
Systems Reference Library

IBM 1401 Symbolic Programming Systems: SPS-1 and SPS-2

Specifications and Operating Procedures

This manual provides programmers with the informa­
tion necessary to code a 1401 program in SPS language
and assemble a machine-language object-program. It is
assumed that the programmer has a basic knowledge
of 1401 machine language programming.

It describes symbolic programming principles and
concepts and gives detailed speCifications of the 1401
Symbolic Programming Systems, SPS 1 and SPS 2.

Operating instructions for processing the SPS source
program are enumerated. The SPS processor program
can assemble a machine language program on configu­
rations of the 1401 Data Processing System equipped
with a 1402 Card Read-Punch.

A sample program is included for the convenience
of the beginning SPS programmer. Input and output
forms, a block diagram of the program procedure, the
symbolic program, and SPS output listings of the sym­
bolic and machine-language programs are shown.

© 1959, 1900, 1962 by International Business Machines Corporation

File Number 1401-21
Form C24-1480-0

Preface

This manual describes the language specifications and
operating procedures for the IBM 1401 Symbolic Pro­
gramming Systems SPS-1 and SPS-2.

This manual is designed for programmers who know
the input, output, and processing characteristics, as
well as the basic functions and operations of the IBM

1401 Data Processing system.

The language is presented in a special format that:

• describes generally each type of SPS statement

• describes specifically the construction of the state­
ment

• describes generally the processing and assembly
functions

• shows an example of how each statement can be
used in a program.

The operating procedures are presented in detail
with descriptions of deck assemblies, error notes, etc.

A sample problem shows a simple payroll listing
including input and O:Itput documents, the SPS source
program, and the output from assembly.

This SRL publication, C24-1480, obsoletes the IBM 1401 Data
Processing System Bulletins: IDM 1401 Symbolic Programming
System: Preliminary Specifications, J24-0200, and IDM 1401
Symbolic Programming Systems: SPS-1 and SPS-2, J24-1412.

Copies of this and other IDM publications can be obtained through IDM Branch Offices.
Address comments regarding the content of this publication to IDM Product Publications, Endicott, New York.

Contents

Introduction ".. 5

IBM 1401 Symbolic Programming System 6

Advantages of IBM 1401 SPS .. 6

Programming with SPS ... 7

Symbolic Language 7

Processor Program .. 7

Information Requirements "....................................... 7

Coding Sheet 7

Address Assignment 12

Declarative Operations

Imperative Operations

Special Mnemonic Operation Codes

Processor Control Operations

13

17

17

19

SPS Processor Operations ... 21

Pre-Process Listing Routine .. 21

Processor Assembly Program .. 22

Processor Output 26

Post-Process Listing Routine .. 28

Condensing Routine 29

IBM 1401 SPS Sample Program 30

Index ... 38

'''ith the increasing capability of data processing sys­
tems, programming in the actual machine language of
a system has become more complex. Not only does
machine-language coding require memorization of a
great many numeric and alphabetic codes but J also
the length and intricate design of programs written in
machine language make them prone to logical and
clerical errors.

Also, the problem of correcting errors in an actual
machine-language program is intensified because of the
difficulty in tracing the steps of a machine-language
program to include corrections and relocate the prob­
lem in storage.

Symbolic programming, the use of mnemonic char­
acters to write a program, has been developed to
facilitate computer programming. When mnemonic in­
structions are used, data may be referred to in terms
which are logical to the layman, as well as to the
experienced programmer. Another advantage of sym­
bolic programming is that the checking of each pro­
gram may be performed by a person other than the
programmer.

In a symbolic system, a routine to add current
withholding tax to total miscellaneous deductions, sub­
tract the total from gross pay, and store the amount
as net pay might look like this:

OPERATION CODE

ZA
A
ZA
S

OPERANDS

CUHWTX ACCUM
TOTMDN ACCUM
GROSS NETPAY
ACCUM NETPAY

The first instruction in this routine sets to zero a
machine storage area, which is arbitrarily labeled
ACCUM. It then adds the current withholding tax (an
area called CURWTX) into this area. The next instruc­
tion, total miscellaneous deductions (TOTMDN), is added
to the contents of ACCUM, which is CURWTX.

Then a storage location, labeled NETPAY, is set to
zero, and gross pay (CROSS) is added into it. In the last
step the contents of ACCUM (CURWTX + TOTMDN) is
subtracted from the contents of NETPAY (CROSS). This
puts (CROSS-CURWTX-TOTMDN) in a suitably labeled loca­
tion (NETPAY), to which the programmer may refer
later in the program.

Once the data and working areas have been defined
and labeled, it is easier to follow the logic of this

Symbolic Programming Systems

short routine written in symbolic form than to compre­
hend the same routine written in machine language,
which might look like this:

OPERA TION CODE

?
A
?
:£

OPERANDS

060 S93
045 S93
050 A95
S93 A95

A program written in symbolic programming lan­
guage (the source program) requires translation into
an actual machine-language program (the object pro­
gram) before a computer can execute it. This trans­
lation is done by a machine-language program called
a processor. In general, the translation is "one-for­
one." That is, for each instruction written in symbolic
form, one machine-language instruction is produced.

The processor, sometimes called an assembly system,
generally utilizes the machine for which the symbolic
program is written. It analyzes all symbolic entries and
converts them to actual machine operating data and
instructions, establishing specified relationship be­
tween them.

As an additional feature, as:sembly programs also
indicate various types of errors such as coding, out-of­
sequence cards, etc. Symbolic programming saves time
and simplifies coding. Because actual machine ad­
dresses of data and instructions are assigned auto­
matically by the processor, the programmer need not
concern himself with this detail. He can, however,
refer to these addresses symbolically.

Once there is an agreement on label terminology,
subroutines (short programs or routines common to a
number of programs) may be easily incorporated in any
program, and a major program may be written in inde­
pendent parts with no loss of efficiency in the final
program. Corrections and modifications of program in­
structions also entail no reassignment of addresses by
the programmer. Finally, the automatic assignment of
addresses makes programs and subroutines readily
relocatable, i.e., they can be placed in varying machine
locations as desired.

Because of the advantages in symbolic programming
for the IBM 1401 Data Processing System, IBM has de­
veloped the 1401 Symbolic Programming Systems
(SPS-l and SPS-2).

5

IBM 1401 Symbolic Programming System

The IBM 1401 basic Symbolic Programming System,
SPS-1, operates on the 1400-character machine with
the 1402 Card Read-Punch and the 1403 Printer, but
it can assemble programs for any object machine con­
figuration up to 4000 positions of storage. An expanded
Symbolic Programming System, SPS-2, can assemble
programs for any size object machine (1,400 to 16,000
positions of storage), but requires assembly on a 1401
system that has at least 4,000 storage positions and the
1402 Card Read-Punch, and the 1403 Printer. The
general description and operating procedure of both
systems are the same; however, any characteristics that
apply only to the expanded programming system, be­
cause of its larger machine storage requirements, will
be noted throughout the manual.

Advantages of IBM 1401 SPS
Some significant advantages of the IBM 1401 Symbolic
Programming System are:

• Simplifies program writing and organization. For ex­
ample, it is easier to write and refer to an instruction
such as S WHTAX GROSS (Subtract Withholding Tax
from Gross) than to look up the addresses of with­
holding tax and gross for an instruction like ~ 599618.

• Provides continuity for group programming efforts.
Upon agreement of labeling terminology, program
routines can be written independently and efficiently
and can be combined for assembling because ad­
dresses are automatically assigned by the processor.

• Simplifies program adjustment. If programs require
partial revision, only the affected routines need to
be rewritten.

• Detects coding errors. Illegal operation codes, in­
valid addresses, sequence errors, etc., are detected
by the SPS listing routine before the program is actu­
ally assembled.

• Facilitates program testing. Explanatory comments
may be listed next to program instructions.

6

Prograrnming with SPS

Effective programming in IBM 1401 requires a knowl­
edge of the methods of programming in machine lan­
guage. Before the programmer begins to code his pro­
gram in symbolic language, (as when writing in actual
machine language) he draws a block diagram of the
procedure the program must take to accomplish a
desired end result. From this block diagram he must
determine which constants and work areas are needed.

Constants are fixed data, such as a standard FICA

LIMIT calculation. '-'10rk areas are locations within core
storage where the data can be manipulated, such as
input and output areas, accumulator fields, etc. Then
he writes the instructions for the program.

Symbolic Language
The symbolic language includes a standard set of
mnemonics. These mnemonics are standardized abbre­
viations for operation code descriptions, and are usu­
ally easier to remember than the machine-language
codes. For example:

DESCRIPTION MNEMONIC

Multiply M
Clear 'VIr ord Mark CW

MACHINE

LANGUAGE CODE

(jjt
g

A list of mnemonic operation codes is shown in Fig­
ure 38. Also included as part of the symbolic language
are standard methods for defining areas and entering
constants, comments, etc.

By using the symbolic language, the programmer
can control the locations of record and work areas if
he so chooses, or he can leave this job to the processor
program ..

Processor Program
A standard deck of cards furnished by IBM contains
the processor program that produces the ob;ect pro­
gram (actual machine-language program) from the
source program (symbolic language program). The
SPS processor, also called an assembly program, as­
sembles the object program from information given in
the source program statements. The object program is
then punched in one-instruction-per-card format. The
punched output deck is then used to load the assem­
bled machine-language program into core storage prior
to its execution.

Information Requirements
The information that the processor program requires
to assemble the object program is divided into three
major categories:

Area Definition (Declarative Operations)
Instructions (Imperative Operations)
Processor Controls (Process Control Operations)

Area Definition

These statements assign sections of storage space for
work areas. The assigned areas will be used by the
object program and may contain the data to be proc­
essed and/or the constants required to execute the
object program. Area definition statements in most
cases do not result in instructions to be executed as
part of the object program. However, the processor
program does produce for these statements cards con­
taining constants and their assigned machine addresses.
These constants cards are loaded with the object pro­
gram each time the program i.s used.

Instructions

Most of the statements on the program sheet are the
instructions for the data processing job to be per­
formed. These statements are translated by the proc­
essor program into their machine-language equivalents
in the object program.

Processor Controls

These statements are special signals to the processor
program. They allow the programmer to adjust certain
portions of the assembly process. These statements
are never executed in the object program.

These three types of information ate presented to
the processor program in the form of SPS statements
written originally on a special Symbolic Program Cod­
ing Sheet.

Coding Sheet
The IBM 1401 Symbolic Program Coding Sheet (Fig­
ure 1) is fixed-form. A special field is provided for
each item of information required by the processor.
Each statement is written on a separate line.

Before assembly, each line of the coding sheet is
key punched into a card. These cards make up the
source program deck which is the input to the proc­
essor program.

Column numbers on the coding sheet indicate the
punching format for all source program cards.

7

To facilitate key punching, IBM makes available a
special card, electroplate C55369, for use with the 1401
SPS. This card is also used to contain the object pro­
gram as it is punched as output from the assembly
process.

The function of each portion of the coding sheet is
explained in the following paragraphs.

Page Number (Columns 1 and 2)

This two-character entry provides sequencing for cod­
ing sheets. Only numerical characters may be used.
Standard collating sequence for the IBM 1401 should be
followed when sequencing pages.

Line Number (Columns 3-5)

A three-character line number sequences entries on
each coding sheet. The first 20 lines are prenumbered
010-200. The third position is punched zero, the lowest
number in the collating sequence. The six unnumbered
lines at the bottom of each sheet can be used to con­
tinue line numbering or to make insertions between en­
tries elsewhere on the sheet. The units position of the
line number indicates the sequence of inserts. Any nu­
merical character can be used, but standard collating
sequence should be used. For example, if an insert is
to be made between lines 020 and 030, it could be
numbered 021. Line numbers do not necessarily have
to be consecutive, but the deck should be in collating
sequence, for sorting purposes.

The programmer should note that insertions can af­
fect address adjustment. An insertion might make it
necessary to change the adjustment factor in the oper­
and of one or more entries. All insertions should be
placed in their proper sequence in the source program
deck before assembly.

Count Field (Columns 6 and 7)

The number of characters the assembled actual machine
instruction or defined area is to contain is punched
into this field. The processor uses this number to allo­
cate storage locations for data and instructions. For
example, if the count field of an area definition state­
ment contains a 6, six storage locations will be allo­
cated for that area. The processor will also use this
number to assign an address for the area. See Address
Assignment.

Because the processor can determine the length of
an instruction from the information presented in the
statement, the programmer can leave the count field
blank for instruction entries. The processor will de­
velop and punch the count in the count field of the
object program deck in any case. For instructions, the
processor will override any punching in the count field.

8

Label Field (Columns 8-13)

The label is a symbol or descriptive term selected by
the programmer to identify the specific area or instruc­
tion represented by the source program statement in
which the label appears. The label may then be used
elsewhere in the program, i.e., in an operand of another
source program statement, to refer to the area or in­
struction which it identifies.

It is advantageous to devise a label that suggests the
meaning of the area or instruction, so that the source
program can be easily interpreted by anyone con­
cerned with the program. For example:

TYPE OF STATEMENT MEANING LABEL

Area definition Withholding Tax WHTAX
Instruction Update UPDATE

Labels are used only with area definition and in-
struction statements. Remember that core storage is
allocated, and an address is assigned for all instructions
and most area definitions. If the statement is labeled,
the assigned address is known as the "equivalent ad­
dress" of the label. The processor maintains during
assembly a table of labels and their equivalent ad­
dresses. When a label appears in the operand of a
statement, its equivalent address may be found and
substituted for the label in the assembled statement.

The equivalent address of the label of an instruction
is made equal to the leftmost, or high-order, core­
storage position of those positions allocated to the
instruction. The equivalent address of the label of a
defined area or constant is made equal to the right­
most, or low-order, core-storage position of those posi­
tions allocated to the area or constant.

No two labels in the source program may be iden­
tical.

The label is punched beginning in column 8 of the
label field. It can be as many as six alphamerical char­
acters in length and the first, or leftmost, character
must be alphabetic. No actual machine addresses or
special characters should be used for this purpose.
Blanks must not appear within a label.

Operation (Columns 14-16)

This field contains the operation code for the state­
ment. Area-definition and processor control statements
always have mnemonic operation codes. Instruction
statements can have either mnemonic or actual opera­
tion codes. If the mnemonic op code is used, it is writ­
ten and punched beginning in column 14 of the opera­
tion field. Actual op codes are punched in column 16.

Operands (Columns 17-27 and 28-38)

In the (A) and (B) operand fields are placed the
programmer's designations of:
1. For instruction statements: the addresses of the

data to be operated upon, or the input-output units
to be operated.

2. For area definition statements: the constant being
defined:, the address at which the constant is to be
stored, or the address or input-output unit which is
to be the equivalent of the label.

3. For processor control operations: the address which
is to be used with the particular control of the proc­
essor being invoked by the programmer at that
point in the program.

It is evident, then, that each entry in the operand
fields serves one of the following purposes:
1. It designates a core-storage address.
2. It designates an input-output unit.
3. It provides the constants being defined.

Core-Storcuge Address Operands

These are designated by using the Address, Character
Adjustment, and Indexing portions of the operand field.

There are four types of core-storage address operands:
Symbolic, Actual, Asterisk, and blank.

SYMBOLIC ADDRESSES

A symbolic address can be composed of as many as six
letters or digits (no special characters), but the first
(high-order) character must be a letter. It refers to an
instruction or area definition statement in the source
program whose label is identical to it. For example, if
ENTRY A is used as the label for an instruction in the
source program, ENTRYA can be used as the symbolic
operand of another instruction which references it such
as B ENTRYA (Branch to the instruction whose label is
ENTRYA).

Each symbol used must have a corresponding label
because the processor substitutes the address assigned
to the label wherever the symbol appears in the oper­
and field of another source program statement. If
character adjustment or indexing is associated with the

IBJ.1 INTERNATIONAL BUSINESS MACHINES CORPORATION

Program

LINE GOUNT LABEL .
II Il 7 6

010

o 4 0

o II 0 ---1

o 6 0

OPERATION

13 14 16 17

IBM 1401 SYMBOLIC PROGRAMMING SYSTEM
CODING SHEET

Date

(A) OPERAND (8) OPERAND

ADDRESS ± ADDRESS ± ~ d

23 34

CHAR.

ADJ.
38 39 40

Page No. W of --­

Identification , I eo'
76

COMMENTS

55

l-'---'----L-L- L~-'---'----'----+__\-----L--1---"---'---'--'---'-----'-----'---_l__+__+--'---.L--.l.--- ...L.....L_LI --'---'--'I---II__L_L---'---'---'---J
I I

i-L-~I~~--'-~_l_~

---L---'---'---'---'---'---__'___-f-_+__+--'--..L-l--L~--'----'---.L--'---''--'--L---'-----L--L_j
I

...L.---L--L.-+--'---'---'--t---1I--'----'--'----~--:--'---'--+--+--t--L- J _..J_~ L' __,___, -'-' --L....L.-'----'----'---'----L..-I

.L--'---'---'---L-+~--"----'--~..L..-'--...L..--'--t__If_+--'---L-~ -,-' --,-----,---, ~I,---,,--,--,---,­
I

--,-----'-,--,---,-1 --'---'---'--f--t--+-->-..L--L-L-l ___ -'---.L--.L__'__''__'--'-___'_____L__L_j

I
.L--+--"---C--I--'-----'----'-~~-'---'-----'--t__Ij---!_.J- -'--'---'---'-_-'--...L.._-'--+-+--j---! __ .J. ___ L-L-l ___ -'----'---'---'---'-----''--'--'--'---'---I

_L-~L __ ~---'-____L_..L_--,--~I ~~-'---+-~_
I
I
I

--'---t---"---C--I--'---'---L---'---L-_I __ ---L--'-~-+-'--'--'---'---'---'-----'---'---'--+-+--I----'---' __ J __L-..l
I
I

Figure 1. IBM 1401 Symbolic Program Coding Sheet

9

symbolic address, the processor will modify the ad­
dress assigned to the label accordingly.

The programmer may write a symbolic address in a
statement that precedes the labeled statement in the
source program, because the processor does not assign
addresses until all source program statements have
been examined and the entire label table has been
created.

ACTUAL ADDRESSES

In SPS-1 an actual address is a four-digit number
written and punched beginning in column 17 of the
A-operand field or in column 28 of the B-operand field.

In SPS-2 actual addresses can be either four or five
digits, depending upon machine size, and are written
and punched beginning in column 17 of the A-operand
field or in column 28 of the B-operand field.

Figure 2 shows the use of one symbolic and one
actual address in the source program.

Figure 2. SPS Instruction with Symbolic and Actual Addresses

ASTERISK ADDRESSES

An asterisk address is the character "*,, left-justified
in the address field. Like symbolic addresses, it has
a core-storage equivalent, but this equivalent address
is simply the rightmost, or low-order, position in the
instruction or data field defined by the statement.

Figure 3 shows an SPS statement with an asterisk
address. In this example, the instruction was assigned
the address 0906 during assembly. Because the instruc­
tion is seven characters in length, the low-order posi­
tion of the instruction is 0912. The processor substitutes
this address in the A-operand of the statement shown
in Figure 3 and assembles it: M 912285. Thus, the
actual machine-language instruction will appear in
core . storage as shown in Figure 4 after the object
program has been loaded.

Figure 3. SPS Statement with an Asterisk Address

Character

Core-Storage
Location

M -
906

9

907

1 2 2 8

908 909 910 911

Figure 4. Assembled Instruction in Core Storage

10

5

912

BLANK ADDRESSES

Blank addresses are valid in instructions where no
operand is needed. (See Imperative Operations.)
Input-Output Operands
The three-character addresses of tape units, disk stor­
age units, and other input-output or storage units re­
quiring special addresses are written left-justified in
the A -operand field.

For example, the three-character address of tape unit
1 is the A-operand of the SPS statement shown in
Figure 5.
Constant Operands
A constant operand is valid only in an area-definition
statement which contains a constant to be loaded with
the assembled object program. The constant should be
written and punched exactly as it is to be loaded and
stored. It must begin at column 24 and may extend to
column 55.

Figure 6 shows a constant operand. The field to be
defined is labeled FICALT. The constant is 480000.

Character Adjustment (Columns 23-26 and 34-37). It is
possible to reduce the number of labels required in
a source program by using a character-adjustment
factor with an actual, asterisk or symbolic address
in the operand field of an SPS source program state­
ment.

The adjustment factor is written and punched as
a plus or minus (& or -) in the -t- column (23 or 34)
and the number of positions of adjustment (as many
as 3 digits) right-justified in the Char. Adj. field
(columns 24-27 or 35-38).

During the assembly of the machine-language
object program entry, this adjustment factor is added
to or subtracted from the actual address assigned
to the label by the processor. Thus, one label can

Figure 5. Addressing a Tape Unit in an SPS Statement

Figure 6. Constant Operand

Figure 7. Two Labels Used

serve as a reference point for more than one ad­
dress. 1;'or example, if ENTRYA is the label for an
instruction which precedes the instruction, which
could be called ENTRYB, the programmer can use
ENTRYA as the reference point for ENTRYB.

If the instruction whose label is ENTRYA is 7 char­
acters long, the symbolic entry operand ENTRYA +007
will produce an actual address equal to the address
that would have been created if ENTRYB had been
used as the label for the second instruction. Figure
7 shows a section of a source program in which two
separate labels are used. Figure 8 shows the same
section in which one label is used. Both sections
produce the same result in the object program (Fig­
ure 9).

Figure 10 shows how character adjustment can be
used to address a location within a labeled field.

DATE is a twelve-character constant. The character
adjusted operand will cause only the first six digits
of the date (i. e., DEC 28, rather than DEC 28,
1961) to be moved to 0243.

Because the number of labels used in a source pro­
gram can have a significant effect on the amount of
time required to assemble an SPS program, character

Figure 8. One Label Used with Character Adjustment

].. 686

~ 693

Core--~
Storage
Location
686

Core--..M
Storage
Location
693

428

986

986

:320

Figure 9. Assembled Instructions

Figure 10" Character Adjustment Used in Addressing
a Location within a Field

adjustment is especially recommended in source pro­
grams which require a considerable amount of label­
ing. The number of labels that can be processed in
one pass of SPS assembly depends upon the size of
the processing 140l. Details are given in the operat­
ing section of this publication.

NOTE: The programmer must be careful when
making insertions in a source program where char­
acter adjustment has been used. The insertion could
necessitate changing the adjustment factor in one
or more SPS statements. This same caution also ap­
plies to patching.

Indexing (Columns 27 and 38). If the advanced­
programming feature is available in the machine
that executes the object program (object machine),
the programmer may indicate that an actual, sym­
bolic, or asterisk address is to be indexed. He does
this by writing the SPS index code in the index col­
umn of an SPS statement.

The index codes are 1, 2, and 3. A code 1 in an
index column specifies that the address in the same
operand field is to be indexed by the contents of
index location i (core-storage locations 087 -089)
when the object program is executed. A code 2
specifies index location 2 (core-storage locations
092-094) and a code 3 specifies index location 3
(core-storage locations 097-099).

When the processor program encounters an in­
dexed operand, it puts tag bits over the tens position
of the assembled three-character machine address
as follows:

INDEX CODE

1
2
3

TAG BITS
TENS POSI1'ION

A-bit
B-bit

A and B-bits

ZoNE PUNCH

o
11
12

For example, the source program statement shown
in Figure 11 specifies that the B-operand is to be
modified by the contents of index location l. The
processor will assemble an instruction that will cause
TOTAMT to be moved to a field whose address is
equal to 596 plus the contents of index location at
program execution time. If index location 1 contains
100 when the instruction is executed, TOTAMT will
be moved to 696. Assume that the equivalent ad­
dress of TOTAMT is 428. The machine-language in­
struction produced by the SPS processor program
will be: M 428 5Z6.

Figure 11. SPS Statement Specifying Indexing

11

NOTE: Character adjustment and indexing entries
are valid only with core-storage address operands,
and then only when the address field of the operand
is actual, symbolic, or asterisk. These entries are not
valid with input-output unit operands or constant
operands, nor are they valid when a core-storage
address operand designates the address at which a
defined area or constant is to be stored.

d-Character (Column 39)

Some 1401 instructions require a special modifier to
the operation code called a d-character. It is a single
alphabetic, numerical, or special character written and
punched in column 39. The d-characters are always
written in machine-language and are simply trans­
ferred by the processor to the d-character position of
the assembled machine-language instruction.

Comments (Columns 40-55)

This field is reserved for programmer's notes or com­
ments about a particular entry. A source program that
contains a complete set of comments can be more
easily understood and traced by all persons concerned
with a given program. The comments have no effect
on the object program as it is assembled or executed.
Columns 56-75 of source program cards must be left
blank, or incorrect processing will occur.

COMMENTS CARD

To provide the programmer with the ability to insert
more extensive descriptive information in the program
listing than is possible by using the comments field
on a program entry card, a comments card may be
included in the source program deck.

Comments cards will not be assembled nor will they
affect the assembling procedure. When encountered
by the processor, they will be reproduced unaltered
in the SPS output deck, and will be bypassed when
the object program is being loaded.

The Programmer:
l. Indicates with an asterisk in the first position of the

label field (column 8) that the card is a comments
card.

2. May write the comment beginning at any position
(columns 9-55). Comments extending beyond posi­
tion 55 may cause an error during processing.

The Processor: Reproduces (unaltered) the comment
in proper sequence in the program listing.

Figure 12. Typical Entry on an SPS Comments Card

12

Example: In the sample program, the entry in Figure
12 is a comments card entry.

Identification (Columns 76-80)

This field may contain any 1401 characters which the
programmer selects to identify the program.

Address Assignment
To assign addresses to instruction and area-definition
entries, the 1401 SPS processor uses a "storage assign­
ment counter." This counter stands at 333 at the be­
ginning of assembly (333 is the first available storage
location beyond the standard read punch and print
areas). However, the programmer can force the proc­
essor to begin assigning addresses elsewhere. See
Origin.

During the first pass of assembly, the processor allo­
cates storage for constants, work areas, and instruc­
tions. The amount of storage needed for each such
entry is determined by the number in the count field.
This number is simply added to the storage-address
assignment-counter to develop addresses.

If the statement being processed has a label, the
processor transfers it and its equivalent address to
the label table.

During the second pass the processor converts these
addresses to three-character machine addresses and
stores them in the object program statements where
corresponding symbols appeared in the operand fields
of the source program statements. If character adjust­
ment and indexing are specified, addresses are modi­
fied before they are stored.

Addresses for asterisk operands in instructions are
determined by the address assigned to the low-order
position of the instruction. This information is part of
the loading data and is thus available when instruc­
tions are assembled for the object program deck.
NOTE: Actual addresses in area-definition statements
do not affect the storage assignment counter and the
count field in these statements is ignored. However,
labels and the actual addresses associated with them
are stored in the label table. The programmer must be
careful that the locations specified in these statements
are not the same locations that will be allocated by
the processor to other statements in the source pro­
gram. Otherwise, the processor will re-allocate them,
and part of the object program will be destroyed at
program load time,

F,O,R, ,T.H.E., ,/l/,oi.

Declarative Operations

(Area-Definition Statements)

The IBM 1401 SPS provides four different declarative
operations for reserving work areas and constants.

MNEMONJ[C Op CODE PURPOSE

DCW Define Constant with Word Mark
DC Define Constant (no Word Mark)
DS Define Symbol
DSA Define Symbol Address

DCW - Define Constant With Word Mark

General Description: A DCW statement causes a con­
stant to be loaded into a core-storage area and a
word mark to be set in the high-order position of
this area at program load time.

The Programmer:
1. writes DCW in the operation field.
2. writes in the count field the number of core-storage

positions needed to store the constant or work area.
3. writes a symbol in the label field if he wishes to

refer later to the address of the field where the con­
stant is stored.

4. writes the address of the area in which the constant
is to be stored. If the programmer wishes to let the
processor assign the address, he simply writes an
asterisk (*) in column 17. Otherwise, he writes an
actual address beginning in column 17. In any case
the address will refer to the low-order (units) posi­
tion of the defined area.

5. writes the constant beginning in column 24 of the
coding sheet. The constant may extend to the end
of the comments field (column 55). Thus, the maxi­
mum size of a constant is 32 core-storage positions.

6. may write a comment in columns 40-55 if these posi­
tions are outside the range of the constant itself as
specified in the count field.

NOTE: In SPS-l, comments in DC and DCW statements
are never listed. DCW and DC operands may not have
character adjustment or indexing.

NUMERICAL CONSTANTS

A plus or minus sign can precede a numerical constant.
A plus sign causes AB-bits to be placed over the units
position of the constant; a minus sign causes a B-bit
to be put there. The plus or minus sign i.s written and
punched in column 23. If no plus or minus sign appears
in column 23, the constant is stored at program load
time as an unsigned field.

Figure 13. Numerical Constant (Signed)

Example: Figure 13 shows the numerical constant
+ 10 defined in a DCW statement. The programmer
has selected core-storage positions 3986 and 3987 as
the location for the constant. It will be stored I?

Figure 14 shows an unsigned numerical constant
(designed for use as a work area). In this example
seven zeros are loaded to initialize the work area to
QOOOOOO. The asterisk indicates that the processor is
to assign the address of the constant.

Figure 14. Work Area Defined by a DCW Statement

ALPHAMERICAL CONSTANTS

An alphamerical constant can consist of any valid 1401
characters. Alphamerical constants are always un­
signed.

Example: Figure 15 shows the alphamerical constant
DATE defined by a DCW statement. The programmer
has selected 0499 as the address of the constant. Be­
cause DATE is now equivalent to address 0499, the
constant can be referred to as either DATE or 0499.
The constant will be loaded as DEC 28, 1961.

Figure 16 shows the alphamerical constant EDTWDI

defined in a DCW statement. The constant 1,bb,bbO.bb
will appear in core storage as a field whose units posi­
tion is determined by the processor.

Figure 15. Alphamerical Constant

Figure 16. Edit Control Word Defined by a DCW Statement

BLANK CONSTANTS

A blank constant appears as blanks in the constant
field (columns 24 through the length of the area as
specified by the count field).

13

Figure 17. Blank Constant

Example: Figure 17 shows a blank constant .hbbbb
coded in a Dew statement and labeled EMPTY. The
processor assigns the address.

The Processor:
1. allocates a field in core storage to store the constant.

The number in the count field determines the num­
ber of positions allocated.

2. adds the number in the count field to the number
that was standing in the storage assignment counter
if there is an * in column 17. The result becomes
the address of the constant. This address is made
equivalent to the label, and the two are stored in
the label table.

If the programmer has specified the address, this
address is equated to the lahel before it is stored in
the label table. The count field is examined and
used to create the loading data for the Dew card,
but the storage assignment counter is undisturbed.

3. substitutes the equivalent addresses of labels in the
operands of symbolic program statements which
have corresponding symbolic addresses during as­
sembly of the object program.

4. produces a card, as part of the object program, con­
taining the data defined, with a sign if required,
and instructions to load the constant into core stor­
age with a word mark in the high-order position.
This card is loaded with the object program, and
the constant is stored exactly as the Dew source
program statement defined it. For blank constants,
the area is cleared of all existing word marks except
the high-order word mark for the Dew constant.

DC - Define Constant (No Word Mark)

General Description: This statement is the same as a
Dew statement except that the processor does not set
a word mark in the high-order position of the con­
stant.
NOTE: The storage area to which the constant is to
be moved should be cleared of word marks.

DS - Define Symbol

General Description: DS statements cause the processor
to assign equivalent addresses to labels or to assign
storage for work areas. DS statements differ from
Dew and DC statements in that no data is loaded into
the defined area at program load time. ADs-defined
area is unaffected during the loading of the object
program. Data, word marks, instructions, previously

14

put in the area, remain unaltered. Thus, if DS state­
ments are used only to define areas, using a clear
storage routine before loading the program is recom­
mended.

Some DS statements affect the storage assignment
counter. These can be used to bypass areas needed for
independent routines (instructions or data not in­
cluded in the source program being assembled) or
for storing constants for which the programmer has
selected the actual storage locations.

The Programmer:
1. writes DS in the operation field.
2. writes a symbol in the label field if he wishes to

refer symbolically to the low-order position of the
area.

3. writes the address of the area.
If the processor is to assign the address, he writes

an asterisk in column 17 and writes a number in the
count field to indicate the size of the area.

If the programmer wants to equate the label to an
actual address or I/O unit operand, he writes the
address or I/O operand beginning in column 17. In
this case no storage will be allocated by the processor,
so the count field is left blank.

NOTE: DS statements cannot be character-adjusted
or indexed.

The Processor:
1. adds the number in the count field to the storage

assignment counter and equates the resulting ad­
dress to the label if one appears in the DS statement
if there is an asterisk in column 17. If an asterisk
or I/O unit operand appears in the DS statement,
the processor equates the label to the operand.

2. substitutes the equivalent addresses of labels in the
operands of symbolic program statements which
have corresponding symbolic addresses during the
assembly of the object program.

3. leaves the defined area unaltered during object
program loading.

Examples: Figure 18 shows a DS statement with an
asterisk address. This 8-position area which can be
referred to as INPUTA will be assigned an actual ad­
dress which will be the low-order core-storage posi­
tion occupied by the area when the program has
been loaded.
Figure 19 shows a DS statement used to equate a

label to an actual core-storage address. (This type of DS
statement is used for assembly only, and does not
require any storage space in the object machine. Thus,

Figure 18. Defining an Area with a DS Statement

Figure 19. DS Statement Equating a Symbolic
Address to an Actual Address

it is very useful in creating symbols for addresses that
must be referenced often in the source program.) An
input card contains current gross in card columns 40-
44. When the card is read into 1401 core-storage, cur­
rent gross will be in positions 0040-0044. The program­
mer wants to refer to current gross as CURGRO so that
he does not have to remember the actual address
(0044). The statement shown in Figure 19 allows him
to use CURGRO as a symbolic address for 0044.

Figure 20 shows how a DS statement can label a tape
unit. The programmer can now use TAPE1 instead of
% VI in the A-operand of a magnetic tape instruction.

Figure 21 shows how a DS statement can bypass 20
positions of core storage. The constants of the storage
assignment counter will be increased by 20 when the
processor encounters this statement. The processor
will not re··allocate these 20 storage positions. However,
an actual address in another area-definition statement
or an instruction patch card can cause data to be
loaded into them. For example, if the counter con­
tained 0936 before this statement was processed, it
would contain 0956 afterward. The DCW statement
shown in Figure 21 would cause CONST2 (1875) to be
loaded into storage positions 0953-0956 at object pro­
gram load time.

Figure 20.

Figure 21.

Assigning a Label to a Tape Unit

Advancing the Storage Assignment Counter
and Using the Bypassed Area

DSA - De1fine Symbol Address

General Description: A DSA statement causes the three­
character machine address which the processor has
assigned to a label to be stored as a constant when
the object program is loaded. This three-character
address is called an address constant. Address con­
stants are used to modify addresses during the exe­
cution of an object program.

The Programmer:
1. writes DSA in the operation field.
2. may leave the count field blank because an address

constant is automatically assigned three core-storage
positions by the processor.

3. may write a symbol in the label field if he wishes
to refer later to the address of the address constant.

4. writes the address of the area in which the address
constant is to be stored. If the programmer wishes
to let the processor assign the address, he writes
an asterisk (*) in column 17. In any case, the address
will refer to t he units position of the three-character
address constant.

5. writes the symbol whose equivalent address is to
be the address constant beginning in column 28 of
the (B) operand field. This operand may have char­
acter adjustment and indexing.

The Processor:
1. allocates a three-position field in core storage in

which will be stored the address constant at pro­
gram-load time.

2. adds three to the number that was standing in the
core storage assignment counter if there is an *
in column 17. The result becomes the address of
the address constant. This address is made equiva­
lent to the label, and the two are stored in the label
table. If the programmer has specified the address,
this address is equated to the label before it is
stored in the label table. The storage assignment
counter is not affected when an actual address is
used.

3. looks up in the label table, the equivalent address
of the symbol in the B-operand and uses this address
as the address constant.

4. produces a DSA card containing the address con­
stant and instructions to load this constant into core
storage with a word mark in the high-order position
of the three-character field"

Examples: Figure 22 shows how a DSA statement can
develop an address constant. In another part of his
source program, the programmer has used the sym­
bol WHTAX. During assembly, the processor will as­
sign a three-character machine address to WHTAX,

but the programmer does not know what that address
will be. Yet for an address modification operation he
needs this machine address (stored as a constant)

Figure 22. Area Definition Entries

15

so that he can write an instruction that will move
it into the A- or B-operand of another instruction at
program execution time. The programmer wishes
to refer to the address of the address constant as
aADCONA.

For the example shown in Figure 22 assume that
the storage assignment counter is standing at 584
when the DCW statement is encountered.

The processor will assign 586 as the address of
WHTAX and 589 as the address of ADCONA. These two
constants will appear in core storage as shown in
Figure 23, after the object program has been loaded.
Figure 24 shows another section of the source pro-

gram that uses ADCONA.
Assume that the equivalent address of INSTR is 829

and WORKAR has an equivalent address of 763. The
processor will assemble these two instructions. M
589832 A 000 763. When the first instruction is exe­
cuted in the object program, the second instruction will
be modified to A 586 763. When the second instruction
is executed, WHTAX (18) will be moved to WORKAR.

Figure 25 shows a DSA statement with an actual ad­
dress in the B-operand. In this case the programmer
knows the actual address he wants to store as an ad­
dress constant, but he does not want to bother to
translate the actual address to a three-character ma­
chine address. The DSA statement causes the machine
address of 12332 (;J.3B) to be stored as an address
constant in core-storage locations 14088-14090. The
programmer can refer to the address constant as 14090
or as ADDRSl.

Character

Core-Storage
Location

WXTAX

~

585

8

586

Figure 23. Constants in Core Storage

ADCONA

~ 8 6

587 588 589

Figure 24. Instructions U sing an Address Constant

Figure 25. DSA Statement with Actual B-address

16

Imperative Operations (Instructions)

General Description: SPS imperative operatIOns are
direct commands to the object machine to act upon
data, constants, auxiliary devices, or other instruc­
tions. Thus, they are the symbolic statements for the
instructions to be executed in the object program.
Most of the statements in the source program will
be imperative instructions. The programmer must be
careful to write instructions that use only the fea­
tures and devices that are included in the machine
that will execute his program.

The Programmer:
l. writes the operation code for the instruction in the

operation field. Mnemonic op codes are written left­
justified in the operation field. Actual op codes are
written in column 16. (Also, see Coding Sheet).

2. leaves the count field blank if he so desires.
3. writes a symbol in the label field if the instruction

is an entry point for a branch instruction elsewhere
in the program or, if he wishes to make other refer­
ence to it. This label is assigned an address equal
to the core-storage location occupied by the opera­
tion code of the associated instruction at program
load time. Thus, the programmer can use this label
as a symbolic address in another SPS instruction.

4. writes in the (A) and (B) operand fields, core-storage
addresses or I/O Unit Addresses.

Core Storage Addresses. These are symbolic, actual,
asterisk, or blank addresses representing the A/lor
B addresses of actual machine-language instructions.
Symbolic, actual, or asterisk operands may have char­
acter adjustment and indexing.
NOTE: Blank operands are valid:
a. in an instruction that does not require an operand

(such as a read instruction).
b. in instructions in which useful A- or B-addresses

are supplied by the chaining method such as Mew
FIELDA]l"IELDB Mew Mew.

If an instruction is to have addresses stored by
other instructions, the operand or operands affected
must not be left blank. Zeros are recommended as
shown in the DSA example.

Input/Output Unit-Addresses. An I/O unit operand
is valid only in the A-operand field of an SPS state­
ment. It is the three-character address of an auxiliary
device such as tape unit (% Ux).
5. writes the d-character in column 39 if one is needed

for the instruction. The d-character is always writ­
ten in actual machine language.

NOTE: Blank is not a significant d-character except in
the Branch-If-Character-Equal instruction. A Branch-

If-Bit-Equal (BBE) instruction with a blank d-character
will be assembled as a seven-character instruction.

The Processor:
l. substitutes the actual machine-language operation

code in place of the mnemonic operation code and
transfers it to the operation-code position of the
assembled machine-language inst~uction. Actual op
codes are simply transferred as they are written in
an SPS instruction statement.

2. counts the number of characters that will appear in
the assembled instruction and adds this number to
the number that was standing in the storage­
assignment counter.

3. allocates a field in core storage that will be occupied
by the assembled machine-language instruction.

4. stores the label (if one appears in the label field) and
its equivalent address in the label table. Remember
that an equivalent address assigned to a label in an
instruction statement is the address assigned to the
position occupied by the operation code when the
instruction is loaded in the object machine.

5. looks up in the label table the equivalent addresses
of symbols used in the operand fields of an instruc­
tion and inserts them in the actual machine-language
instructions.

Converts actual addresses to three-character ma­
chine addresses and transfers them to the machine­
language instruction.

Replaces asterisk addresses with the address oc­
cupied by the low-order position of the instruction
in object-core storage, and transfers them to the
machine-language instruction.

Transfers an input-output unit operand to the A­
address portion of the machine-language instruction.

6. produces a card, as part of the object program,
which contains the machine-language instruction,
and the information necessary to load it with a word
mark in the op-code position.

NOTE: All instruction operations: Arithmetic, Data
Control, Logic Control, and System Control are ex­
plained in the IBM 1401 Data Processing System Ref­
erence Manual, Form A24-140:3. Operations requiring
special features ,(noted by an asterisk in Figure 38) are
also described in this manual. The programmer should
thoroughly review the operation code functions before
attempting to program in SPS.

Special Mnemonic Operation Codes
Three special mnemonic instruction operation codes
are included for use with SPS-l and SPS-2: Modify
Address (MA), Load Unit (LU), and Move Unit (MU).

17

MA - Modify Address

The IBM 1401 MA operation code facilitates address
arithmetic for systems equipped with more than 4,000
positions of core storage. It causes the data defined by
the A- and B-operands to be added together and the
result to be stored in the B-field at program execution
time. Thus, a new address is developed in the B-field.

If the MA statement has an (A) operand only, the
three-character machine address is added to itself and
the result is stored in the A-field at program execution
time.

The SPS-1 processor will accept the MA mnemonic
operation code and assemble it as an A (Add) com­
mand, even though the modify-address feature is not
available on 1400, 2000, and 4000 systems.

The SPS-2 processor will assemble the MA operation
code as a modify-address command if the object ma­
chine has more than 4,000 storage positions. If there
are 4,000 core-storage positions or fewer, it will assem­
ble an A (Add) as in SPS-l.

Example: Figure 26 shows an SPS-MA statement coded
to double the address assigned to ADCONA. After MA

instruction is executed in the object program, the
field whose address is ADCONA will contain +50, the
machine address equivalent of 1050 (0525 + 0525).

Figure 26. MA Statement with A-address Only

18

LU - Load Unit

The LU mnemonic is convenient to use for instructions
that address magnetic tape units, RAMAC®, and other
input-output devices. The processor produces a LOAD

(L) instruction that will transfer data and word marks
from the unit to the field whose address appears in
the (B) operand. Figure 27 shows an LU statement that
will produce an instruction that will read a tape rec­
ord (with word marks) into core storage at program
execution time.

MU - Move Unit

The MU mnemonic has the same function as LU, ex­
cept that word marks are not transferred by the
MOVE (M) operation it produces.

Figure 28 shows an MU statement that will produce
an instruction to read information into storage from
an IBM 1412 Magnetic Character Reader.

Figure 27. LU Statement

Figure 28. MU Statement

Processolr Control Oper,ations

The IBM 1401 Symbolic Programming System provides
four processor control operations. These following
commands, which are never executed in the object
program, control the assembly process:

OPERATION CODE

CTL
ORC
EX
END

Cll - Control

PURPOSE

Control
Origin
Execute
End

General Description: The control card is placed at the
beginning of the source deck, so that the SPS proc­
essor is able to distinguish the storage sizes of the
processing machine (machine which assembles the
object program), and the object machine (the one
that executes the assembled object program).

In SPS-1, the CTL card also signifies the availability
of the punch-release feature to the processing ma­
chine. The punch-release feature is not used in SPS-2.

The Programmer:
1. writes the mnemonic code (CTL) in the operation

field.
2. indicates in column 17 the size of the processor ma­

chine. This will determine the maximum number of
labels that can be processed per iteration. See
Labels.

SPS-1 Codes

COLUMN 17 CODE

1
2
3

STORAGE POSITION

1400
2000
4000

If a number other than one of these code digits is
specified, if the card column is blank, or if the CTL

card is omitted from the source program deck, the
processor assumes a 1400-character machine.

SPS-2 Codes

COLUMN CODE

3
4
5
6

STORAGE POSITION

4,000
8,000

12,000
16,000

If a number other than one of these code digits is
specified, if the card column is blank, or if the CTL

card is omitted from the source program deck, the
processor assumes a 4000-character machine.

3. indicates in column 18 the size of the object ma­
chine. This will indicate to the processor how much

storage space will have to be cleared at load time
for the assembled program.

For both processors, SPS-l and -2 the machine
codes are the same as previously listed. If column 18
is blank, the processor assumes the object machine
size is the same as the processor machine. Also, in
both SPS-1 and -2, the processor assumes the object
machine to have 1400-character storage if there is
an illegal code punched in column 18.

4. if he is using SPS-1, the programmer indicates in
column 19 whether the punch release feature is
available to the processor. This feature is used by
pass one of the processor.

COLUMN 19 CODE

1
blank

MEANING

Punch Release Available
Punch Release Not Available

If any other digit is punched, the processor as­
sumes no punch release feature.

The Processor interprets the machine size and feature
codes and processes the source program accordingly.

ORG - Origin

General Description: An ORC statement causes the
processor's storage assignment counter to assign ad­
dresses beginning at a particular location specified
by the programmer. If it is entered as the first card
of the source program, an ORC card can cause the
initial assignment of addresses to be at a location
other than 333. An ORC statement may be includcd
at any desired point in the source program. This will
cause the counter to be reset and cause all future
entries to be assigned addresses beginning at the
particular location designated by the programmer.
Character adjustment and indexing are not valid in
an ORC statement.

The Programmer:
1. writes ORC in the operation Held.
2. writes the actual machine address at which assign­

ment is to begin left-justified in the (A) operand.
3. inserts the card in the desired place in the program.

The Processor:
1. assigns addresses to instructions, constants, and

work areas, beginning at the address specified in the
(A) operand.

2. causes the storage assignment counter to assign sub­
sequent addresses beginning at the address written
in the (A) operand if an ORG statement is encoun­
tered at any point in the source program.

The first symbolic program entry following the ORC

statement in Figure 29 will be assigned storage with
location 900 as a reference point. For example, if the

19

Figure 29. onc Statement

first entry is an instruction, the op-code position of
that instruction will be 900; if the first entry is a
seven-character Dew, it will be assigned address 906,
etc.

EX - Execute

General Description: During the loading of the assem­
bled machine-language program, the programmer
may wish to discontinue the loading process tem­
porarily to execute a portion of the program just
loaded. This can be accomplished through the use
of an EX statement placed in the source program.

Using an execute command, the programmer can
divide his program into several program sections if
his total program exceeds the limit of available stor­
age capacity.

The Programmer:
1. writes EX mnemonic operation code in the opera­

tion field.
2. writes a symbolic or actual address left-justified in

the (A) operand. This indicates to the processor
which instruction is to be executed after the loading
process has been stopped. A blank or asterisk oper­
and should not be used.

3. to continue the loading process after the desired
portion of the program has been executed, the pro­
grammer must provide as the last instruction of the
portion executed an instruction to read a card and
branch to location 0056. This location contains an
instruction to load the rest of the program.

If the read area will be altered by the execution
of the portion of the program, the programmer must
provide, as the last instruction of the portion exe­
cuted, instructions to clear the read area, and set
word marks in locations 0024, 0056, 0063, 0067, as
well as the read and branch operation as previously
explained.

l.ABEL

(AI OPERAND (81 OPERAND

+ CHAR.

;3 ADJ. 27 29
~ d

, I

L--..L....-l..-.L...........L..-..t---f------.L
L J I L I, _I.. _I I _1-

L--.l-1~ .. _j_.L ... 1 ______ ~ __ J ___ ..L __ _

o Of GXECul'UJ' ,--+-L-L-++ _L_ .. L __ L._L-----L-_L ___ __ .1 _1._

~~___L~.L_!..._~-L...........L...

.~~~ _ _1 __ • .L __

,ok.'ZL-L:{_LL
, ! , , ! : :-L

L J l I _I I L J_l

L-...L........L-L .. __ ..L .. L _ .. L . .. _L __ .1. _

The Processor assembles a branch instruction. This in­
struction is not part of the object program, but it
causes the loading operation to halt at the appro­
priate time. The branch instruction is then executed.

Example: It is sometimes desirable to execute the ini­
tial, or housekeeping, steps that are not necessary to
continuous running or restarting of the program so
that they may be then destroyed and new instruction
or constants loaded over them. This routine, called
an overlay, is executed as directed by an EX state­
ment.

In the routine shown in Figure 30 the housekeep­
ing instructions will be executed, the read area will
be re-initialized, and the rest of the program will be
loaded.

NOTE: The Nap instruction insures that a word
mark follows the R0056 instruction.

The condensing routine output is compatible with
this format. The routine, upon encountering an EX
card, punches the cards necessary to re-initialize the
read area for the condensed routine.

END - End

General Description: An END statement is a signal to
the processor that the last card in the source program
has been processed. If the programmer specifies in
the (A) operand the actual or symbolic address at
which the object program is to begin execution, an
END statement will produce an instruction that will
start program execution immediately after loading.
If the (A) operand is blank, the 1401 will halt when
the last insh'uction has been loaded.

The Programmer:
1. writes END in the operation field.
2. may write a symbolic blank, or actual machine ad­

dress (left-justified) in the (A) operand. An asterisk
operand is not permissible.

The Processor clears the read area "(positions 001-080)
of core storage and assembles an instruction that
branches to the address specified in the (A) operand
after loading is completed.

_ L __ J ___ L_L_-1 __ !_-' ____ L-L--+-I---+--'---'--L-L--'-----L-L--L. __ L_-L-L-L......-L_--L_...l_

Figure 30. Using an EX Statement in Overlay Programming

20

The IBM 1401 Symbolic Programming System is com­
posed of five separate programs:

• Pre-Process Listing Routine

• Processor - Pass One ~
Processor Assembly Program

• Processor - Pass Two

• Post-Process Listing Routine

• Condensing Routine

The processor program listings and a table of ad­
dress displays for 1401 halts is found in the IBM 1401
Program Library publication: Symbolic Programming
Systems, SPS-1 and SPS-2 (File Number 2.0.003).

Pre-Process Listing Routille
The SPS :Pre-Processor Listing Routine .rnakes it pos­
sible for the programmer to detect many coding or
keypunching errors in the program deck before as­
sembly.

The Operator:
1. puts sense switch A on.
2. places decks to be loaded behind the routine in the

read hopper.
3. resets the 1401 and loads the program.

The Routine:
1. restores the printer carriage. All input cards to the

program are selected to stacker 1.
2. prints the card image and messages into eleven

fields on the printed page in the following format:

Page Number (Card Columns 1-2). Zeros are sup­
pressed in this listing.

Line Number (Columns 3-5). Line number is printed
as is.

Count (Columns 6-7). Zeros are suppressed in listing.
The routine determines the count for instructions
and DSA cards.

Label (Columns 8-13). The routine prints only the
labels to be used by the processor. Thus, a label on
an ORC card would not be listed.

Operation (Columns 14-16). This symbolic operation
code is reprinted.

SPS Processor Operations

(A) Operand (Columns 17-27);; (B) Operand (Columns
28-38). These are reprinted from the card except
that there is a space between character adjustment
and the indexing indicator. Only the digit position of
the index appears.

d-Character (Column 39). This actual machine-lan­
guage modifier is reprinted as is.

Location. Each time an ORC card is sensed, and at the
end of the object program, the highest storage ad­
dress used is printed in the location column. It is not
printed for the first origin card unless it has been
preceded by fields whose addresses are assigned by
the processor.

SPS-l Error Notes

In the pre-process listing, the processor may indicate
in code, one of five errors under this field:

Err 1. Page-Line Sequence. Page or line number out
of sequence.

Err 2. Count. Indicates illegal count for DC and DCW
cards. If the count is greater than 32, only columns
23-55 are printed.

Err 3. Illegal Op Code. Indicates illegal mnemonic
operation code. A CTL card in any other position than
the first in the source deck will be processed as an
instruction card and thus give this error.

Err 4. Illegal Operand. Indicates illegal operand. An
instruction card containing a non-blank address with
the high-order position blank, will cause this error.
For DCW, DC, DSA, and DS statements, this error is
indicated when the (A) operand is blank, symbolic,
or % (except for DS).

Err 5. Column 56 Not Blank. Indicates column 56 is
not blank. NOTE: Information in columns 56-74 can
cause improper processing when assembling.

SPS-2 Error Notes

Because of increased storage available to the routine,
additional error-checking features are included. The
complete error legend is:

Err 1. Page-Line Sequence. Indicates that a page or
line number is out of sequence.

21

Err 2. Count. Indicates the count for a DC or DCW is
greater than 32 or less than 1, or that the program­
mer has not indicated the count for a DC, DCW, or DS

statement.

Err 3. Label. Indicates that the first character in a label
is blank, numeric, or a special character. Also recog­
nizes a DS card without a label whose (A) operand
is not an asterisk (*). This type of card is meaning­
less to the processor and is noted as a potential error.

Err 4. Illegal Op Code. Indicates illegal mnemonic
operation code or a blank operation code field. A
CTL card in any other position than the first in the
source deck will be processed as an instruction card
and thus give an illegal op code error. (These cards
will be created as DCW'S if there is a count.)

Err 5. Illegal (A) Operand indicates:

l. An instruction with a (B) operand but not (A) op­
erand.

2. A blank or symbolic (A) operand for a DCW, DC, DS,

or DSA statement.
3. A non-numeric address for an ORG statement.
4. An asterisk address for an EX or END statement.
5. In a general operand error:

a. The indexing is not 1, 2, or 3.

b. Character adjustment is non-numeric or left­
justified.

c. Character adjustment sign is not + or-.

d. The first character of the operand is blank, but
the balance of address is not.

e. The operand begins with % but is greater than
three characters. It does not appear to be an
I/O device.

f. The first character is numeric but the remaining
are not.

g. The numerical operand is fewer than four char­
acters.

h. The numerical operand is greater than the ob­
ject-machine size specified.

i. The first character of the address is the asterisk
(*) but the balance is not blank.

Err 6. Illegal (B) Operand indicates the sign position
(column 23) is not +, -, or blank in a DCW or DC

statement or a general operand error. See item 5
under Err 5).

Err 7. Columns 56-74 Not Blank. The information in
Columns 56-74 can cause an improper assembly.

22

Comments (Columns 40-55). The comments in a source
program card are entered in this field on the printed
page.
The preceding format is adhered to in the pre­

process listing with the following exceptions:
l. Comments cards. The routine lists the comments

(columns 8-55) centered in the middle of the page.
2. Constants. Constants are right-justified beyond the

d-character column. The count determines the
length of a constant. In this way, low-order blanks
appear more distinctly. The sign (column 23) ap­
pcars in the high-order position.

Additional Comments - SPS-l

In addition to the preceding listing, the pre-process
routine will:
1. print at the end of the source program, the number

of significant labels in the entire object program.
2. cause the highest storage address assigned by the

processor (exclusive of the actual address assigned
by the programmer) to be printed.

Additional Comments - SPS-2

The additional listing features for the SPS-2 pre­
process routine are:
l. If the first card in the source deck is not a control

card, NO CONTROL CARD is printed on the first line
after the heading.

2. If the last card is not an END card, NO END CARD is
printed below the listing.

3. At the end of the source program listing, the total
number of cards and the highest storage address
that the processor will assign (exclusive of actual
addresses assigned by programmer) are printed.

End Card Stop. When the processor encounters an END

card, the highest storage address and number of
labels (and the card count, in the case of SPS-2) are
printed. If there are more cards in the reader, the
carriage is restored and the routine restarts at the
beginning of the program. If sense switch A is on
and it is the last card, there is a programmed halt.
Pressing the start button restarts the program.

Processor Assembly Program
Because of the serial nature of the 1401, the processor
must be a two-pass system (Figure 31). In general, pass
one assigns all imperative and declarative statements

Pass] L~
Punch

Punch

~ '\
NP

~ '\
Object

NP

READYTO~

Figure 31. IBM 1401 SPS Assembly Procedure

Partial

Symbolic
Coding
Sheet

Source
Program

4 8/2
Source

'12

II]

NR

Symbolic
Assembly
Deck II]

jljl

"'---------------
II

'12

Partial Source *]

4 8/2 NR

t
DESTROY

~

~

Symbolic
Assembly
Deck '12

Read

Read

an equivalent machine address and puts the label, if
any, and lits equivalent address into a table in storage.
Pass two, upon encountering a symbolic operand,
searches the table for the label and translates it into
the machilne-language equivalence.

The number of labels that can be processed in one
iteration is as follows:

Although one execution of passes one and two may
be sufficient to assemble certain programs, it is likely
others may require another iteration (complete execu­
tion of passes one and two) to complete the assembly.
The number of iterations required to assemble a com­
plete program depends upon the number of labels
used in the source program and the storage capacity of
the 1401 on which the program is being assembled.

SPS-1
PROCESSOR MACHINE SIZE

1400

SPS-2

2000
4000

4000
8000

12000
16000

NUMBER OF LABELS

40
100
300

260
660

1060
1460

If the number of labels in a source program exceeds
the quantity allowed, it is necessary to reiterate. Thus,

23

the output from the initial run of the processor be­
comes input to a second run. This is continued until
all labels are processed.

Processing - Pass One

To prepare the source deck for processing, the opera­
tor must:
1. Be sure that the first card in the source deck is a

CTL card, and that the last card is an END card (Fig­
ure 32).

2. Put the source deck between the processor program
sections labeled PASS ONE and PASS TWO and put
them in the read hopper.

3. Reset the computer and press the load button. The
processor cards for pass one will be loaded into
core storage, and program execution will begin
automatically. During processor program execution,
the SPS pass one deck will fall into the normal read
stacker, the source deck into stacker 1, and the
punched output deck into stacker 4.

During program execution the processor:
1. Changes the mnemonic operation codes to actual

machine-language codes.
2. Assigns an address in core storage to each instruc­

tion and field designation.
3. Prepares a table of symbolic label and assigns an

equivalent address to each label.
4. Allocates' storage for instructions, work areas, and

constants.
5. Punches out cards and drops them into stacker 4.

These cards contain information that will be used
by the processor during the second pass. The num­
ber of positions occupied by each instruction is
automatically calculated and punched into the
count field (columns 6-7) of these cards.

6. Loads automatically the processor program cards
for pass two. This loading occurs if the END card of
the source deck has been processed.

NOTE: Because pass one generates the symbol table,
it is not possible to stop assembling at the end of pass
one and continue with pass two at a later time. How­
ever, it is possible to postpone the completion of an
assembly after any complete iteration.

Deck to be

~ SPS Pass Two

......-- END Card ;}

,L--- Object Program assembled
~'4----- cn Card

'--____ --1< /------ SPS Pass One

Figure 32. SPS Assembly Card Order

24

PROGRAMMED HALTS - PASS ONE

SPS-1 Illegal Mnemonic Operation Code. The proc­
essor causes the 1401 to halt, if the card just read
(the last card in stacker 1) has an illegal mnemonic
operation code.

If the punch release option is used and there is
an illegal mnemonic, an output card is punched
anyway. It is, however, selected to stacker 8/2 and
should be discarded by the operator.

To restart the processor, the operator should:
1. press START to bypass the card, or repunch the card.

Put it into the hopper as the first input card and
replace the rest of the source program deck. Press
START, or if it is an instruction that is not an eight­
character branch-on-blank instruction, restart at the
address noted in the ruM 1401 Program Library SPS
listing. In the assembled deck, the actual operation
code will be left blank. This error will be noted in
the post-process listing.

SPS-2 Illegal Mnemonic Operation Code. The proc­
essor causes a halt if the card just read has an illegal
mnemonic operation code. The operator should fol­
low the same instructions as for SPS-1.

PROCESSOR STOPS WITH READER EMPTY

In pass one of SPS-1 and SPS-2, if all cards have been
processed, and there is no programmed halt, the pro­
gram may stop on a read operation code (the op regis­
ter displays a 1). This can occur in the following cases:
1. The program has not yet sensed an END card.
2. Pass one is completed and the program is trying to

load pass two.

Processing - Pass Two

At the end of pass one, pass two is automatically
loaded. It is possible, however, to load pass two by
pressing the LOAD button.

During the loading of pass two, if no additional
iterations are required, three cards will fall into stack­
ers. The programmer should:
1. discard the card in stacker 8/2. This is a duplicate

of the END card punched by pass one.
2. clear the storage routine of the assembled deck

with the two cards in the normal punch stacker.
U sed at loading time for the assembled program,
these cards will clear the amount of storage of the
object machine which was specified on the CTL

card .

After the loading of pass two, the operator:
1. places the output from pass one (stacker 4) in the

read hopper when the loading of pass two has
stopped.

2. presses the start button to resume processing.

During pass two the processor:
l. processes the operands by substituting actual ma­

chine llocations for symbolic operands and perform­
ing character-adjustment operati0ns.

2. changes numerical machine address assigned by the
programmer into proper machine address when an
alphabetic or special character is required by the
1401. For example, the core-storage address 1213
would be changed to S13 during this pass.

3. punches object program in a self-loading one­
instruction-per-card format. Each card of the object
program will contain the source program statement,
the corresponding assembled instruction, or data,
and the information required to load the assembled
instruction.

These object-·program cards are selected into the
normal punch stacker. The Rrst two cards (see
Notes) contain a self-loading clear-storage routine
which clears core storage of all existing characters
and word marks. The third card in the normal
stacker, punched with the object program, will con­
tain instructions to initialize the read area with
word marks for the self-loading instruction cards.
This is a bootstrap card (see Processor Output).

4. Causes the input deck (output of pass one) to be
selected to stacker 8/2. These are to be discarded
by the programmer.

ADDITIONAL ITERATIONS

If additional iterations are required, the machine will
attempt to read a card (the Rrst card of pass one).

If the 1401 attempts to read a card after pass two
of the assembly program, an additional iteration is
needed. If this is the case, the operator:

1. places the output from pass two (from normal punch
stacker) between passes one and two.

2. places the combined deck into the read hopper.

3. presses the START button to repeat the operating
procedure.

NOTE: For all additional iterations, all input cards
are selected to stacker 8/2. These cards are to be dis­
carded after assembly.

FIRST CARD STOP -- PASS TWO

If pass one has been completed and the next card does
not appear to be the Rrst card of pass two, the SPS-2
processor will halt. To load pass two, the operator:
l. runs out the cards.
2. makes the Rrst card of pass 2 the Rrst input card.
3. resets the machine.
4. presses the LOAD button.

END OF JOB

After the last card has been processed by pass two,
the machine will come to a halt if this is the last
iteration. Pressing the START button at this point will
have no effect.

PROCESSING STOPS WITH READER EMPTY - PASS TWO

In pass two of SPS-1 and SPS··2, if all cards have been
processed and there is no programmed halt, the pro­
gram may stop on a read operation code (a 1 in the op
register). This occurs when:
1. the program has not yet sensed an END card.
2. the program has determined that reiteration is nec-

essary and is trying to load pass one.

Non-Programmed Halts - Passes One and Two

The processor may come to an unexpected halt if the
following errors are encountered:
1. END card misplaced (SPS-1 only). Because the proc­

essor automatically loads pass two after processing
an END card, an END card placed in the middle of an
object program will cause the card following it to be
treated as the transfer card of pass two. This means
that the page-line number is treated as an instruc­
tion and, if the tens digit of the page-line number is
a valid input-output command, it will be executed
prior to the halt. There is no convenient way to con­
tinue the assembly at this point because of the
end-of-program procedure.

2. Illegal indexing indicator. If an indexing column
(column 27 or 38) is punched with a special charac­
ter, pass two will stop. The units position of the
storage address displayed will show the special
character with zoning removed.

3. Illegal DCW or DC count (SPS-1). If the processor
encounters a DCW or DC card with a count greater
than 57 (a legal DCW or DC card may only deRne a
maximum ReId of 32 positions) and it is necessary to
sign the constant (column 23 contains + or -) the
sign will be placed somewhere with storage locations
081-122. However, locations 081-099 contain con­
stants used by the processor. Consequently, it is
possible for these constants to be changed by an
illegal DCW or DC count in the object program. This
error will be caught in the pre-process listing rou­
tine.

For both passes, locations 081-099 should always
contain:
STORAGE LOCATION

081-089
090
091-095
096

097-099

CONTENTS

01NOO1056
o or 1
TLBlO
T for 1 Ak object machine
Z for 2k object machine
1 for 4k object machine
The highest storage address of the
processor (e.g. 199 for a 4k machine)

25

NOTE: In SPS-2, an illegal DC or DCW count will not
interfere with locations 081-099 because the processor
does not store any constants in these locations.

Miscellaneous Operating Information

1. Bypassing a card in pass one other than a comments
card will cause an improper assembly. In pass two,
if a card is bypassed, it will have no effect on the
assembly of other cards.

2. It is not possible to reassemble an assembled deck.
However, an assembled deck may be reproduced
leaving columns 56 through 75 blank. The repro­
duced deck may then be reassembled.

Processor Output
The processor output, i.e., the assembled deck, con­
sists of two clear-storage cards, a bootstrap card, and
the assembled program.

CLEAR-STORAGE CARDS

The nrst two cards in the normal punch stacker are the
clear-storage routine for the assembled deck. At load­
ing time for the assembled deck, these cards will clear
the amount of storage specined by the CTL card which
designates the object machine size. The arithmetic
overflow latch is set by the clear-storage card.

BOOTSTRAP CARD

This card, the third in the normal punch stacker, ini­
tializes the read area with four word marks necessary
to make the assembled deck self-loading. The locations
of these word marks are 024, 056, 063, and 067.

Assembled Program

The assembled program cards are duplicates of the
input cards with the assembled information in columns
56-75.
Columns 56-75. In assembled instruction and constants

cards, columns 56-62 contain the instruction neces­
sary to bring the data into storage. An EX card
assembles an unconditional branch in this neld (col­
umns 56-62) while an END card assembles a clear­
the-read-area-and-branch instruction. All other cards
generate a bypass instruction

N 001 056 (NOP 00010056).

Columns 63-66. All assembled program cards contain
a 1056, the instruction R0056 in columns 63-66. This
causes the 1401 to read a card and branch to execute
the instruction in column 56 and the next card.

Columns 67-74. This field is blank except for instruction
and DS cards. In construction cards, columns 67-74

26

contain the assembled instruction. In DS cards, col­
umns 67-70 contain the four or nve-character address
of the symbol. This is saved by the processor for
listing purposes.

Column 75. This column contains a card code used by
the post-process listing and condensing routines to
determine the card type.

CODE CARD TYPE

blank Instruction
blank Comments

F DCW
5 DC
G DSA
D DS
Q EX
J END
R CTL
2 ORG

OUTPUT FORMAT

According to card type the assembled program output
format is:

Instruction Card

DCW, DC Card

DSA Card

DS Card

EX Card

EX Card (no [AJ
operand)

COLUMN

56
57-59

60-62
63-66
67-74
75

56
57-59

60-62
63-66
67-74
75

24-26
56-59
60-62
63-66
67-74
75
56-62
63-66
67-71

72
75

56
57-59
60-62
63-66
67-74
75

56-59

60-62
63-66
67-74
75

CONTENTS

L
Low-order card position of the
instruction (equals 66 plus
instruction length).
Low-order storage address
1056
the assembled instruction
Blank

L for DCW; M for DC
Low-order card position
23 plus constant length)
Low-order storage address
1056
Blank
F for DCW; 5 for DC

Assembled DSA
L026
Low-order storage address
1056
Blank
G
NOO1056
1056

(equals

4- or 5-character address of
symbol
Blank
D

B
Assembled (A) Operand
blank
1056
blank
Q

.063

blank
1056
blank
Q

END

CTL,ORG,
COMMENTS
Cards

56 I
57 -59 Assembled (A) Operand (if [A] is

blank, 000 is assembled)
60-62 080
63-66 1056
67-74 blank
75 J
56-62 N001056

63-66 1056
67-74 blank
75 R for CTL, 2 for ORC, blank for

COMMENTS.

UNDEFINED SYMBOLS

Undefined symbols have ### (# is a 3-8 punch)
substituted on the card for an actual address. For ex­
ample, assume the symbolic instruction B LABELl ap­
pears in a source program. However, LABELl does not
appear in the label field of any statement in the same
source program. Therefore, lB LABELl will be assem­
bledB ###.

Patching

Correction or revision of an assembled deck is accom­
plished through a procedure known as patching. This
makes it possible for the programmer to change the
object program without having to reassemble the en­
tire source program.

To prepare a patch card, the programmer:
1. inserts the count in columns 6-7. This is necessary

for the condensing and post-process listing routine.
2. uses the following format according to card type:

I~OR CONSTANTS:
a. punches the constant beginning in column 24.
b. punches in column 56 an L for DCW cards or an

M for DC cards.
c. punches in columns 57-59 a zero followed by the

number of the card column that contains the low­
order position of the constant. This number is
equal to the length of the constant plus 023.

d. punches in columns 60-62 the address of the
core-storage location that will contain the units
position of the constant

e. places 1056 in columns 63-66.
f. punches in column 75, a 5 for a DC card or an F

for a DCW card.

FOR INSTRUCTIONS:
a. punches the assembled instruction in actual ma­

chine language in columns 67-74.
h. places an L in column 56.
c. punches in columns 57-59 a zero followed by the

number of the card column that contains the low­
order position of the instruction. This number is
equal to the length of the instruction plus 066.

d. punches in columns 60-62 the. address of the
core-storage location that will contain the units
position of the instruction.

e. punches 1056 in columns 63-66.

FOR END CARDS:
a. punches a "slash" (I) in column 56, and 080 in

columns 60-62.
b. punches the machine address of the first instruc­

tion to be executed after loading the object pro­
gram in columns 57-59.

c. punches a J in column 75"
FOR EX CARDS:
a. punches a B in column 56.
b. punches the machine address to which the load

program should branch in columns 57-59.
c. punches a Q in column 75.

The programmer places the patch cards in the as­
sembled program before the assembled END (or EX)
card.

Example: In a lengthy program, a programmer may
wish to insert a statement or subroutine in the as­
sembled program without having to reassemble. This
may be accomplished by a patching procedure in
which a branch instruction is substituted for an­
other one in the main routine to cause a branch to
the subroutine or instruction. The last statement in
the subroutine must then cause a branch back to
the main routine.

Suppose the programmer decides to insert an in­
struction after the branch on unequal compare op­
eration which will move MANNOl to FIELDA before
the sw operation. The original assembled program
post-process listing looks like this:

1126 C008108 C MANN01 0108

B ERROR
This card removed

11133 BS841 from assembled
deck.

SVV 0109 0116 1138 ,109116

The subroutine would look like this in SPS and as­
sembled instructions:

STORAGE ASSEMBLED
ADDRESS SPS INSTRUCTIONS INSTRUCTIONS

1133 B 2084 I B-84
2084 B ERROR 1 BS841
2089 MCVV MANN01 FIELDA M008208
2096 B 1138 B/38
2100 NOP N

(The NOP instruction guarantees
that a word-mark is set after the
unconditional branch.)

Each instruction is punched in assembled form in a
patch-card format. The initial branch operation is sub­
stituted for the branch operation in the assembled pro­
gram and the rest of the subroutine is placed before
the assembled END, or EX card.

27

Post-Process Listing Routine

The Post-Process Listing Routine is used to list the
object program after the assembly is complete. The
programmer uses this listing to trace machine stops
and assembly errors. The listing gives the assembled
instruction as well as the original one.

The Operator:

1. puts the sense switch A on.
2. places into the read hopper any number of assem-

bled decks to be listed.
3. resets the 1401 and presses the LOAD button.

The Routine:

1. automatically restores the print carriage. All input
cards are selected to stacker 1.

2. prints the card image and error messages in twelve
fields on the printed page in the following format:

Page Number (Card Columns 1-2). Zeros are sup­
pressed in this listing.

Error indicator (0). A lozenge printed between the
page and the line number indicates that at least one
of the following errors appears on the card:
a. An undefined symbol in the (A) or (B) operand.
b. A blank operation code in the assembled instruc­

tion.
c. Data to be loaded has been assigned an address

in the read area.
d. A constant has been assigned a count greater

than 32.
e. The count column in a DC, DCW, or instruction card

is blank or zero. This will cause a halt in the con­
densing routine. NOTE: A blank instruction count
cannot occur as a result of assembling. However,
it may have been inadvertently left out of patch
cards.

Line Number (Columns 3-5). Line number is printed
as is.

Count (Columns 6-7). Zeros are suppressed in this list­
ing.

Label (Columns 8-13). The routine prints only the la­
bels used by the processor.

Operation (Columns 14-16). The symbolic operation
code is reprinted.

(A) Operand (Columns 17-27). This is reproduced from
the card image except that there is a space between
character adjustment and indexing. Only the digit
position of the index appears.

(B) Operand (Columns 28-38). Reprinted same as (A)
Operand.

28

d-Character (Column 39). This machine-language mod­
ifier is reprinted as is.

Location (Columns 60-62). This is the four-character
address of the data. It refers to the high-order posi­
tion for instructions and the low-order position for
constants.

Instruction (Columns 67-74). The assembled instruction
is printed in this field.

Comments (Columns 40-55). Comments in the source
program card are entered in this field.

The preceding format is adhered to in the Post­
Process Listing with the following exceptions:

1. Comments cards. The routine lists the comments
(columns 8-55) centered in the middle of the page.

2. Constants. Constants are right-justified beyond the
d-character column. The length of a constant is de­
termined by its card count, and the sign (column
23) appears over the units position of the constant.

Each page has a heading line which identifies the
respective columns. The identification (columns 76-80)
appears at the extreme right of this line.

Unassembled-Card Listing. If a card does not appear
to the listing routine as an assembled card, the word
UNASSEMBLED CARD is printed out with a complete
reproduction of the card data. This error is most
likely to occur when the operator attempts to list
an unassembled deck, fails to reiterate a partially
assembled deck, or lists the output from pass one.

Clear Storage, Bootstrap Card Listing. At the begin­
ning of the listing, the CLEAR STORAGE and BOOTSTRAP
cards are reproduced. If anyone card is missing, or
if the cards are not in proper order, one of the fol­
lowing messages appears: FIRST CLEAR STOR­
AGE CARD MISSING, SECOND CLEAR STOR­
AGE CARD MISSING, NO BOOTSTRAP CARD.
It is not necessary, however, that the CLEAR STORAGE
cards be present when listing.

SPS-2 Listing Feature. In addition to the preceding
listing, the SPS-2 processor prints, at the end of the
program listing, the total number of cards, exclusive
of clear storage and bootstrap cards, and the total
number of errors detected by the routine.

End of Program Procedure. When the routine senses
an END card and it is the last card, the program
halts. Pressing the start button restarts the program.
If there are more cards in the reader after an END
card is processed, the carriage is restored and control
transfers to the beginning of the program.

Conden~5ing Routine
The SPS Condensing Routine is used to convert the
one-instruction-pel'-card assembled program deck into
a "condensed" deck which contains multiple instruc­
tions per card. While not considered part of the proc­
essor, the condensing program is supplied with the
program to enable the user to reduce the number of
cards in any program deck.

Each condensed card will contain up to 38 charac­
ters of information from the object program or seven
word-mark locations, i.e., fields or instructions, which­
ever is reached first. The condensed card contains suf­
ficient information to render it self-loading.

The condensing routine causes a self-loading card
which initializes the read area with appropriate word
marks and begins the loading process to be punched.
If the two cards of the clear storage routine are entered
into the condensing routine, they will be punched out
before the self-loading load card.

As each card of the assembled object program is
read, the assembled data is transferred to the con­
densed card-output field. The address of the first field
placed on each card determines the starting location
for the card.
The Operator:
1. places any number of assembled decks to be con­

densed behind the routine.
2. presses the LOAD button.

The Routine:
1. causes input cards to be selected to stacker 1. It

causes output cards to be selected to the normal
punch stacker.

2. causes the assembled deck to be punched out in a
self-loading condensed deck. Each card has approxi­
mately six data fields in the following format:

CARD COLUMNS MEANING

1-38 This field contains the data to be loaded
into storage (maximum of 38 characters).

::\9-55; Contains up to 6 four-character set-word-
03-70 mark instructions. If there are fewer than

six sw instructions, 1056 (R0056) appears
in the next available set word mark loca­
tion. This causes the loader to read a card
and branch to the load instruction of the
next card.

155 Contains a 1 denoting a read-a-card in-­
struction. This instruction is present only
if six set-word-mark instructions are
present.

156-62 Contains the instruction necessary to load
the data (columns 1-38) into storage.

'71-74 B039 (Branch to 0039)

'75 Blank

76-80 Identification

DC CARDS

In the condensed deck, the data is loaded into storage.
This differs from the one-pef-card loader in which a

. DC card is moved into storage. Consequently, if a DC is
the first item in the data to be loaded by the condensed
deck loader, a word mark is first set in the high-order
position of the DC, but is then removed by a clear­
word-mark instruction. Because data is loaded into
storage, all existing word marks are cleared in the
storage locations before entry.

EX CARDS

The programmer may insert data cards behind an EX

card. To accommodate the condensed card loader, the
condensing routine converts the instructions, which
were written by the programmer to return control to
the load routine after the program section has been
executed. If data is not inserted, these cards will not
affect the loading procedure"

END CARD

To facilitate patching of the condensed deck, the END

card instruction is the only information present on the
last card.

PATCHING

Patching a condensed deck requires that the data to
be loaded in storage is placed in columns 1-38. The
LOAD instruction is placed in columns 56-62, and 1056
is placed in columns 63-66.

PROGRAMMED HALTS

There are three programmed halts in each SPS Con­
densing Routine:

SPS-1

Illegal Card. The routine causes a halt if, in an in­
struction or constant card, any. position in columns
57 -59 is blank or if column 57 is not zero. This error
cannot occur as the result of assembling but might
appear on patch cards.

Blank Count Column. If the count column for instruc­
tion or constants is blank, the routine halts. This
generally occurs because of a count left out in patch
cards.

End of Job. Each time an END card is processed, the
machine halts. After an END card is punched, the
routine causes it to be selected to the normal stacker.
A blank dummy punch-instruction card falls into
stacker 8/2.

29

SPS-2

Non-Assembled Card. The routine halts if the input
does not appear to be an assembled card.

Illegal DC, DCW Count. If the count field on a DC or
DCW card contains a number greater than 32 or less
than 1, the routine haIts.

End of Job. This is the same haIt as explained under
SPS-l.

Restart After Error Halt. Pressing the start button
after an error haIt will cause the machine to bypass
the error card and read the next card or, in the case
of an END card haIt, to restart the program.

To load and execute the assembled program, the oper­
ator
1. places the assembled deck (clear storage cards, boot­

strap card, and assembled program) into the hopper.
2. puts data cards behind the assembled program.
3. presses the LOAD button to begin the loading pro­

cedure.

30

IBM 1401 SPS Sample Program

Figure 33~ shows a block diagram for a payroll routine.
A current earnings card and year-to-date card (Fig­
ure 34) are read by the 1401 and complete an em­
ployee's check and earnings statement (Figure 35).

Information from the year-to-date card is updated
by the information in the current earnings cards and a
new year-to-date card to be punched.

Start Read A Card

Current Earnings Card

The first card read should be the current earnings
card. If it is the year-to-date card (X74), there is a
branch to the UPDATE routine, and the unequal com­
parison in man numbers results in a machine stop. In
the first half of the program, the current information
is edited and moved to the print area and also to
work areas in the punch area. The first line of the

Year-To-Date Card

Move MD--1n # Set Word Marks NX 74
T Ch k For CurrenI'

o ec Input

Check
Card
Type

>-_X--,-74-'---i Set Word Marks
For YTD Input

Select
Stacker

Move N~
ToChe~

=r
IMoveD~
LToChE~

Move & Edit
MISC. OED

For Statement

MoveD~
ToPul~

ilW..ve Cun-ent
FICA

To Punch

C()Ve Current
GROSS

To Punch

Figure 3~~. Block Diagram for Sample Problem

Halt

Print Statement
Punch New

YTD Card

Move Dept #
To Check

Move & Edit
NETAMT

For Check

Move & Edit
NETAMT

For Statement

Move & Edit
YTD GROSS
For Statement

Move & Edit
YTD FICA

For Statement

31

check and earnings statement is printed. The program
checks for end of form.

The second half of the program, a routine labeled
UPDATE, causes the year-to-date information to be
added to the curi'ent information, which is in the
punch area and causes the updated year-to-date card
to be punched. The new year-to-date information is
also edited and moved to the print area, and the sec­
ond line of the check and earnings statement is printed.

CURRENT EARNINGS CARD

1-3 4--89 17181920 3536----44

Dept. Man Social Tax Name Not Used
No. No. Security CI.

No.

1-3 4--8 9---15 16--21 22-2627

- --
Dept. Man Year- Year- Year-
No. No. To-Date To-Date To-Date

Gross Wh Tax FICA
YEAR-TO-

DATE CARD

---- -
Figure 34. Current Earnings and Year-to-Date Cards

General Manufacturing
Corporation

To the Order of:

23140 G J KANE

724

NEW VALLEY
NATIONAL BANK

Pay Exactly:

Date

JAN 27, 1961

$ 130.26

Treasurer

Figure 35. Employee Check and Earnings Statement

32

Then a skip to the next form is executed.
Figure 36 is an IBM 1401 SPS source program written

for the payroll listing routine. Figure 37 is the SPS
output program listing.

Mnemonic Operation Codes

Figure 38 shows the IBM 1401 SPS Mnemonic Opera­
tion codes.

45--49 50--55 56-60 61-6566 7475--80

Total Current Current Current Not Used Current
Misc. Gross Wh Tax FICA Net
Ded.

73 74 75--80

Not Used X Not Used

- - --

EARNING STATEMENT

Man
Gross WHo Tax FICA

Misc.
No. Oed.

23140 $ 175.00 $ 31.90 $ 5.66 $ 7.18

Net Pay YTD YTD YTD
Gross WHo Tax FICA

$ 130.26 $ 875.00 $ 159.50 $ 28.::'0

INTERNATIONAL BUSINESS MACHINES CORPORATION IBM IBM 1401 SYMBOLIC PROGRAMMING SYSTEM

Program ?B'I8(J1u1v L/S71IVG___ CODING SHEET

Programmed by

LINE COUNT LABEL

5 6 7 8

1 4 0

1 ~ 0

1 6 0

1 7 0

1 e 0

2 0 0

OPERATION

(A) OPERAND

I

CHAR.

ADJ.

L_i-.----.L __

I 1
L_~ ___ I

1
_I

Figure 36. SPS Source Program (Part 1 of 4)

Date 7/13/"2.,
~ i

(B) OPERAND

~ ADDRESS
27 26

O,DlZ/ll
0,£1,O/1J L­

o LOLJ./,61 _L

__ CLfh5~-,-

±
34

CHAR.
ADJ.

IB~ INTERNATIONAL BUSINESS MACHINES CORPORATION

IBM 1401 SYMBOLIC PROGRAMMING SYSTEM

Program _.E1l~~~EIAJ6_ CODING SHEET

Programmed by

LINE COLINT

o 6 0

o 7 0

o 8 0

o 9 0

2 0 0

Date 2/I.f/~ z

LABEL

(A) OPERAND

OPERATION

1
_ ~ . .1. __ l ___ ~ L I

_0,018,01 1

~lrL8Jii"L
OJQL)L4, , :
o,oJi~1 _LJ _-' __ L-L-

1 I
_ ~"L_-----.L __ ..1 __ ._1 __ L __ l __ ~l_

. :_ !!1LhL/V' MQ.~ .. L~_.L_L_
.: _ EB J R IO_R.---.L~_ L __ l-.--L __

~.L-.l...- '_D li,Qtll _J._:.-~-L--+----t"''-''''''''-'-''
J. _-'-----L _ '-----'---- §M_ () j~l ~---.L_LL . L-

A '5 0

(B) OPERAND

Figure 36. SPS Source Program (Part 2 of 4)

CHAR.

ADJ.

g d

36 39 40

g d

38 39 40

FORM X24·1152
PRINTED IN U.S.A.

Page Nco.IO,ilof _~
I 2

IdentificCition ~ RJVJ
76 80

COMMENTS

55

FORM X24·1152·
PRINTED IN U.S.A.

Page N'j. ~ of _~

Identification ~RIt

COMMENTS

33

IB1.1 INTERNATIONAL BUSINESS MACHINES CORPORATION FORM X24·1152

IBM 1401 SYMBOLIC PROGRAMMING SYSTEM PRINTED IN U.S.A.

ProgralT) PAY BOLL LI~Ilf'\JG CODING SHEET Page No.lQ3J of _~
I 2

Programmed by Date Identifi cation ,e,A,Y,H,1..,
76 80

(AI OPERAND (BI OPERAND

LINE COUNT LABEL OPERATION CHAR. ~ CHAR. ~ d COMMENTS
ADDRESS ADDRESS

3 5 6 7 8 '3 14 16 17 I;J ADJ.
27 28 I~I ADJ.

38 39 40 B5

'A, I 0,0 ~ 1- I I _Q,':LJ2.,i I I UJ>JO,A,I,f., ':'l,T D, W,HT,A,X 0 I 0 --'---- , I I , I I I
2 0 IA, I !D,O~~ I O,12.1k I I U,P'~Lr~~~T,D, ,F,I,C,A 0 L I I I

0 3 0 MC!u 'oJ1 10 ,3 , ~ .. --L- O..t.~,~:
I M,V ,0 ,F. ,P,T,#, ,T,c e,K, -- I

0 4 0 J. C:IJ IE..DL~:L: : I O,2../f,~: : C,U,-LI, ,NT_,T, 'p,A.'I
0 ~ 0 IM,C:~ IN, £.tI,AJ"1~.--L _ _ Oll.J!L~ I , __ E-,-~ .P .. W.~ .. ~ ,K ~

, I
0 6 0

'--- '/...,c:,q E.JDJ",WDL~. () :z ~.5 .L.--L_L~ F ,Dd_LL N,G:J:, e,~,~, L-~
0 7 0 M,e :~_ N,bT,AJMTLL.-'----'---- 0.6 ,6,5, I

I I F ,0, R.sLrA,TL~f\L,L-,--,-----.-1. ____ --'----'----'-- I~

L~. £, QXJMJ),.:iL_L,,_-.L... O,~71 I I E,DLL.LrL_..J~ ,&,R Q'S 5 ~- --'-.- ---.L..-.L....L I ,

~.~ !M,e:£. In,j,,1,5J_Ll_~ O.l~'l,'l, , I I FJQ~.LS.L8:r,E; ,~E, ~r, -- I I
...!..J..~ 'J..,C:A E-J D I TJWtD.,zLl_--'-_--'---- ~h~~ I I £,PLiJ:, ,'i,T,ll, ,W.H'T,AX, _.1 . ___ ~-L- , ,

I I 0 ,JYtC.t£ O~l~':: , O.I~,8B, I I FlO,S I ,5 L:L8,I ,f ,t1, E.,~,I, I I I I

I 2 0 .&.elA. t....J:)IIlwv21_L---'----'--- QL~,q I'I, I
, ,

EJ1_LL ;'i,T,Q ,E,I,C,A, __ 1 _____ .1 ___ ...l __ ---.1-._-1......_
-'

I ,
..... -'----..L....

...!.J..3 . .L.<J .--'-- f-..J -~ M,C:z. QJ::J..,t:..''''_'--~_L_ O,~~LJ----,---.L... lSQ,g, .s'II8,I,z:,t1EI~CH
I 4 0

.. r12J lLO..c 7i'-L.LLJ .. J .. __ L. 'O~l:L_J __ L-~
.~ ... ~

rtLQL'i£L ;Z,Q,t-J,E I l: ,0, ,~C
(I. e l I I I I S,KLI,P ;i ,A.F,I,f. R P J?.T --'--'-~.r:> f---L-- _~_--L...... L. __ .l. __ ~.~~---.L_ J ____ L .. -.l...~L-..!...~~

w,p~
, , I I P.£,LN,I, It I ,P,U,h!,c,H I 6 0

.. --'-- .1 ___ L __ .l. ____ L._ l __ '~I_ .. _'____L..... f-- _~_.L~l .~--~ f' 1- 0,0 ,8,0 L....L_l..~-'--- I ,
C l,E,A,~~,{jL... I.~ .. __ L __ l_ ... j __ l.~~_ .L.ISL. , ___ .L ... 1 __ ~_L_L_1 I f-.

C s' (),2., Cf.lL,-- I : : ,'---
I ,

K:',~ IE IA~_lP...R.J~~E.il I 8 0 J f-- _ L .. .1 .-'----'---'-__ ~ .. _..L... -

~. ___ L_

iA~~T <!.D
C 5:_ S.LLl\.lR,r, LJ----'--_L_ f-- ~=1.,8-'-(L_..l : : c 1..~,N,C,t::1, it, IB,&,A,NC.H
1-1.' o,oo:L :: I I IL,fLs:-r~ ,e.. A.R D, .\4,A,L.:T, 2 0 0 I ,

J,' I . -'--'---I. .. --,---,---.a.l-. ~_A5.,"'LC, D: I I I A IC,H£C.,K. IL ,A,S~C,A IR, 0 , .L_ I I I L _ _ L __ L _.....L __ -,-_L .. L ..L.. I I I ,

Figure 36, SPS Source Program (Part 3 of 4)

IB,., INTERNATIONAL BUSINESS MACHINES CORPORATION

IBM 1401 SYMBOLIC PROGRAMMING SYSTEM
CODING SHEET

FORM X24·1152·
PRINTED IN U.S.A.

Program PAYROLL LISTING Page No.lDfiJ of _~_
I 2

Programmed by Date ____ _ Identification ,£,i1Y~L
76 80

(A I OPERAND (BIOPERAND

COMMENTS

LINE 5 :OUN: 8 LABEL 13 ~:ERATI~: 17 ADDRESS _I;J ~~:~. ~ 28 ADDRESS I ~I ~~:~. ! 39 40
55

o I 0 F,R.R,O LR 1-1. I ~.,R.&.iU~,-l.: _-'--_l.L--L....J. __ LJ._ . .L....-'--+-+_

o 2 0 . MA,I\I,N,D:1- D,5~ 0,1,0,8. L_Ll--'---.'--- __ -c-L.-'-.lJ . .L_:....J--'-_L___ .I_L...L'--.L'---'_'--_.L..--'---'---'--_"_--'_--'----I

030 t1.o f,D,T,Wn,'" n,(!!w*"_.l_L...L...L_:...~.&12~b,b,O,.~'__: --'-:--'--~-+--+--,-.J L.._L_.-'--' -'---'----'-.-"---',--'--, ...L--.O.---'_~
o 4 0 10 ~ £,D,Lhl!l,2.D,C:W -Ii -'---'---1: :.$ I b,"I -b b,Q I· ,0&, : : __ I I

o ~ 0 0 1 . N.£.,T ,A ,M,T DC ':W ~, --'--_1 _ ~-Jan~R. O,QAt _.1 _1- _: : " __ L-

o 6 0 It.,z D,A~S-_ DC~WO,4/1f:L _LJ..JJ,AJN Z-,2L) , ,1,q:~:.:L_.L_I--_ ___-'---'---'---'--..L...J..--1''---'--, ...L--L'u-'.--1.-

.. ---,---,--,--~£,N:D S,T,A.l&TJ_Ll_L-L_ __ : : .l-.L....f--f-- __ I. -'---'---'---'-_"_--'-_
I , I , ,

o 7 0

• I

1-0-,--,-_8 -'--°-l---"---t---'--'----'----'-~'---t_--'---t-. ---'-._L ''----'---"-':--;---'- ... -'-- - .1 I----'---'----~···-:i·---''----'----\----\---+---'---'---L---'--L-L -'--...L..--'---'---'---'---"-----'----'--I

t_ _-'--_-'- ... 1 ----'----L_L_-'_--"- .. .1 __ +.. ' , I I I I
~_.--l. __ ~~_____1 __ __..L_~ 1-....._ I L __ 1 ____ .L. _'_-"_'---'--+_ r--~-- -.i ... _..L_--'-,---'......J'____'_.L....-'---'--_"_--'---'-___'_---'--I

1 ' I I I
_ -'---'- _.1._ .J.---'--+-~___'_I_.-1_· t. -'--__ '-.-'--_..J :: ~ _ .-:---+---'----'---1--. 1-.-1--1..-. .1.1.1 --'---'----'---''___L.. .-'---'---'---'----'----'.--'----1

--,-,---,--.;--i __ -t- .l-~_J.----L-+ __ +_~ -- ~-~--+--+~ .-

o 9 0

I 0 0

I 0

I 2 0

__ -'--~ __ .l----'----'---.L_ ~.___ -'--.1 . . ~ .. l_: -:--'---'--- - .. -'---'--"~,'. --'--: --.L---'-f---t-t--'--.-'---'---'---'---'---"----'-'---L....-'---'---'---'---'---j

f--' 1.
4
--,-0-+---,--. __ --'-._.l.---'--.. . .L.....L..... --J.-.t- ---,-_.1. __ L .. L ... J_+-+-'___'-__ '--~---'.':---'-----'--- . 1-- ----'--.. .LL._.l.--'.,___'_,---'_L-_-'----'---'---'--_"_--'---'----I

)---' -,--5 L_
O +--~_. _-'_1. ---'----'----'----If--'---'---+--'-.. l._--L-l_+-.. ~-,--_ : 11_ -'----.L... . ---f-. I , ,--.l---''--'---'---'---'---'---'---'----'---'-~'---l

I 3 0

f--'.L_6.L..:.0-t-.-'---+-_~ _ _'__-'---'-- --.L-t-- 1.1 1.. ... '- __ 1_:_:_.-'----'----1-- ,_..J_ J_ .. _L_~-~ . _~ __ L. 1-.... 1.--'----"~I'----'--'---'---'--"---'-~--'---''---1

~o.. _--'--_f-_L-'_.L_-'---'-- -t..... L l.---'--f----f--'---'----· - I .. L .. : .. ~---"- ---'---.L....L_.J_L.-'----'---'-_-'~'__'__'___'____'__, _ ___1_

r-!-.J..II~+--'--'-I---'-- _.l_l---'----'--.+-.L_._.L--'----L.....L_'---'----'-- '---f-- I L_l._L. __ '_.'---'---.L... --.. L L_-'- .--'---''---'----'---'---'---'-_"_--'---'---'---''---1 I I I I ,
I 9 0 :J---'---.l..-1----..L--f-..l----'---'---- 1_.1. I _~---'---'--- . __

2 0 0 I I

I I

Figure 36. SPS Source Program (Part 4 of 4)

34

CLEAR STCRAGE 1 ,008015,022026,030034,041,045,053,0570131026
CLEAR STCRACE 2 L072116,110106,105117BIOI/I99,027A0740280027BOOI0270BO26/0991,0011'00111710
BCCTSTHAP CARC ,008015,022029,056063/056029 ,0240671056

PAGE

PG LIN CT LABEl CP A CPERAND B OPERAND 0 lOC INSTRUCTION C.OMMENTS

1 CIC Cll 33
1 C2C *PAYROLl LISTING ROUTINE PROGRAMMED FOR THE 1401
1 030 eRG 0900
1 C4C 1 START R 0900 1 READ A CARD
1 C50 8 B UPDATE 0014 0901 B *81 074 - CHECK CARD TYPE
1 060 7 SW 0004 0009 0909 , 004 009 MAN & SS NUMBERS
1 C7C 7 SW C020 0045 0916 , 020 045 NAME & MISC OED
1 oec 1 Sh 0050 0056 0923 , 050 056 GROSS & WHTAX
1 090 1 Sh C061 0075 0930 , 061 075 FICA & NETAMT
1 ICC 4 Sw C101 0937 , 101 DEPT # IN PUNCH
1 110 7 tJCW coca 0206 0941 M ooa 206 MOVE MAN # ro CK
1 120 1 Meh ee35 0224 0948 M 035 224 MOVE NAME TO CK
1 130 1 tJcw CATE C241 0955 M 499 241 MOVE DATE TO CK
1 140 7 MCw 00(18 0255 0962 M 008 255 MV MAN #I TO STMN
1 15C 1 LCA EOTWD2 0266 0969 l S74 266
1 160 1 MCE C055 0266 0976 E 055 266 MV & EDIT GROSS
1 170 7 LCA EOTW02 0277 0983 l S74 277
I lac 7 tJCE C060 0277 0990 E 060 277 MV & EDIT WHTAX
1 190 7 lCA ECTWD2 02a8 0997 l S74 288
1 2CC 1 MCE C065 0288 1004 E 065 288 MV & EDIT FICA
2 CIO 1 LCA Eca02 0299 1011 l S74 299
2 020 1 MCE 0049 0299 1018 E 049 299 MV & EDT MISCDNS
2 03e 1 MCW C008 0108 1025 M 008 108 MOVE MAN#I TO PNC
2 040 1 MCW COC3 0103 1032 M 003 103 MV DEPTH TO PNCH
2 050 1 MCW oe55 0115 1039 M 055 115 MV GROSS TO PNCH
2 060 7 tJ,CW C065 0126 1046 M 065 126 MV FICA TO PNCH
2 Cle 7 tJCW C060 0121 1053 M 060 121 MV WHTAX TO PNCH
2 08C 1 MCW CC80 NETAMT 1060 M 080 S81 SAVE NET AMOUNT
2 CSC 2 CC B 1067 F B SKIP 2 AFTER PRT
2 lCO 1 W 1069 2 PRINT 1ST LINE
2 11C 4 CLEAR CS ccao 1070 1 080 CLEAR READ AREA
2 120 1 CS START 0299 1074 1 900 299 CLR PRT & BRANCH
2 130 7 UPDATE sw 0004 0009 1081 , 004 009 MANN & YTDGRS
2 14C 1 sw C016 0022 1088 , 016 022 YlDWHTX & YTDFCA
2 15C 2 SS 1095 K 1 SElECT STACKER 1
2 160 1 C tJANNOl 0008 1097 C 108 008 COMPARE MANII-
2 17C 5 B ERRCR 1 1104 B S52 1 BRANCH UNEQ,UAl
2 18C 7 Sw 0109 0116 1109 , 109 116 WORD MARKS IN
2 19C 4 sw G122 1116 , 122 PUNCH AREA
2 2CC 1 A C015 0115 1120 A 015 115 UPDATE YTOGROSS
3 010 7 A 0021 0121 1127 A 021 121 UPDATE YTD WHTAX
3 C2C 1 A C026 0126 1134 A 026 126 UPDATE YTD FICA
3 C30 1 tJCW C103 0206 1141 M 103 206 MV DEPTII TO CK
3 04C 1 LCA EDTWDI 0241 1148 l S65 241 EDIT NO PAY
3 C5C 7 ~CE ~ET AMT 0241 1155 E S81 241 FOR CHECK
3 Cf:C 7 lCA £DTwDl 0265 1162 l S65 265 EDIT NET PAY
3 C7C 1 f'CE ~ETAMT 0265 1169 E S81 265 FOR STATEMENT
3 cac 7 LCA EDTWDI C211 1116 l S65 271 EDIT YTD GROSS

CSC 1 fJCE 0115 0271 1183 E 115 277 FOR STATEMENT

Figure 37. SPS Output Program Listing

35

PAGE 2

PG ll" CT LA8EL CP A OPERAND B OPERAND 0 LaC INSTRUCTION COMMENTS

3 ICC 7 LCA EDT\ojD2 0288 1190 L S74 288 EDIT YTO WHTAX
3 llC 7 ,..CE 0121 0288 1191 E 121 288 FOR STATEMENT
3 12C 7 LCA EDTWD2 0299 1204 L S14 299 EDIT YTD FICA
3 130 1 />ICE C126 0299 1211 E 126 299 FOR S TA TEMENT
3 14C 7 fIl C014 0114 1218 Y 074 114 Move; lONE TO PCH
3 15C 2 CC A 1225 F A SKIP 1 AFTER PRT
3 160 1 WP 1227 6 PRINT & PUNCH
3 1l:l 5 B LASTCD A 1228 B 548 A CHECK LAST CARD
3 17C CS C080 1233 I 080 CLEAR READ AREA
3 ISC 4 CS C299 1231 I 299 CLEAR PRINT AREA
3 19C 7 CS START 0180 1241 I 900 180 CL PNCH & BRANCH
3 20C 4 LASTCO H COOl 1248 • 001 LAST CARD HALT
4 CIC 4 ERRCR H ERROR 1252 . S52
4 02e ~AI\NCl CS C1C8 0108
4 030 10 ECTw['l CC\oj $ o. 1265
4 C4C 9 ECTWC2 co. $, o. 1214
4 C5C 7 "ElAn co. • 0000000 1281
4 C6C 12 CATE CCW 0499 JAN 27, 1961 0499
4 070 END START I 900 080

68 C/lRCS

Figure 37. SPS Output Program Listing (Continued)

36

,...---

t---
Mnemonic

Operation Code
t---

DCW
DC
DS
DSA

t---

1---

Type
Mnemonic

Operation Code
1---

A
S

Arithmetic *M
*D

ZA
ZS

f-----

MCW
*MCM

MCS
MN
MZ
MCE

Data Control
LCA
SW
CW
CS

*MIZ
MA

*SAR
*SBR

B
BWZ
C

Logic Control NOP
H

*BBE

1---

R
W
WR
P
RP
WP

System Control WRP
*SRF
*SPF

SS
CC
CU
MU
LU

1----

1---
Mnemonic

Operation Code
'-----

cn
ORG
END
EX

'----

*Pertains to an optional feature.

Figure 38. SPS Mnemonic Operation Codes

AREA DEFINITION

Description

Define Constant With Word Mark
Define Constant (No Word Mark)
Define Symbol
Define Symbol Address

INSTRUCTIONS

Description

Add
Subtract
Multiply
Divide
Zero and Add
Zero and Subtract

Move Characters to A or B Word Mark
Move Characters to Record or Group Mark
Move Characters and Suppress Zeros
Move Numeric
Move Zone
Move Characters and Edit
Load Characters to A Word Mark
Set Word Mark
Clear Word Mark
C lear Storage
Move and Insert Zeros (for reading 7070 Compressed Tape)
Mod ify Address
Store A Address Register
Store B Address Register

Branch
Branch if Word Mark and/or Zone
Compare
No Operation
Halt
Branch if Bit Equa I

Read a Card
Write a Line
Write and Read
Punch a Card
Read and Punch
Write and Punch
Write, Read and Punch
Start Read Feed
Start Punch Feed
Se lect Stacker
Control Carriage
Control Unit
Move Unit
Load Unit

PROCESSOR CONTROL OPERATIONS

Description

Control
Origin
End
Execute

Machine Language
Equivalent

A
S
@
%
? (Prints as &)
! (Prints as -)

M
P
Z
D
Y
E
L

D

/
X

Q

H

B
V
C
N

W

1
2
3
4
5
6
7
8
9
K
F
U
M
L

37

Index

Actual Addresses .. 10 Instructions .. 7, 17
Additional Comments - SPS-1 (Listing Routine) 22 Introduction 5
Additional Comments - SPS-2 (Listing Routine) 22 Label Field 8
Additional Iterations 25 Line Number 8
Address Assignment 12 LU - Load Unit .. 18
Advantages of SPS 6
Alphamerical Constants .. 13
Area Definition Statements 7, 13
Assembled Program 26
Asterisk Addresses .. 10

MA - Modify Address 18
Miscellaneous Operating Information 26
Mnemonic Operation Code Chart 34
~1nemonie Operation Codes 29
Modify Address 18

Blank Addresses .. 10 MU - Move Unit .. 18
Blank Constants .. 13
Bootstrap Card .. 26 Non-Programmed Halts (Passes One and Two) 25

Numerical Constants .. 13
Character Adjustment .. 10
Clear-Storage Cards ,..... 26
Coding Sheet 7
Comments 12
Comments Card 12

Operands .. 8
Operation 8
ORC - Origin 19
Output Format (Assembled Program) 26

Condensing Routine 29
Constant Operands .. 10
Core-Storage Address Operands 9
Control (CTL) .. 19
Count Field 8
CTL - Control.. 19

Page Number .. 8
Pass Two - First Card Stop 25
Patching 27
Post-Process Listing Routine .. 28
Pre-Process Listing Routine .. 21
Processing - Pass One 24

DC - Define Constant (No Word Mark) 14
d-Character .. 12
DCW - Define Constant with Word Mark 13
Declarative Operations 13
Define Constant (No Word Mark) - DC 14
Define Constant with Word Mark - DCW 13

Processing - Pass Two 24
Processing Stops with Reader Empty - Pass Two 25
Processor Assembly Programs 22
Processor Control Operations .. 19
Processor Controls 7
Processor Output 26

Define Symbol - DS .. 14
Define Symbol Address - DSA 15
DS - Define Symbol.. 14
DSA - Define Symbol Address 15

Processor Program .. 7
Processor Stops with Reader Empty........ 24
Programmed Halts - Pass One 24
Programming with SPS 7

END - End .. 20 Sample Program .. 31
End Card Stop .. 22
End of Job .. 25

Special Mnemonic Operation Codes 17
SPS Processor Operations 21

EX - Execute 20 SPS-1 Error Notes .. 21
SPS-2 Error Notes .. 21

Imperative Operations 17
Indexing .. 11
Information Requirements 7

Symbolic Addresses 9
Symbolic 14anguage 7

Input-Output Operands .. 10 Undefined Symbols .. 27

38

C24-1480-0

®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	xBack

