
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



ft

c -1	 1\

cJULY 1971

X-711-71-286
PR FPR r'tr

2

4 LIST PROCESSING SUBROUTINE
PACKAGE FOR THE IBM 1800/1130

GERALD A. MUCKEL

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

N'71 - 3 _QS 11
^^	 ^A^ES^ N	 ► 	 (THRU)

	

(PAGES)	 (CODE)

Q ( ASA CR R	 OR	 AD NUMBER)	 (CATEGORY,



X-711-71-286

A LIST PROCESSING SUBRO' ; .' E PACKAGE FOR THE II3NI 1800/1130

Gerald A. Muckel
Computer Systems Analysis Section

Data Techniques Branch
Electronics Division

=i

.July 1971

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

4



ABSTRACT

e jj^rE:DING PAGE BLANK NOT FHAM

A LIST PROCESSING SUBROUTINE PACKAGE FOR THE IBM 1800/1130

Gerald A. Muckel
Data Techniques Branch

Electronics Division

The computer user is consthatly using and manipulating data structures under

software control and most programming problems are problems of dealing with

these data structures. Many of the methods used to manipulate dr M structures

not easily handled by standard algorithms can be processed with list processing

techniques.

This paper presents some of the fundamentals of list processing techniques. In

addition to this introduction to list processing, this paper will present a set of

subroutines written for the IBM 1800/1130 that provide a base upon which the

user can build a list processing capability. A demonstration of an information

storage and retrieval system which shows a typical use of these subroutines in

a list processing environment is also included.

Some of the functions that this subroutine package provide are:

(1) The creation of a work space used in setting up individual cells;

(2) Upon user request, the allocation of a cell structured to fit his data

structure;

(3) Return by user action, a cell no longer needed to be reused; and

iii



(4) Character and symbol manipulation support.

While not intending to deal exhaustively with the subject of list processing, this

paper nevertheless will attempt to provide the laymen with an understanding of

the basic concepts underlying this powerful programming technique.



CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . .

	

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 	 1

	

LIST PROCESSING FUNDAMENTALS . . . . . . . . . . . . . . . 	 2

	

THE SUBROUTINES AND THEIR USE . . . . . . . . . . . . . . . 	 12

A SAMPLE APPLICATION: AN IS & R SYSTEM . . . . . . . . . . 17

	

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . 	 19

APPENDICES . . . . . . . . . . . .

A	 The Source Language Listings of the Subroutine . . . . 	 21

B	 A Typical Run of the IS & R System . . . . . . . . . 	 41

C	 Summ, ,y of the Routines Presently Available . . . . .	 43

v



A LIST-PROCESSING SUBROUTINE PACKAGE FOR THE IBM 1800/1130

INTRODUCTION

In "The Art of Computer Programming," Volume 1, Chapter 2, Page 229,

Donald Knuth states: "Although List-processing systems are useful in a large

number of situations, they impose constraints on the programmer that are often

unnecessary; it is usually better to use the methods of this chapter directly in

one's own programs tailoring the data format and the processing algorithms to

the particular application. Too many people unfortunately still feel that I.ist-

processing techniques are quite complicated (so that it is necessary to use some-

one else's carefully written interpretive system or set of subroutines), and that

List-processing must be done only in a certain fixed way. We will see that there

is nothing magic, mysterious, or difficult about the methods for dealing with

complex structures; these techniques are an important part of every program-

mer's repertoire, and he can use them easily whether he is writing a program

in assembly language or in a compiler language like FORTRAN or ALGOL. "

It is in the vein of indicating that " . . . there is nothing magic, mysterious,

or difficult. . . " about dealing with complex data structures in FORTRAN,

that this paper is presented.

List-processing techniques are applicable in a surprising number of program-

wing situations and computer programmers and analysts will find that their

knowledge of these techniques is a valuable asset.

1



LIST-PROCESSING FUNDAMENTALS

Before discussing the use of the subroutines to be presented, some basic list-

processing concepts and terminology must be understood. This section is in-

tended to give this needed background.

A "list" is generally defined as a sequence of elements, each of which may also

be a list. In less formal terms this means that although data items are norm-

ally stored sequentially in core; if they were stored as a list, each item would

contain not only the data item but the location of the next data item in sequence.

A familiar example of a list is the English word "boy. " This word contains a

sequence of the letters "b", "o" and "y". Thus this sequence of three letters

forms a list.

We could take additional letter lists, "The," "eats" and "food, " and put these

four letter-lists into a more complicated sequence of elements and form the

list "The - boy - eats - food". This is now a sentence composed of words, each

of which is composed of letters. Thus the elements of this list are themselves

lists.

We could continue to build the previous example into paragraphs which are lists

of sentences, then perhaps into chapters which are lists of paragraphs, and so

on.

2



The above example of paragraph structure is also an example of a "list structure"

which is defined as any implicit or explicit organization of lists.

In parsing or diagramming sentences, a restructuring and manipulating of lists

would take place. And in writing a story the creation of lists of words would be

composed into sentences. Also we would most likely change sentences by de-

leting words and adding others in their places.

The creation, manipulation, and erasure of lists is called "List-processing.

3

In the list of words, "The boy eats food, " each of the individual words which

make up the sentence are also lists of letters and are thus called "sublists" of

the larger list structure. More formally, list B is called a sublist of list A if

list B is treated as if it were a single element of list A.

We shall now look at lists in context of their computer representation. The

,rt basic element of a list is called a "cell" which is defined as one or more con-

a	 tiguous words of memory which is treated as an individual entity. The informa-

tion contained in these words defines the "cell structure. " The cell structure
f

is defined in units of "fields" which are one or more bits of information within

a cell. Thus cells are made up of fields and lists are made up of cells.

a'

The individual cells of a list need not occupy contiguous areas of core, thus we

use within a cell a "pointer" to the next cell or cells within the structure. This

pointer is a field whose contents is the "name" of the next cell in core. The

3



"name of a cell" is the absolute core address of the first word of the cell. Thus

a pointer has as its value a core address and provides linkage between parts of

a data structure. This function of a pointer gives rise to the synonym "link."

(Sore authors distinguish a pointer as being a whole word field which contains

a cell name and a link as being a field of less than a word in length which con-

twins a cell name.)

The information contained within a cell which is non-linkage fields, is the data

which the list structure is being built to enable the user to manipulate.

In addition to naming the cellular elements within a list, we also name lists.
Y

The "name of a list" is the name of the first cell within the list. Thus a list

also has as its name a core address. Generally any identifier whose value is a

list name is called an "alias" of that list. A list only has one name but may

have many aliases.

In a high level language like FORTRAN we usually deal with identifiers whose

numerical value is treated in a mathematical sense only. But if we use a

FORTRAN identifier whose value is treated as a pointer into a list structure it

is called a "fixed reference pointer. "

In a paper and pencil representation of lists we also follow certain conventions.

Such as representing a cell as below where each horizontal line demonstrates

a computer word, the whole rectangle represents a cell, and each subdivision

of the cell is the fields within the cell:

4



A	 B

C
D

The above is an example of a three word cell with four fields.

If this cell were part of a structure that had only one link per cell - say field

"C" - then a portion of the structure might be represented as below:

Where the arrows indicate the linkage direction. The explicit cell names are

left out because this information is a function of the location of the individual

cells and not a function of the list structure itself. This is not to say that this

information is not important, only that the relative value of the pointers does

not change the relative makeup of the structure.

The example given above is a "linear list" in which each cell has a single link

to the succeeding cell of the structure. A more complex example of a linear

list and one which brings together many of the concepts introduced so far is the

following:

A	 Y

5



This is an example of a linear list (or linear linked list) of four cells whose list

name is ti.e value of the alias W. Note that if A were an identifier within a

program then it would be a fixed reference pointer also.

At some point a finite list must end. The end of the sequence of cell pointers is

indicated by the symbol 110" and is called the "null pointer." Any symbol can be

used on paper but the actual value put into the link field of a cell represented

within a computer must be some value that cannot possibly be construed as be-

ing a valid pointer. Since pointers have as their value a number between zero

and core size of the particular computer, a good choice of a null value would

be any nonpositive number. And this is what is usually done.

In a linear list we can easily advance thru a structure only in one direction -

that indicated by the linkage direction. Thus we have no "back-up" facility with

this type of structure. This problem is partly alleviated by replacing the null

pointer in the last cell with the name of the first cell in the list. Thus our list

looks like this:

A

This type of structure is called a "circularly-linked list" (or a circular list) and

has the advantage that any part of the structure can be reached from any other

part of the structure.

6



Another type of list structure that gives this ability but in a more direct fashion

is the use of links both forward and backward in each cell. This type of structure

is called a "doubly-linked list" and is represented as follows:

This representation of a data structure has the added advantage of ease of refer-

ence to any cell from any other cell, but has the obvious disadvantage of taking

up one extra word per cell as the backward pointer.

We can combine the features of the circular list and the doubly-linked list to

obtain a structure called a "circular doubly-linked list. " This structure is simi-

lar to the doubly-linked list except that the null pointers at the end of each se- 	 x

quence of backward and forward pointers is replaced by a pointer to the begin-

ning of the sequence. Thus it has the appearance:

4

7



The structures presented so far have all been "linear list structures" and form

an important class of data structures. The most important type of non-linear

list structure is the "tree. " The structure is well named for it has a branching

structure much like that of a real tree.

The cells of a tree are also called "nodes" and contain pointer and data like the

cells of a linear structure. The difference is that unlike a linear structure

where each cell has a unique successor or "descendant, " the nodes of a tree

may have many descendants. * Thus a tree structure may look like this:

T

The above example of a "binary tree" because each node can have as many as two

descendents. In general an "n-ary tree" is defined as a tree structure that has

n link fields in each cell. Note that as usual, any link field that contains the null

value in the tree structure is indicated by the presence of the symbol

*In mathematical graph theory, the definition of tree used here is normally referred to as a rooted tree and
a more general definition of tree is presented. The interested reader should see: Ore, Oy p tein `Graphs and
Their Use' Yale University, 1963, Random House, Mathematical Series.

8



The creation, manipulation and erasure of list has as basic functions the inser-

tion and deletion of cells of a list structure. There are many sources of pub-

lished algorithms for performing insertions and deletion in a list structure (see

particularly Knuth Volume 1, Chapter 2).

Assume cells are to be inserted into the following list:

D A	 D A	 A
T1	 T2	 T3

An insertion of a cell between the cells containing 'DAT2' and 'DAT3 1 can be

done easily by changing only one pointer within the list. The list after insertion

would look like the following:

V

i

This is of course of very simple list structure and the insertion and deletion

process becomes more involved.

Although insertion and deletion of cells of a list structure are basic to list ma-

nipulation, two basic problems of computer implementation have been glossed

9
Y.

Y

RI_



over: (1) Where do we get the cells that we are to insert into the structure, and

(2) What do we do with the cell once it is deleted? The procedure normally

followed in a system that is to be generally applicable is to allow the user to

create a workspace in which he can build cells, and to which he can return cells

when they are no longer needed. In a FORTRAN embedded system a declared

array is used for the cell workspace. This array is organized into cells and is

termed the "list of available space" (LAVS) or "pool" of available storage. A

routine to keep track of the structure in the LAVS is needed. This routine will

keep track of which cells are available for use and which are being used. Then

when a new cell is needed for the building of a structure, this routine is called

upon to deliver the address of a cell that is available. Likewise it is necessary

to have a method of returning unneeded cells to the LAVS.

So far we have developed a need for three subroutines to establish and keep

track of the pool of cells. It is also convenient to have the ability to erase a

whole list at once. Without a routine to erase a list (i.e. , return all cells of

the list to LAVS), it would be necessary to repeatedly cal' the routine that re-

turns individual cells until all are in LAVS. So a fourth routine is added to our

repertoire.

So far four routines have been mentioned: one to establish the workspace into

cells structured to the users needs; one to deliver cells upon request; one to

return cells to LAVS; and one to erase a whole list or sublist in a structure.



11

It is generally agreed that the existence of these four routines are sufficient to

give a FORTRAN user a complete list processing capability.



THE SUBROUTINES AND THEIR USE

When a computer user decides to implement a list processing system on his

machine, he has two alternate ways of accomplishing this. First, he can obtain

a source level deck of one of the commercially available list processing language

packages like SLIP, LMP, or COMIT and convert it to run on his machine.

This of course involves a great deal of reprogramming since most of these

languages were written for larger machines (like the Univac 1108) and take ad-

vantage of capabilities of that machine that the 3.800 user does not have. For
r

example, SLIP is a FORTRAN embedded language and uses such features as

named COMMON, variable dimensionality of arrays, and a 36 bit word into

which two "full core" addresses can be stored as pointers.

Another disadvantage of doing a conversion is that roost of these packages have

a fixed data structure and a user is stuck with this structure even if it does not

fit into his problem context. Again using SLIP as an example: SLIP uses cir-

cular doubly-linked lists at all times and the user of SL':P must be satisfied

with this. Admittedly it can usually be tolerated, but may not be the most effi-

cient method for the user's application.

The second alternative in achieving a list processing capability is to write a set

a subroutines that give the user a 'general' list processing capability. By

'general', I mean that the routines provide basic list processing capability but

do not limit the user to a particular data structure. Rather they allow him to

build any type of structure that fits into his problem context.

12



how each might be used.

13

F;

This second method is the one we adopted at our installation and this paper is

intended as documentation for the subroutines that have been written to provide

this list processing capability. As our applications become more complex it is

expected that this basic system will be expanded by adding routines to provide

the needed support.

This subroutine package is intended as a base upon which to build in order to

give an 1800 user a list processing and symbol manipulation capability.

In a list processing environment it is necessary to create, manipulate, and

erase lists at the users option. In fact, that is the definition of "list processing.

The four subroutines MPOOL, GIVME, TAKIT, and ERASE serve the functions
i'

of creating and erasing whole or parts of a list structure. The method of manip-

ulation of a list structure is user dependent but the routine INSTO, STORE, LOC

and ICONT are tools that make the manipulation of the structure much easier in

FORTRAN.

The routines that provide a symbol manipulation capability are INSTO, LOC

and ICONT mentioned above and the routines that give half word manipulation

capability: IRHLF, ILHLF, SETL, SETR, STOL, and STOR.

The following is a list of the routines now available along with an example of



1. LOC (A) returns the absolute core address of the FORTRAN variable

W. If A were stored at location /702F, then the value of LOC (A)

would be /702F.

2. ICONT (AD) returns the contents of the absolute core address whose

value is the value of the FORTRAN variable 'AD'. If AD = 102, then

ICONT (AD) = ICONT (102) = beginning address of WORE in TSX.

Note that this serves the same function as the LD function in the TSX

and MPX systems. Also note that ICONT (LOC (A)) = A.

3. ILHLF (A)

IRHLF (A)

These routines return the left half or right half of the FORTRAN vari-

able W. The returned value is right justified in the accumulator. If

location 1000 contained /7F02, then the following coding: 	 }

J = ILHLF (ICONT (1000) )

,	 K = IRHLF (ICONT (1000) )

would cause J and K to have the values /007F and /0002 respectively.

Note that the following coding would cause J and K to have the same

values as above.

DATA M/Z7F02/

f

J = ILHLF (M)

K = IRH LF (M)

,^	 14



4. SETL (FV, VAL)

SETR (FV, VAL)

These routines change the left or right half of the FORTRAN variable

FV to the value of the variable VAL. If VAL is greater than half word

precision of 255, then it is truncated to 8 bits.

The coding:

V1 _ 258

V2 = 193

V3 = 194

CALL SETL (A, V1)

CALL SETR (A, V2)

C = V2

CALL SETL (C, V3)

would cause the variable A to have in its left half the value 2 (because

of truncation) and the value 193 in its right half. Since 193 = /C7, =

'A' and 194 = /C2 = 'B', the variable C has the EBCDIC characters

'BA' as its contents.

5. STOL (AD, VAL)

S•TOR (AD, VAL)
L

These routines function in a manner similar to SETL and SETR except

that the FORTRAN variable 'AD' is not altered but instead is intepreted
E

as the absolute core address of the word whose left or right half is to



16

be changed. That is, STOL and STOR are indirect SET L and SETR. Thus

STOL (LOC (A), VAL)

is equivalent to
l

SETL (A, VAL)

6. INSTO (AD, VAL)

This routine stores the value of the FORTRAN variable 'VAL' into the

core location whose address is the value of the FORTRAN variable

'AD' . Thus

CALL INSTO (7000, 169)

would set the contents of location 7000 to the value of 16b.

It might be interesting for the reader to verify that if A is a one-word

integer FORTRAN array then
..

A (I) = K

is equivalent to

Ì I

	 CALL INSTO (LOC (A) - I + 1 9 K)



A SAMPLE APPLICATION: AN IS & R SYSTEM

A typical use of these routines in a list processing environment emi be demon-

strated by an information storage and retrieval program. In this program,

data items are entered into a structure under a known key. The user can then

ask the program to find all data entered under a key he is interested in and all

related data items will be typed out on the 1053 typewriter.

The method used to enter a data item under a given key is hash coding using a

hash table with direct chaining. That is, the key is treated as numeric data and

reduced to a number between 1 and the declared size of an array to be used as

a hash table (i. e. , the key is hashed) . Then this array entry is used as a fixed

reference pointer to a list (chain) of cells containing keys and their data and

links to succeeding cells.

It is the nature of hash coding that several unique keys could be hashed to the

same number. Therefore it is necessary to store the key in the cell for com-

parison before retrieval of the data.

When searching for a key, the entry process is repeated to locate the proper

chain. Then the chain is searched using its link field to walk down the lip±.

The key in each cell is compared to the key being searched for. If a match is 	 {

found, the data item is retrieved and the search continues until the end of the

chain is reached. If no matches are found in the chain, it is known that no data

A

17



was ever entered under that key. This is true because the hash function is al-

ways chosen to be repeatable.

The commands recognized by the program are the following:

(1) STORE KKKK DDDDDD

This stores the data item 'DDDDDD' into the structure under the key

' KKKK' .

(2) FIND KKKK

The structure is searched for the occurrences of the key 'KKKK' and

all related data items are retrieved.

(3) STOP

The program executes a 'CALL EXIT'.

NOTE: The support routines use one word of COMMON as a pointer to the top

of the list being used as LAVS.

18



BIBLIOGRAPHY

If anyone is interested in pursuing list processing techniajues or list processing

languages farther, he may find the following books and articles very useful.

Some of these were used in preparing this paper and all are valuable reading

material.

ABRAHAMS, P. W. , "List-Processing Languages" in "Digital Computer Hand-

book," Klerer and Korn (eds. ), 1967, McGraw Hill, Inc.

BOBROW, D. G. and RAPHAEL, B. , "A Comparison of List Processing

Languages," Communications of ACM, Vol. 7, April 1964.

FOSTER, J. M. , "List-Processing, " 1967, MacDonald Computer Monograph
1

American Distributor, American Elseview Publishing Company, Inc.

GELERNTER, H.; HAUSEN, J. R.; GERBENCH, C. L. , "A FORTRAN-

Compiled List-Processing Language," Communications of the ACM, September

1959.

ki	 KNOWLTON, K. C., "A Programmer's Description of L6,,,

of the ACM, Vol, 9, August 1966.

KNUTH, Donald E. , "The Art of Computer Programming," Vol. 1, "Funds-

mental Algorithms," 1969, Addison-Wesley Publishing Company.

LAURANCE, N. , "A Compiler Language for Data Struc Tres," Proceedings of

1968 National Conference of ACM.

LEEBERMAN, R. N. and PFALTZ, J. L., "SLIP-A FORTRAN List-Processor," 	 f

University of Maryland Report #TR-66-33, September 1966.	 .^

19



ROSEN, Saul, (ed. ), "Programming Systems and Languages," 1967, McGraw

Hill Book Company.

SAMMET , J. E. , "Programming Languages: History and Fundamentals, " 1969,

Prentice-Hall, Inc.

WEGNER, Peter, "Programming Languages, Information Structure and

Machine Organization, " 1968, McGraw Hill Book Company.

WEIZENBAUM, J. , "Symmetric List-Processor," Communications of the ACM,

r	 Vol. 6, September 1963.

20



APPENDIX A

THE SOURCE LANGUAGE LISTINGS OF THE SUBROUTINE

This appendix contains a source language level listing and compilation of the

demonstrative information storage and retrieval program and all the subroutine

in the list processing package.



1

0Z	 J
a	 J
W

	

	 \ Z
D
W	 Qr

aC	 3	 N_	 O	 O
O	 O	 ►-
1-	 J	 }	 •
y J W	 y

O	 Y	 1-	 W
Z	 LL	 _•	 Vf	 ..FO	 aC
'»	 N	 \	 I-
1-	 w	 a	 Z
a	 zIx a	 o	 W

a	 LL 
}O 1-	 N -\a J0	 • y y	 • 1 J

LL..•	
= \ aZ	 aC a:	 J

^- 00 m 	 J 0LL aO W0 ZW	 O y	 • Z ^- yJ	 W.- 1 2	 ^ ^ I.J
d	 aC 49 y VI	 . \ o- J
w	 H~	

pp
Q .-Q	 00 VIU

y	 VI O N J	 • 191	 ••	 ••.. •	 •\ } W	 M
a	 aC O ^^	 • N m W	 N	 N	 .•a M	 M•

U. 	 Z 	 NV)	 1%	 y	 a Q	 • •mOM - .4
CIC 0-.. } tr	 (A > W LL	 J	 1-	 0• .+
O	 O LL —	 . Q J	 W	 Q 	 •
LL	 0Z •I-	 \ J mLL	 u	 0X	 -r M • • •MM

Za — I	 O • QO	 •	 •.r	 co O M 	 1•	 ►-
Z — Q	 V/0 J	 N	 WN Z_	 ! Z Z O a I	 D. IA x On	 >	 ][ a a --	 O	 O a

J W O Z }•	 \\ y 0	 a	 • N Z .-r N •.	 .-i N O	 O 1-
1z	 ZI- U r+ QN	 N aCL	 J	 O • Z .rNM
LU — r+ y	LL 0•+	 O.. I	 •	 Z 	 O OO — -► — ar CL •	 • 0
r0 a} Q	 •Vf	 ZV/	 W	 y	 I- Z.-i U ZZ00000	 —	 •
°'^ aC Z y	 4L •• 1- 	• 1- W x	 >	 4A O •	 >- >. 0- 1- 1- I- H .	 W >-
41 Q	 VI	 M I	 • I I I- N Q	 W 0-4 W LL LL y 0 0 y 0 0 )o- 	 a: W30 W J «. LL	 •	 • 1-	 •» J	 O	 a = 1 1 1 1 1 1 1 Z W	 0 Y

Z	 W • x a	 ^- 0 N	 ^-+ \	 d of J	 Cy — 	 /-	 —	 r. Y	 1-
Q	 CL [r 1-> 1-	 Z V/1-I• Li- 	 W, I- J.-	 W —N	 .^+N=NMzN LL	 VI
CC a:} W	 W	 } ZJ0x. \ N	 x m	 a: OQ }	 — — —	 • —	 •0 WI-h- y r+ d W 0w-0\N —I- •Z J}	 ON LL 0000000	 W
O C9 • Z — CIC ZYUUOQ O y JW .r 11 ON Q -r	 " T-ZZZZZ 2 0 O	 y aCaC W0 -+ 	 I• —	 —=Z.1 490 11 — 0M	 0.	 f- ZZZZZZ Z Q 20 Q 00m I- ar aC ow	 a aC aC	 > W 6-	 rr .-. a} O ^a	 Z 0000000  3 — .-4 3 1- -+ZQ CL rr Cie W	 W W ZZ LLU re 0--ZF- Q -+1- W UUUUUUU	 LL	 y

aC0 ~ m M 1-	 1-0 W W ZZ as r+ a -, x  i CC OZ O — - — •-- — — — -	 J0NW -/0}4	 1-HZZ I-H	 VIJJ	 QaC	 J	 J
r+uJCICW %t	 ZZOOaa	 0 4aa	 WO	 LLLLLLLLLLLLLL	 40	 QOOQOY	 UU00	 O Iuu	 aCLL	 rnnnrrrrrrrrr	 u 0	 00
O aL t- y VI	 In O	 O	 N .K y 0 aD 0%	 It	 N
LLZ y WUuu	 .+ -+	 0

O «+ZOO	 .r^Z JOr+ ^r
##### u u u U U u L- 	 u U U u	 U u u u U u	 UQU U U u

t
i

f

22



^I

z0
H
J

a

Cu
LL
0

0
z
W

0 0
8
<

N
O C9

0 0
11 M

Z
•. ^.. oM
V V In .11
O ^+ co W
^ N
H

z
z..

O
OD

O

' oo ^ m7 N N W
O O O

It C

Z > W
Y a CLL J th Y

N
111 ON

O
O

It
o u

U.0 O VI
O
Q ^ O Oa c c ^ ^

0 0
u u m

p
10.. ..

QO

Q
r

N

nr

11 ar

ce
• o o

Ow p s cz
ato Co.

c
Ifo o N

1- N
J O O In

of it =
.^ N tJ

Q rr •r

w O N S Q W..^ Z N N N O J
CC S J 0 0 W m1- O W II	 11 ce QU.1 V u Z nn
tY IY

O O Q
Lu >x LL O .Or ^-+ x

O

z W W I^ fr1 N N O
LL 00 1^1 Q .-.
LL O N N N

Z
O O 00^I it
	 11 11	 11• < w

Z 1..1
Z O

V In

Q
u

Z W
., en N z

A
LO x vl be >
w a a %0 u ao «•
-1 x J .r 0% O J

^ V1 VINN O N a W
F- N to 00 OO in z O 0 ^ ^H 
z o z N LL z..

~O ► < P11 1-	 W <Z LL oC	 0 ce z z< —O LL O W 19> < WNZ V -x O IL O N J O	 11- O N M- VIAZ h-	 W J 1L O O J C	 z C9 m VI WO W<0 J11 11	 N 400* ONE+ &Y Z< CC
N 1- Z 1- J a^ .+ .. 4A O ..

•• IBC	 JO V I-NN ^~ VNu O

In I-
d, J z oo po i WOMen	 ^+ t0 O J W 21L	 of

pJ
w o 0

cc
ZO ^

•+
;^
ac o

I- N O h-Z W61 J W W Z
4A < o < o z o -1 _g 1- oc o

23



ISR
DUP FUNCTION COMPLETED
// FOR STORE
*NONPROCESS PROGRAM
*LIST ALL
*ONE WORD INTEGERS

SUBROUTINE STORE	 (	 KEYrDATA	 1
Ciii• iiitttiiiititiiitiia•iaiiiiwaii#*# 4i#**wwiii#i♦## ****a ♦ *a*wtiiiiii#
C
C THE SUBROUTINE	 'STORE'	 STORES THE ELEMENT	 INTO THE SYSTEM USING
C A 'DIRECT CHAINING' 	 METHOD WITH A HASH TABLE ENTERLU NY USE
C OF	 THE HASH FUNCTION 	 'HASHF'.
C
Ci#iiiitiiiaii#iitiiiiitiai#w*#+ iii# iiti•i•#itiaiita#i#i#i#**#ww *t#*** a*

INTEGER DATA13)gKEY121rHASHT150)9HTSIZ
COMMON IDIOT
COMMON HASHT
DATA HTSIZ1501

6	 1	 =	 IHASHIKEYvHTSI1)
C
C SAVE THE CURRENT VALUE OF THE HASH TABLE ENTRY TO BE USED
C AND SET THE HASH TABLE TO ADDR OF CELL TO BE USEU FOR STORE
C

NEXT	 = HASHTII)
CALL GIVME	 1	 HASHTII) ►

C
C PUT	 INTO THE CELL THE	 'KEY'	 ,	 THE	 'DATA'	 ,	 AND THE ADDR OF	 THE
C NEXT CELL 1	 OR NULL ON THE FIRST	 ENTRY	 )	 IN THE CHAIN
C

CALL	 INSTO	 1	 HASHT(I) P NEXT	 1
t CALL	 INSTO	 1	 HASHTII)-I * KEYIII	 1

CALL	 INSTO	 1	 HASHTII)-2 * KEY121	 1
CALI.	 INSTO	 (	 HASHT(I)-39DATA13)	 )
CALL	 INSTO	 1	 HASHT(I)-4•DATA(2)	 )m
CALL	 INSTO	 1	 HASHTII ► -5 9 DATA(1)	 )

C
$	 C NOTE	 '	 THIS METHOD PUTS THE MOST RECENTLY ENTERED ELEMENT AT

C THE	 'TOP' OF THE CHAINr	 SO IF	 TWO ELEMENTS HAVE	 THE SAME
C 'KEY'•	 THE MOST RECENT ONE	 STORED WILL BE RETRIEVED
C FROM	 'FINDIT'.

1	 C
RETURN
END

VARIABLE ALLOCATIONS
IDIOT(IC)=FFFF	 HASHTIICI=FFFE-FFcn HTSIZII )=0002	 111 )=0003	 NEXTII )=0004

STATEMENT ALLOCATIONS
6	 =OO1D

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS

CALLED SUBPROGRAMS
IHASH	 GIVME	 INSTO	 SUBSC	 SUBIN

INTEGER CONSTANTS
I=0008	 2=0009	 3=000A	 4=OOGB	 5=000C

CORE REQUIREMENTS FOR STORE
COMMON	 52 INSKEL COMMON	 0 VARIABLES	 B PROGRAM	 176

ENO OF COMPILATION

1

24



W
Z -+ Z
W 2 W -.
J W J w
ao z a w
49 W Q Z

•

~
O 1-

W Q ►- X

x wzzaQ Z Z
Z oWG

N
}^

W 49
-Nr

U.1
mr u

U. iLu c
r W 1-

O W Z
ZJ x O O

O I • X
Z

W Ox J
W

U. W of-.
^ W u ZW OO 1-. I NN

c ... 49 ►-
W . . x /•W Wu

in in ZZ r.a
W N
44 W

_

44 = =N_ W•

YIa-• OZ }} W
Z W ^. ga x (4n Y eG C W O

w 1	 1 49 ^•az
J~ w

• W N J• .+ N 1- H O
} M- ^ M	 • .-	 1	 I . X O W
WO x-+ ZZat HH Z W Z ►-
Y 1- . --^ 0 J X X O Z 249

} N 49 aG J W W 0—

~ 
z Cie Z Z O Z Z LL uo

W Z Y x u W
Z p

..^ —
44

N
t^0 249 X W 2 1-22 W x u >tA

-+	 0 N x Wx 49 X00 3[ u -+ 4949
Z-u•^11 NW It.xr it O W=LLLL I- _x

49 x 49 1- -y 0 ... .... -.. I- H X ►- N o.-
QkL W LLLLLL %UO

MV -1. Z -	 M -. •Ly t'

49

OLL
H
a
F-

W
x
1-

N
J

cc
1--

O
u

OJ
LL

N

?art

N

49
H
49O

N I"	 W

1'- I' H 49X X X 49..
WWW 1- u
ZZZ-10144

zzz
000 • wW
uuu ^-+xO 1--

4, ..r

n.I N 1^1 r -.-
M- z

OOOC9310L

0* y,

uuu uu

# r
r r
r } rr W .- r
r aC J r

We
NN I- >r W r

# LL :L N
r m #

r Z> r

^# r
M u U.1 #r ce rr W W #r J= #
n m 1- r

.^-* r
# N #r xZ r-
r N U.1 r N

r r W
^:* x 1- r

~ o w ^:►+r►
r N r —

r ra-1rF x 2
`- 49+ri a"C r

r 49N r

^# NZ} r N	 Or ^+ W r -.	 U1
tu
^C# 2 49 1- w Z	 -N+

# — 0 49Q r •	 N
— r LL Z x r ^ 	 ►-49 H =t0W O r

1-- Z r W N- x r .-	 1%
J N	 -4 LLLL r -4	 a r^916 ae O xZ W	 t9W r =^= r 49-+N
0 0	 OZ* 0 # x 049 J

a mWZxu I-	 -* irF tYx x ^
N. 0 r	 0 Z0 0 -+	 N 0 0

Luz z 49

i,- J W co r t o r 1- Z z I.-LL x #20049r- -+tJUO
ZDcc- Za aLN*

UjaLL
C	 LL IL NZ	 III rOa Z-0	 r r

0.- J Z	 r MN uuuuu



S
1^ n
A

g
nw ^
w
r 7

v

M

0 C7
11
w

I

J
U.

O
Al O
O 11OO1
to
O U100
If o.. •o z •o

Q ^
H

N tY

U.1 N O
•+ US N •'y 1Y

CL
\ p O
\ N 11 11

O ►r Al .}
O Q ^+
O O

f x

Q
m w

CID .•^ of
In CL

O
LU

O
0

x J

O = ^ `1*1 Q

Qx O

~ LL N
z U. 1—O o

CC W CT OD O = O
CK 1— U. O N O E •^

W W LL O 00 0
Is W

11	 11w 11	 11
x

ItIn
U. W .ur .+ O O

pO ^ o zu 0	 x ►=^
vxi = ^ °uo -• z `'.^U.

O N u `^	 N 2 p WJ=
NV O

wQ w ww0 V100 CD O CCW
In w z N zoo Z O O gN. H O z O 11	 11 I.L.

rzr .0.044 ow
O H N u 11 Z	 O

.or4 H W	 w z N Nrn	 r
• N O 0•• 0- -4Q N 0-	 W Q H 0-	 p.

CL 49 46 00 - JN •	 ` UN 1^ .... ^ O U. 0 d H a Z f• Z •A	 aJiU1	 ••
11	 F^OWe0

«r
7C

t- Z
OW<

J U. O
J	 11	 11

d
4m4

CL	 z
Zo — OC O

CL
IA
 1++

W	 11WONI- ZI- W 0 •• 1-zO 4 w— ^I u WA m.» OO ^+
J	 CI: r IY 1- O u M^ p O W O OH u 0O :^	 uO^Opz[00 OCCQW ZW....

2	 ae WJ.....
ZOO
W	 11

NuOC
WOO ac	 11 W	 U.O	 U.O

CID 10- OCCL= 0z W.I cc	 OION In 0,O 10 X W zCL WIsA tD z
8^ CLO	 zIY Ozs., t0

1-..In
z

W z0 JSQ^ 1-z ou	 Wuuu > 0 U. u m u

26

N
O

W
u
Q
CL

aI

1.

ti

s



# # N

# z #
# W #
# W #
# 3 #

## # ae
O

# Cc # 0
# W # CG# 0 # a# W #
# 1- #
# z # ^p

# z #
# Q #
# #
# O #
# ^— # N
# # W

# W # Q
# Y #	 .r «r
## #	

+
Cc
Q#

T # >.. #	 W
W # y- #	 N
N # #	 "' O^-+ # #	 V)V) # W #	 o.

#	 N
W # O
]e # W #	 Y
# Cc #	 W z

^# Z #	 i =Z
Q# O #	 A N Z

O ..
W W ui he CC W

LL
W ow Z	 F-# N #^ft+ z M.
J IA Q	 V) W O A	 V) N z
CL	 at	 Cc z# V) N # N O •-+ W	 Cc z N N r"z> O	 W O# Q• # .•i O 1- 1-	 W Q ^ 1-
0 WO	 U' LL# 2 #HZ QN Cc	 o Cc z z
VYCL	 W	 # O # u O W Oz Q WO-- a	 1- a# (A z # CG	 11 00 a	 t- o •o r Z
z v	 z W# rr Q # W	 z J O a	 z Cc CD o) W
o 	 N	 — O# Z # 0xOf J 11 ZV)«, ciED z%o Cc«r O (A	 W# 1- .r # W V) m Q^ O N CD (A 00 —
1-Q W-Aa1	 1- # 1-491-A WO Z u0 M

z
##Z2Wz uwv WuCC V) OZ	 OaO#

~ # ^WCD=
11

W.-r
 O

ZZuj

OCCCC	 3 # CcCC3 O CCO
N. O CL F-	 # # Q N 0 CL W 0 Z

A	 LLZ(AW	 # # •-•Q 1-zW JA U WZ
z CL	 O •• z	 # # Cc Z Q O Z -1 o 1- Cc O
^:) %kz-.10	 # # Q«" uwz0 ox z z OU
LLO^It # #	 UUUUUU > LL u '-+ U

27

z
O

N
Q
J
a

0
u
LL
C

C
z
LL



O
W W
M- JW mJ a
CL

O Ju omz zo }.. o vs
^- o
u z 1-
z F— Z
o z sA 1.»s u- 0 «+ at

aCL ##

.a

W
0
a
CL

W

a
z z ►-o z

W V	 O
O J •.^	 a	 si
1"	 • CY	 J

X	 O	 ^- O
z W ac z
49:0 O	 cc ^-
cc r— u	 >. cc x z o
00- a	 O m W	 W ac

pC0 x 	 11 W Z ac WI.-
aL z .. I-	 O rr O N
CID
N F

Wacai-

~44	 Z	 a 6-+ww m x
• t/f a r Z r- O ac a: m W^z

^1 0
I- J

LL Z ♦ 	 w
O	 r-+ O	 # O

a Z O	 cz	 •0 %0	 %0 1 0 0
zOXzO••+••+••♦04# Z 1

04 0-4 004
> Oft J J .•^

z
z ••
O z X x	 h- a	 t- X X u
^-+ •. zoF- Ooww	 JoCNZ
1-- O WOOJ.JOOO dfJz t0 Wu o
Z s
LL O	 ^+

O
z

O	 00	 V0+ 000

00 000 0 0000
It 	 00	 0 00
W0400000 00NO
moommo p4 m o► oom
t 0 0 anLr M w a 0 0 &1
P40 00 u -4P4 4 -4 0 tis

00000000000
0O•-+N40 fl- w 40aLL N
00 000000 0000 r-+
00000000000000000000000000

t

I

28



W
J
mQ

0

>N

mO
O
O

cc
x

O0
O

O

J
IL
z
W
N
Nt
W
O
m

Z_

N
C
Occa'W
O
Z

29

u	 az
+c	 oi z^	 s_= o	 u
o ^	 oN z W	 >

J •	 1-J	 Z	 •W O	 r+	 •
u ac	 o	 ^z a
W 6-	 •
Jt	 •m	 Nt	 N	 JJ N `	 J
..^ O	 •	 W

:0 a	 u
= W

OL	 O	 fY

O Z	 W J	 0-	 =	 J
...	 m O	 Q

g2 j 	 oJ	 J	 Na •	 ...r :u	 J	 -.
W	 = _	 <	 •

W u	 1.-	 •
N =t .	 aW

	

u	 ^a	 JZ	 u	 cc

	

z	 a.	 e	 .	 a	 LL .

	

rr	 >	 > J «+	 N	 W• < J a

	

2	 1- Q Zc7	 W =	 ..	 • ••

	

W	 o ce	 W u J	 >	 u Vl	 a u

	

Q	 <J 1 u .»	 a	 .> _:

	

a	 J O N Q In > •	 '..+	 Z	 W J	 W I.-

	

N	 •+ W C - •R Q •4	 (A	 r+ J	 N	 N VI A
C	 J	 Z9 Q w N I -rN 1	 N	 .r J	 ""a u O
W	 WQ	 Z > Q u > 1 N J ^ z V3 =	 J
0	 O	 Z N	 > • 49 s- — LJ . Lu s. 	 j 0-	 _ >W Z a •+Z• Z  W J In=\W uaa a ..JW N 2-

	

J t N$	 I- W VI O	 u J z	 g z U Z a ^- ^- ^- O W O O WIL CC aC	 O'zu aI- t••.+\•-84M •M	 Ou	 • -Z

	

WW	 O• . $gX a •.r Za .rN00 0 '+ I-	 • Z
0Z cG0 Ow 0 zJ N zNa t- D- r .• 0I-M 0

	

u C W—	 N u z	 t J— 1 1 — 11 N N N M •- l r+ —Z

	

CL I- 1-	 N CG J	 C Oa N 11 ^I II	 1 z 	 Z --	 X ^-Z J	 z 	 •+W J W W WZ Z=u4A O r «•«. r 	 1- 41L h- s Z
o
	 ~
	 m ow

O4A	 09	 1-OU HI- W Z	 U44---JJ•^.Ma	 aJJ j=o-z i1-z OO

	

1-aWJOm	 0- z0- 1-	 W11t 11JJ11JI-.+0C•J-. /YJ ►-O

	

uzuJOCO	 Z0 WULt^ >O « Aw^c0 4 0—WZ

	

p^ 0doV0	 ^u00•+•+ZatOaUW UW W U W6=WW
ooLL OCI-	 .!N	 .+	 4"0	 M1N^

	

O a LL Z Z	 .O.
0 1% Z J O
Z ^^ 1! N IF UuUUUUUUU



I	
Jt

n

n

n

uj

of

cc

I(n

uj

0

n n0

U.
uj8 j

0 w
11

N

tv Go

00 %0

A z
IA.
go -j
0 0

0. 00
z n n Z

(V ki j
n .4 B 0: LU

n o OV
z A L L I-A- z0 -led 0
I-
n U. u 0 Ix	 -0 a: nz
Q tL 0 0	 W 00 4a fti -i
0 AL 0

a ¥#to lto

WI.-
uj 644 — z 0

dC!j tZ lb
A

SRI
«</
04 -4JL 0 k-

\\\

4 -4 fu



MPOOL
OUP FUNCTION COMPLETED
// FOR GIVME
*LIST ALL
*NONPROCESS PROGRAM
*ONE WORD INTEGERS

SUBROUTINE GIVM EII)
C
C
C	 THIS ROUTINE WILL DELIVER IN $ I s THE NAME OF THE NEXT
C	 AVAILABLE CELL FROM THE POOL.
C

INTEGER AVAIL A ULL
COMMON AVAIL
DATA NULL91NUSE/-190/
IF ( AVAIL—NULL ) 19291

1 I=AVAIL
AVAIL =ICONT(AVAIL)
CALL INSTOI I •NULL)
CALL INSTO(I-1tINUSE)
RETURN

2 WRITE 1 39100 1
100 FORMAT 1 I LAVS EXHAUSTED. # // )

CALL EXIT
END

VARIABLE ALLOCATIONS
AVAILIIC)=FFFF	 NULLII )=0002	 INUSE(I )=0003

STATEMENT ALLOCATIONS
100 =0006 1	 =001F 2	 =0038

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS

CALLED SUBPROGRAMS
ICONT	 INSTO	 MWRT	 MCOMP	 SUBI N

INTEGER CONSTANTS
1=0004	 3=0005

CORE REQUIREMENTS FOR GIVME
COMMON	 2 INSKEL COMMON	 0 VARIABLES	 4 PROGRAM

	
58

END OF COMPILATION

31



GIVME
OUP FUNCTION COMPLETED
// FOR TAKIT
*LIST ALL
*NONPROCESS PROGRAM
*ONE WORD INTEGERS

SUBROUTINE TAKITICELL)

C
C	 THIS ROUTINE WILL RETURN THE CELL WHOSE ALIAS IS $ CELL $ TO
C	 THE POOL.
C

INTEGER AVAILrCELL
COMMON AVAIL
DATA INLAV/1/
IF ( ICONTI CELL-1)-INLAV ) 291.2

1 WRITE 1 39100 )
100 FORMAT( I CELL ALREADY IN LAVS ^1

RETURN
2 CALL INSTO ( CELL t AVAIL 1
AVAIL=CELL
CALL INSTOICELL-19INLAV)
RETURN
END

VARIABLE ALLOCATIONS
AVAIL(IC)=FFFF	 INLAV41 )=0002

STATEMENT ALLOCATIONS
100 =0006 1	 =0028 2	 =002E

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS

CALLED SUBPROGRAMS
ICONT	 INSTO	 MWRT	 MCOMP	 SUBI N

INTEGER CONSTANTS
1=0004	 3=0005

CORE REQUIREMENTS FOR TAKIT
COMMON	 2 INSKEL COMMON	 0 VARIABLES	 4 PROGRAM	 62



50

TAKIT
DUP FUNCTION COMPLETED
// FOR ERASE
*NONPROCESS PROGRAM
*LIST ALL
*ONE WORD INTEGERS

SUBROUTINE ERASE ( LISTrLWDrNULLP
INTEGER P#Q

C
C	 THIS SUBROUTINE WILL RETURN THE WHOLE LIST $ LIST' TO THE
C	 FREE STORE USED BY ITAKITt.
C	 NOTE	 THE LIST IS ASSUMED TO BE A LINEAR LINKED LIST
C	 NOT A TREE OR OTHER MULTI— LINKED STRUCTURE
C
C	 LIST = POINTER TO TOP OF THE LIST TO BE ERASED
C	 LWD a LINK WORD LOCATION IN THE CELLS OF THE LIST
C	 NULLP x NULL POINTER SYMBOL USED IN THE LIST BEING ERASED
C

P=LIST
3 IF ( P—NULLP ) 19291
1 OUP

P x ICONT( Q♦ LWD-1 1
CALL TAKIT(Q)
GO TO 3

2 LIST a NULLP
RETURN
END

VARIABLE ALLOCATIONS
P(I ) x0002	 Q(I )=0003

STATEMENT ALLOCATIONS
3	 =0014 1	 =001A 2	 =0030

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS

CALLED SUBPROGRAMS
IC ONT	 TAKIT	 SUBIN

INTEGER CONSTANTS
1=0004

CORE REQUIREMENTS FOR ERASE
COMMON	 0 INSKEL COMMON	 0 VARIABLES	 4 PROGRAM

END OF COMPILATION

33



W
.	 O

Q
a

of
. o
LL Z
J Q •

CC I- z
LL W
LU X 
J

O	 cU
Z W CC
Q2Q

r ^
O

LL C: W
J O N

•::tea
oZW

N ^ _
W u !--
z u ..+

Q LL ++
O w	 S.

p W LL LL	 LL	 LL LL	 LL	 LL LL
F O 2 >* J J	 J	 JJ	 J	 -iJ

OC I— J X 3: # Z	 _ # _	 x x
W J CC 1 J	 %o o	 Jj 1 CC	 0	 CC 0:

O Z > 0 .-4 .-4 CO ar ar .jl rr 0 0 04 O ar •••

Z L) J	 Jar
W ;s W
N M C.
W N- N I—	 X	 F- Q lr x u	 X	 I--	 X U 0W W Zz000w-jJ p NuC ow-jJONZ
1--CC CC WW pJJNNNZmO—" JNNNZ^IW

LL	 LL
J	 J

J	 CC

0  0.-4Mm %0I- M 4u0W P4NM%t 0M
W LL V) CC	 00 00000000000P40-40-+P4^+P
N QJa	 0000000000000000000Qa ##	 0000000000000000000
at ^ ^•W O	 x

34

OW W
I— 	 J
W	 orJ Q
aL
	

H
Z
O J
u O
Z Z
O N >-
ar O N
I- J
ZLLNZ

	

•0%0 00	 00 u0	 Q 

	

UV 0 0	 00 00	 00

	

4 00	 00 00	 00
	Co CO 00	 00 00	 00

u^i' OOOOOCO•-+000OCOOCO•+0
^ .o O aoa^a+^+ao O m O mma^.,+m 0 a^
a^o^ o`n^na000^uo^r+u^a000^u

	

.•r 0	 0-4 rl	 0.4 0	 r+ rl
0000000000000000



SYMBOL TABLE

ILHLF 0000 IRHLF OOOC

NO ERRORS	 IN ABOVE ASSEMBLY.
ILHLF IRHLF
DUP FUNCTION COMPLETED

ASM STOS
*LIST
*PRINT SYMBOL TABLE

0000 221634CO ENT SETL
001A 22163640 ENT SETR
OOOF 22SD64CO ENT STOL
002A 22806640 ENT STOR
0035 095628D6 ENT INSTO

*
*	 DIRECT SET LEFT
*

0000 0 0000 SETL	 DC *—*
0001 01 65800000 LUX 11 SETL
0003 00 C5800000 LD I1 0
0005 0 1888 SHARL SRT 8
0006 00 C5800001 LD I1 1
0008 0 1088 SLT 8
0009 00 D5800000 STO I1 *—*

1	 0008 01 74020000 MOX L SETL,+2
OOOD 01 4C800000 BSC I SETL

*

*	 INDIRECT	 SET LEFT

OOOF 0 0000 STOL	 DC *—*
0010 01 658000OF LDX I1 STOL
0012 01 6D000000 STX L1 SETL
0014 00 C5800000 LO I1 0
0016 0 D001 STO *+1
0017 00 C4000000 LD L *—*
0019 0 70EB MDX SHARL

*
*	 DIRECT SET RIGHT
*

001A 0 0000 SETR	 DC *—*
0018 01 6580001A LDX I1 SETR

(	 001D 00 C5600001 LD I1 1
OO1F 0 1888 SHARR SRT 8

c	 0020 00 C5800000 LD 11 0
0022 0 1808 SRA 8
0023 0 1088 SLT 8
0024 00 D5800000 STO 11 *—*
0026 01 7402001A MDX L SETR9+2
002E' 01 4C80001A BSC I SETR

PAGE	 1

LOCILOCIAII TO XR1

gf

i

35



36

a

PAGE	 2

*	 INDIRECT SET RIGHT

002A 0 0000 STOR	 OC *-*
0028 01 6580002A LDX 11 STOR
002D 01 6D00001A STX L1 SETR
002F 00 C5800000 LD 11 0
0031 0 DOW STO *+1
0032 00 C4000000 LD L *-*
0034 0 70EA MDX SHARR

*
*	 INDIRECT WHOLE WORD STORE
*

0035 0 0000 INSTO OC
0036 01 65800035 LOX 11 INSTO
0038 00 C5800000 LD 11 0
003A 0 D003 STO *+3
0038 00 C5800001 LO 11 1
003D 00 D4000000 STO L *-*
003F 01 74020035 MDX L INST09+2
0041 01 4C800035 HSC I INSTO
0044 END



I
I

41

•04

uj

0

LL.

oc
ac

6#1

4 P4
+

O

z z	 z
Cie

0 * 0 P41	 0
u	 +	 u u

1- " 0 * *$ma p.$
LU

_j -i

0	 Xwo
04 coo-coot

8 x
ON LU 0 LU J- JO -JZWW
00
00

49 z z
0

-i cc LU u
^- 0 > 0-4
W c V.
V) V) w 0 w LU

44 1- P- i
0 uj co

z	 1 4 -9 m co	 coo
i-W	 CL 00

LA U. z 00	 000
mo 000 do	 560
co ac I- tj 0 0000 •x+0•-r0oo 1- 0	 -

0 	,
0 0 I

	

0

O	

clo
L1C 	 Z Z-

0 00	 1-Q
j- J' w w z I

0. 0 !;w t-- 0 Com
P- 0 w zo- w 0V) Z, CA

:D Z 4A•

O

0 m in	 -a
O^) out O 0 6 6, d-

Q.
Z



01

W
O
d

WJ
m
Q

J
O

>
N

>
J

W
N
N
Q
W
O G
m W W
Q 1•• J

W m
Z J Q
^-+ a ^-

O N O J
°o

u
c a°o

r- c
a:

c O

WO F— 0
W o u J 1-.•^ 2 2 1— 2

= Z Vfw+
U.N«^+CL

Z	 aJa

^y
O 1 O O^J*JO..jJ

..1 .y
^rJJ^+

^uOOCNZ
W O J J Z m W

Q
OJ

O 0000
O Coco
O 0000

0000
ao o O O 6-4 O
^OCOOco
cn O an in 't

Oro utiV

0-4 0 0.404
Co00o

OOpw M 0 tia
0000000
COOOOCO
COCCO0o

38



SYMBOL TABLE

	

LOC	 0000

NO ERRORS IN ABOVE ASSEMBLY.
LOC
DUP FUNCTION COMPLETED
// XEQ ISR	 L
*CCEND

CL89 BUILD ISR

CORE LOAD MAP
TYPE NAME ARG1 ARG2

*C DW TABLE lA9C OOOC
*IBT TABLE IAAS 000E
*FIO TABLE 1AB6 0010
*ETV TABLE IAC6 OOOC
*VTV TABLE IAD2 0036
*PNT TABLE 1808 0004
MAIN ISR	 ID38

	

PNT ISR	 180A
LIEF EBPRT 1006 IAD2
LIEF HOLEB 1E56 IAD5
LIEF SUBSC 1F78 IlAD8
!IBF ISTOX 1FA4 1ADS
CALL MPOOL 2019
CALL TYBZY 2084
LIEF MRED 2213 LADE
LIEF MIOAI 2304 IAEI
LIBF MCOMP 22BB IAE4
CALL FIND 271C
CALL STORE 27BD
LIBF MWRT 2226 IAE7
CALL PRT	 2868
LIBF ADRCK 2882 IAEA
LIBF SUBIN 2916 IAED
CALL LOC	 2950
LIBF STFAC 2970 lAFO
LIBF SBFAC 2974 IAF3
CALL INSTO 2900
LIBF MIDI 22E3 IAF6
LIBF IOU 29CC IAF9
CALL IOFIX 2A66
CALL BT1BT 2A96
CALL SAVE 2AO2
LIBF FLOAT 2AFA lAFC
LIBF IFIX 2814 lAFF
CALL IHASH 204D
CALL ICONT 2B6C
LIBF COMGO 2878 1802
CALL GIVME 2BDE
LIBF NORM 2COA 1805
CALL MOD	 2C36
CORE	 2C4A 5382
COMM	 7FCC 0034

CLBv ISR	 LD XQ

39



R

1

a

PRECEDING PAGE BLANK NOT FILMED

APPENDIX B

A TYPICAL RUN OF THE IS & R SYSTEM

This appendix contains the console typewriter print-out of a session with the

information storage and retrival system showing the input and output of a dem-

onstration run.

41



42

STORE DEMO
4TORE BOYD
4TURF BOYD
STORE BOYU
STOR- BOYD
FIND DEMO
THE ASSOC

DATA
I-J.K.
A 2,d

16 0
II 6-1

IATED DATA IS DATA

F I ND BUYD
THE ASSUCIATED DATA IS H 6-1

w 160

A iB

I-J.K.
bTORE DEMO PUT OF
STORE DE140 SE OUT
STORE DEMO REVER-
FIND DEMO
THE ASSUCIATEU DATA 1.4 REVER-

,4E OUT
PUT OF
DATA

STINE BAD INPUT
NO SUCH CU14WAND IN THE RE-1 . T R I EVAL LANGUAUE

FOND BAD
NO SuCH COMMAND IN THE RETRIEVAL 	 ;F

,jTOP
NU4 READY READER



APPENDIX C

SUMMARY OF THE ROUTINES PRESENTLY AVAILABLE

The following is a summary of the routines which are presently implemented in

the list processing subroutine package:

MPOOL (ARAY, NWRDS, CELSZ)

ARAY = User provided a&-ray name in which the LAVS will be built

NWRDS = Number words in the array "ARAY" to be used for LAVS

CELSZ = Number words per cell to be set up in LAVS

GIVME (CELAD)

CELAD = Address of cell delivered from LAVS

TAKIT (CELAD)

CELAD = Address of the cell in the users environment which is being

returned to LAVS

ERASE (LIST, LPW, NULL)

LIST	 = Fixed reference pointer whose value is the address of the list

whose cells should cells should be returned to LAVS

LPW	 = Relative word location in the cell which contains the link

1	 '

pointer

NULL = The users null value. Cells will be returned until the W yk	 - ?

word = 'NULL'

43



STOL(ADDR, VALUE/

ADDR = Fortran variable whose value is the address of core word

whose left half is to be altered.

VALUE = Value to be put into left half of 'WORD'.

S`rOR (ADDR, VALUE)

Similar to 'STOL' except alters right half of word.

SET'L (V!ORD, VALUE)

WORD = The variable whose left half will be altered.

VALUE = As in 'STOL'

NOTE: SETL (LOG (A), V) = STOL (A,V)

FUNCTION TYPES:

L,OC (VARBL)

Returns the absolute core location of the argument 'VARBL'.

ICONT (ADDR)

Returns the contents of the absolute address 'ADDR'. The 'LD' function

is equivalent.

ILHLF (ADJR)

ILHLF (,ADDR)

Delivers the left field (or right field) of the contents of "ADDR'. i.e.

'ADDR' is absolute core address.

PMSTO (CE LNM, VA.L)

CELNM = Fort Van whose value = cell address

VAL	 = Value to oe place there

44


	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A01_.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001E01.pdf



