
--, --===--, -- - - - --- - ---- ---- ----------
-=~--, -, - -. - ,Application Program

Documentation Aids System (1401-SE-12X)

Program Reference Manual

This system is an aid in documenting existing programs
written in an assembly language for the vast majority of
current systems. The system processes, on a 1401 or
1460, source programs written in SPS, Autocoder, MAP,
F AP or Symbolic Flowchart Language. Source programs
written in either Basic or Full Assembly Language for
System/360 may also be processed. The documentation
output of this system is (1) a storage map of object decks,
(2) an analysis listing of source decks, and (3) a flowchart
of source decks. This system provides an important new
tool for documentation and conversion.

This first major section contains a general description of
the system, various runs which constitute the system,
machine configuration, general systems charts , a list of
input/output files, and sample output. The second section,
"Programmer's Information", presents program abstracts,
program systems chart, general input/output description,
program modification aids, system maintenance procedures,
a description of the Sort Program used, and details of the
Symbolic Flowchart Program. The third section contains
system setup sheet, error messages and halts, system
storage map, and all console operating procedures.

Copies of this and other IBM publications can be obtained through IBM branch

offices. Address comments concerning the contents of this publication to

IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

CONTENTS

APPLICATION DESCRIPTION .••••••••••••••.•••••••••••••••••• 1

APPLICATION ABSTRA.CT • • • • . • 1

SOURCE LANGUAGE •••••••••••••••••••••••••••••••••• '. • • 1

GENERAL SYSTEM DESCRIPTION 1
Purpose and Objectives
Extent of Coverage
Advantages •••••
System Control Cards
Machine-Oriented Concepts
Control Procedures
Timing •••••••••
Methods and Special Techniques
Restrictions • • • • • • • • • • • ••

UPDA TE PROGRA.lv.I
Purpose and Objectives
Extent of Coverage
Advantages ••• •••
Update Control Cards
Timing •••••••••••
Re strictions and Range

ANALYSIS PROGRAM
Purpose and Objectives ••••
Extent of Coverage
Advantages •••••••
Analysis Program Control Cards
Timing •••••••••
Special Teclmiques
Restrictions • • • • • •

FLOWCHART PROGRAM
Purpose and Objectives
Extent of Coverage. • • •
Advantage s ••••••••••
Flowchart Program Control Cards
Machine-Oriented Concepts
Control Procedures
Timing
Methods
Special Teclmiques
Restrictions and Range

.....

.

1
2
2
3
7
8
8
9
9

9
9

10
10
10
11
11

11
11
12
12
13
13
13
14

15
15
15
16
16
19
19
19
20
20
22

VERIFY PROGRAM ••••••
Purpose and Objectives
Extent of Coverage
Advantages
Verify Program Control Cards
Control Procedures
Timing •••••••••
Special Techniques
Restrictions •• • •••

MACHINE AND SYSTEMS CONFIGURATION
Planned Use of Programming Systems •••• ••

INPUT/OUTPUT FLOWCHARTS

......

INPUT/OUTPUT FILES
SAMPLE PROBLEM ANALYSIS

Sample Outputs •• . • • • • •

PROGRAMMER'S INFORMATION

UPDATE PROGRAM
Abstract
Description
System Flow •
Input/Output Description ••

ANALYSIS PROGRAM
Abstract
Description -- Phase I
Description -- Phase II.
System Flow ••• 0 • • • •

Input/Output Description

FLOWCHART PROGRAM
Abstract
Description -- Phase I
Description -- Phase II •
System Flow • • • • • • • •
Input/Output Description
Additional Flowchart Options

VERIFY PROGRAM
Abstract
Description
System Flow
Input/Output Description

22
22
23
23
23
24
24
24
24

25
25

25

27

29
30

38

38
38
38
39
39

40
40
40
49
50
51

53
53
53
55
57
59
61

62
62
62
65
66

DOCUMENTATION AIDS CONTROLLER
Abstract •••••••••••••••••
Resident I/O Routine Description
Program Seleetor Description (lCONA)
System Flow ••••••••••••••••••

DA SYSTEM MAINTENANCE PROGRAM
System Tape Format •••••••••
System Maintenance Control Cards
Description • • • • • •
System Flow • •

PROGRAM MODIF)[CATION AIDS
General Modification Aids
Input/Output Modification Aids
Dictionary Modification Aids •

DA SYSTEM RECORD IDENTIFICATION AND FUNCTIONS

APPENDIX TO PROGRAMMER'S INFORMATION
Sort Program ••••••••••
Symbolic Flowchart Program

68
68
69
70
71

71
72
72
75
77

77
77
80
82

91

94
94
96

OPE ItA TOR'S GUIDE .•.....•••..•••.•..•.•...•••...••...••.•• 103

PROGRAM SETUP 103
For DA Systenl Operation 103
For DA Systenl Maintenance 103

CONSOLE OPERATING INSTRUCTIONS ••••••••••••••••••••••••• 104

HALTS AND MESSAGE LIST
Operator Messages
Diagnostic Error Messages

STORAGE MAPS ••••
Program Selector
Resident Syste:m Controller • • • • • • •
Update
Analysis -- Pha se I
Storage Map of Analysis -- Phase II
Flowcharter Phase I
Flowcharter Phase II
Verify •••••••••
System Maintenance •

RESTART PROCEDURES

104
104
106

112
112
113
114
115

• 116
117
118
119
120

120

BIBLIOGRAPIIY ...••..•...•...••.....••.••••••..••..••..••. 121

Form H:W-Ol77-0

Page Revised 11/15/ 6S
By TNL N20-0047-0

APPLICATION DESCRIPTION

APPLICATION ABSTRACT

The Documentation Aids (DA) System is designed as an aid to documenting an existing
program written in an assembly language. The DA System provides machine-generated
documentation aids to the vast majority of users who are programming in current IBM
supported assernbly languages. The system processes programs written in Symbolic
Programming S¥stem (SPS), Autocoder, Macro Assembly Program (MAP), Fortran
Assembly Program (FAP), S/360 Basic Assembly Language (BAL), S/360 Full Assembly
Language (FAL) , or Symbolic Flowchart Language (SFL) for each of these systems:

1401/1440/1460
1620
1410/7010
7070/7072/7074

The documentation produced by the DA System includes:

705/7080
7040/7044
7090/7094

S /360

10 A storage ruap of object decks (except 1620, 7040/7044 and 7090/7094)

2. An analysis listing of source decks

30 A :flowchart of source decks

A file luaintenance program is provided as part of the DA System to aid the user in
maintaining and modifying source decks.

The DA System is implemented for usage on an IBM 1401 8K, four-tape system.

SOURCE LANGUAGE

The source language used in the implementation of all DA System programs is 1401
Autocoder. I

GENERAL SYSTEM DESCRIPTION

Purpose and Objectives

The DA System is designed with the following objectives:

10 To assist an installation in effectively and efficiently converting existing programs
to IBM System/360 programso

2. To encourage the user to reprogram in a higher-level language, for example,
FORTRAN"and COBOLo

3. To improve programming efficiency by the standardization of documentation tech
niques o

4. To improve and update the documentation of existing programs, thereby easing
maintenance problenls.

5. To eliminate many clerical and routine functions associated with documentation and
conversion.

6. To provide consistent documentation for S/360 assembly language progrm:ns.
1

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

Extent of Coverage

The DA System consists of four programs:

1. Update Program allows insertion, deletion and replacement of assembly language
statements in order to bring the source program up to date.

2. Analysis Program scans assembly language programs and produces pertinent infor
mation about the program scanned, including cross-references.

3. Flowchart Program (Flowcharter) scans assembly language programs and produces
flowcharts of designated areas.

4. Verification Program (Verifier) produces a storage map of an object deck, noting
overlay patch areas.

The use of Documentation Aids is directed towards programs written in an assembly
language and processes as input either a source card deck or a tape containing card
images of the source program. The Verifier processes object decks.

Programs written in the most up-to-date version (or any subset of language features of
an up-t~date version) of the follOwing assembly languages may be processed by the DA
System:

SPS Autocoder Basic Autocoder MAP MAP/FAP BAL/FAL

1401 1401/1440/1460 1401/1440/1460 7040/7044 7090/7094 S/360
1460 1410/7010 1410/7010
1620 7070/7072/7074 7070/7072/7074

705/7080

Additionally, the Flowcharter of the DA System processes program.s written in Symbolic
Flowchart Language (SFL). A description of SFL is given later in "Appendix to Pro
grammer's Information".

Advantages

The advantages of using the DA System are:

1. The DA System provides a mechanized, accurate, efficient and inexpensive means
of providing and maintaining up-to-date program documentation.

2. It assists every installation which is confronted to some degree by one or more of
these situations:

a. Programs seldom remain static while documentation often does. Maintenance
modifications are made and application functions are added and! or deleted
without updating or revising the application or program documentation.

b. A procedure for maintaining documentation may not have been established and!
or the task may not have been assigned

2

c. The program may have been running for a nwnber of years and the docwnen
tation been misplaced.

d. The program may have been developed on a crash basis, and only sketchy or
rough documentation developed.

e. Prograrnmers tend to regard the docwnentation phase of their work as tedious
and time-conswnjng and often neglect it unless it is demanded by proj ect
manage1nent.

3. The DA System provides an Update' Program, an Analysis Program, a Flowchart
Program and a Verification Program--all under the control of a System Controller.

4. All programs are integrated in a total system so that each performs certain fWlc
tions which Inay be required by other areas.

5. The system concept enables the user to submit a source program deck to the DA
System and receive any or all outputs from the system in one processing run with
mrudmwn efficiency.

6. Documentation Aids assists an installation in converting existing programs to IBM
Syst.em/360 programs.

7 • Input to the DA System is the original source program assembly language, either
on cards or in card image form on tape. Input format (either card or tape) is
determined internally by the DA System and is not specified by the user.

8. Implementation of the DA System on the IBM 1.401 gives the user the opportunity to
dOCl;unent progra:rns for any current large-scale data processing system withotL
tying up that system. The IBM 1401 is almost Wliversally available, making the
DA System benefits readily accessible to all users.

9. The Symbolic Flowchart Language may be used in the design and docwnentation of
new applications.

System Control Cards

All DA processing is controlled by the use of system control cards. The form of all
control cards is as follows:

Colunm 1
Colunms 2 through 9
Colunms 10 through 72

$
Controlling Operation
Operands

The operands are separated by commas. The first blank encountered in the operand
field terminates the field on all but the $DAJOB card.

Notation conventions used jn the description of all DA System control cards are:

1. All uppercase words are required when the functions of which they are a part are
used.

2. All lowercase words represent generic terms which must be supplied by the user.

3

3. Material enclosed in braces, {
be made.

}, indicates that a choice from the contents mus~

4. Material enclosed in square brackets, [
included or omitted by the user.

J, represents an option and may be

A brief description of the various system control cards follows (a more detailed outline
of each, with operands, is given in later sections):

$DAJOB--must be the first card of each DA rtUl; it contains the lnachine and lan
guage, and the program identification.

$UPDATE--calls in Update Program.

$DELETE-used with $UPDATE to indicate changes.

$ANALYZ E--calls in the Analysis Program.

-$CHART--calls in Flowcharter Program.

$SEGMENT--used with Chart Program to indicate areas to be charted.

$VERIFY--calls in Verification Program.

$DAEND--signified the end of a DA run.

All control cards, if present, must appear in the sequence outlined above.

The format of the $DAJOB card is:

$DAJOB
where:

machine

{ machine,} {language,} {identifiCatiOn}

specifies the machine for which the source
language is written, and Dlust be one of the
following:

1401 7040
1440 7040
1460 7070
1410 7072
7010 7074
1620 7090
705 7094

7080

Additional models of the above-listed base
machines are represented by the base machine
number; for example, 7094 II is represented
by 7094.

4

Form H20-0177-0
Page Revised 11/15/65
By TNL N20 .. 0047-0

language

iden1ification

specifies the name of the language in which
the source program is written and must be
one of the following:

Where~

BPS =
AUTO =
BASIC =
MAP =
FAP =
BFL =
BAL
FAL

SPS
AUTO
BASIC
MAP
FAP
SFL
BAL
FAL

Symbolic Program System
Autocoder
Basic Autocoder
Macro Assembly Language
FORTRAN Assembly Language
Symbolic Flowchart Language
OS/360 Basic Assembly Language
08/360 Full Assembly Language

is a user-provided program identification
which appears as a page heading on all DA
Systenl output reports. All columns begin
ning iInmediately after "language" through
column 72 are considered as "identification".

All options must be specified in the order shown.

If the source program input is on cards, the source deck must immediately follow the
$DAJOB card. If the source deck does not follow the $DAJOB card, tape input is
assumed by the system.

The $DAEND card must be the last card in the input deck; its operand field is igllored.

The fornlat of the $DAEND card is: $DAEND

The system Controller scans the $DAJOB card to determine the machine and language to
be processed. Control is passed to the program called on the next control card.

Each program in turn proceeds as requested, transferring control through the system and
processing the data lU1til the $DAEND card is reached. .

In addition to the ftmction of starting a DA rllll, the System Controller also provides
capability for DA System maintenance.

5

Representative Deck Set Up for Verify Program

When performing a verification run, the object deck must be supplied after the $VERIFY
card, as shown: .

$DAJOB

Representative Deck Set Up Using Update Program

The Update routine may be used to update a card image tape file or source deck. For
the set up shown, the source language is updated and analyzed, and a flowchart is pro~
duced.

$DAJOB

$DAEND

$SEGMENT

Update Analysis input. Source deck

may also be in card image tape form.

6

$DEl.ETE

I.....-_$D_A_J~

00AEND

$CHART

Update SFL input. A flowchart is produced according to the program outlined in the
updated SFL language.

Representative Deck Set Up for Analysis and Chart; Programs

In this example the AnaJ¥s:ts and Flowchart Programs are called producing analysis
reports and a flowchart.

$DAEND

~$SEGMENT
~ART
$ANALYZE

L.....-_$_D_AJs::rce D~:l}
Source may also be in card-image tape form

A Chart-·only run would have the same input, except that the $ANALYZ E card would be
omitted.

Machine-Oriented Concepts

The DA System requires four magnetic tapes for execution:

Tape Unit 1: System residence.

Tape Unit 2: Input of source language statements; intermediate storage.

7

Tape Unit 3: Updated source language; intermediate storage.

Tape Unit 4: Intermediate storage.

The 1402 card reader is used for three kinds of card input:

Control cards
Source language cards
Object cards.

The 1402 card punch is used for punched output.

All reports and error messages are printed on the 1403 Printer.

Control Procedures

Control cards out-of-order cause processing to terminate.

illegal options on any control card cause processing to terminate--for .example, a re
quest to process 1401 MAP language on the $DAJOB card.

All input is checked for ascending 1401 collating sequence. All out-of-sequence condi
tions are noted.

System control information is supplied to the operator via the 1402 Printer.

Additional control procedures are discussed in the individual programs.

Timing

Primary considerations in estimating running time are:
I

1. The input medium (card or tape, tape unit model, tape density)

2. The number of statements in the source input

3. The programs called and the options specified

Approximate throughput rates are given under the timing section of the individual
programs which make up the DA System. Estimates are based on the use of 729 Model V
tape units at 556 cpi. However, two general timing considerations apply to the Documen
tation Aids System:

1. Systems Processing Overlap. Certain passes over the source deck are common to
the Update, Analysis, and Flowchart Programs. If one job contains a request for
any combination of the above programs, the common passes are performed only once.

8

2. System Tape_Time. The programs are arranged on the system tape in this order:

Update Program
Analysis Program
:rlowchart Program
Verify Program

The system tape passage time for any program is the sum of all system tape
passage times preceding and including the program called •

. Methods and Special Techniques

Specific methods and speCial techniques are discussed tmder each of the programs in the
DA Systern. Since a large variety of languages are processed by the DA System, each
language statement is scrumed and converted to a standard DA System record format.
Processing of the DA formatted tape in later passes is then largely language-independent.

Restrictions

The following restrictions are imposed upon the user:

1. Any unrecoverable tape errors necessitate a rerun of the job.

2. The DA System does not use or check header labels.

3. The tape input file may not be larger than the capacity of one reel of tmb10cked
SO-character records.

4. All programs operate with single reel files only.

5. Any $ in coltunn 1 is considered a system control card.

Additional restrictions are discussed in the individual programs.

UPDATE PROGRAM

Purpose and Obje(~ives

The Update Program is designed to perform file ma.intenance on card image tapes, and is
used to add or delete source statements in a progra:m being processed by the DA System.
It is also used to update the Symbolic Flowchart Language, thus prOviding this new lan
guage with machine maintenance capability including updated source decks and listings.

The program checks for valid sequencing and generates standard input files for other DA
System programs.

9

Extent of Coverage

The Update Program accepts card or tape input in card :image form and produces as out
put a card image tape. Input is checked for ascending 1401 collating sequence in columns
1-5 (SPS/ Autocoder) or columns 76-80 (FAP/MAP). File maintenance is performed using~
the sequence field.

The user, through control card options, may request a new updated source deck and/or
listing. On option, the Update Program generates ascending sequence numbers in the
sequence field, starting with 00010 in increments of 10. Whenever resequencing is
requested, a listing showing both old and new sequence numbers (with errors flagged) is
produced.

Advantages

The advantages of using the Update Program are:

1. File maintenance is performed on source language files, including the Symbolic
Flowchart Language.

2. The Update Program generates input tapes for other DA System programs.

3. All input files are checked for correct sequence.

4. Both tape and card input files are acceptable.

5. An out-of-sequence input file may be resequenced.

Update Control Cards

The Update Program is called by a $UPDATE control card.

The format of the $UPDATE card is:

$UPDATE [SEQUENCE,]

where:

SEQUENCE

LIST

[LIST,] [DECK]

speCifies that Update is to generate new
sequence numbers in the output file.
A listing with both the old and new
sequence numbers is produced.

specifies that a listing of the output
file is to be printed. This operand is
implied if SEQUENCE is speCified.

DECK specifies that the output file is to be
plll1ched into cards.

The $UPDATE card operands may be speCified in any order.

10

Any non-$ cards following the $UPDATE card are considered records to be added to the
input file. These are merged into the input file according to their individual sequence
ntUllbers in the sequence field. Sequence errors, whether present in the input. file or
change file, cause processing to terminate.

To delete: records from the file, the $DELETE card is used.

The form.at of the $DELETE card is:

$DELETE n1 ' n2

Timing

The operands n
1

and n 2 are five-digit sequence ntUll
bers. The presence of this card in the change file
causes the records between n

1
and n 2' inclusive, to

be deleted from the input file. $DELETE cards are
placed in the change file in sequence, with any records
to be added, by their n

1
operand.

The formulas to determine the approximate running time (in seconds) for maintenance are
as follows:

To gEmerate DA tape and check sequence:

.01 x ntUnber of statements in input file

To resequence or list, add to the above:

• 1 x number of statements in input file

To ptUlch a deck and list, add:

• 5 x ntUllher of statements in output file

Restrictions and Range

The follOwing restrictions are imposed upon the user:

1. Input files must be in card image format. They may be in card form or on tape.

2. An attempt to update an out-of-sequence file causes processing to terminate after the
Update rtm. No updated file is generated.

3. The sequence field may not contain a groupmark or a tapemark.

ANALYSIS PROGRAM

Purpose and Objectives

The Analysis Program is designed to scan an assembly language source program to pro
vide a detailed analysis of instructions. This analysis is produced in the follOwing forms:

1. A flagged listing denoting instruction type
2. A cross-reference dictionary of labels and references to them
3. An analysis of operation code usage.

11

The Analysis Program also prepares a coded assembly language tape for :input to the
Flowchart Program.

Extent of Coverage

The Analysis Program operates direcUy upon assembly language source statements and
produces a flagged listing.

Flags and their indicated instruction types are:

A Assembler control
B Branch
C Complex operands
D Data defining
H Halts
I Indirect addressing
M Macros
0 Input/ output
R Relative addressing
X Indexed

All other instructions (for example, computational) are not flagged ..

Optional reports are:

1. A frequency table of the operation codes used in the assembly language source pro
gram shOwing the number of times each code appears in the program.

2. A cross-reference dictionary which lists each labeled instruction and all instruc
tions in the program which refer to that label.

Advantages

The advantages of using the Analysis Program are:

1. The flagged listing provides an up-to-date listing of the assembly language program.

2. statements in the flagged listing are classified according to the type or nature of the'
statement, thus prOViding an aid in determining the logic flow of a program.

3. The operand references in the flagged listing provide a further aid in determining
the logic flow of the program.

4. The cross-reference dictionary provides a convenient method of determining the
effect of altering assembly language statements upon other portions of the program.

5. The cross-references provide a convenient method of checking for operation code
and logic modification.

12

Analysis Progralu Control Cards

The Analysis Pro~am is called in from the system tape by the $ANALYZ E control card.

The format of the $ANALYZE card is:

$ANALYZE [CROSS,] [OPERAND,] [COUNT]

where:

CROSS

OPERAND

COUNT

speCifies that a cross-reference dictionary is to be
printed before the flagged listing.

specifies that the operand. references are to be included
with the flagged listing.

speCifies that an operation code frequency table is to
be printed.

The $ANALYZE card operands may be specified in any order.

Factors affecting the Analysts' Program processing time are:

1. The nwnber of .comment statements in source input

!~. The nmuber of references to labels in the source input program

a. The cOding techniques used in the assembly language program

The formulas used to obtain approximate processing times (in seconds) are:

To produce a flagged listing:

.4 x number of ass embly language statements

To produce CHOSS and! or OPERAND listings:

1. 5 x number of assembly language statements

~Special Techniques_

The follOwing speCial techniques are employed by the Analysis Program:

1. Every operation code of a declarative, imperative or processor control instruction
is loot\:ed up in an operation table. Associated with each operation code in the table
are attribute flags which classify the type of operation. These flags are placed on
the flagged listing to denote the type-of-operation code.

13

Form H20-0177-0

Page Revised 11/15/65
By TNL N 20-004 7-0

2. The operand field of every imperative statement is scanned to determine the nature
of the statement--for example, an indexed statement, indirectly addressed statement,
or a statement containing a complex operand. * Appropriate flags are generated to
denote the nature of such statements.

3. For the frequency table, each operation code is looked up in the operation table, and
a COtmt is tallied of the number of times the operation code appears.

4. Records are created for symbolic operands, and tape sorts are performed to create
the cross-reference dictionary and the flagged listing with operands.

5. Certain System/360 special characters (e.g., EBCDIC duals) print as blanks
on the 1403 Printer. These characters are changed as follows:

1403 Printer

Card Punch EBCDIC Duals Card Punch Chain A Chain B

5-8 \l 4-8 @ @
12-5-8 (0-4-8 % (
11-5-8) 12-4-8 J:I)
12-6-8 + 12 + +
6-8 3-8 #

Restrictions

The following restrictions apply to Flowchart as well as Analysis output:

1. Implied indexing is not noted.

2. Operands appearing on continuation cards are not scanned.

3. Nested qualification in MAP is not analyzed. A qualifying symbol can only be up to
three characters long; any excess characters are truncated. Note this can cause
incorrect cross-referencing if there is more than one qualifying symbol within the
source program for which the first three characters are identical.

4. Macro definitions are not entered into referencing. The operation codes within the
definition appear in the Operation Code Frequency Report and the statements appear
on the flagged listing, each statement flagged M.

5. With the exception of 1401 SPS and 1620 SPS, the operand field is not scanned for
reference purposes or for classifying the statement if the first character of the field
is blank. With the same exceptions, consecutive operands are assumed to begin in
the position immediately follOwing the operand-separating character. Therefore, for
the operand

A, B

only the symbol A is recognized.

* A complex operand is defined as an operand containing any address arithmetic
other than label ± constant.

14

6. statements using operation codes which do not appear in the Operation Code Diction
ary (for exrunple, user-defined macros) are n.ot scanned.

7 • 1401 machine language operations beginning in coltUllll 19 are not acceptable to the DA
System.

FLOWCHART PROGRAM

Purpose and Objectives

The Flowchart Program is designed to generate a flowchart of an existing source pro
gram. T'he flowchart produced represents the gross logic of the source program and,
therefore, can be used as a guide for reprogramming in a higher-level language, for
example, COBOL or FORTRAN.

The Flowchart Program scans assembly language statements which have been coded by
the Analysis Program and generates a language called Symbolic Flowchart Language
(SFL).

SFL is then processed producing a detailed flowchart of the original program.

Extent of Coverage

Flowcharter is logically divided into two phases. The first phase accepts as input
assembly language statements which have been coded by the Analysis Program, and
generates a card image tape which is used as input to the second phase.

The input instructions to the second phase, called the Symbolic Flowchart Program, con
stitute a language called the Symbolic Flowchart Language. This language may be used
as direct input to the DA System.

Operation codes define the type of flowchart box to be generated.

Source program statements denoting input/output activity, computation, decision-maldng,
instruction modification, subroutines, predefined processes, and logic breaks generate
uniquely shaped flowchart boxes corresponding to standard flowchart conventions. Source
program operands are used to insert meaningful comments into the flowchart boxes.

Labels appearing on instructions in the source program are appended to the flowchart
boxes and serve as flowchart COlUlectors as well as cross-references between the source
program and the generated flowchart.

Additional cross-reference between the source program and the flowchart is provided by
the sequence field.

15

Advantages

The advantages of using the 'Assembly Lanugage Flowchart Program a.re:

1. The shape and meaning of each flowchart box generated is consistent with the pro
posed A.nierican standard, which includes all of the symbols developed by the X3. 6
Committee on Flowchart Symbols for Information Processing.

2. An optional feature of Flowchart is plUlched output of the generated Symbolic Flow
chart language card images. By using this option, the user ma;y manually change
the logic of the flowchart or alter the comments inside the flowchart boxes simply
by changing the output statements in the appropriate place. This same output, with
changes, may then be resubmitted as direct input to the DA System, using SFL as
the language.

3. A card image tape of the SFL language is always produced from the Flowchart.
This tape may be used as input to the Update Program in subsequent passes through
the DA System.

4. The assembly language statement content is reflected in the generated flowchart. In
the translation from assembly language statement to symbolic language statements,
labels are retained and appended to the flowchart box. Operands are retained and
used to generate comments which are printed inside the flowchart box. The
sequence fields are retained and printed in the flowchart box as a cross-reference
between the assembly language program and the generated flowchart.

5. Flowchart examines multiple language statements, whenever possible, and combines
them into a single flowchart box. Therefore, the number of generated flowchart
boxes is usually substantially less than the number of assembly language statements.

Flowchart Program Control Cards

The $CHART card calls in the Assembly Language Flowchart Progralll from the system
tape.

The format of the $CHART card is:

$ CHART

where:

DECK

LIST

[DECK,] [LIST]

indicates that the Flowcharter is to
plUlch-out the program in SymbOlic
Flowchart Language.

indicates that the Symbolic Flowchart
Language program is to be printed
prior to the printing of the flowchart.

The $CHART card operands may be in either order.

16

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

The $SEGMENT card i.s used to segment an assembly language program. If $SEGMENT
cards are used, only those statements specified are flowcharted. $SEG MENT cards are
not required for small programs; however, segmentation of large programs may be
required to avoid a label dictionary overflow condition within the Flowchart Program.

The format of the $ SEGMENT card is:

$SEGMENT { operand 1, }

where:

operand 1.

TO

THRU

operand 2

{
TO, }
THRU,

{operand 2 }

must be either a label or **. If
operand 1 is a label, it is the label in
the source program label field with
which segmentation is to commence.
If operand 1 is **, it is the first
instruction of the source program and
is the instruction with which seg
mentation is to commence.

specifies that the segment terminates
at, but not including, operand 2.

specifies that the segment includes
and terminates with operand 2.

signifies the end of a segment and
must be either a label or **. ** is
used to indicate the last statement in
the source deck.

Operand 1 mllst precede operand 2 in the source program. If more than one segment
card is used, the segrnents specified by the operands must appear in the same order as
the assemb1¥ language program labels and not overlap.

If segmentation of an assembly language program is performed, it should be done at
points which generate the fewest undefined transfer labels. Normally segmentation
should be done at instructions which occur at a break in the normal logic flow--for
example, ORG, EJECT.

17

Form H20-01n-0

Page Revised 11/15/65

By TNL N20 -0047 -0

If segmenting is performed at a label which is headed (that is, qualified by a prefix or
suffix), the operand must be specified as follows:

1. For FAP and 1620 SPS, the operand consists of the heading character, followed
by a dollar sign ($) and then the label. For example, if the source program is:

HEAD B
DUMP

to specify segnlenting at the DUMP symbol, the opexand in the $SEGMENT card
must be:

B$DUMP

If the label referred to is six characters long, the label is not headed and should
appear on the $iSEGMENT card without the heading character and dollar sign.

If MAP qualification is used and the heading symbol is longer than three characters,
only the first three characters should be used in the $SEGMENT card operand.
For example, if the source program is:

QUAL SINE
BEGIN

the operand on the $SEGMENT ~ard must be:

SIN$BEGIN

2:. For 1410 Autocoder suffixing, the operand consists of the label, followed by as
many 1C010ns as required to fill nine characters, followed by the suffixing char
acter. For example, if the source program is:

SFX B
DUMP

the operand in the $SEGMENT card must be:
DUMP:::::B

3,. For 1401 Autocoder, the operand consists of the label, followed by as many colons
as required to fill five characters, followed by the suffixing character. For
example, using the same source program as noted in item 2, above, the operand
in the $SEGMENT card Inust be:

DUMP:B

Phase I of Flowchart analyzes the coded assembly language statements, determines pro
gram logic, and produces S:~L statements.

A detailed description of the Symbolic Flowchart Language and program is found later in
"Programmer's Information". This program is utilized as Phase II of the Flowchart
Program in the Docwnentation Aids System.

17a

A simple MAP Assembly Language Program and the accompanying Flowcharter
outputs is shown. The output of the first phase is shown in the column Wlder
Symbolic Flowchart Language, and the last column shows the flowchart generated
by the second phase.

MAP Assembly Language

10SUB SAVE
AXT
SXA
STZ

4
BRANCH, 4
SWITCH, 4
TOTAL

LOOP RTDB 3
TEFB DONE
QMACRO A, B
LDQ PRICE
FMP QUANTITY
FAD TOTAL
STO TOTAL
CALL ADJUST
TRA LOOP

DONE RETURN 10SUB

Symbolic Flowchart Language

JOB
10SUB ENTER!

MODFY2 LOAD XR4 MODIFY SWITCH
BLOCK4 ZERO TOTAL

LOOP 10 5 READ TAPE 3
DECID 6 END OF FILE
YES DONE
PREDF7 QMACRO
BLOCK8 COMPUTE TOTAL
SUBRTADJUST, 12
GOTO LOOP

DONE EXIT 14
END

18

Symbolic Flowchart Output

IOSUB

4 ZERO
TOTAL

8 COMPUTE
TOTAL

ADJUST

12

YES

LOOP

Machin~--Oriented Concepts

Each matrix of the flowchart consists of two pages of 1403 Printer paper. The carriage
control of the printer should be set at eight lines per inch. The control tape in the tape
controlled carriage should be plUlched in channell to allow 88 lines per printer page.

A message to the operator informs that the printer carriage tape should be changed and
the'carriage reset for eight lines per inch.

Control Procedures

The following controls are incorporated into the Assembly Language Flowchart Program:

1. If $SEGMENT cards overlap or do not specify segmentation in the same order as the
source program labels, an error message is printed and the job is terminated.

2. If the internal core capacity for procedure labels is exceeded, a message is printed
informing the user that he must segment his program and the job is terminated.

Timing

In addition to those factors specified in "General System DeSCription", certain others
affect Flowcharter processing time:

1. The type of input (assembly language statements or Symbolic Flowchart Language
statements) ..

2. The number of comment statements in source input.

3. The number of statements in the assembly language which generate flowchart boxes.

4. The coding teclurlques used in the assembly language program.

5. The number of labels in the source input and the number of labels generated during
the derelativization process (see "Special Teclmiques", below).

6. The number of segment control cards in the input.

The forluulas used to obtain approximate processing times (in seconds) are:

If Assembly Language input:

0.75 x number of assembly language statements

If ~ytnbolic Flowchart Language input: i

1. 0 x nluuber of Symbolic Flowchart Language statements

If an SFL deck is plUlched, add approximately .5 seconds per SFL card.

19

Methods

Conversion of assembly language statements to Symbolic Flowchart statements is per
formed by the following methods:

1. Procedural instructions encOl.U1tered determine the type of box or connector which is
generated. Only those instructions which are significant to the flowchart are used by
the processor. For example, data-defining instructions are not used in the flow-'
chart process.

2. Comments inserted in each box are based upon the types of instructions encoIDltered.

3. Sequential procedural instructions are grouped together to generate a single flow··
chart box, subject to the following rules:

a. A label appearing on a procedural instruction always causes the generation of
a new box.

b. A new box is generated whenever the assembly instructions encountered signify
a change in box type.

c. A new box is generated whenever the comments to be inserted in the current
box exceed the comment capacity of the current box.

d. A conditional branch or subroutine call instruction always generate a new box.

Special Techniques

Flowcharter employs special techniques when handling source input card images:

1. All instructions in an assembly language program which branch to a simple relattve
address IDldergo derelativization.

To derelativize, Flowcharter computes the length of source instructions in terms of
core storage positions and maintains an internal location counter.

All source language instructions are classified as being of known or unknown length.
In general, machine instructions are classified as known length and nonmachine
instructions; for example, macros and pseudo operations are classified as unknmNll
length. An internal location cOIDlter is maintained for each area of the source pro
gram of known length.

In the following example:

TRA label±n

where "n" is a constant, the rule for derelativizing is as follows:

If the location cOIDlter displacement (that is, ±n) is in the
same known length area as the label, the branch instruc
tion is derelativized. If "n" is such that an unknown

20

length area is crossed, the branch instruction is not
derelativized. Irl this case, Flowcharter generates a
logic terminating EXIT box, rather than a GOTO con
nector. The same rule applies to location cOtulter
references -- for example:

BR *±n

2. Relative addresses generate labels preceded by a lozenge. Such labels do not appear
on the flowchart, but are used by the program to generate connectors.

3. Branches 'to complex, indirect, indexed or tmdefined labels generate an EXIT ter
minal box. Undefined labels include those labels located outside the particular
sE~gment being processed.

4. All instructions in a given assembly language are classified by the type of Symbolic
Flowchart Language operation they generate. Unconditional branch instructions
generate a GOTO operation. Conditional branch instructions generate a DECID and
a YES or NO operation. Arithmetic, logical and data movement generate a BLOCK
operation.

In.structions which modify instructions generate a MODFY operation. Instructions
w.hich are used to call subroutines generate a SUBRT operation. Instructions which
define the beginning and ending of a subroutine generate an ENTER and EXIT oper
ation, respectively. Macro instructions defined by the user generate a PREDF
operation.

Procedural operations not fOtuld in the operation table for the language specified in
the $DAJOB control card generate a predefined process box.

User-defined macros are examples of operation codes which generate predefined
process boxes.

Conditional branch instructions generate a decision box in which the condition being
tested is printed in terms of hardware registers and/or fields. Three-way compare
operations, such as the 7094 CAS instructions, generate two consecutive decision
boxes.

Acttlunetic, internal data movement, and logical bit manipulation instructions gen
erate a processing box. The comments generated in the box denote the general
nature of the instructions encountered and, when possible, name the field stored
in. memory.

Input/ output operations generate an input/output box. Whenever possible, the com
ment printed inside the flowchart box denotes the type of operation performed (for
example, HEAD) and names the Wlit, file or record acted upon.

21

Certain instructions in an assemblJr language program are calls to subroutines alid
generate SUBRT operations. In some assembly language programs, calls are
explicitly defined by an instruction such as CALL. In other instances, calls are
implied either by the instruction performing the call (for example, TSX or BTM) or
by the instruction being called (for example, branch to an SBR instruction).

Restrictions and Range

1. The size of the assembly language program which can be processed is determined
by the number of labels appearing on procedure instructions (not data-defining
instructions) in the source program, and labels which are generated to derelativize
branch instructions. If the source program is written in Symbolic Flowchart
Language, there is a similar restriction on the number of labels which can be used.
However, any restriction on the number of labels may be overcome by the user
through proper segmentation. The number of assemblJr procedure labels which rnay
be processed is 200 (Plus 200 for each additional4K of core storage). The number
of SFL labels which may be processed is 390 (Plus 250 for every 4K of additional
core storage).

2. Only the first ten characters of assemblJr language fields are used in generating
flowchart comments.

3. Only the first three operands of any assembly language statement are used for
flowchart comments.

4. Only one (the first) operand is derelativizedin branching type instructions.
Exceptions to this rule are those 7070 instructions in which the second operand is
the branch address (for example, BXlVI). For those instructions, the second
operand is derelativized, if necessary •

5. Additional scanning restrictions which affect the Flowchart Program are discussed
tmder AnalJrsis restrictions.

VERIFY PROGRAM

Purpose and Obj ectives

The Verify Program is designed to help the programmer determine that the source deck
is in agreement with the current object deck.

The storage map produced by the VeriJY Program may be compared with the original
assembly listing to detect differences between the source and object programs.

22

Extent of CovE~rage

The Verify Program processes an object program deck generated by the folIo-wing
assernbly languages:

1401 SPS
1401/1440/1460 Autocoder
1410/7010 Autocoder
705/7080 Autocoder
7070/7072/7074 Autocoder

Verifier generates a storage map and identifies overlay patches in an object program.
The storage map generated represents the contents of core storage after the object pro
gram has been loaded.

1.. A detailed storage :map of the object program is provided.

2 II .All overlay patches are identified for programmer examination.

3. Each break in location sequence is identified.

4. Verifier enables the programmer to update his source program by checking patches
made to the object deck.

Verify Program Control Cards

Verifier is caJled in by a $VERIFY control card.

The format of the $VERIFY card is:

where:

DISK

LOADER

$VERIFY [DISK,] [LOADER]

:is used only when disk Autocoder is the machine language, and
the format of the obj ect program deck is condens ed, containing
word separator characters.

:indicates the presence of a standard loader routine in front of
the object deck. Verifier recognizes the standard clear storage
and bootstrap cards in the 1401/1440/1460 programs, and
LOADER Inust be omitted in this case.

The $VEREFY card operands may be specified in any order.

The object deck immediately follows the $VERIFY card. A $DAEND control card ter
minates the run.

23

The Verify Program processes an object program in three passes.

Output from Verifier consists of the storage map; each object program instruction is
printed in storage location sequence. Each printed instruction includes the storage loca
tion, the nmemonic equivalent of the operation code, the full machine language instruction
and card reference number. The storage map format is comparable to the assembly
listing. All overlay patches are identified by asterisks.

Control Procedures

The following control procedures are incorporated into the Verifier:

1. The object program must immediately follow a $VERIFY card in the card reader,.

2. A $DAEND card signifies the end of the input object program.

Timing

The following factors affect the amount of time needed to generate a storage map of an
object program:

1. Type of object program

2. Number of instructions per card

3. Number of programmed overlays and patches

A formula to determine the approximate time (in seconds) to generate a storage map is
as follows:

Time = 2.0 x number of cards in object program

Special Techniques

The Verify Program employs the following special teclmiques in processing object
programs:

1. Coded core storage addresses are converted to actual addresses.

2. A table-lookup teclmique is employed to determine the mnemonic equivalent of each
machine operation code.

Restrictions

1. Each execute, transfer or end card signifies the end of an obj ect program segment;
therefore, overlay patches must be placed within the proper segment.

2. Data which appears to be an instruction is treated as an instruction.

3. SPS one-for-one object decks cannot be verified without condensing.

24

4. The LOADER option can handle only standard loaders as described in the IBM
manual concerning the machine and language specified on the $DAJOB card. If a
nonstandard loader is present, it should be removed from the deck.

MACHINE AND SYSTEMS CONFIGURATION

The minimlUn machine configuration required by the DA System is:

1. IBM 1401 or an mM 1460 processing unit with:

8000 positions of storage
High.-low-equal-compare
Adv~U1ced Programming

2. IBM 1402 Card Read Ptmch

3. IBM 1403 Printer, Model II

4. Four IBM 7330s or four 729 tape mits, any model.

An D3M 1410 or IBM 7010 may be used when run in compatibility mode. The same
minimum machine configuration as required by the mM 1401 is applicable.

Planned Use of Programming Systems

The DA System is programmed in 1401 Autocoder language. All I/O routines and the
Sort program used have been programmed internally because of the systems concept and
specific requirements of this application. No other programming systems are required
for implementation or modification.

INPUT/OUTPUT FLOWCHARTS

Input/ output flow for DA System

Source Program

Docu mentation
Aids

25

As.sembly
SFL

Input to
Analysis Program

Input/ output flow for update

Input/ output flow for analysis

Update

Update

Analysis

Source Language

Assembly
SFL

Flowcharter

--- Coded
Assembly
Language
Tape

26

Update

(

Card
Image
Tape
SFL

Flowcharter

Input/ output flow for flowcharter

Input/ output flow for verifier

INPUT/OUTPUT FILES

Analysis

The input files to the ·DA System are:

--- Coded Assembly
Language Tape

1. Card reader input file. This file always contains system control cards. Additionally,
an assembly language program, Symbolic Flowchart Language Program, or object
deck may be a part of this file.

27

2. Source program tape file -- unit 2. This file is used if the assembly language pro
gram or the Symbolic Flowchart Language Program resides on tape. This file lllust
not contain system control cards. The tape format is one physical file of card
images.

The output files from the Update Program are:

1. Updated source program tape file -- unit 3

2. Updated source program card file -- produced on the 1402 as a result of the DECK
option.

3. Update list file -- produced on the 1403 and consisting of:

a. A listing of the updated source program

b. A list of all out-of-sequence conditions

c. A list of all changes to the file

d. Operator control messages

The output files from the Analysis Program are:

1. DA format tape file -- a coded representation of the source language.

2. Analysis reports file -- produced on the 1403 Printer and consisting of:

a. Cross-reference report

b. Flagged listing

c. Operation frequency report

d. Operator control and error messages

The output files from the Flowcharter are:

1. Card plUlch output file -- generated in the 1402 upon user request. This is the gen
erated Symbolic Flowchart Language Program.

2. Symbolic flowchart language program tape file -- unit 2 -- always generated when the
input is an assembly language program. The contents of this file are the same eard
images as the card plUlch output file.

28

3. Flowchart file -- produced on the 1403 Printer and conSisting of:

a. The flowchart

b. A cross-reference dictionary of flowchart labels, their page and chart
locations

c. Option.ally, a printout of the Symbolic Flowchart Language Program

TIns file is also used to print operator control and error messages.

The output file from the Verify Program is the storage Map File, which is produced on
the 1403. Any error messages are in this file.

SAMPLE PROBLEM ANALYSIS

This section provides the user with a set of sample reports and an analysis of their use.
Given a source and obj ect deck, along with the latest assembly listing of the program,
the DA. System could be utilized as follows:

1. Since the DA System docwnents the source program, its output will be valid only
insofar as the source program reflects the current running object deck. The purpose
of the Verify Program is to point out any differences between the obj ect deck gen
erated froln the original source deck and the object deck in its present status. An
object deck may be altered by direct or overlay patches. The Verifier will produce
a listing similar in form to the listing of assembled instructions produced by the
respective system assembly program. Instructions which have two asterisks to the
left of the operations code have been patched by the overlay method. The location
counter of the patched instruction will indicate which characters of the preceding
instruction on the Verifier listing have been affected by that patch. Note that the
branch instructions at locations 862 and 899~ and the add instruction at location 903
ha:ve been overlaid by a NOP instruction. Nonoverlay patches cannot be flagged, but
are detected by manually matching the assembly listing and the Verify listi.ng. The
assembly and Verify listings do not match at locations 1847 through 1863, thus indi
cating that the constant CODE C TOTAL has been blanked out of card nwnber 17.

2. The next step is to reflect these changes in the source program. The new symbolic
entries may be manually placed in the source deck, replacing the original statements,
or the Update pass of the DA System may be used. (See page containing Update
Program output.) All references to an accumulation C have been eliminated. The
RESEQUENCE option has proVided new sequence numbers. Original stateluents 500
and 540 have been changed as indicated by **.

3. The updated source program is then processed through Analysis and Flowchart.
Analysis produces the Operation Code Frequency Report, the Cross-Reference
Report, and Flagged Listing with or without operands.

29

The Frequency Report gives an indication as to the general type of program by op
code utilization, and may give some indication as to the conversion or reprograrn
ming effort required.

The Cross-Reference Report is in sequence by label. FollOwing each label are all
entries which reference that label. An internally generated sequence number
appears to the left of the card image. The original sequence number is shown at the
right. The value of tills report lies in the fact that all reference points to a given
instruction, and all action taken on a given field are collected and displayed beneath
the reference point in question. Line 0053 shows all usage of Index 1. The entry
at line 0042 shows that the amotUlt field is referenced by four different statements.

The Flagged Listing simplifies the logical deCiphering of the program through its
subreferencing of operands. Note sequence number 0012. The statement indicates
a transfer to ADDA if CODE + Xl is an A. Taken in tmion with the subreferences,
one sees that CODE is a subfield to a DA statement, and at ADDA the amolUlt field
will be added to WORKA. The format of this report is sinlilar to that of the Cross
Reference Report, with the addition of coded flags to the left of the internal sequence
number.

Pages 15 and 16 of the sample problem provide the Cross-Reference and Label
Dictionaries produced by Flowchart. Label ADDA appears at matrix position BO on
the flowchart and reference to it is at A7.):(3000 is a- generated label to provi.de
linkage connection between B3 and A6.

Page 17 of the sample problem represents the DA System flowchart of the program.
In each flowchart box is a sequence number, by means of which the flowchart,
Flagged Listing and Cross-Reference Reports may be coordinated to effect complete
documentation of the entire program.

Sample Outputs

The following pages reflect sample output data for the DA System.

30

Autocoder Listing

CLEAR Sl'ORAGE ,008015,022026,030037,044,049,05305 3NOOOOOONCOOO 1 026
CLEAR STORAGE LOb8116, 105106,110 l11B IOllln NO 11029C02905611026/ flOOI /0991,001/00111710&
BOOTS TRJIP ,008015,022029,036040,0470;4,061068, u12 /061039 ,0010011040

DOCUMEIIlT AT I ON AIDS SAMPLE PR08LEM PAGE

SEQ PG LIN LAflEL 01' OPERANDS SFX CT LOCN INSTRUCTION TVPE CARD

101 010 000 JOB DOCUMENT AT ION AIDS SAMPLE PR08LEM
102 020 CTl 441
103 030 ORG 800 START ASSEMBLY AT 800 0800
104 040 START BLC EIIlD ON LAST CARO GO TO END 0800 B 947 A 4
105 050 R READ II CARli 0805 I 4
lOb 060 MCM I, OUTPUT tX I TRANSFER CARD TO OUTPUT AREA 0806 I' 001 910 4
101 070 MOO I FY MA i081ii), X I UP INOEX "BY THE RECORD LENGTH 0813 /I l22 08c} 4
lOA 080 8CE -t5,XI,0 10 TIMES 81 EQUALS 810 0820 B :~,,089 0 4
109 OC}O B START GO READ ANUTHER RECORD 4 0828 8 4
110 100 ADO S8R X\,O LFRJ INDE X 1 '1 0832 H 089 000 4
111 110 A AMOUNT&l(1, TOTAL ACCUMULA TE OVER ALL TOTAL 7 08H A 919 ll9 5
112 120 8CE ADOA,COOEtXl,A I F MEMBER OF CLASS A 8 0846 B 881 9Z0 5
113 130 8CE AOOB,COOEtXl,8 IF MEMBER UF CLASS fI 8 0854 8 892 910 5
114 140 BCE AOOC,COOEtXl,C IF MEMBER UF CLASS C 8 0862 B 903 910 5
115 150 A AMOUNT&Xl,oTHER ACCUM ALL OTHER CLASSES 7 0870 A 9~9 V94 5
lI6 160 B UPX 1 TRANSFER TU STEP-UP INDEX 1 4 0877 B 910 6
117 110 AOoA A AMOUNT &X 1, WoRKA ACCUMULATE A-CLASS 7 0881 A 919 Y22 6
118 180 B UPXl TRANSFER TO STEP-UP Xl 4 0888 8 910 6
119 190 ADDB A AMOUNT -2 tX 1, WOR KB i\·CCUMULATE B-CLASS 1 0892 A 917 V46 6
120 200 B -&8 TRANSFER TU STEP-UP Xl 4. 0899 B 910 6
121 220 ADOC A AMOUNT &X 10 WORKC ACCUMULATE C-CLASS 7 0903 A 9Z9 Y71 6
122 220 UPXl MA i081.), X I STEP-UP XI FOR NEXT RECORD 7 0910 • Z22 089 7
123 230 BCE WR ITEl, X 100 GO jojR ITE THE BLOCK IF XI 810 R 0917 B 929 089 0 7
1.24 240 8 ADO£.7 GO TO ACCUM FROM NEXT RECORD 0925 B 839 7
120; 250 WRI TEl 8 WR IT E GO TO WRI TE AND RETURN TO NSI 0929 B 400 7
126 260 DCW &OUTPUT AnDRE SS OF oU TP UT AREA 0935 990 7
127 270 WR I TE EOU 400 ADDReSS OF PRECOMPILE'O WR ITE ROlJTINE 0400
128 280 S8R XI,O lERo INDEX 1 7 0936 H 089 000
129 291:> 8 START GO TO RE AD 10 CARDS 4 0943 8 800
130 300 END 8 CLOSE GO TO CLOSE THE OUTPUT FilE 4 0947 B 500
131 310 CLOSE EOU 500 ADDRESS OF PRECOMP ILEo CLOSE ROUT I NE 00;00
132 320 WTM 2 5 0951 U ~U2 H 8
131 330 RWU 2 REWIND & UNLOAD OUTPUT FILE 5 0956 U ~U2 U 8
134 340 MCM WORK,201 MOVE ALL TOTALS TO PRINT AREA 7 0961 VOl 201 8
135 350 CC A 2 0968 A e
136 360 W I 0970 8
137 370 CS 320 ClEU THE P~I NT AREA 4 0911 320 8
138 380 CS 1 0915 9
139 3c}0 ENOl MLC iilEND OF JOBi1,250 MOVE EOJ MESSAGE Te PRINT 7 0976 132 250 C}

140 400 CC A 2 0c}83 A 9
141 410 W 1 0985 9
142 420 H ENOl F I ... III HAL T 4 0c}86 • 916 C}
143 430 OUTPUT DA 10xa I,G OUTPUT AREA 0c}90 1799 11
144 440 CODE 1,1 0c}90 FIELD 11
145 450 AMOUNT 2010 0999 FIELD 13
146 460 NAME 11031 1020 FI ELD 14

DCW i i 1800 GMARK 16

DOCUMENTATION AIDS SAMPLE PROBLEM PAGE

SEQ PG LIN LABEL OP OPERANDS SF X CT LOCN I NSTRUCT ION TYPE CARD

147 470 WORK EOU -&1 1801
148 480 DCW iCODE A TOTAL *i 14 1814 16
149 4c}0 WORKA DCW *8 8 1822 16
150 500 DCW i CODE B TOTAL i 16 1838 16
151 510 WoRKB DCw *8 8 1846 11
152 520 DCW i CODE C TOTAL 11 1863 11
153 530 WORKC DCW '8 8 1871 11
154 540 DCW i OTHER TOTAL 15 1886 18
155 550 OTHER OCW .8 8 1894 18
156 560 DCW i GRAND TOTAL 15 1909 18
157 510 TOTAL DCW tiO 10 1919 19
158 580 Xl EOU 89 DE 008c}

DCW iilD81i 3 lc}22 LIT 19
139 iEND OF J08i 10 1932 LIT 19

159 590 END START / 800 080 20

31

DA System Sample Problem Deck Setup

31a

Form H20-0177-0

Page Revised 11/15/65
By TNL N20-0047-0

$DAEND

Output of Verify RlUl

SVERIFY DOCUMENT~TION AIDS SAMPLE PR08LEM PAGE

OP CT LOC'" 1"'5 TRUC TlU"! CAR.D

8LC 800 A 947 A
R 605 I
MCM BOb POOl 910
MA 613 , l22 089
BCE 820 8 alZ 089 0
8 826 8 800
S8R 832 H 089 000
A 839 A 9l'l ll9
BCE 64b B HB I 910 A
6CE 654 B 692 '1Z n 8
BeE 862 A <103 no :
NDP 862 N
A 670 A 'll'l Y'I4
8 677 8 910
A 861 A 9Z9 YZ2
8 688 B 910
A 69Z A 917 Ylt6
B 899 B 910
NOP 899 N
A '103 A '1Z9 Y7I
NOP 903 N
MA 910 , l2? OB9 7
6eE 917 B '129 089 0 7
A 925 6 B39 7
B 929 6 400 7

933 990 7
S8R '13b H n8'1 000 7
8 '143 8 800 7
8 947 B 500 8
U-"O- 951 U ~U2 M B
U-I/O- '15b U 'U2 U 8
MCM 961 P YOI 201 B
CC A 966 F A 6
W 970 ? 6
cs 971 / 320 B
cs 975 I 9
i'lLC 976 M 132 2,0 9
CC A 983 F· A 9

985 2 9
986 • 'H6 9
990 9
'190 II
'I'll 13

1000 14
1071 'I
1071 II
1072 \3
1061 14
1152 10
1152 II
1153 1J
1162 15
1233 10

SVERIFY DOCUMENTUID'I AIDS SAMPLE PROBLEM PAGE

OP CT LUCN INSfRUC T IO~ CAII.D

1233 11
1214 13
1243 15
1314 10
1314 12
1315 \3
1324 15
1395 10
13'15 12
1396 \3
1405 15
1476 10
1476 12
1477 14
1466 15
1557 10
1557 12
I ~56 14
1561 15
1638 II
1618 12
16H 14
1646 16
1719 II
1719 12
1720 14
1729 16

I 1600 GM,,'" 16
lZ 1601 CODf A TOTAL It>

2 1813 , 16
B 1815 16

12 1623 CODE B TOT 16
4 1835 AL 16

MA I 1836 ,
8 I B39 17

lZ 1847 17
5 1859 \1
6 1864 17

12 1672 [lTIfER TOTA 18
3 1884 L 18

MA I 1886 ,
8 16A7 16

12 1695 GII.ANIJ TOTA 16
3 1907 16

MA I 1909
10 1910 19

3 1920 OHI 19
10 1923 END UF JOB 19

/ RUO 080 20

32

Form H20-0177-0

Page Revised 11/1.5/65
By TNL N20-0047·-0

Output of DOClunentation Roo

00010
00020
00030
000405 TAR T
00050
OOObO
00070MOIJIFY
00080
00090
OOIOOADO
00110
00120
00130

00140
00150
00 I bOADDA
00170
00180ADDB

00190UPH
OOlOO
00210
002 20WR IT E I
oono
00240WR I T E
00250
002bO
00270END
00280CLOsE
00290
00300
00310
00320
00330
00340
00350
00 ibOEND I
00370
00380
00i90
004000UTPUT
00410CODF
00420A"'DUNT
00430NAME
00440WORK
00450
004bOWORKA

00470
00480WORKB

00490
005000THER

00510
00520TCIT AL
00530XI
00540

DOCUMENU T 10~ ~I 05 SAMPLE PROtlLEM

I)UCUMENTATIO~ AIDS SAMPLE PRUBLEI'

START ~SSEMBLY AT 800
ON LAST CAIlD GO TO END
RE~D A CARD

JO~

CTL
ORG
BLC
R
MCM
"'A
BCE
B
SBIl
A
BCt
BCE

I,OUTPUT&H
4l08101,X I
.&5, X I ,0
STAR T

TRANSfER CARD TIl UUTPUT AREA
UP I~DfX 1 BY THE RECORD LENGTH
10 TIMFS 81 EQUALS 810

X 1,0
AMOUNT&X I, TOTAL
ADDA,COOE&XI, A
ADDB, CODE &X I, tl

AMOUNT&X I ,OTHEP.
UPX I
AMOUNT&XI, .. ORKII
UPX I
AMUUNT -2&X I, WORK B

GU RFAD ANOTHER RECORD
ltRO I NDO I
ACCU"IULATE OVEIlALL TOTAL
IF MFMBE~ OF CLASS A
IF MFMAE~ DF CL~ss B

ACel!'" ALL OTHER CLASSES
TRANSfER TO STEP-UP INDEX I
~CCUMULA TE A-CLASS
TRANHER TO STEP-UP XI
ACCU~ULATE B-CLASS

sTfP-UP Xl FOR NEXT RECORD MA
BCE
B

0I081al, X I
wRITEI,XI,O
AOO& 7

GO W~I TE THE BLuCK IF XI 810

B
DCw
EQU
SBR
B

wR I TE
WUTPUT

Gil TJ ACCUM F~OI~ NEXT RECORD
GU TJ W~ I TE AND RE TURN TO Nsl
ADDRESS OF OUTPuT AREA

400 ADDRESS
X 1,0
START
CLOSE
500 ADORI'SS
2

UF PRECDMPILED WRITE ROUTINE
lERO I'IIDO I
GU TD READ to CARDS
GU TO CLOSE THE OUTPUT FILE

OF PRECOMPILED CLOSE ROUTINE
B
EQU
WTM
RWU
MCM
CC

2
WORK, 20 1
A

REWI'lD & UNLOAD DUTpUT fiLE
MUVE ALL TOTALS TO PRINT AREA

W
CS
CS
~LC

CC

320 CLEM THE pR INT AREA

alEND OF JOB@, 2~)0 MOVE ~UJ MESSAGe TO PRINT

W
H
OA

EOU
DCW
DCW

ENOl
10X81,G
1,1
2,\0
11031
'&1
ii1COOE A TOTAL Iii
.8

DCw @ CODE B TOT AI. MiiI
DCW M8

DCw 01 OTHER TOTAL MOl
DCW .B

FINAL HAL T
OUTPUT AREA

~upOArE DOCUME!'ITArID'l AIDS SAMPLE PROBUM

DCW iii GRAND TOTAL MOl
DCW M 10
EOU 89 DE
ENO START

ANALVSIS DOCU"'~NTI\TIO'l AIDS SAMPLE plWIILEM

OPERAT ION CODE FREClJt:!'ICY Il E PDR T

MNEMONICS TALL Y

A
B
BCE
OLC
CC
CS
CTL
OA
DCW
END
EOU
H
JOB
MA
MCM
MLC
ORG
R
RWU
SBR
W
WTM

TYPE TDTAL PE RUN T

INPUT-OUTPUT 007 013
DATA DEFINING 013 .l4
BRANCH 012 .n
HAL T 001 .02
ASSEMBLER 008 .\5
OTHER 013 • .!4

TOTAL !>4

33

PAGE

00010
00020
00030
00040
00050
OOObO
OD070
00080
00090
00100
ODII0
00120
oDI30
DELETE
00150
001bO
00170
001BO
00190
DEL ETE
00225
00230
00240
00250
002bO
00270
00280
00290
OD300
00310
00320
00330
0034D
00350
003bO
00370
00380
00390
00400
00410
00420
00430
00440
OD450
004bo
0047D
00480
00490
DElETE

··005DO
OD510

00140,00140

00200,00220

0050D,00500

DELETE 0052D,00530
DElETE 00540,00540

"00540
00550

PAGE

DElETE 005bO,005bO
"005bO

00570
00580
00')90

PAGE 7

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

ANALYSIS DOCUMENT!< T IU~ AIDS SAMPLE PROBLEM PAGE

CROSS KEFERENCE REPORT

DOlO ADO SBR X I, 0 lE 11.0 I NoE x I 00100
0021 B 11.00&7 GO TO ACCUM FROM NEXT RECORD 00210

0016 ADoA AMOUN T&X I, wORK A ACCUMULATE A-CLASS 00160
0012 RCE AoDA ,COoE&X 1 ,A I F MEMBER OF CLASS A 00120

OOIA AooB AMUUN T-2& Xl, WORKB ACCUMULATE B-CLASS 00180
0013 [lCF. AoDB,COoE&XI,8 I F MEMBER OF CLASS Fl 00130

0042 AMOUNT ;>,10 00420
0011 AMOlJf>.,T &X I ,TOTAL ACCUMULATE OVERALL TOT AL 00110
0014 AMOUNT& Xl ,OTHER ACClJM ALL OTHER CLASSES 00140
OJ 16 ADoA AMOUI';1&)(I,WORKA ACCUMULATE A-CLASS 00160
0018 ADDB A AMOUNT-2&X I, ~ORKB ACCUMULATE B-CLASS 00 I BO

o02t:! CLOSE EQU ')00 ADDRESS Of PRECOMPI LEO CLOSE ROUTINE 00280
0027 END CLOSE GO TO CLOSE THE OUTPUT FILE 00270

0041 CODE 1,1 00410
0012 FlCE AoDA ,CODE &X I, A I F MEMBER CF CLASS 00120
001 } BCE ADOB ,CODE &X I, B IF MEMBER OF CLASS 00130

0027 END CLOSE GO TO CLOSE THE OUTPUT FILE 00270
0004 START flL: END ON LAS T CARD GO TO END 00040

003b t:NDI MLC iilt~D OF JOBiil,250 MOVE EOJ I'fSSAGE TO PRI"'T 00360
0039 ENOl FINAL HALT 00390

0001 MODIFY Mil. iilOBliih X I UP INDEX 1 BY THE RECORD LENGTH 00070
0043 NAME 11,31 00430
0050 OTHER DCW 118 00500

0014 AMDUNT&Xl,OTHER ACCUM ALL OTHER CLASSES 00140
0040 OUTPUT Oil. 10X81,G OU TPUT AREA 00400

0006 MCM I, OUTPUT& X I TRANSFER CARD TO OUTPUT AREA 00060
0023 [lCw &OUTPUT ADORES S OF OUT PUT ARE A 00230

0004 START BlC END ON LAST CARD GO TO E'lD 00040
0026 R STAR r GOT a RE AD 10 CAR OS 00260
0054 E'lO STAR T 00540
0009 R STAR r GO READ ANOTHER RECORD 00090

0052 TOTAL DC W NlO 00520
0011 AMOUNT&XI, TOTAL ACCUMULfI TE OVERALL TOTAL 00110

0019 UPX I Mil. iil081;,), Xl STEP-UP XI FOR NEXT RECORD 00190
0015 UPXI TRANSFER TO STEP-UP INDEX 1 00150
0017 UPXI TRANSFER TO STEP-UP xl 00170

00t,4 WORK EQU -&1 00440
0031 MCM WORK, 20 I MOVE All TOTALS TO PRINT AREA 00310

004b WORKA DC \oj 118 00460
0016 ADoA AMOU'H&XI,WORKA ACCUMULATE A-CLASS 00160

0048 WDRKI3 DCW MfJ 00480
0018 ADOB A AMOUNT-2&XI,"ORKB ACCUMULATE B-CLASS 00180

0024 WR IfE EQU 40U ADDRFSS OF PRECOMPILED wil.l TE ROUT I"'E 00240
0022 WR I TE I B Wil.l Tt GO TO WRITE AND RETURN TO NSI 00220

0022 WR I TE I WR I TE GO TO wRI TE AND RETURN TO NS I 00220
0020 BCE wR I TE I, X I ,0 GO wR! TE THE BLOCK IF Xl 810 00200

0053 Xl EOU 8'1 DE 00530
0007 "'ODIFY MA @O!lI .. ,XI UP INDEX I BY THE RECORD LENGTH 00070
0008 BCE -&5,XI,0 10 TIMES 81 EQUALS 810 00080
0010 ADO SRR XI,O ZERO INDEX 1 00100
0019 UPX 1 MA iil081 01, X I STEP-UP Xl FOR NEXT RECORD 00190

ANALYSIS DOCUMENT A T 10'.1 AIDS SAMPLE PROBLEM PAGE

CROSS REFERt:NCE REPORT

0025 SBR X 1,0 ZERO INDEX 1 00250
0006 fo4CM I,OUTPUT&XI TRANSFER CARD TO OUTPUT AREA 00060
0011 AMOUNT&Xl, TOTAL ACCUMULA TE OVERALL TOT AL 00110
0014 AMOU'lT&XI,OTHF.R ACCUM ALL OTHER CLASSES 00140
0016 ADOA AMOU"lT& X I, WORKA ACCUMULATE A-CLASS 00160
0018 ADoB A Af040U;ljT- 2& Xl, WORKB ACCUMULA TE B-CLASS 00180
0020 RCE WR I Ttl, Xl, 0 GO Wil.l TE THE BLOCK IF Xl 810 00200
0012 BCE AOOA,CODE&Xl,A IF MEMBER OF CLASS A 00120
0013 RCE AODB,CODE&XI,B IF MEMBER OF CLASS B 00130

34

Form H20 .. 0177-0

Page Revised 11/15/65
By TNL N~~O-0047-0

R,B

X,B

X ,B

R ,x

R,B

o
o
o
o
R,A
o
o
o
o
o
o
o
o
A
A

0001
0002
0003
0004

0005
OOOb

0001

0008

0009

01110

DOll

0012

0013

0014

0'015

001b

0011

001B

0019

0020

0021

(1022

(1023

()024
0025

002b

0021

0028
0029
0030
0031

0032
0033
0034
0035
003b
0037
0038
0039

0040
0041
0042
0043
0044
0045
004b
0041
0048
0049
0050
0051
0052
0053
0054

ANALYSIS

0027

0040
OO~d

0053

0053

0004

0053

0042
0053
0052

001b
0041
0053

0018
0041
0053

0042
0053
0050

0019

0042
DO!)}
004b

0019

0042
0053
0048

0053

0022
DOH

0010

ANALYSIS

0024

0040

0053

0004

0028

0044

003b

0004

START

MODI FY

ADO

ADDA

AD DB

UPXl

WR ITE 1

WR ITE

END

CLOSE

ENOl

OUTPUT
CODE
AMOUNT
NAME
WORK

WORKA

WORKB

OTHER

TOTAL
Xl

OOCUM[NUrtO", hi OS SAMPLE PR08LFM PAGE 10

FL AGGED Ll S Tl NG

Jail DOCUMENTATION AIDS SAMPLE PROBLEM
ClL. 441
ORG 800 START ASSEMBLY AT BOO
Blf. ~NO ON LAST CARD GO TO END

END CLOSE GO TO CLOSE THE OUTPUT FILE
R READ A CARD
MCM 1,(~UTPI)T&xl TRANSFER CARD TO OUTPUT AREA

OUTPUT DA 10XIlI,G OUTPUT AREA
XI EOU ~9 DE

MA OlOIHOl, XI UP INDEX I BY THE RECORD LENGTH
X I EOU <19 DE

BCt '£.S,Xl,O 10 TIMES 81 EOUAlS Bl0
X I EOU 89 DE
START GO ~EAD ANOTHER RECORD
START BlC t:ND ON lAST CARD GO TO END

SBR XI,O ZERO INDEX I
X I EOU 119 DE
AMOUNT£.Xl, TOTAL ACC,UMULATE OVERALL TOTAL
AMOU'lT ~,IO

n EQU 89 DE
TUTAL DCW ¥10

BCE ADOA,COOE£.XI,A IF MEi'BER OF CLASS A
AOOA A AMOUNT&XI, "ORKA ACCUMULATE A-CLASS
CUOE I tl
X I EOU 119 DE

BCE IIDOB,CODE£.XI,B IF MEMRER OF CLASS B
ADOB A AMOUNT-2&Xl,WORKB ACCUMULATE B-CLASS
CODE I, I
x I EOU 89 DE
IIMOU",T&Xl,OTHER ACCUM ALL OTHER CLASSES
AMOU'lT 2,10
Xl EOU 89 DE
OTHE~ DeW.8
UPXI TRANSFER TO STEP-UP INDEX 1
UPXI MA GlDBliil,Xl STEP-UP Xl FOR NEXT RECORD
AMOUNT&X 1, "ORKA ACCUMULATE A-CLASS
AMOUNT ;>tlO
XI EOlJ 89 DE
WORKA DCW.8
UPXl TRANSFER TO STEP-UP Xl
lJPXl MA nl081iil,Xl STEP-UP XI FOR NEXT RECORD
IIMOU'lT-2&XI,WDRKfI ACCUHULATE B-CLASS
AMOU'lT 2.10
Xl EOU 119 DE
WORKfI DCW.8

HA iil081i1, XI STEP-UP Xl FOR NEXT RECORD
Xl EOU 89 DE

BCE WRITE1,Xl,0 GO "RITE THE BLOCK IF Xl 810
WRITEl 8 "RITE GO TO WRITE AND RETURN TO NSI
XI EOU 1;19 DE
ADO£. 1 GO TO ACCUM FROH NE XT RECORD
IIllO SBR Xl,O ZERO INDEX 1

DOCUl4ENTATION AIDS SAMPLE PROBLEM PAGE 11

Dew

EQU
S6R

Eeu
WTM
RWU
MCM

CC
W
CS
CS
MLC
CC
Ii
H

DA

E,OU
[lCW
ocw
[lCW
DCW
DCw
DCw
DCW
DCw
EOU
END

WRITE
WRITE
&OUTPUT
OUTPUT
400
X 1,0
Xl
START
START
CLOSE
CLOSE
500
7
2
WORK,201
WORK
A

320

FLAGGED LISTING

GO TO WR ITE AND RETUPN TO NS I
EOU 400 ADDRESS OF PRECOMPILED WRITE ROUTINE

ADDRESS OF OUTPUT AREA
OA lOX81,G OUTPUT AREA
ADDRESS OF PRECOHPILED WRITE ROUTINE

ZERO INDEX 1
Eeu 89 DE

GO TO READ 10 CARDS
BLC END ON LAST CARD GO TO END

GO TO CLOSE THE OUTPUT FILE
EOU SOO ADDRESS OF PRECOMPILED CLOSE ROUTINE
ADDRE!>S OF PRECOMPILED CLOSE ROUTINE

RE 10 I NO & UNLOAD OUT PUT FILE
MOVE ALL TOTALS TO PRINT AREA

EOU .&1

CLEAR THE PRINT AREA

iilt:ND OF JOBOl,250
A

MOVE EOJ MESSAGE TO PRINT

ENOl
ENOl
10X81,G
ltl

HLC
FINAL HALT

.. END OF JOBiil, 250
OUTPUT AREA

2,10
11,31
.&1
iilCOOE A TOTAL .ill
*8
iii CODE 8 TOTAL ~iil

*8
iii OTHER TOTAL IIi

*8
i GRAND TOTAL .i
110
89
START
START BLC tND

DE

35

MOVE EOJ MESSAGE TO PRINT

ON LAST CARD GO TO END

00010
00020
00030
00040

00050
OOObO

00070

00080

00090

00100

00110

(l0120

00130

00140

00150

001bO

00170

00180

00190

00200

00210

00220

00230

00240
00250

002bO

00270

00280
00290
00300
00310

00320
00330
00340
00350
003bO
00370
00380
00390

00400
00410
00420
00430
00440
00450
00460
00410
00480
00490
00500
00510
00520
00530
00540

00270

00400
00530

00530

00530

00040

00530

00420
00530
00520

00160
00410
00530

00180
00410
00530

00420
00530
00500

00190

00420
00530
004bO

00190

00420
00530
00480

00530

00220
00530

00100

00240

00400

00530

00040

00280

00440

003bO

00040

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-004 7-0

Ct<A'l r

LAfI~L DEF INEO AT

030000 A6
ADD A5
ADDA BO
ADDB B I
END B6
ENOl C I
MOD IFY A 3
START AO
uPX I R2
WR I TEl B4

CHA~T

LABEl REFE~ENCES

030003
ADO A
ADDB
END
ENOl
START
UPX I

B3
A7
AB
AO
C3
A4
A9

B5
BO

[lOCU"'lNThTIU~ AI1S SAMPLE PRnHLF~

S~(''''E\jT .'. THRU • ••

DOCUMENTATIO"l AIDS SAMPLE PROBLEM

SEGME~T ", THRU, ••

36

PAGE 14

PAGE 15

Form H20,-0177-0

Page Revised 11/15/65
By TNL N20-0047-0

CHAllT DOCU~ENTATIU~ AIDS SAMPLE PROBLEM

ST AR T

: AD: ••

MOD I FY

ADD

END

00040. IS .YES. •
THIS LAST ••• 66.

CARD

NO

00050. REAO A
CARD

:00060. MOVE I:
• TO OUTPUT&XI.

ADD

'00080. DOES .YES. •
CHARACTER AT ••• A5.

XI EQUAL 0

• NO ••
••••••••••••• AO.

START

• • : 00110. ADD:
• Ab •••••• AMOUNT £X I TO.

TOTAL

ADDA

'g~~~~b~~E~; .v~~: BO:
CODE £X I EQUAL •

A

NO

ADD A

'00130. DOES .YES. •
CHARACTER AT ••• 81.

CODE &X I EQUAL,
B

NO

upn

SEG~E.""T •• , THRU, ••

AOOA

A006

UPX I

• • :00190. MODIFY'.
• 82 •••••• ADD ~061~ TO

XI

WR ITE I

wil.l TE 1

'ggIR2cT~~E~; .Y~~: B~:
XI EOUAL 0 •

• NO ••
••••••••••••• Ab.

: B~: .. : EXIT

END

WR I TE

:U0250. MOVE 0
TO Xl

ST All. T

•• : AO:

: Bb: •• : EXIT
CLOSE

00290. wR ITE •
TAPE MARK ON

• 2 REWIND TAPE.
Z

00320. •••
CONTROL •••• CO •

• PRINTER PRINT.
A LINE

37

PAGE 16

FL OWCHA II. T PAGE

ENOl

: Cl: : 00360. MOVE :
• @ENO TO 250 •

00370.
CONTROL

• PRINTER PRINT.
A LI NE

ENOl

WAIT : •• : Cl:
00390

PROGRAMMER'S INFORMATION

UPDATE PROGRAM

Abstract

The Update Program is designed to perform file maintenance on card image tapes, and is
used to add or delete source statements in a program being processed by the DA System.
It is also used to update the Symbolic Flowchart Language, thus providing this new
language with machine maintenance capability, including updated source decks and listings.

The user, through control card options, may request a new updated source deck and/or
listing. On option, the Update Program generates ascending sequence numbers in the
sequence field, starting with 00010 in increments of 10. Whenever resequencing is re
quested, a listing showing both old and new sequence numbers (with errors flagged) is
produced.

The program checks for valid sequencing, ascending 1401 collating sequence, and gen
erates standard input files for other DA System programs.

Description

The Update program is divided into two passes.

Pass 1 (2UPDA)

If the source input program is on cards, pass 1 performs a card-to-tape operation to
prepare an input tape for pass 2. When a $UPDATE control card is present, pass 1 per
forms additional operations: it interprets the $UPDATE operands and sets the cor
responding program switches. All $DELETE and change cards are put into a file to be
processed in pass 2. If more than 50 change cards are submitted, the change card fHe is
moved to tape unit 4. Sequence checking is performed on all files processed in pass 1;
sequence errors are flagged on the printer.

Pass 2 (2UPDA)

Pass 2 (2UPDA) is performed when a $UPDATE, $ANALYZE, or $CHART control card is
present. All optional output is generated during this pass. If SEQUENCE is indicated in
the $UPDATE card, the input file is resequenced and a listing of the file is printed. If
LIST is indicated, only the listing operation is performed. If DECK is indicated, the file
will be punched into cards simultaneously with any other optional operations including file
maintenance. At the conclusion of pass 2 all tapes are rewound, input tapes are un
loaded, and control is passed to the next DA System program.

38

Systmn Flow

PASS 1

PASS 2

Listing of Updated
Source File

1403L
Input/ Output Description

Input

Update
Program

2UPDA

Update
Program
2UPDA

1403

1401

Source Deck and $UPDA TE

$DELETE and Change Cards

1402

Source Deck

1. Card reader input file--always contains DA System control cards. Additionally, it
may contain the change cards as well as assembly language program statements. The
card image formats contained in this file are standard and are retained throughout
the program.

2. Source program tape file - unit 2--contains assembly language or SFL statements in
card image form.

Output

1. Updated source language tape file - unit 3--contains assembly language or SFL state
TIl.ents in card-image form. When maintenance or resequencing is performed, it con
tains the updated source language statements. This file may be used as input to other
DA Systeul programs, Analysis or Flowchart.

39

Form H20-0177-0

Page Revised 11/15/65
By TNL N20-004 7-0

2. Updated source program card file--produced on the 1402 as a result of the DECK
option in the $UPDATE control card. When maintenance or resequencing is per
formed, it contains the updated source language statements.

3. Update list file--produced on the 1403 and consisting of:

a. A listing of the updated source program whose format may be any or all of the
following:

(1) Original source statements

(2) Original source statements with new sequence numbers when the SEQUENCE
option is requested (the new resequenced number is printed in the original
sequence field and the old sequence number is printed to the far right of
the statement)

(3) Original source statements with out-of-sequence conditions flagged

b. A list of all out-of-sequence conditions

c. A list of all changes to the input file

d. Operator control messages

e. Diagnostic messages

ANALYSIS PROGRAM

Abstract

The Analysis Program is designed to scan an assembly language source program to pro
vide a detailed analysis of each instruction. This analysis is produced in the following
forms:

1. A flagged listing denoting instruction type

2. A cross-reference dictionary of labels and references to them

3. An analysis of operation code usage

The Analysis Program also prepares a coded assembly language tape for input to the
Flowcharter.

Description - Phase I

In this phase, the second record in each pass handles S/360 input.
Pass 1 (3ANAA/3ANAB)

The input to pass 1 consists of DA System control cards and a card image tape from the
Update program. The input unit is determined by a switch set in the Update program.

40

Form H20 .. 0177-0
Page Revised 11/15/65
By TNL N:W-0047-0

The current control card is examined. If it is $ANALYZE, the operands are scanned
and switches are set to indicate which optional reports are requested. An error message
is printE~d in the event of illegal options on the control card and control is transferred to
the Controller (lCONA).

Machine and language combinations which have siInilar format characteristics are grouped
together in sets for processing by the AnalYSis program. The sets and their components
are listed below:

Set

A

B

c

D

E

Machine/Language

1401/1460 Autocoder
1440 Autocoder
1410/7010 Autocoder
7070/72/74 Autocoder

705/7080 Autocoder

1620 SPS

7040/44 MAP
7090/94 MAP
7090/94 FAP
S/360 BAL/FAL
1401 SPS

The machine and language are determined and control of the program transfers to the
routine that handles the indicated set. The mnemonic operation code dictionary for the
particular machine language combination is read in from the system tape.

Each routine performs the following general functions: The starting location of the
operand is moved to the DA record. Input records are read from tape unit 2 or 3.
If the record is a comments or continuation card, the Analysis code is set to T (Trans
parent) . The DA formatted records are written on tape unit 4.

Comments cards for each set are determined as follows:

Set

A Asterisk in card column 6

B Blank cc 6--23 or a C in cc 74

c Asterisk in cc 6

D Asterisk in cc 1
S/360 ICTL statement

E Asterisk in cc 8

41

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-004 7-0

SOURCE CARD FORMAT FOR SETS A, B, C, D, E

SET A Page Operation
and Line Label Code Operands Comments

1-5 6-15 16-20 21-72 Two spaces
from

Leading operand
blanks
permitted
on 1410

SET B Sequence Operation !
Number Name Code No. Operands Comments ~

1-5 6-15 16-20 21- 23-39 40-73 74
Leading blks. 22
permitted

SET C Page Operation
and Line' Label Code Operands Comments

1-5 6-11 12-15 16-75 Starts with
4th comma

SET D
.;,: .;,:

Name fa ~ Operands
Label PS Operation Address, Tag, Decrement/Count Comments

1-6 7 8-14 15 16-71 Starts one
Leadg. Operand may begin in cc 12-16, blank after
blanks but not past cc 16.

I

perm.
~leoperand

SET E A Operand B Operand

Page Char. .0 Char. .0
and Line Count Label Operation Address :I: Adj. .s Address :I: Adj. .s d

1-5 6-7 8-13 14-16 17-22 23 24- 27 28-33 34 35- 38 39
26 37

ID

76-80

ID

75-80

ID

76-80

ID

73-80

Comments ID

40-55 76-
80

If the record is not a comments card, the label field and the operation code field are nlOved
left-justified to the DA record. A table lookup is performed on the operation code. If the
operation code is found, the corresponding Analysis code and the entry location are moved
to the DA record. The expanded records are written on tape unit 4.

In addition to the above general functions, each routine handles special considerations ..

42

Form H20-0177-0

Page Revised 11/15/6S
By TNL N20-0047-0

SET A. In 1410 and 7070 Autocoder the channel designation for the input/output operation
codes is dropped before a table lookup is performed. This is because channel designations
were not included in the Operation Code Dictionaries. In 1410 Autocoder the prefix N
for input/output operation codes is dropped for the same reason. After the table 100pup
is perfor:med, the Analysis code is tested for the special character which indicates a
change to 1401 SPS. The set is changed to E and control is transferred to SET E. The
operation code is tested for blanks which indicate data defining. In this case the Analysis
code and dictionary entry location of the previous statement are used and no table lookup is
performed.

SET B. For one-to-one instructions it is possible to specify a register in cc 22. If this
column is not blank, the register number is moved right-justified to the operation code field
on the DA record.

SET C. The last character of the operation code is tested for an M, which indicates an
immediate instruetion. These instructions are flagged with I on the DA record.

SET D. FAP /MAP. The table-lookup subroutine is initialized in this routine to handle table
table entries of seven characters. The operation code is scanned to determine whether
indirect addressing is present and to locate the first position of the operand field. If
the operation code is not found in the Operation Code Dictionary, the last charac ter of
the operation code is dropped and another table lookup is performed. The last character
is dropped since it may be a channel designation (not included in the dictionaries). The
Analysis code found in the dictionary is examined to determine whether the operation
code begins or ends a macro definition. If the portion of the source program being
analyzed is within a macro definition, the Analysis code is changed to T (Transparent)
and the dictionary location is blanked out.

System/360 BAL/FAL. Through the use of the ICTL assembler instruction, the
programrner may specify Begin, End, and Continue - in columns other than those
normally used. 3ANAB checks for these instructions and makes the appropriate format
adjustments. Macro definitions are handled as described in F AP /MAP .

SET E. In this set the Analysis code is tested for a comma or a period. A comma in
dicates a move or load machine op code. Further testing is required to determine
whether it is an input/output instruction. If the first character in the operand field is %,
the Analysis codeis changed to K for I/O. Otherwise it is changed to -.

For each set, the first time the table-lookup subroutine is entered, the appropriate Oper
ation Code Dictionary is read into core and two groups of binary points are calculated for
use in the table lookup.

The size of the dictionary is calculated from the origin address and the high address of the
dictionar:y. The number of entries is determined by subtracting the entry size from the
dictionary size until the dictionary size is zero. The absolute binary points are then cal
culated. These absolute binary points are multiplied by the entry size to obtain the
relative address of each binary point in the dictionary.

The tab1€~-lookup subroutine performs a binary search on the operation code. The location
of the entry in the dictionary is calculated by adding the absolute binary point to the location
field every time the operation code being searched for compares high. If the operation
code is not found after using 14 binary points, the search is discontinued and the operation
is assumed to be a user-defined macro.

43

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

If the current control card was preceded by a $UPDA TE card, the input tape is unloaded
and a message is printed. If the COUNT option is present, phase I--pass 2 is called;
otherwise phase I--pass 3 is called.

DA format record as it appears in phase I--pass 1 for input to phase I--pass 3 of
Analysis.

1-5 6

Serial 1620
Number Immediate

Flag
Position

39 40-42

Analysis Location
Code

1-5

6

7

17

21

22

23-32

33-38

39

40-42

81-160

7-8 17 21 22 23-32 33-38

Start Set 7090 7090 Label Operation
of Indirect Program Code
Operand Addressing Macro

Flag Position
Position

81-160

Card Image

A generated serial number

1620 immediate flag position

First column of operand--two-position field

Set--groups of systems with similar rules

7090 indirect addressing flag position

7090 program macro flag position

A ten-position field containing the Label

Six-position operation code

A code assigned to each operation code indicating the nature of
the operation code. It is found in the dictionary with a table
lookup on the operation code.

The number of the table entry in which the operation code was found

Source card image

44

Form H20-0177-0

Page Revised 11/15/65
By TNL N 20-0047-0

Pass 2 (3ANAU /3ANAQ)

When this pass is read into core, the operation code dictionary from pass 1 remains. A
second table is used to hold the tally for each operation code. Each entry in this table is
three positions long and has a corresponding entry in the operation code dictionary.

A record is read from tape 4. If the field which contains the dictionary entry location is
nonblank and nonzero, the corresponding entry location is calculated for the tally table,
and that entry is incremented by one. A total of all the tables is kept. At end of file, the
tally table is scanned and the nonblank tallies are printed with the corresponding operation
code dictionary entry. During this scan, tallies are kept on the type of operat:ion code, as
deterrrLined from the Analysis codes in the operation code dictionary entries.

When the scan is completed, these totals are divided by the total number of operation codes
to give the percentage of each type. The types, the number found, and the percentage are
printed. The total number of operation codes is printed and phase J--pass 3 is called.

Pass 3, (3ANAV, 3ANA9/3ANAR)

At the beginning of this pass, tapes 2 and 4 are rewound.

A DA format rE~cord is read from tape 4. The Analysis code is examined to determine
whetheir the operand of the card image is to be scanned.

If the Analysis code is aT, the statement (such as a comments card) is considered to be
transparent. The sort field is blanked out and the record is written onto tape 2.

If the code is an 11 or 12 zone, the operand is scanned. The follOwing functions are per
formed in the scan:

1. Input for the Flowchart program is created. This consists of placing the first three
operands in the card image into special fields on the record. Also added to the record
is a count of the number of operands present and a flag which indicates the nature of
the first operand.

The flags are:

S S:imple synlbol
R Simple relative addressing
L Location counter
D D-modifier (1401 SPS only)
o Other

If the Analysis code contains a 12 zone, the first operand is placed into the first field as
follows:

SYMBOL ±m

45

Form H20-0177-0

Page Revised 11/15/65
By TNL N20-0047-0

where SYMBOL is either a simple symbol or a location counter notation (,,>, and ill. is
a numeric adjustment. The symbol is left-justified and the adjustment is right
justified unless the operand is flagged O. In this case or if the Analysis code contains
an 11 zone, the first 10 characters of the operand are moved into the first field, as
is always done with fields 2 and 3.

2. If the current control card is $ANALYZE, the scan also determines the nature of the
statement, whether indexing, relative addressing, indirect addressing, or complex
operands are being used. Flags indicating the presence of any of these functions are
placed in temporary storage locations in the record.

Whenever the dollar sign symbol ($) is found within the first operand, a switch is set.
If the first character of the first operand is a $, it is dropped and the remainder of the
symbol is left-justified in field 1.

3. If any reference options (cross or operand) are present on the $ANALYZE card, a
table is created containing the symbols which are present in the operand field. The
entries are variable length and are separated by record marks. A count of the
number of entries is made.

When a $ is found to be present within a symbol, a count of the number of characters
which precede the $ is placed within a field, the first position of which corresponds
to the first symbol, the second to the second symbol, etc.

Scan Routine -- Special Considerations

The following special considerations are made in the scan routine for particular languages:

1410 Autocoder. Whenever a $ is found in the first operand, the suffixing character, which
may be blank, is moved to the 10 position of the field, the $ is dropped, and the remainder
of the symbol is left-justified. Thus, the operand A$SYMBO L would appear in Field 1 as
SYMBOL ___ A. This facilitates cross-referencing in the Flowchart Program.

7040/7044 - 7090/7094 FAP/MAP. When a symbol contains a $ preceded by more than
three qualifying characters, the excess characters are dropped from the qualifier in the
symbol table. Because of field size limitations, a symbol may not be more than ten char
acters. Thus, the symbol ABCDEF$SYMBOL would appear in the symbol table as
ABC$SYMBOL.

1401 SPS. Although the SPS source card is of fixed format, the operands are assigned to
the fields as though it were of variable format. Thus, if there were a symbol in the A
field, a blank B field, and a D-modifier present, the D-modifier would appear in the
second field - not the third. When the D-modifier is in the first field, a special flag, D, is
as signed to the fir st operand flag.

705/7080 Autocoder. Prefixes, such as the prefix for indirect addressing (I), are not
treated as the first operand. The first operand is the one which follows and is the one
moved to field 1.

46

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

System/360 Assembly Language. A symbol with hexadecimal adjustment will be flagged
as relative and complex.
Each set has a eorresponding set of rules used by the Analysis program to scan the
operand field. Rules for each set are outlined below.

Set

A

B

c

D

E

S/360

Symbol

1. First character alphabetic
2. No special characters
3. No blanks
4. limit 10 characters

1.. Alphabetic, numeric, blanks
2. No special characters
3. L, H., R, S, I, modifiers
4. Limit 10 characters
5. @ actual address

1. At least one character must
be nonnumeric

2. Special characters permitted.
= @./

a. Limit 6 characters

1. A lphabetic and numeric
~~. Special characters

permitted ()
a. No blanks
4. Limit 6 characters

1. First character alphabetic
2. No special characters
3. No blanks
4. Limit 6 characters

1. First character alphabetic
2. No special characters
3. No blanks
4. Limit 8 characters

Operators

+ or-

+, -, *, /

+, -, *, /

+, -, *, /

+ or-

+,-,*,/

Operand
Separators

, or blank

,blank or)

, or blank

, blank or (

Fixed position

, or blank

After the operand scan the analysis code is again examined. If it is $, the program trans
fers to a routine which determines whether qualification* is beginning or ending. If it
is *, the program leaves the qualification mode.

~ualification is that function performed by some of the assemblers to uniquely define the
labels and operands of a section of a program by either prefixing or suffixing a character
or symbol to each of them. This function is initialized by the assembler instruction SFX
in 1401/1460 Autocoder and 1410/7010 Autocoder, HEAD in 1620 SPS, QUAL in 7040/
7044 MAP and 7090/7094 MAP, and HEAD or RED in 7090/7094 FAP. Qualification is
terminated by the same assembler instruction with a blank operand or, in the case of
MAP, by the :instruction ENDQ.

4'7

Form H20-0177-0
Page Revised 11/ 15/65
By TNt N20-0047-0

When the program is in the qualification mode, the label field and the first operand field
are qualified. For set A languages, this is accomplished by placing the suffixing character
in the last position of the label. For sets C and D, the prefixing character or symbol,
followed by a $, is prefixed to the symbol. In FAP or 1620 SPS prefixing is not done if
the symbol is six characters long. The first operand field is not qualified when a $ has
been found to be part of the symbol.

The flagged listing is printed if the current control card is $ANAL YZE without the CROSS
or OPERAND options. Unless these options are present, the sequence or page-line
number is moved from the card image to the sequence field in the DA records. The card
image is dropped from the records. These input records to the Flowchart Program are
written on tape 2.

If the language is 705/7080 Autocoder, any blanks within the symbol in the sort field, the
label field, or the first operand field are replaced with the special character colon (:).,
This character, which does not print on the 1403, is needed because blanks terminate
the scan of symbols in the Flowchart Program.

When the OPERAND or CROSS options are present, a file is created which is sorted in
order to produce the reference reports. Each record contains a sort field, the rightnlOst
position of which is called the sort code.

There is one record produced for every input source statement. This is called the source
record and has a sort code of O. An additional record is created for each symbol in the
symbol table. This is called a reference record. The sort code for these records
corresponds to the pOSition of the symbol within the table. The symbols in the symbol
table are qualified if the program is in the qualification mode.

48

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

If the current control card is $CHART, the Flowchart program is read in. If the current
control card is $ANALYZE with no reference options, the next control card is read and
control is transferred accordingly.

If the cUJ~rent control card is $ANALYZE with reference options, phase 11-- pass 1 of
Analysis is called.

Description--Phase II

Pass 1 (:3NALA, 3ANLB)

A three-tape sort is performed on the records created in phase 1.

Pass 2 (:3ANLC)

The DA format records input to this pass are of two two types: source records (which
represent a source statem1ent) and reference records (which represent an operand reference
to a labeled source statement). The source records are distinguished by the fact that they
have a zero sort code. During this pass, two records are maintained in core--one in an
input and the othE~r in an output area. The first records on the incoming file will contain a
blank sort field (not considering the sort code as part of the sort field). These records
represent those source statements which were unlabeled.

The output file created in this pass has sequence numbers in the sort field. For each in
coming reference record, the card image of the last source record is written out with the
reference record's own sequence number and sort code in the sort field.

Records are read from tape unit 2 into the input area. Source records are moved to
the output area. When the symbol in the sort field of the input record is nonblank and the
CROSS option is present in the $ANALYZE card, a line of the cross-reference dictionary
is printE~d. otherwise, the serial number in the input area is moved to the sort field of
the output area and the output record is written into tape unit 3.

If the input record is a reference record, the symbol in the sort field is compared with the
label field in the output area. If they are not equal, the symbol in the input area is a virtual
symbol-·-that is, no corresponding label was found in the source program being analyzed,
in which event a new record is read in. When the symbol in the input area compares equal
with the label in the output area, the sort code in the input area is moved to the sort code
field in the output area. If the CROSS option is present, a reference line is printed on the
cross-reference report. If the OPERAND option is present, the serial number in the
input area is moved to the sort field in the output area, and the output record is written
into tape unit 3.

Pass 3 (3ANLD, 3ANLE)

A three,-tape sort is performed on the sort field of the tape generated in pass 3.

49

Form H20-0177-0

Page Revised 11/15/65
By TNL N20-004 7-0

Pass 4 (3ANLF, 3ANLG)

At the beginning of this pass tapes 2 and 3 are rewound. A record is read from unit 3. If
the sort code is zero, a line of the flagged listing is printed. The original sequence
number in the card image is moved to the sequence field unless the record is transparent.
For the set B languages, any embedded blanks in the label field, field 1, or the sequence
field are replaced with the special character colon. The card image is truncated from
the DA format record, which is then written into unit 2.

If the sort code is nonzero, a reference line is printed on the flagged listing with operands
report and a new record is read in. At end of file, if the current control card is not
$ANALYZE, a new control card is read and control is transferred accordingly.

System Flow

System Tape

PASS 1

PASS 2

Flagged Listing

1403

Analysis--Phase I

Card Image Source Tape

3ANAA
3ANAU

3ANAV
3ANA9

1401

1401

50

$ANALYZE

Operation Code
Frequency Report

1402

J1403

Systems Tape

PASS 1

Systems Tape

C51

PASS 2

PASS 3

PASS 4

DA Tape Input to
Flowcharter

Analysis-'·Phase II

Input/Output Description

Input

DA Tape

3ANLA
3ANLB

3ANLC

3ANLD
3ANLE

3ANLF
3ANLG

Tape Sorted DA Tape

Cross Reference Report

Sorted Flagged
list Tape

Flagged listing 1403

~

1. Card reader input filE:--contains DA System control cards.

1403

2. Source program tape file--unit 2 or 3--contains assembly language statements in
card image form as produced by the Update program.

51

Output

1. DA System format tape--unit 3--the coded representation of the source statements
used as input to the Flowchart program. The format is an 80-character record.

1-5 Serial number

6 - 17 Worldng area

18 - 22 Sequence number

23 - 32 Label

33 - 38 Mnemonic operation code

39 Analysis code

40 - 42 Position of operation code in dictionary

43 - 44 Operand codes

45 - 54 Operand 1

55 Plus or minus

56 - 60 Displacement of operand 1

61 - 70 Operand 2

71 - 80 Operand 3

2. Analysis reports file--produced on the 1403 and consisting of:

Cross-reference report

Flagged listing

Operation Frequency report

Operator control and error messages

Diagnostic messages

The format of the first three is shown by the sample problem.

52

FLOWCHART PROGRAM

Abstraet

The Flowchart Program is designed to generate a flowchart of an existing source pro
gram. The flowchart produced represents the gross logic of the source program and,
therefore, can be used as a guide for reprogramming til a higher-level language (for
example, COBOL or FORTRAN). '

The Flowchart Program scans assembly language statements which have been coded by the
Analysis Program and generates a language called Symbolic Flowchart Language (SFL).

SFL is then processed producing a detailed flowchart of the original program.

Description--Phase I

Pass 1 (4CHRA)

The input to pass 1 consists of DA System control cards and a tape which is either SFL or
a DA format tape from the Analysis Program. If the input is an SFL tape, con.trol is
passed to phase II immediately after processing the $CHART card. If the input is from
Analysis, pass 1 performs the following processing:

1. $S:8GMEN'I' cards (if present) are scanned to determine the segmentation to be
performed.

2. Each operation which was looked up in a table by Analysis is found in a corresponding
opc~ration table in pass 1 of Flowchart. The pass 1 operation table entries contain
a six-character code, which is, entered into the DA record and controls the processing
in the remaining passes of phase I.

3. The length of each statement is computed and entered into the DA record; an area
number is generated for each statement and placed in the DA record. All instructions
within a known length area are assigned the same area number.

4. Nonprocedural instructions, such as data defining and assembler control, are deleted
from the DA format tape.

Pass 2 (4CHRS)

The input to pass 2 is the DA format tape from pass 1. Pass 2 generates label dictionaries
used in passes 3 and 4 to reduce simple relative addresses of branch instructions.

The label dictionary is generated for each segment by entering the labels of all procedural
statements. Each entry in the label dictionary is 20 characters in length and consists of
(1) the label, (2) the area number for the instruction, (3) a label type code, and (4) the
forward and backward displacements in location counter units to the closest label or change
in area number.

53

If the input program is segmented, the label dictionaries are written on a work tape
(unit 2). When the program is not segmented, the label dictionary remains in core for
subsequent processing. After processing the last segment, control passes to pass 3.

Pass 3 (4CHRT)

The input to pass 3 is the DA format tape from pass 1 and the label dictionary from pass
2 for each segment.

Pass 3 processes all branch instructions with simple relative addresses. A simple
relative address has either of the two following forms:

Label±n

or

*±n

where "Label" is the symbolic address of some instruction, n is some numeric constant,
and * is the value of the location counter for this instruction.

If the relative address refers to the same location as a label already in the label dictionary,
no label generation by pass 3 occurs. Otherwise, pass 3 normally generates a label for
the instruction to which the relative address refers and inserts the generated label in the
dictionary at the correct position.

Pass 3, in addition, sets the type code for labels referred to by a subroutine call.

If the DA format input consists of only one segment, the expanded dictionary remains i.n
core for pass 4 processing. Otherwise, the expanded label dictionaries are written onto
tape (unit 3).

Pass 4 (4CHRU)

The input to pass 4 is the DA format records from pass 1 and the expanded label dictionary
from pass 3. Pass 4 completes the derelativization process by entering into the DA record
all labels generated in pass 3.

All simple relative addresses of branch instructions are processed in pass 4.

If the relative address refers to a label in the label dictionary, that label replaces the
relative address in the branch instruction. Otherwise, if the relative address does not
refer to any label in the label dictionary, the type of instruction is changed to a flowchart
EXIT type.

In addition, each branch to an instruction classified as a subroutine ENTER is changed to
a SUBRT type. Each instruction to which a SUBRT call occurs has its type changed to an
ENTER.

Output at conclusion of pass 4 are the derelativized DA format records.

54

Pass 5 (4CHRV)

The input to pass 5 is the derelativized record in DA format. Pass 5 uses the information
in each DA record to generate the SFL card images. Information associated with each
operation is used to determine both the type of SFL operation and the comment to be
generated.

Comments are generated by constructing the comment from a string of characters called
a comment skeleton. Co:mment skeletons designate which information is to be used from
the DA record i.n forming the comment, and also specify the additional words, such as
READ 'TAPE an.d COMPUTE, which are to be generated as part of the comment.

Each slegment produces an SFL program bounded by an SFL JOB and END card. The
SFL tape (unit 8) is then rewound and serves as input to the second phase.

Description --Phase II

Pass 1 (4CHTB)

This pass reads a Symbolic Flowchart Language program bounded by a JOB and END
statement. All commentary statements are flagged to avoid further processing, and are
not required again until the flowchart is generated in pass 8. The chart mode statements
are processed, expanded, and written on a work tape. Logical connector operations
(YES, NO, and GOTO) are combined with the box statement from which they exit. Final
page and matrix positions are established for each chart box. Comment inforrnation in
chart m.ode instructions 1.S analyzed for errors and arranged in a format for final printing.
The source program is also analyzed for logic errors such as multiple GOTO exits. The
source program is printed and/or punched, as specified by user options.

Pass 2 (4CHTC)

This pass reads the chart mode statements and constructs a table of labels with the page
and matrix positions at which each label is defined. During passes 2, 3, and 4, this label
table uses the major portion of core storage. If the label table overflows, an error mes
sage is printed and the segment is bypassed. The chart mode statements are not altered
in this pass.

Pass 3 (4CHTD)

Pass 3 reads the chart data and examines each statement to determine whether a logical
connection is bE~ing made to another symbol by the symbolic operand of a GOTO, YES, or
NO opE~ration. If so, the label table is searched and, if the label is found, the page and
matrix position of the label are inserted into the chart mode record. If the label is not
found, an error message is printed. If a logical connector refers to a label on a different
page, the label is flagged in the label dictionary as a label requiring the generation of an
off-page entrance arrow. The chart records are written onto a work tape.

55

Pass 4 (4CHTE)

Pass 4 reads the chart mode records into core and examines each record for a label
definition. When a label is encountered in the record, the corresponding label table entry
is examined to determine whether an off-page entrance pointed arrow is required for this
label. A flag is then set in the record establishing whether a round or pointed arrow
entrance is to be generated for the record. The modified chart records are written onto
a work tape.

Pass 5 (4CHTF, 4CHTG)

This pass sorts and prints the label table, noting the page and matrix position at which
each label is defined. Labels which are defined more than once or have not been refer
enced by a connector operation are flagged. All references to a label are also printed
by passing over the chart mode records and saving the page and matrix position of each
reference. This is the last pass in which the label table is used.

Pass 6 (4CHTH)

This pass reads the chart records into core, rearranges 30 records at a time into row by
column order, and blocks the output records by three, corresponding to a chart row.
These records and the commentary statements are written onto a work tape.

Pass 7 (4CHTI)

Pass 7 reads the chart data into core one page at a time (30 boxes or ten physical recordf])
and constructs an internal matrix table. Several passes are made on the matrix table
which analyze possible connector paths between boxes. A line table is constructed whi.ch
contains flags representing different segments of each printed line. The flags contain all
information required to generate the skeleton portion of the chart page--that is, the boxes,
lines, and arrows. The line table information for each page is written onto a work tape.
At this point, one of the work tapes contains line information pertaining to the flowchart
and another contains comment information pertaining to the flowchart.

Pass 8 (4CHTJ)
,

This pass reads the line and comment records to generate a flowchart. For chart mode
pages a print line is formed from the line table information and the comments are inserted
into each box. The labels and matrix positions are also inserted into the print lines as
required.

56

Systenl Flow

System Tape

(

Unit
, 1

PASS 1 System Tape

PASS 2

~
Expanded Dictionaries Tape

(if multiple segments) G
Unit

3

System Tape

PASS 4

PASS 5

Flowcharter--Phase I

4CHRA

4CHRS

4CHRT

DA Tape from
Analysis

1401

$SEGMENT Cards

1402

Segmented Text Tape

Label Dictionaries Tape
(If multiple segments)

Segmented T ex t Tape

Expanded Dictionaries Tape

Segmented Text Tape

1401

57

System Tape

System Tape

PASS 4

System Tape

PASS 5
System Tape

PASS 6

System Tape

System Tape

Flowcharter--Phase II

SFL Input from Phase I

4CHTE

4CHTF
4CHTG

4CHTH

4CHTI

Commentary
Mode Records

1401

Chart and.
Commentary
Mode Records

1401

1401

1401

58

Print SFL

Chart and
Commentary
Mode
Records

Printed Label Table

1403

1403

Commentary
Mode Records

a Chart and
Unit Commentary

4 Mode Records

Printed Flowchart

:J'~3

Input/Output Description

Input

1. DA System format tapes. The format of the records of phase I of Flowchart is the
DA System format described in the Analysis.. The worldng area is used by the Flow
chart as follows:

Column Usage

6 - 8 Not used

9 1401/1410 chaining condition

10 Pass 1 processing code

11 Pass 1 length code

12 - 14 Instruction length

15 - 17 Area number assigned to instruction

2. SFL input file--unit 3. This tape format is generated in phase I of Flowchart to be used
as input to phase n. The 80-character record format is:

Column Usage

1 - 5 Sequence number

6 - 15 Label

16 - 20 Operation field

21 - 72 Operation field

73 - 80 Ignored

3. Card reader file. This file contains DA System control cards.

Output

1. Card punch output file--generated by an option. This is the Symbolic Flowchart
Language program generated by phase I. The SFL format is described above.

2. Syrnbolic Flowchart Language tape file--unit 3--always generated when the input is an
assembly language program. The contents of this file are the same card images as
the card punch output file.

59

3. Flowchart file--produced on the 1403 and consisting of:

a. The flowchart

b. A cross-reference dictionary of flowchart labels giving their page and chart
locations

c. A printout of the Symbolic Flowchart Language program

d. Operator control and error messages

e. Diagnostic messages

The record formats for chart and commentary mode records created internally in Flow
chart phase II are as follows:

Chart Mode Record

In pass 6 these are blocked three to a physical record.

Position

Position

Position

Internal
Seq. No.

o 1-5

Statement
Label
13-22

Exit 2
Page No.

122-
125

For chart mode records position 12 has the following meaning:

OP CODE FUNCTION

E EJECT
J JOB
N SKIP
S SPACE
Z END
0 NOTE
1 BLOCK
2 10
3 DECm

60

Symbol]
Text

28-92

Exit 21
NoorY~

128-
130

OP CODE

4
5
6
7
8
9

Commentary Mode Records

Internal Op
0 Seq. No. Code

Position o 1-5 6

FUNCTION

MODFY
PREDF
TERMINAL OPERATION
GOTO
SUBRT
YES or NO

=11= of lines
in space Page Commentary Information
operation No.

7-8 9-12 13-69

Not
Used
70-137

For comLmentary mode records position 6 is either an * or S to indicate comments or
spacing, respectively.

The record format for line records is as follows:

Line Type Record

Flags Flags Flags
for for for

I

Line Line Line
Page Coor- Gen- Page Coor- Gen- Page Coor- Gen-
No. dinate eration No. dinate eration No. dinate eration

Position 1 4 5-6 7 8-40 41-44 45-46 47 48-80 81-84 85-86 87 88-120

Each box environment consists of a 16 by 40 character print position matrix. These flags
are used for line generation within each box environment. The line information records
are blocked three to a record. Each physical record contains information for a complete
row of the flowchart.

Additional Flowchart Options

During checkout of the DA System it was desirable to implement four additional $CHART
card parameters which may prove valuable to a system user. These parameters may be
specified. in any order along with DECK and LIST options.

61

Parameter Function

NOCHART

NOSTOP

NOCROSS

NOSAVE

To bypass the generation of the flowchart. The
listing and/or deck of the SFL Program may be
obtained, but no cross-reference list or flow
chart is produced.

To suppress the stopping which occurs at the
beginning and ending of a run to mount the
special paper carriage tape.

To suppress the printing of the flowchart
cross-reference list.

To prevent the normal rewind-unload operation
on the SFL tape unit 3. When this option is
used, the SFL tape is considered a work tape
and only rewound.

VERIFY PROGRAM

Abstract

The Verify Program is designed to help the programmer determine that the source deck is
in agreement with the current object deck. It processes an object program deck generated
by the following assembly languages:

1401 SPS
1401/1440/1460 Autocoder
1410/7010 Autocoder
705/7080 Autocoder
7070/7072/7074 Autocoder

Verify generates a storage map and identifies overlay patches.

Description

Pass 1 (5VERA)

The $VERIFY control card is checked for the presence of options. If the LOADER option is
present, the number of cards of the smaller standard loader for the machine specified is
read in, and the next card is checked to see whether it is a loader card. If it is, the number
of cards to equal the larger standard loader are read in.

The lengths of the standard loaders are:

1401/1440/1460
1410/7010
705/7080
7070/7072/7074

3, 4, 5 (speCial testing)
5, 9
5, 9
5, 10

62

Clear storage and bootstrap cards are read in for the 1401 whenever present. The loader
option is not needed.

Pass 1 then branches to the subprogram written for the particular machine and language
combination speeified. The follOwing are separate subprograms:

1401 disk AUTO
1401 tape AUTO
1401 SPS
1410/7010 AUTO
705 AUTO
7080 AUTO
7070/7072/7074 AUTO

DISK (option)
TAPE
RSPS
R1410
R705
R7080
R7070

Each subprogram performs the same general function: It reads the object program and
places the program on tape basically in the format of the assembly listing for the machine
and language specified. The object program is read in and processed one card at a time.
The card sequence number is picked up first, then the card is tested to see whether it is
a special type--executive, transfer control (705/7080), or end card. If not, the high-order
location of the program data on the card is picked up, decoded if necessary, and stored in
the record area. The data itself is then processed and set in the tape record area, one
instruction at a time, and the record is written on tape.

If the data can be determined as other than an instruction, it is picked up in specified
segments (12 for 1401 through 1410, 5 for 705 and 7080). The method for picking up the
data is different in each subprogram, because of the format differences of the object pro
grams. The 1401 subprograms share a common data processing loop, which is set up as
a separate subprogram. The three 1401 subprograms use the same subprogranl to decode
locations called DECODE, and the R705 and R7080 subprograms both use a subprogram
EXPAND to determine the location and ASU for each instruction.

Special procedures implemented in the individual subprograms are described as follows:

All 1401 and 1410. Groupmark/wordmarks are denoted as GMWM's. A groupmark which is
found as a d-modifier is printed as GM. When an execute or end card is read, one record
is written with the execute instruction and no locations.

TAPE and RSPS. If no sequence numbers are present on the deck, sequence numbers are
generated by VRiUFY for the tape records. If any cards are present between an execute
card and its bootstrap card, they are printed out at the time they are read with a message
identifying the execute card by its sequence number.

R705 and R7080. Expanded card format is accepted and processed in the same format as
condensted cards.. Constant data format differs from instruction data. The number of
charactE~rs in the record is placed in the ASU position.

R7070, H705 and R7080. When a transfer control 9 execute, or end card is read, each in
struction on the card is processed with locations ascending by one from a base of zero.

63

When a $DAEND control card is read in, signaling the end of the deck, control is returned
to the main pass, which writes a tapemark on the tape with the data on it, rewinds the tape,
and calls in pass 2.

Pass 2 (5VERB, 5VERC)

This pass of VERIFY is the DA Sort Program, which sorts the tape records on the 10-
cation field to determine identifiable overlay patches.

Pass 3 (5VERT)

The mnemonic-actual op code dictionary used by the machine and language specified is
read into core from the DA Systems Tape. If the 1410 is specified, a special subroutine
is executed which checks for the need of word separators in the table, and creates them
when flagged. The heading record is read from the object program tape and set up to be
printed at the top of each page. The binary points needed for the table lookup are corn
puted.

The program then processes the sorted object program tape. A record is read in and
checked to determine whether it has been identified as constant data by pass 1. If so, it
is printed as read in without a mnemonic op code. If not, processing continues. If the
machine specified is one of the 1400 series, the actual op code is tested for certain
mnemonics before going through the table lookup. For 1401/1440/1460, the mnemonics
are BCE, BBE, and two special I/O's. For the 1410/7010 they are BCE, BBE, CC1,
CC2, BEX1, and BEX2. If the actual code is one of the mnemonics tested, that
mnemonic is printed with the record. Otherwise, the actual op code goes through a table
search to find the mnemonic. If a mnemonic is found, it is printed with the record. If
not, the mnemonic code is left blank and the record is printed. In the case of the 1401/
1440/1460, the data is placed in the format of constant data.

The print subroutine checks for execute or transfer control cards and ejects to a new page
after one is encountered. On each new page the heading is printed. Each data. record is
tested to determine whether it is an overlay patch. If it can be so determined, a flag o~
is printed just left of the location. When the tapemark is sensed on the object prograrn
tape, the page is ejected, the $DAEND card is printed on the new page, and control is
returned to 1CONA.

64

System Flow

PASS 1

PASS 2

PASS 3

15VE~

5VERB

5VERC

5VERT

1401

1401

1401

65

Control Cards and
Object Program

Storage Map of
Object Program

1402

Work Tape

1403

Input/Output Description

Input

The card reader file contains DA System control cards and standard object decks
generated by:

Output

1401 SPS
1401/1440/1460 Autocoder
1410/7010 Autocoder
705/7080 Autocoder
7070/7072/7074 Autocoder

The output file from the Verify program is produced on the 1403 and consists of:

1. A storage map of the object program

2. Operator control messages

3. Diagnostic messages

Tape Record Formats

Tape record formats created in Verify pass 1 for processing in pass 3 are:

1 10 19 25 41

~T
1401/1440/1460 Page Heading Record

1 4 10 15 17 23 25

~ c I~
T1

L LtpCATI INSTl C1 A.
Y1

j 1 1 i

1401/1440/1460 - 1410/7010 Tape Record Format

66

1 10 18 25 41 46

~ _____ ~ __ I~A_DD __ R __ ~I_IN_S_T_R_U_C_T_'D_N ______ ~I_CA_R_D~I~I
1410/7010 Page Heading Record

1 18 23 26 31 43 46

~ ___ ----L--I LOC----'-I°-l---~ ISU _-,--IA_DDRE~_S ~I'~ERII
705 Pag:e Heading Record

1 4 15 17 23 26 29 35 36 40 43 46

~
~ ~ S c~

C.
L \} A L¢CAT 5 R u ADR55
Ys 5 5 ~5

i 1 1 .1. .1 1- I'

705 Instruction Tape Record Format

1 15 17 23 27 36 41 43 46

C_~pv·1 L¢CAT. I I~I I ~TA II CD. II

705 Constant Data Tape Record Changes

1 18 24 30 34 41 46

E ___ ---'I"---LOC ---,---rNs~~ls_-----,-U IAD_t>'R ---,---15t~~11
7080 Page Heading Record

67

1 4 15 17 2324 2930 3233 39 41 44 46

~p ~
Su ~ l..

L¢CAT6 * e A INST (b AVR <D ~
to

""
,

D(Q

1 1 1- 1 1 c1 1

7080 Instruction Tape Record Format

1 15 17 23 29 33 38 41 44 46

7080 Constant Data Tape Record Changes

1 8 19 28 46

II
7070/7072/7074 Page Heading Record

1 4 8 12 15 17 23 25 27 37 46

d ~p. ~ ~
L¢CAT7 INST7 C'1 R ~ f)? r'l

1 1 3- 1

7070/7072/7074 Tape Record Format

DOCUMENTATION AIDS CONTROLLER

Abstract

The Documentation Aids Controller consists of:

1. Resident I/O routines. These routines remain in storage during execution of all sys
tem programs. They perform all system I/O including calling in of the programs on
the system tape. It is the first record on the system tape.

68

2. Program Selector (leONA). This program is automatically called in by the
Resident I/O routine at the beginning of a system run. It reads and analyzes the
$DAJOB card and calls the next system program on the basis of this analysis. This
program and its header are the second and third records on the system tape.

Resident I/O Routine Description

Tape

Entering at SYSrO, the address of the constant following the branch to SYSIO is stored.
The content of the index register 3 is saved and restored at the end of the I/O. The ad
dress of the constant is moved to index register 3. The constant is moved into the I/O
instruction and the I/O error counter is set to zero. If the I/O instruction is a write, the
error counter is set to 7 so that trying the operation three times will cause the counter to
overflow.

The I/O is performed and the address of the terminating groupmark/wordmark is stored
for use in other programs. The exit is initialized to the address of the instruction follow
ing the I/O constant, index register 3 is restored, and control is returned to the user.

If a transmission error is encountered during the I/O, the tape unit is backspaced, the
error counter is incremented, and, if no arithmetic overflow occurs as a result of the
add, the I/O is reexecuted. If overflow does occur and the r/o is a read, the machine
stops at halt 1. Pressing START causes the operation to be retried ten more times. If
the operation is a write, the tape is skipped forward and the I/O reexecuted.

Printer Page Overflow

This routine may be entered directly by one of the system programs or it may be entered
from the print routine as the result of printing the last line on a page.

Entering at EJECT stores the return address. The overflow switch is turned on. This
switch may be tested by the system program if special spacing or multiple heading lines
are required. The line counter is reset to 01, and the page counter is incremented and
moved to the print area. The heading information is moved out of the punch area to the
print area. The carriage is restored to channell and the print routine is entered at
1NCRLC to print the heading.

Print

Entering the print routine stores the return address, turns off the overflow switch, and
increm~9nts the line counter. The contents of the print area are printed and the line count
is compared with the maximum. If the line count is less than maximum, control is re
turned to the user after the print area is cleared.

If the line count is equal to the maximum, control is given to the EJECT routine.

69

Read

The return address is stored, a card read instruction is issued, and control is returned
to the user.

Punch

The return address is stored, a card punch instruction is issued, and control is returned
to the user.

Message

This routine is used to print messages to the operator. The return address is stored~J
the carriage is restored to channell, and the program branches to PRINT. On re
turning from PRINT the carriage is restored to channel 1 to enable the operator to read
the message, and control is returned to the user.

Program Call

All DA System programs are called by executing a B SYSLNK followed by the fifth-position
identification of the desired record. The mode of I/O is changed to "Load" since the sys
tem tape is written with wordmarks. The next available record on the system tape is
read (using the tape I/O routine), and identification in this tape record is compared with
the constant following the branch to SYSLNK.

If the compare is equal, the requested program is the next record on tape. An unequal
compare indicates the program is farther along the tape, and the tape read and compare
routine is again executed. An end-of-file condition during this loop indicates a systenl
error; the program called was not on the tape between the program call and the terminating
tapemark.

When the correct header is found, the addresses necessary for loading the program are
extracted. The tape I/O constant is initialized and the program is read in using the tape
I/O routine. The I/O mode is changed back to "Move" and the first instruction in the new
program is executed. The header information remains in the controller area.

Program Selector Description (leONA)

The Program Selector reads the first card in the reader. If it is a $DAJOB card, the
operands are extracted using a left-to-right scan technique. The program identification
(third operand) is moved to the punch area, where it is used for page headings. The
other two operands are compared with a table of machines and languages. When an equal
compare is made, the proper code is put into the machine or language switch.

When all operands have been extracted, the switches are checked for blanks and for
permissible machine language combinations.

70

If the $DAJOB card is correct, the next card is read. If that card is a $VERIFY, the
first phase of the Verify Program is read in. If it is a $SYSTEM, the System Main
tenanCE) is called. Any other card causes the Update Program to be read in.

If the first card of the input deck is not a $DAJOB card, a message is printed and card
reading; is continued until a $DAJOB is sensed or end of file is detected. At end of file,
END OF RUN is printed.

If the $DAJOB card is punched incorrectly, the second card is read. If this card is a
$SYSTEM, the System Maintenance Program is called. If it is not a $SYSTEM, an error
message is printed and the machine halts.

System Flow

$DAJOB

1402

System Con-
troller 1401

lCONA

DA SYSTEM MAINTENANCE PROGRAM

Maintenance of the DA System tape is performed by a program contained on the system
tape. DA System programs may be added, patched, or deleted from the systelTI tape
through the use of the System Maintenance Program (6CONA).

The purpose of the Systeln Maintenance Program is to place DA System records on the
system. tape in the proper format for the System Read Routine. The System Maintenance
Program extracts pertinent information from control cards supplied with the program to
be added or patched .. The control card information is written on the tape in a header
record. The program to be added or patched is then loaded into storage using a modified
Autocoder loader and the final core load record is then written on the tape immediately
following its header record.

The System Maintenance Program also has the capability to delete entire programs with
their headers, to copy the system tape, and to list the header records.

71

System Tape Format

The system tape consists of coreload records preceded by their header records. Each
program or program segment has a header record and a coreload record. These are
placed on the tape by the Systems Maintenance Program.

TAPE FORMAT:

Self-loading
record
containing I I I I I

,,-_~_~s_ut_t~_:_e_R_e_a_d----J ~ I HE~DER I~ ,--_:_e_~_O#_~_--I ~ I HE#~DER I ~ '--__ ~ l ~ I
Prog. Seg. Format: Up to 7200 char.

----------~--------------------

HEADER FORMAT:

where:

low-core address

starting address

high-core address

Low-Core
Address

Starting
Address

High Core
Address

Program
Identification

3 3 3 5 = 14

is the three-character representation of the lowest storage
address occupied by the core load. This value must be
greater than 800.

is the address of the first instruction to be executed.

is the highest storage address occupied by the program
plus one.

program identification is the identification of the coreload. All records must
have a unique program identification. Program identifieations
are assigned in ascending collating sequence on the system'
tape.

System Maintenance Control Cards

The System Maintenance Program is called in the same manner as other DA System pro
grams. A maintenance deck consists of a $DAJOB card, a $SYSTEM card which calls the
maintenance program, changes to be made to the system, and finally a $DAEND card.

The format of the $SYSTEM card is:

Cols. Contents

1 - 7 $SYSTEM

72

The maintenance process is completed when the $DAEND card is encountered.

The cards between the $SYSTEM and the $DAEND cards are the changes to be made to
the system tape.

To prepare a coreload record to be added to the system tape, the user must punch an
$ADD control card with the following information and place it in front of the tape Autocoder
self-loading object deck.

Cols. Contents

1 - 4 $ADD

10 - 12 low-core address

13 -·15 starting address

16 - 18 high-core address

76 - 80 program. identification

In order to make all programs self-contained, the following instruction sequence should be
placed in the front of each source program to be added:

DC
DC
DC
DC

@$ADDbbbbb@
+()RG
+START
+ffiGH

This sequence wHI generate the required $ADD card for each record; columns 76 - 80 will
pick up the program identification from the job card.

0RG is the low-core address label

ST ART is the starting address label of the program

ffiGH is the high-core address label

ffiG H may be defined by including:

LT0RG*t-l

ffiGH EQU *+1

END

at the end of the program.

73

A $ADD card can be used to insert a new record on the system tape or to replace a r(;)cord
with the same program identification.

To delete a program from the tape, the user must punch a $DELETE control card with the
following information:

Cols. Contents

1 - 7 $DELETE

76 - 80 program identification

To patch a program on the tape, the user furnishes the patch cards in tape Autocoder self
loading object deck format preceded by the following control card:

Cols. Contents

1 - 6 $PATCH

76 - 80 program identification

Addition, deletion, and patching can be performed on the same System Maintenance run if
the control cards are in order by program identification. Patching is never performed on
a record being added or deleted. A record may be deleted and added on the same run ..

To copy the system tape, the user puts no changes between the $SYSTEM and $DAEND
cards. Whenever maintenance or copying is performed, the header records are printed.

$DAJOB

PATCH
CARDS

$DAEND

Sample deck setup for DA system maintenance run. The $ADD,
$DELETE, and $PATCH must be in sequence by their identification
in columns 76 - 80. The object cards for adding or patching
must follow their corresponding $Control card.

74

Descrtption

The System Maintenance program is executed in two phases. Phase I reads the input file
from the card reader, performs diagnostics to check for errors, and prepares the input to
the seeond phase. Phase II reads the tape written during phase I and performs the oper
ations requested in the control cards.

Phase I

A card is read, moved to the print area, and checked for a $ in column 1. If there is no
$, an error message is printed and the next card is read. If the card has a $, it is
checked to see whether it is a $ADD, $DELETE, $PATCH, or $DAEND. If it is none of
these, an error message is printed and the next card is read.

If the card is a $ADD, the addresses in columns 10 to 18 are checked for blanks, zones in
the tens position, and to see that they are within the maximum and minimum limits. The
ID in columns 76 to 80 is checked for validity and sequence. If any of these errors are
detected, the appropriate message is printed; whether or not there are errors, the
WRITE3 routine is entered.

In WRITE3, the record is written onto the work tape, and, depending upon the type of con
trol card being written, control is turned back to the control card or load card read
routine.

If the c:ontrol card is a $PATCH, the path followed is the same except for two routines.
Since there is no address used in the $PATCH card, there is no address checking. Control
information is E~xtracted from the program header on the system tape as the tape is being
checked for the presence of the record.

When a $DELETE card is processed, the only checking done is the validity and sequence
of the ID and the presence of the program on the tape.

The $DAEND card requires no checking, so it enters a routine that writes the ending
record on the work tape and initializes for Phase II.

After a. $PATCH or $ADD card is processed, the routine to read and check load card,
READIJ), is entered. After each card is read, it is checked to see whether it is a sys
tem control card, which would terminate loading 9 a clear storage or bootstrap card,
whose presence is indicated on the printer, or an end or execute card, which would also
terminate loading. When loading is terminated, control is returned to the control card
read routine.

If the card is none of these, it is checked for groupmark/wordmarks, word separators, load
address outside the range of the program, and erroneous load instructions. Any of these

75

errors are noted on the printer. If the load card passes all the checks, the loager in
structions are modified to adapt them to tape, and the image is written onto the work
tape. Control is returned to the load card read routine until a card is read that causes
termination.

$DAEND card causes control to be given to the REWIND routine, which tapemarks and
rewinds the work tape, checks to see whether any diagnostic errors were detected, and
loads Phase II from its hold area to low core, where it is executed.

If any errors were detected, the machine halts after printing a restart message.

Phase II

The work tape is read in and the mode switch set from the control record. An A indicates
add mode, P indicates patch, D indicates delete, and C indicates copy. (The $DAEND
causes the mode switch to be set to C, so the remainder of the system is copied without
modification. If the first card is the $DAEND, the whole syste:m is copied.)

The old master system tape is composed of header records and master records written
alternately. A switch is maintained so that the composition of the next record on the
tape is known at any time.

As the first header is read, its ID is compared with the ID in the change file record from
the work tape. An equal compare indicates that the program to be modified has been
located. If in add mode, the header and program record are skipped on the old master,
and the new header and program record are written on the new master. The header
information is extracted from the change file record, and the bootstrap routine in the
control record is branched to begin the building of the program record in core storage.
This bootstrap routine reads in the next record from the change file, which is a load
record. This load record operates in the same manner as the normal Autocoder card
load record, except that when it has completed loading and setting wordmarks, it reads
the next record from the change file. This process continues lUltil an end record is
executed. This end record was written on the change file as a result of detecting an end
card, execute card, or system control card in phase I. It causes loading to be termi.
nated and the program to be written onto the new master tape.

If a high compare results while reading the old master tape, the process is the same for
add mode, except that no skipping is done on the old master.

In patch mode, the process is again the same, except that the old program is read into
core before loadil)g is begun from the change file.

In copy mode, each header and program record is copied to the new master.

In delete mode, the copy process is duplicated, except that programs to be deleted are
not copied.

When end of file is sensed on the old master, the new master is tapemarked, all tapes
are rewOlUld, and a list of the headers on the new master is printed.

76

Systeln Flow

$DAJOB

6CONA

PROGRAM MODIFICATION AIDS

General Modification Aids

1401

Upclated
DA System Tape

Old DA System
Tape

The TIlodular system design of the DA System enables the user to readily modify any
section. This section contains information to assist the user in making modifications.

Programs tUlder control of the DA System use the following areas of storage, as
indicated:

• 01 -- 80 -- are used as a card read-in area

• 81 -- 86

Position 81 is not used by the DA Controller.

77

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

Position 82 contains the following code for the corresponding machine plUlched in
the $DAJOB:

0 System/360
1 1401, 1460
2 1440
3 1410, 7010
4 1620
5 705
6 7080
7 7070, 7072, 7074
8 7040, 7044
9 7090, 7094

Position 83 contains the following code for the corresponding language plUlched in
the $DAJOB card:

0 BAL
1 SPS
2 AUTO
3 BASIC
4 MAP
5 FAP
6 SFL
7 FAL

Position 84 is used as a PAGE OVERFLOW SWITCH. It contains a wordmark when
ever the standard heading is printed.

Position 85 contains a wordmark whenever an $UPDATE card is encountered. The
wordmark signifies that tape unit 3 should be saved. Position 85 contains the tape
unit used for Update output, either 2 or 3.

Position 86 of the communications area is not used by the Controller.

• 817 -- 99 (Index registers) can be used, but must be initialized by a housekeeping
routine and not at load time. They will not be disturbed between programs.

• 100 (Read/PlUlch check position) cannot be used.

• 101 -- 180 (punch area) is used to store the page heading data. The first character
is blank (101); positions 2 through 9 of the $Control card are moved into 102 to 110
to indicate the program name in the standard heading; 111 - 117 is blank. The next
54 characters (118 - 171) are the program identification taken from the $DAJOB
card. The last nine characters (172 - 180) are bbbbPAGEb.

If any program requires this area for punching or other purposes, the contents are
stored in a hold area before use and restored after use.

• 181 -- 195 is used by Controller when calling in a new program segment. If a GM
is used in 181, it is cleared before returning to the Controller.

78

• 196 -- 199 contains page number; will be ineremented by one on each EJECT.

• 200 -- 332.is the print area.

• 333 -- 799 (System Tape Read Routine area and Generalized I/O Routine area) cannot
be used. Lowest core location for ORG statement is, therefore, 800. ORG state
ment must be first statement in a program or Autocoder automatically begins in 333.

AU groupularks must be loaded without wordmarks, having the housekeeping routine
set the wordmarks in order to prevent premature tape I/O termination during the
tape-load process. This restriction eliminates usage of the G operand in the DA
statement. (The Controller does not allow groupmarks with wordmarks to be loaded.)

Each program must also clear its GMWM's before calling in the next program for
the same reason.

Wordmarks are placed in the following locations at the beginning of a run. Each
program in the system must restore them if they are disturbed.

001
087
092
097
101

High order of read area
High order of Xl
High order of X2
High order of X3
High order of punch area

No other wordmarks may be left in these I/o and index register areas.

Word separators cannot appear in the object deck. If needed, load as a 5-8 pooch
an.d add 0 zone in the program.

The Controller is used to call in a program, program segment, or overlay. The
user branches to a different entry point (400) and supplies the five-position identifi
cation of the segment wanted.

Example:

B SYSLNK
DCW @5VERA@

This would call in the first pass of the VERIFY program.

The equate statement SYSLNK EQU 400 must be present in the program.

When calling in a program, the Controller searches forward only; the segment
called, therefore, must not have been read before.

79

Input/Output Modification Aids

The Controller is used to perform all I/O functions, tape read/write, card reading, card
PlUlChing or printing. The system entry points are defined in each program with the
following statements:

statement

SYSIfD
READ
PUNCH
PRINT
EJECT

MESSG

EQU 500
EQU 781
EQU 789
EQU 747
EQU 704

EQU 660

Tape read/write
Read card
Ptmch card
Print line
Ej ect page and print

heading line
Printer operator message

To modify the system configuration (for example, to replace the card reader with a fifth
tape lUlit), the DA System I/O routine is replaced by a user-written routine in the resident
I/O program of the DA System. The I/O flUlctions and usage are described below:

1. Tape Read/Write. The necessary data is supplied as a five-position constant with a
wordmark in the high-order position:

Position 1 (high-order): Drive number (2, 3, or 4)

Position 2 - 4: Address of high-order of I/O area

Position 5 (low-order): Read or Write (R or W)

Example: ,2555 R

This causes a record to be read from tape 3 into the area beginning in 555.

The constant is in line after the branch to the entry point.

The follOwing equate statements are included in each program:

IOCON2
IOCON3
IOCON4

EQU
EQU
EQU

200
300
400

The complete entry is assembled as:

B SYSIO
DCW +IOCON3
ORG *-2
DC +IOARA
DC @W@

80

The origin statement (*-2) causes the location cOWlter in Autocoder to be decre
mented by two so that the address constant of the I/O area overlies the zeros of the
address constant of the tape Wlit number.

~ote: Tape instructions, other than read and write (rewind, backspace, etc.), are
done in the individual programs - not by the Controller.

All tape input/output is in move mode (without wordmarks).

2. Card Reading. The user branches to the system entry point:

B READ

The Controller reads a card and returns to the next instruction. Testing for last
card is not necessary, because the end of the card input to a rWl is indicated by a
$DAEND card.

3. Card Punching. The user branches to the system entry point:

B PUNCH

The Controller performs the card pWlch and returns to the next instruction.

4. Print a Line. The user branches to the entry point:

B PRINT

a,. The wordmark in 84 is cleared.

b.. The line count is incremented by one.

c,. When line count exceeds 57, the line is printed -- followed by a branch to eject.

d,. Clear storage and return.

Double spacing is effected by an immediate branch to print after return, since the
print area is cleared.

If required, LINTOT, indicating the number of lines per page at 659, may be
lTlodified. An A-B zone must be over the units position of the two-position I1NTOT.

5. Ej ect and Print Heading

A B EJECT will:

a. Set a wordmark in position 84.

b. Skip to Channel p on the printer.

c. Move the punch area to the print area.

81

d. Add 1 to the page cOlmt and move it to the print area.

e. Reset the line cOWlt.

f. Set to dQuble-space after printing.

g. Print heading line.

h. Clear storage and return.

A branch to EJECT is given before printing the control card image and before
starting any new report.

If it is required to print an additional heading line, position 84 is tested for a
wordmark to see whether an eject has occurred. This switch is turned off by the
next print.

6. Print Message to the Operator. Some messages require operator action and these
are produced by:

B MESSG

The carriage is restored before and after printing the contents of the print band.
The print band is cleared and control is returned to the program.

Dictionary Modification Aids

Much of the DA System processing depends on the content and coding of the assembly
language dictionaries contained as separate records on the system tape. It is possible
to modify the DA System processing and output by changing the contents of the dictionaries
which are assembled by 1401 Autocoder and reside on the system tape in the same mmmer
as all other system records. For each of the assembly languages processed, there are
four dictionaries on the system tape.

The first of the four sets of dictionaries is used by the Analysis program. Each dictionary
contains the BCD mnemonic of all operations in the assembly language and also one addi
tional character, which is a code used to specify the type of operation. The dictionaries
are arranged in ascending 1401 collating sequence order.

The second of the sets of dictionaries is used by the first phase of the Flowchart program.
Each dictionary contains a six-character code for each operation in the assembly language.
The six-character code controls the processing of each instruction during the first phase
of the Flowchart program. The dictionary is arranged in the same order as the first set
of dictionaries; that is, for each entry in the Analysis dictionary there is a corresponding
entry in the Flowchart dictionary.

The third set of dictionaries is used by the first phase of the Flowchart program to gen
erate the comments to be inserted in each flowchart box. Each dictionary contains strings
of characters called comment skeletons, which are used in conjWlction with the inforlua
tion in each DA record to form the comments.

82

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

The fourth set of dictionaries is used by the Verify program and contains the mnemonic
operation code and machine language representation for each entry.

System Records

The first set of dictionaries records 3ANLA (the first pass of Analysis) and consists of:

Record
3ANAE

3ANAF

3ANAG

3ANAH

3 ANAl

3ANAJ

3ANAK

Description
1401/1440/1460 Autocoder--SPS

1410/7010 Autocoder

1620/1710 SPS

705/7080 Autocoder

7070/7072/7074 Autocoder

7040/7044 --7090/7094 MAP-FAP

System/360 Assembly Language

The second set of dictionaries follows the record 4CHRA (the first pass of phase I of
Flowchart) and consists of:

4CHRB 1401/1440/1460 Autocoder--SPS

4CHRC

4CHRD

4CHRE

4CHRF

4CHRG

4CHRH

1410/7010 Autocoder

1620/1710 SPS

705/7080 Autocoder

7070/7072/7074 Autocoder

7040/7044--7090/7094 MAP-FAP

System/360 Assembly Language

The third set of dictionaries follows the record 4CHRV (the fifth pass in phase Iof
Flowcbart) and consists of:

4CHRl 1401/1440/1460 Autocoder--SPS

4CHR2

4CHR3

4CHR4

4CHR5

4CHR6

4CHR7

1410/7010 Autocoder

1620/1710 SPS

705/7080 Autocoder

7070/7072/7074 Autocoder

7040/7074--7090/'"1094 MAP-FAP

System/360 Assembly Language

The Verify dictionaries follow system record 5VERT and consist of:

5VERU

5VERV

5VERW

5VERX

1401/1440/1460 SPS--Autocoder

1410/7010 Autocoder

705/7080 Autocoder

7070/7072/7074 Autocoder

83

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

Analysis Dictionary Format

Analysis dictionary entries consist of a nmemonic operation code and an Analysis code.
The operation code, left-justified, and the Analysis code, right-justified, appear in the
operand field of the DC statements in 1401 collating sequence~

Sample Source Sk'ltement:

DC @ADD M@

All dictionary entries are six characters long except 3ANAJ and 3ANAK, which contain
seven characters.

Sample 3ANAJ Statement: Sample aANAK Statement:

DC @ ADD __ M@

A "y" in the last position of the 3ANAK DC statement indicates that indexing is
permitted with this entry.

Additions or modifications can be made to this source deck by inserting the correction
in the correct collating sequence and reassembling. If the operand field is to be scanned,
care must be taken that the format is compatible with the operand scan rules, which are
described in the Analysis Program description.

Any operation code not fOlUld in the dictionary is assumed to be a user macro and is
processed as such.

If the Analysis dictionary is changed, a corresponding change must be made to the
Flowchart Pass 1 Dictionary.

Analysis Codes

The Analysis code may be alphabetiC, numeric, or speCial characters. The Analysis
code T indicates the statement is to be considered transparent -- that is, that neither
the label nor the operands are to be scanned.

Special characters, except for blank, always mean that some exceptional operation is to
be performed. They are as follows:

Character

$

*
%

Definition

Indicates the beginning of Qualification Mode (for
example, SFX, QUAL)

Indicates the termination of Qualification (ENDQ)

Indicates the beginning of a macro definition (for
example, MACRO in 7090 MAP)

Indicates the termination of a macro definition (ENDM)

84

Charaeter Definition

Indicates a change from SPS to Autocoder or Autocoder
to SPS in 1401 Autocoder programs (ENT)

Flags 1401 SPS machine codes L and M.

For aU other codes, the zone portion indicates how to scan the operand, and the numeric
portion references the flag to be assigned to the statement on the flagged listing, as
follows:

. Zone

No zone

12

11

Charaeter

1

2

3

4

5

6

7

8

9

10

11

Instruction

Do not scan operand.

Scan the operand and split off the first field.

Scan the operand and do not split off the first field.

MACRO

Input/output

Data defining

Branch

Halt

Description

Assembler control

(unassigned)

(unassigned)

Branch in 7070/7072/7074 Autocoder to scan second
operand instead of the first

(no flag)

(no flag)

Flowchart Pass 1 Dictionary Format

The format of each entry in this set of dictionaries is:

DCW @ PLTNNN @

85

where:

P is a pass 1 Flowchart processing code. It is used to process specific instructions (or
sets of instructions) during pass 1. The codes used for Pare:

Code

o

1

2

3

4

5

6

7

8

Usage

No pass 1 processing.

If the instruction has exactly one operand, generate a.
GOTO flowchart operation. This is used for instruc
tions such as the 1401/1410 Autocoder H (halt) instruc
tion, which is either halt or halt and branch.

If the instruction has two operands, generate a GOTO
flowchart operation from the first operand. This is
used for 1401/1410 Autocoder instructions such as CS,
which may be clear storage or clear storage and
branch.

Switch operand 1 and operand 2, unless operand 2 is
blank. This is used to regularize certain statements
so that the target field of 1401/1410 arithmetic instruc
tions (for example, A, S, etc.) is in operand 1. This
code also processes chained 1401/1410 arithmetic
statements.

Switch operand 1 and operand 2.. This is used on
1401/1410 move instructions to place the target field
in operand 1. This code also processes chained
1401/1410 move operations.

This code processes 1401/1410 SBR instructions to
determine whether they represent a subroutine
entrance.

This code is used to generate a GOTO operation. Thi.s
is used for instructions which unconditionally generate
some type of flowchart box followed by a GOTO -- for
example, a 7090 TXI instruction which generates a
MODFY box followed by GOTO.

This code is used for 7040 and 7090 indexable transfer
instructions. If the transfer is indexed, the transfer
is changed to an EXIT type.

This code is used to expand the three-way 7090/7040
jump instructions (for example, CAS) into two DECID
operations.

86

Code

9

s

T

u

where:

L

T

This code is used to process the 1401/1440/1460
instructions W, P, R.

This code is used for the 7080 to switch operand 1 and
operand 3.

This is used for certain 1401/1410 I/O instructions to
distinguish between reading and writing on the basis of
the d-modifier.

This is used for 1401/1410 conditional branch instruc
tions which may be chained, for example, BCE.

is a code which is used to calculate the length of the
instruction. This code is also used to deterrnine
whether the statement is to be deleted; for example,
data defining instructions are deleted during the first
pass of the Flowchart program.

is a code which represents the type of SFL operation
to be generated by the instruction. The types are:

Code

0 BLOCK

1 10

2 MODFY

3 PREDF

4 HE CID followed by a YE S

5 DECID followed by a NO and EXIT

6 DECID followed by a NO and SUBRT

7 DECID followed by a YES or NO

8 START

9 ENTER

S WAIT

T HALT

U EXIT

V GOTe

87

Code

w

X

Y

JOB

END

SUBRT

NNN is a three-digit comment code nwnber. This nwnber repre
sents the conunent to be generated by pass 5 of the Flowchart
program.

Flowchart Pass 5 Dictionary Format

The third set of dictionaries is used by pass 5 to generate the variable field portion
(cc 21--72) of the SFL card. The comment code which was extracted from the pass 1
dictionaries represents an entry in a pass 5 dictionary. Each entry in a pass 5 dictionary
is a three-character address of the beginning location of a comment skeleton. Comment
skeletons are composed of two types of information: control characters and comment
words. A comment skeleton may begin with either a control character or comment word.
The last character of all comment skeletons must be the control character, blank.

Control Characters. Each control character is a single-digit with wordmark. The con
trol codes are:

o
1

2

3

4

5

6

7

8

9

Blank

+

Substitute Assembly Language Sequence Field

Substitute Operand Field 1

Substitute Operand Field 2

Substitute Operand Field 3

Substitute BCD Operation Field·

Substitute Special Field 1

Substitute Special Field 2

Substitute Special Field 3

Substitute 7080 Register nwnber

Substitute Special Field 4

Insert comma after following word or
character

Terminate skeleton

Insert immediately the follOwing character
(special characters or numbers)

Backspace the variable field pointer

Note: No blanks, as speCial characters, can be inserted in a comment skeleton.
The control character, blank, terminates the skeleton. All numbers 0 - 9 and

,special characters (collating sequence up to, but not including, A) are reserved
for control characters.

88

Comment Words. Each word of comment begins with a wordmark. A comment word
contains no blanks. Blanks are inserted automatically by the comment-processing
subroutine.

Special Usage of Comment Code. The three-character comment code for BLOCK gener
ation luay not represent a particular comment skeleton, but rather the way in which the
comment is to be formed and the processing to be performed in pass 5.

If the first character of the comment code is a zero, the three digits represent a true
comment code. If the virst character is not a zero, the digit represents a mode (that is,
a verb) to be entered into the BLOCK.

Character Mode

1 No mode

2 Compute Mode

3 Edit Mode

4 Move-to Mode

5 Set Mode

6 Reset Mode

7 Zero Mode

8 Shift Mode

9 Clear Mode

The second character is used to determine whether a storage location is changed by the
instruction.

Character

o

1

Mode

No storage locations are changed.

Operand 1 changed by this instruction.

The thi.rd character is used to perform pass 5 processing on certain instructions. For
example, when a 1401 compare instruction is encountered in pass 5, the third character
of the eomment code speeifies that the operands of the compare instruction are to be
saved jn special fields. At the occurrence of the subsequent test and branch instructions
(for example, BH), the saved operands may be printed as part of the. comment in the
decision box.

Verify Dictionary Format

Each dictionary entry is a nine-character literal defined with a DCW statement. The
first three characters are used for the machine operation code key and the last six for
its associated mnemonico

89

In all dictionaries if a nmemonic code cannot be specifically determined by the three'
character key alone, a general nmemonic is inserted to give all indication of the type of
operation. This general mnemonic is enclosed in asterisks; therefore, it cannot be :more
than four characters (three for 1410). Example: @LBR*I/O*-.@.

Individual format variations are described for each record.

5VERU. The machine operation code key is OND, where 0 is the machine operation code.

N is blank for all operations except those with a d-modifier and one or two operands" for
which it is an A (one) or B (two).

D is the d-modifier if any exists, blank if it does not. Example: @BASBE ____ @ ..

General
Nrnemonic

I/O Input/ output operation LBR, LBW, MBR, MBW

A few 1401 operations are tested in VERIFY itself and do not appear in the dictionary.
These are BBd, WBd, U** and K** (where ** is variable), which give BCE, BBE, I/O,
and I/O respectively.

5VERV. The 1410 key has the same format as the 1401. An exception to the standard
format is the d-modifier, which is a word separator (0-5-8 plUlch). Since the DA System
does not allow word separations in a table, 5-8 punches should be put as the d-modifiler
and an asterisk should be placed in the last position of the entry to signal VERIFY that
the d-modifier should be a word separator. This means that the mnemonic code can
have only five characters. Example: @DB~MRNWR*@.

A few 1410 operations are tested in VERIFY itself and do not appear in the dictionary.
These are BBd, WBd, F** and 2** (Where ** is variable), which give BCE, BBE, ce1
and CC2, respectively.

General
Nrnemonic

I/O

L

Input/ output operations

Lookup operation

MBS, MBC, MBR, MBS,
MBW, MBX, LBS, LBC,
LBR, BLS, LBW, LBX, UBA

TB, TB7

5VERW. The 705/7080 key is OSU, where 0 is the machine operation code.

SU is the storage unit associated with the particular mnemonic. If no particular SU is
aSSOCiated, 00 is placed in these positions. Example: @, 04LSB ___ @.

General
Nrnemonic

TRA

I/O

Transfer operation

Input/o:xtput operation

90

100, 000

300, 301

Form H20-0177-0

Page Revised 11/15/65
By TNL N20-0047-0

5VERX. The 70 rlO key format is SOP. S is the sign of the operation (+ or -). OP is the
machine operation code. Example: @+23ZA2 __ ._@.

General
l\tInemonic Machine Op Code(s)

B Branch on *busy +51

Q fuquiry control +54

PC Priority +55

ES Eaectric switch control :1:61, 62, 63

LN Stacking latch set on -61

LF Stacking latch res et off -62

DC Data channel control +93, 94, 96, 97

SC Sign control -03

ASS Additional storage control +04

FV IN.eld overflow +41

S# Shift control +50

S Coupled shift control -50

DA SYSTEM RECORD IDENTIFICATION AND F'UNCTIONS

ROUTThrE

Resident IIO

System Controller -
Program Selector

Update

AnalYSis

RECORD

OSYSR

1CONA

2UPDA

3ANAA
3ANAB

3ANAE

3ANAF

3ANAG

3ANAH

3ANAI

3ANAJ

3ANAK
3ANAQ

FUNCTION

Perform all System I/o

Reads and analyzes the $DAJOB card

Update Program

The type of source statement is deter
mined, and the DA format is generated

1401/1440/1460 Operation Code Dictionary

1410/7010 Operation Code Dictionary

1620 Operation Code Dictionary

705/7080 Operation Code Dictionary

7070/7072/7074 Operation Code Dictionary

7040/7044/7090/7094 Operation Code
Dictionary

System/360 Operation Code Dictionary
Produces Operation Code Frequency Report
for System/360 source programs

91

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

ROUTINE

Flowchart

RECORD

3ANAR

3ANAU

3ANAV

3ANA9

3ANLA

3ANLB

3ANLC

3ANLD

3ANLE

3ANLF

3ANLG

4CHRA

4CHRB

4CHRC

4CHRD

4CHRE

4CHRF

4CHRG

4CHRH

4CHRS

FUNCTION

For System/360 input, either the Flagged
Listing and an input tape to the Chart
program are produced, or an input tape
with reference cards is produced for3ANLA

The Operation Code Frequency Report is
produced for languages other than S/360

Performs same functions as 3ANAR for
languages other than S/360

Phase I cleanup

Phase I of sort

Phase II of sort

The Cross-Reference Report and an input
tape for 3ANLD are produced

Phase I of sort

Phase II of sort

An input tape to the Chart Program is
produced, in addition to a flagged listing
or a flagged listing with operands

Phase II cleanup

Phase 1. Pass 1. Segments source program

1401, 1440, 1460 Flowchart Operation
Dictionary

1410, 7010 Flowchart Operation Dictionary

1620 Flowchart Operation Dictionary

705,7080 Flowchart Operation Dictionary

7070, 7072, 7074 Flowchart Operation
Dictionary

7040, 7044, 7090, 7094 Flowchart
Operation Dictionary

Full OS/360 Assenlbly Language Operation
Dictionary

Pass 2. Builds label table from procedural
statements

92

Form H20-0177-0
Page Revised 11/15/65
By TNL N20-0047-0

ROUTINE RECORD

4CHRT

4CHRU

4CHRV

4CHR1

4CHR2

4CHR3

4CHR4

4CHR5

4CHR6

4CHR7

4CHTA

4CHTB

4CHTC

4CHTD

4CHTE

4CHTF

4CHTG

4CHTH

4CHTI

4CHTJ

FUNCTION

Pass 3. Expands label table with gener
ated labels

Pass 4. Derelativizes text using gener
ated labels

Pass 5. Generates SFL program

1401, 1440, 1460 Flowchart Conlment
Dictionary

1410, 7010 Flowchart Comment
Dictionary

1620 Flowchart Comment Dictionary

705, 7080 Flowchart Comment Dictionary

7070, 7072, 7074 Flowchart Comment
Dictionary

7040, 7044, 7090, 7094 Flowchart
Comment Dictionary

Full 08/360 Assembly Language
Comment Dictionary

Phase II. Housekeeping Record

Phase II. Pass 1. Scans SFL program

Pass 2, constructs label table

Pass 3, searches label table for connector
operations

Pass 4, flags off-page box entrances

Sorts and prints label table

Pass 5, prints cross-reference list

Pass 6, expands and rearranges chart
records

Pass 7, constructs line tables

Pass 8, generates flowchart

93

ROUTINE RECORD

Verify 5 VERA

5VERB

5VERC

5VERT

5VERU

5VERV

5VERW

5VERX

System Controller 6CONA

FUNCTION

Pass 1, Object program to tape

SORT3, pass 1

SORT3, pass 2

Pass 3, mnemonic table lookup and
generate report

1401, 1440, 1460 Mnemonic Operation
Code Dictionary

1410 Mnemonic Operation Code
Dictionary

705/7080 Mnemonic Operation Code
Dictionary

7070, 7072, 7074 Mnemonic Operation
Code Dictionary

System maintenance routine

APPENDIX TO PROGRAMMER'S INFORMATION

Sort Program

The DA Sort Program utilizes three tape units and is based on the Fibonacci number
series principle. In the Fibonacci series, each entry is equal to the sum of the previous
two entries (0, 1, 1, 2, 3, 5, 8, 13, 21, etc.). By plaCing strings on the input units so
that their numbers are adjacent entries in this series, the nwnber of times a record
must be passed through during merging is held to a minimum. This is superior to other
systems particularly when there are fewer than four I/O units available during merging.
The DA Sort Program is used twice in the Analysis Program and once in the Verify
Program; it is executed in two phases.

In phase I, the unblocked input file is read in, internally sorted using the insertion tech
nique, blocked maximally for the storage size of the object machine, and written onto the
two available output units so that the numbers of strings on the two units are adjacent
entries in the Fibonacci series.

In phase II, the two input units are merged onto the output unit. In each merge pass, the
number of strings on the input unit with the fewer number of strings (the secondary input)
is merged with the same nwnber from the input unit with the larger number of strings
(the prilnary input). At the end of each pass the function of each unit is changed SO that
for the next pass the primary becomes the secondary, the secondary becomes the output,
and the output becomes the primary.

94

This process !Continues until there is only one string on each of the inputs. During the
last pass, deblocking is performed so that the final string is lUlblocked.

Phase I

Phase I is performed in two sections. In the first section, the first input record is read
and the record length computed. The capacity of storage, in records, is calculated as
are the addresses of the three internal storage blocks or buckets. The first record is
moved to the first bucket, and all initialization with the computed addresses i.s performed.
The first section is then cleared from storage and section two is begun.

In section two, index register 2 is used to keep track of the low-order position of the last
full bucket. Index register 3 indicates the low order of the control field of that bucket.
As each input record is read, its sort key is compared with the key of the record in the
last full bucket. If the input record is high, it :is put into the bucket after the last full one.
This results in a low-to-high array. If the input is low, the index registers are decre
mented by the record length so that comparing :is done against the next to last full bucket.
This decrementing and comparing is continued until the input compares high or until the
record in the first bucket has been compared. At this time, all records higher than the
input are shifted to the right, and the input record is inserted.

When the available storage capacity has been £filed, the sequenced records are written
onto an output tape in three blocks. Each time a block of records is written, the records
checked to see whether the output produces a sequence break. If it does, the number of
sequence breaks on that unit is checked against the number required to maintain the
Fibonacci number series. If the number required has been written, the output goes onto
the other tape lUlit.

This process of internal sorting, blocking and distributing the strings is continued until
the end of file is sensed on the input unit. The number of strings on the output lUlit being
accessed is then checked for number series conformity. If additional strings are needed,
they :are simulated by writing a record with all 9s in the key and decrementing each
successive key until the proper numbers have been written. If all of the three block
areas are not full, padding records of all 9s in the key are written in core lU1til the block
being padded :is full. This block and any that precede it are then written. All tapes are
rewo"Wld and Phase II is read in.

Phase II

Phase II of the sort is also executed in two sections. In the first section, the addresses
that vary according to record length are computed and inserted in instructions in the
second section. Upon the basis of the number of strings on each tape, the primary input,
secondary input, and output units for the first rnerge pass are determined.

In section two, the first section is cleared from storage, the I/O areas are initialized,
and rnerging begins. This is done by reading one record each from the primary and
secondary units. These records are compared. and the higher is moved to the output area.
The file from which that record was taken is read again until a sequence break on that file
occurs. When this happens, the other file is read and put out lUltil a sequence break.
The number of breaks that have occurred on each input file is compared with the number
of strings on the secondary input. If not equa1~ the process is repeated. When the number

95

is equal, a merge pass has been completed. The output tape is tapemarked, the output
and secondary input are rewound, the sequence counts are reinitialized so that the old
primary becomes the new secondary, etc., and the next merge pass begins.

At the beginning of each merge pass, the sequence COlUlts are compared with 1 and O.
When the primary and secondary are both equal to one, the final merge pass is about to
begin. When this condition is recognized, the deblocking and pad record deletion rou
tines are initialized so that the final output will be unblocked.

At the beginning of the final merge pass of an Analysis sort, an overlay is called in
which permits report printing simultaneously with deblocking and pad record deletion.

Symbolic Flowchart Program

The flowchart generated by the Symbolic Flowchart Program is a 10 x 3 matrix of boxes
printed on two consecutive pages of 1403 standard printer paper arranged in three eol
umns: A, B, and C. starting at the top, the boxes are sequenced vertically AO through
A9, BO through B9, and CO through C9. The Flowcharter generates connecting lines
between boxes and on-page and off-page connectors.

Before the output matrix is printed, the Flowcharter prints diagnostics, a label table,
and a cross-reference label table. In addition, the user may, at his option, request the
Symbolic Flowchart Language program to be printed.

Modes of Operation

There are two distinct processing modes of the Symbolic Flowchart Program: chart
mode and commentary mode. The chart mode processes all statements which produce
flowchart boxes or connectors. The commentary mode processes narrative statements.
The Symbolic Flowchart Program determines the mode in which it is operating by
examining the format of each input card image.

Symbolic Flowchart Language Input

The coding form used in writing Symbolic Flowchart Language may be the same form
used by the 1400 Series Autocoders. Any similar form may be used -- for example,
7070 or 7080 coding forms.

Chart Mode Card Format

SEQUENCE FIELD (cc 1--5)

This field is used for input sequencing. Any characters may be used which belong to the
1401 character set except a groupmark and a tapemark.

LABEL FIELD (cc 6--15)

Symbolic labels may be from one to ten characters in length. A comma, tapemark,
groupmark or embedded blank must not be used within a label. In addition, if the first
character is a lozenge, the label is used to produce the desired connection between two
blocks; but the lozenge label is not printed on the flowchart as a label of that block. If a

96

label is prefaced by a blank (indented), the label is printed on the flowchart as a label of
that block; but such a label cannot be used as the operand of a logical connector opera
tiono

OPERATION FIELD (cc 16--20)

This field describes the type of flowchart box to be drawn or specifies a logical connection
to some other box.

OPERAND FIELD (cc 21--72)

This field contains either comments to be printed inside a flowchart box or, in the case of
a logical connector operation, a label. In the latter case, the label must begin in cc 21.

Columns 73--80

These columns are ignored by the Symbolic Flowchart Program.

Commentary Mode Card Format

The sequence field is the smae as in chart mode card format. By placing an. asterisk in
cc 6, the user indicates to the program that the information in cc 16--72 of this input
card is to be printed as commentary information. Information contained in cc 1--15 is
ignored. The program, when switching to commentary mode, ejects to a new page before
prin.ting.

Control Operations

JOB

SKIP

EJECT

9'7

The JOB card must be the first card of a
Symbolic Flowchart Program. The oper
and is used as a portion of the page head
ing.

Used only in the chart mode. The oper
and causes the skipping of a number of
sequential chart box locations eqUivalent
to the value of the operand. A SKIP oper
ation occurring following the chart loca
tion A6 with an operand of 6 causes the
skipping of chart locations A7, AS, A9,
BO, B1, and B2. The next flowchart box
is placed in B3. The skipped chart loca
tions remain blank.

Can be used in either the chart mode or
commentary mode. It has the effect of
immediately terminating the page in
process and skipping to a new page. The

SPACE

END

Chart Mode Operations

BLOCK

MODFY

PREDF

DECID

98

operand, if used, controls page number
ing. EJECT has three possible operand
configurations:

a. The normal configuration is a blank
operand. In this case, the page
cOlll1ter is incremented by one and
the next sequential page number is
assigned to the next page on which
processing commences.

b. If the operand is +nnnn, the nu
meric value, nnnn, is added to the
page counter in place of the normal
increment of one, and the new total
value is the page number of the
next page.

c. If the operand is nnnn, the page
cOlll1ter is reset to this numeric
value. It becomes the page number
of the next page. Only a numeric
value less than or equal to 9999 lOr
a blank is a legal operand for the
EJECT operation.

Can be used only in the commentary mode.
The operand field, if any, is a number
specifying the number of lines to be
skipped.

The END card must be the last card of a
Symbolic Flowchart Program.

Generates a processing box. The oper
and field is printed as comments in the
flowchart box.

Generates a program modification boxo
The operand field is printed as comments
inside the box.

Generates a predefined process box. The
operand field is printed as comments in
side the box.

Generates a decision box. The operand
field is printed as comments inside the
box.

START
ENTER
B]~GIN

WAIT
HALT
S'rop
EXIT

SUBRT

10

NOTE

Logical COlUlector Operations

Generate a terminal box. The operation
code is printed inside the box, along with
the operand field, if any. The HALT,
STOP, and EXIT operations cause a break
in logic.

Generates a striped processing box. The
label of the referenced subroutine is the
fi.rst part of the operand field. The label
lllust begin in cc 21 and be followed by a
comma. This label and its page and chart
location are printed above the horizontal
stripe in the flowchart box. The com
ments after the comma are printed below
the horizontal stripe.

Generates an input/output flowchart box.
The operand field is printed as comments
inside the box.

Occupies one chart location. The operand
comments are printed without the circum
scribed flowchart box lines.

A verti.calline, representing the normal logic flow, connects sequential flowchart boxes.
The sequential logic flow may be altered through the use of logical connector operations.
The operand field of all connector operations is a label beginning in cc 21. The label
indicates a cOlUlection is to be made between nonsequential blocks. Wherever possible,
the processor generates connector lines between boxes on the same flowchart page.
HOrizontal line connections may be made from column A to column B, column B to
column. C, and column A to column C. In the latter case, this can be accomplished if
column B is a blank chart location created by a SKIP operation. COlUlector lines are
never generated upward. Rather, an on-page connector symbol is generated to the right
of the box. If on-page and off-page entrances are being made to any box, the appropriate
on-page or off-page connector symbol is appended to the left of the box.

A decision box causes tWo logical connector lines to be drawn; one exits to the right,
the other exits downward. A GOTO operation always generates a right exit from a flow
chart box. If the processor is unable to draw a connector line to the label in the operand
field of a YES, NO, or GOTO operation, an on-page or off-page connector symbol is
appended to the right of the flowchart box.

GO TO

99

The GOTO operation generates a connector
to the label specified in the operand. The
GOTO operation indicates a break in the
normal logic flow of a program.

YES

NO

Symbolic Flowchart Language Restrictions

The YES operation generates a right exit
from the decision box to the label speci
fied in the operand. The downward exit
from the decision box is implied to be the
NO exit.

The NO operation generates a right exit
from the decision box to the label speci
fied in the operand. The downward exit
from the decision box is implied to be
the YES exit.

1. Every DECID operation must be followed immediately by a single YES or NO opera
tion; and, conversely, every YES or NO operation must be preceded by a DECm
operation. If the second exit from a DECID box causes a break in logic, a GOTO
operation should be used.

2. A GOTO operation may not occur after a logic break operation; for example, two
consecutive GOTO operations may not be used.

3. The operation code of a terminal flowchart box is printed inside the box. The oper
and, if any, must be 13 characters or less, including blanks.

4. The operand fields of the BLOCK, PREDF, NOTE, MODFY, 10, and DECID opera
tions must conform to the follOwing format: the maximwn length allowable for any
single word in the comment operand is 13 consecutive nonblank characters.

5. The YES, NO, NOTE, SKIP, EJECT, SPACE, JOB, END, and GOTO operations
should not contain a label in the label field.

6. Commentary cards may appear only after a break in the program logic flow. An
END card or an EJECT card may appear only after a commentary card or a break in
the program logic flow. The HALT, STOP, EXIT, and GOTO operations cause a
break in the program logic flow.

7. The SUBRT operation has a label as its first operand beginning in cc 21 and termi
nating by a comma. This label is always printed above the horizontal stripe in the
flowchart box. The operand field comments follOwing the comma are printed below
the horizontal stripe. The mruamum length allowable for any single word in the
operand comments field is 13 consecutive nonblank characters. The maximum nwn
ber of allowable comment characters is 24.

8. Skipping is allowed only in the current flowchart column tmless the SKIP operation
follows a logic break. Sidpping is not allowed across a flowchart page.

100

FLOWCHART BOXES AND CONNECTOR ARROWS GENERATED BY THE
SYMBOLIC FLOWCHART PROGRAM

OPERATION

BLOCK

MODFY

PREDF

DECID

START, BEGIN
ENTER, WAIT
HALT, STOP, EXIT

SUBRT

10

CONNECTOR

CONNECTOR

BOX GENERATED

D

o

C __)

o
o
D

101

STANDARD BOX NAME

Processing

Program
Modification

Predefined
Process

Decision

Terminal

Striped Processing

Input/Output

On-Page Connector

Off-Page Connector

FLOWCHART OUTPUT MATRIX

SYCR~

2~~~l
• t,l IS IhlS A 'YES' •

: AQ ••• IriS CP A
YES/~(,

w ••••• ' ••••••• : 60:0. to.CN€ .ru At:; •
CPEI<AfI("l\ :.!~.

• YES

o
• < < ~CVE CPERA~C'
<LABEL 10 ~XIT<
• 1 • < •

••••••••••••••• (.;t: T l · . • SET 'tES'NC' • •
• CC~£)ITICN •••• n. l!~ •
• f\A"',[~ 1f1' • 64e
:~~!!~.!.!~~.~:

~C1E CR ~C~E
CPERAIIU~

• 'ftS

.".~

• ,..c •
LAH~L I~ 6-11 ••••••••••• c.

Gf I~Pul

• yt:~

c
PR [1\ I -LAOEL <
I~YAlIC [1\

• "'O~[OR ~Gf[- <

.•. ~~;~!!:~~ ...

· .
• 0 •••••••••••••••••••••

<YES

• "'C

flCA! •••••• ~ •••••••
< ORt:AK LPERANO <

• 11\10 5 •
• 1 ... 1RTI:t:to. •••••••••••••

ChARAC 1 tR

•••• ~~2~~~~! ~ ••••

A~~/IS ••••••••••••••• . .
• • • LJSl 11:XT AS •

:.:~: ... c: CE~~lt{~~G :
· .
• tI •••••••••••••••••••••

fl"lS ~ •••••••

. ' ~m~~ ~!~H • <
L1N[Cf LINK <

•••• ~~~~!!!~~ ••••

Tt LeT ••••••• ~ •••••••

LCAYN

FLeAI LiNtS
IoxCEP I LINK
CP~RA IIC~

REFER IC
PR('GKAM LIS T

FCR fLLA I AIIIO
Ct~ IER
RC~IIN~S

"'~~~ J ... • '0: Cf::

I S I~ [S A
GCIC

CPERAIIO'"
' •••••••••••••••••• Il' LASI OP A

nS/NG
'V~~ •••••••••••

• ~C

LAST
CPt:RA lICN A

GC IC CR
'FSRCEC GC !C<

< YES

JIIVRS' ••••••• ~ ••••••• . .
< • < MCVE RESI Cf'
• AB ••• Ea INPll Te •
< • 'CUIP~I EXCEPI.

: ... i~~~:~~ ... :

!~~!l
'NC' I

leI C6 •

:. !~.

• ~G ••
••••••••••• D, eo.

• NC

C
:L~~n ~~E~m:............ .
: 1 :

C
< •
< ~uvE CPERANC'
< LAHEL TO <
: EX l' 2 : .. ,

· .
• D ••••••••••••••••••

:....~~~,

: :~~l~'f~~~A~6 •• e: cc:
• GG 10 G[I l • • • :............... . ..

102

t.lCCLT ••••••••••• N •••

•• C~Rl 72 84< ·
• CC ' •• C< .RIlE C .. AMI <

:.... : ~::: :

D
: LP CCHECIOR:

: t~~~ I c/~~C~:
: ••••• ~~!~ :

.NC
t~D CF ChAR I •••••••••••••

PAGE

• Y~S

c
••••••••••• a •••

• UP PAGE •

: C2~~~~cmET:
: •••• S~~~!.fI •• :

RE1LR~ TC
GU2,RETHER

CR

· . • D

c
••••••••••• 0 •••

EXIT

NCFL T ••••••••••• " ••• · .. .
• C6 ' •• 0. RESET ALL •
• •• EXITS:

~CNE
CPERATlCN

· • NO

SVLST . .. ~
'NC' •

TER~INAL .c. ee •
SYMBOL :.~~.

· • YES

·
• NO ••
• •••••••••• D' B8 •

:.~:.
SVLST

OPERATOR'S GUIDE

PROGRAM SETUP

DA System Operation

The following jmstructions are necessary for operation of the Documentation Aids System:

1. Place the DA Systerll master tape on tapewlit 1

2. If tape input (assembly language or SFL), place input tape on tape unit 2

3. Ready tape units 2, 3, and 4

4. Place input card deck on the card reader

5. Turn on I/O CHECK STOP and sense switch A

6. Press CHECK RESET and START RESET

7. Press TAPE LOAD

8. Press START

9. Follow operator instructions on printer

10. A successful run will print END OF RUN and halt with the A and B address registers
con taining 999.

DA System Maintenance

The following instructions are necessary for the DA System Maintenance run:

1. Place the DA System master tape on tape unit 1

2. Place work tape on tape unit 2 (this will be the new system tape) and tape unit 3

3. Place input card deek in the card reader

4. Turn on I/O CHECK. STOP and sense switch A

5. Press CHECK RESET and START RESET

6. Press TAPE LOAD

7. Press START

8. A successful maintenance run will print END OF JOB and halt with the A and B ad
dress registers containing 999.

9. F:ile-protect the tape from unit 2 and label it "DA System Tape".

103

CONSOLE OPERATING INSTRUCTIONS

Each DA System run, whether system maintenance or documentation processing, re··
quires a $DAJOB card as the first card of the card input file, and a $DAEND card as the
last.

Several runs may be stacked consecutively in the card reader for continuous batch proc
essing. Each run may require the loading or unloading of tape reels. Instructions to
the operator for tape handling will appear on the printer.

HALTS AND MESSAGE LIST

Operator Messages

The following pages indicate all operator messages and instructions. When a haltoccurs,
the number appears in both the A and B registers.

CONTROLLER OPERATOR MESSAGES

Record in Which
Halt and/or

Halt Message Message Occurs Explanation

7 None All records A system program has
issued a call for a pro-
gram that has been passed
or is not on the tape.
This is a protected halt.
System error.

1 None All records I/O routine has attempted
to read a tape record ten
times. The SELECT
light will be lit on the
tape unit in which the
error occurred. Press-
ing START will cause
the read to be attempted
an additional ten times.
Replace bad tape and re-
start run.

999 END OF RUN 1CONA Completion of DA System
run

999 END OF JOB 6CONA Completion of DA System
maintenance run

6 ERROR. TAPE 3 TOO SHORT. 6CONA Reel capacity exceeded
REPLACE IT AND RESTART.

104

Halt

6

6

None

None

6

None

UPDATE OPERATOR MESSAGES

Record in Which
Halt and/or

Message Message Occurs

ERROR. TAPE 2 TOO SHORT. 2UPDA
REPLACE IT AND RESTART.

ERROR. TAPE 3 TOO SHORT. 2UPDA
MOUNT NEW TAPE. PRESS
START.

DISMOUNT MASTER TAPE 2UPDA
3. MOUNT SCnA TCH.

DISMOUNT MASTER TAPE 2UPDA
2. MOUNT SCRATCH.

ANALYSIS OPERATOR MESSAGES

ERROR. TAPE 4 TOO SHORT.
MOUNT NEW TAPE. PRESS
START.

DISMOUNT MASTER TAPE
3. MOUNT SCRATCH.

3ANAA

3ANAA

105

Explanation

The computer has sensed
an end-or-reel condition
on tape 2 during the
source card-to-tape op-
eration. Mount a full
reel of tape and restart.

While performing the
maintenance routine, an
end-of-reel condition was
encountered.

Self-explanatory

Self-explanatory

Reel capacity exceeded

If the input is to be
saved, tape unit 3 will
unload and this message
will be printed.

FLOWCHART OPERATOR MESSAGES

Record in Which
Halt and/or

Halt Message Message Occurs Explanation

6 ERROR. TAPE "N" TOO 4CHRA Reel capacity exceeded.
SHORT. REPLACE IT AND 4CHRU N will be replaced with
RESTART. 4CHRV the corresponding tape

unit number.

444 SET UP PRINTER FOR 8 4CHTA Use carriage control tape
LINES/INCH. HIT START with a punch in channel 1

to allow for 88 lines per
page.

None DISMOUNT MASTER TAPE 3. 4CHTB Self-explana tory
MOUNT SCRATCH.

444 SET UP PRINTER FOR 6 4CHTB Remount normal carriage
LINES/INCH. HIT START. control tape. May not

be required if rumling
stacked CHART jobs.

6 ERROR. TAPE 2 TOO SHORT. 5VERA Reel capacity exceeded
REPLACE IT AND RESTART.

Diagnostic Error Messages

The following pages indicate the DA System diagnostic messages.

Message

ERROR. $DAJOB CARD
PUNCHED INCOR
RECTLY. RUN TERMI
NATED.

ERROR. MACHINE AND
LANGUAGE COMBO.
INVALID. RUN TERMI
NATED.

CONTROLLER DIAGNOSTICS

Record in Which
Message Occurs

lCONA

lCONA

106

Explanation

The operands in the $DAJOB card
are incorrect and the next card is
not a $SYSTEM. The user TIlust
correct the card and rerun.

The assembly language specified
in the $DAJOB card may not be
used with the machine specified.
The user must correct the card
and rerun.

Message

CORRECT INDICATED
ERRORS.

Record in Which
Message Occurs

6CONA

107

Explanation

During the first phase, a listing of
the input deck is printed with any
error messages. If any errors do
occur, the message will be printed
at the end. Error messages which
may occur are:

1. ERROR--ADDRESS IN COLS.
10 - 18 TOO LOW.

2. ERROR--I. D. IN COLS. 76-
80 INCORRECT.

3. ERROR--LOAD INSTRUC
TIONS NOT CORRECT.

4. ERROR--ADDRESSES IN
COLS. 10 - 18 ILLEGAL.

5. ERROR--HIGH ADDRESS
LOWER THAN LOW AD-
DRESS.

6. ERROR--OUT OF SEQUENC E
BY I. D. IN 76 - 80.

7. ERROR--ADDRESS IN COLS.
10 - 18 TOO HIGH.

8. ERROR--NO $ IN COL. 1.

9. ERROR--PROGRAM NOT ON
SYSTEM TAPE.

10. ERROR--GROUPMARK
WORDMARK LOADED IN
xxxx.

11. ERROR--WORDSEPARATOR
LOADED IN XXXX.

12. ERROR--NOT A RECOG-
NIZABLE $ CONTROL CARD.

13. ERROR--LOADING ABOVE
$ADD HIGH ADDRESS.

Message

ERROR. BAD DA SyS
TEM CONTROL CARD
OR INVALID CHARACTER
IN COL.!. RUN TERMI
NATED.

ERROR. OUT-OF
SEQUENC E CONDITION.
RUN TERMINATED.

Record in Which
Message Occurs Explanation

14. ERROR--LOADING BELOW
$ADD LOW ADDRESS.

UPDATE DIAGNOSTICS

2UPDA

2UPDA

108

This message may be caused by
incorrect spelling, incorrect for
mat, or an invalid character :in an
input source language statement.

Out-of-sequence conditions ar'e
caused by any of the following:

1. The second parameter of the
$DELETE card is less than
the first parameter.

2. The first parameter of the
$DELETE card is not greater
than the sequence number of
the last change card.

3. The sequence number of the
first change card following
the $DELETE card is not
equal to or greater than the
sequence number of the last
change card.

4. The first parameter sequence
number specified in the de
lete control card is not found
in the source tape input file.

5. The second parameter se
quence number specified in
the delete control card is
not found in the source tape
input file.

SEQ ERR

ERROR. ILLEGAL
OPTION. RUN TERMI
NATED.

ERROR. ILLEGAL CON
TROL CARD. RUN
TERMINATED 0

Record in Which
Message Occurs

2UPDA

Explanation

6. The sequence number found
in the change input file equals
a sequence number in the
source input file. In this
case, the old sequence num
ber should have been deleted
before an addition was
attempted.

A sequence error has been detected
by the program. The out-of
sequence condition is flagged and
the run continues.

ANALYSIS DIAGNOSTICS

3ANAA

3ANA9
3ANLG

Optional reports requested on the
$ANAL YSIS control card cause this
halt if options CROSS, OPERAND,
and COUNT are punched incorrectly.

The $ control card is punched
incorrectly.

FLOWCHART DIAGNOSTICS

ERROR. CONTROL CARD
PARAMETERS UNDER
SCORED WITH A 1 ARE IN
ERROR.

ERROR. END OF FILE
ENCOUNTERED WHILE
SEARCHING FOR (label).

ERROR. SEGMENT (seg
ment limits) CAUSES LABEL
TABLE OVERFLOW.
PLEASE RESEGMENT.

RUN TERMINATED, INPUT
ERRORS.

4CHRA

4CHRA

4CHRS
4CHRT

4CHTB

109

Self-explanatory

Segment card label not found

Table capacity exceeded during
Phase I

Violation of Flowchart rules (see
"Application Description")

Record in Which
Message Message Occurs Explanation

INVALID EJECT 4CHTB Violation of Flowchart rules (see
OPERAND. "Application Description")

SPACE OPERATION 4CHTB Violation of Flowchart rules (see
OVERFLOWS PAGE. "Application Description")

NO SPACE OPERAND. 4CHTB Violation of Flowchart rules (see
"Application Description")

LABEL NOT PERMITTED. 4CHTB Violation of Flowchart rules (see
"Application Description")

COMMENTS IN TERMINAL 4CHTB Violation of Flowchart rules (see
BOX TRUNCATED. "Application Description")

INVALID OPERAND 4CHTB Violation of Flowchart rules (see
"Application Description")

INVALID OP 4CHTB Violation of Flowchart ru1es (see
"Application Description")

BOX COMMENTS 4CHTB Violation of Flowchart rules (see
TRUNCATED. "Application Description")

BOX COMMENTS NOT 4CHTB Violation of Flowchart rules (see
CENTERED. "Application Description")

INVALID PROGRAM LOGIC. 4CHTB Violation of Flowchart rules (see
"Application Description")

INVA LID GOTO LOGIC 4CHTB Violation of Flowchart rules (see
"Application Description")

INVALID DECm SEQUENCE. 4CHTB Violation of Flowchart rules (see
"Application Description")

END CARD MISSING, RUN 4CHTB END-Oli'-FILE encountered before
TERMINATED. END card.

(label) CAUSES LABEL 4CHTC Table capacity exceeded during
TABLE OVERFLOW. Phase II.

(label) IS NOT DEFINED. 4CHTD The label (in brackets) has not
been defined.

110

(label) IS AN UNRE F
LABEL.

MULTIPLY DEFINED.

ERHOR. $VERIFY CARD
OPTION PUNCHED IN
COHRECTLY. RUN
TERMINATED.

ERHOR. MACHINE
SPECIFIED ON $DAJOB
CARD IS INVALID. RUN
TEHMINATED.

Record in Which
Message Occurs

4CHTE

4CHTF

5VERA

5VERA

111

Explanation

The label (in brackets) has not been
referenced.

An identical label has been assigned
more than once in the same pro
gram.

Incorrect spelling and invalid
language combination are the most
frequent errors.

Self-explanatory

STORAGE MAPS

Program Selector

001

RESIDENT CONTROLLER

801

1 CONA PROGRAM

OPERAND LOOKUP TABLE

1501

1901

8000

112

Resident System Controller

1

101

201

301

401

501

601

701

801

1001

8000

CARD READ AREA SWITCHES

CARD PUNCH AREA HEADER AREA

PRINT AREA

I
UNUSED

SYSTEM LINKAGE ROUTINE

TAPE I/O ROUTINE

U.R. I/O SORT PARAM.

ADDITIONAL UNIT RECORD I/O ROUTINES

CARD BUILD ROUTINE
(OVERLAID)

UNUSED STORAGE

X REG'S.

UNUSED

Update 2UPDA

SYSTEM CONTROLLER

800

UPDA TE MAIN PROGRAM

1710

UPDATE SUBROUTINES

2910

UPDATE DATA AREA

3650

CHANGE CARD BLOCK AREA

7720

UNUSED STORAGE

8000

114

Analysis--Phase I

0

SYSTEM CONTROLLER

801

3500

4000

Pass 1

3ANAA

I/O Area

////////////1

Operation Table

3ANAE
3ANAF
3ANAG
3ANAH
3ANAI
3ANAJ

Pass 2

3ANAU

Tally Area

I/O Area

Operation Table

115

Pass 3

3ANAV
3ANA9

I/O Area

v I II!7777/;

Storage Map of Analysis--Phase II

o

SYSTEM CONTROLLER

801

Pass 1 Pass 2 Pass 3 Pass 4

3ANLA 3ANLB 3ANLC 3ANLD 3ANLE 3ANLF
3ANLG

Sort Sort Sort Sort
PAss 1 Pass 2 Pass 1 Pass 2

2500

I/O Area I/O Area

I/O I/O I/O I/O

Area Area Area Area

8000

116

Flowcharter--Phase I

001

System Controller

801

I/O I/O I/O I/O I/O
Area Area Area Area Area

Pass 1 Pass 2 Pass 3 Pass 4 Pass.5
Program Program Program Program Program

4CHRA 4CHRS 4CHRT 4CHRU 4CHRV

4000

4500

5000

Operation Label Label Label
D:ictionarie s Dictionary

4CHRB
4CHRC Comment
4CHRD Dictionaries
4CHRE Uses core ·4CHR1
4CHRF above 8000 4CHR2
4CHRG if available 4CHR3

4CHR4
4CHR5
4CHR6

8000

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

117

Flowcharter--Phase II

o

System Controller

801

I/O I/O I/O I/O I/O
Area Area Area Area Area

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 I/O I/O I/O
Program Program Program Program Program Area Area Area
4CHTA 4CHTC 4CHTD 4CHTE 4CHTF
4CHTB 4CHTG

Pass 6 Line Pass 8
Program Table Prog'ram

4CHTH 4CHTJ

Pass 7
Program

4CHTI

1700

Label Table A rea

Uses core above 8000
if available

8000

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6 Pass 7 Pass 8

118

Verify

SYSTEM CONTROLLER

800

Pass :~ Pass 2 Pass 3

20010

5VERA 5VERB 5VERC 5VERT

Sort Sort
30010 Program Program

pass 1 pass 2 VIIII//
4000 TABLE

I/O Area I/O Area 5VERU(14:01)
or 5VERV(14:10)

5000 or 5VERW(705/80)
or 5VERX(7070)

6000

7000 jl/;
ERROR

LITERALS FOR
MESSAGES AND

5VERT
RETURN TO

8000 CONTROLLER

119

System Maintenance

6 CONA

1
CARD AND TAPE I/O AREA

SWITCHES AND
CONSTANTS

1 C ONA - PHASE II 0'
401 RESIDENT CONTROLLER

801
1 CONA - PHASE II

PHASE I HOLD AREA

CARD BUILD ROUTINE

TAPE COpy AREA

5500

RESTART PROCEDURES

If RESTART is indicated, it must be done from the beginning of the run.

If a significant amount of output has been produced, much of it, if not all, is probably
valid. All tapes should be labeled and output returned to the programmer/analyst for
review. By deleting and/or changing DA System control cards, rerun time can be held
to a minimum.

120

BffiLIOGRAPHY

Conversion Aids: Documentation Aids (C 20-1612), Kingston, New York, 1964.

121

Technical Newsletter Re: Form No. H20-0177-0

This Newsletter No. N20-0047-0

Date November 15, 1965

Previous Newsletter Nos. None

CHANGES AND ADDITIONS TO PROGRAM REFERENCE MANUAL
FOR DOCUMENTATION AIDS SYSTEM

The attached pages should be inserted into existing copies of H20-0177 -0, and the
corresponding original pages should be removed and destroyed. Text changes are
indicated by a vertical line in the left margin.

Replacement pages are as follows:

Cove;(
1 - 2
5 - 6

13 - 14
17

17A - 18
31

31A - 32
33 - 50
77 - 78
83 - 84
91 - 94

In addition, the following changes should be made by hand:

Add "360" at end of two columns of nlachine numbers.
Change II (F AP /MAP) II to II (FAP /MAP /BAL/FAL) I I.
After "7010" add "or S/360 Model 30"
In luiddle of page, change "smae" to "same"
"Chart Mode Operations" should not be underlined.
Under "3ANAA" add "3ANAB". (Thi.s occurs in two places.)

p.4
p. 10
p. ~~5

p. H7
p. H8

p. 105
p. 109
p. 115

In middle of page, under "3ANAA" add "3ANAB"; under "3ANLG" add "3ANAR".
Under "3ANAA" add "or 3ANAB"; after "3ANAU" add "or 3ANAQ"; under
"3ANA9" add "or 3ANAR"; under 3ANAJ" add "3ANAK".

p. 117 Under "4CHRG" add "4CHRH"; under "4CHR6" add "4CHR7".

IBM Corporation, Technical Publications Dept., 112 E. Post Road, White Plains, N. Y. 10601

Printed in U.S.A. N20--0047 -0 (H20-0177 -0)

H20-0177-0

IU~~
4!>

International Business Machines Corporation

Data Processing Division
112 East Post Road, White Plains, New York 10601

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	017a
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	031a
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	_1
	xBack

