
Systems Reference Library

IBM 1130 Disk Monitor System
Reference Manual

I This publication describes Version 1 of the 1130 Disk Monitor,
a combined operating and programming system. This system
includes a Supervisor program, a Disk Utility program, a
symbolic assembler, a FORTRAN compiler, and a subroutine
library. The latter four programs operate under control of
the Supervisor program to provide continuous operation.

IBM-supplied subroutine library contains routines for input
input/output, conversion, and arithmetic functions.

File No. 1130-36
Form C26-3750-2

PREFACE

The IBM 1130 Disk Monitor System, a
collective name for five distinct but interdependent
programs - Supervisor, Disk Utility, assembler,
FORTRAN, and subroutine library - is a powerful,
combined operating and programming system.

This system should be distinguished from
IBM 1130 Disk Monitor System, Version 2,
which is a separate system. All references
to the Monitor System made in this manual
concern Version 1. Readers desiring information
on Version 2 are referred to its pertinent
manuals.

The programs that make up the Monitor System
use advanced programming techniques, including
relocatable subroutines, highly compressed formats
for data and programs, and flexible input and output
command structures which facilitate data conversion
operations. A unique feature of the 1130 Monitor
System is the "floating" boundary between the user
program/data file area and the disk Working
Storage area. As information is added to disk
storage in the User area, the Working Storage
area is decreased in size. Conversely, if a
program or data file is deleted from disk storage
User area, the remaining programs are packed,
and the disk Working Storage area is increased
in size.

The following publications may assist the user
in utilizing the system:

Third Edition

• IBM 1130 Functional Characteristics, Form
A26-5881

• _IBM 1130 FORTRAN Language, Form C26-
5933

• IBM 1130 Assembler Language, Form C26-5927

• IBM 1130 Subroutine Library, Form C26-5929

Throughout this publication all references to
locations in storage are in hexadecimal unless
otherwise noted; therefore, the subscript 16
has been omitted.

Machine Requirements

The minimum machine features and units
required for operation of the Monitor System are:

• IBM 1131 Central Processing Unit, Model 2,
with a minimum of 4096 words of core storage

• IBM 1134 Paper Tape Reader and an IBM 1055
Paper Tape Punch, or an IBM 1442 Card Read
Punch.

If both the 1442 Card Read Punch and 1134/1055
paper tape units are included, the 1442 Card Read
Punch will be the principal 1/0 device. If an 1132
Printer is included, it will be the principal print
device; otherwise the console printer will be the
principal print device.

This is a major revision of, and obsoletes, C26-3650-l and Technical
Newsletter' N26-0540. This manual is updated to correspond with
Version 1, Modification Level 6, of the IBM 1130 Disk Monitor System.
Changes to the text are indicated by a vertical line to the left of the
change; revised illustrations are denoted by a bullet (•) to the left of
the caption.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

Copies of this and other IBM publications can be obtained through
IBM Branch Offices. A form has been provided at the ·back of this
publication for reader's comments. If the form has been detached,
comments may be directed to IBM Nordic Laboratory, Box 962, Lidingo 9,
Sweden.

©International Business Machines Corporation 1968

IBM 1130 DISK MONITOR SYSTEM - INTRODUCTION •••••

DISK STORAGE LAYOUT •••••••.•••••••••••••.•• 3
IBM Systems Area . • . • • • • • • . • • • . • • • • • • . • • • • • • 3

User Storage Area. • . • 4

Working Storage Area • • . . • 5

File Protection • . • . • • • • • • • • • • • • • . • • • • . • • • • • 5

SUPERVISOR PROGRAM . • • • . • . • . • • • . • • . • • • • • • • • 7

Skeleton Supervisor . . . • • . • • • . . • • • • • • . • • • . • • • • 7

Monitor Control Record Analyzer • • • • • • • • • • • • • • • • • 7

Monitor Control Records • • . • • . . • • • • • • • • • • • • • • • 7
Supervisor Control Records . . . • • • • • • • • . • • • • • • • • • 10

Stacked Input Arrangement • • • • • . . • • • • • • • • • • • • • • 12

The Loader • . . • • • . . • • . • 12

DISK UTILITY PROGRAM (DUP) • • • • • • • • • • • • • • • • • • • 17

DUP Control Records • . . • • • • • • • • • • • • . . • • . • 1 7

DUP Messages . . • • . . • • . . • . • • . . • • • • • • • • • • • • • 24

DUP Operating Notes • • . • • . • • • • • • • • • • • • . • • . • • 25

ASSEMBLER. • • . • . • • • • • . • . • . • . • . • • • • • • • . • . • • • 26

Assembler Control Records • . • • • • . . • • • • • • • . • . • • • 26
Origin of Source Program • • . • • • • • • • • . . • • • • • . • • • 28

Assembler Paper Tape Format • • • • • • • • . • • • • . • • • • • 28

Assembler Messages and Error Codes • • • • . • • . • • . • • • • 29

Assembler Operating Procedures • • . • • • • • • • • • • . . • • 29

FOR TRAN COMPILER • • • • . • • • • • • • . • • • • • . • • • • . • • 32

FOR TRAN Control Records . . • • • . • • . . • . • • . • . • • • • 32

FOR TRAN Printouts • • • • • . • • • • • • • • . • • • • • • . • • •
//~Records at FORTRAN Execution Time ••••••••••

Keyboard Input of Data Records •••••••••••••••••

Object Program Paper Tape Data Record Format ••• • •••
FOR TRAN 1/0 Errors •••••••••••••••••••• • • • •
FOR TRAN Programming Notes •••••••••••••••••••

34
35

35.1

35.1

35.1
35.1

SUBROUTINE LIBRARY • • • • • • • • • • • • • • • • . • • • • • • • • 36

Pre-Operative Errors • . • . . • • • • • • • • • • • • • • • • . • • • 36

Card Subroutine (CARDO and CARD1) Errors. . • • • • • • • • 36
Console Printer Subroutine {TYPEO and WR TYO)

Errors • • . • . . . • . . • • . • . • . . • • • • • • • • • • • • • • • • 38

Keyboard Subroutine {TYPEO) Functions • . • • • • • . . • • • 38

Paper Tape Subroutines {PAPT). • • • • • • • • • • • • • • • • • • 39

Adding and Removing Subroutines • • • • • • • • • • • • • • • • 39

SYSTEM GENERATION OPERA TING PROCEDURES

{CARD SYSTEM) . . • . • . • • • • • . • • • • • • . • • • • • • • • • • 40
Disk Pack Initialization Routine {DPIR) . • . • • • • • • • • • • 40

User-Supplied Cards • • . • • • • • • • • • • • • • • • • • • • . • • 41
Procedure for Initializing Disk Monitor System

from Cards . • . . • . . . • . • • . . • . • • • • . . • . • • • • . • • 43

Cold Start Operating Procedure • • . • • • • • • • • • • • • • • • 44

iii

CONTENTS

PAPER TAPE MONITOR SYSTEM. • • • • • • • • • • • • • • • • • • 45

DPIR Paper Tape Load Operating Proc~dures. • • • • • • • • • 45

Procedure for Initializing Disk Monitor System

from Paper Tape. • • • • . • • • • • • • • • . • • • • • • • • • • • • 45

Cold Start Operating Procedure • • • • • • • • • • • • • • • • • • 46

Paper Tape Control Records • • • • • • • . • • • • • • • • • • • • 46

APPENDIX A. ERROR MESSAGES • • • • • • • • • • • • • • • • • • 4 7

APPENDIX B. DATA FORMATS • • • • • • • • • • • • • • • • • • • 57

Disk System Format {DSF) . • 5 7

Disk Core Image Format (DCI). • • • • • • • • • • • • • • • • • • 59

Disk Data Format (DDF). • 59

Card System Format (CDS) • 59

Card Data Format (CDD) • 61

Print Data Format {PRD). • 61

Paper Tape System {PTS) and Paper Tape Data

{PTD) Formats • • . • • • . . • . • . • . • • • • • • • • • • • • • • • 61

APPENDIX C. DISK STORAGE UNIT CONVERSION

FACTORS........................ 63

APPENDIX D. SUPERVISOR AND DUP INPUT/OUTPUT
CHARACTER CODES • • • • • • • • • • • • • • • • 64

APPENDIX E. 1130 SUBROUTINE LIBRARY LISTING 65

APPENDIX F. IN-CORE COMMUNICATIONS AREA
(COMMA) ••••.•.•.••••••••••••••• 70

APPENDIX G. LAYOUT OF LET /FLET ENTRIES •••••••••

Three-Word Entries •••••••••••••••••••••••••

Six-Word Entries •••.•••••••••••••••••••••••

APPENDIX H. IBMOO (1130 DISK MONITOR SYSTEM
MAINTENANCE PROGRAM) ••••••••••••

74

74

74

75

System Program Maintenance • • • . • • • • • • • • • • • • • • • 75

IBM Subroutine Library Maintenance • • • • • • • • • • • • • • • 76

Operating Procedures • . • 77

Error Messages • • • • • . • • • . • . • • • • • • . • . • • • • • • • • 77

APPENDIX I. UTILITY ROUTINES • • • • • • • • • • • • • • • • • 78

Console Printer Core Dump • 78

1132 Printer Core Dump • 78
Disk Dump Routines •••• 79
Paper Tape Reproducing Routine • • • •••••• • • • • • • • 80

Paper Tape Utility • 81

APPENDIX J. SAMPLE PROGRAM OUTPUT •• • • • •• • • • • • 84

APPENDIX K. GLOSSARY ••••• ·.• •••••••••• •.... 89

APPENDIX L. DECIMAL AND HEXADECIMAL DISK

ADDRESSES ••••••••••••••••• • • • • • 93

INDEX • 94

ILLUSTRATIONS

Figures

1. 1130 Disk Monitor System ••••••••••••••••••••
2. Disk Storage Layout • 3

3. Processing Input Data Under Supervisor Control. • • • • • • 8

4. Example of Stacked Input (One Job) • • • • • • • • • • • • 13
5. Example of Stacked lnput (Three Jobs) • • • • • • • • • • • • 14
6. Layout of Object-Tifne Transfer Vector Area • • • • • • • 15

7. Output Format from a DUMPLET Operation (LET) • • • • • 22

8. Output Format from a DUMPLET Operation (FLET) •••• 23
9. List Deck Format • 27

10. System Loader Card Sequence ••••••••••••••••• 43

Tables

1.
2.
3.

4.
5.

6.
7.
8.
9.

10.

11.
12.

Disk Storage Allocation• 3

Summary of Monitor Control Records • • • • • • • • • • • 9
Movement of Information Using DUP Control Records 19

Summary of DUP Control Records • • • • • • • • • • • • • 20
Restrictions on DUP Functions in Temporary Mode

(JOB T) • 20
Summary of Assembler Control Records • • • • • • • • • • 26
Assembler Error Detection Codes• • • • • • • • • • • • • • • 29
1/0 Logical Unit Designations • • • • • • • • • • • • • • • • 32
Summary of FORTRAN Control Records •••••••••• 33

DPIR Halt Addresses •••••••• , • • • • • • • • • • • • • • 41

Load Mode Control Card Format • • • • • • • • • • • • • • • 41

REQ Card Format •••••••••• , •••••••••••••• 42

e iv

11. Disk System Format • 57
12. Card Data Format • 62

13. Print Data Format • 62
14. Control Records and Data Organization (in

Card Form) for Monitor Program and Subroutine

Library Maintenance • 75

15. Typeouts for 1130 Monitor System Maintenance

Program ••••••••••••••••••••••••••••••• 77
16. PTUTL Sense Switch Options •••••••••••••••••• 83

13. Cold Start Halt Addresses • • • • • • • • • • • • • • • • • • • 44
A-1. System Loader Error Codes • • • • • • • • • • • • • • • • • • 4 7
A-2. System Loader Wait Locations (Part 1) • • • • • • • • • •. 48

A-3. System Loader Wait Locations (Part 2) • • • • • • • •. •. 48

A-4. Monitor Supervisor Error Messages • • • • • • • • • • • • • 48
A-5. Monitor Supervisor Wait Locations • • • • • • • • ••••• 49
A-6. Loader Messages/Error Messages ••• • ••••••••••• 50

A-7. Assembler Error Messages •• • • ••• • ••••••••••• 52

A-8. FORTRAN Error Codes ••••••••••••••••••••• 53

A-9. DUP Error Messages ••••••••••••••••••••••• 55
A-10. DUP Waits and Loops •••••••••••••••••••••• 56
A-11. FORTRAN 1/0 Error Codes • • • • • • • • • ••••••••• 56
H-1. IBMOO Monitor System Maintenance Error Messages. • • 77

The 1130 Monitor is a disk-oriented system that
allows the user to assemble, compile, and/or
execute individual programs or a group of programs
with a minimum of operator intervention. Jobs to
be performed are stacked and separated by control
records that identify the operation to be performed.

The Monitor System consists of five distinct
but interdependent programs (see Figure 1):

• Supervisor program

. • Disk utility Program

• Assembler program

• FORTRAN compiler

• Subroutine library

The Supervisor program provides the necessary
control for the stacked-job concept. It reads and
analyzes the monitor control records, and transfers
control to the proper program.

,-----1130 DISK MONITOR SYSTEM------,

I
I

l
1130

FORTRAN
Compiler

1130
Supervisor

Program

l l 1
1130 1130 1130

Assembler Disk Utility Subroutine
Program Library

L---------------------~

Figure 1. 1130 Disk Monitor System

IBM 1130 DISK MONITOR SYSTEM - INTRODUCTION

The Disk Utility Program is a group of routines
designed to assist the user in storing information
(data and programs) on the disk, and retrieving
and using the information stored.

The assembler program converts user-written
symbolic-language source programs into machine­
language object programs.

The FORTRAN compiler converts user-written
FORTRAN-language source programs into machine­
language object programs.

The subroutine library contains subroutines for
data input/output, data conversion, and arithmetic
functions.

The Monitor System coordinates program
operations by establishing a communications area
in memory which is used by the various programs
that make up the Monitor System. It also guides
the transfer of control between the various
monitor programs and the user's programs.
Operation is continuous and setup time is reduced
to a minimum, thereby effecting a substantial
time saving and allowing greater programming
flexibility. The complete Monitor System resides
on disk storage. Only those routines or programs
required at any one time are transferred to core
storage for execution. This feature minimizes
the core storage requirements and permits
segmenting of long programs.

In addition to decreasing the amount of
operating time, the 1130 Disk Monitor System
significantly reduces the amount of programming
to be done by the user. This is made possible
through the sharing of common subroutines by
unrelated programs. For example, input/output
or conversion ope rations are required by most
user programs, regardless of whether the programs
are written in the assembler language or in
FORTRAN. IBM provides a library of subroutines
as an integral part of the Monitor System.

The assembler and FORTRAN compiler
facilitate development of a library of user
programs. The object programs can be stored
on cards or paper tape, as is customary in
installations without disk storage. However, with
disk storage, programs can be stored directly
on disk without the necessity of designating actual
storage locations, remembering or documenting
the storage assignments, or updating the
storage assignments and documentation as
conditions change. The disk-stored programs

IBM 1130 Monitor System - Introduction 1

and data are referred to by name when called
for use. The Monitor System, through the use
of a table known as the Location Equivalence
Table (LET), can locate any user program,
subroutine, or file by a table search for the
name. Stored with the name is the amount of
disk storage (in disk blocks)* required by the

*There are 16 disk blocks per sector; each disk
block contains 20 data words (refer to Appendix
C).

2

program or data.
Any program that is added to the user's disk­

stored programs is usually placed at the end of
the other programs. If a program is deleted, the
remaining programs are usually packed for
effective utilization of disk storage. This packing
facility is described later in this publication.

Disk Storage is divided into three logical areas:
IBM Systems area, User Storage area, and
Working Storage area. The contents of these
three areas, described in detail in subsequent
paragraphs, are shown in Figure 2. The sectors
and cylinders that these areas occupy are shown
in Table 1. Appendix C shows disk storage unit
conversion factors.

IBM SYSTEMS AREA

This area contains the integral parts of the 1130
Disk Monitor System: the Supervisor program,
Disk Utility Program (DUP), FORTRAN
compiler, and the assembler. The FOR TRAN
compiler and/or the assembler can be deleted
at the user's option.

Supervisor Program

This program supervises all monitor operations
and performs the control and loading functions
for the user programs and monitor programs
(FORTRAN, Assembler, and DUP). The
Supervisor is directed by monitor control records
in the stacked input. Included within the Supervisor
is the Skeleton Supervisor , which resides in core

during monitor operation and provides the communica­
tions link between the monitor programs and the
user's programs.

Sector

0

Supervisor
FLET

(includes Fixed
identification, DUP FORTRAN Assembler

(if Fixed
Area {if

cold,start,
Area is

defined)
DCOM)

defined)

DISK STORAGE LAYOUT

Table 1. Disk Storage Allocation

Use
Total Sectors Cylinders Total

Sectors Occupied Occupied Cylinders

Identification l 0 0 l/8

Cold Start l l 0 l/8

DCOM l 8 0 l/8

Supervisor 53 2-7, 9-55 0-6 65/8

DUP 72 56-127 7-15 9

FORTRAN 104 128-231 16-28 13

Assembler 40 232-271 29-33 5

CIB 24 272-295 34-36 3

LET 8 296-303 37 l

Remainder of 1296 304-1599 38-199 162
User Area and
Working Storage

-- -
1600 200

Disk utility Program (DUP)

DUP is a group of routines provided by IBM that
aid the user in the day-to-day operation of his
installation. By means of these routines, certain
frequently required operations, such as storing,
deleting, and dumping data and/ or programs from
disk storage, can be performed with minimum
programming effort by the user.

S1:Jpervisor Control
Record Area

User Area

User

CIB LET
IBM Programs

Subroutines and Data
Files

A A ~.) y-~~~~~~~---~~~~~~~~~~~~y-~~~~~~~~~~- ----y-----

IBM User Storage Area Working Storage
Systems Area Area

Figure 2. Disk Storage Layout

Disk Storage Layout 3

FORTRAN Compiler

The compiler translates programs written in the
FORTRAN language into machine language, and
provides for calling the necessary arithmetic,
functional, conversion, and input/output
subroutines at execution time.

Assembler

The assembler converts source programs written
in the assembler language into machine language
object programs. The conversion is one-for-one,
that is, the assembler normally produces one
machine language instruction for each instruction
of the source program.

USER STORAGE AREA

This area consists of the following:

• A Fixed area (optional) for storing core image
programs and data. If a Fixed area is
defined, there will also be a Fixed Location
Equivalence Table (FLET).

• The Core Image Buffer (CIB)

• The Supervisor Control Record Area

• The Location Equivalence Table (LET)

• A User area for storing IBM-supplied
subroutines, user-written programs, and
data files

Core Image Buffer (CIB)

Those parts of a core load (main program and
associated subprograms) that fall below core
location 409610 are put in the Core Image Buffer
(CIB) as they are prepared for execution or for
storing in core image format by the Loader (refer
to DUP Control Records, *STORE Cl). When all
parts of program have been processed, either the
contents of the CIB are read back into core
storage by the Loader, which overlays itself in
the process, or DUP is recalled from disk to core
to complete the *STORECI operation, using the
CIB as source of any parts of the core load which
are to reside below core location 409610 .

4

The CIB is also used by the Supervisor to
save core locations 25610-409510 on every CALL
LINK. Before each link is executed, the Loader
restores any part of this area which has been
included in the COMMON defined by the called
link.

Supervisor Control Record Area

This area is used by the system to store
information for use by the Loader (refer to
Supervisor Control Records).

Location Equivalence Table (LET)

The Location Equivalence Table (LET) serves
functionally as a "map" for the IBM subroutines,
user's programs, and data files. Each subroutine,
user's program, or data file that is stored on
disk has at least one entry in the table. The table
entry contains the name and disk block length of
the subroutine, program, or data file. Each
entry point in a subroutine requires a separate
entry in LET. The user may print the contents
of LET by using the DUP control record DUMPLET
(refer to DUP Control Records).

User Area

As each user-written program or data file is
added to the User area, the space available for
the Working Storage area decreases. Conversely,
if a program is deleted, the Working Storage area
increases by the amount of space the program
formerly occupied in the User area. For
example, user-written programs A, B, and C
are stored on disk as follows:

CIB LET IBM-supplied Program Program Program Working Storage
subroutines A B C Area

If a program, D, is created, it would be stored on
disk causing the Working Storage area to contract:

CIB LET IBM-supplied Program Program Program Program Working
subroutines A B C D Storage

Area

If Program A is now deleted, Programs B, C, and
D would be moved up, maintaining a packed

condition in the User area while expanding the
Working Storage area:

CIB LET IBM-supplied Program Program Program Working Storage
subroutines B C D Area

NOTE 1: Core Image programs and data files are
always put on disk at the beginning of a sector, and
remain at the beginning of a sector even after
packing. Disk System format programs start at
the beginning of a disk block.

NOTE 2: The Working Storage area always starts
at the beginning of a sector; therefore, it might
not expand or contract by the exact size of the
program stored or deleted.

IBM-Supplied Subroutine Library

The IBM-supplied subroutine library contains
input/output, data conversion, arithmetic and
functional, and selective dump subroutines.
These subroutines are generally available for
use with both the assembler and the FORTRAN
compiler. Operating procedures are described
in a subsequent section of this manual. Appendix
E contains a complete list of all IBM-supplied
subroutines.

Flipper Routine

The subroutine library includes a Flipper routine,
which is a part of the core load for those user's
programs that use LOCAL (Load-on-Call)
routines (refer to Supervisor Control Records).
When a LOCAL routine is called, control is
passed to the Flipper routine, which reads the
LOCAL into core storage if it is not already in
core and transfers control to it. All LOCALs
in a given core load are executed from the same
core storage locations; each LOCAL overlays
the previous one. All LOCALS required by a
program are relocated and stored by the Loader
in Working Storage immediately following the
last defined file, if any.

Fixed Area

The Fixed area is an optional area that the user can
define to enable him to store programs and data files
at fixed disk locations. The user can define the
size of the Fixed area to be a whole number of

cylinders, with a minimum of two, and he can
increment (but not decrease) the size of the Fixed
area by a whole number of cylinders at any time.
Unlike in the User area, when a program or data file
is deleted from the Fixed area no packing occurs.
Thus, programs or data files in this area can be
referenced by absolute sector addresses, since
they will not be moved. The Fixed area, if any
has been defined, requires a LET of its own,
i.e., a Fixed Location Equivalence Table (FLET).
The contents of F LET may also be printed by
using the DUP control record DUMPLET. The
Fixed area is used only for the storage of core
image programs and data, and not for Disk
System format programs or for working
storage.

WORKING STORAGE AREA

The Working Storage area is used for temporary
storage. Most of the area is available to the
user during execution of his programs. The
Loader stores LOCALs (Load-on-Call routines)
and SOCALs (system overlays) in this area,
and it is also used extensively by the monitor
programs (see Working Storage Indicator Word).
For example, the assembler uses this area for
temporary storage of a program during the
assembly process; at the conclusion of an
assembly or compilation, the object program is
in the Working Storage area.

The assembler requires 32 sectors of Working
Storage for possible symbol table overflow
during an assembly, plus whatever additional
Working Storage is required for disk output
(compressed source statements in Pass 1,
object program in Pass 2). Since an assembly
requires at least one sector for disk output, the
assembler checks for the availability of 33
sectors of Working Storage before beginning to
assemble the source program. If at least 33
sectors are not available, an assembler error
message is printed (refer to Appendix A), the
assembly is terminated, and control is returned
to the Supervisor.

During a FORTRAN compilation, FORTRAN
requires the amount of Working Storage
necessary to contain the compiled program.

FILE PROTECTION

The 1130 Disk Monitor System controls file
protection. All Disk I/O subroutines furnished by

Disk Storage Layout 5

IBM check the address of the sector on which they
have been instructed to write to ensure that it is
greater than the file protection address in COMMA
(refer to Appendix F), with the exception of the
Write Immediate function (described in IBM 1130
Subroutine Library, Form C26-5929). The file
protection address, which is equal to the starting
address of Working Storage, is updated by DUP

6

whenever a program is added to the User area.
Only data files which have been created in or

moved into Working Storage can be written into
by assembly-language programs (unless the
Write Immediate function is used). FORTRAN
programs may write directly into User and
Fixed areas (refer to *FILES under Supervisor
Control Records).

The Supervisor program performs the control and
loading functions for the Monitor System. Monitor
control records, which are used to direct the
sequence of jobs without operator intervention, are
included in a stacked input arrangement and are
processed by the Supervisor program. The
Supervisor program decodes the monitor control
record and calls the proper monitor program to
perform the desired operation. A typical sequence
of operations is listed below. The programs in
parentheses would be called by the Supervisor to
perform the particular operation:

1. Compilation of a FORTRAN program (FORTRAN
compiler)

2. storage of the compiled program on disk (Disk
utility Program)

3. Assembly of a symbolic program (Assembler)
4. storage of the assembled program on disk

(Disk utility Program)
5. Execution of a disk-stored program (Loader)
6. Punching of a disk-stored program into cards

(Disk utility Program)

The Supervisor itself is a group of several
distinct but closely related routines:

• Skeleton Supervisor

• Monitor Control Record Analyzer

• Loader

• Cold start Routine

SKELETON SUPER VISOR

The Skeleton Supervisor provides the communica­
tions link between the monitor programs and the
user's programs, i.e., it contains the necessary
logic to conduct the transition from one job to
another. The Skeleton Supervisor is read into
core storage when the operation of the monitor is
initially started by means of the Cold start Routine
(refer to Cold Start Operating Procedure), which
occupies sector 1. The Disk Communications Area

SUPERVISOR PROGRAM

(DCOM), which contains addresses and indicators
necessary for the operation of the monitor, is
read into core initially with the Skeleton Supervisor.
The in-core communications area (referred to as
COMMA) is restored from DCOM whenever a Cold
Start procedure is initiated or a JOB record is
encountered (refer to Monitor Control Records).
When COMMA is restored there will be no usable
program in Working Storage. Appendix F lists
all the core locations and information contained in
COMMA.

MONITOR CONTROL RECORD ANALYZER

This routine analyzes the monitor control records,
prints out the information contained in the control
record, and calls the appropriate program: Disk
Utility Program, Assembler, FORTRAN compiler,
or Loader.

The following three formats are used by the
Monitor System to store information on disk
(refer to Appendix B):

• Disk Core Image Format (DCI)

• Disk System Format (DSF)

• Disk Data Format (DDF)

MONITOR CONTROL RECORDS

Input to the Supervisor consists of one or more
job decks, each preceded by a JOB monitor
control record (see Figure 3). The character
codes recognized by the Supervisor are listed in
Appendix D. Although the monitor control records
are described in terms of cards, these records
can be entered in card image form from paper tape
or the keyboard/ console printer.

The JOB control record defines the starting and
ending points of the job; however, the total job can
consist of many subjobs. The assembler,
FORTRAN compiler, Disk Utility Program, and
user's programs can be called for operation by
the ASM, FOR, DUP, and XEQ control records,

Supervisor Program 7

1130 ---------
Supervisor

Source Program

II ASM

Cold Start Card
{see Cold Start
Operating Procedure)

• Figure 3. Processing Input Data Under Supervisor Control

Program

respectively. These are each considered
individual subjobs. The successful completion of
the total job depends on the successful completion
of each individual subjob within the job. Some
subjobs are not attempted if the preceding subjobs
have not been successfully completed.

When a monitor control record is read, the
system program required to do the subjob is
read into core storage from disk storage. The
program then processes input until the end of the
subjob deck is reached, a new monitor control
record is encountered, or an error occurs.
Monitor error messages are described in
Appendix A.

Every job is assumed to begin with no
programs in Working Storage (see Working
Storage Indicator Word).

Control can be returned to· the Supervisor by
manually branching to core location 0038. The

8

----- Working Storage

----- User Storage

----- Assembler

--- FORTRAN

DUP

Supervisor

Supervisor then passes records until it
encounters a monitor control record.
All monitor control records have the following
format:

Columns 1-2: //(slashes, to identify monitor
control record)

3: b (blank)
4-7: Pseudo-operation code (left­

justified)

The following paragraphs contain a list of the codes
and their operations. The monitor control records
are summarized in Table 2.

NOTE: Comments are permitted in unspecified
columns in all monitor control records. A "b"
appearing in a column means that the column must
be blank.

Table 2. Summary of Monitor Control Records

cc 2 3 4 5 6 7 8 9 lO 11 12 13 14 15 16 17 18 19

I I b comments

I I b J 0 B T - Disk Storage Label-

I I b A s M

I I b 0 R

I I b p A u s

I I b T y p

I I b T N D

I I b D u p

I I b x E Q -Program Name -

JOB

This record causes initialization and termination
of a job sequence and restores COMMA from
DCOM. The format is

L

cc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

//bJOBb T I D E N T b

The letter T in column 8 indicates temporary
mode. In this mode, programs or data files stored
in the User area by DUP are automatically deleted
at the end of the current job. DUP operations
which are permitted in temporary mode are
described in Table 5.

If columns 11-15 contain a disk storage identifica­
tion, this identification is compare9 with that which
is written on the first sector of the disk cartridge
to determine that the desired cartridge is mounted.
If the identification is not the same, the Supervisor
waits for operator intervention (see Appendix A,
Table A-5, Monitor Supervisor Wait Locations). The
identifier must be left-justified in its field.

This record also causes a skip to channel 1
before it is printed on an 1132 Printer.

ASM

This record causes the assembler to be read into
core storage for execution. The format is

cc l 2 3 4 5 6
I I b A s M

-Count- Disk

0,1,N

Initialize a job sequence

Read assembler into core for execution

Read FORTRAN into core for execution

Halt until START is pressed

Change control record input from principal input unit
to keyboard/console printer for succeeding monitor
control records

Change input mode from keyboard/console printer
back to the principal unit for succeeding monitor
control records

Read DUP into core for execution

Read and transfer control to mainline program

The assembler control records and source
statements for the program to be assembled must
follow the ASM control record.

FOR

This record causes the FORTRAN compiler to be
read into core storage for execution. The format
is

cc l 2 3 4 5 6
I I b F 0 R

The FORTRAN control records and source state­
ments for the program to be compiled must
follow the FOR control record.

PAUS

This record causes a wait to allow the operator to
make setup changes (see Appendix A, Table A-5,
Monitor Supervisor Wait Locations). The format is

cc 1 2 3 4 5 6 7
//bPAUS

The monitor operation proceeds as soon as
PROGRAM ST ART is pressed.

TYP

This record changes the control record input from
the principal input unit to the keyboard/console

Supervisor Program 9

printer for succeeding monitor (only) control
records. The format is

TEND

cc l 2 3 4 5 6
I I b T y p

This record changes the input mode from the
keyboard/console printer back to the principal
input unit for succeeding monitor control records.
The format is

DUP

cc l 2 3 4 5 6 7
I I b T E N· D

This record causes the Disk Utility Program to be
read into core storage for execution. The format is

cc l 2 3 4 5 6
I I b D u p

Control records for the Disk Utility Program must
follow the DU P control record.

This record causes the Loader to load a specified
mainline program into core storage and to transfer
control to it. The format is

cc l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
I I b x E Qb xx x x x b L y y z b

The ma.inline program XXXXX must be left­
justified in columns 8-12. If XXXXX is in Disk
System format, the Loader converts it to Core
Image format. If columns 8-12 are blank, the
mainline program presently stored in Working
Storage (by FORTRAN, DUP, or the assembler)
is converted and read into core and executed.

A core map is printed during conversion if
column 14 contains an L and the program is in
Disk System format. This map includes the core
loading address of the mainline program, the

10

names and execution addresses of all subroutines
and subprograms included in the load, file
allocations, if any, giving file number, sector
address, and number of sectors in the file. Also,
if L is specified, a core map is printed for any
DSF program linked to under this execution.

Columns 16-17 must contain the count of
LOCAL, NOCAL, and FILES records which follow,
if any (refer to Supervisor Control Records). This
count is decimal, right-justified.

DISK 0, 1, or N will be loaded with the program
if column 19 contains 0, 1, or N, respectively. Any
other character (including blanks) causes a special,
shorter disk routine (DISKZ) to be loaded. This
special version is intended for all FORTRAN pro­
grams; it is also intended for assembly-language
programs which do not use the disk.

Comments

This record provides comments in the listing. It
may not immediately follow an XEQ, DUP, ASM,
or FOR record. The format is

cc l 2 3 4 5 - 80
/ / b * comments

SUPERVISOR CONTROL RECORDS

LOCAL

LOCAL is an acronym denoting routines specified
by the user to be loaded into a LOCAL overlay area
as they are called. All subroutines desired by the
user to be loaded on call at execution time must
be designated by LOCAL records following the
XEQ monitor control record. The format is
as follows:

cc l
*LOCALMLl ,SUBl ,SUB2

where MLl = name of a mainline program to be
executed, and SUBl and SUB2 are subroutines in
the mainline pro gram.

Each mainline program (in the same XEQ subjob)
that calls a subroutine to be loaded on call must
have its own LOCAL record. The same mainline
program may have more than one LOCAL record.

For example:

*LOCALMLl ,SUBl ,SUB2
*LOCALML2,SUB3,SUB4
*LOCALMLl ,SUBS

or
*LOCALML 1,SUBl ,SUB2,SUB5
* LOCALML2, SU 83, SU B4

If the record ends with a comma, the next
record is treated as a continuation. The mainline
name is not repeated in a continuation, e.g.,

*LOCALMLl ,SU Bl ,SUB2,
*LOCALSUB5

If the mainline program is executed from Working
Storage, the mainline name must be omitted by
putting a comma in column 7, e.g.,

*LOCAL,SUBl ,SUB2

No embedded blanks are allowed in a LOCAL record.

NOC AL

NOCAL is an acronym denoting routines which,
although not called anywhere in the core load, are to
be included in the load. Most NOCALs would
probably fall into one of the following categories:
(1) debugging aids such as dump and trace routines
which the operator branches to manually, and (2)
interrupt service routines.

All subroutines which are to be loaded but are not
called at execution time must be designated by
NOCAL records following the XEQ monitor control
record. The format is as follows:

cc
*NOCALMLl ,SUBl ,SUB2

NOCAL records are governed by the same rules and
restrictions as LOCAL records.

NOTE: The user must observe the following rules
in LOCAL and NOCAL records:

1. No routine can appear in a LOCAL record if it
causes any of the other routines appearing
in LOCAL records (for the same mainline pro­
gram) to be called before the first LOCAL has
returred control to the calling routine. Thus,
a LOCAL cannot call another LOCAL, nor
can it call a routine which causes a second
LOCAL to be read into core and executed.
For example, if A calls B and B calls C,
and A is a LOCAL, then neither B nor C can

2.

3.

4.

5.

6.

r·

appear on a LOCAL record for the same
mainline program.
If a given routine is designated a LOCAL,
and the System Overlay scheme is employed,
then this routine will be a LOCAL even though
it might have been included in one of the
System Overlays (SOCALs).
No program which uses LOCALs or NOCALs
can be stored in Disk Core Image Format
(DCI).
If a subroutine is designated a LOCAL, it will
be loaded as a LOCAL even if it is not
referenced anywhere in the core load.
The LOCAL information pertaining to any
given XEQ record cannot exceed 640 words,
counting all LOCAL names on the LOCAL
records as two words and mainline program
names as three words. The same rule
applies to NOCAL information.
Only types 3, 4, 5, and 6 subroutines can appear
on LOCAL and on NOCAL records (see Disk
System Format, Program Types, in Appendix B).
All conversion tables, e.g. , EBPA, HOLTB,
may not be used as LOCALs.

FILES

File numbers specified in FORTRAN DEFINE FILE
statements can be equated to:
1. names of data files in the User area or Fixed

area at execution time by means of a FILES
record entered after an XEQ monitor control
record or

2. names of data files in the Fixed area by means
of a FILES record entered after a DUP control
record STORE CI.

The format is as follows:

cc 1
*Fl LES(FI LEN, NAMEN) I (FILEM, NAMEM)

where FILEN and FILEM are the file numbers
specified in FORTRAN DEFINE FILE statements,
and NAMEN and NAMEM are names of disk storage
data files which have been previously defined in a
DUP control record.

No embedded blanks are allowed. If the record
ends with a comma, the next record is treated as
a continuation, e.g.,

*Fl LES(FI LEN, NAMEN),
*Fl LES(FI LEM, NAMEM)

NOTE: The FILES information for a given XEQ
record cannot exceed 640 words, counting the
file numbers as one word and the file names as
two words.

Supervisor Program 11

Any number of LOCAL, NOCAL, and FILES
records can follow the XEQ monitor control
record, but each type must be grouped
together, e.g.,

*LOCAL
*LOCAL
*LOCAL
*NOC AL
*NOC AL
*FILES
*FILES

The following is not permitted:

*LOCAL
*NOC AL
*LOCAL
*FILES
*NOC AL

STACKED INPUT ARRANGEMENT

Input to the Monitor System consists of control
records, source programs, object programs, and
data arranged logically by job.

The following points must be considered when
arranging the input for any job.

1. Any number of comments records can be
inserted in front of (but not immediately
following) DUP, ASM, FOR, or XEQ
monitor control records.

2. Any records other than monitor control
records which remain after the execution of
an ASM, FOR, or XEQ subjob are passed
until the next monitor control record is
read. After a DUP operation, records are
passed until either a monitor control record
or another DUP control record is read.

3. If an error is detected in an assembly,
FORTRAN compilation, or during loading
from Disk System format, the resulting
object program or any programs that follow
within the job cannot be executed. Also, if
an error is detected in an assembly,
FORTRAN compilation, or during a loading
from Disk System format during a
STORECI function, all DUP functions are
bypassed until the next valid ASM, FOR, or
JOB record is read.

12

4. If the FORTRAN compiler or the assembler
encounters a monitor control record, control
will be transferred to the Supervisor, i.e. ,
the monitor control record will be trapped.
The Supervisor will correctly analyze the
record after the compilation or assembly has
been abandoned. DUP will not trap a monitor
control record during a DUP operation (refer
to DUP Control Records).

The stacked input arrangement shown in Figure 4
will compile, store, and execute both Programs A
and B, providing there are no source program
errors, and there is sufficient room in the Working
Storage area (refer to Working Storage Area). A
source program error causes the DUP STORE
operation (refer to DUP Control Records) to be
bypassed for that program, and all following XEQ
requests preceding the next JOB record are
disregarded. Thus, if the successful execution of
one program depends upon the successful completion
of the previous program, both programs should be
considered as one job and the XEQ control records
should not be separated by a JOB record.

Figure 5 shows the stacked input arrangement for
three jobs which are not dependent upon each other.

Job A assembles, stores, and executes source
program A. This job includes comments cards
and a PAUS monitor control card to allow the
operator to intervene.

Job B calls in the Disk utility Program, and
stores object program B on disk.

Job C compiles, stores, and executes FORTRAN
source program C.

THE LOADER

The Loader has two basic functions:

1. To prepare entire core loads (Disk System
format loading).

2. To bring core loads into core storage
immediately before execution (Core Image
format loading). This includes the restora­
tion of COMMON, if any, between linked core
loads.

These two loading processes are described after
a discussion of the origin which the Loader gives
a particular core load, the object-time transfer
vector, and system overlays (SOCALs). Disk
System format and Core Image format are described
in Appendix B.

//b JOB

11 b XEQ b NAME B

r--------.:1-----*STORE bbbbbbWSbbUAbbNAME B

I

•----FORTRAN Control Records

I ----*STORE bbbbbbWSbbUAbbNAME A

Cold Start Card
(see Cold Start
Operating Procedure)

,_ ___ Source Program A

11'4---- FORTRAN Control Records

Figure 4. Example of Stacked Input (One Job)

Origins for Core Loads

The Loader origins relocatable mainlines (main
programs) after the Disk I/O subroutine requested
by the user on the XEQ control record. One of
these disk routines is always in lower core, and
no disk routine is included in any disk-stored core
load. DISKZ is always used unless otherwise
specified. The origins used by the Loader are
shown below:

Disk I/O Version

DISKZ
DIS KO
DIS Kl
DIS KN

Main Program Origin
(hexadecimal) (decimal)

01C2
0260
0370
0438

450
608
880

1080

The origins for absolute mainlines are not con­
trolled by the Loader; however, such mainlines
must be originated above the end of the Disk I/ 0
version used. All references in a core load to a
Disk I/O subroutine must be to the same one.

Supervisor Program 13

II JOB

Source Program C ----+! /

~-----:

FORTRAN Control Records ----' --------~ ,_ __________ ./

Object Program B ___ .., /

~---

Source Program A ---- /

;------
Assembler Control Records--_.., ,_ __________ .!

Cold Start Card
(see Cold Start
Operating Procedure)

e Figures. Example of Stacked Input (Three Jobs)

14

Object-time Transfer Vector

In order to transfer to and from subroutines at
execution time, the Loader builds two separate
object-time transfer vectors: the CALL TV and
the LIBF TV (see Figure 6).

Each CALL TV entry is a single word containing
the absolute address of a subprogram entry point;
however, in the case of a LOCAL subprogram
referenced by a CALL statement, the absolute
address is the address of the corresponding
Flipper Table entry instead of the subprogram
entry point.

Each LIBF TV entry consists of three words.
Word one is the link word. Words two and three
contain a branch instruction to the subprogram
entry point; however, in the case of a LOCAL
subprogram referenced by an LIBF statement,
words two and three contain a branch instruction
to the corresponding Flipper Table entry instead
of the subprogram entry point.

The first two LIBF TV entries are special
entries, each three words long. The first entry is
the Floating Accumulator (F AC). The address of
the first word of F AC must be odd; therefore, if
necessary, a dummy entry is made in the CALL
TV to make F AC begin at an odd address. The
second special entry is used by certain sub­
routines to indicate overflow, underflow, and
divide check.

If SOCALs are used, the LIBF TV contains
special entries for SOCAL subprograms referenced
by LIBF statements. These entries transfer
indirectly either to the referenced subprogram if
the over lay containing the subprogram is
presently loaded, or to the SOCAL Flipper in
order to load the required overlay and transfer
to the referenced subprogram (refer to System
Overlays).

The CALL TV does not contain entries for
SOCAL subprograms referenced by CALL
statements if SOCALs are used.

Sy stem Over lays (SOC ALs)

System Overlays (SOCALs) are created for any
core load with a FORTRAN mainline program
if the core load will not fit into core. The
Loader selects certain subroutines used in the
core load and writes them into Working Storage
in either two or three groups (overlays). An area
in core as large as the largest overlay is reserved
for these subroutines. Whenever a subroutine in
one of these overlays is required during program
execution, the corresponding overlay is read
from the disk into the overlay area in core (if it
is not already in core).

Overlays are constructed from the IBM sub­
routine library according to type and subtype
(described in Appendix B). The user can alter
this design by changing the subtypes of the
library subroutines, or by specifying a subtype
for his own subroutines (refer to DUP Control
Records-STORE). The two levels of SOCALs
are described in the following paragraphs.

SOCAL Level 1 uses the following two overlays:

1. Type 3, subtype 2 (arithmetics, e.g. , F ADD),
and Type 4, subtype 8 (functionals, e.g., SIN).

NOTE: If the FORTRAN program contains a write
statement to the plotter, the arithmetic and functional
subroutines EADD, FADD, EMPY, FMPY, FARC,
XMD, and XMDS cannot be included in the arithmetic
and functional SOCAL. Instead, these routines must

I be in core. Due to plotter and disk interactions
concerning overlap of I/O, print speeds may be
less than previously achieved.

2. Type 3, subtype 3 (the non-disk FORTRAN
Format subroutine SFIO, and the FORTRAN
I/O subroutines, e.g., CARDZ),

Dummy one - word entry in CALL TV
(if necessary) to ensure odd address

Last
LI BF

First
LIBF

Disk
1/0

for FAC l
Indicators FAC Last Second First

CALL CALL CALL

..J_r _____ .:)_r -------------11----1 -1-f J I I I

Low Core

LI BF TV CALL TV

Object - time TV

Figure 6. Layout of Object-Time Transfer Vector Area

JJi------~
End of Core

High Core

COMMON

Supervisor Program 15

Level 1 reduces the core requirements by an
amount equal to the total size of the smaller of
these overlays. Approximately 15 words of extra
linkage, however, are required.

If core loads do not fit with Level 1, then
Level 2, employing the following three overlays,
is used:

1. Same as (1) above.
2. Same as (2) above.
3. Type 3, subtype 1 (disk FORTRAN I/O

subroutines SDFND and SDFIO). In addition,
this overlay includes a 320-word buffer.

Level 2 reduces the core requirements by an amount
equal to the sum of the two smallest overlays, with
approximately 15 words of extra linkage added.

The overlays will not contain all available sub­
routines of the specified types, but only those
required by the core load.

Since LOCALs take priority over SOCALs, if a
subroutine which would otherwise be in a SOCAL
overlay is designated a LOCAL, it will appear as
a LOCAL and not as part of a SOCAL.

If a core load does not fit with Level 2 over­
lays, core requirements may be reduced by
additionally designating the following as
LOCALs:

1. Subroutines not contained in any overlay.
2. Subroutines contained in the largest overlay.

This reduces the SOCAL overlay area re­
quired in core.

If the core load does not fit into core even with
SOCALs, an error condition is indicated. An
error condition is also indicated for core loads
which do not fit and which have mainline pro­
grams written in assembler language.

Programs requiring system overlays cannot be
stored in Core Image format (refer to Appendix B,
Disk Core Image Format).

NOTE: DISKZ and the SOCAL Flipper routine use
Index Register 2 without saving or restoring it. It
is, therefore, the programmer's responsibility to
preserve the contents of Index Register 2 whenever
a program uses subroutines that cause DISKZ to be
used or subroutines that would be included in a
SO CAL.

16

Disk System Format Loading

A core load is built from programs stored in Disk
System format in either of two cases:

1. To execute the core load immediately (called
as a result of an XEQ control record or a
CALL LINK). In this case control must be
passed to the Core Image format loading
process at the termination of the Disk
System format loading process.

2. To store the core load in Disk Core Image
format for future execution (called as a
result of a DUP *STORECI control record -
refer to DUP Control Records). In this
case, control is returned to DUP, which
initiated the process.

In this type of loading, a mainline program (with
its required subroutines) is converted from Disk
System format to Core Image format. This
includes the construction of the core image
header record and the object-time transfer
vector. Parts of the core load which are to
reside below location 409610 are stored in the
CIB; parts of the core load which are to reside
above location 409510 (if any) are placed directly
into core storage. LOCALs and SOCALs which
are a part of the core load are also processed and
written out on Working Storage (following the last
data file , if any).

Core Image Format Loading

In this loading process, the core load is read into
core, except for the first sector. When loading a
program immediately following its conversion from
Disk System format, only the contents of the CIB
are read into core (other parts of the core load are
already in core). When loading a program which
has previously been stored in Core Image format,
both the sections above location 409510, if any,
and below 409610 are read into core. The Skeleton
Supervisor is given the information necessary to
enable it to read in the first sector of the core
load and to move the object-time transfer vector
into its location. Control is then passed to the
Skeleton Supervisor, and finally to the object
program.

The Disk utility Program (DUP) is a group of
routines designed to accomplish the following:

• Allocate disk storage as required by each
program or data file to be stored

• Make these programs available in card or
paper tape format

• Provide printed status of the User area,
Fixed area, and Working Storage area.

• Perform various disk maintenance operations.

The Disk utility Program is called into operation
by a DUP monitor control record. This record
may be followed by any number of DUP control
records to select the routines desired. The DUP
control records are described in subsequent
paragraphs. The character codes recognized
by DU P are listed in Appendix D.

Working Storage (WS) Indicator Word

A WS Indicator Word in COMMA (0069) contains the
disk block count of the program to indicate that a
valid program is in Working Storage. (There are 16
disk blocks in a sector.)

Upon completion of an assembly or compilation,
the WS Indicator Word is set to the disk block count
of the program left in Working Storage in Disk System
format. If the user's program has put data in
Working Storage, then the user must put the data disk
block count into location 0069. DUP can then be
called upon to store or dump this ·pro gram.

When a DUP function is used to dump from the
User area or the Fixed area, the WS Indicator
Word is set to the disk block count of the program
being moved. If the DUP function does not destroy
any part of the program in Working Storage, the
WS Indicator Word is not changed. It is set to
zero by a store to the User area, a Cold Start, or
a JOB monitor control record.

If a DUP function which involves programs
is requested from Working Storage while the WS
Indicator Word is zero, a FROM field error
message is given and the requested function is
bypassed.

DISK UTILITY PROGRAM (DUP)

DUP CONTROL RECORDS

DUP control records generally have the following
format:

cc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
'----....,,---~'--..-' I.......,.-'

Asterisk DUP Fune- "FROM" "TO" Program Name Count
in cc 1 tion Name Device Device (cc 21 - 25) Field

(cc2-12) Symbol Symbol
(cc 13 - (cc 17 -
14) 18)

All fields except Count Field are left-justified.
Each DUP control record contains an asterisk
(*) in cc 1. The DUP Function Name is in cc 2 -
12. The "FROM" and "TO" symbols (cc 13 -
14 and 17 - 18, respectively) s~cify the I/O
devices and/or disk areas from and to which
data is to be transferred. The following
abbreviations must be used in the FROM and TO
fields:

Symbol
PR
CD

PT
ws
VA
FX

Meaning
Principal Print Device
Card Reader (if the Disk Monitor
System has been loaded from
paper tape, CD is equivalent to
PT)
Paper Tape
Working Storage, Disk
User area, Disk
Fixed area, Disk

Program Name is one to five alphameric characters
specifying the name of a mainline program or the
first entry point in a subroutine.

The Count Field is in decimal, right-justified.
For data files, if the source is disk, this field
specifies the number of sectors; if the source is
cards, this field specifies the number of cards;
if the source is paper tape, this field specifies
the number of records. Unspecified portions of
DUP control records can be used for comments.
A "b" appearing in a column indicates that the
column must be blank.

Disk Utility Program (DUP) 17

In the following paragraphs, each DUP function
name is accompanied by a table showing the
symbol combinations that may be specified in the
FROM and TO fields. The tables also show the
various formats that data can be in before the
operation, and the corresponding formats to
which this data is converted by DUP after the
operation. These formats appear ill parentheses
after the FROM and TO symbols, and have the
following meanings:

DSF Disk System Format
DCI Disk Core Image Format
DDF Disk Data Format
CDS Card System Format
CDD Card Data Format
PTS Paper Tape System Format
PTD Paper Tape Data Format
PRD Print Data Format

These formats are shown in Appendix B. Table 3
summarizes the DUP functions that move
information from one area to another; Table 4
summarizes all DUP control records; and
Table 5 gives the restrictions on DUP functions
when in temporary mode (JOB T).

DUMP (Dump Program)

The DUMP routine dumps (unloads) information
from the User area, Fixed area, or Working
Storage area to cards, paper tape, or printer,
or from the User or Fixed area to the Working
Storage area. The decimal number of disk
blocks dumped is specified in the corresponding
LET entry or in the WS Indicator Word.

~ CD PT PR ws
LY (CDS) (CDD) (PTS) (PTD) (PRD) (DSF) (DDF)

WS (DSF) x x x

(DSF) x x x x
UA (DDF) x x x x

(DCI) x x x x

FX (DCI) x x x x
(DDF) x x x x

The control record format is as follows:

cc

l 2 3 4 5 6 7 8 9 l 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

*DUMPb

18

'--y-:J '---..---'

"FROM" "TO"
Symbol Symbol

Program Name
(required ex­
cept for WS to
PR)

NOTE 1: If the DUMP is from WS, and the WS
Indicator is zero, a FROM field error message
is given (refer to Appendix A).

NOTE 2: When the DUMP is to cards, each card
is checked to see that it is blank before it is
punched (refer to Appendix A).

NOTE 3: At the end of DUMP operations, all
subsequent blank cards are selected into
Stacker 2.

DUMPDATA (Dump Data)

The DUMPDATA routine dumps data from the User
area, Fixed area, or Working Storage area to
cards, paper tape, or printer, or from the User
or Fixed area to the Working Storage area. The
number of sectors to dump must be specified by
the count field. This number of sectors will be
dumped regardless of the length of the specified
data file or program.

WS (DSF)
(DDF)

(DSF)
UA (DDF)

(DCI)

FX (DCI)
(DDF)

CD
(COD)

x
x

x
x
x

x
x

PT
(PTD)

x
x

x
x
x

x
x

PR
(PRO)

x
x

x
x
x

x
x

ws
(DDF)

x
x
x

x
x

The control record format is as follows:

cc

l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
L.....,--1 '--v---' '__.j

* DU M PD AT A b "FROM" "TO" Program Name Sector Count
Symbol Symbol (required ex- (when dump-

cept for WS to in9 from WS,
PR) the sector

count overrides
the WS Indica­
tor)

NOTE 1: When the dump is to cards, each card
is checked to see that it is blank before it is
punched (refer to Appendix A).

NOTE 2: At the end of DUMPDATA operations, all
subsequent blank cards are selected into Stacker 2.

2.
~

§
-W

l s
'6
c ,::g

....
\,D

Table 3. Movement of Information Using DUP Control Records

~~ UA
(DSF) (DDF) (DCI)

(DSF)

(DDF)
UA

(DCI)

(DCI)

FX -
(DDF)

(DSF) STORE* STORECI*

STOREMOD
ws

(DDF) STOREDATA*

STOREMOD

(COD) STOREDATA*

CD

(CDS) STORE* STORE Cl

(PTO) STOREDATA*

PT
(PTS) STORE* STORE Cl*

*Eliminates stored information from Working Storage

**Replaces current contents of Working Storage

(DSF)
FX

(DDF) (DCI)

STORE Cl

STOREDATA

STOREMOD

STOREDATA**

STORE Cl**

STOREDAT A**

STORE Cl**

ws CD PT PR
(DSF) (DDF) (COD) (CDS) (PTO) (PTS) (PRO)

DUMP** DUMPDATA** DUMPDATA** DUMP** DUMPDATA** DUMP** DUMP**

DUMPDATA**

DUMP** DUMP** DUMP** DUMP**

DUMPDATA** DUMPDATA** DUMPDATA** DUMPDATA**

DUMP** DUMP** DUMP** DUMP**

DUMPDATA** DUMPDATA** DUMPDATA** DUMPDATA**

DUMP** DUMP** DUMP** DUMP**

DUMPDATA** DUMPDATA** DUMPDATA** DUMPDATA**

DUMP** DUMP** DUMP** DUMP**

DUMPDATA** DUMPDATA** DUMPDATA** DUMPDATA**

DUMPDATA DUMP DUMPDATA DUMP DUMP

DUMPDATA

DUMPDATA DUMPDATA DUMPDATA

STOREDATA**

STORE**

STOREDATA**

STORE**

Table 4. Swnmary of DUP Control Records

cc 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

* D u M p b -From- -To- ---Name---

* D u M p D A T A b -From- -To- ---Name--- -· Sector Count-

,___.'!' s T 0 R -From- -To- ---Name---

* s T 0 R c - From- -To- ---Name--- -Count of 'Files'-
Records

* s T 0 R D A T A -From- -To- ---Name--- -Sector, Card, or-L-. ..

Record Count

s T 0 R M 0 D b -ws- UA or FX ---Name---

* D u M p L E T (Print contents of LET dn principal printing unit)

* D w A D R (Write sector addresses in Working Storage area)

*· D L T

D E F N b F x E D b A

D F N E b v 0 D b A s

* D F N E b v 0 D b F 0

Table S. Restrictions on DUP Functions in Temporary Mode (JOB T)

Functions Restrictions (if any)

DUMP None

DUMPDATA None

STORE None

STORE Cl To UA only

STOREDATA To UA and WS only

STOREMOD Not allowed

DUMP LET None

DWADR Not allowed

DELETE Not allowed

DEFINE FIXED AREA Not allowed

DEFINE VOID ASSEMBLER Not allowed

DEFINE VOID FORTRAN Not allowed

STORE

. The STORE routine stores programs from cards,
paper ~ape, or the Working Storage area to either
the User area or Working Storage area on disk.

20

CD (CDS)
WS (DSF)
PT (PTS)

UA
(DSF)

x
x
x

ws
(DSF)

x

x

R

s

R

---Name---

E A -Cylinder -
Count

E M B L R

T R A N

The control record format is as follows:

cc

l 2345678910111213141516171819202122232425
'--r-' ~ '--r-'

! "FROM" "TO"
Symbol Symbol

*STORE

Specifies subtype (left-
justified) of type 3 & 4
subprograms (see Appen -
dix B). This field is
blank unless special
SOCAL handling is
desired.

Program Name
(required ex­
cept for storing
to WS)

NOTE: If the STORE is from WS, and the WS
Indicator is zero, a FROM field error message
is given (refer to Appendix A).

STORECI (Store Core Image)

The STORECI routine stores programs from cards,
paper tape, or the Working Storage area to either
the User area or Fixed area on disk. The
programs are converted to Disk Core hn age
format (see Appendix B), hence they are loaded
into core storage faster than programs stored
otherwise. The STORECI function uses the
Loader to convert the Disk System format pro­
gram to core image. ·After control is returned to

•l

D UP, the core image header and that portion of the
program (excluding Disk I/O) that resides below
core location 409610 are stored from the CIB, and
that portion of the program above core location
409510, if any, isstoredfromcore. No
COMMON area is stored, but the transfer vector
is ii1cluded. STORECI always requests a map
from the Loader since it will not be available when
the program is loaded from Core Image format.

CD (CDS)
WS (DSF)
PT (PTS)

UA
(DCI)

x
x
x

FX
(DCI)

x
x
x

The control record format is as follows:

cc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

*STORECI t ~ '---y-J ~
See "FROM" "TO" Program Name See Note 2
Note 1 Symbol Symbol (always re­

quired)

NOTE 1: Column 9 is used to specify the Disk I/O
routine required by this program.

0 = DISKO
1 = DISKl
N = DISKN

Others= DISKZ
(including blank)

NOTE 2: Count Field (cc 27-30) contains decimal
count of *FILES records that are required for
program being stored. This number of records
will be read before the normal STORECI function
is performed.

NOTE 3: Data files named in the *FILES record
must be in the Fixed area.

NOTE 4: If the STORECI is from WS, and the WS
Indicator is zero, an error message is given
(refer to Appendix A).

STOREDATA (Store Data)

The STOREDATA routine stores data from cards,
Working Storage area, or paper tape to the User
area, Fixed area, or Working Storage area. Each

data file starts at the beginning of the next available
sector and the length is defined in whole numbers
of sectors.

~ 8
WS (DDF)
CD (CDD)
PT (PTD)

UA
(DDF)

x
x
x

FX
(DDF)

x
x
x

ws
(DDF)

x
x

The control record format is as follows:

cc

1 2 3 4 5 6 7 8 9 l 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

*STOREDATA
'--y--' '-y--' '--v---1

"FROM"
Symbol

"TO" Data File Name see NOTE
Symbol (not required for

CD to WS or PT
to WS)

NOTE: Count Field (cc 27-30) must contain one of
the following in decimal:
Sector count if source is WS (overrides the WS
Indicator), card count if source is CD, record
count if source is PT.

STOREMOD (Store Modify)

The STOREMOD routine moves data from Working
Storage to the User area or Fixed area, overlaying
an item specified by name in the User area or Fixed
area. This permits the user to modify an item in
the User or Fixed area without changing its name or
relative position. If the user's program has put
data in Working Storage, the user must put the data
disk block count into location 0069. The length of
the item in Working Storage (in disk blocks) cannot
be greater than the length of the item it overlays. If
the name is not found in LET /FLE T, the message
"D 16 DCTL, NAME FLD" is printed. If an attempt
is made to STOREMOD data longer than the item
already in the User or Fixed area, the function is
aborted and the message "WS TOO LONG" is printed.

UA FX

x x

The control record format is as follows:

cc

123 45 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 212223 24 25

*STOREMODb
'--y--' '--y--J

ws UAor
FX

Data File Name

Disk Utility Program (DUP) 21

DUMPLET (Dump Location Equivalence Table)

The DUMPLET routine dumps the contents of the
Location Equivalence Table (LET) to the principal
printing unit (see Figure 7). If a Fixed area has
been defined, the Fixed Location Equivalence
Table (FLET) is printed as a separate table
following LET (see Figure 8).

The control record has the following format:

Line 1:

Line 2:
(Entries in COMMA­
base and adjusted
addresses - see
Appendix E)

Line 3:
(LET sector header
words)

Line 4

Linen

Line 4

Line n

Line 4

Line n

cc

12345678
'----.,---J
*DUMP LET

LET

xxxx xxxx xxxx xxxx

Work Storage starting
sector address

Disk block address
available for next User
area program or data file

xx xx xx xx
~

Relative sector 0 if last sector
number (0-7) of LET; other-

wise non-zero

xxxxx ~ ~xx,

Program name Program size Starting address
(disk blocks) (disk blocks)

,xx~xx, ~xx, ,xxxx I ..
Program name Program size Storti ng address

(disk blocks) in User area
(disk blocks)

,xxxxx, ~ xx xx
• ~

Data fi I e name Data file size Storti ng address
(disk blocks) in User area

(disk biocks)

DWADR (Disk Write Address)

The DWADR routine writes sector addresses on
every sector in the Working Storage area. It
restores correct disk sector addresses in the
Working Storage area if they have been modified
during execution of a user's program. Previous
contents of the area are overlaid. Following the
address word, the first two words of each sector
contain Dl20 2663 (in hexadecimal). The next
238 words have the format Annn, where nnn is the
hexadecimal address of the sector; the last 80

xxxx xxxx

Number of words used
by LET

xx xx xx xx xx xx

Reserved Words available Sector address of
in this sector next sector
for more entries (0 if last sector)

} Fo• DSF
programs

~.xx, e~ xx xx
L_._., J

Execute core Program load Actual word count
For core

address address in of core image pro-
image

(absolute) core gram (includes a
programs

60-word header)

\. 0000 0000) xx xx
y

L

} Fo• data
Reserved Data file size files

(disk blocks)

NOTE 1: The header words of the first sector are printed on line 3. Additional header words are printed for each fol iowi ng sector as required.

NOTE 2: For multi-entry subroutines, the Program Size and Starting Address fields for entry points subsequent to the first one will be blank.

NOTE 3: Program size is the disk block count of the program. This corresponds to word 3 of the actual LET entry (see .6ppendix G).

NOTE 4: Words 4, 5, and 6 of the printout reflect the actual LET entry words 4, 5, and 6.

NOTE 5: All numbers are in hexadecimal.

Figure 7. Output Format from a DUMPLET Operation (LET)

22

words are zeros. The control record has the
following format:

cc

123456
'---y--J

* DWADR

DELETE {Delete Program or Data)

The DELETE routine deletes a specified program
or data file from the User or Fixed area. The
LET or FLET entry is deleted and if the program
was in the User area the User area is repacked.
A lDUMY entry is created to replace deleted
FLET entries. Although no packing of the
Fixed area occurs, dummy entries in FLET are
packed so that two are not adjacent but are
consolidated. The control record has the
following format:

cc

l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

*DELETE Name

Line 1: FLET

Line 2: xx xx xx xx xxxx xxxx
(Entries in

DE FINE {Define)

The DEFINE routine defines variable parameters
required by the Monitor System. The following
options are available:

• Define or increase the size of the Fixed area

• Delete the assembler from the system

• Delete FORTRAN from the system

If the user wishes to delete the assembler or
FORTRAN, he must do so before he defines a
Fixed area.

Within the Fixed area, programs can be stored at
fixed disk locations. This area is initially defined as
a whole number of cylinders, with a minimum of two,
one of which is used for FLET, and it may be in­
creased (but not decreased) by a whole number of
cylinders at any time up to the length of· Working
Storage minus four cylinders. All of the specified
increment is added to the Fixed Area after the
initial definition. Defining or increasing the size of
the Fixed area reduces disk storage available for
User and Working Storage areas by the same amount.

xxxx xxxx

COMMA) Sector address of CIB Sector address of FLET Number of words used by FLET

Line 3: xx xx
(FLET sector

..__......._,
header words) Relative sector

number (first
sector is
numbered 16)

xx xx ..__......._,
0 if last sector of
FLET; otherwise
non-zero

xx xx ..__......._,
Reserved

Lin.e 4} FLET entrie~ are th~ some as for LET except that DSF programs do
• not appear 1n the Fixed area; therefore, no three-word entries

Lin•e n appear in FLET.

NOTE 1: All references are in disk blocks unless otherwise indicated,

xx xx ..__......._,
Words available in this
sector for more entries

xx xx ..__......._,
Sector address of next
sector (O if last sector}

NOTE 2: The header words of the first sector are printed on line 3, Additional header words are printed for each following sector as required·
there is a header for each 52 FLET entries. '

NOTE 3: Program size is the disk block count of the program. This corresponds to word 3 of the actual FLET entry (see Appendix G).

NOTE 4: Words 4, 5, and 6 of the printout reflect the actual FLET entry words 4, 5, and 6.

NOTE 5: All numbers are in hexadecimal.

Figure 8. Output Format from a DUMPIET Operation (FLET)

Disk Utility Program (DUP) 23

Deleting the assembler and/or FORTRAN packs
the remaining information on the disk, thus
increasing disk storage available for User and
Working Storage areas by the amount occupied by
the deleted programs (see Figure 2).

The control record formats are as follows:

To Define the Fixed area -
cc

l 2 3 4 5 6 7 8 9 l 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
~

*DEFINEbF IX ED b ARE A NNNN

where NNNN = positive cylinder count in
decimal, right-justified,
specifying the initial size of
Fixed area (minimum of 2
cylinders) or an increment
to the Fixed area.

NOTE: The first cylinder of the first DEFINE
FIXED AREA is used for FLET.

To Delete the Assembler -

cc

l 2 3 4 5 6 7 8 9 1 0 11 1 2 13 1 4 15 16 1 7 1 8 1 9 20 21 22

*DEFINEbVOI Db A SSE MB LE R

To Delete FORTRAN -

cc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

*DEFINEbVO ID b FORT RAN

EDIT (to recall system loader)

The *EDIT control record is used only by DUP to
recall the System Loader, which initially loads
the system into disk storage. The control
record has the following format:

cc

1 2 3 4 5

*ED IT

NOTE: This record must not be used by the user.

DUP MESSAGES

Each DUP control record is printed at the time it
is read, thus signaling that DUP has control and

24

will remain in control until the next monitor
control record is properly read. When .a
requested DUP function has been successfully
completed, the following two-word exit message
is printed in hexadecimal:

Word 1: Disk block address of program or disk
area that has been processed.

Word 2: Number of disk blocks involved.

For the DUP functions listed below, these words
contain the following information (all addresses
and lengths are given in disk blocks):

DUP Function

DUMP, STORE,
STORE CI, STORE MOD,
DELETE

DUMPDATA,
STOREDATA

DUMPLET - (LET)

Information Printed

Program address* and
program length**

Program address and
decimal sectors or
records specified con­
verted to disk blocks

User area address and
User area length

DUMPLET - (FLET) Fixed area address and
Fixed area length

DWADR Working Storage address
and Working Storage
length

DEFINE FIXED AREA Fixed area address
and size

DEFINE VOID
ASSEMBLER

DEFINE VOID
FORTRAN

Former address and
size of assembler

Former address and
size of FORTRAN

If the above words are not printed, the DUP function
was not successfully completed. If the DUP opera­
tion cannot be performed, an appropriate error
message is printed at the time the DUP control
record causing the error is read (see Appendix A).

* If storing or dumping from Working Storage, the
address of Working Storage is printed.

**Length is the third word of LET /FLET entry
(see Appendix G).

DUP OPERATING NOTES

The use of the PROGRAM STOP key, when perform­
ing DUP operations with the 1130 Disk Monitor
System, can cause the system to stop while there is
disparity between LET/FLET, DCOM, and the actual
disk contents. If the job is aborted at this time, the
disk pack will no longer contain an operating monitor
system.

DUP operations must be allowed to execute to
completion. If the PROGRAM STOP key is used

(WAJT at 0005) , the operation must be continued
from the point at which the system stopped. Core
storage must not be altered. To continue, press
PROGRAM START (see DUP Waits and Loops in
Appendix A).

Some DELETE functions may take several minutes
since they may have to pack much of disk storage.
These long DELETE and DEFINE functions must be
allowed to complete their respective operations.

Control can be returned to the DUP section that
reads DUP and monitor control records by manually
branching to core location 0276.

e Disk Utility Program (DUP) 25

ASSEMBLER

The language for the monitor assembler is de­
scribed in the publication IBM 1130 Assembler
Language (Form C26-5927). Therefore, only a
general description of the operation and the control
records for the monitor assembler are described
in this section.

The monitor assembler cannot be operated in­
dependently of the Monitor System; however, the
assembler can be deleted from the Monitor System
if desired.

A monitor control record with the pseudo-op
ASM is used to call the assembler into operation.
The assembler reads the source program, in­
cluding control records, from cards or paper tape.
After assembly, the object program resides in the
disk Working Storage area, and can be called for
execution with a µionitor XEQ control record, or
it can be stored in the User or Fixed area with a
DUP STORE or STORECI operation or punched
as a binary deck or tape with a DUP DUMP opera­
tion.

ASSEMBLER CONTROL RECORDS

Assembler control records are used to specify
assembly options and to provide input to the
assembly process for certain types of source
decks. Assembler control records can be either
card or paper tape.

Table 6. Swnmary of Ass~mbler Control Records

All assembler control records have the following
format:

Column 1: *
2-71: Option

If an assembler control record contains an aster­
isk in column 1, but the option does not agree,
character for character, with its valid format,
as described below, the erroneous control record
is ignored in the assembly. The option is not
performed; however, no error results.

Assembler control records can be written in
free form, but at least one blank must separate
the last character in the operation and the first
character of any comments or numeric field.

Assembler control records and their meanings
are listed below. A summary is contained in
Table 6.

*TWO PASS MODE

The source deck (or tape) must be read twice.
TWO PASS MODE must be specified when:

1. The user desires a list deck to be punched (see
LIST DECK and LIST DECK E).

2. One pass operation cannot be performed be­
cause intermediate ·output (source records)
fill the Working Storage area of disk.

*TWO PASS MODE Read source deck twice; must be specified when LIST DECK or LIST DECK Eis specified, or when intermediate
output fills Working Storage

*LIST Print a listing on the principal printing device

*LIST DECK Punch a list deck on the principal 1/0 device (requires TWO PASS MODE)

*LIST DECK E Punch only error codes (cc 18-19) into source program list deck (requires TWO PASS MODE)

*PRINT SYMBOL TABLE Print a listing of the symbol table on the principal printing device

*PUNCH SYMBOL TABLE Punch a list deck of the symbol table on the principal 1/0 device

*SAVE SYMBOL TABLE Save symbol table on disk as a System Symbol Table

*SYSTEM SYMBOL TABLE Use System Symbol Table to initialize symbol table for this assembly

*LEVEL n n =interrupt level number. Required for ISS subroutines

*FILE n n =number (decimal) of sectors of Working Storage required at object time by the program being assembled

*COMMON n n =length of COMMON in words (decimal)

26

*LIST

A printed listing is provided on the principal
printing device (console printer or 1132 Printer).
The format of the printed listing corresponds to
that of the list deck (see Figure 9).

*LIST DECK

A list deck is punched on the principal I/O device
(card or paper tape). This option requires two
passes (TWO PASS MODE). The list deck format
is shown in Figure 9. In cards, object information
is punched into columns 1-19 of the source deck
in pass 2 to make the list deck. In paper tape, the
list tape punched is similar to the input tape, but

with 20 frames added to the beginning of each record
corresponding to card columns 1-20.

*LIST DECK E

Same as LIST DECK except no object information
other than errors (positions 18-19) are punched.

*PRINT SYMBOL TABLE

A printed listing of the symbol table is provided on
the principal printing device (console printer or
1132 Printer). Symbols are grouped five per line.
Multiply-defined symbols are preceded by the
letter M; symbols with absolute values in a relo­
catable program are preceded by the letter A. The
M and A flags, however, are not counted as
assembly errors.

25 26 27 30 31 32 33 34 35

Address of the
Instruction;

Address
Assigned to

Blank BlankTlankTlank Blank

Format
First Word of

the Assembled
Code *

the Label, if any

Relocation Indicators;
Col. 7 is Blank for One­
Word Instructions or DC

or
Exponent for an
XFLC Statement.

Second Word of
the Assembled

Code

Error Flags,
if any

Operands

* For EBC Statements, Col. 9-12 Contains the Number of EBC Characters

For BSS and BES Statements, Col. 9-12 Contains the Number of Words
Reserved for the Block.

Figure 9. List Deck Format

Label Op Code
Tag

71 72 73 80

' / v
ID and Sequence

Blank Number, if any

Assembler 2 7

*PUNCH SYMBOL TABLE

A list deck of the symbol table is punched on the
principal 1/0 device (card or paper tape). The
record format is the same as for PRINT SYMBOL
TABLE. This option may be advantageous if offline
card-to-printer or paper tape-to-printer facilitit;:lS
are available.

*SA VE SYMBOL TABLE

The symbol table generated in this assembly is
saved on the disk as a System Symbol Table. The
System Symbol Table is saved until the next SA VE
SYMBOL TABLE control record causes a new
assembly-generated symbol table to replace it.
This control record is also used with the SYSTEM
SYMBOL TABLE control record to add symbols to
the System Symbol Table. The SAVE SYMBOL
TABLE option requires this assembly to be absolute.
If any assembler errors are detected, or if the
symbol table exceeds the allowable size of the
System Symbol Table - 100 symbols - the symbol
table will not be saved as a System Symbol Table,
and an assembler error message will be printed
(refer to Appendix A, Assembler Error Messages).

*SYSTEM SYMBOL TABLE

Before assembly begins, the System Symbol Table
(previously built by a SA VE SYMBOL TABLE
assembly) is copied into the symbol table generated
in this assembly. This control record is used when
it is desired to refer to symbols in the System
Symbol Table without definition of those symbols in
the source program, or together with the SAVE
SYMBOL TABLE control record when it is desired
to add symbols to the System Symbol Table. All
symbols in the symbol table taken from the System
Symbol Table will have absolute values.

*LEVELbn

This control record is required for the assembly
of an ISS routine. n = A decimal interrupt level
number (0-5). If the device operates on two levels
of interrupts (1442 Card Read Punch), two LEVEL
control records are required. At least one blank
must separate the word LEVEL and the interrupt
level number.

28

*FILEbn

n =Number of sectors (decimal) of the disk Working
Storage area required at object time by the pro­
gram being assembled. These sectors will be
reserved at the beginning of Working Storage before
any LOCALs or SOCALs are stored. This control
record is used only when assembling a relocatable
mainline program. At least one blank must separate
the word FILE and the number of sectors.

*COMMONbn

n =Length of COMMON in words (decimal). This
allows a COMMON area to be saved in linking from
a FORTRAN mainline program to an assembly
mainline and linking back to a FORTRAN mainline.
At least one blank must separate the word COMMON
and the decimal number.

ORIGIN OF SOURCE PROGRAM

The origin of a relocatable source program will
always be at relative zero unless otherwise specified
in the source program.

The origin of an absolute source program, if
not otherwise specified, will be at the end of the
disk routine DISKN (location 0438). If the program
will use another disk routine, the origin may be set
lower to correspond to the proper disk routine. If
no disk routine is used, the origin may be set to the
end of the disk routine DISKZ (refer to Origins for
Core Loads).

ASSEMBLER PAPER TAPE FORMAT

The paper tape input to the assembler is punched on
PTTC/8 tape, one frame per character. The format
of the tape control records is the same as the card
format. The format of the symbolic program tape
records is the same as the card format except for
the following:

1. The tape does not contain preceding blanks
corresponding to card columns 1-20.

2. The tape does not contain blanks or data
corresponding to card columns 72-80.

3. Trailing blanks need not be punched. Therefore,
up to 51 characters (corresponding to card
columns 21-71) can appear in the tape record.

Tape records are separated by NL (new line)
characters (code DD). The delete character (code
7F) is ignored whenever it is read, but the reader
stop character (RS, code OD) causes the program
reading the tape to wait and start reading again
when PROGRAM START is pressed. The case shift
characters (codes OE, 6E), when required, are not
considered to occupy a space in the format.

ASSEMBLER MESSAGES AND ERROR CODES

Appendix A contains the assembler error messages
printed during operation of the 1130 Monitor. If
LIST DECK or LIST DECK E is specified, the error
detection codes shown in Table 7 are punched in
columns 18 and 19. For the first error detected in
each statement the assembler stores and then punches
the code in column 18; the code for a second error
is stored, overlayed by any subsequent errors, and
punched in column 19. Thus, if more than two
errors are detected in the same statement, only
the first and last are indicated.

At the end of the assembly, a message is printed
indicating the total number of assembly errors de­
tected in the source program. Since no more than
two errors are flagged per statement, the error
count may exceed the actual number of flags.

If symbol table overflow exceeds 32 sectors in
Working Storage, an assembler error message is
printed (refer to Appendix A). The maximum size
of the symbol table (including overflow) and, hence,
the maximum number of symbols that can be de­
fined in a program is determined by the size of
core storage as indicated below:

Type of Assembly

With Listing
One Pass, No Listing
Two Pass, No Listing

Size of Core Storage (words)
4096 8192

3502
3574
3609

4867
4940
4974

ASSEMBLER OPERATING PROCEDURES

Card Input

The source deck (including assembler control
cards) can be assembled as part of a job, or it
can be assembled as a separate job. In either
case, the source deck must be preceded by a
ASM monitor control record.

Table 7. Assembler Ecror Detection Codes

Flag Cause Assembler Action

A Address Error Displacement set ta zero
Attempt made to specify dis-
placement field, directly or
indirectly, outside range of
- 128 to + 12 7.

c Condition Code Error Displacement set to zero
Character other than +, - , Z,
E, C, or 0 detected in first
operand of short branch or
second operand of I ong BSC,
BOSC, or BSI statement.

F Format Code Error Instruction processed as if L
Character other than L, I, X, format were specified, unless
or blank detected in col. 32, that instruction is valid only in
or Lor I format specified for short form, in which case it is
instruction valid only in short processed as if the X format
form. were specified

L Label Error
Invalid symbol detected in label

Label ignored

field.

M Multiply Defined Label Error First occurrence of symbol in
Duplicate symbol encountered label field defines its value;
in operand. subsequent occurrences of

symbol in label field cause a
multiply defined indicator to be
inserted in symbol table entry

0 Op Code Error
(Bit 0 of first word).

Unrecognized op code Statement ignored and address

ISS, ILS, ENT, LIBR, SPR,
counter incremented by 2.
Statement ignored

EPR, or ABS incorrectly placed.

R Relocation Error
Expression does not have valid
relocation.

Expression set to zero

Non-absolute displacement Displacement set to zero
specified.
Absolute origin specified in
relocatable program.

Origin ignored

Non-absolute operand specified
in BSS or BES.

Operand assumed to be zero

Non-relocatable operand in Card columns 9-12 left blank;
END statement of relocatable entry assumed to be relative
mainline program. zero
ENT operand non-relocatable. Statement ignored

s Syntax Error
Invalid expression (e.g., invalid
symbol, adjacent operators,

Expression set to zero

i I legal constant)
I I legal character in record. If i I legal character appears in

expression, label, op code,
format, or tag field, additional

Main program entry point not
errors may be caused.
Card columns 9-12 left blank;

specified in END operand. entry assumed to be relative zero
Incorrect syntax in EBC state- Card columns 9-12 not punched;
ment (e.g., no delimiter in ac1dress counter incremented
card column 35, zero character
count).

b)' 17.

Invalid label in ENT or ISS Statement ignored
operand.

T Tag Error
Card column 33 'contains Tag of zero assumed
character other than blank, 0,
l, 2, or 3 in instruction
statement.

u Undefined Symbol
Undefined symbol in expression Expression set to absolute zero

Assembler 29

In most cases, the source deck is passed
through the 1442 Card Read Punch only once. If
the assembly is part of a stacked job, the
assembly proceeds without operator intervention.
If the END card is the last card in the stack,
when the reader goes not ready, press reader
START to process the last card.

In some cases it may be necessary to
assemble in the two-pass mode, that is, pass
the source deck through the 1442 Card Read
Punch twice. If a copy of the source deck is
placed behind the original, the source deck will
be read twice, and a stacked job is again
possible even when in the two-pass mode.

It is important to note that wren a deck is
being assembled in two-pass mode, the
assembler is ready to read another card as soon
as Pass 1 processing of the END card is completed.
Therefore, a monitor control record must not
follow the END card the first time (or the first
END card if the deck has been copied), or the
assembler will trap this record, terminating
the assembly and returning control to the
Supervisor.

If the deck is not copied, the END card should
be the last card. Press reader START to
process the last card and complete Pass 1. The
assembler will then try to begin reading cards
for Pass 2, therefore the source deck (with its
control cards) should be removed from the stacker
and placed in the hopper. Pressing reader ST ART
will continue Pass 2 of the assembly. The card
reader will go not ready when all cards but the
END card have been read. Press reader ST ART
to process the END card and complete the
assembly. Operation is continuous from Pass 1
to Pass 2 if the source deck is replaced behind the
END card from the stacker during Pass 1.

If the *PUNCH SYMBOL TABLE assembler
control card is used, sufficient blank cards must
be placed after the END card and before the next
monitor control record in the stacked job. In
estimating the number of blank cards required,
allow one card for each five symbols used in
the source deck. Unnecessary blank cards will
be passed to the next monitor control record.

Paper Tape Input

Most of the procedures for card input are also
applicable to paper tape input.

30

If the assembly is performed in the one-pass
mode, operation is continuous, and control is
returned to the Supervisor which will then pass
any delete codes between the assembler and the
next monitor control record. The assembler
will also pass any delete codes that may occur
between records of the source program.

When it is necessary to assemble in the two­
pass mode, one of the following techniques may
be used:

1. Have the stacked job tape contain two copies
of the source program. The assembler will
simply begin reading the copy after the
original has be~n read in Pass 1.

2. Assemble outside of the stacked job tape.
The job tape, or a separate strip containing
an ASM monitor control record serves to
bring the assembler' into core. A separate
source program tape (including assembler
control records) should then be readied on
the paper tape reader, and the assembler
will read this tape and complete Pass 1.
Ready the source tape again and the
assembler will complete Pass 2. A stacked
job tape can now be readied again on the
paper tape reader, and the Su~ rvisor will
continue with the stack.

3. The assembly of a program may start in one­
pas s mode and then be changed to two-pass
mode (see Assembler Error Messages,
Appendix A). The assembler will wait, and
pressing PROGRAM ST ART continues the
assembly in Pass 1 of two-pass mode. If this
assembly is part of a stacked job, operator
intervention is necessary to prevent the
assembler from reading the monitor control
record which follows the END record
(applicable to card input also). When Pass 1
intermediate output may fill Working Storage,
it is recommended that sufficient length of all
delete codes be punched into the tape after the
END statement and before the next monitor
control. When the assembler is reading the
delete codes following the END record, the
operator should press PROGRAM STOP, and
manually reposition the tape at the beginning
of the source program. When the tape is
positioned, press PROGRAM ST ART to con­
tinue Pass 2 of the assembly.

When punching a list tape (*LIST DECK or
*LIST DECK E), first create a leader in the
punched tape by holding down FEED and DELETE on
the punch (press DELETE before FEED and release
FEED before releasing DELETE). The same
procedure should be used to create a trailer

following the last record punched by the assembler.
When the paper tape reader or punch is not

ready, the assembler will wait at location 0041
with 300016 displayed in the accumulator. Ready
the punch or reader, and press PROGRAM ST ART
to continue.

Assembler 31

FORTRAN COMPILER

The language for the Monitor FORTRAN compiler
is described in the publication IBM 1130 FORTRAN
Language (Form C26...;5933). Therefore, only a
general description of the Monitor FORTRAN
compiler operation is contained here.

The FORTRAN compiler cannot be operated
independent of the Monitor System; but, if
desired, the compiler can be deleted from the
system.

A monitor control record having the pseudo-op
FOR is used to call the FORTRAN compiler into
operation. The compiler reads the source program
from cards or paper tape. After compilation, the
object program resides in the disk Working Storage
area, and can be called for execution with a monitor
XEQ control record, loaded to the User or Fixed
area with a DUP STORE or STORECI operation,
or punched as a binary deck or tape with a DUP
DUMP operation. All FORTRAN programs are
compiled in relocatable format.

For 1130 FORTRAN 1/0 logical unit
definitions, the 1/0 unit numbers are permanently
set as described in Table 8.

FORTRAN CONTROL RECORDS

Before a FORTRAN program. is compiled, the user
can specify certain options by means of control
records which must precede the source program
and can be in any order. The IOCS and NAME
control records can be used only in mainline
programs; the others can be used in both mainline
programs and subroutines.

e Table 8. 1/0 Log:=cal Unit Designations

logical
Unit Kind of Record Size

Number Device T ransm i ssi on Allowed

1 Console printer Output only 120

2 1442 Card Read Input/output 80
Punch

3 1132 Printer Output only 1 carrioge
control + 120

4 1134-1055 Input/output 80, plus max. of
Paper Tape 80 case shifts for
Reader/Punch PTTC/8 code,

plus NL code.

6 Keyboard Input only 80

7 1627 Plotter Output only 120

32

All FORTRAN control records have the following
format:

Column 1: * (asterisk)
2-72: Option

FORTRAN control records can be written in
free form, no comments allowed. Any
unrecognizable control records are considered
as comments control records.

FORTRAN control records and their meanings
are listed below. A summary is contained in
Table 9.

*IOCS (CARD, TYPEWRITER, KEYBOARD, 1132
PRINTER, PAPER TAPE, DISK, PLOTTER)

This. record is required to specify. any 1/0 device
that is to be used during execution of the program; 1

however, only the devices required should be
included. Because the *IOCS record can appear
only in the mainline program, it must include all
the 1/0 devices used by all FORTRAN subprograms
that will be called. The device names must be in
parentheses with a comma between each name.

FOR TRAN subprograms written in assembly
language can use any 1/0 subroutines for any
device that is not mentioned in *IOCS and that is
not on the same interrupt level as a device in
*IOCS. Otherwise, the subprograms must use
FORTRAN 1/0 routines (CARDZ, PAPTZ, PRNTZ,
WRTYZ, TYPEZ, DISKZ, PLOTX).

*LIST SOURCE PROGRAM

The source program is listed as it is read in.

*LIST SUBPROGRAM NAMES

The names of all subprograms (including
EXTERNAL subprograms) called directly by the
compiled program are listed.

*LIST SYMBOL TABLE

The following items are listed:

• Variable names and their relative addresses

• Statement numbers and their relative addresses

I Table 9. Summary of FORTRAN Control Records

* NAME XXXXX

* IOCS (CARD, TYPEWRITER, KEYBOARD, 1132 PRINTER, PAPER TAPE,
DISK, PLOTIER)

**header information to be printed on each compiler output page

* ONE WORD INTEGERS

* EXTENDED PRECISION

* ARITHMETIC TRACE

* TRANSFER TRACE

* LIST SOURCE PROGRAM

* LIST SUBPROGRAM NAMES

* LIST SYMBOL TABLE

* LIST ALL

• Statement function names and their relative
addresses

• Constants and their relative addresses

*LIST ALL

The source program, subprogram names, and
symbol table are listed. If this control record is
used, the other LIST control records are not
required.

*EXTENDED PRECISION

Variables and real constants are stored in three
words instead of two, and the compiler generates
linkage to extended precision routines.

*ONE WORD INTEGERS

Integer variables are allocated one word of storage
rather than the same allocation used for real
variables. Whether this control record is used or

(XXXXX = program name to be printed on listing)

Delete any not used

(Store integer variables in one word)

(Store floating point variables and constants in 3 words instead of 2)

(Switch 15 ON to print result of each assignment statement)

(Switch 15 ON to print value of IF or Computed GOTO)

(Li st source program as it is read in)

(List subprograms called directly by compiled program)

(List symbols, statement numbers, constants)

(List source program, subprogram names, symbol table)

not, integer constants are always contained in one
word. When this control record is used, the
program does not conform to the ASA Basic
FORTRAN standard for data storage, and it may
require modification in order to be used with
other FORTRAN systems.

*NAME XXXXX

The program name represented by XXXXX is printed
on the listing. XXXXX is five consecutive
characters (including blanks) starting at the first
non-blank column. This control record is used
only on mainline programs, since subprogram
names are automatically taken from the
FUNCTION or SUBROUTINE statement.

**Header Information

The information between columns 3-72 is printed
at the top of each page of compilation printout when
an 1132 Printer is the principal system printer.

*ARITHMETIC TRACE

The compiler generates linkage to trace routines
which are executed whenever a value is assigned to
a variable on the left of an equal sign. If Console
Entry Switch 15 is turned on at execution time and

FORTRAN Compiler 33

program logic (see Optional Tracing) does not
prevent tracing, the value of the assigned variable
is printed as it is calculated.

*TRANSFER TRACE

The compiler generates linkage to trace routines
which are executed whenever an IF statement or
Computed GOTO statement is encountered. If
Console Entry Switch 15 is turned on at execution
time and program logic (see Optional Tracing) does
not prevent tracing, the value of the IF expression
or the value of the Computed GOTO index is printed.

If tracing is requested, an *IOCS control record
must also be present to indicate that either type­
writer or printer is needed. If both typewriter
and printer are indicated in the *IOCS record, the
printer is used for tracing.

The traced value for the assignment of a
variable on the left of an equal sign of an arithmetic
statement is printed with one leading asterisk.
For the expression of an IF statement, the traced
value is printed with two leading asterisks. The
traced value for the index of a Computed GOTO
statement is printed with three leading asterisks.

Optional Tracing

The user can elect to trace only selected parts of
the program by placing statements in the source
program logic flow to start and stop tracing. This
is done by executing a CALL to either subroutine:

CALL TSTOP (to stop tracing)
CALL TSTRT (to start tracing)

Thus, tracing occurs only if:

• The trace control records were compiled with
the source program.

• Console Entry Switch 15 is on (can be turned
off at any time).

• A CALL TSTOP has not been executed, or a
CALL TSTRT has been executed since the last
CALL TSTOP.

34

Operating Notes - *LIST Control Cards

A constant in a STOP or PAUSE statement is
treated as a hexadecimal number. This hexadecimal
number and its decimal equivalent appear in the list
of constants.

Variables and constants that require more than
one word of storage have the address of the word
nearest the zero address of the machine. In the
case of arrays, the given address refers to the
addressed word of the first element. In the case of
a two- or three-word integer, the integer value is
contained in the addressed word. The first variable
listed might not be addressed at 0000 because room
may be required for generated temporary storage
locations.

The relative address for variables not in
COMMON would be the actual address if the program
started at storage location zero. The relative ad­
dress for variables in COMMON would be the actual
address if the machine had 32K storage. The Loader
makes any necessary adjustments. Variables in
COMMON are adjusted to reside in the high-order
core location of the machine being used (e.g. , first
COMMON variable will be loaded to 8191 on an 8K
machine).

Loading begins at core location 01C2 (450 deci­
mal). The DISKZ routine is used regardless of
what disk routine is requested on the XEQ control
record (refer to Origins for Core Loads).

FORTRAN PRINTOUTS

Compilation Messages

Near the end of the compilation, core usage
information and the features supported (control
records used) are printed out as follows:

FEATURES SUPPORTED
EXTENDED PRECISION
ONE WORD INTEGERS
TRANSFER TRACE
ARITIIMETIC TRACE
IOCS

CORE REQUIREMENTS FOR XXXXX
COMMON YYYYY VARIABLES YYYYY PROGRAM YYYYY

where XXXXX is the name of the program
designated in the *NAME control record or in the
SUBROUTINE or FUNCTION statement, and
YYYYY is the number of words allocated for the
specified parts of the program. In addition, all
unreferenced statement numbers are listed un­
conditionally.

Compilation Error Messages

During compilation a check is made to determine
if certain errors have occurred. If one or more
of these errors have been detected the error
indications are printed at the conclusion of
compilation, and no object progr-am is stored on
the disk. Only one error is detected for each
statement. In addition, due to the interaction of
error conditions, the occurrence of some errors
may prevent the detection of others until those
which have been detected are corrected. With the
exception of type 00 messages listed below, the
error message appears in the following format:

CNN ERROR IN STATEMENT NUMBER XXXXX + yyy

NN is the error number described in Appendix A.
With the exception of specification statement errors,
XXXXX is the last valid statement number preceding
the erroneous statement and YYY is the count of
statements from XXXXX to the statement that is in
error. If the erroneous statement has a valid state­
ment number, XXXXX will be the statement in error
and YYY will not be printed.

For example:

105 FORMAT (I5,F8.4)
110 IF (A-B) 10,30,30

A =A+l.O

ABC B = B-2.0
135 GO TO 105

(error COl)
(error C43)

This example will cause the following error messages
to be printed.

C01 ERROR IN STATEMENT NUMBER 110 + 002

C43 ERROR IN STATEMENT NUMBER 135

For specification statements, XXXXX is always 00000
and YYY is the count of the number of specification
statements in error. YYY is never 000, i.e., for the
first error YYY is 001. Specification statements are
not counted unless they contain an error. Statement
numbers on specification statements and statement
functions are ignored. NN is the error code.

For example:

DIMENSION c (10, 10)
2 DIMENSION D (5,5)
3 DIMENSION E (6,6,,6) (error C08)
4 DIMENSION F (4,4)
5 DIMENSION G (2, 2)) (error C16)

This example will cause the following error messages
to be printed.

C08 ERROR AT STATEMENT 00000 + 001
C16 ERROR AT STATEMENT 00000 + 002

Error indications are printed at the conclusion
of compilation. If a compilation error has occur­
red, the message

OUTPUT HAS BEEN SUPPRESSED

is printed and no object program is punched.

If at any time during the compilation the state­
ment string overlaps the symbol table, or vice­
versa, the remainder of the compilation is by­
passed and the message

PROGRAlVI LENGTH EXCEEDS CAPACITY

is printed.

Type 00 Error Messages

Code and
Message

C 00 MON CALL

Meaning

A Monitor call was executed
(via operator intervention)
during the compilation; the
compilation is terminated
and control is returned to
the monitor.

C 00 OVER 50 The FORTRAN disk I/O
DISK ERRORS AT routine encountered an
SECTOR nnnn unrecoverable disk error

C 00 WORKING
STORAGE
EXCEEDED

during compilation;
nnnn is the hexadecimal
address of the bad sector.
The working storage area
on disk is too small to
accommodate th€ string area
and symbol table for the
program being compiled;
the compilation is
terminated.

The following message is printed for a normal
end of compilation (with or without errors):

END OF COMPIIA TION

FOR TRAN Compiler 35

//b RECORDS AT FORTRAN EXECUTION TIME

During FORTRAN execution time, any I /b record
encountered by CARDZ or PAPTZ causes a WAIT to
occur; when PROGRAM START is pressed, control
is returned to the monitor supervisor. The super­
visor searches for the next valid monitor control
record entered from the reader. Only the I /b
characters on the record trapped by CARDZ or
PAPTZ are recognized. Any other data entered in
this record is not available to other routines in the
monitor system. The record is not listed. For
off-line listing purposes, however, this record can
contain comments (e.g. I I END OF DATA).

KEYBOARD INPUT OF DATA RECORDS

Data records of up to 80 characters can be read from
the keyboard by a FORTRAN READ statement. Data
values must be right-justified in their respective
fields.

Keyboard Operation

If it is desirable to key in less than 80 characters,
the EOF key can be pressed to stop transmittal.
Also, the ERASE FIELD or BACKSPACE key can be
pressed to restart the record transmittal if an error
is detected while entering data. If the keyboard
appears to be locked up, press REST KB to restore
the keyboard. The correct case shift must be se­
lected before data is entered.

Buffer Status After Keyboard Input

When the END FLD key is pressed prior to com­
pleting a full buffer load of 80 characters, blanks
are inserted in the remainder of the buffer. If more
data is necessary to satisfy the list items, the re­
maining numeric fields (I, E, or F) are stored in
core as zeros and remaining alphameric fields
(A or H) are stored as blanks. Processing is con­
tinuous and no errors result from the above condi­
tion.

OBJECT PROGRAM PAPER
TAPE DATA RECORD FORMAT

Data records of up to 80 EBCDIC characters in
PTTC/8 code can be read or written by the FOR­
TRAN object programs. The delete and new-line
codes are recognized. Delete codes and case shifts
are not included in the count of characters. If a

new-line code is encountered before the 80th char­
acter is read, the record is terminated. If the 80th
character is not a new-line code, the 8lst character
is read and assumed to be a new-line code. A new­
line code is punched at the end of each output record.

FORTRAN I/O ERRORS
If input/ output errors are detected during exe­

cution, the program stops with an error code dis­
played in the accumulator. The error displays and
meanings are listed in Appendix A, Table A-11.
If an input error is detected, zero values will be
transmitted for each corresponding list element
when the ST ART key is pushed. Output errors
will transmit nothing for the corresponding list
elements. An exception to these general rules is
the F009 error. When this error is detected, the
conversion will continue as requested after the
START key is depressed.

When the output field is too small to contain
the number, the field is filled with asterisks and
execution is continued.

The input/output routines used by FORTRAN
(PAPTZ, CARDZ, PRNTZ, WRTYZ, TYPEZ) wait
on any I/O device error or device not in a ready
condition. When the devices are ready, press
PROGRAM START to execute the I/O operation.

Error detection in functional and arithmetic
subroutines is possible by the use of source program
statements. Refer to "FORTRAN Machine and Pro­
gram Indicator Tests" in the manual, IBM 1130
FORTRAN Language (Form C26-5933).

FORTRAN PROGRAMMING NOTES

1. When performing synchronous transmit­
receive (STR) operations in a FORTRAN program,
the STR operations must be stopped before any
disk I/O can be executed in the FORTRAN program.
This includes FOR TRAN disk READ and WRITE
statements (DISKZ) and LOCAL or SOCAL condi­
tions requiring the use of DISKZ.

2. Any time an overlapped I/O operation (such
as FIND) is performed, a subsequent interrupt
will occur and remove the CPU from a WAIT
status if it happens to be in such a status.

3. Do not push PROGRAM STOP or IMMEDIATE
STOP to try to stop FOR TRAN program execution.
This may result in destroying the monitor system
cartridge. The recommended procedure to stop
the execution during I/O operations is to cause the
I/O device being used to become not ready.

FOR TRAN Compiler 35 .1

SUBROUTINE LIBRARY

The 1130 Subroutine Library consists of a group
of subroutines that aid the programmer in making
efficient use of the IBM 1130 Computing System.
Descriptions of the subroutines and methods for
programming them are contained in the publication,
IBM 1130 Subroutine Library (Form C26-5929).

The following paragraphs describe the use of
the IBM-supplied subroutines and discuss pre­
operative errors and I/O error restarts where
special handling is required.

PREOPERATIVE ERR ORS

A preoperative error is an error condition
detected before an I/O operation is started. It
denotes either an illegal LIBF parameter, an
illegal specification in I/O area, or a device
not-ready condition. This error causes a branch
to location 0029 and the following conditions:

• The Instruction Address Register displays the
address 002A.

• The Accumulator displays an error code
represented by four hexadecimal digits.

Digit 1 identifies the ISS called:
1 - CARDO or CARDl
2 - TYPEO or WRTYO
3 - PAPTl or PAPTN
5 - DISKO, DISKl, or DISKN
6 - PRNTl
7 - PLOTl

Digits 2 and 3 are not used.
Digit 4 identifies the error:
0 - Device not ready
1 - Illegal LIBF parameter or illegal

specification in I/ 0 area

• Location 0028 contains the address of the LIBF
in question.

The ISS is set up to attempt initiation of the
operation a second time if the LIBF is reexecuted.
Therefore, since the Loader stores a wait in­
struction in location 0029 and an indirect branch
to location 0028 in locations 002A and 002B, the

36

LIBF can be executed again by pressing PROGRAM
START.

When a pre-operative error is encountered the
operator can:

• Correct the error condition if possible and
press PROGRAM ST ART, or

• Note the contents of the Accumulator and
location 0028, dump core storage, and proceed
with the next job.

CARD SUBROUTINE (CARDO AND CARDl) ERRORS

Error Parameters

CARDO. There is no error parameter. If an error
is detected during processing of an ope ration­
complete interrupt, the subroutine loops
internally, with interrupt level 4 on until the 1442
becomes ready, and then retries the operation.

CARDl. There is an error parameter. If an
error is detected during processing of an
operation-complete interrupt, the user program
can elect to terminate (clear "routine busy" and
the interrupt level) or to retry. A retry consists
of looping internally, with interrupt level 4 on
until the 1442 becomes ready, and then
reinitiating the function.

1442 Errors and Operator Procedures

If a 1442 error occurs, the 1442 becomes not ready
until the operator has intervened. Unless the stop
is caused by a stacker full (no indicator) or Chip
Box indication, the 1442 card path must be
cleared before proceeding. The 1442 error
indicators and the position of the cards in the feed
path should be used to determine which cards must
be placed back in the hopper.

For the card subroutines, a retry consists of
positioning the cards as indicated in the following
paragraphs and reinitiating the function whenever
the card reader becomes ready. The card sub­
routines will skip the first card, if necessary,
on a read or feed operation.

Hopper Misfeed. Indicates that card 2 failed to
pass properly from the hopper to the read station
during the card 1 feed cycle.

Card positions after error:

Punch Station Read Station

Corner

Stacker Hopper

Error indicator: HOPR
Operator procedure; When program halts,

press NPRO to eject
card 1, place card 1 in
hopper before card 2,
and ready the 1442.

Feed Check (punch station). Indicates that card 1
is improperly positioned in the punch station at the
completion of its feed cycle.

Card positions after error:

Punch Station Read Station

Error indicator: PUNCH-STA
Operator procedure: When program halts,

empty hopper, clear 1442
card path, place cards 1
and 2 in hopper before
card 3, and ready the 1442.

Transport. Indicates that card 1 has jammed in
the stacker during the feed cycle for card 2.

Corner

Stacker

Card positions after error:

Punch Station Read Station

Hopper

Error indicator: TRANS
Operator procedure: When program halts,

empty hopper, clear
1442 card path, place
cards 2 and 3 in
hopper before card 4,
and ready the 1442.

Feed Cycle. Indicates that the 1442 took an
unrequested feed cycle and, therefore, cards 1,
2, and 3 are each one station farther ahead in
the 1442 card path than they should be.

Card positions after error:

Punch Station Read Station

Hopper

Error indicator: FEED CL U
Operator procedure: When program halts,

empty hopper, press
NPRO to eject cards
2 and 3, place cards 1,
2, and 3 in hopper
before card 4, and
ready the 1442.

Feed Check (read station). Indicates that card 1
failed to eject from the read station during its
feed cycle.

Subroutine Library 3 7

Card positions after error:

Punch Station Read Station

Corner

Stacker Hopper

Error indicator: READ STA
Operator procedure: When program halts,

empty hopper, clear
1442 card path, place
cards 1 and 2 in
hopper before card 3,
and ready the 1442.

Read Registration. Indicates incorrect card
registration or a difference between the first and
second reading of a column.

Card positions after error:

Punch Station Read Station

Corner--... [D

Stacker Hopper

Error indicator: READ REG
Operafor procedure: See Feed check (punch

station). Repeated
failures of this type
might indicate a machine
malfunction.

Punch Check. Indicates an error in output punch­
ing.

Card positions after error:

Punch Station--, Read Station

Corner

Stacker Hopper

38

Error indicator:

Operator procedure:

PUNCH

When pro gram halts,
empty hopper, check
card position and press
NPRO to clear 1442 card
path. If necessary,
correct card 1 to pre­
punched state. Place
(corrected) card 1 and
card 2 in hopper before
card 3 and ready the 1442.

CONSOLE PRINTER SUBROUTINE (TYPEO AND
WRTYO) ERRORS

If the carrier attempts to print beyond the manually
positioned margins, a carrier restore (independent
of the program) occurs.

Subroutine printing begins wherever the carrier
is positioned as a result of the previous print
operation. There is no automatic carrier return
as a result of an LIBF.

If the console printer indicates a not-ready
condition after printing has begun, the sub­
routines loop internally,· with interrupt level
4 on, waiting for the console printer to become
ready. Operator procedures are as follows:

1. Press IMM STOP on the console.
2. Ready the console printer.
3. Press PROGRAM ST ART on the console.

KEYBOARD SUBROUTINE (TYPEO) FUNCTIONS

Re-entry

When the Erase Field key is pressed, a character
interrupt signals the interrupt response routine
that the previously-entered keyboard message iR
in error and will be reentered. The routine
prints two slashes on the console printer,
restores the carrier to a new line, and prepares
to replace the old message in the I/O area with
the new message. The operator then enters the
new message. The old message in the I/O area
is not cleared. The new message overlays the
previous message, character by character. If
the previous message was longer than the new
message, characters from the previous message
remain (following the NL character which
terminated the new message).

Backspace

When the backspace key is pressed, the last graphic
character entered is slashed and the address of the
next character to be read is decremented by +1.
If the backspace key is pressed twice consecutively,
the character address is decremented by +2, but
only the last 1raphic character is slashed. For
example, assume that ABC DE has been entered
and the backspace key pressed three times. The
next graphic character replaces the C, but only
the E is slashed. If the character F had been
used for replacement the paper would show
ABCD~FFF but ABFFF would be stored in the
buffer.

PAPER TAPE SUBROUTINES (PAPT)

If the reader or punch becomes not ready during
an I/O operation, the subroutines exit to the user
via the error parameter. The user can request
the subroutine to terminate (clear device busy
and interrupt level) or to loop on not-ready
waiting for operator intervention (interrupt
level 4 on).

The following procedure should be used to
clear a paper tape not-ready condition:

1. Press IMM STOP on the console.
2. Ready the paper tape unit.
3. Press PROGRAM START on the console.

To load the paper tape reader, place the tape
so that the delete characters punched in the
leader are under the read starwheels. To
begin reading at any point in the tape other than
the leader, place the tape so that the frame
(character position) preceding the character
to be read is under the read starwheels. The
first start reader control after tape is loaded or
repositioned causes the reader to skip the
character under the read starwheels and load the
next character into the buffer.

ADDING AND RE MOVING SUBROUTINES

Subroutines can be added to or removed from the
subroutine library as desired by the user. The
DUP control record STORE adds a subroutine, and
the DUP cont1:ol record DELETE removes a
subroutine. Each subroutine in the IBM-
supplied System Deck is preceded by a DUP
STORE record.

The user should not remove subroutines that
are called by other subroutines left in the
library (refer to Appendix E for a list of
subroutines called by other subroutines).

Subroutine Library 39

SYSTEM GENERATION OPERATING PROCEDURES (CARD SYSTEM)

Before the Disk Monitor System can begin
operation, the user must perform the following
functions:

1. Load and execute the IBM-supplied Disk
Pack Initialization Routine (DPIR) to
initialize the disk pack.

2. Prepare a Load Mode Control Card and
System Configuration Cards, and insert
these cards into the IBM-supplied System
Deck.

3. Load the above deck into the disk.
4. Using the IBM-supplied Cold Start Card,

load the Supervisor program into core
storage from disk storage.

Each of the above procedures is described in
detail in subsequent sections of this manual.

DISK PACK INITIALIZATION ROUTINE (DPIR)

The DPIR (Disk Pack Initialization Routine)
performs the following functions:

1. Clears the disk and writes disk sector
addresses on all cylinders.

2. Determines which, if any, sectors are
defective and writes the addresses of the
cylinders containing the defective sectors
on sector 0000. If sector 0000 is defective,
DPIR does not write any defective cylinder
table.

3. Puts an ID on the disk pack.

The 1130 Disk Routines operate effectively with up
to three cylinders containing defective sectors.
An attempt to read or write a defective sector
that is not identified in sector 0000 results in a
read or write error after the operation has been
attempted 10 times.

At the completion of DPIR, an eight-word table
is written on sector 0000. The first word (word 0)
of the table contains the sector address 0000.
Words one, two, and three contain the first sector
address of any defective cylinders found (maximum
of three). When there is no defective cylinder,
these words contain 065816. Word 4 is reserved.
Words five, six, and seven contain a five character
ID name in packed EBCDIC. Words five and six
contain two characters per word, and word seven

40

contains an EBCDIC character in the left half of the
word and an EBCDIC blank in the right half of the
word.

To determine which sectors are defective, the
user can dump core upon completion of execution;
the defective sector table starts at location 0771.

Table 10 lists the DPIR halt addresses.

DPIR Card Load Operating Procedures

The procedure for loading and executing the Disk
Pack Initialization Routine is as follows:

1. Load the disk pack in the console cabinet, turn
the File Switch on, and wait for the FILE READY '
light to come on.

2. Put the six-card loader, followed by the DPIR
deck, in the card hopper.

3. Set the console mode switch on RUN.
4. Press IMM STOP, then RESET on the console.
5. Press START on the card reader.
6. Press PROGRAM LOAD on the console; when

all cards have been read from the hopper, press
START on the card reader.

After DPIR is loaded, the routine waits at 02EE
and the keyboard is selected. (The keyboard Select
light comes on.) Wait for the File Ready light to
come on and then:

1. Enter a five-character ID (of your choice) to be
written on the disk pack. If the ID is less than
five characters, left-justify by following the ID
with spaces. Only those characters recognized
by the Supervisor should be used (see Appendix
D). When the fifth character is entered, the pro­
gram branches to execute. The disk surface is
now cleared and the sector addresses are written.
The routine waits at 03C2.

2. Set all the Console Entry switches off.
3. Press PROGRAM START. The defective

sector and file protect address data is written
on sector 0000. A scan of the disk is now
performed to check for seek failures. If a
seek or read failure occurs, the routine waits
at 03EA. Other DPIR halt addresses are
described in Table 10.

e Table 10. DPIR Halt Addresses

Halt
Address (hex)*

002E

02EE

039F

03C2

03F2

03F6

0400

040A

0422

Meaning

The keyboard is not restored and an attempt is made to load DPIR.
The routine loads and comes to a halt with interrupt 4 on.

The routine is in WAIT.

Sector 0000 is defective; the sector addresses have been written
on the disk, but the table has not been written on sector 0000.
(70FF loop)

The routine is in WAIT.

The routine has run successfully, but more than three defective
sectors were found. (70FF loop)

The routine has run successfully and no defective sectors were
found. (70FF loop)

The routine has run successfully and one to three defective
sectors were found. (70FF loop)

(1) The disk is not ready (70FF loop)

(2) A Write Select error has occurred (70FF loop). The file
ready indicator is tu med off by a Write Select error.

A seek failure or read failure occurred during a scan of the
disk. (70FF loop)

Action Required

Turn the console entry switches off; then press
PROGRAM START on the console.

(1) Make the disk ready and restart the program

(2) Turn off the Single Disk Storage, allowing the
cartridge unlock indicator to light; tum on the
Single Disk Storage until the disk ready indicator
lights, then resume operation. If the error per­
sists, CE intervention is required.

*Displayed in Storage Address Register

USER-SUPPLIED CARDS

Before loading the Disk Monitor System programs
onto the disk, the user must prepare the following
cards:
1. Load Mode Control Card
2. System Configuration Deck:

a. SCON Card
b. REQ Card(s)
c. TERM Card

The System Loader will give error messages for

Table 11. Load Mode Control Card Format

Column Punch

missing or invalid user-supplied cards (see
Appendix A).

Load Mode Control Card

The Load Mode Control Card is used to specify an
initial load or a reload. It also permits the user
to specify whether the assembler and/or FORTRAN
is to be loaded. At least one of these must be loaded
on an initial load; then, if desired, it can be re­
moved by using the DEFINE function of DUP. The
format is shown in Table 11 (only columns 1 through

Meaning

12 Punch Initial load. tv\on i tor System programs, I LS and I SS subroutines required by the system, and functiona I subroutines
are loaded. However, the assembler will not be loaded if column 2 contains a 0 punch, and FORTRAN will not be
loaded if column 2 contains a 1 punch.

1
No 12 Punch Reload.' Monitor System programs are reloaded, and the contents of the User and Fixed areas (including LET/FLET)

are not changed. Only programs presently on the disk can be reloaded; if the assembler or FORTRAN were not
loaded during an initial load, or have since been deleted, they cannot be reloaded.

0 Punch Bypass (do not load) assembler.
No 0 Punch Load assembler.

2
1 Punch Bypass (do not load) FORTRAN.
No 1 Punch Load FORTRAN.

3 9 Punch Required in all cases to identify Load Mode Control Card.

System Generation Operation Procedures 41

3 are used). For example, to initially load the
monitor (including the assembler and FORTRAN),
the Load Mode Control Card is punched with a 12
punch in column 1 and a 9 punch in column 3.

System Configuration Deck

SCON Card

The SCON Card is the deck header card. The
format is as follows:

Columns Contents

1-4 SCON .

Table 12. REQ Card Format

Columns

Device 1-3 10 15-16 21-22

(Primary (Second

(ISS No.}
Interrupt Interrupt
Branch Branch
Address Address

1442 Card Read Punch 1 08 12

Input keyboard and console 2 12 Blank
printer

1134 paper tape reader or r REQ 3 12 Blank
1055 paper tape punch

Disk 4 10 Blank

1132 Printer 6 09 Blank

Plotter 7 11 Blank

NOTE: If both the console printer and the 1132 Printer are included,
the 1132 Printer will be the principal printing device; if
both the 1442 Card Read Punch and the 1134/l 055 paper tape
uni ts are included, the 1442 Card Read Punch wi II be the
principal 1/0 device.

42

REQ Cards

REQ Cards identify devices present in system. One
card should be prepared for each 1/0 device on the
system. The System Loader uses this information
for selective generation and loading of ILS sub­
routines and selective loading of ISS subroutines.
The format is shown in Table 12.

TERM Card

The TERM Card is the last card of the System
Configuration Deck. The format is as follows:

Columns Contents

1-4 TERM

PROCEDURE FOR INITIALIZING DISK MONITOR
SYSTEM FROM CARDS

1. Execute the following:
a. Press IMM STOP on console.
b. Press RESET on console.
c. Press NPRO on the 1442 card reader.

2. Load the following decks into hopper of the
1442 card reader (see Figure 10).

a. Monitor System Bootstrap9 followed by IBM­
supplied System Loader Deck, Part 1.
Columns 73-74 contain the ID: El.

b. User-supplied Load Mode Card.

../

c. IBM-supplied System Loader Deck, Part 2.
Columns 73-74 contain the ID: E2.

d. User-supplied System Configuration Deck
(SCON Card, REQ Cards, TERM Card).

e. Remainder of IBM-supplied System Deck.

3. Execute the following:
a. Ready the 1132 Printer (if the 1132 Printer

is the principal print device)
b. Turn the File Switch on, and wait for the

File Ready light on the console to go on.
c. Press START on the 1442 card reader.
d. Press RESET on console.
e. Press PROGRAM LOAD on console.
f. The system waits at 0029.

----Two Blank Cards

Remainder of System Deck
(IBM Supplied)

System Loader Deck - Part 2
(IBM Supplied)

Columns 73-74 contain ID: E2

System Loader Deck - Part 1
(IBM Supplied)

Columns 73-74 contain ID: El

Figure 10. System Loader Card Sequence

Monitor System Bootstrap
(IBM-supplied) - 6 Cards

System Generation Operation Procedures 43

COLD START OPERATING PROCEDURE

The user must load the Supervisor Program into
core storage from disk storage by using the
IBM-supplied Cold Start Card (last card of sub­
routine deck) or Cold Start paper tape record:

44

1. to begin operation of the Disk Monitor System
after it has been loaded to the disk;

2. to return control to the Supervisor;
3. after a disk cartridge has been changed.

The procedure for executing the Cold Start Card
is as follows:

1. Insert the monitor disk pack in the console
cabinet.

2. Turn the File Switch on, and wait for the File
Ready light on the console to go on.

3. Put the Cold Start Card into the card hopper
followed by a //JOB record and another monitor
control record to processed.

4. Press IMM STOP, then RESET on the console.
5. Press START on the card reader.
6. Press PROGRAM LOAD on the console.

The Cold Start record reads the Cold Start
sector (0001) from disk into core location 0802.
The Monitor Supervisor Program is then read into
core. The first monitor control record is read
under control of the Supervisor Program by the
Monitor Control Record Analyzer routine.

Possible stopping locations are given in Table 13.

NOTE: A cold start cannot be used to resume an
operation that has been previously terminated.
After the Supervisor has been loaded into core, the
following procedure may be used:

1. Press NPRO on the card reader.
2. Place program deck in the card hopper.
3. Press START on the card reader.
4. Press PROGRAM START on the console.

Table 13. Cold Start Halt Addresses

Wait Address Meaning
(hex)*

0024 The disk was not ready and the first XIO was
treated as a NOP

0026 The disk was not ready and the second XIO
was treated as a NOP

0034 There was a Disk Data Error

0803 Disk not ready

080A Disk not ready

080F Sector OOOA was not read correctly

0811 Disk not ready

0816 Sector 0009 was not read correctly

081E Disk not ready

0823 Sector 0008 was not read correctly

0839 There was a Disk Data Error

*Displayed in Storage Address Register

All of the paper tape records needed to load the
Paper Tape Monitor System to disk storage are
supplied to the user by IBM. These records have
the same functions as the corresponding IBM­
supplied and user-written card decks. These
functions are described under System Generation
Operating Procedures (Card System).

The Load Mode Control record and System
Configuration records are supplied by IBM to the
user of the Paper Tape System. These tapes are
supplied with all the possible configurations, and

' the user need only select the configuration for his
particular use. If these tapes are not read
correctly, the System Loader will give error
messages (see Appendix A).

The tapes constituting the Paper Tape Monitor
System are described below. The procedure for
loading these tapes onto disk is described under
Procedure for Initializing Disk Monitor System
from Paper Tape.

1
2

3
4

5

6

7

8

9, 10

Description

System Loader, Part 1
Load Mode Control Record (same
function as Load Mode Control
Card)
System Loader, Part 2
System Configuration Records
(same function as System
Configuration Deck)
Supervisor Tape (includes the
Loader)
Disk Utility Program
FORTRAN Compiler
Assembler
ILS Control Records and Library
Subroutines (2 parts)

11 DPIR Tape (includes core image
loader)

16 Cold Start Paper Tape Record

If FOR TRAN and/ or the assembler are not to
be loaded during an initial load, the corresponding
tapes (7 and/or 8) need not be read.

PAPER TAPE MONITOR SYSTEM

During a reload of system programs, tapes 1
through 5 must be read. If DUP, FORTRAN,
and/or the assembler are not to be reloaded, the
corresponding tapes (6, 7, and/or 8) need not be
read. The procedures for reloading DUP,
FORTRAN, and the assembler are the same as
the card system procedures. Tapes 9 and 10 need
not be read durin~ a reload operation.

DPIR PAPER TAPE LOAD OPERATING
PROCEDURES

The procedure for loading and executing the DPIR
(Disk Pack Initialization Routine) is as follows:

1. Insert the disk pack in the console cabinet.
2. Put the DPIR tape in the reader; position one

of the delete codes that appear after the
program name in the leader under the
read starwheels.

3. Press IMM STOP, RESET, and PROGRAM
LO AD on the console.

4. When the loader reads in and waits, position
the D PIR tape.

5. Press PROGRAM START on the console.

From this point on, the operation is identical
to the card load.

PROCEDURE FOR INITIALIZING DISK MONITOR
SYSTEM FROM PAPER TAPE

To load the paper tape system onto disk, the
operator must perform the following steps:

1. Ready the 1132 printer (if the 1132 printer is the
principal printing device) ..

2. Place the System Loader, Part 1, (Tape 1) in the
Paper Tape Reader. When loading tapes lthrough
10, and 16, position any one of the delete codes
following the program name in the tape leader
under the read starwheels.

3. Press RESET on the console.

Paper Tape Monitor System 45

4. Press PROGRAM LOAD on the console. Tape 1
is read into core starting at location 0.

5. When a WAIT occurs (at 05BC), place the
Load Mode Control tape (Tape 2) in the
Paper Tape Reader.

6. Press PROGRAM START on the console.
7. When a WAIT occurs, place the next system

tape in the Paper Tape Reader.
8. Press PROGRAM START on the console.
9. Repeat steps 7 and 8 until the last system

tape is read.

The System Loader determines if the complete
system has been loaded. If the system has not
been loaded, the System Loader W AITs for
another tape to be readied by the operator until
the complete system is loaded.

A WAIT at OEA6 is a checksum error,
indicating faulty tape.

COLD START OPERATING PROCEDURE

The procedure for executing the Cold Start
paper tape record is as follows:

46

1. Insert the monitor disk pack into the console
cabinet.

2. Turn the File Switch on, and wait for the File
Ready light on the console to go on.

3. Put the Cold Start paper tape record into the
reader; position any one of the delete codes
following the program name in the tape
leader under the read starwheels.

4. Press IMM STOP, then RESET on the console.
5. Press PROGRAM LOAD on the console.

PAPER TAPE CONTROL RECORDS

Paper tape control: records must be punched in
PTTC/8 (perforated tape transmission code).
The formats are the same as the previously­
described card formats. Paper tape control
records must be separated by one NL (new
line) control character. A control record which
immediately follows paper tape data not followed
by an NL code must be preceded by one NL code.
Delete codes may precede or follow this NL code.

Table A-1. System Loader Error Codes

Error
Code

El

E2

E3

E4

E5

E6

E7

EB*

E9**

ElO**

Ell**

Type of Error

Check-sum error.

111 ega I card type or blank card.

Card out of sequence.

ORG backward to an address lower than that established
by last sector break card.

Error in Load tv\ode card.

Disk error.

Disk pack not initialized or Sector 0 data damaged.

Configuration deck missing or one of the following errors
detectedi
a) SCON card not fol lowed by REQ cards.
b) less than 2 REQ cards present.
c) more than 6 REQ cards present.
d) Secondary Interrupt Branch Address (IBA) not included

inlSS#Jcard.
e) Secondary IBA not equal to 12.
f) Primary IBA not in range 8 through 12.
g) ISS number missing or negative.
h) ISS number 5 detected (illegal).
j) ISS number greater than 7.
k) TERM card missing

File protect address (in COMMA) prohibits loading System
Loader, Part 2.

During reload, old FORT or ASM address in COMMA is
different from new FORT or ASM sector address.

Fixed area or Core Image Buffer area, as defined by
COMMA, is about to be overlayed.

* Applies to initial load only.

** Applies to reload only.

Procedure A:

l. Lift remaining cards from hopper and depress NPRO on 1442.
2, Place the two ejected cards (after corrections) in card hopper.
3. Replace remaining cards in card hopper.
4. Press START on 1442.
5. Press PROGRAM START on console.

APPENDIX A. ERROR MESSAGES

Corrective Action

Fol low Procedure A or reload and restart.

Fol low Procedure A or reload and restart.

Fol low Procedure A or reload and restart.

Inspect deck for card(s) missing or out of sequence. Correct deck
and reload edit program.

Make necessary card correction and reload edit program.

Press PROGRAM START on console to retry.

Use DPIR program to initialize Sector O. Initial load should follow
since DPIR clears the disk.

Make corrections and reload edit program.

No recovery unless file protect address can be lowered by deleting
part of material on disk. System Loader requires temporary use of
Cylinders 198 and 199.

If COMMA has been damaged, an initial load is required; otherwise
system program deck is faulty.

Same as ElO.

Appendix A. Error Messages 4 7

Table Aw2. System Loader (Part 1) Wait Locations

Address* Explanation

.Q1C7 Wait after displaying E6 error

053D Wait after displaying El error

0680 Wait after displaying E3 error

0806 Wait after displaying E2 error

0808 Wait after displaying ES error

0821 Wait after displaying E5 error

0835 Wait after displaying E9 error

0839 Wait after displaying EB error

083D Wait after displaying E4 error

08A4 Wait after displaying E7 error

0962 Wait after displaying E4 error

OEE6 Wait during loading of the System Loader due to
incorrect check sum, e.g., a missing card or
card out of sequence,

*Displayed in Storage Address Register

Table A-3. System Loader (Part 2) Wait Locations

Address * Explanation

0220 Wait after displaying E 10 error

022F Wait after displaying E 10 error

0245 Wait after displaying E 11 error

025F Wait after displaying E 1 error

0270 Wait after displaying E 3 error

05C5 Wait after displaying E 2 error

0750 Wait after displaying E 5 error

0816 Wait after displaying E 3 error

0886 Wait after displaying E 4 error

0991 Wait after displaying E 2 error

OAD7 Wait after displaying E 6 error

OFFF Wait after displaying END reload

*Displayed in Storage Address Register

48

Table A-4. Monitor Supervisor EITor Messages

Error Message

M 01 PHASE NONX

M 02 INVALID

M 03 NON XEQ

M 04 CHARACTER

M 05 OFLO DISK

M 06 NO PROGRAM

M 07 NON DUP

M 09 RECORD TRAP

M 11 NOT IDENT

M 12 SEQ ERROR

M 13 TERROR

Cause of Error

Execution is not permitted for this job.

The above listed record is an invalid
Supervisor record.

The currently cal led execution is not
permitted.

A character in the name listed above
is not permitted.

The records listed above were too many
for the disk storage a I located.

The mainline program name listed above
is not in the LET or FLET table or is not
a mainline program.

DUP is not al lowed for the subj ob.

A system program detected a Supervisor
record and returned control to the
Supervisor.

The cartridge identifier on the cartridge
is not identical to the one on the input
record. The Supervisor waits to allow
the operator to rectify the difference if
desired.

LOCAL, NOCAL, and/or Fl LES records
are intermixed (they must be grouped).

Column 8 in the JOB record does not
contain a blank or a T. An ampersand
is printed in place of the illegal char­
acter. The Supervisor waits so that the
operator can (1) correct the JOB record,
reload it in the reader, and press
PROGRAM START on the console; or
(2) press PROGRAM START on the
console, In either case the JOB record
is processed completely before any other
processing. The job is considered non­
temporary if column 8 contains a blank
or a character other than a T.

eTable A-5. Monitor Supervisor Wait Locations

Address*

0005

0029

OODD

07E6

0398

0704

Explanation

Operator pressed PROGRAM STOP on the console.

1/0 error or device not-ready condition.

Disk error.

l, Pause due to PAUS control record.

2, Identifier error in JOB control record.

Paper tape reader not ready.

Column 8 in the JOB record does not contain:Ptblank or
a T.

*Displayed in Storage Address Register

Operator Action

Press PROGRAM START to continue.

Refer to Subroutine Library - Preoperative Errors.

Press PRO GRAM ST ART to retry.

1. Press PROGRAM START to continue,

2, Correct the record, reenter it, and press PROGRAM START; or press
PROGRAM START.

Ready paper tape reader and press PROGRAM START.

Correct the record, reenter it, and press PROGRAM START; or press
PROGRAM START. In either case, the current job is processed first.

Appendix A. Error Messages 49

e Table A-6. Loader Messages/Error Messages (Part 1)

Code and Message

R 01 ORIGIN BELOW lST WORD OF MAINLINE

*R 03 LOAD REQUIRES SYSTEM LOCALS, LEVEL 1

*R 04 LOAD REQUIRES SYSTEM LOCALS, LEVEL 2

R 06 FILE(S) TRUNCATED (SEE FILE MAP)

R 08 CORE LOAD EXCEEDS 32K

R 10 LIBF TV REQUIRES 82 OR MORE ENTRIES

R 11 TOO MANY ENTRIES IN LOAD-TIME TV

R 12 LOCALS/SOCALS EXCEED WKNG. STORAGE

R 13 DEFINED FILE(S) EXCEED WKNG. STORAGE

"'*R 16 XXXXX IS NOT IN LET OR FLET

"'*R 17 XXXXX CANNOT BE DESIGNATED A LOCAL

**R 18 XXXXX CANNOT BE DESIGNATED A NOCAL

"'*R 19 XXXXX IS NOT ON A SECTOR BOUNDARY

"'*R 20 XXXXX COMMON EXCEEDS THAT OF ML

"'*R 21 XXXXX PRECISION DIFFERENT FROM ML

"'*R 22 XXXXX AND ANOTHER VERSION REFERENCED

l .. R 23 XXXXX IS A USER AREA Fl LE REFERENCE

*FORTRAN mainline pro~rams only
"'*XXXXX = the name of the program or disk file concerned

50

Explanation and Recovery Procedures

The Loader has been instructed to load a word into an address lower than that of the
first word of the mainline program. The ORG statement which caused this situation
must be removed, or the mainline program must start at a lower address.

No error. The load was too long to fit into core. The Loader has made two overlays,
and the program will be executed with these two groups of routines overlaying each
other (refer to System Overlays).

No error. The lood was too long to fit into core. The Looder has made three overlays,
and the program will be executed with these three groups of routines overlaying one
another (refer to System Overlays).

At least one defined file has been truncated either because the previously defined
storage area in the User or Fixed area was inadequate or because there is inadequate
Working Storage available to store the file. See Message R 12 for a possible remedy.

The Loader has been instructed to load a word into an address exceeding 32, 767, which
is a negative number. The loading process is immediately terminated, because the
Looder cannot process negative addresses. This error was probably caused by bad data,
i.e., the program being loaded from the disk has been destroyed.

There are at least 82 different entry points referenced in the load by LIBF statements.
A possible remedy would be to subdivide the load into two or more links.

There are more than 135 references to different entry points with CALL and/or LIBF
statements in the load. A possible remedy would be to subdivide the load into two or
more links.

There is insufficient Working Storage remaining to accommodate the LOCAL and/or
SOCAL overlays required in the load. A possible remedy would be to create more
Working Storage by deleting subroutines, subprograms, and/or data no longer required
by the instal lotion.

There is insufficient Working Storage remaining to accommodate even one record of
the defined file(s). See Message R 12 for a possible remedy.

The program or data file designated in the message cannot be found in LET or FLET.
A possible remedy is to store the program or data file. If the name cannot be explained
otherwise, the program being loaded has probably been destroyed.

The routine named in this message is either a type which cannot appear on a LOCAL
record, or this routine, which is a LOCAL, has been referenced, directly or indirectly,
by another LOCAL, the name of which cannot be supplied by the Loader.

The routine named in the message is either a mainline, an ILS, or it has an invalid
type code. In any case, it may not appear on a *NOCAL record.

The area named in this message does not begin at a sector boundary, which implies
that it is not a storage area but a relocatable program, and thus a possible error.
Choose another area for the storage of this file.

The length of COMMON for the routine named in this message is longer than that of
the mainline program. A possible remedy is to define more COMMON for the mainline
program.

The precision for the routine named in this message is incompatible with that of the
mainline program. fvl.ake the precisions compatible.

At least two different versions of the same 1/0 routine have been referenced, e.g.,
both CARDZ and CARDO (FORTRAN utilizes the"Z" version). If a disk routine is
named in the message, it is possible that the XEQ record specifies one version, e.g.,
DISKO, whereas the program references another, e.g., DISKl (a blank in col. 19 of
the XEQ record causes DISKZ to be chosen).

The area named in this message is in the User area; references in DEFINE FILE and DSA
statements for *STORE Cl functions must be to the Fixed area.

fable A-6. Loader Messages/Error Messages (Part 2)

Code and Message

*R 24 XXXXX IS BOTH A LIBF AND A CALL

*R 25 XXXXX HAS MORE THAN 14 ENTRY POINTS

*R 26 XXXXX HAS AN INVALID TYPE CODE

*R 27 XXXXX LOADING HAS BEEN TERMINATED

**R 32 XXXXX CANNOT REF'CE THE LOCAL XXXXX

R 40 XXXX (HEX) =ADDITIONAL CORE REQUIRED

***R 41 XXXX (HEX) TOO MANY WDS IN COMMON

R 42 XXXX (HEX) IS THE EXECUTION ADDR

R 43 XXXX (HEX)= ARITH/FUNC OVERLAY SIZE

R 44 XXXX (HEX)= Fl/O + 1/0 OVERLAY SIZE

R 45 XXXX (HEX)= DISK Fl/O OVERLAY SIZE

R 46 XXXX (HEX)= AN ILLEGAL ML LOAD ADDR

R 47 XXXX (HEX) WORDS AVAILABLE

*XXXXX =the name of the program or disk file concerned
**XXXXX =the name of the program concerned

Explanation and Recovery Procedures

The routine named in this message has been either referenced improperly, i.e., CALL
instead of LIBF or vice versa, or has been referenced in both CALL and LIBF statements.
The only remedy is to reference the routine properly. NOTE: NOCALs must be CALL­
type routines,'i .e., type 4 or 6 routines (refer to Appendix B).

This message usually indicates that the routine has been destroyed since no routine is
stored with more than 14 entry points.

The routine named in this message has either been designated on an XEQ record and is
not a mainline program, indicating a mistake has probobly been made in preparing the
XEQ record, or contains a type code other than 3 (subroutine), 4 (functional), 5 (ISS),
or 6 (ILS), in which case the routine has probably been destroyed. This error could
also be caused by a DSA statement referencing a program which is in Disk System format,
or a CALL or LIBF referencing a program in Core Image or Disk Data format.

The loading of the mainline program named in this message has been terminated as a
result of the detection of the error(s) listed in the messages preceding this one.

The routine named first in this message has referenced the routine named second, which
is a LOCAL. Either the first named routine is a LOCAL or it is entered (directly or
indirectly) from a LOCAL. Neither case can be allowed for it could cause a LOCAL
to be overlaid by another LOCAL before the first LOCAL has been completely executed.

If the load was executed, XXXX16 is the number of words by which it exceeded core
storage before the Loader made it fit by creating special overlays (SOCALs); if the
load was not executed, the first occurrence of the message is as described and the
record indicates the number of words by which it exceeds core storage even after
creating the deepest level of special overlays. A possible solution to the latter problem
is to create two or more links or LOCALs.

The length of COMMON specified in the mainline program plus the length of the core
load exceeds core storage by XXXX 16 words.

No error. This message follows every successful conversion from Disk System format
to Core Image format provided a core map is requested.

No error. It has been necessary to employ the special overlays (SOCALs), and
XXXX16 is the length of the arithmetic/functional overlay (i:.efer to System Overlays).

No error. It has been necessary to employ the special overlays (SOCALs), and
XXXX16 is the length of the FORTRAN 1/0, 1/0, and conversion routine overlay
(refer to System Overlays).

No error. It has been necessary to employ the special overlays (SOCALs), and
XXXX16 is the length of the Disk FORTRAN 1/0 overlay, including the 320-word
buffer.

XXXX16 is the address at which the loader has been requested to start loading the
mainline program, but this address is lower than the highest address occupied by the
version of Disk 1/0 requested for this load. Either make the mainline origin higher
or request a shorter version of Disk.

No error. XXXX16 is the number of words of core storage not occupied by this core
load. It is possible to get both this message and R41 in the same core load. See
footnote to R41 for explanation.

(Concluded)

***COMMON may not occupy any storage location lower than 89610, 121610, 121610, or 153610,
if DISKZ, DISKO, DIS Kl, or DISKN, respectively, is used.

Appendix A. Error Messages 51

Table A-7. Assembler Error Messages

Error Code and Error Message Cause of Error Corrective Action

A 01 MINIML1M W. S. NOT AV.;\ILABLE--- Less tha_n 33 sectors of Working Storage are Perform a DUP DELETE to expand Working
ASSEMBLY TERMINATED available at the beginning of the assembly. Storage to a minimum of 33 sectors before

attempting further assemblies.

A 02 SYMBOL TABLE OVERFLOW EXCEEDS 4 CYLINDERS Symbol table overflow exceeds 3392 1. Reduce number of symbols and
symbols (refer to Assembler Messa9es and reassemble.
Error Codes to compute number of symbols 2. Divide program into segments and
allowed in·a program). assemble each separately.

A 03 DISK OUTPUT EXCEEDS W.S. Disk output is greater than Working 1. If error occured during pass 1, the
Storage. assembler will wait at OAD6 . When

PROGRAM START is pressed, the
assembly will continue in the two-pass
mode. Therefore, the operator should
first insure that the source statements
can be read a second time without
encountering the next monitor control

~ record.
2. If error occurred during pass 2, object

output exceeds Working Storage.
Perform a DUP DELETE to enlarge
Working Storage.

A 04 SAVE SYMBOL TABLE INHIBITED With SAVE SYMBOL TABLE option, symbol Reduce number of symbols and/or correct ~

table exceeds the allowable System the erroneous statements and reassemble.
Symbol Table size of 100 symbols, or at
least one assembly error was detected.

52

I

',

Table A-8. FORTRAN EITor Codes (Part 1) Table A-8. FORTRAN EITor Codes (Part 2)

I

Error
Number* Cause of Error

c 01 Non-numeric character in statement number.

c 02 More than five continuation cards, or continuation card
out of sequence.

c 03 Syntax error in CALL LINK or CALL EXIT statement.

c 04 Undeterminable, misspelled, or incorrectly formed
statement.

c 05 Statement out of sequence.

c 06 Statement following transfer statement or a STOP statement
does not have statement number.

c 07 Name longer than five characters, or name not starting
with an alphabetic character.

c 08 Incorrect or missing subscript within dimension information
(DIMENSION, COMMON, or type).

c 09 Duplicate statement number.

ClO Syntax error in COMMON statement.

c 11 Duplicate name in COMMON statement.

c 12 Syntax error in FUNCTION or SUBROUTINE statement.

c 13 Parameter (dummy argument) appears in COMMON
statement.

c 14 Name appears twice as a parameter in SUBROUTINE or
FUNCTION statement.

Cl5 *IOCS control record in a subprogram.

c 16 Syntax error in DIMENSION statement.

Cl7 Subprogram name in DIMENSION statement.

c 18 Name dimensioned more than once, or not dimensioned on
first appearance of name.

c 19 Syntax error in REAL, INTEGER, or EXTERNAL statement.

c 20 Subprogram name in REAL or INTEGER statement.

c 21 Name in EXTERNAL which is also in a COMMON or
DIMENSION statement.

c 22 IFIX or FLOAT in EXTERNAL statement.

c 23 Invalid real constant.

c 24 Invalid integer constant.

c 25 fvlore than 15 dummy arguments, or duplicate dummy
argument in statement function argument list.

c 26 Right parenthesis missing from a subscript expression.

c 27 Syntax error in FORMAT statement.

c 28 FORMAT statement without statement number.

c 29 Field width specification > 145.

c 30 In a FORMAT statement specifying E or F conversion,
w > 127' d > 31, or d > w, where w is an unsigned

*Printed at the conclusion of Compilation. Refer to "Compilation Error Messages" under
FORTRAN Printouts; also see "Type 00 Error Messages" in the same section.

Error
Number* Cause of Error

c 30 integer constant specifying the total field length of the
Cont. data, and d is an unsigned integer constant specifying

the number of decimal places to the right of the decimal
point.

c 31 Subscript error in EQUIVALENCE st~tement.

c 32 Subscripted variable in a statement function.

c 33 Incorrectly formed subscript expression.

c 34 Undefined variable in subscript expression.

c 35 Number of subscripts in a subscript expression does not
agree with the dimension information.

c 36 lnval id arithmetic statement or variable; or, in a
FUNCTION subprogram the left side of an arithmetic
statement is a dummy argument (or in COMMON).

c 37 Syntax error in IF statement.

c 38 Invalid expression in IF statement.

c 39 Syntax error or invalid simple argument in CALL state-
ment.

c 40 Invalid expression in CALL statement.

c 41 Invalid expression to the left of an equal sign in a state-
ment function.

c 42 Invalid expression to the right of an equal sign in a state-
ment function.

c 43 In an IF, GO TO, or DO statement a statement number is
missing, invalid, incorrectly placed, or is the number
of a FORMAT statement.

c 44 Syntax error in READ or WRITE statement.

c 45 *IOCS record missing with a READ or WRITE statement
(mainline program only).

c 46 FORMAT statement number missing or incorrect in a
READ or WRITE statement.

c 47 Syntax error in input/output list; or an invalid list
element; or, in a FUNCTION subprogram, the input list
element is a dummy argument or in COMMON.

c 48 Syntax error in GO TO statement.

c 49 Index of a computed GO TO is missing, invalid, or not
preceded by a comma.

c 50 *TRANSFER TRACE or *ARITHMETIC TRACE control
record present, with no *IOCS •:ontrol record in a main-
line program.

c 51 Incorrect nesting of DO statements; or the terminal state-
ment of the associated DO statement is a GO TO, IF,
RETURN, FORMAT, STOP, PAUSE, or DO statement.

c 52 More than 25 nested DO statements.

c 53 Syntax error in DO statement.

c 54 Initial value in DO statement is zero.

Appendix A. Error Messages 53

Table A-8. FORTRAN Error Codes (Part 3)

Error
Number Cause of Error

c 55 In a FUNCTION subprogram the index of DO is a
dummy argument or in COMMON.

c 59 Syntax error in STOP statement.

c 60 Syntax error in PAUSE statement.

c 61 Integer constant in STOP or PAUSE statement is > 9999.

c 62 Last executable statement before END statement is not
a STOP, GO TO, IF, CALL LINK, CALL EXIT, or
RETURN statement.

c 63 Statement contains more than 15 different subscript
expressions.

c 64 Statement too long to be scanned, because of com pi I er
expansion of subscript expressions or compiler addition
of generated temparary storage locations.

c 65* All variables are undefined in an EQUIVALENCE list.

c 66* Variable made equivalent to an element of an array, in
such a manner as to cause the array to extend beyond
the origin of the COMMON area.

c 67* Two variables or array elements in COMMON are
equated; or the relative locations of two variables or
array elements are assigned more than once (directly or
indirectly),

c 68 Syntax error in an EQUIVALENCE statement; or an
illegal variable name in an EQUIVALENCE list.

c 69 Subprogram does not contain a RETURN statement, or
a mainline program contains a RETURN statement.

c 70 No DEFINE FILE in a mainline program which has disk
READ, WRITE, or FIND statements,

c 71 Syntax error in DEFINE FILE.

c 72 Duplicate DEFINE FILE, more than 75 DEFINE FILES,
or DEFINE FILE in subprogram,

c 73 Syntax error in record number of READ, WRITE, or
FIND statement.

*The detection of a code 65, 66, or 67 error prevents any subsequent
detection of any of these three errors.

54

1 Table A-9. DUP Error Messages (Part 1)

Code and Printed Message*

WS TOO LONG

D 01 NOT PRIME ENTRY

D 02 INVALID TYPE

D 03 INVALID HEADER LENGTH

D 05 SECONDARY ENTRY POINT NAME ALREADY IN LET IS

D 13 DCTL, FUNCTION

D 14 DCTL, FROM FLO

D 15 DCTL, TO FIELD

D 16 DCTL, NAME FLO

D 17 DCTL, COUNT

D 18 DCTL, TMP MODE

D 41 FIXED AREA PRESENT

D 42 ASSEMBLER NOT IN SYSTEM

D 43 FORTRAN NOT IN SYSTEM

D 44 INCREASE VALUE IN COUNT FIELD

D 45 EXCEEDS WORK STORAGE

D 61 DUPCO, EXCEEDS WORK STORAGE

D 62 EXCEEDS WORK STORAGE

D 64 EXCEEDS FIXED AREA

D 71 SEQUENCE OR C KSUM

D n LOAD BLANK CARDS

D 82 NON FILES RECORD

D 83 INVALID CHARACTER

D 84 EXCEEDS SECTOR ALLOCATION

*Printed upon detection of an erroneous DUP control record.

Description

An attempt is made with *STOREMOD to move an item from Working Storage
that is longer than the item to be overlaid in the User or Fixed Area.

The primary name of the program in Working Storoge does not match the
name on the DUP control record.

One of the following is detected: non-DSF program, mispositioned header,
foreign data, or erroneous subtype.

Word six of the DSF header is outside the range of 3-45. The causes are
similar to D 02, except for subtype.

The specified name is already in LET. The name must be deleted before this
subprogram can be stored.

An invalid DUP function specified in columns 1-12 of the DUP control record.

Unacceptable characters are in columns 13 and 14 of the DUP control record.
If Working Storage is specified in columns 13 and 14, then there is no valid
program in Working Storage, i.e., the Working Storage Indicator has been
set to zero, thus inhibiting the movement of programs from Working Storage.

Unacceptable characters are in columns 17 and 18 of the DUP control record.

If this is a *STORE control record, then the name is alreody in LET/FLET.
If this is a *DUMP control record, then the name is not found in LET or FLET.
If this is a *DUMP control record of Working Storage to the principal 1/0,
then a name is required in columns 21 through 25 of the DUP control record.
If this is a *DELETE control record, then the name is not found in LET or FLET.
If this is a *STOREMOD control record, then the name is not found in LET
or FLET.

Columns 27 through 30 are blank or include alphabetic characters.
The count field requires a decimal number.

This function is not allowed during the JOB T mode.

The FORTRAN compiler and/or assembler cannot be eliminated if a Fixed
area has been previously defined.

The assembler has previously been eliminated from the system.

The FORTRAN compiler has previously been eliminated from the system.

The count field was read as a value of zero or one. The first DEFINE
requires one cylinder for FLET plus one cylinder of Fixed area.
Thereafter, as little as one cylinder of additional Fixed area can be defined.

The initiation or expansion of the Fixed area is limited to the Working
Storage available.

This function requires more Working Storage than is available.

The Working Storage area is not large enough to contain the program specified.

There is insufficient room in the Fixed area for the program.

The cards are out of sequence, or there was an erroneous checksum.

More blank cards are required to complete the dump. The operator performs
an NPRO and places blank cards between the two cards ejected, removes the
first card, places the first card in the output stacker, places the remainder
in front of the cards sti 11 in the reader hopper, and presses the reader START
button.

The first six characters of records following *STORECI are not *FILES. The
number of *FILES records is determined by the count field of DUP control
record STOREC I.

The *FILES record following the *STORECI DUP control record has an invalid
character.

Too manyFiles have been defined. More than two s~ctors are required to
contain the information from the *Fl LES record.

Appendix A. Error Messages 55

Table A-9. DUP Error Messages (Part 2)

Code and Printed Message Description

D 92 INVALID Cl CONVERT The Loader has inhibited the continuation of *STORECI. The specific
reason has been printed by the Loader.

D 94 LET/FLET OVERFLOW A ninth sector of LET/FLET is required for the LET/FLET entry. A deletion
of a program with a LET/FLET entry of similar size is required before this
program can be stored.

NOTE: DCTL means the error was detected in the DUP control record. DUPCO means the error was detected in the DUP common section.

e Table A-10. DUP Waits and Loops e Table A-11. FORTRAN 1/0 Error Codes

Address* Explanation Operator Action Error Code* Cause of Error

Loops: System check. Perform an initial load
70FF'3X>287 LET/FLET, COMMA, of entire Monitor System

and DCOM do not (see Sx~tllm ~llnllrati2n
agree. Oeerating Procedures}.

FOOO No *IOCS control card appeared with the mainline
program and 1/0 was attempted in a subroutine.

FOOl 1. Logical unit defined incorrectly.
2. No *IOCS control record for specified 1/0

Wait at 092C Paper tape reader not Ready paper tape reader
ready and press PROGRAM

START.

device.

F002 Requested record exceeds al located buffer size.

Wait at 0005 Operator pressed Do not alter core
F003 Illegal character encountered in input record.

PROGRAM STOP storage. To continue,
on console. press PROGRAM START.

F004 Exponent too large or too smal I in input field.

F005 More than one E encountered in input field.

*Displayed in Storage Address Register
F006 More than one sign encountered in input field.

F007 More than one decimal point encountered in
input field.

FOOS 1. Read of output-only device.
2. Write of input-only device.

FOO<; Real variable transmitted with an I format specifica-
tion or integer variable transmitted with an E or F
format specification.

FlOO File not defined by DEFINE FILE statement.

FlOl File record number too large, equal to zero,
or negative.

F103 Disk FIO (SDFIO) has not been initialized.

DISKZ Errors:

F102 Read error.

F104 Write error.

F106 Read back check error.

F108 Seek error.

FlOA Forced read error (seek or find).

*Displayed in Accumulator

56

DISK SYSTEM FORMAT (DSF)

Unless otherwise instructed, DUP automatically
converts programs in Card System format (CDS) to
Disk System format (DSF) when storing programs to
disk storage. Likewise, programs in DSF are con­
verted to CDS when dumping from disk storage.
Disk System format is shown in Figure 11; Card
System format is described elsewhere in this
appendix.

Program Header Format

The contents of the program header record (see
Figure 11) vary with the type of routine with which
it is associated. The first 12 words of the program
header record for the seven types of programs are
identical except for word 6, which is 9 less than
the number of words in the program header record.
The format of these 12 words is as follows:

Data Block

I II I

\. y
Program Header
(12-54 words) , I

See description below. 1
Data
Group

(1-8 words)

Indicator Word

Data Header (2 words):
Word 1 - Relative core starting

address of where data
is to be loaded

Word 2 - Number of words following

I
l

Indicator words and
data groups unti I
data break

Data Break -
Caused by:

I I
t

Data

Word

1
2

3
4

5
6

7
8

9
10-11

12

Header

to next data header, plus number
of words in next data header

1 • A break in sequence of program
address, e.g., ORG, BSS, DSA

2. A new data record

3, The end of the program

• Figure 11. Disk System Format

APPENDIX B. DATA FORMATS

Contents

Zero
Checksum if source was cards;
otherwise zero
Type, subtype, precision
Effective length of program, i.e.,
the terminal address in the program
Length of COMMON (words)
Length of program header record
minus 9
Zero
Length of pro gram, including
program header record in disk
blocks
Number of files defined
Name of entry point 1 (see
Appendix G)
Address of entry point 1 (absolute
for type 1, relative to zero
otherwise)

I
Indicator words and
data groups unti I
end-of-program
data header

End-of-program data

I I

header (2 words): ___ _....

Word 1 - Relative address of
next available core location

Word 2 - Word count (0)

Appendix B. Data Formats S.7

After the first 12 words, the program header
record format depends on the type of program. The
header record for types 1 and 2 (absolute and
relocatable mainline, respectively) consists of
the first 12 words. The program types and their
header record formats are shown below.

Program Types

Type
Code Type of Program

1 Mainline (absolute)
2 Mainline (relocatable)
3 Subroutine, not an ISS, referenced

by LIBF
4 Subroutine, not an ISS, referenced

by CALL
5 Interrupt service subroutine (ISS)

referenced by LIEF
6 Interrupt service subroutine (ISS)

referenced by CALL
7 Interrupt level subroutine (ILS)

Program Formats

Type 3, 4:

Words

13-14

15

17-18

19

20-54

58

Contents

Name of entry point 2 (30 bits,
right-justified)
Address of entry point 2 (relative
to zero)
Name of entry point 3 (30 bits,
right-justified)
Address of entry point 3 (relative
to zero)
Three words per entry point as
above, to a maximum of 14 entry
points. The header record ends
at the last defined entry point;
thus, it is of variable length

Type 5, 6:

Words

13
14
15
17

18

Type 7:

Words

13

Contents

51 + ISS number
ISS number
Number of interrupt levels required
Interrupt level number associated
with primary interrupt*
Interrupt level number associated
with secondary interrupt

Contents

Interrupt level number

*The 1442 Card Read Punch is the only device re­
quiring more than one interrupt level.

Program Subtypes

Subtypes are defined only for type 3 and 4 sub­
routines. When undefined, the field contains a zero.

For type 3 subroutines, subtypes are defined as
follows:

Subtype

0

1

2

3

Description

In-core subroutines. Of the IBM
subroutine library, this group in­
cludes the trace, fix, float, dump,
subscript, normalize, flipper,
initialization, and certain conversion
subroutines
Disk FORTRAN I/O subroutines,
SDFIO and SDFND
Arithmetic subroutines, e. g., F ADD
FOR TRAN Format subroutine SFIO,
and FORTRAN I/O subroutines, e.g.,
CARDZ

For type 4 subroutines, subtypes are defined as
follows:

Subtype

0

8

Description

All type 4 subroutines which are not
subtype 8, e. g. , DMTDO
Functional subroutines, e.g., SIN

Appendix E lists all IBM-supplied subroutines and
their subtypes.

DISK CORE IMAGE FORMAT (DCI)

A program in Disk Core Image format (DCI) is one
that the Loader has converted from Disk System
format (DSF). A DCI program is an entire core
load, i.e., it consists of a mainline program, all
subroutines referenced in the core load (except the
Disk 1/0 routine), the object-time transfer vector,
and the core image header record. The mainline
program and subroutines appear as they will at
execution time; however, the Loader must prepare
the program for execution before it is read into
core storage.

Although programs are loaded faster from DCI
than from DSF, DCI programs usually occupy more
disk storage because they constitute an entire core
load. In addition, unlike DSF programs, the areas
reserved by BSS and BES statements are a part of
DCI programs unless the first statement in the
mainline is a BSS or BES.

A typical DCI program is stored on disk in the
User/Fixed area as follows:

Mainline Subroutines Object-time
Core Image

Header Program (if any) Transfer Vector
Record

The object-time transfer vector is described in
the section titled The Loader. Information contained
in the 60-word core image header record is used to
load the DCI program into core before execution.
The format is as follows:

Words

1-6

7

8

9
10
11

12

13

14

15

16-60

Description

Interrupt transfer vector (words
8-13 at execution time)
Setting for index register 3 at
execution time
Core address (at execution time) of
the subroutine ILS02
Number of files defined
Length of COMMON (in words)
Code for requested version of the
Disk 1/0 subroutine (-1 = DISKZ,
0 = DISKO, 1 = DISKl, 2 = DISKN)
Core address (at execution time) of
the entry in the LIBF TV which is
associated with the Disk 1/0 sub­
routine
Length of the object-time transfer
vector (in words)
Core address (at execution time) of
the first word of the m ainl:Lne pro­
gram, exclusive of initial BSS and/ or
BES statements
Total length of mainline program,
subroutines, and object-time transfer
vector (in words)
Reserved

DISK DATA FORMAT (DDF)

Disk Data format (DDF) describes information
placed in the User area, Fixed area, or Working
Storage area as a result of the DUP control record
STOREDATA. Disk Data format consists of 320
binary words per sector; there are no headers,
trailers, or indicator words.

CARD SYSTEM FORMAT (CDS)

Card System format is in terms of words on binary
cards (see Card Data Format). This is used for
relocatable programs. The card ID and sequence
numbers (columns 73-80) are in IBM card code.

Mainline Header Card

A mainline header card specifies the size of the
common area and the size of the work area. It is

Appendix B. Data Formats 59

the first card of the mainline program. The
format is as follows:

Word

1
2
3

4
5

6
7

8-54

Reserved
Checksum*

Contents

Type code (first 8 bits):
0000 0001 - absolute
0000 0010 - relocatable

Precisi.on code (last 8 bits):
0000 0001 - standard
0000 0010 - extended
0000 0000 - undefined

Reserved
Length of COMMON storage area

(FORTRAN mainline program
only)

0000 0000 0000 0011
Work area required (FORTRAN

only)
Reserved

*The checksum is the two's complement of the
logical sum of the record count (position of the
record within the deck) and the data word(s).
The logical sum is obtained by summing the
data word(s) and the record count arithmetically
with the addition of a one each time a carry occurs
out of the high-order position of the accumulator.

Data Cards

Data cards contain the instructions and data that
constitute the assembled program. The format is
as follows:

60

Word

1

2
3

4-9

Contents

Location (The relative load address
of the first data word of the card or
record. Succeeding words go into
higher numbered core locations.
The relocation factor must be added
to this address to obtain the actual
load address. For an absolute
program the relocation factor is
zero.)
Checksum
Type code (first 8 bits):

0000 1010
Data word count (last 8 bits)
Relocation indicators (2 bits per
data word):

10
11-54

EOP Card

00 - nonrelocatable or absolute
01 - relocatable
10 - LIBF (one word call)
11 - CALL (two word call)

Data word 1
Data words 2 throu_gh 45

An EOP (end of program) card is the last card
of each program and subroutine. The format is
as follows:

1

2
3

Contents

Starting location of next routine
(this number is always even and
is assigned by the assembler)
Checksum
Type code (first 8 bits):

0000 1111
Last 8 bits:

0000 0000
4 XEQ address, if mainline program

5-54 Reserved

Subroutine Header Card

A maximum of 14 entry points can be defined for
each subroutine. The format of the subroutine
header card is as follows:

Word

1
2
3

4-5
6

7-9
10-11

12
13-51

52-54

Contents

Reserved
Checksum
Type code (first 8 bits);

0000 0011 - to be called by a
one-word call only (LIBF)

0000 0100 - to be called by a
two-word call only (CALL)

Precision code (last 8 bits):
0000 0000 - undefined
0000 0001 - standard
0000 0010 - extended

Reserved
Number of entry points times three
Reserved
Name of entry point 1
Relative address of entry point 1
Names and relative addresses of

entry points 2 through 14
Reserved

ISS Header Card

An ISS (interrupt service subroutine) header card
for each interrupt service subroutine identifies
the entry point defined by an ISS statement. Only
one entry point can be defined for each
subroutine. The format of the ISS header card
is as follows:

Word

1
2
3

4-5
6

7-9
10-11
12
13

14

15
16

17-29

30
31-54

Reserved
Checksum

Contents

Type code (first 8 bits):
0000 0101 - to be called by a

one-word call only (LIBF)
0000 0110 - to be called by a

two-word call only (CALL)
Precision code (last 8 bits):

0000 0000 - undefined
0000 0001 - standard
0000 0010 - extended

Reserved
Six plus number of interrupt levels

required
Reserved
Subroutine name
Relative entry address
Address of ISTV (interrupt service

transfer vector) is equal to 5110
plus the ISS number. *

ISS number (displacement in ISTV)
:::: l-810

Number of interrupt levels required
ID number for the primary interrupt

level required (0-5)
ID numbers for remaining interrupt

levels required (0-5)
Edit word (contains a 1)
Reserved

*The ISTV table is initialized by the Loader. This
table starts at location 0034. Each TV entry in
this table contains the starting addresses for the
corresponding ISS routine (maximum of 8 TV
entries).

ILS Header Card

An ILS (interrupt level subroutine) header card
identifies the ILS routine. The format of the
ILS header card is as follows:

Word Contents

1 Reserved
2 Checksum
3 Type code (first 8 bits):

0000 0111
Reserved (last 8 bits)

4-5 Reserved
6 0000 0000 0000 0100

7-9 Reserved
10-12 Reserved

13 Interrupt level number
14-54 Reserved

CARD DATA FORMAT (CDD)

Card Data format (CDD) is shown in Figure 12.
Fifty four words can be placed on a card (1-1/3
columns per word, 4 columns for 3 words). The
word numbers appear in every third column across
the top of the card.

PRINT DATA FORMAT (PRD)

Print Data format is shown in Figure 13. There are
16 four-character words per line, with a space
after each word, and an additional space after each
fourth word.

PAPER TAPE SYSTEM (PTS) AND PAPER TAPE
DATA (PTD) FORMATS

Paper Tape System format (PTS) is analogous to
Card System format (CDS), and Paper Tape Data
format (PTD) is analogous to Card Data format
(CDD).

In Paper Tape format, two frames contain one
binary word, which is equivalent to 16 bits per

Appendix B. Data Formats 61

binary word in Card Data format. In addition, a
one-frame word count precedes a paper tape record.
A paper tape data record contains a maximum of 54
binary words, i.e., 108 frames plus a word-count
frame.

Information that would appear in columns 73-80
of a card must not appear on paper tape.

Figure 12. Card Data Format

4 Q) 4 Q) 4 Q) 4 u u u
0 0 0

characters
a..

characters
a..

characters
a..

characters Vl Vl Vl

\ y A ., "' y A y

Word l Word 2 Word 3 Word 4

Figure 13. Print Data Format

62

Q) Q)
u u
0 c
a.. a..

Vl Vl

I

f
\.

Space after
each 4th word

0000000
741511n1111•

4444444

6666666

7777777

8888888

. .
y

Words 5 - 16

APPENDIX C. DISK STORAGE UNIT CONVERSION FACTORS

~ [0 Word Disk Block Sector Track Cylinder Disk

Bits 16 320 5, 112 20,480 40,960 8, 192,000

Doto Words 20 320* 1,280 2,560 512,000

Disk Block 16 64 128 25,600

Sectors 4 8 1,600

Tracks 2 400

Cylinders 200

*These follow the first actual word of each sector, which is used for the address.

Appendix C. Disk Storage Unit Conversion Factors 63

APPENDIX D. SUPERVISOR AND DUP INPUT/OUTPUT CHARACTER CODES

PTTC/8
Hex

(U =Upper Case)
Keyboard Graphic 1132 Graphic I BM Card Code (L = Lower Case)

Numeric Characters

0 0 0 lA (L)
l l l 01 (L)
2 2 2 02 (L)
3 3 3 13 (L)
4 4 4 04 (L)
5 5 5 15 (L)
6 6 6 16 (L)
7 7 7 07 (L)
8 8 8 08 (L)
9 9 9 19 (L)

Alphabetic Characters

A A 12-1 61 (U)
B B 12-2 62 (U)
c c 12-3 73 (U)
D D 12-4 64 (U)
E E 12-5 75 (U)
F F 12-6 76 (U)
G G 12-7 67 (U)
H H 12-B 6B (U)
I I 12-9 79 (U)
J J 11-1 51 (U)
K K 11-2 52 (U)
L L 11-3 43 (U)
M M 11-4 54 (U)
N N 11-5 45 (U)
0 0 11-6 46 (U)
p p 11-7 57 (U)
Q Q 11-B 5B (U)
R R 11-9 49 (U)
s s 0-2 32 (U)
T T 0-3 23 (U)
u u 0-4 34 (U)
v v 0-5 25 (U)
w w 0-6 26 (U)
x x 0-7 37 (U)
y y 0-B 3B (U)
z z 0-9 29 (U)

64

PTTC/B
Hex

(U = Upper Case)
Keyboard Graphic 1132 Graphic I BM Card Code (L = Lower Case)

Special Characters

12-B-3 6B (L)
< 12-B-4 02 (U)

12-B-5 19 (U)
+ + 12-B-6 70 (U)
& & 12 70 (L)
$ $ 11-B-3 5B (L)*
* * 11-B-4 OB (U)*

11-B-5 lA (U)
11 40 (L)

I I 0-1 31 (L)*

I O-B-3 3B (L)
% (O-B-4 15 (U)
Blank B-3 OB (L)*
@ Blank 8-4 20 (L)*

B-5 16 (U)
B-6 01 (U)

Space Blank Blank 10 ()*

~ Blank 12-2-B AO (U)

I Blank 12-7-B BB (U)
Blank 11-2-B DB (U)
Blank 11-6-8 9B (U)
Blank 11-7-B EB (U)

O/o Blank 0-5-B 95 (L)
Blank 0-5-B CO (U)

> Blank 0-6-B BF (U)
? Blank 0-7-B Bl (U)

Blank 2-B B4 (U)
II Blank 7-B BB (U)

NOTES: 1. DUP recognizes only those special characters flagged
with an asterisk.

2. Any special characters not recognized by SUP and
DUP will be corrected to an ampersand(&).

APPENDIX E. 1130 SUBROUTINE LIBRARY LISTING

Subroutines Names Subtype* Other Subroutines Required

Ut i I i ty Ca 11 s

Selective Dump on Console Printer DMTDO I DMTXO 0 WR TYO

Selective Dump on 1132 Printer DMPDl I DMPXl 0 PRNTl

Dump 80 Routine DMP80 0 None

Common FORTRAN Calls

Test Data Entry Switches DATSW 8 None

Divide Check Test DVCHK 8 None

Functional Error Test FCTST 8 None

Overflow Test OVERF 8 None

Sense Light Control and Test SLITE, SUTT 0 None

FORTRAN Trace Stop TS TOP 8 TSET

FORTRAN Trace Start TSTRT 8 TSET

Integer Transfer of Sign ISIGN 8 None

Extended Arith/Funct Cal Is

Extended Precision Hyperbolic Tangent ETANH, ETNH 8 EEXP, ELD/ESTO, EADD, EDIV, EGETP

Extended Precision A**B Function EAXB, EAXBX 8 EEXP, ELN, EMPY

Extended Precision Natural Logarithm ELN, EALOG 8 XMD, EADD, EMPY, EDIV, NORM, EGETP

Extended Precision Exponential EEXP, EXPN 8 XMD I FARC, EGETP

Extended Precision Square Root ESQR, ESQRT 8 ELD/ESTO, EADD, EMPY, EDIV, EGETP

Extended Precision Sine-Cosine ESIN, ESINE, ECOS, ECOSN 8 EADD, EMPY, NORM, XMD, EGETP

Extended Precision Arctangent EATN, EATAN 8 EADD, EMPY, EDIV, XMD, EGETP, NORM

Extended Precision Absolute Value Function EABS, EAYL 8 EGETP

FORTRAN Sign Transfer Cal Is

Extended Precision Transfer of Sign ESIGN 8 ESUB, ELD

Standard Precision Transfer of Sign FSIGN ... 8 FSUB, FLD

Standard Ari th/Fun ct Cal Is ..
Standard Precision Hyperbolic Tangent FT ANH, FTNH 8 FEXP, FLD/FSTO, FADD, FDIV, FGETP

Standard Precision A**B Function FAXB, FAXBX 8 FEXP, FLN, FMPY

Standard Precision Natural Logarithm FLN, FALOG 8 FSTO, XMDS, FADD, FMPY, FDIY, NORM,
FGETP

Standard Precision Exponential FEXP, FXPN 8 XMDS, FARC, FGETP

Standard Precision Square Root FSQR, FSQRT 8 FLD/FSTO, FADD, FMPY, FDIY, FGETP

Standard Precision Sine-Cosine FSIN, FSINE, FCOS, FCOSN 8 FADD, FMPY, NORM, XMDS, FSTO, FGETP

'See Disk System Format, Program Subtypes, in Appendix B.

Appendix E. 1130 Subroutine Library Listing 65

Subroutines Names Subtype Other Subroutines Required

Standard Precision Arctangent FATN, FATAN 8 FADD, FMPY, FDIV I XMDS I FSTO I FGETP

Standard Precision Absolute Value Function FABS, FAVL 8 FGETP

Common Ari th/Fun ct Cal Is

Fixed Point (Fractional) Square Root XSQR 8 None

Integer Absolute Function IABS 8 None

Floating Binary/EBC Decimal Conversions FBTD (BIN. TO DEC.) 0 None
FDTB(DEC. TO BIN.)

Overlay Routines for LOCAL Subprograms

Long Form FLIPO 0 DISKZ or DISKO

Short Form FLI Pl 0 DISKl or DISKN

FORTRAN Trace Routines

Extended Floating Variable Trace SEAR, SEARX 0 ESTO, TTEST, SWRT, SIOF, SCOMP

Fixed Variable Trace SIAR, SIARX 0 TTEST I SWRT I SIOI, SCOMP

Standard Floating IF Trace SFIF 0 FSTO, TTEST, SWRT, SIOF, SCOMP

Extended Floating IF Trace SEIF 0 FSTO, TTEST, SWRT, SIOF, SCOMP

Fixed IF Trace Sil F 0 TTEST, SWRT, SIOI, SCOMP

Standard Floating Variable Trace SFAR, SFARX 0 FSTO, TTEST, SWRT, SIOF, SCOMP

GOTO Trace SGOTO 0 TTEST, SWRT, SIOI, SCOMP

Non-Disk FORTRAN Format 1/0

FORTRAN Format Routine SFIO, SIOI, SIOAI, SIOF, SIOAF, 3 FLOAT, ELD/ESTO or FLD/FSTO, I FIX
SIOFX, SCOMP, SWRT, SRED, SIOIX

FORTRAN Find Routine SDFND l DISKZ

Disk FORTRAN 1/0 SD FIO I SORED I SDWRT I SD COM, l DISKZ
SDAF, SDF, SDI, SDIX, SDFX,
SDAI

FORTRAN Common LIBFs

FORTRAN Pause PAUSE 2 None

FORTRAN Stop STOP 2 None

FORTRAN Subscript Displacement SUBSC 0 None
Calculation

FORTRAN Subroutine Initialization SUBIN 0 None

FORTRAN Trace Test and Set TTEST I TSET 0 None

FORTRAN 1/0 and Conversion Routines

FORTRAN Card Routine CAR DZ 3 HOLEZ

Disk 1/0 Routine DISKZ 0 None

FORTRAN Paper Tape Routine PAPTZ 3 None

66

Subroutines Names Subtype Other Subroutines Required

FORTRAN 1132 Printer Routine PRNTZ 3 None

FORTRAN Keyboard-Typewriter Routine TYPEZ 3 GETAD I EBCTB, HOLEZ

FORTRAN Typewriter Routine WRTYZ 3 GET AD I EBCTB

FORTRAN Hollerith to EBCDIC Conversion HOLEZ 3 GETAD I EBCTB, HOLTB

FORTRAN Get Address Routine GET AD 3 None

FORTRAN EBCDIC Table EBCTB 3 None

FORTRAN Hollerith Table HOLTB 3 None

Extended Arith/Funct LIBFs

Extended Precision Get Parameter Subroutine EGETP 2 ELD

Extended Precision A**I Function EAXI, EAXIX 2 ELD/ESTO, EMPY, EDYR

Extended Precision Divide Reverse EDYR, EDYRX 2 ELD/ESTO I ED!V

Extended Precision Float Divide EDIY, EDIYX 2 XDD, FARC

Extended Precision Float Multiply EMPY, EMPYX 2 XMD, FARC

Extended Precision Subtract Reverse ESBR, ESBRX 2 EADD

Extended Add-Subtract EADD, ESUB, EADDX, ESUBX 2 FARC, NORM

Extended Load-Store ELD, ELDX, ESTO, ESTOX 0 None

Standard Ari th/Fun ct LIB Fs

Standard Precision Get Parameter Subroutines FGETP 2 FLD

Standard Precision A**I Function FAXI, FAXIX 2 FLD/FSTO I FMPY I FDYR

Standard Precision Divide Reverse FDYR, FDYRX 2 FLD/FSTO I FDIY

Standard Precision Float Divide FDIY, FDIVX 2 FARC

Standard Precision Float Multiply FMPY, FMPYX 2 XMDS, FARC

Standard Precision Subtract Reverse FSBR, FSBRX 2 FADD

Standard Add-Subtract F~DD I FSUB, FADDX, FSUBX 2 NORM, FARC

Standard Load-Store FLD I FLDX, FSTO' FSTOX 0 None

Standard Precision Fractional Multiply XMDS 2 None

Common Arith/Funct LIBFs

Fixed Point (Fractional) Double Divide XDD 2 XMD

Fixed Point (Fractional) Double Multiply XMD 2 None

Sign Reversal Function SNR 2 None

Integer to Floating Point Function FLOAT 0 NORM

Floating Point to Integer Function IFIX 0 None

I** J Integer Function FIXI, FIXIX 2 None

Appendix E. 1130 Subroutine Library Listing 67

Subroutines Names Subtype Other Subroutines Required

Normalize Subroutine NORM 0 None

Floating Accumulator Range Check FARC 2 None
Subroutine

Interrupt Service Subroutines

Card Input/Output (No Error Parameter) CARDO 0 I LSOO, I LS04

Card Input/Output (Error Parameter) CARDl 0 I LSOO, I LS04

One Sector Disk Input/Output DISKO 0 ILS02

Multiple Sector Disk Input/Output DIS Kl 0 ILS02

High-Speed Multiple Sector Disk Input/Output DISKN 0 ILS02

Paper-Tape Input/Output PAPTl 0 ILS04

Simultaneous Paper Tape Input/Output PAPTN 0 ILS04

Plotter Output Routine PLOTl 0 ILS03

1132 Printer Output Routine PRNTl 0 ILSOl

Keyboard/Console Printer Input/Output TYPEO 0 HO Ll, PRTY I I LS04

Console Printer Output Routine WR TYO 0 ILS04

Conversion Routines

Binary Word to 6 Decimal Characters (Card BINDC 0 None
Code)

Binary Word to 4 Hexadecimal Characters BINHX 0 None
(Card Code)

6 Decimal Characters (Card Code) to DCBIN 0 None
Binary Word

EBCDIC to Console Printer Output Code EBPRT 0 EBPA, PRTY

Card Code to EBCDIC-EBCDIC to Card Code HOLEB 0 EBPA, HOLL

Card Code to Console Printer Output Code HOLPR 0 HOLL, PRTY

4 Hexadecimal Characters (Card Code) to HXBIN 0 None
Binary Word

PTTC/8 to EBCDIC-EBCDIC to PTTC/8 PAPEB 0 EBPA

PTTC/8 to Card Code-Card Code to PTTC/8 PAPHL 0 EBPA,HOLL

PTTC/8 to Console Printer Output Code PA PPR 0 EBPA, PRTY

Card Code to EBCDIC-EBCDIC to Card Code SPEED 0 None

EBCDIC and PTTC/8 Table EBPA 0 None

Card Code Tobie HOLL 0 None

Console Printer Output Code Tobie PRTY 0 None

Interrupt Level Subroutines

Interrupt Level Zero Routine ILSOO None

68

Subroutines Names Subtype Other Subroutines Required

Interrupt Level One Routine ILSOl None

Interrupt Level Two Routine ILS02 None

Interrupt Level Three Routine ILS03 None

Interrupt Level Four Routine ILS04 None

Appendix E. 1130 Subroutine Library Listing 69

APPENDIX F. IN-CORE COMMUNICATIONS AREA (COMMA)

The Disk Communications Area (DCOM), sector 8
on the disk, is read into core starting in address
0028 (decimal 40). The In-Core Communications
Area (COMMA), therefore, is an image of DCOM,
but offset by 40 words. The first 10 words
(0028-0031) include the IOCS error and interrupt
error traps. The IOCS error trap entry word

70

(0028) is initialized to contain the version and
modification level of the Disk Monitor System,
and will be overlaid by a return address if an
IOCS error occurs.

The core locations and contents of COMMA
are shown on the following three pages.

Core Location

Dec. Hex. --
1. 50 32

2. 51 33

3. 52 34

4. 53 35

5. 54-69 36-45

6. 70 46

7. 71 47

8. 72 48

9. 73 49

10. 74 4A

11. 75 4B

12. 76 4C

13. 77 4D

14. 78 4E

15. 79 4F

16. 80 50

17. 81 51

18. 82 52

19. 83 53

20. 84 54

21. 85 55

22. 86 56

23. 87 57

24. 88 58

25. 89 59

26. 90-91 5A-5B

27. 92 5C

Comments

IOCS counter, incremented by l upon entry to every IOCS subroutine (provided an XIO is to be executed), decremented by
l after an operation complete interrupt.

Reserved.

Core address (in user program) of Interrupt Level 2 subroutine (I LS02).

Number of files defined.

CALL LINK/CALL EXIT linkage to Skeleton Supervisor.

Length of COMMON (in words).

Type of Disk 1/0 required, e.g.,

-1 = DISKZ (special disk routine)
0 = DISKO
l = DISKI
2 = DISKN

Reserved.

System Addresses

Reserved.

Sector address of FORTRAN, zero if FORTRAN deleted.

Sector address of Assembly Program, zero if deleted.

32010 (length of l sector).

Sector address of first (numerically lowest) sector of Core Image Buffer (Cl B). Word l of FLET header printed by DUMPLET.

OOOA (address in lower core, i.e., in the interrupt transfer vector, to which all disk interrupts branch indirectly).

Sector address of first (numerically lowest) sector of Fixed Location Equivalence Table (FLET). Word 2 of FLET header
printed by DUMPLET.

Sector address of first (numerically lowest) sector of Location Equivalence Tobie (LET).

Sector address of first (numerically lowest) sector of User area.

File protect sector address, otherwise used as sector address of Working Storage (base). Word l of LET header printed by
DUMPLET. See Note l.

Same as above (adjusted). Word 2 of LET header printed by DUMPLET. See Note l.

LET/FLET Entries·

Total number of words used on disk by FLET. Word 3 of FLET header printed by DUMPLET.

Reserved.

Total number of words used on disk by LET (base). Word 5 of LET header printed by DUMPLET. See Note 1.

Same as above (adjusted). Word 6 of LET header printed by DUMP LET. See Note 1.

Next available disk block address in User area (base). Word 3 of LET header printed by DUMP LET. See Note l.

Same as above (adjusted). Word 4 of LET header printed by DUMP LET. See Note l.

Name of program (LET/FLET entry words l and 2).

Disk blocks used by program (LET entry word 3). Second word printed out at end of DUP function.

Appendix F. In-Core Communications Area 71

Core Location

Dec. Hex.

28. 93 5D

29. 94 5E

30. 95 5F

31. 96 60

32. 97 61

33. 98 62

34. 99 63

35. 100 64

36. 101 65

37. 102 66

38. 103 67

39. 104 68

40. 105 69

41. 106 6A

107-108 6B-6C

42. 109 6D

110-111 6E-6F

43. 112-114 70-72

115-120 73-78

44. 121 79

45. 122-125 7A-7D

46. 126 7E

47. 127 7F

48. 128-137 80-89

49. 138 SA

50. 139-144 SB-90

72

Comments

LET/FLET Entries (Continued)

Core execution address of program (relative for relocatable programs, absolute otherwise} for word 12 of the program header
record. Not used as word 4 of LET/FLET entry.

Core loading address of program, also used as first word on mainline program, or first word of define file table (LET/FLET
entry word 5 for core .image program).

Word count/disk block count of program, i.e., word count for core image programs, disk block count for data files, and
address of next available core location following the program in Disk System format that is in Working Storage on the disk
(LET/FLET entry word 6 for core image program data file).

Principal print device (odd= console printer/keyboard, even= 1132). See Note 2.

. Principal 1/0 device (odd = 1442, even = 1134/1055). See Note 2.

Temporary mode if non-zero, norma I if zero.

Non-XEQ (disable XEQ until next// JOB record if non-zero, enable XEQ if zero). See Note 3.

Non-DUP (disable DUP functions until next// JOB record is detected if non-zero, enable DUP functions if zero).

System Overlays and/or LOCALs are used in program if non-zero.

Disable Supervisor reading of monitor control record if non-zero, enable if zero (positive indicates mo'litor control record
has been read under invalid conditions, negative under valid conditions}.

Loader return to Supervisor if zero, to address in switch itself if non-zero (after restoring DUP).

Core map requested it non-zero, no map if zero.

WS Indicator Word (disk block count of program in Working Storage).

Parameters for Disk IOCS

Disk Arm Position

Reserved

Disk Fi I e Protect Address

Reserved

Table of Defective Cylinders

Reserved

Miscellaneous

Disk block address of program. First word printed out at end of DUP function.

Reserved

Size of core (10001 6• 200016)

Absolute execution address of core load (for word 4 of LET/FLET entry).

Reserved

Contents of index register 3 (points to middle of a 255-word transfer vector).

System Work Area

NOTE l: When requested following a //JOB T control record, DUP will
store information to disk and update LET on a temporary basis (only the
:idjusted value is altered). When the next //JOB or //JOB T control
record is encountered, the adjusted value will be replaced by the base

NOTE 2: The interrupt levels associated with the 1/0 devices will be
;pecified in COMMA. Since four bits ore sufficient to specify any ILS
1umber / three 1/0 levels may be included in each of the two words in
COMMA which identify the principal 1/0 device and the principal print

0 l 2 3 4 5 6

value. Thus, all information which has been stored in the User area since
the first //JOB T record will be deleted. The //JOB T function requires
that both base and adjusted values be available in COMMA. The base
and adjusted values will be equal except during //JOB T operation.

device (items 31 and 32,respectivel}'). The rightmost four bits in each of
these words identify the devices themselves. The layouts of these two
words ore as fol lows:

7 8 9 10 11 12 13 14 15

9610 Interrupt level of Interrupt level of Reserved for future use Principal print device
principal print device secondary print device

Interrupt level of Interrupt level of
principal 1/0 device column interrupt for.

1442 if principal 1/0
9710 device is 1134/1055;

interrupt level of end-
of-card interrupt for
1442 otherwise.

Word 96: 11 32 + Conso I e Printer 1400 16
Console Printer 400116

Interrupt level of
end-of-card interrupt
for 1442 if principal
1/0 device is 1134/
1055; interrupt level
of 1134/l 055 other-
wise.

Word 97: 1442
1442 + 1134/1055
1134/1055

indicator (0=1132,
l=console printer/
keyboard)

Principal 1/0 device
indicator (0=1134/1055,
1=1442, 2=console
print er /keyboard)

Supervisor only

040116
044116
400016

NOTE 3: Set to somethin~ other than zero or one by any part of the sys­
tem that finds a non-XEQ type error, reset to one by Supervisor after

printing out a message, reset to zero by Supervisor upon sensing a//JOB
record.

Appendix F. In-Core Communications Area 73

APPENDIX G. LAYOUT OF LET/FLET ENTRIES

THREE WORD ENTRIES (DISK SYSTEM FORMAT)

Words

1-2

3

Description

Name of the program, consisting
of five 6-bit characters, right­
justified in the 32 bits of words
1 and 2,. Names of less than five
characters are padded with
terminal blanks. A 6-bit
character is formed by truncating
the leftmost two bits of the
EBCDIC representation of that
character. Bits 0 and 1 are zeros.
Disk block count of the program.

SIX-WORD ENTRIES (DISK CORE IMAGE FORMAT)

Words

1-2

3

74

Description

Same as for three-word entries,
except that for core-image pro­
grams, bit O is one and bit 1 is
zero; and for data files, both bits
0 and 1 are ones.
Disk block count of the program,
including padding. Padding is the

Words

4

5

6

Description

number of disk blocks between the
end of the last program or file
stored and the beginning of this
program, which is a sector
boundary.
Execution address of the program,
i.e., the core location to which
control is passed for execution
of the program (zero for data files).
Loading address of the program,
i.e., the core location at which
the core image program is to
be loaded.
Word count of the program, i.e.,
the number of words to be re ad
from the disk when reading the
information from disk to core
storage.

NOTE 1: Eight sectors each are allocated for
LET and FLET.

NOTE 2: The order of the entries in LET is the
order in which the named items are stored in
the User area.

APPENDIX H. IBMOO (1130 DISK MONITOR SYSTEM MAINTENANCE
PROGRAM)

IBMOO, the 1130 Disk Monitor System maintenance
program, is the means by which a user updates his
disk as modifications are released. The program
automatically updates the monitor programs
(Supervisor, Disk Utility, FORTRAN, and
Assembler), provides a method of changing the
IBM subroutine library, and also updates the
version and modification level in the first word
in DCOM. The leftmost 4 bits represent the
version, and the rightmost 12 bits represent the
modification level.

A card deck or paper tape containing correc­
tions to maintain the monitor will be supplied
by IBM. This includes all necessary control
records. Every modification must be run to
update the version and modification level even
though the program affected is not on the disk.

IBMOO is stored on the disk as part of the
IBM subroutine library. It is called from disk
by the following control record:

cc

12345678910111213141516171819

I I XEQ I BM 0 0 0

A zero must appear in position 19 of the XEQ
record to specify DISKO.

Input to the program can be stacked with
other jobs. However, when stacking modifica­
tions to the Monitor System, each patch that
increases the modification level must begin with
the above control record (see Figure 14).

Input to the program can be cards or paper
tape. IBMOO determines the.input device
automatically by interrogating COMMA for the
principal I/O device.

SYSTEM PROGRAM MAINTENANCE

Typical input for a system program update is as
follows:

cc

123 45 6 7 8 9 10 11 12 13 1415 16 17 18 19

11 XEQ I BM 0 0 0
Patch header record

Patch .~. ata record }

One to eight data records

Patch data record
Patch header record

Patch ·:data record }

One to eight data records

Patch data record
Patch header record

Update data records
{new version of subroutine XXXXX)

a • STORE XXXXX
Update function control record

DELETE XXXXX

II DUP

System maintenance program ----'---------..
coll II XEQ IBMOO

f_!I
L

{_
I

[_
I II XEQ IBMOO I--'

Next monitor control record

u pdate data records

System program header reccrd

System maintenance program
call

Figure 14. Control Records and Data Organization (in Card Form)
for Monitor Program and Subroutine Library Maintenance

Appendix H. IBMOO (1130 Disk Monitor System Maintenance Program) 75

Patch Header Record

Each sector to be changed requires a patch
header record. Thus, if a patch crosses a
sector, two header records are required. If
FORTRAN or the assembler is being modified,
a check is made to determine if that system
program has been voided from the disk. If so,
the modification is not made.

The format of a patch header record (in
terms of card input) is as follows:

Columns

1-3

10-11

15-17

21-23

76

Contents

Program ID (FOR, ASM, DUP,
SUP)
Monitor System Version (01-15).
The patch is not made if the
version number does not agree
with the version number in DCOM.
Modification Level (000-999).
This must be the same in every
header within a patch deck. The
patch is made only if the modifica­
tion level number is equal to or
one greater than the modification
level in DCOM. Changes to the
modification level must be in
ascending order, increasing by
one level at a time.

The user may rerun the
modifications to his system by
starting with modification level
001. If this is lower than the
modification level in DC OM, a
message is typed, followed by a
wait. This notifies the user that
he is processing his modifications
from the beginning; upon continuing,
the patch is made and the
modification level is changed to
001.

The modification level in DCOM
is updated after the last record of
the entire change is processed.
Sector Address (absolute,
decimal, sector to be modified,
except for the assembler, in

Columns

27-29

33-35
40-41

78-80

Data Record

Contents

which case it is relative to the
sector address of the first
sector of the assembler).
Relative word number of first
patch word (000-319).
Word count of patch (001-320).
Total records in modification
(02-99). This should appear only
on the first patch header record.
The count is the total record
count of the modification,
including data records and patch
header records.
Sequence number (always 001).

A data record (in terms of card input) is a binary
data card (see Appendix B, Card System Format).
One to eight data records can follow each patch
header record, depending on the size of the
patch. These must be numbered from 002 to
009, and must contain the proper checksum for
this sequence .

The data record format is as follows:

Words

1
2
3

4-9
10-54
55-60

Contents

Location
Checksum
Type code (first 8 bits):
00001010;
Word count (last 8 bits)
Relocation indicators
Data words 1 through 45
ID and sequence number

IBM SUBROUTINE LIBRARY MAINTENANCE

Changes to the subroutine library require reloading
the new subroutine. IBMOO updates the version
and modification level word; the actual reload is
performed by a DUP DELETE function, followed
by a DUP STORE function.

Typical input for a subroutine update is as
follows:

cc

1 2 3 4 5 6 7 8 9 l 0 11 12 13 14 15 16 17 18 19 20 21

I I x EQ IBM 0 0 0

(Subroutine header record)

11 DUP

*DELETE name

*STORE C D U A name
or

p T

(New version of the subroutine)

Subroutine Header Record

The subroutine header record must go through
IBMOO even if the subroutine being modified is
not on the user's disk. This is necessary to
update the version and modification level word
in DCOM so that the next sequential modification
level can be made.

The format of a subroutine header record
(in terms of card input) is as follows:

Columns

1-3
10-11
15-17

Contents

SUB (to signify a subroutine update)
Monitor System Version (01-15)
Modification Level (000-999)

OPERATING PROCEDURES

The card deck or paper tape supplied by IBM is to
be run as a monitor job. When the control record
I /XEQ IBMOO is read, the ·version and modification
level of the monitor is typed (see Figure 15, lines
1, 2, and 3). When the correct input is read,
lines 1 through 6 of Figure 15 are typed.

ERROR MESSAGES

IBMOO error messages are listed in Table H-1.

Table H-1. IBMOO Monitor System Maintenance Error Messages

Code and Message Meaning

UOl INVALID HEADER Program cannot recognize header
record.

U02 CHECKSUM ERROR Data record checksum error. A record
might be out of sequence or there
might be an invalid data record.

U03 MCR BEFORE EOJ Monitor controi record was encoun-
tered before the updating process
was completed.

U04 VERSION ERROR The version on disk does not agree
with the version in header record.

U05 MOD. LEVEL ERROR The modification level in the header
record is not equal to or one greater
than the modification level on disk.

NOTE 1: All of the above errors require a retry of the execution after
corrective action has been taken. Fol lowing an error typeout, the
program waits; pressing PROGRAM START causes an exit to the
Supervisor,

NOTE 2: A user can start at modification No, 1 and add all modifi­
cations to date. A message is typed when this condition is encountered,
followed by a wait. PROGRAM START must be pushed to continue.
The following message will be typed: 'THE MONITOR SYSTEM IS
BEING UPDATED WITH MOD. LEVEL NO. 1. PUSH PROGRAM
START TO CONTINUE. I

(Line 1)
(Line 2)
(Line 3)

(Line 4)
(line 5)
(line 6)

IBMOO MONITOR SYSTEM MAINTENANCE
VERSION NO. IS XX
PRESENT MODIFICATION LEVEL IS XXX

MONITOR SYSTEM UPDATE COMPLETED
VERSION NO.~ IS XX
NEW MODIFICATION LEVEL IS XXX

Figure 15. Typeouts for 1130 Monitor System Maintenance Program

Appendix H. IBMOO (1130 Disk Monitor System Maintenance Program) 77

APPENDIX I. UTILITY ROUTINES

In addition to the IBM subroutine library, the follow­
ing utility programs, each complete with subroutines
and loaders, are supplied to the user to enable him
to perform operations external to the 1130 disk moni­
tor system. The individual program writeups indicate
whether the program is available for the card system
only, the paper tape system only, or both. Where the
program is applicable to both systems, operating
procedures are included for card and paper tape.

The paper tape utility routine is loaded as part of
the paper tape disk monitor system.

• Disk Pack Initialization Routine (DPIR). This rou­
tine is described under System Generation Opera­
ting Procedures -- Card System. The DPIR card
and paper tape loading procedures are listed under
the appropriate system generation procedure.

• Console Printer Core Dump

• 1132 Printer Core Dump

• Console Printer Disk Dump

• 1132 Printer Disk Dump

• Paper Tape Reproducing Routine

• Paper Tape utility Routine (PTUTL)

CONSOLE PRINTER CORE DUMP (CARD SYSTEM
ONLY)

This routine aids the user in the debugging of pro­
grams. The programmer can dump portions of core
by loading a single-card console routine which occu­
pies the first 80 words of core. The output device is
the console printer.

Format

This routine dumps core in hexadecimal form, start­
ing with the word specified in the console entry
switches. Dumping continues until PROGRAM STOP
is pressed .

• 78

Words are dumped in four-digit hexadecimal form,
with a space between each word. The first word
typed is the starting address of the dump. The num­
ber of characters per line depends upon the margin
settings of the console printer.

Operating Procedures

1. With the console Mode switch set to RUN, press
IMM STOP and RESET on the console.

2. Set the console entry switches to the hexadecimal
address at which dumping is to start.

3. Place the program card in the reader.
4. Press START on the 1442.
5. Press PROGRAM LOAD on the console.

Dumping continues until PROGRAM STOP is
pressed. Press PROGRAM START to resume the
dump.

1132 PRINTER CORE DUMP

This is a self-loading, four-card routine that dumps
the contents of core storage in hexadecimal format
on the 1132 Printer (the fourth card is blank). The
routine is available in card and paper tape.

Dumping begins at hexadecimal address OOAO and
continues to the end of core. Sixteen words per line
are printed, preceded by the four-digit hexadecimal
address of the first word of each line.

Card Operating Procedure

1. Ready the 1132 printer.
2. With the console Mode switch set to RUN, press

IMM STOP and RESET on the console.
3. Place the dump routine deck in the 1442 card

read punch hopper.
4. Press START on the 1442 ..
5. Press PROGRAM LOAD on the console.

Dumping continues until the last 16 words of core
are addressed and printed.

The program does not skip to the top of a new page
to start, nor is page numbering or page overflow pro­
vided.

Paper Tape Operating Procedure

1. Ready the 1132 printer.
2. Place the dump from OOAO tape in the paper tape

reader so that one of the delete codes beyond the
program ID in the leader is beneath the read
starw heels.

3. Press IMM STOP, RESET, and PROGRAM LOAD
on the console.

The output format is the same as described for the
card routine.

DISK DUMP ROUTINES

Two routines are provided which allow the user to
print out the contents of any disk sector or sectors.

• Console Printer Disk Dump

• 1132 Printer Disk Dump

These routines are available in card and paper
tape.

Format

Each sector printout (320 words) consists of 20 lines
with 16 four-digit words per line, each word in hexa..,.
decimal form. Two sectors are printed on each page,
each sector preceded by a two-word header. The
leftmost digit of the first header word is the number
of sectors remaining to be dumped; the remaining
three digits show the sector address of the sector
being dumped. The second header word contains the
contents of the first word of the sector which is also
the address of the sector.

Operating Procedures

Card

1. With the console Mode switch set to RUN, press
IMM STOP and RESET on the console.

2. Place the desired dump routine (console printer
or 1132 printer) in the reader hopper.

3. Press START on the 1442.
4. Press PROGRAM LOAD on the console.

The program is loaded and on BK systems
WAITs at location 1C51 (console printer routine),
or 1D29 (1132 printer routine). For 4K systems,
the WAIT addresses will be OC51 and OD29.

5. Set the console entry switches as indicated below.
a. Enter the number of sectors to be dumped

(in hexadecimal) in console entry switches
0-3. The maximum number of sectors that
can be dumped at one time is 15 (switches
0-3 on); the minimum number is one
(switches 0-3 off or switch 3 on).

b. Enter the hexadecimal address of the first
sector to be dumped in console entry
switches 4-15 (000 - 657). If an illegal
sector address is entered, the program
WAITs at location 0029. Press IMM STOP,
RESET, and PROGRAM START to return
the program to location 1C51 or 1D29. The
correct sector address can then be entered
in the console entry switches.

Note that the sector address entered in
console entry switches 4-15 is a physical
address, not a logical address. It is there­
fore possible for the data being dumped to
be moved up 8, 16, or 24 sectors depending
on whether the disk has one or more
(maximum 3) defective cylinders. A dump
of sector zero will show if there are any
defective cylinders on the disk. Words one,
two, and three of sector 0 contain the first
sector address of any defective cylinders
found. When there is no defective cylinder,
these words contain /0658 (see DPIR under
System Generation Operating Procedures-­
Card System) . In the event that there are
defective cylinders on the disk, it is the
user's responsibility to calculate the dis­
placement in order to locate the desired
logical record.

6. Press PROGRAM START to initiate the dump.

Dumping continues until the last sector is printed,
at which time the printer carriage (if the 1132 is the
output device) restores to a new page and the program
WAITs at location 1C51 or 1D29.

A new sector address and/or number of sectors
can be entered at any time during execution by press­
ing IMM STOP, RESET, and PROGRAM START,

e Appendix I. Utility Routines 79

and then setting the appropriate console entry
switches.

Core Image Loader Card ID. The card system con­
sole printer and 1132 printer disk dump routines are
each loaded by a core image loader which comprises
the first six cards of the decks. As card sequence
numbers are not present on the core image loader
cards, the following chart can be used to identify
these cards.

CARD

COLUMN 1

12

11 x
0 x
1 x
2

3
4

5
6

7 x
8

9 x

Paper Tape

1

2

x

x

CORE IMAGE LOADER

~ E@ t6j ~ hlij
x

x x
x x

x x x x
x

x x x x
x

x x

1. Place the desired dump routine tape (console
printer or 1132 printer) in the paper tape reader
so that one of the delete codes beyond the pro­
gram ID in the leader is beneath the read star­
wheels.

2. Press IMM STOP, RESET, and PROGRAM LOAD
on the console.

3. The loader (on the front of the tape) will read in
and the system will WAIT.

4. Press PROGRAM START.

The disk dump program is now loaded and WAITS
at location 1C51 (console printer routine), or 1D29
(1132 printer routine). Operating instructions from
this point are the same as those listed in items 5
and 6 of tl}e card operating procedures .

• 80

Disk Error Procedure

Detection of a disk error during a dump operation
on SK systems causes a WAIT at location 1C67
(console printer) or 1D51 (1132 printer). For 4K
systems, the WAIT is at OC67 or OD51.

To retry the operation, set all console entry
switches off and press PROGRAM START. If the
retry is successful, dumping will resume at the
beginning of the sector that caused the error.

If the error is to be ignored and the sector
printed out, make sure that the value of the console
entry switches is not zero (at least one switch on)
and press PROGRAM START.

PAPER TAPE REPRODUCING ROUTINE

This routine, available only with the paper tape sys­
tem, is a self-loading paper tape routine that repro­
duces paper tapes. The routine reads a character
and punches it with no intermediate conversion.

Operation

1. Place the paper tape reproducing routine tape in
the paper tape reader, positioning the tape so
that one of the delete codes beyond the ID in the
leader is beneath the read starwheels.

2. With the console Mode switch set to RUN, press
IMM STOP, RESET, and PROGRAM LOAD on
the console. The reproducing routine is read in
and WAITs at location 0000.

3. Remove the reproducing routine tape and place
the tape to be reproduced in the reader. Place
blank tape in the tape punch unit and produce
several inches of delete code leader by holding
down the DELETE and FEED keys simultane.­
ously. Be sure to release the FEED key first.

4. Press PROGRAM START to begin the tape repro­
ducing operation. The routine continues to
operate until the paper tape reader goes not­
ready, indicating that there is no more tape to
be read. The tape reproducing routine then
WAITs at location 002C. If the paper tape punch
is not-ready, the tape reproducing routine loops
between 0027-002A. To restart, press IMM
STOP, ready the paper tape punch, and press
PROGRAM START. An unlimited number of
tapes can be reproduced by this routine. Be
sure to create a trailer (and leader) of delete

codes between the output tapes if the tapes are
to be separated.

5. If the PROGRAM STOP key is pressed while the
program is in operation, the routine WAITs at
location OOlD. Press PROGRAM START to con­
tinue.

PAPER TAPE UTILITY (PTUTL)

PTUTL is a paper tape utility program that is loaded
to disk during system generation and executed by the
1130 disk monitor system. It accepts input from the
console printer keyboard or 1134 paper tape reader
and provides printed output on the console printer
and/ or punched output on the 1055 paper tape punch.

Using PTUTL, the user can add FORTRAN and
assembler source records and monitor control
records to his programs. Records on existing tapes
can also be altered or deleted. This paper tape
utility program resides in the user's area on disk
and is executed by a I I XEQ control record.

Operating Procedure

A paper tape containing the following records is
supplied to the user to allow initial program exe­
cution.

I I JOB
I I XEQ PTUTL
II PAUS

To load this tape and execute the program, select
the appropriate initializing procedure listed below and
continue.

1. If the monitor supervisor is ·in core:
a. Place the PTUTL execute tape in the paper

tape reader.
b. Press PROGRAM START.

2. If .the monitor supervisor is not in core:
a. Place the cold start paper tape record in the

paper tape reader.
b. Press IMM STOP, RESET, and PROGRAM

LOAD on the console.

c. Place the PTUTL execute tape in the paper
tape reader.

d. Press PROGRAM START.
3. The paper tape utility program is loaded into

core and then comes to a WAIT at location /0498.
This wait allows the operator to ready the con­
sole printer, paper tape reader, and paper tape
punch. The user should punch a leader of delete
codes on the paper tape punch.

At this time, the user can select the desired
program options by turning on the appropriate
console entry switches (see Figure 16).

Console Entry
Switch On

0

2
3

14
15

All switches
off

NOTES:

Print record after reading

Read paper tape records from 1134
Accept keyboard inputl

Punch paper tape records on 1055
WAIT after punching3

WAIT after printing2

Exit to monitor supervisor3

1. The keyboard input OJ?tion uses TYPEO,
therefore all features ·of that routine apply
to PTUTL.
a. The input record cannot exceed 80

characters.
b. Pressing the backspace key cancels the

last character entered.
c. Pressing the ERASE FIELD key cancels

the entire record and allows the user to
restart.

d. Pressing the EOF key indicates that the
record is complete. The keyboard is
released and the program continues.

2. Keyboard input will replace the last paper
tape record read if console entry switch 2
is turned on prior to pressing PROGRAM
START.

3. The test for exit is made just before an
input record is read; therefore, a convenient
way to branch out of PTUTL is to perform a
WAIT after punching the last record desired
(console entry switch 14 on). Turn off all
console entry switches and press PROGRAM
START. Control is returned to the monitor
supervisor.

e Appendix I. Utility Routines 81

Paper Tape Not-Ready WAITs

Condition

Paper tape

reader not
ready

Paper Tape
punch not
ready

Example

Indication

Program WAITs at
location /0498 with
/0005 in the
Accumulator

Program WAITS at
location /0498 with

/0004 in the
Accumulator

Recovery Procedure

Ready reader if additional

tape is to be read. Set the
console entry switches as

desired and press PROGRAM

START.

Ready the paper tape punch
and press PROGRAM START.

To re -punch a record

which was being processed

when the not-ready occurred,
set console entry switches 1

and 2 off (to prevent an­

other record from being
read), set switches 3 and 14

on (punch a record and

WAIT), and press PROGRAM
START. After the record is
punched, return the console
entry switches to the orig­
inal configuration and press

PROGRAM START.

Assume that the following records appear on a tape.

II JOB
I I* (comments)
II ASM

II DUP
Asm. Control Records
Source Program

The user now desires to alter the comments
record, insert a I I PA US record after the comments
record, and delete the// DUP record. The
procedure is as follows.

1. Load and execute PTUTL. The program will
WAIT at location /0498.

2. Load the source tape in the paper tape reader
and ready the paper tape punch and console
printer. Remember to make a leader of delete
codes on the punch.

3. Turn on console entry switches 1, 3, and 14.
4. Press PROGRAM START.

• 82

5. The I I JOB record will be read, reproduced,
and the program will WAIT.

6. Turn on console entry switches O, 1, 2, 3, 14,
and 15.

7. Press PROGRAM START.
8. The comments record in the source tape will be

read and printed on the console printer. The
program will WAIT.

9. Press PROGRAM START. The Keyboard will be
selected (PROCEED light on) and the program
will WAIT.

10. Enter the new comments record in the proper
format.

11. Press the EOF key on the keyboard.
12. The new comments record will be punched on the

tape, replacing the old record. The program
will WAIT.

13. Turn off console entry switch 1. Press
PROGRAM START. The keyboard will be re­
selected.

14. Enter the// PAUS record from the keyboard
and press E OF.

15. Turn off console entry switches 0, 2, and 15.
Turn on switch 1. Leave switches 3 and 14 on.

16. Press PROGRAM START.
17. The I I ASM record will be read and reproduced

on the punch. The program will WAIT.
18. The next record, // DUP, is to be deleted; there­

fore, switches 0, 1, and 15 should be set on, all
other console entry switches should be set off.

19. Press PROGRAM START.
20. The// DUP record will be read and printed but

not punched. The program will WAIT.
21. Leave the sense switches at the present setting

and press PROGRAM START. The next record
on the input tape will be read into the I/O buffer,
over laying the I I DUP record.

22. Turn on console entry switches 1 and 3, all
others off.

23. Press PROGRAM START.
24. The remainder of the source tape will be read

in and reproduced, record for record.
25. When the paper tape reader goes not-ready at

the end of the source tape, the program will
again WAIT at location /0498. Set all console
entry switches off and press PROGRAM START.
Control will return to the monitor supervisor.

.... . .
• A3 •
• • ••••

START X
•••••A3•••••••••• . .
• • • WAIT •
: C3 :·x:
•••• x

SWl .•.
83 •• .• •. ••••84••••·····

.• ARE *• YES • •
•.All SWITCHES •*••••••••X• EXIT •

•• OFF •* • •
• NO

i .•.
C3 •·

YES .• IS *• NO
• • •. •• •• • • •• •• •• •• •· SWITCH 1 •*•. ••••• •. •• •• •••••

x

• ON •
x

SW2 .•,
••••••02••········· 04 ••

READ
PAPER TAPE

RECORD
x

swo •••
E2 •·

..
NO .• IS •. • •

••••••••••••••••••*• S-'ITCH 2 .•x • D't *
• ON • • *

• YES

x •••••E't•••••••••• . .
•* IS *• NO • * ACCEPT •

• KEY6UARD * •. SWITCH 0 •*••• •• •• •• •• •.•••• x.
• INPUT * *• ON •*

• YES

x •••••F2•••••••••• . .
• CONVERT •
•PTTC/6 CODE TO •
• TYPWR CODE •

x •••••G2••••••••••
• DEVELOP •
• WORO •
• COUNT FOR •
• TYPWR •
• OUTPUT •

x
••••••H2•••••••••••

• PRINT RECORD •
ON TYPWR

x
SW 15 .•.

J2 ••

SW3

.• IS *• NO

Figure 16, PTUTL Sense Switch Options

• SWITCH 15 •••••
• ON •

• YES

x •••••tc.2••········
• WAIT • . .
• ••..

x •••• • • • 04 • • • ••••

x •••• . .
• 04 • . .
••••

.
x

•••••Flt•••••••••• . .
• • CONVERT •
.X •• •• ••. • •• •• • •• •* KEYBOARD TO •

• PTTC/8 CODE •

x .•.
H3 •. ••••••Hit•••••••••••

• • IS *• YES • PUNCH
PAPER TAPE

RECORD
•· SWITCH 3 •*••••••• ,X

•. ON .•
• NO

.
x

Sii 14 •*•
J4 ••

• •* IS •. YES • ••..•. x•. SWITCH lit- ••• ••• x• A3 •
• ON • • •

• NO

x •••• • •
• C3 • • • ••••

• Appendix I. Utility Routines 83

APPENDIX J. SAMPLE PROGRAM OUTPUT

84

II JOB
II FOR

** IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM
*ONE WORD INTEGERS
*LIST ALL
*IOCS (CARD• 1132 PRINTER• DISK)
*NAME SAMPL.

c
c

c
c
c
c
c
c

c

c

IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM
IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM
SIMULTANEOUS EQUATION ROUTINE
DEFINE FIL.E 1 110,320,u.INXT)
DIMENSION A(l0tlOltXClO>•BC10)tYC10)

301 FORMAT ClHlt20Xl5HINCOMPATIBILITY)
302 FORMAT llH 20X41HMORE EQUATIONS THAN UNKNOWNS•NO SOLUTIONS>
303 FORMAT ClH 20X46HMORE UNKNOWNS THAN EQUATIONS-SEVERAL SOLUTIONS>
304 FORMAT ClH 20Xl5HSOLUTION MATRIX>
305 FORMATClH 20X8HMATRIX Al
306 FORMATClH 20X8HMATRIX Bl

307 FORMAT ClH 20Xl0H A•INVERSEl
308 FORMATllH 20X24HDIAGONAL ELEMENT IS ZERO)
309 FORMAT llH 20X'A·INVERSE TIMES A')

M:a2
L•3

READ CMtlOI
10 FORMATC72H

1
WRITE CLtlOl

12 FORMAT C6Il0)

SPACE FOR TITLE

READ CMtl21MltM2tLltL2eNltN2
Ml • NOe OF ROWS OF A
M2 • NOe OF COLS OF A
Ll • NOe OF ROWS OF X
L2 • NOe OF COLS OF X
Nl • NO• OF ROWS OF B
N2 • NOe OF COLS OF B

13 FORMAT C7Fl0e4)
17 FORMAT Cl0Fl0e4l

IF CN2•1163t64t63
64 IF lL.2-1)63t65t63
65 IF CL.l•M2)63t66t63
66 IF CMl•Nll63tllt63
63 WRITE CLt301)

GO TO 2
11 N•Ml

N•M2
IF CMl-M2) 9ltl4t93

91 WRITE CLt302)
GO TO 2

93 WRITE CLt303)
GO TO 2

14 WRITE CLt305)
DO 70 I•ltN

READ CMtl3l(ACttJ)tJ•ltNl
WRITE CLtl7lCACitJltJ•l•N>

70 CONTINUE
89 FORMAT CF10e4)

WRITE CLt306)
READ CMt89lCBCI>•I•leNI
WRITE CLt89)CBCiltI•ltN)

PRESERVE THE ORIGINAL MATRIX ON DISK
DO 19 I•ltN

19 WRITE Cl'IJ IACJtI>• J•ltNI
INVERSION OF A

20 00 120 K•ltN
O•ACKtKI
IFIDl40t200t40

40 ACKtKl•leO

DKSAMOOl
DKSAM002

PAGE 01
DKSAM003
DKSAM004
DKSAM005
DKSAM006
DKSAM007

PAGE 02
DKSAM008
DKSAM009
DKSAMOlO
DKSAMOll
DKSAM012
DKSAM013
DKSAM014
DKSAM015
DKSAM016
DIC.SAM017
DIC.SAM018
OIC.SAM019
DKSAM020
DKSAM021
DKSAM022
DKSAM023
DKSAM024
OKSAM025
DKSAM026
DKSAM027
DKSAM028
DKSAM029
DKSAM030
OKSAM031
DKSAM032
DKSAM033
DKSAM034
OKSAM035
DKSAM036
DIC.SAM037
OKSAM0'8
DKSAM039
DIC.SAM040
DKSAM041
DKSAM042
DKSAM043
DKSAM044
DKSAM045
OKSAM046
DKSAM047
O~SAM048
DKSAM049
OKS~M050
OKSAM051
DKSAM052
OKSAM053
DKSAM054
DKSAM055
DKSAM056
OKSAM057
DKSAM058
DKSAM0'9
OKSAM060
OKSAM061
DKSAM062
DKSAM063
DKSAM064
DKSAM065
DKSAM066

IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM
50 DO 60 J•ltN
60 AIKtJl•AIKtJl/D

IFIK-Nl80tl30tl30
80 IK11:K+l

DO 120 I•IKtN
D•AIItKI
AIItKl•OeO
DO 120 J•ltN

120 AIItJl•AIItJl-<D*A(KtJll
C BACK SOLUTION

130 IK=N-1
DO 180 K•ltIK

140 I l=K+l
DO 18 0 I • Il t N
D•A I K, l)
AIKtll•OeO

170 DO 180 J•ltN
180 AIKtJl•AIKtJl-<D•AlltJll

GO TO 202
200 WRITE 1Lt3081

GO TO 2
C PRINT INVERSE

202 WRITE 1Lt3071
DO 20 l I •l tN

WRITE ILtl7llAIItJltJ•ltNI
201 CONTINUE

WRITE 1Lt3091
C COMPUTE AND PRINT A•INVERSE TIMES A

DO 123 J•l tN
C RETRIEVE ORIGINAL BY COLUMNS

READ ll 1 JI tXCMlt M•ltNI
DO 122 IrltN
YIIl=OeO
00 122 K • ltN

122 YIII • YIIl+AIItKl*XIKI
123 WRITE 1Ltl7l IYIIlt I•ltNI

DO 21 I•ltN
Xl!l•OeO
00 21 K•ltN

21 XIIl•XIIl+AIItKl•B(KI
WRITE 1Lt304)
WRITE ILt891(X(IltI•ltNI

2 CALL EX IT
END

IBM 1130 DISK MONITOR FORTRAN SAMPLE

VARIABLE ALLOCATIONS
A •OOCE x •OOE2 B •OOF6 y

Ll •0113 L2 •0114 Nl •0115 N2

UNREFERENCED STATEMENTS
20 so 140 170

STATEMENT ALLOCATIONS
301 •0127 302 •0134 303 •Ol4E 304
12 •0108 13 •OlDB 17 •OlDE 89
93 •024A 14 •0250 70 •0289 19
130 •0374 140 •037E 170 •0399 180
2 •0406

FEATURES SUPPORTED
ONE WORD INTEGERS
IOCS

CALLED SUBPROGRAMS
FADDX FMPYX FOIV FLO FLDX
CAR DZ PRNTZ SDFIO SORED SDWRT

REAL CONSTANTS
elOOOOOE 01•0120 .ooooooE 00•0122

INTEGER CONSTANTS
2•0124 3•0125 1•0126

CORE REQUIREMENTS FOR SAMPL
COMMON 0 VARIABLES 288 PROGRAM

ENO OF COMPI~ATION

PROGRAM

•OlOA
•0116

•Ql6A
•OlEl
•02C6
•0390

FSTO
SOC OM

9S2

D •OlOC INXT •OlOE
N •0117 I •0118

30S •0177 306 •0180
64 •021C 6S •0222
20 •02E7 40 •02FB
200 •03CF 202 •030S

FSTOX FSBRX SRED
SDFX

PAGE 03
DKSAM067
DKSAM068
DKSAM069
DKSAM070
DKSAM07l
DKSAM072
DKSAM073
OKSAM074
DKSAM07S
DKSAM076
OKSAM077
DKSAM078
DKSAM079
DKSAM080
DKSAM081
DKSAM082
DKSAM083
DKSAM084
DKSAMOSS
DKSAM086
DKSAM087
DKSAM088
DKSAM089
DKSAM090
DKSAM091
0KSAM092
DKSAM093
DKSAM094
DKSAM09S
DKSAM096
DKSAM097
0KSAM098
DKSAM099
DKSAMlOO
OKSAMlOl
OKSAM102
DKSAM103
DKSAM104
DKSAMlOS
DKSAM106
DKSAM107
DKSAM108
DKSAM109
DKSAMllO

PAGE 04

M •OlOF
J •0119

307 •0189
66 •0228
so •0306
201 •03F6

L
K

308
63
60
122

SWRT SCOMP

•0110
•OllA

•0193
•022£
•OJOA
•0420

SFIO

Ml •0111 M2
1K •OllB n

309 •01A4 10
11 •0234 91
80 •032S 120
123 •045C 21

SIOFX SIOI

Appendi:x J. Sample Program Output

•0112
•OllC

•0162
•0244
•0344
•048C

suasc

85

86

II XEQ L

Fil.ES ALLOCATION

Ol6C OOOA

STORAGE ALLOCATION

R 41 OF71 CHEXI WORDS AVAILABLE

l.IBF TRANSFER-VECTOR

EBCTB 1015
HOLTS OFOF
GE TAO OF9E
NORM OF74
XMOS OF58
FARC OF36
HOLEZ OFOO
IFIX OE08
Fl.OAT OECE
FAOOX OE79
SORED 06CO
FSBRX OE50
FMPYX OElC
FOIV OOCA
FSTOX 0072
Fl.OX 008E
SOCOM 06E4
SOFX 0682
SOW RT 070E
SIOFX 0915
SUB SC OOA8
SIOI 0919
SCOMP 0901
SWRT 08F8
SREO 0928
FSTO 0076
FLO 0092
PRNTZ occo
CAR DZ OC7B
SFIO 09CO
SOFIO 0713
OISKZ OOF4

SYSTEM ROUTINES

ILS02 1019

03A5 CHEXI IS THE EXECUTION ADOR1

IIM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM
MATRIX A

412150 -112120 111010
-211200 315050 -116320

111220 -113130 319860

312160
112470
213456

012915
011631

-010283

019999
010000

•010000

019321
112654
011429

010833
Oe3836
Oe 1029

-010000
019999
0.0000

MATRIX B

A-INVERSE
-010467

011118
013008

A-INVERSE TIMES A
010000

-0.0000
1.0000

SOLUTION MATRIX

OKSAMlll

II JOB
II ASM
*L.IST
*PRINT SYMBOL TABLE

SMASMOOl
SMASM002
SMASM003
SMASM004

COMPUTE THE SQUARE ROOT OF 64 PAGE 1
0000 0 CO!O BEGIN LO 064 SMASM006
0001 20 061tD60U L.IBF FLOAT INTEGER TO FLOATING PTe SMASM007
0002 30 06898640 CALL FSQR FLOATING PTe SQRTe SMASM008
0004 20 091899CO LIBF IFIX FLOATING PTe TO INTEGER SMASM009
0005 0 1008 SLA 8 SMASMOlO

* MASK TO BUILD EBCDIC INTEGER SMASMOll
* RESULT AND EBCDIC BLANK IN WORDle SMASM012

0006 0 E829 OR MASK SMASMOU
0007 0 DOlB STO WORDl SMASM014

* CONVERT MESSAGE FROM EBCDIC SMASM015
* TO ROTATE/TILT CODEe SMASM016

0008 20 05097663 LIBF EBPRT SMASM017
0009 0 0000 DC 0 SMASM018
OOOA 1 0023 DC WORDl SMASM019
0008 1 0015 DC TYPE'l SMASM020
oooc 0 OOlA DC 26 SMASM021
OOOD 20 23Al7170 LIBF TYPEO TYPE MESSAGE SMASM022
OOOE 0 2000 DC /2000 SMASM023
OOOF 1 0014 DC TYPE SMASM024
0010 20 23Al7170 LIBF TYPEO WAIT FOR TYPING COMPLETE SMASM025
0011 0 0000 DC SMASM026
0012 0 70FD MDX *•3 SMASM027
oou 0 6038 EXIT RETURN TO MONITOR CONTROL SMASM028
0014 0 OOOE TYPE DC 14 SMASM029
0015 OOOD BSS 13 SMASM030
0022 0 8181 DC /8181 SMASM031
0023 0 0000 WORDl DC *•* SMASM032
0024 0018 EBC eIS THE SQUARE ROOT OF 64e SMASM033
0030 0 F040 MASK DC /F040 SMASM034
0031 0 0040 D614 DC 64 SMASM035
0032 0000 END BEGIN SMASM036

SYMBOL TABLE

BEGIN 0000 064 0031 MASK 0030 TYPE 0014 WORDl 0023

NO ERRORS IN ABOVE ASSEMBLYe

Appendix J. Sample Program Output 87

II XEQ L SMASM037

R 47 1907 CHEX) WORDS AVAIL.ABLE

CALL. TRANSFER VECTOR

FSQR 020C

L.IBF TRANSFER-VECTOR

FARC 066C
XMDS 0650
HOLL. 0600
PRTY 0580
EBPA 0560
FAOO 04AF
FDIV 050E
FL.D 045A
FAOOX 0485
FMPYX 0470
FSTO 043E
FGETP 0424
NORM 03FA
TYPEO 0202
E8PRT 026C
IFIX 0244
FL.OAT 01F4
DISKZ OOF4

SYSTEM ROUTINES

ILS04 0691
IL.502 06AO

01C2 CHEX) IS THE EXECUTION AODRt

Program Output on Console Printer

8 IS THE SQUARE ROOT OF 64

88

Absolute program: A program which, although in
Disk System format, has been written in such a
way that is can be executed from only one core
location.

Assembler core load: A core load which was built
from a mainline written in Assembly Language.

CALL routine: A routine which must be referenced
with a CALL statement. The type codes for
routines in this category are 4 and 6.

CALL TV: The transfer vector through which CALL
routines are entered at execution time. See the
section on the Loader for a description of this TV.

CIB: (the Core Image Buffer) The buffer on which
most of the first 4000 words of core are saved.
Although the CIB occupies two cylinders, the
last two sectors are not used. See the section on
the Loader for a description of the CIB and its use.

Cold Start Routine: The routine which initializes the
1130 Disk System Monitor by reading down from
the disk the Skeleton Supervisor.

COMMA (the Core Communication Area): The part
of core which is reserved for the work areas and
parameters which are required by the Monitor
programs. In general, a parameter is found in
COMMA if it is required by two or more Monitor
Programs or if it is passed from one Monitor
Program to another. COMMA is initialized from
DCOM by the Cold Start Routine and at the beginning
of each JOB.

Control Record: One of the records (card or paper
tape) which directs the activities of the 1130
Monitor System. For example, //DUP is a
Monitor control record that directs the Monitor
to initialize DUP; *DUMPLET is a DUP control
record directing DUP to initialize the DUMPLET
program; *EXTENDED PRECISION is a FORTRAN
control record directing the compiler to allot
three words instead of two for the storage of data
variables.

Core Image format: Sometimes abbreviated CI
format. It is the format in which whole core
loads are stored on the disk prior to execution.

APPENDIX K. GLOSSARY

Core Image Header Record: A part of a core load
stored in Core Image format. It is actually the
last 15 words of the format. Among these 15
words are the ITV and the setting for index
register 3.

Core Image program: A mainline program which
has been converted, along with all of its required
subroutines, to CI format. In other words, it
is a core load.

Core load: Synonymous with the term object pro­
gram, which is comprised of the ITV, the object­
time TV, the information contained in the Core
Image Header Record, the in-core code, and
all LOCALs, NOCALs, and SOCALs.

Cylinderize: The process of rounding a disk block/
sector address up to the disk block/sector ad­
dress of the next cylinder boundary.

Data block: A group of words consisting of a data
header, data words, and Indicator Words for a
routine in Disk System format. A new data
block is created for every data break. (A data
break occurs whenever there is an ORG, BSS,
or BES statement, at the end of each record,
and whenever a new sector is required to store
the words comprising a routine.)

Data break: Sometimes referred to as a break in
sequence. See "Data block" for a definition of
this term.

Data file: An area in either the User Area or the
Fixed Area in which data is stored.

Data format: The format in which a Data file is
stored in either the User Area or the Fixed Area.

Data group: A group of not more than nine data
words of a routine in Disk System format. In this
format every such group has as its first word an
associated Indicator Word. Normally a data
group consists of eight data words plus its In­
dicator Word; but, if the data block of which the
data group is a part contains a number of
data words which is not a multiple of eight, then
the last data group will contain less than nine
data words.

• Glossary 89

Data header: The first pair of words in a data block
for a routine in Disk System format. The first
word contains the loading address of the data
block, the second the total number of words
contained in the data block.

DCOM (the Disk Communications Area): The disk
sector which contains the work areas and par­
ameters for the Monitor Programs. It is used
to initialize COMMA by the Cold Start Routine
and at the beginning of each JOB (see "COMMA").

Disk block: A 20-word segment of a disk sector.
Thus, sixteen disk blocks comprise each sector.
The disk block is the smallest distinguishable
increment for DSF programs. Thus the Monitor
System permits packing of DSF programs at
smaller intervals than the hardware would other­
wise allow. The disk block is also referred to
elsewhere as the "disk byte".

Disk System format: Sometimes abbreviated DSF.
It is the format in which mainlines and subroutines
are stored on the disk as separate entities. It
is not possible to execute a program in DSF;
it must first be converted to Core Image format.

Disk System format program: A program which is
in Disk System format. It is sometimes called a
DSF program.

Entry point: A term which may give rise to confusion
unless the reader is careful to note the context
in which this term appears. Under various
conditions it is used to denote (~) the symbolic
address (name) of a place at which a subroutine
or a Monitor Program is entered, (2) the absolute
core address at which a subroutine or mainline
is to be entered, and (3) the address, relative to
the address of the first word of the subroutine,
at which it is to be entered.

Fixed area: The area on disk in which core loads
and data files are stored if it is desired that they
always occupy the same sectors. No routines
in Disk System format may be stored in this area.

FORTRAN core load: A core load which was built
from a mainline written in FORTRAN.

IBM Systems area: That part of disk storage which
is occupied by the Monitor Programs, i.e.,
cylinders 0-33 (sectors 0-271) .

• 90

ILS (an Interrupt Level Subroutine): A routine which
services all interrupts on a given level; i.e., it
determines which device on a given level caused
the interrupt and branches to a servicing routine
(ISS) for processing of that interrupt. After this
processing is complete, control is returned to
the ILS, which turns off the interrupt.

Indicator Word: Tells which of the following data
words should be incremented (relocated) when
relocating a routine in Disk System format. It
also tells which are the names in LIBF, CALL,
and DSA statements. Routines which are in Disk
System format all contain Indicator Words, pre­
ceding every eight data words. Each pair of bits
in the Indicator Word is associated with one of
the following data words, the first pair with the
first data word, etc.

Instruction address register: Also called the!­
counter. It is the register in the 1130 which
contains the address of the next sequential
instruction.

In-core routine: A part of a given core load which
remains in core storage dudng the entire execu­
tion of the core load. ILSs are always in-core
routines, whereas LOCALs and SOCALs never
are.

ISS (an Interrupt Service Subroutine): A routine which
is associated with one or more of the six levels
of interrupt; i.e. , CARDO, which causes inter­
rupts on two levels, is such a routine.

Job: A group of tasks (subjobs) which are to be per­
formed by the 1130 Disk Monitor System and
which are interdependent; i.e., the successful
execution of any given subjob (following the first
one) depends upon the successful execution of
at least one of those which precedes it. See the
section on the Supervisor for examples.

LET/FLET (the Location Equivalence Table for the
User Area/ the Location Equivalence Table for
the Fixed Area): The table through which the
disk addresses of programs and data files stored
in the User Area/Fixed Area may be found. LET
occupies the cylinder following the Supervisor
Control Record Area. If a Fixed Area has been
defined, FLET occupies cylinder 34 (sectors
272-279); otherwise, there is no FLET.

LIBF routine. A routine which must be referenced
with an. LIBF statement. The type codes for
routines in this category are 3 and 5.

LIBF TV: The transfer vector through which LIBF
routines are entered at execution time. See the
section on the Loader for a description of this TV.

Loading address: The address at which a routine or
data block is to begin .. In the latter case the ad­
dress is that of an absolute core location, while
in the former it is either absolute or relative,
depending upon whether the routine is absolute
or relocatable, respectively.

LOCAL (load-on-call routine): That part of an object
program which is not always in core. It is read
from Working Storage into a special overlay area
in core only when it is referenced in the object
program. LOCALs, which are specified for any
given execution by the User, are a means of
gaining core storage at the expense of execution
time. The Loader constructs the LOCALs and all
linkages to and from them.

Location assignment counter: A counter maintained
in the Assembler program for assigning addresses
to the instructions it assembles.

Modified EBCDIC code: A six-bit code used internally
by the Monitor programs. In converting from
EBCDIC to Modified EBCDIC, the leftmost two
bits are dropped.

Modified Polish Notation: The rearrangement of oper­
ators and operands (i.e., an operator and two
operands) into the triple form required by the
FOR TRAN Compiler to generate the code neces­
sary to perform arithmetic operations.

Monitor Program: One of the following parts of the
1130 Disk System Monitor: Supervisor (SUP),
Disk Utility Program (DUP), Assembly Program
(ASM), and FORTRAN Compiler (FOR).

NOCAL (a load-although-not-called routine): A
routine which is to be included in an object
program although it is never referenced in that
program by an LIBF or CALL statement. De­
bugging a ids such as a trace routine or a dump
routine fall into this category.

Object program: Synonymous with the term core
load.

Object-time TV: A collection of both the LIBF TV
and the CALL TV.

Principal I/O device: The 1442 Card Read/Punch if
one is present; the 1134 Paper Tape Reader/
1055 Paper Tape Punch otherwise.

Principal print device: Sometimes referred to as
the Principal Printer. It is the 1132 Printer if
one is present; the Console Printer otherwise.

Program header record: A part of a routine stored
in Disk System format. Its contents vary with
the type of the routine with which it is associated.
It contains the information necessary, along with
information from LET, to identify the routine,
to describe its properties, and to convert it from
Disk System format to a part of a core load.

Relocatable program: A program which can be exe­
cuted from any core location. Such a program is
stored on the disk in Disk System format.

Helocation: The process of adding a relocation factor
to address constants and to those two-word
instructions whose second words are not (1)
invariant quantities, (2) absolute core addresses,
or (3) symbols defined as absolute core addresses.
The relocation factor for any program is the
absolute core address at which the first word of
that program is found.

Relocation indicator: The second bit in a pair of bits
in an Indicator Word. If the data word with which
this bit is associated is not an LIBF, CALL, or
DSA name, then it indicates whether or not to
increment (relocate) the data word. If the re­
location indicator is set to 1, the word is to be
relocated.

Sectorize: The process of rounding a disk block
address up to the disk block address of the next
sector boundary.

Skeleton supervisor: That part of the Supervisor
which is always in core (except during the execu­
tion of FOR TRAN core loads) and which is,
essentially, the logic necessary to process CALL

e Glossary 91

EXIT and CALL LINK statements. Together with
COMMA it occupies core locations 38

10
-144

10
.

SOCAL (a System Overlay to be loaded-on-call): One
of three overlays automatically prepared by the
Loader under certain conditions when a core
load is too large to fit into core storage. See
the section on the Loader for an explanation.

Subroutine: Used in the 1130 Disk Monitor System
interchangeably with the term subprograms,
routine, and program. Any distinctions between
these terms will have to be inferred from the
context.

Supervisor control record area: The area in which
the Supervisor Control Records are written.
This area is the cylinder following the CIB.
The first two sectors are reserved for *LOCAL
records, the next two for *NOCAL records and
the next two for *FILES records. The last two
sectors in this cylinder are not utilized. See
the Supervisor section for the formats of these
records.

The Monitor: Refers to the 1130 Disk System
Monitor.

User area: The area on the disk in which all routines
in Disk System format are found. Core loads

• 92

(i.e., programs in Core Image format) and Data
files may also be stored in this area. All IBM­
s upplied routines are found here, since they are
stored in Disk System format. This area begins
at the cylinder following LET and occupies as
many sectors as are required to store the rou­
tines and files residing there.

User programs: Are mainlines and subroutines
which have been written by the user.

User storage: That part of disk storage which is
neither Working Storage nor the IBM Area.
It begins at cylinder 34 (sector 272), which
would be the beginning of the CIB unless a
Fixed Area is defined. In this case FLET
would occupy cylinder 34 (sectors 272-279),
the Fixed Area would begin at cylinder 35
(sector 280), and the CIB would occupy the first
two cylinders following the Fixed Area, the
length of which is defined by the user.

Working storage: The area on disk immediately fol­
lowing the last sector occupied by the User
Area. This is the only one of the three major
divisions of disk storage (IBM Area, User
Storage, Working Storage) which does not begin
at a cylinder boundary.

XRl, XR2, XR3: The acronyms for index registers
1, 2, and 3, respectively.

APPENDIX L. DECIMAL AND HEXADECIMAL DISK ADDRESSES

SECTOR SECTOR CYLINDER CYLINDER SECTOR SECTOR CYLINDER CYLINDER
ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS
BASE 10 BASE 16 BASE 10 BASE 16 BASE 10 BASE 16 BASE 10 BASE 16

+00000 0000 +00000 0000 +00800 0320 +00100 0064
+00008 0008 +00001 0001 +00808 0328 +00101 0065
+00016 0010 +00002 0002 +o0816 0330 +00102 0066
+00024 0018 +00003 0003 +00824 0338 +00103 0067
+00032 0020 +00004 0004 +00832 0340 +00104 0068
+00040 0028 +00005 0005 +00840 0348 +00105 0069
+00048 0030 +00006 0006 +00848 0350 +00106 006A
+00056 0038 +00007 0007 +00856 0358 +00107 006B
+00064 0040 +00008 0008 +00864 0360 +00108 006C
+00072 0048 +00009 0009 +00872 0368 +00109 0060
+00080 0050 +00010 OOOA +00880 0370 +00110 006E
+00088 0058 +00011 OOOB +00888 0378 +00111 006F
+00096 0060 +00012 oooc +o0896 0380 +00112 0070
+00104 0068 +00013 OOOD +00904 0388 +00113 0071
+00112 0070 +00014 OOOE +00912 0390 +00114 0072
+00120 0078 +00015 OOOF +00920 0398 +00115 0073
+00128 0080 +00016 0010 +00928 03AO +00116 0074
+00136 0088 +00017 0011 +00936 03A8 +00117 0075
+00144 0090 +00018 0012 +00944 03BO +oOl 18 0076
+00152 0098 +00019 0013 +00952 03B8 +00119 0077
+00160 OOAO +00020 0014 +00960 03CO +00120 0078
+00168 OOA8 +00021 0015 +00968 03C8 +00121 0079
+00176 OOBO +00022 0016 +00976 03DO +00122 007A
+00184 OOB8 +00023 0017 +00984 03D8 +00123 007B
+00192 ooco +00024 0018 +00992 03EO +00124 007C
+00200 OOC8 +00025 0019 +01000 03E8 +00125 007D
+00208 OODO +00026 OOlA +01008 03FO -t-00126 007E
+00216 OOD8 +00027 OOlB +01016 03F8 +00127 007F
+00224 OOEO +00028 OOlC +01024 0400 +00128 0080
+00232 OOE8 +00029 0010 +01032 0408 +00129 0081
+00240 OOFO +00030 OOlE +01040 0410 +00130 0082
+00248 OOF8 +00031 OOlF +01048 0418 +00131 0083
+00256 0100 +00032 0020 +01056 0420 +00132 0084
+00264 0108 +00033 0021 +01064 0428 +00133 0085
+00272 0110 +00034 0022 +01072 0430 +00134 0086
+00280 0118 +00035 0023 +01080 0438 +00135 0087
+00288 0120 +00036 0024 +01088 0440 +00136 0088
+00296 0128 +00037 0025 +01096 0448 +00137 0089
+00304 0130 +00038 0026 +01104 0450 +00138 008A
+00312 0138 +00039 0027 +01112 0458 +00139 008B
+00320 0140 +00040 0028 +01120 0460 +00140 008C
+00328 0148 +00041 0029 +01128 0468 +00141 008D
+00336 0150 +00042 002A +01136 0470 +00142 008E
+o0344 0158 +00043 002B +01144 0478 +00143 'J08F
+00352 0160 +00044 002C +ol 152 0480 +00144 0090
+00360 0168 +00045 002D +01160 0488 +00145 0091

+00368 0170 +00046 002E +01168 0490 +00146 0092
+00376 0178 +00047 002F +01176 0498 +00147 0093
+00384 0180 +00048 0030 +01184 04AO +00148 0094

+00392 0188 +00049 0031 +01192 04A8 +o0149 0095
+00400 0190 +00050 0032 +o1200 04BO +00150 0096
+00408 0198 +00051 0033 +01208 04B8 +00151 0097
+00416 OlAO +00052 0034 +01216 04CO +00152 0098
+00424 01A8 +00053 0035 +01224 04C8 +00153 0099
+00432 OlBO +00054 0036 +01232 04DO +00154 009A

+00440 01B8 +00055 0037 +01240 04D8 +00155 009B
+00448 OlCO +00056 0038 +01248 04EO +00156 009C
+00456 01C8 +00057 0039 +01256 04E8 +00157 009D
+00464 OlDO +00058 003A +01264 04FO +00158 009E
+00472 0108 +00059 0038 +01272 04F8 +00159 009F
+00480 OlEO +00060 003C +01280 0500 +o0160 OOAO

+00488 01E8 +00061 003D +01288 0508 +00161 OOAl

+00496 OlFO +00062 003E +01296 0510 +00162 OOA2
+00504 01F8 +00063 003F +01304 0518 +00163 OOA3
+00512 0200 +00064 0040 +01312 0520 +o0164 OOA4
+00520 0208 +00065 0041 +01320 0528 +00165 OOA5
+00528 0210 +00066 0042 +01328 0530 c00166 OOA6

+00536 0218 +00067 0043 +01336 0538 +00167 OOA7

+o0544 0220 +00068 0044 +01344 0540 +00168 OOA8

+00552 0228 +or:l69 0045 +01352 0548 +00169 OOA9

+00560 0230 +0~~70 0046 +01360 0550 +00170 OOAA

+00568 0238 +00071 0047 +01368 0558 +00171 OOAB

+00576 0240 +00072 0048 +01376 0560 +oOl 72 OOAC

+00584 0248 +00073 0049 +01384 0568 +00173 OOAD

+00592 0250 +00074 004A +01392 0570 +00174 OOAE

+00600 0258 +00075 004B +01400 0578 +00175 OOAF

+00608 0260 +00076 004C +01408 0580 +00176 OOBO

+00616 0268 +00077 004D +01416 0588 +00177 OOBl

+00624 0270 +00078 004E +01424 0590 +00178 OOB2

+00632 0278 +00079 004F +01432 0598 +oOl 79 OOB3

+00640 0280 +00080 0050 +01440 05AO +o0180 OOB4

+00648 0288 +00081 0051 +01448 05A8 +00181 OOB5

+00656 0290 +00082 0052 +01456 05BO +o0182 OOB6

+00664 0298 +00083 0053 +01464 05B8 +o0183 OOB7
+00672 02AO +00084 0054 +01472 OSCO +o0184 OOB8
+00680 02A8 +00085 0055 +01480 05C8 +00185 OOB9
+00688 0280 +00086 0056 +01488 05DO +00186 OOBA
+00696 02B8 +00087 0057 +01496 05D8 +00187 OOBB
+00704 02CO +00088 0058 +01504 05EO +00188 OOBC
+00712 02C8 +00089 0059 +01512 05E8 +00189 OOBD
+00720 0200 +00090 005A +01520 05FO +o0190 OOBE
+00728 0208 +00091 005B +01528 05F8 +00191 OOBF
+00736 02EO +00092 005C +01536 0600 +oOl 92 ooco
+00744 02E8 +00093 005D +01544 0608 +00193 OOCl
+00752 02FO +00094 005E +ol 552 0610 +oOl 94 OOC2
+00760 02F8 +00095 005F +01560 0618 +oOl 95 OOC3
+00768 0300 +00096 0060 +01568 0620 +00196 OOC4
+00776 0308 +00097 0061 +01576 0628 +00197 OOC5
+00784 0310 +00098 0062 +01584 0630 +00198 OOC6
+00792 0318 +00099 0063 +01592 0638 +00199 OOC7

e Appendix L. Decimal and Hexadecimal Disk Addresses 93

INDEX

Adding and removing subroutines 39
ARI1HMETIC TRACE, FOR TRAN control record 33
ASM, monitor control record 9
Assembler 26

control records 26
error detection codes 29
messages and error codes 29
operating procedures (car:l) 29
operating procedures (paper tape) 30
origin of source program 28
paper tape format 28

Assembler control records 26
COMMON 28
F1LE 28

LEVEL 28
UST 27
UST DECK 27
UST DECK E 27
PRINT SYMBOL TABLE 27
PUNCH SYMBOL TABLE 28
SA VE SYMBOL TABLE 28

SYSTEM SYMBOL TABLE 28
TWO PASS MODE 26

Assembler error messages (Table A-7) 52

Card Data format (CDD) 61
Card subroutine errors (CARDO and CARD1) 36

Card System format (CDS) 59
Character codes, Supervisor and DUP I/O {Appendix D) 64

Cold start
halt addresses (Table 13) 44
operating procedure, card 44
operating procedure, paper tape 46

Cold start operating procedures (cards) 44
Cold start operating procedures (paper tape) 46
COMMA (In-Core Communications Area) 7

core locations (Appendix F} 70

Comments, Monitor control record 10
COMMON, assembler control record 28
Common Arith/Funct calls (Appendix E) 66
Common Arith/Funct LIBFs (Appendix E) 67
Common FOR TRAN calls (Appendix E) 65
Compilation error messages 35
Compilation messages 34
Console Printer Core Dump 78
Console Printer Disk Dump 79
Console printer subroutine errors (TYPEO and WR TYO} 38
Control records

Assembler 26

DUP 17
FORTRAN 32
Monitor 7
S~pervisor 10

94

Conversion factors, disk storage unit 63
Conversion routines (Appendix E) 68
Core image buffer (CIB) 4
Core Image format

format (Appendix B) 59
loading 16

Data cards (Card System format) 60
Data formats (Appendix B) 57

Card Data (CDD) 61
Card System (CDS) 59
Disk Core Image (DCI) 59
Disk Data (DDF) 59
Disk System {DSF} 57
Paper Tape Data (PTD) 61
Paper Tape System {PTS) 61

Print Data {PRD) 61
DCOM {Disk Communications Area) 7
DEFINE, DUP control record 23
DELETE, DUP control record 23
Disk Communications Area (DCOM) 7

Disk Core Image format (DCI} 59
Disk Data format {DDF) 59
Disk dump routines

Console Printer Disk Dump 79
1132 Printer Disk Dump 79

Disk FOR TRAN I/O {Appendix E) 66

Disk Pack Initialization Routine (DPIR) 40
Disk storage allocation (Table 1) 3
Disk storage layout 3
Disk storage unit conversion factors 63
Disk system format (DSF)

format (Appendix B) 57
loading 16

Disk Utility Program (DUP) 17
control records 17
error messages (Table A-9) 55

messages 24
operating notes 25

DPIR card load operating procedures 40
DPIR paper tape load operating procedures 45
DUMP, DUP control record 18
DUMPDATA, DUP control record 18
DUMPIBT, DUP control record 22
DUP, monitor control record 10
D UP control records 1 7

DEFINE 23
DEIBTE 23
DUMP 18

DUMPDATA 18
DUMPLET 22
DWADR 22
EDIT 24

STORE 20

STORECI 20

STOREDA TA 21

STOREMOD 20

DUP error messages (Table A-9) 55

DUP operating notes 25
DUP waits and loops (Table A-10) 56

DWADR, DUP control record 22

EOP card (Card System format) 60

Error messages (Appendix A) 47
Assembler (Table A-7) 47
DUP (Table A-9) 55

DUP Waits and Loops (Table A-10) 56
FORTRAN (Table A-8) 53

FORTRAN I/O (Table A-11) 56
IBMOO 77
Loader (Table A-6) 50

Monitor Supervisor (Table A-4) 48

Monitor Supervisor Wait Locations (Table A-5) 49

System Loader (Table A-1) 47
System Loader Wait Locations, Part 1 (Table A-2) 48
System Loader Wait Locations, Part 2 (Table A-3) 48

Extended Arith/Funct calls (Appendix E) 65

Extended Ari th/Funct LIBFs (Appendix E) 67

EX1ENDED PRECISION, FOR TRAN control record 33

FILE, assembler control record 28
File protection 5

FILES, supervisor control record 11
Fixed area 5

Fixed Location Equivalence Table (FLET) 5

FLET (Fixed Location Equivalence Table) 5

layout of LET/FLET entries (Appendix G) 74

output format (Figure 8) 23

Flipper routine 5

FOR, monitor control record 9

Formats (Appendix B) 57

FOR TRAN common LIBFs (Appendix E) 66
FOR TRAN compiler 32

compilation error messages 35

compilation messages 34
control records 32

I/O logical unit designations (Table 8) 32
printouts 34

FOR TRAN control records 32
ARITHMETIC TRACE 33

EXTENDED PRECISION 33
IOCS 32

LIST ALL 33

UST SOURCE PROGRAM 32

LIST SUBPROGRAM NAMES 32

LIST SYMBOL TABLE 32
NAME 33

ONE WORD INTEGERS 33
TRANSFER TRACE 34

FOR TRAN error codes (Table A-8) 53

FOR TRAN find routine (Appendix E) 66

FOR TRAN I/O and conversion routines (Appendix E) 66

FOR TRAN 1/0 errors 35.1

FOR TRAN 1/0 error codes (Table A-11) 56
FOR TRAN I/O logical unit designations 32

FOR TRAN sign transfer calls (Appendix E) 65

FOR TRAN trace routines (Appendix E) 66

Header information, FOR TRAN 33

IBM systems area 3

IBMOO (1130 Disk Monitor System Maintenance Program) 75
ILS header card (Card System format) 61

In-Core Communications Area (COMMA) 7

core locations (Appendix F) 70
Initializin.g Disk Monitor System from cards 43

Initializing Disk Monitor System from paper tape 45

Interrupt level subroutines (Appendix E) 68
Interrupt service subroutines (Appendix E) 68

1/0 logical unit designations, FOR TRAN 32
IOCS, FORTRAN control record 32
ISS header card (Card System format) 61

J6B, monitor control record 9

Keyboard input of data records 35 .1

Keyboard subroutine functions (TYPEO) 38

Layout of LET/Fl.ET entries (Appendix G) 74
LET (Location Equivalence Table) 4

layout of LET/FLET entries (Appendix G) 74

output format (Figure 7) 22
LEVEL, assembler control record 28

LIST, assembler control record 27
LIST All, FOR TRAN control record 33

LIST DECK, assembler control record 27
LIST DECK E, assembler control record 27

LIST SOURCE PROGRAM, FOR TRAN control record 32

LIST SUBPROGRAM NAMES, FOR TRAN control record 32
LIST SYMBOL TABLE, FORTRAN control record 32

Load Mode Control Card 41

Loader 12

Loader messages/ error messages (Table A-6) 50

LOCAL, supervisor control record 10

Location Equivalence Table (LET) 4
Logical unit designations (FOR TRAN I/O) 32

Machine requirements ii

Mainline header card (Card System format) 59

Monitor control record analyzer 7
Monitor control records 7

ASM 9
Comments 10

DUP 10

FOR 9

JOB 9
PAUS 9
1END 10

TYP 9

XEQ 10
Monitor supervisor error messages (Table A-4) 48
Monitor supervisor wait locations (Table A-5) 49

NAME, FORTRAN control record 33

NOCAL, supervisor control record 11

Non-disk FOR TRAN format 1/0 (Appendix E) 66

Object-time transfer vector 15

ONE WORD INTEGERS, FORTRAN control record 33

Index 95

Operating procedures
cold start (cards) 44

cold start (paper tape) 46

Console Printer Core Dump 78
Console Printer Disk Dump (card) 79
Console Printer Disk Dump (paper tape) 80
DPIR card load 40
DPIR paper tape load 45

IBMOO 77

initializing Disk Monitor System from cards 43

initializing Disk Monitor System from paper tape 45
Paper Tape Reproducing routine 80

Paper Tape Utility routine (PTUTI) 81

system generation (card system) 40

1132 Printer Core Dump 78

1132 Printer Disk Dump (card) 79
1132 Printer Disk Dump (paper tape) 80

Optional tracing (FOR TRAN) 34

Origins for core loads 13
Overlay routines for LOCAL subprograms (Appendix E) 66

Paper tape control records 46
Paper Tape Data format (PTD) 61
Paper tape monitor system 45
Paper tape not-ready WAITs 82

Paper Tape Reproducing routine 80
Paper tape subroutines (PAPT) 39

Paper Tape System format (PTS) 61
Paper Tape Utility routine (PTUTL) 81

Patch header record (IBMOO) 76
PAUS, monitor control record 9

Pre-operative errors (subroutine library) 36
Print Data format (PRD) 61
PRINT SYMBOL TABLE, assembler control record 27

Program header record (Disk System format) 57

Program subtypes 58
Program types 58

PTUTL (Paper Tape Utility routine) 81
PUNCH SYMBOL TABLE, assembler control record 28

REQ CaJ1ds 42

Sample program output 79

SA VE SYMBOL TABLE, assembler control record 28

SCON Card 42

Skeleton Supervisor 7

SOCALs (system overlays) 15
Stacked input arrangement 12

Standard Arith/Funct calls (Appendix E) 65

Standard Arith/Funct LIBFs (Appendix E) 67
STORE, DUP control record 20

STORECI, DUP control record 20
STOREDA TA, DUP control record 21

STOREMOD, DUP control record 21

96

Subroutine header card (Card System format) 60
Subroutine header record (IBMOO) 77
Subroutine library 5, 36

listing (Appendix E) 65
maintenance 76

Subtype codes 58

Supervisor and DUP I/O character codes (Appendix D) 64
Supervisor control record area 4

Supervisor control records 10

FILES 11

LOCAL 10
NOCAL 11

Supervisor program 3, 7

System Configuration Deck 42

System generation (card system) 40

System loader error codes (Table A-1) 47

System loader wait locations, Part 1 (Table A-2) 48
System loader wait locations, Part 2 (Table A-3) 48

System overlays (SOCALs) 15
System program maintenance (IBMOO) 75

SYSTEM SYMBOL TABLE, assembler control record 28

TEND, monitor control record 10
TERM Card 42

TRANSFER TRACE, FORTRAN control record 34

Tracing (FOR TRAN) 34

TWO PASS MODE, assembler control record 26

TYP, monitor control record 9

Type codes 58

User area 4
User storage area 4
User-supplied cards 41

Utility calls (Appendix E) 65

Utility routines (Appendix I) 78
Console Printer Core Dump 78

Console Printer Disk Dump 79

Disk Pack Initialization Routine (DPIR) 40

Paper Tape Reproducing routine 80
Paper Tape Utility routine 81

1132 Printer Core Dump 78

1132 Printer Disk Dump 79

Working Storage area 5
Working storage indicator word 17

XEQ, monitor control record 10

1130 Disk Monitor System Maintenance Program IBMOO) 75

1130 subroutine library listing (Appendix E) 65

1132 Printer Core Dump 78
1132 Printer Disk Dump 79

1442 Errors and Operator Procedures (CARDO and CARD1} 36

C26-3750-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

READER'S COMMENT FORM

IBM 1130 Disk Monitor System
Reference Manual

Form C26-3750-2

• Your comments, accompanied by answers to the following questions, help us produce better

publications for your use. If your answer to a question is .. No" or requires qualification,

please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes

• Does this publication meet your needs? D
• Did you find the material:

Easy to read and understand? D
Organized for convenient use? D
Complete? D
Well illustrated? D
\Vritten for your technical level? D

No

D

D
D
D
D
D

• \Vhat ~ your occupation? --------------------------~
• How do you use this publication?

As an introduction to the subject? D As an instructor in a class? D
For advanced knowledge of the subject? D As a student in a class? D
For information about operating procedures? D As a reference manual? D

Other _________________________________ _

• Please give specific page and line references with your comments when appropriate.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C26-3750-2

YOUR COMMENTS PLEASE •••

This SRL bulletin is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions. become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys­
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold
fold

... : .

Attention: Department 813

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE Will BE PAID BY ...

I BM Corporation

112 East Post Road

White Plains, N. Y. 10601

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

........ ·· ················ :

Fold

•
International Buainaaa Machinaa Corporation
Data PraceHing Division
112 East Poat Raad, White Plains, N.Y.10601
(USAOnlyJ

., . IBM World Trade Corporation
821 United Nations Plaza, New Yark, NawYark 10017
llntarnatianal] .

Fold

