
4 Dp. OH: N MANOTES 4
 4

 4 4
 4

PLOT SUBROUTINE
FOR FORTRAN WITH FORMAT
($1620-\mathrm{FO}-004$ Version 1)

1. FORTRAN Plot Demonstration Deck to Read alues from and Compute the Sine, Cosine and Natural Log.
2. Plot Subroutine Program Deck
3. Plot Subroutine Source Deck
4. Plot Subroutine Demonstration Data Deck

Author: Edward A. VanSchaik IBM Corporation 370 W. First Street
Dayton, Ohio

Plot Subroutine for FORTRAN with Format

(1620-FO-004 Version 1)
Author: Edward A. VanSchaik
IBM Corporation
370 West First Street
Dayton 2, Ohio
Direct Inquiries To: Author
A. Purpose/Description: This program presents a subroutine which can be easily used in FORTRAN for plotting single or multiple curves without the GOTRAN problem of determining which curve has the lower magnitude. Also this method can be used to generate the curves on cards for off-line printing.
B. Method: N/A
C. Restrictions and Range: Normally a range of $0-70$ should be the limitation for typewriter output since the carriage can handle only 80 to 85 positions. The range for card output should be 72 characters minus the digits in the independent variable.
D. Accuracy: Negative numbers, floated numbers, and numbers outside of the allowable range produce an ERROR F9 message. .
E. Machine Confiquration: Basic 1620 Card system with minimum of 20K memory. The program is designed to work with the FORTRAN system without automatic divide
F. Program Requirements: The subroutine requires 432 core locations.
G. Source Language: Fortran
H. Program Execution Time: N/A
I. Check Out Status: N/A
J. Sample Problem Running Time: Approximately 45 minutes.
K. Comments: Major modifications must be made to use this subroutine with the FORTRAN version with automatic divide. This program and its documentation were written by an IBM employee. It was developed for a specific purpose and submitted for general distribution to interested parties in the hope that it might prove helpful to other members of the ata processing community. The program and its documentation are essentially in the author's original form. IBM serves as the distribution agency in supplying this program. Questions concerning the use of the program should be directed to the author's attention.

Plot Subroutine of IBM 1620 FORTRAN with Format

INTRODUCTION

Since many IBM 1620 applications are in areas where a rough plot of the results can be quite useful; it was felt that a subroutine incorporated into FORTRAN was necessary. GOTRAN provides a statement for plotting requiring a separate program and a knowledge of GOTRAN language. This write-up presents a subroutine which can be easily used in FORTRAN for plotting single or multiple curves without the GOTRAN problem of determining which curve has the lower magnitude. Also this method can be used to generate the curves on cards for off-line printing.

METHOD OF USE

Since a method of plotting multiple curves with any special characters was desired, the normal method of output (PRINT or PUNCH) was utilized with the incorporation of a new type FORMAT character Z. This subroutine is used with the output routines rather than the normal arithmetic statement. The basic FORTRAN statements to use this plot subroutine are:

PRINT
$2, \mathrm{X}, \mathrm{M}, \mathrm{N}, \mathrm{J}$
2 FORMAT (F10.5, 3Z*+.)
The first variable in the list is the independent variable which can be either fixed or floated point number. This variable will be handled in the regular output routine where the value is printed. The Z character in the format accomplishes the following:

1. The remaining values in the list will be plotted instead of printed.
2. The Z is handled by the compiler in the same routines designed for the H character except that the address compiled will be the address in the symbol table corresponding to the subroutine whereby the FORTRAN input/output package will branch to this address then to the relocated subroutine. The number and type of plot characters are stored similar to the H type.
3. The remaining values in the list are assumed to be fixed variables previously scaled to the range of output record minus the digits in the independent variable. (Example: for the case shown, the number should be scaled between 0 and 87 minus 10 (or 77). Normally a range of $0-70$ should be the limitation for typewriter output since the carriage can handle only 80 to 85 positions. The range for card
output should be 72 characters minus the digits in the independen variable. Negative numbers, floated numbers, and numbers outside of the allowable range produce an ERROR F9 message.
4. The first character after the Z will be used to plot the first variable in the list to be plotted. Remaining list values will use the next character until the list is satisfied. Therefore, no limitation on the number of variables exists except the 72 character statement size. If the number of variables in the list exceeds the number of plot symbols, an ERROR F9 message will occur.
5. The range of the plot starts at the next position after the last digit of the independent variable. Therefore, if the value of the variable to be plotted is 0 , the plot symbol will be inserted in the first position after the independent variable.

The statement may be either PRINT or PUNCH depending on whether the output is on the typewriter or cards. The subroutine sets up the FORTRAN output area with the independent variable and all plot symbols before giving the write command. For typewriter output, a record mark is inserted in the next position after the highest plot value to conserve typing time (A minimum of 20 characters is always typed). This produces a much faster method than GOTRAN and eliminates all problems of relative magnitude of curves.

FORTRAN Processor Modifications
To make the plot routine useable on a 20 K card system, space was used where the ACCEPT TAPE and PUNCH TAPE statements were previously located. If these commands are called, an error message indicating a missing format number will occur. These changes are:

Card No. 3024

Location		New Instruction	Card Col.
2030	CM	$1417323000 \overline{6} 9$	21-32
2042	BNE	470402201200	33-44
2054	B	4902174	45-52

Location		New Instruction	Card Col.
2162	B	490221800000	13-24
2174	TDM	150871900001	25-36
2186	TFM	160349319870	37-48
2198	TR	311732217324	49-60
2210	B	4904118	61-67
Card No. 3053			
Location		New Instruction	Card Col.
4070	TFM	$1604243000 \overline{3} 1$	31-42
4082	BNE	470203001200	43-54
4094	TR	311732217324	55-66
4106	TFM	160349	67-72
Card No. 3054			
Location		New Instruction	Card Col.
4112		$3 \underline{0} \mathbf{0} 264$	3-8
4118	TFM	1603620 04174	9-20

These patches allow the processor to check for the Z format, insert the subroutine name location, and set for subroutine load. The instructions at 2174 and 2186 assume that the subroutine will be the first added after the normal six from IBM. If this is not true, then the addresses of 2174 (8719 for subroutine load) and 2186 ($\overline{1} 9870$ for subroutine address) must be changed. The normal rules for adding a subroutine must be followed

Plot Subroutine

Enclosed at the end of this write-up is an SPS listing and flow charts of the Plot Subroutine for the FORTRAN subroutine deck without automatic divide. For use with automatic divide, the address for the symbols of the input/output package must be changed. This includes CON2 which refers to the instruction in SWC.

The subroutine requires 432 core locations. The trailer card requires a value of 00434 in Col.1-5 as stated in the FORTRAN write-up.

General Comments

With format control, the output plot can be quite complete. The following technique which can be used in FORTRAN provides a means of printing
the graph scales:
PRINT 5, $0,50,100,150$, etc
PRINT 5, 1, 1, 1, 1, 1, 1, etc
5 FORMAT (I 11, I5, I5, I5, etc.
FORTRAN will print the variables in the list as the value of each quantity The I11 can be made so that the first value prints after the independent variable. Example (using previous example)

$$
\begin{array}{rrrrrrrrrr}
& \begin{array}{rrrrrrr}
0 & 50 & 100 & 150 & 200 & 250 & 300 \\
1 & 350 & 400 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} & 1 & 1 \\
.50000 & & & & * & & .+ & & &
\end{array}
$$

Although the previous sections of this write-up indicates that only one independent variable may be printed, this is not true. Assume it is desired to print x and y and also plot y . This could be done as follows:

PRINT 6, X, Y, MY
6 FORMAT (F10.5, F10.5, 1Z*)
This will print as follows:

$$
\begin{gathered}
\text { +xxx. } \underset{x x x x y+x x x . ~}{\text { xxxxx }}
\end{gathered}
$$

Where X and Y are printed and MY (Y after scaling) is plotted. The range of MY must be reduced to keep the over record with limits. The general rule is that any variable to the left of the first plot variable in the list will be printed under normal FORTRAN rules.

The name PLOT must not be used in the program since the compiler will assume this to be a function name.

Modifications for Extra Memory
To convert this program for machines with 40 K or 60 K , the compiler modifications previously described must be altered. The digit in column 44 of card 3026 (shown as $\overline{1}$) must be changed to $\overline{3}$ or $\overline{5}$ depending on the amount of additional memory.

Sample Program

Included with this write-up is a sample program and listing to illustrate the use of this subroutine. This program works as follows using data values of 1 to 89 :

1. Switch 1 on - switch 2 off

SIN, COS and LGN are printed on the typewriter and punched on cards.
2. Switch 1 off - stops typewriter output.
3. Switch 1 on - switch 2 on

SIN, COS and LGN are punched on cards.
SIN and COS are plotted.

It should be noted that without typewriter output, this program permits almost complete overlap of input, output, and computing providing an effective demonstration of the 1620 card buffering.

SAMPLE PROBLEM LISTING

RøG SW 1 ØNFØR SYMBøL TABLE, PUSH START
39999 SIN
39979 CøS
9959 ATAN
9949 ATANF
9929 EXPF
39919 LøG
9899 SORT
9889 SQRTF
9879 PLøT
39859 ס100
398390020
08090006
397990006
397890005

LØAD DAT	SIN(1)	Cas(1) 9998476	LGN(I) 0000000
3	.0523359	. 9988695	1.0986122
5	. 0871557	. 9961946	1.6094379
7	. 1218693	. 9925461	1.9459101
9	. 1564344	.9876883	2.1972245
11	. 1908089	. 9816271	2.3978952
13	. 2249510	. 9743700	2.5649493
15	. 2588190	. 9659258	2.7080502
17	. 2923716	. 9563047	2.8332133
19	. 3255681	. 9455185	2.9444389
21	. 3583679	. 9335804	3.0445224
23	. 3907311	. 9205048	3.1354942
25	. 4226182	. 9063077	3.2188758
27	. 4539904	. 8910065	3.2958368
29	. 4848096	. 8746197	3.3672958
31	. 5150380	. 8571673	3.4339872
33	. 5446390	. 8386705	3.4965075
35	. 5735764	. 8191520	3.5553480
37	. 6018150	. 7986355	3.6109179
39	. 6293203	. 7771459	3.6635616
41	. 6560590	. 7547095	3.7135720
43	. 6819983	. 7313537	3.7612001
45	. 7071067	. 7071067	3.8066624
47	. 7313536	. 6819983	3.8501476
49	. 7547095	. 6560590	3.8918202
51	. 7771459	. 6293204	3.9318256
53	. 7986355	. 6018150	3.9702919
55	. 8191520	. 5735764	4.0073331
57	. 8386705	. 5446390	4.0430512
59	. 8571672	. 5150381	4.0775374
61	. 8746196	. 4848096	4.1108738
63	. 8910064	. 4539906	4.1431347
65	. 9063077	. 4226182	4.1743872
67	. 9205048	. 3907312	4.2046926
69	. 9335804	. 3583680	4.2341065
71	. 9455185	. 3255682	4.2626798
73	. 9563047	. 2923717	4.2904594
75	. 9659258	. 2588190	4.3174881
77	. 9743700	. 2249510	4.3438054
79	. 9816271	. 1908090	4.3694478
81	. 9876883	. 1564345	4.3944491
83	. 9925461	. 1218694	4.4188406
85	. 9961946	. 0871558	4.4426512
87	. 9986295	. 0523360	4.4659081
89	-9998476	. 0174524	4.4886363
$1 c \emptyset$	E,PRES	$F \bar{q} \mathbf{R}$	SET

- - 8 -

RUN CDMPLETE,PRESS START FØR NEXT SET

Return to Main Program through FORTRAN Output Routine.

- 11 -

- 12 -

SOURCE LISTING

PLøT2	TF	0,0	
	C	PT+18, PLøT2+6,1	05272260000000000
	BNL	*+24, 0	05284240777805278
	TF	PT+18,PLDT2+6,1	05296460532001300
	BD	PLøT3,T2,0	05308260777805278
	TFM	SWH+6, BRBK	05320430536405365
	TF	SWC+6,CDN2,1	05332160785007360
	B	SWD	05344260499805432
	DøRG	*-3	05356490469200000
PLDT3	AM	PLøT+35,2,010	05364
	BB		05364 T1 0503500002
	DøRG	*-9	05376420000000000
ERRøR	RCTY		05378
	WATY	ERCDNT	05378340000000102
	B	PLøT2+48, 0	05390390797700100
ERC@NT	DS	,7977	05402490532000000
T2	DS	,5365	0797700000
ZØTZ	DS	,8004	0536500000
CON1	B	PLøT1, 0	0800400000
CøN2	DC	7,4307876	05414490510400000
BLK10	DS	,7264	0543200007
T3	DS	,7426	0726400000
SWC	DS	,4992	0742600000
RX	DS	,98	0499200000
P	DS	,7807	0009800000
BLK5	DS	,6320	0780700000
			0632000000

PT	DS	, 7760	07760
QZ	DS	, 8053	08000
BRBK	DS	, 7360	00000
SWD	DS	, 4692	0736000000
SWH	DS	, 7844	0469200000
	DEND	0784400000	
		00000	

- 16 -

