
IBM Data Processing Techniques 

1130 FORTRAN Programming Techniques 

This manual contains an elementary analysis of 1130 
FORTRAN object programs and discusses some specific 
FORTRAN programming techniques for writing more 
efficient programs. The information contained in this 
manual is primarily intended for the beginning 
programmer as an aid to achieving improved 1130 
system performance. 

C20-1642-0 

Programming 



CONTENTS 

Introduction . . . . . . . . . . . . . . . . • . . . . 
An Elementary Analysis of FORTRAN Object Programs 
Other FORTRAN Statements. .... . ... 

Program Rewriting . . . . 
Program Segmentation. . . . . . . . . 
Subroutine Subprogramming 
U sing All of Core . . . . . 
Phase Chaining (Disk Systems) 
The LOCAL Facility (Disk Systems) .. 
Use of DIMENSION . . . . . . . . . . . . . 
Use of EQUNALENCE ....... . 
Data Transfer in Subroutine Subprograms 
Super scription 

Conclusion . . . . . . • . . . . . . . • . 

Copies of this and other IBM publications can be obtained through IBM branch 

offices. Address comments concerning the contents of this publication to 

IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601 

1 
2 
8 
8 

12 
13 
14 
15 
15 
16 
16 
17 
17 
18 



INTRODUCTION 

Today's programmer has changed radically from the programmer of 
1954-1959. At that time, most programs were coded as concisely as 
possible. It was considered a good programming habit to code, recode, 
and even recode again to achieve the smallest program or the fastest 
program or some compromise between the two. 

With the advent of FORTRAN, this ceased to be the case. Programming 
became so much easier that programmers were frequently running 
production problems after one or two compilations. This situation 
was certainly superior to that of the past, because machines were 
utilized more, programming time was decreased, and the production 
of usable results became the paramount issue. 

This ease of programming had another side, however. It was so 
trivial to produce a small program that the principles of good coding 
habits began to be lost. When larger. programs, or aggregates of 
smaller subprograms, would not reside in core because of their size, 
the solution used more often was more equipment rather than program 
revisions. 

Today, it is uncommon to review the logic of a FORTRAN program after 
it is completed. The program is written once and only once. After 
that, it is patched, repaired, added to, and frequently inflated to the 
point where it escalates out of available storage. 

Certainly, few of us wish to return to the day when two hours of hard 
work in problem redesign would yield a saving of two machine words 
out of a total of 100. Yet the problem analysis should continue to exist 
after programming is completed. If not, an installation will be 
plagued more and more by programs that fail to fit in an object machine. 

In the case of the 1130, the beginning programmer should learn a 
variety of techniques in order to best utilize available core. These 
techniques, once well learned and practiced, will pay considerable 
dividends in machine usage. 

1 



AN ELEMENTARY ANALYSIS OF FORTRAN OBJECT PROGRAMS 

What does a FORTRAN compiler do to a FORTRAN statement? 
Why does a FORTRAN program overflow the available core storage? 
Can anything be done to avoid this as much as is possible? 

In the broadest sense, all of these questions, and more, must concern 
a FORTRAN programmer at one time or another. He must be aware that 
an innocent statement may completely exhaust his available storage, while 
an impressive and lengthy EQUIVALENCE statement need not overly 
concern him. 

Ma~y beginning users find FORTRAN object programs puzzling, and 
almost fail to understand how a compiler can do what it does. Only 
after months of experience do they begin to see the relationship 
between the source program and the object program (via the compiler). 
It has a sobering effect upon a programmer to learn that a DO loop 
does what it is designed to do in a very simple fashion. The computed 
GO TO is another mysterious source language statement which, when 
its veils are removed, becomes quite obvious. 

Probably the greatest portion of the average FORTRAN source program 
is devoted to arithmetic statements. But most of an object program 
does not necessarily contain the information generated by the source 
language arithmetic statements. Consider source language arit~etic 
statements. 

As the compiler translates each arithmetic statement, it produces other' 
statements as a result of its analysis of the source language statement. 
The technique for this analysis is not under discussion here. Suffice 
it to say that such a capability exists. The instructions generated by 
the compiler (which become the object program, and which, upon 
execution, perform the work designated by the source language 
statement) are obvious in their intent when one views them. As an 
example the statement 

X=A+B 

generates object code which, in symbolic form, looks like this: 

LOAD A 
ADD B 
STORE X 

This means that (1) the number located in the cell whose symbolic name 
is A is to be placed in an accumulator (by the LOAD A instruction), 
(2) the number in the cell whose symbolic name is B is to be added to 
the current contents of the accumulator (by the ADD B instruction), and 
(3) the result is to be stored in the cell whose symbolic name is X 
(by the STORE X instruction). 

2 



A second example of generated object code is as follows: 

x = A + B * C/D 

The symbolic object code might appear as: 

Instruction Operand 

LOAD B 
MULTIPLY C 
DIVIDE D 
ADD A 
STORE X 

If a computer is designed without the functions of loading, multiplying, 
dividing, etc., it is necessary to produce slightly different object 
code. The first example, X = A + B, might appear as: 

Instruction 

LINK 
LINK 
LINK 

Operand 1 

LOAD 
ADD 
STORE 

Operand 2 

A 
B 
X 

This means that the object program will simulate the conditions of loading, 
adding, and storing through subroutines contained in the object program 
and that it will arrive at these subroutines through a linking technique 
peculiar to the implementation of ~hat particular compiler. Thus the first 
of the generated instructions states that a link to a routine which simulates 
loading is desired with the argument specified by the variable whose 
symbolic name is A. The second instruction states that a link to a routine 
which simulates adding is desired with the argument specified by the 
variable whose symbolic name is B. The third instruction states that 
a link to a routine which simulates storing is desired with a variable 
whose symbolic name is X. 

This latter type of coding is termed out-of-line object code, because 
the actual work is performed outside the flow of the instructions 
generated by the source program (via the compiler). The former type is 
in-line,. because the work desired by the source program is done directly 
by the instructions generated by the source program (via the compiler). 

The compiler author's choice of in-line or out-of-line coding is based 
primarily on the repertoire of instructions in the machine under 
consideration. However, the size of the subroutines required to perform 
the work and the construction of the compiler itself play an important role 
in this decision. In either event, object code, whether in-line or out-of
line, does perform the arithmetic required by the source program, 
either directly (in in-line coding) or indirectly (in out-of-line coding). 

The object code produced by the compiler may be symbolic in nature, in 
which case a subsequent assembly is required, or it may be the actual 
object code itself, in which case no subsequent assembly is required. 

In the 1130 most of the object code is out-of-line, because of the need 
for subroutines to do the actual arithmetic. 

3 



In the light of the previous comments on compilation, consider the 
statement: 

X=J 

,H a FORTRAN program containing nothing but the above statement 
were written, the core used could be approximated by the following: 

A. Three Subroutines Required 

1. Load the Accumulator (35 words) 
2. Store the Accumulator (35 words) 
3. Convert from Integer to Real (50 words) 

B. Two Data Cells Required 

1. X as a REAL variable (2 words - or 3 in extended precision) 
2. J as an INTEGER variable (1 word) 

C. Three Generated Instruction Links Required 

1. LINK 
2. LINK 
3. LINK 

LOAD (J) 
FLOAT 
STORE (X) 

(2 words) 
(1 word) 
(2 words) 

D. Three Transfer Vectors Required (3 words each) 

This is a compiler peculiarity. 

Thus, the innocent statement 

X=J 

uses 11 words (12 with extended precision), plus the core required for 
three subroutines (120 words), for a total of 131 (or 132) words. 
This is 3.1% of the total core on a 4096-word 1130. 

A FORTRAN program containing the statements 

X=J 

Y=K 

would not generate a requirement fo~ two separate sets of subroutines, 
to LOAD, FLOAT and STORE, because one set of three may be reused 
as many times as required. However, the data cell requirements will 
be increased by the REAL variable Y and the INT:EG ER variable K. 
The generated instructions requirement will be increased by three 
additioriallinks, or five words. The transfer vector requirement does 
not change. 

Thus, to go from a program with no statements to a program consisting 
of the statement 

X=J 

calls for 131 (132) words, but a program of 

4 



X=J 

Y=K 

requires only 8 (9) words of additional storage and the core used goes 
only from 3: 1 % to 3.2%. 

A third FORTRAN program of 

X=J 

Y=K 

Z = K 

would require 7 (8) additional words, because a data cell is not set 
aside for the second occurrence of the INTEGER variable K. 

Another program of 

X=J 

Y=K 

Z=A 

would, in addition to the Z space, require a data cell of 2 (3) words for 
the REAL variable A. 

Thus, the increase from 

to 

X=J 

Y=K 

X=J 

Y=K 

Z = K 

is 7 (8) words, while the increase required by 

is 8 (10) words. 

X=J 

Y=K 

Z = A 

This is because 2 (3) calls are set aside for both Z and A in the data 
cell area giving 4 (6) words. Also, 2 links are generated, at 2 words 
each, instead of 3, because no floating of the REAL variable A is 
necessary. It is already in that form internally. 

5 



Reviewing total core requirements, we have 

X=J 

requiring 131 (132) words; 

X=J 

Y=K 

requiring 139 (140) words; 

X=J 

Y=K 

Z = K 

requiring 146 (147) words; and 

X=J 

Y=K 

Z=A 

requiring 147 (149) words of storage. 

This discussion shows that: 

1. In general, FORTRAN statements generate, at compile time, 
other statements. This second set of statements resides in core 
when running an object program. 

2. Data storage areas for every variable or constant are also 
required at object time. 

3. Certain work-performing subroutines may be required, and these 
will also reside in core at object time. 

4. Miscellaneous object core requirements may result from 
peculiarities of the compiler design. 

5. Together, all these core requirements determine the size of an 
object program. H a FORTRAN program is sufficiently large, 
storage will be exhausted by these requirements and the program 
will not fit in the available core. 

6. Once a FORTRAN statement is made, it is relatively inexpensive 
to make more of the same kind. Thus, a large program of like 
statement may be possible in a modest core, while a smaller 
program of dissimilar statements may not be possible. We may 
even predict, with considerable accuracy, how many statements 
of the form VARIABLEi = VARIABLE. can be fit in core. This 
could be done by making certain acceJtable assumptions: 

6 



a. All statements are of the form REAL VARIABLE = INTEGER 
VARIABLE and INTEGER VARIABLEi -f INTEGER VARIABLEj 
We have seen that all statements of this form require three 
generated instruction links at 5 words and two data cells at 
3 (4) words. Thus, each statement takes an 8 (9)-word byte from 
the 4096 words minus the 123 words constant requirement for 
subroutines and transfer vectors. Thus, we have room for 496 
(441) such instructions. The actual amoWlt is slightly less than 
this because of some minor items not discussed here. This 
number would increase if ,the restriction INTEGER VARIABLEi 
-f INTEGER VARIABLE. were removed. 

] 

b. All statements are of the form REAL V ARIABLEi = REAL 
VARIABLE.. By the same logic we see that the generated 
instruction Jlinks account for 4 words and the data cells for 
4 (6) words. Thus, each statement takes an 8 (10)-word byte 
from the remaining 4096 minus 123 words. This yields 496 (397) 
such instructions. 

It would be foolish to assume that a reasonable program could be composed 
of nothing but 496 instructions of the form: 

A = I 

B=J 

etc. 

However, the points to be digested should be the clarity of the program 
analysis and the implication of a collection of like statements - not the 
utility of this particular case. 

7 



OTHER FORTRAN STATEMENTS 

Few FORTRAN programs are made up of just one type of statement; 
control statements such as DO, GO TO, IF, etc., are required. There 
are input/output statements such as READ, WRITE, etc. There are 
data arrangement specifications such as COMMON, DIMENSION, 
EQUIVALENCE, etc., and also data type specifications. 

Some of these statements eat core in small bytes while others take 
larger gulps. Almost all take something. Consequently, the aggregate 
of the FORTRAN source statements produces an object program that 
either will or will not fit core. The purpose of the following discussion 
is to present some techniques that will cause the former condition to 
occur most frequently. These techniques are: 

1. Program rewriting 
2. Program segmentation 
3. Subroutine subprogramming 
4. Using all of core 
5. Chaining 
6. LOCAL 
7. Use of DIMENSION 
8. Use of EQUIVALENCE 
9. Data Transfer 

10. Superscription 

Program Rewriting 

It is almost a truism that every program can be shortened. The 
following examples demonstrate a particular case, but the techniques 
are applicable to many programs. The discussion is based on Simpson's 
rule for numerical integration. This very simple problem was chosen 
to illustrate the point of shortening source programs. It is unlikely 
that such a trivial case would exist in actuality. 

x 
n h J xdx=r (xO + 4x1 + 2x2 + 4x3 + 2x4 + ..• + 2xn_2 + 4xn_1 + xn) 

Xo 
where x = x + h 

i + 1 i 

5 
Example: J xdx 

1 

Choosing h . 5 

5 

J 
1 

dx 
.5 

x = 3"(1 +4(1.5) + 2 (2) + 4(2.5) + 2(3) + 4(3.5) + 2(4) + 

4 (4. 5) + 5) = 12 

8 



The following seven examples progressively shorten the program. 
Upon investigation program 5 is larger, from the standpoint of core 
requirements, than several of the less elegant cases even though it 
does not seem to be so. Program 6 is a different approach entirely 
and is the shortest and best of all those presented. Program 7 is an 
example of going too far with this technique. Though the source program 
is the shortest (in number of statements), the number of object 
instructions executed is very high for large (x - x ) and/or small h. 

n 0 

PROGRAM 1 

SUBROUTINE INTGR(XZERO, XSUBN, H, SUM) 
A=XZERO 
B=XSUBN 
HOVR3=H/3. 
1=1 
SUM=A+B 

1 A=A+H 
GO TO (2,4), I 

2 SUM=SUM+4. *A 
IF(A-(B-H))3, 6,6 

3 1=2 
GO TO 1 

4 SUM=SUM+2. *A 
1F(A-(B-H))5, 6,6 

5 1=1 
GOT01 

6 SUM=SUM*HOVR3 
RETURN 
END 

Note: There is no requirement to introduce the variables A, B, and 
HOVR3. They serve only to lengthen the program. The testing 
(IF (A-(B-H))) is clumsy and badly placed in the text. 

PROGRAM 2 

SUBROUTINE INTGR(XZERO, XSUBN, H, SUM) 
1=1 
SUM=XZERO+XSUBN 
XZERO=XZERO+H 

1 GO TO (2,4), I 
2 SUM=SUM+4. *XZERO 

1=2 
3 XZERO=XZERO+H 

1F(XZERO-XSUBN)1, 5, 5 
4 SUM=SUM+2. *XZERO 

1=1 
GOT03 

5 SUM=SUM*H/3. 

9 

RETURN 
END 



Note: The extraneous variables have been removed and the test for 
completion less clumsy, but the presence of a pair of two identical 
statements (XZ ERO = XZ ERO + H, 1 = 1) implies that a further 
rearrangement is possible. One should always be wary of a program 
that repeats identical statements. 

PROGRAM 3 

SUBROUTINE INTGR(XZERO, XSUBN, H, SUM) 
SUM=XZERO+XSUBN 

1 1=1 
2 XZERO=XZERO+H 

IF(XZERO-XSUBN)3, 6, 6 
3 GO TO (4,5), 1 
4 SUM=SUM+4. *XZERO 

1=2 
GO T02 

5 SUM=SUM+2. *XZERO 
GO TOI 

6 SUM=SUM*H/3. 
RETURN 
END 

Note: By rearrangement of statements, we have eliminated one 
appearance of XZERO = XZERO + H, and 1=1, However, the similarity 
between SUM = SUM + 4. *XZERO and SUM = SUM + 2. *XZERO 
is now suspect. 

PROGRAM 4 

SUBROUTINE INTGR(XZERO, XSUBN, H, SUM) 
SUM=XZERO+XSUBN 

1 A=4. 
1=1 

2 XZERO=XZERO+H 
IF(XZERO-XSUBN)3, 5, 5 

3 SUM=SUM+A*XZERO 
GO.TO (4,1),1 

4 1=2 
A=2. 
GO T02 

,5 SUM=SUM*H/3. 
RETURN 
END 

Note: The two similar (but not identical) statements of program 3 have 
been modified so that now a single statement SUM = SUM + A *XZERO 
appears with A alternately 2 and 4. Now, however, note the similarity 
between SUM = SUM + A *XZERO and SUM = XZERO + XSUBN in that 
a special case is required for the first and last points of the series. 

10 



PROGRAM 5 

SUBROUTINE INTGR(XZERO, XSUBN, H, SUM) 
SUM=O. 

1 A=l. 
2 1=1 
3 SUM=SUM+A*XZERO 

XZ ERO=XZ ERO+H 
IF (XZ ERO-XSUBN)4, 1, 7 

4 GO TO (5,6), I 
5 1=2 

A=4. 
GO T03 

6 A=2. 
GO TO 2 

7 SUM=SUM*H/3. 
RETURN 
END 

Note: Although we have succeeded in reducing the principal arithmetic 
to one statement (SUM = SUM + A *XZERO), the extraneous control 
arithmetic necessary for proper functioning makes this case less 
desirable than program 4. 

PROGRAM 6 

SUBROUTINE INTGR(XZ~RO, XSUBN, H, SUM) 
A=l. 
SUM=XZERO+XSUBN 

1 XZERO=XZERO+H 
IF(XZERO-XSUBN) 2,3,3 

2 SUM=SUM+(3. +A)* XZERO 
A=-A 
GO T01 

3 SUM=SUM*H/3. 
RETURN 
END 

Note: A total change of direction here has produced the best program 
so far. 

PROGRAM 7 

SUBROUTINE INTGR (XZERO, XSUBN, H, SUM) 
A=1. 
SUM = H/3. * (XZERO + XSUBN) 

1 XZERO = XZERO + H 
SUM = SUM + (H/3.) * (3. + A) * XZERO 
A =-A 
IF(XZERO + H -XSUBN) 1, 2, 2 

2 RETURN 
END 

11 



Note: From the stanqpoint of length, this program is less satisfactory 
than number 6. From the standpoint of the number of object instructions 
executed, it is extremely poor. Note that (R/3) is a multiplicative 
constant for every execution of the statement SUM = SUM + (H/3) * 
(3 + A) * XZERO 

1 2 3 4 5 6 7 

Real variables 7 4 4 5 5 5 5 

Real constants 3 3 3 3 5 2 2 

Integer variables 1 1 1 1 1 0 0 

Integer constants 2 2 2 2 2 0 0 

Statement numbers 6 5 6 5 7 3 2 

Number of floating-point 
operations 19 16 14 13 13 15 17 

Number of fixed-point 
operations 3 3 2 2 2 0 0 

IF's 2 1 1 1 1 1 1 

GO TO's 2 1 2 1 2 1 0 

Computed GO TO's 1 1 1 1 1 0 0 

Comparative analysis of programs 1 - 7 

Program Segmentation 

Every main-line program should be written as if it were to be 
segmented eventually. The worst case, that of memory overflow, 
should be planned for in advance so that if it occurs, it will be much 
more easily handled. 

Breakpoints in the logic of a program - that is, points where a program 
phase may be terminated and a subsequent phase entered - should 
be frequent. 

Through the judicious use of the COMMON facility, data that is common 
from program to program may be kept. However, not all data need 
be kept in COMMON storage. 

Programs that read data, compute and punch/print results lend 
themselves to segmentation most readily, but they are not the only 
type that may be segmented. Programs having interspersed reading, 
computing, and punching may be segmented into reading and computing 
phases and computing and punching p~ases. 

12 



The best segmentation is to have like phases in memory as much as possi
ble. Thus, it is more profitable to have a read phase followed by a compute 
phase than to have a read-compute phase. This philosophy may be even ex
tended further: it is more profitable to have a floating-point phase followed 
by a fixed-point phase than to have a floating-point/fixed-point phase. 

One may even say that a floating add-subtract-store phase followed by a 
floating multiply-divide-store phase is more economical to core than a 
phase requiring add, subtract, multiply, divide, and stores. However, 
this may not be economical to the user. There is, of course, a point 
where phasing could be detrimental to the user and this point must be 
avoided. Still, to ignore the possibility of segmenting is to ignore a 
powerful tool. 

Subroutine Subprogramming 

Whenever possible, entire programs should be written as sequences of 
calls to subroutine subprograms, because each CALL is a logical 
breakpoint and one can load the entire machine with as many as will fit. 
Then the next phase repeats the process of loading core with the next 
group of subroutines, etc. 

After a little practice, one can get a feeling of how much will fit. Three 
phases of a program might look like this: 

Phase 1 

COMMON A, B, C,D, E, F, G, ANS 3 
CALL lOIN (A, B, C, D, E, F, G) 
CALL SUB 1 (A, D, F,ANS 1) 
CALL SUB 2 (B, C,ANS 1, ANS 2) 
CALL SUB 3 (E, G,ANS 2, ANS 3) 
STOP 
END 

Phase 2 

COMMON A, B, C, D, E, F, G, ANS 3, ANS 4 
CALL SUB 4 (F, G, ANS 3, ANS 4) 
STOP 
END 

Phase 3 

COMMON A, B, C, D, E, F, G, ANS 3, ANS 4 
CALL IOOUT (ANS 4) 
STOP 
END 

This solution to overflow problems has both advantages and disadvantages. 

13 



ADVANTAGES 

• If any subroutine is expanded in function, only a phase rearrangement 
is needed to rerun the entire problem. 

• There is no main -line code to be debugged. 

• Since the size of each subroutine can be determined, little effort is 
required to determine how many subroutines will fill core to its 
capacity. 

• These subroutines may be used repetitively for a variety of tasks. 

• Short or medium-length subroutines are more easily written than 
long main-line programs. 

DISADVANTAGES 

• The recordkeeping to find a particular subprogram and its function 
is no small job. 

• It is frequently necessary to carry unused data from phase to phase 
in order to keep the data in COMMON properly ordered. 

• A good deal of shop standardization becomes necessary (an advantage 
or disadvantage, depending on point of view). 

• Not all problems lend themselves to this linear approach. 

In the long run, the flexibility provided by this technique, and the 
resultant machine use for problem program, far outweigh the inherent 
difficul ties. 

Using All of Core 

In general, no more than 90% of available storage for any phase, 
program or subroutine should be used for the first six months. While 
this may seem to contradict previous remarks, it really does not. 

At one time or another, every program expands because of such things as 

1. Programmer errors. 

2. The need to fulfill a function larger than originally anticipated. 

3. Errors in the system program itself or the associated subroutines. 

4. Upgrading of the size of data arrays. 

If all of core is used for a program and no room is left for these 
eventualities, the coder finds he has no avenue of reasonable solution. 

14 



On the other hand, preparing for normal expansion makes the overall 
job much easier. It is the overall use of a computer leading to the 
production of problem answers that should concern the user - not 
each phase of the problem. 

Phase Chaining (Disk Systems) 

The remarks made under "Program Segmentation" apply to both disk 
and non-disk systems. However, the user with a file can segment his 
program so easily as to make the technique even more desirable. 

Within reasonable limits, there is no restriction on the number of 
phases into which a program may be broken; thus there is no restriction 
on the size of a program. This teclmique may use disk storage in 
substantial amounts, but that is the purpose of any external storage 
device: to be used to its fullest extent. 

The LOCAL Facility (Disk Systems) 

If one is willing to accept certain restrictions (to be discussed), the 
LOCAL (LOad subroutine when CAlled) facility is one of the most 
outstanding memory savers in the programmer's repertoire. 

In essence, no LOCALed subroutine subprogram resides in memory 
unless it is specifically called through the encountering of an object 
time CALL, at which time it is loaded and executed. A later CALL 
to another subroutine causes the previous one to be overlaid, etc. 
Thus, the size of the largest subprogram determines the size of the 
overlay area. 

Thus a program having many CALLs needs room only for those 
subroutines that are non-LOCALs, plus one area large enough for the 
largest of the LOCALs. 

The restrictions mentioned before might be enumerated as: 

1. The largest LOCAL must be small enough to reside in core. 

2. Execution of object programs requires more control cards, since 
the monitor must know which subroutines are LOCALized. Also, 
it takes time to find, relocate, and store these subroutines in 
working cylinders. 

3. Execution is less rapid. How mu~h so depends upon the number of 
LOCALs and the number of times they are called. 

Despite these drawbacks, the technique is immensely useful and, in 
conjunction with phase chaining, allows enormous FORTRAN programs 
with modest hardware requirements. 

15 



Use of DIMENSION 

Generalized programs are frequently prepared to accommodate the 
maximum case. However, since this maximum case seldom, if ever, 
occurs, much space is wasted. For instance: 

DIMENSION A (30), B (30,30), C (30,30) 

In this case, we assume that the programmer is planning on doing 
manipulation of data whose maximum sizes will occupy 1830 data cells 
at 2 (3) words per cell. Is this maximum case the norm? Does it 
ever occUr? How frequently does it occur? When it does occur, can 
a special case, written just for the occurrence, be made to handle it? 
Might some of the array be equivalenced: 

DIMENSION A (30), B (30,30), C (30,30) 

EQUIVALENCE (B, C) 

and thus save 900 data cells? Can the problem be rearranged to allow 
for just such a relationship? 

The DIMENSION statement is frequently the most abused· (and therefore 
the most damaging) statement in the FORTRAN programmer's repertoire. 

Use of EQUIVALENCE 

It is not at all common for a label is occurrence in a program to be 
unnecessary. Another data cell could have been employed but the 
mnemonic utilized by the latter was of limited meaning to the former. 
Thus, the programmer decides to invent· a new label. This is acceptable 
if he also equates the variables so that they may both occupy the same 
memory location. 

Thus many variables can be made to occupy less memory space than the 
maximum by an investigation as to which are not utilized beyond a certain 
point in the program. This, of course, is not the only use of 
EQUIVALENCE. It was conceived partially as a device to equate 
variable names whose spellings differ because two or more programmers 
have worked jointly. However, its application as a core saver should . 
not be ignored. 

, EQUIVALENCE becomes very valuable when large arrays are assigned 
the same location or when a small array is made to reside entirely 
or partially in a larger one. The nature of the problem must allow this 
type of data storage. 

16 



Data Transfer in Subroutine Subprograms 

Superscription 

If a main-line program calls a subroutine subprogram. 

CALL SUB (ARG 1, ARG 2, .•. ARGn) 

the link to the subroutine is followed by the array of argument addresses. 
In. addition, the subroutine must receive these addresses and join them 
in some fashion to the instructions that will use them. All of this takes 
space. 

If neither an argument list in the main-line program nor a reception/ 
distribution-of-the-addresses routine is required in the subroutine, 
considerable space may be saved. Such transmission may be done 
implicitly through the COMMON facility: 

, Mainline 
COMMON ARG 1, ARG 2, ... , ARGn 
CALL SUBA 
CALL SUBB 
CALL SUBC 
END 

Subroutine 
SUBROUTINE SUBA 
COMMON ARG 1, ARG 2, ... , ARGn 

RETURN 
END 

Of course, arguments that are constant do not lend themselves to such 
easy manipulation but can be made to do so by equating them to 
arguments that are in COMMON. Thus considerable savings may be 
accomplished. 

Raising numbers to integral powers involves a different mathematical 
technique than raiSing numbers to fractional powers. 

In the case of AI, the implication (though not necessarily the 
implementation) is AI=A.A.A ..... A, I times. In the case of AB, 
the implication is A B=eBlnA. 

Because of the requirements for exponential and logarithmic subroutines, 
AB is frequently more expensive than AI. However, it is possible, once 
it has been chosen, to use A B for all exponentiation. On the other hand, 
it may be possible to use only the AI routine. 

17 



C20-1642-0 

CONCLUSION 

H one has a program containing X=A**I, it might be more practical 
(depending on the other factors) to have B=I, X=A**B. The contrary 
might also be true. 

On the other hand, if A < 0, AB is not defined, in which case the AI 
form would be obligatory. Also, if a program has X=A**B and attempts 
replacement by I=B, X=A**I, B must be integral or A**IrfA**B. This 
technique works best in statements of the form X=A**2., where X=A**2 
might have been employed. 

It would be self-defeating if each programmer had to reflect for some 
time to choose the better form. He should not make too much of this 
issue, because it is not a large problem but rather just another applicable 
technique. 

The use of just a few of the previously mentioned techniques can 
demonstrate memory savings in amounts ranging from sm.all to 
substantial. However, these devices are a means to an end and not 
an end in themselves. Some programmers take this matter so 
seriously that coding tricks become the principal installation activity. 
This is not what a computer is for. It is, in the final analysis, a device 
for obtaining practical answers to practical problems. If, in free 
moments, one develops an extremely elegant way to calculate primes, 
determine perfect numbers, etc., he should by all means test it, but 
should not let this become the prime occupation of the computer (unless 
he happens to be in a numeric~l analysis laboratory). 

As one learns more about his machine, compiler, assembly system, 
etc., he will find the few hints contained in this manual to be just an 
introduction to the thousandfold ways of shortening problems. If used 
wisely, they should represent the beginning of a substantial increase 
in computing potential. 

International Business Machines Corporation 
Data Processing Division 

112 East Post Road, White Plains, New York 10601 


