
--- ------ - ---- ---- - ---- - - ----------_ . -

".

I . .. ,

1130 GOBOl .
Te'xt - Volume I

Programmed Instruction

--.- ------ ------- ---- -. ---- - - --------
-~-.-

1130 COBOL
Text - Volume I

Programmed Instruction

First Edition June 1971

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality. Address comments concerning the
contents of this pUblication to IBM Corporation, DPD Education Development -
Publications Services, Education Center, South Road, Poughkeepsie, New York 12602.

© Copyright International Business Machines Corporation 1971

ACKNOWLEDGMENT

The following information is reprinted from COBOL Edition 1965,
published by the Conference on Data Systems Languages (CODASYL), and
printed by the u.s. Government Printing Office.

"Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this
report as the basis for an instruction manual or for any other
purpose is free to do so. However, all such organizations are
requested to reproduce this section as part of the introduction to
the document. Those using a short passage, as in a book review, are
requested to mention "COBOL" in acknowledgement of the source, but
need not quote this entire section.

"COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

"No warranty, expressed or implied, is made by the contributor or by
the COBOL Committee as to the accuracy and functioning of the
programming systerr, and language. Moreover, no responsibility is
assumed by any contributor, or by the committee, in connection
therewith.

"Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Executive Committee of the Conference on Data System
Languages.

"The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming
for the UNIVAC (R) I and II, Data Automation Systems copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator
Form No. F28-8013, copyrighted 1959 by IBMi FACT, DSI 27A5260-
2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in
part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals and
similar publications."

PREFACE

In this programmed course you will learn to code programs using the
1130 subset of the American National Standard COBOL language,
concentrating upon basic programming techniques in typical commercial
card and disk applications. A description of the type of applications
and a list of the specific language features and programming techniques
cove.red are presented in each lesson introduction along with the
approximate study time.

Problem descriptions in most of the lessons include a detailed
flowchart as a coding guide. A few problems will require that you
construct a flowchart before you begin coding the problem solutions.
This course assumes that you can already construct and interpret
flowcharts. This course also assumes that you have some knowledge of
computing system fundamentals and basic concepts of the IBM-1130. If
you are unfamiliar with any of these areas you should notify your
advisor before beginning this course.

CONTENTS

Lesson
Number

Title

Instructions to the Student

VOLUME I 1 Introduction
2 Basic Input-Output Statements;

Coding Forwat
3 Basic Standard Coding Entries
4 Introduction to Data Files
5 Introduction to File Processing
6 Card File Processing and Branching
7 Use of Record Variables
8 Horizontal Spacing
9 Vertical Spacing (1)

10 Vertical Spacing (2)
11 Vertical Spacing Control For

Printed Output
12 Library Entries
13 Sequential Disk File Output
14 Sequential Disk File; Arithmetic

Operations
15 Editing Numeric Data
16 Conditional Branching
17 Disk File Updating
18 Disk File Processing
19 Conditional Statements (1)
20 Conditional Statements (2)
21 Channel-Skipping and Arithmetic
22 Program Coding Example

VOLUME II 23 Branching Statements (1)
24 Branching Statements (2)
25 Data Formats
26 Edit Characters
27 Table Definition
28 Use of Tables
29 Processing with Indexes -

CALLing Subprogram
30 Payroll Program Processing (1)
31 Payroll Program Processing (2)
32 Sequential Disk Processing
33 Sequential Disk Updating
34 Random Files Accessed

Sequentially
35 Sequential and Random Access ing

Programs
36 Random Files Accessed Randomly
37 Random File Updating
38 1130 COBOL Within the Monitor

System
39 COBOL Error Messages and

Diagnostic Aids
40 1130 COBOL Compiler Extensions
41 CALLable Subprograms
42 File Accessing Technique
43 Program Overlays

Lxamina tion

.t-\dvisor's Guide

Number of
Frames

44

26
27
23
30
37
26
36
32
22

17
4

36

26
26
31
18
19
21
21
35

2

29
27
29
33
24
18

17
9

17
24
17

24

24
30
20

38

30
26
22
37
32

Estimated Page
Time

(Minutes)

45

45
45
60
60
45
45
60
60
45

45
45
60

60
45
45
30
45
30
30
45
45

45
45
45
45
45
45

60
45
30
30
30

75

60
45
45

75

45
60
45
60
60

1

21
49
67
83

111
133
157
179
207

223
239
251

277
297
315
339
351
385
399
415
431

447
475
497
519
541
557

581
611
621
661
683

695

115
733
759

781

803
821
835
851
815

895

909

LIST OF FIGURES ---

Figure Page Figure Page rigure Page Figure Page
~~o. No. No. Ho. No. 1'10. No. No.

3 26 105 51 200 76 335

2 6 27 108 52 201 77 347

3 13 28 113 53 203 78 352

4 17 29 115 51~ 210 79 353

5 24 30 121 55 213 80 354

6 28 31 122 56 218 81 361

7 32 32 124 57 220 82 367

8 35 33 127 58 226 83 370

9 37 34 129 59 229 84 372

10 39 35 138 ()O 235 85 373

11 43 36 1L~0 61 2lD 86 378

12 116 37 153 ()2 247 R7 379

13 57 38 161 63 25l~ 88 381

14 58 39 163 64 255 89 387

15 59 40 166 65 256 90 388

16 62 41 168 66 257 91 389

17 73 42 172 67 273 92 390

18 77 43 175 68 287 93 391

19 86 44 183 G9 294 94 393

20 88 45 186 70 318 95 396

-21 90 46 187 71 321 96 402

22 92 47 189 72 324 97 404

23 94 118 191 73 328 98 U09

24 97 49 193 74 330 99 424

25 99 50 195 75 332 100 429

Figure Page Figure Page Figure Page Figure Page
No. No. No. No. No. No. No. No.

101 433 127 560 152 623 178 690

102 439 128 561 153 625 179 692

103 440 129 56l~ 154 627 180 693

1 0 LI L~ 41 130 567 155 628 181 701

105 4H3 131 568 156 631 182 702

106 444 132 570 157 63LI 183 706

107 450 133 573 158 636 184 707

108 ll63 134 574 159 638 185 709

109 4G8 134 574 1()O 639 186 719

110 472 135 578 161 642 187 732

111 484 136 5811 162 643 188 735

112 488 137 586 163 644 189 7112

113 493 138 587 164 645 190 7113

114 494 139 588 165 6116 191 745

115 495 140 590 166 647 192 747

11 6 503 1 L~ 1 592 167 649 193 749

117 509 142 593 168 651 194 752

118 512 143 594 169 660 195 755

119 515 1114 596 170 662 196 762

120 516 145 598 171 664 197 767

121 521 1l~ 6 604 172 665 198 769

122 530 1ln 606 173 670 199 771

123 5L~ 3 1 LI8 608 174 677 200 774

124 544 1119 61l~ 175 678 201 776

125 551 150 616 176 680 202 886

126 553 151 618 177 689 203 887

INSTRUCTIONS TO THE STUDENT

This course has been especially designed to provide you with a
general orientation to the American National Standard COBOL language as
well as to teach you to use specific language features and the PLM and
it has been designed to do this as efficiently and quickly as possible.
Whether you acquire these skills efficiently and quickly, however, will
be determined by the way you go through the course.

This course has been carefully programmed. It is presented in a
sequence of steps or frames. You will be asked to respond to each
frame. A confirmation will then follow the frame showing a correct
response so that you may verify your response.

It is important that you respond carefully to each frame. Students
who merely "read" a programmed text often find they are unable to
perform a task in a subsequent frame, while those who respond to each
frame and then check their responses find they can perform the task
quickly and easily. The following frames will illustrate the types of
responses you will be asked to make.

1. You may be asked to select a correct answer from several choices
given in the frame. Since the correct response is given
following the frame, you will need a card (an IBM card would be
appropriate) to mask the correct response until you have
formulated your own response. Take a card now, and place it just
below the next set of three asterisks on this page. Now move the
card down the page to the following set of three asterisks.

* * *

This is the confirmation portion of the frame where the correct
response is found.

2. Most frames contain new information or present information in a
new context. Every frame will contain an instruction or a
question requiring a response. In this frame you are to choose
or select from two possibilities to complete a statement, and
then move your card down to expose the confirmation and the next
frame.

The language that is taught in this course is:

a. FORTRAN

b. American National Standard COBOL

* * *
b

3. The confirmation in the preceeding frame was £. You should have
marked ~ as your response. If both choices were correct the
confirmation might be "Both" or "Either"; if neither ~ nor b were
correct, the confirmation would be "Neither."

Try the same question again, and remember to move your card after
you have formulated your response.

The language that is taught in this course is:

a. PL/I

b. ALGOL

* * *

Neither

4. Many times you will be asked to select from more than two
choices. If you were given four choices, ~, ~. £, and £, and you
selected all of them as correct, the confirmation might be:

a. Eoth

h. All of these

c. finy of these

* * *

h,c

(If none of the choices is correct, the confirmation will be "None of
these.")

5. The confirmations "Either" and "Both" mean that choice ~ and
choice ~ should have been selected. "All of these" and "Any of
these" mean that every possible choice should have been selected.
Suppose choices ~, ~. £, and £ are presented and the confirmation
is "Any of these." You should have selected:

a. any but not all of the choices

b. four choices

c. ~,~, £, and d

d. at least one choice

* * *
b,c

6. You are not expected to spend eight hours a day studying this
course. If possible, include other activities between lessons.
Avoid the other extreme of too much time between lessons. Don't
allow time periods of a week to elapse between lessons.

Match the actions below with the points in a lesson at which the
act{on should be performed.

1) End of lesson a. Get a cup of coffee

2) Middle of frame b. Take a nap

c. Go out to lunch

d. continue with the
programmed text

* * *
1) a,b,c
2) d

7. In some frames you will be asked to construct a response rather
than select one. A lunch break should be taken at the end of a

* * *
lesson

8. A blank line in a frame does not indicate the length of response
you are asked to construct. A blank line could indicate that you
are to write:

a. one five-letter word.

b. six or eight words.

* * *
Either

9. You will also be asked to write American National Standard COBOL
statements as you progress through the course. The confirmation
to these frames will be shown as American National Standard COBOL
statements on coding forms. In order to respond to a frame in
which you are asked to write statements, you would need:

a. COBOL coding forms.

b. pencils.

* * *
Both

Before you begin the sequence of frames for Lesson 1, be sure you
have the following items on hand.

Language Specifications Manual
COBOL coding forms, Form X28-1464
Pencils
IBM card

Several lessons in this course will require that you code an American
National Standard COBOL solution to a problem incorporating statements
and rules covered in the lesson and previous lessons. In the
confirmation for these solutions, statements taught in the immediate
lesson are followed by a number in parentheses indicating the initial
frame in the sequence covering that statement. You should go to the
appropriate sequence and review the information whenever you do not
understand the use of a statement in the confirmation solution.

Some of the statements and features taught in this portion of the
course and in the subsequent portion on coding techniques and disk
applications are IBM extensions to the American National Standard COBOL.
The extensions are indicated by shading in the Language Specifications
Manual so that, whenever necessary, you can distinguish between
standards and IBM extensions.

Now begin Lesson 1.

LESSON 1

1

LESSON 1

INTRODUCTION

In 1959 a group of computer professionals, representing the U.S.
government, manufacturers, universities and users, formed the Conference
On DAta SYstems Language (CODASYL). At the first meeting, the conference
agreed upon the development of a common language for the programming of
commercial problems. The proposed language would be capable of
continuous change and development, it would be problem-oriented and
machine-independent, and it would use a syntax closely resembling
English, avoiding the use of special symbols as much as possible. The
COmmon Business Oriented Language (COBOL) which resulted met most of the
requirements.

As its name implies, COBOL is especially efficient in the processing
of business problems. Such problems involve relatively little algebraic
or logical processing: instead, they usually manipulate large files of
basically similar records in a relatively simple way. This means that
COBOL emphasizes the description and handling of data items and
input/output records.

In the years since 1959, COBOL has undergone considerable refinement
and standardization. NOW, an extensive subset for a standard COBOL has
been approved by ANSI (The American National Standards Institute), an
industry-wide association of computer manufacturers and users: this
standard is called American National Standard COBOL.

Aside from the COBOL language itself, you should know what happens
from the time your program is written until the desired output documents
are completed. This sequence is illustrated on the following page.

After the programmer has written the COBOL prograro on coding sheets,
the program is punched into cards. This is the source program. A
program called the compiler is loaded into the source computer. Then
the source program is loaded into the computer and the compiler
translates it into a language the computer can understand (machine
language). This version of the original COBOL program is the object
program. The object program is then ready to be loaded into the object
computer to process the data as specified by the programmer. A single
computer may be used as the source computer and then as the object
computer.

In this lesson you will look at a COBOL program and from it determine
relevant information about the problem and the program.

This lesson will require approximately three-quarters of an hour.

2

w

I':j
1-"

lO
C
11
ro
~

Not [
punched

I
I

IBM COBOL Coding Form

SYSTEM PUNCHING INSTRUCTIONS PAGE OF

PROGRAM GRAPHIC I I I [ICARD • IDENTIFICATION -~ I I I t I I " I

PROGRAMMER DATE PUNCH I I I I WORM.". 7~ @

SEQUENCE
A A

I

IB COBOL STATEMENT
"AGEl IS!~I"LI ,]. • 7 • U II 211 J4 ,. l2 :II 00 52 !e eo n

o 1 i - - -- - _.
02 I
03 1

04 :
05 I

0'6 I I
-

o 7 I
08 1
09 I
10 I
11 !
1 2 ~
13 I
14 I
15 :
1i6 I

1 7 I
11s 1

19 I
20 I

!
I

I
: i

- -

-.---. ,/

Used to Area A Area B
number/
the lines Used for program entries
of a program
(These numbers are not
required in the source deck.)

Used for
name of
program

4

1.

b

Figure 1 shows
COBOL programs.
on a:

the special form on which you will write your
Figure 1 shows that a CaBO!, program is written

a. COBOL source program.

b. COBOL Coding Form.

* * *

2. Columns 1-6 of the coding form are used for sequencing. Figure 1
show that:

a

3.

a. you can use these columns to number the lines of your
program.

b. sequence numbers must always be punched in the source deck.

* * *

The text of a COBOL program is made up of statements.
statement is a program entry. According to Figure 1,
statements you use in your COBOL program will be written in:

a. columns 1-6.

b. columns 1-72.

* * *

Each
the

Neither (columns 8-72)

4. There are two areas defined on a COBOL coding form called area A
and area B. Figure 1 shows that area A includes columns ••••••••
and area B includes columns •••••••••

8-11
12-72

* * *

5. Some program entries in a COBOL program must begin in area A and
others must begin in area B. An entry beginning in area A should
begin in the first column in that area. If an entry must begin
in area A, that entry should begin in:

a. column 8.

b. column 12.

* * *

a

Figure 2 contains a problem statement and its related COBOL program.
Although the problem itself has been simplified for use as an example,
the problem statement is probably more detailed than you would generally
receive. (Only the portion of the coding form containing our program is
shown in the example.)

Problem statement

A program is to be written to process data on an
IBM-1130 computer. The program is also to be
compiled on this computer.

The I/O devices to be used are a 1442 card
reader and 2310 disk drives.

Two input files are to be used. The first file,
an old master file on cards, contains customer
number, name, address, balance and the maximum
balance ever carried for the customer.

The second input file is a disk file. It
contains only the customer number and the
month's total purchase.

For each record in the old master file there is
a record in the transaction file.

A new master file is to be created on disk (the
output file). This file is to contain customer
number, name, address, present balance and
maximum balance.

The new present balance is to be computed by
adding the total from the transaction file to
the balance in the old master file.

If this new balance is greater than the old
P:iaximum balance, the maximum bal ance is to be
changed accordingly.

] A

] B

] C

] D

1 E

] F

] G

5

001 1 223 344 5 5 667
1. • • 5. • • • O. • • • 5. • • • o. . . . 5 •••• O. • • • 5. • •• 0 • • • • 5 • • . • 0 • • • • 5 •••• 0 • • • • 5 • • • • 0 ••

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
2201
2202
2203
2204
2205
2206
2207
2208
221

222
223
224
301
302
303
304
305

6

IDENTIFICATION DIVISION.
PROGRAM-ID. LESSON-1-EXAMPLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONI'ROL.

SELECT TRANSACTION-FILE ASSIGN TO DF-1-500-X.
SELECT MASTER-FILE ASSIGN TO RD-1442.
SELECT NEW-MASTER-FILE ASSIGN TO DF-2-600-X.

DATA DIVISION.
FILE SECTION.
FD MASTER-FILE.

LABEL RECORDS ARE OMITTED.
01 CUSTOMER-RECORD.

02 CUSTOMER-NUMBER PICTURE X(6).
02 NAME PICTURE X(20).
02 HOME-ADDRESS PICTURE X(30).
02 OLD-BALANCE PICTURE 9999V99.
02 MAXIMUM-BALANCE PICTURE 9999V99.
02 FILLER PICTURE X(12).

FD TRANSACTION-FILE.
BLOCK CONTAINS 10 RECORDS.
LABEL RECORDS ARE STANDARD.

01 PURCHASE-RECORD.
02 CUSTOMER-NUMBER-T PICTURE X(6).
02 TOTAL-PURCHASE PICTURE 9999V99.
02 FILLER PICTURE X(68).

FD NEW-MASTER-FILE
BLOCK CONTAINS 4 RECORDS
LABEL RECORDS ARE STANDARD.

01 NEW-CUSTOMER-RECORD.
02 CUSTOMER-NUMBER PICTURE X(6).
02 NAME PICTURE X(20).
02 HOME-ADDRESS PICTURE X(30).
02 PRESENT-BALANCE PICTURE 9999V99.
02 MAXIMUM-BALANCE PICTURE 9999V99.

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT MASTER-FILE, TRANSACTION-FILE
OUTPUT NEW-MASTER-FILE.

MAIN-ROUTINE.
READ MASTER-FILE AT END GO TO EOJ.

MOVE CUSTOMER-NUMBER OF CUSTOMER-RECORD TO
CPSTOMER-NUMBER OF NEW-CUSTOMER-RECORD.

] A

] B

C

D

E

MOVE NAME OF CUSTOMER-RECORD TO N~lE OF NEW-CUSTOMER-RECORD.
MOVE HOME-ADDRESS OF CUSTOMER-RECORD TO

HOME-ADDRESS OF NEW-CUSTOMER-RECORD.
MOVE OLD-BALANCE OF CUSTOMER-RECORD TO OLD-BALANCE

OF NEW-CUSTOMER-RECORD.
MOVE MAXIMUM-BALANCE OF CUSTOMER-RECORD

TO MAXIMUM-BALANCE OF NEW-CUSTOMER RECORD.
ADD TOTAL-PURCHASE TO OLD-BALANCE

GIVING PRESENT-BALANCE.]
IF PRESENT-BALANCE GREATER THAN MAXIMUM-]
BALANCE OF NEW-CUSTOMER-RECORD COMPUTE MAXIMUM
BALANCE OF NEW-CUSTOMER-RECORD=PRESENT-BALANCE.
WRITE NEW-MASTE R-RE CORD.
GO TO MAIN-ROUTINE.

EOJ.

F

G

CLOSE MASTER-FILE, TRANSACTION FILE, NEW-MASTER-FILE.
STOP RUN.

Figure 2

6. Read the problem statement in Figure 2. This will give you an
opportunity to see the relationship between a problem statement
and the COBOL program written to solve it. A COBOL program is
divided into four divisions:

Identification Division.
Environment Division,
Data Division, and
Procedure Division.

The divisions of a COBOL program must always be in the order
shown in the program in Figure 2. The first division in a COBOL
program must be the •••••••• Division.

* * *
Identification

7.

b

8.

The information in the
documentation. Therefore,
Division is to:

Ident ification
the purpose

Division is used for
of the Identification

a. give the computer instructions for executing the program.

b. describe, or identify, a program and distinguish it from
other programs.

The
the

division

* * *

of a COBOL program used to identify the program is
Division.

* * *

Identification

--

7

8. The
the

division of a COBOL program used to identify the program is
• ••••••• Division.

* * *
Identification

9. The second entry in the program in Figure 2 is the PROGRAM-ID
paragraph. A program must be given a unique name in the PROGRAM-
10 paragraph of the Identification Division. The name given to
the program in Figure 2 is:

a. LESSON-l-EXAMPLE

b. PROGRAM-ID

* * *
a
(Although the program name is the only entry required in the
Identification Division, you may also include such things as the date
the program was written, the programmer name, and remarks about the
program.)

10. The program in Figure 2 shows that the •••••••• Division
immediately follows the Identification Division.

* * *

Environment

---~-------------~---.------

8

11. In the problem statement in Figure 2, the equipment to be used
for the program is described in the statement(s) identified by:

a. bracket A.

b. bracket B.

* * *
Both

12. Brackets A and B in Figure 2 show that the equipment required by
a program is identified in the:

a. Identification Division.

b. Environment Division.

* * *
b

13. You would look in the Envirorurent Division of a COBOL program to
identify the:

Both

a. input/output devices required in processing_

b. computer(s) on which the program is to be compiled and
executed.

* * *

14. Can a COBOL program be executed on an 1130 computer of different
core size than the computer on which the program was compiled?

a. Yes.

b. No.

* * *
a

15. Match.

1) Identification
Division

2) E nvi ronme nt
Division

*

a. Names the program

b. Describes equipment

c. Identifies input/output devices
required and computer to be used

d. Identifies the program

* *
1) a,d
2) b,c

16. The portion of the problem statement in Figure 2 identified by:

Both

a. brackets C and D describes the records contained in the input
files to be used.

b. bracket E describes the records contained in the output file
to be created.

* * *

9

10

17. Figure 2 shows that the records in
processing are described in the ••••••••

* * *
Data

files that are used in
Division.

18. According to Figure 2 each record in the input file called
~ASTER-FILE contains all the information in the record described
under CUSTOMER-RECORD. Variables such as CUSTOMER-NUMBER, NAME
and HOME-ADDRESS describe data:

a. punched into cards.

b. to be used in the program.

* * *
Both

19. If you wanted to know what data is recorded on the records of a
particular file, you would look in the •••••••• Division.

* * *
Data

20. To identify input/output devices required by a COBOL program, you
would look in the •••••••• Division.

* * *
Environment

21. The Data Division of a COBOL program:

a. identifies the program.

b. describes records to be used in the program.

* * *
b

22. The last division of a COBOL program is the Procedure Division.

a

This division contains instructions that direct the data-
processing activities of the computer. Therefore, the Procedure
Division:

a. contains specific instructions for solving a data-processing
problem.

b. identifies the input/output devices required by the program.

* * *

23. Bracket F in Figure 2 shows that:

b

a. the Procedure Division describes the records to be used in
the program.

b. mathematical calculations can be specified in the Procedure
Division.

* * *

24. Bracket G in Figure 2 shows that the Procedure Division can
contain conditional instructions. You can see that the
instruction indicated by bracket G will cause:

Both

a. comparison of PRESENT-BALANCE with MAXIMUM-BALANCE OF NEW
CUSTOl-lER-RECORD.

b. the maximum balance to be adjusted only if the present
balance is greater.

* * *

25. The Procedure Division also contains instructions to direct the
input and output operations necessary in a program. For example,
a READ instruction causes a record to be read, or accessed, from
an input file. The data in the record is then available for
processing. You can infer that a WRITE instruction would cause:

a. a record to be written, or placed, in an output file.

b. a record to be accessed from an input file.

* * *

11

12

26. The Procedure Division of a COBOL program contains instructions:

a. for solving a data-processing problem.

b. specifying mathematical calculations.

c. to direct input and output operations.

All of these

27. Match.

1) Identification
Division

2) Environment
Division

3) Data Division

4) Procedure
Division

1) d,e
2) b
3) a
4) c

*

*

* *

a. Describes records to be used
in the program

b. Describes equipment required
by the program

c. Contains instructions for solving
the data-processing problem

d. Identifies the program

e. Names the program

* *

Figure 3 is an example of a COBOL program. The program is a sales
analysis. It was written for a department store to find departmental
totals for the year and the final total for the entire store. Each
employee is to be listed with the total amount he sold.

o o 1 1 2 2 3 3 4 4 S S 6 6 7
1 ..• 5 ..•. 0 ...• 5 0 .••• 5 •••. 0 •... 5 .•.. 0 .•.• 5 •••. 0 •.•• 5 •••• 0 .••• 5 ••.• 0 •.

101 IDENTIFICATION DIVISION.
102 PROGRAM-ID. SALES-ANALYSIS.
103 ENVIRONMENT DIVISION. '
104 CONFIGURATION SECTION.
105 SOURCE-CO~PUTER. IBM-1130.
106 OBJECT-COMPUTER. IBM-1130.
107 INPUT-OUTPUT SECTION.
108 FILE-CONTROL.
109 SELECT EMPLOYEE-MASTER ASSIGN TO DF-1-400-X.
110 SELECT PRINTFILE ASSIGN TO PR-1132-C.
111 DATA DIVISION.
112 FILE SECTION.
113 FD EMPLOYEE-MASTER
114 BLOCK CONTAINS S RECORDS
115 LABEL RECORDS ARE STANDARD.
116 01 EMPLOYEE-RECORD.
117 O~ DEPARTMENT PICTURE XX.
118 02 EMPLOYEE-NUMBER PICTURE XeS).
119 02 NAME PICTURE X(20).
120 02 SALES PICTURE 9999V99.
121 02 FILLER PICTURE X(20).
122 FD PRINTFILE
123 LABEL RECORDS ARE OMITTED.
124 01 PRINT-RECORD PICTURE X(120).
201 WORKING-STORAGE SECTION.
202 77 DEPARTMENT-l PICTURE XX VALUE IS 99.
203 77 DEPARTMENT-TOTAL PICTURE 99999V99 VALUE IS ZEROS.
204 77 FINAL-TOTAL PICTURE 999999V99 VALUE IS ZEROS.
20S 01 WORK-RECORD.
206 02 FILLER PICTURE X(lS) VALUE IS SPACES.
207 02 EMPLOYEE-NUMBER PICTURE X(5).
208 02 FILLER PICTURE X(15) VALUE IS SPACES.
209 02 NAME PICTURE X(20).
210 02 FILLER PICTURE X(15) VALUE IS SPACES.
211 02 SALES PICTURE 9999.99.
212 02 FILLER PICTURE X(55) VALUE IS SPACES.
213 01 TOTAL-RECORD.
214 02 FILLER PICTURE X(100) VALUE IS SPACES.
21S 02 TOTALS PICTURE $$$9999.99.
216 02 FILLER PICTURE x(22) VALUE IS SPACES.

Continued on next page.

13

o 0 1 1 223 344 5 5 6 6 7
1 ••• 5 •••• a •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••
217 PROCEDURE DIVISION.
218 BEGIN.
219 OPEN INPUT EMPLOYEE-MASTER OUTPUT PRINTFILE.
220 MAIN-SEQUENCE.
221 READ EMPLOYEE-MASTER AT END GO TO TAKE-TOTAL.
222 IF DEPARTMENT GREATER THAN DEPARTMENT-l PERFORM TAKE-TOTAL.
223 SET-UP.
224 ADD SALES TO DEPARTMENT-TOT~.
301 MOVE DEPARTMENT OF EMPLOYEE-RECORD TO DEPARTMENT OF WORK-RECORD.
3011 MOVE EMPLOYEE-NUMBER OF EMPLOYEE-RECORD

3012
3013
302
303
304
305
306
307
108
309
310
311
312
313
314
315
316
317

TO DEPARI'MENT OF WORK-RECORD.
MOVE NAME OF EMPLOYEE-RECORD TO DEPARTMENT OF WORK-RECORD.
MOVE SALES OF EMPLOYEE-RECORD TO SALES OF WORK-RECORD.
MOVE DEPARTMENT TO DEPARTMENT-1.

WRITE PRINT-RECORD FROM WORK-RECORD
BEFORE ADVANCING 2 LINES.

GO TO MAIN-SEQUENCE.
TAKE-TOT AL.

ADD DEPARTMENT-TOTAL TO FINAL-TOTAL.
MOVE DEPARTMENT-TOTAL TO TorALS.
MOVE ZEROS TO DEPARTMENT-TorAL.
WRITE PRINT-RECORD FROM TOTAL-RECORD

BEFORE ADVANCING 2 LINES.
FINISH.

MOVE FINAL-TOTAL TO TOTALS.
WRITE PRINT-RECORD FROM TOTAL-RECORD

BEFORE ADVANCING 2 LINES.
CLOSE EMPLOYEE-MASTER, PRINTFILE.
STOP RUN.

Figure 3

28. To find the narre of the program in Figure 3, you would look in
the •••••••• Division.

* * *
Identification

29. The name of the program in Figure 3 is

* * *
SALES-ANALYSIS

30. To identify the computer(s) on which the program is to be
compiled and executed, you would look in the •••••••• Division.

14

* * *

Environment

31. The names following SOURCE-COMPUTER and OBJECT-COMPUTER identify
the computers on which the program is to be compiled and
executed, respect·ively. The two groups of characters in the
names specify an IBM 1130 computer.

32. The
the

input/output devices required by the program can be found in
•••••••. Division.

* * *
Environment

33. 'I'he Data Division of the COBOL program in Figure 3 describes:

a. .records to be used in the program.

b. data to be used in the program.

* * *
Both

34. Which of the following represents information to be used in the
program in Figure 3?

a. N1WlE

b. LOCAL-ADDRESS

c. SALES

* * *
a,c

35. The last division in the program in Figure 3 is the Procedure
Division. This division:

b

a. describes the records to be used in the program.

b. contains specific
processing problem.

*

instructions for solving the data-

* *

36. The READ instruction in Figure 3 in the Procedure Division
specifies:

a. an input operation.

b. a mathematical operation.

* * *
a

15

16

37. The statement on line 224 in Figure 3 in the Procedure Division
specifies:

a. an input operation.

b. a conditional instruction.

* * *
Neither
(It specifies the mathematical operation of addition.)

38. The statement on line 303 in the Procedure Division specifies:

a. an output operation.

b. an input operation.

* * *
a

Read the problem statement in Figure 4. In order to be useful in
this lesson, the statement is more detailed than you probably would
receive.

An installation is equipped with an IBM 1130 computer. JA
A program for billing is to be written. Three input/output]
deyices will be required: a 1442 card reader, an 1132 printer and 8
a disk drive.

There are two input files. The master file, on disk , contains] C
the customer's name, address and number.

The transaction file contains a card for each purchase which has]
the customer number, stock number of parts purchased, description 0
of parts, quantity purchased, unit price, and the total amount of
purchase.

All purchases for each customer are to be totaled. State tax iSJE
to be computed at 4%. Then the total amount due is to be
calculated.

The output is to be on a preprinted bill in the following form:

r---.
I N~E I
I 1
I ADDRESS I
1------------ --------------- -------------- -------------- -----------1
I PART # DESCRIPTION QUANTITY UNIT PRICE TOTAL 1

Figure 4

SUB-TOTAL
TAX

TOTAL

92.00
3.68

95.68

39. As a programIr:er given the job of writing a COBOL program to solve
the problem described in Figure 4, you might first decide on a
nallie for the program. You would record this name in the ••••••••
Division of your program.

* * *
Identification

17

40. You would include the
Figure 4 in the ••••••••

*
Environment

information contained in bracket A of
Division of your program.

* *

41. The
the

information in bracket B of Figure 4 should be included in
•••••••• Division of your program.

* * *
Environment

42. In the Data Division of your program you should include a
description of the:

a. records described in brackets C and D of Figure 4.

b. output records, as illustrated in bracket F of Figure 4.

Both

43. The calculations
specified in the

Procedure

* * *

indicated by bracket E in Figure 4 should be
•••••••• Division.

* * *

44. You should include the instructions to perform the input and
output operations specified in the problem statement in Figure 4
in the •••••••• Division.

* * *
Procedure

--_._-------

18

SUMMARY:

You have now completed Lesson 1 in which you have learned to identify
the divisions of a COBOL program according to their function:

Identification Division--identifies the program
Environment Division--identifies the input/output devices

required and the computer to be used
Data Division--describes the records to be used in the

program
Procedure Division--contains instructions for solving the

data-processing problem

You have seen how a COBOL program is written on a standard coding
form. You have learned to relate various information in a problem
statement to corresponding entries in a COBOL source program.

Procedure Division

The
problem.
used:

Procedure Division contains the instructions needed to solve a
To accomplish this r several types of COBOL statements are

1. Input Operations - Beginning the Program.

The first step in building the Procedure Division is to make the
records contained in the input files available for processing. Use of
the OPEN verb establishes a line of communication with each file-input
and output. A check is made to ascertain that each file is available
for use, and the first record of the input file is brought into the
buffer - a special area of internal storage. Other housekeeping tasks
are also performed.

Next, a READ command makes the first record from each file available
for processing. AT END and INVALID KEY phrases may be appended to the
READ statement. These options will be discussed later.

2. Arithmetic Statements

The basic arithmetic operations are all accomplished by verbs
specified to impleroent addition, subtraction, multiplication and
division. The verb COMPUTE allows the programmer to incorporate roore
than one arithmetic operation in a single statement.

3. Conditional Statements

Some instructions examine data to determine whether a given condition
is present, and depending on what is found, to carry out an appropriate
course of action. The IF verb permits control of the program to be
switched or branched to various locations within the program depending
on the evaluation of one or more tested conditions. Possible error
conditions pertaining to data being processed or to results emerging
from computation of the data may be detected and handled through
particular usages of the condition statements.

4. Data Manipulation Statements

Data items may be copied from one storage location to another through
the use of the MOVE verb. The data being copied will exist in two
places the original location and the location to which the data is
woved.

5. Output Operations

When all arithmetic and data-manipulation statements
executed, the results will be output onto an external medium
listing, punched card, or magnetic disk. The output
performed by means of the WRITE verb.

have teen
printer

function is

19

6. Procedure Branching statements

Normally, COBOL instructions are processed sequentially, one at a
time. The GO TO verb allows the programmer to deviate or branch away
from the sequential processing of instructions. Such deviation permits
the program to switch direction depending on a variety of circumstances,
such as the nature of data being processed or the type of results
derived from arithmetic operations. The PERFORM verb also allows
alteration of program direction.

7. Ending the Program

After all data has been read, manipulated and results written onto an
output device, the program must be ended. The CLOSE verb closes files
that have been in use, and the STOP RUN verb initiates COBOL ending
~rocedures after which the execution of the program is halted.

END OF LESSON 1

20

LESSON 2

21

LESSON 2 - BASIC INPUT-OUTPUT STATEMENTS; CODING FORMAT

INTRODUCTION

As a computer programmer you will find it useful to be able to
display a message to the computer operator at a particular pOint during
execution of your program. For example, you may want to provide the
operator with a special instruction should an error be detected in the
data being processed. You may want to include a provision in your
program for requesting special information when a portion of the program
has been executed and then for accepting a reply from the operator.
Such messages and replies may be displayed and accepted through the
console typewriter. In this lesson you will learn to include provisions
in your program for displaying a message to the operator and accepting
his reply.

Specific COBOL language features you will learn to use in this lesson
are:

22

ACCEPT statement with the FROM CONSOLE option
DISPLAY staterr.ent with the UPON CONSOLE option
Working-Storage Section of the Data Division
Level number 77
PICTURE clause with picture character X
Division headers
Paragraph name in the Procedure Division

This lesson will require approximately three quarters of an hour.

1. Subsequent fraroes will often include card column captions such as
these:

0011223 344 5 5 6 6 1
1 ••• 5 •••• 0 •••• 5 .••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .•.• 0 ••

ACCEPT NAME FROM CONSOLE.

The statement shown above allows the computer operator to key a
name into storage through the console typewriter.

0011223 3 4 4 5 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •... 0 •.

Both

2.

ACCEPT DEPARTMENT FROM CONSOLE.

You might expect that the statement above allows:

a. a department number to be entered into storage through the
console typewriter.

b. a value such as 201 or 516 to be keyed into storage.

* * *

o 0 112 2 3 3 445 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .•.• 0 .•

ACCEPT NAME FROM CONSOLE.

The statement above allows the operator to:

a. key in a naroe such as JOHN SMITH.

b. key in only the word NAME.

* * *
a

23

I\J
+=

I':j
f-I.

I.Q
C
11
(1)

U'1

This diagram illustrates execution of the statement

Console Typewriter

STAFF!

l:=::======--=--- ---

1~
~~~~~LL- __ [l 
Co- L L L 
c... L- _______ _ 

CD When JOB-CODE is specified in 
an ACCEPT statement, a value 
such as ST AFFl can be keyed 
into the variable JOB-CODE 
through the console typewriter. 

Central Processing Unit 

JOB-CODE 

44 

Working storage 



· 3. Figure 5 shows how data is keyed into storage using the ACCEPT 
statement. Read the explanation and look at the illustration in 
Figure 5. The data name JOB-CODE in Figure 5 is the name of a 
location in working-storage. This location is reserved to hold a 
value (in this case an actual job code). The location is called 
a variable because it may contain various values in the course of 
the program. According to Figure 5: 

Both 

a. STAFFl is a value that may be keyed into the variable JOB
CODE through the console keyboard if JOB-CODE is specified in 
an ACCEPT statement. 

b. the value keyed in 
stored in the working 
ACCEPT statement. 

* 

through 
storage 

* 

the console keyboard will be 
location specified in the 

* 

(When an ACCEPT statement with the FROM CONSOLE option is executed, a 
system generated rressage code followed by AWAITING REPLY is written 
on the console typewriter. Execution is then suspended until the 
same message code followed by a message is keyed in through the 
console keyboard. Execution is resumed and the message is stored in 
thE working-storage location specified in the ACCEPT statement.) 

4. 

o 0 112 2 3 344 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

a 

ACCEPT NAME FROM CONSOLE. 

The statement above would: 

a. allow a value of NAME such as JOHN HANCOCK to be keyed into a 
location in working storage. 

b. store the word NAME in a location in working storage. 

* * * 

5. Using the statement in Frame 4, write a statement that would 
cause today's date to be entered into a location in working 
storage through the console typewriter. 

* * * 

001 1 223 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ACCEPT DATE FROM CONSOLE. 

25 



6. write statements in Area B of your COBOL coding form to allow the 
computer operator to enter a value of the following variables 
through the console typewriter. 

1) PAYMENTS-DUE 

2) CUSTOMER-NUMBER 

* * * 
1) 

COl 1 2 2 3 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ACCEPT PAY~ENTS-DUE FROM CONSOLE. 

2) 

o 0 112 2 3 344 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ACCEPT CUSTOMER-NUMBER FROM CONSOLE. 

(Statements can begin anywhere in Area B.) 

26 



7. 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ... 5 •.•• 0 •••. 5 ••.• 0 •••• 5 •.•• 0 •••• 5 •••• 0 ..•• 5 •••. 0 •.•• 5 •••• 0 •.•• 5 ••.. 0 •• 

ACCEPT JOB-CODE FROM CONSOLE. 

0011223 3 4 4 556 6 7 
1 •.• 5 •••• 0 •.•• 5 •••• 0 .••• 5 •••. 0 •••• 5 •••• 0 ..•• 5 ••.. 0 •••• 5 •••• 0 .••. 5 •••. 0 .• 

DISPLAY JOB-CODE UPON CONSOLE. 

The ACCEPT statement above would allow a value of the variable 
JOB-CODE to be entered through the console typewriter. The 
DISPLAY statement would cause data to be written on the console 
typewriter, as illustrated in Figure 6. Read the explanation and 
look at the illustration in Figure 6. 

27 



tv 
00 

I-zj 
1-1' 

1.0 
~ 

~ 
0"1 

This diagram illustrates execution of the statement 

I' III EI'Flpl~~rl¥19BI-lcfFI9nlolpFI~lfrflsloILIEI·III"1 

Console Typewriter 

CLERK2 

t....Lc..CLLL ___ [l 
I~ c.... t.... Co L L .. 

c...LLL 

c.. L-- ======= 

CD The value CLERK2 is transferred 
to (written on) the console 
typewriter from the variable 
JOB-CODE 

Central Processing Unit 

JOB-CODE 
orking Storage 



001 1 223 3 4 4 5 5 6 6 1 
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DISPLAY NAME UPON CONSOLE. 

According to Figure 6 the statement above would be used to: 

a. allow a value of NAME to be entered into storage. 

b. write a value of NAME on the console typewriter. 

* * * 
b 

8. 

o 0 112 2 3 3 445 5 6 6 1 
1 ••. 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DISPLAY PROGRAM-NAME UPON CONSOLE. 

The statement above would be used to: 

a. write the word PROGRAM-NAME on the console typewriter. 

b. allow a value of PROGRAM-NAME to be entered into a variable 
in working storage through the console keyboard. 

* * * 
Neither (write a value of PROGRAM-NAME on the console typewriter.) 

_________________________________________________________ 4~ ____________ _ 

9. Which statement below would be used to write a value of a 
working-storage variable such as 12/21/68, 05/01/68, or 1/12/69 
on the console typewriter? 

a. 

001 1 223 3 4 4 556 6 7 
1 ..• 5 ••.• 0 .••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DISPLAY DATE UPON CONSOLE. 

b. 

001 1 223 3 4 4 556 6 7 
1 .•• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DISPLAY 12/21/68 UPON CONSOLE. 

* * * 
a 

29 



10. write statements to write a value of the following variables on 
the console typewriter. 

1) OPERATOR-NAME 

2) EXACT-TIME 

* * * 

1) 

o 0 112 2 3 344 5 5 6 6 7 
1 ... 5 ..•• 0 ..•• 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DISPLAY OPERATOR-NAME UPON CONSOLE. 

2) 

o 0 112 2 3 344 5 566 7 
1 .•. 5 •.•• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

30 

DISPLAY EXACT-TIME UPON CONSOLE. 

11. A Working-storage Section is not the same as the working-storage 
on the V2 disk pack. It is instead a data area in core. 

a 

Defining a Working-Storage Section in the Data Division does not 
refer to working-storage in the disk pack. 

a. True. 

b. False. 

* * * 



12. 

o 0 112 2 3 344 556 6 7 
1 ... 5 .... 0 ..•. 5 .... 0 •.•• 5 .••. 0 •••• 5 •••• 0 •••• 5 .••• 0 •••. 5 •••. 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
WORKING-STORP.GE SECTION. 
77 JOB-CODE PICTURE XXXXXX. 

Before a variable such as JOB-CODE can be specified in an ACCEPT 
statement (or a DISPLAY statement), a location in working-storage 
must be reserved for JOB-CODE. This is done by defining JOB-CODE 
in the Working-Storage Section of the Data Division as shown 
above. 

o 0 1 1 2 2 3 344 556 6 7 
1 ..• 5 ..•. 0 •••• 5 .••• 0 .••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 .••• 0 •• 

Both 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 LAST-NAME PICTURE XXXXXXXXXX. 

The entries above: 

a. reserve a location in working storage for values of LAST
NAME. 

b. define the variable LAST-NAME so that it can be specified in 
an ACCEPT statement 

* * * 

(The nurr.ber 77 before the data name LAST-NAME indicates that LAST
Nill',E will have values that are single data items. The level number 
77 is always used for single data items, which are also called 
independent data items.) 

13. Match each explanation with the correct portion of a COBOL 
program. 

1) Definition of a a. Allows a value to 
variable in the be keyed into a 
Worki ng-Storage variable defined 
Section of the in working storage 
Data Division through the 

console typewriter 

2) ACCEPT statement b. Reserves a location 
in working storage 

3) DISPLAY statement c. writes a value of a 
variable in working 
storage on the 
console typewriter 

* * * 
1) b 
2) a 
3) c 

31 



14. 

32 

COBOL Character Set 
(in collating sequence, beginning with the highest value) 

9

0

) (numbers) 

Z) (letters) 

A 

= (equal sign) 
n or' (quotation mark, apostrophe, or single quotation mark) 

(comma) 
/ (slash, virgule, strokcl 

(hyphen or minus symbol) 
(right parenthesis) 

* (asterisk) 
$ (currency symbol) 
+ (plus symbol) 

(left parenthesis) 
(period or decimal point) 
(blank) (The notation frequently used to indicate a blank 

is ~.) 

Figure 7 



00112 2 3 3 4 4 556 6 7 
1 •.. 5 •.•• 0 •.•• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
wORKING-STORAGE SECTION. 
77 JOB-CODE PICTURE XXXXXX. 

PICTURE clause 

In the description of JOB-CODE above, the six X-characters in the 
PICTURE clause specifiy that values of JOB-CODE will be six 
characters long, although values transferred to JOB-CODE may be 
less than six characters long. Each X specifies that the 
character in that position way be any character in Figure 7. A 
value that could be transferred to JOB-CODE as it is defined in 
the Data Division entry above is: 

a. S'IENO 

b. CLERK3 

c. bNGR#2 

d. TECH~4 

* * * 
a,b,d 
(The word PICTURE is a necessary part of the PICTURE clause; .£ is 
wrong because # is not acceptable in an X picture.) 

15. 

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

a,b 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 TIME PICTURE XXXXX. 

A value that could be 
the above Data Division 

a. could be made up of 

transferred to TIME as it 
entry : 

any characters in Figure 

b. could be a maximum of five characters. 

c. could be 12:35. 

* * * 

is described in 

7. 

(Although it is possible that you will use additional characters from 
the EBCDIC character set as a programmer on the job, you will be 
using the COBOL character set in this course.) 

33 



16. Match the values with the appropriate variables described below: 

1) 

0011223 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 ••.. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

77 PAY-CODE PICTURE XXXX. 

2) 

0011223 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

77 PROBLEM PICTURE XXXXX. 

3) 

o 0 1 1 2 2 3 43 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

77 PERSONNEL-CODE PICTURE XXX. 

a. A/039 

b. 620951 

c. UPDT1 

d. EG4 

€. 9208 

* * * 
1) d,e 
2) a,c,d,e 
3) d 

34 



w 
U'I 

I-zj 
1-" 

~ 
Ii 
(I) 

00 

Division head 
Section heade 

Data descript 

Format Requirements for Sample Data Division 

IBM COBOL Coding Form 

SYSTEM 

PROGRAM 

PROGRAMMER IDATE 
---

SEQUENCE I- ! jrequired hyphen is A IB 
(PAGE) (SERIAL) U 

1 j 4 6 7 8 112 16 /2') 24 ?A 

I I 0111 

~r 

[' 

.on entry-

; / 
I / 

rn ~ If IA! In , I\J lXs 110 N. 
W OR K:' N 16-' ST 0 IR A GE 5 EC TI 10 
7rJ ;J 10 Is- leo rn E 1-- PI CT UR E, X 

I --l- t-- i"-
r-t-.. 

I 
............ 

Cont: 

Division header, section header and 
level number 77 begin in Area A 

N. 
XIX 

f'., 

PUNCHING INSTRUCTIONS 

GRAPHIC I CARD 

PUNCH -1 FORM =# 
--- ---

C()BOLSTATEMENT 

j2 JtJ 40 44 48 52 

I I I I I I I I Ii 111 
) I I I I I I I I I I I I 

Division header, 
~ section header, and 

~ 
I--~ p -",vdata description ent~9 

~ 
j...-

x X 
'" 

v v end with a period 
IV I I I I I I I I I I I I 

I II I I I I I I I I I I 

~ 
...J 

b'~(')<:O(l)1-zj 
(I) .... ·::rOJ .... ·~ .... • 
I-"rtOJIi<:rt~ 
0::r11 .... • .... ·11c: 
~ OJ OJ Ul .... ·11 
• (I) (1 0' ..... (I) (I) 

OJ rt I-" 0 ell 
(') (I) (I) :J • 
::r11 00 

Ul '"0 (l) 
ro ::tl ::s I-:j 
o ortOu') 
1-" I-' GJ Ii I-" ::r 
::s 0 ~ 1-" I-" 0 
rt:J~(I)O~ 
~~Ul~Ul 

1-'" I 
~ Zrtrt 

~o::rrt 
I'zl 3: ro::r 
1-" ~ t:j 11 ro 
~::r' (1)(1) 
C:(I) Ul~ 
11::S (I) OJ (') 
(l) <:1180 

OJ <: ro Ii 
00 '< I-' (I) I-' Ii 

o c: (I) (l) 
O'C::(I)OJ (') 
(I) Ul 1-" rt 
H\ I-" :J 
o::r 0 
I1OJO(')I":j~ 
(l) <: ton OJ 1-" 0 

(I) rt~ 11 
I-' 1-" c:: 8 
0(') '"0011 OJ 
oO~:J(I)rt 
;,r;OtO 
1-" (I) GJ 1-" 00 
::s Ot~:J ~ 
~ :t:II OJ 0 

rt~~::S11 
::rl 0 Ot 

OJ(I)ZI1 ~ 
rt :t:II;,r;rtl1 

(I) ~ 1-" Ii 1-" 
::s~::s'<rt 

rt rt ~ 1-" 
::r11 ~::s 
ro 1-" ~ Ul Ii ~ 

(I) 1-" rt 1-" 
Ull-'Orttj 

(1.. I-" 11 1-" OJ 
o OJ:Jrt 
::s(') ~I.OOJ 
~::rO'(I) 
1-" (I) (I) rt tj 
Ii (') H1 ::r 1-" 
8~ 0(1)< 
OJ (I) 11 1-" 
rt rt 1-" t::l Ul 
1-" ::r 1.0 rt OJ 1-" 
O(l)::r::rrto 
::S8rt(l)OJ::S 



* * * 
o 0 112 233 4 4 5 5 6 6 7 
1 ... 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •.•• 5 •••• 0 •.•• 5 •••• 0 •• 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 PROGRAM-NAME. PICTURE XXXXXXXX. 

18. Write the Data Division entries to describe the working-storage 
variable DEPARTMENT, which will contain values such as X109,A924, 
and Z125. 

* * * 
o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ... 5 •••• 0 .... 5 •••. 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•. 5 •••• 0 •• 

36 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 DEPARTMENT PICTURE XXXX. 

19. ~he note at the lower right in Figure 8 states that wherever a 
space is indicated: 

a. it may be orritted. 

b. more than one space is allowed. 

* * * 
b 



W 
-.J 

tlj ..... 
~ 
Ii 
CD 

'" 

Guide for Coding the Data Division with Level 77 Entries in the Working-Storage Section 

Division heade 
Section header 

r 

Data descriptio 
(as many as ne 

n entries_ 
cessary) 

Necessary hyphen 

I 
A IB COBOL STATEMENT 

8 ,12 1 16 20 24 28 32 36 40 44 48 52 

D AT AI Dl ~l 51 10 N. Each entry ends 

W 10 RIK! , NG l. ST OIR AG E C.T \ '0 N. - I--f- with a pe riod. ,~ --
SE 1---I--- ~ -

717 !d. 0.+ a. -h 0.. 1111 e -11 PI c.r UR E D , c. I+u ye - 0 .f- :d a.t 10. -n Ia. me -I~~ 
77 :d a.+ a. -n (l 1YJ11e. -12 PI CT IU RE p ic. tu re. -0 f- :d a. i+ Ia. -n Clm e- 2\ 

I · I · · 
I 

I 
Data names are contained in Area B 

Division header, section header, and level number 77 begin in Area A 

More than one space is allowed wherever a space is indicated. 



20. Figure 9 is a general guide for coding the Data Division with 
level 77 entries in the Working-Storage Section. Figure 9 shows 
that the division header and the section header are written: 

a. for each level 77 entry. 

b. only once regardless of the number of level 77 entries. 

* * * 
b 

21. Using Figure 9 as a guide. code the Data Division with entries 
to reserve storage for the working-storage variables LOAN
ACCOUNTS and PROGRAM-NUMBER. LOAN-ACCOUNTS is to have values 
such as 123. 486. and 019. PROGRAM-NUMBER is to have values such 
as 67. 91. and 02. 

* * * 
001 1 2 2 3 344 556 6 7 
1 .•• 5 •••• 0 .•.• 5 •.•. 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.. 0 •••• 5 •••. 0 •••• 5 •••• 0 •• 

38 

DATA DIVISION. 
wORKING-STORAGE SECTION. 
77 LOAN-ACCOUNTS PICTURE XXX. 
77 PROGRAM-NUMBER PICTURE XX. 



IBM AMERICAN NATIONAL STANDARD COBOL RESERVED WORDS 

No word in the following list should appear as a programmer defined 
name. 

The words below which are preceded by a • are not reserved words in 
1130 COBOL, but should be avoided for compatibility with other American 
National Standard COEOL compilers. 

ACCEPI' • COMP-2 • DECLARATIVES 
ACCESS • COMP-3 • DELETE 
ACTUAL COMP-4 DEPENDING 
ADD COMPUTATIONAL • DESCENDING 

• ADDRESS • COMPUTATIONAL-l • DETAIL 
ADVANCING • COMPUTATIONAL-2 • DISP 
AFTER • COMPUTAT IONAL- 3 DISPLAY 
ALL COMPUTAT IONAL-4 • DISPLAY-ST 
ALPHABEI'IC COMPUTE • DISPLAY-n 
ALTER CONFIGURATION DIVIDE 
ALTERNATE CONSOLE DIVISION 
AND • CONSTANr DOWN 

• APPLY CONTAINS 
ARE • CONTROL 0 EJECT 
AREA • CONTROLS ELSE 
AREAS COpy END 

• ASCENDING • CORE-INDEX END-OF-PAGE 
ASSIGN • CORR • ENDING 
AT • CORRESPONDING . ENTER 
AUTHOR CSP • ENTRY 

CURRENCY ENVIRONMENT 
• BASIS • CURRENT-DATE EOP 

BEFORE • CYL-INDEX EQUAL 
• BEGINNING • CYL-OVERFLOW • EQUALS 

BLANK COl ERROR 
BLOCK CO2 EVERY 
BY C03 EXAMINE 

C04 • EXCEEDS 
CALL COS • EXHIBIT 

• CANCEL C06 EXIT 
• CF C07 • EXTENDED-SEARCH 
• CH COS 
• CHANGED C09 FD 

CHARACTERS C10 FILE 
• CLOCK- UNITS Cll FILE-CONTROL 

CLOSE C12 FILE-LIMIT 
COBOL FILE-LIMITS 

• CODE DATA FILLER 
• COLUMN DATE-COMPILED • FINAL 
• CON-REG • DATE-WRITTEN FIRST 

COMMA • DE • FOOTING 
COMP • DEBUG FOR 

• COMP-l • DECIMAL-POINT FROM 

39 



• GENERATE LINKAGE • POSITION 
GIVING LOCK • POSITIONING 
GO LOW-VALUE POSITIVE 

• GOBACK LOW-VAIDES • PREPARED 
GREATER • LOWER-BOUND • PRINT-SWITCH 

• GROUP • LOWER-BOUNDS • PRIORITY 
PROCEDURE 

• HEADING • MASTER-INDEX PROCEED 
HIGH-VALUE MEMORY • PROCESS 
HIGH-VALUES MODE PROCESSING 

• HOLD MODULES PROGRAM 
• MORE- LABELS PROGRAM-ID 

I-a MOVE 
I-a-CONTROL MULTIPLE QUOTE 

• ID MULTIPLY QUOTES 
IDENTIFICATION 
IF • NAMED RANDOM 
IN NEGATIVE • RANGE 
INDEX NEXT • RD 

• INDEX-n NO READ 
INDEXED • NOMINAL READY 

• INDICATE NOT RECORD 
• INITIATE NOTE • RECORD-OVERFLOW 

INPUT • NSTD-REELS • RECORDING 
I NPUT- OUT PUT • NUMBER RECORDS 

• INSERT NUMERIC REDEFINES 
INSTALLATION • REEL 
INTO OBJECT-COMPUTER • RELEASE 
INVALID • OBJECT-PROGRAM • REMAINDER 
IS OCCURS REMARKS 

OF • RENAMES 
JUST OFF • REORG-CRITERIA 
JUSTIFIED • OH REPLACING 

OMITI'ED • REPORT 
KEY ON • REPORTING 

• KEYS OPEN • REPORTS 
• OPTIONAL • REREAD 

LABEL OR RERUN 
• LABEL-RETURN • OTHERWISE RESERVE 
• LAST OUTPUT RESET 

LEADING • OV • RETURN 
• LEAVE • OVERFLCM • REl'URN-CODE 

LEFT • REVERSED 
LESS • PAGE • REWIND 

• LIBRARY • PAGE-COUNTER • REWRITE 
• LIMIT PERFORM • RF 
• LIMITS • PF • RH 
• LINAGE • PH RIGHT 
• LINAGE-COUNTER PIC ROUNDED 
• LINE PICTURE RUN 
• LINE-COUNTER • PLUS 

LINES 

40 



• SA SW13 USAGE 
SAME SW14 • USE 

• SD SW15 USING 
• SEARCH SYNC 

SECTION SYNCHRONIZED VALUE 
SECURITY • SYSIN • VALUES 
SEEK • SYSIPT VARYING 

• SEGMENT-LIMIT • SYSLST 
SELECT • SYSOUT WHEN 

• SELECTED • SYSPCH WITH 
SENTENCE • SYSPUNCH WORDS 
SEQUENTIAL • SOl WORKING-STORAGE 
SET • S02 WRITE 
SIGN • WRITE-ONLY 
SIZE TALLY • WRITE-VERIFY 

• SKIPl TALLYI~ 

• SKIP2 • TAPE ZERO 
• SKIP3 • TERMINATE ZEROES 
• SORT THAN ZEROS 
• SORT-CORE-SIZE • THEN 
• SORT- FILE-S IZ E THROUGH 
• SORT-MODE-SIZE THRU 
• SORT- RE~URN • T IME-OF- DAY 
• SOURCE TIMES 

SCURCE- COMPUTER TO 
SPACE • TOTALED 
SPACES • TOTALING 
SPECIAL-NAMES TRACE 
STANDARD • TRACK 

• START 0 TRACK-AREA 
STATUS • TRACK-LIMIT 
STOP • TRACKS 
SUBTRACT • TRANSFORM 

• SUt-: 0 TYPE 
• SUPERVISOR 
• SUPPRESS • UNEQUAL 
• SUSPEND UNIT 

SWO UNTIL 
SW1 UP 
SW2 UPON 
SW3 • UPPER-BOUND 
SW4 • UPPER-BOUNDS 
SW5 • UPSI-O 
SW6 • UPSI-1 
SW7 • UPSI-2 
SW8 • UPSI-3 
SW9 • UPSI-4 
SW10 • UPSI-5 
SW11 • UPSI-6 
SW12 • UPSI-7 

Figure 10 

41 



The words in uppercase letters in the coding guide Figure 10 are 
COBOL reserved words. They are reserved for a specific meaning in the 
COBOL language, and they may not be used as names in a COBOL program. 
Words not on this list may be used to indicate names or specifications 
supplied by the programmer using tne COBOL language. They are often 
called user names or user-supplied words. User names such as JOB-CODE 
and DEPARTMENT are called data names. Data names may be any combination 
of digits, letters and hyphens with a maximum length of 30. The data 
name must contain at least one letter, and the initial and final 
characters must not be hyphens. In addition to fitting these rules, 
data names must not be COBOL reserved words. A list of COBOL reserved 
words is given in Figure 10. You may refer to this list whenever you 
are coding to verify that names you are supplying in your program are 
not COBOL reserved words. . 

The Procedure Division contains instructions that direct the data
processing activities of the computer. If a programmer wishes to 
display a message to the operator during execution of his program, he 
will code a DISPLAY statement in the Procedure Division. If he wants to 
allow the operator to reply through the console typewriter, he will code 
an ACCEPT statement in the Procedure Division. The order in which he 
codes the statements in this division will depend on the order of the 
data-processing activities or the logic of his problem solution. 

42 



+= 
w 

~ 
~. 

~ 
11 
('t) 

~ 
~ 

Format Requirements for Sample Procedure Division 

IBt4 COBOL Coding Form 

SYSTEM PUNCHING INSTRUCTIONS 

PROGRAM GRAPHIC CARD 

PROGRAMMER IDATE PUNCH FORM =IF 
- -- - - - - -

IB COBOL STATEMENT 
I 
I 12 16 20 24 28 32 36 40 44 48 52 

~ [ loT1Tn I i I Tr--~T -nl I I 
J--l-~ ,- I ! ! .• i ! i J! -- -iij 
I ! I I I I I! I I IT' I, 1 : I , 

I : i: Iii· i i Division header 
Division header P!RjO:~:E D U RED' \II, Sl , 0 N! • i ; . ~ i; _+_ paragraph name', [[ 
Paragraph name oiplEIR,A TOR - R 0 UTI NiE . I ! ~ , i / and statements 
(user supplied) ! i IACC.EPT JOS-ICOi1\IE! FIROT~ {~.ON5'OLE V end ,with a period tt: 

Statements to -I' I I lI
i

'l '["'1. • v' ': ~ I 

do processing i 1 tD , s!p LlA'I J 0 Bi- CO!DE lu pIa N t!O NlsiO L E • i i! I 

Statement to- .: i iSIT 0 P RUN. I! Ii, i 1 \!. l!] II 
halt execution I ! I I i I \j I I _ I I ! I 1 1 1 I 

of the object I \' 
program Statements contained in Area B More than one space 

is allowed wherever 
Division header and paragraph name 
begin in Area A 

a space is indicated 



22. Although there is no standard order for statements in the 
Procedure Division, there are some format requirements. Figure 
11 shows a sample Procedure Division containing ACCEPT and 
DISPLAY statements. The format requirements for this example are 
indicated bl the figure. Follow the example in Figure 11 and 
determine which of the following is written correctly. 

a. 

0011223 3 4 4 556 6 7 
1 ... 5 .... 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

PROCEDURE DIVISION. 

b. 

ACCEPT JOB-CODE FROM CONSOLE. 
DISPLAY JOB-CODE UPON CONSOLE. 
STOP RUN. 

o 0 112 233 445 5 6 6 7 
1 ... 5 .•.. 0 ••.• 5 •... 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •• 

PROCEDURE DIVISION. 
MAIN-SEQUENCE. 
ACCEPT JOB-CODE FROM CONSOLE. 
DISPLAY JOB-CODE UPON CONSOLE. 
STOP RUN. 

c. 

o 0 112 2 3 3 4 4 556 6 7 
1 ... 5 .... 0 •••. 5 .•.. 0 •••• 5 •.•. 0 •••. 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••. 0 •••• 5 •••• 0 •• 

44 

c 

PROCEDUR~ DIVISION. 
~~IN-SEQUENCE. 

ACCEPT JOB-CODE FROM CONSOLE. 
DISPLAY JOB-CODE UPON CONSOLE. 
STOP RUN. 

* * * 

(Example ~ has no paragraph name. The statements in example b should 
begin in Area B.) 

23. In the Procedure Division of a COBOL program, statements that are 
logically related are grouped into paragraphs. In a program as 
short as that shown in Figure 11 all the statements in the 
Procedure Division might be grouped into one paragraph. Every 
program must have at least one paragraph in the Procedure 
Division, and each paragraph must be identified by a paragraph 
name preceding the first statement. In the example in Figure 11: 

a 

a. the group of statements in the Procedure Division is 
identified by the name OPERATOR-ROUTINE. 

b. a paragraph name is not required for a program as short as 
this one. 

* * * 



24. A paragraph name is chosen by the programmer. Which is correct? 

a 

a. The paragraph in Figure 11 could have a name other than 
OPERATOR-ROUTINE. 

b. The first paragraph in a program is always named OPERATOR
ROUTINE. 

* * * 

(A paragraph name may be any combination of digits, letters and 
hyphens with a maxiwurr length of 30. The initial and final characters 
must not be hyphens. In addition to fitting these rules, paragraph 
names must not be COBOL reserved words.) 

45 



.&:: 
~ 

~ 
~. 

lQ 
C 
t1 
m 
I-' 
N 

Guide for Coding the Procedure Division 

A IB 

Division header-----I 

Paragraph name'----=fj~~~ 

Statements to ------I 
do processing 
Statement to 
halt execution 
of object program 

COBOL STATEMENT 

Division header and paragraph name begin in Area A 



25. Figure 12 is a general guide for coding the Procedure Division. 
Following the guide, try to write the Procedure Division entries 
for the paragraph SEQUENCE-1. The statements in this paragraph 
are to: 

1) allow a value of CODE-DATA to be entered into working storage 
through the console typewriter. 

2) write a value of CODE-DATA on the console typewriter. 

3) halt execution of the object program. 

* * * 
0011223 344 5 5 6 6 7 
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

PROCEDURE DIVISION. 
SEQUENCE-1. 

ACCEPT CODE-DATA FROM CONSOLE. 
DISPLAY CODE-DATA UPON CONSOLE. 
STOP RUN. 

(Although coding in this 
readability, statements may 
be separated by one or more 
B. Any statement may be 
continued on the next line.) 

text will be shown in this format for 
be coded as shown below. Statements must 
blanks and they must be contained in Area 

broken wherever a blank appears and 

o 0 1 1 2 233 445 5 6 6 7 
1 .•. 5.' ••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

26. 

PROCEDURE DIVISION. 
SEQUENCE-1. ACCEPT CODE-DATA FROM 

CONSOLE. DISPLAY CODE-DATA UpeN 
CONSOLE. STOP RUN. 

o 0 1 1 2 2 3 344 5 5 6 6 7 
1 •.• 5 ••.• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •• 

Both 

DISPLAY JOB-CODE UPON CONSOLE. 

The statement above will: 

a. write the job code that is stored in working storage on the 
console typewriter. 

b. write a value of the variable JOB-CODE on the console 
typewriter. 

* * * 

47 



SUMMARY: 

You have now completed Lesson 2 in which you have learned coding for 
the Data and Procedure Divisions of 1130 COBOL, and the procedure of 
transferring data to and from the computer through the console 
typewri ter. 

END OF LESSON 2 

48 



LESSON 3 

49 



LESSON 3 - BASIC STANDARD CODING ENTRIES 

INTRODUCTION 

Lesson 3 will teach you certain standard coding entries for the Data, 
Identification and Environment Divisions. You will also learn the usage 
of both numeric and non-numeric literals, which are often needed for 
printed output. The STOP RUN statement is included since it is the 
statement used to conclude programmed procedures. 

Upon the completion of this 
understanding of what elements are 
though simple - program. 

lesson, 
needed 

you will have 
to comprise a 

a clearer 
complete 

This lesson will require approximately three quarters of an hour. 

50 



1. 

o 0 112 2 3 344 556 6 7 
1 ... 5 .••• 0 •••• 5 ..•. 0 •••• 5 •••• 0 •••• 5 •••• 0 .••. 5 •••• 0 •••• 5 •••• 0 •.•• 5 .••. 0 •. 

Both 

DISPLAY 'ENTER DATE' UPON CONSOLE. 

In a statement such as the one above, the exact message to te 
written is specified in the DISPLAY statement. Since ENTER DATE 
is stored with the DISPLAY statement itself as part of the object 
coding and is not a variable name, you might expect that: 

a. the programmer need not specify an area in working storage 
for the ~essage. 

b. no Data Division entries must be written for the message to 
be displayed. 

* * * 

2. Match the result with the statement that will cause it. 

1) 

00112 2 3 3 4 4 556 6 7 
1 ... 5 ...• 0 .... 5 .••. 0 .... 5 ••.. 0 •..• 5 .••• 0 .••. 5 •.•• 0 •••• 5 ••.. 0 •.•• 5 .... 0 .. 

DISPLAY DATE UPON CONSOLE. 

2) 

001122334 4 556 6 7 
1. . • 5. . . • O. . • • S. • • . O. • • • 5. • • • O. • • • 5. • . • 0 • • • • 5 • • • • 0 • • '. • 5 • • • • 0 • • • • 5. • • . 0 • . 

DISPLAY 'DATE' UPON CONSOLE. 

a. 'The word DATE will be written on the console typewriter. 

b. The word 'DATE' will be written on the console typewriter. 

c. A value of the variable DATE will be written on the console 
tYfewri ter. 

* * * 
1) c 
2) a 

3. Quotation marks in a DISPLAY statement indicate that: 

a. the value of the variable is to be written. 

b. the message enclosed within quotation marks is to be written. 

* * * 
b 

51 



4. 

o 0 1 1 2 233 4 4 5 5 6 6 7 
1 ••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •.•• 5 .••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •• 

DISPLAY 2468 UPON CONSOLE. 

0011223 3 445 5 6 6 7 
1 ••• 5 •••• 0 ..•• 5 ••.• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 

52 

Both 

DISPLAY '2468' UPON CONSOLE. 

Any combination of characters in Figure 7, with the exception of 
a quotation roark which would be recognized as an end of a 
message, may be enclosed in quotation marks and specified in a 
DISPLAY statement. Any combination of digits may be specified in 
a DISPLAY statement without quotation marks. A combination of 
digits without quotation marks will be recognized as a numeric 
literal by the COBOL compiler and will be stored in a certain 
form as part of the statement itself. A combination of 
characters in Figure 7 enclosed in quotation marks will be 
recognized as a nonnumeric literal and will be stored in another 
form. Either statement above will result in 2468 being written 
on the console typewriter. The compiler would recognize 256 as 
a: 

a. numeric literal if it were written as 256. 

b. nonnumeric literal if it were written as '256' 

* * * 

(The form in which a literal is stored determines how it may be used 
by the program. In a subsequent lesson you will learn to specify 
numeric literals in computations as well as DISPLAY statements.) 

5. Match each exarrple with the correct term. 

1) Numeric literal 

2) Nonnumeric literal 

a. 'ENTER OPERATOR CODE' 

b. 8000 

c. '8000' 

* * * 
1) b 
2) a,c 



6. Write what would be written by each statement. 

1) 

0011223 3 4 4 556 6 7 
1 .•• 5 ••.• 0 •••. 5 ..•• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DISPLAY 5090 UPON CONSOLE. 

2) 

0011223 3 4 4 556 6 7 
1 ..• 5 .•.. 0 ...• 5 •••. 0 •.•• 5 .••• 0 ••.• 5 ••.• 0 •.•. 5 •••• 0 •••• 5 •••. 0 •..• 5 •.•. 0 •. 

1) 5090 

DISPLAY 'Et-.lTER NUMBER OF ACCOUNTS' 
UPON CONSOLE. 

* * * 

2) ENTER .NUMBER OF ACCOUNTS 

---------------------------------------------------------------------~--

7. In order to write a literal on the console typewriter the 
programmer must: 

a. reserve a location in working storage for the literal. 

b. always enclose the literal in quotation marks. 

* * * 
Neither 
(Numeric literals do not require quotation marks.) 

8. ENTER NUMBER OF PAYMENTS DUE. 

Which statement would write the message above on the console 
typewriter? 

a. 

o 0 112 2 3 344 556 6 7 
1 ... 5 ..•. 0 •... 5 •••• 0 •.•. 5 •••• 0 .••• 5 •••• 0 .••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •. 

h. 

DISPLAY 
'ENTER NUMBER OF PAYMENTS DUE.' 
UPON CONSOLE. 

0011223 344 556 6 7 
1 .•• 5 •.•• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 .••. 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •• 

DISPLAY ENTER NUMBER OF PAYMENTS DUE. 
UPON CONSOLE. 

* * * 
a 
(Statement Q would result in an error message at compile time.) 

53 



9. write a statement to write the following message on the console 
typewriter. 

ENTER PROGRAM-NA~E. 

* * * 

o 0 1 1 2 233 4 4 5 5 6 6 7 
1 .•• 5 •.•• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DISPLAY 'ENTER PROGRAM NAME.' 
UPON CONSOLE. 

10. Write a statement to write whatever value has been stored in the 
variable PROGRAM-NAME on the console typewriter. 

* * * 
0011223 3 4 4 5 5 6 6 7 
1 •.. 5 .••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 .••• 5.~ •• 0 •• 

DISPLAY PROGRAM-NAME UPON CONSOLE. 

11. The programmer must define a location in working storage for: 

a. a literal. 

b. a variable. 

c. a word or words enclosed in quotation marks. 

d. numbers not enclosed in quotation marks. 

* * * 
b 

When a message specified as a literal in a DISPLAY statement is too 
long to fit into a single line on a coding form, the programmer may use 
a continuation line as explained in the sections titled CONTINUATION OF 
NONNUMERIC LITERALS and CONTINUATION OF WORDS AND NUMERIC LITERALS in 
the Language Specifications Manual. 

The next sequence of frames will provide you with opportunities to 
practice coding the Data Division and Procedure Division entries that 
you have learned up to this point. whenever you are asked to code, you 
may refer to the general guides in your Language Specifications Manual. 

54 



12. Write the Data Division entries for LOAN-ACCOUNTS ~hich ~ill 
contain values such as 129, 131, 010 and 063. 

* * * 
001 1 2 2 3 3 4 4 556 6 7 
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 LOAN-ACCOUNTS PICTURE XXX. 

(The data name and its PICTURE clause may be written anywhere in Area 
B. The level number 77 must be in Area A.) 

13. The order of the statements in the Procedure Division depends on 
the logic of the program. If you wish to display a message to 
the operator and to accept his reply, you should code: 

a. an ACCEPT statement first. 

b. a DISPLAY statement first. 

* * * 
b 

55 



14. NOw, on the same coding sheet, 
entries for the paragraph SEQUENCE-l 
steps: 

a. Write the m~ssage 

write the Procedure Division 
to perform the following 

ENTER NUMBER OF LOAN-ACCOUNTS DUE. 
on the console typewriter. 

b. Allow the number of loan accounts that are due to be keyed 
into LOAN-ACCOUNTS. 

c. Write the value of LOAN-ACCOUNTS on the console typewriter. 

(Remember to write a STOP RUN statement at the end of the program 
to halt execution.) 

* * * 
001122334 4 5 5 6 6 7 
1 .•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0~ ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

PROCEDURE DIVISION. 
SEQUENCE-i. 

DISPLAY 
'ENTER NUMBER OF LOAN-ACCOUNTS DUE.' 

UPON CONSOLE. 
ACCEPT LOAN-ACCOUNTS FROM CONSOLE. 
DISPLAY LOAN-ACCOUNTS UPON CONSOLE. 
STOP RUN. 

[The DISPLAY statement above can be coded entirely on one line or as 
shown above. Statements can be broken wherever a space occurs 
(except within a nonnumeric literal) and continued anywhere in Area 
B. With the exception of continuing a nonnumeric literal, no 
continuation character is required in column 7.] 

15. Write all the necessary Procedure Division entries for the 
paragraph MAIN-SEQUENCE, in which the value of PROGRAM-NAME is to 
be entered into storage through the console typewriter. 

* * * 
0011223 344 5 5 6 6 7 
1 ..• 5 •••. 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

56 

PROCEDURE DIVISION. 
MAIN-SEQUENCE. 

ACCEPT PROGRAM-NAME FROM CONSOLE. 
STOP RUN. 

16. Figure 13 describes a problem to be solved. As a COBOL 
programmer, you probably will never be given such a simple 
problem. However, this problem will give you an opportunity to 
practice some entries that you have learned and that you might 
use in a more realistic problem later. Working from the problem 
statement in Figure 13, write the Data Division and the Procedure 
Division for the solution on a new coding sheet. 



Problem Statement 

1) In the paragraph BEGIN, the following message is to be 
written on the console typewriter: 

KEY IN OPERATION-CODE. 

2) A value of OPERATION-CODE 
through the console keyboard. 
a form such as: 

is to be entered into storage 
Values of OPERATION-CODE have 

106A, 509X, or 287Q. 

3) The value of OPERATION-CODE is to be written on the console 
typewriter. 

Figure 13 

* * * 
o 0 112 233 4 4 5 5 6 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 OPERATION-CODE PICTURE XXXX. 
PROCEDURE DIVISION. 
BEGIN. 

DISPLAY 'KEY IN OPERATION-CODE.' 
UPON CONSOLE. 

ACCEPT OPERATION-CODE FROM CONSOLE. 
DISPLAY OPERATION-CODE UPON CONSOLE. 
STOP RUN. 

In the remalnlng sequence of frames you will learn to code the 
Identification Division and the Environment Division, and then 
you will code a complete COBOL program. 

57 



17. 

0011223 3 4 4 556 6 7 
1 ••• 5 •••• 0 .••• 5 ••• ·.0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •• 

a 

IDEN'I'IFICATION DIVISION. 
PROGRA~-ID. FILE-UPDATE. 

Figure 14 

The above figure shows the minimum requirements for an 
Identification Division of a COBOL program. As the division 
header implies, this division identifies the program. In the 
example above, the name of the program is: 

a. FILE-UPDATE 

b. PROGRAM-ID. FILE-UPDATE. 

* * * 

(A program name may be any combination of digits, letters, and 
hyphens with a maximum length of 30. The initial character must be 
alphabetic, and the final character must not be a hyphen. In 
addition to fitting these rules, program names ~ust not be COBOL 
reserved words. Although a program name may have a maximum length of 
30, only the first five characters are used for identification. 
Therefore, the first five characters of a program name should not te 
duplicated in any other program name.) 

18. The IDENTIFICATION DIVISION has 6 entries, only the PROGRAM-ID is 
mandatory. The others are optional. The following example shows 
all six of them. 

o 0 112 2 3 344 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

58 

IDENTIFICATION DIVISION. 
PROGRAM-ID. TESTING. 
AUTHOR. JOHN PROGRAMMER. 
INSTALLATION. MARYLAND USA. 
DATE-WRITTEN. MARCH 29,1970. 
SECURITY. A-14-1669. 
RE~ARKS.THIS PROGRAM IS A SAMPLE PROGRAM 

FOR IEM 1130 COBOL. 



U'1 
\0 

t'Zj 
1-" 

\.Q 
C 
11 
ro ... 
U'1 

Division he 
Paragraph 

Optional 
paragraphs 

Guide for Coding the Identification Division 

Division header and entries begin in Area A 

Necessary hyphens 

) 
~ I B /I COBOL STATEMENT 

i 'I 32 36 40 44 48 52 

ader i ~;E ~T , , i~IA Tl DiN ID I' IV I 5 'j iO'1IJ • iii ~ 
name PIRbt;!R ~ ~- liD. I p Y olQ yonl", -ll'I o.~ e • . I I I I 

AI'TH110' tl c.o ... ,-'e" n + ~ en + yol" • I I -I-

,,",, n • 1111 lin • r-r-I- :--f-- Each comment entry 
I N 5h":~ (L iAl1 , 0 N. e olnm enl+ - e.~" ;Y!Y • r-r--~way be any combination+--

DIAIT E;L ~ R , TTIEN. c.1o Imm eln t - e" +irl" . of characters from the l-

I _ ~ ,;E BCDIC set. 1-. 

5 EC U!R I Ti'l. C. 01"'1" e~ t - ern + Y"1'l • ~::~~~vv ! • I 'J I 
R E~IAIRI~ s. c. om "'Ie nl+ - e~ + r~ • ~I- . : -.J-+--+-+---1 

I f\ vV -L 1 i L 
/' 

Division header, paragraph names, 
and comment entries end with a period. 

Every period must be followed by at 
least one space. 



19. Figure 15 is a general guide for 
Division. Use Figure 15 to determine 
examples is written correctly. 

a. 

coding the Identification 
which of the following 

o 0 112 2 3 3 4 4 556 6 7 
1 ..• 5 ..•• 0 •••• 5 ••.. 0 •.•• 5 .••. 0 •••. 5 •••• 0 •.•• 5 .••. 0 ••.. 5 •.•• 0~ •.• 5 .... 0 .. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. FILE-UPDATE. 
DATE-WRITTEN. 10/16/68. 

h. 

o 0 112 2 3 344 556 6 7 
1 ... 5 •.•• 0 •.•. 5 ••.. 0 •.•• 5 .••. 0 .••. 5 •••. 0 •.•. 5 ••.• 0 •••• 5 •••. 0 .••. 5 •.•. 0 •. 

IDENTIFICATION DIVISION. 
AUTHOR. SMITH. 
DATE WRITTEN. 02/31/68. 

c. 

o 0 112 2 3 344 556 6 7 
1 .•• 5 .... 0 ...• 5 •••. 0 •.•• 5 •••• 0 •... 5 ••.• 0 •••. 5 .••• 0 •••• 5 •••. 0 .•.• 5 •..• 0 •• 

a,c 

60 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SALES-ANALYSIS. 

* * * 



20. Use Figure 15 to determine which of the following examples is 
written correctly. 

a. 

o 0 112 233 4 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 ••• ·.5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PHOGRA~-ID.SALES ANALYSIS. 

b. 

o 0 112 2 3 3 4 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION 
PROGRAI--l-ID. CARD-TO-TAPE 

c. 

o 0 112 2 3 344 556 6 7 
1 ••• 5 •••• O •••• 5 •••• O •••• 5 •••• o •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRA~-ID - PERSONNEL-MASTER. 

* * 
None of these 

* 

(In a the space following a period is missing. 
following the division header is missing. In £ 
misplaced and a period is missing.) 

In ~ the period 
the hyphen is 

21. Follow the coding guide in Figure 
Identification Division entries for a 
Code only the required entries. 

15 and try to write the 
program called PAYROLL. 

* * * 
o 0 1 1 2 2 3 344 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PAYROLL. 

61 



a-. 
I\.) 

~ ..... 
~ 
11 
m 
~ 
a-. 

Format Requirements for Sample Environment Division 

IB14 COBOL Coding Form 

SYSTEM PUNCHING INSTRUCTIONS 

PROGRAM GRAPHIC CARD 

PROGRAMMER IDATE PUNCH FORM =IF 

COBOL STATEMENT 

20 28 32 36 40 44 48 52 

.... 11101111 i., r - "\\K- - 1- r - !!1!LW-Lj-r-~-
DIVlf?IOn header E NV lIRIOIN"ENT D' 'J' 5 ~ON~'~ Division header 

Section header C O!N F! , 1(:IU'Q!t. T \ 0 N 5 E C. T ~lQiN~ " section header,' i 
SOURCE -COMPUTE R - 5010' R:C ElL c. aMP UTE' R • \ BrM ~, , 3 KJ I f-~:: ;a~d entrie~ end -+-j -+--1--+ 

paragraph Ii'll .1 1 I~ 1\ v with a perIod + 
OBJECT-COMPUTER-- OI~JEICIT-CIOIMPUITI~R .r\,1 8M-,' ',30'~ i/ 1 I I ,It_~!, I ! ! :- +-
paragraph , I ~ \ i ! ! 1 'I I' ,I! I ' 

~ , 4- ~ 

Optional section that 
may be included for 
documentation 

Begin in Area A 

Paragraph names must be followed 
by a period and at least one space 



22. Figure 16 shows a sample portion of the Environment Division 
called the Configuration Section. It specifies the computer 
configuration used to compile the program as well as the one used 
to execute the program. For example. the SOURCE-COMPUTER 
paragraph in Figure 16 indicates that the source program is to be 
compiled on an IBM 1130 computer. The OBJECT-COMPUTER paragraph 
in Figure 16 indicates that the object program is also to be 
executed on an IBM 1130. 

o 0 112 2 3 344 5 5 6 6 7 
1 ..• 5 •••• 0 •.•• 5 •••. 0 •••• 5 •••. 0 •••. 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

Both 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-CO~PUTER. IB~-1130. 

In the example above. the Configuration Section indicates that: 

a. the source program is to be compiled on an IBM-1130 computer. 

h. the object program is to be executed on an IEM-1130 computer. 

* * * 

23. A program called PAYROLL is to be compiled on an IBM-1130 
computer. It is to be executed on an IBM-1130 computer. Use 
Figure 16 to determine which of the following Environment 
Divisions contains a correct Configuration Section for PAYROLL. 

a. 

o 0 112 2 3 3 445 5 6 6 7 
1 ••• 5 .•.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •• 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER IBM-1130. 
OBJECT-COMPUTER IBM-1130. 

h. 

o 0 112 2 3 344 5 5 6 6 7 
1 ..• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0.~ •• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 

* * * 
b (a is wrong because periods are missing in the SOURCE-COMPUTER 

and OBJECT-COMPUTER clauses.) 

63 



24. Write the Identification and Environment 
program COMMISSION-CALCULATION, which will 
executed on an IBM-1130 computer. 

* * * 

Divisions for 
be compiled 

the 
and 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 ..• 5 .••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 ••• _0 •••• 5 ••• ~0.~ •• 5 •••• 0 ••• ~5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. COMMISSION-CALCULATION. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 

25. Write the Identification, Environment, and Data Division for the 
program DATA-LIST, in which values such as SALES and TAXES will 
be read into and written from the variable PROGRAM-NAME. DATA
LIST will be compiled and executed on an IBM-1130 computer. 

* * * 
0011223 3 4 4 5 5 6 6 7 
1 .•• 5 •.•• 0 •••. 5 ••.. 0 •••• 5 •••• 0 •••• 5 ••• _0 •• ~.5 •••• 0._ •• 5 •••• 0 •••• 5 •••• 0 •. 

64 

IDENTIFICATION DIVISION. 
PROGRAM-ID. DATA-LIST. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 PROGRAM-NAME PICTURE XXXXX. 



26. Code the Data and Procedure Divisions to provide for the 
following: 

1) In paragraph MESSAGE-ROUTINE, the message 
ENTER NUMBER OF PAYMENTS DUE. 
is to be written on the console typewriter. 

2) The number of payments due is to be keyed into the variable 
PAYMENTS-DUE. 

3) PAYMENTS-DUE will have values such as 106,235, and 084. 

4) The message END-JOB is to be written on the console 
typewriter. 

* * * 
001 1 2 2 3 3 445 5 6 6 7 
1 ••• 5 •••• o •.•• 5 •••• o •••• 5 •••• o •••• 5 •••• o •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•. 0 •• 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 PAYMENTS-DUE PICTURE XXX. 
PROCEDURE DIVISION. 
MESSAGE-ROUTINE. 

DISPLAY 
'ENTER NUMBER OF PAYlvlENTS DUE.' 

UPON CONSOLE. 
ACCEPT PAYMENTS-DUE FROM CONSOLE. 
DISPLAY 'END-JOB' UPON CONSOLE. 
STOP RUN. 

65 



21. The solution to the problem described below will include entries 
that you will code in many of the programs that you will be 
writing as a programmer on the job. Code all divisions for the 
program UPDATING to do the following: 

1) In paragraph SEQUENCE-1, ~rite the following message on the 
console typewriter: 
ENTER~ODAYS~DATE. 
(Since an embedded quotation mark would be recognized as the 
end of a nonnumeric literal, it must be replaced by a blank.) 

2) Allow a value of DATE to be entered into storage through the 
console keyboard in a form such as: 
06/21/68, 12/01/68, or 03/09/69. 

3) Write the value of DATE on the console typewriter. 

UPDATING will be compiled and executed on an IBM-1130. 

* * * 
0011223 344 5 5 6 6 1 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. UPDATING. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
11 DATE PICTURE XXXXXXXX. 
PROCEDURE DIVISION. 
SEQUENCE-1. 

DISPLAY 'ENTER TODAY S DATE.' 
UPON CONSOLE. 

ACCEPT DATE FROM CONSOLE. 
DISPLAY DATE UPON CONSOLE. 
STOP RUN. 

(44) 

(49) 

(12) 

(22) 

(1) 

(22) 

(The number in parentheses at the end of each entry identifies the 
frame in which the use of that entry was introduced. Your solution 
may appear different but be correct provided you have followed the 
rules for placement of entries and for separation and breaking of 
statements.) 

SUMMARY: 

You have now completed Lesson 3 in which you have learned coding for 
three divisions in a COBOL program and more about the simple procedure 
of transferring data to and from the computer through the console 
typewriter. Although the ACCEPT and DISPLAY statements provide one way 
to transfer data to and from the computer, they are usually used for 
low-volume input and output such as codes or messages. 

A larger volume of data would require a more efficient input or 
output device such as a card reader, printer, or disk drive. You will 
learn to use COBOL language features to process larger volumes of data 
in subsequent lessons. 

END OF LESSON 3 

66 



LESSON 4 

67 



LESSON 4 - INTRODUCTION TO DATA FILES 

INTRODUCTION 

In many data-processing activities related data items are grouped 
into a record of data. For example, the data items relating to a single 
customer may be grou~ed into a record for that customer. The record may 
be punched into a card, printed in a report, or stored on magnetic tape 
or disk. Processing a file of such records would involve processing a 
large volume of data. Although you will not learn to process a complete 
file in this lesson, you will learn to code the Data Division entries 
for using record variables. 

Specific COBOL language features you will learn to use in this lesson 
are: 

68 

Level numbers 01 and 02. 
Repetition factor in the PICTURE clause. 
ACCEPT statement 

This lesson will require approximately one hour. 



1. 

o 0 112 2 3 344 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

b 

2. 

b 

77 DATE PICTURE XXXXXXXX. 

The entry above describes a variable in working storage whose 
values throughout execution of the program will be single data 
items. A single data item, a data item that is not subdivided 
further, is called an elementary item. A variable whose values 
throughout execution of the program will be elementary items, 
then,"is an elementary variable. 

r--------------------, 
I DATE I 

~~~~Y I~~~~~l 
In the diagraro above, the variable DATE has been subdivided into
the variables MONTH, DAY, and YEAR. The values of MONTH, DAY,
and YEAR will be single data items. In this example, an
elementary variable is:

a. DATE.

b. MONTH,DAY, or YEAR.

* * *

r--------------------------------,
I LOG-RECORD I

l=~~~;-~=~~~~~I O~~~TO~~J
Several related elementary variables may be grouped together as a
group variable. The variables may be referred to individually or
as a group. The elementary variables PROGRAM-NUMBER and
OPERA~OR-NAME in the diagram above have been grouped together as
the variable LOG-RECORD. LOG-RECORD is:

a. an elementary variable.

b. a group variable.

* * *

69

3.

a,c

4.

Both

70

A.

r---,
I EMPLOYEE-RECORD 1

1-----------------[----------------1----------------- 1
I NAME HOME-ADDRESS EMPLOYEE-NUMBER I
I (20 characters> (30 characters) (5 characters) 1 L________________ _________________ _ ________________ J

B.

r--,
I CUSTOMER-RECORD 1

1----------------1----------------1---------------- 1
1 NAME HOME-ADDRESS BALANCE 1
1 (25 characters> (30 characters) (5 characters) 1 L________________ _________________ _ _____________ ~-J

A number of related elementary variables may be grouped together
into a group variable. A group variable is usually called a
record variable. For instance, in diagram A, the variables whose
values may refer to one employee are grouped into a record
variable for a single employee. Diagram B shows:

a. a grouping of related variables whose values refer to one
customer.

h. a grouping of four elementary items.

c. a record variable whose values refer to one customer.

* * *

r---,
1 EMPLOYEE-RECORD 1

1-----------------0· -----------------1-----------------1
I NAME HOME-ADDRESS EMPLOYEE-NUMBER 1
I (20 characters) (30 characters) (5 characters) 1 L________________ _______________ _ ________________ J

In a program, a reference can be made to the record variable or
to any of the elementary variables within the record variable.
In the example in the diagram above, a reference could be made
to:

a. all the elementary variables with the record variable name
EMPLOYEE-RECORD.

h. any of the elementary variables, such as NAME, HOME-ADDRESS,
or EMPLOYEE-NUMBER.

* * *

5. Throughout execution of a program, a variable in storage:

a

6.

Both

a. may have various values.

b. has a constant value.

* * *

r--,
1 CUSTOMER-RECORD 1

1-----------------[----------------1----------------1
1 NAME HOME-ADDRESS BALANCE I
1 (25 characters> (30 characters> (5 characters> 1 L-________________ ________________ _ _______________ J

The group of data items that are the values of the elementary
variables in a record variable constitute a record.

If a value of each of the elementary variables in the record
variable in the diagram above were punched into a card, the card
would contain:

a. data for one customer.

b. a record.

* * *

7. A record variable:

a

a. may have various records as values throughout execution of a
program.

h. has a constant record value throughout execution of a
program.

* * *

71

8.

Both

72

r--,
I CUSTOMER-RECORD I
'-----------------I-----------------I--------------~-' I NAME HOME-ADDRESS BALANCE I
I (25 characters> (30 characters> (5 characters> I L-________________ _________________ _ _______________ J

Values of NAME, HOME-ADDRESS, and BALANCE in the record variable
illustrated above have been punched into a separate card for each
customer.

Throughout execution of a program that processes these cards:

a. The record variable CUSTOMER-RECORD will contain various
records of data.

b. the elementary variables in CUSTOMER-RECORD will contain
values from various cards.

* * *

..J
VJ

I"zj
1-"

~
I"i
Cl)

I-'
...J

Data Division Entries that Reserve Storage for a Record Variable in Working Storage

Record description """"" 17 "' ..

entry~r IAIl~ I'I~I~ • ~
~~~I ~- ~~ lill~N~ 

Data description 1.1 IL ~- • _ 
t I:' - II ~X"tX~. 

en ry I L ~ It" PI~11UIA ~(25). J 

~ 
t-- ------

I I 

I 
Record variable name 
and level number 02 
begin in column 12 

Level number 01 
begins in column 8 

00123 NORMAN JONES 

.~ __ ~ ____ ~ILI __________ ~ __________ ~ 

/ ~ PROGRA~-NUMBER OPERATOIR-NAME 

III I LOG-RECORD------.....J 

1/ 
II 

//j 
// 

~Working Storage 
Variable 

~Working Storage 

1~ ~~~r:.~LL--_-~ c..LLL-

Co. L.... ========== / The record description entry in the Working-Storage Section 
of the Data Division reserves working storage for the record 
variable LOG-RECORD so that LOG-RECORD can be 
specified in an ACCE PT statement and values can be keyed 
into LOG-RECORD through the console typewriter . 



74 

9. Figure 11 shows how storage is reserved for a record variable. 

Both 

Read the explanation and look at the illustration in Figure 11. 
The variables PROGRAM-NUMBER and OPERATOR-NAME are grouped into 
the record variable LOG-RECORD which is: 

a. a variable containing a record of data. 

b. a location in storage that will contain a record of data. 

* * * 

10. A record that is a value of LOG-RECORD shown in Figure 11 will 
consist of: 

a. two elementary values. 

b. values for both PROGRAM-NUMBER and OPERATOR-NAME. 

* * * 

Both 

11. If values of the variables in LOG-RECORD are to be keyed in 
through the console typewriter, storage for these variables would 
be reserved with entries in: 

a. the Configuration section of the Environment Division. 

b. the Working-storage section of the Data Division. 

* * * 
b 

12. Figure 11 shows the Data Division entries that reserve storage 
for the record variable LOG-RECORD. In these entries: 

Both 

a. only the elementary variables are described with the PICTURE 
clause. 

b. an entry with the level number 01 contains no PICTURE clause 
if it is further subdivided. 

* * * 

(Group items do not contain a PICTURE clause; eleroentary items do.) 



13. According to Figure 17: 

a. an entry for a record variable is indicated by the level 
nUmber 01. 

b. an entry for an elementary variable is indicated by the level 
number 02. 

* * * 
Both 
[If a programmer wishes to treat elementary variables as independent 
variables he defines them as level 77 in working storage. If he 
wishes to treat them as part of a record variable, he defines them as 
level 02 (or 03 or lower, depending on the levels of subdivision) in 
the record description entry.] 

14. In Figure 17, you can see that: 

a. a level 01 entry begins in column 8. 

b. a level 02 entry begins in column 12. 

* * * 
Both 

15. Figure 17 shows that: 

a. a record description entry usually consists of both level 01 
and level 02 entries. 

b. a data description entry consists of an entry for an 
elementary variable. 

* * * 
Both 

16. Match the bracketed portions of the Data Division entries below 
with the correct type of entry. 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
WORKING-STORAGE SECTION. 

{ 

01 CODE-DATA. 
1) { 02 DATE PICTURE XXXXXXXX. 

2) 02 JOB-CODE PICTURE XXXXXX. 

a. Data description entries 

b. Record description entry 

* * 

1) b 
2) a 

* 

75 



17. 

o 0 112 2 3 344 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

Both 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 CODE-DATA. 

02 DATE PICTURE XXXXXXXX. 
02 JOB-CODE PICTURE XXXXXX. 

The Data Division entries above: 

a. reserve an area in working storage for the record variable 
CODE-DATA. 

b. reserve locations in storage for the elementary variables 
DATE and JOB-CODE. 

* * * 

18. In Figure 17 the PICTURE clause for OPERATOR-NAME specifies that 
values of the variable will be 25 characters long. The number 
enclosed in parentheses is called a repetition factor. A PICTURE 
clause for PROGRAM-NUMBER could also be written with a repetition 
factor. Code the data item description entry for the variable 
PROGRAM-NUMBER using the repetition factor. 

* * * 
0011223 344 5 5 6 6 7 
1 ..• 5 •••• 0 •••. 5 •••• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

02 PROGRAM-NUMBER PICTURE X(5). 

76 



..J 

..J 

~ 

Divisio 
Section 

~. Record 
~ entries 
I'i 
CD (as rna 
~ 

n header 
header 

description 

tly as necessary) 

ex) Data de ~~ 
entries 
(as rna tly as necessary) 

A 

Guide for Coding the Data Division with Level 01 and 

Level 02 Entries in the Working-Storage Section 

Necessary hyphen 

I 

IB COBOL STATEMENT 

8 .12 \ 16 20 -24 28 32 36 40 44 48 52 

ro~~~ ~I\N Is loiN I I I I 111T1 
J I \ J. f--- - --- I- + Each entry ends~ _ -- -_ 1-_ 

56 

!~ 0 R KIIIN G~- 5 T OIRIA GIE 5~~tt lk) ~ · ~ ______ ;~~~~With a period "f'-f'- ~ 
1~ll I. d 10. 1 ~f--f.-I-~I--~f- f'-- "'-ye~OIY -:n=rr~-: _!f:-""":" ___ -- -- _ _ -----__ --- -f-.-- _ 1_ 

__ ~2 ~~+~-name~l PlCTlulAE pietUT~~Qf-d~+A-n:~~~~~~ 
-""" :0~, idla to. - no.\'fl~ - Z P I erlulB E pi c.t U;C e - Q J,-Idlo. +10. - n Q.IT e -12 . I 

I : _____ -f--- - -__ ----- --f- ___ 1-_ -- _ _ _ -1-1-- - ---- -_ 

-11 lye c.o yld -mlo.lrr e. - 2 ._ _ _ __ 
il2 dl~+a-n~~le-11 Plcr!ulRE pi~+uye-of-ldla+ld-hld~le-1. 
to} 2 diG. fa. -In am e- 2 J?I CT IUB _t. ~t c.+ uly e.- of -Id IQI+ Iel. - na. rtf! _12. 

· I · · -- - - - -- I- -- I-- c--- - - - -- --· ! · I-- - f-- -• -- -- - -- - l-I 

I 0--_ -1--- - -I---- -- - - --- -'---

Leord names and level number 02 begin in Area B 

Division header, section header, and level number 01 begin in Area A 

.. 
\l) 



r-------------------~---------------------------------, 1 EMPLOYEE-RECORD 1 
1-----------------]-----------------]-----------------1 I .NA~E HOME-ADDRESS EMPLOYEE-NUMBER I 
I (20 characters) (30 characters) (S characters) I L________________ _________________ _ ________________ J 

Figure 18 is a guide for coding the Data Division with level 01 
and level 02 entries in the Working-storage Section. 

Using the guide in Figure 18, determine which Data Division 
entries for the record variable diagramed above are correct. 

a. 
o 0 112 2 3 344 S S 6 6 7 
1 ..• 5 •••• 0 •••• S •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 EMPLOYEE-RECORD PICTURE X(55). 

02 NAME PICTURE X(25). 
02 HOME-ADDRESS PICTURE X(30). 
02 EMPLOYEE-NUMBER PICTURE XXXXX. 

b. 

o 0 112 2 3 344 556 6 7 
1 ..• S •.•• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

78 

b 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 EMPLOYEE-RECORD. 

02 NAME PICTURE X(20). 
02 HOME-ADDRESS PICTURE X(30). 
02 EMPLOYEE-NUMBER PICTURE XeS). 

* * * 

(a is incorrect because the level 01 entry contains a PICTURE clause 
for a group variable.) 



20. 

r--------------------------------, 
1 LOG-RECORD , 

1---------------. -~-------------' 
1 PROGRAM-NUMBER OPERATOR-NAME' L________________ _ ____________ J 

00112 2 3 3 4 4 556 6 7 
1 ••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ACCEPT LOG-RECORD FROM CONSOLE. 

The statement above will allow values of PROGRAM-NUMBER and 
OPERATOR-NAME to be keyed into the working-storage variable LOG
RECORD through the console typewriter. 

r-----------------------------------------------------, 
1 EMPLOYEE-RECORD 1 

'-----------------1-----------------1-----------------' 1 NAME HOME-ADDRESS EMPLOYEE-NUMBER 1 
1 (20 characters) (30 characters) (5 characters> 1 L________________ _________________ _ ________________ J 

0011223 3 4 4 556 6 7 
1 ••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5~ ••• 0 •••• 5 •••• 0 •• 

Both 

ACCEPT EMPLOYEE-RECORD FROM CONSOLE. 

This statement will allow: 

a. values of the elementary variables in EMPLOYEE-RECORD to be 
entered into working storage through the console typewriter. 

b. values of NAME, HOME-ADDRESS, and EMPLOYEE-NUMBER to be keyed 
into working storage through the console typewriter. 

* * * 

79 



21. 

r----------------------------------------------------, 
1 CUSTOMER-RECORD 1 
1-----------------1-----------------1----------------1 
1 NAME HOME-ADDRESS BALANCE 1 
1 (25 characters) (30 characters) (5 characters) I L________________ _________________ _ _______________ J 

Using Figure 18 as a guide, write the Data Division entries for 
the working-storage variable CUSTOMER-RECORD illustrated above. 
Then write the Procedure Division entries for the paragraph 
SEQUENCE-1 to allow values to be keyed into the variable through 
the console typewriter and to halt execution. 

* * * 
0011223 3 4 4 556 6 7 
1 ... 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• S •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 CUSTOMER-RECORD. 

02 NAME PICTURE X(25). 
02 HOME-ADDRESS PICTURE X(30). 
02 BALANCE PICTURE XeS). 

o 0 112 2 3 3 4 4 556 6 7 
1 ... S •••• 0 ••.• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• S •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

PROCEDURE DIVISION. 
SEQUENCE-l. 

ACCEPT CUSTOMER-RECORD FROM CONSOLE. 
STOP RUN. 

22. The ACCEPT statement may be used for low-volume input from a card 
reader as well as from the console typewriter. If the FROM 
option is not specified, the card reader is assumed to be the 
device. 

001122334 4 5 S 6 6 7 
1 .•• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• S •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ACCEPT CUSTOMER-RECORD. 

would transmit values to a working-storage variable: 

a. from a punched card. 

b. through a card reader. 

* * * 
Both 

80 



23. 

r--------------------------------------, 
I OPERATION-RECORD I 

,-;~~=~~~~-I~;~RA;~~-C~~~-I~~~;~~;~--: 
I (5 char) (5 char) (70 char) I L_________ ______________ _ __________ J 

write the Data Division entries to reserve working storage for 
the record variable OPERATION-RECORD illustrated above. Then 
write the Procedure Division entries for the paragraph MAIN
SEQUENCE to transrrit values to OPERATION-RECORD through the card 
reader and to halt execution. 

* * * 

o 0 1 1 2 2 3 344 556 6 7 
1 ••• 5 •••• O •••• 5 •••• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 ••• '. 5 ••.•• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 OPERATION-RECORD. 

02 JOB-CODE PICTURE XeS). 
02 OPERATOR-CODE PICTURE xes). 
02 COMMENTS PICTURE X(70). 

PROCEDURE DIVISION. 
r<IAIN- SEQUENCE. 

SUMMARY: 

ACCEPT OPERATION-RECORD. 
S'IOP RUN. 

The COBOL language features you have learned to use thus far can be 
used for low-volume data such as operator messages and replies. 
Processing files of records that involve a large volume of data, 
however, requires certain entries in the Environment and Data Divisions 
as well as certain statements in the Procedure Division. You ~ill learn 
to code these in the following lesson. 

END OF LESSON 4 

81 



THIS PAGE INTENTIONALLY LEFT BLANK 

82 



LESSON 5 

83 



LESSON 5 - INTRODUCTION TO FILE PROCESSING 

INTRODUCTION 

The COBOL language features you have learned to use thus far can be 
used for low-volume data such as operator messages or replies. 
Processing files of records that involve a large volume of data, 
however, requires certain entries in the Environment and Data Divisions 
as well as certain statements in the Procedure Division. Although the 
ACCEPT statement can be used to transmit values in a card record to the 
computer, it is not used to process a file of card records. 

You have already learned to code the Configuration Section of the 
Environment Division in which the programmer specifies the equipment on 
which the program is to be compiled and executed. In this lesson you 
\-.Till learn to code the Input-Output Section of the Environment Division 
i.n which you specify the equipment, such as a printer or a disk drive, 
that is to be used for a file during execution of a program. 

specific COBOL language features you will learn to use in this lesson 
are: 

84 

Input-Output Section of the Environment Division 
SELECT Clause 
ASSIGN Clause 
File Section of the Data Division 
FD Entry 
LABEL RECORDS Clause 
OPEN Statement 
CLOSE Statement 
MOVE Statement 
WRITE Statement 

This lesson will require approximately one hour. 



1. A collection of records stored on an external medium such as 
cards, disk or printer pages is known as a file. Which of these 
might be a file? 

a. A printed report in which each line contains a customer 
record 

b. A printed report in which each line contains an employee 
record 

* * * 

Both 

85 



00 
0' 

~ 
1-" 
'g 
Ii 
(1) 

,... 
ID Section header 

Paragraph nam e-

Environment Division with Sample Input-Output Section 

8 112 16 20 24 28 32 36 40 44 48 52 56 

ENN liR ON MIE N 111 Q) IV 1 Si 1 ioiN ! . I I I .! I --

C,Q!N Fit GU RA iT ,10 N ,5 ECiriliQ IN. ! i I 
I i 

I I 

-t S!OJu RiC E - C ICMP U TEiRi. il/SiM -1 I , 3 rtJ . I i 1 j 

OiBiJElclT -Ie OMlp U TlEJRi. II '8:r~ 0,. I +- t- --j-l i I ! 1 : j - , 13 
t--+-! ! I!NlpluiT - 0 U rll:oiN 

I I I I TPU T olEiC . I, + ' , I 

.-r-~-! ~ file name i-i- system name 
F I !L EI-iC.ioIN TRO L. i ! lJ-+-~H-- i 0 

o ! I I : I j j .1 

! I lISlE LE CIT PR "NiT ElDl-iR Elpo!~ 1: AS S1G IN T!a PR- J I 32 -C. 
i! I : ! : i I i I i I J J ! i i J j 1 J 

I I 

SE LECT clause ASSIGN clause 

60 

r 

! I 
I 

-

I I 
! i 

I , 
I 

: 
t--
! 

.i 
I 

I 1 i 



2. A programmer uses a file name such as LIST-OF-CUSTOMERS to refer 
to a file in his program. He must link this file name to the 
equipment to be used for the file in the Input-Output Section of 
the Environment Division. Figure 19 shows a sample Input-Output 
Section. The file name in Figure 19 is: 

a. PRINTED-REPORT. 

b. specified in the SELECT clause. 

* * * 

Both 

3. The ASSIGN clause in Figure 19 specifies a: 

a. 1132 printer. 

b. 1442 reader. 

* * * 
a 

4. 

o 0 112 2 3 3 4 4 5 5 6 6 7 
1 .•• 5 •••. 0 .••. 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

a,b 

ENVIRCNMENT DIVISION. 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT LIST-OF-CUSTOMERS 
ASSIGN TO PR-1132-C. 

The entries above: 

a. link the file named LIST-OF-CUSTOMERS to an output device. 

b. specify that LIST-OF-CUSTOMERS will be on an 1132 printer. 

c. describe the format of records within the file-LIST-OF
CUSTOMERS. 

* * * 

87 



'co 
co 

Division he lder 
~ Section hea fer 
.." 
I!l 
c: 
t; , 
ro Paragraphs 
~ (optional) 

Section head 
Paragraph 
Statement to 
file name to 

ae 
nk 

Gui.de for Coding the Environment Division with the Configuration Section 

and the Input-Output Section Containing the SELECT and ASSIGN Clauses 

1 
,1'Necessary hyphens A IB COBOL STATEMENT 

8 ,12 1611 20 24 28 32 36 40 44 48 52 

E !NV IIR ON M~ rNr ]1 VI 51 oiN. 
I I I IT'TTTIJ' T 

Headers, paragraph names, 

C ON FII GIU lR ~T 1O IN SIE Ie Tl b IN · and entries end with a period 

SO UIRC E.L ~ ~I~ PU lIE IR. c.~ ~ ~ u~ ~~ .~ n lO.lth ,e . 
0 8J lEe IT .Le ~l~ IP ur ER. Coo ~ ~ ut er -n ~lm. e. !_ .. - 1-- ... --- ---

EC;' 
_. -

SP At -N AIM E'5 • 
15 I'J s+ elm -n 14.1." e. 15 rnn ern on ic. -n a. Il"Il e. 

IN PUT -0 UIT PU T 5E leT 110 IN • 
II: IL 1Ef- Ie ON IlIR OLe 

5 IE LE ~T f i I e.- no.. rtl Ie ~S S \ GN IT 0 5" 5+ em -n Q. 1m e. , 
I 

(as many as necessary) 

l . iELECT clause is contained in Area B 

ivision header, section headers, and 
paragraph names begin in Area A 

More than one space is allowed whenever a space is indicated. 

1--1--



5. Figure 20 is a guide for coding the Environment Division with the 
Configuration Section and the Input-Output Section. The input or 
output device to be used for a file is specified by the system 
name in the ASSIGN clause as shown in Figure 20. The ASSIGN 
Clause Guide in Figure 21 specifies how the system name is to be 
written for users of the 1130 System. For practice in using the 
ASSIGN Clause Guide for a printer file, find the printer device 
name used for the 1132 printer. 

All files used in a program must be assigned to an external 
medium. That assignment is accomplished by means of the system
~. For non-disk devices, system-name has the following form: 

RD-1442 

PU-1442 

RP-1442 

PO-1442 
RD-2501 
PR-1132 

PR-1132-C 

PR-1403 

PR-1403-C 

for 1442-6/7, used in this program for reading 
only. 
for 1442-6/7, used in this program for punching 
only. 
for 1442-6/7, used in this program for reading 
and punching. 
for 1442-5 (a punch-only device). 
for 2501 card reader. 
for 1132, where n2 carriage control is to be 
used in this program. 
for 1132, where carriage control is to be used 
in this program. 
for 1403, where n2 carriage control is to be 
used in this program. 
for 1403, where carriage control is to be used 
in this program. 

For a disk file, the form of system-name is somewhat different. 
Three facts must be specified in this name: 

1) The file number of the file (to be equated with an actual 
file by means of an *FILES supervisor control record at 
XEQ time.) 

2) The number of record slots (to be) allocated for the file 
on disk. 

3) Whether the file is to use a shared disk buffer during 
execution, or its own unique disk buffer. 

The form of system-name for a disk file is: 

DF-FILENUMBER-numberofrecords (-X) 

where: 

filenumber is the number of the file to be equated at XEQ 
time: the number must be in the range 1 thru 32767 and be 
written without preceding zeros. 

numberofrecords is the number of record 
allocated for the file: it must be a number in 
thru 32767, written without preceding zeros. 

slots 
the 

(to 
range 

be) 
1 

-X specifies that the file is to have its own unique disk 
buffer; if -X is not specified,~he shared disk buffer will 
be utilized. 

89 



Disk Drives on 1130 

Device or 
Drive No. 

o 
1 
2 
3 
4 

Device Location 

CPU Resident 
2310 1st Drive 
2310 2nd Drive 
2310 3rd Drive 
2310 4th Drive 

Figure 21 

6. Using Figures 20 and 21 as guides, write the Environment Division 
entries for a program that will be compiled and executed on an 
IBM 1130 cOITputer. The program will create a file called LIST
OF-EMPLOYEES on an 1132 printer, using carriage control. 

* * * 
0011223 3 4 4 556 6 7 
1 .•• 5 •••• 0 •••• 5 .••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CeNTROL. 

SELECT LIST-OF-EMPLOYEES 
ASSIGN TO PR-1132-C. 

When a -C appears n~xt to print-unit number, carriage control is 
to be used in this program. 

7. The ASSIGN Clause Guide in Figure 21 specifies how the system 
name is to be written for users of the 1130 System. 

Using Figures 20 and 21 as guides, write the Input-Output Section 
for a printer file called PRINTED-REPORT. 

* * * 
o 0 1 1 2 233 4 4 5 5 6 6 7 
1 .•• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

90 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT PRINTED-REPORT 
ASSIGN TO PR-1132-C. 



8. Write the necessary Environment Division entries, including both 
the Configuration Section and Input-Output Section, for a program 
that will: 

1) be compiled and run on an IBM 1130 computer. 

2) create a file called CUSTOMER-FILE on the 1132 printer using 
carriage control. 

* * * 
001 1 2 2 3 344 556 6 7 
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT CUSTOMER-FILE 
ASSIGN TO PR-1132-C. 

(The ASSIGN clause is part of the SELECT entry and may be written 
below it.) 

91 



\0 
t\.) 

~ 
!oJ. 

lQ 
~ 
11 
I'D 
t\.) 
t\.) 

Storage for an output area must be reserved in the File Section of the Data Division in order for 
a record (values of the variable PRINT-RECORD) to be transmitted to a line of a printed report. 

Storage for 
input and 
output areas- . Value ~ 

00123 I NORMAN JONES ---- - - - --:-y 
Output are:! "--- _ - -

I II I 

PROGRAM-NUMBER OPERATdR-NAME Variable name 
.1 PRINT-RECORD I 

00312 SALLY JONES 

06200 JOHN JACKSON 

00123 NORMAN JONES 



9. According to Figure 22, records on the printer file are values 
transmitted from the: 

a. record variable LOG-RECORD. 

b. variables in an output area. 

c. variables in PRINT-RECORD. 

* * * 
b,c 

10. Various 
printer. 
variable. 

values of a record variable are to be written on a 
Figure 22 shows values printed on a page from a record 

From this you can see that: 

Both 

a. one record is printed on one line of the printer. 

b. different values of the record variable will be printed on 
different lines. 

* * * 

93 



IJ:) 
.;::-

~ 
1-'-

I.Q 
c: 
11 
m 
!\.) 
w 

Format Requirements for File Description and Record Description 
Entries in the File Section of the Data Division 

file name 

.. 11 11 20 )4 7 2'8 J2 ]I «J 44 

~lT~ L~ 1151~1~. -. J - I 
F I ~ ~I I.. 1 I"~ • - _. T - 1-- - f-I- 1-. i 

File description entry c~n p ~ :L P, R Al~ t: 0t1I:111 [. + r --Form of LABEL RECORDS 
r ~ 1 . ~ I :, _ I- clause required for card 

Record description entry I I7l - Pflleh'iI Ie" ~~:nCll and printer files 
for the output area ~ ~ E ~ ~ .PIk!ITilll~ X(12~i). (LABEL RECORDS clause 
PRINT-RECORD . i

l
_ required in some form 

for every file) 
File name, record name, and level 
number 02 are contained in Area B 

Division header, section header, FD and 
level number 01 begin in Area A 

~ 
~ . 

I'dmP,,~ 
~~m~ 
Hrtenm 
Zl1n~ 
t-3 "< 11 
tIl 1-'-
o b'SlJ 
10m :;o::sp" 

tIl t-h 
I'd 1-'- 1-" 
O~~~ 
~ 1-'- m 
t-3~SlJ 

• m HI 1-'-
I-'-en 

O~ 
wm 

0-p"m 
1-'- It) 1-'
~ en ::s 

nl.Q 
11 

~I-" 
1-'-"'0 C 

I.Q eT en 
C I-'-m 
110P" 
m ::s 

It) 1-'
!\.)~::S 
weT 

~ 

11 
,<SlJ 

SlJ 1-" 
:3 ~ () 
m 0 
eneTtD 

::rO 
eTmt"i 
~ mo 

SlJ"'O 
HleTl1 
I-"SlJ 0 
~ I.Q 
mt:111 

I-"SlJ 
0'<9 
(!) 1-"" 
1-" en 
::s 1-"1-" 
1.Q0eT 

::s 
c: • 9 en ~ m en 
Q, eT 

t-3 
SlJ~rr en (!) (!) 



o 0 112 2 3 3 4 4 556 6 7 
1 ... 5 .•.• 0 •••. 5 ••.. 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 .•.• 0 •.•• 5 •••• 0 .•.• 5 .... 0 •• 

b 

FD PRINTED-REPORT 

The entry above: 

a. designates that the file being used is a printer file. 

b. indicates that the name of the file being used is PRINTED
REPORT. 

* * * 

12. In the FD entry the programmer must specify whether the file 
contains records used to label the file in addition to the 
records of data. He specifies this in a LABEL RECORDS clause. 
The LABEL RECORDS clause on line 04 of Figure 23 indicates that 
the file PRINTED-REPORT has no records used to label the file. 
This form of the LABEL RECORDS clause is used in the FD entry for 
every card and printer file. Following the example in Figure 23, 
write the division and section headers and the file description 
entry for the printer file PRINT-OUT. 

* * * 
00112 233 4 4 556 6 7 
1 ... 5 .•.• 0 ..•• 5 •••. 0 •••. 5 •••• 0 •••• 5 .••• 0 •••. 5 •••. 0 •••• 5 •.•• 0 •••• 5 ..•. 0 •. 

DATA DIVISION. 
FILE SECTION. 
FD PRINT-OUT 

LABEL RECORDS ARE OMITTED. 

(Since the LABEL RECORDS clause is part of the FD entry, a period 
follows the clause, not the file name. Card and printer files do not 
require label records.) 

o 0 1 1 2 2 3 3 4 4 556 6 7 
1 .•. 5 •... 0 ••.. 5 •.•• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •. 

DATA RECORD IS record-name 
RECORD CONTAINS integer CHARACTERS 

The clauses shown above may be used in a file description (FD) entry 
at any time. These clauses are never required and serve only as 
documentation to assist in reading the program. The DATA RECORD 
clause is used to name the record associated with the file, while the 
RECORD CONTAINS clause is used to specifiy the number of characters 
in each record. 

95 



13. 

r-----------------------------------, 
I PRINT-OUT-RECORD I 

\-~~~;~;~~=;~;~~;-I-cu~;~;~;:~~;~---: 
I (S characters (2S characters) I L________________ _ ________________ J 

Figure 23 shows a record description entry following the file 
description entry. This entry describes the output area from 
which records will be transmitted to the printer file. The 
programmer has associated the output area PRINT-RECORD with the 
file PRINTED-REPORT by coding the file description entry followed 
by the record description entry in the File Section of the Data 
Division. Follow the example in Figure 23 and code the Data 
Division entries to specify that the file PRINTER-OUTPUT is to 
contain records written from the output area illustrated above. 

* * * 
001122334 4 S S 6 6 7 
1 ••• S •••• o •••• 5 •••• O •••• 5 •••• o •••• S ••• '. o •••• 5 •••• 0 •••• 5 •••• 0, •••• 5 •••• 0 •• 

96 

14. 

b 

DATA DIVISION. 
FILE SECTION. 
FD PRINTER-OUTPUT 

LABEL RECORDS ARE OMITTED. 
01 PRINT-OUT-RECORD. 

02 CUSTOMER-NUMBER PICTURE XeS). 
02 CUSTOMER-NANE PICTURE X(25). 

Data Division entries in the File Section 

a. locations in working storage. 

b. an output area. 

* * * 

reserve: 

lS. A record description entry following the FD entry describes 
variables from which values can be transmitted to either the 
printer or the console typewriter. Values transmitted to a file 
(a large volume of data) would be transmitted to: 

a. the printer. 

b. the console typewriter. 

* * * 
a 



16. You have learned to code the Data Division entries describing a 
record variable in the Working-Storage Section and an output area 
in the File Section. The statements in the Procedure Division 
are used to process data from the record variables described in 
the Data Division. Before a file may be used, however, it must 
be prepared for processing. This is done at the beginning of the 
Procedure Division with an OPEN statement as shown in Figure 24. 
Write a statement to prepare the printer file PRINT-FILE for 
processing. 

Sample Procedure Division with Entries 
for Writing a Record into an Output File 

Use of file specified 
in OPEN statement 

\ 
~~lOC "~lliRiE tD I 

,. ,. 
~ S~lc!", 

~~llnr . 
I III IElN IU 11 P -i NT 

~-. 

~C IF~T G- I~ E O'R 
~I\j IE L'" fp; ~O ~ 
~II Tt: Ip II~ 
ll" c,~ Ip ~~ n= In -IKIt. 
Tin ... IRlf'tt • 

1/ 

Output area 
(record name) 

n 
TWo. 

~ 

File name 

/ 
l )(I '" .. 

tJ -1--

-1- -

~ 

f·~ ~l!!l IF • 
~,R IN -. 

K I. 

-~ --,- - -

File name 

Figure 24 

97 



* * * 
0011223 344 5 5 6 6 7 
1 ... 5 ..•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •.•• 5 .•.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

98 

OPEN OUTPUT PRINT-FILE. 

(With the exception of paragraph names, statements in the Procedure 
Division must be contained in Area B.> 

17. An OPEN statement ITust he executed before the use of: 

a. a file on the printer. 

h. the console typewriter. 

* * * 

a 



"" "" 

I-zj ..... 
~ 
11 
ro 
I\.) 

U"I 

This diagram illustrates execution of the MOVE and WRITE statements. These 
statements can be used to write a record in a working storage variable into a printer output file. 

Storage for 
input and 
output areas 

Output area 
c:(; i ~!:-< ~·i(:R.!"l;.?·~ J:~~r·i!~:' -- .-.. 

--~ 
II ~.:~--~ I 

PROGRAM-NUMBER OPERA ~OR-NAME -~ 
I PRINT-RECORD-------'I 

Working Storage-~ W 
~ 

Working Storage 
Variable ----,t-I ...... _00123 I NORMAN JONES • Value 

I II , 
PROGRAM~NUMBER OPERAtOR-NAME ----I-Variable name 

I' LOG-RECORD -II 

CD Values of the elementary variables in 
LOG-RECORD are to be transferred 
to the output area PRINT-RECORD 
by a MOVE state ment 

® Values of the elementary variables in 
PRINT-RECORD are to be transmitted 
to the printe r output file by a WRITE 
statement specifying PRINT-RECORD 



18. Figure 25 shows a record in: 

a. working storage. 

b. the output area PRINT-RECORD. 

* * * 
a 

19. Figure 25 shows that in order for the record in working storage 
to be transmitted to the printer filer the record in LOG-RECORD 
must be moved to PRINT-RECORD 1:y a ••••• '. •• statement and then 
transmitted to the printer by a •••••••. statement. 

* * * 
MOVErWRITE 

20. When the MOVE statement in Figure 25 is executed, the value of 
the variable LOG-RECORD is copied into the output area PRINT
RECORD. The value of LOG-RECORD remains the same, but any 
previous value of PRINT-RECORD is destroyed. 

The value of the variable NAME is to be transmitted to the 
variable NAME-FaR-OUTPUT. NAME contains the value SMITH r NAME
FOR-OUTPUT presently contains the value JONES. 

0011223 344 5 5 6 6 7 
1. • • 5. • • • O. • • • 5. • • . O. • • • 5. • • • O. • • • 5. • • '. 0 • • • • 5 • • • • 0 '. • • • 5 • • '. • 0 • • • • 5 • • • • 0 • • 

c 

100 

MOVE NAME TO NAME-FaR-OUTPUT. 

After the execution of the statement above: 

a. NAME and NAME-FOR-OUTPUT will both contain the value JONES. 

b. NAME will contain blanks, and NAME-FOR-OUTPUT will contain 
the value SMITH. 

c. NA~E and NAME-FOR-OUTPUT will both contain the value SMITH. 

* * * 



21. 

r-------------------l 
I DATA-RECORD I 

l=;~~;;=AD~~~S 1 

r---------~--------------l 
I OUTPUT-RECORD I 

~U~~~~-~~UT=~~~~~~~~J 

The variables specified in a ~OVE statement may be either record 
variables or elementary variables. Values of one record variable 
may be moved to another record variable by a single MOVE 
statement, or they may be moved as elementary values by more than 
one statement. Which of the coding segments below would transfer 
values of the variables in DATA-RECORD, shown above, to the 
variables in OUTPUT-RECORD? 

a. 

0011223 3 4 4 556 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

MOVE DATA-RECORD TO OUTPUT-RECORD. 

b. 

o 0 1 1 12 2 3 3 4 4 5 5 6 6 7 
1 •.• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

MOVE NAME TO OUT-NAME. 
MOVE IN-ADDRESS TO OUT-ADDRESS. 

* * * 
Either 

Literals as well as variables can be specified in MOVE statements as 
shown in the statements below. 

o 0 1 1 2 2 3 3 4 4 556 6 7 
1 ••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

MOVE 'GOOD' TO CREDIT-RATING. 
MOVE 1000 TO MAXIMUM-CREDIT. 

101 



o 

22. When the file has been opened and data has been moved into an 
output area, a record can be written on the file. The WRITE 
statement 1S an instruction to write a record on a file. The 
WRITE statement in Figure 24 will cause the record in the output 
area PRINT-RECORD to be written on the printer. The statement 

o 1 1 2 2 3 3 4 4 5 5 6 6 7 
1 .•• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 ••• _0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

WRITE DATA-RECORD 

would cause: 

a. values in the output area called DATA-RECORD to be printed. 

h. a record to be written. 

* * * 

Both 

23. When all records have been written into a file, processing must 
be terminated by a CLOSE statement for that file. The CLOSE 
statement in Figure 24 terminates processing for the file called 
PRINTED-REPORT. The statement 

o 0 112 2 3 344 556 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

102 

a 

CLOSE PRINTED-REPORT 

would be: 

a. coded so that it would be executed after the last record has 
been written into the file called PRINTED-REPORT. 

b. used to prepare the file PRINTED-REPORT for processing. 

* * * 

24. Figure 24 shows that the word OUTPUT used to specify the use of 
the file is coded in the statement to: 

a. prepare the file PRINTED-REPORT for processing. 

h. terminate processing of the file PRINTED-REPORT. 

* * * 
a 



25. Follow the example in Figure 24 and write the Procedure Division 
entries, in a paragraph called SEQUENCE-OF-STEPS, to do the 
following: 

1) Prepare an output printer file called LIST-OF-CUSTOMERS for 
processing. 

2) Key values into the record variable CUSTOMER-RECORD. 

3) Transfer values from CUSTOMER-RECORD to an output area called 
PRINT-RECORD. 

4) Write a record from PRINT-RECORD on the printer. 

5) Terminate processing of the output file. 

6) Halt execution of the object program. 

* * * 
001122334 4 5 5 6 6 7 
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

PROCEDURE DIVISION. 
SEQUENCE-OF-STEPS. 

OPEN OUTPUT LIST-OF-CUSTOMERS. 
ACCEPT CUSTOMER-RECORD FROM CONSOLE. 
MOVE CUSTOMER-RECORD TO PRINT-RECORD. 
WRITE PRINT-RECORD. 
CLOSE LIST-OF-CUSTOMERS. 
STOP RUN. 

103 



26. 

104 

r---------------------------------------------------, 
1 CUSTOMER-RECORD 1 

1----------------J-----------------1---------------1 
1 CUSTOMER-NUMBER CUSTOMER-NAME CREDIT-CODE 1 
1 (5 characters> (25 characters> (1 character> I L________________ _________________ _ ______________ J 

r-----------------------------------------------------, 
1 PRINT-RECORD 1 

1-------------------[----------------1--------------- 1 
1 CUSTOMER-NUMBER-O CUSTOMER-NAME-O CREDIT-CODE-O 1 
1 (5 characters> (25 characters) (1 character> 1 L__________________ _________________ _ ______________ J 

The record variable CUSTOMER-RECORD illustrated above is to 
contain values transmitted from the card reader. The values will 
then be transferred to the variables in PRINT-RECORD, also 
illustrated above. Records contained in the output area PRINT
RECORD will be written into the file LIST-OF-CUSTOMERS. 

Figure 26 is a guide for coding the Data Division with the File 
Section and the Working-Storage Section. Follow the guide in 
Figure 26 and code the Data Division entries for the record 
variables described above. 



~ 
o 
V1 

I'%j ..... 
1.0 
~ 
11 
(D 

tv 
C"I 

Guide for Coding the Data Division with the 

File Section and the Working-Storage Section 

,. JG 

File description entry--+--I r-i""'f-+-t:'-t7~~'t:'?--="'~ 
r-+-++--+-i -Form of LABEL RECORDS 

Record description entry clause required for card 
and printer files 

Data description entries 
(as many as necessary) I_ 

11 
Entries to define an I , -Form of LABEL RECORDS 
input or output area and clause required for disk 
link it to a file name 
(as many as necessary) 

Independent data - Mus! follow the File 
description entries Section 
(as many as necessary) 

Data description entries~ 
(as many as necessary) I L+-+-t--+-~'+-T"I"'P,..,....-t'-'t"IIIILU'1---J''''+---''L..f-Lfllooj..L.~=-';Ff-L<'''"!-I-f'<+.I.-P''I-~-~~-+'-I!3~~4-=-+ 

Record description 
entries 
(as many as necessary) L-

I 
File name, LABEL RECORDS clause, record names, 
and level number 02 are contained in Area B 

Division header, section headers, FD, and 
level number 01 begin in Area A 

Each entry ends with 
a period 

FILE SECTION must precede WORKING-STORAGE SECTION if both are included in a program. Within 
the Working-Storage Section, any level 77 entries must precede any record description entries. 



* * * 
o 0 112 2 3 344 5 5 6 6 7 
1 ... 5 ..•• 0 •.•. 5 •..• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
FILE SECTION. 
FD LIST-OF-CUSTOMERS 

LABEL RECORDS ARE OMITTED. 
01 PRINT-RECORD. 

02 CUSTOMER-NUMBER-O picture XXXXX. 
02 CUSTOMER-NAME-O PICTURE X(25). 
02 CREDIT-CODE-O PICTURE X. 

WORKING-STORAGE SECTION. 
01 CUSTOMER-RECORD. 

02 CUSTO~ER-NUMBER PICTURE XXXXX. 
02 CUSTOMER-NAME PICTURE X(25). 
02 CREDIT-CODE PICTURE X. 

(The File Section always precedes the Working-Storage Section in the 
Data Division.) 

27. Code the Procedure Division entries for the problem in the 
preceding frame. Use PRINTING-ROUTINE as a paragraph name. You 
may use Figure 16 as a guide. 

* * * 
0011223 344 5 5 6 6 7 
1 ... 5 •••• 0 .••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••. 0 •..• 5 •••• 0 •. 

PROCEDURE DIVISION. 
PRINTING-ROUTINE. 

OPEN OUTPUT LIST-OF-CUSTOMERS. 
ACCEPT CUSTOMER-RECORD. 
MOVE CUSTOMER-RECORD 

TO PRINT-RECORD. 
WRITE PRINT-RECORD. 
CLOSE LIST-OF-CUSTOMERS. 
STOP RUN. 

------------------------------------------------------_._---------------

106 



28. Match the functional description(s) with the appropriate portion 
of a COBOL program. 

1) The record description 
entry following the FD 
entry in the File 
Section of the Data 
Division 

2) OPEN statement in the 
Procedure Division 

3) CLOSE statement in the 
Procedure Division 

4) SELECT and ASSIGN 
clauses in the FILE
CONTROL paragraph of 
the Input-Output 
Section of the 
Environment Division 

* 
1) b 
2) c,e 
3) d 
4) a 

* 

a. Associates the file name 
with the equipment to be 
used for the file 

b. Defines the output area 
from which records will 
be transmitted to the 
file 

c. Prepares the file for 
processing 

d. Terminates processing of 
the file 

e. Specifies the use of the 
file as OUTPUT 

* 

101 



29. Read the problem statement in Figure 27. Then on a new coding 
sheet, write the Identification and Environment Division entries 
for the problem. 

Problem statement 

r----------------------------------------------------------------------, 
I EMPLOYEE-RECORD I 

t~~~:::::::~!::::~ __ ~~~~~~~AD:~~~~~~~~:::::!~~:::::~~~~ 
r----------------------------------------------------------------------, 
I PRINT-RECORD I 

t~~::::~~-:~~l~~~~:~~AD:~~~~l~~::::::~~~~::::~:~~~ 

108 

1) A program called PRINT-DATA is to be compiled and run on an 
IBM-1130 computer. 

2) An output file EMPLOYEE-DATA-LIST is to be created with a 
printer. 

3) Values of the variables in EMPLOYEE-RECORD (described above) 
are to be transmitted from the card reader. 

4) Values in EMPLOYEE-RECORD are to be transferred to the 
variables in the output area PRINT-RECORD. 

5) A record from PRINT-RECORD is to be written on a printer file 
called EMPLOYEE-DATA-LIST. 

6) The message END-OF-JOB is to be written on the console 
typewriter. 

7) The output file must be prepared for processing before data 
is written and closed before execution is terminated. 

8) Statements in the Procedure Division are to be grouped in the 
paragraph MAIN-SEQUENCE. 

Figure 27 



* * * 
0011223 3 4 4 5 5 6 6 7 
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PRINT-DATA. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. (25) 
FILE-CONl'ROL. 

SELECT EMPLOYEE-OAT A-LIST 
ASSIGN TO PR-1132-C. (28) 

(The numbers in parentheses to the right of the coding indicate the 
frames in which the entries were introduced.) 

30. Write the Data and 
problem in Figure 27. 
previous frame.) 

Procedure Division entries to solve the 
(Continue on the coding sheet used in the 

* * * 
00112 2 3 3 4 4 556 6 7 
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• 

DATA DIVISION. 
FILE SECTION. 
FD EMPLOYEE-DATA-LIST (34) 

LABEL RECORDS ARE OMITTED. 
01 PRINl'-RECORD. (13) 

02 EMPLOYEE-NUMBER-O PICTURE X(4). 
02 NAME-O PICTURE X(20). 
02 ADDRESS-O PICTURE X(30). 
02 MARITAL-STATUS-O PICTURE X. 

WORKING-STORAGE SECTION. 
01 EMPLOYEE-RECORD. (13) 

02 EMPLOYEE-NUMBER PICTURE X(4). 
02 NAME PICTURE X(20). 
02 ADDRESS-I PICTURE X(30). 
02 MARITAL-STATUS PICTURE X. 

PROCEDURE DIVISION. 
MAIN-SEQUENCE. 

OPEN OUTPUT EMPLOYEE-DATA-LIST. (39) 
ACCEPT EMPLOYEE-RECORD. 
MOVE EMPLOYEE-RECORD ( 42) 

TO PRINT-RECORD. 
WRITE PRINT-RECORD. (42) 
DISPLAY 'END OF JOB' UPON CONSOLE. 
CLOSE EMPLOYEE-DATA-LIST. (46) 
STOP RUN. 

(The CLOSE statement could have been coded on the same line as the 
DISPLAY statement. Your solution may appear different but be correct 
provided you have followed the rules for placement of entries and for 
separation and breaking of statements.) 

109 



SUMMARY: 

You have now completed Lesson 5 in which you have learned COBOL 
statements and entries necessary to write data records into an output 
printer file. The function of each of these entries is summarized in 
the following illustration. 

o 0 112 2 3 3 445 5 6 6 7 
1 .•• 5 .••. 0 •••. 5 .••. 0 •••• 5~ ••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •• 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PRINT-DATA. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-CO~PUTER. IBM-1130. 
OBJECT-COMPUTER. IBM-1130. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

(1) SELECT EMPLOYEE-DATA-LIST 
ASSIGN TO PR-1132. 

DATA DIVISION. 
FILE SECTION. 

(2) FD EMPLOYEE-DATA-LIST 
LABEL RECORDS ARE OMITTED. 

01 PRINT-RECORD. 
(3) 02 EMPLOYEE-NUMBER-O PICTURE X(4). 

02 NAME-O PICTURE X(20). 
02 ADDRESS-O PICTURE X(30). 
02 MARITAL-STATUS-O PICTURE X. 

WORKING-STORAGE SECTION. 
01 EMPLOYEE-RECORD. 

02 EMPLOYEE-NUMBER PICTURE X(4). 
02 NAME PICTURE X(20). 
02 ADDRESS-I PICTURE X(30). 
02 MARITAL-STATUS PICTURE X. 

PROCEDURE DIVISION. 
MAIN-SEQUENCE. 

(4) OPEN OUTPUT EMPLOYEE-DATA-LIST. 
ACCEPT EMPLOYEE-RECORD. 
MOVE EMPLOYEE-RECORD 

TO PRINT-RECORD. 
(S) WRITE PRINT-RECORD. 

DISPLAY 'END OF JOB' UPON CONSOLE. 
(6) CLOSE EMPLOYEE-DATA-LIST. 

STOP RUN. 

(1) Links file name to equipment to be used for the file 
(2) Specifies whether file contains records used to label the 

file 
(3) Defines an output area and associates it with file name 
(4) Prepares file for processing and specifies its use as output 
(5) Write record into file associated with PRINT-RECORD in the 

File Section 
(6) Terminates processing of the file 

The ACCEPT statement which is used for low-volume data such as 
operator messages and replies, has been used in this lesson to transmit 
records of data from the card reader to working storage record 
variables. It has been used to allow you to practice writing statements 
for output on a printer file. In the next lesson you will learn to 
code the entries to transmit data from an input file to an input area 
which will be defined in the File Section. 

END OF LESSON 5 

110 



LESSON 6 

111 



LESSON 6 - CARD FILE PROCESSING AND BRANCHING 

INTRODUcrION 

In previous lessons the input data used in the COEOL programs you 
wrote was keyed in through the console typewriter or accepted from the 
card reader as a single card. Usually input data will be contained in 
records on an external medium called a file. The input file may be on 
punched cards, or disk. The punched card is a widely used medium in 
cata processing. processing data that is recorded in a punched card 
i~put file is a more efficient method than accepting single cards or 
records from the card reader, which would be used only for low-volume 
data. 

In this lesson you will learn to process input data from a card file. 
You will also learn to branch to another point in a COEOL program and to 
repeat a series of steps. 

Specific COBOL language features you will learn to use in this lesson 
are: 

PIC abbreviation 
FILLER item in an input area 
INPU'I option of the OPEN statement 
READ statement 
GO TO statement 

This lesson will require approximately three quarters of an hour. 

112 



778932 ABBOTT,JAMES 42 

~ 778932 ABBOTI)AMES 

Record 
(an employee card) 

42 

File 
CARD-FILE 

CD The record description 
entry describes how 

1~~,----. ",-,.-,. -" ---IlO! "-.0 

the data in each column 
of the card is to be 
interpreted. Therefore, 
all 80 columns should 
be accounted for. 

C ore Storage ......... ;~-1-L~_--I.-L-L-L.LJ....J-l_ "'- - '- _ _ -~~...I.....J-.l...-.L-.l-.L.L".J.-LJ 

~~~I~I~I--~~t 

EMPLOYEE-RECORD

Area ® The record description entry
reserves an input area for the
record variable in core storage.
The data from the records in
CARD- FILE will be transmitted
to the record variable
EMPLOYEE-RECORD.

(Storage should be reserved according
to the way the data is recorded on the
cards. Portions of the card that are
blank or unused should be described
as FILLER.)

Figure 28

113

114

1. Figure 28 shows a deck of cards. This deck of cards is a file.
According to Figure 28, the file shown is:

a. CARD-FILE

h. EMPLOYEE-RECORD

* * *
a

2. Each card in a card file is a separate record. Figure 28 shows
an illustration of a single card, or record, from the file CARD
FILE. Each card in the file CARD-FILE is:

a. an employee card.

b. a record.

* * *
Both

3. An entire deck of cards is a ••••••••• Each card within the
deck is a •••••••••

file
record

* * *

Read the problerr statement in Figure 29.
sequence you will code this problem in COBOL.
the same coding form as you build the program.

In the following frame
Continue to code on

Problem statement

As a COBOL programmer, you will probably be required to write
programs to process data that is recorded on punched cards. It
is also a common practice to list on the printer the data, or a
portion of the data, recorded on punched cards.

CARD-FILE ===n
Device: 1442 1--.£>1 IBM-ll3D

~xrxl

PRINT-FILE
Device: 1132

1/ I~

(EMPLOYEE-NUMBER-O) (HOURS-WORKED)
, I

V
PRINT-RECORD

The flowchart above is a system flowchart. It gives you
necessary information about the equipment to be used during
execution of the program LISTING, described below.

The file CARD-FILE, whose records are illustrated in Figure 28,
is to be processed in the following way:

1) The record is to be read into the input area EMPLOYEE
RECORD.

2) The eroployee-number and the hours worked are to be moved
to an output record.

3) The output record is to be printed in the following form:

x----xxx

(EMPLOYEE-NUMBER-O) (IDURS-WORKED)

PRINT-RECORD

Figure 29

4. The program is to be called LISTING. Write the Identification
Division for this program.

* * *

00112 2 3 3 4 4 556 6 7
1 .•. 5 •••• 0 ••.• 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••. 0 •••. 5 •••• 0 ••

IDENTIFICATION DIVISION.
PROGRAM-ID. LISTING.

115

5. The next division to be coded is the Environment Division. The
computer to be used for compilation and execution is shown in the
system flow chart in Figure 29. Code the Configuration Section
of the Environment Division. (Remember to include the
appropriate division and section headers.)

* * *

0011223 3 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• S •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.

6. The program in the previous lesson required only one file, a
printer output file. Consequently, only one SELECT clause and
one ASSIGN clause were required. In the problem statement in
Figure 29 two files are specified. Therefore the program to
solve this problem will contain:

a. two SELECT clauses.

b. one ASSIGN clause.

* * *
a
(An ASSIGN clause is required for each SELECT clause.)

7. The SELECT clause for a card input file is just like the SELECT
clause for a printer output file. The appropriate parts of the
ASSIGN clause for a card input file are shown in Figure 21.
Refer to Figures 20 and 21 and code the Input-Output Section of
the Environment Division for the problem in Figure 29. The file
names and input and output devices are shown in the system flow
chart.

* * *

0011223 3 4 4 556 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0w ••• S •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

116

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CARD-FILE ASSIGN TO
RD-1442.

SELECT PRINTFILE ASSIGN TO
PR-1132-C.

8. The next division of the program to be coded is the Data
Division. The File Section must contain an FD entry for each
file used in the program. In the program you are writing for the
problem statement in Figure 29, there should be:

a. two FD entries.

b. an FD entry for CARD-FILE.

c. an FD entry for EMPLOYEE-RECORD.

d. an FD entry for PRINTFILE.

* * *

a,b,d

9. Figure 28 shows the FD entry for the file CARD-FILE. The clause
which is shown must always be present. An FD entry always
requires a •••••••• clause.

* * *

LABEL RECORDS (Write the Data Division and File Section headers on
your coding form, and then copy the FD entry in Figure 28 into your
program. Label records are always omitted from a card file.)

10. Figure 28 also shows that the record description entry reserves
an area in storage that will contain values from the records in
CARD-FILE. The record variable that will contain values from the
records in CARD-FILE is:

a. EMPLOYEE-RECORD.

h. CARD-FILE.

c. described in a record description entry.

* * *
a,c
(PIC is a reserved word and a valid abbreviation for PICTURE; these
two reserved words are equivalent.)

111

118

11. The record description entry contains data description entries
for elementary variables within the record variable. The
elementary variables will each contain specific data from
specified fields in the records in CARD-FILE. The pictures
associated with the variables determine the size of the field on
the card that is to be transmitted to each variable. The data
description entries in Figure 28 show that:

a

a. six characters from each record will be transmitted to the
variable EMPLOYEE-NUMBER.

b. 10 characters from each record will be transmitted to the
variable NAME.

* * *

12. The record description entry indicates the order in which data is
to be transmitted to the record variable. That is, the first
field on a card will be transmitted to the first elementary
variable named in the record description entry, the second field
to the second elementary variable, and so on. Refer to Figure 28
and determine which of the following is true.

Both

a. The data in the field in columns 1-6 will be transmitted to
the variable EMPLOYEE-NUMBER.

b. The data in the field in columns 7-26 will be transmitted to
the variable NAME.

* * *

13. The third data description entry in Figure 28 specifies the COBOL
reserved word FILLER. The field on the sample card that
corresponds to this data description entry:

a. is blank.

b. contains characters and digits.

* * *

a

14. Some files are used for more than one program and contain data
that may not be needed in every program in which the file is
used. A FILLER item can never be referred to in a program.
Consequently, you would use FILLER in a data description entry
when:

a. the corresponding field in the record contains no data.

b. the data contained in the field is not to be referred to in
the program.

* * *
Either

15. In the record description entry in Figure 28, FILLER is used
after NAME because:

b

a. the data contained in that field is not to be referred to in
the program.

b. there are 10 columns following NAME in the input record that
contain no data.

* * *

16. According to the explanation identified by 1 Figure 28, FILLER is
used after HOURS in the record description entry because:

Both

a. no data is punched into the columns described.

b. all 80 columns on the card should be accounted for in the
record description entry for a card file.

* * *

17. The PICTURE clause is
elementary-variable name.
should indicate the:

used with FILLER just as it is with an
The PICTURE clause used with FILLER

a. number of blanks in the related field.

b. length of the field that is not to be referred to in the
program.

* * *
Either

119

18. Although values of NAME are punched into the cards, NAME is not
referred to in the program for the problem statement in Figure
29. Therefore FILLER could be used in place of NAME in the
record description entry. Write a record description entry for
the file in Figure 28 using FILLER in place of NAME. (Do not use
the coding form on which you are coding the program for the
problem statement in Figure 29.)

* * *

o 0 1 1 2 2 3 344 556 6 7
1 .•• 5 •••• 0 •••. 5 •••. 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 ••.• 5 •..• 0 ••

120

01 EMPLOYEE-RECORD.
02 EMPLOYEE-NUMBER PIC X(6).
02 FILLER PIC X(30).
02 HOURS PIC xx.
02 FILLER PIC X(42).

19. The explanation identified by 2 in Figure 28 explains that the
record description entry causes:

a. data to be stored in core.

b. storage to be reserved in core for the data from the file.

* * *
b

20. The record description entry associates the record variable with
the file from which data is to be transmitted to the variatle.
ConsequentlY6 you might expect that a record description entry
for records from a file in a COBOL program:

a

a. must be placed immediately following the FD entry for the
file with which it is to be associated.

b. can be placed anywhere in the Data Division.

* * *

21. When records on punched cards are processed as a file, the record
description entry appears in the •.••••••• Section i~mediately
following the FD entry for its associated file. When records on
punched cards are to be accepted from the card reader as single
records by an ACCEPT statement, the record description entry
appears in the •••••••• section.

File
Working-storage

* * *

22. Complete the Data Divislon of
entry and the record description
described in Figure 29.

* *

your program by writing the FD
entry for the output file

*
001 1 2 2 3 3 4 4 556 6 7
1 ••• 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

FD PRINTFILE
LABEL RECORDS ARE OMITTED.

01 PRINT-RECORD.
02 EMPLOYEE-NUMBER-O PIC X(6).
02 HOURS-WORKED PIC xx.

Although user-supplied words are provided for you in this course, you
will form your own as a programmer. Figure 30 shows rules for
forming all user-supplied words that are included in the course.

The final division of your COBOL program is the Procedure Division.
Figure 31 defines the content and terminating symbols of valid
Procedure Division entries. All statements that you have seen thus
far have ended with periods, since they were treated as sentences.
Statements will continue to be shown ending with periods, but keep in
mind that the period is not a required part of a statement.

Rules for Forming User-Supplied Words

r------------- -------------,
1 user-supplied
1 Name

file name

record name

data name

condition
name

paragraph
name

program
name

1-------------
1 library
1 name
1 L ____________ _

Use

naroe a
file

name a
record

name a
data item

name a
value of

data item

name a
paragraph

name a
program

name a
library
entry

Number of
Characters

1 to 30

1 to 30

Type of characters
from Figure 1

at least one must
be alphabetic;
no spaces;
cannot begin or
end with hyphen

no alphabetic
characters required
no spaces;
cannot begin or
end with hyphen

Figure 30

Restrictions 1
1

-------------1
name must 1
be unique 1

-------------1
name must 1
be unique orl
qualifiable 1

1
1

-------------1
name must 1
be unique 1

1
-------------1

name must I
be unique 1

-------------1
first five 1
charact ers 1
must be 1
unique 1

1
1 _ __________ .-J

121

r----------
1 TERM
1
1
1----------
1 statement
I
1
1
1
1----------
1 sentence
1
1----------
1 paragraph
1
1
I
1 l _________ _

Valid Procedure Division Entries

---,
DEFINITION 1

---------------------- -----------------------------------1
CONTENT TERMINATING SYMBOL{S) 1

---------------------- -----------------------------------1
a basic valid
combination of words
and symbols used in
the Procedure Division

a space,
a comma followed by a space, or
a period followed by a space {If
a period is used, the statement

I
I
I
1

is also a sentence.) 1
----------------------- -----------------------------------1

a sequence of one or
more statements

a period followed by a space 1
1

----------------------- -----------------------------------1
a sequence of one or
rr.ore sentences, the
first one being
preceded by a
paragraph name

another paragraph name or the end 1
of the program I

I
I
I _______________ ~ __________________ _J

Figure 31

23. You know that an output file must be opened before you can refer
to data in that file. The same is true for an input file. The
name of the input file is preceded by the reserved word INPUT in
the OPEN statement. Which of the following would be a correct
OPEN statement for the input file FILEIN?

a.

o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

OPEN FILEIN.

h.

00112 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

OPEN FILE IN INPUT.

c.

00112 233 4 4 556 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

OPEN INPUT FILEIN.

* * *
c

122

24.

o 0 1 1 2 2 3 3 4 4 556 6 7
1 ..• 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 ••

Both

OPEN INPUT CARD1 OUTPUT PRINTER CARD2.

A single OPEN statement can open more than one file. For
example, the statement above will cause CARD1 to be opened as an
input file and PRINTER and CARD2 to be opened as output files.
This demonstrates that:

a. the reserved word INPUT and/or OUTPUT needs to be named only
once in an OPEN statement.

b. all the files whose names follow the reserved word INPUT
(without an intervening OUTPUT) in an OPEN statement will ce
opened as input files.

* * *

(The reserved words INPUT and OUTPUT may be used only once in an OPEN
statement.)

25. Include in your program the appropriate OPEN statement for the
files described in Figure 29. The division header for the
Procedure Division and a paragraph name (use BEGIN) must also be
included.

* * *
0011223 344 5 5 6 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT CARD-FILE
OUTPUT PRINTFILE.

An ACCEPT statement is used to instruct the computer to accept data
punched into a single card or keyed in from the console. To be able
to use the data from a card file, a READ statement must be executed
for each record in the file.

123

~
f\.)
~

~
J-I.

l.Q
s:
11
(1)

w
f\.)

778932 ABBOTT ,JAMES 42

This figure illustrates the execution of the statement

READ CARD-FILE.

CARD-FILE

778932 ABBOIT,JAMES 42

<D When the statement
READ CARD- FILE.
is executed, the data from a card (record)
in the file is transmitted to the record
variable (EMPLOYEE-RECORD) that was
associated with the file in the Data Division.

(NAME)

EMPLOYEE-RECORD

26. The text identified by 1 in Figure 32 explains that the READ
statement causes:

a

27.

a. data froID a card in the file to be transmitted to the input
area in core storage set up by the record description entry
for the file.

b. storage to be reserved in core for information from the
cards.

* * *

o 0 112 233 4 4 556 6 1
1 ..• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••. 0 ••

READ file-name

The simple form of the READ statement is shown above. (No
terminating period is shown in the form above, since a period is
not a required part of the statement.)

0011223 3 4 4 556 6 1
1 .•• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

a

READ CUSTOMER-FILE.

The statement above would cause the next record in the file
CUSTOMER-FILE to be stored in the record variable associated with
the file. Information contained in that record can subsequently
be referred to in the program by references to the appropriate
variables. A READ statement:

a. must be executed before data from a record in a file can be
processed.

b. causes data to be stored as specified in the Working-Storage
Section.

* * *

--------------~---

28. Write a statement to cause data from a record in the file CARD
FILE to be stored in the record variable associated with the
file. (Do not use the coding form on which you are coding the
program for the problem statement in Figure 29.)

* * *
001122334 4 556 6 1
1 ... 5 •.•• 0 •••• 5 •••. 0 •.•• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

READ CARD-FILE.

125

29. According to the problem statement in Figure 29 the operations
necessary to complete the 'Procedure Division are:

a. ACCEPT

b. READ

c. IviOVE

d. WRITE

e. DISPLAY

* * *
b,c,d

30. On a separate coding form, write the necessary COBOL statements
to:

1) read the data from a card in CARD-FILE.

2) move the necessary data as indicated in Figure 29.

3) print the output record as indicated in Figure 29.

* * *
001122334 4 556 6 7
1 .•. 5 ..•. 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ..•• 0 ••

126

READ CARD-FILE.
MOVE EMPLOYEE-NUMBER TO

EMPLOYEE-NUMBER-O.
NOVE HOURS TO HOURS-WORKED.
WRITE PRINT-RECORD.

31. The statements you have just written will cause one record to be
read from CARD-FILE and one record to be printed in PRINTFILE. A
file always contains more than one record. In order to complete
the data-processing task, the entire file must be processed.
That is, every card in the file must be read and the necessary
steps performed to process it. This could be specified by:

a. repeating the steps you have just written

b. executing a READ statement (and other necessary steps) for
each record in the file.

* * *
Either

32.

2nd card

1st card
(007712 GRANT.ALBERT 36

007170 BRETT,JIM 45

Figure 33

o 0 1 1 2 2 3 344 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0_ ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

203 READ CARD-FILE.
204 MOVE EMPLOYEE-NUMBER TO
205 EMPLOYEE-NUMBER-O.
206 MOVE HOURS TO HOURS-WORKED.
207 WRITE PRINT-RECORD.
208 READ CARD-FILE.
209 MOVE EMPLOYEE-NUMBER TO
210 EMPLOYEE-NUMBER-O.
211 MOVE HOURS TO HOURS-WORKED.
212 WRITE PRINT-RECORD.
213

The first time a READ statement for a card file is executed, the
data from the first card in the file is transmitted to the
appropriate input area. Execution of the next READ statement for
that file will cause the data from the second card in the file to
be stored in the same input area, thus destroying the data from
the first record. Using the data descriptions in your program
and the cards shown from the input file, you can see that after
execution of statement 203 above, the variable NAME will contain
•••••••• , after execution of statement 208, NAME will contain

BRETT,JIM
GRANT,ALBERT

* * *

127

33.

0011223 3 445 5 6 6 7
1 •.• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

203 READ CARD-FILE.
204 MOVE EMPLOYEE-NUMBER TO
205 EMPLOYEE-NUMBER-O.
206 MOVE HOURS TO HOURS-WORKED.
207 WRITE PRINT-RECORD.
208 READ CARD-FILE.
209 MOVE EMPLOYEE-NUMBER TO
210 EMPLOYEE-NUMBER-O.
211 MOVE HOURS TO HOURS-WORKED.
212 WRITE PRINT-RECORD.
213

128

Using the data shown in the previous frame, write the information
that will be printed when:

1) statement 207 is executed

2) statement 212 is executed

* * *
1) 00717045 (Employee-Number and Hours)
2) 00771236

34. It would be irrpractical to write all the necessary statements for
every card in a file. You might not know how many cards are in
the file. Therefore, it would probably be best to:

b

a. read only one card in the file

b. reexecute statements that process a single card for every
card in the file

* * *

35. Statements in the Procedure Division of a COBOL program are
normally executed in the order in which they occur. You might
assume that this pattern of sequential execution could be altered
by a:

a. branching statement

b. statement causing a transfer of control to another point in
the program

* * *
Either

36. A COBOL statement used to transfer control to another pOint in
the program is the GO TO statement.

Move data

This flowchart illustrates
a loop, which is the
repetition of a series of
steps in a program.

Figure 34

0011223 344 5 5 6 6 7
1 ... 5 •••• 0 •... 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

GO TO paragraph-name.

The GO
looping.
to the
point.

TO statement of the form shown above can be used for
When a GO TO statement is executed, control transfers

given paragraph name and execution continues from that

129

o 0 112 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ..•• 0 ••

a,c

130

PROCEDURE DIVISION.
BEGIN.

OPEN OUTPUT LIST-FILE.
PROC1.

ACCEPT NAME FROM CONSOLE.
MOVE NAME TO OUTPUT-NAME.
WRITE OUTPUT-RECORD.
GO TO PROC1.
CLOSE LIST-FILE.
STOP RUN.

Refer to the Procedure Division above and determine which of the
following statements is true.

a. When the GO TO statement is executed, control will transfer
to the point where PROC1 appears and all the statements
following PROC1 up to the GO TO statement will be reexecuted.

b. The statements shown will be executed once and then execution
will stop.

c. If the GO TO statement were placed immediately following the
ACCEPT statement, nothing would be printed in the output
file.

* * *

31.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ... 5 •••• 0 •.•. 5 •••. 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 ••.• 5 ••.• 0 •.

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT STUDENT
OUTPUT LISTING.

READ STUDENT.
MOVE STUDENT-NAME TO LIST-NAME.
WRITE LISTING-RECORD.
GO TO BEGIN.
CLOSE STUDENT LISTING.
STOP RUN.

When the Procedure Division above is executed, the OPEN statement
will be executed each time control is transferred by the GO TO
statement. An OPEN statement for a file can be executed only
once in a program (unless the file is to be closed and then
reopened). You know that a paragraph name can precede any
statement in the Procedure Division. Using the paragraph name
PARA1, rewrite the Procedure Division above specifying that the
OPEN statement will be executed only once.

* * *
001 1 2 2 3 344 5 5 6 6 7
1 ... 5 •.•. 0 •..• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •..• 5 ••.• 0 ••

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT STUDENT
OUTPUT LISTING.

PARA1.
READ STUDENT.
MOVE STUDENT-NAME TO LIST-NAME.
WRITE LISTING-RECORD.
GO TO PARA1.
CLOSE STUDENT LISTING.
STOP RUN.

Alternate solutions:

o 0 1 1 2 233 445 5 6 6 7
1 ..• 5 .••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 .••• 0 ••

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT STUDENT
OUTPUT LISTING.

PARA1.
READ STUDENT
MOVE STUDENT-NAME TO LIST-NAME
WRITE LISTING-RECORD
GO TO PARA1
CLOSE STUDENT LISTING
STOP RUN.

131

0011223 344 5 5 661
1 ... 5 .••. 0 .••. 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

132

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT STUDENT
OUTPUT LISTING.

PARA1.
READ STUDENT,
MOVE STUDENT-NAME ,TO LIST-NAME,
WRITE LISTING-RECORD,
GO TO PARA1,
CLOSE STUDENT LISTING,
STOP RUN.

By refering to Figure 31, you can see that either of the Procedure
Divisions above would also be a correct solution to this frame.
Paragraph BEGIN contains only one statement, which must end in a
period since a paragraph must contain at least one sentence.
Paragraph PARA1 contains six sentences in the original solution and
one sentence in the additional solutions. Two,three, four or five
sentences in paragraph PARA1 could also be correct.

SUMMARY:

In the preceeding portion of this lesson you have learned to:

1) set up an input area in storage for data contained in an
input file.

2) read data from punched cards in an input file.

3) specify that a series of steps in a program is to be repeated
so that the entire input file can be processed.

END OF LESSON 6

LESSON 7

133

LESSON 7 - USE OF RECORD VARIABLES

INTRODUCTION

This lesson will give you increased flexibility in programming
techniques by showing you what to do at the end of a program and how to
use record variables at levels lower than 01 and 02.

Specific COBOL language features you will learn to use in this lesson
are:

134

AT END option of the READ statement
Level number 03
Level number 04
Qualified names

This lesson will require approximately three quarters of an hour.

There is another situation you must provide for when you are writing
a program using card input file. You must specify the action to ce
taken when the last card in the file has been read.

1. The last card in a card file is a card with a special code on it
which is understood by the computer to mean "this is the end of
the file." ~herefore, when a program is processing an input card
file, the computer will know that the last card has been
processed when:

a. there are no ~ore cards.

b. it reads a card with a special end-of-file code.

* * *
b

2.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 •.• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

READ file-name AT END imperative-sentence

Although the computer knows when it has reached the end of the
file, it doesn't know what to do. You, as a programmer, must use
the A~ END option of the READ statement to tell the computer what
to do when all the records in an input file have been processed.
A READ statement with an AT END option has the form shown above.
An irrperative sentence is one or more imperative statements,
ended by a period and followed by a blank.

AT END option

The AT END option must be specified for all files in the
sequential access mode. If, during the execution of a READ
statement, the logical end of the file is reached, control is
passed to the imperative-statement specified in the AT END
phrase. After execution of the imperative statement associated
with the AT END phrase, a READ statement for that file must not
be given without a prior execution of a CLOSE statement and an
OPEN statement for the same file.

If, during the processing of a multivolume disk file in the
sequential access mode, end-of-volume is recognized on a READ,
the following actions are carried out:

1. A volume switch is made. If the MULTIPLE UNIT option was
specified for this file, and if, in order to make the volume
switch, it is necessary for the operator to make a physical
cartridge change, he is instructed at this time to do so.

2. When the volume switch is complete, the first data record of
the new voluwe is made available.

135

Determine which of the following could be included in the AT END
option.

a.

o 0 112 2 3 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MOVE TOTAL TO TOTAL1 STOP RUN.

b.

o 0 112 2 3 3 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

GO TO PARA2.

c.

o 0 112 2 3 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

CLOSE INFILE STOP RUN.

* * *
Any of these
(As shown in £ an imperative sentence consisting of a string of
imperative statements may be included in the AT END option.)

3. In order to determine what should be included in the AT END
option, you must decide what is to be done (as specified in the
problem statement) when the entire input file has been processed.
Because all files used in a program should be closed by a CLOSE
statement, it would be logical to include a •••••••• statement in
the AT END option.

* * *
CLOSE

4. If the program is complete when the entire input file has been
processed, you might also include:

a. STOP RUN in the AT END option.

b. a MOVE statement in the AT END option.

* * *
a

---_._----------------------------

136

5.

o 0 112 2 3 344 556 6 7
1 ... 5 •.•• 0 •••• 5 •••. 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •.•. 0 ••

1)

CLOSE file-narre file-naroe •••

The CLOSE statement for an input file is just like a CLOSE
statement for an output file. Each file in a program may have a
separate CLOSE statement, or a single CLOSE statement may close
several files, both input and output. In this case, the CLOSE
statement has the format shown above. (Do not use the coding
form on which you are coding the program for the problem
statement in Figure 29.)

1) Write two sentences to close the files STUDENT and LISTING.

2) write a single sentence to close the files STUDENT and
LISTING.

* * *

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ... 5 ...• 0 ••.• 5 •.•• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •... 5 •.•. 0 •.

2)

CLOSE STUDENT.
CLOSE LISTING.

o 0 1 1 2 2 3 3 4 4 556 6 7
1 ... 5 .••. 0 •.•. 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.. 5 •••. 0 ••

CLOSE STUDENT LISTING.

131

6.

138

(Necessary
processing)

Figure 35

STOP RUN

0011223 3 445 5 6 6 7
1 ..• 5 .•.• 0 ..•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

PROCEDURE DIVISION.
PROC1.

OPEN INPUT STUDENT
OUTPUT LISTING.

PARA1.
READ STUDENT.
MOVE STUDENT-NAME TO LIST-NAME.
WRITE LISTING-RECORD.
GO TO PARA1.
CLOSE STUDENT LISTING.
STOP RUN.

Rewrite the READ statement in the coding above to specify the
action described in the flow chart. The AT END option is used to
specify the decision and subsequent action. (DO not use the
coding form on which you are coding the program for the problem
statement in Figure 29.)

* * *
0011223 344 5 5 6 6 7
1 ... 5 •••• 0 ••.• 5 •.•. 0 •••. 5 •••• 0 ••.. 5 •.•• 0 •..• 5 •.•• 0 •••• 5 •••• 0 ••.• 5 ••.• 0 .•

READ STUDENT AT END
CLOSE STUDENT LISTING
STOP RUN.

Alternate coding:

0011223 344 556 6 7
1 ..• 5 •..• 0 •••• 5 •••. 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

READ STUDENT AT END CLOSE STUDENT
LISTING STOP RUN.

(If you had coded a period after LISTING, the STOP RUN statement
would be executed after any execution of the READ statement.)

7. There way be more than one READ statement in a program for a
single file. An AT END option must be specified in each READ
statement for every input file. Select the statement(s) below
that specify the correct use of the AT END option.

b

a. Every READ statement must include the AT END option

b. If a program includes only one READ statement, that statement
must contain an AT END option.

c. If a program contains more than one READ statement for a
single file, only one of the statements may include the AT
END option.

* * *

(An AT END option must be specified in each READ statement unless
another option that you will learn to use later is specified.)

139

8.

140

Move data to
output record

Figure 36

Close all
files

Continue on the coding form on which you have been coding the
problem statement in Figure 29. Using the flow chart above,
complete the Procedure Division for the program. (Remember that
you must read a file and write a record.)

* * *

0011223 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

PARA1.
READ CARD-FILE AT END

CLOSE CARD-FILE PRINTFILE
STOP RUN.

MOVE EMPLOYEE-NUMBER
TO EMPLOYEE-NUMBER-O.

MOVE HOURS TO HOURS-WORKED.
WRITE PRINT-RECORD.
GO TO PARA1.

9. Often, for easier reading, a programmer will place the statements
necessary to complete his program and terminate execution at the
end of the program instead of in the AT END option. In order to
do this, the programmer must:

a. include a GO TO statement in the AT END option.

b. precede the completion statements by a paragraph name.

* * *
Both

10. Rewrite the READ
problem statement
statements at the
FINISH.

statement through the GO TO statement for the
in Figure 29 to include the completion

end of the program. Use the paragraph name

* * *
001 1 2 2 3 344 5 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 0 ••

PARA1.
READ CARD-FILE

AT END GO TO FINISH.
MOVE EMPLOYEE-NUMBER TO

EMPLOYEE-NUMBER-O.
MOVE HOURS TO HOURS-WORKED.
WRITE PRINT-RECORD.
GO TO PARA1.

FINISH.
CLOSE CARD-FILE PRINTFILE.
STOP RUN.

(This coding will produce the same effect as the coding in the AT END
option.)

141

11.

o 0 1 1 2 2 3 3 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

12.

01 RECORD1.
02 PURCHASE PIC X(4).
02 ITEM-NUMBER PIC X(6).

You know that level 01 record variables can be broken into level
02 elementary variables. In the record description entry above:

a. RECORD1 is the name of a file.

b. a reference to RECORD1 is a reference to PURCHASE and ITEM
NUMBER.

* * *

o 0 112 2 3 344 556 6 7
1 .•. 5 •••• 0 •••. 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

Both

142

01 STUDENT-RECORD.
02 MONTH PIC XX.
02 DAY PIC xx.
02 YEAR PIC XX.
02 STUDENT-NUMBER PIC X(8).
02 STREET PIC X(1S).
02 CITY PIC X(10).
02 STATE PIC X(4).

According to the record description entry above:

a. any of the seven level 02 elementary variables can be
referred to individually.

b. all seven level 02 elementary variables are grouped together
to form STUDENT-RECORD.

* * *

13.

o 0 112 2 3 3 4 4 556 6 7
1 ..• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

01 SALES.
02 AVERAGE PIC 9999.
02 HIGH PIC 9999.
02 LOW PIC 9999.

(The 9's shown in Level 02 pictures signify numeric characters).

Match each description with the appropriate variable defined in
the record description entry above.

1) SALES a. Elementary variable

2) AVERAGE b. Group variable

c. Variable that is further subdivided

* * *
1) b,c
2) a

143

14.

r-------------------------------,
I STUDENT-RECORD I

:-;;;~~L~;;=DATE--]-~;~~~;;=-\
1-------1-----[----- NUMBER I I MONTH DAY YEAR I L--___ ____ ______ _ _________ J

o 0 112 2 3 344 556 6 7
1 ... 5 .••• 0 ••.• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

01 STUDENT-RECORD.
02 ENROLLMENT-DATE.

03 MONTH
03 DAY
03 YEAR

02 STUDENT-NUMBER

If you were using a record like the one described in a preceding
example, it is likely that you would want to refer to MONTH, DAY
and YEAR at the same time, perhaps as DATE, or ENROLLMENT-DATE.
The same is true for STREET, CITY and STATE, which could te
referred to as ADDRESS.

COBOL enables you to group single data items within a record. In
the example above, MONTH, DAY, and YEAR have been grouped
together into the group variable ENROLLMENT-DATE. The block above
shows the logical structuring of the record. ENROLLMENT-DATE is
a level 02 group item. MONTH, DAY and YEAR are level 03
elementary variables and can be referred to separately, or
collectively as ENROLLMENT-DATE, or together with STUDENT-NUMBER
as STUDENT-RECORD.

Select the correct statement(s) for the following example.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 00 ••• 5 •••• 0 ••

144

01 STUDENT-RECORD.
02 ENROLLMENT-DATE.

03 MONTH
03 DAY
03 YEAR

02 STUDENT-NUMBER
02 HOME-ADDRESS

03 STREET
03 CITY
03 STATE

a,c

r----------------- ----------------------------,
I STUDENT-RECORD I

I~¥T~I~~~~~- I~~~~E~~~=i~;;~=l
a. STREET, CITY and STATE are level 03 elementary variables.

b. HOME-ADDRESS is a level 02 elementary variable.

c. STREET, CITY and STATE can be referenced individually,
collectively by HOME-ADDRESS, or together with STUDENT-NUMBER
and ENROLLMENT-DATE by STUDENT-RECORD.

* * *

(HOME-ADDRESS is a level 02 group variable.)

15.

o 0 112 2 3 344 556 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

01 DEPl'-RECORD.
02 DEPI'-NUMBER
02 SALES.

03 PERIODl
03 PERIOD2
03 PERIOD3

02 LISTSALES
02 COMMISSION.

03 PERIOD-l
03 PERIOD-2
03 PERIOD-3

The level nUffber of a data description entry never determines
whether the variable is a group or elementary variable. If an
item is broken into smaller items, it is a group variable. If an
item in a record description entry is not broken into smaller
items, it is an elementary variable. Referring to the record
description entry in the segment of coding shown above, list the
names of the:

1) group variables

2) elementary variables

* * *
1) DEPT-RECORD (the record itself), SALES, COMMISSION

2) DEPT-NUMBER, PERIOD1, PERIOD2, PERIOD3, LISTSALES, PERIOD-l,
PERIOD-2, PERIOD-3

145

16.

b,d

146

r--------------------------------------,
1 DEPT-RECORD 1

\-~~~=--1------------;~~;~------------:
1 NUMBER ---------1---------1--------- 1
1 PERIOD1 PERIOD2 PERIOD3 1 L________ _________ _________ _ ________ J

r---,
1 1
1-----------1-----------------------------1
I LISTSALES COMMISSION 1
1 ---------1---------1---------1 I PERI 001 PERIOD2 PERIOD3 1 L-__________ _________ _________ _ ________ J

Only elementary variables have values. Group variables merely
allow the programmer to refer to a group of values. This implies
that the PICTURE clause will be included in the data description
entry for:

a. group variables.

b. elementary variables.

c. SALES in the record above.

d. LISTSALES in the record above.

* * *

17.

r--,
1 WAGE-RECORD 1

I-----------]---------------------j------------------------I 1 EMPLOYEE- HOURS WAGES 1

1 NUMBER ---------]---------- -----------]------------1 1 (5 char) REGULAR OVERTIME REG-HAGES OVER-WAGES I
1 (3 char) (3 char) (4 char) (4 char) 1 L___________ _________ __________ ___________ _ ___________ J

write a record description entry for the record variable
illustrated above. The record variable WAGE-RECORD is to ce
associated with an input card file.

* * *
o 0 112 2 3 344 5 5 6 6 7
1 .•• 5 .••• 0 •••• 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

18.

01 WAGE-RECORD.
02 EMPLOYEE-NUMBER PIC XeS).
02 HOURS.

03 REGULAR PIC X(3).
03 OVERTI~E PIC X(3).

02 WAGES.
03 REG-WAGES PIC X(4).
03 OVER-WAGES PIC X(4).

r---,
I DEPARTMENT-RECORD 1
1------------- ---1
1 DEPARTMENT- STOCK 1
1 NUMBER - 1

t_____________ ~~~~~~:~~~ER~:-_r~~~~~~~~~~~i
A record variable way contain as many as 49 levels. The diagram
above illustrates a record which contains •••••••• levels.

* * *
four

147

19. The data entries for level 04 variables are written immediately
following the level 03 variable of which they are a part. Write
the record description entry for the record illustrated in the
previous frame. DEPARTMENT-NUMBER contains two characters and
each of the remaining elementary variables contains six
characters.

* * *
0011223 3 4 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

01 DEPARTMENT-RECORD.
02 DEPARTMENT-NUMBER PIC XX.
02 STOCK.

03 SECTION-1.
04 ON-HAND-1 PIC X(6).
04 ON-ORDER-1 PIC X(6).

03 SECTION-2.
04 ON-HAND-2 PIC X(6).
04 ON-ORDER-2 PIC X(6).

(Record variables may be subdivided to level 49. Level number 01
must begin in Area A. Level numbers 02 through 49 may begin in
either Area A or Area B. All associated data names and their
descriptions must be contained in Area B. In this text, level
numbers will be indented for readability as shown above.)

20.

r--, 1 CUSTOMER-RECORD 1

1-----------]---------------------5------------------------------1 1 CUSTOMER- PAYMENTS BALANCE 1
1 NUMBER ---------- --------- -------- ---------- ----------1

~~-=:::~-- _~_=~::~_~~~:=~~_ ~~:~~~ __) l_~~=~::~_~~~~::~J
Write the record description entry for the record described
above.

* * *
0011223 3 4 4 5 5 6 6 7
1 ... 5 •••• 0 •••• S •• ~.0 •••• 5 •••• 0 •••• S •••• 0 •••• S •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

148

01 CUSTOMER-RECORD.
02 CUSTOMER-NUMBER PIC XeS).
02 PAYMENTS.

03 HI PIC xes).
03 LOW PIC xes).

02 BALANCE.
03 PRESENT PIC X(7).
03 HI PIC X(7).
03 LOW PIC X(7)~

21. The record variable described in the coding for the previous
frame contains two data items called LOW and two called HI.
Consequently, a reference to HI or LOW in a program would be
ambiguous; the computer would have no way of knowing which
variable was being referred to. A unique quality about each HI,
however, is that:

a

a. one is an elementary
PAYMENTS and the other
BALANCE.

variable within the group variable
is an elementary variable within

b. they appear in different records.

* * *

22. In order to reference the variable HI in a program using the file
associated with the record variable CUSTOMER-RECORD, HI must ce
made unique to avoid ambiguity. HI can be made unique by giving
the group item of which it is a part: HI OF PAYMENTS and HI OF
BALANCE. Show how the two variables called LOW could be made
unique.

* * *
LOW OF PAYMENTS and LOW OF BALANCE
(It is also correct to use IN in place of OF.)

149

23.

o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •••• O •••• 5 •••. o •• ' •• 5 •••• o •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

FD MASTER-FILE
LABEL RECORDS ARE OMITTED.

01 EMPLOYEE.
02 NAME.

03 SUR
03 GIVEN

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ..• 5 .••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

150

FD EMPLOYEE-FILE
LABEL RECORDS ARE OMITTED.

01 EMPLOYEE-RECORD.
02 NAME.

03 SUR
03 GIVEN

Forming a unique name as shown in the previous frame is called
qualification. If a name is not in itself unique, it must be
qualified by as many group items in which it is contained as are
necessary to make it unique. If the two files described above
were used in a program, SUR would have to be qualified each time
a reference was made to it. SUR, qualified to the fullest
extent, would be

SUR OF NAME OF EMPLOYEE OF MASTER-FILE

and

SUR OF NAME OF EMPLOYEE-RECORD OF EMPLOYEE-FILE.

Because a nawe must be qualified only to the extent necessary to
make it unique, a correct reference to SUR could be:

a. SUR OF NAME

b. SUR OF NAME OF EMPLOYEE

* * *

24.

r--,
1 CUSTOMER-RECORD 1

I-----------]---------------------j--------------------------------1 1 CUSTOMER- PAYMENTS BALANCE 1
1 NUMBER ---------- --------- ---------- ---------- ----------1
1 (5 char) HI LOW PRESENT HI LOW 1

L-__________ _~~_=~::~_~~_=~::~_ ~~_=~::~_I_~~_=~::~~_~~_=~::~J
o 0 112 2 3 3 445 5 6 6 7
1 ..• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 ••

FD LISTFILE
LABEL RECORDS ARE OMITTED.

01 STOCK.
02 DEPT.

03 PORTION PIC X(4).
03 MARK PIC X(4).

02 INVOICE NUMBER.

The name following the reserved word OF in a qualified name is
called a qualifier. The qualifiers must appear in hierarchical
order. For example, HI in the record above could not te
qualified as HI OF CUSTOMER-RECORD because OF BALANCE or OF
PAYMENTS must be included. Nor could it be qualified as HI OF
CUSTOMER-RECORD OF PAYMENTS because the qualifiers are out of
order. A correct qualified name for MARK in the above coding
would be:

a. MARK OF STOCK

b. MARK OF PORTION OF DEPT

c. MARK OF LISTFILE OF DEPT

d. MARK OF DEPT OF LISTFILE

* * *
None of these
(Proper qualified names for MARK would be:
MARK OF DEPT,
MARK OF DEPT OF STOCK, or
MARK OF DEPT OF STOCK OF LISTFILE.)

151

25.

r--, 1 CUSTOMER-RECORD 1
1-----------]---------------------]--------------------------------1 1 CUSTOMER- PAYMENTS BALANCE 1

~~::::::~__ ~~;;;~~~~;;~ ~~~~~~I~~;;;;~~~:;;;;~~

1)

2)

152

The record variable CUSTOMER-RECORD is associated with the file
CUSTOMER-FILE. Show how the two variables LOW in the record
illustrated above could be qualified.

1) to the fullest extent

2) only to the extent necessary to make them unique

* * *
LOW OF PAYMENTS OF CUSTOMER-RECORD

OF CUSTOMER-FILE
LOW OF BALANCE OF CUSTOMER-RECORD

OF CUSTOMER-FILE

LOW OF PAYMENTS
LOW OF BALANCE

26. Data-processing problems often require that data in the input
file be listed on the printer. Listing the data 1n t~e input
file may be a portion of a complex program or may be an entire
program in itself. The problem described in Figure 31 consists
of listing the records in the input file. Read the problem
statement and code the program ADDRESS-LISTING to produce the
listing.

INPUT.FI~
Device: 1442 t---.., IBM·I130

ADDRESS·L1ST
Device: 1132

The system flow chart above shows the files and equipment to be used in
this program to produce a listing of the data in the card file INPUT- FILE.
The forms of records in INPUT- FILE and ADDRESS-LIST are illustrated
below.

INPUT·RECORD

NAME HOME·ADDRESS
(blank) SUR .1 GIVEN

(12 characters) (8 characters) (40 characters) (20 characters)

The program flow chart
shows the order of
operations for the
Procedure Division.

Paragraph ,
BEGIN I

I
I
L

Paragraph I
MAIN·SEQUENCE I

OUTPUT·RECORD

LAST·NAME ADDRESS.Q

(12 characters) (40 characters)

Paragraph
FINISH

I
I
I
I

----;-1

I
I
I

I

Move SUR and
HOME·ADDRESS

to output area

I
L'------

Figure 31

STOP

I
I
I
I

"----~

153

o 0 112 2 3 344 5 5 6 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IDENTIFICATION DIVISION.
PROGRAM-ID. ADDRESS-LISTING.
ENVIRCNMENT DIVISION.
CONFIGURATION SECTION.
SOURCE COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO
RD-1442.

SELECT ADDRESS-LIST ASSIGN TO
PR-1132.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE

LABEL RECORDS ARE OMITTED.
01 INPUT-RECORD.

02 NAME.
03 SUR PIC X(12).
03 GIVEN PIC X(8).

02 HOME-ADDRESS PIC X(40).
02 FILLER PIC X(20).

FD ADDRESS-LIST
LABEL RECORDS ARE OMITTED.

01 OUTPUT-RECORD.
02 LAST NAME PIC X(12).
02 ADDRESS-O PIC X(40).

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT INPUT-FILE
OUTPUT ADDRESS-LIST.

MAIN-SEQUENCE.
READ INPUT-FILE

AT END GO TO FINISH.
MOVE SUR TO LAST-NAME.
MOVE HOME-ADDRESS TO ADDRESS-O.
WRITE OUTPUT-RECORD.
GO TO MAIN-SEQUENCE.

FINISH.

SUMMARY:

CLOSE INPUT-FILE ADDRESS-LIST.
STOP RUN.

(10,51)

(13)

(26)

(36)

You have now completed Lesson 7 in which you learned COBOL statements
and entries necessary to read data records from an input card file. The
function of each of these entries is described on the following page.

154

o o 1 1 2 2 3 3 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IDENTIFICATION DIVISION.
PROGRAM-ID. ADDRESS-LISTING.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM 1130.
OBJEC~-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

(1) SELECT INPUT-FILE ASSIGN TO
RD-1442.

SELECT ADDRESS-LIST ASSIGN TO
PR-1132.

DATA DIVISION.
FILE SECTION.

(2) FD INPUT-FILE
LABEL RECORDS ARE OMITTED.

01 INPUT-RECORD.
02 NAME.

(3) 03 SUR PIC X(12).
03 GIVEN PIC X(8).

02 HOME-ADDRESS PIC X(40).
02 FILLER PIC X(20).

FD ADDRESS-LIST
LABEL RECORDS ARE OMITTED.

01 OUTPUT-RECORD.
02 LAST-NAME PIC X(12).
02 ADDRESS-O PIC X(40).

PROCEDURE DIVISION.
BEGIN.

(4) OPEN INPUT INPUT-FILE
OUTPUT ADDRESS-LIST.

MAIN-SEQUENCE.
(5) READ INPUT-FILE

AT END GO TO FINISH.
MOVE SUR TO LAST-NAME.
MOVE HOME-ADDRESS TO ADDRESS-O.
WRITE OUTPUT-RECORD.
GO TO MAIN-SEQUENCE.

FINISH.
(6) CLOSE INPUT FILE ADDRESS-LIST.

STOP RUN.

(1) Links file naroe to equipment to be used for the file.

(2) Specifies whether file contains records used to label the
file.

(3) Defines an input area and associates it with a file name.

(4) Prepares file for processing and specifies its use as input.

(5) Reads a record from the file into the input area associated
with the file in the File Section.

(6) Terminates processing of the file.

In this lesson you also learned to group elementary variables into
level 02 and level 03 group variables and to qualify names when
necessary. You learned to specify looping or a transfer of control to
another point in the program. These programming techniques will te
expanded in following lessons.

END OF LESSON 7

155

THIS PAGE INTENTIONALLY LEFT BLANK

156

LESSON 8

151

LESSON 8 - HORIZONTAL SPACING

INTRODUCTION

As a programmer you will be required to prepare printed reports with
specified page titles and headings. You will also be required to follow
a specified format for titles, headings, and data items. In this lesson
you will learn to control horizontal spacing of titles, headings, and
data items in records in a printer file.

158

Specific COBOL language features that you will learn to use are:

FILLER items to insert blanks preceding, between, and following
data items in a record in an output file

VALUE clause
ZEROS figurative constant
Maximum size of output.area for printer file

This lesson will require approximately one hour.

1. You learned to specify a record variable of 80 characters, the
same size as a card record in an input file. If a record in an
output file is to be a line of 120 or less characters on an 1132
printer, you would expect to specify an output area:

a. the same size as the record in the output file.

b. of 120 characters or less.

* * *
Both <Carriage control: if the maximum of 124 printer positions is
to be used, you must actually specify an output area of 125
characters and provide for the first position to be unused. A
carriage control character for the printer will be generated by the
compiler in the first position of the output area. If no carriage
control is specified in the ASSIGN clause, one must specify only a
120 character output area. No carriage control character is
required.)

2. You used a FILLER item in a record variable for a portion of a

Both

card record that was blank, or that contained no data to be
transmitted. If a record in an output area is to be transmitted
to a printer line, you would expect to use a FILLER item in the
output area for a portion of the printer line:

a. that is to be blank.

b. to which no data is to be transmitted.

* * *

3. You know that the value of a variable is undefined until it is
given a value in the program. If no specific value has been
given, the variable:

a. may contain a value remaining from previous processing.

b. will contain blanks.

* * *
a

4. Thus far you have learned that a value may be given to a variable
by:

Both

a. moving a value to the variable from another variable with a
r-lOVE statement.

b. transmitting a value to the variable from an input file with
a READ statement.

* * *

159

160

5. If a value has not been given to a FILLER item in an output area
before a record is transmitted from the output area to a printer
line, the value that will be printed from the FILLER item is:

a. made up of blanks.

h. whateve~ value remains from previous processing.

* * *
b

6. A FILLER item in an output area:

a. is used for a portion of a printer line that is to be blank.

b. should be given an initial value of blanks.

* * *
Both

f-l
0"
f-l

I':j
~
11
(I)

!..oJ
co

This figure illustrates the execution of the statement

MOVE INPUT-RECORD TO OUTPUT-RECORD

used to move a value of a shorter variable to a longer variable.

JOHN WILLIAMS 1221 OAK ST LOS ANGELES CAL 10235

~,
',' -

....... -
(HOME-ADDRESS)

INPUT-RECORD

JOHN WILLIAMS I 1221 OAK ST LOS ANGELES CAL

(NAME) (HOME-ADDRESS)

OUTPUT-RECORD

CD Values of INPUT-RECORD are
moved to NAME, HOME -ADDRESS
and CUSTOMER-NUMBER in
OUTPUT-RECORD. Remainder
of OUfPUT-RECORD (FILLER)
is padded with blanks.

Input area

.output area
~--------------------------------------~

-----------..-----
JOHN WILLIAMS 1221 OAK ST LOS ANGELES CAL 10235

I Working Storage

162

7. Figure 38 illustrates the execution of a MOVE statement. Read
the explanation and look at the illustration in Figure 38. Arrow
1 indicates that the statement is used to move values from:

a. working storage to an output area.

b. an input area to an output area.

* * *

b

8. According to the explanation for Arrow 1 in Figure 38, the MOVE
statement moves:

a

a. values of INPUT-RECORD to NAME, HOME-ADDRESS, and CUSTOMER
NUMBER in OUTPUT-RECORD.

b. a value of INPUT-RECORD to FILLER in OUTPUT-RECORD.

* * *

9. According to the explanation for Arrow 1 in Figure 38, the MOVE
statement:

a. moves a value to FILLER in OUTPUT-RECORD from INPUT-RECORD.

b. causes FILLER in OUTPUT-RECORD to be padded with blanks.

* * *
b

10. Figure 38 shows that when values are moved from a record variable
to a larger output area, FILLER in the output area:

a. is unaffected.

b. contains whatever value remains from previous processing.

* * *
Neither (is padded with blanks. When values of a record variable
are moved to a shorter output area, the record is truncated on the
right to the length of the output area.)

11. In Figure 38 the FILLER item is used in OUTPUT-RECORD to fill the
output area to:

a. the size of a record in the output file.

b. the length of a line on a printer.

* * *
Both

12.

I NAMEISTREETICITY-STATEISYMBOLI"~~" I
I'>.x •.• x

20 20 20 2 18

CARD-FILE

19 20 20 59

Figure 39

Preparation of a listing of records in a card (or disk) file is a
common operation in any data-processing center. The following
problem will give you an opportunity to practice coding the
entries you have learned as you write the Data and Procedure
Divisions for a program to prepare a listing.

The customer records for a department store are card records of
the type shown above. Each record in CARD-FILE is to be printed
on one line of PRINT-FILE using an 1132 printer (which has 120
columns per line.) Although the first column in each card record
is blank, this is not a common practice. It has been done for
this problem to provide for the carriage control character that
will be generated as the first character in the output area.
While 19 positions are shown for NAME in PRINT-FILE, you must
specify 20 positions for NAME in the output area for PRINT-FILE.
(The output area is to be 121 positions.) The first position in
the output area will contain a printer carriage control
character; only the characters in positions 2 through 20 will be
printed, in regard to NAME.

163

1)

Using CUSTOMER-RECORD and PRINT-RECORD as the input and output
areas, respectively, write the:

1) Data Division entries that would be required in this problem
including the necessary headers, the FD entries, and the
record description entries.

2) Procedure Division entries including the:

a. division header.

b. paragraph BEGIN containing a statement to prepare the
files for processing.

c. paragraph MAINSEQUENCE containing statements to transfer
a record from the card file to the printer file, an
instruction to transfer control to MAINSEQUENCE to
process the next record and to print a record, and an
instruction to transfer control to the paragraph FINISH
when all records in CARD-FILE have been processed.

d. paragraph FINISH containing statements to close files and
stop execution.

* * *

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 •.• 5 ..•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

164

DATA DIVISION.
FILE SECTION.
FD CARD-FILE

LABEL RECORDS ARE OMITTED.
01 CUSTOMER-RECORD.

02 NAME PIC X(20).
02 STREE~ PIC X(20).
02 CITY-STATE PIC X(20).
02 SYMBOL PIC X(2).
02 FILLER PIC X(18).

FD PRINT-FILE
LABEL RECORDS ARE OMITTED.

01 PRINT-RECORD.
02 NAME PIC X(20}.
02 STREET PIC X(20).
02 CITY-STATE PIC X(20).
02 SYMBOL PIC X(2).
02 FILLER PIC X(59).

2)

o o 1 1 2 2 3 3 5 5 6 6 7
1 .•• 5 •••• 0 .•.. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT CARD-FILE
OUTPUT PRINT-FILE.

MAINSEQUENCE.
READ CARD-FILE AT END GO TO FINISH.
MOVE CUSTOMER-RECORD

TO PRINT-RECORD.
wRITE PRINT-RECORD.
GO TO ~~INSEQUENCE.

FINISH.
CLOSE CARD-FILE PRINT-FILE.
STOP RUN.

13. Figure 38 shows that when a record has been transmitted from the
output area to the output file, the values:

Both

a. of the variables NAME, HOME-ADDRESS, and CUSTOMER-NUMBER will
be printed in a continuous string.

b. of individual variables would be easier to distinguish if
they were separated by blanks.

* * *

165

t-'

'" '"

I'Zj
1-"

\.Q
~
11
m
-'= o

This figure illustrates the execution of the statements

MOVE NAME OF INPUT-RECORD TO NAME OF WORKING-RECORD.
MOVE HOME-ADDRESS OF INPtrr-RECORD TO HOME-ADDRESS OF WORKING-RECORD.
MOVE CUSTOMER-NUMBER OF INPUT-RECORD TO CUSTOMER-NUMBER OF WORKING-RECORD.
MOVE WORKING-RECORD TO OUTPUT-RECORD.

used to insert blanks in a record for horizontal spacing on a printer line. --~ -----KIiN wn.uAMS 1221 OAK ST LOS ANGELES CAL 10235

JOHN WILlJAMS 1221 OAK Sf La) AN~ CAL 10235
/,

1/
II , ,

input file
CARDS

Output area

CD Value of NAME of
INPUT -RECORD is
moved to NAME of
WORKING-RECORD

0value of
HOME-ADDRESS
of INPUT-RECORD
is moved to
HOME-ADDRESS of
WORKING-RECORD o Value of
CUSTOMER-NUMBER
of INPUT-RECORD
is moved to
CUSTOMER~NUMBER
of WORKING-RECORD

, \
\ \
\ \
\ \

\\
\ \
\ \
I ,

" I } I

10235 c//

Values (of blanks) that have been assigned to FILLER
with VALUE IS SPACES clause in data description entries

o Entire value of
WORKING-RECORD
is moved to
OUTPUT-RECORD

• Working Storage

14. A programmer must provide for the first character in an output
area to be reserved for the printer carriage control character.
In addition, a programmer may wish to insert blanks between
individual data items on a printer line to make them easier to
distinguish. Figure 40 illustrates execution of statements that
can be used to reserve the first character in the output area and
to insert blanks in a record to provide horizontal spacing on a
printer line. Read the explanation and look at the illustration
in Figure 40. The arrows in Figure 40 are numbered to correspond
to the MOVE statements. According to the explanation for Arrow
1, the first statement will move:

b

a. the values of NAME, HOME-ADDRESS, and CUSTOMER-NUMBER in
INPUT-RECORD to NAME, HOME-ADDRESS, and CUSTOMER-NUMBER in
WORKING-RECORD.

b. the value of NAME in INPUT-RECORD to NAME in WORKING-RECORD.

* * *

~---

15. In Figure 40 values of elementary variables in INPUT-RECORD are
moved to:

a

a. elementary variables separated by FILLER items in a single
record variable in working storage.

b. separate output areas.

* * *

16. Figure 40 shows that the programmer has provided for horizontal
spac1ng in a record in the output file. He has included FILLER
items in the record variable in working storage to insert blanks:

a. preceding the first data item.

b. between data items.

c. following the last data item.

* * *
All of these

17. Figure 40 shows that the programmer has assigned values of blanks
to the FILLER items in WORKING-RECORD. This figure also shows
that, as a result, spaces will precede, separate, and follow data
items:

a. in the output area.

b. on a printer line in the output file PRINT.

* * *
Both

167

18. Figure 40 shows that a FILLER item used to insert blanks for
horizontal spacing of data items on a printer line:

a. will be padded with blanks as a result of a MOVE statement.

b. have been assigned a value of blanks with a VALUE IS SPACES
clause.

* * *
b (If a single statement were used to move the value of INPUT-RECORD
to WORKING-RECORD, the value of INPUT-RECORD would be padded with
blanks to the length of WORKING-RECORD.)

19. The MOVE statements in figure 40:

c

a. move values from an input area to FILLER items in a working
storage variable.

b. cause FILLER items in a working-storage variable to be padded
with blanks.

c. would leave the value of FILLER items in a working-storage
variable undefined if a value of blanks had not been assigned
to the iterrs.

* * *

This figure shows the Data Division entries for inserting spaces
between data items for an output file.

0011223 344 556 6 7
1 ••• 5 •.•• 0 •••. 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •.•• 5 •••• 0 •••• 5 •••• 0 ••

01 DATA DIVISION.
02 FILE SECTION.
03 FD CARDS
04 LABEL RECORDS ARE OMITTED.
05 01 INPUT-RECORD.
06 02 NAME PIC X(35).
07 02 HOME-ADDRESS PIC X(40).
08 02 CUSTOMER-NUMBER PIC XeS).
09 FD PRINT
10 LABEL RECORDS ARE OMITTED.
11 01 OUTPUT-RECORD PIC X(121).
12 WORKING-STORAGE SECTION.
13 01 WORKING-RECORD.
14 02 FILLER PIC X(10) VALUE IS SPACES.
15 02 NAME PIC X(3S).
16 02 FILLER PIC X (10) VALUE IS SPACES.
17 02 HOME-ADDRESS PIC X(40).
18 02 FILLER PIC XCI0) VALUE IS SPACES.
19 02 CUSTOMER-NUMBER PIC xes).
20 02 FILLER PIC X(11) VALUE IS SPACES.

Figure 41

168

20. Figure 41 shows the Data Division entries for the variables in
Figure 40. The clause VALUE IS SPACES specifies that the FILLER
item preceding NAME will be assigned an initial value of 10
blanks. The sawe clause in the data description entry on:

Both

a. line 18 specifies that the FILLER item preceding CUSTOMER
NUMBER will be assigned an initial value of 10 blanks.

b. line 20 specifies that the FILLER item following CUSTOMER
NUMBER will be assigned an initial value of 11 blanks.
Recall that the print output area must be specified or 121
positions to accomodate a character (one more than the number
of print positions).

* * *

21. In Figure 40 the FILLER item to the left of NAME in WORKING
RECORD is used to insert blanks:

a. at the beginning of a printing line.

b. between data items on a printing line.

c. at the end of a printing line.

* * *
a (Only nine blanks would be inserted at the beginning of a printing
line; the first position in the output area would be used for a
printer carriage control character.)

22. The VALUE clause may be specified only in the Working-Storage
section. A programmer may use a VALUE clause in a data
description entry to assign a value of blanks to a FILLER item
in:

a. an output area.

b. a working-storage variable.

* * *
b

---~.-------

23. A programmer may specify a VALUE clause in a data description
entry for a FILLER item in the:

a. Working-Storage Section.

b. File Section.

* * *
a

169

24. When the data items in an input area are to be printed ~ith
horizontal spacing, blanks can be inserted by:

a. moving the data items to elementary variables in a working
storage record variable containing FILLER items with values
of blanks assigned in a VALUE clause and then woving the
value of the entire record variable to an output area.

b. moving the data items to elementary variables in an output
area containing FILLER items with values of blanks assigned
in a VALUE clause.

* * *
a

25. Figure 40 shows that in woving values from WORKING-RECORD to
OUTPUT-RECORD:

a. OUTPUT-RECORD has been subdivided to receive elementary
values from WORKING-RECORD.

b. the value of WORKING-RECORD is moved as an entire record to
OUTPUT-RECORD.

* * *
b

26. Figure 40 shows that the record in working storage:

a. is written on a printer line directly from the working
storage variable.

b. must be moved to an output area before it is written on a
printer.

* * *
b

170

27. In Figure 41 the record description entry for the output area
OUTPUT-RECORD:

Both

a. defines a level 01 variable of 121 characters.

b. shows that when a record is not subdivided, the PICTURE
clause is specified in the level 01 entry.

* * *

28. Data items in an input record are to be printed on a line of a
printer page on an 1132 printer with blanks preceding,
separating, and following the data items. To provide for the
blanks to be inserted into the record in the output file, a
programmer would include a record description entry in the Data
Division for:

a. a working-storage variable containing FILLER items assigned
values of blanks with a VALUE clause.

b. an input area subdivided into elementary variables.

c. an output area that need not be subdivided.

* * *

All of these

29. To provide for blanks to precede, separate and follow data items
in a record in an output file, a programmer must include a
statement in the Procedure Division to:

Both

a. move each data item individually to an elementary variable in
a working-storage variable containing FILLER items.

b. move the values of the entire working-storage record variable
to an output area.

* * *

171

172

30. The following problem incorporates all the features that you
have learned to use to provide horizontal spacing in a printed
report. coding the solution is optional. If you do not code the
solution, read it carefully to make sure you understand it.

20 10 10 2

CARD-FILE
(CUSTOMER--RECORD)

18

~IOBLANKS\

IINAMEIISTREETIICITY .. STATEIISYMBO~ .. l\l\ ..
20 20 20 18

PRINT-FILE
(PRINT -RECORD)

Figure 42

Coding the problem described below is a typical COBOL programming
task and the problem is a type that you will probably encounter
frequently. Each record in CARD-FILE is to be printed on one
line of PRINT-FILE using an 1132 printer. Blanks are to be
inserted as shown above. (Remember to provide an extra position
at the beginning of your output record for the printer carriage
control character.) Using WORKING-RECORD as the working-storage
variable, code the Data Division and the Procedure Division for
this problem. (Remember that the Working-Storage Section must
follow the File Section.)

* * *

0011223 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

DATA DIVISION.
FILE SECTION.
FD CARD-FILE

LABEL RECORDS ARE OMITTED.
01 CUSTOMER-RECORD.

02 NAME PIC X(20).
02 STREET PIC X(20).
02 CITY-STATE PIC X(20).
02 SYMBOL PIC X(2).
02 FILLER PIC X(18).

FD PRINT-FILE
LABEL RECORDS ARE OMITTED.

01 PRINT-RECORD PIC X(121).
WORKING-STORAGE SECTION.
01 WORKING-RECORD.

02 FILLER PIC X(ll) VALUE IS SPACES.
02 NAME PIC X(20).
02 FILLER PIC X(10) VALUE IS SPACES.
02 STREET PIC X(20).
02 FILLER PIC X(10) VALUE IS SPACES.
02 CITY-STATE PIC X(20).
02 FILLER PIC X(10) VALUE IS SPACES.
02 SYMBOL PIC X(2).
02 FILLER PIC X(18) VALUE IS SPACES.

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT CARD-FILE
OUTPUT PRINT-FILE.

MAINSEQUENCE.
READ CARD-FILE AT END GO TO FINISH.
MOVE NAME OF CUSTOMER-RECORD

TO NAME OF WORKING-RECORD.
MOVE STREET OF CUSTOMER-RECORD

TO STREET OF WORKING-RECORD.
MOVE CITY-STATE OF CUSTOMER-RECORD

TO CITY-STATE OF WORKING-RECORD.
MOVE SYMBOL OF CUSTOMER-RECORD

TO SYMBOL OF WORKING-RECORD.
MOVE WORKING-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.
GO TO MAINSEQUENCE.

FINISH.
CLOSE CARD-FILE PRINT-FILE.
STOP RUN.

---~----------------------------

173

174

31. The FILLER item at the end of an output area could be omitted.
Whenever a record is moved from one variable to a longer
variable, the record is padded with blanks on the right to the
length of the longer variable. A record in an input file is to
be printed on a line of a 1132 printer. The record in the input
file, however, is less than 120 characters. To provide for the
record to be filled with blanks to 120 characters, a prograITroer:

a. can wove data items in the record
variable containing a FILLER item with
assigned in a VALUE clause.

to a working-storage
a value of blanks

b. can move the record to an output area containing a FILLER
item that will be padded with blanks as a result of the move.

c. can move the record to a longer output area that will ce
padded with blanks as a result of the move.

* * *
All of these
(Whenever a record is moved from one variable to a shorter variable,
the record in the sending variable will be truncated on the right to
the length of the shorter receiving variable. The truncated data is
lost. Remember: if carriage control is used, the print output area
in core must be one position greater than the number of characters
printed.)

~
..,J
U1

I-zj
~
11
CD

-'='
W

fIrst printing position This fIgure shows how the fonnat of data items is represented on a Printer Spacing Chart.

~~rrTI'1 '~I I I li li ~I,~I ~1,~li titid I 1:1:1:1;;11 1:1 ~I' ~I:;I;I! ~I ~I,~I~I ~I: ~I~I~~!~ I I tll~I:I: :I~I:~I~II 1~IH~IIIHatl:~11 [ll;U'ITI lu
11
uilil ~I 1 I I I 1 1 1 I~~U' I I III I 1 I 1 , I 2 2 22 2 222 2 23 3 3 3 3 33 3 3 3 4 ~!4 4 4 4 414 4!4 5 55 5 5 5 555 5 6666 6 6 6 6 6 6 7 7 77 777 7 7 7888 8888 8 8!~!9 9 ~!9 9 99 9 990 000 o!o 0 0 0 0 I I , , , , 1 1 I I 2 2 22 2 22 2 2 2 3

11234561718910 I 21314567890 I 2345678901 23456789,0 '123456178190 , 234567 e 901 234567890' 234567 8901 2345,6781910 1,2'3456789,0 I 234[567890 Ji2 3456789 0 I 234567890"
r I I'!' I : I I! I I ! I I' !! ! I I I 'i I III 'II I : Ii! iii ! iii I ' -1' ,1,: i I: ! i! ! i ! : , I •. j I: I I iii l' r

12 Ii! I I I : I" ! : I, , ! i , 1 r i '! ! II: i r ! I !! ! ,! :'!!' I! : :: :,: I J
[3 I 'j.l' .11 ' j i .11 I I I I J ' I , I ' ! ' i , I: t I ' I r I ' , , ii' I ' ! , J i

'..!. I: rr r i I ! ~ !' :! , I , I I ! ' Ii' i ,! I I i!': I I ' i.-i- i...i.~i .' _ !- I ' , I I I
Is! ii, ~ rt"-'Xi I r, I ; i -t--+-+--i-' -'-+- ~. ~::K ' ' !' I
I 6 I I f-'-I i i ! i 'I' ' !jr I ; !; I Ii" ' , : ';1: ' ; :! ,,! : " : I ' I ,

I 7 ! i : I ,: ' I I: I I i\ II " ,'I !: i 'I : !: " "I' "I ' 'tJ '
I ~ Ii; I ! :\ ' ,: i, , I ' ; I 1: I " ! i ilL! j , iii I u-:... " ·-H +~~ - '-JEE' 4-+- I' I'
i-j9 II I "CUSTOMER- 1\'" ! r I ,tM 'NAME Ii', i : i : 'IHOME-ADDRESS,~ " i , ,

.' 1· I --+- :~ --r- _ -+-~ +-+ ~, II II: NUMBER
11,\: :11 1 !!I'I!",' ':' II i I,:' 1'1 " "';',1: ~ "I !:'! _-+-:' '" .1':

:111 i I Ii! ! I ! ! , '; I!. I: i ! : : . I ,. II I ': ' , !!: ' !:! : :j! : 11 I I, I! I
: ! I, i I 1121 : i I I I i Ii I I : I I I i II I Iii, i.1i ; I I I I I I I : ! I ; i I . ' : i lIL~~i ! i ! , ' : J 1 i I! I i! '.1

; I

~
~
"'1

1111: i: i; i!
I ,: I

:D±t:

~+
I~

j
llj

I
I

..l

! Ii:'! I'll: I, i! I, I::: Ii!::: Ii; i: iii I: I" i:'::!: I;:! i! j i I
11'1 'I

1'1 i I;
Ii: I. I' III' 'II'V'J III "V"" " Ifl"ii:''AViA: 'i! 'illill

32. Figure 43 shows a Printer Spacing Chart that can be used to plan
the format of printed records. According to Figure 43 the first
printing position is:

a. position o.

b. position 1.

* * *

b
(Position 0 represents the carriage control character that you must
reserve in the output area.)

--~~~-------------------------

116

33. Figure 43 shows that for a 1132 printer used in an American
National Standard COBOL program:

a. the line limit follows position 120.

b. a line consists of 120 columns.

* * *
Both

34. As shown in Figure 43, the position of a data item may be
indicated on a Printer Spacing Chart by two XiS connected by a
horizontal line. According to Figure 43, the first ••••••••
positions in the line will be blank. The value of CUSTOMER
NUMB~R will be printed in the next •••••••• positions. Data
i terns will be separated by •••• '. • •• blanks. The value of HOME
ADDRESS will be followed by •••••••• blanks.

* * *

9,5,10,11

35. If you wished to print values of variables described in Figure 41
in the order shown in Figure 43, it would be necessary to
rearrange the data description entries in:

a. the File Section.

h. the Working-Storage section.

* * *

b

36. Rewrite the Working-storage section in Figure 41 so that values
from the input area described in Figure 41 can be printed in the
format shown in Figure 43.

* * *
0011223 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WORKING-STORAGE SECTION.
01 WORKING-RECORD.

SUMMARY:

02 FILLER PIC X(10) VALUE IS SPACES.
02 CUSTOMER-NUMBER PIC X(5).
02 FILLER PIC X(10) VALUE IS SPACES.
02 NAME PIC X(3S).
02 FILLER PIC X(10) VALUE IS SPACES.
02 HOME-ADDRESS PIC X(40).
02 FILLER PIC X(11) VALUE IS SPACES.

You have just learned how to prepare the horizontal spacing format of
printed output. In the next lesson you will learn other aspects of
printed data vertical printing control, and title and heading
printing.

END OF LESSON 8

177

THIS PAGE INTENTIONALLY LEFT BLANK

178

LESSON 9

179

LESSON 9 - VERTICAL SPACING (1)

INTRODUCTION

This lesson will continue to prepare you to program written reports.
You will learn to write titles and headings and to provide for vertical
printing control characters. You will also study picture representation
for numeric and alphabetic data.

Specific COBOL language features that you will learn to use are:

Picture characters 9 and A
SPACES figurative constant
Provision for printer carriage control

character in first position of output area
Title records
Heading records in working storage

If carriage control is specified in the device named in the ASSIGN
clause, a blank position must be left in the first position of the print
output area, so that a carriage control character may be filled in ty
the 1130 Monitor Program. This means that the second core position
prints in the first printer position. Also, whenever carriage control
is used, the PICTURE clause associated with the output area must specify
one character more than the number of characters to be printed, to
accomodate the carriage control character.

This lesson will require approximately one hour, with an additional
half hour requirement if you do the optional problem.

180

1. The nonnumeric literals consisting of one or more blanks have
been given the names SPACES. The reserved word SPACES is called
a figurative constant. The numeric literals consisting of one or
more zeros have been given the name ZEROS. The reserved word
ZEROS is a:

a. figurative constant.

b. nonnumeric literal.

* * *
a

2. The figurative constant SPACES was specified in a VALUE clause
following a PICTURE clause with an X specification r indicating
that SPACES is specified for data made up of:

a. numeric digits.

b. alphanumeric characters (one of the characters in Figure 7).

* * *
b

3. You would expect the figurative constant ZEROS to be specified
for:

a. numeric data.

b. data made up of anyone of the characters in Figure 7.

* * *
a

4.

o 0 112 233 445 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

02 MAXIMUM-BALANCE PIC 9(4).

A PICTURE clause with a 9 specification is used to describe
numeric data that may be made up of the digits 0 through 9. The
PICTURE clause in the entry above specifies that MAXIMUM-BALANCE
could have the value:

a. 10.4

b. 0104

c. 100B

* * *

--~---------------------------

181

5.

001122334 4 556 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •..• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

182

02 PART-DESCRIPTION PICTURE A(30).

A PICTURE clause with an A specification is used to descrice
alphabetic data that may be made up of the letters of the
alphabet and spaces. The PICTURE clause in the entry acove
specifies that PART-DESCRIPTIPN could have the value:

a. 5 OHM RESISTOR

b. FIVE-OHM RESISTOR

c. FIVE OHM RESISTOR

* * *
c (a is wrong because numbers cannot be accommodated in an A picture.
b is wrong because special characters cannot be accommodated in an A
picture.)

Picture and Edit Characters

Picture Data type Specification Additional explanation
character

--

X alphanumeric The associa ted position
in the value will contain
any character from the
COBOL character set.

A alphabetic The associated position
in the value will contain
an alphabetic character
or a space.

9 numeric or The associated position
numeric edited in the value will contain

any digit.

V numeric The decimal point in the
value will be assumed to be
at the location of the V.
The V does not represent
a character position.

numeric edited The associa ted position A space will occur if the entire data item
in the value will contain is suppressed.
a point or a space.

$ numeric edited a. (simple insertion) The leftmost $ in a floating string does not
The associated posi- represent a digit position.
don in the value will

If the string of $ is specified only to the left contain a dollar sign. of a decimal point, the rightmost $ in the
b. (floating insertion) picture corresponding to a position that

The associa ted posi- precedes the leading nonzero digit in the
tion in the value will value will be printed.
contain a dollar sign, A string of $ that ex tends to the righ t of a
a digit, or a space. decimal point will have the same effect as

a string to the left of the point unless the
value is zero; in this case blanks will appear.

All positions corresponding to $ positions to
the right of the printed $ will contain digits;
all to the left will con tain blanks.

, numeric edited The associated position A comma included in a floating string is
in the value will con tain considered part of the floating string. A
a comma, space, or dollar space or dollar sign could appear in the
sign. position in the value corresponding to the

comma.

S numeric A sign (+ or -) will be part
of the value of the data
item. The S does not repre-
sent a character position.

Figure 44

183

6. Figure 44 is a chart of picture characters. Use Figure
match types of data with the appropriate variable(s).

1) NAME a. Alphabetic

2) HOME-ADDRESS b. Numeric

3) QUANTITY, with c. Data made up of
values such as 200 any characters
and 999 in Figure 7

4) QUANTITY, with
values such as
1 DOZ and 25 PKG

* * *
1) a,c
2) c
3) b,c (Choice c is correct with respect to COBOL but

such data is usually treated as numeric.)
4) c

44 to

--~------------.-------~------

7. Use Figure 44 to match the picture specification character with
the variable(s) for which it could be specified.

1) NAME a. X

2) HOME-ADDRESS b. A

3) QUANTITY with c. 9
values such as 200
and 999

4) QUANTITY with
values such as
1 DOZ and 25 PKG

* * *

1) a,b
2) a
3) a,c
4) a

184

8.

r--,
1 INPUT-RECORD 1

I------------------------[--------}-----------I 1 NAME In-CODE BALANCE 1
1 (NOVELTY~ISTRIBUTORS) (2901) (1299.43) 1 L________________________ ________ _ __________ J

Write the record description entries for the input area INPUT
RECORD so that it could have the values shown. Remember that the
decimal point precludes BALANCE being defined as numeric.

* * *

0011223 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

01 INPUT-RECORD.
02 NAME PIC A(20).
02 ID-CODE PIC 9(4).
02 BALANCE PIC X(7).

(The picture character X could be specified for ID-CODE and NAME.
Values such as those in BALANCE normally do not contain decimal
points in an input record and are described with the picture
character 9. The decimal position is indicated by the picture
character V, which you will learn to use in a subsequent lesson.)

185

This figure illustrates how the format of headings and data
items for output is planned on a Printer Spacing Chart.

INTERNATIONAL BUSINESS MACHINES CORPOIATION

PRINTER SPACING CHART

Value of the Value of the Value of the
variable variable variable
jADING-l /EADING-2 H\ADING-3

o 1 2 ./3 "--4 5 6 7 8
1234.567119 234567890 1i2Tj'4:"s'ti'Ts'9 0~345 6789 0lli' 3451617.8,901234'56718901234,5,67891'012345678,9012345 6 789

Headings ' __ +-+_. IUAMF ___ +-- I I ,I-lOME-,ADDIRIE SIS, 'I , i ~

Dabitems~·~~~~~~~~~~!'~~' Pi ~'~:~~~~~~~~~~==~~;±~~==~~==~==K:::~~~~~~;'~f~~'~-
! I I '! !' : I ' III I i
i" i' 'J ' ;1

!--=+4-+'++--I~ Value of the : __ ~~==--- Value of the ---- -~~ Value of the -+-+-t-

1-=+4-++--.' variable variable variable -;--'t-
':!,: ,CUSTOMER-NUMBER + __ ~___ NAME HOME-ADDRESS ~,'--;

J! I II I \; ';--;-1 ~-~: - - .•• -- -----~- ~-~"""""'i I

I i I 1I 1 ' I ! I ,I I I~ ~ ~-"~_::. _:_::-- --'-- +t t+----"-;H-· -- I -~ ; I I ; 1_ i , lJ 10

Figure 45

9. when several records are to be printed, a programmer may print
headings at the top of each page. Figure 45 shows how the format
for headings and data items is planned on a Printer Spacing
Chart. The saITe chart is also used for the 1132 Printer. In
Figure 46 the headings CUSTOMER-NUMBER, NAME, and HOME-ADDRESS
are themselves values of the variables •••••••• , •••••••• and
•••••••• , respectively.

186

\-.

~
CX)

-.J

I'%]
1-"
~
~
t;
(D

~
0"1

This figure shows how headings are set up in working storage.

Input area I (NAME)
(HOME-ADDIUS5)

INPUT-RECORD

Output area I

(CUSfOMER
NUMBER) I' AI CUSlOMER-NUMBER NAME HOMf...ADDRESS

I I tV :::::::::=-
'/ ~-

, I
I J

(" /
'IF .(",/

Working Storage I "I--,.----r------r-----t1

Values
CUSTOMER-NUMBER,
NAME, and
HOME-ADDRESS
assigned to
HEADING-l,
HEADING-2,
and HEADING-3,
respectively, witfi
VALUE clauses

" .. ,.

~11
A:: iF 1 ILIE
.2 ~ JI lell ",

I I~~ ILll I~
2 II:: IL ILl); tl

PI
-11
liS
IP I

~ I~ IA Inll ~- 2

..
5t: ~IT

J

Ie! IXIC
1"'1 itl
\

Ie ~I(

~~ ~

11 12

1Q llj--

11") 1\1 IAIL
~!(I~I)

!il) I\jl~ Ilil
~I(I)

~ ~I liS \t,I Afj [E I •

12 I: IL ILIr:: IFI k! ~(~It. I) " IA~
~

" IA
11111 ~-~ ~I' l'. I~I{ 21)

~~ IL~ • !Ii 'II! 111E -
~ Ie I. 1111: 11=1 Ie ~l 39 l.lll tAIL

I I

~
NUMIER}

..

~E lis
- -

I

II:: IllS

t: I

I

!l;li: I~

.. ..
j 1 j
Ij

- --j

. - ~

1
~1

; I .

(Fll..LER)

output file PRINT

Values of blanks assigned to
FILLER items with VALUE
clauses

Data Division entries to set up
headings in HEADING-RECORD.

CD The Value of HEADING-RECORD
is moved to the output area
OUTPUT-RECORD

* * *

HEADING-1
HEADING-2
HEADING-3
(These are user-supplied names and not reserved words.)

10. Figure 46 shows that the headings planned in Figure 45 have been
set up as values of:

a. an output area.

b. a working-storage variable.

* * *

b

11. By setting up HEADING-RECORD in working storage a programmer can
use a VALUE clause to assign:

Both

a. a value of blanks to FILLER items to provide for horizontal
spacing of headings.

b. the values CUSTOMER-NUMBER, NAME, and HOME-ADDRESS to
HEADING-1, HEADING-2, and HEADING-3, respectively.

* * *

12. In a record description entry for a heading record, a VALUE
clause is used to specify:

a. the headings that will be printed on a printer page.

b. blanks to provide for horizontal spacing of headings.

* * *
Both

13. In Figure 46, the quotation marks enclosing CUSTOMER-NUMBER in
the VALUE clause for HEADING-1 are:

188

a. part of the value being assigned to HEADING-1.

b. not counted in the PICTURE repetition factor which specifies
the length of the variable.

b (The
literal.

* * *
quotation roarks indicate a constant that is a nonnumeric

They are not part of the value.)

1bia fl&urc mow •• format for beadinp on tho Printer Spacina Clart.

~1~'4!~:~~~--~~--~~-----+~~----+-----~-+--------+--------t+-------t--------t~1~----, I

m~._-;-......r-, -~,---.-:--+t+t--.. -.-.-..... :'. _:_-.-_-=-_:~~.I:'.-~~,-=-".-:".-.-_-.-~-.-~-:+h~.:,~~, : :-:.-: .', .. --.~-:1--.-t-.. :.:.:_:: .. -_~.:.+.+-----.. -.-.--.-.-:-.-:-~:-: .. -rt:~-.-~-~-'~-+-'-. ~ .. _-. t-17'~ .-. ~-:-:-=-_._-_-t_~-.-.-.-----.. ~-.-_-t-il-~+-;-+ i' I

12'

Figure 47

14. The Printer Spacing Chart in Figure 47 shows another set of
headings and headings variables. Select the PICTURE clause that
would be specified for each variable. (You may refer to Figure
44.)

1) HEADING-l a. PICTURE A(13)

2) HEADING-2 b. PICTURE X(16)

c. PICTURE X (13)

d. PICTURE A (16)

* * *
1) c
2) b

--

189

15. Write the Working-storage section entries for HEADING-RECORD to
set up headings to be printed as shown in Figure 47.

* * *
0011223 3 4 4 556 6 7
1. • • 5. • • • o. . . . 5. • • • o. . . . 5. • • • O. • • • 5. • •.• 0 • • • • 5 • • • • 0 • • • • 5 • • • • 0.. • • • 5 • • . • 0 • •

WORKING-STORAGE SECTION.
01 HEADING-RECORD.

02 FILLER PIC X(10) VALUE IS SPACES.
02 HEADING-l PIC X(13)

VALUE IS 'CUSTOMER-NAME'.
02 FILLER PIC X(27) VALUE IS SPACES.
02 HEADING-2 PIC X(16)

VALUE IS 'CUSTOMER-ADDRESS'.
02 FILLER PIC X(55) VALUE IS SPACES.

16. Figure 46 shows that the output file PRINT will contain a heading
record and several data records. In Figure 46 the heading record
and the data record are set up:

a. in separate working-storage variables.

b. alternately in the same working-storage variable.

* * *
a

17. Values of variables in working storage:

b

a. can be transmitted directly to an output file with the simple
form of the WRITE statement.

b. must be moved to an output area
transmitted to an output file with the
WRITE statement.

* * *

before they
simple form

can be
of the

18. Figure 46 shows that values of both the heading variable and the
data variable will be transmitted to the output file PRINT. In
Figure 46:

b

190

a. a separate output area has been set up for each of the record
variables.

b. a single output area is to be used for the record variables.

* * *

19. You will frequently be asked to provide a listing of records in a
format outlined on a Printer Spacing Chart. A problem of this
type is described in Figure 48. Read the problem statement and
code the Data Division.

NUMBER NAME AGE

WI SYMBOL I NAME I AGE
4 digits 20 letters 2 digits

EMPLOYEE-RECORD PRINT-RECORD -
,'----------------------

CARD-FILE PRINT-FILE

The data in each record in CARD- FILE is to be
printed on one line of PRINT - FILE. Headings
and data are to be printed in the format shown
on the Printer Spacing Chart.

1 2 I. 3 4 5 6 Al, 2 3 4 ~ 6 7 89 0 I 2 34 5 6 78 9 0, I 2,314 5 6 78 9iom21314 5!6 7 8 9 0 I 2 3 4 5 6 78 9 0 I 2134 5 6 7 OO~IE I 2 3 4 5 6 7,8 9

1 INlu M ~ EIR INlA HE i ~I~
2 X-~~ ~ i
3

4

5

6 i

Figure 48

191

* * *

0011223 344 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

192

DATA DIVISION.
FILE SECTION.
FD CARD-FILE

LABEL RECORDS ARE OMITTED.
01 EMPLOYEE-RECORD.

02 SYMBOL PIC 9(4).
02 NAME PIC A(20).
02 AGE PIC 9(2).
02 FILLER PIC X(54).

FD PRINT-FILE
LABEL RECORDS ARE OMITTED.

01 PRINT-RECORD PIC X(120).
WORKING-STORAGE SECTION.
01 HEADING-RECORD.

02 FILLER PIC X(10) VALUE IS SPACES.
02 HEADING-1 PIC A(6)

VALUE IS 'NUMBER'.
02 FILLER PIC X(12) VALUE IS SPACES.
02 HEADING-2 PIC A(4) VALUE IS 'NAME'.
02 FILLER PIC X(26) VALUE IS SPACES.
02 HEADING-3 PIC A(3) VALUE IS 'AGE'.
02 FILLER PIC X(60) VALUE IS SPACES.

01 WORKING-RECORD.
02 FILLER PIC X(10) VALUE IS SPACES.
02 SYMBOL PIC 9(4).
02 FILLER PIC X(14) VALUE IS SPACES.
02 NAME PIC A(20).
02 FILLER PIC X(10) VALUE IS SPACES.
02 AGE PIC 9(2).
02 FILLER PIC X(61) VALUE IS SPACES.

20. The first variable containing values that must be moved to the
output are first in order to print the line shown at the top of
the printer page in Figure 46 is ••••.•.••

* * *

HEADING-RECORD

Move
headings to
output area

ADDITIONAL PROCESSING

Move
data from

Working Storage
to ou tpu t area

Figure 49

21. Figure 49 shows a segment of a flow chart for writing headings
and data on a printer page. According to Figure 49 writing a
heading record and a data record:

a. requires two WRITE statements.

b. is done with the same WRITE statement.

* * *
a

--~-----------------------

193

22. In order to write a heading record and a data record shown in
Figure 46, you would use the statements:

a. WRITE HEADING-RECORD.
WRITE WORKING-RECORD.

b. WRITE OUTPUT-RECORD.
WRITE OUTPUT-RECORD.

* * *
b

--.-------

194

Paragraph I
PREPARATION-ROUTINE

I
L
I Paragraph Move

HEADING-ROUTINE
I heading record

to

I output area

I

I
L

Paragraph I
MAiN-SEQUENCE

I
I

Paragraph I
FINISH

I
I I

I I
Move data in

L
STOP

I record in input
area to working

I
storage variable

I Move
record from

I working storage
to output area

I
I
L

Figure 50

195

196

23. Figure 50 is a flow chart for the Procedure Division for problems
like the one described in Figure 48. The flow chart shows that
headings are written before:

a. a record is transmitted from the input file.

b. the input file is opened.

* * *
a

24. A heading record is written before a data record is transmitted
from the input file because:

b

a. the data record will be transmitted to the heading variable,
destroying the heading values.

b. headings will be written only once on a page while several
data records will be read and written on that page.

* * *

25.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

DATA DIVISION.
FILE SECTION.
FD CARD-FILE

LABEL RECOkDS ARE OMITTED.
01 EMPLOYEE-RECORD.

02 SYMBOL PIC 9(4).
02 NAME PIC A(20).
02 AGE PIC 9(2).
02 FILLER PIC X(54).

FD PRINT-FILE
LABEL RECORDS ARE OMITTED.

01 PRINT-RECORD PIC X(120).
WORKING-STORAGE SECTION.
01 HEADING-RECORD.

02 FILLER PIC X(10)
VALUE IS SPACES.

02 HEADING-l PIC A(6)
VALUE IS 'NUMBER'.

02 FILLER PIC X(12)
VALUE IS SPACES.

02 HEADING-2 PIC A(4)
VALUE IS 'NAME'.

02 FILLER PIC X(26)
VALUE IS SPACES.

02 HEADING-3 PIC A(3)
VALUE IS 'AGE'.

02 FILLER PIC X(60)
VALUE IS SPACES.

01 WORKING-RECORD.
02 FILLER PIC X(10)

VALUE IS SPACES.
02 SYMBOL PIC 9(4).
02 FILLER PIC X(14)

VALUE I S SPACES.
02 NAME PIC A(20).
02 FILLER PIC X(10)

VALUE IS SPACES.
02 AGE PIC 9(2).
02 FILLER PIC X(61)

VALUE IS SPACES.

Follow the flow chart in Figure 50 and code the Procedure
Division for the problem described in Figure 48. The Data
Division for this problem, which you wrote in a preceding frame,
is reproduced above.

* * *

197

o 0 1 1 2 233 4 4 556 6 7
1 .•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 ••.• 0 ••

198

PROCEDURE DIVISION.
PREPARATION-ROUTINE.

OPEN INPUT CARD-FILE
OUTPUT PRINT-FILE.

HEADING-ROUTINE.
MOVE HEADING-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.

MAIN-SEQUENCE.
READ CARD-FILE AT END GO TO FINISH.
MOVE SYMBOL OF EMPLOYEE-RECORD

TO SYMBOL OF WORKING-RECORD.
MOVE NAME OF EMPLOYEE-RECORD

TO NAME OF WORKING-RECORD.
MOVE AGE OF EMPLOYEE-RECORD

TO AGE OF WORKING-RECORD.
MOVE WORKING-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.
GO TO MAIN-SEQUENCE.

FINISH.
CLOSE CARD-FILE PRINT-FILE.
STOP RUN.

26. A programmer sets up variables in working storage in order to:

a. use a VALUE clause to assign an initial value to a variable.

b. rearrange data items from another record.

c. provide for horizontal spacing by inserting blanks before,
between, and after data items.

* * *
Any of these

27. Moving eleroentary data items from one variable to another is
necessary if:

a. FILLER ite~s are to be inserted for horizontal spacing.

b. data items in one record are to be arranged in a different
order.

* * *
Either

The following two fraffes present independent topics.

28. HIGH-VALUE

HIGH-VALUES represent the highest value in a computer's collating
sequence. The character for HIGH-VALUE is HEX OOFF.

LOW-VALUE

LOW-VALUES represent the lowest value in a computer's collating
sequence. The character for LOW-VALUE is HEX 0000.

It is possible to move and process these characters.

MOVE HIGH-VALUES TO EMPLOYEE-NUMBER.

The above exarople will move HEX OOFF into the EMPLOYEE-NUMBER.

MOVE LOW-VALUES TO PRICE.

The above exarr.ple will move HEX 0000 into the PRICE.

(HIGH-VALUE and LOW-VALUE are used, among other techniques, to
define the beginnings and ends of data streams.)

29. The BLANK WHEN ZERO clause specifies that an item is to be set to
blanks whenever its value is zero. The BLANK WHEN ZERO clause
may be specified only at the elementary level for numeric edited
or numeric iterrs.

MOVE AMOUNT TO PRINT BLANK WHEN ZERO.

If At-10UNT contains 1234 PRINT will contain 1234.
If AMOUNT contains 0000 PRINT will contain bbbb.

* * *

MOVE PRICE-1 TO PRINT-1 BLANK WHEN ZERO.

Match the following contents of variable PRICE-1 with the correct
answers:

1) PRICE-1 contains 5673. a. PRINT-1 will contain blanks

2) PRICE-1 contains 0000 b. PRINT-1 will contain 5673.

* * *
1) b
2) a

The problems in the next two frames incorporate what you have learned
in printing a report with a two-line title. Coding the solutions is
optional. If you do not code the solutions, read them carefully to
make sure you understand them.

199

30.

o 0 1 1 2 233 4 4 5 5 6 6 1
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

200

NAME
CUSTOMER REPORT

ADDRESS

Figure 51

Printing a report title preceding the headings for columns of
data is a coreroon practice. Figure 52 shows how the flow chart in
Figure 50 could be expanded to provide for a report title. The
variable HEADING-RECORD-l could be set up for the report title,
and HEADING-RECORD-2 for the column headings. Code the Working
Storage Section of the Data Division to provide for the title and
headings shown in the chart above. (Remember that data items
consisting of letters and spaces may be described with either the
picture character A or X.>

Paragraph
HEADING-ROUTINE I

I

I

I

I
I
I

I

I

I
I
I
L

Move record
from

HEADING-RECORD-l
to

output area

Move record
from

HEADING-RECORD·
to

output area

Figure 52

201

* * *
o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 .•.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WORKING-STORAGE SECTION.
01 HEADING-RECORD-l.

02 FILLER PIC X(39) VALUE IS SPACES.
02 TITLE PIC X(15)

VALUE IS 'CUSTOMER REPORT'.
02 FILLER PIC X(61) VALUE IS SPACES.

01 HEADING-RECORD-2.
02 FILLER PIC X(20) VALUE IS SPACES.
02 HEADING-l PIC X(4)

VALUE IS ' NAME' •
02 FILLER PIC X(36) VALUE IS SPACES.
02 HEADING-2 PIC X(1)

VALUE IS 'ADDRESS'.
02 FILLER PIC X(54) VALUE IS SPACES.

31. write the paragraph
headings shown in the
OUTPUT-RECORD.

*

HEADING-ROUTINE to print the title and
preceding frame from the output area

* *
o 0 1 1 2 233 4 4 556 6 1
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 ••

202

HEADING-ROUTINE.
MOVE HEADING-RECORD-l

TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD.
MOVE HEADING-RECORD-2

TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD.

32. Figure 53 describes a problem that will give you an opportunity
to practice using all the features you have learned in this
lesson. The problem involves printing a report title, column
headings, and data. Read the problem and code the Data Division
and Procedure Division. (You may refer to Figures 50 and 52.)

Problem Statement

CARD-FILE'
Device: 1442 t--------II~ IBM 1130

PRINTED-REPORT
Device: 1 13 2

The system flow chart above shows the files and equipment to be
used in this program. The forms of records in CARD-FILE and
PRINTED-REPORT are illustrated below.

CARD-RECORD

MARKER DEPARTMENT NAME DEPENDENTS FILLER
(5 digits) (3 character s) (25 letters) (2 digits) (45 blanks)

111 LIt ,
0 1 3 4 5 6 7 8

123 67. I 2 3~ 5 6 7. to'1 23, 45' 7" 01.2314 67190 12345 67,19 01.234 56719 0123 456 7190 1234567 1234,5

I I I I i I ill
2 I 1 i ! I III
3 i P IS nEiR ' ! ,
.. 18 I nE I ' ' I I

5 I I i 1)(IX)! , I ,
7 i ! i I I
• I t II I I

t I I i-e-.-f++ - I! I I I
10 I I I -, ,

The file PRINTED-REPORT is to consist of a title and headings
followed by a listing of the records in CARD-FILE with the data
items rearranged as shown in the Printer Spacing Chart. Use the
variables CARD-RECORD, PRINT-RECORD, and WORK-RECORD.

Figure 53

67

I

203

* * *

o 0 112 233 4 4 556 6 7
1 •.• 5 •••• 0 .••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

204

DATA DIVISION.
FILE SECTION.
FD CARD-FILE

LABEL RECORDS ARE OMITTED.
01 CARD-RECORD.

02 MARKER PIC 9(5). (40)
02 DEPARTMENT PIC X(3).
02 NAME PIC A(25). (41)
02 DEPENDENTS PIC 9(2).
02 FILLER PIC X(45).

FD PRINTED-REPORT
LABEL RECORDS ARE OMITTED.

01 PRINT-RECORD PIC X(120). (12)
WORKING-STORAGE SECTION.
01 HEADING-RECORD-1. (45)

02 FILLER PIC X(38) VALUE IS SPACES.
02 TITLE PIC X(15)

VALUE IS 'EMPLOYEE ROSTER'.
02 FILLER PIC X(68) VALUE IS SPACES. (14)

01 HEADING-RECORD-2. (45)
02 FILLER PIC X (10) VALUE I S SPACES. (14)
02 HEADING-1 PIC A(6)

VALUE IS 'NUMBER'.
02 FILLER PIC X(9) VALUE IS SPACES. (14)
02 HEADING-2 PIC A(4)

VALUE IS 'NAt-1E'.
02 FILLER PIC X(3!) VALUE IS SPACES. (14)
02 HEADING-3 PIC A(10)

VALUE IS 'DEPARTMENT'.
02 FILLER PIC X(3) VALUE IS SPACES. (14)
02 HEADING-4 PIC A(10)

VALUE IS 'DEPENDENTS'.
02 FILLER PIC X(38) VALUE IS SPACES. (14)

01 WORK-RECORD.
02 FILLER PIC X(10) VALUE IS SPACES. (14)
02 MARKER PIC 9(5).
02 FILLER PIC X(10) VALUE IS SPACES. (14)
02 NAME PIC A(25).
02 FILLER PIC X(10) VALUE IS SPACES. (14)
02 DEPARTMENT PIC X(3).
02 FILLER PIC X(10) VALUE IS SPACES. (14)
02 DEPENDENTS PIC 9(2).
02 FILLER PIC X(46) VALUE IS SPACES. (14)

o 0 1 1 2 2 3 3 4 45 5 6 6 7
1 •.• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •..•• 5 •••• 0 •••• 5 •.•• 0 •.

PROCEDURE DIVISION.
PREPARATION-ROUTINE.

OPEN INPUT CARD-FILE
OUTPUT PRINTED-REPORT.

HEADING-ROUTINE.
MOVE HEADING-RECORD-l

TO PRINT-RECORD.
WRITE PRINT-RECORD.
MOVE HEADING-RECORD-2

TO PRINT-RECORD.
WRITE PRINT-RECORD.

MAIN-SEQUENCE.
READ CARD-FILE AT END GO TO FINISH.
MOVE MARKER OF CARD-RECORD

TO MARKER OF WORK-RECORD.
MOVE DEPARTMENT OF CARD-RECORD

TO DEPARTMENT OF WORK-RECORD.
MOVE NAME OF CARD-RECORD

TO NAME OF WORK-RECORD.
MOVE DEPENDENTS OF CARD-RECORD

TO DEPENDENTS OF WORK-RECORD.
lvlOVE WORK-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.
GO TO MAIN-SEQUENCE.

FINISH.

SUMMARY:

CLOSE CARD-FILE PRINTED REPORT.
STOP RUN.

(45)

(65)

You have now completed Lesson 9 in which you have learned to print
report titles and headings as well as data records. You have learned to
reserve the first position in an output area for the printer carriage
control character and to work from a Printer Spacing Chart to produce a
report in a specified format. You have learned to use the picture
characters 9 and A to specify that a variable will have numeric or
alphabetic values, respectively, and to use the figurative constant
SPACES with the VALUE clause to assign an initial value to a variable.

END OF LESSON 9

205

THIS PAGE INTENTIONALLY LEFT BLANK

206

LESSON 10

207

LESSON 10 - VERTICAL SPACING (2)

INTRODUCTION

In the previous lesson you learned to set up record variables to
provide for a title, column headings, and data records in a printed
report. You also learned to provide horizontal spacing for each of the
records in the report. The Procedure Division entries that you used,
however, provide only for single-spaced records within a single page
report. You will often be required to produce a report with one or more
blank lines between various records, and the reports will usually be
several pages in length.

In this lesson you will learn to specify vertical spacing in a
printed report, including advancing to subsequent pages when a page has
been filled.

208

Specific COBOL language features you will learn to use are:

BEFORE ADVANCING option of the WRITE statement
AFTER ADVANCING option of the WRITE statement
AT END-OF-PAGE option of the WRITE statement
RESERVE clause

This lesson will require approximately three quarters of an hour.

In a previous lesson you provided for horizontal spacing by moving
data items to a record in working storage containing FILLER items to
which values of blanks had been assigned. You specified no vertical
spacing, so single spacing, which is automatic for the 1132 printer, was
provided. You can, however, specify whatever spacing you wish for a
printed report. Unlike horizontal spacing, vertical spacing is
specified in options of the WRITE statement.

209

I'V
~
o

~
~.

~

~
([)

U"I
~

Output area I

Working storage

This diagram illustrates execution of the statement

iWIRIIITIEllpIRIIINITI-IRIEI9~Bfl ~EIFloIRIEIIAIDI1AINICI'INI9121IY'INIEa·n

JOHN SMITH F' 129 91ST ••. F 110015
I I
L L
L L

(NAME) E (HOME-ADDRESS) ~ I (ZIP)

PRINT-RECORD

Option

JAMES PERRY

PRINT-FILE

1286 OAK... 28006

129 91ST • • • 10015

ine on which
next record will
be written

CD The record is written from the
output area PRINT-RECORD.

® The printer advances two lines
(resulting in double spacing) .

1.

o 0 1 1 2 2 3 344 5 5 6 6 7
1. • • 5. • • • o. . . . 5. • • • O. • • • 5. • • • 0 • • • • 5. • ... 0 • • '. • 5. • • • o. . • . 5. • • • O. • • • 5. • • • 0 • •

b

WRITE record-name
BEFORE ADVANCING integer LINES.

Option

The BEFORE ADVANCING option of the WRITE statement shown in the
general format above can be used to specify vertical spacing.
Figure 54 shows the result when integer is 2. Read the
explanation and look at the illustration in the figure.
Execution of the statement in Figure 54 causes:

a. a record to be written after the printer advances two lines.

b. the printer to advance two lines after the record is written.

* * *

2. Figure 54 shows that the result when integer in the BEFORE
ADVANCING option is 2 is:

a. one blank line between two printed lines.

h. double-spaced records.

* * *
Both

3. Which of the following integers would be specified in the BEFORE
ADVANCING option to produce three blank lines between records?

a. 4

h. 3

* * *
a

211

4.

o 0 112 2 3 3 4 4 556 6 1
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••. 0 •••• 5 •.•• 0 ••

MOVE HEADING-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.

MOVE DATA-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.

WRITE record-name
BEFORE ADVANCING integer LINES.

Instructions to write headings and data records are shown in the
program segment above. Using the general form of the WRITE
statement with the BEFORE ADVANCING option shown above as a
guide, rewrite the WRITE statements in the program segment to:

1) triple space (insert two blank lines) after writing the
headings.

2) double space (insert one blank line) after writing a data
record.

* * *
0011223 3 4 4 556 6 1
1 ..• 5 ••.• 0 •.•• 5 •••. 0 •••• 5 •••• 0 ••.• 5 •••• 0 •••. 5 •••. 0 •••• 5 •••• 0 •.•. 5 .••• 0 ••

WRITE PRINT-RECORD
BEFORE ADVANCING 3 LINES.

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 .•• 5 ..•• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••. 5 .••• 0 •••• 5 •••• 0 •••. 5 .••. 0 ••

WRITE PRINT-RECORD
BEFORE ADVANCING 2 LINES.

5. Write a statement that will cause records from OUTPUT-RECORD to
be printed with two blank lines between records.

* * *
0011223 344 5 5 6 6 1
1 .•• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

WRITE OUTPUT-RECORD
BEFORE ADVANCING 3 LINES.

212

options of the WRITE Statement

0ption

REFORE ADVANCING inteqer
LINES

,7'FTF.'P AnVA~CIN~ inteqer
LTNFS

AF'rF.R ADVANCING
mneMonic-name

when Mnemonic name
has been defined in
~PECIAL-NA~~ES .paraqraph
in the Confiquration
~ection of Fnvironment
Division as:

CSP

C01 thru C09 ~or 1403
C01 thru C06;
C09 for 1132

C10 thru C12 for 1403
('12 ~or 1132

AT END-OF-PAGE
imperative-sentence

Action Taken

Printer advances the
specified number of lines
after record is written.
(Pecords are separated by
inteqer-1 blank lines.)

Printer advances the
speci~ied numher of lines
he~ore record is written.

Spacinq is suppressed.

Printer skips to channels
1 throuqh 9, respectively

~rinter skips to 10, 11,
12, re~pectively

When FND-nF-~ArF cnndition
exists (channel 12 punch on
carriaqe control tape is
sensed by an on-line printer)
the imperative statement is
executed after writinq and
spacinq operations have been
completed. An error rnessaqe
,,,i 11 result i ~ "RESERVE NO
ALTERNATE AREA has not been
specified for the associated
file in the F.nvironrnent
Division.

Res-trictions on
user-supplied
portion

May be any
positive
inteqer less
than 100

May be any
positive
inteqer less
than 100.

Must fit rule~
for data names

1 • Nhen an ADVANCING option is speci fied in a \'lP.ITE statement for
a record file, a for o~ that option Must be specified in every
~RITE stateMent for records in the same file.

2. The first character in each logical record for a printer file
Must be reserved by the user for the c~riaqe control character.

Figure 55

213

6.

0011223 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

WRITE record-name
AFTER ADVANCING integer LINES.

Option

Another option for specifying vertical spacing is shown above.
Figure 55 is a chart of options that may be specified in the
WRITE staterr.ent for printer files. The first column shows
general forms of the options. The second column describes the
action taken when a WRITE statement specifying the option is
executed. Figure 55 shows that a WRITE statement containing the
above option causes the records to be written:

a. before the printer advances.

b. after the printer has advanced.

* * *

7. Write a statement to print data records from OUTPUT-RECORD with
triple spacing. Use an ADVANCING option to cause spacing before
the records are written.

* * *
001 1 2 2 3 344 5 5 6 6 7
1 ••• 5 •••• O •••• 5 •••. O •••• 5 •••• o •••• 5 •••• o •.•• 5 •••• 0 •••• 5 •••• 0, •••• 5 •••• 0 ••

214

WRITE OUTPUT-RECORD
AFTER ADVANCING 3 LINES.

8. The third colurrn in Figure 55 specifies restrictions on the user
supplied portion of each option.. Figure 55 shows that integer in
the BEFORE ADVANCING option may be any •••••••••

* * *
positive integer less than 100

9. To write records from PRINT-RECORD with three blank lines between
records you would use the statement:

0011223 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WRITE PRINT-RECORD
BEFORE ADVANCING 3 LINES.

* * *

Wrong:

0011223 3 445 5 6 6 7
1 ..• 5 .••• 0 •••• 5 •••. 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WRITE PRINT-RECORD
BEFORE ADVANCING 4 LINES.

10. Refer to Figure 55 if necessary, and match each effect with the
statement(s) that would cause it.

1) Advance three lines after a record is written.

2) Double spacing.

3) Triple spacing.

a.

o 0 112 233 4 4 5 5 6 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WRITE PRINT-RECORD
BEFORE ADVANCING 2 LINES.

b.

o 0 112 233 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5.w •• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WRITE PRINT-RECORD
BEFORE ADVANCING 3 LINES

* * *
1) b
2) a
3) b

215

11.

o 0 112 233 4 4 556 6 7
1 .•• 5 •••• 0 •••. 5 •••. 0 •••• 5 •••. 0 •.•• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 ••

216

Both

WRITE record-name

AT END-OF-PAGE imperative-sentence.

option

The action to be taken when the end of a page is reached is
specified in the AT END-OF-PAGE option of the WRITE statement,
shown in the general format above. The imperative sentence in
the AT END-OF-PAGE option is similar in use to the AT END option
of the READ statement. The imperative sentence:

a. gives an instruction to be executed at the end of a page.

b. may be one or more imperative statements.

* * *

(END-OF-PAGE may be abbreviated EOP. The ••• represents an ADVANCING
option that must be present.)

12. If headings are to be printed at the top of each page, the
imperative sentence in the AT END-OF-PAGE option might be a
statement that will cause a branch:

a. back to the instructions to write headings.

b. to the instruction to read a card.

* * *

a

13. The statement that is used to cause a branch is:

a. MOVE

h. GO TO

* * *
b

14. In the GO TO statement you mQst specify:

b

a. a specific statement that is to be executed.

h. the paragraph name that precedes the statements to which the
program will branch.

* * *

15. The statements to move headings and then write them into an
output file are preceded by the paragraph name HEADING-ROUTINE.
Write a statement to write a record from PRINT-RECORD, after
skipping 7 lines on the report, including an instruction to
branch to the heading routine when the end of a page is reached.

* * *
001122334 q 5 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 ••

WRITE PRINT-RECORD
AFTER ADVANCING 7 LINES
AT END-OF-PAGE

GO TO HEADING-ROUTINE.

217

Paragraph
FINISH

218

I
I
I

I
I
L

Paragraph
PREPARA TION-ROUTINE

Paragraph
HEADING-ROUTINE

Paragraph
MAIN-SEQUENCE

I
I
I
L '----r------i

~--------------------~ ,..-------,
I
I
I
I
I

Move
heading

record to
output area

L -...,------I

~--------------~

I
I
I Move data from

input area to

I working-storage

I
variable

I Move data

I record from
working-storage

I variable to

I
I
I
I
I
I No

L

001122334455667
1 .•• 5 •.•. 0 ••.• 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PROC~DURE DIVISION.
PREPARATION-ROUTINE.

OPEN INPUT CARDFILE
OUTPUT PRINTED-REPORT.

HEADING-ROUTINE.
MOVE HEADING-RECORD

TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD.

MAIN-SEQUENCE.
READ CARDFILE

AT END GO TO FINISH.

WRITE OUTPUT-RECORD
AFTER ADVANCING 2 LINES
AT END-OF-PAGE

GO TO HEADING-ROUTINE.
GO TO MAIN-SEQUENCE.

FINISH.
CLOSE CARDFILE PRINTED-REPORT.
STOP RUN.

Figure 56

16. Figure 56 shows a program flow chart and corresponding coding for
skipping to a new page and printing headings when the end of a
page has been reached. The flow chart and the coding indicate
that:

a. a test for the end of the page and a branch to HEADING-
ROUTINE can be specified in the statement to write a data
record.

b. a skip to a new page can be specified in the statement to
write a heading record.

* * *
a

17. The AT END-OF-PAGE option in Figure 56 specifies a:

b

a. skip to a new page

b. branch to the paragraph HEADING-ROUTINE which contains a
WRITE statement

* * *

219

18. using the record variables shown in Figure 57, write
Procedure Division entries for the first three steps in the
chart in Figure 56.

CARDFILE ==n
Device: 1442 t----....

PRINTED-REPORT

IBM-1130 t------I~ Device: 1132

-STUDENT RECORD (input area for CARD FILE)

ID-<:ARD NAME STREET CITY STATE ZIP

the
flow

(S characters) (20 characters) (20 characters) (20 characters) (10 characters) (5 characters)

PRINT-RECORD (output area for PRINTED-REPORT)
1111 I " TTIT rTTT I ' I ii' I: " i I ;

3 .. 6

i;~ ~ ~
7 8 -~

i i IL I I il I

," :
l'Ie RE I , ~11iTE IZ:IIR
i : T

~ I I ~ 'j
, I i r r

n .. l I ~)

J ~ _;~ I ', .. " .. ',j .. [,Ill ~,ll l. .U

DETAIL-RECORD
HEADING-RECORD-2

HEADING-RECORD-l

Figure 57

* * *
o 0 112 233 445 5 6 6 7
1 .•. 5 •.•• 0 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••. 0 •.

PROCEDURE DIVISION.
PREPARATION-ROUTINE.

OPEN INPUT CARDFILE
OUTPUT PRINTED-REPORT.

HEADING-ROUTINE.
MOVE HEADING-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.

--~--------~------

220

19. Write the Procedure Division entries for the last three steps in
the paragraph MAIN-SEQUENCE in the flow chart in Figure 56, using
the record variables illustrated in Figure 57. Include options
to provide double spacing and branching at the end of a page.

* * *
001122334 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MOVE DETAIL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD

AFTER ADVANCING 2 LINES
AT END-OF-PAGE

GO TO HEADING-ROUTINE.

Alternate solution:

o 0 112 2 3 344 556 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MOVE DETAIL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD

BEFORE ADVANCING 2 LINES
AT END-OF-PAGE

GO TO HEADING-ROUTINE.

--------------------------------------~----------------~----------------

20.

o 0 112 2 3 344 556 6 7
1 ••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 ••

RESERVE NO ALTERNATE AREA

The use of the AT END-OF-PAGE option requires the form of the
RESERVE clause shown above in the FILE-CONTROL paragraph of the
program. This form of the RESERVE clause specifies that the file
is not to be double buffered, which is the standard condition for
a file. In which division of a program would the RESERVE clause
be specified?

* * *
Environment Division

221

21. Which of the following would permit the use of the AT END-OF-PAGE
option in a WRITE statement referring to PRINT-FILE?

a.

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

FILE SECTION.
FD PRINT-FILE

h.

LABEL RECORDS ARE OMITTED
RESERVE NO ALTERNATE AREA.

o 0 112 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

FILE-CONTROL.

c.

SELECT PRINT-FILE
ASSIGN TO PR-1132-C.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

c

FILE-CONTROL.
SELECT PRINT-FILE

ASSIGN TO PR-1132-C
RESERVE NO ALTERNATE AREA.

* * *

(~ is in the wrong division: ~ does not contain the required clause.)

22. Write a paragraph that will permit WRITE statements referring to
the printer file PRINTED-REPORT to use the AT END-OF-PAGE option.
Include the division and section headers.

* * *
0011223 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINTED-REPORT
ASSIGN TO PR-1132-C
RESERVE NO ALTERNATE AREA.

SUMMARY:

You have now mastered one of the most intricate aspects of COBOL
coding - the programming of horizontal and vertical controls for printed
output. The next lesson will show you how you may assign special
mnemonic names to be used in vertical forms of skipping or spacing,
instead of using the less meaningful numeric carriage tape designations.
You will also put into coding practice some of the new concepts you just
learned.

END OF LESSON 10

222

LESSON 11

223

LESSON 11 - VERTICAL SPACING CONTROL FOR PRINTER OUTPUT

INTRODUCTION

In this lesson you will learn to substitute convenient mnemonic names
for printing control characters used to control vertical spacing of
printed output forms. You will also study usage of the OBJECT-COMPUTER
paragraph in the Environment Division.

224

Specific COBOL language features you will study are:

SPECIAL-NAMES paragraph
OBJECT-COMPUTER paragraph

This lesson will require approximately three quarters of an hour.

1. You have now learned to code all the entries for producing a
listing of the records in an input file in any specified forroat.
The problem described below will give you an opportunity to
practice coding the entire program for producing a listing.

A listing of all the students enrolled in a coromunity college for
the first semester of 1972 is to be produced from the student
records in a card file. The system flow chart and an
illustration of the student record are shown in Figure 58. The
format for the listing is shown in the Printer Spacing Chart in
the figure along with the Data Division for the program LISTING
to produce this listing. Code the other three divisions for
LISTING. Use the elementary variable names from STUDENT-RECORD in
DETAIL-RECORD.

001 1 223 3 4 4 S S 6 6 7
1 ••• S •••• 0 •••• S •••• 0 •••• S •••• 0 •••• S •••• 0 •••• S •••• 0 •••• S •••• 0 •••• 5 •••• 0 ••

DATA DIVISION.
FILE SECTION.
FD CARDFILE

LABEL RECORDS ARE OMITTED.
01 STUDENT-RECORD.

02 ID-CARD PIC XeS).
02 NAME PIC X(20).
02 STREET PIC X(20).
02 CITY PIC X(20).
02 STATE PIC X(10).
02 ZIP PIC xes).

FD PRINTED-REPORT
LABEL RECORDS ARE OMITTED.

01 PRINT-RECORD PIC X(120).
WORKING-STORAGE SECTION.
01 HEADING-RECORD~l.

02 FILLER PIC X(37) VALUE IS SPACES.
02 TITLE PIC X(2S) VALUE IS

'STUDENT LISTING SEM1 1972'.
02 FILLER PIC X(S9) VALUE IS SPACES.

01 HEADING-RECORD-2.
02 FILLER PIC X VALUE IS SPACES.
02 HEADING-l PIC X(6)

VALUE IS 'NUMBER' •
02 FILLER 'PIC X(11) VALUE IS SPACES.
02 HEADING-2 PIC X(4)

VALUE IS 'NAME' •
02 FILLER PIC X(20) VALUE IS SPACES.
02 HEADING-3 PIC X(6)

VALUE IS 'STREET' •
02 FILLER PIC X(20) VALUE IS SPACES.
02 HEADING-4 PIC X(4)

VALUE IS 'CITY' •
02 FILLER PIC X(11) VALUE IS SPACES.
02 HEADING-S PIC xes)

VALUE IS 'STATE'.
02 FILLER, PIC xes) VALUE IS SPACES.
02 HEADING-6 PIC X(3)

VALUE IS 'ZIP' •
02 FILLER PIC X(2S) VALUE IS SPACES.

225

01 DETAIL-RECORD.
02 FILLER PIC X VALUE IS SPACES.
02 ID-CARD PIC XeS).
02 FILLER PIC X(4) VALUE IS SPACES.
02 NAME PIC X(20).
02 FILLER PIC xes) VALUE IS SPACES.
02 STREE~ PIC X(20).
02 FILLER PIC xes) VALUE IS SPACES.
02 CITY PIC X(20).
02 FILLER PIC xes) VALUE IS SPACES.
02 STATE PIC X(10).
02 FILLER PIC X VALUE IS SPACES.
02 ZIP PIC XeS).
02 FILLER PIC X(21) VALUE IS SPACES.

CARDFIlE I c::J Device: 1442 I
IBM-1I30 DevIce: 1132

CUSTOMER-RECORD (input area for CARD FILE)

~ANE STREET CITY-STATE FIllER

~

(20 characters) (15 characters) (25 characters) (18 characters)

YEAR-OPENED
(2 characters)

PRlNT-RECORD (output area for PRINTED-REPORT)
I !I I I " 1 lU ! Ii,

0 1 2 3 4 5 6 7
123 .567~ 10 11213141S 67/1,9 0'1 ,2!3 4,s1617 8'9 0, I 2 314:s 6 7 890 123,4 S,617'89 0123 1,4'516718,9 01 2 314,S,6 7.9 012 34 S6

H PM I; I II i I: i IAlbORiESSt I, c'IT'f-STATI: 1

': I I! L: I --2 I !
1-3 ' i

4 'I! I ,. i , I
S I' i ' ' ! I~ , 1 L 1 - ... - ' ,

DETAIL-RECORD in working storage

HEADING-RECORD in working storage

Figure S8

226

II I: II, I'll 'IiLU 1
8 9

789 I 23/4 S'6'7/8/9 olif213[4W6~
, 1 ""A:'" ' .. , .. t..' .. '"I, i I!
/ : I I!! i"

I ~I , : i i!"
! ' '

i -"- 1

* * *
o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0~ ••• 5.~ •• 0 •••• 5 •••• 0 ••

IDENTIFICATION DIVISION.
PROGRAM-ID. LISTING.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE CONTROL.

SELECT CARDFILE
ASSIGN TO RD-1442.

SELECT PRINTED-REPORT
ASSIGN TO PR-1132-C.
RESERVE NO ALTERNATE AREA.

PROCEDURE DIVISION.
PREPARATION-ROUTINE.

OPEN INPUT CARDFILE
OUTPUT PRINTED-REPORT.

HEADING-ROUTINE.
MOVE HEADING-RECORD-1

TO PRINT-RECORD.
WRITE PRINT-RECORD

AFTER ADVANCING 1 LINES.
MOVE HEADING-RECORD-2

TO PRINT-RECORD.
WRITE PRINT-RECORD

AFTER ADVANCING 2 LINES.
MAIN-SEQUENCE.

READ CARD FILE
AT END GO TO FINISH.

MOVE ID-CARD OF STUDENT-RECORD
TO ID-CARD OF DETAIL-RECORD.

MOVE NAME OF STUDENT-RECORD
TO NAME OF DETAIL-RECORD.

MOVE STREET OF STUDENT-RECORD
TO STREET OF DETAIL-RECORD.

MOVE CITY OF STUDENT-RECORD
TO CITY OF DETAIL-RECORD.

MOVE STATE OF STUDENT-RECORD
TO STATE OF DETAIL-RECORD.

MOVE ZIP OF STUDENT-RECORD
TO ZIP OF DETAIL-RECORD.

MOVE DETAIL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD

AFTER ADVANCING 2 LINES.
AT END-OF-PAGE

GO TO HEADING-ROUTINE.
GO TO MAIN-SEQUENCE.

FINISH.
CLOSE CARDFILE PRINTED-REPORT.
STOP RUN.

(20)

(11)

227

2.

o 0 1 1 2 2 3 344 556 6 7
1 ••. 5 •.•• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 .••• 0 •••. 5 •••• 0 .••• 5 •••• 0 •.•• 5 ••.• 0 •.

228

WRITE record-name
AFTER ADVANCING mnemonic-name.

Option

The option of the WRITE statement shown above may also be used to
skip to the top of a page. Figure 55 shows that this option may
be used to skip to a new page when mnemonic-name has been defined
in the •••••••• paragraph of the Configuration section of the
Environment Division as •••••••••

* * *
SPECIAL-NAMES
COl

3. The system name (COl, for example) cannot be used in a statement,
so it must be given a mnemonic name by the programmer. This is
done in the:

a. File Section of the Data Division.

b. SPECIAL-NAMES paragraph of the Environment Division.

* * *
b

N
N
I.D

~
\-'.

~
11
(1)

U'
I.D

IBM COBOL Coding Form

SYSTEM

PROGRAM

PROGRAMMER

SEQUENCE '"'I I A IB
.AGlI fS(RIAU 8 I

11_ 11111 III

Io! 1! I I I I I i

lDATE

* 13

114,
.~IUIRR ~i 'IVI'ffiQN!+- t-+44

1i51
rts
m 1:8

119
tcJ
~ I
-4
I

I Ii ~~tntfTm ~-+-++++-+t-l ,. . -m-++ + ++H--
I I I I I I I I J I I I +-t.-l-H-+--H---f-+4

+-- + - t-+-+-+-t-+-t---+

PUNCHING INSTRUCTIONS

GRAPHIC' I , f -,-, '·/ICARD
PUNCH FORM '*

*

COBOL STATEMENT

PAGE OF

IDENTIFICATION
L~.L.L..!
731 @l

.. - 17

r

f-++++--H-I I I I I I I ::-mnemonic name
+--+-+-J- I I I I I I I ~lW' I

-+-++t-+-++-I I I I I I I I I I I--I-H--i-·Il I I I I I I I I I I I I I I I I

+~--~ HH-"mUttl 1-
-. -.-+- - ~ t--++-l-+ I I I I I 4-f.-++-+

Ii -I--t-r- ,
I

3 _ • 1 I
12 II 20 21 -:12)I 40 .. u 51 10 54 II n

A......, _IJIcIr.c:a1~.it ~ __ "... ... f.arwI _ __ __ coeoI. __

~_ ~" l"ubtoc.toOftl.'2'1 ~ yon. Y ... ,00lO.
' He 1(21-' U/MC25

'.;MH;"U S ..

4. The mnemonic narre is a name chosen by the programmer that is
defined in the SPECIAL-NAMES paragraph in the Configuration
Section of the Environment Division. Figure 59 shows a mnemonic
name defined in the SPECIAL-NAMES paragraph. In Figure 59:

a. the mnemonic name is TO-NEXT-PAGE.

b. the system name by which the mnemonic name is defined is C01.

* * *

Both

5. Match, using Figure 59.

1) Mnemonic name a. COl

2) System name h. AT END-OF-PAGE

c. TO-NEXT-PAGE

* * *
1) c
2) a

6. In Figure 59 the system name COl specifies a skip to the first
printing line. Its related mnemonic name TO-NEXT-PAGE, then,
when used in a WRITE statement:

a. specifies a skip to the first printing line.

b. is used in place of COl to cause a skip to a new page.

* * *
Both
(Remember that the system name COl cannot be specified in a
statement.)

7.

o 0 1 1 2 2 3 3 445 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •.•• 0 ••

WRITE record-name
AFTER ADVANCING mnemonic-name.

Using the AFTER ADVANCING option, write a statement to write a
record from OUTPUT-RECORD after a skip to the first printing
line. Use the mnemonic name from Figure 59.

* * *
0011223 344 5 5 6 6 7
1 ..• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

WRITE OUTPUT-RECORD
AFTER ADVANCING TO-NEXT-PAGE.

230

8. The mnemonic name specified for COl in the AFTER ADVANCING optian
of the WRITE statement:

a. could be any name of the programmer's choice.

b. must always be TO-NEXT-PAGE.

* * *
a

9. Using Figure 20 as a guide, write the Environment Division
entries to define the mnemonic name TO-FIRST-LINE as the system
name COl.

* * *
00112 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
SPECIAL-NAMES.

COl IS TO-FIRST-LINE.

(If used, the SPECIAL-NAMES paragraph always follows the OBJECT
COMPUTER paragraph.)

10. The OBJECT-COMPUTER paragraph describes the computer on which the
program is to be executed. This paragraph is entered into the
CONFIGURATION SECTION of the ENVIRONMENT DIVISION.

OBJECT-COMPUTER. computer-name

{

WORDS }
CHARACTERS
MODULES

[MEMORY SIZE integer].
The following example demonstrates the complete Configuration
Section.

o 0 112 233 445 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5.~ •• 0 •••• 5 •••• 0 ••

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130 MEMORY SIZE 8192 WORDS.
SPECIAL-NAMES.

COl IS TO-FIRST-LINE.

231

11. write a statement to write a record from OUTPUT-RECORD after a
skip to the first printing line. Use the AFTER ADVANCING option
and the name defined in the previous frame.

* * *

0011223 3 4 4 5 5 6 6 1
1 ••• 5 •••• 0 •••• 5 ••.• 0 •••• 5i ••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

WRITE OUTPUT-RECORD
AFTER ADVANCING TO-FIRST-LINE.

12. A skip to the first printing line may be specified with the
statement:

a.

o 0 1 1 2 233 445 5 6 6 7
1 ..• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WRITE PRINT-RECORD
AFTER ADVANCING TO-NEXT-PAGE.

b.

o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 •.•• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

a

WRITE PRINT-RECORD
AFTER ADVANCING COl.

* * *

13. So far you have learned that a skip to the first printing line
may be specified in the statement:

o 0 112 233 445 5 6 6 7
1 ••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WRITE PRINT-RECORD
AFTER ADVANCING TO-NEXT-PAGE.

14. A mnemonic name must be specified in the SPECIAL-NAMES paragraph
if you are using the:

a. AFTER ADVANCING option with integer

b. AFTER ADVANCING option with mnemonic name

* * *
b

232

15. If the ADVANCING option is used in a WRITE statement for a file,
every other WRITE statement for that file must contain some form
of the same option. To produce the single-spaced output file
PRINTED-REPORT, you could use the statement:

a.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .••• 5 ••.. 0 ••

WRITE PRINT-RECORD
AFTER ADVANCING O.

to write headings, and the statement

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 .•.• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 •.•• 0 .•

WRITE PRINT-RECORD
AFTER ADVANCING 2 LINES.

to write data records.

h.

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 .•. 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 ••.• 5 •.•• 0 ••

WRITE PRINT-RECORD
AFTER ADVANCING TO-NEXT-PAGE.

to write headings, and the statement

o 0 112 233 445 5 6 6 7
1 .•• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••. 0 •.

WRITE PRINT-RECORD
AFTER ADVANCING 1 LINES.

to write data records.

* * *

b
AFTER ADVANCING 1 LINES is necessary even though norwal single
spacing is desired. All WRITE statements referring to PRINT-RECORD
must contain AFTER ADVANCING clauses once the option is used.

233

16.

0011223 344 5 5 6 6 7
1 ••. 5 •••• 0 •... 5 •••• 0 ••.. 5 •••• 0 •••• 5 •••• 0 .••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WRITE PRINTED-REPORT
AFTER ADVANCING TO-TOP-OF-PAGE

Single spacing is used in a printed report for all records except
the heading record, which is on a new page. Paragraph PRINT
HEADINGS contains the statement above. The statement you would
use to cause a branch to PRINT-HEADINGS at the appropriate time
would be:

a.

o 0 112 2 3 3 4 4 556 6 7
1 ••• 5 •••• 0 .•.. 5 •••• 0 .••. 5 •••• 0 ••.• 5 •••• 0 •••. 5 •••• 0 •.•• 5 •••• 0 •.•• 5 •••• 0 ••

b.

WRITE PRINT-REPORT
AT END-OF-PAGE
GO TO PRINT-HEADINGS.

00112 233 4 4 556 6 7
1 •.. 5 •••• 0 ••.. 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

234

b

WRITE PRINTED-REPORT
AFTER ADVANCING 1 LINE
AT END-OF-PAGE
GO TO PRINT-HEADINGS.

* * *

17. Rewrite the Configuration Section of the Environment Division and
the Procedure Division of the program in Figure 60 to produce the
listing in Figure 58 using the AFTER ADVANCING option. Use NEW
PAGE as the mnemonic name for COl.

o 0 112 2 3 344 5 5 6 6 1
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IDENTIFICATION DIVISION.
PROGRAM-ID. LISTING.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE CONTROL.

SELECT CARDFILE
ASSIGN TO RD-1442.

SELECT PRINTED-REPORT
ASSIGN TO PR-1132-C
RESERVE NO ALTERNATE AREA.

DATA DIVISION.
FILE SECTION.
FD CARDFILE

LABEL RECORDS ARE OMITTED.
01 STUDENT-RECORD.

02 ID-CARD PIC X(5).
02 NAME PIC X(20).
02 STREET PIC X(20).
02 CITY PIC X(20).
02 STATE PIC X(10).
02 ZIP PIC XeS).

FD PRINTED-REPORT.
LABEL RECORDS ARE OMITTED.

01 PRINT-RECORD PIC X(121).
WORKING-STORAGE SECTION.
01 HEADING-RECORD-l.

02 FILLER PIC X(31) VALUE IS SPACES.
02 TITLE PIC X(2S) VALUE IS

'STUDENT LISTING SEM1 1912'.
02 FILLER PIC x(59) VALUE IS SPACES.

01 HEADING-RECORD-2.
02 FILLER PIC X VALUE IS SPACES.
02 HEADING-l PIC X(6)

VALUE IS 'NUMBER'.
02 FILLER PIC X(11) VALUE IS SPACES.
02 HEADING-2 PIC X(4)

VALUE ,IS ' NAME' •
02 FILLER PIC X(20) VALUE IS SPACES.
02 HEADING-3 PIC X(6)

VALUE IS 'STREET'.
02 FILLER PIC X(20) VALUE IS SPACES.
02 HEADING-4 PIC X(4)

VALUE IS 'CITY'.
02 FILLER PIC X(11) VALUE IS SPACES.
02 HEADING-S PIC xes)

VALUE, IS 'STATE'.
02 FILLER PIC xes) VALUE IS SPACES.
02 HEADING-6 PIC X(3)

VALUE IS 'ZIP'.
02 FILLER PIC X(2S) VALUE IS SPACES.

235

236

01 DETAIL-RECORD.
02 FILLER PIC X VALUE IS SPACES.
02 IO-CARD PIC XeS).
02 FILLER PIC X(4) VALUE IS SPACES.
02 NAME PIC X(20).
02 FILLER PIC xes) VALUE IS SPACES.
02 CITY PIC X(20).
02 FILLER PIC X VALUE IS SPACES.
02 STATE PIC X(10).
02 FILLER PIC X VALUE IS SPACES.
02 ZIP PIC XeS).
02 FILLER PIC X(49) VALUE IS SPACES.

PROCEDURE DIVISION.
PREPARATION-ROUTINE.

OPEN INPUT CARDFILE
OUTPUT PRINTED-REPORT.

HEADING-ROUTINE.
MOVE HEADING-RECORD-1 TO PRINT-RECORD.

MOVE PRINT-RECORD.
l-10VE HEADING-RECORD-2 TO PRINT-RECORD.
WRITE PRINT-RECORD AFTER ADVANCING 3 LINES.

MAIN-SEQUENCE.
READ CARDFILE AT END GO TO FINISH.
MOVE ID-CARD OF STUDENT-RECORD TO ID-CARD OF DETAIL-RECORD.
MOVE STREET OF STUDENT-RECORD TO STREET OF DETAIL-RECORD.
MOVE CITY OF STUDENT-RECORD TO CITY OF DETAIL-RECORD.
MOVE STATE OF STUDENT-RECORD TO STATE OF DETAIL-RECORD.
MOVE ZIP OF STUDENT-RECORD TO ZIP OF DETAIL-RECORD.

MOVE DETAIL-RECORD TO PRINT-RECORD.
WRITE PRINT=RECORD AFTER ADVANCING 3 LINES.
AT END-OF-PAGE GO TO HEADING-ROUTINE.
GO TO MAIN-SEQUENCE.
FINISH.

CLOSE CARD-FILE PRINTED-REPORT.
STOP RUN.

Figure 60

* * *

0011223 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
SPECIAL-NAMES.

COl IS NEW-PAGE.

PROCEDURE DIVISION.
PREPARATION-ROUTINE.

OPEN INPUT CARDFILE
OUTPUT PRINTED-REPORT.

HEADING-ROUTINE.
MOVE HEADING-RECORD-l

TO PRINT-RECORD.
WRITE PRINT-RECORD

AFTER ADVANCING NEW-PAGE.
MOVE HEADING-RECORD-2

TO PRINT-RECORD.
WRITE PRINT-RECORD

AFTER ADVANCING 2 LINES.
MAIN-SEQUENCE.

READ CARD FILE
AT END GO TO FINISH.

MOVE ID-CARD OF STUDENT-RECORD
TO ID-CARD OF DETAIL-RECORD.

MOVE NAME OF STUDENT-RECORD
TO NAME OF DETAIL-RECORD.

MOVE STREET OF STUDENT-RECORD
TO STREET OF DETAIL-RECORD.

MOVE CITY OF STUDENT-RECORD
TO CITY OF DETAIL-RECORD.

MOVE STATE OF STUDENT-RECORD
TO STATE OF DETAIL-RECORD.

MOVE ZIP OF STUDENT-RECORD
TO ZIP OF DETAIL-RECORD.

MOVE DETAIL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD

AFTER ADVANCING 2 LINES
AT END-OF-PAGE

GO TO HEADING-ROUTINE.
GO TO MAIN-SEQUENCE.

FINISH.

SUMMARY:

CLOSE CARDFILE PRINTED-REPORT.
STOP RUN.

You have just cowpleted Lesson 11 in which you learned to use the
SPECIAL-NAMES paragraph option of the WRITE statement to provide
vertical spacing for printed reports.

END OF LESSON 11

237

THIS PAGE INTENTIONALLY LEFT BLANK

238

LESSON 12

239

LESSON 12 - LIBRARY ENTRIES

INTRODUCTION

In this lesson you will learn how you may avoid recording programming
routines used more than one time. The COpy statement will allow you to
include entries in your source program from a library of source program
entries. You will also apply new concepts from the last few lessons in
practice problem coding.

Specific COBOL language features you will learn to use are:

COpy statement

This lesson will require approximately three quarters of an hour.

240

Now that you have learned to use the options of the WRITE statement
to control vertical spacing, you can produce a listing of a card file in
any forrr:at that may be requested. Another feature of the COBOL language
can reduce the coding required to produce the listing, however. The
card records illustrated in Figure 58 might be processed in several ways
by several programs. The record description entries in the Data
Division would be coded in each of the programs. Entries such as these
that are used in many programs may be stored in a library of source
coding. The coding segments are called books and are given distinct
names by which they can be referred to in a COBOL program. Although you
will not learn to create such a library in this course, you will learn
to include source coding that is already part of a library in your
program.

1.

o 0 112 2 3 3 445 5 6 6 7
1 ..• 5 .••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

COpy library-name

The COPY staterrent is used to include entries in a source program
from a library of source coding. Locate the section titled COpy
Statement under SOURCE PROGRAM LIBRARY FACILITY in the Language
Specifications. The General Format chart shows the entries in
which the copy statement may be specified. Option 1 in the chart
indicates that a valid use of the COpy statement could be:

a.

o 0 1 1 2 233 4 4 5 5 6 6 7
1 .•• 5 ••.• 0 •••• 5 ••.• 0 •••• 5 •.•. 0 •••• 5 ••.• 0 •.•• 5 .••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •.

CONFIGURATION SECTION. COpy COMPUTERS.

b.

o 0 112 2 3 3 4 4 556 6 7
1. • . 5. • • • o. . . . 5. • • • O. • • • 5. . • • o. . • . 5. • • • 0 • • • • 5 • • • • 0 • • • • 5 . '. • • 0 • • • • 5 • • • • 0 • •

OBJECT-COMPUTER. COpy INSTALLATION.

* * *
b
(a is incorrect because it is not possible to copy an entire
section.)

A library name, like a program name, may be any combination of
digits, letters, and hyphens with a maximum length of 30. The
initial and final characters must not be hyphens. In addition to
fitting these rules, library names must not be COBOL reserved words
and the first five characters must not be duplicated in any other
library name.

241

2. Refer to the portion of the General Format chart for the
specified option for each entry below to determine whether the
entry is a valid use of the COPY statement.

a. Option 2

o 0 112 2 3 344 5 5 6 6 1
1 ••• 5 •••• 0 •••• 5 •••• 0 ••• "5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

INPUT-OUTPUT SECTION.
COPY IN-OUT-SECT.

b. Option 3

o 0 112 2 3 344 5 5 6 6 7
1 .•• 5 .••. 0 •••. 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

SELECT COPY FILES.

c. Option 4

0011223 344 5 5 6 6 1
1 ••• 5 •••. 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 ••

FD CARD-FILE
COpy FILE-DESCRIPTION-ENTRY.

d. Option 5

0011223 344 556 6 1
1 .•• 5 .••• 0 .••• 5 •••• O ••.• 5 •••.• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

01 COpy CARD-RECORD.

e. Option 6

o 0 112 2 3 344 5 5 6 6 1
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

77 SAVE-NUMBER COpy LIBRARY-1.

f. Option 1

o 0 112 2 3 344 5 5 6 6 1
1 ••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 ••

242

BEGIN. COPY OPEN-PARAGRAPH.

* * *

c,e,f
(a is incorrect because it is not possible to copy an entire section.
In b the file name must be specified preceding the COPY statement.
In -d the data name must be specified preceding the COpy statement.
The library name is used only in the copy statement. The data name
or file name is used in all other entries.)

3. The library texts shown in Figure 61 are to be incorporated into
the program in Figure 60. write the statements that would
include the library texts.

1. Library narre: TITLE-LINE
Text:

o 0 112 2 3 3 445 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 FILLER PIC X(37) VALUE IS SPACES.
02 TITLE PIC X(2S) VALUE IS

'STUDENT LISTING SEMi 1972'.
02 FILLER PIC X(S9) VALUE IS SPACES.

2. Library narre: COLUMN-HEADINGS
Text:

o 0 112 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••. 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

02 FILLER PIC X VALUE IS SPACES.
02 HEADING-l PIC X(6) VALUE IS 'NUMBER'.
02 FILLER PIC X(ll) VALUE IS SPACES.
02 HEADING-2 PIC X(4) VALUE IS 'NAME'.
02 FILLER PIC X(20) VALUE IS SPACES.
02 HEADING-3 PIC X(6) VALUE IS 'STREET'.
02 FILLER PIC X(20) VALUE IS SPACES.
02 HEADING-4 PIC X(4) VALUE IS 'CITY'.
02 FILLER PIC X(11) VALUE IS SPACES.
02 HEADING-5 PIC xeS) VALUE IS 'STATE'.
02 FILLER PIC X(5) VALUE IS SPACES.
02 HEAOING-6 PIC X(3) VALUE IS 'ZIP'.
02 FILLER PIC X(25) VALUE IS SPACES.

3. Library name: INFORMATION-LINE
Text:

001122334 4 5 5 6 6 7
1 .•• 5 •••• O •••• 5 •.•• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.•• 0 •••• 5 •••• 0 ' ••

02 FILLER PIC X VALUE IS SPACES.
02 IO-CARD PIC X(5).
02 FILLER PIC X(3) VALUE IS SPACES.
02 NAME PIC X(20).
02 FILLER PIC XCS) VALUE IS SPACES.
02 STREET PIC X(20).
02 FILLER PIC XCS) VALUE IS SPACES.
02 CITY PIC X(20).
02 FILLER PIC X VALUE IS SPACES.
02 STATE PIC X(10).
02 FILLER PIC X(2) VALUE IS SPACES.
02 ZIP PIC X(5).
02 FILLER PIC X(24) VALUE IS SPACES.

243

o o

4. Library narr,e: STANDARD-PARAGRAPH
Text:

1 1 2 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

1)

MOVE HEADING-RECORD-1
TO PRINT-RECORD.

WRITE PRINT-RECORD.
MOVE HEADING-RECORD-2

TO PRINT-RECORD.
WRITE PRINT-RECORD AFTER ADVANCING 3 LINES.

Figure 61

* * *

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

01 HEADING-RECORD-l COPY TITLE-LINE.

2)

001122334455667
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

01 HEADING-RECORD-2
COpy COLUMN-HEADINGS.

3)

o 0 112 2 3 3 4 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

01 DETAIL-RECORD COPY INFORMATION-LINE.

4)

001 1 2 2 3 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••• ~0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

244

HEADING-ROUTINE. COPY STANDARD-PARAGRAPH.

(These four COpy statements eliminate the necessity of writing 33
lines of coding.)

Use the IBM 1130 Disk Monitor System, Version 2 manual for the
operating system in your computer installation. If you do not work
in a computer installation, you may use the Language Specifications.

Consult the Language Specifications Manual which has excellent
indexes and contains all the rules for coding the American National
Standard COBOL. As a COBOL programmer you will use this as your
primary reference source. Quickly review the manual now to
familiarize yourself with its structure and content. Then continue
by coding a' solution for the problem described in the following
frame.

4. In preparation for an advertising campaign, a major manufacturing
firm has requested a listing of customer master records in the
form shown in the Printer Spacing Chart in Figure 62. The master
records are on cards in a form shown by the diagram of the input
area. Since these master records and detail records are
processed by several different programs, their record description
entries are common to all of the programs. The record
description entry for the master records exists as a library text
called MASTER. The record description entry for the detail
records exists as library text called DETAIL-LINE. The heading
entries exist as library text called HEADINGS. The library texts
are shown in Figure 62. The title, however, is unique and must
be defined in this program. Code the program called LISTING to
produce the listing of customer master records.

Library name: MASTER
Text:

o 0 112 2 3 344 S S 6 6 7
1 ••• S •••• -0 •••• S •••• 0 •••• S •••• 0 •••• S •••• 0 •••• S •••• 0 •••• S •••• 0 •••• 5 •••• 0 ••

02 CHARGE-CARD PIC XeS).
02 NAME PIC X(20).
02 STREET PIC X(20).
02 CITY PIC X(20).
02 STATE PIC X(10).
02 ZIP PIC xes).

245

Library name: DETAIL-LINE
Text:

0011223 344 556 6 7
1 •.• 5 •••• O •••. 5 •••• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 FILLER PIC X.
02 C-NUMBER PIC X(5).
02 FILLER PIC XXXX VALUE IS SPACES.
02 NAME PIC X(20).
02 FILLER PIC X(5) VALUE IS SPACES.
02 STREET PIC X(20).
02 FILLER PIC X(5) VALUE IS SPACES.
02 CITY PIC X(20).
02 FILLER PIC X VALUE IS SPACE.
02 STATE PIC XClO).
02 FILLER PIC XX VALUE IS SPACES.
02 ZIP PIC X(5).
02 FILLER PIC X(23) VALUE IS SPACES.

Library name: HEADINGS
Text

0011223 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 FILLER PIC X.
02 HEADING-l PIC XCl7) VALUE IS

'NUMBER
02 HEADING-2 PIC X(24) VAlliE IS

'NAME
02 HEADING-3 PIC X(26) VAlliE IS

'STREET
02 HEADING-4 PIC XCl5) VAlliE IS

'CITY
02 HEADING-5 PIC XCll) VAlliE IS

'STATE
02 HEADING-6 PIC X(3) VALUE IS 'ZIP' •
02 FILLER PIC X(24) VALUE IS SPACES.

246

r-v
-'=
-.J

*

IT!
1-1'

u::l
s=

* 11

*

ro

'" r-v

MASTER-FlL~ PRINTED-REPORT
Device: 1442 IBM-I130 Device: 1132

CUSTOMER-RECORD (input area for MASTER-FILE)

CHARGE-CARI NAME STREET CITY STATE ZIP

(5 characters) (20 characters) (20 characters) (20 characters) (10 characters) (5 characters)
'-----~ -.

OUTPUT-RECORD (output area for PRINTED-REPORT)
12J4~'7 OI2~4\671'O 2J}S.71 OI.2'J14kfiOI2~171'OI2J45S'71"O'12346S'7'IYO-1234~'7~ 12 85 • 7 • l~b~

r--~ I ~. CU9TO~IEIR IttlPf:'''~ PI LE .! 'MR ~~_ .i. t-r ; I ill ., I ,

2 I I !~_ .'; I '-lI:I .~~-~~t~l: . ~ I r- J ! 'AIME . I :,', IT1RfE.T I ' ! i! ,1 lc..d1 ~ AlL J ,-Lit I

I I .' . . i"" . ,.....--.-- . '" j' I jl
~l$i1¢ttU~m;:a:uttttt·~Ha:-~ t rp,r ~ +~ t- _.4_ --.I. ~ • t ! ~ • ;, • I •• C-I ~ Q:-:::::r--- ~ ll:.; I

rF t Tt-· ~~lf';'r-' ;r,'tir-"~1~~·tt· ··l:..I!~t 1,~7- !-.I~":"-,

~~!I! !!1I1I11I I1 'IIIJ-.J...!.L ..l.-l _ J:~;~Jll-l ~:ljll .!.,:~± L:.~! •. ,_ i;;_~~_l~~ ~._~L......-.....l--J..-:,~~

DETAIL-RECORD
HEADING-RECORD-2

HEADING-RECORD-l

001122334 4 556 6 7
1 ••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

248

IDENTIFICATION DIVISION.
PROGRAM-ID. LISTING.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE CONTROL.

SELECT MASTER-FILE
ASSIGN TO RD-1442.

SELECT PRINTED-REPORT
ASSIGN TO PR-1132-C.
RESERVE NO ALTERNATE AREAS. (20)

DATA DIVISION.
FILE SECl'ION.
FD MASTER-FILE

LABEL RECORDS ARE OMITTED.
01 CUSTOMER-RECORD COpy MASTER. (40)
FD PRINTED-REPORT

LABEL RECORDS ARE OMITTED.
01 OUTPUT-RECORD.

02 OUT-AREA PIC X(121).
WORKING-STORAGE SECTION.
01 HEADING-RECORD-l.

02 FILLER PIC X(34) VALUE IS SPACES.
02 HEADING-l PIC X(29)

VALUE IS 'CUSTOMER MASTER FILE MAR 72'.
02 FILLER PIC X(58) VALUE IS SPACES.

01 HEADING-RECORD-2 COpy HEADINGS. (40)
01 DETAIL-RECORD COpy DETAIL-LINE. (40)
PROCEDURE DIVISION.
PREPARATION-ROUTINE.

OPEN INPUT MASTER-FILE
OUTPUT PRINTED-REPORT,.

HEADING-ROUTINE.
MOVE HEADING-RECORD-1

TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD.
MOVE HEADING-RECORD-2

TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD

AFTER ADVANCING 2.
MAIN-SEQUENCE.

READ MASTER-FILE
AT END GO TO FINISH.

MOVE CHARGE-CARD OF CUSTOMER-RECORD
TO C-NUMBER OF DETAIL-RECORD.

MOVE NAME OF CUSTOMER-RECORD
TO NAME OF DETAIL-RECORD.

MOVE STREET OF CUSTOMER-RECORD
TO STREET OF DETAIL-RECORD.

MOVE CITY OF CUSTOMER-RECORD
TO CITY OF DETAIL-RECORD.

MOVE STATE OF CUSTOMER-RECORD
TO STATE OF DETAIL-RECORD.

MOVE ZIP OF CUSTOMER-RECORD
TO ZIP OF DETAIL-RECORD.

MOVE DETAIL-RECORD TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD

AFTER ADVANCING 2
AT END-OF-PAGE (11)

GO TO HEADING-ROUTINE.
GO TO MAIN-SEQUENCE.

FINISH.

SUMlJIARY:

CLOSE MASTER-FILE
PRINTED-REPORT.

STOP RUN.

You have now completed Lesson 12 in which you have learned to include
text from a library of source coding in your source program.

END OF LESSON 12

249

THIS PAGE INTENTIONALLY LEFT BLANK

250

LESSON 13

251

LESSON 13 - SEQUENTIAL DISK FILE OUTPUT

INTRODUCTION

In the problems you have coded in previous lessons you have used only
card files and printer files. In this lesson you will use disk files
which have the advantages of higher input and output speeds and more
compact storage of data. You will learn how records in a disk file can
be blocked to provide even more compact storage. In addition to
learning to create a master file on disk you will learn to specify a
single statement to read and reove a record as well as to specify
arithmetic operations. To begin, you will review some of the basic
physical concepts concerning disk storage, and principles pertaining to
file organization.

Specific COBOL language features you will learn to use in this lesson
are:

252

ASSIGN clause for disk files
STANDARD option of the LABEL RECORDS clause
BLOCK CONTAINS clause with CHARACTER option
INTO option of the READ statement
FILE LIMIT clause

This lesson will require approximately one hour.

1.
D+SK STORAGE

Disk storage provides the 1130 system with low-cost random or
sequential access data storage. Disk storage for the 1130 is
divided into two separate entities, each dependent upon the
other. The disk storage drive provides the access mechanism, the
magnetic read/write heads, and the mechanical and electronic
components necessary to record and retrieve data. The disk
cartridge provides a storage medium.

'Ihe
disk

disk

*

is the storage medium that is mounted in the

* *
cartridge
storage drive

2. The storage capacity provided to the 1130 system by the disk
storage is 512,000 words per storage drive. A total on-line
capacity up to 2,560,000 words is provided. Off-line capacity is
virtually unlimited because the interchangeable disk cartridge is
easily removed and replaced with another.

The storage capacity limit of the 1130 disk storage is
approximately 2 and a half million words.

a. True

b. False

* * *
b. Only on-line capacity is limited. Disk cartridges are removable.

3. The disk cartridge (Figure 63) is a single disk completely
enclosed in protective housing. The recording medium is an
oxide-coated disk that provides two surfaces for the magnetic
recording of data. When mounted on a storage drive, the disk
rotates at 1,500 revolutions per minute.

Match the most closely related items in these two columns:

1. Disk cartridge a. Magnetically recorded

2. Data b. contains 2 surfaces

3. Disk rotation c. Can be read off-line

d. 1,500 revolutions per minute.

* * *
1. b
2. a
3. d

253

Figure 63

4. The disk storage access mechanism has two horizontal arms. Each
arm has a magnetic read/write head, and each head is positioned
to read or write on the corresponding disk surface as the access
arms straddle the disk in the manner of a large tuning fork. The
entire assembly moves horizontally forward and backward so that
the heads have access to the entire recording area.

The magnetic head can •••••••• or •••••••• on the disk. Access
to all data is possible because the horizontal arms •••••••••

read
write
move

254

* * *

5. The disk access mechanism is moved back and forth by prograwmed
commands and can be placed in anyone of 203 positions, froID a
point near the periphery of the disk to a point near the center
of the disk. At each position, the heads can read or write in a
circular pattern on both surfaces of the disk, as it revolves.
The circular patterns of data are called tracks. The track on
the upper surface of the disk and the corresponding track on the
lower surface, both of which can be read or written while the
access mechanism is in the same posistion, are called a cylinder.
Figure 64 shows the innermost and outermost cylinders of two
tracks each. To complete the picture, the 201 intermediate
cylinders, or pairs of tracks, should be visualized; they were
omitted for the sake of clarity of the diagraw.

1. a
2. c
3. b

Match the items that correspond best:

1. Programmed command

2. Tracks

3. Cylinder

*

Innermost Cylinder

Upper Surface Track

Lower Surface Tral'k

Outermost Cylinder

a. Control access mechanism
motion

b. Corresponding tracks, upper
and lower surface

c. Circular pattern of data

d. Round-shaped disk housing

* *

NOTE: The thickness of the disk has been greatly exaggerated to show the
relative positions of the upper and lower surface tral'ks,

Figure 64

255

256

6. For convenience in transferring data between the CPU core storage
and disk storage, each track is divided into four equal segments
called sectors. Sectors are numbered by the cylinder r from 0
through 7, as shown in Figure 65. Sectors 0 - 3 divide the upper
surface track, and sectors 4 - 7 r the lower. A sector contains
321 data words and is the largest segment of data that can ce
read or written with a single instruction. The first word of the
sector cannot be used by the programmer if the assembler program
or other components of the monitor system are to be used.

How many words can be read or written with a single instruction?

* * *
321r of which 320 are available to the programmer.

Sectors 0 ·3
(Upper Disk Surface)

Figure 65

7. A disk storage word comprises 16 data bits and four check and
space bits. Figure 66 shows the organizational components of
disk storage. Note that capacities are based on the 320 word
sector; also the number of cylinders is 200 rather than 203.
Three cylinders (24 sectors) are provided as alternates to te
used if a surface is defective.

Match the columns:

1. Number of effective data bits a. 203
per disk storage word b. 16

c. 20
2. Number of effective words per d. 320

sector e. 321
f. 200

3. Number of effective cylinders

* * *
1. b
2. d
3. f

~r4 Word Sector Track Cylinder Disk

Bits 16 5,120 20,480 40,960 8,192,000

Data Words 320 1.280 2,560 512.000

Sectors 4 t\ 1,600

Tracks 2 400

Cylinders 200

Figure 66

8. Timing considerations of disk storage operations involve three
elements: access time, reading and writing data, and the time
during which the cpu is tied up. Once a seek, read, or write
instruction is initiated, disk storage operation is virtually
independent of the CPU (Central Processing Unit).

What are the three elements involved in timing disk write
operation?

access time
writing data

* *

time during which the CPU is tied up

*

257

FILE ORGANIZATION

There are two types of disk-file organization in 1130 COBOL:
sequential and random.

In a sequential disk-file, the records are written and read one after
the other. Record four, for example, can not be read or written unless
record three is read or written first, and so on.

In a random disk-file records are written or read without respect to
their location. For exarople, record seven can be read first, then
record one, and so on.

The disk storage devices will be discussed extensively later. In
earlier lessons the disk devices will be used in a sequential mode.

258

9. Records in a file roust be logically organized so that they can be
retrieved efficiently for processing. Sorre factors to be
considered in selecting a method of organization are file
volatility, activity and size. Name three factors influencing
the choice of a method of file organization.

* * *
File volatility, activity and size.

10. Volatility. A static file is one that has a low percentage of
additions and deletions, while a volatile file is one that has a
high rate of additions and deletions.

Activity. If a low percentage of the records are to be processed
on a run, the file should probably be organized in such a way
that any record can be quickly located without having to look at
all the records in the file. The distribution of the activity is
also a consideration. The records processed most frequently
should certainly be the ones that can be located most quickly.
An active file must be organized very carefully, since the time
involved in locating the records may amount to an appreciable
period of time. At the other extreme, an inactive file may be
referred to so infrequently that the time required to locate the
records is irrrraterial.

Size. A file so large that it cannot be all online (available to
the system> at one time must be organized and processed in
certain ways. A file may be so small that the method of
organization makes little difference, since the time required to
process it is very short no matter how it is organized. Usually,
files are planned on the basis of their anticipated growth over a
period of time.

A •••••••• file has a high rate of changes. Active records must
be accessed ••••••••• Files are planned on the basis of future

volatile
quickly
growth

* * *

11. The distinction between the organization of a master file and the
order of the input detail records processed against the file is
important. In sequential processing, the input transactions are
grouped together, sorted into the same sequence as the master
file, and the resulting batch is then processed against the
master file. When cards are used to store the master files,
sequential processing is the most efficient means of processing,.
Direct access storage devices are very efficient sequential
processors, especially when the percentage of activity against
the master file is high.

In •• • • • • • • • • • • • • • • input
(batched) and sorted into the

* *

transactions are grouped together
same sequence as the ••••••••

*
sequential processing
master file

12. Random processing is the processing of detail transactions
against a master file in whatever order they occur. With direct
access devices, random processing can be very efficient, since a
file can be organized in such a way that any record can be
quickly located.

1. c
2. b
3. a
4. d

It is possible, on a run, to process the input transactions
against more than one file. This saves setup and sorting time.
It is not necessary to wait until a batch of transactions has
been accumulated to make processing worthwhile. The transactions
can be processed inline - that is, as soon as they are available.

1-1atch these columns:

1. Random processing

2. Direct access

3. sorting

4. Batching

*

a.

b.

Arranging data in a
given sequence.

Retrieval of a given
record without sequential
search

c. Transactions processed
without regard to sequence

d. Accumulation of
transactions into a group

* *

IBM 1130 COBOL directly supports a sequential and a random method of
disk data organization. The indexed sequential method may be used,
but the programmer must develop techniques for file creation and
accessing. Further explanation will be given later in this course.

259

260

13. sequential organization. In a sequential file, records are
organized solely on the basis of their successive physical
location in the file. The records are usually read or updated in
the same order in which they appear. For exarople, the hundredth
record is usually read only after the first 99 have been read.

Individual records cannot be located quickly. Records usually
cannot be deleted or added unless the entire file is rewritten.
This organization is generally used when roost records are
processed each tirre the file is used.

Sequential file organization would be recoromended to accomodate a
reservation system, where a relatively few requests are processed
against a large file.

a. True

b. False

* * *
b. Sequential file organization is not practical unless an
appreciable number of records are active each time the file is used.

14. Indexed Sequential Organization. An indexed sequential file is
similar to a sequential file in that rapid sequential proceSSing
is possible. Indexed sequential organization, however, by
reference to indexes associated with the file, makes it also
possible to quickly locate individual records fer random
processing. f-f;oreover, a separate area of the file is set aside
for additions; this obviates a rewrite of the entire file, a
process that would usually be necessary when adding records to a
sequential file. Although the added records are not physically
in key sequence, the indexes are referred to in order to retrieve
the added records in key sequence, thus making rapid sequential
processing possible.

Name three advantages of the indexed sequential file organization
method.

* *
Rapid sequential processing is possible.
Random processing is also possible.

*

The entire file does not have to be rewritten to make additions.

15. Random Organization. A file organized in a random manner is
characterized by some predictable relationship between a key of a
record and the location of that record on a DASD. This
relationship is established by the user. This organization
method is generally used for files whose characteristics do not
permit the use of sequential or indexed sequential organizations,
or for files where the time required to locate individual records
must be kept to an absolute m1n1mum. This method has
considerable flexibility. The accompanying disadvantage is that
the programmer is largely responsible for the logic and
programming required to locate the records, since he establishes
the relative addresses of records on the DASD.

When is the random organization sometimes used in preference to
sequential or indexed sequential?

* * *
It is used when the time required to locate individual records must
be kept to a minimum.

16. The programmer, in computing the space needed to contain his
program and data, must first determine the number of words per
logical record. A logical record, as distinguished from a
physical record, is a given amount of data associated with one
particular transaction in a computer application e.g; the
information pertaining to an item in inventory. A physical
record is always 320 words, since this is the length of a disk
sector.

A ••••••••
application.

logical
physical

record is related data being processed in a computer
A •••••••• record is determined by sector size.

* * *

261

262

17. Disk files can be blocked, but because the size of a disk sector
is fixed at 320 words, the compiler and the execution-time input
output routines assume that the number of records contained in a
disk block is exactly 320 divided by the length of the logical
record, with any remainder discarded.

Once the blocking factor is known, the
cylinders and disk cartridges needed may each
succession as is shown here:

5000 RECORDS ~ 32 WORDS/RECORD

320/32 = 10 = BLOCKING FACTOR

500 SECTORS
500 SECTORS

10 RECORDS/SECTOR) 5000 RECORDS

62.5 CYLINDERS

8 SECTORS/CYLINDER) 500 SECTORS

number of sectors,
be determined in

SINCE DATA FILES ALWAYS REQUIRE AN INTEGER NUMBER OF
SECTORS, THIS FILE WILL REQUIRE 62.5 CYLINDERS.

SINCE A DISK CARTRIDGE CONTAINS 200 CYLINDERS, THIS
FILE REQUIRES

62.5/200 OR 31.3% OF A CARTRIDGE

1. What would be the blocking factor of records 20 words each in
length?

2. How roany sectors would be needed to hold 3,000 records? How
many cylinders?

1. Blocking factor: 16
320/20 = 16

* *

2. Number of sectors needed: 188

*

3000/16 = 181, with a remainder of 8,or,
in effect, 188.

3. Number of cylinders needed: 23.5
188/8 = 23.5

18. Spanned records are permitted. A spanned record is a logical
record whose length exceeds the fixed length of a physical
record. Such records are permitted only on disk - where the
physical record size is 320 words and may be processed
sequentially or randomly. Any record whose size is greater than
320 is considered a spanned record. Such records always occupy
an integral number of physical disk sectors; each such record
always begins in a new sector, and no special length indicator is
imbedded in the record.

Why should spanned records be avoided if possible?

* * *
Since each record must start in a new sector, those sectors
containing the ends of records will usually not be fully utilized.

19. The 1130 COBOL compiler will allocate a record area in main
storage the size of the largest (or only> record, as specified by
the record description entries. On the external medium, all
records are carried as fixed length logical records; each record
is the size defined for the largest record in the file. For a
disk file, the maximum size which may be defined for a logical
record is 4095. If any record defined for a disk file is
specified as greater than 320 words in size, the file is
considered to consist of spanned records.

1130 COBOL records
size defined for the

fixed
largest

*

are .•.••••. in length. Each record is the
•••••••• record in the file.

* *

263

20. When a disk file is to be used in a COBOL program, the file must
be named in a SELECT clause and assigned to an input/output
device in an ASSIGN clause. For a disk file, the form of system
name is something different. Three facts must be specified in
the name. (See Figure 20.)

1) The file number of the file (to be equated with an actual
file by means of an *FlLES supervisor control record at XEQ
time).

2) The number of record slots (to be) allocated for the file on
disk.

3) Whether the file is to use a shared disk buffer during
execution, or its own unique disk buffer.

The form of system-name for a disk file is:

DF-filenurrber-numberofrecords[-Xl

where

filenumber is the number of the file to be equated at XEQ
time. the nurober must be in the range 1 through 32767 and be
written without preceding zeros

numberofrecords is the number of record
allocated for the file. it must be a number in
through 32767, written without preceding zeros

slots
the

(to be)
range 1

-x specifies that the file is to have its own unique disk
buffer. if -x is not specified, the shared disk buffer will
be utilized

21. Write a SELECT and ASSIGN clause for the disk file.
the number of records, specifying that the file is to
own buffer area. Use Figure 21 as a guide.

* * *

Use 600 as
have its

o 0 1 1 2 233 4 4 556 6 7
1 ... 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

SELECT DISKFlLE ASSIGN TO DF-1-600-X.

264

22. The elements of a system name are as follows:

The OF stands for disk file and it is standard in all disk system
names.

The next element is the symbolic file number which is a nurober
from 1 to 32767. The programmer may choose any of these numbers.
The number must be unique for each disk file. The third elewent
is the length. That is the number of records the programmer
wishes to have on the file. If the file consists of 500 records
write 500. If the file consists of 900 records write 900, etc.

The last element is a -x. This indicates that the file will have
its own buffer. When the -x is not specified, only one buffer is
created for all disk files. When a READ or WRITE statement is
issued, a whole disk sector is read or written. A sector may
contain more than one record. When a READ is issued from disk
number 1 and later another READ is issued froro disk number 2 and
the -x has not been specified in the system name, reading will be
done into one buffer from both disks. The second READ stateroent
will destroy what was read by the first. When another record is
required later from the first disk, the sector has to be brought
back into core, whereas if the file has its own buffer all
records of each sector will be processed before another sector
reading or writing is initiated. Each buffer is 320 words. In a
large program these words may not be spared. Therefore, the
programmer may have to generate only one buffer.

symbolic file
OF - number - Length [-Xl

The symbolic file number must be the same in the system name and
*FILES control card.

EXAMPLE:

OF-10-700-X

001 1 2 2 3 3 445 5 6 6 7
1 ••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

*FILES(10,PAYRL)

Control Card

23. A disk file must have an FD entry in the Data Division. The
requirements for an FO entry for a disk file are the same as for
a card file. An FD entry for a disk file must:

a. contain the LABEL RECORDS clause.

b. be preceded by a level number.

* * *
a

265

Because card and printer files cannot contain records to label the
file, the OMITTED option of the LABEL RECORDS clause was required for
the files used in programs in previous lessons. Since it is possible
to write on disk on which data has already been recorded, thus
destroying the original data, standard records are often included to
label the file and protect the data. If standard records are
included, they are checked automatically at the time the file is
opened. Usually, it is not important for the programmer to know the
details of label format.

24. In order to prevent data on a disk from being accidentally
destroyed, standard records used to label the file may ce
included in the disk file. Inclusion of standard records is
specified in the LABEL RECORDS clause. You might expect that the
LABEL RECORDS clause for a disk file with standard records would
be:

a. LABEL RECORDS ARE OMITTED.

b. LABEL RECORDS ARE STANDARD.

* * *

b (Standard labels are IBM-supplied labels)

25. Write an FD entry for the file MASTERDISK, which has standard
records used to label the file that are to be checked by the
computer.

* * *
o 0 112 2 3 344 5 5 6 6 7
1 ... 5 •••• 0 •••. 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •.

266

FD MASTERDISK
LABEL RECORDS ARE STANDARD.

The data records in a disk file can be blocked, thus conserving space
on the disk. When an input file contains blocked records, the first
execution of a READ statement for that file causes phYSical
transmission of a block from the file and the first record in the
block is available for processing. Each subsequent execution of a
READ statement causes each subsequent record to become available
until all the records in the block have been processed. Then the
next READ statement executed will cause physical transmission of
another block and the processing described previously will be
repeated. Similarly, if the records of an output disk are to be
blocked, the records are transmitted to the output file as a block.

26.

o 0 112 233 4 4 5 5 6 6 7
1 ••. ,5 •••• O •••• 5 •••• O •••• 5 •••• o •••• 5 ••• '. 0 •••. 5 •••• 0 •••• 5 •••• 0 .••• 5 •••• 0 •.

FD MASTERDISK
BLOCK CONTAINS 5 RECORDS
LABEL RECORDS ARE STANDARD.

Because records are transmitted as a block, the computer must
know how many records are in a block. The BLOCK CONTAINS clause
in the FD entry is used to specify the number of records in a
block. The FD entry above specifies that records are to be
transmitted in a block of •••••••• records.

* * *
five
(The record description entry that follows an FD entry specifies a
size of a record. The block size, in turn, can be determined by
multiplying the size of a record by the number of records in a
block.)

27. Write the FD entry for the disk file CUSTOMER-FILE. The records
are blocked into groups of four. Standard records are included
to label the file.

* * *
001122334 4 556 6 7
1 ..• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

FD CUSTOMER-FILE
BLOCK CONTAINS 4 RECORDS
LABEL RECORDS ARE STANDARD.

(The order of the BLOCK and LABEL clauses is not important, but only
the last clause is followed by a period.)

28. Unlike records in a card file, records in a disk file do not have
to be a set length such as 80 characters. The records can be any
length you desire. If each record in a disk file contains two
data items, and each data item is 10 characters long:

a

a. each record will be 20 characters long.

h. you should account for another 60 characters in the record
description entry.

* * *

267

29.

r--,
I PART-RECORD I

\-~~~;:~;~~~-]-;;~~;=~;~~-r_~;~;;=~N-;~-I-;;~;=;;~~~-I-;~;~~-;~~~;-'
I (6 char) (5 char) (4 digits) (4 digits) (6 digits) I L_____________ ___________ _______________ ____________ _ ____________ J

Write the FD and record description entries for the disk file
PART-FILE. The records, which are illustrated above, are to be
blocked into groups of eight. standard labels are to be
included.

* * *
00112 2 3 3 4 4 556 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

FD

01

In the
files.
COBOL
files.

PART-FILE
BLOCK CONTAINS 8 RECORDS
LABEL RECORDS ARE STANDARD.
PART-RECORD.
02 PART-NUMBER PIC X(6).
02 STOCK-INDEX PIC XeS).
02 UNITS-ON-HAND PIC 9(4).
02 UNIT-PRICE PIC 9(4).
02 TOTAL-VALUE PIC 9(6).

previous lessons you have used only card files and printer
Now that you have learned to describe disk files in your

program, you can use them as you have used card and printer

30. Write two COBOL statements to cause a record in PART-FILE to be
read into the associated input area described in the preceding
frame and the entire record to be made available in the working
storage variable PART-RECORD-2.

* * *
001122334 4 556 6 7
1 ..• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •• ~.0 •••• 5 •.•• 0 ••

READ PART-FILE.
MOVE PART-RECORD TO PART-RECORD-2.

268

31.

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ... 5 ..•. 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

Both

READ PART-FILE INTO PART-RECORD-2.

The INTO option can be used in the READ statement to replace the
two statements you wrote in frame 11, thus reducing the number of
statements in the source program. The statement above has the
same effect as the READ and MOVE statements.

a. a READ statement with the INTO option has the same effect as
a READ statement followed by a simple MOVE statement.

b. after the READ statement above is executed, the record from
PART-FILE will be available in both the input area and in
working storage.

* * *

--~----

269

32.

o 0 112 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE

LABEL RECORDS ARE OMITTED.
01 ITEM-RECORD.

02 ITEM-NUMBER PIC X(10).
02 ITEM-NAME PIC X(20).
02 ITEM-DESCRIPTION PIC X(50).

FD OUTPUT-FILE
BLOCK CONTAINS 5 RECORDS
LABEL RECORDS ARE STANDARD.

01 ITEM-RECORD-O PIC XCSO).
FD COMPLETE-FILE

BLOCK CONTAINS 4 RECORDS
LABEL RECORDS ARE STANDARD.

01 ITEM-1.
02 ITEM.

03 ITEMNUMBER PIC X(10).
03 ITEMNAME PIC X(20).
03 ITEMDESCRIPTION PIC X(50).

02 ITEM-INDEX PIC 9(5).
WORKING-STORAGE SECTION.
77 ITEM-2 PIC X(SO).
01 ITEM-3.

02 DESCRIPTION PIC X(SO).
02 ITEM-VALUE PIC 9(5).

The READ statement with the INTO option has the form:

o 0 1 1 2 2 3 344 5 5 6 6 7
1 .•• 5 •••• O •••• 5 •••• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

270

READ file-name INTO variable-name.

The variable name specified in the INTO option can be a name in
the data description entry in the Working-Storage Section or in
an output record description entry in the File Section (if the
associated output file has been opened prior to execution of the
READ statement.) Refer to the preceding Data Division and
determine which of the following statements is valid:

a.

o 0 112 233 445 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

READ INPUT-FILE INTO ITEM-RECORD-O.

b.
o 0 112 2 3 3 445 5 6 6 7
1 .•• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •.•• 5 •••• 0 •.•• 5 •••• 0 •.

READ INPUT-FILE INTO ITEM-l,.

c.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 .•• 5 .••• 0 •••. 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .•

READ INPUT-FILE INTO ITEM.

d.

o 0 112 2 3 344 556 6 7
1 •.• 5 •••. 0 •.•• 5 •.•• 0 •.•• 5 •••• 0 •••• 5 •••• 0 .•.• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 ••

READ INPUT-FILE INTO ITEM-2.

e.

o 0 112 2 3 344 556 6 7
1 •.• 5 ••.• 0 ••.• 5 •.•• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••. 5 •••. 0 •••• 5 •••. 0 •••• 5 •••• 0 ••

READ INPUT-FILE INTO ITEM-3.

f.

o 0 112 2 3 344 5 5 6 6 7
1 .•• 5 •..• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

READ INPUT-FILE INTO DESCRIPTION.

* * *
All of these (When statement band e are executed, the leftmost 80
positions of the receiving field-will be filled with characters an(
the remaining positions will be padded with blanks, according to thE
rules for a simple MOVE statement specifying group variables.)

271

33.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

FD INDEXFlLE
LABEL RECORDS ARE OMITTED.

01 INDEX-RECORD.
02 ID-NUMBER PIC X(6).
02 OTHER-DATA PIC 9(15).

WORKING-STORAGE SECTION.
01 WORK-AREA.

02 I-D PIC X(6).
02 INDEX-FACTOR PIC 9(5).
02 MULTIPLES PIC 9(5).
02 VALUE-INDEX PIC X(5).

Refer to the portion of the Data Division shown above and code
one statement that would produce the same result as the two
statements below.

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ..• 5 ..•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •.

READ INDEXFILE AT END GO TO REPEAT.
MOVE INDEX-RECORD TO WORK-AREA.

* * *
o 0 112 2 3 344 5 5 6 6 7
1 ... 5 ..•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•. 0 ••

272

READ INDEXFILE INTO WORK-AREA
AT END GO TO REPEAT.

EMPLOYEE·RECORD·FlLE
Associated input area:
IN·RECORD

Library text CARD-DATA

Library text DISK-DATA

IBM-Il30

PREPARATION- I
ROUTINE

Figure 67

MAIN
SEQUENCE

I
I
L

L

EMPLOYEE-MASTER·F1LE
Six records per block
Standard rCl"ords to
label the file
Associated output area:
OUT·RECORD

273

34. The program EMPLOYEE-MASTER-PROGRAM is to be used to transfer a
master file from cards to disk. The system flow chart and a
program flow chart are shown in Figure 67 along with the two
library texts CARD-DATA and DISK-DATA which are to be
incorporated into the source program for the record description
entries for IN-RECORD and OUT-RECORD, respectively. Use Figure
67 as a guide for coding the missing portions of the program
shown below.

o 0 112 233 445 5 6 6 7
1 .•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

1)

2)

3)

4)

1)

IDEN'I'IFICATION DIVISION.
PROGRAM-ID. EMPLOYEE-MASTER-PROGRAM.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE CONTROL.

DAT .. Z\ DIVISION.
FILE SECTION.
FD EMPLOYEE-RECORD-FILE

LABEL RECORDS ARE OMITTED.

FD EMPLOYEE-MASTER-FlLE

PROCEDURE DIVISION.

* * *

0011223 3 4 4 556 6 7
1 ••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 .••• 0 ••

274

SELECT EMPLOYEE-RECORD-FILE
ASSIGN TO RD-1442.

SELECT EMPLOYEE-MASTER-FILE
ASSIGN TO DF-1-S00-X. (1)

(Recall: the figure wsoon in the ASSIGN clause is a figure
denoting the number of records in EMPLOYEE-MASTER-FILE.)

2)

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ... 5 •.•• 0 5 •••• 0 •••. 5 •••• 0 ••.. 5 •••• 0 .••. 5 •••• 0 •.•• 5 •••• 0 •.•• 5 •••• 0 ••

01 IN-RECORD COpy CARD-DATA.

3)

001122334 4 5 5 6 6 7
1 ... 5 •••• 0 •... 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •.

4)

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 6 RECORDS.

01 OUT-RECORD COpy DISK-DATA.

(4)
(6)

o 0 1 1 2 2 3 344 556 6 7
1 ... 5 •.•• 0 .•.. 5 •••• 0 •.•• 5 •••• 0 •.•. 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

PREPARATION ROUTINE.
OPEN INPUT EMPLOYEE-RECORD-FILE

OUTPUT EMPLOYEE-MASTER-FILE.
MAIN-SEQUENCE.

READ EMPLOYEE-RECORD-FILE
INTO OUT-RECORD
AT END GO TO FINISH.

WRITE OUT-RECORD.
GO TO MAIN-SEQUENCE.

FINISH.
CLOSE EMPLOYEE-RECORD-FILE

EMPLOYEE-MASTER-FILE.
STOP RUN.

(11)

(Moving a record from the input file to the sborter output area
resulted in truncation of the rightmost 24 characters in the input
record. This caused no problem since the truncated characters ~ere
not to be included in the output record.)

You have now learned to code the entries to write records into a file
on disk as well as to read records from a card file and to write
records into a printer file in any specified format.

275

35. The FILE-LIMrr clause serves only as documentation. This clause
need not be specified in the FILE-CONTROL Section and if
specified it will be treated as comments. If the clause is used
it specifies the beginning and the end of a logical file on a
mass-storage device.

FILE-LIMIT IS
integer-1 thru integer-2

FILE-LIMITS ARE

The PROCESSING MODE clause also serves only as documentation and
indicates the order in which records are processed. The
following example demonstrates the FILE-LIMIT and PROCESSING MODE
clauses.

o 0 1 1 2 233 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

FILE CONTROL.
SELECT DISK-FILE

ASSIGN TO DF-1-600-X
ACCESS IS SEQUENTIAL
FILE-LIMITS ARE 100 TERU 600
PROCESSING MODE IS SEQUENTIAL.

36. BLOCK CONTAINS clause is used to specify the size of a physical
record. If the CHARACTER option is used, the number of
CHARACTERS is the same as the number of words.

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

FD NEW-MASTER.
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 100 CHARACTERS.

The VALUE OF clause uniquely specifies the description of an item
in the label records associated with a file and serves only as
documentation.

The DATA RECORDS clause serves only as documentation and
identifies the records in the file by name.

o 0 1 1 2 2 3 3 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

FD NEW-MASTER.

SUMMARY:

BLOCK CONTAINS 15 RECORDS
LABEL RECORDS ARE STANDARD
VALUE OF DISK-FILE IS PAYROLL
DATA RECORD IS PAY-MASTER.

You have now completed lesson 13 in which you have learned to code
the necessary entries to create a disk file with standard records to
label the file and blocked data records to provide compact storage. You
have also learned to specify a single statement to read and move a
record.

END OF LESSON 13

276

LESSON 14

277

LESSON 14 - SEQUENTIAL DISK FILE; ARITHMETIC OPERATIONS

INTRODUCTION

In this lesson you will learn to use the MULTIPLY and ADD statements
with GIVING, ROUNDED, and SIZE ERROR options in both cases. You will
also learn how to use the PICTURE character V to represent the implied
decimal point in data manipulation.

This lesson will require approximately one hour.

278

1. As a programmer you might be required to write a program using
the file created in the preceding frame to compute payroll data.
Assuming that the base pay rate is an hourly rater earnings would
be computed by:

a

2.

a. multiplying the number of hours worked by the base pay rate.

b. adding the hourly rate to the hours worked.

MULTIPLY

* * *

{

Variable-name-1 }
BY variable-name-2

numeric-literal-1

'I'he MULTIPLY statement of the form shown above is used to specify
multiplication. Use the form of the MULTIPLY statement shown
above to select the valid MULTIPLY statements from those shown
below:

a.

o 0 112 2 3 344 5 5 6 6 7
1 ••• 5 •.•• 0 •.•. 5 ••.• 0 ..•• 5 ••.. 0 •••• 5 .••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MULTIPLY AMOUNT BY 5.

b.

o 0 112 2 3 344 556 6 7
1. • • 5. • • • o. . . . 5. • • • O. • • • 5. • • • o. . . . 5. • • '. 0 • • • • 5 • • • • 0 • • • • 5 • • • • 0 • • • • 5 • • • • 0 • •

MULTIPLY 5 BY AMOUNT.

c.

o 0 112 2 3 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ...

MULTIPLY 5 BY 5.

d.

o 0 112 2 3 3 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MULTIPLY FACTOR BY AMOUNT.

e.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ..• 5 .••. 0 .••• 5 ..•• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •.•• 0 •.

MULTIPLY 'FACTOR' BY AMOUNT.

* * *
brd

279

3.

o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ••• 5 .••. 0 ••.• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

MULTIPLY FACTOR BY AMOUNT.

When the statement above is executed, the product of the value
stored in AMOUNT and the value stored in FACTOR is computed and
then stored in AMOUNT.

0011223 3 445 5 6 6 7
1 •.• 5 .••• 0 .••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

a

MULTIPLY AMOUNT BY FACTOR.

When the statement above is executed:

a. the product of the value stored in AMOUNT and the value
stored in FACTOR is computed.'

b. the product is stored in AMOUNT.

* * *

(The product is stored in FACTOR.)

4. Write a statement to compute the product of SALARY and 1.04 and
to store the product in SALARY.

* * *
0011223 344 5 5 6 6 7
1 ••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 .•

MULTIPLY 1.04 BY SALARY.

280

5.

o 0 112 233 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •.

MULTIPLY X BY Y GIVING Z.

Often you may want to compute the product of two values and store
the product in a third variable. In this case, the GIVING optior.
can be included in the MULTIPLY statement. When the statement
above is executed, the product of the values in X and Y is
computed and stored in Z. (The values in X and Y remain
unchanged.)

o 0 112 233 4 4 556 6 7
1 •.• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •.•• 5 ••.• 0 ••

MULTIPLY RATE BY HOURS GIVING PAY.

When the statement above is eKecuted, the product of the values
in •••••••• and •••••••• is computed and stored in •••••••••

RATE
HOURS
PAY

* * *

6. Write a statement to compute the product of the values in COST
and TAX-RATE and to store the product in TAX.

* * *
o 0 1 1 2 233 4 4 556 6 7
1 ... 5 •••• 0 .••. 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MULTIPLY COST BY TAX-RATE
GIVING TAX.

7. Write a statement to compute the product of 2 and the value in
TOTAL and to store it in TOTAL.

* * *
o 0 112 2 3 3 4 4 556 6 1
1 ... 5 •••. 0 •••• 5 •••. 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

MULTIPLY 2 BY TOTAL.

281

8. All variables used in arithmetic computations must be elementary
numeric variables. If a variable is to be specified in a
MULTIPLY statement it must be defined with a picture of:

a. XI s

b. 9 I S

c. A's

* * *

b

9.

o 0 112 233 4 4 556 6 7
1 ..• 5 •••• 0 •.•• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MULTIPLY QUANTITY BY AMOUNT
GIVING TOTAL.

Write the data description entries for level 77 variables
QUANTITY and AMOUNT necessary for execution of the statement
above. Both variables will contain values up to five digits .•

* * *
001122334 4 556 6 7
1 ..• 5 .••. 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 .••• 0 •••• 5 •••• 0 ••

282

77 QUANTITY PIC 9(5).
77 AMOUNT PIC 9(5).

10. When a numeric value is recorded without a decimal point, it may
be necessary to specify the number of decimal places by inserting
a V into the picture for the variable that is to have that value.
The picture 9999V99 for a variable specifies that values of the
variable will have two decimal places. The value of the variable
is said to have an assumed decimal point. Code the picture for a
variable whose values are eight digit numbers with two decimal
places and an assumed decimal point. The actual decimal pOint in
a value is aligned with the implied decimal point in a receiving
core area governed by a picture clause containing an implied
point. As a result of moving such a value, the value will be
truncated left or right, or padded with zeros to exactly fill the
receiving core area.

* * *
999999V99

11. Any value or picture that contains no other assumed (or actual)
decimal point is assumed to have a decimal pOint following the
rightmost digit or digit position. Numeric data is automatically
aligned in a variable beginning at the decimal pOint; padding
with zeros or truncation of excess digits can occur at either or
both ends of the value. The table below illustrates padding and
truncation that occurs when certain values are assigned to
variables with certain pictures. (The symbol/is used here and
in future frames to represent an implied decimal position.)

r---------------- ------------------------------------,
1 VALUE ASSIGNED PICTURE RESULT 1
1---------------- -----------------------------------1
1 2~ 9V9 21 (no padding or truncation) 1
1---------------- ---------------------------------1
1 2/1 99V99 0210 (padding on right and left) 1
1---------------- ------------------------------------1
1 2/1 999 002 (padding on left. 1
1 truncation on right) 1
1---------------- ------------------------------------1
1 2/1 V999 100 (padding on right. 1
1 truncation on left) 1
1---------------- -----------------------------------1
1 21 99V99 2100 (padding on right) 1 l _______________ _ __ __________________________________ J

If the value 9/876 were read into a variable with the picture
999V999, the resulting value would be:

a. 987600 (padded on the right with zeros with an assumed
decimal point preceding the 6).

b. bb9876 (padded on the left with blanks with the assumed
decimal point preceding the 8).

* * *
Neither (009876 padded on the left with zeros with the assumed
decimal point preceding the 8.)

283

12.

0011223 3 445 5 6 6 7
1 .•• 5 •.•. 0 •.•. 5 .•.• 0 •.•. 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 ..

WORKING-STORAGE SECTION.
77 PRICE PIC 999V99.
77 DISCOUNT PIC 9V99.
77 PROFIT PIC 99V9.
77 TOTAL PIC 9999V99.

MULTIPLY DISCOUNT BY PRICE.

The values 20/98 and 5/63 have been read into the variables PRICE
and DISCOUNT, which are defined in the Working-Storage Section
shown above. When the MULTIPLY statement is executed, the
product of the values of DISCOUNT and PRICE is computed as
118/1174. The picture for PRICE, in which the product will be
stored, specifies that the value of PRICE is to have two decimal
places to the right of an assumed decimal point. Consequently,
the last two decimal places in the product are truncated and the
value stored in PRICE is 118/11.

o 0 112 2 3 3 . 4 4 5 5 6 6 7
1 •.• 5 •••• 0 •... 5 •.•. 0 •••• 5 •••• 0 •••. 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

284

MULTIPLY PROFIT BY TOTAL.

If PROFIT and TOTAL have the values 11/1 and 11/11 respectively,
the value stored in TOTAL after execution of the MULTIPLY
statement above is:

a. 123/321

b. 1233/21

* * *

Neither (The product is 123/321, the rightmost decimal digit is
truncated or lost, and the value stored in TOTAL is 0123/32.)

13.

o 0 112 2 3 3 4 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MULTIPLY DISCOUNT BY PRICE ROUNDED.

A product can be rounded rather than merely truncated by
specifying the ROUNDED option in the MULTIPLY statement as shown
above. When this statement is executed, the product will be
rounded to the position corresponding to the rightmost position
specified in the picture for PRICE. If the digit to the right of
this position is five or greater, the digit in this position is
increased by one. If the picture specified for PRICE is 999V99
and the values of DISCOUNT and PRICE are 080 and 11111
respectively, the value of PRICE after execution of the statement
above will be •••••••••

* * *
08889

14.

o 0 112 233 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

DATA DIVISION.
WORKING-STORAGE SECTION.
77 PERCENT PIC 99V9.
77 FIRST-TOTAL PIC 9999V99.

write a statement to compute the product of the values of PERCENT
and FIRST-TOTAL, round the product to the nearest cent
(hundredth), and store it in FIRST-TOTAL.

* * *
0011223 3 4 4 556 6 7
1 ••• 5 •••• 0 •••. 5 .•.• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MULTIPLY PERCENT BY FIRST-TOTAL ROUNDED.

285

15.

o 0 1 1 2 2 3 3 4 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WORKING-STORAGE SECTION.
77 WIDTH PIC 99V99.
77 HEIGHT PIC 99V99.
77 SQUARE-FEET PIC 999V999.

The GIVING option and the ROUNDED option may be specified in the
same MULTIPLY statement; the reserved word ROUNDED follows the
name of the variable in which the result is stored. Write a
statement to compute the product of the values of WIDTH and
HEIGHT and store the value in SQUARE-FEET with the value rounded.

* * *
001122334 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••.• 0 •••• 5 •.••• 0 •••• 5 ••.•• 0 •••• 5 •••• 0 ••

MULTIPLY WIDTH BY HEIGHT
GIVING SQUARE-FEET ROUNDED.

001122334 4 556 6 7
1 ••• 5 •••• O •••• 5 •••• o •••• 5 •••• O •••• 5 •••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

286

IDENTIFICATION DIVISION.
PROGRAM-ID. DIMENSION-CALCULATION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE
ASSIGN TO RD-1442.

SELECT AREA-DISK
ASSIGN TO DF-1-999-X.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE

LABEL RECORDS ARE OMITTED.
01 DIMENSION-RECORD.

02 ITEM-NUMBER PIC X(6}.
02 DIMENSION1 PIC 99V9.
02 DIMENSION2 PIC 99V9.
02 FILLER PIC X(68}.

FD AREA-DISK

01 AREA-RECORD.
02 ITEMNUMBER PIC X(Q}.
02 AREA-2 PIC 999V9.

WORKING-STORAGE SECTION.
77 AREA-1 PIC 999V9.
01 WORK-RECORD.

02 ITEM-ID PIC X(6}.
02 DIMENSION-1 PIC 99V9.
02 DIMENSION-2 PIC 99V9.

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT-FILE
OUTPUT AREA-DISK.

CALCULATE.

INPUT-FILE
A~~odatcd input area:
DIMENSION-RECORD

BEGIN I
I
I
L

IH~I-I130

CALCULATE I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Compute product of
DIMENSION-l and
DIMENSION-2 and
store rounded pro
duct in AREA-l

Move appropriate
values from
working-storage
to output area

I
LL-------'

Figure 68

AREA-DISK
Label records:
STANDARD

1--_____ -fjI~ Block size:

10 records
Associated output area:
AREA-RECORD

287

16. World-Wide Floor Coverings, Ltd. has requested a program to
compute areas for floor coverings to be announced in their annual
catalog. Frorr dimension records in a card file area records are
to be created and stored in a file on disk. A system flow chart
and a program flow chart are shown in Figure 68 along with
portions of the source program. Complete the program DIMENSION
CALCULATION by coding the:

1) missing portion of the FD entry for AREA-DISK.

2) remainder of the Procedure Division.

* * *
1)

o 0 112 2 3 344 5 5 6 6 1
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

2)

BLOCK CONTAINS 10 RECORDS
LABEL RECORDS ARE STANDARD.

0011223 344 5 5 6 6 7
1 ••• 5 •••• O •••• 5 •••• o •••• 5 •••• O •••• 5 ••• '. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

288

READ INPUT-FILE INTO WORK-RECORD
AT END GO TO FINISH.

MULTIPLY DIMENSION-l BY DIMENSION-2
GIVING AREA-l ROUNDED.

MOVE AREA-l TO AREA-2.
MOVE ITEM-ID TO ITEMNUMBER.
WRITE AREA-RECORD.
GO TO CALCULATE.

FINISH.
CLOSE INPUT-FILE AREA-DISK.
STOP RUN.

17.

o 0 1 1· 2 2 3 3 4 4 5 5 6 6 1
1 ••• 5 •••• 0 •••• 5 •••• 0 •• 4.5 •••• 0 •••• 5 ••• 40 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c

WORKING-STORAGE SECTION.
77 HOURS-WORKED PIC 99V9.
77 HOURLY-RATE PIC 99V99.
77 GROSS-PAY PIC 999V99.

MULTIPLY HOURS-WORKED BY HOURLY-RATE
GIVING GROSS-PAY ROUNDED.

If the result of an arithmetic operation will not fit into the
designated variable after any specified rounding has been
performed, a size error condition exists. If the values of
HOURS-WORKED and HOURLY-RATE were 95/5 and 11/25 respectively,
the result of the multiplication operation would be 1074/375.
After the specified rounding the value would be 1074/38. Since
this is still larger than the variable GROSS-PAY, a size error
condition would exist. For which of the following products of
HOURS-WORKED and HOURLY-RATE would a size error condition exist?

a. 32/926

b. 401/025

c. 1002/05

* * *

(The size error condition exists whenever truncation on the left is
necessary for storing the result of a calculation.)

289

18.

0011223 344 556 6 1
1 ..• 5 .••• 0 •••. 5 ••.• 0 •.•• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 ••

MULTIPLY A BY B.

001122334 4 556 6 1
1 .•. 5 ••.. 0 .•.• 5 ••.. 0 •.•• 5 •••• 0 •••. 5 •••• 0 •••. 5 .•.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

a

MULTIPLY A BY B
ON SIZE ERROR
GO TO ERROR-ROUTINE.

If a size error condition occurred during execution of the first
statement above, the value of B would be unpredictable. To
preclude an unpredictable value, the SIZE ERROR option may be
specified as shown in the second statement above. If a size
error condition occurred during execution of this statement, the
value of B would not be altered. Instead, the statement
specified in the SIZE ERROR option would be executed. The
statement in the SIZE ERROR option specifies that the:

a. statements following the paragraph name ERROR-ROUTINE will be
executed only when a size error condition exists.

b. statement following
ON SIZE ERROR
will be executed each time the MULTIPLY statement is
executed.

* * *

---_._----------

19. To specify action to be taken when the size of the result of an
arithmetic operation exceeds the size of the variable in which it
is to be stored, the •••••••• option is included in the statement
specifying the operation.

* * *

SIZE ERROR (The action specified should either correct the error or
indicate to the operator that an error has occurred and terminate
execution.>

20. Write a statement to specify that the values of UNIT-PRICE and
QUANTITY are to be multiplied and the rounded product stored in
TOTAL-PRICE which has the PICTURE clause 999V99. If the product
is equal to or greater than 100000, the statements following the
paragraph name SPECIAL-RATE are to be executed.

* * *
o 0 112 2 3 3 4 4 556 6 1
1 .•• 5 •••. 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

290

MULTIPLY UNIT-PRICE BY QUANTITY
GIVING TOTAL-PRICE ROUNDED
ON SIZE ERROR GO TO SPECIAL-RATE.

21.

ADD

You
the
is
the
are

{

Variable-name-l} rvariable-name-2}
< ... TO variable-name-m.

literal-l L literal-2

can now specify multiplication in a COBOL program by using
MULTIPLY statement. The statement used to specify addition
the ADD statement of the form shown above. All the values of
variables (or literals) appearing before the reserved word TO
added to the value of variable-me

o 0 112 2 3 344 5 5 6 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 ••

ADD SUBTOTAL TO TOTAL.

When the statement above is executed, the:

a. value of SUBTOTAL will be added to the value of TOTAL.

b. sum of SUBTOTAL and TOTAL will be stored in TOTAL.

* * *
Both

22.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

ADD TOTALl TOTAL2 100 TO TOTAL.

When the statement above is executed, the v~lues of TOTALl and
TOTAL2 and the value 100 will be added to the value of TOTAL; the
sum of the four will be stored in TOTAL. Write a statement to
compute the surr. of the values of DEPT1, DEPT2, DEPT3, and YEARLY
and to store this sum in YEARLY.

* * *
0011223 344 5 5 6 6 7
1.j.5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

ADD DEPTl DEPT2 DEPT3 TO YEARLY.

291

23. The GIVING option can be included in the ADD statement. The
effect is the same as for the MULTIPLY statement. When the
GIVING option is used in an ADD statement, the reserved word TO
is omitted. Which of the following statements correctly
specifies that the sum of FICA, STATETAX, FEDTAX, and INSURANCE
is to be computed and stored in DEDUCTIONS?

a.

o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b.

ADD FICA STATETAX FEDTAX INSURANCE
TO DEDUCTIONS.

o 0 1 1 2 2 3 344 5 56· 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c.

ADD FICA STATETAX FEDTAX TO INSURANCE
GIVING DEDUCTIONS.

0011223 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 ••.• 0 ••

292

c

ADD FICA STATETAX FEDTAX INSURANCE
GIVING DEDUCTIONS.

* * *

24. The ROUNDED and SIZE ERROR options may also be included in an ADD
statement. You might assume that the:

Both

a. ROUNDED option would cause the sum to be rounded to the
number of decimal places specified for the variable in which
it is to be stored.

b. SIZE ERROR option would specify the action to be taken if the
sum exceeds the size specified for the variable in which it
is to be stored.

* * *

25.

o 0 112 2 3 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WORKING-STORAGE SECTION.
77 TOTAL PIC 999V99.
77 TOTAL-l PIC 999V99.
77 TOTAL-2 PIC 999V99.

Write a statement specifying that the values of TOTAL-l and
TOTAL-2 are to be added and their sum is to be rounded to the
nearest hundredth and stored in TOTAL. If the sum is equal to or
greater than 1000, the value of STORE-NUMBER is to be displayed
on the console typewriter.

* * *
001 1 2 2 3 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

ADD TOTAL-l TOTAL-2 GIVING TOTAL
ROUNDED ON SIZE ERROR
DISPLAY STORE-NUMBER
UPON CONSOLE.

001122334455667
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •• ~.0 •••• 5 •••. 0 ••

IDENTIFICATION DIVISION.
PROGRAM-ID. MASTER-CUSTOMER-DISK.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMER-FILE
ASSIGN TO RD-1442.

SELECT CUSTOMER-DISK
ASSIGN TO DF-2-100.

DATA DIVISION.
FILE SECTION.
FD CUSTOM.ER-FILE

LABEL RECORDS ARE OMITTED.
01 CUSTOMER-RECORD.

02 CUSTOMER-NUMBER PIC X(6).
02 NAME PIC X(20).
02 HOME-ADDRESS PIC X(30).
02 YEAR-OPENED PIC xx.
02 MAXIMUM-BILL PIC X(6).
02 FILLER PIC X(16).

FD CUSTOMER-DISK
01 MASTER-RECORD.

02 NAME PIC X(20).
02 CUSTOMER-NUMBER PIC X(6).
02 HOME-ADDRESS PIC (X30).
02 YEAR-OPENED PIC xx.
02 MAXIMUM-CREDIT PIC 9(6).
02 MAXIMUM-BILL PIC 9(6).
02 PRESENT-BILL PIC 9(6).
02 PAYCODE PIC X.

WORKING-STORAGE SECTION.
77 COUNTER PIC 9(6) VALUE ZEROS.

293

£94

CUSTOMER-FILE ~
Associated input area:
CUSTOMER-RECORD

BEGIN I
I
I
I
I
I
L

PROCESSING I

I

I
I
I
I
I

I

I
I
I
I
I
I
I

L

IBM-1130

Move ZEROS to
MAXIMUM-CREDIT
PRESENT-BILL, and

PAYCODE

Add I to
COUNTER

Move appropriate
values to

output area

Figure 69

FINISH

CUSTOMER-DISK
Associated output area:
MASTER-RECORD
Label records:
STANDARD
Block size:
6 records

STOP

26. As a result of recent expansion of the line of products at
Universal Enterprises, the number of customers has greatly
increased. Since customer master records are stored in punched
cards, the increase in the number of customers has created a
problem for the firm's data processing center, in terms of both
storage and processing time. To alleviate the situation the
master records are to be stored on disk. The program MASTER
CUSTOMER-DISK is to transfer the records from cards to disk. A
system flow chart and a program flow chart are included in Figure
69. A portion of the program that has already been coded is also
included. You are to complete this program to create a master
file on disk by coding the:

1}

1} missing portion of the FD entry for CUSTOMER-DISK.

2} Procedure Division.

(The variable COUNTER is used to count the number of customer
records.)

* * *

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ... 5 .•.. 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

BLOCK CONTAINS 6 RECORDS
LABEL RECORDS ARE STANDARD.

295

2)

o 0 112 2 3 3 445 5 6 6 7
1 .•. 5 .••• 0 •••• 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.. 5 ..•• 0 ••

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT CUSTOMER-FILE
OUTPUT CUSTOMER-DISK.

MOVE ZEROS TO MAXIMUM-CREDIT.
MOVE ZEROS TO PRESENT-BILL.
MOVE ZERO TO PAYCODE.

PROCESSING.
READ CUSTOMER-FILE AT END

GO TO FINISH.
ADD 1 TO COUNTER. (35)
MOVE NAME OF CUSTOMER-RECORD

TO NAME OF MASTER-RECORD.
MOVE CUSTOMER-NUMBER OF CUSTOMER-RECORD

TO CUSTOMER-NUMBER OF MASTER-RECORD.
MOVE HOME-ADDRESS OF CUSTOMER-RECORD

TO HOME-ADDRESS OF MASTER-RECORD.
MOVE'YEAR-OPENED OF CUSTOMER-RECORD

TO YEAR-OPENED OF MASTER-RECORD.
MOVE MAXIMUM-BILL OF CUSTOMER-RECORD

TO MAXIMUM-BILL OF MASTER-RECORD.
WRITE MASTER-RECORD.
GO TO PROCESSING.

FINISH.
CLOSE CUSTOMER-FILE

CUSTOMER-DISK.
DISPLAY COUNTER UPON CONSOLE.
STOP RUN.

(Moving zeros, spaces, or any other constant to certain variables at
the beginning of a program is referred to as initializing the
variables. If your solution appears different and you are not sure
of its correctness, consult your advisor.)

SUMMARY:

You have just learned to code MULTIPLY and ADD statements including
the:

296

GIVING option to specify the variable in which the computed
result will be stored.

ROUNDED option to specify that the computed result will be
rounded to the nearest digit in the position corresponding to the
rightmost position in the picture for the variable in which the
result is to be stored.

SIZE ERROR option to specify the action to be taken when the
computed result exceeds the size of the variable in which the
result is to be stored.

END OF LESSON 14

LESSON 15

297

LESSON 15 - EDITING NUMERIC DATA

INTRODUCTION

Specification of arrangement of data in a printed report is an
important aspect of COBOL programming. In previous lessons you have
learned to specify vertical and horizontal spacing in a printed report.
In this lesson you will learn several ways to specify how individual
data items are to appear. You will learn to specify that a decimal
pOint, dollar sign, or comma is to be printed in the appropriate place
in a data item. This is commonly called editing variables for reports.

298

Specific language features you will learn in this lesson are:

Picture character • (decimal point)
Picture character $(dollar sign)
Picture character ,(comma)

This lesson will require approximately three quarters of an hour.

1. You know that a V appearing in a picture specifies that the value
of the associated variable will have an assumed decimal point. A
point appearing in the picture specifies that the value of the
associated variable will have an actual decimal point. You would
expect that a point appearing in a picture would cause a:

a. decimal point to be printed with the data item.

b. separate character position to be reserved in the value.

* * *
Both

2. Any variable whose picture contains 9's and a V or just 9's may
be used in calculations. To print numeric values, however, you
would want an actual decimal point to be placed in the
appropriate position in the value. A variable PRICE has the
picture 99V99. In order to print the value of PRICE, you would
move it to an edited variable with a picture 99.99. Another
variable DOZENS has the picture 999V9. You would move DOZENS to
an edited variable with the picture 999.9 if you wished to:

a. have calculations performed on the value.

b. include the value of DOZENS in a printed report.

* * *
o

---------------------------------~----------------~---------------------

3.

o 0 112 2 3 344 5 5 6 6 7
1 •.• 5 .••• 0 ..•. 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •.•• 5 •••• 0 •.•• 5 •••• 0 ••

c

~OVE numeric-variable
TO edited-variable

numeric variable 9V9

edited variable 99.99

A value moved from a numeric variable (9's or 9's and a V) to an
edited variable containing a is aligned with the assumed
decimal point being placed in the actual decimal pOint position.
Any extra 9 positions on either end of the edited variable are
filled, or padded, with zeros. Assume the numeric variable above
is RATE with a value of 52 and the edited variable is PAY-SCALE.
The value of PAY-SCALE after the MOVE statement would be:

a. 5.2

b. 05.2

c. 05.20

d. 5.20

* * *

299

4.

0011223 344 5 5 6 6 7
1 ..• 5 •••• 0 •••. 5 •.•. 0 .••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0~ ••• 5 •••• 0 •••• 5 •••• 0 ••

02 PAYMENT PIC 999V9999.

o 0 1 1 2 2 3 344 556 6 7
1 ..• 5 •••• 0 •••• 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 AMOUNT PIC 999.99.

o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ... 5 ..•. 0 •..• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

5.

MOVE PAYMENT TO AMOUNT.

The actual point (.) is used to edit numeric data for printed
reports while the assumed point (V) is used in data for
calculations. Sometimes it is not necessary to print as many
digit positions as are used in calculations. Assume that the
value of PAYMENT is 2734201. When the MOVE statement is
executed, the V is aligned with the and the three digit
positions preceding the point are moved intact, but only the
first two digits following the point are moved since AMOUNT has
only room for two digits. The last two digits are truncated, or
lost, and the value of AMOUNT is:

a. 273.4201

b. 273.42

* * *

o 0 112 2 3 344 556 6 7
1 .•• 5 •.•• 0 •••. 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

300

02 RATE PIC 999.99.
02 AVERAGE PIC 999.9.

A point is assumed to the right of the rightmost digit of any
numeric literal or data item that contains no actual point or no
assumed point specified by a V in a picture. Every numeric
literal or numeric data item, thefore, contains either an assumed
or an actual point. The point, whether assumed or actual, is
always aligned with any actual point specified in the picture for
a receiving variable. If the value 24 were moved to RATE and the
value of RATE were then printed, the value would be printed. If
the value 73 was moved to AVERAGE and the value of AVERAGE was
then printed, the value •••••••• would be printed.

* * *
073.0

6.

o 0 1 1 2 233 4 4 556 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 RATE PIC 99.99.

o 0 112 233 4 4 556 6 7
1 .•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 PER-CENT PIC XXXX.

o 0 112 2 3 3 4 4 556 6 7
1 .•• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MOVE RATE TO PER-CENT.

No decimal point alignment takes place when an edited variable is
moved to an alphanumeric (X) variable. The MOVE is accomplished
from left to right, one character at a time. After the value
5025 is moved to RATE and the MOVE statement above is executed,
the value of PER-CENT is:

a. 50.25

b. 5025

c. 0.25 (The leftmost character is truncated because RATE has
five positions and PER-CENT has only four)

* * *
None of these
(The rightmost character is truncated giving 50.2 as shown below.

sending variable
RATE

receiving variable
PER-CENT

50.25

1 2 3 4

XXXX

The rightmost digit of the sending variable is truncated since there
is no room in the receiving variable. The decimal pOint is moved the
same as any other character and must be counted in the length of the
receiving field).

301

7.
JUSTIFIED clause

The JUSTIFIED clause can be specified in the definition of an
alphanumeric elementary variable to cause values of the variable to
be aligned on the right end of the variable rather than on the left.

{

JUSTIFIED }
RIGHT

JUST

Normally, the rule for positioning data within a receiving
alphanumeric or alphabetic data item is:

• The data is aligned in the receiving field beginning at the
leftmost character position within the receiving field. Unused
character positions to the right are filled with spaces. If
truncation occurs, it will be at the right.

The JUSTIFIED clause affects the positioning of data in the
receiving field as follows:

1. When the receiving data item is described with the JUSTIFIED
clause and the data item sent is larger than the receiving data
item, the leftrrost characters are truncated.

2. When the receiving data item is described with the JUSTIFIED
clause and is larger than the data item sent, the data is aligned
at the rightrrost character position in the data item. Unused
character positions to the left are filled with spaces.

The JUSTIFIED clause may only be specified for elementary items.

This clause must not be specified for level-88 data items.

o 0 112 2 3 3 4 4 556 6 7
1 ..• 5 0 •••. 5 •.•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 LAST-NAME PICTURE X(30) JUSTIFIED RIGHT.

8. The SYNCHRONIZED clause specifies the alignment of an elementary
item on one of the proper boundaries in core storage.

The SYNCHRONIZED clause is used to ensure efficiency when
performing arithmetic operations on an item.

(sYNCHRONI ZED"\
l?YNC j

rLEFT J
LRIGHT

o 0 112 233 4 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

302

01 DISK- FILE.
02 DISK-ID PIC X(5).
02 DISK-NAME PIC X(29).
02 ON-HAND PIC S9(6) USAGE COMP SYNC LEFT.
02 ON-ORDER PIC S9(6) USAGE COMP SYNC LEFT.

The structure of 1130 COBOL is such that boundary alignment is
inconsequential. thus the clause is of no functional value and
is, in effect, treated as comments.

9.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

77 FACTOR1 PIC 9V99.

o 0 112 233 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

c.d

10.

77 FACTOR2 PIC 9.99.

Which of the following is a correct interpretation of the data
description entries above?

a. If 123 were moved to FACTOR1. the value of FACTOR1 would be
1.23.

b. If 123 were moved to FACTOR2. the value of FACTOR2 would ce
123.

c. The value of FACTORl could be moved to a variable with the
picture XXX without truncation occurring.

d. The value of FACTOR2 could be moved to a variable with the
picture xxxx without the data item's being padded.

* * *

o 0 112 2 3 344 556 6 7
1 ... 5 •.•. 0 •••• 5 •.•. 0 •••. 5 •••• 0 •••• 5 •••• 0 ••.. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

77 MULTIPLICAND PIC 9V9.

02 MULTIPLIER PIC 99.99.

MOVE MULTIPLICAND TO MULTIPLIER.

When an item with an assumed decimal point is moved to a variable
with a picture that specifies an actual decimal pOint. the item
is placed in the variable with the assumed and actual pOints
aligned. Padding with zeros or truncation occurs to the left and
right as necessary. The value of MULTIPLICAND is 75. After
execution of the MOVE statement the value of MULTIPLIER will ce

* * *
07.50

303

11.

r--,
1 OUTPUT-RECORD 1

1-------------------1----------------------1-----------------------1 1 ITEM-NUMBER COST PERCENT-SECURED 1
1 (6-digit integer) (6-digit number with (5-digit number with 1
1 two decimal places three decimal places 1
1 and an actual point) and an assumed point) 1 L___________________ ______________________ _ _____________________ ~

Write the record description entry for the record variable
OUTPUT-RECORD illustrated above.

* * *

0011223 344 5 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 .••• 0 •.

12.

01 OUTPUT-RECORD.
02 ITEM-NUMBER PIC 9(6).
02 COST PIC 9999.99.
02 PERCENT-SECURED PIC 99V999.

o 0 112 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

304

02 AMOUNT PIC $999.99.

An actual decimal point is usually specified for monetary values
that are to be printed. A dollar sign may also be specified. As
a result, a dollar sign will be inserted into the printed value
in the position corresponding to its position in the picture. If
77.25 is moved to AMOUNT, the value printed will be $077.25. If
550 is moved to AMOUNT, the value printed will be ••••••••.

* * *

$005.50

13. Write the picture for the variable TOTAL to specify that values
of TOTAL are to be printed as six-digit numbers with two decimal
places and an actual decimal point and that the values are to be
preceded by a dollar sign.

* * *

$9999.99
(This could also be written $9(4).99.)

14.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 •.• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 AMOUNT PIC $999.99.

Like the actual decimal point, the $ becomes a part of the value
of the variable and therefore must be counted in the length of
the value. To which of the following variables could the value
of AMOUNT be moved without truncation occurring?

0011223 3 4 4 556 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

01 PERMANENT-RECORD.
02 VARIABLE-1 PIC X(5).
02 VARIABLE-2 PIC X(6).
02 VARIABLE-3 PIC X(7).

*
VARIABLE-3

* *

o 0 112 233 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 AMOUNT PIC $999.99.

When AMOUNT is specified as shown above and the value of AMOUNT has
fewer than three digits to the left of the pOint, you know that the
value will be padded with zeros to the left and the dollar sign will
be inserted to the left of the zeros. It is possible to specify that
the dollar sign will be inserted immediately to the left of the first
nonzero digit to the left of the point.

305

15.

001122334 4 556 6 1
1 ... 5 ...• 0 •... 5 .•.. 0 •••• 5 .••• 0 •.•. 5 ••.• 0 •••• 5 ••.. 0 •.•• 5 .••• 0 •••. 5 ...• 0 ..

02 AMOUNT PIC $$$$.99.

r----------------------- -------------------------,
I Value moved to AMOUNT Printed value of AMOUNT I
1----------------------- -------------------------1
I 1/21 $1.21 I
I 012/3 $12.30,
1 100/ $100.00 I
I 2319/ $319.00 I
1 /825 $.82 I
I 00/05 $.05 I L_______________________ _ ________________________ J

306

The PICTURE clause above specifies that a dollar sign will be
inserted immediately to the left of the first nonzero digit
preceding the decimal point. The table above shows the effect of
moving values to AMOUNT. Refer to the table to decide which of
the following statements apply to the use of a string of dollar
signs.

a. The position of the printed dollar sign "floats" through the
positions represented by the dollar sign in the picture.

b. Leading zeros to the left of the point are suppressed.

c. The leftmost dollar sign does not represent a digit position.

d. Printing the value of AMOUNT would require reserving six
character positions on the printer.

* * *
a,b,c
(Seven character positions would be required for printing the value
AMOUNT. The maximum required space must be reserved.)

16.

o 0 112 2 3 344 5 5 6 6 7
1 ... 5 •••• 0 •••. 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 ••

02 UNIT-PRICE PIC $$$.99.

Give the printed value when each of the following values is moved
to UNIT-PRICE and then printed.

1) /25

2) 29/95

3) 1/19

4) /05

5) 119/50

6) 00/00

* * *
1) $.25
2) $29.95
3) $1.19
4) $.05
5) $19.50
6) $.00

17.

o 0 112 2 3 344 556 6 7
1 ... 5 •••• 0 •... 5 •••• 0 •••• 5 ••.• 0 •••• 5 .•.• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

1)
2)
3)
4)

02 COST PIC $$9.99.

02 PRICE PIC $$99.99.

The floating dollar sign need not be placed in every position to
the left of the point. It must. however. begin in the leftmost
position and occur in consecutive digit positions. Moving 05 to
COST which is defined above will result in $0.05. since the 9 in
the picture indicates that the position will contain a digit.
Give the printed value after each of the following values has
been moved to PRICE and then printed.

1) /25

2) /0

3) 119/

4) 1/98

* * *
$00.25
$00.00

$119.00
$01.98

307

18.

o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

1)
2)
3)

19.

1)
2)
3)
4)
5)

308

02 BALANCE PIC $$$$.99.

02 BALANCE PIC $$$$.$$.

02 AMOUNT-DUE PIC $$$.$$.

The dollar sign may be specified in all positions of the picture
of a variable. If dollar signs are present to the right of the
point, the value of the data item is not printed if it is equal
to zero. Any other value is printed just as if no dollar sign
were present to the right of the point. Give the printed value
of AMOUNT-DUE if the value moved to is:

1) zero

2) 79/28

3) /03

* * *
nothing
$79.28

$.03

Match the data item with the pictureCs) that would cause it to be
printed in the form shown.

1) $$$.99 a. $01.23

2) $99.99 b. 00.5

3) $$9.99 c. $10.25

4) 99.9 d. $.25

5) $$$.$$ e. $0.70

f. 123.25

g. nothing

* * *
c,d
a,c
c,e
b
c,d,g

20.

0011223 3 4 4 ~ 5 6 6 7
1 .•. 5 •••• 0 .•.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •.•• 5 ••.• 0 ••

02 FUND PIC 999,999.

Large numbers are easier to read if co~mas are used in the
appropriate positions. It is possible to specify that a comma is
to be inserted in a value by placing a comma in the appropriate
position in the picture. The picture of FUND above specifies
that a comma is to appear in the printed value in the position
corresponding to the position of the comma in the picture. If
the value of FUND is 876003, the printed value will appear as

* * *
876,003

21.

o 0 112 2 3 344 556 6 7
1 ••. 5 .••• 0 •••. 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •.

01 PRINT-RECORD.
02 ITEMNUMBER PIC 9(5).
02 QUANTITY PIC 99,999.
02 GROSS PIC $$9,999.99.
02 COMMISSION PIC 99.99

Show how the printed values of the variables in the record
description entry above would appear if the following values had
been moved to the variables.

variable

ITEMNUMBER

QUANTITY

GROSS

COMMISSION

Printed value
of variable

77342
08,~95

$55,624.93
10.00

Value moved
to variable

77342

8995

55624/93

10/00

*

Printed value
of variable

* *

309

22.

0011223 344 5 5 6 6 7
1 ••• 5 •••• 0 •.•. 5 •••. 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 .••. 0 ••

02 TOTAL-PRICE PIC $$$,$$$.99.

A comma may be included in a string of dollar signs. The comma
will be printed only if at least one digit is printed preceding
the comma position. If the value 1772/20 were moved to TOTAL
PRICE and printed, it would appear as ••••••••• If the value
204/ were moved to TOTAL-PRICE and printed, it would be printed
as •••••••••

* * *
$1,772.20
$204.00

23.

r--,
I STATISTICS-RECORD I

\-;~~~~i~--J-;~~~~~--I-~oss------------I-~~;;;~;~;~~;-'
I SECURITY- I
I NUMBER Value Range: Value Range: Value Range: I
I (9 char) 00.00-85.00 $.00-$900,000.00 $0.00-$50.00 I L__________ ______________ ________________ _ _____________ J

Write the record description entry for STATISTICS-RECORD. Account
for the editing of all variables as illustrated in the diagram of
the record above.

* * *
0011223 344 556 6 7
1 .•• 5 •.•• 0 •••. 5 •.•• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •••• 5 .••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •.

310

01 STATISTICS-RECORD.
02 SOCIAL-SECURITY-NUMBER PIC X(9).
02 PERCENTAGE PIC 99.99.
02 GROSS PIC $$$$,$$$.99.
02 CONTRIBUTION PIC $$9.99.

(The picture for CONTRIBUTION has a permanent digit position
preceding the decirral point to allow for printing as shown in the
diagram.)

24. The contents of a variable whose picture consists of either all
9's or 9's and a V is considered numeric data. The contents of a
variable whose picture consists of 9's and a decimal point, a
comma, and/or one or more dollar signs is numeric-edited data.
Match the kind of data that the variable will contain with each
data description entry.

1)

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ... 5 ..•• 0 •.•. 5 .•.. 0 •••• 5 •••. 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 QUOTA PIC 999.99.

2)

0011223 3 4 4 5 5 6 6 7
1 .•. 5 0 •..• 5 .••. 0 ••.• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

02 CUSTOMER-NUMBER PIC 9(6).

3)

0011223 3 4 4 556 6 7
1 .•• 5 .•.. 0 •.•• 5 ..•• 0 •••• 5 .••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 TOTAL PIC 999V99.

4)

0011223 3 445 5 6 6 7
1 ..• 5 0 •••• 5 ...• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 AMOUNT PIC $$99.99.

5)

0011223 3 4 4 5 5 6 6 7
1 ... 5 0 •••. 5 •... 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 QUANTITY PIC 999,999.

a. numeric data

b. numeric-edited data

* * *
1) b
2) a
3) a
4) b
5) b

311

312

25. Match each picture character with the description of the picture
in which it can appear.

1) Picture for variable
containing numeric
data

2) Picture for variable
containing numeric
edited data

*
1) a,e
2) a,b,c,d

a.

b.

c.

d.

e.

*

9

$

comma

decimal point

V

*

26.

o 0 112 233 4 4 5 5 6 6 7
1 ..• 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 TOTAL 999.99.

02 PERCENT 99V99.

02 QUANTITY 9(5).

02 AMOUNT PIC $$999.

Variables containing numeric-edited data cannot be specified in
calculations, although they may be specified in the GIVING
option. According to the data description entries above, which
of the following statements is correct?

a.

o 0 112 233 445 5 6 6 7
1 .•. 5 ..•• 0 ..•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

ADD QUANTITY TO TOTAL.

b.

o 0 1 1 2 2 3 3 4 4 556 6 7
1 .•• 5 ••.. 0 ••.• 5 •••. 0 •.•. 5 ••.• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c.

MULTIPLY PERCENT BY QUANTITY
GIVING TOTAL.

o 0 112 2 3 344 556 6 7
1 ..• 5 ••.• 0 •.•• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

MULTIPLY PERCENT BY AMOUNT.

d.

0011223 3 4 4 556 6 7
1 .•• 5 .••. 0 •.•. 5 .••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

ADD 10 QUANTrry GIVING AMOUNT.

* * *
b,d

SUMMARY:

You have just learned how to incorporate the decimal point, dollar
sign, and comma into printed variable output. By means of the editing
process just presented, these symbols are printed in the appropriate
places in data items, according to your specifications.

END OF LESSON 15

313

THIS PAGE INTENTIONALLY LEFT BLANK

314

LESSON 16

315

LESSON 16 - CONDITIONAL BRANCHING

INTRODUCTION

Tests and branching decisions based on the results of these tests are
a necessary part of any data-processing procedures. The AT END option
of the READ statement and the AT-END-OF-PAGE option of the WRITE
statement are two ways of specifying branching on the basis of a test,
or conditional branching, in a COBOL program. Another important feature
of COBOL used to specify conditional branching is the IF statement,
which you will learn to code in this lesson.

316

Specific language features you will learn in this lesson are:

IF statement
EXAMINE statement

This lesson will require approximately three quarters of an hour.

1.

o 0 112 2 3 344 556 6 7
1 .•• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .•

a

2.

IF CARD-NU~BER
LESS THAN VASTER-NUMBER
ADD 1 TO COUNTER.

The statement above is an example of a COBOL IF statement. An IF
statement causes a condition to be evaluated, or tested, and an
action to be taken based on whether the result of the test is
true or false. You might expect that the condition in the IF
statement above is:

a. CARD-NUMBER LESS THAN MASTER-NUMBER

b. ADD 1 TO COUNTER

* * *

o 0 112 2 3 344 5 5 6 6 7
1 •.• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IF TOTAL EQUAL TO 100 GO TO MATCH.

The condition in the statement above is

* * *
TOTAL EQUAL TO 100

3. The examples in the previous frames show that a condition can be:

a

a. a statement of a relationship between two variables or
between a variable and a numeric literal.

b. an instruction to the computer.

* * *

317

4. The phrases LESS THAN, EQUAL TO, and GREATER THAN are used in
conditions in a COBOL statement to express a relationship between
two variables or between a variable and a numeric literal. write
conditions to express the following relationships:

a. the value of TEST-1 is greater than 10.

b. the value of EMPLOYEE-NUMBER is equal to the value of WORK
RECORD-NUMBER.

*
a. TEST-1 GREATER THAN 10
h. EMPLOYEE-NUMBER EQUAL TO

WORK-RECORD-NUMBER

* *

(The optional word IS may precede any of the three phrases given
above.)

5. The appearance of a condition in an IF statement causes the
condition to be evaluated. The result will be either true or
false. Give the result (true or false) of the evaluation of the
conditions in the following IF statements when CARD-NUMBER and
MASTER-NUMBER have the values 250 and 500, respectively.

1)

0011223 3 4 4 5 5 6 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

2)

IF CARD-NUMBER
LESS THAN MASTER-NUMBER
ADD 1 TO COUNTER.

o 0 112 233 4 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

1) true

IF MASTER-NUMBER EQUAL TO 1000
GO TO SECOND-ROUTINE.

* *

2) false

*

6. Nested IF statements are not permitted in 1130 COBOL.

o 0 112 233 4 4 5 5 6 6 7
1 ... 5 .••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

318

IF SERVICE CODE EQUAL TO 27
ADD 5.00 TO AMOUNT,
IF CALL TIME LESS THAN MINIMUM

MOVE 'BASE RATE' TO LEGEND.

Figure 70

Figure 70 above illustrates the IF statement. As a result of the
above coding:

a. if SERVICE CODE is equal to 27 r 5.00 will be added to AMOUNT

b. a compile time error will occur

* * *
b (Nested IF statements are invalid).

7.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IF condition statement-l.

A general form of the IF statement is shown above. If the result
of the evaluation of the condition is truer statement-l is
executed. Then the sentence immediately following the IF
statement is executed (unless statement-l is a GO TO statement.)
If the result is falser the sentence immediately following the IF
statement is executed.

001 1 2 2 3 344 5 5 6 6 7
1 .•. 5 .••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •.

IF SALES GREATER THAN 100
MOVE lABOVE' TO MEMO.

ADD SALES TO YEAR-TO-DATE SALES.

When the IF statement above is executedr if SALES is equal to:

a. 50 r 'ABOVE' will be moved to MEMO and the value of SALES will
be added to the value of YEAR-TO-DATE SALES

b. 150 r 'ABOVE' will be moved to MEMO and the ADD statement will
not be executed.

* * *
Neither (If SALES is greater than 100 r 'ABOVE' will be moved to MEMO
and then the ADD statement will be executed. If SALES is 100 or
less, the MOVE statement will not be executed: the ADD statement will
be the next statement executed.)

319

8. Write a statement to specify that if SCORE is greater than 89, 4
will be added to GRADE-POINT.

* * *
o 0 1 1 2 2 3 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •• ~.5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IF SCORE GREATER THAN 89
ADD 4 TO GRADE-POINT.

001122334 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••• _0_ ••• 5_ ••• 0 •••• 5 •••• 0~ ••• 5 •••• 0 •••• 5 •••• 0 ••

320

IF SALES GREATER THAN 100
MOVE 'ABOVE' TO MEMO
ADD SALES TO YEAR-TO-DATE SALES.

More than one statement may be included in an IF statement. When the
condition in the statement above is true, the MOVE and ADD statements
will be executed. When the condition is false, neither the MOVE nor
the ADD statement will be executed, and control will be transferred
to the next sentence; that is, to the statement following the next
period.

The IF statement of the form you have been using can be used to
specify an additional step, an action to be taken, when a certain
condition exists. Another situation can also be provided for by an
IF statement.

9.

o 0 112 2 3 344 556 6 7
1 .•• 5 ••.• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 ••.. 0 •••• 5 •••. 0 •••• 5 •••• 0 •.

IF TOTAL1 EQUAL TO TOTAL2
ADD 1 TO NEW
ELSE ADD 1 TO COUNTER.

READ NEW-FILE.

Add 1 to
COUNTER

F

Figure 71

Add 1 to
NEW

You may wish to specify two different actions to be taken based
on the two results of a test as illustrated above. The flow chart shows
the action specified by the IF statement in which the ELSE option has
been specified. The flow chart and the statement show that:

a. if the values of TOTAL1 and TOTAL2 are equal r 1 will be added
to the value of NEW and the sentence following the IF
statement will be executed.

b. if the values of TOTALl and TOTAL2 are not equal r 1 will be
added to the value of COUNTER and the sentence following the
IF statement will be executed.

c. the statement specified in the ELSE option will be executed
only when the condition is false.

* * *
All of these

321

10. Identify the IF statement(s) below that specifies the following:
If the value of SCORE is less than 50, 'FAIL' is to be moved to
GRADE. If the value of SCORE is equal to or greater than 50,
'PASS' is to be moved to GRADE. In either case, the next step is
to transfer control to the paragraph MAIN-ROUTINE.

a.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b.

IF SCORE GREATER THAN 50
MOVE 'FAIL' TO GRADE
ELSE MOVE 'PASS' TO GRADE.

GO TO MAIN-ROUTINE.

o 0 1 1 2 233 4 4 5 5 6 6 7
1 ..• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c.

IF SCORE LESS THAN 50
MOVE 'FAIL' TO GRADE
ELSE MOVE 'PASS' TO GRADE.

GO TO ~~IN-ROUTlNE.

001 1 2 2 3 3 4 4 556 6 7
1 ..• 5 •.•• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

322

b

IF SCORE LESS THAN 50
MOVE 'FAIL' TO GRADE.

MOVE 'PASS' TO GRADE.
GO TO MAIN-ROUTINE.

* * *

11. The ELSE option of an IF statement is:

a. executed only if the condition is false.

b. not executed if the condition is true.

* * *
Both

12. QUANI'ITY, MINIMUM, and DISCOUNT are numeric variables. Write a
statement to specify that if QUANTITY is equal to MINIMUM, 10 is
to be moved to DISCOUNT and that if QUANTITY is not equal to
MINIMUM, 10 is to be added to DISCOUNT.

* * *

0011223 3 4 4 5 5 6 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

13.

IF QUANTITY EQUAL TO MINIMUM
MOVE 10 TO DISCOUNT
ELSE ADD 10 TO DISCOUNT.

001 1 2 2 3 3 4 4 5 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IF ACCOUNT-NUMBER LESS THAN 1000
ADD 1 TO COUNTER
ELSE GO TO EXCESS.

READ MASTER FILE.

o 0 112 233 4 4 5 5 6 6 7
1 .•. 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IF PROFIT EQUAL TO 1 GO TO FIRST-RUN
ELSE GO TO SECONDARY.

TOTAL-ROUTINE.
MOVE ZEROS TO TOTAL-1.

If a GO TO statement is included in an IF statement either
following the condition (as statement-1) or in the ELSE option,
or in both places, the sentence immediately following the IF
statement may not be executed after the IF statement. When the
first IF statement above is executed, execution of the READ
statement will follow execution of the ADD statement if ACCOUNT
NUMBER is less than 1000. If ACCOUNT-NUMBER is not less than
1000, control will transfer to a routine called EXCESS and the
READ statement will not be executed. The second IF statement
above specifies that execution of the MOVE statement will
immediately follow execution of the IF statement if PROFIT is:

a. not equal to 1.

b. equal to 1.

* * *
Neither (Execution of the MOVE statement can never immediately
follow execution of this IF statement because both the statement
following the condition and the statement in the ELSE option
transfer control to another point in the program.)

323

14.

TEST

False

324

Initialize
COUNTER
to zeros

Multiply TOTAL
by PERCENT
and store in
EARNINGS

Add EARNINGS
to TOTAL

Add 1 to
COUNTER

Figure 72

True
>------.. PRINT-ROUTINE

An IF statement can be used to control the number of times a
portion of a program is to be executed. The flow chart above
shows a portion of a program that is to be executed twenty times
to compute the total on deposit after five years when interest is
compounded quarterly. Code the sequence shown in the flow chart,
using an IF statement to control the number of times the portion
will be repeated.

* * *
0011223 3 445 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

MOVE ZEROS TO COUNTER.
TEST.

MULTIPLY TOTAL BY PERCENT
GIVING EARNINGS.

ADD EARNINGS TO TOTAL.
ADD 1 TO COUNTER.
IF COUNTER EQUAL TO 20

GO TO PRINT-ROUTINE
ELSE GO TO TEST.

(The last two lines could also be

o 0 1 1 2 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 ••

GO TO PRINT-ROUTINE.
GO TO TEST.

In any IF sentence that does not contain an ELSE option, a false
condition will cause a control to be transferred to the next
sentence.

15. A condition causes the object program to select between alternate
paths of control depending on the truth value of a test.
Conditions are used in IF statements. See CONDITIONS chapter in
your Language Specifications Manual.

{
NUMERIC } GO TO identifier-2.
ALPHABETIC

IF identifier-l IS [NOT]

A test condition is an expression that, taken as a whole, may be
either true or false, depending on the circumstances existing
when the expression is evaluated.

0011223 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IF ITEM-NO IS NOT NUMERIC GO TO ALPHA.
ADD 1 TO COUNT.

In the above example, if the contents of ITEM-NO are not numeric
the program will branch to a paragraph named ALPHA. If the
contents of ITEM-NO are numeric, the next sequential instruction
will be executed. In this case, a 1 will be added to COUNT.

325

16.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••. 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 ••

IF LAST-NA~£ IS ALPHABETIC GO TO PRINT-NAME.

The above sentence will branch to PRINT-NAME paragraph if the
contents of all characters in the LAST-NAME are:

a. All numeric. Consisting of digits 0 through 9.

h. All alphabetic.
spaces.

Consisting of letters A through Z and/or

c. Alphanumeric. Consisting of digits and letters.

* * *

b

17. The sign condition determines ~hether or not the algebraic
of a numeric operand (i.e. an item described as numeric> is
than, greater than or equal to zero.

IF
ridentifier }
~ IS [NOT]
Larithmetic-expression {

POSITIVE}
NEGATIVE
ZERO

value
less

18. An operand is POSITIVE if its value is greater than ZERO,
NEGATIVE if it is less than ZERO and ZERO if it is equal to ZERO.

o 0 1 1 2 2 3 344 556 6 7
1 ... 5 •••• 0 •..• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

a

326

IF AMOUNT IS NEGATIVE MOVE ZEROS TO AMOUNT
ELSE COMPUTE TOTAL = AMOUNT * QTY.

In the segment above, which of the following is true:

a. If the AMOUNT is less than zero, ZEROS will be moved into
AMOUNT.

b. If the AMOUNT is less than zero, the COMPUTE statement will
be executed.

* * *

19.

o 0 112 2 3 344 5 5 6 6 7
1 ... 5 •.•. 0 ••.. 5 •... 0 •.•• 5 •••• 0 •.•. 5 •••. 0 •.•. 5 .••• 0 •••• 5 •••• 0 .••• 5 ..•• 0 ••

a

IF PRICE IS POSITIVE GO TO CALCULATE.
GO TO ERROR-ROUTINE.

CALCULATE.
CO~PUTE TOTAL = QTY * PRICE.

In the segment above control of the execution will be given to
the CALCULATE paragraph if the contents of PRICE are:

a. greater than zero.

b. equal to zero.

c. zero.

* * *

327

20. Read Figure 73.

328

Adolphe Manufacturing Company wants a program to analyze the
marketability of its products. The input card file ITEM-FILE
contains a record for each purchase for each item. The file is
organized according to ITEM-NUMBER. The plan for the output
listing that is to be produced is shown below.

--
0 1 2 3 4 5

'123456789 0123456789 o 1T213!4i51617 1819 o 1 2 314 516 7 89 0123456789 o 1 213 4 5 6 789

I
~ ~IX XX ~X XX IX. Ix X I

(ITEM-NUMBER) (UNIT-PRICE) X 1\ '1.)(~iX
(COMPANY-NAME- (AMOUNn

IT XIXlXXX I$IX XXI, I~x X. i)(X I
(TOT AL-AMOUNn :(TOTAL-PURCHASE) i

i
: I I
I (single space between detail lines; double space before and after total.)

I n I (r I IJ I I I I I i I I I I I I I jJJJ J 1 I \ \ i -

ITEM-NUMBER and UNIT-PRICE will appear once, followed by the

listing of purchases and the number of items purchased by each.

The illustration to

the right is a sample

of the cards from the

file ITEM-FILE.

The first card shows

a sample of the data

that appears in each

record.

77543 00.92 BECK & co. 100

Figure 73

There may be any number of cards for each item in the problem described
in Figure 73. In order to meet the specifications stated in the problem
statement, all of the cards that represent orders for a particular item
must be grouped together. consequently, the programmer must be able to
identify a field appearing in each card that can be used to identify the
group to which it belongs. The best field to use in this case would be:

a. UNIT-PRICE

b. ITEM-NUMBER

* * *
b
(More than one item might have the same unit price. Although ITEM
NUMBER is actually the variable that will contain the values from
this field, in the context of this problem the field itself will be
referred to as ITEM-NUMBER.)

21. Figure 73 shows that ITEM-NUMBER identifies a control field. You
might expect that a control field is:

a

a. the field used to identify specific groups of records within
a file.

b. the name of a variable whose value is the same in every
record in the file.

* * *

22. All the records with the same ITEM-NUMBER have been grouped
together and the groups are in ascending order. To process the
records as specified in Figure 73, the computer must identify the
point where one group ends and the next begins, or where the data
in the control field changes. Figure 73 shows that this pOint is
called a:

a. control field.

h. control break.

* * *
b

23. After each group of records has been processed, totals for that
group are to be printed. At this pOint, control is to transfer
to another portion of the program. A control break:

Both

a. occurs when the data in the control field changes.

b. identifies the point at which control is to transfer to
another portion of the program.

* * *

329

330

24. In order to detect a control breakr the control field of each
record is compared to the control field of the previously read
record. You might expect that this step would be performed by
a(n) •••••••• statement.

* * *
IF

25. Each time a record is read r the data in the input area from the

a

26.

a

previously read record is destroyed. Therefore r
compare control fields r data in the control
previously read card must be:

a. moved to a working-storage variable.

b. saved in the input area.

* *

(Process record)

Figure 74

*

TOTAL-ROUTINE

(Print
totals)

in order to
field from the

The flow chart segment above shows the sequencing for checking
for a control break. which of the following is true?

a. Because the records are in ascending sequencer a control
break will occur when the ITEM-NUMBER read is greater than
the ITEM-NUMBER previously read.

b. When a control break occurs r the record read is processed
immediately.

* * *

27. Write the statement necessary to test for a control break
according to the flow chart in the previous frame.

* *
0011223 3 4 4 5 5 6 6 7
1 •.• 5 ..•• 0 •... 5 •••. 0 .•.• 5 ••.• 0 •••• 5 .••• 0 •••. 5 •.•. 0 ..•• 5 •.•. 0 ..•• 5 0 ..

IF ITEM-NUMBER GREATER THAN
STORED-ITEM-NUMBER
GO TO TOTAL-ROUTINE.

28. Records containing the total amount of sales for each salesman
have been grouped by territory. The groups have been arranged in
ascending sequence by territory number. When this file is
processed, a control break will occur when the:

a. salesman changes.

b. territory number changes.

* * *
b

29. A condition that might be tested for a control break in the
problem described in the preceding frame would be:

a.

o 0 112 2 3 3 4 4 556 6 7
1 ... 5 .•.. 0 •.•. 5 0 5 •... 0 •... 5 .•.. 0 •.•. 5 .•.. 0 •••• 5 •••. 0 ..•• 5 ..•• 0 ..

b.

SALESMAN-NUMBER GREATER THAN
STORED-SALESMAN.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ... 5 •... 0 ..•• 5 ••.. 0 ••.• 5 ..•. 0 ••.. 5 .••• 0 .••. 5 .••• 0 •.•. 5 ••.. 0 ••.• 5 •••• 0 •.

b

TERRITORY GREATER THAN
STORED-TERRITORY.

* * *

331

w
W
IV

System flow chart for SALES-ANALYSIS

--
~

EMPLOYEE-
MASTER- I -I IBM 1130 .. PRINTED-REPORT

FILE
..... -

~ -
Output format

Input record
SALES-RECORD

TERRITORY I SALESMAN-I NAME
NUMBER

SALES

o 2 3 4 5 6 7 8 9 I. 10 r- II
41516171'/910111213141516171.1,10 1121314151617'.1'I101112!31415 '617!1.910l1 12!314!516171.I'loll 1213141516171.,,1011 12131415J617'.I'I~11213'41516171'1'fOil !213j4'51,171.19/011121314151617!.I,1OI11213415'617!.I,loII 121314151617

~ I111I11111111111111 i lilllliW iB 1111[1111! 1111' I i III i Ff1~~ ~~A!~tR'~: 'II jill ii-I! IIII UI III Ill: 11:1! i i III-H-ttf
11 n TTTI} 10 I IJ I II ,I i! CJ !l1l~L1 01 LlI LI _ .lI j LLI U III I 1m mlTTi I'll;' I

~ ITll]] 1 NAllfErITTITn mr-:-rmln mTTIlTn ~~TTTTm I iT! ITIIT; iI, ,

FIIIIIIIIIIIIIIIII!I~lllllllllllllllli~I!II!lllilllillill:III!IIIIIIIIIII:!IIIIIIIII.11 Ll 1 it

~ r:IIIIIIIIIIIII!IIIIII~IIIIIIIII:II!illiiillllllli!~li111111~illllj!II!IIII[
TOTAL-RECORD (triple spaced after last WORK-RECORD)

WORK-RECORD (double spaced)
HEADINGS (triple spaced)

TITLE - RE CORD (at top of page)

o 0 112 2 3 3 4 4 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 ••

IDENTIFICATION DIVISION.
PROGRAM-ID. SALES-ANALYSIS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT EMPLOYEE-MASTER-FILE
ASSIGN TO DF-1-600.

SELECT PRINTED-REPORT
ASSIGN TO PR-1132-C
RESERVE NO ALTERNATE AREA.

DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-MASTER-FILE

BLOCK CONTAINS S RECORDS
LABEL RECORDS ARE STANDARD.

01 SALES-RECORD.
02 TERRITORY PIC 99.
02 SALESMAN-NUMBER PIC XeS).
02 NAME PIC X(20).
02 SALES PIC 9(4)V99.

FD PRINTED-REPORT
LABEL RECORDS ARE OMITTED.

01 PRINT-RECORD PIC X(121).
WORKING-STORAGE SECTION.
77 TERRITORY-STORED PIC 99 VALUE IS 99.
77 TERRITORY-TOTAL PIC 9(S)V99

VALUE IS ZEROS.
77 FINAL-TOTAL PIC 9(7)V99

VALUE IS ZEROS.
77 TEST PIC 9 VALUE IS ZERO.
01 TOTAL-RECORD.

02 FILLER PIC X(S5) VALUE IS SPACES.
02 TOTALS PIC $$$$999.99.
02 FILLER PIC X(11) VALUE IS SPACES.
02 ID-WORD PIC X(6) VALUE IS 'TOTALS'.
02 FILLER PIC X(9) VALUE IS SPACES.

01 TITLE-RECORD.
02 FILLER PIC X(60) VALUE IS SPACES.
02 TITLE PIC X(14) VALUE IS

'SALES ANALYSIS'.
02 FILLER PIC X(47) VALUE IS SPACES.

01 HEADINGS.
02 FILLER PIC X(15) VALUE IS SPACES.
02 HEAD-1 PIC xes) VALUE IS 'SALESMAN'.
02 FILLER PIC X(12) VALUE IS SPACES.
02 HEAD-2 PIC X(4) VALUE IS 'NAME'.
02 FILLER PIC X(31) VALUE IS SPACES.
02 HEAD-3 PIC xes) VALUE IS ·SALES'.
02 FILLER PIC X(46) VALUE IS SPACES.

01 WORK-RECORD.
02 FILLER PIC X(1S) VALUE IS SPACES.
02 SALESMAN-NUMBER PIC X(5).
02 FILLER PIC X(15) VALUE IS SPACES.
02 NAME PIC X(20).
02 FILLER PIC X(15) VALUE IS SPACES.
02 SALES PIC 9(4)V99.
02 FILLER PIC X(54) VALUE IS SPACES.

Figure 75

333

334

30. As a programmer you may often be asked to prepare sales analysis
reports. Figure 75 shows the system flow chart for a program
named SALES-ANALYSIS. The forms of the input and output records
are shown, along with the first three divisions of the program.
Records containing the total amount of sales for each salesman
have been grouped by territory. The groups have been arranged in
ascending sequence by territory number. Each record will be
listed on the 1132 printer. Totals will be printed for each
territory, as well as a total for all sales, triple spaced after
the total for the last territory. Follow the problem flow chart
in Figure 76 and code the Procedure Division of SALES-ANALYSIS.

w
w
U'1

*

*

*

~
..."

~
Ii
C1)

..J
0\

HEADING
ROUTINE

Move
TITLE·RECORD

to
output area

Move
HEADINGS

to
output area

Move 0
to

TEST

SET·UP I TAKE·
Add SALES TOTAL

to
TERRITORY·

TOTAL

t
Move corresponding

values of
SALES·RECORD

to
WORK·RECORD

~
Move

TERRITORY
to

TERRITORY-
STORED

•
Move

WORK-RECORD
to

output area

• The MOVE and GO TO statements must
both be part of the IF sentence to transfer
control on the basis of the true result.

Add
TERRITORY·

TOTAL
to

FINAL·TOTAL

1
Move

TERRITORY·
TOTAL

to
TOTALS

1
Move

ZEROS
to

TERRITORY·
TOTAL

t
Move

TOTAL·RECORD
to

output area

Move 1
to

TEST

FINISH Move
TERRITORY·

TOTAL
to

TOTALS

Move
TOT AL·RECORD

to
output area

Add
TERRITORY·

TOTAL
to FINAL·TOTAL

and stOle in TOTALS

Move
TOT AL·RECORD

to
output area

eSTOP)

001122334 4 556 6 7
1 ..• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

336

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT EMPLOYEE-MASTER-FILE
OUTPUT PRINTED-REPORT.

INITIALIZE.
MOVE ZEROS TO TERRITORY-TOTAL.

HEADING-ROUTINE.
MOVE TITLE-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.
MOVE HEADINGS TO PRINT-RECORD.
WRITE PRINT-RECORD

AFTER ADVANCING 4.
IF TEST EQUAL TO 1

MOVE ZERO TO TEST GO TO SET-UP.
MAIN-SEQUENCE.

READ EMPLOYEE-MASTER-FILE
AT END GO TO FINISH.

IF TERRITORY GREATER THAN
TERRITORY-STORED
GO TO TAKE-TOTAL.

SET-UP.
ADD SALES OF SALES-RECORD

TO TERRITORY-TOTAL.
MOVE TERRITORY OF SALES-RECORD

TO TERRITOEY OF WORK-RECORD.
MOVE SALESMAN OF SALES-RECORD

TO SALESMAN OF WORK-RECORD.
MOVE NAME OF SALES-RECORD

TO NAME OF WORK-RECORD.
MOVE SALES OF SALES-RECORD

TO SALES OF WORK-RECORD.
NOVE TERRITORY TO TERRITORY-STORED.
MOVE WORK-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD

AFTER ADVANCING 3 LINES.
AT EOP GO TO HEADING-ROUTINE.

GO TO MAIN-SEQUENCE.
TAKE-TOTAL.

ADD TERRITORY-TOTAL TO FINAL-TOTAL.
MOVE TERRITORY-TOTAL TO TOTALS.
MOVE ZEROS TO TERRITORY-TOTAL.
MOVE TOTAL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD

AFTER ADVANCING 4 LINES.
AT EOP MOVE 1 TO TEST
GO TO HEADING-ROUTINE.

GO TO SET-UP.
FINISH.

MOVE TERRITORY-TOTAL TO TOTALS.
MOVE TOTAL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD

AFTER ADVANCING 4 LINES.
ADD TERRITORY-TOTA'L

TO FINAL-TOTAL GIVING TOTALS.
MOVE TOTAL-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD

AFTER ADVANCING 4 LINES.
CLOSE EMPLOYEE-MASTER-FILE

PRINTED-REPORT.
STOP RUN.

(30)

If your solution appears different and you are not sure of its
correctness, consult your advisor.

31. EXAMINE Statement. The EXAMINE statement is used to count the
number of times a specified character appears in a data item
and/or to replace a character with another character.

EXAMINE identifier TALLYING
{

UNTIL FIRST}
ALL literal-1
LEADING

[REPLACING BY literal-21

When the ALL is used an integral count is created which replaces
the value of a special register TALLY. (See Language
Considera tions)

0011223 3 4 4 5 5 6 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

EXAMINE AREA-1 TALLYING ALL O.

If AREA-1 contains the number 101010 after the EXAMINE statement
is executed, the special register TALLY will contain the integer
3. (There are 3 zeros in the AREA-1.)

o 0 1 1 2 233 445 5 6 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 .•.. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •.•• 0 •.

EXAMINE AREA-1 TALLYING ALL 1.

AREA-1 contains the number 110101. After the execution of the
above statement the special register TALLY will contain:

a. 2

b. 4

* * *
b

r------------------------------------ ---------- --------- -----------,
1 Resulting 1
1 EXAMINE statement ITEM-l Data Value of 1
1 (Before) (After) TALLY I
1------------------------------------- --------- --------- -----------1
1 EXAMINE ITEM-1 TALLYING ALL 0 111010 111010 2 1
1------------------------------------- ---------- --------- -----------1
I EXAMINE ITEM-1 TALLYING ALL 1 111010 000000 4 1
1 REPLACING BY 0 1
1------------------------------------- ---------- --------- -----------1
1 EXAMINE ITEM-l REPLACING LEADING **7000 7000 + 1
I n*n BY SPACE 1
1------------------------------------- ---------- --------- -----------1
1 EXAMINE ITEM-1 REPLACING FIRST n*n **1.94 $*1.94 + 1
1 BY n$" 1
1------------------------------------- ---------- --------- -----------1
1 + unchanged 1 L ___________________________________ _

---------- ---------
_ _________ -.J

337

SUMMARY:

You have learned to code and use the IF statement, in the simple
form. In addition you have learned to identify control breaks in a file
and to specify a certain action to be taken at the point where a control
break occurs. The REPORT-WRITER feature of the COBOL language, which is
not being taught in this course, greatly simplifies the problem of
dealing with control breaks. If your installation is equipped for
REPORT-WRITER, you way find it useful to read the section On REPORT
WRITER in your Language Specifications Manual after you have completed
this course.

END OF LESSON 16

33b

LESSON 17

339

LESSON 17 - DISK FILE UPDATING

INTRODUCTION

In this lesson you will write programs that require matching of
records from two separate input files. You will learn to compare
control fields, such as student nurober, from the two files in order to
determine whether or not the records refer to the same student.

The technique of matching records is used frequently since changes
are seldom required for every record in a master file. Some students
will change majors in a particular year, for example, while many will
not. Every customer does not buy something each month and every
employee may not move or change his name before a file is updated.

The specific COBOL language feature that you will learn in this
lesson is:

FROM option of the WRITE statement

This lesson will require approximately one half hour.

340

1.

o 0 112 233 4 4 5 5 6 6 1
1 .•. 5 .••• 0 •••. 5 .••• 0 •••• 5 •••• 0 •••. 5 .••• 0 •••• 5 .••• 0 ••.. 5 •••• 0 •.•• 5 •••. 0 •.

READ EMPLOYEE-FILE
AT END GO TO FINISH.

MOVE EMPLOYEE-RECORD
TO WORK-RECORD.

The first statement above would cause the input record EMPLOYEE
RECORD to be accessed from the file EMPLOYEE-FILE. The second
statement would move the data in the input record to a working
storage variable called WORK-RECORD. You learned to write a
single statement that would have the saroe effect as a READ
statement and a MOVE statement. To review what you have already
learned. write the single statement to produce the effect of the
two statements shown above.

* * *
o 0 1 1 2 2 3 344 556 6 7
1 .•• 5 •••• 0 ••.. 5 •.•. 0 •••• 5 •••• 0 ••.• 5 •••• 0 .•.• 5 ••.• 0 •••• 5 •.•. 0 •... 5 •.•• 0 ..

2.

READ EMPLOYEE-FILE
INTO WORK-RECORD
AT END GO TO FINISH.

o 0 112 2 3 344 556 6 1
1 ... 5 .••. 0 ...• 5 •.•. 0 .••• 5 .•.• 0 •... 5 .••• 0 ••.. 5 .••. 0 •.•. 5 •.•. 0 •••. 5 •.•• 0 ••

READ INPUT-FILE INTO WORK-RECORD
AT END GO TO STOP-ROUTINE.

The following statement is equivalent to the statement above.

o 0 112 2 3 3 4 4 556 6 1
1 ..• 5 ..•• 0 •... 5 •••. 0 •.•• 5 •••. 0 •••. 5 •••• 0 •••. 5 .••. 0 •••• 5 •••• 0 •••. 5 •••• 0 •.

READ INPUT-FILE
AT END GO TO STOP-ROUTINE.

MOVE INPUT-RECORD
TO WORK-RECORD.

3. A READ statement with the INTO option is used to transmit a
record from an input file to:

a. an input area associated with a previously opened file.

b. a working-storage variable.

c. an output area associated with a previously opened file.

* * *
b.c

341

4.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 .•. 5 ...• 0 •••. 5 .••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•. 0 ••

READ EMPLOYEE-FILE
AT END GO TO FINISH.

MOVE EMPLOYEE-RECORD
TO PAYROLL-RECORD.

WRITE PAYROLL-RECORD.

Just as the INTO option of the READ statement is used to transmit
a record from an input file to a working-storage variable or an
output area associated with a previously opened file, the FROM
option of the WRITE statement is used to transmit a record from a
working-storage variable or an input area associated with a
previously opened file to an output file. The statements above
would transmit a record from the input file to the associated
input area EMPLOYEE-RECORD, move the record from the input area
to the output area PAYROLL-RECORD associated with the output
file, and transmit the record from the output area to the output
file. The WRITE statement below would have the same effect as
the MOVE and WRITE statements above.

o 0 112 2 3 3 445 5 6 6 7
1 .•. 5 •.•• 0 •••. 5 •.•. 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 ••

WRITE PAYROLL-RECORD
FROM EMPLOYEE-RECORD.

Select the set of statements that would have the effect of
transmitting a record from INPUT-FILE (associated with the input
area INPUT-RECORD) to OUTPUT-FILE (associated with OUTPUT-AREA).

a.

o 0 1 1 2 233 4 4 5 5 6 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 .•

b.

READ INPUT-FILE INTO OUTPUT-AREA
AT END GO TO END-ROUTINE.

WRITE OUTPUT-AREA.

o 0 1 1 2 2 3 3 4 4 5 5 6 6 1
1 ... 5 •..• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

Either

342

READ INPUT-FILE
AT END GO TO END-ROUTINE.

WRITE OUTPUT-AREA
FROM INPUT-RECORD.

* * *

5.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

6.

WRITE OUTPUT-RECORD
FROM WORK-RECORD.

The above statement would:

a. access a record and then move it to an output file.

b. move a record to an output area and then write it.

c. write a record and then move it to an output area.

* * *

o 0 112 2 3 3 445 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .•

WRITE OUTPUT-RECORD
FROM WORK-RECORD.

In the statement above:

a. OUTPUT-RECORD is the output area associated with the output
file.

b. WORK-RECORD may be an input area associated with a previously
opened file or a working-storage variable.

* * *
Both

7.

o 0 112 233 445 5 6 6 7
1 •.• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •.

WRITE record-name [FROM identifier]

A general form of the WRITE statement is shown above. You know
that record-name must be the output area associated with the
output file. In the FROM option, identifier may be:

a. an input area associated with a previously opened file.

b. a working-storage variable.

* * *
Either
(Identifier must be a level 01 variable whether it is an input area
or a working-storage variable.)

343

8. Write a statement to move data from the working-storage variable
COMPUTATION-RECORD to the output area RESULT-PRINT and place the
record in the output file PRINT-OUT.

* * *
00112 2 3 344 556 6 7
1 ... 5 .••. 0 .•.. 5 ...• 0 .•.• 5 ••.• 0 •••. 5 ••• ~0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

344

WRITE RESULT-PRINT
FROM COMPUTATION-RECORD.

9. When data is waved into an output area using the FROM option, the
move is made according to the rules for alphanumeric, or group
moves. Which of the following rules apply to movement of data
with the FROM option?

a. Unused character positions in the receiving field are filled
with spaces on the right.

h. Excess character positions in the sending field are truncated
on the right.

c. Only corresponding elements are moved.

d. The entire sending group is moved to the receiving group.

* * *
a,b,d

10.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 .•• 5 .••• 0 •••• S .••• 0 •••• S •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•• S •••. 0 ••

01 PRINTOUT.
02 FILLER PIC XeS).
02 PART-NUMBER PIC X(7).
02 FILLER PIC X(13).
02 ON-HAND PIC X(3).

The output record PRINTOUT, shown above, is defined with FILLER
items to provide for horizontal spacing.

001 1 2 2 3 344 5 5 6 6 7
1 .•• 5 .••• 0 •••. S .••• 0 •••• S •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• S •••• 0 •••. 5 •••• 0 ••

WRITE PRINTOUT FROM PARTS-RECORD.

In order for the
indicated by the
specified as:

a.

WRITE statement above to provide the spacing
entry for PRINTOUT, PARTS-RECORD would te

o 0 112 233 4 4 S 5 6 6 7
1 ••• 5 •••. 0 •..• 5 ••.• 0 •••• S •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •.

01 PARTS-RECORD.

b.

02 PART-NUMBER PIC X(7).
02 ON-HAND PIC X(3).

o 0 112 2 3 344 556 6 7
1 ..• 5 •••• 0 ••.. 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••. 5 .•.. 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

01 PARTS-RECORD.

c.

02 FILLER PIC X(20).
02 PART-NUMBER PIC X(7).
02 FILLER PIC X(20).
02 ON-HAND PIC X(3).

o 0 112 2 3 3 4 4 556 6 7
1 ... 5 .••• 0 •.•. 5 ••.• 0 •••• 5 •••. 0 •••• 5 •••• 0 ..•• 5 •..• 0 •.•• 5_ ••. 0 •••• 5 ••.• 0 ••

c

01 PARTS-RECORD.
02 FILLER PIC XeS).
02 CODE-ITEM PIC X(7).
02 FILLER PIC X(13).
02 QUANTITY PIC X(3).
02 FILLER PIC X(2S)

VALUE IS SPACES.

* * *

345

11.

0011223 344 556 6 7
1 ••• 5 •••• o •••• 5 •••• o •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 '. 5 •••• 0 ••

IDENTIFICATION DIVISION.
PROGRAM-ID. LOADTAPE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONl'ROL.

SELECT FREIGHT-CARD-FILE
ASSIGN TO RD-1442.

SELECT FREIGHT-CARD-OUT
ASSIGN TO PU-1442.

DATA DIVISION.
FILE SECTION.
FD FREIGHT-CARD-FILE

LABEL RECORDS ARE OMITTED.
01 FREIGHT-LINE-RECORD.

02 FREIGHT-LINE-NUMBER PIC X(6).
02 FREIGHT-LlNE-NAME PIC X(20).
02 WEIGHT-RESTRICTIONS PIC X(12).
02 FILLER PIC X(42).

FD FREIGHT-CARD-OUT
LABEL RECORDS ARE OMITTED.

01 FREIGHT-RECORD.
02 LINE-NUMBER PIC X(6).
02 LINE-NA~E PIC X(20).
02 RESTRICTION PIC X(12).
02 RATING PIC X(2).

The first three divisions of a card-in-card-out program are shown
above. The FILLER item on each input card contains spaces. The
last two characters in the output area are to be spaces since the
rating will be added later by another program. Write a Procedure
Division that will read the data on the cards and punch them out
again. Use the FROM option whenever possible.

o 0 1 1 2 233 445 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

346

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT FEIGHT-CARD-FILE
OUTPUT FREIGHT-CARD-OUT.

CARD-TO-DISK.
READ FREIGHT-CARD-FILE

AT END GO TO FINISH.
WRITE FREIGHT-RECORD

FROM FREIGHT-LlNE-RECORD,.
GO TO CARD-TO-DISK.

FINISH.
CLOSE FREIGHT-CARD-FlLE

FREIGHT-DISK-FILE.
STOP RUN.

The following problerr incorporates many of the COEOL features you
have learned up to this point. Since you are not asked to do
anything new in this problem, it is optional for you to code it. If
you choose not to code the problem, be sure to read it carefully to
make certain you understand it.

12. As a prograrrroer for a university data-processing division, you
have been asked to wri.te a program to make a listing of the
master disk entries for certain students. You have been given a
deck of cards. The number of each student for whom a disk record
is to be listed has been punched into a card. The last card,
like the last record, is a dummy containing the number 999999999.
Figure 77 gives a program flow chart, a system flow chart, and
the first three divisions of a program to create the output file.
Write the Procedure Divsion, using the FROM option. Remember to
include OPEN and CLOSE statements when necessary.

PRINT

Write
output
record

BEGIN

Prepare mes

STUDENT-INPUT-
CARD

IBM-1130

System flow chart

LISTlNG-OF
RECORDS

341

o 0 112 2 3 3 4 4 556 6 7
1 ••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

348

IDENTIFICATION DIVISION.
PROGRAM-ID. LIST-RECORDS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONl'ROL.

SELECT STUDENT-INPUT-CARD
ASSIGN TO RD-1442.

SELECT STUDENT-INPUT-DISK
ASSIGN TO DF-2-100-X.

SELECT LISTING-OF-RECORDS
ASSIGN TO PR-1132-C-PUTOUT
RESERVE NO ALTERNATE AREA.

DATA DIVISION.
FILE SECTION.
FD STUDENT-INPUT-CARD

LABEL RECORDS ARE OMITTED.
01 CARD-STUDENT-DATA.

02 CARD-NUMBER PIC X(9).
02 FILLER PIC X(71).

FD STUDENT-INPUT-DISK
BLOCK CONTAINS 7 RECORDS
LABEL RECORDS ARE STANDARD.

01 DISK-DATA.
02 FILLER PIC X.
02 DISK-NUMBER PIC X(9).
02 NAME PIC X(20).
02 FILLER PIC X(90).

FD LISTING-OF-RECORDS
LABEL RECORDS ARE OMITTED.

01 PRINT-LINE PIC X(121).

Figure 77

* * *

001 122 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT STUDENT-INPUT-CARD
STUDENT-INPUT-DISK
OUTPUT LISTING-OF-RECORDS.

MOVE SPACES TO PRINT-LINE.
GET-CARD.

READ STUDENT-INPUT-CARD
AT END GO TO FINISH.

GET-DISK.
READ STUDENT-INPUT-DISK

AT END GO TO FINISH.
TEST.

IF CARD-NUMBER IS GREATER THAN
DISK-NUMBER
GO TO GET-DISK.

IF CARD-NUMBER IS EQUAL TO
DISK-NUMBER
GO TO PRINT.

DISPLAY CARD-NUMBER
'RECORD NOT FOUND' UPON CONSOLE.

READ STUDENT-INPUT-CARD
AT END GO TO FINISH.

GO TO TEST.
PRINT.

WRITE PRINT-LINE
FROM DISK-DATA.

GO TO GEI'-CARD.
FINISH.

CLOSE STUDENT-INPUT-CARD
STUDENT-INPUT-DISK
LISTING OF RECORDS.

STOP RUN.

(The reserved word IS is used here in the IF statements. It is an
optional word and may be omitted.>

13. The procedure in the previous frame is an example of a problem
that requires matching records from two input files. Look at the
program flow chart in Figure 77 again. What would be the three
possible results of comparison of CARD-NUMBER and DISK-NUMBER?

* *
CARD-NUMBER greater than DISK-NUMBER
CARD-NUMBER equal to DISK-NUMBER
CARD-NUMBER smaller than DISK-NUMBER

*

349

350

14. The appropriate action must be taken for each possible result of
a comparison. Referring to Figure 77, match the following
courses of action with the result of comparisons.

1) CARD-NUtJ'lBER
greater than
DISK-NUMBER

2) CARD-NUMBER
equal to
DISK-NUMBER

3) CARD-NUMBER
smaller than
DISK-NUMBER

1) a
2) c
3) b

*

a. Read another disk record
and then compare again .•

b. Print an error message,
read another card, and
then compare again.

c. Write the output record,
read a record from each
input file, and then
compare again.

d. Close the files and stop
execution of the program.

* *

15. The program illustrated in Figure 77 is really a simplified
version of matching records, since no new master file is being
created. This program is merely accessing specific records from
the old master file, leaving it intact for further use. If the
card file contained only records of students to be added to the
old master disk while creating a new disk, the new master disk
would contain:

a. the records on the old disk only.

b. the records from the card file only.

c. the records from both the old disk and the card file.

* * *
c

16. In order to match records from two input files, the records in
both files must be in the same sequence by the control field. If
a card file contains records to be added to a disk file, you
would compare a card number to a disk number on each pass through
the main routine of your program. If both files are in ascending
sequence and the card number is larger than the disk number, the
program should:

a. read another disk record immediately.

b. read another card record immediately.

c. write the disk record on a new disk and then read another
disk record.

* * *
c

17. Assume for the moment that you have the two input files used in
Figure 77. The card file contains the numbers of the students
for whom records are to be removed from a master disk file. The
last card record and the last disk record are dummy records of
999999999 to ensure that both files will be completely processed.
You are to decide on the logic required to create a new master
disk that will not include the records of the students for whom
cards are present. Which flow chart describes such a problem?

351

BEGIN.

Yes

Yes

No

Figure 78

352

Figure 79

* * *
a
(Flow chart b would be used to add records from the card file to the
new master disk file rather than remove them.)

353.

354

Write
output disk

from input area

Write
output disk

from input area

Move card
address and phone

to input area

o 0 1 1 2 233 4 4 5 5 6 6 7
1 ... 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IDENTIFICATION DIVISION.
PROGRAM-ID. REMOVALS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-ll30.
OBJECT-COMPUTER. IBM-l130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT STUDENT-INPUT-CARD
ASSIGN TO RD-l442.

SELECT STUDENT-INPUT-DISK
ASSIGN TO DF-3-S00.

SELECT NEW-MASTER-DISK
ASSIGN TO DF-l-400.

DATA DIVISION.
FILE SECTION.
FD STUDENT-INPUT-CARD

LABEL RECORDS ARE OMITTED.
01 CARD-RECORD.

02 IDCARD PIC X(9).
02 HANGOUT PIC X(30).
02 PHONE PIC X(8).
02 FILLER PIC X(33).

FD STUDENT-INPUT-DISK
BLOCK CONTAINS 7 RECORDS
LABEL RECORDS ARE STANDARD.

01 DISK-RECORD-IN.
02 STUDENT-NUMBER PIC X(9).
02 STUDENT-NAME PIC X(25).
02 STUDENT-ADDRESS.

03 STREET PIC X(lS).
03 CITY PIC X(lO).
03 STATE PIC XeS).

02 STUDENT-PHONE PIC X(8).
02 SCHOLASTIC-DATA PIC X(5l).

FD NEW-MASTER-DISK
BLOCK CONTAINS 7 RECORDS
LABEL RECORDS ARE STANDARD.

01 DISK-RECORD-OUT.
02 STUDENT-NUMBER-O PIC X(9).
02 STUDENT-NAME-O PIC X(25).
02 STUDENT-ADDRESS-O PIC X(30).
02 STUDENT-PHONE-O PIC xes).
02 SCHOLASTIC-DATA-O PIC X(S1).

Figure 80

18. Figure 80 shows the first three divisions of a program and the
program flow chart for a program to update a disk file by
inserting new addresses and phone numbers for students who have
moved. A new disk will be created that will incorporate the data
from ,the card file into the records from the existing disk file.
Follow the program flow chart and write the Procedure Division to
update the disk file, using file and variable names from the
program segment in Figure 80.

* * *

355

0011223 344 556 6 7
1 •.• 5 •••• O •••• 5 •••. O •.•• 5 •••• O •••• 5 .••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT STUDENT-INPUT-CARD
STUDENl'-INPUT-DISK
OUTPUT NEW-MASTER-DISK.

READ-CARD.
READ STUDENT-INPUT-CARD

AT END GO TO FINISH.
READ-DISK.

READ STUDENT-INPUT-DISK
AT END GO TO FINISH.

COMPARE.
IF IDCARD IS GREATER THAN

STUDENT-NUMBER
WRITE DISK-RECORD-OUT
FROM DISK-RECORD-IN
GO TO READ-DISK.

IF IDCARD IS LESS THAN
STUDENT-NUMBER
GO TO EXTRANEOUS-CARD.

MOVE HANGOUT TO STUDENT-ADDRESS.
MOVE PHONE TO STUDENT-PHONE.
WRITE DISK-RECORD-OUT

FROM DISK-RECORD-IN.
GO TO READ-CARD.

EXTRANEOUS-CARD.
DISPLAY IDCARD 'NOT IN FILE'

UPON CONSOLE.
READ STUDENT-INPUT-CARD

AT END GO TO FINISH.
GO TO COMPARE.

FINISH.
CLOSE STUDENT-INPUT-CARD

STUDENT-INPUT-DISK
NEW-MASTER-DISK.

STOP RUN.

SUMMARY:

In addition to rratching records, you have learned to use the FROM
option of the WRITE statement as a substitute for writing a MOVE
statement. You have also seen a few of the many reasons for matching
records from two input files.

END OF LESSON 17

356

LESSON 18

357

LESSON 18 - DISK FILE PROCESSING

INTRODUCTION

At the end of this lesson you will write a program to insert
additional records into the proper places in a master disk file and
another to remove specific records from the disk file. In these same
programs you will be processing records for students transferring to and
from a college but as you will observe, the same technique would be used
for customer, stock items, or employees.

The COBOL language features you will learn in this lessen are not
limited to matching-record problems. They are, rather, useful features
that can save you time, result in more efficient programs, or accomplish
an arithmetic operation.

The specific COBOL language features that you will learn in this
lesson are:

PERFORM state~ent
SUBTRACT statement

This lesson will require approximately three quarters of an hour.
The optional problems will require one additional hour.

358

1.

o 0 1 1 2 2 3 3 445 5 6 6 7
1 ••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

a

PERFORM GET-CARD.

The statement shown above is called a PERFORM statement. It
causes control to transfer to the specified step in a prograrr
just as the GO TO statement does. The PERFORM statement,
however, will cause control to be returned to the statewent
following it after the specified paragraph is executed.
Execution of the above statement will cause:

a. execution of the GET-CARD paragraph and return of control to
the statement following the PERFORM staterr.ent.

b. execution of the GET-CARD paragraph and transfer of control
to the statement following the GET-CARD ?aragraph.

* * *

(b would be the effect of execution of

o 0 112 233 445 5 6 6 7
1 .•• 5 •.•. 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •.

GO TO GET-CARD.

359

2.

0011223 344 556 6 7
1 ..• 5 •... 0 •... 5 .••. 0 •••• 5 •••. 0 ••.. 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 ••.• 5 •.•• 0 •.

COMPARE.
IF IDCARD IS GREATER THAN

STUDENT-NUMBER
WRITE DISK-RECORD-OUT
FROM DISK-RECORD-IN
GO TO READ-DISK.

IF IDCARD IS LESS THAN
STUDEN~-NU~BER

GO TO EXTRANEOUS-CARD.
MOVE HANGOUT TO STUDENT-ADDRESS.
MOVE PHONE TO STUDENT-PHONE.
WRITE DISK-RECORD-OUT

FROM DISK-RECORD-IN.
GO TO READ-CARD.

EXTRANEOUS-CARD.
DISPLAY IDCARD 'NOT IN FILE'

UPON CONSOLE.
READ STUDENT-INPUT-CARD

AT END GO TO FINISH.
GO TO COMPARE.

FINISH.
CLOSE STUDENT-INPUT-CARD

STUDENT-INPUT-DISK
NEW-MASTER-DISK

STOP RUN.

In the Procedure Division segment above, which you wrote in a
preceding frarre, the same WRITE statament is written twice in
paragraph CO~PARE.

o 0 112 2 3 344 556 6 7
1 .•• 5 •••• 0 •••. 5 •.•• 0 •.•• 5 •••• 0 •••. 5 •••• 0 •••. 5 •••• 0 •.•• 5 •••• 0 .•.. 5 •••• 0 •.

WRITE-DISK.
WRITE DISK-RECORD-OUT

FROM DISK-RECORD-IN.

If paragraph WRITE-DISK were
prior to paragraph FINISH, each
COMPARE could be replaced by:

a.

added to the segment above just
WRITE statement in paragraph

o 0 112 2 3 344 556 6 7
1 ••• 5 •••• 0 ..•. 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .••• 5 •••• 0 ••

GO TO WRITE-DISK.

b.

o 0 112 2 3 344 556 6 7
1 ... 5 •••. 0 .•.. 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••. 0 .••• 5 •••• 0 •••• 5 ••.• 0 •.

360

PERFORM WRITE-DISK.

* * *
b
(If statement ~ were used to replace the WRITE statement, control
would pass from WRITE-DISK to FINISH, terminating the procedure.)

3. Figure 81 shows a Procedure Division that prints headings on each
page and then displays a message to the operator before listing
the records. Rewrite the WRITE statement in paragraph LISTING
ROUTINE so that the headings will be printed on each overflow
page. An initialization message will be displayed only at the
beginning of the program because of coding contained in the
paragraph SIGNAL-OPERATOR shown in Figure 81.

o 0 112 233 445 5 6 6 7
1 .•. 5 •••• 0 •... 5 •••. 0 •.•• 5 •••. 0 •••• 5 .••• 0 .••. 5 •••. 0 •.•• 5 •••• 0 ••.• 5 ..•• 0 •.

PROCEDURE DIVISION.
BEGIN-ROUTINE.

OPEN INPUT CUSTOMER-FILE
OUTPUT PRINT-FILE.

HEADING-LINE.
MOVE HEADINGS TO PRINT-RECORD.
WRITE PRINT-RECORD.

SIGNAL-OPERATOR.
DISPLAY 'PRINTOUT HAS BEGUN'.

LISTING-ROUTINE.
READ CUSTOMER-FILE

AT END GO TO FINISH.
l'-'10VE CUST-NO TO CUSTOMER- NO.
MOVE CUST-AMT TO CUSTOMER-AMT.
WRITE PRINT-RECORD

FROM LIST-RECORD
AFTER ADVANCING 2.
AT EOP GO TO HEADING-LINE.

GO TO LISTING-ROUTINE.
FINISH.

CLOSE CUSTOMER-FILE
PRINT-FILE.

STOP RUN.

*

Figure 81

* *
o 0 1 1 2 2 3 344 5 5 6 6 7
1 ..• 5 •.•. 0 •..• 5 •..• 0 •.•. 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 .•.• 0 •.

WRITE PRINT-RECORD FROM LIST-RECORD
AFTER ADVANCING 2
AT EOP PERFORM HEADING-LINE.

361

4. Match the effects with the statement types.

1) PERFORM a. transfers control to
the specified para-

2) GO TO graph, executes it,
then returns control
to the statement
following the cause
of the transfer.

b. transfers control to
the specified para-
graph, executes it,
then continues with
the next paragraph.

c. transfers control to
the specified para-
graph, executes the
first statement, then
returns control to
the statement following
the cause of the
transfer.

* * *
1) a
2) b

362

5.

o 0 112 233 q q 556 6 1
1 ••• 5 •••• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••. 0 •••. 5 •••• 0 •••• 5 •.•• 0 ••

PERFORM paragraph-name.

A paragraph that is specified in this form of a PERFORM statement
may not include a GO TO statement but may include a PERFORM
statement. Select the paragraph that could be specified by the
statement below.

o 0 1 1 2 233 q q 556 6 1
1 ..• 5 •••• 0 •.•. 5 ••.• 0 •••. 5 ••.. 0 ••.. 5 •••• 0 .••• 5 ..•. 0 •••• 5 •.•. 0 ••.. 5 •... 0 •.

PERFORM PARAGRAPH.

a.

o 0 112 233 q q 556 6 1
1 ..• 5 •.•• 0 •... 5 •••• 0 •••• 5 ••.. 0 ••.• 5 .•.• 0 •••. 5 0 .•.• 5 .••. 0 •.•. 5 ..•• 0 ..

PARAGRAPH.

h.

READ CARD-FILE
AT END GO TO HALT.

IF CODE-SYMBOL IS EQUAL TO
CODE-RECORD
PERFORM ADD-ROUTINE.

o 0 112 233 q q 556 6 1
1 ..• 5 ...• 0 •... 5 •.•• 0 •••. 5 •••. 0 •••. 5 .••. 0 •.•• 5 ••.. 0 •••• 5 •••. 0 •••. 5 •••. 0 •.

PARAGRAPH.

c.

READ CARD-FILE
AT END PERFORM HALT.

IF CODE-SYSTEM IS EQUAL TO
CODE-RECORD
PERFORM ADD-ROUTINE.

o 0 1 1 2 233 q q 556 6 1
1 ... 5 ...• 0 5 ••.• 0 •..• 5 .•.. 0 •••• 5 ••.• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •.

b

PARAGRAPH.
ADD NUMBER-DELIVERED TO

NUMBER-ON-HAND.
GO TO PRINTOUT.

* * *

363

6. Write a staterrent to transfer control to a paragraph named ERROR
HANDLING, and then return control to the statement following the
statement you write.

* * *
o 0 1 1 2 233 4 4 556 6 7
1 ••. 5 •... 0 ••.. 5 •••• 0 ..•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••. 5 •••. 0 ••.. 5 0 ..

7.

PERFO~l ERROR-HANDLING.

r----------------,
I I
I I
I I
lONE. I l ________________ J

r----------------,
I I
I I
I I
I TWO. I l ________________ J

r----------------,
I I
I I
I I
I THREE. I l ________________ J

r----------------,
I I
I I
I I
I FOUR. I l ________________ J

AS a programmer you wish to execute the paragraphs represented
above in a different sequence, such as ONE, TWO, ONE, THREE,
FOUR. To produce this sequence the statement

o 0 112 2 3 3 4 4 556 6 7
1 ... 5 ..•. 0 .•.. 5 ..•. 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 .•.• 0 .•

PERFORM ONE.

could be:

a. the last statement in TWO.

b. a statement in a separate paragraph between TWO and THREE.

* * *
Either

364

8.

o 0 1 1 .2 2 3 3 4 4 5 5 6 6 7
1 ... 5 0 5 ..•• 0 ...• 5 •••• 0 ••.• 5 .••• 0 .••• 5 •.•. 0 •••• 5 •••• 0 •••. 5 .••. 0 ••

WRI TE PRIN'I
AT EOP GO TO PAGES.

AFTER-PAGES.

PAGES.
ADD 1 TO PAGE-NUMBER.

GO TO AFTER-PAGES.

Write the segment above to use the PERFORM statement in the EOP
option.

* * *
001122334 4 5 5 6 6 7
1. . . 5. . . . o. . . . 5. . • . O. • . . 5. • • . o. . . . 5. • • • 0 • . . • 5 . . • • 0 • • '. • 5 • '. . • 0 • • • . 5 • • • . 0 • •

WRITE PRINT
AT EOP PERFORM PAGES.

AFTER-PAGES.

PAGES.
ADD 1 TO PAGE-NUMBER.

(The GO TO statement must be removed from paragraph PAGES.)

365

9.

0011223 344 5 5 6 6 7
1 .•• 5 •.•• 0 •.•• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

b,c

366

PERFORM TAKE-TOTAL.

The PERFORM statement is useful when control must be transferred
to a group of statements from several points in a program~ If
the statement above appears in two different paragraphs in a
program, the point to which control is returned after execution
of the PERFORM statement will:

a. be the saroe in each case.

b. depend on the location of the PERFORM statement.

c. be the statement following the PERFORM that was executed.

* * *

o 0 1 1 2 2 3 344 S S 6 6 7
1 .•• S •••• 0 ••.• S •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• S •••• 0 •••• S •••• 0 •••• 5 •••• 0 ••

IDENTIFICATION DIVISION.
PROGRAM-ID. BILLING.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
SPECIAL-NAMES. COl IS TO-NEXT-PAGE.
INPUT-OUTPUT SECTION.
FILE-CONI'ROL.

SELECT TRANSACTION-FILE
ASSIGN TO RO-1442.

SELECT CUSTOMER-FILE
ASSIGN TO DF-1-700-X.

SELECT BILL-FILE
ASSIGN TO PR-1132-C.

DATA DIVISION.
FILE SECTION.
FD TRANSACTION-FILE

LABEL RECORDS ARE OMITTED.
01 ITEM-RECORD.

02 CUSTOMER-NUMBER PIC XeS).
02 ITEM-NUMBER PIC xes).
02 UNIT-PRICE PIC 999V99.
02 ITEM-DESCRIPTION PIC X(20).
02 QUANTITY PIC 999.
02 FILLER PIC X(42).

FD CUSTOMER-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 6 RECORDS.

01 CUSTOMER-RECORD.
02 FILLER PIC X.
02 CHARGE-ID PIC x(5).
02 NAME PIC X(30).
02 STREET PIC X(20).
02 MAILING

03 CITY PIC X(lS).
03 STATE PIC X(15).
03 ZIP PIC xes).

02 FILLER PIC X(20).
FD BILL-FILE

LABEL RECORDS ARE OMITTED.
01 BILL-PRINT PIC X(63).
WORKING-STORAGE SECTION.
77 SAVE-NUMBER PIC xes).
77 SUB-AMOUNT PIC 9999V99.
77 TOTAL-AMOUNT PIC 99999V99

VALUE IS ZEROS.
77 SPACING PIC X.
77 STATE-CODE PIC X.
01 ITEM-LINE.

02 FILLER PIC X(4) VALUE
02 NUMBER-O PIC X(S).
02 FILLER PIC X(4) VALUE
02 ITEM PIC X(20).
02 FILLER PIC X(4) VALUE
02 PRICE-O PIC $999.99.
02 FILLER PIC X(4) VALUE
02 QUANTITY-O PIC 999.
02 FILLER PIC X(4) VALUE
02 AMOUNT PIC $9999.99.

IS

IS

IS

IS

IS

SPACES.

SPACES.

SPACES.

SPACES.

SPACES.

367

368

01 PRINT-TOTAL.
02 FILLER PIC X(S2) VALUE IS SPACES.
02 TOTAL PIC $99999.99.

01 DISCOUNT-TOTAL.
02 FILLER PIC X(18) VALUE IS SPACES.
02 COMMENT-1 PIC X(18)

VALUE 'MINUS .OS DISCOUNT'.
02 FILLER PIC X(18) VALUE IS SPACES.
02 DISCOUNT-AMOUNT PIC $999.99.

01 TAX-TOTAL.
02 FILLER PIC X(18) VALUE IS SPACES.
02 COMMENT-2 PIC X(12)

VALUE 'PLUS .04 TAX'.
02 FILLER PIC X(24) VALUE IS SPACES.
02 TAX-AMOUNT PIC $999.99.

01 NAME-LINE.
02 FILLER PIC X(10) VALUE IS SPACES.
02 NAME-OUT PIC X(30).

01 STREET-LINE.
02 FILLER PIC X(lO) VALUE IS SPACES.
02 STREET-OUT PIC X(20).

01 ADDRESS-LINE.
02 FILLER PIC X(lO) VALUE IS SPACES.
02 ADDRESS-OUT PIC X(3S).

01 END-LINE.
02 FILLER PIC X(lO) VALUE IS SPACES.
02 COMMENT-3 PIC X(2S)

VALUE IS 'PLEASE PAY WITHIN 30 DAYS'.
PROCEDURE DIVISION.
BEGIN.

OPEN INPUT TRANSACTION-FILE
CUSTOMER-FILE
OUTPUT BILL-FILE.

INPUT-ROUTINE.
READ TRANSACTION-FILE

AT END GO TO HALT.
MOVE CUSTOMER-NUMBER TO SAVE-NUMBER.

f\'IATCH.
READ CUSTO~ER-FILE

AT END GO TO HALT.
IF CUSTOMER-NUMBER GREATER THAN

CHARGE-ID GO TO lVATCH.
IF CUSTOMER-NUMBER LESS THAN

CHARGE-ID GO TO MESSAGE-HALT.
WRITE-MAILING-DATA.

MOVE NAME TO NAME-OUT.
WRITE BILL-PRINT FROM NAME-LINE

AFTER ADVANCING TO-NEXT-PAGE.
MOVE STREET TO STREET-OUT.
WRITE BILL-PRINT FROM STREET-LINE

AFrER ADVANCING 2 LINES.
IF STATE EQUAL TO 'MICHIGAN'

MOVE 1 TO STATE-CODE
ELSE MOVE 0 TO STATE-CODE.

MOVE MAILING TO ADDRESS-OUT.
WRITE BILL-PRINT FROM ADDRESS-LINE

AFTER ADVANCING 2 LINES.
MOVE 6 TO SPACING.

WRITE-ITEM-LINE.
MULTIPLY UNIT-PRICE BY QUANTITY

GIVING SUB-AMOUNT.
MOVE SUB-A~:OUNT TO AMOUNT.
ADD SUB-AMOUNT TO TOTAL-AMOUNT.
MOVE ITEM-NUMBER TO NUMBER-O.
MOVE ITEM-DESCRIPTION TO ITEM-O.
MOVE UNIT-PRICE TO PRICE-O.
MOVE QUANTITY TO QUANTITY-O.
WRITE BILL-PRINT FROM ITEM-LINE

AFTER ADVANCING SPACING LINES.
CHECK-NEXT-CARD.

READ TRANSACTION-FILE
AT END GO TO END-ROUTINE.

IF CUSTOMER-NUMBER EQUAL TO
SAVE-NUMBER MOVE 1 TO SPACING
GO TO WRITE-ITEM-LINE.

MOVE CUSTOMER-NUMBER TO SAVE-NUMBER.
PERFORM CALCULATIONS.
PERFORM ADVANCE.
GO TO MATCH.

MESSAGE-HALT.
DISPLAY CUSTOMER-NUMBER

'NOT FOUND IN FILE.'
UPON CONSOLE.

GO TO HALT.
END-ROUTINE.

PERFORM CALCULATIONS.
WRITE BILL-PRINT FROM END-LINE

AFTER ADVANCING 3 LINES.
HALT.

CLOSE TRANSACTION-FILE BILL-FILE
CUSTOMER-FILE.

STOP RUN.
ADVANCE.

WRITE BILL-PRINT FROM END-LINE
AFTER ADVANCING 3 LINES.

HOVE ZEROS TO TOTAL-AMOUNT.

Figure 82

369

Set SPACING

370

Figure 83

PERFORM
CALCULATIONS

10. Figure 82 shows a portion of a program used by a Michigan dealer
to calculate and print monthly bills for customers. Figure 83 is
a flow chart that is included to help you follow the program in
Figure 82. The master disk contains the numbers and mailing
information for all customers. The input cards each contain data
for one purchase by one customer with the cards in ascending
sequence by custoIT'er. More than one card may be present for each
customer, or there may be no cards for some customers since not
every customer makes a purchase each month.

b,c

The PERFORM statement is used in paragraphs CHECK-NEXT-CARD and
END-ROUTINE in this program to execute paragraph CALCULATIONS,
which you will write in the next frame. A statement that could
be used in paragraph CALCULATIONS is the:

a. GO TO statement.

b. PERFORM statement.

c. IF statement.

* * *

11. Figure 84 shows a detailed flow chart for paragraph CALCULATIONS.
Write paragraph CALCULATIONS, after checking the Data Division of
program BILLING (Figure 18) for the variable names.

* * *

371

CALCULATIONS

Move
TOTAL·AMOUNT

to
PRINT·TOTAL

record

Return
control to

main program

Figure 84

PERFORM
DISCOUNT

PERFORM
TAX

001122334 4 556 6 7
1 ... 5 •..• 0 .••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

CALCULATIONS.
MOVE TOTAL-AMOUNT TO TOTAL.
WRITE BILL-PRINT

FROM PRINT-TOTAL
AFTER ADVANCING 2 LINES.

IF TOTAL-A~OUNT IS GREATER THAN 300
PERFORM DISCOUNT.

IF STATE-CODE IS EQUAL TO 1
PERFORM TAX.

---~------------

372

12. Figure 85 gives flow charts for paragraphs TAX and DISCOUNT.
First write paragraph TAX to calculate and print the tax.

*

TAX

Calculate
4% tax as

SUB-AMOUNT
and move it to
TAX-AMOUNT

Calculate
new total

and move to
TOTAL

Return
control to

statement following
PERFORM

*

Figure 85

*

DISCOUNT

Calculate
5% discount as
SUB-AMOUNT
and move it to

DISCOUNT-AMOUNT

Calculate
new total

and move to
TOTAL

Return
control to

statement following
PERFORM

373

001122334 4 556 6 7
1 ..• 5 •••• 0 5 •••• 0 .•.. 5 •••• 0 •••• 5 •••• 0 ..•. 5 •••• 0 •.•• 5 •••• 0 •••. 5 •••• 0 •.

13.

TAX.
MULTIPLY .04 BY TOTAL-AMOUNT

GIVING SUB-A~OUNT.
MOVE SUB-AMOUNT TO TAX-AMOUNT.
WRITE BILL-PRINT FROM TAX-TOTAL

AFTER ADVANCING 1 LINE.
ADD SUB-AMOUNT TO 'I'OTAL-AMOUNT.
MOVE TOTAL-AMOUNT TO TOTAL.
wRITE BILL-PRINT FROM PRINT-TOTAL

AFTER ADVANCING 2 LINES.

(In the MULTIPLY statement, you cannot specify "GIVING TAX
AMOUNT" because the value of SUB-AMOUNT is needed for use in the
ADD statement. You cannot specify "GIVING TOTAL" in the ADD
statement because the value of TOTAL-AMOUNT is used in the wain
program.)

o 0 112 233 4 4 5 5 6 6 7
1 ... 5 •••• 0 ••.. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .•

b

374

SUBTRACT CHECK FROM ACCOUNT.
The flow chart for paragraph DISCOUNT is very similar to the one
you used in writing TAX. One crucial difference, however, is
that the amount of discount is to be subtracted from the total
bill, while the amount of tax was to be added. The effect of
execution of the statement above if the value of CHECK were 1000
and the value of ACCOUNT were 20700 would be that the value of:

a. CHECK changes to 19700

b. ACCOUNT changes to 19700

* * *

14.

{

identifier-l}
SUBTRACT

literal-l

FROM identifier-m

{

identifier-2}

literal-2

The format of the SUBTRACT statement is shown above. The rules
for usage of identifiers and literals are the same as for the ADD
statement. Which SUBTRACT statements are of the correct format?

a.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ... 5 •..• 0 •.•. 5 ..•• 0 •.•• 5 •.•. 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 ••.• 5 •••• 0 ••

SUBTRACT 10, CHECK FROM ACCOUNT.

b.

o 0 112 233 445 5 6 6 7
1 ... 5 .••• 0 5 •.•• 0 •••• 5 •.•. 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

SUBTRACT CHECK FROM 10, ACCOUNT.

c.

o 0 112 233 445 5 6 6 7
1 .•. 5 •... 0 5 ..•. 0 .••. 5 ..•. 0 •••. 5 •••• 0 .••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••. 0 ••

SUBTRACT CHECK FROM 10.

* * *
a
(~ specifies two items after FROM; £ specifies a literal after FROM.
The commas are optional.)

15. The options that you learned to use with other arithmetic
statements can also be used in the SUBTRACT statement. Write a
statement to subtract the value of PAYMENTS from the value of
BALANCE. The result of the subtraction is to be stored in NEW
BALANCE.

* * *
o 0 1 1 2 233 4 4 5 5 6 6 7
1 ..• 5 •••• 0 •.•. 5 •••• 0 •••• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

SUBTRACT PAYMENTS FROM BALANCE
GIVING NEW-BALANCE.

375

16. Now write paragraph DISCOUNT to complete program BILLING. Figure
85 gives the flow chart for this procedure.

* * *

001122334 4 556 6 7
1 .•• 5 ••.• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

376

DISCOUNT.
MULTIPLY .05 BY TOTAL-AMOUNT

GIVING SUB-AMOUNT.
MOVE SUB-A~OUNT TO DISCOUNT-AMOUNT.
WRITE BILL-PRINT

FROM DISCOUNT-TOTAL
AFTER ADVANCING 1 LINE.

SUBTRACT SUB-AMOUNT
FROM TOTAL-AMOUNT.

MOVE TOTAL-AMOUNT TO TOTAL.
WRITE BILL-PRINT FROM PRINT-TOTAL

AFTER ADVANCING 2 LINES.

(In the MULTIPLY statement, you cannot specify "GIVING DISCOUNT
~10UNT" because the value of SUB-AMOUNT is needed for use in the
ADD statement. You cannot specify "GIVING TOTAL" in the SUBTRACT
statement because the value of TOTAL-AMOUNT is used in the main
prograrr.)

17. As a programmer you will not be given a flow chart in most cases.
You will normally develop your own flow charts for programming
tasks. Your next task is to draw a flow chart for a program that
involves adding records to a disk file. Later you will be asked
to write a program, so be sure to include all of the steps in
your flow chart.

A community college that has many transfer students keeps a
record of the residence and scholastic history of each student,
along with the year he entered the college and his unique number,
on a master disk. A card file contains data on the incoming
transfer students. The data for each student is arranged on a
single card. If an input card contains a number which is already
in the file, a message containing the card number and the literal
'IS IN FILE.NOT ADDED.' is to be displayed, and a new card is to
be read. The last record in each input file is a dummy record
with the number 999999999. A new disk file is to be created
containing all old disk records and all card records. When an
end-of-file record is encountered in either file the program is
to be terminated. Both input files are in ascending sequence,
and the output file is to be produced in this sequence. Draw a
flow chart for the problem.

* * *

377

Figure 86

378

(If you are not familiar with flowcharting techniques r review the
prerequisite course Fundamentals of Programming. The paragraph names
are included only for your use in the next frame.)

The following problem incorporates the matching record techniques you
have been studying in this lesson. Since you are not asked to be
anything new in this problem r it is optional for you to code it. If
you choose not to code the solution r be certain to read it carefully
to understand how the matching records problem is solved.

18. Figure 87 shows the first three divisions for the program
represented by the flow chart created in the preceding frame.
Write a Procedure Division for the program using the flow chart
that you drew or the solution given to the preceding problem.

* * *

001122334 4 556 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IDENTIFICATION DIVISION.
PROGRAM-ID. MATCH.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT COMPUTER. IBM-1130.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT STUDENT-MASTER
ASSIGN TO DF-1-600-X.

SELECT NEW-STUDENT-MASTER
ASSIGN TO DF-2-800-X.

SELECT UPDATE-DATA
ASSIGN TO RD-1442.

DATA DIVISION.
FILE SECTION.
FD STUDENT-MASTER

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 5 RECORDS.

01 STUDENT-DATA.
02 PERSONAL.

03 YEAR-IN PIC XX.
03 STUDENT-NUM PIC X(9).
03 FILLER PIC X(35).

02 SCHOLASTIC PIC X(14).
FD NEW-STUDENT-~ASTER

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 5 RECORDS.

01 STUDENT-DATA-NEW.
02 YEAR PIC XX.
02 S-NUMBER PIC X(9).
02 FILLER PIC X(74).

FD UPDATE-DATA
LABEL RECORDS ARE OMITTED.

01 TRANSFER.
02 IN-OR-OUT PIC XX.
02 CARD-NUMBER PIC X(9).
02 FILLER PIC X(69).

Figure 87

379

o o 1 1 2 2 3 3 4 4 5 5 6 6 7
1 .•. 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

380

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT STUDENT-MASTER
UPDATE--DATA
OUTPUT NEW-STUDENT-MASTER.

READ-BOTH.
READ UPDATE-DATA

AT END GO TO SHUT.
READ-DISK

READ STUDENT-MASTER
AT END GO TO SHUT.

COMPARE.
IF CARD-NU~BER IS GREATER THAN

STUDENT-NUM
GO TO WRITE-DISK-FROM-DISK.

IF CARD-NUMBER IS EQUAL TO
STUDENT-NUM
DISPLAY CARD-NUMBER

'IS IN FILE. NOT ADDED.'
UPON CONSOLE

WRITE STUDENT-DATA-NEW
FROM STUDENT-DATA

GO TO READ-BOTH
ELSE WRITE STUDENT-DATA-NEW

FROM TRANSFER.
READ-A-CARD.

READ UPDATE-DATA
AT END GO TO SHUT.

GO TO COMPARE.
WRITE-DISK-FROM-DISK.

WRITE STUDENT-DATA-NEW
FROM STUDENT-DATA.

GO TO READ-DISK.
SHUT.

CLOSE STUDENT-MASTER
NEW-STUDE NT-PASTER
UPDATE-DATA.

STOP RUN.

(There are many possible solutions to this problem as there are to
most programming assignments. If your solution appears different and
you are not sure of its correctness, check with your advisor.)

The following program incorporates the matching record techniques you
have been studying in this lesson. Since you are not asked to do
anything new in this problem, it is optional for you to code it. If
you choose not to code the solution, be certain to read it carefully
to understand how the rr.atching records problem is solved.

19. As a programmer you may be required to update a disk by removing
records from it. The three divisions in Figure 81 could also be
used in a program to remove records. Assume now that each input
card contains the number of a student who has transferred out of
the community college; again, the last record in each input file
is a dummy record with the number 999999999. Draw a flow chart
and then write a Procedure Division to create a new disk
containing only those records on the old disk for which there are
no matching cards.

* * *

Yes

Yes

No

Figure 88

381

o 0 112 233 4 4 556 6 1
1 •.. 5 •.•• 0 ••.. 5 •.•. 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

382

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT STUDENT-MASTER
UPDATE-DATA
OUTPUT NEW-STUDENT-MASTER.

READ-CARD.
READ UPDATE-DATA

AT END GO TO SHUT.
READ-DISK

READ STUDENT-MASTER
AT END GO TO SHUT.

COMPARE.
IF CARD-NUMBER IS EQUAL TO

STUDENT-NOM
GO TO READ-CARD.

IF CARD-NUMBER IS GREATER THAN
STUDENT-NUM
WRITE STUDENT-DATA-NEW
FROM STUDENT-DATA (4)
GO TO READ-TAPE.

DISPLAY CARD-NUMBER
'NOT IN MASTER FILE.'
UPON CONSOLE.

READ UPDATE-DATA
AT END GO TO SHUT.

GO TO COMPARE.
SHUT.

CLOSE STUDENT-MASTER
NEW-STUDENT-~ASTER

UPDATE-DATA.
STOP RUN.

SUMMARY:

The two procedures that you have just written could easily have
been combined into a single, more complex, prograw. It is frequently
desirable to add some records to a disk file, delete other records,
and update or change still other records. This can be done by using
a field in the transaction file to hold a code such as 1 for add, 2
for delete, and 3 for change. A different procedure would then te
fOllowed for each code. Branching to different procedures would te
accomplished after testing the code field each time a transaction
card is read. The logic in this lesson was kept simple so that you
could concentrate on one specific reason for matching records at a
tiroe.

In addition to matching records you have learned to use the FROM
option of the WRITE statement as a substitute for writing a MOVE
statement, the PERFORM statement to transfer control temporarily, and
the SUBTRACT statement.

END OF LESSON 18

383

THIS ProE INTENTIONALLY LEFT BLANK

384

LESSON 19

385

386

LESSON 19 - CONDITIONAL STATEMENTS (1)

I NTRODUcr I ON

In preceding lessons you have learned to specify mutually
exclusive paths of control based on such circumstances as the number
in the record in the card file being greater than the number in the
record in the disk file. This circumstance is represented by the
following expression:

CARD-NUMBER GREATER THAN DISK-NUMBER

This expression is tested in an IF statement at some point in the
program and the appropriate path of control will be selected
depending on whether the expression is true or false. Expressions
such as the one shown above are called test conditions because they
are tested to determine whether they are true or false.

In this lesson you will learn to specify various kinds of test
conditions. Specific COBOL language features that you will learn in
this lesson are:

Relational operators
Relational conditions
Valid comparisons
Picture character S
NOT logical operator

This lesson will require approximately one half hour.

1.

o 0 112 2 3 3 445 5 6 6 7
1 ... 5 ..•. 0 .••. 5 .•.. 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

a

IF STUDENT-NUMBER EQUAL TO ID-NUMBER
GO TO READ-CARD.

The COBOL staterrent above specifies a test condition. The test
condition is:

a. STUDENT-NU~~ER EQUAL TO ID-NUMBER

b. IF STUDENT-NUMBER EQUAL TO ID-NUMBER

c. GO TO READ-CARD

* * *

(b is the reserved word IF plus the condition.)

Relational and Logical Operators

r------------- -------------------------------,
I Type of
I Operation
1-------------
I
I
I Relational
I
I
1-------------
I
I
I
I Logical
I
I
I L ____________ _

Operator
(operation symbol)

IS GREATER THAN

IS LESS THAN

IS EQUAL TO

AND

NOT

Figure 89

Operation I

Is greater than

Is less than

Is equal to

Logical inclusive OR
(either or both are true)

Logical conjunction
(both are true)

Logical negation

I

______________________________ -J

2. The test condition STUDENT-NUMBER EQUAL TO ID-NUMBER contains a
relational operator. Figure 89 shows that the relational
operator in the test condition above is •••••••••

* * *
EQUAL TO

387

3.

\

identifier-1 \
literal-1
arithmetic
expression-1

relational-operator

TOTAL GREATER THAN 1000

Figure 90

r identifier-2)
l

literal-2
arithmetic
expression-2

A test condition containing a single relational operator is
called a relational condition. The form of a relational
condition and an example of a test condition are shown above.
The test condition is:

a. a relational condition.

b. used to compare the value of a variable with the value of a
literal.

c. used to specify a relationship between two items.

* * *
All of these

4. TOTAL GREATER THAN 1000

true

5.

The result of a relational condition is either true or false. If
the value of TOTAL were 2000, the result of the relational
condition above would be •••••••••

* * *

o 0 112 2 3 3 445 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

388

IF COUNTER LESS THAN 1000
GO TO READ1
ELSE GO TO READ2.

The appearance of a test condition in an IF statement causes the
test condition to be evaluated. When the IF statement above is
executed:

a. control will transfer to READ1 if COUNTER is equal to 2000.

b. the specified relational condition will be evaluated.

c. if COUNTER is equal to 500, the result of the relational
condition will be false.

* * *

6. AMOUNT GREATER THAN
MAXIMUM-BALANCE

Write a statement to cause evaluation of the test condition
above. Specify that, if the result is true, the paragraph with
the name REJECT is to be performed and that, if the result is
false, the next sentence is to be executed. The PERFORM
statement is used to depart from the normal sequence of
procedures to execute a statement(s) a specified number of times
until a predetermined condition is satisfied.

* * *

001122334 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

7.

IF AMOUNT GREATER THAN MAXIMUM-BALANCE
PERFORM REJECT.

first-operand relational-operator

relational-condition

Figure 91

second-operand

According to the diagram above, in the relational condition

SALARY-CODE EQUAL TO 0

the first operand is •••••••• and the second operand is

SALARY-CODE
o

* * *

389

8. Figure 92 shows the operands that can be used in valid relational
conditions. Operands in a relational condition can be:

Types' of Valid Comparisons

~
Group Elementary

First Operand Alphanumeric Alphabetic Numeric

Group C C C C

Alphanumeric C C C C

Alphabetic C C C I
Elementary

Numeric C C I N

Literal C C C C

C-Compared logically (one character at a time, according
to collating sequence shown earlier)

N-compared algebraically (numeric values are compared)
I-Invalid comparison

Example:

IF TOTAL GREATER THAN MAXIMUM GO TO MESSAGE

first operand, operator second, operand
'--- ---'

condition

Explanation:

Literal

C

C

C

C

I

To use this chart find the data type (determined by the
picture) of the first operand in the column headed First Operand.
Then find the data type of the second operand across the top of
the figure opposite Second Operand. Extend imaginary lines into
the figure from the data types of the first and second operands.
In the block where these two lines intersect is a letter that
tells you how the values are compared.

Figure 92

a. group variables.

b. literals.

* * *
Either
(A more comprehensive table of permissible comparisons can be found
in the Language Specifications Manual.

390

9. Figure 92 indicates that a valid relational condition can
contain:

a. two literals as operands.

b. an alphanumeric operand and an alphabetic operand.

* * *
b

10.

o 0 112 233 4 4 556 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 50 ••• 0 •••• 5 •••• 0 ••

a, c

WORKING-STORAGE SECTION.
01 WORK-RECORD.

02 SHOP-NAME PIC A(10).
02 WORK-NUMBER PIC XXXXX.
02 EMPLOYEE-TIME PIC 999V99.
02 WORK-RATE PIC 999V99.

01 SECOND-RECORD.
02 NAME PIC A(10).
02 WORKNUMBER PIC XXXXX.
02 TIME-EMPLOYEE PIC 999V99.
02 RATE-WORK PIC 999V99.

According to the Data Division entries above and Figure 92, which
of the following is a valid comparison?

a. WORK- NUMBER GREATER THAN
WORKNUl-lBER

b. NAME LESS THAN WORK-RATE

c. WORK-NUMBER EQUAL TO NAME

* * *

literal-l fidentifier-i!

1 ar i thmetic
expression-i

relational-operator

Figure 93

f identifier-

2j

l

tliteral-2
arithmetic
expression-2

'lhe form of the relational condition above indicates that either
operand can be an arithmetic expression. In this context, arithmetic
expression refers to a combination of numeric variables, numeric
literals, and arithmetic operators. This type of relational
condition will not be covered here because it is generally best to
have arithmetic operations performed before the relational condition
is to be evaluated.

391

11.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

392

a

WORKING-STORAGE SECTION.
01 WORK-RECORD.

02 SHOP-NAME PIC A(10).
02 WORK-NUMBER PIC XXXXX.
02 EMPLOYEE-TIME PIC 999V99.
02 WORK-RATE PIC 999V99.

01 SECOND-RECORD.
02 NAME PIC A(10).
02 WORKNUMBER PIC XXXXX.
02 TIME-EMPLOYEE PIC 999V99.
02 RATE-WORK PIC 999V99.

There are two types of relational conditions: comparison of
numeric operands and cumparison of nonnumeric operands. Numeric
operands are compared algebraically. For example, the value 02
would be greater than -10, and -10 would be greater than -11.
According to the Data Division entries above, which of the
following will be compared algebraically?

a. EMPLOYEE-TIME GREATER THAN
WORK-RATE

h. WORK-NUMBER EQUAL TO
WORKNUMBER

c. RATE-WORK LESS THAN NAME

* * *

(If a relational condition contains a numeric operand and a
nonnumeric operand, it is treated as a nonnumeric comparison.)

12. In order for the value of a numeric variable to include a sign,
the letter S must be specified preceding the first 9 in the
picture for that variable. The S, like the V, does not represent
a character position. write a PICTURE clause that would permit a
variable to have integer values from -12 to +12.

* * *
PIC S99.
(When a relational condition is evaluated, any unsigned value other
than zero is considered positive. Zero is a unique value, and any
preceding sign is ignored.)

13.

o 0 1 1 2 2 3 3 4 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

WORKING-STORAGE SECTION.
77 COMP-NUMBER PIC S999V99.
77 REGIONAL-TOTAL PIC S999V99.
01 RECORD-l.

02 RECORD-NUMBER PIC XXXXX.
02 RECORD-TOTAL PIC S999V99.
02 RECORD-BALANCE PIC S999V99.
02 BALANCE-LIMIT PIC S999V99.

r-------------------------------------- -------------------------------,
1 Variables Values 1
1-------------------------------------- -------------------------------1
1 COMP-NUMBER -997/01 1
1 REGIONAL-TOTAL +903/65 1
1 RECORD-NUMBER 77321 I
I RECORD-TOTAL +336/70 1
1 RECORD-BALANCE +000/00 1
I BALANCE-LIMIT -000/00 I L______________________________________ _ _____________________________ ~

Figure 94

Refer to the pictures and values above and determine whether the
result of each relational condition below is true or false.

1) RECORD-TOTAL LESS THAN
COMP-NUMBER

2) REGIONAL-TOTAL GREATER THAN
COMP-NUMBER

3) RECORD-BALANCE GREATER THAN
BALANCE-LIMIT

* * *
1) false
2) true
3) false

393

14.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

394

b, c

WORKING-STORAGE SECTION.
77 COMP-NUMBER PIC S999V99.
77 REGIONAL-TOTAL PIC S999V99.
01 RECORD-1.

02 RECORD-NUMBER PIC XXXXX.
02 RECORD-TOTAL PIC 999.
02 RECORD-IDENT PIC A(4).

The second type of relational condition is the comparison of
nonnumeric operands. Any comparison which includes a nonnumeric
operand is a nonnumeric comparison. Nonnumeric comparisons are
made with respect to the EBCDIC collating sequence. According to
the data description entries above, which of the following
comparisons will be made with respect to the collating sequence?

a. REGIONAL-TOTAL EQUAL TO
COMP-NUMBER

b. RECORD-TOTAL GREATER THAN
RECORD-NUMBER

c. RECORD-IDENT LESS THAN
RECORD-NUMBER

* * *

(Any character in the picture of a variable other than a 9, a V, or
an S indicates that the variable is nonnumeric. Any edited variable
with a $ or • in its picture is nonnumeric, as are variables with Xes
or A's.)

15. Figure 7 shows the collating sequence of the COBOL character set
in descending order. The first character in the list is
considered to have the highest value; the last character is
considered to have the lowest value. If the value of MARK were
5, the result of the relational condition

~JffiK LESS THAN 'A'

would be •••••••••

* * *
false

16. If the nonnumeric operands of a relational condition are the same
length, the characters in corresponding positions are compared
from left to right. If an unequal pair of characters is
encountered, the operand containing the character higher in the
collating sequence is considered to be the greater operand.

NAME1 EQUAL TO NAME2

When the relational condition above is ~valuated. NAME1 has the
value BACKER and NAME2 has the value BARKER. According to Figure
1, the result will be:

a. true

b. false because the value of NAME1 is greater than the value of
NAME2.

c. false because the value of NAME2 is greater than the value of
NAME1.

* * *
c (Figure 7 shows that the letter Z has the highest value of the
letters of the alphabet and that A has the lowest.)

17. NAME1 GREATER THAN NAME2

When a relational condition with nonnumeric operands of unequal
size is evaluated, the shorter operand is padded with blanks on
the right to make it equal in length to the longer operand. Then
the operands are compared in the normal way beginning with the
leftmost characters. When the relational condition above is
evaluated, the value of NAME1 is CARR and the value of NAME2 is
CARVER. Figure 7 indicates that the result of this relational
condition will be •••••••••

* * *
false

18.

o 0 112 233 4 4 5 5 6 6 7
1 .•• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

01 TRANSACT-RECORD.
02 CLIENT-NUMBER PIC X(5).
02 ITEM-ID PIC A(5).
02 UNIT-PRICE PIC 999V99.
02 QUANTITY PIC 999.
02 ITEM-DESCRIPTION PIC X(62).

01 TRANSACTIONS.
02 CLIENT-ID PIC XeS).
02 PART-ID PIC A(S).
02 AMOUNT-EACH PIC 999V99.
02 NUMBER-ORDERED PIC 999.
02 PART-DESCRIPTION PIC X(62).

395

r------------------- -------------------T---------------l
I Variables Values Variables Values I
1------------------- -------------------~---------------I

CLIENT-ID j 47762 I I CLIENT-NUMBER 55471
AACFG
077/25

I ITEt-:-ID PART-ID XAACN I
I UNIT-PRICE
I QUANTITY 500

AMOUNT-EACH 172/50 I
NUMBER-ORDERED 025 I l __________________ _ ___________________ __ _____________ J

Figure 95

Refer to the pictures and values above and match the word or
words below with the correct relational condition. (You may also
refer to Figures 7 and 92 if necessary.)

1) CLIENT-NUMBER GREATER THAN
CLIENT-ID

2) PART-ID LESS THAN QUANTITY

3) UNIT-PRICE GREATER THAN
AMOUNT-EACH

4) NUMBER-ORDERED LESS THAN
QUANTITY

a. Invalid

b. Compared algebraically

c. Compared with respect to the collating sequence

d. True

e. False

* * *
1) c, d
2) a (An alphabetic item cannot be compared with a numeric item.)
3) b, e
4) b, d

19. Write an IF statement to specify that if ACCOUNT is greater than
BASE, control is to be transferred to a routine called CALCULATE.
If ACCOUNT is equal to or less than BASE, another record is to be
read from INFILE. When the last card has been read from INFILE,
control is to transfer to FINISH.

* * *
001122334 4 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.• 0 ••

396

IF ACCOUNT GREATER THAN BASE
GO TO CALCULATE
ELSE READ INFI LE

AT END GO TO FINISH.

20.

o 0 112 233 4 4 556 6 7
1 ..• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b, c

IF ACCOUNT NOT GREATER THAN BASE
READ INFILE AT END GO TO FINISH
ELSE GO TO CALCULATE.

'Ihe IF statement you wrote in the previous frame could also be
written as shown above. NOT is a logical operator that causes
logical negation. In the IF statement above, the relational
condition will be true if ACCOUNT is not greater than BASE.

PRICE NOT EQUAL TO LIST-PRICE

The relational condition above will be true if PRICE is:

a. equal to LIST-PRICE.

b. greater than LIST-PRICE.

c. less than LIST-PRICE.

* * *

21. The logical operator NOT can be used with any relational
operator. It must always be preceded by and followed by a space.
Write a statement using the NOT logical operator to specify that
if PART-NUMBER is equal to or greater than ORDER-NUMBER, the
record STATEMENT is to be written.

* * *
0011223 3 4 4 556 6 7
1 ••• 5 .••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IF PART-NU~illER NOT LESS THAN
ORDER-NUMBER WRITE STATEMENT.

You know that an IF statement causes a relational condition to be
evaluated and the appropriate path of control to be selected based on
whether the relational condition is true or false. As a programmer
you might be required to write a program in which the basis for the
selection of the appropriate path of control will depend on a set of
circumstances instead of a single relational condition.. A possible
solution is to use a compound condition in a single IF statement.

SUMMARY:

You have now completed Lesson 19 in which you have learned to specify
various types of conditions in IF statements. You have learned to use a
relational condition to specify a relationship between two variables or
a variable and a literal. You have learned to use the logical operator
NOT to specify negation. The class condition, which tests whether a
variable is alphabetic or numeric, and the sign condition, which tests
whether a numeric variable is positive, negative, or zero, will not be
taught in this course. For information on the uses of these conditions,
refer to the Language Specifications Manual after completing this
course.

END OF LESSON 19

397

THIS PAGE INTENTIONALLY LEFT BLANK

398

LESSON 20

399

LESSON 20 - CONDITIONAL STATEMENTS (2)

INTRODUCTION

In this lesson you will learn to use the logical operators AND and OR
to specify compound conditions. You will also learn to use condit ion
name conditions to test a variable that has one of a specific set of
variables.

400

Specific COBOL language features you will learn in this lesson are:

AND and OR logical operators
Compound conditions
Condition-name conditions
Level 88

This lesson will require approximately one half hour.

1. A compound condition is formed by using the logical operators
other than NOT. Figure 89 includes a list of the logical
operators. The logical operators that can be used to form a
compound condition are •••••••••

* * *
OR and AND

2.

o 0 112 2 3 344 5 5 6 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .•.• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IF COST GREATER THAN 100 AND
SYMBOL EQUAL TO IDENTIFICATION
GO TO FINISH.

A compound condition can be two relational conditions connected
by OR or AND. The IF statement above contains the compound
condition

COST GREATER THAN 100 AND SYMBOL
EQUAL TO IDENTIFICATION

which, when evaluated, will give one result.

o 0 112 2 3 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IF NAMEl EQUAL TO NAME2 AND
ITEM EQUAL TO 10 PERFORM READ1.

The compound condition in the IF statement above:

a. is NAMEl EQUAL TO NAME2.

b. will give two results when evaluated.

* * *
Neither (The cowpound condition is NAMEl EQUAL TO NAME2 AND ITEM
EQUAL TO 10, which will give one result when evaluated.>

401

3.

001122334 4 556 6 7
1 •.• 5 •••• O •••• 5 •••. o •••• 5 •••• o •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

a

402

IF NAMEl EQUAL TO NAME2 AND
ITEM EQUAL TO 10 PERFORM READ1.

False

False

PERFORM READl

Figure 96

The logical operator AND can connect two relational conditions to
form one compound condition that will give one result when
evaluated. The flow chart above diagrams the action specified by
the IF statement. As the word AND implies, the flow chart shows
that in order for a compound condition specifying AND to be true:

a. both relational conditions must be true.

b. either the first or the second relational condition must be
true.

* * *

4.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

IF Nhl'lEl EQUAL TO NAME2 AND
ITEM EQUAL TO 10 PERFORM READ1.

When a compound condition consists of two relational conditions
connected by the logical operator AND, the relational conditions
are evaluated first. If both relational conditions are true, the
compound condition is true; otherwise it is false. When the
statement above is executed N~lEl is equal to NAME2 and ITEM is
equal to 5. The next statement executed will be:

a. the first statement in paragraph READ1.

b. the first statement in the sentence sequentially following
the IF statement.

* * *

5. Write a single IF statement to specify that if GROSS is greater
than 200 and if DEPENDENTS is not equal to zero, the value 1 is
to be moved to INDICATOR, otherwise the value 0 is to be moved to
INDICATOR.

* * *
001 1 2 2 3 344 556 6 7
1 ... 5 •••• 0 •••• 5 •••• O •••• 5 •••• o •••• 5 •••.• 0 •••• 5 •••• 0 .•••• 5 •••• 0 •••• 5 •••• 0 ••

IF GROSS GREATER THAN 200 AND
DEPENDENTS NOT EQUAL TO 0
MOVE 1 TO INDICATOR
ELSE ~OVE 0 TO INDICATOR.

(The figurative constant ZERO could be used instead of the symbol 0.)

6.

c

The logical operator OR
form a compound condition.
using OR is:

can be used in the same way as AND to
An example of a compound condition

a. NUMBER-lOR GREATER THAN
NUMBER-2

b. OR NUMBER-l GREATER THAN
NUMBER-2

c. NUMBER-l GREATER THAN
NUMBER-2 OR SWITCH EQUAL TO 1

* * *

403

7.

001122334 4 5 5 6 6 7
1 ••• 5 •••• O •••• 5 •••• O •••• 5 •••• O •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

a

404

IF NUMBER-l GREATER THAN NUMBER-2
OR SWITCH EQUAL. TO 1
ADD 1 TO NEW-COUNT.

True

False

Add I to
NEW-COUNT

Figure 97

The flow chart above diagrams the action specified by the
statement. As the word OR implies, a compound condition
specifying OR will be true:

a. if either the first relational condition or the second
relational condition is true.

b. only if both relational conditions are true.

* * *

8. A compound condition containing the logical operator OR will be
true if either the first or second or both relational conditions
are true. Which of the following statements specifies that the
value 1 will be moved to SWITCH-A if A-NUMBER or B-NUMBER or both
equal 2?

a.

o 0 112 2 3 344 5 5 6 6 7
1 .•. 5 •.•• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b.

IF A-NUMBER EQUAL TO 2 AND
B-NUMBER EQUAL TO 2
MOVE 1 TO SWITCH-A.

o 0 112 2 3 344 556 6 7
1 .•. 5 ...• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b

9.

IF A-NUMBER EQUAL TO 2 OR
B-NUMBER EQUAL TO 2
MOVE 1 TO SWITCH-A.

* * *

o 0 1 1 2 2 3 3 445 5 6 6 7
1 ... 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •..• 0 ••

IF GROSS LESS THAN 500 OR
PAYCODE EQUAL TO 1 PERFORM PAY-2
ELSE PERFORM PAY-1.

When the statement above is executed and GROSS has the value:

1) 250 and PAYCODE has the value 1, the routine called ·
will be performed.

2) 250 and PAYCODE has the value 0, the routine called ·
will be performed.

3) 600 and PAYCODE has the value 1, the routine called ·
will be performed.

4) 600 and PAYCODE has the value 2, the routine called ·
will be performed.

* * *
1) PAY-2
2) PAY-2
3) PAY-2
4) PAY-1

405

10. write a statement to specify that if TOTAL-SALES exceeds 5000 or
CUSTOMER-CODE is equal to 1, or both, control will transfer to
PREFERRED. Otherwise, 1 is to be added to REJECTS.

* * *
0011223 3 4 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

11.

IF TOTAL-SALES GREATER THAN 5000 OR
CUSTOMER-CODE EQUAL TO 1
GO TO PREFERRED
ELSE ADD 1 TO REJECTS.

o 0 1 1 2 2 3 344 556 6 7
1 ••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

406

IF CA EQUAL TO B OR C EQUAL TO D)
AND CW EQUAL TO X OR Y EQUAL TO Z)
GO TO EQUATE
ELSE GO TO BEGIN.

A compound condition can be two or more compound conditions
connected by AND or OR. An example of an IF statement containing
this type of compound condition 1S shown above. When the
statement above is executed the simplest compound conditions will
be evaluated first, then the results will be used to arrive at
the final result based on whether AND or OR is used. When the IF
statement above is executed, A is equal to Band C is equal to D.
W is not equal to X and Y is not equal to Z. After the IF
statement is executed, control will be transferred to a routine
called •••••••••

* * *
BEGIN
(An important consideration in writing
order in which the conditions involved
the order of evaluation is given
Manual under Compound Conditions.)

complex test conditions is the
are evaluated. Information on
in the Language Specifications

The relational condition
of test condition that you
condition-name condition.
is used in an IF statement
specific value or one of a

is a type of test condition. Another type
will find useful in programming is the

In general, the condition-name condition
that tests whether a variable has a

specific set of values.

12.

o 0 112 2 3 344 5 5 6 6 7
1 ... 5 0 ••.• 5 ••.• 0 •••• 5 .••• 0 •••. 5 .••• 0 •••• 5 .••. 0 ••.• 5 ••.• 0 •••. 5 .••• 0 ••

01 EMPLOYEE-RECORD.
02 EMPLOYEE-NUMBER
02 EMPLOYEE-NAME
02 ~ARITAL-STATUS
02 DEPENDENTS
02 PAY-RATE
02 PAY-CODE

In the partial record description above, PAY-CODE will always
contain one of the values 1, 2, or 3. These values indicate
whether the employee is paid by the hour, week, or month,
respectively. The relational condition

PAY-CODE EQUAL TO 1

could be used in an IF statement to determine whether an employee
is paid by the hour. A variation of the IF statement that might
also be used for this purpose is shown below.

o 0 112 2 3 3 445 5 6 6 7
1 ... 5 •... 0 5 ..•. 0 •••• 5 .••. 0 •••• 5 •.•• 0 •••• 5 •••• 0 •.•• 5 •••• 0 ••.• 5 •••. 0 •.

IF HOURLY GO TO HOUR-RATE.

In this example HOURLY is:

a. equivalent to PAY-CODE EQUAL TO 1.

b. another way of expressing a relational condition.

* * *
Both

407

13.

0011223 344 556 6 7
1 ... 5 0 5 •..• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 ••

IF HOURLY GO TO HOUR-RATE.

As used in the statement above, HOURLY is the name of a condition
that expresses the relational condition PAY-CODE EQUAL TO 1. If
PAY-CODE contains the value 2, the employee is paid by the week.
The condition in either of the following statements could be used
to determine whether the employee is paid by the week.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ..• 5 ..•• 0 •... 5 .••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IF PAY-CODE EQUAL TO 2
GO TO WEEK-RATE.

IF WEEKLY GO TO WEEK-RATE.

In the statements above:

a. WEEKLY is a relational condition.

b. PAY-CODE is a condition name.

c. PAY-CODE is equivalent to WEEKLY.

* * *
None of these (WEEKLY is a condition-name condition that is
equivalent to the relational condition PAY-CODE EQUAL TO 2.)

14.

o 0 112 2 3 344 5 5 6 6 7
1 ... 5 •.•• 0 •••• 5 ••.• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

408

02 PAY-CODE PIC 9.
88 HOURLY VALUE IS 1.
88 WEEKLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

When a condition-name condition is to be used in place of a
relational condition, the condition names must be described in
the Data Division, assigned specific values, and associated with
their related variable. The data description entries above show
how PAY-CODE is associated with the condition names to be used to
represent its values. This example shows that:

a. condition names have the level number 88.

b. the VALUE clause is used to assign to the condition name the
value the name is to represent.

* * *
Both
(Each level 88 entry must contain a VALUE clause, even if it is
written in the File Section. The conditional variable is an
elementary item, and as such must be defined with a PICTURE clause.)

You have now learned all of the level numbers that are included in
this course. Figure 98 in your Programmed Instruction
Illustrations is a summary of level numbers for your use at any time.

Level Numbers

r------------ ---,
1 Number In Area Purpose 1
1------------ ---1
1 01 A Record description entries. 1
1------------ --1
1 02 thru 49 A or B Subdivision of level 01 entries. 1
1 May be group or elementary items. 1
1------------ ---1
1 77 A Independent data item 1
1 (Not a subdivision; not subdivided) 1
1------------ ---1
1 88 A or B Condition name (must use the VALUE clause) 1 L ___________ _ __ ___ -l

15.

For additional information on level numbers and their uses,
consult the Language Specifications Manual.

Figure 98

o 0 112 2 3 344 5 5 6 6 7
1 ..• 5 ••.• 0 •••• 5 •••• 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

a, b

02 PAY-CODE PIC 9 •.
88 HOURLY VALUE IS 1.
88 WEEKLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

The entry above defines PAY-CODE as a conditional variable that
will contain the values represented by the associated condition
names. This example shows that:

a. the conditional variable is defined with a PICTURE clause.

b. the conditional
assigned to its
clause.

variable
associated

will contain one
condition names

c. PAY-CODE is a condition name.

* * *

of the values
by the VALUE

409

16. The input area in a program contains the conditional variable
MARITAL-STATUS. The column in a card that corresponds to this
variable will contain M, S, or D indicating that the employee is
married, single, or divorced, respectively. As is the case
wherever non-numeric constants are used, such constants should be
enclosed in quotation marks when used in VALUE clauses. Example:
'M'. Which of the following correctly shows how MARITAL-STATUS
could be associated with appropriate condition names?

a.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ... 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b.

02 MARITAL-STATUS PIC A.
88 'M' VALUE IS MARRIED.
88 IS' VALUE IS SINGLE.
88 '0' VALUE IS DIVORCED.

o 0 112 233 4 4 5 5 6 6 7
1 .•. 5 •••. 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5~ ••• 0 •••• 5 •••• 0 ••

c.

02 MARITAL-STATUS PIC A.
03 ~ARRIED VALUE IS 'M'.
03 SINGLE VALUE IS'S'.
03 DIVORCED VALUE IS '0'.

o 0 112 233 445 5 6 6 7
1 .•• 5 .•.• 0 •••• 5 •.•. 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

d.

02 MARITAL-STATUS PIC A.
88 MARRIED VALUE IS 'M'.
88 SINGLE VALUE IS'S'.
88 DIVORCED VALUE IS '0'.

o 0 112 233 445 5 6 6 7
1 .•. 5 .••• 0 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c

410

02 MARITAL-STATUS.
88 MARRIED PIC A.
88 SINGLE PIC A.
88 DIVORCED PIC A.

* * *

17. JOB-TYPE is a level 02 elementary variable that will contain one
of the values 1, 2, or 3, specifying a workshop worker, an office
worker, or a factory worker, respectively. Write the data
description entry for JOB-TYPE and associate with it appropriate
condition names that can be used to represent its values.

* * *
0011223 3 4 4 5 5 6 6 7
1 •.• 5 •••• 0 •••• 5 ..•. 0 •••• 5 •••• 0 •••• 5 .••• 0 •.•• 5 •••• 0 •••• 5 •••. 0 •••• 5 •..• 0 •.

02 JOB-TYPE PIC 9.
88 WORKSHOP-WORKER VALUE IS 1.
88 OFFICE-WORKER VALUE IS 2.
88 FACTORY-WORKER VALUE IS 3.

18. Using the data description entries you wrote in the preceding
frame, write the statement(s) necessary to specify that if the
employee is a workshop worker, control will transfer to a routine
called WORKSHOP: if he is an office worker, control will transfer
to a routine called OFFICE: if he is a factory worker, control is
to go to the next statement in sequence.

* * *
o 0 112 2 3 3 4 4 556 6 7
1 ..• 5 ..•. 0 •... 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 ••.• 5 •.•. 0 ..

IF WORKSHOP-WORKER GO TO WORKSHOP.
IF OFFICE-WORKER GO TO OFFICE.

411

19.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ... 5 .•.• 0 ••.. 5 .••. 0 .••. 5 •••• 0 •••• 5 •••• 0 •••. 5 .••. 0 ..•• 5 •••. 0 •••. 5 •••. 0 •.

02 PART-NUMBER PIC 9999.
88 S~ALL VALUES ARE 0000 THRU 0299.
88 MED VALUES ARE 0300 THRU 0699.
88 LARGE VALUES ARE 0700 THRU 1000.

IF SMALL GO TO SMALL-SCALE.

In a preceding frame you wrote data description entries to cause
single values to be represented by condition names. It is also
possible to represent a range of values with a condition name ty
using the THRU option of the VALUE clause. The data description
entries above show that the conditional variable PART-NUMBER can
contain any value from 0000 to 1000. Within this range of
values, three ranges are defined and represented by condition
names. According to the data description entries for PART
NUMBER, when the IF statement above is executed, control will
transfer to a routine called SMALL-SCALE if PART-NUMBER contains
any of the values 0000 through 0299.

o 0 112 2 3 344 556 6 7
1 .•. 5 0 ..•. 5 •••. 0 •.•• 5 •••• 0 •••• 5 ••.• 0 •••• 5 •••. 0 •••• 5 ••.• 0 •••. 5 ...• 0 •.

412

IF LARGE ADD 2 TO FACTOR.

According to the data description entries for PART-NUMBER, when
the statement above is executed the value of FACTOR will be
increased by 2 if PART-NUMBER contains the value:

a. 0500.

b. 0700.

c. 0800.

d. 1000.

* * *
b, c, d (VALUES ARE is equivalent to VALUE IS; the phrases are
interchangeable when they are used with the THRU option. The words
IS and ARE are optional and may be omitted from any VALUE clause.>

20. GRADE is a level 02 variable that will contain values from 000 to
100. The values from 000 to 059 are failing grades, the values
060 through 069 are poor, the values 070 through 079 are passing,
the values 080 through 089 are good, and the values 090 through
100 are excellent. Write the data description entry for GRADE
and associate with it appropriate condition names that can be
used to represent its values.

* * *
0011223 344 5 5 6 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

02 GRADE PIC 999.
88 FAILING VALUES ARE 000 THRU 059.
88 POOR VALUES ARE 060 THRU 069.
88 PASSING VALUES ARE 070 THRU 079.
88 GOOD VALUES ARE 080 THRU 089.
88 EXCELLENT VALUES ARE 090 THRU 100.

21. Refer to the data description entries you wrote for the last
frame and write a statement to specify that if the value of GRADE
is less than 060, a routine called ACTION is to be performed.

* * *
001 1 223 344 5 5 6 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

IF FAILING PERFORM ACTION.

0011223 344 5 5 6 6 7
1 ..• 5 .•.• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

(IF GRADE LESS THAN 60 PERFORM ACTION

would also be correct.)

SUMMARY:

You have expanded your flexibility in testing capabilities by
learning how to specify compound conditions. You have also learned how
to test a variable that has one of a specific set of values.

END OF LESSON 20

413

THIS PAGE INTENTIONALLY LEFT BLANK

414

LESSON 21

415

416

LESSON 21 - CHANNEL SKIPPING AND ARITHMETIC

.INTRODUcrION

As a COBOL programmer you may write programs for business data
processing problems that specify precise arrangement of output data.
In previous lessons you learned to specify vertical and horizontal
spacing to meet output requirements. When output data is to be
recorded on preprinted forms, such as checks or invoices, it is often
necessary to use the technique called channel skipping. In this
lesson you will learn to specify channel skipping in the AFTER
ADVANCING option of the WRITE statement.

Business data-processing problems usually require arithmetic
calculations. You have already learned to specify addition,
multiplication, and subtraction. In this lesson you will learn to
specify division. You will also learn to specify combinations of the
four basic operations in a single statement.

Specific COBOL language features that you will learn to use in
this lesson are:

DIVIDE statement
COMPUTE statement
Channel skipping

This lesson will require
hour.

approximately three quarters of an

1. The COBOL statement used to specify division is the DIVIDE
statement. The simplest form of the DIVIDE statement is:

c

2.

{

identifier-l }
DIVIDE

numeric-literal-1
INTO identifier-2

The result of a DIVIDE statement, the
according to the rules for a MULTIPLY,
statement. The quotient is stored in:

a. identifier-1

b. numeric-literal-l

c. identifier-2

* * *

quotient,
SUBTRACT,

is stored
or ADD

o 0 112 233 445 5 6 6 7
1 ..• 5 .•.. 0 ••.• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

DIVIDE 5 INTO TOTAL.

The DIVIDE statement above specifies the same operation as
TOTAL/5. The COBOL statement used to express the operation X/y

is:

a.

o 0 1 1 2 2 3 344 5 5 6 6 7
1 ..• 5 .••. 0 ••.• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5~ ••• 0 ••

DIVIDE X INTO Y.

b.

o 0 112 233 4 4 5 5 6 6 7
1 ... 5 ..•• 0 •... 5 .•.. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 .••. 0 ••

DIVIDE X BY Y.

c.

o 0 112 2 3 3 445 5 6 6 7
1 .•. 5 .••• 0 ••.• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

DIVIDE Y INTO X.

* * *

c

417

3. Write a DIVIDE statement to specify that the value of RESULT is
to be divided by the value of FACTOR.

* * *
001122334 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

DIVIDE FACTOR INTO RESULT.

4.

o 0 112 2 3 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .•

d

5.

77 FACTOR PIC 99.
77 RESULT PIC 999V99.

DIVIDE FACTOR INTO RESULT.

The result of a DIVIDE statement is padded or truncated as
necessary when it is stored in the appropriate variable. If the
values of FACTOR and RESULT are 02 and 12500, respectively, after
execution of the DIVIDE statement above, the value stored in:

a. FACTOR will be 06250.

b. RESULT will be 62500.

c. FACTOR will be 62500.

d. RESULT will be 06250.

* * *

o 0 112 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

0066

418

77 DIVISOR PIC 99.
77 DIVIDEND PIC 99V99.

DIVIDE DIVISOR INTO DIVIDEND.

The values of DIVISOR and DIVIDEND are 03 and 0200, respectively.
After execution of the DIVIDE statement above, the value stored
in DIVIDEND will be •••••••••

* * *

6.

0011223 344 5 5 6 6 7
1 ••• 5 •••• 0 .•.. 5 •••• 0 .••• 5 •••• 0 •••• 5 •••• 0 •.•. 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 ••

77 BALANCE PIC 9999V99.
77 MONTHS PIC 9V9.

The ROUNDED option is used in a DIVIDE statement to specify that
the quotient is to be rounded. Write a statement to divide
BALANCE by MONTHS and round the quotient to the nearest cent.
(The ROUNDED option follows the name of the variable in which the
result is to be stored.)

* * *
001 1 2 2 3 3 4 4 5 5 6 6 7
1 ... 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••.. 5 •••• 0 ..

7.

Both

DIVIDE MONTHS INTO BALANCE ROUNDED.

DIVIDE lidentifier-l }

numeric-literal-l {

identifier- 2 }

numeric-literal-2

GIVING identifier-3

The GIVING option can also be used in a DIVIDE statement as shown
above. You would expect that when the form of the DIVIDE
statement shown above is used, the value of:

a. identifier-2 is unchanged upon exection of the statement.

b. the quotient
identifier-3.

*

is stored in the variable indicated by

* *

8. Write a statement to divide BALANCE by MONTHS and store the
rounded result in PAYMENTS (the ROUNDED option always follows the
name of the variable in which the result is to be stored).

* * *
0011223 344 5 5 6 6 7
1 •.. 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

DIVIDE MONTHS INTO BALANCE
GIVING PAYMENTS ROUNDED.

419

9. Write a statement to divide PROFIT by SOO. The rounded quotient
is to be stored in PORTION.

* * *
0011223 3 q 4 S S 6 6 7
1 ... S .••• 0 •••. S ••.• 0 •..• S •••• 0 •••• 5 •••• 0 •••• S.~ •• 0 •••• S •••• O •••• S •••• O ••

420

DIVIDE SOO INTO PROFIT GIVING
PORTION ROUNDED.

10. Any time an attempt
condition will occur.
from this condition:

is made to divide by zero r the size error
In order to avoid invalid data resulting

a

a. appropriate instructions should be included in the SIZE ERROR
option in the DIVIDE statement.

h. the ROUNDED option should be specified.

* * *

It is often necessary to perform several operations in order to
obtain a single result. For example r the area of a circle is r2.
Calculating the area would require two MULTIPLY statements. But the
same result can be obtained by a single COMPUTE statement.

11. Several arithroetic operations can be combined in one COMPUTE
statement. A COMPUTE statement can:

Both

a. reduce the number of statements in the source program.

b. combine two or more arithmetic operations into a single
statement.

* * *

(The COMPUTE statement produces a more efficient object program than
other arithmetic statements.)

12.

COMPUTE identifier-l = numeric-literal
{

identifier-2 }

arithmetic expression

According to the form of the COMPUTE statement shown above, which
of the following could be correct?

a.

o 0 1 1 2 2 3 344 556 6 7
1 •.. 5 .••. 0 •.•• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 ••.. 0 ••

CO~PUTE 5 = TOTAL.

b.

o 0 112 2 3 3 4 4 556 6 7
1 .•. 5 •.•• 0 •..• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5.~ •• 0 •••• 5 •••• 0 ••.• 5 .••• 0 ••

COMPUTE TOTAL = 5.

c.

o 0 112 2 3 3 4 4 556 6 7
1 ... 5 •..• 0 ..•• 5 •.•. 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

COMPUTE TOTAL = 'TOTALB1'.

d.

o 0 112 233 4 4 556 6 7
1 ... 5 ••.. 0 ••.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •.•• 5 •.•• 0 ••

COMPUTE TOTAL = TOTALB1.

* * *
b, d
(The symbol = must have at least one space preceding and one space
following it.)

421

13.

COMPUTE identifier-1 =

MOVE
{

identifier-2 }

numeric-literal

{

identifier-2 }

numeric literal

TO identifier-1

A COMPUTE statement and a MOVE statement of the forms shown above
are equivalent.

o 0 112 2 3 3 4 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b, d

14.

COMPUTE TOTAL = BALANCE.

If the value of BALANCE is 3142 and the value of TOTAL is 2005,
when the statement above is executed, the value of:

a. BALANCE will be changed to 2005.

h. TOTAL will be changed to 3742.

c. BALANCE will be changed to the value of TOTAL.

d. TOTAL will be changed to the value of BALANCE.

* * *

o 0 112 2 3 344 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

1

422

COMPUTE SWITCH = 1.

When the
changed to

statement

*

is executed, the value of SWITCH will te

* *

15.

o 0 112 2 3 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

DATA DIVISION.
FILE SECTION.
FD OUTPUT-DISK-FILE

LABEL RECORDS ARE STANDARD.
01 DETAIL-RECORD.

02 ITEM-ID PIC X(6).
02 RATES PIC $$$.99.
02 AMOUNT PIC $$$.99.
02 PRIORITY PIC 99.

WORKING-STORAGE SECTION.
77 CLASS PIC 99.
77 QUANTITY PIC 999V99.
77 ASSESS PIC 999V99.

The picture for identifier-1 in a COMPUTE stateroent (the
identifier to the left of the equal sign) may contain edit
characters. The picture for any identifier to the right of the
equal sign may contain no edit characters but may contain a V or
S; that is, an identifier to the right of the equal Sign must be
a numeric variable. According to the data description entries
above, which of the following statements is correct?

a.

0011223 344 5 5 6 6 7
1 .•• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••. 0 ••

COMPUTE AMOUNT = QUANTITY.

b.

o 0 112 2 3 344 5 5 6 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0.~ •• 5 •••• 0 •••• 5 •••• 0 ••

COMPUTE QUANTITY = AMOUNT.

c.

o 0 112 2 3 3 445 5 6 6 7
1 •.• 5 ..•. 0 •••• 5 •..• 0 •••• 5 •••• 0 •••• 5 •.•. 0 •••• 5 ..•• 0 •••• 5 •••• 0 •••• 5 .••. 0 ••

COMPUTE RATES = ASSESS.

d.

o 0 112 2 3 344 5 5 6 6 7
1 ..• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

COMPUTE ASSESS = PRIORITY.

e.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 •.• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •.

COMPUTE RATES = 00000.

* * *
a, c, d, e

423

16. write a statement to cause the value of INDICATOR to be changed
to 3.

* * *
001122334 4 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

CO~PUTE INDICATOR = 3.

or

0011223 344 5 5 6 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

424

MOVE 3 TO INDICATOR.

17. An arithmetic expression may also appear to the right of the
equal sign in a COMPUTE statement. An arithmetic expression is a
valid combination of numeric literals, numeric variables, and
arithmetic operators. Figure 99 shows the arithmetic operators.

Arithmetic Operators

Hierarchy Operator Meaning Example
of Arithmetic Cobol

Evaluation Expression Expression

1 + unary plus sign +2 llF~itrt'l - unary minus sign -2

2 ** exponentiation 32 1.t3[~MI~.1

3 * multiplication 3 X 2 I-·i·~tilj / division 3~2

4 + addition 3+2 fRlIf] - subtraction 3-2

1) Parentheses modify the order of evaluation; operations
enclosed in parentheses are performed first, beginning with
the innermost pair of parentheses.

2) When 2 operators of same level of hierarchy appear in the
same expression, the operations are performed from left to
right.

3) Every operator must be preceded by and followed by a space,
except for unary signs.

Figure 99

The arithmetic expression NUMBER1 * NUMBER2 specifies that:

a. NUMBER1 and NUMBER2 are to be added.

b. NUMBER2 is to be divided by NUMBER1.

* * *
Neither (NUMBER1 and NUMBER2 are to be multiplied.)

18. Figure 99 shows that the signs + and - can be unary plus and
unary minus signs, respectively, or they can specify addition and
subtraction. A unary plus or minus sign precedes a single
numeric literal or identifier and specifies that the value of the
literal or identifier it precedes is to be multiplied by +1 or -
1, respectively.

2

The value of FACTOR
expression - FACTOR is

*

is -2.

*

19. The COBOL arithmetic expression

The value of the arithmetic

*

o 0 112 2 3 3 4 4 556 6 1
1 ..• 5 .••• 0 •••• 5 ..•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

D / B ** 2 + C

is equivalent to the algebraic expression D/82 + C. Refer to
Figure 99 and show the algebraic equivalent of

o 0 112 2 3 344 556 6 1
1 •.• 5 .•.. 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••. 0 ••

FACTOR * .5 - TOTAL ** 3.

* * *
.5 X FACTOR - TaI'AL3

20. Refer to Figure 99 if necessary and write the COBOL expression
that is equivalent to XY2.

* * *
o 0 1 1 2 2 3 3 4 4 556 6 1
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 ••

x * Y ** 2.

425

21. Figure 99 shows the hierarchy of evaluation, which specifies the
order in which operations are performed when more than one
operator appears in an expression.

List the operations in the order in which they will be performed
in the expression

o 0 1 1 2 2 3 3 4 4 556 6 7
1 ... 5 0 ••.• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

FACTOR * 5 - TOTAL ** 3.

* * *
**(exponentiationi TOTAL is cubed.)
* (multiplication; 5 and FACTOR are multiplied.)
- (subtraction; TOTAL is subtracted from the product of 5

and FACTOR.)

22. Multiplication and division are on the same level in the
hierarchy. When these operators appear in the same expression,
the operations will be performed from left to right. The same is
true for addition and subtraction. Refer to Figure 99 and list
the operations in the order in which they will be performed in
the expression

o 0 112 233 4 4 556 6 7
1 .•• 5 .••• 0 ••.. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 .••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •.•• 0 •.

426

TOTAL - FRACTION / 2 * 3 + 1.

/ (division)
* (multiplication)
- (subtraction)
+ (addition)

* * *

23. When parentheses are included in an expression, the operation
specified within the innermost parentheses is performed first.
For example, in the expression

o 0 112 2 3 344 556 6 7
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

«A + B) * C) ** 2

A and B will be added, their sum multiplied by C, and the product
then squared.

List the operations in the order in which they will be performed
in the expression

o 0 112 2 3 344 556 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

(X / (2 * Y» ** 3.

* * *

* (multiplication)
/ (division)
** (exponentiation)

24. Write a COBOL expression to add TOTAL1 and TOTAL2 and multiply
the sum by the product of 2 and TOTAL3.

* * *
001122334 4 556 6 7
1 .•• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

(TOTAL1 + TOTAL2) * 2 * TOTAL3

25.

o 0 112 2 3 344 556 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

9500

COMPUTE TOTAL = COST - YEARS * RATE.

When a COMPUTE statement containing an arithmetic expression is
executed, the variable specified by the identifier to the left of
the equal sign is set equal to the value of the result of the
evaluation of the arithmetic expression. If the values of COST,
YEAR, and RATE are 10000, 10, and 50 respectively, the value of
TOTAL after execution of the statement above will be •••••••••

* * *

427

26. Which of the following statements would be used to find the
product of the value of RATE and the value of DEPOSIT and store
this product in BALANCE?

a.

o 0 112 2 3 344 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

b.

MULTIPLY RATE BY DEPOSIT
GIVING BALANCE.

o 0 112 2 3 3 4 4 556 6 7
1 .•• 5 •.•• 0 •••• 5 •••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

CALCULATE BALANCE = RATE * DEPOSIT.

* * *
a (b contains the word CALCULATE instead of COMPUTE.)

27. Write a statement to set STANDARD equal to the result of
COMMISSION subtracted from the product of MONTHS and AMOUNT.

* * *
o 0 112 2 3 344 556 6 1
1 ••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

28.

COMPUTE STANDARD = MONTHS * AMOUNT
- COMMISSION.

o 0 1 1 2 2 3 344 556 6 7
1 ••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

428

77 TAG PIC 99V99.
77 PERCENT PIC V99.
77 BILL PIC $99.99.

Figure 100 shows the options that can be used in each arithmetic
statement. Write a COMPUTE statement to round the value of the
product of TAG and PERCENT to the nearest cent and store it in
the edited variable BILL.

Summary of Arithmetic Statements and Their Options

Q)

Allowable Options a E ro
UJ t:: t:: cU Q) a Q)

E Z E :0 ro
~ ~ ro

9 0t::
Q) 0 ~ ro
:0 P:::: en >
ro Q) 0::: 0:::

°C E 0 UJ ro ro 0::: a > t:: 0::: Z (.j cU
Z :0 UJ < ;; ro UJ ::E 0t:: N UJ Arithmetic Statements G ro V) 0::: >

ADD
rentifier-l} [iden lifier-21

o 0 0 TO iden tifier-m X* X X numenc- numenc-
literal-l literal-2

fdenlifier-l} [idenlifier-2]
SUBTRACf numeric- numenc- o 0 0 FROM identifier-m X X X

literal-l literal-2 ---

{ identifier-I}
MUL TIPL Y numeric- BY identifier-2 X X X

literal-l -

fdentifier-l }
DIVIDE numeric- INTO iden tifier-2 X X X X

literal-l --

{ idenlifier-2 }
COMPUTE identifier-l = n~meric-~iteral-l 0 X X

anthmetIc-expresslon

* The reserved word TO is omitted when the GIVING option is specifiedo

Figure 100

429

* * *
o 0 112 2 3 3 4 4 556 6 7
1 ..• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

COMPUT~ BILL ROUNDED = TAG * PERCENT.

You now know how to specify addition, multiplication, division, and
subtraction in a COBOL program. You also know how to use a COMPUTE
statement to specify any combination of arithmetic operations. A
summary of arithmetic statements and the options that may be used in
them is given in Figure 100. You may refer to Figure 100 whenever
you are coding arithmetic statements.

In the next sequence you will learn to specify channel skipping, a
technique for providing vertical spacing in a printed report.
Channel skipping requires the use of a carriage control tape, which
is looped and mounted in a special compartment on the carriage of the
printer. The printing line to be used is determined by an
instruction in the program that directs the carriage to move to a
punch in the appropriate channel of the carriage control tape; the
corresponding line is the printing line.

29.

o 0 112 2 3 3 4 4 556 6 7
1 ... 5 •.•• 0 •.•. 5 •••• 0 •••• 5.~ •• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

c

430

WRITE OUTPUT-RECORD
AFTER ADVANCING TO-FIRST-LINE.

When you used the AFTER ADVANCING option of the WRITE statement
to advance to the first printing line of the next page, you used
channel skipping. The mnemonic name specified in the ADVANCING
option represented a specific channel on the carriage control
tape.

In the statement above a specific channel is specified by:

a. OUTPUT-RECORD.

b. AFTER ADVANCING.

c. TO-FIRST-LINE.

* * *

30. You will recall that the use of a mnemonic name in the AFTER
ADVANCING option required that the name be associated with a
system narre. Which of the following would associate the mnemonic
name TO-NEXT-PAGE with a system name?

a.

o 0 112 2 3 344 5 5 6 6 7
1 ... 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 ••.. 0 ••

WORKING-STORAGE SECTION.
77 TO-NEXT-PAGE PIC X(13).

b.

o 0 112 2 3 344 556 6 7
1 ..• 5 •.•• 0 •..• 5 •••. 0 •••. 5 •.•• 0 .••• 5 •••• 0 •.•. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 ••

b

31.

CONFIGURATION-SECTION.
SPECIAL-NAMES.

COl IS TO-NEXT-PAGE.

* * *

o 0 112 2 3 3 4 4 556 6 7
1 ••• 5 •••• 0 .••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •.

b

WRITE OUTPUT-RECORD
AFTER ADVANCING TO-NEXT-PAGE.

In the preceding frame, the mnemonic name TO-NEXT-PAGE is
associated with the system name COl in the SPECIAL-NAMES
paragraph. The system name COl represents channel 1 on the
carriage control tape. The statement above will cause the
printer to advance to the line corresponding to the punch in
channell of the carriage control tape. If the punch in channel
1 corresponds to the third line on the page, the statement above
will cause the record to be written on:

a. line 1 of a new page.

b. line 3 of a new page.

* * *

(Line 3 would be the first printing line of the page.)

431

32. The system name COl represents channel 1 on the carriage control
tape. A carriage control tape has 12 channels. You might expect
that a mnemonic name could be associated with:

a. C02 to specify channel 2 on the carriage control tape.

b. any system name in the sequence COl through C12.

* * *

Either

33. Write the section of a COBOL program necessary to associate the
mnemonic name TO-TOTAL-LINES with the system name representing
channel 3 of the carriage control tape.

* * *
0011223 3 4 4 556 6 7
1 .•• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

CONFIGURATION SECTION.
SPECIAL-NAMES.

C03 IS TO-TOTAL-LINES.

34. Refer to the preceding frame, and write a statement that would
cause the contents of BILLING-RECORD to be written on the line
corresponding to the punch in channel 3 of the carriage control
tape.

* * *
001 1 223 344 5 5 6 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••. 5 •••• 0 •••• 5 •••• 0 •.•• 5 •••• 0 ••

432

WRITE BILLING-RECORD
AFTER ADVANCING TO-TOTAL-LINES.

35. The diagram in Figure 101 shows the carriage control tape in
position with a printed page. The punches in the tape for
channels 1 and 2 are shown and related to the information on the
corresponding lines of the page. The diagram also shows where
specific records are to be printed on the page. The form has
been designed so the heading should appear four lines from the
top of the page and the totals on the 32nd line. The working
storage variables and the output area used to produce this report
are defined in the Data Division shown in Figure 101. Use the
diagram and Data Division and code the following entries.

1) The section that would associate the mnemonic names TO-NAME
LINE and TO-TOTAL-LINE with the system names representing the
channels containing punches

2) A statement that would cause the values in NAME-LINE to be
printed on the fourth line of the page

3) A statement that would cause the first detail line (record in
DETAIL-LINE) to be printed with the spacing indicated in the
illustration

4) A statement that would cause the total line (record in TOTAL
LINE) to be printed on line 32

GLUE
u

N ... O • N ..

- I~ • •
...

.I~ • • w

...
I~ • ALBRITE CHEMICALS 707721 • UI

I~
CD

151 • 81753 DOUBLE BLOCK HOIST 54.70 • ... :: 81624 50 FOOT ROPE HOIST 14.90
CD ... • • .. -4

~
." • • Q ""

= IE
,~ • • N

c::
; • •
u;

a: • •
:: • • a:
a: • • ...
co

~ • • N
N

N • • w

~
N • • <II

N
CD

N • • ...
N i CD • • ~ -0 _g N-

... • • co

~ !. ... TOTAL $69.60 • N . • ..
...
w ... • • ...
...
<II

...
en • •
!:! I ... • • CD I

433

001122334 4 S S 6 6 7
1 ... S .••• 0 ..•. S •••. 0 .••• S •••• 0 •••. S •••• 0 •••• S •••• 0 •••• S •••• O •••• S •••• O ••

434

DATA DIVISION.
FILE-SECTION.
FD OUTPUT-FILE

LABEL RECORDS ARE OMITTED.
01 INVOICE-RECORD PIC X(121).
WORKING-STORAGE SECTION.
01 NAME-LINE.

02 NAME PIC X(20).
02 FILLER PIC X(6).
02 FIRM-ID PIC X(6).
02 FILLER PIC X(89).

01 DETAIL-LINE.
02 ITEM-NUMBER PIC xeS).
02 FILLER PIC X(10).
02 DESCRIPTION PIC X(2S).
02 FILLER PIC xes).
02 PRICE PIC 999.99.
02 FILLER PIC X(70).

01 TOTAL-LINE.
02 FILLER PIC X(30).
02 TITLE PIC xes) VALUE 'TOTAL'.
02 FILLER PIC X(8).
02 TOTAL PIC $$$$$.99.
02 FILLER PIC X(70).

Figure 101

* * *

1)

o 0 112 2 3 344 5 5 6 6 7
1 .•. 5 0 ••.. 5 •... 0 •••. 5 .••. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

2)

CONFIGURATION SECTION.
SPECIAL-NAMES.

COl IS TO-NAME-LINE.
C02 IS TO-TOTAL-LINE.

o 0 112 2 3 3 445 5 6 6 7
1 ... 5 •.•• 0 ••.• 5 •.•• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

3)

WRITE INVOICE-RECORD
FROM NAME-LINE
AFTER ADVANCING TO-NAME-LINE.

001 1 2 2 3 3 4 4 5 5 6 6 7
1 ... 5 •... 0 •.•. 5 .••• 0 ••.. 5 •••• 0 •••• 5 •••• 0 •••• 5 .••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

4)

WRITE INVOICE-RECORD
FROM DETAIL-LINE
AFTER ADVANCING 2 LINES.

o 0 112 2 3 3 4 4 5 5 6 6 7
1 ... 5 •.•. 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 ••

SUMMARY

WRITE INVOICE-RECORD
FROM TOTAL-LINE
AFTER ADVANCING TO-TOTAL-LINE.

In this lesson you have learned to use the DIVIDE and COMPUTE
arithmetic statements. At this point you are able to specify, in COBOL,
any computation that might be required in a program. You have also
learned to use channel skipping for vertical placement of printed data.

END OF LESSON 21

. ~ .

435 <

THIS PAGE INTENTIONALLY LEFT BLANK

436

LESSON 22

437

LESSON 22 - PROGRAM CODING EXAMPLE

INTRODUCTION

This lesson consists of coding a program called MONTHLY-BILLING. You
will find that many of the precepts you learned in the previous lessons
are applied here.

This lesson will require approximately three quarters of an hour.

438

1. Figure 102 gives channel numbers and mnemonic names for use in a
hilling procedure. Write a SPECIAL-NAMES paragraph to associate
the system name for each channel given in Figure 102 with the
appropriate mnemonic name.

r---------
1 Channel
1
1---------
1 1
1
1
1---------
1 2
1
1
1
1
1---------
1 3
1
1 l ________ _

Vertical Spacing Guide for PRINT-FILE

--,
Mnemonic name Data to be printed following 1

skip to channel 1
--------------- --1.

NAME-LINE} 1
STREET-LINE single spaced 1
CITY-STATE-LINE I

TO-NAME-LINE

---------------- ---------------------------------------1
TO-DErAIL-LINE

DETAIL-LINE I
single spaced 1

. I

. I

DETAIL-LINE I 1

---------------- --1
TO-SUBTOTAL-LINE SUBTOTAL-LINE

TAX-LINE
TOTAL-LINE } single spaced

_________________ _ ___ J

Figure 102

* * *
001122334 4 5 5 6 6 7
1 •.. 5 ...• 0 •••• 5 ..•. 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 •••. 0 •••• 5 •••• 0 ••

SPECIAL-NANES.
COl IS TO-NAME-LINE.
C02 IS TO-DETAIL-LINE.
C03 IS TO-SUBTOTAL-LINE.

(29)

--.----------------

439

2.

440

Figure 103

The system flow chart above shows the files used in a program
called MONTHLY-BILLING. In this program a record from the master
file is to be accessed for each customer in the transaction file.
The address from the master file is to be printed on the bill,
and then the data from each transaction card for that customer is
to be processed (unit price * quantity = VOLUME-PRICE-WORK) and
printed. The value of a variable SUBTOTAL-WORK will be increased
each time a card record is processed, and when all data cards for
one customer have been processed, the value of this variable will
be printed as a subtotal. Tax will be calculated and printed,
and then added to the subtotal. The total will be printed to
complete the bill. Following this, the customer's number, his
subtotal and his tax will be placed in the output disk file for
subsequent use by another program. A bill is then printed for
the next customer, and the sequence is repeated until the
transaction file is completed.

Figure 102 gives a guide to vertical spacing for the bill, which
is written in PRINT-FILE. Figure 102 indicates that, except for
channel skipping, single spacing is to be used throughout.

0011223 3 4 4 5 5 6 6 7
1 ... 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 ••

IDENTIFICATION DIVISION.
PROGRAM-ID. MONTHLY-BILLING.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-1130.
OBJECT-COMPUTER. IBM-1130.
SPECIAL-NAMES.

COl IS TO-NAME-LINE.
C02 IS TO-DETAIL-LINE.
C03 IS TO-SUBTOTAL-LINE.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE
ASSIGN TO DF-1-600-X.

SELECT TRANSACTION-FILE
ASSIGN TO RD-1442.

SELECT PRINT-FILE
ASSIGN TO PR-1132-C.

SELECT TOTAL-FILE
ASSIGN TO DF-2-800-X.

DATA DIVISION.
FILE SECTION.
FD MASTER-FILE

BLOCK CONTAINS 8 RECORDS
LABEL RECORDS ARE STANDARD.

01 CUSTOMER-~ASTER.

02 PERSONAL-DATA.
03 NAME PIC X(20).
03 CUSTOMER-NUMBER PIC X(6).
03 STREET PIC X(15).

02 FILLER PIC X(24).
FD TRANSACTION-FILE

LABEL RECORDS ARE OMITTED.
01 PURCHASE-RECORD.

02 CUSTOMER-NUMBER PIC X(6).
02 ITEM-NUMBER PIC X(6).
02 DESCRIPTION PIC X(15).
02 UNIT-PRICE PIC 999V99.
02 QUANTITY PIC 99.
02 FILLER PIC X(46).

FD PRINT-FILE
LABEL RECORDS ARE OMITTED.

01 BILL PIC X(12l).
FD TOTAL-FILE

BLOCK CONTAINS 10 RECORDS
LABEL RECORDS ARE STANDARD.

01 TOTAL-RECORD.
02 CUSTOMER-NUMBER PIC X(6).
02 SUBTOTAL-T PIC 99999V99.
02 TAX-T PIC 999V99.

441

442

WORKING-STORAGE SECTION.
77 VOLUME-PRICE-WORK PIC 9999V99.
77 SUBTOTAL-WORK PIC 99999V99.
77 TAX-WORK PIC 999V99.
01 NAME-LINE.

02 FILLER PIC X(9) VALUE SPACES.
02 NAME PIC X(20).
02 CUSTOMER-NUMBER PIC X(6).
02 FILLER PIC X(86) VALUE SPACES.

01 STREET-LINE.
02 FILLER PIC X(9) VALUE SPACES.
02 STREET-O PIC X(lS).
02 FILLER PIC X(97) VALUE SPACES.

01 DETAIL-LINE.
02 FILLER PIC XeS) VALUE SPACES.
02 ITEM-NUMBER PIC X(6).
02 FILLER PIC X(5) VALUE SPACES.
02 DESCRIPTION PIC X(15).
02 FILLER PIC X(5) VALUE SPACES.
02 UNIT-PRICE PIC 999.99.
02 FILLER PIC X(5) VALUE SPACES.
02 QUANTITY PIC 99.
02 FILLER PIC X(5) VALUE SPACES.
02 VOLUME-PRICE PIC 9,999.99.
02 FILLER PIC X(59) VALUE SPACES.

01 SUBTOTAL-LINE.
02 FILLER PIC X(S2) VALUE SPACES.
02 SUBTOTAL PIC $$$,$99.99.
02 FILLER PIC X(59) VALUE SPACES.

01 TAX-LINE.
02 FILLER PIC X(48) VALUE SPACES.
02 CONSTANTl PIC XXX VALUE 'TAX'.
02 FILLER PIC X(5) VALUE SPACES.
02 TAX PIC 999.99.
02 FILLER PIC X(59) VALUE SPACES.

01 TOTAL-LINE.
02 FILLER PIC X(42) VALUE SPACES.
02 CONSTANT-2 PIC X(5) VALUE 'TOTAL'.
02 FILLER PIC X(5) VALUE SPACES.
02 TOTAL PIC $$$,$99.99.
02 FILLER PIC X(59) VALUE SPACES.

(The optional word IS has been omitted from the VALUE clause)

Figure 104

Figure 104 contains the complete coding for the first three
divisions of the program. The SPECIAL-NAMES paragraph is the one
that you wrote in the preceding frame. Because numeric-edited
variables cannot be used in calculations, it was necessary to
include several working-storage numeric variables along with
input variables that can be used in the required calculations.
Elementary variables in records that will be printed contain some
editing symbols. These variables may be used to store values.

Figure 105 is a program flow chart for the Procedure Division of
MONTHLY-BILLING. Follow the flow chart and write the Procedure
Division to complete MONTHLY-BILLING.

BEGIN

Figure 105

Perform
TOTAl

CALCULATION

443

* * *
o 0 112 2 3 344 556 6 7
1 ... 5 .••. 0 •••. 5 •••• 0 •••• 5 •••• 0 •••• 5 •••• 0 •••• 5 •••. 0 •••• 5 .••• 0 ••.• 5 •.•• 0 ••

444

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT MASTER-FILE
TRANSACTION-FILE
OUTPUT PRINT-FILE
TarAL-FILE.

READ TRANSACTION-FILE
AT END GO TO ERROR-ROUTINE.

INITIALIZE.
MOVE ZEROS TO SUBTOTAL-WORK.

READ-MASTER.
READ MASTER-FILE

AT END GO TO FINISH.
IF CUSTOMERNUMBER GREATER THAN

CUSTOMER-NUMBER OF PERSONAL-DATA
GO TO READ-MASTER.

IF CUSTOr-mRNUMBER LESS THAN
CUSTOMER-NUMBER OF PERSONAL-DATA
GO TO ERROR-ROUTINE.

PRINT-ADDRESS.
MOVE NAME OF PERSONAL-DATA

TO NAME OF NAME-LINE.
r-:OVE CUSTOMER-NUMBER OF PERSONAL-DATA

TO CUSTOMER-NUMBER OF NAME-LINE.
I"jOVE STREE'I' OF PERSONAL-DATA

TO STREET OF NAME-LINE.
MOVE CITY-STATE OF PERSONAL-DATA

TO CITY-STATE OF NAME-LINE.
MOVE STREET TO STREET-O.
MOVE CITY-STATE TO CITY-STATE-O.
WRITE BILL FROM NAME-LINE

AFTER ADVANCING TO-NAME-LINE. (31)
WRITE BILL FROM STREET-LINE

AFTER ADVANCING 1 LINE.
WRITE BILL FROM CITYSTATE- LI NE

AFTER ADVANCING 1 LINE.
PRINT-DETAIL.

COMPUTE VOLUME-PRICE-WORK = (11)
UNIT-PRICE OF PURCHASE-RECORD
* QUANTITY OF PURCHASE-RECORD.

ADD VOLUME-PRICE-WORK
TO SUBTOTAL-WORK.

MOVE VOLUME-PRICE-WORK
TO VOLUME-PRICE.

MOVE CUSTOr-"ER-NUMBER OF PURCHASE-RECORD
TO CUSTOMER-NUMBER OF DETAIL-LINE.

~OVE ITEM-NUMBER OF PURCHASE-RECORD
TO ITEM-NUMBER OF DETAIL-LINE.

MOVE DESCRIPTION OF PURCHASE-RECORD
TO DESCRIPTION OF DETAIL-LINE.

MOVE UNIT-PRICE OF PURCHASE-RECORD
TO UNIT-PRICE OF DETAIL-LINE.

MOVE QUANTITY OF PURCHASE-RECORD
TO QUANTITY OF DETAIL-LINE.

MOVE DETAIL-LINE TO BILL.
FIRST-DETAIL-LINE.

WRITE BILL
AFTER ADVANCING TO-DETAIL-LINE. (31)

READ-TRANSACT ION-ROUTINE.
READ TRANSACTION-FILE

AT END PERFORM TOTAL-CALCULATION
GO TO FINISH.

IF CUSTOfviERNUMBER GREATER THAN

SUMt-:ARY

CUSTOMER-NUMBER OF PERSONAL-DATA
GO TO TOTAL-CALCULATION.

IF CUSTOMERNUMBER LESS THAN
CUSTOMER-NUMBER OF PERSONAL-DATA
GO TO ERROR-ROUTINE.

PERFORM PRINT-DETAIL.
WRITE BILL

AFTER ADVANCING 1 LINE.
GO TO READ-TRANSACTION-ROUTINE.

TOTAL-CALCULATION.
tJ10VE SUBTO'IAL-WORK TO SUBTOTAL.
WRITE BILL FROM SUBTOTAL-LINE (31)

AFTER ADVANCING TO-SUBTOTAL-LINE.
COMPUTE TAX-WORK = .04 *

SUBTOTAL-WORK.
MOVE TAX-WORK TO TAX.
WRITE BILL FROM TAX-LINE

AFTER ADVANCING 1 LINE.
CONPUTE TOTAL = TAX-WORK +

SUBTOTAL-WORK.
WRITE BILL FROM TOTAL-LINE

AFTER ADVANCING 1 LINE.
MOVE CUSTOMER-NUMBER

OF PERSONAL-DATA
TO CUSTOMER-NUMBER
OF TOTAL-RECORD.

MOVE SUBTOTAL-WORK TO SUBTOTAL-T.
MOVE TAX-WORK TO TAX-T.
WRITE TOTAL-RECORD.

RETURN-1.
GO TO INITIALIZE.

ERROR-ROUTINE.
DISPLAY 'ERROR IN CARD FILE'

UPON CONSOLE.
FINISH.

CLOSE MASTER-FILE
TRANSACTION-FILE
PRINT-FILE TOTAL-FILE.

STOP RUN.

Figure 106

The problem you just completed is a fair summation of many of the
major COBOL precepts you have studied up to this point. perhaps you can
now see more clearly the progress that you have made.

END OF LESSON 22

445

THIS PAGE INTENTIONALLY LEFT BLANK

446

-------- - ---- ---- - ---- - - ----------_.
(!)

International Business Machines Corpo~ation

Data Processing Division
1133 Westc hester Avenue, Wh ite Plains, New York 10604

. (U.S.A. on ly)

IBM World Trade Corporation
821 United Nations Plaza, New York , New York 10017
(Internat ional)

