DD

PN DD IS DI

4

33 T

Y

DEDR O

Instruction-Reference ‘
1411 Processing Unit Instructions and
- Special Features |

© 1961 by International Business Machines Corporation

Preface

This manual contains descriptions of:

1. Central processing unit (cpu) instructions for the
1BM 1410 Data Processing System. (

2. Three special features (accelerator, priority, and
program addressable clock) to the M 1411 Processing
Unit.

The IBM 1411 Input-Output Operations, Customer
Engineering Manual of Instruction, Form 223-2692,
contains information on the overlap special feature and
input-output instructions for the 1M 1410 system.

"To supplement descriptions in this manual, examples
are employed when necessary, and circuit controls,
data flow charts, and timing charts are included. Be-

cause several instructions have similar functions and -
are executed in nearly the same manner, a timing chart

for each instruction is not included, and instruction
descriptions are not equally detailed. A chart in the
“Appendix” lists information contained on each instruc-
tion. To fully understand the actions that the cpu per-
forms when executing each instruction, this manual
must be used with IBM 1410 System Fundamentals,
Customer Engineering Instruction-Reference Manual,
Form 223-2589.

This manual obsoletes:

1. Pages 80 through 137 and 459 through 463 in IBM
1410 Data Processing System, Customer Engineering
Manual of Instruction, Form 225-6549-1.

2. IBM 1410 Data Processing System, CPU Instruc-
tion Material, Customer Engineering Manual of In-
struction, Form R23-2587-1.

3. IBM 1411 Processing Unit Instructions and Special
Features, Customer Engineering Instruction-Reference
Manual (Preliminary Edition), Form R23-2698.

Copies of this and other 18M publications can be obtained through 18M Branch Offices.

Address comments concerning the contents of this publication to:

IBM Corporation, Customer Engineering Manuals, Dept. B96, PO Box 390, Poughkeepsie, N, Y.

Do D)

)

y,

)

)

YY)))

)

)

YO)))) D

1

DEEDIE G RD EED I

1410 InStructions oo ~

INSTRUCTION FORMATS T

INsTRUCTION DECODING AND EXECUTION e
Instruction. Phase 0 ... o000 LT
Execute Phase e ‘

QUESTIONS ON 1410 INSTRUCTION.. FOBMATS AND DECODING .

- Arithmetic Instructions D
ADD AND SUBTRACT INSTRUCTIONS P '

Instruction Formats
CPU Operationc...oiiiniiainnmniennnan
Questions on Add and Subtract Operation

ZERO AND ADD AND ZERO AND SUBTRACT INSTRUCTIONS

Instruction Formats e ’

CPU OpPerationuuuenroniinenemnsinen.
Questions on Zero and Add and Zero and Subtract
Operationscoouiiiiiiiainnann..

MULTIPLY INSTRUCTIONt nnii i nienn.s
Instruction Formats0. ... 00 eeuens
B-Field Lengthcaivinn..
Concept of Machine Multlphcatlon
Rules of Machine Multiplication
Machine Multiplication Examples
Address Registers A S
CPU Operation DI e
Questions on Multiply Operation

DIVIDE INSTRUCTION . .0 & it i,
Instruction Formats P
Programming Considerations 000, ...
Concepts of Machine Division0..........
Program Conditions'that Cause Divide Overflow

Address Registers J T :

CPU Operation I
End of Correction Scan and Shift Cycle
End of Complement Add Scan
Set Quotient Sign and End Divide
Questions on Divide Operation, S,

. General Data Instructions0.....

MoOVE DATA INSTRUCTIONoonovunn.. P
Instruction Formats
Scan Operation 0o eiiiiiin...
CPU Operation0... 000 oo
Questions on Move Data Operations: e

Move CHARACTERS AND SUPPRESS ZERO INSTRUCTIONS. . . .
Instruction Formats
Description of Operation

CCPUOperation,
Questions on Move Characters and Suppress Zeros

Operationcc i

EpIT INSTRUCTION ittt
Instruction Formats
Word Marks i
Editing Specifications e
Zero Suppression e
Asterisk Protection e
Floating Dollar Sign
Sign Control Left
Decimal Control

Contents
CPU Operation D 50
Questions on Edit Operation 61
COMPARE INSTRUCTION0.ccnvennon. R 61
Instruction Formats - 61
CPU Operation FE A 61
Questions on Compare Operation 65
TasLe Lookup INSTRUCTION e 65
Definitionso e 65
Instruction Formats R . 66
Description of Operationc.cooeeune.. 66
Questions on Table Lookup Operation 69
Branch Instructionsc..o ol 71
UNCONDITIONAL BRANCH INSTRUCTIONS 71
CONDITIONAL BRANCH INSTRUCTIONS 72
Testand Branch e 72
Branch if I-O Channel Status Indlcator On 72
Branch if Character Equal 75
Branch if Bit Equali.. E 78
Branch on Word Mark or Zone Equal /.............. - 78
Questions on Branch Operations e .79
Miscellaneous Instructions S 81
STORE ADDRESS REGISTER INSTRUCTION 81
Questions on Store Address Register Operation 84
SET WoRD MARKs INSTRUCTION- e 84
Questions on Set Word Marks Operation 85
CLEAR WORD MARK INSTRUCTION 86
> - Questions on Clear Word Marks Operation 88
CLEAR STORAGE INSTRUCTION . .%. 0\\ . voeinanennnn 88
Questions on Clear Storage Operation 90
CLEAR STORAGE AND BRANCH INSTRUCTION 90
Questions on Clear Storage and Branch Operation 93
Havrt INSTRUCTION0.. e e 93
Questions on Halt Operation T 94
HavLt AND BRANCH INSTRUCTION e - 94
- Questions on Halt and Branch Operation e 95
NO OPERATION INSTRUCTIONoovuiinnnneen.. 95
Questions on No Operatlon Instruction 97
CPU Special Features PP 99
1410 AcCELERATOR FEATURE R 99
Results of Speed Increases 99
Component Circpit Changes A 99
PrioriTY PROCESSING FEATURE 99
Interruptible Instructions e 100
Priority Alert Mode 100
Interrupt Request 100
~Programming oo 102
PROGRAM ADDRESSABLE (REAL ¥IME) CLOCK 102
Programming P 104
Procedures to Set and Adjust Clock 107
Appendix
ANsSWERs TO REVIEW QUESTIONS 114
REFERENCE INDEXc0iitiinnannn, 118
FLOW CHART ittt e ... 120

lllustrations
FIGURE TITLE
1 Acceptable Lengths for 1410 CPU Instructions .
2 CPU Action in Instruction Phase for Data
Move Instruction e
3 1410 Common Op Code Grouping Lines =
(13.14.01.14) .0 i
4 Bit Equivalents for Signs
5 Types of Add Cycles and Sign of Result for
Add and Subtract Operations
6 Add or Subtract, PR
7A Add Operation Tnstruction Read-out
7B Execute Phase of Add Operation L
8 Sign Changes for Zero and Subtract
(Two Addresses)0, :
9 Zero and Add or Zero and Subtract
10 Zero and Add Operation Timings PR
11 "Multiply Example R
12A Multiply; First. Sean S
128 Multiply, Set Sign and/or Shift
12C Multiply, Add A-Field to B-Field
19D Multiply, MQ Controls el
13 Multiply Operation Timings
14 Divide Sign Control
15 Examples of Dividend Addressing
16A° Divide Example coooiiiiin,
168 Divide BExample,
17A Divide
178 Divide
- 18 d-Character Control Bits for Move
Data Instructions 00000
19 Move Data ...t iiiiia,,
© .20 Data Move Operation Timings i
‘21 Move Characters and Suppress Zeros LU
22 Move Characters and Suppress Zeros
Operation Timings,
23A Step-By-Step Editing Process,
- 23B Step-By-Step Editing Process
24A Edit, FirstScano i
24B Edit, Second Sean e i T
24C Edit, Third Sean e
25 Edit Operation Timings
26 COMPATE ..\ i e i
27 Compare Operation Timings
28 d-Characters for Table Lookup Operation
29 Storage Table for Table Lookup-Operation ...
30 Table Lookupcciiiiviiiinnins
31 Table Lookup Operation Timmgs ‘‘‘‘‘‘‘‘‘‘‘

FIGURE TITLE PAGE
32 Unconditional Branch 172
33 Unconditional Branch Timings 73
34 Branch Conditions for Test and Branch ,

Instructon 0 i 74
35 Test and Branch 74
36 Branch Conditions for Branch if 1.0 . :

Channel Status Indicator on Instruction 75
37 Branch if I-O Channel Status Indicator On 76
38 Branch if Character Equal 76
39 Branch if Character Equal Timings kil
40 Condﬁions for Branch on Word Matk or

" Zone Equal Instruction 79
41 Branch on Word Mark or Zone Equal 80
42 Store Address Register Operations and

d-Characters 0 ...c.ovvrinnn i oons 81
43 Store Address Register«...oovias 82
44 Store Address Register Operation Tlmmgs .. 83
45 Set Word Marksttt 85
46 Set Word Mark Operation Txmmgs ceiaen ... 86
47 Clear Word Mark«.coo0it 87
48 Clear Storagec.covvviviuiin, 89
49 Clear Storagé and Branch-...... 91
50 Clear Storage and Branch Operation Timings .o 92
51 Halt o i i e i i 94
52 - Halt and Branchol cvein 96
53 No Operationo i, o7
54 NoOp Timingscc.iv v, 98
55 Interruptible and Non-Interruptible ,

Operation Codes 100
56 - Priority Request Indicators Lo 102
57 Interrupt Data Flow 0 iivns. 104
58 CPU Timings in Interrupt Operation 105
59 - Interrupt Controls SRR 108

80 Time Detivation Table S 107

B81A CPU Execution of G(C)T Instruction 108
61B CPU Execution of G(C)T Instruction 109
62 CPU Timings in Execution of G(C)T Instruction 110
63 Program Addressable (Real Time) Clock 111
64 Esxploded View of Program Addressable Clock . 112
65 Parts Location for Feed and Detent Pawl

Adjustment 113

" 66 Clock Transfer 113
67 Parts Location for Commutator Contact ‘

Timing Adjustment 113
Appendix Reference Index 118

Appendix IBM 1410 Data Processing System Data Flow .. 120

A

D

)

)

|2

DEDEDEDED DRI S

/

NN
Y

X3

S 90 Y) 3))))

The 1M 1410 Data Processing System uses stored pro-
gram instructions to initiate all system operations. The
format and contents of each instruction indicate the
operation to be performed and, if required, the storage
locations of data to be processed in the operation.

instruction Formats ,

The basic 1410 instruction form is divided inte four
parts — the operation code, the A- or I-address or X-
control fleld, the B-address, and a d-character, Because
1410 instruetions are of variable length instruction
form, instruction lengths can vary from one to twelve

~ positions. Each instruction in a 1410 program must con-

tain an operation code. However, the instruction may
or may not contain other instruction parts as deter-
mined by the format requirements for that particular
instruction. The following example shows the basic
format for a typical 1410 instruction,

A- oR [-ADDRESS OR
OpERaTION CopE X-coNTROL FIELD- B-ADBRESS O-CHARAGTER
aaaaa or iliii of xxx bbbbb d

Each of the four parts in the basic 1410 instruction
form designates information that the central process-
ing unit (epu) requires to perform an operation. An
explanation of each instruction part follows:

1. The operation code (op code) is always a single

character that specifies the basie machine operation to

be performed, A word mark must be set over the oper-
ation code if the instruction is teo be executed.

2. An instruetion can contain either an A-address,
I-address, or X-control field, but only ene of the three,
The A-address is always five characters and designates
the location of A-field data in storage, The I-address
is always five characters and specifies the address of
an instruction in storage. The X-control field contains
only three characters and is used only for input-output
(1-0) operations,

3. The B-address is always five characters and desig-
nates the location of B-field data in storage.

4. The d-character is a single character at the end

of the instruction used to establish a condition (or
conditions) under which the cpu must perform the
operation,

The 18M 1410 has a sequential method of program
execution; thus, instruction 2 follows instruction 1, and
so on, unless special elrcumstances during processing
cause the cpu to alter the sequential execution of
instructions. :

1410 instructions

Each instruction must have a word mark set over
the op code, and must not contain word marks in any
other position. Also, a word mark must be set in the
core storage location immediately to the right of the
last eharacter of an instruetion; this is nermally the
word mark associated with the op code of the next
sequential instruction,

Instruction length checking is incorporated in the
system to insure that each instruetion read contains
a valid number of characters for the operation code
specified.

Valid instruction werds vary in length from one to
twelve characters depending on the amount ef infor-
matien required for the eperation. The general in-
struction form consists of a single-character operation
eode followed by ane or two five-character addresses,
or a three-character input-output 6pemti@n specifiea-
tion (X-control field), and in some cases, a single-

_character operation modifier. Valid instruction word

lengths are:
0 =] pesition
ad = 2 positions
O xxx d = § pogitions
O aaaaa = @ positions
O aaasa d = 7 positions
O xxxbbbbbd = 10 positions
© aaaaa bbbbh = 11 pesitions

© aaaaa bbbbb d = 12 pesitions
The O specifies an operation eode. The five a’s specify
the five-character address of the A-field. The five b's
specify the five-character address of the B-field. The
hree x's specify the x-control field, and the d speecifies
an operation modifier. Figure 1 lists aceeptable lengths

o

for 1410 instructions,

Instruction Deceding and Execution

A program step (an instruction) is read out of storage
and decoded, and executed in twe phases, instruetion
phase and execute phase,

Instruction B!iggg

During instruction phase, called instruction read-out
time, the instruction is read out of cere storage, Por-
tions of the instruction are stored in various registers
in the cpu; for example, the op code is stored in the
operation register, addresses in the address registers,
and the d-character in the operation modifier register.
One storage cycle must be executed to read each
character out of storage. Therefore, the number of

1410 Instructions 3§

Acceptable
Instruction
Instruction " Function Length
A (A (B) Add 1 6 11
S (A) (B) Subtract 1 6 11
?(A) (B) Zero and Add 1 6 11
1 (A) (B) Zero and Subtract 1 6 11
@ (A) (B) Multiply 1 6 11
% (A) (B) Divide 1 6 11
|{D(A) (B)d | Move Data 1 6 12
Z (A (B Move Characters and Suppress Zeros 161
E(A) (B) | Edit 1.6 1
C(A) (B) Compare 1 6 1
T(A) (B) d Table Lookup 1 6 12
J (1) blank Unconditional Branch 17
J(hd Test and Branch 17
R()d Branch if 1-O Channel Status Indicator On (Ch 1) 7
X(nd Branch if 1-O Channel Status Indicator On (Ch 2) 7
B () (B) d Branch if Character Equal 1 6 12
W (I) (B) d Branch if Bit Equal 1 6 12
Vv (l) (B) d Branch on Word Mark and/or Zone Equal 1 6 12
G(d Store Address Register 7
, (A) (B) Set Word Marks 1 6 11
u (A) (B) Clear Word Marks 1 6 1
/ (B) Clear Storage 1 6
/(1) (B) Clear Storage and Branch 1 6 1
. Halt 1
. () : Halt and Branch 6
N No Operation 1

Figlire 1. Acceptable Lengths for 1410 CPU Instructions

storage cycles required during instruction phase is
equal to the number of characters in the instruction.

Each character position in the instruction has a
designated significance. The op code must be the first
character in the instruction; the d-character must
occupy the last position in the instruction; the A-
address must be in the first five positions after the
op code, etc. Because characters in the instruction are
read from core storage one at a time, the I-ring ad-
vances to indicate the character being processed at
the beginning of each storage cycle during instruction
phase. The I-ring consists of 13 triggers labeled I-ring
op, and I-ring 1 through I-ring 12. The op code and
the length of the instruction determine the point to
which the I-ring advances during instruction phase.
Times between I-ring advances during instruction
phase are called I-cycles. Figure 2 shows the manner
in which the instruction move data (D aaaaa bbbbb d)
is processed in instruction phase. ‘

Instruction Cycles

| Op |‘ |2 |3 |4 |5 I6 |7 |8 |9 |‘0 l” |-|2
b |la|alajalals|s|s]|s|B]|da] %

L v v } U
Op AAR BAR Op Op code
Reg Mode innext
Reg sequen-
tial Inst

Figure 2. CPU Action in Instruction Phase for Data
Move Instruction

During the first I-cycle, the I-ring is set to I-ring
op, and the op code character is processed from core
storage to the operation register. The single-character
op code for each instruction conditions “common op
code grouping” lines that: i

1. Establish requirements for the length and con-
tents of the instruction.

2. Condition checking circuits to determine whether
the length and contents of the instruction are
acceptable.

3. Condition and control circuit actions in the ex-
ecution of the designated operation.

Figure 3 lists operation codes and their correspond-
ing “common op code grouping” lines.

The 1410 System Fundamentals and 1411 Functional
Units, Customer Engineering Instruction-Reference
Manual contains more detailed information on instruc-
tion read-out operation.

Execute Phase

At the completion-of instruction phase, the cpu is con-
ditioned to perform the designated instruction during
execute phase. The length and complexity of execute
phase is determined by the operation to be performed.
In execute phase, the cpu takes a combination or series
of A-, B-, C-, D-, E-, and/or F-cycles to read characters
out of core storage (only one character is read out
per cycle) and perform a step in the designated oper-
ation. The length of each cycle varies from 4.5 to 7.5
microseconds (or from 4.0 to 6.67 microseconds with
the accelerator feature).

Characters are removed from storage in either as-
cending or descending order of core storage addresses.
When the second scan latch is set, characters are un-
loaded from the low-order storage position to the high-
order storage position or from the high-order position
of the field to the low-order position of the field; un-
loading storage ‘characters in this manner is called
reverse scanning. An example of reverse scanning
follows:

Assume that the field 93487 is located in storage
positions 00100 through 00104; the high-order digit in
the field (9) is stored in position 00100; the low-order
digit in the field (7) is stored in position 00104. If the
field is reverse scanned (second scan latch on), the
9 reads out first, the 3 second, and the 7 last. When
the first or third scan latch is set, characters are un-
loaded from the high-order storage position to the
low-order storage position or from the low-order posi-
tion of the field to the high-order position of the field;
unloading characters from storage in this manner is
called forward scanning. An example of forward scan-
ning follows:

(G:ggm,(l);;lGoLll"sgDE ?!AS@% Elz{C|W[V|/|.|,|x|UD|J|B|RIX|G|T|M|L|K|F|N
Instruction - | Percent Type Op Codes X X[X
Read-Out Not Percent Type Op Codes | X | X | X | X | X | X[X [XX [X[X[X[X[XX | [XXX |X[X] [X

Addr Dbl Op Codes X | X|X|X X XX X X|X

Not Addr Dbl Op Codes X[X[X[X|X]|X[X X X|X X XX X|X|X[X

1 Addr Plus Mod Op Codes X X X|X|X

2 Addr No Mod Op Codes XXX X|X[X[X]X]X X XX

2 Addr Plus Mod Op Codes XX X X X|X|[X
~ 2 Address Op Codes XXX XXX X]X]X]|X[X|X X X X X X|X]|X

Addr Type Op Codes XXX XX XX X)X XXX XXX [XIX]X|X[X[X]X]X]X[X

2 Char Only Op Codes XX

C Cycle Op Codes X| X X

No C or D Cy Op Codes X[XX | X[X|X|X]X|X X{X|X

No D Cy at | Ring 6 Ops X | X|X[X X| X] X[X|X|X[X[X]|X X X X

No Index On 1st Addr Ops X X X|X
Operational | Reset Type Op Codes XX

Add or Subt Op Codes XX

Mpy or Div Op Codes XX

Add Type Op Codes X XXX)

Arith Type Op Codes X[X[X][X{X]|X

E or Z Op Codes X| X

Compare Type Op Codes X X X

Branch Type Op Codes =+ XX | X| X XXX X

No Branch Op Codes XXX X[X|[X]| X[X]|X XX XX XIX[X|X |X]|X

Word Mark Op Codes X |X b

Mor L Op Codes X|X
Control Ist Scan First Op Codes X X[XIX[X XX X[X][X]|X]X X |X X X|X

A Cy First Op Codes XXX X|X|X|X]|X]|X X |X X X

Std A Cycle Op Codes XXX X|X[X[X]|X]|X X X

B Cy First Op Codes X|X|X X

A Reg to A Ch On B Cy Ops X X[X[X[X]|X|X]X]|X X[XX [X X X

Op Mod to A Ch On B Cy Ops XX X X|X|X[X X|X

Load Mem On B Cy Op Codes |X | X |X] X[x | X X] x X

Rgen Mem On B Cy Op Codes X|X|X X X|X[X]|X X XX

Stop at F on B Cy Op Codes ¥4 #|# X| X # X XX

Stop at H on B Cy Ops X X X

Stop at J on B Cy Op Codes XX X[X]|X| X X

RO B AR On Scan B Cy Ops X[X] X |X X[X][X]X|X X{X|X[X[X X

RO A AR On A Cy Ops X | X|X| X X| X| X X [X X

* Not a Line Name,a Grouping Only. # |ndicates Accelerator Feature Timing.

Figure 3. 1410 Common Op-Code Grouping Lines (13.14.01-14)

Assume that the field 93487 is located in storage
positions 00100 through 00104; the high-order digit in
the field (9) is stored in position 00100; the low-order
digit in the field (7) is stored in position 00104. If the
field is forward scanned (the first or third scan latch
on), the 7 reads out first, the 8 second, and the 9 last.

At the completion of execute phase, the cPu normally
returns to instruction phase to read out the next in-
struction. cpu actions during execute phase are de-
scribed for specific operations in other sections of
this manual.

Questions on 1410 Instruction Formats and Decoding
Answers to these review questions are in the Appendix.

1. List the four parts into which the following 1410
instruction can be divided: B 09000 08000 M

2. What instructions contain X-control fields?

3. Does any 1410 instruction contain both an A-and
I-address or both an X-control field and an A- or
I-address? ‘

4. Over what position in the instruction must a
word mark be set?

5. What purpose does the I-ring serve during in-
struction phase? ‘ :

6. Are common op code grouping lines conditioned
during instruction phase or execute phase?

1410 Instructions 7

Arithmetic Instructions

The add, subtract, zero and add, zero and subtract,
multiply, and divide instructions are used to perform
arithmetic operations in the 1M 1410 Data Processing
System. The use of add-to-storage logic in the system
eliminates the need for special purpose accumulators
or counters. Because any group of storage positions
can be used as an accumulating field, the capacity for
arithmetic functions is not limited by a predetermined
. number of counter positions.

_ All arithmetic functions are performed under com-
plete algebraic sign control. The combination of zone
. bits in the units position of the fields that the arith-
metic instruction specifies determines the sign of the
factor. Figure 4 shows the four possible combinations
of zone bits and the values of the signs they represent.
The standard machine method of signing a field is to
indicate a positive factor with both A- and B-bits; a
B-bit represents a negative factor.

Sign BCD Code Bit Configuration | Card Code Configuration

“Plus Ne A- or B-Bit Ne Zone
Plus A- and B-Bits 12 Zone
Minus B-Bit Only 11 Zone
Plus A-Bit Only 0 Zone

Figure 4. Bit Equivalents for Signs

The arithmetic operations in the 1BM 1410 are per-
formed by using one of two types of add scans in-
corporated in the system. The two types of add scans

“are: true add and complement add. The type of add
scan performed is determined by the arithmetic oper-
ation and the signs of the factors involved. In an al-
gebraic subtract, recall that the sign of the subtrahend
(A-field) is changed and added to the minuend (B-
field). The sign of the result is the sign of the greater
value only after the A-field is considered to have been
changed.

In all arithmetic operations, the presence of charac-
ters represented by the card codes of blank, 8-3, 8-4,
8-5, 8-6, and 8-7 in the numeric portion of a field are
treated as 0, 3, 4, 5, 6, and 7, respectively. .

If the result in an arithmetic operation exceeds the
B-field limit imposed by the B-field word mark, the
carry is lost, and the arithmetic overflow indicator
turns on. The test and branch instruction, j(1)z, tests
and turns off the arithmetic overflow indicator.

If the result of any add, subtract, multiply, zero and
add, or zero and subtract operation is zero, the zero

8

balance indicator turns on. The next add, subtract,
multiply, zero and add, or zero and subtract instruc-
tion, that does not result in a zero balance, turns off
the zero balance indicator.

Add and Subtract Instructions

Instruction Formats

Formats for the add and subtract mstructmns are:
« OP cope A-ADDRESS - B-ADDRESS
(add) XXXXX XXXXX
(add) XXXXX
(add)
(subtract) XXXXX XXXXX
(subtract) XXXXX
(subtract)

If the add ar subtract instruction specifies two ad-
dresses (A or $ xxxxx xxxxx), the numeric data in the

A-field is algebraically added to (add operation) or sub-
tracted from (subtract operation) the numeric data in
the B-field. The result is stored in true form in the
B-field. Except for the sign position which may be
changed, B-field zone bits are undisturbed. A-field zone
bits are ignored in all other positions except the sign
position. A B-field word mark stops the operation and
must be set over the high-order position of that field.
If the A-field is shorter than the B-field, it, too, must
have a defining word mark to stop transmission of
data from the A-field to the B-field. When the A-field
is shorter than the B-field, the system automatically
adds zeros to (add operation) or subtracts zeros from
(subtract operation) the extra high-order positions of
the B-field until a B-field word mark is detected. If
the A-field is longer than the B-field, the high-order
positions of the A-field, that exceed the limits imposed
by the B-field word marks, are not processed.

If the add or subtract instruction has only an A-
address (A or § xxxxx), the A-field is added to (add
operation) or subtracted from (subtract operation)
itself. The result is stored in the A-field. Add oper-
ations in which the instructions designate only one
field are always executed with true add cycles and
the sign bit configurations of the results are always
the same as the original sign of the A-field. When the
subtract instruction designates only one field, the
numeric portion of the A-field is always 0 after the
operation, but zones in the A-field remain unchanged,;
the A-field sign bit configuration is the same as it was
before the operation.

3

)

DERRI

If the add or subtract instruction does not designate
an A- or B-address (no address chaining), the con-
tents of the aAR from the previous operation specify
the A-field, and the contents of the BaR specify the
B-field in the add or subtract operation. The operation
is executed in the manner described for two address

- add and subtract instructions.

CPU Operation

During last instruction read-out cycle, the units con-
trol, first scan control, and A-cycle control latches are
set to initiate the first cycle (A-cycle) of the add or
subtract operation. In the first A-cycle, the units posi-
tion of the A-field reads out of storage and is gated to
the A-data register. The operation (op) modifier regis-
ter is gated to the A- and assembly channels on A-cycles
to satisfy the validity check circuits.

During the subsequent B-cycle, the units position
of the B-field reads out of storage onto the B-channel,
and the A-field character in the A-data register is
gated to the A-channel. The signs of the A- and B-
channel characters are analyzed to determine whether

- the A-field should be true or complement added to

the B-field. The first B-cycle is one logic gate longer
than other B-cycles in the operation to allow time to

~ condition the true or complement add controls.

Whether the system executes a true or complement
add scan is determined by the number of minus signs
in the factors and the type of operation being per-
formed (Figure 5).

Type of A-Field | B-Field

Operation | Sign Sign | Type of Add Cycle| Sign of Result

+ True Add +
+
- Complement Add
ADD Sign of greater value
+ Complement Add
- True Add - -
- True Add -
4
+ Complement Add | Sign of greater value
SUBTRACT (ofter A-field sign is

- Complement Add | changed as aresult of
| the subtract instruction)

+ True Add +

Figure 5. Types of Add Cycles and Sign of Result for -
Add and Subtract Operations

Numeric bits in the A- and B-channel characters are
added in the adder unit. The adder output feeds the
assembly unit where B-channel zones and word mark
and adder numerics are combined. The character is
than sent to the B-field location in storage. If there
is an adder carry and no A- or B-channel word mark,
the carry latch is set and combined with the sum of

the binary portions of the A- and B-channel digits on
the next B-cycle.

The A- and B-channel characters are added or sub-
tracted until an A- or B-channel word mark is sensed.
If an A-channel word mark is detected before a B-
channel word mark is sensed, indicating that the B-field
is longer than the A-field, the extension latch is set
and a series of B-cycles are executed until the oper-
ation is complete (B-field word mark). Remaining
characters in the B-field are combined with zeros on
true add or nines on complement ad scans. The 0

or 9 is inserted directly on the A-channel input to
the adder.

If a B-channel word mark is sensed before an A-
channel word mark is detected, indicating that the
A-field is longer than the B-field, other A-field charac-
ters are not processed. The following example illus-
trates this action:

ADD +1099 (A-field) + +100 (B-field) = +1199
A-field . 1099
B-field 1oo
B-field after add operation is complete, High- 199

order digit (1) in A-field is not processed.
B-field answer is incorrect. ‘

When there is an adder carry from the high-order
position on a complement add scan, the add or sub-
tract operation ends when a B-channel word mark is
sensed as shown in the following example:

ADD ~17 (Afield) + +900 (B-field) = +883
Because the A-field sign is negative and the
B-field sign is positive, the A-field must be

complement added to the B-field. .
Complement of A-field 082

B-field 900
Carry latch is always on for units position of
complement add

1
B-field after add operation is complete. §§§+ carry

When the B-channel word mark is sensed, the
add operation ends and the carry is lost. The
operation shown is correct.
An adder carry from the high-order position on a
true add scan signifies an overflow and sets the arith-
“metic overflow latch. Study the following example:

ADD +99 (A-field) + +90 (B-field) = 189
A-field 99
B-field do

-
B-field after add operation is complete. Arith- 89
metic overflow latch is set. B-field answer is

incorrect.

Because the low-order position of the next
field was read out of storage on the last
B-cycle of the operation, the digit written in
storage on the last B-cycle is not known. The
original B-field should have contained three
positions: (090).

When the stored result is in.complement form, as
indicated by no adder carry from the high-order posi-
tion on a complement add scan, the characters in the

Arithmetic Instructions 9

B-field must be converted to true form and the B-field
sign changed. The following example illustrates this
action:
ADD —18 (A-field)
Complement of A-field

B-field
Carry latch is always on for units position
of complement add

+ +012 (B-field) = —006

I o<
- Q0
[

O«
©
>

B-field after complement add scan.

The B-field result is in complement form. No
adder carry from the high-order position ini-
tiates another forward scan by setting the
third scan latch. The B-field is converted to

true form and added to zeros inserted on the
A-channel input to the adder. The B-field sign

is inverted.

B-field after complement add scan +994

v
Recomplement B-field, and change B-field sign —005
Insert zeros on A-channel input to the adder 000
Carry latch is always on for units position of
complement add 1

B-field at the end of the add operation. The -006

B-field answer is correct.

Figures 6 and 7 show diagrammed explanations of
cpU operation in the execution of the add and sub-
tract instructions.

The following controls are active when the cpu per-
forms the add and subtract operations:

1. Initiate A-cycle and read out first A-field character.

SI1GNAL CONTROL Locic
Set A Cy Ctrl A Cycle First Op Codes 12.12.41
Last Insn RO Cycle
A Cy Cul Set A Cy Ctrl, Next 12.12.20
to Last LG
A Cy A Cy Ctrl, LGB 12.12.01
RO AAR A Cy Ctrl, LG Special A 14.71.30
Read-out AAR on A Cy Ops.
Set Mem AR Gated LGA, 2nd CP 14.17.16
2. Set modifier controls to —1.
Set 1st Scan Ctrl . 1st Scan First Op Code 12.30.05
Last Insn RO Cy
1st Scan Ctrl Lat Set 1st Scan Ctrl, Next 12.30.03
to Last LG
1st Scan 1st Scan Ctrl, LGC 12.30.01
Addr Mod Setto —1 1st Scan 14.71.41
3. Set character into A-data register.
SwBChtoAReg A Cy, LGD 15.38.01
4. Control A-cycle length.
Std A Cy Ops A Cy Add Type Op Codes, A Cy 13.14.06
Stop at F Std A Cy Ops A Cy 12.12.30
5. Initiate B-cycle and read out first B-field
character.

Set B Cy Ctrl Std A Cy Ops A Cycle 12.12.44
B Cy Ctrl Set B Cy Ctrl, Next 12.12.21
to Last LG
B Cy B Cy Ctrl, LGB 12.12.02
Units Ctrl Latch Last Insn RO Cy, Next 16.30.02
to Last LG
Units Latch Units Ctrl Latch, LGC 16.30.02
Regen Units + Body Std A Cy Ops A Cy 16.30.01

Ctrl
Units Ctrl Latch Regen Units + Body Ctrl, 16.30.02

Next to LLG
Units Latch

10

SIGNAL CONTROL Locic
RO D AR * Arith Units Latch, B Cy Ctrl 16.41.01
Arith Type Op Codes

Set Mem AR Gated LGA, 2nd CP 14.17.16
6. Regenerate modify controls.

Regen 1st Scan Ctrl Std A Cy Ops, A Cy 12.30.05

1st Scan Ctrl Regen 1st Scan Ctrl, 1st Scan 12.30.03

1st Scan 1st Scan Ctrl, LGC 12.30.01

Addr Mod Setto —1 1st Scan 14.71.41
7. Gate A-field character to A-channel.

Gate A Data Reg to B Cy, ARegto A Chon B 15.38.02

A Ch Cy Ops
8. Set true or complement controls according to type
op code, A- and B-field signs.

True Add B 1st Scan, Add or Subt Op 16.20.10
Codes
Start Compl Add 1 1st Scan, Units Latch, B Cy 16.20.12
Add Op Code, A Ch —,
B Ch +
Compl Latch Start Compl Add 1 16.20.15

This step is the only difference between an add and subtract
op code.

9. On complement add set carry latch to correct
units position.

Carry Latch Start Compl Add 1 16.20.21
No carry latch is set if a Start True Add.
10. Gate A-Channel to Adder.
Adder A Ch Use T or C Units Latch, 1st Scan, B Cy 16.20.11
Add Type Op Codes,
Not 1401
11. Gate adder output through the assembly to
storage.
Use Adder Nu B Cy, Add or Subt 16.40.02
Use B Ch Zones Units, 1st Scan, B Cy, 16.40.01
Add or Subt Op Codes
Use BCh WM B Cy, Arith Type Op Codes 15.49.04
Load Memory Load Mem on B Cy Op 12.50.01
Codes
B Cy

12. If there is no A- or B-channel word marks, set
the carry latch if there is a carry.
RA + RS + A + S.B. Add Type Op Codes, B Cycle 16.20.03

Not BW B Ch Not WM Bit
Set Carry Latch RA + RS + S.B. Not 16.20.20
BW Adder Carry
Carry Ctrl Latch Set Carry Latch, Last LG 16.20.21
Carry Latch Carry Ctrl Latch, LGC 16.20.21

13. Take another A-cycle and read out next A-field
character.

RA + RS + A + S.I.B Add Type Op Codes, 1st Scan 16.20.03

Not BW Not AW B Cy, A Ch Not WM,

B Ch Not WM

Set A Cy Ctrl * Arith RA + RS + A + S.IB. 16.42.01
Not BW Not AW

Set A Cy Ctrl Set A Cy Ctrl * Arith 12.12.41

A Cy Ctil Set A Cy Ctrl, Next 12.12.20
to Last LG

ACy A Cy Ctil, LGB 12.12.01

RO AAR A Cy Ctrl, LG Special A 14.71.30

Read out A AR on A Cy Ops
Set Mem AR Gated LG, 2nd CP

14. Regenerate modify controls.

Regen 1st Scan Ctr]* RA + RS + A + S.B. Not BW 16.43.01
Arith

SN

TN

—

IsTherean A ChWM?

Add or Subt Inst

Set Units Latch

Set Units Latch

16.3?.02

c 16.3[0.02

éef Extension Latch S.ef Body Latch Set Ist Scan Latch Set 3rd Scan Latch
16.30.06 16.30.04 12.3|0.03]2'310.04
Take an A Cycle _ Set Compl Add B
12.112.41

l6.2|0.10

RO A Field Char

14.71.30

Set Carry Latch

16.210.30

Is the Op Code
Add or Subt?

13.13.01

Is the B Ch
Plus or Minus?
16.16.01

—

Is the A Ch
Plus or Minus?
16.16.01

13.13.01

16.16.01

/ 1s the Op Code
Add or Subt?

Is the B Ch
Plus or Minus?

11T

Take B Cycle
12.12.44

I

RO B Field Char

16.41.01

Is the 1st or
3rd Scan On?

3rd

| __ The D AR is Used
for Units PSN

12,30.01-02

Set True Add B Latch

16.20.10

Is the UnitsLatchOn?
16.13.02

Regen True or
Compl Add
16.20.13

invert B Ch Sign
16.40.03

Is the Body or
Ext Latch On?

6.30,04-.06

Compl

Start True Add
16.20.12

16.20.12
|

Set a No Carry Latch

16.20.22

16.20.14-.15
[Insert 9 on Insert 0 on
A Ch to Adder A Ch to Adder
Start Compl Add 16.20.11 16.20.11
T]

Is this True or

Add ? True

16.20.21

Set Carry Latch

]

See Adder Matrix in
1410 System Funda-
entals CE Manual

Gate A Ch to

1 Qui Bin Trans|

| 16.20.11

| —

| —
_____________ a

|

L {Transl B Ch to QuiBin

16.12.01-06
I
Gate Adder Output Use Adder Nu B Ch
= Thru Assem Zones B Ch WM
16.40.01-02

Set Carry Latch |
16.20.21

Set No Carry Latch
16.20.22
J

3rd

Regen 3rd Scan
16.43.01
I

1st or 3rd
Scan Latch On?
12.30.01-.02

Regen 1st Scan

Figure 6. Add or Subtract

16.43.01
T

Is There an
Adder Carry ?
16.13.07

st or 3rd
Scan Latch On?
12.30.01-.02

Is This a True
or Compl Add?
16.20.14-.16

Is Th
s There an Na

Adder Carry ?
16.13.07

16.45.02

Set Arith Overflow

End Add or Subt
Start Inst RO
16.42.02

Arithmetic Instructions

11

1. LOGIC GATES

2. | RING RESET

3. IRING

4. I RING ON ADV
5. 1 CYCLE CTRL

| 6. 1 CYCLE

7.R.0. IAR

8. SET STAR

10. SET OP REG
11. 15T ADDRESS

12. 2ND ADDRESS
13. RESET AAR

14. RESET BAR

15. SET AAR

16. SET BAR 1ST

‘ 17. SET BAR 2ND

18. INSN R, O, GATE
19. SET AR T TH POS

20. SET AR TH POS

22, SET AR T POS
23. SET ARU POS
24, SET STAR TO IAR

25. LAST INSN R.O.

26. LOGIC GATES

9. RESET 1AR (INVERTED)

21, SET AR H POS

12.13.03

12.13.03
12.12.23

12.12.04

14.11.34

14.17.16

14.71.24

12.13.04

11.20.11

11.20.11

14.71.20

14.71.20

14.71.10

14711

4

11.10.07

14.71.05

14.71.04

14.71.03

14.71.02

14.71.01

14.71.24

12.13.05

11CIHO3L

11CIKO9B

ncicnc

11CIH22H

1CICI2H

11B2G26A

11C1820C

11C1H07C

11C116C

11C1LI16K

newoH

11C1B05C

11CIE02E

1CIC22E

1ncicazop

11C2F04C

11C1805A

11C1B04A

11C1F02A

11C1B07A

11C1B0BA

11C1B20A

11CIHI2G

ASEER A;Hﬁsﬂ,«

i
SYNC : ADDRESS ~ PROGRAM ADDRESS ~ DATA
A Y
Address Switches 00001 | 00001 00100 §
- | o002 40010000200 00200
| oo Joooors

LINE NAME LOGIC PAGE TEST POINT

s cﬂz Flas|dde

H —

A

it

op

[

L Is Ig

AL e

-
-

rt

-l

- |]
1]

[[

—_—

|

NS Eln?
NS
NSE(

N

C

p—
N

-

——

—)

—
—

h—

L.

=

1

= L
:::

P

_

L el

=]
m

oy

L=t
=
)

>Figure 7A. Add Operation Instruction Read-out

12

SYNC - S 1 PROGRAM . DATA

Address switches 00012 00001 A0010000200 L 00099 14
5 P ER 00012 0050000200X 00198 (36
- ! 00024 Joooolb : 00498 036
) - 1 p

ALDLINE - - ap paGe TESTPOINT| | [Flals|c[o EﬂA 8 cﬂs ﬂemlk Als cmeﬁA IKCHE ﬂemj A qcme msmj alslciole
1. LOGIC GATES bl Ll i
2. LAST INSN R.O. 121305 NCIHIZG | | S o
3. UNITS CTRLL. 16.30.02 1IC2E21A -‘ U L i

]
:

. UNITS L. 16.30.02 11C2D16A

[

. 1ST SCAN CTRL L. ’ 12.30.03 11CIF23L

|

o

LISTSCANL. 12.30.01 11CIE26A

A CYCLE CTRL L. 12.12.20 ncuion __\‘
‘r..;.
|
— -

N

©

. RiO. AAR 14.71.30 1ncicne

o

.ACYCLEL. 12.12.01 11C1H20C

10.B CYCLECTRL L. 12.12.21 11C1A048 L
11. R.O. DAR ‘ - 16.41.01 11C1C12G | B r\

12.R.O. BAR 16.41.01 NCICIH |

13. BCYCLE L. 12.12.02° . 1ICIHI7C

14, TRUE ADD "B" 16.20.10 11C2E12C !) U

UI
15. ACH, USETORC ~ ©16.20.11 HC2EIZL ‘ l
16. USE ADDER NU, 16.14.02 11C2C13K - -\.____
]

HERE]

17. USE B CH WM 15.49.04 -11C3F24C
18. BODY CTRL L. 16.30.04 11C2C23C)

19. BODY L. 16.30,04 11C2G05A

20. CARRY CTRL L. 16.20.21 11C2D19D0

21, CARRY'L. ' 16.20.21 neze2s |

22. NO CARRY CTRL L. 16.20.22 11C2D23D

23. NO CARRY L. 16.20.22 11C2CI3A - -

24, EXTENSIONCTRLL. 16.30.06 11C2CH6C : - ‘ L .

25, EXTENSION L. 16.30.06 11C2D16C ‘ ‘ ‘ \ ,

26. A CH INSERT.0 16.20.11 11C2HO%F , j ‘ L__

27. LAST EXECUTE 16.42.02 11C2B04D | J L
e o Bl e Pl e P b R e b e

28. LOGIC GATES et ek — 43} e

]
Figure 7B. Execute Phase of Add Operation Arithmetic Instructions 13

S!GNAL ' CONTROL - Locic

2 Regen 1st Scan Ctrl Regen st Scan Ctrl * Anth . 12.30.05
" 1st Scan Gtrl Latch Regen 1st Scan Ctrl, Next 12 30. 03

' to Last LG)
1st Scan ‘1st Scan Ctrl Lat, LGC 12.30.01 -
1st Scan 14.71.41

" Addr Mod Setto —1

15. Take another B-cycle and read out next B-ﬁeld
character.

Set B Cy Ctrl Std A Cy Ops A Cy 12.12.44
B Cy Ctrl Set B Cy Ctrl, Last LG 12,12.21
BCy B Cy Ctrl, LGB 12.12.02
Set Body CtrlLatchn RA + RS +A + S.LB. 16.30.01
" Not BW Not AW :
Body Ctrl Latch Set Body Ctrl Latch, Next 16.30.04
to Last LG*
Body Latch Body Ctrl Latch, LGC 16.30.04
. RO B AR * Arith B Cy Ctrl, Body Ctrl Latch = 16.30.04
/ B Cy Ctrl, Body Ctrl Latch 16.41.01

Arith Type Op Codes

If there was an A-channel word mark, the extension latch °

is set on instead of the body latch.
~16. During the extension, the adder receives a 0 or 9.

A + S.BISX A + S.B. Cy, 1st Scan, Compl 16.20. 05
Latch, Extension Latch ‘
A Ch Insert +9 A + SBISX - 16.20.11
RA+ RS+ A+ True Latch, Extension Latch, 16.20.03 .
S.I.B.T.X Add Type Op Code, Ist ’

: Scan, B Cy))
A Ch Insert +0 RA + RS +A + SIBTX 16.20.11

'17. A B-channel word mark stops the operatlon ex-
cept on complement add with no-carry.

A + S.B.LS.BW. Adder No Carry, BCh WM 16.20.05
Not RC Bit
A + S.B. Cy, Ist Scan, "
., Compl Latch ‘
Set B Cy Ctrl * Arith © A + S.B.I.S. BW. Not RC 16.42.01

Set B Cycle Control * Arithmetic causes another B-cycle dur-
ing which the B-ﬁeld is converted to true form. 3

18. Set up the controls to complement add the
B-field to zeros inserted into the adder on the A-field
side.

- Set Units Ctrl Latch A + S.B.IS. BW.Not RC . 16,30.01

Umts Ctrl Latch Set Units Ctrl Latch, Next 16.30.02
to Last LG ,

Units'Latch - Units Ctrl Latch, LG.C 16.30.02 ~

Set 3rd Scan Ctrl A + S.B.I.S. BW. Not RC 16.43.01

3rd Scan Ctrl Set 3rd Scan Ctrl, Next . 12.30.04
to Last LG . ‘

3rd Scan 3rd Scan Ctrl, LGC - 12.30.02

Compl Add B 3rd Scan, Add Type Op’ ' 16.20.10

: Codes

A Ch Insert +0 3rd Scan, B Cy, Add Type 16.20.11 -

Op Codes)
19. Set carry latch to correct units position.

Set Carry Latch . A + S.B.LS. BW. Not RC 16.20.20

Carry Ctrl Latch Set Carry Latch, Last LG 16.20.21

Carry Latch Carry Ctrl Latch, LGC 16.20.21

20. Change sign over units position.

Use Inv B»ChfSlgn Units Latch, B Cy, 3rd Scan 16. 40 03
; : Add or Subt Op Codes
Use Inv B-channel Sign changes + to — or — to +.

21. End the operation. -

Last Execute Cy * B Cy, 3rd Scan, Add or Subt 16.42. 02
Arith '‘BCh WM

14

Questions on Add and SuBtraci Oﬁeraﬁoh

- Answers to these review questions are in the Appendix.

1. When the CPU decodes the A (AAAAA) mstruc-
tzon what action occurs?

2. Are other A-field characters processed after a B-
_channel word mark is sensed?

3. Why is the first B-cycle in the add -or subtract
operation longer than subsequent B-cycles?

4. When the sum in an add operation (or the re-

mainder in a subtract opemtwn) is 0, what mdwator
turns on?

5. When the A-field word mark is sensed before ‘
* the B-field word mark is detected in a true add scan,
- what action occurs?

6. When 'the add or subtract instruction specifies’

A- and B-addresses, where is the result stored?

Zero and Add and Zero and Sﬁbfract
Instructions .

Instruction Fdrniutg)

Formats for the zero and add (systems diagrams refer
to the instruction as reset add) and zero and sub-

- tract (systems diagrams refer to the instruction as re-

set subtract) are as follows:

OpP CODE

. A-ADDRESS B-ADDRESS
? (zero and add) XXXXX XXXXX

? (zero and add) XXXXX

é (zero and add)

‘;' (zero and subtract) / XXXXX ‘ XXXXX

3 (zero and subtract) XXXXX

|

(zero and subtract)

" If the zero and add or zero and subtract instruction
specifies two addresses (P or | xxxxx xxxxx), the numeric
data in the A-field is stored in the B-field. The sign
of the result field (B-field) is the same as the sign of
the A-field in the zero and add operation; the sign of
the result field is the opposite of the A-field sign in
the zero and subtract operation’ (Figure 8). If, in a
zero and add operation, the A-field has no sign and
is thus understood to be positive, the system generates

an actual positive sign for the B-field by placing A-

-)) B-Field Sign
A-Field Sign At End of Operation

No A-bit and No B-bit (plus) ' B-bit (minus)

B-bit (minus) A-bit and B-bit (plus)
A-bit and B-bit (plus) B-bit (minus)
A-bit (plus) B-bit (minus)

Figure 8. Sign Changes for Zero and Subtract (Two Addresses)

AT

N

N

)

o
I '3

" and B-bits over the,ﬁhifé*f position. All other zone posi-
~ tions, except the sign position, in the B-field are cleared
* (no A- nor B-bits) in zero and add and zero and sub-

tract operations. The B-field must have a defining word

* mark to stop the operation. The A-field requires a

word mark only if it is shorter than the B-field, in
which case extra high-order B-field positions are set

“to 0. If the A-field is longer than the B-field, the high-

order positions of the A-field that exceed the limits
imposed by the B-field word mark are not processed.
If the zero and add or zero and subtract instruction

'specifies only one address ('P or | XXXxX), numeric data

in the A-field does not change. The instruction causes

the system to strip the A-field of all zones, except the
'units (sign) position, and to change non-numeric codes

(blanks and 8-3, 8-4, 8-5, 8-6, and 8-7) to their numeric

equivalents (0, 3, 4, 5, 6, and 7, respectively). In the

zero and add operation, the sign of the A-field is re-
tained, but the bit configuration of the plus sign may
change; for example, if the bit configuration of the

plus sign is an A-bit or Nor A- and Not B-bits, the

plus sign is changed to the A- and B-bit configuration.
In the zero and subtract operation, the A-field sign
changes; if the A-field was positive before the oper-
ation, it is negative after the operation; if the A-field
was negative before the operation, it is positive (A-
and B-bits) after the operation. In the one address
zero and add or zero and subtract instruction, the
A-field requires a word mark in its high-order position.

If the zero and add or zero and subtract instruction

does not designate an A- or B-address (no address

chaining), the contents of the aar from the previous
operation specify the A-field, and the contents of the
BAR specify the B-field in the operation. The zero and

add or zero and subtract instruction is then executed

in the manner described for two address instructions.

CPU Operation

During the A-cycle that begins execution of the zero

and add or zero and subtract instruction, ‘the units
position of the A-field reads out of storage and is set
in the A-data register. After the A-cycle, the system
executes a B-cycle to process the B-field character from
storage onto the B-channel and to gate the character
in the A-data register to the A-channel. The A-channel
character is set in the adder; a 0 is inserted on the
B-channel input to the adder. In all cases, the adder
true adds the A-channel character to 0. Because the
units latch is on (first A- and B-field characters to be
processed), the adder sum is combined in the assembly
with the sign of the A-field (zero and add) or with
the inverted sign of the A-field (zero and subtract).
The character and the sign are gated to the units posi-
tion of the B-field in storage. Until an A- or B-channel
word mark is sensed, the system alternately executes

A- and B-cycles, adds A-channel numeric bits to 0 in
the adder, and stores the adder output in the B-field.
If an A-channel word mark is detected before a B-
channel word mark is sensed, zeros are stored in the
remaining B-field positions. A B-channel word mark
terminates the operation. '

Figures 9 and 10 show diagrammed explanations of
cpu operation in the execution of the zero and add
and zero and subtract instructions. ,

The following controls are active when the cpu
performs the zero and add and zero and subtract
operations. g

SiecNAL ; CONTROL ’ delc
1. Initiate A-cycle and read out first A-field character.

Set A Cy Ctrl A Cy First Op Codes 12.12.41
. g Last Insn RO Cy
A Cy Ctrl Set A'Cy Ctrl, Next 12.12.20
to Last LG
ACy A Cy Ctl, LGB 12.12.01
RO AAR A Cy Ctrl, LG Special A 14.71.30
: Read out AAR on A Cy Ops. o

Set Mem AR Gated LGA, 2nd CP 14.17.16
2. Set modifier controls to —1. ’

Set 1st Scan Ctrl 1st Scan First Op Code 12.30.05

! Last Insn RO Cy
1st Scan Ctrl Lat Set 1st Scan Ctrl, Next 12.30.03
‘ to Last LG)

1st Scan 1st Scan Ctrl, LGC 12.30.01

Addr Mod Setto —1 Ist Scan 14.71.41
3. Set Character into A-data register. o

SwBChtoAReg A Cycle, LGD 15.38.01
4. Control A-cycle length. s

Std A Cy Ops A Cy Add Type Op Codes, A Cy 13.14.06

Stop at F Std A Cy Ops A Cy 12.12.30

5. Set true add controls.

Set True RA + RS ¢ Last Insn RO Cy 16.20.13
True Ctrl Latch Set True, Last LG 16.20.14
True Latch True Ctrl Latch, LGC 16.20.14
Set No Carry RA + RS ¢ Last Insn RO Cy 16.20.20

No Carry Ctrl Latch - Set No Carry, Last LG 16.20.20
No Carry Latch No Carry Ctrl Latch, LGC 16.20.22

6. Initiate B-cycle and read out first B-field character.

Set B Cy Ctrl Std A Cy Ops A Cycle 12.12.44
B Cy Ctrl Set B Cy Ctrl, Next 12.12.21
to Last LG
BCy B Cy Ctil, LGB 12.12.02
Units Ctrl Latch Last Insn RO Cy, Next 16.30.02
’ . to Last LG ;

Units Latch Units Ctrl Latch, LGC 16.30.02

" Regen Units + Body Std A Cy Ops A Cy 16.30.01
Cul .
Units Ctrl Latch Regen Units + Body Ctrl, 16.30.02
) ~ Next to Last LG .
Units Latch
RO D AR * Arith Units Latch, B Cy Ctrl 16.41.01
Arith Type Op Codes
Set Mem AR Gated. - LGA, 2nd CP 14.17.16
7. Regenerate modify controls.
Regen 1st Scan Ctrl Std A Cy Ops, A Cy 12.30.05
1st Scan Ctrl Regen 1st Scan Ctrl, 1st Scan 12.30.03

12.30.01
14.71.41

1st Scan 1st Scan Ctrl, LGC .
Addr Mod Setto —1 = 1st Scan

Arithmetic Instructions 15

Set Carry Latch

Zero and Add or
Zero and Subt Inst

Set Units Latch
16.30.02

I

. -.Set No Carry Latch

Set 1st Scan Latch |
12.30.03

16.20.20

- 16.20.20
1

Yes

IsTherean A ChWM?

I

Set True Add A Latch
16.20.13

Set Extension Latch
16.30.06

Set Body Latch
16.30.04

Set No Carry Latch
16.20.20

1

L

1

Take An A Cycle
12,12.41

RO A Field Char
14.71.30

1]

“Inserts Standard .

1 esms—

foke B Cycle
12.12.44

Regen Units or
Body Latch -
16.30.02 -.04

RO B Field Char

16.41.01

Yes Isthe UnitsLatchon?

No

© Use DAR if
Units Position

Is the Body or
Ext Latch on? . Ext
16.30.04-.06
Insert 0 on'A Ch
to Addr
16.20.11

L SienZones /T 16.30.02
|
. fm————— |
B Is the Op Code
! ZAor 252
i
1
! Use A Ch Sign Use Inverted
L= A Ch Sign
16.40.03 16.4'0.03
I N
| 1
Gate A Ch to -
Qui-Bin Trans
16.20.11
|
Insert 0 on B Ch
16.20.02
[
. Gate Adder Output Use Adder Nu, Use
Through ASM B Ch WM, Use 'No
16.40.01-02 Zones Except Unit Pos

IsTherea B Ch WM?

Regen 1st Scan Latch
16.43.01

End Oper Start Inst RO
16.42.02

Regen True Add Latch
16.20.13

Figure 9. Zero and Add or Zero and Subtract

16 .

A~

f‘\

)

Yo)

SYNC
Address Switches 00012

LOCATION
00001

PROGRAM

30010000200

Joooos

LOCATION =~ DATA
00099 33
00198 Js6

LINE NAME

1. LOGIC GATES

2. LAST INSN R.O.
3. 1ST SCAN CTRL
4. 15T SCAN

5. UNITS CTRL

6. UNITS ’

7. "A" CYCLE CTRL
8. "A" CYCLE

9. R.O. AAR

10. SET STAR

11. TRUE CTRL

12. TRUE

13. TRUE ADD "A"
14, "B" CH INSERT "0"

15. NO CARRY CTRL

16. NO CARRY

7. "B" CYCLE CTRL

8. "B" CYCLE

S

. R.O. BAR

N

0. "A" CH PLUS SIGN (INVERTED)

-]

. ASM USE ADD NU

N

2. ASM USE B8 CH WM

N

3. ASM USE A CH SIGN

IS
IS

. ASM USE NO ZONES

8

. BODY CTRL

26. BODY

7. EXTENSION CTRL

~

28. EXTENSION

29. "A" CH INSERT "0" (INVERTED)

30. END EXECUTE

31. LOGIC GATES

LOGIC PAGE

12.13.06
/.
13.13.03
12.30.01
16.30.02

16.30.02

12.12.20
12.12.01
14.71.30
14.17.16
16.20.14
13120.14

16.20.14
16.20.02

16.20.22
16.20.22
12.12,21

122,02

16.41.01
16.16.07

16.40.02
¢
15.49.02

16.40.03

16.40.01

16.30.04

16.30.04

16.30.06
16.30.06

16.20.01

16.40.02

TEST POINT

11CIHIZG

NCIF230

11CIE26A

. NIc2E21A

11C2D16A

11C110D

11CIH20C
naicne
11826264
neone
C2EIZB

11C2F09A

11C2824C

11C2D23D

1C2CI3A

11C1A048

11CIHI7C

1CICH

11C2E25K

11C2C13K

11C3F24C

11C2E19D

11C2C12E

11¢c2c23¢

11C2G05A

11C2C16C

11C2D16C

1C2ENTA

11C2804D

=
o7
=

Btetat

A AL

Becea:

ARttt

el

NARASES AN

|

U

=

L

e

.

—

-

T T

A

Dlotaka

Bces

;IC'PD:\E]’ F A’

B A

Figure 10. Zero and Add Operation Timings

Arithmetic Instructions

17

SIGNAL CoONTROL ; \ Locic
8. Gate A-field character to A-channel.

Gate ADataRegto B Cy, ARegto AChonB 15.38.02
A Ch Cy Ops

9. Gate A-channel to Adder.

Adder A Ch Use Tor C Units Latch, lst Scan,, B Cy 16.20.11

Add Type Op Codes, Not 1401
10. Insert a 0 in B side of the adder. -

B Ch Insert +0 Reset Type Op Codes, B Cy, 16.20.02
1st Scan

11. Gate adder output through assembly.

Use Adder Nu RA + RS ¢ B ¢ Not 1401 16.40.02

Use A Ch Sign RA ¢ Units * B Cy 16.40.03

or Use Inv A Ch Sign RS ¢ Units * B Cy 16.40.03

Load Storage Load Mem on B Cy Op Codes 12.50.01
B Cy

12. If there is no A- or B channel word marks, set
the no carry latch.

RA+RS+ A+ SB. Add Type Op Codes, BCy 16.20.03
Not BW B Ch Not WM Bit

Set-No Carry Latch RA + RS + S.B. Not BW, 16.20.20
No Adder Carry

No Carry Ctrl Latch Set No Carry Latch, Last LG 16.20.21

No Carry Latch No Carry Ctrl Latch LGC 16.20.21

- 13. Take another A-cycle and read out next A-field
. character.

RA+ RS+ A+ Add Type Op Codes, 16.20.03
S.I.B. Not BW 1st Scan -
Not AW B Cycle, A Ch Not WM,
B Ch Not WM
Set ACy Ctrl * Arith RA + RS + A + S.I.B. 16.42.01
Not BW Not AW
Set A Cy Ctrl Set A Cy Ctrl * Arith 12,1241
A Cy Ctrl Set A Cy Ctrl, Next 12.12.20
to Last LG
A Cy A Cy Ctrl, LGB 12.12.01
RO AAR " A Cy Ctrl, LG Special A 14.71.30
" Read Out AARon A Cy Ops .
Set Mem AR Gated LGA, 2nd CP
14. Regenerate modify controls.
Regen 1st Scan Ctrl RA + RS + A + S.B. 16.43.01

* Arith Not BW
Regen 1st Scan Ctrl Regen Ist Scan Ctrl * Arith 12.30.05
1st Scan Ctrl Lat Regen Ist Scan Ctrl, Next 12.30.03

to Last LG
1st Scan ~ 1st Scan Ctrl Lat, LGC 12.30.01
Addr Mod Setto —1 1st Scan 14.71.41

15. Take another B-cycle and read out next B-field
character.

Set B Cy Ctrl Std A Cy Ops A Cy 12.12.44
B Cy Ctrl Set B Cy Ctrl, Next 12.12.21
to Last LG
B Cy B Cy Ctrl, LGB ‘ 12.12.02
Set Body Ctrl Latch RA + RS + A + S.LB. 16.30.01

Not BW Not AW
Body Ctrl Latch Set Body Ctrl Latch, Next 16.30.04
to Last LG -
Body Latch Body Ctrl Latch, LGC 16.30.04
RO B AR * Arith B Cy Ctrl, Body Ctrl Latch 16.30.04

B Cy Ctrl, Body Ctil Latch 16.41.01
Arith Type Op Codes
If there was an A-channel word mark, the extension latch is
set on instead of the body latch.

18

SiGNAL CoONTROL Locic
16. Gate A-channel to adder.
Adder A Ch Use Body Latch, 1st Scan 16.20.11
LorC B Cy, Add Type Op Codes
Not 1401 ,

17. Gate a 0 in B side of adder.
B Ch Insert +0 Reset Type Op Codes, B Cy 16.20.02

’ Ist Scan
18. Gate adder output through assembly.
Use Adder Nu RA + RS.B. Not 1401 16.40.02
Use No Zones RA + RS.B. Ist Scan Body 16.40.01
Latch

19. End operation when there is a B-Channel wmM.
Last Execute Cy RA + RS.IB. B Ch WM 16.42.02

Questions on Zero and Add and Zero and
Subtract Operations
Answers to these review questions are in the Appendix.

1. If the sign of the A-field is positive in a zero and
subtract operation, what is the sign of result field?

2. How does the zero and add operation differ from
the zero and subtract operation?

3. What positions of the result field contain zone bits
after the zero and add or zero and subtract operation?

4. What terminates the zero and add and zero and
subtract operations?

5. When the zero and add or zero and subtract in-
struction specifies only an A-address, where is the re-
sult stored?

6. If the A-field contains all zeros, what mdwator
turns on?

Multiply Instruction

Instruction Formats
Formats for the multiply instruction are:

OpP CODE A-ADDRESS B-ADDRESS
v N
@ XXXXX XXXXX
Y .
@ XXXXX

The A-address in the multiply instruction specifies
the low-order character in the A-field (multiplicand);
the B-address represents the storage location of the
low-order B-field character (product). If the multiply
instruction does not contain a B-address, the contents
of the BAR from the previous operation designate the
low-order character in the B-field for the multiply
operation. If the instruction does not contain an A-
address or a B-address (no address chaining), the con-
tents of the aAR and the BaR specify low-order A- and
B-field characters, respectively.

The multiply instruction causes the cpu to re-
petitively add numeric data in the A-field (multipli-
cand) to numeric data in the B-field (product), start-

ing with low-order B-field positions. Results of the
additions are stored in the B-field.

Multiplier digits must be stored in the high-order
B-field positions before the multiply operation begins.
However, the mutilplier is eliminated digit-by-digit as
the operation progresses. If the multiplier is to be re-
tained, it must be stored in another area in memory.

Word marks must be set in high-order multiplier
and multiplicand positions.

B-Field Length

Because the product is developed in the B-field, the
field must be long enough to accommodate repetitive
additions of the A-field and still not interfere with
useful multiplier positions. Therefore the number of
digits in the multiplier plus the number of digits in
the multiplicand plus one equals the number of posi-
tions that the B-field must contain.

Concept of Machine Multiplication

The following example is used to aid in explaining
the concept of multiplication on the 1BM 1410 Data
Processing System:
Multiplier):(Xf(B
Multiplicand YYYYY “A-address B-address
Product Field (before multiplier is moved in) ZZZZZZZZ

Because the multiplier has three positions and the
multiplicand has five positions, the product field
(B-field) has nine positions. Before the cpu decodes
the multiply instruction, an image of the multiplier
must be stored in the high-order B-field positions;
this is usually accomplished with the zero and add
instruction. The product field (B-field) must contain
XxXzzzzz7 when the multiply operation begins.

Before the cpu performs the first add scan in the
operation:

1. Characters to the right of multiplier digits in the
product field are replaced with zeros, and

2. Zone bits in the units multiplicand (A-field) and
multiplier digits are analyzed to determine the signs
of the respective factors. If signs of both the A-field
and the multiplier are alike, a plus sign is set over the
units position of the B-field. If signs of the A-field and
the mutliplier are different, a minus sign is set over
the units position of the B-field.
The B-field in the example becomes Xxx000000.

In other cpu operations in the execution of the
multiply instructions:

1. Data in the A-field are true added or complement
added into the B-field. Each multiplier digit specifies
the number and type of add scans that should be
executed (the number of times that the A-field is
added into the B-field).

2. The cpu shifts when action that each multiplier
digit designates is complete. The shift allows the add
scans that the next multiplier digit requires to be-
gin at the next product field position in high-order
sequence.

3. Multiplier digits are incremented or decremented
by one before or after add scans until all multiplier
digits are either reduced to 0 or increased to 9. The
multiply operation ends when a 0 with a word mark
is sensed in the multiplier.

Rules of Machine Multiplication

To execute a multiply instruction, the cpu applies the
following rules:

1. A multiply operation begins with the true add
latch set and ends with a true add scan.

2. A multiplier digit of 1, 2, 3, or 4 causes:
a. The multiplier digit to be decreased by one.
b. The cpu to perform a true add scan.
c. The cpu to shift after the multiplier digit is re-
duced to 0.

3. A multiplier digit of 5, 6, 7, 8, or 9 causes:
a. The multiplier digit to be increased by one.
b. The cpu to perform a complement add scan (ex-
cept as noted in rule 6).
c. The cpu to shift after the multiplier digit is in-
creased to 9.

4. When a shift and a change from complement add
to true add scan occur, the multiplier digit is not de-
creased before the true add scan.

5. When multiplier digits designate that a true add
scan follow a complement add scan (as in the cases
of multiplier digits 18, 47, 36, 25), an extra true add
scan is taken after the shift ending the last comple-
ment add scan.

6. When the multiplier digit 9 follows the multiplier
digit 5, 6, 7, 8, or 9 (for example 97, 95, 98, 99), the
cpu does not perform a complement add scan when the
high-order 9 is sensed; a shift is signalled immediately.

7. When performing complement add scans, the
complement of the A-field (multiplicand) is added to
the B-field the number of times equal to the com-
plement of the mutliplier digit, except as noted in
rule 6; for example, the multiplier digit 8 specifies that
the A-field be complement added to the B-field (rule
3b) twice; the tens complement of 8 is 2. However,
the multiplier digit is only increased to 9 (rule 3c).

8. The zero balance indicator turns on when the
product field is 0 at the end of a multiply operation.

9. A multiplier digit of 0 signals a shift immediately;
no add scan is taken.

Arithmetic Instructions 19

Machine Multiplication Examples

The following examples illustrate the manner in which
the cpu executes specific multiply operations: -

EXAMPLE 1

A multiplier units digit of 1, 2, 3, or 4 causes a cor-

responding number of true additions of the A-field

(multiplicand) to low-order positions of the product
field (B-field). Before each true add scan, the multi-
plier digit is decreased by one until the digit is re-
duced to 0. When the multiplier digit is 0 and the
subsequent true add scan is complete a left shift is
forced, causing:

1. The tens position of the multiplier to control the
number and type of add scans.

2. The add scans to begin in the tens position of the
product field.

This procedure is repeated for each position of the
multiplier until the action that each multiplier digit
specifies is complete.

Example: 203 X 1625

Multiplier
303/00000| Bfield
Read out 3 and reduce 20200000
True add 01625
Read out 2 and reduce 30101625
True add 101625
Read out 1 and reduce 500/03250
True add 01625
 ‘Read out 0 and shift 300lo4873%
Read out 0 and shift $ofoo4 SZJ-?—
Read out 2 and reduce ifooo48[75
True add 01625]
Read out 1 and reduce 0lo1673|75
True add \'01625 .
Read out 0 end op 010329 8|75
EXAMPLE 2

A units multiplier digit of 5, 6, 7, 8, or 9 causes the
complement of the A-field to be added to low-order
positions of the product field. The complement of the
multiplier digit determines the number of complement
add scans required. The multiplier digit is incremented
by one after each complement scan until the digit is
increased to 9. When the required number of com-
plement ad scans (as specified by the units multiplier
digit) have been taken, a left shift is forced, causing:

1. The tens position of the mutliplier to control the
number and type of add scans.

2. The add scans to begin in the tens position of the
product field. This procedure is repeated for each posi-
tion of the multiplier until the action that each multi-
plier digit specifies is complete.

If the high-order multiplier digit (the digit con-
taining the word mark) is 5, 6, 7, 8, or 9, the cpu per-

20

forms a true add scan after the last complement add
scan and the shift have been taken.

Example: 7 X 1625

Multiplier

fo 700000
'Add complement of A-field 983785
Increment by one 98375
- Add complement of A-field 98375
Increment by one 996750
Add complement of A-field 98375
Shift §95125

True add A-field’ ' - 1625
End op 011375

Complement addition for multiplier digits 5, 6, 7, 8,
and 9 saves processing cycles and time. For example,
a multiplier digit of 7 causes, instead of 7 true add
scans, only four scans total,

EXAMPLE 3

When a multiplier digit of 9 is sensed after a multiplier
digit of 5, 6, 7, 8, or 9 (95, 96, 97, 98, 99), the high-
order 9 in the multiplier does not require a com-
plement scan. The hlgh-order 9 signals a left shift

. immediately.

When multiplier digits designate that a true add
scan follow a complement add scan, an extra true add
scan is taken after the shift ending the last com-
plement add scan. The multiplier digit is not decreased
before the true add scan.

A multiplier digit of 0 signals a left shift im-
mediately.

Example: 19910 X 22
Multiplier

v

Read out 0 and shift 991000 g
Read out 1 and decrease 1990000
True add 1___2_2_6_
Shift 990022
Read out 9 and comp add 199002260
Read out 9 and shift (9 follows 9) Y999802 g
Read out 1 and true add 1999802
(switch from comp add to true add) T 22
Read out 1 and decrease 021802
True add .,__2_2___6
End op 0043802
Address Registers
In a multiply operation:

a. The AaR scans the A-field.

b. The Bar scans the product field (B-field).

c¢. The car retains the address of the units position
of the multiplicand (A-field).

d. The par retains the address of the product field
position used at the start of each scan. The par
is modified by —1 on a shift cycle.

At the end of the multiply operation, the AR con-
tains the address equal to the original A-address minus

5

3

the length of the A-field; the BAR contains the address

equal to the original B- address minus. the length of

the B-field.

CPU Operation

To more clearly explain cpu action when performing
a multiply operation, execution of the following ex-
ample is used to supplement descriptions of cpu
functions. Figure 11 shows a step-by-step breakdown
in the execution of the following example:

Multlpher 8

Multiplicand (A-field) 181

Product Field (B-field when the multlply operation
starts) 82XXXX

The cpu must first locate the units position of the

multiplier. To accomplish this, the cPu scans through
the A- and B-fields and replaces B-field characters with
zeros until an A-field word mark is sensed. In the
example, three A- and B-cycles are required to read
out the A-field word mark; the B-field changes to
82X000.

The A-field word mark sets the extension latch, and
the cpu takes another A- and B-cycle. During the

A-cycle, the car is used to read out the units position

of the A-field; the units position A-field character (con-
taining the sign of the A-field) is stored in the A-data
register. During the B-cycle, the extra position in the
product field (the position that contains neither a 0
nor part of the multiplier) is replaced with a 0. In
the example, the B-field changes to 820000.

Another B-cycle follows. The units position of the
multiplier (containing the sign of the B-field) is read
out of storage and gated onto the B-channel. The
A-field character in the A-data register is gated to the
A-channel. The MQ latch is set to identify characters
on the A- and B-channels as units position characters
of the multiplier and the multiplicand. Signs over the
A- and B-channel characters are analyzed to determine

the sign of the product field. Like signs (as in the -

example) set the plus latch; unlike signs set the
minus latch.

The B-channel character (units multiplier digit) is
examined to determine whether true or complement
add cycles are to be taken. If the multiplier digit is
1, 2, 3, or 4, the true add latch is set, and the digit is
decreased by one and returned to the units multiplier
position in storage. To accomplish this, the digit 9 is
inserted in the A-channel side of the adder, and the
B-channel character (1, 2, 3, or 4) is inserted in the
B-channel side of the adder. The two digits are added,
and the high-order carry is dropped, effectively sub-
tracting one from the B-channel digit. For example,
when the digit 2 is inserted in the B-channel side of
the adder, the digit 9 is inserted on the A-channel
input to the adder. The digits are added, and the high-

order carry is dropped; the adder ouput (1) is stored
in the units position of the multiplier in memory. The
B-field in the example becomes 810000.

If the multiplier digit is 5, 6, 7, 8, or 9, the com-
plement add latch is set, and the multiplier digit is
returned to storage unchanged.

In addition to setting the true add or complement
add latch, the units position multiplier digit sets the
first, second, or no scan latch for the subsequent D-
cycle. If the digit is not a 0, the no scan latch is set;
if the digit is a 0 without a word mark, the first scan
latch is set; if the digit is a 0 with a word mark, the
second scan latch is set, and the operation ends when
the subsequent D-cycle is complete. In the example,
the units digit in the multiplier is 2, causing the no
scan latch to turn on.

When the sign analysis is complete and the no scan
and true add or complement add latches are set, the
cpu takes a D-cycle to set the sign of the product over
the units position of the product field (B-field). The

- product field in the example then becomes 810000.

The cpu scans the A- and B-fields and true adds or
complement adds the A-field to the B-field. The num-
ber and type of add scans performed are determined
by the numeric value of the multiplier digit. In the
example, the units position multiplier digit was 2 be-
fore the reduction, indicating that the A-field must be
true added to the B-field twice. The cpu takes A- and
B-cycles to read out multiplicand and product field
characters to execute the addition. Before each A-field
to B-field true addition is begun, the multiplier digit
is read out and reduced by one. At the end of the
second true add scan, the B-field in the example be-
comes 800362. When the multiplier digit is 5, 6, 7, 8,
or 9, the complement of the A-field is added to the
B-field the number of times that the complement of
the multiplier digit specifies; for example, the multi-
plier digit 8 indicates that the A-field must be com-
plement added to the B-field twice (the tens com-
plement of 8 is 2). The digit is increased by one after
the first complement add scan; in cases of other digits
designating complement add scans, the digit is in-
creased by one after each A-field to B-field addition
until the multiplier digit is increased to 9.

When the designated number of true add or com-
plement add scans are complete, the next multiplier
digit is examined to determine whether true or com-
plement add scans are required.

When action that each multiplier digit specifies is
completed, a left shift occurs, causing the subsequent
complement or true add cycle to begin at the next digit
in high-order sequence. In the example, a left shift
occurs when the two true add cycles that the units
multiplier digit (2) designates are executed. Actions

Arithmetic Instructions 21

13

5 v+) v -
MULTIPLY PROBLEM: "B FIELD 8|2 “A"FIELD |1 |8 | 1|
A -LOCATION OF D AR —
CYCLE| AR | UNITS| SCAN STORED DIGIT | ADDER | CARRY| ADDER| TRUE | REMARKS
RO | BODY| 1sT ~ngw ON| "* | NO | "A"| OR
: EXTN | 2ND, RD FIELD ASSEM ‘CARRY COMP
OBJECTIVES MQ NO | . \/ -
LOCATE- UNITS POS. Al car| y R A ol © T |UNITSA
OF MULTIPLIER B | DAR UNITS B
- A | AAR
ZERO . PR]ODUCT’ B B AR Y 1 0] 0 T -
FIELD A | AAR| ¢ T 0 0 T)
B | BAR
A | CAR ~ JuNITS A
2 el X 1 0 0 T _
ANALYZE-SIGN&MULTCHAR] B | BAR [MQ 1 1 1 2 T 9 T | REDUCE
STORE-SIGN D | DAR N ol o T |UNITS B
v -
’ 8lilojolof0
TRANSFER- TRUE A | CAR} y 3 N 0 < 1 1 |UNITS A
ADD B | DAR , UNITS B
SCAN A | AAR = B
5 |ear| Y 3 8 8 0 C 8 T
A [AAR| y 3 1 1 0 T 1 T
B |BAR|
B | BAR| X 3 0 0 0 C 0 T _
B | BAR | MQ 3 0 0 1 C 9 T | REDUCE
Vv -
8lojol1]8]|1
TRANSFER- TRUE A | CAR = UNITS A
ADD B | par| Y 3 2| 2 ! ¢ ! T |uNmss
SCAN A | AAR j =
2 |laar| Y 3 6 6 8 C 8 T
A | AAR
5 learl Y 3 3 3 1 C 1 T .
B | BAR| X 3 0 0 0 < 0 T .
B | BAR|MQ 3 0 0)) T \
MODIFY D AR -1 D | DAR 3 \J 0 T | SHIFT
ANALYZE-MULT.CHAR. B | BAR | MQ 3 |8 8 8 c| 9 T
V —
8/0/0|3]|6]2
) A | CAR UNITS A
TRANSFER iDOIQAP B |DAR| Y 3 5 5 6 C| 8 | S |7enss
SCAN A | AAR ’
8 |Bar| Y 3 5 5 3 c | 1 s
A | AAR —
5 | B AR 3 8 8 0 c| s 3
B | BAR 3 9 9 0 C 9 s
B | BAR [MQ 3 9 9 8 C 0 S | INCREASE B
v —
‘ 919(815[5|2
TRANSFER- COMP A | CAR UNITS A
ADD 2 |oarl Y 3 4 4 5 C 8 S | TENSE
SCAN A A AR -
2 loar| Y 3 7 7 5 C 1 s
A | AAR -
5 | Bar 3 6 6 8 C 8 s
B |BAR| X 3 9 9 C 9 s -
B | BAR [MQ 3 9 9 C] s
MODIFY D AR -1 D | DAR 3 v T BT &one
v - —
91916l714]|2
TRANSFER- TRUE A | CAR — UNITS A
ADD B |DAR| Y 3 8 8 7 S T | HUNDREDS B
SCAN A [AAR c
2 loar| Y 3 4 4 6 C 8 T
A | AAR
2 laar| Y 3 1 1 9 C 1 T
END OPERATION B |BAR| X 3 |o 0 9 C 0 T -
V -
0|1|4|8]4]2

Figure 11. Multiply Example

22

)

REREREE

3

that the next multiplier digit (8) specify must begin in

the tens position of the B-field.

The next multiplier digit reads out of storage and
sets the true or complement add controls. The digit is
decreased by one and returned to storage if the true
add latch is set. The digit is returned to storage un-
changed if the complement add latch is set. The A-field
is then true added or complement added to the B-field
as desxgnated by the multlpher digit. The B-field in the
example changes to 996742 after the shift and two
complement add scans are complete.

The multiply operation cannot end with a comple-
ment add scan. In the example, the high-order multi-
plier digit specifies two complement add scans. A shift
and a true add scan must be executed after the second
complement add scan. The B-field in the example
becomes (14842 The multiply operation ends when

- the 0 with a word mark is sensed in the multiplier.

Figures 12 and 13 shows detailed cpu action in the

execution of a multiply operation.

Questions on Multiply Operation
Answers to these review questions are in the Appendix.

1. List the multiplier digits that cause:
a. Complement add scans.
b. True add scans.

2. When the multiplier contains three digits and the
multiplicand contains five digits, how many storage
positions should be reserved for the product field?

3. When is the multiply operation terminated?

4. Does the cpu move the multiplier to the product
field when executing a multiply instruction?
5. When the multiplier is 99:
a. How many complement add scans are reqmred
in the multiply operation?
b. How many true add scans are required in the
multiply operation?
6. When the multiplier is 828:
a. How many complement add scans are reqmred
in the multiply operation?
b. How many true add scans are required in the
‘multiply operation?

Arithmetic Instructions 23

Units, Body, or
-Ext Latch On?

Ext

_ Set No Carry Latch

Multiply
Instruction g

Set Units Latch

16.30.02

Set Ist Scan Latch

12.30.03

Set True Add B Latch |

Take a C Cycle

12.12.42

I

C AR Reads Out
Units Position
- A Field Char

Set MQ Latch

16.30.07

16.20.20 16.20.10
"Set Extension Latch Set Bodylatch Set True Latch
16.30.06 16.30.04 16.20.13
Set No Scan Regen 1st Scan
12.30.05 16.43.01 .

Yes

Take an A Cycle

12.12.41

Is the Units
Latch On?
Ext

[Use to RO UP

A Field Char
16.41.01

Body or Ext
Latch On?

The B Ch Always

True Added

Use A AR to RO
A Field Char
16.41.01

J

Set 1st Sean

12.3?.05

1 [

Regen 1st Scan

12.30.05

This Address When
Modified is Read Into
the B AR Onl

Take a B Cycle

Use DARto RO UP
B Field Char

16.41.01
L

12.12.44

Use B

Units Latch On?
16.30.03

AR to RO

B Field Char

16.41.01
=

Store 0 in B Field
without Zones

16.40.02

Regen True Latch

16.20.13

Figure 12A. Multiply, First Scan

24

Units Position of Multiplier
is on B Ch; Units Position
of Multiplicand is on

ACh

Units, Body, Ext
or MQ LatchOn?

B Ch
Plus or Minus?

+

Set Minus Sign Latch

B Ch
Plus or Minus?

) .

Set Plus Sign Latch

]6.I<IS.04

16.16.04
l 1 [
Insert a 9 on
— — — — — —{ AChtoAdder
16,20.11

To Figure 12B

)

N

Y)))

Set 2nd Scan Latch
16.43.01

!

Store 0 in B Field
Without Zones
16.40.02

B Ch Char

Set True Latch

Store B Ch Nu
Char No Zones
16.40.02

Store Adder Output
No Zones
16.40.02

16.2I0.13

I

Set No Carry Latch

Set Compl Latch

Set True Latch

16.20.20
-

B Ch WM?

Regen 1st Scan Latch
16.43.01

16.20.13
|

16.20.13
I

Set Carry Latch

16.20.20
T

Set No Carry Latch

16.20.20 -
T

[

Set No Scan Latch
12.30.05

Load Mem With 0
and Sign?

12.5([).01

Stop at J (F)

16.4|2.04

hd

Take a D Cycle

12.12.43
I

Char
16.41.01

Use D AR to ROBFId |

This Address When
Modified is Read into
the D AR Only

]

Insert 0 on Assm Ch

16.4?.02

Use Sign Latch

16,40,03

Is this a No, 1st,
2nd, or 3rd Scan?

Regen Mem

12,50.02
I

Stop at F

12.12.30
J

Set No Carry Latch
16.20.20

[-

True or Compl Latch
On?

Set Carry Latch
16.20.20
|

End Oper Start Inst RO
16.42.02

Figure 12B. Multiply, Set Sign and/or Shift

Is this a No, 1st,
3rd, or 2nd Scan?

No, Ist, 3rd

Is this a 1st,3rd
or No Scan?

© Yes-

Set Units Latch
16.30.02
|

Set 3rd Scan Latch
16.43.01

To Figure 12C

The 9 inserted on
A Chto Adder Reduces
B Ch Charby One

Is the MDL Latch On?:

No

Set MQ Latch
16.30.05

Set 3rd Scan Latch
16.43.01

To Figure 12C

Arithmetic Instructions 25

Body

From Figure 12B

Is the Body or

Regen 3rd Scan

16.43.01

Set True Add B Latch

16.|20.|0

Regen True or
Compl Latch

16.20.13
[

Take an A Cycle

16.42.01

Is the Units
. Latch On ?

From Figure 12B

Ext Latch On?

Use DAR toRO
B Field Char
16.41.01

Use A AR to RO Use C AR to RO
A Field Char A Field Char
16.41.01 16.41.01
Regen Carry or

No Carry Latch
16.20.21-22

Regen Units, Body
or Ext Latch
12.30.06

1

Regen 3rd Scan

16.43.01

Set True Add B Latch

16.2|0.IO

Regen True or
Compl Latch

16.20.13
I

Take B Cycle

16.42.01

Is the Units
Latch On ?

Use B AR to RO
B Field Char
16.41.01

Unit, Body, Ext

Unit, Body

Gate A Ch
to Adder
16.20.11

Set No Carry Latch
16.20.20

Is the Units,
Body, Ext, or
MQ Lat On?

Is the Units,
Body, or Ext
Latch On?

True

Is the True
or Compl
Latch On?

Compl

Insert 0 on A Ch Insert 9 on A Ch
to Adder to Adder
16.20.11 16.20.11

|

1 |1

Gate Adder Output
through Assembly
16.40.02

Is the Asm Ch 0?

Use BCh Zones
16.40.01

Set Not 0 Bal Latch

16.44.11

Units, Bod:

Is There an
Adder Carry?
16.20.20

Set Carry Latch
16.20.20

Set Body Latch

16.30,01

©

Is there
an A Ch WM?)

Set Extension Latch

16.30.05

Is the Units,

Ext _

Not 0 Balance
Latch Remains Set

Body, or
Ext Latch On?

Set No Carry Latch
16.20.20

[

Is the True or
Compl Latch
On?

Set Carry Latch
16.20.20

]

Set MQ Latch

16.30.05

Figure 12C. Multiply, Add A-Field to B-Field

26

Is the
MDL Latch
On?

End Oper
Start Instr RO
16.42.02

—

YY))

D)

Y

This Reduces the
B-Ch Char by One
in the Adder

. True or Compl
Latch On?

Insert a 9 on Insert a 0 on
A Ch to Adder A Ch to Adder
16.20.11 16.20.11

This Plus th

Cycle) Increase
Ch Char by O
in the Adder

Carry Latch (Set
On During the Ext

e

the B-
ne,

True or Compl
‘Latch On?

Set True Latch
16.20.13
I

Set No Carry Latch
16.20.20

B Ch WM?

End Operation
Start Inst RO
16.42.02

Set True Laich

16.2[0.13

Set No Carry Latch
16.20.20

Store B Ch Char
No Zones

&<

Is the Zero Bal
Latch On?
16.14.12

164]002

Store B Ch Char Store Adder Output Store Adder Output
Store 0 No Zones No Zones No Zones No Zones
16.40,02 16.4{).02 16.4?.02 16.4?.02
| [

Yes

Set Compl Latch

Store B Ch Char
No Zones
16.40.02

Store 0 No Zones
_16.40.02

16.20.13
]

Set Carry Latch
16.20,20

Set Units Latch
16.30,02

To Figure 12C

Set Compl Latch
:16.20,13

Set True Latch
16.20,13

Regen 3rd Scan Latch

Set MDL Latch

16.43.01
[

16.62.01
I

Set True Add B Laich
16,2010

Figure 12D. Multiply, MQ Controls

To Figure 12B

Arithmetic Instructions

27

SYNC

T
: LOCATION PROGRAM:
1
ADDR SW 00012 | 00001 0010000200
. | 00012 100000200X
00024 J00001b
- I 00031 .
| 00099
| 00196 000
00996 000
LINE NAME LOGIC PAGE TEST POINT
S | W B [
1. LOGIC GATE B 1.10.11 c22c L L L_, L | L
2. LAST INSN R,O. 12.13.05 CIHI2G J
3. UNITS 16.30.02 C2D16A J |]
4. 15T SCAN 12.30.01 CIE26A J U U U U
- — _—
5. ACYCLE 12.12.01 CiH20C ——J
6. B CYCLE 12.12,02 CIHI7C ||
7. R.O. AAR 147130 . CICNG I—
8. R.O. BAR 14.71.31 CICITH [L
9.R.0. CAR 14.71.32 CICHE J J-
10. R.O. DAR 14.71.33 ccize }— f : r
11. BODY " 16.30.04 C2GO05A J J
12, EXTN 16.30.06 can16C J
13. MQ 16.30.07 C2B18A J
14, C CYCLE 12.12.06 CIFI9F
15. D CYCLE 12.12.07 CIDO3H
16. NO SCAN 12.30.01 C1G24D l
|
17. 3RD SCAN 12.30.02 CIE26H
18. LAST EXECUTE 12.12.51 ClH238 _ !_ \
19. LOGIC GATE B 1.10.11 canzc MLLLL 1_1_1_41_ 1_1_1_1_

Figure 13. Multiply Operation Timings

)

)

Do)))

Divide Instruction
The following example shows mathematical terms as-
signed to factors in a divide operation:

25 <~——~Quotient

22) 570 Dividend
Y |
130 |
110)
20 Remainder
Divisor

Instruction Formats .
Formats for the divide instruction are:

Op CODE A-ADDRESS B-ADDRESS
‘% ‘ XXXXX XXXXX
?:8 XXXXX
%

The A-address in the instruction specifies the units
position of the divisor; the B-address designates the

storage location containing the high-order position of

the dividend. If the divide instruction does not have
a B-address, the contents of the BAR from the previous
operation locate the high-order position of the divi-

dend. If neither an A- nor B-address is included in
 the instruction (no address chaining), contents of the

AAR and BAR from the previous operation provide A-
and B-addresses, respectively, for the divide operation.

The divide instruction causes the dividend (located
in the B-field) to be divided by the divisor (located
in the A-field). To effect the divide operation, the
CcPU executes a series of complement add scans and
right shifts to repetitively subtract the divisor from

the dividend. The quotient is developed in high-order

B-field positions; the remainder is located in low-order
positions in the B-field; the dividend is destroyed as
the divide operation proceeds.

Programming Considerations

The program containing the divide instruction must
establish certain conditions before the cpu begins the
division. Conditions that must be considered before
the divide operation begins are:

Addressing of Factors: The dividend is located in

the low-order positions of the B-field. During the di-
vide operation, the quotient is developed in high-order
B-field positions, and the dividend is destroyed. If the
dividend is to be retained, it must also be stored in
another area in memory.

Length of the B-field: Because the quotient is de-
veloped in the B-field, the field must be long enough
to accommodate repetitive complement additions of
the A-field and still not interfere with quotient posi-
tions being developed. Therefore, the length of the
B-field is determined by adding 1 to the sum of the
number of digits in the divisor and dividend; for ex-

ample, the problem 5001 + 10 requires that the B-field
contain seven positions. '

4 (positions in dividend) + 2 (positions in divisor) + 1 = 7
(positions in B-field) '

Signs: The divisor can either be signed or unsigned.
If no zone bits are in the units position of the divisor,
the divisor is considered positive. A sign must be set
in the units position of the dividend (located in the
units: position of the B-field) to stop the divide oper-

- ation. The dividend sign must consist of A- and B-bits

for plus, or B-bit for minus. At the end of the oper-
ation, the sign of the quotient follows algebraic sign
rules (Figure 14), and appears over the units position
of the quotient; the sign of the remainder is the sign
of the original dividend.

Divisor Sign
Dividend Sign
Remainder Sign
Quotient Sign

+ 4+ +
o+

t + 4+

+ bt

Figure 14. Divide Sign Control

Zeros: The quotient field (the high-order B-field
positions that do not contain the dividend) must con-
tain zeros when the divide operation begins. Moving
the dividend into the B-field by means of the zero and
add instruction insures both the presence of zeros in
high-order (quotient) positions of the B-field and
proper signing of the B-field. '

Word Marks: A word mark must be set over the
high-order position of the divisor. A B-field word mark
is not necessary; if, however, a word mark is set in the
B-field, it is ignored, but retained.

Concepts of Machine Division

To execute a divide operation, the cpu performs a
series of subtractions by complement adding the
divisor to the dividend, starting with the high-order
dividend position. A carry from the high-order position
indicates a successful complement add scan and in-
creases the quotient field by one. Successive comple-
ment add scans are performed until no adder carry

. from the high-order position is detected, indicating

that the previous subtraction was unsuccessful (over-
draw) and that a correction scan must be taken.

In a correction scan, the divisor is true added to the
dividend to restore the dividend to its value preceding

. the unsuccessful subtraction. If the divisor is not true

added to the units dividend position (located in
the units position of the B-field), a right shift is taken
after the correction scan. The cpu repeats the oper-
ation, complement adding the divisor to the dividend,

Arithmetic Instructions 29

starting with the next dividend digit in low-order
sequence.

When a correction scan causes the divisor to be
added to the units dividend position (defined by a
B-bit in the standard sign), actions to set the quotient
sign and end the divide operation are initiated.

At the end of the operation, high-order B-field posi-
tions contain the quotient; low-order B-field positions
contain the remainder. Zone bits in the units quotient
and remainder positions indicate the signs of the
factors. When the divide operation is complete:

1. The number of digits in the divisor (A-field)
equals the number of B-field posxtlons containing the
remainder.

EXAMPLE 1

2. The number of digits in the original dividend
equals the number of B-field positions containing the
quotient.

3. A numeric zero in the B-field separates the re-
mainder from the quotient; for example, when the
system divides 6876 X 55, the B-field contains 0125001
at the end of the operation. Because the divisor con-
tains two digits (55), the two low-order B-field posi-
tions contain the remainder (01) Four digits were in
the original dividend (6876), therefore, the four high-
order positions in the B-field contain the quotient
(01‘75) A numeric 0 separates the remainder from the
quotient.

Examples 1, 2, and 3 following illustrate the theory of
machine division:

147 + 13

Complement add divisor to dividend (high-order position)

No adder carry from high-order position
Correction scan (true add divisor to dividend)

B-field is restored to value preceding overdraw
Shift right and complement add

Successful subtraction
Complement add

No adder carry from high-order position
Correction scan (true add divisor to dividend)

B-field is restored to value preceding overdraw
Shift right and complement add

Successful subtraction
Complement add

Successful subtraction
Complement add

No adder carry from high-order position
Correction scan (true add divisor to dividend)

B-field is restored to value preceding overdraw

Because divisor was true added to units position of B-field
(indicated by presence of B-bit), apply sign to quotient and

end operation.

Because there are three digits
in the dividend (147), the
three high-order positions in
the B-field at the end of the
divide operation contain the

000147 (B-field before division)
988
0989047
19
000147
988
010027
988
019907
12
010027
988
011015
988
012003
988
012991
12
012003
015003

Because there are two digits
in the divisor (12), the two
low-order B-field positions

- contain the remainder at
the end of the divide oper-
ation.

quotient.

EXAMPLE 2

A 0 separates
the quotient from
the remainder.

v + v
~ 14980 + 65

Complement add divisor to dividend (high-order position)

No adder carry from high-order position
Correction scan (true add divisor to dividend)

> Shift right and complement add

No adder carry from high-order position
‘Correction scan (true add divisor to dividend)

30

00014986 (B-field before division)
935
09364980
65
00014980
935

00949980
65 :
00014980 1

3

)

DA D)

Shift right and complement add
Successful subtraction

Complement add

Successful subtraction

Complement add

No adder carry from high-order. posmon

000

14980
935

08480

001

935

01980

002

002

Correction scan (true add divisor to dividend)

935

95480
65

01980 .

002

Shift right and complement add . 935
Successful subtraction 00210330
Complement add 935
Successful subtraction 00220680
Complement add 935
Successful subtraction 00230030
Complement add 935.
No‘adder carry from high-order pOSlthﬂ 00239380
Correction scan (true add divisor to dividend) 65
: ‘ O 0230030
Shift right and complement add. 935
No adder carry from high-order position 00230965
Correction scan (true add divisor to dividend) ~ 65
Because divisor was true added to units position of B- ﬁeldr 00230030
(indicated by presence of B-bit), apply sign to. quotient . .
and end operatlon 002300130 o ,
Because there are five digits -Because there are two digits
in the dividend (14980), the " in the divisor (65), the two
five high-order positions in low-order B-field positions con-
the B-field at the end of the tain the remainder at the end
divide operation contam the ‘of the divide operation.
quotlent .) :
A O separates the quotient
from the remainder.
EXAMPLE 3
1500 + iooo o ' '
000 001500 (B-fieldbefore division)
Complement add lelsor to dividend (hxgh—order) 9000 -
No adder carry from high-order position) 009001500
Correction scan (true add divisor to lexdend) B 1000
_B-field restored to value preceding overdraw- , 000001500
Shift right and complement add) \ 9000
No adder carry from high-order position 000901500
Correction scan (true add divisor to dividend) - B 1000
B-field restored to value preceding overdraw) 000001500
Shift right and complement add 9000 -
No adder carry from high-order position 000091500
Correction scan (true add divisor to dividend) ~-1000
B-field restored to value preceding overdraw 000001500
Shift right and complement add ‘ 9000 .
Successful subtraction 000010500
Complement add 9000
§ No adder carry from high-order position - 000019500
Correction scan (true add divisor to dividend) . 1000
~ B-field restored to value preceding overdraw 000010500 ~
_ Because divisor was true added to units position of B-field doo 0 ijo;s00-

(indicated by presence of B-bit), apply sign to quotient
-and end operatlon -)

Because there are four digits
in the dividend (1500), the
four high-order positions in -
the B-field at the end of the-

divide operation contain the
quotient.

Because there are four digits in
| the divisor (1000), the four low-"
order B-field positions contain the
remainder at the end of the d1v1de
operatlod

A 0 separates)
the quotient from “
the remainder.

" Arithmetic Instructions

31

Program Conditions that Cause Divide Overflow

The program de51gnat1ng the divide operation must be .

constructed to anticipate conditions listed below that
can cause a divide overflow indication:

1. If the quotient field is two or more positions short,
the divide operation usually results in a divide over-
flow. If the field is one position too small, no overflow
indication is given, even though the units position of
the adjacent field is changed. A quotient field too
~ small is a programming error, and is not checked by
the system.

2. Division by 0 always results in a divide overﬂow
indication.

3.. Because only one quotient digit can be developed
at a time, it is important to address the high-order
position of the dividend (B-address in the divide in-
struction). This insures that the first divide operation
results in a single high-order quotient digit. An im-
properly addressed dividend can cause a divide over-
flow if the result of the first series of complement add
scans produces a quotient of greater than 9 (Figure
15)

Example 90 + ¢
. INCORRECT T -~ CORRECT]
The first complement 0090 | The first complement ~ 0090
add scan does not begin 91 CA*1 |add scan begins at 91
at the high-order 0181 the high-order dividend 1 000
dividend position. 91 CA 2 |position. 91
» 0272 ‘ 1910
91 CA 3| 9
0363 1000
91 CA 4 291
0454 1091
91 CA 5 2|
0545 1000
91 CA 6
0636
21 CA7
0727
91 CA 8
0818
91 CA 9
’ 0909
DIVIDE OVERFLOW 21 CA10
First series of comple- - 1000
ment add scans produces
a quotient of greater
than 9

*CA is abbreviation for complement add scan

Figure 15. Examples of Dividend Addressing

Address Registers

~In a multiply operation:

" a. The AAR scans the A-field (lelSOI‘)

b. The BAR scans the dividend positions used in
each scan.

c. The cAR retains the address of the units posi-
tion of the divisor.

32

d. The par retains the address of the position in ~

the dividend field used at the start of each scan;
the par is modified by +1 on shift cycles.

At the end of the divide operation, the 1AR contains
the address of the next sequential instruction; the AAR
contains the address equal to the original A-address
minus the number of characters in the A-field; the BaR
contains the address of the tens position of the quo-
tient field.

CPU Operation

To perform the divide operation, the cpPu executes A- |
and B-cycles to read out divisor (A-field) and dividend
(B-field) characters. A-field characters are gated to the

A-data register on A-cycles and to the A-channel on
succeeding B-cycles. B-field characters are gated to the
B-channel on B-cycles. The adder unit true or com-
plement adds the A-channel character to the B-channel
character as determined by the on and oFF states of

 the true and complement latches. The adder unit out-
~ put is gated through assembly to storage.

The high-order character in the divisor contains a
defining word mark. The A-field character containing
the word mark is ‘read from storage and set in the
A-data register durmg a normal A-cycle. On the
B-cycle that follows, the high-order divisor digit is
gated to the A-channel and combined with the cor-
responding B-channel character in the adder. The

“adder output is gated through the assembly unit to
- storage. Because the last character in the A-field has.

been processed (as indicated by the A-channel word

- mark), the extension latch is set, initiating another

(the second successive) B-cycle.

End of Correction Scan and Shift Cycle

When the cpu is performing a correction scan (true
addition) and the extension latch initiates the second

successive B-cycle, the next B-field character in high-

order sequence is read out of storage and gated onto

* the B-channel. The adder unit combines the B-channel

character with a 0 automatically inserted on the A-
channel input to the adder; the adder output is gated
through- the assembly unit to storage, ending the true
add (correction) scan. Shift and complement add
cycles follow.

To accomplish the shift, the cpu sets the second
scan latch and takes a D-cycle to increase the paR ad-
dress by one. The character read out of storage on the

D-cycle is returned to its storage location unchanged.

At the end of the D-cycle, the units, complement, and
third scan latches are set, initiating a complement add
scan. The cpu uses the car to read out the units posi-
tion of the A-field and the par (modified by +1 in
the preceding shift cycle) to read out the B-field

/~'\

)

character. A- and B-field characters are read out of
storage on alternate A- and B-cycles until the divisor
digit containing the word mark is sensed on the A-
channel again. -

End of Complement Add Scan

When the cpu is performing a complement add scan
and the extension latch initiates the second successive
B-cycle, the next B-field character in high-order se-
quence is read out of storage and gated onto the B-
channel. The adder unit combines the B-channel char-
acter with a 9 automatically inserted on the A-channel
input to the adder; the adder output is gated through
the assembly unit to storage. If the sum of the B-
channel character and the 9 inserted on the A-channel
input to the adder does not require a carry, the re-
duction scan (complement add scan) was unsuccess-

~ ful, and the complement add scan ends. The cpu then

takes a true ad scan to restore the dividend to its
value preceding the unsuccessful subtraction. To ini-
tiate the true add scan, the true, units, and third scan
latches are set, and the car and paAR are used to ad-
dress storage on the first A- and B- cycles respectively,
in the true add (correction) scan.

If the sum of the B-channel character and the 9 in-

serted on the A-channel input to the adder requires a

carry, the MQ and carry latches are set, and the com-

plement latch is regenerated. The oN states of the

- complement and MQ latches indicate a successful re- -

duction scan and initiate another (the third successive)

B-cycle to increase a quotient digit by one. During the .

B-cycle, a digit in the quotient field is read out of

storage, gated onto the B-channel, and into the adder

unit. A 0 is automatically inserted on the A-channel
input to the adder. The adder combines the B-channel

character (a quotient digit) with the carry that re-

sulted from the addition on the previous B-cycle, in-
creasing the character by one. The character is gated
to storage. If the sum of the B-channel character and
the carry is greater than 9, requiring the carry latch
to be set again, the overflow latch is set, and the
divide operation is terminated. No carry should result
from the addition performed when the MQ and com-
plement add latches are set. If the addition does not
produce a carry, the successful reduction scan ends,
and another complement add scan is begun. The MQ
latch is reset, the units latch is set, and the car and
DAR are used to read out A- and B-ﬁeld characters,
respectively.

Set Quotient Sign and End Divide

On the first A- and B-cycles in the last correction scan
in the divide operation, characters in the units posi-

\ T ‘ -
tions of the A- and B-fields are read out of storage. The
character in the units position of the A-field contains
the divisor sign. The character in the units position of
the B-field contains the dividend sign. Only the units
character in the B-field can contain a B-bit. When a
B-bit is detected on the B-chaniael in a true add scan,
signs of characters on the A- and B-channels are an-
alyzed, and the plus latch or minus latch and the
MpL (multiply divide last) latch are set. The cpu takes
A- and B-cycles to execute the true add scan in the
normal manner. The first character gated to storage in
the scan takes the B-channel sign; the remainder al-
ways takes the sign of the original dividend. Because
the ML latch is set, shift and complement add cycles
are not taken when the true add scan is complete, but
rather the Mo latch is set, and the true latch is re-
generated. A B-cycle is taken to read the units digit
in the quotient field out of storage and onto the B- -
channel. The adder unit combines the units quotlent '
field digit with: = '

1. A 9 automatically inserted on the A-channel mput ’
to the adder.

2. The carry left over from the previous correction
scan. The carry latch is set at the end of each cor-
rection scan, but the carry is used only when the MpL
latch is set.

Therefore, when the adder unit completes the addl-
tion, the output digit equals the original B-channel
input digit, and the carry latch is set.

(Units Quotient Field Digit + Carry + 9 = Units Quotient ‘
Field Digit + 9) , .

The correct quotient sign (as determined by the on
state of the plus latch or minus latch) is set over the
output digit from the adder unit. The digit and the
sign are returned to storage. At the end of the B-cycle,
the divide operation ends.

Figure 16 uses a specific example to illustrate the
step-by-step action that the cpu performs to execute
the divide instruction. Figure 17 is a data flow dlagram
of the divide operatlon :

Queshons on Divide Operation

Answers to these review questions are in the Appendix.

1. What condition causes the cpU to set the divide
overflow latch?

2.a. Why is a correctwn scan necessary?
b. When does the cpu recognize an unsuccessful
reduction? ‘

3. When are D-cycles taken?
4. When is the multiply divide latch set?

5. When are the car and pAR used in the dividé
operation? ’

6. When does the cpu set the quotient sign?

Arithmetic Instructions 33

v + - . V-

DIVIDE PROBLEM: B FIELD ‘0 0l0 7l2 0|9 A FIELD IB ‘SI

A LOCATION OF D AR

CYCLE | AR | UNITS | SCAN |. STORED | DIGIT | ADDER | CARRY | ADDER | TRUE | REMARKS
: RO | BODY IsT wgn [ON wge oL NO | "A" OR
$ o EXTN |2ND,3RD FIELD | ASSM CARRY comp
OBJECTIVES MQ NO \i
REDUCTION- COMP| A C AR M H . .- | UNITSA
ADD B | DAR u L 2 L c 4 S| 10005 B
SCAN A A AR { T s
: 8 B AR Y 1 2 2 0 c 1 s
OVERDRAW B B AR X 1 9 9 0 C 9 S
0}9]2|2/2|0]9
. CORRECTION-TRUE A C AR] - | UNITS A
‘ ap | 8 |oak | VY 8 RN 2 ¢l s T | 100055 B
SCAN A A AR
Sty B B AR Y 3 0 0 2 T 8 T
} B B AR X 3 0 0 9 C 0 T
0/0/0712l0l9
MODIFY D AR + 1 D D AR 2 v 3 SHIFT
REDUCTION- COMP| A C AR .) UNITS A
ADD B D AR v 8 YRR 2 ¢ 4 s 100'S B
SCAN A A AR 1) e
- B B AR Y 3 8 8 7 T 1 S
OVERDRAW B B AR X 3 _1lle 9 0 T) s
: olo|si8|7jo|9 _
CORRECTION-TRUE A | CAR . “UNITS A
. ADD 8 | pa | Y 3 2 2 7 < 5 T | jooss
SCANT A | AAR
B B AR Y 3 7 7 8 C 8 T
B B AR X 3 0 0 3 c 0 I
- 010/0/7]2/0[9
MODIFY D AR + 1 D | DAR 2 il SHIFT
REDUCTION- COMP| A C AR . . UNITS A
‘ ADD B D AR v i 3 . ° 8 0 < 4 S TENS B
SCAN - -
A A AR = B
B BAR Yy | 3 3 3 2 T I s
B B AR X 5| 3 6 6 7 < 9
ACCUMULATEQUOT| B BAR | MQ 3 1 1 o | ¢ 0 s
g _ o0l 1]6/3|5]9
REDUCTION- COMP| A = | CAR UNITS A
ADD 8 b AR u 3 0 0 5 | .c¢C 4 s TENS B
SCAN
A A AR
A B AR Y 3 5 5 3 [1 s
B B AR X 3 5 5 6 T 9 s
ACCUMULATE QUOT| B BAR | MQ 3 2 2 1 _C 0 s
010/2|5/5/0(9 —
REDUCTION- COMP| A | CAR ‘ ‘ - | uNITS A
ADD B | DAR u 3 5 s 0 c 4 S | TENSB
SCAN T i
A A AR -
8 B AR Y 3 6 6 5 C 1 s
B B AR X 3 4 4 5 T 9 s
ACCUMULATE QUOT| B BAR | MQ 3 3 3 c 0 s
0 /0(3]46]5]9 -
REDUCTION- COMP| A CAR UNITS A
ADD B | DAR u 3 u 0 5 ¢ 4 S| TEnse
SCANT A [am ,
B B AR Y 3 8 8 6 C 1 s
- B B AR X 3 3 3 4 [9 s
ACCUMULATE QUOT| B BAR | MQ 3 4 4 3 c 0 s
- 0/4/3l8l0lo
REDUCTION- COMP| A C AR g . UNITS A
ADD 8 |pa | Y 3 Slp® S R S | tense
SCAN - : i
A AR
B :AR Y 3 oLl 9 8 4 1 s o
B B AR X 3 2 2 3 T 9 S
ACCUMULATE QUOT | B BAR | MQ 3 5 5 | 4 C 0 S
0[5(2/9]5]9
REDUCTION- COMP| A C AR : : UNITS A
ADD B D AR vo4o3 o 0 5 c 4 s TENS B
SCAN
A A AR
A B AR Y 3 1 1 9 C 1 s
B B AR X 3 2 2 2 c 9 s
ACCUMULATE QUOT| B BAR | MQ 3 6 6 5 c [S
o [ol6]2[1 jolo N

Figure 16A. Divide Example

34

e
N

/REDUCTION- COMP

A | CAR ’ . ' ~ UNITS A ¢
ADD 8 |pa | Y 8 I| 3 0 < 4 S | tEnse
SCAN
A A AR =
) B B AR Y 3 2 2 1 T 1 s
’ B B AR X 3 1 1 2 [9 s '
ACCUMULATE QUOT | B BAR | MQ 3 7 6 C 0 s
i o joj7)1 12159
REDUCTION- COMP| A C AR , UNITS A
ADD B D AR v 3 0 0 5 ¢ 4 s TENS B
SCAN ‘
. A A AR
B B AR Y 3 4 4 2 c 1 s
B B AR X 3 0 0 1 c 9 s
ACCUMULATE QUOT B B AR MQ 3 8 8 Z 0 s
ookl
REDUCTION- COMP | A C AR : UNITS A
ADD B | DAR v 3 5 5 0 ¢ 4 S | tEnsB
SCAN
A A AR
B B AR Y 3 5 5] 4 4 ! s
OVERDRAW B B AR X 3 2 9 0 C 9 S
i ~ ploigp5i5e
CORRECTION-TRUE A C AR = UNITS A
ADD B | DAR v 3 0| o 5 c 5 T | renss
SCAN
A A AR
. A B AR Yy | 3 4 4 5 [¢ 8 T .
B B AR X 3 D 0 9 C 0 hi
i 0[0/8p [4]0]9)) ’
MODIFY D AR + 1 D |DAR 2 v SHIFT :
REDUCTION- COMP | A C AR : | UNITS A
a0 | B |pAR | Y ¢ R R T A R BT
SCAN
A A AR
B B AR Y 3 2 2 0 C 1 s
B B AR X 3 B 3 4 9 s
ACCUMULATE QUOT | B BAR | MQ 3 1 1 0 C 0 s
i loJols]1]3]2]4]
REDUCTION- COMP | © A C AR UNITS A
ADD B D AR v 3 , . oL 0 4 ¢ 4 s UNITS B
SCAN
A A AR A .
A B AR Y 3 3 2 T 1 S
B B AR X 3 2 2 3 9 9 S
ACCUMULATEQUOT | B BAR | MQ 3 2 2 1 c 0 s
: 0 0/8[2]2/3|9
REDUCTION- COMP | A CAR : UNITS A
ADD B D AR v 8 144 4 ¢ 4 S UNITS B
SCAN A A AR IRE |
; B BAR |- Y 3 5 5 3 [1 s
B B AR X 3 1 T 2 [+ 9 s
ACCUMULATEQUOT | B BAR | MQ | 3 3 3 2 C 0 s
010i8l3/1]5]
REDUCTION- COMP| A C AR UNITS A
. ADD B D AR v 3 o 7 4 < 4 s UNITS B -
SCAN- -
A A AR
B B AR Y 3 6 6 5 4 1 S
B B AR X 3 o 0 1 (4 9 s
ACCUMULATE QUOT | B BAR | MQ 3 4 4 3 c 0 s
3} o OFM 0l6lo
REDUCTION- COMP | A C AR ; UNITS A
, ADD B | DAR u 8 4o c |4 S| uNiTss
- SCAN
1 A A AR
6. | BAR Y 3 8 8 6 c v s
OVERDRAW B B AR X 3 9 9 0 [d 9 S
0101814191814
CORRECTION-TRUE A C AR UNITS A
ADD B D AR v 3 o 4 E 5 T UNITS B
SCAN
A A AR MDL
B B AR Y 3 6 6 8 T 8 T "ON®
B B AR X 3 o 0 9 [¢ 0 T
END OPERATION B B AR MQ 3 i 4 4 C 9 T
—]
084 01619

. QUOTIENT REMAINDER
Figure 16B. Divide Example Lo

Arithmetic Instructions 35

Is There a

Set MDL
Latch -
16.62.01

Set Minus Set Plus
Sign Latch Sign Latch
16.16.04 16.16.04
T -

B Bit Over This
Ch

Do A and B Characters
Have same Sign (Both
Minus or Both Plus)?

Divide
Instruction

Set:

“Units Latch 16.30.02

First Scan Latch 12,30.03 ~
True Add B Latch 16.20.10
_Complement Latch 16.20,13
Carry Latch 16.20.20

I

Take an A Cycle
16.42.01

Use CAR to Read Out

Units Position

A Field Character
16.41.01

Take a B Cycle
16.42.01

Is the Units
Latch Set?
16.30.02

Use DAR to

Charac

Units Position B Field

_16.41.01

Read Out

ter

Use BAR to Read Out
B Field Character

16.41.01

]

Yes Is Units or Body No(Ext or MQ)
Latch On?

True or Compl

Characters in

Add A and B Channel

lement

Adder

Gate Adder Qutput

Through Assembly to

Storage
16.40

.02

16.20.20

Set Carry Latch

[

16.20.20

Set No-Carry Latch

Regen:

True or Complement Latch
16.20

First or Third Scan Latch
16.43.01

13

Set Extension Latch
16.30.06

Is There an
A Channel
Word Mar

Set Body Latch
16.30.04

Take an A Cycle
16.42.01

T

A Field Character
16.41.Q1

Use AAR to Read Out

Figure 17A. Divide

36

o to Figure 17B

True

Is True or

Complement

.C |
_ LatchOn? /

Insert Zero on A
Channel Input to

Adder 14.20.11
—

Insert a 9 on A
Channel Input to

Adder 16.]20.11

11

Add A and B Channel

Characters in Adder

Gate- Adder Output
Through Assembly to
Storage

216.40.02

Is There An
Adder Carry ?

Set Carry Latch

Set No-Carry Latch

Is Extension
Latch On?

o from Figure 17A

Regen True Latch -
16.20.13

.

Insert @ 9 on A
Channel Input to
Adder
16.20.11

Add B Channel
Character
+9 + Carry

‘| Gate Adder Output to
- Assembly

Set Quotient Sign (As
Determined By On State
of Plus or Minus Latch)
Over Char, and Gate Char
and Sign to Storage

Is True or Comple
ment Latch On?

Complement

Regen Complement
Latch
16.20.13

[

Insert a Zero on A
Channel Input to
Adder

16.20.11

ncrease
Quotient
Digit by 1

Add B Channél -
Character
+ Zero + Carry

Gate Adder Output

Through Assembly To
Storage
16.40.02

Is There An
Adder Carry ?

w Latch
16.45.01

No

11

16.20,20 16.20.20
Is True Or
Complement Compl ' Latch True
On?
i N Is There An 5 Is MDL
= Adder Carry ? Yes Ye Latch On -1
’ 16.62.01

Set True Set Complement| Set MQ Set Second-Scan
Latch Latch Latch Latch

16.20.13 16.20.13 16.30.05 16.43.01
Set Units Set MQ Latch Set Third-Scan Toke a D Cycle
Latch Latch

.42.02

16.30.02 16.30.05 16.43.01 16 “Iz 2
Set Third- Regen First- . Use DAR to Read
Scan Latch or Third-Scan Set True Latch Out B Field

Latch Character
16.43.01 16.43.01]6.29.13 16.41.01

to Figure 17A

End Operation;
Start Inst Read-Out

Set Unifs Latch
16.30.02

Set Third-Scan
Latch
16.43.01

Set Complement
Latch
16.20.13

Set Carry Latch

16.20|.20

Figure 17B. Divide

|l

Set Carry
Latch

16.20.20

I

Set Units Latch

16.30.02

Set Third-Scan

Latch
16.43.01

Set

Complement
Latch
16.20.13

| Take an A Cycle
16.42,01

Use CAR to Read
Out Units Position
A Field Character

16.41.01

to Figure 17A

General Data Instructions 37

General Data Instructions

N

When executing general data instructions, the cpu
‘manipulates data within core storage. General data
instructions include move data, move characters and
suppress zeros, edit, compare, and table lookup.

Move Data Instruction

The move data instruction causes the system to transfer
data, either left to right or right to left, from the
A-field to the B-field with or without word marks. Data
are moved either by fields or records. When a data
field is moved, the operation can be programmed
to stop at:
1. A word mark in the A-field.
2. A word mark in the B-field.
3. A word mark in either field.
~When a record is moved, the operation can be pro-
- grammed to stop at:
1. Arecord mark in the A-field.

2. A group mark-word mark in the A-field.

3. Either a record mark or group mark-word mark in
the A-field.

4. The first word mark sensed in either field.

Instruction Formats
Formats for the move data instruction are:

OpP CODE A-ADDRESS B-ADDRESS - D-CHARACTER
Ivs XXXXX XXXXX see Figure 18
lv) XXXXX
D

The move data instruction causes the cpu to move
characters from left to right or from right to left,
serially by character, from the A-field to the B-field.
The d-character in the instruction establishes the con-
ditions that control the operation (Figure 18).

The portion of the A-field transferred replaces only
the corresponding portion of the B-field. If data are
moved from left to right, the A-address specifies the

Address Registers after

d-Character Control Bits Control Move Operation**
IAR | AAR BAR
] Transfer numeric portion of data field (A-field).
2 Transfer zone portion of data ffeld (A-field).
4 Transfer word marks from A-field to B-field.

(No 1, 2, or 4-bits)

Scan for word marks, record marks, or group mark-word marks;
transfer no data from A-field or B-field.

8-bit No A- and no B-bits Stop transfer or scan at first word mark sensed in either field. NSI | A+LW | B+LW
(Move data * A-bit only Stop transfer or scan at A-field record mark. NSI | A+LA | B+LA
left to B-bit only Stop transfer or scan at A-field group mark-word mark. NSI | AHA | BHLA
right) A- and B-bits Stop transfer or scan at A-field record mark or group mark-word mark. NSI | A+LA | B+LA
No 8-bit |No A- and no B-bits Transfer or scan only one storage position. NSI | A-1 B-1
(Move data * A-bit only Stop transfer or scan at A-field word mark. NSI | A-LA | B-LA
right B-bit only Stop transfer or scan at B-field word mark. NSI | A-LB | B-LB
to left A- and B-bits Stop transfer or scan at first word mark sensed in either field. NSI [A-LW | B-LW

* When the A-bit d-character modifier is used in instructions to write programs on tape, ‘the odd parity mode should be used.

** See Appendix for list of abbreviations.
Figure 18. d-Character Control Bits for Move Data Instructions

38

high-ordef position of the A-field; the B-address
specifies the high-order B-field position. If data are

moved from right to left, the A-address specifies the

tow-order A-field position; the B-address specifies the
low-order position of the B-field. The position that con-
tains the terminating character is moved or replaced
as other characters in the field.

If the move data instruction does not designate an
A- or B-field address (no address chained instruction),
contents of the AAR, BAR, and op-modifier register
specify the A-field, B-field, and d-character, respec-
tively, for the move data operation. If the move data
instruction specifies an A-address and no B-address
or d-character, the contents of the BAR and the op-
modifier register designate the B-address and the
d-character, respectively, for the move data operation.

Scan Operation

- The move data instruction, with the appropriate

d-characters (no 1-, 2-, or 4-bit), is used for scan op-
erations in which no data are transferred from the
A-field to the B-field. The following example illustrates
a scan operation: ’

NsTRUCTION: D 00520 00720 Y

The most important results shown are the contents of
the address registers after the operation. No data are
transferred. The B-address must be part of the in-
struction, even if, as in the example, the scan is for
the first record mark in the A-field exclusively (the
d-character, Y, has an A-bit). Because the scan is from
left to right (the d-character, Y, has an 8-bit), the
A- and B-addresses specify the high-order positions
of the respective fields.

A-field Before the Scan B-field Before the Scan
L]Ef]+1]2]s]4]5] LTJEIRl:|$I3I2|1l°I
00520 00720

AAR BAR
A-field After the Scan B-field After the Scan
[NE[T]+[1]2[3]4[5] [T[E[R]:[s]3[2]1]0]
00524 007!24
AAR BAR
CPU Operation

During last instruction read-out cycle:

1. The d-character in the op-modifier register is
examined to determine whether the character contains
an 8-bit.

2. Op code grouping lines condition controls to
execute a standard A<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>