
====. - -.. - ---------------- ~==;::' = ':' = -; _ .. - Application Program

1130 Linear PrDgramming

Mathematical qptimization SubrDutine System

Application Description

The 1130 Linear Programming - Mathematical Optimization
Subroutine System provides the 1130 disk user with a simple,
efficient means of solving linear programming problems,
and with a powerful tool for implementing other mathematical
optimization applications.

The system contains all the routines necessary to solve a
linear programming problem and to perform an extensive
postoptimal analysis of the problem. The system provides
extensive data generation and maintenance facilities.

To solve a linear programming problem, these routines are
called into core storage by procedure control statements
that define the processing sequence. The control statements
may originate on cards or on paper tape.

The LP-MOSS routines can also be used like subroutines by
a program written in FORTRAN. This is accomplished by a
special command that is translated into valid FORTRAN
statements by a system translator. The command calls a
program into core storage to be executed before returning
control to the next statement in the calling program.

This manual contains a description of the system, the machine
configuration required, and limits on problem size.

H20-0238-0

Copies of this and other IBM publications can be obtained through IBM branch
offices. Address comments concerning the contents of this publication to
IBM, Technical Publications Department, 112 East Post Road, White Plains, N.Y. 10601

© International Business Machines Corporation, 1966

I

CONTENTS

Introduction

General Description of LP-MOSS/1130

Linear Programming . . .

Mathematical Optimization

Features

Linear Programming System ...

Mathematical Optimization Subroutine System .

Using the System

LP-MOSS Structure

The Linear Programming System

Using LPS

Solving a Problem

Postoptimal Analysis of a Problem

Maintaining Problem Data

Selecting Problem Data. .

Conditional Control of the Solution .

Restart and Off-Site Data Preparation

Solution of Simultaneous Equations . .

Systems Chart and Description

Restrictions and Range

The Mathematical Optimization Subroutine System

U sing MOSS . . .,

Linear Programming Applications

Mathematical Optimization Applications .

The Application Monitor .

The Translator.

Systems Chart and Description

MOSS Files ...

Data Files

Processing Files

MOSS Routines

Data Maintenance Routines

...........

1

1

1

2

2

2

3

4

4

5

5

5

5

8

8

10

12

13

13

15

16

16

16

17

17

18

18

21

21

21

22

22

I

Processing File Generation Routines. . .

Computation Routines

Output Data File Generation Routines

Output Report Routines .

Appendix .

Timing.

Precision and Accuracy .

Machine and System Configuration

Programming System.

Bibliography

IBM Publications

Other References

22

23

23

24

25

25

25

25

25

26

26

26

I

INTRODUCTION

GENERAL DESCRIPTION OF LP-MOSS/1130

The 1130 Linear Programming - Mathematical Optimization Subroutine System
(LP-MOSS) provides the 1130 disk user with a simple, efficient means of solving linear
programming problems, and with a powerful tool for implementing other mathematical
optimization applications.

Mathematical optimization may be defined as any mathematical technique for
determining the optimum use of various resources (for example, capital, raw
materials, manpower, plant, or other facilities) to attain a particular objective (for
example, minimum cost or maximum profit) when there are alternate uses for the
resources. Linear programming is the most widely used of these techniques, and has
been used to allocate, assign, schedule, select, or evaluate the uses of limited
resources for various jobs, such as blending, mixing, bidding, cutting, trimming,
pricing, purchasing, planning, and the transportation and distribution of raw materials
and finished products.

LP-MOSS consists of a comprehensive set of programs and subroutines that perform
the data processing and computational tasks necessary for the solution and analysis of
linear programming problems. These routines constitute the Mathematical
Optimization Subroutine System (MOSS).

Since a large number of business optimization problems can be solved by a
straightforward application of linear programming, LP-MOSS also provides the Linear
Programming System (LPS). LPS uses the MOSS routines to form an easily used, yet
powerful and efficient system for solving linear programming problems.

LINEAR PROGRAMMING

LP-MOSS contains a linear programming system that provides the user with a very
easy means of solving linear programming problems. For the specified 1130
configuration, the system has a logical processing capacity of 700 rows, including all
objective rows. The number of columns is limited only by the disk space available.

The LPS uses, automatically, sophisticated scaling and inversion techniques to improve
solution speed and accuracy. However, some numerical difficulty may be encountered
with large problems in the upper half of the row capacity range.

The input data (for example, the chemical analysis of raw materials) originates on
cards or on paper tape and is stored on disk for later processing. A disk may contain
one or more problems, which can be updated and rerun periodically. Disk-stored data
can be referenced to simplify new-problem preparation. A problem may contain
alternate objectives (for example, different sets of raw material costs) and may
include alternate sets of problem bounds (for example, different sets of alloy
specifications). Master problems can be defined by conbining subproblems (for
example, corporate plan from division plans).

1

Output reports are available on cards, paper tape, typewriter, or printer. Output
options include a full solution report, a comprehensive solution analysis, and
parametric reports.

MATHEMATICAL OPTIMIZATION

MOSS is designed for optimization applications that can use LP, or a variation of LP,
as part of the optimization procedure. MOSS is suited especially to applications that
require:

1. Use of linear programming optimization as a subroutine

2. Programmed data generation to cut costs or time in preparing input data

3. Specialized report preparation

4. An optimization procedure that is a modified form of the linear programming
solution procedure

The system contains a comprehensive set of linear programming routines and a
program translator. The MOSS routines are written primarily in FORTRAN and are
highly segmented into subroutines to simplify user adaptation. The LP optimization
routine has a logical processing capacity of 700 rows. The optimization technique
used is a two-phase (composite), bounded variable, product form of the inverse
revised simplex algorithm, with multiple pricing for problems with up to 350 rows.
The program translator allows the user to write FORTRAN programs that call
(EXECUTE) other programs as subroutines.

The MOSS internal data organization is designed for flexibility and simplicity of use
in FORTRAN programs. Several facilities, including SORT and MERGE, are provided
for use in generating and maintaining data.

FEATURES

Linear Programming System

Large problem capacity

Program logic provides for up to 700 rows

Simple, flexible, processing control

Optional conditional control of processing sequence

Special solution of simultaneous equations procedure

Simple problem definition

Easy-to-use format

Extensive data maintenance functions

2

I

Automatic slack generation

Specification of a starting solution (basis)

Definition of new problem by reference to subsets of old data

Combination of problems to form master problems

Advanced mathematical methods

Automatic, iterative, input scaling for accuracy

Revised simplex method (product form of inverse) for rapid processing

Bounded variable feature for range (~ and ~) constraints and bounded variables
to simplify problem description and to increase problem capacity and solution speed

Multiple pricing for increased solution speed

Efficient triangularization inversion method for speed and accuracy

Extensive postoptimal analysis options

Discrete parametric analysis for all problem data

Activity-cast-bound relationship for all variables

Extensive checking

Input check for duplicate entries

Solution processing check to test for need of early inversion and/or rescaling

Output reports include solution check

Output flexibility

Complete or partial output reports

Specification of output device

Mathematical Optimization Subroutine System

FORTRAN language routines

Routines highly segmented into subroutines

Execution of a program as a subroutine

3

FORTRAN internal data files

Easy use in FORTRAN programs

Formats can be extended for special requirements

SORT and MERGE routines

Output data files to simplify preparation of special reports

USING THE SYSTEM

Use of the linear programming system requires absolutely no knowledge of MOSS.
However, MOSS can often be used to extend the use of linear programming in an
application. So that the user can consider such extensions, a brief discussion of MOSS
and its relationship with LPS is given below. The user who wishes to use only LPS can
read the LPS section of the manual and then skip straight to the appendix. The user
whose problems require the use of MOSS should read both the LPS and MOSS sections
of the manual.

LP-MOSS Structure

MOSS consists of a set of routines that perform the various linear programming
functions, together with a means of using these 'routines like subroutines in a program
written in FORTRAN, using special MOSS control statements.

LPS is a set of FORTRAN programs that call the MOSS routines to carry out the various
phases of a straightforward linear programming application. These programs are
controlled, in turn, by the LPS control program, which reads and interprets control
records to determine the sequence in which the programs are called. Thus, LPS can be
regarded as a standard control program written to simplify the use of MOSS for the
straightforward solution and analysis of linear programming problems.

MOSS can also be used in many other ways. If he so desires, the user c'an very easily
write further programs to be called by control records via the LPS control program, or
even via his own control record system, making use of both the LPS and MOSS routines
to perform the special functions required by his application.

4

I

THE LINEAR PROGRAMMING SYSTEM

USING LPS

LPS is composed of sets of programs, called procedures, which are stored on the disk.
The user controls the use of these pr"ograms by procedure control statements, which are
read by the LPS control program. Each c9ntrol statement causes a procedure to be
called into core storage and executed. When the procedure is completed, the control
program reads the next statement.

Solving a Problem

The basic control procedures can specify completely the solution sequence for input,
linear programming optimization, and solution reporting.

INPUT

MOVE

MINIMIZE
(MAXIMIZE)

LPSOLUTION

ENDJOB

Reads input (matrix and limits) data and stores the problem on disk.
The matrix describes the linear relationship of variables to each
other and to the objective (a matrix may contain alternate
objectives). The problem limits are usually specified by a bound
set. A bound set specifies the permissible solution activity range
for each variable (a problem may contain alternate bound sets).

Reads processing specifications (for example, name of the BOUND
set and OBJECTive).

Computes the minimum (maximum) value" of the objective that will
meet the problem requirements.

Prepares a solution report with the name, objective value (for
example, cost), and problem limits of each variable of the input
problem data, as well as the computed solution value and the
reduced cost (Dj) or marginal value (PI value).

Ends the linear programlning run.

Illustration of Basic Control

Figure 1 shows how the user would set up a run to obtain a minimum cost solution to an
alloy blending problem.

Postoptimal Analysis of a Problem

These procedures are used to determine the effects of changing a problem or of
departing from its optimum solution.

For example, a manufacturing process may have a bottleneck at one stage of the process
and overcapacity at another. One additional machine at the bottleneck stage would
considerably improve production, and hence profits; an extra machine at the other stage
would merely increase the overcapacity. Similarly, a machine breakdown at the
bottleneck stage would seriously impair production, while a breakdown at the
overcapacity stage would have a minute effect.

5

Figure 1

The postoptimal procedures are used to pinpoint such bottlenecks, material shortages,
or vital contracts, so that steps can be taken to improve profitability or, at least, so
that extra precautions can be taken at crucial points.

The description of the procedures below is given in terms of costs or profits, but the
procedures are applicable equally, whether the objective is cost, profit, machine time,
throughput, or any other quantity.

LPANALYSIS Determines the effects of changes in cost, bounds, or activity of a
single variable. The report can be used, for example, to
investigate the effects of discounts, material shortages, or
overtime working, and to pinpoint bottlenecks or overcapacity.
Inc luded are:

1. The cost per unit of changing the activity of a variable, and the
activity range over which this cost is valid

2. The profit per unit of changing the bounds of a variable, and the
range of bounds over which this is valid

3. The range of costs over which the activity of a variable would not
change, and the activity levels to which it would change if the
cost left this range

6

I

LPPARAMETRIC Investigates the effects of changes to the entire problem. The
procedure provides an analysis of the changes in profitability and
use of resources as the problem data is modified systematically
over a specified range. The report can be used, for example, to
consider the effects of technological changes, statistical variations
in materials or processes, and widespread shortages or price
increases. The procedure accepts a set of changes to be made to
any of the problem data. The change data is added to the original
data, and the problem is resolved to find the new optimal solution.
The process is repeated as many times as specified by the user,
with solution reports printed at specified intervals. A MOVE
statement specifies the number of REPORTS and the INTERVAL at
which they are printed (see Figure 2).

Illustration of Postoptimal Analysis

Figure 2 shows how the user would set up a run to obtain a minimum cost solution, the
postoptimal analysis report, and five solutions with variations of the input data.
LPSOLUTION reports will occur at A+ .1B, A+ .2B, A+ .3B, A+ .4B, A+ .5B, where
A is the original problem data and B the change data.

Figure 2

7

Maintaining Problem Data

These procedures are provided to simplify problem data maintenance, preparation, and
verification. They provide facilities to store and maintain problem data on the disk, and
to allow disk-stored problems to be combined to form master problems.

SAVEDATA

REVISE

MERGE

DELETE

Preserves the problem data input previously for later reference
and/or reprocessing.

Reads input data from cards or paper tape to alter the current problem
data. The formulator may change, delete, and/or add data to the
problem to alter or correct the problem formulation.

Forms a new problem by combining disk-stored problems. The
subproblems can be input, processed, and tested for validity before the
formation of the master problem. Problems formed by MERGE can be
preserved for maintenance by SA VEDAT A and can be modified by
REVISE.

Deletes an obsolete problem. A problem that is not saved (SAVEDAT A)
during the formation of the problem by INPUT or by MERGE is deleted
automatically by ENDJOB or by the formation of a new problem.

Example of Data Maintenance

Figure 3 shows how a corporate problem (model) is to be formed using the data from two
plants. Each plant model is first to be solved independently and an analysis obtained.

Selecting Problem Data

These features are provided to simplify the selection of data from disk-stored input
files and output reports, and to expedite solution processing.

Processing Selection

SA VESOLUTION

RESTORE

Saves the current problem solution for use as an advanced starting
position for a later optimization. The user can save a number of
solutions, with each given an appropriate name, to provide
alternate starting solutions. A solution is named by MOVEing
the "name" to SOLUTION before SAVESOLUTION. When the
solution is not named, it becomes the normal starting solution for
this problem.

Restores a previously saved solution for use as an advanced basis
for the current optimization. The name of the restored solution
must be MOVEd to SOLUTION before RESTORE.

8

I

Figure 3

RESET Deletes a previously saved solution, and RESTOREs the normal
starting solution for this problem. The normal starting solution is
an all logical (generated) variable solution unless a solution has
been input or SAVESOLUTIONed.

Input Selection and Reference

Data from a previous problem can be referenced. The user can use all, or can select
a part, of the data to form a new problem.

For many applications it is useful to maintain a file of variables to be used in problem
description. This file becomes an inventory of variables, from which problems can be
defined by a selection of a number of the columns, usually process variables.

9

The inventory of variables is the matrix that describes the interrelationships of
variables. A list or file of rows, and a list or file of columns, can define the variables
of it new problem as a subset of a master problem.

Indicator cards can be used to reference previously input and saved data. Data can be
selected from a previous input by a COLS file and/or a ROWS file.

Illustration of Data Selection

The formulator has a new problem that uses some of the data (MATRIX) of a previous
problem. This new problem is to be run periodically. The two bound sets of this
problem produce very dissimilar solutions; hence the formulator would like to reprocess
the problem constrained by each of the bound sets, beginning from the previous solution
to the bound set (see Figure 4).

Conditional Control of the Solution

The user may desire to alter the processing sequence, depending upon circumstances
that arise during the run. LPS enables the user to test processing conditions and to
alter the processing sequence, if desired.

IF

IFNOT

Conditions:

OPTIMUM

NORMAL

MAJOR

MINOR

UNBOUND

INFEAS

ANY

Enables the user to test one or more conditions (for example,
INFEAS-infeasible LP problem) and to bypass portions of the solution
sequence (for example, LPANALYSIS) IF the condition has occurred.

Enables the user to test and to bypass portions of the solution sequence
IF the condition has NOT occurred.

An OPTIMUM (and feasible) solution to an LP problem has been
obtained.

The previous procedure has been completed NORMALly.

A MAJOR error, usually due to faulty input data, has been detected
during the preceding procedure.

A MINOR error, indicating possible input data error, has been detected
during the preceding procedure.

The current LP problem has no finite solution; an UNBOUNDed
objective.

The current LP problem has no FEASible solution; an INFEASible
problem.

Always. This condition is always true; it allows an unconditional break
or interruption to bypass a portion of the solution sequence.

10

I

Figure 4.

Example of Logic and Conditional Control

Shown below is the sequence of statements necessary to obtain the solution to an LP
.problem. If the solution is OPTIMUM, take an LPANALYSIS and a solution using a
secondary objective. If the first solution is INFEASible, change bound sets and obtain
the new solution. If the first solution is neither OPTIMUM nor INFEASible, take an
LPSOLUTION report; if the solution is UNBOUNDed, terminate the run.

11

INPUT
Data

MOVE
BOUNDS
OBJECT

MAXIMIZE

IF
MAJOR
OPTIMUM
INFEAS

LPSOLUTION

IF
UNBOUND

1RUN
MOVE

BOUNDS
MAXIMIZE
LPSOLUTION
IF

SET1
PROFIT1

3RUN
2RUN
1RUN

3RUN

SET2

ANY 3RUN

Label 2RUN
LPANALYSIS
MOVE

OBJECT PROFIT2
MAXIMIZE

IF
MAJOR 3RUN

LPSOLUTION

Label 3RUN
ENDJOB

Standard input through optimization

Bypass until 3RUN if a MAJOR error occurred.
Bypass until 2RUN if LP solution is OPTIMUM.
Bypass until 1RUN if LP solution is INFEASible.

If not OPTIMUM, prepare LPSOLUTION report.

Bypass until 3RUN if solution is UNBOUNDed.

Solution INFEASible (not OPTIMUM and not
UNBOUNDed); obtain LP optimum with alternate
BOUNDS, and obtain solution report.
Bypass remainder of procedure until 3RUN.

This sequence is executed only if the first solution is
OPTIMUM.

Test for MAJOR error on second optimization. Prepare
solution report.

Restart and Off-Site Data Preparation

LPS provides facilities for interrupting the solution in process during the MINIMIZE (or
MAXIMIZE) procedure and for restarting the solution from the point of interruption. The
RESTART procedure can also be used to recover from computer malfunction, provided
that the problem data on the disk has not been overwritten.

RESTART Allows the solution process to be restarted from the
point of interruption. If machine malfunction occurs, the
proqedure recovers close to the point of malfunction.

12

Solution of Simultaneous Equations

A special procedure, SOLVE, can be used to solve (invert) a system of simultaneous
equations and to prepare a solution report. The inverse is maintained in a factored, or
product, form of inverse for efficient inversion of sparse (mostly zero coefficients)
matrices.

SOLVE Performs an inversion and obtains a solution report for the specified
right-hand-side (RHS) column. For problems that contain multiple
right-hand-side columns, reports are written only for the specified
right-hand sides. The solution report contains the input name and the
computed solution value for each variable.

Figure 5 shows how the user would set up a run to obtain solutions for the right-hand
sides STANDARD and TEST.

Figure 5

SYSTEMS CHART AND DESCRIPTION

LPS is composed of an LPS control program and procedures that are stored on the disk.
The 1130 Monitor calls the mathematical optimization subroutine system monitor. The
MOSS monitor then calls (by a control record) the LPS control program (see Figure 6).

13

User control is exercised by control statements. Procedure control statement records
cause a particular procedure to be called into core storage and executed. \Vhen the
procedure is completed, the next control record is read. Logic (IF and IFNOT) control
records cause condition cards to be read and tested for condition match; a label search
is executed when a condition is satisfied. Specification (MOVE) control records cause
specification records to be read to alter current processing parameters (name of
objective, tolerances, frequencies, for example).

FROM
MOSS
MONITOR

Figure 6.

LPS CONTROL
PROGRAM

INITIALIZE
LPS COMMON

EXIT TO
MOSS
MONITOR

14

IF

SET TYPE =
LOGIC

SET X = TRUE

SET TYPE =
LOGIC

SET X = FALSE

SET TYPE =
SPEC.

CALL AND
EXECUTE
PROCEDURE

MOVE SPECI
FICATION
NAME OR
DATA

ENDJOB,--~ EXIT TO
MOSS
MONITOR

RESTRICTIONS AND RANGE

The following formulas can be utilized to find the approximate number of disk sectors
used in storing and processing a problem:

If a problem is to be input, processed, and the solution output taken, the approximate
number of disk sectors used is (R+C)(1/5+N/25).

If the problem is to be input only, the approximate number of disk sectors used is
(R+C)/25+CN/50.

Where: R = the number of rows in the problem

C = the number of columns (including RHS, range, and bound sets)

N = the number of nonzero elements per column

Examples:

Nonzero Elements Sectors Used
Rows Columns Per Column Input Only Total

100 200 6 36 132

100 200 12 60 204

250 500 10 130 550

700 1000 5 168 680

15

THE MATHEMATICAL OPTIMIZATION SUBROUTINE SYSTEM

USING MOSS

Linear Programming Applications

To implement a linear programming application, the user writes a FORTRAN control
program that can use any of the MOSS routines like a subroutine (using the EXECUTE
statement). Any FORTRAN statement can be used in such a program, providing an
extremely powerful control language. The user control program can also EXECUTE
programs written by the user. Such programs can, for example, be written to generate
data for the MOSS LP routines, or to write management reports from the solution files
formed on the disk by the MOSS routines.

Control programs can be written many levels deep (that is, a program can EXECUTE a
second program, which EXECUTES a third program, etc.), so that complete systems
can be built around the MOSS and user routines. An example is the IBM Linear
Programming System/1130, which uses a FORTRAN control program to read control
cards. The control program calls other programs in the sequence specified by the
cards, which, in turn, use the MOSS routines to solve linear programming problems and
systems of simultaneous equations.

This feature of MOSS enables the user to construct complete procedures that use linear
programming "inline". For instance, it is possible for the user to write a production
control and stock control system for feed manufacturing that:

1. Accepts as input the production requirements for a period

2. Builds a linear programming model of the manufacturing requirements for the period,
taking into account availability of stocks, plant, etc.

3. Determines the optimum production program for the period by solving the linear
programming model

4. Accepts changes to the program necessitated by management policy decisions

5. Generates replenishment orders for stocks that fall below the safety level as a result
of the final program

To implement such a system, the user first generates an overall model of his production
operations. The model is generated by the CONVERT routine from unit record input and
is maintained, as necessary, by REVISE. Then, to carry out the period-by-period
calculation of the optimum production program, the user writes procedures to:

1. Use the CONVERT programs and subroutines to generate a set of problem bounds
from the production requirements for the period

2. SETUP the complete model for the period, using the overall model and generated
bounds set

16

3. Call PRIMAL to find the optimum production program, and FILEANALYSIS to save
the program on a disk file (this file is used to print a management repqrt describing
the optimum program, and the effect on profits of changing the program)

4. REVISE the generated bounds set as necessitated by management decisions, find the
new optimum program, and print worksheets, management summaries, etc.

5. Use the final FILE SOLUTION file to update inventory and print replenishment orders

Mathematical Optimization Applications

MOSS is designed to be a very powerful tool for implementing mathematical optimization
techniques, especially those which use linear programming or which are variations of
linear programming.

The internal data formats used by MOSS are highly flexible and are easily handled in
FORTRAN programs. The records of a file need not be in physical sequence on the disk,
allowing records to be added to or deleted from a file at will. In particular, rows and
columns can easily be added to the LP processing matrix.

MOSS provides SORT and MERGE facilities for use in generating and maintaining data.
The LP input data (bounds and matrix elements) can be generated in any sequence and
sorted later into the correct sequence by the MOSS data conversion routines. This
feature is valuable especially in techniques that generate and solve a series of linear
programming problems.

Techniques that are variations of linear programming, such as separable programming
or the trim program, can easily be implemented by modifying the MOSS LP routines.
These routines are highly segmented, and segments can easily be replaced or added.
For example, to implement a trim program, the LP pricing routine can be replaced by
dynamic programming pricing and column generation routines.

THE APPLICATION MONITOR

The MOSS application monitor reads and interprets control records that call user
programs or the MOSS translator. Any program that is compiled from statements
generated by the translator can be called in the application monitor.

The application monitor serves two functions:

1. When first called by an 1130 Monitor XEQ statement, the application monitor
initializes core storage for use by lVIOSS programs.

2. The application monitor reads a control record and inserts the name of the program
to be called into a dummy EXECUTE statement.

The monitor is written entirely in FORTRAN, except for the subroutine that sets the
name of the program to be called in the dummy EXECUTE statement.

17

THE TRANSLATOR

One of the main features of MOSS is the ability to write programs that can be used like
subroutines by other programs. To accomplish this, programs are written in
FORTRAN, augmented by four system statements - COPY, START, EXECUTE, and
RETURN. The MOSS translator is used to generate a valid FORTRAN program by
translating the system statements into valid FORTRAN statements. This program can
then be compiled by the 1130 FORTRAN Compiler.

The use of each of the system statements is described below (see also the systems
chart) .

COpy

START

EXECUTE

RETURN

A set of valid FORTRAN statements can be stored on the disk in card
image form and generated later in a program by a COpy statement.
This statement can be used, for instance, to generate the set of
statements necessary to define a COMMON area that is used by several
programs and subroutines.

This must be the first executable statement of any program that is to be
us ed in MOSS.

This statement allows one program to use another like a subroutine.
The program to be EXECUTEd is read in to core storage, overlaying
the calling program. When the program has been EXECUTEd (as
defined by a RETURN statement), the calling program is read back in
to core storage, and control is passed to the statement after the
EXECUTE statement. Program switches in the calling program are
not saved unless they are in the COMMON area of both the EXECUTEd
and calling programs. A program being EXECUTEd may, in turn,
EXECUTE a third program.

This statement returns control to the statement after the EXECUTE
statement that called the program.

SYSTEMS CHART AND DESCRIPTION

The MOSS application monitor is called by an XEQ card to the IBM 1130 Monitor. User
programs and the MOSS translator are called by control records to the MOSS application
monitor (see Figure 7).

The user program called can EXECUTE MOSS routines or other user programs, which
can, in turn, EXECUTE MOSS routines and user programs. Each heavily outlined box
in Figure 7 defines a single program. As each MOSS routine or user program is
completed, control returns to the calling program until the highest level program (the
one called by a MOSS application monitor control record) is completed. Control then
returns to the MOSS application monitor, which reads another control record to
determine the next program to be called. When all MOSS jobs are completed, as
determined by an END control record, the MOSS application monitor returns control to
the 1130 Monitor.

18

1130
MONITOR

Figure 7.

YES

CALL
REQUIRED
PROGRAM

PROGRAM

START

EXECUTE
PROGI

EXECUTE

MOSSI

CONTROL
RECORD

YES
>---~ TRANSLATOR I---~ A

PROGI MOSS2

START START

EXECUTE
EXECUTE MOSS3

MOSS2

RETURN RETURN

19

Figure 8 shows the sequence of cards necessary to call the MOSS application monitor
and perform two jobs. The first job is to call and execute a program, PROGA, which
also requires some data. When this is completed, the MOSS translator is to be called
to prepare a FORTRAN source deck from a program written using the system
pseudo-FORTRAN statements. The program source deck is followed by enough blank
cards to contain the FORTRAN deck generated by the translator. Extra blank cards are
ignored.

nitor Return to 1130 Mo

Return to MOSS
application monito

(II END

/ ENDJOB
r

~

END

tor (TRANSLATE Call MOSS transla
Return to MOSS
application monito

Call PROGA

Call MOSS
application

monitor

Figure 8.

ENDJOB
r

(PROGA

(;1 XEQ MOSS

II JOB

Blank cords for
FORTRAN deck

Source program

PROGA data

20

MOSS FILES

Internal (disk) files are used to store problem information. The data files are designed
for problem "data generation and maintenance, and to provide processing and output
flexibility. The processing files are designed for computation efficiency.

An internal file is composed of one or more elements (groups of information) . The
elements are stored in system-defined, fixed-length records. The records may be in
any physical order in an external file, and may be split or divided over several external
files. An external file is a contiguous area of a direct access data device.

Data Files

The MOSS data files are used to store the input data and the problem solution. The input
data may be stored by a MOSS conversion routine from unit record inputs, or may be
generated by a user-written routine that uses MOSS subroutines to open, write, and
close data files, and to sort the data as required for processing. The solution report
may be prepared by a MOSS output routine from disk solution files, or may be
prepared by a user-written routine that uses MOSS subroutines to reorder and merge
solution files for a special report. The input data is separated into identification
files and coefficient files. The coefficient files contain the matrix and other problem
coefficients, with set and variable indices. The set and variable indices (for example,
the column and row indices of a matrix element) correspond to unique indices in the
name identification file. This separation allows for an efficient storage of input data
and simplifies data generation and maintenance.

The output data file contains the name and solution values of each variable, in addition
to bounds and other information. MOSS routines can be used to reorder, combine,
or otherwise modify this file to simplify the preparation of special reports by a user
program.

Problem communication files are used to pass information to and from MOSS routines
and user-written routines, to allow one or more problems to be permanently maintained
by the system, and to provide interproblem communication. The communication files
are used to specify the external file location of internal files (for example, the location
of the output data file), and to allow one problem to reference data stored in another
problem (for example, the first problem refers to the matrix coefficients of the second
problem) to simplify problem definition and to simplify data maintenance.

Processing Files

The MOSS processing files are used to store computation data. MOSS routines are
provided to set up an efficient computation matrix from the input coefficient data file;
other MOSS routines generate additional processing files during the optimization. The
output data file is generated by a MOSS routine from processing files.

Processing file elements (groups of information) represent vectors (rows or columns).
The elements in a processing file may be split or divided over one or more records.

21

The vectors may be compressed (nonzero coefficient and index for nonzero vector
elements) or expanded (all coefficients, no indices).

MOSS ROUTINES

The MOSS routines can be divided into:

• Data maintenance routines - store unit record input in data files and provide file
maintenance

• Processing file generation routines - prepare processing files from data files

• Computation routines - perform computations with proceSSing files; generate
additional processing files

• Output data file generation routines - prepare data files for output reports

• Output report routines - prepare output reports from output data files

Data Maintenance Routines

MOSS contains extensive data maintenance features to simplify user preparation of unit
record input and/or programmed data generation.

CONVERT

REVISE

MERGE

SORT

Reads unit record input to generate system data files. The input can be
in any sequence convenient to the application ..

Reads unit record changes to alter the system data files. The changes
can include additional rows or columns, deletions of rows or columns,
and coefficient changes.

Combines two systenl (for example, subproblems) data files to form a
master (problem) data file. For instance, MERGE can be used to
construct time period models or corporate nlodels from individual plant
models.

Sorts system data files on any specified field(s). This routine can be
used to order system data files generated by a user routine.

Processing File Generation Routines

SETUP Forms an efficient processing lnatrix from the problem data files. The
processing matrix file contains a compact representation of the
coefficients of the matrix. A variable" status" data file is also
generated that governs the computation process. It is in system data
format to simplify user specialization of computation procedures. The
variable status file element includes name of variable, type of variable
(free, nonpositive, fixed, or nonnegative), solution status (basic or
intermediate, at upper bound, at lower bound), and positions for the

22

SETBOUND

scale factor, effective upper bound and effective lower bound. The
variable status item can be expanded to include additional processing
parameters.

Supplies the effective bounds on variables in the variable status file from
one or more bound data files. The effective bounds are the limits on the
solution activity of a variable. The activity bounds can be specified by a
BOUND set in the BOUND coefficient data file to limit all variables,
structural as well as logical. The activity bounds for logical variables
can also be specified by a right-hand-side column, with or without a
range column.

Computation Routines

These routines and subroutines are highly segmented to simplify adaptation to other
optimization techniques (such as, trim, separable, quadratic).

SCALE

INVERT

PRIMAL

CHECK

Calculates and applies row (Ri) and column (Cj) scale values. Ri and Cj
are calculated to reduce the function r r (CjRi I Aij 1-1)2, where the
summation applies only to the nonzero matrix elements Aij.

Prepares a product form of inverse representation for variables
specified at intermediate level in the variable status list. This routine
prepares a sparse representation, as the product of column eta
matrices, by a triangularization technique. The sparse representation
improves processing efficiency and accuracy.

Calculates the solution to a set of linear inequalities that maximizes (or
minimizes) an objective. The objective may be a row (logical variable)
or a structural variable. The objective variable may be bounded.

PRIMAL uses a bounded variable, product form of inverse, revised
simplex technique. Range constraints, ~ ~ Row i ~ bi, are handled
by bounding the logical variable.

The solution process of this highly modular routine is controlled by the
variable status file to simplify user adaptation (for example, trim,
separable) .

Computes a check of the solution, to verify processing accuracy.

Output Data File Generation Routines

These routines prepare systems data files from the processing files. The output data
files are used by the output report routines to prepare reports.

23

FILE SOL UTION

FILEANAL YSIS

Output Report Routines

Forms a file containing an optimization summary for each
variable. A file item includes name of variable, objective value
(cost, for example), effective upper bound and effective lower
bound, computed column scale, unscaled solution activity, and
unscaled reduced cost. The reduced cost of a logical variable is
the unsigned simplex multiplier or pi-value.

Forms a file containing postoptimal analysis information, in
addition to the (FILE SOLUTION) optimization summary. The
analysis data in each item includes the cost-per-unit increase
(and cost-per-unit decrease) in the solution activity of a variable,
and the changes (both increase and decrease) in solution activity
for which the costs are valid.

This file is used by the ANALYSIS report routine. Traditional
reports (RHS RANGE, COST RANGE, DO. D/J) can be prepared
from this file.

These routines use the files formed by the output data file generation routines to prepare
the standard LPSOLUTION and LPANALYSIS reports (see "Solving a Problem" and
"Postoptimal Analysis of a Problem ").

PUTSOLUTION

PUT ANAL YSIS

Prepares the LPSOLUTION report from files generated by
either the FILESOLUTION routine or the FILEANALYSIS
routine.

Prepares the LP ANALYSIS report from files generated by the
FILE ANAL YSIS routine.

24

APPENDIX

TIMING

It is impossible to predict the solution time for a particular linear programming
problem, even if the solution time for a similar problem is known. However, as a very
rough guide to estimating throughput using LP-MOSS/1130, the table below shows the
estimated approximate solution times for various problem sizes. The times shown are
for the initial solution and for solution beginning at an advanced starting solution.

Number of Approximate Solution Time (hours)

ROWS COLUMNS Initial Advanced Starting Solution

100 150 .5-1.3 .2- .4

250 300 3 - 8 1 - 2

400 500 7.5 - 20 2 - 5

500 650 12 - 32 3 - 8

700 1000 24 - 60 6 - 15

PRECISION AND ACCURACY

All computations are performed in extended precision (31-bit mantissa). Linear
programming accuracy is usually a function of problem size, scaling, complexity, and
system mantissa length. The system scaling procedures and inversion methods are
designed to produce accurate, reliable solutions within the limits of a 31-bit mantissa.

MACHINE AND SYSTEM CONFIGURATION

1130 Model 2B with 8192 words of core storage and one disk storage drive
1442 Card Read Punch and/or 1054 Paper Tape Reader and 1055 Paper Tape Punch
1132 Printer (optional).

The recommended 1130 system for best performance and simplest operation includes a
1442 Card Read Punch with an 1132 Printer.

P rogram.ming System

LP-MOSS/1130 operates under control of the IBM 1130 Monitor System. The source
language is primarily IBM 1130 FORTRAN. The subroutines necessary to implement
the EXECUTE and RETURN statements are written in IBM 1130 Assembler language.

25

H20-0238-0

BIBLIOGRAPHY

IBM PUBLICATIONS

Introduction to Linear Programming (E20-8171)

Application Manuals:

Aluminum Alloy Blending (E20-0127)

Electric Arc Furnace Steelmaking (E20-0147)

Feed Manufacturing (E20-0148)

Ice Cream Blending (E20-0156)

Blast Furnace Burdening (E20~0160)

Cotton Blending (E20-0164)

Gasoline Blending (E20-0168)

OTHER REFERENCES

Charnes, A. and W. W. Cooper, Management Models and Industrial Applications of
Linear Programming, John "Tiley & Sons, Inc., New York, 1961.

Dantzig, George B., Linear Programming and Extensions, Princeton University
Press, 1963.

Garvin, Walter W., Introduction to Linear Programming, McGraw-Hill Book
Company, Inc., New York, 1960.

Gass, Saul I., Linear Programming, Method and Applications, McGraw-Hill Book
Company, Inc., New York, 1958.

Orchard-Hays, William, Matric~s, Elimination and the Simplex Method, C-E-I-R,
Inc., Arlington, Virginia, October 1961.

Riley, Vera and Robert Loring Allen, Interindustry Economic Studies, Operations
Research Office, Johns Hopkins Press, Baltimore, Maryland, May 1955.

Riley, Vera and S. I. Gass, Bibliography on Lillear Programming and Related
Techniques, Johns Hopkins Press, Baltimore, Maryland, 1958.

Wolfe, Philip (ed.), The RAND Symposium on Mathematical Programming, Santa
Monica, March 1959. Proceedings published by the RAND Corporation, R-351, 1960.

International Business Machines Corporation

Data Processing Division
112 East Post Road, White Plains, New York 10601

