
Systems Reference Library

IBM 1130 Disk Monitor System
Reference Manual

This publication describes the 1130 Disk Monitor, a combined
operating and programming system. This system includes a
Supervisor program, a Disk utility program, a symbolic
assembler, a FORTRAN compiler, and a subroutine library.
The latter four programs operate under·control of the Super­
visor program to provide continuous operation.

The IBM-supplied subroutine library contains routines for
input/ output, conversion, and arithmetic functions.

File 1130-36
Form C26-3750-0

FOREWORD

The IBM 1130 Disk Monitor System, a
collective name for five distinct but interdependent
programs - Supervisor, Disk Utility, assembler,
FORTRAN, and subroutine library - is a powerful,
combined ope rating and programming system.

The programs that make up the Monitor System
use advanced programming techniques, including
relocatable subroutines, highly compressed formats
for data and programs, and flexible input and output
command structures which facilitate data conversion
operations. A unique feature of the 1130 Monitor
System is the "floating" boundary between the user
program/data file area and the disk Working
Storage area. As information is added to disk
storage in the User area, the Working Storage
area is decreased in size. Conversely, if a
program or data file is deleted from disk storage
User area, the remaining programs are packed,
and the disk Working Storage area is increased
in size.

The following publications may assist the user
in utilizing the system:

• IBM 1130 Functional Characteristics, Form
A26-5881

This publication (C26-3750-0) supersedes IBM 1130 Monitor System

Specifications (Form C26-5940-0), which is now obsolete.

e IBM 1130 FORTRAN Language, Form C26-
5933

• IBM 1130 Assembler Language, Form C26-
5927

• IBM 1130 Subroutine Library, Form C26-5929

Throughout this publication all references to
locations in storage are in hexadecimal unless
otherwise noted; therefore, the subscript 16
has been omitted.

Machine Requirements

The minimum machine features and units
required for operation of the Monitor System are:

• IBM 1131 Central Processing Unit, Model 2,
with a minimum of 4096 words of core storage

• IBM 1134 Paper Tape Reader and an IBM 1055
Paper Tape Punch, or an IBM 1442 Card Read
Punch.

Copies of this and other IBM publications can be obtained through IBM Branch Offices. A form has

been provided at the back of this publication for reader's comments. If the fdrm has been detached,

comments may be directed to: IBM, Programming Publications Dept. 452, San Jose, Calif. 95114

© International Business Machines Corporation 1966

ii

IBM 1130 DISK MONITOR SYSTEM - INTRODUCTION. • • • •

DISK STORAGE LAYOUT •.•••• • •• • •.••• • • • •••• • • 3
IBM Systems Area • • • • • • • • • . • • • • . • • • • • • • • • • • • 3

User Storage Area. • • • • • • • • . • • • • • • • • • • • • • • • • • 4

Working Storage Area • • • • • • • • • • • . . • • • • • • • • • • • 5

File Protection • • • • • • • • • • • • • • • . • • • • • • • • • • • • 5

SUPERVISOR PROGRAM . • • • • • • • • • . • . • • • • • • • • • • • 7

Skeleton Supervisor • • • • . • • • • • • • • • • • • • • • • 7
Monitor Control Record Analyzer • • • • . • • • • • • • • • • • • 7

Monitor Control Records • • • • • • • • • . • • • • • • • • • • • • 7

Supervisor Control Records • • . • • • • • • . • . • • • • • • • • • 10

Stacked Input Arrangement • • • • • • • • . . • • • • • • • • • • • 12

The Loader • • • . • • • . • • . • • • • • • • . • • • • • • • • • • • • 12

DISK UTILITY PROGRAM (DUP) . • • • . • . . • • • • • • • • • • • 17

DUP Control Records • • . • • • . • • . • • . • • • • • • • • • • • • 17

DUP Messages . • • • . • • . • • • . • • . • • . • . • • • • • • • • • 24

DUP Operating Notes • • . • • • • • • • • . • • • • • • • • • . • • 25

ASSEMBLER. • • . • . • . . • • • • • • • • . • • . • • • • • • . • • • • • 26

Assembler Control Records • • • . • • • • . • • • • • • • • • • • • 26

Origin of Source Program • . • • . • . • • • . . . • • • • • • • • • 28

Assembler Paper Tape Format • . . • • • • • . • • • • • • • • • • 28

Assembler Messages and Error Codes • • . . . • • • • • • • • • • 29

Assembler Operating Procedures • • • • • • • • • • • • • • • • • 29

FOR TRAN COMPILER • • • • • . • • • • . • • . • • • • • • • • • • • • 32

FOR TRAN Control Records . . • • • . • • . . • • • • • • . • • • • 32

FOR TRAN Printouts • • • • • • • • • • • • . • • • • • • • • . • • • 34

SUBROUTINE LIBRARY • • • • • . • • • • • • • • • • • • • • • • • • • 36

Pre-Operative Errors . • . . . • • . • • . • • • • • • • • • • • • • • 36

Card Subroutine (CARDO and CARDl) EITors. • • • • • • • • • 36

Console Printer Subroutine (TYPEO and WR TYD}

Errors . • • • . • • . . . • • • • • • . . • • • • • . • • • • • • • • • • 38

Keyboard Subroutine (TYPEO) Functions • • • • • • • . • • • • 38

Paper Tape Subroutines (PAPT). • • • • • • • • • • • • • • • • • • 39

Adding and Removing Subroutines • • • • • • • • • • • • • • • • 39

SYSTEM GENERATION OPERATING PROCEDURES

(CARD SYSTEM) • . • . . . • • • . . • • • • • . • • • • • • • • • • • • 40

Disk Pack Initialization Routine (DPIR) • • . • • • • • • • • • • 40

User-Supplied Cards • . . • • • • • • • • . • • • • • . • • 41
Procedure for Initializing Disk Monitor System

from Cards • . • • • • . • . . • • • • • • • • • . • • . . • • • 43

Cold Start Operating Procedure • • . • • . • • • • • • • • • • • • 44

iii

CONTENTS

PAPER TAPE MONITOR SYSTEM • • • • • • • • • • • • • • • • • • • 45

DPIR Paper Tape Load Operating Procedures. • • • • • • • • • 45

Procedure for Initializing Disk Monitor System

from Paper Tape. • 45

Cold Start Operating Procedure • • • • • • • • • • • • • • • • • • 46

Paper Tape Control Records • 46

APPENDIX A. ERROR MESSAGES • • • • • • • • • • • • • • • • • • 4 7

APPENDIX B. DATA FORMATS • • • • • • • • • • • • • • • • • • • 57

Disk System Format (DSF). • 57

Disk Core Image Format (DCI). • • • • • • • • • • • • • • • • • • 59
Disk Data Format (DDF) • 59

Card System Format (CDS) • 59

Card Data Format (CDD) ••••••••••• , • • • • • • • • • • 61

Print Data Format (PRD). • 61

Paper Tape System (PTS) and Paper Tape Data

(PTD} Formats • 61

APPENDIX C. DISK STORAGE UNIT CONVERSION

FACTORS........................ 63

APPENDIX D. SUPERVISOR AND DUP INPUT/OUTPUT
CHARACTER CODES • • • • • • • • • • • • • • • • 64

APPENDIX E. 1130 SUBROUTINE LIBRARY LISTING 65

APPENDIX F. IN -CORE COMMUNICATIONS AREA
(COMMA) •••••••••••••••••••••••• 70

APPENDIX G. LAYOUT OF LET /FLET ENTRIES • • • • • • • • • 74

Three-Word Entries • 74

Six-Word Entries • 74

APPENDIX H. IBMOO (1130 DISK MONITOR SYSTEM

MAINTENANCE PROGRAM) • • • • • • • • • • • • 75

System Program Maintenance • • • • • • • • • • • • • • • • • • • 75

IBM Subroutine Library Maintenance • • • • • • • • • • • • • • • 76

Operating Procedures • 77

Error Messages • 77

APPENDIX I. UTILITY ROUTINES • • • • • • • • • • • • • • • • • 78

Console Printer Core Dump • 78

1132 Printer Core Dump • 78

APPENDIX J. SAMPLE PROGRAM OUTPUT • • • • • • • • • • • 79

INDEX •••••••••••••••••••••••••••••••••••• 84

The 1130 Monitor is a disk-oriented system that
allows the user to assemble, compile, and/or
execute individual programs or a group of programs
with a minimum of operator intervention. Jobs to
be performed are stacked and separated by control
records that identify the operation to be performed.

The Monitor System consists of five distinct
but interdependent programs (see Figure 1):

• Supervisor program

• Disk Utility Program

• Assembler program

• FORTRAN compiler

• Subroutine library

The Supervisor program provides the necessary
control for the stacked-job concept. It reads and
analyzes the monitor control records, and transfers
control to the proper program.

,-----1130 DISK MONITOR SYSTEM------1

1130
Supervisor

Program

[] l 1
1130 1130 1130 1130

FORTRAN Assembler Disk Utility Subroutine
Compiler Program Library

L---------------------~

Figure 1. 1130 Disk Monitor System

IBM 1130 DISK MONITOR SYSTEM - INTRODUCTION

The Disk Utility Program is a group of routines
designed to assist the user in storing information
(data and programs) on the disk, and retrieving
and using the information stored.

The assembler program converts user-written
symbolic-language source programs into machine­
language object programs.

The FORTRAN compiler converts user-written
FORTRAN-language source programs into machine­
language object programs.

The subroutine library contains subroutines for
data input/output, data conversion, and arithmetic
functions.

The Monitor System coordinates program
operations by establishing a communications area
in memory which is used by the various programs
that make up the Monitor System. It also guides
the transfer of control between the various
monitor programs and the user's programs.
Operation is continuous and setup time is reduced
to a minimum, thereby effecting a substantial
time saving and allowing greater programming
flexibility. The complete Monitor System resides
on disk storage. Only those routines or programs
required at any one time are transferred to core
storage for execution. This feature minimizes
the core storage requirements and permits
segmenting of long programs.

In addition to providing the user with minimal
operating time, the 1130 Disk Monitor System
significantly reduces the amount of programming
to be done by the user. This is made possible
through the sharing of common subroutines by
unrelated programs. For example, input/output
or conversion operations are required by most
user programs, regardless of whether the programs
are written in the assembler language or in
FORTRAN. IBM provides a library of subroutines
as an integral part of the Monitor System.

The assembler and FORTRAN compiler
facilitate development of a library of user
programs. The object programs can be stored
on cards or paper tape, as is customary in
installations without disk storage. However, with
disk storage, programs can be stored directly
on disk without the necessity of designating actual
storage locations, remembering or documenting
the storage assignments, or updating the
storage assignments and documentation as
conditions change. The disk-stored programs

IBM 1130 Monitor System - Introduction 1

and data are referred to by name when called
for use. The Monitor System, through the use
of a table known as the Location Equivalence
Table (LET), can locate any user program,
subroutine, or file by a table search for the
name. Stored with the name is the amount of
disk storage (in disk blocks)* required by the

*There are 16 disk blocks per sector; each disk
block contains 20 data words (refer to Appendix
C).

2

program or data.
Any program that is added to the user's disk­

stored programs is usually placed at the end of
the other programs. If a program is deleted, the
remaining programs are usually packed for
effective utilization of disk storage. This packing
facility is described later in this publication.

Disk Storage is divided into three logical areas:
IBM Systems area, User Storage area, and
Working Storage area. The contents of these
three areas, described in detail in subsequent
paragraphs, are shown in Figure 2. The sectors
and cylinders that these areas occupy are shown
in Table 1. Appendix C shows disk storage unit
conversion factors.

IBM SYSTEMS AREA

This area contains the integral parts of the 1130
Disk Monitor System: the Supervisor program,
Disk Utility Program (DUP), FORTRAN
compiler, and the assembler. The FOR TRAN
compiler and/or the assembler can be deleted
at the user's option.

Supervisor Program

This program supervises all monitor operations
and performs the control and loading functions
for the user programs and monitor programs
(FORTRAN, Assembler, and DUP). The
Supervisor is directed by monitor control records
in the stacked input. Included within the Supervisor
is the Skeleton Supervisor, which resides in core
during monitor operation and provides the communica­
tions link between the monitor programs and the
user's programs.

Sector

0

Supervisor
FLET

(includes
(if Fixed

Fixed

identification, DUP FORTRAN Assembler
Area is

Area (if
cold start,

defined)
defined)

DCOM)

DISK STORAGE LAYOUT

Table 1. Disk Storage Allocation

Use
Total Sectors Cylinders Total

Sectors Occupied Occupied Cylinders

Identification 1 0 0 1/8

Cold Start 1 1 0 1/8

DCOM 1 8 0 1/8

Supervisor 53 2-7, 9-55 0-6 6-5/8

DUP 72 56-127 7-15 9

FORTRAN 104 128-231 16-28 13

Assembler 40 232-271 29-33 5

CIB 24 272-295 34-36 3

LET 8 296-303 37 1

Remainder of 1296 304-1599 38-199 162
User Area and
Working Storage

-- -
1600 200

Disk Utility Program (DUP)

DUP is a group of routines provided by IBM that
aid the user in the day-to-day operation of his
installation. By means of these routines, certain
frequently required operations, such as storing,
deleting, and dumping data and/ or programs from
disk storage, can be performed with minimum
programming effort by the user.

Supervisor Control
Record Area

CIB LET

User Area

IBM User
Subroutines Programs

~~~~~~~~~~~~~~~~~~-"A~~~~~~~~~~~~~y-~~~~~~~~~~~-A _ -·· _J y . ---y----

IBM User Storage Area 
Systems Area 

Figure 2. Disk Storage Layout 

Working Storage 
Area 

Disk Storage Layout 3 



FORTRAN Compiler 

The compiler translates programs written in the 
FORTRAN language into machine language, and 
provides for calling the necessary arithmetic, 
functional, conversion, and input/output 
subroutines at execution time. 

Assembler 

The assembler converts source programs written 
in the assembler language into machine language 
object programs. The conversion is one-for-one, 
that is, the assembler normally produces one 
machine language instruction for each instruction 
of the source program. 

USER STORAGE AREA 

This area consists of the following: 

• A Fixed area (optional) for storing core image 
programs and data. If a Fixed area is 
defined, there will also be a Fixed Location 
Equivalence Table (FLET). 

• The Core Image Buffer (CIB) 

• The Supervisor Control Record Area 

• The Location Equivalence Table (LET) 

• A User area for storing IBM-supplied 
subroutines, user-written programs, and 
data files 

Core Image Buffer (CIB) 

Tho.s e parts of a core load (main program and 
associated subprograms) that fall below core 
location 409610 are put in the Core Image Buffer 
(CIB) as they are prepared for execution or for 
storing in core image format by the Loader (refer 
to DUP Control Records, *STORECI). When all 
parts of program have been processed, either the 
contents of the CIB are read back into core 
storage by the Loader, which overlays itself in 
the process, or DUP is recalled from disk to core 
to complete the *STORECI operation, using the 
CIB as source of any parts of the core load which 
are to reside below core location 409610 . 

4 

The CIB is also used by the Supervisor to 
save core locations 25610-409510 on every CALL 
LINK. Before each link is executed, the Loader 
restores any part of this area which has been 
included in the COMMON defined by the called 
link. 

Supervisor Control Record Area 

This area is used by the system to store 
information for use by the Loader (refer to 
Supervisor Control Records). 

Location Equivalence Table (LET) 

The Location Equivalence Table (LET) serves 
functionally as a "map" for the IBM subroutines, 
user's programs, and data files. Each subroutine, 
user's program, or data file that is stored on 
disk has at least one entry in the table. The table 
entry contains the name and disk block length of 
the subroutine, program, or data file. Each 
entry point in a subroutine requires a separate 
entry in LET. The user may print the contents 
of LET by using the DUP control record DUMPLET 
(refer to DUP Control Records). 

User Area 

As each user-written program or data file is 
added to the User area, the space available for 
the Working Storage area decreases. Conversely, 
if a program is deleted, the Working Storage area 
increases by the amount of space the program 
formerly occupied in the User area. For 
example, user-written programs A, B, and C 
are stored on disk as follows: 

CIB LET IBM-supplied Program Program Program Working Storage 
subroutines A B C Area 

If a program, D, is created, it would be stored on 
disk causing the Working Storage area to contract: 

CIB LET IBM-supplied Program Program Program Program Working 
subroutines A B C D Storage 

Area 

If Program A is now deleted, Programs B, C, and 
D would be moved up, maintaining a packed 



condition in the User area while expanding the 
Working Storage area: 

CIB LET IBM-supplied Program Program Program Working Storage 
subroutines B C D Area 

NOTE 1: Core Image programs and data files are 
always put on disk at the beginning of a sector, and 
remain at the beginning of a sector even after 
packing. Disk System format programs start at 
the beginning of a disk block. 

NOTE 2: The Working Storage area always starts 
at the beginning of a sector; therefore, it might 
not expand or contract by the exact size of the 
program stored or deleted. 

IBM-Supplied Subroutine Library 

The IBM-supplied subroutine library contains 
input/output, data conversion, arithmetic and 
functional, and selective dump subroutines. 
These subroutines are generally available for 
use with both the assembler and the FORTRAN 
compiler. Operating procedures are described 
in a subsequent section of this manual. Appendix 
E contains a complete list of all IBM-supplied 
subroutines. 

Flipper Routine 

The subroutine library includes a Flipper routine, 
which is a part of the co re load for those user's 
programs that use LOCAL (Load-on-Call) 
routines (refer to Supervisor Control Records). 
When a LOCAL routine is called, control is 
passed to the Flipper routine, which reads the 
LOCAL into core storage if it is not already in 
core and transfers control to it. All LOCALs 
in a given core load are executed from the same 
core storage locations; each LOCAL overlays 
the previous one. All LOCALS required by a 
program are relocated and stored by the Loader 
in Working Storage immediately following the 
last defined file, if any. 

Fixed Area 

The Fixed area is an optional area that the user 
can define to enable him to store programs at 
fixed disk locations. The user can define the 
size of the Fixed area to be a whole number of 

cylinders, with a minimum of two, and he can 
increment (but not decrease) the size of the Fixed 
area by a whole number of cylinders at any time. 
Unlike in the User area, when a program is 
deleted from the Fixed area no packing occurs. 
Thus, programs or data files in this area can be 
referenced by absolute sector addresses, since 
they will not be moved. The Fixed area, if any 
has been deffu.ed, requires a LET of its own, 
i.e., a Fixed Location Equivalence Table (FLET). 
The contents of FLET may also be printed by 
using the DUP control record DUMPLET. The 
Fixed area is used only for the storage of core 
image programs and data, and not for Disk 
System format programs or for working 
storage. 

WORKING STORAGE AREA 

The Working Storage area is used for temporary 
storage. Most of the area is available to the 
user during execution of his programs. The 
Loader stores LOCALs (Load-on-Call routines) 
and SOCALs (system overlays) in this area, 
and it is also used extensively by the monitor 
programs (see Working Storage Indicator Word). 
For example, the assembler uses this area for 
temporary storage of a program during the 
assembly process; at the conclusion of an 
assembly or compilation, the object program is 
in the Working Storage area. 

The assembler requires 32 sectors of Working 
Storage for possible symbol table overflow 
during an assembly, plus whatever additional 
Working Storage is required for disk output 
(compressed source statements in Pa-ss 1, 
object program in Pass 2). Since an assembly 
requires at least one sector for disk output, the 
assembler checks for the availability of 33 
sectors of Working Storage before beginning to 
assemble the source program. If at least 33 
sectors are not available, an assembler error 
message is printed (refer to Appendix A), the 
assembly is terminated, and control is returned 
to the Supervisor. 

During a FORTRAN compilation, FORTRAN 
requires the amount of Working Storage 
necessary to contain the compiled program. 

FILE PROTECTION 

The 1130 Disk Monitor System controls file 
protection. All Disk I/O subroutines furnished by 

Disk Storage Layout 5 



IBM check the address of the sector on which they 
have been instructed to write to ensure that it is 
greater than the file protection address in COMMA 
(refer to Appendix F), with the exception of the 
Write Immediate function (described in IBM 1130 
Subroutine Library, Form C26-5929). The file 
protection address, which is equal to the starting 
address of Working Storage, is updated by DUP 

6 

whenever a program is added to the User area. 
Only data files which have been created in or 

moved into Working Storage can be written into 
by assembly-language programs (unless the 
Write Immediate function is used). FORTRAN 
programs may write directly into User and 
Fixed areas (refer to *FILES under Supervisor 
Control Records). 



The Supervisor program performs the control and 
loading functions for the Monitor System. Monitor 
control records, which are used to direct the 
sequence of jobs without operator intervention, are 
included in a stacked input arrangement and are 
processed by the Supervisor program. The 
Supervisor program decodes the monitor control 
record and calls the proper monitor program to 
perform the desired operation. A typical sequence 
of operations is listed below. The programs in 
parentheses would be called by the Supervisor to 
perform the particular operation: 

1. Compilation of a FORTRAN program (FORTRAN 
compiler) 

2. Storage of the compiled program on disk (Disk 
utility Program) 

3. Assembly of a symbolic program (Assembler) 
4. Storage of the assembled program on disk 

(Disk Utility Program) 
5. Execution of a disk-stored program (Loader) 
6. Punching of a disk-stored program into cards 

(Disk Utility Program) 

The Supervisor itself is a group of several 
distinct but closely related routines: 

• Skeleton Supervisor 

• Monitor Control Record Analyzer 

• Loader 

• Cold Start Routine 

SKELETON SUPER VISOR 

The Skeleton Supervisor provides the communica­
tions link between the monitor programs and the 
user's programs, i.e., it contains the necessary 
logic to conduct the transition from one job to 
another. The Skeleton Supervisor is read into 
core storage when the operation of the monitor is 
initially started by means of the Cold Start Routine 
(refer to Cold Start Operating Procedure), which 
occupies sector 1. The Disk Communications Area 

SUPERVISOR PROGRAM 

(DCOM), which contains addresses and indicators 
necessary for the operation of the monitor, is 
read into core initially with the Skeleton Supervisor. 
The in-core communications area (referred to as 
COMMA) is restored from DCOM whenever a Cold 
start procedure is initiated or a JOB record is 
encountered (refer to Monitor Control Records). 
When COMMA is restored there will be no usable 
program in Working Storage. Appendix F lists 
all the core locations and information contained in 
COMMA. 

MONITOR CONTROL RECORD ANALYZER 

This routine analyzes the monitor control records, 
prints out the information contained in the control 
record, and calls the appropriate program: Disk 
utility Program, Assembler, FORTRAN compiler, 
or Loader. 

The following three formats are used by the 
Monitor System to store information on disk 
(refer to Appendix B): 

• Disk Core Image Format (DCI) 

• Disk System Format (DSF) 

• Disk Data Format (DD F) 

MONITOR CONTROL RECORDS 

Input to the Supervisor consists of one or more 
job decks, each preceded by a JOB monitor 
control record (see Figure 3). The character 
codes recognized by the Supervisor are listed in 
Appendix D. Although the monitor control records 
are described in terms of cards, these records 
can be entered in card image form from paper tape 
or the keyboard/ console printer. 

The JOB control record defines the starting and 
ending points of the job; however, the total job can 
consist of many subjobs. The assembler, 
FORTRAN compiler, Disk utility Program, and 
user's programs can be called for operation by 
the ASM, FOR, DUP, and XEQ control records, 

Supervisor Program 7 



1130 ---------
Supervisor 

Source Program 

llASM 

II JOB 

Figure 3. Processing Input Data Under Supervisor Control 

respectively. These are each considered 
individual subjobs. The successful completion of 
the total job depends on the successful completion 
of each individual subjob within the job. Some 
subjobs are not attempted if the preceding subjobs 
have not been successfully completed. 

When a monitor control record is read, the 
system program required to do the subjob is 
read into core storage from disk storage. The 
program then processes input until the end of the 
subjob deck is reached, a new monitor control 
record is encountered, or an error occurs. 
Monitor error messages are described in 
Appendix A. 

Every job is assumed to begin with no 
programs in Working storage (see Working 
storage Indicator Word). 

Control can be returned to the Supervisor by 
manually branching to core location 0038. The 

8 

Program 

----- Worldng Storage 

---- User Storage 

---- Assembler 

--- FORTRAN 

DUP 

Supervisor 

Supervisor then passes records until it 
encounters a monitor control record. 
All monitor control records have the following 
format: 

Columns 1.;.2: 11 (slashes, to identify monitor 
control record) 

3: b (blank) 
4-7: Pseudo-operation code (left­

justified) 

The following paragraphs contain a list of the codes 
and their operations. The monitor control records 
are summarized in Table 2. 

NOTE: Comments are permitted in unspecified 
columns in all monitor control records. A "b" 
appearing in a column means that the column must 
be blank. 



r able 2. Summary of Monitor Control Records 

cc 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

I I b * comments 

I I b J 0 B T - Disk Storage Label-

I I b A s M 

I I b F 0 R 

I I b p A u s 

I I b T y p 

I I b T E N D 

I I b D u p 

I I b x E Q -Program Name -

JOB 

This record causes initialization and termination 
::>f a job sequence and restores COMMA from 
DCOM. The format is 

L 

cc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

//bJOBb T I D E N T b 

The letter T in column 8 indicates temporary 
mode. In this mode, programs or data files stored 
in the User area by DUP are automatically deleted 
at the end of the current job. DUP operations 
which are permitted in temporary mode are 
described in Table 5. 

If coltihms 11-15 contain a disk storage identifica­
tion, this identification is compare9 with that which 
is written on the first sector of the disk cartridge 
to determine that the desired cartridge is mounted. 
If the identification is not the same, the Supervisor 
waits for operator intervention. The identifier 
must be left-justified in its field. 

This record also causes a skip to channel 1 
before it is printed on an 1132 Printer. 

ASM 

This record causes the assembler to be read into 
core storage for execution. The format is 

cc 1 2 3 4 5 6 

I I b A s M 

-Count- Disk 

0,1,N 

Initialize a job sequence 

Read assembler into core for execution 

Read FORTRAN into core for execution 

Halt until START is pressed 

Change control record input from principal input unit 
to keyboard/console printer for succeeding monitor 
control records 

Change input mode from keyboard/console printer 
back to the principal unit for succeeding monitor 
control records 

Read DUP into core for execution 

Read and transfer control to main line program 

The assembler control records and source 
statements for the program to be assembled must 
follow the ASM control record. 

FOR 

This record causes the FORTRAN compiler to be 
read into core storage for execution. The format 
is 

cc 1 2 3 4 5 6 
I I b F 0 R 

The FORTRAN control records and source state­
ments for the program to be compiled must 
follow the FOR control record. 

PADS 

This record causes a wait to allow the operator to 
make setup changes. The format is 

cc 1 2 3 4 5 6 7 
//bPAUS 

The monitor operation proceeds as soon as 
PROGRAM ST ART is pressed. 

TYP 

This record changes the control record input from 
the principal input unit to the keyboard/console 

Supervisor Program 9 



printer for succeeding monitor (only) control 
records. The format is 

TEND 

cc 1 2 3 4 5 " 
I I b T y p 

This record changes the input mode from the 
keyboard/console printer back to the principal 
input unit for succeeding monitor control records. 
The format is 

DUP 

cc 1 2 3 4 5 6 7 
//bTEND 

This record causes the Disk Utility Program to be 
read into core storage for execution. The format is 

cc 1 2 3 4 5 6 
I I b D u p 

Control records for the Disk Utility Program must 
follow the DU P control record. 

This record causes the Loader to load a specified 
mainline program into core storage and to transfer 
control to it. The format is 

cc 1 2 3 4'5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
I I b x E Qb xx x x x b L y y z b 

The mainline program XXXXX must be left­
justified in columns 8-12. If XXXXX is in Disk 
System format, the Loader converts it to Core 
Image format. If columns 8-12 are blank, the 
mainline program presently stored in Working 
Storage (by FORTRAN, DUP, or the assembler) 
is converted and read into core and executed. 

A core map is printed during conversion if 
column 14 contains an L and the program is in 
Disk System format. This map includes the core 
loading address of the mainline program, the 

10 

names and execution addresses of all subroutines 
and subprograms included in the load, file 
allocations, if any, giving file number, sector 
address, and number of sectors in the file. Also, 
if L is specified, a core map is printed for any 
DSF program linked to under this execution. 

Columns 16-1 7 must contain the count of 
LOCAL, NOCAL, and FILES records which follow, 
if any (refer to Supervisor Control Records). This 
count is decimal, right-justified. 

DISK 0, 1, or N will be loaded with the program 
if column 19 contains 0, 1, or N, respectively. Any 
other character (including blanks) causes a special, 
shorter disk routine (DISKZ) to be loaded. This 
special version is intended for FORTRAN programs 
and those assembly-language programs which do 
not use the disk. 

Comments 

This record provides comments in the listing. It 
may not immediately follow an XEQ, DUP, ASM, 
or FOR record. The format is 

cc 1 2 3 4 5 - 80 
/ / b * comments 

SUPERVISOR CONTROL RECORDS 

LOCAL 

LOCAL is an acronym denoting routines specified 
by the user to be loaded into a LOCAL overlay area 
as they are called. All subroutines desired by the 
user to be loaded on call at execution time must 
be designated by LOCAL records following the 
XEQ monitor control record. The format is 
as follows: 

cc 1 
*LOCALMLl ,SUBl ,SUB2 

where MLl =name of a mainline program to be 
executed, and SUBl and SUB2 are subroutines in 
the mainline pro gram. 

Each mainline program (in the same XEQ subjob) 
that calls a subroutine to be loaded on call must 
have its own LOCAL record. The same mainline 
program may have more than one LOCAL record. 



For example: 

* LOCALMLl ,SU Bl ,SUB2 
*LOCALML2,SUB3,SUB4 
*LOCALMLl ,SUB5 

or 
*LOCALMLl ,SUBl ,SUB2,SUB5 
* LOCALML2, SU 83 ,SUB4 

If the record ends with a comma, the next 
record is treated as a continuation. The mainline 
name is not repeated in a continuation, e.g., 

*LOCALMLl ,SU Bl ,SUB2, 
*LOCALSUB5 

If the mainline program is executed from Working 
Storage, the mainline name must be omitted by 
putting a comma in column 7, e.g., 

* LOCAL,SUB 1, SUB2 

No embedded blanks are allowed in a LOCAL record. 

NOC AL 

NOC AL is an acronym denoting routines which, 
although not called anywhere in the core load, 
are to be included in the load, e. g. , debugging 
aids such as trace or dump routines. 

All subroutines which are to be loaded but are not 
called at execution time must be designated by 
NOCAL records following the XEQ monitor control 
record. The format is as follows: 

cc 1 
*NOCALMLl ,SUBJ ,SUB2 

NOCAL records are governed by the same rules and 
restrictions as LOCAL records. 

NOTE: The user must observe the following rules 
in LOCAL and NOCAL records: 

1. No routine can appear in a LOCAL record if it 
causes any of the other routines appearing 
in LOCAL records (for the same mainline pro­
gram) to be called before the first LOCAL has 
returred control to the calling routine. Thus, 
a LOCAL cannot call another LOCAL, nor 
can it call a routine which causes a second 
LOCAL to be read into core and executed. 
For example, if A calls B and B calls C , 

and A is a LOCAL, then neither B nor C can 
appear on a LOCAL record for the same 
mainline program. 

2. If a given routine is designated a LOCAL, 
and the System Overlay scheme is employed, 
then this routine will be a LOCAL even though 
it might have been included in one of the 
System Overlays (SOCALs). 

3. No program which uses LOCALs or NOCALs 
can be stored in Disk Core Image Format 
(DCI). 

4. Only CALL-type subroutines, i.e., type 4 and 
type 6 subroutines, can appear on NOCAL 
records (see Appendix B). 

5. If a subroutine is designated a LOCAL , it will 
be loaded as a LOCAL even if it is not 
referenced anywhere in the core load. 

6. The LOCAL information pertaining to any 
given XEQ record cannot exceed 640 words, 
counting all LOCAL names on the LOCAL 
records as two words and mainline program 
names as three words. The same rule 
applies to NOC AL information. 

7. Only types 3, 4, 5, and .6 subroutines can 
appear on LOCAL records (see Appendix B). 

FILES 

File numbers specified in FORTRAN DEFINE FILE 
statements can be equated to names of data files 
in the User area or Fixed area at execution time 
by means of a FILES record entered after an XEQ 
monitor control record or DUP control record 
STORE CI. The format is as follows: 

cc 1 
*Fl LES(FI LEN I NAME N) I (Fl LEM, NAMEM) 

where FILEN and FILEM are the file numbers 
specified in FORTRAN DEFINE FILE statements, 
and NAMEN and NAMEM are names of previously 
defined disk storage data files. 

No embedded blanks are allowed. If the record 
ends with a comma, the next record is treated 
as a continuation, e. g. , 

*Fl LES(FI LEN I NAMEN), 
*Fl LES(FI LEM, NAMEM) 

NOTE: The FILES information for a given XEQ 
record cannot exceed 640 words, counting the 
file numbers as one word and the file names as 
two words. 

Supervisor Program 11 



Any number of LOCAL, NOCAL, and FILES 
records can follow the XEQ monitor control 
record, but each type must be grouped 
together, e.g. , 

*LOCAL 
*LOCAL 
*LOCAL 
*NOC AL 
*NOC AL 
*FILES 
*FILES 

The following is not permitted: 

*LOCAL 
*NOC AL 
*LOCAL 
*FILES 
*NOC AL 

STACKED INPUT ARRANGEMENT 

Input to the Monitor System consists of control 
records, source programs, object programs, and 
data arranged logically by job. 

The following points must be considered when 
arranging the input for any job. 

1. Any number of cwmments records can be 
inserted in front of (but not immediately 
following) DUP, ASM, FOR, or XEQ 
monitor control records. 

2. Any records other than monitor control 
records which remain after the execution of 
an ASM, FOR, or XEQ subjob are passed 
until the next monitor control record is 
read. After a DUP operation, records are 
passed until either a monitor control record 
or another DUP control record is read. 

3. If an error is detected in an assembly, 
FORTRAN compilation, or during loading 
from Disk System format, the resulting 
object program or any programs that follow 
within the job cannot be executed. Also, if 
an error is detected in an assembly, 
FORTRAN compilation, or during a loading 
from Disk System format during a 
STORECI function, all DUP functions are 
bypassed until the next valid ASM, FOR, or 
JOB record is read. 

12 

4. If the FORTRAN compiler or the assembler 
encounters a monitor control record, control 
will be transferred to the Supervisor, i.e. , 
the monitor control record will be trapped. 
The Supervisor will correctly analyze the 
record after the compilation or assembly has 
been aborted. DUP will not trap a monitor 
control record during a DUP ope.ration (refer 
to DUP Control Records). 

The stacked input arrangement shown in Figure 4 
will compile, store, and execute .both Programs A 
and B, providing there are no source program 
errors, and there is sufficient room in the Working 
Storage area (refer to Working Storage Area). A 
source program error causes the DUP STORE 
operation (refer to DUP Control Records) to be 
bypassed for that program, and all following XEQ 
requests preceding the next JOB record are 
disregarded. Thus, if the successful execution of 
one program depends upon the successful completion 
of the previous program, both programs should be 
considered as one job and the XEQ control records 
should not be separated by a JOB record. 

Figure 5 shows the stacked input arrangement for 
three jobs which are not dependent upon each other. 

Job A assembles, stores, and executes source 
program A. This job includes comments cards 
and a PAUS monitor control card to allow the 
operator to intervene. 

Job B calls in the Disk Utility Program, and 
stores object program B on disk. 

Job C compiles, stores, and executes FORTRAN 
source program C. 

THE LOADER 

The Loader has two basic functions: 

1. To prepare entire core loads (Disk System 
format loading). 

2. To bring core loads into core storage 
immediately before execution (Core Image 
format loading). This includes the restora­
tion of COMMON, if any, between linked core 
loads. 

These two loading processes are described after 
a discussion of the origin which the Loader gives 
a particular core load, the object-time transfer 
vector, and system overlays (SOCALs). Disk 
System format and Core Image format are described 
in Appendix B. 



llb JOB 

11 b XEQ b NAME B 

r-----:1 ...----*STORE bbbbbbWSbbUAbbNAME B 

.,... ___ FORTRAN Control Records 

._...._ __ *STORE bbbbbbWSbbUAbbNAME A 

---- Source Program A 

11'14---- FORTRAN Control Records 

Figure 4. Example of Stacked Input (One Job) 

Origins for Core Loads 

The Loader origins relocatable mainlines (main 
programs) after the Disk 1/0 subroutine requested 
by the user on the XEQ control record. One of 
these disk routines is always in lower core, and 
no disk routine is included in any disk-stored core 
load. DISKZ is always used unless otherwise 
specified. The origins used by the Loader are 
shown below: 

Origin 
Disk 1/0 Version (hexadecimal) (decimal} 

DISKZ 1C2 450 
DIS KO 260 608 
DIS Kl 370 880 
DISKN 438 1080 

The origins for absolute mainlines are not con­
trolled by the Loader; however, such mainlines 
must be originated above the end of the Disk l/ 0 
version used. All references in a core load to a 
Disk I/O subroutine must be to the same one. 

Supervisor Program 13 



II JOB 

Source Program C ---- j ,__ __ _ 
FORTRAN Control Records ---..J.,..._---------1~ 

~----------. 

Object Program B---.., / ,__ __ _ 

Source Program A---w / ---

Figure S. Example of Stacked Input (Three Jobs) 

14 



Object-time Transfer Vector 

In order to transfer to and from subroutines at 
execution time, the Loader builds two separate 
object-time transfer vectors: the CALL TV and 
the LIBF TV (see Figure 6). 

Each CALL TV entry is a single word containing 
the absolute address of a subprogram entry point; 
however, in the case of a LOCAL subprogram 
referenced by a CALL statement, the absolute 
address is the address of the corresponding 
Flipper Table entry instead of the subprogram 
entry point. 

Each LIBF TV entry consists of three words. 
Word one is the link word. Words two and three 
contain a branch instruction to the subprogram 
entry point; however, in the case of a LOCAL 
subprogram referenced by an LIBF statement, 
words two and three contain a branch instruction 
to the corresponding Flipper Table entry instead 
of the subprogram entry point. 

The first two LIBF TV entries are special 
entries, each three words long. The first entry is 
the Floating Accumulator (F AC). The address of 
the first word of F AC must be odd; therefore, if 
necessary, a dummy entry is made in the CALL 
TV to make FAC begin at an odd address. The 
second special entry is used by certain sub­
routines to indicate overflow, underflow, and 
divide check. 

If SOCALs are used, the LIBF TV contains 
special entries for SOCAL subprograms referenced 
by LIBF statements. These entries transfer 
indirectly either to the referenced subprogram if 
the overlay containing the subprogram is 
presently loaded, or to the SOCAL Flipper in 
order to load the required overlay and transfer 

Low Core 

Last 
LI BF 

First 
LIBF 

Disk 
1/0 

LI BF TV 

Object - time TV 

Figure 6. Layout of Object-Time Transfer Vector Area 

to the referenced subprogram (refer to System 
Overlays). 

The CALL TV does not contain entries for 
SOCAL subprograms referenced by CALL 
statements if SOC ALs are used. 

System Overlays (SOCALs) 

System Overlays (SOCALs) are created for any 
core load with a FORTRAN mainline program 
if the core load will not fit into core. The 
Loader selects certain subroutines used in the 
core load and writes them into Working Storage 
in either two or three groups (overlays). An area 
in core as large as the largest overlay is reserved 
for these subroutines. Whenever a subroutine in 
one of these overlays is required during program 
execution, the corresponding overlay is read 
from the disk into the overlay area in core (if it 
is not already in core). 

Overlays are constructed from the IBM sub­
routine library according to type and subtype 
(described in Appendix B). The user can alter 
this design by changing the subtypes of the 
library subroutines, or by specifying a subtype 
for his own subroutines (refer to DUP Control 
Records - STORE). The two levels of SOCALs 
are described in the following paragraphs. 

SOCAL Level 1 uses the following two overlays: 
1. Type 3, subtype 2 (arithmetics, e.g., FADD), 

and Type 4, subtype 8 (functionals, e.g., SIN). 
2. Type 3, subtype 3 (the non-disk FORTRAN 

Format subroutine SFIO, and the FORTRAN 
I/O subroutines, e.g. , CARDZ), and Type 3, 
subtype 4 (the I/O conversion subroutines, 
e.g., HOLEB). 

JJi------
End of Core 

High Core 

CALL TV COMMON 

Supervisor Program 15 



Level 1 reduces the core requirements by an 
amount equal to the total size of the smaller of 
these overlays. Approximately 15 words of extra 
linkage, however, are required. 

If core loads do not fit with Level 1, then 
Level 2, employing the following three overlays, 
is used: 

1. Same as (1) above . 
2. Same as (2) above. 
3. Type 3, subtype 1 (disk FORTRAN I/O 

subroutines SDFND and SDFIO). In addition, 
this overlay includes a 320-word buffer. 

Level 2 reduces the core requirements by an amount 
equal to the sum of the two smallest overlays, with 
approximately 15 words of extra linkage added. 

The overlays will not contain all available sub­
routines of the specified types, but only those 
required by the core load. 

Since LOCALs take priority over SOCALs, if a 
subroutine which would otherwise be in a SOCAL 
overlay is designated a LOCAL, it will appear as 
a LOCAL and not as part of a SOC AL. 

If a core load does not fit with Level 2 over­
lays, core requirements may be reduced by 
additionally designating the following as 
LOCALs: 

1. Subroutines not contained in any overlay. 
2. Subroutines contained in the largest overlay. 

This reduces the SOCAL overlay area re­
quired in core. 

If the core load does not fit into core even with 
SOCALs, an error condition is indicated. An 
error condition is also indicated for core loads 
which do not fit and which have mainline pro­
grams written in assembler language. 

Programs requiring system overlays cannot be 
stored in Core Image format (refer to Appendix B, 
Disk Core Image Format). 

Disk System Format Loading 

A core load is built from programs stored in Disk 
System format in either of two cases: 

16 

1. To execute the core load immediately (called 
as a result of an XEQ control record or a 
CALL LINK). In this case control must be 
passed to the Core Image format loading 
process at the termination of the Disk 
System format loading process. 

2. To store the core load in Disk Core Image 
format for future execution (called as a 
result of a DUP *STORECI control record -
refer to DUP Control Records). In this 
case, control is returned to DUP, which 
initiated the process. 

In this type of loading, a mainline program (with 
its required subroutines) is converted from Disk 
System format to Core Image format. This 
includes the construction of the co re image 
header record and the object-time transfer 
vector. Parts of the core load which are to 
reside below location 409610 are stored in the 
CIB; parts of the core load which are to reside 
above location 409510 (if any) are placed directly 
into core storage. LOCALS and SOCALs which 
are a part of the core load are also processed and 
written out on Working Storage (following the last 
data file, if any). 

Core Image Format Loading 

In this loading process, the core load is read into 
core, except for the first sector. When loading a 
program immediately following its conversion from 
Disk System format, only the contents of the CIB 
are read into core (other parts of the core load are 
already in core). When loading a program which 
has previously been stored in Core Image format, 
both the sections above location 409510, if any, 
and below 409610 are read into core. The Skeleton 
Supervisor is given the information necessary to 
enable it to read in the first sector of the core 
load and to move the object-time transfer vector 
into its location. Control is then passed to the 
Skeleton Supervisor, and finally to the object 
program. 



The Disk utility Program (DUP) is a group of 
routines designed to accomplish the following: 

• Allocate disk storage as required by each 
program or data file to be stored 

• Make these programs available in card or 
paper tape format 

• Provide printed status of the User area, 
Fixed area, and Working Storage area. 

• Perform various disk maintenance operations. 

The Disk utility Program is called into operation 
by a DUP monitor control record. This record 
may be· followed by any number of DUP control 
records to select the routines desired. The DUP 
control records are described in subsequent 
paragraphs. The character codes recognized 
by DU P are listed in Appendix D. 

Working Storage (WS) Indicator Word 

A WS Indicator Word in COMMA (0069) contains 
the disk block count of the program to indicate 
that a valid program is in Working Storage. 

Upon completion of an assembly or compila­
tion, the WS Indicator Word is set to the disk 
block count of the program left in Working 
Storage in Disk System form at. DUP can then 
be called upon to store or dump this program. 

When a DUP function is used to dump from the 
User area or the Fixed area, the WS Indicator 
Word is set to the disk block count of the program 
being moved. If the DUP function does not destroy 
any part of the program in Working Storage, the 
WS Indicator Word is not changed. It is set to 
zero by a store to the User area, a Cold Start, or 
a JOB monitor control record. 

If a DUP function which involves programs 
is requested from Working Storage while the WS 
Indicator Word is zero, a FROM field error 
message is given and the requested function is 
bypassed. 

DISK. UTILITY PROGRAM (DUP) 

DUP CONTROL RECORDS 

DUP control records generally have the following 
format: 

cc 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
'----......------'~ .............., 

Asterisk DUP Fune- "FROM" "TO" Program Name Count 
in cc 1 tion Name Device Device (cc 21 - 25) Field 

(cc 2 - 12) Symbol Symbol 
(cc 13 - (cc 17 -
14) 18) 

All fields except Count Field are left-justified. 
Each DUP control record contains an asterisk 
(*) in cc 1. The DUP Function Name is in cc 2 -
12. The "FROM" and "TO" symbols (cc 13 -
14 and 17 - 18, respectively) specify the I/O 
devices and/or disk areas from and to which 
data is to be transferred. The following 
abbreviations must be used in the FROM and TO 
fields: 

Symbol 
PR 
CD 

PT 
ws 
UA 
FX 

Meaning 
Principal Print Device 
Card Reader (if the Disk Monitor 
System has been loaded from 
paper tape, CD is equivalent to 
PT) 
Paper Tape 
Working Storage, Disk 
User area, Disk 
Fixed area, Disk 

The count field is in decimal, right-justified. For 
data files, if the source is disk, this field 
specifies the number of sectors; if the source is 
cards, this field specifies the number of cards; 
if the source is paper tape, this field specifies 
the number of records. Unspecified portions of 
DUP control records can be used for comments. 
A "b" appearing in a column indicates that the 
column must be blank. 

Disk Utility Program (DUP) 17 



In the following paragraphs, each DU P function 
name is accompanied by a table showing the 
symbol combinations that may be specified in the 
FROM and TO fields. The tables also show the 
various formats that data can be in before the 
operation, and the corresponding formats to 
which this data is converted by DUP after the 
operation. These formats appear in parentheses 
after the FROM and TO symbols, and have the 
following meanings: 

DSF Disk System Format 
DCI Disk Core Image Format 
DDF Disk Data Format 
CDS Card System Format 
CDD Card Data Format 
PTS Paper Tape System Format 
PTD Paper Tape Data Format 
PRD Print Data Format 

These formats are shown in Appendix B. Table 3 
summarizes the DUP functions that move 
information from one area to another; Table 4 
summarizes all DUP control records; and 
Table 5 gives the restrictions on DUP functions 
when in temporary mode (JOB T). 

DUMP (Dump Program) 

The DUMP routine dumps (unloads) information 
from the User area, Fixed area, or Working 
Storage area to cards, paper tape, or printer, 
or from the User or Fixed area to the Working 
Storage area. The decimal number of disk 
blocks dumped is specified in the corresponding 
LET entry or in the WS Indicator Word. 

~ CD PT ws 
LY (CDS) (COD) (PTS) (PTD) 

PR 
(PRO) (DSF) (DDF) 

WS (DSF) x x x 

(DSF) x x x x 
UA (DDF) x x x x 

(DCI) x x x x 

FX (DCI) x x x x 
(DDF) x x x x 

The control record format is as follows: 

cc 

l 2 3 4 5 6 7 8 9 l 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

*DUMPb 

18 

~ ~ 

"FROM" "TO" 
Symbol Symbol 

Program Name 
(required ex­
cept for WS to 
PR) 

NOTE 1: If the DUMP is from WS, and the WS 
Indicator is zero, a FROM field error message 
is given (refer to Appendix A). 

NOTE 2: When the DUMP is to cards, each card 
is checked to see that it is blank before it is 
punched (refer to Appendix A). 

NOTE 3: At the end of DUMP operations, all 
subsequent blank cards are selected into 
Stacker 2. 

DUMPDATA (Dump Data) 

The DUMPDATA routine dumps data from the User 
area, Fixed area, or Working Storage area to 
cards, paper tape, or printer, or from the User 
or Fixed area to the Working Storage area. The 
number of sectors to dump must be specified by 
the count field. This number of sectors will be 
dumped regardless of the length of the specified 
data file or program. 

WS (DSF) 
(DDF) 

(DSF) 
UA (DDF) 

(DCI) 

FX (DCI) 
(DDF) 

CD 
(COD) 

x 
x 

x 
x 
x 

x 
x 

PT 
(PTO) 

x 
x 

x 
x 
x 

x 
x 

PR 
(PRO) 

x 
x 

x 
x 
x 

x 
x 

ws 
(DDF) 

x 
x 
x 

x 
x 

The control record format is as follows: 

cc 

l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
L...,---1 '--v-' I l__J 

* DU M PD AT A b "FROM" "TO" Program Name Sector Count 
Symbol Symbol (required ex- (when dump-

cept for WS to in9 from WS, 
PR) the sector 

count overrides 
the WS Indica­
tor) 

NOTE 1: When the dump is to cards, each card 
is checked to see that it is blank before it is 
punched (refer to Appendix A). 

NOTE 2: At the end of DUMPDATA operations, all 
subsequent blank cards are selected into Stacker 2. 



S! 
~ 

§ 
.w 

l 
ru s 
'8 
c:: ,:g 

.... 
"° 

~~ UA 
(DSF) (DDF} (DCI) 

(DSF) 

(DDF) 
UA 

(DCI) 

(DCI) 

FX -
(DDF) 

(DSF) STORE* STORECI* 

STOREMOD 
ws 

(DDF) STOREDATA* 

STOREMOD 

(CDD) STOREDATA* 

CD 

(CDS) STORE* STORE Cl 

(PTD) STOREDATA* 

PT 
(PTS) STORE* STORECI* 

*Eliminates stored information from Working Storage 

**Replaces current contents of Working Storage 

(DSF) 

Table 3. Movement of Information Using DUP Control Records 

FX 
(DDF} (DCI) 

STORE Cl 

STOREDATA 

STOREMOD 

STOREDATA** 

STORE Cl** 

STOREDATA** 

STORE Cl** 

ws CD PT PR 
(DSF) (DDF) (CDD} (CDS} (PTD) (PTS) (PRD) 

DUMP** DUMPDATA** DUMPDATA** DUMP** DUMPDATA** DUMP** DUMP** 

DUMPDATA** 

DUMP** DUMP** DUMP** DUMP** 

DUMPDATA** DUMPDATA** DUMPDATA** DUMPDATA** 

DUMP** DUMP** DUMP** DUMP** 

DUMPDATA** DUMPDATA** DUMPDATA** DUMPDATA** 

DUMP** DUMP** DUMP** DUMP** 

DUMPDATA** DUMPDATA** DUMPDATA** DUMPDATA** 

DUMP** DUMP** DUMP** DUMP** 

DUMPDATA** DUMPDATA** DUMPDATA** DUMPDATA** 

DUMPDATA DUMP DUMPDATA DUMP DUMP 

DUMPDATA 

DUMPDATA DUMPDATA DUMPDATA 

STOREDATA** 

STORE** 

STOREDATA** 

STORE** 



Table 4. Swnmary of DUP Control Records 

cc 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

* D u M p b -From- -To- ---Name---

* D u M p D A T A b -From- -To- ---Name--- -Sector Count-

* s T 0 R E -From- -To- ---Name---

* s T 0 R E c - From- -To- ---Name--- - Count of 'Files'-
Records 

* s T 0 R E D A T A -From-'- -To- ---Name--- -Sector, Card, or-
Record Count 

* s T 0 R E M 0 D b -ws- UA or FX ---Name---

* D u M p L E T (Print conten~ of LET on principal printing unit) 

* D w A D R (Write sector addresses in Working Storage area) 

* D E L E T E 

D F N E b F x E D b A 

* D E F N E b v 0 D b A s 

* D E F N E b v 0 D b F 0 

Table S. Restrictions on DUP Functions in Temporary Mode (JOB T) 

Functions Restrictions (if any) 

DUMP None 

DUMPDATA Nor;ie 

STORE None 

STORE Cl To UA only 

STOREDATA To UA and WS only 

STOREMOD Not allowed 

DUMP LET None 

DWADR Not allowed 

DELETE Not allowed 

DEFINE FIXED AREA Not allowed 

DEFINE VOID ASSEMBLER Not allowed 

DEFINE VOID FORTRAN Not allowed 

STORE 

The STORE routine stores programs from cards, 
paper tape, or the Working Storage area to either 
the User area or Working Storage area ·on disk. 

20 

CD (CDS) 
WS (DSF) 
PT (PTS) 

UA 
(DSF) 

x 
x 
x 

ws 
(DSF) 

x 

x 

R 

s 

R 

---Name---

A -Cylinder-
Count 

E M B L R 

T R A N 

The control record format is as follows: 

cc 

l 2 3 4 5 6 7 8 9 l 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
~'--.,--J ~ 

! "FROM" "TO" 
Symbol Symbol 

*STORE 

Specifies subtype (left-
justified) of type 3 & 4 
subprograms (see Appen -
dix B). This field is 
blank unless special 
SOCAL handling is 
desired. 

Program Name 
(required ex­
cept for storing 
to WS) 

NOTE: If the STORE is from WS, and the WS 
Indicator is zero, a FROM field error message 
is given (refer to Appendix A). 

STORECI (Store Core Image) 

The STORECI routine stores programs from cards, 
paper tape, or the Working Storage area to either 
the User area or Fixed area on disk. The 
programs are converted to Disk Core Im age 
format (see Appendix B), hence they are loaded 
into core storage faster than programs stored 
otherwise·. The STORECI function uses the 
Loader to convert the Disk System format pro­
gram to core image. After control is returned to 



DUP, the core image header and that portion of the 
program (excluding Disk I/O) that resides below 
core location 409610 are stored from the CIB, and 
that portion of the program above core location 
409510, if any, is stored from core. No 
COMMON area is stored, but the transfer vector 
is included. STORECI always requests a map 
from the Loader since it will not be available when 
the program is loaded from Core Image format. 

From 

CD (CDS) 
WS (DSF) 
PT (PTS) 

UA 
(DCI) 

x 
x 
x 

FX 
(DCI) 

x 
x 
x 

The control record format is as follows: 

cc 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

*STORE CI t '-v-' '-v-' 
See "FROM" "TO" 
Note 1 Symbol Symbol 

Program Nome 
(always re­
quired) 

See Note 2 

NOTE 1: Column 9 is used to specify the Disk I/0 
routine required by this program. 

0 = DISKO 
1 = DISKl 
N = DISKN 

Others = DISKZ 
(including blank) 

NOTE 2: Count Field (cc 27-30) contains decimal 
count of *FILES records that are required for 
program being stored. This number of records 
will be read before the normal STORE CI function 
is performed. 

NOTE 3: Data files named in the *FILES record 
must be in the Fixed area. 

NOTE 4: If the STORECI is from WS, and the WS 
Indicator is zero, an error message is given 
(refer to Appendix A). 

STOREDAT A (Store Data) 

The STOREDATA routine stores data from cards, 
Working Storage area, or paper tape to the User 
area, Fixed area, or Working Storage area. Each 

data file starts at the beginning of the next available 
sector and the length is defined in whole numbers 
of sectors. 

WS (DDF) 
CD (COD) 
PT (PTO) 

UA 
(DDF) 

x 
x 
x 

FX 
(DDF) 

x 
x 
x 

ws 
(DDF) 

x 
x 

The control record format is as follows: 

cc 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

*STOREDATA 
"-y-J '--y-1 

"FROM" 
Symbol 

"TO" 
Symbol 

Program Nome see NOTE 
(not required 
for CD to WS 
or PT to WS) 

NOTE: Count Field (cc 27-30) must contain one of 
the following in decimal: 
Sector count if source is WS (overrides the WS 
Indicator), card count if source is CD, record 
count if source is PT. 

STOREMOD (Store Modify) 

The STOREMOD routine moves a program or data 
from Working storage to the User area or Fixed 
area, overlaying an item specified by name in the 
User area or Fixed area. This permits the user 
to modify an item in the User or Fixed area 
without changing its name or relative position. The 
length of the item in Working Storage (in disk 
blocks or sectors, as appropriate) cannot be 
greater than the length of the item it overlays. If 
the name is not found in LET/FLET, the STORE MOD 
control record functions as a STORE control re­
cord. 

UA FX 

I ws x x 

The control record format is as follows: 

cc 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

*STOREMOD b 
~ ~ 

ws UAor 
FX 

Program Name 

Disk Utility Program (DUP) 21 



DUMPLET (Dump Location Equivalence Table) 

The DUMPLET routine dumps the contents of the 
Location Equivalence Table (LET) to the principal 
printing unit (see Figure 7). If a Fixed area has 
beefJ defined, the Fixed Location Equivalence 
Table (FLET) is printed as a separate table 
following LET (see Figure 8). 

The control record has the following format: 

Line 1: 

Line 2: 
(Entries in commo­
bose and adjusted 
odd resses - see 
Appendix E) 

Line 3: 

cc 

12345678 

*DUMP LET 

LET 

xxxx xxxx 

Work Storage starting 
sector address 

xx xx 

xxxx xxxx 

Disk block address 
ovoi lob le for next User 
area program or data file 

xx xx 
'---v----J 

DWADR (Disk Write Address) 

The DWADR routine writes sector addresses on 
every sector in the Working Storage area. It 
restores correct disk sector addresses in the 
Working Storage area if they have been modified 
during execution of a user's program. Previous 
contents of the area are overlaid. Following the 
address word, the first two words of each sector 
contain D120 2663 (in hexadecimal). The next 
238 words have the format Annn, where nnn is the 
hexadecimal address of the sector; the last 80 

xxxx xxxx 

Number of words used 
by LET 

xx xx xx xx xx xx 
(LET sector header 
words) Relative sector 0 if lost sector Number of disk Words available Sector address of 

next sector number (0-7) of LET; other- blocks referenced by in this sector 
wise non-zero this sector of LET for more entries (O if lost sector) 

} 

For DSF 
programs 

Line 4 xxxxx 1 xx~ ~xx, 

Program name Program size Starting address 
(disk blocks) (disk blocks) Linen 

,xxxxx, ~xx, I xx.xx I ~xx, ~xx, ... ? . 
Program name Program size Starting address Execute core Program load 

(disk blocks) in User area address address in 
(disk blocks) (absolute) core 

Line 4 
xxxx } \......--... I 

For core 
Actual word count image 

of core image pro- programs 
gram (includes a 
60-word header) Linen 

,xxxxx, ~ xx xx \ 0000 0000) 
• '----y---1 y 

Line 4 xx xx 
L.._. • 

Data fi I e name Data file size Storti ng address Reserved Dato file size 
(disk blocks) 

} 

For data 
files 

(disk blocks) in User area 
Linen (disk blocks) 

NOTE 1: The header words of the first sector are printed on line 3. Additional header words are printed for each following sector as required. 

NOTE 2: For multi-entry subroutines, the Program Size and Starting Address fields for entry points subsequent to the first one will be blank. 

NOTE 3: Program size is the disk block count of the program. This corresponds to word 3 of the actual LET entry (see Appendix G). 

NOTE 4: Words 4, 5, and 6 of the printout reflect the actual LET entry words 4, 5, and 6. 

NOTE 5: All numbers are in hexadecimal. 

Figure 7. Output Format from a DUMPLET Operation (LET) 

22 



words are zeros. The control record has the 
following format: 

cc 

123456 

* DWADR 

DELETE (Delete Program or Data) 

The DELETE routine deletes a specified program 
or data file from the User or Fixed area. The 
LET or FLET entry is deleted and if the program 
was in the User area the User area is repacked. 
A lDUMY entry is created to replace deleted 
FLET entries. Although no packing of the 
Fixed area occurs, dummy entries in FLET are 
packed so that two are not adjacent but are 
consolidated. The control record has the 
following format: 

cc 

l 2 3 45 6 7 8 9 10 111213 1415 1617 18 19 20 212223 24 25 

*DELETE Name 

Line 1: FLET 

xxxx xxxx xxxx xxxx 

DE FINE (Define) 

The DEFINE routine defines variable parameters 
required by the Monitor System. The following 
options are available: 

• Define or increase the size of the Fixed area 

• Delete the assembler from the system 

• Delete FORTRAN from the system 

If the user wishes to delete the assembler or 
FORTRAN, he must do so before he defines a 
Fixed area. 

Within the Fixed area, programs can be 
stored at fixed disk locations. This area is 
defined as a whole number of cylinders, with a 
minimum of two, and it may be incremented 
(but not decreased) by a whole number of 
cylinders at any time. Defining or increasing the 
size of the Fixed area reduces disk storage 
available for User and Working Storage areas by 
the same amount. 

xxxx xxxx Line 2: 
{Entries in 
COMMA) Sector address of CIB Sector address of FLET Number of words used by FLET 

Line 3: 
(FLET sector 
header words) 

xx xx 
'--v--J 

Relative sector 
number {first 
sector is 
numbered 16) 

xx xx 
'--v--J 

0 if last sector of 
FLET; otherwise 
non-zero 

xx xx 
'--v--J 

Number of disk blocks 
referenced by this sec­
tor of FLET 

Lin.e 4} FLET entries are the same as for LET except that DSF programs do 
• not appear in the Fixed area; therefore, no three-word entries 

Lin•e n appear in FLET. 

NOTE 1: All references are in disk blocks unless otherwise indicated, 

xx xx 
'--v--J 

Words available in this 
sector for more entries 

xx xx 
'--v--J 

Sector address of next 
sector {O if last sector) 

NOTE 2: The header words of the first sector are printed on line 3, Additional header words are printed for each following sector as required; 
there is a header for each 52 FLET entries. 

NOTE 3: Program size is the disk block count of the program. This corresponds to word 3 of the actual FLET entry {see Appendix G). 

NOTE 4: Words 4, 5, and 6 of the printout reflect the actual FLET entry words 4, 5, and 6. 

NOTE 5: Al I numbers are in hexadecimal. 

Figure 8. Output Format from a DUMPLET Operation (FLET} 

Disk Utility Program (DUP} 23 



Deleting the assembler and/or FORTRAN packs 
the remaining information on the disk, thus 
increasing disk storage available for User and 
Working Storage areas by the amount occupied by 
the deleted programs (see Figure 2). 

The control record formats are as follows: 

To Define the Fixed area -
cc 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

*DEFINEbF IX ED b ARE A NNNN 

where NNNN = positive cylinder count in 
decimal, right-justified, 
specifying the initial size of 
Fixed area (minimum of 2 
cylinders) or an increment 
to the Fixed area. 

NOTE: The first cylinder of the first DEFINE 
FIXED AREA is used for FLET. 

To Delete the Assembler -

cc 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

*DEF I NE b V 0 I D b A S S E M B L E R 

To Delete FORTRAN -

cc 

1234567891011121314151617181920 

*DEFINEbVOI Db FORT RAN 

EDIT (to recall system loader) 

The *EDIT control record is used only by DUP to 
recall the System Loader, which initially loads 
the system into disk storage. The control 
record has the following format: 

cc 

12345 

*ED IT 

NOTE: This record must not be used by the user. 

24 

DUP MESSAGES 

Each DUP control record is printed at the time it 
is read, thus signaling that DUP has control and 
will remain in control until the next monitor 
control record is properly read. When a 
requested DUP function has been successfully 
completed, the following two-word exit message 
is printed in hexadecimal: 

Word 1: Disk block address of program or disk 
area that has been processed. 

Word 2: Number of disk blocks involved. 

For the DUP functions listed below, these words 
contain the following information (all addresses 
and lengths are given in disk blocks): 

DUP Function Information Printed 

DUMP, STORE, Program address* and 
STORECI, STOREMOD, program length** 
DELETE 

DUMPDATA, 
STOREDATA 

DUMPLET - (LET) 

DUMPLET - (FLET) 

DWADR 

Program address and 
decimal sectors or 
records specified con­
verted to disk blocks 

User area address and 
User area length 

Fixed area address and 
Fixed area length 

Working Storage address 
and Working Storage 
length 

DEFINE FIXED AREA Fixed area address 
and size 

DEFINE VOID 
ASSEMBLER 

DEFINE VOID 
FORTRAN 

Former address and 
size of assembler 

Former address and 
size of FORTRAN 

If the above words are not printed, the DUP 
function was not successfully completed. 

* If storing or dumping from Working Storage, the 
address of Working Storage is printed. 

**Length is the third word of LET /FLET entry 
(see Appendix G). 



The DUP error messages are described in 
l\.ppendix A. 

DUP OPERATING NOTES 

DUP functions should not be interrupted before the 
exit message is printed, since the status of LET/ 
FLET, COMMA, and DCOM may be in an inter­
mediate unusable state (see DUP Waits and Loops 

in Appendix A). 
Some DELETE functions may take several 

minutes since they may have to pack much of disk 
storage. These long DELETE and DEFINE 
functions must be allowed to complete their 
respective operations. 

Control can be returned to the DUP section 
thQ.t reads DUP and monitor control records by 
manually branching to core location 0276. 

Disk Utility Program (DUP) 25 



ASSEMBLER 

The language for the monitor assembler is de­
scribed in the publication IBM 1130 Assembler 
Language (Form C26-5927). Therefore, only a 
general description of the operation and the control 
records for the monitor assembler are described 
in this section. 

The monitor assembler cannot be operated in­
dependent of the Monitor System; however, the 
assembler can be deleted from the Monitor System 
if desired. 

A monitor control record with the pseudo-op 
ASM is used to call the assembler into operation. 
The assembler reads the source program, in­
cluding control records, from cards or paper tape. 
After assembly, the object program resides in the 
disk Working Storage area, and can be called for 
execution with a monitor XEQ control record, or 
it can be stored in the User or Fixed area with a 
DUP STORE or STORECI operation or punched 
as a binary deck or tape with a DUP DUMP opera­
tion. 

ASSEMBLER CONTROL RECORDS 

Assembler control records are used to specify 
assembly options and to provide input to the 
assembly process for certain types of source 

Table 6. Summary of Assembler Control Records 

decks. Assembler control records can be either 
card or paper tape. 

All assembler control records have the following 
format: 

Column 1: * 
2-71: Option 

Assembler control records can be written in 
free form, but at least one blank must separate 
the last character in the operation and the first 
character of any comments or numeric field. 

Assembler control records and their meanings 
are listed below. A summary is contained in 
Table 6. 

*TWO PASS MODE 

The source deck (or tape) must be read twice. 
TWO PASS MODE must be specified when: 

1. The user desires a list deck to be punched (see 
LIST DECK and LIST DECK E). 

2. One pass operation cannot be performed be­
cause intermediate output (source records) 
fill the Working Storage area of disk. 

*TWO PASS MODE Read source deck twice; must be specified when LIST DECK or LIST DECK E is specified, or when intermediate 
output fi I ls Working Storage 

*LIST Print a listing on the principal printing device 

*LIST DECK Punch a list deck on the principal 1/0 device (requires TWO PASS MODE} 

*LIST DECK E Punch only error codes (cc 18-19} into source program list deck (requires TWO PASS MODE} 

*PRINT SYMBOL TABLE Print a listing of the symbol table on the principal printing device 

*PUNCH SYMBOL TABLE Punch a list deck of the symbol table on the principal 1/0 device 

*SAVE SYMBOL TABLE Save symbol table on disk as a System Symbol Table 

*SYSTEM SYMBOL TABLE Use System Symbol Table to initialize symbol table for this assembly 

*LEVEL n n =interrupt lev~I number. Required for ILS subroutines 

*Fl LE n n = number (decimal} of sectors of Working Storage required at object time by the program being assembled 

*COMMON n n =length of COMMON in words (decimal} 

26 



*LIST 

A printed listing is provided on the principal 
printing device (console printer or 1132 Printer). 
The format of the printed listing corresponds to 
that of the list deck (see Figure 9). 

*LIST DECK 

A list deck is punched on the principal I/ 0 device 
(card or paper tape). This option requires two 
passes (TWO PASS MODE). The list deck format 
is shown in Figure 9. In cards, object information 
is punched into columns 1-19 of the source deck 
in pass 2 to make the list deck. In paper tape, the 
list tape punched is similar to the input tape, but 

with 20 frames added to the beginning of each record 
corresponding to card columns 1-20. 

*LIST DECK E 

Same as LIST DECK except no object information 
other than errors (positions 18-19) are punched. 

*PRINT SYMBOL TABLE 

A printed listing of the symbol table is provided on 
the principal printing device (console printer or 
1132 Printer). Symbols are grouped five per line. 
Multiply-defined symbols are preceded by the 
letter M; symbols with absolute values in a relo­
catable program are preceded by the letter A. The 
M and A flags, however, are not counted as 
assembly errors. 

25 26 27 30 31 32 33 34 35 

Address of the 
Instruction; 

Address 
Assigned to 

Blank Blan:---...... 1--:lankTlank Blank 

Format 
Op Code First Word of 

the Assembled 
Code * 

the Label, if any 

Relocation Indicators; 
Col. 7 is Blank for One­
Word Instructions or DC 

or 
Exponent for an 
XFLC Statement. 

Second Word of 
the Assembled 

Code 

Error Flags, 
if any 

Operands 

* For EBC Statements, Col. 9-12 Contains the Number of EBC Characters 

For BSS and BES Statements, Col. 9-12 Contains the Number of Words 
Reserved for the Block. 

Figure 9. List Deck Format 

Label 
Tag 

71 72 73 80 
~--------..v-------~/ 

Blank 

111 and Sequence 
Number, if any 

Assembler 2 7 



*PUNCH SYMBOL TABLE 

A list deck of the symbol table is punched on the 
principal I/O device (card or paper tape). The 
record format is the same as for PRINT SYMBOL 
TABLE. This option may be advantageous if off-line 
card-to-printer or paper tape-to-printer facilities 
are available. 

*SAVE SYMBOL TABLE 

The symbol table generated in this assembly is 
saved on the disk as a System Symbol Table. The 
System Symbol Table is saved until the next SA VE 
SYMBOL TABLE control record causes a new 
assembly-generated symbol table to replace it. 
This control record is also used with the SYSTEM 
SYMBOL TABLE control record to add symbols to 
the System Symbol Table. The SA VE SYMBOL 
TABLE option requires this assembly to be absolute. 
If any assembler errors are detected, or if the 
symbol table exceeds the allowable size of the 
System Symbol Table - 100 symbols - the symbol 
table will not be saved as a System Symbol Table, 
and an assembler error message will be printed 
(refer to Appendix A, Assembler Error Messages). 

*SYSTEM SYMBOL TABLE 

Before assembly begins, the System Symbol Table 
(previously built by a SA VE SYMBOL TABLE 
assembly) is copied into the symbol table for this 
assembly. This control record is used when it is 
desired to refer to symbols in the System Symbol 
Table without definition of those symbols in the 
source program, or together with the SA VE 
SYMBOL TABLE control record when it is desired 
to add symbols to the System Symbol Table. All 
symbols in the symbol table from the System Symbol 
Table will have absolute values. 

*LEVELbn 

This control record is required for the assembly 
of an ILS routine. n = A decimal interrupt level 
number (0-5). If the device operates on two levels 
of interrupts (1442 Card Read Punch), two LEVEL 
control records are required. At least one blank 
must separate the word LEVEL and the interrupt 
level number. 

28 

*FILEbn 

n =Number of sectors (decimal) of the disk Working 
Storage area required at object time by the pro­
gram being assembled. These sectors will be 
reserved at the beginning of Working Storage before 
any LOCALs or SOCALs are stored. This control 
record is used only when assembling a relocatable 
mainline program. At least one blank must separate 
the word FILE and the number of sectors. 

*COMMONbn 

n =Length of COMMON in words (decimal). This 
allows a COMMON area to be saved in linking from 
a FORTRAN mainline program to an assembly 
mainline and linking back to a FORTRAN mainline. 
At least one blank must separate the word COMMON 
and the decimal number. 

ORIGIN OF SOURCE PROGRAM 

The origin of a relocatable source program will 
always be at relative zero unless otherwise specified 
in the source program. 

The origin of an absolute source program, if 
not otherwise specified, will be at the end of the 
disk routine DISKN (location 0438). If the program 
will use another disk routine, the origin may be set 
lower to correspond to the proper disk routine. If 
no disk routine is used, the origin may be set to the 
end of the disk routine DISKZ (refer to Origins for 
Core Loads). 

ASSEMBLER PAPER TAPE FORMAT 

The paper tape input to the assembler is punched on 
PTTC/8 tape, one frame per character. The format 
of the tape control records is the same as the card 
format. The format of the symbolic program tape 
records is the same as the card format except for 
the following: 

1. The tape does not contain preceding blanks 
corresponding to card columns 1-20. 

2. The tape does not contain blanks or data 
corresponding to card columns 72-80. 

3. Trailing blanks need not be punched. Therefore, 
up to 51. characters (corresponding to card 
columns 21-71~ can appear in the tape record. 



Tape records are separated by NL (new line) 
characters (code DD). The delete character (code 
7F) is ignored whenever it is read, but the reader 
stop character (RS, code OD) causes the program 
reading the tape to wait and start reading again 
when PROGRAM START is pressed. The case shift 
characters (codes OE, 6E), when required, are not 
considered to occupy a space in the format. 

ASSEMBLER ME&5AGES AND ERROR CODES 

Appendix A contains the assembler error messages 
printed during operation of the 1130 Monitor. If 
LIST DECK or LIST DECK E is specified, the error 
detection codes shown in Table 7 are punched in 
columns 18 and 19. For the first error detected in 
each statement the assembler stores and then punches 
the code in column 18; the code for a second error 
is stored, overlayed by any subsequent errors, and 
punched in column 19. Thus, if more than two 
errors are detected in the same statement, only 
the first and last are indicated. 

At the end of the assembly, a message is printed 
indicating the number of assembly errors detected 
in the source program. Since no more than two 
errors are flagged per statement, the error count 
may exceed the actual number of flags. 

If symbol table overflow exceeds 32 sectors in 
Working Storage, an assembler error message is 
printed (refer to Appendix A). The maximum size 
of the symbol table (including overflow) and, hence, 
the maximum number of symbols that can be de­
fined in a program is determined by the size of 
core storage as indicated below: 

Type of Assembly 

With Listing 
One Pass, No Listing 
Two Pass, No Listing 

Size of Core Storage (words) 
4096 8192 

3502 
3574 
3609 

4867 
4940 
4974 

ASSEMBLER OPERATING PROCEDURES 

Card Input 

The source deck (including assembler control 
cards) can be assembled as part of a job, or it 
can be assembled as a separate job. In either 
case, the source deck must be preceded by a 
ASM monitor control record. 

Table 7. Assembler Error Detection Codes 

Flag Cause 

A Address Error 
Attempt made to specify dis-
placement field, directly or 
indirectly, outside range of 
-128 to +127. 

c Condition Code Error 
Character other than +, -, Z, 
E, C, or 0 detected in first 
operand of short branch or 
second operand of long BSC, 
BOSC, or BSI statement. 

F Format Code Error 
Character other than L, I, X, 
or blank detected in col. 32, 
or Lor I format specified for 
instruction valid only in short 
form. 

L Label Error 
Invalid symbol detected in label 
field. 

M Multiply Defined Label Error 
Duplicate symbol encountered 
in operand. 

R Re location Error 
Expression does not have valid 
relocation. 
Non-absolute displacement 
specified. 
Absolute origin specified in 
relocatable program. 
Non-absolute operand specified 
in BSS or BES. 
Non-relocatable operand in 
END statement of relocatable 
mainline program. 
ENT operand non-relocatable. 

s Syntax Error 
Invalid expression (e.g., invalid 
symbol, adjacent operators, 
illegal constant) 
Illegal character in record. 

Main program entry point not 
specified in END operand, 
Incorrect syntax in EBC state-
ment {e.g., no delimiter in 
card column 35, zero character 
count). 
Invalid label in ENT or ISS 
operand. 

T Tag Error 
Cord column 33 contains 
character other than blank, 0, 
1, 2, or 3 in instruction 
statement. 

u Undefined Symbol 
Undefined symbol in expression 

0 Op Code 
Unrecognized 

ISS, ILS, ENT, LIBR, SPR, 
EPR, or ABS incorrectly placed. 

Assembler Action 

Displacement set to zero 

Displacement set to zero 

Instruction processed as if L 
format were specified, unless 
that instruction is valid only in 
short form, in which case it is 
processed as if the X format 
were specified 

label ignored 

First occurrence of symbol in 
label field defines its value; 
subsequent occurrences of 
symbol in label field cause a 
multiply defined indicator to be 
inserted in symbol table entry 
(Bit 0 of first word), 

Expression set to zero 

Displacement set to zero 

Origin ignored 

Operand assumed to be zero 

Card columns 9-12 left blank; 
entry assumed to be relative 
zero 
Statement ignored 

Expression set to zero 

If illegal character appears in 
expression, label, op code, 
format, or tag field, additional 
errors may be caused, 
Card columns 9-12 left blank; 
entry assumed to be relative 
zero. Card columns 9-12 not 
punched; address counter 
incremented by 17, 

Statement ignored 

Tag of zero assumed 

Expression set to absolute zero 

Statement ignored and address 
counter incremented by 2. 
Statement ignored 

Assembler 29 



In most cases, the source deck is passed 
through the 1442 Card Read Punch only once. If 
the assembly is part of a stacked job, the 
assembly proceeds without operator intervention. 
If the END card is the last card in the stack, 
when the reader goes not ready, press reader 
ST ART to process the last card. 

In some cases it may be necessary to 
assemble in the two-pass mode, that is, pass 
the source deck through the 1442 Card Read 
Punch twice. If a copy of the source deck is 
placed behind the original, the source deck will 
be read twice, and a stacked job is again 
possible even when in the two-pass mode. 

It is important to note that wren a deck is 
being assembled in two-pass mode, the 
assembler is ready to read another card as soon 
as Pass 1 processing of the END card is completed. 
Therefore, a monitor control record must not 
follow the END card the first time (or the first 
END card if the deck has been copied), or the 
assembler will trap this record, terminating 
the assembly and returning control to the 
Supervisor. 

If the deck is not copied, the END card should 
be the last card. Press reader ST ART to 
process the last card and complete Pass 1. The 
assembler will then try to begin reading cards 
for Pass 2, therefore the source deck (with its 
control cards) should be removed from the stacker 
and placed in the hopper. Pressing reader START 
will continue Pass 2 of the assembly. The card 
reader will go not ready when all cards but the 
END card have been read. Press reader START 
to process the END card and complete the 
assembly. Operation is continuous from Pass 1 
to Pass 2 if the source deck is replaced behind the 
END card from the stacker during Pass 1. 

If the *PUNCH SYMBOL TABLE assembler 
control card is used, sufficient blank cards must 
be placed after the END card and before the next 
monitor control record in the stacked job. In 
estimating the number of blank cards required, 
allow one card for each five symbols used in 
the source deck. Unnecessary blank cards will 
be passed to the next monitor control record. 

Paper Tape Input 

Most of the procedures for card input are also 
applicable to paper tape input. 

30 

If the assembly is performed in the one-pass 
mode, operation is continuous, and control is 
returned to the Supervisor which will then pass 
any delete codes between the assembler and the 
next monitor control record. The assembler 
will also pass any delete codes that may occur 
between records of the source program. 

When it is necessary to assemble in the two­
pass mode, one of the following techniques may 
be used: 

1. Have the stacked job tape contain two copies 
of the source program. The assembler will 
simply begin reading the copy after the 
original has been read in Pass 1. 

2. Assemble outside of the stacked job tape. 
The job tape, or a separate strip containing 
an ASM monitor control record serves to 
bring the assembler- into core. A separate 
source program tape (including assembler 
control records) should then be readied on 
the paper tape reader, and the assembler 
will read this tape and complete Pass 1. 
Ready the source tape again and the 
assembler will complete Pass 2. A stacked 
job tape can now be readied again on the 
paper tape reader, and the Supervisor will 
continue with the stack. 

3. The assembly of a program may start in one­
pass mode and then be changed to two-pass 
mode (see Assembler Error Messages, 
Appendix A). The assembler will wait, and 
pressing PROGRAM ST ART continues the 
assembly in Pass 1 of two-pass mode. If this 
assembly is part of a stacked job, operator 
intervention is necessary to prevent the 
assembler from reading the monitor control 
record which follows the END record 
(applicable to card· input also). When Pass 1 
intermediate output may fill Working Storage, 
it is recommended that sufficient length of all 
delete codes be punched into the tape after the 
END statement and before the next monitor 
control. When the assembler is reading the 
delete codes following the END record, the 
operator should press PROGRAM STOP, and 
manually reposition the tape at the beginning 
of the source program. When the tape is 
positioned, press PROGRAM START to con­
tinue Pass 2 of the assembly. 



When punching a list tape (*LIST DECK or 
*LIST DECK E), first create a leader in the 
punched tape by holding down FEED and DELETE on 
the punch (press DELETE before FEED and release 
FEED before releasing DELETE). The same 
procedure should be used to create a trailer 

following the last record punched by the assembler. 
When the paper tape reader or punch is not 

ready, the assembler will wait at location 0041 
with 300016 displayed in the accumulator. Ready 
the punch or reader, and press PROGRAM ST ART 
to continue. 

Assembler 31 



FORTRAN COMPILER 

The language for the Monitor FORTRAN compiler 
is described in the publication IBM 1130 FORTRAN 
Language (Form C26..;5933). Therefore, only a 
general description of the Monitor FORTRAN 
compiler operation is. contained here. 

The FORTRAN compiler cannot be operated 
independent 0f the Monitor System; but, if 
desired, the compiler can be deleted from the 
system. 

A monitor control record having the pseudo-op 
FOR is used to call the FORTRAN compiler into 
operation. The compiler reads the source program 
from cards or paper tape. After compilation, the 
object program resides in the disk Working Storage 
area, and can be called for execution with a monitor 
XEQ control record, loaded to the User or Fixed 
area with a DUP STORE or STORECI operation, 
or punched as a binary deck or tape with a DUP 
DUMP operation. All FORTRAN programs are 
compiled in relocatable format. 

For 1130 FORTRAN 1/0 logical unit 
definitions, the 1/0 unit numbers are permanently 
set as described in Table 8. 

FORTRAN CONTROL RECORDS 

Before a FORTRAN program is compiled, the user 
can specify certain options by means of control 
records which must precede the source program 
and can be in any order. The IOCS and NAME 
control records can be used only in mainline 
programs; the others can be used in both mainline 
programs and subroutines. 

Table 8. I/0 Logical Unit Designations 

logica I 
Unit Kind of Record 'Size 

Number Device Transmission Allowed 

l Console printer Output only 120 

2 1442 Card Read Input/output 80 
Punch 

3 1132 Printer Output only l carriage 
control + 120 

4 1134-1055 Input/output 80, plus max. of 
Paper Tape 80 case shifts for 
Reader/Punch PTTC/8 code, 

plus NL code. 

6 Keyboard Input only 80 

32 

All FORTRAN control records have the following 
format: 

Column 1: * (asterisk) 
2-72: Option 

FORTRAN control records can be written in 
free form, no comments allowed. Any 
unrecognizable control records are considered 
as comments control records. 

FORTRAN control records and their meanings 
are listed below. A summary is contained in 
Table 9. 

*IOCS (CARD, TYPEWRITER, KEYBOARD, 1132 
PRINTER, PAPER TAPE, DISK) 

This record is required to specify any 1/0 device 
that is to be used during execution of the program; 
however, only the devices required should be 
included. Because the *IOCS record can appear 
only in the mainline program, it must include all 
the 1/0 devices used by all FORTRAN subprograms 
that will be called. The device names must be in 
parentheses with a comma between each name. 

FOR TRAN subprograms written in assembly 
language can use any 1/0 subroutines for any 
device that is not mentioned in *IOCS and that is 
not on the same interrupt level as a device in 
*IOCS. Otherwise, the subprograms must use 
FORTRAN 1/0 routines (CARDZ, PAPTZ, PRNTZ, 
WRTYZ, TYPEZ, DISKZ). 

*LIST SOURCE PROGRAM 

The source program is listed as it is read in. 

*LIST SUBPROGRAM NAMES 

The names of all subprograms (including 
EXTERNAL subprograms) called directly by the 
compiled program are listed. 

*LIST SYMBOL TABLE 

The following items are listed: 

• Variable names and their relative addresses 

• Statement numbers and their relative addresses 



Table 9. Summary of FOR TRAN Control Records 

* NAME XXXXX 

* IOCS (CARD, TYPEWRITER, KEYBOARD, 1132 PRINTER, PAPER TAPE, 
DISK) 

**header information to be printed on each compiler output page 

* ONE WORD INTEGERS 

* EXTENDED PRECISION 

* ARITHMETIC TRACE 

* TRANSFER TRACE 

* LIST SOURCE PROGRAM 

* LIST SUBPROGRAM NAMES 

* LIST SYMBOL TABLE 

* LIST ALL 

• Statement function names and their relative 
addresses 

• Constants and their relative addresses 

• Unreferenced statement numbers 

*LIST ALL 

The source program, subprogram names, and 
symbol table are listed. If this control record is 
used, the other LIST control records are not 
required. 

*EXTENDED PRECISION 

Variables and real constants are stored in three 
words instead of two, and the compiler generates 
linkage to extended precision routines. When this 
control record is used, the program does not 
conform to the ASA Basic FORTRAN standard for 
data storage, and it may require modification in 
order to be used with other FOR TRAN systems. 

*ONE WORD INTEGERS 

Integer variables are allocated one word of storage 
rather than the same allocation used for real 
variables. Whether this control record is used or 

(XXXXX = program name to be printed on listing) 

Delete any not used 

(Store integer variables in one word) 

(Store floating point variables and constants in 3 words instead of 2) 

(Switch 15 ON to print resu It of each assignment statement) 

(Switch 15 ON to print value of IF or Computed GOTO) 

(List source program as it is read in) 

(List subprograms called directly by compiled program) 

(List symbols, statement numbers, constants) 

(List source program, subprogram names, symbol table) 

not, integer constants are always contained in one 
word. When this control record is used, the 
program does not conform the the ASA Basic 
FORTRAN standard for data storage, and it may 
require modification in order to be used with 
other FORTRAN systems. 

*NAME :XXXXX 

The program name represented by X:XXXX is printed 
on the listing. XXXXX is five consecutive 
characters (including blanks) starting at the first 
non-blank column. This control record is used 
only on mainline programs, since subprogram 
names are automatically taken from the 
FUNCTION or SUBROUTINE statement. 

**Header Information 

The information between columns 3-72 is printed 
at the top of each page of compilation printout when 
an 1132 Printer is the principal system printer. 

*ARITHMETIC TRACE 

The compiler generates linkage to trace routines 
which are executed whenever a value is assigned to 
a variable on the left of an equal sign. If Console 
Entry Switch 15 is turned on at execution time and 

FOR TRAN Compiler 33 



program logic (see Optional Tracing) does not 
prevent tracing, the value of the assigned variable 
is printed as it is calculated. 

*TRANSFER TRACE 

The compiler generates linkage to trace routines 
which are executed whenever an IF statement or 
Computed GOTO statement is encountered. If 
Console Entry Switch 15 is turned on at execution 
time and program logic (see Optional Tracing) does 
not prevent tracing, the value of the IF expression 
or the value of the Computed GOTO index is printed. 

If tracing is requested, an *IOCS control record 
must also be present to indicate that either type­
writer or printer is needed. If both typewriter 
and printer are indicated in the *IOCS record, the 
printer is used for tracing. 

The traced value for the assignment of a 
variable on the left of an equal sign of an arithmetic 
statement is printed with one leading asterisk. 
For the expression of an IF statement, the traced 
value is printed with two leading asterisks. The 
traced value for the index of a Computed GOTO 
statement is printed with three leading asterisks. 

Optional Tracing 

The user can elect to trace only selected parts of 
the program by placing statements in the source 
program logic flow to start and stop tracing. This 
is done by executing a CALL to either subroutine: 

CALL TSTOP (to stop tracing) 
CALL TSTRT (to start tracing) 

Thus, tracing occurs only if: 

• The trace control records were compiled with 
the source program. 

• Console Entry Switch 15 is on (can be turned 
off at any time). 

• A CALL TSTOP has not been executed, or a 
CALL TSTRT has been executed since the last 
CALL TSTOP. 

34 

Operating Notes - *LIST Control Cards 

A constant in a STOP or PAUSE statement is 
treated as a hexadecimal number. This hexadecimal 
number and its decimal equivalent appear in the list 
of constants. 

Variables and constants that require more than 
one word of storage have the address of the word 
nearest the zero address of the machine. In the 
case of arrays, the given address refers to the 
addressed word of the first element. In the case of 
a two- or three-word integer, the integer value is 
contained in the addressed word. The first variable 
listed might not be addressed at 0000 because room 
may be required for generated temporary storage 
locations. 

The relative address for variables not in 
COMMON would be the actual address if the program 
started at storage location zero. The relative ad­
dress for variables in COMMON would be the actual 
address if the machine had 32K storage. The Loader 
makes any necessary adjustments. Variables in 
COMMON are adjusted to reside in the high-order 
core location of the machine being used (e.g., first 
COMMON variable will be loaded to 8191 on an 8K 
machine). 

Loading begins at core location 01C2 (450 deci­
mal). The DISKZ routine is used regardless of 
what disk routine is requested on the XEQ control 
record (refer to Origins for Core Loads). 

FORTRAN PRINTOUTS 

Compilation Messages 

Near the end of the compilation, core usage 
information and the features supported (control 
records used) are printed out as follows: 

FEATURES SUPPORTED 
EXTENDED PRECISION 
ONE WORD INTEGERS 
TRANSFER TRACE 
ARIIBMETIC TRACE 
IOCS 

CORE REQUIREMENTS FOR XXXXX 

COMMON YYYYY VARIABLES YYYYY PROGRAM YYYYY 



where XXXXX: is the name of the program 
designated in the *NAME control record or in the 
SUBROUTINE or FUNCTION statement, and 
YYYYY is the number of words allocated for the 
specified parts of the program. 

Compilation Error Messages 

During compilation a check is made to determine 
if certain errors have occurred. If one or more 
of these errors have been detected the error 
indications are printed at the conclusion of 
compilation, and no object program is stored on 
the disk. Only one error is detected for each 
statement. In addition, due to the interaction of 
error conditions, the occurrence of some errors 
may prevent the detection of others until those 
which have been detected are corrected. With the 
exception of type 00 messages listed below, the 
error message appears in the following format: 

C NN ERROR IN STATEMENT NUMBER XXXXX + yyy 

where NN is the error number, described in 
Appendix A. XXXXX is the last encountered valid 
statement number, and YYY is the count of 
statements from statement XXXXX. 

Specification statements (except FORMAT) are 
not counted unless they contain an error. Statement 
numbers on specification statements and statement 
functions are ignored. -

Type 00 Error Messages 

Code and 
Message 

C 00 MON CALL 

C 00 OVER 50 
DISK ERRORS AT 
SECTOR nnnn 

C 00 WORKING 
STORAGE 
EXCEEDED 

Meaning 

A Monitor call was executed 
(via operator intervention) 
during the compilation; the 
compilation is terminated 
and control is returned to 
the monitor. 
The FORTRAN disk I/O 
routine encountered an 
unrecoverable disk error 
during compilation; 
nnnn is the hexadecimal 
address of the bad sector. 
The working storage area 
on disk is too small to 
accommodate the string area 
and symbol table for the 
program being compiled; 
the compilation is 
terminated. 

The following message is printed for a normal 
end of compilation (with or without errors): 

END OF COMPIIA TION 

FORTRAN Compiler 35 



SUBROUTINE LIBRARY 

The 1130 Subroutine Library consists of a group 
of subroutines that aid the programmer in making 
efficient use of the IBM 1130 Computing System. 
Descriptions of the subroutines and methods for 
programming them are contained in the publication, 
IBM 1130 Subroutine Library (Form C26-5929). 

The following paragraphs describe the use of 
the IBM-supplied subroutines and discuss pre­
operative errors and I/O error restarts where 
special handling is required. 

PRE-OPERATIVE ERRORS 

A pre-operative error is an error condition 
detected before an I/O operation is started. It 
denotes either an illegal LIBF parameter, an 
illegal specification in I/ 0 area, or a device 
not-ready condition. This error causes a branch 
to location 0029 and the following conditions: 

• The I-counter displays the address 002A. 

• The Accumulator displays an error code 
represented by four hexadecimal digits. 

Digit 1 identifies the ISS called: 
1 - CARDO or CARDI 
2 - TYPEO or WRTYO 
3 - PAPTl or PAPTN 
5 - DISKO, DISKI, or DISKN 
6 - PRINTl 
7 - PLOTl 

Digits 2 and 3 are not used. 
Digit 4 identifies the error: 
0 - Device not ready 
1 - Illegal LIBF parameter or illegal 

specification in I/ 0 area 

• Location 0028 contains the address of the LIBF 
in question. 

The ISS is set up to attempt initiation of the 
operation a second time if the LIBF is re-executed. 
Therefore, since the Loader stores a wait in­
struction in location 0029 and an indirect branch 
to location 0028 in locations 002A and 002B, the 

36 

LIBF can be executed again by pressing PROGRAM 
START. 

When a pre-operative error. is encountered the 
operator can: 

• Correct the error condition if possible and 
press PROGRAM START, or 

• Note the contents of the Accumulator and 
location 0028, dump core storage, and proceed 
with the next job. 

CARD SUBROUTINE (CARDO AND CARDI) ERRORS 

Error Parameters 

CARDO. There is no error parameter. If an error 
is detected during processing of an operation­
complete interrupt, the subroutine loops 
internally, with interrupt level 4 on until the 1442 
becomes ready, and then retries the operation. 

CARDl. There is an error parameter. If an 
error is detected during processing of an 
operation-complete interrupt, the user program 
can elect to terminate (clear "routine busy" and 
the interrupt level) or to retry. A retry consists 
of looping internally, with interrupt level 4 on 
until the 1442 becomes ready, and then 
reinitiating the function. 

1442 Errors and Operator Procedures 

If a 1442 error occurs, the 1442 becomes not ready 
until the operator has intervened. Unless the stop 
is caused by a stacker full (no indicator) or Chip 
Box indication, the 1442 card path must be 
cleared before proceeding. The 1442 error 
indicators and the position of the cards in the feed 
path should be used to determine which cards must 
be placed back in the hopper. 

For the card subroutines, a retry consists of 
positioning the cards (i. e. , skipping the first card 
in the hopper, if necessary, on a read or feed 
operation) and reinitiating the function wmnever 
the card reader becomes ready. 



Hopper Misfeed. Indicates that card 2 failed to 
pass properly from the hopper to the read station 
during the card 1 feed cycle. 

Card positions after error: 

Punch Station Read Station 

Corner 

Stacker Hopper 

Error indicator: HOPR 
Operator procedure: When program halts, 

press NPRO to eject 
card 1, place card 1 in 
hopper before card 2, 
and ready the 1442. 

Feed Check (punch station). Indicates that card 1 
is improperly positioned in the punch station at the 
completion of its feed cycle. 

Card positions after error: 

Punch Station Read Station 

OJ Hopper 

Error indicator: PUNCH STA 
Operator procedure: When program halts, 

empty hopper, clear 1442 
card path, place cards 1 
and 2 in hopper before 
card 3, and ready the 1442. 

Transport. Indicates that card 1 has jammed in 
the stacker during the feed cycle for card 2. 

Card positions after error: 

Punch Station Read Station 

Hopper 

Error indicator: TRANS 
Operator procedure: ·when program halts, 

empty hopper, clear 
1442 card path, place 
cards 2 and 3 in 
hopper before card 4, 
and ready the 1442. 

Feed Cycle. Indicates that the 1442 took an 
unrequested feed cycle and, therefore , cards 1, 
2, and 3 are each one station farther ahead in 
the 1442 card path than they should be. 

Card positions after error: 

Punch Station Read Station 

Hopper 

Error indicator: FEED CL U 
Operator procedure: When program halts, 

empty hopper, press 
NPRO to eject cards 
2 and 3, place cards 1, 
2, and 3 in hopper 
before card 4, and 
ready the 1442. 

Feed Check (read station). Indicates that card 1 
failed to eject from the read station during its 
feed cycle. 

Subroutine Library 3 7 



Card positions alter error: 

Punch Station Read Station 

Hopper 

Error indicator: READ STA 
Operator procedure: When program halts, 

empty hopper, clear 
1442 card path, place 
cards 1 and 2 in 
hopper before card 3, 
and ready the 1442. 

Read Registration. Indicates incorrect card 
registration or a difference between the first and 
second reading of a column. 

Card positions alter error: 

Punch Station Read Station 

Stacker~ DJ 

Corner Hopper 

Error indicator: READ REG 
Operator procedure: See Feed check (punch 

station). Repeated 
failures of this type 
might indicate a machine 
malfunction. 

Punch Check. Indicates an error in output punch­
ing. 

Card positions alter error: 

Punch Station Read Station 

Hopper 

38 

Error indicator: PUNCH 

Operator procedure: When program halts, 
empty hopper, check 
card position and press 
NPRO to clear 1442 card 
path. If necessary, 
correct card 1 to pre­
punched state. Place 
(corrected) card 1 and 
card 2 in hopper before 
card 3 and ready the 1442. 

CONSOLE PRINTER SUBROUTINE (TYPEO AND 
WRTYO) ERRORS 

If the carrier attempts to print beyond the manually 
positioned margins, a carrier restore (independent 
of the program) occurs. 

Subroutine printing begins wherever the carrier 
is po_sitioned as a result of. the previous print 
operation. There is no automatic carrier return 
as a result of an LIBF. 

If tl~e console printer indicates a not-ready 
condition alter printing has begun, the sub­
routines loop internally, with interrupt level 
4 on, waiting for the console printer to become 
ready. Operator procedures are as follows: 

1. Press IMM STOP on the console. 
2. Ready the console printer. 
3. Press PROGRAM START on the console. 

KEYBOARD SUBROUTINE (TYPEO) FUNCTIONS 

Re-entry 

When the Erase Field key is pressed, a character 
interrupt signals the interrupt response routine 
that the previously-entered keyboard message is 
in error and will be re-entered. The routine 
prints two slashes on the console printer, 
restores the carrier to a new line, and prepares 
to replace the old message in the 1/0 area with 
the new message. The operator then enters the 
new message. The old message in the I/O area 
is not cleared. The new message overlays the 
previous message, character by character. If 
the previous message w'as longer than the new 
message, characters from the previous message 
remain (following the NL character which 
terminated the new message). 



Backspace 

When the backspace key is pressed, the last graphic 
character entered is slashed and the address of the 
next character to be read is decremented by +1. 
If the backspace key is pressed twice consecutively, 
the character address is decremented by +2, but 
only the last graphic character is slashed. For 
example, assume that ABC DE has been entered 
and the backspace key pressed three times. The 
next graphic character replaces the C , but only 
the E is slashed. If the character F had been 
used for replacement the paper would show 
ABCD:EFFF but ABFFF would be stored in the 
buffer. 

PAPER TAPE SUBROUTINES (PAPT) 

If the reader or punch becomes not ready during 
an I/O operation, the subroutines exit to the user 
via the error parameter. The user can request 
the subroutine to terminate (clear device busy 
and interrupt level) or to loop on not-ready 
waiting for operator intervention (interrupt 
level 4 on). 

The following procedure should be used to 
clear a paper tape not-ready condition: 

1. Press IMM STOP on the console. 
2. Ready the paper tape unit. 
3. Press PROORAM START on the console. 

To load the paper tape reader, place the tape 
so that the delete characters punched in the 
leader are under the read starwheels. To 
begin reading at any point in the tape other than 
the leader, place the tape so that the frame 
(character position) preceding the character 
to be read is under the read starwheels. The 
first start reader control after tape is loaded or 
repositioned causes the reader to skip the 
character under the read starwheels and load the 
next character into the buffer. 

ADDING AND REMOVING SUBROUTINES 

Subroutines can be added to or removed from the 
subroutine library as desired by the user. The 
DUP control record STORE adds a subroutine, and 
the DUP control record DELE'TE removes a 
subroutine. Each subroutine in the IBM-
supplied System Deck is preceded by a DUP 
STORE record. 

The user should not remove subroutines that 
are called by other subroutines left in the 
library (refer to Appendix E for a list of 
subroutines called by other subroutines). 

Subroutine Library 39 



SYSTEM GENERATION OPERATING 
PROCEDURES (CARD SYSTEM) 

Before the Disk Monitor System can begin 
operation, the user must perform the following 
functions: 

1. Load and execute the IBM-supplied Disk 
Pack Initialization Routine (DPIR) to 
initialize the disk pack. 

2. Prepare a Load Mode Control Card and 
System Configuration Cards, and insert 
these cards into the IBM-supplied System 
Deck. 

3. Load the above deck into the disk. 
4. Using the IBM-supplied Cold Start Card, 

load the Supervisor program into core 
storage from disk storage. 

Each of the above procedures is described in 
detail in subsequent sections of this manual. 

DISK PACK INITIALIZATION ROUTINE (DPIR) 

The DPIR (Disk Pack Initialization Routine) 
performs the following functions: 

1. Clears the disk and writes disk sector 
addresses on all cylinders. 

2. Determines which, if any, sectors are 
defective and writes the addresses of the 
cylinders containing the defective sectors 
on sector 0000. If sector 0000 is defective, 
DPIR does not write any defective cylinder 
table. 

3. Puts an ID on the disk pack. 

The 1130 Disk Routines operate effectively with up 
to three cylinders containing defective sectors. 
An attempt to read or write a defective sector 
that is not identified in sector 0000 results in a 
read or write error after the operation has been 
attempted 10 times. 

At the completion of DPIR, an eight-word table 
is written on sector 0000. The first word (word 0) 
of the table contains the sector address 0000. 
Words one, two, and three contain the first sector 
address of any defective cylinders found (maximum 
of three). When there is no defective cylinder, 
these words contain 065816. Word 4 is reserved. 

40 

Words five, six, and seven contain a five character 
ID name in packed EBCDIC. Words five and six 
contain two characters per word, and word seven 
contains an EBCDIC character in the left half of the 
word and an EBCDIC blank in the right half of the 
word. 

To determine which sectors are defective, the 
user can dump core upon completion of execution; 
the defective sector table starts at location 0739 and 
the actual count of defective sectors is in location 
035E. 

Table 10 lists the DPIR halt addresses. 

DPIR Card Load Operating Procedures 

The procedure for loading and executing the Disk 
Pack fuitialization Routine is as follows: 

1. Load the disk pack in the console cabinet. 
2. Put the DPIR deck in the card hopper. 
3. Set the console mode switch on RUN. 
4. Press IMM STOP, then RESET on the console. 
5. Press START on the card reader. 
6. Press PROGRAM LOAD on the console. 

The DPIR is read in and the keyboard is selected. 
(The keyboard Select light comes on.) Wait for the 
File Ready light to come on and then: 

1. Enter the five-character ID to be written on the 
disk pack. If the ID is less than five characters, 
left-justify by following the ID with spaces. 
Only those characters recognized by the Super­
visor should be used (see Appendix D). When 
the fifth character is entered, the program 
branches to execute. The disk surface is now 
cleared and the sector addresses are written. 
The routine waits at 038A. 

2. Set all the Console Entry switches off. 
3. Press PROGRAM START. The defective 

sector and file protect address data is written 
on sector 0000. A scan of the disk is now 
performed to check for seek failures. If a 
seek or read failure occurs, the routine waits 
at 03EA. Other DPIR halt addresses are 
described in Table 10. 



Table 10. DPIR Halt Addresses 

Halt 
Meaning Action Required 

Address (hex) 

0346 A Write Select error has occurred. CE intervention is required; reload the routine 
or bronch to 02E E manua I ly. 

0302 The disk is not ready. Make the disk ready and restart the program. 

0367 Sector 0000 is defective; the sector addresses have been written 
on the disk, but the table has not been written on sector 0000. 

03BE The routine has run successfully and no defective sectors were 
found. 

03BA The routine has run successfully and three or less defective 
sectors were found. 

03C8 The routine has run successfully, but more than three defective 
sectors were found. 

038A The routine is in WAIT. Turn the console entry switches off; then press 
PROGRAM START on the console. 

03EA A seek failure or read failure occurred during a scan of the 
disk. 

USER-SUPPLIED CARDS 

Before loading the Disk Monitor System programs 
onto the disk, the user must prepare the following 
cards: 

The System Loader will give error messages for 
missing or invalid user-supplied cards (see 
Appendix A). 

Load Mode Control Card 

1. Load Mode Control Card The Load Mode Control Card is used to specify an 
initial load or a reload. It also permits the user 2. System Configuration Deck: 

a. SCON Card 
b. REQ Card(s) 
c. TERM Card 

to specify whether the assembler and/or FORTRAN 
is to be loaded. The format is shown in Table 11 
(only columns 1 through 3 are used). For example, 

Table 11. Load Mode Control Card Format 

Column Punch Meaning 

12 Punch Initial load. Monitor System programs, I LS and ISS subroutines required by the system, and functional subroutines 
are loaded. However, the assembler will not be loaded if column 2 contains a 0 punch, and FORTRAN will not be 
loaded if column 2 contains a 1 punch. 

1 
No 12 Punch Reload. Monitor System programs are reloaded, and the contents of the User and Fixed areas (including LET/FLET) 

are not changed. Only programs presently on the disk can be reloaded; if the assembler or FORTRAN were not 
loaded during an initia I load, or have since been deleted, they cannot be reloaded. 

0 Punch Bypass {do not load) assembler. 
No 0 Punch Load assembler. 

2 
1 Punch Bypass (do not load) FORTRAN. 
No 1 Punch Load FORTRAN. 

3 9 Punch Required in al I cases to identify Load Mode Control Card. 

System Generation Operation Procedures 41 



to initially load the monitor (including the assembler 
and FORTRAN), the Load Mode Control Card is 
punched with a 12 punch in column 1 and a 9 punch 
in column 3. 

System Configuration Deck 

SCON Card 

The SCON Card is the deck header card. The 
format is as follows: 

Columns Contents 

1-4 SCON 

Table 12. REQ Card Format 

Columns 

Device 1-3 10 15-16 21-22 

{Primary (Second 

(ISS No.) 
Interrupt Interrupt 
Branch Branch 

Address Address 

1442 Card Read Punch l 08 12 

Input keyboard and console 2 12 Blank 
printer 

1134 paper tape reader or >- REQ 3 12 Blank 
1055 paper tape punch 

Disk 4 10 Blank 

1132 Printer 6 09 Blank 

Plotter 7 11 Blank 

NOTE: If both the console printer and the 1132 Printer are inCluded, 
the 1132 Printer will be the principal printing device; if 
both the 1442 Card Read Punch and thE> 1134/l 055 paper tape 
units are included, the 1442 Card Read Punch will be the 
principal 1/0 device. 

42 

REQ Cards 

REQ Cards identify devices present in system. The ~ 
System Loader uses this information for selective 
generation and loading of ILS subroutines and se­
lective loading of ISS subroutines. The format is 
shown in Table 12. 

TERM Card 

The TERM Card is the last card of the System 
Configuration Deck. The format is as follows: 

Columns Contents 

1-4 TERM 



PROCEDURE FOR INITIALIZING DISK MONITOR 
SYSTEM FROM CARDS 

1. Execute the following: 
a. Press IMM STOP on console. 
b. Press RESET on console. 
c. Press NPRO on the 1442 card reader. 

2. Load the following decks into hopper of the 
1442 card reader (see Figure 10). 
a. IBM-supplied System Loader Deck, Part 1. 

Columns 73-74 contain the ID: El. 
b. User-supplied Load Mode Card. 

,______./ 

Figure 10. System Loader Card Sequence 

c. IBM-supplied System Loader Deck, Part 2. 
Columns 73-74 contain the ID: E2. 

d. User-supplied System Configuration Deck 
(SCON Card, REQ Cards, TERM Card). 

e. Remainder of IBM-supplied System Deck. 

3. Execute the following: 
a. Turn the File Switch on, and wait for the 

File Ready light on the console to go on. 
b. Press START on the 1442 card reader. 
c. Press RESET on console. 
d. Press PROGRAM LOAD on console. 

---- Remainder of System Deck 
(IBM Supplied) 

System Loader Deck - Part 2 
(IBM Supplied) 

Columns 73-74 contain ID: E2 

System Loader Deck - Part 1 
(IBM Supplied) 

Columns 73-74 contain ID: El 

System Generation Operation Procedures 43 



COLD START OPERATING PROCEDURE 

To begin operation of the Disk Monitor System after 
it has been loaded to the disk, the user must load the 
Supervisor Program into core storage from disk 
storage by using the IBM-supplied Cold Start Card 
(last card of subroutine deck) or Cold Start paper 
tape re cord. 

The procedure for executing the Cold Start Card 
is as follows: 

1. Insert the monitor disk pack in the console 
cabinet. 

2. Turn the File Switch on, and wait for the File 
Ready light on the console to go on. 

3. Put the Cold Start Card into the card hopper 
followed by a monitor control record to be 
processed. 

4. Press IMM STOP, then RESET on the console. 
5. Press START on the card reader. 
6. Press PROGRAM LOAD on the console. 

The Cold Start record reads the Colcl Start 
sector (0001) from disk into core location 0802. 
The Monitor Supervisor Program is then read into 
core. The first monitor control record is read 
under control of the Supervisor Program by the 
Monitor Control Record Analyzer routine. 

44 

Possible stopping locations are given in Table 13. 

NOTE: A cold start cannot be used to resume an 
operation that has been previously terminated. 

Table 13. Cold Start Halt Addresses 

Ha It Address 
Meaning 

(hex) 

0024 The disk was not ready and the first XIO was 
treated as a NOP 

0028 When sector 0001 was read, the address was 
not 0001 

0034 There was a Disk Data Error 

080F Sector OOOA was not read correctly 

0816 Sector 0009 was not read correctly 

0823 Sector 0008 was not read correctly 

0839 There was a Disk Data Error 

0026 Disk not ready 

0803 Disk not ready 

080A Disk not ready 

0811 Disk not ready 

081E Disk not ready 



All of the paper tape records needed to load the 
Paper Tape Monitor System to disk storage are 
supplied to the user by IBM. These records have 
the same functions as the corresponding IBM­
supplied and user-written card decks. These 
functions are described under System Generation 
Operating Procedures (Card System). 

The Load Mode Control record and System 
Configuration records are supplied by IBM to the 
user of the Paper Tape System. These tapes are 
supplied with all the possible configurations, and 
the user need only select the configuration for his 
particular use. If these tapes are not read 
correctly, the System Loader.will give error 
messages (see Appendix A). 

The tapes constituting the Paper Tape Monitor 
System are described below. The procedure for 
loading these tapes onto disk is described under 
Procedure for Initializing Disk Monitor System 
from Paper Tape. 

1 
2 

3 
4 

5 

6 

7 
8 
9 

10 
11 

Description 

System Loader, Part 1 
Load Mode Control Record (same 
function as Load Mode Control 
Card) 
System Loader, Part 2 
System Configuration Records 
(same function as System 
Configuration Deck) 
Supervisor Tape (includes the 
Loader) 
Disk utility Program 
FOR TRAN Compiler 
Assembler 
ILS Control Records and Library 
Subroutines 
Cold Start Paper Tape Record 
DPffi Tape (includes core-image 
loader) 

If FORTRAN and/or the assembler are not to 
be loaded during an initial load, the corresponding 
tapes (7 and/or 8) need not be read. 

PAPER TAPE MONITOR SYSTEM 

During a reload of system programs, tapes 1 
through 5 must be read. If DUP, FORTRAN, 
and/or the assembler are not to be reloaded, the 
corresponding tapes (6, 7, and/or 8) need not be 
read. The procedures for reloading DUP, 
FORTRAN, and the assembler are the same as 
the card system procedures. Tape 9 need not 
be i:-ead ·during a reload operation. 

DPIR PAPER TAPE LOAD OPERATING 
PROCEDURES 

The procedure for loading and executing the DPIR 
(Disk Pack Initialization Routine) is as follows: 

1. Insert the disk pack in the console cabinet. 
2. Put the DPIR tape in the reader; position one 

of the delete codes that appear after the 
program name in the leader under the 
read starwheels. 

3. Press IMM STOP, RESET, and PROGRAM 
LOAD on the console. 

4. When the loader reads in and waits, position 
the DPIR tape. 

5. Press PROGRAM START on the console. 

From this point on, the operation is identical 
to the card load. 

PROCEDURE FOR INITIALIZING DISK MONITOR 
SYSTEM FROM PAPER TAPE 

To load the paper tape system onto disk, the 
operator must perform the following steps: 

1. Place the System Loader, Part 1, (Tape 1) 
in the Paper Tape Reader. When loading 
tapes 1 through 9, position any one of the 
delete codes following the program name 
in the tape header under the read star­
wheels. 

2. Press RESET on the console. 
3. Press PROGRAM LOAD on the console. Tape 

1 is read into core starting at location 0. 

Paper Tape Monitor System 45 



4. When a WAIT occurs (at 05BC), place the 
Load Mode Control tape (Tape 2) in the 
Paper Tape Reader. 

5. Press PROGRAM ST ART on the console. 
6. When a WAIT occurs, place the next system 

tape in the Paper Tape Reader. 
7. Press PROGRAM ST ART on the console. 
8. Repeat steps 6 and 7 until the last system 

tape is read. 

The System Loader determines if the complete 
system has been loaded. If the system has not 
been loaded, the System Loader WAITs for 
another tape to be readied by the operator until 
the complete system is loaded. 

A WAIT at OEA6 is a checksum error, 
indicating faulty tape. 

COLD START OPERATING PROCEDURE 

The procedure for executing the Cold Start 
paper tape record is as follows: 

46 

1. Insert the monitor disk pack into the console 
cabinet. 

2. Turn the File Switch on, and wait for the File 
Ready light on the console to go on. 

3. Put the Cold Start paper tape record into the 
reader; position any one of the delete codes 
following the program name in the tape 
leader under the read starwheels. 

4. Press IMM STOP, then RESET on the console. 
5. Press PROGRAM LOAD on the console. 

PAPER TAPE CONTROL RECORDS 

Paper tape control records must be punched in 
PTTC/8 (perforated tape transmission code). 
The formats are the same as the previously­
described card formats. Paper tape control 
records must be separated by one NL (new 
line) control character. A control record which 
immediately follows paper tape data not followed 
by an NL code must be preceded by one NL code. 
Delete codes may precede or follow this NL code. 



Table A-1. System Loader Error Codes 

Error 
Code 

El 

E2 

E3 

E4 

E5 

E6 

E7 

ES* 

E9** 

ElO** 

El 1** 

Type of Error 

Check-sum error. 

Illegal card type or blank card. 

Card out of sequence. 

ORG backward to an address lower than that established 
by last sector break card. 

Error in Load Mode card. 

Disk error. 

Disk pack not initialized or Sector 0 data damaged. 

Configuration deck missing or one of the fol lowing errors 
detected! 
a) SCON card not fol lowed by REQ cards. 
b) less than 2 REQ cards present. 
c) more than 6 REQ cards present. 
d) Secondary Interrupt Branch Address (IBA) not included 

in'ISS #1 card. 
e) Secondary IBA not equal to 12. 
f) Primary IBA not in range 8 through 12. 
g) ISS number missing or negative. 
h) ISS number 5 detected (illegal). 
j) ISS number greater than 7. 
k) TERM card missing 

File protect address (in COMMA) prohibits loading System 
Loader, Part 2. 

During reload, old FORT or ASM address in COMMA is 
different from new FORT or ASM sector address. 

Fixed area or C.ore Image Buffer area, as defined by 
COMMA, is about to be overlayed. 

* Applies to initial load only. 

** Applies to reload only. 

Procedure A: 

1. Lift remaining cards from hopper and depress NPRO on 1442. 
2. Place the two ejected cards (after corrections) in card hopper. 
3. Replace remaining cards in card hopper. 
4. Press START on 1442. 
5. Press PROGRAM START on console. 

APPENDIX A. ERROR MESSAGES 

Corrective Action 

Fol low Procedure A or reload and restart. 

Fol low Procedure A or reload and restart. 

Fol low Procedure A or reload and restart. 

Inspect deck for card(s) missing or out of sequence. Correct deck 
and reload edit program. 

Make necessary card correction and reload edit program. 

Press PROGRAM START on console to retry. 

Use DPIR program to initialize Sector O. Initial load should follow 
since DPIR clears the disk. 

Make corrections and reload edit program. 

No recovery unless file protect address can be lowered by deleting 
part of materia I on disk. System Loader requires temporary use of 
Cylinders 198 and 199. 

If COMMA has been damaged, an initial load is required; otherwise 
system programs deck is faulty. 

Same as ElO. 

Appendix A. Error Messages 4 7 



Table A-2. System Loader Wait Locations (Part 1) 

Address Explanation 

01C7 Wait after displaying E6 error 

0530 Wait after displaying E 1 error 

0680 Wait after displaying E3 error 

0806 Wait after displaying E2 error 

0808 Wait after displaying ES error 

0821 Wait after displaying ES error 

0835 Waif' after displaying E9 error 

0839 Wait after displaying ES error 

0830 Wait after displaying E4 error 

08A4 Wait after displaying E7 error 

0962 Wait after displaying E4 error 

OEE6 Wait during loading of the System Loader due to 
incorrect check sum, e.g., a missing card or 
card out of sequence. 

Table A-3. System Loader Wait Locations (Part 2) 

Address Explanation 

0220 Wait after displaying E 10 error 

022F Wait after displaying E 10 error 

0245 Wait after displaying E 11 error 

025F Wait after displaying E 1 error 

0270 Wait after displaying E 3 error 

05C5 Wait after displaying E 2 error 

0750 Wait after displaying E 5 error 

0816 Wait after displaying E 3 error 

0886 Wait after displaying E 4 error 

0991 Wait after displaying E 2 error 

OAD7 Wait after displaying E 6 error 

OFFF Wait after displaying END reload 

48 

Table A-4. Monitor Supervisor Error Messages 

Error Message 

M 01 PHASE NONX 

M 02 INVALID 

M 03 NON XEQ 

M 04 CHARACTER 

M 05 OFLO DISK 

M 06 NO PROGRAM 

M 07 NON DUP 

M 09 RECORD TRAP 

M 11 NOT IDENT 

M 12 SEQ ERROR 

M 13 TERROR 

Cause of Error 

Execution is not permitted for this job. 

The above listed record is an invalid 
Supervisor record. 

The currently called execution is not 
permitted. 

A character in the name listed above 
is not permitted. 

The records listed above were too many 
for the disk storage a I located. 

The mainline program name listed above 
is not in the LET or FLET table or is not 
a main I ine program. 

DUP is not al lowed for the subj ob. 

A system program detected a Supervisor 
record and returned control to the 
Supervisor. 

The cartridge identifier on the cartridge 
is not identical to the one on the input 
record. The Supervisor waits to allow 
the operator to rectify the difference if 
desired. 

LOCAL, NOCAL, and/or Fl LES records 
are intermixed (they must be grouped). 

Column 8 in the JOB record does not 
contain a blank or a T. An ampersand 
is printed in place of the illegal char­
acter. The Supervisor waits so that the 
operator can (1) correct the JOB record, 
reload it in the reader, and press 
PROGRAM START on the console; or 
(2) press PROGRAM START on the 
console. In either case the JOB record 
is processed completely before any other 
processing. I/ie job is considered non­
temporary if column 8 contains a blank 
or a character other than a T. 



Table A-5. Monitor Supervisor Wait Locations 

Address 

0005 

0029 

OODE 

07E7 

0399 

0705 

Explanation 

Operator pressed PROGRAM STOP on the console, 

1/0 error or device not-ready condition. 

Disk error. 

1 • Pause due to PAUS control record. 

2. Identifier error in JOB control record. 

Paper tape reader not ready. 

Column 8 in the JOB record does not contain a blank or 
a T. 

Operator Action 

Press PROGRAM START to continue. 

Refer to Subroutine Library - Preoperative Errors. 

Press PROGRAM START to retry. 

1. Press PROGRAM START to continue. 

2. Correct the record, reenter it, and press PROGRAM START; or press 
PROGRAM START. 

Ready paper tape reader and press PROGRAM START. 

Correct the record, reenter it, and press PROGRAM START; or press 
PROGRAM START. In either case, the current job is processed first. 

Appendix A. Error Messages 49 



Table A-6. Loader Messages/Error Messages (Part 1) 

Code and Message 

R 01 ORIGIN BELOW lST WORD OF MAINLINE 

*R 03 LOAD REQUIRES SYSTEM LOCALS, LEVEL l 

*R 04 LOAD REQUIRES SYSTEM LOCALS, LEVEL 2 

R 06 Fl LE(S) TRUNCATED (SEE Fl LE MAP) 

R 08 CORE LOAD EXCEEDS 32K 

R 10 LIBF TV REQUIRES 82 OR MORE ENTRIES 

R 11 TOO MANY ENTRIES IN LOAD-TIME TV 

R 12 LOCALS/SOCALS EXCEED WKNG. STORAGE 

R 13 DEFINED FILE(S) EXCEED WKNG. STORAGE 

**R 16 XXXXX IS NOT IN LET OR FLET 

**R 17 XXXXX CANNOT BE DESIGNATED A LOCAL 

**R 19 XXXXX IS NOT ON A SECTOR BOUND.ARY 

**R 20 XXXXX COMMON EXCEEDS THAT OF ML 

**R 21 XXXXX PRECISION DIFFERENT FROM ML 

**R 22 XXXXX AND ANOTHER VERSION REFERENCED 

**R 23 XXXXX IS A USER AREA FILE REFERENCE 

*FORTRAN mainline proqrams only 
**XXXXX =the name of the program or disk file concerned 

so 

Explanation and Recovery Procedures 

The Loader has been instructed to load a word into an address lower than that of the 
first word of the mainline program. The ORG statement which caused this situation 
must be removed, or the mainline program must start at a lower address. 

No error. The load was too long to fit into core, The Loader has made two overlays, 
and the program will be executed with these two groups of routines overlaying each 
other (refer to System Overlays}, 

No error, The load was too long to fit into core. The Loader has made three overlays, 
and the program will be executed with these three groups of routines overlaying one 
another (refer to System Overlays), 

At least one defined file has been truncated either because the previously defined 
storage area in the User or Fixed area was inadequate or because there is inadequate 
Working Storage available to store the file, See Message R 12 for a possible remedy. 

The Loader has been instructed to load a word into an address exceeding 32, 767, which 
is a negative number, The loading process is immediately terminated, because the 
Loader cannot process negative addresses. Th is error was probably caused by bad data, 
i ,e,, the program being loaded from the disk has been destroyed, 

There are at least 82 different entry points referenced in the load by LIBF statements. 
A possible remedy would be to subdivide the load into two or more links. 

There are more than 135 references to different entry points with CALL and/or LIBF 
statements in the load, A possible remedy would be to subdivide the load into two or 
more links, 

There is insufficient Working Storage remaining to accommodate the LOCAL and/or 
SOCAL overlays required in the load. A possible remedy would be to create more 
Working Storage by deleting subroutines, subprograms, and/or data no longer required 
by the installation. 

There is insufficient Working Storage remaining to accommodate even one record of 
the defined file(s). See Message R 12 for a possible remedy. 

The program or data file designated in the message cannot be found in LET or FLET, 
A possible remedy is to store the program or data file, If the name cannot be explained 
otherwise, the program being loaded has probably been destroyed. 

The routine named in this message is either a type which cannot appear on a LOCAL 
record, or this routine, which is a LOCAL, has been referenced, directly or indirectly, 
by another LOCAL, the name of which cannot be supplied by the Loader. 

The area named in this message does not begin at a sector boundary, which implies 
that it is not a storage area but a relocatable program, and thus a possible error, 
Choose another area for the storage of this file, 

The length of COMMON for the routine named in this message is longer than that of 
the mainline program. A possible remedy is to define more COMMON for the mainline 
program. 

The precision for the routine named in this message is incompatible with that of the 
mainline program, Make the precisions compatible. 

At least two different versions of the same 1/0 routine have been referenced, e.g., 
both CARDZ and CARDO (FORTRAN utilizes the"Z" version). If a disk routine is 
named in the message, it is possible that the XEQ record specifies one version, e,g., 
DISKO, whereas the program references another, e.g. 1 DISKl (a blank in col, 19 of 
the XE Q record causes DIS KO to be chosen) , 

The area named in this message is in the User area; references in DEFINE FILE and DSA 
statements for *STORE Cl functions must be to the Fixed area, 



Table A-6. Loader Messages/Error Messages (Part 2) 

Code and Message 

*R 24 XXXXX IS BOTH A LIBF AND A CALL 

*R 25 XXXXX HAS MORE THAN 14 ENTRY POINTS 

*R 26 XXXXX HAS AN INVALID TYPE CODE 

*R 27 XXXXX LOADING HAS BEEN TERMINATED 

**R 32 XXXXX CANNOT REF'CE THE LOCAL XXXXX 

R 40 XXXX (HEX)= ADDITIONAL CORE REQUIRED 

R 41 XXXX (HEX) TOO MANY WDS IN COMMON 

R 42 XXXX (HEX) IS THE EXECUTION ADDR 

R 43 XXXX (HEX)= ARITH/FUN.C OVERLAY SIZE 

R 44 XXXX (HEX)= Fl/O + 1/0 OVERLAY SIZE 

R 45 XXXX (HEX)= DISK Fl/O OVERLAY SIZE 

R 46 XXXX (HEX)= AN ILLEGAL ML LOAD ADDR 

R 47 XXXX (HEX) WORDS AV Al LAB LE 

*XXXXX =the name of the program or disk file concerned 
**XXXXX = the name of the program concerned 

,Explanation and Recovery Procedures 

The routine named in this message hos been either referenced improperly, i.e., CALL 
instead of LIBF or vice verso, or hos been referenced in both CALL and LIBF statements. 
The only remedy is to reference the routine properly. NOTE: NOCALs must be CALL­
type routines/ i.e., type 4 or 6 routines (refer to Appendix B). 

This message usually indicates that the routine hos been destroyed since no routine is 
stored with more than 14 entry points. 

The routine named in this message hos either been designated on on XEQ record and is 
not a mainline program, indicating a mistake hos probably been mode in preparing the 
XEQ record, or contains a type code other than 3 (subroutine), 4 (functional), 5 (ISS), 
or 6 (ILS), in which case the routine has probably been destroyed. This error could 
also be caused by a DSA statement referencing a program which is in Disk System format, 
or a CALL or LIBF referencing a program in Core Image or Disk Data format. 

The loading of the mainline program named in this message has been terminated as a 
result of the detection of the error(s) listed in the messages preceding this one. 

The routine named first in this message has referenced the routine named second, which 
is a LOCAL. Either the first named routine is a LOCAL or it is entered (directly or 
indirectly) from a LOCAL. Neither case can be allowed for it could cause a LOCAL 
to be overlaid by another LOCAL before the first LOCAL hos been completely executed. 

If the load was executed, XXXX16 is the number of words by which it exceeded core 
storage before the Loader made it fit by creating special overlays (SOCALs); if the 
load was not executed, the first occurrence of the message is as described and the 
record indicates the number of words by which it exceeds core storage even after 
creating the deepest level of special overlays. A possible solution to the latter problem 
is to create two or more links or LOCALs. 

The length of COMMON specified in the mainline program plus the length of the core 
load exceeds core storage by XXXX 16 words. 

No error. This message follows every successful conversion from Disk System format 
to Core Image format provided a core map is requested. 

No error. It has been necessary to employ the special overlays (SOCALs), and 
XXXX16 is the length of the arithmetic/functional overlay (refer to System Overlays). 

No error. It hos been necessary to employ the special overlays (SOCALs), and 
XXXX 16 is the I ength of the FORTRAN 1/0, 1/0, and conversion routine overlay 
(refer to System Overlays). 

No error. It has been necessary to employ the special overlays (SOCALs), and 
XXXX16 is the length of the Disk FORTRAN 1/0 overlay, including the 320-word 
buffer. 

XXXX16 is the address at which the loader has been requested to start loading the 
mainline program, but this address is lower than the highest address occupied by the 
version of Disk 1/0 requested for this load. Eithe·r make the main I ine origin higher 
or request a shorter version of Disk. 

No error. XXXX16 is the number of words of core storage not occupied by this core 
load. 

Appendix A. Error Messages 51 



Table A-7. Assembler Error Messages 

Error Code and Error Message Cause of Error Corrective Action 

AOl MINIMUM W. S. NOT AVAILABLE--- Less than 33 sectors of Working Storage are Perform a DUP DELETE to expand Working 
ASSEMBLY TERMINATED available at the beginning of the assembly. Storage to a minimum of 33 sectors before 

attempting further assemblies. 

A 02 SYMBOL TABLE OVERFLOW EXCEEDS 4 CYLINDERS Symbol table overflow exceeds 3392 1. Reduce number of symbols and 
symbols (refer to Assembler Messaaes and reassemble. 
Error Codes to compute number of symbols 2. Divide program into segments and 
allowed in ·a program). assemble each separately. 

A 03 DISK OUTPUT EXCEEDS W.S. Disk output is greater than Working 1. If error occured during pass 1, the 
Storage. assembler wil I wait at OAD6 • When 

PROGRAM START is pressed, the 
assembly will continue in the two-pass 
mode, Therefore, the operator should 
first insure that the source statements 
can be read a second time without 
encountering the next monitor control 
record. 

2. If error occurred during pass 2, object 
output exceeds Working Storage. 
Perform a PUP DELETE to enlarge 
Working Storage. 

A 04 SAVE SYMBOL TABLE INHIBITED With SAVE SYMBOL TABLE option, symbol Reduce number of symbols and/or correct 
table exceeds the allowable System the erroneous statements and reassemble. 
Symbol Table size of 100 symbols, or at 
least one assembly error was detected. 

52 



Table A-8. FORTRAN EITor Codes (Part 1) 

Error 
Number 

c l 

c 2 

c 3 

c 4 

Cause of Error 

Non-numeric character in statement number. 

M.ore than five continuation cards, or continuation card 
out of sequence. 

Syntax error in CALL LINK or CALL EXIT statement. 

Undeterminable, misspelled, or incorrectly formed 
statement. 

C 5 Statement out of sequence. 

c 6 

c 7 

c 8 

Statement fol lowing transfer statement or a STOP statement 
does not have statement numbe_r. 

Name longer than five characters, or name not starting 
with an alphabetic character. 

Incorrect or missing subscript within dimension information 
(DIMENSION, COMMON, or type). 

C 9 Duplicate statement number. 

c 10 Syntax error in COMMON statement. 

c 11 Duplicate name in COMMON statement. 

c 12 Syntax error in FUNCTION or SUBROUTINE statement. 

C 13 Parameter (dummy argument) appears in COMMON 
statement. 

c 14 

c 15 

c 16 

Cl7 

c 18 

Name appears twice as a parameter in SUBROUTINE or 
FUNCTION statement. 

*IOCS control record in a subprogram. 

Syntax error in DIMENSION statement. 

Subprogram name in DIMENSION statement. 

Name dimensioned more than once, or not dimensioned on 
first appearance of name. 

C 19 Syntox error in REAL, INTEGER, or EXTERNAL statement. 

c 20 

c 21 

c 22 

Subprogram name in REAL or INTEGER statement. 

Name in EXTERNAL which is also in a COMMON or 
DIMENSION statement. 

I FIX or FLOAT in EXTERNAL statement. 

C 23 Invalid real constant. 

c 24 

c 25 

c 26 

c 27 

c 28 

c 29 

Invalid integer constant. 

More than 15 dummy arguments, or dupl i cote dummy 
argument in statement function argument list. 

Right parenthesis missing from a subscript expression. 

Syntax error in FORMAT statement. 

FORMAT statement without statement number. 

Field width specification > 145. 

Table A-8. FORTRAN EITor Codes (Part 2) 

Error 
Number Cause of Error 

C 30 In a FORMAT statement specifying E or F conversion, 
w > 127, d > 31, or d > w. 

C 31 Subscript error in EQUIVALENCE statement. 

C 32 Subscripted variable in a statement function. 

C 33 Incorrectly formed subscript expression. 

C 34 Undefined variable in subscript expression. 

c 35 

c 36 

c 37 

Number of subscripts in a subscript expressfon does not 
agree with the dimension information. 

Invalid arithmetic statement or variable; or, in a 
FUNCTION subprogram the left side of an arithmetic 
statement is a dummy argument (or in COMMON). 

Syntax error in IF statement. 

C 38 Invalid expression in IF statement. 

c 39 

c 40 

c 41 

c 42 

c 43 

c 44 

c 45 

c 46 

c 47 

c 48 

c 49 

Syntax error or invalid simple argument in CALL state­
ment. 

Invalid expression in CALL statement. 

Invalid expression to the left of an equal sign in a state­
ment function. 

Invalid expression to the right of an equal sign in a state­
ment function. 

In an IF, GO TO, or DO statement a statement number is 
missing, invalid, incorrectly placed, or is the number 
of a FORMAT statement. 

Syntax error in READ or WRITE statement. 

*IOCS record missing with a READ or WRITE statement 
(mainline program only). 

FORMAT statement number missing or incorrect in a 
READ or WRITE statement. 

Syntax error in input/output list; or an invalid list 
element; or, in a FUNCTION subprogram, the input list 
element is a dummy argument or in COMMON. 

Syntax error in GO TO statement. 

Index of a computed GO TO is missing, invalid, or not 
preceded by a comma. 

C 50 *TRANSFER TRACE or *ARITHMETIC TRACE control 
record present, with no *IOCS control record in a main-
1 ine program. 

c 51 

c 52 

c 53 

c 54 

Incorrect nesting of DO statements; or the terminal state­
ment of the associated DO statement is a GO TO, IF, 
RETURN, FORMAT, STOP, PAUSE, or DO statement. 

More than 25 nested DO statements. 

Syntax error in DO statement. 

Initial value in DO statement is zero. 

Appendix A. EITor Messages 53 



Table A-8. FORTRAN Error Codes (Part 3) 

Error 
Number Cause of Error 

c 55 In a FUNCTION subprogram the index of DO is a 
dummy argument or in COMMON. 

C59 Syntax error in STOP statement. 

c 60 Syntax error in PAUSE statement. 

c 61 Integer constant in STOP or PAUSE statement ls> 9999. 

c 62 Last executable statement before END statement is not 
a STOP, GO TO, IF, CALL LINK, CALL EXIT, or 
RETURN statement. 

c 63 Statement contains more than 15 different subscript 
expressions. 

c 64 Statement too long to be scanned, because of compiler 
expansion of subscript expressions or compiler addition 
of generated temporary storage locations. 

c 65* All variables are undefined in an EQUIVALENCE list. 

c 66* Variable made equivalent to an element of an array, in 
such a manner as to cause the array to extend beyond 
the origin of the COMMON area. 

c 67* Two variables or array elements in COMMON are 
equated, or the relative locations of two variables or 
array elements are assigned more than once (directly or 
indirectly). 

c 68 Syntax error in an EQUIVALENCE statement; or an 
illegal variable name in an EQUIVALENCE list. 

c 69 Subprogram does not contain a RETURN statement, or 
a mainline program contains a RETURN statement. 

c 70 No DEFINE FILE in a mainline program which has disk 
READ, WRITE, or FIND statements. 

c 71 Syntax error in DEFINE FILE. 

c 72 Duplicate DEFINE FILE, more than 75 DEFINE FILES, 
or DEFINE FILE in subprogram, 

c 73 Syntax error in record number of READ, WRITE, or 
Fl ND statement, 

*The detection of a code 65, 66, or 67 error prevents any subsequent 
detection of any of these three errors. 

54 



Table A-9. DUP Error Messages (Part 1) 

Code and Printed Message 

D 01 NOT PRIME ENTRY 

D 02 INVALID TYPE 

D 03 INVALID HEADER LENGTH 

D 05 SECONDARY ENTRY POINT NAME ALREADY IN LET IS .... 

D 13 DCTL, FUNCTION 

D 14 DCTL, FROM FLO 

D 15 DCTL, TO FIELD 

D 16 DCTL, NAME FLO 

D 17 DCTL, COUNT 

D 18 DCTL, TMP MODE 

D 41 FIXED AREA PRESENT 

D 42 ASSEMBLER NOT IN SYSTEM 

D 43 FORTRAN NOT IN SYSTEM 

D 44 INCREASE VALUE IN COUNT FIELD 

D 45 EXCEEDS WORK STORAGE 

D 61 DUPCO, EXCEEDS WORK STORAGE 

D 62 EXCEEDS WORK STORAGE 

D 64 EXCEEDS FIXED AREA 

D 71 SEQUENCE OR CKSUM 

D 72 LOAD BLANK CARDS 

D 82 NON FILES RECORD 

D 83 INVALID CHARACTER 

D 84 EXCEEDS SECTOR ALLOCATION 

Description 

The primary name of the program in Working Storage does not match the 
name on the DUP control record. 

One of the following is detected: non-DSF program, mispositioned header, 
foreign data, or erroneous subtype. 

Word six of the DSF header is outside the range of 3-45. The causes are 
similar to D 02, except for subtype. 

The specified name is already in LET. The name must be deleted before this 
subprogram can be stored. 

An invalid DUP function specified in columns 1-12 of the DUP control record. 

Unacceptable characters are in columns 13 and 14 of the DUP control record. 
If Working Storage is specified in columns 13 and 14, then there is no valid 
program in Working Storage, Le., the Working Storage Indicator has been 
set to zero, thus inhibiting the movement of programs from Working Storage. 

Unacceptable characters are in columns 17 and 18 of the DUP control record. 

If this is a *STORE control record, then the name is already in LET/FLET. 
If this is a *DUMP control record, then the name is not found in LET or FLET. 
If this is a *DUMP control record of Working Storage to the principal 1/0, 
then a name is required in columns 21 through 25 of the DUP control record. 

·Columns 27 through 30 are blank or include alphabetic characters. 
The count field requires a decimal number. · 

This function is not allowed during the JOB T mode. 

The FORTRAN compiler and/or assembler cannot be eliminated if a Fixed 
area has been previously defined. 

The assembler has previously been eliminated from the system. 

The FORTRAN compiler has previously been eliminated from the system. 

The count field was read as a value of zero or one. The first DEFINE 
requires one cylinder for FLET plus one cylinder of Fixed area. 

Thereafter, as little as one cylinder of additional Fixed area can be defined. 

The initiation or expansion of the Fixed area is limited to the Working 
Storage available. 

This function requires more Working Storage than is available, 

The Working Storage area is not large enough to contain the program specified. 

There is insufficient room in the Fixed area for the program. 

The cards ore out of sequence, or there was an erroneous checksum. 

More blank cords are required to comp I ete the dump. The operator performs 
an NPRO and places blank cards between the two cards ejected, removes the 
first cord, places the first cord in the output stacker, places the remainder 
in front of the cards sti 11 in the reader hopper, and presses the reader START 
button. 

The first six characters of records following *STORECI are not *FILES. The 
number of *FILES records is determined by the count Held of DUP control 
record STORE Cl. 

The *FILES record following the *STORECI DUP control record has an invalid 
character. 

Too many Files have been defined. More than two sectors are required to 
contain the information from the *Fl LES record. 

Appendix A. Error Messages 55 



Table A-9. DUP Fnor Messages (Part 2) 

Code and Printed Message Description 

D 92 INVALID Cl CONVERT The Loader has inhibited the continuation of *STORECI. The specific 
reason has been printed by the Loader. 

D 94 LET/FLET OVERFLOW A ninth sector of LET/FLET is required for the LET/FLET entry. A deletion 
of a program with a LET/FLET entry of similar size is required before this 
program can be stored. 

NOTE: DCTL means the error was detected in the DUP control record. DUPCO means the error was detected in the DUP common section. 

Table A-10. DUP Waits and Loops 

Address. Explanation Operator Action 

Loops: System check. Reload entire Monitor 
70FF@03A8 LET/FLET I COMMA, System. 
(occurs after and DCOM do not 
console printer agree. 
prints first 320 
core positions) 

Wait at 092C Paper tape reader not Read paper tape reader 
ready. and press PROGRAM 

START. 

Wait at 002E Operator pressed To continue, branch to 
PROGRAM STOP 0030; press PROGRAM 
on console. START. 

56 

Table A-11. FORTRAN 1/0 Error Codes 

The fol lowing error codes are displayed in the accumulator upon 
detection of the errors. Press PROGRAM START to perform a branch 
to the monitor to proceed to the next subjob. 

Error Code Cause of Error 

FOOl l. Logical unit defined incorrectly. 
2. No *IOCS control record for specified 1/0 

device. 

F002 Requested record exceeds allocated buffer size. 

F003 Illegal character encountered in input record. 

F004 Exponent too large or too smal I in input field. 

FOOS More than one E encountered in input field. 

F006 More than one sign encountered in input field. 

F007 More than one decimal point encountered in 
input field. 

FOOS l. Read of output-only device. 
2. Write of input-only device. 

FlOO File not defined by DEFINE FILE statement. 

FlOl File record too large, equal to zero, or negative. 

DISKZ Errors: 

Fl02 Read error. 

Fl04 Write error. 

Fl06 Read back check error. 

Fl08 Seek error. 

FlOA Forced read error (seek or find). 



DISK SYSTEM FORMAT (DSF) 

Unless otherwise instructed, DUP automatically 
converts programs in Card System format (CDS) to 
Disk System format (DSF) when storing programs to 
disk storage. Likewise, programs in DSF are con­
verted to CDS when dumping from disk storage. 
Disk System format is shown in Figure 11; Card 
System format is described elsewhere in this 
appendix. 

Program Header Format 

The contents of the program header record (see 
Figure 11) vary with the type of routine with which 
it is associated. The first 12 words of the program 
header record for the seven types of programs are 
identical except for word 6, which is 9 less than 
the number of words in the program header record. 
The format of these 12 words is as follows: 

I 11 
\. y 

Program Header 
(12-54 words) 

See description below. 1 
Data 
Group 

(1-8 words) 

Data Block 

I 
) 1 l 

Indicator words and Indicator Word 

Data Header (2 words): 
Word 1 - Relative core starting 

address of where data 
is to be loaded 

data groups unti I 
data break 

Data Break -
Caused by: 

Word 

1 
2 

3 
4 

5 
6 

7 
8 
9 

10-11 

12 

I I 

t 
Data 

Header 

APPENDIX B. DATA FORMATS 

Contents 

Zero 
Checksum if source was cards; 
otherwise zero 
Type, subtype, precision 
Effective length of program, i.e., 
the terminal address in the program 
Length of COMMON (words) 
Length of program header record 
minus 9 
Zero 
Number of files defined 
Length of program, including 
program header record in disk 
blocks 
Name of entry point 1 (see 
Appendix G) 
Address of entry point 1 (absolute 
for type 1, relative to zero 
otherwise) 

I 
Indicator words and 
data groups unti I 
end-of-program 
data header 

End-of-program data 

I I 

header (2 words):----

Word I - Relative address of 
next available core location 

Word 2 - Number of data words following 
to next data header, plus number 
of words in next data header 

1. A break in sequence of program 
address, e.g., ORG, BSS, DSA 

Word 2 - Word count (O) 

2. A new data record 

3. The end of the program 

Figure 11. Disk System Format 

Appendix B. Data Formats 57 



After the first 12 words, the program header 
record format depends on the type of program. The 
header record for types 1 and 2 (absolute and 
relocatable mainline, respectively) consists of 
the first 12 words. The program types and their 
header record formats are shown below. 

Program Types 

Type 
Code Type of Program 

1 
2 
3 

4 

5 

6 

7 

Mainline (absolute) 
Mainline (relocatable) 
Subroutine, not an ISS, referenced 
by LIBF 
Subroutine, not an ISS, referenced 
by CALL 
Interrupt service subroutine (ISS) 
referenced by LIBF 
Interrupt service subroutine (ISS) 
referenced by CALL 
Interrupt level subroutine (ILS) 

Program Formats 

Type 3, 4: 

Words 

13-14 

15 

17-18 

19 

20-54 

58 

Contents ----

Name of entry point 2 (30 bits, 
right-justified) 
Address of entry point 2 (relative 
to zero) 
Name of entry point 3 (30 bits, 
right-justified) 
Address of entry point 3 (relative 
to zero) 
Three words per entry point as 
above, to a maximum of 14 entry 
points. The header record ends 
at the last defined entry point; 
thus, it is of variable length 

Type 5, 6: 

Words 

13 
14 
15 
17 

18 

Type 7: 

Words 

13 

Contents 

50 + ISS number 
ISS number 
Number of interrupt levels required 
Interrupt level number associated 
with primary interrupt* 
Interrupt level number associated 
with secondary interrupt 

Contents 

Interrupt level number 

*The 1442 Card Read Punch is the only device re­
quiring more than one interrupt level. 

Program Subtypes 

Subtypes are defined O'nly for type 3 and 4 sub­
routines. When undefined, the field contains a zero. 

For type 3 subroutines, subtypes are defined as 
follows: 

Subtype 

0 

1 

2 
3 

4 

Description 

In-core subroutines. Of the IBM 
subroutine library, this group in­
cludes the trace, fix, float, dump, 
subscript, normalize, flipper, 
initialization, and certain conversion 
subroutines 
Disk FORTRAN I/O subroutines, 
SDFIO and SDFND 
Arithmetic subroutines, e. g. , F ADD 
FOR TRAN Format subroutine SFIO, 
and FORTRAN I/O subroutines, e.g., 
CARDZ 
Conversion routines for the FORTRAN 
I/O subroutines, e.g., HOLEB 



For type 4 subroutines, subtypes are defined as 
follows: 

Subtype 

0 

8 

Description 

All type 4 subroutines which are not 
subtype 8, e. g. , DMTDO 
Functional subroutines, e.g., SIN 

Appendix E lists all IBM-supplied subroutines and 
their subtypes. 

DISK CORE IMAGE FORMAT (DCI) 

A program in Disk Core Image format (DCI) is one 
that the Loader has converted from Disk System 
format (DSF). A DCI program is an entire core 
load, i.e., it consists of a mainline program, all 
subroutines referenced in the core load (except the 
Disk 1/0 routine), the object-time transfer vector, 
and the core image header record. The mainline 
program and subroutines appear as they will at 
execution time; however, the Loader must prepare 
the program for execution before it is read into 
core storage. 

Although programs are loaded faster from DCI 
than from DSF, DCI programs usually occupy more 
disk storage because they constitute an entire core 
load. In addition, unlike DSF programs, the areas 
reserved by BSS and BES statements are a part of 
DCI programs unless the first statement in the 
mainline is a BSS or BES. 

A typical DCI program is stored on disk in the 
User/Fixed area as follows: 

Mainline Subroutines Object-time Core Image 

Program (if any) Transfer Vector Header 
Record 

The object-time transfer vector is described in 
the section titled The Loader. Information contained 
in the 60-word core image header record is used to 
load the DCI program into core before execution. 
The format is as follows: 

Words 

1-6 

7 

8 

9 
10 
11 

12 

13 

14 

15 

16-60 

Description 

Interrupt transfer vector (words 
8-13 at execution time) 
Setting for index register 3 at 
execution time 
Core address (at execution time) of 
the subroutine ILS02 
Number of files defined 
Length of COMMON (in words) 
Code for requested version of the 
Disk 1/0 subroutine (-1 = DISKZ, 
0 = DISKO, 1 = DISK!, 2 = DISKN) 
Core address (at execution time) of 
the entry in the LIBF TV which is 
associated with the Disk 1/0 sub­
routine 
Length of the object-time transfer 
vector (in words) 
Core address (at execution time) of 
the first word of the mainline pro­
gram, exclusive of initial BSS and/or 
BES statements 
Total length of mainline program, 
subroutines, and object-time transfer 
vector (in words) 
Reserved 

DISK DATA FORMAT (DDF) 

Disk Data format (DDF) describes information 
placed in the User area, Fixed area, or Working 
storage area as a result of the DUP control record 
STOREDATA. Disk Data format consists of 320 
binary words per sector; there are no headers, 
trailers, or indicator words. 

CARD SYSTEM FORMAT (CDS) 

Card System format is in terms of words on binary 
cards (see Card Data Format). The card ID and 
sequence numbers (columns 73-80) are in IBM 
card code. 

Mainline Header Card 

A mainline header card specifies the size of the 
common area and the size of the work area. It is 

Appendix B. Data Formats 59 



the first card of the mainline program. The 
format is as follows: 

Word 

1 
2 
3 

4 
5 

6 
7 

8-54 

Reserved 
Checksum* 

Contents 

Type code (first 8 bits): 
0000 0001 - absolute 
0000 0010 - relocatable 

Precision code (last 8 bits): 
0000 0001 - standard 
0000 0010 - extended 
0000 0000 - undefined 

Reserved 
Length of COMMON storage area 

(FORTRAN mainline program 
only) 

0000 0000 0000 0011 
Work area required (FORTRAN 

only) 
Reserved 

*The checksum is the two's complement of the 
logical sum of the record count (position of the 
record within the deck) and the data word(s). 
The logical sum is obtained by summing the 
data word(s) and the record count arithmetically 
with the addition of a one each time a carry occurs 
out of the high-order position of the accumulator. 

Data Cards 

Data cards contain the instructions and data that 
constitute the assembled program. The format is 
as follows: 

60 

Word 

1 

2 
3 

4-9 

Contents 

Location (The relative load address 
of the first data word of the card or 
record. Succeeding words go into . 
higher numbered core locations. 
The relocation factor must be added 
to this address to obtain the actual 
load address. For an absolute 
program the relocation factor is 
zero.) 
Checksum 
Type code (first 8 bits): 

0000 1010 
Data word count (last 8 bits) 
Relocation indicators (2 bits per 
data word): 

10 
11-54 

EOP Card 

00 - nonrelocatable or absolute 
01 - relocatable 
10 - LIBF (one word call) 
11 - CALL (two word call) 

Data word 1 
Date words 2 through 45 

An EOP (end of program) card is the last card 
of each program and subroutine. The format is 
as follows: 

1 

2 
3 

Contents 

Starting location of next routine 
(this number is always even and 
is assigned by the assembler) 
Checksum 
Type code (first 8 bits): 

0000 1111 
Last 8 bits: 

0000 0000 
4 XEQ address, if mainline program 

5-54 Reserved 

Subroutine Header Card 

A maximum of 14 entry points can be defined for 
each subroutine. The format of the subroutine 
header card is as follows: 

Word 

1 
2 
3 

4-5 
6 

7-9 
10-11 

12 
13-51 

52-54 

Reserved 
Checksum 

Contents 

Type code (first 8 bits); 
0000 0011 - to be called by a 

one-word call only (LIBF) 
0000 0100 - to be called by a 

two-word call only (CALL) 
Precision code (last 8 bits): 

0000 0000 - undefined 
0000 0001 - standard 
0000 0010 - extended 

Reserved 
Number of entry points times three 
Reserved 
Name of entry point 1 
Relative address of entry point 1 
Names and relative addresses of 

entry points 2 through 14 
Reserved 



ISS Header Card 

An ISS (interrupt service subroutine) header card 
for each interrupt service subroutine identifies 
the entry point defined by an ISS statement. Only 
one entry point can be defined for each 
subroutine. The format of the ISS header card 
is as follows: 

Word 

1 
2 
3 

4-5 
6 

7-9 
10-11 
12 
13 

14 

15 
16 

17-29 

30 
31-54 

Reserved 
Checksum 

Contents 

Type code (first 8 bits): 
0000 0101 - to be called by a 

one-word call only (LIBF) 
0000 0110 - to be called by a 

two-word call only (CALL) 
Precision code (last 8 bits): 

0000 0000 - undefined 
0000 0001 - standard 
0000 0010 - extended 

Reserved 
Six plus number of interrupt levels 

required 
Reserved 
Subroutine name 
Relative entry address 
Address of ISTV (interrupt service 

transfer vector) is equal to 5110 
plus the ISS number.* 

ISS number (displacement in ISTV) 
= l-810 

Number of interrupt levels required 
ID number for the primary interrupt 

level required (0-5) 
ID numbers for remaining interrupt 

levels required (0-5) 
Edit word (contains a 1) 
Reserved 

*The ISTV table is initialized by the Loader. This 
table starts at location 0034. Each TV entry in 
this table contains the starting addresses for the 
corresponding ISS routine (maximum of 8 TV 
entries). 

ILS Header Card 

An ILS (interrupt level subroutine) header card 
identifies the ILS routine. The format of the 
ILS header card is as follows: 

Word Contents 

1 Reserved 
2 Checksum 
3 Type code (first 8 bits): 

0000 0111 
Reserved (last 8 bits) 

4-5 Reserved 
6 0000 0000 0000 0100 

7-9 Reserved 
10-12 Reserved 

13 Interrupt level number 
14-54 Reserved 

CARD DATA FORMAT (CDD) 

Card Data format (CDD) is shown in Figure 12. 
Fifty four words can be placed on a card (1-1/3 
columns per word, 4 columns for 3 words). The 
word numbers appear in every third column across 
the top of the card. 

PRINT DATA FORMAT (PRD) 

Print Data format is shown in Figure 13. There are 
16 four-character words per line, with a space 
after each word, and an additional space after each 
fourth word. 

PAPER TAPE SYSTEM (PTS) AND PAPER TAPE 
DATA (PTD) FORMATS 

Paper Tape System format (PTS) is analogous to 
Card System format (CDS), and Paper Tape Data 
format (PTD) is analogous to Card Data format 
(CDD). 

In Paper Tape format, two frames contain one 
binary word, which is equivalent to 16 bits per 

Appendix B. Data Formats 61 



binary word in Card Data format. In addition, a 
one-frame word count precedes a paper tape record. 
A paper tape data record contains a maximum of 54 
binary words, i.e., 108 frames plus a word-count 
frame. 

Information that would appear in columns 73-80 
of a card must not appear on paper tape. 

Figure 12. Card Data Format 

4 Q) 4 Q) 4 Q) 4 0 0 0 
0 0 0 

characters 
a. 

characters 
a. 

characters a. characters V) V) V) 

\ A ... A v .., y v 
Word 1 Word 2 Word 3 Word 4 

Figure 13. Print Data Format 

62 

Q) Q) 

0 0 
0 0 
a. a. 

V) Vl 

I 

f 
\. 

Space after 
each 4th word 

0000000 
u1111n1111• 

9999999 
Ml5IIn111110 

v 
Words 5 - 16 



APPENDIX C. DISK STORAGE UNIT CONVERSION FACTORS 

~ ~ Word Disk Block Sector Track Cylinder Disk 

Bits 16 320 5, 112 20,480 40,960 8, 192,000 

Data Words 20 320* 1,280 2,560 512,000 

Disk Block 16 64 128 25,600 

Sectors 4 8 1,.600 

Tracks 2 400 

Cylinders 200 

*These follow the first actual word of each sector, which is used for the address. 

Appendix C. Disk Storage Unit Conversion Factors 63 



APPENDIX D. SUPERVISOR AND DUP INPUT/OUTPUT CHARACTER CODES 

PTTC/8 
Hex 

(U =Upper Case) 
Keyboard Graphic 1132 Graphic IBM Card Code (L = Lower Case) 

Numeric Characters 

0 0 0 lA (L) 
1 1 1 01 (L) 
2 2 2 02 (L) 
3 3 3 13 (L) 
4 4 4 04 (L) 
5 5 5 15 (L) 
6 6 6 16 (L) 
7 7 7 07 (L) 
8 8 8 08 (L) 
9 9 9 19 (L) 

Alphabetic Characters 

A A 12-1 61 (U) 
B B 12-2 62 (U) 
c c 12-3 73 (U) 
D D 12-4 64 (U) 
E E 12-5 75 (U) 
F F 12-6 76 (U) 
G G 12-7 67 (U) 
H H 12-8 68 (U) 
I I 12-9 79 (U) 
j j 11-1 51 (U) 
K K 11-2 52 (U) 
L L 11-3 43 (U) 
M M 11-4 54 (U) 
N N 11-5 45 (U) 
0 0 11-6 46 (U) 
p p 11-7 57 (U) 
Q Q 11-8 58 (U) 
R R 11-9 49 (U) 
s s 0-2 32 (U) 
T T 0-3 23 (U) 
u u 0-4 34 (U) 
v v 0-5 25 (U) 
w w 0-6 26 (U) 
x x 0-7 37 (U) 
y y 0-8 38 (U) 
z z 0-9 29 (U) 

64 

PTTC/8 
Hex 

{U = Upper Case) 
Keyboqrd Graphic 1132 Graphic IBM Card Code (L = Lower Case) 

Specie I Characters 

12-8-3 6B (L) 
< 12-8-4 02 (U) 

12-8-5 19 (U) 
+ 12-8-6 70 (U) 

& & 12 70 (L) 
$ $ 11-8-3 5B (L)* 

11-8-4 08 (U)* 
11-8-5 lA (U) 
11 40 (L) 

I I 0-1 31 (L)* 

I I 0-8-3 3B (L) 
O/o ( 0-8-4 15 (U) 
# Blank 8-3 OB (L)* 
@ Blank 8-4 20 (L)* 

8-5 16 (U) 
8-6 01 (U) 

Space Blank Blank 10 ( )* 

~ Blank 12-2-8 AO (U) 

I Blank 12-7-8 BB (U) 
Blank 11-2-8 DB (U) 
Blank 11-6-8 9B (U) 
Blank 11-7-8 EB (U) 

% Blank 0-5-8 95 (L) 
Blank 0-5-8 CO (U) 

> Blank 0-6-8 BF (U) 
? Blank 0-7-8 Bl (U) 

Blank 2-8 84 (U) 
II Blank 7-8 BB (U) 

NOTES: 1. DUP recognizes only those special characters flagged 
with an asterisk. 

2. Any special characters not recognized by SUP and 
DUP will be corrected to an ampersand (&). 



APPENDIX E. 1130 SUBROUTINE LIBRARY LISTING 

Subroutines Names Sub-type Other Subroutines Required 

Utility Calls 

Selective Dump on Console Printer DMTDO, DMTXO 0 WR TYO 

Selective Dump on 1132 Printer DMPDl I DMPXl 0 PRNTl 

Dump 80 Routine DMP80 0 None 

Common FORTRAN Calls 

Test Data Entry Switches DATSW 8 None 

Divide Check Test DVCHK 8 None 

Functiona I Error Test FCTST 8 None 

Overflow Test OVERF 8 None 

Sense Light Control and Test s LITE I SUTT 8 None 

FORTRAN Trace Stop TS TOP 8 TSET 

FORTRAN Trace Start TSTRT 8 TSET 

Integer Transfer of Sign ISIGN 8 None 

Extended Arith/Funct Cal Is 

Extended Precision Hyperbo Ii c Tangent ETANH, ETNH 8 EEXP, ELD/ESTO, EADD, EDIV, EGETP 

Extended Precision A**B Function EAXB, EAXBX 8 EEXP, ELN, EMPY 

Extended Precision Natural Logarithm ELN, EALOG 8 XMD, EADD, EMPY, EDIV, NORM, EGETP 

Extended Precision Exponential EEXP, EXPN 8 XMD, FARC, EGETP 

Extended Precision Square Root ESQR, ESQRT 8 ELD/ESTO I EADD I EMPY I EDIV I EGETP 

Extended Precision Sine-Cosine ESIN, ESINE, ECOS, ECOSN 8 EADD I EMPY I NORM, XMD I EGETP 

Extended Precision Arctangent EATN, EATAN 8 EADD, EMPY, EDIV, XMD, EGETP, NORM 

Extended Precision Absolute Value Function EABS, EAVL 8 EGETP 

FORTRAN Sign Transfer Calls 

Extended Precision Transfer of Sign ESIGN 8 ESUB, ELD 

Standard Precision Transfer of Sign FSIGN 8 FSUB, FLD 

Standard Ari th/Fun ct Ca I ls 

Standard Precision Hyperbolic Tangent FTANH, FTNH 8 FEXP I FLD/FSTO I FADD I FDIV I FGETP 

Standard Precision A**B Function FAXB, FAXBX 8 FEXP I FLN I FMPY 

Standard Precision Natural Logarithm FLN., FALOG 8 FSTO, XMDS, FADD, FMPY I FDIV I NORM, 
FGETP 

Standard Precision Exponentia I FEXP, FXPN 8 XMDS, FARC, FGETP 

Standard Precision Square Root FSQR, FSQRT 8 FLD/FSTO I FADD I FMPY I FDIV I FGETP 

Standard Precision Sine-Cosine FSIN, FSINE, FCOS, FCOSN 8 FADD, FMPY, NORM, XMDS, FSTO, FGETP 

Appendix E. 1130 Subroutine Library Listing 65 

0 



Subroutines Names Sub-type Other Subroutines Required 

Standard Precision Arctangent FATN, FATAN 8 FADD I EMPY I FDIV I XMDS I FSTO I FGETP 

Standard Precision Absolute Value Function FABS, FAVL 8 FGETP 

Common Arith/Funct Calls 

Fixed Point (Fractional) Square Root XSQR 8 None 

Integer Absolute Function IABS 8 None 

Floating Binary/EBC Decimal Conversions FBTD (BIN. TO DEC.) 0 None 
FDTB (DEC. TO BIN.) 

Overlay Routines for LOCAL Subprograms 

Long Form FLIPO 0 DISKZ or DISKO 

Short Form FLIPl 0 DISKl or DISKN 

FORTRAN Trace Routines 

Extended Floating Variable Trace SEAR, SEARX 0 ESTO, TTEST, SWRT, SIOF, SCOMP 

Fixed Variable Trace SIAR, SIARX 0 TTEST, SWRT, SIOI, SCOMP 

Standard Floating IF Trace SFI F 0 FSTO, TTEST, SWRT, SIOF, SCOMP 

Extended Floating IF Trace SEIF 0 FSTO, TTEST, SWRT, SIOF, SCOMP 

Fixed IF Trace Sil F 0 TTEST, SWRT, SIOI, SCOMP 

Standard Floating Variable Trace SFAR, SFARX 0 FSTO, TTEST, SWRT, SIOF, SCOMP 

GOTO Trace SGOTO 0 TTEST, SWRT, SIOI, SCOMP 

Non-Disk FORTRAN Format 1/0 

FORTRAN Format Routine SFIO, SIOI, SIOAI, SIOF, SIOAF, 3 FLOAT, ELD/ESTO or FLD/FSTO, IFIX 
SIOFX, SCOMP, SWRT, SRED, SIOIX 

FORTRAN Find Routine SDFND l DISKZ 

Disk FORTRAN 1/0 SDFIO, SORED, SDWRT, SDCOM, l DISKZ 
SDAF, SDF, SDI, SDIX, SDFX, 
SDAI 

FORTRAN Common LIBF-s 

FORTRAN Pause PAUSE 2 None 

FORTRAN Stop STOP 2 None 

FORTRAN Subscript Displace11Je11t SUBSC 0 None 
Calculation 

FORTRAN Subroutine Initialization SUBIN 0 None 

FORTRAN Trace Test and Set TTEST I TSET 0 None 

FORTRAN 1/0 and Conversion Routines 

FORTRAN Ca~d Routine CAR DZ 3 HOLEZ 

Disk 1/0 Routine DISKZ · 0 None 

FORTRAN Paper Tape Routine PAPTZ 3 None 

66 



Subroutines Names Sub-type Other Subroutines Required 

FORTRAN 1132 Printer Routine PRNTZ 3 None 

FORTRAN Keyboard-Typewriter Routine TYPEZ 3 GETAD, EBCTB, HOLEZ 

FORTRAN Typewriter Routine WRTYZ 3 GETAD, EBCTB 

FORTRAN Hollerith to EBCDIC Conversion HOLEZ 3 GETAD, EBCTB, HOLTS 

FORTRAN Get Address Routine GE TAD 3 None 

FORTRAN EBCDIC Table EBCTB 3 None 

FORTRAN Hollerith Table HOLTS 3 None 

Extended Arith/Funct LIBFs 

Extended Precision Get Parameter Subroutine EGETP 2 ELD 

Extended Precision A**I Function EAXI, EAXIX 2 ELD/ESTO, EMPY, EDVR 

Extended Precision Divide Reverse EDVR, EDVRX 2 ELD/ESTO I EDIV 

Extended Precision Float Divide EDIV, EDIVX 2 XDD, FARC 

Extended Precision Float Multiply EMPY, EMPYX 2 XMD, FARC 

Extended Precision Subtract Reverse ESBR, ESBRX 2 EADD 

Extended Add-Subtract EADD, ESUB, EADDX, ESUBX 2 FARC, NORM 

Extended Load-Store ELD, ELDX, ESTO, ESTOX 0 None 

Standard Arith/Funct LIBFs 

Standard Precision Get. Parameter Subroutines FGETP 2 FLO 

Standard Precision A**I Function FAXI, FAXIX 2 FLD/FSTO, FMPY, FDVR 

Standard Precision Divide Reverse FDVR, FDVRX 2 FLD/FSTO I FDIV 

Standard Precision Float Divide FDIV, FDIVX 2 FARC 

Standard Precision Float Multiply FMPY, FMPYX 2 XMDS, FARC 

Standard Precision Subtract Reverse FSBR, FSBRX 2 FADD 

Standard Add-Subtract FADD, FSUB, FADDX, FSUBX 2 NORM, FARC 

Standard Load-Store FLO, FLDX, FSTO, FSTOX 0 None 

Standard Precision Fractional Multiply XMDS 2 None 

Common Arith/Funct LIBFs 

Fixed Point (Fractional) Double Divide XDD 2 XMD 

Fixed Point (Fractional) Double Multiply XMD 2 None 

Sign Reversal Function SNR 2 None 

Integer to Floating Point Function FLOAT 0 NORM 

Floating Point to Integer Function IFIX 0 None 

I** J Integer Function FIXI, FIXIX 2 None 

Appendix E. 1130 Subroutine Library Listing 67 



Subroutines Names Sub-type Other Subroutines Required 

Normalize Subroutine NORM 0 None 

Floating Accumulator Range Check FARC 2 None 
Subroutine 

Interrupt Service Subroutines 

Card Input/Output (No Error Parameter) CARDO 0 I LSOO I I LS04 

Card Input/Output (Error Parameter) CARDl 0 I LSOO I I LS04 

One Sector Disk Input/Output DISKO 0 ILS02 

Multiple Sector Disk Input/Output DIS Kl 0 ILS02 

High-Speed Multiple Sector Disk Input/Output DISKN 0 ILS02 

Paper-Tape Input/Output PAPTl 0 ILS04 

Simultaneous Paper Tape Input/Output PAPTN 0 ILS04 

Plotter Output Routine PLOTl 0 ILS03 

1132 Printer Output Routine PRNTl 0 ILSOl 

Keyboard/Console Printer Input/Output TYPEO 0 HOL, PRTY I ILS04 

Console Printer Output Routine WR TYO 0 ILS04 

Conversion Routines 

Binary Word to 6 Decimal Characters (Card BINDC 0 Nor1e 
Code) 

Binary Word to 4 Hexadecimal Characters BINHX 0 None 
(Card Code) 

6 Decimal Characters (Card C.o::le) to DCBIN 0 None 
Binary Word 

EBCDIC to Console Printer Output Code EBPRT 4 EBPA, PRTY 

Card C.ode to EBCDIC-EBCDIC to Card Code HOLEB 4 EBPA, HOLL -

Card Co::le to Console Printer Output Code HOLPR 0 HOLL, PRTY 

4 Hexadecimal Characters (Card Code) to HXBIN 0 None 
Binary Word 

PTTC/8 to EBCDIC-EBCDIC to PTTC/8 PAPEB 4 EBPA 

PTTC/8 to Card Code-Card Co::le to PTTC/8 PAPHL 0 EBPA,HOLL 

PTTC/8 to Console Printer Output C.ode PA PPR 0 EBPA, PRTY 

Card Code to EBCDIC-EBCDIC to Card Code SPEED 0 None 

EBCDIC and PTTC/8 Table EBPA 0 None 

Cord Code Tobie HOLL 0 None 

Console Printer Output Code Tobie PRTY 0 None 

Interrupt Level Subroutines 

Interrupt Level Zero Routine ILSOO None 

68 



Subroutines Names Sub-type Other Subroutines Required 

Interrupt Level One Routine ILSOl None 

Interrupt Level Two Routine ILS02 None 

Interrupt Level Three Routine ILS03 None 

Interrupt Level Four Routine ILS04 None 

Appendix E. 1130 Subroutine Library Listing 69 



APPENDIX F. IN-CORE COMMUNICATIONS AREA (COMMA) 

The Disk Communications Area (DCOM), sector 8 
on the disk, is read into core starting in address 
0028 (decimal 40). The In-Core Communications 
Area (COMMA), therefore, is an image of DCOM, 
but offset by 40 words. The first 10 words 
(0028-0031) include the IOCS error and interrupt 
error traps. The IOCS error trap entry word 

70 

(0028) is initialized to contain the version and 
modification level of the Disk Monitor System, 
and will be overlayed by a return address if an 
IOC S error occurs. 

The core locations and contents of COMMA 
are shown below. 



Core Location 

~ Hex. 

1. 50 32 

2. 51 33 

3. 52 34 

4. 53 35 

5. 54-69 36-45 

6. 70 46 

7. 71 47 

8. 72 48 

9. 73 49 

10. 74 4A 

11. 75 4B 

12. 76 4C 

13. 77 4D 

14. 78 4E 

15. 79 4F 

16. 80 50 

17. 81 51 

18. 82 52 

19. 83 53 

20. 84 54 

21. 85 55 

22. 86 56 

23. 87 57 

24. 88 58 

25. 89 59 

26 • . 90-91 5A-5B 

27. 92 SC 

Comments 

IOCS counter, incremented by 1 upon entry to every IOCS subroutine (provided an XIO is to be executed), decremented by 
1 after an operation complete interrupt. 

Reserved. 

Core address (in user program) of Interrupt Level 2 subroutine (I LS02). 

Number of files defined. 

CALL LINK/CALL EXIT linkage to Skeleton Supervisor. 

Length of COMMON (in words). 

Type of Disk 1/0 required, e.g., 

-1 = DISKZ (special disk routine) 
0 = DISKO 
1 = DISKI 
2 = DISKN 

Reserved. 

System Addresses 

Reserved. 

Sector address of FORTRAN, zero if FORTRAN deleted. 

Sector address of Assembly Program, zero if deleted. 

32010 (length of 1 sector). 

Sector address of first (numerically lowest) sector of Core Image Buffer (Cl B). Word 1 of FLET header printed by DUMPLET. 

OOOA (address in low~r core, i.e., in the interrupt transfer vector, to which all disk interrupts branch indirectly). 

Sector address of first (numerically lowest) sector of Fixed Location Equivalence Table (FLET). Word 2 of FLET header 
printed by DUMPLET. 

Sector address of first (numerically lowest) sector of Location Equivalence Table (LET). 

Sector address of first (numerically lowest) sector of User area. 

File protect sector address, otherwise used as sector address of Working Storage (base). Word 1 of LET header printed by 
DUMPLET. See Note 1 . 

Same as above (adjusted). Word 2 of LET header printed by DUMPLET. See Note 1. 

LET/FLET Entries 

Total number of words used on disk by FLET. Word 3 of FLET header printed by DUMPLET. 

Reserved. 

Total number of words used on disk by LET (base). Word 5 of LET header printed by DUMPLET. See Note 1. 

Same as above (adjusted). Word 6 of LET header printed by DUMPLET. See Note l. 

Next available disk block address in User area (base). Word 3 of LET header printed by DUMPLET. See Note 1. 

Same as above (adjusted). Word 4 of LET header printed by DUMPLET. See Note 1. 

Name of program (LET/FLET entry words 1 and 2). 

Disk blocks used by program (LET entry word 3). Second word printed out at end of DUP function. 

Appendix F. In-Core Communications Area 71 



Core Location 

Dec, Hex, 

28. 93 5D 

29. 94 5E 

30. 95 5F 

31. 96 60 

32. 97 61 

33. 98 62 

34. 99 63 

35. 100 64 

36~ 101 65 

37. 102 66 

38. 103 67 

39. 104 68 

40. 105 69 

41. 106 6A 

107 -108 6B-6C 

42, 109 6D 

110- lll 6E-6F 

43. 112-114 70-72 

115-120 73-78 

44. 121 79 

45. 122-125 7A-7D 

46. 126 7E 

47. 127 7F 

48. 128-137 80-89 

49. 138 SA 

50. 139-144 SB-90 

72 

Comments 

LETIFLET Entries (Continued) 

Core execution address of program (relative for relocatable programs, absolute otherwise) for word 12 of the program header 
record, Not used as word 4 of LETIFLET entry. 

Core loading address of program, also used as first word on mainline program, or first word of define file table (LET/FLET 
entry word 5 for core image program). 

Word count/disk block count of program, i ,e., word count for core image programs, disk block count for data files, and 
address of next available core location following the program in Disk System format that is in Working Storage on the disk 
(LET/FLET entry word 6 for core image program data file). 

Principal print device (odd= console printer;1<eyboard, even= 1132), See Note 2. 

Principal 1/0 device (odd= 1442, even= 113411055). See Note 2, 

Temporary mode if non-zero, normal if zero, 

Non-XEQ (disable XEQ until next I/ JOB record if non-zero, enable XEQ if zero). See Note 3, 

Non-DUP (disable DUP functions until next 11 JOB record is detected if non-zero, enable DUP functions if zero). 

System Overlays and/or LOCALs are used in program if non-zero, 

Disable Supervisor reading of monitor control record if non-zero, enable if zero (positive indicates moriitor control record 
has been read under invalid conditions, negative under valid conditions). 

Loader return to Supervisor if zero, to address in switch itself if non-zero (after restoring DUP). 

Core map requested if non-zero, no map if zero, 

WS Indicator Word (disk block count of program in Wotking Storage}, 

Parameters for Disk IOCS 

Disk Arm Position 

Reserved 

Disk Fi I e Protect Address 

Reserved 

Table of Defective Cylinders 

Reserved 

Miscellaneous -
Disk block address of program, First word printed out at end of DUP function. 

Reserved 

Size of core (10001 6• 200016) 

Absolute execution address of core load (for word 6 of LET/FLET entry}. 

Reserved 

Contents of index register 3 (points to middle of a 255-word transfer vector}, 

System Work Area 



NOTE l: When requested following a //JOB T control record, DUP will 
store information to disk and update LET on a temporary basis (only the 
adjusted value is altered). When the next //JOB or //JOB T control 
record is encountered, the adjusted value will be replaced by the base 

NOTE 2: The interrupt levels associated with the 1/0 devices will be 
specified in COMMA. Since four bits are sufficient to specify any ILS 
number, three 1/0 levels may be included in each of the two words in 
COMMA which identify the principal 1/0 device and the principal print 

0 l 2 3 4 5 6 

value. Thus, all information which has been stored in the User area since 
the first //JOB T record will be deleted. The //JOB T function requires 
that both base and adjusted values be available in COMMA. The base 
and adjusted values will be equal except during //JOB T operation. 

device (items 31 and 32,respectively). The rightmost four bits in each of 
these words identify the devices themselves. The layouts of these two 
words are as follows: 

7 8 9 10 11 12 13 14 15 

9610 Interrupt level of Interrupt level of Reserved for future use Principal print device 
principal print device secondary print device 

Interrupt level of Interrupt level of 
principal 1/0 device column interrupt for 

1442 if principal 1/0 
9710 device is 1134/1055; 

interrupt level of end-
of-card interrupt for 
1442 otherwise. 

Word 96: 1132 +Console Printer 140016 
Console Printer 4001]6 

Interrupt level of 
end-of-card interrupt 
for 1442 if principal 
1/0 device is 1134/ 
1055; interrupt level 
of 1134/1055 other-
wise. 

Word 97: 1442 
1442 + 1134/1055 
1134/1055 

indicator (O=l 132, 
]=console printer/ 
keyboard) 

Principle 1/0 device 
indicator (O=l 134/1055, 
1=1442, 2=console 
printer/keyboard) 

Supervisor only 

040116 
044116 
400016 

NOTE 3: Set to somethin~ other than zero or one by any part of the sys­
tem that finds a non-XEQ type error, reset to one by Supervisor after 

printing out o message, reset to zero by Supervisor upon sensing a//JOB 
record. 

Appendix F. In-Core Communications Area 73 



APPENDIX G. LAYOUT OF LET/FLET ENTRIES 

THREE-WORD ENTRIES Words Description 

Words Description 

1-2 Name of the program, consisting 
of five 6-bit characters, right­
justified in the 32 bits of words 
1 and 2. Names of less than five 
characters are padded with 
terminal blanks. A 6-bit 
character is formed by truncating 
the leftmost two bits of the 
EBCDIC representation of that 
character. Bits 0 and 1 are zeros. 

3 Disk block count of the program. 

SIX-WORD ENTRIES 

Words 

1-2 

3 

74 

Description 

Same as for three-word entries, 
except that for core-image pro­
grams, bit O is zero and bit 1 is 
one; and for data files, both bits 
O and 1 are ones. 
Disk block count of the program, 
including padding. Padding is the 

4 

5 

6 

number of disk blocks between the 
end of the last program or file 
stored and the beginning of this 
program, which is a sector 
boundary. 
Execution address of the program, 
i.e., the core location to which 
control is passed for execution 
of the program (zero for data files). 
Loading address of the program, 
i.e., the core location to which 
control is passed for the execution 
of the program (zero for data 
files). 
Word count of the program, i.e., 
the number of words to be read 
from the disk when reading the 
information from disk to core 
storage. 

NOTE 1: Eight sectors each are allocated for 
LET and FLET. 

NOTE 2: The order of the entries in LET is the 
order in which the named items are stored in 
the User area. 



APPENDIX H. IBMOO (1130 DISK MONITOR SYSTEM MAINTENANCE 
PROGRAM) 

IBMOO, the 1130 Disk Monitor System maintenance 
program, is the means by which a user updates his 
disk as modifications are released. The program 
automatically updates the monitor programs 
(Supervisor, Disk Utility, FORTRAN, and 
Assembler), provides a method of changing the 
IBM subroutine library, and also updates the 
version and modification level in the first word 
in DC OM. The leftmost 4 bits represent the 
version, and the rightmost 12 bits represent the 
modification level. 

A card deck or paper tape containing correc­
tions to maintain the monitor will be supplied 
by IBM. This includes all necessary control 
records. Every modification must be run to 
update the version and modification level even 
though the program affected is not on the disk. 

IBMOO is stored on the disk as part of the 
IBM subroutine library. It is called from disk 
by the following control record: 

cc 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

I I XEQ I BM 0 0 0 

A zero must appear in position 19 of the XEQ 
record to specify DISKO. 

Input to the program can be stacked with 
other jobs. However, when stacking modifica­
tions to the Monitor System, each patch that 
increases the modification level must begin with 
the above Gontrol record (see Figure 14). 

Input to the program can be cards or paper 
tape. IBMOO determines the input device 
automatically by interrogating COMMA for the 
principal I/O device. 

SYSTEM PROGRAM MAINTENANCE 

Typical input for a system program update is as 
follows: 

cc 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

II XEQ IBMOO 0 
Patch header record 

Patch :~ata record } 

One to eight data records 

Patch data record 
Patch header record 

Patch ·.d· ate record } 

One to eight data records 

Patch data record 
Patch header record 

Update data records 
(new version of subroutine XXXXX) 

a * STORE XXXXX 
Update function control record 

DELETE XXXXX 

II DUP 

System maintenance program --....,....'----------... 
cal I II XEQ IBMOO 

{!I 
L I 

!-
I II XEQ IBMOO 1--' 

Next monitor control record 

u pdate data records 

System program header reccrd 

t Sys em maintenance program 
coli 

Figure 14. Control Records and Data Organization (in Card Form) 
for Moni~or Program and Subroutine Library Maintenance 

Appendix H. IBMOO (1130 Disk Monitor System Maintenance Program) 75 



Patch Header Record 

Each sector to be changed requires a patch 
header record. Thus, if a patch crosses a 
sector, two header records are required. If 
FORTRAN or the assembler is being modified, 
a check is made to determine if that system 
program has been voided from the disk. If so, 
the modification is not made. 

The format of a patch header record (in 
terms ol card input) is as follows: 

Columns 

1-3 

10-11 

15-17 

21-23 

76 

Contents 

Program ID (FOR, ASM, DUP, 
SUP) 
Monitor System Version (01-15). 
The patch is not made if the 
version number does not agree 
with the version number in DCOM. 
Modification Level (000-999). 
This must be the same in every 
header within a patch deck. The 
patch is made only if the modifica­
tion level number is equal to or 
one greater than the modification . 
level in DCOM. Changes to the 
modification level must be in 
ascending order, increasing by 
one level at a time. 

The user may rerun the 
modifications to his system by 
starting with modification level 
001. If this is lower than the 
modification level in DCOM, a 
message is typed, followed by a 
wait. This notifies the user that 
he is processing his modifications 
from the beginning; upon continuing, 
the patch is made and the 
modification level is changed to 
001. 

The modification level in DCOM 
is updated after the last record of 
the entire change is processed. 
Sector Address (absolute, 
decimal, sector to be modified, 
except for the assembler, in 

Columns 

27-29 

33-35 
40-41 

78-80 

Data Record 

Contents 

which case it is relative to the 
sector address of the first 
sector of the assembler). 
Relative word number of first 
patch word (000-319). 
Word count of patch (001-320). 
Total records in modification 
(02-99). This should appear only 
on the first patch header record. 
The count is the total record 
count of the modification, 
including data records and patch 
header records. 
Sequence number (always 001). 

A data record (in terms of card input) is a binary 
data card (see Appendix B, Card System Format). 
One to eight data records can follow each patch 
header record, depending on the size of the 
patch. These must be numbered from 002 to 
009, and must contain the proper checksum, for 
this sequence . 

The data record format is as follows: 

Words 

1 
2 
3 

4-9 
10-54 
55-60 

Contents 

Location 
Checksum 
Type code (first 8 bits): 
00001010; 
Word count (last 8 bits) 
Relocation indicators 
Data words 1 through 45 
ID and sequence number 

IBM SUBROUTINE LIBRARY MAINTENANCE 

Changes to the subroutine library require reloading 
the new subroutine. IBMOO updates the version 
and modification level word; the actual reload is 
performed by a DUP DELETE function, followed 
by a DUP STORE function. 



Typical input for a subroutine update is as 
follows: 

cc 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

II XEQ IBM 0 0 0 

(Subroutine header record) 

11 DUP 

*DELETE name 

*STORE C D U A name 
or 

p T 

(New version of the subroutine) 

Subroutine Header Record 

The subroutine header record must go through 
IBMOO even if the subroutine being modified is 
not on the user's disk. This is necessary to 
update the version and modification level word 

~'in DCOM so that the next sequential modification 
level can be made. 

The format of a subroutine header record 
(in terms of card input) is as follows: 

Columns 

1-3 
10-11 
15-17 

Contents 

SUB (to signify a subroutine update) 
Monitor System Version (01-15) 
Modification Level (000-999) 

OPERATING PRGCEDURES 

The card deck or paper tape supplied by IBM is to 
be run as a monitor job. When the control record 
//XEQ IBMOO is read, the version and modification 
level of the monitor is typed (see Figure 15, lines 
1, 2, and .3). When the correct input is read, 
lines 1 through 6 of Figure 15 are typed. 

ERROR MESSAGES 

IBMOO error messages are listed in Table H-1. 

Table H-1. IBMOO Monitor System Maintenance Error Messages 

Code and Message Meaning . 
UOl INVALID HEADER Program cannot recognize header 

record. 

U02 CHECKSUM ERROR Data record checksum error. A record 
might be out of sequence or there 
might be an invalid data record. 

U03 MCR BEFORE EOJ Monitor control record was encoun-
tered before the updating process 
was completed • 

U04 VERSION ERROR The version on disk does not agree 
with the version in header record. 

U05 MOD. LEVEL ERROR The modification I evel in the header 
record is not equal to or one greater 
than the modification level on disk. 

NOTE 1: All of the above errors require a retry of the executio~ after 
corrective action has been taken. Fol lowing an error type out, the 
program waits; pressing PROGRAM START causes an exit to the 
Supervisor. 

NOTE 2: A user can start at modification No. 1 and add all modifi­
cations to date, A message is typed when this condition is encountered, 
followed bya wait. PROGRAM START must be pushed to continue, 
The following message will be typed: 'THE MONITOR SYSTEM IS 
BEING UPDATED WITH MOD. LEVEL NO. 1. PUSH PROGRAM 
START TO CONTINUE.' 

(Line 1) 
(Line 2) 
(Line 3) 

(Line 4) 
(Line 5) 
(Line 6) 

IBMOO MONITOR SYSTEM MAINTENANCE 
VERSION NO. IS XX 
PRESENT MODIFICATION LEVEL IS XXX 

MONITOR SYSTEM UPDATE COMPLETED 
VERSION NO.~ IS XX 
NEW MODIFICATION LEVEL IS XXX 

Figure 15. Typeouts for 1130 Monitor System Maintenance Program 

Appendix H. IBMOO (1130 Disk Monitor System Maintenance Program) 77 



APPENDIX I. UTILITY ROUTINES 

In addition to the IBM subroutine library, the 
following three utility programs, each complete 
with subroutines and loaders, are supplied to 
the user to enable him to perform operations 
external to the 1130 Disk Monitor System: 

• Disk Pack Initialization Routine (DPIR). This 
routine is described under System Generation 
Operating Procedures __ ~ Car_d Sy:sie_m_. 

• Console Printer Core Dump (described below). 

• 1132 Printer Core Dump (described below). 

CONSOLE PRINTER CORE DUMP 

This routine aids the user in the debugging of 
programs. The programmer can dump portions 
of core by loading a single-card console routine 
which occupies the first 80 words of core. The 
output device is the console printer. 

Format 

This routine dumps core in hexadecimal form, 
starting with the word specified in the Console 
Entry switches. Dumping continues until 
PROGRAM STOP is pressed. 

Words are dumped in four-digit hexadecimal 
form, with a space between each word. The 
first word typed is the starting address of the 
dump. The number of characters per line 
depends upon the margin settings of the console 
printer. 

Operating Procedures 

1. Set the Console Entry switches to the address 
at which dumping is to start. 

2. Place the program card in the reader and set 
the Mode switch to RUN. 

3. Press IMM STOP and RESET on the console. 
4. Press START on the 1442. 

78 

5. Press PROGRAM LOAD on the console. 

Dumping proceeds until IMM STOP is pressed. 
Press PROGRAM START to resume the dump. 

1132 PRINTER CORE DUMP 

This is a se1f-loading, four-card routine that 
dumps the contents of core storage in hexadecimal 
format on the 1132 Printer (the fourth card is 
blank). The routine is also available in paper 
tape. 

Dumping begins at hexadecimal address OOAO 
and continues to the end of core. Sixteen words per 
line are printed, preceded by a four-digit 
hexadecimal address of the first word of each line. 

Card Operating Procedure 

1. Ready the 1132 Printer. 
2. Place the dump routine deck in the 1442 

Card Read Punch hopper. 
3. Press IMM STOP and RESET on the console. 
4. Press START on the 1442. 
5. Press PROGRAM LOAD on the console. 

Dumping continues until the last 16 words of 
core are addressed and printed. 

The program does not skip to the top of a new 
page to start, nor is page numbering or page 
overflow provided. 

Paper Tape Operating Procedure 

1. Ready the 1132 Printer .. 
2. Place the dump from OQAO tape in the paper 

tape reader so that one of the delete codes 
beyond the program ID in the leader is 
beneath the starwheels. 

3. Press IMM STOP, RESET, and PROGRAM 
LOAD on. the console. 

The output format is the same as described for 
the card routine. 



II JOB 
II FOR 

** IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM 
•ONE WORD INTEGERS 
*LIST ALL 
*IOCS (CARD• 1132 PRINTER• DISK) 
*NAME SAMPL. 

c 
c 

IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM 
IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM 
SIMULTANEOUS EQUATION ROUTINE 
DEFINE FIL.E 1 ClOt320tUtINXTI 
DIMENSION AllOtlOltXClOltBClO)tYClOI 

301 FORMAT C1Hlt20Xl5HINCOMPATIBILITY) 

APPENDIX J. 

302 FORMAT llH 20X41HMORE EQUATIONS THAN UNKNOWNS-NO SOLUTIONS> 

SAMPLE PROGRAM OUTPUT 

DKSAMOOl 
DKSAM002 

PAGE 01 
0KSAM003 
DKSAM004 
DKSAM005 
DKSAM006 
DKSAM007 

303 FORMAT (lH 20X46HMORE UNKNOWNS THAN EQUATIONS-SEVERAL SOLUTIONS> 
304 FORMAT ClH 20Xl5HSOL.UTION MATRIX) 

PAGE 02 
DKSAM008 
DKSAM009 
DKSAMOlO 
DKSAMOll 
0KSAM012 
DKSAM013 
DKSAM014 
0KSAM015 
DKSAM016 
DKSAM017 
0KSAM018 
DKSAM019 
DKSAM020 
DKSAM021 
DKSAM022 
DKSAM023 
DKSAM024 
DKSAM025 
DKSAM026 
DKSAM027 
DKSAM028 
DKSAM029 
DKSAM030 
OKSAM031 
DKSAM032 
DKSAM033 
DKSAM034 
OKSAM035 
DKSAM036 
DKSAM037 
DKSAM038 
DKSAM039 
DKSAM040 
0KSAM041 
DKSAM042 
DKSAM043 
DKSAM044 
0KSAM045 
DKSAM046 
DKSAM047 
0KSAM048 
DKSAM049 
DKSAM050 
DKSAM051 
OKSAM052 
DKSAM053 
DKSAM054 
DKSAM055 
DKSAM056 
DKSAM057 
DKSAM058 
DKSAM0'9 
DKSAM060 
DKSAM061 
DKSAM062 
DKSAM063 
DKSAM064 
DKSAM065 
DKSAM066 

c 
c 
c 
c 
c 
c 

c 

c 

305 FORMATClH 20X8HMATRIX Al 
306 FORMATClH 20X8HMATRIX Bl 

307 FORMAT ClH 20Xl0H A-INVERSE) 
308 FORMATClH 20X24HDIAGONAL ELEMENT IS ZERO) 
309 FORMAT (lH 2ox•A-INVERSE TIMES A') 

M=r2 
L•3 

READ IMtlOI 
10 FORMATC72H 

1 
WRITE ILtlO) 

12 FORMAT C6 I 10 ) 

SPACE FOR TITLE 

READ CMtl21MltM2tLltL2tNl•N2 
Ml • NOe OF RQWS OF A 
M2 • NOe OF COLS OF A 
Ll • NOe OF ROWS OF X 
L.2 • NOe OF COLS OF X 
Nl • NOe OF ROWS OF B 
NZ • N01 OF COLS OF B 

13 FORMAT C7Fl0e4l 
17 FORMAT (10Fl0e4l 

IF CN2-ll63t64t63 
64 IF (L2-ll63t65t63 
65 IF CL1-M2)63t66t63 
66 IF CM1-Nll63tllt63 
63 WRITE CL.t301) 

GO TO 2 
11 N•Ml 

N•M2 
IF CM1-M2) 9ltl4t93 

91 WRITE CLt302) 
GO TO 2 

93 WRITE 1Lt303) 
GO TO 2 

14 WRITE 1Lt305) 
DO 70 I•ltN 

READ CMtl3l(ACitJltJ•ltNI 
WRITE ILtl7lCACitJltJ•ltNl 

70 CONTINUE 
89 FORMAT CF10e4) 

WRITE CLt306) 
READ CMt891CBIIltI•ltNI 
WRITE CLt89l(BCiltI•ltNI 

PRESERVE THE ORIGINAL. MATRIX ON DISK 
DO 19 I•l•N 

19 WRITE ll'Il (A(J,llt J•ltNl 
INVERSION OF A 

20 DO 120 Kal tN 
O•ACICtKl 
IFCOl40t200t40 

40 ACKtKl•leO 

Appendix J. Sample Program Output 79 



IBM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM 
50 DO 60 J• ltN 
60 ACKtJl•ACKtJl/D 

IFIK-Nl80tl30tl30 
80 IKsK+l 

DO 120 I• IK•N 
D•A(ltKI 
Al ltlO•O,O 
DO 120 J•l tN 

120 AlltJl•AlltJl-CD•ACKtJll 
C BACK SOLUTION 

130 IKsN-1 
DO 180 K•ltlK 

140 ll•K+l 
DO 180 l•Il•N 
D•A(Ktll 
ACKtll•OtO 

170 DO 180 J•ltN 
180 ACKtJl•ACKtJl-ID•AlltJI) 

GO TO 202 
200 WRITE 1Lt308) 

GO TO 2 
C PRINT INVERSE 

202 WRITE CLt307) 
00 201 l•ltN 

WRITE CLtl71CACI1Jl1J•ltNl 
201 C:ONTINUE 

WRITE CL13091 
C COMPUTE ANO PRINT A•INVERSE TIMES A 

DO 123 J•ltN 
C RETRIEVE ORIGINAL BY COLUMNS 

READ ll'J) CXCMI, M•ltNI 
DO 122 I •l tN 
YC II • OeO 
00 122 K • ltN 

122 YCII • YCil+ACltKl*XCK) 
123 WRITE CLtl71 IYCllt I•ltNI 

DO 21 I •l tN 
XIIl•OeO 
DO 21 K•ltN 

21 XIIl•XIIl+AlltKl•BIKI 
WRITE Clt304) 
WRITE Clt8911Xllltl•ltNI 

2 CALL EX IT 
END 

IBM 1130 DISK MONITOR FORTRAN SAMPLE 

VARIABLE ALLOCATIONS 
A •OOCE x •OOE2 B •OOF6 y 
Ll •0113 L2 •0114 Nl •OlU N2 

UNREFERENCED STATEMENTS 
20 50 140 170 

STATEMENT ALLOCATIONS 
301 •0127 302 •0134 303 •014E 304 
12 •0108 13 •OlDB 17 •OlDE 89 
93 •024A 14 •0250 70 •0289 19 
130 •0374 140 •037E 170 •0399 180 
2 •0406 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
toes 

CALLED SUBPROGRAMS 
FAOOX FMPYX FDIV FLO FLDX 
CAR DZ PRNTZ SDFIO SORED SDWRT 

REAL COtiSTANTS 
elOOOOOE 01•0120 .ooooooE 00•0122 

INTEGER CONSTANTS 
2•0124 3•0125 1•0126 

CORE REQUIREMENTS FOR SAMPL 
COMMON 0 VARIABLES 288 PROGRAM 

ENO OF COMPILATION 

80 

PROGRAM 

•OlOA 
•0116 

•Ql6A 
•OlEl 
•02C6 
•0390 

FSTO 
SDCOM 

952 

D •OlOC INXT •OlOE 
N •0117 I •0118 

305 •0177 306 •0180 
64 •021C 65 •0222 
20 •02E7 40 •02FB 
200 •03CF 202 •0305 

FSTOX FSBRX SRED 
SDFX 

PAGE 03 
OKSAM067 
DKSAM068 
DKSAM069 
OKSAM070 
DKSAM071 
OKSAM072 
OKSAM073 
DKSAM074 
OKSAM075 
DKSAM076 
DKSAM077 
DKSAM078 
DKSAM079 
DKSAM080 
0KSAM08l 
DKSAM082 
OKSAM083 
OKSAM084 
OKSAM085 
0KSAM086 
OKSAM087 
OKSAM088 
DKSAM089 
DKSAM090 
DKSAM091 
DKSAM092 
0KSAM093 
DKSAM094 
0KSAM095 
DKSAM096 
OKSAM097 
DKSAM098 
OKSAM099 
DKSAMlOO 
DKSAMlOl 
0KSAM102 
DKSAM103 
OKSAM104 
DKSAM105 
OKSAM106 
DKSAM107 
OKSAM108 
DKSAM109 
DKSAMllO 

PAGE 04 
,_; 

M •OlOF 
J •0119 

307 •0189 
66 •0228 
50 •0306 
201 •03F6 

L 
K 

308 
63 
60 
122 

SWRT SCOMP 

•0110 Ml •0111 M2 •0112 
•OllA IK •0118 Il •OllC 

•0193 309 •01A4 10 •0182 
•022E 11 •0234 91 •0244 
•030A 80 •0325 120 •0344 
a042D 123 •045C 21 •048C 

SFIO SIOFX SIOI suesc 



II XEQ L 

FIL.ES ALLOCATION 

1 016C OOOA 

STORAGE ALLOCATION 

A 47 OF71 CHEX> WORDS AVAILABLE 

LIBF TRANSFER-VECTOR 

EBCTB 101' 
HOLTB OFDF 
GET AD OF9E 
NORM OF74 
XMDS OF58 
FARC OF36 
HOL.EZ OFOO 
IFIX OED8 
FLOAT OECE 
FADDX OE79 
SORED 06CO 
FSBRX OE50 
FMPYX OElC 
FDIV ODCA 
FSTOX 0072 
FLDX OOBE 
SDCOM 06E4 
SDFX 0682 
SOW RT 070E 
SIOFX 0915 
SUB SC OOA8 
SIOI 0919 
SCOMP 0901 
SWRT OIF8 
SRED 0928 
FSTO 0076 
FLO 0092 
PRNTZ occo 
CAR OZ OC7B 
SFIO 09CD 
SOFIO 0713 
DISKZ OOF4 

SYSTEM ROUTINES 

ILS02 1019 

03A5 CHEX) IS THE EXECUTION AOOR1 

IIM 1130 DISK MONITOR FORTRAN SAMPLE PROGRAM 
MATRIX A 

412150 •112120 111010 
-211200 315050 •116320 

111220 •113130 319860 

312160 
112470 
213456 

012915 
011631 

-010283 

019999 
010000 

-010000 

019321 
112654 
017429 

010833 
0138J6 
011029 

•010000 
019999 
010000 

MATRIX B 

A•INVERSE 
-010467 

011118 
013008 

A-INVERSE TIMES A 
010000 

•010000 
110000 

SOLUTION MATRIX 

DKSAM111 

Appendix J. Sample Program Output 81 



82 

II JOB 
II ASM 
•L.IST 
•PRINT SYMBOL TABL.E 

COMPUTE THE SQUARE ROOT OF 64 
0000 0 C030 BEGIN LO D64 
0001 20 061t06063 L.IBF FLOAT INTEGER TO FLOATING PTe 
0002 30 06898640 CALL FSQR FLOATING PTe SQRTe 
0004 20 091899CO L.IBF IFIX FLOATING PTe TO INTEGER 
0005 0 1008 SLA 8 

* MASK TO BUILD EBCDIC INTEGER 
* RESULT AND EBCDIC BLANK IN WORDle 

0006 0 E829 OR MASK 
0007 0 DOlB STO WORDl 

* CONVERT MESSAGE FROM EBCDIC 
* TO ROTATE/TILT COOEe 

0008 20 05097663 LIBF EBPRT 
0009 0 0000 DC 0 
OOOA 1 0023 DC WORDl 
OOOB 1 0015 DC TYPE'l 
oooc 0 OOlA DC 26 
0000 20 23Al7170 LIBF TYPEO TYPE MESSAGE 
OOOE 0 2000 DC /2000 
OOOF 1 0014 DC TYPE 
0010 20 23Al7170 LIBF TYPEO WAIT FOR TYPING COMPLETE 
0011 0 0000 DC 
0012 0 70FD MOX *-3 
0013 0 6038 EXIT RETURN TO MONITOR CONTROL 
0014 0 OOOE TYPE DC 14 
0015 0000 BSS 13 
0022 0 8181 DC /8181 
0023 0 0000 WORDl DC *-* 
0024 0018 EBC eIS THE SQUARE ROOT OF 641 
0030 0 F040 MASK DC /F040 
0031 0 0040 DQ4 DC 64 
0032 0000 END BEGIN 

SYMBOL TABLE 

BEGIN 0000 D64 0031 MASK 0030 TYPE 0014 WORDl 0023 

NO ERRORS IN ABOVE ASSEMBLYe 

SMASM001 
SMASM002 
SMASM003 
SMASM004 

PAGE 1 
SMASM006 
SMASM007 
SMASM008 
SMASM009 
SMASMOlO 
SMASMOll 
SMASM012 
SMASM013 
SMASM014 
SMASM015 
SMASM016 
SMASM017 
SMASM018 
SMASM019 
SMASM020 
SMASM021 
SMASM022 
SMASM023 
SMASM024 
SMASM025 
SMASM026 
SMASM027 
SMASM028 
SMASM029 
SMASM030 
SMASM031 
SMASM032 
SMASM033 
SMASM034 
SMASM035 
SMASM036 



II XEQ L SMASM037 

R 47 1907 CHE>Ct WORDS AVAILABLE 

CALL TRANSFER VECTOR 

FSQR 020C 

LIBF TRANSFER•VECTOR 

FARC 066C 
>CMOS 0650 
HOLL 0600 
PRTY 0!580 
EBPA 0!560 
FADD 04AF 
FDIV 0!50E 
FLO 045A 
FAODX 0485 
FMPYX 0470 
FSTO 043E 
FGETP 0424 
NORM 03FA 
TYPEO 0202 
EBPRT 026C 
IF IX 0244 
FLOAT 01F4 
DISKZ OOF4 

SYSTEM ROUTINES 

ILS04 0691 
ILS02 06AO 

01C2 (HEX I IS THE EXECUTION ADORe 

Program Output on Console Printer 

8 IS THE SQUARE ROOT OF 64 

Appendix J. Sample Program Output 83 



Adding and removing subroutines 39 
ARI1HMETIC TRACE, FORTRAN control record 33 
ASM, monitor control record 9 
Assembler 26 

control records 26 
error detection codes 29 
messages and error codes 29 
operating procedures (card) 29 
operating procedures (paper tape) 30 
origin of source program 28 
paper tape format 28 

Assembler control records 26 
COMMON 28 
FILE 28 
LEVEL 28 
LIST 27 
LIST DECK 27 
LIST DECK E 27 
PRINT SYMBOL TABLE 27 
PUNCH SYMBOL TABLE 28 
SA VE SYMBOL TABLE 28 
SYSTEM SYMBOL TABLE 28 
TWO PASS MODE 26 

Assembler error messages (Table A-7) 52 

Card Data format (CDD) 61 
Card subroutine errors (CARDO and CARDl) 36 
Card System format (CDS) S9 
Character codes, Supervisor and DUP 1/0 (Appendix D) 64 
Cold start 

halt addresses (Table 13) 44 
operating procedure, card 44 
operating procedure, paper tape 46 

Cold start operating procedures {cards) 44 
Cold start operating procedures (paper tape) 46 
COMMA (In-Core Communications Area) 7 

core locations (Appendix F) 70 
Comments, Monitor control record 10 
COMMON, assembler control record 28 
Compilation error messages 35 
Compilation messages 34 
Console Printer Core Dump 78 
Console printer subroutine errors (TYPEO and WRTYD) 38 
Control records 

Assembler 26 
DUP 17 
FORTRAN 32 

Monitor 7 
Supervisor 10 

Conversion factors, disk storage unit 63 
Core image buffer (CIB) 4 
Core Image format 

format (Appendix B) 59 
loading 16 

Data cards (Card System format) 60 
Data formats (Appendix B) 57 

Card Data (CDD) 61 

84 

Card System (CDS) S9 
Disk Core Image (DCI) 59 
Disk Data (DDF) S9 
Disk System (DSF) S7 
Paper Tape Data (PTD) 61 
Paper Tape System (PTS) 61 
Print Data (PRD) 61 

DCOM (Disk Communications Area) 7 
DEFINE, DUP control record 23 
DELETE, DUP control record 23 
Disk Communications Area (DCOM) 7 
Disk Core Image format (DCI) S9 
Disk Data format (DDF) 59 
Disk Pack Initialization Routine (DPIR) 40 
Disk storage allocation (Table 1) 3 
Disk storage layout 3 
Disk storage unit conversion factors 63 
Disk system format (DSF) 

format (Appendix B) S7 
loading 16 

Disk Utility Program (DUP) 17 
control records 17 
error messages (Table A-9) 55 
messages 24 
operating notes 25 

DPIR card load operating pro~edures 40 
DPIR paper tape load operating procedures 45 
DUMP, DUP control record 18 
DUMPDATA, DUP control record 18 
DUMPLET, DUP control record 22 
DUP, monitor control record 10 
DUP control records 17 

DEFINE 23 
DELETE 23 
DUMP 18 
DUMPDATA 18 
DUMPLET 22 

DWADR 22 

EDIT 24 

STORE 20 
STORECI 20 

STOREDATA 21 
STOREMOD 20 

DUP error messages (Table A-9) SS 
DUP waits and loops (Table A-10) S6 
DWADR, DUP control record 22 

EOP card (Card System format) 60 
Error messages (Appendix A) 47 

Assembler (Table A-7) S2 
DUP (Table A-9) SS 
DUP Waits and Loops (Table A-10) S6 
FORTRAN (Table A-8) S3 
FORTRAN 1/0 (Table A-11) S6 
Loader (Table A-6) SO 
Monitor Supervisor (Table A-4) 48 
Monitor Supervisor Wait Locations (Table A-5) 49 
System Loader {Table A-1) 47 

INDEX 



System Loader Wait Locations, Part 1 (Table A-2) 48 

System Loader Wait Locations, Part 2 (Table A-3) 48 
EXTENDED PRECISION, FOR TRAN control record 33 

FILE, assembler control record 28 
File protection 5 
FILES, supervisor control record 11 
Fixed area 5 
Fixed Location Equivalence Table (FLET) 5 
FLET (Fixed Location Equivalence Table) 5 

layout of LET /FLET entries (Appendix G) 74 
output format (Figure 8) 23 

Flipper routine 5 
FOR, monitor control record 9 
Formats (Appendix B) 57 
FOR TRAN compiler 32 

compilation error messages 35 
compilation messages 34 
control records 32 
I/O logical unit designations (Table 8) 32 
printouts 34 

FOR TRAN control records 32 
ARITHMETIC TRACE 33 
EXTENDED PRECISION 33 
IOCS 32 
LIST ALL 33 
LIST SOURCE PROGRAM 32 
LIST SUBPROGRAM NAMES 32 
LIST SYMBOL TABLE 32 
NAME 33 
ONE WORD INTEGERS 33 
TRANSFER TRACE 34 

FORTRAN error codes (Table A-8) 53 
FORTRAN 1/0 error codes (Table A-11) 56 

IBM systems area 3 
IBMOO (1130 Disk Monitor System Maintenance Program) 75 
ILS header card (Card System format) 61 
In-Core Communications Area (COMMA) 7 

core locations (Appendix F) 70 
Initializing Disk Monitor System from cards 43 
Initializing Disk Monitor System from paper tape 45 
IOCS, FORTRAN control record 32 
ISS header card (Card System format) 61 

JOB, monitor control record 9 

Keyboard subroutine functions (TYPEO) 38 

LET (Location Equivalence Table) 4 
layout of LET /FLET entries (Appendix G) 74 
output format (Figure 7) 22 

LEVEL, assembler control record 28 
LIST, assembler control record 27 
LIST ALL, FOR TRAN control record 33 
LIST DECK, assembler control record 27 
LIST DECK E, assembler control record 27 
LIST SOURCE PROGRAM, FORTRAN control record 32 
LIST SUBPROGRAM NAMES, FOR TRAN control record 32 
LIST SYMBOL TABLE, FORTRAN control record 32 
Load Mode Control Card 41 

Loader 12 
Loader messages/error messages (Table A-6) 50 

LOCAL, supervisor control record 10 
Location Equivalence Table (LET) 4 

Machine requirements ii 

Mainline header card (Card System format) 59 
Monitor control record analyzer 7 
Monitor control records 7 

ASM 9 
Comments 10 

DUP 10 
FOR 9 

JOB 9 
PAUS 9 
TEND 10 

TYP 9 
XEQ 10 

Monitor supervisor error messages (Table A-4) 48 
Monitor supervisor wait locations (Table A-5) 49 

NAME, FORTRAN control record 33 
NOCAL, supervisor control record 11 

Object-time transfer vector 15 
ONE WORD INTEGERS, FORTRAN control record 33 
Operating procedures 

cold start (cards) 44 
cold start (paper tape) 46 
DPIR card load 40 
DPIR paper tape load 45 
initializing Disk Monitor System from cards 43 
initializing Disk Monitor System from paper tape 45 
system generation (card system) 40 

Optional tracing (FOR TRAN) 34 

Origins for core loads 13 

Paper Tape Data format (PTD) 61 
Paper tape monitor system 45 
Paper tape subroutines (PAPT) 39 
Paper Tape System format (PTS) 61 
Patch header record (IBMOO) 76 
PAUS, monitor control record 9 
Pre-operative errors (subroutine library) 36 
Print Data format (PRD) 61 
PRINT SYMBOL TABLE, assembler control record 27 
Program header record (Disk System format) 57 
Program subtypes 58 
Program types 58 
PUNCH SYMBOL TABLE, assembler control record 28 

REQ Cards 42 

SAVE SYM:BOL TABLE, assembler control record 28 
SCON Card 42 
Skeleton Supervisor 7 
SOCALs (system overlays) 15 
Stacked input arrangement 12 

STORE, DUP control record 20 
STORECI, DUP control record 20 
STOREDATA, DUP control record 21 

Index 85 



STOREMOD, DUP control record 20 
Subroutine header card (Card System format) 60 
Subroutine header record (IBMOO) 77 
Subroutine library 5, 36 

listing (Appendix E) 65 
Supervisor and DUP I/O character codes (Appendix D) 64 

Supervisor control record area 4 
Supervisor control records 10 

FILES 11 
LOCAL 10 
NOCAL 11 

Supervisor program 3, 7 
System generation (card system) 40 
System loader error codes (Table A-1) 47 
System loader wait locations, Part 1 (Table A-2) 48 
System loader wait locations, Part 2 (Table A-3) 48 
System overlays (SOCALs) 15 
SYSTEM SYMBOL TABLE, assembler control record 28 

TEND, monitor control record 10 

86 

TERM Card 42 

TRANSFER TRACE, FORTRAN control record 34 
TWO PASS MODE, assembler control record 26 
TYP, monitor control record 9 

User area 4 
User storage area 4 
User-supplied cards 41 
Utility routines (Appendix I) 78 

Console Printer Core Dump 78 
Disk Pack Initialization Routine (DPIR) 40 
1132 Printer Core Dump 78 

Working Storage area 5 
Working storage indicator word 17 

XEQ, monitor control record 10 

1130 Disk Monitor System Maintenance Program (IBMOO) 75 
1132 Printer Core Dump 78 





C26-3750-0 

International Business Machines Corporation 
Ila.ta Processing Division 
112 East Post Road, White Plains, N.Y.10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 



READER'S COMMENT FORM 

IBM 1130 DISK MONITOR SYSTEM 
REFERENCE MANUAL 

Form C26-3750-0 

• Your comments, accompanied by answers to the following questions, help us produce better 

publications for your use. If your answer to a question is "No" or requires qualification, 

please explain in the space provided below. Comments and suggestions become the property of 
IBM. 

Yes 

• Does this publication meet your needs? D 
• Did you find the material: 

Easy to read and understand? D 
Organized_ for convenient use? D 
Complete? D 
Well illustrated? D 
Written for your technical level? D 

• \Vhat is your occupation? 

• How do you use this publication? 

As an introduction to the subject? D 
For advanced knowledge of the subject? D 
For information about operating procedures? D 

No 

D 

D 
D 
D 
D 
D 

As an instructor in a class? D 
As a student in a class? _ D 
As a reference manual? D 

Other------------------·-------------------
• Please give specific page and line references with your comments when appropriate. 

If you wish a reply, be sure to include your name and address. 

COMMENTS 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



C26-3750-0 

fold fold 

·----------------------------------------------------------·! 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A. 

Attention: Programming Publications, Dept. 452 

POSTAGE WILL BE PAID BY ... 

IBM Corporation 
Monterey & Cottle Rds. 
San Jose, California 
95114 

FIRST CLASS 

PERMIT NO. 2078 

SAN JOSE, CALIF. 

I 

-----------------------------------------------------------! 
fold 

International Business Machines Corporation 
Data Processing Diyision 
112 East Post Road, White Plains, N.Y.10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

fold 


