
--- ------ - ---- ---- - ---- - - ----------_.-

".

1130 COBOL
Text - Volume"

Programmed Instruction

---- ------ - ---- ---- - ---- - - ------------- _.- ! () \'" ,-l (,
..., : ,\~ .., , "

l.,.._~'

1130 COBOL
Text - Volume II

Programmed Instruction

First Edition June 1971

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality. Address comments concerning the
contents of this publication to IBM Corporation, DPD Education Development -
Publications Services, Education Center, South Road, Poughkeepsie, New York 12602.

© Copyright International Business Machines Corporation 1971

CONTENTS

Lesson
Number

Title

Instructions to the Student

VOLUME I 1 Introduction
2 Basic Input-Output statements;

Coding Forrrat
3 Basic Standard Coding Entries
4 Introduction to Data Files
5 Introduction to File Processing
6 Card File Processing and Branching
7 Use of Record Variables
8 Horizontal Spacing
9 Vertical Spacing (1)

10 Vertical Spacing (2)
11 Vertical Spacing Control For

Printed output
12 Library Entries
13 Sequential Disk File Output
14 Sequential Disk File; Arithmetic

Operations
15 ~diting Numeric Data
16 Conditional Branching
17 Disk File Updating
18 Disk File Processing
19 Conditional Statements (1)
20 Conditional Statements (2)
21 Channel-Skipping and Arithmetic
7./ Program Coding Example

VOLUME II 23 Branching Statements (1)
24 Branching Statements (2)
25 Data Formats
26 .Edit Characters
27 Table Definition
28 Use of Tables
29 Processing with Indexes -

CALLing Subprogram
30 Payroll Program Processing (1)
31 Payroll Program Processing (2)
32 Sequential Disk Processing
33 Sequential Disk Updating
34 Random Files Accessed

Sequentially
35 Sequential and Random Access ing

Programs
36 Random Fi les Access ed Randomly
37 Random File Updating
38 1130 COBOL Within the Monitor

System
39 COBOL Error Messages and

Diagnostic Aids
40 1130 COBOL Compiler Extensions
41 CALLable Subprograms
42 File Accessing Technique
43 Program Overlays

Lxamina tion

i-\dvisor' s Guide

Number of
Frames

44

26
27
23
30
37
26
36
32
22

17
4

36

26
26
31
18
19
21
21
35

2

29
27
29
33
24
18

17
9

17
24
17

24

24
30
20

38

30
26
22
37
32

Estimated Page
Time

(Minutes)

45

45
45
60
60
45
45
60
60
45

45
45
60

60
45
45
30
45
30
30
45
45

45
45
45
45
45
45

60
45
30
30
30

75

60
45
45

75

45
60
45
60
60

1

21
49
67
83

111
133
157
179
207

223
239
251

277
297
315
339
357
385
399
415
437

447
475
497
519
541
557

581
611
621
667
683

695

715
733
759

781

803
821
835
851
875

895

909

LIST OF FIGURES

Figure Page Figure Page rigure Page Figure Page
:~o • No. No. ~10 • No. 1'10. No. No.

3 26 105 51 200 76 335

2 6 27 108 52 201 77 347

3 13 28 113 53 203 78 352

l~ 17 29 115 51~ 210 79 353

5 24 30 121 55 213 80 354

6 28 31 122 56 218 81 361

7 32 32 124 57 220 82 367

8 35 33 127 58 226 83 370

9 37 34 129 59 229 84 372

10 39 35 138 ()O 235 85 373

11 43 36 1lf 0 61 2lD 8(, 37n

12 Lf 6 37 153 (,2 2Ln n7 379

13 57 38 161 63 25L~ 88 3D1

14 58 39 163 64 255 89 387

15 59 40 166 65 256 90 388

16 62 41 168 66 257 91 389

17 73 42 172 67 273 9~ 390

18 77 43 175 68 287 93 391

19 86 44 183 ()9 294 94 393

20 88 45 186 70 318 95 396

21 90 46 187 71 321 96 402

22 92 47 189 72 324 97 l~O 4

23 94 48 191 73 328 98 LJ09

24 97 49 193 74 330 99 L~2 LI

25 99 50 195 75 332 100 429

Figure Page Figure Page Figure Page Figure Page
No. No. No. No. No. No. No. No.

101 433 127 560 152 623 178 690

1 02 439 1?B 5G1 153 625 179 692

103 440 129 564 154 627 180 693

10Ll Ll41 13f) 567 155 628 181 701

105 4l~3 131 568 156 631 182 702

106 444 132 570 157 fi 3 Ll 183 706

107 450 133 573 158 fi36 184 707

108 Ll 63 134 574 159 638 185 709

109 4G8 13 Lt 574 1 ()O 639 186 719

110 472 135 578 1 G 1 642 187 732

111 484 136 58 H 162 fi43 188 735

112 Ll88 137 586 1fi3 644 189 7Ll2

113 L~93 138 587 1 ()4 fi Ll5 190 743

11 L~ 494 139 588 165 6L~ 6 191 745

115 Ll95 140 590 166 6Ln 192 747

116 503 1 II1 592 167 649 193 749

117 509 142 593 1 ()8 651 194 752

118 512 143 594 169 660 195 755

119 515 1114 596 170 662 196 762

120 516 145 598 171 6fi4 197 767

121 521 1116 604 172 6G5 198 769

122 530 1ln 606 173 670 199 771

123 5Ll3 1l! 8 608 174 fi77 200 774

124 544 1119 61 LI 175 678 201 776

125 551 150 616 176 680 202 886

126 553 151 618 177 689 203 887

LESSON 23

447

448

LESSON 23 - BRANCHING STATEMENTS (1)

INTRODUCTION

In this lesson you will learn additional ways to specify flow of
control in a program using options of the PERFORM statement.

Specific COBOL language features you will learn to use in this
lesson are:

THRU option of the PERFORM statement
EXIT statement
TIMES option of the PERFORM statement
UNTIL option of the PERFORM statement
VARYING option of the PERFORM statement

This lesson will require approximately three quarters of an hour.

1.

o 0 112 233 445 5 6 6 7
1 .•• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 ••.. 0 •.

a

PERFORM DISCOUNT.

Execution of the statement above would cause paragraph DISCOUNT
to be executed and then control to be:

a. returned to the statement directly following the PERFORM
statement.

b. passed to the statement directly following DISCOUNT.

* * *

449

450

PERFORM Statement with the THRU Option

Format PERFORM paragraph-name-1 [THRU paragraph-name-21

Explanation* When a PERFORM statement with the THRU option is
executed, the statements from the first statement
in paragraph 1 (entry point) through the last
statement in paragraph 2 (exit pOint) are
executed until the exit point is reached once,
and then control is returned to the statement
directly following the PERFORM statement.

Flow of Logic

Rules

PERFORM
statement

with
THRU option

Statement
directly

following
PERFORM

,Ir

r------l
I Specified

paragraphs
are execu ted I

I once I
L __ J - ---

1. An embedded GO TO statement may not transfer control
out of the range of a PERFORM statement.

2. A common exit point, an EXIT statement may be
specified for the range of a PERFORM statement and a
transfer of control within that range.

3. An embedded PERFORM statement must have its range
either totally in or totally out of the range of the
original PERFORM statement; the exit paint of the
original PERFORM statement may not be included in the
range of an embedded PERFORM statement unless it is a
common exit point.

*In the explanation, paragraph-1 refers to the paragraph named
paragraph-name-1 and paragraph-2 refers to the paragraph named
paragraph-name-2 in the format above.

(Dashed lines show the effect of using the PERFORM statement with
the THRU option. An understanding of this effect is necessary
for proper use of the statement, but the programmer is not
req11ired to code the logic indicated by dashed lines.)

Figure 107

2. Refer to the format of the PERFORM statement with the THRU option
in Figure 107. Two paragraph names are specified in this format.
When the PERFORM statement is executed, all of the statements
from the first statement in paragraph-1 through the last
statement in paragraph-2 will be executed. Although the two
paragraphs may be separated by intervening paragraphs, they must
be in a linear sequence. Paragraphs P1, P2, P3, and P4 are in
linear sequence. Which of the following statements specifies
execution of paragraphs P1, P3, and. P4?

a.

0011223 344 556 6 7
1 .•. 5 .••. 0 .••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PERFORM P1 P3 P4.

b.

o 0 1 1 2 2 3 3 4 4 556 6 7
1 ••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PERFORI"1 P1 THRU P4.

c.

o 0 1 1 2 233 4 4 556 6 7
1 ... 5 ..•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PERFORM Pl.
PERFORM P3 THRU P4.

d.

o 0 1 1 2 233 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c,d

PERFORM Pl.
PERFORM P3.
PERFORM P4.

* * *

(~ is an incorrect format; E would execute P2 also.)

3. The flow of logic diagram in Figure 107 shows the flow of control
that occurs when the PERFORM statement with the THRU option is
used. Referring to the format and flow of logic diagram in
Figure 107, write a statement that would transfer 'control to
paragraph MORTGAGE, execute MQRTGAGE and the two subsequent
paragraphs M-1 and M-2, and then return control to the statement
directly following the statement that you write.

* * *
001 1 2 233 4 4 5 5 6 6 7
1 •.. 5 •••• 0 .•.• 5 •••• o •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PERFORM t-10RTGAGE THRU M-2.

451

4. The range of a PERFORM statement with the THRU option includes
all the statements in paragraph-l, all the statements in
paragraph-2, and all the statements in intervening paragraphs
that are part of the linear sequence. If THRU paragraph-name-2
were not specified, the range would be:

a. all the statements in paragraph-l.

h. all the statements in paragraph-2.

c. all the statements in intervening paragraphs that are part of
the linear sequence.

* * *
a

452

5. Rule 1 in Figure 101 states that an embedded GO TO statement may
not transfer control out of the range of the PERFORM statement.
This means that if THRU paragraph-name-2 is specified:

a. paragraph-l may contain a GO TO statement transferring
control to paragraph-2.

h. paragraph-2 may contain a GO TO statement transferring
control to paragraph-i.

c.

d.

a,b,d

paragraph-l may contain a GO TO statement transferring
control to a paragraph that is not in the linear sequence
from paragraph-l through paragraph-2.

paragraph-l
control to
paragraph-2.

may
any

*

contain a
paragraph

*

GO TO statement transferring
within paragraph-l through

*

o 0 112 2 3 3 445 5 6 6 7
1 ... 5 .••• 0 •.•. 5 •.•. 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •.•• 5 •.•. 0 ••

a.

PERFORM DISCOUNT THRU PRINT.

The paragraphs DISCOUNT, FIGURE, ERROR-ROUTINE, and PRINT are in
a linear sequence. Which of the following GO TO statements could
be inserted into paragraph DISCOUNT if control is transferred to
DISCOUNT by the statement above?

o 0 112 2 3 344 5 5 6 6 7
1 ... 5 •••. 0 .••• 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

GO TO PRINT.

b.

o 0 112 2 3 3 445 5 6 6 7
1 .•. 5 •••. 0 •••• 5 •••. 0 •••• 5 •.•• 0 •••• 5 •••• 0 .••. 5 ••.• 0 •••• 5 •••. 0 •.•• 5 .•.• 0 ••

GO TO FIGURE.

c.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ..• 5 •.•. 0 •••. 5 •.•• 0 •••• 5 •••. 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

GO TO READ-CARD.

* * *
a,b

7. A GO TO statement embedded in the range of a PERFORM with the
THRU option can be used to bypass:

b

a. any portion of the range.

b. any portion of the range except the paragraph specified in
the THRU option.

* * *

453

8.

o 0 112 233 445 5 6 6 7
1 •.. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• S ••• ~0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 ••

PARA1.

PARA2.

PARA3.

PARA4.

COMPUTE
WRITE •.•

PARAX.
PERFORM PARA1 THRU PARA4.

PARAS.

Match the effects below with the statements that might be
included in an IF statement in PARA1 of the program segment shown
above if PARAX activates execution of the sequence PARA1 through
PARA4.

1)

0011223 344 5 5 6 6 7
1 .•• 5 ...• O •••• 5 •••• O •••• 5 •.•• O •••• 5 •••• O •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 .•.. 0 ••

GO TO PARA4.

2)

0011223 3 4 4 5 5 6 6 7
1. • • 5. • • • O. • • • 5. • • • O. • • • 5. • • • O. • '. • 5. • • • 0 • • • . 5 • • • • 0 • • • • 5 • • '. • 0 . • • • 5 • • • • 0 • .

1) a
2) b

454

GO TO PARAS.

a. Would not return control immediately to the statement
directly following PERFORM

b. Would be invalid since control cannot be transferred out
of the range of a PERFORM by a GO TO statement

c. Would return control immediately to the statement
directly following PERFORM

* * *

You have now learned to bypass any portion of the range of a PERFORM
except the last paragraph. It is frequently necessary to return
control immediately to the statement directly following the PERFORM,
bypassing the remaining portion of the range. In the next sequence
of frames you will learn to set up a special paragraph that will
allow you to return control immediately to the statement directly
following the PERFORM.

9.

o 0 112 2 3 344 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••. 5 •.•. 0 •••• 5 .• ~.0 ••.. 5 .•.• 0 •.•• 5 .••• 0 .••• 5 •••• 0 •.

PERFORM DISCOUNT THRU EXIT-PARAGRAPH.

DISCOUNT.

EXIT-PARAGRAPH.
EXIT.

A paragraph containing a single statement, shown above as EXIT
PARAGRAPH, may be specified as paragraph-name-2 in the THRU
option in a PERFORM statement. Transfer of control from some
point within the range of the PERFORM to the paragraph containing
only the EXIT statement would then cause control to be returned
to the statement directly following the PERFORM statement. To
return control from paragraph DISCOUNT above to the statement
following the PERFORM statement, you would write in DISCOUNT:

a.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••. 5 .•.. 0 •••• 5 •.•• 0 •••• 5 •••• 0 •.

PERFORM EXIT-PARAGRAPH.

b.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ••. 5 •••• 0 .•.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .••• 5 .••• 0 •.•• 5 •.•• 0 ..•• 5 ...• 0 ••

GO TO EXIT-PARAGRAPH.

* * *
b

455

10.

o 0 112 233 4 4 556 6 7
1 ... 5 ..•• 0 ••.. 5 .•.. 0 •••• 5 •••• 0 •.•• 5 ••.• 0 •••. 5 •.•. 0 •••• 5 ••.. 0 •••• 5 .••. 0 ••

PARA1.

PARA2.

PARA3.

PARA3A.

COMPUTE
WRITE

PARA4.
EXIT.

PARAX.
PERFORM PARAl THRU PARA4.

PARA5.

When a paragraph containing only the EXIT statement is specified
in a GO TO statement that is also embedded in the range of the
PERFORM, control will be returned immediately to the statement
directly following the PERFORM statement. Match the following
effects with the statements suggested that might be included in
PARAl in the example above.

1)

0011223 3 4 4 556 6 7
1 .•• 5 .••• 0 •... 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•. 5 •.•• 0 •.

GO TO PARA4.

2)

0011223 3 4 4 556 6 7
1 ... 5 •..• 0 ...• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••. 5 .••. 0 .••. 5 •••• 0 •••. 5 •••. 0 •.

1) c
2) b

456

GO TO PARAS.

a. Would not return control immediately to the statement
directly following PERFORM

h. Would be invalid since control cannot be transferred out
of the range of a PERFORM by a GO TO statement

c. Would return control immediately to the statement
directly following PERFORM

* * *

11. The last statement in the last paragraph in the range of a
PERFORM is the exit point for the range of that PERFORM. The EXIT
statement may be used as an exit point for the range of any
PERFORM statement with the THRU option. For the paragraphs
DISCOUNT, SUBTRACT-DISCOUNT, and POINT-OF-EXIT which are in a
linear sequence, write:

1)

1) a statement to specify execution of paragraph DISCOUNT,
paragraph SUBTRACT-DISCOUNT, and paragraph POINT-OF-EXIT.

2) paragraph POINT-OF-EXIT so that the statement GO TO POINT-OF
EXIT can be inserted in either DISCOUNT or SUBTRACT-DISCOUNT
to cause control to return immediately to the statement
directly following the PERFORM statement.

* * *

o 0 1 1 2 233 445 5 6 6 7
1 ••• 5 •••• 0 •••• 5 ••.. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••. 0 •••• 5 •••. 0 ••• ·.5 •••• 0 ••

PERFORM DISCOUNT
THRU POINT-OF-EXIT.

2)

o 0 112 2 3 3 445 5 6 6 7
1 ••• 5 .••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

POI NT-OF- EX IT.
EXIT.

12.

o 0 112 233 445 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

POINT-OF-EXIT.
EXIT.

The name of the paragraph shown above has been specified in the
THRU option of a PERFORM statement. POINT-OF-EXIT may include
the EXIT statement and:

a. a GO TO statement transferring control to any paragraph
within the range of the PERFORM statement.

b. no other statements.

* * *

457

13.

o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •.•• 0 •.•• 5 •.•• 0 •••• 5 •••• 0 •••• 5.~ •• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

o o

PERFORM DISCOUNT
THRU POINT-OF-EXIT.

The PERFORM statement above is one that you wrote in a preceding
frame. The range of this PERFORM statement includes the linear
sequence of paragraphs DISCOUNT. SUBTRACT-DISCOUNT, and POINT-OF
EXIT. POINT-OF-EXIT includes the EXIT statement. Match each GO
TO statement with the paragraph in which it could be placed.

1) DISCOUNT

2) SUBTRACT-DISCOUNT

3) POINT-OF-EXIT

a.

1 1 2 2 3 3 4 4 5 5 6 6 7
1 ..• 5 •••• 0 •••. 5 .•.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••• ~0 •••• 5 •••• 0 ••

GO TO POINT-OF-EXIT.

b.

o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ••. 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

GO TO DISCOUNT.

c.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 .•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0~.

GO TO SUBTRACT-DISCOUNT.

d.

o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

GO TO PRINT-DISCOUNT.

e. (none of these)

* * *
1) a.b,c
2) a,b,c
3) e

458

14.

o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PERFORM DISCOUNT THRU P-3.

DISCOUNT.

ERRORS.

P-l.

P-2.

P-3.
EXIT.

P-4.

One PERFORM statement may be embedded within the range of another
PERFORM statement. Rule 3 in Figure 107 states that an embedded
PERFORM must have its range totally in or totally out of the range of
the original PERFORM. The rule also states that the exit point of the
original PERFORM must not be included in the range of the embedded
PERFORM except as a common exit point. The PERFORM statement shown
above specifies that control is to be transferred to DISCOUNT in the
linear sequence shown in the diagram. Decide whether it would be
valid or invalid to embed each PERFORM statement below in the
indicated paragraph of the linear sequence.

1)

001122334 4 556 6 7
1 .•• 5 •.•• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PERFORM ERRORS.

(in paragraph P-2)

459

2)

0011223 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PERFORM P-1 THRU P-3.

(in paragraph DISCOUNT).

3)

o 0 112 233 445 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 ••

PERFORM P-2 THRU P-4.

(in paragraph ERRORS)

4)

o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 ••

PERFORM P-4.

(in paragraph P-2)

5)

o 0 112 233 445 5 6 6 7
1 ••• 5 •••• o •••• 5 •••• O •••• 5 •••• o •• ' •• 5 ••• '. O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 ••

460

PERFORI.JI P- 4.

(in paragraph P-3)

1) valid

2) valid

* * *

(Range totally in range of original PERFORM)

(Range totally in range of original PERFORM; exit
point may be included in range of embedded PERFORM if
it is a common exit point.)

3) invalid (Range not totally in or out of range of originaJ
PERFORM; exit point of original PERFORM is within thE
range of the embedded PERFORM and is not a coromOJ
exit point.)

4) valid (Range totally out of range of original PERFORM)

5) invalid (EXIT must be the only statement in the paragraph.)

15. On the basis of the ·range of the PERFORM statement in paragraph
I-PARA of the linear sequence shown below, decide whether each of
the following statements would be valid or invalid if placed in
paragraph C-PARA.

1)

0011223 3 4 4 5 5 6 6 7
1 .•. 5 ••.• 0 ...• 5 •.•• 0 .•.. 5 ..•• 0 •••. 5 ..•• 0 .•.• 5 .••. 0 ••.• 5 •••. 0 •••• 5 •..• 0 •.

PERFORM D-PARA THRU E-PARA.

2)

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ..• 5 0 .•.. 5 •.•• 0 •.•. 5 .••• 0 •.•• 5 •••• 0 •... 5 .•.• 0 •..• 5 •••. 0 .••• 5 •.•• 0 •.

PERFORM E-PAHA TARU J-PARA.

3)

o 0 112 2 3 3 445 5 6 6 7
1 •.. 5 ...• 0 •..• 5 0 •.•• 5 •••• 0 ••.• 5 •••• 0 •.•. 5 .•.• 0 ••.. 5 •••• 0 •... 5 .••. 0 ••

PERFORM E-PARA THRU F-PARA.

4)

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ..• 5 ••.• 0 •.•. 5 ...• 0 •••• 5 •.•• 0 •..• 5 •••• 0 ••.• 5 •••• 0 •.•• 5 .••• 0 ••.• 5 .••. 0 ..

GO TO E-PARA.

5)

o 0 112 2 3 3 4 4 556 6 7
1 ... 5 .••• 0 ..•. 5 ••.. 0 .••• 5 •••• 0 •••• 5 .••• 0 ••.• 5 •••. 0 .••• 5 •••• 0 •••. 5 •••. 0 ••

GO TO H-PARA.

6)

o 0 112 2 3 3 4 4 556 6 7
1 ... 5 ..•• 0 .••. 5 .•.. 0 •••• 5 •••• 0 •••• 5 .••• 0 .••. 5 •.•• 0 •••. 5 ••.• 0 •.•• 5 •••. 0 •.

GO TO F-PARA.

461 .

462

A-PARA.

B-PARA.

C-PARA.

D-PARA.

E-PARA.

F-PARA.
EXIT.

G-PARA.

H-PARA.

I-PARA.

PERFORM B-PARA THRU F-PARA.
J-PARA.

* * *
1) valid (Range totally in range of original PERFORM)

2) invalid (Range not totally in or out of range of original
PERFORM; exit point of original PERFORM is included
in the range of the embedded PERFORM and is not a
common exit point.)

3) valid

4) valid

(Range totally in range of original PERFORM; exit
point may be included in range of embedded PERFORM if
it is a common exit point.)

(Does not transfer control out of range of the
PERFORM)

5) invalid (Transfers control out of the range of the PERFORM)

6) valid (Transfers control to exit point)

The THRU option of the PERFORM statement, which you have learned
to use in the preceding sequence, may be used with all other
options of the PERFORM statement that you will learn in
succeeding frames. Regardless of the options used, when

execution of the paragraphs specified in the PERFORM statement is
completed, control is always returned to the statement directly
following the PERFORM statement. Either one or two paragraph
names may be specified in all PERFORM statements, and the EXIT
statement may be used as the last paragraph. In the next
sequence you will learn to use the other options of the PERFORM
statement.

PERFORM statement with the TIMES Option

Format

PERFORM paragraph-name-l [THRU paragraph-name-2]

{

i nteger-l }

identifier-l
TIMES

Explanation When a PERFORM statement with the TIMES option is
executed, control goes to the entry paint and
then continues normally until it passes through
the exit point integer-lor identifier-l times
before control is returned to the statement
directly following the PERFORM statement. If the
value of identifier-lor integer-l is negative or
zero, the specified paragraphs will not be
executed.

Flow of Logic

PERFORM
statement

with
TIMES option

Statement
directly

following
PERFORM

,

, "", r - - - - - - -,
~'I I

./ integer·1 ... , Counter
t----I.-<" or identifier·1 >-!.. ~ is set :

, is
, evaluated " ~ I to 0 I
,~I I ... , L __ -r- __ .J

Y - or 0 .1+ _ _ _ ___ -,

I r--- J ---,

I I Specified I
I I paragraphs I
I I are executed I
I I I

• I once I
.... ------{ L.._--T--_.J

+ r-- - _l - - - ,
I I
I Counter I
, is increased I
I by 1 I
I I L.. ___ T- __ ..I

.i.
, Is'

I ./ 'counter',
Yes ' equal to , N

~ _____ -< evaluation of ~~ __ J
'- identifier·} "

,or integer·}, ~
... '? , , ,

V

463

Rules 1. Identifier-1 must have an integer value.

2. A change in the value of identifier-1 after the
PERFORM statement is executed but before control
is returned to the statement directly following
the PERFORM statement will not change the number
of times the specified paragraphs are executed.

(Dashed lines show the effect of using the PERFORM statement with
the TIMES option. An understanding of the effect is necessary
for the proper use of the statement, but the programmer is not
required to code the logic indicated by the dashed lines.)

Figure 108

16. Figure 108 shows the PERFORM statement with the TIMES option.

a

17.

According to the explanation and format in Figure 22, the use of
the TIMES option differs from the use of the PERFORM statement
with only the THRU option in that:

a. an integer or identifier is used to specify the number of
times the specified paragraphs are to be executed.

b. paragraph-name-2 must be specified when the TIMES option is
used.

* * *

o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PERFORM DISCOUNT 5 TI~£S.

0011223 3 4 4 556 6 7
1 .•• 5 •••• 0 .••• 5 •••. 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

464

PERFORM DISCOUNT ITEMS TIMES.

Match the following words from the statements shown above with
the terms from the format of the PERFORM statement in Figure 108.

1) paragraph-name-1 a. 5

2) identifier-l b. DISCOUNT

3) integer-1 c. ITEMS

d. TIMES

* * *
1) b
2) c
3) a

18. According to Rule 1 in Figure 108 identifier-l must have an
integer value. If the value of the integer or identifier is zero
or negative, the specified paragraphs will not be executed.
Match the effects below with the values of identifier-lor
integer-l in the TIMES option of the PERFORM statement.

1) -2

2) 2.8

3) 26

4) 0

1) b
2) a
3) d
4) b

19. The flow of
returned to

a. Invalid value (not an integer)

b. Specified paragraph (s) will not be
executed.

c. Specified paragraph(s) will be executed -
2 times.

d. Specified paragraph(s) will be executed
the indicated number of times.

* * *

logic diagram in Figure 108 shows that control is
the statement directly following the PERFORM

statement when:

a. identifier-lor integer-l is zero or negative.

b. the specified number of executions have been accomplished.

* * *
Either

465

20.

001122334 4 5 5 6 6 7
1 ... 5 ...• 0 •••• 5 ••.• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

466

PERFORM ROUTINE AGE TIMES.

ROUTINE.

ADD 1 TO AGE.

Rule 2 in Figure 108 states that a change in the value of
identifier-l after execution of the PERFORM statement begins does
not change the number of times the paragraphs are executed.
Paragraph ROUTINE in the program segment shown above will be
executed:

a. AGE + 1 times since the original value of AGE is incremented
by 1 in ROUTINE.

b. AGE times since a change in the value of identifier-l does
not change the number of times it is executed.

* * *

21.

o 0 112 2 3 3 4 4 5 5 6 6 1
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

INITIALIZE.
MOVE ZEROS TO LIST-TIHES.
ACCEPT TOTAL FROM CONSOLE.
ACCEPT YEARS FROM CONSOLE.
MOVE .01 TO PERCENT.
MULTIPLY 4 BY YEARS.

GIVING LENGTH.

COMPOUND.
ADD 1 TO LIST-TIMES.
COMPUTE TaI'AL =

TOTAL + TOTAL * PERCENT.
~OVE TaI'AL TO LIST-TOTAL.
WRITE LIST-RECORD.

Paragraph INITIALIZE sets certain values to be used in paragraph
COMPOUND. Paragraph COMPOUND calculates and prints a new value of
TOTAL in a numbered sequence as compound interest is calculated
for the total amount and the number of years keyed in through the
console typewriter. Since interest is to be compounded
quarterly, COMPOUND is to be executed four times for every year
in which the total amount will be available to the lending
institution. Write a statement to follow the MULTIPLY statement
specifying execution of COMPOUND to calculate and print values of
TOTAL for as many years as necessary.

* * *
00112 2 3 344 5 5 6 6 1
1 ••• 5 •••• O •••• 5 •••• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PERFORM COMPOUND LENGTH TIMES.

461

468

PERFORM statement with the UNTIL Option

Format

PERFORM paragraph-name-1 [THRU paragraph-name-2]

UNTIL condition-l

Explanation When a PERFORM statement with the UNITL option is
executed, the statements from the entry pOint to
the exit point are executed repeatedly until
condition-l is true. Control is then returned to
the statement directly following the PERFORM
statement. If condition-l is true at the time
the PERFORM statement is executed, the specific
paragraphs will not be executed.

Flow of Logic

Rule

PERFORM
statement
with the

UNTIL option

Statement
directly

following
PERFORM

r - - - - - - - - - -,
I I

,~, r- - - _1 - --,
1'''', I I

" " " FALSE I Specified I
t--~< conditional >= - - --f paragraphs I

, are executed
", ",' I once I

, ,,' I I
iTR UE - - - - - - --

I
I
I

!

Condition-l roust be a relational condition or a
condition-name condition.

(Dashed lines show the effect of using a PERFORM statment with
the UNTIL option. An understanding of this effect is necessary
for proper use of the statement, but the programmer is not
required to code the logic indicated by the dashed lines.)

Figure 109

22. Figure 109 represents still another format of the PERFORM
statement. A paragraph specified in a PERFORM statement with the
UNTIL option is executed as many times as necessary for the
condition to become true. You can infer from this that a
paragraph executed because of a PERFORM statement with the UNTIL
option:

Both

23.

a. must make some change in the value of a variable specified in
condition-1.

b. might be repeated endlessly if condition-1 never became true.

* * *

o 0 112 233 4 4 5 5 6 6 7
1 ••. 5 ••.• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

Both

PERFORM REORDER
UNTIL ORDER
IS GREATER THAN 700.

When the statement above is executed, paragraph REORDER will be
executed:

a. repeatedly until the value of ORDER is 701 or greater.

b. endlessly if the value of ORDER is 700 or less and is not
changed within REORDER.

* * *

469

24. The flow of logic diagram in Figure 109 shows that when a PERFORM
statement with the UNTIL option is executed the condition is
tested before the specified paragraph(s) are executed. In order
to execute procedure PART-PROCESS once for every part number from
31 through 74, you would first move 31 to PART-NUMBER, then make
sure that PART-PROCESS increments PART-NUMBER by 1, and finally
code the statement:

,a.

o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0~ ••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 ••

b.

PERFOru~ PART-PROCESS UNTIL
PART-NUMBER IS EQUAL TO 74.

o 0 112 2 3 3 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c.

PERFORM PART-PROCESS UNTIL
PART-NUMBER IS EQUAL TO 75.

o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 •.•• 0 •••• 5 •.•• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 ..•• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •.

b,c

PERFORM PART-PROCESS UNTIL
PART-NUMBER IS GREATER THAN 74.

* * *

(a would return control as soon as PART-NUMBER is equal to 74,
wIthout executing PART-PROCESS for that part.)

25. The PERFORM statement to solve the problem in the preceding frame
could also have been written using the TIMES option. Refer to
Figure 108 and then write an alternate statement for the problem
in the preceding frame.

* * *
0011223 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PERFORM PART-PROCESS 44 TIMES.

26. Write a statement that would cause the paragraphs P-l through P-7
to be executed repeatedly until the value of BALANCE is larger
than the value of MAXIMUM-CREDIT.

* * *
o 0 1 1 2 2 3 3 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••• ~5 •••• 0 •••• 5 •••• 0 ••

470

PERFORM P-1 THRU P-7 UNTIL
BALANCE IS GREATER THAN
MAXIMUM-CREDIT.

27.

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ••• 5 ..•. 0 •.•. 5 •.•. 0 •.•• 5 •••. 0 •••. 5 •••• 0 .••. 5 .•.• 0 •••. 5 •••• 0 ••.• 5 .••• 0 ••

COMPOUND.
ADD 1 TO LIST-TIMES.
COMPUTE TaI'AL =

TOTAL + TOTAL * PERCENT.
MOVE TOTAL TO LIST-TOTAL.
WRITE LIST-RECORD.

You wish to specify execution of the paragraph above to find out
how long it will take for the initial investment to double.
Assume that the initial investment (TOTAL) was 200.00 and write a
statement that will cause the appropriate number of executions.

* * *
0011223 3 4 4 5 5 6 6 7
1 ••• 5 •••• o •••. 5 •••• o •••• 5 •••• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 ••

PERFORM COMPOUND
UNTIL TOTAL IS GREATER THAN 400.

28.

o 0 112 2 3 3 445 5 6 6 7
1 ... 5 ..•. 0 •.•. 5 •••. 0 ..•• 5 •••• 0 •••• 5 .••• 0 .••. 5 •••• 0 •••• 5 •••. 0 .•.• 5 .••. 0 ..

02 PART-NU~illER PIC 9999.
88 SMALL VALUES ARE 0000 THRU 0299.
88 MEDIUM VALUES ARE 0300 THRU 0699.
88 LARGE VALUES ARE 0700 THRU 1000.

Part numbers are in ascending sequence in a stock file. As a
programmer you wish to execute a paragraph called PART-PROCESS
for all small parts and have defined the conditional variable
shown above. Using a condition-name condition, write a statement
to accomplish the desired execution.

* * *
0011223 3 4 4 5 5 6 6 7
1. • . 5. • • • O. • • • 5. • • • O. • • • 5. .' • • o. . . . 5. • • • 0 • . • . 5 • • • • 0 • . . • 5 • • • • 0 • • • • 5. • • • 0 • •

PERFORM PART-PROCESS
UNTIL tJ!EDIUM.

--~-------------------~-----------

471

472

PERFOR~ Statement with the VARYING Option

Format

Explanation

PERFORM paragraph-name-l [THRU paragraph-name-2J

VARYING identifier-l

{

literal-2 J
FROM
---- identifier-2

BY
{

Ii teral- 3 J
identifier-3

UNTIL condition-l

When a PERFORM statement with the VARYING option
is executed, the statements from the entry paint
to the exit point are executed repeatedly until
condition-l is true, incrementing the value of
identifier-3 or literal-3 beginning at the value
of identifier-2 or literal-2. If condition-l is
true at the time the PERFORM statement is
executed, the specified paragraphs will not be
executed.

Flow of Logic

PERFORM
statement
with the

VARYING
option

Statement
directly

following
PERFORM

r--------l
I identifier-} I

r------. ... ' is set equal to I
; literal-2 or I
I identifier-2 ,

-----r----'
~- -- -- --, , ,

",'" "
TRUE "," "

~-----.,;;-~, condition-} ,>
, ,
", "",

YFALSE _____ -t ____ _
I ,

I Specified I
paragraphs I

are executed I

I once I ----1-----
,-- __ i ___ _
I identifier-! :

is incremented I
by literal-3 or :- - - _J
identifier-3 ,

------- __ J

Rules 1. A change in the value of identifier-2 after the
PERFORM statement is executed but before control
is returned to the statement directly following
the PERFORM statement will have no effect on the
number of times the specified paragraphs are
executed.

2. A change in the value of identifier-lor
identifier-3 after the PERFORM statement is
executed but before control is returned to the
statement directly following the PERFORM
statement will affect the number of times the
specified paragraphs are executed.

(Dashed lines show the effect of using the PERFORM statement with
the VARYING option. An understanding of this effect is necessary
for the proper use of the statement but the programmer is not
required to code the logic indicated h¥ the dashed lines.)

Figure 110

29. Figure 110 shows the PERFORM statement with the VARYING option.
Which of the following statements is the correct form for a
PERFORM statement with the VARYING option?

a.

o 0 112 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b.

PERFORM P-1 THRU P-4
VARYING ITEM FROM 7
UNTIL ITEM EQUAL TO 12.

o 0 112 2 3 344 5 5 6 6 7
1 ..• 5 •••• 0 •••• 5.4 •• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c.

PERFORM P-1
VARYING ITEM
FROM 1 BY 2 TO 7.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •.•• 5 ..•• 0 •••• 5 •.•• 0 •••• 5 •••. 0 •.

c

PERFORM P-1
VARYING SHELL FROM BASIC
BY QUOTE
UNTIL PRICE
IS GREATER THAN 800.00.

* *

(~ omitted BY
{

literal-3 }

identifier-3

*

~ includes TO 7, which is not included in the format.)

473

SUMMARY

In this lesson you have learned to use the THRU, TIMES, UNTIL, and
VARYING options of the PERFORM statement. You have learned to use the
EXIT statement as an exit point for embedded PERFORM and GO TO
statements.

All of the topics presented in this lesson are related to specifying
flow of control within a program. It is also possible to refer to
subroutines that are not contained in the main COBOL program. SUch
subroutines will operate on variables from the main program and may be
written in either COBOL or the Basic Assembler Language. The Linkage
Section must be written into the Data Division of a COBOL program when
subroutines are to be used.

Sometimes the computer system does not have sufficient available core
storage for a complex program. Such a problem might be solved by using
subroutines, as described above.

END OF LESSON 23

474

LESSON 24

415

LESSON 24 - BRANCHING STATEMENTS (2)

INTRODUCTION

In this lesson you will learn still other methods of specifying flow
of control in a program, going beyond basic use of the PERFORM
statement.

Specific COBOL language features you will learn to use in this lesson
are:

476

DEPENDING ON option of the GO TO statement
ALTER statement
GO TO statement without paragraph

This lesson will require approximately three quarters of an hour.

1.

o 0 112 2 3 344 5 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •... 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 ••

a,c

2.

PERFORM DEPRECIATION
VARYING VALUATION
FROM SALVAGE BY RATE
UNTIL VALUATION
IS GREATER THAN COST.

On the basis of the rules in Figure 110 and the PERFORM statement
above, determine which variable below, if changed, would change
the number of times the paragraph is executed.

a. VALUATION

b. SALVAGE

c. RATE

* * *

o 0 112 2 3 344 5 5 6 6 7
1 .•• 5 •••• 0 •••. 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••. 5 •••• 0 ••

PERFORM DEPRECIATION
VARYING VALUATION
FROM SALVAGE BY RATE
UNTIL VALUATION
IS GREATER THAN COST.

The diagram of flow of logic in Figure 110 shows how the number
of times the procedure is executed is determined. Applying the
diagram in Figure 110 to the statement above, you can see that
VALUATION is set equal to •••••••• and •.•••••• is tested before
the paragraph is executed.

* * *
SALVAGE
VALUATION IS GREATER THAN COST or the condition

477

3. As soon as the condition specified in a PERFORM statement is
true, control returns to the statement directly following
PERFORM. As shown in the flow of logic diagram in Figure 110,
control might be returned to this statement:

a. before the paragraph is ever executed.

b. after many executions of the paragraph.

c. after one execution of the paragraph.

* * *

Any of these

4.

o 0 112 233 445 5 6 6 7
1 ..• 5 •.•. 0 .••. 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5.~ •. 0 •••• 5 •••• 0 ••

PERFORM DEPRECIATION
VARYING VALUATION
FROM SALVAGE BY RATE
UNTIL VALUATION
IS GREATER THAN COST.

If the condition in the statement above is false when tested, the
value of •••••••• is incremented by the value of •••••••••

VALUATION
RATE

5.

* * *

o 0 1 1 2 233 445 5 6 6 7
1 ..• 5 ..•• 0 •••• 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •.

b

478

PERFORM DEPRECIATION
VARYING VALUATION
FROM SALVAGE BY RATE
UNTIL VALUATION
IS GREATER THAN COST.

According to the flow of logic diagram in Figure 110, as soon as
VALUATION is incremented:

a. control is returned to the statement directly following
PERFORM.

b. VALUATION is compared with COST.

c. paragraph DEPRECIATION is executed again.

* * *

6. Write a statement to execute paragraph OUTSTANDING-BALANCE,
setting ENDING-BALANCE to PRESENT-BALANCE, and then incrementing
by the value of SUBTRACT-PAYMENT until the value of ENDING
BALANCE is less than the value of PAYMENT.

* * *
001122334455667
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

7.

PERFORM OUTSTANDING-BALANCE
VARYING ENDING-BALANCE
FROM PRESENT-BALANCE
BY SUBTRACT-PAYMENT
UNTIL ENDING-BALANCE
IS LESS THAN PAYMENT.

o 0 112 233 4 4 5 5 6 6 7
1 ..• 5 •.•• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 ••

CONVERSION-ROUTINE.
COMPUTE CENTIGRADE = 5 / 9 *

(TEMPERATURE - 32).
MOVE CENTIGRADE TO DEGREES-C.
MOVE TEMPERATURE TO DEGREES-F.
WRITE OUT-RECORD.

The paragraph above will convert a value of TEMPERATURE, which
represents Fahrenheit degrees, to the centigrade scale, and then
print the two values as a line on a page. As a programmer for a
chemical company you might find it useful to have a table
printed, listing the equivalent temperatures in both scales.
Write a statement that will give you such a table for all
Fahrenheit teroperatures that end in 0 or 5 between -40 0 and 120°.

* * *
001122334455667
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

PERFORM CONVERSION-ROUTINE
VARYING TEMPERATURE
FROM -40 BY 5
UNTIL TEMPERATURE
IS GREATER THAN 120.

479

8.

o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MORTGAGE.
COMPUTE INTEREST-PAYMENT =

INTEREST * BALANCE.
IF INTEREST-PAYMENT

IS GREATER THAN PAYMENT
GO TO ERROR-ROUTINE.

COMPUTE PRINCIPAL-PAYMENT =
PAYMENT - INTEREST-PAYMENT.

COMPUTE BALANCE = BALANCE -
PRINCIPAL-PAYMENT.

MOVE MONTH TO PRINT-MONTH.
MOVE PAYMENT TO PRINT-PAYMENT.
MOVE INTEREST-PAYMENT

TO PRINT-INTEREST-PAYMENT.
MOVE BALANCE TO PRINT-BALANCE.
WRITE PRINT-RECORD.
GO TO EXIT-POINT.

ERROR-ROUTINE.
DISPLAY 'LARGER PAYMENT NEEDED'

UPON CONSOLE.
ADD DURATION TO MONTH.

EXIT-POINT.
EXIT.

The three paragraphs shown above occur in a program used by a
real estate firm to compute and print the month, interest
payment, and balance due for a mortgage. (The variables BALANCE,
INTEREST, and PAYMENT have been set to appropriate values.) The
value of DURATION has been set equal to the number of months of
the mortgage. Write a statement to cause the paragraphs above to
be executed for each month of the mortgage, using MONTH to count
the number of executions.

* * *

00112 2 3 3 4 4 556 6 7
1 •.• 5 •••. 0 •••. 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••. 0 ••

480

PERFORM MORTGAGE THRU EXIT-POINT
VARYING MONTH FROM 1 BY 1
UNTIL MONTH IS GREATER THAN
DURATION.

9.

o 0 112 2 3 344 5 5 6 6 7
1 ••. 5 .••• 0 •••. 5 •.•. 0 ••.• 5 .••• 0 •••• 5 •••• 0 ..•• 5 •.•. 0 •.•• 5 •••. 0 ••.• 5 •••• 0 .•

MORTGAGE.
COMPUTE INTEREST-PAYMENT =

INTEREST * BALANCE.
IF INTEREST-PAYMENT

IS GREATER THAN PAYMENT
GO TO ERROR-ROUTINE.

COMPUTE PRINCIPAL-PAYMENT =
PAYMENT - INTEREST-PAYMENT.

COMPUTE BALANCE = BALANCE -
PRINCIPAL-PAYMENT.

MOVE MONTH TO PRINT-MONTH.
MOVE PAYMENT TO PRINT-PAYMENT.
MOVE INTEREST-PAYMENT

TO PRINT-INTEREST-PAYMENT.
MOVE PRINCIPAL-PAYMENT TO

PRINT-PRINCIPAL-PAYMENT.
MOVE BALANCE TO PRINT-BALANCE.
WRITE PRINT-RECORD.
GO TO EXIT-POINT.

ERROR-ROUTINE.
DISPLAY 'LARGER PAYMENT NEEDED'

UPON CONSOLE.
MOVE ZEROS TO BALANCE.

EXIT-POINT.
EXIT.

The paragraphs above are to be executed until the value of
BALANCE is less than or equal to (not greater than) zero. The
number of the execution is again to be printed as the value of
MONTH, along with the total payment, the interest payment, and
the new balance. To accomplish this, you would write the
statement:

a.

o 0 112 2 3 344 556 6 7
1 ..• 5 •••• 0 ..•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PERFORM MORTGAGE THRU EXIT-POINT
UNTIL BALANCE
IS NOT GREATER THAN ZERO.

and insert the statement

00112 2 3 3 4 4 5 5 6 6 7
1 ..• 5 •••• 0 ••.. 5 •••• 0 •••• 5 •••• o ••.•• 5 ••.• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

ADD 1 TO MONTH.

into paragraph MORTGAGE.

481

b.

o 0 112 2 3 3 445 5 6 6 7
1 ... 5 .••• 0 •... 5 ...• 0 •.• ~5 •••• 0 •••• 5 .••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 .•

482

PERFORM MORTGAGE THRU EXIT-POINT
VARYING MONTH FROM 1 BY 1
UNTIL BALANCE
IS NOT GREATER THAN ZERO.

* *
Either

10. Match the following.

1) PERFORM with only
the THRU option

2) PERFORM with
TIMES option

* *
1) a
2) a,b,c

*

a. Could be used
to execute a
paragraph or
paragraphs once

b. Could be used
to cause seven
executions of
a paragraph

c. Might cause no
executions of the
paragraph if the
value of identifier-l
were zero or negative

*

11.

o 0 112 2 3 3 4 4 5 5 6 6 1
1 ... 5 ..•. 0 ••.• 5 •••• 0 •••. 5 •••• 0 •••• 5 ••• ~0 ••.• 5 .•.• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c

GO TO MANAGER ANALYST OPERATOR
PROGRAMMER
DEPENDING ON JOB.

Read Figure 111. The statement above illustrates a GO TO
statement with the DEPENDING ON option. It specifies that
control will be transferred to MANAGER if the value of JOB is 1,
to ANALYST if the value of JOB is 2, to OPERATOR if the value of
JOB is 3. and to PROGRAMMER if the value of JOB is 4. When a GO
TO statement with the DEPENDING ON option is executed:

a. control is always transferred to the first paragraph listed.

h. only one specific value of identifier will cause a transfer
of control.

c. control is transferred to the paragraph whose position is
represented by the value of identifier.

* * *

483

484

Format

Explanation

GO TO Statement with the DEPENDING ON Option

GO TO paragraph-name-l
paragraph-name-n]

DEPENDING ON identifier

[paragraph-name-2 •••

When a GO TO statement with the DEPENDING ON
option is executed w control is transferred to one
of a series of paragraphs depending on the value
of the identifier. If the value of identifier is
zero or greater than the number of paragraph
names specifiedw the GO TO statement is ignored
and control goes to the next sentence in
sequence.

Flow of Logic

Rules

,'''', ,"""', tII-", """,
", ,.... ""fIIo,, "',

" " " '''II. ,1' , , ,

identifier ">-~ __ ~: identifier "'>_~_-<' identifier >-~ .. -<" identifier N

"' ... , ... =0 ", =1 ", " =2 ", "', =n ",

;' '~ ~' "~'

1. Identifier must represent a positive or unsigned
integer.

2. The value of identifier represents the number of
the paragraph-name to which control will be
transferred.

(Dashed lines show the effect of using the GO TO statement with
the DEPENDING ON option. An understanding of this effect is
necessary for proper use of the statement w but the programmer is
not required to code the logic indicated by dashed lines.)

Figure 111

12.

o 0 112 2 3 3 445 5 6 6 7
1 ••• 5.~ •• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••. 0 •••• 5 •.•• 0 ••

GO TO HOUR-RATE WEEK-RATE
MONTH-RATE
DEPENDING ON PAYCODE.

Rule 1 in Figure 111 states that the identifier in the GO TO
statement with the DEPENDING ON option must represent a positive
or unsigned integer. If the integer is zero or is larger than
the number of paragraph names listed, the GO TO statement is
ignored. Match the effects of the statement above with the
assumed values of PAYCODE.

1) 9

2) 3

3) 1

4) 0

*

a. Control is
transferred to
HOUR-RATE.

b. Control is
transferred to
WEEK-RATE.

c. Control is
transferred to
MONTH-RATE.

d. Control is
transferred to
PAYCODE.

e. Control passes
to the statement
following the
GO TO statement.

* *
1) e
2) c
3) a
4) e

13.

o 0 1 1 2 2 3 3 445 5 6 6 7
1. • • 5. • •• 0 • • • • 5. . •. O. • •• 5 •••• O. • • • 5. • •• 0 • • • • 5. • • • O •• '. '. 5 •••. O. • •• 5 • • • . 0 ••

IF INDICATOR IS EQUAL TO 1
GO TO UPDATE-ROUTINE.

IF INDICATOR IS EQUAL TO 2
GO TO ADD-ROUTINE.

IF INDICATOR IS EQUAL TO 3
GO TO DELETE-ROUTINE.

The example above shows IF statements can be used to transfer
control depending on the value of a variable. Write a GO TO
statement with the DEPENDING ON option that will have the same
effect as the three IF statements above.

485

* * *
001122334 4 556 6 7
1 ••. 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

GO TO UPDATE-ROUTINE
ADD-ROUTINE DELETE-ROUTINE
DEPENDING ON INDICATOR.

14. Which of the following statements would cause a transfer of
control to paragraph MATH when the value of MAJOR is 2?

a.

o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• Q •••• S •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b.

IF MAJOR IS EQUAL TO 2
GO TO ~~TH.

o 0 112 2 3 3 445 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c.

GO TO MATH DEPENDING ON
MAJOR IS EQUAL TO 2.

o 0 112 2 3 344 556 6 7
1 ... 5 ...• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

a,c

GO TO ENGLISH MATH ANTHRO
DEPENDING ON MAJOR.

* * *

15. Refer to Figure 111 and write a statement that will transfer
control to paragraph TECHNICAL if the value of TYPE-OF-STUDENT is
4, to paragraph NONDEGREE if the value of TYPE-OF-STUDENT is 3,
to UNDERGRADUATE if the value is 2, and to GRADUATE if the value
is 1.

* * *
o 0 112 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 ••

486

GO TO GRADUATE UNDERGRADUATE
NONDEGREE TECHNICAL
DEPENDING ON TYPE-OF-STUDENT.

16.

o 0 112 2 3 344 556 6 7
1 ... 5 ..•• 0 .•.. 5 .•.. 0 •••. 5 •••. 0 •••• 5 ••.• 0 .•.•• 5 0 ••.• 5 ••.• 0 ••.. 5 .••. 0 •.

03 PAYMENT-HISTORY PIC 9.
88 BAD VALUE 1.
88 POOR VALUE 2.
88 SLOW VALUE 3.
88 AVERAGE VALUE 4.
88 GOOD VALUE 5.
88 EXCELLENT VALUE 6.
88 NONE VALUE 7.

Write a statement that will cause transfer of control to one of
the paragraphs BAD-ROUTINE through NONE-ROUTINE based on the
respective values of PAYMENT-HISTORY.

* * *
o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ..• 5 .•.• 0 •••. 5 •.•• 0 •••. 5 .•.• 0 •••• 5 .••• 0 •••• 5 ..•• 0 •••• 5 •. , •. 0 ...• S .••. O •.

GO TO BAD-ROUTINE POOR-ROUTINE
SLOW-ROUTINE AVERAGE-ROUTINE
GOOD-ROUTINE EXCELLENT-ROUTINE
NONE-ROUTINE
DEPENDING ON PAYMENT-HISTORY.

('I'he condi ti on names are not needed when a GO TO statement with
the DEPENDING ON option is used.)

--~--------------_._------

A simple GO TO statement (one without the DEPENDING ON option)
may also be used to transfer control to different pOints in a
program if the program alters the paragraph name specified in the
GO TO statement. The ALTER statement may be used to alter a
paragraph name in a GO TO statement.

487

17.

0011223 3 4 4 556 6 7
1 •.. 5 ..•• 0 •••• 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

488

FIX.
GO TO IN-STATE.

ALTER Statement

Format

ALTER paragraph-name-1 TO [PROCEED TO] paragraph-name-2

Explanation

Rules

The ALTER statement is used to change a name
specified in the GO TO statement so that control
will be transferred to a different point in the
program.

1. Paragraph-name-1 must be the name of a
paragraph that contains only one statement; a
GO TO statement without the DEPENDING eN
Option.

2. Paragraph-name-2 must be the name of a
paragraph to which control is to be
transferred by the GO TO statement in
paragraph-1 during future executions of that
GO TO statement.

Figure 112

Read the explanation and rules in Figure 112. Which of the ALTER
statements below could alter the GO TO statement above so that
execution of paragraph FIX would cause control to be transferred
to paragraph OUT-STATE?

a.

o 0 1 1 2 233 445 5 6 6 7
1 ••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

h.

ALTER FIX TO PROCEED
TO OUT-STATE.

o 0 112 233 445 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c.

ALTER IN-STATE TO PROCEED
TO OUT-STATE.

o 0 1 1 2 2 3 3 445 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••. 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 ••

a

18.

ALTER FIX TO PROCEED
TO IN-STATE.

* * *

o 0 1 1 2 2 3 344 5 5 6 6 7
1 .•. 5 .••• 0 •.•• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

SWITCH-PARAGRAPH.
GO TO PENALTY.

ALTER-PARAGRAPH.

In the segment above the GO TO statement is the only statement in
SWITCH-PARAGRAPH. write a statement that will cause execution of
SWITCH-PARAGRAPH to transfer control to DISCOUNT.

* * *
o 0 112 2 3 3 4 4 5 5 6 6 7
1 ••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •..• 0 ••

ALTER SWITCH-PARAGRAPH TO
PROCEED TO DISCOUNT.

489

19. Which of the following paragraphs could be changed by an ALTER
statement?

a.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •.•. 5 ••.• 0 •••• 5 •••• 0 •••• 5 ••• ~0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PARA1.
GO TO Q R S

DEPENDING ON LETTER.

b.

o 0 112 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• ~ •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PARA2.
GO TO Q.

c.

o 0 112 2 3 3 445 5 6 6 7
1 • • • 5. • • • 0 • • • . 5. • •• O •••• 5. • • • o •••• 5. • •• 0 •• '. . 5. • • • 0 • • • • 5. • •• O •••• 5 • • • • 0 ••

PARA3.

d.

WRITE ERROR-RECORD.
GO TO Q.

o 0 112 2 3 3 445 5 6 6 7
1 ..• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0. __ .5 •••• 0 •.•• 5 •••• 0 ••

PARA4.
ALTER Q TO PROCEED TO S.

* * *

b
(In a the GO TO statement contains the DEPENDING ON option; in c the

GO TO-statement is not the only statement in the paragraph; In d
there is no GO TO statement to be altered.)

20.

o 0 112 2 3 3 4 4 556 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

a

490

GO TO.

A GO TO statement that will be altered before it is executed may
have the form shown above. A GO TO statement that specifies no
paragraph name:

a. must be the only statement in a paragraph.

b. may be executed any time before it is altered.

* * *

21. Refer to Figure 112 and decide which of the following versions of
paragraph END-ROUTINE could be specified as paraqraph-name-1 in
an ALTER statement.

a.

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

END-ROUTINE.

b.

ADD 1 TO COUNTER.
GO TO.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •.•. 0 ..

END-ROUTINE.
ADD 1 TO COUNTER.
GO TO GET-ANOTHER-CARD.

c.

o 0 112 233 445 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 ••.• 5 •••. 0 •••• 5 ••.• 0 .•

END-ROUTINE.
GO TO.

d.

o 0 112 2 3 344 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 .•.• 0 •••• 5 •.•• 0 •.•. 5 •••. 0 ..

END-ROUTINE.
GO TO GET-ANOTHER-CARD.

* * *

c,d

491

22.

0011223 3 4 4 5 5 6 6 7
1 .•• 5 ••.• 0 .••. 5 •.•• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•. 0 ••

492

PARAGRAPH-i.
GO TO BYPASS-PARAGRAPH.

BYPASS-PARAGRAPH.

ALTER PARAGRAPH-i
TO PROCEED TO PARAGRAPH-2

PARAGRAPH- 2.

The segment above contains an ALTER statement. Which of the
following describes the effect of execution of the segment above?

a. After the ALTER statement is executed, execution of
PARAGRAPH-i will cause control to be transferred to BYPASS
PARAGRAPH.

b. Before the
PARAGRAPH-i
PARAGRAPH-2.

ALTER statement is executed, execution
will cause control to be transferred

* * *

Neither (The opposite is true.)

of
to

23.

a

A. !

I
B. ~l

SWITCH-I.' E.

GO TO. :...

C. I

D. 1

Figure 113

The paragraphs in the flow chart segment above are to be executed
in the sequence A, B, SWITCH-1, C, 0, Br SWITCH-1, E. The dashed
line on the flow chart indicates the direction of flow of control
the second time paragraph SWITCH-1 is executed. To specify a
paragraph name for the GO TO statement in paragraph SWITCH-1 you
must insert an ALTER statement into paragraph:

a. A to specify transfer of control to paragraph C when the GO
TO is first executed.

b. SWITCH-1 before the GO TO statement to specify transfer of
control each time the GO TO statement is executed.

c. SWITCH-1 after the GO TO statement to specify transfer of
control to paragraph E when the GO TO statement is executed
the second time.

* * *

493

24.

sw ITCH-I. I E.

GO TO. ~

C. I

I

Figure 114

Write the statement to be inserted into paragraph A of the
flowchart shoWn in Figure 113 to provide for transter of control
in SWITCH-1 as indicated by the solid line in the flow chart
above.

* * *
o 0 112 2 3 3 4 4 556 6 7
1 ... 5 •.•. 0 .••. 5 •••• 0 •••• 5 ..•• 0 •••. 5 •••• 0 •.•• 5 •.•. 0 •••• 5 •••• 0 •... 5 •.•• 0 •.

ALTER SWITCH-1 TO PROCEED TO C.

494

25.

I
B. I

SWITCH-I. I E.

GO TO. -

C. I

D. I

Figure 115

write the last two statements for paragraph D in the flow chart
above to alter SWITCH-l paragraph to provide for transfer of
control in SWITCH-l as indicated by the dashed line.

* * *
0011223 344 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 .••. 0 •••• 5 .•.• 0 •.•• 5 •••• 0 ••

ALTER SWITCH-l TO PROCEED TO E.
GO TO B.

495

26. University Tog Shops, Inc. maintains a file containing
information on all of its member shops. The file needs updating
every year. An input card file contains data on shops that have
closed, identified by a 1 in column 80 of a card, shops that have
opened, identified by a 2, shops that have changed managers,
identified by a 3, and general income information, identified by
a 4. Different routines are to be executed for each
identification number. To solve this problem, you would use:

b

a. an ALTER statement as soon as a card is read.

b. a GO TO statement with the DEPENDING ON option as soon as a
card is read.

* * *

27. In a program you are writing, you are to transfer control to a
message routine after the main sequence is executed a second
time. You could accomplish this ~ inserting:

a,b

a. an ALTER statement to be executed at the end of the first
execution of the main sequence.

b. a GO TO statement as the only statement in a paragraph.

c. a GO TO statement with the DEPENDING ON option to be executed
after the first execution of the main sequence.

* * *

(Both ~ and ~ would be required.)

SUMMARY

In this lesson you have learned to use the DEPENDING ON option of the
GO TO statement and to use the ALTER statement in conjunction with a GO
TO statement that mayor may not specify a paragraph name .•

END OF LESSON 24

496

LESSON 25

497

LESSON 25 - DATA FORMATS

INTRODUCTION

In this lesson, some techniques for improving the efficiency of a
program will be presented. You will learn some situations that cause
extra instructions to be generated by the compiler and how to avoid
these situations by defining data in specific ways in data description
entries.

Specific COBOL language features you will learn to use in this lesson
are:

USAGE clause
DISPLAY option of the USAGE clause
COMP (COMPUTATIONAL) option of the USAGE clause

Programming techniques that you will learn to use in this lesson will
involve:

498

Decimal point alignment
Types of moves

This lesson will require approximately three quarters of an hour.

USAGE IS DISPLAY
DISPLAY statement

The reserved word DISPLAY can
clause or in a DISPLAY statement.
frames you will learn to use
clause.

be specified either in a USAGE
In the initial sequence of
the word DISPLAY in the USAGE

1. Thus far in the course, every data item has been represented in
core storage in the same way. The USAGE clause may be used to
specify how a data item is to be stored in core storage. The
USAGE clause:

a. determines the manner in which a data item is represented in
core storage.

b. may be omitted from a program.

* * *
Both

2. The DISPLAY option of the USAGE clause has the same effect as the
omission of the USAGE clause. The DISPLAY option of the USAGE
clause could be specified for:

a. alphabetic data.

b. alphanumeric data.

c. numeric data.

d. edited data.

* * *
All of these
(USAGE IS DISPLAY is seldom specified in a program, since omission of
the clause has the saroe effect.)

3.

0011223 3 4 4 5 5 6 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

Data

The
the

02 NAME PIC X(20) USAGE IS DISPLAY

entry above indicates that the USAGE clause is specified in
Division.

* * *

499

4. USAGE IS DISPLAY

b

The USAGE clause shown above specifies that each character
position in the picture of its associated variable will require
one word of storage. The DISPLAY option of the USAGE clause:

a. specifies that a variable with picture 99V99 will require 5
words of storage.

b. has the same effect as the omission of the USAGE clause.

* * *

(V does not represent a character position.)

The term DISPLAY variable refers to a variable that has USAGE IS
DISPLAY specified in its data description entry, or has no USAGE
clause at all. The term displayed value refers to a value of a
variable that was specified in a DISPLAY statement. It is important
to note, however, that each variable for which the USAGE clause has
not been specified is frequently referred to as a DISPLAY variable.
A numeric variable for which the USAGE clause has not been specified
may be referred to as a numeric DISPLAY variable.

5. Values of DISPLAY variables are stored one character per word.
Values of numeric DISPLAY variables, called external decimal
values, contain a representation of an algebraic sign in the left
half of the rightmost position of a word. Examples of the
storage of values of DISPLAY variables are shown in the table
below. Z = Zone, equivalent to hexadecimal F.

r--------------- ---,
1 PICTURE Value Storage in Hexadecimal I
1--------------- --1
1 X(6) PT-109 D7E360F1FOF9 (EBCDIC CODE) 1
1--------------- ---1
1 9(5) 11995 ZlZlZ9Z9F5 F represents "unSigned" 1
1--------------- ---1
1 S999 +720 Z7Z2CO C represents "+ sign" 1
1--------------- --1
I S9V99 -125 ZlZ2D5 D represents "- sign" 1 L _____________ __ _ ___ J

500

Referring to the table above, show
following table will be stored if either
specified or the USAGE clause is omitted.

how the
USAGE

values in the
IS DISPLAY is

r------------------ --,
1 PICTURE Value Storage 1
1--------------- ---------+---------------------------------------1
1 X (7) 2551112
1-------------
1 9 (7)

1-------------
1 S9(4) +1969
I--------------~-------
1 S9V99 -198 L ______________ _

Storage

F2 F5 F5 F1 Fl F1 F2
Z2 Z5 Z5 Zl Zl Zl Z2
Zl Z9 Z6 C9
Zl Z9 08

1
---------------------------------------1

1
------------------------------------1

1
---1

1 __ _____________________________________ J

* * *

(An unsigned representation, F, is placed in the rightmost word or
numeric DISPLAY variable which contains no S in its picture.)

6. Numeric values (variables whose picture contain only 9's, and an
S or V if necessary) may be stored in a more compact way if
COMPUTATIONAL is specified in the USAGE clause. (COMPUTATIONAL
is usually written COMP since the form is shorter.) Values of
COr-iP are stored as binary data.

A binary data item has a decimal equivalent that consists of
numeric characters 0 through 9 plus a sign. It occupies one
word, two words, or four words, corresponding to decimal lengths
of 1 through 4 digits, 5 through 9 digits, and 10 through 18
digits respectively. The leftmost bit of the storage area is the
operational sign.

USAGE IS COMPUTATIONAL must be specified for binary data.

PICTURE VALUE STORAGE

sign WORD
S9999 +1234 0000 0100 1101 0010

S9999 -1234 1111 1011 0010 1110

9999 -1234 0000 0100 1101 0010

The sign position of a binary field, internally a '1' in the
leftmost position, means the number is negative. A ' 0 ' in the
leftmost position of a binary field means the number is positive.

501

7.

o 0 1 1 2 233 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5~ •• _0 •••• 5 •••• 0 •.••• 5 •• ~.0 •••• 5 •••• 0 ••

502

WORKING-STORAGE SECTION.
77 PRICE PIC S99V99 USAGE IS COMP.
77 QUANTITY PIC 999 USAGE IS COMP.
77 EXTEND PIC X9(5)V99 USAGE IS COMP.

Refer to the data description entries above, and match each
phrase below with the variables that it describes.

1) PRICE
2) QUANrITY
3) EXTEND

a. Binary.
b. DISPLAY variables.
c. Requires one word of storage.
d. Requires two words of storage.
e. Numeric field.

* * *

1) a,c,e
2) a,c,e
3) a,d,e

8. USAGE IS COMP.

COMP may be specified only for numeric variables. Which of the
following data description entries could be correct?

a. 02 ESTATE PIC 999V99
USAGE IS COMP.

b. ESTATE PIC 999V99
USAGE IS DISPLAY.

c. EMPLOYER PIC X (22)
USAGE IS COMP.

d. EMPLOYER PIC X(22)
USAGE IS DISPLAY.

* * *
a,b,d
(The picture of a COMPUTATIONAL item may
operational sign S, the implied decimal point
P' s.)

contain only 9's, the
V, and one or more

r----------
Item

External
Decimal

Internal Representation of Numeric Items

Value

-1234
Description

DISPLAY
PICTURE 9999

DISPLAY
PICTURE S9999

--------------------------------,
Internal Representation 1

l~~~:l~~~~l~~~~l~~~~J
word

l~~~:l~~~~l~~~~l~OD~J
word

Note: Internally the 0004 which
represents -4 is the same bit
configuration as the EBCDIC
character M.

Binary +1234 ;~g~~~T!~~~ lOO~~l~:~~l~~~:l~Ol~J
s word

---------- --------- --------------- --------------------------------1
: ~~~~~~~l +1234 ~:~~~~ S9999 l~~~:l~~~~l~~~~l~~:~J :
1 word I
I I

I
I DISPLAY IOOZ1100Z2100Z3100F41 II

PICTURE 9999 . - - - .
I word I
1---------- --------- --------------- --------------------------------1
: Binary -1234 ~~~~g~T~~~~ l::::1:~~:1~~:~1:11~J :
1 word I
I I
: ~~g~~~T~~~~ lOO~~l~:~~l~:~:l~~:~j :
I word 1
1---------- --------- --------------- --------------------------------1
1 Z = zone, equivalent to hexadecimal F (bit configuration is 1111) I
I Hexadecimal F nonprinting plus sign I
I Hexadecimal C = internal equivalent of the plus sign I
I (bit configuration is 1100) I
I Hexadecimal D internal equivalent of the minus sign I
I (bit configuration is 1101) I
I S = the sign position of a numeric field: internally a '1' in I
I position S means the number is negative, whereas a '0' in I
I position S means the number is positive I L ___ -l

Figure 116

503

9.

001122334 4 556 6 7
1 ..• 5 •••• 0 ••.• 5 ••.• 0 •••. 5 •••• 0 •••• 5._ •• 0 •••. 5 •••• 0 ••• ~5~ ••• 0 •••• 5 •••• 0 ••

WORKING-STORAGE SECTION.
77 PRICE PIC S99V99 USAGE IS COMP.
77 QUANTITY PIC 999 USAGE IS COMP.
77 EXTEND PIC S9(!»V99.

Figure 116 explains the internal representations that are
necessary in arithmetic operations. Refer to Figure 116 and the
working storage variables above to select the effects of
execution of the multiply statement below.

0011223 344 556 6 7
1 •.• 5 •.•• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5.~ •• 0 •••• 5 •••• 0 ••

MULTIPLY PRICE BY QUANTITY
GIVING EXTEND.

a. PRICE and QUANTITY are converted to COMP.

b. the result is converted to COMP before being placed in
EXTEND.

* * *

Neither
(PRICE and QUANTITY are not converted. The COMP result is converted
to DISPLAY before being placed in EXTEND.>

--~-~--------~------------

504

10. DIVIDE EXTEND INTO QUANTITY.

a,c

When the DIVIDE statement above is executed:

a. EXTEND will be converted to COMPo

h. QUANTITY will be converted to DISPLAY.

c. the result will be placed in the result field without
conversion.

* * *

(Since both the result and the result field, QUANTITY, are COMP there
is no conversion.>

The next sequence of frames will explain the effects of arithmetic
operations, including conversions required for numeric variables,
output requirements for result fields, alignment of decimal pOint,
and effects of the sign in arithmetic operations.

11. In writing an efficient program a programmer should specify USAGE
clauses to provide for as few conversions as possible. He should
specify COMP for variab1es that will be:

a. used in arithmetic operations .•

b. specified in arithmetic statements.

c. specified in COMPUTE statements.

* * *

Any of these

12. ALIGNMENT of decimal points is another consideration in
arithmetic operations. when you do an addition or subtraction
problem by hand, you are careful to align the decimal points.
The compiler must do this also, if the pictures of the variables
do not provide for alignment. Any extra tasks to be performed by
the compiler, such as conversion or alignment, decrease the
efficiency of a program.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 •.• 5 ••.• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 ••• ~0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

ADD TAX TO SUBTOTAL.

Which of the three data descriptions for TAX and SUBTOTAL below
would result in the most efficient execution of the statement
above?

a.

o 0 112 2 3 344 5 5 6 6 7
1 ••• 5 .••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 ••• ~0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

77 TAX PIC S99V99
USAGE IS COMP.

77 SUBTOTAL PIC S9999
USAGE IS COMP.

h.

o 0 112 2 3 3 445 5 6 6 7
1 ..• 5 .••• 0 •••. 5 •... 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

77 TAX PIC S99V999
USAGE IS COMP.

77 SUBTOTAL PIC S999V99.
USAGE IS COMP.

c.

o 0 1 1 2 2 3 3 445 5 6 6 7
1 ••. 5 .••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

77 TAX PIC S99V99.
USAGE IS COMP.

77 SUBTOTAL PIC S999V99.
USAGE IS COMP.

* * *
c

505

13.

o 0 112 2 3 3 4 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

SUBTRACT DISCOUNT FROM BALANCE.

BALANCE is a variable that can contain values up to but not
including 100000. DISCOUNT is computed in the program to be 10
percent of BALANCE. Write level 77 data description entries which
will result in efficient execution of the above statement.

* * *

0011223 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

77 BALANCE PIC S999V99 USAGE IS CaMP.
77 DISCOUNT PIC S99V99 USAGE IS CaMP.

(You should have specified the same number of decimal places for each
variable.)

14.

o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5_ ••• 0 •••• 5 •••• 0 •.

506

77 BALANCE PIC S999V99.
USAGE IS CaMP.

77 DISCOUNT PIC S99V99.
USAGE IS CaMP.

SUBTRACT DISCOUNT FROM BALANCE
GIVING NEW-BALANCE.

The value of NEW-BALANCE after execution of the statement above
is to be added to a final total. The appropriate picture for
NEW-BALANCE for efficient execution of the statement above would
be:

a. S999V999

b. S999V9

Neither
(S999V99)

* * *

15.

o 0 112 233 445 5 6 6 7
1 ..• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 ••

a

77 DISCOUNT-RATE PIC SV99.
USAGE IS COMP.

77 BALANCE PIC S999V99.
USAGE IS COMP.

MULTIPLY DISCOUNT-RATE
BY BALANCE GIVING DISCOUNT.

In order to avoid any truncation or padding with zeros in the
value transmitted to DISCOUNT as a result of the above statement,
DISCOUNT would be given a picture such as:

a. S999V9999

b. S999V99

c. S999V99999

* * *

(b would cause truncation of two digits. This is permissible, of
course, but a programmer should be aware of truncation whenever it
occurs. In this example, if he needs only two decimal places for
DISCOUNT, he may prefer to describe it as S999V99 and specifiy the
ROUNDED option in his arithmetic statement.)

507

16.

0011223 3 4 4 556 6 7
1 5 0 5 0 5 •••• 0 •••• 5 0 5 •••. 0 •••• 5 .••• 0 •.•• 5 •••. 0 ••

77 DISCOUNT-RATE PIC SV99.
USAGE IS COMP.

77 BALANCE PIC S999V99.
USAGE IS COMP.

When a numeric literal is used in an arithmetic statement, it
should be expressed in a way that does not require alignment by
the compiler. Which statement expresses a numeric literal for
efficient execution?

a.

o 0 112 233 4 4 556 6 7
1 ..• 5 0 •••• 5 •.•. 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 .••• 0 ••

ADD 20 TO BALANCE.

h.

o 0 112 233 4 4 556 6 7
1 .•• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

ADD 20.00 TO BALANCE.

c.

o 0 112 233 4 4 556 6 7
1 ••• 5 .••• 0 •••• 5 ••.• 0 5 •••• 0 5 0 5 •.•• 0 •••• 5 •••• 0 5 •••• 0 ••

ADD 20VOO TO BALANCE.

* * *

b

---~------

508

17. Whenever a value (signed or unsigned) is stored in a numeric
variable with an unsigned picture, the compiler inserts a symbol
meaning "absolute value" into the word that would ordinarily hold
the sign representation. Although the value will be treated as
positive, execution time for the object program will be increased
if the unsigned value is later used in a computation. For this
reason an S should be included in the picture of:

a. every numeric variable.

b. any variable that will be used in an arithmetic statement.

c. every variable.

* * *

b

--_.

Specifying the correct usage and an S in the picture of any variable
that will be used in an arithmetic statement contributes to the
efficiency of program execution.. Another means of increasing
efficiency is to avoid repeating the same conversion or operation on
the same variables or literals.

18.

r---T---------
1 Circumference of cylindrical tank 1 2PiR
1---+---------
1 Area of side of cylindrical tank I 2PiRH
1---------------------------------------+---------
1 Area of top or bottom of tank i PiR2
1--- ---------
1 Volume of tank PiR2H L___ _ _______ _

Figure 117

---------------,
1
1

R = radius 1
1

H = height 1
I
1 _ _______________ J

509

A programmer for a manufacturing firm might find it necessary to
use of the above formulas for computations relating to a single
tank radius. Each formula in the table contains the factor R.
Instead of including 3.14159 * RADIUS in each COMPUTE statewent,
the programmer would have a more efficient program if the
statement:

a.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 ••.. 5 •..• 0 ••.. 5 •••. 0 •••. 5 •••• 0 .••. 5 •••• 0 ••.• 5 •••• 0 •••• 5 •.•• 0 •.

COMPUTE PI-R 3.14159 * RADIUS

were executed, and the variable PI-R were used in all other
COMPUTE statements.

b.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 .•. 5 ...• 0 •••. 5 •... 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 .••• 5 ••.• 0 •.

510

Both

COMPUTE AREA-OF-SIDE =
CIRCUMFERENCE * HEIGHT

were executed to compute the second formula above after computing
the first formula.

* * *

19. Factors that must be considered in writing an efficient program
are:

a. the type of storage of the nonnumeric variables.

b. conversion of
operations.

values of variables used in arithmetic

c. decimal point alignment of literals or values of variables
used in arithmetic operations.

d. the presence or absence of a sign in values of numeric
variables.

e. repetition of the same operation involving the same literals
or variables.

f. repetition of a conversion involving the same variable.

* * *
b,c,d,e,f

20. Match the actions a programmer could take with each factor in
writing an efficient program.

1) Decimal point
alignment of
literals or values
of variables used
in arithmetic
operations

2) Conversions of
values of
variables used in
arithmetic
operations

3) The presence of

1) b,c
2) a
3) d

a sign in values of
numeric variables
used in arithmetic
operations

*

a. Specify USAGE clauses
for variables to
provide for as few
conversions as
possible in arithmetic
operations

b. Specify pictures for
variables to provide
for decimal paint
alignement

c. Express numeric
literals in a way that
does not require
alignment by the
compiler

d. Specify an S in the
pictures of variables

* *

21. Match the actions a programmer could take with each factor in
writing an efficient program.

1) Repetition of the same
operations involving
the same variables or
literals

2) Repetition of a
conversion involving
the same variable

*
1) b
2) a

*

a. Provide for a
conversion common to
several steps in one
step and then use the
result in subsequent
steps

b. Provide for an
operation common to
several computations
in one co~putation
and then use the
result in all
subsequent computations

c. Specify an S in the
picture of variables

*

The topics presented so far in this lesson have dealt with increasing
efficiency in a program by proper use of numeric variables. The next
sequence of frames will show several ways of printing numeric
variables after any computations are completed.

511

22.

001122334 4 556 6 7
1 •.. 5 •.•• 0 •••• 5 ••.• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 ••.• 5 •••. 0 ••

77 A PIC S999"
77 B PIC S999 USAGE IS CaMP.
77 C PIC S99V99.
77 D PIC S99V99 USAGE IS CaMP.
77 E PIC X (6) •
77 F PIC $99.99.
77 G PIC xxx.

The form of the rece1v1ng variable determines the type of
elementary move. Figure 118 shows the types of moves. Refer to
the entries above and Figure 118 to match the types of moves in
the following column with the moves specified in the moves
statements.

Specific Conversions in Certain Moves

r--,
I MOVE sending-variable TO receiving-variable 1
1------------------- ------------------- --------------- --------------1
I Alphanumeric Numeric Edit I
1 move move move 1

------------------- --------------- -------------1
1 1
I Alphanumeric External Edited I
1 Decimal 1
1 variable 1
1------------------ ------------------- --------------- --------------1
I Alphanumeric No conversion Whole Whole 1
1 numbers only numbers only I
1------------------- ------------------ --------------- -------------1
1 External Decimal Whole numbers No conversion Value is 1
1 only, edited 1
1 no conversion 1
1------------------- ------------------- --------------- --------------1
1 Edited No conversion Invalid move Invalid move 1 l___________________ ___________________ _______________ _ ____________ -J

512

How to use the chart:

Find the data type of the sending variable in the leftmost
column. Then find the data type of the receiving variable in the
row across the top of the chart. Extend imaginary lines into the
chart from the two data types. These two lines will intersect in
a block that tells what conversion takes place.

Figure 118

1)

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 .•• 5 .••• 0 •••• 5 •.•• 0 ••.• 5 •••• 0 •••• 5 •••• 0 ••.• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 .•

MOVE A TO B.

2)

0011223 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••. 0 ••.• 5 ..•• 0 ••

MOVE B TO G.

3)

o 0 112 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MOVE G TO A.

4)

0011223 344 556 6 7
1 .•• 5 .••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 ••.. 0 ••

MOVE C TO F.

a. Alphanumeric rr.ove

b. Numeric wove

c. Edit move

* * *
1) b
2) a
3) b
4) c

23. When a numeric variable is printed or displayed, the rightroost
character printed may not be the rightmost digit of the value of
the variable. Because the rightmost word contains a sign
representation in addition to the digit, the rightmost character
printed may be a digit punch with an overpunch. For this reason,
a numeric variable is usually moved to an alphanumeric or edited
variable before it is printed or displayed. Figure 118 shows
effects and limitations of moves involving numeric variables. A
numeric variable with picture S999 could be moved to:

a. an alphanuroeric variable

b. an edited variable

* * *
Either (S999 represents an integer, or whole number.)

513

24. Assume that a value may be moved more than once to achieve a
final converted format not achievable in a single move.
According to Figure 118, an external decimal value can be moved
to an:

d. alphanumeric variable if it is a whole number.

b. edited variable, and then to an alphanumeric variable
regardless of the location of the decimal point.

* * *
Either

25.

o 0 112 2 3 344 5 5 6 6 7
1 ... 5 •••. 0 •... 5 •••• 0 •••• 5 0 ..•. 5 •.•. 0 .•.. 5 ...• 0 ••.• 5 •••• 0 •••• 5 •••• 0 ••

514

b,c

WORKING-STORAGE SECTION.
77 PRICE PIC S99V99.

USAGE IS COMP.
77 QUANTITY PIC 999.

USAGE IS CO~]P.
77 EXTEND PIC S9(5)V99.

MULTIPLY PRICE BY QUANTITY
GIVING EXTEND.

If you wanted to print the result of the statement above, you
would first:

a. move EXTEND to an alphanumeric variable.

b. move EXTEND to an edited variable.

c. change the PICTURE clause for EXTEND from external decimal to
a numeric edited item.

* * *

26. According to Figure 118, a numeric variable can always be moved
to an edited variable. The edited variable can always be moved
to an alphanumeric variable. One way to print an edited result
of an arithmetic operation would be to:

a. define the result field as an edited variable and then move
it to an alphanumeric variable.

b. define the result field as a decimal variable and then move
it to an edited field.

* * *
Either

r-----------------------------------
Receiving Field

GR AL AN ED BI
Source Field

Group (GR) y y Y

Alphabetic Y Y y N N

Alphanumeric (AN) Y Y y

External Decimal (ED) y y

Binary (BI) y1 I N y y

Numeric Edited (NE;') YIN y N N

Alphanumeric Edited (ANE) Y I y y N N
---~----

ZEROS (numeric or alphanumeric) Y 'N y

SPACES (AN) ~--T-~-- y N N

HIGH-VALUE, LOW-VALUE, QUOTES ~--T-~-- y N N

ALL "character" Y Y y ys ys

Numeric Literal y2 N y y

1-----------------------------------
1 Nonnumeric Literal Y Y y ys ys
L _________________________________ __

1 Hove without conversion (like AN to AN)
2 Only if the decimal point is at the right of the least

significant digit
3 Numeric move

NE

N

y

y

N

N

N

N

ys

----,
1

ANEI
1

----I
y1 1

----I
y 1

----I
y 1

----I
y2 1

----I
y2 1

y

y

y

y

y

y

Y y2

-----1
ys y 1

---~

4 The alphanumeric field is treated as an ED (integer) field
s The literal wust consist only of numeric characters

Figure 119

27. Figure 119 shows the types of valid moves for various source
variables and receiving variables. The source and receiving
variables shown are group and elementary variables. according to
Figure 119 the type of move from one group variable to another
group variable:

a. depends on the form of the receiving variable

b. is always numeric

c. is always an alphanumeric move

* * *
c

515

28. In a preceding frame, it was stated that the type of elementary
move was determined by the form of the receiving variable. You
can see from Figure 119 that this rule:

b,c

a. applies to all moves.

b. applies only to elementary moves.

c. does not always apply to moves in which a group item is
involved.

* * *

Effects of Types of Moves

r------------ ----------,
1 Type of move Receiving

item
Compiler
action
during

move

Alignment Padding if
necessary

Truncation 1
1 if 1
1 necessary 1
1 1
1-------------- ----------1
1 Alphanumeric Group none at left

of value
on right

with spaces
on right 1

1
1
1
1
1

Alphabetic
or alpha
nuroeric

any nec
essary

conversion

at left
of value

on right
with spaces

1
----------1

on right 1
1
1

1------------- ----------1
1 Numeric External

decilI'al or
packed
decimal

any nec
essary

conversion

at
decimal
point

on left
and right
with zeros

on left 1
1
1
1

and rightl
1
1

1-------------- ----------1
1 Edit Edited editing

and any
necessary

at
decimal
point

on left
and right
with zeros

on left 1
1
I
I conversion
1

(unless
suppressed)

and rightl
1
1
1 L ___________ _ _ ________ -J

516

Figure 120

29. Figure 120 describes the effects of the different types of moves.
For alphanumeric moves it describes the effects for both group
and elementary variables. 'Select the statements that are correct
based on Figure 120.

a. No conversion takes place when the receiving item is a group
variable.

b. Padding with spaces takes place only in an alphanumeric move.

c. If an external decimal value were moved to a longer
alphanumeric variable, it would be aligned at the left of the
receiving item and padded with spaces on the right.

* * *

All of these

SUMMARY

In the preceding part of this lesson, you have learned some ways to
provide for efficiency in a program. The ways of increasing efficiency
in arithmetic operations also apply to comparisons of numeric operands,
which are compared algebraically and thus require arithmetic operations
to be performed. Both numeric operands in a relational condition will
be converted to decimal if they are not stored in that form. The
decimal 'points will be aligned and the values will be padded with zeros
if the programmer has not provided for this.

END OF LESSON 25

517

THIS PAGE INTENTIONALLY LEFT BLANK

518

LESSON 26

519

LESSON 26 - EDIT CHARACTERS

INTRODUCTION

A number of additional picture characters that will be useful to you
in your career as a programmer will be presented in this lesson. You
wil study these edit characters for use in the PICTURE clause:

z
*
B
o

+
DB
CR

You will also learn the programming techniques that involve taking
advantage of valid moves.

This lesson will require approximately three quarters of an hour.

520

1. Figure 121 shows eight additional picture characters. The
picture characters Z and * represent digit positions and specify
that •••••••• will be suppressed and replaced by •••••••• or

r---------
1 Picture
1 char.
1---------
1 z
1
1
1
1---------
I *
1
1
I
1---------
I B

I
I
I
I
I
1---------
I 0
1
1
I
1
1
1---------
1 CR
1 DB
1
1
1
1---------
1
1
1
1
1
1---------
1 +
1
1
1
1 L _______ _

Data Type

numeric
edited

numeric
edited

numeric
edited

numeric
edited

numeric
edited

numeric
edited

numeric
edited

leading zeros
blanks
asterisks

Additional Edit Characters

specification

A leading zero in the
associated position will
be suppressed and
replaced with a blank

A leading zero in the
associated position will
be suppressend and
replaced with an asterisk

The associated position
in the value will contain
a blank, $, or *.

The associated position in
the value will contain a
zero, blank, $, or *.

A negative indicator will
be inserted into the value
when the value is negative;
two blanks will appear
otherwise.

A minus sign is inserted
into the value when the
value is negative; one
blank will appear otherwise

The appropriate sign
(+ or -) will be inserted
into the value.

Figure 121

* * *

-------------------,
Additional 1
explanation 1

-------------------1
No Z may be to 1
the right of a 9. I

1
1

-------------------1
No * may be to I
the right of a 9. 1

1
1

-------------------1
When a B included 1
in a string of $'sl
*'s, or Z's, a I
a digit,S, or * 1
could appear in I
its position. I

-------------------1
When a 0 is I
included in a I
string of $'s,*'s 1
or Z's, a digit,S I
or * could appear I
in its position. I

-------------------1
These symbolsmustl
be at right end ofl
picture. I

1
1

-----------------1
A - may be at 1
either end of I
picture; may be 1
"floated" with thel
same rules as $. 1

-------------------1
A + may be at 1
either end of the 1
either end of the I

"floated" with the I
same rules as $. I ___________________ J

521

2.

o 0 112 2 3 344 5 5 6 6 7
1 .•. 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

522

02 AMOUNT PIC ZZ9

The Z picture character in the picture of a variable specifies
replace leading zeros in positions

when a value is stored in the variable. If
to AMOUNTr defined as above r the value
the value 8 were moved to AMOUNT, the value
value 0 were moved to AMOUNT r the value

that blanks are to
corresponding to Z's
the value 88 is moved
would be ~88. If
would be ~~8. If the
would be:

a. ~~~ (all blanks)

h. 000

c. ~)j0

* * *

c (A 9 always indicates that the digit will appear.)

3. When the value 4595 is moved to a variable with the picture
ZZZ.99, the value of the variable will be •••••••••

* * *
1645.95

4. Asterisks in a picture specification have the effect of replacing
suppressed zeros with asterisks. If the value 9000 were moved to
a variable defined with the picture ***.99, the value of the
variable would be *90.00. If the value 900 were moved to the same
variable, the value of the variable would be •••••••• •

* * *
**9.00

5. The * and Z picture characters may not appear in the same PICTURE
clause. In addition, neither an * nor a Z may appear to the
right of a 9. Which of the following is a valid picture?

a. ***ZZ

b. ZZ.99

c. **.ZZ

d. Z9.99

e. Z9.ZZ

f. 99.**

g. **.**

* * *

b,d,g

6.

1)
2)
3)

7.

r-------
1 Picture
1--------
I ***.99
1 ***.**
1 ***.99
1 ***.** L _______ _

Source

000/04
000/04
000/00
000/00

------,
Result 1

-------1
***.0'1 1
***.O't 1
***.00 1
***.** 1 ________ J

As shown in the table above, the effect of placing asterisks in
all positions in a picture when the value of the variable is not
zero is that leading zeros preceding the point are suppressed and
replaced by asterisks. When the value of the variable is zero,
all positions are replaced by asterisks except the decimal pOint
position. Give the result of moving each of the following values
to a variable with picture ****.**.

1) 98700

2) 00005

3) 000000

*987.00
****.05
****.**

r--------
1 Picture
1--------
1 ZZZ.99
1 ZZZ.ZZ
1 ZZZ.99
I ZZZ.ZZ L ______ _

Source

000/04
000/04
000/00
000/00

* *

--------,
Result 1

-------1
lSinS.04 1
i'nnzS.04 1
iSi5iS.OO 1
in1iSlojiS~ I _ _____ J

*

523

b

~s shown in the table above, the effect of placing Z's in the
entire picture is the same as the effect of placing $'s in the
entire picture; that is:

a. all leading zeros are suppressed, even if they appear to the
right of the decimal point.

b. if the value of the variable is zero, the entire item will be
suppressed.

* * *

8. When the value of a variable that has a picture ZZZZ.ZZ is zero,
•••••••• will be printed. When the value of a variable that has
a picture ****.** is zero, •••••••• will be printed.

* * *

blanks (nothing)
asterisks (*'s) and the decimal point

9. You know that a comma insertion character within a floating
string of dollar signs may be suppressed when a dollar s~gn is
printed to the right of the comma, or printed as a dollar sign if
the first printed digit is immediately to the right of the comma
position. This rule for comma insertion is true also for strings
of Z's or asterisks.

o 0 112 233 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

524

03 AMOUNT PIC ZZZ,ZZZ.

Write the value of AMOUNT after the following values are moved to
it.

1) 920617

2) 362

* * *
1) 920,617
2) iSiSiSiS362

10.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••. 5 •••• 0 •••• 5 •••• 0 ••

03 AMOUNT PIC ***,***.
03 BALANCE PIC **,***.**.

If the value 20617 were moved to AMOUNT, its value would be
20,617. The value 617 moved to AMOUNT would cause its value to
be ****617. If no digit appears to the left of the comma
position, an asterisk instead of a comma is printed in the co~mon
position. If the value 2198 were moved to BALANCE and printed:

a. the printed value would be **,*21.98.

b. four asterisks would appear at the left of the value.

* * *
b (The printed value would be ****21.98.)

11. Write pictures for the variables described below:

1) DEBT is to contain up to $50,000.00; the dollar sign is to be
printed immediately preceding the first nonzero digit. If
the value is zero, $.00 is to be printed.

2) OWES is to contain amounts up to 50,000.00; leading zeros are
to be replaced by blanks. If the value is zero, nothing is
to be printed.

3) CHECK is to contain amounts up to 50,000.00; leading zeros
are to be replaced by asterisks. If the value is zero, eight
asterisks and the decimal point are to be printed.

* * *
1) $$$, $$$. 99
2) ZZ,ZZZ.ZZ
3) **,***.** (If the value is zero, the comma is replaced by an

asterisk.)

12. According to Figure 121, each B or 0 represents one blank or zero
to be inserted into a value. The picture 99,000 would cause:

a. three zeros to be inserted into a value.

h. one comma to be inserted into a value.

c. six characters to be printed.

* * *
All of these

525

526

13. The picture 9,000 would cause the value 5 to be printed as:

a. 0,005

b. 5,000

c. 5000

* * *
b

14. The picture 999B9999 would cause the value 2551112 to be printed
as •••••••• •

* * *
2551151112

15. Write a picture that would cause the value 376401495 to be
printed as 376~40l151495.

* * *
999B99B9999

16. Band 0 picture characters can be included in strings of Z's,
*'s, or $'s with the same effect as a comma in such a string.
That is, a B or 0 in a picture specification such as ZZZOZZ,
***B**, or $$$B$$.99 might be printed as:

a. a digit.

b. an * or $.

* * *
b

17. Match the values below with the picture that would cause the
value to be printed in that form.

1) ZZZBZZZ a. ~230456

2) ***0*** b. ts23ts456

c. *2311456

d. *230456

e. 0230456

* * *
1) b
2) d

18. It is frequently useful to identify certain printed data items as
DB or CR or as + or -. This is done by specifying editing sign
control symbols. Refer to Figure 121 and find the Editing Sign
Control Symbols. This table gives the result of placing any of
the sign control symbols at the right end of the picture of a
variable for both positive or zero and negative values of the
variable. Refer to the table and give the result of moving each
of the following values to a variable with the specified picture.

Value

1) 234567
2) -34567
3) +34567
4) -4280
5) +917

Printed Result

1) 2,345.67~lS

2) **345.67DB
3) lSlS345.67lS
4) i1t5lS42.80-
5) ****9.17+

*

Picture of Variable

Z,ZZZ.99CR
*,***.99DB
Z,ZZZ.99-
Z,ZZZ.99+
*,***.99+

* *

Printed Result

19. Write pictures that will produce the following results when the
given source values are moved to variables with the pictures.

Result

1) 161200-
2) 161200~

3) t51200CR

Picture

1) Z9900- or Z9900+
2) Z9900-
3) Z9900CR

*

Source Value

-01298
+01298
-01298

*

Picture

*

(The 9's in these pictures could be replaced by Z·s.)

---._---------

20. The sign characters + and may occur at the left end of a picture
specification if desired. These characters may also be used as
floating characters just as the dollar sign is used. When a
value of 0005 is moved to a variable with the picture +++.++, the
printed value will be: .

a. +++.05

b. 1111+.05

c. iH111. +5

* * *
b

527

21. The maximum value that could be moved to a variable with a
picture ---.-- would be:

a. 999.99

b. -999.99

c. 99.99

* * *

c
(Remember that the leftmost character in floating string ($, +, or -)
does not represent a digit position. ~ would result in 99.99 while E
would result in -99.99.)

22. Write a picture specification for a variable that will have a
value of up to seven digits with two digits to the right of the
point. Leading zeros in the first four places are to be replaced
by asterisks. If the value of the variable is negative, the
letters CR are to be printed one space after the rightmost digit.

* * *
****9.99BCR
(The leftmost zero-suppression character (* or Z) does represent a
digit position.)

---------------------------------------~--------------------------------

23. Match the printed values below with the appropriate pictures.

1) $$,$$9.99- a. 998.2

2) $$,$$$.$$- b. ~98.2

3) ZZZ.Z c .. *72.6-

4) ***.*+ d. **7 .. 2+

5) *99.9- e. $7,654,40+

6) 9999.9 f. 1969.3

g. $5,678.88~

h. ~$678.90

* * *

1) g
2) g
3) a,b
4) c,d
5) c
6) f

528

You have now learned to use all of the edit characters. One
additional character, the P character, may be included in the picture
of an elementary numeric variable to specify an assumed decimal
scaling position outside the number appearing in the data item. When
you need further information on this character, you may find it in
the Language Specifications Manual under the P picture character.

The next sequence of frames will bring together all of the topics
presented in the preceding part of this lesson. Figure 122 will be
referred to in most frames. Sequence numbers will be given for your
convenience in locating variables in this figure. You may, of
course, refer to your Language Specifications Manual at anytime.

529

001122334 4 5 566 7
1 .•• 5 •••• 0 •.•. 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 0 ••.• 5 •••• 0 •.•• 5 ..•• 0 ••

101 DATA DIVISION.
102 FILE SECTION.
103 FD TRANSACTION-FILE
104 LABEL RECORDS ARE OMITTED.
105 01 ITEM-RECORD.
106 02 CUSTOMER-NUMBER PIC X(5).
107 02 ITEM-NUMBER PIC X(5).
108 02 UNIT-PRICE PIC 999V99.
109 02 ITEM-DESCRIPTION
110 PIC X(20).
111 02 QUANTITY PIC 999.
112 02 FILLER PIC X(42).
113 01 FD CUSTOMER-FILE
114 LABEL RECORDS ARE STANDARD
115 BLOCK CONTAINS 6 RECORDS.
116 01 CUSTOMER-RECORD.
117 02 FILLER PIC X.
118 02 CHARGE-ID PIC xeS).
119 02 NAME PIC X(30).
120 02 STREET PIC X(20).
121 02 MAILING.
122 03 CITY PIC X(ls).
123 03 STATE PIC X(1s).
124 03 ZIP PIC XCS).
201 02 FILLER PIC X(20).
202 FD BILL-FILE
203 LABEL RECORDS ARE OMITTED.
204 01 BILL-PRINT PIC X(63).
205 WORKING-STORAGE SECTION.
206 77 SAVE-NUMBER PIC X(5).
207 77 SPACING PIC X.
208 77 STATE-CODE PIC X.
209 77 WORK-UNIT-PRICE PIC S999V99.
211 77 WORK-QUANTITY PIC S999.
213 77 SUB-AMOUNT PIC S9999V99.
215 77 TOTAL-AMOUNT PIC S9Cs)V99.
217 01 ITEM-LINE.
218 02 FILLER PIC X(3)
219 VALUE IS SPACES.
220 02 ITEM-NUMBER PIC xes}.
221 02 FILLER PIC X(4)
222 VALUE IS SPACES.
223 02 ITEM-DESCRIPTION PIC XC20}.
224 02 FILLER PIC X(4)
301 VALUE IS SPACES.
302 02 UNIT-PRICE PIC $$$$.99.
303 02 FILLER PIC X(4)
304 VALUE IS SPACES.
305 02 QUANTITY PIC ZZZ.
306 02 FILLER PIC X(4)
307 VALUE IS SPACES.
308 02 AMOUNT PIC $$,$$$.99.
309 01 PRINT-TOTAL.
310 02 FILLER PIC X(53)
311 VALUE IS SPACES.
312 02 TOTAL PIC $$$,$$$.99.
313 01 DISCOUNT-TOTAL.
314 02 FILLER PIC X(19)
315 VALUE IS SPACES.
316 02 COMMENT-l PIC XC18}
317 VALUE IS 'MINUS .05 DISCOUNT'.
318 02 FILLER PIC X(19)
319 VALUE IS SPACES.
320 02 DISCOUNT-AMOUNT PIC $$$$.99.
321 01 TAX-TOTAL.

530

322 02 FILLER PIC X(19)
323 VALUE IS SPACES.
324 02 COMMENT-2 PIC X(12)
401 VALUE IS 'PLUS .04 TAX'.
402 02 FILLER PIC X(25)
403 VALUE IS SPACES.
404 02 TAX-AMOUNT PIC $$$9.99.
405 01 NAME-LINE.
406 02 FILLER PIC X(10)
407 VALUE IS SPACES.
408 02 NAME-OUT PIC X(30).
409 01 STREET-LINE.
410 02 FILLER PIC X(10)
411 VALUE IS SPACES.
412 02 STREET-OUT PIC X(20).
413 01 ADDRESS-LINE.
414 02 FILLER PIC X(10)
415 VALUE IS SPACES.
416 02 ADDRESS-OUT PIC X(35).
417 01 END-LINE.
418 02 FILLER PIC X(10)
419 VALUE IS SPACES.
420 02 COMMENT-3 PIC X(10)
421 VALUE IS 'PLEASE PAY ,
422 02 TOTAL-SAME PIC *****.**.
423 02 COMMENT-4 PIC X(14)
424 ' WITHIN 30 DAYS'.

Figure 122

24. using Figure 122 match each variable below with the phrases that
accurately describe it.

1) SUB-AMOUNT (213)

2) ITEM-NUMBER (220)

3) QUANTITY (305)

4) UNIT-PRICE (108)

5) UNIT-PRICE (302)

6) WORK-UNIT-PRICE (209)

a. numeric variable

b. DISPLAY variable

c. external decimal variable

* * *

1) a
2) b
3) b
4) a,b,c
5) b
6) a
(Remember that a DISPLAY variable is called an external decimal
variable.)

531

o

25. Refer to Figure 119 to determine which of the following MOVE
statements specifies a valid move.

a"

o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b.

o o 1

MOVE ADDRESS-OUT
TO BILL-PRINT.

1 2 2 3 3 4

(416)
(204)

4 5 5 6 6 7
1 ••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••• ~0.~ •. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

c.

MOVE TOTAL-AMOUNT
TO TOTAL.

(215)
(312)

o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

d.

MOVE UNIT-PRICE OF
ITEM-RECORD
TO WORK-UNIT-PRICE.

(108)
(209)

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 .•. 5 •.•• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

532

a,b,c

MOVE SUB-AMOUNT
TO BILL-PRINT.

* *

(213)
(204)

*

(d is invalid because the move is from a numeric item that is not an
integer to an alphanumeric item.)

26. Give the type of move each of the following MOVE statements
represents according to Figure 118.

1)

001 1 223 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••.• 0 •••• 5 •••• 0 •••• 5 ••.•• 0 •••• 5 •••• 0 ••

2)

o o 1

MOVE ADDRESS-OUT
TO BILL-PRINT.

1 2 2 3 3 4

(416)
(204)

4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

3)

MOVE TOTAL-AMOUNT
TO TOTAL.

(215)
(312)

o 0 1 1 2 2 3 3 445 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

o

MOVE UNIT-PRICE OF
ITEM-RECORD
TO WORK-UNIT-PRICE.

*
1) alphanumeric
2) edit
3) numeric

27.

o 1 1 2 2 3

(108)

(209)

* *

3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

MULTIPLY UNIT-PRICE
OF ITEM-RECORD
BY WORK-QUANTITY
GIVING SUB-AMOUNT.

(108)

(211)
(213)

According to the rules of alignment when the statement above is
executed:

a. the result will be converted.

h. one computation field will be converted.

c. the result will be'truncated when placed in the result field.

* * *

533

28. Figure 118 shows that in order to place the current va1ue of SUB
AMOUNT (line 213) into the output area of BILL-FILE (1ine 202),
you wou1d execute the statements:

a.

o 0 112 233 445 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MOVE SUB-AMOUNT TO BILL-PRINT.

b.

o 0 1 1 2 233 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c.

MOVE SUB-AMOUNT TO AMOUNT.
MOVE AMOUNT TO BILL-PRINl'.

(308)

o 0 112 2 3 3 4 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

29.

1)

2)

3)

4)

534

WRITE SUB-AMOUNT.

Use Figures 44 and
if the values below

Value

1) 0000000
2) 2

3) 51250

4) 00000

Resu1t

*****.**

11112

1515)1$512.50

15i1~$.OO

*

*

* *

121 to write the values that would be printed
were moved to the specified variables.

Variable

TOTAL-SAME
QUANTITY

TOTAL

DISCOUNT-AMOUNT

* *

(sequence
number)

(422)
(305)

(312)

(320)

30.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .••• 5 ••.• 0 ••

Both

~EHFORM CONVERSION-ROUTINE
VARYING TEMPERATURE
FROM -40 BY 5 UNTIL
TEMPERATURE IS GREATER THAN 120.

CONVERSION ROUTINE.
COMPUTE CENTIGRADE = 5 / 9 *

(TEMPERATURE - 32).
MOVE CENTIGRADES TO DEGREES-C.
MOVE TEMPERATURE TO DEGREES-F.
WRITE OUT-RECORD.

In the preceding lesson you wrote the PERFORM statement above to
execute the paragraph above. All variables were DISPLAY
variables. This execution would be more efficient if:

a. COMP were specified for CENTIGRADE and TEMPERATURE.

b. TEMPERATURE and 32 had the same number of decimal places.

* * *

535

31.

o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ..• 5 .••• 0 ••.• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PERFORM CONVERSION-ROUTINE
VARYING TEMPERATURE
FROM -40 BY 5 UNTIL
TEMPERATURE IS GREATER THAN 120.

CONVERSION-ROUTINE.
COMPUTE CENTIGRADE = 5 / 9 *

(TEMPERATURE - 32).
MOVE CENTIGRADE TO DEGREES-C.
MOVE TEMPERATURE TO DEGREES-F.
MOVE OUT-RECORD.

In CONVERSION-ROUTINE the value 5/9 is computed every time the
paragraph is executed. The execution time would be shorter if:

a. the decimal equivalent of 5/9 were used in place of the
fraction.

b. the statement COMPUTE FIVE-NINTHS = 5/9 were executed before
the PERFORM statement, and FIVE-NINTHS were substituted for
5/9 in CONVERSION-ROUTINE.

* * *

Either of these
(a eliminates the division operation; b eliminates conversion of the
literal during execution of the COMPUTE statement.)

32.

o 0 112 233 4 4 556 6 7
1 ••• 5 •••. 0 ••.. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

536

PROCEDURE DIVISION.
ROUTINE.

OPEN OUT-FILE.
COMPUTE FIVE-NINTHS = 5 / 9.
PERFORM CONVERSION-ROUTINE

VARYING TEMPERATURE FROM -40
BY +5 UNTIL TEMPERATURE
IS GREATER THAN 120.

CLOSE OUT-FILE
STOP RUN.

o o

Write binary Working-Storage Section entries for:

1) FIVE-NINTHS, which must have a sign and three decima1 places.

2) TEMPERATURE, which will contain integer values from -40 to
+120.

3) CENTIGRADE, which will have up to four digits and must have
two decimal places and a sign.

* * *

1)

1 1 2 2 3 3 4 4 5 5 6 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

77 FIVE-NINTHS PIC SV999.
USAGE IS COMP.

2)

o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •.•• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

3)
77 TEMPERATURE PIC 5999.

USAGE IS COMP.

o 0 112 233 4 4 5 5 6 6 7
1 ••. 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •.•• 5 ••.• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 .••• 0 ••

77 CENTIGRADE PIC S99V99.
USAGE IS COMP.

537

33.

0011223 3 4 4 556 6 7
1 .•. 5 .••• 0 •••. 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 .••• 0 •.

FD OUT-FILE
LABEL RECORDS ARE OMITTED.

01 OUT-RECORD.
02 FILLER PIC X(11) VALUE IS SPACES.
02 DEGREES-F PIC +999.
02 FILLER PIC X(10) VALUE IS SPACES
02 DEGREES-C PIC +99.99.

WORKING-STORAGE SECTION.
77 FIVE-NINTHS PIC SV999.

USAGE IS COMP.
77 TEMPERATURE PIC S999.

USAGE IS COMP.
77 CENTIGRADE PIC S99V99.

USAGE IS COMP.

PROCEDURE DIVISION.
ROUTINE.

OPEN OUT-FILE.
COMPUTE FIVE-NINTHS = 5 / 9.
PERFORM CONVERSION-ROUTINE

VARYING TEMPERATURE FROM -40
BY +5 UNTIL TEMPERATURE
IS GREATER THAN 120.

CLOSEOUT-FI.LE.
STOP RUN.

CONVERSION-ROUTINE.
COMPUTE CENTIGRADE = 5 / 9*

(TEMPERATURE - 32).
MOVE CENTIGRADE TO DEGREES-C.
MOVE TEMPERATURE TO DEGREES-F.
WRITE OUT-RECORD.

Rewrite CONVERSION-ROUTINE so that is will be executed more
efficiently. Use the variables as described above.

* * *
001122334 4 556 6 7
1 ..• 5 •••• 0 •••. 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •.•. 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 ••

538

CONVERSION-ROUTINE.
COMPUTE CENTIGRADE = FIVE-NINTHS

* (TEMPERATURE - 32).
MOVE CENTIGRADE TO DEGREES-C.
MOVE TEMPERATURE TO DEGREES-F.
WRITE OUT-RECORD.

SUMMARY:

In this lesson you have learned to increase the efficiency of
execution of a program by giving the data the appropriate form of
storage. You have also learned several additional picture characters
that will help you to edit data for production of printed reports.

END OF LESSON 26

539

THIS PAGE INTENTIONALLY LEFT BLANK

540

LESSON 27

541

542

LESSON 27 - TABLE DEFINITION

INTRODUCTIdN

It is often convenient for a programmer to process sets of
similar data as tables. In this lesson you will learn to define
variables whose values will be tables of data. You will learn
different ways to refer to an individual value within a table in
order to use it in processing other data. As you are learning to use
these table processing techniques you will be coding portions of a
billing procedure. Later you will apply what you have learned in
coding a program to update an employee master disk-file and a
customer master disk-file.

Specific COBOL language features and prograrrming techniques you
will learn in this lesson are:

Subscripted names
Qualified subscripted names
OCCUkS clause
Use of tables of data in processing files.

This lesson will require approximately three quarters of an hour.

PURCHASE~
Input area

PURCHASE-RECORD

Purchase record In PURCHASE-FILE

~~~~~--~--~I 
tUSTOMER- tiLLER 
NUMBER (alphanumeric 
(6 digits) data not used 

in this program) 

AMOUNT (S digits, 2 decimal places) 
iCREDIT -CODE (1 digit) 

SALE-CODE (1 digit) 

IBM-1130 

>---.. CLOSE-ROUTINE 

Compute bill 
= .90 x amount 
(10% discount) 

TEST-CONTROL-BREAK 

Compute bill 
= .94 x amount 
(6% discount) 

N 

BILL-FILE 

Compute bill 
= .96 x amount 
(4% discount) 

The system flowchart and the problem flowchart segment for READ
RECORD and DISCOUNT-ROUTINE are for a billing procedure. 
Discounts are to be given to customers on the basis of their 
credit ratings. A customer's credit rating is indicated by the 
credit code in each purchase record. A customer who has good 
credit rating will have a credit code of 1. A custormer with a 
medium rating will have a credit code of 2, and one with fair 
rating will have a credit code of 3. In paragraph DISCOUNT
ROUTINE the credit code is to be tested and the bill for the 
purchase is to be computed according to the results of the test. 

Figure 123 

543 



544 

1. Read the problem description in Figure 123. In the record 
description entry for the input area PURCHASE-RECORD, the 
variable CREDIT-CODE could be defined as: 

a. a data name, and a test such as 
IF CREDIT-CODE EQUAL TO 1 
could then be used in DISCOUNT-ROUTINE. 

b. a conditional variable with the associated condition names 
GOOD, MEDIUM, and FAIR and their respective values 1, 2, and 
3, and a test such as 
IF GOOD 
could then be used in 
DISCOUNT-ROUTINE. 

* * * 
Either (If CREDIT-CODE were defined as a conditional variable, 
either test could be used in DISCOUNT-ROUTINE.) 

2. In order for the computations in DISCOUNT-ROUTINE in Figure 123 
to be done efficiently, a purchase record should be read into an 
input area and: 

b 

a. elementary variables of the input area should be specified in 
COMPUTE statements. 

b. elementary values to be used in computations should be moved 
to elementary COMP variables in working storage. 

* * * 



3. Code the Data Division with entries for PURCHASE-FILE, the input 
area PURCHASE-RECORD defining CREDIT-CODE as a conditional 
variable, BILL-FILE, BILL-RECORD, the output area for BILL-FILE 
consisting of 120 alphanumeric characters, and a level 77 
working-storage variable for any value of PURCHASE-RECORD that is 
to be used in the computations in DISCOUNT-ROUTINE described in 
Figure 123. 

* * * 
001122334 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
FILE SECTION. 
FD PURCHASE-FILE 

LABEL RECORDS ARE OMITTED. 
01 PURCHASE-RECORD. 

02 SALE-CODE PIC 9. 
02 CREDIT-CODE PIC 9. 

88 GOOD VALUE 1. 
88 MEDIUM VALUE 2. 
88 FAIR VALUE 3. 

02 AMOUNT PIC 999V99. 
02 CUSTOMER-NUMBER PIC 9 (6). 
02 FILLER PIC X(67). 

FD BILL-FILE 
LABEL RECORDS ARE OMITTED. 

01 BILL-RECORD PIC X(121). 
WORKING-STORAGE SECTION. 
77 AMOUNT-WS USAGE IS COMP. 

PIC 999V99. 

(The optional word IS has been omitted from the VALUE clause.) 

4. In order for the computations in DISCOUNT-ROUTINE in Figure 119 
to be done efficiently, the percentages should be: 

a. set up as elementary COMP variables in working storage. 

b. written as numeric literals in COMPUTE statements. 

* * * 
a 
(COMP may be specified at the group level. It will then apply to 
each elementary variable in the group.) 

545 



5. 

r--------------------------------, 
I PERCENT-RECORD I 
1 (elementary variable) (value) 1 
1---------------------- ---------1 
1 PERCENT-l .90 1 
1---------------------- ---------1 
I PERCENT-2 .94 1 
1---------------------- ---------1 
I PERCENT-3 .96 1 L _______________________________ J 

Continue coding the Working-Storage Section by writing the 
entries for: 

1) the level 77 variable resulting from computation in DISCOUNT
ROUTINE. (The result is to represent a dollar amount which 
will have been rounded to the nearest cent. Remember that 
any level 77 entry must precede any level 01 entry in working 
storage.) 

2) the record of percentages illustrated above. 

* * * 
1) 

o 0 1 1 2 233 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .•.• 0 •••• 5 •••. 0 •••• 5 •••• 0 •. 

77 BILL USAGE IS COMP PIC 999V99. 

2) 

0011223 3 445 5 6 6 7 
1 •.. 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •. 

546 

01 PERCENT-RECORD USAGE IS COMP. 
02 PERCENT-1 PIC V99 VALUE .90. 
02 PERCENT-2 PIC V99 VALUE .94. 
02 PERCENT-3 PIC V99 VALUE .96. 



6. Code the Procedure Division entries for paragraphs READ-RECORD 
and DISCOUNT-ROUTINE in Figur€ 123. Include a statement to make 
the appropriate value in PURCHASE-RECORD available in working 
storage for coroputations. Remember that the result of the 
computation will be a dollar amount and should be rounded to the 
nearest cent. 

* * * 
0011223 3 4 4 5 5 6 6 7 
1 •.. 5 •••• 0 .... 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .. 

READ-RECORD. 
READ PURCHASE-FILE 

AT END GO TO CLOSE-ROUTINE. 
MOVE AMOUNT TO AMOUNT-WS. 

DISCOUNT-ROUTINE. 
IF GOOD 

COMPUTE BILL ROUNDED 
= AMOUNT-WS * PERCENT-l 

ELSE 
IF MEDIUM 

COMPUTE BILL ROUNDED 
=AMOUNT-WS * PERCENT-2 

ELSE 
COt-!PUTE BILL ROUNDED 

= AMOUNT-WS * PERCENT-3. 

7. A set of similar data described with the same picture may be 
defined and processed as a table. A record that could be defined 
and processed as a table would be a record of: 

a. insurance premiums. 

b. student personal data such as name, age, and entrance scores. 

* * * 
a 

8. Data that could be defined and processed as a table would be 
contained in a record of: 

a. percentages. 

b. prices. 

* * * 
Either 

547 



548 

9. 

b 

r--------------------------------, 
1 PERCENT-RECORD 1 
1 (elementary variable) (value) 1 
1---------------------- ---------1 
1 PERCENT-1 .90 1 
1---------------------- ---------1 
1 PERCENT-2 .94 1 
1---------------------- ---------1 
1 PERCENT-3 .96 1 L______________________ _ ________ J 

~ ... ---- unique name 

r--------------------------------, 
1 PERCENT-TABLE 1 
1 (elementary variable) (value) 1 
1---------------------- ---------1 
1 PERCENT (1) .90 1 
1---------------------- ---------1 
1 PERCENT(2) .94 1 
1---------------------- ---------1 
1 PERCENT (3) .96 1 L______________________ _ ________ J 

A ... 6-_ ...... 
Lcommon name Isubscript 

The illustration above shows how the record of percentages used 
in the problerr in Figure 123 can be set up as a table. The table 
illustration shows that each value in a table can be referred to 
in a COBOL statement by a: 

a. unique data name. 

b. common data name and a subscript. 

* * * 

PERCENT-TABLE is a one-dimensional table. Each element of the table 
can be referred to by a data name and one subscript. It is possible 
to set up two- and three-dimensional tables in a COBOL program and to 
refer to table elements with two and three subscripts, respectively. 
Since you will learn to use only one-dimensional tables in this 
course, however, you will be using a data name with one subscript to 
refer to a table element. 



10. 

r------------------, 
1 PERCENT-TABLE I 
1------------ -----I 
I PERCENT (1) .90 1 
1------------ -----I 
1 PERCENT (2) .94 1 
1------------ -----1 
1 PERCENT ( 3) .96 1 L____________ __ ___ J 

An element of a one-dimensional table may be referred to by 
writing the data name followed by a space followed by the 
subscript enclosed in parentheses. Code the Procedure Division 
entries for DISCOUNT-ROUTINE in Figure 123 referring to the 
percentages as elements of the table above. 

* * * 
001122334 4 5 5 6 6 7 
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

11. 

Both 

DISCOUNT-ROUTINE. 
IF GeOD 

COMPUTE BILL ROUNDED 
= AMOUNT-WS * PERCENT (1) 

ELSE 
IF MEDIUM 

COMPUTE BILL ROUNDED 
= AMOUNT-WS * PERCENT (2) 

ELSE 
COMPUTE BILL ROUNDED 

= AMOUNT-WS 
* PERCENT (3). 

Table elements may have forms of subscripts 
Any variable that has integer values may 
subscript in the name of a table element in 
entry. In Figure 123, a variable to be used 
PERCENT: 

a. must be defined with a picture of 9's. 

b. could be CREDIT-CODE. 

* * * 

other than integers. 
be specified as a 
a Procedure Division 
as a subscript with 

12. In Figure 123 the name PERCENT (CREDIT-CODE) would refer to the 
value: 

a. .90 when the value of CREDIT-CODE is 1. 

b. .94 when the value of CREDIT-CODE is 2. 

c. .96 when the value of CREDIT-CODE is 3. 

* * * 
All of these 

549 



13. 

r------------------, DISCOUNT-ROUTINE 1 PERCENT-TABLE 1 
1------------ -----I 

Compute bill 1 PERCENT (1) .90 1 
= percentage for 
credit code value 
x amount 

1------------ ---I 
1 PERCENT (2) .94 I 
1------------ -----I 
I PERCENT (3) .96 I L____________ _ ____ J 

Figure 124 

If CREDIT-CODE were to be specified as a subscript in a discount 
routine for the problem described in Figure 123, the flow chart 
would be modified to look like the flow chart above. Code the 
Procedure Division entries for DISCOUNT-ROUTINE following the 
modified flow chart. 

* * * 
001122334 4 5 5 6 6 7 
1 ••• 5 •••• 0 •... 5 •••• 0 ••.• 5 •••• 0 •••• 5 ..... 0 •••• 5 •••• 0 ...... 5 ...... 0 •.•• 5 ..... 0 .• 

550 

DISCOUNT-ROUTINE. 
COMPUTE BILL ROUNDED 

AMOUNT-WS 
* PERCENT (CREDIT-CODE). 

(This is an example of the way table processing can increase the 
efficiency of a program.) 

14. A subscript may be: 

a. any integer. 

b. any variable .. 

c. any variable with integer values. 

* * * 
a,c 

15. A variable to be specified as a subscript may be defined with a 
picture of: 

\ 

a. 9's and a V specifying a decimal place. 

b. 9' s. 

* * * 
b 



U'1 
U'1 
I-l 

~ .... 
lQ 
c: 
t1 
m 
I-l 
N 
U1 

I 
I 
I 
I 

I 
I 
L 

N 

Compute bill 
= .96 x amount 

Compute bill I I Compute bill 
= .94 x amount = .90 x amount 

PERCENT-TABLE 

PERCENT (1) .90 

PERCENT (2) .94 

PERCENT (3) .96 

TEST -CONTROL-BREAK 

CLOSE-ROUTINE 

Compute bill 
= .80 x amount 

Compute bill 
= .86 x amount 

N 

Compute bill 
= .92 x amount 

SALE-PERCENT-TABLE 

PERCENT (1) .80 
i 
I 

PERCENT (2) .86 I 

I 

PERCENT (3) .92 I 

I 
I 
I 
I 
1 

_I 
~ 

Each month certain products are announced as sale items. Discounts for these products are greater than regular 
discounts, but, like the regular discounts, are determined by the customer's credit rating. A purchase record for 
a sale item will contain a sale code of 1. Regular items are indicated by a zero. In paragraph DISCOUNT-ROUTINE 
the sale code is to be tested and either branch ~ or Q. is to be executed. Since there is a set of percentages for each 
branch a second table should be set up for sale item discountE. 



16. Read the problem description in Figure 125. The problem: 

a 

a. requires two percentage tables. 

b. uses the same percentage table for both regular and sale 
purchases. 

* * * 

17. For the problerr in Figure 125 PERCENT (1): 

a. is the elementary name of both the values .80 and .90. 

b. would have to be qualified to refer to a single value. 

* * * 
Both 

18. PERCENT OF SALE-PERCENT-TABLE (1) 

b 

In Figure 125 the value .80 can be referred to in a COBOL 
statement by qualifying the elementary name as shown above. When 
the name of a table element is qualified, the subscript of the 
element immediately follows: 

a. the elementary name. 

b. the table name. 

* * * 

19. In Figure 125 the value .92 could be referred to by the name: 

a. PERCENT (3) OF SALE-PERCENT-TABLE. 

b. PERCENT OF SALE-PERCENT-TABLE (3). 

* * * 
b 

552 



20. In Figure 125, if CREDIT-CODE had the value 2, the value .94 
could be referred to by the name: 

c 

a. PERCENT OF 
SALE-PERCENT-TABLE (CREDIT-CODE). 

b. PERCENT (CREDIT-CODE) 
OF PERCENT-TABLE. 

c. PERCENT OF 
PERCENT-TABLE (CREDIT-CODE) 

* * * 

21. Modify the flow chart in Figure 125 to use CREDIT-CODE as a 
subscript to refer to the elements of the tables, and code the 
Procedure Division entries for the modified flow chart. 

Compute bill 
= percentage for 
credit code value 
x amount 

* 

D1SCOUNT
ROUTINE 

No 

* 

Yes 

TEST -CONTROL-BREAK 

Figure 126 

* 

Compute bill = 
sale percentage for 
credit code value 
x amount 

o 0 1 1 2 2 3 3 4 4 5 5 6 6 1 
1 •.• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DISCOUNT-ROUTINE. 
IE' SALE-CODE EQUAL TO 1 

COMPUTE BILL ROUNDED 
AMOUNT-WS 

ELSE 

* PERCENT 
OF SALE-PERCENT-TABLE 
(CREDIT-CODE) 

COMPUTE BILL ROUNDED 
= AMOUNT-WS 
* PERCENT 

OF PERCENT-TABLE 
(CREDIT-CODE). 

553 



22. 

0011223 344 556 6 7 
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

554 

01 PERCENT-TABLE USAGE IS CaMP. 
02 PERCENT OCCURS 3 TIMES 

PIC V99. 

When percentages are to be processed as a table, and referred to 
by subscripted names, the table may be defined by the Data 
Division entries shown above. The common data name is specified 
in a single data description entry with the OCCURS clause 
specifying the number of table elements. Match the correct facts 
about PERCENT-TABLE with the appropriate portion of the Data 
Division entries. 

1) USAGE CaMP 

2) OCCURS 3 TIMES 

3) PIC V99 

* * 
1) e,f 
2) b 
3) c 

a. PERCENT-TABLE 
will have two 
elements. 

b. PERCENT-TABLE 
will have three 
elements. 

c. Each element of 
PERCENT-TABLE 
will have two 
digits. 

d. Each element of 
PERCENT-TABLE 
will have three 
digits. 

e. Each element of 
PERCENT-TABLE 
will be stored as 
binary. 

f. Each element of 
PERCENT-TABLE 
will be stored in a 
form for efficient 
computation. 

* 



23. 

o 0 112 233 445 5 6 6 7 
1 •.• 5 •.•• 0 ••.. 5 •..• 0 •••• 5 •••. 0 •••• 5 •••• 0 .••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

01 PERCENT-TABLE USAGE IS COMP. 
02 PERCENT OCCURS 3 TIMES 

PIC V99. 

In Figure 119 the restrictions for the OCCURS clause indicate 
that in the record description entry above the OCCURS clause 
could be specified for: 

a. the level 01 variable PERCENT-TABLE instead of the level 02 
variable PERCENT. 

b. the variable PERCENT if it were defined as level 77 instead 
of level 02 subordinate to PERCENT-TABLE. 

* * * 
Neither (The OCCURS clause cannot be specified for a level 01 or a 
level 77 variable.) 

24. Code the record description entry for the table of sale 
percentages shown in Figure 125. 

* * * 

001122334455667 
1 ..• 5 •••• 0 •••• 5 .... 0 ..•. 5 •••• 0 .••. 5 ...• 0 ..•. 5 •••• 0 •.•• 5 •••• 0 •••. 5 •... 0 .. 

SUMMARY 

01 SALE-PERCENT-TABLE USAGE IS COMP. 
02 PERCENT OCCURS 3 TIMES PIC V99. 

Up to this point you have learned to define variables whose 
values are to be tables of data and to refer to table elements in 
COBOL statements specifying integers as subscripts as well as 
variables whose values are integers. 

You have started to study the valuable programming technique of table 
construction and usage. Many applications require tables of orderly 
arranged data, the elements of which may be fixed or variable. 

, 
END OF LESSON 27 

555 



THIS PAGE INTENTIONALLY LEFT BLANK 

556 



LESSON 28 

557 



LESSON 28 - USE OF TABLES 

INTRODUCfION 

In this lesson you will continue your study of table construction and 
usage. You will learn to assign values to tables as well as find table 
values that satisfy certain conditions in order to use the subscripts of 
those values in other processing. 

A specific COBOL programming technique you will learn in this lesson 
is: 

Assignment of values to table variables 

This lesson will require approximately three quarters of an hour. 

558 



r--------------------------------, 1 PERCENT-RECORD 1 
1 (elementary variable) (value) 1 
1----------------------1--------- 1 
1 PERCENT-l .90 1 
1---------------------- ---------1 
I PERCENT-2 .94 1 
1----------------------+---------1 
1 PERCENT-3 1 .96 1 l _______________________________ J 

unique name 

r--------------------------------, 
1 PERCENT-TABLE 1 
1 (elementary variable) (value) 1 
1---------------------- ---------1 
I PERCENT(l) .90 1 
1---------------------- ---------1 
1 PERCENT (2) .94 1 
1---------------------- ---------1 
1 PERCENT (3) .96 1 l _______________________________ J 

common name subscript 

When variables that are to have similar values such as percentages 
are defined with unique names as in PERCENT-RECORD, initial values 
may be assigned in VALUE clauses in the Data Division. When 
variables that are to have similar values are defined as table 
elements as in PERCENT-TABLE, they are defined in a way that reduces 
the amount of coding in the Data Division. Then instead of assigning 
values in the Data Division, the programmer must provide statements 
in the Procedure Division to assign values to the table elewents. In 
the next sequence you will learn to assign values to table elements. 

1. A value may be assigned to a variable in the Procedure Division 
by: 

a. accepting the value through the console keyboard. 

b. accepting the value through the card reader. 

c. reading the value from a file. 

d. moving a literal to the variable. 

* * * 
Any of these 

559 



2. 

PERCENT-TABLE 

PERCENT (I) .90 
PERCENT (2) .94 
PERCENT (3) .96 

Figure 127 

o 0 1 1 2 233 4 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

WORKING-STORAGE SECTION. 
77 E-VARIABLE PIC V99. 
01 PERCENT-TABLE USAGE IS COMPo 

02 PERCENT OCCURS 3 TIMES PIC V99. 

When a table name is specified in an ACCEPT statement the number 
of characters specified in the picture for the table elements is 
transmitted to each element beginning with the element whose 
subscript is 1 and the first card column. If instead an 
elementary name is specified, the number of characters specified 
in the picture, beginning with the first card column, is 
transmitted to the single elementary variable. In each case the 
unused remainder of the card is disregarded. Refer to the record 
description entry and the card being accepted above and match the 
correct effects with the entries below. 

1) 

001122334 4 556 6 7 
1. • • 5. • • • O. • • • 5. • • • O. • • • 5. • • • O. • • • 5. • • • 0 • • • • 5 • • • • O. '. • • 5 '. • • • 0 '. • • • 5 • • • • 0 • • 

ACCEPT PERCENT-TABLE. 

2) 

o 0 112 233 4 4 556 6 7 
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

560 

ACCEPT E-VARIABLE. 
MOVE E-VARIABLE TO PERCENT (1). 

a. The values 90, 94 and 96 are transmitted to the elements of 
PERCENT-TABLE with subscripts 1, 2, and 3, respectively. 

b. The only value transmitted is 90, which is transmitted and 
moved to the element of PERCENT-TABLE with subscript 1. 

c. Data in card columns 3 through 80 will be disregarded. 

d. Data in card columns 7 through 80 will be disregarded. 

* * * 



1) a,d 
2) b,c 
(A subscripted name may not be specified irt an ACCEPT statement. To 
transmit a value to a specific table element, the progra~mer must 
define an elementary variable, specify that variable in the ACCEPT 
statement, and then move the value from the elementary variable to 
the specific table element.) 

3. 

(96 PERCENT·TABLE 

PERCENT (1) .90 

PERCENT (2) .94 
PERCENT (3) .96 

Figure 128 

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

WORKING-STORAGE SECTION. 
77 E-VARIABLE PIC V99 USAGE IS COMP. 
01 PERCENT-TABLE. 

02 PERCENT OCCURS 3 TIMES PIC V99. 

The values in the cards shown above are to be transmitted to the 
elements of PERCENT-TABLE. Select the statement(s) that would 
assign the values correctly. 

561 



a. 

o 0 112 2 3 344 556 6 7 
1 ... 5 ...• 0 .... 5 •.•• 0 ..•• 5 •••• 0 •••• 5 .•.• 0 •••. 5 .•.• 0 .••• 5 •••• 0 ..•. 5 •..• 0 •• 

ACCEPT PERCENT-TABLE. 

b. 

o 0 112 2 3 344 556 6 7 
1 ... 5 •.•. 0 •••• 5 •••• 0 ...• 5 •••• 0 ••.• 5 •.•• 0 •••. 5 ••.. 0 •.•• 5 ..•. 0 •••• 5 .••• 0 •• 

562 

ACCEPT E-VARIABLE. 
MOVE E-VARIABLE TO PERCENT (1). 
ACCEPT E-VARIABLE. 
MOVE E-VARIABLE TO PERCENT (2). 
ACCEPT E-VARIABLE. 
MOVE E-VARIABLE TO PERCENT (3). 

* * * 
b 
(statement a would access one card and, based on the picture for the 
table elements, would assign the data in columns 1 and 2 (90) to the 
element with subscript 1, the data in columns 3 and 4 (blanks) to the 
element with subscript 2, and the data in columns 5 and 6 (blanks) to 
the element with subscript 3. The OCCURS clause specifies only three 
elements, and the remaining 74 columns of the card would be 
disregarded.) 



4. If the size of the variable specified in an ACCEPT statement is 
greater than SO characters, the so characters from the card are 
stored, left-aligned, in the rece1v1ng data item, and the 
remainder of the data item is filled with spaces. Match the 
effects of the ACCEPT statement with the record description 
entries below. 

o 0 112 2 3 3 4 4 5 5 6 6 1 
1 .•• 5 •••• 0 •.•. 5 •.•• 0 •... 5 •••• 0 •••• 5 .••• 0 •... 5 .... 0 .... 5 •••• 0 •... 5 •.•• 0 .• 

ACCEPT AMOUNT-TABLE. 

1) 

o 0 112 2 3 3 4 4 556 6 1 
1 ..• 5 •••• 0 •.•. 5 •.•• 0 •••• 5 •••• 0 •... 5 •••• 0 •.•• 5 .••• 0 •.•. 5 •••. 0 ••.• 5 .••. 0 •. 

01 AMOUNT-TABLE. 

2) 

02 AMOUNT OCCURS 20 TIMES 
PIC X(S). 

001122334 4 556 6 1 
1 .•• 5 •.•• 0 .•.• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .••• 5 •••. 0 •• 

01 AMOUNT-TABLE. 
02 AMOUNT OCCURS 10 TIMES 

PIC X(6). 

a. One card will be accessed and values will be assigned to the 
table elements with subscripts 1 through 10. 

b. Two cards will be accessed and values will be assigned to all 
table elements. 

c. Data in columns 9 through 80 of the second card will be 
disregarded. 

* * * 
1) a 
2) a 

563 



5. An elementary item described with the 

USAGE IS INDEX 

clause is called an index data item and contains a value which 
must correspond to an occurrence number of a table. 

o 0 112 233 4 4 5 5 6 6 7 
1 ..• 5 .••• 0 ••.. 5 ••.• 0 •••• 5 •••• 0 •••. 5 •••• 0 •..• 5 ..•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

6. 

564 

WORKING-STORAGE SECTION. 
77 lOX PICTURE 9 VALUE 1 USAGE IS INDEX. 
77 X PICTURE S9V99 VALUE 0.01. 
77 Y PICTURE S9V99 VALUE 0.01. 
01 WORK-REC USAGE IS COMPUTATIONAL. 

03 E PICTURE S99V99999 OCCURS 5 TIMES. 

PROCEDURE DIVISION. 
BEGIN. 

PERFORM EXP VARYING lOX FROM 1 BY 1 UNTIL 
lOX EQUAL TO 5. 

EXP. COr1PUTE E(IOX) 1 + X + X ** 2 / 2 + X ** 
+ X ** 4 / 24 + X ** 5 / 120 + X ** 6 / 720. 
ADD Y TO X. 

3 

The rules of the usage clause are described 
Specifications Manual. 

(96 PERCENT·TABLE 

PERCENT (1) .90 

PERCENT (2) .94 
PERCENT (3) .96 

Figure 129 

/ 6 

in the Language 



o 0 112 233 4 4 5 5 6 6 7 
1 ... 5 ..•• 0 .••• 5 •••. 0 •••• 5 •.•• 0 •••. 5 •••• 0 •••• 5 ••.• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •• 

WORKING-STORAGE 'SECTION. 
77 ~-VARIABLE PIC V99. 
77 CREDIT-CODE PIC 9. 
01 PERCENT-TABLE USAGE IS COMP. 

02 PERCENT OCCURS 3 TIMES PIC V99. 

If table values are punched one per card, a programmer can 
transmit each value to a specific table element by coding an 
ACCEPT statement and a MOVE statement for each table element. He 
could also code a paragraph with a single ACCEPT statement and a 
single MOVE statement and code a statement to perform that 
paragraph for each table element. The latter technique requires 
only minimal coding for tables of any size. Based on what you 
have already learned about the PERFORM statement, select the 
coding example(s) that would assign appropriate values to 
PERCENT-TABLE if the values have been punched into the cards 
shown above. 

a. 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 •.. 5 ••.. 0 ..•. 5 •.•• 0 •.•• 5 .••• 0 •••. 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •.•• 0 .• 

PERFORM ACCEPT-TABLE-VALUE 
VARYING CREDIT-CODE 
FROM 1 BY 1 
UNTIL CREDIT-CODE GREATER THAN 3. 

ACCEPT-TABLE-VALUE. 

b. 

ACCEPT E-VARIABLE. 
MOVE E-VARIABLE 

TO PERCENT (CREDIT-CODE). 

o 0 112 2 3 344 5 5 6 6 7 
1 .•. 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 .••• 0 •••• 5 ••.. 0 ••.. 5 •••• 0 •• 

MOVE 1 TO CREDIT-CODE. 
PERFORM ACCEPT-TABLE-VALUE 

UNTIL CREDIT-CODE GREATER THAN 3. 

ACCEPT-TABLE-VALUE. 
ACCEPT E-VARIABLE. 
MOVE E-VARIABLE 

TO PERCENT (CREDIT-CODE). 
ADD 1 TO CREDIT-CODE. 

565 



c. 

o 0 112 2 3 3 445 5 6 6 1 
1 .•. 5 .••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •• 

566 

MOVE 1 TO CREDIT-CODE. 
PERFORM ACCEPT-TABLE VALUE 3 TIMES. 

ACCEPT-TABLE-VALUE. 
ACCEPT E-VARIABLE. 
MOVE E-VARIABLE 

TO PERCENT (CREDIT-CODE). 
ADD ITO CREDIT-CODE. 

* * 
Any of these 

* 



7. 

o 0 1 1 2 233 4 4 5 5 6 6 7 
1 ... 5 ..•. 0 .•.. 5 ••.• 0 •••• 5 •.•• 0 .••• 5 •••• 0 •••• 5 •••. 0 •••• 5 ••.• 0 .••• 5 •••• 0 .. 

DATA DIVISION. 
FILE SECTION. 
FD TABLE-FILE 

LABEL RECORDS ARE OMITTED. 
01 TABLE-RECORD. 

02 TABLE-VALUE PIC V99. 
02 FILLER PIC X(78). 

WORKING-STORAGE SECTION. 
77 CREDIT-CODE PIC 9. 
02 PERCENT-TABLE USAGE IS COMP. 

02 PERCENT OCCURS 3 TI~lliS PIC V99. 

PROCEDURE DIVISION. 
INITIAL-ROUTINE. 

OPEN TABLE-FILE. 
PERFORM READ-TABLE 

VARYING CREDIT-CODE 
FROM 1 BY 1 
UNTIL CREDIT-CODE GREATER THAN 3. 

READ-TABLE. 
READ TABLE-FILE 

AT END CLOSE TABLE-FILE 
GO TO NEXT-PARAGRAPH. 

MOVE TABLE-VALUE 
TO PERCENT (CREDIT-CODE). 

Figure 130 

A technique for reading table values from a file is shown in the 
figure above. This technique: 

a. is used for values that are punched one per card. 

h. is used for values that are punched beginning in card column 
1. 

c. is done by coding 'a paragraph containing a single READ 
statement and a single MOVE statement and coding a stateroent 
to perform the paragraph for each element in the table. 

* * * 
All of these 

567 



8. 

PERCENT-TABLE 
('14 _ PERCENT (1) .90 

,"90 PERCENT (2) _94 - rCIU,CN 1 (3) .96 

-

Figure 131 

o 0 112 2 3 3 4 4 556 6 7 
1 •.• 5 •••• 0 •••• 5 •• ~.0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •• 

WORKING-STORAGE SECTION. 
77 CREDIT-CODE PIC 9. 
01 SALE-PERCENT-TABLE USAGE IS COMP. 

02 PERCENT OCCURS 3 TIMES PIC V99. 

Code the following: 

1) Data Division entries to treat the values in the cards shown 
above as a file called TABLE-FILE-2. 

2) Procedure Division entries to read the values and assign them 
to the appropriate elements of SALE-PERCENT-TABLE. 

* * * 
1) 

o 0 112 233 4 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

568 

FD TABLE-FILE-2 
LABEL RECORDS ARE OMITTED. 

01 TABLE-RECORD-2. 
02 TABLE-VALUE-2 PIC V99. 
02 FILLER PIC X(78). 



2) 

001122334455667 
1 .•. 5 •••• 0 ••.• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 .••. 5 ..•• 0 ••.• 5 •••. 0 ...• 5 ••.• 0 .. 

OPEN TABLE-FILE-2 
PERFORM READ-TABLE-2 

VARYING CREDIT-CODE 
FROM 1 BY 1 
UNTIL CREDIT-CODE GREATER THAN 3. 

READ- TABLE- 2. 
READ TABLE-FILE-2 

AT END CLOSE TABLE-FILE-2. 
GO TO NEXT-PARAGRAPH. 

MOVE TABLE-VALUE-2 
TO PERCENT (CREDIT-CODE). 

(Whenever table values in cards are to be used to process a card 
file and the table values are to be accepted, they should be 
accepted before the card file is opened. If the table values are 
to be treated as a file, the table file should be opened, read, 
and closed before the second card file is opened.) 

In the initial portion of this lesson you learned to specify table 
elements in statements in the Procedure Division. You learned to use 
integers as well as variables that have integer values as subscripts 
to refer to values of specific table elements. Next you learned to 
use the OCCURS clause to define tables in the Data Division. Finally 
you learned two ways to assign values to the table elements in the 
Procedure Division. Now you will have an opportunity to use these 
techniques and language features in a program of the type you may 
encounter in a data-processing center. 

A manufacturing company has approved a pay rate increase for all 
employees of the company. As a result, the employee master file used 
in payroll processing must be updated to reflect the increase. In 
the next sequence of frames you will be coding a solution for this 
problem. 

569 



l 

CARD-READER 
Table values 

Records in EMPLOYEE·MASTER·FILE 
and NEW·MASTER·FILE 

EMPLOYEE- EMPLOYEE-NAME SOCIAL· 
NUMBER SECURITY 

6 digits 21 letters 9 digits 

NEW-MASTER
FILE 
BIocksize: 4 

IBM-I 130 J------~ Labels: standard 

PAYRATE MEDICAL 

4 digits 4 digits 
2 decimal 2 decimal 

\ \ 
,I places places 

\'GRADE 
2 digits 

DEPENDENTS 
2 digits 

MA RIT AL-ST ATUS 
I letter 

LIFE RETIRE-
MENT 

4 digits 4 digits 
2 decimal 2 decimal 
places places 

~ 
l2 

.. 

o 0 112 233 4 4 556 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. EMPLOYEE-PAYRATE-UPDATE. 

0011223 3 445 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •• 

570 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT EMPLOYEE-MASTER-FILE 
ASSIGN TO DF-1-800-X. 

SELECT NEW-MASTER-FILE 
ASSIGN TO DF-2-900-X. 

Employees of a manufacturing company have been assigned a grade 1 
through 10 according to the skills and knowledge required by 
their jobs. Recently the company has approved pay rate increases 
for all employees. The increases vary with employee grade as 
shown in the table below. A program is to be written to update 
the pay rate portion of each employee master record. The system 
flowchart, a diagram of the employee master record, and the first 
two divisions of the program are shown above. 



r-------
I GRADE 
1-------
I 1 
I 2 
I 3 
I 4 
I 5 
I 6 
I 7 
I 8 
I 9 
I 10 L ______ _ 

----------, 
INCREASE I 

3% 
3% 
3% 
5% 
5% 
8% 
8% 
8% 

10% 
10% 

Figure 132 

9. Read the problem description in Figure 132. A programmer could 
define an input area and an output area with. data description 
entries for each of the values shown in the employee master 
record diagram in Figure 132. Then he could code the program to 
read a record, move the pay rate value to variable and each of 
the other values to the output area. The grade, which would 
still be available in the input area, could be specified as a 
subscript to refer to the correct percent increase for computing 
the new pay rate. After moving the new pay rate to the output 
area, the program could write the new record. The problem could 
be solved with less coding, however. Since only the grade and 
pay rate must be referred to directly, it is unnecessary to code 
data description entries for each of the other values in the 
records. The first 39 characters and the last 12 characters in 
the record may be defined as FILLER items, provided the record is 
read into the output area or read and moved as a group. Code the 
File Section of the Data Division to provide for the files 
EMPLOYEE-MASTER-FILE and NEW-MASTER-FILE with the latter type of 
processing. 

* * * 
0011223 3 445 5 6 6 7 
1 .•• 5 ..•• 0 •••• 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
FILE SECTION. 
FD EMPLOYEE-MASTER-FILE 

LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 4 RECORDS. 

01 EMPLOYEE-MASTER-RECORD. 
02 FILLER PIC X(39). 
02 GRADE PIC 99. 
02 PAYRATE PIC 99V99. 
02 FILLER PIC X(12). 

FD NEW-MASTER-FILE 
LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 4 RECORDS. 

01 NEW-MASTER-RECORD. 
02 FILLER PIC X(39). 
02 NEW-GRADE PIC 99. 
02 NEW-PAYRATE PIC 99V99. 
02 FILLER PIC X(12). 

571 



10. If an employee is currently performing a grade 1 job r he will 
receive an increase of 3 percent according to the table in Figure 
132. His new pay rate will be 1.03 times his current pay rate. 
For the most efficient computation a programmer should code a 
COMPUTE statement in which: 

a. the value 1.03 is written as a numeric literal. 

b. he specifies a variable and assigns the value 1.03. 

* * * 
b 

11. Code the Working-Storage Section of the Data Division defining: 

1) a variable for the values used in computation of the new pay 
rater except the percent increases. 

2) FACTOR-TABLE to allow the percent facto'rs of 1 plus the 
percent increase in Figure 132 to be processed as a table. 

3) a variable to be used as a subscript. 

4) a variable to which a percent factor of 1 plus the percent 
increase ~ay be transmitted from the card reader. 

* * * 

001122334 4 556 6 7 
1. • • 5. • •• o. . . . 5. • • • O. • • • 5 •••• O. • • • 5. • •• 0 • • • • 5 • • • • 0 • • • • 5 ' •••• 0 • • •• 5 • • • • 0 •• 

572 

WORKING-STORAGE SECTION. 
77 PAYRATE-WS USAGE IS COMP PIC 99V99. 
77 E-VARIABLE PIC 9V99. 
77 GRADE PIC 99. 
01 FACTOR-TABLE USAGE IS COMP. 

02 FACTOR OCCURS 10 TIMES PIC 9V99. 



12. 
"110 

• • • 
(103 

C03 

"t03 ~ 

~ 

Figure 133 

Code the Procedure Division for the problem in Figure 132 to 
accept the table values that have been punched into cards as 
shown above and then to update the employee master records. 

* * * 
001122334 4 5 5 6 6 7 
1 .•• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •• 

PROCEDURE DIVISION. 
INITIAL-ROUTINE. 

PERFORM ACCEPT-TABLE-VALUE 
VARYING GRADE 
FROM 1 BY 1 
UNTIL GRADE GREATER THAN 10. 

OPEN INPUT EMPLOYEE-MASTER-FILE 
OUTPUT NEW-MASTER-FILE~ 

UPDATE-RECORD-ROUTINE. 
READ EMPLOYEE-MASTER-FILE 

INTO NEW-MASTER-FILE 
AT END GO TO CLOSE-ROUTINE. 

MOVE PAYRATE TO PAYRATE-WS. 
COMPUTE PAYRATE-WS ROUNDED 

= FACTOR (GRADE) * PAYRATE-WS. 
MOVE PAYRATE-WS TO NEW-PAYRATE. 
WRITE NEW-MASTER-RECORD. 
GO TO UPDATE-RECORD-ROUTINE. 

ACCEPT-TABLE-VALUE. 
ACCEPT E-VARIABLE. 

MOVE E-VARIABLE TO FACTOR (GRADE). 
CLOSE-ROUTINE. 

CLOSE EMPLOYEE-MASTER-FILE 
NEW-MASTER-FILE. 

STOP RUN. 

Thus far you have learned that you may specify an integer or a 
variable that has integer values as a subscript to refer to a 
specific element of a table so that you can use the value of that 
element in some way. For example, in preceding frames you have 
specified CREDIT-CODE as a subscript to refer to a specific elef(1ent 
to compute the bill for a customer. In other data-processing 
problems you may wish to find a table element whose value satisfies a 
certain condition so that you can use the subscript of that element 
in some way. You will be coding a program to use a table in this way 
in the next sequence of frames. 

573 



13. Read the problem descrLption in Figure 
Identification and Environment Divisions for the 
1-1ASTER-FILE-UPDATE. 

Input area: MDTP-RECORD 

134. Code the 
program called 

NEW-MASTER
FILE 

Input area: 
NEW-CUSTOMER-RECORD 

IBM-J 130 Block size: J 0 
~----""Labels: standard 

574 

OLD-MASTER
FILE 
8lock size: 10 
Labels: standard 
Input area: 
OLD-MASTER 
RECORD 

Maximum days to pay record 

(hIm! 
I (2digits) 

New customer record 

CUSTOMER- CUSTOMER-NAME CUSTOMER-ADDRESS 
NUMBER 

(6 digits) (20 characters) (30 characters) 

Old and new master records 

USTOMER- OCUSTOMER-NAME OCUSTOMER-ADDRESS 
NUMBER NCUSTOMER-NAME NCUSTOMER-ADDRESS 

NCUSTOMER-
NUMBER 

(6 digits) (20 characters) (30 characters) 

(J digit) 

Output area: 
NEW-MASTER 
RECORD 

MAX-DA YS-TO-PA Y -TABLE 

MAX-DAYS-TO-PAY (1) 

MAX-DA YS-TO-PA Y (2) 

MAX-DAYS-TO-PAY (3) 

10 

20 

30 



A customer master file is to be updated by adding records for new 
customers after assigning a credit code based on how promptly the 
customer paid for purchases during the preceding month. NEW
CUSTOMER-FILE contains a card record for each new customer with 
the new customer number, customer name, customer address, and the 
number of days from the day the bill was issued until the day the 
payment was received. The records have been arranged in order by 
customer number. The last record in each file is a dummy record 
with a customer number of 999999. A test routine is to determine 
whether a record for an old or new customer is to be written into 
the new master file. The new master file is to be created with 
records for both old and new customers in order by customer 
number. When a record for an old customer is to be written, it 
will be transferred without changes to the new master file. (It 
can therefore be written directly from the input area.) When a 
record for a new customer is to be written, it is to be built 
from the customer number, name and address in the record from 
NEW-CUSTOMER-FlLE and the credit code is to be determined in the 
following way. The value of DAYS-TO-PAY in the record from NEW
CUSTOMER-FILE is to be compared with elements of MAX-DAYS-To-PAY
TABLE shown above. When the value of DAYS-TO-PAY is less than or 
equal to an element, the subscript of that element is to be the 
customer's credit code. 

A system flowchart and diagrams of the input and output records 
are shown above. A program flow chart segment for the routine to 
build the new roaster record is shown in Figure 135. 

Figure 134 

* * * 
o 0 112 233 4 4 556 6 7 
1 ..• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. ~~STER-FILE-UPDATE. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT NEW-CUSTOMER-FILE 
ASSIGN TO RD-1442. 

SELECT OLD-MASTER-FILE 
ASSIGN TO DF-1-600. 

SELECT NEW-MASTER-FILE 
ASSIGN TO DF-2-800. 

SELECT MDTP-FILE 
ASSIGN TO RD-1442. 

575 



o 

14. Code the File Section of the Data Division to provide for the 
files described and illustrated in Figure 134. 

* * * 
o 1 1 2 2 3 3 4 4 5 5 6 6 7 

1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
FILE SECTION. 
FD NEW-CUSTOMER-FILE 

LABEL RECORDS ARE OMITTED. 
01 NEW-CUSTOMER-RECORD. 

02 CUSTOMER-NUMBER PIC 9 (6) '. 
02 CUSTOMER-NAME PIC X(20). 
02 CUSTOMER-ADDRESS PIC X(30). 
02 DAYS-TO-PAY PIC 99. 
02 FILLER PIC X(22). 

FD OLD-MASTER-FILE 
LABEL RECORDS ARE STANDARD 

01 OLD-MASTER-RECORD. 
02 OCUSTOMER-NUMBER PIC 9(6). 
02 OCUSTOMER-NAME PIC X (20) '. 
02 OCUSTOMER-ADDRESS PIC X(30). 
02 OCREDIT-CODE PIC 9. 

FD NEW-MASTER-FILE 
LABEL RECORDS ARE STANDARD 

01 NEW-MASTER-RECORD. 
02 OCUSTOMER-NUMBER PIC 9(6). 
02 OCUSTOMER-NAME PIC X(20). 
02 OCUSTOMER-ADDRESS PIC X(30). 
02 OCREDIT-CODE PIC 9. 

FD MDTP-FILE 
LABEL RECORDS ARE OMITTED. 

01 MDTP-RECORD. 
02 MDTP PIC 99. 
02 FILLER PIC X(78). 

15. Code the Working-Storage Section of the Data Division to provide 
for the table described and illustrated in Figure 134 and the 
elementary variable CREDIT-CODE to be used as a subscript. 

* * * 
001122334 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

576 

WORKING-STORAGE SECTION. 
77 CREDIT-CODE PIC 9. 
01 MAX-DAYS-TO-PAY-TABLE. 

02 MAX-DAYS-TO-PAY 
OCCURS 3 TIMES 
PIC 99. 

(22) 



16. A record 
statement: 

would be written into NEW-MASTER-FILE with the 

a. 

o 0 112 2 3 344 5 5 6 6 7 
1 .•. 5 •... 0 •..• 5 ..•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 .••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •• 

WRITE NEW-MASTER-RECORD 
FROM OLD-MASTER-RECORD. 

if the record is of an old customer. 

b. 

o 0 112 2 3 344 556 6 7 
1 ..• 5 •.•• 0 •••• 5 ••.• 0 •.•. 5 •••• 0 •••. 5 •••• 0 •••. 5 .••. 0 •••• 5 •••. 0 •••• 5 •••• 0 •. 

WRITE NEW-MASTER-RECORD 
FROM NEW-CUSTOMER-RECORD. 

if the record is of a new customer. 

* * * 
a (For a new customer the appropriate variables would be moved to 
the output area and then NCREDIT code would be determined. The 
statement used in this case would be WRITE NEW-MASTER-RECORD.) 

17. By comparing the days to pay for the new customer with the table 
elements, the program is to determine the subscript to be used as 
the credit code for the new customer. This could be done by 
specifying: 

a. CREDIT-CODE (which is defined as an elementary variable in 
working storage) as the subscript in the statement to test 
the days to pay and then moving the value of CREDIT-CODE to 
NCREDIT-CODE. 

b. NCREDIT-CODE (which is contained in the output area) as the 
subscript in the statement to test the days to pay. 

* * * 
Either (Less coding is required for b.) 

577 



578 

18. Follow the program flow chart in Figure 135 
Procedure Division for MASTER-FILE-UPDATE. 

Write 
disk record 

from 
input area 

Perform 
READ-T ABLE-VALUE 

Close 
MDTP-FILE 

to 
NCREDIT-CODE 

r---, 
Set I 

CREDIT-CODE 

L 
equal to 1 I 

_~_-...J 

y 

/'-. - -
,/ "
CREDIT-CODE' 

> 3./ 
" .,/ 

READ-TABLE-VALUE 
N 

~------~-------, 
Read 
card 

record 

EN D-PROG RA M .---------'-------....., 
Move 

END-PROGRAM 

Move 
new customer 
number, name 
and address 

to out ut area 

MDTP to 
table clemcnt 

(CRFDIT-CODE) 

r-
I Increment 

CREDIT -CODE 
L __ 

Figure 135 

and code the 

TEST 

I 
I 
I 

END-PROGRAM 



* * * 
o 0 112 233 4 4 556 6 7 
1 .•• 5 ..•• 0 •..• 5 •.•. 0 •••. 5 •••• 0 •••• 5 •••• 0 ••.• 5 ••• ~0 •.•• 5 •••• 0 •••• 5 •••• 0 •. 

PROCEDURE DIVISION. 
INITIAL-ROUTINE. 

OPEN INPUT MDTP-FILE. 
PERFORM READ-TABLE-VALUE (32) 

VARYING CREDIT-CODE 
FROM 1 BY 1 
UNTIL CREDIT-CODE GREATER THAN 3. 

CLOSE MD'I'P-FILE. 
OPEN INPUT NEW-CUSTOMER-FILE 

OLD- MASTER- FILE 
OUTPUT NEW-~ASTER-FILE. 

READ-CARD. 
READ NEW-CUSTOMER-FILE 

AT END GO TO E ND- PROG RAt-l. 
READ-DISK. 

READ OLD-~ASTER-FILE 
AT END GO TO END-PROGRAM. 

TEST. 
IF OCUSTO~ER-NUMBER 

LESS THAN CUSTOMER-NUMBER 
WRITE NEW-~mSTER-RECORD 

FROM OLD-MASTER-RECORD 
GO TO READ-DISK. 

IF OCUSTOMER-NUMBER 
EQUAL TO CUSTOMER-NUMBER 
GO TO END-ROUTINE. 

t-'10VE 1 TO NCREDIT-CODE. 
TEST-DAYS. 

IF DAYS-TO-PAY GREATER THAN 
~AX-DAYS-TO-PAY (NCREDIT-CODE) 
ADD 1 TO NCREDIT-CODE 
GO TO TEST-DAYS. 

BUILD-DISK. 
fvlOVE CUSTOMER-NUMBER 

TO NCUSTOMER-NUMBER. 
MOVE CUSTOMER-NAME 

TO NCUSTOI-'lER-NAME. 
MOVE CUSTOMER-ADDRESS 

TO NCUSTO~£R-ADDRESS. 
WRITE NEW-MASTER-RECORD. 
READ NEW-CUSTOMER-FILE 

AT END GO TO END-PROGRAM. 
GO TO TEST. 

READ-TABLE-VALUE. 
READ MurP-FILE 

AT END CLOSE MDTP-FILE. 
MOVE MDTP 

TO MAX-DAYS-TO-PAY (CREDIT-CODE). 
END-ROUTINE. 

IF OCUSTOMER-NUMBER 
EQUAL TO 999999 
GO TO END-PROGRAM. 
ELSE GO TO ERROR-ROUTINE. 

ERROR-ROUTINE. 
DISPLAY 'INVALID NUMBER' 

OCUSTO~~R-NU~BER UPON CONSOLE. 
END-PROGRAM. 

CLOSE NEW-CUSTOMER-FlLE 
OLD-MASTER-FILE NEW-MASTER-FILE. 

STOP RUN. 

(13) 

( 32) 

( 13) 

579 



SUMMARY: 

You have now completed Lesson 28 in which you have learned to 
define variables whose values will be tables of data, to assign 
values to table elements, and to use tables in two ways. In coding a 
program to update an employee master file you used subscripts to 
specify table values to be used in processing other data. Then in a 
program to update a customer master file you tested table values to 
determine the subscript of the value that satisfied the specified 
condition. 

END OF LESSON 28 

580 



LESSON 29 

581 



582 

LESSON 29 - PROCESSING WITH INDEXES • CALLING SUBPROGRAMS 

INTRODUCTION 

In this lesson you will learn to use a variable to determine the 
number of table elements for a table whose size will vary from one 
execution to the next. You will modify the billing procedure that 
you coded to include additional processing using tables. 

Specific COBOL language features that you 
will learn to use in this lesson are: 

INDEXED BY option of the OCCURS clause 
SET statement 
CALL statement 
READY statement 
SET statement 
ENTER statement. 

This lesson will require approximately one hour. 



1. 

a 

r-----------------------, 
I SALE-TABLE 

SALE-ITEM (1) A20933 

SALE-ITEM (2) A21445 

SALE-ITEM (3) A22222 

SALE-ITEM (4) A23762 

SALE-ITEM (5) A25333 

SALE-ITEM (6) I A26443 
--------------t--------

SALE-ITEM (7) I A29547 
--------------f--------

1~:;~;;iii~=~~~~1 
I SALE-ITEM(10) J67011 I L_____________ _ _______ J 

The subscript of each table element is called an occurrence 
number of a table. In SALE-TABLE: 

a. the highest occurrence number is 10 • 

b. occurrence number 8 corresponds to the value A29547. 

* * * 

2. The number that is specified in the OCCURS clause is the same as 
the highest: 

a. subscript for the table. 

b. occurrence number for the table. 

* * * 
Both 

o 0 1 1 2 2 3 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .• 

, 
WORKING-STORAGE SECTION. 
77 TABLE-SIZE PIC 999. 
01 TERRITORY-TABLE. 

02 TERRITORY-SALESMEN 
OCCURS 4 TIMES PIC 999. 

01 SALES-TABLE. 
02 SALES 

OCCURS 200 TIMES 
PIC 9(5)V99. 

583 



584 

Catalog numbers 

CARD-READER 
Number o(sale items 

Catalog numbers of 
sale items 

ORDER-FILE 

Input area: 
ORDER-RECORD 

-0 

1\29033 

of sale items~ 

Number of 

09 

sale items ----I L-_____ ---' 

Card in ORDER-FILE 

I I I 

CUSTOMER-NAME 

(20 characters) 

CUSTOMER-NUMBER 

(6 digits) 

IBM-I 130 

I I 

JUSTOMER-ADDRESS 

(30 characters) 

SALE-TABLE 

SALE-ITEM (1) 

SALE-ITEM (2) 

SALE-ITEM (3) 

I I 

~UANTITY 
(4 digits) 

PRICE 

(5 digits, 
2 decimal 
places) 

ORDER-ITEM 

(6 characters) 

I 

1. 
Unused 
columns 

Orders received by the mail-order wholesale house are punched 
into cards in ORDER-FILE as shown above. As an order 1S 
processed, the program is to determine whether the item ordered 
is a sale item. If so the price is to be computed as 90 percent 
of the regular price before the amount of the order is computed. 
The catalog numbers of sale items which have been punched one per 
card as shown above are to be treated as values of SALE-TABLE. 
The number of sale items for anyone month will also be punched 
into a card to determine the desired size of SALE-TABLE for that 
month. The maximum number of sale items for anyone month is 10. 

Figure 136 



3. The problem described in Figure 136 is to use a table whose size 
may vary from one execution to the next. Read the problem 
description in Figure 136. Code the following entries for the 
billing program. 

1) Working-Storage section entries to define the variable. 

TABLE-SIZE which is to contain the number of sale items, 

TABLE-VALUE to which a table value will be transmitted prior 
to being rroved to a specific table element, 

SALE-TABLE whose size is to be determined by TABLE-SIZE, and 
SUBSCRIPT to be used as a subscript in referring to table 
elements. 

2) Procedure Division entries to accept the table size and the 
table values. 

* * * 
1) 

o 0 112 2 3 344 556 6 7 
1 ... 5 .... 0 ...• 5 .... 0 ..•• 5 .... 0 •... 5 .•.• 0 .•.. 5 .... 0 •.•• 5 ••.• 0 •••• 5 •.•• 0 •• 

WORKING-STORAGE SECTION. 
77 TABLE-SIZE PIC 99. 
77 TABLE-VALUE PIC X(6). 
77 SUBSCRIPT PIC 99. 
01 SALE-TABLE. 

2) 

02 SALE-ITEM 
OCCURS 10 TIMES 
PIC X(6). 

0011223 344 5 5 6 6 7 
1 •.. 5 •••• 0 .••• 5 .••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

PROCEDURE DIVISION. 
INITIAL-ROUTINE. 

ACCEPT TABLE-SIZE. 
PERFORM ACCEPT-TABLE-VALUE 

VARYING SUBSCRIPT 
FROM 1 BY 1 
UNTIL SUBSCRIPT GREATER THAN 

TABLE-SIZE 

ACCEPT-TABLE-VALUE. 
ACCEPT TABLE-VALUE. 
MOVE TABLE-VALUE 

TO SALE-ITEM (SUBSCRIPT). 

In the preceding lesson you coded a program in which you found a 
table value that satisfied a certain condition and then used the 
subscript of that element for subsequent processing. You used the IF 
sentence. 

585 



4. In the problem described in Figure 136 the test to determine 
whether the item ordered is a sale item can be coded using the IF 
sentence. The flow chart segment ~ in Figure 139 shows the logic 
for this test using the IF sentence. Refer to the first three 
divisions of the billing program in Figure 137 if necessary and 
code the Procedure Division entries for segment a. (Assume that 
a record has been read from ORDER-FILE and that the appropriate 
variables have been moved to COMP variables.) 

o 0 112 233 4 4 556 6 7 
1 ..• 5 •••• 0 •.•• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

586 

IDENTIFICATION DIVISION. 
PROGRA~-ID. BILLING. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
FILE-CONI'ROL. 

SELECT ORDER-FILE 
ASSIGN TO RD-1442. 

SELECT DISK-FILE 
ASSIGN TO DF-1-600-X. 

SELECT PRINT-FILE 
ASSIGN TO PR-1132-C. 

DATA DIVISION. 
FILE-SECTION. 
FD ORDER-FILE 

LABEL RECORDS ARE OMITTED. 
01 ORDER-RECORD. 

02 CUSTOMER-NUMBER PIC 9(6). 
02 CUSTOMER-NAME PIC X(20). 
02 CUSTOMER-ADDRESS PIC X(30). 
02 ORDER-ITEM PIC X(6). 
02 PRICE PIC 999V99. 
02 QUANTITY PIC 9(4). 
02 FILLER PIC X(9). 

FD DISK-FILE 
LABEL RECORDS ARE STANDARD. 

01 DISK-RECORD. 
02 FILLER PIC X(56). 
02 ORDER-ITEM-T PIC X(6). 
02 PRICE-T PIC 999V99. 
02 QUANTITY-T PIC 9(4). 

FD PRINT-FILE 
LABEL RECORDS ARE OMITTED. 

01 PRINT-LINE PIC X(121)~ 
WORKING-STORAGE SECTION. 
77 TABLE-SIZE PIC 99. 
77 SUBSCRIPT PIC 99. 
01 SALE-TABLE. 

02 SALE-ITEM 
OCCURS 10 TIMES 
PIC X(6). 

01 COMPUTATION-RECORD. 
02 PRICE-WS PIC 999V99. 
02 QUANTITY-WS PIC 9(4). 
02 ONE PIC 9 VALUE 1. 
02 NINETY PIC V99 VALUE .90. 
02 AMOUNT PIC 9(7)V99. 

Figure 137 



* * * 

0011223 3 4 4 5 5 6 6 7 
1. • . 5. • • • O. • • • 5 •••• O. • • • 5 •••• O •••• 5. • •• 0 •.•. 5 • • • • 0 . • • • 5 • '. • • 0 . . .• 5. • • • 0 .. 

MOVE 1 TO SUBSCRIPT. 
TEST-SALE-ITEMS. 

IF ORDER-ITEM EQUAL TO 
SALE-ITEM (SUBSCRIPT) 
COMPUTE PRICE-WS ROUNDED 

= PRICE-WS * NINETY 
ELSE 
IF SUBSCRIPT LESS THAN 

TABLE-SIZE 
ADD ONE TO SUBSCRIPr 
GO TO TEST-SALE-ITEMS. 

COMPUTE AMOUNT 
= PRICE-WS * QUANTITY-WS. 

Rules for User-Supplied Portions of the OCCURS Clause 

Format 

OCCURS integer TIMES [DEPENDING ON identifier] 

[INDEXED BY index-name] 

Rules 1. Integer must specify the maximum table size for 
any execution of the program. 

2. Index-name is defined by its appearance in 
INDEXED BY option. 

3. Values of index-name are relative addresses that 
correspond to occurrence numbers of the table. 

Figure 138 

5. when you wish to look for a table element whose value satisfies a 
certain condition and take certain action when the value is 
found, you can use the INDEXED BY option of the OCCURS clause. 
According to Figure 138 index-name: 

a. must be defined with a picture of 9's. 

b. is defined by its appearance in the INDEXED BY option. 

* * * 
b 

587 



588 

6. Figure 134 states that index-name has: 

a,c 

7. 

a. values that correspond to occurrence numbers of the table. 

b. data values. 

c. values that are relative addresses. 

Set variable 
SUBSCRIPT 
equal to 1 

Compute 
price 

= .90 X price 

Compute 
amount 

= quantity 
X price 

* * * 

Figure 139 

SET index-name-1 TO {~~~~~~~~:~-2} 
literal 

Add 1 to 
SUBSCRIPT 



You coded a MOVE statement for the first step in segment ~ of 
Figure 139. A MOVE statement is used to assign a value to a data 
variable. It cannot be used, however, to assign a value to an 
index variable. The SET statement must be used instead. 
According to the format shown above, the first step in segment ~ 
of Figure 139 could be coded as: 

a. SET S TO 1. 

h. SET S TO ONE. 

* * * 
Either 
(In Figure 137 ONE was assigned a value of 1 in the Data Division.) 

8. 

{

UP BY } {identifier-4} 
SET index-name-4 [index-name-51 ••• 

DOWN BY literal-2 

When the preceeding format is used the contents of index-naroe-4 
(and index-name-5 if present, etc.) are incremented (UP BY) or 
decremented (DOWN BY) by that which corresponds to the number 
represented by identifier-4 or literal-2. 

SET I UP BY 1. 

The above statement will increase index I by one. 

SET I DOWN BY 1. 

The above statement will decrease index I by one. 

9. Code the record description entry for SALE-TABLE in Figure 136 so 
that a PERFORM statement can be used for the test of sale items. 
(Specify an index for the table.) 

* * * 
o 0 112 233 445 5 6 6 7 
1 •.. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

01 SALE-TABLE. 
02 SALE-ITEM 

OCCURS 10 TIMES 
INDEXED BY S PIC X(6). 

SET S TO 1. 
PERFORM SEARCH-SALES-ITEM 

VARYING S FROM 1 BY 1 
UNTIL S GREATER THAN 10. 

SEARCH-SALES-ITEM. 
IF ORDER-ITEM EQUAL TO SALES-ITEM(S) 
COMPUTE PRICE-WS ROUNDED 

= PRICE-WS * NINETY. 
COMPUTE AMOUNT 

= PRICE-WS * QUANTITY-WS. 

589 



10. 

Set I 
equal to I 

SET identifier TO index-name 

r------
I 
I 
I 

"... 
.".. .... 

.".. ...... 
", I> ........ No 

TABLE-SIZE ~---II~ MAX-DA YS-TO-PA Y J--I--"'~ ...... ,. 
...... ",. 

..... ,,'" 
Yes 

BUILD-DISK 

Figure 140 

590 

Set 
NCR EDIT-CODE 
equal to 1 

-r--~1--, 
I 

Increment I I 
I I 
L ____ .J 



In the preceding lesson you coded a program in which a new 
customer credit code was determined by the number of days elapsed 
before the customer paid. A portion of the flow chart for that 
program has been modified to show how an IF sentence could have 
been used in the program. This logic would require the SET 
statement format shown above. Assume that the index I has been 
specified in the INDEXED BY option of the OCCURS clause for MAX
DAYS-TO-PAY and code the Procedure Division entries for the 
segment shown above using the IF sentence. 

* * * 
001122334 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

11. 

b 

S£ARCH-TABLE. 
SET I TO 1. 
IF MAX-DAYS-To-PAY (I) 
NOT LESS THAN DAYS-TO-PAY 
SET NCREDIT-CODE TO I 
ELSE GO TO INCR-TABLE. 
GO TO BUILD-TABLE. 

INCR-TABLE. 
IF I NOT EQUAL TO TABLE-SIZE 

SET I UP BY 1 
ELSE GO TO FULL-TABLE. 

GO TO SEARCH-TABLE. 

BUILD-TABLE. 

FULL-TABLE. 
DISPLAY 'DAYS-TO-PAY NOT IN TABLE'. 

{

indeX-name-l [indeX-name-2] ••• } 
SET 
--- identifier-l [identifier-2] ••• 

The SET statement format above shows that: 

{

i ndex-name- 3 } 
identifier-3 
literal-l 

a. separate SET statements would be required to assign the value 
1 to both I and NCREDIT-CODE. 

b. the value 1 could be assigned to I and NCREDIT-CODE in a 
single statement. 

* * * 

591 



CARD-READER 
(Number of discon
tinued items and 
discontinued item 
numbers) 

MASTERFILE 
(Customer 
name and 
address) 

PRINT-FILE 
(pages to be used as 
bills 

The billing procedure previously done is to be modified to 
include a text for discontinued items. The item number for each 
discontinued item has been punched into the first six columns of 
a card and is to be assigned to an element of the table shown 
below: 

(Index D) 
r----------------------------------------------------------------------, 
1 DISCONTINUED-TABLE 1 
1------------------------------------------------------ ---------------1 
1 DISCONTINUED-ITEM-NUMBER (1) A17080 1 
1------------------------------------------------------ ---------------1 
1 DISCONTINUED-ITEM-NUMBER (2) B92641 1 
1------------------------------------------------------ ---------------1 
I 1 
1 1 
I I 
1 I 
I 1 L______________________________________________________ __ _____________ J 

592 

If the item number in a transaction card matches a number in the 
discontinued table, ~ asterisk is to be printed in place 2! 
QUANTITY and blanks are to appear in VOLUME-PRICE. In addition, 
when all transactions for customer have been processed, a note is 
to be printed below the total line. The manufacturer has 
produced numerous designs and over a period of years discontinued 
items may number several hundred. The Printer Spacing Chart in 
Figure 142 shows the desired format, and the program flowchart in 
Figure 143 shows the necessary modifications in logic. The 
coding for the first three divisions is given in Figure 144. 

Figure 141 



U'1 
\0 
~ 

I':j 
fool· 
~ 
~ 
Ii 
(t) 

~ 
-'= 
l\J 

o 2 3 4 5 6 7 
1 ~~' 121314151617j8j91°P 121314rS161'8r910~1 ;2r~~~r71819101 '!2;3FI516!7!aj91°1'!2j3!4!S!6!7ja!9IO!1 !2j314ISI617IaI91°11/2/3/4/SI6/7181910il!2!3;4?i617!8!9 

2 
Channel 3 

at~::;:=l1111111111 ~ 1111111 iil,1111 ~ III rum 11111 11111 11111 11111 11111 11111 11111 It • 
9 

10 

ill 
2 

De~linell::11111111111 Mi~flen III fttt11t1t1ttttllllll r1!ft11111 ffinlL~1±tlta 11111I111II1II1 
14 

15 

16 
17 

11 

19 
20 
21 
22 

u 
24 
25 
26 
27 

~~::: liillllllllill ~ I,ll ~ll U~ ~I~~M,~I.III~ 11_1111111 
33 
34 
35 

36 



U'1 
\0 
.r:: 

Io:j 
~. 

~ 
11 
(l) 

!-Io 
.r:: 
w 

Perform 
TOTAL

CALCULA nON 



12. Read the problem description in Figure 141. Figure 144 shows the 
Data Division which has been m·~ified to provide COMP variables 
to increase program efficiency. The picture character Z has been 
specified for VOLUME-PRICE so that blanks will appear on the 
invoice if the order cannot be filled. The variable 
DISCONTINUED-LINE has also been defined and assigned a value to 
be printed on some of the bills. Complete the Data Division by 
coding a data description entry for TABLE-SIZE which will 
determine the size of the table, TABLE-VALUE to which a table 
value will be transmitted prior to being moved to a specific 
table element, and a record description entry for the table 
illustrated in Figure 141. 

* * * 
0011223 3 4 4 5 5 6 6 7 
1 .•. 5 •••• O •••• 5 •••• o .••. 5 •••• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

77 TABLE-SIZE PIC 9999. 
77 TABLE-VALUE PIC X(6). 
01 DISCONTINUED-TABLE. 

12 DISCONTINUED-ITEM-NUMBER 
OCCURS 1000 TIMES 
INDEXED BY D 
PIC X(6). 

( 4) 

595 



o 0 1 1 2 2 3 344 5 5 6 6 7 
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

596 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MONTHLY-BILLING. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
SPECIAL-NAMES. 

COl IS TO-NAME-LINE. 
C02 IS TO-DETAIL-LINE. 
C03 IS TO-SUBTOTAL-LINE. 

INPUT-OUTPUT SECTION. 
FILE CONTROL. 

SELECT MASTER-FILE 
ASSIGN TO DF-1-800-X. 

SELECT TRANSACTION-FILE 
ASSIGN TO RD-1442. 

SELECT PRINT-FILE 
ASSIGN TO PR-1132-C. 

SELECT TOTAL-FILE 
ASSIGN TO DF-2-900-X. 

DATA DIVISION. 
FILE SECTION. 
FD MASTER-FILE 

LABEL RECORDS ARE STANDARD. 
01 CUSTOMER-MASTER. 

02 PERSONAL-DATA. 
03 NAME PIC X(20). 
03 CUSTOMER-NUMBER PIC X(6). 
03 STREET PIC X(15). 
03 CITY-STATE PIC X(15) • 

02 FILLER PIC X(24). 
FD TRANSACTION-FILE 

LABEL RECORDS ARE OMITTED. 
01 PURCHASE-RECORD. 

02 CUSTOMERNUMBER PIC X(6). 
02 ITEM-NUMBER PIC X(6). 
02 DESCRIPTION PIC X(15). 
02 UNIT-PRICE PIC 999V99. 
02 QUANTITY PIC 99. 
02 FILLER X(46). 

FD PRINT-FILE 
LABEL RECORDS ARE OMITTED. 

01 BILL PIC X(75). 
FD TOTAL-FILE 

BLOCK CONTAINS 10 RECORDS 
LABEL RECORDS ARE STANDARD. 

01 TOTAL-RECORD. 
02 CUSTOMER-NUMBER PIC X(6). 
02 SUBTOTAL-T PIC 99999V99. 
02 TAX-T PIC 999V99. 

WORKING-STORAGE SECTION. 
77 SUBTOTAL-WORK-SWITCH PIC X. 
01 COMPUTATIONAL-RECORD USAGE COMPo 

02 UNIT-PRICE-WORK PIC 999V99. 
02 QUANTITY-WORK PIC 99. 
02 VOLUME-PRICE-WORK PIC 9999V99. 
02 SUBTOTAL-WORK PIC 99999V99. 
02 FOUR-PERCENT PIC V99 VALUE .04. 
02 TAX-WORK PIC 999V99. 
02 TOTAL-WORK PIC 99999V99. 



01 NAME-LINE. 
02 FILLER PIC X(10) VALUE SPACES. 
02 NAME PIC X(20). 
02 FILLER PIC X(4) VALUE SPACES. 
02 CUSTOMER-NUMBER PIC X (6) '. 
02 FILLER PIC X (35) VALUE SPACES,. 

01 STREET-LINE. 
02 FILLER PIC X(10) VALUE SPACES. 
02 STREET PIC X(25). 
02 FILLER PIC X(40) VALUE SPACES. 

01 CITYSTATE-LINE. 
02 FILLER PIC X(10) VALUE SPACES. 
02 CITYSTATE PIC X(25). 
02 FILLER PIC XX VALUE SPACES. 
02 ZIP PIC X(5). 
02 FILLER PIC X(33) VALUE SPACES. 

01 DETAIL-LINE. 
02 FILLER PIC X(10) VALUE SPACES. 
02 ITEM-NUMBER PIC X(6). 
02 FILLER PIC X(4) VALUE SPACES. 
02 DESCRIPTION PIC X(lS). 
02 FILLER PIC XeS) VALUE SPACES. 
02 UNIT-PRICE PIC 999.99. 
02 FILLER PIC XXXX VALUE SPACES. 
02 QUANTITY PIC XX. 
02 FILLER PIC X(4) VALUE SPACES. 
02 VOLUME-PRICE PIC z,zzz.zz. 
02 FILLER PIC X(11) VALUE SPACES. 

01 SUBTOTAL-LINE. 
02 FILLER PIC X(S4) VALUE SPACES. 
02 SUBTOTAL PIC $$$,$99.99 .• 
02 FILLER PIC X(ll) VALUE SPACES. 

01 TAX-LINE. 
02 FILLER PIC X(45) VALUE SPACES. 
02 CONSTANTl PIC XXX VALUE 'TAX'. 
02 FILLER PIC xes) VALUE SPACES. 
02 TAX PIC 999.99. 
02 FILLER PIC X(ll) VALUE SPACES. 

01 TOTAL-LINE. 
02 FILLER .PIC X(45) VALUE SPACES. 
02 CONSTANT2 PIC xes) VALUE 'TOTAL'. 
02 FILLER PIC X(4) VALUE SPACES. 
02 TOTAL PIC $$$,$99.99. 
02 FILLER PIC X(ll) VALUE SPACES. 

01 DISCONTINUED-LINE. 
02 FILLER PIC X(10) VALUE SPACES. 
02 CONSTANT3 PIC X(3l) VALUE 

'* ITEM HAS BEEN DISCONTINUED. 
02 CONSTANT4 PIC X(32) VALUE 

'ORDER FILLED IF SUPPLY ADEQUATE.'. 
02 FILLER PIC X(2) VALUE SPACES. 

Figure 144 

591 



o 0 112 2 3 3 4 4 556 6 7 
1 ... 5 •.•• 0 •••. 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 ••.. 0 •• 

598 

PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT MASTER-FILE 
TRANSACTION-FILE 
OUTPUT PRINT-FILE 
TOT AL- FILE. 

READ TRANSACTION~FILE 
AT END GO TO ERROR-ROUTINE. 

INITIALIZE. 
MOVE ZEROS TO SUBTOTAL-WORK. 

READ-MAST ER. 
READ MASTER-FILE 

AT END GO TO FINISH. 
IF CUSTOMERNUMBER GREATER THAN 

CUSTOMER-NUMBER OF PERSONAL-DATA 
GO TO READ-MASTER. 

IF CUSTOMERNUMBER LESS THAN 
CUSTOMER-NUMBER OF PERSONAL-DATA 
GO TO ERROR-ROUTINE. 

PRINT-ADDRESS. 
MOVE CUSTOMERNUMBER OF PURCHASE RECORD TO 

CUSTOMERNUMBER OF DETAIL-LINE. 
MOVE ITEM-NUMBER OF PURCHASE-RECORD TO 

ITEM-NUMBER OF DETAIL-LINE. 
MOVE DESCRIPTION OF PURCHASE-RECORD TO 

DESCRIPTION OF DETAIL-LINE. 
MOVE UNIT-PRICES OF PURCHASE-RECORD 

TO UNIT-PRICE OF DETAIL-LINE. 
MOVE QUANTITY OF PURCHASE-RECORD TO 

QUANTITY OF DETAIL-LINE. 
MOVE STREET TO STREET-O. 
MOVE CITY-STATE TO CITY-STATE-O. 
WRITE BILL FROM NAME-LINE 

AFTER ADVANCING TO-NAME-LINE. 
WRITE BILL FROM STREET-LINE 

AFTER ADVANCING 1 LINE. 
WRITE BILL FROM CITYSTATE-LINE 

AFTER ADVANCING 1 LINE. 
PRINT-DETAIL. 

COMPUTE VOLUME-PRICE-WORK = 
UNIT-PRICE OF PURCHASE-RECORD 
* QUANTITY OF PURCHASE-RECORD. 

ADD VOLUME-PRICE-WORK 
TO SUBTOTAL-WORK. 
MOVE NAME OF PERSONAL-DATA TO NAME OF NAME-LINE. 
MOVE CUSTOMER-NUMBER OF PERSONAL-DATA TO 

CUSTOMER-NUMBER OF NAME-LINE. 
MOVE STREET OF PERSONAL-DATA TO STREET OF NAME-LINE. 
MOVE CITY-STATE OF PERSONAL-DATA TO 

CITY-STATE ,OF NAME-LINE. 
MOVE DETAIL-LINE TO BILL. 

FIRST-DETAIL-LINE. 
WRITE BILL 

AFTER ADVANCING TO-DETAIL-LINE. 
READ-TRANSACT ION-ROUTINE. 

READ TRANSACTION-FILE 
AT END PERFORM TOTAL-CALCULATION 
GO TO FINISH. 

IF CUSTOMERNUMBER GREATER THAN 
CUSTOMER-NUMBER OF PERSONAL-DATA 
GO TO TOTAL-CALCULATION. 

IF CUSTOMERNUMBER LESS THAN 
CUSTOMER-NUMBER OF PERSONAL-DATA 
GO TO ERROR-ROUTINE. 

PERFORM PRINT-DETAIL. 



WRITE BILL 
AFTER ADVANCING 1 LINE. 

GO TO READ-TRANSACTION-ROUTINE. 
TOTAL-CALCULATION. 

MOVE SUBTOTAL-WORK TO SUBTOTAL. 
WRITE BILL FROM SUBTOTAL-LINE 

AFTER ADVANCING TO SUBTOTAL-LINE. 
COMPUTE TAX-WORK = .04 * 

SUBTOTAL-WORK. 
MOVE TAX-WORK TO TAX. 
WRITE BILL FROM TAX-LINE 

AFTER ADVANCING 1 LINE. 
COMPUTE TOTAL = TAX-WORK 

+ SUBTOTAL-WORK. 
WRITE BILL FROM TOTAL-LINE 

AFTER ADVANCING 1 LINE. 
MOVE CUSTOMER-NUMBER OF PERSONAL-DATA TO 

CUSTOMER-NUMBER OF TOTAL-RECORD. 
MOVE SUBTOTAL-WORK TO SUBTOTAL-T. 
MOVE TAX-WORK TO TAX-T. 
WRITE TOTAL-RECORD. 

RETURN-1. 
GO TO INITIALIZE. 

ERROR-ROUTINE. 
DISPLAY CUSTOMERNUMBER 

'ERROR IN CARD FILE'. 
FINISH. 

CLOSE MASTER-FILE TRANSACTION-FILE 
PRINT-FILE TOTAL-FILE. 

STOP RUN. 

Figure 145 

599 



13. The Procedure Division for the problem is shown in Figure 145. 
Follow the program flow chart in Figure 143 and code the missing 
portions of the Procedure Division below to incorporate table 
handling, PERFORM statements, and other entries as indicated. 

o 0 112 2 3 3 4 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••. 0 •••• 5 •••• 0 •• 

PROCEDURE DIVISION. 
BEGIN. 

1) 

OPEN INPUT MASTER-FILE 
TRANSACTION-FILE 
OUTPUT PRINT-FILE 
TOTAL-FILE. 

001122334 4 556 6 7 
1 ••. 5 •••• O •••• 5 •••• O •••• 5 •••• o •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

READ TRANSACTION-FILE 
AT END GO TO ERROR-ROUTINE. 

INITIALIZE. 
MOVE ZEROS TO SUBTOTAL-WORK. 

2) 

o 0 112 233 4 4 556 6 7 
1 .•• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••• ~5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

600 

READ-MASTER. 
READ MASTER-FILE 

AT END GO TO FINISH. 
IF CUSTOMERNUMBER GREATER THAN 

CUSTOMER-NUMBER OF PERSONAL-DATA 
GO TO READ-MASTER. 

IF CUSTOMER NUMBER LESS THAN 
CUSTOMER-NUMBER OF PERSONAL-DATA 
GO TO ERROR-ROUTINE. 

PRINT-ADDRESS. 
MOVE NAME OF PERSONAL-DATA TO NAME OF NAME-LINE 
MOVE CUSTOMER-NUMBER OF PERSONAL-DATA TO CUSTOMER-NUMBER 

OF NAME-LINE 
MOVE STREET TO STREET-O. 
MOVE CITY-STATE TOCITY-STATE-O. 
WRITE BILL FROM NAME-LINE 

AFTER ADVANCING TO-NAME-LINE. 
WRITE BILL FROM STREET-LINE 

AFTER ADVANCING 1 LINE. 
WRITE BILL FROM CITYSTATE~LINE 

AFTER ADVANCING 1 LINE. 



3) 

o 0 112 2 3 344 5 5 6 6 7 
1 ... 5 .••• 0 ••.. 5 .••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

FIRST-DETAIL-LINE. 
WRITE BILL 

AFTER ADVANCING TO-DETAIL-LINE. 
READ-TRANSACTION-ROUTINE. 

4) 

READ TRANSACTION-FILE 
AT END PERFORM TOTAL-CALCULATION 
GO TO FINISH. 

IF CUSTOMERNUMBER GREATER THAN 
CUSTOMER-NUMBER OF PERSONAL-DATA 
GO TO TOTAL-CALCULATION. 

IF CUSTOMERNUMBER LESS THAN 
CUSTOMER-NUMBER OF PERSONAL-DATA 
GO TO ERROR-ROUTINE. 

0011223 3 4 4 5 5 6 6 7 
1 .•. 5 •••• 0 .•.. 5 •••• 0 •.•• 5 •••• 0 •••. 5 •••• 0 •••. 5 .••• 0 •••• 5 •••• 0 •••• ~ •••• 0 •. 

WRITE BILL 
AFTER ADVANCING 1 LINE. 

GO TO READ-TRANSACTION-ROUTINE. 
TOTAL-CALCULATION. 

5) 

MOVE SUBTOTAL-WORK TO SUBTOTAL .. 
WRITE BILL FROM SUBTOTAL-LINE 

AFTER ADVANCING TO-SUBTOTAL-LINE. 
COMPUTE TAX-WORK = SUBTOTAL-WORK. 
MOVE TAX-WORK TO TAX. 
WRITE BILL FROM TAX-LINE 

AFTER ADVANCING 1 LINE. 
COMPUTE TOTAL-WORK = TAX-WORK 

+ SUBTOTAL-WORK. 
WRITE BILL FROM TOTAL-LINE 

AFTER ADVANCING 1 LINE. 

o 0 112 233 445 5 6 6 7 
1 .•• 5 ...... 0 ..... 5 •••. 0 ..... 5 •••• 0 ...... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •. 

MOVE CUSTOMER-NUMBER OF PERSONAL-DATA 
TO CUSTOMER-NUMBER 
OF TOTAL-RECORD. 

MOVE SUBTOTAL-WORK TO SUBTarAL-T. 
MOVE TAX-WORK TO TAX-T. 
WRITE TOTAL-RECORD. 

RETURN-l. 
GO TO INITIALIZE. 

601 



6) 

o 0 112 233 4 4 556 6 7 
1 ••. 5 •••• 0 •••. 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••.• 5 .••. 0 •... 5 .... 0 .. 

DETAIL. 

7) 

COMPUTE VOLUME-PRICE-WORK = 
UNIT-PRICE-WORK * QUANTITY-WORK. 

ADD VOLUME-PRICE-WORK 
TO SUBTOTAL-WORK. 

MOVE ITEM-NUMBER OF PURCHASE-RECORD 
TO ITEM-NUMBER OF DETAIL-LINE. 

MOVE DESCRIPTION OF PURCHASE-RECORD 
TO DESCRIPTION OF DETAIL-LINE. 

MOVE UNIT-PRICE OF PURCHASE-RECORD 
TO UNIT-PRICE OF DETAIL-LINE. 

MOVE QUANTITY OF PURCHASE-RECORD 
TO QUANTITY OF DETAIL-LINE. 

MOVE VOLUME-PRICE OF PURCHASE-RECORD 
TO VOLUME-PRICE OF DETAIL-LINE. 

MOVE DETAIL-LINE TO BILL. 

o 0 112 233 4 4 556 6 7 
1 ..• 5 .•.. 0 .•.. 5 ..•. 0 •.•. 5 •••. 0 •••. 5 •.•• 0 ••.. 5 •.•. 0 •.•• 5 .••. 0 ••.. 5 •.•. 0 •. 

ERROR-ROUTINE. 
DISPLAY CUSTOMERNUMBER 

'ERROR IN CARD FILE' 
UPON CONSOLE. 

FINISH. 

1) 

CLOSE MASTER-FILE 
TRANSACTION-FILE 
PRINT-FILE TOTAL-FILE. 

STOP RUN. 

* * * 

0011223 344 556 6 7 
1 .•. 5 •.•• 0 ..•. s .... O •••• 5 •••• 0 •••. 5 •••• O •••• 5 •••• 0 ••.• 5 •••. 0 ••.. 5 •••• 0 .. 

2) 

ACCEPT TABLE-SIZE. 
PERFORM ACCEPT-TABLE-VALUE 

VARYING D FROM 1 BY 1 
UNTIL D GREATER THAN TABLE-SIZE. 

0011223 3 4 4 556 6 7 
1 .•. 5 .••• 0 ••.. 5 •••. 0 •.•• 5 •••• 0 •••• 5 .••• 0 .••• 5 •••• 0 •••• 5 ••.• 0 ••.• 5 •.•• 0 .. 

MOVE ZERO TO SWITCH. 

602 



3) 

o 0 112 2 3 3 4 4 556 6 7 
1 .•• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

SET D TO 1. 
TEST. 

IF ITEM-NUMBER EQUAL TO 
DISCONTINUED-ITEM-NUMBER (D) 
GO TO TEST1. 

IF D IS LESS THAN 1000 
ADD 1 TO D 
GO TO TEST 

ELSE PERFORM DETAIL. 
GO TO EXIT POINT 

TEST1. 
PERFORM DISCONTINUED-DETAIL. 

EXIT-POINT. 
EXIT. 

4) 

o 0 112 233 4 4 5 5 6 6 7 
1 ••• 5 .••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •• 

PERFORM TEST THRU EXIT-POINT. 

5) 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ... 5 •••. 0 .••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

6) 

IF SWITCH EQUAL TO 1 
WRITE BILL 

FROM DISCONTINUED-LINE 
AFTER ADVANCING 2 LINES. 

o 0 112 2 3 3 445 5 6 6 7 
1 ••. 5 ..•. 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ACCEPT-TABLE-VALUE. 

7) 

ACCEPT TABLE-VALUE. 
MOVE TABLE-VALUE 

TO DISCONTINUED-ITEM-NUMBER (D). 

o 0 1 1 2 2 3 3 4 4 556 6 7 
1 ••. 5 •.•• 0 •••. 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •..• 0 •. 

DISCONTINUED-DETAIL. 
~OVE ITEM-NUMBER OF PURCHASE-RECORD 

TO ITEM-NUMBER OF DETAIL-LINE. 
MOVE DESCRIPTION OF PURCHASE-RECORD 

TO DESCRIPTION OF DETAIL-LINE. 
MOVE UNIT-PRICE OF PURCHASE-RECORD. 

TO UNIT-PRICE OF DETAIL-LINE. 
MOVE I.' TO QUANTITY OF DETAIL-LINE. 
MOVE ZEROS TO VOLUME-PRICE 

OF DETAIL-LINE. 
MOVE 1 TO SWITCH. 
1-10VE DETAIL-LINE TO BILL. 

603 



,A29003,4769, 

lTOCK-oN-HAND (D) 
(4 digits) 

DISCONTINUED-ITEM-NUMBER 
(6 characters) 

TABLE-SIZE 

DISCONTINUED-TABLE 

A29003/4769 
TABLE-VALUE II) DISCONTINUED-ITEM-NUMBER (I) STOCK-ON-HAND (I) 

TABLE-VALUE (2) DISCONTINUED-ITEM-NUMBER (2) STOCK-ON-HAND (2) 

0011223 3 4 4 556 6 7 
1 ..• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0. ~ 

604 

01 DISCONTINUED-TABLE. 
02 TABLE- VALUE 

OCCURS 1000 TIMES 
INDEXED BY D. 

03 DISCONTINUED-ITEM-NUMBER PIC X( 6). 
03 STOCK-ON-HAND PIC 9(4). 

ACCEPT TABLE-SIZE. 
PERFORM ACCEPT-TABLE-VALUE 

VARYING 0 FROM 1 BY 1 
UNTIL D GREATER THAN TABLE-SIZE. 

ACCEPT-TABLE-VALUE. 
ACCEPT TABLE-VALUE (D). 

Figure 146 



14. Although production of some items has been discontinued, orders 
for these items are to be filled until the stock on hand is 
depleted. The data processing center has been asked to 
incorporate a test of stock on hand into its billing program. 
Figure 146 shows the way data is to be supplied to the prograrrmer 
as well as the table that the programmer might set up for his 
program. Each table element can consist of two (or more) 
elementary variables. For example, the element TABLE-VALUE (1) 
consists of the two elementary variables DISCONTINUED-ITEM-NUMBER 
(1) and STOCK-aN-HAND (1). The record description entry for the 
table is included in the figure along with the entries to assign 
values to the table elements. The paragraphs TEST through EXIT
POINT that you coded in the preceding frame are to be modified to 
provide the logic shown in Figure 141. Code the necessary 
entries. 

* * * 

605 



606 

Perfonn 
DISCONTINUED

DETAIL 

Move 
STOCK-ON-HAND (0) 
to QUANTITY-WORK 

Move 
ZEROS 

to 
STOCK-ON-HAND (D) 

TEST 

Set D 
equal to 1 

TABLE-VALUE 

Subtract 
QUANTITY 

from 
STOCK-ON-HAND (D) 

SET-SWITCH 

Set 
SWITCH 

equal to I 

PERFORMr-D_E_T_A~IL~~ ____ _ 

Perfonn 
DETAIL 

EXIT-POINT 

EXIT 

,---
I ./'. 

/" " D ,~ 
> T ABLE-5IZE/ 

" ,/ r 
PERFORM-DETAIL 

Figure 141 

-- ----, 

r- L --, 

N 1 IncrDment I 

Y 
L ___ .J 



o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••• '. 0 •••• 5 •••• O •••.• 5 •••• o •••• 5 •••• 0 •• 

15. 

TEST. 
IF ITEM-NUMBER EQUAL TO 
DISCONTINUEO-ITEM-NUMBER (D) 
GO TO TEST-STOCK-ON-HAND. 
IF D IS LESS THAN 1000 
ADD 1 TO D. 
GO TO TEST. 
PERFORM DETAIL 

TEST-STOCK-ON-HAND. 
IF QUANTITY NOT GREATER THAN 

STOCK-ON-HAND (D) 
COMPUTE STOCK-ON-HAND (D) 

= STOCK-ON-HAND (D) 
- QUANTITY-WORK 

GO TO SET-SWITCH. 
ELSE GO TO TEST-NO-STOCK-ON-HAND. 

TEST-NO-STOCK-ON-HAND. 
IF STOCK-ON-HAND (D) 

NOT GREATER THAN ZERO 
PERFORM DISCONTINUED-DETAIL 
GO TO EXIT-POINT 
ELSE MOVE STOCK-ON-HAND (D) 

TO QUANTITY-WORK 
MOVE ZEROS 

TO STOCK-ON-HAND (D). 
SET-SWITCH. 

MOVE 1 TO SWITCH. 
PERFORM-DErAIL. 

PERFORM DETAIL. 
EXIT-POINT. 

EXIT. 

The {READY} TRACE statement is provided for program debugging. 
RESET 

It may appear anywhere in an IBM ANSI COBOL program. 

After the READY TRACE statement is executed, each time execution 
of a paragraph or section begins, its external statement number 
is displayed on the printer. 

The execution of a RESET TRACE statement terminates the functions 
of a previous READY TRACE statement. 

16. 'Ihe ENTER statement serves only as documentation and is intended 
to provide a means of allowing the use of more than one language 
in the same program. 

ENTER language-name [routine-name] 

The ENTER statement is accepted as comments. 

ENTER ASSEMBLER. CALL ••• 

ENTER COBOL. 

607 



608 

Set I 
equal to 1 

Search 
MAX-DA YS-TO
PAY 

BUILD-DISK 

I " , 
" I> ',No 
TABLE-SIZE ,..----I~ , " 

...... " 
Yes 

Figure 148 

Set 
NCREDIT-CODE 
equal to 1 

1--J--1 

Increment I I 
I I ,-- ____ J 

17. The CALL statement permits communications between a COBOL object 
program and one or more COBOL subprograms or other language 
subprog rams. 

Each of the operands in the USING option of the Procedure 
Division header must have been defined as a data item in the 
Linkage Section of the program in which this header occurs, and 
must have a level number of 01 or 77. 

When the USING option is present, the object program operates as 
though each occurrence of identifier-l, identifier-2, etc., in 
the Procedure Division had been replaced by the corresponding 
identifier froID the USING option in the CALL statement of the 
calling program. That is, corresponding identifiers refer to a 
single set of data which is available to the calling program. 
The correspondence is positional and not by name. 

The following is an example of a calling program with the USING 
option: 



o 0 112 233 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CALLPROG. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 
01 RECORD-l. 

03 SALARY 
03 RATE 
03 HOURS 

PROCEDURE DIVISION. 

PICTURE S9(5)V99. 
PICTURE S9V99. 
PICTURE S99V9. 

CALL "SUBPROG" USING RECORD-l. 

The following is an example of a called subprogram associated 
with the preceding calling program: 

o 0 112 2 3 3 4 4 556 6 7 
1 .•• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SUBPROG. 

DATA DIVISION. 

LINKAGE SECTION. 
01 PAYREC. 

02 PAY 
02 HOURLY-RATE 
02 HOURS 

PICTURE S9(5)V99. 
PICTURE S9V99. 
PICTURE S99V9. 

PROCEDURE DIVISION USING PAYREC. 

EXIT PROGRAM. 

609 



SUMMARY 

Processing begins in CALLPROG, which is the calling program. 
When the statement 

CALL "SUBPROG" USING RECORD-i. 

is executed, control is transferred to the first statement of the 
Procedure Division in SUBPROG, which is the called program. In 
the calling program, the operand of the USING option is 
identified as RECORD-i. 

When SUBPROG receives control, the values within RECORD-l are 
made available to SUBPROG; in SUBPROG, however, they are referred 
to as PAYREC. Note that the PICTURE clauses for the subfields of 
PAYREC (described in the Linkage Section of SUBPROG) are the same 
as those for RECORD-i. 

When processing within SUBPROG reaches the EXIT PROGRAM 
statement, control is returned to CALLPROG at the statement 
immediately following the original CALL statement. Processing 
then continues in CALLPROG. 

In any given execution of this program, if the values within 
RECORD-1 are changed between the time of the CALL and the return, 
the values stored at the time of the return will be the changed, 
not the original, values. If the programmer wishes to use the 
original values, then he must ensure that they have been saved. 

You have now completed Lesson 29 in which you have learned several 
additional COBOL language features that can be used in table processing. 
You have learned to use the DEPENDING ON option of the OCCURS clause to 
specify a variable whose value is to determine the size of a table for 
the current execution of the program. You have used the INDEXED BY 
option of the OCCURS clause to define a table index. You have used the 
SET statement to assign values to index variables. 

END OF LESSON 29 

610 



LESSON 30 

611 



612 
~. ,., 

LESSON 30 - PAYROLL PROGRAM PROCESSING 

INTRODUCTION 

In this lesson you will combine a number of the language features 
and programming techniques that you have learned as you code a 
payroll program using card, disk, and printer files. 

A COBOL language feature that. you will learn to use in this 
lesson is: 

REDEFINES clause 

This lesson will require approximately three q~drters of an hour. 



1. The REDEFINES clause allows the programmer to use alternate 
descriptions of data for the same computer storage area. Figure 
149 shows that the REDEFINES clause can be used to redefine: 

a. pictures. 

b. subdivision. 

* * * 
Either 

2. Read the description of the effect of redefinition of a picture 
in the example in Figure 149. According to Figure 149, an effect 
of redefining a picture is that a value originally defined as one 
type of data can be treated as another: 

a. by moving the value to another variable. 

b. without moving the value. 

* * * 

b 

613 



C1\ 
~ 
-'=' 

I'zj 
1-" 

~ 
Ii 
(t) 

~ 

-'=' 
\Q 

Used to redefine 

Picture 

Subdivision 

~-- - --

Examples and Effects of the REDEFINES Clause 

Example Effect 

The value of A originally 

g.~TI1111Iq ~~·I i 
defined as nume ric data is 
treated as alphanume ric 
data if referred to by B, 
without moving the value 
to B. 

Two kinds of records with 
different subdivision can be i 

processed differently without I 

1"11 t 1\1 I 
moving one record or a I . portion of the record to I c\"" IL I .. liT i~ .. lie (~ I). 

A 1'1 P l!e another variable. Five digits 
~ IP I " ~ . for monthly salary in a 

GI1 1"11: I~II HI=IC; Ilia R"- salaried employee record 
je"lc A - .. Ii' It I h'1~ .. llle (~ ). can be referred to by SALARY AG PII l' HV ql. 

"Iu ~ IP' (I Iq • or three digits for hourly pay 
tiE Pil (I ~~. I and two for hours in an hourly 

paid employee record can be 
referred to by WAGE and 
HOURS, respectively, without 
moving the values to WAGE 

I 
and HOURS. 

I -- - - - -- --~- ------ ----------- L--____ ~ _______ 



3. Read the description of the effect of redefinition of subdivision 
in Figure 149. According to this explanation r an effect of 
redefining subdivision is that five digits could be treated as a 
single data item in one typ~ of record and as two data items in a 
second type: 

a. without moving the values to another variable. 

b. by moving the values to another variable. 

* * * 
a 

4. 

o 0 112 2 3 3 445 5 6 6 1 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••. 5 .••. 0 .. 

01 TABLE-AEDIT REDEFINES TABLE-ADISP ••• 

According to Figure 149 r in the entry above: 

a. TABLE-AEDIT is the table originally defined. 

b. the REDEFINES clause is specified for TABLE-ADISP. 

* * * 
Neither (The opposite is true.) 

615 



Surorrary of Data Description Clauses 
r----------------------------------------------------------------------, 
1 { data-name-1} 1 
1 level number appropriate clauses 1 
1 FILLER 1 
1------------------------- --------------- ----------------------------1 
1 Clause Format Purpose Restrictions 1 

REDEFINES data-name-2 Allows 

OCCURS integer TIMES 
[INDEXED BY 
index-name 

PICTURE is 
character-string 

1-------------------------
1 rDISPLAY} 1 USAGE IS COMPUTATIONAL 
1 COMP 
1 

VALUE IS literal 

616 

alternate 
descriptions 
of data to 
apply to the 
same storage 
area. 

Specifies 
table size. 

Gives form of 
numeric varia
ble or editing 
requirements 
of elementary 
data items 
shown in 
figures 44 
and 12-1. 

Specifies the 
manner in 
which data is 
to be stored. 

1. Defines the 
initial 
value of an 
item in 
working 
storage. 

2. Gives the 
value 
associated 
with condi
tion name. 

Figure 150 

1. Must immediately follow 
data-name-1. 

2. Level number of data
name-1 must be the same 
as that of data-name-2. 

3. Level number must not 
be 88. 

4. Data-name-1 must be in 
working storage. 

5. Data-name-2 cannot con
tain an OCCURS clause 
and cannot be 
subordinate to a name 
for which an OCCURS 
clause is specified. 

----------------------------1 
May not be specified for a 1 
level 01 or level 77 name. 1 

Only characters in Figures 
40 and 117 may be used in 
the character string. 

1 
1 
1 
1 

----------------------------1 
May be written at the 1 
group or elementary level. 1 

1. In the Working-Storage 
Section may assign a 
value or a condition 
name. 

2. In the File Section may 
be used for condition 
name only. 

1 
1 



5. The restrictions in Figure 150 state that in a data description 
entry the REDEFINES clause: 

a. must immediately follow the data name. 

b. may follow any other clause. 

* * * 

a 

6. According to Figure 150 the REDEFINES clause may be specified 
for: 

a. any level 01 variable. 

b. level 01 variables in working storage. 

* * * 
b 

7. 

o 0 112 2 3 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

1) 
2) 

01 TABLE-AEDIT REDEFINES TABLE-ADISP ••• 

Refer to Figure 150 and match the names from the entry above with 
the section(s) of the Data Division in which each may be defined. 

1) File Section a. TABLE-AEDIT 

2) Working-Storage b. TABLE-ADISP 
section 

* * * 

b 
a, b 

617 



618 

Percentage Method of Withholding 

WEEKLY Payroll Period 

(a) SINGLE person-including head of household: 
If the amount The amount of Income tax 
of waies Is: to be withheld shall be: 

Not over $4 ......... 0 
Ov.r-
$4 
$13 
$23 
$85 
$169 
$"2 

Sut not ov.r-
-$13 ..... 14% 
-$23 ...... $1.26, plus 15% 
-$85 ...... $2.76, plus 19% 
-$169 ..... $14.54, plus 22% 
-$212 . .. $33.02, plus 28% 

......... $45.06, plus 33 % 

of.xc ... ov.r-
-$4 
-$13 
-$23 
-$85 
-$169 
-$212 

SINGLE-DOLLAR-RECORD SINGLE-PERCENT-RECORD SING LE-CONST ANT-RECORD 

SINGLE-DOLLAR-l 000 SINGLE-PERCE NT-l ~OO SINGLE-CONSTANT-l OOPO 
SINGLE-DOLLAR-2 004 SINGLE-PERCENT-2 .14 SING LE-CONST ANT-2 00.00 
SINGLE-DOLLAR-3 013 SINGLE-PERCENT-3 ~IS SINGLE-CONSTANT-3 01)6 

SINGLE-DOLLAR-4 023 SINGLE-PERCENT-4 .19 SING LE-CONST ANT-4 02~76 

SINGLE-DOLLAR-S 08S SINGLE-PERCENT-S A22 SINGLE-CONSTANT-S 14.S4 
SING LE-DOLLAR-6 169 SINGLE-PERCENT-6 A28 SINGLE-CONSTANT-6 33.02 

SINGLE-DOLLAR-7 212 SINGLE-PERCENT-7 .33 SINGLE-CONSTANT-7 4506 

SINGLE-DOLLAR-8 999 SINGLE-PERCENT-8 ~33 SING LE-CONST ANT-8 4S,.o6 

SINGLE-DOLLAR-OVERLA Y SINGLE-PERCENT-OVERLA Y SING LE-CONST ANT-OVERLA Y 

SINGLE-DOLLAR (1) SINGLE-PERCENT (1) SINGLE-CONSTANT (1) 

SINGLE-DOLLAR (2) SINGLE-PERCENT (2) SINGLE-CONSTANT (2) 

SINGLE-DOLLAR (3) SINGLE-PERCENT (3) SINGLE-CONST ANT (3) 

SINGLE-DOLLAR (4) SINGLE-PERCENT (4) SINGLE-CONSTANT (4) 

SINGLE-DOLLAR (S) SINGLE-PERCENT (S) SINGLE-CONSTANT (S) 

SINGLE-DOLLAR (6) SINGLE-PERCENT (6) SINGLE-CONSTANT (6) 

SINGLE-DOLLAR (7) SINGLE-PERCENT (7) SINGLE-CONSTANT (7) 

SINGLE-DOLLAR (8) SINGLE-PERCENT (8) SINGLE-CONSTANT (8) 

The dollar aroounts r percentages, and constants for computing 
federal income tax for a single person paid weekly can be set up 
as tables in a COBOL program. When taxable income is greater 
than dollar amount (n) but not greater than dollar amount (n+1) 
federal tax can be computed using the following formula. 

[taxable - dollar amount(n)] X [percentage(n)] 
+ excess constant(n) 

A search statement can specify this test and computation provided 
an index is defined for each table. Since the table values are 
fairly stable and are used each week, specifying the values in 
the program itself will ensure correct table values for each 
execution. The values can be specified in VALUE clauses for 
unique variables within records of dollar amounts r percentages, 
and constants. Then the REDEFINES clause can be used to allow 
the overlay tables to apply to the values. 

Figure 151 



8. The REDEFINES clause can be used to allow a table defined with an 
index to apply to values that were assigned to variables within 
another record variable with value clauses. The REDEFINES clause 
can be used in this way for a portion of the payroll problem 
which is described in Figure 151. Read the problem description 
in this figure. Match the variables with the clauses that would 
be specified for them. 

1) VALUE clause 

2) OCCURS clause with the INDEXED BY option 

3) REDEFINES clause 

a. Elementary variables within 
SINGLE-DOLLAR-RECORD, 
SINGLE-PERCENT-RECORD, 
and 
SINGLE-CONSTANT-RECORD 

b. SINGLE-DOLLAR-RECORD, 
SINGLE-PERCENT-RECORD, 
and 
SINGLE-CONSTANT-RECORD 

c. Elementary variables within 
SINGLE-DOLLAR-OVERLAY, 
SINGLE-PERCENT-OVERLAY, 
and 
SINGLE-CONSTANT-OVERLAY 

d. SINGLE-DOLLAR-OVERLAY, 
SINGLE-PERCENT-OVERLAY, 
and 
SINGLE-CONSTANT-OVERLAY 

* * * 
1) a 
2) c 
3) d 

619 



9. Code record description entries for the record of dollar amounts 
and the dollar amount overlay table for use with Table Search 
statements. Specify the index OS. 

* * * 
0011223 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

01 SINGLE-DOLLAR-RECORD USAGE COMP. 
02 SINGLE-DOLLAR-1 PIC 999 

VALUE ZEROS. 
02 SINGLE-DOLLAR-2 PIC 999 

VALUE 004. 
02 SINGLE-DOLLAR-3 PIC 999 

VALUE 013. 
02 SINGLE-DOLLAR-4 PIC 999 

VALUE 023. 
02 SINGLE-DOLLAR-5 PIC 999 

VALUE 085. 
02 S INGLE- DOLLAR-6 PIC 999 

VALUE 169. 
02 S INGLE- DOLLAR-7 PIC 999 

VALUE 212. 
02 S INGLE- DOLLAR- 8 PIC 999 

VALUE 999. 
01 SINGLE-DOLLAR-OVERLAY 

REDEFINES SINGLE-DOLLAR-RECORD 
USAGE COMP. 

02 SINGLE-DOLLAR OCCURS 8 TIMES 
INDEXED BY OS PIC 999. 

SUMMARY 

You have now completed Lesson 30 in which you learned the use of the 
REDEFINES clause. 

END OF LESSON 30 

620 



LESSON 31 

621 



LESSON 31 - PAYROLL PROGRAM PROCESSING (2) 

INTRODUCTION 

In this lesson you wil build on your previous payroll processing 
programming efforts. The current payroll disk file created earlier will 
now be used for printing checks and earning statements. This lesson is 
optional. 

This lesson will require approximately thirty minutes. 

622 



1. Read the problem description in Fi~ure 152. Code the 
Identification and Environment Divisions for the program WEEKLY
PAYROLL. 

EMPLOYEE-MASTER-FI LE 

Input area: EMPLOYEE-MASTER

RECORD 

Labels: standard 

EMPLOYEE-TIME-FILE 

Input area: EMPLOYEE-TIME-RECORD 

IBM-1130 

NEW-MASTER-FILE 

Output area: NEW-MASTER

RECORD 

Labels: standard 

Block size:4 

CURRENT-PA YROLL- D1SK

FILE 

Output area: CURRENT-PAY ROLL

DISK-RECORD 

Labels: standard 

Block size: 4 

CURRENT-PA YROLL-L1ST-FILE 

Output area: CURRENT-PA YROLL
LIST-FILE 

POSITIONING and END-OF-PAGE 
options are to be used 

During payroll processing for each pay period employee master 
records and employee time cards are to be processed to produce 
checks and earnings statements. As the data for the checks and 
earnings statements is selected and computed it is to be written 
into a current payroll disk file and printed in a current payroll 
report. The current payroll disk file, which provides a 
permanent record of the payroll data, can then be used to print 
checks and earnings statements with the desired editing and 
format. Since employee master records contain year-to-date data, 
a new master file is to be created as this data is updated for 
each employee. 

Figure 152 

623 



* * * 

o 0 112 2 3 3 4 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

624 

IDENTIFICATION DIVISION. 
PROGRAM-ID. WEEKLY-PAYROLL. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT EMPLOYEE-MASTER-FILE 
ASSIGN TO DF-1-600-X. 

SELECT EMPLOYEE-TIME-FILE 
ASSIGN TO RD-1442. 

SELECT NEW-MASTER-FILE 
ASSIGN TO DF-2-700-X. 

SELECT CURRENT-PAYROLL-DISK-FILE 
ASSIGN TO DF-3-800-X. 

SELECT CURRENT-PAYROLL-LIST-FILE 
ASSIGN TO PR-1132-C. 
RESERVE NO ALTERNATE AREA. 

2. Records from each of the files used in WEEKLY-PAYROLL are 
illustrated in Figures 153, 154 and 155. Use these figures along 
with Figure 152 to code the File Section of the Data Division. 



Record in EMPLOYEE-MASTER-FlLE 

EMPLOYEE·ID-M 

l ~ETIREMENT.YD-M 
F1CA·YD·M 

STATE·TAX·YD-M 
FEDERAL·TAX·YD-M 

GROSS-EARNINGS· YD-M 

(7 digits, 2 decimal places) 
(4 digits, 2 d~cimal places) I 

SOCIAL·SECURITY I 
(9 characters) VACATION. YD-M 

EMPLOYEE·NAME I bEPENDENTS.M SICKLEA VE· YD-M 
(21 characters) (2 digits) '.. J 

EMPLOYEE.NUMBER MARITAL-STATUS.M 3 digits, I decimal place) 
(6 characters) (l character) 

A record description entry for the records in EMPLOYEE-MASTER
FILE exists as library text with the name EMPLOYEE-MASTER. 

Records in NEW-MASTER-FILE are to have the format of records in 
EMPLOYEE-MASTER-FILE. The letters NM are to replace the letter M 
in the data names. The condition names are not to be described 
in NEW-MASTER-RECORD. 

625 



Library name: EMPLOYEE-MASTER 

Text: 

o 0 112 2 3 344 5 5 6 6 7 
1 .•• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

626 

02 EMPLOYEE-ID-M. 
03 EMPLOYEE-NUMBER PIC X(6). 
03 EMPLOYEE-NAME PIC X(19). 
03 SOCIAL-SECURITY PIC X(9). 

02 MARITAL-STATUS-M PIC X. 
88 SINGLE VALUE ·S'. 
88 MARRIED VALUE -MI. 

02 DEPENDENTS-M PIC 99. 
02 PAY-RATE-M PIC 99V99. 
02 MEDICAL-M PIC 99V99. 
02 RETIREMENT-M PIC 99V99. 
02 SICKLEAVE-YD-M PIC 99V9. 
02 VACATION-YD-M PIC 99V9. 
02 GROSS-EARNINGS-YD-M PIC 9(5)V99. 
02 FEDERAL-TAX-YD-M PIc 9(5)V99. 
02 STATE-TAX-YD-M PIC 9(5)V99. 
02 FICA-YQ-M PIC 9(5)V99. 
02 RETIREMENT-YD-M PIC 9(5)V99. 

Figure 153 



Record in EMPLOYEE -TIME'-FILE 

EMl'LOYEE·ID· T 

EMPLOYEE·NAME·T 
(21 characters) 

EMPLOYEE·NUMBER·T 
(6 characters) 

HOUR5-T 

OVERTIME·T 

,REGULAR·T 
v"'--_...I/ 

(3 digits, 1 decimal place) 

PA Y·PERIOD·ENDING 
(6 characters) 

Library name: EMPLOYEE-TIME-CARD 

Text: 

Unused data 

0011223 34 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

02 EMPLOYEE-ID-T. 
03 EMPLOYEE-NUMBER-T PIC X(6). 
03 EMPLOYEE-NAME-T PIC X(19). 
03 SOCIAL-SECURITY-T PIC X(9). 

02 PAY-PERIOD-ENDING PIC X(6). 
02 HOURS-T. 

03 REGULAR-T PIC 99V9. 
03 OVERTIME-T PIC 99V9. 
03 SICKLEAVE-T PIC 99V9. 
03 VACATION-T PIC 99V9. 

02 FILLER PIC X(26). 

Figure 154 

627 



0\ 
I\.) 

co 

~ ..,. 
\,Q 

~ 
m 
~ 
U'1 
U'1 

Record in CURRENT-PAYROLL-TAPE-FILE 

---
I I I I I 

iMPLOYEE-ID-CPT I ~ ACATJON-CPT I tICA-CPT 
(36 characters) SICKLEA VE-CPT ST ATE-T AX-CPT 

" I 
~ 

OVERTIME-CPT FEDERAL-T AX-CPT RETIRE MENT-CPT 
MEDICAL-CPT 

~LUULtt."',",--CI. l,nv~oJ- ...... n.n" • .I.'u~""""". I. / 

V V \LIFE-CPT / 

(3 digits, I decimal place) (7 digits, 2 decimal places) V 
(4 digits, 2 decimal places) 

--(' 
..... ..... 

-- --

1 RETIREMENT-YD-CPT 
FICA-YD-{'PT 

I STATE-TAX-YD-{'PT 
FEDERAl-T AX-YD-CPT 

I 

GROSS-EARNINGS-YD-CPT 

~ET-EARNINGS-CPT / 

V 
(7 digits, 2 decimal places) 

Record in CURRENT-PAYROLL-LIST-FILE 

CURRENT-PA YROLL-UST-UNE (121 characters) 

Several working storage record variables will be used along with CURRENT-PAYROLL-LIST-LINE to provide 
a page title, headings, and detail lines with specified editing. These variables are illustrated in Figure 16-6. 



* * * 
0011223 3 445 5 6 6 1 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• ~ •.•• 0 ••• ~5 •••• 0 •••• 5 •••• 0 •• 

FILE SECTION. 
FD EMPLOYEE-MASTER-FILE 

LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 4 RECORDS. 

01 EMPLOY~E-MASTER-RECORD 
COPY EMPLOYEE-MASTER. 

FD EMPLOYEE-TlME-FlLE 
LABEL RECORDS ARE OMITTED. 

01 EMPLOYEE-TlME-RECORD 
COpy EMPLOYEE-TIME-CARD. 

FD NEW-MASTER-FlLE 
LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 4 RECORDS. 

01 NEW-MASTER-RECORD. 
02 EMPLOYEE-ID-NM. 

03 EMPLOYEE-NUMBER PIC X(6). 
03 EMPLOYEE-NAME PIC X(19). 
03 SOCIAL-SECURITY PIC X(9). 

02 MARITAL-STATUS-NM PIC x,. 
02 DEPENDENTS-NM PIC 99. 
02 PAY-RATE-NM PIC 99V99. 
02 MEDICAL-NM PIC 99V99. 
02 RETIREMENT-NM PIC 99V99. 
02 SICKLEAVE-YD-NM PIC 99V9. 
02 VACATION-YD-NM PIC 99V9. 
02 GROSS-EARNINGS-YD-NM PIC 9(5)V99. 
02 FEDERAL-TAX-YD-NM PIC 9(5)V99. 
02 STATE-TAX-YD-NM PIC 9(S)V99. 
02 FICA-YO-NM PIC 9(5)V99. 
02 RETIREMENT-YO-NM PIC 9(5)V99. 

FD CURRENT-PAYROLL-DISK-FILE 
LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 4 RECORDS. 

01 CURRENT-PAYROLL-DISK-RECORD. 
02 EMPLOYEE-ID-CPT PIC X(34). 
02 REGULAR-CPT PIC 99V9. 
02 OVERTIME-CPT PIC 99V9. 
02 SICKLEAVE-CPT PIC 99V9. 
02 VACATION-CPT PIC 99V9. 
02 GROSS-EARNINGS~CPT PIC 9(S)V99. 
02 FEDERAL-TAX-CPT PIC 9 (5)V99 .• 
02 STATE-TAX-CPT PIC 9(5)V99. 
02 FICA-CPT PIC 9(S)V99. 
02 MEDICAL-CPT PIC 99V99. 
02 RETIREMENT-CPT PIC 99V99. 
02 NET-EARNINGS-CPT PIC 9(S)V99. 
02 GROSS-EARNINGS-YD-CPT PIC 9(S)V99. 
02 FEDERAL-TAX-YD-CPT PIC 9(5)V99. 
02 STATE-TAX-YO-CPT PIC 9(S)V99. 
02 FICA-YO-CPT PIC 9 (S)V99. 
02 RETIREMENT-YO-CPT PIC 9(S)V99. 
02 NET-EARNINGS-YD-CPT PIC 9(S)V99. 

FD CURRENT-PAYROLL-LIST-FlLE 
LABEL RECORDS ARE OMITTED. 

01 CURRENT-PAYROLL-LIST-LINE PIC X(120). 

629 



3. 

X----X 
(END-DATE) 

An independent variable to be used in WEEKLY-PAYROLL is shown 
above. Its value is to be keyed into storage through the console 
typewriter at the beginning of the program. The value is to be 
moved to DATE in TITLE-RECORD to be printed at the top of each 
page. Code the working storage entry for this variable. 

* * * 
001122334 4 556 6 7 
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

630 

WORKING-STORAGE SECTION. 
77 END-DATE PIC X(6). 

4. Record variables used along with the output area CURRENT-PAYROLL
LIST-LINE are illustrated on the Printer Spacing Charts in Figure 
156. Code the working storage entries for the title and heading 
record variables. 



a-. 
w 
I-' 

t'Zj ..... 
~ 

~ 
ro 
I-' 
lTI 
0'\ 

1 

Working storajte Tf'rord variables used with CURRENT-PAYROLL-LlST-LlNE 

,-.-_--H ......... -+~-+-+_(VACATION-CPL) .-. t~
.~--rI~r+-~~-tt-<----'jt---...&.--+---. _~:..._-_l_ :.---..••. 

'-~....f-l"""""+-~-i-1f-H+r ......... -.-Ht_-+_(SlCKLEAVE-CPL)· __ · __ I •. 

. ... -.-....... .~o~~~f:=~~··:"'--': ;~.t--+-.......... -t 

CURRENT -PAYROLL-LIST -RECORD 

HEADING-RECORD-2 

!nrmmn 
~t~-~--r""" 

• 1 

HEADING-RECORD-I 

TITLE-RECORD-I 

1 

~'i!f!~'I~'~~~;ii:'=': i' ·:=~··li-lj'I'i·":'1 ~:RllY' 'lj'.tlll·'~llllllll I ..Bt-t·~T:;:!!I~.t i~C .;j'~:' ·IG.~!i:!2=.±~L~~~·~_~~·~-~!~!'10 ~I:I_II.~I·~!: 

-. ~. -~ .-, .,' l' 1" -" .... • I' .. , . . l' .. 1'1: . I ' . , t I: ' , ~j. I' '\ i I ' , '; i i : ±if I : l±t±H±±r I II .\ 
~~H~::"-:.I:·~~~~+~~=±7r:' :j~. +~ .. ::1:1: 1'1' I. il~_~,..~~..J: ·,l.I!!!l.l.hll..l~tJ~L_ll 

PA YROLL-TOTALS-LIST -RECORD 

HEADING-RECORD-3 

TITLE-RECORD-2 



* * * 
o 0 112 233 4 4 S S 6 6 7 
1 ••• S •••• 0 •••• S •••• 0 •••• S •••• 0 •••• 5 ••. ~0 •••• S •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •• 

632 

01 TITLE-RECOHD-1. 
02 FILLER PIC XCSO) VALUE SPACES. 
02 TITLE PIC X(26) VALUE 

'PAYROLL FOR PERIOD ENDING'. 
02 DATE PIC 99B99B99. 
02 FILLER PIC X(36) VALUE SPACES. 

01 HEADING-RECORD-1. 
02 FILLER PIC X VALUE SPACE. 
02 HEADING-1 PIC XC1S) VALUE 

'NUMBER 
02 HEADING-2 PIC X(14) VALUE 

'NAME 
02 HEADING-3 PIC X(16) VALUE 

'SOCIAL 
02 HEADING-4 PIC XClb) VALUE 

, HOURS 
02 HEADING-S PIC X(11) VALUE 

, GROSS 
02 HEADING-6 PIC X(9) VALUE 

, FIT 
02 HEADING-7 PIC XCii) VALUE 

'STATE 
02 HEADING-S PIC XCS) VALUE 

, FICA 
02 HEADING-l0 PIC X(6) VALUE 

'MED 
02 HEADING-11 PIC X(9) VALUE 

'RETIRE 
02 HEADING-12 PIC X(9) VALUE 

'NET 
01 HEADING-RECORD-2. 

02 FILLER PIC X(17) VALUE SPACES. 
02 HEADING-l PIC XCii) VALUE 

'SECURITY 
02 HEADING-2 PIC X(16) VALUE 

'R 0 S V'. 
02 FILLER PIC XCS9) VALUE SPACES. 
02 HEADING-3 PIC X(17) VALUE 

'MENT 
01 TITLE-RECORD-2. 

02 FILLER PIC XC4S) VALUE SPACES. 
02 TITLE PIC X(33) VALUE 
'PAYROLL TOTALS FOR PERIOD ENDING'. 
02 DATE PIC 99B99B99. 
02 FILLER PIC X(34) VALUE SPACES. 

01 HEADING-RECORD-3. 
02 FILLER PIC X(12) VALUE SPACES. 
02 HEADING-l PIC X(16) VALUE 

'GROSS 
02 HEADING-2 PIC X(14) VALUE 

, FIT 
02 HEADING-3 PIC X(16) VALUE 

, STATE 
02 HEADING-4 PIC X(lS) VALUE 

'FICA 
02 HEADING-6 PIC X(13) VALUE 

'MED 
02 HEADING-7 PIC X(17) VALUE 

'RETIRE 
02 HEADING-S PIC X(14) VALUE 

'NET 



5. Code the working storage entries for CURRENT-PAYROLL-LIST-RECORD 
and PAYROLL-TOTALS-LIST-RECORD, the record· variables illustrated 
in Figure 156. Provide for suppression of leading zeros and 
decirr.al point insertion. 

* * * 
0011223 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

01 CURRENT-PAYROLL-LIST-RECORD. 
02 CARRIAGE-CONTROL PIC X 

VALUE SPACE. 
02 EMPLOYEE-NUMBER-CPL PIC X(6). 
02 FILLER PIC X VALUE SPACE. 
02 EMPLOYEE-NAME-CPL PIC X(19). 
02 FILLER PIC X VALUE SPACE. 
02 SOCIAL-SECURITY-CPL PIC X(9). 
02 FILLER PIC X VALUE SPACE. 
02 REGULAR-CPL PIC ZZ.9. 
02 FILLER PIC X VALUE SPACE. 
02 OVERTIME-CPL PIC ZZ.9. 
02 FILLER PIC X VALUE SPACE. 
02 SICKLEAVE-CPL PIC ZZ.9. 
02 FILLER PIC X VALUE SPACE. 
02 VACATION-CPL PIC ZZ.9. 
02 FILLER PIC XX VALUE SPACES. 
02 GROSS-EARNINGS-CPL PIC Z(5).99. 
02 FILLER PIC XX VALUE SPACES. 
02 FEDERAL-TAX-CPL PIC Z(5).99. 
02 FILLER PIC XX VALUE SPACES. 
02 STATE-TAX-CPL PIC Z (5) .99. 
02 FILLER PIC XX VALUE SPACES. 
02 FICA-CPL PIC Z(5).99. 
02 FILLER PIC XX VALUE SPACES. 
02 MEDICAL-CPL PIC ZZ.99. 
02 FILLER PIC XX VALUE SPACES. 
02 RETIREMENT-CPL PIC ZZ.99. 
02 FILLER PIC XX VALUE SPACES. 
02 NET-EARNINGS-CPL PIC Z(5).99. 
02 FILLER PIC X(3) VALUE SPACES. 

01 PAYROLL-TOTALS-LIST-RECORD. 
02 FILLER PIC X(10) VALUE SPACES. 
02 GROSS-TOTAL-PTL PIC Z(7).99. 
02 FILLER PIC XeS) VALUE SPACES. 
02 FEDERAL-TAX-TOTAL-PTL 

PIC Z (7) .99. 
02 FILLER PIC XeS) VALUE SPACES. 
02 STATE-TAX-TOTAL-PTL PIC Z(7).99. 
02 FILLER PIC XCS) VALUE SPACES. 
02 FICA-TOTAL-PTL PIC Z(7).99. 
02 FILLER PIC X(7) VALUE SPACES. 
02 FILLER PIC X(8} VALUE SPACES. 
02 MEDICAL-TOTAL-PTL PIC Z(4).99. 
02 FILLER PIC X(8} VALUE SPACES. 
02 RETIREMENT-TOTAL-PTL PIC Z(4).99. 
02 FILLER PIC X(8} VALUE SPACES. 
02 NET-TOTAL-PTL PIC Z(4).99. 
02 FILLER PIC X(3} VALUE SPACES. 

633 



6. A record variable including test and constant values and 
intermediate variables to be used in comparisons and computations 
in WEEKLY-PAYROLL is shown in Figure 157. Code a record 
description entry for TEST-CONSTANT-COMP-RECORD. 

r----------------------------------------------------------------------, 
1 TEST-CONSTANT-COMP-RECORD 
1------------------------ ---------------
1 Variable Value 
1------------------------ ---------------
1 ZERO-TEST 00.0 
1 
1 
1------------------------ --------------
1 MAXIMUM-HOURS 80.0 
1 
1 
1 
1------------------------ ---------------
1 TIME-AND-A-HALF 1.5 
1 
1 
1------------------------ ---------------
1 EXEMPTION 00013.50 
1 
1 
1 
1------------------------ ---------------
1 MAXIMUM-FICA-EARNINGS 07800.00 
1 
1 
1 
1 
1------------------------ --------------
1 FICA-PERCENT .048 
1------------------------ ---------------
1 STATE-TAX-PERCENT 
1------------------------
1 UNUSED-HOURS 
1 EXCESS-HOURS 
1------------------------
1 GROSS-EARNINGS-NYDWR 
1 TAXABLE 
1 STANDARD-DEDUCTIONS 
1 DEDUCTIONS 

.02 

3 digits, 1 
decimal place 

7 digits, 2 
decimal places 

L________________________ _ _____________ _ 

Figure 151 

634 

1 
-----------------------------1 

Purpose 1 
-----------------------------1 

Used to test whether hours 1 
were charged to sickleave I 
or vacation 1 

-----------------------------1 
Used to test whether hours 1 
charged to sickleave or 1 
vacation have exceeded the 1 
maximum 1 

-----------------------------1 
Multiplied by overtime hours 1 
in computation of current 1 
earnings I 

------------------~----------I 
Multiplied by the number of I 
dependents and subtracted I 
from gross earnings to give 1 
taxable earnings 1 

-----------------------------1 
Used to test whether year- 1 
to-date gross earnings has 1 
exceeded the maximum for 1 
which FICA tax is to be 1 
deducted 1 

-----------------------------1 
Used to compute FICA tax 1 

-----------------------------1 
Used to compute state tax 1 

-----------------------------1 
Used to compute sickleave 1 
and vacation pay 1 

-----------------------------1 
Used to compute FICA and 
net earnings 

1 
1 
1 
I ____________________________ -J 



* * * 
o 0 112 2 3 344 5 5 6 6 7 
1 ••. 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

01 TEST-CONSTANT-COMP-RECORD. 
USAGE IS COMP. 

02 ZERO-TEST PIC 99V9 VALUE ZEROS. 
02 MAXIMUM-HOURS PIC 99V9 

VALUE 80. O. 
02 TIME-AND-A-HALF PIC 9V9 

VALUE 1.5. 
02 EXEMPTION PIC 9(S)V99 

VALUE 00013.S0. 
02 MAXIMUM-FICA-EARNINGS 

PIC 9(S)V99 VALUE 07800.00. 
02 FICA-PERCENT PIC V999 

VALUE .048. 
02 STATE-TAX-PERCENT PIC V99 

VALUE .02. 
02 UNUSED-HOURS PIC 99V9. 
02 EXCESS-HOURS PIC 99V9. 
02 GROSS-EARNINGS-NYDWR 

PIC 9(5)V99. 
02 TAXABLE PIC 9(S)V99. 
02 STANDARD-DEDUCTIONS PIC 9(S)V99. 
02 DEDUCTIONS PIC 9(5)V99. 

(An S may be included in the PICTURE clause of any COMP-3 variable.) 

7. Three record variables that will be used for computation in 
WEEKLY-PAYROLL are shown in Figure 157. Code a record 
description entry for each of these variables. 

r----------------------------------------------------------------------, 
1 Used to prepare values fQr 1 
1 CURRENT-PAYROLL-WORK-RECORD CURRENT-PAYROLL-LIST-RECORD 1 

!-~~~~~:-------------l~~!!i- ---~:~~~~:~~~~::=::::--------------! 
1 SICKLEAVE place 1 
1 VACATION 1 
1---------------------- ----------- -----------------------------------1 
1 DEPENDENTS 2 digits Values from 1 
1---------------------- ----------- EMPLOYEE-MASTER-RECORD 1 
1 PAY-RATE 4 digits, 1 
1 2 decimal 1 
1 place~ 1 
1---------------------- ----------- -----------------------------------1 
1 GROSS-EARNINGS Values are to be computed. 1 
1 FEDERAL-TAX 1 
I STATE-TAX I 
I FICA 7 digits, I 
1---------------------- 2 decimal -----------------------------------1 
I MEDICAL places Values from 1 
1 RETIREMENT EMPLOYEE-MASTER-RECORD 1 
1---------------------- -----------------------------------1 
1 NET-EARNINGS Value is to be computed. 1 L______________________ __________ _ ________ -----___________________ -_J 

635 



r----------------------------------------------------------------------, 
1 Used to prepare values for 1 
1 YEAR-TO-DATE-WORK-RECORD NEW-MASTER-RECORD 1 
1-------------------- ----------- ----------------------;;...----------1 
1 SICKLEAVE-YDWR 3 digits, Values from 1 
1 VACATION-YDWR 1 decimal EMPLOYEE-MASTER-RECORD 1 
1 place to be updated from 1 
1---------------------- ----------- CURRENT-PAYROLL-WORK-RECORD 1 
1 GROSS-EARNINGS-YDWR 1 
1 FEDERAL-TAX-YDWR 7 digits, 1 
1 STATE-TAX-YDWR 2 decimal 1 
1 RETIREMENT-YDWR places I L-_____________________ ___________ _ __________________________________ J 

r----------------------------------------------------------------------, 
1 used to prepare values for 1 
1 PAYROLL-TOTALS-WORK-RECORD PAYROLL-TOTALS-LIST-RECORD I 
1-------------------- -------- -----------------------------------1 
1 GROSS-TOTAL Values are to be accumulated 1 
1 FEDERAL-TAX-TOTAL from values in I 
1 STATE-TAX-TOTAL 9 digits, CURRENT-PAYROLL-WORK-RECORD 1 
1 FICA-TOTAL 2 decimal for all employees. 1 
1 MEDICAL-TOTAL places Variables should be aSSigned 1 
1 RETIREMENT-TOTAL an initial value of zero. 1 
1 NET-TOTAL J L______________________ ___________ _ _________________________________ ~ 

Figure 158 

636 



* * * 
00112 2 3 3 4 4 S S 6 6 7 
1 ••• S .••• O •••• 5 •••• O •••• 5 •••• O •••• S •••• O •••• S •.•• 0 •••• S .••• 0 •.•. 5 •••. 0 •• 

01 CURRENT-PAYROLL-WORK-RECORD .• 
USAGE IS COMP. 

02 REGULAR PIC 99V9. 
02 OVERTI~E PIC 99V9. 
02 SICKLEAVE PIC 99V9. 
02 VACATION PIC 99V9. 
02 DEPENDENTS PIC 99. 
02 PAY-RATE PIC 99V99. 
02 GROSS-EARNINGS PIC 9(S)V99. 
02 FEDERAL-TAX PIC 9(S)V99. 
02 STATE-TAX PIC 9(S)V99. 
02 FICA PIC 9(5)V99. 
02 MEDICAL PIC 9(S)V99. 
02 RESTIREMENT PIC 9(S)V99. 
02 NET~EARNINGS PIC 9(S)V99. 

01 YEAR-TO-DATE-WORK-RECORD 
USAGE IS COMP. 

02 SICKLEAVE-YDWR PIC 99V9. 
02 VACATION-YDWR PIC 99V9. 
02 GROSS-EARNINGS-YDWR PIC 9(S)V99. 
02 FEDERAL-TAX-YDWR PIC 9(S)V99. 
02 STATE-TAX-YDWR PIC 9(S)V99. 
02 FICA-YDWR PIC 9(S)V99. 
02 RETIREMENT-YDWR PIC 9(S)V99. 

01 PAYROLL-TOTALS-WORK-RECORD. 
USAGE IS COMP. 

02 GROSS-TOTAL PIC 9(7)V99 
VALUE ZEROS. 

02 FEDERAL-TAX-TOTAL PIC 9(7)V99 
VALUE ZEROS. 

02 STATE-TAX-TOTAL PIC 9(7)V99 
VALUE ZEROS. 

02 FICA-TOTAL PIC 9(7)V99 
VALUE ZEROS. 

02 LIFE-TOTAL PIC 9(7)V99 
VALUE ZEROS. 

02 MEDICAL-TOTAL PIC 9(7)V99 
VALUE ZEROS. 

02 RETIREMENT-TOTAL PIC 9(7)V99 
VALUE ZEROS. 

02 NET-TOTAL PIC 9(7)V99 
VALUE ZEROS. 

637 



638 

Percentage Method of Withholding 

WEEKLY Payroll Period 

(a) SINGLE person-including head of household: (b) Married person--
" the .mount The .mount of Incom. t.x It the .mount Th • • mount ot incom. tu 0' w"'ies Is: to be withheld sh.1I be: of 'W.i's Is: to be withheld sh.1I be: 

Not over $4. . . . . . . . . 0 
av.r-
$4 
$13 
$23 
$85 
$169 
$212 

But not ov.r-
-$13 ...... 14% 
-$23 ...... $1.26, plus 15% 
-$85 ...... $2.76, plus 19% 
-$169 ..... $14.54, plus 22% 
-$212 .... $33.02. plus 28% 

.......... $45.06, plus 33% 

SINGLE-DOLLAR-TABLE 

SINGLE-DOLLAR-l 000 

SINGLE-DOLLAR-2 004 

SINGLE-DOLLAR-3 013 

SINGLE-DOLLAR-4 023 

SINGLE-DOLLAR-S 085 

SINGLE-DOLLAR-6 169 

SINGLE-DOLLAR-7 212 

SINGLE-DOLLAR-8 999 

(Index DS) 

SINGLE-DOLLAR-OVERLA Y 

SINGLE-DOLLAR (1) 

SINGLE-DOLLAR (2) 

SINGLE-DOLLAR (3) 

SINGLE-DOLLAR (4) 

SINGLE-DOLLAR (5) 

SINGLE·DOLLAR (6) --SINGLE-DOLLAR (7) 

SINGLE-DOLLAR (8) 

MARRIED-DOLLAR-T ABLE 

MARRlED-DOLLAR-l 000 -. 
MARRIED-DOLLAR-2 004 

MARRIED-DOLLAR-3 023 

MARRIED-DOLLAR-4 058 

MARRIED-DOLLAR-S 169 

MARRIED-DOLLAR-6 340 

MARRIED-DOLLAR-7 423 

MARRIED-DOLLAR-8 999 

(Index DM) 

MARRIED-DOLLAR-OVERLA Y 

MARRIED-DOLLAR (1) 

MARRIED-DOLLAR (2) 

MARRIED-DOLLAR (3) 

MARRIED-DOLLAR (4) 

MARRIED-DOLLAR (5) 

MARRIED-DOLLAR (6) 

MARRIED-DOLLAR (7) 

MARRIED-DOLLAR (8) 

Not over $4. . . . . '.' . . 0 
01 •• c ••• cwer- Ov.,-

-$4 
-$13 
-$23 
-$85 
-$169 
-$212 

$4 
$23 
$58 
$169 
$34q. 
$423 

SING LE·PERCENT-TABLE 

SINGLE-PERCENT-l ,1)0 

SINGLE-PERCENT-2 .14 

SINGLE-PERCENT-3 .15 
SINGLE-PERCENT -4 ,.19 

SINGLE-PERCENT-5 ~22 

SINGLE·PERCENT-6 ~28 

SINGLE-PERCENT-7 .33 

SINGLE·PERCENT-8 .33 

(Index PS) 

SINGLE-PERCENT-OVERLA Y 

SINGLE-PERCENT (1) 

SINGLE-PERCENT (2) 

SINGLE-PERCENT (3) 

SINGLE-PERCENT (4) 

SINGLE-PERCENT (5) 

SINGLE-PERCENT (6) 

SINGLE-PERCENT (7) 

SINGLE-PERCENT (8) 

MARRIED-PERCENT-TABLE 

MARRIED-PERCENT-l ,1)0 

MARRIED-PERCENT-2 .14 

MARRIED-PERCENT-3 .15 

MARRIED-PERCENT -4 J9 
MARRIED-PERCENT-5 .22 

MARRIED-PERCENT -6 .28 
MARRIED-PERCENT-7 ,,33 

MARRIED-PERCENT-8 h33. 

(Index PM) 

But not 0'1"- of •• c ... OY, ..... 

-$23 ...... 14% -$4 
-$58 ...... $2.66, plus 15 % -$23 
-$169 ..... $7.91, plus 19% -$58 
-$340 ..... $29.00, plus 22% -$169 
-$423 ..... $66.62, plus 28% -$340 

.......... $89.86, plus 33% -$423 

SING LE-CONST ANT-TABLE 

SINGLE-CONSTANT-l OOpo 
SINGLE-CONSTANT-2 OOpo 
SINGLE-CONSTANT-3 01,.26 

SINGLE-CONSTANT -4 0476 

SINGLE-CONSTANT-5 14,.s4 

SINGLE-CONSTANT -6 33.02 

SINGLE-CONST ANT-7 4~06 
SINGLE-CONST ANT-8 45,.06 

(Index CS) 

SINGLE-CONSTANT-OVERLA Y 

SINGLE-CONSTANT (1) 

SINGLE-CONSTANT (2) 

SINGLE-CONSTANT (3) 

SINGLE-CONSTANT (4) 

SINGLE-CONSTANT (5) 

SINGLE-CONSTANT (6) 

SINGLE-CONSTANT (7) 

SINGLE-CONSTANT (8) 

MARRIED-CONST ANT-TABLE 

MARRIED-CONSTANT-l OOpO 
MARRIED-CONST ANT-2 00,,00 

MARRIED-CONST ANT-3 02p6 

MARRIED-CONSTANT -4 07,.91 

MARRIED-CONSTANT-S 29,.00 

MARRIED-CONST ANT-6 66p2 
MARRIED-CONST ANT-7 89,,86 

MARRIED-CONSTANT-8 89,.86 

(Index CM) 

MARRIED-PERCENT-OVERLA Y MARRIED-CONSTANT-OVERLA Y 

MARRIED-PERCENT (1) MARRIED-CONSTANT (1) 

MARRIED-PERCENT (2) MARRIED-CONST ANT (2) 

MARRIED-PERCENT (3) MARRIED-CONSTANT (3) 

MARRIED-PERCENT (4) MARRIED-CONSTANT (4) 

MARRIED-PERCENT (5) MARRIED-CONSTANT (5) 

MARRIED-PERCENT (6) MARRIED-CONST ANT (6) 

MARRIED-PERCENT (7) MARRIED-CONST ANT (7) 

MARRIED-PERCENT (8) MARRIED-CONSTANT (8) 

Figure 159 



o 0 112 233 445 5 6 6 7 
1 ••• 5 .••. 0 ••.. 5 •.•• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •. 

01 SINGLE-DOLLAR-TABLE USAGE COMP. 
02 SINGLE-DOLLAR-1 PIC 9(S)V99 VALUE ZEROS. 
02 SINGLE-DOLLAR-2 PIC 9(S)V99 VALUE 00004.00. 
02 SINGLE-DOLLAR-) PIC 9(5)V99 VALUE 00013.00. 
02 SINGLE-DOLLAR-4 PIC 9(5)V99 VALUE 00023.00. 
02 SINGLE-DOLLAR-5 PIC 9(S)V99 VALUE 00085.00. 
02 SINGLE-DOLLAR-6 PIC 9(S)V99 VALUE 00169.00. 
02 SINGLE-DOLLAR-7 PIC 9(S)V99 VALUE 00212.00. 
02 SINGLE-DOLLAR-8 PIC 9(5)V99 VALUE 00999.00. 

01 SINGLE-DOLLAR-OVERLAY 
REDEFINES SINGLE-DOLLAR-TABLE. 

02 SINGLE-DOLLAR 
OCCURS 8 TIMES INDEXED BY DS 
USAGE COMP PIC 9(S)V99. 

01 SINGLE-PERCENT-TABLE USAGE COMP. 
02 SINGLE-PERCENT-1 PIC V99 VALUE ZEROS. 
02 SINGLE-PERCENT-2 PIC V99 VALUE .14. 
02 SINGLE-PERCENT-3 PIC V99 VALUE .15. 
02 SINGLE-PERCENT-4 PIC V99 VALUE .19. 
02 SINGLE-PERCENT-5 PIC V99 VALUE .22. 
02 SINGLE-PERCENT-6 PIC V99 VALUE .28. 
02 SINGLE-PERCENT-7 PIC V99 VALUE .33. 
02 SINGLE-PERCENT-8 PIC V99 VALUE .33. 

01 SINGLE-PERCENT-OVERLAY 
REDEFINES SINGLE-PERCENT-TABLE. 

02 SINGLE-PERCENT 
OCCURS 8 TIMES INDEXED BY PS 
USAGE COMP PIC V99. 

01 SINGLE-CONSTANT-TABLE USAGE COMP. 
02 SINGLE-CONSTANT-l PIC 9(S)V99 VALUE ZEROS. 
02 SINGLE-CONSTANT-2 PIC 9(S)V99 VALUE ZEROS. 
02 SINGLE-CONSTANT-3 PIC 9(S)V99 VALUE 00001.26. 
02 SINGLE-CONSTANT-4 PIC 9(5)V99 VALUE 00002.76. 
02 SINGLE-CONSTANT-S PIC 9(5)V99 VALUE 00014.54. 
02 SINGLE-CONSTANT-6 PIC 9(S)V99 VALUE 00033.02. 
02 SINGLE-CONSTANT-7 PIC 9(5)V99 VALUE 00045.06. 
02 SINGLE-CONSTANT-8 PIC 9(S)V99 VALUE 00045.06. 

01 SINGLE-CONSTANT-OVERLAY 
REDEFINES SINGLE-CONSTANT-TABLE. 
02 SINGLE-CONSTANT 

OCCURS 8 TIMES I NDEXED BY CS 
USAGE COMP PIC 9(S)V99. 

Figure 160 

639 



8. The values to be used in computation of federal income tax 
(percentage method) for the weekly payroll period are shown in 
Figure 159. The record variables and tables to be used in 
WEEKLY-PAYROLL are also illustrated in this figure. The record 
description entries for values for single employees are given in 
Figure 160. Code the entries for the values for married 
employees. Since the federal income tax will be used in the 
computation of net earnings and year-to-date values, the dollar 
amounts and constants should be described with the picture 
9(5)V99 as in NEW-MASTER-RECORD. 

* * * 
001122334 4 556 6 7 
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

01 ~~RIED~DOLLAR-TABLE USAGE IS COMP. 
02 MARRIED-DOLLAR-l PIC 9(5)V99 

VALUE ZEROS. 
02 MARRIED-DOLLAR-2 PIC 9(S)V99 

VALUE 00004.00. 
02 MARRIED-DOLLAR-3 PIC 9(5)V99 

VALUE 00023.00. 
02 MARRIED-DOLLAR-4 PIC 9(5)V99 

VALUE 00058.00. 
02 MARRIED-DOLLAR-S PIC 9(5)V99 

VALUE 00169.00. 
02 MARRIED-DOLLAR-6 PIC 9 (5 )V99 

VALUE 00340.00. 
02 MARRIED-DOLLAR-7 PIC 9(5)V99 

VALUE 00423.00. 
02 MARRIED-DOLLAR-8 PIC 9(5)V99 

VALUE 00999.00. 
01 ~JffiRIED-DOLLAR-OVERLAY 

REDEFINES MARRIED-DOLLAR-TABLE. ( 1) 
02 MARRIED-DOLLAR 

OCCURS 8 TIMES INDEXED BY DM 
USAGE IS COMP PIC 9(5)V99. 

01 MARRIED-PERCE NT-TABLE USAGE IS COMPo 
02 MARRIED-PERCENT-l PIC V99 

VALUE .00. 
02 MARRIED-PERCENT-2 PIC V99 

VALUE .14. 
02 MARRIED-PERCENT-3 PIC V99 

VALUE .15. 
02 MARRIED-PERCENT-4 PIC V99 

VALUE .19. 
02 MARRIED-PERCENT-S PIC V99 

VALUE .22. 
02 MARRIED-PERCENT-6 PIC V99 

VALUE .28. 
02 MARRIED-PERCENT-7 PIC V99 

VALUE .33. 
02 MARRIED-PERCENT-8 PIC V99 

VALUE .33. 

640 



01 MARRIED-PERCE NT-OVERLAY 
REDEFINES MARRIED-PERCENT-TABLE. ( 1) 

02 MARRIED-PERCENT 
OCCURS 8 TIMES INDEXED BY PM 
USAGE IS COMP PIC V99. 

01 MARRIED-CONSTANT-TABLE USAGE IS COMP. 
02 MARRIED-CONSTANT-1 PIC 9(5)V99 

VALUE ZEROS. 
02 MARRIED-CONSTANT-2 PIC 9 (5)V99 

VALUE ZEROS. 
02 MARRIED-CONSTANT-3 PIC 9 (5)V99 

VALUE 00002.66. 
02 MARRIED-CONSTANT-4 PIC 9 (5)V99 

VALUE 00007.91. 
02 MARRIED-CONSTANT-5 PIC 9 (5) V99 

VALUE 00029.00. 
02 MARRIED-CONSTANT-6 PIC 9 (5) V99 

VALUE 00066.62. 
02 MARRIED-CONSTANT-7 PIC 9 (5)V99 

VALUE 00089.86. 
02 MARRIED-CONSTANT-8 PIC 9 (5) V99 

VALUE 00089.86. 
01 MARRIED-CONSTANT-OVERLAY ( 1) 

REDEFINES MARRIED-CONSTANT-TABLE. 
02 MARRIED-CONSTANT 

OCCURS 8 TIMES INDEXED BY CM 
USAGE IS COMP PIC 9(5)V99. 

You have now completed the first three divisions of WEEKLY-PAYROLL. 

The program flow chart for WEEKLY-PAYROLL is presented in eight 
segments in Figures 161 through 168. Although payroll programs vary 
with the individual needs of employers, processing steps that are 
likely to be included in any payroll program have been selected for 
WEEKLY-PAYROLL. In the next sequence of frames you will be coding 
the Procedure Division for the program. 

641 



642 

ALTER-PARAGRAPH 

READ-TIME-CARD 

Write 
record 

into 
NEW-MASTER

FILE 

INITIAL-ROUTINE ------

Move 
END-DATE 
to DATE in 
title records 

Alter 
GO TO statement 

in 
GO-TO-PARAGRAPH 

to specify 
HEADING-ROUTINE 

MOVE-DATA-M-TO-CPWR 

FINISH-MASTER-FILE 

Display message 
'FINISHED MASTER 

ON EMPLOYEE 
NUMBER'variable 

EMPLOYEE-NUMBER-T 
, , on console typewriter 

Read 
time card 

Figure 161 

FINISH-LISTING 

N 

Y 

CJ 
FINISH-MASTER-FILE 



MOVE-DAT A-M-TO.('PWR 
~------~---------Move data from 

EMPLOYEE-MASTER
RECORD to 

CURRENT-PAYROLL
WORK-RECORD 

Move data from 
EMPLOYEE-TIM E

CARD to 
CURRENT-PA YROLL

WORK-RECORD 

MOVE-DATA-M-TO-YDWR 

COMPUTE-G ROSS 

~------~---------Move data from 
EMPLOYEE-MASTER

RECORD to 
YEAR-TO-DATE 

WORK-RECORD 

Compute 
UNUSED-HOURS 
= 80 
- sickleave hours 

year-to-date 

Compute 
UNUSED-HOURS 
= 80 
- vacation hours 

year-to-date 

Compute 
GROSS-EARNINGS 

= (regular hours 
+ 1.5 X overtime hours 
+ sickleave hours 
+ vacation hours) 
X pay rate 

FIT-ROUTINE 

Compute 
EXCESS-HOURS 

= sickleave hours 
from time card 

- UNUSED-HOURS 

Compute 
EXCESS-HOURS 

= vacation hours 
from time card 

- UNUSED-HOURS 

Figure 162 

Display message 
'UNUSED VACATION 
EXCEEDED BY' variable 
EXCESS-HOURS message 
'HOURS FOR EMPLOYEE 
NUMBER'variabie 
EMPLOYEE

NUMBER-T'.' 

MOVE 
UNUSED-HOURS 

to 
sickleave hours 

MOVE 
UNUSED-HOURS 

to 
vacation hours 

643 



FIT-ROUTINE 

Compute TAXABLE 
= gross earnings 
- (Exemption 

X number of 
dependents) 

N 

COMPUTE-MARRIED-FIT 
...-----"---.... 

Set indexes for 
married dollar and 

percent tables 
equal to I 

MARRIED-DOLLAR
OVERLAY 

COMPUTE-STATE-TAX 

644 

r--------.. 
Compute 

STATE-TAX 
= .02 

X FEDERAL-TAX 

COMPUTE-GROSS-NYD 

COMPUTE-SINGLE-rIT 

I 
I 

Set indexes for 
single dollar and 

percent tables 
equal to I 

SINGLE-DOLLAR
OVERLAY 

/' 
,/ "

DM> 
highest occurrence 

number 
"- ,/ 

Y 

I 
I /'. 

/' "-
DS> 'N 

highest occurrence /"" 
" number/ 

J 

Compute 
FEDERAL-TAX 

(TAXABLE 

-----1 

Compute 
FEDERAL-TAX 

= (TAXABLE 
- SINGLE-DOLLAR (OS) 
X SINGLE-PERCENT (PS) 
+ SINGLE-CONSTANT (CS) 

COMPUTE-STATE-TAX 

L 

Increment 
indexes 

DM and PM 

-, 
I 

-.J 

I ** ,_-1-_-, 
_I Increment I 
..., indexes 

DS and PS 

L ___ .J 

- MARRIED-DOLLAR (OM) 
X MARRIED-PERCENT (PM) 
+ MARRIED-CONSTANT (CM) 

Figure 163 



COMPUTE-GROSS-NYD ,--__ ....a.... __ __ 

Compute 
new year-to-date 

gross earnings· 
year-to-date 
gross earnings 
current gross earning 

COMPUTE-FICA 

Compute 
FICA 

= gross earnings 
X .048 

COMPUTE-DEDUCTIONS 

COMPUTE-NO-MORE-FICA 

Move zeros 
to 

FICA 

COMPUTE-FlCA-FOR-BALANCE 

Compute 
rICA 

= (7800 
- year-to-date 

gross earnings) 
X .048 

* Since the year-to-date gross earnings and new year-to-date gross earnings 
are compared in FICA processing, the variable GROSS-EARNINGS-NYDWR 
in TEST-CONSTANT-COMP-RECORD is used for new year-to-date gross 
earnings. 

Figure 164 

645 



646 

COMPUTE
DEDUCTIONS 

Compute 
DEDUCTIONS 

= FEDERAL-TAX 
+ STATE-TAX 
+ FICA 
+ MEDICAL 
+ RETIREMENT 

COMPUTE-NET
STANDARD-ONLY 

Compute Set medical 
NET-EARNINGS and retirement 

Y = GROSS EARNINGSt--_--I...... deductions in 
~---I~ - FEDERAL-TAX URRENT-PAYROLL 

Compute 
NET-EARNINGS 
= gross earnings 
- deductions 

ADD-TO-TOTAI.S 

Add employee 
gross earnings 
and individual 
deductions to 
total variables 

COMPUTE
NYD-DATA 

Move 
new year to date 

gross earnings· 
to 

GROSS-EARNINGS
YDWR 

Add values in 
URRENT-PA YROLL 

WORK-RECORD 
to variables in 

YEAR-TO-DATE
WORK-RECORD 

MOVE-M-TO-NM 

- STATE-TAX WORK-RECORD 
-FICA equal to zero 

Figure 165 

isplay message 
'EARNINGS LESS 

THAN DEDUcnONSW 
'FOR EMPLOYEE
NUMBER'variable 
EMPLOYEE-NUMBER·T 
'.' on console typewrite 



MO VE-M-TO-NM ~ 
Move permanent 

values from 
EMPLOYEE-MASTER-

RECORD 
to 

NEW-MASTER-RECORD 

MOVE-Y DWR-TO-NM t 
Move computed 

values from 
YEAR-TO-DATE-
WORK-RECORD 

to 
NEW-MASTER-RECORD 

WRI TE-NM-DISK t 
/ Writ, / NEW-MASTER-

RECORD 

MOV E-M-TO-CPT t 
Move 

EMPLOYEE-IO-M 
to 

CURRENT-PA YROLL-
DISK-RECORD 

MOVE-C PWR-TO-CPT t 
Move time 
data from 

CURRENT-PA YROLL-
WORK-RECORD 

to 
CURRENT-PA YROLL-

DISK-RECORD 

t 
Move gross earnings, 

deductions, and 
net earnings from 

CURRENT-PA YROLL-
WORK-RECORD 

to 
CURRENT-PA YROLL-

DISK-RECORD 

MOVE-Y DWR-TO-CPT t 
Move new-year-to-

date data from 
YEAR-TO-DATE-
WORK-RECORD 

to 
CURRENT-PA YROLL-

DISK-RECORD 

WR ITE-CP-DISK + f Writ, .( CURRENT-PA YROLL 
DISK-RECORD 

+ MOVE-M-TO-CPL 

641 



o 0 112 2 3 344 556 6 7 
1 .•• 5 •••• 0 •.•• 5 •.•. 0 •••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

648 

MOVE-M-TO-M. 
~OVE EMPLOYEE-ID-M TO EMPLOYEE-ID-NM. 
MOVE PAY-RATE-M TO PAY-RATE-NM. 
MOVE MEDICAL-M TO MEDICAL~NM. 
MOVE RETIREMENT-M TO RETIREMENT-NM. 

MOVE-YDWR TO-NM. 
MOVE SICKLEAVE-YDWR TO SICKLEAVE-YD-NM. 
MOVE VACATION-YDWR TO VACTION-YD-NM. 
MOVE GROSS-EARNINGS-YDWR TO GROSS-EARNINGS-YD-NM. 
MOVE FEDERAL-TAX-YDWR TO FEDERAL-TAX-YD-NM. 
MOVE STATE-TAX-YDWR TO STATE-TAX-YD-NM. 
MOVE FICA-YDWR TO FICA-YD-NM. 
MOVE RETIREMENT-YDWR TO RETIREMENT-YD-NM. 

WRITE-NM-DISK. 
WRITE NEW-MASTER-RECORD. 

MOVE-M-TO-CPD. 
MOVE EMPLOYEE-ID-M TO EMPLOYEE-ID-CPD. 

MOVE-CPWR-TO-CPD. 
MOVE REGULAR TO REGULAR-CPD. 
MOVE OVERTIME TO OVERTIME-CPD. 
MOVE SICKLEAVE TO SICKLEAVE-CPD. 
MOVE VACATION TO VACATION-CPD. 
MOVE GROSS-EARNINGS TO GROSS-EARNINGS-CPD. 
MOVE FEDERAL-TAX TO FEDERAL-TAX-CPD. 
MOVE STATE-TAX TO STATE-TAX-CPD. 
MOVE FICA TO FICA-CPD. 
MOVE MEDICAL TO MEDICAL-CPD. 
MOVE RETIREMENT TO RETIREMENT-CPD. 
MOVE NET-EARNINGS TO NET-EARNINGS-CPD. 

MOVE-YDWR-TO-CPD. 
MOVE-GROSS-EARNINGS-YDWR TO GROSS-EARNINGS-YD-CPD. 
MOVE FEDERAL-TAX-YDWR TO FEDERAL-TAX-YD-CPD,. 
MOVE STATE-TAX-YDWR TO STATE-TAX-YD-CPD. 
MOVE FICA-YDWR TO FICA-YD-CPD. 
MOVE RETIREMENT-YDWR TO RETIREMENT-YD-CPD. 

WRITE-CP-DISK. 
WRITE-CURRENT-PAYROLL-DISK-RECORD. 

Figure 166 



MOVE-M-TO-CPL 

Move employee 
ID data from 

MPLOYEE-MASTER
RECORD to 

URRENT-PA YROLL 
LIST-RECORD 

Move data from 
URRENT-PA YROLL
WORK-RECORD to 
URRENT-PA YROLL 

LIST-RECORD 

GO-TO
PARAGRAPH 

GO TO. 

hange paragraph nam 
in GO TO statement 

in 
GO-TO-PARAGRAPH 
to DETAIL-ROUTINE 

READ-TIME-CARD 

Single space 
and print 

CURRENT
PA YROLL-L1ST

RECORD 

N 

649 



0011223 3 4 4 5 5 6 6 7 
1 ... 5 ..•• 0 ..•• 5 •.•• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

650 

MOVE-M-TO-CPL. 
MOVE EMPLOYEE-NUMBER OF EMPLOYEE-ID-M 

TO EMPLOYEE-NUMBER-CPL. 
MOVE EMPLOYEE-NAME OF EMPLOYEE-ID-M 

TO EMPLOYEE-NAME-CPL. 
MOVE SOCIAL-SECURITY OF EMPLOYEE-ID-M 

TO SOCIAL-SECURITY-CPLr 
MOVE-CPWR-TO-CPL. 

MOVE REGULAR TO REGULAR-CPL. 
MOVE OVERTIME TO OVERTIME-CPL. 
MOVE SICKLEAVE TO SICKLEAVE-CPL. 
MOVE VACATION TO VACATION-CPL. 
~OVE GROSS-EARNINGS TO GROSS-EARNINGS-CPL. 
MOVE FEDERAL-TAX TO FEDERAL-TAX-CPL. 
MOVE STATE-TAX TO STATE-TAX-CPL. 
MOVE FICA TO FICA-CPL. 
MOVE MEDICAL TO MEDICAL-CPL. 
MOVE Rh~IREMENT TO RETIREMENT-CPL. 
MOVE NET-EARNINGS TO NET-EARNINGS-CPL. 

Figure 167 



FINISH-MASTER-FILE 

FINISH-LISTING 

Move data from 
PAYROLL-TOTALS

WORK-RECORD 
to 

PAYROLL-TOTALS
LIST-RECORD 

Figure 168 

Write 
record 

onto new 
master disk 

651 



9. Code the Procedure Division entries for the flow chart segment in 
Figure 161. 

* * * 
001122334 4 556 6 7 
1 .•• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

652 

PROCEDURE DIVISION. 
INITIAL-ROUTINE. 

OPEN INPUT EMPLOYEE-MASTER-FILE 
EMPLOYEE-TIME-FILE 
OUTPUT NEW-MASTER-FILE 
CURRENT-PAYROLL-DISK-FILE 
CURRENT-PAYROLL-LIST-FILE. 

DISPLAY 'ENTER PAY PERIOD END DATE' 
'IN FORMAT 011670.' UPON CONSOLE. 

ACCEPT END-DATE FROM CONSOLE. 
MOVE END-DATE 

TO DATE OF TITLE-RECORD-1 
DATE OF TITLE-RECORD-2. 

ALTER-PARAGRAPH. 
ALTER GO-TO-PARAGRAPH TO PROCEED TO 

HEADING-ROUTINE. 
READ-TIME-CARD. 

READ EMPLOYEE-TIME-FILE 
AT END ·GO TO FINISH-MASTER-FILE. 

FIND-MATCHING-MASTER-RECORD. 
READ EMPLOYEE-MASTER-FILE 

AT END DISPLAY 
'FINISHED MASTER ON EMPLOYEE-NUMBER ' 

EMPLOYEE-NUMBER-T'.' 
UPON CONSOLE 
GO TO FINISH-LISTIN:;,. 

COMPARE-RECORDS. 
IF EMPLOYEE-NUMBER OF EMPLOYEE-ID-M 

LESS THAN EMPLOYEE-NUMBER-T 
WRITE NEW-MASTER-RECORD 

FROM EMPLOYEE-MASTER-RECORD 
GO TO 

FIND-MATCHING-MASTER-RECORD. 
IF EMPLOYEE-NUMBER OF EMPLOYEE-ID-M 

EQUAL TO EMPLOYEE-NUMBER-T 
GO TO MOVE-DATA-M-TO-CPWR 
ELSE DISPLAY 

'NO MASTER RECORD FOR ' 
EMPLOYEE-NUMBER-T '.' 
UPON CONSOLE 
READ EMPLOYEE-TIME-FILE 

AT END GO TO 
FINISH-MASTER-FILE 

GO TO COMPARE-RECORDS. 

10. After execution of COMPARE-RECORDS when matching records from 
EMPLOYEE-MASTER-FILE and EMPLOYEE-TIME-FILE have been read, 
appropriate values are to be moved from the input areas to 
computational variables. Then the program is to test whether any 
hours charged to sickleave or vacation exceed the unused hours of 
paid sickleave and vacation for that employee. If so, the number 
of hours charged is to be adjusted to the number of unused hours 
for use in computing gross earnings. The logic for this portion 
of the program is shown in Figure 162. Code the entries 
represented by Figure 162. 

* * * 



o 0 112 2 3 344 5 5 6 6 7 
1 •.. 5 •••• 0 •... 5 .... 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

MOVE-DATA-M-TO-CPWR. 
MOVE DEPENDENTS-M TO DEPENDENTS. 
MOVE PAY-RATE-M TO PAY-RATE,. 
MOVE MEDICAL-M TO MEDICAL. 
MOVE RETIREMENT-M TO RETIREMENT. 

MOVE-DATA-T-TO-CPWR. 
MOVE REGULAR-T TO REGULAR. 
MOVE OVERTIME-T TO OVERTIME. 
MOVE SICKLEAVE-T TO SICKLEAVE. 
MOVE VACATION-T TO VACATION. 

MOVE-DATA-M-TO-YDWR. 
MOVE SICKLEAVE-YD-M 

TO SICKLEAVE-YDWR. 
MOVE VACATION-YD-M TO VACATION-YDWR. 
MOVE GROSS-EARNINGS-YD-M 

TO GROSS-EARNINGS-YDWR. 
MOVE FEDERAL-TAX-YD-M 

TO FEDERAL-TAX-YDWR. 
MOVE STATE-TAX-YD-M 

TO STATE~TAX-YDWR. 
MOVE FICA-YD-M TO FICA-YDWR. 
MOVE RETIREMENT-YD-M 

TO RETIREMENT-YDWR. 
CHECK-MAXIMUM-SICKLEAVE. 

IF SICKLEAVE EQUAL TO ZERO-TEST 
GO TO CHECK-MAXI MUM-VACATION 
ELSE COMPUTE UNUSED-HOURS 

= MAXIMUM-HOURS 
- SICKLEAVE-YDWR. 

IF SICKLEAVE GREATER THAN 
UNUSED-HOURS 
COMPUTE EXCESS-HOURS 

= SICKLEAVE 
- UNUSED-HOURS 

DISPLAY 
'UNUSED SICKLEAVE EXCEEDED BY , 
EXCESS-HOURS 
, HOURS FOR EMPLOYEE NUMBER ' 
EMPLOYEE-NUMBER-T ' , 
MOVE UNUSED-HOURS TO SICKLEAVE. 

CHECK-MAXIMUM-VACATION. 
IF VACATION EQUAL TO ZERO-TEST 

GO TO COMPUTER-GROSS 
ELSE COMPUTE UNUSED-HOURS 

= MAXIMUM-HOURS 
- VACATION-YDWR. 

IF VACATION GREATER THAN 
UNUSED-HOURS 
COMPUTE EXCESS-HOURS 

= VACATION 
- UNUSED-HOURS 

DISPLAY 
'UNUSED VACATION EXCEEDED BY , 
EXCESS-HOURS 
, HOURS FOR EMPLOYEE NUMBER ' 
EMPLOYEE-NUMBER-T ' , 
MOVE UNUSED-HQURS TO VACATION. 

653 



654 

COMPUTE- GROSS. 
COMPUTER GROSS-EARNINGS 

= (REGULAR 
+ TIME-AND-A-HALF * OVERTIME 
+ SICKLEAVE 
+ VACATION) 
* PAY-RATE. 

11. Computation of federal income tax is a necessary step in every 
payroll program. The percentage method for computing the tax, 
which has been selected for the weekly payroll program you are 
coding, is described in Figure 159 along with illustrations of 
the cor~esponding COBOL variables. State tax is to be computed 
as a percentage of federal tax. The logic for the federal tax 
and state tax computations is shown in Figure 163. Follow the 
flow chart and code the appropriate entries. 

* * * 



o 0 112 2 3 3 445 5 6 6 7 
1 ... 5 •.•• 0 .•.. 5 •••. 0 •••. 5 •••• 0 •••• 5 •••• 0 •••. 5 .••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •. 

FIT-ROUTINE. 
COMPUTE TAXABLE 

= GROSS-EARNINGS 
- (EXEMPTION * DEPENDENTS). 

IF SINGLE 
GO TO COMPUTE-SINGLE-FIT 
ELSE GO TO COMPUTE-MARRIED-FIT. 

SET OM PM TO 1. 
SET DS PS TO 1. 

COMPUTE-SINGLE-FIT. 
IF TAXABLE GREATER THAN SINGLE-DOLLAR (OS) OF 

SINGLE-DOLLAR-OVERLAY AND 
TAXABLE NOT GREATER THAN SINGLE-DOLLAR (OS+l) OF 

SINGLE-OOLLAR-OVERLAY 
GO TO COMPUTE-FED-TAX. 
ADD 1 TO OS. 
IF OS GREATER THAN 8 GO TO COMPUTE-MARRIEO-FIT. 
ADD 1 TO PS. 
GO TO COMPUTE-SINGLE-FIT. 

COMPUTE-FED-TAX. 
SET CS TO PS. 
COMPUTE FEDERAL-TAX = (TAXABLE-SINGLE-DOLLAR (OS» 

* SINGLE-PERCENT (PS) 
+ SINGLE-CONSTANT (CS). 

GO TO COMPUTE STATE-TAX. 
COMPUTE-MARRIED-FIT. 

IF TAXABLE GREATER THAN MARRIEO-DOLLAR (OM) OF 
MARRIED-DOLLAR-OVERLAY AND 

TAXABLE NOT GREATER THAN MARRIEO-DOLLAR (OM+1) OF 
MARRIED-DOLLAR-OVERLAY 

GO TO COMPUTE-M-FEO-TAX. 
ADD 1 TO DM. 
ADD 1 TO PM. 
IF DM IS GREATER THAN 8 GO TO COMPUTE-STATE-TAX. 
GO TO COMPUTE-MARRIED-FIT. 

COMPUTE-M-FED-TAX. 
SET CM TO PM. 
COMPUTE FEDERAL-TAX = (TAXABLE-MARRIED-OOLLAR (DM» 

* MARRIED-PERCENT (PM) 
+ MARRIED-CONSTANT (CM). 

COMPUTE-STATE-TAX. 
COMPUTE STATE-TAX 

= STATE-TAX-PERCENT 
* FEDERAL-TAX. 

655 



12. Computation of social securit'y tax (FICA) is another necessary 
step in any payroll program. Code the entries for the flow chart 
segment in Figure 164. 

* * * 
001122334 4 556 6 7 
1 .•. 5 .••• O •••• 5 •••• O •••• 5 •••• O •••• '5 •••• O •••• 5 ••.• 0 • ' ••• 5 •••• 0 •••• 5 •.•• 0 .. 

656 

COMPUTE-GROSS-NYD. 
COMPUTE GROSS-EARNINGS-NYDWR 

= GROSS-EARNINGS-YDWR 
+ GROSS-EARNINGS. 

CHECK-YD-MAX-FICA-EARNINGS. 
IF GROSS-EARNINGS-YDWR LESS THAN 

MAXIMUM-FlCA-EARNINGS 
GO TO 

CHECK-NYD-MAX-FICA-EARNINGS. 
COMPUTE-NO-MOVE-FlCA. 

MOVE ZEROS TO FICA. 
GO TO COMPUTE-DEDUCTIONS. 

CHECK-NYD-MAX-FlCA-EARNINGS. 
IF GROSS-EARNlNGS-NYDWR GREATER THAN 

MAXIMUM-FICA-EARNINGS 
GO TO COMPUTE-FICA-FOR-BALANCE. 

COMPUTE-FICA. 
COMPUTE FICA 

= GROSS-EARNINGS 
* FICA-PERCENT. 

GO TO COMPUTE-DEDUCTIONS. 
COMPUTE-FICA-FOR-BALANCE. 

COMPUTE FICA 
= (MAXIMUM-FICA-EARNINGS 
- GROSS-EARNINGS-YDWR) 
* FICA-PERCENT. 

(You have now completed the entries to compute federal tax, state 
tax, and social security tax. These are sometimes called standard 
deductions. ) 

13. Employees may choose to have insurance premiums, retirement 
contributions, union dues, community fund contributions, and 
investment deposits deducted from their earnings. These 
deductions are called voluntary deductions. Voluntary deductions 
from the employee master record are to be added to the standard 
deductions computed during the current payroll processing. The 
result is to be tested to determine whether it exceeds gross 
earnings. If so, only the standard deductions are to be 
subtracted from gross earnings. The computation of net earnings 
completes the values in the CURRENT-PAYROLL-WORK-RECORD for the 
employee. Appropriate values from this variable are to be added 
to payroll totals in PAYROLL-TOTALS-WORK-RECORD. Values from 
CURRENT-PAYROLL-WORK-RECORD are also to be added to year-to-date 
values in YEAR-TO-DATE-WORK-RECORD to provide new year-to-date 
values for NEW-MASTER-RECORD. Follow the flow chart in Figure 165 
and code the entries for this portion of WEEKLY-PAYROLL. 

* * * 



o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ... 5 •.•• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •. 

CO~PUTE-DEDUCTIONS. 

COMPUTE DEDUCTIONS 
= FEDERAL-TAX 
+ STATE-TAX 
+ FICA 
+ MEDICAL 
+ RETIREMENT. 

CHECK-DEDUCTIONS. 
IF DEDUCTIONS GREATER THAN 

GROSS-EARNINGS 
GO TO COMPUTE-NET-STANDARD-ONLY. 

COMPUTE-NET. 
COMPUTE NET-EARNINGS 

= GROSS-EARNINGS 
- DEDUCTIONS. 

GO TO ADD-TO-TOTALS. 
COMPUTE-NET-STANDARD-ONLY. 

COMPUTE NET-EARNINGS 
GROSS-EARNINGS 

- FEDERAL-TAX 
- STATE-TAX 
- FICA. 

MOVE ZEROS TO MEDICAL LIFE 
RETIREMENT. 

DISPLAY 
'EARNINGS LESS THAN DEDUCTIONS' 
'FOR EMPLOYEE NUMBER' 
EMPLOYEE-NUMBER-T • , 
UPON CONSOLE. 

ADD-TO-TOTALS. 
ADD GROSS-EARNINGS TO GROSS-TOTAL. 
ADD FEDERAL-TAX TO FEDERAL-TAX-TOTAL. 
ADD STATE-TAX TO STATE-TAX-TOTAL. 
ADD FICA TO FICA-TOTAL. 
ADD MEDICAL TO MEDICAL-TOTAL. 
ADD RETIREMENT TO RETIREMENT-TOTAL. 
ADD NET-EARNINGS TO NET-TOTAL. 

COMPUTE-NYD-DATA. 
MOVE GROSS-EARNINGS-NYDWR 

TO GROSS-EARNINGS-YDWR. 
ADD SICKLEAVE TO SICKLEAVE-YDWR. 
ADD VACATION TO,VACATION-YDWR. 
ADD FEDERAL-TAX TO FEDERAL-TAX-YDWR. 
ADD STATE-TAX TO STATE-TAX-YDWR. 
ADD FICA TO FICA-YDWR. 
ADD RETIREMENT TO RETIREMENT-YDWR. 

You have now completed the computations in the program. The 
remainder of the program will move values to output areas and write 
records into the output files. 

657 



14. Since the coding to build and write the new master record and the 
current payroll disk record is fairly routine it has been 
provided for you in Figure 166 along with the flow chart segment. 
The coding to build the current payroll list record is also 
provided in Figure 167. You are to follow Figure 163 beginning 
with GO-TO-PARAGRAPH to code the entries to print the first 
report illustrated in Figure 156. 

* * * 
00112 2 3 344 5 566 7 
1. • • 5. • • • O. • • • 5. . • • O. • • • 5. • • • o. . . . 5. • • • 0 •.• • • 5 • • • • 0 • • • • 5 • • • • 0 • • • • 5 • • • • 0 4 • 

658 

GO-TO-PARAGRAPH. 
GO TO. 

HEADING-ROUTINE. 
WRITE CURRENT-PAYROLL-LIST-LINE 

FROM TITLE~RECORD-1. 
WRITE CURRENT-PAYROLL-LIST-LINE 

FROM HEADING-RECORD-1 
AFTER ADVANCING 3. 

WRITE CURRENT-PAYROLL-LIST-LINE 
FROM HEADING-RECORD- 2 
AFTER ADVANCING 1. 

WRITE CURRENT-PAYROLL-LIST-LINE 
FROM CURRENT-PAYROLL-LIST-RECORD 
AFTER ADVANCING 2. 

ALTER Go-TO-PARAGRAPH TO PROCEED TO 
DETAIL-ROUTINE. 

GO TO READ-TIME-CARD. 
DETAIL-ROUTINE. 

WRITE CURRENT-PAYROLL-LIST-LINE 
FROM CURRENT-PAYROLL-LIST-RECORD 
AFTER ADVANCING 1 
AT END-OF-PAGE 

GO TO ALTER-PARAGRAPH. 
GO TO READ-TIME-CARD. 



15. Figure 168 shows the final steps in WEEKLY-PAYROLL, including 
printing the second report illustrated in Figure 156. Code the 
necessary entries. 

* * * 
o 0 112 2 3 344 5 5 6 6 7 
1 .•• 5 •••• 0 •.•. 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

FINISH-MASTER-FlLE. 
READ EMPLOYEE-MASTER-FlLE 

AT END GO TO FINISH~LISTING. 
WRITE NEW-MASTER-RECORD 

FROM EMPLOYEE-MASTER-RECORD. 
GO TO FINISH-MASTER-FlLE. 

FINISH-LISTING. 
MOVE GROSS-TOTAL TO GROSS-TOTAL-PTL. 
MOVE FEDERAL-TAX-TOTAL 

TO FEDERAL-TAX-TOTAL-PrL. 
MOVE STATE-TAX-TOTAL 

TO STATE-TAX-TOTAL-PrL. 
MOVE FICA-TOTAL TO FICA-TOTAL-PTL. 
MOVE MEDICAL-TOTAL 

TO MEDICAL-TOTAL-PTL. 
MOVE RE~IREMENT-TOTAL 

TO RETlREMENT-TOTAL-PTL. 
MOVE NET-TOTAL TO NET-TOTAL-PTL. 
WRITE CURRENT-PAYROLL-LIST-LINE 

FROM TITLE-RECORD-2. 
WRITE CURRENT-PAYROLL-LIST-LINE 

FROM HEADING-RECORD-3 
AFTER ADVANCING 3. 

WRITE CURRENT-PAYROLL-LIST-LINE 
FROM PAYROLL-TOTALS-LIST-RECORD 
AFT ER ADVANCING 2. 

CLOSE-ROUTINE. 
CLOSE EMPLOYEE-MASTER-FILE 

EMPLOYEE-TlME-FILE 
NEW-MASTER-FILE 
CURRENT-PAYROLL-DISK-FILE 
CURRENT-PAYROLL-LIST-FILE. 

STOP RUN. 

You have now completed WEEKLY-PAYROLL. The current payroll disk file 
produced by this program is to be used to print checks and earnings 
statements in the program PRINT-CHECKS. 

16. The program for printing payroll checks is described in Figure 
169. Code the first two divisions of PRINT-CHECKS. 

659 



0'1 
0'1 
o 

I'zj 
..,-

~ 
11 
m 
.... 
0'1 
\Q 

CURRENT -PA YROLL 
DISK-FILE 

Input area: CURRENT
PAYROLL
DISK-RECORD 

Block size: 4 

CHECK-FILE 

Output area: PRINT-LINE 
IBM-IUD 

First line in check: TO-NEXT -CHECK 

.I,i: "'''''ji ;::'1:':1 1~-:CTTlTIl" ;r~lqlir 11'111"11,:11:1,'1:' 'I' ::;"; .. :,J."!'i.:,I'I""iTI!i"""'I,r"""",,, 
. It' ., , 7. ,.~ : ~~ ~'l ~'~i~ ~;~ ~ ~J'~'!'~i:!~;:;l:~ ? ~tr!~:;:'~: ~ ~ ~i;:f: ~~::; :.; 6 ;~~:;;:,;~:.;:::;~~ ~:;i;r:::':';::': ~ ~ ;';'! ;'!:~': ~ ~,~I~ :!:: f:·: ~i~ ~ ~ :'~::'I;I,::;~g ~:~~g~~lg'2!~1~:~;~ : "~i~ ~H ~I; ~ ~I~ ~ : ~: s ~ J::: 

11 I ' I I .. ___ ... t- ---'--i~-~---++--.-~~-t+++-f--I-1f-H+t 
2! I I I 
31 . 1. ,-t--,----+----'---''--0, -r---+!-++-++H-1f-H 

Owmd I~I 0ClX Xl lUI 'J:- -l.~~:-jj.-Xtlfil---Y-a. i 1A',J.. :X.~.~ . 
. (P"Y-PATU __ i~~~l:~ft!.-:J~~-PATE '~~f) (~~tJvAr'frio:ttr== ---t+i++'++: .... , ;I-f 

12 ~. 

~~--I .pt-PAY1, l(if~~:nlmW=_Jj~~~L_ I (FI~YPJ~ -rI':~~E"T- -F-=Y~}mt= II iii i 1 ! III 
I 15 

~ 
'171 -.---~ III: 'i!11 
11 

i!; , 

:.!.._- J. ; I:'; 



After the CURRENT-PAYROLL-DISK-FILE is produced by WEEKLY
PAYROLL, a program called PRINT-CHECKS is to edit and rearrange 
the data in each record and print a check for each employee. A 
system flowchart is shown above along with the Printer Spacing 
Chart showing the desired format and editing for the checks. A 
printer carriage control tape will contain a punch in channel 1 
corresponding to the first line position in each check. The 
value of NET-EARNINGS in the check is to be printed with a dollar 
sign preceding the leading non-zero digit and a decimal pOint. 
In the earnings statement leading zeros are to be suppressed and 
a decimal point is to be inserted into each dollar value. 

* * * 
0011223 3 445 5 6 6 7 
1 ••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PRINT-CHECKS. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
SPECIAL-NAMES. 

COl IS TO-NEXT-CHECK. 
INPUT-OUTPUT SECTION. 
FILE-CONl'ROL. 

SELECT CURRENT-PAYROLL-DISK-FILE 
ASSIGN TO DF-3-800-X. 

SELECT CHECK-FILE 
ASSIGN TO PR-1132-C. 

17. The Data Division for PRINT-CHECKS is shown in Figure 170. The 
computer operation is to key in the number of the last check from 
the previous run. Then the program is to add 1 to this value for 
each check printed and display the number of the last check on 
the console typewriter at the end of the program. A program flow 
chart for PRINT-CHECKS is given in Figure 171. Coding for the 
paragraph BUILD-CHECK-LINES is given in Figure 171. Code the 
other portions of the Procedure Division in Figure 171. 

661 



001122) ) 4 4 556 6 7 
1 ••• 5 •••• 0 ••.• 5 •••• 0 ••.• 5 •••• 0 ..... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •• 

662 

DATA DIVISION. 
FILE SECTION. 
FD CURRENT-PAYROLL-DISK-FILE 

LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 10 RECORDS. 

01 CURRENT-PAYROLL-OISK-RECORD. 
02 EMPLOYEE-NUMBERCPD PIC X(6). 
02 EMPLOYEE-NAME-CPO PIC X(21). 
02 SOCIAL-SECURITY-CPD PIC X(9). 
02 REGULAR-CPO PIC 99V9. 
02 OVERTI~E-CPO PIC 99V9. 
02 SICKLEAVE-CPO PIC 99V9. 
02 VACATION-CPD PIC 99V9. 
02 GROSS-EARNINGS-CPD PIC 9(5)V99. 
02 FEOERAL-TAX-CPO PIC 9CS)V99. 
02 STATE-TAX-CPD PIC 9(5)V99. 
02 FICA-CPO PIC 9CS)V99. 
02 MEDICAL-CPO PIC 99V99. 
02 RETIREMENT-CPO PIC 99V99. 
02 NET-EARNINGS-CPO PIC 9CS)V99. 
02 GROSS-EARNINGS-YD-CPD PIC 9CS)V99. 
02 FEDERAL-TAX-YO-CPD PIC 9CS)V99. 
02 RETIREMENT-YO-CPO PIC 9(S)V99. 
02 NET-EARNINGS-YD-CPD PIC 9CS)V99. 

FD CHECK-FILE 
LABEL RECORDS ARE OMITTED. 

01 PRINT-LINE PIC X(121). 
WORKING-STORAGE SECTION. 
77 ZERO-TEST PIC 9CS)V99 VALUE ZEROS. 
77 CHECK-NUMBER-DISP PIC 9(S). 
77 CHECK-NUr."J3ER-COMP PIC 9 (5) USAGE COMP. 
01 CHECK-LINE-l. 

02 FILLER PIC X()9) VALUE SPACES. 
02 PAY-DATE PIC X(ll). 
02 FILLER PIC X(9) VALUE SPACES. 
02 EMPLOYEE-NUMBER PIC X(6). 
02 FILLER PIC XX VALUE SPACES. 
02 SOCIAL-SECURITY PIC X(9) • 
02 FILLER PIC XX VALUE SPACES. 
02 END-DATE PIC X(8). 
02 FILLER PIC XX VALUE SPACES. 
02 REGULAR PIC ZZ.9. 
02 FILLER PIC XX VALUE SPACES. 
02 OVERTIME PIC ZZ.9. 
02 FILLER PIC XX VALUE SPACES. 
02 SICKLEAVE PIC ZZ.9. 
02 FILLER PIC XX VALUE SPACES. 
02 VACATION PIC ZZ.9. 
02 FILLER PIC X(l) VALUE SPACES. 



01 CHECK-LINE-2 
02 FILLER PIC X(lO) VALUE SPACES. 
02 EMPLOYEE-NAME PIC X(21). 
02 FILLER PIC X(19) VALUE SPACES. 
02 GROSS-EARNINGS PIC Z(S).99. 
02 FILLER PIC XX VALUE SPACES. 
02 FEDERAL-TAX PIC Z(S).99. 
02 FILLER PIC XX VALUE SPACES. 
02 STATE-TAX PIC Z(S).99. 
02 FILLER PIC XX VALUE SPACES. 
02 FICA PIC Z(S).99. 
02 FILLER PIC XX VALUE SPACES. 
02 MEDICAL PIC ZZ.99. 
02 FILLER PIC XX VALUE SPACES. 
02 RETIREMENT PIC ZZ.99. 
02 FILLER PIC XX VALUE SPACES. 
02 NET-EARNINGS PIC Z(S).99. 
02 FILLER PIC X(9) VALUE SPACES. 

01 CHECK-LINE-3. 
02 FILLER PIC X(23) VALUE SPACES. 
02 NET-PAY PIC $(S).99 
02 FILLER PIC X(9) VALUE SPACES. 
02 GROSS-EARNINGS-YD PIC Z(S).99. 
02 FILLER PIC XX VALUE SPACES. 
02 FEDERAL-TAX-YD PIC Z(S).99. 
02 FILLER PIC XX VALUE SPACES. 
02 STATE-TAX PIC Z(S).99. 
02 FILLER PIC XX VALUE SPACES. 
02 FICA-YO PIC Z(S).99. 
02 FILLER PIC X(lS) VALUE SPACES. 
02 FILLER PIC XX VALUE SPACES. 
02 RETIREMENT-YD PIC Z(S).99. 
02 FILLER PIC XX VALUE SPACES. 
02 NET-EARNINGS-YD PIC Z(S) .99. 
02 FILLER PIC X(8) VALUE SPACES. 

Figure 170 

663 



664 

Move 
CHECK-NUMBER

DISP to 
COMP-3 variable 

PROCESS-CPT-RECORD 

Add} 
to 

check number 

BUILD-CHECK-LINES ,..--_ ...... _--. 
Move values in 

current payroll record 
to variables in 

CHECK-LINE-} 
CHECK-LINE-2 
CHECK-LINE-3 

Figure 171 

STOP 



o 0 1 1 2 2 3 344 556 6 7 
1 ... 5 ...• 0 ..•• 5 •••• 0 •••• 5 •.•• 0 .••• 5 •••• 0 •••. 5 •.•• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •• 

BUILD-CHECK-LlNES. 
MOVE EMPLOYEE-NUMBER-CPD 
TO EMPLOYEE-NUMBER. 
MOVE SOCIAL-SECURITY-CPO TO SOCIAL-SECURITY. 
MOVE REGULAR-CPO TO REGULAR. 
MOVE OVERTIME-CPD TO OVERTIME. 
MOVE SICKLEAVE-CPD TO SICKLEAVE. 
MOVE VACATION-CPD TO VACATION. 
MOVE EMPLOYEE-NAME-CPO TO EMPLOYEE-NAME. 
MOVE GROSS-EARNINGS-CPD TO GROSS-EARNINGS. 
MOVE FEDERAL-TAX-CPD TO FEDERAL-TAX. 
MOVE STATE-TAX-CPO TO STATE-TAX. 
MOVE FICA-CPO TO FICA. 
MOVE MEDICAL-CPD TO MEDICAL. 
MOVE RETIREMENT-CPD TO RETIREMENT. 
MOVE NET-EARNINGS-CPD TO NET-EARNINGS-NET-PAY. 
MOVE GROSS-EARNINGS-YD-CPD TO GROSS-EARNINGS-YD. 
MOVE FEOERAL-TAX-YD-CPD TO FEOERAL-~AX-YD. 
MOVE STATE-TAX-YD-CPD TO STATE-TAX-YO. 
MOVE FICA-YO-CPO TO FICA-YO. 
MOVE RETIREMENT-YO-CPO TO RETIREMENT-YD. 
MOVE NET-EARNINGS-YD-CPD TO NET-EARNINGS-YD. 

Figure 172 

* * * 

665 



001122334 4 556 6 7 
1 ••• 5 •••• O •••• 5 ••.• O •••• 5 •••• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

PROCEDURE DIVISION. 
INITIAL-ROUTINE. 

OPEN INPUT CURRENT-PAYROLL-DISK-FILE 
OUTPUT CHECK-FILE. 

DISPLAY 'ENTER PAY DATE' 
'IN FORMAT JAN 30 1970.' 
UPON CONSOLE. 

ACCEPT PAY-DATE FROM CONSOLE. 
DISPLAY 'ENTER PAY PERIOD END DATA' 

'IN FORMAT 01-23-70.' 
UPON CONSOLE. 

ACCEPT END-DATE FROM CONSOLE. 
DISPLAY 'ENTER LAST CHECK NUMBER 

'FROM PREVIOUS RUN.' 
UPON CONSOLE. 

ACCEPT CHECK-NUMBER-DISP 
FROM CONSOLE. 

MOVE CHECK-NUMBER-DISP 
TO CHECK-NUMBER-COMP. 

PROCESS-CFT-RECORD. 
READ CURRENT-PAYROLL-DISK-FILE 

AT END GO TO END-PROGRAM. 
IF GROSS-EARNINGS-CPT 

EQUAL TO ZERO-TEST 
GO TO PROCESS-CPT-RECORD. 

ADD 1 TO CHECK-NUMBER-COMP. 

PRINT-A-CHECK. 
WRITE PRINT-LINE FROM CHECK·LINE-1 

AFTER ADVANCING TO-NEXT-CHECK. 
WRITE PRINT-LINE FROM CHECK-LINE-2 

AFTER ADVANCING 4 LINES. 
WRITE PRINT-LINE FROM CHECK-LINE-3 

AFTER ADVANCING 4 LINES. 
GO TO PROCESS-CPT-RECORD. 

END-PROGRAM. 
DISPLAY 'CURRENT PAYROLL FILE' 

'FINISHED ON EMPLOYEE-NUMBER' 
EMPLOYEE-NUMBER UPON CONSOLE. 

MOVE CHECK-NUMBER-COMP 
TO CHECK-NUMBER-DISP. 

DISPLAY 'LAST CHECK NUMBER' 
CHECK-NUMBER-DISP. 

CLOSE CURRENT-PAYROLL-DISK-FILE 
CHECK-FILE. 

STOP RUN. 

SUMMARY: 

You have now completed Lesson 31 in which you have combined many 
COBOL language features and programming techniques in coding programs to 
do payroll processing. 

END OF LESSON 31 

666 



LESSON 32 

667 



668 

LESSON 32 - SEQUENTIAL DISK PROCESSING 

INTRODUCTION 

In this lesson you will review the sequential disk file. 

Disks (device number 2310 with 2315 disk cartridge) are 
frequently referred to as mass-storage devices. Updating a 
sequential file that is located on a mass-storage device is more 
efficient than updating a card file because a mass-storage file can 
be updated without creating a new file. After opening the file, it 
is possible to read a record, update it, and write it back into the 
same place in the file. Thus the file can be used for both input and 
output activity without closing and reopening it between operations. 

When this is the case, the 1-0 option of the OPEN statement is 
used, as will subsequently be explained. The mass-storage file, 
however, may be differently organized, so that any record can be 
accessed merely by specifying the "key" or unique field that tells 
the system how to locate the desired record. This differs from 
sequential organization in that records can be accessed at random 
without accessing all previous records. When sequential organization 
is used, the records in a file are positioned sequentially in the 
order in which they are created and accessed sequentially in the 
order in which they were placed in the file. In this lesson you will 
learn t 0 use sequential organization for files on mass-storage 
devices. Then in later lessons you will learn to use files with 
other than sequential organization. 

The first program you will write in this lesson will be one to 
create a sequential disk file from input cards. In the next lesson 
you will write a program to update the file you have created by 
reading records, roaking changes in the records, and replacing them in 
the file. 

Specific COBOL language features you will learn to use or review 
in this lesson are: 

ASSIGN clause variation for standard sequential disk files 
INVALID option of the WRITE statement 

This lesson will require approximately one half hour. 



1. Recall that in order to specify that a file will be on a mass
storage device, the appropriate device number must be specified 
1n the ASSIGN clause. According to Figure 21, device numbers 
that are associated with mass-storage devices are: 

a. DF-FILENUMBER-NUMBERREC-[-X] 

b. 1442 

c. 1132 

d. 2400 

* * * 
a 

2. 

o 0 1 1 2 233 4 4 556 6 7 
1 ••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0. __ .5 •••• 0 •••• 5 •••• 0 •• 

SELECT OFILE 
ASSIGN TO RD-1442. 

SELECT OFILE 
ASSIGN TO DF-1-800. 

The first statement shown above specifies that the sequential 
file, OFILE, is to be on cards and the second specifies a disk. 
Which elements are different in the ASSIGN clause for a 
sequential disk file? 

* * * 
System name 

3. Figure 21 shows that the class indicator of a file on a mass
storage device may be either DF or RD. Since sequential disk 
files are used in much the same way as card files, the class 
indicator ordinarily used for a disk file would be: 

a. DF 

h. RD 

* * * 
a 

669 



4. PAYFILE is to be a sequential file stored on a mass-storage 
device. Specify that the file is to be on a 2310 disk drive, 
filenumber 1. 

* * * 

0011223 344 556 6 7 
1 ... 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •. 

SELECT PA YFILE 
ASSIGN TO DF-1-600-X. 

Guide to File Description Entries 

r------------------------------ ------------------- -------------------, 
1 1 
1 Device Type Labels * Blocking 1 
1------------------------------ ------------------- -------------------1 
1 Card N N I 
1------------------------------ ------------------- -------------------1 
1 Printer N N 1 
1------------------------------ ------------------- -------------------1 
I Disk Sequential R 0 I 
1------------------------------ -----~------------ -------------------1 
1 Disk Random R 0 I 
1------------------------------ ------------------- -------------------1 
I N - Not permitted 1 
I 0 - Optional I 
I R - Required 1 
1 1 
1 * LABEL RECORDS clause is always required. 1 L ______________________________________________________________________ J 

Figure 173 

670 



5. This variation of the ASSIGN clause is the only new coding in the 
Environment Division that you must know in order to use a 
sequential disk file. 

Figure 173 is a guide to file description entries in the Data 
Division. Whenever no labels are used, you write the LABEL 
RECORDS ARE OMITTED clause. Whenever labels are used, you write 
the LABEL RECORDS ARE STANDARD clause. 

Figure 173 indicates that a correct file description entry for a 
sequential disk file would be: 

a. 

o 0 112 2 3 3 445 5 6 6 7 
1 ..• 5 .•.. 0 .••. 5 ..•. 0 •... 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •. 

FD PAYFILE 
LABEL RECORDS ARE STANDARD. 

b. 

o 0 112 2 3 344 5 5 6 6 7 
1 ..• 5 .••• 0 ..•. 5 •... 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••. 5 ••.• 0 •••• 5 •••• 0 •••. 5 .••. 0 .• 

FD PAYFILE 
LABEL RECORDS ARE OMITTED. 

* * * 
a 
(All files on mass-storage devices must have standard labels.) 

6. The records in PAYFILE are to be blocked in groups of four. 
Write an FD entry for this file. 

* * * 
00112 2 3 3 4 4 5 5 6 6 7 
1 ..• 5 .••• 0 •.•. 5 •.•. 0 •••• 5 •••• 0 .•.• 5 •••• 0 •.•• 5 •... 0 •••• 5 .••• 0 •.•. 5 •••• 0 .. 

FD PAYFILE 
BLOCK CONTAINS 4 RECORDS 
LABEL RECORDS ARE STANDARD. 

671 



7. DISK-SEQ is to be a sequential utility file located on a 2315 
disk. The file is to have standard labels. Records in the file 
are to be blocked in groups of six. 

1) 

1) Write a SELECT entry for the Environment Division for file 
DISK-SEQ. 

2) Write an FD entry for file DISK-SEQ for the Data Division. 

* * * 

o 0 112 2 3 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •. 

SELECT DISK-SEQ 
ASSIGN TO DF-2-900-X. 

2) 

o 0 112 2 3 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

8. 

a, c 

9. 

FD DISK-SEQ 

To 

a. 

b. 

c. 

LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 6 RECORDS. 

create any file you must use: 

an output file. 

aR~D statement. 

a WRITE statement. 

* * * 

o 0 112 2 3 3 4 4 556 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

b 

672 

WRITE DISKDATA 
INVALID GO TO ENDING. 

The statement above includes the INVALID option that is required 
in every WRITE statement that refers to an OUTPUT file on a mass
storage device. The INVALID option must be used when a: 

a. sequential card file is being created. 

b. sequential disk file is being created. 

* * * 



10. When a sequential disk file is being created, the statement 
following the reserved word INVALID is activated when an attempt 
is made to write beyond the limit of space reserved for the file. 
An appropriate action to specify in an INVALID option might be a 
branch to a routine that will: 

a. display a message such as FILE FILLED. 

b. execute another WRITE statement. 

* * * 
a 
(The amount of space reserved for the file would be specified by you 
on control cards according to the operating system in your 
installation. Calculation of the amount of space required for a file 
is not a part of the COBOL language and as such is not included in 
this course.) 

11. When a sequential disk file is being created, the statement that 
follows the reserved word INVALID is activated when: 

a. the space reserved for the file is filled. 

b. the data in the output record is invalid. 

* * * 
a 

12. 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ..• 5 •••• 0 •.•• 5 •••. 0 •••• 5 •••. 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •.•• 0 •• 

WRITE record-name [KgOM identifier-l] 

INVALID imperative-statement 

The format of a WRITE statement is shown above. Which of the 
following could be used to create a sequential disk file? 

a. 

o 0 112 233 4 4 5 5 6 6 7 
1 .•. 5 ..•. 0 ••.. 5 .••• 0 •••• 5 .•.• 0 •••• 5 •••• 0 •••• 5 .•.. 0 •••• 5 .••. 0 •.•• 5 •••• 0 •. 

WRITE DISKFACT 
INVALID GO TO FULL. 

b. 

o 0 112 2 3 344 556 6 7 
1 ..• 5 •..• 0 •••• 5 .••• 0 •.•• 5 ••.. 0 •••• 5 •••• 0 •.•• 5 ••.• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •• 

Either 

WRITE DISKFACT FROM INRECORD 
INVALID GO TO FULL. 

* * * 

673 



13. 

o 0 112 233 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

WRITE record-name [KgOM identifier-1] 

INVALID imperative-statement 

Which of the following INVALID options could be correct? 

a. 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

INVALID COpy FILEIN 

b. 

o 0 112 233 4 4 556 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

INVALID PERFORM EXACT 

c. 

0011223 3 4 4 5 5 6 6 7 
1 ••• 5 ..•• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5.w •• 0 •••• 5 •••• 0~. 

INVALID MULTIPLY A BY B 

d. 

o 0 112 233 4 4 5 5 6 6 7 
1 ••• 5 .••• 0 •••• 5 •••. 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

674 

b, c 

INVALID IF A IS GREATER 
THAN B 

* * * 

14. The COBOL word INVALID must be followed by: 

a. a conditional statement. 

b. an imperative statement. 

c. a statement such as COpy OUTPUT-ENTRY. 

* * * 

b 



15. Which of the following statements could be used to create a file 
on a mass-storage device? 

a. 

o 0 112 233 4 4 5 5 6 6 7 
1 ..• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •• 

WRITE OUTREC FROM INREC. 

b. 

o 0 1 1 2 233 445 5 6 6 7 
1 ... 5 •.•• 0 •••• 5 •• _.0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 .••. 0.~ •• 5 •••• 0 .••• 5 •••• 0 •• 

WRITE OUTREC 
INVALID GO TO END-ALL. 

c. 

0011223 3 445 5 6 6 7 
1 ..• 5 .••• 0 •••• 5 ••.• 0 •••• 5 .••. 0 •••. 5 .••• 0 •••. 5 .•.• 0 •••• 5 •••• 0 •••• 5 ..•. 0 •• 

READ OUTREC 
INVALID GO TO END-ALL. 

* * * 
b 

16. A sequential disk file called PAYFILE is being created from 
records called PAYROLL. Records from a card reader are accessed 
with the statement: 

0011223 3 445 5 6 6 7 
1 .•. 5 .••• 0 •... 5 •.•• 0 •.•• 5 •.•• 0 •••. 5 •••• 0 •••• 5 .•.• 0 •••• 5 •••• 0 •••• 5 •••• 0 .. 

READ INDATA INTO PAYROLL. 

If the output file is filled before the input file INDATA has 
been processed, control is to be transferred to a paragraph 
called END-ROUTINE. Write the output statement that would be used 
to create PAYFILE. 

* * * 
o 0 112 2 3 344 5 5 6 6 7 
1 ••• 5 .••• 0 •..• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 ••.• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •. 

WRITE PAYROLL 
INVALID GO TO END-ROUTINE. 

675 



17. As a programmer you might be asked to write a program to create a 
sequential disk file of master records. Write a statement to be 
used in this program, using MASTER-RECORD for the records that 
are to be placed in the file DISKFILE. Specify in the statement 
that control is to be transferred to a routine called FILE-FULL 
when the file is filled. 

* * * 

00112 2 3 3 4 4 556 6 7 
1. • • 5. • • • O. • • • 5. • • • O. • • • 5. • • • O •••• 5. • •• 0 •• ' •• 5 • • • • 0 • • • • 5 •••• 0 • • •• 5 • • • • 0 •• 

WRITE MASTER-RECORD 
INVALID GO TO FILE-FULL. 

18. Write a single statement to: 

1) move a record from IN-REC to OUT-REC. 

2) place OUT-REC in a sequential disk file. 

3) transfer control to FILE-FULL when all the space reserved for 
the file has been filled. 

* * * 
o 0 112 2 3 344 556 6 7 
1 ••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

676 

WRITE OUT-REC FROM IN-REC 
INVALID GO TO FILE-FULL. 

Figure 174 represents part o£ a program that will be used to create a 
sequential disk file from an input deck of cards. In the next 
sequence of frames you will write the additional statements that will 
complete the program. 



0011223 344 5 5 6 6 7 
1 ••• 5 .••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 .••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CREATED. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT CARD-FILE ASSIGN TO RD-1442. 

DATA DIVISION. 
FILE-SEC'IION. 
FD CARDFILE 

LABEL RECORDS ARE OMITTED. 
01 CARDLIST. 

02 SALESMAN PIC X(7). 
02 S-ADDRESS PIC X(33). 
02 SALES-HISTORY PIC 99. 
02 COMMISSION-RATE PIC V99. 
02 FILLER PIC X(36). 

PROCEDURE DIVISION. 
BEGIN. 

CREATE FILE. 

GO TO CREATE-FILE. 
PRE-CLOSE. 

DISPLAY 'DISK AREA IS FILLED' 
UPON CONSOLE. 

TERMINATE. 
CLOSE CARDFILE SEQ-DISK. 
STOP RUN. 

Figure 174 

677 



19. 

filename: ===n 
CARDFILE 

IBM-I 130 

Figure 175 

filename: 

SEQ-DISK 

The system flow chart above shows the files that are used in the 
program in Figure 114. Write a statement that would complete the 
FILE-CONTROL paragraph. 

* * * 
0011223 344 556 6 7 
1 ..• 5 .•.• o •••• 5 •.•• o •••• s •••• O •••• 5 •••• o •••• 5 •••• 0 •• ' •• 5 •••• 0 •••• 5 •••• 0 •• 

SELECT SEQ-DISK 
ASSIGN TO DF-2-800-X. 

20. Now write the File Section entries for SEQ-DISK in Figure 174. 

* * * 
0011223 3 4 4 556 6 7 
1 ••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

FD SEQ-DISK 
LABEL RECORDS ARE STANDARD. 

01 MASTER1 PIC X(80). 

21. Complete paragraph BEGIN in the Procedure Division of Figure 174 
by writing a statement to prepare the files CARDFILE and SEQ-DISK 
so that CARDFILE can be used to create SEQ-DISK. 

* * * 
0011223 344 556 6 7 
1 ••• 5 •••• O •••• 5 •••• O •••• 5 •••• O •••• 5 ••• '. 0 •••• 5 •••• 0 •••• 5 • • .. . 0 •••• 5 •.•• 0 •• 

678 

OPEN INPUT CARDFILE 
OUTPUT SEQ-DISK. 



22. Now you are ready to write the statements that will actually 
create the file by transferring data from the input file to the 
output file. The records in both files are the same length, 
therefore moving data will require no additional statements. 
Write the statements (two or three) to complete paragraph CREATE
FILE. 

* * * 
o 0 1 1 2 2 3 3 4 4 556 6 7 
1. • • 5. • • • o. . . . 5. • • • o. . . . 5. • • • o. . . . 5. • • • 0 • • • • 5 • • • • 0 • • • • 5 • • • • 0 • '. • • 5 • • • • 0 • • 

READ CARDFlLE 
AT END GO TO TERMINATE. 

MOVE CARDLIST TO MASTER1. 
WRITE MASTERl 

INVALID GO TO PRE-CLOSE. 

(If INTO MASTER1 is used in the READ statement or FROM CARDLIST is 
used in the WRITE statement, the MOVE statement may be omitted.) 

23. A program to create a sequential disk file always differs from 
one to create printed report in the: 

a. ASSIGN clause. 

b. ]evel 01 entry. 

c. FD entry. 

d. FILE-CONTROL paragraph. 

e. READ statement. 

f. WRITE statement. 

* * * 
a, d, e, f 

679 



680 

filename CARD FILE 
input area CARDLIST 
labels none IBM-1130 

BEGIN 

filename DISKFILE 
output area 
DISK-RECORD 
labels STANDARD 
block 5 



o 0 112 2 3 3 445 5 6 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. WYANDOTTE. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 

DATA DIVISION. 
FILE SECTION. 
FD DISKFILE 

BLOCK CONTAINS 4 RECORDS 
LABEL RECORDS ARE STANDARD. 

01 DISK-RECORD 
02 PERSONAL. 

03 NAME PIC X(21). 
03 CUSTOMER-NUMBER PIC X(6). 
03 ADDRESS-HOME. 

04 STREET PIC X(15). 
04 CITYSTATE PIC X(15). 

02 PAYRECORD. 
03 YEAR-OPENED PIC 99. 
03 MAXIMUM CREDIT PIC S9999V99 USAGE COMP. 
03 MAXIMUM-BILL PIC S9999V99 USAGE COMP. 
03 BALANCE-DUE PIC S9999V99 USAGE COMP. 
03 PAYCODE PIC 9. 

88 BAD VALUE 1. 
88 POOR VALUE 2. 
88 SLOW VALUE 3. 
88 AVERAGE VALUE 4. 
88 GOOD VALUE 5. 
88 EXCELLENT VALUE 6. 
88 NONE VALUE 7. 

FD CARD-FILE 
LABEL RECORDS ARE OMITTED. 

01 CARDLIST. 
02 IPERSONAL. 

03 NA~E PIC X(21). 
03 CUSTOMER-NUMBER PIC X(6). 
03 ADDRESS-HOME. 

04 STREET PIC X(15) • 
04 CITYSTATE PIC X(15). 

02 PAYRECORD. 
03 IYEAR-OPENED PIC 99. 
03 lMAXIMUM-CREDIT PIC S9999V99. 
03 IMAXIMUM-BILL PIC S9999V99. 
03 IBALANCE-DUE PIC S9999V99. 
03 IPAYCODE PIC 9. 

Figure 176 

681 



24. Wyandotte water Works has requested a program to convert its 
master card file to a master disk file with the same 
organization. The master file contains records for all water 
users in the city of Wyandotte. Figure 176 gives most of the 
first three divisions of program WYANDOTTE, along with a system 
flow chart and a program flow chart for creating a sequential 
disk file. Write this: 

1) FILE-CONTROL paragraph, referring to the system flow chart. 

2) Procedure Division, following the program flow chart. 

* * * 
1) 

o 0 112 2 3 344 556 6 1 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •... 0 •• 

2) 

FILE-CONTROL. 
SELECT DISKFILE 

ASSIGN TO DF-1-700-X. 
SELECT CARDFILE 

ASSIGN TO RD-1442. 

(1) 

o 0 1 1 2 2 3 344 5 5 6 6 1 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••. 0 •••. 5 •••• 0 ••.• 5 •••. 0 •. 

SUMMAkY 

PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT CARDFILE 
OUTPUT DISKFILE. 

TRANSFER-DATA. 
READ CARD FILE 

AT END GO TO TERMINATE-ROUTINE. 
MOVE IPERSONAL TO PERSONAL. 
MOVE I YEAR-OPE NED TO YEAR-OPENED. 
MOVE IMAXI~UM-CREDIT TO MAXIMUM-CREDIT. 
MOVE IMAXIMUM-BILL TO MAXIMUM-BILL. 
MOVE IBALANACE-DUE TO BALANCE-DUE. 
MOVE IPAYCODE TO PAYCODE. 
WRITE DISK-RECORD 

INVALID GO TO MESSAGE. 
GO TO TRANSFER-DATA. 

MESSAGE. 
DISPLAY 'DISK IS FULL' 

UPON CONSOLE. 
TERMINATE-ROUTINE. 

CLOSE CARDFILE DISKFILE. 
STOP RUN. 

(9) 

In this lesson you have learned to create a sequential file on a 
mass-storage device by opening the file as OUTPUT. 

In the next lesson you will open the same sequential disk file as I-O 
to update the file, using it for both input and output operations. 

END OF LESSON 32 

682 



LESSON 33 

683 



LESSON 33 - SEQUENTIAL DISK UPDATING 

INTRODUCTION 

In this lesson you will learn to open a sequential disk file as 1-0 
in order to update the file. You will access the records as though you 
were reading input data, and you will write records on disk as though 
the disk were an output file. A major part of the lesson will be the 
updating of a sequential disk file. 

Specific COBOL language feature you will learn in this lesson is: 

1-0 option of the OPEN statement 

This lesson will require approximately one half hour. 

684 



1. 

o 0 112 233 4 4 5 5 6 6 7 
1 ..• 5 ..•. 0 ••.. 5 •.•• 0 •.•. 5 •.•• 0 •••• 5 •••• 0 •••. 5 ..•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

b 

2. 

OPEN I-O DISK-FILE. 

After a sequential disk file is created, it may be maintained by 
updating records and then placing the records back into the file. 
This can be done only if the file has been opened with the I-O 
option as shown above. The I-a option must be used when a 
sequential disk file is to be: 

a. created. 

b. used for both input and output operations. 

The I-O option 
files that are 
following OPEN 
may be used. 

1) Card 

2) Disk 

3) Printer 

* * * 

of the OPEN statement may be specified only for 
stored on mass-storage devices. Match the 

options with the types of files with which they 

a. INPUT 

b. OUTPUT 

c. I-O 

* * * 
1) a, b 
2) a, b, c 
3) b 

3. 

o 0 112 2 3 3 445 5 6 6 7 
1 ... 5 •••. 0 .... 5 •••• 0 •••• 5 •••. 0 •••. 5 •••• 0 •••• 5 ..•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

OPEN I-O UP-FILE. 

The above statement would be acceptable if UP~FILE were: 

a. on a disk. 

b. not yet created. 

c. to be updated. 

* * * 
a, c 

685 



4. In order to read a record, make changes in its fields, and write 
the record back into the file, the file must have been opened 
with the •••••••• option and stored on a •••••••• device. 

* * * 
1-0 
mass-storage, direct access, or disk 

5. Write a statement to open the disk file SEQ-DISK for updating. 

* * * 
0011223 344 556 6 7 
1 ••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

686 

OPEN 1-0 'SEQ-DISK. 

6. After a sequential file has been opened as 1-0, a record is 
accessed just as in an input file. A programmer would access a 
record with a •••••••• statement. After updating, the record is 
placed back into a sequential file as though it were being placed 
in an output file. The programmer would place a record back into 
an 1-0 file with a •••••••• statement. 

READ 
WRITE 

* * * 

7. Match each OPEN option below with the statement(s) that can be 
used to refer to a file opened that way. 

1) READ a. INPUT 

2) WRITE b. OUTPUT 

c. 1-0 

* * * 
1) a, c 
2) b, c 



8. Which statement would be used to place a record back into a 
sequential file that was opened as I-O? 

a. 

o 0 112 233 4 4 556 6 7 
1 ..• 5 .•.• 0 ••.• 5 .•.. 0 •••• 5 •••. 0 •••• 5 ••.• 0 •••. 5 •.•. 0 •••• 5 •••• 0 •••• 5 .••• 0 .. 

b. 

WRITE RECORD-1 
INVALID GO TO EOJ. 

o 0 112 2 3 344 5 5 6 6 7 
1 ... 5 •.•. 0 •.•. 5 •••. 0 •••• 5 •.•. 0 •••. 5 •••• 0 •.•• 5 •.•• 0 •••. 5 •••. 0 •.•• 5 .••. 0 •• 

WRITE RECORD-1. 

c. 

o 0 112 233 4 4 5 5 6 6 7 
1 .•. 5 •.•. 0 .••. 5 ..•. 0 •.•. 5 •••. 0 •••. 5 ••.• 0 •••• 5 •.•. 0 •••• 5 •••• 0 •••• 5 ••.• 0 •• 

WRITE I-O RECORD-1. 

* * * 
a 

9. Write a statement to place a record called PAYLIST back into a 
sequential 1-0 file named LISTING. 

* * * 
o 0 112 233 4 4 556 6 7 
1 .•. 5 •..• 0 •.•. 5 .•.. 0 •••. 5 •.•. 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 .• 

WRITE PAYLIST, INVALID GO TO THERE. 

687 



10. A CLOSE statement for a file that was opened as 1-0 is written 
like a CLOSE statement for any other file. Which statement could 
close an 1-0 file named LISTING? 

a. 

o 0 112 233 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

CLOSE 1-0 LISTING. 

b. 

o 0 112 233 4 4 556 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

CLOSE LISTING. 

c. 

o 0 112 233 4 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

CLOSE LISTING 1-0. 

* * * 
b 

11. Write a statement to close a file called IOFILE. 

* * * 
001122334 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

CLOSE IOFILE. 

12. As a programmer employed by a large department store, you are 
required to update the sequential disk file MASTER1 annually. 
One of the steps you will have to perform is add 12 months to the 
element TIME-CUSTOMER in each record in the file,. The record 
variable MAS-REC is to be used to refer to the records in the 
file. W~ite the Procedure Division using the paragraph names 
BEGIN, PROCESS, and EOJ. 

* * * 

0011223 3 4 4 556 6 7 
1. • • 5. • • • O. • • • 5. • • • O. • • • 5·. • • • O. • • . 5. • • • 0 • • • • 5 • • • • 0 '. • • • 5 • • • • 0 • • • • 5. • • • 0 • • 

688 

PROCEDURE DIVISION. 
BEGIN. 

OPEN 1-0 MASTER1. 
PROCESS. 

EOJ. 

READ MASTER1 AT END GO TO EOJ. 
ADD 12 TO TIME-CUSTOMER. 
WRITE MAS-REC, INVALID GO TO EOJ. 
GO TO PROCESS. 

CLOSE MASTER1. 
STOP RUN. 



13. 

filename: :=:::;-, 
CIIANGE-CARDS II 

IBM-1130 

Figure 177 

The system flow chart above shows the files that are used in the 
updating program in Figure 178. You will provide the missing 
portions of the program in the next few fraroes. First complete 
the Environment Division by writing entries for the files shown 
in the flow chart above. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. DISK-UPDATE. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONI'ROL. 

DATA DIVISION. 
FILE SECTION. 
FD CHANGE-CARDS 

LABEL RECORDS ARE OMITTED. 
01 CHANGE-RECORD. 

02 PART-RECEIVED PIC X(7). 
02 NUMBER-RECEIVED PIC 9(4). 
02 FILLER PIC X(69). 

01 MASTER-DISK-RECORD. 
02 PART-NUMBER PIC X(7). 
02 PART-DESCRIPTION PIC X(40). 
02 PART-PRICE PIC 999V99. 
02 QUANTITY-ON-HAND PIC 9(6). 
02 QUANTITY-ON-ORDER PIC 9(6). 

WORKING-STORAGE SECTION. 
77 ON-HAND PIC 9(6) USAGE COMP. 
77 ON-ORDER PIC 9(6) USAGE CO~&. 
77 RECEIVED PIC 9(4) USAGE COMP. 

PROCEDURE DIVISION. 
BEGIN. 

689 



REVISIONS. 

CHECK-FILE. 

IF PART-NUMBER LESS THAN PART-RECEIVED 
GO TO CHECK-FILE. 

IF PART-NUMBER GREATER THAN PART-RECEIVED 
DISPLAY PART-RECEIVED 
'OUT OF ORDER OR NOT HERE' 
UPON CONSOLE GO TO STOP- RUN. 

MOVE QUANTITY-ON-HAND TO ON-HAND. 
MOVE QUANTITY-ON-ORDER TO ON- ORDER. 
MOVE NUMBER-RECEIVED TO RECEIVED. 
SUBTRACT RECEIVED FROM ON-ORDER. 
ADD RECEIVED TO ON-HAND. 
MOVE ON-HAND TO QUANTITY-ON-HAND. 
~iOVE ON-ORDER TO QUANTITY-ON-ORDER. 

GO TO REVISIONS. 
STOP-RUN. 

STOP RUN. 

Figure 178 

* * * 
0011223 344 556 6 7 
1. • • 5. • • • O. • • • 5. • • • O. • • • 5. • • • O. • • • 5. • • • O. • • • 5 • • • • 0 • • • • 5 • • • • 0 • • • • 5 • • • • 0 • • 

SELECT CHANGE-CARDS 
ASSIGN TO RD-1442. 

SELECT UPDATE-DISK 
ASSIGN TO DF-1-500-X. 

14. Now write the file description entry for the disk file. You may 
want to refer to the system flow chart for this file in the 
preceding frame. 

* * * 
o 0 112 233 4 4 556 6 7 
1 ••• 5 •.•• 0 •••• 5 •..• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •. 

FD UPDATE-DISK 
LABEL RECORDS ARE STANDARD. 

690 



15. There are several statements missing in the Procedure Division in 
Figure 178. write Procedure Division entries to do the 
following: 

1) 

1) In paragraph BEGIN prepare the file CHANGE-CARDS to be used 
for input and the file UPDATE-DISK to be updated. 

2) In paragraph REVISIONS access an input record and transfer 
control to STOP-RUN when the end-of-file card is read. 

3) In paragraph CHECK-FILE access a record from the disk file 
and transfer control to STOP-RUN after all records have been 
read. 

* * * 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 •.• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 ..•• 0 .• 

2) 

OPEN INPUT CHANGE-CARDS 
I-O UPDATE-DISK. 

o 0 112 233 4 4 5 5 6 6 7 
1 .•• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

READ CHANGE-CARDS 
AT END GO TO STOP-RUN. 

3) 

o 0 112 2 3 344 5 5 6 6 7 
1 ... 5 .••. 0 •..• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

READ UPDATE-DISK 
AT END GO TO STOP-RUN. 

16. To complete the program in Figure 178, write statements to: 

1) cause an updated record to be placed back into the disk file. 

2) close all files. 

* * * 
1) 

001122334 4 556 6 7 
1 .•• 5 •••• 0 •••• 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

WRITE MASTER-1 INVALID GO TO STOP-RUN. 

2) 

001122334 4 556 6 7 
1 ..• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

CLOSE CHANGE-CARDS UPDATE-DISK. 

691 



17. Now write an entire program WYWORKS to update the sequential disk 
file that you created for Wyandotte water Works earlier in this 
lesson by inserting address changes into specific records. The 
flow charts in Figure 179 will provide you with a guide to files 
and logic, and the library texts in Figure 180 will provide the 
data names to be used in the Procedure Division. 

692 

BEGIN 

Prepare fIles 

Move 
STREET-NEW 

to 
STREET 

Program Flow Chart 

Figure 179 

m,n ... , = CARDFILE ~ 
record = INPUT -CARDS 

library name = CHANGES 

IBM-1130 

ftIename = DISKFILE 

labels = standard 

block = 5 records 

record = DISK-RECORD 

library name = DATA-RECORD 

System Flow Chart 



Library name: DATA-RECORD 

Text: 

o 0 112 233 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

02 PERSONAL. 
03 NAME PIC X(21). 
03 CUSTOMER-NUMBER PIC X(6). 
03 ADDRESS-HOME. 

04 STREET PIC X(15). 
04 CITYSTATE PIC X(15). 

02 PAYRECORD. 
03 YEAR-OPENED PIC 99. 
03 MAXIMUM-CREDIT PIC S9999V99 USAGE COMP. 
03 MAXIMUM-BILL PIC S9999V99 USAGE COMP. 
03 BALANCE-DUE PIC S9999V99 USAGE COMP. 
03 PAYCODE PIC 9. 

88 BAD VALUE 1. 
88 POOR VALUE 2. 
88 SLOW VALUE 3. 
88 AVERAGE VALUE 4. 
88 GOOD VALUE 5. 
88 EXCELLENT VALUE 6. 
88 NONE VALUE 7. 

Library name: CHANGES 

Text: 

0011223 3 4 455 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

02 C-NUMBER PIC X(6). 
02 STREET-NEW PIC X(15). 
02 FILLER PIC X(59). 

Figure 180 

* * * 

693 



001122334 4 S S 6 6 7 
1 ... S •••• 0 ••.. S •.•. O .••• 5 ..... O •••• S •••• O •••• 5 •••• 0 •.•• S •.•• 0 ••.• 5 .••. 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. WYWORKS. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION .. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CON"l'ROL. 

SELECT DISKFILE 
ASSIGN TO DF-I-SOO. (1) 

SELECT CARDFILE 
ASSIGN TO RD-1442. 

DATA DIVISION. 
FILE SECTION. 
FD DISKFILE 

LABEL RECORDS ARE STANDARD. 
01 DISK-RECORD COpy DATA-RECORD. 
FD CARDFILE 

LABEL RECORDS ARE OMITTED. 
01 INPUT-CARDS COpy CHANGES. 
PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT CARDFILE 
1-0 DISKFILE. (25) 

MAKE-CHANGES. 
READ CARDFILE AT END GO TO HALT. 

TRY-AGAIN. 
READ DISKFILE AT END GO TO 

MATCH. 
IF C-NUMBER GREATER THAN 

CUSTOMER-NUMBER 
GO TO TRY-AGAIN. 

IF C-NUMBER LESS THAN 
CUSTOMER- NU~"'lBER 
GO TO ~ESSAGE. 

MOVE STREET-NEW TO STREET. 

HALT. 

WRITE DISK-RECORD INVALID DISPLAY 'BEYOND LIMIT OF FILE'. 
GO TO MAKE-CHANGES. 

MESSAGE. 
DISPLAY C-NUMBER 

'NOT FOUND IN FILE' UPON CONSOLE. 
READ CARDFILE AT END GO TO HALT. 
GO TO MATCH. 

HALT. 
CLOSE CARDFILE DISKFILE. 
STOP RUN. 

SUMMARY: 

You have learned to update a sequential disk file by opening the file 
as I/O and using it for both input and output operations. 

In the next lesson, you will OPEN the same sequential disk file as 
INPUT, and use the data in it to create a new file with a different type 
of organization. 

END OF LESSON 33 

694 



LESSON 34 

695 



LESSON 34 - RANDOM FILES ACCESSED SEQUENTIALLY 

INTRODUCTION 

In this lesson you will write a program to create a file that will 
have random organization. A random file must be stored on a mass
storage, or direct-access device. 

In this lesson you will write a program to create a random file from 
the sequential file that you created and updated in the preceding 
lesson. In subsequent lessons you will learn to access this file both 
sequentially and randomly and to add records to it,. 

Specific COBOL language features you will learn to use in this lesson 
are: 

696 

ASSIGN clause variation 
ACTUAL KEY clause 
INVALID KEY option of WRITE statement 

This lesson will require approximately three quarters of an hour. 
Optional problem: approximately one half hour. 



Introduction to Random-Files 

In a sequential disk file records are accessed in the same order they 
are written. Starting with the first record and continuing accessing 
one at a time stepping only one record's length to access the next. You 
have seen such applications in the previous lesson. In randomly 
organized files any record can be accessed at any time. For example, 
record number 8 can be accessed first, then number 1, then number 5 and 
so on. Records are accessed through a KEY, as we will see in subsequent 
lessons. The record KEY is the physical location number of the record. 
For example, if you wish to access record number 10 the key must contain 
the number 10. If you wish to write a record in physical location 15 
the KEY must contain the number 15. 

The disk drive used in 1130-COBOL is the 2310 with the 2315 Single 
disk pack. 

(The following lessons have a review of sequential files and continue 
presentation on randorr files.) 

691 



1. Every record in a random file must have a control field, called a 
key, for filing purposes. In order that any record may ce 
referred to, the key would have to be: 

a. the same in every record but unique in every file. 

b. unique in every record. 

* * * 
b 

2. 

o 0 112 2 3 3 4 4 556 6 7 
1 .•. 5 •.•• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 ••.• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •. 

ACTUAL KEY IS data-name 

The elementary variable that contains the key of the record must 
be specified in the ACTUAL KEY clause. The FILE-CONTROL entry 
for every file processed randomly must include this clause along 
with the SELECT and ASSIGN clauses. Using the format of the 
ACTUAL KEY clause given above, write a FILE-CONTROL entry to link 
a file named PAYROLL-REGISTER to the 2315 device and to specify 
the control field SOCIAL-SECURITY-NUMBER. 

The ACTUAL KEY is the key that is directly used to locate a 
logical record on a mass-storage device. The KEY is the logical 
number of the record. If you wish to retrieve record number 100 
the KEY must contain the integer 100. The KEY must be a binary 
integer five (5) decimal digits long, with usage specified as 
computational. 

Example: 

o 0 112 233 4 4 556 6 7 
1 ••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

77 KEY-NO PICTURE S99999 USAGE COMP. 

* * * 
0011223 3 4 4 556 6 7 
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0~ ••• 5 •••• 0 •••• 5 •••• 0 •• 

SELECT PAYROLL-REGISTER 
ASSIGN TO DF-20-900-X 
ACTUAL KEY IS 

KEY-NUMBER. 

(A period must be placed only at the end of the entire entry. The 
clauses may be separated by commas.) 

----------------------------------------------~------------------------

698 



3. The ACTUAL KEY clause specifies an elementary variable. The 
ACTUAL KEY clause could specify: 

a 

a. The location 
subscribers. 

of a record within a file of magazine 

b. An elementary variable containing the letters 'KEY'. 

* * * 

4. The ACTUAL KEY clause must be specified for: 

a. any file processed randomly. 

b. every file on a mass-storage device. 

* * * 
a 

5. 

o 0 112 2 3 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •• 

01 WAGE-RECORD. 
02 HOURS. 

03 REGULAR PIC X(3). 
03 OVERTI~ffi PIC X(3). 

02 WAGES. 
03 REGULAR PIC X(3). 
03 OVERTIME PIC X(3). 

02 FILLER PIC X(61). 

The record 
be processed 
defines the 
CONTROL entry 
external name 

description entry above is associated with a file to 
randomly named WAGE-FILE. A field r EMPLOYEE-NUMBER 
location of each record in the file. Write a FILE
to link this file to the 2315 device and the 
WAGESOUT. 

* * * 
001122334 4 5 5 6 6 7 
1 ••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

SELECT WAGE-FILE 
ASSIGN TO DF-100-500-X. 
ACTUAL KEY IS EMPLOYEE-NUMBER. 

699 



700 

6. Match the correct facts with each portion of a FILE-CONTROL 
paragraph. 

1) SELECT clause 

2) ASSIGN clause 

3) ACTUAL KEY clause 

* 
1) a, d, e 
2) c, d, e 
3) b, d 

a. Identifies the file 
name 

b. Specifies an 
elementary variable 
that identifies 
the record 

c. Links the file to a 
device 

d. Is required for all 
files accessed 
randomly 

e. Is required for all 
files 

* * 

7. Which of the following must be included in a FILE-CONTROL entry 
for a file accessed randomly. 

a. FD clause 

b. SELECT clause 

c. INVALID option 

d. ACTUAL KEY clause 

e. AT END option 

f. LABEL RECORDS clause 

g. ASSIGN clause 

* * * 
b, d, 9 
band g are also needed for a sequential file. 



8. Check Figure 173 and then decide which of the following FD 
entries could refer to a file accessed randomly. 

a. 

0011223 3 4 4 5 5 6 6 7 
1 ••• 5 .•.• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• ~.5 •••• 0 •••• 5 •••• 0 •• 

FD STUDENT-DATA 
LABEL RECORDS ARE OMITTED. 

b. 

o 0 112 233 445 5 6 6 7 
1 .•• 5 .••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

FD STUDENT-DA"I'A 
LABEL RECORDS ARE STANDARD. 

* * * 
b 
These entries must also be used for a sequential disk file. 

9. 

S\!qucntial
fil\! 
labels: 
standard 
block: 4 
rccords 

IBM-JJ30 1------11.., Index\!d-file 
block: 
4 records 

Figure 181 

The program PRACTICE uses a sequential disk as input and produces 
a disk output file organized by a number that identifies the 
client. The system flow chart is shown above and portions of the 
first three divisions of PRACTICE are shown in Figure 182. Write 
the FILE-CONTROL paragraph and additions to complete the FD 
entries for both files. Refer to Figures 21 and 173 if 
necessary. 

701 



o 0 112 2 3 3 4 4 556 6 7 
1 ••• s .... 0 •••• s •... 0 •••• s •.•. 0 •••• s .•.. 0 •• w.s .... 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

1 { 
2 [ 

3 [ 

702 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PRACTICE. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

DATA DIVISION. 
FILE SECTION. 
FD SEQUENl'IAL-FILE 

01 TRANSACT-RECORD. 
02 CLIENT-NUMBER PIC S99999 USAGE COMP. 
02 ITEM-NUMBER PIC XeS). 
02 UNIT-PRICE PIC 999V99. 
02 QUANTITY PIC 999. 
02 ITEM-DESCRIPTION PIC X(62). 

FD DISK-FILE 

01 DISK-RECORD. 
02 CLIENT-KEY PIC S99999 USAGE COMP. 
02 PART-ID PIC xes). 
02 AMOUNT-EACH PIC 999V99. 
02 NUMBER-ORDERED PIC 999. 
02 PART-DESCRIPTION PIC X(62). 

Figure 182 

* * * 



1) 

001122334 4 5 5 6 6 7 
1 .•• 5 •.•• 0 .••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

2) 

SELECT SEQUENTIAL-FILE 
ASSIGN TO DF-1-500-X. 

SELECT DISK-FILE 
ASSIGN TO DF-2-600 
ACTUAL KEY IS CLIENT-NUMBER. 

o 0 112 233 4 4 556 6 7 
1 ••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

LABEL RECORDS ARE STANDARD. 

3) 

0011223 3 445 5 6 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

LABEL RECORDS ARE STANDARD. 

------------------------------------------------.----------------------

10. In the preceding lesson you learned that the INVALID option must 
be used in every WRITE statement that refers to: 

a. an output file on a mass-storage device. 

b. a standard disk file opened as OUTPUT. 

* * * 
Both 

11. 

o 0 112 233 4 4 5 5 6 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

WRITE record-name [FROM identifier-l] 

INVALID KEY imperative-statement 

When the WRITE statement is used to refer to a disk file, the 
optional COBOL word KEY is also used, as indicated in the format 
above. Write a statement to place the record TRANSACTIONS in the 
random file RANDOM-ONE, specifying that, when the INVALID KEY 
option is a.cti vated, control is to be transferred to paragraph 
KEY-ROUTINE. Remember that INVALID is required here, but that 
KEY is optional. 

* * * 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ••. 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .•.• 0 •• 

WRITE TRANSACTIONS 
INVALID KEY GO TO KEY-ROUTINE. 

703 



12. 

o 0 112 2 3 3 4 4 556 6 7 
1.~.5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••. 5 •••• 0 •••• 5 •••. 0 .••. 5 ••.• 0 •. 

a 

WRITE PERSONNEL 
INVALID KEY GO TO ERRORS. 

PERSONNEL is the record name associated with a sequential file. 
When the statement above is executed, control will be transferred 
to ERRORS if: 

a. a write is attempted beyond the area reserved for the file by 
control cards. 

b. a duplicate key is encountered. 

c. a key is found to be out of sequence. 

* * * 

13. When a WRITE statement is used to create a sequential file the 
INVALID KEY option is activated when an attempt is made to write 
beyond the allocated space. The INVALID KEY clause would be 
activated when: 

a. a record is out of sequence. 

b. a duplicate record is encountered. 

c. the file area is filled. 

* * * 

c 

14. When a READ statement is used to read a sequential file the AT 
END option is activated when an attempt is made to read beyond 
the end of the file. 

READ DATA-IN AT END GO TO FINISH. 

------------------------------------------------------------.---~------

704 

15. The INVALID KEY option must be specified for files in the random 
access mode. The imperative-statement following INVALID KEY is 
executed when the contents of the ACTUAL KEY field are invalid. 

a 

The key is considered invalid: 

a. For the disk file that is accessed randomly, when the record 
number is not within the file limits. 

b. For the disk file that is accessed sequentially, when the end 
of file is read. 

* * * 



16. When a WRITE statement with the INVALID KEY option is executed, 
the key of the record is checked for correct sequence before the 
record is written. If the INVALID KEY option is activated in an 
attempt to write a specific record: 

a 

a. the record for which the option was activated will not have 
been written into the file. 

b. the file will contain the record that was a duplicate or out 
of sequence. 

c. the file must be recreated to eliminate the invalid record. 

* * * 

17. The INVALID KEY option is activated in an attempt to write a 
record beyond the allocated sequential file. To which of the 
following routines could control be transferred upon activation 
of the INVALID KEY clause when creating a sequential file with 
records named SEQ-RECORD? 

a. 

o 0 112 2 3 3 4 4 556 6 7 
1 .•. 5 ••.. 0 ..•. 5.~ •• 0 •••• 5 •••. 0 •••• 5 .•.• 0 •..• 5 •.•. 0 .••• 5 •••• 0 .••• 5 •... 0 •• 

INVALID-KEY. 

b. 

WRITE SEQ-RECORD. 
GO TO READ-INPUT. 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ..• 5 .••• 0 .•.. 5 ..•. 0 •.•• 5 •••• 0 •••. 5 •••• 0 •••• 5 .•.. 0 •••• 5 •••. 0 •••. 5 •••. 0 •. 

ERROR-MESSAGE. 
WRITE PRINTOUT 

FROM SEQ-RECORD. 
GO TO READ-INPUT. 

c. 

o 0 112 2 3 344 5 5 6 6 7 
1 .•. 5 .•.. 0 •••• 5 ..•. 0 ••.• 5 •••• 0 •••• 5 •••• 0 ••.• 5 .••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •• 

b, c 

CLOSE-UP. 
CLOSE SEQ-FILE PRINT-FILEe 
STOPR~. 

* * * 

705 



18. 

1) 

S'qU,",;,)-m, ==n 
on cards r----..... IBM-I 130 Random-file 

r----~ block: 
4 records 

Figure 183 

Using the system flow chart above and Figure 182 r write the 
missing entries in the FILE-CONTROL paragraph and the File 
Section for a program to be used to create a randomly accessed 
file with a record for each client. 

* * * 

001122334 4 556 6 7 
1 ••• 5 •••• o •••• 5 •..• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •• ' •• 0 •••• 5 •••• 0 •• 

2) 

SELECT SEQUENTIAL-FILE 
ASSIGN TO RD-1442. 

SELECT DISK-FILE 
ASSIGN TO DF-4-500-X 
ACTUAL KEY IS CLIENT-NUMBER. 

0011223 3 445 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

LABEL RECORDS ARE OMITTED. 

3) 

0011223 3 4 4 5 5 6 6 7 
1 ••• 5 .••• 0 •.•• 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5.~ •• 0 •••• 5 •••• 0 •• 

706 

LABEL RECORDS ARE STANDARD. 

19. In the preceding frame you coded portions of the first three 
divisions of PRACTICE to complete Figure 182. The following flow 
chart represents the Procedure Division of that program. Program 
PRACTICE will be used in creating a randomly accessed file. 
Paragraph ERRORS is to be executed if a record for the output 
file has an ACTUAL KEY out of range of the disk file. The 
message "OUT OF RANGE CLIENT-NUMBER" and the client's 
identification number are to be displayed on the console when an 
error occurs r but execution is not to be terminated until all 
input cards have been read. write the Procedure Division for 
PRACTICE. 



BEGIN. 

Yes 

Perform ERRORS 

Figure 184 

Terminate 
processing 

707 



* * * 

o 0 112 233 4 4 556 6 7 
1 ••• 5 •••• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• -0 •••• 5 •••• O •••• 5 •••• O •••• 5 •••• 0 •• 

PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT SEQUENTIAL-FILE 
OUTPUT DISK-FILE. 

LOAD. 
READ SEQUENTIAL-FILE 

AT END GO TO FINISH. 
WRITE DISK-RECORD 

FROM TRANSACT-RECORD 
INVALID KEY PERFORM ERRORS. 

GO TO LOAD. 
ERRORS. 

DISPLAY 'OUT OF RANGE CLIENT-NUMBER' 
CLIENT-NUMBER UPON CON30LE. 

FINISH. 
CLOSE SEQUENTIAL-FILE 

DISK-FILE. 
STOP RUN. 

The following problem incorporates the COBOL features you have 
learned in this lesson. Since you are not asked to do anything new 
in this problem it is optional for you to code it. If you choose not 
to code the problem, be sure to read it carefully to make certain you 
understand it. 

20. You wrote a program to create a sequential disk file. Now that 
disk file will be used to create a random file. Figure 185 gives 
flow charts for the program and the system, along with library 
entries that can be copied into your program. Now write the 
entire program called CREATES. Assume that the output file is 
not in sequence by customer number, thereby making the file 
random in organization. 

108 



BEGIN. 

Move 
input data 

into 
output fields 

Program Flow Chart 

filename DlSKFlLE 

input area DISK-RECORD 

library DATA-RECORD 

IBM-I 130 

filename RAN-FILE 
output area IS-RECORD 
library OUT-RECORD 

System Flow Chart 

709 



Library name: DATA-RECORD 

Text: 

0011223 344 5 5 6 6 7 
1 .•. 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

02 PERSONAL. 
03 NAME PIC X(21). 
03 CUSTOMER-NUMBER PIC X(6). 
03 HOME-ADDRESS. 

04 STREET PIC X(15). 
04 CITYSTATE PIC X(15). 

02 PAYRECORD. 
03 YEAR-OPENED PIC 99. 
03 ~AXIMUM-CREDIT PIC 9999V99 USAGE COMPo 
03 MAXIMUM-BILL PIC 9999V99 USAGE COMPo 
03 BALANCE-DUE PIC 9999V99 USAGE COMPo 
03 PAYCODE PIC 9. 

88 BAD VALUE 1. 
88 POOR VALUE 2. 
88 SLOW VALUE 3. 
88 AVERAGE VALUE 4. 
88 GOOD VALUE 5. 
88 EXCELLENT VALUE 6. 
88 NONE VALUE 7. 

Library name: OUT-RECORD 

Text: 

0011223 3 4 4 5 5 6 6 7 
1 •.• 5 •••• 0 •••• 5 •••• 0 ••• ~5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

710 

02 IS-PERSONAL. 
03 IS-NAME PIC X(21). 
03 IS-CUSTOMER-NUMBER PIC X(6). 
03 IS-ADDRESS. 

04 IS-STREET PIC X(15). 
04 IS-CITYSTATE PIC X(15). 

02 IS-PAYRECORD. 
03 IS-YEAR-OPENED PIC 99. 
03 IS-MAXIMUM-CREDIT PIC 9999V99 USAGE COMPo 
03 IS-MAXIMUM-BILL PIC 9999V99 USAGE COMPo 
03 IS-BALANCE-DUE PIC 9999V99 USAGE COMPo 
03 IS--PAYCODE PIC 9. 

88 BAD VALUE 1. 
88 POOR VALUE 2. 
88 SLOW VALUE 3. 
8 8 AVERAGE VALUE 4. 
88 GOOD VALUE 5. 
88 EXCELLENT VALUE 6. 
88 NONE VALUE 7. 

WORKING-STORAGE. 
77 RECORD-ID PIC S9(5) USAGE COMPo 

Figure 185 

* * * 



o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENI'IFICATION DIVISION. 
PROGRAM-ID. CREATEIS. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONrROL. 

SELECT DISKFILE 
ASSIGN TO DF-15-500-X. 

SELECT RAN-FILE 
ASSIGN TO DF-26-800-X (2) 
ACTUAL KEY IS RECORD-ID. (2) 

DATA DIVISION. 
FILE SECTION. 
FD DISKFILE 

LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 4 RECORDS. 

01 DISK-RECORD COpy DATA-RECORD. 
FD RAN-FILE 

LABEL RECORDS ARE STANDARD. 
01 IS-RECORD COPY OUT-RECORD. 
PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT DISKFlLE 
OUTPUT RAN-FILE. 

MOVE 1 TO RECORD-ID. 
TRANSFER. 

READ DISKFILE 
AT END GO TO END-JOB. 

MOVE NAME TO IS-NAME. 
MOVE CUSTO~ER-NUMBER TO IS-CUSTOMER-NUMBER. 
MOVE STREET TO IS-STREET 
MOVE CITYSTATE TO IS-CITYSTATE. 
MOVE PAYRECORD TO IS-PAYRECORD. 
WRITE IS-RECORD 

INVALID KEY GO TO ERRORS. (11) 
ADD 1 TO RECORD-ID. 
GO TO TRANSFER. 

ERRORS. 
DISPLAY 'RECORD NOT WRITTEN' 

RECORD-ID UPON CONSOLE. 
END-JOB. 

DISPLAY 'RANDOM-FILE CREATED' 
UPON CONSOLE. 

CLOSE DISKFlLE RAN-FILE. 
STOP RUN. 

Multiple disks are basically used in two situations: 

a. Multiple units on-line simultaneously for random access. 

b. Multiple cartridges used for the same drive, in the case when 
a sequential file overflows one disk. 

711 



21. In the preceding frames you have learned to use only one disk for 
a file. In this frame you will learn to use more than one disk 
simultaneously. When a file extends into more than one disk it 
is possible to read records randomly from two or more disks. For 
example, the first record can be retrieved from the second disk, 
the second record can be retrieved from the first disk, the third 
record can be retrieved from the third disk up to a maximum of 5 
disks. The Programmer must specify the system-names of the disks 
he intends to use in the ASSIGN clause. 

For example: 

SELECT IN-AREA ASSIGN TO DF-10-l00, DF-20-200, DF-30-300. 

The READ or WRITE statements are the same. 

22. If the installation has only one drive available and a file 
extends into more than one disk, it is possible to read or write 
into another disk, when the one in use has come to the end, by 
specifying the FOR MULTIPLE UNIT clause into the ASSIGN 
statement. 

SELECT IN-AREA ASSIGN TO DF-1-1000-X FOR MULTIPLE UNIT. 

The above clause applies only to sequential access. 

When the disk reaches the end the computer will type out a 
message notifying the operator to change disks. The operator 
will change disks and type the name of the file. The computer 
will check this name against the disk-directory and if it is 
valid will continue the operation. 

23. The SEEK statement is meant to initiate the accessing of a disk
storage data record for subsequent reading or writing. It is 
used to optimize programming efficiency. 

A SEEK statement pertains only to disk files in the random access 
mode and may be executed prior to execution of a READ or WRITE 
statement. The main purpose of the statement is to position the 
READ-WRITE head so that the right disk location is available when 
a READ or WRITE statement is initiated. 

o 0 112 233 4 4 556 6 7 
1 ..• 5 •••. 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

SEEK file-name RECORD. 

712 



24. The file-name must be defined by a file description entry in the 
Data Division. The SEEK statement uses the contents of the data 
name in the ACTUAL KEY clause for the location of the record to 
be accessed. At the time of execution, the determination is made 
as to the validity of the file. If the key is invalid, when the 
next READ or WRITE statement for the associated file is executed, 
control will be given to the imperative statement in the INVALID 
KEY option. 

Two SEEK statements for the same file may logically follow each 
other. Any validity check associated with the first SEEK 
statement is negated by the execution of the second SEEK 
statement. 

If the contents of the ACTUAL KEY are altered between the SEEK 
statement and the subsequent READ or WRITE statement, any 
validity check associated with the SEEK statement is negated, and 
the READ or WRITE statement is processed as if no SEEK statement 
preceded it. 

FILE SECTION. 
FD IN-FILE 

RECORD CONTAINS 100 CHARACTERS 
LABEL RECORDS ARE STANDARD. 

SEEK IN-FILE RECORD 

READ IN-FILE INVALID KEY GO TO ERROR-KEY. 

Note: It is important in planning a routine for loading disk storage 
that the cylinder concept be taken into consideration. 
Related data should be grouped in the same cylinder, when 
possible to eliminate unnecessary seek operations. 
Therefore, when disk addresses are assigned to a group of 
related data, the disk location made available should be 
liwited to the number required, plus an expansion factor. 
The most frequently used data should be stored in the low
numbered cylinders to minimize seek time. 

713 



SUMMARY: 

In this lesson you have learned to create 
subsequent lessons you will learn various ways 
processing records from this file. 

END OF LESSON 34 

714 

a random file. 
of accessing 

In 
and 



LESSON 35 

715 



LESSON 35 - SEQUENTIAL AND RANDOM ACCESSING PROGRAMS 

INTRODUCTION 

This lesson will review much of what you have learned about files 
accessed sequentially and files accessed randomly. 

The first program you write will access each record from the file 
sequentially until the file is closed. 

The second program will access records from the file starting at a 
record that is not the first record in the file and continuing until the 
file is closed. Since it is not possible to begin accessing records at 
some record other than the first record in a standard sequential file, 
you will learn to specify the desired beginning key and to position the 
file at that desired key prior to accessing records. 

This lesson will require approximately one hour. 

716 



1. The SELECT, ASSIGN, and ACTUAL KEY clauses must all be used in a 
FILE-CONTROL paragraph that refers to: 

a. a random file that will be created. 

b. a sequential disk file that will be used as input. 

c. a random file that will be used as input. 

* * * 
a, c 

2. The Identification Division of a program that will access all 
records sequentially from a random file must include the: 

a. PROGRAM-ID paragraph. 

b. Configuration Section. 

c. name of the program. 

* * * 
a, c 

3. In order to access all records sequentially from a file opened as 
INPUT, you would have to use: 

b 

a. the INVALID KEY option in the WRITE statement referring to 
the file. 

b. the AT END option in the READ statement referring to the 
file. 

c. the INVALID KEY option in the READ statement referring to the 
file. 

* * * 

717 



718 

4. Match the entries required in a program to u?e a disk file for 
sequential input of all records with the divisions in which the 
clauses would be written. 

1) Identification a. LABEL clause 
Division 

b. PROGRAM-ID 
2) Environment paragraph 

Division 
c. INVALID KEY 

3) Data Division option 

4) Procedure d. BLOCK clause 
Division 

e. ASSIGN clause 

f. OPEN statement 

g. SELECT clause 

h. AT END option 

* * * 
1) b 
2) e, g 
3) a 
4) f, h 

(The INVALID KEY 
access all records 

option is not written in a program to sequentially 
from an input file. The BLOCK clause is never 

required.) 

5. Figure 186 shows the flow charts and part of a program called 
STUDYALL. write the FILE-CONTROL paragraph, and then a Procedure 
Division to access sequentially all records in the file and list 
them on the printer in the format indicated in the description of 
the output record PRINTDATA. 



BEGIN. 

~ove appropriate 
mput data to 
output area 

STUDENTFILE~----------~ 
record: 

lBM-1130 

STUDENT
DATA 

End program 

PRINTOUT 
record: PRINTDATA 

719 



o 0 112 2 3 3 4 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

720 

IDENTIFICATION DIVISION. 
PROGRAM-ID. STUDYALL. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 

DATA DIVISION. 
FILE SECTION. 
FD STUDENT-FILE 

LABEL RECORDS ARE STANDARD. 
01 STUDENT-DATA. 

02 PERSONAL. 
03 YEAR-IN PIC XX. 
03 STUDENT-NUMBER PIC XeS). 
03 NAME PIC X(2S). 
03 ADDRESS-I PIC X(3S). 

02 SCHOLASTIC. 
03 GRAD PIC XX. 
03 DEGREE PIC XX. 
03 GPA PIC X(4). 
03 MAJOR PIC XXX. 
03 MINOR PIC XXX. 

FD PRINTOUT 
LABEL RECORDS ARE OMITTED. 

01 PRINI' DATA. 
02 PERSONAL. 

03 BLANK1 PIC X(4) VALUE SPACES. 
03 S-NUMBER PIC xes). 
03 BLANK2 PIC XX VALUE SPACES. 
03 NAME PIC X(2S). 
03 BLANK3 PIC xes) VALUE SPACES. 
03 ADDRESS-I PIC X(3S). 
03 BLANK4 PIC Xes) VALUE SPACES. 

02 SCHOLASTIC. 
03 GRAD PIC XX. 
03 BLANKS PIC xes) VALUE SPACES. 
03 DEGREE PIC XX. 
03 BLANK6 PIC Xes) VALUE SPACES. 
03 MAJOR PIC XXX. 
03 BLANK7 PIC X(6) VALUE SPACES. 
03 MINOR PIC XXX. 
03 BLANK8 PIC X(14) VALUE SPACES. 

Figure 186 



* * * 
001 1 2 2 3 3 445 5 6 6 7 
1 .•. 5 •••• 0 •••. 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

FILE-CONTROL. 
SELECT STUDENTFILE 

ASSIGN TO DF-6-900-X. 
SELECT PRINTOUT 

ASSIGN TO PR-1132-C. 

PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT STUDENTFILE 
OUTPUT PRINTOUT. 

PROCESSING. 
READ STUDENTFILE 

AT END GO TO FINAL. 
~OVE STUDENT-NUMBER TO S-NUMBER. 
MOVE PERSONAL OF STUDENT-DATA 

TO PERSONAL OF PRINTDATA 
MOVE SCHOLASTIC OF STUDENT-DATA 

TO SCHOLASTIC OF PRINTDATA. 
WRITE PRINTDATA. 
GO TO PROCESSING. 

FINAL. 
CLOSE STUDENTFILE PRINTOUT. 
STOP RUN. 

6. Whenever the access of records from a disk file will begin at 
some record other than the first record in the file, the KEY must 
contain the number of the starting record and then every time a 
new record is required the KEY must be stepped up by one. 

7. In order to access the records sequentially from a random file 
beginning at some record other than the first record in the file, 
the Programmer must specify the: 

a. ACTUAL KEY clause. 

b. Put into KEY the number of the record to be accessed first 
and step up the KEY by one every time a new record is 
required. 

* * * 
Both. 

721 



8. 

o 0 112 2 3 344 556 6 7 
1 .•• 5 •••• 0 ••.. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

SELECT STUDENTFILE 
ASSIGN TO DF-6-100-X 
ACTUAL KEY IS NUMBER. 

The FILE-CONTROL entry above specifies that the elementary 
variable that contains the key within the record associated with 
STUDENTFILE is NUMBER. 

Write a FILE-CONTROL entry that will name a random file PAY
REGISTER. Specify that the elementary variable that contains the 
key associated with PAY-REGISTER is MAN-NUMBER. 

* * * 
0011223 344 5 5 6 6 7 
1. • . 5. • • • O. • • • 5. • • • O. • • • 5. • • • O. • • • 5. • •• 0 • • • • 5 • • • • 0 '. • • • 5 •••• 0 • • •• 5 • • • • 0 •• 

9. 

SELECT PAY-REGISTER 
ASSIGN TO DF-9-300-X 
ACTUAL KEY IS MAN-NUMBER. 

o 0 112 2 3 344 556 6 7 
1 ..• 5 ••.• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ACTUAL KEY IS MAN-NUMBER 

According to the clause above, the variable MAN-NUMBER: 

a. contains the key of the record. 

b. is an elementary variable associated with the random file. 

* * * 
Both of these 

10. Write the clauses necessary to define the variable 

PART-NUMBER in Working-Storage and specify that it contains the 
key of the record. 

* * * 
00112 2 334 4 556 6 7 
1 ••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ACTUAL KEY IS PART-NUMBER 

WORKING-STORAGE SECTION. 
77 PART-NUMBER PIC S99999 COMPo 

722 



11. 

o 0 112 2 3 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
FILE SECTION. 
FD RANDOM-FILE· 

LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 5 RECORDS. 

01 IF-RECORD. 
02 FILLER PIC X. 
02 FIELD-1 PIC X(20). 
02 FIELD-2 PIC X(lO). 
02 FILLER PIC X(62). 

WORKING-STORAGE SECTION. 
77 RECORD-ID PIC 59(5). 

Write the clauses necessary to specify RECORD-ID as the actual 
key for the file described above. 

* * * 
001122334 4 556 6 7 
1 ... 5 •.•• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ACTUAL KEY IS RECORD-ID. 

12. In order to access sequentially the records in a random file 
beginning at some record other than the first record in the file, 
the value of the actual key variable must be set equal to the 
value of the record number of the record at which sequential 
access is to begin. The actual key could be set by execution of: 

a. a MOVE statement. 

b. an ACCEPT statement. 

c. a DISPLAY statement. 

d. a VALUE clause. 

* * * 
a, b, d 

723 



13. The ACTUAL KEY clause specifies a variable that will contain a 
value equal to the record key at which accessing is to begin. 
The actual key variable must be given a value before accessing of 
records begins. 

In order that the actual key variable, YEAR, contain the value 
1961, you could execute the statement: 

a. 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ..• 5 •••• 0 •••. 5 •••• 0 •.•• 5 •.•• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

MOVE 1961 TO YEAR. 

b. 

o 0 1 1 2 233 4 4 5 5 6 6 7 
1 •.• 5 ..•• 0 •..• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •• 

724 

ACCEPT YEAR FROM CONSOLE. 

after instructing the operator to key in 1961. 

* * * 
Either 

14. In order that either statement in frame 13 will actually set the 
value of the actual key, you must first: 

a, c 

a. specify ACTUAL KEY IS YEAR. 

b. describe YEAR within the record description of the file to be 
accessed. 

c. describe YEAR in the Working-Storage Section. 

* * * 



15. Match the following: 

1) ACTUAL KEY 
clause 

* * 

a. Required whenever 
sequential access 
of records in a 
file is to 
tegin at a record 
other than the 
first record in 
the file 

b. Required in every 
FILE-CONTROL entry 
for a random file 

c. Specifies a vari
able described in 
the Working-Storage 
Section of a pro
gram that accesses 
a random file 

* 
All of these. 

16. 

o 0 112 233 445 5 6 6 7 
1 ••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0.~ 

ACTUAL KEY IS PATIENT-NUMBER 

77 PATIENT-NUMBER PIC S99999 USAGE COMP. 

An Environment Division entry and a Data Division entry for a 
program to access records from a random file are given above. 
Write the statements necessary to position the file PATIENT-FILE 
at the record that has the record key 2025 and to transfer 
control to END-ROUTINE if this record is not in the file. 

* * * 
0011223 3 4 4 5 5 6 6 7 
1 .•. 5 •••• 0 •••• 5 •.•. 0 •••• 5 •••. 0 •.•• 5 •••• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

MOVE 2025 TO PATIENT-NUMBER. 
READ PATIENT-FILE 

INVALID KEY GO TO END-ROUTINE. 

125 



17. 

001122334 4 556 6 7 
1 ••• 5.~~.0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 ••.• 5 .••• 0 •. 

a 

18. 

MOVE 2025 TO PATIENT-NUMBER. 
READ PATIENT-FILE 

INVALID GO TO END-ROUTINE,. 

To ensure that the desired record 
contain the number of that record 
executed. If the above sequence 
in the program segment explained 
record read would be: 

will be accessed, the key must 
before a READ statement is 

of two statements were executed 
in the preceding frame, the 

a. the record with key equal to 2025. 

b. the first record in the file, if the file has just been 
opened. 

c. the next record in the file, if some records have been read 
from the file. 

* * * 

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7 
1 .•• 5 •••• 0 •.•• 5 •..• 0 •••• 5 •••• 0 •••• 5 •••• 0 .••• 5 .••• 0 •••• 5 .••• 0 •••• 5 .•.• 0 •• 

b 

726 

ACTUAL KEY IS LOCATION 

77 LOCATION PIC S9(5) USAGE COMP. 

READ POSITION-FILE 
INVALID KEY GO TO TERMINATE. 

In order to begin the access of records from the random file 
POSITION-FILE with the record whose record key is 1811, a MOVE 
statement should be placed in the above sequence: 

a. before the ACTUAL KEY statement. 

b. between the Level 77 Item and READ statements. 

c. after the READ statement. 

* * * 



19. 

o 0 112 2 3 344 5 5 6 6 7 
1 .•• 5 .•.• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

MOVE NUMERO TO NOM-KEY. 
READ IS-FILE 

INVALID KEY GO TO FINIS. 

When records in a random file are being accessed sequentially 
beginning at some record other than the first record in the file, 
the programmer must specify the action to be taken if no record 
with a record key of the same value as the actual key variable is 
found. This action is specified in the INVALID KEY option of the 
READ statement. The INVALID KEY option of the READ statement is 
activated when there is no record in the file corresponding to 
the current value of the actual key. 

The statements above are used 
sequentially from a random file. 
50 and 55 are given below. 

in a program to access records 
All of the record keys between 

00050 00051 00052 00053 00054 00055 

Match the results given below with the value of NUMERO which 
produces that result. 

1) 00053 

2) 00090 

3) 00095 

1) b 
2) a 
3) a 

* * 

a. Control will be 
transferred to 
FINIS 

b. The record 
corresponding to 
NUMERO will be 
read. 

* 

20. Match the reasons for activation with the appropriate option. 

1) INVALID option of 
WRITE statement for 
standard sequential 
disk files 

2) INVALID KEY option 
of WRITE statement 
for random files 

* 
1) a, b 

* 

a. An attempt is made 
to write beyond the 
limits of the file. 

b. The file is filled. 

* 

2) a (the key is negative or zero or greater than the total nurober 
of records specified for the file in the ASSIGN clause in the 
Environment Division.) 

727 



21. In order to access records sequentially from a random file 
beginning at some record other than the first record in the file, 
the program wust include several entries in a specific order. 
Arrange the following in the appropriate order. 

a. The definition of the key in the Working-Storage Section of 
the Data Division 

b. ACTUAL KEY clause in the Environment Division 

c. READ statement with the INVALID KEY option in the Procedure 
Division 

d. Statement to set the actual key variable to the value of the 
record at which sequential access of records is to begin 

* * * 
b, a, d, c 

22. 

o 0 112 233 445 5 6 6 7 
1 ••• 5 ..•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

728 

IDENTIFICATION DIVISION. 
PROGRAM-ID. STUDYSOME. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT STUDENTFILE 
ASSIGN TO DF-l-100-X 
ACTUAL KEY IS REC-LOCATION. 

SELECT PRINTOUT 
ASSIGN TO PR-1132-C. 

DATA DIVISION. 
FILE SECTION. 
FD STUDENT FILE 

LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 10 RECORDS. 

01 STUDENT-DATA COpy STUDENT-RECORD. 
FD PRINTOUT 

LABEL RECORDS ARE OMITTED. 
01 PRINTDATA COpy PARTIAL-LIST. 
WORKING-STORAGE SECTION. 
77 REC-LOCATION PIC S9(5) USAGE COMP. 
PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT STUDENTFILE 
OUTPUT PRINTOUT. 



1) 

o 0 112 233 4 4 5 5 6 6 7 
1 ••. 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

2) 

PROCESSING. 

MOVE STUDENT-NUMBER TO S-NUMBER. 
MOVE NAME OF STUDENT-DATA 

TO NAME OF PRINTDATA 
MOVE ADDRESS OF STUDENT-DATA 

TO ADDRESS PRINTDATA 
MOVE GRAD OF STUDENT-DATA 

TO GRAD OF PRINTDATA 
MOVE DEGREE OF STUDENT-DATA 

TO DEGREE OF PRINTDATA 
MOVE MAJOR OF STUDENT-DATA 

TO MAJOR OF PRINTDATA 
MOVE MINOR OF STUDENT-DATA 

TO MINOR OF PRINTDATA 
WRITE PRINT DATA. 
ADD 1 TO REC-LOCATION. 
GO TO PROCESSING. 

FINAL. 
CLOSE STUDENTFILE PRINTOUT. 
STOP RUN~ 

In a preceding frame in this lesson, you wrote a program to 
access sequentially and list all records in a file. Now code 
segment 1 to complete the program above to begin accessing 
records at key number 1250. Transfer control to the termination 
routine if the desired key is not in the file or if the end of 
the file is reached. 

001 1 2 2 3 3 4 4 5 5 6 6 7 
1 ... 5 •.•• 0 ••.• 5 ••.• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •.•• 0 •••. 5 •••• 0 •••• 5 •••• 0 •• 

23. 

MOVE 1250 TO REC-LOCATION. 
PROCESSING. 

READ STUDENTFILE 
INVALID KEY GO TO FINAL. 

As a programmer, you may be asked to modify 
records of parts that have identification 
8000. All numbers in PART-FILE end in 5 or 
named FIND-KEY to position the file at the 
read after 8000 is moved to GUESS-KEY. 

* * * 

a program to list all 
numbers larger than 
o. Write a paragraph 
first record to be 

0011223 3 4 4 5 5 6 6 7 
1 ... 5 .... 0 .... 5 •.•. 0 •••. 5 ..•• 0 •••• 5 •••• 0 •••. 5 •.•• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •. 

FIND-KEY. 
READ PART-FILE 

INVALID KEY 
ADD 5 TO GUESS-KEY 
GO TO FIND-KEY. 

729 



730 

24. A large department store wishes to send a special brochure to a 
selected sample of customers. The manager has decided to make a 
preliminary listing of some customers. The first fifty customers 
in the file will be checked and then fifty customers will be 
checked starting at a key that the operator will key in at the 
appropriate time. Of those 100 customers, only addresses of 
those who have had charge accounts for longer than three years 
will be listed. Figure 187 shows a system flow chart and a part 
of the first three divisions of program SEQ-ACCESS. Write the 
missing section of the Environment Division. 



o 0 112 2 3 344 5 5 6 6 7 
1 ••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 ••.• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SEQ-ACCESS. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 

DATA DIVISION. 
FILE SECTION. 
FD IND-SEQ 

LABEL RECORDS ARE STANDARD. 
01 DISK-RECORD. 

02 IS-PERSONAL. 
03 IS-NAME PIC X(21). 
03 IS-ADDRESS. 

04 IS-STREET PIC X(15). 
04 IS-CITYSTATE PIC X(15). 

02 IS-PAYRECORD. 
03 IS-YEAR-OPENED PIC 99. 
03 IS-MAXIMUM-CREDIT PIC 9999V99 

USAGE COMP. 
03 IS-MAXIMUM-BILL PIC 9999V99 

USAGE COMP. 
03 IS-BALANCE-DUE PIC 9999V99 

USAGE COMP. 
03 IS-PAYCODE PIC 9. 

88 BAD VALUE 1. 
88 POOR VALUE 2. 
88 SLOW VALUE 3. 
88 AVERAGE VALUE 4. 
88 GOOD VALUE 5. 
88 EXCELLENT VALUE 6. 
88 NONE VALUE 7. 

FD PRINT-FILE 
LABEL RECORDS ARE OMITTED. 

01 OUTGO PIC X(121}. 
WORKING-STORAGE SECTION. 
77 TIME PIC 99. 
77 ACCEPTED PIC 999 USAGE COMP 

VALUE ZEROS. 
77 REJECTED PIC 999 USAGE COMP 

VALUE ZEROS. 
77 RECORD-ID PIC S9(5} USAGE COMP. 
01 PRINT-LINE. 

02 FILLER PIC X(9) VALUE SPACES. 
02 FILLER PIC XX VALUE '19'. 
02 YEARS PIC 99. 
02 FILLER PIC X(10) VALUE SPACES. 
02 IDENT PIC X(6). 
02 FILLER PIC X(10) VALUE SPACES. 
02 CUSTOMER PIC X(20). 
02 FILLER PIC X(15) VALUE SPACES. 
02 O-STREET PIC X(15). 
02 FILLER PIC X(10) VALUE SPACES. 
02 O-CITYSTATE PIC X(15). 
02 FILLER PIC X(7) VALUE SPACES. 

731 



IND-SEQ 
access: 
random 

* 

PRINT-FILE 

IBM-Il30 

Figure 187 

* * 
o 0 112 2 3 3 445 5 6 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECI' RAN-FILE 
ASSIGN TO DF-15-900-X 
ACTUAL KEY IS RECORD-ID. 

SELECT PRINT-FILE 
ASSIGN TO PR-1132-C. 

SUMMARY: 

In this lesson you have learned to access records sequentially from a 
file, starting at any record in tqe file. In the next lesson you will 
learn to access records randomly and to add records to your random file. 

END OF LESSON 35 

732 



LESSON 36 

733 



734 

LESSON 36 - RANDOM FILES ACCESSED RANDOMLY 

INTRODUcrION 

In this lesson you will 
randomly. You will also learn 
without recreating the file. 

learn 
to add 

to access records from a file 
records to a random file 

In the usual business situation involving random files, the 
master file has indexed organization. This organization is not to be 
confused with Index Sequential organization found in systems other 
than IBM 1130. The index here refers only to the record keys, since 
the file is accessed randomly, not sequentially. When this indexed 
file is processed, a value from an input transaction file, whose 
records may be in any order, is used to locate the desired master 
record. Execution ot a READ statement specifying the random file 
will then access the appropriate record. If the transaction file 
contains records to be added to the master file, each record can be 
inserted into the appropriate place in the random file when a WRITE 
statement is executed after the actual key variable is set as above. 

Specific COBOL l'anguage features you will learn to use in this 
lesson are: 

ACCESS clause 
SEQUENTIAL option of ACCESS clause 
RANDOM option of ACCESS clause 
INVALID KEY option of READ statement 

This lesson will require approximately three quarters of an hour. 



r------------------------ -------- -------- -------- -------- ---------, 
1 FILE-CONTROL SELECT ASSIGN ACTUAL ACCESS RESERVE 1 
1 File clauses KEY I 
1 Access 1 
1------------------------ -------- -------- -------- -------- ---------1 
1 Sequential Access R R N 0 P 1 
1------------------------ -------- -------- -------- -------- ---------1 
1 Random Access R R R R N 1 
1------------------------ -------- -------- -------- -------- ---------1 
1 P = Optional for print and card files; not permitted otherwise. 1 
1 R = Required. 1 
1 0 = Optional 1 
1 N = Not permitted. I L _____________________________________________________________________ -l 

Figure 188 

1. Figure 188 shows the required clauses of the Environment Division 
entries for the types of file access and organization that are 
studied in this course. Which clauses are required for a FILE
CONTROL paragraph that describes any sequential disk file? 

* * * 
SELECT and ASSIGN clauses 

2. Which clauses are required for a FILE-CONTROL paragraph that 
describes a sequentially accessed file that will be accessed 
beginning with the first record in the file? 

* * * 
SELECT, ASSIGN clauses 

3. Which clause is required for a disk file if access is to begin at 
some record other than the first record in the file? 

* * * 
ACTUAL KEY clause 

735 



4. 

o 0 112 2 3 344 556 6 7 
1 .•• 5 •••• 0 •.•• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

o 

b 

ACCESS IS SEQUENTIAL 

Although you have not used the clause shown above in any of the 
programs you have written, it may be specified for any 
sequentially accessed file. When the ACCESS clause was omitted, 
the method of access you used was: 

a. RANDOM 

b. SEQUENTIAL 

* * * 

5. Figure 188 shows that the: 

a. ACCESS clause is optional for sequentially accessed files. 

b. ACCESS clause is required for randomly accessed files. 

c. omission of the ACCESS clause has the same effect as 
specifying ACCESS IS SEQUENTIAL. 

* * * 
All of these 

6. 

o 1 1 2 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

a 

736 

ACCESS IS RANDOM 

The form of the ACCESS clause shown above is required for random 
access of records from a file. This form of the ACCESS clause 
could refer to a file on: 

a. a mass-storage device. 

b. input cards. 

* * * 



7. 

o o 1 1 2 2 3 3 4 4 5 5 6 6 7 
1~ •• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

o o 

ACCESS IS RANDOM 

To which of the following FILE-CONTROL entries could the clause 
above be applied? 

a. 

1 1 2 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0_ ••• 5 •••• 0 •••• 5 ••• ~0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ASSIGN TO RD-1442. 

b. 

o o 1 1 2 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ASSIGN TO PR-1132-C. 

c. 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ASSIGN TO DF-l0-500-X. 

* * * 

c 

8. Refer to Figure 188 if necessary and decide which of the 
following FILE-CONTROL entries contains appropriate clauses for 
the type of file specified in the ASSIGN clause. 

a. 

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •. 

b. 

SELECT FILE-2 
ASSIGN TO DF-l0-500-X 
ACCESS IS SEQUENTIAL. 

o 0 112 2 3 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

a 

SELECT FILE-3 
ASSIGN TO PR-1132-C 
ACTUAL KEY IS STOCK-CODE 
ACCESS IS RANDOM. 

* * * 

(It is not permitted to have an ACTUAL KEY clause or RANDOM ACCESS 
clause when assigning a non-disk file.> 

737 



9. According to Figure 188, a FILE-CONTROL entry that contains the 
clause ACCESS IS RANDOM must also include the: 

a. ACTUAL KEY clause. 

h. ACCESS IS SEQUENTIAL clause. 

* * * 
a 

10. The ACTUAL KEY clause must he specified in the FILE-CONTROL entry 
for every: 

a. file on a rrass-storage device. 

h. random file. 

* * * 
b 

11. The ACTUAL KEY clause must be specified in the FILE-CONTROL entry 
for a file when: 

a. sequential access is to begin at some record other than the 
first record in the file. 

b. ACCESS IS RANDOM is specified. 

* * * 
Either 

12. Refer to Figure 188 and write a FILE-CONTROL entry for RANDOM
FILE, a randomly accessed file. The key field of the record 
associated with the file is ID-FIELD. 

* * * 
0011223 3 4 4 5 5 6 6 7 
1 ... 5 •.•. 0 •••. 5 ..•• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••. 0 •••• 5 ••.• 0 •• 

738 

SELECT RANDOM-FILE 
ASSIGN TO DF-10-700-X 
ACTUAL KEY IS ID-FIELD 
ACCESS IS RANDOM. 

You have now learned to code the Environment Division entries 
required for a file that is to be accessed randomly. In the next 
sequence you will learn to code the appropriate Procedure Division 
entries. 



13. 

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 .••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••• ~0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

a 

14. 

SELECT RANDOM-FILE 
ASSIGN TO DF-7-800-X 
ACTUAL KEY IS ID-FIELD 
ACCESS IS RANDOM. 

When records are accessed randomly, the actual key field must be 
set to the value of the record key field of the desired record 
before a READ statement is executed for the file. Refer to the 
clauses above and select the correct statement(s) • 

a. Before a READ statement for RANDOM-FILE is executed, ID-FIELD 
must be set to the value of the desired record key~ 

b. ID-FIELD roust be set to the value of the desired record key 
as soon as a READ statement for RANDOM-FILE is executed. 

* * * 

o 0 112 2 3 3 4 4 556 6 7 
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••• ~0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

Both 

READ file-name [INTQ record-namel 

INVALID KEY imperative-statement 

Any READ statement that refers to a randomly accessed file must 
include the INVALID KEY option. The format above indicates that 
the: 

a. INTO option may be included in a READ statement that includes 
the INVALID KEY option. 

h. AT END option may not be included in a READ statement that 
includes the INVALID KEY option. 

* * * 

(The end-of-file record is not checked for when a file is randomly 
accessed.) 

'739 



15. Match the following with the appropriate options of the READ 
statement. 

1) AT END a. Allows the execu-
tion of the READ 

2) INTO statement to have 
the effect of a 

3) INVALID KEY READ and a MOVE 

b,. Is not permitted 
when the READ 
statement refers 
to a randomly 
accessed file 

c. Is required when 
the READ state-
ment refers to a 
rando~ly accessed 
file 

d. Is used to specify 
action to take 
place when the 
end of a sequen-
tially accessed 
file is reached 

e. Is optional when 
the READ state-
ment refers to a 
randomly accessed 
file 

* * * 
1) b, d 
2) a 
3) c 

16. 

o 0 112 2 3 3 4 4 556 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

o o 

SELECT RANDOM-FILE 
ASSIGN TO DF-10-600-X 
ACTUAL KEY IS ID-FIELD 
ACCESS IS RANDOM. 

Assume that ID-FIELD has been set to the value of the key of the 
desired record and write a READ statement without the INTO option 
to access the record from the file described above. Use PERFORM 
SPECIAL-CASES as the imperative statement in the option you use. 

* * * 

1 1 2 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

740 

READ RANDOM-FILE INVALID KEY 
PERFORM SPECIAL-CASES. 



17. Match the following causes for activation with the options. 

1) INVALID option in a 
WRITE statement that 
refers to a standard 
sequential file 

2) INVALID KEY option 
in a READ statement 

that refers to a 
randomly accessed 
file 

3) INVALID KEY option 
in a WRITE statement 
that refers to a 
random file that is 
being created 

* * 

a. The value of the actual 
key variable is negative 
or zero. or greater than 
the total number of 
records specified for the 
file in the ASSIGN clause 
in the Environment 
Division. 

b. The space reserved 
for the file is 
filled. 

c. No record is present 
in the file with a 
record key equal to 
the value contained 
by the ACTUAL KEY. 

* 
1) b 
2) c 
3) a 

18. The INVALID KEY option must be included in any READ statement 
that refers to a: 

a. file that has sequential organization. 

b. randomly accessed file. 

* * * 
b 

19. When a sequential file is being accessed randomly. the actual key 
variable must be set to the value of the record key of the 
desired record: 

b 

a. only before a READ statement for the first record is 
executed. 

b. before each READ statement is executed. 

* * * 

741 



142 

20. ACCESS IS RANDOM may be specified for a sequential file. Select 
the entries below that must also be specified for a file if 
ACCESS IS RANDOM is specified. 

Both 

21. 

a. INVALID KEY option of the READ statement 

b. ACTUAL KEY clause 

* * * 

PRINT-FILE 

IBM-1130 

Figure 189 

Figure 190 shows portions of a program that randomly accesses a 
sequentially organized file, STUDENT-FILE. Refer to the system 
flow chart above and the first three divisions of GRADUATE-CHECK 
in Figure 190 to complete the FILE-CONTROL paragraph. 



0011223 344 5 5 6 6 7 
1 .•. S •.•• 0 ••.• S ..•. 0 •••• S •••• 0 •••• 5 •••• 0 •••• S .••. 0 •••• S •••• O •••• S •••• O •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. GRADUATE-CHECK. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT STUDENT-FILE 

SELECT CARD-FILE 
ASSIGN TO RD-1442. 

SELECT PRINT-FILE 
ASSIGN TO PR-1132-C. 

DATA DIVISION. 
FILE-SECTION. 
FD STUDENT-FILE 

LABEL RECORDS ARE STANDARD. 
01 STUDENT-RECORD. 

02 STUDENT-NUMBER PIC XeS). 
02 STUDENT-NAME PIC X(25). 
02 YEAR-GRADUATED PIC 99. 
02 OTHER-THINGS PIC X(51). 

FD CARD-FILE 
LABEL RECORDS ARE OMITTED. 

01 CARD-RECORD. 
02 CARD-NUMBER PIC X(9). 
02 FILLER PIC X(71). 

FD PRINT-FILE 
LABEL RECORDS ARE OMITTED. 

01 OUT-RECORD PIC X(121). 
WORKING-STORAGE SECTION. 
77 KEY-NUMBER PIC S99999 USAGE COMPo 
77 YEAR-G PIC 99 USAGE COMPo 
01 PRINTOUT. 

02 CARRIAGE-CONTROL PIC X. 
02 PRINT-DATA. 

03 STUDENT-NUMBER-O PIC xes). 
03 STUDENT-NAME-O PIC X(2S). 
03 YEAR-GRADUATED-O PIC 99. 
03 OTHER-THINGS-O PIC X(51). 
03 COMMENT-O PIC X(37). 
03 FILLER PIC X. 

PROCEDURE DIVISION. 
BEGIN. 
OPEN INPUT STUDENT-FILE 

CARD-FILE 
OUTPUT PRINT-FILE. 

PROCESSING. 

IvlESSAGE. 
DISPLAY CARD-NUMBER 

'NOT IN FILE' UPON CONSOLE. 
GO TO PROCESSING. 

ENDING. 
CLOSE STUDENT-FILE 

CARD-FILE PRINT-FILE. 
STOP RUN. 

Figure 190 

743 



* * * 

o 0 112 2 3 344 5 5 6 6 7 
1. • • 5. • • • O. • • • 5. • • • 0 • • • • 5. • • • O. • • • 5. • • '. 0 • • • ..5. • • • 0 • • • • 5. • • • 0.. • • • 5. • • • 0 • • 

744 

ASSIGN TO DF-6-900-X 
ACTUAL KEY IS KEY-NUMBER 
ACCESS IS RANDOM. 



22. 

Move 'See 
columns 35-36' 
to COMMENT-O 

BEGIN. 

PROCESSING. 

No 

Move CARD
NUMBER to 
nominal key 
variable 

Move record from 
file to PRINT-DATA. 
Move YEAR
GRADUATED to 
packed-decimal 
variable 

End program 

No 

Move 'Not 
Y graduated' 

~e:.;;s ____ .. toCOMMENT-O 

Figure 191 

745 



The prior flow chart shows the logic for the Procedure Division 
of the program in Figure 190. In this program the records from 
STUDENT-FILE for students who have records in CARD-FILE are to ce 
printed in PRINT-FILE. A comment about the graduation of the 
student is also printed in PRINT-FILE. Follow the flow chart and 
write the main routine PROCESSING for the program GRADUATE-CHECK. 

* * * 
0011223 344 556 6 7 
1 ••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5. ' ••• 0 •••• 5 •••• 0, •••• 5 •••• 0 •••• 5 .••• 0 •• 

READ CARD-FILE 
AT END GO TO ENDING. 

MOVE CARD-NU~BER TO KEY-NUMBER. 
READ STUDENT-FILE 

INVALID KEY GO TO MESSAGE. 
MOVE STUDENl'-RECORD TO PRINT-DATA. 
MOVE YEAR-GRADUATED TO YEAR-G. 
IF YEAR-G NOT EQUAL TO 0 

MOVE 'SEE COLUMNS 35-36' 
TO COMMENT-O 

ELSE MOVE 'NOT GRADUATED' 
TO COMMENT-O. 

WRITE OUT-RECORD FROM PRINTOUT. 
GO TO PROCESSING. 

------------------------------------------------------------~--.-------

746 



23. One practical use for a random access file would be to check the 
credit of customers who have ordered large amounts of merchandise 
through a mail-order warehouse. Figure 192 shows a system flow 
chart and the first three divisions of a program that is used for 
this purpose. The card file contains the customer's unique 
number (the position of this customer's record on the random 
access file) and the dollar,value of the merchandise he wishes 
delivered. This file is prepared by the mail clerk as orders for 
the day are received and is therefore in random order. Certain 
records from the input files will be placed in PRINTER-FILE. 

Follow the program flow chart in Figure 193 and write the 
Procedure Division for the program CREDIT-CHECK. 

==n 
REQUEST-FILE 

",

-..---__ r'" 

IBM-1130 

/G 
PRINTER-FILE 

o 0 112 2 3 344 5 5 6 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CREDIT-CHECK. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONl'ROL. 

SELECT REQUEST-FILE 
ASSIGN TO RD-1442. 

SELECT RANDOM-FILE 
ASSIGN TO DF-1-600-X 
ACTUAL KEY IS CREDIT-CARD 
ACCESS IS RANDOM. 

SELECT PRINTER-FILE 
ASSIGN TO PR-1132-C. 

DATA DIVISION. 
FILE SECTION. 
FD REQUEST-FILE 

LABEL RECORDS ARE OMITTED. 
01 CUSTOMER-DATA 

747 



748 

02 CREDIT-NUMBER PIC X(6). 
02 REQUEST PIC 9999V99. 
02 FILLER PIC X(68). 

FD RANDOM 
LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 5 RECORDS. 

01 DISK-RECORD. 
02 IS-PERSONAL. 

03 IS-NAME PIC X(21). 
03 RECORD-ID PIC S99999 USAGE COMP. 
03 IS-ADDRESS. 

04 IS-STREET PIC X(15). 
04 IS-STATE PIC X(15). 

02 I S-PA YRECORD • 
03 IS-YEAR-OPENED PIC 99. 
03 IS-MAXIMUM-CREDIT PIC 9999V99 

USAGE COMP. 
03 IS-MAXIMUM-BILL PIC 9999V99 

USAGE IS COMP. 
03 IS-BALANCE DUE PIC 9999V99 

USAGE IS COMP. 
03 IS-PAYCODE PIC 9. 

88 BAD VALUE 1. 
88 POOR VALUE 2. 
88 SLOW VALUE 3. 
8 8 AVERAGE VALUE 4. 
88 GOOD VALUE 5. 
88 EXCELLENT VALUE 6. 
88 NONE VALUE 7. 

FD PRINTER-FILE 
LABEL RECORDS ARE OMITTED. 

01 PRINTOUT PIC X(121). 
WORKING-STORAGE SECTION. 
77 CREDIT-CARD PIC S99999 USAGE COMP. 
77 ASK PIC 9999V99 USAGE COMP. 
77 TOTAL-NEEDED PIC 9999V99 USAGE COMP. 
77 DIFFERENCE PIC 9999V99 USAGE COMP. 
77 ALLOW PIC X(22) VALUE 

'MARGINAL BUT PERMITTED'. 
77 DISALLOW PIC X(24) VALUE 

'CHECK WITH CREDIT OFFICE'. 
01 FILE-DATA. 

02 FILLER PIC X VALUE IS SPACES. 
02 NAME PIC X(21). 
02 IDENT PIC X(6). 
02 AMOUNT-ASKED PIC 9,999.99. 
02 FILLER PIC XXX VALUE IS SPACES. 
02 COMMENT PIC X(83). 

Figure 192 



FINISH 

End program 

Move 
CREDlT"NUMBER 

to 
actual key field 

Move 
REQUEST 

to 
decimal field 

Add amount of 
REQUEST and 

IS-PRESENT-BILL 
to get 

TOTAL-NEEDED. 

Figure 193 

DIFFERENCE = 
TOTAL-NEEDED -

IS-MAXIMUM-CREDIT 

Move 
message displayed 

to 
COMMENT 

Move 
message displayed 

to 
COMMENT 

MOVES 

Move number, 
request, and name, 

to fields in 
FILE-DATA 

749 



* * * 

o o 1 1 2 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••• ~0 •••• 5 •••• 0 •••• 5.~ •• 0 •••• 5 •••• 0 •• 

750 

PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT REQUEST-FILE 
RANDOM-FILE 
OUTPUT PRINTER-FILE. 

MAIN-ROUTINE. 
READ REQUEST-FILE 

AT END GO TO FINISH. 
MOVE CREDIT-NUMBER TO CREDIT-CARD. 
READ RANDOM-FILE INVALID KEY 

DISPLAY 'CALL CREDIT OFFICE' 
'NO EXISTING RECORD' 
CREDIT-NUMBER 
GO TO MAIN-ROUTINE. 

MOVE REQUEST TO ASK. 
ADD ASK'IS-BALANCE-DUE 

GIVING TOTAL-NEEDED. 
IF IS-MAXlMUM-CREDIT NOT LESS 

THAN TOTAL-NEEDED 
DISPLAY 'OK ON' IS-NAME 

UPON CONSOLE 
GO TO MAIN-ROUTINE. 

COMPUTE DIFFERENCE = TOTAL-NEEDED 
- IS-MAXlMUM-CREDIT. 

IF DIFFERENCE LESS THAN 200 
AND PAYCODE GREATER THAN 4 
GO TO MARGIN. 

DISPLAY DISALLOW IS-NAME 
UPON CONSOLE. 

MOVE DISALLOW TO COMMENT. 
MOVES. 

MOVE CREDIT-NUMBER TO IDENT. 
MOVE REQUEST TO AMOUNT-ASKED. 
MOVE IS-NAME TO NAME. 
WRITE PRINTOUT FROM FILE-DATA. 
GO TO MAIN-ROUTINE. 

MARGIN. 
DISPLAY IS-NAME ALLOW 

UPON CONSOLE. 
MOVE ALLOW TO COMMENT. 
GO TO MOVES. 

FINISH. 
CLOSE REQUEST-FILE RANDOM-FILE 

PRINTER-FILE. 
STOP RUN. 

(14) 

(If your solution is different and you are not sure it is correct, 
consult your ad~isor.) 

In the next sequence of frames you will learn to add records to your 
random file. 



24. A Disk File may be accessed by a READ and a WRITE in the same 
program if the OPEN statement specifies 1-0.. The OPEN statement 
for a file to be updated should specify: 

a. INPUT 

b. OUTPUT 

c. 1-0 

* * * 
c 

25. If a mass storage file (disk file) is opened 1-0 in a sequential 
access mode, a READ for the file must precede any WRITE. The 
following statements should be in what order in a program (Assume 
sequential access) ? 

a. WRITE FILEl 

b. OPEN FILEl 

c. READ FILEl 

* * * 
b,c,a 

26. When records are to be added to a random file, the file must have 
•••••••• access and be opened as •••.••••• 

* * * 
random 
1-0 

27. 

o 0 112 233 4 4 5 5 6 6 7 
1 ... 5 ••.• 0 •... 5 •.•. 0 •.•. 5 ..•. 0 •..• 5 •••• 0 •••• 5 .••• 0 ••.• 5 •••• 0 •••• 5 •.•• 0 •• 

1-0 

WRITE record-name 

INVALID KEY imperative-sentence 

A statement of the form shown above is used to add a record to a 
random file. In a program which is used only to add records to a 
random file, the relevant file should be opened as ••••••••• 

* * * 

(See preceding if your answer was OUTPUT.) 

751 



752 

28. When a record is being added to a random file. the INVALID KEY 
option of the WRITE statement is activated if the actual key 
field associated with the record to be added contains a value 
outside the limits of the file. The actual key variable must be 
set equal to the disk location of the record to be added. 

STUDENT
MASTER 

UPDATE-DATA 

IBM-Il30 



0011223 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MA~CH. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT STUDENT-MASTER 
ASSIGN TO DF-1-600-X. 

SELECT NEW-STUDENT-MASTER 
ASSIGN TO DF-2-700-X. 

SELECT UPDATE-DATA 
ASSIGN TO RD-1442. 

DATA DIVISION. 
FILE SECTION. 
FD STUDENT-MASTER 

LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 5 RECORD. 

01 STUDENT-DATA. 
02 PERSONAL. 

03 YEAR-IN PIC xx. 
03 STUDENT-NUM PIC X(4) • 
03 FILLER PIC X(35). 

02 SCHOLASTIC PIC X(14). 
FD NEW-STUDENT-MASTER 

LABEL RECORDS ARE STANDARD. 
01 STUDENT-DATA-NEW. 

02 YEAR PIC XX. 
02 S-NUMBER PIC X(9). 
02 FILLER PIC X(74). 

FD UPDATE-DATA 
LABEL RECORDS ARE OMITTED. 

01 TRANSFER. 
02 IN-OR-OUT PIC XX. 
02 CARD-NUMBER PIC X(9). 
02 FILLER PIC X(69). 

PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT STUDENT-MASTER 
UPDATE-DATA 
OUTPUT NEW-STUDENT MASTER. 

READ-BarH. 
READ UPDATE-DATA 

AT END GO TO SHUT. 
READ-DISK. 

READ STUDENT-MASTER 
AT END GO TO SHUT. 

COMPARE. 
IF CARD-NUMBER IS GREATER THAN STUDENT-NUM 

GO TO WRITE DISK-FROM-DISK. 
IF CARD-NUMBER IS EQUAL TO STUDENT-NUM 

DISPLAY CARD-NUMBER 
'IS IN FILE. NOT ADDED.' 

UPON CONSOLE 
WRITE STUDENT-DATA-NEW 

FROM STUDENT-DATA 
GO TO READ-BOTH 
ELSE WRITE STUDENT-DATA-NEW 

FROM TRANSFER. 

753 



READ-A-CARD. 
READ UPDATE-DATA 

AT END GO TO SHUT. 
GO TO COMPARE. 

WRITE DISK-FROM-DISK. 
WRITE STUDENT-DATA-NEW 

FROM STUDENT-DATA. 
GO TO READ-DISK. 

SHUT. 
CLOSE STUDENT-MASTER 

NEW-STUDE NT-MASTER 
UPDATE DATA. 
STOP RUN. 

Figure 194 

29. Figure 194 shows a program that you wrote to add records to a 
sequential file. In this program there were two files - an input 
Master and an output Master file. If records are added to a 
random file, only one file is needed, if it is opened as 1-0, 
since it is used for both input and output. The following 
changes must be made in the program previously written in order 
to change the two sequential disk files to one random file: 

a. Delete one SELECT sentence. 

b. Delete one FD entry. 

c. Delete the record description entry associated with the FD. 

d. Rewrite the FILE-CONTROL paragraph to specify one disk file -
a random file called STUDENT-MASTER and the card file shown 
in Figure 194. 

e. Add a Working-Storage Section to describe the ACTUAL KEY 
variable. 

Assume that a variable named KEY-Nm~BER is described as a level 
77 variable. Write the new SELECT statements,. 

* * * 
001122334 4 556 6 7 
1 ••• 5 •••• O •••• 5 •••• O •••• 5 •••• O •••• 5 ••• '. 0 •••• 5 •••• 0 •••• 5 •••• 0 • e • e 5 • e •• 0 e'. 

754 

SELECT STUDENT-MASTER 
ASSIGN TO DF-1-700-X 
ACTUAL KEY IS KEY-NUMBER 
ACCESS IS RANDOM. 

SELECT UPDATE-DATA 
ASSIGN TO RD-1442. 



BEGIN 

Set actual 
key variable 

End program 

755 



o o 1 1 2 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

o 

IDENTIFICATION DIVISION. 
PROGRAN-ID. ADDRECORDS. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONl'ROL. 

SELECT STUDENT~MASTER 
ASSIGN TO DF-9-700-X 
ACTUAL KEY IS KEY NUMBER 
ACCESS IS RANDOM. 

SELECT UPDATE-DATA 
ASSIGN TO RD-1442. 

FILE SECTION. 
FD STUDENT-~ASTER 

LABEL RECORDS ARE STANDARD. 
01 STUDENT-DATA. 

02 PERSONAL. 
03 YEAR-IN PIC XX. 
03 STUDENT-NUM PIC X(9) • 
03 FILLER PIC X(35). 

02 SCHOLASTIC PIC X(14). 
FD UPDATE-DATA 

LABEL RECORDS ARE OMITTED. 
01 TRANSFER. 

02 IN-OR-OUT PIC XX. 
02 CARD-NUMBER PIC X(9). 
02 FILLER PIC X(69). 

WORKING-STORAGE SECTION. 
77 KEY-NUMBER PIC S9(5) COMP. 

Figure 195 

30. Figure 195 shows the version of the first three divisions that 
you have just completed for the program ADDRECORDS, along with a 
program flow chart for a Procedure Division to add records to 
STUDENT-MASTER. Follow the flow chart and write the Procedure 
Division. 

* * * 

o 1 1 2 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• O •••• 5 •••• O •••• 5 •••• O •••• 5 •••• 0' •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

756 

PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT UPDATE-DATA 
1-0 STUDENT-MASTER. 

GET-CARD. 
READ UPDATE-DATA 

AT END GO TO SHUT. 
MOVE CARD-NUMBER TO KEY-NUMBER. 

ADD-THE-RECORD. 
WRITE STUDENT-DATA FROM TRANSFER 

INVALID KEY PERFORM BAD-KEY. 
GO TO GET-CARD. 

BAD-KEY. 
DISPLAY KEY-NUMBER 

'INVALID KEY' UPON CONSOLE. 
SHUT. 

CLOSE UPDATE-DATA STUDENT-MASTER. 
STOP RUN. 



o o 

The I-O option of the OPEN 
storage files. The following 
clause in all aspects. 

1 1 2 2 3 3 4 

statement pertains only to mass
example demonstrates the OPEN 

4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT DISK-FILE ASSIGN TO DF-1-800-X 
ACCESS IS RANDOM 
ACTUAL KEY IS KEY-ID. 

SELECT CARD-FILE ASSIGN TO RD-1442. 
SELECT PRINT-FILE ASSIGN TO PR-1132-C 

RESERVE NO ALTERNATE AREAS. 
I-O-CONTROL. 

RERUN ON DF-1-700-X EVERY 600 RECORDS 
OF DISK-FILE. 

OPEN INPUT CARD-FILE. 
OPEN OUTPUT PRINT-FILE. 
OPEN I-O DISK-FILE. 

The I-Q-CONTROL paraqraph defines some of the special techniques 
to be used in a program. 

I-O-CONTROL. 
RERUN clause. 
SAME AREA clause 

The I-Q-CONTROL paragraph is an optional part of the Environment 
Division. The presence of a RERUN clause specifies that 
checkpoint records are to be taken. A checkpoint record is a 
recording of the entire contents of main storage at a desired 
interval. The contents of main storage are recorded on a disk 
and can be read back into core storage to restart the program 
from that point. The following Environment Division demonstrates 
the optional features. 

757 



0011223 3 4 4 556 6 7 
1 ..• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 .••• 0 •• 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE COMPUTER. IBM-1130. 
OBJECT COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 

SELECT IN-FILE ASSIGN TO DF-2-5000-X ACCESS IS 
SEQUENTIAL. 
SELECT OUT-FILE ASSIGN TO PR-1132-C 

RESERVE NO ALTERNATE AREAS. 
SELECT PR-FILE ASSIGN TO DF-2-300-X 

ACCESS IS SEQUENTIAL. 

I-O-CONTROL. 
RERUN ON DF-1-3000-X EVERY 2000 RECORDS 
OF IN-FILE. 
SAME AREA FOR IN-FILE PR-FILE. 

The SA~lli AREA clause indicates that two or more files are to use 
the same core storage during processing. The area to be shared 
includes all storage areas assigned to the file. Therefore files 
that are grouped in the SAME AREA clause should be all open at 
the same time. 

SUMMARY: 

In this lesson you have learned to access a random file randomly when 
it is opened as INPUT and to add records to a random file when it is 
opened as 1-0. In the next lesson you will learn to update random 
files, both sequentially and randomly. 

END OF LESSON 36 

758 



LESSON 31 

159 



160 

LESSON 31 - RANDOM FILE UPDATING 

INTRODUcrION 

In this lesson you will learn to update a random file and replace 
updated records in the file. All features are discussed as they 
apply to 1130 installations. 

At the end of this lesson. you will code a complete program that 
will include a routine to add disk records and two updating disk 
routines. When you have coded the program. you will have 
demonstrated many skills required of a COBOL programmer. 

This lesson will require approximately three quarters of an hour 



1. 

o o 1 1 2 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

o o 

READ file-name [INTQ identifier] 

INVALID KEY imperative~statement 

Write a statement to access a record from a randomly accessed 
file named RECORD-FILE that was opened as 1-0. Use the statement 
GO TO MESSAGE in the INVALID KEY option. 

* * * 
1 1 2 2 3 3 4 4 5 5 6 6 7 

1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5~ ••• 0 •••• 5 •••• 0 •••• 5.~ •• 0 •••• 5 •••• 0 •• 

READ RECORD-FILE 
INVALID KEY GO TO MESSAGE. 

2. The INVALID KEY option of a READ statement that refers to a 
randomly accessed file opened as 1-0 is activated under the same 
circumstances as the INVALID KEY option of a READ statement that 
refers to a randomly accessed file opened as INPUT. The INVALID 
KEY option of any READ statement would be activated when: 

c 

a. a record is out of sequence. 

b. the file is filled. 

c. no record with a record key equal to the current value of the 
actual key 'variable can be.located in the file. 

* * * 

3. Before a READ statement can be executed for a randomly accessed 
file, the: 

a. actual key variable must be set to the desired value. 

b. file must be opened as 1-0 or INPUT. 

* * * 

Both of these 

761 



4. After a READ statement is executed for a random file opened as 1-
0, the accessed record may be updated and placed back into the 
same position in the file. An updated record is placed back into 
the file with a WRITE statement. The next I/O statement for a 
random file opened as 1-0 after a READ statement is executed may 
be a: ' 

a. statement to place the record back into the file. 

b. WRITE statement. 

* * * 
Both 
(The READ statement and its associated WRITE statement may ce 
separated by any number of statements as long as they are not 
separated by any other I/O statement that refers to the random file.> 

Guide to File Maintenance for Disk Files in 1130 Installations 

r----------- ----'----------1------·-------' 
1 Desired 
1 Effect 
1-----------
1 Update a 
1 record in 
1 the file 
1-----------
1 Add a 
1 record to 
1 the file L __________ _ 

Access 

SEQUENTIAL 

RANDOM 

RANDOM 

Required 
statements 

READ 

READ 

WRITE 

Figure 196 

Required Optional 1 
Options Options 1 

-------------- -------------1 
AT END f INTO 1 

-------------- -------------1 
INVALID KEY INTO 1 

~::::~::~:::~I~~~::::~~~~~ 
5. Figure 196 shows that the WRITE statement can refer to a file 

opened as 1-0 that is being accessed: 

162 

a. sequentially. 

b. randomly. 

* * * 

Either 

6. Refer to Figure 196. A WRITE statement must be preceded by a 
READ statement with the: 

a. INVALID KEY option if accessing is sequential,. 

b. AT END option if accessing is random. 

* * * 
Neither (The opposite is true.) 



7. 

o 0 1 1 2 2 3 3 445 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •.•• 0 •• 

WRITE record-name [~ROM identifier] 

INVALID KEY imperative-statement 

The format of the WRITE statement is shown above. The record
name in the statement is the name of a record associated with a 
sequential file that was opened as 1-0. The record that is 
placed back into the file is the last record accessed by a READ 
statement referring to that file. 

Which statement will place the most recent PART-RECORD accessed 
by a READ statement referring to the sequential file PART-FILE 
back into the file? 

a. 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ..• 5 •.•• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •..• 0 •••• 5 •••• 0 •••• 5 •••• 0 •. 

WRITE PART-RECORD. 

b. 

o 0 112 233 445 5 6 6 7 
1 .•• 5 .••. 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••• ~0 .••• 5 •.•• 0 •••• 5 •••. 0 •••• 5 ••.. 0 •. 

WRITE PART-FILE. 

* * * 
a 

8. When a file is to be randomly updated, the INVALID KEY option 
must be included in every READ statement referring to that file. 
The INVALID KEY option of the READ stateroent would be activated 
when: 

b 

a. the key of a record being added to the file duplicates the 
key of a record already in the file. 

b. a ~ecord with a key equal to the current value of the actual 
key variable is not in the file. 

* * * 

763 



9. If the INVALID KEY option of a READ statement is activated, no 
record has been accessed. The next I/O state~ent for a random 
file after the INVALID KEY option of a READ statement is 
activated could be: 

a. a WRITE statement to place the record back into the file. 

b. a READ statement to access a different record. 

* * * 
b 

10. 

o 0 112 2 3 344 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

WRITE record-name [~ROM identifier] 

INVALID imperative-statement 

Write a statement to place the last STUDENT-RECORD accessed from 
STUDENT-FILE back into the file. 

* * * 
00112 2 3 3 4 4 556 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •• 

WRITE STUDENT-RECORD INVALID KEY GO TO ERROR. 

11. 

o 0 112 2 3 344 556 6 7 
1 ••• 5 •••• 0 ••.. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5~ ••• 0 •••• 5 •••• 0 •• 

764 

WRITE STUDENT-RECORD INVALID GO TO ERROR. 

The statement above places the last STUDENT-RECORD accessed back 
into STUDENT-FILE. Refer to Figure 192. STUDENT-FILE must be: 

a. sequentially accessed file opened as 1-0. 

b. randomly accessed, sequential file opened as 1-0 whose KEY 
field contains the location of the last record read. 

* * * 
Either of these 



12. 

o 0 112 2 3 344 5 5 6 6 7 
1 ..• 5 .•.• 0 .... 5 ..•• 0 •.•. 5 ••.• 0 •••• 5 •••• 0 .••• 5 •..• 0 •••• 5 •••. 0 •••• 5 •••• 0 •• 

WRITE STUDENT-RECORD INVALID GO TO ERROR. 

According to Figure 196, the most recent I/O statement executed 
prior to the WRITE statement above could have been: 

a. 

o 0 112 2 3 344 5 5 6 6 7 
1 ... 5 .... 0 •... 5 .•.. 0 ...• 5 •.•. 0 •••. 5 .••• 0 •.•. 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

READ STUDENT-FILE 
AT END GO TO TERMINAL. 

if STUDENT-FILE were being accessed randomly. 

b. 

o 0 112 2 3 344 5 5 6 6 7 
1 ... 5 .••. 0 .•.. 5 .••. 0 .••. 5 ...• 0 •••. 5 •..• 0 .••. 5 ••.• 0 •••• 5 ••.• 0 .••• 5 •.•• 0 •• 

READ STUDENT-FILE 
INVALID KEY GO TO MISTAKES. 

if STUDENT-FILE were being accessed sequentially. 

* * * 
Neither (The opposite is true.) 

13. 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ... 5 •••• 0 •.•. 5 .... 0 •••. 5 •.•• 0 •••. 5 •••• 0 •.•. 5 ..•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

b 

WRITE STUDENT-RECORD 
FROM WORK-RECORD. 

,The use of the FROM option in a WRITE statement has the same 
effect as the INTO option in a READ statement. When the 
statement above is executed: 

a. STUDENT-RECORD is moved to WORK-RECORD, and then placed back 
into the file. 

b. WORK-RECORD is moved to STUDENT-RECORD, and then placed back 
into the file. 

* * * 

765 



14. Write a statement that will move the data in WORK-SECTION to 
INVENTORY-RECORD and then place the record back into INVENTORY
FILE. 

* * * 
001122334 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •• _.0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

WRITE INVENTORY-RECORD 
FROM WORK-SECTION. 

15. Match the statements that could be used to update records in a 
file with the access methods for the disk I-O files below. 

1) RANDOM a. READ with 
AT END 

2) SEQUENTIAL 
b. READ with 

INVALID KEY 

c. WRITE with 
INVALID KEY 

* * * 
1) b, c 
2) a, c 

--------------------------------------.---------~----------------------

766 



o 0 112 2 3 3 4 4 5 5 6 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CHANGES. 
ENVIRONMENT DIVISION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT UPDATE-DATA. 
ASSIGN TO RD-1442,. 

DATA DIVISION. 
FILE-SECTION. 
FD STUDENT-MASTER-FILE 

LABEL RECORDS ARE STANDARD. 
01 STUDENT-DATA-RECORD. 

02 PERSONAL. 
03 YEAR-IN PIC XX. 
03 S-NUMBER PIC X(9). 
03 NAME PIC X(2S). 
03 S-ADDRESS. 

04 STREET PIC X(15). 
04 CITY PIC X(10). 
04 STATE PIC XeS). 

02 SCHOLASTIC. 
03 GRAD PIC XX. 
03 DEGREE PIC XX. 
03 GPA PIC X(4). 
03 MAJOR PIC X(3). 
03 MINOR PIC X(3). 

FD UPDATE-DATA-FlLE 
LABEL RECORDS ARE OMITTED. 

01 CHANGE-DATA-RECORD. 
02 C"':NUMBER PIC X(9). 
02 C-ADDRESS. 

03 C-STREET PIC X(lS). 
03 C-CITY PIC X(10). 
03 C-STATE PIC xes). 

WORKING-STORAGE SECTION. 
77 KEY-NUMBER PIC S99999 USAGE COMP. 

=;l 
UPDA TE-DAT A I--------II~ 

FILE 
IBM-l 130 

Figure 197 

STUDENT
MASTER
FILE 
access: 
RANDOM 

767 



16. Tucumcari Corrmunity College has a problem with students who move 
frequently and needs a program to update addresses in its random 
master file.. Figure 197 shows a system flow chart and parts of 
the first three divisions of program CHANGES in which records 
will be updated in random order. Write a FILE-CONTROL entry for 
file STUDENT-MASTER-FILE. 

* * * 
00112 233 4 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

768 

SELECTSTUDENT-MASTER-FILE 
ASSIGN TO DF-6-900-X 
ACTUAL KEY IS KEY-NUMBER 
ACCESS IS RANDOM. 



17. 

BEGIN. 

GET-CARD. 

UPDATE-THE-RECORD. 

Prepare files 

Set 
actual key 
variable 

Update address 
in record 
from random 
file 

Figure 198 

End program 

769 



Follow the flow chart above and write the Procedure Division for 
the program CHANGES. Refer to the preceding Figure 197. 

* * * 
0011223 3 445 5 667 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

770 

PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT UPDATE-DATA-FILE 
1-0 STUDENT-MASTER-FILE. 

GET-CARD. 
READ UPDATE-DATA-FILE 

AT END GO TO SHUT. 
MOVE C-NUMBER TO KEY-NUMBER. 

UPDATE-THE-RECORD. 
READ STUDENT-MASTER-FILE 

INVALID KEY GO TO BAD-KEY. 
MOVE C-STREET TO STREET. 
MOVE C-CITY TO CITY. 
MOVE C-STATE TO STATE. 
WRITE STUDENT-DATA-RECORD INVALID KEY 

GO TO BAD-KEY. 
GO TO GET-CARD. 

BAD-KEY. 
DISPLAY KEY-NUMBER 

'NOT IN FILE' UPON CONSOLE. 
GO TO GET-CARD. 

SHUT. 
CLOSE UPDATE-DATA-FILE 

STUDENT-MASTER-FILE. 
STOP RUN. 



IBM-l 130 

EMPLOYEE-FILE 
organization: 

random 
access: sequential 

HALT 

End program 

BEGIN 

Set 
actual key field 

equal to 
500 

Calculate 
COST-Of-LIVING 

X E-HOURLY-WAGE 
and store in 

E-HOURLY-WAGE 

111 



o 0 112 2 3 3 4 4 556 6 1 
1 ..• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. FIX-SEQUENTIALLY. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

DATA DIVISION. 
FILE SECTION. 
FD EMPLOYEE-FILE 

LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 10 RECORDS. 

01 EMPLOYEE-RECORD. 
02 EMPLOYEE-NUMBER PIC X(4). 
02 E-NAME PIC X(30). 
02 E-ADDRESS PIC X(30). 
02 E-HOURLY-WAGE PIC S99V99 

USAGE COMP. 
02 DATE-HIRED PIC 9(6). 

WORKING-STORAGE SECTION. 
11 CLOCK-NUMBER PIC S9(5) COMP. 
11 COST-OF-LIVING 

USAGE COMP PIC S9V99 
VALUE +1.06. 

Figure 199 

18. Figure 199 gives the first three divisions of the program FIX
SEQUENTIALLY except for the FILE-CONTROL paragraph. The system 
flow chart in this figure indicates that only one file is used in 
the program. The program flow chart shows that the program 
updates all records sequentially beginning with the record that 
has a record key equal to 500. write a FILE-CONTROL paragraph 
for the program. 

* * * 
0011223 3 4 4 556 6 1 
1 ••• 5 •••• O •••• 5 •••• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••• '. 0 •••• 5 •••• 0 •• 

712 

SELECT EMPLOYEE-FILE 
ASSIGN TO DF-12-600~X 
ACTUAL KEY IS CLOCK-NUMBER. 

(ACCESS IS SEQUENTIAL could be included.) 



19. The program represented in Figure 199 will update all records 
whose key values are 500 or higher. The hourly wage rate for 
these employees will be increased 6 percent to keep up with the 
cost of living. Follow the flow chart and write the Procedure 
Division for FIX-SEQUENTIALLY. 

* * * 
0011223 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

PROCEDURE DIVISION. 
BEGIN. 

OPEN Y-o EMPLOYEE-FILE. 
MOVE 0500 to CLOCK-NUMBER. 

UPDATE-RECORDS. 
READ EMPLOYEE-FILE 

INVALID KEY GO TO HALT. 
COMPUTE E-HOURLY-WAGE = 

E-HOURLY-WAGE * 
COST-OF-LIVING. 

WRITE EMPLOYEE-RECORD INVALID GO TO MESSAGE. 
ADD 1 TO CLOCK-NUMBER 
GO TO UPDATE-RECORDS. 

MESSAGE. 
DISPLAY CLOCK-NUMBER 

'NOT IN FILE' UPON CONSOLE. 
HALT. 

CLOSE EMPLOYEE-FILE. 
STOP RUN. 

773 



CHANGES 
input area: C!lANGE-RECORD 
library: TRANSACTIONS 

RANDOM-FILE 
access: random 
actual key: NOM-KEY 
input area: BASIC
RECORD 
library: DATA
RECORD 

Library name: DATA-RECORD 
Text 

IBM-I130 

ERRORS 
output area: ERROR-LIST 
working-storage record LISTING 
to contain: 

CARRIAGE 
BAD-DATA 

E-MESSAGE 

(column I) 
(columns 2 
through 68) 
(columns 70 
through 120) 

001122334 4 556 6 7 
1 ... 5 .•.• 0 ..•. 5 .•.. 0 •.•. 5 •••• 0 •... 5 ••.• 0 ••.• 5 ••.. 0 ••.. 5 •.•• 0 .••. 5 •... 0 .• 

774 

02 PERSONAL. 
03 NAME PIC X(21). 
03 CUSTOMER-NUMBER PIC X(6). 
03 C-ADDRESS PIC X (30) .• 

02 PAY-RECORD. 
03 YEAR-OPENED PIC XX. 
03 MAXIMUM-CREDIT 

USAGE COMP PIC 9999V99. 
03 MAXIMUM-BILL 

USAGE COMP PIC 9999V99. 
03 BALANCE-DUE 

USAGE COMP PIC 9999V99. 
03 PAYCODE PIC 9. 



Library name: TRANSACTIONS 
Text: 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

02 ACTION-CODE PIC 9. 
02 CREDIT-CARD PIC S9(5) COMP. 
02 NEW-NAME PIC X(21). 
02 N-ADDRESS PIC X(30). 
02 YEAR PIC XX. 
02 MAX-CREDIT PIC 9999V99. 
02 FILLER PIC X(4). 
02 ACTION PIC 9999V99. 
02 FILLER PIC X(4). 

Figure 200 

775 



776 

Set 
actual key field 

Move 
'}4WRONG CODE' 

to 
E-MESSAGE 

Move 
CHANGE-RECORD 

to 
BAD-DATA 

Move data from 
columns 2 through 66 
of card to input area 

of random file. 
Move zeros to rest 

of input area. 

Move 
'~ERROR KEY' 

to 
E-MESSAGE 



Add 
ACTION 

to 
BALANCE-DUE 

N 

Move 
'~NOT IN FILE' 

to 
E-MESSAGE 

Move 
BALANCE-DUE 

to 
MAXIMUM-BILL 

Move 
'~CHECK CREDIT' 

to E-MESSAGE. 
CHANGE-RECORD 

to BAD-DATA 

Figure 201 

Subtract 
ACTION 

from 
BALANCE-DUE 

Move 
'~NOT IN FILE' 

to 
E-MESSAGE 

777 



178 

20. HAL Corporation maintains a random file of its customer accounts. 
Every week the file is updated by adding records for new accounts 
and adjusting the record when a charge or credit is received. 

Figure 200 shows a system flow chart for a program to update the 
file. All of the update data is contained in the randomly 
ordered card file CHANGES. The first column of each card (see 
library text TRANSACTIONS in the same figure) contains ACTION
CODE, which signifies the action to be taken for each record. A 
1 indicates data from the card record is to be added to the file 
as a record; a 2 indicates that a charge is to be added to the 
balance in the corresponding record; and a 3 indicates that a 
credit is to be subtracted from the balance in the corresponding 
record. Any records in the card file which are in error, such as 
having an incorrect ACTION-CODE, are to be moved to BAD-DATA, and 
error messages printed as indicated in the flow charts. 

Figure 201 shows the program flow chart for the same problem. 
Follow this flow chart and write the entire updating program 
FINAL-ONE. 

* * * 



o 0 112 2 3 3 4 4 5 5 6 6 7 
1 . • • 5. • • • 0 • • • . 5. • • • 0 • • • ..5. • • • O. • • • 5. • • • 0 • • • • 5. • ,. • O. • • • 5. • • • o. • • • 5. • • • 0 • . 

IDENTIFICATION DIVISION. 
PROGRAM-ID. FINAL-ONE. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT RANDOM-FILE 
ASSIGN TO DF-l0-S00-X 
ACTUAL KEY IS NOM-KEY 
ACCESS IS RANDOM. 

SELECT CHANGES 
ASSIGN TO RD-1442. 

SELECT ERRORS 
ASSIGN TO PR-1132-C. 

DATA DIVISION. 
FILE SECTION. 
FD RANDOM-FILE 

LABEL RECORDS ARE STANDARD 
01 BASIC-RECORD COPY DATA-RECORD. 
FD CHANGES 

LABEL RECORDS ARE OMITTED. 
01 CHANGE-RECORD COpy TRANSACTIONS. 
FD ERRORS 

LABEL RECORDS ARE OMITTED. 
01 ERROR-LIST PIC X(121). 
WORKING-STORAGE SECTION. 
77 NOM-KEY PIC S99999 USAGE COMP. 
77 ACTION-COMP-3 PIC 9999V99 

USAGE IS COMP. 
01 LISTING. 

02 CARRIAGE PIC X. 
02 BAD-DATA PIC X(6S). 
02 E-MESSAGE PIC X(52). 

PROCEDURE DIVISION. 
BEGIN. 

OPEN INPUT CHANGES 
OUTPUT ERRORS 
1-0 RANDOM-FILE. 

CHECK-A-CARD. 
READ CHANGES 

AT END GO TO FINISH. 
MOVE CREDIT-CARD TO NOM-KEY. 
GO TO ADD-RECORD 

ADD-CHARGE SUBTRACT-CREDIT 
DEPENDING ON ACTION-CODE. 

MOVE 'WRONG CODE' TO E-MESSAGE. 
LIST-OF-ERRORS. 

MOVE CHANGE-RECORD TO BAD-DATA. 
WRITE ERROR-LIST FROM LISTING. 
GO TO CHECK-A-CARD. 

779 



ADD- RECORD. 
MOVE CREDIT-CARD TO CUSTOMER-NUMBER. 
MOVE NEW-NAME TO NAME. 
MOVE N-ADDRESS TO C-ADDRESS. 
MOVE YEAR TO YEAR-OPENED. 
MOVE MAX-CREDIT TO MAXIMUM-CREDIT. 
MOVE ZEROS TO MAXIMUM-BILL 

BALANCE-DUE PAYCODE. 
WRITE BASIC-RECORD INVALID KEY 

MOVE 'ERROR KEY' 
TO E-MESSAGE 

GO TO LIST-OF-ERRORS. 
GO TO CHECK-A-CARD. 

ADD-CHARGE. 
READ RANDOM-FILE 

INVALID KEY 
MOVE 'NOT IN FILE' TO E-MESSAGE 
GO TO LIST-OF-ERRORS. 

MOVE ACTION TO ACTION-COMP-3. 
ADD ACTION-COMP-3 TO BLANCE-DUE. 
IF BALANCE-DUE IS GREATER THAN 

MAXIMUM-BILL 
MOVE BALANCE-DUE TO MAXIMUM-BILL 
IF MAXIMUM-BILL IS GREATER THAN 

MAXIMUM-CREDIT 
MOVE ' CHECK CREDIT' 

TO E-MESSAGE 
MOVE CHANGE-RECORD 

TO BAD-DATA 
WRITE ERROR-LIST 

FROM LISTING. 
WRITE BASIC-RECORD INVALID 

MOVE 'NOT IN FILE' TO E-MESSAGE 
GO TO LIST-OF-ERRORS. 

GO TO CHECK-A-CARD. 
SUBTRACT-CREDIT. 

READ RANDOM-FILE 
INVALID KEY 
MOVE ' NOT IN FILE' TO E-MESSAGE 
GO TO LIST-OF-ERRORS. 

MOVE ACTION TO ACTION-COMP-3. 
SUBTRACT ACTION-COMP-3 

FROM BALANCE-DUE. 
REWRITE BASIC-RECORD. 
GO TO CHECK-A-CARD. 

FINISH. 
DISPLAY 'NORMAL ENDING' 

UPON CONSOLE. 
SHUT. 

SUMMARY 

CLOSE CHANGES ERRORS 
RANDOM-FILE. 

STOP RUN. 

(17) 

(17) 

You have now completed the lesson. This lesson concludes the 
sequence in which you have learned to code programs to create, process, 
and maintain random files. 

END OF LESSON 37 

780 



LESSON 38 

781 



LESSON 38 - 1130 COBOL WITHIN THE MONITOR SYSTEM 

INTRODUCTION 

1130 COBOL operates as a systems program under the disk monitor. 
This section is designed to review the disk monitor as it applies to 
1130 COBOL only. 

The 1130 Monitor has associated with it a number of systems programs. 
In addition to COBOL, the core load builder and the disk utility 
programs provided by the monitor are of great importance. These are 
reviewed in this section. Since this review is incomplete, the reader 
is strongly urged to use the Programming and Operator's Guide for the 
1130 Disk Monitor along with this manual. 

1130 COBOL provides for a number of compile time options. Since the 
control cards used to specify these options are normally provided by the 
programmer, these are also reviewed in this section, along with certain 
other operational features of interest to the programmer. Since again 
this review is incomplete, the reader is strongly urged to use the 1130 
COBOL Operations Manual and the 1130 COBOL Programmers Guide along with 
this manual. 

This lesson will require approximately one and one quarter hour. 

782 



The 1130 Disk Monitor 

1. The 1130 Disk Monitor System provides for the continuous 
operation of the 1130 Computing System, with minimal set-up time 
and operator intervention, in a stacked job environment. The 
Monitor System consists of nine distinct but interdependent 
elements Supervisor, Disk Utility Program, COBOL Compiler, 
FORTRAN Compiler, RPG Compiler, Core Load Builder, Core Image 
Loader, Assembler, and System Library. 

The beginning programmer will not be directly concerned with all 
of these elements. Therefore, only certain parts will be 
discussed in this course. 

Complete this sentence: 

The 1130 Disk Monitor system provides for the •••••••. operation 
of the 1130 Computing System with minimal •••••••• time and 
••.••.•. intervention in a •••••••. environment. 

continuous 
set-up 
operator 
stacked job 

* * * 

2. The Disk Utility Program (DUP) is a group of IBM-supplied 
programs that perform operations involving the disk such as 
storing, moving, deleting and dumping data and/or programs. 

The Core 
mainline 
necessary 
from disk 
immediate 

Load Builder constructs core image programs from 
object programs. The mainline programs and all 

subprograms are converted into Disk Core Image format 
system format~ and the resultant core load is built for 
execution or for storing for future execution. 

The Core Image Loader serves as both a loader for core loads and 
as an interface for the Monitor programs. 

The System Library is a group of disk-resident programs that 
performs I/O, data conversion, arithmetic, disk initialization, 
and maintenance functions. 

1. What operation does the Disk Utility Program do? 

2. Name 3 functions perfor~ed by the System Library. 

* * * 
1. It performs operations involving the disk such as storing, 

moving, deleting, and dumping data and/or programs. 

2. I/O, data conversion, arithmetic, disk initialization, and 
maintenance functions. 

~------------------------------------------------------------------~----

783 



184 

3. A job is a specified unit of work to be performed under control 
of the disk monitor system. A typical job might be the 
processing of a COBOL program ~- compiling Job definition -- the 
process of specifying the work to be done during a single job 
allows the programmer considerable flexibility. A job can 
include as many or as few job steps as the programmer desires. 

Match the items in the two columns: 

1. Job a. Unit of work within a job 

2. Example of a job b. Specified unit of work 

3. Job step c. A program loop 

d. Processing a COBOL compilation 

* * * 
1. b 
2. d 
3. a 

4. A job step is exactly what the name implies -- one step in the 
processing of a job. Thus, in the job mentioned above, one job 
step is the compilation of source statements; another is the 
building of a core load; another is the execution of a core load. 
In contrast to a job definition, the definition of a job step is 
fixed. Each job step involves the execution of a program, 
whether it be a program that is part of the Disk Monitor System 
or a program that is written by the user. A compilation requires 
the execution of the COBOL compiler. Similarly, core load 
building implies the execution of the core load builder. 
Finally, the execution of a core load is the execution of the 
problem program itself. 

1. A •••••••• is one step in the processing of a job. 

2. Execution of a core load is execution of a problem program. 

* * * 
1. Job step 
2. True 

5. A typical job falls into one of the following categories: 
Compile Only, Build Core Load Only, Compile and Build Core Load, 
Execute Only, Build a Core Load and Execute, Compile, Euild Core 
Load, and Execute. 

Three clements found in typical jobs are: 

. . . . . . . .. . ...... . 
Compilations 
Building Core Loads 
Executions 

and 

* * * 



6. A Compile Only job involves only the execution of the COBOL 
compiler. It is useful when checking for errors in COBOL source 
statements. 

The •••••••• type of job is useful in checking for errors in 
COBOL source statements. 

* * * 
Compile Only 

7. A Build Core Load Only job involves only the execution of the 
core load builder. It is used primarily to combine modules 
produced in previous compile only jobs, and to check that all 
cross references between modules have been resolved. 

The type of job combines and cross checks program 
modules. 

* * * 
Build Core Load Only 

8. A Compile and Build Core Load combines the functions of the 
compile-only and the core load-building-only jobs. It requires 
the execution of both the COBOL compiler and the Core Load 
Builder. 

A Compile and Build Core Load requires the execution of: 

a. the COBOL Compiler 

b. the Core Load Builder 

* * * 
Both 

------------------------------------------~-----------------------------

9. An Execute Only job involves the execution of core load produced 
in a previous job. Once a COBOL program has been compiled and 
its core load has been built successfully, it can be retained as 
one or more core loads and executed whenever needed. 

Once a COBOL program compiles and its core load has been 
successfully built it must be executed immediately. 

a. True 

b. False 

* * * 
b. Once the core load is successfully built, the object program may 
be executed whenever needed. 

785 



786 

10. A Build Core Load and Execute job combines the functions of the 
Core Load Build Only and the Execute Only jobs. This type of job 
requires the execution of: 

a. the COBOL compiler 

h. the Core Load Builder 

c. the program built in core 

* * * 
b,c 

11. The Compile, Build Core Load and Execute type of job combines the 
functions of the Compile Only, Build Core Load Only and Execute 
jobs. It calls for the execution of: 

a. the COBOL compiler 

b. the Core Load Builder 

c. the problem program 

* * * 
All of these. 
completely. 

This type of job processes the COBOL program 

12. When considering the definition of his job, the programmer should 
be aware of the following: if ~ job step is cancelled during 
execution, the entire job is terminated; any remaining job steps 
~ skipped. Thus, in a compile-core load building and execute 
job,a failure in compilation precludes the core loads of the 
module and core load execution. Similarly, a failure in core 
load precludes core load execution. 

Name two results of the cancellation of a job step during 
execution. 

* * * 
1. The entire job is terminated 
2. Remaining job steps are skipped 



13. Once the programmer has decided the work to be done within his 
job and how many job steps are required to perform the job, he 
can then define his job by writing monitor control records. 
Since these records are usually punched in cards, the set of 
monitor control records is referred to as a job deck. In 
addition to monitor control records, the job deck can include 
input data for a program that is executed during a job step. For 
example, input data for the COBOL compiler -- the COBOL program 
to be compiled -- can be placed in the job deck. 

1. A set of monitor control records is called a 

2. A job deck can include •• ' •• ' •••• for a program executed during 
a job ••••••••• 

3. The ..•••••• defines a job. 

* * * 
1. job deck 
2. input data, step 
3. programmer 

787 



188 

14. All of the following monitor control records need not appear in 
the job deck. The programmer will select those that he needs to 
accomplish his job only. The monitor control records are 
summarized briefly: 

// JOB 

// COBOL 

// DUP 

// XEQ 

// PAUS 

// * 

Defines the start of a new job. Must be present for 
all jobs. 

Causes the supervisor to read the COBOL compiler into 
core storage and transfer control to it. 

Causes the supervisor to read the control portion of 
the Disk Utility Program into core storage and 
transfer control to it. 

Causes the supervisor 
execution, and results in 
step. 

to initialize for core load 
the execution of a job 

Causes the supervisor to wait. 

Allows the user to print alphameric text on the 
listing. 

Monitor control records perform the load and control functions of 
the Monitor System. All monitor control records begin with // in 
columns 1 and 2, and a blank in column 3. 

When shown in the control record format, a blank position 
enclosed by text indicates that the column must be blank. 
Remarks may be punched in the card columns listed as "not used" 
in the control record formats. 

After compilation, the object program will have been stored in 
Working Storage on disk in nSF format, in exactly the same format 
as would be produced for a program compiled using any other 
compiler on the 1130. 

Of the card types listed above, identify which 3 would be 
necessary to compile and execute a program on the same run. 

// JOB 
// COBOL 
// XEQ 

* * * 

15. A typical job stream for compilation of a COBOL program might 
appear as follows: 

Card #1: // JOB 
// COBOL 
*XXXX,XXXX (etc.) 

OPTIONAL CONTROL CARD 
SOURCE PROGRAM DECK 

Last Card: /* 

If any compile time option cards are to be specified (control 
cards identified with an * symbol in ccl), these must follow the 
// COBOL Control Card, and precede the actual COBOL source cards. 
After the last COBOL source card, a card identified with /* in cc 
1-2 must be present. 



Compile time option control cards are throroughly discussed in 
the Operation's Manual. Most installations will define a 
standard set of assumptions, eliminating the need for most 
compile time option control cards. For the first time user, 
however, note that unless the LIST option card has been provided 
for, no source listing will be produced. At a minimum, 
compilation of programs newly written (especially if written by 
programmers new to the COBOL language) should specify the LIST, 
DMAP, PMAP, DUMP, STNO and /lFE options. 

1. Which card comes last in a job stream? 

2. Which cards contain an asterisk in column 1? 

3. Most installations define a 

* * * 
1. /* in cc 1-2. 
2. compile time option cards 
3. Standard set of assumptions 

16. // JOB 

The JOB control record defines the start of a new job. It causes 
the supervisor to perform the job initialization procedure. 

If a T is punched in column 8, the disk output from the job to be 
performed will be only temporarily stored i.e; this output will 
be deleted from the disk automatically at the beginning of the 
next job. 

Answer true or false: 

1. The JOB control record defines the start of a new job. 

2. A T in column 8 causes the job to be stored permanently. 

* * * 
1. True 
2. False. The job disk output will be deleted at the start of the 

next job. 

17. // COBOL 

This control record causes the supervisor to load the COBOL 
compiler into core storage and transfer control to it. Any COBOL 
control records and the source statements to be compiled must 
follow this control record. Comments control records (//*) may 
not f0110w this control record. 

The format of the COBOL control record is as follows: 

Card 
Column Contents Notes 

1-8 // COBOL 
9-72 Reserved 

73-80 Not used 

789 



790 

Match the iterrs in the columns: 

1. // COBOL control record 

2. Source statements 

3. Comments control records 

* * 
1. b 
2. c 
3. a 

18. // DUP 

a. May not follow the 
// COBOL card. 

h. Activates the 
// COBOL compiler. 

c. Must follow the 
// COBOL card. 

d. End a job. 

* 

This control record causes the supervisor to load the control 
portion of the Disk Utility program into Core Storage, and 
transfer control to it. The Disk utility Program (DUP) provides 
the user with the ability to perform the following operations 
through the use of control records: 

• Programs and Data Files stored on disk 

• Print and Punch 

• Remove programs and data files from disk 

• Determine status of disk 

• Modify the system 

1. The Disk Utility Program stores •••••••• and •••••••• on 
disk. 

2. It controls •••••••• and punching of information stored 
on disk. 

3. It determines of the disk. 

* * * 
1. programs, data files 
2. printing 
3. status 



19. // XEQ 

This control record causes the supervisor to initialize for core 
load execution. If the name of a program is omitted from cc 8-12 
(leaving these columns blank), then the last program compiled but 
not yet stored from Working storage is selected. By this means, 
a new program may be compiled and tested under execution without 
the necessity of storing it permanently, or of even giving it a 
name. 

End-of-file control card. Identifies to the compiler that the 
last COBOL source statement has been read. The COBOL language 
does not provide for an REND" card statement. 

1. Which type of control record card identifies the end of a 
source deck? 

2. Which type causes execution of a program? 

* * * 

1. /*, End-of-File 
2. // XEQ, Execute 

791 



20. During the compilation of a COBOL program, the following types of 
output can occur on the 1130 line printer: 

792 

• Monitor Control card images 

• Compiler Control card images 

• [Forms ejection] 

• [Program title in heading] 

• [Source Program] 

• [Forms ejection] 

• [DATA DIVISION Map] 

• [PROCEDURE DIVISION Map] 

• [Forms ejection] 

• Diagnostics, if any 

• Program Size Message (If successful) 

• End of Compilation Message 

[ ] Indicates that this output is at the programmer's option, 
through the use of compile time option cards. 

During the execution of a program compiled by COBOL, line printer 
output can only be produced by specific coding included in the 
object programs provided for by the source programmer. 

1. What do you think a card image is? 

2. What do you think a map is? 

3. will you always get a Program Size Message after compilation? 

* * * 
1. Card image: printed representation of the contents of a punched 

card. 

2. Map: printed representation of the contents of a part of core 
storage, including data and/or program. 

3. Program Size Message: printed only if the program is completely 
compiled. 



21. All control statements read in card form will always print at the 
start of a compilation. If an *EJCT compile time option is in 
effect, a new page will be started before listing any further 
data. 

If the *LIST option is in effect, a source listing will follow 
the listing of the control satements. All compiler options in 
effect at the time will be summarized at the top on an option 
line. 

In the COBOL source statement format, page-line sequence numbers 
may be punched into card columns 1-6. When listing a source 
program, 1130 COBOL will print the page-line numbers punched into 
a card at the extreme right margin, and not at the left. This 
has been done to permit the more important compiler-generated 
statement numbers to print at the left. 

Match items in the two columns: 

1. *EJCT card 

2. *LIST card 

3. Page-line numbers 

* 
1. a 
2. c 
3. d 

a. Causes ejection to a new page. 

b. Ends a job 

c. Causes printing of a source 
listing. 

d. Print on the right of the 
source program listing. 

* * 

22. As the COBOL source program is listed, the compiler generates 
statement numbers which it will subsequently use for all 
references back to an individual source statement. A statement 
in 1130 COBOL is defined as that portion of the source text which 
starts with: 

• anything beginning in Area "An in any Division 

• the word SELECT in the Environment Division. 

• A level number in the Data Division 

• the word IF in the Procedure Division 

• any verb in the Procedure Division except NOTE and ENTER 

Statements terminate just prior to the start of the next 
statement, or the end of the program. 

Why are statement numbers important? 

* * * 

All references back to individual source statements by the compiler 
are made via these numbers. 

193 



194 

23. After the statement number is printed at the left of each line, 
each input card will then list. At the top, the print positions 
identifying the start of area A and area B, corresponding with 
data punched starting in card columns 8 and 12 is identified. At 
the end of the listing, the control card containing the /* 
identifying the end of the COBOL source statements is listed. 

If the *EJCT option is in effect, and any diagnostics are to 
print, these will print starting on a new page following any MAPS 
or following the /* card if no MAPs were selected. If no 
diagnostics are produced, the message NO ERRORS IN THIS 
COMPILATION will be printed on the next line to be printed 
without starting a new page unnecessarily. 

1. • •••••.• are printed messages showing errors in source 
program cards in regard to compilation. 

2. •••.••.• and •••••••• designations are needed for the 
delineation of card punching. 

* * * 
1. Diagnostics 
2. Area A, Area B 

24. The omission of a page line number will not cause a sequence 
error indication, either when first encountered following cards 
with page-line' numbers, or when last encountered upon beginning 
to have numbers after a group of cards with none. When a card 
with a page-line number is subsequently followed by another card 
with a lower value number, even if cards intervene with no 
sequence numbers, an error will be indicated on that line only. 
If any such errors are observed when reading a source deck, a 
message indicating the presence of sequence errors are printed at 
the end of the listing, along with a count of how many such error 
line indicators were printed. The presence of sequence errors 
does not in any way restrict a compilation of COBOL, and is for 
warning purposes only. 

Answer true or false: 

1. The presence of sequence errors in source card listing will 
cause compilation to end. 

* * * 
False. Compilation will continue. 



25. The following are examples using the control cards discussed to 
this point. List the control cards needed to effect these job 
streams. 

a. Compile, Build the Core Image, and Execute a program reading 
a card file. 

b. Load a program stored previously under the name PAYRL, and 
Execute it. 

* * * 
a // JOB // COBOL (Source Program goes here, preceded by any 

compile time option cards) // XEQ (Data deck goes here, preceded 
by any *FILES cards needed, etc.) /* 

b / / JOB / / XEQ PAYRL. (Data deck goes h ere, preceded by any *FILES 
cards needed, etc.) /* 

26. 1130 COBOL uses standard disk data files, as stored using the DUP 
programs provided with the Monitor. If the programmer provides 
the proper bridging of data types, formats, array sequencing, 
etc., then 1130 COBOL may process in a sequential or in a random 
mode any sequential disk files produced by programs coded using 
1130 Assembler Language, FORTRAN, or RPG. 1130 COBOL does not 
implement directly Indexed sequential files. 

1130 COBOL Disk Files are identified to the program by means of 
*FILES cards, just as used in FORTRAN. The *FILES card must 
follow the //XEQ control card, and precede any data cards to be 
read. Cc 16-11 in the XEQ card will contain a count of the 
number of * control cards that must follow. 

Answer true or false: 

1. 1130 COBOL may use standard disk data files produced by 
programs coded in other languages, except Index Sequential 
files. 

2. 1130 COBOL may process disk files in random or sequential 
mode. 

* * * 
1. True 
2. True 

195 



796 

27. COBOL provides for specification within the source program of the 
number of records to be processed by a program. Since a single 
compiled program may be executed successively against a number of 
files of differing lengths but similar contents, the size 
specified by the programmer may in such cases be the maximum size 
number. 

If one or more Card Data Files are to be read, a /* in cc 1-2 
control card must follow the last data card in each card data 
file. If a /* card is present but unneeded, it will be ignored. 

Why are these statements wrong? 

1. The programmer specifies varying record number sizes for each 
different use. 

2. One /* card will suffice for mulltiple card data files. 

* * * 
1. Maximum record number size is specified, allowing multiple uses. 

2. Each card data file must be followed by a /* card~ 

28. Compile time option specifications are normally provided by the 
programmer, along with the COBOL source program. Three 
categories of compile time options can be exercised using 1130 
COBOL. The sources of these options are: 

Compiler-defined standard assumtions 
Installation-defined standard assumptions 
Compile-time options defined by Compiler Control Cards 

Answer true or false: 

1. The programmer is bound by compiler defined standard 
assumptions in regard to compile time options. 

2. The programmer may over-rule any type of option assumption. 

* * * 

1. False. Many compiler defined standard assumptions may be replaced 
by installation defined standard assumptions. 

2. True. This may be done by including compiler control cards 
selecting the desired options. 



29. The categories were shown in the previous frame in order of 
priority. The lowest level is the compiler-defined standard 
assumptions. If nothing at all is done by the user, these will 
be in effect for all compilations. If a user installation 
creates a set of installation defined standard assumptions, these 
will completely override the compiler defined assumptions. The 
highest priority, however, are compile time defined options. 
Inclusion of compiler control cards at compilation time will 
override on an individual basis any option in either of the other 
two assumption sets, for that one compilation only. 

1. •••••••• standard assumptions are in effect for all 
compilations if nothing is done by the user. 

2. • • • • • • • • assumptions or •. • • • • • • may override compiler
defined standard assumptions. 

* * * 
1. Compiler-defined 
2. Installation defined, compiler control cards 

30. Since standard option assumptions may be either positive (rarely> 
or negative (normally), most of the options have both a positive 
form and a negative form. The negative form, when permitted, is 
always formed by appending the letters NO ahead of the normal 4-
character positive form of the option key word. 

1. 
2. 
3. 

The compiler itself, if nothing fUrther is done, always makes a 
negative assumption whenever possible on all options. Unless the 
installation defines a local standard to the contrary, all 
options available at compile time having negative forms must be 
specifically called for on a positive basis if desired through 
the use of compiler control cards. The negative form of option 
key words are thus of use only in cancelling installation defined 
positive options, when such options are not desired for a 
specific compilation. 

Match the items in the two columns: 

1. How a negative form 
an option is formed 

2. What the compiler 
assumes 

3. Function of negative 
form of option 

* 
b 
a 
c 

of 

* 

a. Negative form of options 

b. Formed by putting NO ahead 
of the option key word 

c. Cancels positive 
installation defined options 

d. Positive form of options 

* 

797 



198 

31. Each installation may individually define local standard 
assumptions for compile time options to be taken unless overriden 
by compiler control cards. This capability extends to both 
defining a standard title to print at the head of each page of 
source listing (e.g. Name of the Installation, School, Business, 
etc.), and to defining which of the various options are normally 
desired to be exercised. 

1. Compile time options usually in force are: 

a. installation defined 

b. punched in control cards 

2. Compiler control cards: 

a. affect printing only 

b. override the usual options 

* * * 
1. a 
2. b 

32. An installation defined default option set is communicated to the 
compiler through a set of constants stored on the system disk. 
The data defining the options appear on the disk as a "program" 
in Core Image format, but actually contain only constants defined 
in a fixed format. and no executable instructions. These 
constants are initially created by an assembler language program, 
a copy of which is supplied in card form with the compiler. This 
program, known as QDFLT (Q-default), as received along with the 
rest of the original program material, is punched to agree with 
the compiler standard assumptions. The program provides internal 
comments, containing all instructions necessary to modify the 
constants to form the standard options desired by an 
installation. 

1. What is the function of the card program QDFLT? 

2. When is QDFLT used? 

* * * 
1. QDFLT converts the standard assumptions into the options desired 

by a particular installation. 

2. QDFLT is used during compilation. 



33. When the compiler defined standard assumptions, or installation 
defined standard assumptions are unsatisfactory for a particular 
compilation, compiler control cards can be introduced along with 
the source program itself, to change any options selected on an 
individual basis for that one compilation only. Compiler control 
cards precede the source program, coming just after the // COBOL 
monitor control card that calls the compiler into execution. 

All compiler control cards are identified 
cc1. Columns 2-72 are normally available for 
options. Columns 73-80 are always available 
valid card codes. Normally, these would be 
identification of the program with which they 

with an * symbol in 
use in specifying 
to the user for any 

punched with the 
must be used. 

Compiler control cards list as they are read, immediately 
following the printing of the // COBOL card. Editing is 
accomplished as they are read, to insure that key words are 
spelled properly, etc. Cards which completely pass edit are 
listed exactly as punched. Cards which contain any errors are 
identified on the listing by changing the "*" symbol normally 
printing from cc 1, to a "-" symbol before printing. 

1 ••••••••• are used to override options otherwise in force. 

2. As these cards are read, an •••••••• is performed to verify 
the accuracy of punched data. 

* * * 
1. Compiler control cards 
2. Edit 

-------------------------------------------------------_.---------------

34. A source listing title card is identified uniquely by a second * 
symbol punched into column 2, in addition to the * symbol in cc 
1. The title itself is punched into cc 3-58. Columns 59-72 are 
reserved (should be left blank), and cc 73-80 are not used by the 
compiler (may be punched by the user with any valid card codes.) 

What is the function of a source listing title card? 

* * * 
The card causes the title of the source program to print at the top 
of the compilation listing. 

799 



800 

35. In the standard form of the compiler control cards (all except 
the source listing title card format), key words may be punched 
one to a control card, or multiple key words per card can be 
punched, separated only by commas, and containing no embedded 
blanks. In the same job stream, some cards may have one key word 
per card, and be intermixed with other cards with multiple key 
words. Any number of compiler control cards may be used. 

All compiler control card key words in their positive form have a 
4-character name. Most key words have a negative form as well, 
constructed by appending NO in front of the positive form of the 
key word, forming a composite 6-character name. These will have 
the form NOxxxx where xxxx is the positive form of the key word 
to be negated. Negative form key words are required in order to 
be able to reverse installation defined standard assumptions 
expressed in a positive form, but which are not desired for this 
compilation. 

Match items in the two columns: 

1. Key words a. Reverses positive standard assumptions 

2 • The word NO b. Branch of a program 

c. Coded form of options 

* * * 
1. c 
2. a 

36. Examples of control card formats: 

*xxxx 
(or) 

*NOxxxx 

) 

) 

) 
Example of a single key word in a control card. 

*NOxxxx,xxxx,xxxx,NOxxxx ) 
*xxxx,xxxx,NOxxxx ) 

) 

*NOxxxx,NOxxxx,NOxxxx,xxxx ) 
) 

Examples where multiple key 
words are in the same control 
cards. 
Key words perroitted in any 
sequence. 

The first blank read in a compiler control card terminates any 
further search for additional key words. As a result, no 
embedded blanks can be included in a string of key words, and 
only commas can be used to separate selected options. 

Why cannot blanks be embedded in a string of key words? 

* * * 
The first blank read in a compiler control card terminates the 
reading of key words. 



37. Two types of map options are available, providing a listing of 
the symbolic assignment table of core addresses assigned 
(relative to zero to which a relocation factor must be added) to 
the names of data elements in the Data Division, and to each 
statement nureber assigned by the compiler in the Procedure 
Division. These are as follows (standard assumptions are 
underlined) : 

DMAP 
XMAP 
(or) 
NODMAP 

PMAP 
(or) 
NOPMAP 

/XXX 
(or) 
/000 

= 
= 

= 

= 

= 

= 

= 

Print a MAP of the Data Division. 
Print an extended MAP of the Data Division. 

Omit the Data Division map. 

Print a MAP of the Procedure Division. 

omit the Procedure Division map. 

Print all MAP addresses relative to a base 
address XXX (three hex digits) - normally /lFE. 
Print all MAP addresses relative to zero. 

If a Base Address Option was not specified at compile time, nor 
established as an Installation Defined Assumption, then all 
addresses printed in either MAP output type will be displayed 
relative to zero as the assumed origin point of the program in 
core. 

Answer true or false: 

1. All statement addresses are exact core locations. 

2. Data and/or statement addresses comprise maps. 

* * * 
1. False. Addresses are relative to a base address. 
2. True. 

38. Two types of system device compile time options are provided as 
alternates in 1130 COBOL. These are specified as follows 
(standard assumptions are underlined): 

2501 
(or) 
1442 

1403 

(or) 
1132 

= 

= 

= 

System Input Device is a 2501 when ACCEPT 
is coded and no FROM is specified. 
system Input Device is a 1442 when ACCEPT 
is coded and no FROM is specified. 

System Print Device is a 1403 For trace or 
error termination output, and when DISPLAY 
is coded and no UPON is specified. 
System Print Device is a 1132 for trace or 
error termination output, and when DISPLAY 
is coded and no UPON is specified. 

Note that these two options are alternate choices, and have no 
negative forms. Whenever possible, it is highly preferable to 
establish installation standards for these two options, since 
they are not likely to change. 

801 



1. Do system device compile time options have a negative form? 

2. Are the 1442 and the 1132 standard assumptions? 

* * * 
1. No. An alternate choice is used. 
2. Yes 

SUMMARY 

In this lesson you have been introduced to operation of 1130 COBOL as 
a component of the 1130 Disk Monitor System, Version 2. The lesson also 
covered the COBOL compile time options. Refer to the 1130 COBOL 
Operations Manual and the 1130 COBOL Programmer's Guide for complete 
information. 

END OF LESSON 38 

802 



LESSON 39 

803 



LESSON 39 - COBOL ERROR MESSAGES AND DIAGNOSTIC AIDS 

INTRODUCI'ION 

The 1130 COBOL Compiler was designed specifically for use in 
educational institutions as a tool of instruction in the use of COBOL, 
as well as for use as a highly efficient compiler of programs to roake 
effective use of the 1130 Computing System as a general purpose 
computer. As a result of the former, this compiler was designed with a 
very large number of diagnostic messages intended to assist the novice 
programmer in producing syntactically correct source programs, and in 
assisting in understanding the reasons for non-operability of object 
programs. 

Also included in this lesson is a partial list of error codes 
produced by object programs compiled using 1130 COBOL. In order to 
minimize core requirements for non-productive code in the object 
program, 1130 COBOL identifies execution time errors by use of a two 
digit error code only, associating with this code the location of the 
procedural statement and the data being processed at the time of the 
error. This lesson discusses such messages and other diagnostic aids. 

This lesson will require approximately three quarters of an hour. 

804 



1. Diagnostic messages produced by the compiler have identification 
numbers, but such numbers are for reference only, since the full 
text of the error message is always produced along with the 
number. By this means, in maximum communication with minimum 
opportunities for error in interpretation is provided to the 
programmer. 

1. Diagnostic messages assist the programmer to detect errors in 
both •••••••• and •••••••• programs. 

2. Diagnostic messages produced by the compiler are: 

a. complete 

b. references only 

3. Messages produced during execution are •••••••• • 

* * * 
1. Source, object 
2. a 
3. References to the messages listed fully in other COBOL 

documentation. 

2. The messages supplied along with source diagnostics produced at 
compile time are of two general types. In one type, the content 
of the diagnostic message is fixed. By reference to the 
statement number supplied along with the diagnostic error 
message, the meaning of the message as it applies to the 
condition becomes clear. In the other type, the content of the 
diagnostic message is incomplete as described subsequently, with 
additional text appropriate to the condition being reported 
supplied at the time the message is produced on the printer. 
Variable content of diagnostic messages is always included within 
a pair of / symbols. It frequently appears in the form /XX ••• XX/ 
in the message as shown in this manual. The actual length of the 
text supplied, however, will vary with the content length, 
causing such messages to vary in length according to the data 
reported. 

1. Not all source diagnostic messages are complete in and of 
themsel ves. 

a. true 

b. false 

* * * 
a. Some messages refer to variable length text found in the 1130 
COBOL Operations Manual. 

805 



806 

3. This compiler attempts to provide full diagnostics of all source 
text in the program, despite the recognition of errors which make 
it impossible to produce a valid object code. Upon occasion, 
however, the compiler cannot continue on a given statement since 
no logic exists to place the remainder of the statement in a 
proper context. In such cases, the statement provided will state 
that the compiler cannot continue, and is flushing the rest of 
the statement identified. If this occurs, the programmer should 
examine the entire statement not yet analysed for syntax 
correctness by the compiler, in order to improve the opportunity 
of correct operation during the next compilation. 

Why will all levels of errors in program text syntax not be found 
in one compilation run? 

* * * 
In cases where no logic exists to place the remainder of a statement 
in proper context, the compiler does not finish analysis of the 
statement beyond the point of error. 

4. 1130 COBOL provides for three levels of diagnostics. An E-Ievel 
error always results in suppression of execution (and of storing 
the compiled program.) This type of diagnostic indicates an error 
judged to be severe to the point where an attempted execution 
would be pointless. 

1. 
2. 

The mildest type of diagnostic is the W-Ievel, intended to be in 
the forro of a warning. While execution and storing of the 
compiled module is always permitted, the programmer is provided 
with a warning for coding which might possibly be in error. 

Match the it~s in the two columns: 

1. E-level error a. Execution is discontinued 

2. W-level error h. Warning only 

c. continued execution 

d. Most severe type of error 

* * * 
a,d 
b,c 



5. A middle level of diagnostic provided in 1130 COBOL is the C
level error, or conditional acceptable error. Here the situation 
detected is marginal, and could easily go in either direction. 
Since a decision must be made however as to what to do when C
level errors are detected, a compile time option is provided to 
establish a default action which is agreeable to the user. This 
option is specified as follows (the standard assumption is 
underlined) : 

SUPX = 
(or) 
NOSUPX = 

Suppress execution and cataloging on 
C-type errors. 
Permit execution and storing of the 
object module on c-type errors, 
provided E-type errors are not present. 

It is possible to establish a standard assumption for the 
installation as to which option should be normally selected in 
the absence of a compile time control card specification. 

Match the items in the two columns. 

1. C-Ievel error 

2. SUPX 

* 

a. Suppress execution 

b. Moderate in severity 

c. Option refers to C-level 
errors only 

d. Pennits execution or 
discontinuation at user's 
option. 

* * 
1. b,d 
2. a,c 

6. Some examples of compilation error messages follow: 

ERRNO 

004 w 

005 C 

006 C 

007 C 

008 E 

009 E 

MESSAGE SUPPLIED 

CONTINUATION LINE ALL BLANK. LINE IGNORED. 

FIRST CHARACTER ON CONTINUATION LINE IN 
AREA A. ACCEPTED AS IF IN AREA B. 

IN A CONTINUED NON-NUMERIC LITERAL, FIRST 
CHARACTER ON CONTINUATION LINE NOT QUOTE. 
ACCEPTED AS IF QUOTE PROCEDED. 

UNFINISHED NON-NUMERIC LITERAL NOT 
CONTINUED. TREATED AS IF CONTINUED. 

NON-NUMERIC LITERAL LONGER THAN 120 
CHARACTERS, TRUNCATED TO 120 AND 
STATEMENTS BYPASSED TO NEXT NON
CONTINUATION LINE. 

NON-NUMERIC LITERAL DEFINED WITH NO 
CHARACTERS BETWEEN QUOTES. LITERAL IGNORED. 

807 



808 

7. Compilations for which no diagnostics were produced is no 
guarantee of the logical correct ness of a COBOL program. For 
example, a misplaced GO TO statement may cause the program to 
enter an endless loop. Other type of errors not diagnosed in the 
source program may involve error data not apparent until 
execution time. 

While not all execution time errors will be identified by the 
error recognition coding included in object programs produced by 
1130 COBOL, many will be caught, forcing error termination at 
execution time. If the compiler itself is operating properly, no 
error condition occuring during execution time should cause the 
computer to terminate due to loss of the program control, except 
device malfunctions not under control of the program. 

The normal error conditions during execution time merely 
terminate the program being executed, and proceed to the next job 
in the job stream. Upon occasion (as selected optionally during 
compile time> a core dump may be produced at such times. 

1. If a program compiles without diagnostics, it will execute 
properly. 

2. Device malfunction may cause computer termination. 

3. Most execution time errors cause flushing to a new job. 

a. true 

b. false 

* * * 
1. b. Errors in logic do not become apparent until execution time. 
2. a 
3. a 



8. Execution errors have the following print format: 

**STNO=XXXX**ERR=YY**LOC=ZZZZ**ITEM=WWWW. 

The execution error messages indicate the nature of the error 
(YY), the location of the error (ZZZZ), and the location of 
erroneous data (WWWW), if applicable. Optionally the number of 
the source statement in error will precede the message if selected 
at compile time. If the statement number option was not chosen, 
errors print shifted to the left so that **ERR will now appear in 
print positions 1 to 5. The operator should be aware that in 
some cases a core dump follows the printing of an error message. 

Match items in the two columns: 

1. YY a. Location of erroneous data 

2. ZZZZ b. Nature of error 

3. WWWW c. Location of error 

d. Beginning disk location 

* * * 
1. b 
2. c 
3. a 

9. During execution of a program, certain error conditions will 
cause the program to Wait. The operator may determine the cause 
of the temporary stop by reading the contents of the Accumulator 
and Extension which will be displayed in the Console lights. 

The operator can terminate a program by pressing the Interrupt 
Request Key on the Console Typewriter. By setting the Console 
Entry Switches 12 to 15 before pressing the Interrupt Request 
Key, the operator can cause any message between 90 and 9F to 
print. The installation must define the meaning of messages 91 
to 99, 9A, 9B, 9C, 9D, 9E, and 9F. 

1. Certain error conditions cause the program to ••••••••• 

2. The cause of the stop is evidenced in the console ••••••••• 

3. 

1. Wait 

Pressing the 
program. 

2. lights 

* 

3. Interrupt Request Key 

on the typewriter terminates the 

* * 

809 



90 

91 

92 

93 

94 

95 

96 

97 

yy 

01 

07 

10. The following table identifies the console entry switch settings 
for each of the 16 possible message numbers: 

Switches Switches 

12-15 off - 98 12 -

15 99 12,15 -

14 9A 12,14 -

14,15 9B 12,14,15 -

13 9C 12,13 -

13,15 9D 12,13,15 -

13,14 9E 12,13,14 -

13,14,15 9F 12,13,14,15 -

What is the purpose of the above chart? 

* * * 
To correlate switch settings with messages 90-99, 9A-9F. 

11. Some examples of object diagnostic code messages follow: 

File number of the 
checkpoint file. 

Data Address in 
core storage. 
See the DMAP. 

MEANING 

Checkpoint file defined in working 
storage,. (A checkpoi nt file must 
always be pre-defined in space re
served in the User or the Fixed 
Area on the disk.> 

A data exception was taken due to 
an invalid data type being 
recognized for the use intended. 
Examine the data for validity. 

1. The yy code designates .... ' .... . 
2. The WWWW designation shows ' ........ . 

* * * 
1. the nature of the error 
2. the location of erroneous data 

810 



12. Two options provide for supplying assistance to the programmer 
when problems occur at execution time, even though the 
compilation was apparently successful. 

One option provides for producing a core dump, when an execution 
run is terminated by the operator. A core dump is also produced 
when an execution time routine determines that execution cannot 
continue due to an error either in the program or in the data 
being processed, making further execution pointless. This option 
has two positive forms providing two alternative forms of a core 
dump, plus a single negative form when an installation defined 
standard specifies a dump is to be overriden. This option is as 
follows (standard assumption is underlined): 

DUMP = 
(or) 
DDMP = 
(or) 

NODU~P 

Match the 

1. DUMP 

2. DDMP 

3. NODUMP 

1. a 
2. d 
3. b 

Dump all of core following an execution time 
error termination. 
Dump the Data Division core of the mainline 
program following an execution time error 
termination. 
Do not provide an automatic core dump at an 
execution time error termination. 

items in the two columns: 

a. Dump all core 

b. No automatic core dump desired 

c. Procedure Division core dump 

d. Data Division core dump 

* * * 

13. During prograrr execution, if one of the above positive options 
has been selected, a DUMP or DDMP (data dump) can be initiated by 
the operator. This can be done at any time during the execution 
of a program by cancelling the job with the usual "Interrupt 
Request" key depression on the typewriter console of the 1130. 
Even if the execution problem is so severe that the computer is 
in a non-processing "wait" state, if core itself has not been 
overwritten, the operator can initiate the dump with the 
Interrupt Request Key. 

How can the operator initiate a core dump during execution? 

* * * 
By depressing the Interrupt Request Key. 

811 



14. Frequently, errors in the data being processed, or unexpected 
ranges in data, can result in the error termination of a program 
which may have executed successfully for some time prior to this 
point. One example of this is when input data provides the 
subscript for an operation upon an array, and the data value 
indicates a location in core outside of the range of the array. 
This condition cannot be checked for during compilation, since 
the actual values to be used as subscripts cannot be known until 
input data is read at execution time. When an error termination 
does occur, a DUMP or DDMP will be produced automatically 
provided one of the above positive options has been selected. 

1. Errors in the •••••••• being processed can cause an error 
dump during execution. 

2. Such a core dump cannot occur unless a •••••••• dump option 
was previously selected. 

* * * 
1. data or data range 
2. positive 

15. A second execution time option specified at compilation time 
provides for inclusion of source program statement numbers right 
in the object code. While additional core is required for the 
object program when this option is taken, the advantages during 
the debugging stage of a program are many. For example, when 
statement nurobers are included as a result of this option, all 
execution time error messages include the source statement number 
of the statement being executed at the time of the error 
recognition. This option is specified as follows (standard 
assumption is underlined): 

STNO = Include statement numbers in with the object code. 
(or) 
NOSTNO = Do not include statement numbers in the object code. 

Name an advantage of 
included in object code. 

* 

having source program statement numbers 
Name a disadvantage. 

* * 

Advantage: debugging is easier because source statements involved 
in execution errors are more easily located. 

Disadvantage: additional core is needed for the object program. 

812 



16. In one situation, the STNO specification is mandatory. This 
occurs when a READY TRACE has been included in the COBOL source 
text. The trace provided in COBOL is a transfer trace, printing 
statement numbers each time that a transfer to the start of a new 
paragraph occurs. Obviously this cannot be done unless the 
statement numbers are included in with the object code. At the 
time the READY TRACE is recognized during compilation, it is too 
late to automatically turn on the STNO option. At least some 
addresses will have already been computed without allowing for 
the inclusion of the statement number in core. 

The 
when 

inclusion of 

* 

statement numbers in object code is mandatory 

* * 

READY TRACE is included in the COBOL source text. 

17. 1130 COBOL statement numbers are assigned by the compiler, and 
are printed on the source statement listing. Recall that a 
statement in 1130 COBOL is defined as that portion of the source 
text which starts with: 

1. 
2. 
3. 

• anything beginning in Area nAn in any Division 
• the word SELECT in the Environment Division 
• a level number in the Data Division 
• the word IF in the Procedure Division 
• any verb in the Procedure Division except NOTE and ENTER 

Statements terminate just prior to the start of the next 
statement, or the end of the program. 

~atch items in the two columns: 

1. Assigned by the compiler a. Beginning of a source 
text statement 

2. Point of statement 
termination b. Prior to start of a 

new statement 
3. Anything beginning in 

Area nAn c. Level numbers 

d. Statement numbers 

* * * 
d 
b 
a 

813 



814 

18. During the execution of a COBOL program which includes statements 
providing for use of TRACE, TRACE output and error messages may 
appear, 'regardless of the settings of the console switches. If 
the programmer requests a TRACE, the statement number of a 
paragraph is printed 'whenever that paragraph is executed. The 
output format for TRACE is '=nnnn' in print positions 1 to 5 
where 'nnnn' is the statement number of a paragraph. The 'STNO' 
compiler option must also have been in effect when a program 
using TRACE was originally compiled. 

Answer true or false 

1. TRACE output and error messages may print during execution 
regardless of console switch settings if TRACE statements are 
included in the program. 

2. The "STNO" 
selected. 

compiler option must have been previously 

* * * 
1. true 
2. true 

19. Most COBOL programs are easily debugged at the source level, 
without resorting to the use of the TRACE feature. When it is 
required however, the amount of information provided by the TRACE 
can be augmented through judicious use of the DISPLAY capability 
to print intermediate results at appropriate times during the 
display. 

1. 
2. 

Since TRACE takes considerable time on the printer, every attempt 
to reduce TRACE print time should be attempted. For example if a 
program failed only upon reading and processing of a particular 
record in a file, insert a routine to recognized the desired 
record before allowing READY TRACE to be executed, restoring the 
program to the non-tracing mode by a RESET TRACE before the next 
record is read. 

Match items in the two columns: 

1. DISPLAY a. Reduces printing time for 
TRACE output. 

2. Selective 
ini tiation of b. Can be used if 
READY TRACE is not properly processed 

c. Command which may be used 
to print intermediate 
results 

* * * 
c 
a,b 



20. To use the TRACE feature, code READY TRACE anywhere in the 
Procedure Division of a program. After the READY TRACE is 
executed, the compiler-generated statement numbers shown at the 
left of source listings will begin to print on the printer, one 
statement per line, intermixed with other line printer output 
produced by the program. This will continue until a RESET TRACE 
statement coded into the same program is subsequently executed. 

1. What command in the program causes a TRACE to occur during 
execution? 

2. What command causes the TRACE to stop? 

3. What will be printed? 

* * * 
1. READY TRACE: starts TRACE 
2. RESET TRACE: stops TRACE 
3. the number of each statement executed, plus all normal output 

directed to the systems printer device 

21. At times it is convenient to code the TRACE features, including 
applicable DISPLAYs, and still not have them occur at execution 
time except as desired, without recompilation. By the use of the 
sense switch option, execution of the READY TRACE can be 
conditioned to occur only when a particular sense switch has been 
raised. For example, it would be possible to program TRACE so 
that it did not occur, unless, like the TRACE in FORTRAN, sense 
switch 15 were raised. 

How can TRACE be selected upon operator initiative? 

* * * 
By use of a sense switch option. 

22. During execution of a COBOL program, punched card output may be 
produced. COBOL cannot read data from a card and punch 
information back into the same card. COBOL must always punch 
into cards which are entirely blank when placed in the punch 
device. If the punch device is a 1442 model 6 or 7, each card 
will be automatically read first to insure that it is truly 
entirely blank before punching. 

1. COBOL cannot read data from a card and •••••••• data into the 
same card. 

2 ••••••••• cards must be used where punching is required. 

* * * 

1. punch 
2. blank 

815 



816 

23. Compile time stops resulting from problems which must be resolved 
by the programmer and presented only on the line printer, since 
they do not involve the operator. Samples of these messages 
numbered between Q01-Q09 will be found in the section of this 
course on Abnormal Compilation Terminations. 

Compile time stops requiring action by the operator are presented 
either on both the line printer and the console typewriter, or in 
the lights of the console using the accumulator and its 
extension. Lights are used when routine operations are involved, 
such as requiring a device to be placed in a ready status. The 
typewriter is used for non-routine operations where, in addition 
to a message number, a full text message describing the event 
requiring action is always displayed. Messages numbered between 
Q10-Q29 fall in this category. 

1. Compile time stops requiring action by the operator are 
presented on the •••••••• , •••••••• , or in the ••••••••• 

2. The •••••••• are used for routine operations and the 
•••••••• for non-routine operations. 

* * * 
1. console typewriter, line printer, console lights 
2. lights, typewriter 

24. At times the compiler itself may fail to function according to 
specifications being checked during operation. Messages numbered 
between Q30-Q99 are presented at such times, with a common text 
as follows: 

Qnn INTERNAL COMPILER ERROR WHILE PROCESSING STATEMENT nnnn. 
COMPILER REQUIRES MAINTENANCE. 

When a message in this category is received, the operator should 
immediately refer the situation to local management. This 
situation could result from not using the latest compiler 
release. If local personnel responsible for the 1130 
installation determine that the latest release is in fact 
installed, the appropriate assistance must be obtained to bypass 
or circumvent the problem, and report the situation to those 
responsible for central maintenance of the compiler. 

Answer true of false: 

1. The operator should handle a message numbered Q30-Q99 
himself. 

2. A message in the Q30-Q99 range could occur because the latest 
compiler release is not being used. 

* * * 
1. False. He should notify local management. 
2. True 



25. Unexplained stops may sometimes occur. Whenever possible, an 
attempt should be made to explain these in terms of the physical 
effects observed, and refer these to a programmer for 
determination as to the cause. When these occur, the Interrupt 
Request Key on the console may be depressed to go to the next 
job. 

If an unexplained error occurs, the •••••••• should be consulted. 
The ••.••••• may be depressed to skip to the next job. 

* * * 
programmer 
Interrupt Request Key 

26. The operator should be aware that many errors encountered in the 
compilation of a program may result in an abnormal compilation 
termination. Regardless of the cause, reasons for abnormal 
compilation termination are always provided on the main printer, 
even though certain ones also appear on the console typewriter. 
No stop is involved if possible. By this means, full 
communication is provided to the programmer, while maintaining 
maximum efficiency of operations. 

Abnormal compilation termination causes a message of the 
following format to appear: 

Qnn COMPILATION DISCONTINUED BECAUSE**** reason for termination. 

1. When does the message "Qnn COMPILATION DISCONTINUED 
BECAUSE**** reason for termination print? 

2. Where may such a message print? 

* * * 
1. When an abnormal compilation termination occurs. 
2. On the main printer always; on the typewriter sometimes. 

811 



27. Stops occurring during execution of a program written in COBOL 
will generally result in identifying codes being displayed in 
lights on the console using the accumulator and its extension. A 
few conditions are displayed on the console typewriter. 

Two types of temporary stops are produced during the execution 
time of a COBOL program. Each type is immediately recognizable 
by reason of the contents of the extension which either has "all 
lights on", or not. Whenever a stop occurs as a direct result of 
a programmed request for a stop, all lights will be on in the 
extension, to in effect 'underline' the contents of the 
accumulator itself, in which a unique code assigned by the 
programmer identifies the reason for the stop. All stops not 
intentionally caused by the program itself will will never cause 
all sixteen lights to be on in the extension .• 

1. Whenever a stop occurs because of a programmed request, 
lights of the Accumulator Extension will be on. 

2. When all lights are on subsequent to a programmer stop, a 
•••••••• identifies the stop condition. 

* * * 

1. all 
2. unique code displayed in the Accumulator 

28. 

EXECUTION TIME PROGRAMMED STOPS (Extension is /FFFF) 

Accumulator Condition and Action Required 

818 

<0000 

<FFFF 

Other 

Request for keyboard entry by 
Keyboard select light will be on. 
key in appropriate message. 

the operator. 
Operator must 

A STOP followed by an 'alpha literal' displayed 
on the console typewriter has been executed by 
the program. Operator must perform actions 
requested (if any), and press Program Start to 
continue, or Interrupt Request on console to 
abort the job. 

A STOP followed by a 'numeric literal' displayed 
in the accumulator has been executed by the 
program. Operator must perform actions (if any) 
required by the unique program operating 
instructions prepared by the programmer, or by 
established installation conventions, and press 
Program Start to continue, or Interrupt Request 
on console to abort the job. 

1. A STOP may be followed by an .••••••• or a •••••••• literal. 

2. Literals may appear on the or in the ••••••••• 

* * * 
1. alpha, numeric 
2. typewriter, accumulator lights 



29. 

EXAMPLES OF EXECUTION TIME OTHER STOPS (Extension is not /FFFF) 

Accumulator 

/1000 

/100B 

Condition and Action Required 

1442 reader requires attention. 
(1) Press reader START to make ready. 
(2) Press PROGRAM START on console. 

1442 PUNCH REQUIRES ATTENTION. 
(1) NPRO run out all cards. 
(2) Next to last card in stacker was not blank 

as required for punching. 
(3) Discard any non-blank cards, and reload 

hopper with all-blank cards. 
(4) Press START on the 1442. 
(5) Press PROGRAM START on console. 

Some execution time stops are caused VIIhen an •••••••• requires 
attention. 

* * * 

Input/Output unit 

30. Most execution time stops identified by a display on the 
typewriter are produced by the Disk Monitor System, brought into 
effect by the // XEQ control card used to execute a program. One 
stop condition however, not handled by the monitor, is handled 
through code supplied by the COBOL compiler, and included in the 
object code. This condition occurs when a disk file spans across 
two packs, only one of which is mounted at the moment. While 
multi-cartridge files are permitted by COBOL, the monitor as such 
does not provide direct support, thus requiring control to be 
provided by the COBOL compiler. 

• • • • • • • • files are permitted by COBOL but control must be 
supplied by the 

* * * 
multi-cartridge, COBOL compiler 

SUMMARY 

In this lesson you have been introduced to some of the diagnostic 
messages and other aids. In addition, some of the codes have been 
provided for recognition of conditions causing a termination of 
process1ng. Refer to the 1130 COBOL Operations Manual and the 1130 
COBOL Programmer's Guide for complete information. 

END OF LESS ON 39 

819 



THIS PAGE INTENTIONALLY LEFT BLANK 

820 



LESSON lJO 

821 



LESSON 40 - 1130 COBOL COMPILER EXTENSIONS 

INTRODUcrION 

COBOL is a "standardized" language, with responsibility for cross
industry standards assigned by all implementors of COBOL to the American 
National Standards Institute. Yet each implementor of a COBOL compiler 
is free to "extend" the language in a manner not in conflict with 
previously adopted standards. Eventually some of these extensions may 
become part of the standard language due to customer acceptance of the 
features provided. 

1130 COBOL implements a number of "IBM Extensions" to the language 
and additionally provides a number of utility type programs and sub
programs designed to make easy the installation and use of this 
compiler. The 1130 computing system is a unique piece of hardware, 
which by its nature makes certain extensions easy, while others are more 
difficult. No attempt has been made to provide a true library of 
utility type programs and/or sub-programs. Instead only those minimum 
necessary and highly generalized routines have been included which are 
likely to prove to be of the greatest benefit to the user of this 
compiler. 

Some of the extensions and utility type programs included with this 
compiler are described within this lesson. 

Specific COBOL language features you will learn to use in this lesson 
are: 

822 

COpy statement 
QLIBR library routine 
CALL statement 
USING option of the CALL statement 

This lesson will require approximately one hour 



1. The 1130 COBOL compiler contains the capability to copy a source 
module from a source language library into a COBOL program being 
compiled. Since other than through the use of COpy all COBOL 
source statements must be read by the card reader on the 1130 
system, a total COBOL source program may be composed of a 
combination of uniquely coded source statements punched into card 
form,. plus standard library source routines incorporated into a 
program at the time of compilation from a source language 
library. A routine incorporated via the COpy verb will be 
incorporated unchanged from the form in which it was originally 
stored. No REPLACING capability is included in the 1130 CCBCL 
subset. 

A COBOL source program may consist of •.••.•.• and ••••••••. 

* * 
Individually coded source statements 
Standard library source routines. 

* 

2. On the 1130 computing system, the Disk Monitor incorporates both 
data and program content into a single disk library system. No 
source language library as such is provided by the Monitor 
system. The user may establish in the User Area of his system 
Cartridge, a Source Library for the COBOL Compiler. This library 
appears to the Monitor as an ordinary data file whose name is 
QLIB. During compilation, source modules may be incorporated 
into a program by means of a COpy statement. 

The Disk Monitor furnishes the source language library. True or 
false? 

* * * 
False. The Source Library is added to the main program at compilation 
time through use of the COpy statement. 

3. A program to maintain the Source Library is provided as part of 
the COBOL program product. Named QLIBR, it is included among the 
library routines distributed with 1130 COBOL. This main line 
program provides for allocation of a special directory within the 
stored area, and for the storage of source language modules in a 
compressed manner in the remainder of the space. Each module 
will be cataloged into the directory at the time it is stored 
originally, so that it may be subsequently located. 

What is the function of the library routine QLIBR? 

* * * 
QLIBR maintains the Source Library. 

823 



824 

4. The method of reserving space for the Source Library 
is very simple. These monitor cards fulfill the function: 

//JOB 
//OUP 
*STOREDATA WS UA QSLIB XXXX 

(Sectors for the size of Source Library) 
// XEQ QLIBR 
*INITIALIZE XXX (size of directory in sectors) 
/* 

Space for the Source Library is reserved by use of a few 

* * * 
Monitor Control Cards 

5. The QLIBR routine is a service program provided with the COBOL 
compiler that accomplishes the following: 

a) Adds a source module to QSLIB library. 
b) Deletes a source module from QSLIB library. 
c) Replaces a source module in QSLIB library (deletes old 

and adds new). 
d) Lists the directory or a source module. 
e) Punches a source module into cards. 
f) Compresses the non-directory portion. 
g) separately compresses the directory portion. 
h) Initializes the library. 

The Source Library is maintained by the library routine called 

* * * 
QLIBR 



6. If a programmer wishes to incorporate a source module from QSLIB 
into a program, he must use the COpy statement as in the 
following example: 

// JOB 
// COBOL 
* (COBOL Control Cards> 
r--------------------------, 
I IDENTIFICATION DIVISION. I 
I I 
I·, I 
I I 
I FD SOME-FILE I 
I 01 SOME-REC COpy I 
I I 
I I 
I I L __________________________ J 

/* 

Source module added 
by use of the COPY 
statement 

Judging from the example above, what are some kinds of source 
module which roight be COPYed to advantage? 

* * * 
Data or file description routines, which are somewhat repetitious or 
catalog-like in nature. 

1. Eight function are provided by QLIBR in support of the COBOL 
Source Language Library. These are summarized as follows: 

*INITIALIZE XXX 

*ADD name 
*DELE.TE name 
*REPLACE name 
*COMPRESS 
*LIST 
*LIST name 
*PUNCH name 

(XXX is the number of sectors to be allocated 
for the QSLIB Directory.) 
Adds a source module to QSLIB. 
Deletes a source module from QSLIB. 
Replaces a source module in QSLIB. 
Reorganizes and compresses the library. 
Lists the directory. 
Lists a source module froro QSLIB. 
Punches a source module from QSLIB into cards. 

The main function of QLIBR is to 

* * * 
Maintain the Source Library 

825 



826 

8. The Source Librarian Control Cards are punched as follows: 

*function (module name (options) 

For example: *ADD PROG1 (PROG1 is the user created source module 
name.) 

The above 
QLIBR card. 
follows: 

control cards are placed immediately after the // XEQ 
The job stream to add a routine in QSLIB is as 

// JOB 
// XEQ QLIBR 
*ADD module-name 
(Source Cards) 
/* 

The /* card is only needed at the end of all input to QLIBR. 
next * control card will identify the end of each source 
that is followed by a new function. 

The 
deck 

Source Library control cards are part of the •••••••• at •••••••• 
time. 

* * * 
Job stream, execution of QLIBR 

9. You will recall that 1130 COBOL implements the CALL statement as 
an IBM extension to the American National Standard COBOL 
language. This feature permits a program written using COBOL to 
cause the inclusion of an independently written and compiled 
subprogram along with the main line program during the core load 
build operation. By this means, on an 1130 computing system a 
main line program may also cause execution of separately compiled 
DSF format object modules. These may be generated using 1130 
assembly language, or as a subroutine written in COBOL or 
FORTRAN. 

All subprograms brought to execution by the CALL statement must 
be written in COBOL. True or False? 

* * * 
False. The subroutines are compiled separately. They may be written 
in Assembler, FORTRAN, or COBOL. 

10. The COPY statement causes source routines to become part of a 
program being compiled. The subprogram called by a CALL 
statement is not actually part of the main program in that it is 
compiled separately and always remains physically separate in the 
Source Library. 

What do the COpy and CALL statements have in common? 

* * * 
They both cause segments of programs written separately to function 
as part of the main program at execution time. 



11. A subprogram CALLed by a main line program or by another 
subprogram may have up to fifteen parameters in the calling 
sequence. Each parameter must be the name of a data item that 
can be resolved by the compiler into an address in core, or the 
name of a file which has been identically defined in both the 
main line program, and in the subroutine. It must not be a 
condition name, a special name, a procedure name, the name of a 
device, switch status, etc. Each SUbprogram has its own defined 
number of parameters associated with the subprogram, and exactly 
this number of parameters must be accounted for when calling the 
sub-program. No edit of this number can be performed by the 
compiler, and failure to conform to the precise requirewents of a 
parameter list when calling a subprogram may be obvious only 
during execution time. 

Match each item with the appropriate factor: 

1. Limit of parameters 
in calling sequence 

2. Permissible 
parameter names 

3. Control of 
subprogram parameters 

* 
1. b 
2. a,c 
3. d 

a. 

b. 

c. 

d. 

e. 

f. 

g. 

* * 

Data item 

15 

File 

Prograwmer 

8 

Condition name 

Compiler edit function 

12. A file of any type (disk or unit-record) may be defined within a 
COBOL language subroutine compiled as a subprogram using the 
option provided with the 1130 COBOL compiler. All input-output 
operations are permitted, via READS and WRITES within the 
subprogram, as in a main line program. A single restriction 
applies to all file usage within a subprogram. This restriction 
requires that a file to be used within a subprogram must be 
defined together with its record definition both in the 
subroutine, and in the main line program, with these two names 
included in the parameter list. This restriction is not required 
for S/360 ANSI COBOL. 

There are no restrictions in file usage 
compiled with the 1130 COBOL compiler option. 

* * * 

within subprograms 
True of False? 

False. Both file and records must be defined in subroutine as well 
as main program. 

827 



13. It is strongly recommended that file and record definitions be 
cataloged in the COBOL source language library, and COPYed into a 
program when required. Since few files are defined and used only 
once, this procedure i'nsures that all uses of a file are defined 
identically. This technique is especially important for use with 
files to be used within subprograms. Since all files MUST be 
defined absolutely identical in both the main line program and in 
the subroutine, the use of COpy is especially recommended in this 
instance. 

The chief advantage of cataloging file and record definitions in 
the source library is ••••••••• 

* * * 

The assurance that files and records will always be defined 
indentically 

14. Due to an 1130 COBOL requirement, both disk files and unit record 
files must be defined in the main line program if they are to 
occur in a subroutine. 

COBOL language subroutines used by an COBOL program must be 
written when using any type of files, with the name of each file 
and its record area named in the parameter list of the 
subroutine. Information from these specifications will be used 
in the compilation. During execution, the file definition and 
the record area of each file compiled into the main line program 
will be used for any file I/O operations coded in the subprogram. 

Answer true or false: 

1. Both disk files and unit record files must be defined in the 
main line program if they are to occur in a subroutine. 

2. The 1130 Disk Monitor automatically assigns file and record 
storage areas in a subroutine. 

* * * 

1. True 
2. False: the programmer must relate subroutine and main line program 
file and record references through the use of parameters. 

15. Since only subprograms may be overlayed in core (via LOCALs) 
during execution, the result of the above requirements is that 
file definitions and I/O areas may never be overlayed. I/O 
areas, however, may be common for more than one file, by means of 
the SAME AREA clause specified in the main-line routine for unit 
record files, or by omitting the -x specification for disk files. 
The actual core generated in defining a file reqUires but 15 
words of core. It can be seen therefore, that no great penalty 
is paid for this requirement. 

1. File definitions and I/O areas may never be in core. 

2. I/O areas may be •••••••• for more than one file. 

* * * 

1. overlayed 
2. common 

--------------------------------------------------~~--------~---~--------

828 



16. Some non-compatibility with COBOL as implemented on S/360 may 
result from the duplication of file and record definitions within 
both a subprogram and its main line program. On S/360 r a file 
may be defined only within a subprogram if desired r or it may be 
defined both within the main line and within the sUbprogram r as 
long as both files are not in an OPEN status at the same time 
(since both files would have been assigned to the same 1/0 
hardware unit). For these reasons r to insure that upwards 
compatability to 5/360 COBOL is maintained as completely as 
possible r the following procedures are required both in 1130 and 
in S/360 COBOL: 

OPEN 

1. In the main line programr CLOSE a file before CALLing a 
subprogram which will use the same file. After returning 
again to the main line routine r OPEN the file again if 
the file must be used once more. 

2. In the subprogramr OPENr process, and CLOSE a file before 
returning to the main line. 

In 5/360 and 1130 COBOL r when file and record definitions are 
duplicated r the file may not be •••••••• in the main line program 
and subroutine at. the same time. 

* * * 

17. In 1130 COBOL r only a single File Definition System Table and 
record area is actually in core for a given filer even though 
defined both in the main line and in the SUbroutine. For this 
reason, it is required in 1130 COBOL only that the file name and 
record name be in the argument list of the CALL and in the 
parameter list of the subroutine r following the PROCEDURE 
DIVISION USING ••• The inclusion of these two elements represent 
the only true incompatibility between 1130 and its S/360 
counterpart. To simplify conversion of programs to S/360 r it is 
recommended that these parameters be punched into a separate 
card r for easy removal if compilation using S/360 COBOL is 
desired. 

Match each COBOL-related item with the proper associated fact: 

1. 

2. 

3. 

File name and record name r a. 
in CALL statement of 1130 
COBOL h. 

File name and record name r c. 
in subroutine USING ••• of 
1130 COBOL d. 

File name in CALL or 
subroutine of 5/360 COBOL 

4. Record name in CALL or 
subroutine of S/360 COBOL 

* * 

1. b 
2. c 
3. a 
4. d 

Not a valid COBOL usage 

Must be in argument list 

Must be in parameter list 

May be present if defined 
in subroutine LINKAGE 
SECTION and not in 
FILE SECTION 

* 

829 



830 

18. A subroutine written in COBOL may have no parameters required, or 
may specify the use of up to fifteen parameters. These appear if 
present in the USING clause of the PROCEDURES DIVISION header. 
Their sequence in that clause must match the sequence of 
arguments in the CALL statement that invokes the subroutine. 

Each parameter must be further defined within the subroutine as 
one of the following: 

• A level 77 item in the LINKAGE SECTION 
• A level 01 item in the LINKAGE SECTION 
• An FD in the FILE SECTION 
• A record name (Level 01) in the FILE SECTION 

1. Parameter •••••••• must be the same in the USING clause and 
CALL statement arguments. 

2. Each parameter must be within the subroutine. 

* * * 

1. sequence 
2. further defined 

19. The order in which these appear need bear no relation to their 
order in the USING clause, but: 

• Every parameter must be defined in one of the above four 
ways. 

• Every FD in the FILE SECTION and every Level 01 in the - FILE or. LINKAGE SECTION must appear as a parameter in the 
USING clause. 

Any items defined under a level 01 in the FILE or LINKAGE SECTION 
should be identically defined in terms of their structure in both 
the CALLing program and in the subroutine, and these may be 
referenced in the subroutine even though only the level 01 name 
is specified in the parameter list in the USING clause. 
Parameter names defined in a subroutine need not be identical 
with names of the matching arguments in the CALLing program, but 
the attributes of each parameter and its associated argument wast 
be identical. 

Which statement is false? 

1. Parameter names defined in a subroutine must be identical 
with names of the matching arguments in the CALL program. 

2. The attributes of each parameter and its associated argument 
must be identical. 

* * * 
Statement #1 is false. 



20. In the COBOL subroutine, the Linkage Section must be the last in 
the Data Division, as in the following example: 

LINKAGE SECTION. 

77 NAME1 PIC (etc) 

01 NA~E2. 
05 NAME 3 
05 NAME 4 

01 NAME5. 
(etc) 

PIC 
PIC 

(etc) 
(etc) 

Structure of a typical 
LINKAGE SECTION. 

The LINKAGE SECTION must be ••••••.• in the Data Division of a 
COBOL subroutine. 

* * * 
Last 

21. The following is an example of the calling sequence in a program 
calling a subprogram: CALL "NAME" USING ABC D (up to a maximum 
of 15 arguments) 

If a structure is to be referenced, the highest level to be used 
by the sUbprogram must be passed in the argument list, and the 
level of the name passed and that by the matching subprogram 
parameter will be assumed to be equal. 

If in the example shown in frame 20 both NAME3 and NAME4 are 
needed by the subroutine, what single name could appear as a 
parameter to obtain this result? 

* * * 
NAME 2 

831 



832 

22. If data descriptive code has been cataloged into the COBOL source 
language library, these may be COPYd into both the subroutine and 
into the main line program, to assure identical descriptions, 
levels, etc., and simplify subsequent changes to the data 
descriptions. 

The Procedure Division header must be of the following form if 
any parameters are to be passed: 

PROCEDURE DIVISION USING ABC D (up to a maximum of 15 
parameters) 

Each name following the USING must be specified in the FILE or 
LINKAGE SECTION. The argument list between the subprogram and 
the calling program must be the same size. While the same names 
need not be used, good practice would require that precisely the 
same names be used as arguments in the calling program and as 
parameters in the called program for non-generalized subroutines. 

If a subroutine does not require any parameters, then the LINKAGE 
SECTION in the Data Division must be omitted, and only PROCEDURE 
DIVISION specified at the start of the Procedure Division. 

Write a Procedure Division header statement showing parameters A, 
C, and E in use in both subroutine and CALLing program. 

* * * 
PROCEDURE DIVISION USING ACE 

23. COBOL subroutines must be set up for compilation as a separate 
job. The *SUBR control card must precede the COBOL deck. After 
the compilation the subprogram must be stored into the User Area 
(UA). 

Example: 

// JOB T 
// COBOL 
*SUBR 

(COBOL deck) 
/* 
// DUP 
*STORE WS UA SUBRT 
// COBOL 

(Main COBOL Program) 
/* 
// XEQ 

Answer these questions pertaining to the above example: 

1. What is the name of the subprogram to be stored in the User 
Area? 

2. Will the compiled program be executed? 

* * * 
1. SUBRT 
2. Yes: the // XEQ card triggers execution 



24. WRITING AN ASSEMBLER LANGUAGE SUBROUTINE TO BE USED WITH COBOL 

(Optional section for student follows) 

Subroutine linkage generated in a COBOL language subprogram is 
exactly the sarrle as that generat ed in FORTRAN.. The equivalent 
assembler language instruction generated by the COBOL compiler 
when a CALL is encountered is as follows: 

o 0 112 233 4 4 5 5 6 6 7 
1 ... 5 •..• 0 ..•• 5 ••.. 0 •••• 5 •.•• 0 •.•. 5 •.•• 0 •••• 5 .••. 0 •.•• 5 •••• 0 •••• 5 •••. 0 •. 

CALL XXXXX 

where XXXXX is the name of the subprogram entry point which will 
be resolved by the Core Load Builder to an address in core. 

1. and COBOL subroutine linkages are the same 

2. The assembler language linkage instruction is CALL XXXXX, 
wherein XXXXX is the name of ••••••••• 

* * * 
1. FORTRAN 
2. The subprogram entry point 

25. Following the generation of the CALL, DC's will be generated for 
each argument coded in the CALL in the source program as follows: 

001 1 2 2 3 3 4 4 556 6 7 
1 •.. 5 •.•• 0 .•.. 5 •.•• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •• 

DC XXXXX (where XXXXX=addr of 1st arg) 

DC XXXXX (where XXXXX=addr of Nth arg) 

with a maximum of 15 DC's generated when the maximum of 15 
arguments are coded in the CALL statement. 

Name two assembler language-connected items generated in COBOL 
subroutine linkage procedures. 

* * * 
1. The CALL XXXXX statement 
2. A DC for each CALL argument 

833 



26. A subroutine must in turn be coded with the proper linkage to 
operate when called by the equivalent of above assembler language 
coding. In assembler language, this will appear as follows: 

o 0 112 233 4 4 556 6 7 
1 ... 5 .... 0 .... 5 ...• 0 •••. 5 •••. 0 •... 5 •••• 0 •.•. 5 •••• 0 ••.• 5 •••• 0 ..•. 5 •••• 0 •• 

ENTRY DC *-* (the address of the CALLing 
argument list will be stored 
here when entering the sub
program) 

Here follows 
with the first 
subprogram. 

the assembler language subroutine coding beginning 
instruciton to be executed at entry to the 

Match each argument with its corresponding factor: 

1. Assembler subroutine a. Contains address of the 
CALLing argument list 

2. ENTRY DC *-* 
b. Requires operable linkage 

c. COBOL instruction 

d. Follows ENTRY DC *-* 

* * * 

1. b,d 
2. a 

SUMMARY 

In this lesson you learned that you can avoid repetitious subroutine 
writing by using the COpy and CALL statements. You also found that 
reliance on library routines allows you to assume compatibility with 
other programmers making use of the same formats or routines, as in data 
definition, for example. The 1130 COBOL language offers such features 
as these to facilitate installation in a multi-job environment. 

END OF LESS ON 40 

834 



LESSON 41 

835 



LESSON 41 - CALLABLE SUBPROGRAMS 

INTRODUCTION 

A number of highly generalized CALLable subroutines are distributed 
together with the 1130 COBOL compiler. Each of these subprograms may be 
CALLed in a COBOL program. Coding takes the form: 

C~L "XXXXX" USING ARG01 ARG02 ARG03 etc, up to 15 
arguments. 

Field names provided in argument lists coded in a main line routine 
are known by size and data types only to the main line routine, and not 
to the subprogram. For this reason, field lengths are always included 
as one of the parameters when coding generalized subroutines to be used 
with data varying in size. In the CALLable subprograms provided with 
the compiler, where required, field lengths have been provided for in 
argument lists. These subprograms will always operate upon the precise 
number of positions provided at exec~tion time, regardless of whether 
these positions are correct for the data being operated upon or not. 
Care must be taken, therefore, that this count is correctly initialized, 
else sending fields may be unexpectedly truncated, or receiving fields 
left with prior contents still remaining. Worse yet, non-associated 
fields located in contigous core, may be overrun, and contents 
destroyed. 

Specific COBOL language features you will learn to use in this lesson 
are: 

836 

QDUMP 
QLINK 
QCV12 
QCV21 
QCV13 
QCV31 
QCVBP 
QCVPB 
QCVBC 
QCVCB 
QTEST 
QCBRn 
QCBPC 
QCTBL 
QCORE: 
QFIND: 

CALLable subroutine (as are all others listings below) 

introduction only 
introduction only 

This lesson will require approximately three quarters of an hour. 



1. 

"QDUMP" USING Name1 Name2 

QDUMP 

Where Name1 is the name of a data 
element or procedure whose 
address in core designates from 
where a core dump is desired upon 
execution, and Name2 is the name 
of another data element or 
procedure whose address specifies 
where the dump may terminate. 

Provides a core dump during execution of main storage between the 
bounds specified by its two,arguments. 

This subprogram permits the' programmer to examine a limited 
segment of coding, thus enabling him to concentr~te on trouble 
spots. write a statement CALLing a subprogram intended to cause 
a core dump of data element A, when data element B follows next. 

* * * 
CALL "QDUMP" USING A B 

2. 

"QLINK" USING Name 

QLINK 

Where Name is the name of a field 
which contains the 5-character 
name in Alpha-Numeric DISPLAY 
format of a program to be brought 
into core in substitution for the 
present program. 

Converts the 5-character argument specified (program name) to 
namecode, and links via the Resident Monitor, to the program 
specified by the name. The contents of the field may be read 
into core during execution of the calling program, and thus be 
variable between executions of the main line program. The QLINK 
is an alternate exit from the program, and will cause a new main 
line program to come into core, completely replacing that 
previously present. 

Write a CALL statement which will cause main line program 
execution to switch to a program named EXIT2. 

* * * 

CALL "QLINK" USING EXIT2. 

831 



838 

3. The following four subroutines are character code conversion 
routines, converting variable-length fields between COBOL DISPLAY 
formats and another format: 

QCV12 

Converts from COBOL DISPLAY to tWO-EBCDIC-character-per-word 
form. 

QCV21 

Converts from two-EBCDIC-character-per-word form to COBOL DISPLAY 
form. 

QCV13 

Converts (40-character 
character-per-word form. 

QCV31 

set) from COBOL DISPLAY form to three
A conversion table -- QCTBL -- is used. 

Converts from three-character-per-word form to COBOL DISPLAY 
form. A conversion table -- QCTBL -- is used. 

What are the two advantages of converting data in the manner 
described above? 

* * * 
Storage space is saved on the disk through compression .• 
Data restored for use in program executions. 

4. 

"QCV21" USING 
and 
"QCV12" 

Expanded-field Compressed-field Name-of-field
containing-numbers-of-characters-to-convert. 

This subprogram converts between character fields in COBOL 
display format and character fields with characters packed two 
characters per 1130 word of core. QCV12 converts COBOL display 
formatted data to two-characters-per-word format, and QCV21 
provides the reverse conversion. The third parameter is the name 
of a field defined in the Data Division as a 1 to 4 digit 
computational field containing the number of characters to be 
converted. The value stored here should probably be initialized 
to the proper value at compilation time, but any value could be 
moved into the field prior to execution of the CALL. 

write a CALL statement which will activate a subprogram intended 
to convert a field called A to a more condensed field, B. Twelve 
characters are involved. 

* * * 
CALL "QCV12" USING ABC (C contains the value 12) • 



5. 

"QCV31" USING 
and 
"QCV13" 

QCV31 

Expanded-field Compressed-field Name-of-field
containing-numbers-of-characters-to-convert. 

Converts from 3-character/word format to COBOL DISPLAY format. 

QCV13 

Converts from COBOL DISPLAY format to 3-character/word format. 

Conversion is accomplished by using a table supplied with 1130 
COBOL called QCTBL. The character set and the particular coding 
in this table as distributed with the compiler contains the 
characters "blank", ·period", "comma", "hyphen", the 26 letters 
and the ten digits arranged in collating sequence. The generated 
codes will thus also be in collating sequence. By changing the 
values in this table (fully commented in the source program) the 
user can choose a different character set and/or different 
encoding for these characters, including the blank. 

If a character is presen~ed to the routine other than one of 
those present in the converS1on table, a code zero is produced in 
the converted text, which normally converts to a blank. 

In what way could the SUbprogram described above be used to 
compress or expand multiple fields on a single execution of the 
subprogram? 

* * * 
The user can specify the total length in characters of a number of 
different fields located in adjacent core positions. 

839 



840 

6. 

" QCVPB" 
and 
"QCVBP" 

USING Binary-field Packed-Decimal-field Name-of-field
containing-numbers-of-decimal-digits-to-convert. 

QCVBP 

converts COBOL binary item (1, 2, or 4 words, depending on number 
of digits) to Packed Decimal form (4 digits per word, except that 
rightmost word contains sign in bits 12-15). 

QCVPB 

Converts Packed Decimal field to COBOL binary item. 

By the use of this subroutine, numerical data stored in 
sequential files produced by an RPG program can be converted to 
computational form for processing by COBOL, or sequential files 
can be created containing numerical data capable of being 
processed by an RPG program. Note that "Indexed Sequential" 
files created by RPG cannot be directly processed by 1130 COBOL. 

When defining working storage or record area fields which will 
contain data in packed decimal format, data types should be 
defines as alphanumeric DISPLAY, since this is the most forgiving 
format in terms of permissible data types. 

Sequential files produced by RPG programs can be used during 
execution of 1130 COBOL program. 

a. True 

b. False 

* * * 
a With the help of the QCVPB subprogram when necessary. 



1. 

"QCVBC" USING 
and 
"QCVCB" 

QCVBC 

Character-string-field Bit-string-field 
Name-of-field-containing-bit-string-length 
Name-of-field-containing-starting-bit
position-in-bit-string 

converts a bit string to a variable length character string, with 
each on-bit becoming a "1", and each off-bit becoming a "0" in 
the character string. 

QCVCB 

converts a variable length character string, with each "1" 
becoming an on-bit and each "0" becoming an off-bit. 

converts between character strings exclusively containing l's and 
O's and "bit-strings" (bits contained within 1130 hardware words 
of core memory). By the use of this subroutine, together with 
QTEST (described later) to test the content of bit-strings, non
numeric/non-character type data can be processed on the 1130 
system, using COBOL as the nominal processing language. 

Match each item with the correct factor: 

1. Reason for converting a. Tests content of bit-strings 
bit string to l's and O's 

b. Makes data ready for 1130 
2. Reason for converting COBOL processing 

l's and O's to bit 
string c. Conserves storage space 

3. Function of QTEST 

* * * 
1. b 
2. c 
3. a 

8. Examples of a use for this facility is as follows: 

Pattern-type data 
potentially possible 
computer by use of 
(QCBRl or QCBR2). 

read from mark-sensed cards using all 
punching positions, and read into the 
the appropriate column-binary read program 

Analysis of test score responses read into the computer by a 
column-binary read program from mark-sensed cards or from input 
produced on an IBM optical mark reader. 

Processing of a large sized array of logical switches, densely 
packed in bit form for data compression purposes. rather than 
carried as l's or O's in character form. 

Bit-pattern data can be read into the 1130 via or 

* * * 
Mark-sensed cards 
Optical mark reader input 

841 



842 

9. 

"QTEST" USING 

QTEST 

(Nine parameters required 
See Programmer's Guide) 

Provides the facility for testing a bit string against a bit 
mask. Permits branching to separate routine when: 

1. The bit string and the mask are identical 

2. When all bits in the tested string corresponding to the on
bits in the mask are themselves on 

3. When some but not all bits in the tested string corresponding 
to on-bits in the mask are on 

4. When none of the bits in the tested string corresponding to 
on-bits in the mask are on. 

This subprogram provides two distinct types of comparisons at the 
bit level, which together with QCVBC and QCVCB provide 1130 COBOL 
with an extremely powerful bit manipulation and examination 
capability equivalent to assembler language. 

How might a mask logically be used in conjunction with test 
scoring bit string input? 

* * * 
To test a valid pattern of test answers e.g., answers on a mark
sensed card. 



10. The first type of bit comparison for QTEST is in effect a 
character compare, but performed at the bit level instead of at 
the character level. All bits included within the two strings to 
participate in the comparison are compared to determine if they 
are precisely equal (including both the l's and the O's in the 
strings). This test is performed first, and if an exact equal 
comparison is obtained, a transfer to the routine named as the 
6th parameter will occur. 

The second type of comparison in effect treates the controlled field 
as a mask, with only bit positions set to "1" in the mask 
participating in the comparisons. Any bit position for which a "0" 
is found in the controlled field will be ignored in the test. Three 
types of tests are made, after which a transfer will occur if the 
test is successful. These are as follows: 

1. "ALL" Each of the 1 bits found in the controlled field is 
precisely matched by a 1 bit in the tested field. 

2. "MIXED" Some but not all of the 1 bits found in the 
controlled field are matched by a 1 bit in the tested field. 

3. "NONE" There is no 1 bit found in the controlled field 
which is matched by a 1 in the tested field. 

The configuration of bits in the tested field to be checked by 
QTEST could be changed by altering the •••••••• used in QTEST. 

* * * 
Mask or controlled field bit contents 

11. If any impossible specifications are present during the execution 
of QTEST then the program will fall through to the next 
sequential instruction following the test. For example, if the 
length of the field to be tested was zero, then the instruction 
becomes effectively a no-operation and an error return to the 
next sequential instruction will occur. As a result, this CALL 
should be followed by an exception routine to be taken if the bit 
string length can ever be zero. 

The QTEST •••••••• statement should be followed by an •••••••• to 
cover the possibility that a length zero is specified in the 
routine. 

* * * 
CALL 
Exception routine 

843 



844 

12. 

nQCBRnn USING ARGOl ARG02 ARG03 

n = 1 if the card read device is assigned to 1442 
2 if the card read device is assigned to 2501 

ARGOl = Narre of reader file defined in the program. 
Must have alternate area. 

ARG02 Name of a work area defined in Working 
Storage of equal length to the reader input 
area assigned to the file named ARG01. 

ARG03 = A second work area identical in size to 
that named in ARG02. 

QCBRl 

Permits the subsequent reading of column binary cards on a 1442 
on the next READ command. Punching rows 12-3 and 4-9 of each 
column are stored as bits 10-15 of two words of storage. 
Validity checking is suppressed and /* and // cards are not 
recognized as delimiting cards. Used in conjunction with RD14Q 
or RP14Q. Normal EBCDIC representation is also stored in the 
standard Input File Data area. 

QCBR2 

Permits the subsequent reading of column binary cards on a 2501 
on the next READ command. Same facilities and method of 
operation as in QCBR1. Used in conjunction with RD25Q. 

Match each item with the correct factor: 

1. Recognition suppression 
of Monitor Control Cards 

2. Suppression of 
validity checking 

3. Separation of card 
rows, 12-3, 4-9 

4. Mixed Binary-EBCDIC 
data in the same card 

* * 

a. Reader File Standard Input 
area also filled 

b. Two 6-bit patterns in 
each card column 

c. Standard punch-code 
not applicable 

d. Any punch combination 
accepted 

* 
1. d 
2. c 
3. b 
4. a 



13. A reader file must be established, just as if a normal read were 
to occur, and this file may be shared between normal reads and 
column binary reads. The reader file must have had an alternate 
area assigned if it is to be used with column binary reads. 
Additionally, two work areas of identical size with the input 
area assigned to the card input file must be defined in the 
WORKING-STORAGE SECTION or in the record area of another file. 
These may be the same work areas also used for column binary 
punching. The reader file must be OPENed before use. 

1. A reader file may be shared between reads and 
•••••••• reads. 

2. Two •••••••• areas are needed if types of reads are mixed. 

3. The reader file must be before use. 

* * * 

1. Normal, column binary 
2. Work 
3. OPENed 

14. When the QCBRn subprogram is CALLed, a binary image of the upper 
half of the card comprising punching levels 12-11-0-1-2-3 will be 
placed in the first work area named ARG01, with the lower card 
half comprising punching levels 4-5-6-7-8-9 placed in the second 
work area nareed ARG02, also in binary image form. The six bit 
levels established by holes in the card are set into the 1130 
core word using bits 10-15, with bits 0-9 being reset to zero 
bits. The 12 or 4 level punch will set bit 10 continuing until 
the 3 or 9 level punch sets bit 15. 

1. A ••.••.• image of the upper half of the card is placed in 
the first work area. 

2. ARG02 is •••••••• (Complete the sentence) 

3. The normal EBCDIC equivalent of all valid characters read is 
also placed in the ••••••••• 

* * * 
1. Binary 
2. The second work area where the lower half of the card is stored. 
3. Standard record area defined in the reader file. 

845 



846 

15. Since invalid Hollerith card codes are expected with the above 
type of read, no validity check will be performed, and the 
execution time stop with Accumulator lights of /100E or /400E 
will not be provided. In the normal read input area, if a valid 
EBCDIC character cannot be derived from the punches read, a hex 
00 will be established instead. 

Following the CALL -QCBRn ft
, a normal READ must be issued, at 

which time the normal EBCDIC character equivalents of the 
Hollerith card codes read will be produced, and placed into the 
normal read areas as defined in the card input file. 

Match the items with their related terms: 

1. Absence of read 
validity check 

2. Statement needed 
after CALL QCBRn 

3. Mixed EBCDIC-Binary 
data in input card 

* 
1. d 
2. a 
3. b 

a. 

b. 

c .• 

d. 

e. 

* 

READ 

EBCDIC placed in normal 
read area 

Programmer choice 

Invalid Hollerith card 
codes expected 

Decimal replaces binary 

* 

16. Since a card read in column binary may have any combination of 
punches possible, a /* or // card will not be recognized for the 
meaning normally associated with such cards. Therefore, the user 
must provide his own test to recognize the logical end of a 
column binary card file. Note, however, that due to the 
alternate area specification for the file, the card following the 
end-of-file roarker card will have been physically read by the 
READ statement which made the previous card (end-of-file marker) 
available to the user. The user must therefore provide one 
additional card (which will be ignored) following the end-of-file 
marker card. 

A /* or // card will not be recognized as file end code because 
the QCBRn subprogram does not recognize these symbols as such. 

a. True 

b. False 

* * * 

a. Since a card read in column binary may have any possible 
combination of punches, the usual ending symbols might be 
accidentally produced in binary punches, and are therefore not 
allowed to effect their normal meaning in identifying the end of a 
file. 



17. 

" QCBPC" USING ARG01 ARG02 ARG03 

ARG01 = Name of punch file defined in the program. 
Must have alternate area. 

ARG02 = Name of work area defined in Working 
Storage of equal length to the punch 
output area assigned to the file named in 
ARG01. 

ARG03 = A second work area identical in size to 
that named in ARG 02. 

QCBPC 

Permits the subsequent punching of column binary cards on a 1442 
on the next ~oJRITE command. Punching rows 12- 3 and 4-9 for each 
column are taken from bits 10-15 of two separate words. Checking 
for the punching of Extended Hollerith characters is suppressed. 
Used in conjunction with PU14Q, RPl4Q, or P014Q. 

What is the chief reason for punching column binary codes into 
cards? 

* * * 
To get more data per card, or to store data in pure binary formats. 

18. A punch file must be established just as if normal punch were to 
occur, and this file may be shared between normal punching and 
column binary punching. Additionally, two work areas of 
identical size with the output area assigned to the card output 
file must be defined in the Working storage section, or in the 
record area of another file. These may be the same work areas 
also used for column binary reads. The punch file must be OPENed 
before use. 

1. The punch file may be shared between •••••••• punching and 
•••••••. punching. 

2. Two •••••••• must be assigned 

3. The punch file must be before use. 

* * * 
1. Normal, column binary 
2. Work areas 
3. OPENed 

847 



848 

19. When the QCBPC subprogram is CALLed, the normal Hollerith card 
codes of the EBCDIC character equivalents established in the 
normal punch output area defined in the punch file will be 
punched where present, with one exception, where a hex 00 
character is discovered. 

Note that as in the column binary READ, the CALL "QCBPC" must be 
followed by a WRITE statement referencing the normal punch record 
name. No actual punching occurs until this statement is issued. 

Match items with corresponding facts: 

1. Punched output, 
QCBPC subprogram 

2. After CALL "QCBPC· 

3. Punch occurrence 

* 

1. a,c 
2. b 
3. d 

20. QCTBL 

* 

a. Hollerith 

b. WRITE statement 
must be issued 

c. Column Binary 

d. After WRITE statement 

e. After CALL "QCBPC" 

* 

A conversion table stored on the disk in the form of a subprogram 
specifying a 40-character set similar to that suggested for 
Commercial subroutine Package, but which generates codes 
retaining full collating sequence. The user may replace this 
with his own table if a different character set is desired. 

Why is QCTBL not an end-purpose or stand-alone subprogram? 

* * * 
The conversion table brought into core is passive in and of itself, 
but used by other subprograms. 



21. Supplied with the 1130 COBOL compiler are two subprograms - QCORE 
and QFIND. These subprograms provide support for creating and 
using an in-core indexed access to a file which has been 
organized according to conventions explained hereafter. This 
file is basically sequential in nature, with a non-sequential 
additions area. It may be accessed randomly via the record key 
contents -- not merely by relative record numbers. 

QCOR~ - ESTABLISH AN IN-CORE INDEX TO A FILE, 
USING ALL AVAILABLE CORE 

QFIND - LOCATE A RECORD RANDOMLY, BASED ON 
CONTENT OF A RECORD KEY 

1. established an in-core index to a 

2. locates a •••••••• through use of a key. 

3. A •••••••• contains the record embedded data being searched 
for. 

* 
1. QCORE, file 
2. QFIND, record 
3. record key 

22. QCORE 

Dynamically allocates all 
index to be used by QFIND. 
by QFIND. 

QFIND 

* * 

otherwise unused core for use as an 
Establishes necessary tables required 

Locates a record within a sequentially organized file. Returns 
the relative record number of a record in the file whose nominal 
key is equal to the record key presented as an argument to the 
subroutine. 

Match items with their appropriate factors: 

1. Dynamic core allocation 

2. Relative record number 

3. Search Arguments 

* 
1. c 
2. b 
3. a,d 

* 

a. Data used as a nominal key 
for locating a desired 
record 

h. Shows disk location of 
record in terms of 
position in the file 

c. Dependent on program size 
and size of core memory 

d. Example: EMPNO 

* 

849 



SUM~~RY 

In this lesson you learned to use or were introduced to some of the 
CALLable subprograms supplied with 1130 COBOL. These subprograms are 
intended to fill a variety of needs data manipulation, storage 
conservation, program debugging, and disk file accessing. You have also 
seen that certain conventions must be observed, such as the definition 
of CALLable subprogram arguments. 

The next lesson will provide additional information on QCORE and 
QFIND presented briefly here in the last two frames. 

END OF LESSON 41 

850 



LESSON 42 

851 



LESSON 42 - FILE ACCESSING TECHNIQUE 

INTRODUCTION 

This lesson presents in detail the method of using QCORE and QFIND 
covered briefly in the preceding lesson. These two CALLable subprograms 
implement a method of locating records in a file based on the content of 
the data in a control field embedded in the record. It has been 
included with 1130 COBOL as a substitute for an Indexed Sequential 
Access Method, which was not possible to implement. A summary of the 
features and restrictions of this access method follows: 

852 

FEATURES 

• A file may be established which permits logical additions and 
deletions to occur, without rewriting the entire file each 
time. 

• Records may be located in this file, based on the content of 
a nominal key in core matching a record key on a record in 
the file. 

• A new index is created in core with each new use, eliminating 
a file index and maintenance to the same resulting from 
updates. 

• Construction of the core index does not require a special 
reading of the file -- it is constructed dynamically as the 
file is used. 

• No fixed space in core is required for the index -- it uses 
all otherwise unused core remaining after the program is 
loaded. 

• 

• 

Basic search technique is a binary file search. 
midpoint is located, the record key found is stored 
index if missing. 

As each 
in the 

If the desired 
portion of the 
sequentially. 

record 
file, 

is 
the 

not located in the sequential 
additions area is searched 

• The file may be easily reorganized each time a purely 
sequential processing is required or when access tiroe becomes 
excessive. 



RESTRICTIONS 

• The user must always specify ACCESS IS RANDOM when defining a 
file to be used with these subprograms, except when first 
creating the file. 

• Only a single file may be accessed randomly using these 
subprograms during the operation of a single main line 
program, although many other files using standard access 
techniques may be used in the same program. 

• A small m~n~mum available core must be present to use this 
program at all. When the index core is small, processing 
accesses will be relatively slow; when much core is 
available, relatively fast. 

Specific COBOL language features you will learn in this lesson are: 

QCORE 
QFIND 

CALLable subprogram 
CALLable subprogram 

This lesson will require approximately one hour. 

853 



854 

1. Record Key 

A field defined in a record stored in a file on disk containing 
data by which a record can be located. The records in the 
sequential portion of the file must be in logical ascending 
sorted order based on the contents of the record keys. For 
example, a payroll file organized by employee number has a record 
key which is the field in which the employee number is stored. A 
record key must always be defined as a separate unique field, 
contained exclusively within a given number of full words in the 
record. For example, a record key can be compressed by any of 
the supporting techniques, as long as the record key is 
compressed as an individual item, and not part of a group item. 

1. The disk-located •••••••• contains data by which a disk 
record can be located. 

2. The record 
order. 

in the main part of the file must be in 

3. The search argument data used as a record key must always be 
kept in a •••••••• field. 

* * * 
1. Record key 
2. Sequential 
3. Unique 

2. Nominal Key 

1. 
2. 
3. 
4. 

A field defined in core, which is initialized with the data 
contents to be compared against the contents of the record key 
field for each new record to be located in the file. The data 
stored in the Nominal Key must be in the identical format as the 
data stored in the record key -- no data conversions will occur 
at the time a comparison is made with a record key while 
searching for the desired record. 

Match items with related factor: 

1. Record key a. Core located search data field 

2. Nominal key b. ACCESS IS RANDOM 

3. Required main c. Sequential 
file organization 

d. Disk located data identifying record 
4. Required Access 

Statement in e. Punched in card 
program 

* * * 
d 
a 
c 
b 



3. File Label Record(s) 

One or more records at the physical beginning of the file space 
allocated, containing variables required by the program to 
identify the current ending location of the sequential portion of 
the file and of the additions area. 

The File Label Record contains the labels of most disk stored 
records. 

a. True 

b. False 

* * * 
b. It contains variables needed to 
location of the sequential part of the 
area. 

identify 
file and 

the present ending 
of the additions 

4. Sequential Portion of the file 

That area of the file immediately 
record, containing records initially 
sorted sequence by record key contents. 

following the last header 
created in the file in 

Additions Area of the File 

That area of the file immediately following the last data record 
in the sequential portion of the file through and including the 
last addition to the file. The EOF Marker record (if any) will 
be the first record in this area. This area does not include any 
as yet unused space allocated to the file. 

possible Expansion Area 

That area of the file space originally allocated beyond the last 
addition to the file up to the last position of the file in which 
a record may be added. 

M.atch the items with the relevant factors: 

1. Sequential portion 
of the file 

2. Additions area 
of the file 

3. Possible expansion area 

* 
1. e 
2. a,c,d 
3. a,b,d 

* 

a. File space allocated 
for future records 

b. Follows the last 
file addition 

c. Contains EOF Marker record 

d. Non-sequential organization 

e. Contains the initially 
created file records 

* 

855 



856 

5. File Defini-tion Table 

A structure in Working Storage defined with a level 01 name and 
containing five elements defined with level 02 names. These 
elements define the constants and variables associated with the 
location and length of the record key in each record, the current 
beginning and ending of the sequential portion of the file, and 
the end of the additions area of the file. 

The File Definition Table defines these elements: 

1. Location and length of •••••••• in each record. 

2. Current start and ending of the of the file. 

3. End of the of the file. 

* * * 
1. Record key 
2. sequential portion 
3. Additions area 

6. Deleted Record 

A record with a hex /8000 character written in the first word of 
the record, anywhere in the file space allocated to actual data 
records, but excluding the potential expansion area. The EOF 
Marker (if any), identified by the same code, is initially 
located in the first record position of the potential expansion 
area, and will be later replaced with the first addition to the 
file. 

As a record is deleted, its place in the allocated file space is 
immediately erased. 

a. True 

b. False 

* * * 
False. The record is coded as being deleted and left in place 
pending a future file reorganization. 

7. Two types of file organization conventions may be used within 
these subprograms. In one, a strictly conventional sequential 
disk file may be searched to locate records based on the contents 
of a record key. This method does not support deletions or 
additions to such a file. A second file organization is provided 
for users who desire the capability of deleting records, or 
adding new records to an existing file, without rewriting the 
entire file. In order to establish a common standard among users 
of this latter method, certain conventions are provided. 

Of the two file organization just described, which would be 
better for a volatile file? 

* * * 

The second, because provision is made for change, whereas the first 
method is fixed until a major reorganization is made. 



8. Some of the conventions regarding the second method are: 

1. A total space must be allocated on disk sufficient to contain 
the label records at the start of the file, all sequentially 
sorted records to be placed in the file initially, plus a 
potential expansion area containing space for additions to be 
added later. 

2. The first record or records must be a label record(s) 
containing at a minimum a total of four words. If each 
record is of a size of 4 words or larger, only one header 
record will be needed. If each record is but 2 or 3 words in 
length, two records are needed. If each record is but one 
word in length, then four records are needed. If any space 
remains in the header after allocating the four words, it is 
suggested that at a minimum the date the original file was 
created be recorded, plus the last date when additions were 
added. Conventions for such dates are left to each user. 

In the second method which permits file additions: 

a. Disk space must be allocated for •••••••• separate areas of 
the file. (how many?) 

b. Header record(s) with a minimum of •••••••• words must be 
provided. 

* * * 

a. Three: label records, initial sequential records, exapansion 
area. 

b. Four 

857 



858 

9. Some more conventions are: 

1. 
2. 
3. 

1. The label records will be followed by the sequential portion 
of the file. Records contained here must have been sorted 
into logically ascending sequence, based on the contents of 
the record key in each record. 

2. Following the sequential portion of the file, an EOF Marker 
record may be present, but need not be. This is followed by 
unused but allocated record space sufficient for any planned 
additions to the file. 

3. Additions to the file may be added in occurrence sequence to 
the potential expansion area, in an unsorted sequence. The 
first addition must overlay the EOF Marker record, if any. 

Match items with their corresponding factors: 

1. Record keys 

2. Additions 

3. EOF Marker 
Record 

* 
b,d 
a,c 
a,e 

a. 

b. 

c. 

d. 

e. 

Follow sequential part of file 

Used to sort initial records 
before creating the file 

In occurrence sequence 

Compared against nominal keys 

Replaced by first addition to file 

* * 



10. The last of the conventions are: 

1. Deletions to the file must be tagged by overwriting a hex 
/8000 character in the first word of the deleted record. If 
a deleted record may be logically reopened by the program 
prior to reorganization, then a special word must be defined 
first in the record to prevent destruction of vital data when 
the record is initially deleted. The record key may not 
begin with the first word in the record for any file for 
which deletions are permitted, since this would destroy the 
sort sequence of the file. 

2. When new records are added to the file, the fifth element in 
the File Definition Table defining the relative record number 
of the last record in the additions area must be updated. 
Since it is possible to intermix additions with searches for 
records -- including a search for the latest record added, if 
this were not done, the search would terminate prematurely. 

True or false: 

1. Deleted records may be restored in place on disk. 

2. The File Definition Table must be updated for each group of 
additions to the file. 

* * * 
1. True provided the first word of the record is reserved. 
2. True 

859 



11. The following diagram illustrates the conventional organization 
of a file to be used with these subprograms: 

< 

possible 
Label 

PHYSICAL FILE 

Logical Records in Sequence 
Possible 
Additions 

> 

Possible 
Expansion 

Area 

~~~ __ ~LL~~~ 
1
I
I
I

t File Definition Table Ele:ents I
~----------~~ Fourth Element

Fifth Element

Original EOF Marker

~l ____________ ~> Record No.1

860

sixth Element ~(---------

End of Allocated File Space

Unscramble the numbers of major parts of the Physical Disk File
arranging them in the proper sequence. Put the first number on
the left:

(1) (2) (3) (4)
possible Possible Logical Records in Sequence Possible
Expansion Label Additions
Area

* * *
2-3-4-1

12. The label record or records contains the variables of record
ending locations, which may change during the life of the file
due to updates. The header records contain only two fields of
interest to these routines these are the relative record
number of the last record placed in the sequential portion of the
file and the relative record number of the last addition placed
in the additions area (but this field will contain the same as
the first field if no additions have yet occurred). Both fields
must be defined to the program as PICTURE 9(5) COMPUTATIONAL.

What step do you think would be necessary when the additions area
is full?

* * *

A major file reorganization would be necessary.

13. The first two words in the label recordCs) must contain the last
relative record number containing data in the sequential portion
of the file -- this is the record that would be just before the
EOF Marker record if such is present. This field must be loaded
but once -- at the end of the initial creation of the sequential
file.

The first two words of the label recordCs) do not change during
processing because ••••••••

* * *
The sequential file area does not change.

14. The second two words in the label recordCs) must initially
contain the same value as the first field, since at completion of
loading of the file, no additions would yet have been added.
Thereafter it must be updated at the end of each run which makes
additions to the file to contain the last relative record number
containing data in the additions area of the file.

At times a record may be very small, such as a tag file. If a
record is less than four words, then one header. record cannot
contain the m1n1mum required contents to initialize the File
Definition Table required by the routine. The convention in this
case is to assign multiple header records until all space
required has been accommodated.

The second two words in the label recordCs) may change because

* * *

The end of the additions area changes with each run which adds new
records to the file.

15. Normally, records will be larger than the four words required by
these routines. If so, the use of such additional space, if used
at all, is strictly up to the user. It is recommended, however,
that the user establishes his own conventions for retaining the
date that the file was created, plus the date that the last
addition was added to the file. When backup records are retained
for some period of time, the careful use of such dates can
prevent processing with an older version of the file from
occuring accidentally.

Date

The user should develop his own method of using the •••••••• as a
control for file change iteration

* * *

862

16. Prior to the first use of the file, the program must have a file
definition table available in Working Storage of the main line
program. This table contains five elements at level 02, defined
by a single level 01 name. The first three of these elements are
constants, based on the fixed details of the particular file to
be used. The last two elements contain variables, defining the
current ending locations of the sequential portion and the
additions area of the file.

1. The program requires
using the file.

a in Working Storage before

2. The last two of the five table elements define current ending
location of the •••••••• and the •••••••• of the file.

* * *
1. File Definition Table
2. sequential portion, addition~ area.

17. All elements are in COMPUTATIONAL format and for this reason this
specification must appear together with the level 01 name of the
table. The first two elements must each comprise one word of
storage, which will be assigned by reason of a PICTURE 9(4)
specification with each. The last three elements must each
comprise two words of storage, which will be assigned by reason
of a PICTURE 9(5) specification with each.

True or false?

1. All table elements are COMPUTATIONAL in format.

2. The format designation appears with the table name which is
level 02.

* * *
1. True
2. False. The table name is a level 01.

18. The file definition table must be defined in Working storage as
follows:

01 Name of the File Definition Table.
COMPUTATIONAL must be specified.

02 Number of the first word in each record at which the
record key begins.

02 Number of whole words in the record key.

02 Number of the first relative record at which the file is
to be searched.

02 Number of the last relative record which is located in
the sequential portion of the file.

02 Number of the last relative record which is located in
the additions area of the file.

See how many File Definition Table elements you can recall.

* * *
1. Record key beginning word.
2. Number of whole words in the record key.
3. First relative record for the file search.
4. Last relative record in sequential portion of the file.
5. Last relative record in additions area of the file.

19. As mentioned earlier, one possible file organization is that of a
purely sequential file created by purely conventional means. If
this is so, then no label records will be present, and no
additions area will be provided for. In this example, the third
element of the File Definition Table must be initialized with a
value which is equal to the relative record number of the last
record in the file, excluding the EOF Marker record. This number
must be determined at the time the file is created, and by some
means caused to be placed into the last two elements in the
table.

Which item is not relevant to the conventional sequential file
organization?

a. No File Definition Table elements

b. No label records

c. Last record designation

d. No additions area

* * *
a. (Last record designation, for example, is a table element.)

863

20. Sample Definition Table in Working Storage

001122334 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 ••

864

01 TABLENAME COMPUTATIONAL.
05 REC-KEY-START PICTURE 9 (4) VALUE IS 10.
05 REC-KEY-LENGTH PICTURE 9(4) VALUE IS 5.
05 FIRST-SEQ-REC-NO PICTURE 9(5) VALUE IS 2.
05 LAST-SEQ-REC-NO PICTURE 9(5).
05 LAST-ADDN-REC-NO PICTURE 9 (5) •

Fill in the blanks with proper name segments: COMPUTATIONAL,
FIRST, LENGTH, LAST START. Ignore PICTURE and VALUE data.

a. 01 TABLENAME
h. 05 REC-KEY- ••••••••

c. 05 REC-KEY- ••••••••

d. 05 • ••••••• -SEQ-REC-NO

e. 05 •••••••• -SEQ-REC-NO

f. 05 LAST- •••••••• -REC-NO

*
a. COMPUTATIONAL
h. START
c. LENGTH
d. FIRST
e. LAST
f. ADDITIONS

* *

21. User Responsibilities

In order to provide maximum flexibility,
provide the minimum processing necessary
records in a file defined according to
here. The user is therefore required
support thro.ugh coding in his program to

the QCORE-QFIND routines
to support location of
the conventions provided
to provide additional

perform the following:

1. The user is required to construct the header
according to the required formats, at the time the
created initially.

records
file is

2. The user is required to create the sequential portion of the
file initially. It is permitted to use the standard
sequential file creation support provided by 1130 COBOL. The
EOF Marker record written by the sequential file create
support will not be a problem during subsequent processing.

3. The user is required to add any additional records to the
additions area of the file, using a WRITE with ACCESS IS
RANDOM, defining the ACTUAL KEY through operation of his
program.

4. The user is required to initialize the fourth and fifth
elements in the File Definition Table with the contents of
the label records, prior to CALLING QCORE, keeping the fifth
element updated as additions are added.

5. The user is required to update the header records at the end
of processing additional records which have been added to the
file.

6. The user is required to recognize the deletion code through
operation of his program if he does not desire these records
to be presented for processing when located by QFIND.

7. The user is required to write the deletion code (hex /8000)
into the first word of any record which he desires to be
logically deleted from the file.

8. The user is required to reorganize the file, whenever purely
sequential access is required, or when processing time is
excessive. The program to reorganize the file is a user
responsibility.

The user is not required to do two of the functions below. Which
two?

a. Ini tially create sequential part of file,.

b. Add additonal records.

c. Move the EOF Marker during processing.

d. Erase deleted records.

e. Reorganize the file.

* * *

c: achieved by standard sequential file support.
d: only the deletion code is needed.

865

22. The QCORE routine does not itself generate an index -- this is
left to QFIND as previously unindexed accesses are required to
locate a record. QCORE does establish the area of core to be
used by the index, and clears this area to hex /0000 at such
time. Finally, entries in the File Definition Table are used to
establish processing contants required for the proper operation
of QFIND. These constants are stored in core in the area
normally used by FORTRAN as a floating point accumulator, but
never used in a COBOL program.

866

Match the items with the appropriate factors:

1. QCORE a. Generates an index

2. QFIND b. Establishes core area

c. Clears core area

d. Creates sequential file

* * *
1. b,c
2. a

The file is created by conventional 1130 COBOL sequential
support.

23. QCORE uses all otherwise unused core not required by the main
line program or any of the subroutines, etc.. A minimum of core
1S required for the routine to be used at all -- when this
minimum is not available, an execution time error message will be
presented (error number 82). It is usually possible to free up
enough core through the use of LOCALs, etc., although obviously
execution speed of disk accesses will suffer when little core is
available for the index.

1•. of disk accesses suffers when little core is left.

2. If minimum core is not available, an execution time ••••••••
occurs.

3. often makes available enough core for an index.

* * *

1. Execution speed
2. Error message
3. Use of LOCALs

24. The basic record location technique used by this routine is a
binary search. In the normal binary search, when no index is
available, the middle record in the file is the first accessed,
and the record key of this record examined to determine whether
the nominal key stored in core is higher or lower. The half of
the file in which the desired record must be located would itself
then be bisected, and a new comparison made. Identification of
the appropriate quarter file may then be made, and the process
continued. This might be continued until the record is finally
located, or at a certain point a purely sequential search might
be begun.

True or false?

1. In normal binary search (when an index is not used), every
record key is examined sequentially.

2. sequential search is partially used in the method just
described.

* * *
1. False. A process of progressive halving of the file is used.
2. True

25. The difference between the present routine and a straight binary
search as just described, is that as each midpoint record is
examined, the record key found there is retained in a core index.
In this index the position of each cell in the index array
defines its position in terms of the file search algorithm
sequence. Thus having once been actually accessed, the record
key contents are saved to eliminate having to make any further
accesses of at least those records. As new paths are taken from
time to time, previously untried accesses will occur, further
filling out the index. If by the end of processing all records
have been retrieved, then the index will at such time be
complete. This will normally never occur.

1. In the present method, the •••••••• is saved each time a
previously untested midpoint record is accessed.

2.

3.

Such a retention avoids

Usually the
file.

*
1. Record Key

is never built for all records in the

* *

2. Further accesses of records previously searched
3. Index

867

868

26. Binary searches apply only to the sequential portion of the file.
When a record cannot be located in this area. then the additions
area of the file is searched sequentially. looking for the
record. When a record still cannot be found. a "not-found"
condition is signaled by placing a record number of all-zeros or
a negative value in the ACTUAL KEY area. When the READ occurs,
the INVALID KEY action will then be performed. Since the only
INVALID KEY condition should be that of a "not-found", the action
programmed to occur upon INVALID KEY can perform the desired
processing.

1. The additions file area is searched •••••.•••

2. If the record is not found, a non-positive value is placed in
the •••••••••

3. If the record is not found, the action occurs when READ
occurs.

* * *
1. Sequentially
2. ACTUAL KEY
3. INVALID KEY

27. The first cell in the index array will contain the record key
contents found in the middle record of the entire sequential
portion of the file. The next two cells contain the equivalent
data from the middle records of each file-half. The next four
cells contain the equivalent data from the middle records of each
file-quarter. The next eight cells contain the equivalent data
from the middle records of each file-eighth. This continues
until there is insufficient core remaining in the index area to
contain the next binary exapansion of the index array, although
to the extent that such core is in fact available, cells will be
allocated.

Name three conditions or events which will stop the binary
search.

* * *

1. The record is found
2. The index area in core lacks space.
3. The record is missing, and the file is completely searched.

28. The final cells in the array are temporary cells, and will be
repetitively written as actual accesses occur outside the index,
until the desired record is located. The temporary cell will
assist in locating a record only if the next access taking this
path is to a location in the file near to the last access of that
path. This is frequently true, but if not, then actual accesses
will replace it until the newly desired record is found. Note
that table size determines whether many accesses will be required
to locate records, or few.

Match items with their corresponding factors:

1. Final array cells a. Related to number of accesses

2. Table size h. Every time

3. Temporary cell is c. Temporary
benefitial in search

d. If next search is near to
last search path

* * *
1. c
2. a
3. d

29. As mentioned previously, QCORE makes use of the floating point
accumulator in core (actually located in the transfer vector
area) to store constants required by QFIND. This is permissable,
since COBOL does not support floating point data formats, and
thus does not use this accumulator. Since a FORTRAN SUbprogram
may be CALLed within a COBOL program, however, it is possible
that a floating point operation may actually occur, and thus
destroy the contents of this accumulator. To insure recognition
of this condition, a check-sum is computed on the contents stored
along with the data. QFIND then verifies that the check-sum is
correct with each use. If it is not, an execution time error
will occur (error number 81).

1. QCORE stores constants needed by ••.••••••

2. A FORTAN subprogram floating-point operation might destroy
the contents of the •••••••• .•

3. If tQe contents are destroyed, an •.•••••• occurs.

* * *
1. QFIND
2. Floating point accumulator
3. Execution time error

869

870

30. It is possible to execute QCORE repetitively, since with each
execution it actually clears the core area allocated to the index
enabling a restart. If a FORTRAN subprogram using floating-point
data or the COMMON area is necessary to a program, QCORE must be
CALLed after each such use. If done, however, the processing
speed of QFIND is temporarily decreased greatly, since the index
must be rebuilt from the beginning.

True or false?

1. QCORE may be executed repetitively.

2. Special core-clearing
reiterations.

cards are needed with QCORE

3. If QCORE is CALLed after floating-point data has been used,
QFIND processing speed decreases temporarily.

* * *

1. True
2. False. QCORE clears core.
3. True

31. Two abnormal program execution termination conditions may occur
through the use of QCORE and QFIND. These produce the usual
message to appear on the principal print device, as shown in the
Operations Manual. In this message, **ERR=YY** will have
substituted for the ·YY· one of the following two codes:

81 =

82 =

Floating-point accumulator contents destroyed. Eliminate
the use of floating-point arithmetic in a FORTRAN
subprogram used with this program, or else re-execute
QCORE following each subprogram.

Insufficient core available for the index. Consider
LOCALing some subprograms to free up core, or else reduce
program functions.

Name one condition involving QCORE and QF~ND wherein an abnormal
program execution termination may occur.

* * *
a. Floating-point accumulator contents destroyed.
b. Insufficient core available for the index.

32.

ft QCOREft USING FILENAME, TABLENAME

The first is the
that this file
ACCESS IS RANDOM

TWo arguments are required by this subroutine.
filename of the disk file to be processed. Note
must have been defined in the program with an
clause. Also this must be the same name assigned
the FD of the FILE SECTION in the COBOL program.

to the file in

The second argument is the name of an area in Working Storage
containing the File Definition Table. The level 01 name of this
core table must be specified as the name in the argument list.
This table must be defined in the main line of the program, and
remain in core for the full time that the file is processed -
not just during the time that QCORE is CALLed. The contents of
the File Definition Table have been fully described previously.

What two arguments are required by QCORE?

* * *
1. File name of the disk file to be processed.
2. Name of Working Storage area containing the File Definition
Table.

33.

ft QFINDft USING NOMINAL-KEY.

This subprogram has but one argument -- the name of a field
defined in a storage area other than that used to contain the
record contents of the file being searched. The field name must
contain the Nominal Key contents to be used in selecting a record
from the file.

The file named in this argument must have been defined
identically in data format and length with the record key field
appearing in the disk file record to be located. No data
conversion will take place.

True or false?

1. QFIND has one argument, the name of a field containing
Nominal Key contents.

2. The file named in the QFIND argument must be defined
identically with the disk file record key field.

* * *
1. True
2. True

871

34. Note that only a single file can be processed in a given main
line program using these subprograms (although many other files
not using these subprograms can be processed within the same
program). As a result, the single specifications of the FILENAME
in the QCORE subprogram serves to identify which file is to be
used with QFIND, without having to repeat this as an argument in
QFIND.

1. • ••••.•• file(s) can be used in a main line program using
QCORE and QFIND.

2. QCORE file specification also serves

* * *
1. Only one
2. QFIND

35. The Nominal Key may be a field in core, or in the input record
area of another file (but not of the file being processed), and
is in no way changed by the operation of QFIND. Thus a record
can be obtained from one file (either card or disk) which will
contain the key of a record in another file. This key does not
have to be in the same location for each use of QFIND within a
single program, and for that reason was not included as an
argument to QCORE.

1. QFIND (changes, does not change) the Nominal Key contents.

2. The record key (does, does not) have to be in the same
location for each use of QFIND within a single program.

* * *
1. Does not change
2. Does not

872

36. During the operations of QFIND, the desired record will be
located, and the relative record number placed in the area of
core named as the ACTUAL KEY when defining the file being
processed. The QFIND subprogram must be followed by a READ to
make the record actually available to the program. If QFIND
finds the record key within its index, it will not actually
access the record, leaving this task for the READ to perform. If
it does not find the record key in the index, it will have
actually accessed the record, leaving it in the record area.
Since the READ will discover that the desired record is already
in core, no additional physical read will occur in this case,
although the READ is still necessary to assure that the proper
record within the block is made available to the program.

1. When the record is found, its •••••••• is placed in the

2. QFIND must be followed by a •••••••••

3. The •••••••• actually accesses the record.

* * *
1. Relative record number, ACTUAL KEY
2. READ statement
3. READ statement

37. If the record located is to be updated, the READ can be followed
by a WRITE, after appropriate changes to the record content have
been made. Another QFIND, however, must not be CALLed before the
WRITE, since this might bring in another copy of the original
record, removing the changes desired to be made in the update.
If the contents of the records other than the record key are
unimportant, it is possible to follow a QFIND with a WRITE
instead of a READ statement, but the contents of the record area
must be established after the QFIND and before the WRITE, since
QFIND may bring in a copy of the record, eraSing the data desired
to be written.

1. To update the located record, a •••••••• statement must
follow the READ.

2. Another •••••••• must not precede the WRITE if an update has
been made to the record contents.

3. A........ statement- may be used rather than READ if the
original record contents are not required.

* * *
1. WRITE
2. QFIND
3. WRITE

873

SUMMARY

In this lesson you learned to use a special 1130 COBOL disk file
construction and accessing technique. Reminiscent of the System/360
Index Sequential Technique, the 1130 counterpart is not supported in the
formal COBOL language itself. However, the CALLable subprograms QCORE
and QFIND are seen to enable automatic establishment of a core area for
a disk file index and the subsequent creation of this index, and
accessing of records via data stored in the record, rather than its
relative record number.

This technique permits both easy accessing of records, and additions
of new records to the disk files.

END OF LESSON 42

874

LESSON 43

875

LESSON 43 - PROGRAM OVERLAYS

INTRODUCTION

1130 COBOL contains excellent provision for handling programs too
large to be contained in core in one segment. The user may create
sUbprograms known as LOCAL's, or Load On Call program segments. One
common core area receives all LOCAL's in a series of overlays, enabling
the program to be processed regardless of its size.

The Core Load Builder, if it discerns that a main line program is too
large for core, breaks up some of the systems subroutines of the program
into manageable segments called SOCAL's, or System Calls, without the
user's stipulation. When LOCAL's are included, they take priority over
SOCAL's and often remove the need for the latter.

876

Specific COBOL features you will learn to use in this lesson are:

LOCAL control record
NOCAL control record
SOCAL system call

This lesson will require approximately one hour.

1. You will recall that there are several monitor control records
that are used for each job set up. A brief description of all
monitor control records is given below:

II JOB

II COBOL

II DUP

II XEQ

II PAUS

II *

Defines the start of a new job.

Causes the supervisor to read the COBOL compiler into
core storage and transfers control to it.

Causes the supervisor to read the control portion of
the Disk Utility program into core storage and
transfer control to it.

Causes the supervisor to initialize for core load
execution and transfers control to it.

Causes the supervisor to wait.

Allows the user to print alphameric text on the
listing.

Monitor control records cause the performance of the load and
control functions of the Monitor System. This lesson will
concentrate on special functions initiated by the II XEQ card, in
particular those involving the LOCAL.

The •••••••• card may cause the LOCAL special function to be
initialized.

* * *
II XEQ

2. II XEQ

1.
2.
3.

This control record causes the supervisor to initialize for core
load execution. If the name specified in this control record
(columns 8 through 12) is that of a main line program stored in
Disk System format, the Supervisor reads the Supervisor control
records (LOCAL, NOCAL, FILES or G2250), if any, from the input
stream and writes them in the Supervisor Control Record Area
(SCRA). The Core Load Builder is then called to build a core
load image program from the main line program.

Match each item with its corresponding factor:

1. LOCAL

2. Core Load Builder

3. II XEQ

*
c,d
b
a,d

a.

h.

c.

d.

Causes reading of Monitor
control records

Makes core load executable program

Provides for subprogram overlays

Part of input stream

* *

877

818

3. If no name is specified on the // XEQ control card, a main line
program in Disk System format is assumed to be stored in the
Working Storage of the disk cartridge whose 1.0. is specified in
columns 21-24. The Supervisor then processes the Supervisor
control records and calls the Core Load Builder via the LINK
entry point in the Resident Monitor.

1.

2.

After the core image program has been built, or if the name in
the control record is that of a program already stored on disk in
DCI format, the Core Image Loader is called to read the core load
into core storage and transfer control to it.

True or fals-e?

1. The main line program name must always be present in the //
XEQ card.

2. The Core Image Loader hands over control to the program.

* *

False. If it is not, the main line program is assumed to have
been stored in Working Storage, normally having just been
compiled.
True

4. If the name specified in the // XEQ control card (columns 8-12)
is that of a main line program stored in Disk System format, or
is omitted, the supervisor accepts the number of Supervisor
Control Cards (LOCAL, NOCAL, FILES) specified in cc 16-11 if any,
and honors them in the building of the core load for immediate
execution.

The LOCAL and NOCAL Supervisor Control Cards are described below.

*LOCAL Load on Call Causes a common core area to be
established the size of the largest LOCAL
subprogram. Each LOCAL identified
subprogram will then share the common
area at execution time, coming into core
when required by the program. Since one
LOCAL cannot CALL another LOCAL, only a
single level, normally the lowest level
in the overlay hierarchy, can be LOCALed.

*NOCAL Load Uncalled Causes a subprogram to be loaded into
core although no CALL to the routine was
coded.

1. The *LOCAL card reserves a core area as large as ••••••••

2. Each LOCAL subprogram shares •••••••••

3. LOCAL means

* * *
1. The largest LOCAL subprogram
2. A common core area
3. Load on Call (i.e., a subprogram)

5. The following function does not require a Supervisor Control
Card:

(SOCAL) System Call

1. SOCAL means •••••••••

2. SOCAL's apply to

Similar to LOCAL, but applies to
system routines only, is entirely
automatic, and no control card is
required or exists. An area separate
from the LOCAL area will be used for
overlays which are SOCALed.

3. Both SOCAL's and LOCAL's are subprograms which are •••••••••

* * *
1. System Call
2. Automatically called system routines
3. Overlayed in core

6. The control records described below (LOCAL, NOCAL) are used by
the Core Load Builder to:

• Provide for subprogram overlays during execution (LOCAL).

• Include subprograms not called in the core load (NOCAL).

1. A LOCAL is identified with a subprogram overlayed during
(compilation, execution).

2. NOCAL's (are, are not) CALLed in the main line program.

3. LOCAL's and NOCAL's are used to control the (object program,
Core Load Builder)

* * *
1. Execution
2. Are not
3. Core Load Builder

879

7. The control records described previously are placed in the input
stream following a // XEQ Monitor control record that names a
main line program stored in Disk System format or following a
STORECI control record. In either case, the control records are
written on disk in the Supervisor Control Record Area (SCRA),
from which the Core Load Builder reads them for processing.

Match each item with its corresponding factor:

1. Control records a. Area on disk

2. // XEQ b. Monitor control card

3. Supervisor Control c. Processes LOCAL's and NOCAL's
Record Area

d. LOCAL's and NOCAL's
4. Core Load Builder

e. Punched in a card

* * *
1. d
2. b,e
3. a
4. c

8. LOCAL (load-on-call) subprograms are subprograms specified by the
user to be read, one at a time, as they are called during the
execution into a LOCAL overlay area. The LOCAL subprograms are
specified on the LOCAL control record as follows:

o 0 112 2 3 3 4 4 556 6 7
1 .•• 5 •••• 0 •.•• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

*LOCALMAIN1,SUB1,SUB2, ••• ,SUBn

880

where

MAIN1 is the name of the main line program already stored on
disk. SUB1 through SUBn are the names of the LOCAL sUbprograms
used with that main line program which must share a common
overlay area in core.

True or false?

1. It is not necessary to have a separate LOCAL card for each
subprogram to be overlayed.

2. LOCAL subprograms
simul taneously.

*

are

*

read into adjacent core areas

*

1. True. Many subprograms may be named in the same card.
2. False. One subprogram at a time is called into a common core

area.

9. In the case illustrated below, all the LOCAL control records
except the last end with a comma (continuation character) and the
main line program name appears on the first LOCAL control record
only.

o 0 112 233 445 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

*LOCALMAIN1,SUB1,SUB2,
*LOCALSUB3,

*LOCALSUBn

Only the first LOCAL card contains both the •••••••• and ••••••••

* * *
Main line program name, called subprogram name(s).

10. The same results as in the above case would have been obtained,
however, if the records had been:

o 0 112 2 3 3 445 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

*LOCALMAIN1,SUBl
*LOCALMAIN1,SUB2

*LOCALMAIN1,SUBn

As can be seen, only if the final comma (continuation character)
is omitted, can a subsequent LOCAL control card contain the name
of the main line program.

All the LOCAL subprograms for each main line program in an
execution must be specified on the LOCAL control records that
follow the // XEQ Monitor control record initiating the
execution.

True or false?

1. Multiple main line programs may be associated with multiple
LOCALed subprograms in a card.

2. The // XEQ Monitor control record initiates the execution.

* * *
1. False. Only one main line program is normally allowed.***
2. True

*** An exception is when QLINK is used to CALL a suicide overlay of
another main line program to follow an earlier program. Here
each main line program to be executed as a result of a Single //
XEQ control card may be separately named with their own sets of
LOCALed subprograms.

881

11. Separate
program in
example:

LOCAL
the

control recoIds must be used for each main line
execution that calls LOCAL subprograms. For

0011223 344 556 6 7
1 •.• 5 •••. 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

*LOCALMAIN1,SUB1,SUB2,SUB5, ••• ,SUBn
*LOCALMAIN2,SUB3,SUB4, ••• ,SUBz

where

MAIN2 is CALLed by MAINl via the QLINK subprogram supplied with
the compiler.

True or false?

1. Multiple main line programs may each have their own LOCAL
cards.

2. Subprograms may be identified with one main line program.

* * *
1. True
2. True

12. If the main line program is to be executed from Working storage,
the main line program name must be omitted from the LOCAL control
record. For example:

o 0 112 2 3 344 556 6 7
1 ••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

*LOCAL,SUB1,SUB2, ••• ,SUBn

882

This LOCAL control record format must be used if LOCALs are to be
specified with the DUP operation STORECI.

No embedded blanks are allowed in the LOCAL control record.

If a main line program is to be executed from •••••••• it must
not be named in the •••••••••

Working storage
LOCAL card

* * *

13. NOCAL (load uncalled) subprograms are subprograms specified ty
the user to be included in the core load, even though they are
not CALLed. They are specified on NOCAL control records using
the same format that applies to LOCAL control records except that
*NOCAL is used in place of *LOCAL.

1. NOCAL means

2. NOCAL's are to be included in

3. NOCAL card formats are identical to •••••••• formats.

4. NOCAL sUbprograms are always core •••••••••

* * *
1. Load uncalled
2. The core load
3. LOCAL
4. Resident

14. Core loads that utilize LOCALs will not necessarily run the same
way with LOCALs as they would on a larger machine without LOCALs.
This is due to the fact that every time a LOCAL is fetched, it is
fetched in its initial state from the disk. Thus, unless it
comprises read-only code, it will execute differently the second
and subsequent times it is fetched. This same rationale applies
equally well to SOCALs, at least in theory, but the IBM-supplied
subroutines that are stored with SOCAL subtype codes are read
only code.

True or false?

1. LOCALed subprograms are always the same throughout program
execution.

2. SOCALed subprograms are comprised of read-only code.

* * *
1. False. The LOCAL is called in its initial state but embedded data

elements may change as the main line program proceeds.
2. True

883

884

15. The Monitor system library contains a flipper subroutine (FLIPR),
which is used to call LOCAL (load-an-call) and SO CAL (system
load-an-call) subroutines into core storage.

When a LOCAL subroutine is called, control is passed to the
flipper, which reads the LOCAL into core storage (if it is not
already in core) and transfe~s control to it. All LOCALs in a
g,i ven core load are executed from the same core storage
locations; each LOCAL overlays the previous one. FLIPR fetches
SOCALs in the same manner as LOCALs, but into a different core
area.

Match each item with its corresponding factor.

1. FLIPR (Flipper)

2. LOCALs

3. SOCALs

*
1. c,d
2. a,e
3. b,e

a. Load-an-call

b. System-Ioad-on-call

c. Reads subprogram into
core storage if required

d. Transfers control to subprogram

e. Common core area used

* *

16. The LOCAL/SOCAL flipper is included in each core load in which
LOCAL subprograms have been specified and/or in which SOCALs have
been employed. If execution of the core load immediately follows
the building of the core image program, this subroutine read a
LOCAL/SOCAL from Working storage into the LOCAL or SOCAL area as
it is called during execution. If the core image program was
stored in the User or Fixed Area in Disk Core Image format prior
to execution, the flipper reads each LOCAL/SOCAL as it is called
during execution from the User or Fixed Area (where it was stored
following the core load) into the LOCAL or SOCAL area.

The flipper is entered via the special LOCAL/SOCAL linkage. A
check is made to determine if the required LOCAL/SOCAL is already
in core. If it is not in core, the flipper reads the required
LOCAL/SOCAL into the appropriate area, and transfers the
LOCAL/SOCAL subprogram via the special linkage.

1. The flipper reads subprograms into the '........ •

2. The subprogram may already be in •••••• '.. or on

3. Flipper hands over control to

* * *
1. LOCAL or SOCAL core storage area
2. Core storage, disk
3. The subprogram

17. The LOCAL, NOCAL, and other control records are read from the
supervisor Control Record Area (SCRA) on disk and analyzed.
Tables are built from the information obtained from the
respective control record types. These tables are used in later
phases of the construction of the core image program.

1. LOCAL or NOCAL control records are read from the (core, disk)
Supervisor Control Record Area.

2. Tables are used in the construction of a •••••••••

* * *
1. Disk
2. Core image program

885

886

18. When a Core Image program is being built, the main line program
is first converted from Disk System format to Disk Core Image
format. The main line is always converted before any other part
of the core load.

Distribution of a Core Image Program Being Built

Working Storage Fi les
Defined in the

Core Load LOCALs SOCAls Not Used

I I
~~------------------~y~------------------~/

That Port of the Core
Load Below 4096

Working Storage

Not Used Saved COMMON

~------~--------~--------~ ~~ ______________ ~y ___________________ ~J

Resident
Monitor

Core Image Buffer

Core Load Builder That Part of the Core Load Above 4095 · .r-________ ~A~ ________ __ 1---(---1' 1
Location End of DISKZ Location End

0000 4096 at

\.. Core
y

Core Storage

Figure 202

1. The main line program is converted from •••••••• format to
. . • . • . .. format.

2. The is the first part of the core load to be
converted.

* * *

1. Disk System, Disk Core Image
2. Main line program

19. Figure 202 shows the layout of a core load loaded into core,
ready for execution.

Layout of a Core Load Loaded for Execution

1''';d'~M:fnitor Main~li_ne~ __ ~~ __ L-~~ __ L-______ L-______ ~ ______ ~ ________ ~_C_O~MM~
Location NOCALs End
~ ~

Core Image Header Core

Figure 203

True or false?

1. NOCALS occupy the same core area as LOCALs.

2. All non-core-resident subprograms use the LOCAL core area.

* * *
1. False. NOCALs are always core resident.
2. False. SOCALs have their own separate area.

20. All the subprograms called by the main line program and by other
sUbprograms are included in the core load, except for (1) the
disk I/O subroutine, (2) any LOCAL subprograms specified, and (3)
SOCALs.

If LOCALS have been specified, or if SOCALs are employed by the
Core Load Builder, the LOCAL/SOCAL flipper (FLIPR) is included in
the core load. The order of conversion is generally NOCALs,
followed by the subprograms in the order they are called. The
order of processing when flipper (FLIPR) is included is more
complicated, and will not be discussed here.

Match each item with its corresponding factor.

1. LOCALs a. Present in core load

2. Flipper b. Not present in core load

3. lVlain line c. Sometimes present in core load
program

d-r. Similar to SOCALs

* * *
1. b,d
2. c
3. a

887

888

21. If LOCALs have been specified, a LOCAL Area as large as the
largest LOCAL is reserved in the core load, into which the LOCAL
subprograms are read by the LOCAL/SOCAL flipper. In addition,
the subprograms specified on the LOCAL control records are
written in Working storage following any files defined in Working
storage. If the core load is executed immediately, each LOCAL is
read as it is called from Working Storage into the LOCAL area by
the LOCAL/SOCAL flipper. If the core load is stored in Disk Core
Image format before it is executed, the LOCALs are stored
following the core load. During execution, the LOCAL/SOCAL
flipper fetches them from the User/Fixed Area.

1 . LOCAL subprograms
•••••••• following

during a core load build are written into

2. LOCAL subprograms
•••••••• or in the

*

may also be stored
•••••••• area on disk.

* *

1. Working Storage, any files defined
2. User, fixed

eventually in the

22. A subprogram cannot be specified as a LOCAL subprogram if it
causes another subprogram, also specified as a LOCAL subprogram
in the same main line program, to be called. For example, if A
calls Band B calls C, and B is a LOCAL subprogram, neither A nor
C can be specified as a LOCAL subprogram for the same main line
program. If A were a LOCAL, then neither B or C could be
LOCALed. Even though B were not a LOCAL, C could not be, since
the return path to the main line program is through A, which will
have been replaced by C.

True or false?

1. Under no circumstances can a LOCAL subprogram call another
LOCAL subprogram in the same main line program.

2. There are subprograms other than the "CAL's".

* * *
1. True, since the return path to the main line program will have

been destroyed
2. True, namely core resident subprograms

23. If a subprogram is specified as a LOCAL subprogram, and system
overlays (SOCALs) are employed, the subprograro is made a LOCAL
subprogram, even if it would otherwise have been inlcuded in one
of the SOCALs.

If a subprogram is specified as a LOCAL subprogram, it is
included as a LOCAL subprogram in the core image program even if
it is not otherwise called.

1. A subprogram which would otherwise be made into a SOCAL
sometimes is made into a •••••••••

2. 'A •••••••• does not have to be CALLed to become part of the
core image program.

* * *
1. LOCAL
2. SOCAL or a NOCAL

24. When using LOCAL control records, care must be taken to adhere to
the following formula:

3M + 2S ~ 640

where

M is the total number of main line program specified in the
LOCAL records and

S is the total number of subroutines specified in the LOCAL
record.

If execution is from Working Storage, the main line program
already in Working Storage as a result of having just been
compiled is counted as one, although it is not specified in the
LOCAL records. The restriction also applies to NOCAL control
records.

The restrictive formula regarding the number of LOCALs permitted
(would, would not) impact the average 1130 COBOL program

* * *

Would not

889

890

25. certain hardware considerations are worth noting in refernce to
LOCALs. It would be very difficult, but not impossible, to
successfully employ multi-cartridge files on a single drive
system. The Core Load Builder constructs a working copy of any
overlay phases (LOCALs and SOCALs) required by a program in a
special area on disk. Were this cartridge replaced by a
cartridge containing the continuation of a file begun on an
original cartridge, the working copy of the overlay phases would
not be present. It would be possible to overcome this difficulty
by requiring that all routines be entirely core resident. This
would be ensured by reference to a core map produced by the Core
Load Builder.

1. Care must be taken not to lose the •••••••• when multi
cartridge files are used on a single drive system.

2. This limitation can be avoided if •••••••• is used instead of
disk for all subprogram residence.

* * *
1. Working copy of overlay phases
2. Core storage

26. If SOCALs are employed by the Core Load Builder, a SOCAL area as
large as the largest SOCAL is reserved in the core load, into
which the SOCALs are read by the LOCAL/SOCAL flipper. In
addition, the subprograms comprising the SOCALs are written in
Working storage following any files defined in Working Storage
and any LOCALs stored there. If the core load is executed
immediately, each SOCAL is read from Working Storage into the
SOCAL area by the LOCAL/SOCAL flipper as it is called. If the
core load is stored in Disk Core Image format before it is
executed, the SOCALs are stored following the core load and the
LOCALs, if any, in the User/Fixed area.

During execution, the LOCAL/SOCAL flipper fetches the SOCALs from
the User/Fixed Area.

Match each item with its corresponding factor:

1. SOCAL a. Reserved area with the size of the largest

2. Flipper b. Is always core resident

3. LOCAL c. May reside in Working storage

4. NOCAL d. Reads LOCALs and SOCALs into core, and
transfers control to them

* * *
1. a,c
2. d
3. a,c
4. b

27. Enough Working Storage is reserved by the Core Load Builder to
contain any Data Files assigned by the Core Load Builder to
Working Storage. All the LOCAL subprograms and SOCALs,
respectively, are stored in Working Storage following any files
defined there. Figure 201 shows the distribution of a core image
program between core storage, the CBI, and Working Storage.
These diagrams depict a core image program just after it has been
built but before it has been stored (STORECI).

1. Working Storage may contain •••••••. , •••••••• , and ••••••••

2. STORECI is used to store the

* * *
1. LOCALs, SOCALs, Data Files
2. Core Image Program in the UserIFixed area

28. The Transfer Vector is a table included in each core load that
provides the linkage to the subprograms. It is composed of the
LIBF TV, the Transfer Vector for subprograms referenced by LIEF
statements, and the CALL TV, the Transfer Vector for subprograms
referenced by CALL statements. LIBFs are used only by programs
written in Assembler Language.

1. The •••••••• is a linkage table in the core load, providing
linkage to the •••••••••

2. Subprograms
statements.

in COBOL

*
1. Transfer vector, subprogram
2. CALL

may be referenced by

* *

891

892

29. SOCALs (system-overlays-to-be-loaded-on-call) are subprogram
groups (by type and subtype) that are made into overlays by the
Core Load Builder. They make it possible for many COBOL core
loads that would otherwise not fit into core to be loaded and
executed.

If, in constructing a core image program from a main line
program, the Core Load Builder determines that the core load will
not fit into core, SOCALs are created by the Core Load Builder
for the core load. In addition, the LOCAL/SOCAL flipper, which
fetches the SOCALs when they are required during execution, is
included in the core load along with the area into which the
SOCALs are loaded (the SOCAL area).

1. SOCALs are made into overlays by the

2. The •••••••• fetches SOCALs when they are needed, and
transfers control to them.

3. (LOCAL, SOCAL) creation takes highest priority.

* * *

1. Core Load Builder
2. Flipper
3. LOCAL

30. Stated differently, main line program functions are assigned a
priority code. If the Core Load Builder determines that the roain
line program cannot fit into core, two attempts at system
overlays are made. If the second attempt still does not make it
possible for the core load to fit into core, an error message is
printed.

True or false?

1. SOCALs are categorized by priority.

2. Two levels of prioritized overlaying are attempted.

* * *

1. True
2. True

31. Each SOCAL group does not contain all the available SOCALable
subprograms of the specified types and sUbtypes. Only those
subprograms of the specified types and subtypes required by the
core load are contained in the SOCAL.

If a subprogram that would otherwise be included in a SOCAL is
specified as a LOCAL subprogram, that sUbprogram is made a LOCAL
and is not included in the SOCAL in which it would ordinarily be
found.

SOCALs are never built for core loads in which the main line
program is written in Assembler or RPG language.

1. Each SOCAL (contains, does not contain) all possible
SOCALable functions.

2. (LOCAL, SOCAL) creation takes precedence.

* * *
1. Does not contain
2. LOCAL

893

32. A rule of prime importance regarding subroutines in the SOCAL
scheme is that none must cut across SOCALs. That is, a given
subroutine that is in one SOCAL may not call a subroutine that is
in another SOCAL or cause another SOCAL to be brought into core
before the execution of the given subroutine is completed. It
should also be noted that disk I/O is used every time a SOCAL (or
a LOCAL) is brought into core. This means that disk I/O will
sometimes be entered without the user's direct knowledge.

When writing or modifying a program that is known to require
SOCALs, planning is required to minimize the flipping of the
various SOCALs in and out of core during execution. Ideally the
program should be written in sections, each of which employs a
single SOCAL, e.g., input, computation, and output. Even input
and output should be carefully planned so as to separate disk and
non-disk operations whenever possible.

Match each item with its corresponding factor.

1. SOCALs a. One must not call another

2. Disk I/O b. Completely intermixable, since
separate areas are used

3. Program sections
c. Hidden SOCAL activity is

4. SOCALS and LOCALs possible

d. Avoid mixing SOCALs

* * *
1. a
2. c
3. d

SUMMARY

In this lesson,
of LOCALs - Load on
SOCAL, or System
without programmer
greatly expand the

you have learned to create program overlays by means
Call program segments. You also learned about the
Calls, which enable over-sized program segmentation
intervention. The capabilities described herein

power of the 1130 Computing System.

This has been the last lesson in the 1130 COBOL Programmed
Instruction Manual. As you use the language, you should actively refer
to all manuals available for reference, until you are completely
familiar with their contents.

END OF LESSON 43

894

EXAMINATION

895

EXAMINATION

1. A record name is specified in:

1. an OPEN statement.

2. a READ statement.

3. a PERFORM statement.

4. a SELECT statement.

5. a WRITE statement.

2. A file name is specified in:

1. a MOVE statement.

2. the Working-Storage Section.

3. a WRITE statement.

4. a READ statement.

5. a COMPUTE statement.

3. An FD entry is a part of the:

1. File Section.

2. FILE-CONTROL paragraph.

3. Environment Division.

4.

o 0 112 233 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

896

A B
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
SPECIAL-NAMES. C04 IS TO-COMMENT.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INCOME-FILE
ASSIGN TO RD-1442.

In the Environment Division segment above:

1. SELECT should begin in Area A.

2. the SPECIAL-NAMES paragraph should be in another division.

3. FILE SECTION should replace INPUT-OUTPUT SECTION.

4. None of these

5. A PICTURE clause that specifies a numeric variable is:

1. PIC $$9.99.

2. PIC 99V99.

3. PIC 9.9.

4. PIC 9.999V9.

6. Alignment of a decimal point is caused by:

1. only the picture character V

2~ only the picture character.

3. both the configuration of the picture characters and V

4. neither the picture character nor V

7. The picture that would allow printing of the variable $11,200.05
is: (Choose the picture most likely to be used in a real-life
situation.>

1. $99,999.00

2. $$$,$$$V.$$

3. $$$,999.99

4. $$$,$$$.99

8.

o 0 112 2 3 344 5 5 6 6 7
1 .•. 5 •.•• 0 ••.. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •... 0 ••

IF MARITAL-STATUS NOT EQUAL TO 'S' GO TO MARRIED.
IF DEPENDENTS NOT EQUAL TO 1

GO TO SPECIAL-CASE.

The coding above represents a:

1. series of two simple IF statements.

2. compound condition.

3. a single IF sentence.

897

9. In order to find the average sales per month for the first three
months of the year, you could write:

1.

001122334 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 ••• ~0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

COMPUTE AVERAGE
JAN + FEB + MARCH / 3.

2.

o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

COMPUTE (JAN + FEB + MAR) / 3
= AVERAGE.

3.

o 0 112 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 .••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 ••

898

ADD JAN FEB MAR GIVING TOTAL.
DIVIDE 3 INTO TOTAL GIVING

AVERAGE.

10. One of two input files contains a record of data relating to each
item stocked. The other file contains a record of data for each
item stocked that has increased in price. In order to
incorporate the price changes into the complete file, you would
use the technique of:

1. matching records.

2. channel skipping.

3. horizontal spacing.

4. sorting file.

11. To transfer control to a paragraph in a program and then return
control to the statement directly following the point of
transfer, you would wri~e:

1. a GO TO statement.

2. two PERFORM statements.

3. a relational condition.

4. a PERFORM statement.

12. Before writing record variables called PRINT-RECORD into a file
called PRINTER, you must be sure that the computer has executed
the statement:

1.

o 0 112 233 445 5 6 6 7
1 ... 5 •••• 0 ••.. 5 ..•• 0 •••• 5 •••• 0 ••.• 5 ••.• 0 .••. 5 •..• 0 •••. 5 •••. 0 •••• 5 •••• 0 ••

OPEN PRINTER.

2.

o 0 112 233 4 4 5 5 6 6 7
1 .•• 5 .••• 0 •..• 5 •••. 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •.•. 0 •••• 5 •••• 0 •.•• 5 •••. 0 ••

OPEN OUTPUT PRINTER.

3.

o 0 112 233 445 5 6 6 7
1 ... 5 ••.. 0 •.•. 5 ••.. 0 •.•. 5 •.•. 0 •••• 5 .••• 0 •.•. 5 .•.. 0 .•.• 5 •.•• 0 ••.• 5 •••. 0 •.

OPEN OUTPUT PRINT-RECORD.

4.

o 0 112 233 445 5 6 6 7
1 ... 5 .•.• 0 •.•. 5 .••• 0 •.•• 5 •••. 0 •••. 5 •••• 0 •••• 5 ••.• 0 .••• 5 •••• 0 •.•• 5 •••. 0 •.

OPEN PRINTER OUTPUT.

13.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •..• 0 ••.. 5 ••.• 0 •••• 5 •••• 0 •••. 5 •••• 0 •.•• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 ••

PERFORM TOTAL.

In the statement above a restriction on TOTAL is that it must not
contain a:

1. An IF statement.

2. PERFORM statement.

3. GO TO statement that refers to a procedure-name outside
TOTAL.

4. None of these.

899

14.

o 0 112 2 3 3 4 4 556 6 7
1 .•. 5 ..•. 0 ••.. 5 •..• 0 •.•• 5 •••• 0 •••. 5 .••• 0 •.•. 5 .•.• 0 •••• 5 •••. 0 ••.. 5 •.•• 0 ••

GO TO TOTAL.

In this statement a restriction on TOTAL is that it must not
contain a:

1. An IF statement.

2. PERFORM statement.

3. GO TO statement.

4. None of these.

0011223 3 4 4 556 6 7
1 .•. 5 ••.. 0 •.•. 5 ..•. 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 ••.• 5 •••. 0 •.

101 IDENTIFICATION DIVISION.
102 PROGRAM-ID. TEST-PROGRAM.
103 ENVIRONMENT DIVISION.
104 CONFIGURATION SECTION.
105 SOURCE-COMPUTER. IBM-1130.
106 OBJECT-COMPUTER. IBM-1130.
107 SPECIAL-NAMES. C02 IS TO-TAX.
108 INPUT-OUTPUT SECTION.
109 FILE-CONTROL.
110 SELECT MASTER-FILE
111 ASSIGN TO DF-I0-600-X.
112 SELECT OUT-FILE
113 ASSIGN TO PR-1403-C.
114 SELECT PAY-FILE
115 ASSIGN TO PR-1403-G.
116 RESERVE NO ALTERNATE AREA.
117 DATA DIVISION.
118 FILE SELECTION.
119 FD MASTER-FILE.
120 LABEL RECORDS ARE STANDARD.
201 BLOCK CONTAINS 6 RECORDS.
202 01 MASTER-RECORD.
203 02 ID-NUMBER PIC X(4).
204 88 LOCAL VALUES ARE 0000
205 THRU 2000.
206 88 OUT-OF-TOWN VALUES ARE
207 2001 THRU 4000.
208 02 TEST-VALUE PIC 999.

301 WORKING-STORAGE SECTION.
302 77 SAVE-CONTROL PIC X(4).
303 01 HEADING-RECORD.

The next six questions refer to the program segment above.

900

15. The line that states how records are grouped on disk is:

1. 111

2. 201

3. 208

16. The line that makes it possible to use a mnemonic name in the
AFTER ADVANCING option is:

1. 107

2. 116

3. 115

17. The line that links a file to a disk device is:

1. 119

2. 113

3. 111

18. The line that associates a record with a file is:

1. 201

2. 303

3. 202

19. The line that specifies an independent elementary variable is:

1. 302

2. 203

3. 206

20. The line that specifies a condition name is:

1. 302

2. 208

3. 206

901

21. Which of the statements below can change the normal flow of
control within a COBOL program:

1. an ALTER statement.

2. a PERFORM statement.

3. an EXIT statement.

4. a STOP statement.

5. a GO TO statement.

6. all of the above.

22. A file of customer records is in ascending sequence by
identification number. The file does not contain a record for
every possible identification number because some customers have
moved or have closed their accounts. In preparing a listing of
customers who have had active accounts since 1966, the paragraph
LIST-THE-CUSTOMER is to be executed for each record with an
identification number smaller than 721. The number of customers
who fall into this category is already stored in the variable
NUMBER-OF-CUSTOMERS. Which of the following statements could be
used to produce the desired number of executions of LIST-OF
CUSTOMERS?

1.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ••. 5 •.•• 0 .•.. 5 ..•. 0 •••. 5 •••• 0 •••• 5 •.•• 0 •••• 5 .••• 0 •••. 5 •••• 0 ••.• 5 •••. 0 ••

2.

PERFORM LIST-THE-CUSTOMER
NUMBER-OF-CUSTOMERS TIMES.

o 0 112 233 445 5 6 6 7
1 ... 5 .••. 0 •.•. 5 •.•• 0 •••• 5 ••.• 0 •••. 5 •••• 0 .••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •... 0 ••

3.

PERFORM LIST-THE-CUSTOMER
UNTIL IDENTIFICATION-NUMBER
IS GREATER THAN 720.

o 0 112 233 4 4 5 5 6 6 7
1 ..• 5 ••.• 0 .•.• 5 •... 0 •.•• 5 •••• 0 •••• 5 •••• 0 .••• 5 •••• 0 .••• 5 •••• 0 •.•• 5 •..• 0 ••

902

PERFORM LIST-THE-CUSTOMER
VARYING COUNTER FROM 1
BY 1 UNTIL COUNTER
IS GREATER THAN
NUMBER-OF-CUSTOMERS.

4. All of these

5. None of these

23. a GO TO statement that will be changed within a program with an
ALTER statement:

1. may contain the DEPENDING ON option.

2. must be the only statement in a paragraph.

3. must not include a paragraph name.

4. All of these

5. None of these

24. In a normal alphanumeric move, the data is aligned at the:

1. right of the receiving variable.

2. left of the receiving variable.

3. decimal point position of the receiving variable.

4. None of these

25. The USAGE clause:

26.

1. Determines the manner in which a data item is represented in
core storage.

2. May be omitted from a Program.

3. Neither a nor h.

4. Both a and h.

o 0 112 2 3 3 445 5 6 6 7
1 .•. 5 0 •... 5 0 ..•• 5 •.•. 0 ••.• 5 •••• 0 .•.• 5 ..•. 0 •••• 5 •••• 0 •.•. 5 •••• 0 ••

01 PERCENT-TABLE USAGE IS CaMP.
02 PERCENT OCCURS 3 TIMES PIC V99.

1. PERCENT-TABLE will have two elements.

2. PERCENT-TABLE will have three elements.

3. Each element of 01 PERCENT-TABLE will have 3 digits.

903

904

27. Which picture
and 1,928.43+

1. *,***.99-

2. ***99.99+

3. *,*99.99+

4. *,*99.99-

could produce the printed results ***15.21-
from source values -1521 and +192843?

28. Which picture could produce the printed results ~~~~9~7~6 and
~~5~4~3~2 from source values 00976 and 05432?

1. ZBB9B9B9

2. 9B9B9B9B9

3. ZZZB9B9B9

4. ZB9B9B9B9

29. Which picture could produce the printed result 1700~CR if the
source value, 17, were negative?

1. 99990CR

2. **OOBCR

3. 99000CR

4. 9999BCR

30. A subscript for a table element may be:

1. an integer.

2. a variable that has an integer value.

3. an index.

4. Any of these

31. The value 3 could be assigned to the index QUEST by execution of
the statement:

1.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ... 5 ••.• 0 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 .••• 0 •... 5 •••• 0 ••

MOVE 3 TO QUEST.

2.

o 0 112 2 3 3 445 5 6 6 7
1 ... 5 .••• 0 .•.. 5 0 •••. 5 •... 0 •... 5 .••• 0 5 •.•• 0 •••• 5 ••.• 0 •••. 5 •••• 0 •.

COMPUTE QUEST = 3.

3.

o 0 1 1 2 2 3 3 445 5 6 6 7
1 .•• 5 •••• 0 ••.• 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

SET QUEST TO 3.

32. The index YEAR could be associated with the table STATISTICS
by:

1. an IF statement.

2. a PERFORM statement with the VARYING option.

3. an OCCURS clause with the INDEXED BY option.

4. including the table in a random file.

33. For creation, a sequential file must have:

1. random access and be opened OUTPUT.

2. sequential access and be opened OUTPUT.

3. random access and be opened 1-0.

4. sequential access and be opened 1-0.

34. The system-name DF-10-600-X is required for:

1. Card reading.

2. Card punching.

3. Printing.

4. Mass-storage files.

905

35. The statement form that would be used to write a record
to a sequential disk file is:

1.

o 0 112 2 3 3 4 4 556 6 7
1 .•. 5 .•.• 0 •... 5 •.•• 0 .••• 5 •... 0 •.•• 5 ...• 0 ••.• 5 •..• 0 •••• 5 •••. 0 .••• 5 •••• 0 ••

WRITE record-name

2.

o 0 112 2 3 344 556 6 7
1 .•. 5 0 .•.• 5 0 •••• 5 •••• 0 ••.• 5 ..•• 0 •••• 5 •... 0 ••.• 5 ••.. 0 •••• 5 •••. 0 ••

WRITE record-name
INVALID KEY imperative-statement.

3.

o 0 112 2 3 344 5 5 6 6 7
1 ..• 5 ...• 0 5 ••.. 0 •••• 5 ••.• 0 •••• 5 •••• 0 •.•• 5 ••.. 0 •••• 5 •••• 0 •••. 5 •••• 0 •.

WRITE record-name
AT END IMPERATIVE STATEMENT.

4.

o 0 112 2 3 344 556 6 7
1 .•• 5 0 ..•. 5 ..•. 0 •••• 5 •... 0 ••.• 5 .••• 0 •••. 5 •••• 0 •.•• 5 ••.. 0 •••• 5 •••• 0 •.

WRITE record-name
AT EOP imperative-statement.

906

36. The statement that would be used to place an updated record back
into a random file is:

1.

o 0 112 2 3 3 445 5 6 6 7
1 ... 5 ..•• 0 •••. 5 •.•. 0 ..•• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 ••

WRITE record-name.

2.

o 0 112 2 3 3 445 5 6 6 7
1 ... 5 0 5 ••.• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••. 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WRITE record-name
AT END imperative-statement.

3.

o 0 112 233 445 5 6 6 7
1 ... 5 ••.. 0 •... 5 •.•• 0 •.•• 5 •••• 0 •••• 5 ••• ~0 .••. 5 •.•• 0 •••• 5 •••• 0 •••. 5 ••.• 0 ••

WRITE record-name
AT EOP imperative-statement.

4.

o 0 1 1 2 2 3 3 445 5 6 6 7
1 ... 5 ..•• 0 ••.• 5 ••.• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••. 5 ••.• 0 ••

WRITE record-name
INVALID KEY imperative-statement.

37. The ACCESS clause of the FILE-CONTROL paragraph must be used in
the SELECT whenever:

1. sequential access will be needed from a mass-storage device.

2. sequential access will be needed from a card-reader.

3. the file will be opened as OUTPUT.

4. the file will be randomly accessed.

38. The ACTUAL KEY clause of the FILE-CONTROL paragraph must be used
in the SELECT entry for:

1. card files.

2. all sequentially accessed files.

3. some sequentially accessed files but no randomly accessed
indexed files.

4. all randomly accessed files.

907

39. The variable specified in the ACTUAL KEY clause of a random file
must be:

40.

1. set to the value of the record sequence number to be
accessed.

2. a numeric variable.

3. a working-storage variable.

4. defined within the record associated with the random file.

o 0 112 2 3 3 4 4 5 5 6 6 1
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

908

SELECT PAYROLL
ASSIGN TO DF-l0-900-X FOR MULTIPLE UNIT.

The above entry will be:

1. Entered for random files.

2. Entered for card files.

3. Entered for random files where the file extends to more than
one disk.

4. Entered for sequential files where the file extends to more
than one disk.

END OF EXAMINATION

ADVISOR GUIDE

909

IBM 1130 COBOL PROGRAM PRODUCT - PROGRAM INSTRUCTION MANUAL

ADVISOR GUIDE

To the Advisor

Each lesson has been kept to a mlnlmum length, in order that it may
be completed within one sitting requiring usually not more than one
hour. The largest part of this manual has been devoted to a thorough
coverage of ANSI COBOL language features. A major portion of that has
been dedicated to the disk, since on the 1130, disk usuage is of utmost
importance.

In addition to pure language features and disk usuage, a number of
lessons at the end have been provided specifically oriented to the 1130
itself. Minimum instruction in the use of the 1130 Disk Monitor, and
the control cards necessary for the compilation and execution of the
COBOL programs has been given. Special attention has been paid to the
use of CALLable subprograms, including the use of file I/O within COBOL
language subprograms.

This manual is not intended to replace the standard manuals provided
with the COBOL compiler. It is intended to insure that language
features and computer operational fundamentals are presented to the user
in a controlled sequence, and at a rate which can be easily learned.
Once basic instruction in the language and machine characteristics has
been learned, it is expected that the normal manual would be of
assistance in providing the remaining details which may not be included
in the lessons, and which are of benefit normally only after
considerable hands-on experience has been obtained.

Following completion of this course, the student is advised to
participate in an 1130 Workshop of approximate five day length,
dedicated to providing COBOL coding experience. Should such a workshop
not be available locally, the student at a minimum should review the
workshop handouts, and work the problems, compiling and executing these
until fully debuged. Only through actual experience on the computer,
with problems not too complex for his present capabilities, can a
student expect to proceed to full competence in the COBOL language.

How is the compiler obtained?

The 1130 COBOL compiler is a program product, leased to IBM customers
at a charge of $75.00 per month. It may be ordered from any Data
Processing Sales Representative, under order number 5711-CB1.

What features are included in the language?

1130 COBOL is a subset of the full COBOL defined by the American
National Standards Institute, formally known as United States of America
Standards Institute (USASI). ANSI COBOL is composed of standard
features, and extensions to the language. Only standard features are
normally implemented identical accross compilers produced for various
computer manufacturers. In the 1130 COBOL Language Specifications
Manual (Form No. SH20-0816), the precise language features included in
the 1130 COBOL subset are defined. In addition, IBM extensions to the
standard language are identified through halftone shading.

910

What materials are required to be used?

The Progranmed Instruction Manual is comprised of 43 lessons. Only a
single manual is required, since all illustrations are integrated fully
into each lesson. In addition to the PI materials, a full set of 1130
COBOL manuals should be available, including the language specifications
manual mentioned above, plus the 1130 COBOL Operations Manual (Form No.
SH20-0927), and .the 1130 COBOL Programmers Guide (Form No. SH20-0928).
Only the language specifications manual will norma Illy be required until
the final six lessons, when specific 1130 oriented subjects are
addressed apart from the COBOL language.

Are these lessons suitable for programmers who have previously used
COBOL for other computer systems?

If a programmer has experience in another version of COBOL, he should
review the solutions for problem assignments at the end of the lessons.
The student should also attempt to code solutions for some problems
before reviewing the text solutions. If unfamiliar with too many
statements and rules, the student should be advised to begin the manual
at Lesson 1 and proceed at a comfortable pace.

How are students graded?

A multiple-choice test has been constructed to assist in student
evaluation. At best a multiple-choice quiz can help you determine what
a student knows about COBOL. It is difficult, if not impossible, to
determine whether a student can code an ANSI COBOL program through
interpretation of results from a multiple-choice test. Convenience in
administration and a minimum criterion accomplishment are the main
reasons such a test is provided. The primary criterion for judging a
student's success is his ability to code solutions to the problem
assignments given in the course. The student is advised to contact his
advisor if, after attempting to code his solution and reviewing the text
solution, he still does not understand the concepts, rules, or
techniques involved. Your primary role as advisor should be to resolve
any problems of this nature while the student is taking the course. If
a student successfully codes the problems assigned in this course, he
should function effectively in an ANSI COBOL installation.

In what time period should the student be expected to finish?

Study time for the lessons will require about 34 and one half hours
for most students. A minimum of two weeks and a maximum of five weeks
should be used as a gauge to establish a schedule for prospective
students. A convenient method to plan a student's schedule is to
determine the number of lessons to be completed each day, with six per
day maximum. Programmed Instruction is not intended to be studied eight
hours a day, and students should be advised of this before beginning the
course. Gaps are likely to occur in the student's schedule, but
interruptions of a week or more should not be allowed in the stUdy
program. A student cannot be expected to retain previously acquired
skills without some immediate use through further study; this is
especially true in the beginning. Each lesson has an estimated required
study time at the beginning, but these timings will vary greatly with
different people. Given correct information and advice before beginning
the course, the student should have no problems maintaining a well
planned study schedule.

911

What is the main strategy of the manual?

The structure of the lessons is based on a set of commercially
oriented problems. The student begins by coding COBOL solutions to
transmit data to and from the console typewriter, progressing to
problems requ~r~ng card input to produce printer listings. Be then
progresses to disk-oriented solutions that incorporate logic functions
of matching records, control breaks on group levels, and the calculation
capabilities required to solve each problem. Study topics are
introduced as required for the student to proceed successfully through
the problem set. Some lessons are topical in nature, covering efficient
data formats, data manipulation, conditional statements, and the
structure and searching of data tables. Later lessons require the
student to code COBOL solutions to create, maintain, and access
Sequential and Random Disk files. Finally, the student learns those
elements of the 1130 Monitor System relevant to COBOL usage.

The primary intent of the manual is to place the student in a
problem-solving environment with American National Standard Institute
COBOL as his major tool. It attempts to simulate the daily working
environment of a COBOL programmer.

Who should stUdy these materials?

People who have a need to write ANSI COBOL programs or who will play
a role in planning, iwplementing, and reviewing applications in a COBOL
installation should study this manual.

Do the lessons teach beginners how to solve computer problems?

No, they are ftlanguageft lessons rather than ftprogrammingft lessons.
Before a beginner starts on this manual, he must be trained in
programming techniques how to define and analyze jobs, system and
program flowcharting, and the nature of programming systems, to name
some of the most important topics. In addition, students are expected
to know a little about the IBM 1130. If a student does not posses the
preceding talents, he may wish to take the Computing System Fundamentals
PI. The beginner may also find the classroom course Introduction to
Small Binary Computers helpful. In certain sections of the COBOL
course, the student is instructed to seek advisor assistance if he has a
problem performing an assumed skill. Examples of this are flowchart
construction or sign notation in hexadecimal.

What types of students may be studying this manual?

This programmed instruction manual is designed for students with a
variety of backgrounds and aptitudes. Familiarity with the lesson
structure and strategy and an understanding of a student's prerequisite
skills and experience will enable you to best advise him on how to study
the manual. Someone who possesses only minimum prerequisites and has no
coding experience in another language should follow all instructions in
the course and perform all required coding, whereas a student with
experience in one or more programming languages may be able to proceed
through the manual very rapidly.

All stUdents should code the problem assignments at the end of the
lessons to be sure they can do the thing being taught. If, during the
lessons, a student indicates a lack of prerequisite skill (e.g., cannot
read or construct a flowchart) and this hinders progress, the
prerequisite should be acquired through appropriate education before
continuing the COBOL PI. Successful administration will be greatly
enhanced through your understanding of a student's entering behavior in
relation to the structure and strategy of the manual.

912

What is the next step in ~ student's education after completion of these
lessons?

Upon completion of the final lesson, the student should have many
coding skills in American National Standard Institute COBOL. However,
there are no instructions provided on how to debug a source program
using compiler diagnostics or to execution test any programs. Also,
since the ANSI COBOL compiler is run under an operating system, some
knowledge of the monitor control language may be required, depending
upon an installation's procedures. These skill requirements are
introduced in the last six lessons in the course.

913

ANSWERS TO THE STUDENT EXAMINATION

1 - 5 11 - 4 21 - 5 31 - 3
2 - 4 12 - 2 22 - 4 32 - 3
3 - 1 13 - 3 23 - 2 33 - 2
4 - 4 14 - 4 24 - 2 34 - 4
5 - 2 15 - 2 25 - 4 35 - 2
6 3 16 1 26 2 36 4
7 - 4 17 - 3 27 - 3 37 - 4
8 - 1 18 - 3 28 - 3 38 - 4
9 - 3 19 - 1 29 - 2 39 - 4

10 - 1 20 - 3 30 - 4 40 - 4

END OF ADVISOR GUIDE

914

READER1S COMMENT FORM

1130 CaBO L Text Volume II SH20-0930-0

Please comment on the usefulness and readability of this publication, suggest
additions and deletions, and list specific errors and omissions (give page numbers).
All comments and suggestions become the property of 18M.

Reply Requested

Yes D
No D

COMMENTS

Name -------------------------------------
Job Title -----------------------------------
Address ----------------------------------
__________________________ Zip ____________ _

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

fOLD ON TWO LINES, STAPLE AND MAIL.

LD

rENTION:

YOUR COMMENTS PLEASE

Your comments on the other side of this form will help us improve future editions of this
publication. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material.

Please note that requests for copies of publications and for assistance in utilizing your
IBM system should be directed to your IBM representative or the IBM branch office
serving your locality.

FOLD

FIRST CLASS
PERMIT NO. 142

POUGHKEEPSIE, NEW YORK

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY:

I BM Corporation
Education Center, Bldg. 005
South Road
Poughkeepsie, New York 12602

Education Development - Publications Services, Dept. 78L

..

LD FOLD

------- - ---- ---- - ---- - - -------------
<!)

International Business Machines Corporation
Data Processing Division
1133 Westches ter Avenue, White Plains, New York 10604
(U .S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York , New York 10017
(International)

