
IBM
<!>

Programmed Instruction Course

IBM

Programmed Instruction Course

FORTRAN for the IBM 1130

Chapter 3

FORTRAN for the IBM 1130 C::hapter 3

FOREWORD

You have been shown how to construct the middle part of a computer
program, the part in which you tell the computer how '.to manipulate
the numbers and also how to make simple tests and decisions from
which it executes control. Most programs require that the computer
also be able to accept· information at the start of the program and to
divulge the results at the conclusion. In other words, the computer
must be capable of reading and writing as well as performing
calculations. Various computer systems use different media for these
operations of "input/output"; most commonly the input information
comes from punched cards, punched tape, magnetic disk, or magnetic
tape, while output data is usually written on a printer or magnetic
tape or disk or, less commonly, punched in cards or paper tape.
The 1130, for example, has a card reader/punch and a typewriter or
printer in a typical system. A paper tape reader and paper tape
punch may also be included.

This chapter w~ll discuss the input/output statements used by the
FORTRAN language.

Copies of this publication can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
I BM DPD Education Development, Education Center, Endicott, New York.

@1965 by International Business Machines Corporation

FORTRAN for the IBM 1130 Chapter 3

m Incidentally,·the variables in the list of a READ statement may
be of any mode. ~oreover, both integer and real variable
values may be specified in the same list with no taboo about
mixing the modes.

Q. (True or False) According to the above definition, the
statement READ(2,l)A,B,C,I,J,K is not valid •

•••
A. False (it is perfectly valid)

m The variables in the READ statement list may be subscripted or
not as desired. The subscripts, if used, may be constants or
previously defined variables, but absolutely no form of
mathematical expression is permitted. For example, the
statement READ (2,l)A,B,X(3),N(K) will read four numbers
from an input unit assigning the values respectively to A,B,
the third number in the X array, and the Kth number in the N
array.

Q. (True or False) The statement READ(5,l)A(2*K-5) is a
valid READ statement .

. ·-··
A. False (the subscript is a mathematical expression)

lfJ The significant points covered so far have been: the computer
can read data at the time the program is being run, reading
from a variety of media. The READ statement causes the
computer to read information from an attached input device.
The READ statement contains a list of variables which specifies
where the numbers being read are to be assigned. The variables
in the list may be of either mode and may contain subscripts.

(10/65)

Q. Write a statement to read a value for each of the
variables ALPHA, BETA, and GAMMA, in that order.
Use 4 as the input reference number, and 1 as the
statement number.

• ••
A. READ(4,l)ALPHA,BETA,GAMMA

5

FORTRAN for the IBM 1130 Chapter 3

Ill !f your answer agrees exactly with the one shown above, skip
to frame 22. If you have omitted any of the three commas, take
note of where they belong and skip to frame 22. If your
answer was otherwise wrong, go to the next frame.

m The question called for a READ statement. It would start with
the word "READ", followed by· a set of parentheses containing
the input reference number (which we said was 4} and the
statement number (which we said would be l}.

Q. Write the beginning of the read statement up to and
including the close parentheses •

•••
A • READ (4 , 1}

m The rest of the statement consists of the list o~ variables to be
defined: ALPHA, BETA, and GAMMA. Each name must be separated
from the others by a conuna.

Q. If we substituted JOE, JIM, and JACK for ALPHA, BETA,
and GAMMA, the complete statement to read values for the
variables would be:

•••
A. READ(4,l}JOE,JIM,JACK

Ell If you answered this satisfactorily, go to the next frame; if
not, go back to frame 3 and review this material.

m Perform Exercise 3.1 in your problem book.

(10/65)

The associated statement whose number appears in a READ
statement plays an important part in the reading operation. This
statement is called a FORMAT statement and its job is to
describe to the computer the form of the·nmnber being read.
For instance, if cards were being read, the FORMAT statement
would tell the computer which card columns are to be read, and how
many numbers there are per card. (For instructional purposes,
we will assume from here on that the information entering
the computer is coming from cards, unless otherwise noted.}

6

FORTRAN for the IBM 1130 Chapter 3

m Nearly all Input statements use a FORMAT statement to specify
the way the numbers are laid out in the cards, or other external
medium. The general rule is that the Input statement tells the
computer what is to be read and the FORMAT specifies how and
where theIUiii\bers will be found within the record. ~-

Q. (Yes or No) Does the statement READ(2,l)A,B,C tell you
how many cards are to be read?

•••
A. No (FORMAT statements will be covered in more detail

later.)

Ell Most all Input statements contain a list of variables which
specifies the quantities being read. The next few frames will
explain a few details of how the list is used.

m When an Input statement such as a READ statement is executed,
the values being read are inunediately defined as the values of
their corresponding variables in the list. Thus, an integer
value read early in the list can be used as a subscript later
in the list, e.g. , READ (2, 1) K, (A (K)) .

Ell When the statement READ(2,l)K, (A(K)) is executed, two numbers
will be read from a card. The first number, an integer
quantity, will become the subscript of the second number
immediately. In this fashion a deck of cards can be indexed
and need not be sorted into any special order.

(10/65)

Q. If the value of K is 3 on a particular card, the
second number on that-card will be -assigned to the

position of the A array, using the statement
shown above.

• ••
A. third

7

FORTRAN for the IBM 1130 Chapter 3

El.I When this fea~ure of using a read-in value as a subscript in the
same list is ~mployed, a special restriction must be observed:
at least one open-parenthesis ·(other than the normal subscript
parentheses) must separate the two references to that integer
variable, as in READ(2,l)K, (A(K)). · Naturally it must also
be balanced with a close~parenthesis.

Q. The statement READ(2,l)I,J,K,(A(I) ,B(J) ,C(K)) will cause
a total of values to be read •

•••
A. six

l!J When variables appear in an Input list with variable subscripts,
these subscripts need not necessarily be defined within the
same list as in the preceding example. Their subscript values
may have been defined by other statements (by a DO-loop index,
for example).

m Turn to Panel 3. 2. The sample program segment on the panel
shows a READ statement which will be executed a total of ten
times. Each time it is executed a value will be read and
placed in the A array, its position determined by the DO index
value.

Q. In the sample program on the panel, the sixth time
statement·S is executed, a value will be assigned to A
() • (Fill in a number) •

•••
A. 6

IDJ Turn to Panel 3.3. You now have seen two examples of subscripted
variables in an Input statement list (see panel) . The first
example showed the subscript value being defined within the
same list; the second example showed another means·of defining
the subscript's value (notice, no extra parentheses required in
this second case). One more example similar to the second case
is shown in Panel 3.4.

(10/65) 8

FORTRAN for the IBM 1130 Chapter 3

m Turn to Panel 3.4. The first READ statement in the example on
the panel causes the computer to read a single quantity, N, which
then becomes the upper limit of a DO-loop. Thus, the read-in
value of N determines how many numbers will be read within the
DO-loop itself.

Q. If the value read for N were SO, statement number 5 on the
panel would be executed (how many?) times •

•••
A. 50

m An Input statement's list of variables may have subscripts which
are also variables. As shown in the preceding examples,
these variable subscripts may have their values defined either
by reading them in the same list or by other statements
preceding the READ statement (by a DO-loop, for example).

llJ Perform Exercise 3.2 in your problem book.

A DO-loop, then is one method for progranuning the reading of
arrays. Another method, more widely used, is the self-indexing
list technique. In this type of Input statement list, the
variables with their variable subscripts are followed by an
index definition exactly as defined in a DO-loop; for instance:

READ (2 , l) (A (I) , I= 1 , 5 0)

m The statement READ(2,l) (A(I) ,I=l,50) is exactly identical

(10/65)

in operation to the statement: READ(2,l)A(I) ,A(2) ,A(3) ,A(4) .•• ,
A(SO). This statement, though only executed once, will cause
the reading of 50 numbers into successive positions in the A
array.

Q. The statement READ(2,l) (ARRAY(K) ,K=l,1000) will cause
a total of numbers to be read •

•••
A. 1000

9

FORTRAN for the IBM 1130 Chapter 3

m The index definition as used in input lists may utilize the
same features available to DO-loops. It may have variables
for lower or upper limits and it may use the optional third
quantity defining an increment other than one (which may
also be a variable if desired) •

III Take the statement READ(2,l)N,(A(I) ,I=2,N) for example:
in this statement the index definition contains a variable
as the upper limit; the value of this variable is read in
the same list. The execution of this statement is to read
an integer quantity, N, and then read values into A(2)
through A(N), inclusive.

Q. If the first number punched in the first card read by
the above statement were 15 a total of values
would then be read into the A array •

•••
A. 14

m This self-indexing input list is a very usefui shorthand method
of reading long lists of quantities. You can well imagine
the cumbersome list that would result if you read in a lot
of numbers by naming each one in the input list.

Q. If you wished to read 100 numbers into the A array with
the statement READ(2,l)N,(A(I) ~I=l,N) the first
number on the first card must be punched as
(number).

• ••
A. 100

m Like most other FORTRAN statements, the format you must
observe is rather strict: the subscripted variable (or
variables) must be separated from the index definition by a
comma (and from each other, if more than one); the entire
sequence - variables, dummy subscripts, and index definition -
must be enclosed in parentheses.

(10/65)

Q. The statement READ(2,l) A(I) ,I=l,10 is not valid because
of the absence of

•••
A. parentheses

READ(2,l) (A(I) ,I=l,10) is correct.

10

FORTRAN for the IBM 1130 Chapter 3

m An input list may contain other elements either before or after
a self-indexing sequence. For example, the statement

READ { 2 ' 1) A ' B ' c ' { x { I) ' I= 1 ' 3) I D ' E ' F
is perfectly valid. The nine values read by this statement will
be assigned respectively to A,B,C,X{l) ,X{2) ,X{3) ,D,E, and F.

Q. If the upper limit of the index definition in the example
shown were 10 instead of 3, a total of numbers
would be read by this statement •

•••
A. 16

IDJ More than one variable may be included in a self-indexing
sequence, as, for exampie, in the statement READ{2,l) {A{I) ,B{I),
I=l,100). This will cause 200 numbers to be read and assigned
in the order A { 1) ' B { 1) ' A { 2) ' B (2) ' A { 3) ' ••.•. 'A { 100) ' B { 100) .

Q. The sixth number read by the statement shown above would
be assigned to (variable and subscript) .

•••
A. B{3)

m An input list may also contain more than one self-indexing
sequence as· in the example statement READ{2,l) (A(I) ,I=l,10),
{B{I) ,I=l,10). This will cause the computer to read twenty
numbers and assign them in the order A{l), A(2), A(3) , .•• ,
A (10) , B { 1) , B { 2) , B { 3) , ••• , B { 10) .

Q. The number assigned to B(3) as read by the statement
shown above would be the number {in the order)
read by the computer.

• ••
A. thirteenth

(10/65) 11

PO RT RAN for the IBM 1130 Chapter 3

m Notice that each separate self-indexing sequence has its own
pair of parentheses. Any self-indexing list sequence must be
so enclosed in parentheses, and these parentheses must contain
only the variable (or variables) whose subscript is indexed,
plus the index definition.

Q. Write a statement to read values for the first five
numbers in the BLOCK array, using self-indexing form •

•••
A. READ(2,l) (BLOCK(!) ,I=l,5)

Ill If your answer agrees with the one shown above, or is different
only in the arbitrary choice of the dummy name, skip to frame 49.
If your answer did not agree with the one given, continue to the
next frame.

m Perhaps a re-definition of the self-indexing,form is in order.
Begin the list with an open parenthesis, followed by the
array name; attach to this name, in parentheses, a "dummy"
subscript; then follow it with a comma and an index definition
which defines the values to be taken by the dummy subscript.
The list is ended with a close parenthesis.

m The index definition is exactly the same as that used in a DO
statement. If you want the index to cycle through values of 1
to 5, for example, you would use the sequence I=l,5. Although
the choice of the dummy index name is arbitrary, it must be
an.integer variable~

m The entire list includes the array name, subscripted with the
dummy index, followed by the index definition. For this
problem (to read values for .the first 5 numbers in BLOCK) the
list should be:

(10/65)

(BLOCK (I) I I= 1 , 5)

Remember, those two commas are absolutely necessary; don't
forget them!

12

FORTRAN for the IBM 1130 Chapter 3

lfJ The entire statement required fQr that answer, again, was
READ(2,l) (BLOCK(!) ,I=l,S). 'l'ry another case similar to that
one.

Q. Write a statement to read values for ALPHA, BETA,
GAMMA, and. the first 12 numbers in the OMEGA array, in
that order.

• ••
A. READ(2,l)ALPHA,BETA,GAMMA, (OMEGA(!) ,I=l,12)

Ill If your answer agrees with the one shown above, continue to
the next frame. If you missed this question, you had better
go back to frame 33 and read again, carefully, the material on
self-indexed lists.

llJ Perform Exercise 3.3 in your problem book.

Recent examples showed two methods of recording numbers into two
different blocks with one statement. In one case, both
variables were controlled by the sa:ne index definition; the
other case showed two separate self-indexed sequences. In
the first case the numbers being read alternated from one
block to another while the second case showed that one block
was filled before any numbers were read for the second block •

. READ (2I1) (x (I) 'y (I) 'I=l, 10 0 0)

m rrhe statement above illustrates the first case with two
variables under control of the same index. This approach
would be used ideally when the data is apt to be found in ·
pairs (such as rectangular coordinates). At least, if you
programmed this statement, you would have to arrange the
data i~ alternating order in the cards.

Q. (True or False) The statement shown above will read the
first 1000 numbers into the X array .

•••
A. False (every other number will be read into the X array)

'(10/65) 13

FORTRAN for the IBM 1130 Chapter 3

m .READ (2 , 1) (X (I) , I= 1 , 10 0 0) , (Y (I) , I= 1 , 10 0 0)

This statement shows the other form; two self-indexed sequences
used end-to-end. This method would be used where the data
would be more easily punched in separate blocks on the cards,
perhaps where the arrays are unrelated sets of numbers.

Q. (True or False) The first 1000 numbers read by the
statement above would be assigned to the X array •

•••
A. True

m In any event when a READ statement is written into a program
and the program is being run, the data punched on the cards
must be in the form and order expected. Usually the READ
statement is written first and the cards are punched later,
although sometimes the statement is tailored to existing card
decks.

Q. (True or False) If a card deck has consecutive pairs of
of x and y coordinates (100 pairs in all), a statement
such as READ(2,l) (X(I) ,Y(I) ,I=l,100) should be used to
read this deck.

• ••
A. True

m You might question the usefulness of the self-indexing technique,
since a DO statement could conceivably perform the same

(10/65)

function. For example, the sequence DO 10 I=l,1000;
10 READ(2,l) X(I) would admittedly perform the same operation
as READ(2,l) (X(I), I=l,1000). There is a reason, however.

Q. The first example above would execute the READ statement
time(s) and the second example would execute the

READ statement time(s) •

•••
A. 1000,l

14

FORTRAN for the IBM 1130

m There is one slight difference, as pointed out by the last
question and the answer shown above. The DO-loop must·
necessarily execute the READ statement 1000 times, reading
one number each time. The self-indexed version executes
the READ only once while cycling its own index and reading
the 1000 numbers.

Chapter 3

m As the preceding frame points out there is one slight but
important difference in the DO-loop and self-indexed methods:
the number of times the READ statement is executed. Each
time a READ statement is executed a new card must be read
by the computer.

Q. When the po-loop method executes the READ statement
1000 times, at least cards will have
to be read.

• ••
A. 1000

m The DO-loop method executes and re-executes the READ statement,
and each time it does so, a new card must be read. The self
index~ng method, on the other hand, depends on the FORMAT
statement to indicate how many numbers are punched on each
card and, in this way, determines when a new card must be
read.

Q. The statement READ(2,l) (X(I) ,I=l,1000) is executed a
total number of time(s) to read 1000 numbers •

•••
A. one (the actual number of cards read, however, depends

upon the FORMAT statement)

m Now the advantage of the self-indexing method is becoming
clear. The data cards may be utilized much more efficiently
if more than one number is allowed per card. For example,
if the associated FORMAT statement permits ten numbers per
card, only 100 cards would be required to read the 1000 numbers
of the preceding example using self-indexed lists, instead
of the 1000 cards required with the DO-loop. (Note: It is
possible to program a DO-loop and a READ statement to handle
reading efficiently, but the programming is more complex than
that in a self-indexed READ statement. The best plan, therefore,
is to use the latter.)

(10/65) 15

FORTRAN for the IBM 1130 Chapter 3

m 'To review: the READ statement can cause the computer to start
reading a new card in the attached card reader and to read
enough cards to supply values for all the variables in the
READ statement's list of variables. The list may contain
combinations of the following items: non-subscripted variables,
variables with either constant or variable subscripts, or
self-indexe~ sequences with the dummy subscript and index
definition.

m Perform Exercise 3.4 in your problem book.

So far, we have assumed the data being read into the computer
haa been coming from cards. The 1130, however, also has the
ability to read data punched on paper tape. Paper tape is
often used where it is necessary to transmit data from one
location to another over telephone or telegraph lines.

rmJ The READ statement used for paper tape is exactly the same
as the READ statement used in reading cards! This happy
circumstance·comes about because it is the input reference
number that determines what input device is to be selected.

Q. (True or False) The statement READ(4,l)A,B,I can
read only cards.

• ••
A. False (this statement reads paper tape)

m To repeat, the FORTRAN statement to read numbers from paper
tape is the READ statement, constructed in exactly the same
way as if we were reading cards.

Q. (True or False) The input reference number assignment
determines whether cards or tape will be read

•••
A. True

(10/65) 16

FORTRAN for the IBM 1130 Chapter 3

rfl The READ statement when used for paper tape causes the computer
to act in a manner similar to that when reading cards: the
computer starts the tape in motion and reads numbers fo~ the
variables in the list according to the associated FORMAT,
just as before.

Q. Is the statement READ(4,l)X,Y a valid statement for
reading paper tape? (Yes or No)

•••
A. Yes.

m Let's look at another sample statement: READ(4,l)A,B,C
which tells the computer to read three values from the paper
tape reader according to FORMAT statement number 1, and assign
these values, respectively, to A, B, and c.

Q. Like the card READ statement, the variables whose
values are to be defined are specified in a

•••
A. list

m The list of variables is subject to exactly the same rules as
before. Variables, either with or without subscripts, appear
in the list in the order in which their values are to be found
on the tape. The self-indexing form may be used.

(10/65)

Q. The statement READ(4,l) (A(I) ,I=l,1000) will read
values from the paper tape reader •

•••
A. 1000

17

FORTRAN far the IBM 1130 Chapter 3

m Actually, if you understand card READ statements and their lists,
you automatically understand the paper tape READ statements.
They are identical. Their operation is identical also except
for the medium (cards or tape) selected.

Q. (Assume our familiar FORMAT number 1 is still with us.)
Write a statement to read in the value of X,Y,Z,XX,YY, and
ZZ from the paper tape reader •

•••
A. READ(4,l)X,Y,Z,XX,YY,ZZ

m If your answer agrees with the one shown above, skip to frame
75. If your answer is wrong, continue to the next frame.

lfJ Don't make this problem too difficult; it isn't. Given the
variables (X,Y,Z,XX,YY, and ZZ), whose values are to be defined,
and noting that none of them are arrays, makes the list
construction a simple matter: just list the variable names
in that order.

Q. Write the list only for the problem just completed •

•••
A. X,Y,Z,XX,YY,ZZ (no parentheses or anything else; just the

actual list of names)

m Given also that FORMAT number 1 and input reference number 4
are to be used, the construction of the entire statement to
solve that problem is now a simple matter of "fill in the
blanks" with those numbers.

Q. Write the statement.

• ••
A. READ(4,l)X,Y,Z,XX,YY,ZZ

(10/65) 18

FORTRAN for the IBM 1130 C:hapter 3

DJ Now let's try another similar problem and see how you are making
out. Write a statement to read values for ANN, BETTY, CATHY,
and the third number in the GIRL array, reading from the paper
tape reader (use input reference 4) with FORMAT No. 1 •

•••
A. READ(4,l)ANN,BETTY,CATHY,GIRL(3)

liJ If your answer agrees with the one shown, continue to the next
frame. If you are still having difficulty, turn back to
frame 63, and review the material on tape-reading. If, after
review, you still have difficulty, see your advisor.

m Q. Write a statement to read values for M and N which in turn
will be the lower and upper index limits, respectively,
of the BLOCK array which is to be read in the same list.
Read from the tape reader (use input reference number 4) with
FORMAT No. 1.

•••
A. READ (4, l)M,N, (BLOCK (I), I=M,N) (all parentheses required)

fil If your answer agrees with the one shown (except for possible
choice of index variable), skip to frame 80. If your answer
is wrong, continue to the next frame.

lfiJ This was a considerably tougher-problem than the previous one.

(10/65)

You were asked to write a statement to read two numbers
(integer) and, using these numbers as the lower and upper
index limits respectively, read numerical values for the
BLOCK array with self-indexed notation. First of all, the
statement begins as usual: READ(4,l).

19

,FORTRAN for the IBM 1130 Chapter 3

fJI It seems the construction of the list for the tape reading
statement poses the major problem. First of all, the names
Mand N must be listed by name '(separated by commas), and then
the self-indexed list for the BLOCK array follows. This latter
element must contain the name, a dummy subscript, and the
index definition with M and N used as the lower and upper limits,
respectively.

Q. Using I as the dummy subscript and index, write the complete
list as requested above •

•••
A. M,N,(BLOCK(I) ,I=M,N)

m The complete statement, of course, is
READ(4,l)M,N,(BLOCK(I) ,I=M,N)

If you are convinced that you understand the foregoing, continue
to the next frame; otherwise, review some more, starting with
frame 61.

fll· Perform Exercise 3.5 in your problem book.

Considerable mention has been made of the FORMAT statement
without defining what it really is. The FORMAT statement is
a special type of statement. It is not executed in the sense
that the other statements are. It falls in a class of
statements called "specification" statements, and provides
information to the computer, or more specifically, to the
input/output statements.

llJ The FORMAT statement, then, is just a reference source for an
input (or output) statement. When a READ statement, for
example, is being executed, it "consults" the indicated FORMAT
statement to find out certain items of information about how
the numbers are found on the cards.

(10/65)

Q. When a READ statement needs to know which columns of the
card are to be read, it consults the

•••
A. FORMAT Statement

20

FORTRAN for the IBM 1130 Chapter 3

m Every FORMAT statement is referred to by some input or output·
statement; consequently, every FORMAT statement has a statement
number.

Q. (Yes or No) If a FORMAT has the number 100, is the
statement GO TO 100 legal?

•••
A. No (A FORMAT statement can not be executed; therefore you

cannot send the computer to that statement)

m The use of the FORMAT statement is basically simple. Suppose
you wish to read six real numbers per card, reading several
cards to fill an array. The F0&."11\T statement is only
concerned with the desired number of values per card and
what card columns will contain those numbers. A typical
FORMAT which might be used to satisfy the above conditions is
FORMAT(6Fl2.4). The codes are explained later.

Q. (True or False) The FORMAT statement directly defines
the number of cards to be read •

•••
A. False (the FORMAT only specifies how many numbers per

card and where they are located)

lmJ Naturally, if you wished to have ten numbers punched per card
you would construct the FORMAT statement accordingly. The
same is true for any desired card layout you might wish to
specify.

(10/65)

Q. If you had a FORMAT specifying 6 numbers per card and an
input statement with a list of 12 variables using that
FORMAT, how many cards do you think would be read by
the computer?

•••
A. 2

21

FORTRAN for the IBM 1130 Chapter 3

EJI ·The FORMAT statement is constructed in the following manner:
a statement number, the word FORMAT, and a pair of parentheses
containing the information about the card layout. The contents
of these parentheses are explained in the next few frames.

Q. (True or False) The statement 1 FORMAT (card information)
is legal as far as shown •

•••
A. True

Efl The card layout information contained in the FORMAT statement
consists of 11 format codes" which tell the computer how
many card columns per number, how many decimal places in the
number, whether it is integer or real mode, etc. You should
distinguish between the terms "number" and "card column".
"Number" refers to a complete value, but a !'card column"
can contain only a single digit.

EIJ These format codes used in FORMAT statements are combinations
of alphabetic and numeric characters. The alphabetic
characters indicate the desired mode of the number, and the
numeric characters tell which card columns are used, etc.

Q. (True or False) The list of variables in an input (or output),
statement defines the card (or card image) layout •

•••
A. False (the FORMAT statement always defines the layout) •

m The format code for real numbers uses the letter "F" together
with two integers separated by a period (novelty?) which define,
respectively, the number of columns of the card used to contain
the number and the position of the decimal point. Example:

(10/65)

1 FORMAT(Fl2.6)

Q. How many card columns does the FORMAT above specify?
(1, 6 , 12 , or 18)

•••
A. 12

22

FORTRAN far the IBM 1130 Chapter 3

m The example of the previous frame, 1 FORMAT(Fl2.6), indicates
real conversion of a number contained in the first 12 columns
of a card (or card image) with ~decimal places.

Q. To indicate real conversion, the letter
used as a format code •

•••
A. F

would be

m The first integer in the FORMAT conversion code specifies the
number of card columns used to contain the number being read.
This item is commonly called the field width. When a FORMAT
specifies a field width for, say, a card, the number to be read
must not exceed the bounds of that field.

Q. The field width specified by the statement 10 FORMAT(FlS.2)
is columns.

• ••
A. 15

[fJ It should be noted that the second integer in the F-conversion
code - the indicator of the decimal point position - is required
in the FORMAT but will be ignored by the computer if an actual
decimal point is punched in any position in the card being read.
If no point is punched, the FORMA'l1 information is used.

(10/65)

Q. The statement 5 FORMAT(FlO.l) would specify (how many?)
decimal place(s) if no decimal point were punched

on the card.

• ••
A. 1

23

FORTRAN for the IBM 1130 Chapter 3

m . ·Let's see how a card punched with data, would be described with
a FORMAT statement. Turn to Panel 3.5. Here you see a card
punched with an 8 digit number. Let's assume that the number
has 4 decimal places. The FORMAT statement to represent this
data would be 1 FORMAT(FB.4).

Q. Write a FORMAT statement for the number if it had only 1
decimal place.

• ••
A. l FORMAT(F8.l)

m In the previous example, notice that the number occupies the left
most positions in the card. The FORMAT statement must always
describe the card by starting at column 1 (the left-most
position) and moving to the right.

Q. The FORMAT statement describes the contents of the card
from to

•••
A. left, right

f%I Turn to Panel 3.6. Here you see a card punched with a number as in
the previous example, except that now a decimal point is punched.
Notice that the decimal point occupies one of the 8 card columns
used for the number.

(10/65)

Q. If the statement 1 FORMAT(F8.4) were used to describe this
card, how would the number be represented in the computer?

A.

•••
0963.412 (the punched decimal point would override the
decimal notation (.4) .in the FORMAT statement)

24

FORTRAN for the IBM 1130 Chapter 3

m Don't confuse the numbers read from cards with FORTRAN
constants. The constant, you will remember, must have a decimal
point if it is real; a number read by the computer with
"F" conversion may have the decimal point omitted and the
FORMAT will specify where it belongs.

Q. The statement combination READ(2,l)X; 1 FORMAT(Fl5.5)
requires that the number whose value will be read for X
be punched in the first columns of the card •

•••
A. 15 (NOTE: The semicolon separating the two statements in th

question implies that these are two separate statements;
this convention is used for the remainder of the text)

f.il The first integer in the number-conversion code, which specifies
the field width, indicates the total column sp~ead occupied
by the number. This includes any decimal places specified by
the second integer and the column occupied by the decimal
point, if punched.

Q. Regardless of the value of the second control integer in a
FORMAT conversion code, the total field width depends on
the first integer, as in the statement FORMAT(Fl6.8) which
defines a field of columns •

•••
A. 16

m The FORMAT statement contains in parentheses, then, a

(10/65)

number conversion code. This consists of three items of
information in its real form: the mode (indicated by the letter
F) , the field width (defined by an integer after the F) , and the
decimal point position (denoted by a second integer, separated
from the first with a period).

Q. Write a FORMAT statement to specify converting a real
number from the first 8 card columns with three decimal
places:

•••
A. 1 FORMAT(F8.3)

25

FORTRAN for the IBM 1130 Chapter 3

fJI ·If your answer agrees exactly with the one shown, you are
correct and may skip to frame 103. If you did not arrive at
the correct answer, go to the next frame.

lfD Do you remember the definition of the number-conversion code? It
consists of an alphabetic character to denote the mode, an
integer to specify the field width, a period, and a second
integer to define decimal point position in case no decimal
point is punched in the field.

Q. (True or False) The statement 1 FORMAT(Fl2.6) fits the
above description.

• ••
A. 'rrue

m For real number conversions, the alphabetic code in the
FORMAT is "F". The two integers used with the Fare selected
to fit a particular problem. In the preceding diagnostic
problem you were asked to specify 8 columns of field width
and 3 decimal places. The complete conversion code for this
problem has to be (FB.3).

Q. (Yes or No) If you punched a number, including its decimal

A.

mo.

A.

(10/65)

point, on the card to be read by the conversion code
shown above, would that integer 3 have any effect?

•••
No (this information is only applied when no decimal
point is punched in the number being read)

Let's try another case. Construct a FORMAT statement to
specify the conversion of a real number with 7 decimal
places contained in the first 15 card columns. ----

•••
1 FORMAT(FlS.7)

26

FORTRAN for the IBM 1130 Chapter 3

fZI If your answer agrees with the one shown above, go on to the ·
next frame. If you still cannot construct a FORMAT statement
with the information given, go back to frame 69 and review
some more.

m Perform Exercise 3.6 in your problem book.

If the statement 1 FORMAT(Fl2.6) were used with the statement
READ(2,l)X the computer would convert the contents of the first
12 columns of a card into a real number and place that value in
the variable X.

Q. The same FORMAT statement and the statement READ(2,l)Y would
define the value of the variable

•••
A. y

Im The FORMAT's parentheses contain the complete specification for
a card. If there is one number-conversion code in a FORMAT
this means there will be only ~ number read per card.

Q. How many numeric values per card are indicated by the
statement 1 FORMAT(Fl0.4,Fl2.6)?

•••
A. 2

ml Naturally, then, a FORMAT statement is permitted to have more
than one number~conversion code in a single statement. In fact,
there is no set limit on the number of conversions permitted

(10/65)

in a single FORMAT as long as you stay within the bounds of the
card size (80 columns).

Q. The statement 1 FORMAT(Fl2.4,Fl2.6,F6.2) has a total of
conversion codes •

•••
A. three

27

FORTRAN for the IBM 1130 Chapter 3

ID!J The contents of a FORMAT statement define the layout of a sin~le
card. The total column usage of the card is the sum of the field
widths of all the number-conversions in the FORMAT. As an
example, the statement 1 FORMAT(Fl2.4,F20~6,Fl0.5) defines the
layout of a card: the first conversion code specifies the
contents of columns 1 to 12; the second code specifies columns
13-32; and so forth.

Q. The total number of card columns specified in the F0&"1AT
statement above is

•••
A. 42

Im So, if you use more than one number-conversion code in a single
FORMAT, keep in mind that you are specifying the layout of a
card, and be careful that the sum of all the field widths which
you reserve does not exceed the allowable size of a card.
Note: Naturally, adjacent conversion codes are separated by
conunas in all FORMAT statements.

Q. (True or False) The statement 1 FORMAT(F40.5,F40.5) would
be suitable for reading 80 columns of data •

•••
A. True (total field width specified is 80 columns)

Im In review, the FORMAT statement serves the various input and
output statements as a reference or map to specify the condition
of the numbers in the external form (how punched on cards, how
arranged on paper tape, etc.). The FOR.l'vlAT consists of a series
of one or more number-conversion codes, each of which specifies
the mode, length, and decimal point position of a single number.
The entire series of codes constitutes the layout of an entire
card.

(10/65) 28

FORTRAN for the IBM 1130 Chapter 3

Im Perform Exercise 3.7 in your problem book.

Recent frames have illustrated FORMAT statements which contain
more than one number-conversion code, indicating more than one
number is to be read from a card.

Q. The statement FORMAT(Fl2.4,Fl0.S,F6.2) denotes (how many?)
numbers per card •

•••
A. three

Im You can also make use of an integer before the letter F in the
FORMAT which will indicate that the number-conversion code is
to be repeated that number of times in the card layout. For
example, the statement FORMAT(3Fl2.4) is exactly equivalent to
FORMAT (Fl2.4,Fl2.4,Fl2.4).

Q. The statement FORMAT (3Fl2.4,3Fl2.6) specifies (how many?)
numbers per card •

•••
A. six

Im This count integer placed before the number-conversion code
makes the writing of some FORMAT statements considerably
easier. If you wished to read twelve numbers per card, six
columns per number with two decimal places, the statement
FORMAT (12F6.-2) is obviously easier to write than twelve·
separate codes.

(J 0/65)

Q. The statement FORMAT (12F6.2) specifies (how many?)
card columns.

• ••
A. 72 (12 x 6)

29

FORTRAN for the IBM 1130 Chapter 3

IImJ· A complete input or output operation, then, is defined by an
Input or Output statement with its list of variables indicating
the items involved, working together with a FORMAT which
specifies the way in which these items are laid out in the
cards.

Q. (True or False) The statements READ(2,l)A,X,H ;
1 FORMAT(3Fl2.6) will read from one card three values
from successive twelve-column fields, and place these
values in ~, ~, and H •

•••
A. True

Im The important points to remember are that the input statement
list determines how much data is read and that the FORMAT state
ment specifies how many values are contained in a particular
card. The combination of these items of information determines
how many cards are to be read.

Q. The statement READ(4,l) (ARRAY(!) ,I=l,100) indicates
that (how many?) numbers are to be read from
the paper tape reader •

•••
A. 100

1111 Notice that in the last question 100 values are to be read from
paper tape. This many numbers obviously could not be placed on
a single card. The FORMAT statement used with this input
statement will specify the description of one number, and will
use the repetition factor to determine how many numbers will be
read. For example, FORMAT(lOOF6.3) will cause the reading of
one hundred 6-position numbers.

(10/65)

Q. Write the FORMAT statement needed to read from paper tape
thirty-six 7-position numbers with 4 decimal places •

•••
A. FORMAT(36F7.4)

30

FORTRAN for the IBM 1130 Chapter 3

1111 If the list of variables in an input statement is so long that
it requires more than one card to contain those values, the
FORMAT specifications keep repeating for each new card that
is read. The computer will keep on readin.g additional cards
until enough values have been read to satisfy the list.

Q. The statements READ(2,l) (A(I),I=l,1000) ; 1 FORMAT(lOF7.3)
will read (how many?) cards •

•••
A. 100 (We need 1000 values, and we get 10 per card.)

1111 The relationship of Input and FORMAT statements should be getting
clearer now. It is very important that their respective
functions be understood; otherwise, you may accidentally tell
the computer to do something entirely different from that which
you intended.

1111 Perform Exercise 3.8 in your problem book.

(10/65)

If a FORMAT statement specifies less than a full card's contents,
the unspecified columns are not read by the computer. For
example, the statement 1 FORMAT(SF14.5) defines the contents of
70 columns of a card; if anything were punched on the rest of
the card, it would be ignored.

Q. FORMAT(l2FS.2) ignores all card columns beyond column
number

•••
A. 60

31

FORTRAN for the IBM 1130 Chapter 3

1111· If an Input statement list contains fewer quantities than the
number-conversion codes in the FORMAT,. the reading process
still stops when the list is satisfied. For example, the
combination READ (2,l)X,Y,Z ; 1 FORMAT(6Fl2.4) will read only
three quantities from the card, even though six are specified.
(Assume 2 is the input reference number for the card reader.
From here on, 2 will mean the card reader, unless otherw·ise
specified.)

Q. Then the FORMAT shown above and the statement READ {2,l)A,B
will read through column number of the card •

•••
A. 24

Im Sometimes the number of quantities in an Input statement list.
is not an even multiple of the number of values per card in the
associated FORMAT. For example, READ{2,l) {A(I) ,I=l,10) ;
1 FORMAT(6Fl2.4). In this case, six numbers are read from
the first card and four from the second, and reading stops
when the list is satisfied, as usual.

Q. (True or False) Any numbers punched in columns 49 to 80

A.

of the second card in the above example are ignored •

•••
True (columns 73 to 80 of the first card will also be
ignored)

- Q.
Write a READ and FORMAT combination that will read a set

A.

(10/65)

of monetary values into the DOLLR array. The program has
already defined N as the number of values to be read. The
largest dollar value is less than 1,000.00 and you wish to
punch (including a decimal point) as many numbers per card,
evenly spaced, as you can.

READ
1 FORMAT

1

•••
READ(2,l) {DOLLR(I) ,I=l,N)
FORMAT{l3F6.2)

32

FORTRAN for the IBM 1130 Chapter 3

llfJ If your answer agrees with the one shown (except, perhaps, for
choice of index variable which is arbitrary), you may skip to
frame 122. Otherwise, continue to the next frame.

Ill.I The READ statement should have been no problem unless you're
getting a little rusty: N values to be read into the DOLL

1
R

array suggests a self-indexed list, such as (DOLLR(I) ,I=l,N).
Every comma and parenthesis shown here is required for all
self-indexed lists. ~-

Q. The same indexed list, using J as the index variable
would be

•••
A. (DOLLR(J) ,J=l,N) (the J must appear as the index and

the dummy subscript)

lllJ Six card columns are needed for each number read: _
three whole-number digits (dollars), a decimal point, and two
decimal places (cents) . To pack these values most efficiently
on cards, the statement FORMAT(l3F6.2) specifies the use
of 78 columns of the card. (this still wastes 2 columns,
(79,80) but this cannot be avoided.)

Q. If you were permitted to use only 72 columns qf a standard
card, the most efficent FORMAT statement would be
l FORMAT()for this problem •

•••
A. FORMAT(l2F6.2)

mm Q. Try another question about this same problem: given the
statement combination

A.

(10/65)

READ(2,l) (DOLLR(I) ,I=l,N)
l FORMAT(l2F6.2)

and a value of 40 for N, the computer would read (how many?)
cards, including one incompletely filled card •

•••
four (three cards with 12 numbers each, plus one card with
4 numbers)

33

FORTRAN for the IBM 1130 Chapter 3

1111· If you could answer this question correctly, you are getting
the knack of these Input statement problems. If you are still
having trouble, return to frame 99 for some review; otherwise,
go on to the next frame.

Im Perform Exercise 3.9 in your problem book.

This chapter has, thus far, concerned itself only with real
number conversion in FORMAT statements using the 11 F" format
code. You may recall from Chapter 1 that real numbers can
also be represented by using the E exponent form. The followinq
frames will discuss the FORMAT statements needed to convert
numbers written in this form.

lf!J E notation, as you will recall from Chapter l~ is used as a
shorthand version for writing numbers. For instance, 9.3E04
represents the number 93000 to the computer.

Q. What number does -4.6219E-2 represent?

•••
A. -.046219

Im Numbers read into a computer may be coded in E notation. That
is, they may be represented as a number times a power of ten.
This form is commonly used to reduce the amount of keypunching
necessary when reading· in very large or very small numbers
from cards. For instance, the number 2100000 may be punched
as 2.1E6 in a card.

(10/65)

Q. How many card columns are saved by using E notation in
the above example?

•••
A. 2 (2100000 would take 7 columns, while 2.1E6 takes only S)

34

PO RTRAN for the IBM 1130 Chapter 3

lfD Note that in the preceding example a card column is required for
the decimal point as well as the 11 E 11

• Turn to Panel 3.7. Here
you see a card as it would be punched in columns 1 to 5 with
the number 2.1E6. In columns 6 to 11, we have punched the same
number expressed as a negative quantity.

Q. If a number in E notation represents a negative quantity,
one additional column must be reserved for a

•••
· A. minus sign

Im You may recall that there is actually a good deal of variation
allowed in writing E notation. For example, the exponent
portion of a number may take any of the following forms to
represent the exponent "plus 6 11

: E6, E+6, +6, +06, E 06, EOG,
and E+06. Notice that the sign of the exponent is optional
if the exponent is a positive quantity.

Q. Could the sign of the exponent be omitted if the exponent
were negative?

•••
A. No. If the minus sign were omitted the computer would

assume that the exponent is positive.

Ifill In the preceding frame, a form of E notation was shown which
does not use the letter "E". (+6, +06) This form of notation
is permissible only when used with input data, and must not be
used within program statements because the computer would
think you were trying to add or subtract a legitimate constant.

(10/65)

Q. Could the 11 E 11 be removed from the statement
Y=A*B+4.321E+7 ?

•••
A. No. To do so would change the value of the statement.

35

FORTRAN for the IBM 1130 Chapter 3

ID Turn to Panel 3.8 and study it carefully. Here you see the
number 1234000 punched in a card using different, but equivalent,
forms of E notation. If this card were to be read by the
computer, we would need to write an appropriate READ and FORMAT
statement.

Q. Given an appropriate FORMAT statement, would the
statement READ (2,1) A,B,C,D,E,F,G,H,P be an acceptable
READ statement?

•••
A. Yes

Im When input numbers are written in E notation, a FORMAT state
ment containing the number conversion code 11 E" is used. The
letter 11 E 11 specifies that a number written in E notation is to
be converted to a real number for use by the computer.

Q. When writing FORMAT statements which refer to numbers
with E notation, the letter used in the FORMAT statement
is

•••
A. E

Im The construction of the FOm1AT statement code used for E
conversion is identical to that used with F conversion. That
is, we have the letter ''E 11

, then an integer number for the
total field width, a decimal point, and finally an integer
number to indicate the number of decimal positions.

Q. Is 1 FORMAT(E6.3) a legal statement?

•••
A. Yes

(10/65) 36

FORTRAN for the IBM 1130 Chapter 3

1111 Let's examine the elements within the parentheses of the
statement 1 FORMNr(E6.3). We'll assume that the statement
is to be used with an appropriate READ statement for reading
cards. The "E" means that a number written in E notation is
to be converted to a real number. The 11 6 ~· means that the total
number of card columns (field width) punched with the number
to be converted is 6. rrhe 11

• 3 •i means that the number from the
card contains three decimal places, prior to whatever effect
the E exponent will have on the decimal point.

Q. In the statement 1 FORMAT(E9.6), the field width
is card columns, and the number contains
decimal places.

• ••
A. 9, 6

Q. Suppose the number 9629E+03 were punched in a card. What
would the field width be?

•••
A. 8

Im Let's take a look at an example which uses an E FORMAT statement.

(10/65)

Suppose that the number 1352E03 were punched in a card. This
E notation actually represents the number 1352000., but let's
assume that we really want to use the number 135.2 in the
computer. By writing the statement 1 FORMAT (E7.4), we would
achieve this effect. Because we have specified 4 decimal p~aces
in the FORMAT statement, the incoming n~~ber is assQ~ed to be
.1352E03. The exponent "E03 11 then will convert the number to
135.2

Q. What number would result if the input number is 81296E+2
and the FOIU-'IAT statement is 1 FORJ.\fAT(E8.5) ?

•••
A. 81.296 or 81.29600

37

FORTRAN for the IBM 1130 C:hapter 3

1111 In the two preceding frames, the E numbers punched in cards
have not contained decimal points. If the punched number
contains a decimal point, the decimal portion of the E
FORMAT statement is overridden, just as it was in F conversion.

Q. (True or False) The punched decimal point in an E number
has no effect on the FOm1AT statement decimal code •

•••
A. False

1111 If the number 12345.GE-3 were punched in a card, and the FORMAT
statement conversion code was El0.3, the actual value of the
converted number would be 12.3456 Make sure you understand
how this happened. Just keep in mind that the FORMAT decimal
specification is disregarded if there is a punched decimal
point in the number to be converted.

Q. With the specification El0.5, determine the numbers to
which the following punched numbers will be converted.

a. +56789.0E2 =
b. -5678934ES =
c. 5678.900EO =
d. 567891E-Ol =
e. +567.893+3 =
f. +56.789E-3 =

•••
A. a. 5678900.

b. -5678934.
c. 5678.900
d. .567891
e. 567893.
f. .056789

Im If your answers to the preceding question were correct, you
have a good understanding of E conversion. If you had trouble,
however, you should go back to frame 122 and review E conversion,
particularly noting frames 131 and 132.

(10/65) 38

FORTRAN for the IBM 11~0 Chapter 3

Im You have seen in the preceding frames that the E conversion
code in the FORMAT statement is constructed just like the F
conversion code. The similarity does not end there, however,
because all the FORMAT construction o~tions using F also apply
to E. For instance, it is perfectly legitimate to have the
statement 1 FORMAT (3El0.3) control the conversion of 3 ten
position E numbers in a card.

Q. How many numbers in a card would be converted with the
following statement? 1 FORMAT(3E6.2,E7.l,2E6.3)

•••
A. 6

Im Incidentally, E and F conversion codes may be mixed freely in
a FORMAT statement. Thus, the statement 1 FORMAT (F6.2,
2E9.6,4FS.l,E9.4) would convert one six-position number
punched without E notation, two 9-position numbers with E
notation, four 5-position numbers without, and one 9-position
number with E notation.

Q. Write an input FOR...T\ffi.T statement to convert the following
sequence of numbers to real numbers:

1. four-position number, two decimals, no E notation
2. 5 six-position numbers, one decimal, no E notation
3. 3 eight-position numbers, no decimals, with E notation
4. a ten-position number, two decimals, with E notation

•••
A. 1 FORMAT (F4.2, SFG.l, 3E8.0, El0.2)

ml So far, we have explained the E conversion code only as it
applies to input data. Conversion codes apply equally as well
to output data, but sometimes they have slightly different
effects. The explanation of the E code as it relates to output
data will be given later in this chapter when output statements
are discussed.

(10/65)

Q. (True or False) Conversion codes such as E and F apply

A.

only to input data, because only input data needs to be
converted.

• ••
F~lse (output data may also be converted)

39

FORTRAN for the IBM 1130 Chapter 3

Im· Let's recap the discussion of the E code. You have seen that
it is used to convert data written· in E notation to real numbers
within the computer. The E FORMAT statement has the same
construction as the F FORMAT statement, and may, in fact, have
F conversion codes intermixed with the E codes. An E code may
also have an integer which indicates a repetition of the E code,
just as is done with F codes.

Q. (True or False) The F code causes conversion to real
numbers, and the E code causes conversion to E numbers .

•••
A. False (this description of the E code is nonsense - we

start with an E number, not end with it)

IJII The E and F conversion codes are used to convert data to real
numbers. As you know, we can also use integer numbers in
FORTRAN, and in the next few frames you will learn the
conversion code necessary to convert integer numbers.

1111 To read numbers in the integer mode, the letter "I" is used in
the FORMAT statement. This letter corresponds to the
"F" in real conversion codes, serving only to denote the mode
of the numbers being read.

Q. The statement FORMAT(I6) denotes conversion in the
mode.

• ••
A. integer

llD The letter 11 I" in an integer number-conversion code is followed
by an integer, just as is the case in real codes, which indicates
the field width on the card for the number being read. This is
all the information required for integer numbers, since there is
no decimal fraction part.

Q. The statement FORMAT(I20) indicates the conversion of an
integer number contained in columns 1 through on
the card.

• ••
A. 20

(10/65) 40

FORTRAN for the IBM 1130 Chapter 3

llD Integer n'l:llllbers are relatively uncomplicated; that is, they
are simply whole number quantities and they are punched in cards
without decimal, points. The only information needed by the
computer to read an integer number is the card columns in which
the number is contained.

Q. To read a five-digit integer from a card, the statement
FORMAT ()would be used •

•••
A. IS

Im Since the variable list in an Input statement may have quantities
of either mode, it follows that a FORMAT statement will permit
number-conversion codes of either mode in the same statement.
For example, the statement FORMAT(IS,FlS.4) will read two
numbers, the first in integer mode, the second, in real mode~

Q. The statement FORMAT(IS,FlS.4) specifies the two conversions
from the first columns of the card .

•••
A. 20

Im To illustrate the mixture of modes in Input statements, consider
the sequence READ(2,l)N,X and 1 FORMAT(I20,F20.6) which will
convert the number punched in columns 1 to 20 into an integer,
placing the value in N, and the number punched in 21 to 40

(10/65)

into a real number, placing the value in x.

Q. (True or False) The use of the FORMAT statement number 1

A.

above by the statement READ(2,l)N,M would be proper •

•••
False (the quantity M in the READ list is an integer;
the conversion code is real)

41

FORTRAN far the IBM 1130 Chapter 3

llfl·This last question raises an important point: the actual mode
of conversion of the number from the card form to the computer
for~ is specified by the FORMAT statement, with no .regard to
the mode of the variable which will have that value when reading
is complete. This means that an error condition can exist if
you are careless.

Q. The execution of READ(2,l)N; 1 FORMAT(F8.4) will cause a
number to be assigned to the variable N .

•••
A. real

11!1 Unfortunately, this doesn't work like the Arithmetic
statement N=X which would convert the mode appropriately
before assigning a value to the variable. If a READ statement
list variable is of the wrong mode for the conversion code in
the associated FORMAT, a number actually in the wrong mode is
assigned.

Q. The sequence READ(2,l)A,B ; 1 FORMAT(I5,Fl2.4) would
result in the incorrect conversion of the variable

•••
A. A

llEJ Since the real and integer numbers are different

(10/65)

inside the computer, the use of the statement sequence of the
previous example would result in utter havoc when the variabl"e
A was used later in the program. There is literally no telling
what would happen, and at best, the results would be meaningless.

Q. (True or False) To prevent variables in the wrong mode,

A.

the variable list and the FORMAT statement should
correspond in the mode used for each conversion •

•••
True (this is a comma~ error; you should check this part
of your programs for hard-to-find bugs)

42

FORTRAN for the IBM 1130 Chapter 3

~ You now know how to combine statements to read groups of numbers
of either mode from either cards or paper tape. The following
items should be understood completely before continuing:
list construction (in general, the items to be read); self-indexed
lists (the form that permits reading several values through index
definition); "F", "E", and "I" conversion codes (the coded
information describing the external form of the numbers); and
the list-FORMAT relationship (that determines how many cards,
etc. are read).

IE Perform Exercise 3.10 in your problem book.

Before going on to more details of the FORMAT statements and
the output statements, it would be appropriate to show you how
the input data are punched on cards. The following frame shows
a picture of a typical card which might be read with the
FORMAT(3I5,2F20.6,E7.5).

Im Turn to Panel 3.9. When used with a statement combination such
as READ(2,l)I,J,K,A,B,C and 1 FORMl\T(3I5,2F20.6,E7.5) this card,
when read, would result in the following values for the variables:
I would have the value 100; J, the value 50; K the value 1000;
A, the value 3.141592; B, the value 3.141592;-and c, the value
4600. - -

Q. The value read for B in the example has its decimal point
positioned places from the right by the FORMAT
statement conversion code. ·

•••
A. 6 (since no decimal point is punched, the FORMAT integer

will place one in the indicated position)

Im Notice that all quantities are punched in the rightmost portion
of their allotted fields. 1130 FORTRAN does not allow a number
to contain any blanks, either within the number itself or to the
right of the number. (An error halt will occur if a number
contains a blank.) Blanks to the left of a number, however,

(10/65)

are permissible.

Q. (True or False) If a card contained the number 5 punched
in column 1, a correct FORMAT statement would be-

A.

1 FORMAT (l3).

• ••
False. This FORMAT statement implies a number field of
three positions, which, in this case, would cause the
number Sbb to be read. This number is .. not acceptable
to ll30"F'DRTRAN because of the blanks.

43

FORTRAN for the IBM 1130 Chapter 3

Im The FORMAT statement in the preceding question could be
corrected by changing it to 1 FORMAT (Il). Another possibility
for correcting the problem would be to leave the FORMAT
statement as is, and repunch the data card with the 5 in column
3. Thus, the number would be read correctly as bbS.
(This number has the value~).

Q. Write a FORMAT statement to read a card that contains
the number b45.923 in the first 7 card columns •

•••
A. 1 FORMAT (F7.3)

Im Because of the possibility of mispunching the data on the cards,
it is strongly advised that you punch the decimal point in
all real numbers read from cards. This leaves no doubt as to
the placement of the point.

Q. If the statement FORMAT(FS.2) were used for reading a
card punched .1234 in the first five columns, what value
would be read into the corresponding variable?

•••
A. .1234 (as punched; the presence of the decimal point

overrides the FORMAT specification)

· Im Al though the preceding examples did not show this, any of the
numbers punched on cards for reading by the computer may have
plus or minus signs preceding the punched digits. If no sign
is punched, it is assumed to.be positive. Make sure that the
field width specified by the FORMAT is large enough to include
the sign, if used.

IEfl Perform Exercise 3.11 in your problem book.

(10/65)

The basic FORMAT statement as described in the last several
frames defines the layout of a single card; when the list in the
statement using the FORMAT requires more data than can be
contained in one card, the same layout is repeated card after
card until the list is satisfied. As shown in the next few
frames, FORMAT statements may specify more than a single card
layout in a single statement.

44

FORTRAN for the IBM 1130 Chapter 3

Im The character "/" (slash) is used in FORMAT statements to
separate groups of conversion codes. These groups then specify
separate card layouts. For example, the statement
FORMAT(6Fl2.4/12F6.4) defines two different card layouts; one
is (6Fl2.4), the other is (12F6.4).

Q. The statement FORMAT(IS/6Fl2.4/12F6.4) contains (how many?)
different card layouts .

•••
A. three

Im The statement FORMAT{6Fl2.4/12F6.4) merely tells the computer
that the first card read with this FORMAT will have six real
numbers, twelve columns each, etc., and the second card read
will have twelve numbers, also real, six column f.ields, etc.

Q. The FORMAT statement shown above specifies conversion
codes for a total of numbers •

•••
A.· eighteen

Im A statement such as FORi'1AT{6Fl2.4/12F6.4) is used in cases
where the cards to be read are not laid out in the same manner
on successive cards. If the list of an Input statement using
this FORMAT contained more than eighteen variables, the
specifications would repeat at the beginning of this FORMAT
{first card layout) .

Q. The third card read {if any) with the FORMAT shown above
would have to contain (how many?) numbers .

•••
A. six (in accordance with the first card layout)

(10/65) 45

FORTRAN for the IBM 1130 Chapter 3

Remember, all the basic FORMAT statements of recent examples
would repeat their specifications with each new card that was
read when the Input list was long enough to require more than
one card. The same condition exists in FORMAT statements
defining more than one card layout.

Q. (True or False) If 100 cards were read using FORMAT
(6Fl2.4/12F6.4) 50 of the cards would have to contain six
numbers each and the other 50 would have to contain
twelve numbers each.

• ••
A. True

Im Consider an example: READ(2,l) (A(I) ,I=l,1800); 1 FORMAT
(6Fl2.3/12F6.4) would cause the reading of 200 cards: the
first card would have six numbers; the second, twelve; the
third, six; the fourth, twelve; the fifth, six; etc. The
FORMAT would always repeat its specifications at the beginning
of the statement, alternating the card layouts.

Q. The contents of the third card read in the above example
would become the values of positions (number)
through of the A array •

•••
A. 19, 24

Im If you correctly answered the previous questions, you are getting
the knack of list-FORMAT interaction very well. As long as the
list keeps calling for more input, the FORMAT keeps specifying
the layouts of the cards repeating itself as many times as
necessary.

(10/65)

Q. The statements READ(2,l)X; 1 FORMAT(6Fl2.4/12F6.4) would

A.

cause the computer to read (how many?) card(s)
(careful now!) •

• ••
one (the definition still holds that reading stops when
the Input list is satisf i~d)

46

FORTRAN for the IBM 1130 Chapter 3

Im A particularly desirable use of the "/ 11 in FORMAT statements
provides for the reading of a single card according to the first
card layout in the FORMAT, and then reading several cards
according to the second card layout, without repeating the
FORMAT specifications back at the beginning. The explanation
follows.

Im The statement FORMAT(I6/(6Fl2.5)) would cause the computer to
read a card and convert a single number in the integer mode,
then read a second card and convert six real numbers; assuming
that the list is long enough, a third card would be read, still
reading six real numbers. The first card layout in this
FORMAT is used only on the first card read! Why? Read on ••.

Im Notice anything unusual about the statement FORMAT (I6/(6Fl2.5))?
There is an extra pair of parentheses surrounding the second
card-layout specification. These parentheses cause the FORMAT
specifications to repeat only the second card-layout if the
Input list requires more than two cards to be read.

Q. How many number(s) would be read from the first
card using the FORMAT shown above?

•••
A. one

Im The general rule about repeating FORMAT.specifications for
long Input lists is: when the end of the FORMAT statement is
encountered, having used all its specifications once through,
and the Input list is not yet satisfied, the reading will
continue, repeating the specifications at the last open
parentheses in the FORMAT statement.

(10/65)

Q. The statement FORMAT(I5/2E6.l/(12F6.4)) would require a

A.

total of numbers on the fourth card read with
this FORMAT.

• ••
twelve (assuming, of course, that the list were long
enough)

47·

FORTRAN for the IBM 1130 Chapter 3

Im An example of this useful feature might be READ(2,l)N,(A(I) ,I=
l,N) ; 1 FORMAT(IS/(6Fl2.4)) in which the integer read from
the first card becomes the index limit for the self-indexed
list. Thus the first card read determines how many successive
cards will be read, repeating the (6Fl2.4) specification.

Q. If the value read above for Non ~he first card were 600,
a total (be alert) of cards would be read •

•••
A. 101 (100 cards containing the 600 numbers, six per card,

plus the first card with the value of N)

Im This last example demonstrates the most useful of the "fancy"
features of FORMAT statements. You will probably find that the
use of the 11

/
11 seldom occurs in input problems except for the

variable length array as in that example.

Q. (Yes or No) Assuming that N is greater than 5, is anything
wrong with the combination READ(2,l)N,(A(I) ,I=l,N)
1 FORMAT(IS,SF12.4)?

•••
A. Yes (the FORMAT will repeat from the beginning, resulting

in incorrect conversion of some numbers)

Im The use of parentheses in the fashion just described is limited
to one level; that is, parentheses within parentheses are not
permitted in FORMAT statements. When used properly, as in
FORMAT(IS/(6Fl2.4)), a single card with a unique layout is
read, followed by the reading of several cards with the second
layout.

Q. (True or False) Columns 6 to 80 of the first card would
be ignored if read with the FORMAT shown above •

•••
A. True

(10/65) 48

PO RTRAN for the IBM 1130 Chapter 3

ID Parentheses may be used in another way in FORMAT statements
where a particular sequence of conversion codes is to be repeated
in the same card layout, as in: FORMAT(2(Il2,2Fl2.4)). The
conversion sequence (Il2,2Fl2.4) comprising 36 columns will be
repeated according to the integer preceding the parentheses.

Q. (True or False) The FORMAT shown above appears to be the
same as FORMAT(Il2,2Fl2.4,Il2,2Fl2. 4)

•••
A. rrrue

llfJI Any group of conversion codes which has a repeating pattern may
be enclosed in parentheses preceded by an integer, indicating
the number of times that pattern is to be repeated. The total
number of card columns so allotted must not exceed the size
permitted for a single card, however.

Q. The statement FORMAT(Il2,El2.4,Il2,El2.4,Il2,El2.4) could
be.re-written with parentheses as:

FORMAT () •

• ••
A. 3(Il2,El2.4)

lfil The last several frames have gone through an awful lot of details
about FORMAT statements. It would be wise at this point to tally
the score while you catch your breath. If you are not interested
in the review on the next seven frames, you may skip ahead to
frame 180.

lfi1 Basically, FORivIAT statements supply the computer with infor
mation about the expected layout of data on cards or card
images being read, regardless of whether cards, tape or disk
are being read. To read a list of any length, six numbers per
card, 12 columns .per number, with 4 decimal places, FORMAT

(10/65)

(6Fl2.4) may be used.

Q. Write a statement to specify reading of twelve integer
numbers per card, six columns each •

•••
A. 1 FORMAT (12I6)

49

FORTRAN for the IBM 1130 Chapter 3

Im If a statement such as READ(2,l) (K(J) ,J=l,36) were used with
the preceding FORMAT, a total of three cards would be read,
each one with the layout (12I6). The FORMAT specifications
will repeat where the list in the Input statement requires
the contents of more than one card.

Q. If the statement READ(2,l) (NUM(M), M=l,40) were used with
the preceding FORMAT, (how many?) cards would be
read.

• ••
A. four (the fourth card would not be completely read)

l&J Using the 11
/

11 to separate conversion code groups, a single
FORMAT statement can specify more than one card layout for
successive cards. If no interior parentheses are present in
such a FORMAT, the specifications will repeat completely from
the beginning if the Input list is long enough.

Q. The combination READ(2,l) (A(K) ,K=l,100) ; 1 FORMAT
(6Fl2.2/6Fl2.4) will result in (how many?) cards
being read with the conversion code 6Fl2.4 •

•••
A. eight ·cseventeen cards in all; nine cards with the first

card layout, and eight with the second.)

lfZI A multiple-card FORMAT statement such as the one described in
the preceding frame can have a set of interior parentheses
which enclose a complete card layout. When the Input list is
long enough to require the FORMAT to repeat, the repetition
begins at the last open parenthesis in the FORMAT.

Q. If 1001 numbers were read with the statement
FORMAT(IS/(6Fl2.4)), (how many?) numbers would be
converted according to the specification (6Fl2.4) .

•••
A. 1000

(10/65) 50

FORTRAN for the IBM 1130 Chapter 3

Im Still another use of parentheses within FORMAT statements is to
set off groups of conversion codes which make up repeating
patterns within a single card layout. For example, FORMAT
(3(!5,FlO.S)) is the same effective FORMAT statement as
FORMAT(IS,FlO.S,IS,FlO.S,IS,FlO.S) •.

Q. Write out the equivalent FORMAT (without interior
parentheses) for the statement FORMAT(4(IS,Il2) •

A.

ml Q.

•••
FORMAT(IS,Il2,IS,Il2,IS,Il2,IS,Il2)

Write a suitable READ and FORMAT combination to enable.the
computer to:

1. Read an integer (ten column field) and five real
·numbers in E notation on a card, then

2. Read a group of cards, each containing ten real
numbers (no E notation)
a. all of the real numbers are to be eight columns

in length with four decimal places
b. the total number of real numbers· is determined

by the first integer read

Choose appropriate identifiers for the integer variable,
the array, the FORMAT number, and the input reference
number.

READ
1 FORMAT

•••
A. READ(2,l)N, (A(I),I=l,N)

1 FORMAT(Il0,5E8.4/(10F8.4))

lflJ Your answer, short of having different variable names, should
be pretty close to this one. If you note any discrepancies,
check the problem statement and the suggested solution above
and make sure you understand all the principles applied here.

(10/65) 51

FORTRAN for the IBM 1130 Chapter 3

lllmJ Perform Exercise 3.12 in your problem book.

You have learned how to make the computer read from. cards and
paper tape, but another very important part of a program is the
part which gets the computer to exhibit its answers: the Output
statements. The following frames will cover this group of
statements.

IEJI On the 1130, the most common form of output will be the printed
page (printed either by a typewriter or a printer), punched
cards, or punched paper tape. The 1130 FORTRAN language
contains output statements for all of these devices.

Im To have the computer write with an attached printing device, the
WRITE statement is used. This consists of the word "WRITE"
followed by a set of parentheses enclosing both an output
reference number and a FORMAT statement number, and finally,
a list of variables, subject to the same set of rules as input
lists. Sounds familiar, doesn't it? Actually, all we have ·
done is to exchange the word "WRITE".for the word "READ", thus
converting an input statement to an output statement.

m Our discus.sion of output statements will concentrate mainly on
using the printer, since this is where results are ultimately
displayed. If your 1130 system has a typewriter instead of a
printer, all of the following conce~ts are just as valid to

(J0/65)

you, with the only difference being the choice of the output
reference number.· You will recall that the number "3" is our
output number to reference the printer, while "1" is the logical
unit number for the typewriter. Also, we will continue using
statement number 1 as our FORMAT statement.reference unless
otherwise indicated.

Q. Write the output statements which will print the variable
X, first on the printer, and then on the typewriter •

A. WRITE (3,1) X
WRITE (1,1) X

•••

·52

FORTRAN for the IBM 1130 Chapter 3

llllJ Even though we will be referring to the printer as our output
device, keep in mind that we can select different output media
such as card punches, or paper tape punches, by assigning our .
output reference number to these units. In this case, the data
coming out of the computer would be punched instead of printed.

Q. (True or False) The statement WRITE(4,l)A,ALPHA,ZED
could transmit data to a paper tape punch •

•••
A. True

Im The WRITE statement for printing operates as follows: the
values of the variables in the list are output in the order
listed and printed on the attached printing device, according
to the indicated FORMAT statement. Like the Input statements,
the list of variables serves only to supply the computer with
the quantities involved.

Q. The statement WRITE(3,l) (A(I) ,I=l,100) will print (how many?)
values of the A array •

•••
A. 100

lm1 The variable list in the WRITE statement performs the usual
function. It defines the variables whose values are to be
printed (transmitted). The list may contain variables of either
mode and may make use of the self-indexed form; the variables
may have subscripts as long as they are not mathematical
expressions.

Q. The statement WRITE(3,l)A,B,C,I,J,K will cause the computer
to print (how many?) values •

•••
A. 6

(10/65) 53

FORTRAN for the IBM 1130 Chapter 3

Im The FORMAT statement is used in WRITE statements in much the
same way as in Input statements. It defines the layout of the
numbers in the external medium (the printed line or the punched
card layout) and it uses the same conversion codes as the Input
FORi\1AT statements.

Q. (True or False) The FORMAT statements used with WRITE
statements can use I, E, and F conversions •

•••
A. True

m The operation of a WRITE and FORMAT combination is best
illustrated by an example: WRITE(3,l)A,B,C and 1 FORMAT(F20.4)
will cause the computer to print three lines, each line
containing a single number within a space of 20 print columns
with 4 decimal places to the right of the decimal point.

Q. If statement 1 in the above example had been 1 FORMAT
(2F20.4) the computer would print (how many?) lines •

•••
A. two (two numbers on the first line and one number on the

second)

Im The FORMAT statement used with an Output statement will define
the layout of a single line, and th~ writing process continues
until the list is satisfied, repeating line after line in the
same layout, similar to the card reading process covered earlier.

Q. The combination WRITE(3,l) (A(K) ,K=l,100) ; 1 FORMAT(lOF12.S)
will print (how many?) lines •

•••
A. ten (100 numbers, 10 numbers per line)

(10/65) 54

FORTRAN for the IBM 1130 Chapter 3

Im The line printed by the printer attached to the 1130 computer
contains 120 characters. This means that FORMAT statements
for WRITE statements can specify a maximum of 120 print
positions. This is also the size of the typewriter line.

Q. (True or False) The statement 1 FORMAT(20E20.5) is a
legal FORMAT for printing •

•••
A. False (the total field width specified is 400 columns:

too long)

ml Incidentally, the decimal point is printed for real numbers,
and its position is rigidly dictated by the second integer
after the F or E in the conversion code. On input,
you will remember, the decimal point was permitted to be
anywhere as long as it was punched, or the FORMAT information
was used if the decimal point was not punched.

Q. The statement FORMAT(l2Fl0.5) will print a line of twelve
numbers, each with decimal places •

•••
A. five

Im Remember, the computer does not know what digits are significant
with respect to the computation being done. It is up to the
programmer to analyze the printed information for accuracy as

(l 0/65)

to the number of decimal places being printed. The computer
will print exactly what you call for, even if some of the digits
are not significant.

Q. (True or False) If you are computing with two-place
accuracy, you would not use a statement like
FORMAT(F20.S).

A.

• ••
True (why print five decimal places when you are only
sure of two or less in your results?)

55·

FORTRAN for the IBM 1130 Chapter 3

ml Another point: the printed numbers always appear right-adjusted
(as far to the right as possible) in their allotted fields. This

means that you can space the numbers on the printed page by
making the assigned field width accordingly wider than is needed
to contain the printed number. The excess space in the field
will be left blank, thus providing spacing.

Q. If you use FORMAT(F20.4) to print the value 123.4561
(including the point) you will have ·(how many?)
blanks to the left of the printed number •

•••
A. 12

ml The use of WRITE statements is actually that simple. Once you
have mastered Input statements, many of the same features and
conventions carry over into the Output statement family. To
illustrate, a statement combination such as WRITE(3,l) (A(I),
I=l,1000) and 1 FORMAT(l0Fl2.4) will print out 100 lines,
each line containing 10 values from the A array.

Q. The first printed line in the example above will contain
values from elements through of the A array •

•••
A. 1, 10

Im The output FORMAT statements may include conversion codes of
either or both modes in a single FORMAT. As was the case with
input data, the FORMAT code determines the mode of conversion
and, if the variable whose value is being printed is of the
wrong mode, the printed result is meaningless (often a rather
wild number) •

Q. The combination WRITE(3,l)A ; 1 FORMAT(IS)will result
in the value of A being printed in the mode •

•••
A. integer

(10/65) 56

FORTRAN for the IBM 1130 Chapter 3

Im The problem of matching the modes of the quantities being read
or written and the modes of the corresponding conversion codes
is brought up again to emphasize its importance. Many error
conditions can be caught and diagnosed by the computer, but
this is not one of them. Programs with these bugs often behave
strangely.

Q. (True or False) The combination WRITE(3,l)A,B,C,I,J
1 FORMAT(3E20.6,2Il0) is perfectly valid, because the
modes of the variables and conversion codes agree •

•••
A. True

lf1J You can easily check your programs to ensure that this error
condition does not exist. Any input or output list has a
definite order in w~ich the variables' value are to be input
or output, and every FORMAT statement has a definite cycle
order of conversion codes, even if repetition is called for.
By taking a dry run, and reading the program like the computer
would, you will often find situations where such errors exist.

Q. (True or False) The combination WRITE(3,l)N, (A(I) ,I=l,1000) ii
1 FORMAT(I5,5F20.6) will convert some of the data incorrectly .

•••
A. True

Im The use of the WRITE statement, then, is very similar to the
use of any of the Input statements. The general form of
construction is the same: identifying word (WRITE), an output
reference number, a FORMAT number, and a suitable list of
variables whose values are to be printed. The FORMAT statement
performs the same function for the WRITE statement as it does
for Input statements. It specifies the layout of the data in
the external medium.

Im Turn to Panel 3.10. This panel shows where the values are
placed on the printed page as a result of the following
statements.

WRITE(3,15) (X(I) ,I=l,20)
15 FORMAT(4Fl0.4)

(10/65) 57

FORTRAN for the IBM 1130 Chapter 3

EimJ There are several items of interest on Panel 3.10. For one thing,
you should notice that we have shown numbers, as they appear
in storage, as well as their printed representation. Because the
FORMAT statement specified four numbers per line, we see that
we need five lines to print 20 numbers. /

Q. How many lines would print if 1 FORMAT (2Fl0.4) had been
used instead?

•••
A. 10

IJDl,The printed numbers on Panel 3.10 are particularly interesting.
Let's take things one at a time, starting with the printing
of X(l). Notice that two blanks are supplied by the computer
to fill out the left-hand side of the number. This will always
be done if the integer portion of the. number is smaller.than
the space allotted to it.

Q. How would 2.123 print, using F6.3 as the FORMAT code?
(Use b for blank)

•••
A. b2.123

Em X(2) is printed with two zeroes supplied in the decimal portion
of the number. Zeroes will always be supplied to fill out the
unused decimal positions of the number being printed. Notice
also that the decimal point is always printed, and it will
always occupy 1 position of the print field.

Q. How would 3.14159 print, using Fl0.6 as the FORMAT code?

•••
A. bb3.141590

(10/65) 58

FORTRAN for the IBM 1130 Chapter 3

ml X(3)· is pretty straightforward, but be sure to note that if
the number is negative, one printing space should be reserved
for the minus sign. The plus sign is not printed for positive
numbers.

Q. Write a format code to print the value 6.36, which may
be either positive or negative •

•••
A. F5.2

ml Nothing is new in X(4), but X(5) is worthy of note because we
have lost one decimal position! This happened because the
size of the decimal field was not large enough to accommodate
our internal number. Notice that the printed number is not
shifted left to compensate for this oversight. Excess decfmal
positions are simply dropped (truncated), and that's that.
Care must be taken to avoid this common programming error.

Q. How would .16789 print, using F3.3 as the FORMAT code?

•••
A. .16

Em X(6) is normal, but look what happens in X(7)! Here we have

(l 0/65)

the unfortunate result of the integer portion of the number
exceeding its allotted print space. When this occurs, the 1130
computer considers this situation to be an error condition, and
will fill in the entire print field with asterisks. Incidentally,
there must always be one space allowed for the sign, even though
the number is positive. For example, 45.689 with the code F6.3
will print as ****** because there is no room allowed for the
sign position.

Q. How would 98765.31 print, using F4.l as the FORMAT code?

•••
A. ****

59

FORTRAN for the IBM 1130 Chapter 3

Em X(8) illustrates that if there are no integer positions in a
negative number, a minus sign will print to the left of the
decimal point. A print position is taken, of course.

Q. How would -.3456 print, using FS.2 as the FORMAT code?

•••
A. b-. 34

EifJ X(9) illustrates the error condition caused by insufficient
space allowed for a number and its sign. The moral is, always
allow enough space!

Q. Careful now. Write a FORMAT statement which will print
on one line three 7-digit signed numbers with 4 decimal
places. Allow 8 blank positions between each of the
printed numbers.

A.

- Q.

A.

• ••
1 FORMAT(3Fl7.4) The 17 positions would contain 8 blanks,
a sign position, 3 integer positions, a decimal point,
and 4 decimal positions. A total of 51 print positions
would be used for all 3 numbers.

Write a combination of statements which will print,
using 120 print positions, the entire contents of the
600-number BLOCK array, six numbers per line, and two
decimal places for each number •

1

•••
WRITE(3,l) (BLOCK(!) ,I=l,600)
FORMAT(6F20.2)

EiiiJ If you answer agrees with this one (excepting, of course, the
choice of index name and FORMAT number) , you may skip to frame
214. If you did not obtain the correct result, continue to
the next frame.

(10/65) . 60

FORTRAN far the IBM 1130 Chapter 3

Ellil First of all, the WRITE statement (if you had no trouble with
this, go on to the next frame now). After the word WRITE,
place your output reference number and selected FORMAT statement
number and follow this with the list (it was assumed that you
would use self-indexed form rather than write out a list of
600 variable names with subscripts). The self-indexed form
consists of the name (BLOCK), its dummy subscript, and the
index definition (1 to 600).

Q. Write a suitable WRITE statement to print out a 20-number
array called MATRX:

•••
A. WRITE(3,l) (MATRX(I) ,I=l,20)

1111 As for the FORMAT, you were asked to specify 120 print positions
to print six numbers (obviously there must be 20 positions
per number provided) with two decimal places. 'fhe mode is
plainly real for the variable BLOCK. The only possible state
ment to fit these conditions is 1 FORMAT(6F20.2).

Q. Write a suitable statement to specify the layout of a
printed line containing ten numbers of seven positions
each, all real, with six decimal places •

A.

BD a.

•••
FORMAT(lOF7.6)

Try another similar problem. Write a set of statements to
control the writing of the array called VECT which contains
1000 values. These are to be printed, twenty per line on
a 120-position line, with one decimal place •

•••
A. WRITE(3,l) (VECT(I) ,I=l,1000)

1 FORMAT(20F6.l)

1111 If your answer agrees with the one shown, you are getting the
hang of this output business. If not, better go back to
frame 180 and review before co~tinuing.

(10/65) 61

FORTRAN for the IBM 1130 Chapter 3

1111 Perform Exercise 3.13 in your problem book.

The preceding frames have illustrated printed output using the
"F" conversion code. Real numbers may also be printed by using
the "E" code. The next few frames will discuss this form of
output.

Q. Real numbers may be printed under the control of either
or codes .

•••
A. E,F

IJIJ Let's assume we have the number 123.46 stored in the computer.
Under control of the FORMAT code El2.5 this number would print
as bb.12346Eb03, where b=blank. Turn to Panel 3.11 for an
illustration of this example, which is explained in the next
few frames.

Q. In the above example, what is the total field width?

•••
A. 12

1111 Let's examine in detail how our number in storage has been
converted to printed output. For one thing, the decimal point
has been shifted to the left of the first significant digit.
This adjustment of the number is known as "normalizing", and
this normalized form is always used ~ith E output.

(10/65)

Q. E conversion always normalizes numbers on output, which
means that to the left of the first significant digit,
a will be printed •

••••
A. decimal point

62

FORTRAN for the IBM 1130 Chapter 3

ElfJ Although the decimal point has been shifted, notice that the
E exponent (03) will correctly place the decimal point to give
the true value of the number. The computer automatically provides
the correct value for the exponent.

Q. To compensate for the normalized decimal point, a suitable
value for the is used •

•••
A. E exponent

EJll The number of decimal places printed is dependent on the decimal
specification in the E conversion code. In this example, we
specified 5 decimal places, and thus got 5 digits printed. If
fewer decimal places had been specified, we would print fewer
digits.

Q. If the conversion code had been El0.2 in this example,
how many decimal places would the printed number contain?

•••
A. 2 (bbb.12Eb03)

EJi1 Notice that the E exponent in our printed number occupies four
print positions. We have a position for the letter "E", a
position for the sign of the exponent (blank in this example
because the exponent is positive), and two positions for the
exponent itself. These four positions must always be reserved
when E output is used in addition to whatever space is taken by
the number itself.

(10/65)

Q. (True or False) The output conversion code E3.l is valid

A.

if used with a three-position number with one decimal •

•••
False (the exponent portion of the number alone will
use four positions of field width)

FORTRAN for the IBM 1130 Chapter 3

f!Ii The one remaining position of our printed number to be discussed
is the blank which immediately precedes the decimal point.
This position is used for a minus sign if the number to be
converted is negative. As you can see from this example,
positive numbers do not have a printed sign.

Q. (True or False) The minus sign of a negative number will
require one print position •

•••
A. True

ml Since we've talked a good deal about reserving printed positions,
let's total them all up. We have 4 positions for the E exponent,
one for the decimal, and one for the minus sign. Using the same
example, bb.12346Eb03, we have underlined the 6" reserved positions.
As you can-See, in addition to those 6 positions, we also need
space for the significant digits of the number itself, which, in
this case, has 5 positions.

Q. If we wanted to print a number with 2 significant digits,
what is the minimum number of print positions needed?

•••
A. 8 (6 + 2)

ml Just as with F conversion, additional space to the left of the
printed number is advisable for readability. This can be
accomplished in E conversion by making the ·field width code

(10/65)

larger than the minimum. When this is done, blanks will be
inserted to the left of the number to take up the excess positions.

Q. If in our example on Panel 3.11 we had used El4.5 as the
conversion code, what would the printed number look like?

•••
A. bbbb.12346Eb03

64

FORTRAN for the IBM 1130 Chapter 3

E!!J You may be wondering what advantage there is in using E format
printing. Its value is that it is possible to specify a general
printing layout that is valid for any internal real number,
regardless of its size. For example, a commonly used E code is
E20.7, where space for the maximum 7 significant positions is
reserved, 6 positions are used for the sign, decimal point and
E exponent, and 7 spaces are reserved for easy reading.
(7+6+7=20)

Q. (True or False) Regardless of the size of the internal
number, format code E20.7 would convert it correctly •

•••
A. True

ml Turn to Panel 3.12 and study it carefully. Here you see the
six-number array ALPHA printed as the result of the following
statements:

1 FORMAT(3E20.7)
WRITE (3, 1) (ALPHA (I), I=l, 6)

Q. If the FORMAT statement had been 1 FORMAT(E20.7), how
many lines would print?

•••
A. 6

Em Notice that on Panel 3.12 the size of the internal number does
not affect the number of print positions allowed, since E20.7
will handle any number. This can be very helpful, because
sometimes the size of numbers to be printed is not known.

Elm Let's take a look at some of the printed numbers on the panel.

(l 0/65)

ALPHA(!) shows the normalized printing of 7 digits, with a
suitable exponent adjustment.

Q. No sign prints for ALPHA(!) because the internal number
is

•••
A. positive

65

FORTRAN for the IBM 1130 Chapter 3

E!BI ALPHA(2) is pretty straightforward, except that two zeros are
filled in the decimal portion of the number. This will happen
if there are more decimal print positions than significant
digits in the internal number. Notice also the minus sign.

Q. How many zeros would be filled in if we were printing a
1 digit number with the FORMAT code E20.7?

•••
A. 6

ml ALPHA(3) is interesting because it illustrates the printing
of a number of very small magnitude. Notice that the exponent
E-10 will correctly express the magnitude of this number.

Q. The computer can print numbers of great or small magnitude
in E format by adjusting the

•••
A. exponent

EiJJ You have been shown printing under the control of the general
FORMAT code E20.7. Other E FORMAT codes may be used, of course,
as long as you keep in mind the size of the internal numbers.
If insufficient space is reserved for E printing, truncation
will occur just as it did when using the F code incorrectly.
For example, the number -21.0057 will print as b-.210Eb02
under control of El0.3. Thus, three digits (057) have been lost.

Q. What will print if Ell.2 is used with the number 1.1642?

•••
A. bbbb.llEbOl

Ell;J If you were able to answer the last question correctly, you
have a pretty good grasp of E conversion. If you had trouble,
you should return to frame 214 and review.

(10/65) 66

FORTRAN for the IBM 1130 Chapter 3

EllJ So far, the discussion of output statements has concerned itself
only with printing. Another means of output is the use of
punched cards or punched paper tape.

E!!J You will remember that numbers on cards or paper tape were read
by similar statements with the input reference number identifying
the input device to be used. The same form is used for card or
paper tape punching statements. They are made up exactly like
WRITE statements for printing, except that the output reference
number will be assigned to a card or tape punch.

Q. Assume the output reference number 2 will reference the
card punch. The statement number WRITE(2,l)A,B,C causes
the computer to punch cards, according to FORMAT statement
number

•••
A. 1

mJ The only difference between the WRITE statement used for printing
and the WRITE statement used for punching is that a different
output device will be referenced by the output reference number.
Whatever you may write with the printer, you may also punch on
cards or paper tape.

(l 0/65)

Q. Change the statement WRITE(3,l) (A(I) ,I=l,100) to write
the same information on the paper tape punch •

•••
A. WRITE (4,1) (A(I) ,I=l,100)

67

FORTRAN for the IBM 1130 Chapter 3

mJ Computer systems wi11 vary in the number of input/output devices
attached. If you are planning to run your program on someone
else's computer, you should check to see what devices are
available for your use, and use the input/output reference
numbers accordingly.

Q. Write a pair of statements to punch the contents of the
BLOCK array on paper tape (output reference number 4) such
that each number is seven digits long with 5 decimal places.
The BLOCK array has 100 numbers. Use F specification in
the format statement.

• ••
A. 1 FORMAT(lOOF7.5)

WRITE(4,l) (BLOCK(I) ,I=l,100)

1111 If your answer agrees with the one shown, skip to frame 240.
If your answer does not agree, continue to the next frame.

Bii The writing statement should present no real problem. All you
need is the word WRITE followed by the paper tape output
reference number (4), a FORMAT number (e.g. 1) and the self
indexed list for the BLOCK array (BLOCK(I),I=l,100). With
appropriately placed commas and parentheses, the correct
statement becomes:

WRITE (4 1 1) (BLOCK (I) , I=l, 100)

Q. Write a card punching statement to punch the contents of
a 500-number array called GROUP •

•••
A. WRITE(2,l) (GROUP(!) ,I=l,500)

ll1J The FORMAT required in the original problem was to specify one
hundred seven-digit numbers with five decimal places. The only
combination to achieve this is 1 FORMAT (100F7.5).

(10/65)

Q. Write a FORMAT statement with F specification to specify
eight numbers of fifteen columns each, four decimal places:
1 FORMAT ()

•••
A. 1 FORMAT (8Fl5. 4)

•68

PO RT RAN for the IBM 1130 Chapter 3

ml Write a pair of statements to write the 100-number A array on
the typewriter such that, when printed, the numbers will evenly
fill ten lines (two decimal places for each number) •

•••
A. 1 FORMAT(lOF12.2)

WRITE(l,l) (A(I) ,I=l,100)

~ If your answer agrees with the one shown, you may continue to
the next frame. If not, you had better go back to frame 180 and
review before continuing.

EIDJ Perform Exercise 3.14 in your problem book.

This chapter has, so far, introduced three new statement types:

READ
WRITE
FORMAT with E, F, and I codes

1111 There are other forms of Input and Output statements in the
1130 FORTRAN language, all of which have similar characteristics
to those covered so far. You may find them in the appropriate
manual and may learn their use easily; consequently, they will
not be covered in this manual. Instead the remainder of this
chapter will be devoted to additional features of the Output
statements covered already.

BB FORMAT statements are constructed identically for Input or Output
statement use, with the exception that output FORMAT. statements
may have longer total field specifications for paper tape, and
printer than are allowed for cards. By the same token, many
of the features demonstrated for input FORMATS may be used
also for Output statements.

(10/65) 69

FORTRAN for the IBM 1130 Chapter 3

flD The use of the "/" in an output FORMAT has the same basic meaning
as it did for the input FORMAT: it will signify the end of one
line or line image specification and the beginning of the next.
Thus, the same statement can specify consecutive lines with
different specifications.

Q. The statement FORMAT(5F20.5/6E20.6) specifies numbers
on the first line; numbers on the second; if the list
contains enough quantities, a third line would contain
numbers.

• ••
A. 5,6,5

ml The use of interior parentheses to establish a repetition point
is useful for output FORMAT statements too. The example
FORMAT(3Il0/(6F20.6)) would cause the printing of a line of
integer quantities followed by several lines of real numbers
(assuming the list is long enough).

Q. The statement WRITE(3,l)I,J,K, (A(I) ,I=l,60) used with the
FORMAT shown above would result in (how many?)
line(s) of integer numbers and line(s) of real
numbers.

• ••
A. 1,10

EID One interesting effect concerns the use of more than one "/" in
an output FORMAT. Normally, one slash between conversion codes
causes printed lines to be single spaced. But two slashes "//"
cause double spacing and three slashes cause triple spacing.
Moreover, each additional slash causes one more space making

(10/65)

it easy to obtain quadruple, quintuple, etc., spacing between lines
if desired. To put it another way, two slashes (double spacing)
mean one blank line between two printed lines; three slashes
(triple spacing) mean two blank lines between two printed lines,
etc. Thus, FORMAT(3!10///(6F20.4)) specifies triple spacing from
the first line to the next line; in other words, two blank lines
between the first line and the next line. See examples below:

Single Spacing
1234
5678
4321
2468
1359

Double Spacing
1234

5678

4321

Triple Spacing
1234

5678

Quadruple Spacing
1234

5678

Q. The statement FORMAT (6F20.5////(5F24.6)) will provide
blank lines between the first printed line and the next .

•••
A. 3 (quadruple spacing)

70·

FORTRAN for the IBM 1130 Chapter 3

Elfl If slashes appear at the beginning or end of the FORMAT statement,
however, the number of blank lines before or after a printed line
will equal the number of slashes. For example, FORMAT (///IS//)
will cause three blank lines, before printing a 5-position integer,
and two blank lines after printing.

Q. How many blank lines will precede the printing of the real
number in the statement FORMAT(////E20.7)?

•••
A. 4

ElfJ The statement 1 FORMAT(IS////FS.2,I2//) would cause the following
output:

Integer
(blank line)
(blank line)
(blank line)
Real, Integer
(blank line)
(blank line)

Q. How many blank lines are specified by the FORMAT statement
1 FORMAT(///E20.7//I5//)?

•••
A. 6 (3+1+2)

EIEJ Another interesting feature, available on Output statements only,
is the ability to print the index value of a self-indexed list
without actually generating a separate variable. For

(10/65)

example, the statement WRITE(3,l) (I,A(I) ,I=l,10), which lists
the index variable I separately, will print out values in the
following order: the number 1, the value of Al, the number 2,
the value of A(2), etc. - ~ -

Q. How many values will be printed by the above statement?

•••
A. 20 (each of the ten values of the A array with its

associated index variable; for example, 1 Al, 2 A2, •••• 10 AlO)

7'1

FORTRAN for the IBM 1130 Chapter 3

--
Input and Output with FORTRAN is actually very straightforward,
no tricks, and fairly consistent, even though there are many
details to remember. Experience with this language and others
makes one appreciate the ease of using FORTRAN input/output,
however.

One very important feature of Output statements is the ability
to print alphabetic characters. This is useful for labeling the
answers, titling th~ output listing pages, etc. The writing
of alphabetic information is accomplished by enclosing the data
to be written in quotations marks within the FORMAT statement.

Q. (True or False) The computer can write English text through
the use of quotation marks with the FORMAT statement •

•••
A. True (English text is composed of ordinary alphabetic

characters)

ml Alphabetic information that is to be printed (or written on
tape or disk for later printing) is written verbatim into the
FOR~·lA'r statement, always preceded by a single quotation mark
and followed by another quotation mark~

Q. (True or False) By the above definition
FORMAT(' THIS IS ALPHABETIC DATA') is a valid statement •

•••
A. True

Em Whenever a FORMAT statement containing alphabetic data is used
by an Output statement, that information enclosed by the
quotation marks is printed (or written on tape or disk) exactly
as it was written into the FORMAT at the time the program was
written. -

(10/65)

Q. (True or False) The statement FORMAT (' FORTRAN') would

A.

print the word FORTRAN when used with a WRITE statement
for printing.

• ••
True

72

FORTRAN for the IBM 1130 Chapter 3

mJ In other words, if you wanted to title a printed page with a
100-character sentence you would merely enclose the sentence
in quotation marks, writing this directly in the FORMAT
statement. This alphabetic information is then available for
output any time that FORMAT is called upon by an Output state
ment.

Q. To provide the word OUTPUT as a page heading, you would
write FORMAT () •

•••
A. I OUTPUT'

ml Actually, the information enclosed by quotes is not restricted
to alphabetic characters. You may use all 26 alphabetic
characters, all ten numeric digits 0 through 9, and the special
characters + - * I = () • , $ and blank.

Q. Write a suitable FORMAT statement to print X=$10,000.99

•••
A. FORMAT (' X=$10,000.99')

Em. Incidentally, information contained within quotation marks is
called "literal data", because it is printed character for
character, or literally.

ml Unlike the F, E, and I conversion codes, the literal data does
not have a corresponding variable in an Output list, but
rather, the computer simply places the information into the
output image wherever it is called for in a FORMAT.

(10/65)

Q. (True or False) The sequence WRITE(3,l) ; 1 FORMAT
('bJOEbDOE,bDEPT.b241') would title a page with the
sentence: JOE DOE, DEPT. 241 (b=blank)

•••
A. True

73

FORTRAN for the IBM 1130 Chapter 3

l!fJ Literal data can be usea in the same FORMAT with either F, E or
I codes. For example, the statement 1 FORMAT ('bTHEbANS~vERbIS' ,
Fl5.5) would be perfectly valid. If used, say with the
statement WRITE(3,l)X, the computer would print first the
indicated alphabetic information (14 columns) and then the value
of the variable ~ (the next 15 columns).

Q. If X had a value of 1.23456 in the example above, the
printed line would be

•••
A. bTHEbANSNERbISbbbbbbbbl.23456 (b indicates blank)

m!J Literal data, then, can be used anywhere in an Output FOR~lAT
to provide the ability to write words or symbols to clarify
your output. It can be preceded or followed by F, E, or I
conversion codes, and may be as long as desired, as long as
it does not exceed the allowable print-line size. (Also, the
literal data field plus any E, F, or I fields must not exceed
this figure.)

E!fJ The literal data characters printed may be alphabetic, numeric,
or special characters. This type of information is given the
name "alphanumeric" (or sometimes, "alphameric") to distinguish
between this type and purely numeric data as converted by E,
F, and I codes. The former term will be used in this course.

Q. Alphanumeric information can be printed by enclosing it
with

•••
A. quotation marks

mJ An interesting combination of literal data and the repeating
FORMAT features enables you to title a printed page and follow
this with an array of numbers, using just a single FORMAT
statement. The sample program on Panel 3.13 will print a line
of alphanumeric information, skip a line, and print any array.
Turn to Panel 3.13 now.

(10/65) 74

FORTRAN for the IBM 1130 Chapter 3

ml Notice that the line of alphanumeric information will be printed
only once; the inner parentheses will keep the Output statement's
list of 1000 quantities repeating with the (10Fl2.4) specification.
That inner parentheses set is very important in this example.
Without this, the entire FORMAT specification would be repeated,
including the alphanumeric information.

Q. (True or False) If the inner parentheses were omitted in
the example on the panel, the computer would print in
alternating fashion: "A ARRAY, ten numbers; A ARRAY,
ten numbers; A ARRAY, ten numbers; etc •

•••
A. True (complete with the line-spacing)

mJ The use of quotation marks, then, is just a handy way of writing
words, symbols, and labels to label your output. The rules are
fairly simple. Any alphanumeric information that you wish to
print is written directly in a FORMAT and enclosed in single quotes.
Every time that FORMAT is called upon by an Output statement
(or repeated) that field is written on paper, tape,
or disk.

Q. Write a set of statements to print the following line:
bRESULTSbOBTAINEDbFROMbNEWTONbMETHODb
Double space after printing the line.
Print 50 numbers in an ANSW.R array, ten numbers per
full line (single spaced) , each number having six
decimal places.

• ••
A. WRITE(3,l) (ANSWR(I) ,I=l,50)

l FORMAT('bRESULTSbOBTAINEDbFROMbNEWTONbMETHODb'//(lOF12.6))

mJ If your answer agrees with the one shown, skip to frame 268.
If you do not agree with this answer continue to the next frame.

ml The WRITE statement was probably no trouble. This list was self
indexed for the SO-number ANSWR array. The FORMAT statement,
on the other hand, could be tricky. You were asked to start
the printing with a line of alphanumeric information. This
means that you start the FORMAT statement with literal data:
('bRESULTSbOBTAINEDbFROMbNEWTONbMETHODb' •.•

(10/65) 75

FORTRAN for the IBM 1130 Chapter 3

11'11 You were expected to double space after printing this line, so
slash marks 11

//
11 should follow the alphanumeric field. This

will allow the computer to print the alphanumeric field, skip
the next line, and then look on further in the FORMAT for the
remaining specifications.

Q. Write a FORMAT which will specify the writing of the word
bANSWERb, two blank lines, and the writing of a 20-column
integer number field.

• ••
A. FORMAT('bANSWERb'///!20)

Em The FORMAT statement requested for the problem of three frames
back would be completed by the addition of the F code for the
array to be printed. You were told that there would be ten
6-decimal numbers per full line meaning, for a 120-character
line, that you would use (10Fl2.6).

Q. A SO-number array with the specification (10Fl2.6) would
result in (how many?) lines of printing •

•••
A. 5

Em If you feel that your misunderstandings have been cleared up,
you may continue to the next frame and finish' the chapter.
If questions still remain unanswered, turn to frame 250 and
review before continuing.

ml Perform Exercise 3.15 in your problem book.

(10/65)

You have seen in the preceding frames how literal data is used
with output statements. Literal data can also be used in a
FORMAT statement that controls input. This use of literal
data allows the program to accept alphanumeric information
from an input device. Until now, we have not had the means
for reading alphabetic information into the program.

Q. When a literal data FORMAT statement is used with an
input statement, the computer will accept
information.

• ••
A. alphanumeric or alphabetic

76

FOR TRAN far the IBM 1130 Chapter 3

Em Usually, data read in this manner is used for identification
purposes. That is, it may be descriptive information pertinent
to the record being read such as headings, names, or comments.

E1liJ The input FORMAT statement with literal data is constructed
exactly like the output FORMAT statement with literal data.
For instance, if we wanted to read in 10 positions of
alphanumeric information, our FORMAT statement would allow 10
positions between quotation marks, i.e.,: FORMAT ('bbbbbbbbbb').

Q. If we were reading 5 positions of alphanumeric data, how
many positions should be given between the quotation marks?

•••
A. 5

ml When an input literal data FORMAT statement is used with a READ
instruction, here's what happens: alphanumeric data is read
from the input device, with the number of characters read equal
to the number of positions between the quotation marks. The
data being read will replace, in computer storage, the
characters between the quotes.

Q. Assume we are reading cards with the FORMAT statement
1 FORMAT('bNAMEbFIELD'). How many alphanumeric characters
will be read from the cards?

•••
A. 11

EllJ By using literal data as in the preceding example, we have the
means of storing alphabetic information from incoming cards.
In effect, you can envision this as though the incoming data
is stored in the FORMAT statement, replacing whatever was
written between the quotation marks·. Then, by using the same
FORMAT statement with a WRITE statement for printing, we would
print the alphabetic data from the last card to be read.

(10/65)

Q. (True or False) When a FORMAT statement with literal

A.

data is used for reading, we have the means for storing
alphanumeric information for future use •

•••
True

77

FORTRAN for the IBM 1130

ml Let's see how this might work. Suppose a card contained
bJOHNbDOE,bJR. in columns 1 to 14. If this card were read

Chapter 3

with the statements 1 FORMAT('bNAMEbFIELDbbb'); READ(2,l) our
FORMAT statement becomes, in effect, lF°ORi1A.T ('bJOHNbDOE ,bJR. ') •
If we now executed the print statement WRITE(3,l) the informa
tion printed would be JOHN DOE, JR. Notice that in this example
we did not need either an input list, or an output list.

Q. Suppose the card above had contained bPETER,PAUL,+l in
columns 1-14. What would have printed?

•••
A. PETER,PAUL,+l

m:I An important point: each time a new input record is read, data
from that record will replace the previously read data in the
computer •. Thus, the literal data in the FORMAT statement is
only as current as the last record read. If another READ
statement uses the same FORMAT statement, the incoming literal
data will replace the old.

Q. The FORMAT statement will contain literal data only from
the card read •

•••
A. last

Em Let's take a moment to review the use of literal data with
input statements. We use this feature of FORTRAN so that the
program can accept alphanumeric information from an input
device. This information is usually of a descriptive nature,
and is often associated with the input record from which. it
came. The number of characters read equals the number of
positions between the quotation marks, and the data will remain
available as long as no new information is read by the same
FORMAT statement.

(10/65) 78

FORTRAN far the IBM 1130 C::hapter 3

Elli This method of handling alphanumeric information has a
limitation, however. Although data can be read and written
by this means, the program cannot change the data. This is
so because the program has no way of addressing it - that is,
the literal data does not have a name like a variable. Remember
that there was no name in the input or output list which referred
to the qlphanumeric data.

Q. Although literal data can be read or written by a program,
the program cannot it .

•••
A. change

Em Sometimes a programmer will want to alter alphanumeric data in
some way - perhaps he wants to rearrange it or insert something
or delete something. In order to give him this facility, a
new conversion code is used. This new FORMAT code is "A",
which stands for alphabetic or alphanumeric conversion.

Q. 'I'he "A" conversion code is used so that the programmer
can change (what kind of?) data •

•••
A. alphabetic or alphanumeric (actually, A conversion will

accept any of the characters available to the computer,
including special characters)

mJ When used in a FORMAT statement, the letter "A" is followed by

(10/65)

an integer. This integer indicates the number of alphanumeric
characters to be read or written under A conversion. For instance,
the statement 1 FORMAT(A2) would specify that 2 alphanumeric
characters are to be read or written.

Q. Would 1 FORMAT(Al) be a legal statement?

•••
A. Yes

79

FORTRAN for the IBM 1130 Chapter 3

Em Unlike the literal data FORMAT statement, when A conversion is
used there must be a corresponding variable name in the READ
or WRITE statements. Thus, the statement 1 FORMAT(A2) might
be combined with the statement READ(2,l)DESCR to read 2
alphanumeric characters into the variable DESCR.

Q. Given the statements 1 FORMAT(4A3) ; READ(2,l)ALPHA,BETA,
GAMMA,DELTA how many characters would be read into each
variable?

•••
A. 3. Notice the use of the 4 to cause repetition of the

A code. This form is equivalent to (A3,A3,A3,A3).

lfimJ Each real variable name has sufficient space for four A characters,
and each integer variable name has space for only two A characters.
Thus the statements READ(2,l)A,B,C,I,N,X; 1 FORMAT {3A4,2A2,A4)
would cause 20 characters to be read into computer storage.
A,B,C, and X would each contain four characters, and I and N
would have two characters each.

ml It is quite important that enough space is allocated when
reading in characters under A conversion. For instance, if 12
characters were to be read, but only 2 real variable names were
given in the input list, the 4 excess characters would be
ignored, (skipped) and would not enter computer storage.

(10/65)

Q. If the statements 1 FORMAT(A2,Al,A2,A3) ; READ(2,l)NAME
were executed, how many characters would be ignored
{skipped)?

A.

•••
6 (NAME would take the first 2 characters, but the
remaining A characters have no variable names assigned
to them.)

8.0

FORTRAN for the IBM 1130 Chapter 3

m Let's recall the reason we have A conversion. We said that
it enables the progranuner to change alphanumeric data read by
his program - something which could not be done with literal
data FORMAT statements. The key to this new ability is that
we have assigne<l names to the incoming data. Because the
alphanumeric data now has a name it can be manipulated by
regular program statements.

Q. One of the main differences between A and literal data
conversion is that the A conversion data has a

•••
A. name

l!IJ Incidentally, A codes, literal data, and E, I, or F codes can
all be intermixed within a FORMAT statement. For example, the
statement 1 FORMAT ('bMOONbSHOTb' ,I5,E20.7,'bEQUALS',FH.2,A4///)
would be perfectly legal. Turn to Panel 3.14 for an illustraffon
of how this might print, assuming an appropriate WRITE statement.

Q. What is the value of RHO in the illustration?

•••
A. -34.12

ml Notice that whatever an A, E, I or F conversion code appears,
there must be a corresponding variable name in the output
list. Literal data, however, does not require a name in the list.

Q. (Yes or No) Would the statements 1 FORMAT ('bHELP?")
WRITE(3,l) ; cause HELP? to print?

•••
A. Yes

BB On Panel 3.14, horizontal spacing along the printed line is
provided by two methods 1) blank spaces within the literal
data, and 2) excess leading positions within the E and F
conversion codes.

(10/65)

Q. How many leading blank spaces are provided by the
E and F codes, respectively?

•••
A. 6 t 2

81

FORTRAN for the IBM 1130 Chapter 3

~ The methods of horizontal spacing mentioned in the previous
frame are somewhat tedious, however. To give the programmer
more flexibility in spacing a report, FORTRAN provides another
specification code will be covered in the following frames.

Eli!I The additional coversion code for FORMAT statements which proves
useful for spacing portions of your output on a given line is
the X conversion, consisting of an integer followed by the
letter x. This code merely causes a certain number of blank
columns-to be inserted in the output image, the number of blanks
being defined by· the integer preceding the letter x.

Q. The statement FORMAT(Fl4.4,10X,Fl2.6) will cause the
placement of blanks between the two F conversions •

•••
A. ten

mJ Use of the X code in the FORMAT statement would effect the
same result as a literal data field with nothing but blank
characters. For example, the statements ·FORMAT(... ,20X, .•.)
and FORMAT(.•• ,'bbbbbbbbbbbbbbbbbbbb' , •••) are equivalent, but
the former is obviously more compact.

Q. Write a FORMAT statement whose output will consist of:
ten blanks, the letter "A", twenty blanks, the letter "B",
twenty blanks, the letter "C", forty blanks, and the
letters "ERROR", making use of X and literal data
conversions FORMAT() .

•••
A. FORMAT(lOX, 'A' ,20X, 'B' ,20X, 'C' ,40X, 'ERROR')

~ The X specification can also be used with input records. In
this case, the X code indicates how many characters of the
input record are to be skipped. For example, if a card has
six 10-column fields of integers, and the second field is not
to be read, the statement: 1 FORMAT(IlO,lOX,4!10) may be used,
along with an appropriate READ statement.

(10/65)

Q. Write a FORMAT statement that will allow reading of a

A.

2 decimal real number (in E notation) in columns 1-10 of
a card, and then an integer in columns 71-80 .

•••
1 FORMAT(El0.2,60X,IlO)

82

FORTRAN far the IBM 1130 Chapter 3

EiifJ,one further example of this very useful feature: if the first
40 columns of a card were to be skipped, the statement
1 FORMAT{40X, •••) would handle it nicely.

Q. {True or False) On input, X specification allows input
record positions to be skipped, while on output the X
specification indicates the number of blanks to be
inserted in the output line or image •

•••
A. True

ml Before we can go further in discussing FOR..~T statements for
printing, the topic of vertical paper spacing or "carriage
control" will be discussed. It's necessary to do this now,
because FORMAT statements for printing must be designed with
carriage control in mind. So far, we have skirted this issue
in the text, but as we talk more in detail about how a printed
line actually looks in relation to the FORMAT statement, this
topic is a must.

ml The printer for the 1130 computer system does not actually
print the first character in the output image. This character
is interpreted by the printing device as a "carriage control"
character which causes the printer to space down the page in
various ways.

Q. In the statement FORMAT{'bANSWER') the first character
{carriage control character) is

•••
A. b {blank)

~ This fact holds true whether the first item in the print image
is a result of a numeric field (E,F, or I conversion) or
alphanumeric field (literal data, or A conversion). The best
way to think of this is to picture a printed line image where
the first character, whatever it is, will not be printed and
the second character in the image will be the first character
in the line that is actually printed (you may recall that
previous examples have had blanks there).

Q. (True or False) The very first character in any printer-
line image is not printed •

•••
A. True

(10/65) 8~

FORTRAN for the IBM 1130 Chapter 3

mJ On 1130 computer systems, the followlng characters, appearing
in column one of a printer-line image, will cause the indicated
carriage control operation to occur:

b (blank)
0 (zero)
1 (one)'
+ (plus)

Normal (single) space
Double space
Skip to a new page
Do not space (write on same line as before)

In all cases, the indicated control is executed before the
actual line is printed.

Em Progranuning the desired carriage control character into the
print image (either for the printer or for a tape
print-image) will give the programmer a useful control of his
printed output. For example, if you wish your output to begin
on a fre~h page in the printer, FORMAT('!') used with a WRITE
statement will accomplish this. Of course, the character 1
could have been part of a larger FORMAT, too.

Q. The carriage control character in FORMAT(lOX,'ANSWER')
would be

•••
A. blank (from the X code)

Em If you answered this correctly, you have probably grasped the
meaning of this concept pretty well. The statement FORMAT
(lOX,'ANSWER') sets up a printed-line image of ten blanks and
the word ANSWER. Therefore, nine blanks and the word 1\NSWER
will be printed, with the first blank acting as carriage
control. Remember, it is the first character in the image
which has this function, not the first character in the FORMAT
statement itself!

Em While the carriage control feature can be very helpful, it also
can do strange things if you do not handle it carefully. There
are many ways in which an odd character can unintentionally
appear in the first column of the printed-line image. The
next few frames will cite a few common examples you should
watch out for.

(10/65) 84

FORTRAN for the IBM 1130 Chapter 3

REFERENCE INDEX

SUBJECT FRAME NUMBERS

A code

Alphabetic data

Card layout for I/O

Carriage control

E code

F code

Field width

FORMAT statement

I code

Input statements

Input/output reference number

Literal data
for output
for input

Output reference number

Output statements

Parentheses in FOR~T statements

Printer layout for output

READ statement

Self-indexed I/O list

Slash "/" character

Subscripted variables in I/O list

Variable list in READ statement
in WRITE statement

WRITE statement

X code

(l 0/65) 89

Note: "ff" means "following"

277

250 ff

150

291 ff

122 ff, 214 ff

84, 96, 137, 187 ff

86, 92, 102

22, 76 ff, 93, 104 ff, 173
187 ff, 242, 304

141 ff

3 ff

9, 12, 60

250 ff, 255 ff
268 ff, 275

184, 232 ff

180 ff

164 ff, 176, 244

200

8, 17, 58

33 ff, 49, 248

157 ff, 175, 243 ff

25 ff

14, 24, 39, 64, 114, 144
186

182 ff

287

R29-0103-0

Data Processing Division

112 East Post Road , White Plains, New York

