
Systems Reference Library 

System Operation Reference Manual 

IBM 1440 Data Processing System 

This publication contains the instruction set 
for the IBM 1440 and the formula for calculat­
ing the execution time of each instruction. 
The operation code for every instruction is 
given in actual and mnemonic form, with ex­
amples of each. 

The instructions and applicable timings for 
the input/output printer on the IBM 1447 Con­
sole are discussed. 

For general information on units attached 
to the 1440, refer to the IBM 1440 Bibliography, 
Form A24-3005. For instructions and applic­
able timings for attached units, see: 

• Miscellaneous Input/Output Instructions (1440), 
Form A24-3117. 

• Tape Input/Output Instructions (1401, 1440, 1460), 
Form A24-3069. 

• Disk Storage Input/Output Instructions (1401, 1440, 
1460), Form A24-3070. 

© 1962, 1963 by International Business Machines Corporation 

File Number 1440-01 
Form A24-3116-0 



Preface 
This publication is a reference text for the IBM 1440 
Data Processing System. It provides a detailed explan­
ation of the instructions used by the system to manipu­
late data. Detailed explanations of the instructions 
used with the console input/output printer when it is 
attached to the system are also included. The reader 
should be familiar with the IBM 1440 Systems Sum­
mary, Form A24-3006, and the various publications on 
applied programming material, such as Autocoder. 

The manual is divided into these sections: 

• Introduction 
• Arithmetic Operations 
• Logic Operations 
• Data-Moving Operations 
• Miscellaneous Operations 
• Edit Operation 
• IBM 1447 Console Operations 

The sections are independent and do not have to be 
used in the order in which they appear. 

The publication is intended for programmers and 
systems personnel who have a general knowledge of 
the IBM 1440 Data Processing System and who require 
a reference text for detailed information. It can also 
be used as a training aid in the instruction of program­
mers and operators, 

It should be noted that other publications referenced 
here are, in most cases, prerequisites for a complete 
understanding of the material presented in this publi­
cation. 

This publication, Form A24-3116-0, is a major revision and 
consolidation of the applicable material from: 

A26-5666, and includes the applicable material from the 
following Technical Newsletter: 

N24-0062 

The original publication and the applicable Technical News­
letter are obsoleted by this publication. 

This publication, Form A24-3116-0, also obsoletes thc console 
I/O printer portions of: 

A26-5667 

Refer to IBM 1440 Bibliography, Form A24-3005, for other 
publications. 

Copies of this and other IBM publications can be obtained through IBM Branch Offices. 
Address comments regarding the content of this publication to IBM Product Publications, Endicott, New York 



Contents 

Introduction ........................................................................... 5 

Stored Program Instructions .................................................. 6 
IDM 1441 Processing Unit ...................................................... 8 
Internal Checking .................................................................. 10 
Addressing ................................................................................ 10 
Address Modification .............................................................. 15 

System Operations.... .......... .............. ................................ 18 

Arithmetic Operations ..................................................... 18 

Arithmetic Instructions .......................................................... 20 

Logic Operations ............................................................... 24 

Logic Instructions .................................................................... 24 

Data Moving Operations .............................................. 27 

Data Moving Instructions ...................................................... 27 

Miscellaneous Operations .............................................. 32 

Miscellancous Instructions ...................................................... 32 

Edit Operation ................................................................... 36 

IBM 1447 Console Operations ................................... 39 

Console Instruction Format .................................................... 39 
IDM 1447 Console Instructions .............................................. 39 
Console I/O Printer Timing .................................................. 41 

Appendix .............................................................................. 42 

Index of 1440 Instructions ........................................... 43 

Index 45 



Figure l. IBM 1440 Data Processing. System 



The IBM 1440 Data Processing System (Figure 1) rep­
resents a major advance in low-cost data processing 
systems. The IBM 1440 offers small companies the 
functional capabilities of large data processing sys­
tems, but at speeds and costs in keeping with their 
needs and abilities. The input and output devices of 
the 1440 enable it to be effective in system areas where 
there has long been a need for a data processing 
system but not the volume of work to justify such a 
system. Processing methods of the 1440 are similar to 
those of the IBM 1401 Data Processing System. 

The IBM 1440 is a solid-state system with compact 
components and input/output devices that enable it to 
be located in an area of approximately 16' x 22'. In 
addition to its features of compactness and low-cost, 
the 1440 presents a new concept in data processing 
with the introduction of the removable disk pack. 

In 1953, the introduction of IBM magnetic tape 
systems provided data processing systems with the 
ability to process large volumes of input and output 
data at very high speeds. Magnetic tape offers the 
advantage of providing virtually unlimited storage 
capacity. In 1956, the RAMAC® disk file introduced a 
new concept in data processing, permitting, as it did, 
storage of large volumes of data that were accessible 
in a random sequence. 

The IBM 1311 Disk Storage Drive for the IBM 1440 
Data Processing System provides virtually unlimited 
random and sequential access storage. A disk pack 
containing 2,000,000 characters of information can be 
removed from the 1440 system and another pack put 
into its place in one to two minutes. This operator­
removable disk pack combines the large-volume and 
sequential-processing advantages of tape systems with 
the random-access abilities of a RAMAC file. 

The ease of mobility of a disk pack (the weight of 
the pack is less than 10 pounds) and the simplicity of 
its removal from the drive means that 2,000,000 char­
acters of data can be placed in the system within 
seconds. Data can be organized in the disk pack in 
random or sequential order; regardless of how the 
data is located on the disk pack, it can be retrieved by 
the system in a random or sequential order with equal 
facility, depending on individual requirements. Up to 
five disk drives, each equipped with one disk pack, 
can be attached "on line" to provide 10,000,000 char-

IBM 1440 Data Processing System 

acters of information available at one time (equiv­
alent to 125,000, 80-column punched cards). 

The 1440 is primarily a disk-storage oriented system, 
providing a group of balanced input/output devices 
to work in conjunction with the IBM 1441 Processing 
Unit and with the IBM 1311 Disk Storage Drive. For 
operations that require extensive calculating ability 
and do not need disk storage, the 1440 can function 
as a card system. 

The IBM 1440 is available in various configurations 
to satisfy the requirements of individual lJsers. It can 
be ordered to meet the basic requirements of an ac­
counting system, and then increased in size as data 
processing requirements increase. If the .1440 is ex­
panded to its maximum size and data processing re­
quirements continue to grow, procedures and systems 
developed for the IBM 1440 can be readily adapted 
for processing on the medium-size IBM 1401 Data Proc­
essing System. With continued expansion and growth, 
adaptation to larger equipment such ~s the IBM 1460 
and 1410 Data Processing Systems can be'made. 

This is why we refer to the 1440 as a member of 
the 1400-series family. 

The Stored Program 

The IBM 1440 Data Processing System performs its 
functions by executing a series of instructions at high 
speed. A particular set of instructions, . designed ~o 
solve a specific problem, is known as a program. Be­
cause the 1440 stores its instructions internally, it is 
called a stored program system. 

The 1440 system normally executes instructions se­
quentially. The system can also skip over a particular 
group of instructions, or otherwise change the se­
quence of the program. Branch instructions are pro­
vided in the system to make it possible to alter the 
program and take the next instruction from another 
area of the stored program. This function also makes 
it possible to repeat an instruction, or group of instruc­
tions, as often as desired. 

A series of programmed tests determines the logical 
path of the program. These tests are made at various 
points in the program to control the course of pro­
gram step execution for specific condItions .that can 
arise during processing. ' 

5 



Variable Word Length 

Stored programming involves the concept of words. 
A 1440 word can be a single character, or a group of 
characters, representing a complete unit of informa­
tion. Because IBM 1440 words are not limited to a 
specific number of storage positions - i. e., have vari­
able word length - and because each position of core . 
storage is addressable, each word occupies only the 
number of core-storage locations actually needed for 
the specific instruction or data field. 

WORD MARKS 

The use of the variable-length instruction and data 
format requires a method of determining the instruc­
tion and data-word length. This identification is pro­
vided by a word mark. Word marks are illustrated 
by underlining the characters with which they are 
associated. 

The word mark serves several functions: 

1. Indicates the beginning of an instruction. 
2. Defines the size of a data word. 
3. Signals the end of execution of an instruction. 

The rules governing the use of word marks are: 

1. Predetermined locations for word marks are as­
signed in planning the program. These predeter­
mined word marks are normally expected to remain 
in these locations throughout the complete pro­
gram. The word marks are set into storage loca­
tions by a loading routine. 

2. Word marks are not moved with data during proc­
essing, except when a load instruction (see No.5 
below) is used. 

3. For an arithmetic operation, the B-field must have 
a defining word mark, and the A-field must have a 
word mark only when it is shorter than the B-field. 

4. A load instruction moves the word mark and data 
from the A-field to the B-field, and clears any other 
word marks in the designated B-field, up to the 
length of the A-field. 

5. When moving data from one location to another, 
only one of the fields need have a defining word 
mark, because the move instruction implies that 
both fields are the same length. 

6. A word mark must be associated with the high­
order character (operation code) of every instruc­
tion. 

7. The 4-character BRANCH UNCONDITIONAL instruction, 
the 7 -character SET WORD MARK, and CLEAR STORAGE 

AND BRANCH instructions are the only instructions 
that can be followed by a blank without a word 
mark. All other instructions must be followed by 
a word mark. 

Two operation codes are provided for setting and 
clearing word marks during program execution. 

6 

Stored Program Instructions 
All machine functions are initiated by instructions 
from the 1440 stored program. Because the 1440 uses 
the variable-word-Iength concept, the length of an in­
struction can vary from two to eight characters, de­
pending on the operation to be performed. 

Instruction Format 

Mnemonic Op Code A- or I-address B-address d-character 

X X XXX XXX X 

~1 nemonic. This is the mnemonic operation code that 
is used by the Autocoder processor program to des­
ignate the actual machine operation code. 

Op Code. This is always a single character that defines 
the basic operation to be performed. A word mark 
is always associated with the operation code posi­
tion of an instruction. 

A-Address. This always consists of three characters. It 
can identify the units position of the A-field, or it 
can be used to select an input/output unit (card 
read-punch, disk storage unit, data transmission 
unit, paper tape reader, printer, tape punch, etc.). 

I-Address. Instructions that can cause program 
branches use the I -address to specify the location 
of the next instruction to be executed if a branch 
occurs. 

B-Address. This is a 3-character stvrage address that 
identifies the B-field. It usually addresses the units 
position of the B-field, but in some operations (such 
as move record or input/output operations it speci­
fics the high-order position of a record-storage area. 

d-Character. The d-character is used to modify an 
operation code. It is a single alphabetic, numerical, 
or special character, positioned as the last character 
of an instruction. 

Examples of the five combinations possible in vari­
able-length instructions are shown in Figure 2. 

Instruction Descriptions 

Specific instructions have been described in a standard 
format: 

Title. This is the description of the instruction. 



NUMBER OF 
POSITIONS OPERATION INSTRUCTION FORMAT 

2 SELECT STACKER Op code d-character 

.!5.. 2 

4 BRANCH Op code I-address 
.! 400 

5 BRANCH IF Op code I-address 
INDICATOR ON .! 625 

7 ADD Op code A-address 
A 072 

8 BRANCH IF Op code I-address 
CHARACTER EQUAL ~ 650 

Figure 2. IBM 1440 Instruction Formats 

Instruction Format. This is the format of the particular 
instruction described. The mnemonic operation code 
used in the IBM Autocoder is given. 

Function. This is the function of the instruction. 

Word Marks. This is the effect of the word marks with 
regard to data fields. 

Timing. This is the formula to be used in calculating 
the timing of the instruction. Key to abbreviations 
used in the formulas is shown in Figure 3. 

Notes. These are special notations or additional infor­
mation pertaining to the operation. 

Address Registers After Operation. The contents of 
the address registers are represented by the codes 
described in Figure 4. 

Key to abbreviations used in formulas: 

LA Length of 'the A field 
LB Length of the B Field 
La Length of Multiplicand field 
LI Length of Instruction 
LM Length of Multiplier field 
Lp Length of Product field 
LQ Length of Quotient field 
LR Length of Divisor field 
Ls Number of significant digits in Divisor 

(excludes high-order zeros and blanks) 
Lw Length of A or B field, whichever is shorter 
Lx Number of characters to be cleared 
Lz Number of characters back to rightmost zero in control field 
1/0 = Timing for Input or Output cycles 
Fro = Forms movement times 
~ = Number of fields included in an operation 
Ns Number of disk sectors 
Ss = Number of characters in disk sector 

Figure 3. Timing Formula Coding 

d-r.haracter 
/ 

B-address 
423 

B-address d-character 
080 4 

Example. A practical application of the instruction is 
described and shown as a label for the 1440 Auto­
coder language. With the label is the actual machine 
address in parentheses. It is not necessary for the 
programmer to know the actual address of a label 
when writing the program. The processor program 
assigns the actual address during the program as­
sembly. 

Assembled Instruction. This is the actual machine lan­
guage instruction that is assembled by the Auto­
coder processor program from the symbolic entries 
shown in the example. 

ABBREVIATION MEANING 

A A-address of the instruction 

B B-address of the instruction 

NSI Address of the next sequential instruction 

BI Address of the next instruction if a branch occurs 

LA The number of characters in the A-field 

LB The number of characters in the B-field 

Lw The number of characters in the A- or B-field, 

whichever is smaller 

Ap The previous setting of the A-address register 

Bp The previous setting of the B-address register 

dbb The d-character and blank in the units and tens 

position 

Figure 4. Address Registers after Operation Coding 

7 



Figure 5. IBM 1441 Processing Unit 

IBM 144 J Processing Unit 
The IBM 1441 Processing Unit (Figure 5) is the con­
trolling center of the IBM 1440 Data Processing System. 
The processing unit can be divided into two sections: 

1. The arithmetic-logical section 
2. The control section 

The arithmetic-logical section performs such op­
erations as addition, subtraction, transferring, com­
paring, and storing. By adding the multiply-divide 
special feature, the 1441 can perform direct multipli­
cation and division. This section also has logical 
ability - the ability to test various conditions encoun­
tered during processing and to take the action called 
for by the result. 

The control section directs and coordinates the 
entire system as a single multipurpose machine. These 
functions involve controlling the input/output units 
and the arithmetic-logical operation of the processing 
unit, and transferring data to and from storage. This 
section directs the system according to the procedure 
originated by its human operators. 

8 

Magnetic Core Storage 

The IBM 1441 Processing Unit houses the magnetic­
core storage area (Figure 6) that is used by the 1440 
system for storing the instructions and data. The data 
in each core-storage position is available, in 11.1 micro­
seconds and the design of the core-storage 'control cir­
cuits makes each position individually addressable. 
This means that an instruction can designate the exact 
storage locations that contain the data needed for 
that step. 

The physical make-up of each core-storage location 
enables the IBM 1441 to perform arithmetic operations 
directly in the storage area. (This is called add-to­
storage logic.) 

Language 

In the punched-card area of data processing, the lan­
guage of the machine consists of holes punched in a 
card. As data processing needs increase, the basic card 
language remains the same. But in the transition from 
unit-record systems to the IBM 1440 Data Processing 
System, and from there to other computer systems, an­
other faster, more flexible machine language emerges. 

Just as each digit, letter in the alphabet, or special 
character is coded into a card as a punched hole or a 
combination of punched holes, it is coded into mag­
netic storage as a pattern of magnetized spots. 

Figure 6. Magnetic Core Storage 



Figure 7. The Letter A Represented in Binary-Coded-Decimal 
Form in Core Storage 

Many different code patterns can be set up. The 
internal code used in the IBM 1440 Data Processing 
System is called binary-coded decimal (Figure 7). All 
data and instructions are translated into this code as 
they are stored. 

The numbers 0 through 9 are represented by a 
single bit, or a combination of bits designated 1, 2, 4, 
8. Disregarding the C- or check bit, bits 2 and 8 stand 
for 0, bits 1 and 2 for 3, bits 1 and 4 for 5, bits 2 and 4 
for 6, bits 1, and 2, and 4 for 7, and bits 1 and 8 for 9. 

o Letters and special characters. are represented by a 
combinations of numerical bits (8421) and zone bits 
(BA). B- and A-bits, in combination, correspond to 
the 12-zone punch. The B-bit corresponds to the 11-
zone punch, and the A-bit to the O-zone punch. The 
letter C, for example, which is the third letter in the 
12-zone of the alphabet (card code 12-3), is a combina­
tion of BA21 bits. BA is the same as 12, and 21 is the 
same as 3. 

This covers six of the seven possible bits that are 
used to represent a character. The seventh bit (C) is a 

built-in checking feature that the computer automa­
tically supplies. 

Note that the check bit is not part of the character 
configuration when the number of BA8421 bits that 
represent the character is odd. It appears only for 
those characters where the number of bits BA8421 is 
even. The automatic inclusion of the check bit changes 
the configuration of the character from an even num­
ber of bits to an odd number of bits. Thus, all char­
acters shown in Figure 64 are shown in the odd-parity 
mode. 

Information introduced into the system is trans­
lated to the binary-coded-decimal form for use in all 
data flow and processing from that point on, until it 
is translated into printed output as reports and docu­
ments are written, or converted to punched-card code, 
for punched-card output. Converting input data to the 
1441 internal code, and subsequently reconverting, is 
completely automatic. 

Processing 
Processing is the manipulation of data from the time 
it is introduced to the system as input until the de­
sired results are ready for output. The following func­
tions are performed in the IBM 1441 Processing Unit. 

Logic 

The logic function of any kind of data processing 
system is the ability to execute program steps; but 
even more, it is the ability to evaluate conditions and 
select alternate program steps on the basis of· those 
conditions. 

In unit-record equipment, an example of this logic 
is selector-controlled operations based on an X-punch 
or No X-punch, or based on a positive or negative 
value, or perhaps based on a comparison of control 
numbers in a given card field. 

Similarly, the logic functions of the 1440 system 
control comparisons, branching (alternate decisions 
similar in concept to selector-controlled procedures), 
move and load operations (transfer of data or instruc­
tions), and the general ability to perform a compli­
cated set of program steps with necessary variations. 

Arithmetic 

The IBM 1441 Processing Unit can add, subtract, multi­
ply, and divide. Multiplication and division can be 
accomplished in any 1440 system, by programmed 
subroutines. When the extent of the calculations might 
otherwise limit the operation, a special multiply-di­
vide feature is available. 

9 



Editing 

As the term implies, editing adds significance to out­
put data by punctuating and inserting special charac­
ters and symbols. The 1440 system has the ability to 
perform this function, automatically, with simple pro­
gram instructions. 

Internal Checking 
Advanced circuit design is built into the 1440 to as­
sure accurate results. Self-checking with the system 
consists of parity and validity checking. 

Parity Checking 

The IBM 1441 checks characters at various locations 
in the unit for odd-bit configurations. The 6-bit, bi­
nary-coded-decimal internal language used by the 
]440 also has a check bit for odd-bit checking pur­
poses, and a word-mark bit. The check bit is added 
to all characters that would otherwise have an even 
number of bits. 

Example: A character P has a binary-coded decimal 
equivalent of B 4 2 l. The check bit is added to give 
this character an odd number of bits (C B 4 2 1). 

If the character has a word mark associated with it, 
the word mark is included in the test for odd-bit 
parity. 

Example: If the character P has a word mark, the 
check bit is not added because the bit configuration is 
odd (\VM B 4 2 1). 

Whenever a parity error occurs, a console light 
turns on, indicating the place where the error occurred 
(see IBM 1447 Console, Form A24-3031). 

Validity Checking 

Validity checking is performed to detect illogical bit 
combinations within the systems. The type of validity 
checks performed are: 

1. The output from the adder is checked for a logical 
numeric code. 

2. The operation register is checked so that only valid 
operation codes are processed. 

3. The storage address register is checked to make 
sure the core-storage addresses are valid addresses 
within the core-storage address range of that par­
ticular processing unit. Depending on the core­
storage size, the units and/or hundreds address 
positions contain zone bits that specify blocks of 

10 

addresses. (Refer to Addressing System section for 
detail information.) These zone-bit combinations 
are checked to make sure the combinations are 
addressing an installed core-storage address. A 
check is made to see if the lower or upper limits 
of core storage have been passed. This check is 
called an end-around check and is made at all 
times except for three special operations. The modi­
fication of the low-order position of core storage 
by - 1, except during a clear storage operation, or 
the modification of the high-order position of core 
stor~ge by + 1, except during storage scan and 
storage print out operations, causes an invalid 
operation and a system stop. 

4. Of the more than 4,000 bit configurations possible 
when read from a card, only 64 are recognizable 
characters. All other bit configurations are con­
sidered invalid during the data transfer from the 
read side of the card read-punch into core storage. 
A detected check condition turns on the card read 
validity check light. Depending on the I/O check 
stop switch setting on the 1447, the system also 
stops or a program-testable indicator is set ON. 

Addressing 

Instructions and data used for processing in a 1440 
system are kept in the core-storage area. Each core­
storage position in the area has its own unique ad­
dress. The IBM 1441 Processing Unit is available with 
four different core-storage capacities. The 1441, Model 
A3, contains 4,000 core-storage positions, and Model 
A4 contains 8,000 core-storage positions. Model A5 
contains 12,000 core-storage positions, and Model A6 
contains 16,000 core-storage positions. 

Addressing System 

Every core-storage position in the IBM 1440 Data 
Processing System can be addressed with a 3-character 
address: To address 16,000 core-storage positions with 
numbers only, various zone-bit configurations are 
added over the hundreds position and units position 
of the address. 

The zone-bit configuration over the hundreds posi­
tion specifies the thousands position of core storage up 
to 3999. No A- or B-bit over the hundreds position 
specifies that the address is the actual address (000-
999). An A-bit over the hundreds position of the ad­
dress specifies another group of 1,000 core-storage 
positions (1000-1999). A B-bit over the hundreds posi­
tion of the address specifies another group of 1,000 



CODED ADDRESSES IN STORAGE 

3-CHARACTER 
ACTUAL ADDRESSES ADDRESSES 

000 to 999 No zone bits 000 to 999 

1000 to 1099 =i=00 to =i=99 
1100 to 1199 /00 to /99 

1200 to 1299 SOO to S99 

1300 to 1399 TOO to T99 

1400 to 1499 A-bit, UOO to U99 

1500 to 1599 using O-zone Voo to V99 

1600 to 1699 WOO to W99 

1700 to 1799 XOO to X99 

1800 to 1899 YOO to Y99 

1900 to 1999 ZOO to Z99 

2000 to 2099 100 to 199 

2100 to 2199 JOO to J99 

2200 to 2299 KOO to K99 

2300 to 2399 LOO to L99 

2400 to 2499 B-bit, MOO to M99 

2500 to 2599 using ll-zone NOO to N99 

2600 to 2699 *000 to 099 

2700 to 2799 POO to P99 

2800 to 2899 QOO to Q99 

2900 to 2999 ROO to R99 

3000 to 3099 ?OO to ?99 

3100 to 3199 AOO to A99 

3200 to 3299 BOO to B99 

3300 to 3399 COO to C99 

3400 to 3499 A-B-bit, DOO to D99 

3500 to 3599 using 12-zone EOO to E99 

3600 to 3699 FOO to F99 

3700 to 3799 GOO to G99 

3800 to 3899 HOO to H99 

3900 to 3999 100 to 199 

* Letter 0 followed by Zero Zero 

Figure B. Core-Storage Address Coding 

ZONE BITS OVER 
ACTUAL ADDRESSES HUNDREDS POSITION 

0000 to 0999 No Zone Bits 

1000 to 1999 A-Bit (Zero-Zone) 

2000 to 2999 B-Bit (ll-Zone) 

3000 to 3999 AB-Bits (l2-Zone) 

4000 to 4999 No Zone Bits 

5000 to 5999 A-Bit (Zero-Zone) 

6000 to 6999 B-Bit (ll-Zone) 

7000 to 7999 AB-Bits (12-Zone) 

8000 to 8999 No Zone Bits 

9000 to 9999 A-Bit (Zero-Zone) 

10000 to 10999 B-Bit (ll-Zone) 

11000 to 11999 A B-Bits (12-Zone) 

12000 to 12999 No Zone Bits 

13000 to 13999 A-Bit (Zero-Zone) 

14000 to 14999 B-Bit (ll-Zone) 

15000 to 15999 AB-Bits (12-Zone) 

Figure 9. 1440 Addressing System 

core-storage positions (2000-2999). Both the A- and 
the B-bit over the hundreds position of the address 
specify another group of 1,000 core-storage positions 
(3000-3999). By using these zone-bit combinations, 
4,000 positions of core storage can be addressed with 
a 3-character address (Figure 8). 

The same principle used to specify the various 
1,000-blocks of core storage is also used to specify 
core-storage blocks of 4,000 positions. The zone-bit 
configuration over the units position specifies which 
block of 4,000 core-storage positions is being ad­
dressed. 

No A- or B-bit over the units position specifies the 
4,000-block in core storage that contains positions 
0000-3999. An A-bit over the units position specifies 
the 4,000-block in core storage that contains positions 
4000-7999. A B-bit over the units position specifies 
the 4,000-block in core storage that contains positions 
8000-11999. Both the A- and the B-bit over the units 
position specifies the 4,000-block in core storage that 
contains positions 12000-15999. By combining the 3-
digit address with zone-bit combinations over the 
hundreds and/or units position, it is possible to ad­
dress 16,000 core-storage positions (Figure 9). 

Data-Field Addressing 

A data field in core storage is addressed by specifying 
the low-order (units) position of the field in the A­
or B-address of the instruction .. The data field is read 
from right to left until a word mark in the high-order 
position is sensed. 

ZONE BITS OVER 

UNITS POSITION 
3-CHARACTER ADDRESSES 

No Zone Bits 000 to 999 

No Zone Bits ::fOO to Z99 

No Zone Bits 100 to R99 

No Zone Bits ?OO to 199 

A-Bit (Zero-Zone) 00=1= to 99Z 

A-Bit (Zero-Zone) =t=0=t= to Z9Z 

A-Bit (Zero-Zone) 10=1= to R9Z 

A-Bit (Zero-Zone) ?o=l= to 19Z 

B-Bit (ll-Zone) OO! to 99R 

B-Bit (ll-Zone) =1=01 to Z9R 

B-Bit (ll-Zone) 101 to R9R 

B-Bit (ll-Zone) 101 to 19R 

AB-Bits (l2-Zone) OO? to 991 

AB-Bits (12-Zone) ::fO? to Z91 

AB-Bits (l2-Zone) 10? to R91 

AB-Bits (l2-Zone) ?O? to 191 

11 



Instruction addressed by high-order position 

STORAGE 400 401 402 403 404 405 
ADDRESS 

INSTRUCTION ~ 5 4 2 5 6 

'-----

The word mark associated with the next sequential in­
struction (NSI) stops the reading of this instruction. 

STORAGE ADDRES~ 
DATA ~ 

t' 

6 537 538 

0 2 

539 540 

5 3 

y-­
A-field 

Word mark identifies high-order position of A-field. 

A-address 

f 
B~~ 
~E 

B-address 

STORAGE ADDRESS 553 554 555 556 557 5 
--- . 

DATA Q 4 6 0 1 2 

511
559 

5lEo 561 - -.-.. --- "-- ------ -.. -. ---

3 1 ~ 

y 
B-field 

Word mark identifies high-order position of B-field. 

Figure 10. Data and Instruction Addressing 

Instruction Addressing 

An instruction in core storage is addressed by giving 
the high-order (operation code) position of the instruc­
tion. All operation codes must have a word mark. (This 
word mark is normally set by the loading routine 
when the instructions are loaded.) The machine reads 
an instruction from left to right until it senses the word 
mark associated with the next sequential instruction. 
The final instruction in the program must have a word 
mark set at the right of its low-order position. (The 
word mark is not needed if the instruction is UNCON­

DITIONAL BRANCH, SET WORD MARK, or CLEAR STORAGE.) 

Example: Instruction address 400 (Figure 10) con­
tains the operation code for the following instruction: 

Op Code 

A 

A-address 

542 
B-address 

560 

When this instruction is executed, the data in the 
A-field is added to the data in the B-field: 

0025347 
04601231 
.----
04626578 

Core-Storage Area Assignment 

There are two areas in core storage that are used for 
specific purposes. Core-storage positions 001-081 are 
used in conjunction with a program-load operation 
and core-storage positions 087-089, 092-094, and 097-
099 are used as three index registers when the indexing 
and store address register special feature is used, All 
other core-storage positions are always available for 
normal use, and the areas just mentioned can be used 
for other system operations when they are not being 
used as specified. 

1440 Register Operation 

The IBM 1440 Data Processing System operates on 
and processes data to produce a desired result by 
cxecuting a series of instructions. A series of instruc­
tions designed to solve a problem is known as a 
program. Because these instructions are retained in 
core storage, it is more properly called a stored pro­
gram. 

The processing unit must interpret an instruction 
and perform the function prescribed by the instruction. 
To do this, various types of devices that are capable 
of receiving information, storing it, and t(ansferring 
it as directed by control circuits are used. These de­
vices are known as registers. The 1440 has seven regis­
ters, four are address registers and three are character 
registers (Figure 11). 

j-- j 

~ 
Core 

f----..-
B A 

~ Storage Register -.. Register 

I 

--
Storage Op 
Address - Register 

Register 

~ 

t 
I-Address A-Address B-Address 
Register Register Register 

~ 

, 
The result is stored in the B-field. Figure 11. Processing Unit Registers 

12 



ADDRESS REGISTERS 

There are four address registers in the IBM 1441 Proc­
essing Unit. One register controls the program se­
quence, and two other registers control the data trans­
fer from one storage location to another. The fourth 
register specifies which storage location is active dur­
ing a particular storage cycle. 

I-Address Register. The 1- (Instruction) address regis­
ter always contains the storage location of the next 
instruction character to be used by the stored pro­
gram. The number in this register is increased by 
one as the instruction is read from left to. right. 

A-Address Register. The A-address register contains 
the storage address of the data in the A-address 
portion of an instruction. Normally, as the instruc­
tion is executed, the number in this register is de­
creased by 1 after each storage cycle that involves 
the A-address. 

NOTE: If the A-address portion of the instruction does not 
contain a core-storage address (for example % Gx) the con­
tents of the A-address register are not altered as the instruc­
tion is executed. 

B-Address Register. This register contains the storage 
location of the data in the B-address portion of an 
instruction. Normally, as a storage cycle involving 
the B-address is executed, the storage address in the 
B-address register is decreased by 1. 

Storage-Address Register. The storage-address regis­
ter always contains the address of the core-storage 
position that will be involved in any data movement 
during that particular machine cycle. 

CHARACTER REGISTERS 

The A- and B-character registers and the Op-register 
are single-character registers used to store data during 
the execution of an instruction. 

Op-Register. The Op- (Operation) register stores the 
operation code of the instruction in process for the 
duration of the operation. The operation code is 
stored in BCD code, including the check bit but 
excluding the word mark. 

B-Register. Each character leaving core storage enters 
the B-register. The character is stored in 8-bit form 
(BCD code, check bit, and word mark). The B­
register is reset and filled with a character from 
core storage on every storage cycle. 

A-Register. The A-register is reset and filled with the 
character from the B-register during each storage 
cycle that involves the A -address, and during all 

instruction cycles except the first and last 1- (Instruc­
tion) cycle of each instruction. Data is stored in 8-bit 
form 

NOTE: Information can be written back into core storage 
directly from either the A- or B-register. 

Figure 12 shows the I-phase of an operation and 
gives a detailed schematic for loading a 7-character 
instruction in the operation-code register, in the A­
and B-registers and in the 1-, A-, and B-address 
registers. Eight storage cycles are required to load 
the complete instruction in the register. Each stor­
age cycle requires .0111 ms. 

NOTE: The A- and B-address registers contain 3-character 
addresses. The addresses shown in this schematic are 4-digit 
addresses because the storage display lights on the console 
show 4-digit addresses. Refer to Figure 8 for the relationship 
between 3- and 4-digit addresses. 

Chaining Instructions . 

In some programs, it is possible to perform a series 
of operations on several fields that are in consecutive 
storage locations. Some of the basic operations, such 
as· add, subtract, move, and load, can be chained so 
that less time is required to perform the operations, 
and space is saved in storing instructions. Here is an 
example of the chaining technique: assume that four 
5-position fields stored in sequence are to be added to 
four other sequential fields. This operation could be 
done using four 7 -character instructions: 

A 700 850 
A 695 845 
A 690 840 
A 685 835 

At the completion of the first instruction, the A­
address register contains 695 and the B-address regis­
ter contains 845. These are the same numbers that are 
in the A- and B-addresses in the second instruction. 
(Executing the second and third instructions also re­
sults in A- and B-addresses that are the same as the 
A -and B-addresses of the third and fourth instruc­
tions.) Eighty storage cycles would be required to 
execute these instructions, thus using up .888 ms. Also, 
28 storage positions are required to store these instruc­
tions. 

By taking advantage of the fact that the A- and 
B-address registers contain the necessary information 
to perform the next instruction, this same sequence of 
operations can be executed as follows: 

~ 700 850 
A 
A 
A 

13 



CYCLE OPERATION 

I-Op The operation code enters the B-register and the Op-register. 

H 

1-2 

1-3 

1-4 

Because this is the first I-cycle, the A-register is undisturbed. 

The A-address register is reset to blanks during the first part of 
the cycle for all instructions. The B-address register is reset to 
blanks during the first part of the cycle for all operations 
except Move, Load, Store A- and Store B-address Register opera­
tion. During the 1-1 cycle, the second instruction character (first 
character of the A-address) enters the thousands and hundreds 
positions of the A- and B-address registers and the A-register 
by the way of the B-register. 

The third character of the instruction enters the tens posi­

tion of the A- and B-address registers, and the A-register 

through the B-register. 

The fourth instruction character enters the units position of 

the A- and B-address registers, and the A-register through 

the B-register. 

The B-address register is reset at the beginning of this cycle. 

The fifth instruction character (first character of the B­

address) enters the hundreds position of the B-address 

register, and the A-register through the B-register. 

Instruction l A I 5 I 6 I 7 I T J 1 I 2 1 s 1 
Location 119711981199\20012011202j 2031204\ 

I Register B Register A Register 

10 111 9 17 1 W GJ Cyde 1 

OP Register A Address Register B Address Register 

W \ ?(? I?(? I I ?111?(? 1 

I Register B Register A Register 

\OPI 9 18 \ ~ o Cycle 2 

OP Register A Address Register B Address Register 

10151 b l b \ ~J 

I Register B Register A Register 

1°1 119 19 1 GJ GJ Cycle 3 

OP Register A Address Register B Address Register 

W 10(5!6Ib \ 10 1516 1 b I 

I Register B Register A Register 

1 °1 21°10 I [2] G Cycle 4 

OP Register A Address Register B Address Register 

W 1 0 15 16 17
1 10 15 16 17 1 

I Register B Register A Register 

I °1 21°(1 ] [2J ~ Cycle 5 

OP Register A Address Register B Address Register 

1 0 /5 16 17 \ Dliciil 
~----+----------------------------------.----------------~----------------------------------------------------------~ 

1-5 

1-6 

1-7 

The sixth instruction character goes to the tens position of 

the B-address register, and the A-register through the B­

register. 

The seventh character of the instruction (last character of 

the B-address) enters the units position of the B-address 

register and the A-register through the B-register. 

The first character of the next instruction enters the B­
register only. Because this is the last I-cycle for this instruc­
tion, the A-register and the Op-register, the A- and 
B-address registers are undisturbed. The detection of a 
word mark associated with this character signals the ma­
chine that this is the Op code for the next instruction. The 
loading operations stops, and the instruction that was just 
loaded is executed. Note that the I-address register con­
tains the address of the high-order position of the next 
sequential instruction. 

Figure 12. Instruction Loading Schematic 

14 

I Regisfer 

10 1210 12 1 

OP Register 

I Regisfer 

10,2,0,3 I 
OP Register 

I Register 

1°121° 141 

OP Register 

W 

B Register A Register 

[iJ [2J Cycle 6 

A Address Register B Address Register 

I °1 5 16171 /113111 b I 

B Register A Register 

I2J o Cycle 7 

A Address Register B Address Register 

/°/ 5 16 17 1 /1,3,1/2 I 

B Register A Register 

Cycle 8 

A Address Register B Address Register 

10 15 16 17 \ 111311 12 I 



Connecting instructions together in this manner is 
called chaining. The first add instruction contains both 
the A- and B-addresses. The following three instruc­
tions contain only the operation code for those in­
structions. The A- and B-addresses are the results left 
in the A- and B-address registers from the previous 
instruction. This type of operation requires 62 storage 
cycles, and takes .688 ms to execute. Storing these 
chained instructions requires only ten storage posi­
tions. 

The ability to chain a series of instructions does not 
depend on the use of the same operation code. 
Chained instructions may have various Op codes. To 
be operated on, the A-fields must be in sequence, and 
the B-fields must be in sequence. Example: 

A 900 850 

.M. 
A 
M 

Assume that the data fields are each ten characters 
long: 

The ten characters at location 900 were added to 850. 
The ten characters at location 890 were moved to 840. 
The ten characters at location 880 were added to 830. 
The ten characters at location 870 were moved to 820. 

The description of each instruction includes the 
contents of the address registers after the operation 
has been performed. Figure 4 shows the abbreviations 
that indicate the contents of these registers. 

By using this information, the programmer can de­
termine the status of the registers and decide whether 
chaining is practical in specific cases. 

NOTE: Instructions that don't contain core-storage addresses 
cannot be chained. For example, M % Gn xxx R is a READ CARD 
instruction. The card read-punch is signaled as the machine 
reads the instruction. Although the A-address register contains 
% 7n after the operation, chaining is impossible because the 
machine does not select the unit from the contents of the A­
address register. 

Most single-address instructions Op code and an 
A-address) cause the A-address to be inserted in both 
the A-address and B-address registers (for example, A 
xxx. However, executing a MOVE, LOAD, or a STORE B­

ADDRESS REGISTER instruction does not disturb the B­
address register, and permits the programmer to use 
the previous contents of that register as part of the 
instruction. 

All no-address instructions (Op code and I -address) 
depend on whether the indexing and store address 
register special feature is installed on the system: 

l. With the special feature installed, the B-address 
register contains the address of the next sequential 
instruction, if a branch occurs. 

2. Without the special feature installed, the B-address 
register is cleared to blanks whenever a branch 
occurs. 

Address Modification 

It becomes necessary in some 1440 programs to per­
form the same operations repetitively, with a change 
only in the A- or B-address. Changing of an address 
while retaining the rest of the instruction is called 
address modification. Address modification can result 
in savings in the number of program steps and in the 
number of storage requirements. In some cases, the 
program itself determines if, and how, addresses are 
to be changed to perform the correct program steps 
for conditions arising during data processing. 

The methods that can be used to modify addresses 
on a specific system depend on the core-storage ca­
pacity of that system. 

On 1440 systems equipped with 4,000 positions of 
core storage, address modification is accomplished by 
either using modulus 4 arithmetic or installing the 
indexing and store address register special feature. 

On 1440 systems equipped with more than 4,000 
positions of core storage, the two previously men­
tioned methods of address modification can be used. 
Also, these systems have a MODIFY ADDRESS instruction 
that greatly simplifies address modification. 

Modulus 4 Arithmetic Method 

When modifying addresses by modulus 4 arithmetic, 
the modified address should be located in the same 
4,OOO-block of core storage as the original address. 
This is because a zone-bit overflow of over three in 
the hundreds position of the address cannot be trans­
ferred to the units position of the address. 

To set up a workable modulus 4 system, these digi­
tal values are assigned the four possible zone-bit con­
figurations that appear in the hundreds position: 

No A-, No B-bit = 0 
A-bit = 1 
B-bit = 2 

A- and B-bit = 3 

As can be seen, the highest possible digit is three. 
Values in excess of three are equal to that value minus 

15 



A+A B or 1 + 1 = 2 

A+B AB or 1+2=3 

B + B NoANoB or 2+2=0 

A + AB NoANoB or 1+3=0 
A + NoANoB = A or 1+0=1 

B + AB A or 2+3=1 
B + NoANoB = B or 2+0=2 

AB + AB B or 3+3=2 

Figure 13. A-Bit and B-Bit Values 

four. For example, a value of five is represented as a 
value of 1 (Figure 13). 

Address modification to a higher address in the 
000-999 address range is: 

Increase address 472 by 345 

472 + 345 = 817 

This is a normal add operation with no overflow in­
volved. 

Address modification to an address greater than 
looO is: 

Increase address 912 by 314 

912 + 314 = 1226 or 8 26 

8 = A2 (overflow in high-order position sets an A-bit 
using modulus 4 arithmetic and turns on the 
arithmetic overflow indicator). 

Increase address 1754 (X 54) by 1204 (804) 

1754 + 1204 = 2958 

X54 + 804 = R58 
X = (A7) 
8 = (A2) 

Using the fUles of modulus 4 arithmetic, A + A = B-bit, 
the new address is: 

958 with a B-bit over the high-order position (B9 = R) 
or R58 (2958). 

To decrease an address, a different means must be 
used. Modulus 4 arithmetic operates for addition only. 
Decreasing an address requires the addition of a com­
plement, rather than doing a conventional subtract 
operation. 

In systems equipped with 4,000 core-storage posi­
tions, the 16,000's complement of the decrement figure 
is added to the address to be modified (modulus 16 
arithmetic). 

16 

Decrease address 879 by 148 
879 - 148 = 731 

4th 1,000-block of a 4,000-block ~ ! ! f 4th 4,000-block 

// 
16,000 - 148 = 15,852 (852 or H5B) 

16,000's complement of 148 

FIELD B 

879 
B B 
A A 

\ I 

FIELD A 

B B 
A A 

\ I 
852 

852 _---------1 
B 
A 

/ 
731 Result after overflow (arithmetic overflow 

indicator set ON) 

The add operation is performed as shown. The 
A-field figure is added to the B-field figure. The digital 
result is 731 and the arithmetic overflow indicator is 
set ON. Because an add operation has taken place, the 
units position ends up with a plus sign (an A- and a 
B-bit). The arithmetic overflow in the hundreds posi­
tion adds an A-bit to the A- and B-bits already there, 
resulting in a zone-bit configuration of no A- and no 
B-bit (see Figure 13). The A-bit addition increases the 
zone-bit value to 16. A value of 16, according to modu­
lus 16 rules, has a new address value of 0 (000-999 
core-storage address block). This means that 731 is 
the actual address. 

Modulus 4 arithmetic is normally used in 1440 
systems that contain only 4,000 core-storage positions. 
With care, this address modification method could be 
used on systems with more core-storage capacity, but 
its usefulness is negligible because 1440 systems with 
more than 4,000 core-storage positions are equipped 
with the MODIFY ADDRESS instruction. 

Modify Address Instruction Method 

IBM 1440 systems with more than 4,000 core-storage 
positions can easily modify any address by using the 
MODIFY ADDRESS instruction. 



Modify Address (Two Addresses) 

Instruction Format. 

Mnemonic 

MA 

Op Code 

# 
A-address 

xxx 

B-address 

xxx 

Function. This instruction causes the 3-character field, 
specified by the A-address (A-field), to be add~d to 
the 3-character field specified by the B-address (B­
field). The result is stored in the B-field. The three 
numerical portions and the zones of the units and 
hundreds positions of the B-field make up the 3-
character result. For example: 

3-Character Actual 
Location Contents Address Address 

A-address A-field 100 100 
B-address B-field L2F 14326 

B-field M2F 14426 

Word Marks. Word marks are not affected, and are 
not required to define the A- or B-fields. If word 
marks are present, they are ignored and remain un­
changed in both fields. 

Timing. T = .0111 (Lr + 9) ms. 

Note: Rules for the addition of zone bits are the same as in 
modulus 4 arithmetic, with one addition. This instruction 
makes it possible to reflect the hundreds position zone-bit 
overflow in the units position when the address is modified 
to a higher 4,000-block of core storage. When a zone-bit 
overflow occurs during the hundreds position modification, 
an additional cycle is executed to adjust the units position 
zone-bit configuration. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-3 B-1 or B-3 

Example. Add the 3-character address labeled ADDA 
(0985) to the 3-character address labeled ADDB 
(1313), Figure 14. 

Autocoder 

I' lobel 
OPERAND 

:~ ~ . : 
Assembled Instruction: # 985 T13 

Figure 14. Modify Address (Two-Addresses) 

Modify Address (One Address) 

Instruction Format. 

Mnemonic 

MA 

Op Code 

# 

A-address 

xxx 

Function. This format of the MODIFY ADDRESS instruc­
tion causes the 3-character field, specified by the 
A-address, to be added to itself. The result is stored 
in the A-field. 

Word Nlarks. Word marks are not required to define 
the A-field. If they are present, they are ignored and 
remain undisturbed in the A-field. 

Timing. T = .0111 (Lr + 9) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-3 A-lor A-3 

Example. Double the address labeled ADDC (2956), 
and store the result at ADDC (Figure 15). 

Autocoder 

I.. lobel ~perati~ OPERAND 

t==!~:=~'5~M~A~J~~'~b~=C::s==~~o==~~O~=~4:0==~:~==~~ 
Assembled Instruction: # R56 

Figure 15. Modify Address (One-Address) 

Indexing Method 

Any 1440 system can modify addresses by installing 
the indexing and store address register special feature. 
A complete description of this feature can be found 
in Special Features, Form A26-5669. 

17 



System Operations 

The operations performed by an IBM 1440 Data Proc­
essing System can be arranged into these general 
classifications: 

I. Arithmetic operations 
2. Logic operations 
3. Data-moving operations 
4. Miscellaneous operations 
5. Edit operation 
6. IBM 1447 Console operations 

Arithmetic Operations 
The IBM 1440 Data Processing System adds and sub­
tracts, by applying the add-to-storage method of op­
eration. The two factors to be combined are added 
within core storage without the use of special accumu­
lators or counters. Because any storage area can be 
used as an accumulator field, the capacity for perform­
ing arithmetic functions is not limited by standard-size 
accumulators or by a predetermined number of accum­
ulators within the system. In arithmetic operations, the 
1440 system considers blanks and zeros the same. An 
unsigned field is considered positive by the system. 

All arithmetic functions are performed under com­
plete algebraic sign control. The sign of a factor is 
determined by the combination of zone bits in the 
units position of the fields specified by the instruction 
being executed. 

Figure 16 shows the four possible combinations of 
zone bits and the values of the signs they represent. 

The standard machine method of signing a field is 
to indicate a positive factor with A- and B-bits (12-
zone), and to indicate a negative factor with a B-bit 
(II-zone). 

The arithmetic operations in the IBM 1440 Data 
Processing System are performed by using one of two 

SIGN 

Plus 

Plus 

Minus 

Plus 

BCD CODE BIT 
CONFIGURATION 

No A· or B·Bit 

A· and B·Bits 

B·Bit Only 

A·Bit Only 

Figure 16. Sign Bit Equivalents 

18 

CARD CODE 
CONFIGURATION 

No Zone 

12 Zone 

11. Zone 

OZone 

TYPE 
A·FLD. B·FLD. TYPE OF ADD SIGN OF 

OF SIGN SIGN CYCLE RESULT 
OPER. 

+ True Add + 
+ 

A - Comp/. Add Sign of Greater 
0+ 
0 + Comp/. Add Value 

-
- True Add -

S - True Add -
U + -- f------ --"-~.--

B + Comp/. Add Sign of Greater 
T - .••.... _-_ .. -
R - Comp/. Add Value 
A - -_ .... - _ .. _.- - ~-----~.-""-"-------- ---~.----.--

C + 
T 

True Add + 
~-

Figure 17. Types of Add Cycles and Sign of Result 
for Add and Subtract Operations 

types of add cycles incorporated in the system. The 
two types of add cycl~s are: 

1. true add 
2. complement add 

The type of add cycle performed depends on the 
arithmetic operation and the signs and values of the 
two factors involved (Figure 17). 

True Add 

A true-add cycle is specified when the total number of 
minus signs is an even number (0 or 2). The signs con­
sidered are the signs of the factors and the sign of the 
operation. 

The sign of the result after a true-add cycle carries 
the original sign of the B-field when either an add or 
a subtract operation is performed (Figure 18). 

Complement Add 

An uneven number of minus signs (1 or 3) specifies a 
complement-add cycle. The system converts the A­
field factor to its nines complement figure and adds 
it to the B-field factor (plus one initial carry). The 
system then initiates a carry test to determine whether 
a carry occurred from the high-order position of the 



(+ B) + (--I- A) = + R 

FIELD B FIELD A 

0065 + 0017 + 
~~.~--------------~I 

Result 0082 + 

(- B) + (- A) = - R 

FIELD B FIELD A 
0016 - 0009-
0009~.~--------------~1 

Result 00'2'5 -

(- B) - (+A) = - R 

FIELD B FIELD A 
0025 - 0011 + 
~~.~--------------~I 

Result 0036-

(--I- B) - (-A) = --I- R 

FIELD B FIELD A 
0036 + 0062-

~~.~--------------~I 
Result 0098 + 

Figure 18. True-Add Cycle Examples 

(- B) + (+A) = ± R 

FIELD B FIELD A 
0036 - 0017 + 
9982 -+-- 9982 ___ --'I 

Initial Carry 

Result 9019 - Carry 

(Recomplementing Unnecessary) 

(+B) + (-A) = ± R 

FIELD B FIELD A 
0055 + 0034-
9965 ~ 9965 ----.II 

Result po2l + 
Initial Carry 

Carry 

(Recomplementing Unnecessary) 

(+ B) - (+A) = ± R 

FIELD B FIELD A 
0085 + 0073 + 
9926 ~ 9926 ------'I 

1 Initial Carry 

Result 00IT + Carry 
I 

(Recomplementing Unnecessary) 

(- B) - (-A) = ± R 

FIELD B FIELD A 
0078 - 0056-

9943 -+-- 9943 ----.... 1 

Result 0022 -
I 

Initial Carry 

Carry 

(Recomplementing Unnecessary) 

Figure 19. Complement-Add Cycle Examples 

B-field. The presence of a carry indicates that the 
result in the B-field is a true figure (Figure 19). The 
original sign of the B-field is the sign of the result. 

If there was no carry from the high-order position 
of the B-field, the result in the B-field is not a true 
figure. A recomplement cycle is performed to convert 
the result to a true figure. In an add operation that 
results in a negative figure, the sign of the result is 
always changed during a recomplement cycle, (Figure 
20). The system generates the new sign automatically. 
A positive factor is indicated by the presence of an A­
and B-bit over the units position of the factor. After 
a complement-add cycle, the sign of the result carries 
the sign of the greater value factor. 

(- B) + (+A) = ± R 

FIELD B FiElD A 
0017 - 0036 + 
9963 ~ 9963 ----.... 1 

___ 1 Initial Carry 

Result 9981- No Carry 

~'~l------Re-c-o-m-p-Ie-m-e-n-ti-n-g-N-e-Ce-s-s-ar-y---~~ 
Result 0019 + Recomplement cycle with sign conversion 

(+ B) + (-A) = ± R 

FIELD B FIELD A 
0034 + 0055-
9944 ~ 9944 -------.... 1 

1 

Result 9979 + 

'l 
Result 0021 -

Initial Carry 

No Carry 

Recomplementing Necessary 
Recomplement cycle with sign conversion 

(+ B) - (+A) = ± R 

FiElD B FIELD A 

0073 + 0085 + 
9914.......-9914-----.. 1 

Result ma + 

't 
Result 0012 -

Initial Carry 
No Carry 

Recomplementing Necessary 
Recomplement cycle with sign conversion 

(- B) - (-A) = ± R 

FIELD B FIELD A 
0056 - 0078-
9921 ~ 9921 ----~I 

1 Initial Carry 

Result 9978 - No Carry 

'l 
Result 0022 + 

Recomplementing Necessary 
Recomplement cycle with sign conversion 

Figure 20. Complement-Add (with Recomplementing) 
Cycle Examples 

19 



Arithmetic Instructions 

Add (Two Fields) 

Instruction Format. 

Mnemonic 

A 

Op Code 

A 

A-address B-address 

xxx xxx 

Function. The data in the A-field is added algebrai­
cally to the data in the B-field. The result is stored 
in the B-field. 

Word Marks. The B-field must have a defining word 
mark, because it is this word mark that actually 
stops the add operation. 

The A-field must have a word mark, only if it is 
shorter than the B-field. In this case, the transmis­
sion of data from the A-field stops after the A-field 
word mark is sensed. Zeros are then inserted in the 
A-register until the B-field word mark is sensed. 

If the A-field is longer than the B-neld, the high­
order positions of the A-field that exceed the limits 
imposed by the B-field word mark are not processed. 
For overflow conditions and considerations, assume 
that the A-field is the same length as the B-field. 
(See Address ~lodification.) 

Timing. 

1. If the operation does not require a recomplement 
cycle: 

T = .0111 (LI + I + LA + LB ) ms. 
2. If a recomplement cycle is taken: 

T = .0111 (LI + I + LA + 3 LB ) ms. 

If the multiply-divide special feature is installed, 
the 1440 timing for a recomplement cycle is: 

T = .0111 (LI + 1 + LA + 2 LB ) ms. 

Notes. 

20 

1 Sign control (see Figure 17): 
If a recomplement cycle is taken, the sign of the B- (result) 

field is changed and the result is stored in true form. 

2. Zone hits: 
If the fields to be added contain zone bits in other than 

the high-order position of the B-field and the sign positions 
of both fields, only the digits are used in a true-add operation. 
B-field zone bits are removed except for the units and high­
order positions in a true-add operation. If a complement add 
takes place, zone bits are removed from all but the units 
positions of the B-field. 

3. Overflow indication: 
If an overflow occurs during a true-add operation, the 

overflow indicator is set ON, and the overflow indications are 
stored over the high-order digit of the B-field. When the A­
field exceeds, or is equal to, the B-field length, and the A-field 

position that corresponds to the high-order B-field position 
contains a zone bit, this zone bit is added to any zone bits 
present in the high-order B-field position. 

Condition Result 

First overflow A-bit 

Second overflow 
Third overflow 

Fourth overflow 

B-bit 

A- and B-bits 

No A- or B-bits 

For subsequent overflows repeat conditions 1 through 4. 
Overflow indication does not occur for a I-position field. 

The BRANCH IF ARITHMETIC OVERFLOW INDICATOH ON, 

B (III) Z, instruction tests and turns off the overflow indicator, 
and branches to an instruction or group of instructions if an 
overflow condition occurred. There is only one overflow 
indicator in the system. It is turned off either by executing 
a BRANCH IF ARITHMETIC OVERFLOW INDICATOR ON instruc­
tion or pressing the start reset key on the 1447 operator 
panel. 

Overflow indication does not occur for a I-position field. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 
NSI A-Lw B-LB 

Example. Add CURERN (0506) to YTDGRO (0708), 
Figure 21. 

Autocoder 

L label .~rati~ OPERAND 

I"-r<-_=====. =: ==~'~:' :===::rc:C=-,.,,' U:R.:E.~~~N.:;,:Y=!T~~""'"",G:£:Q:~~:!!!==-!----'4"'-O._=~ 
Assembled Instruction: A 506 708 

Figure 21. Add (Two Fields) 

Add (One Field) 

Instruction Format. 

Mnemonic 
A 

Op Code 
A 

A-address 
xxx 

Function. This format of the ADD instruction causes 
the data in the A-field to be added to itself. 

Word Marks. The A-field must have a defining word 
mark. It is this word mark that stops the add opera­
tion. This instruction must be followed by a word 
mark in the position after the A-address. 

Timing. T = .0111 (LI + 1 + 2 LA) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 
NSI A-LA A-LA 



Example. Add to itself the data at EXEMPT (0981), 
Figure 22. 

Autocoder 

~ label 
I: 

Assembled Instruction: A 981 

Figure 22. Add (One Field) 

Subtract (Two Fields) 

Instruction Format. 

Mnemonic 

S 

Op Code 

S 

A-address 

xxx 

OPERAND 

~. I : 

B-address 

xxx 

Function. The numerical data in the A-field is sub­
tracted algebraically from the numerical data in the 
B-field. The result is stored in the B-fleld. Refer to 
Figure 17 for the sign that results from a specific 
subtract operation. 

Word Marks. A word mark is required to define the 
B-field. An A-field requires a word mark, only if it 
is shorter than the B-field. In this case, the A-field 
word mark stops transmission of data from the 
A-field. 

Timing. 

1. If the operation does not require a recomplement 
cycle: 

T = .0111 (LI + 1 + LA + LB ) ms. 

2. Subtract - recomplement cycle necessary: 

T = .0111 (LI + 1 + LA + 3Ln) ms. 

H the multiply-divide special feature is installed, 
the 1440 timing for a recomplement cycle is: 

T = .0111 (LI + 1 + LA + 2LB ) ms. 

Note. If a recomplement cycle is taken, the sign of the B­
(result) field is changed, and the result is stored in true form. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-Lw B-Lw 

Example. Subtract CUFICA (00753) from CURGRO 
(0896), Figure 23. 

Autocoder 
OPERAND 

:~ I ~ 
~ label 

L .: 
Assembled Instruction:! 753 896 

Figure 23. Subtract (Two Fields) 

Subtract (One Field) 

Instruction Format. 

Mnemonic 

S 

Op Code 

S 

A-address 

xxx 

Function. The data at the A-address is subtracted from 
itself. If the A-field sign is mihus, the result is a 
minus zero. If the A-field sign is plus, the result is a 
plus zero. 

Word Marks. The A-field must have a defining word 
mark. This instruction must be followed by a word 
mark in the position after the A-address. 

Timing. T = .0111 (LI + 1 + 2LA) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-LA A-LA 

Example. Subtract from itself the field labeled LIMIT 
(units position is 0395), Figure 24. 

Autocoder t; label 

Assembled Instruction:! 395 

Figure 24. Subtract (One Field) 

Zero and Add (Two Fields) 

Instruction Format. 

Mnemonic 

ZA 

Op Code 

? 

A-address 

xxx 

B-addres$ 

xxx 

Function. This instruction functionally adds the A-field 
to a zeroed B-field. Technically, this is accomplished 
by moving the A-field to the B-field. The high-order 



positions of the B-field are set to zero if the B-field 
is larger than the A-field. The data from the A-field 
moves directly from the A-register to storage. Zone 
bits are stripped from all positions except the units 
position. Blanks in the A-field are stored as blanks 
the B-field. 

Word Marks. A word mark is required for definition 
of the B-field. It is required in the A-field, only if 
it is shorter than the B-field. If the A-field is shorter 
than the B-field, all extra high-order B-field posi­
tions contain zeros. But the transmission of data 
from A stops when the A-field word mark is detected. 

Timing. T = .0111 (Lr + 1 + LA + LB ) ms. 

Note. The sign of the result always has both A- and B-bits if 
it is positive. If the sign is negative, it has only a B-bit. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 
NSI A-Lw B-LB 

Example. Zero WHTAX area (0796-0802) and add new 
TAX (0749-0754) to WHTAX (Figure 25). 

Autocoder 
OPERAND .. 10 

~I. • ~ 

Assembled Instruction: 1 754 802 

Figure 25. Zero and Add (Two Fields) 

Zero and Add (One Field) 

Instruction Format. 

Mnemonic 

ZA 
Op Code 

? 
A-address 

xxx 

Function. This format of the ZERO AND ADD instruction 
is used to strip the A-field of all zone bits, except in 
the units (sign) position. The A-field sign is retained. 
If the A-field plus sign bit configuration is not an A­
and B-bit, it is changed to the A- and B-bit con­
figuration. 

Word Marks. The A-field must have a word mark in 
its high-order position. 

Timing. T = .0111 (LI + 1 + 2LA) ms. 

22 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 
NSI A-LA A-LA 

Example. Strip zone bits from TOTAL (0560) area 
(Figure 26). 

Autocoder 

Assembled Instruction: 1 560 

Figure 26. Zero and Add (One Field) 

Zero and Subtract (Two Fields) 

Instruction Format. 

Mnemonic 

ZS 
Op Code 

! 
A-address 

xxx 
B-address 

xxx 

Function. This instruction functionally subtracts the 
A-field from a zeroed B-field. Technically, this is 
accomplished by moving the A-field to the B-field. 
The high-order positions of the B-field are set to 
zero if the B-field is moved directly from the A­
register to the B-field. Zone bits are stripped from 
all but the sign (units) position. The sign is repre­
sented in standard form. 

Word Marks. A word mark is required to define the 
B-field. If the A-field is shorter than the B-field, the 
A-field must have a defining word mark to stop 
transmission of data to B. The extra high-order B­
field positions contain zeros, if A is shorter than B. 

Timing. T = .0111 (Lr + 1 + LA + Ln) ms. 

Note. If the A-field is positive, the B-field result is negative. 
If the A-field is negative, the B-field result is positive. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 
NSI A-Lw B-LB 

Example. Zero ACCUM 1 (0755) and subtract 
TAXEXP (0699) from ACCUM 1, Figure 27. 

Autocoder 
OPERAND 
:~ 00 

Assembled Instruction:! 699 755 

Figure 27. Zero and Subtract (Two Fields) 



Zero and Subtract (One Field) 

Instruction Format. 

Mnemonic 

ZS 

Op Code 

I 

A-address 

xxx 

Function. This instruction changes the A-field sign, 
and strips all A-field zone bits, except in the units 
(sign) position. 

Word Marks. The data in the A-field requires a word 
mark in its high-order position. 

Timing. T = .0111 (Lr + 1 + 2LA ) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-LA A-LA 

Example. Subtract LIMIT (0495) from zero, and 
change sign of LIMIT's value (Figure 28). 

Autocoder 
OPERAND 

:'. . ~ 
Assembled Instruction:! 495 

Figure 28. Zero and Subtract (One Field) 

23 



Logic Operations 
The 1440 program can test for certain conditions that 
may arise during processing, and can transfer the 
program to a predetermined set of instructions or sub­
routines, as a result of these specific tests. The opera­
tions that perform these testing operations are called 
logic operations. 

For example, if an overflow occurs in an arithmetic 
operation, a routine to handle this condition can be 
initiated by executing a BRANCH IF ARITHMETIC OVER­

FLOW INDICATOR ON instruction. Branching to this rou­
tine is called a conditional branch. The sequential 
execution of program steps is bypassed, and the pro­
gram branches to the address of the instruction speci­
fied by the I-address of this conditional branch instruc­
tion. If the condition had not been present, the system 
would have started reading the instruction that ap­
pears at the immediate right of the conditional branch 
instruction (next sequential instruction). All condi­
tional branch instructions have a d-character that is 
used to specify the conditions necessary for a program 
transfer. 

A branch that occurs as a direct result of the execu­
tion of the instruction itself is called an unconditional 
branch. No special condition (other than the execution 
of the program step) is needed to transfer the program 
out of its normal sequential execution. 

Any branch operation that terminates with a suc­
cessful branch to another portion of core storage for 
the next instruction address operates as follows: 

• The B-address register is reset to blanks during the 
next instruction operation (I -Op) cycle. 

• If the indexing and store address register special 
feature is installed on the system, the next sequential 
instruction (NSI) is placed in the B-address register 
and during the following instruction the B-address 
register is not set to blanks. 

Logic Instructions 

Branch (Unconditional) 

I nstruction Format. 

Mnemonic 

B 

Op Code 

B 

I-address 

III 

Function. This instruction always causes the program 
to branch to the address specified by the I -address 
position of the instruction. This address contains the 
Op code of some instruction. 

24 

This unconditional branch operation is used to in­
terrupt normal program sequence, and to continue 

the program at some other desired point, without 
testing for specific conditions. 

Word Marks. The instruction is executed correctly if 
the core-storage position next to the I -address units 
position contains either a blank or a word mark. 

Timing. 
Branch (without indexing): 

T = .0111 (LI + 1) ms. 
Branch (with indexing): 

T = .0111 (LI + 2) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

Branch (without indexing) NSI BI blank 
Branch (with indexing) NSI BI NSI 

Example. Unconditionally branch to AGAIN (3498), 
Figure 29. 

Autocoder 

ASiembled Instruction: J! 098 

Figure 29. Branch (Unconditional) 

Branch If Indicator On 

Instruction Format. 

Mnemonic 

See Figure 30. 

Op Code 

B 

I-address 

xxx 

d-character 

x 

Function. The d-character specifies the indicator 
tested. If the indicator is on, the next instruction is 
taken from the I-address. If the indicator is off, the 
next sequential instruction is taken. Figure 30 
shows the valid d-characters, the indicators they 
test, and the conditions that turn the indicators off. 

Word Marks. Word marks- are not affected. 

Timing. 
No Branch: 

T = .0111 (LI + 1) ms. 
Branch (without indexing): 

T = .0111 (LI + 1) ms. 
Branch (with indexing): 

T = .0111 (LI + 2) ms. 



MNEMONIC d CHARACTER BRANCH ON RESET BY 

BC9 9 Carriage Channel #9 

Carriage Channel # 12 
Branch Test or Channe I 1 punch 

BCV @ 

BPB P * Printer Busy Machine Circuitry 

BLC A "Last Card" switch (sense switch A) Manual System Operator (Switch) or next card feed cycle 

BSS+ B * Sense Switch B 

BSS+ C * Sense Switch C 

BSS+ D * Sense Switch D 
System Operator 

BSS+ E * Sense Switch E 

BSS+ F * Sense Switch F 

BSS+ G * Sense Switch G 

BAV Z Arithmetic Overflow 
Branch Test 

BIN+ % Processing Check with Check Stop Switch Off 

BIN+ ? 
R,ad E"", l 

BIN+ ! Punch Error If I/O Check Stop switch is off Reset by Branch Test 

BIN+ # Printer Error 

BIN+ N Access Inoperable 

BIN+ 
( left 

\ oblique) Access Busy 

BIN+ V Disk Error 
Next Disk Storage operation 

BIN+ W Wrong-Length Record 

BIN+ X Unequal-Address Compare 

BIN+ Y Any-Disk Condition 

BU / (diagonal) Unequa I Compare (B t A) 

BE S Equa I Compare (B ::: A) 
Next Compare or Disk Storage operation 

BL T Low Compare (B< A) 

BH U High Compare (B> A) 

* Special Feature 

+ d-character must be coded in operand portion of instruction 

Figure 30. Branch if Indicator On Mnemonics, d-Characters, and Conditions 

Address Registers After Operation. All d-characters. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 
No Branch NSI BI dbb 
Branch (without indexing) NSI BI blank Assembled Instruction: ! 599 A 
Branch (with indexing) NSI BI NSI 

Figure 31. Branch if Indicator On 
Example. Test for last card. If it is the last card, branch 

to END (0599), Figure 31. 

25 



Branch If Character Equal 

Instruction Format. 

Mnemonic Op Code I-address B-address d-character 

BCE 1! xxx xxx x 

Function. This instruction causes the single character 
at the B-address to be compared to the d-character. 
If the comparison is equal, the program branches 
to the I -address for the next instruction. If the two 
characters are not the same, the program continues 
with the next sequential instruction. 

Word Marks. Word marks in the location tested have 
no effect on the operation. 

Timing. 

No Branch: 

T = .0111 (LI + 2) ms. 

Branch (without indexing): 

T = .0111 (LI + 2) ms. 

Branch (with indexing): 

T = .0111 (Lr + 3) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

No Branch NSI BI B-1 
Branch (without indexing) NSI BI blank 
Branch (with indexing) NSI BI NSI 

Example. This example shows how the chaining 
method can be used to test an entire field for blank 
characters. Each position in the area labeled 
AMOUNT (0350, 0349, 0348 and 0347) is individu­
ally tested for a blank character. If a blank is found, 
the program branches to BLANK (0601) for the 
next instruction. If the position tested contains a 
character, the program continues in sequence 
(Figure 32). 

Autocoder 

40 

Assembled Instruction:.!! 601 350 bl 

.!! 

.!! 
! 

Figure 32. Branch if Character Equal 

26 

OPERAND 
45 10 

MNEMONIC D CHARACTER CONDITION 

BW 1 Word mark 

BWZ 2 No zone (No A, No B bit) 

BWZ B 12 zone (AB bits) 

BWZ K 11 zone (B, No A bit) 

BWZ S Zero zone (A, No B bit) 

BWZ 3 Either a word mark, or no zone 

BWZ C Either a word mark, or 12 zone 

BWZ L Either a word mark, or 11 zone 

BWZ T Either a word mark, or zero zone 

Figure 33. Branch if Word Marle and/orZone Mnemonics, 
d-Characters, and Conditions 

Branch If Word Mark and/or Zone 

Instruction Format. 

Mnemonic Op Code I-address B-address d-character 

See Figure 33. V xxx xxx x 

Function. This instruction examines the character lo­
cated at the B-address for the zone or word-mark 
combinations specified by the d-character. A correct 
comparison branches the program to the specified 
I -address. If the program does not branch to the 
I -address, it continues with the next sequential in­
struction. The d-characters, the associated mne­
monics, and the conditions they test are shown in 
Figure 33. 

Word Marks. These have been explained previously. 

Timing. 

No Branch: 

T = .0111 (LI + 2) ms. 

Branch (without indexing): 

T = .0111 (LI + 2) ms. 

Branch (with indexing): 

T = .0111 (LI + 3) ms. 

Address Registers After Operlion. 

I-Add. Reg. A-Add. Reg. B-Add. Reg . 

No Branch NSI BI B-1 
Branch (without indexing) NSI BI blank 
Branch (with indexing) NSI BI NSI 



Example. Test the units position of GROAMT (2498) 
for an II-zone, and branch to NEGRTE (0598) for 
the next instruction. If there is no II-zone, continue 
the program sequence (Figure 34). 

Autocoder 
OPERAND 

Assembled Instruction: ~ 598 M98 K 

Figure 34. Branch if Word Mark andlor Zone 

Compare 

Instruction Format. 

Mnemonic 

C 

Op Code 

C 

A-address 

xxx 

B-address 

xxx 

Function. The characters in the A-field are compared 
to an equal number of characters in the B-field. The 
comparison turns on an indicator that can be tested 
by a subsequent BRANCH IF INDICATOR ON instru~­

tion. The indicator is reset by either the next 
7-character COMPARE instruction or the next disk­
storage operation. 

The same indicators set by the COMPARE instruc­
tion are also affected by a disk operation (seek, 
read, write, and write check). The disk-storage 
drive performs an address-compare operation auto­
matically on the address in core storage, with the 
address on the disk record, by using the compare 
circuits and by setting the appropriate indicator 
(equal, high, or low). Therefore, careful considera­
tion must be made in the use of a COMPARE instruc­
tion and subsequent BRANCH IF INDICATOR ON in­
structions for testing the results of the COMPARE in­
struction when disk operations are to be performed. 

Word Marks. The first word mark encountered stops 
the operation. If the A-field is longer than the B­
field, extra A-field positions at the left of the B-field 
word mark are not compared. If the B-field is longer 
than the A-field, an unequal-compare results. 

Timing. T = .0111 (LJ + 1 + 2Lw) ms. 

Note. Both fields must have exactly the sa~e bit configurations 
to be equal. For example, OO? (? = 0) compared to 001 
(I = 0) results in an unequal comparison. 

All characters that can appear in storage can be com· 
pared. The ascending sequence of characters is: 

blank • 0 [ < =\= & $ *] ; ~ - I , % 'Y' \ +tt 1J # @ : 
> V ? A through I 1 J through R =f= S through Z 0 through 9. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-Lw B-Lw 

Example. Compare the department numbers punched 
in two cards. Department numbers are located in: 

Card 

1 
2 

Label 

DEPTNO 
DEPTCD 

Actual Address 

1098 
0004 

Then test the result of the compare operation. If 
the department numbers are equal, continue the 
program in sequence. If they are unequal, branch 
to TOTAL (0495) for the next instruction 
(Figure 35). 

Autocoder 

15 I I 3 35 40 5 0 ~ ,*, t .. ,~ O~RANO 
: : : ! : : :\J: : t~i~~~~~ : : : : : : : : : : > : : : : 

Figure 35. Compare 

Assembled Instruction:.£. 004 =,=98 
!. 495 / 

Data-Moving Operations 
The 1440 data-moving operations are used to mani­
pulate data within core storage during processing. 
Depending on the specific operation, one character, a 
group of characters, or a part of one character can be 
involved in the operation. A move operation does not 
affect word marks, but a load operation causes word 
marks, as well as data, to be transferred. 

Data-Moving Instructions 

Move Characters to A or B Word Mark (Two Fields) 

Instruction Format. 

Mnemonic Op Code A-address B-address 

MLC .M. xxx xxx 

Function. The data in the A-field is moved to the B­
field. 

Word Marks. If both fields are the same length, only 
one of the fields must have a defining word mark. 
The first word mark encountered stops the opera­
tion. If the word mark is sensed in the A-field, the 

27 



machine takes one more B-cycle to move the high­
order character from A to B. At the end of the op­
eration, the A-address register and the B-address 
register contain the addresses of the storage loca­
tions immediately to the left of the A- and B-fields 
processed by the instruction. The data at the A-ad­
dress is unaffected by the move operation. Word 
marks in both fields are undisturbed. 

Timing. T = .0111 (LI + 1 + 2Lw) ms. 

Note. If the fields are unequal in length, chaining can produce 
unwanted results, because one of the fields has not been 
completely processed. Thus, one of the registers will not 
contain the address of the units position of the left-adjacent 
field. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-Lw B-Lw 

Example. Move the 5-character field NAMIN (0750) 
to the 5-character field NAMOUT (0850), Figure 36. 

Autocoder 

1p 

Assembled Instruction: M 750 850 

Figure 36. Move Characters to A or B Word Mark 
(Two Fields) 

OPERAND 
11 IQ 

Move Characters to A or B Word Mark (One Field) 

Instruction Format. 

Mnemonic 

MLC 

Op Code 

M 

A-address 

xxx 

Function. This format of the move operation can be 
used when it is desired to move fields from the A­
area and store them sequentially in the B-area. It 
saves program storage space and time, because the 
B-address is automatically taken from the B-address 
register, and does not have to be written or inter­
preted as part of the instruction. 

Word Marks. A word mark is required in the high­
order position of the A- or B-field. The first word 
mark encountered stops the move operation. 

Timing. T = .0111 (LI + 1 + 2Lw) ms. 

28 

Note: If the B-address register already contains the correct ad­
dress, the B-Iabel of the first instruction in the example can 
be eliminated: 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-Lw Bp-Lw 

Example. Move the following three fields (labeled 
EMPNO, DEPTNO and TAXCLS) and store them 
sequentially at RECOUT (units position at 0204), 
Figure 37. 

Employee 
number 
Department 
Tax Class 

Autocoder 

A-actual B-actual 
A-label address B-label address 

EMPYNO 0101-0104 0201·-0204 
DEPTNO 0108-0110 0205·-0207 
TAXCLS 0114-0115 RECOUT 0208·-0209 

Assembled Instruction: oM. 115 209 
!! 110 
oM. 104 

Figure 37. Move Characters to A or B Word Mark 
(One Field) 

Move Characters and Suppress Zeros 

Instruction Format. 

Mnemonic 

MCS 

Op Code 

Z 

A-address 

xxx 

B-address 

xxx 

Function. The data in the A-field is moved to the B­
field. After the move, high-order zeros and commas 
are replaced by blanks in the B-field. Any character 
that is not a comma, hyphen, blank, significant digit, 
or zero causes zero suppression to begin again, The 
sign is removed from the units position of the data 
field. Refer to Figure 38 for a move characters and 
suppress zeros operation example. 

Example Op Code A-address 

Move Char. and 
Suppress Zeros ~ xxx 

Storage before A-field (data) 
± 

Q01206 

Storage after ± 
,201206 

Figure 38. Move Characters and Suppress Zeros 
Operation Example 

B-address 

xxx 

B-field (data) 

hbbbbbb 

bbb1206 



Example Op Code A-address B-address 
Move Char. and 
Su ppress Zeros .f xxx xxx 

Storage before A-field (data) B-field (data) 
+ 

.QO lOb @ 00.25 Ebbbbbbbbbbb 

+ 
Storage after Q01 Ob @ 00.25 Ebb lOb @ bb.25 

Figure 39. Move Characters and Suppress Zeros 
Operation Example, Multiple Field 

Figure 39 is another example of a move charac­
ters and suppress zeros operation involving a multi­
ple field transfer. In this operation there are effec­
tively two groups of high-order zeros. The @ sign is 
recognized as not being a significant digit or a zero, 
blank, comma, decimal, or minus sign. Thus, not 
only are the two high-order zeros suppressed, but 
also the two zeros to the right of the @ sign. 

Word Marks. The A-field word mark stops transmis­
sion of data. B-field word marks, encountered during 
the move operation, are erased. 

Timing. T = .0111 (Lr + 1 + 3LA ) ms. 

Note. This description of the instruction assumes a 1440 sys­
tem without the expanded print edit special feature. If the 
feature is installed, a decimal does not restart zero sup­
pression. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-LA B + 1 

Example. Move and suppress the zeros in the 10-
character field labeled INVBAL (0958) to the area 
labeled OUTPT4 (0448), Figure 40. 

Ass~mbled Instruction: 1. 958 448 

Figure 40. Move Characters and SuppreSs Zeros 

Move Characters to Record Mark or 
Group-Mark with a Word-Mark 

Instruction Format. 

Mnemonic 

MRCM 

Op Code 
p 

A-address 

xxx 

OPERAND 

:~ ) ~ 

B-address 

xxx 

Function. This instruction makes it possible to move 
an entire record from one core-storage area to 
another, regardless of the presence of word marks 
in either field. The A- and B-addresses specify the 
high-order position of the respective areas. Trans­
mission starts from the high-order addresses, and 
continues until a record mark (A82 bits) or a group­
mark with a word-mark (WMBA8421 bits) is sensed 
in the A-field. The record mark or group mark trans­
fers to the B-field. 

Word Marks. Word marks within the area do not af­
fect the operation. Any word marks in the B-field 
remain unchanged. A-field word marks are not 
transmitted to the B-field. 

Timing. T = .0111 (Lr + 1 + 2LA ) ms. 

Address Registers After Operation 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A + LA B + LA 
(The length of the A-
field includes the group-
mark with a word-mark 
or record mark) 

Example. Move the disk record that has its high-order 
character in the location labeled DARCIN (0679) to 
another area of core storage beginning at the label 
WDAREC (0985), Figure 41. 

Autocoder 

OPERAND 

~~ , ~ 

Figure 41. 

Assembled Instruction:! 679 985 

Move Characters·to Record Mark or Group-Mark 
with a Word-Mark 

Move Numerical 

Instruction Format. 

Mnemonic 

MLNS 

Op Code 

D 

A-address B-address 

xxx xxx 

Function. The numerical portion (8-4-2-1 bits) of the 
single character in the A-address is moved to the B­
address. The zone portions (AB bits) are undisturbed 
at both addresses. The entire character in the A­
address is left undisturbed. 

29 



Word Marks. Word marks are not required at either 
address, because the nature of the instruction al­
ways specifies that only one digit is to be trans­
mitted. 

Timing. T = .0111 (Lr + 3) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 
NSI A-I B-1 

Example. Move the numerical portion of the units 
position of ONHAND (0986) to OUT5 (0789), 
Figure 42. 

Autocoder 

~ label 

. : 
~roti~ lSI ZIi liD 40 

Assembled Instruction: ~ 986 789 

Figure 42. Move Numerical 

Move Zone 

Instruction Format. 
Mnemonic 

MLZS 
Op Code 

y 
A-address 

xxx 

OPERAND 
45 10 

B-address 
xxx 

Function. Only the zone portion (AB bits) is moved 
from the A-address to the B-address. The digit por­
tions (8-4-2-1 bits) are undisturbed at both ad­
dresses. The entire character in the A-address is left 
undisturbed. 

Word Marks. Word marks are not required at either 
the A- or B-addresses, because this instruction in­
volves a single character. 

Timing. T = .0111 (LI + 3) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 
NSI A-I B-1 

Example. Move the zone bits from the units position 
of NEWBAL (3100) to the area labeled REC2 
(3195), Figure 43. 

Autocoder 

I
, label .~~otl~. 'OPERAND 

.~====.=:===':!W::::z:5-:':W:!:' :EW:B::~::l:~) R~,E~~:1::=-'_~~L-L-----=~LlLo_-~...241L.1I --..L-

JDlIO 

Assembled Instruction:! AOO A95 

Figure 43. Move Zone 

30 

Load Characters to A Word Mark (Two Fields) 

Instruction Format. 

Mnemonic 

MLCWA 
Op Code 

L 
A-address B-address 

xxx xxx 

Function. This instruction is commonly used to load 
data into designated printer or punch output areas 
of storage, and also to transfer data or instructions 
from a designated read-in area to another storage 
area. The data and word mark from the A-field are 
transferred to the B-field, and all other word marks 
in the B-field are cleared. 

\Vord lo.larks. The A-field must have a defining word 
mark, because the A-field word mark stops the 
operation. 

Timing. T = .0111 (LI + 1 + 2LA ) ms. 

Note: If the B-field is larger than the A-field, the B-field word 
mark is not cleared. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 
NSI A-LA B-LA 

Example. Transfer the data and word marks from 
REC4 (0950) to OUT8 (0650), Figure 44. 

Autocoder 

I' label troti~ I I I IlL liD 40 
OPERAND 

:~ , ~ . : 
Assembled Instruction:.!:. 950 650 

Figure 44. Load Characters to A Word Mark (Two Fields) 

Load Characters to A Word Mark (One Field) 

Instruction Format. 

Mnemonic 

MLCWA 
Op Code 

L 
A-address 

xxx 

Function. This format can be used when several A­
fields (not necessarily in sequence) are to be loaded 
sequentially in the B-field. This instruction causes 
the A-field data and word mark to be moved to the 
B-field. B-field word marks are cleared, up to the 
A-field word mark. 

Word Marks. The A-field word mark stops the opera­
tion. Therefore, B-field word marks, beyond the left 
limit of the A-field, are not cleared. 



Timing. T = .0111 (Lr + 1 + 2LA ) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 
NSI A-LA Bp-LA 

Example. Load the three fields, EMPYNO, DEPTNO, 
and T AXCLS, with their word marks to sequential 
locations, beginning at storage location (0201), Fig­
ure 45. 

Employee 
number 
Department 
Tax Class 

Autocoder 

A-actual 
A-label address B-Iabel 

EMPYNO 0101-0104 
DEPTNO 0l08-0110 
TAXCLS 01l4-0115 PRINT1 

Auembled Instruction:!. 115 
!. 110 
!. 104 

B-actual 
address 

0201-0204 
0205-0207 
0208-0209 

Figure 45. Load Character to A Word Mark (One Field) 

31 



Miscellaneous Operations 
The miscellaneous operations in an IBM 1440 Data 
Processing System involve the insertion and removal 
of word marks from specific core-storage locations, the 
clearing of core-storage areas, programmed halt op­
erations, and other similar operations. 

Miscellaneous Instructions 

Set Word Mark (Two Addresses) 

Instruction Format. 

Mnemonic Op Code A-address B-address 

SW xxx xxx 

Function. A word mark is set at each address specified 
in the instruction. The data at each address is undis­
turbed. A word mark cannot be set in core-storage 
position 000. 

Word Marks. Word marks are set at both the A- and 
B-addresses specified. A word mark is not required 
in the core-storage position adjacent to this instruc­
tion. 

Timing. T = .0111 (LI + 2) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-I B-1 

Example. Set word marks at locations BEGIN 1 (3950) 
and BEGIN2 (3970), Figure 46. 

Autocoder 

~ Lobel 

. : 
Assembled Instruction:, 150 170 

Figure 46. Set Word Mark (Two Addresses) 

Set Word Mark (One Address) 

Instruction Format .. 

Mnemonic Op Code A-address 

SW xxx 

Function. This format of the SET WORD MARK instruc­
tion causes a word mark to be set at the A-address. 

32 

Data at this address is undisturbed. A word mark 
cannot be set in core-storage position 000. 

\Vord Marks. A word mark is set at the A-address. 

Timing. T = .0111 (LI + 3) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-I A-I 

Example. Set a word mark at AREA2 (2901), Figure 
47. 

Autocoder 

r 
Lobel fperat'~ OPERAND 

_ I I II , 10 III. ,. ~o. . . . ~5. . ~ ~~~~~~w~~=Rf=A~2~1~~.~_~~_~.~. ________ ___ 

Assembled Instruction:.!.. ROl 

Figure 47. Set Word Mark (One Address) 

Clear Word Mark (Two Addresses) 

Instruction Format. 

Mnemonic Op Code 

D 

A-address 

xxx 

B-address 

xxx 

Function. This instruction clears word marks at the 
locations specified by the A- and B-addresses, with­
out disturbing the data there. A process error occurs 
if the specified A- or B-address is core-storage posi­
tion 000 (end-around check condition). 

Word Marks. Word marks are cleared at the A- and 
B-addresses. 

Timing. T = .0111 (LI + 3) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-I B-1 

Example. Clear the word marks at NETPAY (1924) 
and ACCUM4 (3309), Figure 48. 

Autocoder 

Assembled Instruction: Q Z24 (09 

Figure 48. Clear Word Mark (Two Addresses) 



Clear Word Mark (One Address) 

Instruction Format. 

Mnemonic 

CW 

Op Code 

Cl 

A-address 

xxx 

Function. This format of the CLEAR WORD MARK instruc­
tion causes the word mark to be cleared at the A­
address. Data at the A-address is not disturbed. A 
process error occurs if the specified A-address is 
core-storage position 000 (end-around check condi­
tion). 

'Vord Marks. Word marks are cleared at the A-address 
only. 

Timing. T = .0111 (Lr + 3) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A-I A-I 

Example. Clear the word mark at RECNOI (3608), 
Figure 49. 

Autocoder 

I' 
Label 

. : 
Assembled Instruction: Q F08 

Figure 49. Clear Word Mark (One Address) 

Clear Storage 

Instruction Format. 

Mnemonic 

CS 

Op Code 

/ 

OPERAND 

:~ ~Q 

A-address 

xxx 

Function. As many as 100 positions of core storage can 
be cleared of data and word marks when this in­
struction is executed. Clearing starts at the A-ad­
dress and continues in descending address sequence 
to the nearest hundreds position. The cleared area 
is set to blanks. 

Word Marks. Word marks do not stop the operation. 

Timing. T = .0111 (Lr + 1 + Lx) ms. 

Note: During the execution of this instruction, only the B­
address register is used. Therefore, when chaining is being 
considered, the contents of the A-address register can be 
ignored. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. 

NSI A 

B-Add. Reg. 

x 00-1 

Example. Clear W AREA5 (0500-0563), Figure 50. 

Autocoder 

Assembled Instruction:!.. 563 

Figure 50. Clear Storage 

Clear Storage and Branch 

Instruction Format. 

Mnemonic 

CS 

Op Code 

/ 

I-address 

xxx 

B-address 

xxx 

Function. This is the same as the CLEAR STORAGE in­
struction, except that the clearing starts at the B­
address. The I-address specifies the location of the 
next instruction. 

Word Marks. Word marks do not stop the operation. 
It is not necessary to follow this instruction with a 
character and an associated word mark. 

Timing. 

Without indexing: 

T = .0111 (Lr + Lx) ms. 

With indexing: 

T = .0111 (Lr + 1 + Lx) ms. 

Address Registers After Operation. 

Without indexing 
With indexing 

I-Add. Reg. 

NSI 
NSI 

A-Add. Reg. 

BI 
BI 

B-Add. Reg. 

blank 
NSI 

Example. Clear W AREA2 (0800-0898) and branch to 
START4 (0498) for the next instruction (Figure 51). 

Assembled Instruction: L 498 898 

Figure 51. Clear Storage and Branch 



No Operation 

Instruction Format. 

Mnemonic 

NOP 

Op Code 

N 

Function. This code performs no operation. It can be 
substituted for the operation code of any instruction 
to make that instruction ineffective. It is commonly 
used in program modification to cause the machine 
to skip over specific instructions. 

Instructions that have A-addresses of % xx or @xx 
should have their A-address field set to valid nu­
meric values (all zeros, for example), or all N's with 
associated word marks to perform a no-operation 
function successfully. If this is not done, the A­
address may contain characters that cause indexing 
and/or invalid core-storage addressing problems. 

Word Marks. The program operation resumes at the 
next operation code identified by a word mark. 

Timing. T = .0111 (LI + 1) ms. 

Note. If characters without word marks follow an N operation 
code, these characters enter the A- and B-field r~isters. For 
example: 

N 1234 A xxxx 

In this instance, the address registers after operation 
would be: 

I-Add. Reg. 

NSI 

A-Add. Reg. 

123 
B-Add. Reg. 

4bb* 

* If this address is subsequently used (chained or stored) 
an invalid-address check stop condition occurs. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI A B 

Example. Leave eight storage positions open for an 
instruction code such as READ CARD M (000) (000) R. 
The correct instruction can be inserted when needed 
(Figure 52). 

Autocoder 

L lobe' 

t: .: 
Assembled Instruction: ~ 000 000 R 

Figure 52. No Operation 

34 

Halt 

Instruction F onnat. 

Mnemonic Op Code 

H 

Function. This instruction causes the machine to stop 
and the stop-key light to turn ON. Pressing the start 
key causes the program to start at the next instruc­
tion in sequence. 

Word Marks. Word marks are not affected. 

Timing. T = .0111 (LI + 1) ms. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 
NSI Ap Bp 

Example. Figure 53 is a symbolic example of the HALT 

instruction. 

Autocoder 

Assembled Instruction: • 

Figure 53. Halt 

Halt and Branch 

Instruction Format. 

Mnemonic Op Code I-address 

H xxx 

Function. This is the same as HALT, except that the 
next instruction is at the I-address. 

Word Marks. Word marks are not affected. 

Timing. 

Without indexing: 

T = .0111 (LI + 1) ms. 

With indexing: 

T = .0111 (LI + 2) ms. 

Address Registers After Operation. 

Without indexing 
With indexing 

I-Add. Reg. 

NSI 
NSI 

A-Add. Reg. 

BI 
BI 

B-Add. Reg. 

blank 
NSI 



Example. Stop the system, and branch to START2 
(0895) for the next instruction when the start key 
is pressed (Figure 54). 

Autocoder 
OPERAND 

:'. ~ 
Assembled Instruction: • 895 

Figure 54. Halt and Branch 

Coded Halt 

Instruction Format. 

Mnemonic Op Code I-address B-address d-character 

H 
~ 

C1 

• C1 C2 

· C1 C2 Ca C, 

• C1 C2 Cs C, Gs 

· C1 GI Ca C, C5 C6 

~ 
C1 C2 Cs C, C5 C6 C7 

Function. These forms of the HALT instruction place 
coded information in the A- and B-address and d­
character positions. The coded information is then 
used to identify the halt. The coding used in these 
positions is left to the discretion of the programmer, 
but the system's valid addressing and indexing rules 
must be followed. For example, the first four forms 

of this instruction, as listed in the instruction format, 
leave invalid addresses in the A- and/or B-address 
registers and these addresses cannot be used in sub­
sequent operations. 

Word Marks. A word mark is required in the core­
storage position adjacent to the instruction to specify 
the instruction length. 

Timing. T = .0111 (Lr + 1) ms. 

Note. The last coded character also appears in the A-register. 

Address Registers After Operation. 

I-Add. Reg. A-Add. Reg. B-Add. Reg. 

NSI C1 b b C1 b b 
NSI Cl C2 b C1 C2 b 
NSI Cl C2 Ca C, b b 
NSI C1 C2 Cs C, C5 b 
NSI C1 C2 Cs C, C5 C6 
NSI C1 C2 Ca C, C5 C6 

Example. Stop the system, and label the stop as 22, 
(Figure 55). 

Autocoder 

~ Label ~o 
40 

OPERAND 

:~ ~ . : 
Assembled Instruction: .!. 022 

Figure 55. Coded Halt 

35 



Edit Operation 
The IBM 1440 Data Processing System has a powerful 
edit instruction that can cause all desired commas, 
decimals, dollar signs, asterisks, credit symbols, and 
minus signs to be inserted automatically in a numeri­
cal output field. Unwanted zeros to the left of signifi­
cant digits can be suppressed. Thus, editing in the 
1440 system is the automatic control of zero suppres­
sion, inserting of identifying symbols, and punctuation 
of an output field (Figure 56). 

In editing, two fields are needed - the data field 
and a control field. The data field is the data edited 
for output. The control field specifies how the data 
field is edited. It specifies the location of punctuation 
and condition of special characters and indicates 
where zero suppression occurs. The two fields are 
operated on character-by-character, under control of 
editing rules. 

The control word has two parts: the body (which 
punctuates the A-field), and the status portion (which 
contains the dollar signs, sign-symbols, and class of 
total asterisks). The sign of the A-field determines 
whether or not sign symbols will print. The sign of the 
A-field is removed. 

To edit a field, a LOAD CHARACTERS TO A WORD MARK 

instruction loads the control word into the specified 
printer output area. This puts the control word where 
the edited information will eventually go. Then, a 
MOVE CHARACTERS AND EDIT instruction (with the same 
B-address as the previous load instruction) performs 
the editing function as it moves the data into the out­
put area. 

NOTE: A I-position field cannot be edited. Figure 57 shows 
the use of these mles as applied to the data in Figure 56. 

Move Characters and Edit 

Instruction Format. 

Mnemonic Op Code 

MCE .§. 

A-address B-address 

xxx xxx 

Function. The data field (A-field) is modified by the 
contents of the edit control field (B-field), and 
the result is stored in the B-field. The data field and 

o P A-address 
Edit instruction E 789 

A-field (data) 
Storage Q0257426 

Result of edit Q0257426 

Figure 56. Editing Operation 

36 

B-addr~ss 
300 

B-fleld (control word) 
1 bbb, bbO.bb & CR & ** 
B-fleld 
$ 2,574.26 

the control field are read from storage character-by­
character, under control of the word marks and the 
editing rules. Any sign in the units position of the 
data field is removed during the operation. 

EDITING RULES 

Rule 1. All numerical, alphabetic, and special charac­
ters can be used in the control word. However, some 
of these characters have special meanings: 

Control 
Character Function 

b (blank) This is replaced with the character from the 
corresponding position of the A-field. 

o (zero) This is used for zero suppression, and is replaced 
with a corresponding character from the A-field. 
Also the right-most "0" in the control word in­
dicates the right-most limit of zero suppression. 

• (decimal) This remains in the edited field in the position 
where written. It is removed during a zero­
suppress operation if it is to the left of the 
high-order significant digit. When used with the 
expanded print edit feature, it has an addi­
tional function (see Expanded Print Edit sec­
tion, Special Features, Form A26-5669). 

~ (comma) This remains in the edited field in the position 
where written. It is removed during a zero­
suppress operation if it is to the left of the high­
order significant digit. 

CR (credit) This is undisturbed if the data sign is negative. 
It is blanked out if the data sign is positive. It 
can be used in body of control word without 
being subject to sign control. 

-- (minus) This is the same as CR. 

& (ampersand) This causes a space in the edited field. It can 
be used in multiples. 

* (asterisk) This can be used in singular or in multiples, 
usually to indicate class of total. When it is used 
with the expanded print edit feature, it takes 
on an additional function (see Expanded Print 
Edit section, Special Features, Form A26-5669). 

$ dollar sign This is undisturbed in the position where it is 
written. When used with the expanded print 
edit feature, it has an additional function (see 
Expanded Print Edit section, Special Features, 
Form A26-5669). 

Rule 2. A word mark in the high-order position of 
the B-field controls the move characters and edit 
operation. 

Rule 3. When the A-field word mark is sensed, the 
remaining commas in the control field are set to blanks. 

Rule 4. The body of the control word is that portion 
beginning with the right-most blank or zero, and con­
tinuing to the left to the control character that governs 
the transfer of the last position of the data field. The 
remaining portion of the control field is the status 
portion. 



PUT 
ADDRESS BACK 

Cycle TYPE OF REGISTERS REG. INTO "B" FIELD REMARKS 

CYCLE I A B B A STORAGE AT END OF CYCLE 

1 lop 002 ? ? E E I1b b b ,b b 0 . b b & C R & * * Read Instr. OP Code 

2 It 003 07bb 07bb 7 7 7 same Load A Address Register 

3 III 004 078b 078b 8 8 8 same Load A Address Register 

4 Is 005 0789 0789 9 9 9 same Load A Address Register 

5 14 006 . 0789 03bb 3 3 3 same Load B Address Register 

6 10 007 0789 030b 0 0 0 same Load B Address Register 

7 16 008 0789 0300 0 0 0 same Load B Address Register 

8 h 008 0789 0300 OP 0 OP same OP code of next instr. 

9 A 008 0788 0300 6 6 6 same Execute EDIT instr. 

10 B 008 0788 0299 * 6 * same Rule 1 

11 B 008 0788 0298 * 6 * same Rule 1 

12 B 008 0788 0297 & 6 Blank !b b b, b b O. b b & C R b * * Rule 1 

13 B 008 0788 0296 R 6 Blank i!bbb,bbO.bb&Cbb** Rule 1 and 5 

14 B 008 0788 0295 C 6 Blank ltbbb,bbO.bb&bbb** Rule 1 and 5 

15 B 008 0788 0294 & 6 Blank lbbb,bbO.bbbbbb** Rule 1 

16 B 008 0788 0293 b 6 6 ~bbb,bbO.b6bbbb** Rule 1 

17 A 008 0787 0293 2 2 2 same Rule 1 

18 B 008 0787 0292 b 2 2 !bbb,bbO.26bbbb** Rule 1 

19 A 008 0786 0292 4 4 4 same Rule 1 

20 B 008 0786 0291 4 same Rule 1 

21 B 008 0786 0290 0 4 4 I! b b b, b b!. 2 6 b b b b * * Zero Suppress-Rule 1 and 6 

22 A 008 0785 0290 7 7 7 same Rule 1 

23 B 008 0785 0289 b 7 7 .1 b b b , b 7 ~. 2 6 b b b b * * Rule 1 

24 A 008 0784 0289 5 5 5 same Rule 1 

25 B 008 0784 0288 b 5 5 Ii b b b ,57!. 2 b b b b b * * Rule 1 

26 A 008 0783 0288 2 2 2 same Rule 1 

27 B 008 0783 0287 , 2 , same Rule 1 

28 B 008 0783 0286 b 2 2 1bb2,57~.26bbbb** Rule 1 

29 A 008 0782 0286 0 0 0 same Rule 1 

30 B 008 0782 0285 b 0 0 11 b 0 2 , 5 7 4 . 2 6 b b b b * * Rule 1 

31 A 008 0781 0285 0 0 0 same Rule 1 

32 B 008 0781 0284 b 0 0 11 0 0 2 , 57!. 2 6 b b b b * * Rule 1 

33 B 008 0781 0284 1 0 $ $002,574.26bbbb** Sense Word Mark-Rev. Scan-Rule 1 and 6 

34 B 008 0781 0285 $ .Q. $ same Rule 6 

35 B 008 0781 0286 0 Q Blank $ b 0 2 , 57!. 26 b b b b * * Rule 6 

36 B 008 0781 0287 0 0 Blank $ b b 2 ,57!. 26 b b b b * * Rule 6 

37 B 008 0781 0288 2 Q 2 same Rule 6 

38 B 008 0781 0289 , .2 , same Rule 6 

39 B 008 0781 0290 5 2. 5 same Rule 6 

40 B 008 0781 0291 7 0 7 same Rule 6 

41 B 008 0781 0292 4 0 4 $bb2,574.26bbbb** Rule 6 

Figure 57. Step-by-Step Editing Operation 

37 



Rule 5. If the data field is positive, and if the CR 
or - symbols are located in the status portion of the 
control word, they are blanked out. 

Rule 6. The data field can contain fewer, but must 
not contain more positions than the number of blanks 
and zeros in the body of the control word. Dollar signs 
and asterisks are included in the body of the control 
word with the expanded print edit special feature. 

Rule 7. Zero suppression is used if unwanted zeros 
to the left of significant digits in a data field are to be 
deleted (see Figure 58). 

ZERO SUPPRESSION OPERATION 

Zero suppression is the deletion of unwanted zeros at 
the left of significant digits in an output field (Figure 
58). 

A special 0 is placed (in the body of the control 
word) in the right-most limit of zero suppression. 

To perform zero-suppression operations properly, 
there must be at least one character to the left of the 
zero-suppression character in the control word. 

Forward Scan: 

1. The positions in the output field at the right of this 
special zero are replaced by the corresponding 
digits from the A-field. 

A·field 

Control word (B·field) 

Forward lean 

Reverse lean 

Results of edit 

Figure 58. Zero Suppression Operation 

38 

Q010900 

$ bb, bbO. bb -. 
$ 00,102·00 

t 
$ bbb109. 00 

$ 109.00 

2. The special zero is replaced by the corresponding 
digit from the A-field, when it is detected in the 
control field. 

3. A word mark is automatically set in this position of 
the B- (output) field. 

4. The scan continues until the B-field (high order) 
word mark is sensed and removed. 

Reverse Scan: 

1. In the output field, blanks replace all zeros and 
punctuation, except hyphens at the left of the first 
significant character (up to, and including, the zero­
suppression code position). 

2. When the automatically-set zero suppression word 
mark is sensed, it is erased and the operation ends. 

Timing. T = .0111 (LI + 1 + LA + LB + Ly) ms. 

Address Registers After Operation. 

Without zero 
suppression 
With zero 
suppression 

I-Add. Reg. A-Add. Reg. 

NSI A-LA 

NSI A-LA 

B-Add. Reg. 

B-LB 
Location of the special 

control zero plus 1. 

Example. Edit the data labeled GROPAY (0985) by 
the edit-control word EDCONT (0325). Store the 
result in PRINT6 (00250), Figure 59. 

Autocoder 

I j ~ 10 II ~o 41 ---IQ ~ ~I if", O~~ND 
: : : : : 1 : : :3i~=::~i~!?t.:Zit:: : : : ~: :=::::~ 

Assembled Instruction:!. 325 250 
! 985 250 

Figure 59. Move Characters and Edit 



IBM 1447 Console Operations 
The IBM 1447 Console (Modell, 2, or 4), Figure 60, is 
a required unit on an IBM 1440 Data Processing Sys­
tem. The console contains the system operating keys, 
lights and switches which give the operator external 
control for setting up and checking system operation. 
For more detail on the keys, lights, switches, and op­
erating procedures, refer to IBM 1447 Console, Form 
A24-3031. 

Console Instruction Format 

A program-initiated data transmission between the 
IBM 1447 Console (Model 2 or 4) and the attached 
system is started by executing the proper console in­
struction. If the data transmission is from the 1447 
console to the system, a READ FROM 1447 CONSOLE in­
struction is executed. The format for the 1447 console 
is shown in Figure 61. 

The various parts of a 1447 console instruction and 
their uses are: 

General Mode of Operation 

This part of the instruction identifies the operation as 
either a move operation or a load operation. A move 
operation specifies that only the character coding is 
transmitted. A load operation specifies that both the 
character coding and any associated word marks are 
transmitted. 

Figure 60. IBM 1447 Console, Model 2 

,------------General Mode of Operation 
M - Move (no word marks involved) 
L - Load {word marks involved} 

r-------- Operating Input-Output Unit 

x XXX 

Figure 61. 

%TO - 1447 Console I/O Printer 

,----- B - Address 

XXX X 

The first core-storage position 
involved in the data transmission 
operation 

d - Modifier Character 
R - Read from 1447 console 
W - Write on 1447 console 

1447 Console 110 Printer Instruction Format 

Operating Input/Output Unit 

This part of the instruction specifies the console I/O 
printer as the active input/output unit for this op­
eration. 

B-Address 

This part of the instruction specifies the first core­
storage position that will be involved in the operation. 

d-Modifier Character 

This part of the instruction specifies the data trans­
mission direction. An R specifies a console printer­
to-system data transmission; a W specifies a system­
to-console printer data transmission. 

IBM 1447 Console Instructions 

Read from 1447 Console 

Instruction Format. 

Mnemonic Op Code A-address B-address d-character 

RCP MIL % TO BBB R 

Function. This instruction is used to enter data into 
core storage from the console I/O printer. The Op 
code specifies the mode of operation. If the opera­
tion takes place in the move mode (M Op code), 
word marks cannot be transmitted from the console 
printer into core storage. Any word marks already 
in the area that accepts the message will remain 
there. 

39 



If the operation takes place in the load mode (6 
Op code), word marks can be transmitted from the 
console printer into core storage when the word­
mark key is pressed. Any word marks already in the 
area that accepts the message will be removed. 

The A-address specifies the console I/O printer 
as the 1/0 unit involved in the operation. The B­
address specifies the first core-storage position that 
accepts data from the console printer. The d-charac­
ter specifies a console printer-to-system operation. 

'fhe console operator can start keying the data 
when the white type light on the console comes ON. 

The console operator prints the data on the console 
printer and the characters enter core storage, be­
ginning at the location specified by the B-address 
portion of the instruction. 

The operator transmits a word mark by pressing 
the shift key and the word-mark key. The upper case 
(word-mark position) of the period key prints an 
inverted circumflex. The next character printed will 
enter a core-storage position and have a word mark 
associated with it. 

When the number of data positions to be entered 
into core storage exceeds the number of printing 
positions on one printer line, the print element auto­
matically returns from the right-hand margin, exe­
cutes a line feed in operation, and the keying opera­
tion continues on the next line. 

The operation is normally ended when the opera­
tor presses the release key. This key operation 
inserts a group-mark with a word-mark in core stor­
age, initiates a carrier-return and line-feed opera­
tion, and disconnects the printer from the system. 

The operation can also be ended if a group-mark 
with a word-mark is sensed in core storage. This 
signifies that the input message ex'ceeded the core­
storage area capacity and: 

L The operation ends and the printer is discon­
nected from the system. 

2. The inquiry clear (*) indicator in the system 
comes on. 

:3. The red type light on the console comes on. 
/L A carrier-return and line-feed operation is in­

itiated. 
;y. The keyboard locks up. 

Word "AI arks. Depends on mode of operation. To end 
1:he operation correctly, a group-mark with a word­
;nark must be inserted into the 1440 core-storage 
)I)sition to the right of the position that contains 

i he last character sent to the system from the console 
printer. 

40 

Timing. T = .0111 (LI + 1) ms + operator keying 
time. 

Address Registers After Operation. 

I-Add. Reg. 

NSI 

A-Add. Reg. 

%30 

B-Add. Reg. 

B + LB + 1 

Example. Transfer the data keyed on the console I/O 
printer to the area in 1440 core storage labeled 
INQIN (0785), Figure 62. 

Autocoder 

I' 
label 

. : 
Assembled Instruction: M %TO 785 R 

Figure 62. Read from 1447 Console 

Write on 1447 Console 

Instruction Format. 

Mnemonic Op Code 

WCP ~:!I.!:. 

A-address 

%TO 

B-address d-character 

BBB W 

Function. This instruction is used to transfer data 
from core storage to the console I/O printer. The 
Op code specifies the mode of operation. If the op­
eration takes place in the move mode, word marks 
are ignored. The character with an associated word 
mark in core storage is printed as a character only. 
Functional control characters cause the specified 
carrier movement on the console printer, and the 
characters do not print. Refer to IBM 1447 Console 
(Form A24-3031) for functional control characters 
and associated printer operation. 

If the operation takes place in the load mode, the 
word marks are transmitted and printed. The word 
mark is printed before the associated character is 
printed. Functional control characters are also 
printed. The carrier movement normally specified by 
the character does not occur. 

The A-address specifies the console I/O printer 
as the I/O unit involved in the operation and turns 
on the white type light if the printer is available for 
use. The B-address specifies the first core-storage 
position of the area that contains the data to be 
printed. The d-character specifies a system-to-con­
sole printer operation. 

The data reads out of core storage, beginning at 
the address specified in the instruction and con­
tinuing until a group-mark with a word-mark is en-



countered. The group-mark with a word-mark ends 
the operation, but does not print. A carrier-return 
operation, with an associated line-feed operation, 
occurs and the system advances to the next instruc­
tion. 

If the end of a printed line is reached before the 
group-mark with a word-mark is sensed, printing 
is suspended and a carrier-return and line-feed 
operation is executed. When the carrier reaches the 
left-hand margin, the print-out operation continues. 

Word Marks. Depends on mode of operation. A group­
mark with a word-mark in core storage ends the 
operation. 

Timing. T = .0111 (LI + 1) + 68 (LB ) + 800 (num­
ber of carrier return operations -1) ms. 

Address Registers After Operation. 

I-Add. Reg. 

NSI 

A-Add. Reg. 

%30 

B-Add. Reg. 

B + LB + 1 

Example. Print out the data, beginning in the area 
labeled INQOUT (0785) and ending with a group­
mark with a word-mark (Figure 63). 

Autocoder 

I' Label . : 
OPERAND 

:~ • ~Q 

Assembled Instruction:!! %10 785 W 

Figure 63. Write on 1447 Console 

Console 110 Printer Timing 
The console I/O printer is used for input to, and out­
put from, the IBM 1440 Data Processing System. 

The timing involved during an input operation is: 
T = .0111 (LI + 1) + console operator keying time. 

The timing involved during an output operation is: 
T = .0111 (LI + 1) + 68 (LB ) + 800 (number of car­
rier return operations -1) ms. * 

* All system-console printer operations are unbuffered opera­
tions. Only one portion of either operation is overlapped by 
processing. This is the last carrier-return and line-feed operation 
that occurs at the end of an output operation. 

41 



Appendix 

CARD 52 52 CARD 52 52 

DEFINED CHARACTER CODE BCD CODE 13 39 A H 63 DEFINED CHARACTER CODE BCD CODE 13 39 A H 63 

Blank C X X X X X __ .<L ____ 12-7 B A 4 2 I X X X X 

Period 12-3-8 B A 8 2 1 X X X X X H 12-8 B A 8 X X X X ----
):( Lozenge 12-4-8 C B A 8 4 )::( ) X I 12-9 C B A 8 1 X X X X 

[ Left Bracket 12-5-8 B A 8 4 1 X I (- zero) 11-0 B 8 2 X X X 

< Less Than 12-6-8 B A 8 4 2 X J 11-1 C B 1 X X X X 

=*= GroupMark 12-7-8 C B A 8 4 2 1 X K 11-2 C B 2 X X X X 

& Ampersand 12 C B A & + X L 11-3 B 2 1 X X X X 

$ Dollar Sign 11-3-8 C B 8 2 1 X X X X M 11-4 C B 4 X X X X _ .. 

* Asterisk 11-4-8 B 8 4 X X X X N 11-5 B 4 1 X X X X -_ .. 

J Right Bracket 11-5-8 C B 8 4 I X 0 11-6 B 4 2 X X X X 

; Semicolon 11-6-8 C B 8 4 2 X P 11-7 C B 4 2 1 X X X X 

6. Delta 11-7-8 B 8 4 2 1 X Q 11-8 C B 8 X X X X 

- Hyphen 11 B X X X X R 11-9 B 8 1 X X X X 

/ Diagonal 0-1 C A 1 X X X + Record Mark 0-2-8 A 8 2 X X X 

Comma 0-3-8 C A 8 2 I X X X X S 0-2 C A 2 X X X X 

% Percent Mark 0-4-8 A 8 4 % ( X T 0-3 A 2 1 X X X X 

V Word Separator 0-5-8 C A 8 4 I X U 0-4 C A 4 X X X X 

\ Left Obi ique 0-6-8 C A 8 4 2 X V 0-5 A 4 1 X X X X 

-Itt Se9'"ent Mark 0-7-8 A 8 4 2 1 X W 0-6 A 4 2 X X X X 

'0 Substitute Blank 2-8 A X X X X 0-7 C A 4 2 1 X X X X 

# Number Sign 3-8 8 2 I # = X Y 0-8 C A 8 X X X X 

@ At Sign 4-8 C 8 4 @ X Z 0-9 A 8 1 X X X X 

: Colon 5-8 8 4 1 X X X o (Zero) 0 C 8 2 X X X X X 

> Greater Than 6-8 8 4 2 X I 1 1 X X X X X 

.y Radical 7-8 C 8 4 2 1 X 2 2 2 X X X X X 
? (Plus Zero) 12-0 C B A 8 2 X X X 3 3 C 2 1 X X X X X 
A 12-1 B A I X X X X 4 4 4 X X X X X 

B 12-2 B A 2 X X X X 5 5. C 4 I X X X X X 

C 12-3 C B A 2 1 X X X X 6 6 C 4 2 X X X X X 

D 12-4 B A 4 X X X X 7 7 4 2 1 X X X X X 

E 12-5 C B A 4 1 X X X X 8 8 8 X X X X X 

F 12-6 C B A 4 2 X X X X 9 9 C 8 1 X X X X X 

Figure 64. 1440 Character Code Chart in Collating Sequence 

42 



Instruction 

Add (One Field) ................................................................ . 
Add (Two Fields) ............................................................. .. 

Branch (Unconditional) ....................................................... . 
Branch if Access Busy ....................................................... . 
Branch if Access Inoperable ............................................ . 
Branch if Any Disk-Unit Error Condition .................... . 
Branch if Carriage Channel #9 ...................................... . 
Branch if Carriage Channel #12 .................................... . 
Branch if Character Equal ................................................ . 
Branch if Disk Error ........................................................ . 
Branch if Equal Compare (B = A) ................................ .. 
Branch if High Compare (B > A) ................................... . 
Branch if Last Card Switch (Sense Switch A) ............. . 
Branch if Low Compare (B < A) ................................... . 
Branch if Arithmetic Overflow ....................................... .. 
Branch if Printer Busy ...................................................... .. 
Branch if Printer Error (110 Check Stop Switch Off) . 
Branch if Processing Check (Check Stop Switch Off) ... . 
Branch if Punch Error (110 Check Stop Switch Off) .. .. 
Branch if Read Error (110 Check Stop Switch Off) .. .. 
Branch if Sense Switch B On ........................................... . 
Branch if Sense Switch C On ......................................... .. 
Branch if Sense Switch D On 
Branch if Sense Switch E On 
Branch if Sense Switch F On 

Autocoder 
Mnemonic 

A 
A 

B 
BIN 
BIN 
BIN 
BC9 
BCV 
BCE 
BIN 
BE 
BH 
BLC 
BL 
BAV 
BPB 
BIN 
BIN 
BIN 
BIN 
BSS 
BSS 
BSS 
BSS 
BSS 

Branch if Sense Switch G On .... .............. ........................ BSS 
Branch if Unequal-Address Compare .............................. BIN 
Branch if Unequal Compare ............................................. BU 
Branch if Word Mark ......................................................... BW 
Branch if No Zone ............................................................. BWZ 
Branch if I2-Zone ............................................................... BWZ 
Branch if II-Zone ............................................................... BWZ 
Branch if Zero-Zone .... .................. ...................................... BWZ 
Branch if Either a Word Mark, or No Zone ................. BWZ 
Branch if Either a Word Mark, or I2-Zone .................. BWZ 
Branch if Either a Word Mark, or ll-Zone .................... BWZ 
Branch if Either a Word Mark, or Zero-Zone ............... BWZ 
Branch if Wrong-Length Record ..................................... BIN 

Clear Storage ........................................................................ CS 
Clear Storage and Branch .................................................. CS 
Clear Word Mark (One Address) ........................................ CW 
Clear Word Mark (Two Addresses) .................................. CW 
Coded Halt ................................. ..................... ....... ............... H 
Compare ................................................................................ C 

Halt ....................................................................................... H 
Halt and Branch ............. :..................................................... H 

Index of 1440 Instructions 

Form Page 

~(A) 20 
~(A)(B) 20 

~(I) 24 
;§,(I) \ 24 
~(I)N 24 
~(I)Y 24 
~(I)9 24 
~(I)@ 24 
~(I)(B)d 26 

~(I)V 24 

~(I)S 24 
;!2(I)U 24 
~(I)A 24 
~(I)T 24 
~(I)Z 24 
~(I)P 24 
~(I)# 24 
~(I)% 24 
~(I)! 24 
~(I)? 24 
!!(I)B 24 
~(I)C 24 
]?(I)D 24 
~(I)E 24 
~(I)F 24 
~(I)G 24 
~(I)X 24 
!l(I)/ 24 
Y(I)(B)I 26 
V(I)(B)2 26 
Y(I)(B)B 26 
,Y(I)(B)K 26 
Y(I)(B)S 26 
Y(I)(B)3 26 
Y(I)(B)C 26 
Y(I)(B)L 26 
Y(I)(B)T 26 
~(I)W 24 

J..(A) 33 
.L(I)(B) 33 
o(A) 33 
o(A)(B) 33 
;;e page 35 35 
£(A)(B) 27 

~ 
34 

~(I) 34 

43 



44 

Instruction Autocoder 
Mnemonic Form 

Load Characters to A Word Mark (One Field) ............ . 
Load Characters to A Word Mark (Two Fields) .......... . 

MLCWA IJA) 
MLCWA !lA)(B) 

Modify Address (One Address) ....................................... .. 
Modify Address (Two Addresses) .................................... . 
i\1nve Characters and Edit ................................................ . 
M nve Characters and Suppress Zeros ............................ . 
Move Characters to A or B Word Mark (One Field) . 
Mnve Characters to A or B Word Mark (Two Fields) . 
Move Characters to Record Mark or Group-Mark 

vvith a Word-Mark ..................................................... . 
r..1ove Numerical .................................................................. .. 
Move Zone .......................................................................... . 

No Operation ..................................................................... .. 

MA 
MA 
MCE 
MCS 
MLC 
MLC 

MRCM 
MLNS 
MLZS 

NOP 

Read from 1447 Console ...................................................... RCP 

Set Word Mark (One Address) ......................................... SW 
Set Word Mark (Two Addresses) ..................................... SW 
Subtract (One Field) ............................................................ S 
Subtract (Two Fields) .......................................................... S 

Write on 1447 Console .......................................................... WCP 

Zero and Add (One Field) ................................................ ZA 
Zero and Add (Two Fields) .... ........................................... ZA 
Zero and Subtract (One Field) .......................................... ZS 
Zero and Subtract (Two Fields) ........................................ ZS 

!!.(A) 
!(A)(B) 
g(A)(B) 
~(A)(B) 

M(A) 
M(A)(B) 

f(A)(B) 
Q(A)(B) 
I(A)(B) 

N 

~/!:(%TO)(B)R 

, (A) 
-:- (A) (B) 
S(A) 
[(A)(B) 

~yh(%TO)(B)W 

?(A) 
EA)(B) 
]A) 
.!1A)(B) 

Page 

30 
30 

17 
17 
36· 
28 
28 
27 

29 
29 
30 

34 

39 

32 
32 
21 
21 

40 

22 
21 
23 
22 



1440 Register Operation ........................................................ 12 

A-Address .... .......... .................................................................. 6 
A-Address Register .... .................................. ............................ 13 
A-Register .......... ...................................................................... 13 
Add-to-Storage Logic .............. .......... ........................ ............ 8 
Add (One Field) .................................................................... 20 
Add (Two Fields) .................................................................. 20 
Address Modification .............................................................. 15 
Address Modification - Indexing Method .............. .............. 17 
Address Modification - Modify Address Instruction Method 17 
Address Modification - Modulus 4 Arithmetic Method ...... 15 
Address Registers .................................................................... 13 
Address Registers After Operation ........................................ 7 
Addressing .............................................................................. 10 
Addressing System ...... .................. ........ ........ .................... ...... 10 
Arithmetic Instructions .......................................................... 20 
Arithmetic Operations ............................................................ 18 
Assembled Instruction ............................................................ 7 

B-Address ................................................................................ 6 
B-Address Register .................................................................. 13 
B-Register ........................................ ........................................ 13 
BCD (Binary-Coded-Decimal) ...... ................ ........................ 9 
Binary-Coded-Decimal (BCD) ................................................ 9 
Body ........................................................................................ 36 
Branch (Unconditional) .... .......... ............................................ 24 
Branch if Character Equal.................................................. 26 
Branch if Indicator On ...... .................................................. 24 
Branch if Word Mark and/or Zone .................................... 26 

Chaining .................................................................................. 13 
Character Registers ................................................................ 13 
Clear Storage .......................................................................... 33 
Clear Storage and Branch .................................. .................. 33 
Clear Word Mark (One Address) ........................................ 33 
Clear Word Mark (Two Addresses) .................................... 32 
Coded Halt .............................................................................. 35 
Compare .................................................................................. 27 
Complement Add .......... ................................ .......................... 18 
Conditional Branch ................................................................ 24 
Console 110 Printer Timing ................................................ 41 
Console Instruction Format .................................................. 39 
Core-Storage Area Assignment .. ...................................... ...... 12 

d-Character .............................................................................. 6 
Data-Field Addressing ............................................................ 11 
Data-Moving Instructions ....................................................... 27 
Data-Moving Operations .... .......... .................... ...................... 27 

Edit Operation ................................................. .......... ..... ........ 36 
Example .................................................................................... 7 

Function .................................................................................. 7 

Halt .......................................................................................... 34 
Halt and Branch .................................................................... 34 

I-Address .... ................ ...... ........................................................ 6 
I-Address Register .................................................................. 13 
IBM 1441 Processing Unit .................................................... 8 
IBM 1447 Console Instructions ............................................ 39 
IBM 1447 Console Operations .............................................. 39 
Indexing Method of Address Modification .......................... 17 
Instruction Addressing .......................................................... 12 
Instruction Description .......................................................... 6 

Index 

Instruction Format .... .......................... .................................... 6 
Instruction Format - Instruction Description .................... 7 

Language ................................................................................. . 
Load Characters to A Word Mark (One Field) .............. .. 
Load Characters to A Word Mark (Two Fields) .......... .. 
Load Mode ............................................................................ .. 

8 
30 
30 
40 

Logic Instructions .................................................................. 24 
Logic Operations .................................................................... 24 

Magnetic Core Storage ........................................ .................. 8 
Miscellaneous Instructions...................................................... 32 
Miscellaneous Operations ...................................................... 32 
Mnemonic ................................................................................ 6 
Modify Address (One Address) ............................................ 17 
Modify Address (Two Addresses) ........................................ 17 
Modify Address Instruction Method of Address Modification 16 
Modulus 4 Arithmetic Method of Address Modification ...... 15 
Move Characters and Edit .... ............ .................... .............. 36 
Move Characters and Suppress Zeros ................................ 28 
Move Characters to A or B Word Mark (One Field).... 28 
Move Characters to A or B Word Mark: (Two Fields).... 27 
Move Characters to Record Mark or Group-Mark 

with a Word-Mark .......................................................... 29 
Move Mode ................................................ ............................ 39 
Move Numerical .................................................................... 29 
Move Zone .................................... .......................................... 30 

No Operation .......................................................................... 34 
Notes ........................................................................................ 7 

Odd-Parity Mode .............................. ............ .............. ............ 9 
Op Code .................................................................................. 6 
Op .. Register .............................................................................. 13 

Parity Checking .... .................................................................. 10 
Processing ................................................................................ 9 

Read from 1447 Console ........................................................ 39 

Set Word Mark (One Address) ............................................ 32 
Set Word Mark (Two Addresses) .... .......................... .......... 32 
Status ........................................................................................ 36 
Storage-Address Register .... .................................................. 13 
Stored Program .................................................... .................. 5 
Stored Program Instructions ............ .......... ............ ......... ....... 6 
Subtract (One Field) .............................................................. 21 
Subtract (Two Fields) .............................. .......................... .... 21 
System Operations .................................................................. 18 

Timing ...................................................................................... 7 
Title .......................................................................................... 6 
True Add .................................................................................. 18 

Unconditional Branch ............................................................ 24 

Validity Checking .................................................................. 10 
Variable Word Length .... ........ ........ .... ...... ........ ........ ............ 6 

Word Marks ............................................................................ 6 
Word Marks - Instruction Description .............................. 7 
Write on 1447 Console .......................................................... 40 

Zero and Add (One Field) .................................................... 22 
Zero and Add (Two Fields) .................................................. 21 
Zero and Subtract (One Field) ............................................ 23 
Zero and Subtract (Two Fields) .... ...................................... 22 

45 



A24-3116-0 

TIrn~ 
e 

International Business Machines Corporation 

Data Processing Division 

112 East Post Road, White Plains, New York 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	back

