'IBM 1130 RPG

Program Number 1130-RG-007

This publication describes the internal logic of the
RPG compiler for the 1130 Computing System. It is
intended for use by persons involved in program
maintenance, and system programmers who are altering
the program design. Program logic information is
not necessary for the use and operation of the
program; therefore, distribution of this publication
is limited to those with the aforementioned require-
ments.

| Restricted “Biétribution

File Number 1130-28
Form Y21-0010-0

Program Logic



PREFACE

This program logic manual (PLM) supplements

the program listing of the 1130 RPG Compiler
(referred to in this publication as RPG) by

describing the program.

The first section of this PLM starts by
discussing the overall structure of the RPG
compiler. Following this, each phase is
described individually and is accompanied
by a flowchart of the logical elements.

The second section of this PLM describes
the main routines of the RPG object program.
The description contains flowcharts and

narrative which serve to illustrate the
cycle of operations within the object
program.

Prerequisites and Related Publications:

Effective use of this publication requires
an understanding of the RPG language

contained in the publication IBM 1130 RPG
Language, Form C21-5002.

First Edition

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader’s comments. If the form

has been removed, comments may be addressed to IBM Corporation, Prograinming
Publications, Department 425, Rochester, Minnesota 55901.

© Copyright International Business Machines Corporation 1969

For information on the 1130 Computing System
beyond the purpose of this publication, refer
to the following publications:

1. 1IBM 1130 Disk Monitor System, Version 2:
Programming and Operator's Guide, Form
C26-3717.

2. 1IBM 1130 Disk Monitor System, Version 2:
Program Logic Manual, Form Y26-3714.

3. IBM 1130 Disk Monitor System, Version 2:
System Introduction, Form C26-3709.

4. IBM 1130 Subroutine Library, Form
C26-5929.

For titles and abstracts of associated
publications, see IBM 1130 Bibliography,
Form A26-5916.




CONTENTS

INTRODUCTION. . &+ « & o o o o o o« o« o o 1 Assemble Calculation 1 Phase (RG44) . . 24
IBM 1130 RPG. . . « & & & o o o « « « o 1 Assemble Calculation 2 Phase (RG 46). . 25
System Environment. . . . . . . . . . . 1 Assemble Output Fields (RG52) . . . . . 25
Machine Requirements . . . . . . . . 1 Assemble Put Phase (RG54) . . . . . . . 25
Additional Machine Features Assemble Linkage Phase (RG58) . . . . . 25
Supported. . . . . . . . . . . . . . 1 Terminate Compilation (RG60). . . . . . 26
Program Organization. . . . . . . . . . 2 Compiler Flowcharts . . . . « « « « . . 27
Method of Operation . . . . . . . . . ., 2
Resident Routines and the
Communication Area. . . . « + « « + « . 2
Linkage Between Phases. . . « . « . . . 4 PHASE DIRECTORY . . . « . . . « . . . 55
System Initialization . . . . . . . . . 4 CONTROL BLOCKS AND TABLES . . . . . . . 57
Input Processing. . . . . . « . . . . . 6 Filename Table . . . . . + « « « « . 57
Diagnosing, Noting, and Describing . TENT Table (TENT). . . . o« « . . . . 57
Errors. . . L L Input/Output Table (IOTAB) . . . . . 58
Generating ObJeCt Code: v v v v vi .t o T Cogtrél Level Address Table. . . . . 58
Final Processing. . . . . . . . . . . . 8 overflow Table (SEQOF) . . . . . . . 58
PROGRAM ORGANIZATION. . v + v o v o o . 9 Filel Table (FILEl). . . « « « . . . 59
Functional Organization . . . . . . . . 9 DIAGNOSTIC AIDS . + v v o o oo o o . . 67
Resident Phase . . . . . . . . . . . 9 External Reference Table. . . . . . . . 67
Enter Phases . . . . . . . . ... . 10 Control Block and Table Usage . . . . . 70
Assign Phases. . « « « + « « .« « » o 10
Diagnostic Phases. . . . . . . . . . 10 COMPRESSION FORMATS . . . . . . . . . . 71
I/O Phases .« .« « o o o o o o o o« o o 12
Assemble Phases. . . . . . . . . . . 12 PART TWO: 1130 RPG OBJECT PROGRAM. . . 83
The RPG Object Program Cycle. . . . . . 85
PHASE DESCRIPTIONS. . . . . . . . - 15 Tables and Work Areas . . . . +« « « 85
Resident Phase (RG0OO) . . . . . . . . . 15 Function Address Table (FAT) « +« . . 85
Common Routines . . s e e e e 16 File Input Tables (FITs) . . . . 85
CALPH - Call Phase Routlne . . . 16 Output Tables. . . . . « « . . . . 87
GETCM - Get Compression Routlne . . 16 Low Field, PS, and Processing
PRTER - Error Note Routine . . . . . 16 BI1OGKS « v o o o o o 4w v o o v .. 89
PRTSP - Print Listing Routine. . . . 16 Control Level Hold Areas . . . . . 90
PUTCM - Put Compression Routine. . . 17 Pseudo Registers . . . « « . . . . . 90
RDSPC - Get Source Routine . . . . . 17 Object Time Routines. . . . oL 90
PUTOB - Put Object Code. . . . . . . 17 Input/Output Drivers (IODs). . . . . 90
OBEND - Complete Object Code . . . . 17 Fixed Driver (Overhead). . . . . . . 91
Enter File Specifications (RG02). . . . 18 Output Lines Routines 96
Enter Input Specifications (RG04) . . . 18 Get Input Record Routinés: ; : : : 102
Enter Calculation Specifications 19 Core Storage Allocation . . . . . . . .104
(RGO6) . + « & « « . & . . ; .
Enter Output Spe01flcat10ns (RGOB). . 19 Tra;;?giggigggigﬁ Program . . . . . ) :igg
Assign Indicators Phase (RG10). P Heading and Detail Lines . . . . . .109
Assign Field Names Phase (RG12) . . . 20 Get Input Record . . . ... . . . .109
Assign Literals Phase (RG14). . . . . . 20 Determine Record Type. L. . .109
Extended Diagnostics 1 Phase (RG1l6) . . 20 Test for Control Level éreak X . .110
Extended Diagnostics 2 Phase (RG17) . . 21 Total Calculations . . . . . . . . .110
Error Message Phases (RG19, RG20, Move Input Fields. . . . . . . . . .1l10
RG21) . . . . s e e 2l Chaining Routine . . . . . . . . . .l1l0
Assemble 1 I/0 Phase (RG22) . . . . . . 21 Detail Calculations. . . . . . . . .1l10
Assemble 2 I/O Phase (RG24) . . . . . . 22 Processing with an RA File. . . . . . .1ll1
Assemble 3 I/O Phase (RG26) . . . . . . 22 Processing By Cl, C2, or C3 Type
Assemble 4 I/0O Phase (RG28) . . . . . . 22 Chaining. . . + + & & ¢« « « & « &+ « . 114
Assemble Tables Phase (RG32). . . . . . 22 Control Level Processing. . . . . . 114
Assemble Chain and RA File Phase Processing Multiple Input Flles e e . W117
(RG34). . . . . . . e e e . . .23 Numeric Sequencing. . . . . . . . . . .120
Assemble Input Flelds (RG36) e o+« . 23 Object Program Flowchart. . . . . . . .123
Assemble Control Levels Phase (RG38). . 23 Library Subroutines . . . . e e .128
Assemble Multi~Files Phase (RG40) . . . 24 Move From I/0 Buffer to Core
Assemble Get Phase (RG42) . . . . . . . 24 (Chart MA) . . . . ¢« ¢« « ¢« « « « . .156



ii

Move From Core to I/O Buffer

(Chart MB) . . « « « « « « « . . .156
MOVE (Chart MC). . . . . « « « . . .156
MOVEL (Chart MC) . . . .« . .156
Alphameric Compare (Chart MD) . . .156
Test Indicators (Chart ME) . 157

Set Resulting Indicators (Chart ME) .157
Set Indicators On or Off (Chart MF).157
Test for Zero or Blank (Chart MF). .158
Test Zone (Chart MG) . . . . . . . .158
Record ID Conversion (Chart MH). . .158
Object Time Error (Chart MI) . . . .158

Blank After (Chart MJ) . . . . . . .158
Add, Subtract and Numeric Compare

(Chart MK) . . . e « o & « « & . 4159
Mutiply (Chart ML) e e e e e 4 . . J160
Divide (Chart MM). . . . . . . . . .161
Move Remainder (Chart MN). . . . . .163

RPG Conversion (Chart MO). . . . . .1l63
Sterling Input Conversion
(Chart MP) . . . +« « « « &+ « +» o« +» 2163
Sterling Output Conversion
(Chart MP) . . . . . +. « « « + . . .164
Edit (Chart MQ). . . . .« « 4165
Sequential Access (Chart MR) . « .+ 166
Direct Access (Chart MS) . . . . . .167
ISAM LOAD (Chart MT) . . . . . . . .1l69
ISAM ADD (Chart MU). . B A §
ISAM Sequential (Chart MV) e o « . 2173
ISAM Random (Chart MW) . . . . . 175
Core Dump Trace of an Object Program. .177

APPENDIX A: OBJECT TIME FORMAT OF
DATA FIELDS . « &+ « & o« s o » o s« « o« 4183

INDEX « 4 & o o o o« o o o o o o o o« » o185



FIGURES

Figure 1. Program Block Diagram . . .

Figure 2. 1Initialization Functions of
the RPG Compiler . . . . . . . . .

Figure 3. 1Input Processing Functions
of the RPG Compiler . . . . . . . .

Figure 4. Diagnostic Functions of

the RPG Compiler . . « e e e
Figure 5. Generate Object Code
Functions of the RPG Compiler . . .
Figure 6. Final Processing Functions
of the RPG Compiler . . . . . . .
Figure 7. Resident Phase, External
Routine Usage . . . . e e e e e
Figure 8. Enter Phases, External
Routine Usage . . . . . . . ..
Figure 9. Assign Phases, External
Routine Usage . « « « v « & « o o .
Figure 10. Diagnostic Phases, External
Routine Usage . . . . e e .
Figure 11. Input/Output Phases,
External Routine Usage . . . . . .
Figure 12. Assemble Phases, External
Routine Usage . . . . . . .
Figure 13. Object Code for the leed
Driver Routine . . . . . . . . . .

TABLES

Table 1. Storage Layout . . . . . . .
Table 2. Phase Directory . . . . . .
Table 3. Communications Area

(COMAREA) « v « « ¢ o« o o o o o o
Table 4. External Reference Table . .
Table 5. Control Blocks and Tables

Created by the 1130 RPG Compiler .
Table 6. File Description

Compression . . .+ « « ¢« 4 4 4 W .

Table 7. Extension Compression . . .
Table 8. Input Compression . . . . .
Table 9. Calculation Compression . .
Table 10. Output-Format

COomMpPression . « « o « « + o .
Table 11. Contents of the Functlon

Address Table . « ¢« ¢ ¢ « « « o« o+

10
11
11
12
12
13

92

ILLUSTRATIONS

Figure 14. Logic of the Central
Output Driver . . . .
Figure 15. Object Code of the GET

Routine . . . . . . .
Figure 16. Object Code of the
EOFTS Routine . . . . . .
Figure 17. Core Storage Allocatlon
Map o o o ¢ v 4 v h e e e e e
Figure 18. Typical Source Code for
Object Program Generation , . .
Figure 19. Processing With an RA
File v e e e e e e e e e e
Figure 20. Processing Multiple
Input Files . . . . . . . . .
Figure 21. Routines Generated to

Process

Figure 22. Object Code put out for

Numeric Sequencing . .« e e
Figure 23. Location of the lerary

Subroutines in an Object-time

Core Ioad . . v +v v v v & « o .
Figure 24. Object Prcgram Core

Dump Trace . . . . « e e
Figure 25. Analysis of a

Core DUMP . &« «¢ v & « 2 o o o o
Table 12. Routines That Call Library

Subroutines . . . . PN

Multiple Input Files .

Table 13. DFI Table for the
Sequential Subroutine . . . . . .
Table 14. DFI Table for the Direct
Access Subroutine . . . . . . .
Table 15. DFI Table for the ISAM
LOAD Subroutine . . . . « « « . o .
Table 16. DFI Table for the ISAM ADD
Subroutine . . ¢ ¢ ¢ ¢ 4 e e . W
Table 17. DFI Table for the ISAM

Sequential Subroutine . . . .
Table 18. DFI Table for the
Random Subroutine . . . . . .

IsaM

97
103
104
106
108
112
117
117

120

128

178
179

128
167
168
170
172
174

176

iii



CHARTS

Chart AA. Resident Phase (RGO0O)
Chart BA. Enter File Specifications
Phase (RGO2) . . . . . « . .
Chart BB. Enter Input Specifications
Phase (RGO4) . . . . . . . .
Chart BC. Enter Calculations

Specifications Phase (RG06)
Chart BD. Enter Output-Format

Specifications Phase (RGO08)
Chart CA. Assign Indicators

Phase (RG10) . . . « . . .

Chart CB. Assign Field Names

Phase (RG12) . . . . . . . .
Chart CC. Assign Literals

Phase (RG14) e v s e e e e s
Chart DA. Extended Diagnostics

Phase (RG16) . . . . .
Chart DB. Extended Calculatlon and

Output Diagnostic Phase (RG1l7)

Chart DC. Error Message Phases
(RG19, RG20, RG21l) . . . .

Chart EA. Assemble 11/0 Phase
(RG22)

Chart EB. Assemble 2 I/O Phase
(RG24) v 4« v v v 4 & o o o

Chart EC. Assemble 3 I/O Phase
(RG26)

Chart ED. Assemble 4 I/O Phase
(RG28) .

Chart FA. Assemble Tables
Phase (RG32) e e

Chart FB. Assemble Chaln and RA

File Phase (RG34) . . . . .

Chart FC. Assemble Input Fleld
Phase (RG36) e e e e .
Chart FD. Assemble Control Levels
Phase (RG38) . . . . . .

Chart FE. Assemble Multl Flles
Phase (RG40) . .

Chart FF. Assemble GET Phase (RG42)

Chart FG. Assemble Calculation 1
Phase (RG44) . . .

Chart FH. Assemble Calculatlon 2
Phase (RG46) . e

Chart FI. Assemble Output Flelds
Phase (RG52) . . . .

Chart FJ. Assemble PUT Phase (RG54)

Chart FK. Assemble Linkage

Phase (RG58) . . .« . . . .

iv

27
28
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48

49
50

51
52

53

Chart FL. Terminate Compilation

Phase (RG60) . . . . e e e e .
Chart GA. RPG Object Program

(Simple Flow) .« v o ¢ « o o o o o =
Chart HA. RAF Routine . . . e .
Chart IA. Logic of the Chalnlng

Routine . . « « + « & ¢ o« o« o & «
Chart JA. COMP Routine . . . . . . .
Chart KA. MFTST Routine . . . . . . .
Chart LA. RPG Object Program . . . .
Chart MA. Move From I/O Buffer

to Core Subroutine . . . . .« e .
Chart MB. Move From Core to I/O
Buffer Subroutine . . . v e e .

Chart MC. RPG MOVE and MOVEL
Subroutines . . . . . ¢ ¢« o o .

Chart MD. Alphameric Compare
Subroutines . . . . . . . . .

Chart ME. Test Indicators and Set

Resulting Indicators Subroutines .
Chart MF. Set Indicators On or Off,
and Test for Zero or Blank
Subroutines .« .« .+ . ¢ ¢ . e e e s
Chart MG. Test Zone Subroutine .
Chart MH. Record ID Conversion
Subroutine . . . ¢ ¢ ¢ 4 e . .

Chart MI. Object Time Error
Subroutine . . . P

Chart MJ. Blank After Subroutlne . .

Chart MK. RPG Add, Subtract, Numeric

Compare Subroutine . .

Chart ML. RPG Multiply Subroutlne .
Chart MM. RPG Divide Subroutine . . .
Chart MN. RPG Move Remainder
Subroutine . . . . ¢ ¢« o 0 e e
Chart MO. RPG Binary Conversion
Subroutine . . . . . . .

Chart MP. RPG Sterllng Input and
Sterling Output Conversion
Subroutines . . . e e e e e e

Chart MQ. RPG Edit Subroutlne . e

Chart MR. Sequential Disk
Subroutine . . . . . . . e e .
Chart MS. Direct Access DlSk
Subroutine . . . . e
Chart MT. ISAM Load Subroutlne . e
Chart MU. ISAM ADD Subroutine . . . .
Chart MV. ISAM Sequential
Subroutine . . . .
Chart MW. ISAM Random Subroutlne . .

54

84
113

114
115

118
124
129
130
131
132
133
134
135
136

137
138

139
140
141
142
143
144
145
l4e
148
149
151

153
155



IBM 1130 RPG

The IBM 1130 RPG language provides an effi-
cient technique for writing source programs
that can be translated into object programs
(machine language) by the 1130 RPG
compiler.

1130 RPG consists of a source language and
a compiler. The source language allows
definitions of characteristics of the files
to which the input and output records be-
long, the fields of input data records, the
literals, the operations and calculations
to be performed, and the fields of the out-
put records. The RPG language entries
specified on the RPG coding form make up
the source program. i

The RPG compiler reduces the input/output
operations and the number of data passes
to a minimum. Input/output operations are
reduced by retaining as much source data
as possible in main storage. All blanks,
comments, and unrequired fields are delet-
ed from the source specifications, and the
resulting compressed source specifications
are placed in a reserved area of main stor-
age called a compression buffer. The term
compression (or compression record), as
used in this publication, refers to the
data compressed from one source statement.
Compression blocks refers to a group of
these compressed specifications. Compres-
sion block one is variable in length de-
pending on the amount of core storage
available. All succeeding blocks are of
fixed length (2560 words). Examples of
the compression record formats for each
specification type are included under
"COMPRESSION FORMATS."

The number of iterations through compres-
sion records is reduced by placing unique
field names, literals, and resulting indi-
cators into tables. The areas allotted

for the tables are large enough to contain
all of the entries in most of the programs
to be compiled. As a result, addresses
can be assigned to the entries immediately,
and machine instructions can be generated
with a minimum number of iterations through
compression.

INTRODUCTION

SYSTEM ENVIRONMENT

Machine Requirements

Program Generation

The minimum machine requirements for gener-
ating an RPG object program are as follows:

e 1131 with 8K words of core storage
® One card-reading device
® Single Disk Storage Feature

® One printer (IBM 1132, 1403, or console
printer.)

Object Program Execution

The minimum machine requirements for the
execution of an RPG object program depend
on the I/0 configuration used:

e 1131 with 8K words of core storage and
single disk storage

e Input/Output devices as required by the
object program:

IBM 1403 Printer, Model 6 or 7

IBM 1442-5 Card Punch

IBM 1132 Printer

IBM 2501 Card Reader, Model Al or A2
IBM 1442 Card Read/Punch, Model 6 or 7

Additional Machine Features Supported

The following system features are support-
ed for program generation:

e 1131 with 16K or 32K words of core
storage

® A card-punching device if the object
program is to be punched

® One or more additional IBM 2310 disk
units

Introduction 1



PROGRAM ORGANIZATION

As shown in Figure 1, the 1130 RPG compiler
consists of six major components: the Resi-
dent Phase, Enter Phases, Assign Phases,
Diagnostic Phases, Input/Output, and Assem-
ble Phases.

The Resident Phase is the first phase of
the compiler. Some routines within the
Resident Phase remain in storage through-
out compilation. These routines handle
calling a phase, getting and putting a com-
pression block, printing and reading source
statements, and printing error notes.

The Enter Phases read, list, compress, and
perform diagnostics on the source state-
ments. Also, a table of filenames is
created.

In the Assign Phases, addresses are as-
signed to Resulting Indicators, defined
field names, and Calculation and Output
literals in the compression. Also, a sym-
bol table is printed.

The Diagnostic Phases detect errors not
detected in the Enter Phases, list all
multi-defined, undefined, and unreferenced
field names, and print abbreviated error
messages for all diagnostic errors that
have occurred during the generation.

The I/0 Phases build a table of file des-
cription entries and then used this table
to produce object code for I/O requests
involving certain devices and processing
methods. Object code necessary to inter-
face with ISAM subroutines is also gener-
ated.

The Assemble Phases generate most of the
object program code, set up the tables
used for output linkage, and generate the
necessary linkage. Although included in
the Assemble phases, the Terminate Compil-
ation Phase (RG60) performs a separate
compiler function: this phase terminates
compilation, either naturally or due to
errors in the compilation.

METHOD OF OPERATION

This section presents an overview of the
main functions of the RPG compiler and the
sequence of events that bring about these
functions. The five main functions of the
1130 RPG compiler described in this sec-
tion are:

e System initialization

e Input processing

e Diagnosing, noting, and describing
errors

® Generating object code
® Final processing

To convey the logic and data flow of these
functions, this section includes a series
of diagrams building from the general to
the specific. Supporting text is includ-
ed, where necessary, but, for the most
part, the diagrams are designed to be self-
explanatory. The consecutive progression
of events that occur within individual
phases are not described here; this infor-
mation is included under "PHASE DESCRIP-
TION".

Certain times, in the following flowcharts
and text, abbreviations are used. A par-
tial list of these abbreviations and their
meanings follows:

COMMA - Resident Monitor Communication
Area

COMP - Compression

COMAREA - Communication Area

DSF - Disk System Format

ES - Extension Specification

EXT - Extension

FDS - File Description Specification

NEIT - Neither (Flowchart usage)

PARAM - Parameter

WS - Working storage

RESIDENT ROUTINES AND THE COMMUNICATION
AREA

To save load time in each phase, routines
used by two or more phases (common rout-
ines) are stored in the Resident phase
(RG00) and remain there as long as neces-
sary.

Linkage to the common routines from a pro-
cessing phase is accomplished through a
branch within that phase. The common
routine then performs the operation de-
sired by the requesting phase and returns
control to it.

The common routines originally contained
in RGOO are:

® Get Compression Routine (GETCM)
® Print Error Note Routine (PRTER)
® Print Source Card Routine (PRTSP)
® Read Source Card Routine (RDSPC)
e Put Compression Routine (PUTCM)

® Call Phase Routine (CALPH)



Output Format
Code Sheet

Output
Specifications

Calculation
Code Sheet

Calculation

Specifications

Code Sheet

Input

Extension
Code Sheet

Input
Specifications

Extension
Specifications

File Description

File Description

Specifications

RPG
Control

Card (H Card)

Print Heading
on Listing,

Figure 1.

print H Card

Source Listing
with Error

Notes

Lists of: Re=~
sulting IND;
STMT Number

and Note; un-
referenced
multidefined,
and undefined
fields and

W

' Listing of Di-

Resident Phase
e Reads and diagnoses control card
e Contains routines that are common to
many RPG phases
1
Enter Phases
e Read, list, compress, and diagnose
specifications
e Build table of filenames
2
L Assign Phases
T angfuage o Assign addresses to all resulting
ext for indicators in RPG source program
I/O TAB, e Determine addresses of all defined
DECL. . fieldnames
Arrus, Lit- e Process calculation literals and
erafs, and output literals 3
Resulting
Indicators Diagnostic Phases
o Build tent table
o Determine type of specifications used
e Process and print error messages
4
1/O Phases
e Build IOTAB and use it to produce
object code for 1/O routines
5
Assemble Phases
Relc,:;\:at;:ble ‘ o Generate machine language instructions
ach . and object program linkages
Language . N
e Terminate compilation
6

agnostic Notes
and meaning
of all Error

W

Key Object

Program Block Diagram

Time Routines
Map Compila-
tion Complete

Introduction



Of these, PRTER and PRTSP are replaced by
new routines created by phase RGl0. (These
new routines retain the same names and
perform approximately the same functions
as the original routines.)

Two other routines are moved into RGO0 by
phase RG10:

® Object Code Routine (PUTOB)
e Complete Object Code Routine (OBEND)

The common routines are described in de-
tail in the "PROGRAM ORGANIZATION" section.

In addition to the common routines, a
Communication Area (COMAREA) is estab-
lished in the Resident phase and remains
there throughout processing by the RPG
compiler. The COMAREA is an 80-word com-
munication area that contains information
that must be transferred between phases of
the RPG compiler. It begins at address
'ZRDSP' and includes such information as
the starting address of the compression of
each type of specification, addresses of
routines in the Resident areas, and other
constants and addresses used during com-
pilation. The format and contents of the
COMAREA are described under "CONTROL
BLOCKS AND TABLES".

LINKAGE BETWEEN PHASES

Except for the Resident phase, which re-
mains in storage throughout compilation,
each RPG phase is brought into storage

only when it is needed. When a phase com-
pletes processing, it returns to the CALPH
routine with a request to bring another
phase into storage. The CALPH routine then
substitutes the requested phase for that
just completed, passing control to the re-
quested phase.

SYSTEM INITIALIZATION

Before the RPG Control Card or RPG speci-
fication cards can be read, some common
routines must be read into storage and the
COMAREA must be defined. Both operations
are performed when the Resident phase
(RGO0) is given control. When the Resident
phase is first given control, it contains
six common routines, as well as instruc-
tions designating where these routines

are to be placed. As soon as the Monitor
brings this phase into storage, it relo-
cates the common routines and passes con-
trol to the first instruction. Next, the
COMAREA is defined, and the RPG Control
Card is processed.

Input and output flow for the initializa-
tion function is shown in Figure 2.



COMPILER COMPONENTS

MONITOR

INPUT
TO
COMPILER
COMPONENTS
11 RPG
]
H Card
\b PRTLN
Principal
Input
Routine

; RDSPC z

RPG Resident Phase
(RG00)
INITIALIZE

Load Principal
Print Routine
Load Principal
Input Routine
Clear Buffers
Establish COMAREA

KEY:

—————— Control Flow

\\~ - Read
Routine L - - —

CALPH

READ H CARD

T == PROCESS H CARD

Check Field for Validity
Set Up Options
Put Name in Heading

PRINT HEADING

—— CALL NEXT PHASE

PRINT H CARD+ — == = — =

Forward

------ = Retum Control Flow

sesmmmmmp Data Flow

Figure 2.

Initialization Functions of the RPG Compiler

A

OUTPUT
FROM
COMPILER
COMPONENTS

PRTLN

Principal
Print
Routine

Introduction

5



INPUT PROCESSING

Information on the RPG Control Card and
the specification cards must be recorded
in storage so that it can be easily ac-
cessed by the Diagnostic, I/0, and Assem-
ble phases of the compiler. This oper-
ation is performed by the Enter phases.

In addition to showing the input and out-
put flow for the input processing function,
Figure 3 depicts the data and control flow
for evaluating and compressing information
in the user's RPG source program.

DIAGNOSING, NOTING., AND DESCRIBING ERRORS

Diagnosis of errors is first performed in
the Resident phase, when checks are made
for such things as an invalid Monitor Con-
trol Card and exceeding the limits of
working storage. If an error such as this
is found, exit is made to RG60, where an
error message is printed, and compilation
is terminated.

Diagnosis of another type takes place in
the Enter phases. If invalid statements
are detected, they are noted, and compila-
tion continues. This holds true for the
Assign phases, where invalid indicators,
fields or literals are detected and noted.
If no valid input, output, or file des-
cription compressions are read by RG1l0, it
notes the error and exits immediately to
RG19. RG19, Diagnostic message phase, con-
tains the program that prints error-note
messages. Each time a phase prior to

RG19 notes an error, it causes the Resident
phase to print the note-number identifying
the error. Then, when RG19, RG20, and

RG21 gain control, error notes are printed
corresponding to the error-note numbers.

If a terminal error, such as no valid com-
pression, is processed by RG19, RG20, or
RG21, an exit is taken directly to RG60.

At RG60, an error-note may be printed, as
well as a "compilation ended" note, follow-
ed by an exit to the monitor.

The diagnosing, noting and identifying
functions are illustrated by Figure 4.

INPUT COMPILER COMPONENTS OUTPUT
TO FROM
COMPILER COMPILER
COMPONENTS COMPONENTS

Figure 3.

Calculation
ile Descriptio ' Principal
*Comments I Input EI{QCI(EZR .P::é(s)g)s’
Routine
1 . ———F —— Read Specification PRTSP —
\ L Check Validity [ | Pr:ncnpal ﬂ
AN RDSPC Print Specification <«—-~----} [ - Prmr.
N Compress Specification Routine
Put Compression PUTCM
Buffer
CALPH = CALL NEXT PHASE = — = — - ] DISK Z
& COMPRESSION BUFFER
- f/
\.Norkin.g
torage Print
Specification

Input Processing Functions of the RPG Compiler



INPUT
TO0
COMPILER
COMPONENTS

OUTPUT
FROM

COMPILER COMPONENTS

COMPILER
COMPONENTS

RESIDENT PHASE (RGO0O0)
EXIT
Invalid Monitor Control
To: Card
RG60 ( CALPH i Call Next Phase
PRTER [T
N ENTER PHASES PRTSP |
(RG02-RG08) - L |Principal
Check Statement = [*= Prmf.
CALPH Call Next Phase N} Routine
S~
\, k—’ ASSIGN PHASES P @ HEADING
Working GETCM (RG10-RG14) uToB N—" Note XXX
' v Indicators ~ RG10 T
Storage or ! Working
Co‘mpression PUTCM el e Fields - RG12 Storage
- Literals - RG14 [ N~ NDICAT
E Call Next Phase = PRTSP Principal orS
N— Print P s Addresses,
CALPH N—" OBJECT CODE BUFFER T Statement
YVorkin.g Routine number,
Storage COMPRESSION BUFFER Note XXX
PPTER
EXTENDED DIAGNOSTICS . \
(RG16-RG17) FIELDS
Call Next Phase \ PRTSP Name,
\ N Addresses,
> COMPRESSION BUFFER Ity etc.
PRTSP —
CALPH DIAGNOSTIC MESSAGE e
:: PHASES (RG19, 20, 21) Statement LITERALS
Terminal Error  number, Addresses,
/f Yaum Call Next Phase Note XXX, etc.
Caan ) am ) LT XNote | | Approprite | |~
;23:60\ Compilation
~——— WRAP-UP Invalid Completed
EXIT Terminal Error ; '3\;0,:_ L./d
niror
To: t | Control
Monitor - ___] Card
Figure 4. Diagnostic Functions of the RPG Compiler

GENERATING OBJECT CODE

One of the primary objectives of phases
RG22~RG54 is to generate object code.

This is accomplished by linking to PUTOB.
Two addresses are passed to PUTOB: the ad-
dress of the code to be generated, and the
address of the table that describes the

code.

Depending on the type of statement pro-
cessed, object code is generated for a

specific function. In addition to generat-
ing code, these phases store the addresses
of some of the generated routines in the
NOTES section of the COMAREA. When RG58
gains control, it takes the addresses from
NOTES, generates them into the proper order
in the fixed driver (see page 160), and
places the object code in the object code

(Refer to PUTOB--Put Object Code.) buffer. At the same time it prints the
Key Addresses of object program map, a list-
ing of routine names and addresses. The

generation of object code is shown in
Figure 5.

Introduction 7



INPUT OUTPUT
10 COMPILER COMPONENTS EROM
COMPILER COMPILER
COMPONENTS COMPONENTS
ASSEMBLE 1/0O and @
ASSEMBLE PHASES Ne—"
GETCM (RG22-RG54) orking
g  NOTES ¢
@ RpE—— Generate Object Prm— torage
R— Program PUTCM _ fmmma )
YVorking e - — — — = — — =~ — =
Jforage E Call Next Phase ——= puTOB
ASSEMBLE LINKAGE PHASE
(RG58)
Load Principal Print Routine [T _ 7] PUTOB W
Ry éc)r ing
torage
fes o ot e - - - - PRo—
Call Next Phase
CALPH PRTSP Principal Key Object
— — — 4 l«—4  Print Time Routines
Routine Map
OBJECT CODE BUFFER

W

Figure 5.

FINAL PROCESSING

Final processing takes place when RG60
gains control. Any generated object code
remaining in the Object Code Buffer is
moved to disk working storage. If neces-
sary, the object code is then read into

the Disk I/O Buffer and moved to the begin-
ning of working storage.

INPUT
TO

COMPILER COMPONENTS

COMPILER
COMPONENTS

WRAP-UP (RG60)

Check Object Code
Buffer

Move Object Code
into Upper Working
Storage

1@

—————— e N YY)

Generate Object Code Functions of the RPG Compiler

After the object code is moved, the DUP

and EXEC switches in the Monitor Communi-
cation Area (COMMA) are set, and such
values as block count and relative entry
point are entered in the Disk Communication
Area (DCOM). Then, a "compilation com-
plete" message is printed and exit is made
to the monitor.

Final processing is depicted in Figure 6.

OuTPUT
FROM
COMPILER
COMPONENTS

Set Switches

and COMMA

PRTSP Principal Compilation

orking DISK 1/O BUFFER

e

torage -

OBJECT CODE BUFFER
If any code in Object
Code Buffer, move
it to Working
Storage

Figure 6.

Print —-

Complete
Routine

To:
Monitor

Final Processing Functions of the RPG Compiler



This section describes the design of the
RPG compiler and describes how the program
is packaged.

FUNCTIONAL ORGANIZATION

As mentioned in Section 1, the six major
components of the 1130 RPG Compiler are
the Resident Phase, Enter Phases, Assign
Phases, Diagnostic Phases, I/O Phases, and
Assemble Phases.

Resident Phase

The Resident phase of the RPG Compiler re-
mains resident in the same position through-
out compilation as shown by Table 1. This
phase is composed mainly of code, which
accomplishes the following functions:

PROGRAM ORGANIZATION

® Fetch and store the principal print,
input, and conversion routines.

® Read first source card.

e Initialize compression buffer.

® Process and diagnose header card.

® Print compiler listings, if required.
® Print header card and error notes.

® Read a card to ready the input buffer
for the first Enter phase.

e Call the first Enter phase.

Also included in the Resident phase is a
Communication Area (the COMAREA). This
area provides addresses and constants used
by the compiler. (The COMAREA is described
in detail in "Table 3: Resident Communica-
tions Area".

Also stored in the Resident phase are six
common routines, which are used by more
than one phase. (The first Assign phase
(RG10) replaces two of these routines, and
builds two other common routines, which
are also stored in the Resident phase,
after it is expanded to accommodate them.)
Figure 7 shows the use of routines by the
Resident phase and by the common routines
(which are contained within the Resident
Phase) .

Program Organization 9



RESIDENT PHASE (RG00)

COMPILER N
ROUTINES RDSPC
|
PRTSP*
|
CALPH*
SYSTEM DISK Z*
SUBROQUTINES T
Principal Print Routine

COMMON ROUT

INES ORIGINALLY IN RGOO

RDSPC

PUTCM*

1

Principal Read Routine

CALPH*

$EXIT

T

GETCM

PUTCM*

T

DISK Z

PUTCM

DISK Z

CALPH*

pooes |

PRTER

PRTSP*

PRTSP

Principal Print Routine —I

CALPH

DISK Z

COMMON ROUTINES PLACED IN RG0O BY RG10

T

PUTOB
DISK Z
1
Principal Print Routine
1
$DBSY
1
CALPH*
OBEND PTWS

**The use of the routine is shown in
Figure 7, under Common Routines.

Please note: PRTER and PRTSP are overlaid by RG10 with routines

bearing the sam

Figure 7. Resident Phase,

Usage

10

e addresses.

External Routine

Enter Phases

The Enter Phases, as a whole, perform the
following functions: read, list, diagnose,
and compress File Description, Extension,
Input, Calculation, and Output-Format
Specifications, and build the Filename
Table. The Enter phases (and their module
names) are:

® Enter File Specifications (RG02)
® Enter Input Specifications (RGO04)
e Enter Calculation Specifications (RGO06)

e Enter Output-Format Specifications
(RGO8)

The core storage layout for the Enter
phases is shown in Table 1, while Figure 8
shows the use of routines by these phases.

Assign Phases

The Assign phases of the RPG compiler pri-
marily perform the following functions:
assign addresses to all resulting indica-
tors and defined field names, print out a
symbol table, build a table of indicators,
and process calculation and output liter-
als.

The Assign phases (and their module names)
are:

® Assign Indicators (RG10)

® Assign Field Names (RG12)

e Assign Literals (RG14)

The core storage layout for these phases
is shown in Table 1; Figure 9 shows the

use of routines by each phase.

Diagnostic Phases

The Diagnostic phases of the RPG compiler
perform the following functions: detect
errors not found by the Enter phases; list
all multi-defined, undefined, and unrefer-
enced field names; check for errors in the
specifications; and print error messages
for all errors discovered by these and
earlier phases.

The Diagnostic phases (and their module
names) are:

® Extended Diagnostics 1 Phase (RG16)
® Extended Diagnostics 2 Phase (RG1l7)

® Error Message Phases (RG1l9, RG20, RG21l)



ENTER PHASES

Enter Output
Specifications
RGO8

RDSPC*

1

PUTCM*

|

PRTSP*

1

PRTER*

Figure 9.

Assign Phases, External Routine Usage

Enter File Enter Input Enter Calculation
Specifications Specifications Specifications
RGO02 RGO4 RGO6
RDSPC* RDSPC* PUTCM*
1 1 i
PRTSP* GETCM* PRTSP*
| 1 1
PUTCM* PUTCM* PRTER*
1 [ 1
PRTER* PRTSP* CALPH*
1 | |
CALPH* PRTER* RDSPC*
1
CALPH*
J
* The use of this routine
is shown in Figure 7.
Figure 8. Enter Phases, External Routine Usage
ASSIGN PHASES
RG10 RG12 RG14
Assign Assign Assign
Indicators Fieldnames Literals
GETCM* GETCM* GETCM*
1 1 1
PRTSP* PRTSP* PRTSP*
1 1 |
PRTER* PUTOB* PUTOB*
1 | 1
PUTOB* CALPH* CALPH*
1
CALPH*
g

* The use of this routine

is shown in Figure 7.

Program Organization

11



The core storage layout for these phases
is the same as for the Assign phases, as
shown by Table 1; Figure 10 shows the use
of routine of the Diagnostic phases.

I/0 Phases

The main function of the I/0 phases is to
build a table of file description entries
(the IOTAB) and use this table to produce
object code. The I/0 phases (and their

The core storage layout for these phases
is shown in Table 1.

Figure 11 shows the use of routines of
these phases.

Assemble Phases

The Assemble phases generate the following:
table loading and dumping routines; object
code for RA and CHAIN files; object code

module names) are: for field type and record type input
specifications; object code needed to
e Assemble 1 I/0 (RG22) process multiple input files; a File Input
Table entry for each record type; table
® Assemble 2 I/0 (RG24) lookup routines; object code for calcula-
tion operations; object code to place out-
e Assemble 3 I/0 (RG26) put fields within their associated output
I/0 areas; object code to produce output
® Assemble 4 I/O (RG28) records, and linkage from the object code
DIAGNOSTIC PHASES
RG16 RG17 RG19 RG20 RG21
Extended E)ftended. Diagnestic Diagnostic Diagnostic
Diagnostics 2 Diagnostics 2 Message 1 Message 2 Message 3
GETCM* GETCM* PRTSP* PRTSP* PRTSP*
I I I I T
PRTSP* PRTSP* CALPH* CALPH* CALPH*
I I
PRTER* PRTER*
CALPH* l PUTOB*
CALPH*
L 1
* The use of this routine
is shown in Figure 7.
Figure 10. Diagnostic Phases, External Routine Usage
I/O PHASES
RG22 RG24 RG26 RG28
Assemble 1 Assemble 2 Assemble 3 Assemble 4
1/0 i/0 /O /O
CALPH* PUTOB* PUTOB* PUTOB*
|
CALPH* CALPH* CALPH*
J | J

* The use of this routine
is shown in Figure 7.

Figure 11.

12

Input/Output Phases, External Routine Usage



to the object program. The Assemble e Assemble Output Fields (RG52)
phases (and their module names) are:

e Assemble Put (RG54)
® Assemble Tables (RG32)

e Assemble Linkage (RG58)
® Assemble Chain and RA Files (RG34)

e Terminate Compilation (RG60)
e Assemble Input Fields (RG36)

(Although not technically an Assemble
e Assemble Control Levels (RG38) phase, RG60 is included with these phases.)

® Assemble Multi-Files (RG40)
The core storage layouts of the Assemble

e Assemble Get (RG42) phases (RG22-RG54), Assemble Linkage
phase (RG58), and Terminate Compilation

e Assemble Calculation 1 (RG44) phase (RG60) are shown in Table 1; Figure
12 shows the use of routines by each of

e Assemble Calculation 2 (RG46) the Assemble phases.

ASSEMBLE PHASES (RG32-RG60)

RG32 RG34 RG36 RG38 RG40 RGA42
Assemble Assemble Assemble Assemble Assemble Assemble
Tables Chain Input Control Multi- GET
RAF Field Level File
PUTOB* f PUTOB* GETCM* | GETCM* | r GETCM* J | GETCM* ]
I | I | I
CALPH* CALPH* PUTOB* PUTOB* PUTOB* PUTOB™
1 1 1 1
CALPH* CALPH* CALPH* CALPH*
T ] ] ]
RG44 RG46 RG52 RG54 RG58 RG60
Assemble Assemble Assemble Assemble Assemble Wrap-Up
CALC 1 CALC 2 Output PUT Linkage
Field
GETCM* GETCM* GETCM* GETCM* PUTOB* PRTSP*
| | 1 1 | |
potos* | | [ eutosr | | | putosr | [ putos: | | | caten | [ OBEND* 1
1 1 1 1 1 1
CALPH* CALPH* CALPH* CALPH* Principal Principal
Print Print
Routine Routine
i
DISK Z
|
$EXIT
A
$DBSY
]

* The use of this routine
is shown in Figure 7.

Figure 12. Assemble Phases, External Routine Usage

Program Organization 13



Table 1 shows the contents of the core
storage areas in the 1130 RPG Compiler
through various stages of compilation

(when an 1131 with 8K words of core storage
is used). 1In this table "Location" refers
to the displacement addresses (in words) of
the core storage areas.

To avoid confusion please note that the term
sequence number (or internal sequence nhum-
ber) refers to a number assigned to each
specification. This number beginning with
the first specification (one) is incremented
by one for each successive specification;
record sequence refers to the sequence
assigned to an Input record type, columns
15-16 of the Input specifications.

Phases Enter Assign and 1/0 and Assemble Teminate
+Location Diagnostics Assemble Linkage Compilation
Hex Dec
0 0
Resident Resident Resident Resident Resident
Monitor Monitor Monitor Monitor ‘Monitor
212 530
Principal Print | Principal Print | Tables Principal Print | Principal Print
Routine Routine Routine Routine
3¢o 960
RPG Resident RPG Resident |RPG Resident | RPG Resident RPG Resident
Phase (RG00) Phase (Com- Phase (Com- Phase (Com= Phase (Com-
565 1381 mon Routines) |mon Routines) | mon Routines) mon Routines)
Principal *
73A 1850 Input
Routine
906 2310
Phases Phases Phase Phase
RG10-RG21 RG22-RG54 RG58 RG60
AF0 2800
Disk 1/0
Phases Buffer
D6C 3420 RGO2-RGO8
1086 4230 (Consecutive
phases over=-
lay one Object Code |Object Code | Object Code
another) Buffer Buffer Buffer
1446 5190*
Compression Compression Compression Compression
Buffer 1 Buffer 1 Buffer 1 Buffer 1
15FE 5630**
Compression Compression Compression Compression
Buffer 2 Buffer 2 Buffer 2 Buffer 2
2000 8192
* When an 1131 with 16K or 32K words of core storage is used, this is incremented
to 7470,
** When an 1131 with 16K words of core storage is used, this is incremented to 13,630;
when an 1131 with 32K words of core storage is used, this is incremented to 29,630.
*** RG10 is origined at 1190 for placement of additional common routines.
Note: The Assemble Linkage phase (RG58) and Terminate Compilation phase (RG60) are pictured separately to show the
differences in their core layout as compared to the other assemble phases.

Table 1.

14

Storage Layout




Each of the 29 phases in the compiler (and
each major routine within these phases) is
described by the following entries:

e Chart - Identifies the flowchart
that describes the logic
flow of the phase or rou-
tine. (The flowcharts are
included as a group, begin-
ning with Chart AA.)

® Functions - Describes the purpose and
principal operations of the
phase.

e Entry - Names the label of the
first executable statement
in a phase or routine.

e Input - Describes data to be pro-
cessed by a phase or rou-
tine.

e Output - Describes the data which

has been processed by a
phase or routine.

® External References - Refer to Table 4,
which shows the subroutines,
constants, and addresses
referenced by each phase of
the RPG compiler.

® Exit - Identifies the phase which
will be put in control fol-
lowing the current phase.
The entry is further divid-
ed into normal and error
exits, to cover all possible
results. A normal exit
calls a succeeding phase to
continue compilation; an
error exit calls a phase to
note an error or to print an
error message, and may poss-
ibly terminate compilation.

e Tables/Work Areas - Describes tables
and work areas that are
built or modified by each
phase.

PHASE DESCRIPTIONS

. RESIDENT PHASE (RGO0O)

Chart: AA
Functions:

e Loads the principal input, principal
input conversion, and principal print
routines for use by compiler.

® Loads the interrupt transfer addresses
necessary for these subroutines.

® Provides a communication area which
can contain addresses and constants
(COMAREA), and fills in certain ad-
dresses and constants in this area.

e Provides routines to perform input/out-
put needed by the other phases. (See
"COMMON ROUTINES".)

® Prints compilation headings, if re-
quested.

Entry: RPG - entered from the monitor, to
begin compilation.

Input: Input is via RPG source statements

entered through the principal input de-
vice.

Qutput: A printed listing of the headings
and RPG control card if requested.

External References: Refer to Table 4.

Exits:

e Normal: To RG02, via CALPH (Call Next
Phase routine).

® Error: None. (Refer to COMMON ROUTINES
for error exits within the common rou-
tines.)

Tables/Work Areas: ILS4, Interrupt Branch
Table, is located in RG00. This table is
described in the publication, IBM 1130
Disk Monitor System, Version 2, Program-—
ming and Operator's Guide, (Form C26-
3717) .

Phase Descriptions 15



COMMON ROUTINES

Common routines are used by one or more
phases other than the phase which built
them. The six common routines originally
stored in RGO0O are:

CALPH, which calls a succeeding phase.

PUTCM, which puts a compression block in
working storage.

PRTER, which prints error notes when an
error is encountered during compilation.

GETCM, which reads a compression block
from working storage to compression.

RDSPC, which reads information from cards
into the input/output area.

PRTSP, which builds the I/0 buffer and
prints a listing if requested.

CALPH - Call Phase Routine

Chart: None.
Functions: Reads next phase from disk.

Entry: CALPH, entered when the requested

phase is to be read into main storage and
when control is to be transferred to the

calling routine.

Output: None.

External References: Refer to Table 4.

Exit:
® Normal: To next phase.
® Error: None.

GETCM - Get Compression Routine

Chart: None
Functions:

® Reads a requested compression block in-
to core storage.

® If requested block is already in core,
returns to calling phase immediately.

® If requested block is not in core, the
block presently in core is written out
in working storage before the requested
block is read in from working storage.

Entry: GETCM, entered when a compression
block is to be read from working storage.

Input: A compression block number, as re-
quested by a calling phase.

Output: The requested compression block.

External References: Refer to Table 4.

16

Exit:

® Normal: Return to calling routine or
phase.
® Error: None.

PRTER - Error Note Routine

Chart: None.
Functions:
e Builds I/O Buffer for error notes.

® Posts error number in NOTES (within
COMAREA) for RG19.

Entry: PRTER, entered when an error note
is to be printed.

Input: Error number, from calling phase.

Output: Printed error note within I/O Buf-
fer, and return address.

External References: Refer to Table 4.

Exit:

e Normal: To PRTSP, for actual output
function.

[ J Error: None.

PRTSP - Print Listing Routine

Chart: None
Functions:

® Checks if List Option is on.

® Checks for indication of error in source
card, if List Option is off.

® Sequence checks cards.
e Builds Input/Output Buffer.
® Prints Listing.

Entry: PRTSP, entered when a source card
is to be printed.

Input: Source card.
Output: Printed Listing.

External References: Refer to Table 4.

Exit:
® Normal: Return to calling routine.

® Error: None.



PUTCM - Put Compression Routine

Chart: None.

Functions:

® Checks if compression block number
greater than one; block one always re-
mains in core, all others written in
working storage.

® Checks working storage and sets error
code if exceeded.

® Writes block on working storage from
compression huffer.

Entry: PUTCM, entered when a compression
block is to be written in working storage.

Input: Compression buffer.
Output: Compression blocks.

External References: Refer to Table 4.

Exit:
e Normal: Return to calling routine.

® Error: To Monitor (EXIT), if working
storage is exceeded.

RDSPC - Get Source Routine

Chart: None.

Functions:

® Checks if monitor control record (116)
is read, and halts compilation if it is
read.

® Reads source card using two Input/Out-
put areas.

® Converts I/O0 Buffer to unpacked EBCDIC.

Entry: RDSPC, entered when a source card
1s to be read.

Input: Source cards.

Output: Converted source card in the I/O
buffer.

External References: Refer to Table 4.

Exit:

® Normal: To calling phase; to RG1O0,
after last card (/*).

® Error: To Monitor (EXIT) if Monitor
control card read.

Four common routines are built by RG10 and
stored in RGOO: PUTOB, OBEND, PRTER, and
PRTSP. The two latter routines replace
routines of the same names, which were
built by RGO00.

PUTOB - Put Object Code

Chart: None.

Function: Converts object code into DSF
and puts it to disk working storage.

Entry: PUTOB.

Input: Address of the Object Code instruc-
tions to be generated, and the address of
the table describing the Object Code in-
structions.

The table has the following format:

TABLE DC N Number of words fol-
DC M1+Kl lowing in table
DC M2+K2
DC MN+KN

M occupies bits 0-7 and defines the type
of code:

hex 00 for absolute word,
hex 04 for relocatable word,
hex 08 for LIBF,

hex 0C for CALL,

hex 10 for DSA.

K occupies bits 8-15 and defines the num-
ber of words with the attribute M.
OQutput: DSF code on disk working storage.

External References: Refer to Table 4.

Exit:
e Normal: To calling phase.

e Error: To RG60, via CALPH, if disk
overflows.

Tables/Work Areas: INDEX - A table of words
built and used by PUTOB.

OBEND - Complete Object Code

Chart: None

Phase Descriptions 17



Functions:

e Puts out end of program data header for
core load builder.

® Writes last of object code to working
storage.

Computes disk block count of object
program.

Entry: OBEND, called from RG60 via ZBLCT.

Input: None.

Output:

® Disk System Format (DSF) code for last
block to working storage.

® Block count in ZBLCT in COMAREA.

External References: Refer to Table 4.

Exit:
e Normal: Return to RG60 (to GO).

e Error: To RG60, via CALPH.

ENTER FILE SPECIFICATIONS (RG02)
Chart: BA.
Functions:

® Reads, analyzes, lists and compresses
entries on File Description and Exten-
sion specifications.

® Builds the Filename Table.

e Builds the File Description and Exten-
sion compression areas.

® Identifies errors found in a statement.
Entry: BEGIN, from the Resident phase.

Input: File description and Extension
Specifications.

Output: A list of the RPG statements pro-
cessed by this phase, and the error num-
bers that identify errors found on each
statement. These error numbers and their
meanings are described in the publication,
IBM 1130 Disk Monitor System, Version 2:
Programming and Operator's Guide, Form
C26~3717.

Also, compressed versions of the File Des-
cription and Extension Specifications are
contained in the File Description and Ex-
tension compression areas.

18

External References: See Table 4.

Exit:

e Normal: To RG0O4, Enter Input Specifica-
tion.

e Error: None.

Tables/Work Areas:

® Filename Table (see Table 5. CONTROL
BLOCKS AND TABLES).

® Error Note Table (Table 3, Part 6),
which posts any errors connected with
that specification for RG19.

ENTER INPUT SPECIFICATIONS (RGO04)
Chart: BB
Functions:

® Sets pointers in the COMAREA, reads,
analyzes, lists, and processes Input
Specifications, creating compression
records for use by later phases.

® Checks record type specifications (AND,
OR, S, F) and diagnoses terminal errors.

® Checks field type input specifications,
diagnoses errors, and processes entries.

Entry: BEGIN, from RG02 (Enter File Speci-
fications).

Input: Input Specifications.

Output: A printed list of: the RPG state-
ments processed by this phase, error num-
bers identifying the errors found on each
statement, and compressed Input Specifi-
cation records.

External References: See Table 4.

Exit:

e Normal: To RG06, if a Calculation Speci-
fication is encountered. To RG08, if an
Output~Format Specification is en-
countered.

® Error: None.
Tables/Work Areas: FNTAD - Address of File-

name table (FLENM). (See CONTROL BLOCKS
AND TABLES).




ENTER CALCULATION SPECIFICATIONS (RGO06)
Chart: BC
Functions:

® Reads, diagnoses, lists, and compresses
Calculation Specifications.

® Builds table of valid operations.

Entry: BEG, from RG04 (Enter Input Speci-
fications).

Input: Calculation Specifications.

Output: A list of the RPG statements pro-
cessed by this phase, error numbers iden-
tifying errors found on each statement,
and compressed Calculation Specification
records.

External Refererices: See Table 4.

Exit:

e Normal: to RG0O8, after last Calculation
Specification has been processed.

® Error: None.

Tables/Work Areas: Table of valid calcu-
lations and corresponding attributes.

ENTER OUTPUT SPECIFICATIONS (RGO08)
Chart: BD
Functions:

e Reads, diagnoses, lists, and compresses
Output-Format Specifications. These
specifications define the characteris-
tics and fields of the data records
that are to be written on the output
files at object time.

® Determines if the specification defines
a record type or a field of an output
record.

Entxry: RPG, from RG04 or RGO6.

Input: Output-Format Specifications from
source cards.

Qutput: A list of the RPG statements pro-
cessed by this phase, error numbers iden-
tifying errors found on each statement,
and compressed Output-Format Specification
records.

External References: See Table 4.

Exit:

e Normal: To RGl0 (Assign Indicators
phase) after last Output-Format Speci-
fication is processed, via the CALPH
subroutine.

® Error: None.

Tables/Work Areas: GABLE - table of special
characters found in edit words.

ASSIGN INDICATORS PHASE (RG10)
Chart: CA

Functions:

® Scans Compression.

® Builds TABAR, an indicator table.

® Replaces Resulting indicators in com-
pression with assigned addresses.

e Places Put Object Code routine (PUTOB)
in Resident Phase (RGO0O).

® Overlays the Print Error routine (PRTER)
and Print Listing routine (PRTSP) in the
Resident phase with comparable routines
which retain the same addresses (ZPTER
and ZPTSP) and which will remain in
RG0O0 for the rest of the compilation.

e Places OBEND (a wrap-up routine called
by RG60) in Resident phase storage.

Entrx: BEGIN, from RG0O8 (Enter Output
Specifications phase).

Input: Compression built by Enter phases.
Output: A list of the indicators and their

addresses, and error numbers identifying
errors found.

External References: See Table 4.

Exits:
® Normal: To RGl2 (Assign Fields phase).

® Error: To RGl? (Error Message 1 phase),
if unusable compression is found, or
if no input Resulting Indicator is
specified.

Tables/Work Areas: TABAR - table of indi-~
cators.

Phase Descriptions 19



ASSIGN FIELD NAMES PHASE (RG1l2)
Chart: CB
Functions:

® Builds table of field names, ASNFL,
from names in compression.

e Assigns addresses to each field.

® Replaces fields in compression with
appropriate address.

Entry: BEGIN, from RG10.

Input: Compression built by Enter phases.

Output:

® A list of all specified field names
with addresses, types, lengths, and
decimal positions.

® Updated compression.

External References: See Table 4.

Exits:

® Normal: To RGl4, if literals were speci-
fied. To RG1l6, if no literals were
specified.

® Error: None.

Tables/Work Areas: ASNFL - Table of field
names.

ASSIGN LITERALS PHASE (RG14)
Chart: CC.
Functions:

® Assigns object addresses to all liter-
als, constants, and edit words.

® Prints and puts all unique literals as
object code.

® Builds edit words from edit codes.

Entry: BEGIN, from RG1l2 if literals were
specified.

Input: Calculation and Output compression.
Output:

e Literals on the principal print device.
e Literals in Disk System Format for the

object time code.

20

External References: See Table 4.

Exits:

e Normal: To Extended Diagnostics Phase
(RG16) .

e Error: None.

Tables/Work Areas: Table of unique liter-
als.

EXTENDED DIAGNOSTICS 1 PHASE (RG1l6)

Chart: DA

Functions:

e Builds TENT table from contents of File

Description Specification compression
(see COMPRESSION FORMATS).

e Distinguishes File Extension Specifica-
tions as to unreferenced table name for
table file and diagnoses each for va-
lidity.

® Further distinguishes the type of Input
Specifications (record type or field
type) and diagnoses the contents of
either for validity, compatibility to
each other, and compatibility between
record types.

® Passes on the lengths of the chaining
fields, matching fields, and control
levels to the Assemble phases placing
them in resident area storage.

Entry: START, from RG1l4 if literals were
used; from RG1l2 if no literals were used.

Output: Heading line with error notes.

External References: See Table 4.

Exits:

e Normal: To RG1l7 (Extended Diagnostics
2).

® Error: None.

Tables/Work Areas:

e TENT - Built from File Description
Specifications. See COMPRESSION FOR-
MATS.

® ERTAB - Table of Error indicators.

® NOTAB - Table of Error-note numbers.



EXTENDED DIAGNOSTICS 2 PHASE (RG1l7)
Chart: DB
Functions:

e Further diagnoses Calculation and Out-
put Specifications.

® Updates the table address in the Calcu-
lation Specifications to the table ele-
ment hold area.

® Checks Stacker Select, Space, and Skip
entries.

® Prints error-notes for undefined fields.
® Checks page field for numeric field.

® Checks if End Position is within the
record.

® Checks the validity of edit words.

® Checks if edited fields are numeric.

e Puts out control level hold areas.
Entry: BEGIN, from RGl6.

Input: Calculation and Output compression.

Output:

e Error-notes, on the principal print
device.

® Control level hold areas and Control
Level Address Table.

External References: See Table 4.

Exits:
e Normal: To RG1l9, Error Message Phase.
® Error: None.

Tables/Work Areas: This phase references
the TENT table in RG16.

ERROR MESSAGE PHASES (RG19, RG20, RG21)
Chart: DC

Functions: Diagnoses error bits and prints
error messages.

Entry: START, from RG10 (Assign Indicators
phase) or from RGl7 (Extended Diagnostics
2 phase).

Output: Listing of flagged error messages
in Diagnostics 1, 2, and 3.

External References: See Table 4.

Exits:

e Normal: To RG22 (Assemble 1 I/O phase)
if no terminating errors are found.

® Error: To RG60 (Terminate Compilation
phase) if terminating errors are found.

Tables/Work Areas: None.

ASSEMBLE 1 I/O PHASE (RG22)

Chart: EA

Functions: Builds Input/Output Table from
Filename table (FLENM), FILEl Table from
compression, and Overflow Table. (These
tables are explained under "Control Blocks
and Tables".)

Entry: BEG, from RG19, RG20, or RG21.

Input: File Description compression and
Filename Table.

Output:
e A table (IOTAB) entry for each file.
e A FILEl table entry for each file.

e Overflow Table entry for each printer
file.

e ISAM Load table entry for each ISAM
load file.

External References: See Table 4.

Exits:

@ Normal: To RG24 (Assemble 2 I/0) after
the lagt File Description compression
specification is processed, if non-
disk file; to RG26 (Assemble 3 I/0),
if all files are disk files.

® Error: None.

Tables/Work Areas:

® Builds Input/Output Table from entries
in the Filename table.

® Builds FILEl Table from File Descrip~
tion compression (File Description
Specification compression is described
in Section 5).

® Builds Overflow Table.

e Builds ISAM LOAD Table.

Phase Descriptions 21



ASSEMBLE 2 I/0 PHASE (RG24)
Chart: EB

Functions: Uses IOTAB built by RG22 to
produce object code for Input/Output re-
quests of non-disk files.

Entry: BEG, from RG22.

Input: IOTAB built in RG22.

Outgut:

e The output of this operation is assem-
bled routines for each non-disk file
(obtained from IOTAB).

® The address of an I/0 routine is saved
in the first word of an entry corres-
ponding to the IOTAB entry. The output
of this operation is the first word of
the FILEl table, occupied by the rou-
tine address.

External References: See Table 4.

Exit:

e Normal: To RG26, when the last non-disk
I/0 routine has been assembled, or to
RG32.

® Error: None.

Tables/Work Areas: IOTAB and FILEl Table
(poth in RG22) are referenced.

ASSEMBLE 3 I/O PHASE (RG26)

Chart: EC

Functions:

® Uses the IOTAB built by RG22 to produce

object code for I/0 requests of all Se-
quential Disk files.

Provides I/0 areas for each file.

try: BEGIN, from RG24.

=t
=]
lz

Input: None.

Output: Object code in Disk System Format
(DSF) .

External References: See Table 4.

22

Exits:
® Normal: To RG28 (Assemble 4 I/0 Phase).
e Error: None.

Tables/Work Areas: IOTAB and FILEl Table
in RG22.

ASSEMBLE 4 I/0 PHASE (RG28)
Chart: ED

Functions: Puts out object code for all
Indexed-sequential disk files.

Entry: RPG, from RG24, or from RG26.

Ingut: None.

Output: Object code in DSF to perform I/0
for all indexed-sequential disk files.

External References: See Table 4.

Exit:

e Normal: To RG32 (Assemble Tables phase)
or RG34 (Assemble Chain and Record Ad-
dress Files phase).

e Error: None.

Tables/Work Areas: Tables built by this
phase are all internal and describe the
object code for the Disk System Format
routine, ZPTOB.

ASSEMBLE TABLES PHASE (RG32)

Chart: FA

Functions:

@ Checks compression for Table files.

e Builds Table file area.

® Generates table loading routine.

® Generates table dump routine.

® Generates linkage routine if more than
one table loading or dumping routine has

been generated.

Entry: A0000, from RG28.

Input: Compression Records built from Ex-
tension Specifications.



Output:

® Area (Save) for table entries.

® Object code for table load routine (at
LD).

® Object code for table dump routine (at
DP).

® Object code for table link routine (at
LK) .

External References: See Table 4

Exit:

® Normal: To RG34, Assemble Chain and RA
File Phase.

® Error: None.

Tables/Work Areas: None.

ASSEMBLE CHAIN AND RA FILE PHASE (RG34)

Chart: FB
Functions:

e Processes Extension Compression.

® Generates object code for record ad-
dress (RA) files, and chaining files.

Entry: BEGCl, from the calling phase.
Input: Extension compression.

Output:

® Object code for processing RA Files.

® Object code for Cl, C2, or C3 Chaining
Files.

External References: See Table 4.

Exits:

® Normal: To RG36 (Assemble Input Fields
Phase).

® Error: None.

Tables/Work Areas: IOTAB and FILEl Table
(both created by RG22) are referenced.

ASSEMBLE INPUT FIELDS (RG36)

Chart: FC

Functions: Assembles Input Specifications

(Field type).

Entry: BEG, from RG34.

Input: Input Specifications compression.

Output:

® Object code to move fields.

® Object code to test Field Record Rela-
tion Indicators and set on Resulting

indicators.

® Linkage to Sterling Input Specifica-
tions.

® Object code for chaining fields.

External References: See Table 4.

Exits:

® Normal: RG38 (Assemble Control Levels:
phase).

® Error: None.

Tables/Work Areas: None.

ASSEMBLE CONTROL LEVELS PHASE (RG38)

Chart: FD

Functions:

® Generates object code for both field
type and record type Input Specifica-
tions.

® Generates sequence check routine
(NUSEQ) , if numeric record type is
present.

® If control levels are present, gener-
ates the object code which processes
them.

Entry: BEG38, from RG36.

Inguti I type and D type Input compression.

Phase Descriptions 23



Output:

® Object code for processing control
levels.

® Object code for determining record type.

® Object code for checking numeric se-
quence.

External References: See Table 4.

Exit:

® Normal: To RG40 (Assemble Multi-Files
Phase).

e Error: None.

Tables/Work Areas: EXSP - Work area for
processing compression.

ASSEMBLE MULTI-FILES PHASE (RG40)
Chart: FE

Functions: Generates routines that move
matching fields from input area to match-
ing field hold areas, and routines that
compare matching fields to determine se-
quence of processing and status of MR in-

dicator.

Entry: BEG49, from RG38.

Input: I type and D type Input compression.

Output: Object code for processing match-
ing fields.

External References: See Table 4.

Exits:
e Normal: RG42 (Assemble Get Phase).
e Error: None.

Tables/Work Areas: FILEl Table (in RG22)
is modified.

ASSEMBLE GET PHASE (RG42)

Chart: FF

Functions: Builds table (FILTA) containing
addresses of input record routine (INPR),
control level routine, move fields routine

(INPF), and resulting indicators.

Entry: BEG40, from RG40.

24

Input: I type and D type Input compression.

Output:

® Object time file processing table for
each file.

e A Get routine for each primary and
secondary file.

External References: See Table 4.

Exits:
e Normal: To RG44, RG66, or RG52,
e Error: None.

Tables/Work Areas:

e FILEl Table is modified.

e FILTA, work area for building object
time file tables is built.

ASSEMBLE CALCULATION 1 PHASE (RG44)
Chart: FG
Functions:

e Assemble the Object Code routine for
each LOKUP operation.

e Assembles a chain subroutine which may
be linked to by any CHAIN operation.

Entry: BETG, from RG42.
Input: Calculation compression.
Output:

® Object code for CHAIN and LOKUP oper-
ations.

® Address of chain subroutine placed in
compression for each chain operation.

® Address of each LOKUP routine placed
in corresponding LOKUP compression.

External References: See Table 4.

Exits:

e Normal: To RG46, when all Calculation
Specifications have been processed.

® Error: None.

Tables/Work Areas: None.




ASSEMBLE CALCULATION 2 PHASE (RG46)

Chart: FH

Functions:

® Generates object code for all Calcula-
tion Specifications except CHAIN and
LOKUP.

® Generates linkage to CHAIN and LOKUP
routines assembled in RG44.

Entry: BEG, from RG44.

Input: Calculation Specification compres-
sion. :

OQutput: Object code for all Calculation
Specifications.

External References: See Table 4.

Exit:

® Normal: To RG52 (Assemble Output
Fields).

® Error: None.

Tables/Work Areas: OPERA - A table of
operation codes is built.

ASSEMBLE OUTPUT FIELDS (RG52)

Chart: FI

Functions: Generates object code that
will place output fields in desired for-
mat and location within the associated
output record.

Entry: RPG, from RG46.

Input: Output Compression.

Output: Object code.

External References: See Table 4.

Exit:
e Normal: RG54 (Assemble Put phase).
® Error: None.

Tables/Work Areas: None.

ASSEMBLE PUT PHASE (RG54)
Chart: FJ
Functions:

® Generates object code that produces
output records on output files.

e Fills in NOTES, WORK1, SQSOF, and
TABL1.

Entry: RPG, from RG52.
Input: Output Compression.

Output: Object code and a table of ad-
dresses.

External References: See Table 4.

Exit:
® Normal: RG58, (Assemble Linkage Phase).
® Error: None.

Tables/Work Areas:

~® NOTES - Work area in COMAREA.

® WORK1l - A 3-word area for building one
table entry.

® SQSOF - Overflow table (see CONTROL
BLOCKS AND TABLES).

e TABL1l - Area where Output tables are
built.

ASSEMBLE LINKAGE PHASE (RG58)
Chart: FK
Functions:

® Generates a fixed driver (at R0O) for
object time execution.

® Generates branches to appropriate rou-
tines if OPENs and CLOSEs are needed.

® Generates a link to table load, if need-
ed.

® Generates link to Heading and Detail
Lines routine.

Entry: BEGIN, from RG54.

Input: None.

Phase Descriptions 25



Outgut:

® A printed listing of key addresses of
object program.

® A printed listing of the number of sec-
tors needed for ISAM LOAD files (pro-
viding list option and ISAM LOAD are
specified).

® Object code as described under "Func-
tion", above.

External References: See Table 4.

Exits:
® Normal: To RG60.

® Error: None.

Tables/Work Areas:

® ISAM Load Table - contains information
concerning sector count.

e Filename Table - contains names of
specified files (see "CONTROL BLOCKS
AND TABLES").

e FILEl Table ~ contains information
about file types (see "CONTROL BLOCKS
AND TABLES").

TERMINATE COMPILATION (RG60)

Chart: FL

26

Functions:

e Updates DCOM (Disk Communications Re-
gion) on the system and working storage
cartridges for the DSF program, and
moves the DSF program to the beginning
of working storage if there are no ter-
minating errors.

® Sets words in system area so DUP and
XEQ cards will be passed if there are
any terminating errors.

® Prints "end of compilation" message and
passes control to the Monitor.

e Calls OBEND (wrap-up routine in RG10).
Entry: BEGIN, from RG58.

Input:

e DCOM from system and working storage
cartridges.

® DSF program (if it does not start at
the beginning of working storage).

OQutput:
e Updated DCOM.

e DSF program moved to the beginning of
working storage.

e If any terminal errors, DUP and XEQ are
disabled.

External References: See Table 4.

Exit:
® Normal: To the Monitor, EXIT.

® Error: To the Monitor (when $NDUP and
&NXEQ are non-zero), via EXIT.

Tables/Work Areas: DISK - Work area for
reading from the disk.




Chart AA.

RPG
Sk | 3 skokkokok dokok ok
*
* ENTRY *
* *
Sk gk gk Aok Rk

BG00O
Hokk B 3 ekt kskok ok K

LOAD PRINCIPAL *
*PRINT ROUTINE «

koo ok ok s oK kol ok Rk

BGZ20
KT 3 Ak ok kK

LOAD PRINCIPAL *
*INPUT ROUTINE -

& ok o sk kofok dokokok kK

ol Kok D 3 Kok kak Kok ok ok K
* *

Aok
* ok
* AL *

Hkokok

Aok R L ko okdokokok oKk

* PRTSP *
=k K K
* PRINT H CARD *

R oRR KRk dR R ok
By w. FERBG R oAk kK koK
o . PRTER
o *. YES R
*,ANY ERRORS ? .*— —> PRINT ERROR
> s NOTE
*, o
*, Lk L
* NO
<
READC
Fok 1y ook ok ok ok ok
* RDSPC *

e e e W R K K

% INITIALIZE  * Ftk Ao AR KRR
* INTERRUPT *
: BRANCH TABLE :
FAAAA A AR AA AR AAAK
CALL
e
%k
BGZ50 * EXIT *
HRKE Aok Rk ARk ok * *
Fo kAR Ak K
* RDSPC *
kK hm K
* READ A CARD * TO: RGO2
HRRAAAKA AR A A KKK
Loop
Aok koK P 3 Aok ok kK Kok
* *
* INITIALIZE *
* COMPRESSTION *
¥ BUFFERS *
FRAR AR ROk K
RESST
FRRRAGI R AR AR
*
* PROCESS AND *
*DIAGNOSE HEADER*
: CARD *
HAR KA A K KA Ak
ok,
H3 *, 4K 4 ok ok kR ok ok ok
* *,
.+Is IT AN H'*. NO B e ittt SR
* CARD ? . — : PRINT ERROR
*.* *.* * NOTE
“w. oL FokdoK Rk R KKK
[ YES
P
a3 *. )
. . FokAk J Ly AR KKK
Is IT *, YES *
*. NOLIST ? o : EXIT *
R x ok ok kK koK R R ok
. o ¥
*"No Fokokok
* * TO: RGO2
* Ay *
* *
Fohokk
HAOKK AR KRRk ok
P

—kmk KoKk K
*PRI“T HEADINGS*

A Aok ok dok ok ok Kok ok ok Kok

* *
* AL X
* *

Hok kA

Resident Phase (RG0O0)

Phase Descriptions

27



RS 2]

EELT S

BEGIN

A ] D R KR KR KR KK
ENTRY

ot KRk OR R KA KK

* *
*

FROHM:

RGOO

P FsCHe LK
AR B kR R KRR Kk *BZ *.* dok R B3 ok Aok Rk kK x
D . .
x—*—*—*§59*- - * +¥ 1S THIS A *. YES * PRTSP *
READ >% . COMMENT CARD , ¥mmmme D ¥k Ko ¥ e
* SPECIFICATION* *-* ? *.* * PRINT SPEC *
ok kR KR KA K Tx, " PP S
*
l o *kEE
PHV ¥ P2 ¥
c2 *. ct *,
X . ok *,
«* TS FORM_ * ¥ WAS A *, YES
*, TYPE 'F' 2 . e = > PRINARY FILE o ¥
*, oF ¥, USED 7 .*
*, o ¥ - .
*, % X, X
* YES e >k
* 2
* B.
1 .
*
P10 ¥
D2 *. Aok k) 3 3k ok ok KRR K ok D Kook kKR dORK K
% *, P
*¥DEVICE AND *. NO B T it et it Lot 3 e
.  FILENAKE > PRINT PRINT ERROR
*.!ALID ? ¥ * SPECIFICATION* NOTE *
R ] ok ok Rk Kok Kk
* YES
Aok ek
* 2 %
>* B3 *
* *
*HkK
P18 ¥
2 *, AR Rk KRR AR Ak kKB Y Kok ko Rk Rk
¥ . P * *
+*IS DEVICE A*. YES ~k—k—K—k—k- K-k * *SET ERROR NOTES*
*, PRINTER 7 o ¥ PRINT_ ERROR >¥ *
*. ¥ NOTE * * *
ARk *, . [_ * *
* * *, % dk kKRR Rk P P LT SR Y
* F1 * * NO Ei L 2
* * Ak K * Akkk K
ok * * * *
l >% B1 * * * Fl4 *—>
ERE L L0 *
*kkk ok
¥ P22 P ¥ P25P
F1 *, F2 *. Aokt P 1Y ook S kok kokokk
o *, . . R * *
YES .* IS DEXICE *, «*¥IS DEVICE A%, T *PROCESS_ OUTPUT *
r———*. READ4Z ? ¥ *, CONSOLE_OR —>% FILE
*. ¥ *.PUNCY ? K * *
*. . ¥ - . * *
¥, L% *, ¥ ek ok ok ok 30Kk K ko ok koK
* NO * NO
[ D
v ¥, ¥
ok ok ok Gk H KA KKK G2 *, Gl *,
* * % ok .
* * NO .*IS DEVICE YES .*IS DEVICE A*.
:SET ERROR NOTE : -———*.* DISK ? * ISK
* * “x, . *g E
PR TR TP PR L . k. %
* YES * NO
ok Rokok 2 Rk ok ok Rk H3 *, ko oK ]I 3ok ok ok oK ok ok ok KoK
* * X . * *
ES *PROCESS COLUMNS* .* IS IT AN _*, YES *SET ERROR_NOTE,*
e * PERTAINING TO * *,INPUT FILE 7 .%— * ASSUME DISK *
* DISK * *, . * *
* * *, ok * *
FREFEE AR AA A KRR *, . L L
* NO
b >
E
* *
23 * J5 * P35 ¥,
PR PREEE SR RS kAR ] DR KRR KK * b *.
* * * * AR Hdokk «*IS IT A*.
*SET ERROR_NOTE, * L_ *DETERMINE FILE * * WO .* TABLE, *.
*ASSUME PRIMARY * >* TYPE * * HY %< *, CHAINED, OR_ .*<{—:
* * * * * * ra FILE 2.%
* * * * EEETY . .
e e o ok ok ok ok ok ROk kR ok K e 2k 3 oje o 3 ke ek Rk oK okok R *, ¥
* YES
P S—
P25 ok, P31A ¥,
Sk kKK R kdoR KRR Rk K2 *, K3 *, dok kKKK U ok ok kR Rk
* * oK *, L E *, * *
* DIAGNOSE AND * «* IS IT AN *. NO .* IS IT A__*. YES * DIAGNOSE AND *
* coM SS * *,0UTPUT FILE ?.%—————-D>%_, COMBINED FILE,*—. con *
*SPECIFICATIONS * *. X *, ? . *SPECIFICATION *
* * *, X *, ok * *
ok Rk ok Rk kR KK kK ok . *, L ek ok ok ok ok ok ok Kok
* YES * NO EE T
* *
l * F1 %
* *
Fokok K kK *kkk *kokk Hokokx
* * * * * * * *
* F5 K * F4 * * G3 * * F5 *
* * * * * * * *
*HkE ST TS *kkk *kkk
. . . .
Chart BA. Enter File Specifications Phase (RG02)

28

ok
*

3%

*

P54P2
HKKFS *

Aok oK Rk Rk K
RTSP

P g o B
PRINT

* SPECIFICATION*

scofe sk e e ok ek ok kR koK koK

>

65" "x.
L *.
NO_.* *.
*.ANY ERRORS 7 1x

v

kK Rk kKR KRRk
— ke K K K Kk K
PRINT ERROR
* NOTE *
st dkoR Aok ok koK
Sk kK
* *
* J5 %
* *
sk Kk
P LR e
* *

*SET ERROR NOTE, *
: ASSUME INPUT :

* *
4ok Jokkok %ok ¥ okRKk Rk



Chart ‘BA.

ok B 2H ok kR Kok

He o K K K
READ

% SPECIFICATION*

Fkakokok Aok kR Rk ok

*

FHOKB 5 ¥k Kok ok ok
ER
L s e e Dl S

————>_ PRINT ERROR
* NOTE *

ek o o 3 ok Kk g Kok Kok

*02 *
83 ¢__1
*
FHkk
o F, X,
B3 *, BY *,
¥ *, *ARE ALL*.
+% TS FORM_ *. YES +¥ EXTENSION *. NO
)*.*T!PE Iv 2 *-* >*%,FILES PROC ?*.*——
*, o “x, Y
*, P
* NO * YES
-~~ IF COMMENT CARD,
PRINT SPEC AND
READ ANOTHER
CKEXT ¥,
*, FoK ARG U HA AR KK AR
Sk *, * *
S FORM_ *. NO * *
*, TYPE 'E' ? *-*-———————>:SET ERROR NOTE :
*. ¥ * *
.ok ok ROk KRR R Kok
* YES

Aokok kD 3 kRl ok Rk
* *

*PROCESS YFROM'! *
:AND *TO' FILES :

* *
ek e ok koK K Kok A oK % kK

okoke ok T 3 ok ok ok ok o ok ok

BYILD *
*COMPRESSION FQR*
* BLE, OR *
:CHAfNING FiLE X
2ok ok ok o oK o ook koK k ok

HHkF 3 4ok doksk ok ok
PRISP
—dm ke kK ko Kk K
PRINT
* SPECIFICATION*
H otk kKRR Rk

KRG R Aok KKK
%.
PRINT

NOT
ARk KR R OROR R oK

*

Enter File Specifications Phase (RG02)

Phase Descriptions

koK Bk ok ki koo
* *
* EXIT *
* %

e ok o e ok o 3ok o ok o K K ok K

TO: RGOY

29



BEGIWN

Zekok kP kokkokkkokkR
*
> ENTRY *
* *
EE i ok ok Rk kR kR Rk X
* *
* C1 *
* * FRCM: RGO2
EE LR
oE, SKIPA
aEADx'**C1t$***‘***‘* c2 *.‘ *‘*Cji*;**ﬁ***‘*
PRI Sul AP L% IS IT A %, YES Rt hn K K
READ A *.COMNENT CARD .* > PRINT COMNENT
* SPECIFICATION* 1 . * *
Aok Nk Rk ook kok ok .‘. .‘- RIS AL RSS2 L]
*"No
l- *okokk
* *
>% C1 *
*
Rk
o Lx. WIPE
p2" “w. p3~ .
ox *, .* IS TT *. Sk KD dokokok ok ok
.*'IS IT AN _*. NO .* AN OUTBUT *. YES *CALL NEXT PHASE*
*LINPUT SPEC ? i*— >#1QR CALC SPEC [*———>¥ x
“x. o “x. o AR AR AR B AR
*, ¥ K, Lk
*'YES *"No --IF CALC S
l_ Fokak --IF OUTPUT
>* G2 *
*
oAk
SEQAN o, ke o,
E2° "+, B3" Tx, B4,
. . o *, L% CAN
% IS IT A _*. YES * ARE_THERE_*. YES .*"VALUE BE  *. YE
*IVALID SPEC ?_.* —>*]ANY ERRORS 2 .* ~—>*.. ASSUMED_FOR_.*
*. . *. o* .ERROR ? .
* ¥ -, ¥ *, ok
. . *. . L
*" %o *"NO *"NO
---_AND, OR, == A MAJOR
FILERAME, FIELD
OR_SEQUENCE
TYPES ARE
VALID ERR
kP Rk kR Rk EEEI LR LS L 22 10
PRIS
B ettt St B PRINT SPEC AND *
PRINT ° ERROR NOTE
* SPECIFICATION* * *
E PP EL R LS L L e ok R ok ok ok ok Rk ok ok
Ei 1]
* *
* G2 *-=>
*kokk
Mok * *
* C1 *
SKIP ERRGRERFRF R R KRR * ¢ * AR EGL Rk KRRk
*knk
* PRINT ERROR * * DROP *
NOTE SPECIFICATION
S fokok dekokokok ok ok kg kokok Aok ok ok ok kR Rk kK
<
*ok kK
* *
* C1 *
* *
EERE

Chart BB.

30

Enter Input Specifications Phase (RG04)

PEC RG06 CALLE
al

[ D
SPEC RGOS CALLED

S Tl W
2

ERKOR

*Hk PS5k

PUT COMP, PRINT*
SPEC AND ERROR
* NOTE *

LR L EE LS L1

ek ook ek ok ok ko Kok ok

* *
* C1 *

ek



BEG
HokoRok ) ROk oK
*

*
* ENTRY *
* *
FoRdk RO KR KRR KK ok
* *
* B2 *
FROM: RGO4 * *
ko
[ S
START RDCRD
Fokokokok B K ﬁ**t*#t* HHKP 2 AR R AR KA K
* CHANGE DEC.
*POINT_TQ COHHA, * RDSPC *
IF _INVERTED % === Hm ke
* PRINT * % READ A CARD
kR RO RORA KKK Fok ook ok KRk Kk K
<.
e c1® T, Hokk O 2 Ak kA KRR AR
ok *.
«*% IS IT A *, YES * RTSP *
*,COMYENT BD o ¥ D> kR k%
*.H ? Ch‘.* * PRINT SPEC
*'#, % L e P
*"NO )
Aok ok
DIAGNOSE:
CALSP ko EMPTY-SUBRQUTINE CALCS
1 *, *****Dz*******t** Hokok oK D 3ok ok Rk ok LDIAG-TOTAL
¥ *. * * ROUT-CONDITIONING INDICATORS
¥ IS %T A YES PUT BLOCK OF * * * NEXT 2-VALID 0 CO E
*.CALC SPEC ? *———)*COMPRESSION IF * >*DIAGNOSE SPEC *<=—-= SUBRT—FACTOR CTOR 2
* ¥ FOLL * * * NEXT 5-RESULT f’IELD LENGTH
*, ok * * * * NEXT A-RESULT FIELD
¥o ¥ AR F Ak NEXT 6-HALF ADJUST
* NO NEXT 7-DECIMAL POSITIONS
NEXT 8-RESULT INDICATORS
EEETEY
. ¥,
E1 *, ok ok B 3k dokodokokodokak
. ok E 2 kokokok ok ok * *
I IT AN *, YES * * COMPRESS THE *
N OUTP'JT SPEC ? Mm% EXIT * : SPEC :
“x, £ Rk o koK ok oK * *
*ooNx sokodok okt ook olok Kok ok
* NO ;
TO0: RGOS

INVAL*t*p1m F KKK
P

bt ot ot S
PRINT_SPEC NOTE
* 201 *

ERE L X EEEE LSS

Chart BC. Enter Calculations

ko F 3 ok ok ook %ok
* PRTSP *
— kR kKo
* PRINT SPEC *
Rk 0k ok ok ok Kok ok Jokok

Specifications bhase (RG06)

Phase Descriptions

31



Adckok | ok dokRoRRok K
* *
* ENTRY *
* *

AR RRKI KKK

FROM:RGO4 OR RGO6

kok ¥k B RRR KRR ARk
*

*
* TINITIALIZE *
: ZOUTA,ZBLOT :
* * R
Ty P e * *
* C2 *
AhkK * *
* * K
* C1 %>
* *
Al NORM EAD
o % o F!
61500 c1 . s **icztt###****i* RERD sk Camdorkhbkbhk
IS IT YES =% ‘*"“‘*'*""* * * RDSPC *
* COHHENT CARD h—-———) PRINT SPECIPI- L S
" ? ' * READ A CARD ¥
R Rk Rk Rk Ao KRR A R KRR Rk
* NO
.*. ¥,
GBEG *. ER16°###D2**4t#t*$**# p3° #.
.* o R X * -u*x
«*I5 THERE AN*, NO = ZX¥=X*—%-X-%-%~ * «* IS IT THE *. NO
*, 101 Il_; COL. g.* ———» PRIHT ERR 160 x *.%AST CARD 2 . ——)* c1 *
Tx, o Tk, o ook
X kKRR R KRR .
* YES L * YES
A
* *
l >k C2 *
* *
AR
¥,
E1T T *, Rk B2 AR KA KK R KK
* *. * DIAGNOSE AND Fkkk Bk kok kKKK
B IS IT A_ *. YES *COMPRESS FIELD * *
*, FIELD TYPE .¥—————D>*NAME AND FIELD * * EXIT *
« SPEC 7 .* * END POSITION * *
*. o * SRR AR KKK
*, Lk A Ak R AR KRR
* NO
l TO:RG10
SPCED
#***tp1.#**i*#l#* FAk KA QR kR kR
DIAGNOSE AND * * *
*COHPRESS COLS. * *PROCESS SPECIAL*
7-14, COLS. * * EDIT CODES IF =*
* 16-31 ; * SPECIFIED *
kA AR AR R ROk kK k R KR KK Rk
*l*t
* *
* C2 * CSW
* p4 FRK KK G F AR AAK KA K
AR * *

GouT
FAAHAH 2 A RA ARk
* *

* DIAGNQOSE AND *
*COMPRESS OUTPUT*
* TINDICATORS

3 ook KK ok Aok o o ek ok

Aok J 2ok kR AOkk
EE LT ] * PROCESS AND *
* * * MPRESS *
* C2 *< * EDITWORD AND *
* * TER *
P *

Aok Ak R KRRk Rk K

Chart BD.

32

*PROCESS OQUTPUT *

————>% TINDICATORS *
* *

* *
Aok ok ok R OK ok Rokok kK

EEE L

Enter Output-Format Specifications Phase (RGO08)-



Chart CA.

BEGIN
stk ) kR Rk kK
* ENTRY ;
ool kR kR KKk K

FROM: RGOS

INSID Lx,
B1. T,
AINDUT, %
L% QUTPUT, & *. NO
*, ipt 1ybr  w
%, SPECS 7 _.*%
*, o X
*, ¥
*"YES

FokoR ok C ] R Rk dokoRR ok ok
*

*PREPARE _FQR DSF*
* ROUTINE *

* *
At AR RO ok R kK

HkAD 1 RRAK Rk ook
P

PRINT HEADING .

Ak Ak Ok ok o ok ok ok ok ok

********
T

CLRLP
*****11******#*#*

*CDHPREGSION AND*
*PUT IN I ATORS *

a0 sfeog ok o o o ok koK ok ROk ROk k

ok ook B2 ook ok ok dokok

* *
>* EXIT :
Rk KRR Rk KK

T0: RG19

NIS
koo ) 3 ok KRR ok Kok

PULL TABLE
TOGETHER

3 3 #
[T

ok kR K Rk ARk Kok

sokokokok B3 deokokdok kokkokok
*

*A5SIGN RELATIVE*
* ADDRESS :

* *
o340k e ok ok koK Kk KKK AR

JNOER
AR CRR ARk Rk

PRTSP
B g e
PRINT SYMBOL
* TABLE *

¢ 3o sl ook ok ok SR ok ok

PUNCH
FHKD 3k Ak AR KAk

* QUTPUT THE *
INDICATORS

koo ok ok Rk o ook KoK

Kok ok ok E 3 %kk *****ﬁ‘t
*

CAN
*COMPRESSION POR*
*INDIC TORS AND *
* S *

*

* ADD
ook ok k

ok ok F 3 Ak kKKK

*
* EXIT *
* *
ok dolokok ok kR kKK

TO: RG12

Assign Indicators Phase (RG10)

Phase Descriptions

33



BEGIN

FRRR L 2R RRE KRR
ENTRY

KKK

* *

FROM: RG10

CL

RAA
b - il

FOR _*
COMPUTE*
TABLE *
HEREER R R R

Aok ke
»
*
Ll
*
*
»

EEE LA L L EE LR 2

R I §

CLEAR
bad i IO YERL ELE S L 2)
* *

*

: CLEAR TABLE

IZ T2

*
kR b kkRR kR

CHPSC
FRRRAED #
*

* PIRST SCAN TO *
*BUILD FIELDNAME*
* TABLE *

S L bl L]
*

*
FEEREEkR Rk

ASSIG
HHrerp2ed

*ASSIGN ADDRESS *
* PRINT SYNBOL *
* TABLE *

ok ok ok
*

LR Rt Ed LR L)

CHPSC
EERRKGD ¥
x

*SECOND SCAN-T0 *
*PUT ADDRESS IN *
: COMPRESSION :

Aok ok ok kR ok kR

JEEL L]
*

EOJ

RREERI2ERE R AR
*

PREPARE FOR

PASS TWO

EE 22X ]
L X X3

LRSS RS LT L L 2 0]

Chart CB.

34

.*" ARE
>, LITERAL
7

*

*,
*,
ANY *. NO
S USED.
o *
*

H3"
* P T T T T T
EXIT
LESE RSS2 L L

*

>* *
* *
*

.
* YES

TO: RG16

EETTRETE
-

EXIT *
kRN

ook ko

TO: RG14

Assign Field Names Phase (RG1l2)



BEGIR
AR 2 FRA KA KR
* ENTRY *
* *
Aok odok o ko ook ok

FROM: RG12

At
t##B%#—‘!#*‘***##*

ke kkok k% &
PRINT HEADING
* *
ROk R R
Xk
* *
* C2 *->
*
*hkk
FRRC2ENA AR R AR
* RDSPC *
BL I B =4 o SR
* READ A SPEC *
AR R AR KRRk

A4 ¥

D2 '.*
NO_.* ARE CALC %,
——*-LITER)LS USED.*
[ .
*, o
LI
I YES
BACK .*.
. .
<% IS IT A_ *. YES
*,CALC SPEC 2?2 .* e e i
. o
*, o
o
* NO
l >
cup1 .'. o¥o e Jx,
*, F3 *, FU *, ARRRAFS ARk RRR K
t *, «*% IS A %, ¥ *, * *
NO_.*ARE OUTPUT +*LITERAL IN *. NO +% IS IT THE *. YES * *
r——*. LITERALS USID.‘ *.TABLE_ENTRIES.* >%, END OF THE . >* CLEAR TABLE *
- ? *, ? o* * ., TABLE 2 _.* * *
*, ,* *, o *, oE * *
« o ¥ LI *, % R LRI 2L L L]
* YES “*"YES * NO
P
1 * *
OBACK . %, * C2 *
62" Tx, FEERRGIRRREREL Y BAAAKG Y B RR AR * *
. *, % NEW ADDRESS #* LT
+% IS IT AN *. YES LIST ADDRE. S IN* * ASSIGNED %ND *
*,0UTPUT SPEC ?.* * COMPRESSI <————————‘LIIERAL QUTPUT *
*, ¥ * * IN DSP *
*, oK * M * *
*, B e T AR AR RNk
* NO
S >
ok hk
* *
* 02 *
* *
Aok H 2 Ak SRk ok Ak
*
* BXIT *
* *
e L e T
TO: RG16

Chart CC. Assign Literals Phase (RG14)

Phase Descriptions 35



Chart DA.

36

START
sk sk } 2 KoK KA KKK
*
* ENTRY *
* *
TSI T T TR P LR T

FROM: RG14
OR RG12

FRKD 2 RAK A AR KA
M

Pt St T T e

GET COMPRESSION

* SPECIFICATIONX*

e e e ok ek R ok o ok okok ok ok

Aok C 2Rk Rk ko
*

* DETERMINE THE *

* TYPE o S

* *
ko ok kR ok ok R ok R ok R

koK D) 2 Fk R A KRR

*

* EXIT *
* *
Fokokok AR KRR KK

TO: RG17

***t**** * %k ek
* *
* ADDRESS * TYPE * ACTION TAKEN : x
ok Rk 1*$x****
* EY % * AT E2( BUTLD TENT TABLE, BRANCH TO 1
****t*%***************
* ZIMT R OR E* BEANCH TO E1
X Kk ******t**t****************
* - % * CHECK FOR VALID TABLE NAME,
* * * BEANCH TO E1 *
s
* * * CHECK_FOR_'AND!' RECORD AT_E6a;
* B M * ERESDNT, BRANCH TO E6E, IF Not BRANCH *
ok 3k ok ok K ******t***#*******t**t*******
* -- % D % AT CHECK COLUMNS 42-74 FOR
* * * VALIDtTv, BERANCH TO E1
e ok ok Kok K t*******
* - % * TEST VALIDITY OF INPUT INFROMATTON, *
* * * BRANCH TO E *
kKK F4 -
* -- % 0 % BRANCE TO E *
e ook ok ok ok ok ok ok Kok ok KOkoK Kok ok ok Sk ok ok Kok ok

Extended Diagnostics Phase (RG16)



BEGIN
ook | AR KRR ROk
*
* ENTRY *
* *
Rk AROROR RO K

Aodokk FROM: RG16
* *

* Bl #->
* *

sokok B ok okokodokok Kok ok

=k kKK k kK
*GET COMP SPREC .

i e ook ook ok ok ke ok ook
w0 R
c1’ T,
. *,
.%7Is IT A *. WO
*ICALC SPEC 7 . %—
*, . ¥
*. T ok
« o % * *
**yBs * D4 *
* *
oKk
w7 ouTX R E9 R
sokokok R [ ] R R TR Kok kK D2 *, D4 *.
* * ¥ *, ok s ) J o ke ook ke ook ok o ¥ IS *
*F1, F2, RESULT * 0 .*0 OR M TYPE*. NEIT * % FILENAME *. NO
*F1ELD CHECKED * *.  OUTPUT 7 % >% EXIT * * USED,OR IS .*——
* * L—_ *, .* * *,SPEE 10RT.*
* * *, . x sorkotoRokaok ko oKk *,TYPE .
AR R Rk KK Rk K *, X *, %
- "y *"YES
* ® T0: RG19
* D4 *
* *
kKX
w10 R €10 £961
E1 *. FARFAE D %R ROoRR KRk Sotokokok B3k Aok KRk FAKAOK Bl KA KA AR
¥ YALID *. * * * * TISAM REQUEST, *
.*% EXSR AND *. YES * ® *CHECK_FOR VALID* * SPACE, SKIp,' *
%, GOTO QPERA—_ .* >*TEST FACTOR 2 * % EDITING * . * sTAckeR SEf *
¥ TIONS 7 . * x x * * "CHECKED *
.*_ .*. e ok ok 3 ok o o ok ok oK kR oK e sk o s o 3K ok oK Kok o KK ok ¢ sk ek ok ok ok R ok ok ko
*" No
1 >1<
W18 *.
F1 *, Sk ook T 2 Aok Rk doRR AR AKKF U $ AR AR KA
o X x*, * *
.*"I3 OPCODE *. YES * TEST RESULT * Lt S et
*.  TESTZ ? o >%  FLELD FOR  *————— e PRINT ERROR
=, o* * ALPHAMERIC  * * NOTE IF  *
*, ox * EDED
*x, % koo ok ook ok ok ok ok ok oK oK ok ke o ook ok ok ok
*"No
* %Nk
1 * *
w19 ok, * B1 *
G1 *, Aok kG 2 ook ek Rk KRk * *
oK *, * Aok Aok
.* IS OPCQDE *. YES * TEST RBESULT *
*  LOKUP 7 o >* PIELD,F1, AND *—— o>
*, X * $2 *
* g o X
*, X e ok ok ok ok ol ok ok ek kR ok K
I NO
w23 R
H1 *, Aok okok H 2 ok koK ok ok ok ok
ok *, * *
.* IS OPCQDE *. YES * *
%] TCOMP ? o >% TEST F1, F2  *— —
*, ok * *
*, . * *
W, oK e e ke o o ok ok o ook okook o ok ek ok
*"No
ok
* *
* 33 *->
* *
v * ko
W27 R
J1 *, #****Jz#********: ***J%*n;********
¥ *, *
<%'I5 QPCODE’*. VES * TEST RESULT * B et i e
* HMOVE ZONE ¥———>% FIELD AND F2 *———>  PRINT ERROR
*. ok * * * NOTES *
*, X *
K, oK ok o ok s ok ok ok ok ok ok koK dokok e ok e 2 e 3 e e 3 ¢ o e o ook ok
*"No
1 *kokk
* *
w31 R * B1 *
K1 *, ok aok K 2k Aok Rk Sk ok *
XIS . * * Hokkk
.*QPCODE ADD,*. YES * TEST RESULT *
*. 2-KDD, SUB, . >*FIELD, F1, AND *
*.2-508 7 I+ * F2 *
¥, ¥ * *
*, K koo ok AR kA KRRk K
*"¥o
L >
koK
* *
* J3 %
* *
FTTTY

Chart DB.

Extended Calculation and

Output Diagnostic Phase (RG17)

Phase Descriptions

37



START
FERR R RA KB R AN,
*
* ENTRY *
PR RS L EEEE LS 20

Aok R D kol sk ok e ok ok
*

DIAGNOSTIC *
*
PR PR Tt e
=~ DIAGNOSTIC 1 ¢ 3
REFERS T0 reio,
RG20, RG21
TESTZ ¥, ERRHR
c2 *, HARRRC IR R R
¥ *, * *
«* ARE ERROR *. YES * *
*. BITS ON 7?7 o¥——————_—>% CALL PRINTER *
*, ¥ * *
*, o* » *
% B T L T T
I NO
ZEROE ok,
D2 *, LR EET I PET LAY
¥ *, El
NO ,* ARE ALL *, ke KR R
L——*, BRROR NOTES .#<{—-—— PRINT ALL ERROR
'.EALLZD ?'.* * NOTES *
A S T T LT
[ YES
CONT1 ¥,
E2 L
¥ -, FAOER R ARk K
% ERRORS *, YES »
'-IERHI;ATE JOg.*——-—————): EXIT *
Tx, Ty AR RRE RN
*, .
* NO
TO: RG60
b PR i
* EXIT *
* *
B R
TO: RG22

Chart DC. Error Message Phases (RGl9, RG20, RG21)

38



Chart EA.

BEG
LEEad Wi LT T TR
* *
* ENTRY *
* *
Aok ok oK kKK ok

FROM: RG19

EXTFXN
Frarap2x ErRERa

OVE ENTRIES IN*
*PILBHAHB TABLE *
TO YOTAB

t
0 AOROKOK K o ok ok ok ok

..
COMP_“%. NO
FIL
R? .%
.
YES

TIOTB
bt VAL EL EEEE 2]
*

* STORE DEVICE
:CODB IN IOTAB

%% %

*
HA AR KA K R kR

AR D RN A
+STORE LENGTH OF*
*RECORD, OF KEY

*oF RAF'IN Iorn§*

t *
kRO KOk ok Ak Rk

HBEFQHAAAK R AR KK
B Dt T e
GET NEXT
* COH;R!SSION *
LI EES T 42 e

E b %

ENDPH
#tt*tc3****l**##t

*INDICATE END OF*
>‘ FILE1 ‘

*
****ti*#*****tt**

AR Ik Aok

*

* EXIT *
* *
HARARARARA AR

TO: RG24

Assemble 1 I/0 Phase (RG22)

Phase Descriptions

39



Chart EB.

40

BEG
AR 2AAK KA AR
*
* ENTRY *
* *
Aok kokok kR kKK

FROM: RG22

START
*****52**********

* GET ADDRESS
*FIHST EgTﬁY OF *

*****‘*i*it****#*

t*tttcz*u:t**tt:*
t

GET ADDRESS *
*PIRST ENTRY OF *
* FILE1 TABLE

*
***#t**tt*i*****t

FHRERCTHRRE AR

*

*GET ADDRESS OF *
NEXT FILE1 *

: TABLE ENTRY :

ek ook o ok ek ok ok ok e ook

Loop o ¥,
D

¥ I
*.*NON—DIS

BOMP
AAKARE 2Kk hkokokok
* *

*GET _ADDRESS OF *
* NEXT IOTAB *
* ENTRY *

*
Aok koRoR Rk Kok kKRR

Aok kR E 3k kokkokok ok
*

* MODIFY OBJECT *
* CODE *

* *
ARk Ok KOk dOK Rk R KKK

PUTOB
HOOKR 3 koK ok ROk
— koK k kK
OBJECT_ CODE
* QUTPUT IS DSF*

A AR AOK AR Kk ok oK kKoK

IO

Assemble 2 I/0 Phase (RG24)

FRRAPY Kk H R Rk
*

: EXIT *
ook ek Aok Kk ok ko ok

TO: RG32

* DEVICE IS ONE OF THE *
* FOLLOWING: *
* *
* *
* 1442 READER *
* 2507 READER *
* 1132 ERINIER *
* 1403 PRINTER *
* CONSOLE PRINTER *
% Jguz Bunck *
* 1443 READ/PUNCH QUTPUT _ *
¥ 1442 READ/PUNCH COMBINED *
*

>
*

Kok ] 5ok kR K
*

EXIT *

Ak R KKK K

TO: RG26



BEGIN
Aok | 2 dokok Kok kodok ok
* *
* ENTRY *
* *
Aotk kotokok koK ok Kok

FROM: RG24

*****52**#***#***

*

*GET ADDRESS OF *
IRST I0TAB *

* RY *

*

0k 3 ek ok ok ok ok ok ok

*****CZ*#**#*****

*GET ADDRESS OF *
FIRST FILE1
: TABLE ENTRY *

Ed
ko ko ok Rokokok sk okok
ook ok
* *
* D2 *->
* *
Fdokk

*

ok

*.
«* IS FILE *, YES

*. SEQUENTIAL .*
*,UPDATE ? .*

*, K
l NO
o X,
B2 k.
¥ *,
IS FPILE « YES
*, SEQUENTIAL .
*.QUTPUT ? .*
*, o ¥
P
I Yo
¥,
F2 *,
¥
IS IT YES
EN DIREC; ACCBSS H—.
*, .a'
o ok
* NO
BACK
**t*tcz********i*
*

*GET ADDRESS OF *
NEXT £0TAB *<

********i********

**t**ﬂz*“********
*GET ADDRESS OF *

SEQUP

koK KoK ) 3ok skok ok ok
* SET I/0/U IN *

* DIS ILE *
~—>*INFORMATION TO *.
* U *

* *
ook ook s ok sk okl ek Kok

EQOT
FKAAKE J KAk ARk
: SET_I/0/U0 IN

DIS ILE
):INFORH%TION TO *

0 Ak AOKE § ok kodok Rk ok
*
*COMPUTE RECORD *
>* LENGTH *

* %

* - *
* * *
ohkk

HUP
***#*F3********** AKk K KR 4 Kk ARk kK
* SET é * * *
e % * serup Lot
>*INFORHATI N TO * BUF *
* * *
* * *

FAKGY FHoR AR

PUT
—km Rk R E K Xk
PUT IOD IN DSF
* FORMAT *

e kA ok ok gk ¥k ok ok

b il (L L L EEE TR

*
*RELOCATE OBJECT*
* CODE *

ILE1 *
: g x

*****#1**********

JZ' k. .
o IS IT END
*, OP I0TAB ?
*
S

*. NO
« %
- -*
*o «
#
*YE

HAAOKK 240k K ok ok ok

*

* EXIT *
* *
SRRk K ok

TO: RG28

Chart EC. Assemble 3 I/0O Phase

* *
ke e s ofe o ke S ok K ok e koK
Hokdok
* *
>% D2 ¥
* *
EEL T
(RG26)
Phase

Descriptions

41



PCALL
AR ]D TRk AR RKE
*
* EXIT *<.
* *
Aok ARk

TO: RG32

T
* *
* C2 *<
* *
*kkk

Chart ED.

42

BEG
Aok Aok | DAk kKR k Kok
*
* ENTRY *
* *
Aok ok kKR ok Rk

FROM: RG26

ook ok ke ok ok ok
DRESS OF *
IOTAB AND*
T FILE1 *
TRY *

*
ok ok ok okok ook ok ok Kok ROk

*ok ok

* *

* C2 *—>
* *

b
IOTCK ¥
c2

Lk
«* DOES ISA

YES
* %,

*
*

* QO

.

*

*
.l.
D2 *.
*

¥ -
YES _.* _END OF *.
*.* IOTAB ? ‘.*

*

S

» PROCESSI

*.0CCUR ?
*

*

NO

WXDE1

dodokokok 2 ko kK ok Aok
* *
*GET ADDRESS OF *
* NEXT FILE1 *
; ENRTRY :

ek deokok ) 3 e ok ok ok ok ok
* BUILD THE DFI *

* TABLE ARD *
*LOGICS_FOR THIS*
* FILE *

*
e ok e 3 o ok ok ok ok ok ok ok ok ok ok

SRR R R R AKAE A

I )1 .
OUTPUT THE 1/0
* LOGICS *

*

FARRRFIRRREH AR R
* *

*GET_ADDRESS_OF *
= REXT I0TAB  *
* CENTRY *

*
Ak kokk kR Rk Rk Rk kK

Assemble 4 I/O Phase (RG28)

* * *
* TSAH ROUTINE * BRANCH TO *
* * *
* * *
* LOAD * LOAD? *
* * *
* ADD : IADD1 :
* SE%UENTIAL * *
: RETRIEVE : SEQR1 :
* RANDOM * *
: RETRIEVE : RAND1 :




Chart

A0000
Ak | 2 Rk skokkok ok
: ENTRY :
Aok Kok ok Rk ok

FROM: RG28

20010
AARB QAR R ok ok

=R K K Kk
GET_COMPRESSION
* BLOCK 1 *

Aok KRk K koo
*ohkk
* *
* C2 2>
*Aokok
ok,
c2 *.

Lk . *y .
«* IS IT A *., NO
«. TABLE 7?7 o ¥
*, oE

*, ok

o o ¥
* YES

*

HRRD 2 A KRR KA
B
PR et SRR
PUT OUT TABLE
* AREA 1 *
PR ———

TBLGA‘#*PZ#H*#**‘**#*

-*-*-*-*-t-;;; *
PUT OUT TA
* AREA 2 *

PES LRSI R S 2L

ARG 2K AR A A

k=
‘—> PUT QUT TABLE
* LOAD *

ARk oKk ok oKk Kok ok

B000S oE,
H2® T,
“Is 17 110" YES
o .
., FhLET 2 o~

c3 *,
oX *,

«* IS IT AN_ *, NO
——>*.*'I' TYPE 7 &%
.. e
*o %

I YES
¥
D3 *

o* Tx,
KO .* MORE_THAN *,
——**.2“3 TABLE ? *.*

*, o
%
* YES

LINK oK B3 Ak kKK KKKk
-*-*-g-tgt-*-* *
PUT_OUT TABLE

* LOAD DRIVER x*

ook ok ok ok Kok ok ok k ok

S d

EXIT
KT JRok Rk okokk
S EXIT :
AR A A EAA AR

TO: RG34

TDUP
AR Jokk Aok kR kKR

0.
- K Rk K
> PUT _OQUT TAB
* DUMP *

oAk ko kok ok Rk Kok

<

FA.

>

40015
FRRRIIRRO Rk

: INCREMENT TO
% COMPRESSION
ARk kR kokok ok kK

LT X

*kKK
* C2 *
*

*kkk

Assemble Tables Phase (RG32)

Phase Descriptions

43



Chart

44

FB.

HRRKRC ] RKAK KA KK
* *
* POINT TO NEXT *
: SPEC :<

* *
LRSS L I RS LR LS £ 2
K
* *
>* B2 *
*
L E L]
HokoRk D) ] ARk ARk
*

*
* SAVE CEAINING *
———: COMP ADDRESS :(

* *
F KA ORAKR AR KRR Ak

BEGC1
MR 2Kk R Kok ok ok
*
* ENTRY *
* *
ok kkok R Kok HOk &
*odeokk FRON: RG32
* *
* B2 *->
* *
AR
GNEX
HRKRD QW KRR UK AKAK
B R e S
GET
* SPECIFICATION*
Aok ok KR KR ok K

*cz'
YES ,*is IT P
*. DESCRIP

*. SPEC

*. .

E2 *,
¥ *,
«*IS IT A RAF*, YES
*-EXTENSION 7 %
“x

. .
*, L*
NO

CHGEN
HRR ARG 2 KRN AN AR AR
% *

* GENERATE C1, *
#*C2, C3 CHAINING*
* RTINS *

ARk ROk ROk

AR D ARRRRAAAK KK
B s ot S
PUT C
* ROUTINES *
ARk Ak K

AT 2 KA KK AR
* *
* EXIT *
* *
FRERAARERIKA AR

TO: RG36

AF
Aok kI RR AR KK
*

*

* SET UP RAF %

>%  ROUTINE *
* *

* *

He AR AR ARk Hok oKk

AR RF J R AR AR KK

PUTOB
ok kK kak X
*PUT OUT RA CODE

Aok R OK 3Rk ok Ok kK

Assemble Chain and RA File Phase (RG34)



BEG
RAkK B3 dddkokk KAk
*

* ENTRY *

* *
EEEES T L EL LT
ook FROM: RG34

* *

* C3 *—>

* *
Ak Ak

3TART
EE R JoxELE LRSS 23
G

ittt ittt Lt I

. ¥
D2 *,
ox *o
YES .* IS IT THE *.
*. END OF COMP .*<
*.BLOCK ? _ .*

* NO

CALL L

FAOKE 2 kckokok ok ook ok

B .t I I S ]
GENERATE BI

* CFLD1 DC 0 *

SRRk ARk kA ok

*ARK 2 Rk Ak Rk K
*

: EXIT *

E e ST

TO: RG38

¥
. G2 *,

ARk oK *.
* *  NO .k *,
* BU4 *< *,FIRST TINE ?_ .*<
* * *, o*
ARk *, o¥

*, %
YE

12}

Chart FC.

> GET BLOCK OF
* COMFRESSION *

0 koK ok koK ok ok ok ok

ct oK
D3 *o

I
Stk B 3 dokokotok K ok sk ok
*

GET NEXT
COMPRESSION
RECORD

3 3 ¥
% % X

Atk okl ook sk okok ok kok kR

LX)
* *
* F3 *->
* *

Sokk
upcH1 ok
F3 *.

. ¥ *
*I' .*NEXT RECORD*. 'D!
L%, 9T" OR "DV ? .*

Stk 3 Aok Ak R Bk Kok ok

o ¥ *,
NEIT .*WHICH INPUT*. 'D!
TYPE ? e

Aok

* ¥ *
=]
=

EX Y]

kKK

B15 HRKB Y dedk Rtk ok

B e e N
GENERATE BI
% CFLD1 DC 0 *
ook Aok ROk RRORK AR
AR

* *
* ClY Hed>
* *

FARKC U Fok kKKK K
P

=Kk e KKk K

GENERATE B 1 DC

* 0 *

e ok ok ok ok ok oKk

BB
ok kR D £ ok ok ke kK ook
* *

ROH LHPAQ *
ook ok KRR ROR K F Kk K

Fkkok kok K

*

* -~ AT THEND, OBJECT CODE
FOR FPIELD RECORD

RELATION

* %%

FRKEY KRRk dkk * -~ AT GENMV, LIBF TO HMOVE
P

UTOB * FIELDS FROM I/0
k—k—d—Fkokek kK BUFFER TO HOLD AREA
RATE OBJECT -—=-=
+OENER B * * - AT ATIST, OBJECT CODE
o
PET—— * OR BLANK'FPIELD
* INDICATORS
* - AT STERL, STERLING
* 0BJECT ROUTINE
FEITY *
* * Aok Kok kX
* C3 *
* *
Aeokok K *okaok
* *
>* BY *
* *
dekokk
Aokokk
* *
>* F3 *
* *
Aok kR

Assemble Input Field Phase (RG36)

Phase Descriptions

45



Chart FD.

46

BEG
Sk KK Ak Rk Rk
*
* ENTRY *
A A KRR KA KKK

FROM: RG36

*GENERATE NUSEQ
>: E

AKH AR BS Rk hok kKK
*

ROUTIN.

* 5 % *

* *
ook ok ok ok ook ok kKoK Kok

INT o ¥,
B3 "%, KR [ R ok Rk K
3 *, PU
«*ANY CONTROL*. YES it bt ek et
*. LEVELS ? « ¥ ——>_GEN OBJ CODE
*.‘ *.* * FOR PROC *
R kAR KRRk Rk
* NQ
P
* C3 k)l
* <
ARk
BACK ¥
FRKCERK AR ERAEKE c3” “x.
ETC. ¥ *,
Kk kK K YES .* IS5 IT THE *.
GET NEXT BLOCK < ——%. END OF COMP .*
* OF COoNMp * *-ELOCK ? *.*
AR ARk Rk KK R
* NO
Aok
* *
>* C3 %
* *
kR
SD FsSI o ¥
R AR 2 KKk ko ook kK D3 *.
* . *,
* PROCESS 'pt * YES .* IS IT 'D' *,
: TYPE RECORD :‘( *, TYIPE ? ¥
* * *. 2
AR Rk Rk Rk ok *, %
l * KO
R 1
* *
* C3 * ¥ NOFIL ok,
* * E3 *, E4 *,
Aok o* *. |
+*% IS IT 'I' *. YES o ¥ THERE « YES
*, TYPE ? . ¥ ¥, NUMERIC o*
*, ok *.SE?U NC- .
*, . % *,ING 2.%
— ¥, %
* NO * NO
£
DCHP
HEREKPL R KRR Rk
EETES S PR T * *
* * PROCESS 'I' *
* EXIT * * RECORD *
* * * *
AR ARk A * *
Aok ROk AR oK
TO: RGYUO
P
* *
* C3 *
* *
AR

Assemble Control Levels Phase

(RG38)



ADLEX

LAV3

BEG49

*****D1* okl Rk kKK
* INCREMENT XR2 *

*BY ENTRY LENGTH*(————————

*
*ﬁ***************

-

KRRk P )R ¥AoRIR kR Kk
* *
* TINCREMENT *

* FILECOUNT *<
* *
* *
2 ok e g ook ok ook ok ok ook ok ok
« ¥
H1 T
% D *
NO_.*"PREV REC
—%.  TYPE HAVE _.*<
*, HATCHING .
JFLD 7.%
*, X
Rk * YES
* *
* J2 *
deokok

Chart FE.

HookJ AR Aok kKR

A o Aok ok ok ok ok ok ok

K RFRARARRRAR
P L1 P
PUT OUT BRANCER

* T0 EXTRACTIOR*

okt b ok ok ok ok ok Kok

*ok k] 2 dokok kAR K
*
* ENTRY :
Aok Aok R K
FROM: RG38
STAR1
ook ok B 2 ok doskokksk ok ok
*
:ALLOCATE LOHFLD:
* *
* *
Aekokkokok oKk kK ok
>
LOOPX ¥, ok,
c2 *o c3 *.
o X *,
*Is THIS THE* YES +*% IS THERE *. NO
*_END OF FILE1 T2 >%IMORE_THAN ONE.*
*,TAB ? . *, FILE ? _.¥
. . *. o ¥
. K *, Lk
1 NO * YES
ok NORMA v
D2 *, *#***D3*kt*******
-¥EITHER *. CALCULATE *
NO .* A PRIMARY *. * LENGTH, THEN
*, OR SECOND- .* *FIELD AﬁDRESSES*
*.ARY FILE .* FOR MFTST OBJ
*. 7 o ¥ CODE *
K, Lk sokskok ok Rk ok koK ok oK
* YES
EFIT
Aorolok B 2 ko dok ok ok ok ok Kk E 3 dokdokokdokkokokok
* *

*SET_STATUS_WORD*
*T0 INDICATE IF *
*EQF IS NEEDED :

b3 3k S ol 6 ok ok K ok kK

KOTR
Aok 2 okoskookok akokok kok
*HODIPY 0BJ CODB*
T0_REFLECT
‘ ISCENDING OR *
ESCEND *

ok ok ok ok ook ok ok 2k ok ok ok ok K

ITYP1 o

¥ *,
NO +% EITHER *,
'AND' OR_'OR'.*<
Tx, PE ok

N -

YES
Hokkk

* *

* J2. %>

* *

Fokokk
AR J 2 kR ok gk Kok
*

* POINT TO NEXT
* COMPRESSION
* RECORD

% % %%

ek Rk ok ok koK ok Kk klOK Ok

Aok ok

4 * %
=
w

EX )

kKK

D
KoKk ke kK
PUT OUT OBJ
* CODE FOR MFTS*
ROU
e ok ook o ok ok kokok ok ok

<

ONEFI ¥,
D4 *o

o ¥ *,
+*IS SEQUENCE*, NO
o CHECK o Hoooe
*.gPECIFIEg.*

*, K
* YES

N
oNE b L A f bt d
PUT_QUT OBJECT
CODE_FOR LOWFLD*
. AND PS HOLD
AR R KRR KKKk

<:

NSEQ1
FEAE G Ak kR Rk &

-*—*—E-*-*—*-* *
PUT OBJ_CODE
* FOR EOF TES *

ROUTINE
A AR AK KKK TR

FHEGI KAk KK ARk

CER
AT SPEC_ *. NEIT

S IT 7 .*
ok

KK 3R kKooK
B ot 2 ot B
PUT OUT
* EXTRACTION *
PEETTE R T T TR TS

Assemble Multi-Files Phase (RG40)

¥ GECA

H4 *, Ak KR H S KA KAk kR
o ¥ *, * *
+% END OF *. YES * *
——>%,  BLOCK ? o ¥———>%GET NEXT BLOCK *
*, oE * *
*, ok * *
*, oK Aok ok dokkokR Rk Kk
* NO
l Aok ok
* *
MFGPU o ¥ * H3 *
Jy Tx, *
<% DID_ *, xRk
% PREV REC__*, NO
*.HAVE MATCHING.* — —
*,FIELDS 7 .*
*, s
E
*"YES
EOJX
Aok KK b Aok K ok Ak ok
PUT ouT COHPARE Kk 5 Kok ok ok K
*AND BRANCH_TO *
EXTRACTION RTN ——-—————>* EXIT *
* LAST TIME * *
FRAKRAR AR RER K
Sk koK ok ok Kok koK
TO: RGU2

Phase Descriptions

47



BEG50

*o ok ] 3 kokkkok KRk K
*
: ENTRY *
Akkk KRR AR KKK K
* *
* B2 *
* * FROM: RGUO
koK
ADLE RESET
Rk Aok P2 Rk Kok Kk ok Hkk P 3Rk ok kKK KKK
* *
* POINT TO_NEXT * e KK m K m K=K K
: COMPRESSION :——‘ *G'E'l‘ COMPBESSIO!‘{
* *
KoK KKKk Rk K R ARa s L]
Rk
* * —_— >
* C2 *
* *
Aok
PUTN BACK ¥ DTYP2 o ¥,
t****cz*****t**tt c3 Tx, Cc4 *,
- ¥ *, «*IS THIS*.
*POINT TO_FILEt * NEIT .*WHICH SPEC *, 'D¢ * FIRST 'D! *. NO
ABLE o G TYPE ? PR >k, PE AFTER . %—,
# . B «'I' TYPE .*
* B o* *. 7 ¥
**i*t**t**¢****tx *. % *, ok
*x 170 * YES
oKk
* *
* D2 > l
* *
KA v
¥ ¥,
EOJX D2 *, ITYP2 p3° “x, ***t*nu‘n#**t****
HRRKD Tk kR Rk KK ok *, ¥ *, OVE MF
YES _.* END OF . X *. YES *EXTRACTION AND *
* EXIT H «_  TABLE ? ok *.YAND' TYPE 7 .*x PUT
* * - ok *, ¥ *ADDR FROH COHP "
Rk ook KRRk *, L% *, ok * TAR *
*, % E ok KRR R KK ek
* 30 * NO *KkK
TO: RGU44 * *
l * B2 * <
* *
*kkk
- ¥, AST12 P
2 *, kA koK B3Rk Kook kKK Bl *,
X *, * oF *,
NO_.% IS THIS A_*. *PUT DUMMY ENTRY* «*IS THERE_A *.
*.SHAIN FILE ?*.* * IN FILTAB : *.EDNTRgL LEV
“x, y * * x. - ¥
.« X FrkokR kR Kk ok
* YES * YES
FoRAOkK P 2 Kk Ak R K ¥ *k AR AR U KRR
* * * MOVE INPUT * * MOVE CONTROL ¥
*PUT_ADDRESS QF * *RECORD ADDRESS * *LEVEL ADDR FROM*
* FILTAB-4 IN =* * ROM * *COMPRESSION TO *
: FILE1 TABLE : :COHPR i?‘{g“ TO0 : * FILTAB *
L L Ty TP AR R Rk R ORI AR oKk
— >
Skkk
* *
APT G2.1 . : c2 :
. FAKG T Kok kKRN
IS IT %, 3010n e
L A “fiket e
r——%. . PUNCH FILT
*,SECONDRY .* * FOR PllIVIC)I.Al!:‘.3 *
* FILE .* R R _TYPE
E EEE L ET R T
* YES
Ekkk
* *
* B2 *
R VR TS P T * *
EEEES
—K— ke kmkek k
PONCH GET
* ROUTINE FOR *
ko Rk ok KRRk
e >
PUT1
*****Jzt"tttt*tt*
Fkok
* * POINT _TO_NEXT *
: D2 :( *ENTRY IN FILE1 *
ERAE

C**t******iﬁ*****

Chart FF.

48

Assemble GET Phase (RG42)



START***A1*******#***

-*-*_*_EE*_*-* *
— > GET COMPRESSION
* BLOCK *

Aok ok ok Rk oKk
kK

* *

* B1 *->} NXTSP
* * NXTBR
ddokk

FkR B 1 RARRkK kKK
ETCHM
N ot et S S
GET
* SPECIFICATION*

kR R R AR KRR

IDTYP .
I
%" IS IT A_ *. YES
*ICALC SPEC 7 !

*, ok
*, oK
NO

s 3

JLINEN
YES .* IS IT END *.
*.0F COMP BLOCK.*
*, L X
%, ok
*, %
*"¥o

FRRKE ] HRR AR KK
* BXIT :
Aok ARk KRRk K

TO: RGU6

Chart FG.

BEG
ok ok § 2 Kok kKKK
*

* ENTRY *
* *
ek Aok ok kKKK ok

FROM: RGU2

PUT ADDR OF *
N *

* CHAT

* SUBROUTINE IR *
* COMPRESSION *
: *

deofeok i e 3 ok ok ko ek ok oK

*kAk

* % %
o
-

* % *

EreTY

Assemble Calculation 1 Phase (RG44)

PCALY ¥, GENLK
B2 *, Sk kK B3 Kok Aok Ok AR K
oK *, * *
.* IS OPCODE *. YES * *
)*.* LOKUOP ? ¥ >:GET ALPHA WORD :
Tk, o * *
R P *x *
* NO * LOKUP * ARGUMENT TABLE * LOKUP INSTRUCTION *
* * ASCENDING * TYPE IN WHICH *
* TYPE % OR * ADDRESS IS STORED *
* * DESCENDING * hr *
* EQUAL * A OR D * I *
oK, LOK1 e L L
c2 *, Aok A KC 3 kk Rk KAk KK * * A * I *
ok * * * HIGH *
.* IS OPCODE *. NO *DETERMINE LOKUP* * - * D * 111 *
*, CHAIN ? ok * TYPE *< wdokkk Kk k
*, . X l * * * * A * IIL
*, o ¥ * * * LOW EEE 1 #okok ok
*, Lk B L e * * D * I *
* YES HEKAK *k kK
* * * RIGH, * A * II *
* B * * Fokok Kok e
* * * EQUAL * D * Iv *
ok koK
* LOW, * 2 * v *
¥ * ko *
D2 *, Fokok a0k D 3 Aok koo ok kok K * EQUAL * D * IT *
K *, MODIFY LOKUP * Fok ok ok ok Kok
-*IS IT FIRST*. NO * ROUTINE AND *
*, CHAIN ? o ¥m— GENERATE OBJ *
*o ok * CODE *
*, Lk * *
o o ¥ st koK ok kot ok ok R okok ok
* YES
Sk
* *
* Bl *
*kKEQ * *
. PUTOB Fkkk
e o e ]
GENERATE_CHAIN
* SUBROUTINES *
scokokdOR kKRR Kk kKoK
<
PUTAD
HKAKKP 2 HHA kAR KA
*

Phase Descriptions

49



HEG
FRAER ] AR A KKK
* *
* ENTRY *
* *
ok KRRk K

STA

P
*
* C1 %>
* *
LEETY
FRKC TRk ok kok Fok K
— ek kKK K
GET COMPRESSION
* SPEC *

Aok ok ko Rk ok ok ok

IDTYP ko
D1 *

-k
.*T IS IT A T*. KO
*CALC SPEC 7 _1x——
Tx, o
- -*
I YES
S,
E1T %,
¥ *
.*"IS THIS A *. YES
*. SUBROUTINE _.*
%0 SPEC 27 _.*
*, ¥
K
I )
RG1A2 =,
F1 .
o ¥
YES .* IS5 TO *.
S cAic SitcH 1x
*. SET o*
° - -*.
kK * NO
* *
* Al *
* *
TEEE
L
N0 .+°Is THIS A'*.
——%. TOTAL CALC _.*
* EC ?
. .*
« o ¥
EE L L * YES
* *
* Al * l
* *
Rk *FhKk
* *
® B2 *
* *
ko

Chart FH.

50

FROM: RGH4

*PATCH _ROUTINE *
FOR FIRST PARM
RFSI1

ook ok ke ok KoKk koK

FRC D FMOk kkok kR Xk

DETRIL LINES
A AR AR R KOk K

ko ok ) 2 o ok ook ko ok
*SAVE TOTAL CALC*

* lDDRES IN
* g *
: (uorss+ ) x
Ao ok o ok ook ok ok R okok
ELEL
>* A3 *
RkKHR

2" s,

X *,

. FIRST *,
>%, SUBROUTINB o ¥
*. SPEC ¥
*, . ¥
R

I NO
ok
* *
* Ay %
*, %
kK

LR VAL EE L L LY

*

LR E L]

.
£
w

* - #

ok kok

et b by XKLL LS L P T

SET TOTAL
SWITCH ON

LY E
LE R X R

Aok dok oKk kR Rk ok

:ED .
" IS IT A *. YES
*CALCTSPEC 7 I¢—>
T, L
* o*
*"xo
>

[————>

RRHC T ARk ARk Kk
A

~X KKK fe KK K
PATCH ROUTIHE

S aRp - Reshy t

EEEREETEE LET 472

RARD I R kKRR AR

FHR P RERERAKEK
*

* EXIT -
* *
Aok kR AR R Ak

TO: RG52

* *
* Ab *
* *
Aok
>
IND
AR ) 1K iti*****
* GEN
* CONDITIONING *
* INDICATOR *
* TESTIS, IF *
* NEEDED *
Aok AR KRR K
OPER
t:»a tnit***ﬁ#*#
R LINKAGBS Aok ek
A“g/g ?gguTI“ * RGSI2-SETS AN INDICATOR ON
A
*
ttt##gggegigggmt * Tﬁzogo gzsggngg ng
< * RESULT FIELD
: RGSI3-SETS INDICATOR ON
: RGSI4-SETS INDICATOR OFF
26, Hhttcutx*tx*ttttt

IR L)\ S
GEN LINKAGES TO
* RESULTING IND*

ek ko ok kol R ok koK

Assemble Calculation 2 Phase (RG46)



RPG Bn *,
Al *,
LRI REL T2 Py % *,
* «*IS IT FIRST*. NO
: ENTRY : *.*'H' TYPE ? *.*~——
RARRRBARR R T L) “x, s
* * « oK
* B2 * * YES
FROM: RG46 * *
Rk
FRAP PRAAB R R AR AR FRRPRAERKENKBRRA FRK A KD 1) KKK AR R Aok
* *
R LS e O St B B T s Lt et I * SAVE RETURN *
GET FIRST GET NEXT * ADDRESS *
* OﬂggggKCOHP * * COMPRESSION * : :
EETIT T+ E R P TR E b TR R Aok R ok oK Aok
P2
* * < S—
* CT *->
*
BEGG*’*
.%o FIRST
l.‘C1 -, RS KK KK Aok KKk Aok
IS IT AN_"#. YES IR e SR
4."3' SPEC ? _.* GEN RES
- - *
“ - TIDICATOR
LR * * Sk kR KRRk Kok
* NO * D3 *
* *
l kK
%, OTIPE . INDED E. STRL
‘D‘l *.‘ ‘03 *.* *D *.* KRRDS Rk AR KRR KRR
YES .* IS IT AW "*. .*is 1T PIRST*. WO .*IS STERLING*. YES PR 1o - AP
*. 107 SPEC ? _.* *. TOUTYPE 7 I — * SPECIFIED ? _.*%——> ENERATE
1,‘ . t.* . *e Pl * STERLING_ *
N A R srr D ESt e s Ee
R T *"YES “x"NO
% D3 * l
* *
PRt
!1.0.‘ " V FNSH1 s .*.‘
. * .
o . e HE 3 Aok Ak * .
-% END OF *, NO ot ot B «*IS THERE AR*. NO
*.201‘?01‘ conp z.*—y" B2 * PUT OUT LINKAGE *.*BDITHORD ? t.'—aq
"5 o P * * Tk, T
*, . Aok Rk K ok KK ok ¥
* YES * YES
~-~IF LINKAGE CODE
is RBgUIRBD PUT <
our 0B LINKAGE
BFD1 0SW1 PN NPAGE - ¥, EDIT
*, Fu *, £
WRRNP TR STEARR Rk -'F%S 1T %, x .. t**fSt!g;t*t**t#
* -* EITHER *, YES +*IS THIS AN *. YES B i it Sl 2 I
* EXIT : -.;Ag%nogpégn;.t—* *.EDIT WORD ? _.#————> " pUT OUT 0BJ
Ak Ao R '*.*? ‘.,' "k, e * CODE FOR EDIT*
.. o o ¥
*"No *"No #*t#t*tt*?tt*t#*
TO: RG54 [
1
¥,
*G3 *.. pLD“1**#Gul*tt*t*t**'
IS IT A %, NO N St br S
*.PRINTER FILE . *~— PUT OQUT OBJ
*.‘ ? *-* * CODE _FOR FLD *
R ARk AR Rk
* YES
PRNTR B
:****Hatuatt*ttn: LP‘Faa*ﬂui-iiittttt*
* SET STERLING % -*-1-*222*-1—1
*  SWITCHES o PUT OUT BLANK
: - * AFTER CODE *
H
. l
STEP

Chart PI.

Assemble

ok oh R J 3 Aok Aok Ak okok
* *

* *
*GET NEXT SPEC *.
* *

* *
e ok Ao ok ok ok ok ok ok

Aok
* *
>* C1 *
* *
okokok

Output Fields Phase (RG52)

Phase

Descriptions

51



RPG
Fokokok | ] A AAOKRE KK
*
* ENTRY *
* *
ook ook ok kR ARk K

FROM: RG52

FREHRD )RR RRAK KR
*

*SAVE ADDRESSES
* OF OBJECT

* ROUTINES
PEEETTTER TR LES T Y

3%

4
ook C Kk kok ok R Kok R ok
P

ok kk

GENERATE OBJECT
TINE
EE
ook ko ok Rk kR Rk ok * *
* D2 *
EES 23 * *
* * < AR
* D1 *->
* *
EE 2 2
IFETC - v NXTS1
HRRD R RR AR KRR KKK ERRRRD2RRRRRERR L
*
—*—*—*—* Rk * * GET NEXT *
ET FIRST * COMPRESSION *
+ oUFhUT CORP ¥SPECIFICATION *
ok ok ok ok kR kR kR ARk ROR R OR ROk R KR
ook
* *
* E1 *->
*oe ok
RBZ ¥l MTIPE ok,
*E1 *.* E2 *.

.* IS IT AN_ *. YES Is THIS *. Yes
*. THY SPEC ? P O FIRST?H SPEC .
*, ,*' *, ¥
*, oK « o

* KO * NO
ko
L
>* D2 *
*
AR
¥, .
F1 *, F2 *,
-k *, ¥ *,
+* IS IT AN_ *. NO +* DOBES SPEC *. YES
*, Y0 SPEC ? .% >% ,CONTAIN X'FD'.¥————>
*, g « *, ? oX
* ok *, «®
*, % *, %
1 YES * NO
OTIPE ¥, FFT
Gt T, HRRG 2RI AR AN K
¥ *,
.* IS IT THE *. NO e Bt T T P A
*,PIRST PASS ? . GET NEXT
*.* -“-‘l * COHPRESSION *
. * kR RO KA R KRR
*"YES ok
* *
* A3 *
*: M
F Rk EL L2
* *
0TIPB v * B1 %
FORKH | # R R AR ARk K * *
kA
e e K R Rk
GENERATE
*  INDICATGR *
0 2ok ok ok ok okOROR ok ok
AR
* *
* D2 *
* *
oAk
Chart FJ. Assemble PUT Phase

52

* *
% A3 *
* *
* kK
MUS2 ¥ MUS3 ¥
a3 Tk, RIS PRERERSHERRRRRRRE
- *, *
¥ IS IT *, NO *IS IT THIRD* YES BUILD TOTAL *
*.iECCND PASS 3.* )*.‘ PASS ? ,_.___)* LINES TABLE :
“x. L% Tx * *
_— PR ****n******m*****
* YES * RO
****
>* D1 *
* *
ETTTY
ABEX3 -*.
ARk B3 AR ARk *. PRt
* * *,
* BUILD DETAIL * *IS IT EXTRA*. YES BUILD OVERF LOW *
* LINES TABLE * *_,PASS THREE ? . —————-—-)* LINES TABLE
* * *, oX #
* * *, ok *
ke ok o Ok ok kR KOk ROk ok x, ¥ ****************#
*
o P
* *
[ >% D1 *
* *
ok K
MUSH .*.
*, *****cs****x***x*
* *,
.*Is IT pass’*. YES BUILD DETAIL *
*, FOUR ? o ¥ >*0VERPLOH LINES *
B TABLE *
“x, %" ARk R oK KK
* NO
*okokk
* *
Muss * D1 *
Fodokok KDY kR kKRR kK * *
* * Sokodkok
* BUILD EXCEPT *
* LINES TABLE *
* *
* *
ek e ok o ook ko ok ok ok ok Rk
MUss
#*#t#a3*x**t*****
* [P
*SAVE ADDRESS OF* * *
)* MOVE FIELDS ‘ : EXIT :
* ARk R
[
EET 2] TO: RG58
* *
>% D2 *
* *
RRAOR
MUSFD ¥,
F3 *,
] arx
+¥PASS 1, 2, *, YBS *
*.3, EXPS . )* D1 *
¥ 5% 4
. . ittt
¥
* NO
% *ohok
* ) *
* A SWITCH WORD, TAIN1, IS CHECKED FOR EACH PA *
* T0 DETERMINE IF THE ENTRIES FOR A TABLE ARE *
* BE COMPLETED. *
* *
* DPASS * FUNCTION *
Rk HoR
* 1 * PUTS OUT INDICATOR TESTS. *
< *********************
* 2 * BUILDS TABLE FOR DETAIL LINES >
* 3 * BYILDS TQELE FOR TOTAL LINES *
* EXPS3 * BUILDS T%QLE FOR OVERFLOW LINES *
* L] * BUILDS TABLE FOR DETAIL OVERFLOW LINES *
* 5 * BUILDS TABLE FOR EXCEPT LINES *
FR ARk
PHSED
AR, 3 kAR Rk KOk Ok
*
* EXIT *
* *
ke e o R o kK R ROR K
TO: RG58

(RG54)



Chart

BEGIN

ek | JRk Kk K kKK
*
* ENTRY *
ok R 3 3o e Aok ok o ok ok
FROM: RGS6
OMT K,
B3" "%, HAAKK P Aok d kR ok
* *. * *
. ARE 'ANY %, ¥YES * PUT FILTAB-4 ¥
*, CHAIN FILES .* >% ADDRESSES IN *
*.SPECIFIEE.* :HASTEH DRIVER :
R Aok oK ROk ok oK
* NO
l(
OMT1 ¥,
c3 *, :****Cﬂ*********:
oK
«* _ARE ANY *. YES * GENERATE ‘
*, DISK FILES . >* BRANCHES TO
*.§PECIFIB£.* OPEN AND CLOSE *
R .
* NO
<
OMT2 oK
p3° “x, hanade Tt EEtitasd
o ¥ *.
«* AR NY *. YES *PUT OUT LINK 1‘0"l
*, TABLE FILES . TABLE LOAD
S SPECIFIEQ.* : :
-*‘ A3k kR ok K ok ok ok K ok
"% N0
GOHDL i
FROOREI R

*PUT OUT LINK TO*
* HEADING_AND
: DETAIL LINE

ok koK ok oK o kK ok kol Kok

FoRRK P Hok ARk Ak Kok
*FILL IN OBJECT *

TIME
*COHHUNICATIONS *
AREA

*
etk ok ook ok ok ok o ok kokok

MLOP1
HKRG 3 RAK KA AAK
PRT

Pt D e Tt Y
PRINT KEY ADDR
* OF OBJ *

PROG%AH
kst ook ok sk ofkok ok ok ok ok ok

PDONE
ok 3 HAORRR KKK KKK

P L
IP_ ISAM_USED,
* PRINT SECTOR *

IN
ek ek ko R kokok dokok

ALng***J3iui****t**
* *
*GENERATE MASTER¥
: DRIVER :

* *
Fotoksiok ok ok kokok kKKK

Aokt K 3 dokokkdokkokok

*
* EXIT *
* *
Fokkok Kok KRR KK

TO: RG6O

FK. Assemble Linkage Phase (RG58)

Phase Descriptions



BEGIN

WSXC
R R Rk ok kAR ok
*

* GET WORKING *
—):STORIGE H!SSAGE:

* *
Aok AORR KRR RN R kKK

ABERR
Sk gk P 3 dokokobok dokok kR
*

* GET ERROR *
-—>: HgSSlGE

* %

* *
Aok Rk KRk Rk Rk Rk

PTERR
ERAKKPLRERE RN KR
* *

* *
>*NO DUP, NO XEQ *
* *

* *
ok ok ok R okoR R ok ok

ARG Aok kAR kR

B ot et o T ot
'PRINT MESSAGE -

ook Bk ok oKk ok Rk

Hokkok R 2Rk K
*
* ENTRY *
HodRR KRRk Rk
FROM: RG10Q
RG19
RG58
LPBLK v
Ly
* *
* TINITIALIZE *
* PRINT BUFFER *
* *
* *
AR AR KR
R
HERC ARk kAR K
DZ000
—k kKR kK
LOAD PRINT
* ROUTINE *
ek kKRR ok R
¥ %
D1 *, D2 *,
x *, ok *,
NO .* NEED TQ *. YES .* NORMAL *,
(——%. HOVE OBJECT .*< * ,CONPILATION 7.%*
*. CODE ¥ *. ¥
*, oK *, ¥
. ¥ *, X
* YES :[ XO
FDDSF S*,
FAABRE PR KRR RK E2 *.
* MOVE OBJ CODE * -* IS *
* TO START OF * .* WORKING *. YES
*WORKING STORAGE* *, STORAGE o ¥
*2 SECTORS AT A * *. EXCEEDED .
* * *, 7 ¥
R e el ] *, ¥
[ .1
UPDCH « ¥,
FRAAKF TR KRRk F2" x,
* * * *,
*UPDATE DCOM ON * .* ABORTIVE *. YES
* SY N * *, COMPLIATION .*——
: CARTRIDGE : *.EBR .
ARk AR AR R T
* NO
WTDSK ¥,
G1 *. 2
. Is *. * *
.* WORKING *. YES * ASSUME *
*, STORAGE ON . * *DIAGNOSTIC ROUN *
*.ERIVB [ :.* :OPTION (/70004) :
“w, % AR KRR KRRk
* NO
—_—
>(<
H Nk
* H1 x : H2 *
*UPDATE DCOM_ON * * END OF *
*NON-SYSTEM PACK¥ * COMPILATION *
: : : HESSAGE :

LR ANPE S LS L L LSS
P

S
B it par L
*PRINT MESSAGE -

PR L LA L R 2 2 L

KRR 2 Rk ARk RR
*

* EXIT *
* *
B L T e

Chart FL.

54

Terminate Compilation Phase

(RG60)



The Phase Directory lists the 29 phases of
the 1130 RPG Compiler in numeric sequence.
It summarizes the operations of each phase,
and lists the corresponding Module Name

and Point of Entry.

(See Compiler Flowcharts.)

Chart ID identifies
the appropriate flowchart for each phase.

PHASE DIRECTORY

N:dule Generic Name Chart ID Entry Point Synopsis of Functions
ame
RGOO Resident Phase AA RPG Load subroutines, provide a commonly accessed
communication area, read RPG control card, and
print headings.
RG02 Enter File Specifications BA BEGIN List and compress File Specification entries, build
Phase compression areas and Filename Table.
RGO4 Enter Input Specifica~ BB BEGIN Process Input Specifications creating compression
tions Phase records, check | and D specification, and analyze
errors.
RGO06 Enter Calculation BC BEG Read, list, and compress Calculation Specifica-

Specifications ' tions.

RGO08 Enter Output-Format BD RPG Read, list, and compress Output-Format Specifi-

Specifications Phase cations and determine whether it defines a record
type or a field type.

RG10 Assigﬁ Indicators Phase CA BEGIN Build an indicator table, replace the indicators
with addresses, place PUTOB in RGOO, create
OBEND and place it in RG00.

RG12 Assign Field Names CB BEGIN Build table of field names, and replace a field in

Phase compression with its corresponding address.

RG14 Assign Literals Phase cc BEGIN Assign addresses to literals and build edit words
from edit codes.
RG16 Extended Diagnostics DA START Build tables (TENT, ERTAB, and NOTAB), dis-

1 Phase : tinguish record type from field type Input Specifi-
cations, and pass on field lengths to the Assemble
phases.

RG17 Extended Diagnostics DB BEGIN Update table address, check field entries, print

2 Phase error notes, put out control level hold areas.

RG19, Diagnostic Message DC START Diagnose error bits and print error messages.

20, 21 Phases (1, 2, and 3)

RG22 Assemble 1 1/O Phase EA BEGIN Build 1/O Table from Filename Table.
Table 2. Phase Directory (Part 1 of 2)

Phase Directory

55



Modul
I:q;ee Generic Name Chart ID | Entry Point Synopsis of Functions
e ==
RG24 Assemble 2 /O Phase EB BEG Produce object code for |/O requests of non-disk
files.
RG26 Assemble 3 1/O Phase EC BEGIN Produce object code for /O requests of seciuem‘ial
disk files and Direct access disk files.
RG28 Assemble 4 1/O Phase ED RPG Put out object code for indexed-sequential disk
files.
RG32 Assemble Table Phase FA A0000 Put out object code to load and dump tables.
RG34 Assemble Chain and RA FB BEGCI Process compression and generate object code.
File Phase
RG36 Assemble Input Fields FC BEG Assemble field type Input Specifications.
Phase
RG38 Assemble Control Levels FD BEG38 Generate control level object code and sequence
Phase check routine.
RG40 Assemble Multi-Files FE BEG49 Generate Matching Field routines.
Phase
RG42 Assemble Get Phase FF BEG50 Build file table of routine addresses.
RG44 Assemble Calculation FG BEG Assemble LOKUP operations and a chain sub-
1 Phase routine.
RG46 Assemble Calculation FH BEG Generate object code and linkage.
2 Phase
RG52 Assemble Output Fields Fl RPG Generate object code routine placing output
fields in desired format.
RG54 Assemble Put Phase FJ RPG Generate object code to put out records and pro-
duce table of addresses.
RG58 Assemble Linkage Phase FK BEGIN Generate master driver, branches to routines, and
linkage.
RG60 Terminate Compilation FL RPG Update WS cartridges, print end of compilation
Phase message .
Table 2. Phase Directory (Part 2 of 2)

56




This section describes tables and data
areas in the RPG compiler that are used
outside the phase which created them. (See
Table 5, for more information.) Descrip-
tions of the following are included:

o Filename Table

e TENT Table.

® Input-Output Table.

® Control Level Address Table.

® Overflow Table.

e FILEl Table.

e Communication Area.

Filename Table

The Filename Table can contain as many as
ten entries, each of which is four words
long. If the number of entries exceeds
10 (overflows), the Enter File Specifica-
tion phase (RG02), which builds this ta-
ble, treats the additional entries as
comments and prints an error.

Before an entry is placed in the table,
the table is searched to determine if the
entry is already present. If the entry

is not in the table, it is added and the
reference indicator is created as a blank.
If the entry is in the table, the refer-
ence indicator is changed to M to indicate
a multi-defined file and a message is
printed out. Each entry consists of four
words in the following format:

CONTROL BLOCKS AND TABLES

**File Type

Bit 1Value Meaning

0 0 Not Index Sequential File
1 Index Sequential File

1 0 Input or Update File
1 Output File

2 0 ADD not needed on output for file
1 ADD must be specified for file on output

3 0 Not Disk
1 Disk

4 0 Extension Code
1 Extension Code

5 0 Not a Chained File
1 Chained File

6 0 Not an RA File
1 RA File

7 0 Not a Table File
1 Table File

TENT Table (TENT)

The TENT table (built by RG1l6, and used
by RG1l6 and RG1l7) can contain as many as

ten entries.

Each entry is four words

Word 1 2 3 4
Bits {0-15}0-15}0-7]8-15]0-7[8-15
Filename | Ref  File Sequence
(in namecode) | Indic* Type** Number
*Reference Indicator
Blank - Unreferenced
E - Referenced in Extension Specifications
R - Referenced in Input Specifications
O - Referenced in Output Specifications
M - Multi-Defined Filename

long, in the following format:
Word | Bits Contents
1 0-15| Intemal Sequence Number
2 0-7 | File Type (I-O-U-C, in EBCDIC)
RG16 changes this entry to:
a) 08, if 1403 printer is used,
b) OA, if 1132 printer is used,
c) OC, if console printer is used.
8-15] File Designation (P-S-C-R-T, in EBCDIC)
3 0-15| Record Length (in binary)
0-15| Key Length (in binary)

Control Blocks and Tables 57



Input/Output Table (IOTAB)

This table is built from file description
entries, and is used in generating I/0O
routines. This table can contain as many
as ten entries. The code entries are
right-justified, in hexadecimal notation.
Each entry is 7 words long, in the follow-
ing format:

WORD CONTENTS
CODE FILE TYPE
1 0010 | 1403 Printer

12 | 1132 Printer

14 | Console Printer

20 | 1442 Punch Output

22 | 1442 Reader/Punch Output
24 | 1442 Reader/Punch Combined
26 | 1442 Reader/Punch Input
28 | 2501 Reader Input

40 | Sequential Update

42 | Random Update

46 | Sequential Output

48 | ISAM LOAD

4A | ISAM ADD

4C | ISAM Sequential Update
4E | ISAM Random Update

2 Record Length (in binary)

3 Key Length (in binary)

4-5 Symbolic Filename (in namecode)

6 Overflow indicator, if printer; or number of

sectors necessary, if ISAM LOAD file.

Mode of processing column 28 for FDS (R,L)
a) File length, if RA File
b) Number of index entries per sector,
if ISAM LOAD file (in binary)

7 (0-7)
7 (8-15)

Note: A 01 is ORed into the Code entry if dual 1/O is
requested.

58

Control Level Address Table

The Control Level Address Table (built by
RG17, for RG38) consists of nine one-word
entries. Each entry contains the address
of one of the nine control level fields.
The format of these entries is:

Word Contents
1 Address of Ist control level field
2 Address of 2nd control level field
3 Address of 3rd control level field
4 Address of 4th control level field
5 Address of 5th control level field
6 Address of 6th control level field
7 Address of 7th control level field
8 Address of 8th control level field
9 Address of 9th control level field

Overflow Table (SEQOF)

The Overflow Table (built by RG22, for
RG54) contains two entries. Each entry
is two words long, in the following for-
mat:

Word Contents
1 Sequence number of the File Description
Specification
2 Address of the Overflow indicator




Filel Table (FILEl)

The Filel Table (built by RG22) may have
from one to ten entries, depending upon
the number of files. Each entry is three
words long, in the following format:

Word | Bit Contents
1 0-15 | Address of 1/0O Routine
2 0-15 | Address of FILTAB-4 for this file
3 0-3 | Must be zero for Primary and Secondary

files; otherwise, bits 0-7 are C, R, T,
orO.

4 1 Primary File
0 Secondary File
5 1 Ascending Matching Fields
0 Descending Matching Fields
6 1 Sequence Check Required
0 Sequence Check Not Required
7 1 EOF for this File does not count in

EOJ
EOF for this File Counts in EOJ

0
8-14 | (Not used)
1

15 Open/Close routine required

0 Open/Close routine not required

Note: Word 1 is filled in by RG24, RG26, or RG28;
word 2 is filled in by RG42; word 3 is filled in
by RG22.

Control Blocks and Tables

59



This area is in the Resident phase, bet-
ween the labels 'ZRDSP' and 'COEND'. It
provides addresses and constants used by
the compiler. Each field is one word
long, except 'NOTES' which is 17 words

CONTENTS

source statements

Address of Get Compression Routine (GETCM)

Address of the Principal Print Buffer .

Address of Principal Read Buffer . . ...

e After Enter phases, it is used by DSF routine for the

e s 0 6 00000 0

If it contains a 0, there is no patch; if a non-zero, it

Address of List Source Statements Routine « o v o v 0o v v

e Address of Print Listing Routine (PRTSP) . ... ... ...

Address of Put Compression Routine (PUTCM). .. .....

D R A R R I

e After Enter Phases it contains the number of sectors per
write of DSF code in working storage.

Address of Error Note Routine (PRTER) . ........ .

USED BY
Phases

00, 02, 04, 06,
08

32, 36, 38, 40,
42, 46, 52, 58

00, 02, 04, 06,
08
04, 10, 12, 14,
16, 17, 19, 58,
60

10, 12, 14, 16,
17, 36, 38, 40,
42, 44, 46, 52,
54

02, 04, 06, 08

10, 12, 24, 26,
28, 38, 42, 52,
54, 58

14, 32, 34, 38,
40, 42, 44, 46

02, 04, 06, 08,
10, 12, 14, 16,
17, 19, 58, 60
22, 24, 26, 28,
32, 34, 42, 58,
54

00, 02, 04, 06,
08

00, 02, 04, 06,
08, 10, 17, 14,
16, 19, 12

long. The fields and their contents are:
FIELD DISPLACEMENT
Dec. Hex.
ZRDSP +0 00 e Address of read
Patch Address .
contains the patch address.
ZPRSP +1 01 .
ZGTCM +2 02 °
ZPTCM +3 03 °
ZPTOB +4 04 e Address of Put Object Code Routine
o Put out DSF Code
ZPBUF +5 05 °
e Address of the FILE1 Table ..
e Address of Table Area ...
ZRBUF +6 06 °
ZPTER +7 07 .
Table 3. Communications Area (COMAREA)

60

(Part 1 of 6)




FIELD DISPLACEMENT CONTENTS USED BY
Dec. Hex. Phases
ZOBUF +8 08 o Address of Object Code Buffer .. ...... e PUTOB
ZOEND +9 09 e Address of End of Object Code Buffer +1 . ......... PUTOB
ZCBUF +10 0A e Address File Description Compression . v v v v v e v o v vn 22
e Address of Compression Buffer 1 ... .......... .. 32
e Address of First Block of Compression . . .o oo v v vt .. 34, 38
ZCBF2 +11 0B e Address of Compression Buffer2 ................ 36, 42, 58
e Address of Compression Block . . v v oo v e i vn et 38
ZNTCM +12 0C e Address of Next Buffer Word . ....... ... 04, 10, 12, 44
o Address of Compression Aréa « oo v v v v vs v s v osens 02, 06, 08
o Address of Next Compression Word + .o v v v vvevv e 46
e Address of Current Compression Specification . ...... 52, 54
ZACNT +13 oD o AddressCounter ... oo v vi et ienerrnnonsens 10, 12, 22, 26,
28, 32, 34, 38,
40, 42, 52, 54,
58
o Object Code Location Counter e v v v v vt v v v svuesns 17, 24, 36, 44,
46, 14
o Last Object Code Address + v v v v vv v nvvsvnnsens 60
ZTBAD +14 OE o Address of RPG Option Word (Column 11 of RPG
Control Card).
ZSEQI +15 OF e Sequence number of first Input Specification ... ..... 04, 10
ZSEQC +16 10 e Sequence number of first Calculation Specification. . .. 06, 17
ZSEQO +17 11 e Sequence number of first Output Specification....... 08, 17
ZSEQL +18 12 e Sequence number of last Output Specification .. ... .. 04
e Statement Sequence number........... e e eee 02, 06, 08
ZPHCL +19 13 o Address of Get Next Phase Routine (CALPH) ... .. RN 02, 04, 06, 10,
12, 16, 17, 19,
22, 24, 26, 28,
32, 34, 36, 38,
40, 42, 44, 46,
52, 54, 58
ZCALS +20 14 e Literal Usage Switch .. .. ... .. cvvi i 14
e IndicatorWord ... ...... i NN 06, 08
o Calswitch............ et 04, 12
e Contains Switches set by RG06 and RG08.
ZBLIN +21 15 e Compression block number of first Input Specification . . 04, 10, 34, 36,
38, 40, 42
ZBLCA +22 16 o Compression block number of first Calculation
Specification « v v vt vttt il i i e e 06, 14, 44, 46
Table 3. Communications Area (COMAREA (Part 2 of 6)

Control Blocks

and Tables

61



FIELD DISPLACEMENT CONTENTS USED BY

Dec. Hex. Phases
ZBLOT +23 17 e Compression block number of first Output Specification . 08, 14, 52, 54

(The term "block " usually refers to a buffer which has been written on a disk. Block T, which always remains in
core, is the exception.)

ZIPTR +24 18 e Address of first Input Resulting Indicator . . ..o v v v vt 10
ZLST +25 19 o Address of last indicator.
ZNOIN +26 1A o Number of Input indicators . ..o vvevevivennsss 10, 58
ZINAD +27 1B e Address of First Input Specification in a Compression 04, 10, 36, 38,
block v vviiiii i i i it ittt et e s ser e 40, 42
ZCALA +28 1C e Address of first Calculation Specification . .. ....... 06, 14, 17, 44,
46
ZOUTA +29 1D e Address of first Qutput Specification in a Compression
BIOCK « v v vt e e 08, 14, 17, 52,
54,
ZBLOC +30 1E e Number of current compression block. . . . . ... ... 04, 06, 08, 10,

12, 14, 17, 36,
38, 42, 44, 46,

52, 54
ZLSTB +31 1F e Number of Last compression block.
ZMILN +32 20 e Lengthof M1 . ... ... ... .... e et et 16, 40, 42
ZM2LN +33 21 o lengthof M2 ... ... ittt e 16
ZM3LN +34 22 e Llengthof M3 .. ... ittt 16
ZMALN +35 23 o lengthof MA ... ........ 16
ZM5LN +36 24 o Lengthof M5 ... ... 0., i e et 16
ZMé6LN +37 25 o lengthof M6...... he e e e Gt e e e 16
ZM7LN +38 26 o lengthof M7 .. ... ettt e 16
ZM8LN +39 27 o Llengthof M8 ... ......iovvivenn. N 16, 54, 58
ZM9LN +40 28 o lengthof M? ... it iiiiii it i 16, 54, 58
ZCILN +41 29 o LengthofCl1 ............ C et e et et et e e 16, 17

Table 3. Communications Area (COMAREA) (Part 3 of 6)

62




FIELD DISPLACEMENT CONTENTS USED BY
Dec.  Hex. Phases
ZC2LN +42 2A o Llengthof C2 .. i iiiiiniiiiinennns 16, 17
ZC3LN +43 2B o Lengthof C3 .. iiii it iiieiereneenennss . 16, 17
ZLILN +44 2C o Length of L1 (The addresses of each of the control level
indicator fields are found at address 38D HEX.) . ..... 16, 17
ZL2LN +45 2D o lengthof L2 ... ..ttt nnennrneennnnns 16, 17
ZL3LN +46 2E o Lengthof L3 .o v it ittt tnrienens . o 16, 17
ZL4LN +47 2F o Lengthof L4 ... ... et eennnnnn e e e 16, 17
Z15LN +48 30 o lengthof L5 ... vt innennennnenn 16, 17
ZL6LN +49 31 @ lengthof L6 . iv vt iiiiin e ineennnnns o 16, 17
ZL7LN +50 32 o Llengthof L7 ... .0 iiiinennan. N 16, 17
ZL8LN +51 33 o Lengthof L8 . ... v iiiiiiiinnann et 16, 17
ZL9LN +52 34 e Lengthof L9 ..... T, 16, 17, 38
ZSTR1 +53 35 e Sterling Input Option. ... ... e e 04, 36
ASTR2 +54 36 e Sterling Output Option ...... e e . 52
ZINVR +55 37 e RPG Inverted Print Option .. ... .00, - 06, 14
BEGWS +56 38 e Address of disk working storage ... .. chee e e 60
ZFLNM +57 39 o Address of Filename Table . . . ..o v v v v v v v v v v v 02, 06, 10, 22
ZALTS +58 3A e RPG Alternate Collating Sequence Option .. ....... 40
BEGOB +59 3B o Beginning of DSFprogram . . v v v v v vvn v e o s v v 00, 60
e Address of Working storage of first block of DSF code
writtenon disk « v v vttt i e ittt e e 00, 60
ZNEWH +60 3C o Location counterswitch v v iviv i, 24
o New label switch for DSFroutine « v v v v e v evveen.. 10, 40, 52
e Address of New Headingneeded . . .. ... o0t e 32
ZERCD +61 3D e Error codes for Wrap~up phase « .. i v vvvnvvennnn 00, 19
0 - Normal Compilation
1 - Working Storage Exceeded
2 - Serious Compilation Error
4 ~ Diagnostic run error
o CompletionCode +vvvvvvvnenans cet et 60
NOTES: 62-78 (DEC) The contents of this area change after RG22 is given control .
3E-4E (HEX)
Table 3. Communications Area (COMAREA) (Part 4 of 6)

Control Blocks and Tables

63



Each time a phase prior to the Error Mes-
sage Phase (RG 19, 20, 21) detects an error,
it orders the Resident phase to print the
note number identifying the error. At this
time a bit is set in the error note area,
NOTES. This area is a block of 17 words
(272 bits). Each bit in the block is a
switch associated with one of the 272 pos-
sible error notes. Bit 0 of word 0 repre-
sents note 15, Bit 15 of word 0 represents
note 0, etc., as follows:

Bits Position
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
+0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
+1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
+2 47
+3 63
+4 79
+5 95
+6 111
+7 127
Displace~-
ment from | +8 143 ERROR NOTE IDENTIFIERS INDICATORS
NOTES
+9 159
+10 | 175
+11 | 191
+12 | 207
+13 | 223
+14 | 239
+15 |} 255

Table 3. Communications Area (COMAREA) (Part 5 of 6)

64



If no bits are set, phase RG22 is loaded.
If bits are set in the NOTE area, each
bit set will be tested and appropriate
error messages printed,

Phases RG24-RG 58 use the 17 word NOTES area to save addresses, as follows:

NOTES +0 - address of Table Dump routine

NOTES +1 - address of Detail lines

NOTES +2 - address of Detail Lines Table

NOTES +3 - address of Total Lines

NOTES +4 - address of Total Lines Table

NOTES +5 - (Not Used)

NOTES +6 - address of return address for Except lines

NOTES +7 ~- address of Detail Calcs

NOTES +8 - address of Total Cales

NOTES +9 - address of Chain Routine

NOTES+10 - (Not Used)

NOTES+11 - (Not Used)

NOTES+12 - address of Record Address routine

NOTES+13 - address of Table Load routine

NOTES+14 ~ If a Record Address File, the address of the "To File" name
NOTES+15 - address of Control Field routine

NOTES+16 - address of the Low Fleld Control Block (LFDAD--used by RG40)

control returns to RG60, it contains the Disk Block Count.

COEND e This label identified the end of the COMAREA.

ZBLCT +79 x '4F' o Address of the Wrap-up routine in RG10, which is linked to from RG60; when

Table 3. Communications Area (COMAREA) (Part 6 of 6)

Control Blocks and Tables

65



66



This section contains two tables designed
as serviceability aids for maintaining or
modifying the 1130 RPG.Compiler program:
an External Reference Table and a Table
of Control Block and Table Usage.

EXTERNAL REFERENCE TABLE

This table summarizes external references
for the phases of the 1130 RPG compiler.
In this publication, an external reference
is a linkage from the calling (or linking)
phase to another common. routine, which re-
turns control to the next instruction fol-
lowing the linkage. (Note that the called
phase may have external references of its
own.) A situation in which the called
routine does not return control to the
calling phase is not considered an exter-
nal reference.

DIAGNOSTIC AIDS

The vertical entries are divided into
three categories:

1. Routines Referenced.

2. Constants and addresses defined in the
Monitor Communication area (COMMA).

3. Constants and addresses defined in the
Resident Phase Communication Area
(COMAREA) .

The vertical entries are listed alphabeti-
cally; the horizontal entries (module .and
routine names) are listed numerically.

Diagnostic Aids 67



R g [R[r]r[R R[R[R[R[R TR [R[R[R[R [R [ [R [R[R [ [R [r TR R [&
MobuLE |© clelclcle clclc|ele|c|c|c|c|c|c|cle|elele|clclclcle
0 ololofo]1 i l2l2|2l2]s 13|33 |a]alala]5 |5 |5 |6
0 2(4]6]8 o 2|ale|7lo|2alelsl2]al6]s|ol2]4]6]2|a]a]o
plcle[rlcl|r olr
k|alulp|e (R Blu
routine | [T]LlTls|T|T ElT
elrlcle|cls N[o
R [H|mlcIm|p D|s
R [caren [x X x|x|x| |x x| x I b b Do D e [ Eox I b Ix b I x| x
Olozooo [x] [x[x| [x X X
T [GETCMm X X X x| x[x|x x| x [x[x [x [x [x [x
LIOBEND X
E [PRTER |X x| x [x[x[x x| x
S RN [x x| Ix X x[x
R [PRTSP [X[xX x| x[x[x[x x[x[x[x[x X
E
F
E [putcm X x| x[x[x
? [putos X xIx| |x X x I I P I I I T Tx [ P I x
N [rDsPC [x x| x[x]x
¢ [so8sv_|[x X X
D [sExm |x X X
[ score [x
Tscrsw [x
C
¢ [sFpap_|x X
mlsimsy |x
MlceTa |x
A
SKCSW | X
SLAST [x
$NDUP | X X
$NEXQ | X X
$PBSY |
$PHSE™ |+ .
SWSDR | X X

* $PHSE is used by every phase

Table 4.

68

External Reference Table (Part 1 of 2)




MODULE

coqQ =
NvNoQ P
rOQ™
coQ=
woQ®
C-Q ™
N -
Ao
o=@ =
N—Q =™
~o—ox
NN Qo
ANQ =
oNQ =
®NQ®
Nwox
rwQ®
O*COOW
®w@ =
orQ=
N#OW
~RQ®
ohQ™
vag ™
ALIIOW
oot.nox
coq®

ROUTINE

Am-—>x 0
ITor>»N
zTN0-HC™
e K X k]
TOAmMQG
tTw»n—-H>0 v
®O-Co

BEGOB X
BEGWS X
LFDAD X
NOTES X X X X
ZACNT X XXX XXX XXX XXX XXX XXX
ZALTS X
ZBLCA X XX
ZBLCT X
ZBLIN X X XIX[X]|X
ZBLOC X X|X X
ZBLOT X
ZCALA X
ZCALS XXX X
ZCBF2 X[ X X X
ZCBUF X XX
ZERCD X X
ZFLNM X X X
ZINAD X X XXX X
ZINVR X X
ZIPTR X X
ZLST X
ZL9NL X .
ZMILN XX
ZM8LN X
ZMILN : X X
ZNEWH X X X X
ZNTCM XX X[X]|X X XXX X
ZNOIN X X
ZOUTA X X XX
ZPBUF XXX
ZRBUF
ZRDSP X X X XXX X
ZSEQC
ZSEQI
ZSEQL X
ZSEQO
ZSTR1
ZSTR2 X
ZTBAD X

XIX|[X]|X
x
x

>PmMmm>Z00

x
X
X
x
x
x
x
x
x
x
x
x
x
x

x
x
x

XX XXX
x
X

Table 4. External Reference Table (Part 2 of 2)

Diagnostic Aids 69



CONTROL BLOCK AND TABLE USAGE

This table contains a list of control
blocks and tables created by the 1130 RPG
compiler. It also names the routines that
create and modify them.

CONTROL BLOCK BUIL MODIFIED
OR TABLE BY: BY:
Filename Table (FLENM) RGO02 RG02
RG04
RG0S
RGO8
RG22
RG58
Tent Table (TENT) RG16 RG16
RG17
Input/Output Table (IOTAB) RG22 RG22
RG24
RG26
RG34
Control Level Address Table RG17 RG38
Overflow Table (SOSOF) RG22 RG54
FILET Table (ZPBUF) RG22 RG58
RG24 RG42
RG26 RG40
RG28
Communications Area This area is explained
(COMAREA) in detail in Table 3,
because it is accessed
by every phase.

Table 5. Control Blocks and Tables Created by the 1130 RPG Compiler

70



This section is composed of tables illus-
trating how information from the various
specification sheets used by RPG is put
into compressed format. By eliminating
unnecessary information such as blanks,
RPG can reduce I/0 operations, save stor-
age space, and still retain important in-
formation in main storage via compression.
The presence or absence of certain com-
pression information is indicated in the
K-word. For example, in a calculation
compression, if there is no control level
specified, bit @§ of theK-word will be off
and the position of any information follow-
ing it will be decremented by its length
(in this case 1 word).

The following compression formats are des-
cribed in this section:

® File Description
® Extension
- Record Address Files

-~ Chain Files
- Table Entries

COMPRESSION FORMATS

e Input

- Record Type
- Field Type

e Calculation
® Output-Format

- Record Type
- Field Type

In each of the compression format tables,
a character string is used to illustrate

the grouping of information in that for-
mat. The meaning of the field of informa-
tion represented by each character in the
string is then explained. The length and
location of each field within the compres-
sion is shown by entries in the "Word" and
"Bits" columns to the left of the char-
acter. References to columns identify
which column of the corresponding specifi-
cation sheet would contain the specified
entry. At the end of each compression
description, the minimum and maximum
lengths of the compression are noted by
the "Minimum” and "Maximum" entries.

Compression Formats 71



FCe<NTDBLCRPOI
Word Bits
1 0-7 F  Type of Specification (EBCDIC F)
8-15 C  Length of compressed specification (in binary)
2 0-15 o< o~ word
Bit Value Description
1 0 No E in column 17
1 E in column 17
2 0 Ascending sequence (column 18) ascending sequence is
1 Descending sequence assumed if no entry is made
3 0 No extension code
1 Extension code
4 0 ISAM add not specified
1 ISAM add specified
5 0 Not ISAM load
1 ISAM load
6 0 0 or 1 entered for bit 2, above
1 No entry for bit 2
3 0-7 (Not used)
8-15 N  Sequence Number of this File Description Specification
4 0-7 T  File Type (column 15 in EBCDIC)
8-15 D File Designation (column 16 in EBCDIC)
5 0-15 B (Not used)
6 0-15 L  Record Length (columns 24-27)
7 0-15 C Device
Hex Code Device
0002 READ 42
04 READ 01
06 PUNCH 42
08 PRINT 03
0A PRINTER
oC CONSOLE
0E DISK
8 0-15 R a) Length of RA File Field (columns 29-30)
b) Length of Key Field (columns 29-30)
c) Overflow Indicator (columns 33-34 in EBCDIC)
9 0-7 P  Mode of Processing (column 28 in EBCDIC)
8-15 0 Type of File Organization (column 32 in EBCDIC)
10-12 0-15 | For ISAM load, maximum file size, left-justified in EBCDIC (columns 47-51)
Note: Entries in words 8-12 are optional. If an optional word is required, all prior optional words (required or not) must be

included in the compression specification and unused words must be padded with a fill character. Minimum - 7 words;
maximum - 12 words.

Table 6. File Description Compression

72



RA File Entries

Table Entries

RCFT TCFOQNBELPDA=cUVWXYZ
Word | Bits Word | Bits
1 0-7 R Identification Code (EBCDIC R) 1 0-7 T Identification Code (EBCDIC T)
8-15 | C Length of Compressed Specification 8-15| C Length of Compressed Specification
(in binary) (in binary)
2 0-7 | F From Filename (Sequence Number 2 0-7 | F From Filename (Sequence Number of
of File Description Entry) File Description Entry)
8-15 | T To Filename (Sequence Number of 8-15| O To Filename (Sequence Number of
File Description Entry) File Description Entry), blank if
not specified
Note: \_N<2>rd 2:(fm,;s ﬁ:om ’rhszllen:me Table. Minimum 35 0-15 | @ Blanks, fo later confain generated
words; Maximum words. machine address
6-7 0-15| N Table name (columns 30-32)
0-15| B Number of entries per record (col-
umns 33-35)
9 0-15}| E Number of entries per table (col-
umns 36-39)
10 0-151 L Length per entry (columns 40-42)
11 0-7 P Pack indicator (column 43)
8-15 ] D Numeric indicator (column 44)
12 0-7 | A Sequence indicator (column 45)
8-15| oL Second table indicator; 00 if no
Chain File second table, FO if second table
ECNSF 13-15 | 0-15 | U Blanks; same entry as words 3-5
16-17 1 0-15 | V Table name same éntry as words é
Word | Bits and 7 (columns 49-51)
1 0-7 | E Identification Code (EBCDIC E) 18 0-15 | W Number of entries per record; same
8-15 | C Length of Compressed Specification entry as word 10 (columns 52-54)
: (in binary) 19 0-7 | X Pack Indicator; same entry as word
~ e field b Tormms 11, bits 0~7 (column 55)
2 0-15 | N C!;?'{B)ng feld number (co 8-15| Y Numeric Indicator; same as word 11,
— bits 8=15 (column 56)
- R d S the chainin
3 0-15| s i?& ) (cj?r:;:c;_g) ¢ chd ° 20 0-7 Z Sequence Indicator; same as word
12, bits 0-7 (column 57)
4 0-7 | F From Filename (Sequence number of 8-15 (Not used)
File Description Entry)
8-15| T To Filename Note: Words 13-20 are optional. Word 2 (bits 0-15)

Note: Word 3 comes from the Filename Table. Minimum
- 4 words; Maximum ~ 4 words.

Table 7. Extension Compression

comes from Filename Table. Minimum - 12 words,
when o¢. is set at 00; Maximum - 20 words, when
o¢ is set at FO.

Compression Formats 73



Record Type
|ACKFQRSPTCAVWXYZ
Word Bits
1 0-7 I ldentification Code (EBCDIC 1)
8-15 A Length of Compressed Specification (in binary)
2 0-15 ol o<~ word
Bit Value Meaning
0 0 No stacker select
1 Stacker select
1-2 00 OR type record
01 AND type record
10 Alphabetic Sequence
1n Numeric Sequence Check
3 0 Numeric Mandatory Record
1 Numeric Optional Record
4 0 Numeric 1 or more records
1 Numeric 1 only record
5 0 Filename not specified
1 Filename specified
6-7 00 No record codes
01 1 record code
10 2 record codes
1 3 record codes
8-15 (Not used)
3 0-15 F  Sequence number of File Description Specification, from Filename Table
4 0-15 Q Sequence of Input Record Type (columns 15-16)
5 0-15 R Resulting Indicator code (columns 19-20)
é 0-15 S  Stacker Select (column 42)
7 0-15 P  Location of character in record format (columns 21-24)
8 0-7 T  Type of test
Bit Value Meaning
0 1 Negative character test, otherwise positive
1 1 Character test, otherwise not
2 1 Zone test, otherwise not
3 1 Digit test, otherwise not
4-7 0
8-15 C Character in test (column 27)
9 0-15 A Location of character in record format (columns 28-31)
10 0-7 V  Type of test; same as word 8 (columns 32-33)
8-15 W Character in test (column 34)
Table 8. Input Compression (Part 1 of 3)

74




Word Bits
1 0-15 X Location of character in record format (columns 35-38)
12 0-7 Y Type of test; same as word 8 (columns 39-40)

8-15 Z Character in test (column 41)

Note: Words 6-12 are optional . Minimum - 5 words; maximum - 12 words.

Table 8.

Input Compression (Part 2 of 3)

Compression Formats

75



Field Type

DASFXPANLM/CRPIZS

Word Bits
1 0-7 D, ldentification Code (EBCDIC D)
8-15 A Length of Compressed Specification (in binary)
2 0-15 oK o<~ word
Bit Value Meaning
0 0 No CTL level specified
1 CTL level specified
1 0 No matching field specified
1 Matching field specified
2 0 No field record relation specified
1 Field record relation specified
3 0 Plus not used
1 Plus used
4 0 Minus not used
1 Minus used
5 0 Zero not used
1 Zero used
6 0 No sterling
1 Sterling
7 0 No chaining
1 Chaining
8-15 (Not used)
3 0-15 F From position in binary (columns 44-47)
4 0-15 X  Length of field in binary (columns 44-51)
5 0-7 P Packed Indicator (column 43)
8-15 A Decimal position/blank for Alpha fields (column 52)
6-8 0-15 N Field name (columns 53-58)
9 0-7 L  Control level (column 60 in EBCDIC)
8-15 M Matching value (column 62, or
C  Chaining value (column 62 in EBCDIC)
10 0-15 R Field record relation indicator {columns 63-64)
1 0-15 P Plus field indicator (columns 65~66)
12 0-15 I Minus field indicator (columns 67-68)
13 0-15 Z Zero field indicator (columns 69-70)
14-15 0-15 S  Sterling field (columns 71-74)

Note: Words 9-15 are optional. Minimum - 8 words; maximum - 15 words.

Table 8.

76

Input Compression (Part 3 of 3)




CAO(BIIlleOTRLDHSMZ
Word Bits
1 0-7 C Identification Code (EBCDIC C)
8-15 A Length of this compressed specification
2 0-15 oK o<~ word
Bit Value Meaning
0 0 No control level
1 Control level
1 0 No indicators
1 Indicators
2 0 No Factor 1
1 Factor 1
3 0 Factor 1 is a Field Name
1 Factor 1 is a literal (reserve space in Literal Compression format)
4 0 Factor 2 is a Field Name
1 Factor 2 is a literal (reserve space in Literal Compression format)
5 0 No Plus indicator
1 Plus indicator
6 0 No Minus indicator
1 Minus indicator
7 0 No Zero indicator
1 Zero indicator
8-15 (Not used)
3 0-15 B Control level
4-5 0-15 | Indicator (columns 7-8)
6-7 0-15 I] Indicator (columns 9-11)
8-9 0-15 I2 Indicator (columns 12-14)
10-15 0-15 F  Factor 1 (columns 18-24) (If Field Name, 3 words long; if literal, 6 words)
16 0-15 O Operation Code* (columns 28-32)
17-22 0-15 T  Factor 2 (columns 33-42) (If Field Name, 3 words long; if literal, 6 words)
23-25 0-15 R  Result Field
26 0-15 L  Length of field in binary format
27 0-7 D Decimal positions
8-15 H Half-adjust-=~blank if none
28 0-15 S  Plus-High indicator
29 0-15 M Minus-Low indicator
30 0-15 Zero-Equal indicator

Note: Minimum - 11 words; maximum - 30 words.,

Table 9.

Calculation Compression (Part 1 of 2)

Compression Formats

77



*Qperation Codes

CODE ENTRY (IN HEXADECIMAL)
Bits 0-7 Bits 8-15
ADD F1 FA
BEGSR FO 02
CHAIN FO 00
COMP F4 04
DIv F4 FD
ENDSR FO 03
EXCPT FO 01
EXIT F3 FE
EXSR FO 04
GOTO F3 01
LOKUP F5 01
MHHZO Fé 06
MHLZO Fé 05
MLHZO Fé 04
MLLZO Fé6 03
MOVE Fé 0l
MOVEL Fé 02
MULT F4 FC
MVR F4 03
RLABL F9 FF
SETOF F2 00
SETON F2 FO
sus F1 FB
TAG F7 01
TESTZ F5 02
Z-ADD F1 03
Z-SUB Fl 04
Table 9. Calculation Compression (Part 2 of 2)

78



OAO_LNFSBADK‘IIIl2

1 0-7 O Identification Code (EBCDIC O)
8-15 A Length of this compressed specification
2 0-15 o o<~ word
ﬂ Valve Meaning
1 0 No heading or detail line
1 Heading or detail line
2 0 No except lines
1 Except lines
3 0 No total lines
1 Total lines :
4 0 No conditioned overflow
1 Conditioned overflow
5-6 00 Filename present
o1 OR type*
10 AND type**
7-8 00 No resulting indicators
(1]} 1 resulting indicator
10 2 resulting indicators
n 3 resulting indicators
9 0 No space
1 Space
10 0 No skip before
1 Skip before
n 0 No skip after
1 Skip after
12-15 (qu vsed)
3 0-15 N Intemal Sequence Number (in binary)
4 0-7 F  Sequence number from File Description Specifications
8-15 S  Stacker Select (blank, 1, or 2)
5 0-7 B Space Before i
8-15 A Space After
] _0-15 D Skip Before
7 ' 0-15 K Skip After
8-9 0-15 I Resulting Indicator
10-11 0-15 h Resulting Indicator
12-13 0-15 Iz Resulting Indicator

Note: Words 5413 are optiona

Table 10.

I. Minimum - 4 words; maximum - 13 words.

Output-Format Compression (Part 1 of 4)

Compression Formats

79



*OR Type

OA«M.NSBADKII]I2

Note that F is omitted

Minimum - 3 words
Maximum = 12 words

**AND Type

(0):%""4 Nll.l |2
Minimum - 3 words
Maximum - 9 words

Table 10. Output-Format Compression (Part 2 of 4)

80



Field Type
MAOCTEFII]I2SNCLXYZBP
Word Bits
1 0-7 M  Identification Code (EBCDIC M)
8-15 A Length of this compressed specification (in binary)
2 0-15 o< ot~ word
Bit Value Meaning
0-1 00 No output indicator
01 1 output indicator
10 2 output indicators
11 3 output indicators
2 0 No field name
1 Field name
3 0 Constant
1 Edit word
4 0 No special edit code
1 Special edit code
5 0 No blank after printing
1 Blank after printing
6 0 No packed output
1 Packed output
7 0 No sterling
1 Sterling
8 0 Not PAGE field
1 PAGE field
9-15 (Not used)
3 0-15 T  Internal sequence number
4 0-15 E  Rightmost position of field (in binary)
5-7 0-15 F  Field name
8-9 T 01577 1 Output Indicator
10-11 0-15 l-I Output Indicator
12-13 0-15 ' l,  Output Indicator
14-15 S Space allowed for literals and edit words; used by later phases
16 0-15 N Length of literal or edit word
17 0-15 C Fill character, if edit word
18-29 0-15 L Literal* or edit word
30 0-7 X Length of edit word (X word) (in binary)
8-15 Y Description of edit word

Table .10. Output-Format Compression (Part 3 of 4)

Compression Formats



Word Bits
Bit Value  Meaning
8 0 No asterisk protection or zero suppression in edit word
1 Asterisk protection or zero suppression in edit word
9-11 (Not used)
12 0 No fixed $
1 Fixed $
13 0 No floating $
1 Floating $
14 0 No minus sign
1 Minus sign
15 0 No CR symbol
1 CR
31 0-7 Z If 0, no CR or Minus sign, otherwise displacement to CR/Minus sign
8-15 B Number of blanks in edit word
32-33 0-15 P Sterling sign position

Note: Minimum « 4 words; maximum = 33 words.

*Literal Format

LDBA
Word Bits
18 0-15 L Length of literal in binary (if negative, bit O set to 1; if positive, bit 0 set to 0)
19 0-15 D Decimal length of literal; if alphameric, leave blank
20-21 0-15 B Blanks
22-29 0-15 A Literal, if alphameric

Note: Minimum-Maximum - 12 words.

Table 10.

82

Output~Format Compression (Part 4 of 4)




This section describes the main routines
of the RPG object program (those functions
that are typical of every RPG object pro-
gram) .

The description begins with a generalized
flowchart and narrative section, which
illustrates the cycle of operations within
the object program.

Next, the tables and work areas'that con-
tain information directly related to the
flow of the object program are examined.
This is followed by a description of each
of the object program routines. Actual
code from the program listings is used

in many places, to clearly describe the.
functions of particular routines.

A core storage allocation map is presented
to show the locations of the object pro-
gram routines during execution of the pro-
gram. To aid in understanding these sepa-
rate routines and their relationships to

PART TWO: 1130 RPG OBJECT PROGRAM

each other, a trace of an object program
is presented next.

Certain functions of the RPG object pro-
gram, e.g., processing with an RA file,

or processing by Cl, C2, or C3 type chain-
ing, need more than a cursory explanation.
These functions are described following
the sample object program trace.

The next section, Library Subroutines,

describes each of the subroutines that may
be called by an RPG object program. In
each case, the narrative is accompanied by
a flowchart which illustrates the logic of
the routine.

The last section contains a core storage
dump of an RPG object program and instruc-
tions which enable the reader to find
where the RPG indicators, fields, literals,
key routines, etc., are located.

Part Two: 1130 RPG Object Program 83



kR T ERRRRER R
*x
* START *
* *
RERREEERRERKEE

FokokokkB 1 ddkkkk Kok ¥ kK
* *

* *
*INITIALIZATION *
* *

* *
Aok kKRR Rk KRRk

Ee il

B3
kK

—_—

Kok B3Rk Erokkokk Rk
*PROCESS TOTAL *
RECORDS .

* o H
* % x

Rk kR ok kkk Rk
2 12 L 13
*axHRC kR Rk kdOk c3 *.
b * o . SRRECY FRFRAEEEEE
* * . . YES * TERMINATE THE *
* LOAD TABLES * *, IS LR OF _.* >* ~PROGRAN *
* * Tx, S B e s T T L ]
Aok kR Rk KR ERk « ¥
* NO
< l
. 14 ., 15
HkkD TRk Rk hkk Rk D3 *, oAk DS KA KRR
ke Hkk]) 2 * ARk ok kK ok
PROCESS_HEADING* * TERMINATE * ¥ HAS *., YES * PROCESS *
AND DETAIL * PROGRAN * *, OVERFLOW ¥ > OVERFLOW
* 0 *,0CCURRED . * RECORDS *
ok ok ook 36 ok kR R ok *, ¥
Aok kKRR Rk Rokckkkok X, ¥ Aok Rk ook R Rk ok Rk
* NO
| <
i
4 ¥, 5 ¥ 16
E1 *, B2 * Faokokok E J Rorkkok ok kokE
ok «% WHAT *, * *
¥ . YES +* QPERATOR - * B DATRA *
*. H1-H9 ON - .*————D>%, ACTIOK IS  .* * FIELDS FROM *
*, - * TAKEN 7 _.* * T AREA *
*, X *, o ¥ * *
*, ¥ *, . ¥ AokokkokdokoR R Rk AOKROK R CHAIVNING ROUTINE
* NO * CONT -
*HRE
* *
l * F3 #->
< * *
7 kokEk v
1 oK.
6 SRR F ARk Rk ERP 2%AR KRk F3 *, A KPRk ok ko Rk R AR S AR KRR R Rokk
* L * . *
ZH.H}(TEOFPUT * EQF #SET ON LR AND* .* CHAINING *. YES * GET CHAINED * * DETERMINE *
ECORD —=-=—-—- > *L05,H) 0>GH 19 * * FIELDS * >, FILE RECORD >% RECORD TYPE b
* * Tx, e * *
ek Yok AR KR R KA kR kAR x, k% FTIII I e E s r T T e T TIITIT TS TR T
* NO
Hokokd
L * *
8 18 * P3 *
HREKRG 1 REEERERREK EET LR R ES L2 L 2SS * *
* * * * Ei L2l
* DETERMINE  * *PREFORM DETAIL *
* RECORD TYPE  * * CALCULATIONS *
* * * *
* * * *
e ko kok ek ok Rk kR R K ERE LR LR L LS
9
EEEE LS REL I L]
* *
*#CHECK_FOR LEVEL*
* BREAK *
* *
* *
* Aok ¥Rk tokkkkkkkokkok
<
10

Jokokok ¥ J P okkk Rk xR KE
* *

* PERFORM TOQTAL *
:CALCULATIONS :

* *
ke ok ok K o Rk kK kR Rk ok

Chart GA.

84

RPG Object Program (Simple Flow)



THE RPG OBJECT PROGRAM CYCLE

Each program generated by RPG uses the
same general logic, and for each record to
be processed, the program goes through the
same general cycle of operations. To il-
lustrate this concept, a generalized flow-
chart of an RPG object program is shown in
Chart GA.

The following numbers correspond to the
numbers on Figure 1. A program cycle be-
gins with item 3 and continues through
item 18.

1. Initialization (opening files, etc.)
is performed.

2, Tables, if any are present, are loaded
into core storage.

3. Before the first record is read, the
program prepares and writes any heading
information to be put out on the first
page. After the first record has been
read, the program prepares and writes
heading and detail records which are
not conditioned on overflow.

4§5. The halt indicators are tested. If
any are on, the operator is notified
and he may terminate or continue the
job.

6. An input record is read into core stor-
age. .

7. If end-of-file occurs, the last recor
indicator (LR) is set on and all con-
trol-level indicators (L1-L9) are set
on. The program branches to step 10.

8. Starting with line 1 of the Input
Specifications sheets, and with the
record just read, the program uses the
record identification code to identify
the record. When the identification
code matches an entry on the Input
Specifications sheet, the program turns
on the resulting indicator that has
been specified for the record.

9. If a control-field break has occurred,
all appropriate control-level indicat-
ors are turned on.

10. Next, all total calculations are per-
formed. ]

11. All total output records which are not
conditioned on overflow are prepared
and put out.

12.813. The program tests for the last re-
cord indicator (LR). If it is on, the
program is terminated.

14.&15. The program tests for an overflow
condition. If overflow has occurred,
total lines, heading lines, and detail
lines (in that order) conditioned by
overflow are printed.

16.&17. Data fields are extracted from the
input record I/O area and moved into
the assigned field areas. If any field
is designated as a Cl, C2, or C3 chain-
ing field, the internal Cl, C2, or C3

indicator is turned on and the chain-
ing routine is given control. This
routine retrieves the chained record.
18. Any detail calculations are performed
and processing continues with item 3.

TABLES AND WORK AREAS

Before beginning a discussion of the ob-
ject program routines, it may be helpful
if certain object program tables and work
areas are explained. The tables contain
information which is directly related to
the flow of the object program and will be
examined in detail.

Function Address Table (FAT)

This 28 word table is generated for every
RPG object program and contains the ad-
dresses of various RPG routines (Table 11).
These addresses are compiled relative to
location 0 and are relocated by the Core
Load Builder.

File Input Tables (FITs)

These tables, one for each input file, are
generated by RG42. Each table consists of
four words of information for each record
type within that file, plus a two word
dummy entry at the end of the table. The
four word entry contains identifying in-
formation associated with the record type
that caused it to be generated and the

two word dummy entry contains the address
of the error routine (first word) for
undetermined record types and asterisks
(last word) to signify the end of the
table.

Each record type would cause the following
entry to be built (dummy entry is excluded)

Word: 1 2 3 4

Address of: INPR MFEXT CLEV INPF

Wordl: This word contains the address of
the INPR routine for the associated record
type. The INPR routine performs a test on
the characters of the input record to de-
termine that the record is of the record
type associated with this table entry. One
INPR routine is generated for each input
recoxd type.

Word2: This word contains the address of
the matching fields extraction routine
(MFEXT) for this record type. MFEXT ex-
tracts the matching fields and holds them
for comparisons and further processing.

Part Two: 1130 RPG Object Program 85



Word | Label Contents
1 ADSRT | Starting address of the RPG object
program.
2 TABOT | Address of the Table Output routine.
3 HDAD Address of Heading and Detail lines
routine.
4 HDTAB | Address of Heading and Detail lines
table (DTAB).
5 TAD Address of Total lines routine.
6 TTAB Address of Total lines table (TOTAB).
7 DCALC | Address of Detail Calculations.
8 TCALC | Address of Total Calculations.
9 CHANT1 | Address of Chaining routine (for C1,
C2, C3)
10 Not used.
n Not used.
12 Not used.
13 RAFAD | Address of Record Address File
routine.
14 Not used.
15 Not used.
16 TABLD | Address of Table Load routine.
17 CTLFD | Address of Control Field Compare
routine.
18 LOWFD | Address of Low Field.
19 CHSAV | Save area for Chaining routine
address.
20 EAD Address of EXCPT lines routine.
21 RTE Return address in calculations after
EXCPT lines are executed.
22 ETAB Address of EXCPT lines table
(EXTAB).
23 ENDAD | Address of Close Files routine.
24 Not used.
25 Not used.
26 Not used,
27 ,Nofuwd.‘
28 Not used.
Table 1l. Contents of the Function Address

86

Table

Word3: This word contains the address of
The control-level extraction routine (CLEV)
for this record type if this record type
has control-level fields specified. This
routine extracts control-level fields from

the I/0 area and moves them to the control-
level hold area so that they may be tested

‘for a control-level break.

If the associated record type has no con-
trol levels, word3 contains the address
of TCLNK, an entry point to the Fixed
Driver (see Fixed Driver for further in-
formation).

Word4: This word contains the address of
the move input fields routine (INPF) for
this record type.

To illustrate the File Input Table, assume
the Input Specifications of a source pro-
gram to be as follows:



Form X21-8094

Busines Machi

Printed in U.S.A,

The resulting File Input Table for record
types 01 and 02 would contain the follow-
ing:

Word1 Word2 Word3 Word4

Entryl | Address of | Address of | Address of | Address of

INPR rou= | MFEXT CLEV rou~| INPF rou-

tine for 01| routine for| tine for 01| tine for 01

record 01 record | record record

type type type type
Entry2 | Address of | Address of | Address of | Address of

INPR rou- | MFEXT TCLNK in | INPF rou~

tine for 02 | routine for | the Fixed | tine for 02

record 02 record | Driver record

type type type
Dummy | Address of | /5C5C

error rou-

tine for

undeter-

mined

record

type

Entrxyl: These four words contain informa-
tion associated with the record type iden-
tified by resulting indicator 01.

Wordl contains the address of the routine
that tests the first position of an input
record to see if it is an A (column 27).

RPG INPUT SPECIFICATIONS
12 76 76 77 78 79 80
Oate —_— Program
Punchi Graphic Page P 1 .
Program |I'|l(ﬂlc'1?0ﬂ Pun:h
§ Record Identification Codes Fleld Location Field
k] ) 2 & 5 Indicators
£ ; H i el
Line Filename Z _ g § g Field Name | & i % b 2w gwl ing
E 21 2 | ostion || |&] postion | positon || [BI2[E] From To 3 P § Plus ;| oo
s B | el T el b [T
i &l & 2 3 5 g 8 @
3 4 56|77 8 9 1011 12 93 14118 1617|1819 20 |21 22 23 24|25]26{27}28 29 30 31 “39373‘“40"‘743““48474849505'525354555657585“006‘6263“85”07“”707\72737’
T T TR N T 1A | Wiel [ [ Tal e }{‘
o|2|g|1 1 [FILDIL) | Ll |1
Tl L] | 2 IFLD2) NERNAN [
olepflt P 1 CF‘ A aREN )
o[slgs 8 | [15] [FlLD[3] | | HHHTH
alal T+ 1 T { 1

Word2 points to the matching fields ex-
traction routine for this record type.
Since there are no fields designated by
M1-M9 indicators, this routine will con-
sist only of a branch instruction to con-
tinue processing.

Word3 points to the control-level extrac-
tion routine that will move FLDl1 from the
I/0 area to the control-level hold area.

Word
that
area
ing.

4 contains the address of the routine
will move FLD1 and FLD2 from the I/0
to the field areas used for process-

Entry2: These four words contain informa-
tion similar to Entryl, but applicable to
the record type associated with resulting
indicator 02. Note that word3 for this
record type contains the address of TCLNK
because no control-level fields are speci-
fied.

Dummy: This two-word entry contains the
address of the error routine (wordl) for
undetermined record types and always fol-
lows the last record type entry in the
table. Word2 consists of asterisks sig-
nifying the end of this table.

Output Tables

The output tables used by the object pro-
gram are generated by RG54. A maximum of

four tables will be generated; one (DTAB)
for heading and detail lines, one (TOTAB)
for total lines, one (OTAB) for overflow
lines, and one (EXTAB) for EXCPT lines.

Part Two: 1130 RPG Object Program 87



DTAB

This table consists of one table entry for
each heading and/or detail line specified
on the Output-Format Specifications sheet.
Each table entry consists of three words.

Wordl: This word contains the address of
the test output indicators routine. This
routine tests the status of the indicators
which condition the output line associated
with this entry.

Word2: This word contains the address of
the move output fields routine for this
output line. This routine moves fields to
be put out from the assigned fields area
to the output buffer.

Word3: This word contains the address of
the Input/Output Driver (IOD) routine asso-
ciated with the file of which this line
will be put out.

Note: Further information on IODs is con-
tained under Object Time Routines.

The last entry in DTAB is a dummy three-
word entry. The first word of this entry
contains the address of the heading and
detail lines wrap-up routine; a routine
that sets up linkage to get the next re-
cord. Words 2 and 3 are not used.

TOTAB

This table consists of one table entry for
each total line specified in the Output-
Format Specifications sheet. Each table
entry consists of three words containing
the same information as the DTAB table en-
tries. A dummy three-word entry is the
last entry in TOTAB. Wordl of the dummy
entry contains the address of the total
lines wrap-up routine (a test for the oc-
currence of overflow).

OTAB

This table consists of one table entry for
each total overflow line followed by one
table entry for each detail overflow line.
Each table entry consists of three words
containing the same information as DTAB
and TOTAB table entries. Again, the last
table entry in OTAB is a three-word dummy
entry. Wordl of this dummy entry contains
the address of the overflow lines wrap-up
routine (provides linkage to move fields
from the I/0 area to the fields area).

88

EXTAB

This table consists of one table entry for
each EXCPT line specified on the Output-
Format Specifications sheet. Each table
entry consists of three words containing
the same information as the DTAB, TOTAB,
and OTAB table entries. Again, the last
table entry in EXTAB is a three-word dum-
my entry. Wordl of this dummy entry con-
tains the address of the EXCPT lines wrap-
up routine (obtains return address and
branches to calculations).

To illustrate these tables, the following
diagrams contain one entry each.

DTAB
Word1 Word2 Word 3

Heading or Address of Address of Address of
Detail Line | the Test the Move the Input/
entry Output In- Output Output

dicators Fields rou- | Driver

routine tine (10D)
Dummy Address of Not used Not used
entry B0020 in the

Central Out-

put Driver

(COD)
TOTAB

Word1 Word2 Word3

Total Line Address of Address of Address of
entry the Test the Move the Input/

Output In- Output Output

dicators Fields rou- | Driver

routine tine (I0OD)
Dummy Address of Not used Not used
entry B0025 in the

Central Out-

put Driver

(COD)




OTAB

Total or
Detail
Overflow
Line entry

Dummy
entry

EXTAB

EXCPT Line
entry

Dummy
entry

Word1 Word2 Word3
Address of Address of Address of
the Test the Move the Input/
Output In- Output Output
dicators Fields rou= | . Driver
routine tine (10D)
Address of Not used Not used
BO030 in the
Central Out-
put Driver
(COD)

Word1 Word2 Word3
Address of Address of Address of
the Test the Move the Input/
Output In- Output Ovutput
dicators Fields Driver
routine routine (10D)
Address of Not used Not used
BOO33 in the
Central Out-
put

Low Field, PS, and Processing Blocks

The Low Field four-word control block is
generated in every object program and is
modified throughout the execution of that

object program.

Each time a primary or

secondary record is selected for process-
ing, Low Field is filled with the follow-
ing information about that record:

Word1 Word2 Word3 Word4
Low Address of | Address of | Address of | Address of
Field | the GET the CLEV | the INPF | the resul-
routine routine routine ting indi=-
cator

Wordl: When a primary or secondary record
is selected for processing, the address
of the GET routine for the file that con-
tained that record is placed in the first
word of Low Field. This address will be
used on the next cycle of the object pro-
gram at get next record time.

Word2: After a record has been selected

for processing, the address of the control-
level extraction routine for that record
type is entered in Word2 of Low Field.

Word3: This word contains the addresg of
the move input fields routine for the asso-
ciated record type.

Word4: This word contains the address of
the resulting indicator associated with
this record type.

When matching fields are specified in the
RPG source program, Low Field may be ex-
tended to include two hold areas to aid

in processing the matching fields. Low
Field plus the first hold area now becomes
the Low Field Block, and the second hold
area is named the PS hold area which con-
tains the previous primary record.

. N
K Low Field Block .

Word1} Word2 | Word3 | Word4 Hold Area

PS Hold Area

If no secondary files are present in the
program and the primary file contains no
M1-M9 fields, only Low Field will be gen-
erated. If no secondary files are present
but the primary file does contain M1-M9
fields, the Low Field Block and the PS
hold area are generated.

If both primary and secondary files are
present, the Low Field Block and the PS
hold area are joined by a Processing Block
for each file. These Processing Blocks
are generated as follows:

Part Two: 1130 RPG Object Program 89



Low Field Block

<+——— hold areq —»

fp———— hold CArQQ) s

<~—— hold areq ——

st hold areq =————

PS hold area e holdl
Primary Processing Block (PPB) Word1

First Secondary Processing Block (S1PB) Word]

(S2pPB) Word1

(SnPB)

Wordl of each Processing Block contains

the address of the GET routine for the
associated file. Words 2-4 are dynamically
filled with the information described for
Words 2-4 of Low Field. Further informa-
tion on the functions of Low Field, PS,

and the Processing Blocks is contained in
the Processing Multiple Input Files sec-
tion of this publication. )

Control Level Hold Areas

When fields are specified with control-
level indicators in the RPG source pro-
gram, two contiguous hold areas are gen-
erated. These hold areas are named Old
Hold and New Hold. Each of them is pre-
ceded by an attribute (A) word containing
the length of the particular hold area.
These hold areas appear as follows:

A Hold area length= | A Hold area length =
Word | sum of L1-L9 lengths.|{Word | sum of L1-L? lengths.

T 7 \ )

CNJﬁOH Nm)how

Further discussion of the use of these hold
areas by the control-level compare and ex-
traction routines may be found under Con-
trol Level Processing.

Pseudo Registers

The first 16 words of the RPG object pro-
gram are set aside for use as pseudo regis-
ters. They are used by many of the object
time routines for passing addresses and
other information. These registers serve
the following functions:

90 -

Pseudo registers 0-1 - volatile

Pseudo register 2 - contains the ad-
dress of the I/0
buffer for the re-
cord being pro-

cessed.

Pseudo registers 3~7 - volatile

Pseudo register 8 - contains parameters
during the GET
function.

Pseudo registers 9-13 - volatile

Pseudo register 14 - used to pass return
addresses.

Pseudo register 15 - contains the ad-

dress of the IOD
being used.

OBJECT TIME ROUTINES

Since the object time tables and work
areas have now been examined, a detailed
description of the executable object pro-

gram routines may now be presented.

Input/Output Drivers (IODs)

One IOD is generated for every file speci-
fied in the RPG source program. This IOD
is a routine which provides linkage to a
library subroutine that will perform the
actual input or output operation for the
file,

There are six card and printer IODs; they
will precede disk IODs in the generated
object program.

Called

by IOD Device

PRNT3 IBM 1403 Printer

PRNT1 IBM 1132 Printer

WRTYQ Console Printer

PNCHO IBM 1442-5 Card Punch
CARDO IBM 1442 Card Read Punch
READO IBM 2501 Card Reader



The logic of these IODs varies from device
to device, but the card and printer IODs
do have the first five words in common,

and they contain the following information:

Wordl address of the Write entry point.
Word2 address of the Read entry point.
Word3 - address of the Control entry point.
Word4 - address of the IZO area.

Word5 - address of the Wait entry point.

If any of these addresses do not apply to
a particular IOD (e.g., Word2 does not
apply to a printer), the word will contain
zeroes before being relocated by the Core
Load Builder at load time.

As previously mentioned, disk IODs are
generated immediately following the card
and printer IODs. They provide linkage to
library subroutines that perform actual
I/0 operations for disk files. The 1li~
brary subroutines which may be called by
disk IODs are:

Type of File Su?\ll'z;feme Function
l. Sequential DAOPN | Open the file
Files Pro= DAIO Read-write operations
cessed Ran= DACLS | Close the file
domly
Il. Sequential SEQOP | Open the file
Files Pro= SEQIO | Read-write operations
cessed Se~ SEQCL | Close the file
quentially
111, Indexed-
Sequential
Files
A. Load ISLDO Open the file
ISLD Load records
ISLDC Close the file
B. Add ISADO | Open the file
1SAD Add records
ISADC Close the file
C. Sequential | ISEQO | Open the file
(Input or ISEQ Read-write operations
Output) ISEQC Close the file
D. Random ISRDO | Open the file
ISRD Retrieve or update
ISRDC Close the file

Again, the logic of the disk IODs varies
from one type of processing to another,

but the first six words of any disk IOD

contain the following information:

Wordl - address of the PUT entry to the

I0D.

Word2 - address of the GET entry to the
I0D.

Word3 - address of the OPEN entry to the
I0D.

Word4 - address of the I/0 area.

Word5 - address of the WAIT entry to the
I0D.

Wordé - address of the CLOSE entry to the
IOD. )

Also, if any of these words do not apply
to a particular IOD, the word will con-
tain zeroes before being relocated by the
Core Load Builder at load time.

Fixed Driver (Overhead)

The fixed driver routine functions as the
main linkage driver for every RPG object
program. It is always the same length and
performs the same functions. Since this
section of the object code does not lend
itself to flowcharting, the actual code is
shown here (Figure 13). Following the
code, the functions of the more important
labels (circled) will be examined in de-

‘tail.

Part Two: 1130 RPG Object Program 91



073E 0 0000
073F 0 0000
0740 0 0000
0741 C 0000
0742 0 0000
0743 0 0000
0744 0 0000
0745 C 0000
0746 G0 0000
0747 0 0000
0748 0 0000
0749 G 0000
074A 0 (€000
074B 0 0000
074C C 0000
074C C 0000
N074E 00 4C0000CO
0750 C 0000
0751 0 0000
0752 C 0©CO00
0753 0 0000
0754 ¢ 0000
0755 ¢ 0000
0756 0 0000
0757 0 0000
0758 0 0000
0759 0 0000
075A 0 0000
0758 0 00600
075C 0 0000
075D 0 0000
075 0 0000
075F G 0000
0760 0 0000
0761 0 0000
0762 0 0000
0763 0 0000
Q764 0 0000
0765 C 0000
0766 C 0000
0767 0005
076C 00 7401000C
076E 00 7403000C
0770 00 C480000C
0772 0 ©oOCC
0773 00 4C802002
0775 0

0775 00 65800010
0777 0 cCooOC
0778 0 D101
0779 00 C4000128
0778 00 4CA00010
0770 0 COO7
077E O D107
DO77F 30 191C5659
0781 0 1111
0782 00 4C0C0049
0784 G 0000
0785 0 7009
Figure 13,

92

0162
0163
0l64
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
C178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
c193
0194
0165
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226

%%k
ok RPG
%k
FAe
RO DC
R1 DC
R2 DC
R3 DC
R4 DC
RS DC
R6 DC
R7 DC
R8 DC
RO DC
R10 DC
R11  OC
R12 DOC
R13 DC
R14 OC
R15  OC
k3 Ak e
CNTRL BSC
ool sk e
ADSRT DC
TABOT DC
HDAD DC
HDTAB DC
TAD OC
TTAB DC
DCALC OC
TCALC OC
CHAN1 DC
CHAN2 DC
CHAN3 DC
STERI DC
RAFAD DC
STERO OC
RAFIO DC
TABLD DC
CTLFD DC
LOWFD DC
CHSAV DC
EAD  OC
RTE  DC
ETAB DC
ENDAD DC
BSS
(NP SE) MDM
(ALPSE) MDM
TSTRC LD
STO
B
LDX
LD
STo
LD
BNZ
LD
STO
CALL
DC
B
X0000 DC
X7009 DC

NBJECT TIME COMMUNICATICN REGION

-3

i 3%
[ T I
¥* 3 ¥

-}%********
[ I |
% 3% 3 3¢ 3 3 3¢ 3¢

**"X'*
36 3¢ 3 3t

#*
]
3

1 [ |
36 3F 3% 3% 3 36 3F 3 3 b 36 5F 3 3 3¢

6 36 3 3F 3% 6 % 3 3 S 3 St
|

3
P

|
s
3

‘X-**v;%**
|
3*

v
3 3 3 3¢ 5 3¢

13 3¢
i

PSEUDO REGISTER
PSEUDO REGISTER
PSEUDO REGISTER
PSEUDO REGISTER
PSEUDO REGISTER
PSEUDC REGISTER
PSEUDO REGISTER
PSEUDO REGISTER
PSEUDO REGISTER
PSEUDC REGISTER
PSEUDO REGISTER 10
PSEUDO REGISTER 11
PSEUDO REGISTER 12
PSEUDC REGISTER 13
PSEUDO REGISTER 14
PSEUDO REGISTER 15

DO ~NOCNPWN—O

CONTROL PASSER

Y5801620
Y¥5801630
¥5801640
Y5801650
Y5801660
Y5801670
Y5801680
Y5801690
Y5801700
Y5801710
Y5801720
Y5801730
Y5801740
Y5801750
Y58C01760
Y5801770
Y58C1780
Y5801790
¥5801800
¥Y5801810
Y5801820
¥5801830
Y5801840

STARTING ADDRESS OF OBJECT PY5801850

ADDR OF TABLE QUTPUT ROUT

Y58G1860

HEADING AND DETAIL LINE ADDRYS5801870
HEADING AND DETAIL LINE TABLYS5801880

TOTAL LINE ACCR

TOTAL LINE TABLE

DETAIL CALC ADDR

TOTAL CALC ACDR

ADDR OF CHAIN ROUT 1
ADDR OF CHAIN ROUT 2
ADDR CF CHAIN ROUT 3
ADDR OF STERLING INPUT
ADDR OF RAF FILE ROUR
ADCR 'OF STERLING OUTPUT

1/0 ADDR GOF TGO FILE FOR RAF

ADDR CF TABLE LOAD ROUTINE
ADDR OF CONTROL FIELD ROUT
ADDR CF LOWFIELD

BACKUP FOR CHAIN1 ROUT ADDR

EXCPT LINE ACDR

Y58C1890
Y5801900
Y58C1910
Y58C1920
¥Y5801930
Y5801940
Y5801950
Y5801960
Y5801970
Y5801980
Y58C1990
¥5802000
Y5802010
Y5802020
¥5802030
Y5802040

RETURN ADDR AFTER EXCPT LINEYS5802050

EXCPT LINE TABLE
ADDR CF CLCSE FILES
FOR FUTURE EXPANSION

R11-AF,0ONEE BUMP R1l BY 1
R11-AF,THREE BUMP R11 BY 3

R11-AF
R1

R1-AF

sk

R15-AF
X0C0C
ONEE
ACCST-AF
R15-AF
X7009
SEVEN
RGERR
/1111
GETRC-AF
/0000
/7009

GET FIRST WD OF FILE TAB
SAVE 1IN R1

GO TO ADDR IN R1

PUT RCD CUT OF SEQUENCE
SET XR1 TO R15

GET A O

SET SWITCH IN NUM SEQ RTN
SEE IF R15+1 WAS /FO

YES TA ADDR IN R15

BRANCH TC =*+9

SET SWITCH IN NUM SEQ RT
GET CRJECT TIME ERROR ROUT
NOTE C111

GO READ A RECCRD

THESE TWO DC'S SET SWITCH
IN THE NUM SEQ RTN

Object Code for the Fixed Driver Routine (Part 1 of 4)

Y5802060
Y5802070
Y5802080
Y5802090
Y5802100
Y5802110
¥Y5802120
¥5802130
Y5802140
Y5802150
Y5802160
¥Y5802170
Y5802180
¥Y5802190
¥5802200
¥5802210
Y5802220
Y5802230
¥Y58C2240
Y5802250
Y5802260



1130 RPG RG58

ADCR

0786
0786
o788
078A
078C
0780
078E
078F
0791
0792

0794

0795

0765

0797
0798
0799
0794A
0798
079C
079E
079F
07A0
07A1
07A3
07A4
07A5
0 7A7
07A9S
07AA
07AB
07AC
N7AD

O7AE.

0780
0781
0783
0785
0787
o788
078RA
o7es
078C
C7BF
07Co0

07C2.

07C4
07Cs5
07CT
07C9o
07CA
n7CC
o7Ce
C7CF

Figure 13.  Object Code for the Fixed

REL OBJECT

00 C400015F
CO 4C2000F4
00 65000160
0 coic
0 DOlC
0 €100
00 4C2000C4
0 7101

00 T4FF006D

C T70F9

(o]
o

65000154

€013
D013
1010
D100
7101
0 74FFO06F
70F8
cocl
DOA7
0 C4800008
DOA2
€008
D4000155
4800009
0009
0000
0000
0000
0001
0 C400015F
90FC
00 4C180103
00 65800024
00 6D000002

OOOOOOﬁgo [oNeoNoNoRoNaloRoNoRoRoRe ]
(@]

60 Cl02
00 D4000COS
0 C1l00

C0 D4000003
00 €5800003
0 C106

00 D4000003
00 65800003
0 C1l03

00 D4000003
0C C400014F

0 180F
00 D4000150
0 1810

00.0400014F.

0 . 70D7

ASSEMBLE FIXED DRIVER PAGE 6

ST.NO.

0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
C256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269

SOURCE DATE-02/25/69

LABEL OPCD FT OPERANDS 1D/SEQND
GETRO) EQU * Y5802270
HC LD L H1-1-AF  GET LR INDICATOR Y5802280
BNZ EOJRO-AF IF ON GO TO EOJ Y5802290
LDX L1 H1-AF POINT TO START OF HALT IND Y5802300
LD NHIND HOW MANY ARE THERE TO CHK  Y5802310
STO LHIND STORE FGR LCOP CONTROL Y5802320
LOOP LD 1 ZEROE GET A HALT INDICATOR Y5802330
BNZ HLTMS-AF IF ON GO PUT CUT MESSAGE Y5802340
MDX 1 ONEE POINT TO NEXT HALT IND Y5802350
MDM LHIND-AF,-1 DECREMENT LOOP COUNTER  Y5802360
B LooP IF ALL NCT CHECKED RETRY ¥5802370
* Y5802380
RESRT EQU * Y5802390
* ALL CONTROL LEVEL,HALT,AND INPUT RECORD INDICATOR Y5802400
* SWITCHES ARE NOW TURNED OFF ¥5802410
LDX L1 FP-AF POINT TO START OF INDICATOR Y5802420
* TO SHUT NFF Y5802430
LD NUMIN HOW MANY TG SHUT OFF Y5802440
sTO NUMLP STCRE FCR LCCP CONTROL ¥5802450
SLA SIXTE CLEAR THE ACCUMULATOR Y5802460
LOOP1 STO 1 ZEROE SHUT OFF AN INDICATOR Y5802470
MDX 1 ONEE POINT TO NEXT INDICATOR Y5802480
MDM NUMLP-AF,-1 DECREMENT LOOP COUNTER  Y5802490
B LOoOP1 IF ALL NOT OFF CONTINUE Y5802500
LD LOWFD GET ADDRESS CF LOW FIELD ¥5802510
STO R10 PUT IN REG 10 Y5802520
LD T RI1C-AF GET ADDR OF GET Y5802530
STO R8 PUT IN REG 8 Y5802540
LD INDON GET INDICATOR CN Y5802550
STO L LO-AF TURN LEVEL ZERQ ON Y5802560
LABEO B 1 R8-AF GO TO CONTENTS OF REG 8 Y5802570
NHIND DC 9 NUMBER OF HALT INDICATORS  Y5802580
LHIND DC 0 LOCP COUNTER Y5802590
NUMIN DC 0 FILLED IN AT COMPILE TIME  Y5802600
NUMLP DC 0 LOOP COUNTER ¥5802610
INDON DC /0C01 INDICATOR ON Y5802620
LD L LR-AF GET LR INDICATOR Y5802630
S INDON IS IT ON Y5802640
BZ CLOSE-AF YES END OF FILE Y5802650
LDX 11 LOWFD-AF GET ADDR OF LOW FIELD Y5802660
STX L1 R1-AF SAVE IN REG 1 Y5802670
LD 1 TWOE ADDR CF MOVE FIELDS RTN Y5802680
STO L RB-AF SAVE IN REG 8 Y5802690
LDTOA LD 1 ZEROE GET LCW FIELD Y5802700
STO L R2-AF SAVE IN REG 2 Y5802710
LDX 11 R2-AF PICK UP ADDR OF GET Y5802720
LD 1 SIXE GET 10D ADDRESS Y5802730
STO L R2-AF SAVE IN REG 2 Y5802740
LDX Il R2-AF PUT IT IN XR1 Y5802750
LD 1 THREE GET ADDR THE 1/0 AREA Y5802760
STO L R2-AF PUT IN REG 2 Y5802770
LD L INTMR-AF TURN CON MR SWITCH IF NECC  Y5802780
SRA 15 MAKE EQUAL TO /0001 Y5802790
STO L MR-AF ESSARY Y5802800
SRA SIXTE CLEAR ACCUMULATOR Y5802810
STO L INTMR-AF SHUT OFF INTERNAL MR SWITC Y5802820
B LABEO GO TO MOVE INPUT FIELDS Y5802830
* Y5802840
* Y5802850

Driver Routine (Part 2 of 4)

Part Two: 1130 RPG Object Program 93



1130 RPG RGH8

ADCR

n700
07DC
0702
n7D3
0704
0705
0707
07CS
07CB
07CD
O7CF
07EQ
07E2

O07E3
O7E3
N7ES
07E6
D7E8
O7EA
07EB
07€ED
07€EF
07FO
07F2
07F3
07F5
07F6
07F8
DTFA

07F8
D7F8
O7FD
O7FE
o8aco

0801
0801
08c2
08C4
0805
0807
08cC9
oscCs
080N
080F
0811
0812
0814
0815
0817
0818
0814a
0818
081C
0810
081lE

Figure 13.

94

REL OBJECT

0

65800008
cio3
boo2
cco8
D40000090
C4000004
94000010
4C1890119
€5800008
C101
04000009
7CC4

65800009
C101
D400000C
6D00DOOF
c100
D400C0010
65800010
c103
04000003
Cl01
D4000010
Co04
D400000R
4C800010
002F

€580000C
clo1l
D4000009
TCA6

Co1D
D40000QCF
Cco15
D4000010
7401000F
74010010
C480000F
94000070
4C2000CA
coocC
ECO00010
Doo2
191C5¢6€59
1120
4C000058
0000
0000
0000
0000
1120

ASSEMBLE FIXED

ST.NO.

n286
c287
0288
c289
0290
0291
0262
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344

DRIVER

LABEL OPCD FT OPERANDS

LDX
LD
STO
SETIN LD
STO
LD
S
BZ
LDX
LD
STO
B
*THIS ROUT
FQU
LDX
LD
STO
STX
GETFL LD
STO
LDX
LD
STO
LD
STO
Lo
STO
B
AINPS DC

]
11 R1C-AF
1 THREE
SETIN+2
INDON
L ZFRQOE
L R3-AF
L R15-AF
TOTSW-AF
11 R1C-AF
1 ONEE
L R8-—-AF
LABEC
INF IS TO GET
*
11 RB8-—-AF
1 ONEE
L R11-AF
L1 R1l4-AF
1 ZEROE
L R15-AF
I1 R15-~AF
1 THREE
L R2-AF
1 ONEE
L R15-AF
AINPS
L R10-AF
I R15-AF
INPSE-AF

PAGE 7

SOURCE DATE-C2/25/69

GET CONTENTS OF REG 10
CET INPUT INDICATOR ADDR

GET INDICATQOR CN

THIS TURNS ON INPUT IND
GET REG 3

IS 1T EQUAL TO REG 15

YES TC TCTAL TIME ROUTINE
POINT TO LCW FIELD

ADDR OF LEVEL EXTRACTICN
PUT IT IN REG 8

GO TC LABEL

A FILE

GET REG 8

GET FILTAB-4 ADODR

PUT IT IN REG 11

PUT REG 8 IN REG 14
GET ICD ADDRESS

STCRE IN REG 15

GET ACDR IN REG 15

GET 1/0 AREA ADDRESS
SAVE IN REG 2

GET READ ENTRY ADDRESS
SAVE IN REG 15

GET ADDR OF INPSE

SAVE IN REG 10

GO TC READ ENTRY IN 10D
ADDR CF INPSE

*INPUT ROUTINE LINKAGE TO ALPHA SEQUENCE

*MULTIFIEL

MFLNK EQU
LDX
LD
STO
B

* ROUTINE

~ LD
STO
LD

STO
ITERA MDM

NCTMS DC

ZERO DC
SEEKA DC

NOTM1 DC

D LINKAGE R<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>