
t , :J y J 1401 DATA PROCESSING SYSTEM BULLETIN

IBM 1401 SYMBOLIC PROGRAMMING SYSTEM: PRELIMINARY SPECIFICATIONS

This bulletin is a minor revision of, but does not supersede, the original edition, form }28-0200. Principal changes

are the addition of information regarding the output accompanying the object program (page 10) and the inclusion

of Control and Execute commands as part of the Processor Control Operations (page 19).

In order to solve a given problem or perform a given function, the IBM 1401 Data
Processing System must execute a logical sequence of instructions known as a program.
To be meaningful, this program must be written in the actual language of the machine.
A program written in this manner is said to be coded in machine language. This method
of coding can be time-consuming and prone to clerical and logical errors. Also a hand

, coded ma.chine language program, which may represent a great deal of programming
effort, is not relocatable; that is, it cannot be executed from a different section of the
processing unit without being manually changed. Another difficulty arises when instructions
are inserted or deleted after a program has been coded. In this case, all instructions
that refer to other instructions must be changed appropriately.

In order to simplify the preparation of a program for the IBM 1401 and to minimize the
shortcomings mentioned above, the 1401 Symbolic Programming System was developed.
Figure 1 is an illustration of a routine written for the 1401. Figure 1a shows the routine
as coded in 1401 symbolic language. Figure 1b illustrates the listing of the same routine
after it has been assembled into the machine language program.

This bulletin is devoted to a description of the preliminary specifications of the 1401
Symbolic Programming System. It also describes, briefly, the basic principles and
concepts of symbolic programming in general. A knowledge of programming in actual
1401 machine language is presupposed. The listing, program deCK and operating
instructions for the symbolic programming processor will be made available at a later
date.

The processor for the 1401 Symbolic Programming System is designed to operate on
configurations of the 1401 Data Processing System equipped with a 1402 Card Read Punch.

@ 1959 and 1960 by International Business Machines Corporation

TABLE OF CONTENTS

Basic Principles and Concepts of Symbolic Programming

General Description of the 1401 Symbolic Programming System

A. 1401 Symbolic Programming System Coding Sheet
B. Organization of Processor

Programming the IBM 1401 using the Symbolic Programming System

A. Area Definition
B. 1401 Symbolic Program Instructions
C. Processor Control Operations

Ftulctional List of Mnemonic Operation Codes

Sample Program

IAI OPERAND

LINE COUNT LABEL OPERATION
ADDRESS

10 ,H,G _Q.L1L.lldLl J

CHAR.
ADJ. ~

27 28

IBIOPERAND

ADDRESS
CHAR. :3 d
ADJ. ~ 39 40

COMMENTS

Page

3

5

5
9

11

11
15
19

22

23

~ ~ __ L __ ---.l ___ L." __ .L_ L _: : .L ____ L_

Ei . ~ S:~A:=":_ ~~:: ;~~~i~j j~:n~- ~~:q~!. __ .~.-,-l'--··_-_~:-'-----::':::K·~:~--~:~~~T: -~~-~~:-:X:~:;~:L:~~
~.....!..~ 7P,U N,C--L~~~...L __ ..9"0 LS.l()L_' _: : .. 1 J .. +: 9.Ll.L8.L().1 J.+ 1---'-----'----+fot---f"M"-L'V'-'-~~_"_~Q.c..___'_£..c...tLIi,LJ:!

~~. _~ .--'--_-'----'----L_ -'--~ !L1'J __ S LTLA ,H,T.L_ too +. __ "._ ... " .. _ +;r---L.-L . .L 1 _1 I Pil'l--Lc:.LH..I - ,B I R, , T I 0 ~~I.

~_L!...J..!! _.,1 e.LlL.l_IN..I1'.-,---:M-t-Y-,--~ ()LO,8,O,_ Ii LLP ()LgL!lL()1 L,M ~CIA,R...11LJ1',o., ,Jl..LILI,N1T

0_L8 _L._0 -'.4 .. i--' --'. .. _L.L ... lJ..tW--,--_ SIT ,A ,R ,T I : .. -'- __ .1 ~ P. L_: P R N T - ,B I Ri~.t.9-,----"'§""T."A..J:L.'I.

~~~~~. ~--'---L---'-__ -'-_LJ~~~~~=~~:~ :L~_~-=~ : -_-+i_-!----'-----'----+++--+--'-----'------'---L-~~_~~~ ___ ~~= 
la 

ASSEMBLED 
LOCATIONS MACHINE 

LANGUAGE 
INSTRUCTIONS 

1 010 ORG 0500 
1 020 4 WMS 0001 0500 , 001 
1 0,0 1 START UR 0504 1 
1 040 8 RZN PRTNT 0001 I( 0505 V 524 001 K PRINT IF X-COL 1 
1 0'i0 7 PUNCH MV 0080 0180 0513 M 080 180 MV CARD TO PUNCH 
1 060 4 UP START 0520 4 504 PNCH-BR TO START 
1 070 7 PRINT MV 0080 0280 0524 M 080 280 t-AV CARD TO PRINT 
1 080 4 UW START 0531 2 504 PRNT-BR TO START 
1 090 tND START B 504 

lb 

Figure 1 



BASIC PRINCIPLES AND CONCEPTS OF SYMBOLIC PROGRAMMING 

In the early stages of data processing system develop:ment, programs were almost 
always written directly in the numerical and alphabetic notation (machine language) used 
by the system. As data processing systems developed, larger and more sophisticated 
machines were designed. Concurrently, programs for these machines became greater 
in length and complexity. As a result, programming efforts were greatly increased. 
Not only did it become difficult to memorize the many numerical and alphabetic codes 
required to write a program, but the length and complexity of the programs were 
conducive to increased numbers of clerical and logical errors. In addition, the problem 
of correcting errors in a program was intensified by the difficulty in tracing a machine 
language program through its many steps and finding a convenient way of including 
corrections. 

In order to relieve the programmer of writing programs in machine language, symbolic 
programming systems we re developed. Symbolic programming may be defined as a 
method wherein names, characteristics of instructions, or closely related symbols are 
used in writing a prograrn. Data to be processed is referred to by name or other 
meaningful designation. Operation codes are written in an easily remembered mnemonic 
form rather than in the numerical language of the machine. For example, a payroll 
routine written in symbolic language to subtract the withholding tax from gross pay and 
store the net pay in another location might look like this: 

Operation 

ZA 
S 
MV 

Locations 

GROSS FIRST 
WHTAX FIRST 
FIRST NETPAY 

The specific benefits derived from using easily recognizable symbols consisting of letters, 
numbers and special characters to represent corresponding elements of machine language, 
will depend to a large extent on the characteristics of the machine for which the system 
is designed. Generally, however, this feature makes it easier for persons unfamiliar 
with a program to follow the program's logic. It frequently eliminates the necessity of 
detailed flow charts and coding comments by providing, in the body of the instruction 
itself, the information usually found in these items. Also, coding is simplified, thereby 
decreasing the time required for coding and increasing coding accuracy. 

Another advantageous feature of symbolic programming is the relative relationship be
tween symbolic entries. Coding is facilitated by this feature as it permits instructions 
and data to be referred to before they are assigned actual machine addresses and without 
regard to their machine addresses. The feature permits sections of other programs or 
subroutines (short programs or routines common to a number of programs) to be easily 
incorporated in a progranl. It also enables each routine in a program to be written 
independently of the others with little or no loss of efficiency in the final program. Since 
instructions are not assigned storage locations by the programmer, the addition, deletion, 
modification or correction of instructions entail no reassignment of address. Finally, 
the feature makes progralns and subroutines readily relocatable - i. e., they can be 
placed in varying machine locations as desired. 

3 



4 

After a symbolic program is completed, it must be converted into the format required 
by the machine on which it will be used. Assembly programs are designed to accomplish 
this conversion quickly, accurately, and as automatically as possible. Usually, an 
assembly program utilizes the machine for which the symbolic program is written. The 
typical assembly program analyzes all symbolic entries and converts them to actual 
machine operating instructions and data, and establishes the specified relationships 
between them. As an additional feature, assembly programs also indicate various types 
of errors. 

Although symbolic programming systems were originally developed to keep pace with 
the evolution of larger scale computers, their flexibility and many inherent advantages 
made them practical for use in smaller sized machines. The 1401 Symbolic Programming 
System is a symbolic programming and assembly system developed by IBM to simplify 
the preparation of programs for the IBM 1401 Data Processing System. 



GENERAL DESCRIPTION OF THE 1401 SYMBOLIC PROGRAMMING SYSTEM 

In general, the 1401 Symbolic Programming System can be divided into two separate 
areas of discussion: the symbolic language and the processor. 

The symbolic language is the information with which a programmer codes the program. 
This language is in the form of mnemonic operation codes provided within the framework 
of the system, and also includes definitions of record areas, work areas and other data 
supplied by the programlner. Each separate item of information is written on a coding 
sheet with one entry per line. Entries are normally written in the order in which they 
are to be executed unless some other sequence is specifically indicated by th~ programmer. 
A program written in this manner, intended for translation into machine language is 
called a "source"program. After the program has been written in the symbolic language 
it is punched into program cards with one entry (one line of the coding sheet) per card. 
These cards then become the input to the processor. 

The processor is the 1401 program which performs the actual functions of translation and 
assembly. The processor takes the source program in symbolic language, translates 
the mnemonic codes into machine language codes, assigns core storage addresses to 
instructions and symbolic data references, and assembles a finished machine language 
progranl known as the "object" program. 

Should the need arise to change, revise, or rearrange the object program after it has 
been assembled, these changes can be incorporated by manually changing only those 
areas of the source program affected and then reassembling the corrected program. 

The remaining pages of this bulletin are devoted to a detailed description. of the 1401 
symbolic language and procesSor. The organization is as follows: 

1. The following two sections are concerned with a description of the coding form on 
which the source program will be written and a description of the organization of the 
processor. Operating instructions for the processor will be made available in a 
subsequent publication. 

2. The next section called, "Programming the IBM 1401 using the Symbolic Programming 
System, " describes in detail the various steps to be followed in coding a source 
program including features and restrictions of the 1401 symbolic language. It describes 
the manner in which storage areas and constants are defined and contains examples 
of all pertinent information. 

A. 1401 SYMBOLIC PROGRAMMING SYSTEM CODING SHEET 

All information relevant to the coding and subsequent assembly of the object program 
is entered on the 1401 Symbolic Programming System Coding Sheet. This form is 
illustrated in Figure 2. The information required by the 1401 falls into three categories. 

1. Area Definition _. These entries are used to reserve storage space for working 
areas. The areas may contain the data to be processed or they 
may contain the constants (fixed factors or combinations of 

. characters) required in processing the data. 

5 



~ 

X28-1152-1 

IBM 14 0 1 Symbolic Programming System 

Coding Sheet 
Program __________________ ___ Page No. ~ of ___ _ 

I 2 

Identification Programmed by ____________ _ Date ____ _ 
76 80 

(A) OPERAND (8) OPERAND 

I + I CHAR. 
OPERATIONI ADDRESS I ;3 ADJ. I 27128 

13114 16 17 I~I 
COMMENTS LINE COUNT LABEL CHAR. 

ADDRESS 
ADJ. 

38139140 516 718 

o~ 1 L : _1_ L~ J~_ 1:21LL~ ~~ __ L _:_~ 1 1 

0,2]0 1 1
:::::>:1 
\lU LI i I 

° 1 3,0 1 ~::::::J ~----~ ~ ~ ~~ 

o I 4~_ 0 ~::::::·:I 
~L ~~ 

0,5,0 ~u::] 1 1 1 

0,6,0 
~i l:i:l::::1 I 

o ~ 7 ,0 i i ~ r:<1 1 1 ~ ~ 

o i 8 , ° i 1.:1:·'-:1 I I~~ l~ _1 I 

o , 9 ,0 I ~~_1 _L I':j:::m I L --L 

Ii 0,0 i <:::I I I 

I ] I I~_ I ~~ ~_l H::H L~_~ I 

I , 2 , 0 Im:m:1 1 1 

~~o I Im:::::I. 1 1»1 1 I 1 

~~ ~ 
~ 1::::::::1 mmmi 

I , 5 , 0 --L --L tm::j:1 _: k/] 

I 16 , ° L L ___ 1 __ -L i_ 1 ~~ _ I ~::::::m L 1"::::::1 ~ __ I 1 __ I ~ 
f---~L7~_ 1 

I ,8 , ° _l 

~-~o I i::m:::1 I::!:!:m 

2] 0,0 J.::::::::I m:mm L_~ 
~::':i::~ _l L lill L _ 1 

55 

I@::'il 111::ll:!1 1 

'I : : I : I : : : : : I : i I : : : : : ! ! : : Ilji:\I!1 : : : : : i i : : li!!!!!:!11 : : : : : : : : : : : : : : : II 
Fi'1!UI'e 2 



2. Instructions 

3. Processor 
Control 
Operations 

- Most of the entries on the program sheet will be the instructions, 
in symbolic language, which will be translated and assembled 
as the obj ect program. 

- Processor control operations are commands to the processor 
which provide the programmer with control over portions of the 
assembly process. Instructions of this type are never executed 
in the object program. 

The following paragraphs explain the use of each field on the program sheet. The term 
"field", as used in conneetion with the program sheet, applies collectively to the 
character positions under each heading. 

Heading Line 

A line is provided at the top of the sheet to identify and date the program. The Page 
Number is a two-character entry which sequences the program sheets. This number, 
which must be numerical, will be punched in columns 1 and 2 of each card punched from 
this sheet. The Identification entry will be punched in columns 76-80 of each card in the 
source program deck. The identification entry may be any group of alphameric characters. 
The areas labeled Problem, Programmer and Date are not part of the source program 
and will not be punched. 

Line Nmnber (Card Colmnns 3-5) 

A three-character line number sequences entries on each program sheet. The first 20 
lines on the front of the program sheet are prenumbered 010-200. Since the units 
position of each of these numbers is 0, up to nine insertions may be made between each 
prenumbered entry. The six non-numbered lines at the bottom of the page are provided 
for the insertions and/or for sheet extension. Cards punched from insertions should be 
in their proper sequence in the source program deck prior to entering the cards into the 
machine. 

Count Field (Card Columns 6-7) 

The count field must be filled in by the programmer with the number of characters the 
assembled instruction or defined area will contain. 

Label (Card Columns 8-13) 

A label is a symbol chosen by the programmer to name an area being defined or an 
instruction referred to elsewhere in the program. All labels are assigned addresses in 
storage during assembly. A reference to a label in the program is a reference to the 
address of the area or instruction so labeled. Consequently, a programmer need not 
be concerned with actual memory locations. Only those items specifically referred to 
elsewhere in the progranl need have a label. Unnecessary labels delay the assembly 
process. Those instructions not referenced elsewhere in the program should contain a 
blank label field. 

7 



8 

A label may consist of up to six alphameric characters, left-justified in the label field. 
The first character of the label must be alphabetic (A through Z). This type of label is 
known as a "symbolic" address. It is always to the best advantage to choose labels 
which are descriptive of the area or instruction to which they are assigned. Labels 
which have an obvious meaning not only provide easily remembered references for the 
original programmer, but also assist others who may assume responsibility for the 
program. 

Operation (Card Columns 14-16) 

The three-digit operation field will contain the mnemonic representation of the operation 
to be performed. These mnemonics will be left-justified. In the case of instructions, 
actual machine operation codes may be used but must be right-justified. A list of the 
mnemonic codes is found on page 22. 

Operands (Card Columns 17-38) 

The contents of the operands are the addresses or designations of the data to be operated 
upon. The two operand fields, (A) (Card Columns 17-27) and (B) (Card Columns 28-38) 
are each subdivided as follows: 

a) six positions for the address 
b) one position to denote character adjustment 
c) three positions to indicate the amount of character adjustment 
d) one position is reserved 

Several types of addresses may be used in the operands (i. e., actual, symbolic, etc.). 
The types of addresses permitted in the operands and a complete description of character 
adjustnlent, including examples, are given where pertinent in subsequent portions of this 
publication. 

"d" Modifier (Card Colum 39) 

Certain types of instructions (i. e., conditional program transfers, test instructions, 
etc. ) occasionally require the use of a digit known as a "d" modifier. In such cases, 
column 39 of the card must contain the actual character required. 

Comments (Card Columns 40-55) 

The comments field is provided where additional information concerning the program 
may be included if desired. The comments field may also contain constants if special 
constant areas are being defined. It is always to the best advantage to make complete 
use of the comments field. Since comments are ordinarily simply transcribed to an 
output program listing, they can become valuable aids in tracing a program. Also 
English language comments provide easy reference for all persons concerned with the 
progrmn. 



B. ORGANIZATION OF THE PROCESSOR 

There are three main parts to the 1401 processor. They are: 

1. Listing Routine 
2. Pass 1 of Assembly 
3. Pass 2 of Assembly 

Listing Routine 

The listing routine is a short editing and listing routine which may be used to print the 
source program before assembly. Its function is to check for possible errors such as 
invalid addresses, data inadvertently omitted, etc. While it is not absolutely mandatory 
to list the source prograln prior to assembly, it is wise to make use of this routine in 
order to check for coding: accuracy and consistency. The listing routine may also be 
used to list the object program after assembly has been completed. This latter listing 
will contain one-instruction-per-line and each line win show an operation as written 
in source language, and as it appears after translation into 1401 machine language (see 
page 24). A listing of thi.s kind is very helpful when debugging the program. 

Itemized below are some of the functions of the listing routine. Entries which contain 
errors will be so indicated on the listing. 

a) The identification field will be checked for consistency. 

b) A sequence check of page and line numbers will be made. 

c) The count field will be checked to see if instruction cards have the correct count 
and/or any blank operands. 

d) The label field will be checked for illegal characters. 

e) The operation field wHI be checked for an illegal mnemonic operation code. 

f) The sign column of the operands will be checked for invalid characters. 

g) The character adjustrnent field will be checked for numerical data only. 

h) The number of storage positions required for the program will be totaled, and the 
highest address used by the program will be listed. 

Pass 1 of Assembly 

The assembly function of the processor is, basically, a two-pass operation. It may be 
necessary, however, for each pass to be repeated one or more times. The number of 
times each pass is repeated will depend upon the number of labels used in the source 
program. For example, if the source program contains 45 or fewer labels, the assembly 
proces's will be complete at the end of the two passes. Should the source program contain 
65 labels, only the first 45 labels will be processed the first time passes 1 and 2 are executed. 

9 



10 

The rernaining 20 labels must then be processed by repeating passes 1 and 2. It is 
estimated that 45 labels will be adequate for a minimum of 150 instructions. 

The input to the first pass is the source program punched with one entry (one line of the 
coding sheet) per card. The following functions will be performed during pass 1. 

a) Operation codes are changed from mnemonic to actual machine notation. 

b) Each instruction is assigned an address in core storage. 

c) A table of symbolic labels is prepared and each label is assigned an address. By this 
process, storage is reserved for instructions, work areas, and constants. 

d) Partially processed cards are punched out during this pass. These cards are the input 
for the second pass. 

Pass 2 of Assembly 

The following functions will be performed during pass 2. 

a) Operands are processed. Symbolic operands are looked up in the symbol table for 
their equivalent locations. Character adjustment is performed, if required, to complete 
the operand. 

b) Numerical addresses which have been used to represent those machine addresses in 
which an alphabetic or special character is required, will be assigned the proper 
machine address; e. g., address 1213 will be changed to S13. 

c) The object program is punched out. Each card of the object program will contain 
the ,source program entry and the corresponding assembled instruction. A listing to 
aid in debugging may be obtained from these cards through the use of the listing 
routine. The first two cards punched with the object program will contain a self
loading clear storage routine. This routine will clear core storage of all characters 
and word marks; its use, prior to loading, is optional. The third card punched with 
the object program will contain a self-loading load routine to load the assembled 
object program into core storage. The load routine is loaded into and executed from 
posi.tions 181-199. Use of these positions by the 1401 program must therefore be 
avoided. 



PROGRAMMING THE IBM 1401 USING THE SYMBOLIC PROGRAMMING SYSTEM 

This section describes in detail the various steps to be followed in writing a program for 
the IBM 1401 using the Symbolic Programming System. The material contained in this 
section has been divided into the three categories of information required to write a 
symbolic program: Area Definition, Instructions, and Processor Control Operations. 
In an effort to make this material more easily understandable, a simple payroll program 
is used as a theme from which many examples are extracted to illustrate pertinent parts 
of the text. The listing for this program is contained on page 24. 

A. AREA DEFINITION .- Storing Constants and Defining Work Areas 

In the course of performing its given function, a program for the 1401 will generally 
require the use of "work areas, " and/or "constants". A work area is a portion of 
core storage assigned as an area into which a record or part of a record will be 
transferred for processing. Areas such as these might be used for the accumulation 
of totals, or to asselnble records. A constant is a fixed quantity or item of information 
which will remain the same throughout the course of the program or a phase of the 
program. For examlple, the FICA limit or a date may be considered constants. 

The use of symbolic programming enables the programmer to refer to work areas 
and constants by thetr descriptive name without regard to their physical location 
within core storage. For example, the sample program used for reference utilizes 
two work areas and three constant factors. Of the two work areas, one is used to total 
deductions and the other is used to store the net amount of an employees pay for 
use later in the program. These two work areas are appropriately referred to as 
TOTALS and NETAlVIT. The three constants used consist of two fixed editing formats 
and a date. These are referred to symbolically as EDTWDI (Edit Word 1), EDTWD2, 
and DATE. Thus, if the net amount is to be edited in the first format, the instructions 
would be written: 

L 
E 

EDTWDI 
NETAMT 

0260 - (Load edit word 1 into location 0260) 
0260 - (Edit net amount) 

Note how, in this example, the programmer refers to the work area and constant by 
name and need not concern himself with the actual addresses of these areas. Note 
also that the prograrnmer chose to use the actual address for the output area into 
which net amount was transferred. The reason for the latter is that the addresses 
of the fixed input and output areas afford such a direct correlation to either card 
columns or print positions that document layouts provide the proper actual address. 

To reserve core storage space for work areas and to store constants requires the use 
of one of the four following types of cards. 

a) 
b) 
c) 
d) 

Ope ration Code 

Dew 
DC 
DrS 
DrSA 

Purpose 

Define Constant With Word Mark 
Define Constant (No Word Mark) 
Define Symbol 
Define Symbol Address 

11 



12 

DCW - Define Constant With Word Mark 

Of the four types of cards mentioned above, ·the DCW will probably be the most commonly 
used. This is because it will load into the area designated, the exact information indicated 
on the input card and set a word mark at the leftmost (or high-order) position of the con
stant or work area. For this card, the mnemonic DCW must appear in the operation 
field of the card. The length of the entry being defined must be entered in columns 6 
and 7 . Core storage space will be allocated equal to the number of positions specified 
for each field. 

The label (or name) by which the area or constant being defined will be known must be 
entered in the label field. The label may consist of from one to six alphabetic or 
numerical characters, the first of which must be alphabetic. The address at which this 
entry will be stored in core storage may be specified by the programmer, or the programmer 
may wish to let the processor assign the address. The address, if assigned by the 
progranlmer, must appear as a four-digit address left-justified in the (A) operand. If 
the processor is to assign the address, an asterisk must appear in the first column of 
the (A) operand. The ponstant must begin at column 24 and may extend to the end of the 
comments field (col. 55). Thus, a maximum of 32 digits is allowed for the constant. 

Several of the DCW entries which appear in the sample program are explained below. 

(A) OPERAND 

COUNT LABEL OPERATION 
ADDRESS 

6 7 8 13 14 16 17 23 

CHAR. en 
UJ 
a: ADDRESS 

.1 0 E I D I T I W I ~_ ItLC-LW .":_L.L_l.-l_---.L __ LlJl.L-.1_--B~-L---'----''-"-'~--'
I 

'----'---'-_-'---'----'-_-'----'-_~____.L.-----<------'-_JL--_'____'____'___'__I _ _'__.L....._l 

stores a 10 digit constant ($ Q Q , Q Q 0 . Q Q) in core storage. The name of the constant 
is EDTWDl. Although the programmer will not know the location assigned to this constant 
(the asterisk indicates that the processor is to assign the address), he may refer to this 
constant throughout the source program as EDTWDl. 

(A) OPERAND 

COUNT LABEL OPERATION 
ADDRESS 

678 13 14 

_L~ . _ L ... ..1 1.. .... 1 _ I 

reserves an area in core storage, seven positions in length, for the accumulation of a 
net amount. The seven zeros, though not required, are included to initialize the field 
to 0000000. Again the asterisk indicates that the processor is to assign the address. 



(A) OPERA.ND (B) OPERAND ~ 
COUNT LABEL OPERATION I;J- CHAR. en 

I~I CHAR. en 
ADDRESS IJJ ADDRESS ~ ) 

ADJ. 0: ADJ. 
6 7 8 13 14 16 17 27 28 38 

112 DAT Dew 0 14 9 9 1 

I I .:::? 2 7 1 9:6: 0 1 Wi!:!:: ') EI I I IJ ,A N . 
I I :i:::< I I 1::::::::\ I I 1 I I I I I I I I I I 1 I ~I I I 

will store the date, JAN 27, 1960, in core storage. The constant may be referred to as 
DATE or 0499 since the latter is· the address assigned by the programmer. 

In each of the above exalnples, a word mark is set at the high-order position of the field 
in core storage. 

DC - Define Constant (No Word Mark) 

A DC entry is identical to a DCW entry with one exception. That is, a word mark will not 
be set at the high order position of the instruction or working area being defined. 

The DCW and DC cards used for constants will, during assembly, produce cards containing 
the constant and the machine address at which the constant will be stored. These cards 
will be loaded with the object program. 

DS - Define Symbol 

A DS entry may be used to define symbols (i. e., synlbolic addresses or labels) used in 
the program and to reserve storage. The following examples illustrate its use. 

(A) OPERAND (B) OPERAND 
I 
) 

COUNT LABEL OPERATION i;J CHAR. en 

I~I CHAR. en J 
ADDRESS IJJ ADDRESS IJJ 

ADJ. 0: ADJ. :8 f 6 7 8 13 14 16 17 27 28 

1 0 CUST NIO DIS * 1 

I I :::.:::: I 

:~-L--IJ I .L I 1 1 I I I I 1 

I 1 
:i.i:U 

1 

I I .1 I I I .1 L 1 I I I I I I I I I 1 .L --L-- .1 

will reserve a 10-position field in core storage whose label or name is CUSTNO. The 
actual address assigned to CUSTNO will be determined by the processor. This 10-position 
area will be unaffected during the loading of the objeet program. Thus, data, word 
marks, etc., previously in this area will remain unaltered. 

(A) OPERAND (B) OPERAND 

COUNT LABEL OPERATION i;J CHAR. en i;i CHAR. en 
ADDRESS IJJ ADDRESS IJJ 

ADJ. 0: ADJ. 0: 

6 7 8 13 14 16 17 27 28 38 

C U S TN 0 DIS 0 19 0 0 1 

I I ::i·::i: 1 I ·2mt I I 1 1 I .1 J I I I 1 1 I 
I 1 :::::::: 1 1 

mW!: \ l I I ·1 I I I 1 I :" I I I 1 

will assign to the field CUSTNO the address 0900. When the address is specified, the 
length of field need not be indicated. 

13 



14 

(AlOPERAND (al OPERAND I? 
COUNT LABEL OPERATION I;J CHAR. en 

I~I CHAR. en 
ADDRESS w ADDRESS w 

AOJ. ct:: ADJ. Q: 

6 7 8 13 14 16 17 27 28 38 

~L __ <L J:)--.l_SI ____ * 
I I .··1::: I I 

W.W:: 
1-----'--------..---.. -1--- 1 __ .. _1-_ __ ..l_1 I I I I I I I I I 

___ L ___ ..l....._L __ ...L .. ___ L_..l __ _L _L __ 1.. I I : I I I 
iii;: 

I 
I I LDj:: 

_.J __ ..J_I __ ~-L-..L_ Ll. 

is an entry which will reserve 20 positions of core storage. A notation of this type must 
have an asterisk in the (A) operand. An illustration of the use of this type of notation 
will be given in a later section (see page 20). 

DSA - Define Symbol Address 

In order to store a constant which is equivalent to an actual core storage address assigned 
to a label, a DSA card may be used. 

A DSA entry must contain a 3, right-justified, in the count field. The label field may 
contain the name of the location at which the constant will be stored or it may be left 
blank. The (A) operand must contain an asterisk or a machine address. The (B) operand 
must contain the label whose address is desired as the constant. The following example 
illustrates the use of a DSA: 

Suppose a field, whose label (i. e. , name or symbol) is WHT AX, is assigned the 
machine address of 1219 by the processor. The programmer decides to store this 
address as a constant in a field he designates as FIELDA. During coding, however, 
the programmer will, in all likelihood, be unaware of the address to be assigned 
to WHTAX. Thus, the following entry, in which the constant is referred to as 
WHTAX, is used. 

(AlOPERAND (Bl OPERAND 
If 

COUNT LABEL OPERATION I;J CHAR. en 

I~I CHAR. <Ii } ADDRESS w ADDRESS w 
ADJ. Q: ADJ. Q: 

6 7 8 13 14 16 17 27 28 30 

r--~ X~J.1_.LP.lA ~~_JA_ * 
I I :> I I 

~!i'l~ L I I_....J _I _1. I ._ ._ . .L---.L_ W I H I T I A I X L._L ___ .L __ ~.L_ 
I I : ... :: I I 

~...L_,---..L...L_..L_.L __ ....J. ____ L. __ .L ___ L. .. ...L I I L ___ -' ___ l __ L I L __ L __ ..l.. I I I I I 

The constant S19 will be stored in the location labeled FIELDA. (S19 is the actual 
machine address equivalent to 1219, the address assigned to WHTAX by the processor.) 

In the following illustration, FIELDA will be assigned address 0900. 

(A 1 OPERAND 

COUNT LABEL OPERATION 
ADDRESS 

6 7 8 13 14 16 17 23 

CHAR. en 
w 
Q: ADDRESS 

28 

3 F ..l_LLE..tL_..l.P.-.-LA ]).1.. S_LA Q 1.9 L.O LQL...l---L_: __ -'---'-------ft'8'4--'-'-L-=::'--'---=":...==-c:.=...J._-=-: __ .!..._....L-..l 
I I I I 

L-_--'---..L......~..L_L __ .1_____ _--L....l._._ __.L......l_L_..L. _____ L __ .. L __ I __ .. ..J___ ~ __ L.~~_I _L..J_---'---~,~ 

The result is that machine location 0900, which may be referred to elsewhere in the 
source program as FIELDA, will contain 819, the address of WHTAX. 



If the constant is not referred to elsewhere in the program, the label field may be left 
blank. 

A DSA card will produce a card containing the constant and the machine address at which 
the constant will be stored. These cards will be loaded with the object program. 

B. 1401 SYMBOLIC PHOGRAMMING INSTRUCTIONS 

The preceding sect:ion discussed four types of entries which provided the object 
program with the work areas and constants· it requires to accomplish its assigned 
task. These four types of entries will never produce instructions which are executed 
in the object program. This section discusses the operations (instructions), written 
in symbolic langua~~e, which will be translated by the processor into 1401 machine 
language. 

All instructions whjich can be performed by the IBM 1401 are valid input to the 
processor. Instructions are written on the program sheet, one instruction per line, 
in the exact sequenIC!e in which they are to be executed. The various data to be 
included within each field of the coding sheet is described on pages 5 to 8. The 
following material :illustrates the various symbolic language instructions. 

Labels 

An instruction may be labeled, (i. e., assigned a symbolic name) by placing a symbol 
in columns 8 to 13 of the coding sheet. In general, an instruction which has been labeled 
will be an instruction r~eferred to elsewhere in the program. Thus, it will be possible 
for another instruction to refer to the labeled instruction by its symbolic name. 

The following illustration has been extracted from the sample program. This program 
contains three routines:: START, UPDATE, and ERROR. 

COUNT LABEL OPERATION IJ CHAR. ~ 
13J 

CHAR. 

~ 39 
ADDRESS ADDRESS 

i 7 8 13 14 16 17 
ADJ. 

27 28 
ADJ. 

1 1ST ART UR : : ." 1 

J(J 
I ~~ I L~ 

8 B Z ,N Iu P,D A,T,E: : •• o 0 7,4, 
I I , I I 

--~-
L_-.I. ~. 

: : .t, : , 
i) , , I ., 

: : .... , : I 1\ 
: : 

•••• 

, 
I I .1.._.1 _ I 

7 CL ,S S T A R,T : : > 029 9 : I 
I ._.L~ .. -L.~_ I-

: : 7 U,P D ATE WIMIS o 0 0 B o 0 1 6 I 1 
I :~ .. L.L .. 

: : I ) 
I I I 

, , I I : I , , : : ~ 
: : LUI , : : 

liuull ~ ,5 , 'B E IR R 0 R : : I I : I 

: : I : 

: : : : ) 
: : : : 

,7 C,L,S SiT ,A ,R ,T : 1 J o 1 8 0 : : 
11 E,RRO,R H : : I I 

, : : I : m::m:1 

15 



16 

Each input card to the above program contains a code, in column 74, which determines 
which routine will be executed. Note the instruction which tests the code and branches, 
if necessary, to the UPDATE routine. Note also in the UPDATE routine the instruction 
which branches to the error routine is merely B ERROR. At the conclusion of the STAHT 
and UPDATE routines, the program returns to START. 

Operation 

The operation field may contain the mnemonic representation of the 1401 instruction or 
the actual machine operation code. The mnemonics must be left-justified and the actuaLs 
right-justified. 

(A) OPERAND 

COUNT LABEL OPERATION 

678 13 14 16 17 
ADJ. 

ADDRESS 
CHAR. 

I I 
1-_-,-,-7 --+-----'_---'------'-_'---1-_ WLM~~_ J2--LJ!-1-~~~l~~_L_1 _--' __ -.-L_L_~ 

o 0 2 1 : II f----_L-'-7-+---'-_--'---'-_L----L ___ J __ ~_L' ____ . ...L.~~~~ .. L~~J __ ~~L _ I ~ I I_ 
I I 

~~ ---.l---L---"'----..LL~_~~ ... '_._~L __ L_ ~~~1.. ~ L .... __ L~ ___ -'- ~L_~ _ _'___L ___ L~~_ 

en 
I.&J 
a:: 

(B) OPERAND 

ADDRESS 
27 28 

CHAR. 
ADJ. 

I I 
JL~ I 3 I 9 I I I I ~~-L __ _ 

o 0 3 9 I I 
_~_~.~1_=__t_~~--.!. _ __L______L __ 

I I 
'----'---._~_JI __ ~-'---"-____'__I --'I_-'-----'I~ __ _ 

I? 
I~ 

Both instructions shown above will cause the object program to set word marks in locations 
0021 and 0039. 

Operands 

The entries in the operand fields are the addresses or designations of the data to be 
operated upon. Several types of addresses may be used in the operands. 

Symbolic 

A symbolic operand must correspond to a symbol used elsewhere in the source pro
gram. The operands may refer to another instruction, the name of a constant or of 
a work area. A symbolic address may contain from one to six letters or digits (no 
special characters) the first of which must be a letter. The use of symbolic addresses 
has been illustrated in previous examples. 

Actual 

An actual address must be a four-digit number, left-justified in the address portion 
of the appropriate operand. A three digit number must be preceded by a high order 
zero, e. g., 359 must be written 0359. Addresses which contain alphabetic or special 
characters are also written as four-digit numbers. Thus /67 will be written 1167 and 
S50 is written as 1250. The processor will convert these addresses to their proper 
machine notations. 

(A) OPERAND 

COUNT LABEL OPERATION 

678 13 14 

I 
~_I __ ~L __ ~ l_~.-1.~ ~ L __ I~~_.-L __ l 



+ 
The preceding instruction will be assembled as 0 065 S47. This feature allows the 
programmer to refer to locations as they appear logically, and places the burden of 
converting numbers to special characters on the processor. 

Blank 

Operand fields for j,nstructions which require no operands should be left blank. These 
operands will appea.r as blank in the output deck and listing, but, because of the 
variable length feature of 1401 instructions, will not occupy unnecessary space in 
core storage. 

Asterisk 

The use of asterisks in the Area Definition type entry has already been illustrated. 
In this case it is merely an indication to the processor that the entry is to be assigned 
an address. An asterisk, used as an operand of an instruction, is an indication that 
this operand designates the rightmost or low-order address of the instruction in 
which it appears. For example, suppose the following instruction were assigned the 
address of 0706 during the assembly process. 

(A) OPERAND (B) OPERAND 

COUNT LABEL OPERATION 

1;,1 CHAR. m 

I~I CHAR. m 

6 

I 

ADDRESS I.JJ ADDRESS I.JJ 

ADJ. a:: ADJ. a:: 
7 8 13 14 16 17 27 28 38 

A * 
I I 

!i!':W 2~8l51 
I I 

':::::::, ) 7 ~ I I 0 L I I 

I I iiii:::: I I 
i:::::,:1 L-L I ~~~-.J I I I I I I I I I I 

Since the instruction is seven characters in length the rightmost or low-order position 
of the instruction wHl be 0712. Thus, the assembled instruction will be A 712 285. 
The asterisk must be left-justified in the operand and may be character adjusted 
only if it appears in an instruction entry~ Asterisks in Area Definition entries may 
not be character adjusted. 

Character Adjustment 

Any core storage position within a designated field, area or instruction may be addressed 
by the use of character adjusted operands. With the exception of the restriction mentioned 
above, all operands may be character adjusted. The character adjustment factor is always 
written after the operand to which it applies. The number and direction of character 
adjw=1tment is indicated by a plus or minus sign followed by the factor, which may be up 
to three digits' in length. 

Character adjustment could conceivably reduce the number of labels required by the source 
program by giving the programmer the, ability to refer to a location which is a given number 
of locations away from a symbolic, actual, or * address. The following examples 
illustrate its use. 

17 



18 

r 
(A) OPERAND (B) OPERAND 

? 
COUNT LABEL OPERATION 

1;.1 
CHAR. en 

1;.1 CHAR. en 
ADDRESS LIJ ADDRESS ~ I) 

ADJ. ~ ADJ. 
6 7 8 13 14 16 17 27 28 38 

M,V 0 12 8 15 I 

I I 
I!!:::m *1 :+ : 7 mmw 17 1 I I I I I I I J 1 1 1 1 

I I 1':':8) I I im:mi( 1 I-L-~_-L I I J.. I I I I I I 1 1 I I 

The above instruction will, when assembled, modify the instruction which immediately 
follows 'it. If the instruction shown is assigned address 0576 then the asterisk is 
equivalent to 582, and * + 7 = 589, which is the right-most position of the succeeding 
instruction assuming the succeeding instruction is seven characters in length. The 
illustrated instruction will be assembled as M 285 589. 

(A) OPERAND (B) OPERAND 
I 
) 

COUNT LABEL OPERATION 

1;.1 
CHAR. en 

I~I CHAR. en 
ADDRESS LIJ ADDRESS LIJ 

ADJ. ~ ADJ. ~ 

6 7 B 13 14 16 17 27 28 38 

S,T,A,R,T :+ : 12 11 I:,:::::: I I 
Irmw ) f----A f----~-.l---'-- I B, I I 1 

I I 
I:::::::' 

I I 
11Wlfll( L---l.._ ,--L..J_--L--L_-L-._ -L.. I _, .. ~---1- 1 I I I 1 1 I 1 I I I 

If START has been assigned address 0900, then the operand START +21 will be assembled 
as 921. 

(A) OPERAND (B) OPERAND 

COUNT LABEL OPERATION 

1 ;.1 
CHAR. en 

I~I CHAR. 
ADDRESS LIJ ADDRESS 

ADJ. ~ ADJ. 
6 7 8 13 14 16 17 27 28 

M,V , D,A TIE I 
I I 

16 W:iW 0 2 4 3 
I I 

17 1 I I 1 I 1- 1 I I I 1 
I I ]0 I I 

I 1 I 1 I L-...L....._L I I 1 I' I I .-L 1 I 1 1 I I 

DATE is a twelve character constant. The above entry will cause only the first six 
digits of the date (i. e., JAN 27 rather than JAN 27, 1960) to be moved to 0243. 

en 
LIJ 
~ 

38 

Wi:i: ( 

:mm 1 

Care must be exercised by the programmer when using character adjusted operands. 
Insertions or deletions could affect the adjusted operand in such a way that * + 14 should 
be changed to * + 21 or * + 7. 

d Modifier 

The d modifier must always contain the actual machine modifier the instruction requires. 

Comments 

This field is reserved for comments which may be helpful in checking the program. Note 
that on page 24, the comments associated with each instruction provide the programmer 
with a complete description of the whole program. The information in this field will 
have no effect on the object program. 



C. PROCESSOR CONTROL OPERATIONS 

For the 1401 Symbolic Programming System, four types of commands are provided 
which control the aSBembly process, but are never executed in the object program. 
They are Control, Origin, Execute, and End. In addition to a description of these 
four operation codes:, this section also includes a discussion of a Comments card. 

CTL - Control 

A control card may be entered as the first card of the source program; it has two functions. 
One, it tells the processor the core storage size of the 1401 on which the source program 
is being assembled, and two, it provides the user with an option when utilizing the 
Listing Routine prior to assembly (see page 9). That is, by the use of this control card 
the programmer may specify whether the Listing Routine should simply perform the 
functions itemized on page 9 (list and note discrepancies) or if, in addition, the routine 
is to compute the count of each instruction (thus ignoring the count supplied by the 
program.mer) and also reproduce the source deck. This option cannot be used to compute 
the count of area definition entries; this must still be supplied by the programmer. An 
exception to this is a DSA entry, whose count is always assumed to be 3. 

The mnemonic CTL must appear in the operation field. Core storage is specified in the 
first position of the (A) operand field (col. 17) by the digits 1, 2, or 3. 

1 - 1400 core storage positions 
2 - 2000 core storage positions 
,3 - 4000 core storage positions 

If column 17 is blank, or if the CTL card is omitted, a 1400 character machine is assumed. 

The Listing Routine option is indicated in the second position of the (A) operand (col. 18) 
by the digits 1 or 2. 

1 - List and check discrepancies as described on page 9. 

2 - Compute instruction length and reporduce source deck, in 
addition to listing and noting discrepancies. 

If column 18 is blank, or if the CTL card is omitted, the routine will assume the function 
of 1 above. 

ORO - Origin 

During program assembly, the 1401 processor assigns core storage addresses to instruc
tions, constants and work areas, as they are encountered. If not otherwise specified, 
addresses will be automatically assigned beginning with address 333. At times, however, 
it may be desirable or necessary to assign addresses beginning at some other location. 

The assignment of addresses is controlled by a "counter" which is incremented, with 
each card, by the number of positions the assembled output will contain. For example, 
when address assignment begins, the "counter", unless otherwise indicated, is initialized 

19 



20 

to 333. The first entry of the program being assembled will be assigned this address. 
If the first entry is an instruction seven characters in length, a "7" will be added to 333 
to produce the address of the next instruction. The number of characters in each 
subsequent entry is in turn added to the quantity in the "counter" to produce the address 
of the following entry. 

To begin the assignment of addresses at a location other than 333, an ORG card may be 
used. An ORG card may also be included at any desired point of the source program. 
This will cause the "counter" to be reset and cause all future entries to be assigned 
addresses beginning at the particular location specified by the programmer. 

ill the sample program, an ORG card was entered as the first card of the source program 
deck to begin address assignment at location 0900. The first instruction, assigned 
add.ress 0900, contains one character; hence, a "1" is added to 0900 to produce the address 
of the second instruction. The second instruction is eight characters in length causing 
the "counter" to be incremented to 0909, the address assigned to the third instruction. 
Each instruction is thus aSSigned an address. As each constant being defined or work 
area being reserved is encountered, they are also assigned addresses determined by 
the "counter". An area definition entry which contains an actual address in the (A) 
operand, rather than an asterisk, will be assigned the address specified. The "counter" 
will not be affected. Note that in assigning locations to reserved areas or constants, 
the rightmost position of the field is addressed. 

The "counter" may be advanced by any quantity at any time in the program through a 
special use of the DS card. For example, if the "counter" contains the quantity 0937, 
the entry 

(A) OPERAND (B) OPERAND 

COUNT LABEL OPERATION I;J CHAR. en 

I~I CHAR. 
ADDRESS UJ ADDRESS 

ADJ. 0: ADJ. 
6 7 8 13 14 16 17 27 28 

cn 
L!.I 
n:: 
38 

2 0 DIS *1 
I I i:i::i::: I I 

!WWl I I I ........L I I I I I I I I 

I I WW:: 
I I 

I!m!:: I I I I I I I ~-~ I I I I I I I I I I I I 

will cause the counter to be incremented by 20. 

An origin card must contain "ORG" in the operation field of the entry and the location at 
which address assignment is to begin, in the (A) operand. 

EX - Execute 

) 

It may sometimes be desirable, during the loading of the object program, to discontinue 
the loading process temporarily and execute the portion of the program just loaded. This 
can be accomplished through the use of an execute card. 

The Execute (EX) operation will cause the processor to assemble a branch Instruction. 
This instruction, though not part of the object program, will be used by the loading routine 
at the appropriate time to cause the normal loading process to halt and the branch 
instruction to be executed. The branch will be tQ the address specified in the (A) operand. 



Any valid operand may be used for this address; however, blank and asterisk operands 
are ineffective. The mnemonic EX must appear in the operation field. 

To continue the loading process after the desired portion of the program has been executed, 
the programmer must provide, as the last instruction of that portion executed, a branch 
to location 0195 (B 195). This is required by the loading routine. 

END 

The END card must always be the last card ~f the source program. This card is a 
command to the processor to indicate the end-of-file condition of the source deck. An 
END card can also be used to begin the execution of the obj ect program immediately 
after loading. This is accomplished by including the address at which the object program 
is to begin execution, in the (A) operand. Any valid address (i. e., actual, symbolic, 
etc. ) is permissible. The entry "END" must appear in the operation field. If the (A) 
operand is blank, the 1401 will halt when the last instruction has been loaded. 

Comments Card 

Comment cards may be included in the source program. These cards will not be assembled 
nor will they affect the assembling procedure. These cards, when encountered by the 
processor, will be reproduced unaltered, and will be bypassed when the object program 
is being loaded. A comments card provides the programmer with the ability to insert 
lines of descriptive inforrnation in the program listing. A comments card is indicated 
by an asterisk in the first position of the label field (col. 8). The comments may begin 
at any position (9-80). 

21 



FUNCTIONAL LIST OF 1401 SYMBOLIC PROGRAMMING MNEMONIC OPERATION CODES 

AREA DEFlNITION 

Mnemonic 

Operation Code 
Description 

1---

DCW Define Constant With Word Mark 
DC Define Constant (No Word Mark) 
DS Define Symbol 
DSA Define Symbol Address 

INSTRUCTIONS 

Mnemonic Machine Language 
Type Operation Code Description Equivalent 

A Add A 
S Subtract S 

*M Multiply @ 

*D Divide % 
ZA Zero and Add o (Prints as &) 
ZS Zero and Subtract <5 (Prints as -) 
MV Move M 

Data Control MVS Move and Zero Suppress Z 
MVD Move Digit D 
MVZ Move Zone Y 
E Edit E 
L Load L 
WMS Word Mark Set , 
WMC Word Mark Clear ):l 

CLS Clear Storage / 

B Branch B 
BZN Branch on Zone Test V 

Logic Control C Compare C 
NOP No Operation N 
H Halt 

UR Unit Record Read 1 
UW Unit Record Write 2 
UWR Unit Record Write Read 3 
UP Unit Record Punch 4 
URP Unit Record Read Punch 5 

System Control UWP Unit Record Write Punch 6 
UC Unit Record Combination 7 

*URR Unit Record Read Release 8 
*UPR Unit Record Punch Release 9 

SEL Select Stacker # K 
FC Forms Control F 

*TC Tape Control U 

PROCESSOR CONTROL OPERATIONS 

-- Mnemonic 
Operation Code Descri ption 

--
CTL Control 
ORC Origin 
END End 
EX Execute 

* Pertains to an optional feature. 

22 



SAMPLE PROGRAM 

Description 

In this program, two input cards are read by the 1401 to complete an employees check 
and earnings statement. The first card read is a current earnings card. Data from 
this card is computed and the results printed on the first line of the check statement. 
The second card is a year-to-date earnings card. The information from this card is 
updated and then printed as the second line of the check and statement. An updated 
year-to-date card is also punched out. 

The record layouts for the input and output areas follow: 

Input 

1. Current Earnings Card 

I - 3 4 - 8 9 -- 1718 1920 3536-3940 - 4445 - 4950 - 5556 - 60 61 - 6566-6970 -7475 - 80 

DEPT. 
NO. 

MAN 
NO. 

SOCIAL 
SECURITY 

NO. 

TAX 
C 
L 
A 
S 
S 

2. Year-to-Date Card 

TOTAL 
NAME RATE TAX 

DED. 

1-34- 8 9 -- 15 16 - 21 2:~-26 27-3031-34 35 

DEPT. MAN YEAR- YEAR- YEAR- BOND BOND 

NO NO TO-DATE TO-DATE T()-DATE BAL. COST 
• ,. GROSS TAX FICA 

TOTAL 
MISC. 
DED, 

CURRENT CURREN URREN BOND 
-GROSS TAX FICA BAL 

NOT USED 

The updated year-to-date card will be punched in the same format. 

7 7 75 - 80 

x NOT 
USED 

23 



Output 

1. Line 1 of Check and Earnings Statement 

-MAN~-A~E -- -~~-TE - MI~C NO. OED. 

204~O 211 ---- 226 232 --_2_4_3~~~LUU-____ ~~UL~~ ________ LULU ______ ~UL ____ ~~L9 __ 4~9 

2. Line 2 of Check and Earnings Statement 

Listing of Sample Program 

PAGE 
6 

LINE NO. 

COUNT 
FIEL.D 

LABEL 
FIELD 

OPERAND 
FIELD 

(B) OPERAND 
FIELD 

ADDRESSES OF 
d ASSEMBLED 

INPUT 

ASSEMBLED 
INSTRUCTIONS 

1 (110 

1 
PAYROLL Ll 5 T I NG ROUT I "IE PROGRAMMFD FOR THE 1401 

1 
1 
1 
1 
I 
I 
1 
I 

(1~O 

(140 
(1~0 

060 
070 
080 
090 
100 

1 11() '4 

1 ] 20 7 
1 ] iO 7 
1 140 7 
1 
1 
1 
1 
1 
1 
I 
1 
1 
1 
1 

1 ~O 
160 
170 
180 
190 
:>00 
:> 1 0 
no 
2~(1 

740 
2~0 

2 (110 
? MO 
2 0"10 
2 040 
2 050 
2 060 
2 070 
2 "80 

7 

qART 

2 (1<10 
? 100 
2 ]] 0 
2 120 
2 130 
2 140 
2 1 '\0 
2 160 
2 170 
2 180 
2 190 
2 

7 UPDATE 

2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 

:>"" 
no 
no 
no 
240 
?50 
010 
020 
o~o 

040 
0~0 

"MO 

7 
7 
7 
7 
S 
7 
1 
1 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
2 
1 

,nAO 4 
"I "<10 4 
~ 100 7 
"I , 10 1 FRROR 
3 170 10 FDTWD] 
'3 1':\0 6 FDTWD? 
3 140 7 NFTAMT 
3 ] '\0 5 TOTALS 
3 160 P DATE 
':\ 170 

International Business Machines Corporation 

ORG "<Inn 
UR 
BlN UPDA TF 
WMS nn?o 
WMS nn45 
WM5 0066 
WM5 n075 
WM5 n004 
W.oS 0056 
MV5 nooa 
.oV no,5 
MV DATE 
MVS oonA 
L FOTWf)1 
E nOS5 
L FOTW!)? 
F 0060 
L F DTW!)? 
F n06; 
ZA nn4<1 
A ""44 
L FOTWf)? 
F TOTALS 
MV onnA 
MV 
MV ()069 
MV 
"IV 
"IV 00,,5 
"IV (l080 
FC 
1)"1 

CL S nos" 
CLS START 
WMS 0009 
WMS 0022 
WMS n) 16 
WMS 0104 
( 0008 
8 ERROR 
A Oll26 
A 
A 
MV 
L 
E 
L 
E 
L 
E 
L 
E 
MV 
FC 
UWP 
CL5 
CL c, 

CLS 
H 
DCW 
DCW 
DCW 
DCW 
DCW 
END 

010, 
FDTWOI 
NOAMT 
EDlWDI 
NETAMT 
EDTWDI 
0115 
EDTWD2 
0121 
0034 

noso 
n?QQ 
START 

* 
" * 
* 
64Q9 
STAR r 

0074 
0040 
0061 
0070 
0101 
0050 

0708 
0226 
0243 
0?56 
0274 
0274 
0283 
p283 
P29? 
P?92 
TOTALS 

OTALS 
P?9<1 
P?99 
rll08 

rno 

p1l5 
rETAMT 

0299 
0016 
0109 
0122 
p127 
0108 

0126 

0206 
0243 
P243 
0260 
P260 
P275 
p275 
P285 r285 
P134 

CONSTANTS AND 
WORKING AREAS 

Data Processing Division, 112 East Post Road, White Plains, N. Y. 

o. 
o. 

0000000 
00000 

27. 1960 

0900 1 
0901 V +91 074 
0909 020 040 
0916 045 061 
092~ 066 070 
09~0 • 075 101 
0937 004 050 
0944 0~6 

0948 Z 008 
0955 M 035 
0962 M 499 
0969 l 008 
0976 L 5,8 
0983 E 055 
0990 L S44 
0997 E 060 
1004 L 544 
1011 E 065 
1018 & 049 
1025 A 044 
103? L 544 
10,9 E 556 
1046 M 008 
IO~3 M 

2(18 
n6 
243 
256 
274 
274 
283 
283 
292 
292 
S~6 

S~6 

299 
299 
108 

1054 M n69 liO 
1061 M 
1062 M 
1063 M 055 115 
1070 M OSO S51 
1077 F B 
1079 2 
1080 I 080 
1084 I 900 299 
1091 • 009 016 
1098 022 109 
1105.1161?2 
1112 104 127 
1119 C 008 108 
1126 B S28 I 
1131 A 026 126 
1138 A 
1139 A 
1140 M 103 206 
1147 L <;38 243 
1154 E S51 243 
1161 L 5,8 260 
1168 E 551 260 
1175 L S38 275 
11<12 E 115 275 
1189 L 544 285 
1196 E 121 285 
1203 M 034 134 
1210 F A 
1212 6 
1213 I 080 
1?l 7 I ?Q9 
1221 I 900 180 
1228 
1238 
1244 
1251 
1256 
0499 

B 900 

COMMENTS 

K CHECK CARD TYPE 
NAME & DEDUC T I ON 
MISC OED & FICA 
BOND & MISC INFO 
NET AMT & DEPTII 
MAN~ & GROSS AMT 
W/TAX 
MOVE MAN~ TO CK 
MOVE NAME TO CK 
MOVE DATE TO CK 
MV MAN~ TO STMNT 
EDI T 

GROSS 
EDI T 

W/TAX 
FDI T 

FICA 
TOTAL ALL 

DEDUCT IONS 
fDIT TOTAL 

DEDUCT IONS 
MOVE DEPT~ & 
MAN~ TO PUNCH 
MOVE ADJACENT 

F IfLf)S 
TO PUNCH 

MV GROSS TO PUNC 
SAVE NE Tj AMOUNT 
SKIP 2 AFTER PRT 
PRINT 1ST LINE 
CLEAR READ AREA 
CLR PRT & BRANCH 
DE F I NI'" 

FIE LOS 

COMPARI'" MAN~ 

UPDATE TOTALS ON 
NEW YfAR/DA rF 

CARD 
MOVE f)EPTli 
EDIT NFT PAY 

FOR CHECK 
EDIT NET PAY 

FOR STATEMENT 
EDII Y/D GROSS 

FOR STATEMENT 
EDIT Y/D W/TAX 

FOR STATEMENT 
MOVE BOND I NF 0 
SKIP I AFTER PRT 
PR I NT & PUNCH 
(LEAR READ AREA 
CLI'"'AR PRINT ARFA 
CLR PCH & BRANCH 
S TOP ON ERROR 

Printed in U. S. A. J28-0200-1 1/60 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24

