
-IBM
®

Programmed Instruction Course

IBM

Programmed Instruction Course

. FORTRAN for the IBM 1130

Chapter 2

FORTRAN for the IBM 1130 Chapter 2

FOREWORD

In the preceding chapter you were shown how to refer to quantities -
constants, variables, or lists - with FORTRAN notation and how
to involve these quantities in useful mathematical computation.
Most programs require much more than this, however. Very few
problems suitable for computer treatment can be solved by a
simple sequence of formulae. In most cases the program must
also involve decision making, such as deciding whether a number
is positive, zero, or negative. Instead of writing the program
in a "straight line" the progranuner builds in "loops" and
"branches". For.these reasons FORTRAN provides a set of
"Control Statements" to give the programmer the tools with
which to provide these options. This chapter will cover in
detail the essential Control Statements provided by FORTRAN.

Copies of this publication can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
I BM DPD Education Development, Education Center, Endicott, New York.

@1965 by International Business Machines Corporation

FORTRAN for the IBM 1130 Chapter 2

• The normal order of execution of statements by the computer is
the order in which they are written. The statements

1 Y = A+3.*B
2 X = X+Y

would tell the computer to execute statement No. 1 completely,
then go on to execute statement No. 2.

Q. In the example shown above, the variable named Y has its
value defined in statement No •

•••
A. 1

B This chapter will be. devoted to the use of Control statements
with which the prograrmner can alter the normal order of
execution of statements.

Q. (True or False) Except where Control statements are used,
the order in which statements are executed by the computer
is the order in which they are written •

•••
A. True

B A Control statement is, by definition, a statement which may
cause the computer to execute a statement other than the next
statement in sequence.

Q. A Control statement changes the
are executed.

• ••
A. order (or sequence)

in which statements

D You have observed that writing Arithmetic statements

(10/65)

permits considerable flexibility in assigning names and
constructing expressions, etc. as long as you remain within ~
the basic format. Most Control statements, however, have
rigid rules of wording, punctuation, and format which must be
observed.

FORTRAN for the IBM 113D Chapter 2

B In order to tell the computer to execute an instruction which
is not the next in the written sequence there must be a way in
which to refer to a specific statement in the program. This is
accomplished by statement numbers.

Q. FORTRAN statements may have
referred to by other statements •

•••
A. statement numbers

by which they may be

D In FORTRAN programs any statement may be assigned a number.
This number is arbitrarily chosen by the program writer and is
placed to the left of the actual statement, as, for example:

100 Y = A+3. *B
1 X = X+Y

Q. The second statement shown above has a statement number
of

•••
A. 1

If.I The rules for numbering statements are simple: any statement
may have an assigned number, no particular order of numbers
is required, and, naturally1 no two statements may have the
same number.

Q. Statement numbers are arbitrarily assigned numbers
appearing on the of the statement to which they
refer.

• ••
A. left

(10/65) 2

FORTRAN for the IBM 1130 Chapter 2

II Given the statements

1
3

3000
2

x
A
B
y

= 2.1059
= 3.
= 4.
= A*X**2+B*X

the computer will proceed to execute them in the order written:
1, 3, 3000, and then 2.

Q. (True or False) The numerical value of a statement number
has no bearing on the order of execution.

••e
A. True

D Although any statement may have an arbitrarily assigned statement
number, it is used in most cases only where a "label" is needed;
that is, a statement number is used where it is necessary to
refer to that statement from some other part of the program.

Q. (True or False) Arithmetic statements are the only
statements which can have statement numbers.

J

•••
A. False

E Statement numbers are chosen in an arbitrary fashion, but they
must not be larger in size than a certain upper limit. On the
1130, for example, statement numbers may not exceed 5 digits.

(l 0/65)

Q. The maximum statement number in 1130 FORTRAN would
be

•••
A. 99999

3

_r

FORTRAN for the IBM 1130 Chapter 2

111 The principle use of statement numbers is to provide a reference
for Control statements. The Control statement tells the computer
which statement to execute next by referring to the statement
number that has been assigned to that statement.

Q. Statement numbers are referred to chiefly by
statements.

• ••
A. Controi

llJ The Control statement enables the computer to make controlled
"decisions". These decisions are always a choice of the next
statement to be executed based on some elementary condition,
such as whether a number is positive, ·negative, or zero. This
chapter will show how to use these decisions to control a
program.

m

ID

(10/65)

Q. (True or False) The "decision" the computer has to make is·
"which statement do I execute next"?

•••
A. True

Since the computer can only decide where to go next in the
program, it is up to the programmer to arrange the parts of
the program in a logical order to take advantage of this
control; that is, the statements must be grouped and ordered
according to the effect you wish the decis1on to have.

One of the most useful decision-making statements is the "IF"
statement. This statement always consists of the word "IF"
followed by a pair of parentheses containing any desired
expression, after which come three statement numbers. An
example of an IF statement might be IF (X-Y) 10, 20, 30.

Q. The IF statement always contains exactly
statement numbers.

• ••
A. three

4

FORTRAN for the IBM 1130 Chapter 2

m The IF statement tells the computer to do the following: 11 compute
the entire expression contained in the parentheses; if the
computed value is negative go next to the first indicated
statement, if the value is zero go next to the second indicated
statement, if the computed value is positive go next to the
third indicated statement."

Q. In the example IF(X-Y)l0,20,30 assume the computed value
of (X-Y) is positive. When this IF statement is executed
under those conditions, the next statement to be executed
would be number

•••
A. 30

lfl The computer's ability to select one of three possible
successive statements as in the IF statement is often called
"branching" or "conditional transfer." When the IF statement
is executed the computer will "branch" on the condition of a
negative, zero, or positive value for the indicated expression.

m

(10/65)

Q. In the statement IF(X**2-l.0)30,20,10 if the value of X
were -1.0 the computer would go next to statement number

---When executing this statement. ----
•••

A. 20 (the expression (X**2-l.O) is zero for that value)

The IF statement must conform exactly to the prescribed format,
so let's look at. that again: the statement consists of the
word "IF" followed by a pair of parentheses containing an ·
expression (which may have additional parentheses), followed
in turn by exactly three statement numbers.

Q. (True or False) The statement IF(X**3)17,2,39,103 is a
legal IF statement.

• ••
A. False (too many options)

5

FORTRAN for the IBM 1130 Chapter 2

Ill Notice that the statement numbers are separated by conunas.
Naturally there must be some way of clearly defining where one
statement number ends and the next begins. However, there is
no conuna permitted either before the first statement number or
after the last.

Q. The statement IF(X*Y-25.)567 can be made legitimate by
inserting two

•••
A. conunas

lfJ It is possible to make a two-way branch with an IF statement
by making two of the statement number options the same {three
statement numbers ~n all are still required). For instance,
the statement IF(A)7,7,8 will send the computer to statement
number 8 only if the value of A is positive. (Not negative
and not zero)

Q. Regardless of the values of A, B, and C, the computer when
executing the statement IF(A+B-C)20,20,20 will always go
next to statement number

•••
A. 20 (clearly this is nonsense; no useful decision would

be made)

m The nonsense question of the preceding frame is intended to
make a point: the IF statement will branch to one of

(10/65)

three alternative paths (if the indicated statement numbers
are all different) or one of two alternative paths (if any
two of the three numbers are alike), but it serves no purpose
if all the numbers are alike.

Q. If you wished to have the computer execute statement

A.

No. 100 if VALUE were a positive quantity or execute
statement No. 200 otherwise, you would write the following
statement:

•••
IF(VALUE)200,200,100

6.

FORTRAN for the IBM 1130 Chapter 2

m An IF statement, like any FORTRAN statement, may have a state
ment number of its own for reference by other statements. An
IF statement is not allowed to branch to itself, however,
because such a condition could obviously be disastrous. Think
what would happen in the statement 3 IF{A) 1,2,3 if A were
positive!

Q. If the variable A in the statement sample shown above were
positive, the computer would go on executing statement
number until someone intervened •

•••
A. 3

m In an IF statement, the expression whose value is to be tested
may be as simple or complex as desired. It may contain
parentheses of its own but it must be completely contained in
a pair of parentheses belonging to the IF statement itself.

Q. {True or False) The statement IF { (A+B) *C) 2, 2., 3. is a legal
IF statement.

• ••
A. True

m a. Write a statement to test the expression A{J)**3-TEST.
If the computed value is negative, the computer should
execute statement No. 39 next; otherwise the computer
should go to statement No. 1 •

•••
A. IF(A{J)**3-TEST)39,l,l

Ell If your answer agrees with the one shown above, go to frame
29. If you did not get the correct answer, go to the next
frame.

(10/65) 7

FORTRAN for the IBM .1130 Chapter 2

m 'This problem was obviously intended for an IF statement: write
down the word "IF" and an open-parenthesis; follow this with
the tested expression and the balancing close-parenthesis. Next
comes the group of statement numbers which indicate the branch
directions.

Ell If the expression's value was negative in this problem the
computer was to go next to statement number 39; otherwise,
statement number 1 was to be executed next. The order of
statement number options always corresponds to negative, ~'
or positive expression values, respectively. Thus 39,1,1 is
the proper sequence of statement numbers for this problem.

E1J The complete statement to fulfill the requirements of this
sample problem is: IF(A(J)**3-TEST)39,l,l

Q. Write ~ statement such that the computer will execute
No. 27 ,next if A*X**2-C**(J-l) has a value of zero or
No •.. ·2H otherwise.

• ••
A. IF(A*X**2-C**(J~l))28,27,28

m If your answer agrees with the one shown above (including at
least four parentheses) go on to frame 29.

If you answer is incorrect, better review all the material up
to this point on IF statements, starting with frame 14. If
you have already reviewed the material, see your advisor.

m One very common application of the IF statem~nt is to determine
if a computed quantity is less than, equal to, or greater than
another quantity. This is done by writing the expression as a
difference of the two quantities so that the resulting value
will be negative, zero, or positive, respectively.

Q. In the statement IF(X-3.0)20,30,40 the computer is told to
go next to statement No. if the value of X is
greater than 3.0.

• ••
A. 40 (since (X-3.0)> O.)

(10/65) 8

FORTRAN for the IBM 1130 C:hapter 2

m The example of the preceding frame showed a variable compared
with a constant. The same method can be applied to two
variables as in the example IF(X-Y)l,2,5

Q. The computer, when executing the statement above, will go
next to statement number 1 if the .value of X is
than the value of Y.

• ••
A. less (since result is negative)

Ill In review: the IF statement causes the computer to compute
an expression, just as it does for an Arithmetic statement,
and selects the part of the program to which it will go next
depending on whether the value of the computation is negative,
zero, or positive.

m Perform Exercise 2. 1 in your problem book.

One important point: the value of the computed expression is
lost as soon as the computer has completed the IF statement.
The expression in the IF statement is simply a series of
operations resulting in a single computed value and does not
imply that a variable will contain this value as in the
Arithmetic statement.

Q. (True or False) After executing the IF statement, the
value of the expression computed therein is then
available for future statements •

•••
A. False

EIJ To illustrate this point consider the statement IF(A*B-C)l,1,2
which will cause the computer to compute the expression A*B-C
and pick out its next statement according to the usual rule.
The value of A*B-C is no longer available to future stateme~ts
unless it is recomputed by an Arithmetic statement, resulting
in duplication of effort and wasted time.

(J 0/65)

Q. (True or False) After executing the statement
IF(X-Y)l0,20,30 the computed value of X-Y is not available
and must be recomputed if needed in future statements •

•••
A. True

9

FORTRAN for the IBM 1130 Chapter 2

m The progranuner should give a lot of thought before writing a
complicated expression in an IF statement. He should first
determine if he needs that computed value in other statements;
if so, the expression should be computed in an Arithmetic
statement prior to executing the IF to avoid redundant
calculation.

Q. Given the statement IF(Z-G)I0,25,1001 and the value of -1.0
for Z and -2.0 for ~' what statement would the computer~~
execute next?

•••
A. 1001 (Z-G>O)

m The statements SAMPL = X**2-B*Z and IF(SAMPL) 10,20,30
executed in that order will have the same effect as
IF(X**2-B*Z)l0,20,30, but in the first case the value of the
expression is saved in the variable SAMPL and will be available
for future use.

Q. If the variables X, B, and Z in the example above each had
a value of 2.0, the computer would select its next executed
statement (in either case) as statement number

•••
A. 20 (X**2-B*Z equals O.)

m Remember that the parentheses of an IF statment contain an
expression subject to all the rules of hierarchy and mode
that apply to expressions in Arithmetic statements.

(10/65)

In particular, remember that the expression normally contains
quantities of the same mode only, except for exponents and
subscripts.

Q. (Yes or No) Does the statement IF(HENRY+HOMER-JIM)l,2,3
contain a mixed mode expression?

•••
A. Yes

1.0

FORTRAN for the IBM 1130 Chapter 2

m The IF statement, then, contains three elements:
The word "IF"
An expression contained in parentheses
Three statement numbers indicating three possible paths
for the computer.

All IF statements are constructed in this basic form, with just
the few simple rules stated above to follow.

III Perform Exercise 2.2 in your problem book.

Now that you know everything about IF statements, let's look at
a few examples to show how they are used in FORTRAN programs.
For example, suppose you wish to compute the square root of the
quantity called X and you must first make sure that X is a
positive quantity. The use of the IF statement to accomplish
this is illustrated on Panel 2.1 in the Illustration Book.
Turn to it now.

Q. If the value of X were a negative number, statement
number would be executed to change its sign .

•••
A. 40

m When statement number 40 on the panel example is executed by
the computer, the value of X will have its sign changed and the
computer will continue on to statement 30 ROOT = X**0.5 to
compute the root. If the value of X had originally been
positive, statement number 30 would have been executed
immediately.

Q. The decision made by the IF statement of the preceding
example was to ensure that the sign of the quantity whose
root was bein~ computed was

•••
A. positive (plus)

m The example on the panel also illustrates two statements worthy
of mention. The statement X = -X is a perfectly legal Arithmetic
statement: the original value of X has its sign changed
and the new quantity replaces that-value in X. The statement
ROOT = X**0.5 shows the use of the exponent 0.5 to compute the
square root. This is true because in FORTRAN the equal sign
denotes "calculate and replace'" rather than "is identical to.·"

(10/65) 11

FORTRAN for the IBM 1130 C:hapter 2

Ill One common characteristic of good computer programming is the
ability to re-execute a statement or sequence of statements in
a process called a "loop". A basic series of operations may be
defined by a sequence of statements which the computer will
execute a number of times with different values of the variables
involved.

Q. A basic sequence of operations which is executed repeatedly
is called a

•••
A. loop

lfl The IF statement can be a valuable aid in controlling the
progress of a "loop". The example in Panel 2.2 will illustrate
the use of the IF statement to compute "X-factorial" which is
defined as the product of the quantities X, X-1, X-2, X-3, and
so on down to 1. For example, 4-factorial is (4) (3) (2) (1) = 24.
We assume that the real quantity X has a whole.-number value.

Ill Turn to Panel 2.2. Have you studied the program thoroughly?
Here is the explanation: the first two statements are
initialization steps: fACT = 1.0 prepares the variable FACT
for the first multiplication and Y = X gives us a working
variable Y such that the value of X is preserved.

Q. (True or False) The two statements described above are
executed just once in the program segment shown on the
panel.

• ••
A. True

m The statements 10 FACT = FACT*Y
Y = Y-1.0
IF(Y)20,20,10

(10/65)

represents the actual loop: the first time through FACT becomes
(l.)*(Y) and Y is reduced by 1.

Q. If Y had an initial value of 10.0 the IF statement would
transfer to statement number the first time
through this loop.

• ••
A. 10 (Y >Q.)

12

FORTRAN for the IBM 1130 Chapter 2

m The loop described in the preceding frame will continue repeating,
storing the successive products in the variable FACT as the
factorial definition prescribes, reducing the working variable Y
by steps of 1.0, and testing so that when Y has a value of zero
the loop is finished and the computer will go to No. 20.

m

(10/65)

Q. Looking at the panel which shows the sample program segment
discussed above, if the variable X had a value of 10.0,
how many times would statement 10 be executed?

•••
A. 10 (on the tenth execution of the IF statement, Y = 0.)

If you answered the last question correctly, you are grasping this
loop concept pretty well. The idea of a loop in a program is to
avoid writing similar statements over. and over, wasting your
time and energy and the computer's space and energy as well.
One basic set of statements with proper control will often do the
job.

Q. Statement 20 on the panel will be executed a total of
time(s).

• ••
A. 1

Another use of the IF statement might be testing a counter where
a loop is to be cycled a prescribed number of times. The next
few frames will describe such a program which will compute the
sum of an arithmetic progression. If you are familiar with the
term "arithmetic progression" you may skip to frame 49.

An arithmetic progression is simply an ordered sequence of numbers
which differ by the same amount. The series 1,2,3,4,5,6,7,8,9,
10, •••• is an arithmetic progression, as is 1,3,5,7,9, •••• etc.
An arithmetic progression beginning with 2 having a difference of
4 would be 2,6,10,14,18, •••• and so on. A progression usually
has a definite number of terms, also. The arithmetic progression
beginning with 1 having ten terms and a difference of 2 would be:
l,3,5,7,9,ll,13,15,17,19.

13

FORTRAN for the IBM 1130 Chapter 2

lfJ A program, or sequence of statements, to compute the sum of all
the terms of any arithmetic progression must be given the
following information: the first number, the difference, and the
number of terms involved. Assume that the variables FIRST, DIF,
and NUM respectively represent these quantities in the following
example, and that they have been given values from some other
part of the pro~ram.

m Turn to Panel 2.3. Have you studied the sample program segment?

ID

Here is the explanation: the first two statements are initiali
zation, setting SUM equal to the first term in the progression
and setting the counter to one. The loop itself begins with
statement number 10.

Q. The first two statements of the sample program segment are
executed time(s) each •

•••
A. one

The next four statements: 10 FIRST = FIRST + DIF; SUM = SUM
+FIRST; I= I+ l; and IF (I-NUM)l0,20,20 constitute the 11 loop"
such that the variable SUM has the quantity FIRST added to it
each time through the loop and the counter I is increased by 1
each time through. As soon as the variable I has attained a
value equal to NUM the loop is terminated by passing on to
statement number 20.

Q. If NUM has a value of 15 in the loop shown above, statement
number 10 will be executed a total of times (careful,
now-!)

•••
A. 14

Efl Statement number 10 in this example is executed one less time than
the value of NUM since I has a value of 2 by the time the IF
statement is executed the first time and-consequently will have a
value equal to NUM after "NUM-1" cycles through.the loop and
will go on to statement 20 at that time.

Q. When statement 20 of this example is executed, the variable I
will have a value of (assuming NUM has a value of 15) .

•••
A. 15

(I 0/65) 14

FORTRAN for the IBM 1130 Chapter 2

m This was admittedly a trivial example (the problem is better·
solved by direct substitution in a formula) but it was intended
chiefly to illustrate the loop concept. IF statements can
control the progress of a loop by testing either a counter or
some other computed quantity in the loop to determine when
to exit the loop.

m Perform Exercise 2.3 in your problem book.

m

(10/65)

The IF statement is one of the simplest and yet most powerful
of the Control statements. Another very simple statement
which is discussed in the next few frames is the GO TO statement.

The GO TO statement consists of the two words "GO TO" followed
by a single statement n~mber. When a GO TO statement is
executed the computer is told to execute next the indicated
statement. For example, the statement GO TO 12 ,~ill tell the
computer to go next to statement number 12. ·: .

Q. After executing the statement GO TO 1000 the computer will
execute statement number next .

•••
A. . 1000

The use of the GO TO statement is often called "unconditional
branching 11 or 11 unconditional tr an sf er'' since no choice is made
by the computer. Actually the GO TO statement usually appears
at the end of a sequence of stat~ments representing an option
of some other control statement, and serves to direct·the
computer back to some other part of the program, or to skip
some portion of the program.

15

FORTRAN for the IBM 1130 Chapter 2

m Turn to Panel 2.4. The sample prog~am segment on the panel
shows an IF statement directing the computer to one of three
options. No matter which path the computer takes, the GO TO
statements will eventually direct the computer to statement
number 40. Notice that, in this case, the third path does not
need a GO TO statement since the program naturally arrives at
statement number 40 without requiring control.

Q. In the GO TO statement, the words "GO TO" are always
followed by a

•••
A. statement number

Ill You have been shown some of the uses of two of the members of the
~ontrol statement family. Both of these statements have the
ability to tell the computer to go somewhere other than to the
next statement as it normally would. The IF statement provides
conditional pranching while the GO TO statement involves
unconditional branching.

m A while back in this chapter you saw a discussion of a program
with a loop in which an IF statement was used to test the value
of a counter. The counter was a variable which was increased in
value by some amount each time a pass through the loop was
made.

Q. The loop approach described above requires increasing and
testing a variable called a

•••
A. counter

lmJ To construct a loop using a counter and an IF statement to
test its status requires separate statements to step the
counter and test its current value. FORTRAN provides a
powerful statement to keep track of both operations in
controlling a loop: The DO statement.

(10/65) 16

FORTRAN for the IBM 1130 Chapter 2

m The DO statement is constructed in the following form: the word
"DO" followed by a statement number, and followed in turn by an
index definition. An example of a DO statement might be
DO 10 I = 1,100 where 10 is the statement number and I = 1,100
is the index definitioil:-

Q. The DO statement always begins with the word

•••
A. DO

m The index definition (e.g. I = 1,100) is always made up of a
non-subscripted integer variable followed by an equal sign
and at least two integer quantities separated by a comma.

Q. (True or False) The index definition ANUM = 1,1000 is
valid according to the above definition •

•••
A. False (ANUM is not an integer variable)

BJ The DO statement tells the computer to "repeatedly execute the
successive sequence of statements up to and including the
statement whose number appears in the DO, cycling the index each
time through according to the index definition." That is, all
those statements following the DO represent a "loop."

(10/65)

\

Q. The statement DO 10 I = 1,100 will cause the computer to
repeatedly execute the statements following the DO up
to and including statement number

•••
A. 10

17

FORTRAN for the IBM 1130 Chapter 2

m The index definition (e.g. I = 1,100) indicates that the variable
on the left of the equal sign is set equal to the first quantity
on the right of the equal sign for the first pass through the
"loop", and the variable's value is increased by 1 on each
successive pass until it reaches a value equal to the second
quantity on the right of the equal sign.

Q. The index definition shown above would cause the variable
I to take on values from to

•••
A. 1,100

Ill The DO statement, then, controls a loop by causing the computer
to repeatedly execute the statements following the DO up to
and including the indicated statement, beginning with the index
variable set equal to the first indicated value and increasing
its value until it'equals the second indicated value, at which
time the loop ends and the computer continues with the program.

Q. The statement DO 20 K = 1,50 will execute the statement
through No. 20 a total of times •

•••
A. 50

IEfl Consider an example: the statement DO 10 I = 1,100 tells the
computer to start with the very next statement and execute all
the statements down to and including statement number 10, having
given the variable I a value of 1. When statement number 10 has
been reached the computer will go back to the first statement
after the DO and repeat, having increased the value of I by 1.
This goes on until I reaches 100. - -

(10/65)

Q. On the pass in which I of the above example reaches 100 the
computer will go on to the statement immediately after--
statement number when it finishes the loop •

•••
A. 10

18

FORTRAN for the IBM 1130 Chapter 2

rfJ The format of the DO statement is very important, so let's
review that again. The word DO, a statement numbe~, (warning:
no conuna allowed at this point, normal as that may appear)
an integer variable, an equal sign, and lastly, at least two
integer quantities separated by a conuna.

Q. Identify the valid DO statements below by a plus sign;
indicate the incorrect ones with a minus sign:

DO 111 III = 1,1111
DO 100 A = 10,20
DO 10,J = 1,10
DO Al21 = NO,NONO

A. +

•••
- (index must be integer)
- (no conuna permitted before J)
- (statement number must be numeric only)

m The quantities,to the right of the equal sign in the index
definition may be integer constants or integer variables whose
values.are computed elsewhere. Thus, DO 5 I= l,K;
DO 215 JOB = N,100; and DO 100 L = Ll, L2 are ail examples of
legal DO statements.

Q. Assume K equals 10 in the first example above. The
computer will loop through statement No. 5 a total of

times.

• ••
A. 10

m The use of variables on the right of the equal sign in an index
definition permits the progranuner to construct a loop whose
number of cycles can be changed by a computation in the program
(outside the loop)·. If you attempt to alter these values during
the loop execution, it will have no effect, as the limits are
already set.

Q. DO 5 I = 1,2 will cause the computer to loop through
statement number 5 a total of times •

•••
A. 2

(10/65) 19

FORTRAN for the IBM 1130 Chapter 2

f.ZiJ Once again, be warned that the DO statement format must be
strictly observed. No comma is permitted between the statement
number and the index definition. Also, integer constants or
variables are permitted as index defining limits, but no
expression involving a mathematical operation is permitted.

Q.. (True or False) The statement DO 10 I = l,N-1 is a legal
DO statement.

• ••
A. False (N-1 is an expression involving a mathematical

operation)

fJI The first quantity on the right of the equal sign in the
index definition (index lower limit) must be a smaller value
than the second number (upper index limit) since the index
will always be counted upward. If this rule is not observed,
the loop will still cycle once (with the lower limit value)
and then drop out. ~~

·a. The loop described by DO 15 N = 10,l will be executed one
time with a value of for N •

•••
A. 10

fll The index definition permits a third quantity on the right of
the equal sign: if it is desired that the index count up in
steps other than one unit at a time, the desired step value
may be written in the DO statement as the third quantity in
the index definition, separated from the upper limit value

(10/65)

by a comma.

Q. The first time through the loop prescribed by DO 5 I = 5,10
the variable I will have a value of

•••
A. 5

20

FORTRAN for the IBM 1130 Chapter 2

fil If, for example, you wished the index variable in a DO loop
to take on the values of 1,3,5,7, •••• ,99, you might write a DO
statement as DO 8 I = 1,99,2 which would cause the index
variable I to start with a value of 1 and loop repeatedly,
adding 2 to its value each time through the loop.

Q. When the index variable in the example above exceeds a
value of the loop will be completed •

•••
A. 99

m With the third quantity in the index definition specified as
other than 1, it would be possible to have a situation in which
the index variable would never reach the exact value of the
upper limit (for example, I = 1,100,2). In this case the loop
is terminated after the index reaches the largest possible value
without exceeding the upper limit (in this example: 99).

Q. In the statement DO 10 I = 1,11,3 the largest value attained
by the index I would be

•••
A. 10

fil This third quantity in the index definition is called the
index increment and the complete format of the index definition
can be stated as: an index variable, an equal sign, a ·
lower limit, an upper limit, and an optional increment. These
last three items may be either constants or variables, but not
expressions involving operations. If the increment is not
otherwise specified, it is taken to be 1 as in the original
definition.

Ell The actual procedure used by the computer in interpreting a DO
statement is as follows: set the index variable equal to the
indicated first value (lower limit) and execute all the
statements up to and including the indicated statement; increase
the value of the index variable by the indicated increment (or 1
if none specified) and check the current value against the upper
limit: if the index is less than or equal to the upper limit, go
back and re-execute the loop; if the index has reached a value
greater than the upper limit, drop out of the loop.

(10/65) 21

FORTRAN for the IBM 1130 Chapter 2

flJ Actually, the DO statement is thought of as being executed once
while its prescribed loop sequence is being cycled according
to the DO control. Incidentally, a loop under control of a
DO statement is usually referred to as a "DO-loop".

Q. The loop prescribed by the statement DO 1 I = 10,10 will
be executed once with a value of ~or the index •

•••
A. 10

fll The next few frames will describe a simple example of the use of
the DO-loop. The problem is to find the sum of 50 numbers
in a list called A.

fiJ Turn to Panel 2.5. Have you studied the sample program
segment? Here is the explanation: the variable SUM is
initialized to a value of 0.0 (this variable will be used to
accumulate the sum of the list called A) : the DO statement
then controls a loop of one statement, executing that
statement 50 times. Each time statement 10 is executed the
value of I, the index variable, is increased by 1 such that the
reference-to A(I) will refer each time to a successive number
in the A list. When the loop is completed, SUM will contain the
desired sum of the.A's.

m This example illustrates a couple of notable points. First of
all, the use of the index variable is definitely permitted
within the loop itself. In fact this is a very desirable
feature of the DO-loop and many instances will arise where the
index value is useful as a subscript, exponent, etc.

(10/65)

Q. In the preceding example, the statements DO 10 I = 1,50
and 10 SUM = SUM+A(I) show the use of the index variable
I as both a counter and a

•••
A. subscript

22

FORTRAN for the IBM 1130 Chapter 2 ,

Ill The only restriction on the use of the index variable within the
loop is that you do not change its value in any way such as
using it on the left of an Arithmetic statement. It
may be used as a term or factor in an expression if desired,
but remember that it is an integer quantity and you may want
to change its mode.

Q. The integer value of I may be converted to a real value
in the variable XI by-the Arithmetic statement

•••
A. XI = I

m The second item .of note in the sample program is the use of a
variable as an accumulator for a summing process. The
statement SUM = SUM+A(I) has been used in this way such that
each time this statement is executed under the DO control a
new number of the A array is added into the current sum. When
the loop is finished, SUM contains the desired result.

m

(10/65)

This is a commonly used technique.

Q. (True or False) In order to use the above-mentioned
summing technique, the variable SUM must first be
initialized to zero.

• ••
A. True

Any FORTRAN statement may be used in a DO-loop but.the loop
must not end with a control statement (such as IF or GO TO) .
If it is necessary to conclude a DO-loop with a-Controlled

1
decision, a dummy statement must be used after the control
statement, as in the following, example.

10

DO 10 I = 1,15
IF(A(I)-1.)10,20,10
CONTINUE

2~

FORTRAN for the IBM 1130 Chapter 2

m The dununy statement used at the end of a DO-loop is the CONTINUE
statement, consisting simply of the word "CONTINUE". Its use
will be demonstrated in the following program which will
determine the largest number in an array (or list) of 1000 numbers
called A.

m Turn to Panel 2.6. Have you studied the program? Here is
the explanation: BIGA, the variable whose value will eventually
be the largest number in A, is first set equa_l to A (1) t_o be
used as a basis for comparison. The DO-loop then compares the
current BIGA value with successive numbers in the A array. The
IF statement that does this either goes to statement 30 if the
new A value is larger (and then replaces the old BIGA value)
or goes to statement 50 if the A value is not larger than the
current BIGA. When the loop is finished, BIGA is the desired
value. ·

m The reason for the existence of the CONTINUE statement is to
provide the common finishing point for the DO-loop. Remember,
the definition of the DO statement required that the computer
execute the statements through the one indicated in the DO
statement. This type of problem which involves branching in
the loop often requires the use of a CONTINUE statement to
provide this finishing point.

Q. A DO-loop cannot end with a

• ••
A. Control

(type) statement.

m Notice that the IF statement needs someplace to go if the new A
value is not larger than the current BIGA value. The IF
statement cannot go back to the DO statement without starting
the loop over again; therefore, it must have someplace to go
forward in the program, namely the last statement in the
loop as prescribed by the DO definition.

(10/65) 24

FORTRAN for the IBM 1130 Chapter 2

m . The CONTINUE statement actually does nothing in the execution of
the program; that is, it doesn't tell the computer to do
anything. It merely serves the purpose of providing the DO
statement with a reference number in a loop which might otherwise
end with a Control statement.

Q. (True or False) Regardless of how many branch directions
there are within a DO-loop, all the possible paths within
the loop must lead to a single particular statement at
the end of the loop.

• ••
A. True

m All in all, the DO statement is pretty simple once you
become familiar with the little details. All of the statements
which comprise the loop must be between the DO statement and
the statement whose number appears in the DO. You may tell
the computer to jump around inside the loop but all paths must
eventually lead to the statement marking the end of the loop.

m Perform Exercise 2.4 in your problem book.

A branching statement may cause the computer to leave a DO-loop
before the index has completely cycled in the normal fashion.
When this happens, the index value is available for use in
subsequent statements, and usually when such a situation occurs
this value is of interest, as in the following example to
locate the first occurrence of the number zero in an array of
2000 numbers called BLOCK.

fJI Turn to Panel 2.7. The DO-loop in this example simply tests
successive numbers in the BLOCK array, the IF statement going
to statement 10 to repeat the loop until a zero is found in
BLOCK. At this time the IF statement goes to statement 20
where I (the location in BLOCK where zero was found) has its
value saved in LOC. If the loop goes all the way through
BLOCK and does not find a zero, the computer goes to the
statement after No. 10 which sets LOC to zero (to indicate
that BLOCK does not have the desired number) and continues
with the program.

(10/65) 25

FORTRAN for the IBM 1130 Chapter 2

f!I The example serves to demonstrate a jump out of a loop before
the index cycle is completed. This will be called a "special
exit." The ordinary condition of leaving a DO-loop by
completing the index cycle will be called a "normal exit" (as
when statement 11 is reached).

Q. If a value of zero is found in BLOCK in this example,
the computer will do a " exit" from the loop •

•••
A. special

IJI As demonstrated in that example when a special exit is made,
the current value of the DO index is intact and may be used
in any desired· way. If a normal exit is made, however, there
is no guarantee that the index value is meaningful. This
is no special problem, since in a normal exit the index upper
limit is known.

Q. (True or False) In Panel 2.7, if no zero value is found
in BLOCK, statement number 20 will not be executed •

•••
A. True

m The statements following the DO statement up to the statement
indicated in the DO itself are called the "range" of the
DO-loop. There are certain strict rules about the ranges of
DO-loops which are mentioned in the next few frames.

(10/65)

Q. The range of the statement DO 1010 INDEX= I,J,K extends
through statement number

•••
A. 1010

26

FORTRAN for the IBM 1130 Chapter 2

fll The first rule concerning DO-loop ranges states that you are
not allowed to transfer (e.g. IF or GO TO) to any statement
inside the range of a DO from outside its range. You can
transfer to a DO statement itself, but not to any statement
in its range; those statements are under control of the DO only.

Q. (True or False) The sequence DO 10 I = 1,100
10 A(I) = B(I); GO TO 10 is legal •

•••
A. False (the third statement transfers into the range of

the DO-loop)

fZI A second rule about ranges states that a DO-loop may exist
completely inside the range of another DO-loop. When this
structure is used, the innermost loop must be entirely contained
by the outer loop; in other words, the loops must not overlap
in any way. (This condition of loops within loops is further
explained a little later.)

Q. (True or False) The sequence DO 10 I= 1,1000 ..•. DO 20 J =
1,10 •••• 10 CONTINUE .•.• 20 CONTINUE is illegal because
the second DO-loop extends beyond the range of the first •

•••
A. True

fZI The arrow diagram below shows some of the legal branch conditions
in DO-loops (numbers 1, 2, and 3) and also shows some of the
illegal cases (numbers 4 and 5). The arrows simply show
direction of transfer.

DO •••••• _J
4

Q)

~
en
c
0
~

5

~

(10/65) 27

FORTRAN for the IBM 1130 Chapter 2

m The arrow diagram below shows some legal (1,2,3, and 4) and
illegal (5 through 10) branch conditions in nested DO-loops:

DO •••• ~ i[oo l1
'a>

'fil 9 CJ' c
0 ._
~
Q)

3 :::s
0

4

m Q. Write a DO-loop to set to zero all the number values in a
1000- number array called X.

10

Use I for the index variable name and statement number 10
for the range of the loop •

•••
A. DO 10 I = 1,1000

10 X(I) = 0.0

Im If your answer agrees with the one shown, skip to frame 105.

(10/65)

If your answer does not agree with this one, continue to the
next frame.

28

FORTRAN for the
1

IBM 1130 Chapter 2

IIiJI Perhaps going over the problem statements in detail will help.
You were asked to write a loop to set the value of
each number in an array to zero. With your present
knowledge of DO-loops, this should imply a DO statement with an
index definition which will cycle the index variable from a
value of 1 up to the length of the array (1000).

Im The statement DO 10 I = 1,1000 will cause statement number 10 to
be executed a total of 1000 times, and it remains for the
programmer to specify statement number. 10 such that it will
perform the d~sired task: setting the value of successive
values in the X array to zero.

10 X(I)= 0.0 (Note: the zero could be written
a number of ways, as long as the
decimal point is included to make
it a real constant.)

Im Each time the statement. 10 X(I) = 0.0 is executed under control
of the DO, the index I is 1 larger than the previous
time. Thus X(I) refers to successive numbers in the X array
each time the statement is executed, as follows: X(l), X(2),
X(3), X(4), •••• ,X(l000).

Im The basic use of DO statements should be clear by now, and if
you feel that you understand the make-up of this statement you
may go to the next frame. If any points need clarifying, you had
better review this material starting with frame 61. If,
after this review, you still need help, see your advisor.

Im Perform Exercise 2.5 in your problem book.

(10/65)

A few frames back mention was made of DO-loops containing other
DO-loops, a situation commonly called "nesting" of loops. Under
these circumstances the outer loop is begun first and, during its
first pass, it gives control to the inner loop which may
completely cycle itself before restoring control· to the outer
loop.

Q. (True or False) When control passes to an inside loop, it
may remain there until the inner loop is completely cycled •

•••
A. True

29

FORTRAN for the IBM 1130 Chapter 2

IDfl When an outside loop regains control from an inner loop, it
continues through its pass, reaching the end and repeating as
usual. In the course of. its next pass, it again will completely
cycle the inner loop. This same thing happens on all subsequent
passes also. A simple analogy will be given in the next frame
to give a better picture.

Q. (True or False) With nested loops the inner loop is
·completely cycled each time a pass is made through the
outer loop.

• ••
A. True

Im Picture the following situation: suppose you were walking
around the grounds of an amusement park, say in a circular
fashion. Each time you pass the merry-go-round you get on
and take a ride around the circle a certain number of times.
That ride would be analgous to an inner loop and the walk to
an outer loop.

Q. (True or False) In this analogy the "inner" loop is
completely cycled each time through the "outer" loop •

•••
A. True

IDJI To carry this parallel one step further, if you decided to jump
off the merry-go-round before it stopped, you might continue
walking around the park or you might decide to go home. These
cases correspond to permitted branch situations in nested DO
loops.

Q. If you got off the ride before it stopped this would be
equivalent to a " exit" but if you were to
wait for the merry-go-round to finish its run this would
be the same as a " exit" in DO-loops •

•••
A. special, normal

(10/65) 30

FORTRAN for the IBM 1130 Chapter 2

Im Problems seldom arise that require more than two or three loops
within loops. Quite often you will want to use DO-loops
end-to-end inside another DO-loop (sort of like a merry-go-round
and a ferris wheel in our carnival analogy).

Q. The sequence

DO 10 I = 1,10
DO 10 J = 1,10

10 A(I) = A(I)+B(J)

will cause statement number 10 to be executed a total of
times.

• ••
A. 100

llDJ When a special exit is made from an inner loop of a nested
set of loops, the index values of all loops are preserved
and available for use, including, of course, the index of
the exited loop. Turn to Panel 2.8. This is an example
of nested DO-loops. This program looks through two arrays
looking for the first duplication of values between the
arrays and records this location (index) in the arrays.

1111 Have you studied the program? Here is the explanation: the
outer DO sets I to 1 and goes to the second DO statement,
setting J to 1. Thus the IF statement compares A(l) and B(l)
the.first time through. The inner DO then sets J to 2 (I
is still 1) and compares again, and so on until J equals 10.
At this time the value of I is increased to 2 and the inner
loop begins again, J going from 1 to 10. .When the A and B
values become equal, the IF statement will jump out to No.
20 and record the locations (index values).

(10/65) 31

FORTRAN for the IBM 1130 Chapter 2

Im You will notice that, even when two nested DO-loops end at the
same statement, as in this example, control is passed to the
outer loop only when the inner loop has completed its index
cycle. Thus it is perfectly permissible for the two loops to end
their respective ranges on the same CONTINUE, as done here.

llD

Q. If the IF statement in Panel 2.8 causes a special exit
to statement No. 20 during the 14th time it is executed,
the values placed in LOC(l) and LOC(2) are, respectively,

and

•••
A. 2,4

If you were able to answer the previous question correctly,
you are showing excellent progress and you may continue to the
next frame immediately. Here is the explanation: if the IF ·
statement is executed 14 times in that program we know that the
inner loop was completely cycled once (10 executions of the IF)
and has gone.4 times through on the second execution of the
outer loop; hence, ! has a value of ~ and ~ a value of !·

~ Perform Exercise 2.6 in your problem book.

One important note: the index variables in nested DO-loops
must be different in name; that is, you are not allowed to use
the same index for two DO-loops if one contains the other.
However, there is no reason why you cannot use the same variable
name in sequential DO-loops, since the index variable is free
for any desired use in the program once a DO-loop is through with
it •.

Q. (True or False) The sequence DO 5 I = 1,200; DO 5 X = 1,40,2;
(some statement) is legal •

•••
A. False (the index variables, though different, must both

be integers)

IJll Turn to Panel 2.9. One last example of nested DO-loops
demonstrates the use of the outer loop's index variable to
determine the inner loop's index limits. In this program the
outer loop is actually a counter to re-execute the inner loop
a sufficient number of times to complete its function which is
to sort an array of numbers into algebraic order.

(10/65) 32

FORTRAN for the IBM 1130 Chapter 2

llfl This program uses the technique of comparing adjacent numbers
in an array, reversing the numbers if they are not in the
correct algebraic sequence. The first time through the loop
ARRAY(l) is compared to ARRAY(2), the second time ARRAY(2) is
compared to ARRAY(3), etc. Thus if the largest value of the
array were in the first position, by the time the program had
finished the inner loop once it would be in the last position
in the list (with each number moved down one slot). This will.
happen, in fact, no matter where the largest number is.

llfJ After the inner loop is completely cycled once, the outer loop's
index I changes its value to 2 and the inner .loop begins again
with a new upper index limit. This means that the inner loop
is cycled one less time, resulting in one less comparison
of number pairs. This is possible due to the fact that the
largest number in the array is already in correct position at
the end of the.list and need not be checked again.

1111 Each complete execution of the inner loop will result in the
largest of the remaining numbers ending up at the highest
available position in the list, no matter where it is located
in the array before the sorting begins. Thus the completion
of this sample program finds the list called ARRAY sorted into
algebraic order.

Q. In the sample program on Panel 2.9, if N (the length of
the array to be sorted) has a value of 100, the inner loop
will have an upper index limit of the first time
it is executed.

• ••
A. 99

llfJ The IF statement in the inner loop of our sample program checks
the successive pairs of numbers in ARRAY and, if they are in
correct order (or equal), they are not changed and the loop
begins again; however, if they are in reverse order, statement
10 is called on to reverse the position of these numbers in
ARRAY.

Q. If ARRAY(!) is larger than ARRAY(2) in the original position,
the IF statement will go to statement the first
time it is executed.

• ••
A. 10

(10/65) 33

FORTRAN for the IBM 1130 Chapter 2

B Notice the sequence at statement number 10 in this example:
a special variable (TEMP) is used to save one of the values
when the ~wap is made. This is necessary because if one value
were placed in the other's position without first preserving
its original value, that original value would be erased and lost
forever.

II.II So far, in this chapter, you have been introduced to four of the
Control statements in the FORTRAN language: the IF statement
which provides three possible branch directions based on the
value of an expression; the GO TO statement which directs the
computer unconditionally to a particular part of the program;
the DO statement which controls looping; and the CONTINUE
statement which provides the DO statement with a reference point
when the loop might otherwise end up with a Control statement.
These four statements are the most important of the Control
statements, and are required in most programs much more often
than the other Control statements.

ml Perform Exercise 2.7 in your problem book.

The IF statement, you will recall, has three possible branch
directions. The next few frames will explain a Control
statement which allows branching to more than three paths.

Im The multiple-branching statement is a special form of the GO TO
statement called the "Computed GO TO" statement. It begins
with the words "GO TO" followed by a pair of parentheses
containing any desired amount of statement numbers separated by
commas. The close-parenthesis is followed by a comma and a
non-subscripted integer variable. An example of a Computed GO
TO is shown below:

GO TO (10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1) , N

(10/65)

FORTRAN for the IBM 1130 Chap.tar 2

Im As in most Control statements, the format is most important,

rm

so let's go over it once more: the words GO TO, an open
parenthesis, a series of statement numbers separated by commas,
a close-parenthesis, a comma, and lastly an integer variable.
Each of these items must be present.

Q. (True or False) The statement GO TO (1,2,10) I is a legal
computed GO TO statement.

A. False (a comma must be used to separate the close
parenthesis and the variable)

The Computed GO TO is
next to the statement
parenthesized list in
the integer variable.
1 the first number in
value is 2 the second
and so on.

executed as follows: the computer will go
whose statement number appears in the
the order corresponding to the value of
That is, if the variable has a value of

the list is the next statement; if the
statement number is the next statement,

Q. In the statement GO TO (10,9,8,7,6,5,4,3,2,1),N if N has
a value of 3 the computer will go next to statement number

•••
A. 8

lfll The variable's value does not have a direct bearing on the
statement number chosen for the next statement to be executed.
For example, in the statement GO TO (10,9,8,7,6,5,4,3,2,1) ,N
a value of 10 for the variable N will not direct the computer
to statemen~number 10. Rather, N actSlike a subscript to
the list of numbers.

(10/65)

Q. In the example shown above, a value of 10 for the
variable N will direct the computer to statement No •

•••
A. 1

35

FORTRAN for the IBM 1130 Chapter 2

Im The list of statement numbers may be as long as desired and the
same number may appear more than once in the list if desired
(as was permitted in IF statements). Care must.- be taken to see
that the control variable on the right does not have a value
larger than the number of statement numbers in the list.

Q. In the statement GO TO (312,311,312,1) ,K the value of K
must never exceed (number)

•••
A. 4

BJ The Computed GO TO is used whenever it is convenient for the
computer to select one of several branch options through the
value of a variable. Turn to Panel 2.10. Suppose, for example,
that you wish to go to different parts of the program depending
on the value of a variable X which has a value from O. to <10.
If the value is from 0. to <1.0 you wish to go to statement
number l; if the value is from 1.0 to <2.0, you wish to go
to No. 2, etc.

Im This program uses the value of the t~sted variable X to form a
control variable K. In a real expression the variable X has
1.0 added to it, then this value is converted to integer mode
and placed in K. If X had a value from 0. to less than 1.0, K
would have a value of l; for X from 1. to less than 2. K would
be 2, etc.

(10/65)

Q. (True or False) K will always have an integer value due

A.

to the truncation of fractions when converting from real
to integer numbers.

• ••
True

3'6

FORTRAN for the IBM 1130 Chapter 2

Im This Computed GO TO lists the options from which the computer
chooses, depending on the value of the control variable K.
Remember, K's value depended on the value of X. When the GO TO
is executed, the statement selected will indirectly depend on the
value of X as outlined in the problem statement.

Q. Looking at the sample program segment on the panel, if the
value of X were exactly 10.0, what statement would the
computer choose (K would,be 11)?

•••
A. 10

llJI Perform Exercise 2.8 in your problem book.

The following is a list of the Control statements described so
far in this chapter:

IF
GO TO
DO
CONTINUE
Computed GO TO

Im The next two Control statements are used to bring the computer
to a halt. As such they do not quite fit the general definition
of Control statements (telling the computer where to.go next)
but they do exercise some "control" in their execuEion.

I

Im The first of the halting Control statements is the STOP statement.

(10/65)

This consists very simply of the word "STOP" and its execution
is exactly what the name implies. The computer is brought to a
halt and may not be restarted without beginning all over again.
For example:

Simple enough?

(Your program statements)
STOP

37

FORTRAN for the IBM 1130 Chapter 2

ml A similar statement which will also cause the computer to halt is
the PAUSE statement, which consists of the word "PAUSE".
When the PAUSE statement is executed the computer will halt, but
if the START button on the computer console is pushed, the
computer will continue on in the program at the statement
following the PAUSE.

Q. The STOP and PAUSE statements both cause the computer to
halt but the statement will pe~mit the computer to
start up again when the START button is pushed •

•••
A. PAUSE

Im In addition to causing the computer to halt, the PAUSE
statement will also cause the message "PAUSE 0000" to be
printed on the system's printer.

Q. In the following example, what will be printed on the
printer?

20

A. PAUSE 0000

----} some sequence of
statements

PAUSE
GO TO 20

•••

Im Because a program can contain many PAUSE statements, it may

(10/65)

be desirable to know just which PAUSE statement has caused
the computer to halt. To uniquely identify a PAUSE statement
the programmer can write the word "PAUSE" followed by an integer
number of up to four digits. For instance, if PAUSE 1234 were
written by the programmer, the computer will print "PAUSE 1234"
when that PAUSE is executed.

Q. Write the statement which will halt the computer and
cause "PAUSE 0023" to be printed •

•••
A. PAUSE 0023 or PAUSE 23. In the latter case, two leading

zeros will be supplied automatically by the computer to
fill out the printed message to four digits.

NOTE: The STOP statement may also have an identifying numbe~e

38

FORTRAN for the IBM 1130 Chapter 2

Im Perform Exercise 2.9 in your problem book.

The last statement type covered in this chapter is the END
statement. This statement is different from all the other
statements covered so far in this course. It is not "executed"
but rather acts as a source of information to the program, and
as such is actually a specification statement. Its function is
very simple: it marks the last statement in the written program.

Im The END statement consists simply of the word "END", and
must be the last written statement in a program.

Q. Would the following program be correct?

END complete program

•••
A. No. The END statement must be the last written statement.

Im As pointed out in the previous frame the only function of the
END statement is to mark the last written statemen~ in a program.
That is, it has nothing whatever to do with halting the computer
or any other "executable" operation. Its purpose is simply to
tell the computer during the FORTRAN translation stage that the
end of the source program has been reached. All programs
written in FORTRAN are incomplete until an END statement is
placed after the last statement in each source deck.

(10/65)

Q. Is the END statement mandatory at the end of a FORTRAN
program?

•••
A. Yes.

39

FORTRAN for the IBM 1130 · Chapter 2

llDJ The following is ·a list of Control statements covered in this
· chapter:

IF
GO TO
DO
CONTINUE
Computed GO TO
STOP
PAUSE
END

1111 You may proceed to the examination on page 33 of your problem
book after which you may report to your advisor.

(J0/65) 40

FORTRAN far the IBM 1130

(10/65)

SUBJECT

Computed GO TO

CONTINUE

Control statement

DO statement

END

GO TO

IF statement

Loop

Nested DO-loops

PAUSE

Range of a DO-loop

Statement numbers

STOP

Chapter 2

REFERENCE INDEX

41

FRAME NUMBERS

Note: 11 ff 11 means 11 following 11

123 'ff

84

3' 12

61 ff, 67 ff, 75

137

54

14 ff, 37

41

96, 98, 105 ff

134

94

5' 7 ff

133

R29-0102-0

Data Processing Division

112 East Post Road, White Plains, New York

