
IBM Data PrDcessing Techniques

Core Requirements for 1130 FORTRAN

This manual provides information and techniques necessary to
evaluate problems in terms of the approximate amount of 1130
object code required for legitimate FORTRAN source text.
Initial discussion views the punched card and paper tape IBM
1130 Computing Systems. Later discussion is directed to the
disk-oriented 1130.

C20-1641-1

Programming

CONTENTS

Punched Card and Paper Tape Systems
Object Time Core Analysis
Code Generated by Source Text
Data Storage Requirements
Subroutine Requirements
Overhead
Example

1130 Disk Systems
Program Size Implications
Program Speed Implications

This publication is a minor revision of the earlier edition,

C20-1641-0, which is obsolete. Revisions to the text are

indicated with a vertical line to the left of the change.

Copies of this and other IBM publications can be obtained through IBM branch

offices. Address comments concerning the contents of this publication to

IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

1
4
4
5
5
6
7
8
8

12

PUNCHED CARD AND PAPER TAPE SYSTEMS

Subroutine Name

The accompanying chart contains information about each subroutine that
can be used in running 1130 FOR TRAN object programs. An 1130
FOR TRAN obj ect program subroutine is utilized if the nature of the
source text requires it.

Thus, for example, a program with the multiply symbol (*) surrounded
by two floating-point operands will have the floating-point multiply
subroutine in object core. In addition, this subroutine may require
others for proper operation. A full discu~sion of these requirements
is given here.

On the other hand, once the compiler determines that a requirement for
an object time subroutine exists, the subroutine is loaded only once and
may be used repeatedly from any point in the code generated from the
source text.

Note that in the discussion that follows, certain separate subroutines use
other subroutines in common. For instance both floating multiply and
floating divide use a multiply routine of 66 words. These secondary
routines should not be doubly counted. They appear only once in the
object program even if all the primary subroutines that use them are
employed.

Size in Words Notes

1. Floating Add/Subtract - adds (subtracts) one
floating-point number to (from) a second. 110 a,l

X=A+B
X=A-B

2. Floating Multiply - multiplies one floating-point
number by a second.

X=A*B

3. Floating Divide - divides one floating-point
number by a second.

X=A/B

4. Floating Subtract Reverse - reverses order of
operands in a floating subtract if required
(determined by the sequence of evaluation).

X=A-B*C

5. Floating Divide Reverse - reverses order of
operands in a floating divide if required
(determined by the sequence of evaluation).

X=(A + B) / (C+ D)

1

58 b,l

90 c,l

26 d

30 e,m

Subroutine Name

6. Load/Store - moves data to and from an internal
obj ect time accumulator. Most frequently used
subroutine. Should be included in every estimate.

X=A

7. Float/Fix - converts data from integer to real and
vice versa.

A=I
I=A
A=B + FLOAT (I)
I=J + IFIX (B)

8. Reverse Sign - changes sign of object accumulator.

9. Subscription - calculates relative object time addresses
of subscripted variables. Used only when one or more
subscripts are variables. Not used, for example, in
case of A (2, 5,9). Required in cases such as:

A(I,J)
A(2, 3, K)
A(I, 2)

10. Natural Logarithm
B=ALOG(C)

1I. Sine/Cosine
A=SIN(B)
A=COS(B)

12. Arctangent
B=ATAN(C)

13. Square Root
A=SQRT(B)

14. Exponential (ex)
A=EXP(B)

15. Exponentiation (A ~
A=B**C

16. Exponentiation (A I)
A=B**I

17. Exponentiation (IJ)
I=J**K

18. Absolute Value (Fl. Pt.)
A=ABS(B)

19. Absolute Value (Fx. Pt.)
I=IABS(J)

2

Size in Words Notes

60

50 a

8

34

150 b,d,e,
f,m,n

130 d,f,m,n

150 b,d,e,
f, n

80 d, e,f,
m,n

140 b, 1, n

60 f, g

86 f,j

76

10

16

Subroutine Name

20. Card I/O - handles physical device.

21. Keyboard/Typewriter I/O - handles physical device.

22. Typewriter I/O

23. Paper Tape I/O - handles physical device.

24. Printer I/O - handles physical device.

25. FORTRAN Format Interpreter - used to analyze format,
convert decimal-binary-decimal, and control I/O sub
routines. Called only if I/O operations are performed.

26. Subprogram Initializer - used to pass parameters to
function subprograms, subroutine subprograms, and
arithmetic statement functions.

27. Hyperbolic Tangent
A = TANH(X)

28. SIGN
A = SIGN(B,C)

29. ISIGN
IA = ISIGN(IB,IC) ----

NOTES

a. Requires normalizing routine of 42 words

b. Requires multiply routine of 66 words

c. Requires divide routine of 80 words

d. Requires subroutine 1

e. Requires subroutine 3

f. Requires subroutine 2

g. Requires subroutines 10, 14

h. Requires conversion routine of 60 words

i. Requires subroutines 6, 7

j. Requires subroutines S, 6

k. Requires get-address routine of 16 words

1. Requires floating arithmetic range check routine of 34 words

m. Requires subroutine 6

n. Requires floating get parameter routine of 22 words

o. Requires Hollerith table of S4 words

p. Requires printer/EBCDIC table of S4 words

q. Requires subroutine 14

3

Size in Words

56

80

58

216

200

840

32

60

38

24

Notes

h, k,o,
p

h,k,o,

P

k,p

k

i

d,e,m,
n,q

Object Time Core Analysis

The storage requirements for an object program involve four factors:

1. The code generated by the source text

2. The data storage required through the use of variable names,
constants, and data declarations

3. The subroutines required to allow proper interaction of items
1 and 2

4. Overhead

Thus the FORTRAN statement
X=A+B

requires object code to add A to B and store the result in X (item 1),
data cells for the variables X, A, and B (item 2), and the presence of
subroutines 1 and 6 listed in the chart (item 3). In addition, certain
overhead requirements (to be discussed) should be noted (item 4).

These four factors determine whether an object program is capable of
residing in core.

Code Generated by Source Text

An accepted position regarding the average expansion factor from source
text to 1130 object code is 14 words per FORTRAN source statement.
While short statements (X=2., Y=A+ B, GO TO 7, etc.) generate much
less than this average, longer statements can generate more. While no
definitive proof of this supposition exists, analogous expansion factors.
on a variety of other IBM equipment support this hypothesis. Thus a
100-statement, non-trivial source program may be said to generate 1400
words of 1130 object code.

Considering this problem as a retrofit, if data, subroutine, and overhead
storage of an 8192-word 1130 require 2004 words of object core, a
FORTRAN program consisting of 442 source statements «8192-2004)/14)
could conceivably be written.

Consequently, if data storage requirements for a job can be estimated,
and the general functions required for execution of the job can be
determined, a retrofit will then determine the number of FORTRAN
statements that can be written before memory is exhausted.

While it may not be possible to estimate exactly how many FORTRAN
source statements are necessary to produce a completed program, a
retrofit, as described above, will give useful information. Thus, if it is
determined that 2108 words are required for data and subroutine storage
for a particular problem, the number of FORTRAN source statements
that can be serviced in a 4096-word 1130 is about 142. If, in actuality, a
a similar problem takes 400 to 500 FORTRAN statements, either a larger
machine (core, disk, or both), or segmenting is required.

4

Data Storage Requirements

Floating-point data in the 1130 FORTRAN system is stored as either two
words (normal precision) or three words (extended 'precision) . Fixed
point data is stored as either one, two, or three words:

1. One-word storage. A configuration card at compile time specifies
that integers are to occupy one word at object time.

2. Two-word storage. The default condition for normal precision is
two-word storage for integers.

3. Three-word storage. All integers are automatically three words
long if (a) floating-point extended precision is requested, and
(b) one-word storage is not specifically requested.

Thus, a FORTRAN program consisting of a DIMENSION statement that
specifies a 10 x 10 floating-point array, the occurrence of 25 other
floating-point variables and constants, and ten fixed-point variables and
constants occupies (normal precision) 260 words at object time if
integers are stored as one-word units. This same number of variables
and constants occupy 270 words if the integer default condition exists.
(This example assumes no EQUIVALENCE statements.)

In the case of extended precision (floating-point) and one-word-integer
storage, the previous example would occupy 385 words of object storage.
Lastly, extended precision (floating-point) and three-word-integer
storage would indicate an object time data storage requirement for 405
words. It is not possible to array floating-point in extended precision
and at the same time request two-word-integer arithmetic. It is also
not possible to have normal precision floating-point and three-word
integer arithmetic. Note that fixed-point arithmetic uses 16 bits
regardless of the internal word size.

Subroutine Requirements

As implied earlier, object time subroutine requirements are a function
of the source text. As an example, the FORTRAN statement

A = B + C * DIE -F
would require the object time presence of subroutines 1,2,3, and 6, and
the ones they call, but no others.

The FORTRAN statement
A=B**C

would require subroutines 15 and 6, but no others.

The FORTRAN statements
A = B+ C
X=Y+Z

require subroutines 1 and 6 but no others. The second appearance of the
"+" does not require a second appearance of subroutine 1.

5

Overhead

Name

Interrupts

Loader loss 1

Loader loss 2

The "usual" FORTRAN source program generates a requirement for:

1. Floating add/subtract
2. Floating multiply
3. Floating divide
4. Floating subtract reverse
5. Floating divide reverse
6. Load/store
7. Reverse sign

TOTAL

(110 + 34 + 42)
(58 + 66)
(90 + 80)
(26)
(30)
(60)
(8)

604 words

The figure should be a minimum starting point for basing estimations.
Of course, if one never divides in a program, the core required would be
170 words less, but this is highly unlikely.

All 1130 FORTRAN object programs require certain overhead core
because of the design of the compiler. The following overhead must be
included in object time size analysis:

Function

Hardware words required to be
serviced by I/O routines.

Core image loader is used if
object program has been con
verted by IBM -supplied core
image converter program before
problem execution.

Used if direct execution of object
program is requested. Serves
as both re10cator and loader.

Size in Words

50

Maximum 40, but reduced for
each variable (except ·common)
that is stored there. If, for
example, 20 two-ward-integer
variables are used in the source
text, the loss is zero words.

Maximum 450, but reduced for
each variable (except common)
which is stored there. Thus, a
normal precision 15 x 15 floating
point array will result in a loss
of zero words.

Transfer vectors Linkage mechanism for sub
routines.

Variable with maximum of 117
words.

Buffering Used in I/O. Always present. 121

6

Example

Consider a 4096-word 1130 card system. An estimate of function for a
program is:

1. Reading/writing data from/to cards
2. Use of the console typewriter but not the keyboard
3. The "usual" floating-point arithmetic subroutines as discussed earlier
4. Arctangent

An estimate of data storage is:

1. Thirty variables and constants (floating-point, normal precision)
2. Ten variables and constants (fixed-point, one-word)
3. Two 8 x 8 arrays (floating-point, normal precision, non

EQUIVALENCEd)

An estimate of overhead is:

1. Interrupt service
2. Loader los s
3. Transfer vectors
4. Buffering

50 words
o words

(:::::;) 69 words
121 words

Using the information above, the following conclusions are made:

1. Subroutine storage
a. I/O (56 + 184 + 58 + 840 + 50)
b. Arithmetic
c. Arctangent
d. Subscription

2. Data storage
a. 30 floating-point variables and

constants
b. 10 fixed-point variables and

constants
c. Arrays

3. Overhead

·1188
604
172

34

Total 1998 words

Total

Total

60

10
256

326 words

240 words

Grand Total 2564 words

4. Remaining for object code (4096-2564) 1532 words

5. Retrofit (1532/14) 109 FORTRAN statements

7

1130 DISK SYSTEMS

The analysis made up to this point concerning the card/paper tape
FORTRAN system must be amplified for the disk FORTRAN system.

In order to process the largest possible program, the disk FORTRAN
system will have one or two automatic overlay levels. When the disk is
used for system residence, one overlay level will be possible. When the
disk is used as a device to and from which data is written, in addition to
its function for systems residence, two overlay levels will be possible.
If an object program and its subroutines are too large to reside in core
simultaneously, the subroutines will be core-disk overlaid in a certain
fashion to allow for more object code. Should this fail, the program is
said not to fit in the available core under the automatic segmentation
scheme.

Such an overlay scheme has a positive effect on the amount of compilable
source text. However, a performance degradation can occur for each
overlay. Thus, if a large program must run with overlay, it could
(but may not necessarily) run more slowly than if it had been able to fit
with no overlay.

Program Size Implications

It is important to understand how the overlay scheme operates, so that
the available amount of core for the object program can be determined.

DISK USED FOR SYSTEM RESIDENCE ONLY

If the disk is used only for system residence and not as a device to and
from which data is transferred, the following changes should be noted
in the object time storage requirements~

1. Interrupt servicing and buffer area are reduced to zero words.

2. If the object program is disk-resident, the loader loss is zero. It
remains as previously described under card/paper tape FOR TRAN
if the object program is loaded into core from cards or paper tape.

3. The maximum number of transfer vectors is increased by 30 words.

4. The resident monitor for use with FORTRAN, which is not in the
card and paper tape system, occupies 400 words at all times.

At the no-overlay level, the system operates in the fashion described for
card and paper tape FORTRAN. The previous example thus becomes:

8

1. Subroutine storage (no change) 1998 words

2. Data storage (no change) 326 words

3. Overhead
a. Loader loss o words
b. Transfer vectors (~) 90 words
c. Monitor 400 words

Total 490 words

Grand Total 2814 words

4. Remaining for object code (4096 - 2814) 1282 words

5. Retrofit (1282/14) 91 FORTRAN statements

At the overlay level, the arithmetic and functional subroutines constitute
one package, and the I/O subroutines constitute a second. The larger of
the two determines the subroutine storage. There are three subroutines
potentially common to both the arithmetic and functional package and the
I/O package. If they are required by either package they appear in neither
but are removed to the overhead area. They are:

1. Fix/Float
2. Load/Store
3. Subscription

The previous example thus becomes:

1. Subroutine storage
a. Arithmetic and functional subroutines: floating point (604) less

load/store (60) plus arctangent (172) less subscription (34) = 682
b. I/O subroutines (1188) less fix/float (50) = 1138

Larger: 1138 words

2. Data storage (no change) 326 words

3. Overhead
a. Transfer'vectors and monitor 490 words
b. Load/store 60 words
c. Subscription 34 words
d. Fix/float 50 words

Total 634 words

Grand total 2098 words

4. Remaining 1998 words

5. Retrofit 143 FORTRAN statements

9

DISK USED AS AN I/O DEVICE

If the disk is being used for the storage of data in addition to its function
for system residence, one can achieve two levels of overlay. Changes
should be noted in the object time storage requirements:

1. Same as 1, 2, 3, and 4 when disk is used for system residence only.

2. A disk overhead buffer of 322 words is required.

3. A disk format interpreter of 280 words is required in the overhead
area.

At the no-overlay level, the system operates in the fashion described for
card and paper tape FORTRAN. If the previous example has the addi
tional requirement of reading and writing data on disk, the analysis
becomes:

1. Subroutine storage
a. Card I/O (56 + 184)
b. Typewriter I/O
c. Format interpreter (840 + 50)

240 words
58 words
890 words
604 words
172 words

d. Ari thmetic
e. Arctangent
f. Subscription 34 words

Total 1940 words

2. Data storage (no change) 326 words

3. Overhead
a. Loader loss 0 words
b. Transfer vectors (~) 90 words
c. Buffering 322 words
d. Monitor 400 words
e. Disk format interpreter 280 words

Total 1092 words

Grand Total 3358 words

4. Remaining 738 words

5. Retrofit 52 FORTRAN statements

10

At the first overlay level the technique is identical with that of the overlay
level where disk is not used for data transfer. Only the figures change.
The previous example thus becomes:

1. Subroutine storage
a. Arithmetic and functional
b. I/O subroutines (56 + 184 + 58 + 840)

702 words
1138 words

Larger: 1138 words

2. Data storage (no change)

3. Overhead - Loader loss, transfer
vectors, buffer, monitor, load/store,
subscription, disk format interpreter

326 words

1188 words

Grand Total: 2652 words

4. Remaining 1444 words

5. Retrofit 103 FORTRAN statements

At the second overlay level, the arithmetic and functional subroutines
(less the three mentioned) constitute one overlay. The non-disk I/O
constitutes a second overlay. The disk I/O contitutes a third overlay.
The non-disk I/O consists of an 840-word format interpreter plus those
I/O routines that control the devices. The disk I/O consists of a
constant 602 words including its buffer of 322 words, which is not in the
overhead area for this overlay level, and the disk format interpreter.
The previous example thus becomes:

1. Subroutine storage
a. Arithmetic and functional 692
b. Non-disk I/O (56 + 184 + 58 + 840) 1138
c. Disk I/O 602

Largest of the three: 1138 words

2. Data storage (no change) 326 words

3. Overhead (400 + 90 + 60 + 34 + 50) 634 words

Grand Total: 2098 words

4. Remaining 19.98 words

5. Retrofit 143 FORTRAN Statements

11

Program Speed Implications

If the overlay scheme is required, program load time will be increased
in a typical case by about 14 seconds, with the maximum possible increase
being about 37 seconds.

Such an overlay scheme will also produce a degradation of execution time
relative to the execution time required without overlays employed. In the
examples below, 1 is considered to be the execution time with no overlays
required. For example, 1. 5 as a performance ratio indicates that
execution time will be one and one-half times that required without
overlays.

In order to analyze this degradation, three machine configuration cases
have been selected, each with a worst and best case problem program.

CASE 1

An individual has a card 1130 and upgrades to a card/file 1130 using
Monitor system. As the program will now operate within the Disk
Monitor, which utilizes the first 400 words of storage, thus providing
less object core than available on a non-Monitor system, it is possible
that an overlay may be necessary. Assume a configuration with a 1442
card reader, Model 7, which is the faster of the two available.

His source programs are of two categories:

1. Worst case: Every other statement is a card read or write
statement.

2. Best case: The initial source program statements are card read.
The final source program statements are card write. Between these
read and write statements, only computation takes place.

If his program runs at the first overlay level, he may expect a per
formance of 1 (plus a fixed increment of about one second) for the best
case and 1. 5 for the worst case.

In normal usage, programs will fall between the worst and best cases
described above. No case can produce a performance degradation worse
than the defined worst case. If the 1442, Model 6, is employed, the
throughput degradation will be smaller than that described above. This
is because the most rapid I/O device, when delayed, causes the greatest
percentage of throughput degradation.

CASE 2

This is the same as case 1, but the initial system is a paper tape 1130 and
the upgraded system is paper tape/file 1130.

12

1. Worst case: Every other statement is a paper tape read or write
statement. ,

2. Best case: The initial source program statements are paper tape
read. The final source program statements are paper tape write.
Between these read and write statements, only computation takes
place.

The following tabulation describes the throughput degradation that may be
expected:

Worst Case Best Case

No overlay 1 1

First level 1.1 1 (+ 1 second)

CASE 3

In this last case, we consider the effect of the overlay scheme for
programs running without overlay on a file system, which are then
enlarged (by additional source text) so that they do require overlay.
Another way of stating this is to assume that every program does not
require overlay. What is the performance degradation to be expected
if overlay is then required? This information will aid one in deciding
whether 4K or 8K disk is more applicable to a particular situation.

Again, it is necessary to consider a best and worst case:

1. Worst case: The source program has the following three statements
repeated:

Read cards'
Read file
Process

In addition, consider the number of cylinders to be covered between
the overlaying subroutines and the data being read to be the most
(160) or the least (2).

2. Best case: The source program has no disk I/O statements, but
rather only card or paper tape ones. The input statements are first
and the output statements are last. Further, the use of locals is not
employed.

The following tabulation describes the throughput degradation that may be
expected:

13

C20-1641-1

No overlay

First level

Second level

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, New York 10601

Worst Case

1

7. 7 furthest' arm
motion
1. 6 least arm motion

7.9 furthest arm
motion
1. 7 least arm motion

Best Case

1

1(+ 1 second)

1(+ 1 second)

()
N o
I
0'1
,j:>.
I

