4
HOLEB
o
IAREA+l
IAREA+l
80

L $LORG
L P1443,Z
I LSTPT

o
~'-4

LSTPT
12000
RETUR
o

1 20
1 OAREA

Ll IAREA+20
H4040

L NZ1,Z
1 -1

LPI
OAREA+21

1 20
Ll IAREA

H4040
L NZ2,Z

1 -1
LP2
LOOP
OA REA+21
"'+1
OAREA
E8PRT
1
IAREA+l
OAREA+l
40
LSTPT
o
*-4
LSTPT
/2000
OAREA
o
OAREA+21

L LOOP,+
I EBPRT

1
IAREA+21
OAREA+22
40

PLACE IN UPPER 4K
LIST PRINTER ENTRY POINT
CARON ENTRY POINT
HOLEB ENTRY POINT
EBPRT ENTRY POINT
LIST PT DEVICE TYPE IND
CD IND ON INT LEV WK AREA
INT LEV WK AREA LOC ADORES

TELL CARON NOT TO CHECK
FOR II CARDS

WHAT DEVICE IS LIST PRINTR
BRANCH IF 1053
SKIP TO CHANNEL

READ A CARD

LOOP BUSY

CONVERT TO EBC CODE

BRANCH IF 1443
LOOP BUSY

RETURN CARRIER

SET UP TO SUPRESS TRAILING
SET UP WDCT
BLANKS--TEST FOR BLANK

BRANCH IF NOT BLANK
DECREf'lENT \~DCT

TEST NEXT CHARACTER
SET UP ZERO WDCT
TEST FIRST HALF OF CARD
TEST FOR BLANK

BRANCH NOT BLANK

TEST NEXT CHARACTER
ALL OF CARD IS BLANK

SET UP FIRST HALF OF MESS
TO BE PRINTED

LOOP BUSY

PRINT FIRST HALF OF CARD

TEST SECOND HALF FOR BLANK
BRANCH IF BLANK
SET UP SECOND HALF OF CARD

TO BE PRINTED

Programming Techniques 189

F245 00 44800070 I3SI LSTPT LOOP BUSY
F247 0 0000 DC 0
F248 0 70FC r~DX *-4
F249 00 4480007D BSI LSTPT PRINT SECOND OF CARD
F24B 0 2000 DC 12000
F24C 0 F275 DC OAREA+21
F24D 0 0000 DC 0
F24E 0 70AC MDX LDOP GO READ NEXT CARD
F24F 00 4480007D P1443 BSI LSTPT LOOP BUFFER BUSY
F251 0 0010 DC 10010
F252 0 70FC MDX *-4
F253 00 4480003B BSI EBPRT SET UP CARD TO BE PR INTED
F255 0 0001 DC 1
F256 0 F292 DC IAREA+l
F257 0 F266 DC OAREA+6
F258 0 0050 DC 80
F259 00 44800070 BSI LSTPT PRINT THE CARD
F25B 0 2100 DC 12100
F25C 0 F260 DC OAREA
F250 0 0000 DC 0
F25E 0 709r. MDX LOOP GO READ NEXT CARD

*
* TABLE AREA

* F25F 0 4040 H4040 DC 14040 EBC BLANK
F260 0 0020 OAREA DC 45 OUTPUT BUFFER
F261 0 0000 DC 0
F262 0 0000 DC 0
F263 0 0000 DC 0
F264 0 0000 DC 0
F265 0 0000 DC 0
F266 OOOF BSS 15
F275 0 0014 DC 20
F276 0019 BSS 25
F28F 0 0001 RETUR DC 1 RETURN CARRIER MESSAGE
F290 0 8121 DC 18121
F291 0 0050 IAREA DC 80 INPUT BUFFER
F292 0050 BSS 80
F2E2 FIFO END START

•
• SY,"1BOL TABLE
•

CARON 0030 CIND 0020 EBPRT 0038 HOLE8 003A H4040 F25F
IAREA F291 LOOP FlFB LPI F219 LI'-'2 F222 LSTPT 0070
NZI F22A NZ2 F22C OAREA F260 PI053 F20E P1443 F24F
RETUR F28F $LORG 00A6 $TVWK 0068 START FIFO

NO ERRORS IN ABOVE ASSEMBLY.
LIST
DUP FUNCTION COMPLETED

190

BASIC CONCEPTS OF DATA ACQUISITION AND
PROCESS CONTROL SYSTEMS (DACS)

INTRODUCTION

Data Acquisition and Process Control Systems are by
definition real-time systems. In real-time process
ing, inputs may arrive randomly from the process
being monitored to the computer which rapidly. re
sponds to each input, usually by transmitting an out
put back to the process. This is in contrast to con
ventional batch processing where groups of inputs
are processed by passes through the computer. The
notion of real-time usually implies that a computer
is responding to inputs as they occur in the physical
world.

The principal functions of a real-time data acqui
sition and process control computer system are:
data scanning, data logging, process calculations,
process outputs, input-output control, operator
machine communication, and specialized system
monitoring. Each of these functions is implemented
by one or more programs permanently stored in core
or in secondary storage.

In general, data logging/data acquisition applica
tions are basically monitor systems where the data
signal traffic is toward the computer process I/O.
Control systems (supervisory, operator-guide, or
direct digital control), on the other hand, are char
acterized by a two-way signal flow across the
process/computer interface. For the most part,
data acquisition implies that the process operates in
its normal manner without being affected by the com
puter, whereas computer control systems imply that
the process is directly controlled by actions and
commands of the computer.

Implementation of data acquisition and process
control systems in real-time requires certain proc
ess I/O hardware \\hich significantly affects software
requirements. Most important of these are the
analog input and output hardware which require relay
and possibly solid-state multiplexing devices together
with a multi-level priority interrupt system.

Analog Process I/O

By the very nature of processes, many internal proc
ess signals are analog -- that is, continuous func
tions with respect to time. Many instruments have
been developed to pick-off various signals of interest
and to modify them (that is, amplify, filter, linearize,
etc.) in order to provide data or control signals.

Analog-to-digital converters (ADC) are used to con
vert the resultant analog signals for computer entry.
The ADC and amplifiers in a DACS may also operate
directly on the output of a signal transducer.

Transducers have been designed around physical
laws to convert one form of energy to another.
Transducers used with data acquisition and process
control system s usually convert the various physical
quantities to be measured to their voltage analogs.
For example, transducers are available to convert
pressure to voltage and temperature to voltage. The
quality of the transducer is determined by the ac
curacy, repeatability, linearity, and proportional
range of the parameter to voltage conversion. In
almost every process, temperature is one of the
variables of interest, and in many cases, thermo
couples are used to measure temperature. strain
gauges may be used to measure pressure, deforma
tion, and loading. Thus, depending upon the size and
package, one could use a strain gauge to measure
direct blood pressure or to measure stresses set up
in a missile structural member when the missile
engine is ignited. Similarly, a thermocouple could
be used to measure a blast furnace process temper
ature or air temperature.

To convert the transducer-produced voltage to
digital values, an analog~to-digital converter (ADC)
is used. Since an ADC can operate at a high rate
compared to the rate of change of the individual sig
nal voltages and because ADC units are relatively
expensive, it is customary to time-share the ADC
among a number of input voltages through an analog
multiplexer.

An analog multiplexer is a device which switches
the various analog inputs to the ADC. Most multi
plexers can be programmed for sequential scan
where each input channel is in tum scanned and con
nected for conversion to the ADC. Random scan
sequences can also be programmed. Random scan
ning, as the name implies, permits any arbitrary
sequence of input channels to be scanned and con
nected in turn to the ADC.

In summary, the signal flow in the analog proc
ess I/O can be explained as follows. Multiple par
ameters are continuously converted to voltages by
appropriate transducers and signal conditioning
electronics. The resultant voltages form inputs to
a multiplexer. Under command of the processor
controller, multiplex switches are closed to allow
an analog input signal to be amplified (in most cases)
by a time-shared amplifier. The ADC connected to
the amplifier output does the actual voltage to digital
conversion, with the resultant digital value being
inputted to the computer. In this manner, the signals

Programming Techniques 191

of interest in the process are sampled, measured
and entered into the computer for additional process
ing.

Data flow from the computer to the process fol
lows a converse procedure. Digital data is entered
into multiple registers by the computer. Each regis
ter is connected to a digital-to-analog converter
(DAC). A DAC is basically a digitally-controlled
voltage or current source whose output is the voltage
analog of the digital value. The analog outputs in
turn control various set-points and other control
points in the system. In some systems, a single
DAC is connected to analog memory devices via an
analog multiplexer. In this way, a single DAC can
be used to provide many output signals.

By using digital-to-analog converters and analog
to-digital converters, a digital computer can be
made to communicate with process signals and con
trol equipment. It should be noted that the digital
process I/O and the analog process I/O are all under
program control.

Digital Process I/O

In addition to the analog parameters which must be
monitored and controlled, there are other process
signals which are binary in nature. Thus, for exam
pIe, relays can be open or closed, a voltage level
mayor may not be present, or a parameter may be
represented as a sequence of pulses. The computer
must be able to accept this data which is essentially
binary in form. Similarly, the computer must be
capable of producing binary outputs to control devices
such as relays. The subsystem in a DACS, which
handles these types of signals, is generally referred
to as digital process I/O.

Two of the process I/O functions provided on the
IBM 1800 Data Acquisition and Control System are
contact sense and voltage sense. The output of the
contact sense circuit signifies when a contact closure
has occurred on the input. The output of the voltage
sense circuit indicates when an input signal has ex
ceeded a preset level. The output of each circuit is
connected to a single bit in a register. The processor
controller can scan these registers at rates from
100, 000 up to 500, 000 words (groups) per second.

Closely allied with these digital input features is
process interrupt. Process interrupt is a vital fea
ture for real-time control because the computer is
basically a sequential machine. When a significant
process event such as an alarm occurs, as indicated
by a relay closure or voltage level, a signal is trans
mitted to the computer as an interrupt requiring a
special subroutine to take appropriate action.

192

Interrupts are usually assigned in order of priority,
so that if two occur at once, the more important is
serviced first by the computer. In essence, proc
ess interrupt is merely a special form of voltage/
contact sense. The feature of customer-assignable
multi-priority interrupts clearly differentiates a
process control computer from the normal data proc
essing system.

Pulse inputs form another category of digital in
puts. A typical process source is the turbine flow
meter which generates pulses at varying rates from
a few pulses per second up to several thousand
pulses per second. Electronic counters are used to
accumulate the pulses; the response to an interrupt
signal on counter overflow or a periodic scanning of
the counter register then accomplishes transfer of
the accumulated count data into the computer. High
speed pulse counters and scalers for megacycle rates
are also adaptable for high-speed data acquisition
applications.

Similarly, some control devices in a typical proc
ess environment require input data in the form of
pulses. Several types of output are available, one
form being pulse output. The primary purpose of
this output is to provide for pulse trains to operate
such devices as latches, set point indicators, and
other stepping motor devices.

One form of output which is opposite to the con
tact sense feature is Electronic Contact Operate
(ECO). Many of the required control and display
operations in a typical process application involve
binary action; that is, a piece of equipment is turned
on or off, or a valve is open or shut completely.
This capability is provided by ECO.

To increase the versatility of the data acquisition
and process control system, an output feature is pro
vided whereby a digital word can be transferred to an
external piece of equipment. The register output
feature provides this capability on the 1800. Exam
ples of its use might include transfer of data to
another computer or to a display device.

Process-input-data flow to the computer is illus
trated in Figure 89, as accomplished on an IBM
1800 Data Acquisition and Control System, together
with corresponding process output features. Digital
data may be read in under direct program control,
as the program executes read-in instructions, or ad
ditional channel controls can be employed to sequence
data to previously assigned areas of core storage
without disrupting normal program operation. This
is known as cycle-steal. When data is ready for
entry, a cycle-steal operation is initiated by the
channel control circuitry. One memory cycle of
computer operation is used to read-in the data word
directly to the assigned core storage location.

PROCESSOR- ANALOG PROCESS I/O
CONTROLLER INPUT

POINTS

DIGITAL INPUT POINTS
)..

'\

CONSOLE
ENTRY &
DISPLAY ANALOG- PROCESS VOLTAGE/ PULSE TO- INTERRUPTS CONTACT COUN-DIGITAL (STATUS SENSE TER CONVERTER WORD)

IN
BUS

P-C CHNL
CONT

OUT
BUS

y
DIGITAL AND ANALOG

OUTPUT POINTS

Figure 89. IBM 1800 Data Acquisition and Control System

DATA ACQUISITION SYSTEMS

Data acquisition/data logging systems are generally
the simplest form of DACS. When used in a data
acquisition role, the computer controls the real-time
collection of data from the process. Many data
acquisition system s operate on analog signals record
ed on magnetic tape rather than in real-time. How
ever, the problems involved in both situations are
similar, except of course, in real-time only one op
portunity to capture the data exists. To overcome
this, an analog recording is sometimes made simul
taneously for backup.

In data acquisition/data logging applications, the
data flows from the process to the computer system
(or analog magnetic tape). A minimum number of
signals flow from the computer to the process.
Therefore, the computer will normally have mini
mum control over the process. The data signals
from the process are connected to the process input
computer circuits and/or to the analog tape recorder.
Thus, the data acquisition system monitors and
records what goes on in the process without affecting
the process functions in any manner.

When the analog tape is played back, the signals
appear to the DACS computer exactly as real-time
signals and can be handled by the computer in the
same manner. By playing back the analog tape
several times, a more selective retrieval of data is
possible. If a DACS malfunction occurs in real
time, the data can still be retrieved by replaying
the backup analog tape.

There are many reasons and applications for
computer-assisted data acquisition. The following
list is given to denote the almost universal applica
bility of data acquisition:

1. Record keeping: Many applications and indus
tries must keep expensive records of processes.
For example, airlines are required by law to
record aircraft flight performance.

2. Telemetry is basically data acquisition and
data logging from a remote or inaccessible
process.

3. Data editing and data reduction applications in
volve processing large quantities of data which
in many cases are redundant or non-significant.
The computer program is called upon to reduce
this data to manageable proportions.

Programming Techniques 193

4. Many processes have been designed on an empir
ical basis. Data logging and data acquisition is
used to collect sufficient data to more fully under
stand the process. This data can be for process
optimization and for model building.

5. By continuously monitoring parameters within a
process, alarm conditions can be detected.
Each value is continuously compared against
preset conditions. Whenever a parameter is not
within limits or the status does not check as
expected, an appropriate alert can be given.

6. By carrying the limit violation check procedure
further, trend predictions can be made. Thus,
when rate of change of parameters exceeds
prescribed limits, remedial action can be taken.

7. Important application areas are quality control
and industrial testing. By using computer-aided
test stands, it is possible to do 100% testing on
production line components and produce printed
records of the test results. For many military
speCification components, 100% testing is
mandatory. Furthermore, the statistical data
accumulated is necessary for various quality
control work and product assurance. Computer
assisted testing makes the procedure econom
ically practical. The degree of confidence that
a customer has in a product is enhanced when he
can obtain a printed record of the product's
acceptance test results.

OPERATOR GUIDE/SUPERVISORY CONTROL

Almost all Operator Guide/Supervisory Control (00/
SC) systems embody data acquisition principles. In
order to control a process, one must first measure
and monitor it. The data acquisition feature is the
monitor portion of oo/SC. Thus, data acquisition
is the first step to control. When starting a control
project, one must obtain sufficient data about the
process through a planned data acquisition system.
The data acquisition finally becomes the process I/O
of the control system. OG/SC systems are charac
terized by a two-way data flow between the process
and the computer. The computer monitors the proc
ess and based upon these measurements determines
what control is necessary to make the system func
tion in accordance with the program. To a first ap
proximation, the difference between Operator Guide
Control and Supervisory Control is one of how the
computer interfaces with the process. Operator
Guide Control usually implies the presence of a
human operator who receives instructions from the
control processor on an output display device, such

194

as a typewriter. The operator makes adjustments
and sets control s on set-point controllers based upon
the control processor originated instructions.
Supervisory control situations allow for direct con
trol of the process by the computer via hardware
electrical connection to the set-point controllers.
The computer can make adjustments and sets con
trol without operator intervention. Both categories
rely upon direct computer data acquisition.

Most conventional processes rely upon analog
controllers to hold various process variables within
set points. Processes are usually made up of a
number of cascaded operations with each step con
trolled by an analog controller. To adjust or opti
mize the process for particular modes of operation,
each controller is set through its set-point control.
The set-point may be reset during the process to
compensate for various process perturbations.

When a computer controls the process, various
modes of control are feasible. For example, in
start-up control, the computer will first issue in
structions to set the controllers to various set
points depending upon the process. The computer
continually monitors the set-points on the controllers
and the various controlled variables. Subsequent
steps in the starting sequence are not permitted to
commence until all values are within their pre
scribed tolerances. This type of control assures a
reliable repeatable checkout and start-up procedure.
Full documentation of all controls and variables are
an implied by-product. Furthermore, by extending
this concept, a standard operating procedure for the
process is feasible.

Process optimization generally requires a mathe
matical model which has been defined on the basis of
theory and/or data obtained using data logging tech
niques' etc. Successful optimization results in
maximizing or minimizing parameters deemed im
portant by management.

An attractive feature of the OG/SC type of com
puter control is that the process equipment is least
disturbed. The only effect on the analog controllers
is that they must be provided with remote set-point
capability. Reversion to manual control is easily
accomplished because the analog controllers are
still in place. This provides an important backup
capability for keeping the process running during a
computer shutdown. In addition, the minor changes
to the process instrumentation is an economic ad
vantage.

Computer control can thus be installed in most
existing processes without the necessity for building
from the ground up.

DffiECT DIGITAL CONTROL

Direct Digital Control (DDC) is another advanced
form of computer process control. In this mode of
operation, the process will probably not run without
the computer. The computer controls the process
directly without the intervention of analog control
lers. Computer-generated signals are used to con
trol the process directly.

A DDC application generally requires re-instru
mentation on existing processes. The proponents of
DDC have advanced many arguments for this method
of control. The marriage of the process to the com
puter provides many potential control techniques,
not otherwise aVailable, because of the tight control
that is feasible.

A major advantage of DDC is the ease in which a
parameter may be instrumented and controlled. A
minor hardware addition in the process coupled with
another program loop is all that is needed to control
an additional variable. On the other hand, to add an
analog controller is a major construction task com
pared with its DDC equivalent. To a large extent,
the number of process loops that can be controlled
is limited only by processor-controller and process
I/O capabilities.

Analog controllers may be manually adjusted for
best control for any given set of plant operating con
ditions. If these conditions change, analog controllers
must be manually readjusted to retain optimum con
trol. Readjustment is so time-consuming that it is
usually impractical. In DDC, to change a critical
time constant or to add a derivative function entails
the addition of a few punched cards rather than
major hardware. The effective characteristics of
a controller are thus changed by inserting new cards
into the deck. The flexibility and ease with which
DDC can be altered is not possible with analog con
trollers.

Further Reading

For the benefit of inexperienced readers, the follow
ing IBM publications are recommended for further
reading:

Principles of Data Acquisition Systems,
Form E20-0090

Programming for Computer Control of a Cement
Kiln, Form Z20-1753

High-Speed Data Acquisition in Low Energy Physics,
Form E20-0171

The IBM 1800 Data Acquisition and Control System
for Gas Turbine Engine Testing - Developmental,
Form H20-0121

The IBM 1800 Data Acquisition and Control System
for Gas Turbine Engine Testing - Production,
Form H20-0123

Computer Control of the Continuous Hot-Dip
Galvanizing Process, Form E20-0178

1800 Traffic Control System - Application
Description, Form H20-0212

1800 Process Supervisory Program (PROSPRO/
1800) - Application DeSCription, Form H20-0261

TSX SAMPLE SYSTEM

The TSX Sample System was conceived and developed
for two primary reasons. First, it demonstrates in
a step-by-step fashion how to generate a TSX system
from start to finish. Second, it illustrates some of
the ways in which TSX can be used to actually control
a process. The sample system is a working operat
ing system which has proven itself in continuous
service. For practical purposes, and in the inter
est of simplicity, an IBM 1800 Data Acquisition and
Control System is linked to a Process Simulator to
reproduce an actual continuous process which close
ly approximates a paper machine used in the manu
facture of paper of diverse grades.

The general objectives of the system are to give
better quality and quantity controL Its design basis
included four specific criteria:

1. Provide periodic logs of all important variables
within the system.

2. Establish closed-loop control over eight proc
ess variables.

3. Incorporate process operator control over
forty process variables.

4. Display up-to-the minute management informa
tion about the process.

The sample system demonstrates how a number of
functions may be achieved by using TSX, with rela
tively little effort on the user's part. The features
of special significance in this example are

• the scheduling of periodic, semi-periodic,
synchronous and asynchronous program s

• closed-loop control

Programming Techniques 195

• process job scheduling

• error recovery procedures

• system design to achieve maximum utilization of
the time-sharing mode

SYSTEM DESIGN

The first thing that must be done in designing a con
trol system is the definition of the process to be con
trolled; the second is the definition of the hardware
(that is, the computer and its associated instrumen
tation); and thirdly, the design of the programming
software. In this example, the process is referred to
in terms of a paper machine, but those readers who
are familiar with the paper industry will immediately
realize that a paper manufacturing system in its full
detail is quite complex, and for this reason, many of
the paper machine control functions normally encoun
tered are intentionally omitted. Among these are the
handling of paper breaks and the use of instruments
for on-line measurements of consistency, basis
weight, and moisture content.

The paper process is designed to manufacture
small amounts of paper of high quality grades. Orders
arrive at the plant for varying quantities of paper of
different paper grades. For example, orders may
differ with respect to dimension, basis weight,

Process
Operators
Console

Setpoint
Stations

Operator
Guide

IBM
1800
DACS

strength properties, color, chemical additives, etc.
The machine must be able under continuous operation
to switch from one grade of paper (when the order
quantity for that paper has been completed) to the
next grade of paper. This means that grade change
must be made as quickly and efficiently as possible
to avoid undue and costly ' waste. Also, during the
manufacture of a given grade of paper, very tight
control over the process is necessary to ensure qual
ity that is consistent with past orders for this paper.
The control variables must be kept at setpoint, and
any undue variation in other variables within the sys
tem must be recognized and the operator informed.

Input to the system must be provided for the up
dating of job files on the disk so that the computer
knows continually what grades of paper are to be man
ufactured and in what sequence. Data on grade and
quantity of paper arrives from the order department
on data cards (see Figure 90). These cards are read
and placed in files, on the disk, by the nonprocess
time-shared portion of the operating system; the proc
ess portion then goes through this information sequen
tially.

Provision must be made for a process operator,
through the medium of a console, to be able to ob
tain and/or update information about the entire proc
ess system at any time. This may include the
changing of a setpoint on a setpoint station or to have
instantly all available information on a given vari
able, such as its current value, its high and low lim
its, and conversion factors. The process operator

,
y~--------------~----------~/

Process

Figure 90. TSX Sample System Schematic Diagram

196

must also be able to modify the run-time of a par
ticular grade of paper, and to change the sequence of
process jobs that reside on the disk.

The 1800 hardware configuration for this system
consists of the following:

• A two-microsecond 1801 Processor-Controller,
with 32,768 words of core storage

• A 2310 Disk Storage unit, with two disk drives

• A 1443 Printer

• A 1442 Card Read/Punch Unit

• Three 1053 Printers

The 1443 Printer and 1442 Card Read/Punch,
along with one of the disk drives are used for non
process work. This means that the card reader, the
printer, and one disk drive constitute a basic stand
alone monitor system, while the process portion
consists of the remaining disk drive, three 1053s,
and process I/O.

PERIODIC PROGRAM SCHEDULER

Certain periodic functions must be handled within the
system. First, every 20 seconds the closed-loop
control program must be entered for a scan of the
setpoint stations to see if they are on setpoint and,
if they are not, to set up for the return of the set
point positioners to their correct operating points.
Second, every two minutes a scan of all operator
guide points must be performed for limit checking,
and any out-of-limit violations printed so that the
process operator may bring these operating points
within limits. Third, every quarter hour on the
hour, a log of all variables within the system must
be printed. Fourth, every hour, on the hour, a
summary log of the previous hour's production must
be printed for the attention of the process operator,
the supervisor, and the foreman. Fifth, at the end
of every shift (12:15 a. m., 8:15 a. m., and
4:15 p. m.) a shift-in log is printed which repre
sents a summary of the past shift's production.
Sixth, every Monday morning at 8:30, a weekly sum
mary log is printed for close scrutiny by the super
visor and his foreman.

The first two of these functions are called periodic
asynchronous functions because, while they are per
iodic in nature (that is, they occur every 20 seconds
and every 2 minutes, respectively), they do not have
to be in syndhronization with real-time. The other

functions are periodic synchronous since they are
periodic and must be in synchronization with real
time, i. e., every hour, on the hour. To schedule
the programs properly, a scheduler CALL COUNT
subroutine is written in FORTRAN. The time-base
method is used to determine when a periodic,
synchronous program is next executed. In this way,
a time is recorded for a given program that is
chosen for execution. When the real-time clock is
greater or equal to the time base specified, that
program is scheduled for execution, i. e., it is
queued, an end-time-sharing command is given, and
the base-time is incremented by the period of the
program.

SAMPLE SYSTEM ERROR DESIGN

Error procedures constitute one of the most impor
tant parts of any system. In the sample system,
error procedures can be broken down into two
phases, (1) checkpoint operation and, (2) system
operation with certain I/O devices down or off-line.

Checkpoint Operation

The basic philosophy of checkpoint operation is that
all system data needed by the computer to control
the process must be stored in a location where it will
not be destroyed. Thus, if normal operating data is
destroyed, the data last saved can be retrieved and
utilized. In the sample system, this is handled by
having, on disk, two files that are used to record
the process variables and certain conversion factors.
One of these files is a static file, the other being
dynamic in nature. 'Whenever a variable is modi
fied in the system, one of the two files is updated
with the new information. For example, if the oper
ator at the process operator's console changes the
setpoint of one of the setpoint stations, this informa
tion is recorded both in INSKEL COMMON (working
data) and in a file on disk. If, at a later date,
something should happen that would cause either a
reload or a restart of the system, all operational
data, such as setpoint values, limits on operator
guide points, conversion factors, switches, can be
read from disk to reinitialize INSKEL COMMON to
the most updated valid values.

FILE1, the static file, contains all conversion
factors used in the system. This file is normally
read into core at cold start time to update INSKEL
COMMON with the necessary matrices containing
conversion factors for setpoint and operator guide
analog inputs. The only time INSKEL COMMON

Programming Techniques 197

and FILE1 are modified is when the calibration pro
grams, which run in a time-sharing mode, are exe
cuted. At that time, the conversion factors of se
lected points are updated in INSKEL COMMON and
the values are updated in FILE!.

The second file in the system for checkpoint op
eration, the dynamic file, is labelled FILE3 and con
tains all of the dynamic variables within the system.
These comprise the job number, the day, the time
when the present grade of paper is completed, the
setpoint for all of the closed loops, and the limits for
all points under operator guide control. This file
.is updated whenever one of the dynamic variables is
modified, such as at the start of a new grade of paper
or the entry of data into the system from the process
operator's console.

The system contains both a restart core load and a
reload core load. The restart core load is refer
enced by all but the C. E, interrupt mainline. When
ever EAC initiates a restart, this core load is brought
into core storage. The system then reads the static
and dynamic files from disk to initialize INSKEL
COMMON, makes sure that both the scheduler and
the end-of-grade call count subroutines are function
ing correctly, and checks to see if an end-of-grade
has occurred during the restart procedure. If so, it
calls CHAIN to the mainline core load, GRADE.
Otherwise, it calls VIAQ, and the system has re
started properly.

The reload core load is similar to the cold start
core load, except there is a decision point within the
core load to determine whether a reload or a cold
start condition has occurred. Normally, sense switch
6 is turned on at cold start time. The cold start core
load interrogates sense switch 6, and if the switch is
on, the program goes through its normal cold start
procedure. If sense switch 6 is off, the cold start
routine assumes a reload has occurred and reads
both static and dynamic files, starts the scheduler
running again, and performs other functions that are
similar in scope to those that occur in the restart
core load. The normal cold start procedure, there
fore, is to set sense switch 6 on and, when the sys
tem is up and running, turn that switch off, so that
if a reload occurs, the system recovers correctly.

I/O Error Procedures

The system is designed so that it can function with
only one of the two disk drives in operation. Thus,
with a hardware failure on either disk drive, the
system is able to run at full capacity on the process.
This requires a two-disk system in which all process-

198

oriented functions, such as cold start, the resident
skeleton, system save areas, and all of the process
core loads, are on logical drive 1, and all nonproc
ess functions, such as DUP, FORTRAN Compiler,
Assembler, are on logical drive zero. Cold start
is to logical drive 1; since all of the process is
recorded on logical drive 1, there should never be
a need to reference logical drive zero, unless time
sharing occurs.

In order to guarantee that the system· does not
initiate time-sharing unless an operator is present
to specifically instruct it to do so, the cold start core
load (COLDS) sets the CALL VIAQ time-sharing
period to zero. This means that logical drive zero
will be referenced only if the console interrupt but
ton is depressed with sense switch 7 on. A cold
start to logical drive 1 may, therefore, be per
formed without any fear of not having logical drive
zero operatiqnal. Thus, if one of the two physical
drives goes down, the process is still under control
without any impairment to efficiency. When the drive
is serviced, it can be restored on-line with the C. E.
interrupt routine and time-sharing started. This
allows for the C. E. to work on the drive while the
system is still controlling the process. The system
must also continue to operate if any two of the three
1053 Printers are down. This is achieved by setting
the backup pattern for the 1053 Printer s in cyclic
order, such that

1053 Printer No. 2 backs-up 1053 Printer No. 1
1053 Printer No. 3 backs-up 1053 Printer No. 2
1053 Printer No.1 backs-up 1053 Printer No. 3

This means that if one 1053 Printer goes down, it
is backed -up, and if either of the other two printers
goes down, the third printer backs-up the first two,
so that as long as one 1053 Printer is operational,
the system is still running.

Of the two other data processing I/O devices on
the system, the 1443 Printer is used only on the
time-sharing side of the system. If it therefore
goes down, it will not affect the process side; in this
event, there will be no printout of new job data
loaded to the disk. The 1442 Card Read Punch is
used by the process only at cold start time; if the
system is up and running when the 1442 device goes
down, the system is still able to control the process.
The process can thus still be controlled by the 1800
hardware if, in the worst case, at cold start time,
one of the two disk drives, two of the three 1053s,
and the 1443 are all down.

To summarize, all that is needed for a cold start
is a 1442 Card Read Punch, a 1053 Printer, and a
2310 Disk storage Unit with two disk drives. After
the system is placed on-line and becomes operation
al, only one 1053 Printer and one disk drive are re
quired. The way the system is designed, it functions
even if the final 1053 goes down, but with one re
striction: no operator messages are printed. Closed
loop control is still in force, and the user is still
able to enter information through the process oper
ator's console, but he is not able to obtain informa
tion on the grade of paper being produced, and any
out-of-limit violation that may occur.

The EAC printer for the system is defined as all
three 1053s. This ensures that if an error condition
does arise, the operator on at least one of the three
1053 printer stations is informed of the problem. To
enable use of the C. E. interrupt routines (that form
part of TSX) to place a disk drive, a 1443 Printer,
and a 1053 Printer on-line or off-line, a C. E. core
load is provided. This core load is called whenever
it is necessary to use the C. E. interrupt routine. A
special C. E. core load is needed within the system
because the C. E. interrupt cannot be masked. This
means that when the C. E. interrupt button is depres
sed, no matter what the masked status of the 1800 is,
the interrupt will occur. It al so signifie s that the
C. E. routine has no choice but to assume that the
whole system is masked at the time of the interrupt,
and it therefore returns the machine in this status.
The interrupt mainline core load must therefore
unmask back to the desired configuration at the time
of the C. E. interrupt. In order to assure that this
occurs, a special core load is called into core before
the C. E. interrupt button is depressed. The core
load types out a message indicating that the operator
can now press the C. E. interrupt button; it then
performs a pause. The C. E. interrupt causes the
mainline program to drop through the pause. When
the C. E. interrupt routine is complete, the mainline
will then restore the user's mask and exit by a CALL
VIAQ.

Since the system has been designed for error re
covery, restarts and reloads can be performed with
out loss of process control. While the system is on
line, the C. E. is able to carry out both preventive
and corrective maintenance on the 1443 Printer and
on two of the 1053 Printers. Once these devices be
come serviceable, they are restored to on-line duty
by use of the TSX C. E. interrupt routine, and the
system continues operation in the normal mode. The
C. E. Aux storage routines are also used while the
system is on-line.

CLOSED LOOP CONTROL

GC26-3703-1
TNL: GN34-0036
Technical Change

It is desired to have the sample system perform
closed loop control on eight setpoint stations. The
scan requirement demands that these eight stations
be interrogated every 20 seconds to ensure they are
operating at the right setpoint value. A decision is
now made whether the closed loop control program
is to be a core load or an INSKEL interrupt subrou
tine. If the closed loop control program is to be a
core load, it would require core exchanges every
20 seconds in order for it to operate as specified.
This would be very inefficient in that the large num
ber of core exchanges would cut down the useful
amount of processor-controller time. Also, time
sharing periods would be of such small magnitudes
that a nonprocess job would take a great amount of
time to execute. For these reasons, the closed loop
control program is written in FORTRAN as an
INSKEL CALL LEVEL interrupt subroutine; that is,
it resides in permanent core.

The setpoint station couples the 1800 hardware to
an analog control loop; the station receives infor
mation from the computer in the form of a pulse
train, and transmits information back to the com
puter in the form of an electrical signal so that this
may be read by analog input. This signal indicates
the position of the setpoint. The output from the
setpoint station to the process can be used to oper
ate a pneumatic control valve directly or through a
pneumatic relay. The setpoint station has a scale
range of 0 to 100, divided into 2,000 increments.
One pulse output to the setpoint station drives the
setpoint positioner one increment.- The pulses must
be spaced at least 15 milliseconds apart in order to
drive the positioner at an effective rate. The sample
system is programmed to anticipate setpoint posi
tioner drift. Thus, the control loop more closely
resembles direct digital control (DDC) than normal
setpoint station operation.

The closed loop control program is divided into
two sections. The scan section scans all eight
setpoint stations and computes the number of pulses
needed for each one; the output section outputs the
pulses. A CALL LEVEL (10) command is given to
enter the program and, depending on a switch set
ting, one of the two sections is executed. Every 20
seconds the scheduler sets up an entry into the scan
section. Once the scan section has completed its
task, it initiates the output section.

The switch for the program is now set so that
future entries will enter the output section of the

Programming Techniques 199

closed loop program before another 20-second per
iod has elapsed. This is necessary because fue pro
gram must not stay on the interrupt level of the
closed loop control program during the output of the
pulse chain needed to move the setpoint station, which
would tie up the system too long. For example, if
200 increments are put out to the setpoint station,
the necessary loop would take 3 seconds for execu
tion. Therefore, once the output section has output
ted a pulse to the setpoint station, it calls for timer
B to set up reentry to itself in 15 milliseconds. It
then exits from the interrupt level so that computa
tion or execution on the mainline level can continue.
Fifteen milliseconds later, the timer runs out and
the subroutine associated with the timer executes
Call LEVEL back to the closed loop control program.
At this point, if another pulse is needed for any of
the setpoint stations, it is outputted and a Call
TIMER is again given. If all of the desired pulses
have been given, no Call TIMER is made and the
program exits. The closed loop control program will
not be entered again until 20 seconds have elapsed
from the last entry to the scan section.

This method of control provides background and
foreground operations with the TSX system, i. e.,
multi-programming. The closed loop control pro
gram constitutes the foreground job, and the program
resident in variable core, the background job.

OPERATOR GUIDE CONTROL

One of the system design criteria is to incorporate
operator guide control over forty process variables.
At the start of a grade, the operator is informed of
the limits on the 40 variables he is responsible for
controlling. Every two minutes these variables are
scanned, and if an out-of-limit condition occurs on
any of the variables, this information is printed for
the operator. Also, the operator has the ability to
perform a two-minute scan on demand so that he can
quickly scan all points, when desired. At the same
time, the operator can call for total information on
anyone point under control, i. e., its present value,
its high and low limits, and conversion factors. The
operator also has the option of changing the limits
of a point or taking a point off operator guide control.
To take a point, off-line, he sets to their maximum
and minimum values, all of the limits checked by the
two-minute scan. In this manner, he is continuously
informed of any erroneous out~of-limit condition.

200

SYSTEM DESIGN FOR OPTIMUM TIME-SHARING

Another desirable system requirement is to make
optimum use of the nonprocess mode of operation on
a time-shared basis. Among the activities that the
user may wish to implement in a time-shared mode
are instrument calibration, updating of process job
files on disk, accounting, payroll, etc. As it is
assumed that the user is going to make very heavy
use of the time-shared mode, a 1443 Printer is in
cluded in the system. The system and list printers
for the Nonprocess Monitor are both defined as the
1443 Printer so that all normal nonprocess output
would be on that printer. With the design of the
system such that only one disk is required for proc
ess work, logical drive zero can be switched among
different nonprocess monitor disk cartridges. This
allows each department within the company to have
its own nonprocess monitor disk cartridge, -with its
own set of programs. When a department job is
ready for processing, and computer time is avail
able, all that is required to be done is to place the
disk cartridge on disk drive zero and execute. With
the 1442/1443 combination, the nonprocess user
appears to have a small independent computer for
his own, i. e., a computer with a card read punch, a
printer, and one disk. A data processing computer
is thus combined with a strictly control systems com
puter in one machine and under one operating sys
tem. In fact, if the user desired, he could well set
up a closed shop, stack-job environment where non
process jobs submitted by the various departments
within the company are run while the computer is
controlling or monitoring the process.

PROCESS OPERATOR'S CONSOLE

One of the basic requirements of any process con
trol system is a simple and efficient method to input
data from a process operator. The operator must
also be able to interrogate the process, with relative
ease, to obtain any information required. There is
no single standard approach to this problem, since
the nature of the information needed by anyone in
dustry and, in fact, any plant within an industry,
varies greatly. In the sample system, a portion of
the 1800 Computer Process Simulator is used for
the operator's console (see Figure 91). Also, one
of the 1053s works in conjunction with the console.
This means that the process operator has the console,

CD Setpoint Station Movement Indicators

@ Digital Data Display (nixi tubes)

@ Setpoint Stations for Loops 7 & 8

@ Function Buttons

Figure 91. 1800 Computer Process Simulator

® Digital Input Switches

@ Operator Data Entry Dials

(j) Analog Inputs Under Operator Guide
(8 of the 40 points)

Programming Techniques 201

along with a 1053, at his work station. Standard
process I/O is used to operate the process oper
ator's console; analog input is used to enter infor
mation from the operator's data entry dials; process
interrupts are used as function buttons; digital input
is used to define whether a certain closed loop is
under control; digital output is used to indicate the
direction of movement of a setpoint positioner when
it goes through a control movement; and pulse output
is used to count the number of increments given to
all setpoint stations at any time.

Data Entry Dials

In normal practice the process plant operator has a
definite need to enter digital data into the system.
This may take the form of a new set of limits for an
operator guide point, a new value for a setpoint
station, or a new time for a particular grade of paper
to have its production terminated. In order to ac
complish this on the sample system, sixteen data
entry dials are provided. Each data entry dial con
sists of a linear potentiometer connected to an analog
input point. To obtain fine adjustment, a vernier
scale is incorporated with each potentiometer. A
major dial is graduated in scale from 0 to 10, while
a minor dial (the short scale of the vernier) gives
increments of subdivisions of each division recorded.
Each data dial enters one digital number into the
system. The process operator sets the potentiom
eter at one of the major divisions, i. e., 1,2, ... 9,
and that digital integer is entered into the system.
The digital integer entered is translated by the po
tentiometer to give out an analog value between 0 and
-32,000. This analog value is then converted by the
data entry dial read routine to a floating point number
between 0.0 and 9.9; this number is finally trans
formed and truncated to an integer value that lies
within the range of 0 through 9. The data entry dial
routine then transmits to the calling program a 16-
element linear matrix containing the digital values
for all 16 data entry dials. The calling routine can
combine these integer values to produce the desired
digit-coded information.

Function Buttons

Each function button is connected to one process in
terrupt. The operator depresses a function button
depending upon the function required fr om the con
sole. An example might be an operator call for de
mand scan of operator guide points; all that is re
quired of the operator is to depress the proper

202

button. This causes a process interrupt; the two
minute normal scan program is then loaded to core
and executed. Some of the process operator's con
sole programs are also executed via the data entry
dials. The operator sets the required data entry
dials, and pushes the associated function button.
The proper program is loaded; it interrogates the
data dials; and then performs the operation requested.

Digital Input Switches

These 16 switches are connected to one digital input
word. In the sample system, eight of these switches
are used to define whether a given closed-loop is
on-line or off-line. Before the system outputs a
pulse to a setpoint station or scans the closed-loop
control point, it first executes a read-and-expand
function on this digital input word. It then interro
gates each bit read to determine whether that loop is
on-line or off-line. If the loop is off-line, no con
trol function is performed.

Digital Data Di splay

The data output side of the process operator's con
sole is divided into three sections. The first section
is a set of nixi tubes for displaying digital data. These
are used as a counter of the number of pulses given
to the setpoint stations. The counter is manually
reset from the operator's console. In a normal oper
ating system, there is very little need for such a de
vice, but it was found desirable to have it for experi
mental purposes on this system.

Setpoint Station Movement Indicators

This section consists of 16 lights, two for each set
point station. One of the pair of lights per loop in
dicates whether the setpoint positioner is moving up,
while the other light indicates the setpoint positioner
is moving down. The lights are operated by digital
output.

mM 1053 Printer

This is used for outputting data, such as periodic
logs, that the user requests. The process operator's
console is simple to use and provides an efficient
solution for man/machine interface problems on the
system.

SYSTEM DOCUMENTATION

One of the most important and the most often neglec
ted aspects of control systems is proper system
documentation. The following paragraphs explain
the need for this vital part of planning and installa
tion.

Aid in System Debugging

A control system application is not solely a conglom
eration of multiple programs working independently
of one another. It is, rather, one big program that
has been highly segmented. In order to insure cor
rect communications between all program segments,
a condensed picture of the system is needed, to show
the interconnections between all program segments,
their interactions, what common variables they ref
erence, and how these programs are sequentially or
randomly executed.

Basic System Documentation Needed

Documentation that can be maintained is the key to
understanding and success of the system. The first
supporting procedural device is an overall system
flow chart that illustrates the basic interactions be
tween programs (see Figure 92). The second is the
maintenance of a list of all tables and variables that
are referenced by more than one program (see
Tables 14 and 15). Information is required to show
what programs reference these system variables and
which programs modify them. The third item is a
specification sheet describing each log in the system
(see Table 16). The fourth item is a specification
sheet on each program, that briefly tells what the
program does, what variables are referenced, what
files are referenced, what programs call this pro
gram, what other programs this program calls, and
any other information that has to do with the integra
tion of this program into the system (see Table 17).

DESCRIPTION OF SAMPLE SYSTEM FLOWCHART

The sample system flowchart (see Figure 92) illus
trates overall system operation and points out se-

'quential, random, and time-based operations in a
single flowchart. The flowchart is concerned only
with the relationship between various programs with
in the system, not with the happenings within a pro
gram. It describes how programs are initiated and
how they exit. Note that some program blocks are

self-contained; that is, they neither cause another
program to be initiated nor are they initiated by
another program. They are triggered only by a
random event, such as a process interrupt, and,
once executed, perform only an exit. On the sample
system flowchart, both chaining and queueing from
one program to another are represented in the
same manner because they constitute, basically,
the same function. The main difference between
them is that a CALL QUEUE may allow other pro
grams to "sneak in" between the sequential execu
tion of the calling program and the called program.
Note also that two programs, SCHED and TCONT,
call themselves with a time delay and thus insure
that they are periodically exeru ted. The TCONT
program may have its chain of execution broken by
the program TEBRT. This means that TCONT is
periodic only for a certain duration of time and that
the operator may control that duration of time if he
so desires (see Table 17: Program Data Sheets).

CODING TECHNIQUES

The sample system depicts the employment of
several coding techniques which may be of value to
the user. Three techniques are discussed in this
section. The first two are examples of good pro
gramming coding practice and should help to elim
inate the type of system problems a user may
encounter at TSX system installation time. The
third coding technique illustrates how one of the
functions on analog input can be used to advantage.

Use of INSKEL COMMON

INSKEL COMMON is one of the principal means by
which coreloads and subroutines within the system
can communicate with one another. This unique
labelled common area is mapped each time a new
core load is built. This means that problems can
arise if two different core loads have INSKE L
COMMON mapped differently. In order to avoid
such conflicts in its use, all core loads must map
INSKEL COMMON in the same manner. Also, for
good coding practice, they should use the same vari
able names for every variable in INSKEL COMMON.
The only way to insure this common usage is for the
user to keypunch only one COMMON card which may
subsequently be duplicated and inserted into each
core load source deck. If at some later time a
change is made to INSKE L COMMON, the new
COMMON card may be keypunched, copies made,
and all old COMMON cards in source decks re
placed. In this way, the user ensures that INSKE L
COMMON is defined identically for all core loads.

Programming Techniques 203

r"-"-"---"-"-"
• P

~
~

Figure 92. TSX Sample System Flow Chart

204

---{s:i;)
--Y

L---,~...Jr----- Stop Program

LEGEND

- - - - CALL COUNT

_.- .-.- CALL TIMER

- •• - •• - CALL LEVEL

CALL QUEUE OR CALL CHAIN

o ProcessNTERRUPT

o Console INTERRUPT

~ CALLVIAQ

~ CALLINTEX

~ CALL DPART

---8- -- CALL COUNT TO SELF

Table 14. TSX Sample System Table of Variables

System
Variable Used by Function

SWO SCHED, SOUT, RSTAR, COlDP, GRADE Close loop Control Stop

SWl SCHED, COlDP Update day-of-we~k switch

SW2 SCHED Output Monday morning log switch

SW3 SCHED, ENDGD, RSTAR, COlDP, GRADE, MGRTP, CPJSP Process Control Stop Switch

SW4 SCHED, lEVI 0, SOUT lEVIO program section switch

SW5 SCHED, COlDP SCAN2 Execution switch

DAY SCHED, RSTAR, COlDP, GRADE, SCAN2, lOGI5, lOG60, SHIFT, Day of week
COGlP, CClSP, MGRTP, CPJSP, AlMON

JOBN RSTAR, COLDP, GRADE, MGRTP, CPJSP, SPECl Next process job

VALUE lEVIO lEV10 Data input area

RANGE COlDN, RSTAR, COlDP, GRADE, lOGI5, TREND, CClSP, AlMON, Range of analog input values for setpoint stations
SPECl, SCAlB, RCAlB

lOW COLDN, RSTAR, COlDP, GRADE, lOGI5, TREND, CClSP, AI:'v\ON, low analog input values of setpoint stations
SPECl, SCAlB, RCAlB

SETPT lEVIO, RSTAR, COlDP, GRADE, CClSP, AlMON, SPECl Operating points for setpoint stations

COUMT lEVIO Number of pu Ises to be given to setpoi nt stati ons

OFFLN lEVIO Off-line indicator for setpoint stations

AHL RSTAR, COLDP, GRADE, LIMIT, COGlP, SPECL High limits for op-guide points

All RSTAR, COlDP, GRADE, LIMIT, COGlP, SPECl low limits for op-guide points

A COlDN, RSTAR, COlDP, lOGIS, TREND, AlMON, SPECl, SCAlB, RCAlB Conversion factor A for op-guide points

B COlDN, RSTAR, COlDP, lOGIS, TREND, AlMON, SPECl, SCAlB, RCAlB Conversion factor B for op-guide points

IBASE SCHED, COlDP Base time for lOG 15

IBASZ SCHED, COlDP Base time for lOG60

IBAZZ SCHED, COlDP Base time for SHIFT

G CONVR, COlDN, COLDP, CMIPT Conversion factor G for data entry dials

H CONVR, COlDN, COlDP, CMIPT Conversion factor H for data entry dials

IENDT RSTAR, COlDP, GRADE, MGRTP, CPJSP Grade termination time

IPERD STRND, TCONT TREND execution period

ITCNT TCONT, TABRT, STRND Number of times TREND is to be executed

IPONT TREND, STRND Point or loop for TREND to log

Table 15. Disk File Organization

FILE RECORD VARIABLES REFERENCING PROGRAMS

1 1 RANGE, LOW, A, B COLDN, RSTAR, COLDP, SPECL,
SCALS, RCALB

1 2 G, H COLDN, COLDP

2 1-100 I, ITIME, SETPT, GRADE, SPECL, CMIPT
AHL, ALL

3 1 JOSN, DAY, IENDT RSTAR, COLDP, GRADE, MGRTP,
SW3 CPJSP

3 2 SETPT RSTAR, COLDP, GRADE, CCLSP

3 3 AHL, ALL RSTAR, COLDP, GRADE, COGLP

Programming Techniques 205

Table 16. Log Description

NAME TYPE INFORMATION RECIPIENTS

SCANZ Pe ri odi c/ Asynchronous Out of Limit Condition~ Process Operator
(2 minute period) on operator guide points

LOG15 Periodic/Synchronous Present value of all Process Operator, Foreman
(15 minute period on analog input points
the quarter hour)

LOG60 Peri odiC/Synchronous Summary of lost hour's Process Operator, Foreman, Supervisor
(1 hour period on the production
hour)

SHIFT Periodic/Synchronous Summary of lost shift's Process Operator, Foreman, Supervisor
(8 hour period at 0:15, production
8:15, and 16.15)

WEEK Pe ri odi c/Sync h ronous Summary of last week's Foreman, Supervisor
(every week at 8:30 production
Monday morning)

Use of FORTRAN Files

FORTRAN files form the second means of communi
cations among programs in TSX. The use of
FORTRAN files, when compared to INSKEL COMMON,
introduces an added complication. Not only are the
files mapped at core load build time according to the
number of records and the size of a record, but, in
addition, each time they are read or written, the
definition of the file contents takes place. At read/
write time, the relative locations of variables within
the record are mapped. In order, therefore, to in
sure proper communications between all programs
that use FORTRAN files, the user must insure that
all defined file cards, asterisk file cards, and read/
write statements to files and records are the same.
This may be accomplished by punching only one card
for each of the above file reference statements and
duplicating this card where needed in source pro
grams. In this way, the user insures that the vari
able list is the same for each record within the sys
tem.

Use of Analog Input Read-and-Transfer Function

The read-and-transfer function for the AISQN sub
routine is the most versatile of all of the analog input
calls. With this call the user is able to handle each
analog input point as it comes in, and to simultan
eously insure that the rate of input of analog input
points is a maximum. The read-and-transfer func
tion operates as follows: after one analog input point
has been read into core, and conversion has been
started on the next sequential point, the analog input
subroutine transfers control to a user's subroutine,
which can manipulate this point in any desired way

206

while the next analog input point is being converted.
The value just read can be transformed into engi
neering units, checked for out-of-limit conditions,
and used in setting-up a control function.

All of these manipulations can be performed
within the user's subroutine. This allows the sys
tem to achieve maximum overlap of data input and
computation. In the sample system, the read-and
transfer function is used only in the SCAN2 program;
it could also have been effectively used in the LEV10
program and, in fact, wherever analog input is
used.

SYSTEM GENERATION

The entire system generation procedure for the
sample system can be viewed on a step-by-step
basis from the system and list printer output list
ings (see Program Listings No.9: System Gener
ation). These cover the initial writing of addresses
on the disk cartridges, to the calibration of instru
ments (before a cold start is performed). Two items
are excluded from the listings: the assembly of
TASK and the assembly of the System Director.
These two source decks have already been assem
bled and are in available object format.

Step 1. The first step in generating the system is
the writing of addresses on the disk. Step 1, in the
listing, shows the initialization of disks on disk
drives 0 and 1. Note that at the time addresses
were written on drive 0, there were no defective
cylinders. When addresses were written on drive 1,
three cylinders proved defective. The operator
message states that logical cylinders /0013 are de
fective, indicating that there are three consecutive

defective cylinders. Logical cylinder /0012 is oper
ational, but there is a three-cylinder gap before log
ical cylinder /0013 is reached. Except for one re
striction on its use, this disk is acceptable for TSX
system operation. The restriction (given by an error
message) is that a skeleton must not be built using
this storage device; that is, the disk cartridge can
not be used for logical drive zero for an on-line sys
tem.

Step 2. The IBM Nonprocess System is loaded to the
disk via the System Loader. The first item printed
out is the Assignment Table, which lists all hardware
devices defined for this configuration, the interrupt
level of each device, and the bit position within the
Interrupt Level Status Word (ILSW) where the inter
rupt bit for each device is located. After the Assign
ment Table is built, absolute programs are loaded
to disk. These are followed by IBM-supplied sub
routines.

The final item in the system load operation is the
*DEDIT function which instructs the system to re
serve 20 disk cylinders for the buffering of mes
sages and that the object machine will contain 32K
words of core storage.

Steps 3 through 8. These steps are concerned with
the organization of the disks for this particular in
stallation. Step 3 defines the sample system as a
two-drive system; drives 0 and 1 are then labelled.
Steps 6 and 7 define the configuration of the se two
drives. A differentiation is now made between the
process and nonprocess drives. All control programs
and components associated with the process, such as
the skeleton and EAC, are located on logical drive 1
while all nonprocess functions such as the FORTRAN
Compiler and the Assembler are located on logical
drive O. This is the initial stage in the organization
of the sample system. Step 8 reserves disk space
for data files used by the system; the values that
will be stored in the files are not defined at this
time.

Step 9. In step 9, the System Director, in object
format, is stored from cards to a relocatable area
on logical drive 1.

Steps 10 through 23. These steps set out the compil
ation and assembly of all system subroutines. These
include INSKE L interrupt subroutines, COUNT sub
routines, a solitary TIMER subroutine, and normal
ly-called subroutines. As these are compiled or
assembled, they are stored on disk in relocatable
format so that they will be readily available at skele
ton build time. Step 23 is a checkpoint along the

system generation route; the *DUMPLET verifies
that all subroutines necessary for the creation of
the skeleton are properly stored on disk.

Step 24. The actual System Skeleton building phase
is now carried out. TASK is reloaded to core from
cards for the first time since the commencement
of system generation. Note that the / / JOB card
for the skeleton build function contains an "A" in
column 15, which defines a two-drive system; this
card must be identical to the / / JOB card which
precedes the final / / END OF ALL JOBS.

At the commencement of skeleton build, a KOC
error message is printed, signifying that the ANINT
subroutine (an I/O subroutine) has missed an inter
rupt branch table entry. The error message states
that IAC code /0023 is missing from the Master
Interrupt Branch Table. Since this EAC code con
cerns the comparator feature on the Analog Input
Expander, and there is no comparator on the sample
system, the error code can be ignored. After the
skeleton map is printed, a series of K13 error
messages is printed, indicating that certain named
programs have not yet been built. Since these pro
grams cannot be built until the skeleton itself has
been built, these errors can be ignored. Note that
a K13 error would be significant if an operator per
formed a skeleton rebuild and obtained a K13 error
message for a program that should have been on
disk. Once the skeleton is built, it is time to com
pile and build the mainline core loads.

Steps 25 through 45. All system process core loads
are now built and stored in core image format on
disk. At this point in time, TASK is still resident
in core controlling the Nonprocess Monitor. Step 30
is of special interest; three dummy core loads are
provided in the system to be referenced on a DUP
*DELETE card, when it is desired to modify any of
the core loads in the system. For example, if core
load GRADE contains an error, and it is desirable
to recompile GRADE and restore it on disk, the first
thing that must be carried out before this can be done
is to delete the old version of GRADE. If, however,
the system is on-line at the time GRADE is deleted,
a core load must be available on disk which can be
loaded and executed when the core load name GRADE
is called after its deletion, but before storage of
its replacement. Since a straight delete of GRADE
is not possible, it is preferable to replace GRADE
with a dummy core load until such time as its new
version becomes resident on disk.

Between steps 44 and 45, TASK is eliminated from
core, and system operation is initiated by a cold
start which specifies COLDN as the initial core
load. The function of COLDN is to provide perpetual

Programming Techniques 207

time-sharing so that the Nonprocess Monitor may be
used to execute user-written nonprocess core loads
during system generation. It is necessary to exe
cute these nonprocess core loads during system gen
eration because there are certain data areas that
must be initialized prior to a process cold start.
There are also four nonprocess core loads that will
be executed in the time-shared mode, at a later
time, that affect process operation.

Step 45 is concerned with the compilation and
execution of a one-time-only core load, named
SPECL, which is used to place initial values in the
process.

Steps 46 through 51. Once the job file is initialized,
step 46 compiles and stores the first of the cali bra -
tion core loads. As soon as this core load is stored
on disk, it is executed at step 47 to obtain initial
calibration factors for closed loops 7 and 8. Steps
48 through 51 cover the calibration of other analog
input points in the system.

Steps 52 through 54. At step 52, the program which
will be used to update the job files on disk, as new
grades of paper are placed in the process job sched
ule, is compiled and stored. It is executed at step
53 to ensure that it functions correctly. Step 54 is
the final step in the system generation procedure; an
*DUMPLET is performed on both drives to ensure
that all core loads and data areas are correctly de
fined on disk. At this point, the sample system is
ready to be placed on-line to control the paper
machine.

ON-LINE OUTPUT FROM THE SAMPLE SYSTEM

Samples of output listings obtained during on-line
continuous operation of the sample system are given
at the end of this section (see Program Listing No.
10: On-Line Process Output). The specimen list
ings illustrate process operator, supervisor, and
time-shared output.

Output 1. This is generated at cold start time on the
process operator's 1053 Printer. It reveals the cold
start procedure and continues with a typical sample
output over the next few hours of processing on the
same printer. Note that at cold start time, a proc
ess job sequence number of zero is supplied to the
system; the sample system went, therefore, into a
production stop state. Two minutes later, the first
process job number is entered into the system from
the process operator's console. When the process

208

operator receives a signal that the paper machine
is ready to go on-line with this grade of paper, he
depresses the abort-grade button which initiates
the production of grade 12345; this grade had been
entered into the queue sequence a minute earli,.er.
At the start of grade 12345, the production time is
printed as one hour and 29 minutes; the start time
is recorded as 8:03 a. m., Friday. At this stage,
the high and low limits for all operator guide points
as well as set point values for the set point stations
are printed. At 8:05 a. m., the operator at the
process operator's console changes the set point
value for loop 7 to a value of 50. Note that the
normal scan of the operator guide points is execu
ted every two minutes. At 8:15 a. m., the first
quarter hour log is printed. As can be seen from
the listing, closed loop 7 is now on set point value.
It should be noted that the set point range for ac
ceptable values is within plus or minus oue of the
actual set point value. Following the 8:15 a. m.
quarter hour log, the shift-end log is printed. At
9:00 a. m., the first of the periodic one-hour logs
is printed.

Output 2. This output is on the process operator's
1053 printer and shows three of the operator con
sole functions being executed. The first function
occurs at 11:28 a. m., Friday and consists of
changing the high and low limits on operator guide
point 5. Note that two minutes later point 5 is
recorded as being out of limits, and calls for a de
mand scan, at which time no limit violation is re
corded. Four minutes later, at 11:34 a. m., the
operator calls for complete information on operator
guide point 5. The value of point 5 is recorded; its
high and low limits and the two conversion factors
are printed.

Output 3. Output 3 shows two of the other functions
which can be performed from the process operator's
console. The first is the calling of a trend log on
operator guide point 6. The operator specifies to the
system through the console that he wants a trend log
on operator guide point 6 every ten seconds, and
that he wants this trend log repeated 300 times. This
is followed by the output from the trend log.

Between the normal scan at 9: 17 a. m. and the
next normal scan at 9:19 a. m., eleven values of the
trend log are printed. (In normal operations, with
in a two-minute period, twelve trend logs would be
printed.) The reason for the eleven printed values
is because the last trend log and the normal scan
are both queued at the same time, and that the
normal scan is queued with a higher value than the

trend log. The normal scan is therefore printed
first with only eleven trend logs between it and the
preceding normal scan. After only nineteen trend
logs have been printed, the operator decides to abort
the trend operation before it runs to completion, by
depressing the abort trend log function button on his
console. At 9:21 a. m., the sequence of process jobs
is changed when the operator enters a new sequence
number of zero into the system. This is done be
cause the operator wants the computer to go into a
suspended state, as far as the paper machine is con
cerned, when the current job runs to completion. It
also means that the paper machine is being taken
off computer controL At 9:23 a. m., the manufac
turing process of this grade of paper comes to an
end; the system then recognizes that the operator
has changed job sequences to indicate that it is now
time for a production stop. This occurs at 9:25 a. m.
The operator now enters a new job number, 35, so
that when the paper machine is ready to commence
a new cycle of operation, all he need do is to hit the
grade abort function switch to bring the process back
under control.

Output 4. Output 4 shows how the operator changes
the job sequence so that a different grade of paper
can be made when a present grade under production
is completed. At 12:26, the production on the pre
ceding grade of paper being completed, the new
grade, 4530 (which the operator has entered into the
system), is initiated.

Output 5. Output 5 shows the printout on the process
operator's 1053 Printer at the time of a reload con
dition. At this point, an intentional reload of the sys
tem is caused by bringing about an op-code violation
in the Skeleton by depressing stop, reset, start. Fol
lowing the normal scan at 9 :06 a. m., the EAC reload
message is printed. The cold start core load which
determines that this is a reload operation then prints
the message: Process Restart Checkpoint. At this
time, all of the variables in INSKEL COMMON have
been reinitialized, and the system is back in control
of the process. Following the normal scan at 9: 07
a. m., the quarter hour log, the one hour log and the
shift-end log are printed. These are printed at this
time to assure the operator that the system is run
ning correctly and that all functions are operating.

Note that at 9:10 a. m. the operator performs a de
mand scan and is told that a limit violation has oc
curred on point 5.

Output 6. Output 6 demonstrates what happens when
an error occurs in a nonprocess time-shared job.
On Wednesday at 13:56, a time-shared nonprocess
program is executed while the process is being
monitored. This time-shared program which con
tains a FORTRAN I/O error thus causes the sys
tem to abort that job. Note that this has no effect
on the control of the process.

Output 7. Output 7 demonstrates the use of the
TSX C. E. interrupt routine to bring logical drive 0
on-line. (Logical drive 0 had been taken off-line
prior to 9: 02 a. m. on Tuesday.) This means that
the system is operating with only the process cart
ridge on-line. At 9:02 a. m., it was decided to run
some non-process jobs; it therefore became neces
sary to place a nonprocess cartridge on logical drive
zero and to bring that drive on-line.

Before the drive is brought on-line through the
use of the TSX C. E. interrupt program, the operator
first calls in his C. E. unmasked core load via the
console interrupt. Once the message is printed,
stating that this core load is in core, he depresses
the C. E. interrupt button. This brings the C. E.
interrupt routine into core; the operator then pro
ceeds to bring logical drive 0 on-line. Once the drive
is on-line, normal process control continues, and the
operator is now able to execute time-sharing jobs.

Output 8. Output 8 is on the foremen's 1053 Printer.
This shows two things: first, that information is
given to the foreman, and the extent to which it varies
from that supplied to the process operator. It also
shows at what time system operation is terminated
after a period of continuous operation. Note too,
that the Monday morning report is printed exactly on
time at 8:30 a. m.

Output 9. Output 9 is from the nonprocess time
shared side of the sample system. It shows what is
printed on the 1443 Printer at the time the job files
on disk are updated with data on new grades of paper
to be produced.

Programming Techniques 209

Table 17. Program Data Sheets

These are specifications sheets of each program used
in the TSX Sample System (see Basic System Docu
mentation Needed). Each encircled listing number in
the table corresponds to its exact counterpart in
Program Listing No.9: System Generation.

I.istiDj! No. ®
Program. SCHED

Type. INSKEL CAIJ. COUNT Subroutine

Description. This subroutine schedules the periodic execution
of the programs listed in the external statement. This sub
routine is entered every 20 seconds.

System Variables Referenced. SWO, SWl, SW2, SW3, SW4,
sWS, DAY, !BASE, lBASZ, IBAZZ.

Files Referenced. None

Programs Called. SCHED, SCAN2, LOG 15, LOG60, SHIFT,
WEEK

Calling Programs. RST AR, COLDP, GRADE

System Subroutines Called. None

Restart Core Load. N/ A

Listing No. ®
Program. LEVI0

Type. INSKEL INTERRUPT Subroutine

Description. This subroutine does closed loop control of eight
set pomt stations. Every twenty seconds, the scheduler
subroutine gives a call level to this routine and sets SW4 to
p:>int to the scan section such that all eight points are
scanned. When the scan is finished, the output to each on
line station is computed and the first pulse output is given.
Timer B is then used to set-up fifteen millisecond entries
into the subroutine so that all necessary pulses are given.

System Variables Referenced. OFFIN (1-8), SW4,
VALUE (6-13, 15) SETPT (1-8), COUMT (1-8)

Files Referenced. None

Programs Called. sour

Calling Programs. None

System Subroutines Called. None

Restart Core Load. N/ A

210

Listing No. ®
Program. SOUT

Type. INSKEL CALL TIMER Subroutine

DeSCription. This subroutine services timer 5 and is used for
initiating entries into the level 10 subroutine for the out
putting of pulses to the set point stations.

System Variables Referenced. SWO, SW4

Files Referenced. None

Programs Called. None

Calling Programs. LEVI0

System Subroutines Called. None

Restart Core Load. N/ A

Listing No. ®
Program. QUE 15

Type. INSKEl INfERR UPT Subroutine

DeSCription. This subroutine queues the fifteen minute log routine
on demand.

System Variables Referenced. None

Files Referenced. None

Programs Called. LOG IS

Calling Programs. None

System Subroutines Called. None

Restart Core Load. N/A

Listing No. ®
Program. TCONT

Type. INSKEL CAU COUNT Subroutine

Description. This subroutine periodically queues the trend
log program the number of times specified.

System Variables Referenced. ITCNT

Files Referenced. None

Programs Called. TREND, TCONT

Calling Programs. TCONT

System Subroutines Called. None

Restart Core Load. N/ A

Listing No.

Program. TABRT

Type. INSKEL INTERRUPT Subroutine

Description. This subroutine aborts the trend log on
demand.

System Variables Referenced. ITCNT

Files Referenced. None

Programs Called. None

Calling Programs. None

System Subroutines Called. None

Restart Core Load. N/ A

Listing No.

Program. GETVL

Type. USER Subroutine

Description. This subroutine reads the analog input value for
each of the sixteen data entry dials.

System Variables Referenced. None

Files Referenced. None

Programs Called. None

Calling Programs. CONVR, CMIPT

System Subroutines Called. None

Restart Core Load. N/ A

®
Listing No.

Program. CONVR

Type. USER Subroutine

Description. This subroutine scans the 16 data entry dials at
the process operator's console and converts them to an
integer value with range 0 to 9.

System Variables Referenced. G(1-16), H(1-16)

Files Referenced. None

Programs Called. None

Calling Programs. COGLP, CUSP, MGRTP, CPJSP, STRND,
AIMON

Systems Subroutines Called. GETVL

Restart Core Load. N/ A

Programming Techniques 211

212

Listing No. ®
Program. PTlME

Type. USER Subroutine

Description. This subroutine reads the clock and converts
the time to a floating point number with the decimal
point separating hours and milnltes.

System Variables Referenced. None

Files Referenced. None

Programs Called. None

Calling Programs. RSTAR, GRADE, SCAN2, LOG1S,
LOG60, SHIFT, WEEK, COGLP, CCLSP, CP]SP, AlMON

System Subroutines C ailed. None

Restart Core Load. N/ A

®
Listing No.

Program. IADDR

Type. USER Subroutine

Description. This subroutine gets the address of a
FORTRAN variable.

System Variables Referenced. None

Files Referenced. None

Programs Called. None

Calling Programs. None

System Subroutines Called. None

Restart Core Load. N/ A

Listing No. ®
Program. ISBAD

Type. USER Subroutine

Description. This subroutine gets the address of the entry
point to a subroutine

System Variables Referenced. None

Files Referenced. None

Programs Called. None

Calling Programs. None

System Subroutines Called. None

Restart Core Load. N/ A

Listing No.

Program. CESET

Type. INSKEL INTERR UPT Subroutine

Description. This subroutine queues the CE unmask program
so that devices may be taken off-line or put on line.

System Variables Referenced. None

Files Referenced. None

Programs Called. CEINT

Calling Programs. None

System Subroutines Called. None

Restart Core Load. N/ A

Listing No. ®
Program. ABORT

Type. INSKEL INTERR UPT Subroutine

Description. This subroutine queues the grade change program
causing the present grade to be aborted.

System Variables Referenced. None

Files Referenced. None

Programs Called. GRADE

Calling Programs. None

System Subroutines Called. None

Restart Core Load. N/ A

@
Listing No.

Program. ENDGD

Type. INSKEL CALL COUNT Subroutine

Description. This subroutine aborts the grade in progress
when the run time for that grade has elapsed.

System Variables Referenced. SW3

Files Referenced. None

Programs Called. GRADE

Calling Programs. RST AR, COLDP

System Subroutines Called. None

Restart Core Load. N/ A

Listing No.

Program. COLDN

Type. MAINLINE CORE LOAD

Description. This cold start core load is used to give
perpetual time sharing.

System Variables Referenced. RANGE, LOW, A, B, G, H

Files Referenced.
File 1, Records 1 + 2

Programs Called. None

Calling Programs. None

System Subroutines Called. None

Restart Core Load. COLDN

Listing No.

Program. COLDS

Type. MAINlINE CORE LOAD

Description. This is the normal cold start core load. It sets
tIme sharing time to zero so that console interrupt must
have been pushed before logical drive zero is ever
referenced. This core load chains to COLDP to actually
cold start the process.

System Variables Referenced. None

Files Referenced. None

Programs Called. COLDP

Calling Programs. None

System Subroutines Called. None

Restart Core Load. COLDS

Programming Techniques 213

214

Listing No. ®
Program. RSTAR

Type. MAINUNE CORE LOAD

Description. This is the system restart core load. Whenever
a restart condition occurs, this routine is loaded to variable
core to make sure system constants in INSKEL COMMON
are valid.

System Variables Referenced. SWO, SW3, RANGE, LOW, A,
B, JOW, DAY, IENDT, AHL, ALL, SETPT

Files Referenced.
File 1 Record 1
File 3 Records 1, 2, 3

Programs Called. SCHED, GRADE,. ENDGD

Calling Programs. None

System Subroutines Called. PTIME

Restart Core Load. COLDS

Listing No ..

Program. COLDP

Type. MAINLINE CORE LOAD

@

DeSCription. This is the system process cold start and reload
core load. If sense switcb 6 is on, it does a process
cold start and if sense switch 6 is off it assumes a reload
condition has occurred so that it initializes the system to
the last check point.

System Variables Referenced. SWO, SWl, SW3, SWS,
RANGE, LOW, DAY JOBNt At ~ SETPT, AHI., ALL,
IENDT, G, H

Files Referenced.
File 1 Records 1, 2
File 3 Records 1, 2, 3

Programs Called. SCHED, GRADE, ENDeD

Calling Programs. COLDS

System Subroutines Called. None

Restart Core Load. COLDS

Listing No. ®
Program. CEINT

Type. MAINLINE CORE LOAD

Description. This core load is for use with the CE interrupt. It
makes sure that all levels are unmasked after use of the CE
interrupt routine.

System Variables Referenced. None

Files Referenced. None

Programs Called. None

Calling Programs. CESET

System Subroutines Called.

Restart Core Load.

Listing No.

Program. DUM

CEINT

None

Type. MAINLINE CORE LOAD

Description. This is a dummy core load for use in replacing
or deleting system core loads.

System Variables Referenced. None

Files Referenced. None

Programs Called. None

Calling Progr ams. None

System Subroutines Called. None

Restart Core Load. DUM:

Listing No.

Program. IDUM

Type. INTERRUPT CORE LOAD

Description. This is a dummy core load for use in replacing
or deleting system core loads.

System Variables Referenced. None

Files Referenced. None

Programs Called. None

Calling Programs. None

System Subroutines Called. None

Restart Core Load. N/ A

Listing No. ®
Program. GRADE

Type. MAINLINE CORE LOAD

Description. This program starts the production of a new grade.

System Variables Referenced. SWO, SW3, DAY, JOBN, RANGE,
LOW AHL, ALL, SETPT, IENDT

Files Referenced.
File 2
File 3, Records 1, 2, 3

Programs Called. SCHED

Calling Programs. ABORT, ENDGD, RST AR, COLDP

System Subroutines Called. PTIME

Restart Core Load. RST AR

® ®
Listing No.

Program. CDUM

Type. COMBINATION CORE LOAD

Description. This is a dummy core load for use in replacing
or deleting system core loads.

System Variables Referenced. None

Files Referenced. None

Programs Called. None

C ailing Progr ams. None

System Subroutines C ailed. None

Restart Core Load. CDUM

Listing No.

Program. SCAN2

Type. COMBINATION CORE LOAD

Description. This combination core load scans ail of the Op
guide points on the system and notes any limit violation to
the operator.

System Variables Referenced. DAY

Files Referenced. None

Programs Called. None

Calling Programs. SCHED

System Subroutines Called. PTlME, LIMIT

Restart Core Load. RST AR

Programming Techniques 215

Listing No. ®
Program. UMIT

Type. USER Subroutine

Description. This subroutine is the subroutine to be used in
the AIS read and transfer function of the mainline core
load.

System Variables Referenced. AHL, ALL

Files Referenced. None

Programs Called. None

Calling Programs. SCAN2

System Subroutines Called. NONE

Restart Core Load. N/ A

®
Listing No.

216

Program. LOG 15

Type. MAINLINE CORE LOAD

Description. This is the fifteen minute log program which logs
the values of all process variables in the system.

System Variables Referenced. DAY, B(1-40), A(1-40),
LOW(1-8), RANGE(1-8)

Files Referenced. None

Programs Called. None

Calling Programs. SCHED, QUE15

System Subroutines Called. PTIME

Restart Core Load. RST AR

Listing No. ®
Program. LOG60

Type. MAINLINE CORE LOAD

Description. This program puts out the hour log.

System Variables Referenced. DAY

Files Referenced. None

Programs Called. None

Calling Programs. SCHED

System Subroutines Called. PTIME

Restart Core Load. RST AR

Listing No.

Progr am. SI-nFT

Type. MAINLINE CORE LOAD

Description. This program outputs the shift log.

System Variables Referenced. DAY

Files Referenced. None

Programs Called. None

Calling Programs. SCHED

System Subroutines Called. PTIME

Restart Core Load. RSTAR

Listing No.

Program. WEEK

Type. MAINLINE CORE LOAD

Description. This program outputs the weekly Monday
morning log.

System Variables Referenced. DA Y

Files Referenced. NONE

Programs Called. None

Calling Programs. SCHED

System Subroutines Called. PTIME

Restart Core Load. RSTAR

Listing No. ®
Program. COGLP

Type. INTERRUPT CORE LOAD

Description. This core load changes the limits on operator
guide points at operator request.

System Variables Referenced. AHL, ALL, DAY

Files Referenced.
File 3,Record 3

Programs Called. None

Calling Programs. None

System Subroutines Called. PTIME, CONVR

Restart Core Load. N/ A

® ®
Listing No.

Program. TREND

Type. MAINLINE CORE LOAD

Description. This is the trend log core load. It reads the
value that the operator has asked. It is queued
periodically by the TCONT subroutine with the period
specified by the operator.

System Variables Referenced. IPONT, LOW, RANGE, A, B

Files Referenced. None

Programs Called. None

Calling Programs. TCONT

System Subroutines Called. None

Restart Core Load. RST AR

Listing No.

Program. CCLSP

Type. INTERR 1JPT CORE LOAD

Description. This core load changes the set point value for a
set point station upon operator request.

System Variables Referenced. RANGE, LOW, SETPT, DAY

Files Referenced.
File 3,Record 2

Programs Called. None

Calling Programs. None

System Subroutines Called. CONVR, PTIME

Restart Core Load. N/ A

Programming Techniques 217

218

Listing No.

PrOgram. MGRTP

Type. INTERRUPT CORE LOAD

Description. This core load changes the run time for a
grade upon operator request.

System Variables Referenced. rENDT, JOBN, DAY, SW3

Files Referenced.
File 3, Record 1

Programs Called. None

Calling Programs. None

System Subroutines Called. CONVR

Restart Core Load. N/ A

Listing No.

Program. CPJSP

Type. INTERRUPT CORE LOAD

®

Description. This core load changes the sequence of
grades upon operator request.

System Variables Referenced. JOBN, DAY, IENDT, SW3

Files Referenced.
File 3, Record 1

Progr ams Called. None

Calling Programs. None

System Subroutines Called. CONVR, PTIME

Restart Core Load. N/ A

Listing No.
®

Program. STRND

Type. INTERRUPT CORE LOAD

Description. This core load initiates a trend log of the point
specified by the operator.

System Variables Referenced. IPONT, IPERD, ITCNT

Files Referenced. None

Programs Called. None

Calling Programs. None

System Subroutines Called. CONVR

Restart Core Load. N/ A

®
Listing No.

Program. AlMON

Type. INTERRUPT CORE LOAD

DeSCription. This core load logs all information about any
pomt m the system.

System Variables Referenced. A, B, DAY, LOW, RANGE,
SEIPT

Files Referenced. None

Progr ams Called. None

Calling Programs. None

System Subroutines Called. PTIME, CONVR

Restart Core Load. N/A

Listing No. @
Program. SPECL

Type. NONPROCESS CORE LOAD

Description. This is a special one-time-only core load to set
up the job files on disk for test purposes.

System Variables Referenced. AHL, All, A, B, RANGE,
lOW, SETPT (1-8) JOBN

Files Referenced.
File 1,Record 1 - RANGE, lOW, A, B
File 2,Record 1 - J I ITllv1E, SETPT, AHL, All

Programs Called. None

Calling Programs. None

System Subroutines Called. None

Restart Core Load. N/ A

@
Listing No.

Program. SCALE

Type. NONPROCESS CORE LOAD

Description. This nonprocess core load is for calibrating
the set point stations.

System Variables Referenced. RANGE, LOW, A, B

Files Referenced.
File 1, Record 1

Programs Called. None

Calling Programs. None

System Subroutines Called. None

Restart Core Load. N/ A

listing No.
@

Program. RCAlB

Type. NONPROCESS CORE LOAD

Description. This nonprocess core load is for calibrating
the analog input points for Op-guide.

System Variables Referenced. A, B, RANGE, LOW

Files Referenced.
File 1, Record 1

Programs Called. None

Calling Programs. None

System Subroutines Called. None

Restart Core Load. N/ A

®
Listing No.

Program. CMIPT

Type. NONPROCESS CORE LOAD

Description. This nonprocess core load is for calibrating
the data entry dials.

System Variables Referenced. G(1-16), H{1-16)

Files Referenced.
File 1, Record 2

Programs Called. None

Calling Programs. None

System Subroutines Called. GETVL

Restart Core Load. N/ A

Programming Techniques 219

Listing No. ®
Program. LOAD]

Type. NONPROCESS CORE LOAD

Description. This program loads the process job files on disk
with data read from cards.

System Variables Referenced. None

Fiies Referenced. None

Programs Called. None

Calling Programs. None

System Subroutines Called. None

Restart Core Load. N/ A

220

PROGRAM LISTING NO.9: SYSTEM GENERATION

CD

TASK 1800 TSX-II-1 SAMPLE SYSTEM
SEN SW 0 ON FOR ABSOLUTE LOADER
SEN SW 1 ON FOR NONPROCESS MONITOR
SEN SW 2 ON FOR SKELETON BUILDER

TASK DISK WRITE ADDRESSES PROGRAM
ENTER NO. TRIES ON DATA SW MAX001F

DATA SWITCHES EQUAL LOGICAL DRIVE
DRIVE CODES--HEX 0000 0001 0002
THERE ARE NO DEFECTIVE CYLINDERS
SEN SW 0 ON GO TO TASK OFF REDO
TASK DISK WRITE ADDRESSES PROGRAM

ENTER NO. TRIES ON DATA SW MAX001F
DATA SWITCHES EQUAL LOGICAL DRIVE
DRIVE CODES--HEX 0000 0001 0002
CYLINDERS 0013 0013 0013

ARE DEFECTIVE
00 NOT USE SKEL.BLD WITH THIS PACK

SEN SW 0 ON GO TO TASK OFF REDO
TASK 1800 TSX-II-1 SAMPLE SYSTEM
SEN SW 0 ON FOR ABSOLUTE LOADER
SEN SW 1 ON FOR NONPROCESS MONITOR
SEN SW 2 ON FOR SKELETON BUILDER

/lSYSTEMLOADER
11* IBM 1800 TSX-II SAMPLE SYSTEM
*ASSIGNMENT
00 01 33
01 02 04,33
02 02 00,08
03 02 02/02,33
04 03 01/01,36/04,37/05
05 04 33,06/03,11,12
06 03 10,34,33
07 04 03/07,32,20,16
08 01 33
09 01 33
10 01 33
11 01 33
12 01 33
13 01 33
14 01 33
15 01 33
99 01 42/06
DEVICE LEV BIT lAC LUN
PISW 00 00 33
DISK-1 01 00 04
PISW 01 01 33
TIMERS 02 00 00
DISK-2 02 01 08
CARD-1 03 00 02 02
PISW 03 01 33
TYP1G1 04 00 01 01
TYP2G1 04 01 36 04
TYP3G1 04 02 37 05
PISW 05 00 33
PRNT-1 05 01 06 03
DINP 05 02 11
DAOP 05 03 12
ADC-l 06 00 10
COMP-1 06 01 34
PISW 06 02 33
PAPTPE 07 00 03 07
CONSOL 07 01 32
RPQ-01 07 02 20
AOC-2 07 03 16
PISW 08 00 33
PISW 09 00 33
PISW 10 00 33
PISW 11 00 33
PISW 12 00 33
PISW 13 00 33
PISW 14 00 33
PISW 15 00 33
KEYB-l 42 06

YOU DefiNED 000016 110 DEVICES
AND A TOTAL OF 000029 I LSW BI TS

*LDOSK .lET
SECTOR 0155

*LDDSK .DCOM
SECTOR 0000

*LDDSK .MBT
SECTOR 0002

f2\ Continued
\V *LDDSK .SUP

SECTOR 0005
*LDDSK .CLB

SECTOR 0010
*LODSK ICLST

SECTOR 063A
*LDDSK .DUP

SECTOR 001A
*LODSK .ASM

SECTOR 0066
*LDDSK .FOR

SECTOR 0095
*LDDSK .SIM

SECTOR 00F6
*LDDSK .EPRG

SECTOR 0618
*LDDSK SBRT
lAND
CLEAR
CLOCK
COUNT
DMP DMPHX OMPDC
DMPS DMPST
DPART
ENDTS
IEOR
LD
LEVEL
MASK
OPMON
lOR
QIFON
QUEUE
RESMK
SAVMK
SETCL
TIMER
UNMK
UNQ
VIAQ
CONHX
TRPRT
FLIP
EADD
EATN
EAVL
EAXB
EAXI
EDVR
ELD
ELN
EMPY
ESINE
ESQR
ETNH
ETRTN
EXPN
FSBR
FARe
FATN
FAVL
FAXB
FAXI
FBTD
FOIV
FIXIX
FLO
FLN
FLOAT
FMPY
FSINE
FSQR
FTNH
FTRTN
FXPN
lABS
IFIX
NORM
SNR
XDO
XMD
XMDS
XSQR
BINOC
BINHX

ESUB
EATAN
EABS
EAXBX
EAXIX
EOVRX
ELDX
EALOG
EMPYX
ESIN
ESQRT
ETANH
ETNTR
EEXP
FSBRX

FATAN
FABS
FAXBX
FAXIX
FDTB
FDIVX
FIXI
FLDX
FALOG

FMPYX
FSIN
FSQRT
FTANH
FTNTR
FEXP

EADOX ESUBX ESBR ESBRX

EDIV EDIVX
ESTO ESTOX

ECOSN ECOS

FADD FSUB FADOX FSUBX

FOVR FDVRX

FSTO FSTOX

FCOSN FCOS

Programming Techniques 221

CD Continued

oCBIN
EBPA
EBPRT
HOlEB
HOlPR
HXBIN
PAPEB
PAPHL
PAPPR
PRT
AoRCK
COMGO COMGl
oATSW
oVCHK
ESIGN
FCTST
FSIGN
IOU
ISIGN
ISTOX
lDFAC STFAC SBFAC oVFAC
MDFIO MoAF MoAI MoCOM MDF MDFX MOl MD IX MDRED MDWR T
MDFNo
MFIO MRED MWRT MCOMP MIOAF MIOAI MIOFX MIOIX MIOF MIDI
MGOTO MFIF MIIF MEIF
MIAR MI A'RX MFAR MFARX MEAR MEARX
OVERF
PAUSE
REHND BCKSP EOF
SAVE IOFIX
SLITE SlITT
SSWTC
STOP
SUBIN
SUBSC
TSTOP
TSTRT
nEST TSET
UFIO UREo UWRT UIOI UIOF UIOAI UIOAF UIOFX UIOIX UCOMP
PlOTX
CARON
PAPTN
MAGT
AIPTN AIPN
AISQN AISN
AIRN
ANINT
DINP
olEXP
DICMP
DAOP
lOPE OUSlY ETS
XSAVE XEXIT XlOAD
GAGED UNGAG
AlP
AIS
AIR
CS VS 01 PI
CSC VSC DIC PIC
CSX VSX DIX PIX
oAC CO DO PO
QZERQ
QZOIO
BTlBT
BT2BT
FCHAR
SCALF
FGRID
FPlOT
ECHAR
SCALE
EGRIo
EPLOT
POINT
FCHRX FCHRI WCHRI
FRUlE FMOVE FINC
ECHRX ECHRI VCHRI
ERUlE EMOVE EINC
XYPlT
PLOT! PLOTS
11* SYDIR
*oEDIT 32K 020CYl
THE SOURCE CORE-SIZE IS 032768
THE OBJECT CORE-SIZE IS 032768
END SYSTEM lOAD

222

Continued

TASK 1800 TSX-II-l SAMPLE SYSTEM
SEN SW 0 ON FOR ABSOLUTE LOADER
SEN SW 1 ON FOR NONPROCESS MONITOR
SEN SW 2 ON FOR SKELETON BUILDER

II JOB
II * DEFINE THE SAMPLE SYSTEM TO BE A TWO DRIVE SYSTEM
II DUP
*DEFINE NDISK 2
DUP FUNCTION COMPLETED

II JOB
II * LABEL DISK DRIVE ZERO WITH 00000
II DUP
*DLABL 0 00000
OUP FUNCTION COMPLETED

II JOB
II * LABEL DISK DRIVE ONE WITH 11111
II DUP
*DLABL 1 11111
DUP FUNCTION COMPLETED

{;\ II JOB X X
~ II * DEFINE DRIVE ZERO CONFIGURATION

II DUP

CD

CD

*DEFINE CONFG COPO
DUP FUNCTION COMPLETED

II JOB X X
II * DEFINE DRIVE ONE CONFIGURATION
II DUP
*DEFINE CONFG SXINIIIDE1MIFIP1 16000 16767
DUP FUNCTION COMPLETED

II JOB A

020 000

080 010 05

II * SET UP FILES FILE1, FILE2, AND FILE3 ON DRIVE ONE
II DUP
*STOREDATAD
DUP FUNCTION
*STOREDATAD
OUP FUNCTION
*STOREDATAD
DUP FUNCTION

II JOB
II * STORE
II DUP
*STORE

1 1 FILE1 002
COMPLETED

1 1 FILE2 100
COMPLETED

1 1 FILE3 003
COMPLETED

A
SYSTEM DIRECTOR FROM CARDS ON

RD 1 SYDIR
SYDIR OUTTR CHAIN INTEX SHARE SPECL BACK
DUP FUNCTION COMPLETED

DISK

EACLK

Programming Techniques 223

®

224

II JOB A
II * INSKEL CALL COUNT SUBROUTINE
II FOR
*LI ST ALL
** PERIODIC PROGRAM SCHEDULER

SUBROUTINE SCHED
C
C THIS SUBROUTINE SCHEDULES THE PERIODIC EXECUTION OF THE PROGRAMS
C LISTED IN THE EXTERNAL STATEMENT. THIS SUBROUTINE IS ENTERED
C EVERY 20 SECONDS.
C

C

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY
INTEGER VALUEI151,SETPTISI,COUMTISI,OFFLNISI
EXTERNAL SCAN2,LOG15,LOG60,SHIFT,WEEK
DIMENSION RANGEISl,AHLI401,ALLI401,AI401,BI401,LOWISI,GI161,HI16I
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,I PONT

C SET UP NEXT ENTRY INTO THE SCHEDULER.
C

CALL COUNT(0,1,201
C
C INITIATE CLOSED LOOP CONTROL PROGRAM ON LEVEL 10.
C

C

GO TO 197,11,SW3
97 GO TO 199,9S1,SWO
99 CALL LEVELII01
98 SW4=1

C TEST FOR TWO MINUTE LIMIT SCAN
C

C

SW5=SW5+1
GO TO 11,1,1,1,1,21,SW5

2 CALL QUEUEISCAN2,9,01
CALL ENDTS
SW5=0
CONTINUE

C READ CLOCK
C

CALL CLOCKIIl
C
C TEST FOR FIFTEEN MINUTE LOG
C

IFIIBASEI4,4,5
4 IFI250-IlI0,6,6
5 IFIIBASE-II6,6,10
6 GO TO 166,671,SW3

66 CALL QUEUEILOG15,11,OI
CALL ENDTS

67 IBASE=IBASE+250
IFIIBASE-23760110,7,7

7 IBASE=O
10 CONTINUE

C
C TEST FOR HOUR LOG
C

IFIIBASZlll,11,12
11 IFI250-II20,13,13
12 IFIIBASZ-II13,13,20
13 GO TO 1113,1141,SW3

113 CALL QUEUE(LOG60,12,01
CALL ENDTS

114 IBASZ=It3ASZ+IOOO
IFI23100-IBASZI14,14,20

14 IBASZ=O
20 CONTINUE

C
C TEST FOR SHIFT END LOG AT 8.15,16.15,00.15
C

IFIIBAZZ-250121,21,22
21 IFII-1000122,22,30
22 IFIIBAZZ-II23,23,30
23 CALL QUEUEISHIFT,13,01

CALL ENDTS
IBAZZ=IBAZZ+SOOO
IFI17000-IBAZZI24,24,30

24 IBAZZ=250
30 CONTINUE

C
C UPDATE DAY OF WEEK
C

IFII-100131,31,35
31 IFISW1132,32,36
32 DAY=DAY+1

IFIS-DAYI33,33,34

®

C
C
C

Continued

33 DAY=l
34 SW1= 1

GO TO 36
35 SW1=-1
36 CONTINUE

TEST FOR 8.30 MONDAY MORNING LOG

IFIDAY-21100,40,100
40 IFII-8500141,42,42
41 SW2=-1

GO TO 100
42 IFISW2143,43,100
43 CALL QUEUEIWEEK,14,01

SW2=1
CALL ENDTS

100 RETURN
END

VARIABLE ALLOCATIONS
CSWOII*I=FFFF CSW111*I=FFFE CSW2 11* I =FFFD CSW3 I I * I =FF FC C S 1014 I I * 1= F FF B CSW5 I I*I=FFFA

STATEMENT AL LOCAT IONS
97 =0021 99 =0027
7 =0079 10 =0070
22 =00B9 23 =OOBF
40 =0102 41 =0108

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
SCAN2 LOG15 LOG60

INTEGER CONSTANTS

98
11
24
42

SHIFT

=002A 2 =003E 1 =004A 4 =0051
=0081 12 =0089 13 =008F 113 =0095
=0003 30 =0007 31 =0000 32 =OOEI
=010F 43 =0113 100 =OllF

WEEK COUNT LEVEL QUEUE ENDTS

0=0002 1=0003 20=0004 10=0005
23100=000C 13=0000 BOOO=OOOE 17000=000F

9=0006
100=0010

250=0007
8=0011

CORE REQUIREMENTS FOR SCHED
COMMON 0 INSKEL COMMON

END OF COMPILATION

SCHED
DUP FUNCTION COMPLETED
*DELET SCHED
SCHED
025 NAME NOT IN L/F
*SToRE 1 SCHED
SCHED
DUP FUNCTION COMPLETED

®
II JOB A
II * INSKEL INTERRUPT SUBROUTINE
II FOR
*LlST ALL

464 VARIABLES

** LEVEL 10 SUBROUTINE FOR CLOSED LOOP CONTROL
SUBROUTINE LEV10

C

2 PROGRAM

C THIS SUBROUTINE DOES CLOSED LOOP CONTROL OF EIGHT SET POINT

288

C STATIONS. EVERY TWENTY SECONDS THE SCHEDULER SUBROUTINE GIVES
C A CALL LEVEL TO THIS ROUTINE AND SETS SW4 TO POINT TO THE SCAN
C SECTION SUCH THAT ALL EIGHT POINTS ARE SCANNED. WHEN THE SCAN IS
C FINISHED THE OUTPUT TO EACH ON-LINE STATION IS COMPUTED AND THE
C FIRST PULSE OUTPUT IS GIVEN. TIMER B IS THEN USED TO SET UP
C FIFTEEN MILLISECOND ENTRIES INTO THE SUBROUTINE SO THAT ALL
C NECESSARY PULSES ARE GIVEN.
C

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY
INTEGER VALUEI151,SETPT(81,COUMT(81,oFFLN(81
EXTERNAL SOUT
DIMENSION IBITI81,IBIZ(81,IBIAI81,IOUT(31
DIMENSION INV(171
DIMENSION RANGE(81,AHL(401,ALL(401,A(401,B(401,LOW(81,G(161,H(16I
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JoBN,VALUE,RANGE,LOW,SET

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

DATA IBIT/Z4000,Z1000,Z0400,Z0100,Z0040,ZJOI0,Z0004,ZOOOI1
DATA IBIZ/Z8000,Z2000,Z0800,Z0200,Z0080,Z0020,Z0008,Z00021
DATA IBIA/Z3FFF,ZCFFF,ZF3FF,ZFCFF,ZFF3F,ZFFCF,ZFFF3,ZFFFCI

5 =0059 6 =005F
114 =0090 14 =00A9
33 =OOED 34 =00F1

CLOCK COMGO

11=0008 23760=0009
2=0012 8500T0013

66
20
35

=0065
=OOAD
=00F7

12=000A
14=0014

67 =0060
21 =00B3
36 =OOFC

1000=000B

Programming Techniques 225

®

226

Continued

C
C
C
C

C

READ DIGITAL INPUT SWITCHES TO DETERMINE WHICH STATIONS ARE
ON-LINE.

INV(17)=64
CALL CSXIOlOll,INV(1),INVI17»
INVIl)=O
DO 678 J=1,8
K=J+8
OFFLNIJ)=INVIK)

678 INVIl)=INVll)+OFFLNIJ)
IFIINVIl»699,699,679

699 IOUTIl)=O
GO TO 12

679 CONTINUE

C BRANCH ON SW4 TO EITHER SCAN SECTION OR OUTPUT SECTION.
C

GO TO IlOOO,3000),SW4
1000 CONTINUE

C
C SCAN SECTION
C
C
C SET PULSE OUTPUT WORD TO ZERO
C

IOUTIl)=O
CALL AISI0200l,VALUE(6),VALUEI15),4096)

99 CALL AISIO,IV)
GO TO 199,88),IV

88 CONTINUE
DO 100 J=1,8
IF(OFFLNIJ»1,100,1

1 IFISETPTIJ»lll,lOO,lll
III VAL=SETPTIJ)-VALUEIJ+5)

VAL=VAL*2000./RANGEIJ)
COUMTIJ)=VAL
IFICoUMTIJ»2,100,4

2 COUMTIJ)=-COUMTIJ)
IOUT(1)=IORIIOUTl1),IBITIJ»
GO TO 100

4 IOUTIl)=IORIIoUTI1),IBIZIJ»
100 CONTINUE

IFIIoUT(1»101,12,101
101 SW4=2

3000 CONTINUE
C
C OUTPUT SECTION
C

IoUT(2)=126
C
C THE FOLLOWING BIT IS SET IN THE OUTPUT WORD FOR INCREMENTING A
C PULSE COUNTER FOR DETERMINING THE NUMBER OF PULSES GIVEN AT
C ANY TIME.
C

C

lOUT 11) = lOR I lOUT 11) , I BIZ (3))
CALL POI02001,IOUT(1),IoUTI3»

C SEE WHICH POINTS ARE TO GO OUT NEXT TIME
C

C

DO 10 J=1,8
IFloFFLNIJ»3,9,3

3 IFICOUMTIJ»9,9,20
20 COUMTIJ)=COUMTIJ)-l

IFICOUMTIJ»9,9,10
9 IOUTIl)=IANOIIOUTll),IBIAIJ»

10 CONTINUE

C CALL TIMER B FOR RE-ENTRY TO THfS SECTION IN 15 MILLISECONDS IF
C THERE ARE ANY MORE PULSES TO GO OUT.
C

C

I F I lOUT I 1)) 11 , 12, 11
11 CALL TIMERISOUT,2,15)
12 CONTINUE

C DISPLAY PULSE OUTPUT FOR VISUAL VERIFICATION OF DIRECTION OF
C MOVEMENT.
C

lOUT I 2) =127
CALL PoIOI001,IOUT(1),IOUTI3»
CALL INTEX
END

® Continued

VARIABLE ALLOCATIONS
CSWOII*)=FFFF

DAYII*)=FFF9
COUMTII*)=FFC7-FFCO
IBASEI 1~')=FE77
IPEROII*)=FE32

IBIAI I)=0019-0012

STATEMENT ALLOCATIONS

CSW1 11*) =FFFE
JOBNII*)=FFF8

OFFLNII*)=FFBF-FFB8
IBASZII*)=FE76
!TCNTII*)=FE31

10UTII)=001C-001A

CSW2II*)=FFFD
VALUEII*)=FFF7-FFE9

AHLIR*)=FFB6-FF68
IBAZZII*)=FE75
IPONTII*)=FE30

INV I I) =0020-0010

CSW311*)=FF,FC
RANGEIR*)=FFE6-FFD8

ALLIR*)=FF66-FF18
GIR*)=FE72-FE54

CVALIR)=0000
JII)=002E

CSW41 1*)=FFFB
LOWII*)=FFD7-FFDO

AIR*)=FF16-FECB
HIR*)=FE52-FE34

IBITll)=0009-0002
K I I) =002F

678 =0080 699 =009B 679 =00A3 1000 =00A9 99
100 =0156 101 =0165 3000 =0169 3 c01A5 20

=00C3 88
=OlAE 9

=OOCD 1
=OlBF 10

=OOOA 111 =00E3 2
=OlDA 11 =01E9 12

FEATU~ES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
SOUT CSX AIS
ISTOX SUBSC

REAL CONSTANTS
.200000E Q4=0038

lOR PO lAND TIMER INTEX FMPY FDIVX FLO FSTO IF IX

CSW511*)=FFFA
SETPTII*)=FFCF-FFCB

BIR*)=FEC6-FE7B
lENDT 11*) =FE33

IBIZI I)=OOll-OOOA
IV I I)=0030

=0114 4
=OlEF

FLOAT

=013B

COMGO

INTEGER CONSTANTS
64=003A 1011=003B

127=0044 1001=0045
0=003C 1=0030 8=003E 2001=003F 4096=0040 2=0041 126=0042 15=0043

CORE REQUIREMENTS FOR LEV10
COMMON 0 INSKEL COMMON 464 VARIABLES 56 PROGRAM 466

END OF COMPILATION

LEV10
DUP FUNCTION COMPLETED
II OUP
*OELET LEV10
LEV10
025 NAME NOT IN L/F
*STORE 1 LEV10
LEV10
DUP FUNCTION COMPLETED

@
II JOB A
II * INSKEL CALL TIMER SUBROUTINE
II FOR
*LIST ALL
** TIM~R B SUBROUTINE TO SETUP RE-ENTRY INTO LEVEL 10 PROGRAM

SUBROUTINE SOUT
C
C THIS SUBROUTINE SERVICES TIMER B AND IS USED FOR INITIATING
C ENTRIES INTO THE LEVEL 10 SUBROUTINE FOR THE OUTPUTING OF PULSES
C TO THE SET POINT STATIONS.
C

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNI8)
DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOWI8),GI16),HI16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,OAY,JOBN,VALUE,RANGE,LOW,SET

1PT,COUMT,OFFLN,AHL,AlL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

GO TO 13,2),SWO
3 GO TO IZ,1),SW4
1 CAll LEVELIIO)
2 RETURN

END
VARIABLE ALLOCATIONS

CSWOII*)=FFFF
DAYII*)=FFF9

COUMTII*)=FFC7-FFCO
IBASEllt.')=FE77
IPEROII*)=FE32

STATEMENT ALLOCATIONS

CSW1II*)=FFFE
JOBNI l"f)=FFF8

OFFLNII*)=FFBF-FFB8
IBASZII*)=FE76
ITCNTII*)=FE31

3 =0008 1 =OOOE 2 =0011

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
LEVEL COMGO

CSW2II*)=FFFD CSW311*)=FFFC
VALUEII*)=FFF7-FFE9 RANGEIR*)=FFE6-FFD8

AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FF18
IBAZZII*)=FE75 GIR*)=FE72-FE54
IPONTII*)=FE30

CSW411*)=FFFB CSW511*)=FFFA
LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFC8

AIR*)=FF16-fECB BIR*)=FEC6-FE7B
HIR*)=FE52-FE34 IENDTII*)=FE33

Programming Techniques 227

@

®

®

228

Continued

INTEGER CONSTANTS
10=0000

CORE REQUIREMENTS FOR SOUT
COMMON ° INSKEL COMMON

END OF COMPILATION

SOUT
DUP FUNCTION COMPLETED
*STORE 1 SOUT
SOUT
DUP FUNCTION COMPLETED

I I .JOB A
II * INSKEL INTERRUPT SUBROUTINE
II FOR
*LIST ALL

464 VARIABLES

** QUEUE 15 MINUTE LOG ON DEMAND
SUBROUTINE QUE15

C

° PROGRAM 20

C THIS SUBROUTINE QUEUES THE FIFTEEN MINUTE LOG ROUTINE ON DEMAND.
C

EXTERNAL LOG15
CALL ENDTS
CALL QUEUEILOGI5,7,0)
CALL INTEX
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
LOG15 ENDTS QUEUE

INTEGER CONSTANTS
7=0000 0=0001

INTEX

CORE REQUIREMENTS FOR QUE15
COMMON ° INSKEL COMMON

END OF COMPILATION

QUE15
DUP FUNCTION COMPLETED
*STORE 1 QUE15
QUE15
DUP FUNCTION COMPLETED

II JOB A
II * INSKEL CALL COUNT SUBROUTINE
II FOR
*LI ST ALL

° VARIABLES

** PERIODIC QUEUE OF TREND LOG SUBROUTINE
SUBROUTINE TCONT

C

° PROGRAM

C THIS SUBROUTINE PERIODICALLY QUEUES THE TREND LOG PROGRAM THE
C NUMBER OF TIMES SPECIFIED.
C

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTI8),COUMTIS),OFFLNIS)
EXTERNAL TREND

14

DIMENSION RANGEIS),AHLI40),ALLI40),AI40),BI40),LOWI8),GI16),HI16)
COMMON/INSKEL/SWO,SWI,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

CALL ENDTS
CALL QUEUEITREND,2,0)
ITCNT=ITCNT-l
IFI ITCNT) 2,2,1

® Continued

1 CALL COUNTI2,3,IPERD)
2 RETURN

END
VARIABLE ALLOCATIONS

CSWOII*)=FFFF
DAYII*)=FFF9

COUMTII*)=FFC7-FFCO
IBASEII*)=FE77
IPERDII*)=FE32

CSW1II*)=FFFE
JOBNII*)=FFF8

OFFLNII*)=FFBF-FFB8
IBASZII*)=FE76
!TCNTII*)=FE31

STATEMENT ALLOCATIONS
1 =0017 2 =001C

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
TREND ENDTS QUEUE

INTEGER CONSTANTS
2=0000 0=0001

COUNT

1=0002

CORE REQUIREMENTS FOR TCONT

CSW2II*)=FFFD CSW3II*)=FFFC
VALUEII*)=FFF7-FFE9 RANGEIR*)=FFE6-FFD8

AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FF18
IBAZZII*)=FE75 GIR*)=FE72-FE54
IPONTII*)=FE30

3=0003

COMMON 0 INSKEL COMMON 464 VARIABLES o PROGRAM 30

END OF COMPILATION

TCONT
DUP FUNCTION COMPLETED
*DELET TCONT
TCONT
D25 NAME NOT IN L/F
*STORE 1 TCONT
TCONT
DUP FUNCTION COMPLETED

@
II JOB A
II * INSKEL INTERRUPT SUBROUTINE
II FOR
*LIST ALL
** ABORT TREND LOG SUBROUTINE

SUBROUTINE TABRT
C
C THIS SUBROUTINE ABORTS THE TREND LOG ON DEMAND.
C

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNI8)
DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOWI8),GI16),HI16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

ITCNT=O
CALL INTEX
END

VARIABLE ALLOCATIONS
CSWO(I*)=FFFF

DAYII*)=FFF9
COUMTII*)=FFC7-FFCO
IBASEII*)=FE77
IPERD(I*)=FE32

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
INTEX

INTEGER CONSTANTS
0=0000

CSW1(I*)=FFFE
JOBNII*)=FFF8

OFFLNII*)=FFBF-FFB8
IBASZII*)=FE76
ITCNTII*)=FE31

CORE REQUIREMENTS FOR TABRT

CSWZ(It~I=FFFD CSW3(I*I=FFFC
VALUEII*)=FFF7-FFE9 RANGEIR*I=FFE6-FFD6

AHLIR*I=FFB6-FF68 ALLIR*)=FF66-FF18
IBAZZII*)=FE75 GIR*I=FE72-FE54
IPONTII*)=FE30

COMMON 0 INSKEL COMMON 464 VARIABLES o PROGRAM

END OF COMPILATION

CSW4II*)=FFFB CSW5II*)=FFFA
LOWII*I=FFD7-FFDO SETPTII*)=FFCF-FFC8

AIR*)=FF16-FEC8 BIR*)=FEC6-FE78
HIR*)=FE52-FE34 IENDTII*)=FE33

CSW4IT*I=FFFR CSW5(I*)=FFFA
LOWII*l=FFD7-FFDO SETPTII*I=FFCF-FFC8

AIR*)=FF16-FEC8 BIR*I=FEC6-FE78
HIR*I=FE52-FE34 IENDTII*)=FE33

Programming Technique 229

® Continued

TABRT
DUP FUNCTION COMPLETED
*STORE 1 TABRT
TABRT
DUP FUNCTION COMPLETED

®
II JOB A
// * USER SUBROUTINE
// FOR
*LlST ALL
** ~UBROUTINE FOR READING DATA ENTRY DIALS

SUBROUTINE GETVLIINVAL)
C
C THIS SUBROUTINE READS THE ANALOG INPUT VALUE FOR EACH OF THE
C SIXTEEN DATA ENTRY DIALS.
C

DIMENSION INS(12),INRI12),INVALI16)
CALL AISI02011,INR(1),INRIIO),O)
CALL AISI02001,INS(1),INSI12),4098)
CALL AISI00010,IV)
GO TO 11,2),IV

2 CALL AISIO,IV)
GO TOI2,3),IV

3 DO 4 J=1,S
K=9-J

4 INVALIJ+S)=INRIK)
DO 5 J=l,4
K=ll-J
INVALlJ)=INSIK)

5 INVALIJ+4)=INSIK-6)
RETURN
END

VARIABLE ALLOCATIONS
INSII)=OOOB-OOOO INRII)=0017-000C IVI I)=001S J I I)=0019

STATEMENT ALLOCATIONS
1 =0059 2 =0063 3

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
AIS COMGO ISTOX

INTEGER CONSTANTS

SUBSC

=0060 4 =0077 5 =OOAA

SUBIN

2011=0020 0=0021 2001=0022 4098=0023 10=0024 1=0025

CORE REQUIREMENTS FOR GETVL
COMMON 0 INSKEL COMMON

END OF COMPILATION

GETVL
DUP FUNCTION COMPLETED
*STORE 1 GETVL
GETVL
DUP FUNCTION COMPLETED

®
/1 JOB A
// * USER SUBROUTINE
// FOR
*Ll ST ALL

o VARIABLES 32 PROGRAM

** SUBROUTINE FOR READING AND CONVERTING DATA ENTRY DIALS
SUBROUTINE CONVRIINVAL)

C
C THIS SUBROUTINE SCANS THE 16 DATA ENTRY DIALS AT THE PROCESS
C OPERATORS CONSOLE AND CONVERTS THEM TO AN INTEGER VALUE WITH
C RANGE 0 TO 9.
C

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTIS),CDUMTI8),OFFLNIS)
DIMENSION INVAL(16)

166

DIMENSION RANGEIS),AHLI40),ALLI40),AI40),BI40),LOWI8),GI16),HI16)

230

KII)=001A

S=0026 9=0027 4=0028 11=0029

® Continued

COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET
IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASI,IBAZZ,G,H

CALL GETVL IINVAL)
DO 10 J=1,16

10 INVALIJ)=INVALIJ)*GIJ)+HIJ)
RETUkN
END

VARIABLE ALLOCATIONS
CSWO I I'~) dFFFF

DAYII*)=FFF9
COUMTII*)=FFC7-FFCO
IBASEII*)=FE77

CSWIII*)=FFFE
JOBNII*)=FFF8

OFFLNII*)=FFBF-FFB8
IBASIII*)=FE76

STATEMENT ALLOCATIONS
10 =0014

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
GETVL FADDX FMPYX

INTEGER CONSTANTS
1=0004 16=0005

IFIX

CORE REQUIREMENTS FOR CONVR

FLOAT

CSW2II*)=FFFD CSW3II*)=FFFC
VALUEII*)=FFF7-FFE9 RANGEIR*)=FFE6-FFD8

AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FF18
IBAIIII*)=FE75 GIR*)=FE72-FE54

ISTOX SUBSC SUBIN

COMMON 0 INSKEL COMMON 460 VARIABLES 4 PROGRAM 54

END OF COMPILATION

CONVR
DUP FUNCTION COMPLETED
*STORE 1 CONVR
CONVR
DUP FUNCTION COMPLETED

@
II JOB A
II * USER SUBROUTINE
II FOR
*LIST ALL
** TIME CONVERSION SUBROUTINE

SUBROUTINE PTIMEIX)
C
C THIS SUBROUTINE READS THE CLOCK AND CONVERTS THE TIME TO A
C FLOATING POINT NUMBER WITH THE DECIMAL POINT SEPERATING HOURS
C AND MINUTES.
C

CALL CLOCKII)
J=I11000*1000
I=I-J
X=III*60./I000.)+J/I0)/I00.
RETURN
END

VARIABLE ALLOCATIONS
III)=0002 JII)=0003

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
CLOCK FADO FMPY FDIV FSTO

REAL CONSTANTS
.600000E 02=0004 .100000E 04=0006

INTEGER CONSTANTS
1000=000A 10=000B

CORE REQUIREMENTS FOR PTI~E

FLOAT SUBIN

.100000E 03=0008

COMMON 0 INSKEL COMMON o VARIABLES 4 PROGRAM

END OF COMPILATION

PTIME
DUP FUNCTION COMPLETED

56

CSW4II*)=FFFB CSW5II*)=FFFA
LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFC8

AIR*)=FF16-FEC8 BIR*)=FEC6-FE78
HIR*)=FP)2-FE34 JII)=0000

Programming Techniques 231

@

®

232

Continued

// DUP
*STORE 1 PTIME
PTIME
DUP FUNCTION COMPLETED

// JOB A
// * USER SUBROUTINE
// * THE FOLLOWING TWO
// * ADDRESS OF EITHER
/1 ASM

*LlST
*PRINT SYMBOL TABLE

SUBROUTINES ARE USED IN FORTRAN TO OBTAIN THE
A VARIABLE OR A SUBROUTINE

* IADDR SUBROUTINE *

* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

THIS SUBROUTINE GETS THE ADDRESS OF A
FORTRAN VARIABLE.

FORTRAN CALL
I=IADDR(ABC)

AFTER EXECUTION OF THE ABOVE STATEMENT
I EQUALS THE ADDRESS OF THE VARIABLE ABC.

ASM GENERATED CODE
CALL IADDR
DC ADDR(ABC)

RESULT IS IN THE ACCUM UPON RETURN

THE SUBROUTINE IS RE-ENTRANT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* ***

09044119 ENT IADDR DEFINE ENTRY POINT 0000
0000
0001
0003
0004
0006

o 0000 IADDR DC 0 CALL ENTRY
01 66800000
o C200
00 4EOOOOOl

IADDR 0000

LOX 12 IADDR SAVE RET ADDR AND SET XR2
LD 2 0 TO PARAMETER--GET PARAMETR
BSC L2 1 RETURN
END

SYMBOL TABLE

NO ERRORS IN ABOVE ASSEMBLY.
IADDR
DUP FUNCTION COMPLETED
// DUP
*STORE 1 IADDR
IADDR
DUP FUNCTION COMPLETED
// ASM

*LIST
*PRINT SYMBOL TABLE

® Continued

@

* ISBAD SUBROUTINE *

* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

THIS SUBROUTINE GETS THE ADDRESS OF THE
ENTRY POINT TO A SUBROUTINE.

FORTRAN CALL
EXTERNAL SUBR

I=ISBADISUBR)

AFTER EXECUTION OF THE ABOVE STATEMENT
I EQUALS THE ADDRESS OF THE ENTRY POINT
OF THE SUBROUTINE SUBR.

ASM GENERATED CODE
CALL ISBAD
CALL SUBR

ENTRY ADDR TO SUB IS IN ACCUM UPON RETURN

THE SUBROUTINE IS RE-ENTRANT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* ***

0000 09882044 ENT
0000 0 0000 ISBAD DC
0001 01 66800000 LDX 12
0003 0 C200 LD 2
0004 0 1008 SLA
0005 01 4CI0000A BSC L
0007 00 C6800001 LD 12
0009 0 7001 MDX
OOOA 0 C201 LD 2
OOOB 00 4EOOOO02 BSC L2
OOOE END

ISBAD 0000

NO ERRORS IN ABOVE ASSEMBLY.
ISBAD
DUP FUNCTION COMPLETED
II DUP
*STORE 1 ISBAD
ISBAD
DUP FUNCTION COMPLETED

/I JOB A
II * INSKEL INTERRUPT SUBROUTINE
II FOR
*LIST ALL
** QUEUE OF CE UNMASK ROUTINE

SUBROUTINE CESET
C

ISBAD DEFINE ENTRY POINT
0 CALL ENTRY POINT
ISBAD XR2#RET ADDR AND CALL PARA
0 IS IT BSI L OR BSI I
8 PUT INDIRECT BIT IN 0 POS
*+3,- BRANCH FOR DIRECT BSI
1 GET SUB ENTRY POINT
*+1
1 GET SUB ENTRY POINT
2 EXIT

SYMBOL TABLE

C THIS SUBROUTINE QUEUES THE CE UMASK PROGRAM SO THAT DEVICES MAY
C BE TAKEN OFF-LINE OR PUT ON-LINE.
C

EXTERNAL CEINT
CALL ENDTS
CALL QUEUEICEINT,20,0)
CALL INTEX
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
CEINT ENDTS QUEUE

INTEGER CONSTANTS
20=0000 0=0001

INTEX

Programming Techniques 233

®

@

234

Continued

CORE REQUIREMENTS FOR CESET
COMMON ° INSKEL COMMON

END OF COMPILATION

CESET
DUP FUNCTION COMPLETED
II DUP
*STORE 1 CESET
CESET
DUP FUNCTION COMPLETED

II JOB A
1/ * INSKEL INTERRUPT SUBROUTINE
// FOR
*LIST ALL

° VARIABLES

** ABORT GRADE PROCESS INTERRUPT SUBROUTINE
SUBROUTINE ABORT

C

o PROGRAM

C THIS SUBROUTINE QUEUES THE GRAUE CHANGE PROGRAM CAUSING THE
C PRESENT GRADE TO BE ABORTED.
C

EXTERNAL GRADE
CALL ENDTS
CALL QUEUEIGRADE,5,01
CALL INTEX
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
GRADE ENDTS QUEUE

INTEGER CONSTANTS
5=0000 0=0001

INTEX

CORE REQUIREMENTS FOR ABORT
COMMON ° INSKEL COMMON

END OF COMPILATION

ABORT
DUP FUNCTION COMPLETED
// DUP
*STORE 1 ABORT
ABORT
DUP FUNCTION COMPLETED

1/ JOB A
1/ * INSKEL CALL COUNT SUBROUTINE
// FOR
*LIST ALL
** END OF GRADE COUNT SUBROUTINE

SUBROUTINE ENDGD
C

° VAKIABLES o PROGRAM

14

14

C THIS SUBROUTINE ABORTS THE GRADE IN PROGRESS WHEN THE RUN TIME FOR
C THAT GRADE HAS ELAPSED.
C

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VALUEI151,SETPTISI,COUMTISI,OFFLNISI
EXTERNAL GRADE
D I MENS ION RANGE 1 S I, AHL 1 40 I, ALL 1401, A 1 401 ,B 1401 ,LOW (S 1 ,G 1 161, H 1161
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,I PONT

GO TO 11,21,SW3
CONTINUE
CALL ENDTS
CALL QUEUEIGRADE,5,01

2 RETURN
END

@ Continued

VARIABLE ALLOCATIONS
CSWO(I*I=FFFF CSW1(1*I=FFFE CSW2(1*I=FFFD CSW3(I*I=FFFC CSW4(I*I=FFFB CSW5(1* I=FFFA

DAY(I*I=FFF9 JOBN(I*I=FFF8 VALUE(I*I=FFF7-FFE9 RANGE(R*I=FFE6-FFD8 LOW(I*I=FFD7-FFDO SETPT(I*I=FFCF-FFC8
COUMT(I*I=FFC7-FFCO OFFLN(I*I=FFBF-FFB8 AHL(R*I=FFB6-FF68 ALL(R*I=FF66-FF18 A(R*I=FF16-FEC8 B(R*I=FEC6-FE78
IBASE(I*I=FE77 IBASZ(I*I=FE76 IBAZZ(1*I=FE75 G(R*I=FE72-FE54 H(R*I=FE52-FE34 IENDT(I*I=FE33
IPERD(I*I=FE32 ITCNT(I*I=FE31 IPONT(I*I=FE30

STATEMENT ALLOCATIONS
1 =0009 2 =0011

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
GRADE ENDTS QUEUE COMGO

INTEGER CONSTANTS
5=0000 0=0001

CORE REQUIREMENTS FOR ENDGD
COMMON 0 INSKEL COMMON 464 VARIABLES 0 PROGRAM 20

END OF COMP I LAT ION

ENDGD
DUP FUNCTION COMPLETED
II DUP
*STORE 1 ENDGD
ENDGD
DUP FUNCTION COMPLETED

@
II JOB A
II DUP
*DUMPLET

LET

PACK LABEL
00000

.DCOM 0010 0000 .MBT 0020 0010 .SKSB 0020 0030 .SUP OOBO 0050 .CLB OOAO 0100 .DUP 0440 OlAO

.ASM 0300 05EO .FOR 0680 08EO .SIM 05FO OF60 .LET 0080 1550 lAND 0002 15DO CLEAR 0009 1502
CLOCK 0002 15DB COUNT 0004 15DD DMP 0017 15El DMPHX DMPDC DMPS 0010 15F8
DMPST DPART 0002 1608 ENDTS 0002 160A IEOR 0002 160C LD 0002 160E LEVEL 0004 1610
MASK 0003 1614 OPMON 0002 1617 IDR 0002 1619 QIFON OOOA 161B QUEUE OOOC 1625 RESMK 0004 1631
SAVMK 0003 1635 SETCL 0003 1638 TIMER 0006 163B UNMK 0005 1641 UNQ 0005 1646 VIAQ 0007 164B
CONHX 0006 1652 TRPRT 0007 1658 FLIP 0007 165F EADO OOOB 1666 ESUB EADDX
ESUBX ESBR ESBRX EATN OOOD 1671 EATAN EAVL 0003 167E
EABS EAXB 0006 1681 EAXBX EAXI 0006 1687 EAXIX EOVR 0007 168D
EDVRX EOIV EDIVX ELD 0009 1694 ELDX ESTO
ESTOX ELN OOOB 169D EALOG EMPY 0004 16A8 EMPYX ESINE OOOD 16AC
ESIN ECOSN ECOS ESQR U007 161:)9 ESQRT ETNH 0006 16CO
ETANH ETRTN 0004 16C6 ETNTR EXPN OOOB 16CA EEXP FSBR OOOB 16D5
FSBRX FADD FSUB FADDX FSUBX FARC 0004 16EO
FATN OOOC 16E4 FATAN FAVL 0003 16FO FABS FAXB 0006 16F3 FAXBX
FAXI 0006 16F9 FAXIX FBTD 001A 16FF FDTB FDIV 0008 1719 FDIVX
FDVR FDVRX FIXIX 0005 1721 FIXI FLO 0009 1726 FLDX
FSTO FSTOX FLN OOOB 172F FALOG FLOAT 0003 173A FMPY 0005 173D
FMPYX FSINE OOOB 1742 FSIN FCOSN FCOS FSQR 0007 174D
FSQRT FTNH 0006 1754 FTANH FTRTN 0004 175A FTNTR FXPN 0009 175E
FEXP lABS 0003 1767 IFIX 0004 176A NORM 0004 176E SNR 0003 1772 XDD 0006 1775
XMD 0005 177B XMDS 0004 1780 XSQR 0004 1784 BINDC 0006 1788 BINHX 0004 178E DCBIN 0006 1792
EBPA 0006 1798 EBPRT OOOA 179E HOLEB 0012 17A8 HOLPR 0000 17BA HXBIN 0005 1 7C 7 PAPEB 0010 17CC
PAPHL 0014 17DC PAPPR 0011 17FO PRT 0005 1801 ADRCK 0007 1806 COMGO 0006 180D COMGl
DATSW 0004 lS13 DVCHK 0002 1817 ESIGN 0005 1819 FCTST 0003 181E FSIGN 0005 1821 IOU 0007 lS26
ISIGN 0003 lS2D ISTOX 0003 1830 LOFAC 0004 1833 STFAC SBFAC DVFAC
MOFIO 0023 lS37 MDAF MDAI MDCOM MDF MDFX
MOl MDIX MDRED MDWRT MDFND OOOS 185A MF ID 0059 1862
MRED MWRT MCOMP MIOAF MIOAI M IDFX
MIOIX MIOF MIDI MGOTO OOOE 18BB MFIF M I IF
MEIF MIAR OOOE 18C9 MIARX MFAR MFARX MEAR
MEARX OVERF 0002 18D7 PAUSE 0002 18D9 REWND 0009 18DB BCKSP EOF
SAVE OOOA lSE4 IOFIX SL ITE 0006 1SEE SLITT SSWTC 0004 18F4 STOP 0003 18F8
SUBIN 0005 18FB SUBSC 0004 1900 TSTOP 0002 1904 TSTRT 0002 1906 TTEST 0003 1908 TSET

Programming Techniques 235

@ Continued

UFIO 001C 190B UREO
UIOAF UIOFX
PAPTN 0010 194A MAGT 0020 195A
AIRN 0000 1992 ANINT 0014 199F
lOPE 0009 19E6 OUSLY
GAGED 0003 19F8 UNGAG
VS 01
PIC CSX 0004 lA2F
CO DO
BT2BT 0003 lA49 FCHAR 0005 1A4C
SCALE 0002 1A63 EGRID 0008 1A65
WCHRI FRULE 0009 1A9D
VCHRI ERULE OOOB 1ACB

PLOTS • TEt-lP lAEO 1BOO

FLET

PACK LABEL
00000

9DUMY OOAO 05AO .E OOAO 05AO

LET

PACK LABEL
11111

.LET 0080 0000 SYDIR 009E 0080
SPECL BACK
QUE15 0002 0159 TCONT 0003 0158
IADOR 0002 0175 ISBAD 0002 0177
• E 1180 0180

FLET

PACK LABEL
11111

.PRWS 0051 1118 .F lOS OOOF 1169
INPSV 4180 12C3 FILEI 0002 12F8
IPRSV 4180 15AD .SKEL 0036 15E2

DUP FUNCTION COMPLETED

II JOB A
II END OF ALL JOBS

®
TASK 1800 TSX-II-l SAMPLE SYSTEM
SEN SW 0 ON FOR ABSOLUTE LOADER
SEN SW 1 ON FOR NONPROCESS MONITOR
SEN SW 2 ON FOR SKELETON BUILDER
PLACE TASK DECK IN CARD HOPPER
PUT SK~ BUILD PROG IN CARD HOPPER
II JOB A

UWRT UIOI
U IOIX UCOMP
AIPTN 0009 197A AIPN
DINP 0013 19B3 DIEXP 0006
ETS XSAVE 0009
AlP 0004 19FB AIS 0000
PI CSC OOOA
VSX DIX
PO QZERQ 0002
SCALF 0002 1A51 FGRID 0007
EPLOT 0005 1A6D POINT 0007
FMOVE FINC
EMOVE EINC

.E 5AOO 1BOO

OUTTR CHAIN
EACLK SCHEO 0014
TABRT 0002 015E GETVL OOOB
CESET 0002 0179 ABORT 0002

.MESS 00A3 1178 IEPDM 7FFF
FILE2 0064 12FA FILE3 0003
.EPRG 0022 1618 ICLST 0780

II XEQ SKBLD
*INC~OSCHEO/2600,ENDGO/2601,QUE15/0001,CESET/2500,ABORTJOOOO.LEV10/2410
*INCLOTCONTJ2602,TABRT/0002
~'CCENO

KOC tlNINT 0023 L.EV.l

SKEL CORE MAP
TYPE NAME ,ARGI ARG2

LIBF OISKN 02A9 3EBB
LIBF TVPEN 0674 3EBE
LIBF WRTYN 0674 3EBE
LIBF PRNTN OB6F 3EC1

236

19C6
19EF
19FF
1A25

1A3A
1A53
1A72

OllE
0160
017B

121B
135E
163A

UIOF
PLOTX 0000
AISQN OOOF
OICMP 0007
XEXIT
AIR 0011
VSC
PIX
QZOI0 0006
FPLOT 0004
FCHRX 0024
ECHRX 0025
XYPLT 0007

INTEX
LEV10 0024
CONVR 0005
ENDGD 0002

IEPSV 0780
9DUMY 0217
.E 0280

1927
1983
19CC

lAOC

lA3C
lA5A
1A79
lAM
1A06

0132
016B
0170

1282
1361
12F8

UIOAI
CARON 0016
AISN
DAOP 0013
XLOAD
CS 0008
DIC
DAC 0007
BTlEH 0007
ECHAR 0005
FCHRI
ECHRI
PLOTI 0003

SHARE
SOUT 0003
PTIME 0005
• TEMP 017F

IINSV 48FF
ISPSV 4180

1934

1903

1AlO

lA33
lA42
1A5E

1ADD

0156
0170
0180

1288
1578

® Continued

LIBF CARON OEOO 3EC4
CALL EXIT 206E 00B6
CALL LINK 2070 008E
INSK OF62 1349
PNT SYOIR 134A 30B4
ICI SCHEO 2391 1200
IC I ENOGO 24AO 1201
IC I QUE15 24B4 0001
ICI CESET 24C2 1100
ICI ABORT 2400 0000
IC I LEVI0 2522 100A
IC I TCONT 26EA 1202
I C I TABRT 2705 0002
CALL OUTTR 108C 3E46
CALL CHAIN IF63 3E45
CALL INTEX lE90 3E44
CALL SHARE 2009 3E43
CALL SPECL IFA9 3E42
CALL BACK IFFI 3E41
CALL EACLK 2305 3E40
CALL COUNT 270C 3E3F
LIBF COMGO 2740 3EC7
CALL LEVEL 2792 3E3E
CALL QUEUE 27CA 3E30
PNT SCAN2 30B8
CALL ENOTS 288C 3E3C
CALL CLOCK 2896 3E3B
PNT LOG15 30BC
PNT LOG60 30CO
PNT SHIFT 30C4
PNT WEEK 30C8
PNT GRADE 30CC
PNT CEINT 3000
LIBF ISTOX 28A8 3ECA
CALL CSX 28C8 3E3A
LIBF SUBSC 28EE 3ECO
CALL AIS 291C 3E39
LIBF FLOAT 29E6 3EOO
L1BF FSTO 2A4A 3E03
L1BF FLO 2A64 3E06
L1BF FMPY 2A70 3E09
L1BF FOIVX 2ABA 3EOC
L1BF IFIX 2B26 3EOF
CALL lOR 2B52 3E38
CALL PO 2B60 3E37
CALL lAND 2BBC 3E36
CALL TIMER 2BCA 3E35
CALL SOUT 2C21 3E34
PNT TREND 3004
LIBF COMGl 2781 3EE2
LIBF AORCK 2C34 3EE5
CALL VSX 28C8 3E33
CALL OIX 28C8 3E32
CALL PIX 28C8 3E31
CALL QZOI0 2C98 3E30
CALL QZERQ 2CEC 3E2F
LIBF OIEXP 2CFA 3EE8
LIBF AISON 2046 3EEB
LIBF NORM 2E3C 3EEE
LIBF FLOX 2A5F 3EFl
LIBF FSTOX 2AOO 3EF4
LIBF FMPYX 2A78 3EF7
LIBF FARC 2E68 3EFA
LIBF FOIV 2ABF 3EFO
LIBF FOVR 2B05 3FOO
LIBF FOVRX 2BOO 3F03
CALL FTNTR 2E9C 3E2E
CALL FTRTN 2EB6 3E20
CALL OAC 2B60 3E2C
CALL CO 2B60 3E2B
CALL DO 2B60 3E2A
LIBF OAOP 2EC4 3F06
CALL GAGED 2FFO 3E29
CALL UNGAG 3001 3E28
LIBF AISN 2046 3F09
CALL ANINT 3010 3E27
PTCH 314C 30Bl

Programming TecbDiques 237

® Continued

ICL TABLE MAP
LLBB WC/EP SA ICLT

0000 2400 1454
0001 24B4 1456
0002 2705 1458
100A 2522 l5B8
1100 24C2 l5C4
1200 2391 l5CC
1201 24AO l5CE
1202 26EA 1500

K13 SCAN2 LEV.l

K13 LOG15 LEV.l

K13 LOG60 LEV.l

K13 SHIFT LEV.l

K13 WEEK LEV.l

K13 GRADE LEV.l

K13 CEINT LEV.l

K13 TREND LEV.l

DATA SW 0 ON TO ABORT SKEL

SKB, SYDIR LD NX

TASK 1800 TSX-II-l SAMPLE SYSTEM
SEN SW 0 ON FOR ABSOLUTE LOADER
SEN SW 1 ON FOR NONPROCESS MONITOR

@
II JOB A
II * MAINLINE CORE LOAD
II FOR COLON
*LIST All
** OFF-LINE COLD START FOR PERPETUAL TIME SHARING
*IOCSIDISKI
C
C THIS COLD START CORE LOAD IS USED TO GIVE PERPETUAL TIME SHARING.
C

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY
INTEGER VALUEI151,SETPT(81,COUMTI81,OFFLNI81
DIMENSION RANGE(81,AHL(401,ALL(401,A(401,B(401,LOW(81,G(161,HI16I
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAy,JOBN,VALUE,RANGE,LDW,SET

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

DEFINE FILE 1(2,320,U,III
C
C UNMASK ALL LEVELS AND CALL VIAQ WITH QUEUE EMPTY
C

CALL UNMK(-l,-ll
READ(l'lIRANGE,LOW,A,B
READ(l'2IG,H
CALL VIAQ
END

VARIABLE ALLOCATIONS
CSWO(I*I=FFFF

DAY(I*I=FFF9
COUMT(I*I=FFC7-FFCO
IBASE(I*I=FE77
IPERD(I*I=FE32

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS

CSWl(I*I=FFFE
JOBN(I*I=FFF8

OFFLN(I*I=FFBF-FFB8
IBASZ(I*I=FE76
ITCNT(I*I=FE31

UNMK VIAQ MDRED MDCOM MDAI

238

CSW2(I*I=FFFD CSW3(I*I=FFFC
VALUE(I*I=FFF7-FFE9 RANGE(R*I=FFE6-FFD8

AHL(R*I=FFB6-FF68 ALL(R*I=FF66-FF18
IBAZZ(I*I=FE75 G(R*I=FE72-FE54
IPONT(I*I=FE30 11(1 I=OOOA

MDAF

CSW4(I*I=FFFB CSW5(I*I=FFFA
LOW(I*I=FFD7-FFDO SETPT(I*I=FFCF-FFC8

A(R*I=FF16-FEC8 B(R*I=FEC6-FE78
H(R*I=FE52-FE34 IENDT(I*)=FE33

Continued

INTEGER CONSTANTS
l=OOOC 2=000D

CORE REQUIREMENTS FOR COLDN
COMMON 0 INSKEL COMMON

END OF COMPILATION

COLDN
OUP FUNCTION COMPLETED
II OUP
*DELET M COLDN
DUM
025 NAME NOT IN LlF
*STORECIL M 1 COLON
*FILESll,FILE1,11
*CCENO

CLB, BUILD COLDN

CORE LOAD MAP
TYPE NAME ARGI ARG2

*CDW TABLE 3E82 OOOC
*IBT TABLE 3E8E 001D
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC OOOC
*IST TABLE 3F18 0036
*PNT TABLE 3F4E 0008
*OFT TABLE 3F56 0006
MAIN COLON 3F64
PNT COLON 3F50
PNT COLON 3F54
CALL UNMK 3F8E
LIBF MOREO 4040 3FOC
LIBF MOAF 3FOF 3FOF
LIBF MOAI 3FEC 3F12
LIBF MOCOM 40A2 3F15
CALL VIAQ 434C
CALL BT2BT 43AC
CALL SAVE 43C8
CALL IOF IX 442C
CORE 445E 3BA2

CLB, COLON LD XQ

DUP FUNCTION COMPLETED

II JOB A
II * MAINLINE CORE LOAD
II ASM COLDS

*LIST
*PRINT SYMBOL TABLE

DUM

COLDN

464 VARIABLES 12 PROGRAM 44

COLDN

0000 0 1010
0001 00 04000029
0003 30 03201255
0005 30 03593117
0008 0000

* * * THIS IS THE NORMAL COLD *
* START CORE LOAD. *

*
*
*
*
*
*
*
*
*
*

IT SETS TIME SHARING TIME TO ZERO
SO THAT CONSOLE INTERRUPT
MUST HAVE BEEN PUSHED BEFORE
LOGICAL DRIVE ZERO IS EVER
REFERENCED.

THIS CORE LOAD CHAINS TO COLDP
TO ACTUALLY COLD START THE PROCESS

*
*
*
*
*
*
*
*
*
* ***

START SLA 16 SET TIME SHARING TIME TO 0
STO L 41
CALL CHAIN
CALL COLDP CHAIN TO COLDP
END START

Programming Techniques 239

@ Continued

SYMBOL TABLE

®

240

START 0000

NO ERRORS IN ABOVE ASSEMBLY.
COLDS
DUP FUNCTION COMPLETED
II DUP
*STORECIL M 1 COLDS COLDS COLDS
*CCEND

CLB, BUILD COLDS

CORE LOAD MAP
TYPE NAME ARGI ARG2

*CDW TAijLE 3E82 OOOC
*IBT TABLE 3E8E 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*IST TABLE 3FOC 0036
*PNT TABLE 3F42 OOOC
MAIN COLDS 3F4E
PNT COLDS 3F44
PNT COLDS 3F48
PNT COLDP 3F4C
CORE 3F58 40A8

CLB, COLDS LD XQ

o 45 CORELOADS NOT FOUND
COLDP
DUP FUNCTION COMPLETED

/ I JOB A
II * MAINLINE CORE LOAD
II FOR RSTAR
*LIST ALL
** RESTART CORE LOAD
*IOCSIDISK,TYPEWRITERl
C
C
c
C
C

THIS IS THE SYSTEM RESTART CORE LOAD. WHEN EVER A RESTART
CONDITION OCCURS THIS ROUTINE IS LOADED TO VARIABLE CORE TO MAKE
SURE SYSTEM CONSTANTS IN INSKEL COMMON ARE VALID.

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY
INTEGER VALUEI15l,SETPTI8l,COUMTI8l,OFFLNI8l
EXTERNAL GRADE
DIMENSION RANGEI8l,AHLI40l,ALLI40l,AI40l,BI40l,LDWI8l,GI16l,HI16l
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

IPT,COUMT,OFFLN,AHL,AlL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,1 PONT

DEFINE FILE 112,320,U,IIl
DEFINE FILE 313,320,U,IIl

C RESTORE INSKEL COMMON
SWO=2
CALL UNMKI-l,-ll
CALL PTIMEITIMEl
WRITEIl,llTIME
FORMATI' PROCESS RESTART TIME'F7.Zl
READll'llRANGE,LOW,A,B
READI3'llJOBN,DAY,IENDT,SW3
READI3'ZlSETPT
READI3'3lAHL,ALL
GO TO 195,96l,SW3

96 CALL VIAQ
95 CONTINUE

SWO=l
CALL COUNTIO,1,5l
CALL CLOCKIIl
IF II-IENDTlI01,10Z,103

101 IPER=IENDT-I
GO TO 104

102 CALL CHAINIGRADEl
103 IPER=124000-IENDTl+I
104 AA=IPER*3.6

IFI32000.-AAlI02,105,105

® Continued

105 IPER=AA
CALL COUNTI1,2,IPERI
CALL VIAQ
END

VARIABLE ALLOCATIONS
CSWOII*I=FFFF

DAYII*I=FFF9
COUMTII*I=FFC7-FFCO
IBASEII*I=FE77
IPERDII*I=FE32

STATEMENT ALLOCATIONS

CSWlI I*I=FFFE
JOBNII'~I=FFF8

OFFLNII*I=FFBF-FFB8
IBASZII*I=FE76
!TCNTII*I=FE31

1 =0022 96 =0080 95 =0082 101

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
GRADE UNMK PTIME VIAQ COUNT
MWRT MCOMP MIOF MDRED MDCOM

REAL CONSTANTS
.360000E 01=0018 .320000E 05=001A

INTEGER CONSTANTS
2=001C l=OOlD 3=00lE

CORE REQUIREMENTS FOR RSTAR

CSW2II*I=FFFD CSW3II*I=FFFC
VALUEII*I=FFF7-FFE9 RANGEIR*I=FFE6-FFD8

AHLIR*I=FFB6-FF68 ALLIR*I=FF66-FF18
IBAZZII*I=FE75 GIR*I=FE72-FE54
IPONTII*I=FE30 CTIMEIR I=OOOC

CSW4II*I=FFFB CSW5II*I=FFFA
LOWII*I=FFD7-FFDO SETPTII*I=FFCF-FFC8

AIR*I=FF16-FEC8 BIR*I=FEC6-FE78
HIR*I=FE52-FE34 IENDTII*I=FE33

AAIR I=OOOE II I I 1=0014

=0096 102 =009E 103 =00A2 104 =OOAA 105 =00B8

CLOCK CHA IN FSUB FMPY FLD FSTO IFIX FLOAT COMGO LDFAC
MDAI ~1DAF MD I TYPEN EBPRT

0=001F 5=0020 24000=0021

COMMON 0 INSKEL COMMON 464 VARIABLES 24 PROGRAM 172

END OF COMPILATION

RSTAR
DUP FUNCTION COMPLETED
*STORECIL M 1 RSTAR RSTAR COLDS
*FILESl1,FILE1,11
*FILESI3,FILE3,11
*CCEND

CLB, BUILD RSTAR

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*CDW TABLE 3E82 OOOC
*IBT TABLE 3E8E 001D
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 002A
*IST TABLE 3F36 0036
*PNT TABLE 3F6C OOOC
*DFT TABLE 3F78 OOOC
MAIN RSTAR 3FAA
PNT RSTAR 3F6E
PNT COLDS 3F72
LIBF EBPRT 403C 3FOC
CALL UNMK 40DC
CALL PTIME 4132
LIBF MWRT 42EC 3FOF
LIBF MIOF 439D 3F12
LIBF MCOMP 4379 3F15
LIBF MDRED 4806 3F18
LIBF MDAF 47A5 3F1B
LIBF MDAI 47B2 3FlE
LIBF MDCOM 4868 3F21
LIBF MDI 47AA 3F24
CALL VIAQ 4B12
PNT GRADE 3F76
LIBF FSUB 4B86 3F27
LIBF LDFAC 4C10 3F2A
CALL PRT 4C3E
LIBF SUBIN 4C88 3F2D
LIBF FADD 4B92 3F30
LIBF IOU 4CC2 3F33
CALL IOFIX 4D5C
CALL BTlBT 4D8C
CALL SAVE 4CF8
CALL BT2BT 4DFO
CORE 4.EOE 31F2

Programming Techniques 241

®

242

Continued

CLB, RSTAR LD XQ

o 45 CORE LOADS NOT FOUND
GRADE
DUP FUNCTION COMPLETED

I I JOB A
II * MAINLINE CORE LOAD
II FOR COLOP
*LlST ALL
** ON-LINE COLD START CORE LOAD
*IOCS (TVPEWRITER,KEYBOARD,DISK)
C
C
C
C
C
C

C

THIS IS THE SYSTEM PROCESS COLD START AND RELOAD CORE LOAD.
IF SENSE SWITCH 6 IS ON IT DOES A PROCESS COLD START AND IF
SENSE SWITCH 6 IS OFF IT ASSUMES ARELOAD CONDITION HAS OCCURED
SO THAT IT INITIALIZES THE SYSTEM TO THE LAST CHECK POINT.

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPT(S),COUMT(S),OFFLN(S)
EXTERNAL GRADE
DIMENSION RANGE(8),AHL(40),ALL(40),A(40),B(40),LOW(S),G(16),H(16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

DEFINE FILE 1(2,320,U,II)
DEFINE FILE 3(3,320,U,II)

C TAKE ALL CLOSED LOOPS OFF-LINE UNTIL OPERATOR BRINGS THEM ON-LINE
C

SWO=2
C
C UNMASK ALL LEVELS
C

CALL UNMK(-l,-l)
C SET UP INSKEL COMMON

REAO(1 1 1)RANGE,LOW,A,B
REAO(1'2)G,H
SW5=5
SW1=1

C
C SET UP BASE TIMES FOR SCHEDULER
C

C

CALL CLOCK(I)
J=I11000*1000
K=I-J
IBASE=J+(K/250*250)
IBASZ=J
IBAZZ=J/SOOO*SOOO+250
SW3=2
CALL COUNT(O,l,l)

C TEST FOR RELOAD OR COLD START
C

CALL SSWTCH(6,II)
GO TO (200,100),11

200 CONTINUE
WRlTE(1,3)

3 FORMAT1 1 PROCESS COLD STARTI)
READ(2,2)DAY,JOBN

2 FORMAT(I1,I5)
CALL CHAIN(GRADE)

100 READ(3 1 1)JOBN,DAY,IENDT,SW3
READ(3 1 2)SETPT
READ(3 1 3)AHL,ALL
SWO=l
GO TO (96,95),SW3

96 CONTINUE
CALL CLOCK(I)
IF(I-IENDT)101,102,103

101 IPER=IENDT-I
GO TO 104

102 CALL CHAIN(GRADE)
103 IPER=(24000-IENDT)+I
104 AA=IPER*3.6

IF(32000.-AA)102,105,105
105 IPER=AA

CALL COUNTl1,2,IPER)
95 WRlTE(l,l06)

@ Continued

106 FORMAT(' PROCESS
CALL VIAQ

RESTART CHECK POINT'I

END
VARIABLE ALLOCATIONS

CSWO(I*I=FFFF
DAY(I*I=FFF9

COUMT(I*I=FFC7-FFCO
IBASE(I*I=FE77
IPERD(I*I=FE32

J(I 1=0014

STATEMEN~ ALLOCATIONS

CSW1(I*I=FFFE
JOBN(I*I=FFF8

OFFLN(I*I=FFBF-FFB8
IBASZ(I*I=FE76
!TCNT(I*I=FE31

K(I 1=0015

3 =0026 2 =0032 106 =0035 200
105 =011F 95 =0129

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
GRADE UNMK CLOCK COUNT SSWTC
MRED MWRT MCOMP MIDI MDRED

REAL CONSTANTS
.360000E 01=0018 .320000E 05=001A

INTEGER CONSTANTS

CSW2(I*I=FFFD
VALUE(I*I=FFF7-FFE9

AHL(R*I=FFB6-FF68
IBAZZ(I*I=FE75
IPONT(I*I=FE30

IPER(I 1=0016

=OOBB 100 =OOCI:l

CHAIN VIAQ FSUB
MDCDM MDAI MDAF

2=001C 1=0010 5=001E 1000=OOlF 250=0020

CORE REQUIREMENTS FOR COLDP

CSW3(I*I=FFFC
RANGE(R*I=FFE6-FFD8

ALL(R*I=FF66-FF18
G(R*I=FE72-FE54

AA(R I=OOOC

CSW4(I*I=FFFB CSW5(I*I=FFFA
LOW(I*I=FFD7-FFDO SETPT(I*I=FFCF-FFC8

A(R*I=FF16-FEC8 B(R*I=FEC6-FE78
H(R*I=FE52-FE34 IENDT(I*I=FE33

11(1 1=0012 1(1 1=0013

96 =00F2 101 =OOFD 102 =0105 103 =0109 104 =0111

FMPY FLO FSTO IFIX FLOAT COMGO LDFAC
MOl TYPEN HOLEB EI:lPRT

8000=0021 0=0022 6=0023 3=0024 24000=0025

COMMON 0 INSKEL COMMON 464 VARIABLES 24 PROGRAM 280

END OF COMPILATION

COLDP
DUP FUNCTION COMPLETED
*DELET M COLDP DUM
DUM
025 NAME NOT IN L/F
*STORECIL M 1 COLDP COLDP COLDS
*FILES(1,FILE1,11
*FILES(3,FILE3,11
*CCEND

CLB, BUILD COLDP

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*CDW TABLE 3E82 OOOC
*IBT TABLE 3E8E 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 002A
*IST TABLE 3F36 0036
*PNT TABLE 3F6C OOOC
*DFT TABLE 3F7tl OOOC
MAIN COLDP 3FBD
PNT COLDP 3F6E
PNT COLDS 3F72
LIBF EBPRT 40AR 3FOC
LIBF HOLEB 4148 3FOF
CALL UNMK 426A
LIBF i'IDRED 431C 3F12
LIBF MDAF 42flB 3F15
LIBF MDAI 42C8 3F18
LIBF MDCOM 437E 3FIB
CALL SSWTC .4628
LIBF MWRT 47DC 3FlE
LIBF MCOMP 4869 3F21
LIBF MRED 47C9 3F24
LIBF MIDI 4892 3F27
PNT GRADE 3F76
LI BF MOl 42CO 3F2A
LIBF FSUB 4CA2 3F2D
LIBF LDFAC 4D2C 3F30
C.tILL VIAQ 4D5A
CALL PRT 4DBA
CALL BT2BT 4E04
CALL SAVE 4E20
CALL IOFIX 4E84
LIBF IOU 4EB4 3F33
CALL BTlBT 4EEA
CORE 4F50 30BO

Programming Techniques 243

244

II JOB A
II * MAINLINE CORE
II FOR CEINT
*L1ST ALL
** CE UNMASK CORE
*IOCS(TYPEWRITERl

LOAD

LOAD

C
C
C
C
C

THIS CORE LOAD IS FOR USE WITH THE CE INTERRUPT. IT MAKES
SURE THAT ALL LEVELS ARE UNMASKED AFER USE OF THE CE INTERRUPT
ROUTINES.

WRITE(l,ll
FORMAT(' CE UNMASK CORE LOAO--PRESS START TO EXIT FROM CORE LOAD'l
PAUSE
CALL UNMK(-l,-ll
CALL VIAQ
END

STATEMENT ALLOCATION~
1 =0006

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
UNMK VIAQ MWRT

INTEGER CONSTANTS
1=0004 0=0005

MCOMP

CORE REQUIREMENTS FOR CEINT
COMMON 0 INSKEL COMMON

END OF COMPILATION

CEINT
DUP FUNCT ION COMPLETED
II DUP

PAUSE TYPEN

o VARIABLES

*STORECIL M 1 CEINT CEINT CEINT
*CCEND

CLB, BUILD CEINT

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*CDW TABLE 3E82 OOOC
*IBT TABLE 3E8E 0010
*FlO TABLE 3EAB 0010
*ETV TABLE 3E8B 0051
*VTV TABLE 3FOC OOOF
*IST TABLE 3F1B 0036
*PNT TABLE 3F52 0008
MAIN CEINT 3F7E
PNT CEINT 3F54
PNT CEINT 3F58
LIBF EBPRT 3F94 3FOC
LIBF MWRT 41BE 3FOF
LIBF MCOMP 424B 3F12
LIBF PAUSE 4670 3F15
CALL UNMK 4684
CALL VIAQ 46CE
CALL PRT 472E
L1BF IOU 4778 3F18
CALL IOFIX 4812
CALL BTlBT 4842
CALL SAVE 47AE
CORE 48A8 3758

CLB, CEINT LD XQ

DUP FUNCTION COMPLETED

II JOB A

EBPRT

4 PROGRAM

II * THE FOLLOWING ARE THREE DUMMY CORE LOADS FOR USE IN REPLACING
II * OR DELETING SYSTEM CORE LOADS.

54

®

Continued

II *
II * MAINLINE CORE LOAD
II ASM DUM

NO ERRORS IN ABOVE ASSEMBLY.
DUM
DUP FUNCTION COMPLETED
*STORECI M 1 DUM
*CCEND

CLB, BUILD DUM

CLB, DUM LD XQ

DUP FUNCTION COMPLETED
II * INTERRUPT CORE LOAD
II ASM IDUM

DUM DUM

NO ERRORS IN ABOVE ASSEMBLY.
IDUM
DUP FUNCTION COMPLETED
*STORECI I 1 IDUM IDUM
*CCEND

CLB,·BUILD IDUM

CLB, IDUM LD XQ

DUP FUNCTION COMPLETED
II * COMBINATION CORE LOAD
II ASM CDUM

NO ERRORS IN ABOVE ASSEMBLY.
CDUM
DUP FUNCTION COMPLETED
*STORECI C 1 CDUM CDUM CDUM
*CCEND

CLB, BUILD CDUM

CLB, CDUM LD XQ

DUP FUNCTION COMPLETED

II JOB A
II * MAINLINE CORE LOAD
II FOR GRADE
*LlST ALL
** GRADE CHANGE PROGRAM
*IOCSIDISK,TYPEWRITER)
C
C THIS PROGRAM STARTS THE PRODUCTION OF A NEW GRADE.
C

C

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNI8)
DIMENSION INPP(8)
DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOWI8)
CDMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBA5E,IBASZ,IBAZZ
EQUIVALENCE IVALUE(2),IENDT)
DEFINE FILE 21100,320,U,JOBN)
DEFINE FILE 313,320,U,II)

C TAKE ALL LOOPS OFF CLOSED LOOP CONTROL UNTIL AFTER CHANGE
C

SWO=2
C
C READ NEXT SEQUENTIAL GRADE FILE OFF OF DISK
C

IFIJOBN)999,999,9999
999 SW3=2

WRITEI3'l)JOBN,DAY,IENDT,SW3
CALL PTIMEITIME)
WRITEIl,998)TIME,DAY
WRITEI4,998)TIME,DAY
WRITEI5,998)TIME,DAY

Programming Techniques 245

®

246

Continued

C

998 FORMATI' PRODUCTION STOP TIME'F7.2,'
CALL VIAQ

9999 SW3=1
IF 1101-JOBNI2,2,3

2 JOBN=l
3 READI2'JOBNII,ITIME,SETPT,AHL,ALL

DO 10 J=1,8
IFISETPTIJIII0,10,4

4 SETPTIJI=SETPTIJI*RANGEIJI/I00.+LOWIJI
10 CONTINUE

DAY' 121

C CALL COUNT TO SET UP TERMINATION OF GRADE ITIME SECONDS FROM NOW.
C

CALL COUNT 11,2,ITIMEI
IENDT=ITlME/3.6
CALL CLOCK I II 1
IENDT=IENDT+II
IFI24000-IENDTI100,100,101

100 IENDT=IENDT-24000
101 CONTINUE

WRITEI3'lIJOBN,DAY,IENDT,SW3
WRITEI3'21SETPT
WRITEI3'3IAHL,ALL
SWO=1
11=ITIME/3600
ITIME=I ITIME-I 11*360011/60
TIME=II+ITIME/100.
CALL PTIMEITIZI
WRITEIl,llll,TIME,TIZ,DAY
WRITEI4,11II,TIME,TIZ,DAY
WRITEI5,1111,TIME,TIZ,DAY

11 FOR~ATIII' START UF GRADE'I6,' PRODUCTION TIME'F9.2,' START TIME'F
19.2,' DAY'I31

WRlTEl1,5001
500 FORMAT I , OP-GUIDE LIMITS FOR NEW GRADE'I

WRlTEll,5011
501 FORMATI' POINT HIGH LIMIT LOW LIMIT',10X' POINT HIGH LIMIT

1 LOW LIMIT' 1
00 503 J=1,39,2
K=41-J
J1=J
J2=J+1

503 WRITEl1,502IJl,AHLIKI,ALLIKI,J2,AHLIK-II,ALLIK-11
502 FORMATI16,2F13.2,10XI6,2FI3.21

WRITEll,5101
510 FORMATI' CLOSED LOOP SET POINTS FOR NEW GRADE'I

WRITEl1,5111
511 FORMATI3X'POINT',5X'SETPT',5X'POINT',5X'SETPT',5X'POINT',5X'SETPT'

1,5X'POINT',5X'SETPT'1
DO 6 J=1,8

6 INPPIJI=ISETPTIJI-LOWIJII*100./RANGEIJI
DO 30 1=1,5,4
J1=1
J2=I+1
J3=1+2
J4=I+3
IA=9-I
IB=8-I
IC=7-I
ID=6-I

30 WR IT Ell, 71 J 1, I NPP (I AI, J 2, INPP I I B I, J3, INPP I IC 1 ,J4, INPP (I D 1
7 FORMATI18,110,3II10,11011

CALL VIAQ
END

VARIABLE ALLOCATIONS
CSWO I 1* 1 =FFFF CSW111*I=FFFE

JOBNII*I=FFF8
OFFLNII*I=FFBF-FFB8
IBASZII*I=FE76

CSW211*I=FFFD
VALUEII*I=FFF7-FFE9

AHLIR*I=FFB6-FF68
IBAZZ 11* 1 =FE75

1111=OOIB

CSW3II*I=FFFC
RANGEIR*I=FFE6-FFD8

ALLIR*I=FF66-FF18
IENDT(I*I=FFF6
ITIMEII 1=001C

DAY I 1* 1 =FFF9
CDUMTII*I=FFC7-FFCO
IBASEII*I=FE77

INPPII 1=0019-0012
JlII I=OOIF
ICII 1=0025

STATEMENT ALLOCATIONS

IIII I=OOIA
J211 1=0020
I D I I 1 =0026

J311 1=0021 J411 1=0022

CSW4 11*1 =FF FB
LOWII*I=FFD7-FFDO

AIR*I=FF16-FEC8
CTIMEIR I=OOOC

JII I=OOlD
IA I I 1=0023

998 =003F 11 =0054 500 =0077 501 =0088 502 =OOAC 510 =00B4 511 =00C9 7 =00F2 999
2 =0138 =013C 4 =015A 10 =017B 100 =OIAO 101 =01A6 503 =022D 6 =025D 30

FEATURES SUPPORTED
ONE WORD INTEGERS
IDCS

CALLED SUBPROGRAMS

CSW511*I=FFFA
SETPTII*I=FFCF-FFC8

BIR*I=FEC6-FE78
CTIZIR I=OOOE

KII I=OOlE
IBIII=0024

=0101 9999 =012E
=02BO

PTIME VIAQ COUNT CLOCK FADD FMPY FMPYX FDIV FDIVX FSTO IFIX FLOAT ISTOX STFAC SBFAC
MWRT MCOMP MIOFX MIOIX MIOF MIDI SUBSC MDRED MDWRT MDCOM MDAI MDAF MDI TYPEN EBPRT

®

@

Continued

REAL CONSTANTS
.100000E 03=002C .360000E 01=002E

INTEGER CONSTANTS
2=0030 3=0031

39=003A 41=003B

CORE REQUIREMENTS FOR GRADE

1=0032
9=003C

4=0033
7=0030

COMMON 0 INSKEL COMMON 396 VARIABLES

END OF COMPILATION

GRADE
DUP FUNCTION COMPLETED
*DELET M GRADE DUM
GRADE
025 NAME NOT IN LlF
*STORECIL M 1 GRADE GRADE RSTAR
*FILES(2,FILE2,1)
*FILES(3,FILE3,1)
*CCEND

CLB, BUILD GRADE

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*CDW TABLE 3E82 OOOC
*IBT TABLE 3E8E 0010
*FID TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0036
*IST TABLE 3F42 0036
*PNT TABLE 3F78 0008
*DFT TABLE 3F80 OOOC
MAIN GRADE 4079
PNT GRADE 3F7A
PNT RSTAR 3F7E
LIBF EBPRT 4264 3FOC
LIBF MDWRT 4457 3FOF
LIBF MOl 4310 3F12
LIBF MDCOM 43CE 3F15
CALL PTIME 4684
LIBF MWRT 483E 3F18
LIBF MIOF 48EF 3F1B
LIBF MIDI 48F4 3F1E
LIBF MCO~'P 48CB 3F21
CALL VIAQ 4CFO
LIBF MORED 436C 3F24
LIBF MDAI 4318 3F27
LIBF MDAF 430B 3F2A
LIBF FAOO 4070 3F2D
LIBF STFAC 4E04 3F30
LIBF SBFAC 4E08 3F33
LIBF MIDFX 4BFB 3F36
LIBF MIDIX 4900 3F39
CALL PRT 4E1C
CALL BT2BT 4E66
CALL SAVE 4E82
CALL IOFIX 4EE6
LIBF SUBIN 4F16 3F3C
LIBF IOU 4F50 3F3F
CALL BTlBT 4F86
CORE 4FEC 3014

CLB, GRADE LD XQ

OUP FUNCTION COMPLETED

II JOB A

5=0034
6=003E

44 PROGRAM

II * TWO MINUTE LIMIT SCAN ROUTINE--COMBINATION CORE LOAD

101=0035

696

II * THIS PROGRAM IS INITIATED EVERY 2 MINUTES OR BY PROCESS INTERRUPT
II *
II * FIRST PART IS THE CONVERSION AND LIMIT CHECK SUBROUTINE USED BY AI
II * USER SUBROUTINE
II FOR
*LIST ALL
** CONVERSION AND LIMIT CHECK SUBROUTINE

SUBROUTINE LIMIT(I,J)

8=0036 24000=0037 3600=0038 60=0039

Progr amming Techniques 247

@

248

Continued

C
C
C
C

C

THIS SUBROUTINE IS THE SUBROUTINE TO BE USED IN THE AIS READ AND
TRANSFER FUNCTION OF THE MAIN LINE CORE LOAD.

INTEGER SWO,SWl,SW2,SW3,SW4,SW~,DAY

INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNI8)
DIMENSION RANGEIS),AHLI40),ALLI40),AI40),BI40),LOWIS),GI16),HI16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LDW,SET

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

C CONVERT I PARAMETER TO ARRAY INDEX
C

C

K=40-1
M=I+l

C CONVERT AI VALUE TO ENGINEERING UNITS
C

VSC=AIK)*LDIJ)+BIK)
C
C TEST FOR HIGH LIMIT VIOLATION
C

C

IFIVSC-AHLIK»2,1,1
1 WRITEI1,100)M,VSC

100 FORMATI' HIGH LIMIT VIOLATION POINT',13,'
GO TO 4

C TEST FOR LOW LIMIT VIOLATION
C

2 IFIVSC-ALLIK»3,3,4
3 WRITEl1,300)M,VSC

300 FORMATI' LOW LIMIT
4 RETURN

END

VIOLATION POINT' tI3, I

VALUE',F12.4)

VALUE',F12.4)

VARIABLE ALLOCATIONS
CSWOII*)=FFfF CSW1II*)=FFFE

JOBNII*)=FFFS
OFFLNII*)=RFBF-FFB8
IBASZII*)=FE76
ITCNTII*)=FE31

CSW2II*)=FFFD CSW311*)=FFFC
DAYII*)=FFF9

COUMTII*)=FFC7-FFCO
IBASEII*)=FE77
IPERDII*)=FE32

VALUEII*)=FFF7-FFE9 RANGEIR*)=FFE6-FFDS
AHLIR*)=FFB6-FF6S ALLIR*)=FF66-FF1S

IBAZZII*)=FE75 GIR*)=FE72-FE54
IPONTII*)=FE30 CVSCIR)=0000

STATEMENT ALLOCATIONS
100 =OOOS 300 =0020

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
LD FADDX FSUBX

INTEGER CONSTANTS
40=0006 1=0007

FMPYX

CORE REQUIREMENTS FOR LIMIT
COMMON ° INSKEL COMMON

END OF COMPILATION

LIMIT
DUP FUNCTION COMPLETEO

=006C 2 =0076 3 =0082 4

FLO FSTO FLOAT LDFAC

464 VARIABLES 6 PROGRAM

II * LEAVE THIS SUBROUTINE IN TEMP STORAGE SINCE IT IS ONLY USED
II. WITH THIS MAINLINE
II * NOW COMPILE THE MAINLINE
II * COMBINATION CORE LOAD
II FOR SCAN2
*LIST ALL

=OOSA

MWRT

134

** TWO MINUTE SCAN FOR LIMIT VIOLATIONS OF THOSE POINTS ON OP-GUIDE
*IOCS ITYPEWRITER)
C
C THIS COMBINATION CORE LOAD SCANS ALL OF THE OP-GUIDE POINTS ON THE
C SYSTEM AND NOTES ANY LIMIT VIOLATION TO THE OPERATOR.
C

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTIS),COUMTI8),OFFLNIS)
EXTERNAL LIMIT
DIMENSION INP(42)
DIMENSION RANGEIS),AHLI40),ALLI40),AI40),BI40),LOWIS),GI16),HI16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

MCOMP

CSW4II*)=FFFB CSW5II*)=FFFA
LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFCS

AIR*)=FF16-FEC8 BIR*)=FEC6-FE78
HIR*)=FE52-FE34 IENDTII*)=FE33
KII)=0002 Mil)=0003

MIOF MIDI SUBSC SUBIN

@ ~ontinued

C GET TIME IN HOURS-MINUTES
C

CALL PTIMEITIMEI
C
C DETERMINE IF THIS IS A DEMAND SCAN OR THE NORMAL 2 MINUTE SCAN BY
C DETERMINING WHAT LEVEL IT IS XEQ-ING ON
C

C

1=7+LDII041
IFILOIII-2311,1,2

C DEMAND SCAN
C

1 WRITEIl,3IDAY,TIME
3 FORMATI//,' DEMAND SCAN

GO TO 5
C
C NORMAL 2 MINUTE SCAN
C

2 WRITEl1,4IDAY,TIME
4 FORMATI//,' NORMAL SCAN

C

DA Y • , 13,4 X • TIM E', F 1 2 • 2 I

DA Y • , 13,4 X • TIM E', F 12 • 2)

C READ 40 RELAY POINTS USING AIS READ AND TRANSFER FUNCTION
C

5 CALL AISI15001,INPl11,INP(42),Q,LIMITI
6 CALL AISIO,!)

GO TO 16,7), I
7 CALL DPART

END
VARIABLE ALLOCATIONS

CSWOII*I=FFFF CSW1II*)=FFFE CSW2II*)=FFFD CSW3 11* I =FFFC

STATeMENT ALLOCATIONS
3 =0036 4 =0049

FEATURES SUPPORTED
ONE WORD INTEGERS
IDCS

CALLED SUBPROGRAMS
LIMIT PTIME LD

INTEGER CONSTANTS
7=0030 104=0031

AIS

CORE REQUIREMENTS FOR SCAN2

=0060 2 =0077 =007F 6

DPART COMGO MWRT MCOMP

23=0032 1=0033 15001=0034

COMMON 0 INSKEL COMMON 464 VARIABLES 48 PROGRAM

END OF COMPILATION

SCAN2
DUP FUNCTION COMPLETED
*DELET C SCAN2 CDUM 9999
SCAN2
025 NAME NOT IN L/F
*STORECIL C 1 SCAN2 SCAN2 RSTAR 1515
*CCEND

CLB, BUILD SCAN2

CORE LOAD MAP
TYPE NAME ARGI ARG2

*CDW TABLE 3E82 'OOOC
*IBT TABLE 3E8E 001D
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0021
*IST TABLE 3F20 0036
*PNT TABLE 3F64 0008
MAIN SCAN2 3FC8
PNT SCAN2 3F66
PNT RSTAR 3F6A
L1BF EBPRT 400E 3FOC
CALL PTIME 40BA
CALL LD 40EA
L1BF MWRT 4284 3FOF
L1BF MIDI 433A 3F12
L1BF MIOF 4335 3F15
L1BF MCOMP 4311 3F18
CALL LIMIT 476F
CALL DPART 47C2
CALL PRT 4700

=0095 7

MIOF MIDI

0=0035

114

CSW4II*)=FFFB CSW5II"~)=FFFA

=009F

TYPEN EBPRT

Programming Techniques 249

@

@

250

Continued

LIBF SUBIN 481A 3FIB
LIBF FADD 4874 3FIE
LIBF IOU 48F2 3F21
CALL IOFIX 498C
CALL BTlBT 49BC
CALL SAVE 4928
LIBF FADDX 486E 3F24
LIBF FSUBX 4863 3F27
LIBF LDFAC 4A20 3F2A
CALL VIAQ 4A4E
CORE 4ABO 354F

CLB, SCAN2 LD XQ

DUP FUNCTION COMPLETED

II JOB A
II * MAINLINE CORE LOAD
II FOR LOG15
*LIST ALL
** 15 MINUTE LOG ROUTINE
*IOCSITYPEWRITER)
C
C THIS IS THE FIFTEEN MINUTE LOG PROGRAM WHICH LOGS THE VALUES OF
C ALL PROCESS VARIABLES IN THE SYSTEM
C

C

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNIS)
DIMENSION INP(42),VSCI40),INPPII0)
DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOWIS),GI16),HI16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

C START INPUT OF RELAY POINTS
C

CALL AISI12001,INP(1),INPI42),0)
C
C PRINT HEADER OF LOG
C

CALL PTIMEITIMEI
WRITEl1,1)DAY,TIME
WRITEI5,1)DAY,TIME
FORMATIII,' LOG15 DAY',I3,4X'TIME',F9.2)
WRITEl1,100)
WRITEI5,l00)

100 FORMATI' OP-GUIDE POINTS')
WRITE 15,2)
WRITE 11,2)

2 FORMATI3X'POINT',5X'VALUE',5X'POINT',5X'VALUE',5X'POINT',5X'VALUE'
1,5X'POINT',5X'VALUE')

C
C START INPUT OF SS AI AND CONVERT RELAY AI WHILE SS IS COMING IN
C

C

CALL AISI02001,INPP(1),INPPI10),4096)
DO 10 1=1,40

10 VSC I I)=AI I)*INPI I)+BI I)

C PRINT TABLE OF RELAY AI POINTS
C

C

DO 20 J=I,37,4
K=41-J
Jl=J
J2=J+1
J3=J+2
J4=J+3
WRITEI5,3)J1,VSCIK),J2,VSCIK-1),J3,VSCIK-2),J4,VSCIK-3)

20 WRITEl1,3)J1,VSCIK),J2,VSCIK-1),J3,VSCIK-2),J4,VSCIK-3)
~ FORMATI4118,FI2.2»

C PRINT THE SS VALUES
C

WRITEll,101)
WRITEI5,l01l

101 FORMATI' CLOSED LOOP POINTS')
WRITEIl,2)
WRITEI5,2)

4 CALL AISIO,1)
GO TO 14,5),1

5 DO 6 J=1,8

@ Continued

6 INPPIJ)=IINPPIJ)-LOWIJ»*100./RANGEIJ)
DO 30 1=1,5,4
J1=1
J2=1+1
J3=1+2
J4=1+3
IA=9-1
IB=8-1
IC=7-1
10=6-1
WR ITE I 5,7) J 1, I NPP I I A) ,J 2, I NPP I I B) ,J 3, INPP I IC) ,J4, INPP 110)

30 WRITEl1,7)J1,INPPIIA),J2,INPPIIB),J3,INPPIIC),J4,INPPI10)
7 FORMATI18,110,31110,110»

CALL VIAQ
END

VARIABLE ALLOCATIONS
CSWO 11*) =FFFF

OAYII*)=FFF9
COUMTII*)=FFC7-FFCO
IBASEII*)=FE77
IPEROII*)=FE32

INPP I I) =0087-007E
J311)=0080

STATEMENT ALLOCATIONS

CS~Jl 11*)=FFFE
JOBNII*)=FFF8

OFFLNII*)=FFBF-FFB8
IBASZII*)=FE76
!TCNT(1*)=FE31

III)=0088
J41 I)=008E

CSW2II*)=FFFO
VALUEII*)=FFF7-FFE9

AHLIR*)=FFB6-FF68
IBAZZII*)=FE75
IPONTII*)=FE30

JI I)=0089
IAI I)=008F

CSW311*)=FFFC
RANGEIR*)=FFE6-FF08

ALLIR*)=FF66-FF18
GIR*)=FE72-FE54

CVSCIR)=004E-0000
KII)=008A

18(1)=0090

CSW411*)=FFFB
LOW(I*)=FF07-FFDO

A(R*)=FF16-FEC8
H(R*)=FE52-FE34

C TIM E (R) = 0050
J1(1)=008B
IC(1)=0091

CSW5(1*)=FFFA
SETPTII*)=FFCF-FFC8

B(R*)=FEC6-FE78
IENDT (1*) =FE33

INP(I)=0070-0054
J2(1)=008C
ID(I)=0092

1 =OOAA 100 -OOBA 2 =00C4 3 =OOEO 101 =00F2 7 =OOFE 10 =0154 20 =01C2 4 =01F8 =0202
6 =0206 30 =0281

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
AIS PTIME VIAQ
MIOFX MIOIX MIOF

REAL CONSTANTS
.100000E 03=0098

INTEGER CONSTANTS
12001=009A 0=009B

2=00A4 3=00A5

FAOOX
MIDI

FMPY
SUBSC

1=009C
8=00A6

CORE REQUIREMENTS FOR LOG15

FOIVX
TYPEN

5=0090
9=00A7

COMMON 0 INSKEL COMMON 464 VARIABLES

END OF COMPILATION

LOG15
OUP FUNCTION COMPLETED
*OELET M LOG15 DUM
LOG15
025 NAME NOT IN LlF
*STORECIL M 1 LOG15 LOG15 RSTAR
*CCEND

CLB, BUILD LOG15

CORE LOAD MAP
TYPE NAME ARGl ARG2

*COW TABLE 3E82 OOOC
*IBT TABLE 3E8E 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0021
*IST TABLE 3F2D 0036
*PNT TABLE 3F64 0008
MAIN LOG15 4071
PNT LOG15 3F66
PNT RSTAR 3F6A
LIBF EBPRT 4216 3FOC
CALL PTIME 42C2
LIBF MWRT 447C 3FOF
LIBF MIDI 4532 3F12
LIBF MIDF 4520 3F15
LIBF MCOMP 4509 3F18
LIBF FADOX 4948 3FIB
LIBF MIDFX 4539 3F1E
LIBF MIDIX 453E 3F21
CALL VIAQ 49CC
CALL PRT 4A2C
LIBF SUBIN 4A76 3F21t

FLOX
EBPRT

FSTO

2001=009E
7=00A8

FSTOX

4096=009F
6=00A9

152 PROGRAM 530

IFIX FLOAT

40=00AO

COMGO ISTOX MWRT MCOMP

37=00A1 4=00A2 41=00A3

Programming Techniques 251

@ Continued

LI BF FADD 494E 3F27
LIBF IOU 4ABO 3F2A
CALL IOF IX 4B4A
CALL BTlBT 4B7A
CALL SAVE 4AE6
CORE 4BEO 3420

CLB, LOG15 LD XQ

DUP FUNCTION COMPLETED

® II JOB A
II * MAINLINE CORE LOAD
II FOR LOG60

252

** ONE HOUR LOG
*IOCS(TYPEWRITER)
*LIST ALL
C
C THIS PROGRAM PUTS OUT THE HOUR LOG.
C

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNI8)
DIMENSION RANGE(8),AHLI40),ALL(40),AI40),BI40),LOWIS),GI16),HI16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

C
C PRINT HEADING
C

C

CALL PTIMEITIME)
WRITEll,I)DAY,TIME
WRITEI4,I)DAY,TIME
WRITEI5,I)DAY,TIME
FORMATIII,' ONE HOUR LOG

C OUTPUT ONE HOUR LOG
C
C
C EXIT FROM ROUTINE
C

CALL VIAQ
END

VARIABLE ALLOCATIONS
CSWOII*)=FFFF

DAYII*)=FFF9
COUMTII*)=FFC7-FFCO
IBASEII*)=FE77
IPERDII*)=FE32

CSWIII*)=FFFE
JOBNI I~~)=FFF8

OFFLNII*)=FFBF-FFB&
IBASZII*)=FE76
ITCNT(I*)=FE31

STATEMENT ALLOCATIONS
1 =0005

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
PTIME VIAO MWRT

INTEGER CONSTANTS
1=0002 4=0003

MCOMP MIOF

5=0004

CORE REQUIREMENTS FOR LOG60

CSW2(I*)=FFFD CSW3II*)=FFFC
VALUEII*)=FFF7-FFE9 RANGEIR*)=FFE6-FFD8

AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FFI8
IBAZZII*)=FE75 GIR*)=FE72-FE54
IPONTII*)=FE30 CTI~EIR)=0000

MIDI TYPEN EBPRT

COMMON 0 INSKEL COMMON 464 VARIABLES 2 PROGRAM 52

END OF COMPILATION

LOG60
DUP FUNCTION COMPLETED
II DUP
*STORECIL M 1 LOG60 LOG60 RSTAR
*CCENO

CLB, BUILD LOG60

CORE LOAD MAP
TYPE NAME ARGI ARG2

CSW4II*)=FFFB CSW5II*)=FFFA
LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFC8

AIR*)=FFI6-FEC8 BIR*)=FEC6-FE78
HIR*)=FE52-FE34 IENDTII*)=FE33

® Continued

*COW TABLE 3E82 OOOC
*IBT TABLE 3E8E 001D
*F 10 TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0018
*IST TABLE 3F24 0036
*PNT TABLE 3F5A 0008
MAIN LOG60 3F7B
PNT LOG60 3F5C
PNT RSTAR 3F60
LIBF EBPRT 3F98 3FOC
CALL PTIME 4044
LIBF MWRT 41FE 3FOF
LI BF MIDI 42B4 3F12
LIBF MIOF 42AF 3F15
LIBF MCOMP 428B 3F18
CALL VIAQ 46BO
CALL PRT 4710
LI BF SUBIN 475A 3F1B
LIBF FADD 4784 3F1E
LI BF IOU 4832 3F21
CALL IOFIX 48CC
CALL BTIBT 48FC
CALL SAVE 4868
CORE 4962 369E

CLB, LOG60 LO XQ

DUP FUNCTION COMPLETED

II JOB A
II * MAINLINE CORE LOAD
II FOR SHIFT
*LIST ALL
** SHIFT END LOG
*IOCS (TYPEWRI TER)
C
C THIS PROGRAM OUTPUTS THE SHIFT lOG
C

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VAlUE(15),SETPTI8),COUMTIS),OFFLNIS)
DIMENSION RANGE(8),AHLI40),ALlI401,AI401,BI401,LOW(8),G(16),H(16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUF,RANGE,lOW,SET

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

C
C PRINT HEADER
C

CALL PTIMEITIME)
WRITE(l,l)DAY,TIME
WRITE(4,1)DAY,TIME
WRITEI5,1)DAY,TIME
FORMATIII,' SHIFT END LOG DA Y' , 13,5 X' TIM E ' ,F 9.2)

C
C OUTPUT SHIFT END LOG
C
C
C EXIT FROM ROUTINE
C

CALL VIAQ
END

VARIABLE ALLOCATIONS
CSWOII*I=FFFF

DAYII*)=FFF9
COUMT(I*)=FFC7-FFCO
IBASEII*I=FE77
IPERD(I*)=FE32

STATEMENT ALLOCATIONS
1 =0005

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
PTIME VIAQ MWRT

INTEGER CONSTANTS

CSW1(I*)=FFFE
JOBNII*I=FFFS

OFFLNII*)=FFBF-FFBS
IBASZ(I*I=FE76
!TCNTII*I=FE31

MCOMP MIOF

1=0002 4=0003 5=0004

CSW2(1* I =FFFD CSW3 (I * I =FFFC
VALUEII*)=FFF7-FFE9 RANGEIR*I=FFE6-FFD8

AHL(R*I=FFB6-FF6S ALL(R*)=FF66-FF18
IBAZZ(I*)=FE75 G(R*I=FE72-FE54
IPONT(H')=FE30 CTIMEIR)=0000

MIDI TYPEN EBPRT

CSW4(I*I=FFFB CSW5II*I=FFFA
LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFC8

AIR*I=FF16-FEC8 8(R*I=FEC6-FE78
HIR*I=FE52-FE34 IENDTII*)=FE33

Programming Techniques 253

@

254

Continued

CORE REQUIREMENTS FOR SHIFT
COMMON 0 INSKEL COMMON 464

END OF COMP I LA TI ON

SHIFT
DUP FUNCTION COMPLETED
II DUP
*STORECIL M 1 SHIFT SHIFT RSTAR
*CCEND

CLB, BUILD SHIFT

CLRE LOAD MAP
TYPE NAME ARG1 ARG2

*CDW TABLE 3E82 OOOC
*IBT TABLE 3E8E 0010
*F ID TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0018
*IST TABLE 3F24 0036
*PNT TABLE 3F5A 0008
MAIN SHIFT 3F7B
PNT SHIFT 3F5C
PNT RSTAR 3F60
LIBF EBPRT 3F98 3FOC
CALL PTIME 4044
LIBF MWRT 41FE 3FO~

LIBF MIDI 42B4 3F12
LIBF MIOF 42AF 3F15
LIBF MCOMP 428B 3F18
CALL VIAQ 46BO
CALL PRT 4710
LIBF SUBIN 475A 3FlB
LIBF FADD 47B4 3F1E
LIBF IOU 4832 3F21
CALL IOFIX 48CC
CALL BTlBT 48FC
CALL SAVE 4868
CORE 4962 369E

CLB, SHIFT LD XQ

DUP FUNCTION COMPLETED

II JOB A
II * MAINLINE CORE LOAD
II FOR WEEK
*LIST ALL
** MONDAY MORNING LOG
*IoCSITYPEWRITERI
C

VARIABLES 2 PROGRAM 52

C THIS PROGRAM OUTPUTS THE WEEKLY MONDAY MORNING LOG
C

C

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTI8),COUMT(81,OFFLN(81
DIMENSION RANGE(8),AHLI40),ALL(40),A(401,B(401,LoW(SI,G(161,H(16I
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JoBN,VALUE,RANGE,LoW,SET

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPoNT

C PRINT HEADER
C

C

CALL PTIMEITIMEI
WRITE(4,1IDAY,TIME
WRITE(5,1IDAY,TIME
FoRMAT(II,' MONDAY MORNING REPORT

C OUTPUT MONDAY MORNING REPORT
C
C
C EXIT FROM PROGRAM
C

CALL VIAQ
END

DAY', I3,5X'TIME' ,F9.21

Continued

VARIABLE ALLOCATIONS
CSWOII*I=FFFF

DAYII*I=FFF9
COUMTII*I=FFC7-FFCO
IBASEII*I=FE77
IPERDII*I=FE32

STAT~MENT ALLOCATIONS
1 =0004

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
PTIME VIAQ MWRT

INTEGtR CONSTANTS

CSWl(1*I=FFFE
JOBNII*I=FFF8

OFFLNII*I=FFBF-FFB8
IBASZ(I*I=FE76
ITCNTI 1*I=FE31

MCOMP MIOF

4=0002 5=0003

CORE REQUIREMENTS FOR WEEK

CSW2(1*I=FFFD CSW311*I=FFFC
VALUEII*I=FFF7-FFE9 RANGEIR*I=FFE6-FFD8

AHL(R*I=FFB6-FF68 ALLIR*I=FF66-FF18
IBAZZ(I*I=FE75 G(R*I=FE72-FE54
IPONT(I*I=FE30 CTIME(R 1=0000

MIDI TYPEN EBPRT

COMMON 0 INSKEL COMMON 464 VARIABLES 2 PROGRAM 48

END OF COMPILATION

WEEK
DUP FUNCTION COMPLETED
II DUP
*STORECIL M 1 WEEK
*CCEND

~LB, BUILD WEEK

CORE LOAD MAP
TYPE NAME ARGl ARG2

*CDW TABLE 3EB2 COOC
*18T TABLE 3E8E 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0018
*IST TABLE 3F24 0036
*PNT TABLE 3F5A 0008
MAIN WEEK 3F7F
PNT WEEK 3F5C
PNT RSTAR 3F60
LIBF EBPRT 3F94 3FOC
CALL PTIME 4040
LIBF MWRT 41FA 3FOF
LIBF MIOI 42BO 3F12
LIBF MIOF 42AB 3F15
LIBF MCOMP 4287 3F18
CALL VIAQ 46AC
CALL PRT 47llC
LIBF SUBIN 4756 3F1B
LIBF FADD 47BO 3F1E
LIBF IOU 482E 3F21
CALL IOFIX 48C8
CALL BTlBT 48F8
CALL SAVE 4864
CORE 495E 36A2

CL8, WEEK LD XQ

DUP FUNCTION COMPLETED

® II JOB A
II * MAINLINE CORE
II FOR TREND
*LlST ALL
** TREND LOG
*IOCSITYPEWRITERI
C

LOAD

WEEK RSTAR

C
C
C
C

THIS IS THE TREND LOG CORE LOAD. IT READS THE VALUE THAT THE
OPERATOR HAS ASKED. IT IS QUEUED PERIODICALLY BY THE TCONT
SUBROUTINE WITH THE PERIOD SPECIFIED BY THE OPERATOR.

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VALUEI151,SETPT(81,COUMT(81,OFFL~:(81

CSW4(1*I=FFFB CSW5(1*I=FFFA
LOW(I*I=FFD7-FFDO SETPTII*I=FFCF-FFC8

A(R*J=FF16-FEC8 B(R*I=FEC6-FE78
H(R*I=FE52-FE34 IENDTII*I=FE33

Programming Techniques 255

®

256

Continued

DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOWI8),GI16),HI16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,I PONT

CALL AIP(11000,INV,IPONT)
CALL AIPIO,ITEST)
GO TO 11,2),ITEST

2 CON.TINUE
IFI4096-IPONT)4,4,100

4 K=IPONT-4096+1
J=9-K
INV=I INV-LOWIJ))*100./RANGEIJ)
WRITEI1,5)K,INV
FORMATI' TREND LOOP'12,' VALUE'16)
CALL VIAQ

100 K= I PONT+ 1
J=41-K
VAL=AIJ)*INV+BIJ)
WRITEl1,101)K,VAL

101 FORMAT I , TREND OP-GUIDEIJ3,'
CALL VIAQ
END

VALUE'F10.2)

VARIABLE ALLOCATIONS
CS~IOII*)=FFFF CSW1II*)=FFFE

JOBNI I~c)=FFF8
OFFLNII*)=FFBF-FFB8
IBASZII*)=FE76
ITCNTII*)=FE31

CSW2II*)=FFFD CSW3II*)=FFFC
DAYII*)=FFF9

CDUMTII*)=FFC7-FFCO
IBASEII*)=FE77
IPERDII*)=FE32

K I I) =0004

STATEMENT ALLOCATIONS
5 =0010 101 =OOlF

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
AlP VIAO FADDX
TYPEN EBPRT

REAL CONSTANTS
.100000E 03=0008

INTEGER CONSTANTS
11000=000A O=OOOB

J I I) =0005

=0036 2

FMPY FMPYX

4096=000C

CORE REQUIREMENTS FOR TREND

VALUEII*)=FFF7-FFE9 RANGEIR*)=FFE6-FFD8
AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FF18

IBAZZII*)=FE75 GIR*)=FE72-FE54
IPONTII*)=FE30 CVALIR)=0000

=0040 4 =0046 100 =0074

FDIVX FSTO IFIX FLOAT COMGO

1=0000 9=000E 41=000F

COMMON 0 INSKEL COMMON 464 VARIABLES 8 PROGRAM 144

END OF COMPILATION

TREND
DUP FUNCTION COMPLETED
*DELET M TREND DUM
TREND
025 NAME NOT IN L/F
*STORECIL M 1 TREND TREND RSTAR
*CCEND

CLB, BUILD TREND

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*CDW TABLE 3E82 OOOC
*IBT TABLE 3E8E 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0018
*IST TABLE 3F24 0036
*PNT TABLE 3F5A 0008
MAIN TREND 3F93
PNT TREND 3F5C
PNT RSTAR 3F60
LIBF EBPRT 3FFA 3FOC
CALL AlP 409A
LI BF MWRT 4250 3FOF
LI BF MIDI 4306 3F12
LIBF MCOMP 4200 3F15
CALL VIAQ 4702
LIBF FADDX 477C 3F18
LIBF MIOF 4301 3F1B
CALL PRT 4800

CSW4II*)=FFFB CSW5II*)=FFFA
LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFC8

AIR*)=FF16-FEC8 BIR*)=FEC6-FE78
HIR*)=FE52-FE34 IE~OTII*)=FE33

INVII)=0002 !TESTII)=0003

MWRT MCOMP MIOF MIDI SUBSC

® Continued

LIBF AIPTN 484A 3FIE
LI BF IOU 48CC 3F21
CALL IOFIX 4966
CALL BTlBT 4996
CALL SAVE 4902
CORE 49FC 3604

CLB, TREND LD XQ

DUP FUNCTION COMPLETED

II JOB A
II * INTERRUPT CORE LOAD
II FOR COGLP
*LI ST ALL
** CHANGE OP-GUIDE LIMITS PROGRAM
*IOCS(TYPEWRITERI
*IOCS(DISKI
C
C THIS CORE LOAD CHANGES THE LIMITS ON OPERATOR GUIDE POINTS AT
C OPERATOR REQUEST.
C

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(151,SETPT(81,COUMT(81,OFFLN(81
DIMENSION INVAL(161
DIMENSION RANGE(81,AHL(401,ALL(401,A(401,B(401,LOW(81,G(161,H(161
eOMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET
1PT,COU~T,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT

2,IPONT
DEFINE FILE 3(3,320,U,III
WRITE(1,5551

555 FORMAT(//1
CALL eONVR(INVALI
WRITE (l,302IINVAL

302 FORMAT(8I5)
IPT=INVAL(ll*lO+INVAL(9)
AA=INVAL(21*10000.+INVAL(31*1000.+INVAL(4)*100.+INVAL(5)*10.+INVAL

l(6)+INVAL(7)*.1+INVAL(8)*.01
BB=INVAL(lO)*10000.+INVAL(ll)*1000.+INVAL(121*100.+INVAL(131*10.+I

1NVAL(14)+INVAL(151*.1+INVAL(16)*.01
IF(IPTI300,300,1
K=41-IPT
IF(K)300,300,2

2 AHLlK)=AA
ALLlKI=BB
WRITE(3'3IAHL,ALL
CALL PTIME(TIME)
WRITE(l,3)IPT,AA,BB,DAY,TIME

3 FORMAT(' OP-GUIDE PI' 13,' HIGH LIMIT'F10.2,' LOW LIIHT'F10.2,' DAY
1'12,' TIME'F7.2)

CALL INTEX
300 WRITE (1,3011
301 FORMAT(' INVALID ENTRY OP-REQUEST PI')

CALL INTEX
END

VARIABLE ALLOCATIONS
CSWO(I*)=FFFF

DAY(I~')=FFF9
COUMT(I*)=FFC7-FFCO
IBASE(I*I=FE77
IPERD(HI-"FE32
INVAL(I)=0027-0018

STATEMENT ALLOCATIONS

CSW1(I*)=FFFE
JOBN(I*)=FFF8

OFFLN(I*I=FFBF-FFB8
IBASZ(I*)=FE76
ITCNT(I~')=FE31

11(1 1=0028

CSW2(I*I=FFFD
VALUE(I*)=FFF7-FFE9

AHL(R*I=FFB6-FF68
IBAZZ(I*I=FE75
I PONT (P) =FE30

IPT(I)=0029

CSW3(I*)=FFFC
RANGE(R*)=FFE6-FFD8

ALL(R*)=FF66-FF18
G(R*I=FE72-FE54

AA(R)=0006
K(I)=002A

eSW4(I*)=FFFB eSW5(I*)=FFFA
LOW(I*)=FFD7-FFDO SETPT(I*)=FFCF-FFC8

AIR*I=FFI6-FEC8 B(R*)=FEC6-FE78
HIR*)=FE52-FE34 IENDT(I*)=FE33

BB(R 1=0008 CTIME(k I=OUOA

555 =004A 302 =004D 3 =0050 301 =0071 =0132 2 =013C 300 =0168

FEATURES SUPPORTED
ONE WORD INTEGERS
IDeS

CALLED SUBPROGRAMS
CONVR PTIME INTEX
MDWRT MDCOM MDAF

REAL CONSTANTS
.100000E 05=003A

INTEGER CONSTANTS

FADD
TYPEN

FMPY
EBPRT

.100000E 04=003C

1=0046 10=0047 41=0048

FLD FSTO FSTOX FLOAT MWRT MCO~IP MIOA I MIOF MIOI SUBse

.100000E 03=003E .100000E 02=0040 .IOOOOOE 00=0042 .100000E-01=0044

3=0049

Programming Techniques 257

@ Continued

CORE REQUIREMENTS FOR COGLP
COMMON 0 INSKEL COMMON 464 VARIABLES 58 PROGRAM 308

END OF COMPILATION

COGLP
OUP FUNCTION COMPLETED
*DELET I COGLP 10UM 9999
COGLP
025 NAME NOT IN LlF
*STORECIL I 1 COGLP COGLP COGLP 1100
*FILES(3,FILE3,1)
*CCEND

CLB, BUILD COGLP

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*CDW TABLE 3E82 OOOC
*IBT TABLE 3E8E 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0027
*PNT TABLE 3F34 0004
*DFT TABLE 3F38 0006
MAIN COGLP 3FB9
PNT COGLP 3F36
L1BF EBPRT 40A6 3FOC
L1BF MWRT 42DO 3FOF
L1BF MCOMP 4350 3F12
CALL CONVR 4788
L1BF MIOAI 43A7 3F15
L1BF FAOD 47DC 3F18
L1BF MDWRT 49AD 3F1B
L1BF MOAF 4861 3F1E
L1BF MOCOM 4924 3F21
CALL PTIME 4BDA
L1BF MIDI 4386 3F24
L1BF MIOF 4381 3F27
CALL PRT 4COA
L1BF IOU 4C54 3F2A
CALL IOFIX 4CEE
CALL BTlBT 4D1E
CALL SAVE 4C8A
L1BF SUBIN 4D82 3F20
CALL GETVL 4DE6
L1BF FADDX 47D6 3F30
CALL BT2BT 4E82
CORE 4EAO 315F

CLB, COGLP LD XQ

DUP FUNCTION COMPLETED

258

II JOB A
II * INTERRUPT CORE LOAD
II FOR CCLSP
*L1ST ALL
** CHANGE OF CLOSED LOOP CONTROL SET POINT
*IOCSITYPEWRITER)

*IOCSIDISK)
C
C THIS CORE LOAD CHANGES THE SET POINT VALUE FOR A SET POINT
C STATION UPON OPERATOR REQUEST.
C

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPT(8),COUMT(8),OFFLN(8)
DIMENSION INVAL(16)
DIMENSION RANGE(8),AHL(40),ALL(40),A(40),B(40),LOW(8),G(16),H(16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,I PONT

DEFINE FILE 3(3,320,U,III
WRITE(1,555)

Ii' Continued
\::?:/ 555 FORMATU/)

CALL CONVR(INVAL)
WRITE(1,100)INVAL

100 FORMAT(815)
CALL PTIME<TIME)
I=INVAL(11
J=INVAL(1)*10+INVAL(8)
IF(I)300,300,1
K=9-1
IF(K)300,300,2

2 IF(J)300,300,3
3 SETPT(K)=J*RANGE(K)/100.+LOW(K)

WRITE(3'2)SETPT
WRITE(1,4)I,J,DAY,TIME

~ FORMAT(' LooP'13,' NEW SET PDINT'I4,' DAY'I2,' TIME'F1.2)
CALL INTEX

300 WRITE(1,30l)
301 FORMAT(' INVALID ENTRY OP-REQUEST P2')

CALL INTEX
END

VARIABLE ALLOCATIONS
CSWO(I*)=FFFF

DAY(I*)=FFF9
CoUMT(I*)=FFC1-FFCO
IBASE(I*)=FE17
IPERD(I*)=FE32

I (I)=OOlB

STATEMENT ALLOCATIONS

CSW1(1*)=FFFE
JoBN(I*)=FFF8

oFFLN(I*)=FFBF-FFB8
IBASZ(I*)=FE76
ITCNT<l*)=FE31

J(I)=OOlC

CSW2(I*)=FFFD
VALUE(I*)=FFF7-FFE9

AHL(R*)=FFB6-FF68
IBAZZ(I*)=FE75
IPoNTI I*)=FE30

K(I)=0010

CSW3 (I*)=FFFC
RANGE(R*)=FFE6-FFD8

ALL(R*1=FF66-FF18
G(R*)=FE72-FE54

CTIME(R)=0006

CSW4(I*)=FFFB CSW5(1*)=FFFA
LDW(I*)=FFD7-FFDO SETPT(I*)=FFCF-FFC8

A(R*)=FF16-FEC8 B(R*)=FEC6-FE78
H(R*)=FE52-FE34 IENDT(I*)=FE33

INVAL(I)=0019-000A II (I)=OOlA

555 =0029 100 =002C 4 =002F 301 =0041 =007F 2 =0089 3 =0080 300 =OOBF

FEATURES SUPPORTED
ONE WORD INTEGERS
loCS

CALLED SUBPROGRAMS
CoNVR PT IME INTEX
SUBSC MDWRT MDCoM

REAL CONSTANTS
.100000E 03=0022

INTEGER CONSTANTS

FADD
MDAI

FMPYX
TVPEN

FDIV
EBPRT

1=0024 10=0025 9=0026 3=0021

CORE REQUIREMENTS FOR CCLSP
COMMON 0 INSKEL COMMON 464 VARIABLES

END OF COMPILATION

CCLSP
DUP FUNCTION COMPLETED
*DELET I CCLSP IDUM 9999
CCLSP
025 NAME NOT IN L/F
*SToRECIL I 1 CCLSP CCLSP CCLSP 1101
*FILES(3,FILE3,1)
*CCEND

CLB, BUILD CCLSP

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*CDW TAI:ILE 3E82 OOOC
*IBT TABLE 3E8E 0010
*FID TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0021
*PNT TABLE 3F34 0004
*DFT TABLE 3F38 0006
MAIN CCLSP 3F8F
PNT CCLSP 3F36
LIBF EBPRT 3FFE 3FOC
LIBF MWRT 4228 3FOF
LIBF MCoMP 42B5 3F12
CALL CDNVR 46EO
LIBF MIOAI 42FF 3F15
CALL PTIME 4720
LIBF FADD 4110 3F18
LIBF MDWRT 4941 3FlB
LIBF MDAI 4802 3F1E
LIBF MDCOM 48B8 3F21

FSTo IFIX FLOAT ISToX MWRT MCoMP M IDA I MIDF MIDI

2=0028

34 PROGRAM 164

Programming Techniques 259

@

260

Continued

LIBF MIDI 42DE 3F24
LIBF MIDF 4209 3F27
CALL PRT 4B62
LIBF IDU 4BAC 3F2A
CALL IOFIX 4C46
CALL BTlBT 4C76
CALL SAVE 4BE2
LIBF SUBIN 4CDA 3F2D
CALL GETVL 4D3E
LIBF FADDX 476A 3F30
CALL BT2BT 4DDA
CORE 4DF8 3207

CLB, CCLSP LD XQ

DUP FUNCTION COMPLETED

II JOB A
II * INTERRUPT CORE LOAD
II FOR MGRTP
*LIST ALL
** MODIFY GRADE RUN TIME PROGRAM
*IOCSITYPEWRITER)
*IDCS WI SK)
C
C THIS CORE LOAD CHANGES THE RUN TIME FOR A GRADE UPON OPERATOR
C REQUEST.
C

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLN(8)
DIMENSION INVAL(16)
DIMENSION RANGE(8),AHL(40),ALLI40),A(40),BI40),LOW(S),GI16),H(16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

DEFINE FILE 313,320,U,II)
WRITEll,555)

555 FORMAT (/ II
CALL CONVRIINVAL)
WRITEll,302)INVAL

302 FORMATISI5)
IH=INVAL(5)*10+INVAL(6)
IM=INVAL(7)*10+INVALI8)
IFI24-IH)300,300,20

20 IFI60-IM)300,300,21
21 CALL CLOCK I I)

K=IH*1000+IM*100/6
IF(K-I)I,2,2
IPER=24000-K+I
GO TO 3

2 IPEr.=K-I
3 AA=IPER*3.6

IFI32000.-AA)4,5,5
4 WRITEll,40)

40 FORMATI' TOO LONG OF A RUN TIME')
CALL INTEX

5 I PER=AA
IENDT=K
WRITEI3'1IJOBN,DAY,IENDT,SW3
TIME=IIH*100+IM)/I00.
WRITEll,6)TIME

6 FORMAT(' JOB WILL NOW TERMINATE AT'F7.2)
CALL COUNTll,2,IPER)
CALL INTEX

300 WRI TE 11,3011
301 FORMATI' INVALID ENTRY OP-REQUEST P3')

CALL INTEX
END

VARIABLE ALLOCATIONS
CSWOII*I=~~~F CSWIII*)=FFFE CSW2II*)=FFFD CSW311*)=FFFC

STATEMENT ALLOCATIONS
555 =0036 302 =0039 40 =003C 6 =004A 301 =005A 20 =0098 21
4 =0008 5 =OODE 300 =010C

FEATURES SUPPORTED
ONE WORD INTEGERS
IDCS

CALLED SUBPROGRAMS
CONVR CLOCK INTEX COUNT FSUB FM"Y FDIV FLO FSTO IFIX
MIOF MDWRT MDCOM MOl TYPEN EBPRT

CSW4 (1*)=FFFB CSW511*)=FFFA

=009E =OOBA 2 =00C4 3 =OOCA

FLOAT LDFAC MWRT MCOMP MIOAI

Continued

REAL CONSTANTS
.360000E 01=0026 .320000E 05=0028 .100000E 03=002A

INTEGER CONSTANTS
1=002C 10=002D 24=002E 60=002F

CORE REQUIREMENTS FOR MGRTP
COMMON 0 INSKEL COMMON 464 VARIABLES

END OF COMPILATION

MGRTP
DUP FUNCTION COMPLETED
*STORECIL I 1 MGRTP MGRTP MGRTP 1102
*FILESI3,FILE3,1)
*CCEND

CLB, BUILD MGRTP

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*COW TABLE 3E82 OOOC
*IBT TABLE 3E8E 001D
*FID TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0027
*PNT TABLE 3F34 0004
*OFT TABLE 3F38 0006
MAIN MGRTP 3FA2
PNT MGRTP 3F36
LIBF EBPRT 404A 3FOC
LIBF MWRT 4274 3FOF
LIBF MCOMP 4301 3F12
CALL CONVR 472C
LIBF MIOAI 434B 3F15
LIBF FSUB 4774 3F18
LIBF LDFAC 47FE 3F1B
LIBF MDWRT 497F 3F1E
LIBF MOl 4838 3F21
LIBF MDCOM 48F6 3F24
LIBF MIDF 4325 3F27
CALL PRT 4BAO
L1BF IOU 4BEA 3F2A
CALL IDF IX 4C84
CALL BTIBT 4CB4
CALL SAVE 4C20
LIBF SUBIN 4018 3F2D
CALL GETVL 4D7C
LIBF FADDX 477A 3F30
CALL BT2BT 4E18
CORE 4E36 31C9

CLB, MGRTP LD XQ

DUP FUNCTION COMPLETED

® II JOB A
II * INTERRUPT CORE LOAD
/1 FOR CPJSP
*LIST ALL
** CHANGE PROCESS JOB SEQUENCE
*IOCSITYPEWRITER)
* IDC S (D I S K)
C

1000=0030

38 PROGRAM

100=0031

236

C THIS CORE LOAD CHANGES THE SEQUENCE OF GRADES UPON OPERATOR
C REQUEST.
C

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNI8)
DIMENSION INVAL(16)
DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOWI8),GI16),HI16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW.SET

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

DEFINE FILE 313,320,U,II)
WRITEI1,555)

6=0032 24000=0033 3=0034 2=0035

Programming Techniques 261

®

262

Continued

555 FORMAT 1111
CALL CONVRIINVAL)
WRITEI 1, 1) INVAL
FORMATISI5)
1=INVAL(7)*10+INVALIS)
AA=INVAL(4)*10000.+INVALI5)*1000.+INVALI6)*100.+1
IFIAA)4,4,22

22 IFI32000.-AA)300,300,2
2 IFII)3,3,4
3 1=100
4 JOBN=I

WRITEI3'l)JOBN,DAY,IENDT,SW3
CALL PTIMEITIME)
I=AA
WRITE(1,5)I,JOBN,DAY,TIME

5 FORMATI' NEXT JOB'I6,' QUEUE SEQUENCE'I4,' DAY'I2,'
CALL INTEX

300 WRITEll,3011
301 FORMATI' INVALID ENTRY OP-REQUEST P4')

CALL INTEX
END

TIME'F7.2)

VARIABLE ALLOCATIONS
CSWOII*)=FFFF CSW111*)=FFFE

JOBNII*)=FFF8
OFFLNIl*)=FFBF-FFB8
IBASZII*)=FE76
ITCNTII*)=FE31

CSW2II*)=FFFD CSW311*)=FFFC
DAYI!*)=FFF9

COUMTII*)=FFC7-FFCO
IBASE(1*)=FE77
IPERDII*)=FE32

II I I)=0020

STATEMENT ALLOCATIONS

III)=0021

VALUEII*)=FFF7-FFE9 RANGEIR*)=FFE6-FFD8
AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FF18

IBAZZII*)=FE75 GIR*)=FE72-FE54
IPONT(I*)=FE30 AAIR)=0006

CSW4II*)=FFFB CSW5II*)=FFFA
LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFC8

AIR*)=FF16-FEC8 BIR*)=FEC6-FE78
HIR*)=FE52-FE34 IENDTII*)=FE33

CTIMEIR)=000!:l INVALII)=001F-0010

555 =0034 1 =0037 5 =003A 301 =0056 22 =OOAC 2 =00B3 3 =00B7 4 =OOBB 300 =OOEI

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
CONVR PTIME INTEX
MIDI MDWRT MDCOM

FADD
MOl

FSUB
TYPEN

REAL CONSTANTS
.100000E 05=0028 .100000E 04=002A

INTEGER CONSTANTS
1=0030 10=0031 100=0032

CORE REQUIREMENTS FOR CPJSP

FMPY
EBPRT

FLO FSTO

.100000E 03=002C

3=0033

IFIX FLOAT

.320000E 05=002E

COMMON 0 INSKEL COMMON 464 VARIABLES 40 PROGRAM 192

END OF COMPILATION

CPJSP
DUP FUNCTION COMPLETED
*DELET I CPJSP IDUM 9999
CPJSP
025 NAME NOT IN L/F
*STORECIL I 1 CPJSP CPJSP CPJSP 1103
*FILES(3,FILE3,1)
*CCEND

CLB, BUILD CPJSP

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*CDW TABLE 3ES2 OOOC
*IBT TABLE 3ESE 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0020
*PNT TABLE 3F3A 0004
*DFT TABLE 3F3E 0006
MAIN CPJSP 3FA4
PNT CPJSP 3F3C
L1BF EBPRT 4026 3FOC
L1BF MWRT 4250 3FOF
L1BF MCOMP 4200 3F12
CALL CONVR 470S
L1BF MIOAI 4327 3F15
L1BF FADD 415C 3FlS
L1BF LDFAC 47DA 3FIB
L1BF FSUB 4150 3FIE

LDFAC MWRT MCOMP M lOA I MIOF

®

@

Continued

LIBF MOWRT 495B 3F21
LIBF MOl 4814 3F24
LIBF MOCOM 4802 3F27
CALL PTIME 4B88
LIBF MIDI 4306 3F2A
L1BF MIDF 4301 3F20
CALL PRT 4BB8
LIBF IOU 4C02 3F30
CALL IOFIX 4C9C
CALL BTlBT 4CCC
CALL SAVE 4C38
LIBF SUBIN 4030 3F33
CALL GETVL 4094
L1BF FAOOX 4756 3F36
CALL BT2BT 4E30
CORE 4E4E 31B1

CLB, CPJSP LO XQ

DUP FUNCTION COMPLETED

II JOB A
II * INTERRUPT CORE LOAD
II FOR STRND
*LIST ALL
** START TREND LOG ROUTINE
*IOCS(TYPEWRITER)
C
C THIS CORE LOAD INITIATES A TREND LOG OF THE POINT SPECIFIED BY
C THE OPERATOR.
C

INTEGER SWO,SW1,SW2,SW3,~W4,SW5,OAY
INTEGER VALUE(lS),SETPT(8),COUMT(8),OFFLN1~)
DIMENSION INVAL(16)
DIMENSION RANGE(8),AHL(40),ALL(40),A(40),B(40),LOW(8),G(16),H(16)
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SWS,OAY,JOBN,VALUE,RANGE,LOW,SET

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENOT,IPERO,ITCNT
2,I PONT

WRITE(1,5SS)
S55 FORMAT(I/)

CALL CONVR(INVAL)
WRITE(l,l)INVAL
FORMAT(8IS)
II=INVAL(6)*100+INVAL(7)*10+INVAL(S)
JJ=INVAL(14)*100+INVAL(lS)*10+INVAL(16)
IF(INVAL(1»300,2,100
I=INVAL(2)*10+INVAL(3)
IF(I)300,300,3

3 J=I-1
IF(40-J)300,300,4

4 IPONT=J
WRITE(1,S)I,II,JJ
FORMAT (' TREND LOG OP-GUIDE POINT'I3,' PERIOO'IS,'
GO TO 200

100 IF(INVAL(1)-1)300,101,300
101 IF(INVAL(3»300,300,102
102 IF(INVAL(3)-8)103,103,300
103 IPONT =4095+INVAL(3)

WRITE(l,104)INVAL(3),II,JJ
104 FORMAT(' TREND LOG LOOP'l2,' PERIOD'I6,'
200 IPERD=II

ITCNT=JJ
CALL COUNT(2,3,Z)
CALL INTEX

300 WRITE(1,3011
301 FORMAT(' INVALID ENTRY OP-REQUEST PS')

CALL INTEX
END

COUNT' 16)

COUNT'IS)

VARIABLE ALLOCATIONS
CSWO(I*)=FFFF

DAY(I*)=FFF9
COUMT(I*)=FFC7-FFCO
IBASE(I*)=FE71
IPERO(I*)=FE32

CSW1(I*)=FFFE
JOBN(I*)=FFF8

OFFLN(I*)=FFBF-FFB8
IBASZ(I*)=FE76
ITCNT(I*)=FE31

STATEMENT ALLOCATIONS

CSWZ(I*)=FFFD CSW3(I*)=FFFC
VALUE(I*)=FFF7-FFE9 RANGE(R*)=FFE6-FF08

AHL(R*)=FFB6-FF68 ALL(R*)=FF66-FF18
IBAZZ(I*)=FE7S G(R*)=FE72-FES4
IPONT(I*)=FE30 INVAUI)=0011-0002

CSW4(I*)=FFFB CSW5(I*)=FFFA
LOW(I*)=FF07-FFDO SETPT(I*)=FFCF-FFC8

A(R*)=FF16-FEC8 B(R*)=FEC6-FE78
H(R*)=FE52-FE34 IENDT(I*)=FE33

11(1)=0012 JJ(I)=0013

5S5 =0026 1 =0029 5 =002C 104 =0049 301 =0061 =00B7 3 =OOCS 4 =0004 100 =00E4 101 =OOEC
102 =OOFZ 103 =OOFA ZOO =010E 300 =011D

Programming Techniques 263

® Cont,inued

FEATURES SUPPORTED
ONE WORD INTEGERS

@

264

IOCS

CALLED SUBPROGRAMS
CONVR COUNT INTEX MWRT I"1COMP I~IDAI MIOIX 1"1 IDI TYPEN

INTEGER CONSTANTS
l=OOlE 100=001F 10=0020 40=0021 B=0022 4095=0023

CORE REQUIREMENT~ FOR STRND
COMMON 0 INSKEL COMMON 464 VARIABLES 30 PROGRAM 262

END OF COMPILATION

STRND
DUP FUNCTION COMPLETED
*DELET I STRND IDUM 9999
STRND
025 NAME NOT IN LIF
*STORECIL I 1 STRND STRND 1104
*CCEND

CLB, BUILD STRND

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*CDW TABLE 3EB2 OOOC
*IBT TABLE 3EBE 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 001B
*PNT TABLE 3F2B 0004
MAIN STRND 3F9D
PNT STRND 3F2A
LIBF EBPRT 4050 3FOC
LIBF MWRT 427A 3FOF
LIBF MCOMP 4307 3F12
CALL CONVR 4732
LIBF MIOAI 4351 3F15
LIBF MIDI 4330 3F1B
LIBF MIOIX 433C 3F1B
CALL PRT 4766
LIBF IOU 47BO 3F1E
CALL IDFIX 484A
CALL BTlBT 487A
CALL SAVE 47E6
LIBF SUBIN 48DE 3F21
CALL GETVL 4942
LIBF FADDX 49FB 3F24
CORE 4A7E 35B1

CLB, STRND LD XQ

DUP FUNCTION COMPLETED

II JOB A
II FOR AlMON
*LIST ALL
** ANALOG INPUT LOG ROUTINE
*IOCSCTYPEWRITER)
C
C
C
C
C

THIS CORE LOAD LOGS ALL INFORMATION ABOUT ANY ANALOG INPUT POINT
ON THE SYSTEM UPON OPERATOR REQUEST.

C
C
C
C

POINTS ARE SELECTED AS FOLLOWS -
OP-GUIDE POINTS - 01=0, D7-B=01-40
CLOSED-LOOP POINTS - 01=1, D7-B=01-0B

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTCB),COUMTCB),OFFLNCB)
DIMENSION INVAL(16)
DIMENSION RANGECB),AHLC40),ALLC40),AC40),BC40),LOWC8),GC16),HC16)
COMMON/INSKEL/SWO,SW1,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LDW,SET

1PT,CDUMT,OFFLN,AHL,ALL,A,B,IBASE,IRASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,I PONT

EBPRT

2=0024 3=0025

'4i' Continued

\:!!I WR ITE (1,555)
555 FORMAT!!/)

c
C READ DATA ENTRY DIALS
C

C

CALL CONVR(INVAL)
WRITE(1,900) INVAL

900 FORMAT (815)

C CONVERT POINT DESIGNATION, 07-8
C

IX1 = INVAL(7)*10 + INVAL(8)
C
C MUST BE GREATER THAN 0
C

IFCIX1)BOO,BOO,10
C
C CHECK 01
C

10 IFCINVAL(1)-1)20,500,BOO
C
C CHECK INPUT OP-GUIDE POINT DESIGNATION
C

20 IF(IXl-40)30,30,BOO
C
C READ OP-GUIDE POINT
C

C

30 IX2 = IX1-1
CALL AlP (11000,VALUE(1),IX2)

35 CALL AlP (O,IX2)
GO TO (35,40), IX2

C CONVERT VALUE SELECTED
C

40 IX2 = 41-IX1
VAL = A(IX2)*VALUE(1) + B(IX2)

C
C PRINT TIME AND HEADER
C

CALL PTIME(TIME)
WRITE (1,920)DAY,TIME

920 FORMAT (II DAYII2,1 TIMEIF7.2)
WRITE (1,930)

930 FORMAT (lOP-GUIDE POINT VALUE HIGH LIMIT LOW LIMIT FAC
-TOR A FACTOR BI)

WRITE (1,940)IX1,VAL,AHL(IX2),ALL(IX2),A(IX2),B(IX2)
CALL INTEX

940 FORMAT C7X,12,4X,F10.2,lX,F10.2,2X,F10.2,5X,E13.6,3X,E13.6)
C
C CLOSED-LOOP POINT, CHECK LIMIT ON DESIGNATION
C

500 IFCIX1-B)510,510,BOO
510 IX2 = IX1+4095

CALL AlP C01000,VALUE(1),IX2)
520 CALL AlP CO,IX2)

GO TO (520,530),IX2
C
C CONVERT SETPT FOR OUTPUT
C

530 IX2 = 9-IX1
VALUE(1) = CVALUE(1)-LOWCIXZ))*100./RANGECIX2)
IAL = (SETPTCIXZ)-LOW(IXZ»*100./RANGE (IX2)

C
C PRINT DAY, TIME, AND HEADER
C

C

CALL PTIMEITIME)
WRITE (1,920)DAY,TIME
WRITE (1,950)

950 FORMAT (I CLOSED-LOOP POINT
RANGE LOWI)

C WRITE VALUES
C

VALUE SETPT OFFLN

WRITE (1,960)IX1,VALUE(1),IAL,OFFLN(IX2),RANGE(IX2),LOW(IX2)
CALL INTEX

960 FORMAT (BX,I2,7X,18,5X,16,10X,I2,7X,F10.2,4X,I6)
BOO WRITE (1,810)

CALL INTEX
810 FORMAT(I INVALID ENTRY OP-REQUEST P6 1)

END
VARIABLE ALLOCATIONS

CSWOCI*)=FFFF
DAY(I*)=FFF9

COUMTCI*)=FFC7-FFCO
IBASECI*)=FE77

CSW1 (I*)=FFFE
JOBN(I*)=FFF8

OFFLN(I*)=FFBF-FFB8
IBASZ(I*)=FE76

CSW2(1*)=FFFD CSW3(1*)=FFFC
VALUE(I*)=FFF7-FFE9 RANGE(R*)=FFE6-FFDB

AHL(R*)=FFB6-FF6B ALL(R*)=FF66-FF18
IBAZZ(I*)=FE75 G(R*)=FE72-FE54

CSW4(I*)=FFFB CSW5(I*)=FFFA
LDW(I*I=FFD7-FFDO SETPT(I*I=FFCF-FFC8

A(R*)=FF16-FEC8 B(R*)=FEC6-FE78
H(R*I=FE52-FE34 IENDT(I*I=FE33

Programming Techniques 265

@ Continued

STATEMENT ALLOCATIONS
555 =0028 900 =002B 920 =002E 930 =0039 940 =0062 950 =006F 960 =0097 810 =00A4 10
30 =00E3 35 =00F5 40 =OOFF 500 =013E 510 =0144 520 =0156 530 =0160 800 =OIBB

FEATURES SUPPORTEO
ONE WORD INTEGERS
IDCS

CALLED SUBPROGRAMS
CONVR AlP PTIME
MIOAI MIOFX MIOIX

REAL CONSTANTS
.100000E 03=001C

INTEGER CONSTANTS

INTEX
MIOF

FADDX
MIOI

FMPY
SUBSC

FDIVX
TYPEN

FLDX
EBPRT

FSTO IF IX FLOAT COMGO ISTOX

=0003 20

MWRT

l=OOlE 10=001F 40=0020 11000=0021 0=0022 41=0023 8=0024 4095=0025 1000=0026

CORE REQUIREMENTS FOR AlMON
COMMON 0 INSKEL COMMON 464 VARIABLES 28 PROGRAM 422

END OF COMPILATION

AlMON
DUP FUNCTION COMPLETED
*OELET I AlMON 10UM 9999
AlMON
025 NAME NOT IN LlF
*STORECIL I 1 AlMON AlMON 1105
*CCENO

CLB, B'UI LD AlMON

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*COW TABLE 3EB2 OOOC
*IBT TABLE 3E8E 001D
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0027
*PNT TABLE 3F34 0004
MAIN AlMON 3FEC
PNT AlMON 3F36
LIBF EBPRT 40FA 3FOC
LIBF MWRT 4324 3FOF
LIBF MCOMP 43B1 3F12
CALL CONVR 47DC
LIBF MIDAI 43FB 3F15
CALL AlP 4810
LIBF FAODX 4856 3F18
CALL PTIME 48E6
LIBF MIDI 43DA 3F1B
LIBF MIOF 43D5 3F1E
LIBF MIDFX 43E1 3F21
LIBF MIDIX 43E6 3F24
CALL PRT 4916
LIBF IOU 4960 3F27
CALL IOFIX 49FA
CALL BTlBT 4A2A
CALL SAVE 4996
LIBF SUBIN 4A8E 3F2A
CALL GETVL 4AF2
LIBF AIPTN 4B8E 3F2D
LIBF FAOD 485C 3F30
CORE 4C12 33EO

CLB, AlMON LO XQ

DUP FUNCTION COMPLETED

266

=OODD

MCOMP

9=0027

® II JOB
II OUP
*OUMPLET

LET

PACK LABEL
00000

.OCOM 0010

.ASM 0300
CLOCK 0002
DMPST
MASK 0003
SAVMK 0003
CONHX 0006
ESUBX
EABS
EDVRX
ESTOX
ESIN
ETANH
FSBRX
FATN OOOC
FAXI 0006
FDVR
FSTO
FMPYX
FSQRT
FEXP
XMD 0005
EBPA 0006
PAPHL 0014
DATSW 0004
ISIGN 0003
MDFIO 0023
MDI
MREO
MIOIX
MEIF
MEARX
SAVE OOOA
SUBIN 0005
UFIO 001C
UIOAF
PAPTN 0010
AIRN 0000
lOPE 0009
GAGED 0003
VS
PIC
CO
BT2BT 0003
SCALE 0002
WCHRI
VCHRI
PLOTS

FLET

PACK LABEL
00000

A

0000
05EO
15DB

1614
1635
1652

16E4
16F9

177B
1798
17DC
1813
182D
1837

18E4
18FB
190B

194A
1992
19E6
19F8

1A49
1A63

9DUMY OOAO 05AO

LET

PACK LABEL
11111

.LET 0080
SPECL
QUE15 0002
IAOOR 0002
• E 1180

0000

0159
0175
0180

.f.1BT 0020 0010

.FOR 0680 08EO
COUNT 0004 150D
DPART 0002 1608
OPMUN 0002 1617
SETCL 0003 1638
TRPRT 0007 1658
ESBR
EAXB 0006 1681
EOIV
ELN OOOB 1690
ECOSN
ETRTN 0004 16C6
FAOD
FATAN
FAXIX
FDVRX
FSTOX
FSINE OOOB 1742
FTNH 0006 1754
lABS 0003 1767
XMOS 0004 1780
EBPRT OOOA 179E
PAPPR 0011 17FO
DVCHK 0002 1817
ISTOX 0003 1830
MDAF
MOIX
f.1WRT
MIOF
MIAR OOOE 18C9
OVERF 0002 1807
10FIX
SUBSC 0004 1900
UREO
UIOFX
MAGT 0020 195A
ANINT 0014 199F
OUSLY
UNGAG
DI
CSX 0004 1A2F
DO
FCHAR 0005 1A4C
EGRID 0008 1A65
FRULE 0009 1A9D
ERULE OOOB 1ACB
• TEMP lAEO 1BOO

.E OOAO 05AO

SYOIR 009E
BACK
TCONT 0003
ISBAD 0002

0080

015B
0177

.SKSB 0020

.SIM 05FO
DMP 0017
ENDTS 0002
IOR 0002
TIMER 0006
FLIP 0007
ESBRX
EAXBX
EOIVX
EALOG
ECOS
ETNTR
FSUB
FAVL 0003
FBTO 001A
FIXIX 0005
FLN OOOB
FSIN
FTANH
IFIX 0004
XSQR 0004
HOLEB 0012
PRT 0005
ESIGN 0005
LOFAC 0004
MDAI
MOREO
MCOMP
MIOI
MIARX
PAUSE 0002
SL ITE 0006
TSTOP 0002
UWRT
UIOIX
AIPTN 0009
OINP 0013
ETS
AlP 0004
PI
VSX
PO
SCALF 0002
EPLOT 0005
FMOVE
EMOVE
.E 5AOO

OUTTR
EACLK
TABRT 0002
CESET 0002

0030
OF60
15E1
160A
1619
163B
165F

16FO
16FF
1721
172F

176A
1784
17A8
1801
1819
1833

1809
18EE
1904

197A
19B3

19FB

lA51
1A6D

IBOO

015E
0179

.SUP OOBO

.LET 00.80
DMPHX
IEOR 0002
QIFON OOOA
UNr-t.K 0005
EADD OOOB
EATN OOOD
EAXI 0006
ELO 0009
EMPY 0004
ESQR 0007
EXPN 0008
FAOOX
FABS
FDTB
FIXI
FALOG
FCOSN
FTRTN 0004
NORM 0004
BINOC 0006
HOLPR 0000
AORCK 0007
FCTST 0003
STFAC
MOCOf.1
MOWRT
MIOAF
MGOTO OOOE
MFAR
REWND 0009
SL ITT
TSTRT 0002
UIOI
UCOMP
AIPN
OIEXP 0006
XSAVE 0009
AIS OOOD
CSC OOOA
DIX
QZERQ 0002
FGRID 0007
POINT 0007
FINC
EINC

CHAIN
SCHEO 0014
GETVL OOOB
ABORT 0002

0050
1550

160C
161B
1641
1666
1671
1687
16'94
16A8
16B9
16CA

175A
176E
1788
17BA
1806
181E

18BB

18DB

1906

19C6
19EF
19FF
1A25

1A3A
1A53
1A72

OllE
0160
017B

.CLB OOAO
lAND 0002
DMPDC
LD 0002
QUEUE OOOC
UNQ 0005
ESUB
EATAN
EAXIX
ELOX
EMPYX
ESQRT
EEXP
FSUBX
FAXB 0006
FDIV 0008
FLO 0009
FLOAT 0003
FCOS
FTNTR
SNR 0003
BINHX 0004
HXBIN 0005
COMGO 0006
FSIGN 0005
SBFAC
MOF
MDFND 0008
MIOAI
MFIF
MFARX
BCKSP
SSWTC 0004
TTEST 0003
UIOF
PLOTX OOOD
AISQN OOOF
DICMP 0007
XEXIT
AIR 0011
VSC
PIX
QZ010 0006
FPLOT 0004
FCHRX 0024
ECHRX 0025
XYPLT 0007

INTEX
LEV10 0024
CONVR 0005
ENOGD 0002

0100
15DO

160E
1625
1646

16F3
1719
1726
173A

1772
178E
17C7
1800
1821

185A

18F4
1908

1927
1983
19CC

1AOC

1A3C
lA5A
1A79
1AA6
lA06

0132
016B
0170

.OUP 0440
CLEAR 0009
DMPS 00"10
LEVEL 0004
RESMK 0004
VIAQ 0007
EADDX
EAVL 0003
EDVR 0007
ESTO
ESINE 0000
ETNH 0006
FSBR OOOB
FARC 0004
FAXBX
FOIVX
FLOX
FMPY 0005
FSQR 0007
FXPN 0009
XOO 0006
OCBIN 0006
PAPEB 0010
COMG1
IOU 0007
OVFAC
MOFX
MF IO 0059
MIOFX
M I IF
MEAR
EOF
STOP 0003
TSET
UIOAI
CARON 0016
AISN
DAOP 0013
XLOAO
CS 0008
OIC
OAC 0007
BTlBT 0007
ECHAR 0005
FCHRI
ECHRI
PLOTI 0003

SHARE
SOUT 0003
PTIME 0005
.TEMP 017F

OlAO
1502
15F8
1610
1631
164B

167E
168D

16AC
16CO
1605
16EO

173D
174D
175E
1775
1792
17CC

1826

1862

18F8

1934

19D3

1AlD

1A33
1A42
lASE

lAOD

0156
0170
0180

Programming Techniques 267

®

@

268

Continued

FLET

PACK LABEL
11111

.PRWS 0051 1118 .FIOS OOOF 1169 .MESS
INPSV 4180 12C3 F I LEl 0002 12F8 FILE2
RSTAR OF8C 1367 COLDP 10CE 1374 CEINT
GRADE 116A 138E SCAN2 OC2E 939C LOG15
TREND OB7A 13CC COGLP 10lE 1306 CCLSP
AlMON 0090 1414 9DUMY 0159 141F ISPSV
ICLST 0780 163A .E 0280 12F8

DUP FUNCTION COMPLETtD

II JOB A
II END OF ALL JOBS

II JOB A
II * NONPROCESS CORE LOAD
II * SPECIAL JOB TO SET UP FILES ON DISK
II FOR SPECL
*LIST ALL
** SPECIAL PROGRAM TO SET UP FILES ON DISK
*IOCS(DISK,1443 PRINTER)
*NONPROCESS PROGRAM
*ONE WORD INTEGERS
C

00A3 1178 IEPDM
0064 12FA FILE3
OA26 1382 DUM
OD5E 13A6 LOG60
OF76 13E3 MGRTP
4180 1578 IPRSV

C THIS IS A SPECIAL ONE TIME ONLY CORE LOAD TO SET UP THE JOB
C FILES ON DISK FOR TEST PU~POSES.

C
INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPT(8),COUMT(8),OFFLN(8)

7FFF
0003
012C
OAEO
OFB4
4180

DIM ENS ION RAN G E (8) ,A H L (40) , ALL (40) , A (4 0) , B (4 0) ,L 0 W (8) ,G (16) , H (16)
COMMON/INSKEL/SWO,SWI,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,I PONT

DEFINE FILE 1(2,320,U,II)
DEFINE FILE 2(100,320,U,JOBN)
DO 10 J=1,40
AHL(J)=32000.
ALL(J)=-32000.
A(J)=-I.

10 B(J)=O.
DO 11 J=I,8
RANGE(J)=-32000.

11 LOW(J)=O
WRITE(l'I)RANGE,LOW,A,B
DO 12 J=4,l1
K=40-J
AHL(K)=5.5

12 ALL(K)=4.5
KK=O
K=20
IT I ME=20~'60
IX=-1
DO 13 J=1,8

13 SETPT(J)=O
JOBN=l
DO 100 J=1,l00
SETPT(1)=50+IX*20
SETPT(2)=50-IX*20
IX=IX*(-ll
WRITE(2'JOBN)J,ITIME,SETPT,AHL,ALL
WRITE(3,14)J,KK,K

14 FORMAT(815)
WRITE(3,14)SETPT(8),SETPT(7),SETPT(6),SETPT(5),SETPT(4),SETPT(3),S

lETPT(2),SETPT(1)
DO 20 11:3=1,39,2
IC=41-I8
10=18+1

20 CONTINUt:
15 FORMAT(2(110,2FIO.2»

100 CONTINUE
CALL EX IT
END

121B IEPSV 0780 1282 IINSV 48FF 1288
135E COLON 05DC 1361 COLDS 0006 1366
138B IDUM 0094 138C CDUM Ol3A 9380
1351 SHIFT OAEO 13BA WE-EK OADC 13C3
13FO CPJSP OFCC 13FD STRND OBFC 140A
15AD .SKEL 0036 15E2 .EPRG 0022 1618

Ii" Continued
~ VARIABLE ALLOCATIONS

CSWO(I*I=FFFF
DAY(I*I=FFF9

COUMTCI*I=FFC7-FFCO
IBASEII*I=FE77
IPERDII*I=FE32

KK(I I=OOOF

CSW1II*I=FFFE
JOBN(I*I=FFF8

OFFLNII*I=FFBF-FFB8
IBASZII*I=FE76
lTCNTII*I=FE31
lTIME fl 1=0010

UNREFERENCED STATEMENTS
15

STATEMENT ALLOCATIONS
14 =0036 15 =0039 10

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS

=005A 11

FLD FSTOX ISTOX STFAC SBFAC
MOl PRNTN EBPRT

REAL CONSTANTS
.320000E 05=001E .100000E 01=0020

INTEGER CONSTANTS
1=0028 40=0029
2=0032 3=0033

CORE REQUIREMENTS FOR SPECL

8=002A
39=0034

CSW211*I=FFFD
VALUEII*I=FFF7-FFE9

AHLIR*I=FFB6-FF68
IBAZZ 11* 1 =FE75
IPONT(I*I=FE30

IXI I 1=0011

CSW3 (1* 1 =FFF C
RANGEIR*I=FFE6-FFD8

ALLIR*I=FF66-FF18
GIR*I=FE72-FE54

I I I I 1 =OOOC
IB(I 1=0012

CSW4(I*I=FFFB
LOWII*I=FFD7-FFDO

AIR*I=FF16-FEC8
HIR*I=FE52-FE34
JII I=OOOD

IC(I 1=0013

CSW5(1*I=FFFA
SETPTII*I=FFCF-FFC8

B(R*I=FEC6-FE78
IENDT I 1*I=FE33

KI I I=OOOE
IDI I 1=0014

=0077 12 =OOAC 13 =00D3 20 =015C 100 =0166

MWRT MCOMP MIOIX

.OOOOOOE 00=0022

0=002B
41=0035

4=002C

MIDI SUBSC SNR MDWRT MDCOM MDAI MDAF

.550000E 01=0024 .450000E 01=0026

11=002D 20=002E 60=002F 100=0030 50=0031

COMMON 0 INSKEL COMMON 464 VARIABLES 30 PROGRAM 340

END OF COMPILATION

SPECL
DUP FUNCTION COMPLETED
II XEQ SPECL L
*FILESll,FILE1,11
*FILES(2,FILE2,11
*CCEND

CLB, BUILD SPECL

CORE LOAD MAP
TYPE NAME ARGI ARG2

*CDW TABLE 3E82 OOOC
*IBT TABLE 3E8E 001D
*F ID TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 002A
*PNT TABLE 3F36 0004
*DFT TABLE 3F3A OOOC
MAIN SPECL 3F79
PNT SPECL 3F38
LI BF EBPRT 40AC 3FOC
LIBF SNR 414C 3FOF
LI BF MDWRT 42B7 3F12
LIBF MDAF 416B 3F15
LI BF MDAI 4178 3F18
LI BF MDCOM 422E 3FIB
LI BF STFAC 44EE 3FIE
LI BF SBFAC 44F2 3F21
l.1BF MDI 4170 3F24
LIBF MWRT 4690 3F27
LIBF MIDI 4746 3F2A
LI BF MCOMP 471D 3F2D
LIBF MIOIX 4752 3F30
CALL PRT 4B42
CALL BT2BT 4B8C
CALL SAVE 4BA8
CALL IOFIX 4COC
LIBF IOU 4C3C 3F33
CALL BTlBT 4C72
CORE 4CD8 3328

CLB, SPECL LD XQ

Programming Techniques 269

@ Continued

1 0 20

270

0 0 0 0 0
2 0 20
0 0 0 0 0
3 0 20
0 0 0 0 0
4 0 20
0 0 0 0 0
5 0 20
0 0 0 0 0
6 0 20
0 0 0 0 0

t
I'

95 0 20
0 0 0 0 0

96 0 20
0 0 0 0 0

97 0 20
0 0 0 0 0

98 0 20
0 0 0 0 0

99 0 20
0 0 0 0 0

100 0 20
0 0 0 0 0

II JOB A
II * NONPROCESS CORE LOAD
II FOR SCALB
*LIST ALL

0 70 30

0 30 70

0 70 30

0 30 70

0 70 30

0 30 70

~
J

0 70 30

0 30 70

0 70 30

0 30 70

0 70 30

0 30 70

** CALIBRATION PROGRAM FOR SET POINT STATIONS
*IOCSIOISK,1443 PRINTER,CARDI
*NONPROCESS PROGRAM
*ONE WORD INTEGERS
C
C THIS NONPROCESS CORE LOAO IS FOR CALIBRATING THE SET POINT
C STATIONS.
C

INTEGER SWO,SWl,SW2,SW3,SW4,SW5,DAY
INTEGER VALUEI151,SETPTIBI,COUMTI81,OFFLNI81
DIMENSION RANGEI81,AHLI401,ALLI401,AI401,BI401,LOW(81,G(161,H(16I
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

DEFINE FILE 112,320,U,111
100 READI2,l11

1 FORMATIIll
IF (11100,100,2

2 J=9-1
K=4095+I
IF(JIIOO,l00,3

3 WRITEI3,4II
4 FORMATI' SET LOOP'I2,' TO LOW VALUE'I

PAUSE
CALL AIP(llOOO,IL,KI

5 CALL AIPIO,III
GO TO 15,61,11

6 WRITEI3,999IIL
WRITE 1 3,71

7 FORMATI' NOW SET IT TO HIGH VALUE'I
PAUSE
CALL AIPIIIOOO,IH,KI

8 CALL AIPIO,III
GO TO 18,91, I I

9 RANGEIJI=IH-IL
WRITE13,99911H

999 FORMATI' VALUE IS'IIOI
LOWIJI=IL
WRITEIl'lIRANGE,LOW,A,B
GO TO 100
END

VARIABLE ALLOCATIONS
CSWOII*I=FFFF CSWIII*I=FFFE

JOBN(I*I=FFF8
OFFLNII*I=FFBF-FFB8
IBASZ(I*I=FE76
ITCNT(1*I=FE31

CSW2(I*I=FFFD
VALUE(I*I=FFF7-FFE9

AHLIR*I=FFB6-FF68
IBAZZ (1* I =FE75
IPONT(1*I=FE30

'HIII=OOOB

CSW3II*I=FFFC
RANGE(R*I=FFE6-FFD8

ALLIR*I=FF66-FF18
G(R*I=FE72-FE54

IIII 1=0006

DAY(I*I=FFF9
COUMTII*I=FFC7-FFCO
IBASE(I*I=FE71
IPERD(I*I=FE32

K I I 1=0009 ILlII=OOOA

CSW4(1*I=FFFB CSW5(1*I=FFFA
LOW(I*I=FFD7-FFDO SETPT(I*I=FFCF-FFC8

A(R*I=FF16-FEC8 B(R*I=FEC6-FE78
H(R*I=FE52-FE34 IENDT(I*I=FE33
1(1 1=0007 JIII=0008

® Continued

STATEMENT ALLOCATIONS

®

1 =0017 4 =0019 7 =0029 999 =0038 100 =0040 2
9 =OOBC

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
AlP FSTOX FLOAT
HOLEB PRNTN EBPRT

INTEGER CONSTANTS

COMGO
CARON

ISTDX MRED MWRT MCDMP

2=000E 9=000F 4095=0010 3=0011 11000=0012

CORE REQUIREMENTS FOR SCALB
COMMON 0 INSKEL COMMON 464 VARIABLES

END OF COMPILATION

SCALB
OUP FUNC T ION COMPLETED
II DUP
*STORECIL 1 SCALB SCALB
*FILES(l,FILEl,ll
*CCEND

CLB, BUILD SCALB

CORE LOAD MAP
TYPE NAME ARGI ARG2

*CDW TABLE 3E82 OOOC
*IBT TABLE 3E8E 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0027
*PNT TABLE 3F34 0004
*DFT TABLE 3F38 0006
MAIN SCALB 3F78
PNT SCALB 3F36
LIBF HOLEB 3FF2 3FOC
LIBF EBPRT 4114 3FOF
LIBF MRED 432B 3F12
LIBF MIDI 43F4 3F15
LIBF MCOMP 43CB 3F18
LIBF MWRT 433E 3FIB
LIBF PAUSE 47FO 3F1E
CALL AlP 4804
LIBF MDWRT 4983 3F21
LIBF MDAF 4837 3F24
LIBF MDAI 4844 3F27
LIBF MDCOM 48FA 3F2A
CALL PRT 4BA4
LIBF IOU 4BEE 3F2D
CALL 10FIX 4C88
CALL BTIBT 4CB8
CALL SAVE 4C24
LIBF AIPTN 4DIC 3F30
CALL BT2BT 4D9E
CORE 4DBC 3244

CUh !)LAL8 LD XQ

DUP FUNCTION COMPLETED

1/ JOB A
II * DATA CARDS FOR CALIBRATING LOOPS 7 AND 8
II XEQ SCALB FX

SET LOOP 7
VALUE IS
NOW SET IT
VALUE IS
SET LOOP 8
VALUE IS
NOW SET IT
VALUE IS

TO LOW VALUE
-202

TO HIGH VALUE
-31218

TO LOW VALUE
-644

TO HIGH VALUE
-31522

14 PROGRAM

=004A 3 =005A 5 =0067 6 =0071 8 =0082

MIDI SUBSC PAUSE MDWRT MDCDM MDAI MDAF

0=0013 1=0014 0=0015 0=0016

172

Programming Techniques 271

@

272

II JOB A
II * NONPROCESS CORE LOAD
II FOR RCALB
*LIST ALL
** CALIBRATION PROGRAM FOR OP-GUIDE POINTS
*IOCSIDISK,1443 PRINTER,CARD)
*NONPROCESS PROGRAM
*ONE WORD INTEGERS
C
C THIS NONPROCESS CORE LOAD IS FOR CALIBRATING THE ANALOG INPUT
C POINTS FOR OP-GUIDE.
C

INTEGER SWO,SW1,SW2,SW3,SW4,SW5,DAY
INTEGER VALUE(15),SETPTI8),COUMTI8),OFFLNI8)
DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOWI8),GI16),HI16)
COMMON/INSKEL/SWO,SW1,SWZ,SW3,SW4,SW5,DAY,JOBN,VALUE,RANGE,LOW,SET

1PT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

DErINE FILE 112,320,U,II)
100 READI2,1)I,ENGH,ENGL

1 FORMATII2,8XF10.2,F10.2)
IFII)100,100,2

2 L=41-I
M=I-1
IFIL)100,100,3

3 WRITEI3,4)I
4 FORMAT I , SET POINT'I3,' TO LOW VALUE')

PAUSE
CALL AIPl11000,IL,M)
CALL AIPIO,II)
GO TO 15,6), I I

6 WRITEI3,999)IL
WRITEI3,7)

7 FORMAT I ' NOW SET IT TO HIGH VALUE')
PAUSE
CALL AIPI1IOOO,IH,M)

8 CALL AIPIO,II)
GO TO 18,9),I I

9 AIL)=IENGH-ENGL)/IIH-IL)
BILI=ENGH-IAIL)*IH)
WRITEI3,999)IH

999 FORMAT I , VALUE IS'I10)
WRITEIl'l)RANGE,LOW,A,B
GO TO 100
END

VARIABLE ALLOCATIONS
CSWOII*)=FFFF

DAYII*)=FFF9
COUMTII*)=FFC7-FFCO
IBASEII*)=FE77
IPERDI H<)=FE32

I I I) =0000

STATEMENT ALLOCATIONS

CSWIII*)=FFFE
JOBN I 1*) =FFF8

OFFLNII*)=FFBF-FFB8
IBASZII*)=FE76
!TCNTI I~<)=FE31

LI I) =OOOE

CSW2II*)=FFFD
VALUEII*)=FFF7-FFE9

AHLIR*)=FFB6-FF68
IBAZZII*J=FE7!:>
IPONTI I*)=FE30

MI I)=OOOF

CSW3II*)=FFFC
RANGEIR*)=FFE6-FF08

ALLIR*)=FF66-FF18
G(R*J=FE72-FE54

ENGHIR)=0006
ILII)=0010

CSW4(I*)=FFFB
LOWII*)=FFD7-FFDO

AIR*)=FF16-Ft:C8
H(R':')=fE52-FE3 Lt

ENGLIR)=0008
IHI I)=0011

1 =OOlC 4 =0021 7 =0031 999 =0040 100 =0048 =0056 3 =0066 5 =0073 6
9 =0098

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS
IDCS

CALLED SUBPROGRAMS

CSW5 (I*)=FFFA
SETPT(I*)=FFCF-FFC8

B (i{*) =FEC6-FE 713
IENOT(I*)=FE33

II (I)=OOOC

=0070 =008E

AlP FSUB FMPYX FLO
MDCOM

FSTO
'-IDA I

FSTOX
MDAF

FSBR
HOLEB

FDVR
PRNTN

FLOAT
EBPRT

COMGO
CARDN

MRED MWRT MCOMP M IOF MIDI
SUBSC PAUSE MDWRT

INTEGER CONSTANTS
2=0014 41=0015

CORE REQUIREMENTS FOR RCALB
COMMON 0 INSKEL COMMON

END OF COMPILATION

RCALB
DUP FUNCTION COMPLETED
II DUP
*DELET RCALB
RCALB
025 NAME NOT IN L/F

1=0016 3=0017 11000=0018

464 VARIABLES 20 PROGRAM

*STORECIL RCALB RCALB
*FILESl1,FILE1,1)
*CCEND

0=0019 O=OOlA 0=0018

188

® Continued

CLB, BUILD RCALB

CORE LOAD MAP
TYPE NAME ARGI ARG2

*COW TABLE 3E82 OOOC
~~ I B T TABLE 3E8E 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 0030
*PNT TABLE 3F3C 0004
*OFT TABLE 3F40 0006
MAIN RCALB 3F88
PNT RCALB 3F3E
LIBF HOLEB 4010 3FOC
LIBF EBPRT 4132 3FOF
LIBF MREO 4349 3F12
LIBF MIDI 4412 3F15
LIBF MIOF 4400 3F18
LIBF MCOMP 43E9 3FIB
LIBF MWRT 435C 3FIE
LIBF PAUSE 480E 3F21
CALL AlP 4822
LIBF FSUB 4862 3F24
LIBF FSBR 484E 3F27
LIBF MOWRT 4A3F 3F2A
LIBF MDAF 48F3 3F20
LIBF MDAI 4900 3F30
LIBF MDCOM 49B6 3F33
CALL PRT 4C60
LIBF IOU 4CAA 3F36
CALL IOF IX 4044
CALL BTlBT 4074
CALL SAVE 4CEO
LIBF AIPTN 4008 3F39
CALL BT21H 4E5A
CORE 4E78 3188

CLB, RCALB LD XQ

DUP FUNCTION COMPLETED

® II JOB A
II * DATA CARDS FOR CALIBRATING POINTS 5 THROUGH 12
II XEQ RCALB FX

SET POINT
VALUE IS
NOW SET IT
VALUE IS
SET POINT
VALUE IS
NOW SET IT
VALUE IS
SET POINT
VALUE IS
NOW SET IT
VALUE IS
SET POINT
VALUE IS
NOW SET IT
VALUE IS
SET POINT
VALUE IS

5 TO LOW VALUE
-100

TO HIGH VALUE
-32362

6 TO LOW VALUE
-148

TO HIGH VALUE
-32462

7 TO LOW VALUE
-126

TO HIGH VALUE
-32338

8 TO LOW VALUE
-248

TO HIGH VALUE
-32562

9 TO LOW VALUE
-102

NOW SET IT TO HIGH VALUE

VALUE IS -32546
SET POINT 10 TO LOW VALUE

VALUE IS -78
NOW SET IT TO HIGH VALUE
VALUE IS -32458
SET POINT 11 TO LOW VALUE
VALUE IS -86
NOW SET IT TO HIGH VALUE
VALUE IS -32466
SET POINT 12 TO LOW VALUE
VALUE IS -100
NOW SET IT TO HIGH VALUE
VALUE IS -32516

Programming TecJmiques 273

@ " JOB A 50 II * NONPROCESS CORE LOAD
II FOR CMI PT

274

*LIST ALL
** CALIBRATION PROGRAM FOR DATA ENTRY DIALS
*IOCSIDISK)
*IOCS11443 PRINTER)
*NONPROCESS PROGRAM
*ONE WORD INTEGERS
C
C THIS NONPROCESS CORE LOAD IS FOR CALIBRATING THE DATA ENTRY
C DIALS.
C

INTEGER SWO,SWl,SW2,SW3,SW4,SWS,DAY
INTEGER VALUEllS),SETPTIS),COUMTI8),OFFLNI8)
DIMENSION INA(16),INBI16)
DIMENSION RANGE(8),AHLI40),ALLI40),AI40),BI40),LOW(8),GI16),HI16)
COMMON/INSKEL/SWO,SWl,SW2,SW3,SW4,SWS,DAY,JOBN,VALUE,RANGE,LOW,SET

IPT,COUMT,OFFLN,AHL,ALL,A,B,IBASE,IBASZ,IBAZZ,G,H,IENDT,IPERD,ITCNT
2,IPONT

DEFINE FILE 112,320,U,II)
WRITEI3,l)
FORMAT 1 , SET DATA ENTRY DIALS TO 0')
PAUSE
CALL GETVLI INA)
WRITEI3,2)

2 FORMATI' SET DATA ENTRY DIALS TO 10')
PAUSE
CALL GETVLI INB)
DO 10 J=1,16
GIJ)=10./IINBIJ)-INAIJ»

10 HIJ)=10.-IGIJ)*INBIJ»
WRITEll'2)G,H
CALL EXIT
END

VARIABLE ALLOCATIONS
CSWOII*)=FFFF CSWlI I*)=FFFE

JOBNII*)=FFF8
OFFLNII*)=FFBF-FFB8
IBASZII*)=FE76
ITCNTII*)=FE31

CSW2II*)=FFFD CSW3II*)=FFFC
DAYII*)=FFF9

COUMTII*)=FFC7-FFCO
IBASEII*)=FE77
IPERDII*)=FE32

JII)=0029

STATEMENT ALLOCATIONS
1 =0034 2 =0043 10

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS

=007E

GETVL FMPY FLDX FSTO FSTOX
PRNTN EBPRT

REAL CONSTANTS
.100000E 02=002C

INTEGER CONSTANTS
3=002E 1=002F

CORE REQUIREMENTS FOR CMIPT

16=0030

VALUEII*)=FFF7-FFE9 RANGEIR*)=FFE6-FFD8
AHLIR*)=FFB6-FF68 ALLIR*)=FF66-FF18

IBAZZII*)=FE7S GIR*)=FE72-FES4
IPONTlI*)=FE30 INAII)=0017-0008

FSBR FDVR FLOAT MWRT MCOMP

2=0031 0=0032 0=0033

COMMON 0 INSKEL COMMON 464 VARIABLES 44 PROGRAM 122

END OF COMPILATION

CMIPT
DUP FUNCTION COMPLETED
*STORECIL 1 CMIPT CMIPT
*FILESll,FILEl,l)
*CCEND

CLB, BUILD CMIPT

CORE LOAD MAP
TYPE NAME ARGI ARG2

*CDW TABLE 3E82 OOOC
*IBT TABLE 3E8E 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 001E
*PNT TABLE 3F2A 0004
*DFT TABLE 3F2E 0006
MAIN CMIPT 3F81

CSW4II*)=FFFB CSWSII*)=FFFA
LOWII*)=FFD7-FFDO SETPTII*)=FFCF-FFC8

AIR*)=FF16-FEC8 BIR*)=FEC6-FE78
HIR*)=FES2-FE34 IENDTII*)=FE33

INBII)=0027-0018 1111)=0028

SUBSC PAUSE MDWRT MDCOM MDAF

@ Continued

PNT CMIPT 3F2C
LIBF EBPRT 3FD4 3FOC
LIBF MWRT 41FE 3FOF
LIBF MCOMP 428B 3F12
LIBF PAUSE 46BO 3F15
CALL GETVL 46EE
LIBF FSBR 478A 3F18
LIBF MDWRT 497B 3FIB
LIBF MDAF 482F 3FlE
LIBF MDCOM 48F2 3F21
CAll PRT 4B9C
L IBF IOU 4BE6 3F24
CALL IOFIX 4C80
CALL B11BT 4CBO
CALL SAVE 4CIC
LIBF SUBIN 4014 3F27
CALL BT2BT 4D4E
CORE 4D6C 3294

CLB, CMIPT LD XO

DUP FUNCTION COMPLETED

@lIIJOB
II XEO CMIPT

A
FX

SET DATA ENTRY DIALS TO 0
SET DATA ENTRY DIALS TO 10

® II JOB A
II * NONPROCESS CORE LOAD
II FOR LOADJ
*LI ST ALL
** PROGRAM TO LOAD JOB DATA FILES ON DISK FROM CARDS
*IOCS(DISK,1443 PRINTER,CARD)
*NONPROCESS PROGRAM
*ONE WORD INTEGERS
C
C THIS PROGRAM LOADS THE PROCESS JOB FILES ON DISK WITH DATA
C READ FROM CARDS.
C

INTEGER SETPT(8)
DIMENSION AHL(40),ALL(40),INPP(8)
DEFINE FILE 21100,320,U,III)
CALL PTIME(TIME)
WRIH(3,2)TIME

2 FORMATI'lPROCESS JOB FILE LOAD TIME'F7.2)
JOBN=O
IT IME=O
DO 3 J=I,8

3 SETPT(J)=O
DO 4 J=1,40
AHL(J)=32000.

4 ALL(J)=-32000.
10 READ(2,11)J,IV,BB,CC
11 FORMAT(Il,4XI5,2F10.0)

GO TO (100,200,300,400,700),J
100 IF(IV)600,600,101
101 JOBN=IV

ITIME=BB*100.
I=ITIMEI100*100
K=ITIME-I
I = I 1100
IFIK-60)102,600,600

102 AB=I*3600.+K*60.
IF(32000.-AB)600,103,103

103 IT IME=AB
AB=BB
GO TO 10

200 IF(IV)600,600,201
201 I=41-IV

IF(I)600,600,202
202 AHL(I)=BB

ALl(1) =CC
IF(AHLII)-ALLII»600,600,10

300 IFIIV)600,600,301

Pl'Ogramming Techniques 275

® Continued

301 1=9-IV
IF I I 1600,600,302

302 SETPTIII=BB
IFISETPTIII1600,600,303

303 IFII00-SETPTIII1600,600,10
400 IFIJ06NI600,600,409
409 IN=JOBN/I00*100

I=JOBN-IN
IFII1600,401,402

401 1=100
402 WRITEI2'IIJOBN,ITIME,SETPT,AHL,ALL

WRITEI3,403IJOBN,AB
403 FORMATI' GRADE NUMBERIJ6,5X' PRODUCTION TIME'F10.21

WRITE13,5001
500 FORMATI' OP-GUIDE LIMITS FOR GRADE'I

WRITE13,5011
501 FORMATI' POINT

1 LOW LIMIT'I
DO 503 J=1,39,2
K=41-J
Jl=J
J2=J+1

HIGH LIMIT LOW LIMIT',10X' POINT

503 WRITEI3,502)Jl,AHLIKI,ALLIK),J2,AHLIK-1),ALLIK-1)
502 FORMATI16,2F13.2,10XI6,2F13.2)

WRITE13,5101
510 FORMAT I , CLOSED LOOP SET POINTS FOR GRADE')

WRITEI3,5111

HIGH LIMIT

511 FORMATI3X'POINT',5X'SETPT',5X'POINT',5X'SETPT',5X'POINT',5X'SETPT'
1,5X'POINT',5X'SETPT')

DO 6 J=1,8
6 INPPIJI=SETPTIJ)

DO 30 1=1,5,4
J1=I
J2=I+1
J3=1+2
J4=I+3
IA=9-1
IB=8-1
IC=7-1
10=6-1

30 WRITE(3,7IJl,INPPIIA),J2,INPPIIB),J3,INPPIICI,J4,INPPI10)
7 FORMATII8,IIO,31110,IIO)1

GO TO 1
600 WRITEI3,601)J,IV,BB,CC
601 FORMATI' INVALID DATA CARD',/I5,4XI5,2F10.7)

GO TO 1
700 CALL EX IT

END

ALL(R 1=00A4-0056 CTIMEIR)=00A6
VARIABLE ALLOCATIONS

AHLIR)=0054-0006
INPPII)=00B7-00BO

I V I I) =00C4
SETPT(I)=00BF-00B8 11111)=OOCO

III)=00C5 KII)=00C6
J31 I)=OOCA J411)=OOCB IAII)=OOCC

STATEMENT ALLOCATIONS
Z =OOEB 11 =OOFD 403 =0103 500 =0118 501 =0127
1 =01A7 3 =OlBC 4 =OlDB 10 =OlEB 100 =0200
202 =025C 300 =0276 301 =027A 302 =0284 303 =0294
6 =0324 30 =0368 600 =039C 700 =03AA

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS
10CS

CALLED SUBPROGRAMS

BBIR)=00A8
JOBN I I) =OOC 1

INI!)=00C7
! B I I) =OOCD

502 =014B 510
101 =0204 102
400 =02Al 409

PTIME FADD FSUB FSUBX FMPY FLO FLDX FSTO FSTOX IF I X
MWRT MCOMP MIOFX MIOIX MIOF MIOI SUBSC SNR MDWRT MDCOM
EBPRT CARON

REAL CONSTANTS
.320000E 05=0004 .100000E 03=0006 .360000E 04=0008 .600000E 02=00DA

INTEGER CONSTANTS

CCIR)=OOAA
!TIMEI I)=00C2

JIll)=00C8
ICII)=OOCE

=0153 511 =0166
=OZ2C 103 =0243
=02A5 401 =02BB

FLOAT COMGO
MDA I MDAF

3=00DC 0=0000 l=OODE
4=00E8

8=00DF
7=00E9

40=00EO
6=00EA

2=00El 100=00E2 60=00E3
39=00E6 5=00E7

CORE REOUIREMENTS FOR LOADJ
COMMON 0 INSKEL COMMON o VARIABLES 212 PROGRAM 728

END OF COMPILATION

276

7
200
402

ISTOX
MOl

ABIR)=OOAC
JII)=00C3

JZII)=00C9
101 I)=OOCF

=018F 601 =0196
=024E 201 =0752
=02BF 503 =02F4

LDFAC MRED
HOLEB PRNTN

41=OOE4 9=OOE5

® Continued

LOADJ
DUP FUNCTION COMPLETED
*DELET LOADJ
LOADJ
025 NAME NOT IN L/F
*STORECIL 1 LOADJ LOAOJ
*FILES(2,FILE2,11
):'CCEND

CLB, BUILD LOADJ

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*COW TABLE 3E82 OOOC
*IBT TABLE 3E8E 0010
*FIO TABLE 3EAB 0010
*ETV TABLE 3EBB 0051
*VTV TABLE 3FOC 003F
*PNT TABLE 3F4C 0004
*DFT TABLE 3F50 0006
MAIN LOADJ 40F7
PNT LOA OJ 3F4E
L1BF HOLEB 42FC 3FOC
LI BF EBPRT 441E 3FOF
CALL PTIME 44CA
L1BF MWRT 4684 3F12
L1BF MIOF 4735 3F15
L1BF MCOMP 4711 3F18
LI BF SNR 4B36 3FIB
L1BF MRED 4671 3FIE
L1BF MIDI 473A 3F21
L1BF FAOD 4B6E 3F24
L1BF FSUB 4B62 3F27
LI BF LDFAC 4BEC 3F2A
L1BF FSUBX 4B5D 3F2D
L1BF MDWRT 4060 3F30
L1BF MOl 4C26 3F33
L1BF MDAI 4C2E 3F36
L1BF MDAF 4C21 3F39
L1BF MDCOM 4CE4 3F3C
L1BF MIOFX 4741 3F3F
L1BF MIOIX 4746 3F42
CALL PRT 4F8E
L1BF SUBIN 4FD8 3F45
L1BF IOU 5012 3F48
CALL IOFIX 50AC
CALL BTlST 50DC
CALL SAVE 5048
CALL BT2BT 5140
CORE 515E 2EA2

CLB, LOADJ LD XO

OUP FUNCTION COMPLETED

@31IJOBA
II * UPDATE A PROCESS JOB FILE ON DISK
II XEQ LOADJ FX

TIME 14.58
PRODUCTION TIME

PROCESS JOB FILE LOAD
GRADE NUMBER 12345
OP-GUIDE LIMITS FOR
POINT HIGH LIMIT

GRADE

1 32000.00
3 32000.00
5 5.45
7 5.45
9 5.45

11 5.45
13 32000.00
15 32000.00
17 32000.00
19 32000.00
21 32000.00
23 32000.00
25 32000.00
27 32000.00
29 32000.00
31 32000.00
33 32000.00
35 32000.00

LOW LIMIT
-32000.00
-32000.00

4.96
4.96
4.96
4.96

-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00

1.30

POINT
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36

HIGH LIMIT
32000.00
32000.00

5.45
5.45
5.45
5.45

32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00

LOW LIMIT
-32000.00
-32000.00

4.96
4.96
4.96
4.96

-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00

Programming Techniques 277

@ Continued

37 32000.00 -32000.00
39 32000.00 -32000.00

CLOSED LOOP SET POINTS FOR GRADE
POINT SETPT POINT SETPT

1
5

PROCESS JOB

@ II JOB
II DUP
*DUMPLET

LET

PACK LABEL
00000

.DCOM 0010

.ASM 0300
C.LOCK 0002
DMPST
MASK 0003
SAVMK 0003
CONHX 0006
ESUBX
EABS
EDVRX
ESTOX
ESIN
ETANH
FSBRX
FATN OOOC
FAXI 0006
FDVR
FSTO
FMPYX
FSQRT
FEXP
XMD 0005
EBPA 0006
PAPHL 0014
DATSW 0004
ISIGN 0003
MDFIO 0023
MDI
MRED
MIOIX
MEIF
MEARX
SAVE OOOA
SUBIN 0005
UFIO 001C
UIOAF
PAPTN 0010
AIRN OOOD
lOPE 0009
GAGED 0003
VS
PIC
CO
BT2BT 0003
SCALE 0002
WCHRI
VCHRI
PLOTS

FLET

PACK LABEL
00000

0
0

FILE LOAD

A

0000 .MBT
05EO .FOR
15D8 COUNT

DPART
1614 OPMON
1635 SETCL
1652 TRPRT

ESBR
EAXB
EDIV
ELN
ECOSN
ETRTN
FADD

16E4 FATAN
16F9 FAXIX

FDVRX
FSTOX
FSINE
FTNH
lABS

177B XMDS
1798 EBPRT
17DC PAPPR
1813 DVCHK
182D ISTOX
1837 MDAF

MDIX
M.WRT
MIOF
MIAR
OVERF

18E4 IOFIX
18FB SUBSC
190B URED

UIOFX
194A MAGT
1992 ANINT
19E6 OUSLY
19F8 UNGAG

DI
CSX
DO

lA49 FCHAR
lA63 EGRID

FRULE
ERULE
.TEMP

9DUMY OOAO 05AO .E

278

2 0
6 0

TIME 14.58

0020 0010
0680 08EO
0004 15DD
0002 1608
0002 1617
0003 1638
0007 1658

0006 1681

0008 169D

0004 16C6

0008 1742
0006 1754
0003 1767
0004 1780
OOOA 179E
0011 17FO
0002 1817
0003 1830

OOOE 18C9
0002 18D7

0004 1900

0020 195A
0014 199F

0004 lA2F

0005 lA4C
0008 lA65
0009 lA9D
0008 lACB
lAEO IBOO

OOAO 05AO

38
40

POINT
3
7

.SKSB 0020

.SIM 05FO
DMP 0017
ENDTS 0002
lOR 0002
TIMER 0006
FLIP 0007
ESBRX
EAXBX
EDIVX
EALOG
ECOS
ETNTR
FSUB
FAVL 0003
FBTD 001A
FIXIX 0005
FLN OOOB
FSIN
FTANH
IFIX 0004
XSQR 0004
HOLEB 0012
PRT 0005
ESIGN 0005
LDFAC 0004
MDAI
MORED
MCOMP
MIDI
MIARX
PAUSE 0002
SL ITE 0006
TSTOP 0002
UWRT
UIDIX
AIPTN 0009
DINP 0013
ETS
AlP 0004
PI
VSX
PO
SCALF 0002
EPLOT 0005
FMOVE
EMOVE
.E 5AOO

32000.00 -32000.00
32000.00 -32000.00

SETPT POINT SETPT
0 4 0

15 8 86

0030 .SUP OOBO 0050 .CLB OOAO 0100 .DUP 0440 01AO
OF60 .LET 0080 1550 lAND 0002 15DO CLEAR 0009 15D2
15El DMPHX DMPDC DMPS 0010 15F8
160A IEOR 0002 160C LD 0002 160E LEVEL 0004 1610
1619 QIFON OOOA 161B QUEUE OOOC 1625 RESMK 0004 1631
163B UNMK 0005 1641 UNQ 0005 1646 VIAQ 0007 1641:l
165F EADD OOOB 1666 ESUB EADDX

EATN 0000 1671 EATAN EAVL 0003 167E
EAXI 0006 1687 EAXIX EDVR 0007 168D
ELD 0009 1694 ELDX ESTO
EMPY 0004 16A8 EM PYX ESINE OOOD 16AC
ESQR 0007 16B9 ESQRT ETNH 0006 16CO
EXPN OOOB 16CA EEXP FSBR OOOB 1605
FADDX FSUBX FARC 0004 16EO

16FO FABS FAXB 0006 16F3 FAXBX
16FF FDTB FOIV 0008 1719 FDIVX
1721 FIXI FLD 0009 1726 FLrlX
172F FALOG FLOAT 0003 173A FMPY 0005 1730

FCOSN FCOS FSQR 0007 1740
FTRTN 0004 175A FTNTR FXPN 0009 175E

176A NORM 0004 176E SNR 0003 IH2 XDO 0006 1775
1784 BINDC 0006 1788 BINHX 0004 l78E DCBIN 0006 1792
17A8 HOLPR OOOD 17BA HXBIN 0005 1 7C 7 PAPEB 0010 17CC
1801 ADRCK 0007 1806 COMGO 0006 180D COMGl
1819 FCTST 0003 181E FSI GN 0005 1821 IOU 0007 1826
1833 STFAC SBFAC DVFAC

MDCOM MDF MDFX
MOWRT MOFNO 0008 185A MFIO 0059 1862
MIOAF MIOAI MIOFX
MGOTO OOOE 18BB MFIF M I IF
MFAR MFARX r~EAR

18D9 REWND 0009 180B BCKSP EOF
18EE SL ITT SSWTC 0004 18F4 STOP 0003 18F8
1904 TSTRT 0002 1906 TTEST 0003 1908 TSET

UTOI UIOF UIOAI
UCOMP PLOTX 0000 1927 CARDN 0016 1934

197A AIPN AISQN OOOF 1983 AISN
19B3 DIEXP 0006 19C6 DICMP 0007 19CC DAOP 0013 1903

XSAVE 0009 19EF XEXIT XLOAD
19FB AIS 0000 19FF AIR 0011 lAOC CS 0008 lAID

CSC OOOA lA25 VSC OIC
DIX PIX DAC 0007 lA33
QZERQ 0002 lA3A QZOI0 0006 lA3C BTlBT 0007 1A42

lASl FGRID 0007 lA53 FPLOT 0004 lA5A ECHAK 0005 lA5E
lA6D POINT 0007 lA72 FCHRX 0024 lA79 FCHRI

FINC ECHRX 0025 lAA6 ECHRI
EINC XYPLT 0007 lAD6 PLOT I 0003 lADD

IBOO

'5i' Continued
\.:t:I LET

PACK LABEL

11111

.LET 0080
SPECL
QUEl5 0002
IADDR 0002
• E 1180

FLET

PACK LABEL
11111

.PRWS 0051
INPSV 4180
RSTAR OF8C
GRADE 116A
TREND OB7A
AlMON 0090
ISPSV 4180

DUP FUNCTION

II JOB
II END

0000

0159
0175
0180

1118
12C3
1367
138E
13CC
1414
1578

SYDIR 009E
BACK
TCONT 0003
ISBAD 0002

.FIOS OOOF
FILEI 0002
COLDP 10CE
SCAN2 OC2E
COGLP 101E
SCALB OF3A
IPRSV 4180

COMPLETED

A

0080

015B
0177

1169
12F8
1374
939C
1306
141F
15AD

OUTTR
EACLK
TABRT 0002
CESET 0002

.MESS 00A3
FILE2 0064
CEINT OA26
LOG15 OD5E
CCLSP OF76
RCALB OFF6
.SKEL 0036

015E
0179

1178
12FA
1382
13A6
13E3
142C
15E2

CHAIN
SCHED 0014
GETVL OOOB
ABORT 0002

IEPDM 7FFF
FILE3 0003
DUM 012C
LOG60 OAEO
MGRTP OFB4
CMIPT OEEA
.EPRG 0022

OIlE
0160
017B

121B
135E
1388
13Bl
13FO
1439
1618

INTEX
LEVI0 0024
CONVR 0005
ENDGD 0002

IEPSV 0780
COLON 05DC
IDUM 0094
SHIFT OAEO
CPJSP OFCC
LOADJ 12DC
ICLST 0780

0132
016B
0170

1282
1361
138C
13BA
13FlJ
1445
163A

SHARE
SOUT 0003
PTIME 0005
.TEMP 017F

/INSV 48FF
COLDS 0006
CDUM 013A
WEEK OADC
STRND OBFC
9DUMY 0123
.E 0280

0156
0170
0180

1288
1366
938D
13C3
140A
1455
12F8

Programmitlg Techniques 279

PROGRAM LISTING NO. 10: ON-LINE PROCESS OUTPUT

CDTURN OFF WRITE STORAGE PROTECT SWITCH
1 ENTER TIME THROUGH DATA SWITCHES

TIME ENTERED WAS 08.016 HOURS
PROCESS COLD START
PRODUCTION STOP TIME 8.00 DAY 6

o 0 0
000

NEXT JOB 12345

1 3
o 0 0

QUEUE SEQUENCE

4
o

45

5
o

DAY 6 TIME 8.02

START OF GRADE 12345 PRODUCTION TIME
OP-GUIDE LIMITS FOR NEW GRADE

1. 29 START TI ME

280

POINT HIGH LIMIT LOW LIMIT
1 32000.00 -32000.00
3 32000.00 -32000.00
5 5.45 4.96
7 5.45 4.96
9 5.45 4.96

11 5.45 4.96
13 32000.00 -32000.00
15 32000.00 -32000.00
17 32000.00 -32000.00
19 32000.00 -32000.00
21 32000.00 -32000.00
23 32000.00 -32000.00
25 32000.00 -32000.00
27 32000.00 -32000.00
29 32000.00 -32000.00
31 32000.00 -32000.00
33 32000.00 -32000.00
35 32000.00 -32000.00
37 32000.00 -32000.00
39 32000.00 -32000.00

CLOSED LOOP SET POINTS FOR NEW GRADE
POINT SETPT POINT SETPT

1 020
5 0 6 0

NORMAL SCAN DAY 6 TIME 8.03

o 0 5 o

POINT
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

POINT
3
7

7
o

LOOP

000
000
NEW SET PO I NT

o 0 0
50 DAY 6 TIME

o
8.05

NORMAL SCAN DAY 6

NORMAL SCAN DAY 6

NORMAL SCAN DAY 6

~ORMAL SCAN DAY 6

NORMAL SCAN DAY 6

LOG15 DAY 6 TIME
OP-GUIDE POINTS

PO I NT VALUE
1 1415 ll.00
5 5.37
9 5.14

13 22.00
17 714.00
21 706.00
25 712.00
29 70ll.00
33 714.00
37 710.00

CLOSED LOOP POINTS
PO I NT VALUE

1 0
5 0

SHIFT END LOG DAY 6

TIME

TIME

TIME

TIME

TIME

POINT
2
6

10
14
18
22
26
30
34
38

POINT
2
6

8.15

TIME

8.06

8.07

8.09

8.12

8.13

VALUE
9734.00

5~ 16
5.28

20.00
704.00
698.00
708.00
718.01)
710.00
704.00

VALUE
o
5

8.15

POINT
3
7

11
15
19
23
27
31
35
39

POI NT
3
7

HIGH LIMIT
32000.00
32000.00

5.45
5.45
5.45
5.45

32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00

SETPT
o

111

VALUE
24.00
5.01
5.00

22.00
716.00
718.00
704.00
706.00
704.00
716.00

VALUE
75
49

8.03 DAY 6

LOW LIMIT
-32000.00
-32000.00

4.9,6
4.96
4.96
4.96

-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00

POINT
4
8

SETPT
o

86

POINT
4
8

12
16
20
24
28
32
36
40

POI NT
4
8

VALUE
32.00
5.10
4.98

42.00
706.00
706.00
714.00
704.00
7lB,~ 00
706.00

VALUE
o

85

CD (Continued)

NORMAL SCAN DAY 6 TIME 8.15

NORMAL SCAN DAY 6 TIME 8.18

NORMAL SCAN DAY 6 TIME 8.19

NORMAL SCAN DAY 6 TIME 8.21

NORMAL SCAN DAY 6 TIME 8.24

NORMAL SCAN DAY 6 TIME 8.25

NORMAL SCAN DAY TIME 8.27

NORMAL SCAN DAY 6 TIME 8.30

LOG15 DAY 6 TIME 8.30
OP-GUIDE POINTS

POI NT VALUE POINT VALUE POINT VALUE POINT VALUE
1 14162.00 2 9760.00 3 30.00 4 40.00
5 5.37 6 5.16 7 5.00 8 5.09
9 5.14 10 5.27 11 5.00 12 4.99

13 18.00 14 28.00 15 18.00 16 22.00
17 710.00 18 708.00 19 706.00 20 710.00
21 706.00 22 704.00 23 714.00 24 706.00
25 700.00 26 714.00 27 706.00 28 706.00
29 702.00 30 712.00 31 706.00 32 710.00
33 704.00 34 716.00 35 708_00 36 712.00
37 704.00 38 714.00 39 704.00 40 714.00

CLOSED LOOP POINTS
POINT VALUE POINT VALUE POINT VALUE POINT VALUE

1 0 2 0 3 75 4 0
5 0 6 5 7 49 85

NORMAL SCAN DAY 6 TIME 8.31

NORMAL SCAN DAY 6 TIME 8.33

NORMAL SCAN DAY 6 TIME 8.36

NORMAL SCAN DAY 6 TIME 8.37

NORMAL SCAN DAY 6 TIME 8.39

NORMAL SCAN DAY 6 TIME 8.42

NORMAL SCAN DAY 6 TIME 8.43

LOG15 DAY 6 TIME 8.45
OP-GUIDE POINTS

POINT VALUE POINT VALUE POI NT VALUE POINT VALUE
1 14158.00 2 9770.00 3 28.00 4 34.00
5 5.37 6 5.16 7 5.01 8 5.10
9 5.14 10 5.27 11 5.00 12 4.98

13 24.00 14 20.00 15 20.00 16 18.00
17 706.00 18 706.00 19 704.00 20 716.00
21 70 11.00 22 716.00 23 708.00 24 706.00
25 706.00 26 708.00 27 704.00 28 716.00
29 706.00 30 704.00 31 714.00 32 704.00
33 7111.00 34 704.00 35 714.00 36 704.00
37 714.00 38 704.00 39 718.00 40 706.00

CLOSED LOOP POINTS
POINT VALUE POINT VALUE POINT VALUE POI NT VALUE

1 0 2 0 3 75 4 0
5 0 6 5 7 49 8 85

NORMAL SCAN DAY 6 TIME 8.45

NORMAL SCAN DAY 6 TIME 8.48

Programming Techniques 281

(!)(Continued)

NORMAL SCAN DAY 6 Tlf.1E 8.49

NORMAL SCAN DAY 6 TIME 8.51

NORMAL SCAN DAY 6 TIME 8.54

NORMAL SCAN DAY 6 TIME 8.55

NORMAL SCAN DAY 6 TIME 8.57

NORMAL SCAN DAY 6 TIME 9.00

LOG15 DAY 6 TIME 9.00
OP-GUIDE POINTS

POINT VALUE POINT VALUE POI NT VALUE POI NT VALUE
1 14158.00 2 9818.00 3 26.00 4 50.00
5 5.37 6 5.16 7 5.01 8 5.10
9 5.14 10 5.27 11 5.00 12 4.98

13 38.00 14 28.00 15 30.00 16 30.00
17 704.00 18 718.00 19 706.00 20 708.00
2'1 702.00 22 716.00 23 712.00 24 700.00
25 718.00 26 704.00 27 716.00 28 706.00
29 710.00 30 710.00 31 706.00 32 706.00
33 704.00 34 718.00 35 704.00 36 718.00
37 708.00 38 708.00 39 712.00 40 706.00

CLOSED LOOP POINTS
POINT VALUE POINT VALUE POINT VALUE POINT VALUE

1 0 2 0 3 75 4 0
5 0 6 5 7 50 8 85

ONE HOUR LOG DAY 6 TIME 9.00

NORMAL SCAN DAY 6 TIME 9.01

NORMAL SCAN DAY 6 TIME 9.03

NORMAL SCAN DAY 6 TIME 9.06

NORMAL SCAN DAY 6 TIME 9.07

NORMAL SCAN DAY 6 TIME 9.09

NORMAL SCAN DAY 6 TIME 9.12

NORMAL SCAN DAY 6 TIME 9.13

LOG15 DAY 6 TIME 9.15
OP-GUIDE POINTS

POINT VALUE POINT VALUE POI NT VALUE POI NT VALUE
1 14150.00 2 9858.00 3 28.00 4 20.00
5 5.37 6 5.16 7 5.01 8 5.10
9 5.14 10 5.27 11 5.00 12 4.98

13 22.00 14 26.00 15 24.00 16 26.00
17 708.00 18 708.00 19 706.00 20 704.00
21 714.00 22 706.00 23 708.00 24 706.00
25 708.00 26 708.00 27 706.00 28 708.00
29 704.00 30 716.00 31 708.00 32 710.00
33 706.00 34 706.00 35 704.00 36 714.00
37 706.00 38 704.00 39 716.00 40 704.00

CLOSED LOOP POINTS
POINT VALUE POINT VALUE POINT VALUE POI NT VALUE

1 0 2 0 3 75 4 0
5 0 6 5 7 49 8 85

282

CD 0 0
5 0

OP-GUIDE PT

NORMAL SCAN

v
000
000
5 HIGH LI MIT

DAY 6 TIME
HIGH LIMIT VIOLATION POINT

5
4

5

LOG15 DAY 6 TIME 11. 30
OP-GU I DE PO I NTS

POINT VALUE
1 14154.00
5 5.37
9 5.14

13 26.00
17 708.00
21 712.00
25 706.00
29 706.00
33 702.00
37 714.00

CLOSED LOOP POINTS
POINT

DEMAND

NORMAL

o
o

1
5

SCAN

SCAN

o
o

VALUE

o
o

0
0

DAY

DAY

DAY 6 TIME 11.34

o
o

6

6

POINT
2
6

10
14
18
22
26
30
34
38

POINT

o
o

2
6

TIME

TIME

o
o

1 0
9 0

5.10 LOW LIMIT

11.30
VALUE

VALUE
9260.00

5.15
5.27

38.00
704.00
706.00
706.00
704.00
716.00
704.00

VALUE

o
o

0
5

11.30

11. 32

5
o

5.3716

POINT
3
7

11
15
19
23
27
31
35
39

PO INT
3
7

v

4.90 nAY 6 TIME 11.28

VALUE POINT VALUE
26.00 4 106.00

5.01 8 5.09
5.00 12 4.98

24.00 16 20.00
718.00 20 704.00
704.00 24 714.00
704.00 28 714.00
714.00 32 706.00
706.00 36 702.00
712.00 40 710.00

VALUE POINT VALUE
1 4 0

65 8 83

OP-GUIDE POINT VALUE HIGH LIMIT LOW LIMIT FACTOR A FACTOR B
5 5.03 5.10 4.90 -0.309962E-03 -0.309947E-01

NORMAL SCAN DAY 6

NORMAL SCAN DAY 6

NORMAL SCAN DAY 6
A
v

TIME 11. 34

TIME 11.36

TIME 11. 38

v

Programming Techniques 283

A 1

0
, v

a a 6 a a 0 1 0
0 a a a a 3 a a

TREND LOG OP-GUIDE POI NT 6 PERIOD 10 COUNT 300
TREND OP-GUIDE 6 VALUE 5.01
TREND OP-GUIDE Ii VALUE 5.01

NORMAL SCAN DAY 3 TIME !l.17
TREND OP-GUIDE Ii VALUE 5.49
TREND OP-GUIDE 6 VALUE 5.65
TREND OP-GUIDE Ii VALUE 5.64
TREND OP-GUIDE Ii VALUE 5.79
TREND OP-GUIDE 6 VALUE 6.19
TREND OP-GUIDE Ii VALUE 6.56
TREND OP-GU I DE 6 VALUE 6.73
TREND OP-GUIDE Ii VALUE 6.73

DEt·1AND SCAN DAY 3 TIME 9.19
HIGH LIMIT VIOLATION POI NT 6 VALUE 6.7345
TREND OP-GUIDE Ii VALUE 6.73
TREND OP-GUIDE Ii VALUE 6.42
TREND OP-GUIDE Ii VALUE 5.96

NORMAL SCAN DAY 3 TIME 9.19
HIGH LIMIT VIOLATION POI NT 6 VALUE 5.5796
TREND OP-GUIDE Ii VALUE 5.57
TREND OP-GUIDE 6 VALUE 5.58
TREND OP-GUIDE Ii VALUE 5.12
TREND OP-GUID£ Ii VALUE 4.98
TREND OP-GUIDE Ii VALUE 4.98

a a a a a 0 0 a
a a a a a 3 a a

NEXT JOB a QUEUE SEQUENCE a nAY 3 TIME 9.21

NORMAL SCAN DAY 3 TIME 9.21

NORMAL SCAN DAY 3 TIME 9.23
PRODUCTION STOP TIME 9.25 DAY 3

0 a a a a 3 5
a a a a a 3 a a

NEXT JOB 35 QUEUE SEQUENCE 35 [MY 3 TIME 9.25

A A
v ,

A
1('4\ a a
I'-J a a

a 4 5 3
a a a a

a
a

A
v

NEXT JOB

0'
a

4530 QUEUE SEQUENCE 30 DAY 2 TIME 12.19

284

NORMAL SCAN DAY 2 TIME 12.20

NORMAL SCAN DAY TIME 12.22

NORMAL SCAN DAY TIME 12.24

START OF GRADE 4530 PRODUCTION TIME
OP-GUIDE LIMITS FOR NEW GRADE
POINT HIGH LIMIT LOW LIMIT

1 32000.00 -32000.00
3 32000.00 -32000.00
5 5.55 4.45
7 5.55 4.45
9 5.35 4.45

11 5.63 4.45
13 32000.00 -32000.00
15 32000.00 -32000.00
17 32000.00 -32000.00

A
v

1.25 START TIME

POI NT
2
4
6
8

10
12
14
16
1&

HIGH LI MIT
32000.00
32000.00

5.45
5.45
5.65
5.62

32000.00
32000.00
32000.00

l ,

12.26 DAY

LOW LIMIT
-32000.00
-32000.00

4.45
4.45
4.45
4.45

-32000.00
-32000.00
-32000.00

A. I\.

I<D v
v

5 39 32000.00 -32000.00 40 32000.00 -32000.00
CLOSED LOOP SET POINTS FOR NEW GRADE

POINT SETPT POINT SETPT POINT SETPT POI NT SETPT
1 0 2 0 3 0 4 0
5 0 6 0 7 70 8 29

NORMAL SCAN DAY 3 TIME 9.06
997 09.130 RELOAD
RELOAD

PROCESS RESTART CHECK POINT

NORMAL SCAN DAY TIME 9.07

LOtl5 DAY 3 TIME 9.07
OP-GUIDE PO I NTS

POINT VALUE POINT VALUE POINT VALUE POINT VALUE
1 14150.00 2 9946.00 3 24.00 4 -100.00
5 5.03 6 5.01 7 4.99 8 4.90
9 4.94 10 5.04 11 4.98 12 4.98

13 30.00 14 22.00 15 24.00 16 26.00
17 702.00 18 714.00 19 706.00 20 704.00
21 714.00 22 704.00 23 716.00 24 708.00
25 701l.00 26 708.00 27 708.00 28 704.00
29 716.00 30 704.00 31 712.00 32 702.00
33 714.00 34 710.00 35 704.00 36 716.00
37 704.00 38 716.00 39 704.00 40 718.00

CLOSED LOOP POINTS
POINT VALUE POINT VALUE POINT VALUE POINT VALUE

1 0 2 0 3 75 4 0
5 0 6 0 7 69 8 29

ONE HOUR LOG DAY 3 TIME 9.07

SH I FT END LOG DAY TIME 9.08

NORMAL SCAN DAY TIME 9.09

DEMAND SCAN DAY 3 TIME 9.10
HIGH LIMIT VIOLATION POINT VALUE 7.3461

DEMAND SCAN DAY 3 TIME 9.10
1\ "-

V V

Programming Techniques 285

.0 V
17 32000.00 -32000.00 18 32000.00 -32000.00
19 32000.00 -32000.00 20 U888:88 :~~~~~:~~ 21 32000.00 -32000.00 22
23 32000.00 -32000.00 2 If. 32000.00
25 32000.00 -32000.00 26 32000.00 -32000.00
27 32000.00 -32000.00 28 32000.00 -32000.00
29 32000.00 -32000.00 30 32000.00 -32000.00
31 32000.00 -32000.00 32 32000.00 -32000.00
33 32000.00 -32000.00 3 If. 32000.00 -32000.00
35 32000.00 -32000.00 36 32000.00 -32000.00
"37 32000.00 -32000.00 38 32000.00 -32000.00
39 32000.00 -32000.00 40 32000.00 -32000.00

CLOSED LOOP SET POINTS FOR NEW GRADE
POI NT SETPT POI NT SETPT PO I NT SETPT POINT SETPT

1 I) 2 I) 3 0 If. 0
5 I) 6 0 7 70 ~ 29

NORMAL SCAN DAY If. TIME 13. If. 8

NORMAL SCAN DAY If. TIME 13.50

NORMAL SCAN DAY If. TIME 13.52

NORMAL SCAN DAY If. TIME 13. 5 If.

NORMAL SCAN DAY 4 TIME 13.56
F91f. 13.971f. OF50

RESTART

NORMAL SCAN DAY If. TIME 13.58

LOG15 DAY If. T I~IE 14.00
OP-GUIDE POINTS

POI NT VALUE POI NT VALUE POINT VALUE POINT VALUE
1 14156.00 2 9721f..00 3 34.00 If. 24.00
5 1f..98 6 4.98 7 5.00 8 1f..90
9 4.94 10 5.04 11 4.98 12 4.98

13 28.00 1 If. 26.00 15 14.00 16 18.00
17 706.00 18 706.00 19 708.00 20 706.00
21 706.00 22 704.00 23 716.00 2 If. 708.00
25 706.00 26 701f..00 27 714.00 28 706.00
29 704.00 30 716.00 31 704.00 32 712.00
33 7011.00 34 714.00 35 708.00 36 702.00
37 712.00 38 704.00 39 716.00 If. 0 704.00

CLOSED LOOP POINTS
POI NT VALUE POI NT VALUE POINT VALUE POINT VALUE

1 0 2 0 3 0 4 I)

5 0 6 0 7 70 8 29

ONE HOUR LOG nAY 4 TIME 14.00

NORMAL SCAN DAY 4 TIME 111.00

NORMAL SCAN DAY 4 TIME 14.02

" V

286

~ ONE HOUR LOG IJAY TIME 9.00

NORMAL SCAN DAY TIME 9.00

7 0 0 0 0 n 9 5
0 0 0 0 0 0 0 0

LOOP 7 NEW SET POINT 95 DAY TIME 9.02

NORMAL SCAN DAY 3 TIME 9.02
CE UNMASK CORE LOAD--PRE5S START TO EXIT FROM CORE LOAD
CE I 09.070

SSO ON ERR CNTR5
SSI ON 1443
5S2 ON 2310
5S3 ON 1053
2310
UNIT USER ORIGINAL

1 00 01
2 02 02
3 00 00

2310
UNIT USER ORIGINAL

1 01 01
2 02 02
3 00 00

51-II TCH PACKS

NORMAL SCAN DAY TIME

START OF GRADE 85 PRODUCTION TIME
OP-GUIDE LIMITS FOR NEW GRADE
POINT HIGH LIMIT LOW LIMIT

1 32000.00 -32000.~0
3 32000.00 -32000.00
5 5.50 4.50
7 5.50 4.50
9 5.50 4.50

11 5.50 4.50
13 32000.00 -32000.00
15 32000.00 -32000.00
17 32000.00 -32000.00
19 32000.00 -32000.00

9.04

0.20 START TIME

POINT
2
4
6
8

10
12
14
16
18
20

HIGH LI MI T
32000.00
32000.00

5.50
5.50
5.50
5.50

32000.00
32000.00
32000.00
32000.00

9.05 DAY

LOW LIMIT
-32000.00
-32000.00

4.50
4.50
4.50
4.50

-32000.00
-32000.00
-32000.00
-32000.00

Programming Techniques 287

A A

CQ y y

CLOSED LOOP POINTS
PCiINT VALUE POI NT VALUE POINT VALUE POINT VALUE

1 0 2 0 3 0 4 0
5 0 6 0 7 29 8 70

ONE HOUR LOG DAY 2 TIME 8.00

START OF GRADE 95 PRODUCTION TIME 0.20 START TIME 8.04 DAY

LOG15 DAY 2 TIME 8.15
OP-GUIDE POINTS

POI NT VALUE POI NT VALUE POINT VALUE POINT VALUE
1 14154.00 2 9454.00 3 26.00 4 -6"2.00
5 4.97 6 4.98 7 5.00 8 4.90
.9 4.94 10 5.04 11 4.98 12 4.98

13 0.19 14 0.02 15 0.57 16 -0.00
17 712.00 18 710.00 19 710.00 20 708.00
21 710.00 22 710.00 23 710.00 24 712.00
25 708.00 26 712.00 27 708.00 28 706.00
29 710.00 30 708.00 31 706.00 32 710.00
33 708.00 34 708.00 35 708.00 36 708.00
37 708.00 38 706.00 39 710.00 40 710.00

CLOSED LOOP PO I NTS
POINT VALUE POINT VALUE POINT VALUE POINT VALUE

1 0 2 -1 3 0 4 0
5 0 6 0 7 69 8 30

SH I FT END LOG DAY TIME 8.15

START OF GRADE 96 PRODUCTION TIME 0.20 START TIME 8.25 DAY

LOG15 DAY 2 TIME 8.30
OP-GUIDE POINTS

POINT VALUE POINT VALUE POINT VALUE POINT VALlJE
1 14154.00 2 9454.00 3 24.00 4 -80.00
5 4.97 6 4.98 7 5.00 8 4.90
9 4.94 10 5.04 11 4.98 12 4.98

13 0.88 14 0.20 15 0.40 16 -0.00
17 71u.OO 18 710.00 19 710.00 20 708.00
21 716.00 22 712.00 23 710.00 24 710.00
25 7111..00 26 710.00 27 706.00 28 714.00
29 708.00 30 708.00 31 712.00 32 714.00
33 708.00 34 712.00 35 712.00 36 714.00
37 706.00 38 710.00 39 712.00 40 712.00

CLOSED LOOP POINTS
POINT VALUE POINT VALUE POINT VALUE POINT VALUE

1 0 2 0 3 0 4 0
5 0 6 0 7 2!l 8 70

MONDAY MORNING REPORT DAY TIME 8.30

START OF GRADE 97 PRODUCTION TIME 0.20 START TIME 8.45 DAY

LOG15 DAY 2 TIME 8.45
OP-GUIDE POINTS

POINT VALUE POI NT VALUE POINT VALUE POINT VALUE
1 14156.00 2 9444.00 3 36.00 4 -82.00
5 4.97 6 4.98 7 5.00 8 4.90
9 4.94 10 5.04 11 4.98 12 4.98

13 0.71 H 0.36 15 0.69 16 -0.00
17 706.00 18 708.00 19 712.00 20 712.00
21 712.00 22 716.00 23 710.00 24 712.00
25 710.00 26 716.00 27 714.00 28 712.00
29 710.00 30 714.00 31 710.00 32 710.00
33 712.CO 34 710.00 35 710.00 36 712.00
37 710.00 38 ",10.00 39 710.00 40 710.00

CLOSED LOOP PO I NTS
POINT VALUE POINT VALUE POINT VALliE POINT VALUE

1 0 2 0 3 0 4 0
5 () 6 0 7 36 8 63

I l

V y

288

A

~ (Continued)
,

LOG15 DAY 2 TIME 9.00
OP-GUIDE POINTS

POINT VALUE POINT VALUE
1 14156.00 2 9438.00
5 4.97 6 4.98
9 4.94 10 5.04

13 0.28 14 0.36
17 708.00 18 711+.00
21 714.00 22 714.00
25 712.00 26 710.00
29 710.00 30 708.00
33 708.00 34 708.00
37 708.00 38 714.00

CLOSED LOOP POINTS
POINT VALUE POI NT VALUE

1 0 2 -1
5 0 6 0

ONE HOUR LOG OAY 2 TIME 9.00
PRODUCTION STOP TIME 9.10 DAY 2

_A ,

0 11 JOB A
9 II * UPDATE A PROCESS JOB FILE ON DISK

II XEQ LOADJ FX

PROCESS JOB FILE LOAD TIME 11.14
GRADE NUMBER 12345 PRODUCTION TIME
OP-GUIDE LIMITS FOR GRADE
POINT HIGH LIMIT LOW LIMIT

1 32000.00 -32000.00
3 32000.00 -32000.00
5 5.45 4.96
7 5.45 4.96
9 5.45 4.96

11 5.45 4.96
13 32000.00 -32000.00
15 32000.00 -32000.00
17 32000.00 -32000.00
19 32000.00 -32000.00
21 32000.00 -32000.00
23 32000.00 -32000.00
25 32000.00 -32000.00
27 32000.00 -32000.00
29 32000.00 -32000.00
31 32000.00 -32000.00
33 32000.00 -32000.00
35 32000.00 -32000.00
37 32000.00 -32000.00
39 32000.00 -32000.00

CLOSE0 LOOP SET POINTS FOR GRADE
POINT SETPT POINT SETPT
102 0
5 0 6 0

PROCESS JOB FILE LOAD TIME 11.14
GRADE NUMBFR 4530 PRODUCTION TIME
OP~GUIDE LIMITS FOR GRADE
POINT HIGH LIMIT LOW LIMIT

1 32000.00 -32000.00

3 32000.00 -32000.00
5 5.55 4.45
7 5.55 4.45
9 5.35 4.45

11 5.63 4.45
13 32000.00 -32000.00
15 32000.00 -32000.00
17 32000.00 -32000.00
19 32000.00 -32000.00
21 32000.00 -32000.00
23 32000.00 -32000.00
25 32000.00 -32000.00
27 32000.00 -32000.00
29 32000.00 -32000.00
31 32000.00 -32000.00
33 32000.00 -32000.00
35 32000.00 -32000.00
37 32000.00 -32000.00
39 32000.00 -32000.00

CLOSED LOOP SET POINTS FOR GRADE
POINT SETPT POINT SETPT
102 0
5 0 6 0

A
1

POINT
3
7

11
15
19
23
27
31
35
39

POINT
3
7

1.30

POINT
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

POINT
3
7

1.25

POINT
2

4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

POINT
3
7

VALUE
22.00

5.00
1+.98
0.67

708.00
710.00
712.00
712.00
710.00
708.00

VALUE
0

69

HIGH LIMIT
32000.00
32000.00

5.45
5.45
5.45
5.45

32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00

SETPT
o

15

HIGH LIMIT
32000.00

32000.00
5.45
5.45
5.65
5.62

32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00

SETPT
o

65

POINT
4
8

12
16
20
24
28
32
36
40

POINT
4
8

.l
y

LOW LIMIT
-32000.00
-32000.00

4.96
4.96
4.96
4.96

-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00

VALUE
-78.00

4.90
1+.98

-0.00
710.00
712.00
714.00
712.00
712.00
711+.00

VALUE
0

30

POINT
4
8

SE TPT
o

86

LOW LIMIT
-32000.00

-32000.00
4.45
4.45
4.45
4.45

-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00

POINT
4
8

SETPT
o

83

Programming Techniques 289

o (Continued)

PROCESS JOB FILE LOAD TIME 11.14
GRADE NUMBER 4531 PRODUCTION TIME
OP-GUIDE LIMITS FOR GRADE
POINT HIGH LIMIT LOW LIMIT

1 32000.00 -32000.00
3 32000.00 -32000.00
5 5.23 5.20
7 5.23 5.21
9 32000.00 -32000.00

11 32000.00 -32000.00
13 32000.00 -32000.00
15 32000.00 -32000.00
17 32000.00 -32000.00
19 32000.00 -32000.00
21 32000.00 -32000.00
23 32000.00 -32000.00
25 32000.00 -32000.00
27 32000 00 -32000.00
29 32000.00 -32000.00
31 32000.00 -32000.00
33 32000.00 -32000.00
35 32000.00 -32000.00
37 32000.00 -32000.00
39 32000.00 -32000.00

CLOSED LOOP SET POINTS FOR GRADE
POINT SETPT POINT SETPT
102 0
5 0 6 0

PROCESS JOB FILE LOAD TIME 11.14
GRADE NUMBER 4532 PRODUCTION TIME
OP-GUIDE LIMITS FOR GRADE
POINT HIGH LIMIT LOW LI MIT

1 14200.00 14100.00
3 30.00 20.00
5 5.10 4.90
7 5.10 4.90
9 5.10 4.90

11 5.10 4.90
13 25.00 15.00
15 32000.00 -32000.00
17 32000.00 -32000.00
19 32000.00 -32000.00
21 32000.00 -32000.00
23 32000.00 -32000.00
25 32000.00 -32000.00
27 32000.00 -32000.00
29 32000.00 -32000.00
31 720.00 700.00
33 32000.00 -32000.00
35 32000.00 -32000.00
37 32000.00 -32000.00
39 720.00 700.00

CLOSED LOOP SET POINTS FOR GRADE
POINT SETPT POINT SETPT

1 0 2 0
5 0 6 0

PROCESS JOB FILE LOAD TIME 11.15

II JOB A
II END OF ALL JOBS FOR NOW

290

0.10

POINT
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

POINT
3
7

HIGH LIMIT
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00
32000.00

SETPT
o

45

5.45

POINT HIGH LIMIT
2 9890.00
4 -10.00
6 5.10
8 5.10

10 5.10
12 5.10
14 25.00
16 32000.00
18 32000.00
20 32000.00
22 32000.00
24 32000.00
26 32000.00
28 32000.00
30 720.00
32 720.00
34 32000.00
36 32000.00
38 720.00
40 720.00

POINT SETPT
3 0
7 98

LOW LIMIT
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00

POINT
4

SETPT
o

47

LOW LIMIT
9880.00
-30.00

4.90
4.90
4.90
4.90

15.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00
-32000.00

700.00
700.00

-32000.00
-32000.00

700.00
700.00

POINT SETPT
4 0
8 12

APPENDIX A. TSX SYSTEM COMPOSITION AND CAPABILITIES

ON-LINE SYSTEM

OFF-LINE SYSTEM
ON-LINE SYSTEM

WITH WITHOUT TASK LOADED FROM CARDS
TIME-SHARING TIME-SHARING

FIXED CORE CONTAINS SKELETON SKELETON TASK TASK

SKELETON AREA OF DISK
CONTAINS SKELETON SKELETON TASK SKELETON

TSC IN FIXED CORE YES NO NO NO

NONPROCESS MONITOR (NPM)
FUNCTIONS YES NO YES YES

CORE LOAD BUILD -
NONPROCESS CORE LOADS YES NO YES YES

CORE LOAD BUILD -
PROCESS CORE LOADS YES NO NO YES

RESUL T OF COLD START SYSTEM SKELETON SYSTEM SKELETON TASK SYSTEM SKELETON

EXECUTE PROCESS CORE LOADS YES YES NO NO

EXECUTE PROCESS INTERRUPTS YES YES NO NO

EXECUTE PROGRAMMED
INTERRUPTS YES YES NO NO

EXECUTE TIMER INTERRUPTS YES YES NO NO

DATA PROCESSING 1/0
FUNCTIONS YES YES YES YES

PROCESS 1/0 FUNCTIONS YES YES YES NO

NPM ERROR MESSAGES YES NO YES YES

T AS K ERROR MESSAGES NO NO YES YES

EAC ERROR MESSAGES YES YES NO NO

CONTROL OF TASK FUNCTIONS NO NO YES YES

CONTROL OF NPM FUNCTIONS TSC, NONPROCESS NO N- APPLICABLE NONPROCESS SUPERVISOR NONPROCESS SUPERVISOR
SUPERVISOR AND JOB AND JOB STACK AND JOB STACK
STACK

CONTROL OF PROCESS
FUNCTIONS SYSTEM SKELETON SYSTEM SKELETON N ON-APPL ICAB LE NON-APPLICABLE

METHOD OF CALLING CORE NAME CARD, INTERRUPTS, NAME CARD, INTERRUPTS, IIXEQ AND LINK NON-APPLICABLE
LOADS CALLS TO: CHAIN, VIAQ, CALLS TO: CHAIN, VIAQ,

SPECL, BACK, DPART, SPECL, BACK, DPART, AND
INTEX, SHARE, IIXEQ INTEX
AND LINK

VARIABLE AREA OF CORE PROCESS CORE LOADS, PROCESS CORE LOADS, NONPROCESS MONITOR, NONPROCESS MONITOR,
CONT.A.INS NONPROCESS CORE EDP PROGRAMS, AND SYSTEM LOADER, TASK TASK UTILITIES, SYSTEM

LOADS, NONPROCESS COLD START UTILITIES, NONPROCESS LOADER AND SKELETON
MONITOR, EDP CORE LOADS AND BUILDER
PROGRAMS, AND COLD SKELETON BUILDER
START

Appendix A. TSX System Composition and Capabilities 291

APPENDIX B. SUMMARY OF TSX CALL STATEMENTS

Where U sed Code

I

M

M

M, I, N*, C

M, I, N*, C

M, I, N*, C

M, I, N*, C

M

M, I, C

292

Statement

CALL INTEX

CALL CHAIN (NAME)

CALL SPECL (NAME)

CALL BACK

CALL QIFON (NAME, P,
L, I, E)

CALL CLEAR (M, L, I,
•••• ,L,I,)

CALL QUEUE (NAME,
P, E)

CALL UNQ (NAME, P)

CALL VIAQ

CA LL MASK (I, J)

Description

Causes return of control to MIC on interrupt exit.

Mainline core load designated by NAME is loaded and
executed.

Mainline core load containing this call is saved on disk.
Mainline core load designated by NAME is loaded and
executed.

Mainline core load saved as a result of a CALL SPECL
is restored to core and execution continues with the
statement following the special call.

Specified interrupts, that have been recorded, will be
queued in the order called by the CALL QIFON statement
and according to its designated parameters.

NAME - name of the mainline core load.
P - execution priority of the named mainline core load.
L - interrupt level or indicator.
I - PISW bit position indicator or CALL COUNT

indicators.
E - error parameter to specify the action to be taken

if queue is full.

Specified interrupts will be cleared of recorded status
whether they were recorded or not. M specifies the
number of L and I parameters to follow. L and I are
the same as designated for CALL QIFON. If M = 0,
all recorded status is cleared.

Mainline core load designated by NAME is entered in
core load queue with priority P and error option E.

Mainline core load designated by priority P and NAME
will be removed from the core load queue.

Last logical statement of a mainline core load. The
first core load, of the highest priority entered in the
queue, is loaded and executed.

Interrupt levels specified by data statements for I and J
are masked (no unmasking occurs).

Where Used Code

M, I, C

M, I, N*, C

M, I, C

M, I, N, C

M, I, N*, C

M, I, N*, C

M,X

M, I, C

M, I, N*, C

M, I, N, C

M, I, C

M, I, C

Statement

CALL UNMK (I, J)

CALL SAVMK (I, J)

CALL RESMK (I, J)

CALL OPMON

CALL TIMER (NAME, I,
INT)

CALL COUNT (IN, I, INB)

CALL SHARE (I)

CALL ENDTS

CALL SETOL (I)

CALL CLOCK (I)

CALL LEVE L (L)

CALL DPART

M - Mainline core loads only.
I - Interrupt core loads only.
N - Nonprocess core loads only.
C - Combination mainline and interrupt core load.

Description

GC26-3703-1
TNL: GN34-0036
Technical Change

Interrupt levels specified by data statements for I and J
are unmasked (no masking occurs).

Interrupt level mask status is saved in I and J (no
masking or unmasking occurs).

Interrupt levels are masked according to I and J (all
others are unmasked).

Operation Monitor is reset.

Interval timer specified by I (lor 2) is set up to count
INT intervals. After INT intervals have elapsed, ITC
will branch to NAME (user's subprogram).

Program interval timer specified by I (1, 2, 3, ••• ,9)
is set to count INB intervals. Upon completion of INB
intervals, the ITC will branch to the subroutine
specified by IN (IN specifies a subroutine number from
o - 31).

The present core load is saved and nonprocess time ...
sharing is set up for I timed intervals.

Time-sharing is terminated.

Programmed clock is set to equal I.

Clock is read into I.

Calls the programmed interrupt specified by the hard
ware level L (L must be between 0 -23).

Tests the operation level of present use and, if an
interrupt level exists, executes a CALL INTEX; other
wise a CALL VIAQ is executed.

* - Must be an XEQ from core load area (INTERVAL TIMER CONTROL REQUIRED)
X - Must be an XEQ from core load area (TIME -SHARING REQUIRED)

Appendix B. Summaxy of TSX Call Statements 293

APPENDIX C. ASSEMBLER LANGUAGE TSX CALLS

This section describes the Assembler language
equivalent of the FOR TRAN CALL statements pro
vided in the time-sharing executive system.

Machine Interval Timers

The Assembler language statements to call the
TIMER subprogram are:

CALL TIMER
CALL NAME
DC A
DC B

where NAME is the name of the subprogram to be
executed when the time specified by B has elapsed.
A and B must be defined as:

A DC 1 For machine interval timer

or
(A).

2 For machine interval timer
(B).

B DC XX The number of intervals to be
counted before the subprogram
is executed.

Programmed Interval Timers

The Assembler language statements to call the
COUNT subprogram are:

CALL COUNT
DC A
DC B
DC C

where the parameters A, B, and C must be defined
as:

B DC 1-9 Programmed timer number

294

C DC XX

A DC 0-31

The number of intervals to be
counted before the subprogram
is executed.

Number of the subprogram to
be executed when the time has
elapsed.

The A ssembler language statements to be used to
read and to set the programmed real-time clock are:

Read:

CALL CLOCK
DC A

where A is the address of the location where the con
tents of the clock are to be stored.

Set:

CALL SETCL
DC A

where A must be defined as:

A DC XXXX The time to be used for setting
the clock. The time must be
represented in hours and
thousandths of hours (i. e. ,
00000 through 23999).

PSC Statements

The following Assembler language statements are
equivalent to the FOR TRAN language calls for core
load sequencing.

CALL BACK I
CALL ENDTS
CALL VIAQ
CALL DPART

No parameters are required
for these calls.

Call Chain:

CALL CHAIN
CALL NAME

where NAME is the name of the core load to be
executed.

Call Special:

CALL SPECL
CALL NAME

where NAME is the name of the core load to be
executed.

Call Queue:

CALL QUEUE
CALL NAME
DC A
DC B

where NAME is the name of a core load to be added
to the queue. A and B must be defined as follows.

A DC 1-32,767 Priority Number

1-32,766 Replace the lowest priority
entry on error condition

or

o
or

32,767

Call Unqueue:

CALL UNQ
CALL NAME
DC A

Ignore the call on error
condition
Restart on error condition

where NAME is the name of a core load whose entry
is to be removed from the queue. A must be defined
as follows:

A DC 1-32,767 Priority Number

Call Time-Share:

CALL SHARE
DC A

where A must be defined as follows:

A DC xx Number of programmed timer
base intervals to be used for
nonprocess operations.

Call Programmed Settable Interrupts:

CALL LEVEL
DC A

where A must be defined as:

A DC 0-23

Interrupt Calls

User specified hardware level
to cause interrupt

The following Assembler language statements are
used to service and clear recorded interrupts.

Call Interrupt Exit:

CALL INTEX No parameters are required for
this call

Service Recorded Interrupts

CALL QIFON
CALL NAME
DC
DC
DC
DC

A

B
C
D

where NAME is the name of the core load to be
serviced if recorded. A, B, C, and D must be
defined as follows:

Appendix C. Assembler Language TSX Calls 295

A DC XX Priority number
B DC XX Interrupt level number or

indicator
C DC XX Position within PISW or

indicator
D DC 1-32,767 Replace lowest priority entry

or on error condition
0 Ignore the c all on error

or condition
32,767 Restart on error condition

Clear Recorded Interrupts:

CALL CLEAR CALL CLEAR
DC A DC A (when A = 0)
DC B(1)
DC C(1)
DC B(2)
DC C(2)

where A, B, and C must be defined as follows:

A DC XX Number of Bs and Cs which
follow. If zero, all recorded
status is cleared

B DC XX Interrupt level number or
indicator. Not used if A = 0

C DC XX Position within PISW or
indicator. Not used if A = 0

Miscellaneous Subroutines:

The following Assembler language statements are
used to link the miscellaneous subroutines.

Mask:

CALL MASK
DC A
DC B

where A and B must be defined as:

296

A DC /0000 Levels to masked. A represents
the first 14 levels (0 through 13).
For example, to mask levels
o - 13, use: /FFFC

B DC /0000 Levels to be masked. B re-
presents the second 10 levels
(14 through 23). For example,
to mask levels 14 through 23,
use: /FFCO

Unmask:

CALL UNMK
DC A
DC B

where A and B must be defined the same as shown for
CALL MASK. The designated levels are unmasked.

Save Mask:

CALL SAVMK
DC A
DC B

where A and B are the addresses of the core storage
words where the contents of the interrupt mask
register are to be placed:

Restore Mask:

CALL RESMK
DC A
DC B

where A and B are the levels defined for the CALL
MASK or CALL UNMK.

Reset Operations Monitor:

CALL OPMON No parameters are required
for this call

APPENDIX D. CONTENTS OF THE FIXED AREA OF CORE

Address Address

Decimal Hexadecimal
Description of Use Decimal Hexadecimal

Description of Use

00000 0000 Reserved 00038 0026 Physical 1443-1 device table
address

00001 0001 Branch instruction (/4400)
00039 0027 Physical 1443-2 device table

00002 0002 CE routine entry address address
(EACA)

00003 0003 Selective dump word
00040 0028 Beginning address of MIC

00004 0004 Interval timer A
00041 0029 User time-sharing time

00005 0005 Interval timer B
00042 002A Constant: -1

00006 0006 Interval timer C
00043 002B Constant: -10

00007 0007 General I/o busy indicator
00044 002C Entry address to 1053 no

response subroutine

00008 0008 Internal error interrupt 00045 002D Timer busy indicators
branch address

00009 0009 Trace interrupt branch
00046 002E Mask register (0-13)

address 00047 002F 10CC control word for

00010 OOOA Mainline return address
UNMKI

from CE routine 00048 0030 Mask register (14-23)

00011 OOOB Level 0 interrupt address 00049 0031 10CC control word for

00012 OOOC Leve I 1 Interrupt address
UNMK2

00013 OOOD Level 2 interrupt address
00050 0032 Mask levels 0-13

00014 OOOE Leve I 3 interrupt address
00051 0033 10CC for leve Is 0-13

00015 OOOF Leve I 4 i nte rrupt address
00052 0034 Mask levels 14-23

00016 0010 Leve I 5 interrupt address
00053 0035 10CC for levels 14-23

00017 0011 Level 6 interrupt address
00054 0036 Pseudo accumulator (WK4)

00018 0012 Level 7 interrupt address
00055 0037 Pseudo accumulator (WK5)

00019 0013 Leve I 8 interrupt address
00056 0038 1 = time-shoring is in

progress;

00020 0014 Level 9 interrupt address
a = not in progress

00021 0015 Level 10 interrupt address 00057 0039 Address of magnetic tope
sense control word

00022 0016 Level 11 interrupt address
00058 003A 1 = ITC is in system

00023 0017 Level 12 interrupt address director;
0= ITC is not included

00024 0018 Level 13 interrupt address
00059 003B Non-zero indicates TASK is

00025 0019 Level 14 interrupt address in core

00026 001A Level 15 interrupt address 00060 003C Address of timer A sub-
routine

00027 001B Level 16 interrupt address
00061 003D Address of timer B sub-

00028 001C Level 17 interrupt address routine

00029 OOID Level 18 interrupt address 00062 003E Program timer 1

00030 001E Level 19 interrupt address 00063 003F Timer 1 subprogram number
(1-32)

00031 001F Leve I 20 interrupt address
00064 0040 Timer lon-off branch

00032 0020 Leve I 21 interrupt address
00065 0041 Program timer 2

00033 0021 Leve I 22 interrupt address
00066 0042 Timer 2 subprogram number

00034 0022 Level 23 interrupt address (1-32)

00035 0023 1 = Loop on 1443 not ready 00067 0043 Timer 2 on-off branch
during non process program;
a = go to EAC 00068 0044 Program timer 3

00036 0024 L lical 1443-1 device table 00069 0045 Timer 3 subprogram number
address (1-32)

00037 0025 Logical 1443-2 device table 00070 0046 Timer 3 on-off
address branch

Appendix D. Contents of the Fixed Area of Core 297

Address Address

Decimal Hexadecimal Description of Use Decimal Hexadecimal Description of Use

00071 0047 Program timer 4 00105 0069 Interrupt core load ending
address

00072 0048 Timer 4 subprogram number
(1-32) 00106 006A CALL CHAI N entry

00073 0049 Timer 4 on-off branch 00107 006B System director ending
address

00074 004A Program timer 5
00108 006C Mask word out-of-core

00075 004B Timer 5 subprogram number interrupts (0-13)
(1-32)

00109 0060 Mask word for out-of-core
00076 004C Timer 5 on-off branch interrupts (14-23)

00077 0040 Program timer 6 00110 006E System mask save area (0-13)

00078 004E Timer 6 subprogram number 00111 006F System mask save area (14-23)
(1-32)

00112 0070 1 = AI basic overlap feature
00079 004F Timer 6 on-off branch available

00080 0050 Program timer 7 00113 0071 1 = AI expander overlap
feature available

00081 0051 Timer 7 subprogram number
(1-32) 00114 0072 Entry address for I/O error

00082 0052 Timer 7 on-off branch 00115 0073 EAC error code

00083 0053 Program timer 8 00116 0074 Error information

00084 0054 Timer 8 subprogram number 00117 0075 Error information
(1-32)

00118 0076 Error information
00085 0055 Timer 8 on-off branch

00119 0077 Error information
00086 0056 Program timer 9

00120 0078 Entry address of EAC
00087 0057 Timer 9 subprogram number

(1-32) 00'121 0079 Address of queue table

00088 0058 Timer 9 on-off branch 00122 007A Maximum number of queue
entries

00089 0059 Timer-sharing timer
00123 007B Number of interrupt levels

00090 005A Exit address of I/O routines used (NULEV)

00091 005B Time-shoring timer busy 00124 007C Entry address of disk
indicator routine

00092 005C Programmed clock 00125 0070 Entry address of list printer
routine

00093 0050 Programmed clock
00126 007E Entry address of system printer

00094 005E Branch to ITC exit routine routine

00095 005F Constant: -50 00127 007F Constant: /0600

00096 0060 Constant: 3 00128 0080 Constant: /0500

00097 0061 PAUSE routine indicator 00129 0081 Constant: /F800
specifying that interrupt has
occurred 00130 0082 Constant: /OFF8

00098 0062 Entry address of I/O test 00131 0083 Constant: /OOFF
routine (lOTST)

00132 0084 Constant: /8000
00099 0063 1 = CARON is in skeleton

00133 0085 Constant: /0001
00100 0064 Mask routine indicator:

1 = out-of-core interrupts are 00134 0086 Constant: /0002
masked

00135 0087 Constant: /0004
00101 0065 Address of CALL INTEX

processing routines 00136 0088 Constant: /0005

00102 0066 Beginning address of variable 00137 0089 Constant: /0007
core

00138 008A Constant: /OFFF
00103 0067 TV location (XR3)

00139 008B Constant: /2000
00104 0068 Interrupt level work area

address (XR3) 00140 008C Constant: /0180

298

Address Address

Decimal Hexadecimal
Desc ri pt i on of Use Decimal Hexadecimal Descriptian of Use

00141 008D Constant: 320 00171 OOAB TSC indicator: 0 = Call
nonprocess monitor;

00142 008E CALL LIN K entry address 1 = Call program from
save area

00143 008F Address of EAC disk down
00172 OOAC Entry point to TVSAV message
00173 OOAD Entry point to TVEXT

00144 0090 Constant: 321
Ending address of skeleton 00174 OOAE

00145 0091 Address of first word after I/O area

ETV
00175 OOAF Address of 1053 logical

00146 0092 Constant: /FFOO table

00147 0093 Constant: /FOOO 00176 OOBO Address of message buffer
table

00148 0094 Constant: /FF87 00177 OOBI Not used in an on-I ine system.

00149 0095 Not used Under TASK, this is the start-
i ng add ress of the T AS K core

00150 0096 Program timer busy indicator
dump program.

00151 0097 Not used
00178 00B2 Address of EAC constants

00152 0098 Entry address to set timers
00179 00B3 Entry address of nonprocess

busy
monitor read-in routine

00153 0099 Entry point to EAC printer
00180 00B4 Di sk FlO save area address

routine

00181 00B5
Non-disk FlO save area

00154 009A Entry point to OZSAV address

00155 009B Entry point to QZEXT
00182 00B6 Entry point to EXIT

subroutine

00156 009C High Core ending address 00183 00B7 Address of message buffer
of INSKEL COMMON, plus 1 disk address

00157 009D Length of skeleton 00184 00B8 Entry for DISKN from ETV
COMMON

00158 009E Address of message buffer
00185 00B9 Entry for TYPEN from ElV

drive code 00186 OOBA Entry for PRNTN from ElV

00159 009F I/O Error routine entry/ 00187 OOBB Address of disk drive table return address

00160 OOAO Program interrupt 10CC
00188 OOBC Address of logical drive 0

(0-13) device table

00161 OOAI 10CC control word
00189 OOBD Address of logical drive 1

device table

00162 00A2 ~ogmm in~rru~ 10CC 00190 OOBE Address of logical drive 2 (14-23)
device table

00163 00A3 10CC control word 00191 OOBF Address of physical drive 0
device table

00164 OOM TAS K nonprocess monitor abort
indicator 00192 OOCO Address of physical drive 1

device table
00165 00A5 EAC printer type code:

0= 1053, 1 = 1443 00193 OOCI Address of physical drive 2
device I"oblt

00166 00A6 List printer type code:
0= 1053, 1 = 1443 00194 00C2 Address of save area for

unformatted FlO
00167 00A7 System printer type code:

0= 1053, 1 = 1443 00195 00C3 Address of inskel ETV

00168 00A8 Core size minus 1 00196 00C4 Address of variable ElV

00169 00A9 Address of 1442 entry in 00197 00C5 Special save indicator
i nte rrupt branch tab Ie

00198 00C6 User time-sharing (TISHA)
00170 OOAA Address of FORTRAN I/O for CALL VIAQ when Queue

table is empty.

Appendix D. Contents of the Fixed Area of Core 299

INDEX

Absolute loader function 13

TASK 187

operation 188

Absolute programs, sector break

A and B timers 43-45

ADC 191

Address protection
AIPTN subroutine

AIRN subroutine

AISQN subroutine

Analog

185

75

75
75

input functions 206
input log listing 264-266

multiplexer 191

process I/O 191

128-130

to-digital converter (ADC) 191

Analog input basic (AlB) 137

Analog input basic with comparator (AIBC) 137

Analog input extended (AlE) 13 7

Analog input extended with comparator (AlEC) 137

Arithmetic and functional subroutines 10

Assemble and execute nonprocess program 80-81

Assembler

ASM 11, 74, 122

Call subroutines 181

Control cards 79, 181

implicit and explicit subroutines 169-170

TSX calls 294-296

Writing assembler language subroutines 181-184

Assembling programs 80-82

Assignment card restrictions 128

*ASSIGNMENT cards, function of 126-127

Assignment table (AT) and loader 122

Automatic mode, loader 188
Automatic time-sharing (VIAQ) 49

BACK 19-20

Back-up capability, EAC 60

Bootstrap for nonprocess supervisor 122
Buffering of messages 119-121

Buffer size, disk 120

Building TSX operating tables 124-125

BZl-8 118

Calculating core size

skeleton 172

system director 132-133

TASK 120-121

CALL

300

BACK 19-20

CHAIN 18

CLEAR 41

CLOCK 46

COUNT 46
DPART 31

ENDTS 48

EXIT 49

INTEX 30

LEVEL 49, 145
LINK 49

MASK 40

OPMON 59

QIFON 23-25

QUEUE 20-23

RESMK 40

RETURN 33

SAVMK 40

SETCL 45

SHARE 48

SPECL 18

TIMER 43

UNMK 40

UNQ 23

VIAQ 25, 49

Call COUNT subroutines 147

CALL subroutines 186

assembler 181

timer 165

type 179

user programs 187

Calling process core load externally 106

CAR 68

Card reproducing 107

CARDN subroutine 75, 166

SUP 72

*CCEND and dump 98

CDINS 118

CDW example ~f,3

C • E. interrupt 199

C.E. level interrupt switch 70

CHAIN 18

Chaining technique 18-20
Channel address register (CAR) 68

Characteristics of interrupts 29

Checkpoint operation 197

CLEAR subroutine 41

Clock 46

real time 45-46

real time setup (SETCL) 45

Closed loop control 199

Coding, reentrant 6

Cold start

cards 121
CLST

EAC

9, 122, 151

70

logical number 109

off-line 111
on-line 107

program 9, 122
COLDS routines and time-sharing 198

Combination core load 215
COMMON

COMM 179
area 6-7, 76

area, INSKEL/ interrupt/normal 6-7

communications area and NPM 71

INSKEL 75
LOCAL 99

Communications area

Disk 72

nonprocess 72
Communications linkages 101-102
Compile and execute nonprocess programs 82

Compile and store nonprocess programs 81-82
Compiler, FORTRAN 11, 74

Compiling programs 80-82

Components, system 7-11
COMSZ equate card 119, 161
Configuration, disk system 147-161

Console 200

interrupt 111 -112

interrupt logic 113

CONTA 118
Contact sense 192

Continue, EAC 71
Control

Direct Digital (DDC)

Error Alert (EAC) 14

Interval Timer (ITC)

Master Interrupt (MJC)
Multi-level 16

195

14, 133
13, 33-39

Program Sequence (PSC) 14, 17-18

Programs 8-9
Record analyzer, monitor 72
Record Entry Table (CRENT) 175

Time-sharing (TSC) 14
Control cards

Assembler 181
*INCLD 173

sequence of system loader 124
Control cards, Monitor 77

assembler 79
DUP 78

FORTRAN 78
loader 77
nonprocess monitor 77 - 79
simulator 79

Conversion subroutines 10, 76

Copying process data, example of 99
Core

contents, Fixed Area 297-299
Dump, EAC 59
exchange method, time-sharing 14

image formats 128

map, skeleton 178

off-line requirements 165
on-line (non time-sharing) requirements 165

on-line (time-sharing) requirements 164

storage factors 164

variable (VCORE) 8
Core load

area 82, 85, 101, 150, 160
area, delete 84-85

area, file-moving 99

area, loading 98
builder (CLB) 9, 122
combination 84
concept of a 5

deleting and replacing 82 -88
file area, reserving 97-98

interrupt 84
link 84
linkages, changing 86

mainline and interrupt 31, 84

mainline queue tables 132

nonprocess 84

queue table 14

rebuild 176

Core Load Builder (CLB) 122

Core size

calculating skeleton 172

skeleton 164-171

system director 132-133

COUNT subroutine 46, 147, 166, 197

NITP1/NITP2 147
Counters, update EAC error 60

CRD:MP Relocatable Dump to Cards program 123
CRENT 175
Cycle steal 192

DAC 192

DACS 9, 191
analog process I/O 191-192

applications 193

digital pr ocess I/O 192
DAOP subroutine 75

Data
channels and masking 29
entry dials 202

format 187
manipulation 97-99
sheets, program 210-220

Data acquisition and process control system (DACS) 9, 191

Data files 84

deleting/replacing 82 -88

dump from core load 98
DCOM 72, 122

entries 125
SUP 72

DDC 195, 199

Debugging
core loads 87
process programs 112

simulator 87 -96

system 203

Index 301

*DEDIT control card 127
parameters 127

*DEFINE CONFG 151-156, 164
control card 151

*DEFINE PAKDK (DUP) 150
operation 107

*DEFINE REMOV 150
*DELETE 82

Delete mainline 84-85

combination core loads 84-85
interrupt core loads

Deleting

core loads
data files

82-88
82-88

programs 82-88

84-85

Deleting from queue (UNQ) 23

Dependence, time 15
Design considerations, system 115-143

Devices with no interrupt 127

DICMP subroutine 75
DIEXP subroutine 76
Digital

control, direct 195
data display 202

input switches 202

process 1/0 192

to-Analog Converter (DAC) 192

DINP subroutine 76

Direct digital control (DDC) 195, 199
Director, system 8, 130-143
Disk

areas, assignment 159
buffer size 120

cartridge initialization 157-159

cartridges, changing of 148

configuration examples 154-156
drives and logical number 109
edit phase 128

file organization, example 205
hardware 148
layout 149-151

layout editing 125

map for system programs 122
organization 148-151
sector distribut ion 159

storage 159-161

system configuration 147-161
units conversion 148

utility program (DUP) 10-11, 74, 122
Disk Communications Area (DCOM) 72, 122
DISKN subroutine 3, 75, 166

EDP relation 70

DLABL

disk initialization 158

DWRAD, TDWA 159
functions of 159

LET/FLET 158
DMPAN Dump analysis program 123

DMPAl Dump analysis program 123

DMPA2 Dump analysis program 123

302

DPAR T routine 31

DP and process I/O subroutines 10, 166
Dummy interrupt core load 111
Dump

core storage 59
EAC 134

from relocatable area 98-99
from user area 98-99

LET/FLET table 107

*DUMP and *DUMPDA TA 98
function of DUP 59

Dumping from core load

*DUMPLET

LET/FLET 107
listing 235, 267, 278
use of 84

DUP 10, 11, 74, 122
control cards 78
facilities 11

ICLT 175

98

sectors on system cartridge

I I DUP control record 74
DWRAD

disk initialization 157
functions of 157-158

TDWA, DLABL comparison

EAC 14, 59-71
dump 134

error action

error codes

features of

68-71

61

59-60
on-line recovery 62-67

printer 199

program breakdown 60-68
system director 131

EBPA 102

EBT and ETV 163
LIBF 164

ECO 192

ECPT2 118

Edit phase, disk 128

Editing and LET/FLET, DCOM
Editing disk layout 125
EDP 151

DISKN relation 70

74

159

125

Electronic contact operate (ECO) 192
I lEND card and SUP 72
I lEND OF ALL JOBS card 25, 26

VIAQ 49
ENDTS 48-49

Entry to MIC 33-37
EPDM 150
Entry to SUP 73
EPSV 150

Equate cards and system director 131

TASK 117-119

Error

action, EAC 68-71

alert Control (EAC) 14, 59-71

codes, EAC 61

condition, servicing 4

counters, updating 60

decision subroutines 68, 70

disk program (EDP) 68
Dump Area (EDPM) 150
procedures, I/O 198

sample 197
programs 123

programs (EDP) 151

save area (EPSV) 150
subroutine, unused 60

ETV 162, 175

EBT 163

example 163

LIBF 162

PNT 163
Event sequence 15

Examples

Nonprocess Monitor 79-114

Execute highest priority core load (VIAQ) 25

Execute nonprocess

from core load area 82

from temporary area 80-81

Executive programs, functions of 12-114

EXIT 49

Exit

EAC 68
from MIC 37-39

procedures from interrupt 33

through interrupt level 71
ExpliCit subroutines 166

External calling of process core load 106
External interrupt level 134

FADD subroutine 143
Features, EAC 59-60

File area, reserving core load

File protection 149
*FlLES control record 97
Fixed area 161

core contents 297 -299
IOCC 145

FLET 82
definition of 122
entries 109

table dump 107
tables 122

FLIP 10, 101

FOR 11, 74, 123

FORTRAN

97-98

compiler (FOR) 11, 74, 123

control cards 78

DP I/O 166
files, sample use 206

implicit and explicit subroutines 167-168

I/O save area 150, 160

I/O subroutines 10

I/O table, example 163
sectors on system cartridge 74

Function buttons 202

Functional simulate -class subroutines 76

Functions of executive programs 12-114
Functions of system director 133-135

General TSX subroutines 76
Guard interrupt core load 111

Handling of interrupts 27-41
Hardware timers 43-45

HOLL 102

lAC

code example 126

code and I/O interrupt 182
codes and *ASSIGNMENT cards 126

codes and LUN 127
IBT 39

example 163

ICI 176, 179

ICLT 14, 35, 84, 144

core load rebuild 176

1ST 31

map 179

map interpretation 177

NIL card and DUP 175

PISW 143

ICNT indicator in INSKEL COMMON 50
ILSW 30, 126

assignment 136

bits and *ASSIGNMENT cards 126

interrupt level 35
PISW 143

Implementation of LOCALs 99-102

Implicit subroutines 166
*INCLD control card

core load rebuild 176

use of 173
In-core, EAC 68

In-core interrupt (ICI)

Index registers and MIC

176, 179
34

Initiating nonprocess monitor operation 109-110

Initiating time-sharing 48-50

Insert into queue (QUEUE) 20
INSK 179

INSKEL
call COUNT 210, 211, 213, 224-225, 228-229, 234

call TIMER 210, 227

COMMON 4, 50, 179, 203
interrupt subroutines 210-214, 225, 228, 229, 233

INSV 150

Internal interrupt level 134
Internal machine error, causes 68

Interprogram communication 7

Interrupt 7, 27-29
action of MIC 36

assignment restrictions 137

Branch Table (IBT) 35, 39
characteristics of 29

Control, Master (MIC) 13, 33-39

Index 303

core load 31-32, 215-218, 257-264
core load, delete 84-85

Core Load Table (lCL T) 14

exit (INTEX) 33
handling of 4, 27-41, 71

initiation of 15-16

I/O 27, 39
levels 28, 135, 185

levels exit 71

levels masking 29

levels, out-of-core 146

level and PISW group number 144
level, sensed by ILSW 35

masking 39-40, 186

per level 137

periodic 14

philosophy 7, 27-29

priority 135

procedures 33

programs, Mainline/Skeleton 30

*RCORD card 42

recording 41-42

restrictions 40, 71

routine exit (DPAR T) 33

routines, Mainline/Skeleton 30

Save Area (INSV) 37, 150

servicing subroutines (ISS) 30, 41, 42, 144

Status Table (1ST) 31, 35

structure 7
use of console 111-112

Interval timer control (ITC) 14, 133

Interval timers, use of 42-47

INTEX 30

INTKl, INTK2 117, 11 8

Input/Output (I/O)
analog process 191

associated conversion subroutines 166

device subroutines 30

digital process 192

error procedures 198

interrupts 27, 39

simulator subroutines 75

skeleton 12-13, 161

subroutines 182

unit table (lOUT) and loader 122

unit table (lOUT) and LUN 125

10CC locations in Fixed Area 145

ISS subroutine 144, 176

example of 183-184

I/O subroutine 182

1ST 31, 35

ICLT 31

ITC 14

functions of 42

system director 131

JOB 79-80

/ /JOB card and DCOM 72

SUP 72

304

Job deck 79-80

JTEST indicator in INSKEL COMMON 46

Keyboard Request, see INTKl, 2 117, 118
Language translators 11

LD(I) subroutine and timers 44,45
LET 74, 80, 82

entries 109

/FLET and DLABL 158, 159

/FLET entries 109, 125

table dump 107

tables 122

use of 81-82

Level

interrupt 134

interrupts per 137

interrupt switch 70

LEVEL subroutine 10, 49, 145

Level work areas 14, 137, 185

fixed section 139

layout 138

overlay section 138, 140-143

LIBF 101, 179

FLIP, LPT, VTV 101
subroutines 182, 186

user programs 187

Library Function Subroutines (LIBF) 101, 179, 182, 186, 187
Library, subroutine 123
LINK 49

Linkages, changing core load 86

Linkages, communication 101-102

LINS parameter 165

Loader

control cards 77
operation 123-125

system 9, 122

Loading

into cor~ load area 98

into NPWS 99

nonprocess system 123-124

Load Monitor function 13

LOCAL

calls 101

COMMON 99

definition of 5
implementation of 99-102

restrictions on use of 102

subprograms 5
uses of 102-103

Location Equivalence Table (LET) 74, 80-82, 107, 109, 110, 122,
125, 158-159

Log description, sample program 206

Logical number and disk drives 109

LPT (Local Parameter Table) 101

LSKEL parameter 164

LSKEL and VCORE 164

LUN
lAC codes 127

lOUT 125

maximum LUN on TSX 126

number assignment change 128

numbers and *ASSIGNMENT card

Machine features 1-2

Machine Timers: A, B, C 14

MAGT subroutine 75

Mainline Core Load 31, 213, 217

debugging with 112
listing of 238-247, 250-257

queue table 14, 132

Mainline process, delete 84-85

Mainline segmentation 22

Manipulation, data 97-99

Manual mode, loader 188

MASK subroutine 10, 39

Masking and data channels 29

Masking interrupt levels 29

Masking interrupts 39-40, 186

Master Branch Table (MBT) 125

126

Master Communications Area and Skeleton Common 175

Master Communications Words (MCW) 175

Master Interrupt Control (MIC) 13, 33-39, 131, 144, 185

MBT (Master Branch Table) 175

MBT and SKlBT 164

MCW 175

MESS 150

MESS and DEFINE CONFG 153

Message

buffer (MESS) 150

buffer area 160

buffer size, change 128

buffering 119-121

unit size 119

Method of operation, SUP 72-73
MIC 13, 33-39, 185

entry to 33-37

exit from 37-39

index registers 34

interrupt action 36

maximum number of serviced interrupts 39

NB card 33

sensing of ILSW /PISW 144

system director 131
Minimum system requirements 1-2

Miscellaneous subroutines 10

Modes of operation (of TSX) 3

Monitor

control cards 77

control record analyzer 72

Nonprocess (NPM) 71-114

Operations 42, 59, 134

Process 4

Monitoring, Process 4

Moving files in core load .area 99
Multi-drive TSX on-line system 156

Multi-interrupt priority 28-29

Multi-level control 16

Multi-level programming 7

Multi-process control 17

NIL cards and ICL T 175

NIL labels 143

NOBUF 118

NOCYL 118

Non-interrupt devices 127

Nonprocess

Communications Area 72

compile, store 80-82

core load 84, 85, 219-220, 268-277

core load listing 268-277

execute 80-82

Monitor (NPM) 25, 71-114

Monitor control cards 77 - 79

Monitor debugging 112

Monitor examples 79-114
Monitor initiating operation 109-110

Monitor utility functions 107 -114

program debugging 87

programs 80

save area (NPSV) 150

supervisor (SUP) 9, 72-73, 122

supervisor bootstrap 122

system 121-130

system loading 123-124

working storage (NPWS) 98-99
*NONPROCESS PROGRAM control card 81

Non-synchronous periodic scheduling 26
NORSP, System Director Equate card 132, 134
NPM 71

operation initiation 110

SHARE, VlAQ 110

NPSV 150

NPWS 98, 150, 159

NULEV 135

IC'LLl/ICLL2 cards 146
NUMBE 118

Number of interrupt levels 135

Object core size, change 128

Off-line

cold start 111

execution of user program 187

mode 3

skeleton rebuild 175

SYSGEN 116

OG/SC 194

ONLIN 119

On-line

core load rebuilding 85-86

EAC error codes 61

mode

output, sample system 208

process output listing, sample system 280-290

SYSGEN 115
system, multi-drive 156

Operations Monitor 42, 59, 134

time interval 59

Operator Guide Control 200

Index 305

Operator Guide/Supervisory Control OG/SC 194
OPMON 59

Out-of-core interrupt levels 146
Overview of TSX system 1-11

Packing user area 107
PAPIN subroutine 75

Parameters, *DEDIT control card 127
Patch Area (PTCH) 162, 179

Periodic program scheduler 197

Periodic scheduling, non-synchronous 26
Phase, Disk Edit 128
Philosophy, interrupt 27-29

Physical disk and logical number 109

PISW 30
assignment, combination of 145

ILSW 143
indicators 143

restrictions of use 144-146

sensing of interrupt 35

PLOTX subroutine 75

PNT 84, 162
ETV 163

Preparing dummy interrupt core loads 111
PRICS 118, 166

Primary (Interrupt) Time Base 44, 133

Printers, 1053/1816 14

Priority
assignments 29

interrupt 135

interrupt levels 28

multi-interrupt 28-29
techniques 20-25

PRNIN subroutine 3, 75, 166

Process
control 191

core load 86, 106
interrupt 32, 92, 144, 145

Interrupt Status Word (PISW) 143
Monitoring 4

program, definition of 80

program debugging 87

Save Area (PRSV) 151
Simulator 200-202

work storage (PRWS) 150
Processing programs 9-11

Program
breakdown, EAC 60 -68

cold start 9
compiling 80-82

control 8-9

data sheets 210-220

disk utility (DUP) 10, 11, 74

dump from core load area 98

interrupt, included with mainline 30
name table (PNT) 84

process and nonprocess 80

processing 9-11

306

scheduler, periodic 197
scheduling 14-26

sequence 15
Sequence Control (PSC) 14, 17-18

service 9-10
simulator 75-77

skeleton interrupt 30

user written 4
Programmed interrupts 145

Programmed timers 46

Programming, multi-level 7
reentrant coding 185-187
techniques 181-290

Protecting addresses 185

PRSV 151

PRWS 150
PSC 14, 17-18, 162

System Director 131

PTCH 179

QIFON 23-25

use of 24
Queue

core load on indicator (QIFON) 23
definition of 14

subroutine 20-23

table, core load 14

table, mainline core load 132
Queueing statements, use of 21

Queueing techniques 20-25

Read-and-transfer function 206

Real-time
clock 14, 45-46, 71

clock setup (SETCL) 46
subroutines 10
systems 191

Rebuilding FLET 128
Rebuilding process core loads 87

*RCORD and LOCALs 103

*RCORD card and interrupts 42
Recording interrupts 41-42

Recovery procedures, EAC 62-67

Recursive entry to programs 14
Reentrant

coding 6, 185-187

cuntrol 185

program, MIC 13
subroutine work level requirements 140-142

Reload, EAC 71

Relocatable

Area 81-82, 98-99

program area 159

program, replace 85

programs 82 -88
subroutine area 107

Relocation, TSX components 175

Repacking relocatable subroutine area 107

Replacing relocatable programs, coreloads, and data files 82-88

Reproducing cards 107

Reserving Core load file area 97 -98

RESMK 39

Re sponse time 165

mainline interrupt 7

Restrictions

assignment card 128

interrupt assignment 137

lOCAL 101

Simulator 77

Restart, EAC 71

RETURN 33

Return saved mainline (CAll BACK) 19

RPQ devices 30

Rules governing interrupts 42

Sample system, TSX 195

SAVMK 39

Scheduling

periodiC, non-synchronous 26

program 14-26

system 17

Secondary Time Base (CBASE) 133, 134

Sector break records for Absolute Programs 128-130

Sector, definition of 148

numbering 148

Segmenting mainlines 22

Selectable time-sharing (SHARE) 48
Selective Dump Word 70, 297
Selective replacement of PNT 86

*SEQCH function 86

Sequence checking 18

Sequence Control, Program (PSC) 14, 17-18
Sequence technique 18 -20

Service programs 9-10

Servicing error conditions 4
interrupts 41

subroutines 30-32

SE TCl subroutine 45

Setpoint station movement indicators 202

SFIO 175

SHARE and NPM initiation 110

SHARE subroutine 48

IISIM control record 75

SIM subroutine 123

Simulator (SIM) 11, 123

control cards 79

core load debugging 87

debugging 75, 87-96

functional simulate subroutines 76

hardware requirements 75

program 75

restrictions 77

TASK 87

termination subroutines 76

*SIMUlCI and SUP 72

*SIMULCI control record 75
SKA 175

SKEL 151

SKEl core map 236-238

Skeleton

Area (SKEl) 151

build function 13

build prerequisites 173

build process 173 -180

build supervisor phase (SKA) 175
builder 9,13,123,161,173-180

COMMON 161

core map interpretation 178

core size 164-171, 172

executive, role of 3-4

FORTRAN I/O table (SFIO)

interrupt branch table (SKIBT)
interrupt programs 30
I/O 3, 12-13, 161

rebuild, on-line 175

175

164

rebuilt core map 178

subroutine map (SK-SUB) 125

sUbroutine name table 175
subroutines 125, 164

Supervisor 72

table building 175

SKIBT and MBT 164

SKSUB 125, 175

Special Save Area (SPSV) 151

SPECl subroutine 18

SPSV 151

*STAR T SIMULA TION control card 87

Statements not used in error subroutines 60

*S TORECI and SUP 72

*STOREDATA function 84

*STOREMD operation 85

Subprograms, lOCAL 5
Subroutines

arithmetic 10, 76

Assembler implicit and explicit 169-170

assignment, interrupt 7

conversion 10, 76

DP and process I/O 10

FORTRAN implicit and explicit 167-168

FORTRAN I/O 10
function 10

general TSX 76

in skeleton 164

I/O device 30

library 9, 10, 123

miscellaneous 10

servicing 30-32

simulator 75 - 76

user-error 59-60

user-written 76, 162

SUP 72, 122

functions 72

sectors on system cartridge 72

Supervisor, Nonprocess 9, 72-73

skeleton 72

SYSGEN 115-117

listing, sample system 221-279

overview 116

steps, sample system 206-208

Index 307

TASK 116, 122

System
area allocation 153

components 7-11

concepts of TSX 3 - 7

configuration versatility 5
design 196
design considerations 115-143

documentation 203

flowchart, sample system 203-204

requirements, minimum 1
System director 4, 8, 13-71, 123, 130-143, 162

equate cards 131

functions of 133-135

size of 131-133

work areas 131
System loader 9, 122, 123-125, 221-223

listing, sample system 221-223

operation 123-125

System skeleton 12, 160, 161-180

area 160
constitution of 161-164
layout at build time 174
modify on-line 175

rebuilding of 175

Tables, LET/FLET 122
Table of variables, sample system 205
TASK (Temporary Assembled Skeleton) 8, 12-13, 115, 123

absolute loader 187
absolute program, example 189-190

conversion routines 13
core size calculation 120-121

director 13
disk write address (TDWA) 157

EBPRT 13

equate cards 117-119

Error Alert Control (TEAC) 13

functions 8
HOLEB 13

initialization 175

master interrupt control (TMIC) 13

program set 13

simulator 87

Skeleton Builder 161

System Skeleton 12

utilities 13

TBASE 49

TDWA

DWRAD, DLABL comparison 159
use of 149, 157

TEAC 13

Techniques

sequence or chaining 18-20

queueing and priority 20 -25
TEMP 82

Temporary area 80-81

Termination-class (simulator) subroutines 76

308

Time Bases

interrupt 45
primary 45, 133

secondary 134
timers, hardware 43 -45

Time dependence 15
Timer 45, 71

A, B, and C 14, 43-45, 71
comparison of 48

core location of 43
interval control program 14

programmed 46, 71

time bases 43

use of 42-47, 71
Time-shared NPM operation 114

Time -sharing 4, 134

Automatic Method 49
COLDS, sample system 198

control (TSC) 14

initiating 48-50
optimum 200

selectable 48
use of 47-50

TMIC 13

Transducers 191
Translators, language 11

TRPR T subroutine 10
TSC 14, 25

system director 131
TSX

CALL statements 292 -293

component relocation 175

operating tables 124
sample system 195
subroutine library 9-10

system composition and capabilities 291

TYPEN subroutine 3, 75

/WRTYN 166

UNMK 39

UNQ 23

Update error counters 60

User

area 85, 98-99, 107
disk area 149

error subroutine 59-60

programs under TASK absolute loader 187-190

subroutine listing 230-233, 247-250

subroutines 162,211-213,230-233,247-250

writing assembler language subroutines 181

written programs 4

Utilities, stand-alone 123
Utility functions, nonprocess monitor (general) 107-114

Utility Program, Disk (DUP) 74
UT7A Relocatable Dump program 123

Variable core 8
Variable Transfer Vector (VTV) 101

Versatility, System 5

VIAQ 25, 49

I lEND OF ALL JOBS card 49
NPM initiation 110

use of 25

Voltage sense 192

VTV 101, 163

Work areas, level 14, 137

Work level

reentrant subroutines 140-143
requirements 140-143

sections 138

Writing User Assembler subroutines 181-184
WRYTN subroutine 75

llXEQ card and SUP 72

Index 309

Technical Newsletter

IBM 1800 Time-Sharing Executive System
Concepts and Techniques
©IBM Corp. 1967,1970

File No. 1800-36

Base Publ. No. GC26-3703-1

This Newsletter No. GN34-0036

Date May 5, 1971

Previous Newsletter Nos. none

This Technical Newsletter, a part of Version 3, Modification 9 of the IBM 1800 Time-Sharing Executive
System, provides replacement pages for the subject publication. These replacement pages remain in
effect for subsequent versions and modifications unless specifically altered. Pages to be inserted and/or
removed are:

25,26
63,64
97,98
117,118
143-146
199,200
293,294

A change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments

This TNL incorporates technical changes required by the release of Version 3, Modification 9 of the TSX
system.

Note. Please me this cover letter at the back of the manual to provide a record of changes.

iBM Corporation, Systems Publications, Boca Raton, Florida 33432

©IBM Corp. 1971 PRINTED IN U.S.A.

READER'S COMMENT FORM

IBM 1800 Time- Sharing Executive System
Concepts and Techniques

• How did you use this publication?

As a reference source
As a classroom text
As a self-study text .

o
o
o

• Based on your own experience, rate this publication

As a reference source:

As a text:

Very
Good

Very
Good

• What is your occupation?

Good

Good

Fair

Fair

Poor

Poor

Order No. GC26-3703-1

Very
Poor

Very
Poor

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC26 -3703-1

YOUR COMMENTS, PLEASE ...

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold Fold

n
c
-l

J>
r
o
Z
GJ
-l
I
(f)

r
Z
m

...

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Publications Dept. D78

POSTAGE WILL BE PAID BY ...

I BM Corporation

Monterey & Cottle Rds.

San Jose, California

95114

FIRST CLASS

PERMIT NO. 2078

SAN JOSE, CALI F.

t ••••••••••••••••••••••••••••••••••• It •••

Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.IOSOl
[USA Onlyl

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International 1

Fold

.....
00
o o

()
()
N
0'1
I
W
-....:J o
W
I

GC26 -3703-1

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I060t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
f International]

I-"

00
o o

o
n
I\J
0\
f

W
'-l o
W
f
I-"

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060.0
	060.1
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071.0
	071.1
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149.0
	149.1
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313

