軹

0

0

DISCLAIMER

Although each program has been tested by its contributor, no warranty, express or implied, is made by its contributor or 1620 USERS Group, as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the contributor or 1620 USERS Group, in connection therewith.

0

Program No.
Date
Program Name:

1. Does the abstract adequately describe what the program is and what it does?
Comment
2. Does the program do what the abstract says?

Comment \qquad
3. Is the Description clear, understandable, and adequate? Comment

Yes \qquad No

Yes \qquad

Yes \qquad o

Yes \qquad
Comment \qquad
Are the Sense Switch options adequately described (if applicable)?
Yes \qquad
Are the mnemonic labels identified or sufficiently understandable?
Comment \qquad
Yes \qquad No \qquad
5. Does the source program compile satisfactorily (if applicable)? Comment \qquad
Yes \qquad
6. Does the object program run satisfactorily? Comment \qquad
7. Number of test cases run

Are any restrictions as to data, size, range, etc. covered adequately in description?
Comment \qquad
Yes \qquad No
\qquad
8. Does the Program meet the minimal standards of the 1620 Users Group?

Yes
Yes

Comment \qquad
9. Please list any suggestions to improve the usefulness of the program. These will be passed on to the author for his consideration. Comment \qquad

Please return to:

Your Name \qquad
Mr. Robert J. Robinson (PREP) Company
N:arquette University
Computing Center
Address
1515 W. Wisconsin Avenue
Nilwaukee 3, Wisconsin
User Group
Code
THIS REVIEN FORM IS PART OF THE 1620 USER GROUP ORGANIZATION'S PROGRAM REVIEW AND EVALUATION PROCEDURE. NONMEMBERS ARE CORDIALLY INVITED TO PARTICIPATE IN THIS EVALUATION.
o

0

SCRAMBLE: Computer Preparation of Multiple Forms of an Examination

Harold Joseph Highland, Ph.D.
Director, Computer Laboratory LONG ISLAND UNIVERSITY Brooklyn 1, New York \# 1429

Modifications or revisions to this program, as they occur, will be announced in the appropriate Catalog of Programs for the IBM Data Processing Systems. If such announcement indicates a change to the program decks or tapes, a complete new program, if needed, should be requested from the Program Distribution Center.

DECK KEY

1. Scramble Source Deck
2. Scramble Compressed Object Deck w/subroutines
3. Sample Input Deck
4. Sample Output Deck

TABLE OF CONTENTS

Program Abstract vi
Purpose 1
Compilation 1
Input 2

- Preparation of Header Cards 2
- Preparation of Examination Cards 2
- Layout of First Card of Each Question. 3
- Layout of Succeeding Cards. 3
Operating Procedure 4
Card Preparation and Examination Printout 5
Program Modification 6
Block Diagram of Program 8
Source Program - SCRAMBLE 9
Sample Input. 11
Examination Printout of Sample Data 12
Sample Output 13
Examination Printout of Output Data 14
Symbol Table 15

1620 USERS GROUP LIBRARY
 PROGRAM ABSTRACT

1. TITLE (If subroutine, state in Title): SCRAMBLE: Computer Preparation of Multiple Forms of an Examination
2. Author; Organization: Harold Joseph Highland, College of Business Administration, Long Island University
Date: July 26, 1964 Users Group Membership Code: 1429
3. Direct Inquiries to Name: Dr. Harold Joseph Highland, Director of Computer Laboratory, Long Island University, Brooklyn 1, N. Y. Phone: 212-852-9100
4. Description/Purpose: (5. Method; 6. Restriction/Range; When Applicable)

Program designed to meet needs of schools wherein large classes dictate need for multiple copies of the same examination. Program will produce these multiple copies by rearranging the sequence of the examination questions. Punched card output is used to produce (a) teacher's copy with answer key printed next to each question and (b) offset master stencil used for printing; both of these can be produced on a 407 or similar model printer. Program will handle up to 50 questions, each of which can be up to 99 cards $10 n g$
7. Specifications (Check or fill in appropriate spaces):
a. Storage used by program: 19059 to 20000
b. Equipment required by program:

Card System_ ; Magnetic Tape System \qquad ; No. of Tapes \qquad
Paper Tape System__ Disk File System___ No. of Packs___ ;
TNS, TNF, MF__; Auto divide__ Indirect addressing__; Floating point hardware $\mathbf{O}_{\text {; }}$;

Other (specify)

Can program be used on lesser Machine? see below Specify which requirements can be easily removed \square Can be used on a minium $1620 \quad 20 \mathrm{~K}$ unit with card I/O \square
c. Programming type (Check appropriate spaces):

Fortran without Format \qquad ; Fortran with Format \qquad ;

Fortran II__; Mainline, Complete__ Subroutine or function subprogram(S or F) ;

Is the program a library (ie, SPS) function to the Fortran system checked? \qquad
SPS \qquad ; SPS - 1620/1710 \qquad ;

Mainline, Complete__ Macro__ Subroutine___
Other programming language: \qquad ; Give details
d. Language used in the writeup: Fortran
8. Additional Remarks: Two modifications are possible: (a) new question numbers can be generated by a random number subroutine or program instead of the header cards, and (b) program can be easily altered to handle 100 or more (0 -

SCRAMBLE: Computer Preparation

of Multiple Forms of an Examination

Dr. Harold Joseph Highland
Director, Computer Laboratory Long Island University, Brooklyn 1, New York 212-852-9100

Purpose

SCRAMBLE is designed to meet the requirements of schools wherein several forms of the same examination are required for testing purposes in the classroom or lecture halls. It is an educational tool, designed to:

- save secretarial time by eliminating clerical retyping of alternate forms or multiple forms of the same exam,
- produce multiple forms of examinations wherein the question sequence can be prepared by the generation of random numbers,
- prepare the multiple forms in card format usable to prepare offset masters or mimeograph stencils by using a 407 printer or any other $80 / 80$ printer,
- simplify preparation of multiple answer keys since each new output deck contains the answer to each question in coded form (coded answers are not printed when preparing student copies of the examinations),
- permit the use of any card-prepared examination - multiple choice, true-false, or other types of objective tests as well as essay form - with this program.

Compilation

Source program was processed with Fortran-with-Format Processor|F2.0| and used with Fortran-with-Format Subroutines |F $3.0 \mid$.

Input
Input for this program consists of two parts: (a) the header cards which contain the new sequence of question numbers, and (b) the examination question cards which contain the actual questions, and in the case of objective type examinations, the choice of answers, as well as the coding required for the program.

Preparation of Header Cards - It is necessary, at all times, to use a series of six (6) header cards, which preceed the actual question cards during the operation of this program. Any permutation from 1 through 50 may be used with this program. Should there be fewer than 50 questions on the examination, the new sequence of question numbers must be entered on the header cards in consecutive order with no blanks in the necessary format; the remainder of the format spaces are to be left unpunched.

The first five (5) header cards are prepared in a 913 format, with the new question numbers entered nine (9) to a card using three (3) columns for each question number, which is punched right justified. The sixth (6) header card is punched in a 5I3 format and the remainder of the columns on the card are left blank.

Thus, if there are only twenty-five (25) questions on an examination, the new sequence of question numbers are punched in the first three header cards with the last two positions on card three left blank. These punched header cards must be followed by three '.blank card when entering the header group before the actual question cards.

Various groups of header cards can be prepared in advance and kept on file for use with this program. These cards can be coded for convenient filing by using columns 60 through 80 for code identification on each card. The permutation of question numbers used for these header cards can be prepared by using a Table of Random Numbers or by generating a random number sequence with a random number program or using the "Random Number Subroutine for IBM 1620 Fortran W/Format," Library Program 7.0.021.

Preparation of Examination Cards - The original examination question cards are prepared using (a) a special format card for the first card of each question, and (b) a different format for the succeeding cards of each question.

The first card of each question is prepared in the following format：
－Columns l－3 II（Question number）in I3 format，right justified．
－Columns 4－6 J（Card number within the question series）in 13 format，right justified．Cards are numbered con－ secutively from 1 on within each question；the first card of each newr question starts with 1.
－Columns 7－9 K（Question number）in I3 format，right justified； this number is printed along with the copy on the offset master stencil．
－Columns 10－75 Alphanumeric field reserved for actual examination question which is to be printed．
－Columns 76－77 M（Answer key in coded form）in I 2 format，right

justified. In multiple-choice type question, for example, coding system is 1 indicates choice $A, 2$ indicates choice $\mathrm{B}, \quad 3=\mathrm{C}, \quad 4=\mathrm{D}, \quad 5=\mathrm{E}$. In a true-false type of examination, coding method used indicates a true answer by 1 and a false answer by 9 .

- Columns 78-80

L (Number of cards per question) in 13 format, right justified. In preparing examination cards, this field is left blank until after all the cards for an individual question have been punched. The copy is then proofread and approved, after which the total number of cards plus 2, to provide for two spaces between questions, is punched in this position on the first card of each question.

The second and each succeeding card of each question are punched in the following format:

- Columns 1-3 II (Question number) in I3 format, right justified.
- Columns 4-6 J (Card number within the question series) in I3 format, right justified. Maximum number of cards that can be used within a single question is 99.
- Columns 10-75 Alphanumeric field reserved for actual examination question which is to be printed.

Operating Procedure

1. Clear computer core storage press RESET, RELEASE, and INSERT. Type 160001000000 and press RELEASE-START key. Then press INSTANT STOP and RESET.
2. Set PARITY and I/O switches to stop; set O'FLOW switch to program.
3. Fill punch hopper with blank cards.
4. Set condensed object deck into 1622 read hopper and press LOAD.
5. If standard object deck is used instead, make certain to enter the Fortran-with-Format subroutines.
6. Set the six (6) header cards followed by the examination question cards into the read hopper. If a condensed object deck has been loaded, press READER START on the 1622. If a standard object deck and subroutines have been used, press START on the console and READER START on the 1622.
7. When the PUNCH NO FEED light on the console goes on, press PUNCH START on the 1622.
8. After the last card has been read and punched, there will be a typeout: "Processing completed/enter new data/press start." At this point, return to step 3 of these instructions.

Note: Console sense switches are not interrogated by the program. However, condensed deck was processed with a trace so that Sense Switch 4 <on> can be used, if a trace is desired.

Card Preparation and Examination Printout

To facilitate the punching of the header and question cards, three program cards for the card punch should be prepared in the format required.

The output must be sorted to arrange the cards in question number sequence. Sort output for columns 5 and 6 and then for columns 2 and 3.

When examination question cards have been proofed, prepare a printout on the 407 printer. Note spacing of questions on an ll-inch deep page or whatever size will be used for final printing of the examination. This copy should be kept on file since it contains the answer key. Code each form of an examination for easy matching of cards and printout key form.

To make printed copy of the examination, add necessary title and course cards, making certain that each question is self-contained on a page with no runover of questions between pages. Insert offset master stencil into printer. Remove pins controlling printing of columns 1 through 6 as well as the pins for columns 76 through 80. Oaly the material which appears in columns 7 through 75 should be printed on the master stencil. It is important to note this print area when preparing the necessary title
cards for the examination; that is, the cards noting course title and course number, provision for student's name, date, section number, etc. (See sample copy of test printout with output illustrations.)

Program Modification

Three modifications are possible with this program. Two involve the preparation of the new question numbers and the third affects the number of questions which the program can handle.

The program was written in its current form since we use mark-sense IBM cards for computer-scoring of objective examinations. There is space for only 50 answers on these cards, and, therefore, examinations are prepared in units of 50 questions as a maximum. When a teacher's examination calls for more than 50 questions (with a maximum of 150), a second and even a third set of 50 questions are processed by this program.

Since the mark-sense answer cards are printed from 1 through 50, we use color coding for examinations containing more than 50 questions, following the system indicated below:
∞ The first 50 questions are printed on white paper and are answered by the students on natural-color IBM mark-sense cards.
∞ Questions 51 through 100 are printed on yellow or buff paper and are answered on mark-sense cards with a yellow stripe across the 12-edge of the card.
∞ The remaining 50 questions, if the examination exceeds 100 questions, are printed on blue paper and are answered on mark-sense cards with a blue stripe across the l2-edge of the card.

An almost unlimited number of multiple forms of the same examination is possible with this program. ${ }^{1}$ However, different schools might wish to use this program with the following modifications.

[^0]- To increase program to handle more questions © The program can be modified to accomodate any number of questions beyond the 50 for which it is now designed and up to 999 questions, by (a) altering two of the format statements -2 and 6 - (b) altering dime sion statement 13 , and (c) adding the appropriate number of additional "Read 3" statements.
- The dimension statement - 13 Dimension $I(50)$ should be changed to place the total number of questions within the brackets.
- The two format statements should be altered to read as follows:

2 Format (I4, I3, I4, 49X13XI2,I4)
6 Format (I4, I3, 49X13X)
When examination cards are punched, the question copy now should be contained between columns 12 and 74 , inclusive. When printing offset masters, it is necessary to surpress columns 1 through 7 and columns 75 through 80.

- To use random number subroutine in place of header cards A random number subroutine may be used to generate the new question numbers, thereby eliminating the need for the header cards and that portion of the program dealing with the related input instructions. It is necessary, however, to include a 'verification' program to make certain that the same number is not repeated when setting up the new question numbers.
- To prepare header card series by using a special random number program A lead program may be used to prepare the necessary header cards as part of this program. This program would generate random numbers according to any of the standard formulas and would verify the possible repeating of a number in the new question number sequence. The punched output of this program would then be entered in place of the header cards required for the SCRAMBLE program as it now exists.

0

DR．HAROLD JOSEPH HIGriLAND，DIRECTOR

SOURCE PROGRAM

```
        SCRAMBLE -- MULTIPLE COPY EXAMINATION REVISION PROGRAM.
        LIU/11/H.J.HIGHLAND GEXAMINATION SERIES口
        MULTIPLE COFY EXAMINATION REVISION PROGRAM ロREVISED JULY 1964口.
    \squareSORT OUTPUT FOR COLUMNS 5 AND 6 THEN 2 AND 3.
        IN PRINTING OUTPUT FOR TEST REPRCDUCTIUN, DU NUT PRINT COLUMNS 1-6
        AND COLUMNS 76-80.
    \squareSIX HEADER CARDS - USE BLANKS WHEN NECESSARY - PRECEED INPUT DATA.
    \squareCOLUMNS 2 AND 3 CONTAIN QUESTION NUMBER.ロCOLUMN I RESERVED FCR
        SIGN OF I3 FORMATI.
    \squareCOLUMNS 5 AND 6 ARE CARD NUNBER. EACH QUFSTION IS NUMBERED
        INDEPENDENTLY.ロCOLUMN }4\mathrm{ RESERVED FOR SIGN OF I3 FORMATロ.
    \squareCOLUMNS 8 AND 9 ARE FOR QUESTION NUMBER, CN FIFST CARD ONLY, OF
        EACH QUESTION.ロCOLUMN }7\mathrm{ IS RESERVED FOR SIGN OF I3 FORMATI.
    \squareCOLUMNS 10-75 ARE HOLLERITH - ALDHIMFRIC PUNCH FIELD.
    \squareCOLUMN }77\mathrm{ IS ANSWER KEY - USE NUMBER IN PLACE OF LETTER, A EQUALS
        1,B 2, C 3, D 4, E 5. पCOLUMN 76 RESERVED FOR SIGN OF I2 FORMATI.
    \squareCOLUMNS }79\mathrm{ AND 80 INDICATE THE NUMBER OF CARDS CONTAINED IN EACH
        QUESTION AND ARE PUNCHED IN THE FIRST CARD ONLY OF EACH QUESTION.
        \squareCOLUMN. }78\mathrm{ IS RESERVED FOR SIGN OF I3 FORMATロ DC NOT PUNCH THESE
        COLUMNS ON ANY BUT THE FIRST CARD CF EACH QUESTION. LEAVE THIS
        PUNCH UNTIL ALL THE QUESTION CAROS FOR ANY SINGLE QUESTION HAVE
        BEEN PUNCHED - THEN ENTER TOTAL ON THE FIRST CARD.
        I NEW QUESTION NUMBER.
        II EXISTING QUESTION NUMBER.
        J CARD NUMEER WITHIN QUESTICN SERIES.
        K QUESTION NUMBER ON FIRST CARD ONLY.
        L : NUMBER OF CARDS PER QUESTION.
        M ANSWER KEY
        N NEW QUESTION NUMEER CONTROL.
    2 FORMAT%I3,I3,I3,49X17XI2,I3口
    3 FORMAT%9I 3口
    4 FORMAT%4OHERROR IN CARD SEQUENCE/RESORT/START ANEWI
    6 FORMAT%I3,I 3,49\times20Xロ
    8 FORMAT%47HPROCESSING COMPLETED/ENTER NEW DATA/PRESS STARTロ
13 DIMENSION I%50口
        READ 3,I%1ם,I%2ם,I%3\square,I%4\square,I%5\square,I%6口,I%7ロ,I%8ロ,I%9\square
```



```
        READ 3,I%19п,I%20ロ,I%21г,I%22п,I%23a,I%24п,I%25п,I%26\pi,I%27ロ
        READ 3,I%28ロ,I%29口,I%30口,I%31口,I%32口,I%33口,I%34п,I%35ロ,I%36口
        READ 3,I%37口,I%38ロ,I%39口,I%40口,I%41ロ,I%42п,I%43口,I%44口,I%45ロ
        READ 3,I%46ロ,I%47ロ,I%48ロ,I%49口,I%50口
26 N#0
        I I*O
        J*0
        K*O
        M#0
        L#O
        IF%SENSE SWITCH 9ב 1,1
    1 READ 2,II,J,K,M,L
```

```
100 IF%J-1ロ 5,7,11
        5 PRINT }
        PAUSE
        GO TO 1
        7 N#NG1
        IF%II-Nロ 7,99, 7
    99 PUNCH 2,I%Nロ,J,I%Nロ,M,L
        9 READ 6,II,J
        GO TO 100
        11 IF%J-Lם 23,17,15
    15 PRINT 4
        PAUSE
        GO TO 1
    17 PUNCH 6,I%Nロ,J
        IF%SENSE SWITCH 9口 25,21
    21 GO TO 26
    23 PUNCH 6,I%Nロ,J
        J#O
        GO TO 9
    25 PRINT 8
        PAUSE
        GO TO 13
        END
```

DR．HAROLD JOSEPH HIGHLAND，DIRECTOR

```
SAMPLE INPUT DATA LIU 11
```

42513

HEADER 1
HEADER 2
HEADER 3
HEADER 4
HEADER 5
HEADER 6

111 A MANUFACTURING PROCESS TURNS OUT A PRODUCT THAT IS 10\％DEFECTIVE 4
1 THE PROBABILITY THAT 5 ITEMS DRAWN FROM ASSEMBLY LINE WILL CONTAIN
13
14
15
21
2

23
24
3 1
32
33
3.4

35
36
37
41
4.2

43
$4 \quad 4$
45 ．
46
$4 \quad 7$
48
51
$5 \quad 2$
$5 \quad 3$
$5 \quad 4$
55

NO DEFECTIVES IS Aロ． 20 Ba． 31 C口． 50 Da． 59 Ea．63

2 THE NUMBER OF COMBINATIONS OF 5 ITEMS THAT CAN BE MADE FROM A 3.4 TOTAL OF 10 ITEMS IS Aロ 51 Ba 170 C口 252 Da 509 Ea 675

3 WHAT IS THE LARGEST POSSIBLE SAMPLE SIZE THAT WOULD BE REQUIRED 47 IN ORDER TO BE 99.73 PERCENT CORRECT THAT THE ESTIMATE OF A UNI－ VERSE PERCENTAGE BY THE USE OF A SAMPLE WILL NOT BE IN ERROR BY MORE THAN PLUS OR MINUS 30 AG 1，000 Ba 1，500 Ca 2，000 Dロ 2，500 Eם 3，000

4 A SAMPLE OF 1,000 GIVES A CERTAIN DEGREE OF PRECISION IN ESTI－• 3ε MATING THE MEAN OF THE UNIVERSE FOR A UNIVERSE OF $1.000,000$ ． WHAT SIZE SAMPLE WOULD BE NEEDED TO GIVE THE SAME PRECISION FOR A SECOND UNIVERSE THAT HAD THE SAME CHARACTERISTICS AS THE FIRST， EXCEPT THAT ITS SIZE WAS EQUAL TO $100,000,000$ Aロ 10 Bロ 100 C口 1,000 Dロ 10,000 Ea 100，000

5 INCREASING THE SIZE OF A SAMPLE FOURFOLD WOULD REDUCE THE ERROR 25 DUE TO SAMPLING Aロ 25% Bロ 50% Cロ 75% Dロ 99．99\％ER NOT AT ALL

VAME \qquad CLASS \qquad

1 A MANUFACTURING PROCESS TURNS OUT A PRODUCT THAT IS 10\％DEFECTIVE THE PROBABILITY THAT 5 ITEMS DRAWN FROM ASSEMBLY LINE WILL CONTAIN NO DEFECTIVES IS AE．20 En．31 C口．50 Da．59 En．63

2 THE NUMBER OF COMBINATICNS OF 5 ITEMS THAT CAN BE MADE FROM A TOTAL OF 10 ITEMS IS AG 51 Ba 170 Ca 252 Da 509 Ea 675

3 WHAT＇IS THE LARGEST POSSIELE SAMPLE SIZE THAT WOULD EE REGUIRED IN ORDER TO BE 99.73 PERCENT CORRECT THAT THE ESTIMATE OF A UNI－ VERSE．PERCENTAGE BY THE USE OF A SAMPLE WILL NOT BE IN ERROR BY MORE THAN PLUS OR MINUS 30 AD 1,000 En 1，500 CA 2，000 Da 2,500 Eロ 3,000


```
5 INCREASING THE SIZE OF A SAMPLE FOURFOLD WOULD REDUCE THE ERROR
    DUE TO SAMPLING AD 25% Ba 50% Cロ 75% D| 99.99% EINOT
    AT ALL
```

－Sample of printout for examination， similar to that which would appear on the offset master used for re－ producing the copy．Note that code data are surpressed and that special title cards are used．

```
DR. HAROLD JOSEPH HIGHLAND, DIRFCTOR
```

```
SAMPLE OUTPUT LIU ll
```

1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
2	1
2	2
2	3
2	4
3	1
3	2
3	3
3	4
3	5
4	1
4	2
4	3
4	4
4	5
5	1
5	2
5	3
5	4
5	5
5	6
5	7

```
1 \mp@code { A ~ S A M P L E ~ O F ~ 1 , 0 0 0 ~ G I V E S ~ A ~ C E R T A I N ~ D E G R E E ~ O F ~ P R E C I S I O N ~ I N ~ E S T I - ~ } 3
    MATING THE MEAN OF THE UNIVERSE FOR A UNIVERSE OF 1.000,000.
    WHAT SIZE SAMPLE WOULD BE NEEDED TO GIVE THE SAME PRECISION FOR A
    SECOND UNIVERSE THAT HAD THE SAME CHARACTERISTICS AS THE FIRST,
    EXCEPT THAT ITS SIZE WAS EQUAL TO 100,000,000 Aロ 10 B口 100
    C口 1,000 DO 10,000 F口 100,000
2 \text { THE NUMBER OF COMEINATIONS OF 5 ITEMS THAT CAN BE MADE FROM A } 3
    TOTAL OF 10 ITFMS IS AR 51 Ba l70 C口 252 Dロ 509 Eם 675
3. INCREASING THE SIZF OF A SAMPLE FOURFOLD WCULD REDUCE THE ERROR }2
    DUE TO SAMPLING Aם 25% Eם 50% C口 75% Dם 99.59% Eם NOT
    AT ALL
4 \mp@code { A ~ M A N U F A C T U R I N G ~ P R O C E S S ~ T U R N S ~ O U T ~ A ~ P R O D U C T ~ T H A T ~ I S ~ 1 0 \% ~ D E F E C T I V E ~ } 4
    THE PROBABILITY THAT 5 ITEMS DRAWN FRON ASSEMBLY LINE WILL CONTAIN
    NO DEFECTIVES IS A口..20 Ba.31 C口.50 Da.59 Ea . 63
5 \text { WHAT IS THE LARGEST POSSIRLE SAMPLE SIZE THAT WOULD EE REQUIRED } 4
    IN ORDER TO BE 99.73 PERCENT CORRECT THAT THE ESTIMATE OF A UNI-
    VERSE PERCENTAGE BY THE USE OF A SAMPLE WILL NOT BE IN ERROR BY
    MORE THAN PLUS OR MINUS 30 A口 1,000 Ba 1,500 Ca 2,000
    Dロ 2,500 Eם. 3,000
```

\square Output has already been sorted for columns 5 and 6 and then columns 2 and 3 to arrange questions in sequence order of question numbers．

NAME \qquad CLASS \qquad

1 A SAMPLE OF 1 ，OOO GIVES A CERTAIN DEGREE OF PRECISION IN ESTI－ MATING THE MEAN OF THE UNIVERSE FOR A UNIVERSE OF $1.000,000$ ． WHAT SIZE SAMPLE WOULD BE NEEDED TO GIVE THE SAME PRECISION FOR A SECOND UNIVERSE THAT HAD THE SAME CHARACTERISTICS AS THE FIRST， EXCEPT THAT ITS SIZE WAS EQUAL TO $100,000,000$ Aロ 10 Bロ 100 Cロ 1,000 Dロ 10,000 Eם 100,000

2 THE NUMBER OF COMBINATIONS OF 5 ITEMS THAT CAN BE MADE FROM A TOTAL OF 10 ITEMS IS Aロ 51 Bロ 170 C口 252 Dロ 509 Eロ 675

3 INCREASING THE SIZE OF A SAMPLE FOURFOLD WOULD REDUCE THE ERROR DUE TO SAMPLING Aロ 25% Bロ 50% C口 75% Dロ 99．99\％Eロ NOT AT ALL

4 A NANUFACTURING PROCESS TURNS OUT A PRODUCT THAT IS 10\％DEFECTIVE THE PROBABILITY THAT 5 ITEMS DRAWN FROM ASSEMBLY LINE WILL CONTAIN NO DEFECTIVES IS Aロ．20 Bロ．31 Cロ．50 Dロ．59 Eロ． 63

5 WHAT IS THE LARGEST POSSIBLE SAMPLE SIZE THAT WOULD BE REQUIRED IN ORDER TO BE 99.73 PERCENT CORRECT THAT THE ESTIMATE OF A UNI－ VERSF PERCENTAGE BY THE USE OF A SAMPLE WILL NOT BE IN ERROR BY MORE THAN PLUS OR MINUS 30 Aロ 1,000 Ba 1,500 Ca 2，000 DO 2，500 Eロ 3，000
\square Sample printout of an alternate form of the examination．See page 12 for original question sequence．

LONG I SLAND UNIVERSITY COMPUTER LABORATORY

$$
\langle 15\rangle
$$

DR. HAROLD JOSEPH HIGHLAND, DIRECTOR


```
197691 19279
192690026
19259 N
192490000
19239 I I
19229 J
19219 K
19209 M
19190 L
19189 0001
191790100
191690001
19159000
191490005
191390007
1 9 1 2 9 0 0 1 1
191190099
19109 n000
19090 0023
190890017
190790015
190690025
19059 0021
```

aNOTET All High order digits are flaged.

[^0]: 1 The number of possible forms, permutations actually, is ${ }_{50} P_{50}=50$! which is equal to 3.0414×10^{64} - more than enough to meet the requests of any teacher.

