

Abstract

Although each program has been tested by its contributor, no warranty, express or implied, is made by the contributor or COMMON, as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the contributor or COMMON, in connection therewith.

COMMON USERS GROUP PROGRAM REVIEW AND EVALUATION

(fill out in typewriter, ink or pencil)
Program No. \qquad Date
Program Name:

1. Does the abstract adequately describe what the program is and what

Yes \qquad No it does?
Comment
2. Does the program do what the abstract says? Comment

Yes \qquad No \qquad
3. Is the description clear, understandable, and adequate?

Comment
4. Are the Operating Instructions understandable and in sufficient detail? Comment
Are the Sense Switch options adequately described (if applicable)?
Are the mnemonic labels identified or sufficiently understandable?
Comment
5. Does the source program compile satisfactorily (if applicable)? Comment
. Does the object program run satisfactorily?
Comment
7. Number of test cases run \qquad . Are any restrictions as to data, size, range, etc. covered adequately in description? Comment
8. Does the Program meet the minimal standards of COMMON? Comment
9. Were all necessary parts of the program received? Comment
10. Please list on the back any suggestions to improve the usefulness of the program. These will be passed onto the author for his consideration.

Please return to:

Mr. Richard L Pratt
Data Corporation
7500 Old Xenia Pike
Dayton, Ohio 45432

THIS REVIEW FORM IS PART OF THE COMMON ORGANIZATION'S PROGRAM REVIEW AND EVALUATION PROCEDURE. NONMEMBERS ARE CORDIALLY INVITED TO PARTICIPATE IN THIS EVALUATION.

MOSES
MAXIMUM ONE-PASS SIMULTANEOUS EQUATIONS SOLUTTON

RONALD HOLLMETER
PIONEER SERVICE \& ENGINEERING CO.
2 NORTH RIVERSIDE PLAZA
CHICAGO, ILLINOIS 60606

3111

FEBRUARY 11, 1960

Modifications or revisions to this program, as they occur, will be announced in the appropriate Catalog of Programs for IBM Data Processing Systems. When such an announcement occurs, users should order a complete new program from the Program Information Department.

1620 USERS GROUP LIBRARY PROGRAM ABSTRACT

1. TITLE (If subroutine, state in Title): MOSES - Maximum one-Pass Simultaneous

Equations Solution \quad Subject Classification:_5.0
. Author; Organization: Ronald Hollmeier, Pioneer Service \& Engineering Co.
Date: February 11,1966 Users Group Membership Code: 3111
3. Direct Inquiries to Name: Ronald Hollmeier, Pioneer Service \& Engineering Co.
$\frac{\text { Chicago, Illinois }}{\text { Description/Purpose: (5. Method; 6. Restriction/Range; When Applicable): }}$
Description/Purpose: (5. Method; 6. Restriction/Range; When Applicable):
Solves sets of linear simultaneous equations by gaussian elimination. Pivoting for size to promote accuracy and eliminate zero diagonal terms is automatic. Equation sets of rank 2 thru 41 can be solved. One constant vector per equation set is allowed
\qquad
\qquad
7. Specifications (Check or fill in appropriate spaces):
a. Storage used by program: 20 K core
b. Equipment required by program: Card x ; Magnetic Tape \qquad ; Number o Drives
\qquad aper Tape \qquad Disk File ; Number of D ves TNE MF Auto divide ; Tndirect addrescing . Floting Point Hardware \qquad 1620 Model I x . Model II $\quad ; 1443$ Printer ; Index Registers \qquad
 \qquad ; Other (specify)

Can program be used on lesser machine? _NO_. Specify which requirements can be easily removed
c. Programmed in: Fortran without Format $x \quad$; Fortran with Format Fortran II $\overline{\text { Other }}$; Other Fortran (specify) \qquad ; SPS (specify assembler used)
d. Type of Program: Mainline, complete \qquad Subroutine \qquad If subroutine, for use with SPS (specify type of SPS) \qquad Fortran (specify type of Fortran.
\qquad , Other (specify) \qquad
8. Additional Remarks: \qquad
. . . U-
\qquad

DECK NO. 1
Source deck 51 cards
Sequence No. 30140020 thru 30140520

DECK NO. 2
Object deck 389 cards
Sequence No. O 001 thru 0389

DECK No. 3
Sample problem input. data 43 cardas Sequence No. 001 thru 043

DECK No. 4
Sample problem results 6 cards
Sequence No. 001 thru 006

號

$$
\begin{array}{llll}
\text { 1) } & \mathrm{N}- & & \text { Number of equations } \\
\text { 2) } & \mathrm{B}(1) & -\mathrm{B}(\mathrm{~N}) & \text { - Equation constants } \\
\text { 3) } & \mathrm{A}(1) & --\mathrm{A}(\mathbb{N} * \mathbb{N}) & \text { - Equation coefficient }
\end{array}
$$

MAXIMUM ONE－PASS SIMULTANEOUS EQUATIONS SOLUTION

FEBRUARY 11， 1966

RONALD HOLIMETER

PIONEER SERVICE \＆ENGINEERING CO
2 NORTH RIVERSIDE PLAZA
CHICAGO，ILLIINOIS

3111

Moses was written to provide a fast and flexible one pass progran for solving simultaneous equations sets．The program was written to use the Fortran with－ simultaneous equations sets．The program was written to use the Fortran with input－output subroutines for ease of operation．An＂ABS＂subroutine is used and therefore must be among the available subroutines if the program is modified and recompiled．This is mentioned because the＂ABS＂routine was not part of our original Fortran without Format subroutine set．The object program and subroutine occupy core locations 00000 thru I0026．The symbol table is in 10110 thru 19999

The program will solve any nonsingular set of N equations with N unknown having from 2 thru 41 equations．Using simple Gaussian elimination each equation is rom 2 thru 41 equations．Using simple Gaussian elimination each equation is completely processed after it is read－in．Pivoting is on the largest term in digit limit on mantissa length，and also eliminates any zero diagonal terms． nly terms necessary to produce the solution after the elimination process is completed are saved．
Solutions computed using this program have been checked against those produced y Simultaneous Equations Ala－King program No．5．0．008．This was done for However，no attempt at error analysis has been made，and the eight digit mantissa may limit the usefulness of this program where extreme accuracy is required． Program running times，exclusive of loading，range from approximately 25 seconds to 26.25 minutes for 6 and 41 equation matrices respectively．

Coefficients are entered row by row．Input is in free form subject only to the usual requirements of the Fortran without Format subroutines．

Output consists of equation solutions，one per card in order $X(1)$－．－$X(N)$ ．
No sense switches are used．The program will work with any 1620 Model I having ard reader and punch．

SAMPLE PROBLEM INPUT DATA
6
-24719.9340000000 28319.4220000000
-5407.6971000
407.6971000000
.0000000000 . 0000000000 .0000000000
294.3113200000 -30.9567290000
2.4579793000
5.3140150000
-7.9745280000
-7.9745280000
$39.46546000 u$
$39.466460000 u$
373.9386800000
70.5523170000
$-.1489070000$
-7.0165537000
-70.9269090000
-70.9269090000
-30.9567320000 -30.9567320000 397.5333700000
7.7321770000
81.2899830000
4.5585743000
2.4579793000
-.1489070000
7.7321770000
33.3270330000
-.7021131700
1.1670051000
1.1670051000
5.3140150000
-7.0165536000
81.2899830000
-.7021131600
33.2608180000
$\begin{array}{r}33.2608180000 \\ \\ \hline\end{array}$
2.6584285000
-7.9745280000
-70.9269090000
4.5585744000
1.1670051000
2.6584285000

SAMPLE PROBLEM RESULTS
-121.88338
208.0572
-143.17812
35.348009
-378.07925
378.07925
449.91809
\qquad
program listing
DIMENSIO
30140020
30140030
20 READ $=1$, N
$\mathrm{LL}=0$
$N N=N-1$
$D O 140 M=1, N$
$L=L L+1$

$50 \mathrm{JJ}=0$
$M N=M-1$
$D O 801=1, M N$
$J=K(1)+L$
$D(J)=A(L)$
$\mathrm{LL}=\mathrm{LL}-1$
DO $70 J=1, L L$
$J J=J J+1$

$70 A(J)=A(J+1)-D U M * A($
$80 B(M)=B(M)-D U M * B(I)$
90 DUM $=00 j=L, L$
IF(DUM - ABS(ACJ) $100,110,110$
100 DUM = ABS(A) (J)
110 CONTINUE
DUM $=A(J J)$
$A(J J)=A(L)$
$\mathrm{LL}=\mathrm{LL}-1$
$00120 J=L, L L$
$A(J)=A(J+1) / D U M$
$B(M)=B(M) / D U M$
$140 \mathrm{~K}(\mathrm{M})=J J-L$
DO $170 \mathrm{M}=1$, NN
$I=N-M$
$L L=L-M$
$\begin{array}{ll}L L & =L-M\end{array}$
DUM $=B(I)$
$J J=K(I)+1$
$B(1)=B(J J)$
DO $160 \mathrm{~J}=\mathrm{L}$, LL
160 DUM $=$ DUM $-A(J) * B(I)$
170 B(JJ) $=$ DUM
DO $1801=1, N$
180 PUNCH, $\mathrm{B}(\mathrm{I})$
180
PUNCH, B(I)
STOP
END

