
IBM
©

Programmed Instruction Course

IBM

Programmed Instruction Course

FORTRAN for the IBM 1130

Chapter 1

FORTRAN for the IBM 1130 Chapter 1

FOREWORD

The function of this course is to acquaint the student with computer
programming using the FORTRAN language. No previous experience with
any kind of progranuning systems is assumed. For those who have such
experience, an attempt is made to avoid conflicting ideas and to
clarify typical misconceptions which might arise.

The version of the FORTRAN system referred to in this course is
FORTRAN designed for the IBM 1130 Computing System. Additional
information on FORTRAN for the 1130 may be found in the reference
manual C26-5933. The FORTRAN systems designed for other computers
utilize the same concepts and require only slight modifications of a
few details to be completely understood. These differences are
outlined in various reference manuals pertaining to the particular
computer systems or may be found in the "General Information Manual -
FORTRAN" (IBM No. F28-8074).

The text of the course is of the self-instructional variety permitting
the student to progress at his own rate. There are four separate
chapters in the text. The course is designed for independent self
study under the administrative control of an advisor. Four exami
nations and a choice of final test problems as well as periodic
applied problems, are provided.

In this chapter, you will learn that the FORTRAN language makes it
possible to express a mathematical problem as a sequence of state
ments. You will also learn how to express a formula in FORTRAN by
means of an Arithmetic Statement.

Copies of this publication can be obtained through IBM Branch Offices.
Address comments concerning the contents of this pub Ii cation to:
IBM DPD Education Development, Education Center, Endicott, New York.

@1965 by I nternati ona I Business Machines Corpora ti on

FORTRAN for the IBM 1130 Chapter 1

INTRODUCTION

If you are already familiar with computers and data processing,
you may skip the followin0 material in this introduction and
turn to the preface on page ix.

Basic Data Processing Ideas

Learning how to use a computer can be compared to learning
how to drive an automobile. Thanks to many successful
innovations in automotive development, the new driver is
confronted with the rather simple process of learning
how to steer and to recognize which buttons and pedals control, say,
the lights or the driving speed. He has no need to understand the
technical design and construction of the automobile. Similarly,
the computer user need not be concerned with the engineering
development and operation of a computer, but can concentrate on
the problem of how the computer can assist him in solving a
particular problem. Many people who have no detailed knowledge of
how an automobile runs have become excellent drivers. In
much the same way, a number of people have learned how to use
the computer to obtain the kinds of calcul~ted results that are
best handled in the rapid fashion of a computer.

Electronic computers are called digital computers because they
work with numbers and have the ability to count. The counting
function has been greatly refined since the invention of the
abacus, the adding machine and the desk calculator. Today's high
speed, electronic, digital computers can handle alphabetic as
well as numerical data, and, instead of being restricted to simple
mathematical operations, can perform complicated calculations,
manipulate alphabetic information, and make logical decisions,
all at tremendous speed.

Electronic computers are used in business for a variety of reasons.
When properly applied, they can save time or money (or both)
in producing reports for management and government, in preparing
checks and earnings statements for employees, in writing stateMents
to customers, in keeping records of accounts payable to suppliers.
In many situations they make it possible to obtain information
that would otherwise not be economically justifiable. In some
cases they provide the basis for an improved management control
of a business that would not be feasible for time or money
reasons without a computer. They are also widely used for
engineering and scientific computation.

In carrying out these functions, a number of basic computer
operations are performed. Information appearing on punched cards
is listed (printed). Various calculations are performen on data.
Detailed information is summarized (totaled) , often according
to several classifications. Information is edited; this means
two rather different things. On one hand, source data (input
information) is checked for validity and accuracy before it is
used in further processing. On the other, editing refers to the

(10/65)

FORTRAN for the IBM 1130 Chapter 1

rearrangement of results for easy reading, such as by inserting
dollar signs, decimal points and commas, deleting zeros in front
of numbers, and providing adequate space between numbers.

These operations are perfor.med on data. It is necessary also to
consider how the data is organized~nce the arrangement of the
information has a most significant effect on how the processing
is done. This brinqs up one of the most fundamental concepts
in data processing, that of a file.

A file is a collection of records containing information about a
group of related accounts, people, stock items, etc. For instance,
an accounts receivable file contains a record for each customer,
showing at least the customer's name, address, account number,
and amount owed. It may also contain his credit limit, the length
of time the amount owed has been due (the "age" of the account),
and other information, depending on the needs of the particular
business. In a payroll file, the record for each employee contains
such information as name, payroll number, department, sex, social
security number, number of· dependents, pay rate, year-to-date
gross earnings, year-to-date taxes withheld, year-to-date social
security tax, and often many other things.

These examples involve master files, which contain semipermanent
information, some of which is updated (modified) periodically.
A transaction file, on the other hand, contains information used
to update a master file. Examples: a file containing a record
for each customer purchase, or a file of labor vouchers used to
calculate gross pay. In addition to master and transaction
files there are report files, which contain information extracted
from a master file. Example: the quarterly social security
reports required by the federal government.

It is obviously necessary to have some way of identifying each
record in a file. This is usually accomplished by establishing
one item in the record as the kev or control field of the record.
The key distinguishes each record from all others, and is used
in almost all file operations. Examples of keys: the customer's
account number in an accounts receivable application, the
employee's pay number in a payroll, the part number in an
inventory control application, the salesman's number in a sales
commission job.

Almost all data processing involves operations on files. It is
frequently necessary to sort the records in a file, that is, to
put the records in ascending sequence (sometimes descending)
according to the keys of the records. For example, it may be
necessary to sort employee labor vouchers into payroll number
sequence before this transaction file can be processed against
the payroll master file. Data processing methods fall into two
broad and rather different classes, according to whether the
files involved are or are not required to be sor.ted before the
primary processing can be done.

(10/65) ii

FORTRAN for the IBM 1130 Chapter 1

Another common file operation is the combining of two or more
files to form one file. If the combined file contains all records
from the separate files, this operation is called merging; if some
of the original records are omitted from the combined file it is
properly called collating. (The distinction between the two
terms is not always observed in practice.)

Careful planning is required to combine the basic operations so
that the files are properly processed and the desired result
produced. It is necessary to establish goals of the application,
the time schedules that must be met, the exact nature of the
operations to be carried out, etc. All of this takes more time
than might first be thought for two reasons that are fundamental
to a proper understanding of electronic nata processinq.

1. All processing must be defined in advance, with very few
exceptions. For instance, it often happens that a
customer sends in a check for an amount different from rhe
~mount shown on his bill. The person planning the accounts
receivable job cannot proc~ed on the ~ssumption ~hat all
payments will be for exact billed amounts and say, "I'll
worry about that problem when it happens. 11 The processing
operations for such a situation must be planned in advance.
Again, it is necessary to decide what to do about processing
errors before an·application is placed on the machine.

2. A machine cannot exercise judgment unless it has been given
explicit directions for making a decision. A machine can
be set up to make relatively complex decisions, if they are
expressible in quantitative terms, but it must be instructed
how to make the decisions and what to do in each alternative.
One can say to a computer, in suitable language, "If a
man's deductions exceed his gross pay, omit as many
deductions as necessary; the order in which to omit them
is specified in the following table·, where the first
deduction is the least crucial. 11 One cannot say, 11 If
anything unusual comes up, do what you think is best."

When the task has been properly defined in terms of what is to be
done, the next step is to decide how to do it with the computer.
This step involves expressing the processing in terms of operations
that can be carried out with the available computing equipment.
One of the primary tools of this step is the flowchart, which
shows the sequence of operations in graphic form.

The next step is programming. This includes two activities, one
of which is detailed flowcharting, showing in greater depth
exactly what is to be done at each stage of the computer
processing. The other activity in programming is coding.

The fundamental problem is this: The "language" in which the
computer can accept "instructions 11 is very different from the
language in which we ordinarily describe data processing. One
way or another, the procedure to be followed must be translated
into the computer's language. For instance, one says, "Summarize
sales by salesman and district." The computer understands only

(10/65) iii

FORTRAN for the IBM 1130

such· instructions as, "Add these two numbers", or, "Go to the
print steps if these two numbers are not the same", or, crRead a
card and place the inf orma ti on in the card input area. 11

C:hapter .. 1

Coding is the process of stating a procedure in a language
acceptable to the computer. (The term is derived fron the fact
that the computer's basic language consists of instructions that
are written in a "coded" system of numbers and letters.) In few
cases is it necessary to do the entire job of translation all the
way to the final form of the instructions as they will be obeyed
("executed") by the computer. Usually, instructions are written
in a symbolic form that is rather similar to the machine's
language, but considerably more convenient for the writer. The
final step of the translation is then performed with the machine's
assistance. In other situations the machine procedure can be
written in a language quite similar to ordinary English, the
bulk of the translation being done with the aid of a special
computer program (set of instructions).

Programming and coding involve so much detailed work that most
programs do not operate correctly when first tried. Thus it
is necessary to debug the program (locate and correct the errors)
and to test it with hypothetical cases to be sure that it properly
processes the data. All of this goes under the name of
program checkout.

One more activity remains before the program is ready to be used:
the master file must be prepared. This usually requires converting
the file from the form in which it was used with previous manual
methods. File conversion can be a sizable task in itself, and
one that often must be started well before the program is
completed. ·

Organization of a Digital Computer

A digital computer combines the following components in one
computing system (Figure 1 shows the manner of combination):

STORAGE

,
INPUT ~ OUTPU7
CARD CONTROL CARD
TAPE TAPE
DISK DISK

. { Typewrlt
Printed Printer

er

ARITHMETIC·
LOGICAL

Fi ure l g

(10/65) iv

FORTRAN for the IBM 1130 Chapter 1

Input

Digital computers accept numbers, letters, and symbols which are
fed into the system from punched cards, punched paper tape, or
magnetic tape or disk. Information can also be manually inserted
by means of a keyboard or switches.

Control

The computer operates under the direction of a control unit.
The sequence of steps to be performed by the computer must be
translated into detailed instructions which the computer can
understand. When a series of instructions called a program is
placed in computer storage, the program is then available to the
control unit, as needed, to direct and complete an entire sequence
of operations. Special instructions enable the arithmetic-logical
unit to make decisions based on intermediate results. These
decisions cause the computer to select the proper action from
several alternatives for solving a problem.

Storage or Memory

Data is stored internally by electromechanical, magnetic, or
electronic devices in a manner similar to the way in which music
or lectures are stored on a tape for playback on a tape recorder,
although the notation used is quite different. Stored information
is accessible, can be referred to once or many times, and can be
replaced whenever desired. The computer can store original data,
intermediate results, reference tables or instructions. Each
storage location is identified by an individual location number
called an address. Numerical addresses permit the computer
to locate data and instructions as needed during the course of
a problem. The speed of computer operations is often determined
by the access time, i.e., the length of time required to obtain
a number from storage and to make the number available to other
units of the computer system.

Arithmetic-Logical

The arithmetic-logical unit can add, subtract, multiply, divide,
compare numbers, and make logical decisions such as whether a
number is positive, negative, or zero. All complex calculations
are combinations of these basic operations.

Output

After performing calculations, the computer can produce answers
in several forms. Results can be punched into cards, recorded
on magnetic tapes or magnetic disks, or printed in report form.
Printers provide high-speed computer output by printing an entire
line of information at one time.·

(J 0/65) v

FORTRAN for the IBM 1130 Chapter 1

Basic Computer Operation

The functioning of the computer elements can be compared to the
steps required to solve a problem by paper-and-pencil methods.
The input corresponds to information given for the problem. A
knowledge of arithmetic controls relates to the handling of the
problem. The arithmetic-logical unit performs the same function
as do manual calculations. Storage can be compared to the work
papers on which intermediate results are noted. The answers to
the problem are the output.

An examination of the computer's internal processes during actual
operation provides insight into the way in which it can be used.
The key component of these processes in the control unit; this
can locate and collect the information stored at various points
in the computer memory. When information is retrieved from a
specific location in the memory, the information is still pre
served at that location for future use, a process called
nondestructive readout. Storage locations may contain either
instructions to the computer, numbers, or data required in a
specified operation. An instruction is brought from storage
to the control unit, is interpreted, and is then executed. The
execution of an instruction calls into action one or more other
computer components. Thus, if the instruction is an order to
perform some arithmetic calculation, the arithmetic unit and the
memory are involved. An input instruction activates the card
reader or a tape unit, and information is sent from the input
unit to certain locations in memory for storage. Briefly, the
computer operates on a sequence of instructions which are located
in the computer memory and which are in turn brought to the
control unit where they are interpreted and executed. The
instructions are numerical or alphabetic codes which, while in
memory, are indistinguishable from other information stored there,
such as program data. To distinguish between the kinds of
information stored in the computer memory, a specific program
is followed. The program interprets and executes the- instructions
which pick up the data or the numbers on which it then performs
the required calculations.

Conununicating with the Computer

Since the computer can operate only on instructions in coded form,
the program steps to be followed for a given program must be
made available to the computer in this coded form (called
machine language). Thus, the person (called a programmer) who
writes a computer program might have to do so in the language
of the machine.

However, very few people would find the writing of a program
in machine language a simple task, since everything must be
set forth in machine code, which has little, if any, relationship
to the English language. To relieve the programmer of machine
coding, special programs have been written which can convert
easy-to-use English type language into machine language. The
processor receives the programming language and converts or
translates the instructions into machine-language instructions

(10/65) vi

FORTRAN for the IBM 1130 Chapter 1

which are acceptable to the computer. This translation phase is
often called "compilation". Thus we can also say "the computer
compiles programming language to produce machine language."
One of these programming languages is FORTRAN, which stands for
FORmula TRANslation. The FORTRAN language is procedure-oriented
rather than machine-oriented and is composed of a group of state
ments which are considerably fewer in number than the machine
language instructions of the computer. When writing FORTRAN
statements, the programmer must comply with the rules pertaining
to that language. Often, each step of a procedure corresponds to
a single FORTRAN statement, which in turn may require two or
more machine-language instructions. Thus, coding in FORTRAN
simplifies the programmer's task. of coding a problem for the
computer, because FORTRAN has fewer statements and rules to be
learned.

The translation operation is initiated by placing the FORTRAN
processor in the computer memory where it processes the FORTRAN
statement cards and produces the machine-language program on
cards. Following the translation process, the machine-language
program is put into the computer to execute the program, using
any required data to produce the results. The general FORTRAN
translation procedure is shown in Figure 2.

(l 0/65)

FORTRAN
PROGRAM

(Prepared by programmer.
Often cal led 1'Source11 program)

DATA

Figure 2

FORTRAN
PROCESSOR

COMPUTER
MEMORY

MACHINE
LANGUAGE
PROGRAM

COMPUTER
MEMORY

vii

(Provided by the
Computer Manufacturer)

Translation Stage

Converts programmer
statements to machine
language statements

(Produced by the computer.
Often called

11
0bject

11
program)

Execution Stage

Translated program
operates on data
to produce ·results.

FORTRAN for the IBM 1130 Chapter 1

PREFACE

You are taking this course presumably to learn how a computer is
programmed with "FORTRAN". The objective of the course is to provide
the knowledge of some of the skills required to write computer programs
using the FORTRAN system; it will not transform you into a "programmer".
After completing the course you will probably need some assistance to
run an actual program on a particular computer, and considerable
experience is necessary in any programming system before a high degree
of proficiency can be attained. However, this course will provide a
sound basis for attaining these goals.

The self-teaching method applied in this text requires that you care
fully read each "frame" in turn, and, if followed by a question,
answer it. Do not write in the text, however. You should make your
responses mentally where possible, or use scratch paper to compute
your answers. Occasionally you will be told to skip review frames if
a test question is answered successfully, and periodically you will be
told to perform a sample problem exercise in the problem book.
(These sample problems are not to be graded, but are merely used to
demonstrate concepts. Attempt to solve each one before you look up
the solution. There is.a big disadvantage to the student who does not
do this. These exercises are provided so that you can evaluate your
own progress and seek help if your progress is not satisfactory as
denoted by your ability to complete the exercises.) At the end of each
chapter you will find an examination and at the end of the course are
two suggested final test problems which may be run on a computer or
checked out by the advisor.

You will note that each frame is usually followed by a question, which
in turn is followed by an answer. To avoid seeing the answers before
you respond to the question you will need to mask the answers as you
proceed down the page. A card placed horizontally on the page may be
used for this purpos0.. As you slide the card down the page you will
uncover three black dots called "bullets". that immediately precede the
answer. When you see the bullets, you should read the question and
respond to it before moving the card any further.

For your convenience, a chapter Reference Index is provided at the
back of each chapter. In addition, a course Reference Index is pro
vided at the back of the Problem Book. These indices are provided to
aid you in finding specific information within the course text.

Keep the Problem Book with you whenever you are working with the
programmed text. You will be referred to it from the text for exercises

.and from it to the text when you complete an exercise. The Problem
Book will be yours to keep at the end of the course.

(l 0/65) ix

FORTRAN for the IBM 1130 Chapter 1

• Q. (question) Have you read the PREFACE? (yes or no)

•••
If your answer is "yes", continue to the next frame.
If your answer is "no", better read it before continuing.
You'll find it on page ix following the Introduction. After
reading it, go to frame 2.

B A program is written for the purpose of "directing the computer"
through the steps of the problem. If the computer is aoing to
perform arithmetic,for example, it must be told each step of
the operations.

Q. A program is a detailed description of each
solution of a problem •

•••
A. step

of the

Ill You will soon learn, for example, that the FORTRAN statement

Y = A + B + C

represents a "program" to find the sum of the three quantities
A, B, and c and to set the value of Y equal to that sum.

Q. The statement Y = A + B + C is actually a small
computer

•••
A. program

II A program language sucn as FORTRAN is like any language: it
has both vocabulary and rules of grammar and punctuation. You
will learn the rules and vocabulary of FORTRAN in this course.

, I 0/65)

FORTRAN for the IBM 1130

Ill The FORTRAN language is particularly well adapted to
mathematical problems. The way in which mathematical
problems are programmed with FORTRAN closely resembles
ordinary algebraic notation.

Q. FORTRAN is particularly adapted to the programming of
problems.

• ••
A. mathematical

Chapter 1

D The basic unit of the FORTRAN language is called a "statement".
There are approximately 22 different types of statements, for
example, in the 1130 version of FORTRAN.

Q. The 1130 FORTRAN language is made up of 22 different
types of

•••
A. statements

B . One particular type of statement is used to tell the computer
to perform mathematical computation. This statement type is
called an "Arithmetic statement".

Q. The statement that is used specifically for mathematical
computation is called the " statement" .

•••
A. Arithmetic

a The previous illustration of a FORTRAN statement;
y· =A + B + C, is an example of ·an

••••
A. Arithmetic statement

(10/65) 2

FORTRAN for the IBM 1130 Chapter 1

II The FORTRAN language has a method by which the computer can
be told to perform basic arithmetic operations. These
operations are addition, subtraction, multiplication, and
divisio·n.

Q. The example used earlier, Y =A+ B + C, shows how
FORTRAN tells the computer to perform the operation of

•••
A. addition

Q In familiar mathematical notation the basic arithmetic
operations of addition and subtraction are denoted by the
"signs" of +, -.

Q. The - sign in ordinary notation indicates the operation of

•••
A. subtraction

Ill In the FORTRAN language the operations of addition and
subtraction are indicated in exactly the same way: the
symbols + and - are used. The expression in FORTRAN of
A + B - C indicates that the computer is to "add the quantities
~ and ~ and subtract the quantity C from that result 1

'.

Q. The FORTRAN expression X + Y - z + W involves the
operations of and

•••
A. addition, subtraction

Ill Multiplication is denoted by a slightly 'different, but easily
remembered symbol: the asterisk (*). The FORTRAN expression
W*X indicates that the quantity W is multiplied by the
quantity x.

Q. The FORTRAN expression A*X + B*Y involves the operations
of and

•••
A. multiplication, addition

(10/65) 3

FORTRAN for the IBM 1130 Ch.apter 1

Ill 'FORTRAN tells the computer to divide quantities that are
separated 'by the slash (/) sign. For example, the
expression A/B tells the computer to "divide' the quantity A
by the quantity~"·

Q. The FORTRAN expression A*X/Z involves the operations of
and

••••
A. multiplication, division

Ill The basic mathematical operations are indicated in FORTRAN
language by the signs (also called operators}:

m Q.

A.

m Q.

A.

(10/65)

addition +
subtraction

multiplication
division

*
I

Let's see how well you understand the material presented
so far. The basic operations are indicated in FORTRAN
expressions by the following signs:

multiplication
addition
division
s·ubtraction

multiplication:
addition: +
division: I
subtraction:

•••
*

The FORTRAN P.Xpression A + B + C - D indicates that the
~uantities A, B, and C are to be and the quantity
D is to be - - from the result.

added, subtracted

4

FORTRAN for the IBM 1130 Chapter 1

m If you did not answer that question correctly, continue to
the next frame. If you answered correctly, go to frame 26.

DI First let's look again at the 11 signs" or operators by which the
computer is told to perform arithmetic:

+ addition
..;. subtraction
* multiplication
I division

These operators are used in FORTRAN to tell the computer ~o
perform

•••
A. arithmetic

lfJ One program statement may indicate more than one ~rithmetic
operation. In the example

Y = A+B+C

the three quantities A, B, and C are ~o be added. Similarly,
the Arithmetic statement

Y = A+B+C-D

denotes that the computer is to perform both

A. addition
subtraction

•••

and

ma. Let's try another sample question:
A*B/C indicates that the quantity
multiplied by the quantity

The FORTRAN expression
is to be

and the result divided
by the quantity

•••
A. A, B, C

(10/65) 5

FORTRAN for the IBM 1130 Chapter 1

m 'If you answered that question correctly, skip to frame 26.
If you did not answer correctly, continue with the next frame.

m You will have to read more carefully and take more pains with
the questions if you intend to continue. The material becomes
much more complex in the later frames. This question is
essentially the same as the previous test question: Given ~n
PXpression involving mathematical operations and the
quantities involved, you are asked, "What does the expression
say?"

m A person writing a program using FORTRAN or ~ny other system
is telling the computer what he wants the computer to do. In the
FORTRAN language, if you want the computer to add the quantities
A and B you construct the expression A+B. Simple, isn't it?

Q. If you want the computer to subtract B from ~, the
expression in FORTRAN is

•••
A. X - B

m The FORTRAN expression X*Y-Z tells the computer to subtract the
quantity~ from the product of X and Y.

Q. The FORTRAN expression A*S+B/T tells the computer to
multiply and and add the result to

divided by

•••
A. A, S, B, T

ID If you answered that question correctly, you may go on to the
next frame.

If you didn't get the right answer, see your advisor.

(10/65) 6

FORTRAN for the IBM 1130 Chapter 1

m Perform Exercise 1.1 in your problem book.

By now you have learned how to tell the computer to perform
basic arithmetic operations. You will now learn one more
basic operation that can be selected by an operation sign in
FORTRAN: exponentiation. The term exponentiation refers to
the operation of raising a quantity to a power (squaring,
cubing, etc.).

Q. FORTRAN also permits the basic operation of as
well as addition, subtraction, division and multiplication •

•••
A. exponentiation (if you are familiar with squaring, cubing,

etc., you may skip the next frame.)

E1J Exponentiation means using a quantity as a multiplication factor
the number of times indicated by its exponent. In mathematics,
the exponent is the value written to the upper. right of a
quantity. For example, X4 means using X as a factor 4 times,
or (X) (X) (X) (X) .

Q. 21s means the quantity 2 used as a factor times.

• ••
A. 15 ·

m The FORTRAN language has an operation sign to tell the computer
to perform exponentiations: ** (double asterisk). For example,
to tell the computer to raise-the quantity X to the power of 2
(X squared) the expression X**2 is used.

(I 0/65)

Q. The operator ** tells the computer to raise a
quantity to the indicated

•••
A. power

7

FORTRAN for the IBM 1130 Chapter 1

m The rule for using the exponentiation operator is simple: the quantity
to the left of the operator is raised to the power indicated on the
right.

Q. In the FORTRAN expression A**8 the quantity
raised to the power of

•••
A. A, 8

is

m A statement may involve exponentiation along with other
operations. For example the expression A**2+B**2 would tell
the compute~ to calculate "A squared plus B squared. 11

Q. The expression: A*Y**2-B*Y**3 involves the operations of
and

•••
A. multiplication, exponentiation,-subtraction

Ill The familiar notation x 2 is interpreted as "x-squareds: or
"x to the second power." The equivalent expression in
FORTRAN is the notation.X**2.

Q. Given the formula r = x2 + y3 the equivalent expression in
FORTRAN is the statement R = X +Y

•••
A. **2, **3

(10/65) 8

FORTRAN for the IBM 1130 Chapter 1

m By now you may have noticed that FORTRAN expressions shown
in the examples have consisted of capital letters. This
convention will be continued, and lower-case letters will be
used only for examples of algebraic formula notation.

Q. Alphabetic symbols used in FORTRAN programs must be
letters.

• ••
A. capital

m The order in which the operations are carried out in a mathematical
expression is most important. The algebraic expression ..
ab+cd would tell the mathematician to .. mul.tiply a and b, and
multiply £ and ~' and then finally to add the two products.

Q. It is important to know the
operations are carried out •

•••
A. order

in which mathematical

m The same formula, ab+cd, would produce an entirely ~ifferent
value if the operations were carried out in a different order;
for example, if c were added to the product of a and b before.
the step of mul tfplying by d were carried out, the result wou.ld
be different. -

Q. In the formula x+yz the first operation to be performed
would be

•••
A. multiplication (yz)

m The computer solves a formula in much the same manner as a
mathematician: on~ operatiort at a time. Therefore it is
necessary for a language such as FORTRAN to have a clear-cut
order or "hierarchy" of operations to convey the.correct
meaning to the computer.

(10/65) 9

FORTRAN for the IBM 1130 Chapter 1

III ·To show an example of the "hierarchy 11 of operations, the
FORTRAN statement Y = A*B+X*.Y tells the computer to perform the
two multiplication operations first, and then add the two
products.

Q. In the FORTRAN statement A = B*C+D the first operation
performed is

•••
A. multiplication (B*C)

I

l1J .·In the simplest form of FORTRAN expression the order of
,op~rations is determined by reading the expression from left
to right.

Q. The "hierarchy" of operations in a FORTRAN expression is
dependent on scanning the expression in a to

direction.

• ••
A. left, right

m The computer evaluates FORTRAN expressions in a left-to-right
manner if the sense of the expression is not violated by doing
so. For instance, in the expression A+B*C, the computer, even·
though scanning left to right, cannot compute the value of A+B, .
because s·must be multiplied by c before the value of A is added.

m The sequence by which the computer performs computations is
determined by the hierarchy of operations. The operation with the
highest priority is exponentiation. For instance, in the
expression B*C**2+A, the value of C**2 is computed first.

Q. The operation with the highest priority is

•••
A. Exponentiation

(10/65) 10

FORTRAN for the IBM 1130 Chapter 1

m After the indicated exponentiations are.performed,
multiplications or divisions are performed next, reading again
from left to right. If an expression contains both types of
operation they are still executed in the order they appear in
the left-to-right direction.

Q. In the FORTRAN expression F/G*H, applying the rule stated
above, the operations of multiplication and division are
performed in the following order: , then

•••
A. division, multiplication

IJI Finally, all additions or subtractions are performed in the order
they appear. If both types of operation are contained in an
expression, they are again executed in the order they appear
in the left-to-right direction.

Q. In the FORTRAN expression A+X-B the last operation, by
name, to be performed is

•••
A. subtraction

m The FORTRAN rule of hierarchy consists, then, of three parts:

(10/65)

1. All exponentiation (if any) is done first.
2. All multiplication and/or division (if any) is

done second.
3. All addition and/or subtraction (if any) is done

last.

Q. The operation with the highest priority performed in
a FORTRAN expression would be if any were indicated •

•••
A. exponentiation

Each of the three groups of operations is called a "level of
hierarchy." All operations on a given level must be completed
before going to the next level.

Q. The operations of multiplication and division represent a
of hierarchy of operations •

•••
A. level

11

FORTRAN for the IBM 1130 Chapter 1

m· The FORTRAN statement Y = A*X**2+B*X+C contains.nll rhree levels
of hierarchy. The computer would interpret this statement

m

(10/65)

to mean:

1. Compute X**2 (exponentiation level)
2. Compute A* (quantity computed in #1) and B*X

(multiplication level)
3. Compute the sum of rhe rhree rerms as directed

(addition level) in ~hat nrder.

Q. In the statement A = B/C+D the first operation to be
performed would be

•••
A. division (B/C)

These rules of hierarchy are consistent with those nf nrdinary
notation. For example, the ordinary expression x 2+bx+c would
be computed by hand in the order: "square x, multiply b and x,
and finally add the three quantities, x, bx, c". The Ievels
of hierarchy are exactly the same nS those in the FORTRAN
rules. There is nothing new about these rules -- you have
been following them for years.

In summary, then,· the FORTRAN Arithmetic statement
tells the computer to perform arithmetic operations, one ~t
a time, to compute an entire expression. Just as an engineer
would do in performing hand calculations, the operations are
carried out in a specific nrder: exponentiation, multiplication
and/or division, and addition arid/or subtraction, in each ~ase
moving from left to right in the written expression until all
operations at a given level of hierarchy ~re completed as
directed.

Q. Given the FORTRAN statement R = A+B/C+D, indicate which of
the two following formulae this statement represents.

a + b
a) r = c + d

b -b) r = a + c + d

•••
b

A. b) r = -a + c + d

l2

FORTRAN for the IBM 1130 Chapter 1

IEJ If your answer was (b) and therefore correct, skip to frame 54.
If your answer was (a) continue to the next frame.

a + b m Your answer, c + d, was incorrect. The FORTRAN statement
R = A+B/C+D can be interpreted only one way according to the

b
rules of hierarchy of operations: a + c + d.

EDI To review, in a FORTRAN Arithmetic statement exponentiation
is done first; multiplication and/or division is performed
next; and addition and/or subtraction is done last.

Q. Given the statement Y = X**2+B*X+C the operations (by
name) are carried out in the order
and

•••
A. exponentiation (X**2), multiplication (B*X), addition

(of the three terms)

Ell Applying these rules of hierarchy to the statement
R = A+B/C+D the interpretation is as follows: there are no
exponentiations, there is one division (B/C) which is
carried out first, and finally, there are three quantities
(A, D, and B/C) to be added.

m Q. Given the statement X = A/B+C, indicate which of the two
following formulae this statement represents.

(10/65)

a
a) x = b + c

a
b) x = b+c

a
A. a) b + c

•••

13

FORTRAN for the IBM 1130 Chapter 1

m 'If your answer was (a) and therefore correct, continue to the
next frame. If your answer was (b), see your advisor.

m Perform Exercise 1.2 in your problem book.

So far you have learned to use FORTRAN to instruct the
computer in only simple combinations of arithmetic operations.
In the next few frames, you will be shown how to use parentheses
to provide more flexibility in constructing mathematical
expressions.

m Going back to familiar formula notation, for example, the
expression (a+b) (c+d) would mean "add a and b; add c and d:
and finally, multiply the two sums together 11

:- The parentheses
have changed the normal order of operations.

Q. Increased flexibility may be gained in writing mathematical
P.Xpressions when are used •

•••
A. parentheses

m FORTRAN Arithmetic statements make use of parentheses
in exactly the same way they are used in familiar mathematical
notation. The FORTRAN statement R = A*(B+C) tells the
computer to "add the quantities B and £, then multiply this
sum by ~".

Q. Indicate which of the given FORTRAN statements truly
a

represents the formula y = b+c

a) y = A/(B+C)

b) y = A/B+C

•••
A. a) y = A/(B+C)

(10/65) l 4

FORTRAN for the IBM 1130 Chapter 1

m The rules covering the use of parentheses in FORTRAN are
exactly the same as those taught to the student of high-school
algebra. The expression (A+B)/(C+D) tells the computer
to "add the quantities A and B, add the quantities C and Q_,
then divide the two results."-

Q. The expression above without.parentheses:
A+B/C+D would tell the computer to perform the operation
of first.

• ••
A. division (B/C)

m Parentheses may be used freely in FORTRAN Arithmetic
statements to construct expressions of any desired degree of
complexity. The use of parentheses is pretty much governed
by common sense; the instances when they are required are
usually obvious.

Q. Write an equivalent FORTRAN expression for each.of the
following mathematical expressions:

A.

a) a(b+c)

b) ab+c

a)
b)

A*(B+C)
A*B+C

•••

liJ Parentheses are usually used only when the normal hierarchy of
operations has to be altered to provide a meaningful expression.

(10/65)

x
The formula y = a+b cannot be represented in a single FORTRAN
expression without the use of parentheses. Y = X/A+B certainly
is not correct.

Q. The correct FORTRAN representation of the formula
x

y = a+b is

•••
A. Y = X/ (A+B)

15

FORTRAN for the IBM 1130 Chapter 1

rmJ Each use of a left-parenthesis, (, must be balanced by the use of
a r igh t-paren th es is ,) , -and vice -versa. For example, the
expression· (F+(X*Y) i~-not valid because of the unbalanced
parentheses.

Q. For every left-parenthesis in an expression, there must be
a corresponding

•••
A. right-parenthesis

1111 Parentheses may be used even where not necessarily required.
Extra parentheses (as long as they are balanced in pairs) will
not harm the computation.

Q. (True or False) The expression A*B+C*D and (A*B)+(C*D)
would be considered equivalent •

•••
A. True

l!J Each balanced pair of parentheses sets off a group of
operations which must be completely carried out before
those operations outside the parentheses can be executed.
For example, the expression A*(B+C+D) required that the

(I 0/65)

three quantities be added before the multiplication operation
can be done.

Q. In the example shown above, the operation of addition is
carried out before the operation of multiplication;
the parentheses have changed the of operations •

•••
A. hierarchy (or order)

Within each pair of parentheses, "exponentiation first,
multiplication-division next, and addition-subtraction last"
still applies. In other words, each parenthesized expression
is computed as if it were a complete expression subject to the
usual rules of hierarchy. ·

Q. In the expression X*(A**2+B) the first operation to be
performed by the computer would be

•••
A. exponentiation (A**2)

16

FORTRAN for the IBM 1130 Chapter. 1

m When a group of operations within a set of parentheses is
completed, that computed value usually becomes a quantity in
the larger expression. For example, (A+ B)*X tells the
computer to "add A and B, then multiply that quantity by X". - - . -
Q. In the expression F/(G + H) the quantity F is divided

by the value of the expression

•••
A. (G + H)

EIJ To summarize, FORTRAN expressions denoting arithmetic operations
are constructed in pretty much the same fashion as in ordinary
notation. A set of strict rules of hierarchy must be observed,
but when the expression demands it, parentheses may be used to
modify the over-all hierarchy of operations. The next frame
contains a few examples of ~xpressions in which parentheses
are required.

m Conventional Notation FORTRAN Notation

(a + b + c) (x + y + z)

un-1

1
k + m + n

n+l
((a+b) (x+y))

(A+ B + C)*(X + Y + Z)

U** (N-1)

l/(K+M+N)

((A+ B)*(X + Y))**(N+l)

m A pair of parentheses may be completely contained within
another pair, as in the example ((A+ B)*C + D)/X. This
tells the computer to "add A and B, multiply this by C,
add this entire result to n; and finally divide the result

(10/65)

by X. II -

Q. The innermost pair of parentheses in the example above
encloses the operation of

•••
A. addition (A+B)

17

FORTRAN for the IBM 1130 Chapter 1

·when sets of parentheses are "nested" (contained within one
another) the innermost set of operations must be completely
carried out before aoing on to the remaining parts of the
overall expression.

Q. In the expression ((A*X + B)*X + C)*X + D the innermost
parentheses contain the expression

•••
A. A*X + B

m The computer will interpret the expression ((A*X + B)*X + C)*X + D
beginning with the innermost pair of parentheses: (A*X + B).

Once that value is computed, it becomes part of the expression
in The outer parentheses, and so on.

Q. When parenthesized expressions ~re "nested" the computing
begins in the pair of parentheses •

•••
A. innermost

lfil The general rules for parentheses are:

(10/65)

1) Computing begins at the innermost pair when nested.
2) Parenthesized expressions must be ~ompletely

executed before other operations are executed.
3) The usual rules of hierarchy of operations apply

within parentheses.
4) The result of the operations within the parentheses

becomes the quantity used in the over-all
expression.

18

FORTRAN for the IBM 1130 Chapter 1

fJI It should be noted that parenthesized expressions are connected
to the over-all expression by an operation sign in all cases.
For instance, the expression (A+ B)*(C + D) requires that the
* (asterisk) sign be present to denote multiplication of the
two parenthesized sets. (A + B) (C + D) alone is not sufficient.

Q. Identify the correct representation below of the formula
a(b + c)

y = d

a) y = A(B + C)/D

b) y = A*(B + C)/D

•••
A. b) y = A*(B + C)/D

fil Parentheses are not needed when the natural hierarchy of
operations is appropriate, but it is easy to make a slight
error and end up with the wrong answer. For example, the simple

x
expression yz might be accidentally misrepresented by a
programmer to be X/Y*Z in a FORTRAN expression, while that

x
expression actually means y (z) to the computer due to the
left-to-right nature of the hierarchy rule~

Q. By adding parentheses the FORTRAN expression X/Y*Z can
be made to truly represent the expression~ as follows:

yz

•••
A. X/ (Y*Z)

m It is a good idea to use parentheses wherever any doubt exists,
such as the preceding example shows. ·Excess parentheses will
not harm a FORTRAN statement, but the absence of parentheses
when they are needed can be disastrous!

Q. The FORTRAN expression A/B/C means:

a a
a) be or b) b/c

•••
a

A. a) be

(10/65) 19

FORTRAN for the IBM 1130 Chapter 1

m· You have seen that the FORTRAN expression A/B/C is interpreted
as if it were parenthesized as ((A/B)/C) due to the left-to
right nature of the hierarchy rule. This demonstrates that,
even without parentheses, there is only one· way to interpret
any FORTRAN expression within the rules.

Q. Show how the basic expression A/B/C must be parenthesized
a

to represent the formula b/c .

•••
A. A/(B/C)

m o. Write a FORTRAN expression to represent the formula
(x) (y)

m

m

m

(10/65)

A.

(w) (z)

Use corresponding capital letters as symbols .

X*Y/ (W*Z) (note:
possible answers:
combinations.

•••
parentheses are necessary). Other

X/W*Y/Z or (X*Y)/(W*Z) or similar

If your answer agrees with any of the above, skip to frame 81.
If you did not have the correct answer, continue to the next
frame for the explanation. ·

Perhaps you forgot some necessary parentheses. Given the
~

expression wz to construct an equivalent FORTRAN expression,
the most obvious approach might be to construct the numerator
X*Y, the denominator W*Z, and then place a division sign
between them: X*Y/W*Z-.--

This answer X*Y/W*Z is incorrect because the computer interprets
this as follows (left-to-right): multiply X and Y, divide that
result by w, then multi ply that entire result by-z, which is ·>

incorrect.- This answer is equivalent to ~() , not-~.
w z wz

20

FORTRAN for the IBM 1130 Chapter 1

m In order to make sure that a computer calculates W*Z before
the division takes place, a pair of parentheses should be
placed around the denominator, as in X*Y/(W*Z) which is a
correct answer. a+b

c
Q. Construct a FORTRAN expression equivalent to---xy using

corresponding capital letter symbols:

••••
A. (A+B/C)/(X*Y)

lmJ If your answer agrees with the one shown above, continue to the
next frame. If your answer is incorrect, see your advisor.

IJI Perform Exercise 1.3 in your problem book.

Up to this point we have not been concerned with the quantities
involved in the arithmetic operations. We have simply used
alphabetic symbols to represent these quantities, as in the
example:

Y = A+B+C

In this Arithmetic statement, A, B, C, and Y represent the
quantities or numbers used in the arithmetic operations.

Q. symbols may be used to represent quantities in an
Arithmetic statement.

• ••
A. Alphabetic

m You will now be shown that the quantities specified in an
Arithmetic statement may be represented in two ways:
constants and variables. These terms will be defined and
illustrated in the next few frames.

Q.

A.

(10/65)

There are two ways to represent the
an Arithmetic statement •

•••
quantities

21

specified in

FORTRAN for the IBM 1130 Chapter t

m· One way to specify a quantity in a FORTRAN Arithmetic
statement is to represent the quantity by the actual number
itself. This type of specification is called a constant. For
example:

y = 2. + 1.

tells the computer to add the constants two and one.

Q. A number used to specify a quantity (in an Arithmetic
statement) is called a

•••
A. constant

m In general, a constant is a known quantity in a mathematical
expression. For example, the formula for the approximate area
of a circle is A= 3.14159r2 in which the quantities 3.14159(pi)
and the exponent 2 are known values.

Q. The constants in the formula·0.5gt2 are

A. 0. 5
2

• ••

and

m In a FORTRAN expression, all constants are represented by the
numbers themselves. An Arithmetic statement to find

(l 0/65)

the area of a circle, for example, might be A = 3.14159*R**2

Q. The FORTRAN constants in the expression above are
and

A. 3.14159
2

•••

22

FORTRAN for the IBM 1130 Chapter 1

m Any quantity in a FORTRAN expression which is known at the
time the expression is written can be expressed as a constant.
The desired value is simply written into the expression as the
number itself.

Q. Write a FORTRAN expression to represent the expression
3. Sx 2- 2. 9x-0. 5

•••
A. 3.5*X**2-2.9*X-0.5

m The other method of representing quantities in a FORTRAN
expression is through the use of variables. The symbol X
in the answer shown above is a variable.

m .

Q. Quantities may be represented in a FORTRAN expression
as either constants or

•••
A. variables

A variable is defined as a symbol in a FORTRAN expression which
represents a quantity whose value is specified elsewhere in the
program, usually by some previous statement.

Q. In the expression A*X**2+B the symbols ~' ~' and B are
called

•••
A. variables

m The numeric value associated with a variable is referred to by
the use of its variable name in an expression. For example,
in the expression A+B the computer is told to "add the
quantity whose name is~ to the quantity whose name is B".

(10/65)

Q. The value of a variable is obtained for use in an
expression by the reference to its

•••
A. name (or symbo 1)

23

FORTRAN for the IBM 1130 Chapter 1

m The value of a·variable may change repeatedly during the
execution of a program. The value of a constant, as the term
implies, may not be altered, however.

Q. In the expression 3.0*X the value of the variable named
is multiplied by the constant

A. X
3.0

•••

fJI The variable name acts as a symbolic "handle 11 of a number
whose value is to be used in an expression. Use of this
symbolic name permits the programmer to write the expression
without knowing the exact value to be used.

Q. In the FORTRAN expression X+Y-Z the variables ,
, and represent numbers which are to be

~~~-

added and subtracted as the expression directs • 

••• 
A. X, Y, Z 

f!JI When a variable is used in a FORTRAN expression it is assumed 
that the programmer will have defined its value in some other 
part of the program. 

Q. The FORTRAN expression A*B+X/Y uses previously defined 
in place of the symbols when the expression is 

computed. 

• •• 
A. values (or numbers) 

lfll At the time a program is written a variable name is invented 
for each such "unknown" quantity and the name is written in the 
FORTRAN mathematical expression in place of the number it 
represents. 

(10/65) 

Q. In the FORTRAN expression R**20-S*T the first operation to 
be executed is raising the pre-defined value of the 
variable to the power of 

••• 
A. R, 20 

24 



FORTRAN for the IBM 1130 

m FORTRAN has rules for naming the variables used in an 
expression. In 1130 FORTRAN, for example, a variable may 
have from 1 to 5 alphabetic or numeric characters in its 
name. Other versions of the FORTRAN language have similar 
rules for the naming of variables. 

Q. In 1130 FORTRAN a variable name may have from 
to alphabetic or numeric characters • 

••• 
A. 1, 5 

Chapter 1 

m While a variable may have more than one character in its name 
and may also use numeric characters, the first character in any 
variable name must be alphabetic. Thus Xl is a legitimate 
variable, but lX is not. 

Q. The first character in any variable name must be 

••• 
A. alphabetic 

fZI Another rule regarding variable names is that a variable name 
may not have blanks between any of its letters or numbers. 
For example, BETA! is n legitimate uariable name, but BETA 1 
is not because it contains an embedded blank. 

Q. (True or False) JOB NO is an acceptable name . 

••• 
A. False. (contains an embedded blank). JOBNO would be correct. 

f1.I Being able to use more than one character in a variable name 
gives a great deal of added flexibility in the construction of 
expressions. The Ohm's Law formula could be written in 
FORTRAN as Y = A*B, but the symbols become more significant 
if the formula is written VOLTS = CURRN*RESIS, for example. 

(10/65) 25 



FORTRAN for the IBM 1130 Chapter 1 

fll A list of typical variable names is shown below: 

z 
ANS WR 
PI 
XI 

DELTA 
Xl2Y2 
NUMBR 
Y2 

Q. The variable name CURRENT would not be a legitimate 
variable name in S/360 FORTRAN because it contains more 
than characters • 

••• 
A. 5 

m Here is a summary of variable naming rules: 

Q. 

A. 

(I 0/65) 

1. The name may have from.I to 5 alphabetic or numeric 
characters. (No special characters allowed, that is, 
I * &, etc. The dollar sign, however, is an allowable 
exception. It is arbitrarily considered to be an 
alphabetic character, and as such, its use in a 
name is legitimate.) 

2. The first character of the name must be alphabetic. 
3. No embedded blanks are permitted. 

Which of the following variable names are 

a. 
b. 
c. 
d. 
e. 
f. 
g. 
h. 
i. 

b. 
c. 
d. 
e. 
i. 

XRAY 
SHARKS 
4XB 
NO Y 
FORTRAN 
HELP 
DOLR$ 
RHO 
GO*F 

••• 
SHARKS - too many letters 
4XB - first character not alphabetic 
NO Y - embedded blank 
FORTRAN - too many letters 
GO*F - contains a special character 

26 

incorrect? 



FORTRAN far the IBM 1130 Chapter 1 

1130 FORTRAN can tell the computer to perform two different 
types of arithmetic: real and integer arithmetic. These 
two types of arithmetic are called "modes". (In other versions 
of FORTRAN real is called "floating-point" and integer is 
called "fixed point". In this course we shall use the terms 
real and integer only.) 

Q. The cornputer•s two forms of arithmetic, integer and real, 
are called of arithmetic • 

••• 
A. modes 

llDJI The real mode of arithmetic deals with real numbers. A real 
number is defined simply as a number which contains a decimal 
point. The integer mode of aritlimetic deals with integers. 
An integer is a number which does not contain a decimal point. 

Q. numbers contain decimal points, numbers 
do not. 

• •• 
A. real, integer 

Im The real mode of arithmetic should be used for nearly all 
computations. This mode of arithmetic automatically takes care 
of correctly positioning the decimal point in the result. 

Q. Nearly all computations should be performed in the 
mode. 

• •• 
A. real 

Im The integer mode of arithmetic makes use of integer, or whole 
number, quantities and, as such, is useful as a counter. 

Q. The integer mode of arithmetic is used for counting and 
other operations involving numbers • 

••• 
A. integer (whole) 

(10/65) 27 



FORTRAN for the IBM 1130 Chapter 1 

IDJI Since most computer work involves other than whole number 
quantities, the real mode is used almost exclusively for ordinary 
computation. In the real mode, almost all numbers, including 
fractional quantities, may be ~utomatically handled by the 
computer. 

Q. Numbers which contain fractional parts must be handled in 
the mode. 

• •• 
A. real 

The programmer indicates the mode of arithmetic that the 
computer is to use in any computation by the nature of the 
variables and constants used in the FORTRAN expressions. Thus, 
constants and variables have a definite mode associated with_ 
each. 

Q. The mode of the arithmetic performed is determined by the 
mode of the and written in the FORTRAN 
expressions. 

• •• 
A. constants, variables 

Im An expression containing real constants and variables will be 
computed using real arithmetic procedures; similarly, 
expressions containing integer constants and variables will be 
executed in the integer mode. 

lrfJ A constant in the real mode is identified by the presence of a 
decimal point. All constants that have decimal points are real 
constants. 

(10/65) 

Q. (True or False) All the constants in the list below are 

A. 

real constants: 

3.141592 
5280.0 
11001 
0.000001 
100000. 
32.174 

••• 
False (11001 does not contain a decimal point) 

28 



FORTRAN far the IBM 1130 Chapter 1 

llmJ Integer constants are numbers that do not contain a decimal 
point. Since all integer numbers are whole number quantities, 
no decimal point would be needed and this provides a convenient 
means of distinguishing between the modes of constants. 

Q. (True or False) 10259 is an example of an integer constant • 

••• 
A. True 

Im A real number may be a whole number, but as a constant it must 
still contain a decimal point. 

Q. Write the quantity "one million" as a real constant: 

••• 
A. 1000000. (must include the decimal point) 

IJlil Incidentally, commas are not permitted in constants of either 
mode; that is, the constant 1,000,000 is not permitted as a 
FORTRAN constant. 

Q. The presence of a decimal point in a constant identifies 
it as a number • 

••• 
A. real 

1111 Zeroes after a decimal point are not necessary for a real whole 
number. For example, the constants 1.0 and 1. are identical as 
FORTRAN constants. 

(10/65) 

Q. (True or False) The constants 5,280.0 and 5,280. are 
legitimate real constants • 

••• 
A. False (comma not permitted) 

29 



FORTRAN for the IBM 1130 Chapter 1 

1111 The quantities represented by variable names must also be 
identified with one of the two modes. The mode of a variable 
may be determined by the first letter in the variable name. This 
is an arbitrary convention of FORTRAN, and is known as an implicit 
specification of variable modes. We shall see later that it is 
possible to define variable modes in a manner which does not 
depend upon the first character in a name. For the time being, 
however, you will learn the rules of first letter (implicit) 
mode specification. 

1111 Let's review the rule for naming a variable: a variable name 
may have from one to five alphabetic or numeric characters, and 
the first character must be alphabetic. 

Q. · (True or False) All the variable names in the list below 
are legitimate: 

x 
XlY2 

A. True 

Al234 
DELTA 

••• 

1111 The mode of a variable may be determined by the first character 
in its name. If the variable name begins with any of the 
letters I, J, K, L, M, or N it is an integer variable; if it 
begins with any other letter it is a real variable. 

Q. 

A. 

(10/65) 

The mode of a variable may depend on the 
in the variable name. 

• •• 
first 

30 

character 



FORTRAN for the IBM 1130 Chapter 1 

1111 An integer variable name begins with the letter I, J, K, L, M, 
or N. For example I, N, JOB, LETTR, NUMB, KAPPA, etc., are 
names of integer variableS:--

Q. The integer variable in the list below is 

FRANK 
JOE 
HENRY 

A. JOE 

••• 

IJ:rl A real variable name begins with any alphabetic character 
except I, J, K, L, M, or N. Under this rule, the names X, 
Y, DELTA, YPRIM, AlDOT, etc., are all legitimate real -
variables. 

Q. The name FIXED is a variable name. 

• •• 
A. real 

llfJ A convenient aid for remembering the first letter rule 
in naming variables is to note that the letters I and N are 
the first two letters of the word.INteger. All letters other 
than I through N would denote a real variable when used as 
the first letter of a variable name. 

1111 Remember it is only the first character in a variable that is 
important to the mode. The letters I, J, K, L, M, and N may 
be used in a real variable name as long as they are not the 
first character. 

Q. (True or False) The variable name XIJKL is a real 
variable. 

• •• 
A. True 

( J 0/65) 31· 



FORTRAN for the IBM 1130 Chapter 1 

lllfJ Variable names are often invented to coincide with a meaningful 
word describing the quantity in +-he expression •.. You must be 
careful to avoid accidentally using the letters I, J, K, L, M, 
or N as the first character in an intended real· variable name. 

Q. (True or False) The FORTRAN statement FORCE = MASS*ACCEL 
contains only real variables • 

••• 
A. False (MASS is an integer variable) 

Im Sometimes a desirable name for n real variable, such as in the 
preceding example, begins with one of the forbidden letters. 
In this case nn extra letter is of ten added to the front of the· 
name to make it a legal real variable. For example,. MASS 
might be re-named as AMASS or XMASS, etc. · ~~ 

Q. By adding a letter X in rhe appropriate place, the 
statement FORCE = MASS*ACCEL can be made to contain only 
real quantities as follows: 

••• 
A. . FORCE = XMASS*ACCEL 

ml To review for a moment, you now know that quantities or numbers 
can be represented in a FORTRAN expression as their exact value 
(constants) or as a symbolic name (variables), and that the 
arithmetic indicated in an expression is performed in one of two 
modes. The mode of the arithmetic is determined by the mode of 
the variables and constants in the expression. The mode of a 
constant is defined by the presence or absence of a decimal 
·point; the mode of a variable depends on the first letter. 

(10/65) ·32 



FORTRAN for the IBM 1130 Chapter 1 

lf!I Perform Exercise 1.4 in your problem book. 

In FORTRAN terminology an expression is defined as any 
combination of constants, variables, and operation signs. For 
example A*X/2.+B*X-C is called an "expression" or more exactly 
a "FORTRAN expression 11

• 

Q. F+G-Z ·is a combination of variables and operation signs 
and, as such, falls within the definition of a FORTRAN 

••• 
A. expression 

Im By the definition in the preceding frame, a single constant 
or single variable may also be considered an "expression". 
Even a variable or constant preceded by a minus sign is a 
legitimate expression. 

Q. (True or False) All the examples in the list below are 
legitimate expressions: 

A*X+B 
FRAME-FRAME 

A. True 

X/2.-4.0 
-FRAME 

••• 

ml The "expression" is FORTRAN's method of telling the computer 
exactly what arithmetic operations you wish to have executed 

(10/65) 

and exactly which quantities to use. The expression A+B says 
"add the quantities A and B," while the expression -x says "find 
the negative of the quantity called~"· -

Q. If the numeric quantity -2.5 is represented by the name 
ROOT, the expression -ROQii.1'"Will have a computed value of 

••• 
A. +2.5 

(-(-2.5) equals +2.5) 

33 



FORTRAN for the IBM 1130 Chapter 1 

Im An expression defines a series of related mathematical operations 
which the computer is to carry out. Because integer and real 
values must be handled quite differently by the computer, 
quantities used in an expression will normally be of the same 
mode. If they are not, a "mixed-mode" expression results and 
the computer cannot perform the desired operations without 
altering the quantities involved to make them agree in mode. 
(Just how this is done will be explained in later frames.) The 
normal way of writing expressions, therefore, is to write them 
without mixing modes. (There are some exceptions which will be 
explained as you progress through the text.) 

Q. (True or False) X+l is a mixed mode expression • 

••• 
A.. True. 

The expression X+l is indeed mixed mode: the variable X is a 
real quantity and the constant 1 is an integer· number. 

Q. The expression X+l can be changed and written in real 
mode as 

••• 
A. X+l. (Notice the decimal point) 

Im Integer and real numbers look quite different to the computer. 
It would be impossible to perform normal operations with numbers 
of opposite modes. Therefore expressions are normally consistent 
in mode. 

Q. (True or False) The expression 2*I-3.*X is a mixed mode 
expression. 

• •• 
A. True 

mJ One of the exceptions to mixing modes is exponentiation. 

(10/65) 

Specifically, real quantities may be raised to either real or 
integer exponents, and integer quantities may be raised to 
either real or integer exponents. Thus, all of the following 
expressions are acceptable: X**2, A**S.O, J**2.0, K**3, Z**N. 

Q. (True or False) Exponents may not differ in mode from 
the base number. 

• •• 
A. False 

34 



FORTRAN for the IBM 1130 Chapter 1 

Im Incidentally, exponents themselves may be expressions. That is, 
an exponent may be a constant, variable, or an expression 
involving more than one quantity. The latter case, however, 
will always require an Pxtra set of parentheses. For example, 
X**2, X**N, or X**(2*N - 1) are all legitimate. 

Q. Using an integer expression for an exponent, write an 
expression to compute the formula 2i + j 

u 

•••• 
A. U* * ( 2* I + J) 

IE While we're talking about exponents, it should be noted that, 
wherever possible, FORTRAN exponents should be integer in mode, 
regardless of the mode of the quantity being raised to the 
indicated power. A real exponent should be used only when a 
fractional exponent is necessary. 

llD 

(10/65) 

Q. The expressions X**2.0 and X**2 are exactly equivalent 
mathematically, but (choose one) is preferred • 

••• 
A. X**2 (integer exponent) 

An example of the use of a real exponent would be the computation 
of a fourth root which might be expressed as X**0.25. The 
need for real exponents seldom arises so a good rule of thumb 
would be to avoid their use and stick to integer exponents for 
either mode of expression. 

So far, reference has been made to the FORTRAN Arithmetic 
statement without actually defining it. An Arithmetic statement 
consists of a variable name, followed by an "equal" sign, 
followed in turn by any desired expression. 

Q. The variable name and the expression of an Arithmetic 
statement are separated by an " " sign • 

••• 
A. equal 

35 



FORTRAN for the IBM 1130 Chapter 1 

IEIJ All arithmetic statements conform to this format. The computer 
executes the following steps for any Arithmetic statement: 
"compute the complete expression on the right of the equal sign 
and assign that computed value to the variable whose name 
appears on the left of the equal sign." 

(10/65) 

Q. In the Arithmetic statement A = B*C/D the last step the 
computer does is to assign the expression'S-COmputed value 
to the variable 

••• 
A. A 

An expression, remember, is any desired combination of variables, 
constants,. and operation signs describing a series of arithmetic 
operations. The Arithmetic statement always has some expression 
on the right of the equal sign. 

Q. In executing an Arithmetic statement, the computer first 
.obtains the computed value of the 

••• 
A. expression 

Once the value of the expression on the right of the equal sign 
has .been obtained by the computer, that quantity becomes the 
value of the variable on the left of the equal sign. For 
example, if the variable A has a value of 5.2 at the time the 
statement Y = A + 1. is executed, the variable Y will end up 
with the value 6.2. 

Q. Assuming the value for A given above, the value of X after 
executing the statement-X = 2.*A is 

••• 
A. 10.4 

The format of the Arithmetic statement is limited in that only a 
single variable may appear on the left of the equal sign. The 
progranuner may construct almost any expression on the right of 
the equal sign, however. 

Q. (True or False) The statement A + B = X*Y i9 an Arithmetic 
statement. 

A. 

• •• 
False (only a single variable is permitted on the left of 
the equal sign) 

36 



FORTRAN for the IBM 1130 Chapter 1 

Im You were told a while back that there were several ways of 
defining the value of a variable; the Arithmetic statement is 
one such method. 

Q. After executing the statement Y = -0.55 the value of the 
variable Y will be 

••• 
A. -0.55 

Im After executing an Arithmetic statement the variable on the left 
of the equal sign will have the value of the computed 
expression, regardless of what the previous value of that 
variable may have been. 

Q. If the statements B = 4., A= 3.f and B = A**2 were executed 
in that order, the final value of B would be 

••• 
A. 9. 

Im To review, then, you have been shown that an Arithmetic 
statement consists of a variable, an equal sign, and some 
expression. The expression may be a single constant or 
variable or a complex combination of operations. The statement 
is executed in a series of two steps: the expression, however 
complicated, is computed and that computed value becomes the 
value of the variable on the left nf the equal sign. 

A. 

(l 0/65) 

Assume the following statements are executed in the order 
written. After execution by the computer show the values 
of the variables A, B, c, X, and Y. 

A = 2.0 A 
B = -3.0 B 
c = -2.0 c 
x = 2.0 x 
y = A*X**2+B*X+C y 

••• 
A 2.0 
B -3.0 
c -2.0 
x 2.0 
y o.o 

37 



FORTRAN for the IBM 1130 

1111 If your answers were correct, skip to frame 149. If your 
answers did not agree with the ones shown above, continue 
to the next frame for an explanation. 

Chapter 1 

llfl The question showed a series of Arithmetic statements to be 
Axecuted in the order written. The first such statement 
A = 2.0 tells the computer to assign the value of the 
expression (2.0) to the variable called A. 

Q. The value of A after executing that statement must be 

••• 
A. 2.0 

lllJ Similarly, the next three statements: B = -3.0, C = -2.0, and 
X = 2.0 replace the former values of B, ~' and X with the 
corresponding expression values. -

Q. The value of X after completing the statements above 
must be 

••• 
A. 2. 0 

1111 The last statement Y = A*X**2+B*X+C tells the computer to 
perform the indicated operations using the most recently defined 
value of each variable. 

(10/65) 

Q. _(True or· False) After the statement X = 2. 0 is executed 
the variable X will have the value of 2.0 regardless 
of its previous value • 

••• 
A. True 

38 



FORTRAN for the IBM 1130 Chapter 1 

Im The expression in the final statement was A*X**2+B*X+C. 
According to the rules of hierarchy. this means: compute X**2(4.0), 
multiply this by A (2.0 times 4.0 equals 8.0), multiply B*X 
(2.0 times -3.0 equals -6.0), and add the indicated quantities 
(8.0+(-6.0)+(-2.0) equals 0.0). 

Q. The computed value of the expression shown above is 

••• 
A. 0.0 

That computed value, 0.0, of the expression then becomes the 
value of the variable--on the left of the equals sign: in this 
case, the variable name is Y. 

Q. (True or False) The expression on the right of the equals 

A. 

llfJI Q. 

sign in any Arithmetic statement must be completely 
computed before any value is assigned to the variable on 
the left. 

• •• 
True 

Given the following statements to be executed in the order 
written: 

x = 3.0 
y = 2.0 
A = X**2-Y**3 

Show the values of the variables X , Y ----A after execution of all three statements • 

••• 

, and 

A. X 3. 0 
y 2.0 
A 1.0 

ml If your answers agree with the ones shown, continue to the 
next frame. If your answers disagree with the correct answers, 
see your advisor. 

(l 0/65) 39 



FORTRAN for the IBM 1130 Chapter 1 

B Perform Exercise 1.5 in your problem book. 

When an Arithmetic statement is executed the most recently 
defined values of the indicated variables are used. 

Q. Write ~n Arithmetic statement that will set the value of 
a variable named G equal to the value 32.174: 

••• 
A. G = 32.174 

IB The execution of an.Arithmetic statement changes.the value of 
only one variable - the one on the left of the equal sign. 
All variables used on the right of the equal sign remain the 
same value. 

Q. (True or False) Before the statement S = SO+YO*T+.5*G*T**2 
can be successfully executed (with the correct answer) the 
variables SO, YO, G, and T must have their values defined • 

••• 
A. True 

Im Remember, the expression on the right of the equal sign normally 
will contain quantities of only one mode (except for exponents). 
When this is not done, a "mixed expression" results. 

(10/65) 

Q. Identify the single mixed expression in the examples shown 
below (by letter) 

a) (A+B)**(N-2*J) 
b) I*J**LUMP 
c) ABLE*BAKER**K-1 

••• 
A. c) ABLE*BAKER**K-1 (ABLE and BAKER versus 1) 

40 



'FORTRAN far the IBM 1130 Chapter 1 

Im The mode of the expression is determined by the mode of the 
quantities involved. If the expression contains real variables 
and constants (even if integer exponents are used) , it is 
considered a real expression. 

Q. The expression F**(I+J K*M-1) is a expression. 

• •• 
A. real 

Im If an expression contains integer variables and constants, it is 
considered to be an integer expression. Remember, integer 
arithmetic involves only whole number quantities. The results, 
therefore, are also integer quantities. 

Q. The expression INDEX**(NUMBR-1) is an 

••• 
A. integer 

---- expression. 

ml The fact that integer arithmetic produces integer results may 
cause errors under a certain condition. Addition, subtraction, 
and multiplication of integers can produce only integer values 
anyway, but division of integers may result in numbers with 
fractional parts. 

Q. The result of dividing 5 by 2 is 

••• 
A. 2 1/2 

Im Integer arithmetic can permit only integer results, even for 
division operations. If a division operation results in a value 
with fractional parts, the fraction is dropped without rounding 
(truncated) to the nearest whole number. Thus, in the 
computer's integer arithmetic, 5/2 comes out as ~· 

(10/65) 

Q. If the result of an integer division were 1.9999999 (true 
result) the computer would consider the result to be 

••• 
A. 1 (dropping the fractional part without rounding) 

41 



FORTRAN for the IBM 1130 Chapter 1 

Im The reason for warning you of this characteristic is to help you 
avoid harmless-looking situations that could produce incorrect 
results. For example, assume I, J, and K have the values-5, 2 
and 4, respectively. The expression I/J*K might appear to 

compute (5) (4)= 10, but due to the hierarchy rules the result is 
2 

(5/2) (4) which equals 8 in integer arithmetic. 

Q. The expression X**(l/2) is not equivalent to X**.5 because 
the exponent in the first example (in integer terms) is 

(number) • 

• •• 
A. zero (0) 

Im In review, then, Arithmetic statements are used in FORTRAN 
programs to evaluate an expression (anywhere from a single 
quantity to a complicated series of operations) and assign 
that value to an indicated variable. These statements may be 
used in a program to initialize variables, change the values 
of variables, or provide the steps to solve a mathematical 
formula. Most actual arithmetic is done in the real mode 
while special purpose operations such as exponents and counting 
may use integer mode. 

BJ Perform Exercise 1.6 in your problem book. 

An Arithmetic statement is executed in two distinct steps. That 
is, the expression is computed with no regard to the variable 
on the left of the equals sign. Thus, FORTRAN rules permit 
quantities on opposite sides of the equal sign to be of· opposite 
modes if desired. 

Im An Arithmetic statement such as A= I*J-K.is perfectly legitimate 
under FORTRAN rules. The statement is executed as follows: 
compute the integer expression (in integer arithmetic steps, 
naturally), convert the result to real form (the computer 

(10/65) 

changes the form of the nwnber) , and finally assign this real 
value to the variable A. 

Q. (True or False) The variable on the left of the equal sign 
in an Arithmetic statement need not be of the same mode as 
the expression on the right • 

••• 
A. True 

42 



FORTRAN for the IBM 1130 Chapter 1 

Im The general rule describing the execution of an Arithmetic 
statement becomes, then: "the expression is completely 
computed in its basic mode and that value is assigned to the 
variable on the left of the equal sign, converting its mode 
if indicated". 

Q. Under this rule, the value of the variable K after 
executing the statement K = 1.999999 will be 

••• 
A. 1 (the value 1.999999 is converted to an integer) 

lfll For example, you might wish to initialize the variable X with 
a value of one and the statement X = 1 is perfectly legal. 
This is not good programming, however, since the computer must 
go through the steps of converting the constant (1) to real 
form (1.), thus wasting time. 

Q. To avoid wasting time setting the value of X to a value 
of one the statement should be 

••• 
A. X = 1.0 or X = 1. 

11'11 This feature. of changing modes is useful under special ~onditions, 
but care should be taken to see t.hat this doesn't happen when 

(l 0/65) 

it is not intended. This would happen when a variable is 
accidentally assigned an integer name when a real name is 
intended. , 

Q. (True or False) The statement I = V/R is legitimate but 
will produce an integer result for the variable I • 

••• 
A. True 

43 



FORTRAN for the IBM 1130 Chapter 1 

11'11 Remember, when real quantities are converted to integer mode 
form, they lose their fractional oarts without rounding. 
A result that was intended to be 3.8759 might ~ccidentally end 
up as 3 if the mode were accidentally changed from teal to 
integer by an Arithmetic statement. 

Q. Care must be taken iri assigning variable names {with respect 
ro the first letters of the names) so that the result does 
not end up in the wrong 

••• 
A. mode 

Im If you accidentally mix modes in an expression, many FORTRAN 
systems (1401, 1440, 1460, 7040/44) for example) will not permit 
that statement to be·converted to machine language since it 
contains a mixed mode expression. As you may recall, all FORTRAN 
statements prepared by the programmer are converted to machine 
language statements by the computer during a translation or 
compiling stage. {See the Introduction section of this volume 
on "Communicating with the Computer"). Most FORTRAN systems 
will, at this time, perform an edit of the incoming prograrruner 
statements to check them for adherence to the rules of FORTRAN. 
In the 1130 if a mixed e~pression i~ found, 1130 FORTRAN, unlike 
many FORTRAN compilers, will allow the mixed mode statement 
to be translated into machine language. 

Q. {True or False) The statement ALPHA=BETA*K+l.O is a 
permissible 1130 FORTRAN statement • 

••• 
A. True 

Im Even though the 1130 will not reject mixed mode expressions, 

(10/65) 

it cannot perform arithmetic operations with numbers which are 
not of the same mode. Therefore, when a mixed mode expression 
is encountered, the 1130 FORTRAN translator converts integer 
quantities in a mixed expression to real quantities and performs 
the arithmetic in the real mode. 

Q. In a mixed mode expression, quantities will be 
converted to quantities and the arithmetic will be 
performed in mode • 

••• 
A. integer, real, real 

44 



·FORTRAN for the IBM 1130 Chapter 1 

Im According to the preceding rule, the mixed mode statement 
A=B+2+C**3+N will become equivalent to A = B+2.0+C**3+ (the 
real equivalent of the integer variable N. If N=S, the real 
equivalent would be 5.0). 

Q. Write an equivalent real mode statement for the mixed 
mode statement X = X+l+3/2.+Q 

••• 
A. X = X+l.0+3.0/2.+Q 

Im Because the 1130 converts mixed mode expressions automatically, 
the progranuner may end up with a different result from what he 
had intended. The best plan, therefore, is to check all 
FORTRAN statements carefully to make sure that they correctly 
express the intentions of the programmer. 

lfll Since an Arithmetic statement is executed in two phases (compute 
the expression and assign the value to the variable on the left 
of the equal sign) , the expression on the right may contain the 
same variable name that appears on the left of the equal sign. 

(10/65) 

Q. (True or False) By the above rule the statement 
I = I+l is legal• 

••• 
A. True 

In this sense the Arithmetic statement is not an eguation and the 
equal sign really means "is replaced by" rather than 11 equals 11

• 

Thus the statement I = I+l is perfectly legal and means to the 
computer that "the quantity. 1 is added to the quantity called !,, 
and that result replaces the-old value of the quantity called. 
I II • 

45 



FORTRAN for the IBM 1130 Chapter 1 

ID This form of statement is very conunon in progranuning. In the 
statement I = I+l the quantity I can be considered a counter 
which has 1 added to it each time this statement or a similar 
one is executed. The value of I may indicate how many times 
the statement has been executed; for example. 

Q. If the variable N has the value of 63 before executing the 
statement N = N-3, it will have a value of after 
the statement is executed • 

••• 
A. 60 

Im The next few frames will present some simple examples of 
Arithmetic statements and explain the execution of each. 

lfil The examples in the next few frames will involve very simple 
steps intended to demonstrate exactly what goes on when an 
Arithmetic statement is executed. 

Statement: A = 3./2. 

lfJJ Statement: A = 3/2 

Computer divides the constant 3. 
by the constant 2. and places 
the result CL 5)-in A. 

Computer divides (integer mode) 
the constant 3 by the constant 2; 
the result is-1 (truncated) which 
is converted to real mode (l.O) 
and placed in A. 

Im Up to now variables and their associated variable names have 
been defined as a way of referring to a single quantity by 
means of a symbolic label. In the FORTRAN language a variable 
may represent a list or array of numbers instead of a single 
quantity. 

(J 0/65) 46 



FORTRAN for the IBM 1130 Chapter 1 

lfil When a single variable name is to represent a list of numbers 
there must be a means of referring to a specific member of that 
list. FORTRAN accomplishes this through the use of subscripts. 
If you know what subscripts are you may skip the next two 
frames. 

Suppose we have a list of 5 numbers. Let us call the list MAX. 
Our list called MAX might look like this: 

105 
099 
217 
004 
198 

Let's assume that we need the third value in the list (217) 
for a calculation. Before we can use the third value, however, 
we must have a way of identifying it. That is, we must be 
able to tell the computer that we need precisely the third 
value and not any other. In mathematics the third value in the 
list would be uniquely identified by writing the name MAX3. The 
3 printed to the lower right of the name MAX is called a subscript. 
Because we cannot print lowered numbers on computers, FORTRAN 
uses parentheses to denote subscripts. Thus MAX(3) is equivalent 
to the mathematical notation MAX • 

Q. FORTRAN uses 

A. parentheses 

3 

to denote subscripts • 

••• 

lflJ In the following frames you will learn the rules for using and 
forming subscripts. Although the details may seem confusing, 
just keep in mind that the purpose of a subscript is simply to 
identify an individual number in a group of numbers. 

( J 0/65) 

Q. In the preceding frame, how would the value 198 be 
identified? 

••• 
A. MAX ( 5) 

47 



FORTRAN for the IBM 1130 Chapter 1 

Im A "subscript" in FORTRAN notation consists of a constant or 
variable (or limited expression) attached to a variable name 
and contained in parentheses •. X (I) , NAME ( 20) , and ARRAY (N+l) 
are examples of variables with subscripts, and as such are 
called "subscripted variables." 

Q. Variables which refer to a list or array of numbers are 
called variables • 

••• 
A. subscripted 

lfiJI The subscript serves to iQdicate exactly which number in the list 
is being referenced. For example, the subscripted variable 

y X(25) refers to the 25th number in the list called x. The use 
of the form X(I) will refer to "Ith" number in the X list, 
depending on the value of the variable I. 

(J 0/65) 

Q. The expression A(7)*B will tell the computer to multiply 
the th number in the ! array by the quantity ~-

• • • 
A. 7 

Thus, numbers which can be meaningfully referenced in the 
list form can be referred to in a program by the subscripted 
variable form. A variable name followed by a pair of 
parentheses containing a subscript will ref er to a particular 
quantity in a list, the order in the list being determined by 
the value of the subscript. 

Q. If the variable I has a value of 3, the subscripted 
variable G(2*I) refers to the th number in the 
G array. 

• •• 
A. 6 

48 



FORTRAN for the IBM 1130 Chapter 1 

1111 The list of numbers which may be referenced by a single variable 
name is of a predetermined length. A special statement covered 
by a later chapter is used to declare all variables whose 
names will be used to represent such lists as well as indicating 
the exact length of each list. 

Q. A subscript indicates a particular member of a list 
according to the numerical of the subscript • 

••• 
A. value 

Im Since all lists have certain predetermined lengths, care must 
be taken to ensure that no subscript value exceeds the length 
of the list to which it refers. For example, a subscript which 
refers to a list called X which consists of twenty numbers 
should not exceed a value of twenty. 

Q. A subscript used with the variable X described above may 
have a value from to 

••• 
A. one, twenty 

Im A subscripted variable may be either integer or real mode, but 
all subscripts ~re in the integer mode. This is the second 
exception to the mixed expression rule: real variable names 
must have an integer subscript if subscript notation is used. 

Q. (True or False) The subscripted variable Y..J.'El is not a 
legal use of subscript notation • 

••• 
A. True (subscript must be an integer quantity) 

El One final rule regarding subscripts -- constants and variables 
used in forming subscripts must be unsigned. Or to put it more 
precisely, they must not be negative values. Thus, X(2) is 
legal, but X(-5) is not. Incidentally, a subscript can never 
have a value of zero. 

(l 0/65) 

Q. Is OMEGA(-M) a legal subscript? 

••• 
A. No 

49 



FORTRAN for the IBM 1130 Chapter 1 

IJ!I To review, then: expressions of either mode may ~ontain 
variables with subscripts attached which refer to a particular 
single quantity in a list; the variable(s) must be consistent 
with the mode of the expression but regardless of the expression's 
mode the subscript must be an integer; a particular subscripted 
variable refers to a specific number in rhe list by order 
according to the value of the subscript; the constants and 
variables used in subscripts must be unsigned; and the 
subscript can never have a value of zero nor a value greater 
than the number of items in the list. 

I 

Im Subscripts are either constants or variables, and all are in the 
integer mode. That is, to refer to the lOlst number in an 
array, the subscript 101 is used, or to r.efer to the Nth number 
in a list the subscript N is used with its value computed 
elsewhere. Certain limited expressions are permitted as sub
scripts also, and their rules are listed in the following 

Im 

(l 0/65) 

frame. 

Permitted exEression form Exam:ele 

Variable plus or minus a constant X(N-1) or X (N+l) 
Constant multiplied by a variable X ( 2*N) 
Constant multiplied by a variable 

plus or minus a constant X ( 2*N+5) or X ( 2*N-l) 

The above forms of subscripted expressions must be rigidly 
followed. For instance, although a constant multiplied by a 
variable might seem to be equivalent to a variable multiplied 
by a constant, only the former expression is permitted as a 
subscript. 

Q. (True or False) J(2-M) is a valid subscript • 

••• 
A. False. J(M-2) would be correct (variable minus a constant). 

50 



FORTRAN for the IBM 1130 Chapter 1 

ml Q. Identify the invalid subscripts in the following list: 

a) N (IMAX) 
b) I(l9) 
c) BINGO (A+2) 
d) X (-I) 
e) LUMP(2+JOB) 
f) GAMMA(8*IQUAN) 
g) BOND (JAMES) 
h) PI(IN+SKY) 
i ) RHO ( 5 * L+ 7 ) 
j) KAPPA(I+2.) 
k) N (-2*J) 
1) ZETA ( I ( 3 ) ) 
m) KAPPA (O*M) 

••• 
A. c) A is not an integer variable. 

d) The variable may not be signed. 
e) For addition, the variable must precede the constant, 

thus, JOB+2 is correct. 
h) SKY is not an.integer variable, and, even if it were, 

it could not be added to another variable in a subscript 
expression. 

j) 2. is not an integer constant. 
k) The constant must be unsigned. 
1) This is a tricky one. A subscript can· be attached 

only to a variable name and not to another subscript. 
To put it another way, subscripts cannot themselves 
be subscripted. ·-

m) A subscript can never have the value of zero. 

Im Perform Exercise 1.7 in your problem book. 

(l 0/65) 

A computer, like a desk calculator, can hold a certain size of 
number as a maximum. In the 1130 the size of numbers is 
2tl27(approximately lOt.38 } in the real mode and ±2 15 -1 in 
the integer mode. 

Q. In real calculations on the 1130 the largest allowable 
quantity is 

••• 
A. 2121 or 1038 

51 



FORTRAN for the IBM 1130 Chapter 1 

Im The restriction on the size of numbers applies to both variables 
and constants. The value of any real variable or constant must·· 
be within the range of 1Qt38 and all integer variables and 
constants must have values between (±21s_1) which equals ±32767. 

Q. (True or False) The value 42100 is permissible in· 
integer calculations on the 1130 • .... 

A. False (value exceeds limit) 

lf1I In addition to size considerations, however, there is also the 
question of allowable significant digits. Although the real 
mode allows a number of the 10 3 8 magnitude (a 1 followed by 
38 zeroes), a maximum of either 7 or 10 significant digits is 
permissible. 

Q. The maximum number of significant digits in the real 
mode is either or 

••• 
A. 7 or 10 

Im The choice of .either 7 or 10 significant digits is made by 
the programmer just prior to the time the source program is 
compiled. He will inform the compiler program whether 7- or 
10- digit significance should be built into the object program. 
The object program will then be geared to handle the selected 
number of significant digits. 

Im You might think that the 10 digit selection should always be 
made because it seems more powerful, but, generally speaking, 
there is a trade-off between higher significance and the 
amount of computer storage used by the object program. The 
more significance you have, the more space your numbers use 
inside the computer. 

(10/65) 52 



FORTRAN for the IBM 1130 Chapter 1 

You might reasonably question the value of having a large 
number like 1038 if only 7 or 10 digits of that number are 
significant. However, in many scientific calculations, 
accuracy to seven or ten places is sufficient because physical 
measurement may not be possible, or meaningful, beyond that. 

You have been shown that a real constant must be represented by 
the number itself with decimal point included (even when it is 
a whole-number quantity). A real constant may also be 
represented in FORTRAN as a constant times a power of 10. 

In ordinary notation very large or very small numbers are often 
noted this way, as in 3.5 x 10 7 which means 35000000. With 
real FORTRAN constants this form may be used with the letter E 
following the constant, followed in turn by·the desired power
of 10, as in 3.5E+7 (Note: The power of 10 must be expressed 
as an integer constant in one or two digits.) 

Q. The FORTRAN constant 3.SE+4 stands for a value 
(written out) of 

••• 
A. 35000. 

Im The same notation may be used with negative powers of ten for 
very small numbers. For example, the constant 3.SE-7 stands 
for the number 0.00000035. The general form is, again, any 
real constant followed by the letter E followed in turn by 
the desired power of ten (positive or-negative) by which the 
original constant is to be multiplied. 

(10/65) 

Q. A shorthand version of the number 0. 0000.01 might be 
(using the form described above with the smallest 

whole number constant) • 

••• 
A. 1.E-6 

53 



FORTRAN for the IBM 1130 Chapter 1 

mJ You might ask, "How is this form different than the double
asterisk sign, such as 10.**6"? This very logical question is 
answered by the fact that the double-asterisk sign tells the 
computer to actually compute the indicated power while the E 
notation defines the number directly as in any constant. 

(10/65) 

Q. Assuming that 103 8 is the largest number permitted in 
the computer, show how a constant of this value would 
be represented in the E notation • 

••• 
A. l.E38 (or l.E+38; the "plus" sign may be omitted) 

This example illustrates the usefulness of the E notation: 
without such a shorthand form, the number 10 38 would be written: 
100000000000000000000000000000000000000. 

E notation has still another important use. By using E notation, 
the programmer can write constants which are larger than 7 digits, 
although only 7 digits of the constant will be significant 
(assuming we have selected 7-digit significance). If E 
notation is not used, however, a real constant cannot exceed 
7 digits. 

Q. Would 10000000. be an acceptable real constant? 

A. 

••• 
No. It exceeds 7 digits. E notation must be used to 
represent this constant as a real number. 

54 



FORTRAN for the IBM 1130 Chapter 1 

mJ To repeat, it is illegal to define (write) a real constant that 
has more than seven digits without using E notation (again 
assuming we have selected 7-digit significance). Therefore, if 
a number like ten million C:L0,000,000) is to be used as a real 
constant, E notation must be used. l.E7 would be a legal way of 
writing the number ten million. Note, however, that even though 
this method of expression allows us to create the constant ten 
million, the constant itself is still limited to 7 significant 
digits. E notation doesn't give us any additional significant 
digits; it simply allows us to express numbers of great magnitude 
which cannot be legally expressed directly (i.e. without E 
notation). 

Q. Write the real constant which best represents 69870060042 • 

••• 
A. 6987006.E4 (Note that the last four digits of the number 

cannot be retained - the limit is seven significant positions 
in the real mode. If we had selected 10-digit significance, 
however, this number could best be written as 6987006004.El) 

Em A good deal of variation is permissible in writing E (or D) 
notation. These variations are illustrated in the following example 
which shows different ways of representing the number 7000. 

(I 0/65) 

7.E3 
7.0E3 
7.0E03 

7.0E+03 
+7.0E+03 
7.0E 03 

As you can see, the constant may or may not have a zero 
following the decimal point, the exponent may or may not have 
a leading zero, and the exponent may or may not have a plus sign 
if it is positive. 

Q. What number does 7.0E-03 represent? 

••• 
A. • 007 

55 



FORTRAN for the IBM 1130 

EiiJ Here is a review of the rules for defining real constants 
(assuming selection of 7-digit significance): 

Chapter 1 

1. A real constant may be positive or negative, and it must 
be in the allowable range. If E notation is used, the range 
is from lo- 38 to 10 38 with 7 significant digits. If E 
notation is not used, a real constant is limited to 7 digits. 

2. Real constants may not contain embedded conunas or blanks. 

3. Real constants may be followed by a decimal exponent written 
as the letter E, which in turn is followed by a signed or 
unsigned one or two-digit integer constant. This decimal 
exponent permits the expression of a real constant as the 
product of a real constant times 10 raised to the desired 
power. 

Q. Identify the invalid real constants in the following list: 

a) +O • f) 7.0E+Ol3 
. b) -91437 .143 g) 5,764.198 
c) l.E h) 23. SE+97 
d) 7.0E+lO i) 19761. 25E+l. 
e) O. 0 j) -7. 2E-03 

k) -9999. 9900 

••• 
A. b) Exceeds seven digits. 

c) Missing a one or two-digit integer constant following 
the E. Note that this is not interpreted as 

1 ~-1. 0 x 10 • 
f) E is followed by a 3-digit integer constant. 
g) contains a comma. 
h) Value exceeds the magnitude permitted; that is, 

23.Sxlo 97 >10 38 • 
i) E is not followed by an integer constant. 
k) Exceeds seven digits. 

E!JI This completes the material on Arithmetic statements. On 
page 27 of your problem book you will find the examination on the 
chapter you have just finished. 

(10/65) 56 



FORTRAN for the IBM 1130 Chapter 1 

·REFERENCE INDEX 

(10/65) 

SUBJECT 

Arithmetic statement 

Arithmetic statement definition 

Arithmetic statement execution 

Constants 

Constants, integer 

Constants, real 

E notation 

Exponentiation 

Expression 

Hierarchy of operations 

Integer arithmetic 

Integer numbers 

Integer variables 

Mixed mode 

Mode 

Mode of variables 

Operators 

Parentheses 

Real numbers 

Real variables 

Significant digits 

Signs 

Size of numbers 

57 

FRAME NUMBERS 

Note: "ff" means "following." 

7' 139 ff' 157 

132 

158 ff, 168 

83 ff 

108 

107 

196 ff 

26ff 

122 ff, 153 

33 ff, 42 

153 ff 

101, 103 

115 

125, 164 ff 

100 ff' 152 

112 

14 

54 ff, 70 

101,102 

116 

191 

14 

189 



FORTRAN for the IBM 1130 

(10/65) 

SUBJECT 

Subscripts 

Subscript expression rules 

Truncation 

Variables 

Variable naming rules 

58 

FRAME NUMBERS 

175 ff, 185 

187 

155 

87 ff 

99, 117 ff 

Chapter 1 



R29-0101-0 

International Business Machines Corporation 

Data Processing Division 

112 East Post Road , White Plains, New York 




