
HElJLm PACKARD

COMPUTER SYSTEMS - 19447 Pruneridge Ave. CUpertino CA 95014

Frol1l: Bert Speelpenning X413~ Date: February 8, 1983

To:

Cc:

Dick Anderson
Alan Christensen
Shane Dickey
Bob Erickson
Bob Frankenberg
Bill Gimple
Larry Goldman (IND)
Rich HaJIIl1lons (TCG)
Carson Kan
Leon Leong (I NO)
Jil1l Nissen
Ed Olander
Elik Porat
Howard S!1li th
Ken Spalding

Alan Hewer
Jil1l Miller
Dave Salol1laki

Subject: VISION architecture
status (CPU)

An updated description of the HP3000 l1lode 'of the Vision architecture
has now been released, through the efforts of Terry Jackson.
For questions or cOl1ll1lents j pleaSe refer to Terry.

The following issues have been resolved, cl~rified or addressed
,sinu~ the pre'"ious Vision CPU architecture l1lel1lo.

1. Mode SlIJitch

Ide have identified several ways to shave til'le frolll~the lIlode SlIJitch
operations between Vision lIlode and HP300Q Plode. This is clearly
il1lportant for the perforl1lance of HPE. '

a) switCh Aarker

SlIIitching lIIodes is not a truly asynchronO\lSevent like
an external interrupt;":' This allotas us to get by with
saving only a subset'df the register values" undQr software
qontrol. this l1leans that fewer pushes and pops are
requHed to do the l1lode SlIJitch. ' In order to accol1lp'lish
this we need to distinguish between a SlIJitch l1larker and
a full blown interrupt l1larker. Ide also need to give lEXIT
the lIleans to distinguish between the two lIlarkers.

\

Basically, a switch lIlarker will be an external procedure
l1larker with STATUSB added; an interrupt l1larker is then a
SlIJitch l1larker with XO-X15' and BO-B5 added.
An additional bit in the TCB, called RSYIP (return-switch
in progress) will keep the IEXIT logic straight.
UpdatedACD pages are provided.

b) switch entry point

A dedicated object in group zero (see under 11) will
provide the'entry point for the switch software in
native lIlode. The SlIJitch operation is no longer regarded
as a trap. I t will have no paraJlleters.
This will sav~ 'SOl1le execution time at the expense of
SCll1le replicated code.

2. Nil~:blect spec if i.cat ions

The Nil' object is further defined (relative to the ACD"version 5)
to guarantee that all implelllentations ca~se consistent traps ,to
occur :,rhen atte!1lpting to access lIlel1lory through the nil pointer.
The full statel1lent is that operating syste!1l software shall set
the OD of object zero in group zero to values that correspond to
an object type of data, access rUhts R31d3, a lower bound of 1
and an upper bound of O.:Tht vi;.tual object nUl1lber of the nil
object shall also be fixed ~~z~lb.

3. SIT trap

The SIT trap (DBSIT) will report the pointer to the next
instruction as its paraJII~.ter rather than the previous instruction
address. The obvious ,hardware implel1lentation for SIT uses similar
logic -'lS for external. interrupts and it is unnecessarily expensive
for hardwaret.o hang on to the previous instruction counter.
Ide don' texpect thiS. to create any diff,~'(;ulty for f<1oftware.

4, AcceSS rights checking

Both VCF60 and VCF50 teaJlls have requested reconsideration of
certain aspects of the access rights checking rules.

a) write access to iIIlply read access

Hardware silllpll-tications accrue (and redesign can be
avoided) if write access to a data object always iIIlplies
read access. The access right fields in an Object
Il(-lscriptor ,keep their original l1leaning; we plan to lIIerely

"add a state.lllent that operating systel1l softlJlare shall
, "nat ~reateobjects that have write access without also
granti~ the\ll, read access.

b) read access to the current code object

The ACD roakes a distinction bet~een read access to the
current code object and read access to the saroe object
~hen it does not happen to be the current code object.
It does this by stating that read access to the current
code object is al~ays granted regardless of the contents
of the Obj'ect Descriptor for the, code object.

,Currently, this ca'n be iropleroe~ted on the VCF60 and the
, VCF50, only by, doing extra ~ork in CALLX and EXIT, ~hich
',will slo~, these il'lpprtant instructions do~n. .
l.Jetherefore feel that very strong reasons are needed
to retain this exceptional treatl'lent of the current code
object in the Vision architecture. If you feel you have
such strong reasons, ~e would like to hear them by Feb 15.
On the HP3000, P-relative addressing of data is a basic
addressing roode and the only one available to offer
protection to third-party soft~are. On Vision, no
perforl'lance benefits derive from keeping data in your
code segroent rather than in soroe data segroent, and third
party software can be protected by separate privilege
level and by exploiting the group structure.

5. Interruptible instructions

Questions have been raised regarding the expected behavior when
an interruptible instruction is resul'led and finds that its data
on the stack has been corrupted. In particular, ~hat should
happen when the lIP bit is set but the word popped frol'l the stack
(which represents how roany til'les around the loop have already
been performed) is found to be negative?
The expected behavior in this and siroilar cases is allowed to be
il'lplementation dependent, as long as the "damage" does not extend
to another task. For exarople, it is acceptable to iml'lediately
continue to the next instruction when this happensj it is not
acceptable to hang in an infinite microcode loop.

6. "Overlap"

The notion of overlap between source and destination of an
instruction needs soroe revision to get' around,sol'le nasty
roicrocode iroplications. An instruction such as

MOVE8 source, destination

is only guaranteed to obtain the expected result when the
destination does not "overlap" the source. This is to allo~
hardware to do the roove in either one 64-bit gulp or two, 32-bit
gulp or (probably incase of misaligroents) insomenul'lber of odd
sized gulps, and yet be able to recover from a page fault in
the l'Iiddle of the l'Iove. The exclusion of overlap roakes it
permissible to restart the instruction even if the destination
had been partially l'Iodified.

For this to really work, we need to extend the notion of overlap
to cover the case exel'lplified by MOVE8 [B5+X6], X6.
If MOVE8 encounters a page fault at [B5+X6+1] , the value of X6
roay already have been l'Iodified to the value at [B5+X6].
To avoid this, the definition of "overlap" l'Iust incorporate the
cOl'lponents of an address calculation for the source operands.

7. Code object size

A Vision mode code object is limited in size to 2~24 bytes.
This is not currently stated explicitly in the ACO but could be
asSUl'\ed froro the forroat of the external procedure l'Iarker.
We no~ l'Iake this assuroption explicit.

8. OST and CST descriptors

l.Je will extend the MOVEfSP8 instruction to allow software to
get access to the current values of the CST and OST descriptors.

9; Bounds checking on variable length instructions

Some instructions such as MaVEC and CMPC involve a sequence of
byte operations over a length given in the instruction.
The way bounds checking is perforl'led optil'lally in such an
instruction depends on the organization of the hardware. On the
VCF60, bounds checking is performed in parallel with an actual
access. On the VCF50, bounds checking is done explicitly in
microcode As a consequence, on the VCF60 it is fastest to start up
the loop of MOVEC or CMPC and trap out when the end of the object
is reached before the loop counter is exhausted. In contrast, on
the VCF50 it is fastest to check whether both first and last byte
are within bounds and not do any bounds checking for interl'lediate
bytes once the loop starts.
The issue then arises when and how a bounds violation roust be
reported and how much of the instruction should be preSU!1led to
have been cOl'lpleted when this occurs.
l.Je have decided that hardware should be left free to choose the
sequence that is optil'lal for it. The definition for MOVEC ~ill
no~ state that if MOVEC cannot be completed due to a bounds violation,
the effect of MOVEC is that a contiguous but unspecified nUl'lber of
bytes has been l'Ioved, all ~ithin the object's bounds.
A siroilar l'Iodification ~ill serve for CMPC.

10. Pagecfault trap

The pararoeters for the page fault trap are currently listed as
including an 8-byte Virtual Page Nurober (left justified) and
a 4-byte.;P~ge" Offset (right justified).
l.Je have collapsed these no~ to a single a-byte Virtual Address.

11. Architecturally fixed object numbers

We have received a request fro~ HPE-I to dedicate certain objects
in group zero for certain uses and to fix these objects
architecturally. In the version 5 ACD, four objects are fixed by
their logical address (the NIL object, trap code object, channel
interrupt code object and processor interrupt code object) and
four are fixed by their virtual address (SYSCOM area, hasn table,
page directory and PME). We have been asked to extend this list
and also to J1Iove the logical object nu~bers for trap code object,
etc. downward so that SYSCOM area, etc. can be given a logical
object number that is the same as its virtual object number.

We believe that the only object nUJ1lbers (logical or virtual) that
need to be fixed architecturally are those that ~ust be known to
both software and roicrocode. Any other object numbers can be fixed
by software convention, not "architectural mandate.
We are willing to move the logical object,nuro~ers for trap code
object, etc. downward in order to make it possible for HPE-I to
implement the sche~e they proposed as a software convention.
The revised numbering is shown below. More object numbers will
be fixed only after it has been demonstrated that both software
and hardware (microcode) are affected.

logical address

NIL object
trap object
channel interrupt object
processor interrupt object
switch handler (nm) object

12. Deci~al instructions

group 0,
group 0,
group 0,
group 0,
group 0,

object °
object 10
object 11
object 12
object 13

We have decided to allow conversions fro~ 54-bit integers to
both 8-byte deci~al and 16-byte deci~al and vice versa.
All these instructions will be ~oved to the CONVERT escape
group.
We have also decided to co~bine the ZEXT3 and TRUNC3 instructions
of the previous status me~o into a single MOVE3 instruction.
We will include a fuller description of these later.
An updated opcode chart, though still tentative, is included.

13. IEEE floating point

The Proposed Standard fo~ floating point arithooetic has co~e
one i~portant step closer to beco~lng the Standard for floating
point aritrjuletic.
In the latest round of balloting so~e ~all ~end~ents were passed.
We will i,nclude a description of this later. In the Man time,
please consult Bill Ames.

14. "MENSAC" instructions

We have decided in principle to adopt the ~e~ory diagnostic
capabilities proposed by Jim Yichelroan and Ji~ Chiochios.
We are in the process of refining all the encodings to assist
the hardware in iropleroenting these.
The latest iteration is reflected in a roemo by Brian Button
dated Feb 1.

15. STATUSC'and STATUSD

The current definition of STATUSC and STATUSD is based on the
difference in behavior of changes in status in a shared-~eJ1lory
J1Iultiprocessor syste~. Ite~s in STATUSC, when changed, do not
affect any other processor in the systeJ1l; whereas changes to
STATUSO must be propagated to all other processors in the shared
memory ulultiprocessor syste~.

We are currently investigating whether the responsibility'for
notifying other processors can be relegated to syste~ software;
this would J1Iake the multiprocessor imple~entation potentially
simpler, faster and more reliable.

Until this investigation is cOJ1lplete, we will hold off on other
changes to STATUSC and STATUSD that have been proposed, such as
reJ1loving the J1Iode bit froJ1l STATUSC.
It is quite possible that the eventual result will be to ~ove all
items of STATUSC and STATU SO into the SYSCOM area.

16. PROBE and BPROBE.

PROBE is intended for use by systeJ1l intrinsics to allow theJ1l to
test whether the caller has passed a legal address (range) to the
intrinsic.
Jim Miller has made a proposal, with Alan Hewer, for a change
in the definition of PROBE and for a new variant (BPROBE) of
PROBE that takes the address to be probed from a base register
rather than fro~ ~e~ory. The change in PROBE closes a protection
hole having to do with the fact that the value of S in the
environment of the procedure doing the PROBE is larger than the
value of S that applied in the environment of the caller.
The variant BPROBE would help ~ake passing address par~eters
in base registers ~ore,effective.
Updated ACO pages for these two instructions are provided.
Note that the encodings for "ring" have been changed as well.

17. CHECKA and CHECKB.

CUrrently, the definition of CHECKA,B includes a special way
of treating the operand of the instruction. If the bit CBA
or eBB is not set, the specification prohibits trapping on
an illegal operand. This was done so that mplel1lentations
could il1lplel1lent CHECKA,B without having to do an operand fetch;
this could speed up the (frequent) case where CBA,CBB is clear
at the expense of the case where the bit is set.
However, it turns out that in l1lany situations the operand fetch
does not slow down execution and the special prohibition on
operand traps incurs a cost smply because it involves a special
case.
In retrospect, it is therefore clear that CHECKA and CHECKB were
overspecified. A better statel1lent is that CHECKA and CHECKB are
not required to trap an operand violation if CBA,CBB are clear.

18. Ring level for code running on the ICS

We are looking into the possibility of relegating l1l0re code that
l1lust run on the lCS to ring level 1 rather than level O.
This would allow better granularity on protection in systero code.
It would also allow the trap object to run at level 1.
Changes to IEXIT lJJould be required to allow it to exit into code
that runs at a higher level.
We hope to have a proposal by next month.

- all references to "tme of day" should be replaced with "til1le
of century"

- MOVEtSP4; setting CBA and CBB does not require special privilege.
Privilege level 3 is sufficient.
MOVEfSP4; CBA and CBB do not warrant their own selector.
Accessing CBA and CBB must now be done using MOVEfSP STATUSB1.

- The breakrange trap does not return the operand responsible for
tripping the breakrange. -rt is up to software to deterl1line what
values changed within the breakrange. It is precisely because it
is not very feasible for hardware to keep track of the operand
responsible that the VISION architecture has a break range for write
but not for read and not for execute.

section 7.1.2 still l1lentions SI. This is an unintended carry-over
frol1l the version 3 ACD. Because of the redefinition of the
dispatcher marker, in version 5 QI and SI are one and the saroe.
Hence any reference to SI should be deleted.

- TCBX is no longer architecturally defined. In version 5 the TCB
is accessible to software, so a MOVEf/tSP is no longer needed
to manipulate a TCBX pointer. The TCB-extension is a software
concept only.

- clarification: MOVEtSP4 task clock enable has no effect when
executed on the ICS.

- corrections and clarifications prove necessary in the definitions
of CALLX, EXIT and POOEL. Updated ACO pages are provided.

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.1.4 Opcode Assignments

The following chart shows the association of opcodes with the
instruction name (~ne~onic). The 8-bit encoding of the opcode
is found by adding the heKadeci~al n~ber in the ro~ of the
instruction to the hexadeci~al nu~ber in its colu~n.

OPCODE
+100 +!01 +!02 +!03 +!04 +!05 +!06

~ NOP EXIT SEXIT TESTA TESTB TESTOV
* * * PSEB PSDB DI8P

!10 DISABLE ENABLE INTERRUPT UNTRY EXTEND DELETE CHECKA
! 18 TESTSTRI P* * * * BRX *
!20 * * QUAD4 * POP8 * *
!28 PUSH1 PUSH2 PUSH8 * TESTDOlJN UP DOlJN

02/08

+!07
MrEAU --TRY
CHECKB
* POP16
PUSH16

. ! 30 POPl POP2 * * * TESTREF * TEST16D
138 * TEST2 TEST8 TEST4F TEST4D TEST8D TEST8F TEST16F
140 AND4 * * MPY4F MPY8 * MPY8F MPY16F
!48 NOT4 * DIV4 DIV4F DIV8 * DIV8F DIV16F
!50 OR4 REM4 NEG4 NEG4F NEGB REM8 NEG8F NEG16F
158 XOR4 MOD4 ABS4 ABS4F ABS8 MOD8 ABS8F ABS16F
160 CMP1 CMP2 CMP4 CMP4F CMP8 BCMP8 CMP8F CMP16F
168 MOVE1 MOVE2 MOVE4 * MOVE8 B8ET8 * MOVE16
170 TESTBIT I8C42 ADD4 ADD4F ADD8 BGET4 ADD8F ADD16F
178 * MPY4 SUB4 SUB4F SUB8 B8ET4 SUB8F 8UB16F
180 MOVEADR BMOVEADR* * * * * * 188 * * MOVEf8P4 MOVEf8P8 TEST8EMASL4D 8L8D 8L16D
190 * * MOVEtSP4 MOVEtSP8 MOVE8EMA8R4D SR8D 8R16D
198 CHECKLO CHECKHI DUP OVPUNCH MOVE3 CMP4D CMP8D CMP16D
lAO L8L4 A8L4 BCMP4 GET8IGN ZEXT2 ADD4D ADD8D ADD16D
!A8 LSR4 ASR4 BADD4 VALN r- SUB4D SUB8D SUB16D
lBO LSL8 ASL8 BSUB4 VALD i" MPY4D MPY8D MPY16D
lB8 LSR8 ASR8 * * i" DIV4D DIV8D DIV16D
lCO PROBE BPROBE MOVEBIT MOVEC * * MOVEBLR CMPB
lC8 DPF ~ REP CMPC * TRANSL MOVEBRL CMPT
lDO POLY4F POLY8F POLY16F SCANUNTIL* * * *
lD8 * * * * * VECTOR SYS CONVERT

@lEO BRG BRGE BRGL BRNU PUSH4 PUSHADR POP4 BPOP8
@lE8 BRGU BRNL BRNE BR TESTLSB TESTl TEST4 BTEST8
@!FO BRN BRE BRL BRLE CALL CALLX * BREAK

lF8 BRU BREU BRLU BRNG * * * ERROR

Note 1: the rows~arked with "@" contain the instructions that
can be packed two per word.

Note 2: the instructions VECTOR ,SYS and CONVERT are escapes to
a secondary set of opcodes.

6-13

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.2.6.2 CALL target.r4

Procedure call. A procedure ~arker is pushed onto the stack
and control is passed to "target", interpreted as
a 32-bit half-word offset relative to the start of
the CALL instruction. CALL requires the procedure
to be within the current code object.

lIP := i-lIP; if IIP=l and PTE=l then Trap"DBCALL";
lIP := OJ
S := 8 + 4; {pushes garbage}
PUSH4 P[32 .. 63];
PUSH4 Q[32 .. 63] j
Q := 8j
P := P + target * 2;

Traps: STKOVF
CODEBNDSV
DBCALL

6.2.6.3 CALLX loi.r4

External call. A procedure marker is pushed onto the stack and
control is passed to the entry point specified in the
OD for "loi". "Loi" contains the high 32 bits of a
logical address into the target object.

lIP := l-IIP; if IIP=l and PTE=l then Trap"DBCALL"j
lIP := OJ
PUSH8 Preturn;
(8-4)[0 .. 2] := STATU8A[0 .. 2];
PUSH4 Q[32 .. 63] j
Q '= 8'
if'loi'non-existent-object then Trap"CODEODTV";
if 00 (loi) . ITP <> VisionCode then Trap"CODETYPV";
if STATUSA. XL > OD (loi) . PR then Trap"CODERINGV";
STATUSA.XL := OD(loi).KLj
Ptarget[0 .. 31] '= loi;
Ptarget[32 .. 63] '= OD(loi).EPlJO * 4;
P := Ptarget;

Traps: STKOVF
CODEODTV
CODETYPV
CODEBNDSV
CODERNGV
DBCALL

6-47

02/08

6.2.6.5 EXIT

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Exit froro procedure. This instruction can be used to return
froro a procedure called lIJith CALL or CALLX. The
procedure roarker located at 0 contains the necessary
inforroation to restore the context of the caller.
If r.he caller executed in a different code object
than the current one, a nUillber of checks are lIlade.

if (0-8)[0] = 1 then begin
{external exit}
Pobject := (0-12) [0 .. 31];
Poffset :=.~0-8)[8 .. 31]~.zero-extended;
ST_return .- (0-8)[0 .. 7J,
if STATUS.XL > ST return.XL then Trap"CODERINGV";
if Pobject non-exIstent then Trap"CODEODTV";

02/08

if OD(Pobjectl. TYPE <> VisionCode then Trap"CODETYPV";
if ST return.XL > STATUSB.XTL then Trap"INSXTL";
end -

Status:
Traps:

else begin
{internal exit}
Pobject := P[0 •. 31];
Poffset := (0-8)[0 .. 31];
ST_return := STATUSA;
end;

o offset := (0-4)[0 .. 31];
if 0 offset < 0 or 0 offset> 0[32 .. 63] - 12
then-Trap"STKCONSISTV" ;
if Poffset[31] = 1 and {iNpleroentation choice}
then Trap" INSODDP" ;
Poffset[31] '= 0;
8[32 .. 63] '= 0[32 .. 63] - 12;
0[32 .. 63] '= O_offset;
P[0 .. 31] '= Pobject;
P[32 .. 63] Poffset;
STATUSA '= ST_return; {SIT and DBP bits not to take

effect until next instruction}

restored froro roarker on external exit
INSXTL
CODEODTV
CODERINGV
CODETYPV
STKCONSISTV
CODEBNDSV
INSODDP

6-49

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

02/08

6.2.4.9 SCANUNTIL liroit.r4, charset.ror, string.ror, index.rw4

Scan string until condition satisfied. The string of characters
(bytes) pointed to by "string" is scanned for a character
that satisfies a particular condition. Scanning starts
at the byte index "index" into the string and will not
go beyond "lilllit". SCANUNTIL sets "index" to the value
of the first byte scanned that satisfies the condition
if such a byte exists; it leaves "index" at the value of
"lilllit", otherwise. The condition to be satisfied by the
character is encoded as a 256-bit bit array (siroilar to a
Pascal set). Bits found set in the bit array "charset"
signify that the corresponding character satisfies the
condi tion.
If the logical address of "charset" is lIJithin 32 bytes
of the object's upper bound, an addressing viOlation trap
is raised. This instruction lIlust be interruptible.

MOVEADR string, Stj
if lIP = 0 then C .= index
else POP4 C;
lIP '= o·
CC :: CCL;
Notyetdone := C <= liroit;
while Notyetdone do begin

Status: CC

Char := (St + C) [0 .. 7]; {zero-extend}
TESTBIT Char, charset;
if CC = CCG then begin

Notyetdone := false;
index : = C;

end
else begin

C : = C + 1;
Notyetdone := C <= lilllit;
{ if iropleroentation chooses to acknollJledge

an external interrupt here, then

end;
end;

PUSH4 C; set lIP := 1; Notyetdone := false;

Traps: AddressingV

6-40

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.8.4 PDDEL ppn.r4

Delete from PDIR. The Physical Page Descriptor PPD for the
physical page with physical page nUl'lber "ppn" is
removed from its hash chain.
Ring 0 privilege is required.

Searchpa := PDIR.PA + 16 * ppn + 12;
VPN := (PDIR.PA + 16 * ppn + 4)~51]j
Linkpa := HASH.PA + 4 * hash(VPN);
repeat

Oldlinkpa := Linkpaj
if (Linkpa)[0 .. 31] = 0 then Trap"ADRPDIR"j
Linkpa := (Linkpa) [0 .. 31] + 12j
until Linkpa = Searchpa;

(Oldlinkpa) [0 .. 31] := (Searchpa) [0 .. 31]j

Notes: (consult carefully when implementing a VISION machine
capable of running as a shared-memory multi-processor)

1) Address translation aids (TLB) must be synchronized (by
hardware) with the state of the PDIR/HASH before hardware
may execute the instruction following PDDEL.

02/08

2) In a shared-memory multi-processor system, implementations
must guarantee that read-write operands never fault on the
write. The burden for ensuring this can be placed entirely
on the implementation of PDDEL. This requires PDDEL to
complete a handshake with all processors in the system
before the instruction following PDDEL executes.

3) Various functions compete for access to hash bucket and PPDs
and these functions must be carefully synchronized by
hardware. These functions are: address translationj writing
dirty/reference bits; PDINS; TESTREFj PDDEL.
Each hash bucket and each PPD has a bit for semaphore use by
hardware. It is sufficient to lock the appropriate hash
bucket for the entire duration of each function. However,
doing so might add overhead to writing dirty/reference bits.
The following scheme is also SUfficient: when writing dirty/
reference bits lock only the PPDj when translating addresses
lock hash bucket and each PPD in the chain and unlock each
immediately after reading its contents; PDINS locks the hash
bucket; PDDEL locks two consecutive links in the chain
(starting with the hash bucket) and unlocks the first one
only after it has obtained the lock for the third one.
Hardware must unlock all semaphores when a trap occurs.

Traps: ADRPDIR

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.6.10 CHECKA parameter.r4

Conditional break. If the "CBA" enable bit is set, a trap is
taken. The value of "parMeter" is passed to the trap
handler. It is permissible for hardware to not trap on
an illegal operand if CBA is clear.

if STATUSB.CBA 1 then Trap"DBCHECKA"j

Traps: DBCHECKA

6.2.6.11 CHECKB pararoeter.r4

Conditonal break. If the "CBB" enable bit is set, a trap is
taken. The value of "parameter" is passed to the trap
handler. It is permissible for hardware to not trap on
an illegal operand if CBB is clear.

if STATUSB.CBB 1 then Trap"DBCHECKB"j

Traps: DBCHECKB

6.2.6.12 CHECKLO source.r4, lobound.r4

Check lower bound. If "source" is less than "lobound", a
bounds check trap occurs. The comparison is a two's
complement 32-bit compare.

if source < lobound then Trap"INSCHKLO";

Traps: INSCHKLO

6.2.6.13 CHECKHI source.r4, hibound.r4

Check upper bound. If "source" is greater than "hibound", a
bounds check trap occurs. The cOl'lparison is a two's
cOl'lplel'lent 32-bit cOl'lpare.

if source > hibound then Trap" I NSCHKHI " j

Traps: INSCHKHI

6-59 6-51

02/08

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

4.7 Task Control Block

Hardware needs a certain amount of information in order to
execute the current task. This information is stored in the
Task Control Block (TCB) , located by a register TCB.VA.
This TCB.VA register can be thought of as an extension of
srATUSC. TCB.VA must be a multiple of 16. The length of the
TCB is 176 bytes. Also, the T.CB must be memory resident.

A 64-bit register TCB.LA accompanies TCB.VA; operating system
software is responsible for ensuring that the logical address
TCB.LA does in fact translate into the virtual address TCB.VA.
Moreover, the logical address TCB.LA must have a zero group
selector. Hardware implementations are free to use either
TCB.LA or TCB.VA to locate the TCB.
A task switch is accomplished by Dispatcher software through
simultaneously changing the TCB.VA and TCB.LA registers.

o 1 2 3 31
/TCB.LA +--+----+-----+----------+
\TCB.VA ==> I XMI ShlIPI RShlIPI reserved I

+--+----+-----+ +
+4 for hardware

+8
+12

+16
+20
+24
+28

+32

+108

+112
+116
+120
+124

+128
+132
+136
+140

+144

+------------------------+
I reserved for system
I software
+------------------------+
I I
I GD1 -- group descriptor I
I for group 1 I
I I
+------------------------+
I

I
+------------------------+

I
GD7 -- group descriptor I

for group 7 I
I

+------------------------+

Task Breakrange
Descriptor

+------------------------+

4-16

02/08

TCB.VA

XM

SlJIP

RShlIP

+144
+148

+152
+156

+160
+164

+168

+172

+176

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY HP PRIVATE INFORMATION

+------------------------+
I SC - HP3000 mode
I Stack Pointer
+------------------------+

csrx
descriptor

+------------------------+
I SN - Vision mode
I Stack Pointer
+------------------------+
I logobjid of VCSA
+------------------------+
I TRYOFFSET
+------------------------+
I

\
I
I
>
I
I
/
\
I
I
>
I
I
/

HP3000 mode
information

Vision mode
information

execution mode of the task. On IEXIT to this task,
execution mode srATUSA.XM is set to this value.

switch in progress. Used by IEXIT.

return switch in progress. Used by IEXIT.

02/08

GDi Group Descriptors. The format of a Group Descriptor is
described in section 4.5.

Task Breakrange Descriptor.
This descriptor is described in section 4.9.

SC Logical address of top-of-stack of the HP3000 mode
stack used to initialize S on IEXIT.

csrx Descriptor.
The descriptor locates the csrx used in HP3000 mode.
Its format is the same as described in section 4.10.

SN Logical address of top-of-stack of the Vision mode
stack used to initialize s on IEXIT.

logobjid of VCSA.
The logical object id of the logical object in use as
the Vector Context Save Area. See section 4.11.

TRYOFFSET.
The stack offset saved by the TRY instruction.

4-17

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.9.8 IEXIT

Interrupt EKit. This is used at co~pletion of an interrupt
handler (either eKternal or internal). A trap occurs
if the instruction is eKecuted other than on the IeS.
Q ~ust either point to the dispatcher ~arker, a switch
~arker or an interrupt ~arker, otherwise results are
unpredictable. If any of the pages of the Ies are

02/08

absent, results are unpredictable. If IEXIT returns
control to a task, the TCB of that task ~ust be resident.
If any pages on the task's stack containing the interrupt
~arker are absent, or if that stack is in a..§.!g91L9verflow
co~dition, the appropriate trap is taken which runs as the
botto~ routine on the IeS (at QI). Neither TeB nor the
task stack object are ~odified in any way. There are 3
cases of IEXIT which are sorted as follows:

Case 1: IEXIT should return control to a task without
involving the dispatcher.
This case obtains if Q=QI, while DRF=O or dispatching
is otherwise disabled.

Case 2: lEXlT should run the dispatcher to have it select
a task to LAUNCH.
This case obtains if DRF=l (dispatcher request flag),
dispatching is not disabled, and no interrupt handler
is pending. Note that it is possible for the dispatcher
to preeApt itself.

Case 3: IEXIT should resu~e whatever code was running prior
to the interrupt handler. This Aay be a lower priority
interrupt handler that was left pending, or the dispatcher.

The IEXIT description uses these uninterruptible sequences:

RESTORE_RETURN(Bregs):

RESTORE_HP3000:

begin
if (TCB.RSWIP = 0) or Bregs then begin

BPOP8 B5; .. BPOP8 BO;
POP4 X15; .. POP4 XO;
end-

POP8 sTATUSB; TCB.RSW1P·= 0;
Q := S; EXIT;
end

begin 'POP2' DeIQ; Q:= S - DeIQ;
'POP8' STATUSB; 'POP2' Z.OFFSET;
'POP2' DL.OFFSET; 'POP2' DB. OFFSET;
'POP2' DB.DST;
end

6-65

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

IEXIT: if STATUSC.ICS = 0 then Trap"INSPRIV";
if Q = QI and not(todispatch) then begin

case_1: {return to task}
STATUSC.ICS := 0; XM:= TCB.XM;
if XM = 0 then begin

{return to Vision ~ode}
S := TCB.SN[0 .. 63];
if TCB.SWIP = 0 then RESTORE RETURN(false)
else begin -

TCB.SWIP := 0;
BRX switch handler; {object 13}
end

else begin
{return to HP3000 ~ode}
S := TCB.SC[0 .. 63];
RESTORE_HP3000; \ don't allow
if TCB.SWIP = 0 then 'EXIT 0' / interrupts
else P; = "SWITCHC" trap label;
TCB.S1JIP := 0;
end

end
else if Q=QI or (todispatch and (Q)[4]=1) then begin

case_2: {start dispatcher}
Q := QI; DRF:= 0;
STATUSB := DispatcherStatusBlnit;
EXIT «but leave S at Q» {Q doesn't change}
end

else
case_3: {resu~e code running before interrupted}

S : = Q + 120;
RESTORE_RETURN(true);

Note 1: i~ple~entations ~ay substitute for the test Q = Q1 the
test (Q-4)[0 .. 31] = QI[32 .. 63].

Note 2: "todispatch" su~~arizes the condition that dispatching
is both desired (DRF=l) and possible (DDC=O, IE=l).

Status:
Traps:

restored froA Aarker
INSPRIV
STKUNF
STKCONSISTV
SWITCHC
AddressingV on all base register loads

6-66

02/08

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

10.5.2.3 ShlITCH

The ShlITCH instruction provides a switch of the execution
environment of a process from Native mode directly to
Compatibility mode. The Native mode stack is capped with a
Switch Stack Marker, the appropriate mode flags changed, and
control passed to the Compatibility ShlITCH trap routine on the
Compatibility mode stack which executes above the previous
interrupt stack marker. Any interference, such as Page Faults,
aborts the operation after setting the 'switch in progress'
flag which then takes effect on the subsequent IEXIT to the
process.

This instruction requires Ring level 1.

if STATUSC.ICS = 1 or STATUSB.IE 0
then Trap" I NSShl ITCH "
else

begin
PUSH EXTERNAL PROCEDURE MARKER;
PUSH8 STATUSS; -
TCB.SN := Sj
TCB XM . = l'
TCS : SlJ I P : = 't;
execute_case_l_of_IEXITj
end;

10-15

\
/ SbJitch Marker

01/20 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

10.5.2.4 RShlITCH

The RShlITCH is the reverse operation to a corresponding SYT
instruction which occured from Compatibility mode and basically
returns execution control back onto the Compatibility mode stack
environment. The Native mode stack is flushed to leave the old
switch stack marker, the process mode flag set to Compatibility
mode, and a relaunch of the Compatibility mode process occurs.

This instruction requires Ring level 1.

if STATUSC.ICS = 1 or STATUSS.IE
then Trap" INSShlITCH"
else

begin
S := Q+8;
TCB.SN := Sj
TCB.XM := lj
TCS.RShlIP := 1;
execute_case_l_of_IEXIT;
end;

10-16

o

02/08

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.7 Interaction ~ith Machine State

6.2.7.1 MOVEfSP4 selector.r1, destination.~4

Move fro~ special register. This selects a certain register
or dedicated ~e~ory location based on the value of
"selector". This register or ~eMry location is then
right justified, zero filled and stored in the 32-bit
"destination". An INSMOVSPL violation occurs ~hen
either the value of the selector does not correspond
to any entry in the follo~ing list or when the current
execute level does not ~atch the level required for
reading the selected register.

selector #bits req'd XL Asse~bler alias

o condition code 2 3 GetCC
1 rounding ~ode 2 3 GetRM
2 exit threshold 2 3 GetlITL
3 execute level 2 3 GetKL
4 flpt trap enable 5 3 GetTEFLP
5 int trap enable 2 3 GetTEl NT
6 dec trap enable 2 3 GetTEDEC
7 flpt ~ode 2 3 GetFPCMODE
8 STATUSA 32 3 GetSTATA
9 STATUSB1 32 3 GetSTATB1

10 STATUSB2 32 3 GetSTATB2
11 TRYoffset 32 3 GetTRY
12 task clock enable 1 1 GetTCE
13 STATUSC 32 1 GetSTATC
14 Interrupt Mask 16 1 GetIMR
15 STATUSD 32 1 GetSTATD
16 HASH.PA 32 1
17 HASH. LENGTH 32 1
18 PDIR.PA 32 1
19 PDIR.LENGTH 32 1

Traps: INSMOVSPL

6-52

02/08 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.7.2 MOVEtSP4 selector.r1, source.r4

Move to special register. This instruction selects a special
hard~are register or dedicated ~e~ory location
based on the value of "selector". The value of
"source" is stored into this register or location.
The least significant bits of "source" are used in
the assignAent, ~ithout any overflo~ indication.
A trap is taken ~hen the selector does not ~atch
any of the entries in the follo~ing table or if
the current ring level does not ~atch the required
ring level.

selector #bits req'd XL

o condition code 2
1 rounding ~ode 2
2 exit threshold 2
3 flpt trap enable 5
4 int trap enable 2
5 dec trap enable 2
6 flpt ~ode 3
7 STATUSB2 32
8 Q offset 32
9 task breakrange LOI 32

10 cond break A 1
11 cond break B 1
12 task clock enable 1
13 Interrupt ~ask 16
14 Debug ring level 2
15 sys breakrange LOI 32

Status:
Traps:

depends on selector
depends on selector
SELECTORV
INSPRIV

3
3
< source
3
3
3
3
3
3
3
3
3
o
o
o
o

Asse~bler Alias

SetCC
SetRM
SetKTL
SetTEFLP
SetTEINT
SetTEDEC
SetFPCMODE
SetSTATB2
SetQ
SetTBR
SetCBA
SetCBB
SetTCE
SetIMR
SetDRL
SetSBR

STKCONSISTV (if setting Q offset to value
outside SB and S)

6-53

02/08

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.7.3 MOVEfSP8 selector.rl, destinaiton.m8

Move from special register. This instruction is used to
obtain the contents of a special hardmare register
or dedicated memory location identified by the
value of "selector". Values of "selector" not
represented in the folloming list cause the trap
"SELECTORV" to be raised.

selector ibits req'd XL Assembler Alias

o program counter 64 3 GetP
1 ODTO.LA 64 1
2 TCB.LA 64 1 GetTCB
3 interval timer 64 1
4 task clock' 64 1
5 time of century 64 1
6 QLLA 64 1
7 DST descriptor 64 1
8 CST descriptor 64 1

Traps: SELECTORV
INSPRIV

6.2.7.4 MOVEtSP8 selector.r1, source.r8

Move to special register. This instruction stores the
value of "source" into the special hardware
register or dedicated memory location identified
by "selector".

selector #bits req'd XL

0 interval timer 64 0
1 task clock 64 0
2 time of century 64 0
3 QL LA 64 0
4 DST descriptor 64 0
5 CST descriptor 64 0

Traps: dependent on selector
SELECTORV
INSPRIV

6-54

Assembler Alias

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.8 Instructions that interact mith the address space

6.2.8.1 PROBE ring_access.r1, address.m, length.r4, s_upper.r4

Probe access rights. This instruction sets condition codes
dependent on the legality of accessing the address
range given by "address" and "length". PROBE tests
mhether in the ring level specified by "ring" the type
of access represented by "access" mould be legal
everywhere in the logical address range starting at
"address" and ending at "address"+"length"-l.
A negative "length" is considered illegal; a zero
length represents the case mhere the address range mill
not be used, yet the address Nay have to be loaded into
a base register.
If the object is the stack object, then the ending
address is cONpared against "s upper" instead of the
present value of S or SL. -
PROBE requires ring 1 privilege.

ring
access

'= ring access[0 .. 3];
'= ring=access[4 .. 7];

Encodings: ring access

o
1
2
3
4

o instruction fetch
1 meNory read-
2 memory=mrite
3

caller's

Values not in this list will cause a SELECTORV trap.

The resulting conditon code settings are as folloms:
CCL: the object does not exist or the indicated

access is illegal or the length is negative.

CCE: the indicated access is legal but the indicated
address range is not wholly mithin the object.

CCG: the indicated access is legal at the indicated
privilege level over the entire address range
specified; or: the object exists, the access is
legal and the length is zero.

Status:
Traps:

CC
INSPRIV
SELECTORV

6-56

02/08

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.2.8.2 BPROBE ring_access.rl, address.b, length.r4, s_upper.r4

Probe access rights. This instruction sets condition codes
dependent on the legality of accessing the address
range given by "address" and "length".

This instruction differs fro~ PROBE only in that the
address is already loaded into a base register. This
i~plies that the object is already knoron to exist.

BPROBE requires level 1 privilege.

Status: CC
Traps: SELECTORV

6-56.5

02/08

PHYSICAL
FRONT
PANEL

CONSOLI/VIRTUAL
FRONT PANEL

VCF 60 SPU BLOCK DIAGRAM

POWER
SYSTEM

PSCB

CONTROL
SUPPORT

PROCESSOR

RS232C I BPIB

/ ~ i\ / ~ /~

DBI

SIB

CENTRAL

PROCESSOR

UNIT

CACHE

II
MEMORY

CONTROLLER

I MENORY I
ARRAY F

OPTIONAL
FLOATING

POINT
PROCESSOR

CONTROL BUS

MEMORY BUS

YODEY ~
INTERFACE w::;.~--~

CHANNEL
ADAPTER

,
, , , ,I
I

I

II
DEVICE

ADAPTER
RS2S2C

If' /~

I llENORY I

ARRAY F= _ r rsnnsc

~~------------'\~V-~\V~-~~ _erE-
/"

