

*. .
o

0

O

Author:

Date:

Direct inquires to:

Frank V. Mozina

May 14, 1964

Frank V. Mozina IBM Corporation
IBM Building
Gateway Center
Pittsburgh, Pennsylvania 15222

Modifications or revisions to this program, as they occur, will be announced in the appropriate Catalog of Programs for IBM Data Processing Systems. When such an announcement occurs, users should order a complete new program from the Program Information Department.
Title Page1
Deck Key2
Table of Contents 3
Program Brief 4
Detailed Program Description 5-6
Block Diagram 7
Subroutine Source Program Listing 8-9
Subroutine Assembly Listing 10-11
Sample Program Listing 12
Sample Program Results Listing 13

1. Purpose:

This subroutine permits the Fortran program to examine columns of the next card to be read by the Fortran program, prior to the actual formatting. A call to the subroutine actually reads the next card, but also modifies the normal read routine so that the next call to the READ routine will format only this card that already has been read by the subroutine.
2. Restriction:

It is quite unlikely that this subroutine will be used with subroutine sets 1 and 3 , even though the necessary addresses in these two packages agree with those in the other sets. The difficulty lies in the fact that the short form routines are overlayed, depending upon the program requirements, making it impractical to write a program in such a way as to insure that the input routines are in core at the time the FRSTRD routine is executed, and remain in core until the READ is executed.
3. Machine Configuration:

Same as Monitor I card system
4. Program Requirements:

284 core positions
5. Source Language: SPS II-D
6. Check-out Status:

At least 20 runs in several programs in two installations.
7. Sample problem running time:

2 minutes
8. Comments:

This program and its documentation were written by an IBM employee. It was developed for a specific purpose and submitted for general distribution to interested parties in the hope that it might prove helpful to other members of the data processing community. The program and its documentation are essentially in the author's original form. IBM serves only as the distribution agency in supplying this program. Questions concerning the use of the program should be directed to the author's attention.

Detailed Program Description

1. Subroutine Procedure:

It frequently is desirable, when dealing with mixed-format input cards, to be able to examine the next card to be read in order to determine the proper format prior to reading.

This subroutine accomplished this by reading the card into the normal input area and passing the two-digit alphabetic value for the desired column to a variable in the calling program. As many columns as desired can be examined prior to completion of the normal read.

The normal read routines are modified by the FRSTRD subroutine so that when the normal READ is executed, the input area will not be blanked, and a card will not be read. The normal READ routines are restored prior to formatting this card.

2. Incorporating the Subroutine:

Load deck number 1 as a regular monitor job. All necessary control cards are included.

Note: Refer to section entitled "Program Modification" if names other than FRSTRD and COLUMN, or subroutine numbers other than 26 and 27 are desired, prior to loading.

3. Detailed Coding Information:

The three distinct phases of this subroutine are entered as follows, and have the function described:
a. FRSTRD is entered on the call to FRSTRD, reads the card, modifies the normal I/O, and moves the first column called for to FAC.
b. COLUMN moves subsequent columns to FAC after initial read.
c. RETURN is reached from the modified I/O routines and restores these routines before going to the normal formatting.
4. Program Modification:
a. To load this program under another name, change the * NAME card to change the FRSTRD name, and the * DFLIB card to change the COLUMN name (see the source deck listing)
b. To load the subroutine under other numbers, change the * ID NUMBER card and the * DFLIB card (see the source deck listing).

5. Operating Instructions:

In order to examine several columns of the next card to be read by the Fortran program, the user would write the following Fortran steps:
$\mathrm{II}=$ FRSTRD (K1)
I2 $=$ COLUMN (K2)
I3 $=$ COLUMN (K3)
IN $=$ COLUMN (KN)

Where the I's are integer variables that are to receive the double-digit representation of the desired columns, and the K's are integer variables or constants whose valves are between 1 and 80 , and represent the column to be moved into the I variable.

Any amount of calculation may follow, or be interspersed with, this sequence. The next READ statement executed will read in and format the card that has been analyzed in this sequence.

Important Note: Since the output routine uses part of the same routine used by the input, do not attempt to output a record before reading the one that has been examined by a FRSTRD. The output will be in error, and the input routines will not be restored, and the card that was analyzed will be lost.
6. Sample Problem:

Deck 2 is the sample problem. After loading the subroutine, run the sample problem as a normal Monitor run. No special sense switch settings required.

Output should agree with the sample output listed in this report.


```
ZZJOB
ZZSPS
* Store reloadable
*LIBR
*ID NUMBEROO26
*NAMECOLUMN
* ASSEMBLE RELocatable
*PUNCH SYMBOL TABLE
*LIST CARD
    SUB DSA COLUMN,FRSTRD
        DORGSUB-4
        DS }
    IORT DS .565
    IOGT DS .566
    DATINHDS .06057
    PAT DS .05683.ADDRESS OF OP CODE,TR
    FAC DS .02492 .PSEUDO ACCUM
    INH DS .06063 * ADDR OF INPUT AREA
    RADOITDS :05754 *ADDR OF READ INSTR
    STZERODS .06239 . ADDR OF 80 BLANKS
    *ENTRY FOR ALL AFTER FIRST COLUMN
    COLUMNTF FAC.COLUMN-1.111
        B GCOL.O
    *ENTRY TO PHYSICALLY READ CARD
    FRSTRDTF FAC,FRSTRD-1,111
        TR INH-1.STZERO+1
        TR INH+86.STZERO
        TFM DATINH+2,10.10.SETFOR CARD I/O
        TFM IORT,*+23,1 , GET A CARD
        B IOGT.DATINH-4.7
        TFM PAT,41.10. NO-OP INPUT AREA BLANKING
        TFM PAT+12.41,10, INSTRUCTIONS
        TFM RADOIT+6,RETURN,17, MAKE THE READ A BRANCH
        TFM RADOIT+1,49,10, TO THIS SUBROUTINE
    GCOL TFM ADDR.INH-2.07, CREATE ADDRESS OF
        A ADDR,FAC.O , DESIRED COLUMN=
        A ADDR,FAC,O , 2* COL NO+INH-2
        S FAC,FAC , ZERO FAC
        A FAC,*-* , PUT COL VALUE IN FAC
    ADOR DS **
        BV *+12.,0 , TURN OFF OFLOW
                    -8-
Subroutine Source Program Listing
        BB
        DORG*-9
    * SUBROUTINES MODIFIED TO BRANCH HERE INSTEAD OF READ
    RETURNTFM RADOIT+6,IORT,. RESTORE REGULAR
        TFM RADOIT+1,16.10, READ ROUTINE
        TFM PAT.31.10 . RESTORE ZEROING
        TFM PAT+12.31,10 , ROUTINE
        B RADOIT+24,! NORMAL I/O
        DEND2
ZZZZ
ZZJOB
ZZDUP
*DFLIBFRSTRD 27
ZZZZ
```


SYMBOL TABLE

Subroutine Assembly Listing

Sample Program Listing

```
ZZJOB
ZZFORX
*PSTSN4
C READ A CARD AND STORE COL. 2 IN J
        5 J=FRSTRD(2)
                STORE COL.5 IN K
C
        6 K=COLUMN(5)
        STORE COL•10 IN L
C T STORE COL.10
C READ THIS CARD NORMALLY
        8 READ1O,M,A,B
        10 FORMAT(I2.F3.O.F5.0)
        PUNCH1O,M,A,B
        PUNCH THE VALUES FOUND IN COLS 2.5.10
        PUNCH 12.J.K.L
        12 FORMAT(316)
            DO A NORMAL READ JUST TO MAKE SURE ROUTINES RESTORED
        11 READ10.M,A,B
            PUNCH1O,M,A,E
            CALL EXIT
            END
    1
ZZZZ
```

00004	000027	
00009	00005Z	
00014	000102	
00019	$J Z$	Z
00024	KZ	Z
00029	LZ	Z
00034	MZ	Z
00044	AZ	Z
00054	$B Z$	Z
00050	00056	
0006	00080	
00070	00104	
0008	00128	
0010	00194	
0012	00360	
00110	00392	
12.	3.	
71	172	
45.	6.	

