

DISCLAIMER

Although each program has been tested by its contributor, no warranty, express or implied, is made by the contributor or 1620 USERS Group, as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the contributor or 1620 USERS Group, in connection therewith.
\qquad
Program Name: \qquad

1. Does the abstract adequately describe what the program is and what

Yes No it does? Comment \qquad
2. Does the program do what the abstract says? Comment

Yes \qquad No \qquad
3. Is the Description clear, understandable, and adequate? Comment

Yes \qquad
4. Are the Operating Instructions understandable and in sufficient detail?

Yes \qquad No \qquad Comment
Are the Sense Switch options adequately described (if applicable)? Are the mnemonic labels identified or sufficiently understandable? Comment \qquad
Yes \qquad No
5. Does the source program compile satisfactorily (if applicable)?

Yes \qquad No Comment \qquad
6. Does the object program run satisfactorily? Comment \qquad
Yes \qquad No
7. Number of test cases run \qquad . Are any restrictions as to data, size, range, etc. covered adequately in description?

Yes \qquad No Comment \qquad
8. Does the Program Meet the minimal standards of the 1620 Users Group?

Yes \qquad No
Comment \qquad
9. Were all necessary parts of the program received?

Yes \qquad No \qquad Comment \qquad
10. Please list on the back any suggestions to improve the usefulness of the program. These will be passed onto the author for his consideration.

Please return to:

Mr. Richard I. Pratt
Data Corporation
7500 Old Xenia Pike
Dayton, Ohio 45432

Your Name
Company
Address
User Group Code

THIS REVIEW FORM IS PART OF THE 1620 USER GROUP ORGANIZATION'S PROGRAM REVIEW AND EVALUATION PROCEDURE. NONMEMBERS ARE CORDIALIY INVITED TO PARTICIPATE IN THIS EVALUATION.

Program Abstract
for the solution of simultanecus linear equations
Subroutine crout

[^0]Modifications or revisions to this program, as they occur, will be announced in the appropriate Catalog of Programs for IBM Data Processing Systems. When such an announcement occurs, users should order a complete new program from the Program Information Department.

Taile of zontenis

3 MinHY

Deck Labelling Sheet

Deck No.

1

Name:
Subroutine Crout

Card numbers
$1--60$

Dech Labelling Sheet 1
Progran Write-Up 2
Listing of Subroutine 4
Listing of program to use subroutine Example, input, and output

Subroutine Crout for solution of simultaneous linear equations

Mrs. Joyce Fodor
Engireering Computing Laboratory
Eniversity of Wisconsin
Madison, Wisconsin 53706
User Code 3155
Program Developed On:

1. IBK 1620 NODEL II -60 K
2. Indirect addressing
3. 1 disk drive
4. TNS, TNF, and MF special instructions
5. Floating point hardware $<$

Vachine Configuration Required

1. IEM 1620 capable of using FORTRAN II

System used:
FORTRAN II

Program Description

Given the set of equations [A] [X] $=[B]$ the subroutine will solve them using a modified Crout method. . In reducing the coefficient determirate the subroutine searches out the largest coefficient on or below the major diagonal in the column being reduced. It then interchanges the rows, placing this coefficient on the diagonal before continuing. This reduces the round-cff error in the calculation. The main program must read in or calculate the coefficients of the equations.

When writing the main program the size of the dimensioned arrays of the coefficient matrix (A in the subroutine), the constant terms (B), and the solution (X) mast agree between the main program and the subcutine. The three items above mast also be put in common in that order

To call the subroutine a statemerit

$$
\text { CALL CROU'f }(N 1, V 1)
$$

should be used where N 1 is a fixed point variable or constant equal to the number of simultaneous linear equations and V1 is a floating point variable name.

* F. E. Hildebrand, Introduction to Mumerical Analysis, Mcarain-Hill, New York, 1956, pp. 129-434.

When returning from the subroutine V 1 should be checked. If $V=0$. a solution has been reached. If $V 1=1$., the subroutine has found that the set of equations is probably dependent and a solution has not been reached. This indicates that the largest term in any column on or below the major diagonal is less than 1. $110-30$ Unless the coefficients of the matrix are very small this condition would indicate that the equations are dependent. Therefore, if the coefficients of the matrix are very small to begin with, the constant in statement $0021+01$ lines should be made smaller.

The operating instructions are the same as for any FORIRAN II subroutine. There are no sense switches used.

SUBROUTINE CROUT(N,V) - 4-

DIMENSION $A(9,9), B(9), X(9)$ COMMON A, B, X
$\begin{array}{ll}\text { NMI }=N-1 \\ \text { DO } & 2 \\ J=1\end{array}$
JP1=J+1
$\mathrm{JP} 1=\mathrm{J}+1$
$\mathrm{JM1}=\mathrm{J}-1$
DO $6 I=J, N$
ASUM=0.
IF (JM1)6,6,7
7 DO $9 \quad K=1$, $j M 1$
9 ASUM=ASUM+A(I,K)*A(K,J)
$6 A(I, J)=A(I, J)-A S U M$
IMAX $=J$
IF (JP1-N)20,20,21
20 CONTINUE
DO $1 \quad 1=J P 1, N$
IF(ABSF(AMAX)-ABSF(A(1,J)) $3,1,1$
3 AMAX $=A(I, J)$
IMAX $=1$
21 CONTINUE
IF (ABSF (AMAX)-1.E-30) 10,10,4
$10 \mathrm{~V}=1$.
4 DO $5 K=1$, N
ASAVE=A(IMAX,K)
$A(I M A X, K)=A(J, K)$
$5 \mathrm{~A}(\mathrm{~J}, \mathrm{~K})=\mathrm{ASAVE}$
$B(I M A X)=B(J)$
$B(J)=A S A V E$
$11=J$
$J 1=J P_{1}$
IF (JP1-N)22,22,23
22 CONTINUE
DO. $8 \quad J 2=J P 1, N$
ASUM=0
DO $12 \mathrm{~K}=1, \mathrm{Ml}$

8 A(II,J2) $=(A(11, J 2)-A S U M) / A(I 1,11)$
23 CONTINUE
A $S U M=0$.
IF (JM1) 2,2,13
13 DO $14 K=1$, JMI
2 ASUM=ASUM+A(Il,K)*B(K)
$B(I 1)=(B(I 1)-A S U M) / A(I 1, I 1)$
DO $1.5 J=1, N$
$I 1=N-J+1$
$\mathrm{I}=\mathrm{I} 1+\mathrm{l}$
ASUM $=0$.
IF (Il-N) $17,15,15$
$170016 \mathrm{~K}=1$, N
16 ASUM=ASUM+A(I1,K)*X(K)
=B(II)-ASUM
$V=0$.
RETURN
END

DIMENSION $A(9,9), B(9), x(9), Z(9,9)$ COMMON A,B,X
18 IF (N) $106,106,107$
106 PUNCH200
STOP
FORMAT (/2X27HTHIS IS THE END OF THE DATA
100 FORMAT (I2)
107 CONTINUE
READ 101, ($(A 1, J), J=1, N), I=1, N)$
01 FORMAT (5E15.0)
READ 102,(BII), $\mathrm{I}=1, \mathrm{~N}$
02 FORMAT (5E15.0
DO $108 \quad \mathrm{I}=1$, N
08 Z(I, J)=A(I, J) CALL CROUT (N,V) IF (V) $120,120,10$
120 CONTINUE
DO $103 \quad \mathrm{I}=\mathrm{I}, \mathrm{N}$
PUNCH $104, \mathrm{I}, \mathrm{X}(\mathrm{I})$
FORMAT
FORMAT $(12 \mathrm{H} \quad \mathrm{X}(12,5 \mathrm{H})=$ E15.5)
03 CONTINUE
SU 109
DO $110 \quad J=1, N$
110 SUM $=\operatorname{SUM}+Z(I, J) * \times(J)$
109 PUNCH 111, I, SUM
111 FORMAT ($3 \times 9 \mathrm{HCONSTANT}(12,5 \mathrm{H}$) $=$ E15.5) $\begin{array}{ll}\text { GO TO } & 18 \\ \text { PUNCH } \\ 105\end{array}$
105 FORMAT (/2X22HTHE MATRIX IS SINGULAR/) go to 18 END

0

-. 48×1	-. 67×2	. 6×3	$=0$ -
. 64×1	. 67×2	. 8×3	$=4000$.
. 6×1	-. 33×2	$0 . \times 3$	$=0$.

$x(1)=\quad 970 \cdot 30300 E+00$
$x(2)=176.41870 E+01$
$\begin{array}{ll}x(1) \\ x(3) & =\quad 274.62511 E+01\end{array}$
CONSTANT $(1)=\quad 000 \cdot 00000 \mathrm{E}-99$ CONSTANT $(2)=\quad 399 \cdot 99999 E+01$ CONSTANT $(3)=\quad 900.00000 \mathrm{E}-07$

$$
\begin{aligned}
& \begin{array}{l}
3 \\
-.48 \\
.8 \\
0 .
\end{array}
\end{aligned}
$$

[^0]: Joyce Fodor
 Engineering Computing Laboratory
 Madiversity of Wisconsin
 User: 3155

 Frogram:

