
0
('I

(\

© 1961 by International Business Machines Corporation

Instruction-Reference

1411' Processing Unit Instructions and

J Special Features

Preface

This manual contains descriptions of:
1. Central processing unit (CPU) instructions for the

IBM 1410 Data Processing System. ·
2. Three special features (accelerator, priority, and

program addressable clock) to the IBM 1411 Processing
Unit.

The IBM 1411 Input-Output Operations, Customer
Engineering Manual of Instruction, Form 223-2692,
contains information on the overlap special feature and
input-output instructions for the IBM 1410 system.

To supplement descriptions in this manual, examples
are employed when necessary, and circui\ controls,
data flow charts, and timing charts are incluaed. Be­
cause several instructions have similar functions and
are executed in nearly the same manner, a timing chart
for each instruction is not included, arid instruction
descriptions are not equally detailed. A chart in the
"Appendix" lists information contained on each instruc­
tion. To fully understand the actions that the CPU per­
forms when executing each instruction, this manual
must be used with IBM 1410 System Fundamentals,
Customer Engineering Instruction-Reference Manual,
Form 223-2589.
This manual obsoletes:

1. Pages 80 through 137 and 459 through 463 in IBM
1410 Data Processing System, Customer Engineering
Manual of Instruction, Form 225-6549-1.

2. IBM 1410 Data Processing System, CPU Instruc­
tion Material, Customer Engineering Manual of In­
struction, Form R23-2587-l.

3. IBM 1411 Processing Unit Instructions and Special
Features, Customer Engineering Instruction-Reference
Manual (Preliminary Edition), Form R23-2698.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Customer Engineering Manuals, Dept. BOO, PO Box 390, Poughkeepsie, N. Y.

'~

·\

\

\
..

~

\

/ \

·~
I

1410 Instructions
INSTRUCTION FoR:MATS

5
5

INSTRUCTION DECODING AND EXECUTION 5
Instruction Phase . 5
Execute Phase :-o· • • . • . • • • • . • • 6

QUESTIONS ON 1410 }NSTRUCTlON.FORMATS AND DECODING . 7

Arithmetic Instructions . 8
ADD AND SUBTRACT INSTRUCTIONS . 8

Instruction Formats . 8
CPU Operation . 9
Questions on Add and Subtract Operation 14

ZERO A.ND ADD AND ZERO AND SUBTRACT }NSTRUCTIONS 14
Instruction Formats · 14
CPU Operation . 15
Questions on Zero and Add and Zero and Subtract

Operations . 18
MULTIPLY INSTRUCTION , 18

Instruction Formats . 18
B-Field Length . 19
Concept of Machine Multiplication 19
Rules of Machine Multiplication . 19
Machine Multiplication Examples 20
Address Registers . 20
C:pU Operation . 21
Questions on Multiply Operation 27

DIVIDE INSTRUCTION . 29
Instruction Formats 29
Programming Considerations . 29
Concepts of Machine Division . 29
Program ConditionS'that Cause Divide Overflow 32
Address Registers . 32
CPU Operation . 32
End of Correction Scan and Shift Cycle , 32
End of Complement Add Scan . 33
Set Quotient Sign and End Divide 33
Questions on Divide Operation. • 33

General Data Instructions : 38
MovE DATA INSTRudTioN . 38

Instruction Formats . 38
Scan Operation . 39
CPU Operation . 39
Questions on Move Data Operations 42

MOVE CHA.RACTERS AND SUPPRESS ZERO INSTRUCTIONS. . . . 42
Instruction Formats . 42
Description of Operation 42
CPU Operation . 42
Questions on Move Characters and Suppress Zeros

Operation . 47
EDIT INSTRUCTION . 47

Instruction Formats . 47
Word Marks . 47
Editing Specifications . 47
Zero Suppression . • 48
Asterisk Protection . 48
Floating Dollar Sign . 48
Sign Control Left . 49
Decimal Control . 49

Contents

CPU Operation . 50
Questions on Edit Operation . 61

COMPARE INSTRUCTION . 61
Instruction Formats . 61
CPU Operation . 61
Questions on Compare Operation 65

TABLE LOOKUP INSTRUCTION , , 65
Definitions . 65
Instruction Formats . 66
Description of Operation . 66
Questions on Table Lookup Operation 69

Branch Instructions . 71
UNCONDITIONAL BRANCH INSTRUCTIONS , 71
CONDITIONAL BRANCH INSTRUCTIONS 72

Test and Branch'. 72
Branch if 1-0 Channel Status Indicator On 72
Branch if Character Equal . 75
Branch if Bit Equal : 78
Branch on Word Mark or Zone Equal · 78
Questions on Branch Operations . 79

Miscellaneous Instructions . 81
STORE ADDRESS REGISTER INSTRUCTION , . 81

Questions on Store Address Register Operation 84
SET WORD MARKS INSTRUCTION ... ,. 84

Questions on Set Word Marks Operation 85
CLEAR WORD MARK INSTRUCTION . 86
' Questions on Clear Word Marks Operation , 88
CLEAR STORAGE INSTRUCTION , 88

Questions on Clear Storage Operation 90
CLEAR STORAGE AND BRANCH INSTRUCTION 90

Questions on Clear Storage and Branch Operation 93
HALT INSTRUCTION , , 93

Questions on Halt Operation . 94
HALT AND BRANCH INSTRUCTION , , . 94

Questions on Halt and Branch Operation 95
No OPERATION INSTRUCTION ·. 95

Questions on No Operation Instruction 97

CPU Special Features . 99
1410 ACCELERATOR FEATURE . 99

Results of Speed Increases . 99
Component Circµit Changes .. · , 99

PRIORITY PROCESSING FEATURE ... · , .. , 99
Interruptible Instructions . 100
Priority Alert Mode . 100
Interrupt Request . 100
Prograpiming . 102

PROGRAM: ADDRESSABLE (REAL TIM:E) CLOCK 102
Programming .. , . 104
Procedures to Set and Adjust Clock 107

Appendix
ANSWERS TO REVIEW QUESTIONS 114
REFERENCE INDEX . 118
FLOW CHART 120

Illustrations

FIGURE

1
2

3

4
5

6
7A
7B
8

9
10

11
12A
12B
12C
120
13
14
15
16A
16B
17A
17B
18

19
20

'21
22

23A
23B
24A
24B
.24C

v 25
26
27
28
29
30
31

TITLE PAGE

Acceptable Lengths for 1410 CPU Instructions . 6
CPU Action in Instruction Phase for Data

Move Instruction . 6
1410 Common Op Code Grouping Lines

(13.14.01.14) . 7
Bit Equivalents for Signs 8
Types of Add Cycles and Sign of Result for

Add and Subtract Operations 9
Add or Subtract . 11
Add Operation Instruction Read-out 12
Execute Phase of Add Operation 13
Sign Changes for Zero and Subtract

(Two Addresses) . 14
Zero and Add or Zero and Subtract 16
Zero and Add Operation Timings 17
Multiply Example . 22
Multiply, First Scan . 24
Multiply, Set Sign and/or Shift25
Multiply, Add A-Field to B·Field 26
Multir>ly, MQ Controls . 27
Multiply Operation Timings 28
Divide Sign Control . 29
Examples of Dividend Addressing 32
Divide Example . 34
Divide Example . 35
Divide . 36
Divide . 37
cl-Character Control Bits for Move

Data Instructions . 38
Move Data , . 40
Data Move Operation Timings , , 41

Move Characters. and Suppress Zeros , . . . 44
Move Characters and Suppress Zeros

Operation Timings , 45
Step-By-Step Editing Process 52
Step-By-Step Editing Process 53
Edit, First Scan . 54
Edit, Second Soan , , 55
Edit, Third Scan , 56
Edit Overation Timings , . . 57
Compare , , . . 62
Compare Operation Timings , . 63
cl-Characters. for Table Lookup Operation . , . . . 66
Storage Table for Table Lookup Operation . , . . 66
Table Lookup , , 67
Table Lookup Operation Timings , . , 68

FIGURE TITLE PAGE

32 Unconditional Branch . 72
33 Unconditional Branch Timings 73
34 Branch Conditions for Test and Branch

Instruction . 7 4
35 Test and Branch . 7 4
36 Branch Conditions for- Branch i£ 1-0 .

Channel Status Indicator on Instruction 75
37 Branch if 1-0 Channel Status Indicator On 76
38 Branch if Character Equal 76
39 Branch if Character Equal Timings 77
40 Conditions for Branch on Word Mark or

Zone Equal Instruction , 79
41 Branch on Word Mark or Zone Equal 80
42 Store Address Register Operations and

d-Characters . ~ . 81
43 Store Address. Register "·-· 82
44 Store Address Register Operation Timings 83
45 Set Word Marks . 85
46 Set Word Mark Operation Timings 86
47 Clear Word Mark . 87
48 Clear Storage . 89
49 Clear Storage and Branch ·. 91
50 Clear Storage and Branch Operation Timings . . 92
51 Halt . 94
52 · H:alt and Branch . 96
53 No Operation . 97
54 No Op Timings . 98
55 Interruptible and Non-Interruptible

Operation Codes , 100
56 Priority Request Indicators , 102
57 Interrupt Data Flow . 104
58 CPU TJmings in Interrupt Operation 105
59 Interrupt Controls . .. 106
60 Time Derivation Table , 107
61A CPU Execution of G(C)T Instruction 108
61B CPU Ei,:ecution of G(C)T Instruction 109
62 CPU Timings in Execution of G(C)T Instruction UO
63 Program Addressable (Real Time) Clock 111
64 Exploded View of Program Addressable Clock . 112
65 Parts Location for Feed and Detent Pawl

Adjustment . 113
66 Clock Transfer . 113
67 Parts .Location for Commutator Contact

Timing Adjustment . 113
Appendix Reference Index . 118
Appendix IBM 1410 Data Processing System Data Flow . . 120

/"""-\

('.

('

r
"<

r

('

ft

0

0·

Th~ tllM 1410 Data ~ng Syswm u.~s s~ ~
grnm instrooti®s to Wtiaw all syswm o~tioos, The
~mat and oonwnts of ~eh imt:ru«ioo indieaw t:h@
optmitioo to~ ~dormoo ~md; if Nqu.tNd~ th@ s~
looatioos of data. to ~ PfOO@ssoo in t:h@ o~tioo,

Instruction Formats
Th~ baste 1410 instruetioo form is dividoo into rou.r
parts= th~ op~:ra.tioo ood~. th@ A~ or l~ddNSS or x~
oontrol fMd, th~ B~ddNss; and a d...ehataQWf, Booau.~
1410 instru()tioos aN of variabl@ l~ngth instru.Qti.oo
fo:rm, instruetioo l@Ilgths ~n wry from on@ to twclw
positions. Each tnstruetioo in a 1410 prognm must oon~
ta.in an o~.raUon ood~. lfo~W.l\ th@ instru.etioo mt\y
or may not oontain athe.r instruetion imrts as d@t~x~
mined by the format requ.ir@m@nts fur that :tmrtieulv
instruetion. The following @.xample shows the basie
format for a typieal 1410 instruetion.

A·· QR l-.A:mm~~ QR
0l'lim4TIQN C®lil X--OON'f.R(ll, lilfil.XI :tl-.AOOM~!l d~t1MAJ\A('lnR

l a@l\aa Qf um w ltltlt hbbbb d
Ea<lh of the four parts in thQ baste 1410 instruQticm

form designates information that the ~ntral proeess~
ing unit (~u) requirQs to p@rfurm !U\ op1m1tion. An
explanation of ooeh instruetion part follows:

l. The operation <lode (op coot1) is always a sin~h~
.eharaelter that spoo:Uies the bHio machine ope,ratiun to
be performt1d. A word mark must b@ s@t ovex th@ ope,r ..
ation oode if thti instruction is tu b@ tlxe<iu.ted.

2. An instruction e1n oontAin eith~ In A·1uldrtlss1

l·Address1 or X-oontrol fitlld, but only on@ of the three.
The A·addrtilll! is alwAys fiv@ eh~m1et@rs and d@si1na~s
the location of A .. :field data in storage. The l"iddr@ss
is always fiv@ eharadtirs and speeifl@s thti addf@Sll of
an instruction in storagti. Thti X·oontrol fteld oonblins
only three characters and is usc:id only for input-output
(N>) opt1rations.

3. The B·address is always ftvt1 ehVAQtt1rs and desig ..
nAt@s the location of B .. fMd data in storag@.

4. The d·characttir is a sing!@ chvacter at thti end
of the instruction used to establish a eondition (or
conditions) under whioh thti CPU must pmorm th@
operation.

The IBM 1410 has a sequential method of program
e~ecution; thus, instruction 2 follow11 instruction 1, and
so on, unless spedal circumstances during proctlssing
cause the CPU to alter th11i sequential exe<iution of
instructions.

~(lh mstructioo mwst hl!v~ a Wt)f-d ml!rk ~t @Wf

th@ QP ood@>~ ~md mu%t not oontftm wQfd marb m l!ny
Qth.v ~iUoo .. Al~; I! wQfd mt\:rk ID\\%t ~ ~~t m th~
OON %~ l~tiOO imm~il!tely t@ th~ :r-i~ht m \'ft(l
l11st Ql\l!r~fiWf of l!n iil.%\fU.QtlOO~ tht% i% M!'ml!l~ th~
word mark 11s~il!tt.ld with th@ @p ood@ @f th~ n~~t
~u@ntil!l inlltruQtion ..

ln%tftu~Uoo l@n1th. Qhook~ i% moorpm'aWd in th~
%Y%Wffi ro insuN thl!t Moh in%tf\lQtiOO ffi\tt ~m\tl!iilll
I! valid fi\lfil~f @f (lhl!f'l!OWI"% for th@ @fWl\U@n ~d~
ll~ifi~.

V11lkt instruQtioo W(W-d.% vvy tn l@n&th fftm\ tnw ffi
tW@lv(l t!hl!ntt!Wx~ d~~:nd~ @n th@ 11mo\lnt @f tnfm.,,
mation mtuir-00 for th@ O}WXl!H@n.. Th@ ~!l(ll'lll fil ..
strut!Uon fm'm OOil~lltS @f I! m~l~tihin•ae:ttl.f @p@ration
l:l@de fulfow~ by 00~ or \W{} fiw .. Q}Ulfl!Ql~f' add~~~;
or ti th!'ti~~oharad@r input .. aut,put @~rlc\tioo ll~~ifl@a~
tioo (X~oontrol fitild), imd in ~~ oall~~, a lltngl~ ..

. d'U\f!lQW!' gp~ntion modifitir, Valid in%tmt!tion w@rd
ltinuthll aN:

O - 1 p~ittoo
Od - ~~moo~
0 ~~~ d ;;: ~ \Wlti@Ra
0 !U\11.!U\ - 6 ~ttitm!l
0 al\l.U\i\ d e '(~UOO!!
CJ ltltlt bhhbh d ;;;; Hl I!llllititm~
('} i\i\l\l\i\ hhhhb s H ~ttim'Ul
() aa!:laa hhhhh d a ~~~~moo~

Th@ 0 sptif1ifiti!l l:ln Qpert!tloo cooe, Th@ fiw l\;!l !ll)tiQify
th@ fiw·cfamuiter addre11s of thtl A,,fitild, Tlw fiv@ b111
!lp{l()ify th@ fiv@·tih!.mu)wr addriJ!l!l of th@ lMi@ld. Th@
thr@ti x'11 spti(,}ify th@ N~oontrol fMd, and the d 11p@(}ifii,;i11
11n optmititm modifier, Fi~ur@ l U11t11 acoopti:tbl@ l~n~th11 c

for HlO in11tmctiun11,

ln1trucflon D•coclln1 and lxocutlon
A pro~rl:lm sttip (1n instruction) i11 ftlad out of !ltt:lrl\~tl
and dtielod@d, and ex0euted in two pha11ti111 tmtruction
ph!:\!lQ ~md @Xtieut@ phll!lt!,

Instruction Pha1e
Durin~ instrucition ph1uti1 cttlltid in11Il'uetion rettd·out
Um11i, thc:i in11tru<ltion is read out of cor@ !lt<>rag@, Por·
ttons of the in!ltruCltion 1m1 stort1d in VIUioU!l f~li!lttirs
in the eiPU; for exampl@1 th@ op oade is 11tor@d if} the
operation rei;ister, 1ddrti1111e11 in the addrti1111 ro~i!lt@rs1
and the d·ciharacter in the operation modifier re~Mer.
On@ storag0 cyde mu11t be e"@outed to rtiad eaeh
character out of 11tora1e. Th@rtiforti, tht;i number of

Acceptable
lnstructi on

Instruction Function Length

A (A) (B) Add l 6 11
S (A) (B) Subtract l 6 11
? (A) (B) Zero and Add l 6 11
I (A) (B) Zero and Subtract l 6 11
@(A) (B) Multiply l 6 11
% (A) (B) Divide l 6 11
D (A) (B) d Move Data l 6 12
Z (A) (B) Move Characters and Suppress Zeros I 6 II
E (A) (B) Edit I 6 II
C (A) (B) Compare I 6 11
T (A) (B) d Table Lookup l 6 12
J (I) blank Unconditional Branch l 7
J (I) d Test and Branoh l 7
R (I) d Branch if 1-0 Channel Status Indicator On (Ch I) 7
x (I) d Branch if 1-0 Channel Status Indicator On (Ch 2) 7
B (I) (B) d Branch if Character Equal 1 6 12
W (I) (B) d Branch if Bit Equal 1 6 12
V (I) (B) d Branch on Word Mark and/or Zone 'Equal 1 6 12
G (Q d Store Address Register 7
, (A) (B) Set Word Marks l 6 11
o (A) (B) Clear Word Marks 1 6 11
/(B) Clear Storage 1 6
I (I) (B) Cl ear Storage and Branch 1 6 11

Halt 1
• (I) Halt and Branch 6
N No Operation l

Figure 1. Acceptable Lengths for 1410 CPU Instructions

storage cycles required during instruction phase is
equal to the number of characters in the instruction.

Each character position in the instruction has a
designated significance. The op code must be the first
character in the instruction; the cl-character must
occupy the last position in the instruction; the A­
address must be in the first five positions after the
op code, etc. Because characters in the instruction are
read from core storage one at a time, the I-ring ad­
vances to indicate the character being processed at
the beginning of each storage cycle during instruction
phase. The I-ring consists of 13 triggers labeled I-ring
op, and I-ring 1 through I-ring 12. The op code and
the length of the instruction determine the point to
which the I-ring advances during instruction phase.
Times between I-ring advances during instruction
phase are called I-cycles. Figure 2 shows the manner
in which the instruction move data (D aaaaa bbbbb d)
is processed in instruction phase.

I Op

'6
t

Op
Reg

11

A

12 13

A A

AAR

Instruction Cycles

14 15 16 17 la 19 110

A I A B B B B B

BAR

Figure 2. CPU Action in Instruction Phase for Data
Move. Instruction

6

'11 112

d ?
t +

Op Op code
Mode in next
Reg sequen-

tial Inst

During the first I-cycle, the I-ring is set to I-ring
op, and the op code character is processed from core
storage to the operation register. The single-character
op code for each instruction conditions "common op
code grouping" lines that: -

I. Establish requirements for the length and con­
tents of the instruction.

2. Condition checking circuits to determine whether
the length and contents of the instruction are
acceptable.

3. Condition and control circuit actions in the ex­
ecution of the designated operation.

Figure 3 lists operation codes and their correspond­
ing "common op code grouping" lines.

The 1410 System Fundamentals and 1411 Functional
Units, Customer Engineering Instruction-Reference
Manual contains more detailed information on instruc­
tion read-out operation.

Execute Phase

At the completion of instruction phase, the CPU is con­
ditioned to perform the designated instruction during
execute phase. The length and complexity of execute
phase is determined by the operation to be performed.
In execute phase, the CPU takes a combination or series
of A-, B-, C-, D-, E-, and/or F-cycles to read characters
out of core storage (only one character is read out
per cycle) and perform a step in the designated oper­
ation. The length of each cycle varies from 4.5 to 7.5
microseconds (or from 4.0 to 6.67 microseconds with
the accelerator feature).

Characters are removed from storage in either as­
cending or descending order of core storage addresses.
When the second scan latch is set, characters are un­
loaded from the low-order storage position to the high­
order storage position or from the high-order position
of the field to the low-order position of the field; un­
loading storage characters in this manner is called
reverse scanning. An example of reverse scanning
follows:

Assume that the field 93487 is located in storage
positions 00100 through 00104; the high-order digit in
the field (9) is stored in position 00100; the low-order
digit in the field (7) is stored in position 00104. If the
field is reverse scanned (second scan latch on), the
9 reads out first, the 3 second, and the 7 last. When
the first or third scan latch is set, characters are un­
loaded from the high-order storage position to the
low-order storage position or from the low-order posi­
tion of the field to the high-order position of the field;
unloading characters from ·storage in this manner is
called forward scanning. An example of forward scan­
ning follows:

"COMMON OP CODE ? I A s ii '*' E Z cw v I . I J:I U D J B R X G T M L K F N

Instruction ·

Reod-Out

Operational

Control

GROUPING LINES
Nrcent Type Op Codes

Not Percen·t Type Op Codes

Addr Dbl Op Codes

Not Addr D\il OD Codes

I Addr Plus Mod Qe_ Codes

2 Addr No Mod Op Codes

2 Addr Plus Mod Op Codes

2 Address Op Codes

Addr Type Op Codes

2 Char Only Op Codes

C Cycle Op Codes

No C or D Cy Op Codes

No D Cy at I Ring 6 Ops

No Index On 1st Addr Ops

Reset Type Op Codes

Add or Subt Op Codes
Mpy or Div Op Codes

Add Type Op Codes

Arith Type Op Codes

E or Z Op Codes

Compare Type Op Codes

Branch Type Op Codes *
No Branch Op Codes --"

Word Mark Op Codes
M or L Op Codes

1st Scon First Op Codes
A Cy First Op Codes

Std A Cycle Op Codes

B Cy First Op Codes

A Reg to A Ch On B Cy Ops

~ModtoAChOnBCyOps

Lood Mem On B Cy Op Codes

Rgen Mem On B Cy Op Codes

Stop at F on B Cy Op Codes

Stop ot H on B Cy Ops

Stop at J on B Cy Op Codes
RO B AR On Scan B Cy Ops

RO A AR On A Cy Ops

x
x

x

x
x

x

X.

x
x

x

x
x
x

x

x

,
x

x

xx x x x x x x
xx x

x x x x x

x x x x x x x x

x x x x x x x x
x x x x x x x x

x x
x x x

xx x x x x

x
x x

x x
xx x
xx x x x

x x
x

x x x x x x x x

xx x x x x x x
xx xx x x x x
xx xx x x x x

x x x ~ x x x x

xx x x x x x
x

I I I

x x x x x
x x x

xx x x x x
,.

x x x
x x x x xx x x x x x x

x xx x x x
xx x x x x x x x x x x

x x x x x
x xx

xx x x x x x
xx x)(' x x x x x x
xx x x x x x x x x x x x x x x

x x
x

xx x xx x x x x
xx x xx x x x x

x ., x x x

J

x x
xx x x x x x x

x x x x x x xx x x
x x

x x

xx x x x x x x
xx x x

x x
xx x x

x x xx x x
xx x x x x x x x

x
xx x x x x x . x x x

x x I x x x
x x x

x
x x x xx x x x x x x x

xx x
* Nat a Line Name,a Grouping Only, 1 Indicates Accelerator F~ture Timing.

Figure 3. 1410 Common Op-Code Grouping Lines (13.14.01-14)

Assume that the field 93487 is located in storage
positions 00100 through 00104; the high-order digit in
the field (9) is stored in position 00100; the low-order
digit in the field (7) is stored in position 00104. If the
field is forward scanned (the first or third scan latch
on) , the 7 reads out first, the 8 second, and the 9 last.

At the completion of execute phase, the CPU normally
returns to instruction phase to read out the nex.t in­
struction. CPU actions during execute phase are de­
scribed for specific operations in other sections of
this manual.

Questions on 1410 Instruction Formats and Decoding

Answers to these review questions are in the Appendix.

1. List the Jour parts into 1f hich the fallowing 1410
instruction can be divided: B 09000 08000 M

2. What instructions contain X-control 'fields?

3. Does any 1410 instruction contain both an A- and
I-address or both an X-control 'field and an A- or
I-address?

4. Over what position in the instruction must a
word mark be set?

5. What purpose does the I-ring serve during in­
struction phase?

6. Are common op code grouping lines conditioned
during instruction phase or execute phase?

1410 Instructions 7

Arithmetic Instructions

The add, subtract, zero and· add. zero and subtract,
multiply, and divide instmctions are used to perlorm
arithmetic operations in the IBM 1410 Data Processing
·System. The use of add-to-storage logic in the system
eliminates the need for special purpose accumulators
or counters. Because· any group of storage positions
can be used as an accumulating field, the capacity for
arithmetic functions is not limited by a predetermined
number of counter positions.
. AU &rithmetic functio~s are perlormed under com­

plete algebraic sign control. The combination of ione
, bitS in the units position of the fields that the arith­

metic instruction specifies determines the sign of the
factor. Figure 4 shows the four possible combinations
of zone hits and the values of the signs they represent.
The standard machine method of signing a field is to
indicate a positive factor with both A· and B-bits; a
B-hit ·represents a negative factor. ··

Sign BCD Code Bit Conflgtntion Card Code Canflgumlon

·Plus No A- or 8-Bit Noz-
Plus A-andB-Bib uz-
Minus 8-BitOnly llZone
Plus A-Bit Only oz-

Figure 4. Bit Equivalents for Signs

The atjthmetic operations in the mM 1410 are per­
formed by using one of two types 'of add scans in­
corporated in the system. The two typescof add scans

~are: true add and complement add. The type of add
scan performed is determined by the arithmetic oper­
ation and the signs of the factors involved. In an al­
gebraic subtract, recall that the sign of the subtrahend
(A-field) is changed and added to the minuend (B­
field) . The sign of the result is the sign of the greater
value only after the A-field is considered to have been
changed.

In all· arithmetic operations, the presence of charac­
ters represented by the card codes of blank, 8-3, 8-4,
8-5, 8-6, and 8-7 in the numeric portion of a field are
treated as 0, 3, 4, 5, 6, and 7, respectively.,

If the result in an arithmetic operation exceeds the
B-field l~mit imposed by the B-field word mark, the
carry is 1ost, and the arithmetic overflow indicator
turns on. The test and branch instruction, J(I)z, tests
and turns off the arithmetic overflow indicator.

If the result of any add, subtract, multiply, zero and
add, or zero and subtract operation is zero, the zero

8

balance indicator tu.ms on. The ~ add, subtract,
multiply, zero ~ add, or zero and subtract instrue-­
tion, that does not result in a zero balance,, turns ofl
the ~.ro balance indicator.

Add and Subtrad lnsfrvdions

Instruction Formats
Formats for the add and subtract instructions are:

1·~)5 (add)
· (add)
· (subtiaet)

(subtract)
(subtract)

A-AllDl\li:S.S . ~

If the add or -subtract instruction specl&es two ad­
dresses (A or S uxu xxxu-), the numeric data in the
A-field .. is algebraically added to (add operation) or sulr
tracted from (subtract operation) the numeric data in
the B-6.eld. The result is stored in ·true form in the
B-field. Except for. the sign position which may .. he
changed, B..fleld zone bits are undisturbed. A-field zone
bits are ignored in all other positions except the sign
position. A B-6eld word mark stops the operation and
must be set over the high--order position of that Seid,
If the A-field is shorter than the B-field, it, too, must
have a defining word mark to stop transmission of
data from the A-field to the B-field. When the A-fleld
is shorter than the B.fleld, the system automatically
adds zeros to (add operation) or subtracts 21eros from
(subtract operation) the extra high-order positions of
the B-field until a B-field word Mark is detected. If
the A-field is longer than the B·field, the high-order
positi9ns of the A-field, that exceed the limits imposed
by the B-field word marks, are not processed.

If the add or subtract instruction has only an A·
address (A or S xxxxx), the A-field is added to (add
operation) or subtracted (rom (subtract operation)
itself. The result is stored in the A-field. Add oper·
ations in which the instructions designate only one
field are always executed with true add cycles' and
the sign bit configurations of the results are always
the same as the original sign of the A-field. When the
subtract instruction designates only one field, the
numeric portion of the A-field is always 0 after the
operation, but zones in the A-field remain unchanged;
the A-field sign bit configuration is the same as it was
before the operation.

.. -.. .. \

(... "

If the add or subtract instruction does not designate
an A- or B-address (no address chaining), the con·
tents of the AA1'I from· the previous operation specify
the A-field, and the conte11ts of the BAR specify the
B-field in the add or subtract operation. The operation
is executed in the manner described for two address

· add and subtract instructions.

CPU Operation
During last instruction read-out cycle, the units con­
trol, first scan control, and A-cycle control latches are
set to initiate the first cycle (A-cycle) of the add or
subtract operation. In the first A-cycle, the units posi­
tion of the A-field reads out of storage and is gated to
the A-data register. The operation (op)-modifier regis­
ter 'is gated to the A· and assembly channels on A-cycles
to satisfy the validity che~k circuits.

During the subsequent B-cycle, the units position
of the B-field reads out of storage onto the B-channel,
and the A-field character in the A"data register is
gated to the A-channel. The signs of the A~ and B­
channel characters are analyzed to determine whether

. the A-field should be true or complement added to
the B·field. The first B-cycle is one logic gate longer
than other B-cycles in the operation to allow time to

1condition the true or complement add controls.
Whether the system executes a true or complement

add scan is determined by the number of minus signs
in the factors and the type of operation being per­
formed (Figure 5).

Type of A·Fleld B·F-ield
Operation Sign Sign Type of Add Cycle Sign of. Result

+ True Add +
+ - Complement Add

ADO Sign of greoter ,vol ue
+ Complement Add .
- True Add - -
- True Add -

+
+ Complement Add Sign of greotervolue

SUBTRACT (after A.field sign Is - Complement Add changed as a result of
the subtract Instruction)

" -
+ True Add +

Figure 5. Ty~es of Add Cycles and Sign of Result for
Ada and Subtract Operations

Numeric bits in the A- and B-channel characters are
added in the adder unit. The adder output feeds the
' assembly unit where B-channel zones and word mark
and adder numerics are combined. The character is
than sent to the B-field location in storage. If there
is an adder carry and no A- or B-channel word mark,
the carry latch is set and combined with the sum of

the bmary portions of the A~ and B-channel digits on
the next B-cycle.

The A- and B-channel characters are added or sub­
tracted until an A- or B-channel word mark is sensed.
If an A-channel word mark is ·detected b~fore a B­
channel word mark is sensed, indicating that the B-field
is longer than the A-field, the extension latch is set
and a series of B-cycles are executed until the oper­
ation is complete (13-field word mark). Remaining
characters in· the B-field are combined with zeros on
true add or nines on complement ad scans., The 0
or 9 is inserted directly on the A-channel input to
the adder.

If a B-channel word mark is sensed before an A­
channel word mark is detected, indicating that the
A-field is longer than the B-field, other A-field charac­
ters are not processed. The following example illus­
trates this action:

• ADD
A-field

+ 1099 (A-field) + + 100 (B-field) = + 1199

B-field

B-fieldc after add operation is complete. High­
order digit (1) in A-field is not processed .
B-field answer is incorrect. '

1099
loo
fog

When there is ~n adder carry from the high-order
position ori a complement add scan, the add or sub­
tract operation ends when a B-channel word mark is
sensed as shown in the followiri'g exampler '

ADD -17 (A-field) + +9oo (B-field) = +883
Because the A-field sign is negative and the
B-field sign is positive, the A-field must be
complement added to the B-field.
Complement of A-field
B-field
Carry latch is always on for units position of
complement add

B-field after add operation is complete.
When the B-channel word mark is sensed, the
add operation ends and the carry is lost. The
operation shown is correct .

982 • 900

1
S83+carry

An adder carry from the high-order position on a
true add scan signifies an overflow and sets the arith-

, metic overflow latch. Study the following example:

ADD +99 (A-field) + ,+oo (B-field) = 189
A-field 99
B-field ~o
B-field ·after add operation is complete. Arith- 89
metic overflow latch is set. B-field answer is
incorrect.
Because the low-order position of the next
field was read out of storage on the last
B-cycle of the operation, the digit written in
storage on the last B-cycle is not known. The
original B-fleld should have contipned three
positions: (000).

When th,e stored result is in. complement form, as
indicated by no adder carry from the high-order posi­
tion on a complement add scan, the characters in the

Arithmetic Instructions 9

B-field must be converted to true form and the B-field
sign changed. The following example illustrates this
action:

ADD -18 (A-field)
Complement of A-field
B-field

+ +OI2 (B-field) = -006
981
Oi2

Carry latch is always on
of complement add

for units position

B-field after complement add scan.
The B-field result is in complement form. No
adder carry from the high-order position ini-
tiates another forward scan by setting the
third scan latch. The B-field is converted to
true form and added to zeros inserted on the
A-channel input to the adder. The B-field sign
is inverted.

1

g94

B-field after complement add scan +994
y

Recomplement B-field, and change B-field sign -005
Insert zeros on A-channel input to the adder 000
Carry latch is always on for units position of

complement add 1

B-field at the end of the add operation. The -006
B-field answer is correct.

Figures 6 and 7 show diagrammed explanations of
CPU operation in the execution of the add and sub­
tract instructions.

The following controls are active when the CPU per­
forms the add and subtract operations:

1. Initiate A-cycle and read out first A-field character.

SIGNAL

Set A Cy Ctr!

A Cy Ctr!

A Cy
ROAAR

CONTROL

A Cycle First Op Codes
Last lnsn RO Cycle
Set A Cy Ctr!, Next

to Last LG
A Cy Ctr!, LGB
A Cy Ctr!, LG Special A
Read-out AAR on A Cy Ops.

Set Mem AR Gated LGA, 2nd CP
2. Set modifier controls to - 1.

Set 1st Scan Ctr!

1st Scan Ctr! Lat

, 1st Scan First Op Code
Last lnsn RO Cy
Set 1st Scan Ctr!, Next

to Last LG
1st Scan 1st Scan Ctr!, LGC
Addr Mod Set to -1 1st Scan

3. Set character into A-data register.
Sw B Ch to A Reg A Cy, LGD

4. Control A-cycle length.
Std A Cy Ops A Cy Add Type Op Codes, A Cy
Stop at F Std A Cy Ops A Cy

LoGic
12.12.41

12.12.20

12.12.01
14.71.30

14.17.16

12.30.05

12.30.03

12.30.01
14.71.41

15.38.01

13.14.06
12.12.30

5. Initiate B-cycle and read out first B-field
character.
Set B Cy Ctr!
B Cy Ctr!

BCy
Units Ctr! Latch

Units Latch
Regen Units +Body

Ctr!
Units Ctr! Latch

10

Std A Cy Ops A Cycle
Set B Cy Ctr!, Next

to Last LG
B Cy Ctr!, LGB
Last lnsn RO Cy, Next

to Last LG
Units Ctr! Latch, LGC
Std A Cy Ops A Cy

Regen Units + Body Ctr!,
Next to LLG

Units Latch

12.12.44
12.12.21

12.12.02
16.30.02

16.30.02
16.30.01

16.30.02

SIGNAL

RO D AR * Arith
CONTROL

Units Latch, B Cy Ctr!
Arith Type Op Codes

Set Mem AR Gated LGA, 2nd CP

6. Regenerate modify controls.
Regen 1st Scan Ctr! Std A Cy Ops, A Cy
1st Scan Ctrl Regen 1st Scan Ctrl, 1st Scan
1st Scan 1st Scan Ctr!, LGC
Addr Mod Set to -1 1st Scan

7. Gate A-field character to A-channel.

LOGIC

16.41.01

14.17.16

12.30.05
12.30.03
12.30.01
14.71.41

Gate A Data Reg to B Cy, A Reg to A Ch on B 15.38.02
A Ch Cy Ops

8. Set true or complement controls according to type
op code, A- and B-field signs.
True Add B 1st Scan, Add or Subt Op 16.20.10

Codes
Start Comp! Add 1 1st Scan, Units Latch, B Cy 16.20.12

Add Op Code, A Ch - ,
B Ch+

Comp! Latch Start Comp! Add 1 16.20.15
This step is the only difference between an add and subtract

op code.

9. On complement add set carry latch to correct
units position.
Carry Latch Start Comp! Add 1 16.20.21

No carry latch is set if a Start True Add.

10. Gate A-Channel to Adder.
Adder A Ch Use Tor C Units Latch, 1st Scan, B Cy 16.20.11

Add Type Op Codes,
Not 1401

11. Gate adder output through the assembly to
storage.
Use Adder Nu
Use B Ch Zones

B Cy, Add or Subt
Units, 1st Scan, B Cy,
Add or Subt Op Codes

16.40.02
16.40.01

Use B Ch WM
Load Memory

B Cy, Arith Type Op Codes 15.49.04
Load Mem on B Cy Op 12.50.01

Codes
B Cy

12. If there is no A- or B-channel word marks, set
the carry latch if there is a carry.
RA + RS + A + S.B. Add Type Op Codes, B Cycle 16.20.03

Not BW B Ch Not WM Bit
Set Carry Latch RA + RS + S.B. Not 16.20.20

BW Adder Carry
Carry Ctrl Latch Set Carry Latch, Last LG 16.20.21
Carry Latch Carry Ctr! Latch, LGC 16.20.21

13. Take another A-cycle and read out next A-field
character.
RA + RS + A + S.I.B

NotBWNotAW
Add Type Op Codes, 1st Scan 16.20.03
B Cy, A Ch Not WM,

B Ch Not WM
Set A Cy Ctrl * Arith RA + RS + A + S.I.B.

Set A Cy Ctr!
A Cy Ctrl

A Cy
ROAAR

Not BW Not AW
Set A Cy Ctr! * Arith
Set A Cy Ctr!, Next

to Last LG
A Cy Ctrl, LGB
A Cy Ctr!, LG Special A
Read out A AR on A Cy Ops

Set Mem AR Gated LG, 2nd CP

14. Regenerate modify controls.

16.42.01

12.12.41
12.12.20

12.12.01
14.71.30

Regen 1st Scan Ctr!* RA+ RS+ A+ S.B. Not BW 16.43.01
Arith

--------------- --------

/ '

Set Extension Latch

16.30.06

Is the Op Code
Add or Subt?

13 13.01

Is the B Ch
Plus or Minus?

16.16.01

Start True Add

16.20.12

Set a No Carry Latch

16.20.22

Set Body Latch

16.30.04

Set Carry Latch

16.20.21

Add or Subt Inst

Set Units Latch

16.30.02

Set 1st Scan Latch

I
I
I
I
I
I See Adder Matrix in

1410 System Funda­
entals CE Manual

------- -- - ___ .J
I
I
L

3r

Set Units Latch

r 1 .30.02

Set 3rd Scan Latch

12.30.04

Set Compl Add B

16 20 10

Set Carry Latch

16.20.30

The D AR is Used
for Units PSN

Is the Units Latch On?
16.13.02

Invert B Ch Sign

16.40. 3

Insert 0 on
A Ch to Adder

16.20.11

Use Adder Nu B Ch
Zones B Ch WM

No

~------~N-< ls There AB Ch WM? ~""-----------,

Regen 3rd Scan

16.43.01

Figure 6. Add or Subtract

Is There a Carry?

16.13.07

1st or 3rd
Scan Latch On?
12.30.01-.02

Regen 1st Scan

16.43.01
Set Arith Overflow

16.45.02

3rd

Arithmetic Instructions 11

SYNC

Address Switch., 00001

LINE NAME

1. LOGIC GATES

2. I RING RESET

3. IRING

4. I RING ON ADV
5. I CYCLE CTRL

. 6. I CYCLE

7. R.O. JAR

8. SET STAR

9. RESET IAR (INVERTED)

10. SET OP REG•

11. 1 ST ADDRESS

12. 2ND ADDRESS

13. RESET AAR

14. RESET BAR

15. SET AAR

16. SET BAR 15T

17. SET BAR 2ND

18. INSN R.O. GATE

19. SET ART TH POS

20. SET AR TH POS

21. SET AR H POS

22. SET ART POS

23. SET AR U POS

24. SET STAR TO JAR

25. LAST INSN R.O.

26. LOGIC GATES

LOGIC PAGE TEST POINT

12.13.03 . 11C1H03L

12.13.03 11C1K098
12.12.23 11C1CllC

12.12.04 11Cltl22H

14.11.34 11C1 C12H

14.17.16 1182G26A

14.71.24 11.Clll20C

12.13.04 11C1H07C

11.20.11 llC1J16C

11.20.11 llC1J16K

14.71.20 11C1820H

14.n .20 11C1805C

14.7.1.10 11C1E02E

14.71.11 11C1C22E

14.71.11 11C1C22D

11.10.07 llC2F04C

14.71.0S llC1805A

14.71.04 11C1804A

14.71.03 llC1Rl2A

.14.71.02 11C1807A

14.71.01 11C1808A

14.n .24 11C1820A

12.13.0S 11C1H12G

I
I ADDRESS
I
I
I
I

00001
00002
00013

Figure 7 A. Add Operation· Instruction Read-out

12

PROGRAM ..
ti 10000200
roooo1b

ADDRESS

00100
Oo2oo

DATA

SYNC

Adcfr~ switch,°' 00012

ALO LINE •

1. LOGIC GATES

2· LAST INSN R.O.

3. UNITS CTRL L.

4. UNITS L.

5. 1 ST-SCAN CTRL L.

6. lST SCAN L.

7. A CYCLE CTRL L.

8. R,O, AAR

9. A CYCLE L.

10; B CYCLE CTRL L,

~1. R.o: OAR

12. R.0. BAR

13. BCYCLEL.

14. TRUE ADD "B"

15. A CH. USE TOR C

16. USE ADDER NU.

17. USE B CH WM·

18. BODY CTRL L.
r

19. B09Y L.

20. CARRY CTRL L.

21. CARRY. L.

22. NO CARRY CTRL L.

23. NO CARRY L.

24. EXTENSION CTRL L.

25. EXTENSION L.

26. A CH INSERT 0

27. LAST EXECUTE

28. LOGIC GATES

·ALO PAGE

12.13.05

16.30.02

16.30.02

12.30.03

12.30.01

12.12.20

14.71.30

12.12.01

12.12.21

16.41.01

: "'"' I
t ~ .. :
I < I
I OOool Aoo11J000200 I 00099 l4
I OOQ.12 00o50000200X I 00198 036
l 00024 100001 b 0 r l 00498 036
: ' l . .

11C2E21A IJ 1"----+---·· ---1----f----,--~
11C2016A >---""'-'J ~
11C1F23L U'

f

u
J

u
11C1J100 u l~--'---___,J

11C1C11G IJI\'-'--.. -l----___,[l~'--'"-...-t---+------:-----+---l
11C1H20C I~ J l fi..;.:.........~· "'--- .,

,__v--1-~~.(. '--~~~+---'

11C1C12G '

11C1A04B

r

16.41.01 11C1C11H ~~~~---+--~11'--~r11'-"----+--4
12.12.02

16.20.10

16.20.11

16.14.02

;11C1H17C

11C2E12C

11C2E12L

J u
,__.______,__,]

11c2c13K 1---1------IJI f

u
[

v

ll
15.49.04 ~,11C3F24C .~____.,W
16.30.04 11C2C23C 1---1-------1------r

16.30.04

.
11C2G05A 1---1---~--1-----'---i---'' w ,

16.20.21 11C2019D 1 ... -~--+------1-_,._ ____ __,Jh_fh'---' ---+-------!-----!

16.20.21

16.20.22

11C2E23L ,----+----->---. ______ ,,_,J u
11C2023D 1---i----·---1--------'-i-----01------.J~'-'-----+----,j

16.20.22
f

11C2C13A
r

16.30.06 11C2C16C 1---i-------I---''------·--+------+------'(

16.30.06 11C2016C 1---1-------1--------1------1--------I--' f
r

16.20,11 11C2H09F 1---i------i---------i-------'1---------1---' r
r

16.42.02 11C2~40 J r I__
tlF1A~~IJs1~~~{;1;gJKA kklE(;"\AjJcrohH<hl1 A~cro1ef;\r;;\JA t"l_cQe_~ -...

Figvre 7B. Execute Phase of Add Operation Arithmetic Instructions 13

1' ;'

r '

'J''-

't _,

'S1cN:AL

· ··. ·' Regen 1st Scan Ctrl
· 1st Scan Ctrl Latch

CoNTROL , LoGic Questions on Add and Subtract Operation

Regen 1st Scan Ctrl * Arith , 12·30.(>5 ·· Answ~rs to these review questfons are in the Appendix.
Regen 1st Scan .Ctrl, Next 12.30.03 , y

to Last LG 1,-,When the CPU decodes the A (AAAAA) instruc-
lst Scan ·1st Scan Ctrl Lat, LGC 12.30.01 ·· · tion, what action O(;c~rs?
AdClr Moo Set.to' -1 1st Scan . 14.71.4! · \2. Are other A-field characters processed d~er a B-

l5\. Take another .• B-cycle and read 'out next B-f:ielg .. · .channel word mark is se~sed? ·
character. · · j '. 3. Why is the first B-cycle in the add ,9r subtract
'Set B Cy Ctrl Std A_ Cy Ops A Cy 1 12.l~.44 operation longer t/ian subsequent B"cycles?
: g~ Ctrl ieb~ &1~~~BLast LG ~Hi:~~ 4. When th!3 sum in an .add operation (or the re- .
Set-Body Ctrl Latch RA+ R~ +A + S.I.B. . 16.30.01 mainder in a subtract operation) is O,. what indicator

Body Ctrl Latch
, Not BW Not AW turns on? : . · . ·
Set BOdy Ctrl Latch0Next 16.30.04 5. When the A-field word· mark· is sensed bef' .ore

to Last LG' .
Body Ctrl Latch, .LGC · 16.30.04 · the B-field word mark is detetted in .a true add· scan,

· B Cy Ctrl, Body Ctrl Latch · 16.30.04 what actidn occurs? · · . '· ·· , ·· · ·
. B Cy Ctrl, Body Ctrl Latch l6.41.0l 6. When ith~ ~ad 1or subtract inst;uction specifi~·

Body Latch
RO B AR * Arith

Arith Type Qp Codes ·
If there was an A-channel word mark, . the extension latch 1 .• A- and B;-addresses, where is the result stored?

is set on instead of the body latch.

' 16. During the exten'sion, the adder receives a ()'or 9.
A + S.B.I.S.X A + S.B. Cy, 1st Scan, Compl 16;20.05

Latch, Extension Latch
A Ch Insert +9 A + S.B.I.S.X 16.20.11
RA + RS + A + True Latch, Extension I:.atcll, 16.20.03

. S.I.B.T.X Add Type Op' Code, 1st
, Scan, B Cy

.. A Ch Insert .f.O RA+ RS +A+ S.I.B.TX 1 '16.20.ll
. I

· 17 . .A B-chapnel word mark stops the operation ex­
cept on complement add with no 'carry:

A + §.B.I.S.BW. Adder No Carry, B Ch WM 16.20.0!)
Not RC Bit .

A + S.B. Cy, 1st Scan, ·
, Compl Latch

Set B Cy Ctrl * Arith A + S.B.I.S. BW. Not RC 16.42.01
• 1 Set B Cycle Control • Arithmetic causes a~other 'B-cycle dur-

ing which the B-field is converted to true form. · · v '

· 1s. Set up the controls tO complement add the
B-fiel~ to zei:o~ inserted into the ad9er oil the .A-field
side. ' ·

Set Units Ctrl Latch·
Units Ctrl Latch
'

Units'Latch ·
Set 3rd Scan Ctrl
3rd Scan Ctrl

3rd Scan
ComplAddB

A Ch Insert + 0

A + S.B.I.S. BW. Not RC
Set Units Ctrl Latch, Next

to Last LG .
Units Ctrl Latch, LG:c
A + S.B.I.S. BW. Not RC
Set 3rd Scan Ctrl, Next

to Last·LG
3rd Scan Ctrl, LGC
3rd Scan, Add Type Op·

Codes ·
3rd Scan, B Cy, Add Type

Op Codes

19. Set Cl,UTY latch.to correct.units position.

Set Clll'!Y Latch , A + S.B.I.S. BW. Not RC
Carry CtrlLatch Set Carry Latch, Last LG
carrr Latch I Carry Ctrl Latch, LGC

20. Change sign over units position.

16,30.01
16.3o.02

16.30.02 °

16.43.01
12.30.04

. 12.30.02
16.20.10

16.20.11

16.20.20
16.20.21
16:20.21 ..

Use Inv B. ClvSign Units Latch, B Cy, 3rd Scan 16.40.03
Add or Subt Op Codes

Use Inv B-channel Sign changes + t~.;,,,, or - .to +. ·

21. E'nd the operatjon.

Last Execute Cy *
Arith

14

B Cy, 3rd Scan, Add or Subt 16.42.02
'BChWM I

Zero and Add anJ Zero and s!ibtra~t'
l~tructions · · ·

Jnstruction Format!!
~

Formats for the zer-0 and ackl (systems diagrams refer
to the instructiOn ~s reset add) 'and zero and sub­
tract (systems diagrams refer to the instruction as re­
set subtt:act) W"~. as follows:

oi-coDE
v . f (zero and add)
~ (zero and add)
i (zero and add)
! (zero and subtract)
J (zero and ~ubtract)
I (zero and subtract)

A-ADDRESS B-ADDRESS

xxxxx xxxxx ..
xxxxx

xxxxx xxxxx
.xxxxx

· If the zero and add or zero and subtract instruction • •
specifies twp addresses(? or I xxxxx XXX;XX), the numeric
data in the A-field is stor«;id in the B-field.' The sign
of the re~ult field (B-field) is th,e same as the sign of
the A-field in the zero and add operation; the sign of
the result field is the opposite of the A-field sign in
the .zero and subtract operajion' (Figure 8). If, in· a
zero and add operation, the A-field has ~o sign and
is thus understood to be positive, the system generates

. an actual positive sign, for the B-field by placing A-

TT B-Field Sign
A-Field Sign At En'd of Operation

N~ A-bit and No B·bit,(plus) B-bit (minus)

B-bit (minus) A-bit and B-bit (plus)

A-bit and B~blt (pl us) 1 B-blt (minus)

A-bit (plus) B-bit (minus)

Figure 8. Sign Changes for Zero and Subtract (Two Addresses)

~

~

~,

°''l'

~

/"

0

\,, ,.,

0 <,

('<·

"
r---.

r---.

('

0·

N~
. .·)

'. knd B-bits over the unitS'llosition. All other zone posi~
,

1 liolis, except the.sign p9sition, in the B-field are cle.ared
"·,·(no A- nor B-bits) in zero· and add and zero and sub~

' tract operations. The B-fi~ld must have a defining word
mark to stop the operation~. The A-field requir'es a
word mark only if it is, -shorte:i: than the B-field, in
which case extra high-order B~field positions are set

·,to 0. If the A-field is longer than the B-field, the high­
order positions of the A:..field that exceed the limits
imposed by the B-field word mark are not processed.
. If the zero and add or ze~o ~d snb~act instruction

' specifies only one address (? or I xxxxx), numeric data
in the A-field does not change. The instruction causes
the system to strip the A-field of all zones,·except the
•units (sign) position, and to change non-numeric codes
(blanks and 8-3, 8-4, 8-5, 8-6, and 8-7) to' their numeric
equivalents (0, 3, 4, 5, 6, and 7, respectively). In the
z7ro~ and add operation, the sign of the A-field is re­
tained, but the bit configuration 0f the plus sign may
change; for example, if the bit configuration of ·the
phls' sign is an A-bit or NOT A- and NOT B-bits, the·
plus sign is changed to the·A- and B-bit configuration.
In the. zero and subtract operation, the A-field sign
chang~~; if the A-fielp was positive before the oper­
ation;'it is negative after the operation;. if the A-field
was negative before the operation, it is positive (A­
and B-bits) ,afrer the operation. In the one address
zero and add or zero. and subtract instruction, the
A-field requires a word .mark in its high-order position.

If the zero and add or zero.and subtract instruction
does not designate an A- or B-address (no address
chaining), the ·contents of the AAB from the previous
operation specify the A-field, and the contents of the
BAB specify the. B-field in the operation. The zero and
add or zero and s~btract. instruction is then executed/
in the manner described for two address instructions.

CPU Operation

During the A-cycle that begins execution of the zero
and add or _zero and s.ubtract instruction, the units
position of the A-,fieldureads out of storage and is set
in the .A-data register. After the A-cycle, the system
executes a B-cycle to process the B-field character from
storage onto the B-channel and to gate the character
in the A-data register h> the A-cbannel. The A-channel
character is set in the adder; a 0 is inserted on the
B-channel input to the adder. In all cases, the adder
true adds the A-channel character to 0. Because the
units latch is on (first A- and B-field characters to be
processed), the adder sum is combined in the assembly
with the sign of the A-field (zero and add) or with
the inverted sign of the A-field (zero and subtract).
The character and the sign are gated to the units posi­
tion of the B-field in storage. Until an A- or B-channel
word mark is sensed, the system alternately executes

A•.a:fid B-cycles, adds A-channel numeric bits to 0 in
the adder, and stores the adder output in the B-field.
If ,an A~channel word mark is detected before a B­
channel word mark is· sensed, zeros are stored in the
remaining B~field positions. A B-chamiel word mark
terminates the operation. '

Figures 9 and. 10 show diagrammed explanations of
CPU opera,tion in tJ.ie .. execution. of the zero and add
and zero and subtract instructions.

The · foll9wing controls are active when the CPU

. performs the zero and add and zero and . subtract
operations.

SIGNAL CoN'rRoL Loclc

1. Initiate A-cycle arid read out first A-field character.
Set A Cy Ctrl A Cy First Op Codes 12.12;41

" Last'lnsn RO Cy
A Cy Ctrl Set A Cy Ctrl, Next 12.12.20

to Last LG
A Cy A Cy Ctrl, LGB 12.12.01
RO AAR A Cy Ctrl, LG Special A 14.71.30

Read out AAR on A Cy Ops.
Set Mem AR Gated LGA, 2nd CP 14.17.16

2. Set modifier co~trols to -1.
Set 1st Scan 'Ctrl 1st Scan First Op Code

Last Insn RO Cy
1st Scan Ctrl Lat Set 1st Scan Ctrl, Next

to Last LG
1st Scan 1st Scan Ctrl, LGC
Addr Mod Set to -1 1st Scan

3, Set Character into A-data register.

12.30.05

12.30.03

12.30.01
14.71.41

. Sw B Ch to A Reg A Cycle, LGD 15.38.01

4. Control A-cycle length.
Std A Cy Ops A Cy Add Type Op Codes, A Cy 13.14.06
Stop at F Std A Cy Ops A Cy 12.12.30

5. Set true add controls. ,
Set True RA + RS • Lastlnsn RO Cy 16.20.13
True Ctrl Latch Set True, 'Last LG 16.20.14
True Lat;ch True Ctrl Latch, LGC 16.20.14
Set No Carry RA + RS• Last Insn RO Cy 16.~0.20
No Carry Ctrl Latch Set ~o Carry, Last LG 16.20.20
No Carry Latch . No .Qarry Ctrl Latch, LGC 16.20.22

6. Initiate B~cycle and read out first B-field character.
Set B cy Ctrl Std A Cy Ops A Cycle 12.12.44
B Cy Ctrl _Set B Cy Ctrl, Next 12.12.21

BCy
Units Ctrl Latch

Units Latch
Regen Units +Body

Ctr!
Units-Ctr! Latch

RO D AR * Arith

to Last LG
B Cy Ctrl, LGB
Last lnsn RO Cy, Next

to Last LG
Units Ctrl Latch, LGC
Std A Cy Ops A Cy

Regen Units + Body Ctrl,
Next to Last LG

Units Latch
Units Latch, B Cy Ctrl
Arith Type Op Codes

Set Mem AR Gated - LGA, 2nd CP

7. Regenerate modify controls.
Regen 1st ScaxfCtrl Std A Cy Ops, A Cy
1st Scan Ctrl Regen 1st Scan Ctrl, 1st Scan
1st Scan 1st Scan Ctrl, LGC
Addr Mod Set to .:..1 1st Scan

12.12.02
16.30.02

16.30.02
16.30;01

16.30.02

16.41.01

14.17.16

12.30.05
12.30.03
12.30.01
14.71.41

Arithmetic 'Instructions 15

Is TherO-'.a Corry ?

Z&ro and Add ar
Zero and Subt Inst

Set Units Latch

. Set Corry Lo!~h

' 16.20.20

.• 5ef No Corry LC:.tch
.]6.20:20

16.20.13

Set Extension Latch Set ~y lot~h
J.6.30.04

Set No Corry Latch

16.20.20 16.3o.o6

I
I
L-

Take An A Cycle

12.12.41

RO A Field Chor

14,71.30

Toke B Cycle

12.12.44

RO B Field .Chor

16.41.01

,...... _____ _..;.Y.:;.es~ ls the Units Latch on?

Use A Ch Sign

16.40.03

Is the Op Code
ZA or ZS?

Gate A Ch to
Qui-Bin _Trans

16.20. ll

.Insert O. on B Cn
16.20 .• 02

Gate Adder Output
Through ASM
16.40.01"'02

lsTherea 8 Ch WM?

Use Inverted
A Ch Sign
16.40.03

16.30.02

Use Adder Nu, Use
B Ch WM, Use No

Zones Except Unit Pas

Regen 1st Sca.n Latch
16.43.01

End Oper Stol't Inst RO

16,42.02.

Regen True Add latch

16.20.13

Figure 9. Zero and Add or Zero and Subtract

Is the Body or
Ext Latch on ?
16.30.04-.06

Regen Units or
Body Latch .

16.30.02 -.04

Use DAR if
Units Position

SYNC

Add<e• Switches 00012

LINE NAME

1. LOGIC GATES

2. LAST INSN R.0.

3. !ST SCANCTRL

4. lST SCAN

5. UNITS CTRL

"I

6.UNln

7. 11A11 CYCLE CTRL

8. "A" CYCLE

9. R.0. MR

10. SET STAR

11. TRUE CTRL

12, TRUE

13. TRUE ADD "A"

14. •a• CH INSERT "0"

IS. NO CARRY CTRL

16. NO CARRY

17. "8" CYCLE CTRL

18. "811 CYCtE

19. R.O. BAR

20. "A' CH PLUS SIGN (INVERTED)

21. ASM USE ADD NU

22. ASMUS£8 CH WM

23. ASM USE A CH SIGN

24. ASM USE NO ZONES

25. BODY CTRL

26. BODY

27. EXTENSION CTRL

28. EXTENSION

29. "A' CH INSERT "O" (INVERTED)

30. END EXECUTE

31. LOGIC GATES

LOGIC PAGE

12.13.06

13,j3.00

12.30:01

16.30.02

16.30.02

12.\2.20

12.12.01

14.17.16

16.20.14

16.20.\4

16.20.02

' 16.20.22

16.20.22

12.12.21

12.12.02

16.41.01

16.16.07

16.40.02

' 15.49.02

16.JQ.03

16.40.01

16.30.04

16.30.04

16.30.06

16.30.06

16.20.01

16.40.02

UST POINT"

11C1Hl2G

11C1F23t'

11CIE26A

11C2DllYA

11CIJIOD

11C1H20C

11C1C11G

1182G26A

llC2DllG

11C2El2t

(

I IC2F09A

11C2824C

llC2023D

11C2C13A

11C1A048

11C1H17C

11CIC11H

11C2E25K

llC2C13K

I 1C3F24C

11C2E19D

llC2C12E

11C2C23C

11C2G05A

llC2Cl6C

llC2Dl6C

11C2EUA

11C2ll04D

Figure 10. Zero and Add Operation Timings

T LOCATION PROGRAM LOCATION DATA
/

I 00001 ?oo10000200 00099 ~3
Ioooolb 00196 .!56

I r
~

/

l

Jll I
J

c

/

~ ~ ~ ; ~

w l '' ~ 1
? J

J ~
n r nr

" r-u
~~-+---~~JTl'--~~

J
J

Arithmetic Instructions 17

..

SIGNAL LOGIC

8. Gate A-field charactei to, A-c;!iannel.
Gate A Data Reg to B Cy, A Reg, to A Ch on B 15.38.02

A Ch Cy Ops

9. Gate A-channel to Adder. ~ ·'

Adder A Ch Use Tor C Units Latch, 1st Scan,, '3J Cy 16.20.11
Add Type Op Codes, Not 1401

10. Insert a 0 in B side of the adder. · ·

B Ch Insert + 0 Reset Type Op Codes, B Cy, 16.20.02
1st Scan

11. Gate adder output through assembly.

Use Adder Nu
Use A Ch Sign
or Use Inv A Ch Sign
Load Storage

RA + RS • B • Not 1401 ,
RA • Units • B Cy
RS • Units • B Cy
Load Mem on B Cy Op Codes

B Cy

16.40.02
16.40.03
16.40.03
12.50.01

12 .. If there is no A- or B-channel word marks, set
the no carry latch.

\

JlA +RS+ A+ S.B.
}{citBW

Add Type Op Codes, B Cy 16.20.03
B Ch Not WM Bit

Set.No Carry Latch RA + RS + S.B. Not BW, 16.20.20
No Adder Carry

No Carry Ctrl Latch Set No Carry Latcp, Last LG 16.20.21
No Carry Latch No Carry Ctrl Latch, LGC 16.20.21

13. Take another A-cycle and read out next A-field
character.

RA+RS+A+ Add Type Op Codes, 16.20.03
S.I.B. Not BW 1st Scan ·
Not AW B Cycle, A Ch Not WM,

B Ch Not WM
Set A Cy Ctrl "' Arith RA + RS + A + S.I.B. 16.42.01

Not BW Not AW
Set A Cy Ctrl Set A Cy Ctrl "' Arith 12.12.41
A Cy Ctrl Set A Cy Ctrl, Next 12.12.20

to Last LG
A Cy A Cy Ctrl, LGB 12.12.01
ROAAR A Cy Ctrl, LG Special A 14.71.30

Set Mem AR Gated
Read Out A AR on A Cy Ops
LGA, 2nd CP

14. Regenerate modify controls.

Regen 1st 'Scan Ctrl RA + RS + A + S.B. 16.43.01
* Arith Not BW

Regen 1st Scan Ctrl Regen 1st Scan Ctrl * Arith 12.30.05
1st Scan Ctrl Lat Regen 1st.Scan Ctrl, Next 12.30.03

to Last LG
1st Scan 1st Scan Ctrl Lat, LGC 12.30.01
Addr Mod Set to -1 1st Scan, , 14.71.41

15. Take another B-.cycle and read out next B-field
character.

Set B Cy Ctrl
B Cy Ctrl

Std A Cy Ops A Cy
Set B Cy Ctrl, Next

to Last LG
B Cy B Cy Ctrl, LGB
Set Body Ctrl Latch RA + RS + A + S.I.B.

:Sody Ctrl Latch

Body Latch
RO B AR * Arith

Not BW Not AW
Set Body Ctrl Latch, Next

to Last LG
Body Ctrl Latch, LGC
B Cy Ctrl, Body Ctrl Latch
B Cy Ctrl, Body Ctrl Latch
Arith Type Op Codes

12.12.44
12.12.21

12.12.02
16.30.01

16.30.04

16.30.04
16.30.04
16.41.01

If there was an A-channel word mark, the extension latch is
set on instead of the body latch.

18

SIGNAL CONTROL LOGIC

16. Gate A-channel to adder.
Adder A Ch Use Body Latch,)st Scan 16.20.H

L or C B Cy, Add Type Op Codes
. Not 1401

17. Gate a 0 in B side of adder ..
B Ch Ins~rt +O Reset Type Op Codes: B Cy 16.20.02

1st Scan
18. Gate add~r output through assembly.

Use Adder Nu RA + RS.B. NoJ: 1401 16.40.02
Use No Zones .RA + RS.B. 1st,Scan .. Body 16.40.01

Latch
19. End operation when there is a: B-Channel WM.

Last Execute qy RA + :RS.I.B. B Ch WM 16.42.02

Questions on Zero and Add and Zero and
Subtract Oper.ations

Answers to these review questions are in the Appendix.
1. If the sign of the A-field is positive in a zero and

subtract operation, what is the sign of result field?
2. How does the zero and add operation differ from

the zero and subtract operation?
3. What poSitions of the reru,lt field contain' zone bits

after the zero and a,dd or zero and subtract operation?
4. What terminates the zero and add anq. zero and

subtract operations?
5. When the zero and add or zero and subtract in­

struction specifies only an A-address, where is the re­
sult stored?

6. ·If the A-field contains all zeros, what indicator
turns on?

Multiply Instruction

lnStruction Formats

Formats for the multiply inst~ction are:

OP CODE

@
@
@

A-ADDRESS

xxxxx
xxxxx

B-ADDRESS

xxxxx

The A-address in the multiply instruction SJ?ecifies
the low-order character in the A-field (multiplicand);
the B-address represents the storage location of the
low-order B-field character (product). If the multiply
instruction does not contain a B-address, the contents

,·of the BAR from the previous operation designate the
low-order character in the B-field 'for the multiply
operation. If the instruction does not contain an A·
adch;ess or a B-address (no address chaining) , the con­
tenfs of the AAR and the .BAR specify low-order A- and

· B-field characters, respectively.
The multiply instruction causes the CPU to re­

petitively add numeric data in the A-field (multipli­
cand) to numeric data in the B-field l product), start-

ing with low-order B-field positions. Results of the
additions are stored in the B-field.

Multiplier digits must be stored in the high-order
B-field positions before the multiply operation begins.
However, the mutilplier is eliminated digit-by-digit as
the operation progresses. If the multiplier is to be re­
tained, it must be stored in another area in memory.

Word marks must be set in high-order multiplier
and multiplicand positions.

B-Fiejd Length

Because the product is developed in the B-field, the
field must be long enough to accommodate repetitive
additions of the A-field and still not interfere with
useful multiplier positions. Therefore the number of
digits in the multiplier plus the number of digits in
the multiplicand plus one equals the number of posi­
tions that the B-field must contain.

Concept of Machine Multiplication

The following example is used to aid in explaining
the concept of multiplication on the IBM 1410 Data
Processing System:

v +
Multiplier XXX

v -
Multiplicand YYYYY A-address B-address
Product Field (before multiplier is moved in) zzzzzzz?:z

Because the multiplier has three positions and the
multiplicand has five positions, the product field
(B-field) has nine positions. Before the CPU decodes
the multiply instruction, an image of the multiplier
must be stored in the high-order B-field positions;
this is usually accomplished with the zero and add
instruction. The product field (B-field) must contain
xxxzzzzzz when the multiply operation begins.

Before the CPU performs the first add scan in the
operation:

1. Characters to the right of multiplier digits in the
product field are replaced with zeros, and

2. Zone bits in the units multiplicand (A-field) and
multiplier digits are analyzed to determine the signs
of the respective factors. If signs of both the A-field
and the multiplier are alike, a plus sign is set over the
units position of the B-field. If signs of the A-field and
the mutliplier are different, a minus sign is set over
the units position of the B-field.
The B-field in the example becomes :Xxxoooooo.

In other CPU operations in the execution of the
multiply instructions:

1. Data in the A-field are true added or complement
added into the B-field. Each multiplier digit specifies
the number and type of add scans that should be
executed (the number of times that the A-field is
added into the B-field).

2. The CPU shifts when action that each multiplier
digit designates is complete. The shift allows the add
scans that the next multiplier digit requires to be­
gin at the next product field position in high-order
sequence.

3. Multiplier digits are incremented or decremented
by one before or after add scans until all multiplier
digits are either reduced to 0 or increased to 9. The
multiply operation ends when a 0 with a word mark
is sensed in the multiplier.

Rules of Machine Multiplication

To execute a multiply instruction, the CPU applies the
following rules:

1. A multiply operation begins with the true add
latch set and ends with a true add scan.

2. A multiplier digit of 1, 2, 3, or 4 causes:
a. The multiplier digit to be decreased by one.
b. The CPU to perform a true add scan.
c. The CPU to shift after the multiplier digit is re­

duced to 0.

3. A multiplier digit of 5, 6, 7, 8, or 9 causes:
a. The multiplier digit to be increased by one.
b. The CPU to perform a complement add scan (ex­

cept as noted in rule 6).
c. The CPU to shift after the multiplier digit is in­

creased to 9.

4. When a shift and a change from complement add
to true add scan occur, the multiplier digit is not de­
creased before the true add scan.

5. When multiplier digits designate that a true add
scan follow a complement add scan (as in the cases
of multiplier digits 18, 47, 36, 25), an extra true add
scan is taken after the shift ending the last comple­
ment add scan.

6. When the multiplier digit 9 follows the multiplier
digit 5, 6, 7, 8, or 9 (for example 97, 95, 98, 99), the
CPU does not perform a complement add scan when the
high-order 9 is sensed; a shift is signalled immediately.

7. When performing complement add scans, the
complement of the A-field (multiplicand) is added to
the B-field the number of times equal to the com­
plement of the mutliplier digit, except as noted in
rule 6; for example, the multiplier digit 8 specifies that
the A-field be complement added to the B-field (rule
3b) twice; the tens complement of 8 is 2. However,
the multiplier digit is only increased to 9 (rule 3c).

8. The zero balance indicator turns on when the
product field is 0 at the end of a multiply operation.

9. A multiplier digit of 0 signals a shift immediately;
no add scan is taken.

Arithmetic Instructions 19

Machine Multiplication Examples
The following examples illustrate the manner in which
the CPU executes specific multiply operations:

EXAMPLE 1

A multiplier units digit of 1, 2, 3, or 4 causes a cor-
. r~ponding number of true additions of the A-~eld
(multiplicand) ·to low-order positions of the product
field (B-field) . Before each true add scan, the multi­
plier digit is decreased by one until the digit is re­
duced to 0. When the multipliei; digit is 0 and the
subsequent true add scan is complete, a left shift is
fQrced, causing:

1. The tens position of the multiplier to control the
number and type of add scans.

2. The add scans to begin in the tens position of the
product field.

This procedure is repeated for each position of the
multiplier until the action that each multiplier digit
specifies is complete.

Example: 203 x 1625

Read out 3 and reduce
True add

Read out 2 and reduce
True add

Read out 1 and reduce
True add

Read out 0 and shift
Read out 0 and shift
Read out 2 and reduce

True add
Read out 1 and reduce
True add
Read out 0 end op

EXAMPLE2

B-field

00329875

A units multiplier digit of 5, 6, 7, 8, or 9 causes the
complement of the A-field to be added to low-order
positions of the product field. The complement of the
multiplier digit detennines the number of complement
add scans required. The multiplier digit is incremented
by one after each complement scan until the digit is
increased to 9. When the required number of com­
plement ad scans (as specified by the units multiplier
digit) have been taken, a left shift is forced, causing:.

1. The tens position of the mutliplier to control the
number and type of add scans.

2. The add scans to begin in the tens position of the
p~oduct field. This procedure is repeated for each poSi­
tion of the multiplier until the action that each multi­
plier digit specifies is complete.

If the high-order multiplier digit (the digit con­
taining the word mark) is 5, 6, 7, 8, or 9, the CPU per-

forms a true add scan after the last complement add
scan and the shift have been taken.

Example: 7 x 1625

. Add complement of A-field
Increment by one
· Add co~plement of A-field

Increment by one
Add complement of A-field

Shift
True add A-field·

Multiplier

To o o o o
9 8 3 7 5

8 9 8 3 7 g
9 8 3 7 5

9 9 6 7 5 0
9 8 3 7 5

~ 9 5 1 2 g
1 6 2 5 • +

Endop 011375

Complement addition for multiplier digits 5, 6, 7, 8,
and 9 saves processing cycles and time. For example,
a multiplier digit of 7 causes, instead of 7 true add
scans, only four scans total.

EXAMPLE3

When a multiplier digit of 9 is sensed after a multiplier
digit of 5, 6, 7, 8, or 9 (95, 96, 97, 98, 99), the high­
order · 9. in the multiplier does not require a com­
plement scan. The high-order 9 signals a left shift
immediately. ~

When multiplier .digits designate that a true add
scan follow a complement add scan, an extra true add
scan is taken after the shift ending the last com­
plement add scan. The multiplier digit is not decreased
before the true add scan.

A multiplier digit of 0 signals a left shift im­
mediately.

Example: 19910 X 22 ·

Read out 0 and shift
Read out 1 and decrease

True add
Shift
Read out 9 and comp add

Read out 9 and shift (9 follows 9)
Read out 1 and true add

(switch from comp add to true add)
Read out 1 and decrease

True add
End op

Address Registers

In a multiply operation:
a. The AAR scans the A-field.

Multiplier

fg9 1 o 'o o o
I 9 9 o o o o o

22
{990022g
1990022

9 7 8
l999802~
l 9 9 9 8 0 2

2 2
00218020

2 2
00438020

b. The BAR scans the product field (B-field).
c. The CAR retains the address of the units position

of the multiplicand (A-field).
d. The DAR retains the address of the product field

position used at the start of each scan. The DAR

is modified by -1 on a shift cycle.
At the end of the multiply operation, the AAR con­

tains the address equal to the original A-address minus

,.---.. \

the length of the A-field; the BAR contains the address
equal to the original B-address minus. the length of
the B-field.

CPU Operation

To more clearly explain CPU action when performing
a multiply operation, execution of tl;te following ex­
ample is used to supplement descriptions of CPU

functions. Figure 11 shows a step-by-step breakdown
in the execution of the following example:

Multiplier 82 v +
Multiplicand (A-field) 181
Product Fjeld (B-field when the multiply operation

starts) 82XXXX

The CPU must first locate the units position of the
multiplier. To accomplish this, the CPU scans through
the A- and B-fields and replaces B-field characters with
zeros until an A-field word mark is sensed. In the
example, three A- and B-cycles are required to read
out the A-field word . mark; the B-field changes to
Mxooo.

The A-field word mark sets the extension latch, and
the CPU takes another A- and B-cycle. During the
A-cycle, the CAR is used to read out the units position
ofthe A-field; the units position A-field character (con­
taining the sign of the A-field) is stored in the A-data
register. During the B-cycle, the extra position in the
product field (the position that contains neither a 0
nor part of the multiplier) is repla~e,d with a .0. In
the example, the B-field changes to 820000.

Another B-cycle follows. The units position of the
multiplier (containing the sign of the B-field) is read
out of storage and gated onto the B-channel. The
A-field character in the A-data register is gated to the
A-channel. The MQ latch is set to identify characters
on the A- and B-channels as units position characters
of the multiplier and the multiplicand. Signs over the
A- and B-channel characters are analyzed to determine
the sign of the product field. Like signs (as in the
example) set the plus latch; unlike signs set the
minus latch.

The B-channel character (units multiplier digit) is
examined to determine whether true or complement
add cycles are to be taken: If the multiplier digit is
1, 2, 3, or 4, the true add latch is set, and the digit is
decreased by one and returned to the units multiplier
position in storage. To accomplish this, the digit 9 is
inserted in the A-channel side of the adder, and the
B-channel character (1, 2, 3, or 4) is inserted in the
B-channel side of the adder. The two digits are added,
and the high-order carry is dropped, effectively sub­
tracting one from the B-channel digit. For example,
when the digit 2 is inserted in the B-channel side of
the adder, the digit 9 is inserted on the A-channel
input to the adder. The digits are added, and the high-

order carry is dropped; the adder ouput (1) is stored
in the units posit.ion of the multi12lier in memory. The
B~field in the example becomes 810000.

If the multiplier digit is 5, 6, 7, 8, or 9, the com­
plement add latch is set, and the multiplier digit is
returned to storage unchanged.

In addition to setting the true add or complement
add latch, the units position multiplier digit sets the
first, second, or no scan latch for the subsequent D­
cycle. If th~ digit is not a 0, the no scan latch is set;
if the digit is a 0 without a word mark, the first scan
latch is set; if the digit is a 0 w.ith a word mark, the
second scan latch is set, and the operation ends when
the subsequent D~cycle is complete. In the example,
the units digit in the multiplier is 2, causing the no
scan latch to turn on.

When the sign analysis is complete and the no scan
and true add or complement add latches are set, the
CPU takes a D-cycle to set the sign of the product over
the units position of the product field (B-field). The
product field in the example then becomes SlOOOO.

The CPU scans the A- and B-fields an.d true adds or
complement adds the A-field to the B-field. The num­
ber and type of add ·scans performed are determined
by the numeric value of the multiplier digit. In the
example, the units position multiplier digit was 2 be­
fore the reduction, indicating that the A-field must be
true added to the B-field twice. The CPU takes A- and
B-cycles to read out multiplicand and product field
characters to execute the addition. Before each A-field
to B-field true addition is begun, the multiplier digit
is read out and reduced by one. At the end of the
second true add scan, the B-field in the example be-

v •
comes 800362. When the multiplier digit is 5, 6, 7, 8,
or 9, the complement of the A-field is added to the
B-field the number of times that the complement of
the multiplier digit specifies; for example, the multi­
plier digit 8 indicates that the A-field must be com­
plement added to the B-field twice (the tens com­
plement of 8 is 2). The digit is increased. by one after
the first complement add scan; in cases of other digits
designating complement add scans, the digit is in­
creased by one after each A-field to B-field addition
until the multiplier digit is increased to 9.

When the designated number of true add or com­
plement add scans are complete, the next multiplier
digit is examined to determine whether true or com­
plement add scans are required.

When action that each multiplier digit specifies is
completed, a left shift occurs, causing the subsequent
complement or true add cycle to begin at the next digit
in high-order sequence. In the example, a left shift
occurs when . the two true add cycles that the units
multiplier digit (2) designates are executed. Actions

Arithmetic Instructions 21

MULTIPLY PROBLEM: "B" FIELD I ~J t I f I I I
· ' -LOCATION OF DAR

CYCLE AIR UNITS SCAN STORED D!GIT ADDER CARRY ADDER TRUE REMARKS
RO BODY lST ,118'' ON "8" NO "A" OR

EXTN 2ND,~D FIELD ASS EM 'CARRY COMP
OBJECTIVES MQ NO

.
' LOCATE- UNITS POS. A CAR v +

0 T UNITSA u l 0 OF MULTIPLIER 8 DAR ' UNJiil
ZERO- A AAR y l ' 0 0 T PRODUCT B BAR .. FIELD

A AAR '
B BAR

y . l 0 0 T

·A CAR x l 0 0 T U~ITSA.
'

.
B BAR

ANALYZE-SIGN &MULTCHAR B BAR MQ
'

l l l 2 c 9 T REDUCE.
STORE-SIGN ""'D DAR ·N 0 0 r UNITSB

v
0 8 l 0 0 0

TRANSFER- TRUE A CAR u .. 3 l l 0 c l T UNITS A
ADD - B DAR J.!tilli.i.
SCAN A AAR y 3 8 8 0 c 8 T

B BAR ' '
A AAR y 3 l l 0 c l. T
B BAR .

B BAR x 3 0 0 0 c 0 T
B BAR MQ 3 0 0 l c 9 T REDUCE

v
8 0 0 l 8 l

TRANSFER- TRUE A CAR u 3 2 2 l c } T UNITS A
ADD B DAR UNITS B
SCAN A AAR y 3 6 •6 8 c 8 T

: B BAR
A AAR y 3 3 3 l c l T
B BAR

B BAR x 3 0 0 0 c 0 T

B BAR MQ 3. 0 0 Ci c 9 T

MODIFY DAR -1 D DAR 3 ' C• . T SHIFT
ANALYZE-MULT.CHAR. B BAR MQ 3 8 8 8 c 9 T

v -8 0 0 3 6 2

TRANSFER- COMP A CAR u 3 5 5 6 c 8 s UNITS A

ADD B DAR TENS B

SCAN A AAR ?

B BAR
y 3 5 5 3 c l s

A AAR y 3 B BAR 8 8 0 c 8 s
B BAR x 3 9 9 0 c 9 s
B BAR MQ 3 9 9 8 c 0 s INCREASE

v
9 9 8 5 5 ·2

TRANSFER- COMP A CAR u 3 4 4 5 c 8 s UNITS A
ADD B ,DAR TENS B
SCAN A AAR c

B BAR
y 3 7 7 5 l s

A AAR y 3 6 6 8 c 8 s B BAR

B BAR x 3 9 9 9 c 9 s
~

B BAR MQ 3 9 9 9 c 0 s
MODIFY D AR-1 D DAR 3 ' T I iffi[T~I N"

v -
9 9 6 7 4 2

TRANSFER- TRUE A CAR u 3 8 8 7 c l T
UNITS A

ADD B DAR HUNDRED SB
S!=AN A AAR y 3 4 4 6 c 8 T

B BAR
A AAR y 3 l t 9 c l T
B BAR

END OPERATION B BAR x 3 0 0 9 c 0 T
v
0 l 4 8 4 2

Figure 11. Multiply Example

22

(·,

r

that the next multiplier digit (8) specify mµst begin in
the tens positlon of 'the B-field.

The nexf,multiplier digit reads out of storage and
set~ the true or complement add controls. The digit is
decreased by one and returned to storage if the true
add latch is set. The digit is returned to storage un­
changed if the complement add latch is set. The A-field
is then true added or complement added to tne B-field
as designated by the multiplier digit. The B-field in the

' \ ' v + J

example changes to 9967 42 after the shift and two
complement add scans are complete.

The multiply operati9ll cannot end with a comple­
ment add scan. hi the example, the high-order multi­
plier digit specifies two complement. add scans. A shift
and a true add scan must be executed after the second
compleme!1t ,ad.d scan. The B-field in the example
b~comes 014842. 1'he multiply operation ends when

·~ the 0 with a word mark is sensed in the multiplier. ·

Figures 12 and 13 shows detailed CPU action in the
,, execution of a multiply operation.

Questions on Multiply Operation

Answers to these review questions are in the Appendix.

1. List the multiplier digits that cause:
a. Complement add scans.
b. True add scans.

2. When the multiplier contains three digits and the
multiplicand contains five digits, how many storage
positions should be reserved for the product field?

·. 3. When is the multiply operation terminated?
4. Does the CPU move the multiplier to the product

field when executing a multiply instruction?
5. When the multiplier is 99:

a. How many complf!ment add scans are required
in the multiply operation?

b. How many true add scans are required in the
multiply operation?

y

6. When the multiplier is 828:
a. How many complement add scans are required,

in the multiply operation? ·
b. How many true add scans'are required in the

. multiply operation?

Arithmetic Instructions 23

Units, Body, or
·Ext L~tch On?

, Set No Carr¥ Latcn
A Ch WM?

No

16.20.20

Set Extension Latch

16.30.06

Set No Scan

12.30.05

Take a C Cycle

12.12.42

C AR Reads Out
Units Position

·A Field Char

Set MQ Latch

16.30 07

Set ht Scan

12 30 05

Figure 12A. Multiply, First Scan

24

Set Body Latch

16.30.

Regen 1st Scan

16;.43.01

Yes

Use D AR to RO U P
B Field Char

16;.41.01

Units Bod

Store 0 in B Field
without Zones

16.40.02

Regen True Latch

16.20.13

Units Position of Multiplier
is on 8 Ch; Un its Position
of Multiplicand is on

A

Multiply
Instruction

Set 'Units La,tch

16.30.02

Set 1st Scan Latch

12.30.03

Set True Add 8 Latch

16.20.1

Set True Latch

16 20 13

Take an A Cycle

12.12;.41

Is the Units
Leitch On?

Regen 1st Scan

12.30.05

Take o B Cycle

12.12.44

Un I ts Latch On?

16.30.03

Units, Body, Ext
or MQ Latch On?

(+

No

Ext

No

MQ

Set Minus Sign latch

The B.Ch Always
True Added

Bady or Ext Bod
Latch On?

Use BAR to RO
8 FieldChar

16.41.01

A Ch (-l:
Plus or Minus?

Use A AR to RO
A Field Chcir

16.41.01

B Ch

Set Plus Sign Latch

Insert a 9 on
A ChtoAdder

16 16

(\

('\

J.

Set 2nd Scan I.catch

16.43.01

BChWM?

From Figure 12A

Store 0 in B Field
Without Zones

16.40,02

Regen 1st Scan I.catch

16.43.01

0

Figure 12B. Multiply, Set Sign and/or Shift

1-9

5-9 B Ch Char

Store Adder Output
No Zones
16.40.02

Sot True I.catch

16.20.13

This Address When
Modified is Read into

the DAR Only

To Figure 12C

The 9 inserted on
A Ch to Adder Reduces·

B Ch Char by On

T<> Figure 12C

Arithmetic Instructions 25

[__,::..._\

From Figure 128

No

Is the Body or Ext
Ext Latch On? ,_ ___ _

Use A AR to RO
A Field Char

16.41.01

Use CAR to RO
A Field ahar
16.41.01

Regen Carry or
No Carry Latch

16.20.21-22

Regen Units, Body
or Ext Latch
12.30.06

Set No Carry Latch

16.20.20

No Is There an
Adder Carry?

16.20:20

Yes

Is there Yes

From Figure 128

Use DAR toRO
'B Field Char

16.41.01

Gate A Ch
to Adder
16.20.11

Yes

Yes

Units Bod

Set Carry Latch

16.20.20

an A Ch WM? ">-------

Figure 12C. Multiply, Add A-Field to B-Field

26

Is the Units
Latch On?

Is the Units,
Body, Ext, or
MQ Lat On?

1s the Units,
Body, or Ext
Latch On?

Is the Units,
Body, or

True

Ext Latch On?

No

Use 8 AR to RO
B FieldChar

16.41.01

>-'-M"-Q:::_ ____ --1 M To Figure 12D

Ext

Ext

Is the True ,
or Compl
Latch On?"

16.44.11

True

Set No Carry Latch

16.20.20

Compl

Insert 9 on A Ch
to Adder
16.20.11

Use 8 Ch Zones

16.40.01

Not 0 Bolance
Latch Remains Set

Is the True or
Compl Latch

On?

Is the
MDL Latch

On?

Com I

Yes

Set Carry Latch

16.20.20

End Oper
Start Instr RO

16.42.02

\.·>

r<

This Reduces the
B-Ch Char by One

in the Adaer

True or Comp!
Latch On?

Store 0 No Zones
No Zones
16 40.02

Figure 12D. Multiply, MQ Controls

True or Comp!
CLatch On?

Store Adder Output
No Zones
16 40.02

To Figure 12C

This Plus the
Corry Lotch \Set

On During the Ext
Cycle) Increase the B­

Ch Charby One,
in the Adder

Set Comp! Latch

16.20 13

Set Carry Latch

16.20.20

Arithmetic Instructions 27

SYNC i LOCATION fROGRAM:
I

ADDR SW 00012
I

~0010000200 I 00001 '
I 00012 100000200X

I
00024 OOOlb .,

r 00031

ft~ I 00099
I 00196

00996

LINE NAME LOGIC PAGE TEST POINT

"" ~ ~ ~ u w ~ u ~ ~I 1. LOGIC GATE B 11.10.11 C2J12C 'r---' 11---r-' 1----1 r---' 1----1 1----1

2. LAST INSN R,O. 12.13.05 C1H12G 11
H I ~

rl ~
3. UNITS 16.30.02 C2D16A .1- I

4. lST SCAN 12.30.01 C1E26A r 1--1 lJ r n I'--n r
I- I- I- I-

'
5. A CYCLE 12.12.01 C1H20C I- t---1 I---

t----i t-- r----
6, B CYCLE 12.12.02 ·C1H17C J!----1 1--__

7, R.0. AAR 14.71.30 CJ.C11G J

., J Jl_J u B. R,O. BAA 14.71.31 Cl!:ilH IL.__j

l-1 ' J ' J 9. R.O. CAR 14.71.32 C1C11E

JO. R.O, DAR 14.71.33 CJCJ2G 1-u J ,]
,t-i i--- u r 11. BODY' 16.30.04 C2GOSA

r-i r--- n 12. EXTN 16.30.06 C20!6C

Ir-- r
OB18A II 13. MQ 16.30.07

1--i

14. C CYCLE !2.!2.06 CJF19F-.,
15. D CYCLE 12.12.07 CJD03H

!6, NO SCAN 12.30.01 C1G24D
f j ~

r-i Ir-- r-1 r1 r r1 17. 3RD SCAN 12.30.02 CIE26H

18. LAST EXECUTE 12.12.51 C1H23B
n_

µ l ~ ll-J ~ ~ ll l~I 19. LOGIC GATE B 11.10.11 C2Jl2C t- ri---1 f-

Figure 13. Multiply Operation Timings

28

(."

Divide lnsttuction
The following example shows mathematical terms as­
signed to factors in a divide operation:

25 ~uotient
22) 570-Dividend

44
130
110
20-Remainder

'------1 Jivisor

Instruction Formats

Formats for the divide instruction are:

OPCODE A-ADDRESS
v

B-ADDRESS

% xxxxx xxxxx
v
% xxxxx
v
%

The A-address in the instruction specifies .the units
position of the diVisor; the B~address designates the
storage location containing the high-order position of
the dividend. If the divide instruction does not have
a B-address, the contents of the BAR from the previous
operation locate the high-order position of the divi­
dend. If neither an A- nor B-address is included in

: the instruction (no address chaining), contents of the
AAR and BAR from the previous operation . provide A­
and B-addresses, respectively, for the divide operation.

The divide instruction causes the dividend (located
in the B-field) to be divided by the divisor (located
in the A-field). 'fo effect the divide operation, the
CPU executes a series of complement add scans and
right shifts to repetitively subtract the divisor from
the dividend. The quotient is developed in high.:Order
B-field positions; the remainder is located in low-order
positions in the B-field; the dividend is destroyed as
the divide operation proceeds.

Programming Consider.ations

The program containing the ~divide instruction must
establish certain conditions before the CPU begins the
division. Conditions that must be considered before
the divide operation begins are:

Addressing of Factors: The dividend is located in·
the low-order positions of the B-:6eld. Puring the di­
vide operation, the quotient is developed in high-order
B-field positions, and the dividend is destroyed. If the
dividend is to be retained, it must also be stored in
another area in memory.

Length of the B-field: ·Because the quotfont is de­
veloped in the B-field, the field must be long enough
to accommodate repetitive complement additions of
the A-field and still not interfere with quotient posi­
tions being developed. Therefore, the ·length of the
B-field is determined by adding 1 to the sum of the
number of digits in the divisor and dividend; for ex-

ample, the problem 5001 + 10 requires that the B-:6eld
contain s~ven positions. ·
4 (positions in dividend) +. 2 (positions in divisor) + l = 7
(positions in .B-field) ·

.Signs: The divisor can either be signed. or unsigned.
If no zone bits are in the units p<)sition of the divisor,
the divisor is considered positive. A sign must" be set
in the units position of the dividend (located in the
uriits0 position of the B-field) to stop the divide oper­
ation. The dividend sign must consist of A- and B-bits
for plus, -0r B-bit for minus. At the end of the oper­
ation, the sign of ·the quotient follows algebraic sign
rules (Figurel4), and appears over the units position
of the quotient; the sign of. the. remainder is the sign
of the original dividend.

Oiyisor Sign + + - -
Dividend Sign + - + -
Remainder Sign + - + -
Quotient Sign + - - +

Figure 14 .. D~vide Sign Control

Zeros: the · quotient field (the high-order B-field
positions that do not contain the dividend) must con­
tain zeros when the divide operation begins. Moving
the dividend into the B-field by n'.ieans of the zero and
add instruction insures both the presence of zeros in
high-order (quotient) positions of the B-field and
proper signing of the B-:6eld.

Word Marks: A word mark must be set over the
high-order position of the divisor. AB-field word mark
is not necessary; if, however, a word mark is set in the
B-field, it is ignored, but retained;

ConceP,ts of Machine Division

To execute a divide operation, the CPU performs a
series of sul:,tractions by complement adding the
divisor to the dividend, starting with the high-order
dividend position. A carry from the high-order position
indicates a successful complement add scan and in­
creases the quotient field by one. Successive comple­
ment add scans are performed until no adder carry

,. from the high-order position is detected, indicating
that the previous subtraction was unsuccessful (over­

. d:raw) and that a cQrrection scan must .be taken.
In a correction scan, the divisor is true added to the

dividend to .restore the dividend to its value preceding
. the unsuccessful subtraction. If the divisor is not true

added to the units dividend position~. (located in
the units positfon of. the B-Beld), a right shift is taken
after the . correction scan. The CPU repeats the oper­
ation, complement adding the divisor to the dividend,

Arithmetic Instructions 29

starting with the next dividend digit in low-order
' sequence.

When a correction ·scan causes the divisor to be
added W the units dividend position (defined by a
B-bit in the standard sign), actions to set the quotient

'·· sign "'1nd end the divide operation are initiated.

At the end of the operation, high-order B-field posi­
tions contain the quotient; low-order B-field positions
contain the remainder. Zone bits in the units quotient
and remainder positions indicate the signs of the
factors. When the divide operation is complete:

1. The number of digits in the divisor (A-field)
equals the number of B-field positions containing the
remainder.

EXAMPLE 1

. 2. The number of digits in the origjnaf dividend
equals the number of B-field positions cont.aining the
quotient.

3. A numeric zero in the B-field separates the re­
mainder from the quotient; for example, when the

+ y + + +
system divides 6876 X 55, the B-field contains 0125001
at the end of the operation. Because the divisor con­
tains two digits (55), the two low-order B-field posi-

+.
tions contain the remainder (01). Four digits were in
the original dividend. (6876), therefore, the four high­
order positions in the B-field . contain the quotient
(0125). A numeric 0 separates the remainder from the
quotient.
Examples 1, 2, and 3 following illustrate the theory of
machine division:

147 + I2
v +

Complement add divisor to dividend (high-order position)
No adder carry from high-order position

0 0 0 1 4 7 (B-field before division)
9 8 8

0 9 8 9 4 7
1 2 Correction scan (true add divisor to dividend)

B-field is restored to value preceding overdraw
Shift right and complement add

Successful subtraction
Complement add

No adder carry from high-order position
.Correction scan (true add divisor to dividend)

B-field is restored to value preceding overdraw
Shift right and complement add

Successful subtraction
Complement add

Successful subtraction
Complement add

No adder carry from high-order position
Correction scan (true add divisor to dividend)

B-field is restored to. value preceding overdr.aw

Because divisor was true added to units position of B-field
(indicated by presence of B-bit), apply sign to quotient and

0 0 0 .1,4 7 .
9 8 8

0 1 0 0 2 7
9 8 8

019907
1 2

0 1 0 0 2 7
9 8 8

0 1 1 0 1 5
9 8 8

0 1 2 0 0 3
9 8 8

0 1 2 9 9 1
I 2

0 I 2 0 0 3
v + •
0 1 2 0 0 3

end operation.
Because there are three digits
in the dividend (147), the
three high-order positions in
the B-field at the end of the
divide operation· contain the

Because there are two digits
in. the divisor (12), the two
low-order B-field positions
contain the· remainder at

· the end of the divide oper-
. quotient. ation. ·

A 0 separates
the quotient from
the remainder.

EXAMPLE 2

30

.,, + "' ...
~ 14980 + 65

Complement add divisor to dividend (high-order position)
No adder carry from high-order position

Correction scan (true add divisor t-0 dividend)

Shift right and complement add
No adder carry from high-order position

·Correction scan (true add divisor to dividend)

v +
0 0 0 1 4 9 8 0

9 3 5
0 9 3 6 4 9 8 0

6 5
0 0 0 1 4 9 8 0

935
0 0 9 4 9 9 8 0

6 5
0 0 0 1 4 9 8 0

(B-field before division)

Shift right and complement add
Successful subtractiofi

Complement add .
Successful subtraction

Complement add
No add~r carry from high-order,position

Correction scan _(truE! add divispr to dividend)

· Shift right and complement add
Successful S\lbtraction

Complement add
SU0cessful subtraction

Complement add
Successful subtraction

· Complement add
No:adder carry from high-order position

Correction scan (true add divisor to dividend)

Shift ·right and complement add,
No addeJ" carry from high-order position

Correction scan (true add djvisor to dividend) ,
Because divisbr was true added to units position of B-field1

(indicated by presence· of B-bit) ,. apply sign tO. quotient

0 0 0 1 4 9 8 0
g 3 5

0 0 1 0 8 4 8 0
' 9 3 5
o o 2 o 1 9 so·

9 3,5
00295480

6 5,
0 0 2 0 ·1 9 8 0 '

9 3 5
0 0 2 1 () 3 3 0

·, 9 3 5
0 0 2 2 0 6 8 0

9 3 5
0 0 2 3 0 o, 3 0

9'3 5
0 0 2 3 9.3 8 0

' 6 5

0023003'0
935

0 0 2 3 0 9 6.5
'6 5

I 00230030.

0 0 2 3°0 0 3 0 and end operation. c ·

Because there ·are five digits
iri the dividend (149li0), the
five high-order positions ' in
the B-field at the end of the
divide operation contain the

Because ther'e are two digits
.. in the divisor (65) , tire two

low-order B-field positions con­
tain the remainder at the end
of the divide operation.

EXAMJ>LE 3

uotient. · · ' · ·

v - " 1500 + 1000

A 0 separates the quotient
from the remainder. ·

0 0 0 0 0 1 5 0 0
9 0 0 0

(B-field. before division)
Complement add divisor to dividend (high-order)

No adder Carry from high-order position "' .
' Correction .scan (true add diyisor to dividend)
> B-field restored to value preceding overdra'f;

Shift right and complement add
No adder carry from high-order position

Correction scan (true add divisor to dMdend)
a-field restored to value preceding overdraw

Spift right and complement"add
No ~dder carry fro~ high~ordet position

Correction scan (trqe add divisor to dividend)
B-field restored to value preceding overdraw

Shift right and co:u,iplement add
Successful subtraction

Complementadd
No adder carry from high-order position . , ··

Correction scan (true add divisor to dividend)
B-field restored to value preced~ng overoraw

~ Because divisor was true added. to units position of B-field
(indicated by presence of B•bit), jlpply sign to quotient
and end opetation. \

0 0 9 0 0 1 5 0 0
1 0 0 0

0 0 0 0 0 1 5 0 0
9 0 0 0

0 0 0 9 0 1 5 0 0
1 0 Q 0

0 0 0 0 0 1·5.0 0
9 0 0 0

.o 0 0 0 9 1 5 0 0
. ~ ·1 0 0 0 '

0 0 0 0.0 1 5 0 0
9 .o o' o, '

0 0 0 0 1 0 5 0 0
9 0 0 0

0 0 0 0 1 9• 5· 0 0
i 0 0 0

0 0 0 0 1 0 5, 0 0

o o·o o i o 5 o o ·

·Because there' are four ·digits in the dividend (1500), the •
foti.r high-order positions 1n
the B-field at the end of .the'
divide operation contain the ·

Because there are four digits in
the divisor (1000), the four IowC
order B-field position8 contain the
remainder at the end of the divide
operation. .

uotient. ·
e.,. O separates
the quotient from '
the remainder.

Arithmetic Instructions 3i

n

Program Conditions that Cause Divide Overflow

The program designating the divide operation inust b~ ,
constructed to anticipate conditio:ns listed b.elow that
can cause a divide ~vecllow indication:

'1. If the 'quotient field is two or more positions short,
the divide operation usually results in a ~vide over.
How. If the field is one position too. small, no ovecllow
in~ication is given, even though the units position of
the adjacent field is changed. A quotient field too

' small ~i:S a programming error, and is not checked 'by
the system.

2. Division by 0 always results' in·a. divide ovecllow
indication. ·

3" Because only one quotient digit can be developed
at a time, it . is important to address· the. high-order
position of the dividend (B-address . in the .divide· in­
struction)' .. Tbis insures that the. first divide operation
results jri a single high-order quotient digit. An im­
properly {lddressed dividend can cause a divide over­
flow if the result of the first. series of compiement add
scans produces a .quotient of . greater than 9 ~Figure ·
15) ..

;

Exam pl~ 90+9

)
INCORRECT

.
CORRECT ~

The first complement 01) 9 0 The first complement 0.09 0
ad1:1'scan does not begin _ll CA*l odd scan begins ot _LL_·
fat the high-order 01 81 the high-order dividend 1 0 0 0
dividend position. _llCA2 positfon. -2..L

0272
.

1 91 0
) __ 9_1 CA~ ' _9_·

0363 1000
91 CA 4 -=...ti.

) ~
\ 0454 I 0 9 1

__ 9_1 CA 5 / __ 9

' 0545 1000
__.2...L CA 6
0636

--2..L CA·7
072]
__ 9_1 CA 8
0818
__ 9_1 CA 9

/ 0909
DIVIDE OVERFLOW __ 9_1 CAIO
First series of comple- •. 1 000

r
ment add scons produces
o quotient of greater 1

I
than 9 ,,_,,

*CA is abbreviation for complement ada scan

Figure 15. Examples of Dividend Addressing

Address Registers

·In a multiply.·operation: . .
a. The AAR scans the A~field {divisor).
b. The :BAB. scans the dividend positions used in

each scan. c

c. The CAR retains the address of the units posi-
tion of the 0divisor. . .

32

d. The DAR ~etains the, address of the po~ition in
the dividend field used at th~ start of each scan;
the DAR is modified by + 1 on shift cycles.

At the end of the divide operation, the IAR contains
the adch:ess of the next sequential instruction; . the AAR.

contains the address equal to the orfginal A-addres~
minus the number of characters in the A-field; the .BAR

contains the address of the,,.tens position of the quo-
tient field. · '

CPU Ope~tion
To perform the divide operation, the CPU executes A­
and B-cycles to read out divisor (A-field) !Mld dividen~ ,
(B'-field) characters. A-field characters are gated.to the·
A-data register on A-cycles and to the A-channel on
succeedingB-cycles. B-field characters are gated.to the
B-channel. on B-cycles. The adder unit true or com-·
plement adds th~ A-channel character to the B-channel .
character as determined by the ON and OFF states of

' the true and complement latches. 'fhe .adder unit out­
\ put is gated through assembly to storage.

The high-order ch~racter in the divisor contains a
defining word mark., The A-field chaJacter containing
the word mark i~: reaq from storage and set in the
A-data register during a normal A-cycle. On the
B-Cycle that. follows, the high-Order divisor digit is·
gated to the A-channel .arnf combined with tl!,e cor­
r~s}:>onding B-channel character iil Jthe adder. The

· adder output is gated through th~ assembly unit to
storage. Because the last character in the A-field has , ·
been processed (as indicated by the A-channel word

' mark), . the extension latch is set, initiating another
(the second . suceessive) B-cycle. ·

End of Correction Scan and Shift Cycle
When the , CPU is· pedorming a· correction scan (true
addition) and the extension latch initiates the second
successive B~cycle,;the next B-fiefd character in high:­
order sequence is read out of storage and gated onto

c the B.,channel. The a~der unit ()9mbines the B-channei
ch.aracter With a 0 automatically inserted on the A­
channel input to the adder; the adder.output.is gated
through. the assembly µpit to st()rage, ending the true
add (correction) scan. Shift and .complement add
cycles follow. re ' •

To accomplish the shift, the CPU sets the second
scan latch and takes a D-cycle to increase the DAR ad­
dress by one. Tpe character read out of storage on the

. D-cycle is returned to its storage location unchanged:
· At the end of the D.:cycle, the units, c:omplement~ and
third scan latches. ate set, initiating a complement add
scan. The CPU use5 the·CAI\ to read out the units posi­
tion of the A-field and the DAR (modified by + 1 in
the preceding shift · cycle) to . read . out the B-field

~ ..

..-.._,
\

.~

1.

. ? '\

.('

:i r

~

.. f'

('

/ '·

/ '.

f'·

~

.~

r--..

~ r--..

.,.

!'""

r,

r

r

('

'·'

character. A- and ~B-field characters are read out of
storage bn alternate A- and B-cycles until the.d.ivisor
digit containing the word mark is. sensed on the A­
channel again.

End of Complement Add Scan

When the CPU is performing a complement add scan
and the extension latch initiates the seeond successive

. B-cycle, the .next B-field character in high.:order se­
·quence is read out of storage and gated onto the B­
channel. The adder unit combines the B-channel char­
~cter with a 9 automatically inserted on the. A-channel
input to the adder; the adder output is gated through
the assembly unit to storage. If the sum of the B­
channel character and the 9 inserted on the A-channel
input to. the adder does not require a carry, the re­
duction scan (complement add scan) was unsuccess­
ful, and ·the complement add scan ends .. The CPU then
takes a true ad scan to restore the dividend to its
value preceding the unsuccessful subtraction. To. ini­
tiate the true add scan, the trlle, units, and third ~can

' latches are set, and the CA1l and DAR are used to ad­
dress storage on the Ql'st A- and B-cycles, respectively,
in the true add (corr~ction) ,scan.

If the sum of the B-chann,el character and the 9 in-:­
serted on the .A-channel input to the a8der req\lires a
carry, the MQ and carry latches are set, and the com-·
plement latch is regenerated. The ON states of· tlie
complement and MQ latches indicate a successful re-

1 duction scan and initiate another (the thir'd successive)
B-cycle to increase a quotient digit by one. During the
:B-cycle, a digit in the quotient field is read out of
storage, . gated onto the B-channel, and into the ~adder
unit. A 0 is automatically inserted on the A-channel
input to the adder. The adder combines the B-channel ·
character (a quotient digit) with. the carry that re-·
suited from the additwn on the previous B-cycle, in­
creasing the character by one. The character is. gated
to storage. If the sum of the B-channel character and
the carry is greater than 9, requiring the carry latch
to be set again, the overflow latch is set, and the ,
divide operation is terminated. No carr)' should result
from the addition performed when the MQ and com• ·
plement add latches are set. If the addition does not
produce a carry, the successful reduction scan ends,
and. another. complement add scan is begun. The MQ

latch is reset, the units latch is set, and ·the c.A:R and
DAR are used to read out A- and B-field characters,
respectively.

Set ~Quotient Sign and End Divide

On the first A- and B-cycles in the last correction scan
in the divide operation, characters in the units posi-

\ .. . • r

tions of the A- and B-fields are read out of storage~ The
charactfilr in the units positfon of the.A-fleld contains
the divisor sign. The character Jn 'the units positiefn of
the B-field contains the dividend sign .. Only the units
character in the Meld can contain a B-bit. When a
B-bit is detected on the B-changel ht a true a.d,d scan,
signs of Characters on the A~ and B-channels are an­
alyzed. and the plus latch or minus latch and the
MDL (multiply divide last) latch are set. The cPu,takes ·
A- and B-cycles to execute the true add scan In the
normal manner. The first charaeter gated to storage in
the scan.• takes the B-channel sign; the remainder al­
ways takes the sign. of the original dividend. Because
the MDL latch is' set, shift and complement.ad<f cycles
are not taken when the 'true add .scan is, complete,' but
rather the MQ latch is set, , and the true latch· is, re-:
generated. A B-Cyc.le is taken to read the units .d'igit
in the quotient field out of storage and onto the B­
channel. The adder unit combines.the units quotient'
field digit with: , · · ' ·

1. A 9 automatically inserled on the A-channel input '
to the adder.

2. J'h~ ~ left over from the previous correction · ,
scan. The carry latch' is set at the end of each cor­
rection scan: but the carry is used only when the MDL

latch, is set. ·
Therefore, when the adder unit completes the addi· .

tion~ the output . digit equals. the original B-channef ·
input digit, and the carry latch is set. .

(Units Quotient Field Digit + Carry + 9 = Units Quotient "
Fieltl Digit + 9)

The correct quotient sign (as determined by the on
state of the plus latch or m.inus latch) is set over the
output digit from the adder unit. The digit and the
sign are returned to storage. At the end of the B-cycle,
the divide operation ends. ·

Figure 16 uses· a specific example to illustrate the
step-by-step action that the CPU performs to execute
the divide instruction. Figure 17 is a data flow 'diagram
of the divide .·operation. ·

Questions on Divide Operati.on /

Answers to these.review questions are in the Appendix.
1. What ,fxmdition causes the cPU to set the divide

overfl,ow latr:;h?
2; a. Why is a correction scan necessary?

b. When does the.CPU recognize an unsuccessful
reduction? ·

3. When are D-cycles taken?
4. When is the multiply divide latch set?
5. When are ·the cAii and DAR .used in the divide

operation?
(!. When does the CPU set the quotient sign?

Arithmetic Instructions 33

DIVIDE PROBLEM:

OBJECTIVES

REDUCTION- COMP
ADD

SCAN

OVERDRAW

' CORRECTION-TRUE
A~D

SCAN

MODIFY DAR+ 1

REDUCTION~ COMP
ADD

SCAN

OVERDRAW

CORRECTION-TRUE
ADD
SCAN

CYCLE

A
gr

A
B

A
8

A
B

D

A
B

A
B

A/R
RO

CAR
DAR

AAR
BAR

BAR

CAR
DAR

AAR
BAR

BAR

DAR

CAR
DAR

AAR
BAR

B BAR

A CAR
B DAR
A AAR
B B Al!

BAR

MODIFY DAR+ 1 D DAR

REDUCTION- COMP A CAR

B FIELD

UNITS
BODY

E~

u

y

x

u

x

u

y

x

u

y

x

u

v +

lololol7l2lol9I A FIELD

l LOCATION Of D AR

v
1 ·

9

STORED
'"B"
FIELD

'
2

I+

0922209
3

3 0

IQJ00lz209

2 '
3 7

3 8

3 9

3

3 7

Jooo1209

DIGIT ADDER CARRY ADDER
l ON 118" NO 11A 11

ASSM CARRY

7 c 4

0 ' c

9 0 :e 9

7 s

0 2 8

0 9 c 0

7 c 4

8 7

9 0

2 7

7 8 c 8

9

TRUE
OR

COMP

T

T

T

T

3 s s 0 c 4 s

REMARKS

UNITS A'
lOOOIS 8

UNITS A
10001S 8

SHIFT

UNITS A
JOO'SB

'UNITSA
JllO•S 8

SHIFT

ADD B DAR 1

SCANl--~A~1--A-A-R~1---y~-+-~3~'-f-1H-i-+3+++-~3--t-,--2~1---c~+-~l-_-+-~s~r,~~~~

B JAR

, UNITSA
·TENS B

ACCUMULATE QUOT

REDUCTION- COMP
ADD
SCAN

ACCUMULATE QUOT

' REDUCTION- COMP
ADD
SCAN

ACCUMULATE QUOT

REDUCTION- COMP
ADD
SCAN

ACCUMULATE QUOT

REDUCTION- COMP•
ADD
SCAN

ACCUMULATE QUOT

REDUCTION- COMP
ADD
SCAN

ACCUMULATE QUOT

B BAR

B B·AR

A' •CAR
B DAR

A AAR
B BAR

A
B

A
B

A
B

A
B

B

A
B

A
B

BAR

BAR

CAR
DAR

AAR
BAR

BAR

BAR

CAR c..
DAR

AAR
BAR

BAR

BAR

CAR
,!>AR

AAR
8 AR

B BAR

B 8 AR

A CAR
B DAR

A AAR
B 8 AR

8 .8 AR

8 BAR

Figure 16A. Divide Example

34

x 0

LI

y

x

u

y

x·
MQ

u

y

x

u

y

x
MQ

y

x

3 11 -1
loo16359

3 0 0

3 5 5

3 5 5
3, 2 _l

Jo o.12ss 9

3 5

3 6 6

3 4

3 3
lololJl4

3 0 0

3 la 8

3 3

4
lo.lnl.i

3 5 5

3 9

3 2 2

3 5 ...i.
k>los2959

3, 0

3 1 1

3. 2 _2._

3 6 6

5 'c

3' c

6

0 c

5

s
2 c

T
5 c:

'
6 c

3 _.C.

0 c

8

3

s c

9 c

0 ' s

1 ,' s

9

0

4

- 1

9 s '
0

4

s
9

.Jl.'

4'

s

9

4

.s

UNITS A
TENSB

UNITS A
TENS B

UNITS A
TENS B·

UNITS A
TENS 8

UNITS A
TENS fl

~.·

-f

··~

f'

/

.rtEDUCTION- COMP A CAR U 3 r \si 5 o c 4 s Uf).llTS A
ADD B D AR TENS B.
SCAN 1---A~+-A_A_R~+--y~-+-~3~++++~2-t-f+-~2--+~-1-t~-c--1~~-1-~s~1--~~~

1 B BAR !
B BAR X 3 1 1 2 C 9

ACCUMULATE QUOT B BAR MQ 3 7 7 6 C Jl

c REDUCTION- COMP A C AR
ADD B DAR

u 0 0 5 4 UNITS A
TENS B

SCAN l---A~+-A_A_R~+--y~-+-~3~++++~4++-+-~4--+~-2--+~-c--1,_,_,-l--1~-s~1--~~~

B BAR

B BAR · X 3 0 1 C 9 S

ACCUMULATE QUOT B BAR MQ 3 !j 8 _7_ _C_ _O_ S

REDUCTION- COMP A CAR U 3 1.1 5
ADD B DAR l"I 0 c 4 UN1TS A

TENS B
SCAN o---A~-+-A-A-R~+--y~-1-~~+-ti-+-+-+-+-+-+~~-1-~4-+~-~--1~~-1-~S~1--~~~

B BAR 3 p 5 • '- l

OVERDRAW B BAR X 3 ~ 9 0 C 9

CORRECTION-TRUE
ADD
SCAN

MODIFY DAR+ 1

REDUCTION- COMP
ADD

SCAN

ACCUMULATE QUOT

REDUCTION- COMP
ADD
SCAN

ACCUMULATE QUOT

REDUCTION- COMP
ADD
SCAN

ACCUMULATE QUOT

REDUCTION- COMP
ADD
SCAN-

A
B

A
B

D

A
B

A
B

A
B

A
B

CAR
DAR

AAR
BAR

BAR

DAR

S: AR
DAR

AAR
BAR

B.AR

BAR

CAR
DAR

AAR
·BAR

u

y

x

y

x
MQ

u

y

BAR X

BAR MQ

A CAR
B 'DAR

u
A AAR
B BAR "y

B BAR .x
B ' BAR

A CAR
B DAR

u

A· AAR
B BAR

y

B BAR x
ACCLIW 11 4. TE QUOT _! B AR

REDUCTION- COMP
ADD

·SCAN,

OVERDRAW

CORRECTION-TRUE
ADD
SCAN

END OPERATION

A
B

A
B

A
B

CAR
DAR

AAR
BAR

BAR

CAR
DAR

AAR
BAR

BAR
BAR

Figure 16B. Divide Example

u

y

x

u

y

x

3 0 0 5 5 T

3 4 5 c 8

a E o 9 c 0 T
o o aQ_ 4o 9

2 '

3 4 4 9 c 4

3 0 c
3 ? 3 4

3 1 l c 0

lo \olsl.!ll 4

3 9 9 4 c 4

3 3 •.

3 2 2 3 9

3 2 2 c 0

lQ.082239

3 4 ' .4 9 c 4 ' s

5 5 c j,

3 1 (9
3 3 3 c 0

lo lo\alall
3 9 9 c 4

3 6 6 5

3 0 0 9 s

3 4 4 9 c 4 s

3 8 8 6 c

3 9 9 0 9

!olos49B4

3 9 9 4 5 T

3 6 6 8 8

0 0 9 c 0 T
3 4 4 c 9

QUOTI NT REMAINDER

UN1TS A
TENS B

.i!1!tfT
UNITS A
UNITS B

UNITS A
UNITS B

UNITS A
UNITS B

UNITS A
UNITS B

UNITS A
UNITS B

UNITSA,
UNITS B

MDL
uoN11

Arithmetic Instructloris 35

Set:
Units Latch 16.30.02
First Scon Latch 12.30.03 ·
True Add B Latch 16.20.10

.Complement Latch 16.20_.13
.Carry latch 16.20.20.

·' ..----'-----.

.Yes

T.ll1ce on A Cycle
16.42.01

Use CAR to Read Out
Units Position
A Field Character

Take a B Cycle

16.42.01

f ' '

No

Use OAR to Read Out
Units Po<ition B Field

Character

Use BAR to Read Out
B Field Character

. 16.41.01

True
ls the True or
Coniphtment
Latch On?,

Co lament

ls There a
B Bit Over This
~horacter

Do A and B Characters
Hove some Sign (Both
Minus or Both Plu.s)?

No

Yes ls Units or Body
~----< L0tch On?

Set Carry Latch
16.20.20

y

True or Complement
Add A and B Channel
Characters In Adder

Gate Adder Output
Through Assembly to
Storage

Regen:

16.40.02

Is There An
Adder Carry?

True °' Complement Latch
16.20.13

·First or Third Scon Latch
.16.43:.01

Yes

Set Extension Latch
ro.30.06

A

Set No-Corry Latc:h

Set Body Latch
16.30.04

Toke an A Cycle
16.42.0l

Use AAR to Read Out
A Field Character

1

1 .41.01

Figure 17 A. Divide

36

~,

~

" ~\

/~,

-~.

--\

.~·

('

(

~··

from Figure 17 A

Yes~- Is Ext~~sion ----------< Latch On?

True Is True or
• Complement
LatcnOn?

Insert Zero on A
Channel 1!1put to
Adder T6.20, 11

Add A and 8 Chcmne
Characters in Adder

GOte-- Adder Output
Through Assembly to
Storage

J6.40.02

Is There An No
Adder Carry?

Set No-Carry Latch

16.20.20

Cam lement Is True Or Truo
Complement Latch

On?

Na Is There An
Adder Corry? >--'""---.

Set True
Latch

16.20.13

Set Third­
Scan Latch

16 43.01

Figure 17B. Divide

Take an A Cycle
16.42.01

Use CAR to Read
Out Units Position
A Field Character

16.41.01

A to Figure 17A

No(M~) .

{'(_ True Is True or Comp I
·..-----.. ment latch On?

Regen True Latch

16.20.13

Insert a 9 on A
Channel Input ta

Adder
16.20.11

Add 8 Channel
Chorcieter
+9+ Corry

Gate Adder Output to
'· Assembly

Set Quotient Sign {As
Determined By On State
of Plus or Minus Latch)
Over Char, and Gate ·char

, and Sign to Storage

Set Carry Latch

16.20.20

lnser:t a Zero on A
Channel Input to

Adder
16.20.11

Add 8 Channel
,Character

+ Zero + Carry

Gate· Adder Output
Through Assembly To

Storage
16.401.02

Is There An
Adder Carry?

Set Compfement
Latch

16.20.13

General Data Instructions· 37

General Data Instructions

When executing general data instructions, the CPU

manipulatc:is data within core storage. General data
instructions include move data, move characters and
suppress zeros, edit, compare, and table lookup.

Move Data Instruction
The move data instruction causes the system to transfer
data, either left to right or right to left, from the
A-field to the B-field with or without word marks. Data
are moved either by fields or records. When a data
field is moved, the operation can be programmed
to stop at:

1. A word mark in the A-field.
2. A word mark in the B-field.
3. A word mark in either field.

When a record is moved, the operation can be pro­
grammed to stop at:

1. A record mark in the A-field.

cl-Character Control Bits Control

2. A group mark-word mark in the A-field.
3. Either a record mark or group mark-word mark in

the A-field.
4. The first word mark sensed in either field.

Instruction Formats

Formats for the move data instruction are:

Qp CODE

6
6
b

A-ADDRESS

xxxxx
xxxxx

B-ADDRESS D-CHARACTER

xxxxx see Figure 18

The move data instruction causes the CPU to move
characters from left to right or from right to left,
serially by character, from the A-field to the B-field.
The cl-character in the instruction establishes the con­
ditions that control the operation (Figure 18).

The portion of the A-field transferred replaces only
the corresponding portion of the B-field. If data are
moved from left to right, the A-address specifies the

Address Registers after
Move ~eration**

IAR AAR BAR
I Transfer numeric portion of data field (A-field).

2 Transfer zone portion of data field (A-field).

4 Transfer word marks from A-field to B-field.

(No 1 , 2, or 4-bits) Scan for word marks, record marks, or group mark-word marks;
transfer no data from A-fielcl or B-field.

8-bit No A- and no B-bits Stop transfer or scan at first word mark sensed in either field.

(Move data *A-bit only Stop transfer or scan at A-field record mark.

left to B-bit only Stop transfer or scan at A-field group mark-word mark.

right) A- and"B-bits Stop transfer or scan at A-field record mark or group mark-word mark.

No 8-bit No A- and no B-bits Transfer or scan only one storage position.

(Move data *A-bit only Stop transfer or scan at A-field word mark.

right B-bit only Stop transfer or scan at B-field word mark.

to left A- and B-bits Stop transfer or scan at first word mark sensed in either field.

*When the A-bit cl-character modifier is used in instructions to write programs on tape, the odd parity mode should be used.
**See Appendix for list of abbreviations.

Figure 18. cl-Character Control Bits for Move Data Instructions

38

NSI A+LW B+LW

NSI A+LA B+LA

NSI A+LA B+LA

NSI A+LA B+LA

NSI A-1 B-1

NSI A-LA B-LA

NSI A-LB B-LB

NSI A-LW B-LW

~· s'

('

('

high-order position of the A-field; .the B-address
specifies the high-order B-field position. H <lata are
moV:ed from right to left, the A-address specifies 'the
low.:;nrder A-field position; the B-address specifies the
low-order positfon of the B-field. The position that con­
tains the· tenninating character is moved or replaced
as other characters in the field.

If the move data instruction does not designate an
A- or B-field address (no address chained instruction),
contents oJ the AAR, BAR, and op-modifier register
spe~ify the A-field, B-field, and cl-character, respec­
~ively, for the move data operation. If the move data
Jnstruction specifies an A-address and no B-address
or cl-character, the contents of the BAR and the op­
modifier register designate . the B-address and the
d-ch~racter, respectively, for the move data operation;

~ Scan Operation

The move data instruction, with the appropriate
cl-characters (no):-, 2-, or 4-bit)', is used for scan op­
erations in which no data are transferred from the
A"field to the B-field. The following example illustrates

\ (.

a scan operation: ·
·/

v
INSTRUCTION: D 00520 00720 Y

The 'most important results shown are the contents of
the address registers after the operation. No data are
transferred. The B-address rnust be part of the in­
struction, even if, as in the example, the scan is for
the first record mark in the A-field exclusively (the
cl-character, Y, has an &bit). Because the scan is from
left to right (the cl-character, Y, has an 8-bit), the
A- and B-addresses specify the high-order positions
of the respective fields. ·

A-field Before the Scan B-field Before the Scan

I N I E LT I =I= I 1 I 21 3 I 4 I 5 I I TI EI RI : I $ I 3 I 2 I 1 I 0 I
I I

00520 00720
AAR BAR

AAR BAR

CPU Operation

During last instruction read-out cycle:
1. The cl-character in the op-modifier register is

examined to determine whether the character cont~ins
an 8-bit.

2. Op code grouping lines condition controls to
execute a standard A-cycle first.
If the cl-character in the op-modifier register contains
an 8-bit, the .second scan control latch is set at next
to last logic gate of last instruction read-out cycle. If

the cl-character in the op-modifier register does not
contain an 8-bit, the first scan control latch is set.

During A-cycles in the mov~ data operation, the
AAR addresses storage. The A-field character that the
AAR specifies reads out of storage and is gated into the
A-data register.

A B-cycle follows each A-cycle in the operation.
During each B-cycle, the character that the BAR speci­
fies reads out of storage and is gated onto the B-chan­
nel; the character in the A-data register is gated to the
A-channel. The 1-, 2-, and 4-bits of the character in
the op-modifier register condition assembly controls
to replace designated portions of the B-channel char­
acter with corresponding portions of the A-channel
character. The resultant character is stored in the
B-field in memory.

During each B-cycle, the 8-, A-, and B-bit positipns
in the character in the op-modifier are examined to
determine whether conditions to end the move data
operation are met. If conditions, that the cl-character
specifies to end the operation are satisfied, more A- and
B-cycles are not executed, and the operation terminates
when the present B-cycle is complete.

Figures 19 and 20 show diagrammed explanations
of CPU operation in the execution of the move data
instruction.

The following controls are active when the CPU per­
forms the move data operation:

SIGNAL CONTROL LOGIC

1. Initiate A-cycle and RO first A-field character.
Set A Cy Ctrl A Cy First Op Codes . 12.12.41

Last Insn RO Cy
A Cy Ctrl Set A Cy Ctrl, Next to 12.12.20

Last LG
A Cy . A Cy Ctrl, LGB 12.12.01
RO AAR A Cy Ctrl, LG Special A 14.71.30

Read out AAR on A Cy Ops
Set Mem AR Gated LGA, 2nd CP 14.17.16

2. Set modifier controls according to 8-bit cl-modifier.
Set 1st Scan Ctrl Last Insn RO, Data Move 12.30.05

Op Code
Op Mod Reg Not 8-Bit

1st Scan Ctrl Set 1st Scan Ctrl, Next to 12.30.03
. Last LG

1st Scan 1st Scan Ctrl, LGC 12.30.01
Addr Mod Set to -1 1st Scan '14.71.41

NOTE: Second scan is set when operation modifier is 8-bit.

3. Set character into A-data register.
Sw B Ch to A Reg A Cy, LGD 15.38.01

4. Control A-cycle length.
ARS Dor T Op Codes Data Move Op Code 13.14.07
Std A Cy Ops A Cy ARS D or T Op Codes, A Cy · 13.14.06
Stop at F Std A Cy Ops, A Cy 12.12.30

5. Initiate H-cycle and RO first B-field character.
~ Set B Cy Ctrl Std A Cy Ops, A Cy 12.12.44

B Cy Ctrl Set B Cy Ctrl. Next to 12.12.21
Last LG

B Cy B Cy Ctrl, ,LGB 12.12.02

General Data Instructions 39

~

)

Move Data Inst
13.13.05

LIRO Cycle
12.13.05

Does Op Mod
Reg Contain

8 Bit

Set Units
Ctrl Latch
16.30.02

Use B Ch Numerics
15.49.05

Figure 19. Move Data

)) ')

Use A Ch Numeric:a
15.49.03

))))

Yes

')) /)

tore
Combined Chor

12.50.01

A,B, or 8 Bit
....-----Y~e~s-_,(in Op Mod Reg?\ No ,
I 13,12.02

8 Bit in
Op Mod Reg?

13.12.02

Is There a WM
Bit on A Ch?

12.12.50

lsJhere a WM

, A or B Bit in
Op Mod Reg?

12.12.50

Is There a WM
Bit on B Ch?
'12.12,50

'A or B Bit in
Op Mod Reg? \ Yes ,

12.12.50

Is There a
Record Mark
on A Ch?
12.12.50

A orB Bit
in Op Mod

Data Move Last
Execute Cycle

12.12.50

Ri
Next Instruction

Is There a
GM-WM on

A Ch
12.12.50

onAorBCh? \..!;·m·L..~9-~~~~~~~~~~~~~~-'-~~~~~~-'
12.12.50

)) ~))))))

o>

) \
,)

,

('

r ~ ' ! .,
SYNC I LOCATION PROGRAM

I 00001 9,QOl 0000200X
Address switches 00013 : I 00013 OOOOlb

00020

~ I 00099
' _,,_I 00199

. .-
LINE NAME LOGIC PAGE TEST PolNT

lA Gl££A ~CB£A ~£EflflJA Gli~}flA ~c£Le£l~@JA ~ 1. L-OGIC GA~ES ,,,
'

' u ~
.

2. LAST INSN R.O, 12.13.05 11C1Hl2G I-
)

J L J l 3. A CYCLE CTRL 12.12.20 l!CIJIOO

4. A CYCLE ·12.12.01 11ClH20C [_ \
- 11\ I-\ S. R.O. AAR 14.71.30 11ClC11G

' JJ J J J ~ ~· 6. SET ST~R 14.17.16 IJB2G26A r--
r

J l ·J l -
'7. !ST SCANCTRL" 12.30.03 .flClF23L if

--:-1

8. !ST.SCAN 12.30.01 11ClE26A J ru - u IU IL_
~ '

S'
11C1Ati4B• j l J l 9. 8 CYCLE CTRL 12.12.21

I·

10. B CYCLE .' 12.12.02 11ClH17C l ' iL
11. R.O. BAR 14.7j.31 llClHllH

._r fL: ,_r L-L-- t----
12. A REG TO A CH 15.38.02 \1C3Cl78 --- t----1 j l Ifs .
13. TAKE A CYCLE 12.12.40 11DlHl5F

'•, L u ,,

_,

J -
14. LAST EXEOJTE 12.12.50 11DlG15G

15. I CYCLE 12.12.04 11ClH22H 11 \ ··-,
'

:}fil:f} Gl££A G}E}B_BJA GJ.~& Gh8£flJA Lie 16. LOGIC GATES 11" ,

'•

,Figur~ 20. Data Move Operation Timings

SIGNAL ' CoNTROL

RO B AR B Cy Ctrl, 1st + 2nd + 3rd
Scan Ctrl

RO B Alt on Scan B Cy Ops
Set Mem AR Gated LGA, 2ntl CP

6. Gate A-field characterto A-channel.

Locxc

14.71.31

14.l't.16

Gate A Data Reg to)3 Cy, A Reg to A Ch on B 15.38.02
A Ch Cy Ops

7. Set assembly unit contrpls according to operation
modifier 1-, 2-, and 4~bits. . '~"

8. · RelJ.d character into storage.
Load Memory Load Mem on B Cy
. Op Codes, B Cy

12.50.01

9. Control B-cycle length.

SIGNAL

Stop at}

·~ ~

CONTROL

Stop at J on B· Cy
Op Codes, B Cy

~

Loom
'

12.12.$2

10. Compare the 8-, A-; and B-bits of the operation
modifier register with .the A~ or B-field character to
determine end of operation:

Data Move Take A Cy

Data Move A Cy Ctrl
Set

Set A Cy Ctrl

Data Move Take A Cy

B Cy, Data Move A Cy
Ctrl Set, Data Move Op

Code

12.12.40

12.12.41,

12.12.20

Whei:i the A- or B-field character satisfies the operation
modifier character stop condition, Data Move Take A-Cycle

'General Data In~tructiomi 41

SIGNAL r CONTROL . LOGIC .

drops around the end of Logic Gate C or the beginning of Logic
Gate D when the charactel' is set iI)to the B~Data Reg. Data
Move Take A-Cycle prevents taking more A-cycles and a
similar combination of the op mod. character and A- and B-
fleld characters brflig up Data Move Last Execute. ·
Last Execute Cycle Data Move Last Execute .1~.12.51

. ,

Questions.orrMove Data Operations.

Answers t? t)jese review questions are in the Appendix.
1, What function does execution of the move data

instruction accomplish?
2. What characters are stored in the A-field after the

move data operation is complete?
3. What are the valid instruction lengths for . the

move data instruction?
• :ti:. In executing the ·move data initruction, does the:
CPU ··execute an A-cycle or B-cycle first? ·

5. What bit position(s) in the d-character:
'a. Establishes the condition to terminate the move

data operation? '
b. D(:!termines the direction (left to right or right

to- left) in which data are moved?
, c. Determines the portion of the A-field character

transferred to the B-field? "
. 6. When the d-charqcter contains an 8-bit, is the prst

·scan control latch or the second scan control latch set?

Move Characters and Suppress Zeros Instruction

Instruction Formats

Formats for the move characters and suppress zeros
instruction are:

OPCODE A-ADDRESS B-ADDRESS

z xxxxx xxxxx
y

z xxxxx
y

z
The move characters and sup'press . zeros instruction
designates: ., .

; 1. The addresses of the low-order characters in the
A- and B-fields, or

2. The address of the low-order A-field1 character;
the contents of the BAR from the previous operation
specify the low-order B-field character, or

3. Neither the A- nor B-field (no address chaining·).
The contents of the AAR and the BAR from the previous
operation specify the low-order A- and B-field charac­
ters, respectively.

Description of Operation

The move characters and suppress zeros operation
transfers A-field data to the B-field. Zeros and commas
to the left of the· first (high-order) significant digit

42

in the A-fi~ld are replaced with bla'l)ks in the B-field;
for example, 001206 in the A-field b~comes bb 1206 in
the B-field· after the move character and suppress zeros
operation. In multiple field transfers, a,n A-field of
00106@00.25 becomes bb 106@bb.25 in the B-field.
Zone bits in the units (sign) position 'of the B-field
are removed. .. .

To execute the move characters and suppress zeros
instruction, the CPU performs two scans. In the fust
scan, the CPU alternately takes A- and B-cycles to trans­
fer all other A-field characters to the B-field except
zones in the units position character and word marks.
A word mark is generated and set over the units posi­
tion of the B-field to .define the low-order position of ·
the field; B-field word marks are removed, and no
other word marks are stored in the B-field. The A-field ·
must have. a word mark over the high-order position
of the field; the first scan ends and the second scan
begins when the A-field~word mark is sensed. At the
end of the first scan, only the units positions and. the

·word marks in the A- and B-fields may differ.
Because only B-field ch~racters are pro~essed in the

s'econd scan, the CPU takes . B-cycles exclusively. Re­
verse scarining is employed to read out B-field charac­
ters. During the second scan, insignificant zeros and
commas in the B-field are replaced with blanks. When
the one B-Jleld word mark (stored. over the units posi­
tion of .the B~field·during the first scan) is sensed, the
move characters and suppress zeros operation ends.··

The AAR contains the original A-field address minus
the number of characters in the A-field, and the BAR

contains the -0riginal B-field address + 1 when the op­
eration ends.

CPU Operation

During last instruction read-out . cycles, the first scan
control,· A-cycle control, and units control latches are
set. To ~egin execute phase of the move characters
and suppress zeros operation, the CPU takes a standard
A-cycle first. The low-order A-field character reads
out of storage and is set in the A-data register. On the
B-cycle following the first A-cycle, the units 'position
of the B-field reads out of storage onto the B-channel;
the character in the A-data registe:r is gated to the
A-channel. Because the units control latch is set, A- and
B-channel characters are identified as units ,Position
characters of the respective fields. The assembly gates
A-channel numerics, no zones, and a word mark to the
units position of the B-field. The zero suppress latch
is set during the first B-¢ycle, btit the latch does not
function to blank characters until the second scan.

On B·cycles executed while the first scan latch is set,
A-channel characters· ai:e examined for a word mark.

r'
\

··~

.~·

~··

('

If no A-channel word mark is detected ,during the flrst
B-cycle, the units latch is reset: and the body latch is
set. With the first scan and body latches set, the 6i>u
alternately ~xecutes A- and B-cycles to read A- and
B-field characters out·of storage and transfer A-channel
zones and numerics to, the B-field until an A-channel
word mark is detected .. B-channel zones, numerics,
anc1 word marks are replaced, and· do not affect the
operation. ·

When the A-channel word mark is detected, indicat­
ing that all A-field characters have been processed, the
first scan latch is reset; the second scan, MQ, and B­
cycle control latches are set to initiate the second scan.

The CPU executes B-cycles exclusively during the
second scan, therefore, reverse' scanning is employed
to read out B-field core storage positions for the second
time in the operation. Because the BAR was modified by
- 1 on: the last B-cycle of the first scan, the address in

v the BAR at the end of the first scan is one less than the
address of the high-order B-field character. The ad­
dressed character is read from storage onto t}le B-

.. channel, through the. assembly, and back to storage
intact on an edit skid cycle. The ON status of the 'MQ

latch identifies this special cycle and prevents the op­
eration from ending at this point. During the ·skid
cycle, the BAR. is modified by + 1 (second scan) to
address the high-order B-field position, the extension
latch is set, and the MQ latch is reset.

The CPU takes successive B-cycles to read out B-field
characters. The zero suppress latch, set during the first
B-cycle of the first scan, causes B-channel zeros and
corrunas read before the first significant digit is de­
tected to be replaced with blanks; other characters
are gated back to the B-field without changes. The
first significant digit detected on the B-channel resets
the zero suppress latch to prevent blanking significant.
zeros and commas following the digit.

If, after the zero suppress latch is reset, a B-chann~l
character is found to be neither a significant digit (1
through 9) nor a 0, comma, blank, minus sign, or
decimal, the zero suppress latch is set again. For
example, if the B-field contains the characters
0010¢090, the zero suppress latch is on when the two

. high order zeros are read, and the zeros are replaced
'with blanks. The zero suppress latch is reset when the
first significant digit (1) is sensed, and the 0 following
. the 1 is not affected. Because the cent sign (¢) is not
a significant digit, 0, comma, blank, minus sign, or
decimal, .the 0 suppress latch is set again. The 0 follow­
ing the cent sign is replaced with a blank. When the 9
is sensed, the zero suppress latch is reset, and the low­
order 0 following the 9 is not blanked. The B-field

y

changes from 0010¢090 to bb10¢b90 during tl)e second
scan.

When the B~fi~ld word mark (stored over the units
position of the B-field on th~ first B-cycle of the first
scan) is. detected, indicating the end ·of the B-6,eld:

1. The word mark is stripped from the character.
2.- The character is processed as other second sc11n

B-field characters. 5 •

3. The move characters and suppress zeros operation
ends. ·

Figures 21 and 22 show diagrammed explal}ations
of CPU operation in the execution of the move charac- <

ters and suppress zeros instruction.
The following controls are active when the CPU per­

forms the move characters and suppress zeros opera­
tion:

. '
SIGNAL CONTROL LOGIC

1. Initiate A-cycle and RO first A-field character.
Set A Cy Ctrl A Cy 1st Op ~odes 12.12.41

Last Insn RO Cy
A Cy Ctrl Set A Cy Ctrl, Next to 12.12.20

Last LG
A Cy A Cy Ctrl, LGB 12.12.01
RO A AR A Cy Ctrl, LG Special A 14.71.30

Read nut A AR on A Cy Ops
Set Mem AR Gated LGA, 2nd CP 14.17.16

2. Set modifier controls to -:: 1.
Set lst Scan Ctrl 1st Scan 1st Op Code

Last Insn RO Cy
1st Scan Ctrl Set 1st Scan Ctrl, Next to

L.ast LG
1st Scan . 1st Scan Ctrl, ·LGC
Addr Mod Set to ..,..1 1st Scan

3. Set character into A-data register.
SwB Ch to A Reg A Cy, LGD

4. Control A-cycle length.

12.30.05

12.30.03 ..

12.30.01
14.71.41

15.38.01

Std A Cy Ops A Cy E or Z Op Code, A Cy 13.14.06
Stop at F Std A Cy Ops, A. Cy 12.12.30

5. Initiate B-cycle and RO first B-field character.
Set B Cy Ctrl Std A Cy Ops, A Cy 12.12.44
B Cy Ctrl Set B Cy Ctrl, Next to 12.12.21

Last LG
BCy
ROBAR

B Cy Ctrl, LGB . 12.12.02
B Cy Ctrl, 1st + 2nd + 3rd 14.71.31

Scan Ctrl
RO B AR on Scan B Cy Ops

Set Mem AR Gated LGA, 2nd CP

6. Regenerate modify controls.
Regen 1st Scan Ctrl Std A Cy Ops, A Cy
1st Scan Ctrl Regen 1st Scan Ctrl, 1st Scan
1st Scan 1st Scan Ctrl, LGC
Addr Mod Set to -1 1st Scan

7. Gate A-field character to A-channel.
Gate A Data Reg to

ACh
B Cy, A Reg to A Ch on B

Cy Ops

14.17.16.

12.30.05
12.30.03
12.30.01
14.71.41

15.38.02

8. Set assembly controls to eliminate zones and write . v

a WM over the units position character.
Units Ctrl Latch ·

Units Latch
Regen Units+ Body

Ctrl

Lal\t Insn RO Cy, Next to
Last LG

Units Ctrl Latch, LGC
Std A Cy Ops A Cy

16.30.02

16.30.02
16.30.01

. General Data Instructions 43

Figure 21. Move Characters and Suppress Zeros

44

5YNC

Address Switches 00012

LINE NAME

1. LOGIC GATES

2. LAST INSN R. 0.

3.A CYCLE CTRL

4. A CYCLE

5. R.O. AAR

6. SET STAR

7, 1 ST SCAN CTRL

8. lST SCAN

9. B CYCLE CTRL

10. B CYO.E

11. R.0. BAR

12. GATE "A" DATA REG TO "A" CH

13. UNITS CTRL

14. UNITS

15. EDIT USE "A" CH NU

16. USE NO ZONES EDIT

17. ZOP WRITE COM (INVERTED)

18. BODY CTRL

19. BODY

20. USE A CH ZONES

21. 2ND SCAN CTRL

22. 2ND SCAN

23. MQ CTRt

24. MQ

25. EDIT SKID cYCLE (INVERTED)

26. STORE B CH CHAR.

27. EXTENSION CTRL

28. EXTENSION

29. -O SUPPRESS CTRt

30. 0 SUPPRESS

31. WRITE EDIT BLANK

32. USE NO WM EDIT

33. LAST EXECUTE

34. LOGIC GATES

LOGIC PAGE

12 .• 13.05

12.12.20

12.12.01

14.71.30

14.17.16

12.30.03

12.30.01

12.12.21

12.12.02

14.71.31

15.38.02

16.30.02

16.30.02

17.13.0l

17.13.01

17.13.01

16,30.04

16.30.04

17.13.01

12.30.04

12.30.02

16.30.07

16.30.07

17.13.15

17.13.03

16.30.06

16.30,06

17.12.03

17.12.03

17.13.05

17.13.06

12.12.51

i LOCATION PROGRAM

I 00001 ~0100002000 00012 00001 b:'
I 00999 6

I
01999

TESTPOINTl~;l~efj,~A~A~A~JA·A~~
r-

11C1Hl2G

IJCU\00

11C1H20C

llClCllG

11B2G26C

11C1F23L

l\C1E26A

11ClA04B

~'h'--+--'rn'--+---+~~--+--+--t-1
r-

e--

W1----+-~rlc___+---+--+---+--t-~

11C3C17B.., r-----,
\L._

llC2'2lA lJ1UTIL-+--i------J---+-----t----+--t--

11C2Dl6A~
1102F10K J 14
1102F03C \\'--~--1------+--'Jv

1102Gl5F r

11C'.1G24S r---!-+-----+-------t------'ITUTLm'-----+----1---i
f----+--+--+--f-----+-'T lI W
f--+------+---t---T-~Jh'----+~-+------P--~

11C1E26C

11C2C17F

11C2B1BA J
11D2K09A

1102GOBA r _____ r-,'----'--
11C2Cl6C ~-l--+---+---t-~n1_rn'----+~
11C2D\6C -+----+---t-------+-'------+-'J w
1102F130 f----t--~FfutL-11LJrL_Jn'----+--+-I
11 D2FlOB t------i-------t-----j-'Jµ lI]J w
llD2GOBP t-______,_...__-·-+----+----+-----+----+-r-i-n'---+--+-1

ll02H05P i-~+--+----+---t-S--1\"--~~ I~
1--+----+---+---+----r--r-----t--'J ·"--+-
ll'&filB:A·-·~· ~···~· illfrili v

11C1H23B

Figure 22. Move Characters and Suppress Zeros Operation Timings General Data Instructions 45

(. ~ SIGNAL CONTROL

' ' Units Ctrl Latch Regen Units +' Body Ctrl,
Next to LLG

Units Latch
ZOp B Cy Z Op Code, B Cy
Edit,Use A Ch Nu Z Op B Cy- Units ·Latch
Use No Zones Edit Z Op B Cy - Units Latch
Z Op Write WM Z Op B Cy - Units Latch

9. Read character into storage.
LoadMemgr~ Load Mem on B Cy

Op Codes, B Cy
10. Control B Cy Length.

LOGIC

16.30.02

17.11.04
17.13.01
17.13.01
17.13.01

12.50.01

Stop at J Stop at Jon B Cy 12.12.32
Op Codes, B Cy

11. Initiate another A-cycle and RO next A-field
charader.
Set A Cy Ctrl on Z Op Edit Use A Ch Nu, A Ch 12.12.41

Not WM
Move Zero Sup Op Code

Set A Cy Ctrl Set A Cy Ctrl on Z Op 12.12.41
A Cy Ctrl , c. Set A Cy Ctrl, Next to 12.12.20

Last LG
A Cy A Cy Ctrl, LGB 12.12.01
RO A AR A Cy Ctrl, LG Special A 14.71.30

Read Out A AR on A Cy Ops
. Set Mem AR Gated LGA, 2nd Cp 14.17.16

12. Regenerate modify control.
Regen 1st Scan Ctrl Set A Cy Ctrl on Z Op ,
1st Scan Ctrl Regen 1,st Scan Ctrl, 1st Scan
1st Scan 1st Scan CtrVLGC
Addr Mod Set to -1 1st Scan

13. Set character into A-data register.
Sw B Ch to A Reg A Cy, LCD

14. Control A-cycle length.
Stop at F Std A Cy Ops, A Cy

12.30.05
12.30.03
12.30.01
14.71.41

15.38.01

12.12.30

15. J.nitiate another B-cycle and RO next B-field
character.
Std A Cy Ops A <Jycle
Set B Cy Ctrl
B Cy Ctrl

BCy
ROBAR

Kor Z Op Code, A Cy
Std A Cy Ops, A Cy
Set B Cy Ctrl, Next'to

Last LG
B Cy Ctrl, LGB
B Cy Ctrl, 1st + 2nd + 3rd

Scan Ctrl
RO B AR on Scan B Cy Ops

Set Mem AR Gated LGA, 2nd CP

16. Regenerate modify controls.
Regen 1st Scan Ctrl Std A Cy Ops, A Cy
1st Scan Ctrl Regen 1st Scan Ctrl, 1st Scan
1st Scan 1st Scan Ctrl, LGC
Addr Mod Set to -1 1st Scan

17. Gate A-field character to A-channel.
Gate A Data Reg to

A Ch
B Cy, A Reg to A Ch on

B Cy Ops

1,8. Set assembly controls for next position.
Set Body Ctrl Latch Set A Cy Ctrl on Z Op
Body Ctrl Latch Set Body Ctrl Latch, Next to

Body Latch
ZOpBCy
Use a Ch Zones Edit
Edit Use A Ch Nu
0 Suppress Ctrl

46.

Last LG
Body Ctrl Latch, LGC
Z Op Code, B Cy
Z Op B Cy, Body Latch
Z Op B Cy, Body Latch
Z Op B Cy, Z Op Write WM

13.14.06
12.12.44
12.12.21

12.12.02
14.71.31

14.17.16

12.30.05
12.30.03
12.30.01
14.71.41

15.38.02

16.30.01
16.30.04

16.30.04
17.11.04
17.13.01
17.13.01
17.12.03

SIG~AL
0 Suppress

:o Suppress Ctrl
Use No WM Edit

CONTROL

0 Suppress Ctrl, LCC '
0 Suppress, 1st Scan
0 Suppress; Z Op B Cy, ·

• 1st Scan

19. Read character into storage.

Load Memory Load Mem on B Cy
Op Codes, B Cy

20. Control B-cycle length.

LOGIC

17.12.03
17.12.03
17.13.06

12.50.01

Stop at J Stop at J on B Cy 12.12.32
, ' . OpCode,BCy

If the A-field cparacter has no WM steps 11-20 are repeated
until there is an A-Channel WM. ·

21. Take another B-cycle and RO B-field character.

Edit Set B Cy Ctrl G Edit Use A Ch Nu, A Ch WM 12.12.44

Set B Cy Ctrl
B Cy Ctrl

BCy
ROBAR

Move Zero Sup Op Code
Edit Set B Cy Ctrl G
Set B Cy Ctrl, Next to

12.12.44
12.12.21

Last LG
B Cy Ctrl, LGB 12.12.02
B Cy Ctrl, 1st + 2nd + 3rd 14.71.31

Scan Ctrl
RO B AR on Scan B Cy Ops

Set Mem AR Gated LGA, 2nd CP 14.17.16

22. Set modify controls to + 1.

Set 2nd Scan Ctrl . Edit Set B Cy Ctrl G
2nd Scan Ctrl Set 2nd Scan Ctrl, Next to

Last LG
2nd Scan 2nd Scan Ctrl, LGC
Addr Mod Set to + 1 2nd Scah

23. Set'skid cycle controls.

12.30.06
12.30.04

12.30.02
14.71.41

SetM Q Cfrl
M Q Ctrl Lat
M Q Latch
Edit Skid Cy

Edit Set B Cy Ctrl G 16.30.05
Set M Q Ctrl, Next to Last LG 16.30.07
M Q Ctrl Lat, LGC 16.30.07
M Q Latch, Z Op B Cy 17.13.15

24. Store B-channel character.
UseB Ch WM
Store B Ch Char
Load Memory

Edit Skid Cy
Edit Skid Cy
Load Mem on B Cy Op Codes
B Cy

15.49.04
17.13.03
12.50.01

25. Take another B-cycle aiid RO B-field character.
Set B Cy Ctrl Edit Skid Cy 12.12.44
B Cy Ctrl Set B Cy Ctrl, Next to 12.12.21

Last LG
B Cy B Cy Ctrl, LGB 12.12.02
ROB AR B Cy Ctrl, 1st + 2nd + 3rd 14.17.31

Scan Ctrl
RO B,AR on Scan B Cy Ops

Set Mem AR Gated LGA, 2nd CP 1j.17.16

26. Regenerate modify controls.
Regen 2nd Scan Ctrl M Q Latch 17.13.15
2nd Scan Ctrl Next to Last LG, Regen 2nd 12.30.04

Scan Ctrl
2nd.Scan

2nd Scan 2nd Scan Ctrl, LGC 12.30.02
Addr Mod Set to + 1 2nd Scan 14. 71.41 ·

27. Set asseµibly controls to write blank if character
is a comma or 0.
Extension Ctrl Lat
Extension Latch
Not *Fill

or Fl Dol Ctrl
Not • Fill or Fl Dol

Edit Skid Cy, Next to Last LG 16.30.06
Extension Ctrl Late, LGC 16.30.06
Last lnsn RO Cy, LLG 17 .. 12.02

Not * Fill or Fl Dol Ctrl 17.12.02

/ \

~·
I .

SIGNAL CONTROL :LoGic ' field establishes the conditions that control the edit
Not (A Cy, Not 17.12:02

* Fill or Fl Doi Ctrl " Fill or Fl Doi)
(Z Op B Cy, Not

• Fill or Fl Doi)
N(lt *Fill Float Dollar Sign, or Not 17.13.04

* Fill or Fl Doi
Blanked 0 or Comma E or Z; 2nd Scan Extension 17.13.04

0 Suppress, Not Decimal Ctrl
Blank 0 or Comma, Not* Fill

Write Edit Blank Blanked 0 or Comma 17.13.05
If the character· is a significant digit the assembly controls

' are set to use the B-channel character.
.: Stor B Ch Char 2nd Scan, Z Op B Cy, 17.13.03

Not Comma
Not Blank, Not 0

When a significant digit is read out, zero suppress control is
turned off ta'prevent any more zeros from being blanked.

Steps 25 through 27 are repeated until a B-channel WM is
read out.

28. Initiate Insn RO.

Last Execute Cy 2nd Scan, Extension Latch, 12.12.51
E or Z Op Code, Not

* Fill or Fl Doi
Not Decimal Ctrl, B Ch WM

Questions on Move Charaders and Suppress
Zeros Operation .

Answers to review questions are in the Appendix.
1. What operations are accomplished in the success­

ful execution of a move characters and suppress zeros
instruction?

2. When are A-field zones not moved to the B-field?

3. Why is a skid cycle executed?

4. When is the zero suppress latch set during the
second scan?

5. When does first scan end and the second scan
begin?

6. If a move characters and suppress zeros instruc­
tion designates q~ A-field containing 0.0061 and a
B-field containing 1.169, what characters do the A- and
B-field contain at the end of the operation?

Edit Instruction
The 1edit instruction for the IBM 1410 Data Process­
ing System causes all desired commas, decimals, dollar
signs, asterisks, credit symbols, and minus signs to be
automatically inserted in the designated numeric out­
put field. The edit operation also eliminates insig­
nificant zeros and commas in the output field. Thus,
editing in the 1410 is the automatic control of zero
suppression, inserting of identifying symbols, and
punctuation of an output field.

To perform the edit .operation, two fields are re­
quired: the data field and the control field. The data
field contains data to be edited for output. The control

operation.
The control field is divided into two parts: the body

(used for punctuating the data Geld) and the status
portion (contains the special characters). The body of
the control word begins with the rightmost 0 or blank
and ends when the data field word mark is sensed.
Other characters in the control (before the· low-order
0 or blank and after the data field word mark is de­
tected) make up the status portion of the word.

An edit operation requires two instructions. The
move data instruction is used to transfer the control
word (with word mark) to the output area; the edit
instruction moves data to the output area and performs
the editing function.

Instruction Formats

Formats for the move characters and edit instruction
are:

OP.CODE
v
E
E:
:E

A-ADDRESS

xxxxx
xxxxx

B-ADDRESS

..xxxxx

The data field (A-field) is modified by the contents
of the edit control field (B-field), and the results are
stored in the B-field. A- and B-addresses in the in­
struction designate memory locations of low-order
characters in the respective fields. When the instruc­
tion designates only the A-address, the contents of the
B-address register from the previous operation specify
the low-order character in the B-field to be used in
the edit operation. When the instruction does not
specify an A- or B-address, the contents of the A­
address register and the B-address register from the
previous operation specify the low order A- and B-field
characters. .

Word Marks

Word marks must be set in the high-order A- and
B-field positions to define the end of the fields. When
the A-field word mark is sensed, the remaining commas
in the B-field are set to blanks. No A-field characters
are transferred to the B-neld after the B-field word
mark is sensed. The data field can contain fewer, but
should not contain more, positions than the number of
blanks and zeros in the body of the control word.

Editing Specifications

All numeric, alphabetic, and special characters can b~
used in the control word. However, some characters
have special meanings:

General Data Instructions 47

' CONTROL CIIARAC'tER

b (blank)

0 (zero)

. (decimal)

· ', (comma).

FUNCTION

Replaced with the character from the
corresponding position of the A-field.
Used for ,zero suppression. Replaced with
a corresponding character from the A-field.
The rightmost 0 in the control word indi­
cates the rightnlOSt limit of zero suppres­
sion.
Remains in the edited field in the position
where written, unless decimal. control was
not in effect, and the data field did not
contain a significant digit.
Undisturbed in the output data field in
the positjon where written, unless zero
suppression take5 place and no significant
numeric character is found to the left of

/the comma.
CR (credit)

- (minus)
& (ampersand)

* (asterisk)

$ (dollar)

Zero Suppression

Body portion: Undisturbed in the position
where written.

Status ;portion: If sign of the data field
is positive, the positions containing CR
are replaced with blanks. If the sign
of the data field is negative, positions
containing CR are undisturbed in the
output field.

Same as CR (credit).
Causes a blank space in the output field;
can be used in multiples.
Status portion: Undisturbed in the posi­

tion where written.
Body" portion: Replaced by an A-field

character. If 0 preceded the asterisk,
asterisk fill is requested.

Stahts portion: Undisturbed in the posi­
tion where written.

Body portion: Replaced by an A-field
character. If 0 preceded ·the dollar
sign, floating dollar operation is re­
quested.

Zero suppression is the deletion of unwanted zeros and
commas to the left of significant digits in an output
field. The following example of zero suppression in
editing illustrates this operation:

Example:

A-field
Control word (B-field)
Forward scan
Reverse scan
Results of edit

0010900
v
$bb,bbO.hb
$00,109.oo

$bbbl09.00
$ 109.00

A special 0 is placed (in the body of the control
word) in the rightmost limit of 0 suppression.

FORWARD ·SCAN

I. The positions in the output field at the right of
this special 0 are replaced by the corresponding digits
from the A-field.

2. When the special 0 is detected in the control field,
it is replaced by the corresponding digit from the A­
field.

3. A word mark is automatically set in this position
of the B- (output) field.

48

· 4. The scan _con,tinues until the B-field (high-order)
won'J mark is sensed and removed.

REVERSE SCAN

I. All zeros and punctuation at the left of the first
significant character (up to and including the zero

v suppression code position) are replaced with blanks
in the output field.

2. When the automatically set zero suppression word
mark is sensed, it is erased and the operation ends.

Asterisk Protection

When it is necessary to have asterisks appear at the
left of significant digits, the asterisk protection feature
is used. The control word is written with the asterisk
in the body to the left of the zero suppression code
(if the asterisk appears in the body to the right of the
zero suppression code, it is treated as a blank). The
following example illustrates the asterisk protection
feature:

Example:
A-field
Control word (B-field)
Forward scan
Reverse scan
Results of edit

FORWARD SCAN

00257426
bbb,MO.bb&CR
002,57 4.26 CR
**2,574.26 CR
**2,574.26 CR

1. The normal editing process proceeds until the
asterisk is sensed.

2. The .asterisk is replaced . (in the output field) by
the corresponding digit from the A-field.

3. The editing process c~ntinues normally until the
B-field word mark is sensed and removed.

REVERSE SCAN

I. Zeros, blanks, and punctuation to the left of the
first significant digit are replaced by asterisks.

2. The word mark (set during the forward scan)
signals the end of the edit operation; the word mark
is removed.

Note: Asterisk protection and floating dollar sign cannot be
used in the same control word.

Floating Dollar Sign

The floating dollar sign feature causes the insertion of
a $ in the position to the left of the first significant digit
in an amount. The control word is written with the $ in
the body to the left of the zero· suppression code (if
the $ appears in the body to the right of the zero
suppression code, it is treated as a blank). Three scans
are necessary to perform the edit operation when the
floating dollar sign feature is employed. The following
example illustrates the operation of the floating dollar
sign feature:

I~

- r"·

Example:

A-field
Control word (B-field)
First forward scan
Reverse scan
Second forward scan

· Results of edit

FIRST FORWARD SCAN

00257426
bbbb,b$0.bb
b002,574.26
bbb2,574.26

$2,574.26
$2,574.26

1. The normal editing process proceeds until the $
is sensed.

2. The $ is replaced (in the output field) by the
corresponding digit from the A-field.

3. Editing continues until the B-field work mark is
sensed and removed.

REVERSE SCAN

1. Zeros and punctuation to the left of the first sig­
nificant digit are replaced by blanks.

2. The reverse scan .continues until the word mark
(set during the first forward scan) signals the start of
the second forward scan; the word mark is erased.

SECOND FORWARD SCAN

The second forward scan continues until the first blank
position is sensed. This blank position is replaced by $,
and the operation ends.

Note: Floating dollar sign cannot be used at the right of the
decimal point, or when asterisk protection is used in the con­
trol word.

Sign Control Left

CR (credit) or - (minus) symbols can be placed at the
left of a negative field. The control word is written
with the CR or - symbol in the high-order status posi­
tion. The following example illustrates sign control
left operation:

Example:

A-field
Control word (B-field)
Forward scan
Reverse scan
Results of edit

FORWARD SCAN

00378940
CR&bbb,bbO.bb
CRb003,789.40
CRbbb3,789.40
CR 3,789.40

1. The scan proceeds until the zero suppression code
0 in the control field is sensed.

2. The corresponding character from the A-field is
placed in this position of the output field.

3. A word mark is automatically inserted in this
position in the output field.

4. The scan proceeds until the B-field word mark is
sensed, indicating the end of the body of the con­
trol word.

5. The CR (credit) or - (minus) symbols are undis­
turbed in their corresponding positions in the output

field if the sign of the A-field is minus. If the sign of
the A-field is plus, the CR or minus symbol is blanked.

REVERSE SCAN

1. Zeros and punctuation are replaced with blanks
in the output field. The scan continues until the auto­
matically set word mark is sensed.

2. The automatically set word mark is erased and
the operation ends.

Decimal Control

The decimal control feature insures that decimal points
print only when there are significant digits in the
A-field. The control word is written with a decimal
point in the body to the left of the zero suppression
code 0. Two scans are sufficient to complete the edit
operation using the decimal control feature unless the
field contains no significant digits; in this case, three
scans are required. The following examples illustrate
decimal control operation:

Examples:

1. A-field
Control word (B-field)
First forward scan
Reverse scan
Second forward scan
Results of edit

2. A-field
Control word (B-field)
Forward scan
Reverse scan
Results of edit

FIRST FORWARD SCAN

OoOOO
v
bbb.bO
000.00
bbb.00
bbbbbb
(blank field)
29437

bbb.bO
294.37
294.37
294.37

1. When the zero suppression code 0 is sensed dur­
ing editing, this position is replaced by the correspond­
ing digit from the A-field.

2. A word mark is set automatically in this position
in the B- (output) field.

3. Editing continues normally until the B-field word
mark is sensed and erased.

REVERSE SCAN

1. Zeros and punctuation are replaced with blanks
in the output field until the decimal point is sensed.

2. The decimal point and the digits at the right are
not changed. The automatically set word mark is
erased .. If there are no significant digits in the field,
the second forward scan is initiated; otherwise, the
edit operation stops.

SECOND FORWARD SCAN

1. The zeros at the right of the decimal point, and
the decimal point itself, are replaced with blanks.

2. The operation stops at the decimal column.

General Data Instructions 49

CPU Operation

During last instruction read-out cycle, the first scan
and units latches are set, and controls are conditioned
to execute a standard A-cycle first. In the first A-cycle,
the characte~ stored in the units position of the A-field
reads out of memory and is gated \nto the A-data reg­
ister. Because this low-order A-field character contains
the sign of the A-field, the plus or minus latch is set.

,After the A-cycle, the CPU executes a B-cycle to
read out the low-order B-field character. If the units

·position B-field character is not a blank, 0, &, CR, or - ,
or if the character is CR, or - and the minus latch is
set, the character is returned unchanged to the low­
order B-field position. If the character is &, a blank is
returned to the B-field. Because the B-field character
is neither a 0 nor a blank, the character is recognized
as part of the status portfon of the control word (B­
field); another B-cycle is required to read out the
next B-field character. If the next character is not a 0
or blank, indicating that it, too, is part of the status
portion of the control word, the same conditions de­
termine whether the character or a blank is returned
to the B-field. The CPU executes successive B-cycles to
read out and return characters to the B-field until the
first 0 or blank is sensed.

The first B-field 0 or blank indicates the· end of the
status portion and the beginning of the body of the
control word (a 0 or blank may be sensed on the first
B-cycle). The first B-field 0 or blank resets the units

1 latch, sets the body latch, and stores the numerics in
the A-field 'character (set in the A-data register during
the first A-cycle) in the B-field. B-field characters read
while the body latch is set are in the body of the
control word.

When the first B-field 0 is sensed, the zero suppress
latch is set, and a word mark is automatically set over
theA-field character returned to the B-field during that
B-cycle.

With the first scan and body latches set, the CPU:

1. Returns the B-channel character to the B-field if
the character is not 0, blank,*,$, or&.

2. Writes a blank in the B-field if the B-channel
character is an & sign.

3. Stores the A-channel character if the B-channel
character is a blank or 0. '

4. Sets the * fill or floating dollar latch if the B­
channel character is an * or $ and the zero suppress
latch is set. The A-channel character is stored in the
B-field.

A word mark is gated to the B-field only when the
low~order 0 in the control word is sensed.

If the B-channel character is returned to the B-field
on a B-cycle, the CPU executes another B-cycle to read
out the next B-field character immediately. If the

5Q

A-channel character is stored in the B-field on a B­
cycle, the CPU exe~utes another A-c;:ycle, then another
B-cycle to read the next characters in sequence from
the A- and B-fields, respectively. A B-cycle always
follows an A-cycle. However, an A-field character
stored in the A-data register on an A-cycle might re­
main in the register until the CPU executes several
B-cycles.

If the A-channel word mark, indicating the end of
the A-field, is sensed before the B-channel word mark
is detected, the body latch is reset, and the extension
latch is set. The CPU executes successive B-cycles to
read out the remaining characters in the control word
(B-field). Either the same characters read or blanks are
returned to the B-field. B-channel characters are read
while the fitst scan and extension latches are set in
the status portion of the control word. The B-channel
word mark indicating the end of the B-field terminates
the first scan. Other A-field characters are not processed
after the B-channel word mark is detected. For this
reason, the A-field should not contain 1'1ore characters
than the number of blanks and zeros m the body of
the control word.

If the zero suppress latch is not set when the B-field
word mark is sensed, the first scan and the edit opera­
tion end (no zeros in the control word). If the zero
suppress latch is set when the B-field word mark is
detected, the second scan (reverse scan) is initiated.

The cPu executes B-cycles exclusively during the
second scan. Because the BAR was modified by -1 on
the last B-cycle of the first scan, the BAR addresses
the low-order character in the next field when the
second scan begins. The CPU performs a skid B-cycle
to read out and return the character to its storage posi­
tion unchanged. The ON states of the second scan and
MQ latches, set at the end of the first scan, identify the
first B-cycle of the second scan as the skid cycle. The ·
MQ latch.is not regenerated when the skid cycle is
complete. The extension latch is set during the skid
cycle.

In the second scan, all ·insignificant zeros and
commas (zeros and commas to the left of significant
digits) are set to blanks or, if the asterisk fill latch is
set, replaced with asterisks. The first significant digit
(1-9) encountered in the second scan resets the zero
suppress latch. If the zero suppress latch is not reset
when a decimal is sensed, the decimal control latch is
set, canceling the blanking effect of the zero suppress
latch. When either the zero suppress latch is reset or
the decimal control latch is set, zeros and commas in
the B-field are not replaced with blanks or asterisks;
for example, a B-field. containing 000.01 at the end of
the first Scan becomes bbb.01 during the second scan
rather than bbb.bl. If a character that is not a signifi­
cant digit (1-9), blank, comma, 0, minus sign or deci-

mal is encountered after~ the zero suppress latch is
reset and before the decimal control latch is set, the
zero suppress latch is set again. Zeros and commas
sensed before the next significant digit are replaced
with * or blanks; for example, a B-field containing

v
000100bcARsbb00200,000.75 after the first scan becomes
100 CARS 200,000.75 during the second scan if the
asterisk fill latch is off.

Recall that in the first scan, a word mark was set
over the B-field location containing the low-order 0 in
the control word. If the decimal control and zero sup­
press latches are set when the word mark is sensed
and the character read out with the word mark is not
a significant digit (1-9), a third scan is started; for
example, if the B-field contains 000.00 at the end of the
first scan and bbb.00 at the end of the second scan, a
third scan is initiated when the B-cycle, during which

v
the 0 is processed, is complete. Remember that the
decimal control latch does not reset the zero suppress
latch, but rather, it cancels the zero blanking effect of
the zero suppress latch.

The edit operation is terminated at the end of the
second scan if the floating dollar latch is off and either:

1. The decimal control or zero suppress latches are
off when the B-field word mark is sensed, or

2. The character read out of storage with the word
mark is a significant digit. If the floating dollar latch
was set during first scan, a third scan is required re­
gardless of conditions established during second scan.

The CPU executes B-cycles exclusively during the
third scan (forward scan). Because the BAR was modi­
fied by + 1 on the last B-cycle of the second scan, the
BAR addresses the character to the right of the desired
position when the third scan begins. The CPU performs
a skid B-cycle to read out and return the character to
its storage position unchanged. The ON states of the
third scan and MQ latches, set at the end of the sec­
ond scan, identify the first B-cycle of the third scan as
the skid cycle. The MQ latch is not regenerated when
the skid cycle is complete. The extension latch is set
during the skid cycle.

If the zero suppress latch is set, zeros processed
during the third scan are replaced with blanks or, if
the asterisk fill latch is set, with asterisks.

If the decimal control and zero suppress latches are
set when a decimal is sensed during third scan, the deci­
mal is replaced with a blank or asterisk, and the edit
operation ends; for example, if the B-field contained

v
000.00 after the first scan, and bbb.00 after the second
scan, the field is blanked (bbbbbb) at the end of the
third scan. The edit operation is complete when the
decimal is read out and replaced with a blank.

If the decimal control latch is set and the zero sup­
press latch is reset when a decimal is detected during

third scan, the decimal is returned to the B-field, and
the edit operation ends.

If the floating dollar latch is set, a $ replaces the
first B-field blank detected on third scan and terminates
the edit operation; for example, if the floating dollar
latch was set during first scan and the B-field con­
tained 100bcARsbbbb200,000. 75 at the end of the second
scan, the B-field contains 100bcARsbbb$200,000.75 at
the end of the third scan. The operation ends when
the $ is stored in the B-field.

If both the floating dollar and decimal control
latches are set, the third scan and the edit operation
are complete when either a decimal or blank is read
out of memory and the appropriate character is re­
turned to the B-field.

Figure 23 is a step-by-step editing process of a se­
lected example. Figures 24 and 25 show diagrammed
explanations of CPU actions in the execution of the
move characters and edit instruction.

The following controls are active in the move char­
acters and edit operation:

SIGNAL CONTROL LOGIC

1. Initiate A-cycle and RO first A-field character.
Set A Cy Ctrl A Cy First Op Codes 12.12.41

Last Insn RO Cy
A Cy Ctrl Set A Cy Ctrl, Next 12.12.20

to Last LG
A Cy A Cy Ctrl, LGB 12.12.01
RO AAR A Cy Ctrl, LG Special A 14.71.30

Read out AAR on A Cy Ops
Set Mem AR Gated LGA, 2nd CP 14.17.16

2. Set modifier controls to -1.
Set 1st Scan Ctrl

1st Scan Ctrl

1st Scan
Addr Mod Set to -1

3. Set sign latch.

1st Scan First Op Code
Last Insn RO Cy
Set 1st Scan Ctrl, Next

to Last LG
1st Scan Ctrl, LGC
1st Scan

Units Ctrl Latch Last lnsn RO Cy, Next
to Last LG

Units Latch Units Ctrl Latch, LGC
Plus/Minus Sign Latch A Cy, Units Latch, E or Z

Op Code, B Ch Plus/
Minus, Last LG

4. Set character into A-data register.
Sw B Ch to A Reg A Cy, LGD

5. Control A-cycle length.

12.30.05

12.30.03

12.30.01
14.71.41

16.30.02

16.30.02
16.16.04

15.38.01

Std A Cycle Ops, A Cy E or Z Op Code, A Cy 13.14.06
Stop at F Std A Cy Ops, A Cy 12.12.30

6. Initiate B-cycle and RO first B-field character.
Set B Cy Ctrl Std A Cy Ops, A Cy 12.12.44
B Cy Ctrl Set B Cy Ctr!, Next 12.12.21

to Last LG
B Cy B Cy Ctrl, LGB 12.12.02
RO BAR B Cy Ctrl, 1st + 2nd + 3rd 14.71.31

Scan Ctrl
RO B AR on Scan B Cy Ops

Set Mem AR Gated LGA, 2nd CP 14.17.16

7. Regenerate modify controls.

General Data Instructions 51

Op Code A-address B-oddress

v
Edit Instruction E 12163 . 04685

'
A-field (data field) ~-field (control word)

Storage 00257426 bbb,bbO.bb&CR&**

~-field B-field
Result of Edit Op 0257426 $ 2~574.26 .. .

'
I

PUT
TYPE ADDRESS REGISTERS DATA REGISTER

BACK B·FIELD
STEP OF

INTO AT REMARKS
CYCLE I A B B A END OF· CYCLE

STORAGE

v v v v
1 lop 00002 ????? ????? E E E $bbb,bb0.bb&CR& * * Read Instruction Op Code

t--·
2 11 00003 1???? ????? 1 1 1 Saliie Load A-address register

3 12 00004 12??? ????? 2 2 2 Same Load A-address register

4 13 00005 121?? ????? 1 '1 1 Sam·e Load A-address register

5 14 00006 1216? ????? 6 6 6 Same Load A-address register

6 15 00007 12163 ????? 3 3 3 Same Load A-address register
~

7 16 00008 12163 O???? 0 0 0 Same Load B-address register

8 17 00009 12163 04??? 4 4 4· Same Load B-address register

9 IB 00010 12163 046?? 6 6 6 Same Load B-address register

10 19 00011 12163 0468? 8 , 8 8 Same Load B-address register

11 110 00012 12163 04685 5 5 5 Same Load B-address register

op
v v

Op Code & next instruction 12 111 00012 12163 04685 Op Op Same

' 13 A 00012 12162 04685 6 6 6 Samo Execute EDIT instruction

14 B 00012 12162 04684 • 6 • Same

15 B 00012 12162 04683 • 6 • . fr· Same
~

16 B 00012 12162 04682 & 6 Blank !bbb,bbO.bb&CRb**
'

17 B 00012 12162 04681 R 6 Bla1tk $bbb,bbO.bb&Cbb** ,

18 B 00012 12162 04680 c 6 Blank $bbb,bbO.bb&bbb**

19 8 00012 12162 04679 & 6 Blank $bbb,bb0.bbbbbb**

20 B 00012 12162 04618 b 6 6 $bbb,bb0.b6bbbb**

21 A 00012 12161 04678 2 . 2 2 Same -
22 B 00012 12161 04677 b 2 2 $bbb,bb0.26bbbb**

23 A 00012 12160 04677 4 4 4 Same

Figure 23A. Step-By-Step Editing Process

52

0 <

PUT
TYPE ADDRESS REGISTERS DATA REGISTER

BACK &-FIELD

STEP OF
' INTO AT REMARKS

CYCLE I , A B B A END OF CYCLE STORAGE

24 B 00012 12160 04676 . 4 • Same
, ,

25 e· 00012 12160 04675 0 4 4 $bbb,bb4.26bbbb** Zero Suppress ,
/ ,

26. A 00012 12159 04675 7 7 7 Same

v v
27 ,9 00012 12159 04674 b 7 7 $bbb,b7 4.26bbbb. *

28 A 00012 12158 04674 5 5 5 Same!

29 B, 00012 12158 04673 b 5 5 $i>bb,51I26bbbb • •

30 A 00012 12157 04673 2 2 2 Same

31 B 00012 12157 04672 ' 2 ' Some

v v
31 B 00012 12157 04671 b 2 2 $bb2,57 4.26bbbb. *

c

33 A 00012 12156 04~71 0 0 0 Same '

v v
34 8 00012 12156 04670 b 0 0 $b02,57 4.26bbbb* *

/

v v v
35 A 00012 12155 04670 0 0 0 Same

v v v
36 8 00012 12155 04669 b 0 0 $002,57 4.26bbbb **

v v v
37 B 00012 12155 04668 $ 0 $ $002,57 4.26bbbb * * Sense Ward Mark...., Rev, Scan

00012
v v

38 Skid B 12155 04669 ? 0 ? $002,57 4.26bbbb * * Units P~sition of next Field

v
39 B 00012 12155 04670 $ 0 $ Same

v v
40 B 00012 12155 04671 Q 0 Blank $b02,574.26bbbb**

v v
41 B 00012 12155 04672 0 0 Blank $bb2,574.26bbbb**

v
42 B 00012 12155 04673 2 0 2 Some

' v
43 B 00012 12155 04674 ' 0 ' ~ame

v
44 B 00012 12155 04675 5 0 5 Same

v
45 B 00012 12155 04676 7 0 7 Same,

v y 0

46 B 00012 12155 04677 4 0 4 $bb2,57 4.26bbbb* *

Figure 23B. Step-By-Step Editing Process

General. Data Instructions 53

16

,' lstbeBCh
'Char (0) (b) or {&)?

Edit Instruction

Is the B Ch
Plus or Minus?

Set Minus Latch

Is the B Ch Char (b)
(-) {C) {R) (0) or{&)?

Is the B Ch Char{-)
(C) {R) or(b) {&) {O)?

16 16 04

Yes

Is the Plus or
Minus Latch On?

Figure 24A. Edit, First Scan

54

Yes
Is There a B Ch WM?>-----~------.

Yes

Is the B Ch Char a
{C) {R){-)(,) or(&)?

Is the B Ch Char
{C) {R) {-)or{.){&)?

ls the 0
Suppr Latch On?

Is the 0
Suppr Latch On ?

End Edit
Start Inst RO

17,13,08

(

Bo

Yes Is There an a Ch WM?

Set
Extension Latch

16.30.05

Is the B Ch Char a Yes
{b) {O) {*) {$) {&)? }-'----~

No Is the 0
Suppr Latch On?

Is theBCh Chcir
(0) {b) or {*) {$)?

._ ________ Y-"es=-<, Is the • Fill
Or Fl $ 1.0tch On?

Is the B Ch
Char{*) or($)?

/-------\

·~

'"'~

. r"

('

('

r

r

r
l'

·Set Extension Latch

16,30.06

Yes

Store ·a Ch Char

Regen 2~d Scan Lat.ch

12.30.06

,from Figure 24A

Set
2nd Scan Latch

12.30.04

Store B Ch 1 •.

Char Without WM
17.13 03·. '

Write a Blank
Without WM

17.13.05

Write an*
Without WM
17.1~.05

Set MQ Latch
For Skid Cycle

16.30.07 No Is There a B Ch WM? >--'-Y-=-es'-----~

No Is the Fl $ or Dec Yes
Ctrl Latch On? J-------~

Take a B Cyfle
12.12.M

RO B Field Character

14.71.31

Regen Ext Latch .

16.30.06

Regen
2nd Scan Latch

12.30.06
Is B Ch Char a Zero

l11struction Check ...

Ye Is the B Ch
Char a Sig Digit?

17.12.01

No

Is the B Ch Char yes
(b) (,) (0) or(-)(.)?>"""'"""""---. End Edit Operation,

Start Inst RO
urn 0 Suppr Latch Off

17.12.03

Dec Control On?
17.12.04

SetO Suppr Latch if Off

17.12.03

Is the B Ch Char
(b) (,) (O) or(-) (.)?

Is the B Ch
Char (-) or(.)?

(,) (O)

Is Fl $ Latch On?

17.12.05

Is the Dec
Ctrl Latch On?

17.12.04

Figure 24C

r------_,_N,.o'-' 11s Zero Soppr Latch On
17.12.03

ls the* Fill Latch On?
17.12.05

, #When decimal control is used, the control zero ,
position must contain a digit 0 through 9 / or
assembly channel errors and/or an instruction check can result,

Figure 24B. Edit, Second Scan

Set Dec Ctrl Latch

17 12 04

General Data Instructions 55

~

·'.(

Reg~n Ext Latch From Figure 24B -
16.:iQ.06

Store B Ch Char Set 3rd Scan Latch
Regen Ext Latch

17.13.03 f6.30.06

Regen 3rd Scan Latch Set MO Latch Regen 3rd Scan Latch

12.30.06
for Skid C~cle

16.30.0

Take a.B Cycle

12.12.44

RO B Field Char

14.71.31

Yes Is this a
Skid Cycle?

Set Extension Latch

16.30.06

• Fill or Fl
Doll Latch On?'

Write an•

#When decimal control is used, the control zero position
must contain a digit 0 through 9, or assembly channel
errors and an instruction check can result.

Figure 24C. Edit, Third Scan

56

Write a $ Sign

End Edit
Start Inst RO

12.30.06

8

0 .

Zero. Suppress
Latch On?

7 .12.03

B Ch Char
0 or(.)?

Store B Ch Char

17 .13.03

B Ch Char
0 or(.)?

Yes

Yes

No

Decimal Control
Latch On?
17.12.04

*Fill Latch On?

Write an•

17.13.05

Write a Blank

Last Execute Cycle

17.13.08

B Ch Char
0 or(.)?

0

/-,,

/~

~,,

-~

~,

9

f'

~

'c!'

~

SYNC

(~
Address Switch 00012

,
'

(" .

LINE NAME LOGIC PAGE

1. LOGIC GATE-8 11.10.11
~ 2. LAST INSN R.O. 12.13.05

3. A CYCLE CTRL ,, 12.12.20

~'
4. A CYCLE 12.12.01

5. lST SCAN CTRL 12.30.03

6: 1st·scAN 12.30.01

r 7. UNITS CTRL 16.30.02

8. UNITS 16.30.02

~ 9. PLUS SIGN L. 16.16.04

10. B CYCLE CTRL 12.12,,21

'~. 11. B CYCLE 12.12.02
12. GATE A DATA REG TO A CH. i5.38.02

13. STORE B CH. CHAR. 17.13.03

/<' 14. WRITE EDIT BLANK 17.13.05

15. NOT 0 SUP CTRL 17.12.01

16. NOT 0 SUP 17.12.01

17. USE NO ZONE 17.13.01

18. EDIT USE A Ctt. NU. 17.13.01

19. E OP WRITE WM 17.13.01

20. 0 SUP CTRL 17.12.03

21. 0 SUP 17.12.03

22. BODY CTRL 16.30.04

23. BODY 16.30.04
·•

24. USE A CH. ZONES 17.13.01

25. EXTEN. CTRL 16.30.06

26. EXTEN. 16.30.06

-
27. FLOAT DOLLAR SIGN 17.12.05

28. 2ND SCAN CTRL 12.30.04

29. 2ND SCAN 12.30.02

30. MQ CTRL 16.30.07

31. MQ 16.30.07

32. EDIT SKID CYCLE (INVERT) 17.13.15

33. 3RD SCAN CTRL 12.30.04

34. 3RD SCAN 12.30.02

35. SET DOLLAR SIG,N (INVERT) 17.13.06

36. LAST EXECUTE 12.12.5)

37. L. G.B. 11.10.11

Figure 25. Edit Operation Timings

I tOCATION PROGRAM

I 00001 ~010000200. I 00012 100000200X

I 00024 OOOOlb
00031

I 00098 ~~· 00197

I 00997 b'

TEST POINT

C2J12C l~l~~~fl-[L
C1H12G

ClJlOD

C1H20C

C1F13L

C1E26A

C2E21A

C2D16A

C2E14G

C1A04B

C1H17C
C3C17B

D2G08A

D2G08P

D2F05G

D2F06D

D2F03C

D2F10K

D2G15C

D2F13D

D2FIOB

C2C23C

C2G05A

D2G05C

C2C16C

C2D16C

D2G11C

CIG24B

C1E26C

C2C17F

C2B18A

D2K09A

C1E24C

C1E26H

D2K09B

C1H238

C2J12C

1-f

m'--+---+---+-1
1~.

t--1 l'------1 ll--
tt-)J.---+--h-i____!r-iwrr---t--+--l---+---1--.f..-.J.--1---1--1

~~l------+-'--+-~i~~L~1'---i-t-~
t-t--1---+-1---+-1---+--W_JilA'---f-+--+--+--+-~I
hitL-JtLJtuti'-----+--+---1-----l--------l----lrjL__rfl_,rjL_Jtt'--+---+-I
Hr-tllrir' I r-lr-u----H-+-
~~~---i..--1-'~l---~r-iA~-t--+---+---1--w 

~ lr-~l'---+--+---+~+--+--+-1-~ 
l---+--+----+-+-'fll~--f----j~+---+--+--+-_µJtLl 
>-+---1----_,_~rtutututLJhL---t--+--+--+-~l-l 
r--+--+--+---+-~I~~-+-+--+-~ 
r----+--J-Jrtututuill--f---+--+-+---4-+--+---~ 
1-----+--'--+-_µ_nr--v--lrl~-t--+--+--+---l-'--l--+-W 
i----1'----+~~'r----\r v---1r---1~-+~-t-~-1-~+---i 

J 

r----+---+-~~~rtutvn'---+--+--+-~~ 
r----+--+---+---+--+-4~'r-lr-U--~f-----4-+--+-~ 
f-+-+---+---1----1---1-----'Jlt rh'--t--+---+-+-l-1 

t-t~-+---+--+--t--+---IJlr- lr--t---+---+--+---4H 

t--t---+--+--+----+--+-~lr--- lr-1------1----1---1--~ 

f--+--+--~-4----+-~-J__~rtLfh_Itl"--t--+---+-I 
t-+----+--+---+--4---l'---4'---4---+--IJlrir-u------11-t-~ 

K U--,__.____._. 

t--+--+---+---+--+-4---+---+-1--1---+J~~--+-~ 
~hl----11----'l~-l\.h-----lh h h h h_ tL[b 

General Data Instructions 57 



SfGNAL ' CONTROL 

Regen'1st Scan Ctrl Std A Cy Ops, A Cy 
1st Scan Ctrl Regen 1st Scan Ctrl, 1st Scan 
1st Scan 1st Scan Ctrl, LGC 
Addr Mod Set to -1 1st Scan 

· 8. Gate A-field character to A-channel. 

LOGIC 

12.30.05 
12.30.03, 
12.30.01 
14.71.41 

Gate A Data Reg 
to A Ch 

B Cy, A Reg to A Ch on B 15.38.02 

.Cy Ops 

9~ Set assembly controls according to B-channel 
character. 
Regen Units+ Body 

Ctrl 
Units Ctrl Latch 

Std A Cy Ops A Cy 

Regen Units + Body Ctrl, 
Next to Last LG 

Units Latch 

16.30.01 

16.30.02 

Units Latch Units Ctrl Latch, LGC 16.30.02 
If B-channel character is not a blank, minus sign, C, R, &, 

or O; store the B-channel character. 
Credit or Not U Ctrl Units Latch, E Op • B Cy 

Char 
Not Blank, Not Ctrl 0, Not 

C Char, Not R Char, Not 
Minus Symbol, Not Space 

17.13.02 

Store B Ch Character Credit or Not U Ctrl Char 17.13.03 
If B-channel character is a C, R, or Minus sign, the sign latch 

determines what is stored. 
Credit or Not U Ctrl Units Latch, E Op • B Cy, 17.13.02 

Char 1st Scan, C or R or Minus, 
Minus Sign Latch 

or Store B Ch Char 
or Blanked Credit 

Symbol 

Credit or Not U Ctrl Char 17.13.03 
C or R or Minus, Plus ,Sign 17.13.02 

Latch, 1st Scan, E Op • 
B Cy, Units Latch 

Write Edit Blank Blanked Credit Symbol 17.13.05 
If the B-channel character is &, it means space and a blank 

is stored. 
Space E Op B Cy, 1st Scan, 

B Ch (B, A, 8, 1, 2, 4) 
17.11.07 

Write Edit Blank Space 17.13.05 

10. Any of the conditions in step 9 cause another 
B-cycle with the Units latch regenerated to identify 
the status portion of the control word. 
Write B Char or Spec 

Char 
Edit Set B Cy Ctrl C 

Set B Cy Ctrl 
B Cy Ctrl 

BCy 
ROBAR 

Store B Ch Character, or 
Write Edit Blank 

Write B Char or Spec Char 
1st or 2nd Scan, B Ch Not 

WM Bit 
Edit Set B Cy Ctrl C 
Set B Cy Ctrl, Next 

to Last LG 
B Cy Ctrl, LGB 
B Cy Ctrl, 1st + 2nd + 3rd 

Scan Ctrl, RO B AR on 
Scan B Cy Ops 

Set Mem AR Gated LGA, 2nd CP 

11. Regenerate modify controls. 
Regen 1st Scan Ctrl Edit Set B Cy Ctrl C 
1st Scan Ctrl Regen 1st Scan Ctrl, 1st Scan 
1st Scan 1st Scan Ctrl, LGC 
Addr Mod Set to -1 1st Scan 

12. Regenerate units latch. 
Regen Units +Body 

Ctrl 
Units Ctrl Latch 

58 

Edit Set B Cy Ctrl C 

Regen Units + Body Ctrl, 
Next to Last Logic Gate, 
Units Latch 

17.13.07 

17.13.09 

12.12.44 
12.12.21 

12.12.02 
14.71.31 

14.17.16 

12.30.05 
12.30.03 
12.30.01 
14.71.41 

16.30.01 

16.30.02 

SIGNAL CONTROL LOGIC 

Units Latch Units Ctrl Latch, LGC 16.30.02 
· 13. Set assembly controls according to B-channel 

character; this character can be the same as in step 9 
in which case steps 9-12 are repeated. 

If the B-channel character is 0 or blank the character on the 
A-channel (from the last A-cycle) is stored. 
Edit Use A Ch Nu E Op • B Cy, Units Latch, 17.13.01 

Blank or 0 
Use No Zones* Edit E Op • B Cy, Units Latch, 17.13.01 

Blank or 0 

14. If the character is a 0, a word mark is stored 
over the A-channel character to identify the end of 
zero suppress on the second scan; also, the zero sup­
press latch is set on. 
Not Zero Suppress Ctrl 
Not Zero Suppress 
Not Zero Suppress Ctrl 

EOpWriteWM 

0 Suppress Ctrl 

Last Insn RO Cy, Last LG 
Not Zero Suppress Ctrl, LGC 
Not Zero Suppress, Last LG, 
A Cy/1st Scan, E Op • B Cy, 

Not Ctrl 0 ' 
E Op • B Cy, 1st Scall, 

Ctrl Zero Not 0 Suppress 
E Op Write WM, E or Z 
.. Op • B Cy, Last LG 

17.12.01 
17.12.01 
17.12.01 

17.13.01 

17.12.03 

0 Suppress 0 Suppress Ctrl, LGC 17.12.03 

15. After the A-chan~el character is stored another 
A-cycle must be taken. 
Edit Set A Cy Ctrl Edit Use A Ch Nu, A Ch . 12.12.41 

WM,BChWM 
Set A Cy Ctrl Edit Set A Cy Ctrl 12.12.41 
A Cy Ctrl Set A Cy Ctrl, Next 12.12.20 

to Last LG 
A Cy A Cy Ctrl, LGB 12.12.01 
RO AAR A Cy Ctrl, LG Special A 14.71.30 

Read out AAR on A Cy Ops 
Set Mem AR Gated LGA, 2nd CP 14.17.16 

16. Regenerate modify control. 
Regen 1st Scan Ctrl Edit Set A ,Cy Ctrl 
1st Scan Ctrl Regen 1st Scan Ctrl, 1st Scan 
1st Scan 1st Scan Ctrl, LGC 
Addr Mod Set to -1 1st Scan 

12.30.05 
12.30.03 
12,30.01 
14.71.41 

17. Set assembly controls according to B-chaunel 
character in body of control word. 
Set Body Ctrl Latch Edit Set A Cy Ctrl 
Body Ctrl Latch Set Body Ctrl Latch, Next 

to Last LG 

16.30.01 
16.30.04 

Body Latch Body Ctrl Latch, LGC 16.30.04 
If B-channel character is not a blank, 0, *, $, or &, store the 

B-channel character. 
Store B Ch Char Body Latch, E Op • B Cy, 

Not Blank, NotCtrl 0, Not•, 
Not $, .Not Space 

If B-channel character is & write a blank. 

17.13.03 

Write Edit Blank Space 17.13.05 
Again, either of these conditions cause another B-cycle as in 

steps 10-12 except that the body latch is regenerated. 

18. If the B-channel character is a 0, blank, *, or $ 
the A-channel character is stored. 
Edit Use A Ch Nu 

and Use A Ch 
Zones• Edit 

Edit Use A Ch Nu 
and Use A Ch 
Zones• Edit 

E Op• B Cy, Body Latch, 
Blank or 0 

E Op • B Cy, Body Latch, 
*or$ 

17.13.01 

17.13.01 

A 0 sets the zero suppress latch if it had not been set before. 

/ \ 



r 

. SIGNAL CONTROL Lome 
19. An * or $ sets the asterisk fill or float dollar latch 

i~ the zero suppress latch had been previously set. 
, Not * Fill or Fl Doi Last lnsn RO Cy, LLG 17.12.02 

Ctrl 
Not'* Fill or Fl Doi 
Not * Fill or Fl Doi 

Ctrl 

Not * Fill or Fl Doi Ctrl 
(A Cy, Not* Fill or Fl Doi) 

or E Op • B Cy, Body 
Latch, Not *, Not $ 

17.12.02 
17.12.02 
17.12.02 

Asterisk Fill E Op • B Cy, Not * Fill or 17.12.05 
or Fl Dollar Sign Fl Doi, 0 Suppress, Body 

Latch, and * /$ 
20. Edit use A-channel Number again causes A­

cycles unless the last A-field character has a word mark 
which causes a B-cycle. 
Edit Set B Cy Ctrl A Edit Use A Ch Nu, E Op Code 12.12.44 

A Ch WM Bit, B Ch Not 

Set B Cy Ctr! 
B Cy Ctrl 

WM Bit 
Edit Set B Cy Ctrl A 
Set B Cy Ctrl, Next 

to Last LG 

12.12.44 
12.12.21 

B Cy 
ROBAR 

B Cy Ctrl, LGB 12.12.02 
B Cy Ctr!, 1st + 2nd + 3rd 14.71.31 

Scan Ctr! 
RO B AR on Scan B Cy Ops 

Set Mero.AR Gated LGA, 2nd CP 

21. Regenerate modify controls. 
Regen 1st Scan Ctrl Edit Set B Cy Ctr! A 
1st Scan Ctrl Regen 1st Scan Ctr!, 1st Scan 
1st Scan 1st Scan Ctrl, LGC 
Addr Mod Set to -1 1st Scan 

14.17.16 

12.30.05 
12.30.03 
12.30.01 
14.71.41 

22. Set assembly control according to B-channel 
character. ·. 

Set Extension Ctrl 
Latch 

Extension Ctr! Lat 

Edit Set B Cycle Ctr! A 

Set Extension Ctr! Latch, 
Next to LLG 

16.30.05 

16.30.06 

Extension Latch Extension Ctr! Lat, LGC 16.30.06 
If B-channel character is not a C, R, minus sign, comma or 

&, store the B-channel character. 
Store B Ch Char Extension Latch, E Op B Cy 17.13.03 

1st Scan, Not C Char, Not 
R Char, Not Minus Sym-
bol, Not Space, Not Comma 

If B-channel character is an & or a comma, a blank is stored. 
Write Edit Blank Space 17.13.05 

or E Op B Cy, Extension 
Latch, Comma 

If the B-channel character is a C, R or minus sign, the sign 
latch determines what is stored. 
Credit or Not U Extension Latch, E Op B Cy, 17.13.02 

Ctr! Chat 1st Scan, C or R or Minus, 

Store B Ch Character 
or Blanked Credit 
Symbol 

Minus Sign Latch 
Credit or Not U Ctr! Char 17.13.03 
C or R or Minus, Plus Sign 17.13.02 

Latch, 1st Scan, E Op B 
. Cy, Extension Latch 

Write Edit Blank Blanked Credit Symbol 17.13.05 

23. The scan continues through the status portion of 
the control word until a word mark; if the zero sup­
press latch is on the second scan is initiated otherwise 
the operation ends. 
Edit Set B Cy Ctrl B 

Set B Cy Ctrl 
B Cy Ctrl 

E Op B Cy 1st Scan, 
0 Suppress, B Ch WM Bit 

Edit Set B Cy Ctr! B 
Set B Cy Ctrl, Next 

to Last LG 

17.13.08 

12.12.44 
12.12.21 

SIGNAL 

BCy 
·ROBAR 

CONTROL_ 

B Cy Ctfl, LGB 
B Cy Ctr!, Ist + 2nd + 3rd 

Scan Ctr! 
RO B AR on Sean B Cy Ops 

Set Mem AR Gated LGA, 2nd CP 
24. Set modify controls to + 1. 

Set 2nd Scan Ctrl 
2nd Scan Ctr! 

Edit Set B-Cy Ctr! B 
Set 2nd Scan Ctrl, Next 

to LLG 
2nd Scan 2nd Scan Ctr!, LGC 
Addr Mod Set to + 1 2nd Scan 

25. Set skid cycle controls. 
Set MQ Ctr! 
MQ Ctr! Latch 

Edit Set B Cy Ctr! B 
Set MQ Ctr!, Next 

to Last LG 

Lome 
12.12.02 
14,71.31 

14.17.16 

12.30.06 
12.30.04 

12.30.02 
14.71.41 

16.30.05 
16.30.07 

MQ Latch MQ Ctrl Latch, LGC 16.30.07 
Edit Skid Cy MQ Latch, E or Z Op B Cy 17.13.15 

26. Store B-channel character. 
Use B-Ch WM Edit Skid Cy 
Store B-Ch Char Edit Skid Cy 
Load Memory Load Memory on B Cy Op 

Codes B Cy 

15.49.04 
17.13.03 
12.50.01 

27. Take another B-cycle and read out B-field 
character. 
Set B Cy Ctrl 
B Cy Ctrl 

B Cy 
Read Out BAR 

Edit Skid Cy 
Set B Cy Ctr!, Next 

to Last LG 
B Cy Ctr!, LGB 
B Cy Ctrl, 1st + 2nd + 

3rd Scan Ctr! 
Read Out BAR on Scan B 

Cy Ops 
Set Mem AR Gated LGA, 2nd Clock Pulse 

28. Regenerate modify controls. 

12.12.44 
12.12.21 

12.12.02 
14.17.31 

14.17.16 

Regen 2nd Scan Ctrl MQ Latch 17.13.15 
2nd Scan Ctrl Next to Last LG, Regen 2nd 12.30.04 

Scan Ctr! 2nd Scan 
2nd Scan 2nd Scan Ctr!, LGC 12.30.02 
Addr Mod Set to + 1 2nd Scan 14.71.41 

29. Set assembly controls according to B-channel 
character. 
Extension Ctr! Latch Edit Skid Cy, Next to 16.30.06 

Last LG 
Extension Latch Extension Ctr! Latch, LGC 16.30.06 

If B-channel character is any other character except 0, comma, 
or blank, the B-channel character is stored. 
Store B Ch Char E or Z Op B Cy, 2nd Scan, 17.13.03 

Not Ctr! 0, Not Blank, Not 
Comma 

If B-channel 'Character is a 0, blank, or comma, the character 
is either stored as is (zero suppress off), blanked (zero suppress 
on ) , or an * is stored (zero suppress and asterisk fill latches on). 
Zero suppress is the same as in Z op code. 
Decimal Control 

30. Set decimal controls when a decimal is sensed. 
Decimal Ctr! 2nd Scan, Extension Latch, 17.13.03 

E or Z Op Code, Decimal, 
Last LG 

31. After the decimal, store all B-channel characters. 
2nd Scan Sig Char E or Z Op• 2nd Scan• Exten- 17.13.04 

sion, Blank 0 or Comma, 
Decimal Ctr! 

Store B Ch Char E or Z Op• B Cy, 2nd Scan, 17.13.03 
Not Blank, Not Comma, 
Not 0 or 2nd Scan Sig Char 

General Data Instructions 59 



$IC,NAL CONTROL LOGIC 
~· Take another B-cycle and read out B-field char­

. ac~er if a third scan is required. 
3rd Scan Cond Decimal Ctrl, 0 Suppress 17.13.07 

Not Sig Digit 
. Edit Set B Cy Ctrl D 3rd Scan Cond, E or Z Op 17.13.09 

Code 
2nd Scan Extension, B Ch WM 

Set B Cy Ctrl 
B Cy Ctrl 
BCy 
ROBAR' 

Edit Set B Cy Ctrl D 12.12.44 
Set B Cy Ctrl, Next to Last LG 12.12.21 
B Cy Ctrl, LGB 12.12.02 
B Cy Ctrl 1st+ 2nd+ 3rd 14.71.31 

Scan Ctrl 
\ RO B AR on Scan B Cy Ops 

Set Mem AR Gated LGA, 2nd CP 
33. Set modify controls to -1. 

Set 3rd Scan Ctrl 
3rd Scan Ctrl 

Edit Set B Cy Ctrl D 
Set 3rd Scan Ctrl, Next to 

Last LG 
3rd Scan 3rd Scan Ctrl, LGC 
Addr Mod Set to -1 3rd Scan 

34. Set skid cycle controls. 
Set M Q Ctrl Edit Set B Cy Ctrl D 
M Q Ctrl Latch Set M Q Ctrl, Next to 

M Q Latch 
Edit Skid Cy 

Last LG 
M Q Ctrl Latch, LGC 
M Q Latch, Z Op B Cy 

35. Store B-channel character. 

14.17.16 

12.30.06 
12.30.04 

12.30.02 
14.71.41 

16.30.05 
16.30.07 

16.30.07 
12.13.15 

Use B Ch WM 
Store B Ch Char 
Load Memory 

Edit Skid Cy 15.49.04 
Edit Skid Cy 17.13.03 
Load Mem on B Cy Op Codes, 12.50.01 

B Cy 

36. Take another B-cycle and read out B-field 
character. 
Set B Cy Ctrl 
B CyCtrl 

BCy 
ROBAR 

Edit Skid Cy 
Set B Cy Ctrl, Next to 

Last LG 

12.12.44 
12.12.21 

B Cy Ctrl, LGB 12.12.02 
B Cy Ctrl 1st + 2nd + 3rd 14.71.31 

Scan Ctrl 
RO B AR on Scan B Cy Ops 

Set Mem AR Gated LGA, 2nd CP 14.17.16 

37.· Regenerate modify controls. 
Regen 3rd Scan Ctrl M Q Latch 17.13.15 
3rd Scan Ctrl Next to LLG, Regen 3rd Scan 12.30.04 

Ctrl, 
3rd Scan 

3rd Scan 3rd Scan Ctrl, LGC 12.30.02 
Addr Mod Set to -1 3rd Scan 14.71.41 

38. Set assembly controls to write blank if character 
is a decimal or 0. 
Extension Ctrl Latch 
Extension Latch 
Not 

* Fill or Fl Dol Ctrl 
Not 

• Fill or Fl Doi 
Not 

* Fill or Fl Dol Ctrl 
Write Edit Blank 

Edit Skid Cy, Next to Last LG 16.30.06 
Extensions Ctrl ]jatch, LGC 16.30.06 
Last Insn RO Cy, LG 17.12.02 

(A Cy, Not 
* Fill or Fl Doi) 

(Z Op B Cy, Not 
* Fill or Fl Dol) 

Not* Fill, 0 Suppress 
E or Z, 2nd Scan, Extension, 

0 or Decimal 

17.12.02 

17.12.02 

17.13.05 

Store B Ch Char Not Decimal, Not 0, 3rd Scan 17.13.03 

39. If the character is J)Ot a decimal, another B-cycle 
is taken. 

60 

SIGNAL 
Write B Char or Spec 
·Char· 

Edit Set B Cy Ctrl F 

Set B Cy Ctrl 
B Cy Ctrl . 

BCy 
ROBAR 

CONTROL 
Write Edit Blank 

LOGIC 
n13.07 

Not Decimal, E or Z 3rd 17.13.09 
Scan ,Extension, Write B ~har 

or Spec Char 
Edit Set B Cy Ctrl F 
Set B Cy Ctrl, Next to 

Last LG 
B Cy Ctrl, LGB 
B Cy Ctrl, 1st + 2nd + 3rd 

Scan Ctrl 
RO B AR on Scan B Cy Ops 

12.12.44 
12.12.21 

12.12.02 
14.71.31 

Set Mem AR Gated LGA, 2nd CP 14.17.16 
40. Regenerate modify controls. 

Regen 3rd Scan Ctrl Edit Set B Cy Ctrl F 12.30.06 
3rd Scan Ctrl Next to LLG, Regen 3rd 12.30.04 

Scan Ctrl 
3rd Scan 

3~d Scan 3rd Scan Ctrl, LGC 12.30.02 
Addr Mod Set to -1 3rd Scan 14. 71.41 

41. Set assembly controls to write blank if character 
is a decimal or 0. 
Regen Ext Ctrl 
Extension Ctrl .Latch 
Extension Latch 
Not 

* Fill or Fl Doi Ctrl 
Not 

* Fill or Fl Doi 
Not 

* Fill or Fl Doi Ctrl 

Write Edit Blank 

Edit Set B Cy Ctrl F 
Regen Ext Ctrl 
Extension Ctrl Latch, LGC 
Last Insn RO Cy, LG 

Not 
* Fill or Fl Doi Ctrl 

(A Cy, Not 
* Fill or Fl Doi) 

(Z Op B Cy, Not 
* Fill or Fl Doi) 

Not * Fill, 0 Suppress 
E or Z, 3rd Scan, Extension 

0 or Decimal 

16.30.05 
16.30.06 
16.30.06 
17.12.02 

17.12.02 

17.12.02 

17.13.05 

42. If the character is a decimal, the operation is 
ended. 
Last Execute Cy 

*Fill 

E or Z • 3rd Scan Extension 17.13.08 
Decimal Ctrl, Decimal 

43. Write * if B-channel character is 0, blank, or 
comma. 
Write Edit"' E or Z •2nd Scan• Extension, 17.13.05 

Not Decimal Ctrl, 0 Suppress, 
Blank 0 or Comma, * Fill 

The second scan continues until the word mark, set on the 
first scan, is read out and removed. Here the operation is either 
ended or a third scan is taken. 

44. Take another B-cycle and read out B-field 
character if a third scan is required. 
3rd Scan Cond 
Edit Set B Cy Ctrl D 

Set B Cy Ctrl 
B Cy Ctrl 
BCy 
ROBAR 

Set Mem AR Gated 
45. Set modify 

Set 3rd Scan Ctrl 
3rd Scan Ctrl 

Float Dollar Sign 17.13.07 
3rd Scan Cond, E or Z Op 17.13.09 

Code 
2nd Scan • Extension, B Ch WM 
Edit Set B Cy Ctrl D 12.12.44 
Set B Cy Ctrl, Next to Last LG 12.12.21 
B Cy Ctrl, LGB 12.12.02 
B Cy Ctrl 1st + 2nd + 3rd 14.71.31 
Scan Ctrl 
RO BAR on.Scan B Cy Ops 
LGA, 2nd CP 14.17.16 

controls to - 1. 
Edit Set B Cy Ctrl D 
Set 3rd.Bean Ctrl, Next to 

Last LG 

12.30.06 
12.30.04 

/ "'\ 



( ' 

J • 

SIGNAL CONTROL 

3rd Scan 3rd ~can Ctrl, LGC 
Addr Mod Set to -1 · 3rd Scan 

LOGIC 

12.30:02 
14.71.41 

Compare Instruction 

Instruction Formats 

I ~ 

c 
;r 

46. Set skid cycle controls. 
Set M Q Ctrl Edit Set B Cy Ctrl D , F.ormats for the compare instruction are: 16.30.05 
M Q Ctrl Latch . Set M Q Ctrl, Next to 

Last LG 
M Q Latch M Q Ctrl Latch, LGC 
Edit Skid Cy M Q Latch, Z Op • B Cy 

47. Store B-channel c:&aracter. 

16.30.07 

16:30.07 
12.13.15 

Use B Ch WM Edit Skid Cy 15.49.04 
Store B Ch Char Edit Skid Cy 17.13:03 
Load Memory Load Mem on B Cy Op Codes, 12.50.01 

BCy 

. 48. Take another B-cycle and read out B-field 
character. 
Set B Cy Ctrl 
B Cy Ctrl 

Edit Skid Cy 
Set B Cy Ctrl, Next to 

Last LG 

12.12.44 
12.12,21 • 

BCy . 
ROBAR 

B Cy Ctrl, LGB 12.12.02 
B Cy Ctrl 1st + 2nd + 3rd 14.71.31 

'" ScanCtrl 
. . RO B AR on Scan B Cy Ops 

Set Mem AR Gated LGA, 2nd CP 14.17.16 

49. Regenerate' inodify controls. 
Regen 3rd Scan Ctrl M Q Latch . l7.13:15 . 

. 3rd Scan Ctrl Next to LLG, Regen 3rd Scan 12.30.04" 
Ctrl 

3rd Scan 
3rd Sl!an 3rd Scan Ctrl, LGC 12.30.02 
Addr Mod Set to -1 3rd Scan 14.71.41 

50. The assembly controls cause ·the B-channel 
character to. be stored until a blank is read out; the 
blank causes a $ to be stored and the operation is , 
ended. · 
Set$ E or Z •3rd Scan• Extension, 17.J3.06 

•Edit 

Last Execute Cy 
Float $, Blank 
Set$ 

*Edit 

Questions on Edit Operation 

12.12.51 

Answers to review questions are in the Appendix. 
1. How many times can the MQ latch be set in an 

edit operation? 
2. What condition causes the edit operatiqi to end 

when the first scan is completer What conditions cause 
the edit operation to end when the second scan is 

, complete? 
. " 

3. If the B·field contains 00.000 at the end of the 

0Fc0DE 
y 

c c c 

• A-ADDRESS B-ADDBESS 

The compare instruption causes B-field data to be 
compared to data .in the A-field. (The comparison is 
al~ays B to A, never A to B j. Execution of the com-

.. pare instruction does not change data stored in either 
field. The result of the compare sets the compare high 
(B>A), compare low .(B<A), or compare equal 
( B =A) latch. A ~bsequent test and branch instruc· 
tion phecks the state of the latches. 

When the A-field is shorter than the B-field, the 
compare high latch is set, designating the B-field as 

.. the greater of the two fields, regardless of their values. 
If, however, the. B-field is shorter than the A-field, the 
. low latch is not set unconditionally at the ··end -0£ the 
compare operation . 

At the end of the operation, the A· and B·address 
, registers contam the original A- and B-addresses minus 

the length of the A- or B-field, whichever is shorter. 

CPU Operation 

During last instruction read-out cycle, the units, first 
scan, and A.cycle confrol latches are set. To execute 
the compare instruction, the CPU takes an A-cycle to 
read oµt the A-field character that the AAR specifies; 
the character is stored. in the A-data register. The CPU 

then takes a B.cycle to read out and gate the B-field 
character . onto the B-channel. The character in the 
A-data register is gat~ to the A-channel while the 
B~field character' is gated. to the :S.,cbannel. A· and 
B·channel characters are compared in the adder and 
compare units. The output of the compare matrix sets 
the high, low, or equal latch. The equal latch can be 
set only when the units positions of the fields are com­
pared. If all A- and B.-.6.eld characters are ~ual, the 
equal latch is not reset in the compare operation. 

The CPU alternately executes A- and B-cycl~, com· 
paring A- and B-field characters and setting or re· ' 

first scan. and the floating .dollar latch is not set, will 
the CPU initiate a third scan when the second scan is 

/ 

setting the high and low latches as required, until a .~,1 

complete? . 
4. Does the CPU take A- and B~ycl.es during the 

first, second, and third scans? 
5. Are B-field characters read during the first scan 

when the extension latch is set in the 'body or the status 
portion of the control word? 

6. What limitation is imposed an the length of the 
A-field? 

word mark is sensed in either the A- or the B-field. 
The CPU terminates the c0mpare operation when either 
. an· A- or B-channel word mark is detected. The last 
compare latch set (high, low, or equal) rem.aim on to 
indicate the result of the operation. 

Figures 26 and 27 show detailed operation m the 
execution of the compare instruction. . 

Examples l and 2 following illµstrate the compare 
operati0n. 

General Data Instructions 611 



Set High Latch 

17.14.01 

Yes 

Compare. lnstructi.on 

Set Units Latch 

16.30.02 

Set !st Scan Latch 

12.30.05 

Take an A Cycle 

12, 12.41 

RO a Field Character 

14.71.30 

Take a B Cycle 

12.12.44 

RO B Field Character 

14. 71.31 

Compl Add 
A Char ta B Char 

Is There an A Ch W 
and No 8 Ch WM? 

17.18.01 

Set Equal Latch 

17 14.03 

No 

See Compare Unit Opera­
tion in 1410 System Funda­
mentals CE Manual . 

Is the Comparison 
High or Low? 

;c 

Set Low Latch 

17 14. 

Set High Latch 

~---------------------Y~e=s-< ls There-a 8 ChWM?>'N=0----.-----, 

End Exec Cy 
Start Inst RO 

17.18.01 

Figure 26. Compare 

62 

Turn Off Units, 
Set Body Latch 

16.30.04 

-, 



I 
I LOCATION PROGRAM 

00001 coo 10000200 
I 00012 Joooo1b 

I 00098 loo 

I 
00198 foo 

•' I 
LINE NAME LOGIC PAGE TEST POINT 

1. LOGIC GATE 11~®A t!l c:ffi_E_ffi A t!l_c@Pl_A fil<J'B_EJFl A l!:L@E_filA filc:.@l_E_ffi A l!l@®A file§@ 

2. LAST INSN R.0. 12. 13.05 11C1H12G 
_:-

3. A CYCLE CTRL 12.12.20 11C1J10D ~ l. J l.. J l. 
1.----

I'-----4. A CYCLE 12.12.01 11C1H20C 

5. R.O. AAR 14.71.30 11C1C11G I____; rt Il\ 

6. 1 ST SCAN CTRL 12.30.03 11C1F23L l_J 1 
7. lSTSCAN 12.30.01 11C1 E26A J µ µ µ µ µ 
8. UNl\S CTRL 16.30.02 11C2E21A \__J l 

9. UNITS 16.30.02 11C2D16A J µ 
1 O. B CYCLE CTRL 12.12.21 11C1A04B t-- J L J \. J \_ --
11. B CYCLE 12.12.02 11C1H17C ll l\_ 

12. R. 0. BAR 14.71.31 11C1C11H n n _) --
13. GATE "A" DATA REG TO "A" CH 15.38.02 11C3C17B l. J l.. J \. lI 
14. HI-EQUAL-LO LAT RESET 17.14.01 11 D2E20C 

15. COMPL ADD A 16.20.15 11 C2F08H J ~-J ~_J ~_r ~ j _ _f 

16. TRUE ADD B 16.20.10 11C2E12C I w- µ w- w- )._[ 

17. HI-EQUAL-LO LAT SET 17.14.01 11D2H21K J IL J J 

18. EQUAL 17.14.03 11 D2F06C J l. 
19. BODY CTRL 16.30.04 11C2C23C J \. 

20. BODY 16.30.04 11C2G05A J w w ~ 
21. HIGH 17.14.01 11D2G09C 

l. J 
22. LAST EXECUTE 12.17.51 11 Cl H23B I -
23. LOGIC GATES l:ki:ilifil.A ~A ~ME.fil.A lu:Iii\ @A liliifilllilA ~A ~A ~<l:ilifilj 

Figure 27. Compare Operation Timings 

General Data Instructions 63 



EXAMPLE I 

A-field 8 9 2 0 5 B-field 
v 

----------6 0 2 1 5 

I l 
First A-cycle readout 5 First B-cycle readout 5 set EQUAL latch 

Second A-cycle read out 0 Second B-cycle readout 1 set HIGH latch 

Third A-cycle readout 2 Third B-cycle readout 2 HIGH latch remains set 

Fourth A-cycle read out 9 Fourth B-cycle read out 0 set LOW latch 

Fifth A-cycle read out 
v 
8 Fifth B-cycle 

The comparison designates the A-field as the greater of the 
two fields as indicated by the LOW latch being set when the 
comparison is terminated. 

EXAMPLE 2 

A-field 9 1 5 B-fleld 

I 
First A-cycle read out 5 First B-cycle 

readout 

v 
0 2 0 5 

I 
readout 5 

LOW latch remains set, 
and because A- and B­
field word marks are 
sensed, the compare op­
eration ends. 

set EQUAL latch 

Second A-cycle readout 1 Second B-cycle readout 0 set LOW latch 

Third A-cycle read out 9 Third B-cycle read out 2 set HIGH latch because 
A-field word mark· and 
no B-field word mark is 
sensed. 

Although A-field is numerically greater than B-field, the com­
parison ends with the HIGH latch set, designating B-6.eld as 
the greater of the two fields, because A-field is shorter than 
B-field. 

The following controls are 
performs a compare operation: 

active when the CPU 

SIGNAL CONDITION 

I. Initiate A-cycle and read 
LOGIC 

out first A-field char-
acter. 
Set A Cy Ctrl A Cy First Op Codes 12.12.41 

Last Instruction Read Out Cy 
A Cy Ctrl Set A Cy Ctrl 12.12.20 

Next to Last Logic Gate 
A Cy A Cy Ctrl, LGB 12.12.01 
Read Out AAR A Cy Ctrl, Logic Gate 14.71.30 

Special A, 
Read Out AAR on A Cy Ops 

Set Mem AR Gated LGA, 2nd CP 14.17.16 

2. Set modifier controls. 
Set 1st Scan Ctrl 1st Scan First Op Codes 12.30.05 

Last Instruction Read Out 
1st Scan Ctrl Set 1st Scan Ctrl 12.30.03 

Next to Last Logic Gate 
1st Scan 1st Scan Ctrl, LGC 12.30.01 
Addr Mod Set to -1 1st Scan 14.71.41 

3. Set character into A-data register. 
Sw B Ch to A Reg A Cy, LGD 15.38.01 

4. Initiate B-cycle and read out first B-field char­
acter. 
A Cy Ops A Cy 
Stop at F 

64 

Compare Op Code, A Cy 
ACyOpsACy 

13.14.06 
12.12.30 

SIGNAL CONDITION LOGIC 

5. Initiate B-cycle and read out first B-field char­
acter. 

Set B Cy Ctrl 
B Cy Ctrl 

BCy 
Read Out BAR 

Set Mem AR Gated 

A-Cy Ops, A-Cy 
Set B-Cy Ctrl, 
Next to Last Logic Gate 
B Cy Ctrl 
B Cy Ctrl 
1st + 2nd + 3rd Scan Ctrl 
Read Out BAR on Scan B 

Cy Ops 
LGA 
2ndCP 

6. Gate A-field character to A-channel. 

Gate A Data Reg to B-Cy, A Reg to A Ch on 
ACh BCyOps 

7. Control B-cycle length. 

12.12.44 
12.12.21 

12.12.02 
14.17.31 

14.17.16 

15.38.02 

Stop at F B Cy, Compare Op Code 12.12.30 

8. Set high latch if there is an A-channel WM with 
no B-channel WM. 

Set High Cy 

High 
Last Execute Cy 

*TLU 

B Cy, Compare Op Code, 
A Ch WM, B Ch Not WM 
Set High Cy, LGF 
Set High Cy 

17.18.01 

17.14.01 
17.18.01 



/ ' 

r 

SIGNAL CONDITION LOGIC 

9. Set equal latch if compare result is equal for the 
4nits positions. 
Units Ctrl Latch 
l!nits Latch 
Regen Units and 

Last Instruction Read Out 
Units Ctrl Latch, LGC 
Standard A Cy Ops A Cy 

16.30.02 
16.30.02 
16.30.01 

Body Ctrl 
Units Ctrl Latch Regen Units and Body Ctrl 16.30.02 

Next to Last Logic Gate 
Equal Low Latches Set B Cycle, Compare Op Code 17.14.01 

Equal 
Units Latch 
Units Latch, Equal Low 

Latches Set 
Compare Equal, Not Set 

High Cy 

17.14.03 

10. Take another A-cycle and read out next A-field 
character. 
Compare Mode Set 

A Cy Ctrl 
B Cycle, Compare Op Code 17.18.01 

Set A Cy Ctrl 
A Cy Ctrl 

A Ch Not WM, B Ch Not WM 
Compare Mode Set A Cy Ctrl 12.12.41 
Set A Cy Ctrl 12.12.20 
Next to Last Logic Gate 

A Cy A Cy Ctrl, Logic Gate 14.71.30 
Special A 

Read Out AAR on A Cy Ops 
Set Mem AR Gated LGA, 2nd CP 14.17.16 

11. Set body latch. 
Set Body Ctrl Latch Compare Mode Set A Cy Ctrl 16.30.01 
Body Ctrl Latch Set Body, Ctrl Latch 16.30.04 

Next to Last Logic Gate 
Body Latch Body Ctrl Latch 16.30.04 
Regen Units and Standard A Cy 16.30.02 

Body Ctrl * A Cy 
12. Regen modify controls. 

Regen 1st Scan Ctrl Standard A Cy Ops A Cy 12.30.05 
1st Scan Ctrl Regen 1st Scan Ctrl, 1st Scan, 12.30.03 

Next to Last Logic Gate 
1st Scan 1st Scan Ctrl, LGC 12.30.01 
Addr Mod Set to -1 1st Scan 14.71.41 

13. Set character into A-data register. 
Sw B Ch to A Reg A Cy, LGD 15.38.01 

14. Take another B-cycle and read out next B-field 
character. 
Standard A Cy Ops 

A Cy 
Set B Cy Ctrl 
B Cy Ctrl 

Compare Op Code, A Cy 

Standard A Cy Ops, A Cy 
Set B Cy Ctr!, L 
Next to Last Logic Gate 

13.14.06 

12.12.44 
12.12.21 

BCy B Cy Ctrl, LGB 12.12.02 
Read Out BAR B Cy Ctrl, 1st + 2nd + 3rd 14.71.31 

Scan Ctrl 
Read Out BAR on Scan B Cy Ops 

Set Mem AR Gated LGA, 2nd CP 14.17.16 
15. Control A-cycle length. 

Stop at F Standard A Cy Ops, A Cy 12.12.30 
16. Gate A-field character to A-channel. 

Gate A-Data Reg B Cy, A Reg to A Ch on 15.38.02 
toACh BCyOps 
17. Control B-cycle length. 

Stop at F B Cy, Compare Op Code 12.12.30 
18. Set high or low latch. 

Equal Low Latches 
Set 

Body Latch, Compare Mode 17.14.01 
B Cy 

High Latch Compare High, Equal Low 17.14.01 

SIGNAL CONTROL 

Latches Set LGF 
LOGIC 

Low Latch Compare Low, Not Set 17.14.02 
High Cy, 

Equal Low Latches Set, LGF 
19. Initiate instruction read out. 

Last Execute Cy TLU B Ch WM, B Cy, Compare 17.18.01 
Op Code 

Note: Steps IO through 18 are repeated until a WM is read out. 

Questions on Compare Operation 

Answers to review questions are in the Appendix. 
l. The compare instruction causes the CPU to com­

pare B-field characters to characters in the A-field. Are 
contents of either field changed as a result of the com­
pare operation? 

2. What conditions terminate the operation? 
3. Is the compare high, compare low, or compare 

equal latch set unconditionally if the B-field is longer 
than the A-field? 

4. What action occurs if the A-field is longer than the 
B-field? 

5. What conditions must exist before the compare 
equal latch can be set? 

6. Interpret the result of the comparison when the 
compare low latch is set at the end of the compare 
operation. 

Table Lookup Instruction 

Definitions 

The table lookup instruction causes the CPU to search 
through a previously prepared table in core storage to 
locate a specific function. 

A function is either a segment of actual data or the 
storage address of a segment of data compiled in the 
table; for example, if multiples of five are listed in the 
table, 5, 10, 15, 20, etc. are table functions. 

To recognize the desired function, the system re­
quires two arguments, the table argument and the 
search argument. Each function in the table has a 
prefix called a table argument to provide separate 
identification for each function; for example, if 5, 10, 
15, 20, and 25 are table functions, 501, 1002, 1503, 
2004, and 2505 might appear in the table; the two low­
order digits preceding each function make up a table 
argument. Each table argument must contain the same 
number of characters. A function and corresponding 
table argument make up a table field. 

To locate the specific function in the table, the CPU 

compares a search argument with table arguments. 
The search argument is identification data read in from 
an input device or generated by the program. Although 
the search argument is stored in core storage, it is not 

General Data Instructions 65 



part of the table. The table lookup instruction desig­
nates the search argument to be used in the operation. 
The instruction specifies the condition (high, low, or 
equal) sought in the search argument-table argument 
comparisons. 

The time required to execute the table lookup in­
struction is determined by the number of table fields 
and the number of characters in each table field en­
countered before the desired function is found. There­
fore, functions should contain the least possible num-

. bet of characters when adequate core storage space 
is availqble. If segments of data compiled in the table 
contain five characters or less, the data are stored in 
the table; in this case, the function is actual data. If 
segments of data compiled in the table contain more 
than five characters, the data are usually located in 
another area of core storage. In this case, the function 
is the 5-character address of the desired segment of 
data. 

Instruction Formats 

Formats for the table lookup instruction are: 

OP CODE 
y 

T 
t 
y 

T 

A-ADDRESS 

xxxxx 
xxxxx 

B-ADDRESS 

xxxxx 

cl-CHARACTER 

See Figure 28 

The table lookup instruction causes the CPU to search 
for a table argument that is equal to, lower, or higher 
than the search argument as specified by the dcchar­
acter (Figure 28) in the instruction. The A-address in 

Lookup Equal or High 6 4,2 

Loo up Low or ig 5 4, 1 earc 

Figure 28. cl-Characters for Table Lookup Operation 

the instruction specifies the address of the low-order 
position in the search argument. The B-address is the 
location of the low-order character in the table. The 
cl-character specifies the condition to stop the table 
search. If the instruction does not contain a B-address 
or cl-character, the contents of the BAR and operation­
modifier register from the previous operation are sub­
stituted for the B-address and cl-character, respec­
tively. If the instruction does not contain an A-address, 
the contents of the AAR from the previous operation 
become the A-address in the table lookup operation. 

The table argument and the search argument must 
contain the same number of characters. However, the 

66 

table field (the table argument and the function) is 
longer than the search argument. 

Description of Operation 

The search argument (A-field) must have a word mark 
set to define its· high-order position. The table field 
must have a defining word mark in the high-order 
function position. The CPU compares the search argu­
ment against the table argument until an A-field word 
mark is sensed in the search argument. If the condi­
tion established by the cl-character in the instruction 
is not met and a B-field word mark is not sensed be­
fore the A-field word mark is detected, the CPU takes 
B-cycles to skip through the corresponding function 
(the CPU takes a B-cycle for each character in the 
function; for this reason, the function should contain 
only the necessary number of characters). The search 
argument (A-field) is compared against the next table 
argument when the B-field word mark indicating the 
end of the previous table field is sensed. A B-field 
word mark, denoting the end of a table field, en­
countered before the A-field word mark is found, in­
dicates the end of the table. This condition causes the 
high-compare indicator to turn on unconditionally, and 
the table lookup operation terminates immediately. In 
the case of a single character A-field, the condition 
specified by the cl-character must be met to stop the 
operation. 

Figure 29 shows an example of the table search in 
locating the square of a number (search argument). 
A table of squares is stored in core storage. The table 

Op.,,.Code A-Addr B-Addr d-Mod 
I 02251 25000 2 

vv v v v v v 

1 13225 ' 97 1 1 025' " 9-025' 95 7225 ' 85 ''"' 75 4225' 65 } 
v v v v v v Tobie 

3025155 2025145 1225135 625125 225115 25105 

Function ill 
T bl A t · . B-Address 25000 

a e rgumen 

Table Field v 

Search Segment__} 

A-Address 02251 

Figure 29. Storage Table for Table Lookup Operation 

includes the number (table argument) followed by 
the square of the number (function). In this case, the 
function is a segment of actual data. The end of the 
table is designated by a B-field shorter than the cor­
responding A-field. Figures 30 and 31 show CPU oper­
ation and timings in the execution of the table lookup 
instruction. 



/"'· 

.~ 

.~ 

Table Lookup 
Instruction 

Reset Compare 
Latches 

Set Body Latch 

16 3 01 

Set Units latch Set 1st Scan Latch 

No 

Regen 1st Scan Latch 

12.30.05 

B Ch WM? 

16 30.01 

Units 

Use CAR to RO 
UP A Field Char 

14.71.32 

No 

Yes 

Yes 

Regen l st Scan Latch 

12.30.05 

Set Extension Latch 

hen There is an A Ch WM 
With Unit or Body Lcltch On 
Jhe Cycle is Lengthened to 

16.30.05 

High or Low Latches Set During 
Units and Body Only 

Eq Latch Set During Units On Ix 

Equal Latch On? 

Op Mod 2 Bit? 
No 

Figure 30. Table Lookup 

End Oper, 
Start Inst RO 

17.18.01 

The following controls are active when the CPU per­
forms a table lookup operation: 

SIGNAL CONTROL LOGIC 

1. Set controls for forward scan; start with the units 
position of the arguments. 
Set 1st Scan Ctrl Last Instruction Read Out 12.13.05 

First Scan First Op Codes 
1st Scan Ctrl Set 1st Scan Ctrl 12.13.03 

Next to Last Logic Gate 
1st Scan 1st Scan Ctrl 12.13.01 

LGC 
Regen 1st Scan Ctrl A Cy 12.30.05 

Standard A Cy Ops 
Set Units Ctrl Latch Last Instruction Read Out 16.30.01 

Yes 

SIGNAL 

B Ch WM? 
17. 18.02 

Units Ctrl Latch 

Units Latch 

Regen Units and 
Body Ctrl 

No 

CONTROL 

Set Units Ctrl Latch 
Next to Last Logic Gate 
Units Ctrl Latch 
LGC 
Standard A Cy Ops 

A Cy 

No 

LOGIC 

16.30.02 

16.30.02 

16.30.01 

2. Take an A-cycle, and use CAR to read out units 
position of search argument. 
Set A Cy Ctrl Last Instruction Read Out Cy 12.12.41 

A Cy First Op Codes 
A Cy Ctrl Set A Cy Ctrl 12.12.20 

Next to Last Logic Gate 
A Cy A Cy Ctrl 

LGB 

General Data Instructions 67 



J • 

SYNC 

Address Switches 00111 

1. +s. LOGIC GATEB 
2. +S I CV:CLE 

LOGIC PAGE 

11.10.11 
12.12.04 

3. +S LAST EXfCUTE CYCLE 12. 12. 23 

• 4, +S LAST INSN R 0 

5 •. +s 1 sf SCAN 

6, +S REGEN 1 ST SCAN CTRL 

7, +S UNITS LATCH 

. a. +s BODY LATCH 

9. +S REGEN UNITS BODY 
CTRL 0 

10. +S EXTENSION LATCH 

11 , +S SET A CYCLE CTRL 

12. ·S TABLE SEARCH A CY 
UNITS CTRL 

13. +S CAR R,0, CTRL 'ARITH 

14. +S R.O. CAR 

15. +S SET B CYCLE CTRL 

16, +S R.O. BAR 

17. +S GATE A DATA REG TO 
A CH 

18. +S EQUAL 

19. +S LOW 

20, +S TLU B CYCLE 

21, +S R,O. AAR 
22. ·S TLU SET 8 CY CTRL 

23. ·S TlU SET A CY CTRL 

24. +S LOGIC GATE B 

12.13.05 

12.30.01 

12.30.05 

16.30.02 

16.30.04 

16.30.01 

16.30.06 

12.12.41 

14.71.32 

16.41.01 

14.71.32 

12.12.44 

14.71.31 

15.38.02 

17.14.03 

17.14.02 

17.18.0l 

14.71.30 
17.18.02 

17.18,02 

11.10.11 

TEST POINT 

11C2J12C 
11C1H22H 

11C1E02F 

11C1H12G 

llC1E26A 

11C1D24G 

11C2D16A 

11C2G05A 

llC2D26C 

11C2Dl6C 

11C1G16G 

11C1Dl9D 

11C2A08C 

11C1C11E 

11C1G03G 

11C1C11H 

I 1C3Cl7B 

11D2F06C 

11D2f23D 

11D2H25K 

11C1C11G 
I 1D2J19C 

Figure 31. Table Lookup Operation Timings 

68 

I I LOCATION 

I 
I 
I 

00100 
00112 
00119 

PJ!OGRAM 

fo2251024802 
J00100 b 

+'+---i---+-'JlJ 

ADDRESS DATA 

02475 . ~sfo' 
02250 "" 

~----r ~'------1-----lJr 

1 
J 

I 

r 

/ ' 

UI 
l I 
l r 

r 
l 



(~ 

SIGNAL 

Table Search A Cy 
Units Ctrl 

CONTROL 

A Cy Ctrl 

Units Ctrl Latch' 
Table Search Op Code 

LOGIC 

14.71.32 

CAR Read Out Ctrl 
' * Arith 

Table Search A Cy Units Ctrl 16.41.01 

Read Out CAR CAR Read Out Ctrl 
* Arith 

r1igic Gate Special A 

14.71.32 

3. Take a B-cycle and use BAR 1:0 read out units 
position oHable argument. 
Set B Cy Ctrl Standard A Cy Ops 

B CyCtrl 

BCy 

Read Out BAR 

A Cy 
Set B Cy Ctrl 
Next to Last Logic Gate 
B CyCtrl 
LGB 
B Cy Ctrl 
1st + 2nd + 3rd Scan Ctrl 
Logic Gate Special A 
Not Console Inhibit AR Read 

Out 

12:12.44 

12.12.21 

12.12.02 

14.71.31 

4. Compare A-channel with B-channel, and set high, 
equal, or low compare late~: 
Gate A Data Reg B Cy 15.3"8.02 

to A Ch 

CMPModeBCy 

Equal Low Latches 
Set 

Equal 

A Reg to A Ch on B Cy Ops 
B Cycle 
Table Search Op Code 
CMP Mode B Cy 
Units Latch 
Equal Low Latches 
CMP Equal 
Not Set High Cy 
Units Latch 

17.18;01 

17.14.01 

17.14.03 

5. Check for A-channel or B-channel word mark; 
no A-channel or B-channel word mark initiates another 
A-cycle; read out AAR (tens position search argument). 
CMP Mode Set A Cy A Ch Not WM Bit 17.18.01 

CtrlA 
B Ch Not WM Bit 
Table Search Op Code 

Set Body Ctrl Latch CMP Mode Set A Cy Ctrl A 16.30.01 
Body Ctrl Latch Set Body Ctrl Latch 16.30.04 

Body Latch 

Set A Cy Ctrl 
A CyCtrl 

A Cy 

ReadOutAAR 

Next to Last Logic Gate 
Body Ctrl Latch 
LGC 

16.30.04 

CMP Mode Set A Cy Ctrl A 17.18.01 
Set A Cy Ctrl 12.12.20 
Next to Last Logic Gate 
A Cy Ctrl 
LGB 
A Cy Ctrl 
Body Ctrl Latch 
Table Search Op Code 
Not Console Inhibit AR Read 

Out 
Logic Gate Special A 

12.12.01 

14.71.30 

6. Take a B-cycle. Use BAR to read out tens position 
of table argument; an A-channel word mark with units 
or body latch on extends this B-cycle to H; set the high, 
low, or equal compare latch. 

Set B Cy Ctrl 

B Cy Ctrl 

Standard A Cy Ops 
A Cy 
Set B Cy Ctrl 
Next to Last Logic Gate 

12.12,44 

12.12.21 

SIGNAL 

BCy 

Read Out BAR 

TLUBC~ 

Stop.atH 

CMPModeBCy 

Equal Low Latches 
Set 

Low 

CONTROL 

B Cy Ctrl 
LGB 
B Cy Ctrl 

, 1st + 2nd + 3rd Scan Ctrl 
Lagic Gate Special A 

_BCy 
Table Search Op Code 
TLU B Cy 
A Ch WM Bit 
Units or Body Latches 
BCy 
Table Search Op Code 
CMP Mode B Cy 

Body Latch 
Equal Low Latches Set 
Not Set High -Cy 
CMP Low 
LGF 

LOGIC 

12.12.02 

14.71.31 

17.18.01 

17.18.02 

17.18.01 

17.14.01 

17.14.02 

7. The next step to be taken is now determined by: 
a. A-channel word mark and no B-channel word 

mark. 
b. Compare latch set (low). 
c. Op modifier register character ( 2). 

Note: the extension of B-cycle to H provides the necessary 
time to check these conditions. 
TLU Set B Cy Ctrl Low 

Set Extn Ctrl Latch 
Extn Ctrl Latch 

Extn Latch 

Op Mod Reg Not 1 Bit 
TLU B Cy 
A Ch WM Bit 
B Ch Not WM Bit 
TL U Set B Cy Ctrl 
Set Extn Ctrl Latch 
Next to Last Logic Gate 
Extn Ctrl Latch 
LGC 

17.18.02 

16.30.05 
16,,30.06 

16.30.06 

8 .. Take continuous B-cycles until a B-channel word 
mark (End of Function Field) is detected; initiate an 
A-cycle for µnits position of next table argument'. 
Set B Cy Ctrl Standard A Cy Ops 12.12.44 

A Cy 
B Cy Ctrl Set B Cy Ctrl 

Next to Last Logic Gate 
B Cy B Cy Ctrl 

LGB 
TLU Set A Cy Ctrl B TLU B Cy 17.18.02 

Low 
Not 1 Bit 
A Ch WM Bit 
B Ch WM Bit 

Set Units Ctrl Latch TLU Set A Cy Ctrl B 16.30.01 
Units Ctrl Latch Set Units Ctrl Latch 16.30.02 

Next to Last Logic Gate 
Units Latch Units Ctrl Latch 

LGC 
Set A Cy Ctrl TLU Set A Cy Ctrl B 12.12.41 

Questions on Table Lookup Operation · 

Answers to review questions are in the Appendix. 
1. When is the table lookup operation terminated? 
2. To locate the desired function, what comparisons 

are made? 
3. When the CPU executes the following instruction, 

what address does the BAR contain when the operation 
is complete? 

General Data Instructions 69 



v ' . } 
r-02000 12345 2 
Search Argument 010 

v " v v v 
T-0ble , 005001005008500410000250001 

4. Is storage data altered as a result of the execution -
of a table lookup instruction? 

70 

5. Does the CPU perfor'"'< A-cycles or B-cycles to by­
pass functions in the table?' 

6. Does the A-field contain the table argument or the 
search argument? 



I ·"· 

I ' 

(~ 

The IBM 1410 Data Processing System can be program­
med to test for conditions that can occur during pro­
cessing, and tra:Qsfer (branch) to a predetermined set 
of instructions or sub-routines as a result of the specific 
test. This is called the logical ability of the system. A, · 
transfer (branch) .from one instruction to another (or ' 
set of instrucfioni;) to alter the sequential execution of 
program steps is called a program branch. A branch 
instruction can be: · · 

1. An uncondtiional branch that occurs. as a direct 
result of the execution of the branch . instruction (no 
special condition, other than the execution of that pro­
gram step is'needed to transfer the program out of its 
normal sequential execution); or, 

2. A conditional branch that occurs as a result of a 
particular condition such as an arithmetic overflow, 
zero balance, etc. If the condition is present at the time 
that a conditional branch instruction is executed, 
sequential execution of program steps immediately 
fol19wing is bypassed. The program· branches to the 
address of the instruction specified by the I-address of 
the conditi~nal branch instruction. If the condition is ~ . 
not present, the CPU executes the next sequential in, 
struction; no branch occurs. . 

All branch instructions have: 
1. A d-character to specify the condition necessary 

for a program transfer. 

2. An I-address instead of an A-field· address. The 
I-address is stored in the AAR during instru~tion' read 
out. The I-address represents the location of the op 
code in the instruction \to which the program·branches 
if conditions for the branch are met. 

The CPU executes all bran~h operations in the 'same 
manner; the various branch instructions merely estab­
lish specific conditions which cause the CPU to perform 
the branch operation. To execute a program branch, 
the CPU takes a B';cycle; the IAR which contains the ad­
dress. of the next sequential instruction, reads out to 
the STAR andL through the modifier to the BAR. The nq­
scan latch is set, causing a modify-by-zero condition in 
the modifier. 

Note: The B.•cycle to transfer the contents of the IAR 

(containing the address of the next sequential instruc­
tion) to the BAR permits the program to return to the 
point of interrupti9n when the branched-to routine is' 
completed. To effect the return, the first instruction iri 
the branched-to routine must be the store B address 
register instruction. 

Branch Instructions 

. Completion of the successful branch is accomplished 
during the subsequent instruction read-out operation 
when the AAR (.containing the branch I-field) sets STAR 

rather than the IAR. 

The following controls are active in th~ execution of 
a successful branch operation: 

SIGNAL CONDITION LOGIC .~' 

1. Set modify cornrols for transfer of IAR to BAR. 

Set No Scan Ctrl * (branch condition) 12.60.04 · 
Br Ops 

Set N 0 Scan Ctrl • 
No Scan Ctrl ' 

Set No Scan Ctrl * Br Ops 
· Set No Scan Ctrl 

N:ext to Last Logic Gate 

12.30.05 
12.30.03 

No Scan No Scan Ctrl 12.30.01 
Addr Mod Set to 0 No Scan Ctrl 14.71.41 

~. Set controls to read out AAR during next instruc­
tion read out cycle (first instr~etion of branch roQtine). 
Br to A Conds (branch condition) 12.60.04 
Br to AAR Latch Br to A Conds 12.60.14 

Next to Last Logic Gate . 
Not 1401 Mode · 

3. Tike a B-cycle to read out IAR to BAR; modify by 0. 
Set B Cy Ctrl * 1 (branch condition) 12.60.04 

BR Ops 
Set B Cy Ctrl 
B Cy Ctrl 

B Cy 

Read Out IAR· 

Set BAR 

Set B Cy Ctrl . * Br Ops 
Set B Cy Ctrl1 

Next to Last Logic 6ate 
B Cy Ctrl . 
LGB C 
B Cy ,Ctrl 
No Scan Ctrl 
LG Special A 
Not Console Inhibit AR 

Read Out 
B Cy 
LGD or LGE or LGF 

4. Initiate instruction read out. 
r 
Last Execute Cy .* B Cy 

Br Cond 
N-0. Scan· 
Br Type Op .code 

12.12.44 
12.12.21 

12.12.02 

14 .. 71.34 

12.60.08 

Last Execute Cy 
I Cy Ctrl 

Last Execute Cy * Br Cond 12.12.51 
Set I Cy Ctrl 12.12.23 
Next to Last L-Ogic Gate 

5. With branch to AAR latch set, the program moves 
to the ·first instruction in the branch routine. 
Jlead Out AAR I ,Cy Ctrl 

. Br to AAR Latch 
. LG Special A 

Unconditional Branch Instruction 

14.71.30 

r . 

The unconditional branch instruction causes the CPU 

to branch from the routine to the I-address; no condi­
tion must be satisfied to execute the transfer. The I-

Branch Instructions 71 



l ( 

. address is the location of the op code fn the pext i~~ " 
struction to be executed; for example, the instruction 

• v 
J ( 05000) causes the CPU to unconditionally execute the 
program step beginning in storage positiOn 05000. 

The format for the unconditional branch instruction 
is: 

OPCODE 
v 

J 
I-ADDRESS 

xxxxx 

, d-CHA11;ACTER 

blafik 

. Figures 32 and 33 show detailed operation in the 
execution of the unconditional branch instruction. 

J (I) Blank 

ead Out !AR 
Set STAR ~ 

and BAR 
14.71,34 

End Execute 
and Start 

' Inst Read:::'.qut 
12.60.08 

Take an• I Cy .. le 

Instruction 
14.71.30 

Reset Branch 
toAAR Latch 

12.60.14 

Figure 32. Unconditional Branch 

72 

' ( 

. . 
Co.nditional Branch Instructions 

Test an.d Branch 

The test and branch instruction allows the program to 
test for conditions that can occur during processing and 
cause the CPU to execute a branch operation if the spe­
cific conditions exists~ The forma:t for the test and 
branch instruction is: 

OPCODE 

I 
I-ADDRESS 

xxxxx 

d-CHARACTE;R 

see Figure 34 

The cl-character specifies the internal indicator to be 
examined. If the indicator is on, the program branches 
to the I-address for the next instruction. If the indicator 
is off, the CPU executes the next instruction in sequence. 
The various indicators and the cl-characters used to 
test them are shown in Figure 34. If an arithmetic or 
divide overflow has occurred when the J(i)z(branch · 
on arithmetic overflow) or J(I)w (branch on divide 
overflow) instruction is executed, the respective over­
flow indicator is reset. Other test and branch cl-char­
acters do not reset their corresponding indicators. 

When performing a test and branch operation, the 
cl-character in the instruction is set in the op-modifier 
register at I-ring 6 time of instruction read out. De­
pending on whether the indicator specified by the 
cl-character is on or off, either the branch or no-branch 
condition is brought up at I-ring 7 time (last instruction 
read-out cycle). The branch condition indicates that 
the designated internal indicator is on, and the CPU per­
forms the branch to the I-address. The no branch con­
dition indicates that the indicator tested is off and 
brings up las.t execute cycle; the CPU does not perform 
the branch operation, but begins the instruction read­
out phase of the next instruction in sequence. Figure 
35 shows a diagrammed· explanation of the test and 
branch operation. 

The following controls are among the controls opera­
tive in the execution of the test and branch instruction 
(CPU operations in performing a successful branch are 
des'cribed earlier in the section) : · 

SIGNAL CONDITION LOGIC 

1. Op modifier register set with cl-character. 
Set Op Mod Reg I Ring 6 Time 15.38.04 

1 Addr Plus Mod Op Codes 
LGE 

2. Test internal indicator specified by cl-character 
(Figure 34); if indicator is on, a program branch is 
executed. 
2nd CondA Br 

Gated· 
2nd Cond A Br 

Branch If 1-0 Channel Status Indicator. On 

12.60.02 

The format for the branch if 1-0 channel status indicator 
on instruction is: 



.·.~ 

~ / ) 

SYNC ~ I LOCATION, PROGRAM 

I ' B CYCLE 11C1Hl7C 00001 ~000011> ' 
I 00008 

LINE NAME LOGIC PAGE TEST POiNT 

1. LOGIC GATES 

2. I RING 

3. I CYCLE CTRL 12.12.23 llCICllC 

4. I CYCLE .J 12.12.04 llCIH22H 

5. SET OP MOD 15.38.04 llDIHl9H 

/' 

6. LAST· INSN R. O. 12.13.05 llCIH12G 

7. BR TO.AAR 12.60.14 llDIB15C 

B~SET NO SCAN 12.60.04 11DIBl7C 

9. SET B CYCLE 12.60.04 1101AllD 

10. B CYCLE CTRL 12.12.21 llCIA04B 

II. B CYCLE 12.12.02 llCIHl7C 

12. LAST EXEC 12.60.08 llDIA230 

13, I RING CTRL 12.13.01 11CIJ10B 

14; R.O. IAR 14.71.34 llCICl2H 

15. R.O. AAR 14.71.30 llCICJIG 

' 16. ~OGIC GATES 

Figure 33. Unconditional Branch Timings 

Qp CODE I-ADDRESS .·. d-CHARACTER 

R ( Channel 1 ) xxxxx see Figure 36 
X (channel 2) xxxxx see Figure 36 

. The CPU executes a program branch to the I-address 
if the 1-0 channel status indicator( s) specified by the 
op code and the cl-character in the instruction is on. 
1-0 channel status indicators turn 011 as a result of co11-
ditions that occur during operation of any of the input­
output units serviced by the channel. 

The bit configuration of the d-character used in the 
branch if 1-0 channel status indicator on instruction 
designates the indi~ators to be tested. This instruction 
with a group ma.rk($)d-char~cter must be given prior~ 
to the execution of another input or output instruction 

on the same channel to avoid .interlocking the system. 
·The system is interlocked if the status test is not satis-
fied. The status test is satisfied if: · 

1. A branch if any 1-0 channel status indicator on 
instruction, R or X (I) $, is given prior to the next 
1-0 unit instruction; or,· 

2. A specific R or X ( I ) d instruction ( Figure 36) is 
given and results in a successful branch prior to the 
next 1-0 unit instruction. 

If an R (I) $ (B; A, 8, 4, 2, and 1 bits in the d­
character) instruction is given following a channel .1 
input-output operation, the instruction tests all channel 
1 1-0 channel status indicators, and if any indicators 
are on, the program branches to the specified I-address. 

Branch Instructions 73 



,.;'./ 

d-Char lndjcatar u Logic 

Blank Uncanditianal Branch 12.60.02 
9 Carriage Channel 9 · 12.61, 13 
@ Carriage Overflew (Channel l2) 12.60.01 
I Compare Unequal '12.60.01 
s Compare Equal (8'=A) 12.60.01 
T Compare Low (B < A) 12.60.01 
u Compare High (B > A) 12.60.01 
v Zera Result 12.60.01 
w Divide Overflew 12.60.0l 
z Arithmetic Overflow 12.60.02 
1 Overlap in Process on Channel 1 12.60.15 
2 Overlap in Process on Channel~ 12.60.15 
R Printer Carriage Busy 12.61.13 
Q Branch Inquiry 12.60.02 
K Branch on Tape Mark Record 12.61.1'3 

Figure 34. Branch Conditions for Test and Branch Instruction 

The program can then test the indicators (individually 
or in groups, depending on the bit structure of the d­
character ) to determine the exact condition present. 

If the system is equipped with the input-output over­
lap feature, the program should first test the overlap­
in-process indicator with a test and branch instruction. 
This insures that the overlapped 1-0 function is com­
plete before the branch if 1-0 channel status ind~cator 
on instruction is given. A branch if 1-0 channel status 
indicator on instruction executed wnile the machine is 
performing an 1-0 overlap operation causes the machine 
to interlock until the overlapped function is complete. 

The test and branch on 1-0 channel status indicator 
on instructions are quite similar in operation. However, 
in the execution of the branch if 1-0 channel status indi­
cator on instruction, if the channel to, be tested is in 
process at I-ring 6 time, the disable-compute cycle is 
brought up to stop the CPU clock and prevent testing 
the indicators until the operation is c;omplete. Figure 
37 shows a diagrammed ·explanation of the branch if 

· i-o channel status indicator on instruction. 
The following controls are active in the execution 

of the branch if 1-0 channel status indicator on instruc~ 
·' tion (CPU operations in performing a successful branch 

are described earlier in the section): 

• SIGNAL CONDITION LOGIC 

I. Op mod register set with d-character. 
Set Op Mod Reg I Ring 6 Time 15.38.04 

1 Addr Plus Mod Op Codes 
'LGE 

·2. Check 1-0 channel for in process condition. When 
1-0 channel is in process, bring up compute disable. 
E Ch In Process (Overlap.operation on 13.60.04 

channel). 

Compute Disable Cy E Ch In Process 12.12.60 
Br Orr Status Channel· 1 

3. Test external indicator specified by d-character; if 
indicator is on, execute a program branch. 

74 

) Test and Branch 
Instruction 

Tested at Yes 
Last Instruction . - - - - .--------1 

Internal 
Indicator 

Tested On? 
12.60.01-03 

( 

Read - Out . 

Used For 
Ne]<t Instr 

Read - Out 

Read Out !AR, 
Set STAR Mad by 

Zero, ond Set BAR 
14.71.34 

End Execute ~nd 
Start lnstructioi:i 

Read Out 
12.60.08 

Take an I Cycle 

Branch to 
AAR Latch 

On? 

Use AAR to Use IAR to 
Read Out Next Read Out Next 

Instruction Instruction 
14.71.30 14.71.34 

Continue 
Normal 

· Instruction 
Read-Out 

Figure 35. Test and Branch 

2nd CondABr 
Gated 

Last Instruction Read Out 
Cy ( 0,P Mod Reg) 

12.60.02 

Note: 1-0 status latches for a given channel reset at I ring 
4 time of a M/L instruction that uses that channel or at I ring 
l time for two character only ops. 



(~· 

r 

Status Latch d-Clfaracter 
fest Descriptian Involved Bits ALO Locations } 

Brancli if 1-0 unit not ready Not Ready ' 1 12.60.02 12.60.15 .The indicator is internally set during instructions involving 
1-0 devices if these devices or their associated synchronizers 
are in a not ready canditian, but before data transfers are 
taken. If the indicator is on, the operation is terminated; 
no data are transferred. 

Branch if 1-0 unit busy Busy 2 12.60.02 12.60.15 The indicator is internally set during instructions involving 
1-0 devices if these devices or their associated synchronizers 
are in a busy condition, but before data transfers are taken. 
If the indicator is on, the operation is terminated; no data 

' are transferred. 

Branch if 1-0 data check Data Check 4 12.60.02 12.60.15 The indicator is set on after data transfers to or from 1-0 
devices, their associated synchronizers, or the CPU if a 
pcirity error was detected during the transfer. 

Branch if 1-0 condition Condition 8 12.60.02 12.60.15 The indicator is normally set during the move or load in-
struction before data transfers occur. For example, the indi-

r cator is set on if an end of file (last card stacked) has oc-
curred in the card reader. When the indicator ,is on, the 
operation ends. 

Branch if 1-0 no transfer No Transfer A 12.60.02 12.60.15 The no transfer indicator is set when no data are available 
to be transferred. 

Branch if 1-0 wrong length Wrong Length B 12.60.02 12.60.15 The wrang length record indicator is set when the record 
record Record written in storage or read from storage is not the correct 

length. 

Branch if any 1-0 channel Any 12.60.02 12.60.15 Branch to I-address if any 1-0 channel status indicators 
status indicator on are on. .r 

Figure 36. 'Branch Conditions for Branch if 1-0 Channel Status Indicator on Instruction 

Branch If Character Equal 

Formats for the branch if character equal instruction 
are: 

OPCODE I-ADDRESS B-ADDRESS ~cl-CHARACTER 

xxxxx xxxxx any BCD character J\ 
v 
B xxxxx 
v 
B 

The branch if character equal instruction causes the 
character in the storage position designated by the 
B-address to be compared to the d-character in the 
instruction. If Both characters ( the character in storage 
and the d-character) have the same bit configuration, 
the CPU executes a program branch to the instruction 
beginning at the I-address. If the two characters are not 
exactly the same, the CPU executes the next instruction 
in sequence. If the instruction specifies only the op 
code, the contents of the AAR, BAB, and op mod register 
from the previous operation designate the I-address, 
B-address, and d-character, respectively. Word marks 
do not affect this operation. · 

When the branch if ~haracter equal instruction is 
executed, the compare high, low, or equal indicator is r 

set. The high indicator is set if the B-address character 

is higher than the d-character (collating sequence). 
The branch if character equal instruction causes the 

CPU to take a B-cycle to read out the character at the 
B-field address onto the B-channel. The op modifier 

0 

register is gated to the A-channel. A compa,ison be­
tween the A- and B-channel characters is made in the 
compare and adder units. If the equal latch is set, the 
prog!am branches to the I-address in the AAl\. In all 
other cases, the CPU executes the next sequential in­
struction. Figures 38 and 39 show diagrammed opera­
tion of the branch if character equal instruction. 
· The following controls are active in the execution of 

the branch if character equal instruction (CPU actions , 
in pedorming a successful branch are described earlier 
in the section) : 

SIGNAL CONDITION LOGIC 

1. Set op mod reg with d-character. 
Set Op Mod Reg I Ring 11 Time 15.38.04 

2 Addr Plus Mod Op Codes 
LGE 

2. Prepare CPU to read out character designated by 
BAR. 

Set 1st Scan Ctrl 1st Scan First Op Codes 12.30.05 
Last Instruction Read Out Cy 

Branch· Instructions 75 



J' I 

(, .----------, 

Yes 
in Process? 

Read Out IAR 
and Set STAR 

and BAR · 
14.71.34 

Indicator (s) 
Spec;ifi eel by 
d Char On? 
12.60.02 

End Exec;ute and 
Start Instruction 

Read-Out 
12.60.08 

Take an. I Cycle 

Instruction 
14.71.30 

Is Bronch 
taAAR 

Latch On? 

Use IAR to 
Read Out Next 

Instruction 
14.71.30 

Reset Branch 
to AAR Latch 

12.60.14 

Figure 37. Branch if 1-0 Channel Status Indicator On 

76 

Set No 
Scan Latch 

1;!.30.05 

Take a B Cyc e 
12.12.44 

Read Out IAR; 
Set STAR and 

BAR 
14.71.34 

Branch If 
CliOracter Equal 

Instruction 

or Low 

Used for Next 
Instruction 
Read-Out 

Use AARto 
Read Out 
Next Inst 
14.71 •. 30 

Reset Branch to 
AAR Latch 
12.60.14 

End Exec:ute; Start 
Inst Read-Out 

12.60.08 

Take an I Cycle 

Is Branch 
to AAR 

latch On? 

Figure 38. Branch if Character Equal 

Use IARto 
Read Out 
Next Inst 
14.71.34 



·!"'· 
SYNC 

LIN~ NAME 

1. LOGIC GATES 

2. LAST INSN R.0. 

3. lST SCAN CTRL 

4. lST SCAN 

5. UNITS CTR!. 

6. UNITS 

7. 8 CYCLE CTRL 

8. 8 CYCLE 

9. R.O. BAR 

10. GATE OP MOD TO "A" CH 

11. "W" TY1'E BR. COND 

12. SET NO SCAN CTRL 

13. SET 8 CYCLE CTR!. 

14. SR TO A COND 

15. BR TO AAR 

16. NO SCAN CTRL 

17. R.O. IAR 

18. LAST EXECUTE 
19. I CYCLE CTRL 

20. ~.O. AAR 

21. LOGIC GATES 

LOGIC PAGE 

12.13.05 

12.30.03 

12.30.0I 

16.30.02 

16.30.02 

12.12.21 

12.12.02 

14.71.31 

15.38.02 

12.60.02 

12.60.04 

12.60.04 

12.60.04 

12.60.14 

12.30.03 

14.71.34 

12.60.08 
\2.12.23 

14.71.30 

TEST POINT 

11C1H12G 

11C1F23L 

l1C1E26A 

llC2E2lA 

11C2016A 

11C1A048 

11CIH17C 

11C1C1lH 

11C3Cl7A 

ll01009F 

1101617C 

I 
I LOCATION 

I oo001 
I 00013 

00100 
I 

) 

t;lc~E 0\At:l cf;\£ 01GG\.At:\cfil e_0\ At;] 
·u 

J 
1 

J 
r 

J r 

If u 

( l 

I 
11D1All0 1--

11016240 
r 

11DIB15C r 
11CIGl7C l----------+---------1 

11CICl2H 

11DIA23C 
llClCllC 

r 

J 

11CIC11G ~~~~~~~~rl\_ 
Lal c (T\e n AG}_~to\e MG fH\ A Fl c_B e_[!] A8 

Figure 39. Branch if Character Equal Timings 

Branch Instructions 77 



SIGNAL 

1st Scan Ctrl 

Set Units Ctrl Latch 
Units Ctrl Latch 

Units Latch 

CONTROL 

Set 1st Scan Ctrl 
Next to Last Logic Gate 
Last Instruction Read Out Cy 
Set Units Ctrl Latch 
Next to Last Logic Gate 
Units Ctrl Latch 
LGC 

LOGIC 

12.30.03 

16.30.01 
16.30.02 

16.30.02 

3. Take a B-cycle to read out B-field character onto 
B-channel. 
Set B Cy Ctr! B Cy First Op Codes 12.12.44 

Last Instruction Read Out Cy 
B Cy Ctrl Set B Cy Ctr! 12.12.21 

Next to Last Logic Gate 
B Cy B Cy Ctrl 12.12.02 

LGB 
Read Out Bar B Cy Ctr! 14.71.31 

1st + 2nd + 3rd Scan Ctrl 
Read Out BAR on Scan B Cy 

Ops 
LG Special A 
Not Console Inhibit AR 

Read Out 

4. Gate op mod register character to A-channel and 
compare with B-channel character; if the characters 
are equal, execute a program branch. 
Gate Op Mod Reg B Cy 15.38.02 

to A Ch Op Mod to A Ch on B Cy Ops 
Comp Equal Adder Equal 17.15.06 
1st Cond A Br Gated Comp Equal 12.60.03 

Char Test Br Op Code 

Branch If Bit Equal 

The instruction formats for the branch if bit equal 
instruction are: 

OP CODE 
v 

w 
w 

v w 

I-ADDRESS B-ADDRESS cl-CHARACTER 

xxxxx xxxxx any BCD character 
xxxxx 

The branch if bit equal instruction causes the char­
acter located in the storage position designated by 
the B-address to be compared, bit by bit, with the 
cl-character in the instruction. If any bit in the char­
acter at the B-address matches any bit in the configura­
tion of the cl-character, the program branches to the 
I-address. Word marks and C-bits are not compared. 
For example, if position 06779 (B-address) contains a 
Z ( CBASl bits) and the cl-character in the branch if 
bit equal instruction is 3 ( c21 bits), the program 
branches to the I-address because the 1 bit is common 
in the cl-character and the B-address character. 

The branch if bit equal instruction causes the CPU 

to take a B-cycle to read out the character at the B­
field address onto the B-channel. The cl-character is 
gated to the A-channel. Bits in the characters on the 
A- and B-channels are compared, but the compare unit 
is not used. If any bit in the character on the A-channel 
matches a bit in the character on the B-channel, the 
CPU executes a program branch. If the characters on 
the A- and B-channels do not contain at least one 

78 

common bit, the CPU performs the next instruction in 
sequence. Timings for the branch if bit equal instruc­
tion are identical to those in the branch if character 
equal instruction shown in Figure 39. The following 
controls are active in the execution of the branch if bit 
equal instruction: 

SIGNAL CONDITION LOGIC 

1. Op mod register set with cl-character. 
Set Op Mod Reg I ring 11 Time 15.38.04 

2 Addr Plus Mod Op Codes 
LGE 

2. Prepare CPU to read out character designated by 
BAR. 

Set 1st Scan Ctrl 

1st Scan Ctrl 

Set Units Ctrl Latch 
Units Ctrl Latch 

Units Latch 

1st Scan First Op Codes 12.30.05 
Last Instruction Read Out Cy 
Set 1st Scan Ctrl 12.30.03 
Next to Last Logic Gate 
Last Instruction Read Out Cy 16.30.01 
Set Units Ctr! Latch 16.30.02 
Next to Last Logic Gate 
Units Ctrl Latch 16.30.02 
LGC 

3. Take a B-cycle to read out B-field character onto 
B-channel. 
Set B Cy Ctrl B Cy First Op Codes 12.12.44 

Last Instruction Read Out Cy 
B Cy Ctr! Set B Cy Ctrl 12.12.21 

Next to Last Logic Gate 
B Cy B Cy Ctrl 12.12.02 

LGB 
Read Out BAR B Cy Ctrl 14.71.31 

1st + 2nd + 3rd Scan Ctrl 
Read Out BAR on Scan B 

Cy Ops 
LG Special A 
Not Console Inhibit AR 

Read Out 

4. Branch if any bits equal. 
1st Cond A Br Gated B Cy, 1st Scan (and A and 12.60.03 

B Ch bits equal), Bit Test 
Branch Op Code 

Branch On Word Mark Or Zone Equal 

Formats for the branch on word mark or zone equal 
instruction are: 

OPCODE 
v 
v 
v 
v 
v 

I-ADDRESS 

xxxxx 
xxxxx 

B-ADDRESS 

xxxxx 

cl-CHARACTER 

see Figure 40 

The branch on word mark or zone equal instruction 
causes the CPU to examine the character located in the 
storage position designated by the B-address for the 
zone or word mark combinations specified by the d­
character. If conditions for the branch are satisfied, 
the CPU executes the program branch to the instruction 
at the I-address. 

A one-bit in the cl-character examines the B-address 
character for a word mark. A two-bit in the cl-character 
compares the zone bits in the B-address character with 
the zone bits in the cl-character. A combination of one-



~.· 

0 
I 

and two-bits in the cl-character allows either a word 
mark or an equal zone bit comparison to initiate a 
branch to the specified I-address. If the program does 
not branch to the I-address, the CPU executes the next 
instructioi'i in sequence. The cl-character and the con­
ditions they test i;tre shown in Figure 40. 

Significant Bit 
in d-Character d-Character Condition far Branch Logic 

1-bit 1 Branch an ward mark 12.60.03 
2-bit 2,B, S, ar K Branch an zone equal 12.60.03 

1- and 2-bits T, L, C, ar3 Branch an zone equal or 12.60.03 
Ward Mark 

Figure 40. Conditions for Branch on Word Mark or Zone 
Equal Instruction 

When the cl-character in the branch on word mark 
or zone equal instruction contains a two-bit, the CPU 

takes a B-cycle to read out the character at the B­
field address onto the B-channel. The op modifier regis~ 
ter is gated to the A-channel. Zone bits in the two char­
acters are compared in the compare unit. The high, 
low, and equal compare latches are not disturbed as 
a result of the comparison. If the zone bits in the two 
characters are equal, the program branches to the !­
address. When the cl-character in the branch on word 
mark or zone-equal instruction contains a one-bit, the 
character located in the position designated by the 
B-address is read out of storage and examined for a 
word mark in the B-data register. If the character 
contains a word mark, the program branches to the 
I-address. Figure 41 shows CPU action in the branch 
on word mark or zone-equal instruction. Timings for 
the instuction are identical to those in the branch if 
character equals instruction shown in Figure 39. 

The following controls are active when the CPU per­
forms the branch on word mark or zone equal in­
struction: 

SIGNAL CONDITION LOGIC 

1. Op mod register set with cl-character. 
Set Op Mod Reg I Ring 11 Time 15.38.05 

2 Addr Plus Mod Op Codes 
LGE 

2. Prepare CPU to read out character designated by 
BAR. 

Set 1st Scan Ctrl 1st Scan First Op Codes 12'.30.05 
Last Instruction Read Out Cy 

1st Scan Ctrl Set 1st Scan Ctrl 12.30.03 
Next to Last Logic Gate 

SIGNAL CONDITION LOGIC 

Set Units Ctrl Latch Last Instruction Read but Cy 16.30.01 
Units Ctrl Latch Set Units Ctrl Latch 16.30.02 

Next to Last Logic Gate 
Units Latch Units Ctrl Latch 16.30.02 

LGC 
3. Take a B-cycle to read out B-field character to 

B-channel. 
Set B Cy Ctrl B Cy First Op Codes 12.12.44 

Last Instruction Read Out Cy 
B Cy Ctrl Set B Cy Ctrl 12.12.21 

Next to Last Logic Gate. 
B Cy B Cy Ctrl 12.12.02 

LGB 
Read Out BAR B Cy Ctrl 14.71.31 

1st + 2nd + 3rd Scan Ctrl 
. ,Read Out BAR on Scan B 

Cy Ops 
Logic Gate Special A 
Not Console Inhibit AR 

Read Out 
4. Op mod register containing a 1-bit is switched 

with B-channel word mark bit to determine branch 
or no branch condition. 
1st Cond A Br Gated Op Mod Reg 1 Bit 12.60.03 

B Ch Word Mark Bit 
Zone or Word Mark Test 

Br Op Code 
5. Gate the op modifier character to the A-channel. 

Gate Op Mod Reg to Op Mod to A Ch on B 15.38.02 
AChonBCy Cy Ops 

6. Op mod register containing a 2-bit is combined 
with compare zone equal to initiate branch. 
Comp Zone Equal (Compare Matrix) 17.15.04 
1st Cond A Br Gated Op Mod Reg 2 bit, Comp 

Zone Equal, B Cy, 1st 
Scan, Zone or Word Mark, 
Test Br Op Code 

Questions on Branch Operations 

Answers to review questions are in the Appendix. 
1. What is the basic difference between conditional 

and unconditional branch instructions? 
2. Where is the I-address in a branch instruction 

stored during instruction read out? 
3. When is the completion of a successful branch 

operation accomplished? 
4. If the system is equipped with the 1-0 overlap 

feature, why should the program first test. the ov~rlap­
in-process indicator before the branch if 1-0 channel 
status indicator on instruction is executed? 

5. List the branch instructions that can be chained. 
6. When a chained branch instruction specifies only 

the op code, what I-address, B-address, and d-character 
is used in the operation? 

Branch Instructions 79 



Yes 

Branch On 
WM or Zone 

Equal Inst 

ls Op 
Mod Chor 

3? 

No 

Is Op 
Mod Chor 
1or2? 

Is There o 
B Chonnel WM 7'>-'N-"o"--------. 

12.60.03 

Set No Sc:on 
Lotc:h 

12.30.05 

Reod Out IAR; 
Set STAR ond 

BAR 
14.71.34 

Used fc!r 
Next Instruction 

Reod-Out 

Use AAR to Reod 
Out Next Inst 

14.71.30 

Reset Bronc:h 
to AAR Lotc:h 

12.60.14 

Is Branch 
toAAR 

Lotc:h On? 
12.60.14 

Figure 41. Branch on Word Mark or Zone Equal 

80 

2 

Use IAR to Reod 
Out Next Inst 

14.71.34 



Instructions that cause miscellaneous operations are: 
store address register, set word mark, clear word mark, 
clear storage, clear storage and branch, halt, halt and 
branch and no operation. These instructions are used 
to facilitate programming and prepare storage areas 
for processing data flelds. 

Store Address Register Instruction 
The format for the store address register instruction is: 

OPCODE C-ADDRESS cl-CHARACTER 
v 

G xxxxx A, B, E, or F ( see Figure 42) 

The store address register instruction causes the 
CPU to store the contents of the address register desig-

Operation d-Character 

Store contents of A-address register A 
Store contents of B·address register B 
Store contents of E-oddress register E 
Store contents of F-address register F 

Figure 42. Store Address Register Operations and cl-Characters 

nated by the cl-character in the C-fleld. The C-address 
specifles the storage location in which the units position 
of the register contents are to be stored. Word marks 
in the C-fleld have no effect on the operation. An ex­
ample of the use of the store address register instruction 
is: 

Before the CPU executes a successful branch operation, the 
address of the next sequential instruction is stored in the 
B-address register. If the first instruction after the branch 
operation is the G ( xxxxx) B instruction, causing the contents 
of the B-address register to be stored, the program can return 
to the point of interruption by retrieving the stored contents 
of the BAR. 

To execute the store address register instruction, the 
CPU takes flve C-cycles. The C-address register is modi­
fled by -1 during each C-cycle. The A-ring advances 
to A6 to serially gate each position of the selected ad­
dress register to the address exit channel. Data on the 
address exit channel are switched to the A-data register, 
to the A-channel, through the assembly to the storage 
location addressed by the CAR. The units position of 
the selected address register contents is stored in the 
C-address position at A-ring 2 time. The operation ends 
after the 10,000 position of the selected address register 
is stored at A-ring 6 time. Figures 43 and 44 show de-

Miscellaneous Instructions 

tailed operation in the execution of the store address 
register instruction. 

The following controls are active in the execution 
of the store address register instruction: 

SIGNAL CONTROL LOGIC 

1. Develop store address registers. 
Store Addr Regs Op DCDR 4, 2, 12 13.13.07 

Op Code Op DCDR 8, A, Not B 
Op Reg Ars Not C Bit 

2. Set CAR during instruction read out. 
Set CAR Store Addr Regs Op Code 14.71.12 

1st Address B Ch Not 

3. Modify by -1. 
GOpSetCCy 

Ctrl A 
Set 1st Scan Ctrl 
1st Scan Ctrl 

WM Bit 
Instruction Read Out Gate 

Store Addr Reg Op Code 12.12.42 
Last Instruction Read Out Cy 
G Op Set C Cy, Ctrl A 12.30.05 
Set 1st Scan Ctrl 12.30.03 
Next to Last Logic Gate 

4. Set A-ring 1 time. 
Set A Ring 1 Trigger Store Addr Reg Op Code 14.70.10 

Last Instruction Read Out Cy 
LGF 

A Ring 1 Time Set A Ring 1 Trigger 14.70.01 

5. Take a C-cycle. 
Set C Cy Ctrl G Op Set C Cy Ctrl A 12.12.42 
C Cy Ctrl Set C Cy Ctrl 12.12.20 

Next to Last Logic Gate 

6. Address storage with CAR and modify CAR. 

Read Out CAR Store Addr Regs Op Code 14.71.32 
C Cy Ctrl 
Logic Gate Special A 

Reset CAR C Cy Ctrl Logic Gate 14.71.22 
Early B 

Set CAR C Cy Ctr!, LGB or LGC 14.71.12 
C Cy Ctr!, LCD or LCE or 

LCF 

7. Advance A-ring. 
A Ring Adv LGB 14.70.11 

8. Read out address register that op mod character 
indicates. 
Store Addr Reg Ops Store Addr Regs Op Code 14.71.30 

Req Gate C Cy 
LGB to Last Logic Gate 

Read Out AAR Store Addr Reg Ops Req 14.71.30 
Gate 

A Symbol Op Modifier 
or Read Out BAR Store Addr Reg Ops Req Gate 14.71.31 

B Symbol Op Modifier 
or Read Out EAR Store Addr Reg Ops Req Gate 14.71.35 

E Symbol Op Modifier 
or Read Out FAR Store Addr Reg Ops Req Gate 14.71.36 

F Symbol Op Modifier 

9. Scan out positions of selected address register. 

Miscellaneous Instructions 81 



Regen 1st Scan Latch 

12.30.05 

A Ring 2, 3., 4, 5 

Figure 43. Store Address Register 

82 

Store Address 
Reg Inst 

Set 1st Scan Latch 

12.30.05 

Set Units Latch 

16.30.05 

Set A Ring to Al 

14.70.10 

Take a C Cycle 

12.12.42 

Use.CAR to 
Address Storage 

14.71.32 

Advance A Ring 

14.70.71 

RO AR Selected by 
Op Mod Char 

14.71.30 

Reset o Data Reg 

15.38.01 

Gate AR to 
AR Exit Bus 

Gate AR Exit to 
a Data Reg 
15.38.01 

Gate a Data Reg 
to a Ch 

15.38.02 

Gate Assm Ctrls 
to Storage 

15.49.03-04-05 

A Ring 2,3,4, 
5, or 6? 

CAR is Set from 11 
Through 15; Other 
Address Regs ore 
Not Disturbed 

Set ST AR, Mod by 
1--------1 -1 and Set C AR 

14.71.12 

A Ring 2 Gates U.P. 
A Ring 3 Gates T. P. 
A Ring 4 Gates H.P. 
A Ring 5 Gates Th. P. 
A Ring 6 Gates T Th.P. 

Use B Ch WM 15.49.04 
- - - - - Use B Ch Zones 15.49.05 

Use A Ch Num 15.49.03 

A Ring 6 

End Oper 
Start Inst RO 

12.12.51 



~· ., 

SYNC 

Address Switch 00008 

LINE NAME 

I. LOGIC GATES 

2. LAST INSN R.O. 

3. C CYCLE CTRL 

4. C CYCLE 

5. UNITS CTRL 

6. UNITS 

7. IST SCAN CTRL 

8. IST SCAN 

9. R.O. CAR 

10. R.O. BAR 

II. RESET A REG 

12. AR TO A REG 

13. SET A RING 

14. ARING I 

15. RING 2 

16. R1NG3 

17. RING 4 

18. RINGS 

19. RING 6 

. 
20. LAST EXECUTE 

" ' 21. LOGIC GATES 

I 
I 

LOCATION PROGRAM 

I 00001 GolOOOB 
00008 Joooo1b 

I 00015 v 

A 

LOGIC PAGE TEST POINT l.AOOE1£JA~JARcfo\EA~JAFlcfD1fl<flJA~JAa 
12.13.05 llCIHl2G !----

12.12.20 llCIG21H u 
12.12.06 llCI Fl9f f-o.- I'--

16.30.02 llC2E21A 1 
16.30.02 llC2Dl6A ~ 
12.30.06 llCIF23L 

12.30.01 llCIE26A 

14.71.32 llCICllE 

14.71.31 llCICI IH 

15.38.01 llC3Cl5P 

15.38.01 llC3El8F 

14.70. 10 llCIA04D 

14.70.01 llCIE03C 

14.70.02 llCID04C 

14.70.03 llCID05C 

14.70.04 llCIHl7H 

14.70.05 llCID07C 

14.70.06 llCID08C 

12. 12.51 llCIH23B 

1 
l'--1 1-U u u u u 

Lr~'----___,_r,\'---___,11\'---___,rn'---___,n~~~ 
J '---u ur ur uJ 
~_________,__, 

tn4------+---+--+-----+-----+--I 

U1r-----+--.------+--t------+---,---1---t 

1---~---~4--·--+~~J ~ 
l~flcflJAfa\.c[oler;w~JA~JA~OOJA~JAf:lc 

Figure 44. Store Address Register' Operation Timings 

Miscellaneous Instructions 83 

f 
,,_,; 



SIGNAL, CONTROL 

Addr Scnr 2 Pas A-Ring 2 Time 
' AR Bus Gtd Out UP Addr Scnr 2 Pos 

B.lts 

Lome 

14.70.02 
14.17.01 

A similar circuit is developed to read out tens position at 
A-Ring 3 time, etc. to put the selected address register bits on 
the address exit channel. 

10. Switch address exi~ bits to storage .. 
Reset A Data Reg 

Sw AR Exit Ch to 
A Reg 

Gate A Data Reg to 
A Ch 

GOp,CCy 

~toxe Add? Reg Op Code 
C Cy Ctrl 

.LGC 
Store Addr Reg Op Code 
C Cy, LGD 
C Cy, Not CR Disable 

Store Addr Regs Op Code 
C Cy 

Use A Ch Nu G Op, C Cy 
Use B Ch Zones G Op, C Cy 
Use B Ch WM G Op, C Cy 

11. Repeat steps S.-10 if A-ring is 2, 3, 4, or 5. 
G Op Set C Cy Ctrl B Store Addr Regs Op Code 

A Ring 2, 3, 4, or 5 Time 
Regen !st Scan Ctrl G Op Set C Cy Ctrl B 
!st Scan Ctrl Regen 1st Scan Ctd 

Set CCy Ctrl 
CCyCtrl 

lst Scan, Next to Last Logic 
Gate 

G Op SetC CyB 
Set C Cy Ctrl 
Next to Last Logic Gate 

12. Signal last execute cyde. 
Last E.recute Cy Store Addt Reg Op Cod.e 

ARing6Time 
lst Scan 

15.38.01 

15.38.01 

15.38.02 

15.49.04 

15.49.03 
15.49.05 
15.49.04 

12.12.42 

12.30.05 
12.30.03 

12.12.42 
12.12.20 

12.12.51 

Questions on Store Address Register Operation 

Answers to review questions are in the Appendix. 
1. What stOJmge position does the C-address in the 

store address register instruction specify? 

2. What purpose does the d-charocter in the store 
address register instmction serve? 

3. Lisrt the address registers wlwse cootmts am be 
stored by executing the store address register insrtruc­
twn. 

4. What effect do C-field word marks have on the 
operatiooP 

5. When does the stOtTe address register operatioo 
end? 

6. When is the chmacter in the umts position of the 
selected address: register st~ 

Set Wonl Maris Instruction 
The set word mark instruction causes the CPU to store 
word marks in designated core storage locations. Data 
in the addressed storage position are not disturbed. 

The set word mark instruction am have one of the 
following formats. 

OPCODE 

"' ' .. 
• 
y . 

A-ADDRESS 

xxxxx 
xxxxx 

B-ADDRESS 

xxxxx 

If the set word mark instruction contains A- and B­
addresses, a word mark is set in the specified A-address 
location and in the designated B-address position. If 
the set wo:rd mark instruction contains only one address 
(A-address), a word mark is set twice in the specified 
A-address location. If the address instruction is in­
dexed, a word mark is set at the location specified by 
the indexed A-address. If the instruction is given with 
no address specified (a no-address chained instruc­
tion ) , word marks are set in the address locations 
designated by the A- and B-address registers (contents 
from the previous operation). 

To execute the set word mark instruction, the CPU 

takes an A-cyde and a B-cyde. During the A-cycle, 
the A-address character is read from storage to the 
B-channel. A word mark bit is added to the character 
in the assembly unit, and a check bit is added or re­
moved to maintain odd parity in the eight bit planes 
(seven BCD planes and the word mark plane). The 
character and the word mark bit are gated to storage. 

During the B-cyde, the character at the B-address is 
read from storage and gated onto the B-channel. A 
word mark bit is added to the character in the assembly 
unit, and a check bit is added or removed to maintain 
odd parity. The character and the word mark are gated 
to storage. If only one address is specified, the A-data 
address is stored in both the A- and B-address registers 
during instruction read out. Tl}trefore, when execute 
phase begins for a single address instruction, the 
A-data address is in both the A- and B-address regis­
ters, causing a word mark to he set twice in the same 
location: once during the A-cycle and once during 
the B-cycle. 

If the set word made instruction contains no address, 
word marks are set in the A- and B-addresses specified 
in the previous instruction .. The CPU executes the opera­
tion as if the instruction contained two addresses. 

Figures 45 and 46 show detailed operation in the 
execution of the set word mark instruction. 

The following controls are active in the execution of 
the set word mark instruction: 

SroNAL CON'l'ROL 

l. Set modilier ctrls to -1. 
Set lst Scan Ctrl ht SCfill First Op Codes 

Last lmtrnction. Read Out Cy 
1st Scan Ctrl Set. 1st Scan Ctrl 

Next to Last Logic Gate 
lst Scan 1st Scan Qrl 

LGC 
Addr Mod Set to -1 ht Scan. Ctrl 

2. Set the units latch .. 

LOGIC 

12.30.05 

12.30.03 

l2.30JH 

14.71 .. 41 

~, 



/ ' 

Set Word 
Mork 

Instruction 

Use AAR 
to Read Out 
A Field Chor 

14.71.30 

Gote Chor From 
Storage to 

Assembly Unit 
15.49.05 

Add Word Mork 
Bit to Chor and 

Invert C Bil 
17 .13.01 

Gate Chor and 
Word Mark to 

Storage 

A Cycle Wos Last Cycle B Cycle 
A Cycle or >---~-------. 

Regen First 
Scon Latch 
12.30.05 

Toke o B Cycle 
12.12.44 

Use BAR to 
Recd Out B Field 

Chor 
14.71.31 

B Cycle? 

Figure 45. Set Word Marks 

End Op Start 
Inst Read-Out 

12.12.51 

SIGNAL CONTROL LoG1c 

Set Units Ctrl Latch Last Instruction Read Out Cy 16.30.01 
Units CtrI Latch Set Units Ctrl Latch 16.30.02 

Next to Last Logic Gate 
Units Latch Units Ctrl Latch 16.311.02 

LGC 

3. Initiate an A-cycle, and read out first A-field char­
acter. 

CONTROL LOGIC SIGNAL 

Set A Cy Ctrl A Cy First Op Codes 12.12.41 
Last Instruction Read Out Cy 

A Cy Ctrl Set A Cy Ctr! 12.12.01 
Next to Last Logic Gate 

A Cy A Cy Ctr! 12.12.01 
LGB 

Read Out AAR A Cy Ctrl 14.71.30 
Read Out AAR on A Cy Ops 
Logic Gate Special A 

Set Mem AR Gated LGA, 2nd Clock Pulse 14.17.16 

4. Gate character through assembly to storage; set 
word mark, and add or remove C-bit to maintain odd 
parity ( 15.50.07) . 

Use B Ch Zones; use 
BChNu 

Set WM 

Asm Ch WM Bits 
Load Memory 

Word Mark Op Code 
A or B Cy 
Set WM Op Code 
AorBCy 
Set WM 
Adr B Cy 
WM Op Code 

5. Control A-cycle length. 

Word Mark Op A Cy Word Mark Op Codes 
A Cy 

Stop at J Word Mark Op 
A Cy 

6. Regen 1st scan latch. 

15.49.05 

17.13.01 

15.50.08 
12.50.01 

12.12.44 

12.12.32 

Regen 1st Scan Ctrl Word Mark Op A Cy 12.30.05 
1st Scan Ctrl Regen 1st Scan Ctrl 12.30.03 

Next to Last Logic Gate 
1st Scan 

1st Scan lst Scan Ctrl 12.30.01 
LGC 

Addr Mod Set to -1 1st Scan Ctrl 14.71.41 

7. Initiate a B-cycle, and read out first B-:field char-
acter. 
Set B Cy Ctrl 

B CyCtrl 

BCy 

Read Out BAR 

A Cy 
Word Mark Op Codes 
Set B Cy Ctrl 
Next to Last Logic Gate 
B Cy Ctrl 
LGB 
Logic Gate Special A 
B Cy Ctrl 
lst, 2nd, or 3rd Scan Ctrl 
Read Out BAR on Scan B 

Cy Ops 

12.12.44 

12.12.21 

12.12.02 

14.71.31 

Set Mem AR Gated LGA, 2nd Clock Pulse 14.17.16 

8. Gate character through assembly to storage; re­
peat step 4. 

9. Control B-cyde length; end operation. 
Word Mark Op B Cy Word Mark Op Codes 

B Cy 
Stop at J Word Mark Op B Cy 

10. Initiate instruction read out. 
Last Execute Cy Word Mark Op 

BCy 

Questions on Set Word Ma'rks Operation 

12.12.51 

12.12.32 

12.12.50 

Answers to review questions are in the Appendix. 
1. What is the purpose of the set word marks instruc­

tion? 

Miscellaneous Instructions 85 



SYNC 

Addreu Switches 00012 

I 

: LOCATION 

I 
I 
I 
I 
I 

00001 
00012 
00019 

PROGRAM 

fuo10000200 
Jciocxnb 

LINE NAME LOGIC PAGE 
TEST POINT TIE BA G"l c_G E aG R J A Lal c Lo\_ E r\ GR J A [:} J_ 

.,,. 1. LOGIC GATES 

' 2. LAST INSN R.O. 

3. l ST SCAN CTRL 

4. lST SCAN 

5. UNITS CTRL 

6. UNITS 

7. A CYCLE CTRL 

8. A CYCLE 

9. R.0. AAR 

l 0. B CYCLE CTRL 

11. B CYCLE 

12. R.O. BAR 

12.13.0S 

12.30.03 

12.30.01 

16.30.02 

l\CIHl2G 

11CIF23L 

11ClE26A 

u 
LJ 

l\C2E21A , 1----_J 
J 

11 C2Dl6A 1---------<1-----1[ 

12.12.20 l\ClJIOD l_J 
12.12.01 l\Cl H20C 

14.71.30 l\CICllG 

12.12.21 l\CIA04B 

12.12.02 l\ClH17C 

14.71.31 l\ClCl\H 

l,________,[ 

,( 

13. USE B CH ZONES 15.49.05 11C3F23Q 1--~J 
14. USE B CH NUMERICS 15.49.05 l\C3F23K 

,____ __ _JJ 

15. SET WM 17.13.01 1102Gl5C LJ 
16. LAST EXECUTE 12.17.51 l\CIH23B 

17. LOGIC GATES 

Figure 46. Set Word Mark Operation Timings 

2. Is the data character in the specified storage loca­
tion altered when the set word marks operation is per­
formed? 

3. If the set word mar'/cs instruction contains only 
one address, what action occurs? 

4. When a word mark is a,dded to <i character, how 
is parity maintained? 

Clear Word Morie. Instruction 
The clear word mark instruction causes the CPU to 
clear word marks in designated core storage locations. 

86 

Data in the addressed storage position are not dis­
turbed. 

The clear -word mark instruction can have one of 
the following formats. 

OPCODE A-ADDRESS B-ADDRESS 
¥ 
t] xxxxx xxxxx 
¥ 

a xxxxx 

o 
'If the clear word mark instruction contains A- and 

B-addresses, word marks are cleared from the speci­
fied A-address location and the designated B-address 
position. H the clear word mark instruction contains 

-.~ 

/ \ 



/ ' 

only one address (A-address), the word mark is 
cleared from the specified A-address location. If the 
instruction is given with no address specified (a no­
address chained instruction), word marks are cleared 
from the address locations designated by the A- and 
B-address registers (contents from the previous opera­
tion). 

To execute the clear word mark instruction, the CPU 

takes an A-cycle and a B-cycle. During the A-cycle, 
the A-address character is read from storage and gated 
onto the B-channel. The word mark bit is stripped 
from the character in the assembly unit, and a check 
bit is added or deleted to maintain parity in the eight 
bit planes (seven BCD planes and the word mark 
plane). The character (without the word mark) is 
gated to storage. 

During the B-cycle, the character at the B-address 
is read from storage and gated onto the B-channel. 
The word mark bit is stripped from the character in 
the assembly unit, and a check bit is added or removed 
to maintain odd parity. The character (without the 
word mark) is gated to storage. If only one address 
is specified, the A-data address is stored in both the A­
and B-address registers during instruction read out. 
Therefore, when execute phase begins for a single 
address instruction, the A-data address is in both the 
A- and B-address registers, causing the CPU to execute 
the procedure to strip the word mark bit twice from the 
same location, once during the A-cycle and once dur­
ing the B-cycle. 

If the clear word mark instruction contains no ad­
dress, word mark bits are removed from the A- and 
B-addresses specified in the previous instruction. The 
CPU executes the operation as if the instruction con­
tained two addresses. 

Figure 47 shows CPU data flow in the execution of 
the clear word mark instruction. 

The following controls are active in the execution 
of the clear word mark instruction: 

SIGNAL CONTROL LOGIC 

1. Set modifier controls to - 1. 
Set 1st Scan Ctrl 1st Scan First Op Codes 12.30.05 

Last Instruction Read Out Cy 
1st Scan Ctrl Set 1st Scan Ctrl 12.30.03 

Next to Last Logic Gate 
1st Scan 1st Scan Ctrl 12.30.01 

LGC 
Addr Mod Set to -1 1st Scan Ctrl 14.71.41 

2. Set the units latch. 
Set Units Ctrl Latch Last Instruction Read Out Cy 16.30.01 
Units Ctrl Latch Set Units Ctrl Latch 16.30.02 

Next to Last Logic Gate 
Units Latch Units Ctrl Latch 16.30.02 

LGC 

3. Initiate an A-cycle, and read out first A-field char­
acter. 

A cycle 

Regen First 
Scan Latch 
12.30.05 

Take a B Cycle 
12.12.44 

Use BAR to 
Read Out B 
Field Char 
14.71.31 

Clear Word Mark 
Instruction 

Use AAR to 
Read Out 

A Field Character 
14.71.30 

Gate Char (With 
WM) From Storage 
to Assembly Unit 

15.49.05 

Remove Word Ma 
Bit From Char 

and Invert C Bit 
15,49.01 

Gate Char 
(Without Word 

Mark) to Storage 

Use B Channe I 
Zones and numerics 

15.49.05 

Was Last 
Cycle A Cycle ,__B_c~cl_e_~ 

ot B-Cycle? 

End Op Start 
Inst Read-Out 

12.12.51 

Figure 47. Clear Word Mark 

SIGNAL 

Set A Cy Ctrl 

A Cy Ctrl 

A Cy 

ReadOutAAR 

Set Mem AR Gated 

CONTROL 

A Cy First Op Codes 
Last Instruction Read Out Cy 
Set A Cy Ctrl 
Next to Last Logic Gate 
A Cy Ctrl 
LGB 
A Cy Ctrl 
Read Out AAR on A Cy Ops 
Logic Gate Special A 
LGA, 2nd Clock Pulse 

LOGIC 

12.12.41 

12.12.20 

12.12.01 

14.71.30 

14.17.16 

Miscellaneous Instructions 87 



SIGNAL CONTROL LOGIC 

4. Gate character through assembly to storage; clear 
· , wprd mark. 

Use B Ch Zones; use Word Mark Op Codes 
BChNu 

Use No WM 

' ' Assembly Ch Not 
WM Bit 

Load Memory 

AorBCy 
~Clear Word Mark Op Code 
AorBCy 
Use No WM 

AorBCy 
Word Mark Op Codes 

5. Control A-cycle length. 

Word Mark Op A Cy Word Mark Op Codes, 
A Cy 

Stop at J Word Mark Op 
A Cy 

~ 6. Regen 1st scan latch. 

15.49.05 

15.49.01 

15.50.08 

12.50.01 

12.12.44 

12.12.32 

" Regen 1st Scan Ctrl Word Mark Op A Cy 12.30.05 
1st Scan Ctrl Regen 1st Scan Ctrl 12.30.03 

Next to Last Logic Gate 
1st Scan 1st Scan Ctrl 12.30.01 

LGC 
Addr Mod Set to -1 1st Scan Ctrl 14.71.41 

7. Initiate a B-cycle and read out first B-field char-
acter .. 

Set B Cy Ctrl A Cy 12.12.44 
Word Mark Op Codes 

B Cy Ctrl Set B Cy Ctrl 12.12.21 
Next to Last Logic Gate 

B Cy B Cy Ctrl 12.12.02 
LGB 

Read Out BAR Logic Gate Special A 14.71.31 
B Cy Ctrl 
1st, 2nd, or 3rd Scan Ctrl 
Read Out BAR on Scan B 

Cy Ops 
Set Mem AR Gated LGA, 2nd Clock Pulse 14.17.16 

8. Gate character through assembly to storage; re­
peat st~p 4. 

9. Control B-cycle length; end operation. 

Word Mark Op B Cy Word Mark Op Codes 
B Cy 

Stop at J Word Mark Op B Cy 

10. Initiate instruction read out. 

Last Execute Cy Word Mark Op B Cy 

12.12.51 

12.12.32 

l~.12.50 

Questions on Clear Word Marks Operation 

Answers to review questions are in the Appendix. 
1. What is the purpose of the clear word marks in­

. structionP 
2. Is the data character in the specified storage loca­

tion altered when the clear word marks operation is 
performed? 

3. If the clear word marks instructi~ contains only 
one address, what action occurs? 

4. When a word mark is stripped from a character, 
· how is parity maintained? 

88 

Clear St9rage Instruction 
The formats for the clear storage instruction are: 

OPCODE 

I 
I 

B-ADDRESS 

xxxxx 

The clear storage instruction causes the CPU to clear 
characters and word marks from an area in storage, 
right to left, from the specified B.:address through the 
nearest hundreds position. The cleared area is set to 
blanks ( C-bits) '. The number of positions cleared 
can be calculated by adding 1 to the last two digits. in 
the B-address; for ·example, the instruction ?12999 
causes the CPU to clear storage from positions 12999 
through · 12000; 100 positions are set to blanks ( 99 + 
1 = 100). The instru'ction il5000 causes the CPU to 
clear storage location 15000; one position is cleared 
(00 + 1 =1). 

A clear storage instruction with a B-address condi­
tions the address-doubler op code line, and the B­
address in the instruction is loaded in the AAR and BAR 

during instruction read out time. To execute the opera­
tion, the CPU takes a series of B-cycles. During each 
B-cycle, the storage location designated by the address 
in the BAR is cleared, and the address in the BAR is re­
duced by one. Storage locations are cleared in succes­
sive B~cycles to the nearest even hundreds position. 
The -1 condition ON at logic gate D time, indicating 
a borrow one from the htindreds position, defines the 
even hundreds position; the even hundreds latch is set, 
and execute phase ends. At the end of the operation, 
the BAR contains 1 minus the address of .the last storage ~ 
location cleared ( xxx99). The AAR, unchanged after 
instruction read ·out, contains the original :S.address 
specified in the instruction. 

If the clear storage instruction does not contain a 
B-address (a no-address chained instruction), the con­
tents of the BAR from the previous operation are used as 
the B-address, and the CPU takes B-cycles to pedorm 
the operation in the.normal manner. In this case, how­
ever, the AAR is not loaded during instruction read out 
time and is unchanged during the execution of the clear 
storage instruction. 

Figure 48 shows CPU operation in the execution of the 
clear storage instruction. 

The following controls are active in the execution 
of the~lear storage instruction: 
SIGNAL CONTROL LOGIC 

1. Initiate last instruction read out ·cycle; set no 
branch latch. 
Last Instruction I-Ring 6 Time 12.13.05 

Read Out Cy 
No D Cy at I-Ring 6 Ops 
B Ch WM Bit 

No Branch Conditions Clear Op Code 12.60.08 
l-Ring 1 or 6 Time 
Last Instruction Read Out Cy 

,,..,.--.. \ 

/\ 

/ \ 

/ \ 

,---.\ 



Mod by Zero 
on at logic 

Gate D 

Clear 
Staoge 

Instruction 

Set No 
Branch latch 

12.60.14 

Set First 
Scan Latch 

12.30.05 

Take a 
B Cycle 

12.12.44 

Use Bar to Read 
Out B Field Char 

14.71.31 

Gate Assembly 
to Storage 

15.49.01 

Borrow One 
from Hundreds 

Position? 

Modify 
B Address by 
Minus One 

Use No Zones 
Use No Wad Mork 
Use No Numerics 

Generate C Bit 

Mod by Minus 
One Stil I on at 
Logic Gate D 

Set Not Even 
Hundreds Latch 

Set Even 
Hundreds Latch 

14.71.40 

End Op 
Start Instruction 

Read Out 
12.60.08 

Figure 48. Clear Storage 

SIGNAL 

No Branch Latch 

CONTROL 

No Branch Conditions 
LGZ 

LOGIC 

12.60.14 

2. Set 1st scan latch; set address modifier to -1. 
Set 1st Scan Ctrl 1st Scan First. Op Codes · 12;30.05 

Last Instruction Read Out Cy 
1st Scan Ctrl Next to Last Logic Gate 12.30.03 

Set 1st Scan Ctrl 
IS~ Scan 1st Scan Ctrl, LGC 12.30.01 
Addr Mod Set to -1 1st Scan 14.71.41 

3. Initiate a B-cycle; use BAR to read out first charac­
ter from storage. 
Set B Cy Control B Cy First Op Codes 12.12.44 

Last Instruction Read Out Cy 

SIGNAL 

B Cy Control 

BCy 
Read Out BAR 

CONTROL 

Set B Cy Ctrl 
Next to Last Logic, Gate 
B Cy Ctrl, LGB 
B Cy Ctrl 
1st + 2nd + 3rd Scan Ctrl 
Read Out BAR on Scan B 

Cy Ops 
Logic Gate Special A 

LOGIC 

1.2.12.21 

12.12.02 
14.71.31 

4. Gate assembly to storage; clear storage; set check-
bit. 
Use No Zones, No Nu, B Cy 15.49.01 

No WM 
Stop at F on B Cy Op Codes 

Assembly Ch Nu C Bit Use No Numerics 15.50.09 
Assembly Ch Zone C Use No Zones 15.50.10 

Bit 
Assembly Ch Not 

WM Bit 
Use No WM ,,15.50.08 

Assembly Ch C Char Assembly Ch Nu C Bit 15.50.07 
Bit 

Assembly Ch Zone C Bit 
Not Assembly Ch WM Bit 

Load Memory Clear Op Code 12.50.01 
1st Scan 
BCy · 

5. Test for even or not even hundreds address; set 
appropriate latch. 
Not Even Hundreds 

Addr 

Clear Op Take 1st 
Scan 

Set 1st Scan Ctrl 
1st Scan. Ctrl 

Zero Latch 

2nd Clock Pulse, LGD 
Not Even Hundreds Addr 

Clear Op Code 
BCy 
1st Scan 
Clear Op Take 1st Scan 
Set 1st Scari Ctrl, Next to 

Last LG~ 

14.71.40 

12.60.04 

12.30.05 
12.30.03 

Addr Mod Set to -1 1st Scan Ctrl 14.71.41 

6. Take another B-cycle; read out 1next core storage 
character. 

7. Repeat step 4. 
8. Test for an even hundreds address; if not an even 

hundreds address, continue to take B-cycles and clear 
storage until an even hundreds address is detected; 
when even hundreds addres~ is detected, set even 
hundreds address latch. 
Borrow Latch Minus One 2-8 Line, 2nd 

Clock Pulse 
Even Hundreds Addr Borrow Latch, 

2nd Clock Pulse, LGD 

9. End execute cycle; initiate I-cycle. 

Last Exeeute Cy 
*Brend 

Last Ex~te Cy 

Set I CyCtrl 
I Cy Ctrl 

Ev~n Hundreds Addr 

No Branch Latch 
BCy 
1st Scan 
Clear Op Code 
Last Execute Cy 

*Br Cnd 
Last Execute Cy 
Set I CyCtrl 
Next to Last Logic Gate 

10. Use IAR to read out next instruction. 

14.30.08 

14.71.40 

12.60.08 

12.12.51 

12.13.02 
12.12.23 

Miscellaneous Instructions 89 



Questions on Clear Storage Operation 

Answers to review questions are in the Appendii. 
1. If the B-address in the clear storage instruction is 

'09050, what is the number of storage positions cleared 
'in the clear storage operation? 

2. If the clear storage instruction does not contain 
a B-address, is the AAR loaded during instruction read 
out? 

3. If the clear storage instruction contains a B­
address, what address is stored in the AAR when the 
clear storage operation ends? 

4. When is the clear storage operation terminated? 

Clear Storage and Branch Instruction 

The format for the clear storage and branch instruction 
is: 

OPCODE 
v 
I 

I-ADDRESS 

xxxxx 

B-ADDRESS 

xxxxx 

The clear storage and branch instruction causes the 
CPU to clear characters and word marks from an area 
in storage, right to left, from the specified B-address 
through the nearest liundreds position and branch to 
the instruction at the I-address after the clear opera­
tion. The clear storage and branch instruction com­
bines the clear storage and unconditional branch 
instructions. 

During instruction read out, the I-address in the 
instruction is stored in the AAR; the B-address is 
stored in the BAR. Because the last instruc!tion read out 
cycle occurs at I-ring 11 time, the branch to AAR 

latch is set. 
To clear storage, the CPU takes a series of B-cycles. 

During each B-cycle, the storage location designated 
by the address in the BAR is cleared, and the address 
in the BAR is reduced by one. Storage locations are 
cleared in successive B-cycles to the nearest even 

· hundreds position. The -1 condition ON at logic gate 
D time, indicating a borrow one from the hundreds 
position, defines the even hundreds position; the even 
hundreds latch is set, and execute phase ends. At the 
end of the clear operation, the BAR contains 1 minus 
the address of the last storage location cleared.( xxx99). 

Because the branch to AAR and even hundreds 
latches are set, the no-scan latch is set, causing a 

, modify by 0 condition in the modifier. The CPU takes 
a B-cycle: The IAR, which contains the address of the 
next sequential instruction, reads out to the STAR, 

through th~ modifier to the BAR. The completion of the 
branch operation is accomplished during the 'Sub­
sequent instruction read out operation at which time 
the AAR (containing the address of the next instruction 
to be executed) sets the STAR. 

90 

Figures 49 and 50 show CPU timings and operation 
in the execution of the clear storage and branch in­
struction. 

The following controls are active in the execution 
of the clear storage and branch instruction: 

SIGNAL CONTROL LOGIC 

1. Initiate last instruction read out cycle, and set 
branch to AAR latch. 
Last Instruction 

Read Out Cy 

Branch to.A 
Conditions 

2 Addr No Mod Op Codes 

B Ch WM Bit 
I-Ring 11 Time 
Clear Op Code 

I-Ring 11 Time 
Last Instruction Read Out Cy 

12.13.05 

12.60.04 

Branch to AAR Latch Branch to A Conditions 12.60.14 
Next to Last Logic Gate 

2. Set 1st Scan latch; set address modifier to -1. 

Set 1st Scan Ctrl 1st Scan First Op Codes 12.30.05 
Last Instruction Read Out Cy 

1st Scan Ctrl Next to Last Logic Gate 12.30.03 
Set 1st Scan Ctrl 

1st Scan 1st Scan Ctrl 12.30.01 
LGC 

Addr Mod Set to -1 1st Scan 14.71.41 

3.. Initiate a B-cycle; use BAR to read out first core 
storage character. 

Set B Cy Ctrl B Cy First Op Codes 12.12.44 
Last Instruction Read Out Cy 

B Cy Ctrl Set B Cy Ctrl 12.12.21 
Next to Last Logic Gate 

B Cy B Cy Ctrl 12.12.02 
LGB 

Read Out BAR B Cy Ctrl 14.71.31 
1st + 2nd + 3rd Scari Ctrl 
Read Out BAR on Scan B 

Cy Ops 
Logic Gate Special A 

4. Gate assembly to storage; clear storage; set check 
bit. 

Use No Zones, No Nu, B Cy 15.49.01 
No WM 

Stop at F on B Cy Op Codes 
Assembly Ch Nu Use No Numerics 15.50.09 

C Bit 
Assembly Ch Zone Use No Zones 15.50.10 

C Bit 
Assembly Ch Not Use No WM 15.50.08 

WM Bit 
Assembly Ch C Char Assembly Ch Nu C Bit 15.50.07 

Bit 
Assembly Ch Zone C Bit 
Not Assembly. Ch WM Bit 

Load Memory Clear Op Code 12.50.01 
1st Scan 
BCy 

5. Test for even and not even hundreds address; 
set appropriate latch. 

Not Even Hundreds Zero Latch 14.71.40 
Addr 

2nd Clock Pulse, LCD 
Clear Op Take 1st Not Even Hundreds Addr 12.60.04 

Scan 

~\ 

\ 



Mod by Zero 
On at Logic 

Gate D 

No 

Set Not Even 
Hundreds Latch 

14.71.40 

Figure 49. Clear Storage and Branch 

Clear Storage 
and Branch 
Instruction 

c ' Set Branch to 
AAR Latch 
12.60.14 

Set First 
Scan Latch 
12.30.05 

Take a B-Cycle 
12.12.44 

Use BAR to 
Read-Out 

B-Field Char 
14.71.31 

Gate Assembly to 
Storage 
15.49.01 

Modify 
B-Address by 
Minus One 

Borrow One 
From Hundreds 

Position? 
Yes 

Read-Out IAR 
and Set STAR 

and BAR 
14.71.34 

End Execute 
and Start Inst 

Read-Out 
12.60.08 

Take an I-Cycle 

Use AAR to 
Read-Out Next 

Instruction 
14.71.30 

Reset Branch 
to AAR Latch 

12.60.14 

J 

Modify by Zero 

Miscellaneous Instructions 91 



SYNC 

Address Switches 00011 

LINE NAME 

1. LOGIC GATES 

2. LAST INSN R. O. 

3. 1 ST SCAN' CTRL 

4. lST SCAN 

5. "B" CYCLE CTRL 

6. "B" CYCLE 

7. R,O. BAR 

B. SET STAR 

9. RESET BAR (INVERTED) 

10. MOD -1 CTRL 

11. MOD-1 

12. MOD 0 CTRL 

13. MOD 0 

14. EVEN HUNDREDS 

15. NO SCAN CTRL 

16. NO SCAN 

17. R.O. IAR 

18. LAST EXECUTE 

19. I CYCLE CTRL 

20. I CYCLE 

21. BR TO AAR 

22. R.O. AAR 

23: MOD +I CTRL 

24. MOD +1 

25. LOGIC GATES 

LOGIC PAGE TEST POINT 

12.13.05 11CI H12G 

12.30.0B 11C1F23L 

12.30.01 11C1E26A 

12.12.21 11C1A04B 

12.12.02 11C1H17C 

14.71.31 11C1H11H 

14.71.16 11 B2G26A 

14.71.21 11C1C25C 

14.30.08 I IB2H26E 

14.30.08 11B2HIOP 

14.30.09 11 B2H25E 

14.30.09 11B2H21C 

14.71.40 11C2Cl7D 

12.30.13 11C1 El7C 

12.30.01 I 1C1 G24D 

14.71.34 I ICICl2H 

12.12.51 11CIH23B 

12.12.23 11C1CllC 

12.12.04 11CIH22H 

12.60.14 11D1B15C 

14.71.30 11C1C11G 

14.30.07 11 B2G25E 

14.30.07 11 B2H10L 

I l LOCATION 

I 00001 

I 
I 

PROGRAM 

v;oooo100102 
v 

L1~11DAhl flEflAGJBEBAG}Elf} AGl c_BE£1Al;}B£A8 
w 
µ 

_J 
J 

l 
u u 

_J\L---Jj~~J~~-+-~-+---t-~ 
1------'Jl J1 J1 ]11----___,J~___,fL 
1------',1 n 1 1~----t----t-1 
_______,Jn Jn Jn~--+-----------------+----! 
~~~1 h'--~i-----t1~-r--~-r-~-t-i 

llJ \JJ -u__r--v~
W LU 1'--+---~JU

J

n'-------1f----!---+-----+----'1

Figure 50. Clear Storage and Branch Operation Timings

92

c
SIGNAL CONTROL Lome Questions on Clear Storage and Branch Operation

Clear Op Code Answers to review questions are in the Appendix.
BCy r 1. How do the clear storage and clear storage and 1st Scan

Set 1st Scan Ctrl Clear Op Take 1st Scan 12.30.05 branch operations diff erP
1st Scan Ctrl · Set 1st Scan Ctrl 12.30.03

Next to Last Logic Gate 2. Where is the I-address in the clear storage and
Addr Mod Set to -1 1st Scan Ctrl 14.71.41 branch instruction stored during instruction read outP

6. Take another B-cycle; read out next character 3. ls the branch operation that the clear storage and
~ from core storage. branch operaticm causes a conditional or unconditional

7. Repeat step 4. branch?·

~ 8. Test for an even hundreds address; if not an even 4. When is the pompletion of the branch operation

hundreds address, continue to take B-cycles and . clear accomplished?

storage until an even hundreds address is detected;
~ when even hundreds address·is found, set even bun-

dreds address latch. Halt Instruction
Borrow Latch Minus One 2-8 Line, 2nd 14.30.08

The format for the halt instruction is: Clock Pulse
Even Hundreds Addr Borrow Latch 14.71.40 OPCODE 2nd Clock Pulse, LGD ..

9., Initiate a branch operation.

Set No Scan Ctrl Clear Op Code 12.60.04 The halt. instruction causes the logic clock in the
'*Br Ops CPU to stop. Pressing the start key starts system overa·

~'
BCy tion with the next sequential instruction. Because the
1st Scan
Even Hundreds Addr halt and halt and branch instructions have the same
Branch to AAR Latch operational code (.) , a word mark must be present in

Set B Cy Ctrl Clear Op Code 12.60.04 the storage location immediately to the right of the ~ *Br Ops
BCy halt op code to distinguish the halt instruction from the

/ ' 1st Scan halt and branch instruction.
Even Hundreds Addr The last instruction read-out cycle (determined by (' Branch to AAR Latch

SetB CyCtrl Set B Cy Ctrl 12.12.44 the presence of a B-channel word mark at I-ring 1
*Br Ops time) causes a simultaneous last execute cycle; this

B Cy Ctrl Set B Cy Ctrl 12.12.21 condition sets the stop latch. When the stop, latch is
Next to Last Logic Gate

BCy B Cy Ctrl 12.12.02 set, the logic clock stops; initiating a cp:nsole stop print·
LGB out operation if:

Set No Scan Ctrl Set No Scan Ctrl . 12.30.05 1. The print control switch is not set to inhibit; and, '*Branch Ops
No Scan Set No Scan Ctrl 12.30.03 2. The mode switch is in neither the display nor alter

Next to Last Logic Gate position.
Addr Mod Set to 0 No Scan 14.71.41 If the console stop print-out operation is complete .~

10. Read Out IAR to STAR and BAB. when the start key is pressed, the stop latch resets,
Read Out IAR B CyCtrl 14.71.34 allowing the logic clock to run again; the CPU executes

,-....., No Scan Ctrl the next s~quential instruction. If the start key is
Logic Gate Special A

MemARSet LGA or LGR, 2nd Clock 14.17.16 pressed before the console stop print-out operation
' Pulse ends, no action occurs until the print-out stops.

~~
Set BAR LGBorLGC Figure 51 shows cro operation in the execution of

B, E, or F Cy Ctrl
the halt instruction.

11. End execute, and initiate I-cycle. The following controls are active when the CPU per- ,-..;

Last Execute Cy Branch Type Op Codes 12.60.08 forms the halt operation:
'*Br Cnd

No Scan SIGNAL CoNTROL Loc1c
BCy 1. Set the no branch latch, and initiate the last ex-

.~ Last Execute Cy Last Execute Cy 12.12.51
ecute cycle. '*Br Cnd

Set ICyCtrl Last Execute Cy 12.13.02 Last Instruction Read No C or D Cy Op (',()des 12.13.05
12. Use AAB to read out next instruction. Out Cy I Ring 1 time

~
ReadOutAAR

BChWMBit
I Cy Ctrl 14.71.30 No Branch Cnds I Ring 1 tilml 12.60.08
Branch'to AAR Latch Stop or Branch Op Code
Logic Gate Special A Last lllltruction Read Out Cy

Miscellaneous lnstructiom 93

C -I Ring }
___ l_T_ime__ -;-

Initiate Console
Stop Print Out

Operation
44.10.01

Wait

Figure 51. Halt

SIGNAL

No

1

I
I
L_

Yes

No Branch Latch

Last Execute Cy
*Br Cnd

Last Execute Cy

Halt Instruction

Last Inst
Read-Out Cycle

12.13.05

Stop Logic Clock
11.10.02

PU Executes
Next Sequential

Instruction

Reset Stop Latch
12.15.04

Start. Logic Clock
11.10.02

CONTROL LOGIC

No Branch Cnds 12.60.14
Next to Last Logic Gate
Last Instruction Read Out Cy 12.60.08
I Ring 1 time
Stop or Br Op Code
Last Executive Cy * Br Cnd 12.12.51

2. Set the stop latch, and stop the logic clock.
Stop Latch LGZ, 2nd Clock Pulse 12.15.04

Last Execute Cy
Stop or Branch Op Code

Clock Stopped Stop Latch 11.10.02

94

SIGNAL CONTROL

3. Initiate stop print-out 'operation.
Console Stop Print

Out Op
Console Enable Stop
Print Out

Stop or Branch Op Code
Last Execute Cy
Clock Stopped
Console Stop PrintDut Cnd

Questions on HQlt ~peration

LOGIC

i2.1.5.04

13.42.10

Answers to review questions are in the Appendix.

1. The halt instruction cau§es the logic clock in the
CPU to stqp; when system operation resumes, what in­
struction is executed first?' .

2: How is the halt instruction distinguished from the
halt and branch instructiQn during instruction read
out?

3. When is the console stop print-out operation
started? J

4. Does the logic clock start automatically when the
stop print-out operation ends?

Halt and Branch Instruction
The format for the halt and branch instruction is:

OP CODE
v
•

I-ADDRESS

xxxxx

The halt and branch instruction causes the logic
clock in the CPU to stop. When the start key is pressed,
system operation resumes with the instruction at the
designated I-address.

At the end of the instruction read-out cycle, the
branch to AAR latch is set. B~ taking a branch type
B-cycle, the AAR is loaded with the I-address in the
instruction. The JAR, which contains the address of
the next sequential 1instruction, reads m1t to the STAR,

through the modifier (previously set to modify by 0
condition) to the BAR. Last execute cycle becomes
active at this time. The completion of the branch op­
eration is accomplished during the instruction read­
out cycle (initiated when the start key is depressed
after the stop) at which time the AAR (containing 'the
address of the next instruction to be executed) sets the
STAR.

The stop latch is set· during last execute cycle, caus­
ing the logic clock to stop. A console stop print-out
operation is initiated if:

1. The print control switch Ts not set to inhibit, and
2. The mode switch is in neither the display nor alter

position.
If the console stop print-out operation is complete

when the start key is pressed, the stop latch resets,
allowing the logic clock to run again. The cpu com­
pletes execution of the branch instruction and performs
the operation specified by the instruction at the !­
address of the halt and branch instruction. If the start

/ \

/ \

~.

~.

~.

~.

('

key is pressed before the console stop print-out opera­
tion ends, no action occurs until the print out stops.

CPU operation in the execution of the halt and branch
instruction is shown in Figure 52.

The following controls are active when the CPU per­
forms the halt and branch operation:

SIGNAL CONTROL LOGIC

I. Set the branch to AAR latch.
2nd Cnd A Branch Last Instruction Read Out Cy 12.60.02

Gated Stop or Branch Op Code
I Ring 6 Time

Branch to A Cnds 2nd Cnd A Branch Gated 12.60.04
Branch to AAR Latch Branch to A Cnds 12.60.14

Next to Last Logic Gate

2. Initiate a B-cycle; set address modifier to 0.
Set B Cy Ctr! * Br Ops 2nd Cnd A Branch Gated 12.60.04
Set B Cy Ctr! Set B Cy Ctr! Br Ops 12.12.44

. B Cy Ctr! B Cy Ctr! 12.12.02
LGB

Set No Scan Ctr! Set No Scan Ctr! * Br Ops 12.30.05
No Scan Set No Scan Ctr! 12.30.03

Next to Last Logic Gate
Addr Mod Set to 0 No Scan 14.71.41

3. Read out IAR to STAR and BAR.

Read Out IAR No Scan Ctr! 14.71.34
B Cy Ctr!
Logic Gate Special A

MemAR Set LGA or LGR, 2nd Clock Pulse 14.17.16
Set BAR B, E, or F Cy Ctr! 14.71.11

LGB or LGC

4. Terminate execute phase.
Last Execute Cy* No Scan 12.60.08

Br Cnd Branch Type Op Codes
B Cy

Last Execute Cy Last Execute Cy * Br Cnd 12.12.51

5. Set the stop latch, and stop the logic clock.
Stop Latch LGZ, 2nd Clock Pulse 12.15.04

Last Execute Cy
Stop or Branch Op Code

Clock Stopped Stop Latch 11.10.02

6. Stop the logic clock at logic gate F.
Stop at F on B Cy

Op Codes
Stop at F

Last Logic Gate

Stop or Branch Op Codes 12.14.08

Stop at F on B Cy Op Codes 12.12.30
B Cy
Stop at F 12.12.31
LGF

7. Initiate stop print-out operation.
Console Stop Print

Out Cnd
Console Enable Stop
Print Out

Stop or Branch Op Code 12.15.04
Last Execute Cy
Clock Stopped 13.42.10
Console Stop Print Out Cnd 13.42.10

Questions on Halt and Branch Operation

Answers to review questions are in the Appendix.

1. The halt and branch instruction causes the logic
clock in the CPU to stop. When the system resumes op­
eration, what instruction is executed first?

2. Is the branch to AAR latch set, initiating the
branch operation, before the logic clock stops or after
the logic clock starts again?

3. If the start key is pressed before the stop-print
out operation is complete, is the stop-print out opera­
tion terminated immediately? ·

4. Is the branch operation, which the halt and
branch instruction designates, an unconditional branch
or a conditional branch?

No Operation Instruction

No format for the no operation instruction is:

OP CODE
v

N (any number of characters can follow the N op code
if none of the characters contain a word mark bit)

The N op code performs no operation; it can be sub­
stituted for the op code in any instruction to make that
instruction ineffective.

During I-op time, the N op code is set in the opera­
tion register, preventing the I-ring from advancing.
Characters following the N op code are read out in
successive I-cycles and ignored until a B-channel word
mark is detected. Therefore, the no operation instruc­
tion causes the CPU to skip one or several instructions
as determined by the location of the first B-channel
word mark after the N op code is decoded. The B-

. channel word mark causes the op code of the next in­
struction to be loaded in the op register, and instruc­
tion read out continues. The I-ring, clamped at I-op
time during execution of the no-op instruction, is al­
lowed to advance in the normal manner.

CPU action in the execution of the no operation in­
struction is shown in Figures 53 and 54.

The following controls are active when the CPU ex­
ecutes the no operation instruction:

SIGNAL CONTROL Lome

I. Decode the N op code, and prevent the I-ring
from advancing.
ARS No Op Op Dcdr 4, Not 2 and I

Op Dcdr Band Not A and
Not 8

Op Reg ARS Not C-Bit
Not I Ring Advance ARS No Op

2. Repeat I-cycle; read out IAR; modify by
Set I Cy Ctr!
I Cy Ctr!

I Cy

Read Out IAR

Set Mem AR Gated

ARS No Op
Set I Cy Ctr!
Next to Last Logic Gate
I Cy Ctr!
LGB
I Cy Ctr!
No Branch Latch
Logic Gate Special A
LGA or LGR, 2nd Clock

Pulse

13.13.08

+1.
12.13.02
12.12.23

12.12.04

14.71.34

14.17.16

3. If there is no B-Channel WM, repeat step 2 until
a B-Channel WM is detected.

4. If there is a B-Channel WM, set op code into op
reg, and continue instruction read out.

Miscellaneous Instructions 95

-~l..ast-.1-ns".'"'t - -
Read-Out

Cycle

R-'Out
and Set STAR

cindBAR
14.71.34

Bring Up Last
Execute Cycle

12.12.51

Initiate C e
Stop l'rin't Out
. Opemion

44.10.01

S.. Start
Key latch
12.15.02

. ltelet Stop l.Gtch
12.15.04

SlQft Next
!nmv<;tion

Read-Out Cycle
12.60.08

U.AARto
Read ·Out Next.

1nstructicn
14.71.30

Reset a.-:h
to AAR l.Gtch

12.60. l<f

/ \.

/ \

.~.

("·

lr

NoOp
Instruction

Initiate
Instruction

Read• Out
12.13.04

Read Out No
Op Op-Code,

and Start I ·Ring

Goto
Instruction

Chec:k
12.12.43

at I Op Time
12.13,03

B Channel
Word Mork?
12.13,04

Yes

Set Op Code
Into Op Reg and
Dec:ode into Op­

Code Groups
12.13,04

Prevent I RI ng
Aclvonc:e
12.13.03

Read Out
Next

Chorac:ter

12. 13.04

Read Out
Next

lnstruc:t ion

Figure 53. No Operation

I Ring Does
Not Aclvanc:e

toI-1

SIGNAL

Set Op Register

CoNTROL

B Ch WM Bit
I Cy
LGF
I Ring Op Time

Questions on .No Operation lnstrudion

Loolc
12.13.04

Answers to review questions are in the Appendix.

1. To what point does the I-ring advance when the
N op code is set in the operation register?

.2. When the N op code is detected, are other char­
acters read out of core storage?
. 3. If a program contains N00599 06500 A 07700 07720

S 09000 0800(), Utill the add operation be performed?

Miscellaneous Instructions 97

SYNC

Last Execute 1 !Cl H23B

LINE NAME LOGIC PAGE

1. LOGIC GATES
2. LAST EXECUTE 12.17.51

3. I CYCLE CTRL 12.12.23

4. I CYCLE 12.12.04

5. IOP 11.20.01

6. SET OP REG 12.13.04

7. NO-OP CODE 13.13.08

8. B CH CHAR WM 15.30.08

9. "I" RING ADV 11.20.01

10. LOGIC GATES

Figure 54. No Op Timings

98

11C1H22H

11CIH07A

11C1H07C

11D1D12A

11C3C10H

11C1K098

LOCATION

00001
00007
00014

PROGRAM

ri:i12345
Jooo01b

('

~·

~

_!"

·0

~·
' .

~

r

('
.

I (""
\.

This section describes the accelerator, priority process­
ing, and program addressable clock special features for
the IBM 1410 Data Processing System.

1410 Accelerator Feature

The IBM 1410 Accelerator Feature (Special Feature
1007) increases the processing speed of the IBM 1411
Processing Unit. Compute operations are performed at
speed increases of approximately 15 to 23 percent;
input-output data transfer rates are not changed. Be­
cause the same logic operations are performed faster,
all programs that operate on 1410 systems without the
accelerator feature can be executed without modifica­
tion when the feature is installed.

The accelerator feature:
1. Reduces the range of storage cycle duration from

4.5 to 7.5 microseconds to 4.0 to 6.66 microseconds.
2. Shortens execute cycle lengths by two logic gates

· in three operations.

~esults of Speed Increases

By replacing the standard 1.33 megacycle ocillator in
the logic clock circuits with a 1.5 megacycle oscillator,
an effective speed increase is made in the storage cycle.
The durations of clock pulses are reduced from 0.375
to 0.333 microseconds, resulting in 0.666 microsecqnds
logic gate pulses. Although the logic gate ring contains
the same triggers (A through K) , the shortest cycle
(stop at F) is reduced to approximately 4.0 micro­
seconds (6 X .666 = 3.996); the longest cycle (stop at
K) is reduced to approximately 6.66 microseconds (10
X 0.666 = 6.600). The shorter storage cycle requires a

TNL card to replace the DFT card containing STAR

latches (14.17.01-14.17.15 accelerator feature systems
pages).

In addi:tion to the changes required to shorten the
length of storage cycles, the accelerator feature makes
significant changes in the adder and assembly units
and their associated translating and control circuits.
Faster circuits in these units shorten execute cycles in
multiply, divide, and data move operations by two
logic gates. The "stop .at F on B-cycle" common op
code grouping line is conditioned rather than "stop at
J on B-cycle" as in normal operation.

Special Features

Component Circuit Changes

Diffused diode transistor logic (DDTL) circuits are used
to obtain the faster processing speeds that the accelera­
tor feature provides. ·· DDTL circuits require approxi­
mately 15 to· 100 nanoseconds delay per decision. The
1411 CPU is primarily composed of saturated drift tran­
sistor resistor logic (SDTRL) and saturated drift tran­
sistor diode logic (SDTDL) requiring approximately 50
to 150 nanoseconds delay per decision. DDTL circuits
replace only selected cards in the CPU to decrease the
time required to execute specific logical functions. The
following simplified example illustrates the manner in
which this is accomplished:

To obtain an output at P, simultaneous inputs to block
Y are required. Assume. that the circuit delays in path
2 are three times longer than the d~.lays required in
path 1. Pin a on block Y is conditioned three times
sooner than pin b.

The circuit delay in path 2 can be decreased without
changing the logical functions that blocks 3 through
9 perform by using faster circuits. If blocks 3 through
9 were replaced with circuits three times faster, the
delay in path 2 would be decreased by two-thirds. The
new circuit in path 2 makes the output at pin P avail­
able in one-third the original time.

DDTL circuits use B levels (+ B = + 6 volts; - B = 0
volts). High speed converter circuits transform S levels
used in SDTIIL and SDTDL circuits to B levels or B levels '
to S levels. The DDTL Component Circuits CE Man­
ual of Instruction (R.23-"2618) describes diffused diode
transistor logic in detail.

Priority Processing Feature

The priority feature1 is an interrupt system that pro­
vides an automatic branch to a fixed memory location
(00101) when a channel or an 1-0 device indicates cer-

Special Features 99

tain conditions. These conditions set indicators to allow
the CPU to determine the specific cause of the interrup­
tion. 1-0 devices can automatically interrupt the main
routine either with a request for service or by indicat­
ing that certain conditions exist in the 1-0 operation.

Priority processing provides increased efficiency in
the use of system units. Virtually all waiting can be.
eHminated when transferring data from CPU to an out­
put device or from an input device to CPU, The priority
feature allows CPU to continue processing until the 1-0

device completes an operation. The channel (or the I-o
device) signals the CPU when the 1-0 operation ends or
certain conditions occur, allowing the CPU to begin
another operation (or to continue the present opera­
tion) on that channel as soon as the main routine can
be interrupted. The CPU need not interrogate indicators
repetitively to determine when the operation ends.

An interrupt transfers system control from the main
routine to a priority routine. With the priority feature,
the CPU can process two independent programs; one
program is being executed while the other program is
waiting for an 1-0 operation to end.

The following conditions are necessary to effect an
interruption:

1. The instruction in the main routine to be inter­
rupted must meet the requirements of interruptible
instructions.

2. The CPU must be operating in the priority alert
mode.

3. The CPU must receive an interrupt request signal.

Interruptible Instructions

The actual interruption of the main routine program
occurs during instruction read out at I-ring 6 time. An
operation is defined as a two-address op code if no B­
channel word mark is detected at I-ring 6 time. Con­
sequently, chained instructions cannot be interrupted.
Neither the store address register instruction nor 1-0 in­
structions can be interrupted. Figure 55 shows the
instructions that can be interrupted and the number of
characters that these instructions must contain.

Priority Alert Mode

Installation of the priority feature does not require
that the CPU be subject to interruptions by 1-0 devices
at all times; the CPU can operate in either priority alert
mode or normal mode. In normal mode, no interrup­
tions can occur. In priority alert mode, interruptions
are permitted.

The CPU can enter the priority alert mode, allowing
program interruptions, only when the Y (I) E instruc­
tion is executed. The Y(r)E instruction causes the CPU

to branch unconditionally to the storage location
designated by the I-address in the instruction and to

100

Op
Operation Code Length

Zero and Add ? 11
Zero and Subtract I 11
Add A 11
Subtract s 11
Multi ply @ 11
Divide % 11
Move Characters and Edit E 11
Move Characters and Suppress Zones z 11
Compare c 11
Clear Storage and Branch I 11
Set Ward Mark I 11
Clear Word Mark 11
Branch if Bit Equal w 12
Branch on Word Mark or Zone Equal v 12
Move Data D 12
Branch if Character Equol B 12
Table Lookup T 12
Test and Branch J 7
Branch if 1-0 Chon Status Ind On (Ch 1) R 7
Branch lfl-0 Chan Status lnd0n(Ch2) x 7
Parity Test Branch y --
No Operatl on N --
Move (1-0 Operation) M --
Load (1-0 Operati.on) L --
Stare Address Register G --
Halt --
Unit Control u --
Control Carriage F --
Stacker Select Feed K --

Figure 55. Interruptible and Non-Interruptible
Operation Codes

'
Non-Interruptible

Le".!f!th
1,6
1,6
1,6
1,6
1,6
1,6
1,6
1,6
1,6
1,6
1,6
1,6
1,6
1,6
1,6
1,6
1,6

1

1,7
Any

10
10
7

1,6
2
2
2

operate in the priority alert mode. When the CPU is in
the priority alert mode, the priority alert mode indi~
cator on the ll3.M 1415 console turns on.

Priority alert mode is reset, returning the CPU to
normal mode when either:

I. An 1-0 device interrupts the main routine; or,
2. The Y (I) x instruction (branch unconditionally

and exit from priority alert mode) is ·executed.
After each program interrupt, the cpu must perform
the Y(1)E instruction to return to priority alert mode.

Interrupt Request
Each channel can have six priority request indicators:
overlap, 1-0 unit, inquiry, outquiry, seek, and attention.
Interrupt conditions occurring in a channel or 1-0 unit
are signalled by turning on a particular priority request
indicator. When the CPU recognizes the request of a
priority request indicator the priority alert mode is
reset, and an unconditional branch to storage loca­
tion 00101 is executed.

Interrupt requests occur on a real time basis. There­
fore, a priority request may occur after I-ring 6 time
in instruction read out of an interruptible instruction.
Because the priority request sets the corresponding
priority request indicator, the interrupt will occur dur­
ing instruction read out of the next interruptible fo­
struction in all other cases except when an overlap

·~
I

r

priority request occurs too late (after I-ring 6 time in
instn,iction read out of an interruptible instruction)
to cause an interrupt, and the next instruction is 'a
branch if 1-0 status indicator on, the overlap priority
request indicator set previously is reset, and no· in­
terruptiop occurs. The resetting of the overlap priority
request indicator under these circumstances is a
normal function of the branch if 1-0 status indicator
on instruction.

Figure 56 shows priority request indicators and the
conditions to set and reset the indicators.

OVERLAP PRIORITY REQUEST INDICATOR

The channel 1 or channel 2 overlap priority request
indicator is turp.ed on at the completion of an over­
lapped read, write or write check operation on that
channel. The indicator can also be tUrned on by per­
forming,, a seek operation in overlap mode (7631/
1301). In this case, the indicator turns on at the com­
pletion of the address transfer to the IBM 7631 Fi'le
Control 'prior to the actual movement of the access
mechanism.

The priority test and branch instructions, Y(1)1
(channel 1) and Y(1)2 (channel 2) are used to deter­
mine the status of the overlap priority request indicators
on the respective channels. Execution of the R(1)d
(channel 1) or x(1) d (channel 2) instruction resets the
corresponding overlap priority request indicator.

1-0 UNIT PRIORITY REQUEST INDICATOR

Two priority select switches on the IBM 1415 Console
and the 1-0 devices that the switches select control
the channel 1 and channel 2 1-0 unit priority request
indicators. One priority select switch represents chan­
nel 1 operation; one switch represents channel. 2 op­
eration. Each swi!ch has five po,sitions: OFF, {:ARD
READER, CARD PUNCH, PRINTER, AND PAPER TAPE READER.
A double position priority select key on the IBM 14l5
Console controls each priority select switch. When a
priority select key is in the off position, the corre­
sponding priority select switch is ineffective; when a
key is set on, the 1-0 device selected on the correspond­
ing switch is permitted to set the 1-0 unit priority re­
quest indicator. When a priority select key is initially
set to the on position, the 1-0 unit priority request
indicator turns on automatically, regardless of either
priority select switch setting. This automatic turn on
of the 1-0 unit priority request indicator allows the CPU
to initially enter the interrupt routine. Succeeding
interruptions that the 1-0 unit priority request indicator
cause are authentic indications that the selected 1-0
device requests service or signals a certain condition
in the 1-0 operation.

If the priority select switch for channel 1 is selecting
CARD READER, the 1-0 unit priority request indicator for

channel 1 is set each time that the card reader_ com­
pletes a read operation.

Execution of the Y(1)u (channell1) or Y(1)F (chan­
nel 2) instruction causes the CPU to test and reset the
corresponding 1-0 unit priority request indicator.

The card reader, card punch, and printer can initiate
an interrupt by setting either the overlap or 1-0 unit
priority request indicators.

INQUIRY REQUEST Iffl>ICATOR .
The channel 1 or channel 2 inquiry request indicator
is set when one of the following conditions occur:

1. The inquiry request key on the IBM 1415 Console
(for channel 1 only) is pressed.

2. Any other serial input buffer in the IBM 1414,
Model 4 or 5, Input/Output Synchronizer except the
paper tape reader is loaded with 80 characters or re­
ceives an end of message character.

3. An error occur; in transmission from an input
TELE-PROCESSING® unit to the 1414, Model 4 or 5, input
buffer.
Pressing the release key on the console resets the in­
quiry request indicator if the inquiry request key
caused. the inquiry request status. If a teleprocessing
unit (s) produced the inquiry request status, the in­
quiry request indicator is automatically reset when
all inquiry requests are serviced by a proper read
operation directed to the unit(s) in inquiry request

l status. ·
Inquiry request interrupts caused by the console and

teleprocessing ·buffers can be differentiated by issuing
an 1-0 150P instruction. to the console. If the inquiry
request wa~ not caused. by the consoJ¢, the no transfer
indicator is set; if the. inquiry request was caused by
the console, the no transfer indicator is not set.

OUTQUIRY REQUEST INDICATOR

The outquiry request indicator for channel 1 or channel
2 is set:

1. When eighty characters have been: processed out
of an output optional buffer in the 1414, Model 4 or 5,
or. the last character in the message has been trans-
mitted to a Tele-Processing unit. .

2. When an error occurs in transmission from an
optional buffer in the 1414, Model 4 or 5, to an output '
device.

Execution of the Y · (1) N (channel 1) or Y (1) =f=
(channel 2) instruction tests and resets the outquiry
request indicator.

SEEK PRIORITY REQUEST INDICATOR

When any access mechanism on the channel is in seek
complete status, the seek priority request indicator for
channel 1 or channel 2 is set. The Y (1) s (channel 1)
or Y (1) T (channel 2) . instruction is used to test the

Special Features 101

1.

2.

Turned on by
Y(l)E instruction

BEPA

Priority
Alert Mode

Indicator

BXPA

Turned off by
Y(l)X instruction
and interrupt
signal

Y 11 BOPRl

Overlap Priority
Request

Y(l)2 BOPR2

Overlap Priority
Request

YIU BUPRl

1-0 Unit Priority
Request

Y(l)F BUPR2

1-0 Unit Priority
Request

Y(l)Q BIPRl

Inquiry Priority
Request

Y I* BIPR2

Inquiry Priority
Request

Y(l)N BQPRl

Outquiry Priority
Request

YI :j: BQPR2

Outquiry Priority
Request

Y I S BSPRl
Seek Priority

Request

Y IT BSPR2
Seek Priority

Request

Y(I A BXPRl

Attention Priority
. Request

YI B BXPR2

Attention Priority
Request

+Trademark of Teletype Corporation

Figure 56. Priority Request Indicators

102

1 • Turned on ot completion of any overlapped read;
write, or write check operation an that channel.
Also turned on' if a seek operation is performed in
overlap mode. (1301)

2. Turned off by R(l)d instructfon for channel 1, X(l)d
instruction for channel 2.

1. Turned on by the following:

~::d reoder: card reading finished

Card Punch: card punching finished
j Printer: printer operation finished

---_ .._ Paper tape reader: ·
, Full buffer
\ End of record

\
\

\
'- - - - Priority select on-off key

2. Turned off by Y(l)U instruction for channel 1,
Y(l)F instruction for channel 2.

1. Turned on by:
a. Console inquiry request ~ey. (Channel 1 orily)
b. Completion of data transfer too 1414 model 4 or 5

serial input buffer from an unsolicited input device
(Teletype+, .1009 and 1014)

c. EOR-1009 and misread message (TTY).

2. Automatically t.L!rned off when all inquiry requests.are
serviced by a read instruction directed to the causing
unit. The release key (14l5 Console) resets inquiry
request status produced by the inquiry request key.

1. Turned on by: completion of a data transfer from
o 1414 model 4 or 5 serial output buffer.

2. Turned off by Y(I) N instruction on channel 1, Y(l):f:
instruction for channel 2.

1. Turned on when any access mechanism is in a seek
complete status on that channel.

2. Turned off automatically when the seek complete
status of al I access mechanisms has been reset off.
Seek complete status reS..t off by directing a read,
write, or 1-0 .NOP instruction to the causing unit.

1. Turned on by an attention si.gnal from the device
attached to the control adapter •

2. Turned off by Y(l)A instruction for channel 1,
Y(l)B instruction for channel 2. Temporarily
reset (if on) by program or computer reset, but
will be turned on again at the next instruction
read-out.

.~.

/'·

.~

seek priority indicator. A read, write, or r-o NOP in­
struction directed to the unit or units in seek complete
status resets the seek complete status, causing the seek
priority request indicator to turn off.

ATTENTION PRIORITY REQUEST INDICATOR

An attention signal from any device attached to the
channel control adapter sets the channel 1 or channel
2 attention priority request indicator. Execution of the
Y (r) A (channel 1) or Y (r) B (channel 2) instruction
tests and resets the corresponding indicator.

Programming

When an interrupt occurs, the CPU branches uncondi­
tionally to storage location 00101. When the priority
routine is complete, program control must be returned
to the interrupted instruction in the main routine. The
store B-address register instruction (G ccccc B) should
be the first instruction in the interrupt routine so that
the address of the interrupted instruction in the main
routine is retained. Because the interrupt occurred at
I-ring 6 time, the contents of the BAR after the uncondi­
tional branch to storage position 00101 is 6 plus the
address of the op code in the interrupted instruction.
One method of returning to the storage location con­
taining the op code of the interrupted instruction is:

1. To use the C-address in the store B-address regis­
ter instruction (G ccccc B) to designate the I-address
in the unconditional branch instruction (J iiiii b or
Y iiiii E) at the end of the interrupt routine, and

· 2. Index the unconditional branch instruction at the
end of the interrupt routine by - 6.

The priority routine must save the reading of the
arithmetic condition latches (arithmetic overflow; di­
vide overflow, zero balance, compare high, compare
low, and compare equal latches) if they are used in the
priority routine. The priority routine must also deter­
mine the cause of the interruption. ·

The following program demonstrates a program in­
terrupt. The main routine is a single add instruction
that repetitively adds 1 to the B-field. The priority rou­
tine prints a line by interrupting the main routine. The
priority select ON/OFF key on the console is set in the
PRINTER position, and the priority select key, also on the
console, is in the on position.

v MAIN ROUTINE
00001 y 00008 E Turn on priority alert
00008 A. 01000 02010 Add 1 to B-field

v
00018 J 00008 b Repeat the addition

v INTERRUPT ROUTINE
00101 G 00137 B Store contents of BAR
00108 :M %20 02000 w Print a line

v

00125 ' 00ll8 R Interlock
v

00125 y 00132 u
00132 t 000 :l=O E Turn on priority alert and

branch back to main routine

01000 i
v

02000 0000000000
02132 +
00025 bbbbO

CONSTANTS
A-field
B-field·
Group mark-word mark
Index register 1 (-6)

The program starts at storage position 00001. The
Y (00008) E instruction causes the CPU to set the pri­
ority alert mode latch (Systems page 19.10.07). The
CPU then executes the add instruction. The uncon­
ditional branch instruction, J (00008) b, causes the CPU

to repetitively perform the add instruction until the
first interrupt is requested.

When the priority select key on the console is set
in the on position, the first interrupt occurs. With the
priority switch latch on, the next console clock 3
pulse sets the r-o unit priority request latch (Systems
page 19.10.06). The r-o unit interrupt latch allows
logic gate E of I-ring op time to set the delayed in­
terrupt latch.

In the program example, only the add and uncon­
ditional branch instructions can be interrupted. With
E-channel not in process, "selected r-o unit interrupt
condition" is brought up, conditioning "interrupt re­
quest." "Interrupt request" conditions "start interrupt"
at I-ring 6 time in instruction read out of the add
or unconditional branch instruction (Systems page
19.10.03).

"Start interrupt" allows logic gate E of I-ring 6 to
turn on the interrupt branch latch (Systems page
19.10.02). The sequence then follows a standard
branch. The I-ring is reset, and a B-cycle follows to
set the contents of the IAR into the BAR. At the end of
the B-cycle, the fixed address 00101 is generated and
set directly into STAR, allowing I-ring op time to begin
the priority routine.

The Y (00132) U instruction resets the interrupt re­
quest latch to allow the program to return to the main
routine.

The G (00137) B instruction stores the contents of
the BAR (00014 in this example) at location 00137. The
print and R (r) $ instructions follow.

The Y (OOO=f=O) E instruction has now been changed
to Y(000/4)E. The record mark (A-, 8-, and 2~bits)
was changed to a slash (C-, A-, and 1-bits) by the G
op code at 00101. When the Y(000/4)E is executed,
the branch is to 00008 because the A-bit in the tens
position indexes the address by - 6 (index register 1).

The add routine is repeated until the fall of busy
from the printer causes another interrupt. The entire
C)lcle then continues indefinitely.

Figures 57, 58, and 59 show CPU circuit operations
and timings in an interrupt operation.

Special Features 103

Succesful
Interrupt Branch
Turns OFF Pri

Alert Mode

First Instruction
Stores Contents

of BAR

I Address
Indexed

-6

Figure 57. Interrupt Data Flow

Yes

No

y (I) E
Tums ON

Priority Alert
Mode.

Continue

Processing

Moin Routine

Interrupt

Request

16 Time of
o Not% Type

Op Code

Interrupt
Bronch to

Fixed Address
of 00101

Process

Priority
, Routine

Y(I) E
Turns ON

Priority Alert
Mode

Program Addressable (Real Time) Cfoclc
The program addressable clock for the IBM 1410 Data
Processing System provides a method of establishing
an accurate log of system usage . time. Under stored

104

program control, the immediate time registered by the
clock can be obtained for· recording or processing.
(ALD's refer to the program addressable clock as the
real time clock.)

The program addressable clock is located on the IBM

1415 Console and is powered from a voltage source
not affected by the normal power off controls of the
1~ 1410 Data Processing System. Emergency power
off, however, removes power from the clock.

The clock indicates the time of day . in continental
(24 hours) notation to hundredths of an hour; for ex­
ample, the time 3:26 PM is indicated as 15:43; 15
represents the 15th hour of the day (3:00 PM); 43
represents the fraction of ,the hour in hundredths past
the 15th hour (43/100 is approximately equal to
26/60) . .Although the clock advances once per minute,
it counts in. hundredths of an hour. The units position
of the hundredths of an hour is expressed by the digit
0, 2, 3, 5, 7, or 8 (Figll!e 60).

Programming

ReaCl out of clock time is accomplished by the store .
address register instruction, c(c)T. Execution of the
G(c)T instruction causes the CPU to place four digits
representing clock time and a special identifier digit
in core storage beginning at the .location specified by
the C-address. The five. digits are stored right to left
beginning at the units position of the hundredths 0£
an hour. The. identifier digit is stored to the left of
the last t.ime digit in the low order core storage posi­
tion. Any zones or word marks in,,the core storage posi­
tion in which time data are to be stored .are not
affected. .

The clock advances once each minute; the real time
clock busy signal, active for 345 ± 115 milliseconds,
prevents clock time from being stored during this in.
terval. If the real time clock busy signal is active when
the CPU executes the G(c)T instruction, five 9's are read
into core storage in the positions designated for time
data, indicating that the clock is busy. The program
must instruct the CPU to perform the operation again
to obtain correct clock .time. Program use of the clock

, should provide for the possibility that the real time
clock busy signal will be active when clock time is re­
quested. The G(c)T instruction should be followed by
a branch if character equal instruction, B(1) (B)9. If the
identifier position of the clock data contains a 9, the
program branches to the I-address specified in the in­
struction. The B-address is the core storage position in
which the identifier digit is located (the C-address
-4). If the real time clock busy signal is not active
when the CPU executes· the G (c)T instruction, four time
digits and a zero identifier digit are read from the clo6k
and loaded in core storage.

/ \

BCD E F A8 CD E F AB CDEFAB

r Priority Alert Mode 19.10.07 ____r-{~
~

2 Interrupt Request 19.10.02
~·

.~r

3 I Ring 6 (Not% Type Op) 19.10.03
!

.r---,
4 Start Interrupt 19.10.03 J

r 5 Interrupt Branch 19.10.02

6 Set 8 Cycle Control 12.12.44 LJ n
('

7 8 Cycle Conrrol latch 12.12.21

~· 8 B Cycle 12.12.02

9 Address Modifier - 1 14.71.41

0
10 Read Out IAR 14.71.34 '1 ~

~ 11 Set STAR 14.17.16 r Ir
v

'

12 Mod lAR and Store in BAR

('
13 Set I Cycle Canh'ol 12.13.02

('·
("' 14 I Cycle Control 12.12.23

15 RO Fix.cl Address (p0101) 14.70.14 Lrl-
,.

16 !Op 12.20.01 l
Figure 58. CPU Timings in Interrupt Operation

~··

I

_.!

<

Special Features 105

,,

Pr~ority
Switch

F Ch An

Any lnq Request

E Ch Ovl in Proc

Bronch on Ch 1 R (I) d

I Ring 5

F Ch Ovl in Proc

Branch on Ch 2 X (I) d

X Symbol Op Mod

I nq lntr Cond

Q S mbol 0 Mod

Figure 59. Interrupt Controls

106

PT

Not E Ch in Proc

Not E Ch in Proc

Not F Ch in Proc

Not E Ch in Proc

Set B-Cy Ctrl

12.60.02

lnterr Branch

B Cycle

Not lnq lntr Cond

Q s bol 0 Mod

Not I 0 Unit lntr Cond

us bol 0 Mod

Not E Ch Ovl lntr Cond

One Symbol Op Mod

Not F Ch Ovlp lntr Cond

Two Symbol Op Mod

Not E Ch Seek lntr Cond

S Symbol Op Mod

Not F Ch Seek lntr Cond

TS boi 0 Mod

X Symbol Op Mod

LGE

Not Start lnterru t
Next to LLG

Start Interrupt

Next to LLG

I-Cycle Ctrl

12.50.02

13 10.01
15.38.02

Ctrl 12.13.01

LT

12.12.23

RO 00101 Addr 114. 70. 14

No Branch
Cond 19.10.09

12.60
Lost
Execute
Cycle

~
\

I~

''

TIME TIME TIME TIME
Min's Hund's Min's Hund's Min's Hund's Min's Hund's

01 02 16 27 31 52 46 77
02 03 17 28 32 53 47 78
03 05 18 30 33 55 48 BO
04 07 19 32 34 57 49 82
05 08 20 33 35 58 50 83
06 10 21 35 36 60 51 85
07 12 22 37 37 62 52 87
OB 13 23 38 38 63 53 88
09 15 24 40 39 65 54 90
JO 17 25 42 40 67 55 92
11 18 26 43 41 68 56 93
12 20 27 45 42 70 57 95
13 22 28 47 43 72 58 97
14 23 29 48 44 73 59 98

c

15 25 30 50 45 75 00 00

Figure 60. Time Derivation Table

If any position of the clock fails to read out when
time data are requested and the clock is not busy, a 9
is stored in the failing position and in positions to the
left of the failing digit; for example, 99950 read into
core storage as the result of the c(c)T instruction indi­
cates that a failure occurred in the first hour position.
When the CPU executes the second branch if character
equal instruction 460 milliseconds after the first test
revealed that the clock was busy, correct clock data
should be loaded in the specified area in core storage.
If the second test also indicates that the clock is busy,
a failure has occurred.

Figures 61, 62, and 63 show CPU logic operation
and timings when executing the c(c)T instruction.

Procedures to Set and Adjust Clock

Figure 64 shows an exploded view of the program
addressable clock; refer to this figure for pru;ts locations
when making clock adjustments.

SET TIME

To set the clock, press each of the four clock levers on
the console to advance the corresponding commutator
disc until the correct numeric indication is reached.
Operate the levers one at a time. The digit setting of
each disc can be seen through the aperture above the
lever.

A commutator disc cannot be advanced when the
cam unit holds down the disc lever. To advance the
clock when this action occurs, press the adjacent lever
to the right until the cam unit releases the lever. The
low-order disc of the hundredths clock position (the

' disc at the extreme right) advances once every minute
and must be set immediately after advancing.

FEED AND DETEN1'PAWLS ADJUSTMENT

If the clock fails to advance properly:
1. Remove the power plug to stop, the clock motor

immediately after the clock drive lever drops off of the
high dwell of the cam.

2. Rotate the commutator disc backward until it is
against the detent.

3. Check for 0.005 inch to 0.025 inch clearance be­
tween the detent pawl face and the adjusting stud
(Figure 65).

4. Position the adjusting stud to obtain the clearance
specified in step 3. -

5. Check all commutator teeth.

BUSY SWITCH ADJUSTMENT

The duration of the busy signal is established by the
difference in length of the long and short cam follower
levers. The busy switch adjustment only assures reliable
operation of the switch. The point at which the switch
transfers defines the beginning of the busy signal.

1. Immediately after the short cam follower lever
drops off the high dwell of the cam, remove the power
plug to stop the clock motor.

2. Loosen the busy switch mounting screws.
3. With a stiff wire, hold the short cam follower lever

half the distance between the high and low dwells of
the cam; move the busy switch so that its contacts
transfer at midpoint. ,

4. Tighten the mounting screws.
5. Plug-in the clock power cord to allow the clock

motor to run. When both the short and long cam fol­
lower levers are on the high dwell of the cam, remove
the clock power plug.

6. Check the movement of the busy switch actuating
arm by inserting a 0.025 inch feeler gage between the
roller and the arm. The arm should move at least 0.025
inch before the switch contacts transfer. If the switch
contacts transfer too soon, plug the power cord, and
perform steps 1 through 5 again.

7. Using a positive sync, scope point 11B2C24F to ,
determine the length of the busy signal. If the busy
signal is not active between 230 and 460 milliseconds,
recheck the busy switch adjustment.

COMMUTATOR CONTACT TIMING ADJUSTMENT

The clock advances when the busy signal is active.
When advancing, the commutator brush breaks contact
with one commutator segment and moves to a second
commutator segment (Figure 66). In the process of
moving, however, contact overlap occurs as the brush

Special Features 107

Bring ,i.1p ''set
Atfog t.o Al 11

14.70.10

Set A ring 1 time
trigger

c 14.70.01

Both Hne5 re­
main ac:t-ive
throughout the
operation

To figure 613

A -ring I time Nigger
remains set for onty
two logi-c gates

Bring up-
.. C cydeu
12.12.06

from figure .61B

No

ANO

14.15.20

Clock dlglt
lailed1o....i

""'

lq;:k: Gaite
Cond""'
A ring 6

Figure 61A. CPU Execution of G(C)T Instruction

108

Reod cut
the G(C) T

instruction

v ..

9riin9up UAI
channel 14>lt
wU<lity chedc"

14.16.01
and

"Al dianne!Sloit
validity check""

14.16.02

Conditlon mod
by-I

controls

Bring up 'Ccyde
control"

12.12.20

Bri.ngtip HAR
channel !-!Mt
mmslator"~

14.lo.Ol
and

llringup "Alt
chonnel I-bit
...il<litydoeck"

14.16.01
ond

"Allc'-'eil!Wf "AlchannelSINt
t""1Slator" ...ii.v1y d.eci<"

14.16.02 14.16.02

To flgwoe 6111

Aring 1 time
trigget" remains
set for only two

logk gates

Bring up 0 AR

AND

d 11-blt
""""lalo<"

U.16.01
ond

''Al chonnelllb;t _ ..
14.16.02

~'

~

/"\.

/"\

~

\

,-----\ -

~ii

~

.~

l

A front ff.gure 01 A

~

A®"'"'ll
1<JJtehe~

15.39.01-1 S.39Jl8

~
~--

Bring .up
"swit<:h AR exit
(;honnef to A red'

15.'38.0I

N

r......i~i.. 2 ol 5
dlaracter to 8CO
character end :i.nsert
binary -representa­
tion for ocfive d19it
Jineon AR~t
channel

At A. .rfog 2 time, .sb)oo uni ts
position of hundredths; of an hour in
hlgh order !f"oroge position~ Store

1d.ent,ificofion &git at A r1ns
6time.

ls 1,2..4,71 Of'i
d:i~t Hne or "address
exit 0 jnsert" ac::tJve?
14.16.01-14.16.02

No A-riAg
·r---'-'"---< 2 J' 31 .4.1 O! '5

End operation
Rei:td ovt next
irutiruct·i1ln

time?

:Rese:t>reG11'tt.
.:J.<><%.!JO!<>·D

lat®
,1,;.is •. u

!Brii~ U:P ,,~~r-en
e:Xiit:G-itrnsert''"

14 .. l5 .. 22

T1'°"'kiht 2 of 5
c:horaeter to .8CD
chcn:u;te-r ond ,in ...
:Sert binory rep.,.
untotion fer ~tive
di@I line ond C bit
on AR ~·t c:hanneJ

~-;he,.wl
tlme<l<><'k,go<e
0lo.t<:.h ~.~f\W,i;rilQ
pre.vi$lus/4.dn9
t1me., • •t fbe
neJdr.Ul t.im.e:

'"""' 9""' 1-.
i,,.~,

n4.15 .. :U

G.<tte ,,.,..
,..,_loll&li'.!Jit
f<om.d""1< .

. !14.1~ .• 2.0

~g.,,..,..

:l<Mb

n.:ae .cs

Tc
·C ·<>Y<I•
12 .• 1;.1)6

A<l><ll"'"'
4.,r;Ln.s

M.:l!ll.!ll

8 from Figure 61 A

9ring "Ai.o~it-~h0nne1 J-bii"
11Aft.•~t t;~t·I 8.-.bit" .god
"AR-•xit .~hgf')l)ef C bW'
11..,vp

14,1§.04

~ _.'.L) --

~
~

y., Ari"!!
......---12, $, '·"''li

11 ... 1

Real TimEi Clock and Addr
Exit Ctr 14 15 24 1

I-Ring 7 Time

Store Addr Reg

Op Code

r----"

A Ring
3 Time

Logic Gate F v

A Ring 4 Time

.i..,

RTC
GATE A

L

-,

RTC
GATE B

L

~

~

i_t_
RTC

GATE C

L

]

~

ON

Real Time Clock
14.15.20. l

Real Time Clock Termination
14.15.21.1

Rea! Time Clock...Q..!2!f ~ Real Time Clock 0 Di it l \. Gote Real Time Clk .,......,.
2 Dec _,....

14 15 22

~ ~AddcExit ll 2 ~ 3 Dec · .. · µ>>--'Re=al-'T"';m"'e'-C"l"'cc"'k'-'2=-:;.D;=it......lillo.->

~--+----,0-~-~ :1 L~ Reol Time Clock 3 D!i!_t _.,

~ 5Dec7DeLJc ~ ~

1
r{J" 0 Insert

ON

n B

ON n c

I L_ t---1/ Real T;me Clock 5 D~t

p> Real Time Clock 7 Digit ~

8Dec
Real Time Clock 8 Digit

~

n"') Real Time Clock 9 Digit
~--1~-__=r._~.&...--~~-+-+--+~-+-+.:;IDec~>-~-'--~----'-''--•

._+---+I__. /,,..I- 2 --...3~~~-"' . ~ Real Time Clock I Digit _.

,.., o 4 H t---V"
.l 51---+--+-..... -+---+-+-4-D-\~c p:>t--r-...._,, Real Time Clock 4 Digit -Jo

~S-:7~..t!..~6--t---t--t--t-t-t-t-6D_e_ct-il'
1

r:::::::::: LV Real Time Clock 6 Digit _.

l

A Ring Off Time- 1
14.1~5.22 1 Y ~~~f~~Snot

A-Ring ·6 Time '""-
>-----'
' Inserts High

OrderO

~L
Not ?x._m of Modiflec I\

ON

RTC n GATED

L D

RTC Busy l \. ~ Prog Reset 1 l/,.._.,__ __ _
Addc Scnc 5 Psn ~
Real Time Clock ~trols

14.15.23.1
Not Real Time Clk 0 Di it

Not Real Time Clk J Digit

Not Real Time Clk 2 Dls.!t

Not Real Time Clk3 D.!i!t

Not Real Time Clk4 Digit

Not Real Time Clk5 D.!.i!t
Not Real Time Clk 6 Digit

! Inserts 9's when
no RTC Line is
Active

14.15.22

Not Real Time Clk 7 Digit ~--~ On RTC Bu.!l'.. J RTC Busy 9 Insect
RTC >-----~-------------+~]

Not Cons Ade.Ir Exit Gate!'...

Not Reol Time Clk 8 D,!i!t
Not Real Time Clk 9 Digit

Logic Gate C

Not A_l!ng 6 Time

~T~~~0~2£.._Mo_d __ ~J-.,, [
c~

StcAddc ~
Reg Op Code L

BUSY v

Store Adr Regs

Op TC Cy

_1_R_in~g_7_T_im_• ___ _,I'\
I Cy I '_

~----vV\>------'

14.16.02

-"-
'---------------1]. Gate Real Time Clock

~----~N_ot_C_o_n_sAd~'-E_x_it_G_a_te _____ ~JV."" Logic Gate E

36v PIC Busy Contact

I Ring 6 Time

\ Inserts 911 if RTC 1s Advancing

Figure 62. CPU Timings in Execution of G(C)T Instruction

110

Allows Output of
RTC to activate address
exit Ch 14.16.01-02

\
See Top of Page

)

Cll
'OJ
g
et

i ...
m

.....

) c) '
)))

::1
~ Signal Name
(1)

CJ)

p Logic Gates
'"ti
a
~

Last lnsn RO

8 2 C Cycle Ctd

~ 3
0..
ii!

4 "' "' ~

C Cycle

Units Ctrl

;"' 5
~ U~its

= 6 '(1),

12.. 1st Scan Ctrl

>-l 7 a· 1st Scan
(1)

~ ' 8

~
RO CAR

~ 9

10

11

12

13

14

15

16

17

18

19

20

21

'22

' Reset A Reg

· AR to A Reg

• Set A-Ring 1 Tgr

• A Ring 1 Time

. A Ring 2 Time {U)

' A Ring 3 Time <n

• A Ring 4 Time (Hf

• A Ring 5 Time (TH)

• A Ring 6 Time (TTH)

• RTC GoteA

• RTC Gote B

• Rte Gote C

RTC Gate D

Gate RTC

23 i~ Addr Exit 0 Insert

24 ·~ Last Execute Cycle

' .,. '

)))

Logic
Page

CD E F A

J l

12.12.02 _f

12.12.20 J

16.30.02 J

16.30.02

12.30.05 r
12.30.01

14.71.31 jj

15.38.01

15.38.01

14.70.10

14.70.01 ,.....,
J.4.70.02 r
14.70.03

14.70.04

14.70.05

14.70.06

14.15.24

14.15.24
G

14;15:24

14.15.24

14.16.02 _J

14.15.22

12.12,51,

)

A2

' "
/)

A3

)))

A4

)) }))
/

AS A6

BC.DEFGHJA BCDEFGHJA BCDEFGHJA BCDEFGHJA BCDEFGHJAB

l_ _J l_ _J l_ I 1 r l_

. L

_f
" L

~

\

l _J .L J 1 J l_ _J l_

s 1-f.f l..jJ 1~ 1.jJ 1~
11

ln lri

'
-;-

L
,

.
_J L J

J 1

r -L

' _J 4-' \

l
l . _J l

J l_

r 1. v

l
.. 4-

_J 1+-
J 1+-

))

.....
I:<>

~

~·

if
t:tJ

1
<
~·
a.
~
0

1
f
~
~

~

Clock Drive
Lever

Eccentric Cam

Long Cam Follower
Lever

Busy
Switch

r-··

makes contact with the second commutator segment
before it breaks contact with the first commutator seg­
ment (Figure 66c). The transfer is complete when the
brush breaks contact with the first segment (Figure

Adjustin9 Stud
(nut is on for side)

Hold to zero clear­
ance while checking
the clearance between
the adjusting stud and
the detent pawl face

Detent Pawl Face

0.005 inch
to 0.025 inch
cleorance

Figure 65. l'arts Location for Feed and Detent Pawl Adjustment

A B c D
Commutator Commutator Contact Transfer is com-
brush is brush moves over I op plete; comm11totQr
positioned toward occurs; brush 1$ in contact
over first Mlcond com- brush is in with only second
commutator mutator M19- conta<:t with commutator se9•
sesment ment; busy first and ment, but busy

signal is second com• line is still active
active mutator

segments

Figure 66. Clock Transfer

66d), However, the busy signal does not drop when
the transfer ends. To check the operation for the hun­
dredths position:

1. Turn on system power, and check to see that the
clock motor is running.

2. Sync scope at point 11B2C24F (+ s RTC Busy)
using a 50 millisecond division sweep; use external
sync.

3. Connect point 11B2C26F to ground through a lK
1h watt resistor.

4. Set preamplifier to 1 volt/division, and connect
scope probe to point 11B2C26F (RTC gate A driver),
The level should be appre>ximately -7 volts. Because
of contact overlap, voltage will drop to approximately
- 9 volts during the transfer and return to -7 volts
when the transfer is complete. The transfer should be
complete between 100 and 170 milliseconds after the
busy signal begins.

5. To adjust, loosen the motor block mounting
screws and adjust the eccentric cam against the com·
mutator plate to obtain the timing specified in step 4
(Figure 67) .

6. Tighten the motor block mounting screws.

Commutator Plate

Figure 67. Parts Location for Commutator Contact Timing
Adjustment

Special Feature11 113

Appendix

Answers to Questions on 1410 Instruction
Formats and Decoding

v
1. The instruction B 09000 08000 M can be divided

v
into four parts: op code (B); A-address (09000); B-
address (08000); cl-character (M).

2. Only instructions that control 1-0 devices contain
X-control fields. ·

3. No, a 1410 instruction can contain an A-address
or an I-address or an X-control field.

4. A word mark must be set over the op code in the
instruction. The storage position to the right of the
last character in the instruction must also contain a
word mark.

5. The I-ring indicates the instruction character be­
ing processed from storage during instruction phase.

6. Common op code grouping lines are conditioned
during instruction phase.

Answers to Questions on Add and Subtract Operations

1. When the add instruction specifies only one ad­
dress, the contents of the A-field are doubled.

2. No, other A-field characters are not processed
after a B-channel word mark is sensed.

3. Thefirst B-cycle in the add or subtract operation
is one logic gate longer than other B-cycles in the oper­
tion to allow sufficient time to analyze A- and B-field
signs and set up true or complement add controls.

4. When the sum in an add operation (or the re­
mainder in a subtract operation) is zero, the zero

· balance indicator turns on.
5. When the A-field word mark is detected before

the B-field word mark is sensed in a true add scan, the
extension latch is set, and a series of B-cycles are ex­
ecuted until the operation is complete (B-field word
mark). Remaining characters in the B-field are com­
bined with zeros.

6. When the add or subtract instruction specifies A­
and B-addresses, the result of the operation is stored
in the B-field.

Answers to Questions on Zero and Add and Zero and
Subtract Operations

1. If the sign of the A-field is positive in a zero and
subtract operation, the sign of the result field is nega­
tive.

2. In the zero and add operation, the sign of the
result field is the same as the sign of the A-field. In the

114

zero and subtract operation, the sign of the result field
is opposite the sign of the A-field.

3. After the zero and add or zero and subtract oper­
ation, only the units position of the result field contains
zone bits. The zone bits in the units position of the
result field are the sign of the field.

4. The zero and add or zero and subtract operation
ends when a B-channel word mark is sensed.

5. When the zero and add or zero and subtract in­
struction specifies only an A-address, the result is stored
in the A-field.

6. If the A-field contains all zeros, the zero balance
indicator turns on.

Answers to Questions on Multiply Operation

1. Multiplier digits 5, 6, 7, 8, and 9 cause comple­
ment add scans; multiplier digits 1, 2, 3, and 4 cause
true add scans.

2. When the multiplier contains three digits and the
multiplicand contains five digits, the product field
should have nine positions (multiplier digits + multi­
plicand digits + 1) .

3. The multiply operation ends when a 0 with a
word mark is sensed in the multiplier.

4. No, the CPU does not move the multiplier to the
product field when executing a multiply instruction.
The multiplier must be moved to the high-order prod­
uct field positions before the multiply operation
begins. v

5. When the multiplier is 99:
a. One complement add scan is required in the

multiply operation.
b. One true add scan is required in the multiply

operation.
6. When the multiplier is S28:

a. Four complement add scans are required in the
multiply operation.

b. Four true add scans are required in the multi­
ply operation.

Answers to Questions on Divide Operation

1. The divide overflow latch is set when an adder
carry is detected while the MQ and complement latches
are set.

2. a. A correction scan is necessary to restore the
dividend to its value preceding the unsuccess­
ful subtraction.

,

('
('·

~··

b. The CPU recognizes an unsuccessful reduction
when the complement addition performed with
the extension and complement latches set pro­
duces no carry.

3. D-cycles are taken after all other correction scans
except the last correction scan in the divide operation.

4 .. The multiply divide last latch is set on the first
B-~ycle of the last correction scan in the divide opera­
ti~ri (.when character containing dividend sign is de­
tected on the B-channel) .

5. The GAR and DAR are used on the first A- and
, B-cycles, respectively, in each complement add and
correction scan (when the units latch is set). The DAR

is also used on D-cycles.
6. The CPU sets the quotient sign on a special B­

cycle taken when the last correction scan in the divide
operation is complete. On .the special B-cycle, the units
position quotient digit is read out of storage and com­
bined with the correct quotient sign. The sign and the
digit a're gated to storage.

Answers to Questions 9n Move Data Operations

1. A-field characters are moved to the B-field.
2. The move data operation does not alter data in

the A-field. Characters in the A-field before the opera­
tion are in the A-field .when the move data operation
is complete.

3. D(A)(B)d D(A) D
4. The CPU executes an A-cycle first.
5. a. The 8-, A-, and B-bit positions in the d-char­

acter establish the conditions to terminate the
move data operation.

b. The 8-bit position in the d-character deter­
mines whether data are moved from left to
right or from right to left.

c. The 1-, 2-, and 4-bit positions in the d-character
determine the portion of the A-field character
transferred to the B-field.

6. The second scan control latch is set when the d­
character contains an 8-bit.

Answers to Questions on Move Characters and
Suppress Zeros Operation

1. A-field characters are transferred to the B-field,
and zeros and commas to the left of the first significant
digit are replaced with b~anks.

2. Zone bits in the units A-field position are not
transferred to the B-field.

3. During the last B-cycle of the first scan, the BAR

was modified by -1. Therefore, when the first scan
ends and the second scan begins, the BAR addresses
the character to the left of the desired B-field position.
A skid cycle is executed to read the addressed char­
acter out of storage and return the character to its

memory location unchanged. The BAR is modified by
+ 1 during the skid cycle so that the desired high-order
B-field character is addressed. '

4. When a significant digit is sensed during the
second scan, the zero suppress latch is reset. If a char­
acter that is not a significant digit, comma, 0, decimal,
blank, or minus sign is detected after the zero suppress
latch is reset, the zero suppress latch is set again.

5. The first scan ends and the second scan begins
when an A-field word mark is sensed.

6. After the move characters and suppress zeros
operation, the A-field contains ~0061 and the B-field
contains .bb61.

Answers to Questions ~n Edit Operation

1. The .MQ latch can be set two times during an edit
operation requiring three scans, one time during an
edit operation requiring two scans.

2. If the zero suppress latch is not set during the first
scan, indicating that the control word contains no
zeros, the operation ends when the first scan is com­
plete. The edit operation ends when the second scan
is complete if the floating dollar latch was not set dur­
ing the first scan and either:

a. The decimal control latch or the zero suppress
latch is reset when the second scan ends, or

b. The last character processed during the second
scan is a signiBcant digit.

3. Yes, the CPU will initiate a third scan because the
zero suppress latch and the decimal control latch will
be set when the second scan ends, and the last char­
acter to be processed in the second scan is not a
significant digit. . ':J

4. No, the CPU takes A- and B-cycles during the first·
scan, and B-cycles exclusively during the second and
third scans.

5. B-field characters read during the first scan while
the extension latch is set are in the status portion of
the control word. ·

6. The A-field should not contain more positions
than the number of blanks and zeros in the body of
the control word.

Answers to Questions on Compare Operation

1. No, the comparisons do not alter data in either the
A- or B-field.

2. The compare operation ends when either an A­
or B-field word mark is sensed.

3. If the B-field is longer than the A-field, the com­
pare high latch is set, designating the B-field as the
greater of the two fields, regardless of their values.

4. If the A-field is longer than the B-field, only A­
field characters read out before the B-field word mark
is sensed are compared to B-field characters. The com-

Appendix 115

pare latch set at the end of the operation, indicating
the result of the B-field to.A-ileld comparison, is deter­
mined by actual comparisons made (i.e. was the B·
field greater than, equal to, or less than the part of
the A·fteld read out before the B-field word .mark was
detected).

JS. The compare equal latch can be set only when
the A· and· B-channel characters compared on the first
B·cycl!i! are equal. The ON state of the units latch
identifies the first B-cycle.

6. T~e ~A-field is greater than the B-field.

An1wen to Table Lookup Operation
1. The table lookup operation ends when the con­

dition that the d-character specifies is satisfied or
when the end of the table is sensed.

2. The c;pu compares a search argument to table
arguments to locate the desired function.

3. The BAR contains 12322 when the operation is
complete. ,

4. No, the table lookup operation does not alter
storage rdata ..

5. The CPV performs successive B-cycles to bypass
table functions.
, 6. · The A·neld contains the search argument.

Answers to Questions on Branch Operations
1'. An unconditional branch instruction causes the

CPU to perform a branch operation as a direct result of
the execution of the branch instruction. A conditional
branch instruction causes the CPU to perform a branch
operation only when the conditon that the instruction
specifies is met.

2. The I-address in a branch instruction is stored
in the AAR during instruction read out.

3hA successful branch operation is completed dur­
ing the subsequent insQ'Uction read-out cycle when the
A.Al'\ (containing the branch I-Beld) sets STAR,

4. If the branch if 1-0 channel . status indicator on
instruction is executed while the machine is perform­
ing an 1-0 · overlap operation, the machine interlocks
until the overlapped function is complete.

5. The only branch instructions that can be chained
are: branch if bit equal, branch if character equal. and
branch on word mark or zone equal. ··

6. When a chained branch instruction specifies
only the op code, the contents of the .A.AR, BAR and op
modi.Ber register from the previous operation designate
the I-address, B-address. and the d..00.aracter, re­
spectively.

Anawen to Questions on Store Address
Register Operation

l. The C-address in the store address register in·
struction is the address of the units position of the C-

ue

field, the location in which the units position of the
designated address register is stored.

2. The d .. character in the store address register in­
struction designates the address register whose con­
tents are to be stored.

3. Contents of the AAR, BAR, EAR, and FAR can be
stored in store address register operations.

4. C-6eld word marks have no effect on the store
address register operation.

5. The store address register operation ends at A­
ring 6 time after ten thousands position of the
selected address register is stored.

6. The character in the units position of the selected
address register is stored at A-ring 2 time.

Answers to Questions on Set Word Marks Operation

1. The set word marks instruction causes the CPU

to store word marks in designated core storage loca­
tions.

2. Execution of the set word marks instruction does
not alter any core storage character.

3. If the set word marks instruction contains only
one address, the same address is set in the AAR and the
BAR, causing a word mark to be set twice in the same
location.

4. When a word mark is added to a character, a
check bit is added or removed to maintain parity.

Answers to Questions on Clear Word Marks Operation

1. The clear word marks instruction causes the CPU

to strip word marks in designa;ted core storage loca­
tions.

2. Execution of . the clear word marks instruction
does not alter any core storage character.

3. If the clear word marks instruction contains only
one address, the word mark is stripped twice from
the same location.

4. When a word mark is stripped from a character,
a check bit is added or removed to maintain parity.

Answers to Questions on Clear Storage Operation

1. If the B-address in the clear storage instructfon is
09050, the clear storage OJ?eration clears 51 storage
positions.

2. If the clear storage instruction does not contain
a B-address, th~ is not loaded during instruction
read out.

3. If the clear storage instruction contains a B­
address, the B-address is loaded in the AAR and the
BAR during instruction read out. However, during
execute phase of the clear storage operation, the AAR

is not used, and contains the original B-address when
the clear storage operation ends.

/ '

f\

(")

' 0-\ ~

4. The minus one conditil~n ON at logic gate D time,
indicating a borr9w one from the hundreds position,
defines the even hundreds position; the even hundreds
latch is set, and the clear storage operation ends.

Answers to Questions on Clear Storage and
Branch Operation

1. The clear storage and branch operation causes
the CPU to branch to the specified I-address when
storage positions through the nearest hundreds address
have been cleared.

2. The I-address is loaded in the AAR during instruc­
tion read out.

q. The clear storage and branch operation causes
an unconditional branch.

4. Completion of the branch operation is accom­
plished during the subsequent instruction read-out
aperation.

Answers to Questions on Halt Operation

1. When system operation resumes after the logic
clock stops, the next sequential instruction is executed.

2. A word mark must be present in the storage loca­
tion immediately to the right of the halt op code to
distinguish the halt instruction from the halt and
branch instruction during instruction read out.

3. The stop print-out operation begins when the
logic clock stops if:

a. The print control switch is not ·set to inhibit,
and

b. The mode switch is not in the display or alter
position .

. 4. No, the logic clock does not start automatically
when the print-out operation ends.

c

Answers to Questions on Halt and Branch Operation

1. When system operation resumes after the logic
clock stops, the CPU executes the instruction that the
I -address in the halt and branch instructfon designates.

2. The branch to AAR latch is set, initiating the
branch operation, at the end of instruction read out.

3. If the start key is pressed before the stop print
out operation ends, no action occurs until the print­
out is complete.

4. The branch operation that the halt and branch
operation causes is an unconditional branch.

Answers to Questions on No Operation Instruction

L When the N op code is set in the operation regis­
ter at I-op time, the I-ring does not advance.

2. When the N op code is detected, other characters
are read out of core storage and ignored until a B­
channel word mark is detected.

3. Because the add op code does not contain a word
mark, the add instruction will not be executed.

Appendix 117

Reference Index

•
~
c
.2
u
~
.5

V>

z
0 -,_
u
:::>
"" ...
"' z -
·z
0 -,_
<
"" w ._
0
u -
(!)

0

"' z
0 -,_
u
:::>

"" ,_
"' z -
"' :::>
0
w
z
<
w
u
"' -:::;

' 1;
E

~ .
.~ .

"8 Instruction u y ~

t; Q.

0 .5

Page
Unconditional v 71
Branch J

Test and v 72
llrl!_nch J

Branch if 1-0 v
Channel Status R 73
Indicator On (ch 1)

v
x

(ch 2)

Branch if v
Character B 75
Equal

Branch if v 78 Bit Equal w

Branch on v
Word Mark or v 78
Zone Equal

'Store Address v
81

Register G

Set Word Mark v

' 84

Clear Word v
Mark a 86

Clear Storage v
I 88

Cl ear Storage v
and Branch I 90

Halt v 93

Halt and v 94
Branch

No-Operation v 95
N

A A-address of the instruction
B-address of the instruction

~ t
0

~
..c
u

u: !!'
.E ·e
0 c >=

Page Page
72 73

Not 74
Included

75 77

76 77

Not
77 Incl.

79 Not
Included

82 83

B5 86

B7 86

89 92

91 92

51 Not
Included

96 Not
Included

97 98

Address of the next sequential instruction
Address of the next instruction if a branch is taken

iE
..!? g> l "" . .E-'

0 ell. c u • 0
u ·-

·5 ~g Address Registers
~ j 0 IAR

Page 7 NSIB
71

71 Bronc~ NSIB 7
72 No Branch NSI

Branch NSIB
71 7
74 No Branch NSI

1 Branch NSIB
71 6
75 12 No Branch NSI

71 1 Branch NSIB
7B 6

12 No Branch NSI

1 Branch NSIB
71 6
80 12 No Branch NSI

81
7 NSI

1 No-address NSI

84
6 1-address NSI

11 2-addresses NSI

1 No-address NSI
87

6 1-address NSI

11 2-addresses NSI

1 No-address NSI
SB

6 1-address NSI

11 NSIB
90

93 1 NSI

95 6 NSIB

95 1 NSI

B
NSI
Bl
NSIB
LA
LB
LW
Ap
Bp

Address of the next instruCtion in normal sequence after a branch has been taken
The number of dlOracters in the A-field

.

118

The number of characters in the B-field
The number of characters iri the A- or B-field, whichever is shorter
The previous contents of the A-address register
The previous contents of the B-oddress register
a word mark must be set over the op-code in an instruction

'

After Operation Comments

AAR BAR

Bl NSI Causes a program branch to the storage location specified
,, by I -address.

Bl NSI
Bl Bl

V> Bl NSI z
0
~ Bl Bl u
:::> Cause program branch to the storage location
"" ,_

specified by the 1-address when the condition z designated by the d-character in the instruction
:c is satisfied. If the condition designated by the

Bl NSI u d-character in the instruction is not satisfied, the z
~ system executes the next sequential instruction,

1BI B-1 "' Figures 34, 36 and 40 list special d-characters

<i for the test and branch, branch if 1-0 channel
Bl NSI z status indicator on,,. and branch on word mark or

0 zone equal instructions, respectively.
Bl B-1 ~

0
z

Bl NSI 0
u

Bl B-1

Af) Bp Causes the system to take C-cycles to store the contents of
the AAR, BAR, EAR, or FAR as designated by the d-character
in the instruction.

Ap-1 Bp-1 Sets word marks in storage locations designated by AAR and
BAR (loaded in_£revious~ratio!!)_.

A-1 A-1 Sets word marks in storage location designated by A-address
in instruction.

A-1 8-1 Sets word marks in storage locations designated by A- and' ·~.
8-address in instruction.

Ap-1 Bp-1 Removes word marks in storage locations designated by AAR
and BAR (loaded in .previous operation}.

A-1 A-1 Removes word mark in storage location designated by A- / \
address in instruction.

A-1 B-1 Removes word marks in storage locations designated by A-
and 8-addresses in instruction.

Ap bbb00-1 Clears data and word marks (right-to-left) from the core
storage location specified by the BAR to, and includ!.119 the

B bbb00-1 nearest hundreds position.

Bl NSI Clears data and word marks (right-to-left) from the core
storage location specified by the BAR to,_ and including the

.~\

nearest hundreds position and branches unconditionally to the
location specified by the I-address in the instruction.

Af) Bp Causes the system to stop. Pressing the start key starts the
system with the next sequential instruction.

Bl NSI - Causes the system to stop. Pressing the start key starts the
system with the instruction designated by the I-address
in the instruction.

Af) Bp The N operation code can be substitued for the operation
code of any instruction to make that instruction ineffective.
Instructions following the N operation code are skipped
until a word mark in storage is detected.

8.
>.. ...
J!
u
j

"' z
0 -...
u
::>

"' ,,_
"' z -
u -...
w
:::;:
:c ... -
"' <

"' z
0 -...
u
::>
"' ...
"' z -

(' < ...
<
0

-'
<
"' w
z
w
(!)

J t .£
8. "' 0 l ~j >.. ..c

j u . .~ ~
0 E 6

G u u i" +: Instruction '8c u ;:;:
~ u u Address Registers After u] E

·5 .:u I ·e ~ a. 8 .E 0 ;:: u IAR AAR
v

v Page Page Page Page 1 2-fields NSI A-LW

Add A 8 11 12 10 6
13 11 1-field~ NSI A-LA

c

v 8 11 7A 10 1 2-fields 1 NSI A-LW
Subtract s 7B 6

11 1-field NSI A-LA

v 1 2-Fields NSI A-LW
Zero and Add ? 14 16 17 6

11 1-Field NSI A-LA

v 1 2-fields NSI A-LW
Zero and Subt ! 1-i4 16 17 15 6

11 1-field NSI A-LA

v 24,25 Not 1 NSI A-LA
Multiply @ 18 26,27 23 Included 6

11

v 35 Not Not 1 NSI A-LA
Divide % 28 36 Included Included 6

11

v 39 1
Move Data D 37 40 41 38 6 SEE FI GU RE 18

v
Ma.to Char z 42 44
and Suppress
Zeros

v 54
Edit E 47 55

56

v
Compare c 61 62

v
Table Lookup T 66 67

A A-address of the instruction
B-address of the instruction

45

57

63

68

Address of the next sequential instruction

43

51

64

67

Address of the next instruction if a branch is taken

12

1
6 NSI

11

1 NSI
6

11

1 NSI
6

11

1 NSI
6

11

B
NSI
Bl
NSIB
LA
LB
LW
Ap

Address of the next instruction in normal sequence after a branch has been taken
The number of characters in the A-field

!"

The number of characters in the B-field
The number of characters in the A- or B-Field, whichever is shorter
The previous contents of the A-address register
The previous contents of the 8-address register
A word mark must be set over the op-code in an instruction

A-LA

A-LA

A-LW

A-LA

O,P"rotl.;., Comments
~

BAR

B-LB Algebraically adds numeric data in A-field to numeric data
in sqield. Sum stored in B-field.

A-LA Algebraically doubles numeric data in A-field. Sum stored
in A-Field.

B-LB Algebraically subtracts numeric data in A-field from numeric
data in B-field; difference stored in B-field.
Algebraically subtracts mimeric data in A-field fr~, itself; A-LA
difference is stored in A-field.

B-LB Numeric data in A-field is stored in 8-field. Sign of result
' Field (B-Field) is some as sign of A-Field.

A-LA Strips A-field of all other zones except in ,units (sign) position.
Sign of A-field is unchanged .

B-LB Numeric data in A-field)s stored in B-field. Sign of results
field (B-field) is opposite sign of A-field.

A-LA Strips A-Field of all other zones except.in units (sign) position.
Sign of A-Field is inverted. '

8-LB Repetitively adds numeric data in A-Field (multiplicand) and
stores result in B-Field (product), starting with low-order
positions..,

tens position Causes dividend (in B-field) to be divided by divisor (in A-Field),
of quotieht Quotient is stored in high-order B-Field positions.
field

Moves data serially by character from A-Field to B-Field
under control of the d-character.

Moves A-Field data to B-lield. Insignificant zeros and commas
8+1 ore replaced with blanksi zone bits in units position of B-field

are removed. A-field data is unchanged after the operation.

varies with Edit control field (B-field) modifies the data field (A-field).
result of Results stored in the B-Field.
edit

B-LW Compares data in the 8-Field to A-field data (the comparison
is always B to A), All other bits except C and WM-bits in
each character are compared.

address of Causes the system to search through a previously prepared table
function at in core storage and find the desired faqtor or the address of the
immediate desired factor.
left of table
argument
that stopped
the operation

Appendix 119

.....
-6'" to

0 't:I
(!)

~
.....
~
:::
.....
.&>.
0

0
~
II>

~
('>
(!)

"' 5·
(IQ

t/}

~
;-
8
0
~
II>

::i
~

))))) .
_/ °"'))) I

,I

OP REG
SET CK

ADDRESS EXIT CHANNEL

14.18.09

AUX BINARY! 0 CARRY
ADDER

14.18.20

n
i\' z
~

ASSEMBLY CHANNEL

) /I)

T/cl

17.15.01

16.12.01
16.13.01

ADDER

ASSEMBLY

15.SO.OI

)

I

Ive
I

)

(/))>

pl~
nl>

>I ~;u
n
i\' z
~

vc 1 18.11.01

18.13.01

)
/

)))
.,

CONSOLE

42.10.01

-•el/0.SYNC
FCU I 1

TAU'fl

I
I

./

r----<J.- CONSOLE ,_

1/0 SYNC
f-----<C_. F CU I 1

TAU I 1

SENSE SW

15:60.01-.08

FCU 1 2

r----<.L- TAU I 2 ~
15.71).04

)))

·~·

.r

~.c
I I

.,.. J

('

/"'--:'

0
/ "
("·

('

!~

•.

·I
I
I
I
I
I
I
I
J

I
1111
ZI
-1
.JI
l!JI
z• oi
.JI
(I

I
1-1
::11 u

FOLD

COMMENT SHEET

IBM 1411 PROCESSING UNIT INSTRUCTIONS

ANO SPECIAL FEATURES

CUSTOMER ENGINEERING INSTRUCTION-REFERENCE, FORM 223-2698

FROM

NAME

OFFICE NO.

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED

D SUGGESTED ADDITION (PAGE 1 TIMING CHART1 DRAWING, PROCEDURE, ETC.)

D SUGGESTED DELETION (PAGE

D ERROR (PAGE

EXPLANATION

NO POSTAGE NECESSARY IF MAILED. IN U.S. A.
FOLD ON TWO LINES 0 STAPLE1 AND MAIL

FOLD

FOLD

STA.PLE STAPLE

FOLD FOLD

-- ·- - -- -- - ---- ---------------..---------------

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A.

POSTAGE WILL BE PAID BY

IBM CORPORATION

P.O. BOX 390

POUGHKEEPSIE, N. Y.

ATTN: CE MANUALS 1 DEPARTMENT B96

FIRST CLASS
PERMIT NO. 81

POUGHKEEPSIE• N. V.

.. ---- - - - --------- - ---- - -·- -- --·---------- - - ---
'OLD FOLD

STAPLE .STAPLE

I
I
l

t
I
I
I
I
I

' I
I
I
I
t
I
I
I
I
I
I
I
I hi
I z
I­
I . .J
I I!>
I .Z •o
I .J t(
t 1-
1 :J
to
I
I
I
I
I
I
I
I
I
.I
I
I
I
I
I
I
I

• I
J
I
I
t
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

' I
I
I
I
I

l

(

·~.

223-2698

rn:~JN
(I)

International Business Machines Corporation
Data Processing Division
112 East Pos t Road, White Plains, New York

f

