
HElJLErI PACKARD

COMPUTER SYSTEMS - 19447 Pruneridge Ave. CUpertino CA 95014

FrOR: Alan Hewer
JiPl Miller
Dave SalOPlaki
Bert Speelpenning

To: ACD Distribution

Date: August 19, 1982

SUbject: VISION Architecture
Control DocUPIent,
Version 5

We are proud to announce the release of Version 5 of the VISION ACD.
Version 5 incorporates all changes and clarifications that have
previously been transmitted only through PlePlos. This single docUPIent
provides a stable, self-consistent and cOPlplete description of the
VISION processor architecture including I/O instructions. A version
of the cOlllpanion docuPlent "HP/3000 COlllpatibility Mode" incorporating
the eKtended CST structure will be available in October.

Version 5 of the ACD replaces version 3, and the copy of version 3 in
your possession Plust be shredded or returned to Bert Speelpenning at
CSY. If you wonder what happened to version 4: there is no version 4
nor will there be. The designation "version 5" for the neKt Plajor
release of the ACD sOPlehow gained currency within CSY, and it didn't
seeR particularly fruitful to buck that trend.

The organization of the architecture description has been thoroughly
overhauled in order to iJllprove clarity of exposition. These changes
were sufficiently extensive that it was decided not to retain page or
section nuJIIbers frOR version 3; change bars were also abandoned.
Rather, version 5 is a stand-alone description of the architecture that
should be read in full by iRpleaentors of VISION-specific products.

Turning to content, the arChitecture described in version 5 differs frOR
that of version 3 in ways described in earlier PlePlOS published by us,
as well as in other JIIinor ways. These changes are ~arized below.
Their net effect is to Plake the VISION architecture 1II0re streaPIlined
and easier to iPlplePlent coSt-effectively in hardware while JliniPIizing
the iRpact on software.

It is a pleasure to acknowledge the help and cooperation we have received
in getting the architecture and its description to its current statej the
iJlplePIentation teaPIs have been reJlarkably patient in helping us evaluate
the effect of proposed chanies as well as in accOJlodating those changes
we decided to adopt.
Our Plain efforts will becOJle focussed on Ronitoring the progress of
VISION illlpleRentationsj we r~ain cORJIIitted to resolve probleRs in the
present definition of the VISION architecture that these iRpleJIentations
Ray uncover.

SUPIPIary of significant chanies between version 3 and version 5

1. Virtual address space has been cut back frOR 74 to 64 bits.

2. The I'llJIber of privileee levels has been reduced froa 8 to 4.

3. Object Descriptors have been streulined to a 4-word foraat.

4. Procedure linkage has been smplified: the STr-JlechaniSll is no
longer required in Vision Rode.
Procedure stack Jlarkers have been reduced to three words instead
of four; EXIT can distinguish between Jlarkers laid down by CALL
and CALLX, this aignificantly streaJllines exit frca CALL.

5. SOlIle STATUS bits and other Jlachine state (such as the TCB) have
been rearranQ8d to allow faster updates to the addressing
enviroraent, such as EXIT or IEXIT.

6. Synchronization of caches and TLBs when Rakilli charlies to the
addressing tables has been .ade the explicit responsibility of
operatini systeR software.

7. The encoding of instructions has changed. Instructions or pairs
of instructions now occupy a word or a Jlultiple of words.
OrthoQonality of opcodes and operands has been retained.

8. 8 General reQisters have been added.

9. Instructions dealing with base reQisters have been separated out.
Base reQisters are no longer treated as Qeneral operands.

10. Several instructions that were Jlarginal in terRS of speed-up over
their software equivalents were deleted.
All 16-bit arithJletic and all 12-byte packed deciJlal arithPletic
has been deleted frOR the architecture.

11. Opcode assigMents have been updated.

12. Several definitions of individual instructions have been streaJIlined.

13. Arguaents for trap handlers are pushed in the reverse order. The
trap identification nuJlber is now always on top of the stack.

14. The interrupt structure for I/O and inter-processor cOJlAunication
has been defined and included.
I/O instructions for PICMB-based systeJIS and for MfB-based syst~s
have been defined and included.
The interface to the Control and Support Processor (CSP) has been
defined and included.

Not yet included in the Architecture Control DocUJlent are:

1. Instructions to support diaanostic capabilities.

2. Description of the data structures to support I/O.

VISION

ARCHITECTURE CONTROL DOCUMENT

VERSION 5

July 31, 1982

COPYRIGHT (C) 1982 HEYLEIT-PACKARD COMPANY

+--+
Your copy of this document is registered

COPY
NUMBER

+--+

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

INTRODUCTION
VISION Architecture Control Document
Architecture OVerview
Architecture Control
Intended Audience
Related Documents
Notations and Conventions
Implementation Guidelines

2 ADDRESS SPACES
2.1
2.1.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9

Physical Address Space
Pages
Virtual Address Space
Virtual Address Space: virtual objects
Virtual Address Space: Paging
The Physical Page Directory (PDIR)
Logical Address Space
Logical Objects
Object Descriptor Format
Object Types
Access Rights
Lower and Upper Bounds
Object Groups
Object Descriptor Table
Current Code Object
Current Stack Object
Nil Object
Group Descriptors
Task Control Block

3 ADDRESS TRANSLATION
3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.2
3.3.3

-3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6

An access -- its characteristics
Access Algorithm
Schematic OVerview
Hardware Shortcuts in Address Translation
Logical to Virtual Address Translation
Locating the bDT in Virtual Space
Locating the DDT for Group Zero
Locating the DDT for a Group Other than Zero
L9cpting the 00 for the Logical Object
Computing the Virtual Offset
Virtual to Physical Address Translation
Physical Page Directory Search '
OVerview of Hash Table and Hash Chain
The Hash Table
PPD Format to Support Hashing and Related Functions
The Hash Algorithm
Page Faults

i

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

4
4.1

PROCESSOR REGISTERS AND MACHINE STATE
General/Index Registers

4.2
4.3
4.4
4.4.1
4.4.1.1
4.4.1.2
4.4.1.3
4.4.1.4
4.4.1. 5
4.4.1. 6
4.4.2
4.4.2.1
4.4.2.2
4.4.2.3
4.4.2.4
4.4.2.5
4.4.2.6
4.4.2.7
4.4.2.8
4.4.2.9
4.4.2.10
4.4.2.11
4.4.3
4.4.3.1
4.4.3.2
4.4.3.3
4.4.3.4
4.4.3.5
4.4.3.6
4.4.3.7
4.4.4
4.4.4.1
4.4.4.2
4.4.4.3
4.4.4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.11.1
4.11.2
4.11.3
4.11.4
4.11.5
4.11.6

Base Registers
PrograIll Counter
Status Registers
STATUSA Register
FOrI1lat
S\lrIu1lary

XL - Execution Privilege Level
SIT -- Single Instruction Trace
lIP -- Instruction In Progress
DBP -- Debug Breakpoint Pending

STATUSB -- Task/Interrupt Status
Forlllat
Sullllllary

PTE -- Procedure Trace Enable
DISP -- Dispatcher Running Flag
vector -- vector register status
TCE -- Task Clock Enable
&IL -- EXIT Threshold Level
FPC -- IEEE Floating Point Control
TE & EF -- Trap & Exception Flags
CBA & CBB -- Condition Break Enable Flags
CC -- Condition Code

STATUSC -- CPU Status
Forlllat
Su!Il!Ilary

DDC -- Dispatcher Disable Count
XM -- Excecution Mode
ICS -- On the Interrupt Control Stack
DRF -- Dispatcher Request Flag
IE & 1MB -- Interrupt Enable & Mask Register

STATUSD -- COlllputer Status
Forlllat
Su!Il!Ilary

DRL -- Debug Ring Level
REVCODE -- SPU Revision Code

Group Descriptors
Virtual Address Translation Registers
Task Control Block
Breakranges (Systelll and Task)
Interrupt Control Stack location
CST and DST descriptors
Vector Processing
Vector Registers
Vector Mask Registers
Vector Length Register
Vector Context Save Area
Vector Processing: Operation
VP Manage!llent - Vector Context Save Area

ii

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

5 MACHINE MODEL
5.1
5.1.1
5.1.1.1
5.1.1.2
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7

The Vision Stack
Procedure Stack Marker
External Procedure Stack Marker
Local Procedure Marker
Interrupt Marker
Dispatcher Marker
Procedure Linkage
Entry Point Evaluation
Multiple Entry Points in a Code Object
Debug Support
Code Breakpoints
Breakranges
Single Instruction Trace
Procedure Trace
Object Trace
Ring Crossing Trap
List of Supported Data Types
Integers
Floa ting Point
Decilllal
Logical
Bit
Fields
Byte strings

6 VISION INSTRUCTION SET
6.1
6.1.1
6.1.1.1
6.1.1.2
6.1.1.3
6.1.1.3.1
6.1.1.3.2
6.1.2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.2.4
6.1.3
6.1.3.1
6.1.3.2
6.1.3.3
6.1.3.4
6.1.3.5
6.1.3.6
6.1.3.7
6.1.3.8
6.1.4
6.1.5
6.1.5.1
6.1. 5.2

Prelilllinaries
Operands
Register Operands
Literal Operands
Melllory Operands
COlllputing the effective logical address
Base register operands
Instruction Encoding
Basic instruction encoding sche!lle
Dense Instruction Encoding Sche!lle
Secondary Instruction Set Encoding
Code bounds violations
Operand descriptors
Short literal
Long li teral
Register operand
Melllory operand (base+short word displace!llent)
Melllory operand (base-short word displace!llent)
Me!Ilory operand (base+ long displace!llent)
Melllory operand (base+index)
Melllory operand (base+index+displace!llent)
Opcode Assignments
Attributes
Operand Attributes
Instruction Attributes

iii

07/31

6.1.6
6.1.7
6.1.B
6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.1.3
6.2.1.4
6.2.1.5
6.2.1. 6
6.2.1.7
6.2.1.B
6.2.1.9
6.2.1.10
6.2.1.11
6.2.1.12
6.2.1.13
6.2.1.14
6.2.1.15
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.2.4
6.2.2.5
6.2.2.6
6.2.2.7
6.2.2.8
6.2.2.9
6.2.3
6.2.3.1
6.2.3.2
6.2.3.3
6.2.3.4
6.2.3.5
6.2.3.6
6.2.3.7
6.2.3.B
6.2.3.9
6.2.4
6.2.4.1
6.2.4.2
6.2.4.3
6.2.4.4
6.2.4.5
6.2.4.6
6.2.4.7
6.2.4.8
6.2.4.9
6.2.4.10
6.2.4.11

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Sources
Destinations
Traps
Base Instruction Set
Data Move~ent Instructions

MOVEt source.r, destination.w
MOVEADR operand.~, destination.wB
PUSHt source. r
PUSHADR operand.~
POPt destination.w
DPF value.r4, shiftcount.r1, ~ask.r4, target.rw4
MOVEC length.r4, source.~r, destination.~w
MOVEBIT bitindex.r4, source.r1, bitarray.~rw
MOVEBLR fillchar, srcl, src, destl, dest
MOVEBRL fillchar, srel, src, destl, dest
TRANSL table.~r, length.r4, source.~r, dest.~w
DUP roordcount.r4, value.r4
REP roordeount.r4, value.r4, operand.~w
EXTEND wordcount.r4
DELETE wordcount.r4

AriUJIIletic Instructions
ADDt ter~.r, su~.rw
SUBt te~.r, difference.rro
MPYt factor.r, product.rro
DIVt divisor.r, dividend.rro
NEGt source.r, destination.w
ABSt source.r, destination.w
REMt divisor.r, dividend.rro
MODt divisor.r, dividend.rro
POLYt degree.r1, polyn.~r, operand.rw

Logical Operations and Shifts
AND4 ~ask.r4, operand.rro4
NOT4 source.r4, destination.w4
OR4 ~ask.r4, operand.rro4
XOR4 ~ask.r4, operand.rro4
LSLt shiftcount.r1, bitfield.rro
LSRt shiftcount.r1, bitfield.rw
ASLt shifteount.r1, operand.rw
QUAD4 source.r4, destination.w4
ASRt shifteount.r1, operand.r~

Co~pares and Tests
CMPt source1.r, source2.r
TESTt source.r
CMPC length.r4, stringa.~, stringb.rn, index.w4
TESTLSB source.r1
TESTOV
TESTA
TESTB

bi tarray. rnr
string.~r, index.rw4

07/31

TESTBIT bitindex.r4,
SCANUNTIL eharset.~r,

CMPB fillehar, Igtha,
CMPT table, fillchar,

srea, 19thb, sreb, index
19tha, srca, 19thb, srcb, inK

iv

6.2.5
6.2.5.1
6.2.5.2
6.2.5.3
6.2.5.4
6.2.5.5
6.2.5.6
6.2.5.7
6.2.5.B
6.2.5.9
6.2.5.10
6.2.5.11
6.2.5.12
6.2.5.13
6.2.6
6.2.6.1
6.2.6.2
6.2.6.3
6.2.6.4
6.2.6.5
6.2.6.6
6.2.6.1
6.2.6.8
6.2.6.9
6.2.6.10
6.2.6.11
6.2.6.12
6.2.6.13
6.2.7
6.2.7.1
6.2.7.2
6.2.7.3
6.2.7.4
6.2.7.5
6.2.7.6
6.2.8
6.2.B.1
6.2.8.2
6.2.B.3
6.2.8.4
6.2.B.5
6.2.8.6
6.2.B.7
6.2.8.8

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Base Register Instructions
BGET8 source.b, destination.wB
BSET8 source.rB, dest.b
BMOVEADR source. rn , dest.b
BMOVE8 source.b, dest.b
BGET4 source.b, dest.w4
BSET4 source.r4, dest.b
BPUSHB source.b
BPOP8 dest.b
BADD4 te~.r4, dest.b
BSUB4 te~.r4, dest.b
BCMP4 sourcea.b, sourceb.r4
BCMP8 sourcea.b, sourceb.r8
BTEST8 source.b

Transfer of Control
BR{GLEU} target.r4
CALL target.r4
CALLX loi.r4
BRX loi.r4
EXIT
SEXIT
BREAK pararneter.r4
ERROR
NOP
CHECKA pararneter.r4
CHECKB pararneter.r4
CHECKLO source.r4, lobound.r4
CHECKHI source.r4, hibound.r4

Interaction roith Machine State
MOVEfSP4 selector.r1, destination.w4
MOVEtSP4 selector.r1, source.r4
MOVEfSP8 selector.r1, destination.wB
MOVEtSP8 selector.r1, source.r8
TRY
UNTRY destination.ro4

Instructions that Interact roith the Address Space
PROBE ring.r1, access.r1, address.r8, length.r4
TESTREF va.r8
PDINS. ppn.r4
PDDEL ppn.r4
CVLAtVA operand.~l, virtaddr.w8
HASH virtaddr.r8, hashindex.w4
CVVAtPP virtaddr.r8, ppn.ro4
GrowGDO newlength.r4

v

07/31

6.2.9
6.2.9.1
6.2.9.2
6.2.9.3
6.2.9.4
6.2.9.5
6.2.9.6
6.2.9.7
6.2.9.8
6.2.9.9
6.2.9.10
6.2.9.11
6.2.9.12
6.2.9.13
6.2.9.14
6.2.9.15
6.2.9.16
6.2.9.17
6.2.9.18
6.2.9.19
6.2.9.20
6.2.10
6.2.10.1
6.2.10.2
6.3
6.3.1
6.3.2
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.3.4
6.3.3.5
6.3.3.6
6.3.3.7
6.3.3.8
6.3.3.9
6.3.3.10
6.3.3.11
6.3.3.12
6.3.3.13
6.3.3.14
6.3.3.15
6.3.3.16
6.3.3.17
6.3.3.18

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Instructions for Tasking and Synchronization
DISABLE oldi.wl
ENABLE oldi.rl
INTERRUPT pr.r4
PSDB
PSEB
DISP
LAUNCH tcbla.r8, tcbva.r8
IEXIT
SlJITCH
RSlJITCH
IDLE
STOP
SYNCOD loi. r4
SYNCTCB tcb. r8
SYNCrB operand.~c, length.r4
TESTSEMA sel1la.~rw4, result.w4
MOVESEMA source.r4, se~a.~w4
DOlJN se~a.~rw4

TESTDOlJN sel1la.l1lrw4
UP se~a.~rw4

Arithmetic Conversion
ISC42 source.r4, destination.w2
CONVERT subopcode.r1, source.r, destination.w

Decimal Instructions
Packed Decimal Numbers
External Decimal Numbers
Deci~al Instruction Set

ADDtD term.r, ~.rw
SUBtD ter~.r, difference.rw
MPYtD factor.r, product.rw
DIVtD divisor.r, quotient.rw
CMPtD sourcea.r, sourceb.r
TESTtD source.r
SLD count.r1, length.r1, source.r, dest.m
SRD count.r1, lenght.rl, source.r, dest.w
MOVED length.r1, source.r, dest.w
VALD length.r1, operand.rw
CVDI length.r1, source.r, dest.w8
CVID length.r1, source.r8, dest.w
TESTSTRIP operand.rw1
GETSIGN operand.r1, sign.w1
OVPUNCH sign.rl, operand.rw1
VALN length.r1, operand.rw
CVAD length.rl, source.r, dest.w
CVDA length.rl, source.r, dest.w

vi

6.4
6.4.1
6.4.2
6.4.2.1
6.4.2.2
6.4.2.3
6.4.2.4
6.4.2.5
6.4.2.6
6.4.2.7
6.4.2.8
6.4.2.9
6.4.2.10
6.4.2.11
6.4.2.12
6.4.2.13
6.4.3
6.4.3.1
6.4.3.2
6.4.3.3
6.4.4
6.4.4.1
6.4.4.2
6.4.4.3
6.4.4.4
6.4.4.5
6.4.4.6
6.4.4.7
6.4.4.8
6.4.4.9
6.4.4.10
6.4.4.11
6.4.5
6.4.5.1
6.4.5.2
6.4.5.3
6.4.5.4
6.4.5.5
6.4.5.6
6.4.5.7
6.4.5.8
6.4.6
6.4.6.1
6.4.6.2
6.4.6.3
6.4.6.4
6.4.6.5
6.4.6.6
6.4.6.7
6.4.7
6.4.7.1

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Vector Instruction Set
Boundary conditions
Vector Arithmetic Operations

VMOVEt vqual.r1, source.vr, dest.vw
VADDt vqual.rl, ter~a.vr, te~b.vr, ~.vw
VSUBt vqual.rl, ter~a.vr, ter~b.vr, diff.vw
VMPYt vqual.r1, facta.vr, factb.vr, prod.vw
VDIVt vqual.r1, divd.vr, divsr.vr, quot.vw
VNEGt vqual.rl, source.vr, neg.vw
VABSt vqual.rl, source.vr, abs.vw
VREMt vqual.r1, divd.vr, divsr.vr, re~.vw
VMODt vqual.rl, divd.vr, divsr.vr, ~od.vw
VLSLt vqual.rl, shiftcount.vr, target.vrw
VLSRt vqual.r1, shiftcount.vr, target.vrw
VASLt vqual.r1, shiftcount.vr, target.vw
VASRt vqual.r1, shiftcount.vr, target.vw

Vector Logical Operations
VAND4 vqual.rl, facta.vr, factb.vr, and.vw
VOR4 vqual.r1, ter~a.vr, te~b.vr, or.vw
VKOR4 vqual.rl, ter~a.vr, te~b.vr, xor.vw

Vector Co~pare and Vector/Scalar Hybrids
VCMPt vqual.r1, field.r1, srca.vr, srcb.vr, mrsel.r1
VACCt vqual.rl, te~s.vr, sum.rw
VACCDt vqual.rl, ter~s.vr, ~rw
VMAKELt vqual.r1, ter~s.vr, ~aKind.w4
VMINELt vqual.r1, ter~s.vr, ~inind.w4
VEKTt vqual.rl, terms.vr, index.r, value.w
VINSt vqual.r1, te~s.vw, index.r, newval.r
VCOMPRSt vqual.rl, terms.vr, compressed.vw
VEKPNDt vqual.rl, ter~s.vr, expanded.vw
VGATHt vqual.rl, source.vr, index.vr, destination.vw
VSCATt vqual.r1, source.vr, index.vr, destination.vw

Vector Housekeeping
RVLR
LDVLR source.r4
STVLR dest.w4
VINVAL vr~ask.rl
UVCSA
PUVCSA tcb.l1lr
IVB tcb.l1lr
LVB tcb.~r

Operations on Mask Registers
CLRMR ~rselect.rl
STMR l1lrselect.r1, destination.w16
LDMB ~rselect.r1, source.r16
MRNOT l1lrselect.rl
MRAND ~rasleect.r1, l1lrbselect.rl
MBOR l1lraselect.r1, mrbselect.r1
MRKOR l1lraselect.rl, mrbselect.rl

Vector Conversion
VCONVERT vqual.r1, typer.r1, source.vr, dest.vw

vii

6.5
6.5.1
6.5.1.1
6.5.1.1.1
6.5.1.1.2
6.5.1.1.3
6.5.1.1.4
6.5.1.2
6.5.1.2.1
6.5.1.2.2
6.5.1.2.3
6.5.1.2.4
6.5.1.2.5
6.5.1.2.6
6.5.1.2.7
6.5.1.2.8
6.5.1.2.9
6.5.1.2.10
6.5.2
6.5.2.1
6.5.2.1.1
6.5.2.1.2
6.5.2.1.3
6.5.2.2
6.5.2.3
6.5.2.3.1
6.5.2.3.2
6.5.2.3.3
6.5.2.3.4
6.6
6.6.1

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

I/O Instructions
PICMB-based VISION systems
PICMB Primitives

!FC
WCMD command.r1
WBYIE data.r1, end.r1
RBYTE data.w1

Functional PICMB Instructions
CHNOP
RCL response.w1
PRD response. wi
PDA response.wl
PAR response.w1
RDP channel.rl, dest,w16,
WDP channel.rl, data.r16,
RIS channel.r1, status.wl
CIS channel.r1, status.rl
SIS channel.r1, status.r1

MPB-based systems
MPB-based Instructions

length. TIll
length.rw1

lOW channel.r4, control.r4, data.r4
lOR channel.r4, control.r4, data.w4
IOC channel.r4, control.r4

Interpretation of the control word on the
lOP Opcodes
Read commands
Write Commands
Control Commands
lOP Command EKecution
Diagnostic Interface

MOVEtCSP

lOP

7
7.1
7.1.1
7.1.2
7.1.3
7.1.3.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.3
7.3.1
7.3.2
7.3.3
7.4

INTERRUPTS AND TRAPS
Introduction
EKternal Interrupts OvervieTll
Internal Interrupts Overview
Traps OVerview
Special PrograAming Notes
Detail Description of EKternal Interrupts
Processor Context for Interrupts
General Operation
Channel Interrupts
Processor-caused Interrupts
When is the Processor Interrupted?
Acknowledging Processor Interrupts
Shared-Memory Multiprocessor Considerations
Clocks
Time of Day Clock
Task Clock
Interval Clock
Summary of Traps and Internal Interrupts

viii

07/31

7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.5.1
7.4.5.2
7.5.5.3
7.5.5.4
7.5.5.5
7.6
7.6.1
7.6.2
7.6.3
7.6.3.1
7.6.3.2
7.6.3.3
7.6.4
7.6.4.1
7.6.4.2
7.6.4.3
7.6.4.4
7.6.4.5
7.6.4.6
7.6.4.7
7.6.5
7.6.6
7.6.7
7.6.7.1
7.6.7.2
7.6.7.3
7.6.7.4
7.6.8
7.6.8.1
7.6.8.2
7.6.8.3
7.6.8.4
7.6.8.5
7.6.8.6
7.6.8.7
7.6.8.8
7.6.8.9
7.6.8.10
7.6.8.11
7.6.8.12
7.6.8.13

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

Detail Description of Internal Interrupts
Architectural Interface
EKecution Environment
Sequence of Events
Multiple Internal Interrupts
Internal Interrupts Descriptions

Memory Parity Error
Power Fail
Power Recovery
CPU Machine Check
CSP Reply is Complete

Detail Description of Traps
Architectural Interface
EKecution Environment
Common Covent ions for Traps
ParaAeter Passing to Trap Handlers
Determining Privilege of the Handler
Determining the address of a Trap Handler
Sequence of Events
A Non-Recoverable Trap on the CUrrent Stack
A Non-Recoverable Trap on the ICS
One Restartable Trap on the CUrrent Stack
One restartable trap on the ICS
Top-of-Stack Page Fault and Stack OVerflow
Multiple Restartable Traps
Continuable Traps
System Error
Enabling/Disabling Traps
Transfer of Control Traps

Code Object Bounds Violation
Code ODT Length Violation
Code Object Type Violation
Code Privilege Level Violation

Instruction Traps
Privileged Instruction Violation
Error Instruction
CHECKLO Violation
CHECKHI Violation
Undefined Instruction
Exit Threshold Trap
Misaligned PrograA Counter
Probe Violation
Operand Specifier Violation
Move Special Violation
STiJitch ViOlation
VP Permission Control
Vector Operation on the ICS

ix

07/31

7.6.9
7.6.9.1
7.6.9.2
7.6.9.3
7.6.9.4
7.6.10
7.6.10.1
7.6.10.2
7.6.10.3
7.6.10.4
7.6.11
7.6.11.1
7.6.11.2
7.6.11.3
7.6.11.4
7.6.11.5
7.6.12
7.6.12.1
7.6.12.2
7.6.13
7.6.13.1
7.6.13.2
7.6.13.3
7.6.13.4
7.6.14
7.6.14.1
7.6.14.2
7.6.14.3
7.6.14.4
7.6.14.5
7.6.15
7.6.15.1
7.6.15.2
7.6.15.3
7.6.16
7.6.17
7.6.17.1
7.6.18
7.6.18.1
7.6.19
7.6.19.1
7.6.19.2
7.7
7.8

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Stack Traps
Stack Consistency Violation
Stack OVerflollJ
Stack UnderflollJ
Delete/Extend Negative hlordcount

Data Object Traps
Data Object Bounds Violation
Data ODT Length Violation
Data Object Type Violation
Data Access Rights Violation

Floating Point Traps
Floating Point Invalid Operation
Floating Point Divide By Zero
Floating Point OVerflollJ
Floating Point UnderflollJ
Floating Point Inexact Result

Integer Traps
Fixed Point Divide by Zero
Fixed Point OVerflollJ

Dec ilIlal Traps
Decilllal Divide By Zero
Decilllal OVerflollJ
Decilllal Invalid Length
Invalid Decilllal Digit

Debug Trap Conditions
Break Instruction
Procedure Trace Trap
CHECKA Instruction
CHECKB Instruction
Single Instruction Trace

Semaphore Traps
Semaphore OVerflollJ
DOllJn Semaphore
Up Semaphore

Vision Mode SlIJitch
TRY/UNTRY Traps

Try or UNTRY Violation
Virtual Addressing Traps

PDINS Inconsistent Page Number
Page Absent Traps

Page Absent
Top of Stack Page Absent

Top of Stack Page Faults
I CS MechaniSJll

8 INPUT/OUTPUT DATA STRUCTURES

x

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

9 SYSTEM INITIALIZATION
9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.3
9.4
9.4.1
9.5
9.6

Virtual Object Initialization
The System COJllJlluniation Area
The Environment Section
The Identification Section
The HardllJare-Reserved Section
The Diagnostics Section
The Load Section
The DUlIlp Section
The Hash Table and Physical Page Directory
The Pr ilIlary Macro Env ironment Buffer
Loading the Primary Macro Environment Buffer
The Macro Code Launch
Initial State SUlIlJIlary

10 HP/3000 MODE
10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
10.4
10.4.1
10.4.2
10.4.3
10.5
10.5.1
10.5.1.1
10.5.1.2
10.5.1.3
10.5.2
10.5.2.1
10.5.2.2
10.5.2.3
10.5.2.4
10.6
10.7

Introduction
Environmental OVerviellJ
System Control Structures
CST - Code Segment Table
DST - Data Segment Table
ABS - Absolute Memory Object
Task Control Structures
CSTX - Code Segment Table Extension
Interrupt Stack Marker
TCB Contents KnollJn to HardllJare
Mode SlIJitching
Compatibility Mode Instructions

DISP
SlIT
RSlIT

Native Mode Instructions
DISP
IEXIT
SlJITCH
RShlITCH

Protection
Implementation Notes

App SORTED LIST OF INSTRUCTIONS

xi

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

+---+----------------+
INTRODUCTION CHAPTER 1

+---+----------------+

1.1 VISION Architecture Control Document

This document provides, for reference purposes, the detailed and
rigorous definition of the machine functions perfor~ed by VISION
compatible computer syste~s. VISION provides the basis for a
~ultitude of fully co~patible syste~s over time which cover a
broad spectrum of price and perfor~ance, benefiting fro~ the
exploitation of new or evolving technologies and ~achine
organizations.

This is the only authoritative specification of the VISION
arChitecture. It provides machine designers and programmers a
complete description of the machine model which will transcend
all implementations.

1.2 Architecture Overview

The VISION architecture is a product of the experience gained
with the HP3000, HP300 and FOCUS syste~s. It provides two
execution modes. One mode is highly co~patible with the HP3000
and allows execution of HP3000 user level object programs. The
Vision mode provides advanced information processing capability.
The Vision mode is designed to retain the general purpose nature
of its predecessors, but with enhanced ability to effectively
address both business and technical applications. Vision mode
is characterized by a powerful and complete basic instruction
set, a wide range of data types, a stack for data allocation and
procedure linkage information, data registers to support
expression evaluation and addressing registers to support an
extremely large task and system address space, paged memory
management, a hierarchical protection system, and vector
processing facilities.

1-1

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

1.3 Architecture Control

The tern "architecture" as used in this document refers to the
characteristics of the software/hardware interface of compatible
VISION machines. "Hardware" refers to any combination of
electronics, electro-mechanics and microcode.

The notion of Architecture Control has been created at HP to aid
in the preservation of the investments it and its customers make
in hardware and software with VISION based products. This
architectural control document attempts to completely and
unambiguously describe the features of any model claiming VISION
compa tibili ty.

To be successful, the following attributes of the arChitectural
control process are stipulated:

1. This document is the only authoritative specification of the
VISION architecture.

2. All models will be monitored for compliance with the
architure specification.

3. Deviations from the architecture will be corrected. In the
rare case when the cost to change the design or to retrofit
installed machines is excessive in relation to the practical
value of compliance on that model, deviations are permitted
when approval is obtained from all affected group managers,
and appropriate provision is made for the exception in the
Architectural Control Document.

4. Implementers are instructed to question any doubtful point in
the architectural definition rather than make assumptions.
The specification occasionally leaves out some aspect of the
operation, or the wording may not be clear. In these cases
the document should be updated to resolve the point.

5. Continual maintenance and updating of the architecture
specification are essential.

6. At any point in time, the management will entrust maintenance
of the architecture control document to a person or small
group. They will be responsible for resolving conflicts,
creating and reviewing document revisions, stopping debate on
some issue, etc, through the use of technical and business
analysis or executive decision making.

1-2

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

1.4 Intended Audience

This document is intended primarily as reference material for
implementors of VISION-compatible products; specifically,
implementors of hardware and microcode, implementors of core
operating system modules and implementors of Vision compilers.

07/31

The first five chapters can be used as a stand-alone intrOduction
to the main VISION features; they cover the VISION addressing
structure, which is the most distinguishing characteristic with
respect to its predecessors and current competition in the market.
To this end these chapters are written in a more tutorial style.

This document must not be shown to and must not be read by non­
HP employees.

1.5 Related Documents

"HP/3000 Compatibility Mode", internal, January 1982.

"PICMB ERS", internal.

"MPB ERS", internal.

"Interface Protocols for the Control SUpport Processor for
VCF60 and VCF50", internal, to appear.

"A Proposed Standard for Binary Floating Point Arithmetic",
draft 9.3.3 of IEEE task P754.

"Time and Frequency Users' Manual", NBS Special Publication 559.

1-3

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

1.6 Notations and Conventions

Algorithms in this document are described in a pidgin PASCAL.
In these algorithms:

NAMES in capital letters denote processor registers;
Names with only the first letter capitalized denote

temporary or scratchpad values;
names in lower case denote parameters or operands.

The notation R[O •. 5] denotes a 6-bit field consisting of bits
o through 5 of register "R".

The notation (R)[O .• 31] denotes the 32-bit word found at the
byte address contained in register "R".

The numbering of bits and bytes is such that the lowest numbered
bit (byte) contains the most significant information.

07/31

Numbers are given in decimal (default) or in hexadecimal notation
(when preceded with an "!", e.g. ! 1A denotes the l1\ll1lber 26).

1.7 Implementation Guidelines

Experience related to cost-effective implementation of VISION
hardware and software will be disseminated to other VISION
implementors when such experience becomes available. Emphasis
will be on the more subtle implications of the architectural
specification; in particular, performance implications.
Recol1lrnended software practices, if sufficiently important to
the performance of at least one VISION implementation, will be
included also.

As an example, all VISION hardware will allow data to be addessed
on arbitrary byte boundaries. Yet performance will be degraded
significantly if data is not aligned on its natural boundaries:
half words on half-word boundaries, words on word boundaries, etc.
This effect will be felt on any VISION implementation, to varying
degrees.

This document includes some implementation guidelines when it
was deemed that their inclusion would clarify the issue at hand.

1-4

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

+---+---------------+
ADDRESS SPACES CHAPTER 2

+---+---------------+

2.1 Physical Address Space

Physical memory is organized in bytes. A byte is a collection of
8 bits. Each byte in physical memory has its own unique number
called its physical address. A byte is the smallest addressable
unit. A physical address is represented by a 32-bit quantity.
Physical memory is the lowest type of memory in the memory
hierarchy that is visible to software. Implementations may choose
to organize physical memory in words (4-byte quantities) instead
of bytes; they may employ caches to reduce average access tiAe,
but this must remain transparent to software.
Input/OUtput is performed using physical addresses. Software uses
"logical addresses" (section 2.3) to access memory; these logical
addresses are translated by address translation hardware (chapter
3) into the corresponding physical addresses.

Representation of physical memory:

01234567 01234567 01234567 01234567 01234567 01234567
+--------+--------+--------+--------+--------+ - - - - -+--------+

183 109 lBl 16A lFF
+--------+--------+--------+--------+--------+
o 1 2

o 31
+--------------------+

3
+--------------------+

physical address

3" " 4

" " " " II

" -----+ I 1
I I (byte

" \I
01234567

+--------+
!6A

+--------+

access)

13B
- - -+--------+

ME
(physical
memory
size)

In this example, the physical address is 3, and therefore the byte
with identifying number 3 is being addressed. Its contents is
!6A (01101010).

2-1

7/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Addresses are also used to access entities larger than a byte.
(This will apply siAilarly to logical and virtual addresses).
In this case, the address reflects the lowest numbered byte.
The following example shows the result of a 16-bit access using
physical address "2":

01234567 01234567 01234567 01234567 01234567 01234567
+--------+--------+--------+--------+--------+- - - - -+--------+

!83 !09 !Bl !6A !FF !3B
+--------+--------+--------+--------+--------+- - - - -+--------+
o 12'"

I
I

o 31 I
+----------------+ I

2 1-+
+----------------+
physical address

II 3 4 ME
II
II
II
I I (16-bit access)

" " \I 1
01234567 89012345

+--------+--------+
!B16A

+--------+--------+
Physical address space is used for four separate purposes. The
first purpose is to provide physical pages (see section 2.1.1)
that support virtual memory (section 2.2). The second is to
provide a location for the h sical a e director (section 2.2.2)
and hash table (section 3.4 that constltute the foundation for
the address translation algorithm and therefore must reside at a
physical address known to hardware. The third is to provide a
"scratch area" for each processor, transparent to software (see
chapter 9). This scratch area is used to hold data for which use
of processor registers would be too expensive; it is also used by
the I/O channels when they need to communicate with the processor.
The fourth is to provide addressability for I/O buffers. VISION
I/O channels only access memory through physical addresses.

2.1.1 Pages

Physical memory is divided into physical pages of 4096 bytes each,
partitioning physical addresses into a 20-bit physical page number
(PPN) and a 12-bit page offset (POFF), as follows:

o 19 20 31
+----------------------+-------------+
I physical page number I page offset I
+----------------------+-------------+

physical address

2-2

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

2.2 Virtual Address Space

In VISION, the virtual address space is extremely large.
Its size is 2"64 bytes. This address space is so large that
it frees software for the most part from having to reclaim and
repack virtual space no longer in use. Whole data bases can
reside in virtual space, if so desired.

Virtual space allows programs to run that require address space
in eKcess of the amount of physical memory available on the
machine. This is acco!1lplished through "de!1land paging": a !1lode
of operation in which part of virtual !1lemory is kept in physical
memory and the rest kept on secondary storage; if a request for
access to virtual !1le!1lory cannot be satisfied out of physical
!1lemory, the page containing the virtual address is read in from
secondary storage (another page !1lay have to be written to
secondary storage in order to !1lake place for it in physical
!1le!1lory) .

Operating system software policy deter!1lines the precise details
of where virtual pages are kept on secondary storage and where in
physical memory a new virtual page is read in. Hardware is only
responsible for detecting "page fault"s: the condition where an
access to virtual memory cannot be satisfied out of !1lain !1le!1lory.
On detecting a page fault, hardware will transfer control to the
page fault trap handler (section 7.KK). The operating syste!1l
must then resolve the page fault and transfer control back to
the user program in a way that makes the occurrence of the page
fault totally transparent to the user program (eKcept perhaps
for a noticeable delay).

Demand paging in a large virtual space frees writers of software
fro!1l stringent and inescapable limits on programs due to size of
physical memory. Instead, writers of software for a demand paged
!1lachine face a concern for "locality of reference". Basically,
one program's locality of reference is better than another's if it
accesses fewer different virtual pages in a cO!1lparable time span.
Programs with better locality of reference will require less page
swapping and therefore will perform better, other things being
equal.

Details on how a virtual address is translated to a physical
address in VISION are deferred until chapter 3.

2-3

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

Two different views of virtual address space are given here:
one from the perspective of address arithmetic and allocation,
the other from the perspective of paging and memory management.

2.2.1 Virtual Address Space: Virtual Objects

Virtual address space is organized as 2"32 "virtual objects"
of 2"32 bytes each:

virtual
object
l1UlIlber

virtual offset
+ ---------------->

v

+-------------------------------+
I
I
I
I
I
I

+--------------+-+--------------+
I I I

+--------------+-+--------------+

I
I
I
I
I
I
I
I
I
I
I

2"32
virtual
objects

I
I
I
I

+-------------------------------+ v

<-----------2"32 bytes--------->

2-4

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

This organization of virtual address space corresponds to a
partitioning of a virtual address as follows:

o 31 32 63
+----------------------------+----------------------+
I VON - virtual object number I VOFF - virtual offset I
+----------------------------+----------------------+

virtual address

The significance of this subdivision is that all address
arithmetic on a virtual address is performed on the 32-bit
virtual offset without ever carrying into the virtual object
nu~ber. The virtual object number is never altered by address
arithmetic. The virtual offset is regarded as a troo's co~pl~ent
quantity; overfloro on address arithmetic is ignored.
Address arithmetic on virtual addresses occurs during
translation of logical addresses as described in chapter 3.

EK~ple:

o 31 32 63
+----------------------+------------------+

13 151 virtual address
+----------------------+------------------+

o 31

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

2.2.2 Virtual Address Space: Paging

From a paging perspective, a virtual address (VA) is split into
a 52-bit virtual page number (VPN) and a 12-bit page offset
(POFF), as sketched below. (Some VISION documentation refers to

VA and VPN by the names GSVA and GSVP, respectively.)

o 51 52 63
+--------------------------------+--------------+
I VPN - virtual page number I page offset
+--------------------------------+--------------+

virtual address

A physical page is associated with a virtual page; this will
typically change over t~e as pages get sroapped in and out, i.e.
read and written to secondary storage (usually disk storage).
At each ~o~ent, the state of the association is contained in the
physical page descriptor (PPD), as follows:

PPD:

o 1
2 2 2 2 3 3
o 1 890 1

+-+-------------------+----+-+-+-+
1/1 PPN (20}1////IRI/IDI
+-+-------------------+----+-+-+-+

VPN - virtual (32)1
+ page +-----------+
I number (20)1///////////1
+--------------------+-----------+
1////////////////////////////////1

+------------------+ +--------------------------------+
2A 32 - 100 value to be added

+------------------+ where:

a 31 32 63
+----------------------+------------------+

13 51
+----------------------+------------------+

+

effective
virtual address

Hence address arithmetic, even if no~inally involving 64-bit
quantities, can be ~ple~ented in hardware with 32-bit ALUs.

2-5

PPN - physical page number (20 bits).

VPN - virtual page number (52 bits); the number of the
virtual page currently associated with page PPN.

D - dirty bit (1 bit): set to one by hardware if the
contents of the physical page has been changed by
the processor since it was read in fro~ secondary
storage, i.e. when the page on secondary storage
is no longer up to date.

R - reference bit (1 bit): set to one by hardware if
the physical page has been accessed since the
last t~e software caused the reference bit to
get reset.

The PPD has additional fields that are described in section 3.4.

2-6

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

2.2.3 The Physical Page Directory (PDIR)

Each physical page has its o~n physical page descriptor? all
PPDs are collected in the physical page directory (PDIB).

PDIB.PA -------) +-------------------+
II

" " " PPN II
II
II

" II

" \/ +-------------------+
I PPD
+-------------------+
I
I
I
I
I
+-------------------+

physical page directory (PDIB)

physical address of
PPD for physical
page PPN is found
as:

PDIR.PA + 16 * PPN

The physical address PDIR.PA is kept in a processor register.

Note that the PPN field contained in the PPD is redundant ~ith
the position of the PPD ~ithin the PDIR.

2.3 Logical Address Space

Logical address space provides the third and highest level of
addressing in the VISION architecture. Logical address space
serves to insulate and protect progr~s from each other. At
the same tiroe, logical address space allo~s operating systero
soft~are full control over arbitrary patterns of sharing and
of access protection bet~een user progr~s.
All progr~s run in logical address space. All addresses
that are directly constructed by a user progr~ are logical
addresses; these are presented to hard~are for address
translation. Hard~are translates logical addresses (via virtual
addresses) to physical addresses as detailed in chapter 3.

2-7

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

07/31

A logical address is a 64-bit quantity. The first 32 bits
identify a "logical object"; logical objects are defined in
section 2.3.1. The second 32 bits of the logical address contain
a "logical offset", i.e. a byte offset relative to the beginning
of the logical object. Belo~ is a depiction of a logical address:

o 31 32 63
+-------------------------+-----------------------+
I LOl - logical object id I LOFF - logical offset I
+-------------------------+-----------------------+

logical address

2.3.1 Logical Objects

A logical object is a slice of a virtual object that can only be
accessed through an Object Descriptor, ~hich enforces access
rights and bounds protection. Object descriptors are detailed
in section 2.3.2.

1--> 2
A

31-1
1--------------------------------------> UB
1----------------------> LB
I> -2A 31

a +---------------------+----------------+-----------+
virtual 1 logical object 1
object +---------------------+----------------+-----------+

v v

+----------------+
1 logical object 1
+----------------+

I> 0
1-------> LOFF
1----------------> UB-LB

The figure above sho~s ho~ t~o virtual offsets (LB and UB, lo~er
and upper bound) are used to delineate a slice of a virtual object.
Such a slice is called a Virtual Bange. The Virtual Range, under
protection of access rights, constitutes a logical object.
The bytes in the logical object are numbered froro 0 to UB-LB;
it is this numbering, relative to LB, that is used by the logical
offset LOFF in a logical address.

2-8

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

2.3.2 Object Descriptor Format

Object Descriptors are 16 bytes in size.
sketched belolll:

The format is as

0123 45 6 7
2 33
9 01

+----+----+----------------+--+
I AR ITYPEI EPlJO IPRI
+----+----+----------------+--+ \
I VON - Virtual Object NUlIlber I I

OD: +-----------------------------+ I
LB - LOlller Bound > Virtual Range

+-----------------------------+ I
UB - Upper Bound I I

+-----------------------------+ /
where

AR access rights. This field encodes the access
rights to the object allowed at each of the
protection levels, as detailed in section 2.3.2.2.

TYPE= object type. The encoding of this field is
detailed in section 2.3.2.1.

EPlJO= entry point lIIord offset. This field is l11eaningful
only for Vision l110de code objects. It is detailed
in section 5.2.

PR prerequisite level. This field is l11eaningful
only for Vision 1110de code objects. It is detailed
in section 5.2.

VON virtual object nul11ber. Identifies the virtual
object of IIIhich this Object Descriptor defines
a slice.

LB lOlller bound. See section 2.3.2.3.
UB = upper bound. See section 2.3.2.3.

2.3.2.1 Object Types

Object types are encoded in a 3-bit field in the OD as follows:

o - Vision l110de code object
1 - Reserved object type

2 - Vision l110de stack object
3 - data object

2-9

4 - HP3000 l110de code object
5 - HP3000 l110de code object,

subject to PCAL trace
6 - HP3000 1110de stack object
7 - Reserved object type

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

The object type "HP3000 code object subject to PCAL trace" is
explained in l110re detail in the "VISION HP3000 l110de docUlllent".
The reserved object types lIIill block access to the objectj one
of these types l11ay becol11e defined in later versions of the VISION
arChitecture.
All other object types are explained fully in this docUlllent.

2.3.2.2 Access Rights

At each l11ol11ent, the processor runs in one of tlllO execution
1110des (Vision l110de or HP3000 l11ode) as indicated by the one-bit
processor state "XM". In Vision l11ode, four levels of privilege
are supported, ranging frol11 0 (l11ost privileged) to 3 (least
privilegedl; and the processor will run at one of these four
privilege levels, as indicated by the two-bit processor state
"XL". In HP3000 l11ode, the processor runs in either "User state"
(which is identified with XL=3) or in "Privileged state" (which
is identified with XL=1).
For purposes of protection, accesses are characterized as either
"read", "write" or "execute". The following chart defines the
conditions for legal access. Illegal accesses cause a trap as
defined in chapter 7.

TYPE (frol11 00) read I write I execute
-------------------+---------------+---------------+--------------
Vision code object IXL <= AR[0 .• 1] I illegal IXL <= AR[2 •. 3]

I I I & XM=O
Vision stack objectlXL <= AR[0 •• 1] IXL <= AR[2 •• 3] I illegal

I I I
data object IXL <= AR[O •• 1] IXL <= AR[2 •• 3] I illegal

I I I
HP3000 code object IXL <= AR[O •. l] I illegal IXL <= AR[2 .. 3]

(111/ or w/o trace) I I I & XM=l
HP3000 stack objectlXL <= AR[0 .. 1] IXL <= AR[2 •• 3] I illegal

I I I
reserved obj type I illegal I illegal I illegal
-------------------+---------------+---------------+--------------

Notes: "<=" l11eans less than or equal in an unsigned 2-bit COl11pare.
The objects pointed to by special registers P and Q require
special treatl11ent, as detailed in sections 2.3.5 and 2.3.6,

2-10

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

2.3.2.3 Lower and Upper Bounds

Logical objects are slices of virtual objects protected by a
lower bound and an upper bound, as sketched below:

OD virtual address space
+--------+

1-------------------------------------+ UB
I 1-------------------------+ LB I
+---1----+ 1 1

1 v v
I +--------------------+-+-----------+--------+
1

1

1
VON

1

1

1

1

1

1

1

1####################1
1####################1
1####################1
1####Guard zone######1
1#### of ######1
1#### invalid ######1
1#### virtual ######1
I####addresses ######1
1####################1
1####################1
+----------------------+-----------+--------+

v 1####################1 1 log. obj. 1
+----------------------+-----------+--------+
1####################1 1
1 #################### 1 1
z z z
1####################1 1
+--------------------+----------------------+
<----------------2"32 bytes----------------->

1

1

1

1

1

1

1
2"32

virtual
objects

1

1
I
I
1
z
1
v

Both lower and upper bound are 32-bit two's complement quantities
that delineate the logical object; both bounds are inclusive.
Any address aritrn~etic (e.g. indexing) involving a logical object
that causes the virtual offset to stray outside the bounds given
in the Object Descriptor will result in a trap. (This applies
only to addresses actually used in accesses, not to preparatory
address calculations.)

Though lower and upper bound are two's complement quantities,
their values must always be positive. It is the responsibility
of operating software to ensure this. The size of logical objects
is therefore limited to 2"31 bytes. Note that zero-length objects
can be supported by having UB = LB -1 in the Object Descriptor.

2-11

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

2.3.3 Object Groups

Object Descriptors belong to the program that is executing;
more precisely, they are associated with a task.
It is the responsibility of operating system software to implement
a policy of protection and security, by setting up only such
Object Descriptors on behalf of each task as are needed by the
task to perform its rightful function.
It is the responsibility of hardware to enforce the access rights
and bounds protection as contained in the Object Descriptor.

07/31

Object Descriptors are organized in groups in order to facilitate
sharing of objects among tasks. The VISION arChitecture provides
for eight object groups per task. Each group has a data structure
(Object Descriptor Table, see section 2.3.4) that maps a logical
object id onto an Object Descriptor. Tasks that share all objects
in a group can therefore share the Object Descriptor Table for
that group as well, resulting in reduced duplication of Object
Descriptors and (as an important side effect) faster task creation.

Group zero is the same for all tasks, i.e. logical addresses
with a zero group selector translate to the same virtual address
regardless of which task is translating it.
Groups one through seven are either shared or task-specific,
completely under operating system software control.

The 32-bit logical object id (LOI) serves to locate the Object
Descriptor for the logical object. For this purpose, LOI is split
into a 3-bit group selector (zero through seven) and a 29-bit
logical object number (LON) interpreted relative to the selected
group:

012 3 31
+---+-------------------------+
1 G 1 LON - log object number 1
+---+-------------------------+

logical object id

where

G group selector (3 bits);
LON logical object number (29 bits).

2-12

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

The format of a logical address can therefore be depicted as:

012 3 31 32 63
+---+-------------------------+-------------------------+
1 G 1 LON - log object number 1 LOFF - logical offset
+---+-------------------------+-------------------------+

2.3.4 Object Descriptor Table

Each object group has an Object Descriptor Table (ODT) Mhich is
a linear collection of Object Descriptors indexed by the logical
object number. The Object Descriptor Table is itself an object
in virtual and logical address space and its location is known
to hardware, as detailed in section 2.3.8 and chapter 4.
Both virtual laMer bound and virtual upper bound of an ODT must
be multiples of 16.

012 3 31 32 63
+---+---------------+----------------+

logical address I 4 I LON-----+ I LOFE I
+-1-+-----------1---+----------------+

1 I
+-------------1---++

1 / \

ODTO ODT1 ODT2 ODT3 I ODT4 ODT5 ODT6 ODT7
+----+ +----+ +----+ +----+ 1 +----+ +----+ +----+ +----+

1 I
I I

+----+ I I +----+
I I I

+----+ I +----+ +----+ +----+
v 1 00 1

+----+ +----+
+----+

+----+

Virtual address of 00 =

virtual address of selected ODT + 16 * LON

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

2.3.5 CUrrent Code Object

In Vision mode, there is a 64-bit Program Counter P that holds
the logical address of the instruction currently executing.
Bits P[0 .. 31] contain the logical object id of the object known
as the current code object. In VISION documentation, PB is used
as shorthand for the (logical address of the) lOMer bound of the
current code object; similarly, PL is used to point to the first
byte beyond the current code object.

+----+ \
PB::> 1

1
1
> current code object

P==> 1
1
I

+----+ /
PL=:>

Read access to the current code object is allowed; this overrides
the access right field in the 00. Both LB and UB in the 00 for
the current code object must be multiples of 4. The size of the
current code object must be no more than 2A24 bytes. It is the
responsibility of operating system software to ensure LB and UB
meet these requirements. P will always be even (P[63]=O l; this
is ensured by hardMare checks in the EXIT and SEXIT instructions.

2-13 2-14

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

2.3.6 Current Stack Object

Two Vision Aode registers Q and S both hold logical addresses.
Bits Q[O .• 31] are at all tiNes identical to bits S[0 .. 31]; these
identify the logical object known as the current stack object.
The significance and the use of Q, S and the stack object is
detailed Aore fully in chapter 5. In VISION docuAentation, SB is
used as shorthand for the (logical address of the) lowest numbered
byte of the current stack object; SL denotes the first byte beyond
the current stack object.

+----+ \
SB==> I

I
I

+----+ \ I
Q==> I local stack frame > current stack object

/ I
+----+ I

S==> I \ I
I I undefined area I
I I I
+----+ / /

SL==> I

Read and write access at any privilege level to the current stack
object is allowed; this overrides the access rights field in the
OD for the current stack object. All accesses to the stack object
Aust fall within the bounds SB (inclusive) and S (exclusive); this
overrides the upper bound in the OD for the current stack object.
Both LB and UB in the OD for the current stack object must be
multiples of 4. In addition, UB must satisfy UB < 2A 31-4. It is
the responsibility of operating systero software to ensure that LB
and UB Aeet these requireroents.
All changes to Q and S Aust satisfy SB <= Q <= S (= SL.
(Q and S only change as a side effect of certain instructions
such as CALL and EXIT. See chapter 6 for detail.)

2.3.7 Nil Object

Logical object zero in group zero (logical object id = 0) is
inaccessible to all software. Operating systeA software is
responsible for Aaintaining the OD for LOI=O such that no
accesses are legal. To do so, it suffices to set UB = LB - 1.
This allows the nil pointer to be represented conveniently by
a logical address consisting of 64 zeros.

2-15

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

2.3.8 Group Descriptors

A Group Descriptor (GD) serves to locate an Object Descriptor
Table for a particular group. The Group Descriptor for the ODT
for group 0 is kept in processor registers: it is Aachine state.
Group Descriptors for groups 1 through 7 are contained in the
Task Control Block (see section 2.3.9), GDs occupy 16 bytes
and have the fomat as shown:

o 31
+------------------------------+
1//////////////////////////////1
+------------------------------+
I VON -- virtual object number 1

GD: +------------------------------+
LB -- lower bound I

+------------------------------+
UB -- upper bound 1

+------------------------------+

The first word of the Group Descriptor will be detailed in
section 4.5. The reroainder of the Group Descriptor contains a
Virtual Range, as in an Object Descriptor. The Virtual Range
locates the ODT in virtual space.
Operating systero software is responsible for ensuring that LB
and UB are Aultiples of 16, so that all ODs in the ODT will be
aligned on 16-byte boundaries.

2.3.9 Task Control Block

The Task Control Block (TCB) of the currently executing task is
a software data structure whose location and layout is known

07/31

to hardware. The 64-bit virtual address of the TCB is kept in a
processor register TCB.VA. The value of this virtual address
can be changed by the "LAUNCH" instruction when perfoming a
task switch.

Operating software Aust ensure that the TCB of the currently
executing task is resident in physical meroory. TCBs for tasks
not currently executing are not in any way constrained by the
VISION arChitecture. The full layout of the TCB is given in
section 4.7. Only the part of the TCB involved in defining
loeical address space is shown here.

2-16

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

+-----------------+
TCB.VA ==) 1111111111111111111

1111111111111/11111
1111111111111111111
1111//111/111111111
+-----------------+

+16 GD I
for I
group I
one I

+-----------------+
+32 GD

for
group
two

+-----------------+
I

I
+-----------------+

+112 I GD
I for
I group
I seven
+-----------------+

+128 1111111111111111111

The TCB virtual address TeB.VA must be a multiple of 16.

2-17

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

2-18

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

+---+--------------+

ADDRESS TRANSLATION CHAPTER 3

+---+--------------+

Softuare running on the VISION architecture interacts uith
memory continually. Softuare is made up of instructions that
must be fetched from memory; memory is read, the data examined,
processed, and the results stored back into memory.
To perform these memony accesses, harduare computes logical
addresses that are then translated to physical addresses.
Computing logical addresses can be as simple as incrementing
the program counter (P) on each instruction fetch, or it may
involve adding together the displacement value out of an
instruction uith the contents of the offset part of a base
register in order to form uhat is called the "effective logical
address". Logical address computation is detailed in chapter 6.
This chapter explains address translation in VISION. Address
translation aluays accompanies a request for access to the
memory system; hence it proves convenient to explain address
translation in the context of such an access.

3.1 An Access -- its Characteristics

A memory access in Vision mode has these three characteristics:

a) a logical address,
b) a length in bytes,
c) a type of access,

LA
L
read/urite/execute/semaphore-read

Read and urite accesses can be performed on entities that vary
in length from 1 through 16 bytes. Execute access (instruction
fetch) can be performed on multiples of 4 bytes.
Semaphore-read is a special type of access that can be performed
only on 4-byte quantities; it consists of a read folloued
indivisibly by a urite of all ones. For purposes of address
translation, the indivisible nature of semaphore-read is of no
import; ue can treat it in this chapter simply as a read
folloued by a urite to the same address.

A multi-byte read (L>l) is implemented as if it uere a sequence
of single byte reads at addresses LA, LA+1, .• , LA+L-l, the
results of uhich are collected into a harduare buffer area. If
any of the single-byte reads fails (e.g. bounds violation or
page fault) the single-byte reads that did succeed are non­
destructive: as far as softuare can tell, no machine state is
modified.

3-1

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

A multi-byte urite is implemented as if it uere a series of
single-byte urites at addresses LA, LA+1, •. , LA+L-1, uith the
proviso that harduare implementations are free to perform the
single-byte urites in any order. This means that if any of the
single-byte urites fails (e.g. bounds violation or page fault),
softuare cannot make any assumptions about the state of the
addressed memory.

Note: an instruction that has a read-urite operand (an operand
that is both read and uritten as part of the same instruction)
must never urite any bytes of the operand unless it can
guarantee that uriting all bytes of the operand uill be
completed. (This accomplished trivially on single-processor
systems by pre fetching the operand; on shared-memory mUlti­
procesor systems it requires that the PDDEL instruction allou
anyon-going instructions to first complete.)

Instruction fetch is like read in that its effect can be vieued
as a sequence of byte-reads into a harduare buffer area,
transparently to softuare.

hlithout loss of generality it is then possible to describe
address translation in terms of single-byte accesses only.

3.2 Access Algorithm

Accessing a byte at logical address LA can be described by an
algorithm, developed in detail over the next feu sections,
that requires the follouing items of machine state as input:

XL - execution level of the harduare
TCB.VA - virtual address to the TCB of the currently

running task
PDIR.PA - physical address of

page directory
the PDIR, the physical

HASH.PA - physical address of the Hash Table

3.2.1 SCheroatic overvieu

The next page shous an overvieu of address translation for
accessing a single byte at logical address LA.

3-2

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

LA [G I LON I LOFF]

v
I locate ODT frolll
I GO for group G

I
v

I locate OD for LON
I in this ODT

I
v

/TYPE and access \
/ rights OK for \ no

< desired access >----------> access violation
\ at level XL? /
\ /

yes
v

Icolllpute virtual address
IVA = [VON I VOFF]
Iwhere VOFF LB + LOFF
I ________ r-______ _

v no
/LB <= LOFF <= UB \------------> bounds violation
\ ? /

I yes
v

lextract VPN=VA[O .. 51]
land POFF=VA[52 .• 63]
1--__ ---.-__ --

v
/search for VPN \ no

< in POIR. Found? >-----------> page fault
\ /

yes
v

IpPN 1S 1ndex 1n PDIR
Iwhere VPN was found

,------~-------
v

/PA [PPN I POFF

,-------.-----
v

laccess byte at PA

,-------------
3-3

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

3.2.2 Hardware Shortcuts in Address Translation

The architectural definition of address translation should by
no lIleans be read as a precise indication of all the steps
perforllled by hardware in their precise order.
In order to be cost-effective, hardware "lIlust cheat but not
get caught". Just as a cache holds recent 1Il9lllory accesses in
a faster but SIIlaller type of lIlelllory, so can hardware e!Ilploy
various types of devices to speed up address translation by
setting aside recent results of address translation. The lIlost
trivial eXa!Ilple would be locating the eight ODIs. Hardware lIlay
do this only once after a task switCh and keep the virtual range
of each ODT for the current task in sOllle internal register.
This involves a trade-off between the speed of the task switch
itself and the speed of all subsequent address translations.
Hardware lIlay also choose to keep recent pairs of
(logical address, physical address) around, or recent pairs of
(LOI, aD) and/or recent pairs of (VPN,PPN).
Any such association of recent pairs that are preSUlllably useful
in bypassing parts of the address translation algorithlll is
referred to in this docUlllent by the na!Ile "TLB", short for
"Translation Look-aside Buffer".

Address translation is effected through address translation
tables that are in part task-specific, in part syste!ll-wide.
Changes in address translation are relatively infrequent, e.g.
(VPN,PPN) associations becollle outdated only on page swaps,
(LOI, 00) associations becollle outdated only on task switches and
on explicit changes to ODTs brought about by the object
lIlanag9lllent facility in VISION operating systelll software.
Because these changes are relatively infrequent, and because the
situations in which they arise are under explicit operating
systelll software control, it is particularly cost-effective to
recognize architecturally the existence of sOllle kind of TLB,
while leaving the exact nature of the TtB to the discretion of
the hardware iIIlplelllentatron:--

The existence of the TLB is recognized architecturally in VISION
by requiring operating software to issue explicit instructions
that warn hardware of the fact that the conditions for address
translation have changed and that infornation in the TtB lIlay no
longer be up to date. Address translation look-aside in VISION
hardware therefore need not be cOlllpletely transparent with
respect to changes in addressing tables.

3-4

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

3.3 Logical to Virtual Address Translation

Logical to virtual address translation for logical addresses in
groups one through seven is similar, but not identical, to
translation of logical addresses in group zero. The differences
are limited to the May the ODT for the group is located.
In actual hardMare implementation, even these differences may be
absorbed in the Mork performed on a task SMitch after Mhich the
logical to virtual translation is done in the SaAe May for all
groups.

3.3.1 Locating the ODT in Virtual Space

Starting out Mith a logical address:

012 3 31 32 63
+---+-------------+------------------+
1 G 1 LON LOFF
+---+-------------+------------------+

it is first necessary to locate the ODT for group G in virtual
space.

3.3.1.1 Locating the ODT for Group Zero.

Locating the ODT for group 0 is very simple: the Group
Descriptor for group 0 (GDO) is kept in a processor register.
This Group Descriptor includes a Virtual Range that delineates
ODTO in virtual space. See section 4.5 for more detail.

3.3.1.2 Locating the ODT for a Group Other than Zero

Locating the ODT for group G, Mhere G>O, requires accessing
the TCB of the currently executing task in order to obtain
the Group Descriptor for group G. The TCB is accessible to
hardMare through the TCB.VA virtual address; TCB.VA is kept
in a processor register.

3-5

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

In practice, hardMare impl~entations may choose to access
the TCB once on IEXIT and copy the seven Group Descriptors
into processor registers.

3.3.2 Locating the aD for the Logical Object

Having located the ODT in virtual space through the Group
Descriptor GD, the Object Descriptor OD of the logical
object can nOM be found by computing:

+--------------------+------------------------+
VON(from GD) 1 LB(from GD) + 16 * LON 1

+--------------------+------------------------+
virtual address of OD

This OD can nOM be accessed in virtual space using the procedure
described in section 3.4. Note: a hardMare implementation may
choose to cache recent pairs of (LOI, aD).

+---+------------+-----------------+ 1 G 1 LON 1 LOrr 1
+---+----1-------+-----------------+

I logical address
1

I
ODT 1

+----+ I
1

1

I +----+----+------------+
1 / 1 AR ITYPEI////////////I
v / +----+----+------------+

+----+ ----------/ VON - virt obj nr I
I OD 1 +----------------------+
+----+ ----------\ 1 LB - lOMer bound 1

\ +----------------------+
\ 1 UB - upper bound

+----------------------+

+----+

3-6

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

3.3.3 CONputing the Virtual Offset

Having located the aD for the logical object, type checks and
access right checks can nom be perforNed. Softmare Nust be
inforNed of any violation uncovered in these checks (through
the trap NechaniSN detailed in chapter 7)

FroN this aD and the logical offset LOFF, the virtual address

+----------------+-----------------+
VON VOFF

+----------------+-----------------+

can nom be cONputed as: VOFF = LB + LOFF (in mrap-around 32-
bit tmo's cONpleroent arithroetic). Homever, softmare roust be
alerted of a bounds violation if LB (= VOFF (= UB does not hold.

3.4 Virtual to Physical Address Translation

Translating a virtual address (64 bits) to a physical address
(32 bits) Neans translating a 52-bit virtual page number (VPN)
into a 20-bit physical page number (PPN) and carrying the 12-
bit page offset (POFF) along, as indicated in the sketch.

o 51 52 63
+------------------+---------+

VPN POFF
+------------------+---------+

o 19 20 31
+----------+---------+

PPN POFF
+----------+---------+

3-7

virtual address
II
II
II
\I

physical address

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

3.4.1 Physical Page Directory Search

The translation of a virtual page number VPN into a physical
page number PPN Nay give different results over tiNe as pages
are smapped in and out of physical NeNory. It is the
responsibility of operating systeN softmare to Naintain the
page directory PDIR (see section 2.2.3) mith the help of the
instructions PDINS and PDDEL. The page directory PDIR gives
the current association of physical pages mith virtual pages.
For each physical page PPN there is a physical page descriptor
PPD (see section 2.2.2) that describes the VPN currently
associated mith it. In principle, it is therefore sufficient
to do a linear scan over the PDIR looking for a PPD that has
the correct VPN in it; this identifies the proper PPN or else
it establishes that no physical page is associated mith this
VPN and a page fault is thereby indicated.
Homever, a linear scan mould be unacceptably slom even mhen
hardmare keeps enough recent pairs (VPN,PPN) around in a TLB
to produce an excellent hit rate. The entire PDIR mould have
to be scanned in order to establish, for instance, that the
virtual page is nowhere in physical NeNOry (page fault trap).
The VISION architecture therefore defines a hashing teChnique
in order to speed up the search for the right virtual page
nUNber and to speed up detecting a page fault condition.

3.4.2 OVerviem of Hash Table and Hash Chain

In order to avoid having to scan large parts of the PDIR on
a virtual page to physical page translation, a hash value
is cONputed froN the VPN:

H = hash (VPN);

mhere the hash function "hash" is described in section 3.4.5.
All PPDs in the PDIR of virtual pages that have the SaNe hash
value H are chained together and the beginning of the chain
can be found in the hash table HASH. These chains and the
hash table HASH are Naintained mith the help of the PDINS and
PDDEL instructions.

The number of entries in the HASH table (mhich roust be a pomer
of tmo) should be at least of the SaNe order as the number of
entries in the PDIB in order to keep the chains acceptably
short. The number of entries in the PDrR is deterNined by the
number of physical pages in the hardmare configuration.

3-8

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

Note that by its very nature the pages that make up the PDIR
itself must never be absent and the entire PDIR must be
contiguous in physical memory. The VISION architecture
places the same constraints on the HASH table. Both POIR
and HASH are located through processor registers HASH.PA and
POIR.PA that contain the physical address of each table.

o 51
+------------------+
1 VPN 1
+-------1----------+

1
v

+---------+
1 hash I
lalgorithrol
+----1----+

1

+---------+ 1 HASH table
1 HASH.PA 1-------1------------->+------------+
+---------+ I 1 1

1 1 1
1 1 1
1 +------------+

H +------------->1 PPO addr 1------+ hash
+------------+ 1 bucket

I
1

1
+------------+ 1

1

+----------------------------+
I

+---------+ 1 PDIR
I PDIR.PA 1-------------1------->+------------+
+---------+ 1 I I

1 +------------+
head of +------->IVPNlnext PPDI------+ =====>PPN
hash chain +------------+ 1

1 hash
1 chain

+---+--------+ 1
Ivpnl 0 1<-----+
+---+--------+

+------------+

Overview of virtual to physical page translation

3-9

07/31 VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COpy HP PRIVATE INFORMATION

Note that the only actions ever performed on a 52-bit VPN are:

a) computing the hash function

b) comparing for equality against a field in the PPD.

The latter can be implemented by two 32-bit compares. The VPN
acts purely as a tag and never participates in 52-bit arithroetic.

3.4.3 The Hash Table

The Hash Table is a collection of "hash buckets", each 32 bits
long. The physical address of the hash bucket is calculated as

HASH.PA + 4 * H, where H = hash (VPN),

as described in section 3.4.5.

The format of a hash bucket is:

o 1 31
+-+-------------------------------+
lSI PPD locator (---- bucket for H.
+-+-------------------------------+

PPD locator: this value is the physical byte address of
one of the PPDs associated with a virtual page that
hashes to the value H. There may be more than one
such PPD, in which case the locator will simply
point to the head of a linked list; or there may
be none, in which case the PPO locator will be zero.
A zero value for the PPD locator will indicate a
page fault.

S semaphore bit. Available for use by POINS and POOEL
to synchronize changes in the HASH and POIR tables
in a shared-memory multiprocessor system. Outside
such use, hardware may assume that its value is zero.

Note: To avoid ambiguity in the definitions shown above, the
PDIR must reside in the first half of physical address
space. The PDIR must not start at physical page zero.

3-10

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

3.4.4 PPD Format to support Hashing and Related Functions

Each PPD is a 16-byte entity whose physical address is related
to the physical page nuMber PPN through the formula

physical address of PPD = PDIR.PA + 16 * PPN.

The PPD forNat is detailed below:

where

VPN

o 1
2 2 2 2 233
0178901

+-+----------------+----+---+-+-+-+
lSI PPN (20)IMBZ IDBEIRlclDI
+-+----------------+----+---+-+-+-+

VPN - virtual page nuMber (32) I
+ +---------------+

(20)1 MBZ I
+-----------------+---------------+

next PPD locator I
+---------------------------------+

virtual page nuMber. This is the virtual page
currently associated with the physical page PPN.
If this field Natches the VPN of the virtual address
being tranSlated, the right physical page has been
found. If no Natch occurs, the PPD at the "next PPD
locator" should be checked for a Natch.

next PPD locator: a physical byte address used to locate
the next PPD that contains a virtual page nUNber that
hashes to the SaNe HASH value as VPN. This field is
consulted only if the VPN in the current PPD does not
produce a Natch. If the entry is then found to be
zero, it means that the end of the chain has been
encountered, and a page fault trap is indicated.

PPN physical page nuMber. This field is redundant as it
can be easily derived frON the physical address of
the PPD, but it is available for hardware use.
It is the responsibility of operating systeN software
to ensure that PPN is at all tiNes consistent with
the PPD address.

D dirty bit. Set to one by the processor on each write
access to the page. To be cleared by operating syste
software when the page is written out to secondary
storage. D is not affected by I/O traffic.

3-11

07/31

c

R

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

checkpoint dirty bit. Set to one by the processor on
each write access to the page. To be cleared by
operating systeN software. It Nay be used at the
discretion of the operating systeN.

reference bit. Set to one by the processor on each
access to the page. Operating systeN software will
clear this bit on a periodic basis such that finding
the reference bit set can be interpreted to Nean that
the page was referenced recently (either explicitly
by the progr~ or iNplicitly by certain prefetch
hardware). R is not affected by I/O.

DBE debug breakrange enabled. Set to one by operating
system software whenever the page contains any part
of the systeN or local breakrange. Hardware bypasses
the breakrange checks when accessing a page with
DBE zero. See section 5.3.2 for more detail.

S seNaphore bit. For hardware use in synchronizing
write access to the reference and dirty bits in a
shared-memory Nultiprocessor configuration. Before
and after such use, S NUSt be zero.

MBZ must be zero. It is the responsibility of operating
systeN software never to introduce a non-zero value
into this entry. Hardware Nay assume the field is
zero and it need not check this.

SPECIAL NOTES:

1) To avoid ambiguity in the above definition, the PDIR Nust
reside in the first half of physical address space, yet NUst
not start at physical address zero. The physical address
PDIR.PA NUSt be a Nultiple of 16.

2) Software must not access (read or write) the PPDs, but must
instead rely on special instructions to deal with theN:

PDDEL - reNove a PPD frON its hash chain
PDINS - insert a PPD in its hash chain
TESTREF - read and reset reference bit

Only a PPD not currently in a hash chain (e.g. after PDDEL
has extracted it) Nay be accessed by software.
These restrictions siNplify hardware synchronization.

3) Shared-NeNory Nultiprocessor iNpleNentations that use
write-to TLBs Nay use the MBZ field as a seNaphore area in
order to synchronize writing out dirty and reference bits.

3-12

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

3.4.5 The Hash Algorithm

The purpose of the hash algorithm is to break up the long list
of physical page descriptors PDIR into a large nu~ber of short
chains so that, in order to find the physical page corresponding
to a given virtual page, only the physical page descriptors in a
single short chain need be scanned. In order to keep the chains
short, the hash algorithm ~ust succeed at producing different
hash values for those virtual pages that are likely to be in use
si~ultaneously. The hash algorit~ used in VISION acco~plishes
that by producing different hash values for those virtual pages
that are allocated by the operating syste~ closely together in
ti~e. The VISION hash algorit~ cannot succeed in doing so
without so~e ~ini~~ cooperation fro~ operating syste~ software.
In particular, allocation of virtual ~e~ory is as~ed to be
done either contiguously within the s~e virtual object or else
in units of an entire virtual object. The hash algorit~ can be
defeated by the operating syste~ allocating virtual m~ory in
2A25 byte slots, for instance.

The hash algorithm presented here is really a family of hash
algorithms, parameterized by the single quantity K. It takes
a virtual page n~ber as input and produces a 32-bit number:

H[0 .. 31-K] := 0;
H[32-K .. 31] := hash(VPN);

The n~ber of hash buckets in the HASH table ~ust be a power
of two: 2AK. The HASH table length is therefore 4*2AK bytes.

The hash algorithm is sketched below. A PASCAL version of the
hash algorithm is given on the next page.

+--+
Virtual Page N~ber (VPN)

+--+
0 1 2 3 4 5
0123456789012345678901234567890123456789012345678901

1 II II II 1
1<---11<----------11<----11<----------1

/ K bits / K bits
/ /

/ Field_3 / Field_l
/ /

K-~in(20-K,K) ~in(20-K,K)
bits bits

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

a) Field 1 is defined to go from bit 52-K to bit 51.

b) Field 2 is divided into two parts. The most significant bits
are defined to start at bit 32-2*K+~in(K,20-K) and go to bit
31-K. Note that this part is empty for K<10.
The least significant bits are defined to start at bit 32 or
52-2*K, whichever number is the greatest, and go to bit 51-K.

c) Field_3 is defined to go fro~ bit 32-K to bit 31.

d) Field 1R is defined to be Field_1 with the bits collected
in reverse order.

e) The K-bit hash value is obtained from taking the bit-wise
exclusive-OR of the fields Field_1R, Field_2 and Field_3.

Here is the PASCAL definition:

const K = {value between 5 and 17};
type bitfield: array[0 •. 31] of 0 •• 1;

virtpageno: array[0 .. 51] of 0 •• 1;
function hash(VPN: virtpageno): bitfield;
var i,j,~,n: integer; Fl,F2,F3,H: bitfield;
begin

j := 51-K; ~:= 31-K; n:= 52-K;
for i := 31 downto 32-K do
begin

F1[i] : = VPN[n];
n:=n+1'

F3[i] : = VPN[ij;
if j >= 32
then begin

F2[i] := VPN[j];
j : = j-1;

end
else begin

F2[i] :=VPN[~];
~ : = m-l;

end;
end; •
for 1 := 0 to 31-K do H[i] .= 0;

07/31

for i '= 32-K to 31 do H[i] .= Fl[i] xor F2[i] xor F3[i];
hash := H;

end {hash};

3-13 3-14

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

3.4.6 Page Faults

The virtual to physical address translation either succeeds in
finding the physical location corresponding to the virtual
location, or it fails. Failure gets reported to software as
a page fault trap. Operating system software is responsible
for making room in physical memory and bringing in the virtual
page from secondary storage and returning control so that the
instruction originally causing the page fault can now make
progress. It is the responsibility of operating system
software to maintain data structures that allow it to locate
virtual pages on secondary storage. It is the responsibility
of hardware to recover the machine state, on detecting a page
fault, that allows the current instruction to be restarted
(or "step-restarted", see chapter 7) transparently to the
user program after the page fault has been resolved by
operating system software.

Certain programs that make up the operating system software
cannot themselves sustain page faults during their execution
either for inherently logical reasons (e.g. the driver for the
paging device must always remain in physical memory), or for
timing-dependent reasons. Guaranteeing that all virtual pages
accessed by such operating system software are present in
physical memory ("resident") is itself the responsibility of
operating system software. There are no architecturally defined
data structures that prevent physical pages from being swapped
out.

3-15

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

3-16

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

+---+----------------+
PROCESSOR REGISTERS AND MACHINE STATE CHAPTER 4

+---+----------------+

This chapter describes the various registers that are available
for use by Vision software and also the processor registers that
support the VISION addressing structure.

Vision offers 16 programmable registers of 32 bits for general
program use and 8 registers of 64 bits specifically to hold
logical addresses. VISION's vector processing capability is
supported through 8 vector registers, each capable of holding up
to 256 elements, each element being capable of holding a 128-bit
IEEE floating point number or any smaller data type.
Various status registers record conditions or modify behavior of
instruction execution.

The processor registers described below all exist outside the
address space. Registers do not have addresses. No "normal­
looking" writes to memory will in fact write to a register.
All changes to register values are explicit, i.e. through use of
instructions such as MOVEf/tSP or as side-effects of instruction
execution as explicitly provided for in chapter 6.
This allows low-end VISION hardware implementations to implement
some of the less frequently used processor registers by using
hardware-reserved memory locations: locations in physical memory
that are not mapped into virtual or logical address space.
Chapter 9 provides details on where hardware-reserved memory
should be located.

4.1 General/Index Registers

In Vision mode, software has access to 16 registers KO, Xl, •. ,
K15, each of which is 32-bits wide. These registers can be used
for general expression evaluation, for passing parameters to
procedures, for allocation of local variables in a procedure and
for holding index values in address calCUlations.
Registers can be used singly, in pairs or quads to hold values
comprising 32, 64 or 128 bits.
The registers are not typed. Their contents are interpreted
according to the type of operation being performed.

4-1

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

4.2 Base Registers

In Vision mode, software has access to 8 registers BO, Bl, •• ,B7,
each 64 bits wide and capable of holding a logical address.
Registers B6 and B7 are better known as Q and S, respectively;
Q and S support stack addressing and the calling mechanism
described in chapter 5. The base registers can be loaded and
manipulated as detailed in section 6.2.5.

4.3 Program Counter

The Vision program counter is a 64-bit register P. It contains
a 64-bit logical address that points to an instruction in the
current code object. The value of P changes as instructions are
executed; normally, P is incremented to point at the next
instruction in sequence. Branches and other transfer of control
instructions will cause P to change explicitly. External events
such as external interrupts may preempt the currently executing
program and force execution to continue at a well-defined place.
Transfers of control other than branches will leave a record of
the old value of P; this is detailed in chapter 5.

4.4 Status Registers

The status registers combine various fields of machine state in
a convenient and compact form. There are six 32-bit words of
status, divided into four logical groups:

1) STATUSA -- The STATUSA register represents the part of
the machine state that is local to the execution of the
current code object. STATUSA is shown as an 8-bit
register left-justified in a 32-bit word. STATUSA[0 •• 7]
is stored in the procedure marker for an external
procedure call and restored on the corresponding EXIT.
Similarly, STATUSA is stored in an interrupt marker on
an interrupt (external or internal), and restored on the
corresponding IEXIT.

4-2

07/31

VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

2) SIATUSB -- The SIATUSB register represents the part of
the ~achine state that is local to a task activation or
the activation of an interrupt handler. For tasks not
currently active (suspended by an interrupt or by the STATUSA
DISP instruction) the value of SIATUSB is stored in the
interrupt ~arker for that task. SIATUSB is restored from
the interrupt ~arker on IEXIT (or LAUNCH). SIATUSB is
initialized to a kno~n value on an external interrupt and
on entering the dispatcher.

3) STATUSC -- The STATUSC register represents the part of
the machine state that is local to a CPU/processor.
This ~eans that the SIATUSC register is replicated for
each processor in a shared-memory ~ulti-processor syste~
and its values are specific to each processor in that
syste~.

4) SIATUSD -- The SIATUSD register represent the ~ost
global of all status information. This status is shared
~ong all CPUs/processors in a shared-~e~ory ~ulti­
processor syste~. This ~plies that a change to STATUSD
must be communicated synchronously to all processors.

The next page shoros an overviero of all status registers ~ith
their constituent fields.

4-3

SIATUSB1

SIATUSB2

STATUSC1

STATUSC2

SIATUSD

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

o 12 3 4 5 6 7 8
+-+--+---+---+---+---+ +-
!1!XL!SIT!IIP!DBP! !!
+-+--+---+---+---+---+ +-

012 3 4 5
1 1 111
o 1 234

3
1
-+

-+

3
1

+---+---+----+------+---+---+----------------+
IPTEIDISplvectorlTCEIXTLI

+---+---+----+------+---+---+----------------+

o 134
1 1 1 1 1 2
2 3 4 5 9 0

2 22 33
7 89 01

+-+---+---------+---+---+-----+--------+--+--+
I IFPcl TE ICBAICBBI EF ICCI "I
+-+---+---------+---+---+-----+--------+--+--+

o
22233
7 8 901

+------------------------------+--+---+---+--+
DDC IXMIICSIDRFIIEI

+------------------------------+--+---+---+--+

o
1 1
5 6

3
1

+--------------------+-----------------------+
I~

+--------------------+-----------------------+

o 123
3
1

+-+---+--------------------------------------+
I IDRLI REVCODE
+-+---+--------------------------------------+

4-4

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

4.4.1 STATUSA Register

4.4.1.1 F0rI11at

o 12 3 4 5 6 7 8
3
1

+-+--+---+---+---+---+ +- - -+
STATUSA 111XLISITIIIPIDBPI I I

+-+--+---+---+---+---+ +- - -

STATUSA -- Procedure Status

4.4.1.2 SUmmary

Field N~e Bit Positions

XL -
SIT­
IIP­
DBP-

Execution Privilege Level
Single Instruction Trace
Instruction In Progress
Debug Breakpoint Pending

1-2
3
4
5

4.4.1.3 XL - Execution Privilege Level

- - -+

This specifies in Mhich of the four protection rings the
processor is currently executing. Ring (or Level) 0 is
most privileged and ring 3 is least privileged.

Change of execution privilege level is accomplished by one
of three instructions. The CALLX instruction can grant
extra privilege or leave it the s~e, but Mill never take
privilege away. The EXIT instruction (or IEXIT) may take
privilege aMay or leave it the s~e, but Mill never grant
extra privilege.

The CALLX instruction deter~ines the privilege level of the
target code object fro~ the execute access right field in
the OD for the code object. This field identifies the least
privileged level at Mhich code Mithin that object ~ay
execute. Calls to that object auto~atically begin execution
at that level, or the level of the caller, Mhichever is ~ore
privileged.

4-5

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

The EXIT instruction restores the privilege level of the caller
if caller and called procedure reside in different code objects.
It does this by extracting the privilege level of the caller
from the procedure stack marker after applying a consistency
check on it. EXIT ~ay never grant the caller ~ore privilege
than the current privilege level.

4.4.1.4 SIT -- Single Instruction Trace

This bit can only be set as a side effect of an external EXIT.
Yhen this bit is found set at the co~pletion of an instruction,
a trap is taken. This allows tracing the execution of software
one instruction at a time. The SIT bit is automatically cleared
as part of the trap initiation.

4.4.1.5 lIP -- Instruction In Progress

07/31

So~e instructions can be interrupted before they are co~pleted.
These instructions are co~posed of "steps", as detailed in
chapter 6. Yhen such an instruction is in fact interrupted, the
lIP bit is set and certain info~ation is pushed onto the stack.
Yhen the instruction is re~ed after an IEXIT, finding lIP set
indicates to hardware that the instruction is being re~ed
rather than restarted, and hardMare acts accordingly. A similar
situation arises Mhen a "step-restartable" trap occurs in an
interruptible instruction. The EXIT instruction that concludes
the trap handler Mill restore the lIP bit and this indicates to
hardMare that so~e instruction steps have already been c~pleted.

4.4.1.6 DBP -- Debug Breakpoint Pending

DBP is set to one by hardware whenever an instruction modifies
one of the bytes in the syst~ breakrange or the task breakrange
(subject to the Debug Ring Level described in section 4.4.4.3).
If the DBP bit is found set at the completion of an instruction,
a debug trap is taken.
The DBP bit is cleared as part of the debug trap initiation.
See section 4.8 for more detail.

4-6

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

4.4.2 STATUSB -- Task/Interrupt Status

4.4.2.1 Fomat

012 3 4 5
1 1 111
o 1 234

3
1

+---+---+----+------+---+---+----------------+
STATUSBl I PTEIDISPlvectorlTCEI XTLI

+---+---+----+------+---+---+----------------+
STATUSB -- Task/Interrupt Status - Privileged

o 134
1 1 1 1 1 2
2 3 4 5 9 0

2 22 33
7 89 01

+-+---+---------+---+---+-----+--------+--+--+
STATUSB2 I IFPCI TE I CBAI CBBI EF Icci

+-+---+---------+---+---+-----+--------+--+--+

STATUSB -- Task/Interrupt Status - User Accessible

4.4.2.2 SUmmary

Field naJlle

PTE -- Procedure Trace Enable
DISP -- Dispatcher Running Flag
vector-- Vector Register Control
TCE -- Task Clock Enable
XTL EXIT threshold level
FPC -- IEEE Floating Point Control:

Projective/Affine Mode
RM - rounding mode

TE -- Trap enables:
Floating Point Operations:

FLDVDZE -- Divide by zero
FLOVFE -- Overflow
FLINVE -- Invalid Operation
FLUNFE -- Underflow
FLINXE -- Inexact Result

4-7

Yord Bit Positions

B1 3
B1 4
B1 5-10
B1 11
B1 12-13

B2 1
B2 2-3

B2 4
B2 5
B2 6
B2 7
B2 8

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Field naJlle

CBA
CBB
EF

CC

Integer Operations:
INTDVDZE-- Divide by zero
INTOVFE -- Overflow

Decimal Operations:
DECDVDZE-- Divide by zero
DECOVFE -- Overflow

Conditional Break Enable, A
Conditional Break Enable, B
Exception Flags:

aVF -- Overflow
DVDZ -- Divide by zero
Floating Point Operations:

FLINV -- Invalid Operation
FLUNF -- Underflow
FLINX -- Inexact Result

Condition Code

4.4.2.3 PTE -- Procedure Trace Enable

Yord Bit positions

B2 9
B2 10

B2 11
B2 12
B2 13
B2 14

B2 15
B2 16

B2 17
B2 18
B2 19
B2 28-29

lJhen PTE has the value one, all procedure calls (CALL, CALLX
and BRX) will cause a restartable trap, subject to the value
in the DRL field in STATUSD.

4.4.2.4 DISP -- Dispatcher Running Flag

07/31

DISP is one when the dispatcher is running. The dispatcher runs
on the bottom of the Interrupt Control Stack. Because DISP is
part of STATUSB, it gets saved in the Interrupt Marker (and then
cleared). This makes it possible for IEXIT to determine, as it
is removing an interrupt marker, whether to return to another
interrupt handler or whether to resume or restart the dispatcher.
The DISP bit in the Interrupt Marker must not be modified by
software.

4.4.2.5 vector -- vector register status

The vector capability of the VISION architecture is described
in section 4.11.

4-8

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

4.4.2.6 TCE -- Task Clock Enable

When this flag is set to one, the task clock will be running.
This ~eans that the task clock value will be incrementing
itself at a fixed rate. When TCE is clear, the value of the
task clock will not change unless explicitly changed by progr~
control. See section 7.2.

4.4.2.7 KIL -- EXIT Threshold Level

On executing the EXIT instruction, hardware checks to see if
the execution privilege level is being changed to a privilege
level less privileged than the value in the KIL field. If so,
EXIT will instead trap out and transfer control to the INSKIL
trap handler. See section 5.3.6.

4.4.2.8 FPC -- IEEE Floating Point Control

The IEEE floating point standard govens floating point operation
in Vision ~ode. Refer to that publication for further detail.

Projective/Affine ~ode:
0: Projective ~ode
1: Affine ~ode
This affects the way infinity is treated.

Rounding ~ode:
0: round to nearest unit (breaking ties by rounding to

even value)
1: round toward plus infinity
2: round toward zero
3: round toward ~inus infinity

4.4.2.9 TE & EF -- Trap & Exception Flags

The TE (trap enable) and EF (exception flags) fields are for a
~ber of conditions which can occur during the execution of an
instruction which ~ay require special handling by the user
progr~. Five of these relate to floating point operations

4-9

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

and are defined by the IEEE standard. Integer data types follow
the nor~al rules for 2's co~ple~ent arithmetic whereas decimal
data types are described in section 6.3.
When an exception condition occurs, the trap enable bit is
consulted to dete~ine whether the exception should result in a
trap. If the trap is disabled, the corresponding exeption flag
is set. The exception flags act as "sticky bits" that record
the occurrence of exception conditions at any time during which
traps were disabled. Hardware never resets the exception flags;
nor will an exception flag, when set, cause a trap when the trap
is subsequently re-enabled~

4.4.2.10 CBA & CBB -- Condition Break Enable Flags

The CBA and CBB fields control the operation of the CHECKA and
CHECKB instruction, respectively. CHECKA causes a trap when CBA
is found set, and acts as a NOP when CBA is clear. In addition,
instructions are provided to set or test the value of the CBA
and eBB fields.

4.4.2.11 CC -- Condition Code

The condition code field in the STATUSB registe~ reflects the
result of the ~ost recent test or co~pare operation.
The four values of CC are indicated in this document ~ostly
through mn~onics (CCG,CCE,CCL,CCU) as follows:

CC ~n~onic stands for:
-------- --------------------------

0 CCG condition code "greater"
1 CCL condition code "less"
2 CCE condition code "equal"
3 CCU condition code "unordered"

On a Co~pare instruction, CC is given the value "CCG" if the
first operand is greater than the second operand. With a Test
instruction, CC is given the value "CCG" if the first (only)
operand is greater than zero. Similarly for CCL and CCE.
CC is given the value CCU only on floating point co~pare or
floating point test when the two values being co~pared are
"unordered" with respect to each other according to the IEEE
floating point standard.

4-10

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

So~e instructions other than Tests and Co~pares cause CC to get
set. These instructions are eKPlicitly designated in chapter 6.
All other instructions leave the condition code field unaltered.

4.4.3 STATUSC -- CPU Status

4.4.3.1 Forl1lat

o
22233
1 8 9 0 1

+--------------------------+--+---+---+--+
STATUSC1 DDC I XM I I CS I DRF I I E I

+--------------------------+--+---+---+--+

o
1 1
5 6

3
1

+-------------------+--------------------+
STATUSC2 1MB

+-------------------+--------------------+

4.4.3.2 SumlIlary

Field n~e Yord

DDC
XM -­
ICS -­
DRF -­
IE
1MB --

Dispatcher Disable Count C1
Execution Mode C1
On Interrupt Control Stack C1
Dispatcher Request Flag C1
Interrupt Enable/Disable C1
Interrupt Mask Register C2

4.4.3.3 DDC -- Dispatcher Disable Count

Bit Positions

0-27
28
29
30
31

16-31

The value of DOC is incre~ented by the PSDB instruction and
decre~ented by the PSEB instruction. The function of DDC is to
~onitor when it is appropriate to enter the dispatcher. As long
as DOC is non-zero) the dispatcher is not per~itted to run.

4-11

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

4.4.3.4 XM -- Excecution Mode

XM defines the current ~ode of execution. Yhen XM has the value
zero) hardware executes in Vision ~ode. Yhen XM has the value
one) hardWare executes in HP3000 ~ode. The value of XM changes
as a consequence of executing any of the variants of SlJITCH.
Also) any transfer of control to the Interrupt Control Stack
fro~ HP3000 ~ode will cause XM to be zero.

4.4.3.5 ICS -- On the Interrupt Control Stack

This flag is set to one when execution switches to the Interrupt
Control StaCk) e.g. on an external interrupt. This flag is
cleared on an IEXIT that returns control to a task.

4.4.3.6 DRF -- Dispatcher Request Flag

This flag is set to one by the DISP instruction if access to
the dispatcher is t~porarily deferred. In order to enter the
dispatcher) the following conditions ~ust be s~ultaneously
satisfied:

a) STATUSC.DDC 0
b) STATUSC. XM 0
c) STATUSC.ICS 0
d) STATUSC.IE 1

Yhen DRF is one) any action that causes either condition (a)
or (b) or (c) or (d) to beco~e satisfied will reex~ine all
four conditions; if all four are now found satisfied) the
dispatcher will be entered.

4.4.3.7 IE & 1MB -- Interrupt Enable/Disable & Mask Register

The 1MB field deter~ines which external interrupts are allowed
to alter the flow of control. If IE=O) no interrupts can alter
flow of control) overriding the value of 1MB. See section 7.2
for ~ore detail.

4-12

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

4.4.4 STATUSD -- Computer Status

4.4.4.1 Format

o 123 31
+-+---+--------------------------+

STATUSD I IDRLI REVCODE
+-+---+--------------------------+

4.4.4.2 Summary

Field naroe

DRL Debug Ring Level
REVCODE -- SPU Revision code

4.4.4.3 DRL -- Debug Ring Level

Bit positions

1-2
3-31

07/31

This field defines Mhich execution ring levels are subjected to
the debug breakrange traps. Specifically, the System Breakrange
trap and the Task Breakrange trap as Mell as the procedure trace
trap are enabled only at ring level DRL and less privileged
rings. Typically, DRL equals 1 in order to alloM I/O to proceed
at full speed even Mhile debugging at all other privilege levels.
HOMever, highest privilege code can be debugged too, by setting
DRL to zero.

4.4.4.4 REVCODE SPU Revision Code

This is a unique number assigned at the factory for each SPU or
version of an SPU which differs significantly from a prior
version. The most significant 13 bits are unique for each SPU;
bits 16-31 identify each significant revision of the SPU.
This is NOT a serial number: it is not unique for each unit.

4-13

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

4.5 Group Descriptors

Address translation of logical addresses to virtual addresses
requires the hardMare to be able to locate the eight Object
Descriptor Tables. Eight Group Descriptors (GO) serve to locate
these ODTs. The Group Descriptor for group zero is kept in a
processor register; it can be thought of as an extension of the
STATUSD register. The Group Descriptors for groups one through
seven exist in the Task Control Block (TCB) of the currently
executing task. All eight Group Descriptors have the same
format, Mhich is described beloM. The TCB is located by
hardMare through the TCB.VA virtual address; TCB.VA is kept in
a processor register that can be considered as an extension of
STATUSC. The format of the TCB is described in section 4.7.

GO:

I
LON I

012 3 31 I
+---+---------------------------+ V
I 0 I LON--Iogical object number I
+---+---------------------------+
I VON -- virtual object number I <===>
+-------------------------------+
I LB -- lOMer bound <===>
+-------------------------------+

UB -- upper bound <===>
+-------------------------------+

+----+

+----+ \
1////1 I
+----+ I
I VON I I
+----+ > OD
ILB I
+----+ I
IUB I
+----+ /

+----+
ODTO

07/31

The last three Mords of the Group Descriptor contain the Virtual
Range that locates the ODT in virtual space. The first word of
the Group Descriptor contains the Logical Object Id of an object
in Group O. This LOl exists for the purpose of allowing certain
hardMare TLB organizations.
Operating system software must ensure that the Virtual Range
contained in the OD identified by LOl is identical to the virtual
range contained explicitly in the GO.

4-14

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

4.6 Virtual address translation registers

Hardroare must be able to locate the Hash table and the Page
Directory in physical memory; this is necessary for being able
to do virtual to physical address translation.
Troo processor registers serve this purpose; they can be thought
of as an extension of srAWSD.

o 19 20 31
+-----------------------------+------------+

HASH.PA Iphysical page number of Hash 10000000000001
+-----------------------------+------------+

o 27 28 31
+-------------------------------------+----+

PDIR.PA page directory locator 100001
+-------------------------------------+----+

HASH.PA contains the physical address of the Hash table; this
address must be page aligned.

PDIR.PA contains the physical address of the Page Directory
PDIR; this address must be aligned on a 16-byte boundary.

4-15

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

4.7 Task Control Block

Hard~are needs a certain aroount of information in order to
execute the current task. This information is stored in the
Task Control Block (TCB), located by a register TCB.VA.
This TCB.VA register can be thought of as an extension of
srAWSC. TCB.VA must be a multiple of 16. The length of the
TCB is 176 bytes. Also, the TCB must be memory resident.

A 64-bit register TCB.LA accompanies TCB.VA; operating system
soft~are is responsible for ensuring that the logical address
TCB.LA does in fact translate into the virtual address TCB.VA.
Moreover, the logical address TCB.LA must have a zero group
selector. Hardroare implementations are free to use either
TCB.LA or TCB.VA to locate the TCB.
A task sroitch is accomplished by Dispatcher softroare through
simultaneously changing the TCB.VA and TCB.LA registers.

/TCB.LA
\TCB.VA ==)

+4

+8
+12

+16
+20
+24
+28

+32

+108

o 1 2 31
+--+----+----------------+
IXMIShlIPI reserved
+--+----+ for +

hardware
+------------------------+
1 TCBK.LA -- logical addrl
1 of TCB extension 1
+------------------------+

1
GD1 -- group descriptor 1

for group 1 1
1

+------------------------+

+------------------------+
+112 1 1
+116 1 GD7 -- group descriptor 1
+120 1 for group 7 1
+124 1 1

+------------------------+
+128
+132 Task Breakrange
+136 Descriptor
+140

+------------------------+
+144 I

4-16

07/31

TCB.VA

XM

+144
+148

+152
+156

+160
+164

+168

+172

+176

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

+------------------------+ \
I SC - HP3000 l1lode I
I Stack Pointer I
+------------------------+ > HP3000 mode

CSTX I information
descriptor I

+------------------------+ /
I SN - Vision l1lode I \
I Stack Pointer I I
+------------------------+ I
I logobjid of VCSA I > Vision l1lode
+------------------------+ I information

TRY OFFSET I
+------------------------+ /

execution l1lode of the task. On IEXIT to this task,
execution l1lode STATUSA.XM is set to this value.

SWIP -- switch in progress. This bit is used by IEXIT when a
mode switch could not be cOl1lpleted.

TCBX.LA- The logical address of a TCB extension for use by
software.

GDi -- Group Descriptors. The format of a Group Descriptor is
described in section 4.5.

Task Breakrange Descriptor.
This descriptor is described in section 4.9.

SC -- Logical address of top-of-stack of the HP3000 l1lode
stack used to initialize S on IEXIT.

CSTX Descriptor.
The descriptor locates the CSTX used in HP3000 l1lode.
Its forl1lat is the Sa!1le as described in section 4.10.

SN Logical address of top-of-stack of the Vision l1lode
stack used to initialize S on IEXIT.

logobjid of VCSA.
The logical object id of the logical object in use as
the Vector Context Save Area. See section 4.11.

TRYOFFSET.
The stack offset saved by the TRY instruction.

4-17

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

4.8 Breakranges (SysteJll and Task)

07/31

The VISION architecture supports two breakranges: a SysteJll
Breakrange and a Task Breakrange. A breakranges involves a
range of virtual addresses. When properly enabled, the
breakrange will cause a trap to occur at the cOl1lpletion of any
instruction that overwrites any byte within the breakrange.
This debug aid is discussed in more detail in section 5.3.

The Descr iptor for the SysteJll Breakrange can be thought of as an
extension of STATUSD: once installed and properly enabled, the
Systel1l Breakrange will cause a trap whenever any task on any
processor in a shared-meJllory l1lulti-processor writes to any byte
within that Breakrange. The Task Breakrange Descriptor can be
thought of as an extension of STATUSB; it is located in the Task
Control Block. When properly enabled, the Task Breakrange will
cause a trap when this particular task writes to any byte within
this Breakrange.

A Breakrange Descriptor is a 16-byte descriptor with the fornat
shown below.

+-------------------------+
I reserved for hardware
+-------------------------+

Breakrange I VON - virtual object nr I
Descriptor: +-------------------------+

L8 - lower bound I
+-------------------------+

UB - upper bound I
+-------------------------+

4.9 Interrupt Control Stack location

The Interrupt Control Stack (ICS) is the environl1lent in which
hardware interrupt handlers run. Several trap handlers also
run on the ICS. This environl1lent is described l1lore fully in
section 7.6.
The ICS is a logical object in group 0, When an interrupt is
acknowledged, Q is l1lade to point to a location on the ICS just
beyond the Dispatcher Marker (see 7.2), This location is
called QI. The logical address of QI is kept in a processor
register that can be thought of as an extension of STATUSC.

4-18

I

I---~--~------------

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

4.10 CST and DST descriptors

HP3000 roode requires a Code Segroent Table (CST) as ~ell as a
Data Segroent Table (DST) to coroplete its addressing environroent.
Both CST and DST are tables of ODs. These tables are actually
contained ~ithin the DDT for group zero. Both CST and DST are
found through processor registers containing 64-bit descriptors
as indicated belo~:

012 3 31
+---+-------------------------------------+ \
1 0 1 object number ~here CST/DST starts 1
+---+-------------------------------------+ > CST or DST

length of CST/DST in bytes 1 Descriptor
+---+ /

-+- +----+

I
+-----------+ 1 v

index 1----+ \
+-----------+ 1

length 1----+ 1 CST
+-----------+ 1 > or

CST or DST 1 DST
descriptor I

v /

+----+
ODTO

4-19

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

4.11 Vector Processing

VISION offers rich support for vector operations in order to
significantly increase performance on common array and matrix
operations in technical applications.
This section should be read in conjunction ~ith section 6.4.

4.11.1 Vector Registers

A task can address 8 vector registers VRO, VR1, •. , VR7. Each
VR consists of N eleroents, numbered 0 through N-1, ~here N is
an iropleroentation-dependent quantity no greater than 256.
Each eleroent is 128 bits ~ide, and can contain values of data
types comprising 32, 64 or 128 bits.

Not all N elements in a Vector Register need be filled ~ith
data; soft~are roay load vectors ~ith fe~er eleroents into a VR.

Vector processing hard~are may support up to 15 banks of eight
vector registers each. Only one bank is addressable by a task
at any tiroe. Multiple banks allo~ roultiprogr~ing of tasks
using vector registers ~ithout excessive performance penalty
in saving vector register contents on a task ~itch.

4.11.2 Vector Mask Registers

A task can address 4 vector roask registers, VMRO, •• ,VMR3. Each
contains 256 bits. A bit in a vector roask register corresponds
to an eleroent in a vector register.
Each vector instruction designates a vector mask register to
govern execution of that instruction. Elements in the vector
register corresponding to clear bits in the roask register do not
participate in the vector instruction; no results are stored in
the vector register element, the original value of the element
does not change, and under no circurostance can traps occur for
that element.
The values in the mask registers can be created and manipulated
through special instructions including vector compare.

4-20

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

4.11.3 Vector Length Register

Various means exist for software to let hardware know how many
elements in a vector register should be regarded as meaningful
and how many elements should be operated on in a given vee tot
instruction.

4.11.4 Vector Context Save Area

Because vector registers contain a large amount of information,
it is not desireable to save all this state on an external
interrupt. Interrupt handlers must therefore refrain from using
vector instructions.
Vector Registers (and vector mask registers) are saved either
eKPlicitly by operating system soft~are or automatically ~hen
another task executes a vector instruction that uses the same
vector register bank. Yhen vector registers are saved, they
are saved on behalf of the task that last used them. Part of
the task's context includes the Vector Context Save Area (VCSA),
located through the task's TCB, memory resident, and large
enough to receive all vector register values.

4.11.5 Vector Processing: Operation

Operating system software may allow any task or any number of
tasks to execute vector instructions. VISION implementations
may have special purpose hard~are, referred to as a Vector
Processor (VP), which will improve the performance of the
vector operations.

The VP ~ill contain some amount of memory, organized as one or
more banks. A bank generally contains all of one task's vector
related context, including vector registers, vector mask
registers, vector length register, etc. This context is quite
large, and requires attention in order to maintain fast
interrupt response, ability to multiprogram, and minimal impact
on pure scalar tasks.

A task must be assigned a special region of main memory called
the Vector Context Save Area (VCSA) before it can execute any
vector instructions. Additionally, a task must be assigned a
bank in order to use the VP. A task may be denied access to
the VP, in ~hich case all of its vector activity occurs through
its VCSA; this limits the speed of vector instructions to the
speed of memory access.

4-21

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

More than one task may be assigned the same bank. If this occurs,
hardware is responsible for saving/restoring the context when a
vector task enters execution and a different task's context is
in the first task's assigned bank. The hardware will save the
first task's vector context into its VCSA, and reload the bank
from the new task's VCSA.

Note that if a task which does not use the VP (a scalar task)
starts to run, the interrupted vector task's VP context will be
protected but remain in the hardware registers. If control
returns to the same vector task, the VP context switCh will have
been avoided entirely. If control returns to a different vector
task which has been assigned the same bank, the context switch
will occur when the new vector task attempts to execute its
first vector instruction.

The vector processor may contain 0 to 15 banks of context. The
operating system ~ill designate which bank (if any) a task is
allo~ed to use. A group of tasks assigned the same bank ~ill
only compete among themselves for that VP context.

4.11.6 VP Management - Vector Context Save Area

Use of the vector processor by a task is controlled by six bits
in STATUSB, altered only by operating system software. Four of
these bits specify the bank number, and two specify permission
level.

If the bank number is not 0, the number specifies which hardware
bank of VP context is to be used by this task.

If the bank number is 0, all vector activity takes place through
the VCSA instead of the vector registers. The hard~are context
consumed is effectively zero, but all operand/result (including
VR) accesses proceed at memory speeds. The performance in this
mode will be degraded, but will normally be faster than equivalent
scalar code. Through this feature operating system software can
allo~ a lo~ priority vector task to execute, ~hile reserving
the vector hardware for some very important task.

The permission bits must be made non-zero by operating system
software if a task is to be allowed use of the vector processor.
Before operating system software grants permission, a portion of
the VCSA must be locked into memory. This is to:
a) prevent phantom page faults,
b) ensure that a place exists in which to save context should

po~er fail,
c) provide a place to simulate VRs should the implemented hardWare

be insufficient.
4-22

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

since the VCSA is quite large, levels of permission exist to
restrict a task to using only certain ranges of precision and
thus permit operating system software to only lock in a portion
of the VCSA. See table below.

Permission
bits value

00
01

10

11

Meaning

No VP use allowed by this task.
VP usage restricted to vector data types

< = 32 bits; hardware assumes that parts
A & B of the VCSA are locked into
memory.

VP usage restricted to <= 64 bits of vector
da ta; hardware assumes that par ts A, B
& C of the VCSA are locked into memory.

VP usage unrestricted; hardware assumes
the entire VCSA is locked into memory.

07/31

If insufficient permission has been granted when the task attempts
to execute a vector processing instruction, the INSVPPERM trap
occurs. Operating system software will typically lock in the
additional portion of the VCSA and then redispatch the task.

If the permission bits are not 0, the VCSA logical object id
in the TCB identifies the VCSA for that task. The entire VCSA
is a 1/4 + 8*(VR len*4/1024) page area. (For 128-element VRs,
this is 4 1/4 pages.) Conceptually, the contents of the VCSA
at the time of an interrupt are as sketched below.

Vector Context Save Area
+------------------------+

o Part A
State Information

+------------------------+
10241 Part B I

I First 32 bits of each I
I element of VRO •• VR7 1
+------------------------+

51201 Part C 1
1 Second 32 bits of each 1
1 element of VRO .• VR7 1
+------------------------+

92161 Part D I
I Last 64 bits of each 1
1 element of VRO .• VR7 1
+------------------------+

17408 1

4-23

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

Note that the VCSA is sketched assuming 128 element VRs.
The State Information in Part A is detailed below:

State Information
+-----------------+

o VMRO .. VMR3 1
+-----------------+

128 VLR 1
+-----------------+

132 1 VR descriptors 1
+-----------------+

148 information 1
on partially I
completed 1

vector
operation 1

+-----------------+
1024 1

Only the portion of a VR save area corresponding to the VR's
active length is meaningful. Bytes 0-127 of State Information
contain the VMRs as they exist at the time of interrupt or
task SlIJitch; bytes 128-131 contain the VLR. Bytes 132-147
describe the width and active length of each VR.

A vector instruction may be interrupted before it is complete.
In this case, information sufficient to transparently resume the
partially completed operation is stored in bytes 148-1023 of the
State Information area.

07/31

As explained above, when an interrupt occurs the VCSA is not
immediately updated. Two instructions are available to force
immediate updating of the VCSA. The first is UVCSA (Update
Vector Context Save Area). This is a non-privileged instruction,
and contains a two-bit option field to force saving of either
VRs, State Information, or both. UVCSA may be used by a trap
handler to isolate the elements and operation causing the
vector trap. The second instruction, PUVCSA (Privileged Update
of Vector Context Save Area) allows specification of the vector
bank to be saved, independent of the vector bank in use by the
current task. Operating system software may issue this
instruction if it is waiting to transfer control to a vector
task and wishes to minimize that task's startup time.

4-24

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

+---+----------------+
MACHINE HODEL CHAPTER 5

+---+----------------+

07/31

This chapter discusses several topics relevant to the operation
of Vision JIlode brought together under the heading "JIlachine JIlodel"
because they contribute to a JIlore coherent picture of the JIlodel
than might be gleaned from the detailed description of individual
instructions in chapter 6.

These topics are:

a) stack and stack markers
b) procedure linkage
c) debug support
d) list of supported data types

5.1 The Vision Stack

The Vision JIlode stack is prilllarily used for procedure linkage,
paraJlleter passing and allocation of local and teJllporary variables
for procedures, to the extent that the registers XO .. X15 do not
suffice for this. The stack is also used as an iIllplied place to
store things, such as paraJlleters when traps are taken or when
internal and external interrupts occur.
The registers Q and S always point to the stack. The upper 32
bits of Q and S are identical; they identify the current stack
object. Refer to section 2.3.6.
The stack is totally word-oriented: the stack object is word­
aligned in virtual address space, and the logical addresses Q
and S are both at all tillles JIlultiples of four. The length of
the stack object is a lIlultiple of four as well.

S points to what is called top of stack. Q points to what is
called the local stackfraroe.
S changes under the effect of explicit PUSH and POP instructions
and their variants (e.g. DUP, EXTEND, DELETE), and iIllplicitly
on traps and interrupts.
Q changes only on procedure calls (CALL, CALLX), on procedure
returns (EXIT), through a MOVEtSP, and iIllplicitly on traps.

5-1

SB ==>

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

current stack object
+-----+-----+-----+-----+

storage for
variables and
telllporaries
for
outer blocks
of prograJlls

+-----------------------+

07/31

Q ==) I
I

local storage I
for I
currently I
active I
procedure I

I
I

+-----------------------+
S ==> I

SL ==>

I
the values in I
this area are I
indeterJllinate I

I
I

+-----------------------+

The logical address corresponding to the first byte in the stack
object is denoted by S8; silllilarly, SL denotes the first byte
beyond the stack object. The following relationship aJIlong these
registers is always guaranteed:

S8 <= Q <= S <= SL

The necessary checks to guarantee this are perforllled when S or Q
change. The area between Sand SL is indeterminate. This means
that its contents cannot be predicted. Stack bounds checking is
1Il0re restrictive than bounds checking on ordinary objects. All
JIlemory accesses through logical addresses with an LOI equal to
that of current Q are checked against S as the upper bound rather
than against SL. The EXTEND instruction will increase S without
explicitly initializing the area between the previous S and the
new S; the newly accessible part of the stack will have contents
that are unpredictable.

5-2

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

5.1.1 Procedure Stack Marker

The procedure stack marker is a 3 * 32 bit entity that is pushed
on the stack as part of procedure call (CALL, CALLX); at this
time a new stack frame is created by setting Q to point to the
area in the stack Lmroediately beyond the marker. The marker
preserves the information necessary for EXIT to restore the old
environment, specifically, the old value of Q.

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

5.1.1.2 Local Procedure Marker

The local procedure call (CALL) never causes the execution level
to change, nor can it change the current code object. The stack
marker for a local call can therefore be simpler than for an
external procedure call:

I
+=====================+

Q-12 I hardware reserved I
5.1.1.1 External Procedure Stack Marker +---------------------+

External procedure calls (CALLX) push a 3-word marker as shown:

Sold==> I
+=========================+

Q-12 p[o .• 31J
+-------+ +

Q-8 ISTATUSAI P[40 .. 63]
+-------+-----------------+

Q-4 Qold[32 .. 63]
+=========================+

Q= Qnew = Snew = = > I

The value of P in the marker is the logical address of the
instruction following the CALLX. The size of code objects is
restricted to 2**24 bytes so that P[32 .. 39] = O.
The value of STATUSA contains the privilege level at which the
caller ran. STATUSA[O] = 1. Bits STATUSA[1 .• 7] will always be
clear when executing CALLX.

Traps and external interrupts also push an external procedure
marker. Here the value of P in the marker is the logical
address of the instruction that needs to be executed after
returning from the handler. The lIP bit and the DBP bit in
STATUSA may be set.

An SIT value of one must never be pushed as part of STATUSA in
the external procedure marker. Instead, it may only be set in
the marker explicitly by software. Such software will use EXIT
to cause the SIT flag to get set in the calling program.

5-3

Q-8 P[32 .• 63]
+---------------------+

Q-4 Qold[32 .• 63] I
+=====================+

Q=Qnew =Snew = = > I I

Note that EXIT can unambiguously distinguish between a local
procedure marker and an external procedure marker: (Q-8)[0]
has the value 0 for a local marker and the value 1 for an
external marker. The bits P[32 •. 39] are zero.
Note that both markers occupy the same amount of space.

5.1.2 I nterrupt Marker

An interrupt marker is pushed on the stack as part of servlclng
(acknowledging) an interrupt (external or internal), or when a
task transfers control to the dispatcher (with the DISP, PSEB or
ENABLE instruction), or upon executing SUITCH.
The marker contains the following information (see IEXIT):

1. the information in an external procedure marker
2. STATUSB
3. general registers XO-X15
4. base registers BO-85

5-4

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

S_old ==) I
+==============+

Q-12 I P
+-------+ +

Q-8 I STAIUSAI
+-------+-------

Q-4 I Qold[32 .. 63] I
+==============+

Q ===) I (Bl) I
+- STAIUSB -+

Q+4 I (B2) I
+--------------+

Q+8 I XO
+--------------+

I
+--------------+

Q+68 X15 I
+--------------+

Q+72 I
+- BO -+

Q+76 I
+--------------+
I

I
+--------------+

Q+112 I
+- B5 -+

Q+116
+--------------+

S ===) I
(Q+120)

5-5

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

5.1.3 Dispatcher Marker

The Dispatcher is a piece of operating system soft~are that
selects the next task to run, in preparation for a task ~itch.
The dispatcher is entered automatically under certain conditions
carefully controlled by the DISP, PSDB, PSEB, ENABLE and DISABLE
instructions. The dispatcher code is entered through a special
procedure marker called the Dispatcher Marker, which is at the
base of each Interrupt Control Stack (ICS). This marker is
never removed, in contrast to all other stack markers. Entering
the Dispatcher is similar but not identical to an EXIT through
the Dispatcher Marker: Q ~ill not change, S will get set to Q.

The Dispatcher Marker contains:

1. Progr~ counter for entry point of Dispatcher
2. SIAIUSA

+========================+
QI-12 P (entry point

+-------+ of +
QI-8 I SIAIUSA I dispatcher)

+-------+----------------+
QI-4 I Qold[32 •• 63]=QI[32 •. 63]I

+========================+
QI ==)

07/31

Just before the Dispatcher starts running, the IEXIT instruction
will initialize STAIUSB to the value DispatcherStatusBInit,
~hich has the following fields:

Field Value Full name of field

DISP 1 Dispatcher running flag
PIE 0 Procedure Trace Enable
vector 0 vector control
KIL 3 EXIT threshold level
FPC 0 IEEE floating point control
TE 0 Trap Enables (none enabled)
EF 0 Exception Flags (none detected)
CBA 0 Conditional Break Enable, A
CBB 0 Conditional Break Enable, B
CC 0 Condition Code

5-6

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

5.2 Procedure Linkage

The Vision instruction set provides several forms of procedure
call. Their detailed description is given in chapter 6.
The instructions CALL and CALLX both create a new stackframe by
pushing a procedure marker and then updating Q and S. CALL and
CALLX differ primarily in the way they arrive at the target
address. This is detailed in section 5.2.1. They also lay down
a different marker because EXIT must be able to return to the
appropriate envirol1lllent in each case.

A procedure must be wholly contained in a code object; it cannot
span several code objects. Conversely, a code object may have
many procedures in it. Procedures within the same code object
may call each other using the CALL instruction; this is the
fastest procedure call. Code objects are paged, their maximum
size is 2A24 bytes; hence there is opportunity to group large
numbers of procedures into a single code object. The following
reasons may limit in practice the number of procedures that are
combined into a single code object:

a) procedures in a code object run at the same privilege

b) if a procedure in a code object is recompiled, all of
the code object must typically be relinked

c) the procedures in a code object are not protected from
one another; a procedure may jump in the middle of
another procedure without being caught

d) often-used procedures can be put in a separate code
object and shared among many user programs; this trades
off space and link time versus CALLX overhead

Code objects can have multiple external entry points; however,
this requires the approach outlined in'section 5.2.2.

5.2.1 Entry Point Evaluation

The external procedure call CALLX has as its single operand the
logical object id (LOI) of the target code object. This LOl is
sufficient to determine the location of the target procedure.
The LOl uniquely identifies an Object Descriptor (OD) which has
the format described in section 2.3.2. The first word of this
OD is included on the next page.

5-7

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

01 23 45 6 7 8
2 33
9 01

+--+--+----+-+--------------------+--+ first word of
IXLIRLITYPElol EPYO IPRI OD of target
+--+--+----+-+--------------------+--+ of CALLX LOI

where:

TYP - should indicate a Vision mode code object

PR - indicates the prerequisite level: the privilege level
the caller must already possess before being allowed
to complete the procedure linkage

XL - indicates the privilege level at which the target
procedure will run

RL - indicates the privilege level required for reading
the contents of the code object as data

EPYO - the entry point word offset: indicates the location
of the starting point of the target procedure,
expressed as a word offset relative to the start of
the code object

The new program counter P is constructed from this information
as follows:

P:

o
3 3 3 4
1 2 9 0

6 66
1 23

+---------------------+-----+--------------+--+
LOI o EPYO 1001

+---------------------+-----+--------------+--+

5.2.2 Multiple Entry Points in a Code Object

It is possible to have multiple external entry points per code
object, but only by duplicating Object Descriptors. This means
that each external entry point must be associated with a unique
logical object id. This is not the same as stating that each
external entry point corresponds to a single code object, for
these Object Descriptors will share the identical Virtual Range
contained in their last three words. These procedures can still
call each other freely using CALL instead of CALLX, thus keeping
all characteristics of being in a single code object.

5-8

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

5.3 Debug SUpport

The VISION arChitecture is rich in features to support debug of
software. This section collects these features in one place;
however, pervasive object bounds checking has already been
covered in chapter 3 as has checking of access rights.

5.3.1 Code Breakpoints

The following instructions are provided and can be inserted into
the code stream either at cornpile tiNe or at run tiNe:

a) BREAK
b) CHECKA
c) CHECKB

Each is capable of generating a trap: BREAK unconditionally,
CHECKA and CHECKB conditionally on the setting of an appropriate
bit in STATUSB (STATUSB.CBA and STATUSB.CBB respectively).
Debug software can use these instructions to provide code
breakpoints, code tracing, etc.

5.3.2 Breakranges

The VISION architecture provides two Breakranges that can be
used to protect an area frorn accidental or roalicious writes and
to trap any software that changes any data anywhere within the
Breakrange. The format of these Breakranges is discussed in
section 4.8.

07/31

The Systero Breakrange is a Virtual Range kept in a processor
register and set by a MOVEtSP instruction. Any write within the
Virtual Range causes a breakrange trap when properly enabled.
The Task Breakrange is a Virtual Range kept in the Task Control
Block. Any write by that task within the Virtual Range causes a
breakrange trap when properly enabled.
Two ways exist to disable the breakranges and totally eliNinate
their performance iNpact:

a) setting the DRL field in STATUSD to a non-zero privilege
level. This will disable the breakrange for all code at
level DRL or more privileged.

b) clearing the "DBE" bit in the PDIR for a particular VPN.
Only accesses to pages with the DBE bit set are checked
for breakrange traps.

5-9

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

07/31

The VISION architecture does not require hardware to run at
"nomal" speed when accessing an enabled page at an enabled
privilege level. Software should anticipate some performance
degradation in this situation.

5. 3.3 Single I nstruction Trace

Software can cause hardware to sequence through user code a
single instruction at a tiNe. This is accoroplished through the
SIT bit in STATUSA. The only way to set this bit is to roodify
an external procedure marker and then execute EXIT (or IEXIT).
EXIT will restore STATUSA with the SIT bit set. This will not
have any effect until the next instruction has coropleted. Any
instruction that has SIT set at its beginning will on completion
transfer control to the naSIT trap handler. As part of the trap
initiation, SIT will be cleared. In order to deterroine whether
to take the DBSIT trap, hardware only needs to check the SIT bit
at the coropletion of an instruction, provided it delays setting
the SIT bit in an external EXIT so as to avoid trapping out on
the EXIT instruction itself.

5.3.4 Procedure Trace

If the PTE bit in STATUSB is set and the current privilege level
XL is nuroerically greater (less privileged) than DRL, any
execution of CALL, CALLX or BRX will cause the restartable trap
DBCALL to be taken.

5.3.5 Object Trace

In the VISION arChitecture, an access rights violation causes a
restartable trap, cf. chapter 7. This trap can be fashioned by
software into an object trace capability. Operating systero
software can roanipulate the access rights in the 00 of an object
such as to cause access rights violations when code atternpts to
access the object with current privilege level XL nuroerically
greater than DRL. Since this trap is recoverable, execution
can resuroe norroally after the debugger has restored the original
access rights. The Single Instruction Trace rnechanism can be
used to regain control at the completion of the instruction in
order to reinstate the object trace.

5-10

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Code object tracing can be performed in a similar manner; here
it is the TYPE field in the OD that can be replaced by one
specifying a data ~bject. This too is a recoverable trap.

5.3.6 Ring Crossing Trap

This trap is detailed in chapter 6 under EXIT. The STATUSB. XTL
(exit threshold level) field can be set to a certain privilege
level under operating softuare control. This allous delaying a
certain activity until the task has exited back to sufficiently
low privilege on its oun accord. Any EXIT (or IEXIT) that drops
the current privilege level belou (numerically greater) than XTL
uill cause the Ring Crossing Trap to be taken.

5.4 List of Supported Data Types

Vision mode softuare supports various data types. Some are
supported through a full complement of instructions, some are
represented by a feu key instructions and/or conversions into
fully supported data types. A brief summary follows:

1 data types * bytes 1 integer floating decimal
========1===================================

1 1 1
212
4 1 4 4F 4D
8 1 8 8F 8D

16 1 16F 16D

5.4.1 Integers

Vision mode supports both 32-bit tuo's complement integers and
64-bit two's complement integers uith full arith11letic capability
including shifts.
16-Bit 2's complement integers are supported through conversion
to and from 32-bit integers and by fast detection of 16-bit
overflou on 32-bit arith11letic. These conversions are done
automatically on loading a 16-bit integer into a 32-bit register
or storing a 32-bit register into a 16-bit memory location.
8-Bit unsigned integers are supported through conversion to and
from 32-bit integers. The conversion is implied in loads and
stores to and from 32-bit registers.

5-11

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

5.4.2 Floating Point

Vision mode performs floating point operations exactly as
described in the IEEE floating point standard (OIA Proposed
Standard for Binary Floating Point Arith11letic", IEEE Task P754).

The standard allous some features to be defined by implementors.
These options are defined for Vision mode as folIous:

Formats: The formats supported are Single, Double, Quad. These
occupy 32 bits, 64 bits and 128 bits, respectively.
Quad is defined in the manner provided for "Double
Extended" by the Standard.
The 32-bit single precision floating point format has
a 1-bit sign, an 8-bit biased exponent and a 23-bit
fraction field.
The 64-bit double precision floating point format has
a 1-bit sign, an ii-bit biased exponent and a 52-bit
fraction field.
The 128-bit quad precision floating point format has
a 1-bit sign, a 15-bit biased exponent a 1-bit integer
part and a 111-bit fraction field.

Modes: Normalizing mode is provided. All five traps are
supported, with individual enable/disable.

Underflou:
Underflou is aluays checked after rounding.

Operations:
Add, subtract, multiply, divide and conversions
betueen all data types are fully supported by Vision
instructions. Remainder, square root, integerize,
as uell as binary -- decimal conversions must be
supported in softuare.

5.4.3 Decimal

Vision supports packed decimal data types of size 4,8 and 16
bytes. These formats are described in detail in chapter 6.3.
Vision also supports conversion to and from packed decimal
data of any number of bytes betueen 1 and 31. External numeric
decimal formats are supported through conversion to and from
packed decimal.

5-12

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

5.4.4 Logical

Various bit-wise operations are supported on 32-bit quantities.
The roost significant bit and the least significant bit of a word
can be tested individually.

5.4.5 Bit

Instructions to set bits and test bits in arbitrary locations in
an object are provided.

5.4.6 Fields

An instruction to deposit a value of an arbitrary number of bits
into a 32-bit word is provided.

5.4.7 Byte strings

Various instructions to support operations on strings of bytes
are provided: move, compare, translate, translate and test.

5-13

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

5-14

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

+---+----------------+
VISION INSTRUCTION SET CHAPTER 6

+---+----------------+

This chapter describes the instruction set available in Vision
mode to the programmer who needs to write software in assembly
language. Vision compilers will compile standard programming
languages to this instruction set.

5.1 Preliminaries

The register P (program counter) contains a 54-bit logical
address that points to a variable length entity called an
instruction. The instruction is interpreted by hardware and
executed; this changes the machine state and/or memory.
The program counter P is among the machine state that changes
as a consequence of instruction execution; the default is to
advance (increment) P to point to the next instruction in
sequence.

-------+----+----+----+----+----+-----
I D2 I 02 I 91 I 98 I D4 I

-------+----+----+----+----+----+-----
P +--------+

K3 13
+--------+

In the sketch above, the pattern !D2029198 is the encoding of
a 32-bit instruction that will be rendered here as:

ADD4 2, K3

This instruction instructs the hardware to perform a 4-byte ADD
(32-bit integer addition) on 2 and K3, leaving the result in X3.
After executing this instruction, changes will have occurred
to X3, to P and to the reference bit "R" in the physical page
descriptor for the page containing the instruction. No other
machine state nor memory will be affected. In this example,
the value of X3 will have been incremented by 2; the value of
P will have been incremented by 4 (to skip over the current
instruction which occupied 4 bytes).

6-1

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

The situation after executing the IADD4" instruction will hence
be as follows:

-------+----+----+----+----+----+-----
I D2 I 02 I 91 I 98 I D4 I

-------+----+----+----+----+----+-----
P +-------+

X3 15
+-------+

The Architecture Control Document does not describe how this
effect on the machine state is achieved; different hardware
implementations may use quite different means.
In this chapter only the intended effect of an instruction on
the machine state and/or memory is given, in a mixture of
running text and a Pascal-like algorithm.
Several aspects of instruction execution are so pervasive that
they ~ill be described once rather than repeatedly for each
instruction.
The most important of these is the way operands are dealt with.
Operands are described in section 6.1.1 and their encoding is
dealt with in sections 6.1.2 and 6.1.3.
Other such pervasive actions are:

incrementing the proirarn counter at the end of executing
an instruction

fielding external interrupts at the end of executing
an instruction

detecting page fault on fetching the instruction
detecting page fault on fetching operands
setting dirty and reference bits as part of accessing

memory
serving debug traps at the end of an instruction that

write into a breakrangej
checking access rights/bounds violation on any memory

access
trapping on a mi~atch of operand and operand attribute

Several of these pervasive actions involve reporting unusual
or illegal conditions; refer to section 6.1.8 for more detail.

6-2

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6. 1. 1 Operands

In the previous eXaIllple, "ADD4 2, X3" is an instruction with
two operands. The first operand, "2" is called a li teral, or
a literal operand. This Neans that the value of the operand
can be found right there in the instruction itself.
The second operand, "X3" is called a register operand. The
value of this operand is the value currently in the X3 register.
The operation called for by the instruction, "ADD4", is an
addition; this involves storing the result sONewhere. The
description for "ADD4" specifies that the result be stored back
into the second operand. This Neans that X3 is not only used
to obtain one of the values to be added together, X3 is also
designated as the destination for the result.
Note that a register can be a destination for a result, but a
literal cannot: the instruction itself Nust not be changed as
a consequence of instruction execution.
There is a third type of operand, called NeNory operand, which
will be detailed in section 6.1.1.3.

In general, a two-operand instruction such as "CMP4" (coNpare)
can have any cONbination of operand types:

CMP4 literal, literal
CMP4 literal, register
CMP4 literal, NeNOry
CMP4 register, literal
CMP4 register, register
CMP4 register, NeNory
CMP4 NeNOry, literal
CMP4 NeNory, register
CMP4 NeNory, NeNory

Each instruction, such as ADD4, deterNines what cONbinations
of operand types is legal. This is done through attributes
as described in section 6.1.5. Illegal cONbinations are only
illegal because of the logic of the situation, such as the
inadNissibility of storing into a literal.

The encoding of instructions and their operands is orthogonal,
as detailed in section 6.1.2. This Neans that the encoding
places no restrictions on the selection of operand types.

6-3

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.1.1.1 Register Operands

Registers XO •• X15 are 32-bit entities each. They can be used
singly, in pairs, or in quads. A pair of registers can be
used as a single 64-bit operand, as follows:

singly 0 1 2 •• •• 31 0 1 2 •• 31
+-----------------------+ +-----------------------+

X3 I I X4
+-----------------------+ +-----------------------+

paired 0 1 2 .•
(x3Ix4)

31 32 33 •• 63

Register pairs always involve consecutive registers xi and
Xi+1; register X15 can fOrN a pair with XO. Register pairs are
encoded in an instruction by encoding the first register in the
pair.

Register quads can be used to fOrN a single 128-bit operand.
Such a quad always involves consecutive registers Xi, Xi+l, Xi+2
and Xi+3; again, register numbers wrap around, such that XO
CONes after X15. A register quad is encoded in an instruction
by encoding its first register.

A (single) register can also be used to hold operands SNa11er
than 32 bits. Sections 6.1.6 and 6.1.7 go into Nore detail.

6.1.1.2 Literal Operands

Literal Operands of up to 32 bits long can be encoded in an
instruction. Yhen used in instructions that involve data types
bigger than 32 bits, such a literal value will be extended to
the right size by replicating the "left-Nost" (Nost-significant)
bit. If the literal represents a two's cONpleNent integer this
corresponds to sign extension. If the literal is anything else,
this Nay not correspond to slgn extension. Literal processing
in the VISION architecture does not depend on the data type.
Yhen used in instructions that involve data types SNaller than
32 bits, the literal value will be left-truncated to the desired
number of bits without overflow indication.

6-4

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.1.1.3 Memory Operands

Memory operands are operands that have a logical address.
This logical address is found in one of the base registers
BO .• B7 (B6 is better knomn as Qj B7 as S) and modified through
adding an indeK and/or a displacement. The rules for address
arithmetic on memory operands are detailed belom. In any case,
the result mill be a logical address, called the effective
logical address. The use of this effective logical address is
under control of the instruction.

Typically, the effective logical address is used in a memory
access. For example,

ADD4 Q, 84

07/31

mill use the address in base register Q to read a 4-byte value
from memory in order to add this to the 4-byte value read from
memory at the logical address in 84. The result of the addition
mill be mritten back as a 4-byte value to memory at the logical
address in B4.

The effective logical address is occasionally needed for other
purposes. During string moves, the logical addresses of source
and target areas are incremented such as to sweep through the
areas in memory. In the MOVEADR instruction, the effective
logical address of the first operand is itself the value stored
in the second operand; thus making the address arithmetic logic
available to softmare, e.g. in building reference parameters.
These other uses are the ones where register operands are not
suitable; registers cannot be addressed. The set of registers
XO .. X15 eKist outside logical address space.

Base register operands might be regarded as a final may to
use mhat looks like a memory operand. See section 6.1.1.3.2.

6-5

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.1.1.3.1 Computing the effective logical address

A memory operand designates a base register, a displacement
and an optional indeK register. The base register is one of
80 .• 85, Q, S; the indeK register is one of XO .• X15 and the
displacement is much like a literal in that it is contained
in the instruction itself. The displacement is up to 32 bits
in length.

The designated base register contains a logical object id and
a logical offset. The effective logical address will have the
same logical object id as the designated base register: the
address computation does not carry into the object portion of
the base register. Effective logical address computation
consists of the tmo's complement addition of the 32-bit logical
offset of the base register, the 32-bit displacement and the
32-bit indeK (if present) and ignoring overflom and/or carry.

Note that this alloms implementations to perform the additions
in any order.

6.1.1.3.2 Base register operands

Several instructions expect a base register as an operand.
This is indicated through the "b" attribute as described in
section 6.1.5. A base register operand is encoded like a
memory operand; but no memory access is implied and the result
of the effective address computation, if performed at all, is
irrelevant. For a base register operand, the only relevant
field is the base register field in the encoding for the memory
operand.

6-6

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.1.2 Instruction Encoding

Instructions consist of an opcode and a list of descriptors for
each operand.
The opcode identifies uniquely which operation to perform, the
data type involved and the number of operands.

The Vision instruction set is "operand-Plodular": that is, each
operand individually and independently can be chosen to be a
register, a literal or a PlePlory operand.
The encoding scheme presented here is such that hardware can
efficiently decode and execute instructions, code generators
can conveniently ePlit Vision object code in this fOrPlat, and
the scheme is reasonably space efficient.

In the basic schePle instructions are Plultiples of 4 bytes in
length and word-aligned in logical address space (also in
virtual address space). This schePle is described in section
6.1.2.1. A variant of this schePle allows denser packing of
instructions; it is described in section 6.1. 2. 2.

6.1.2.1 Basic instruction encoding scheme

Opcodes are encoded in 8 bits. An operand descriptor consists
of an ii-bit operand specifier OPSPEC optionally accoPlpanied
by a 32-bit operand cOPlpletion COHPL. The cOPlpletion is used
when the 11 bits of the operand specifier do not suffice to
uniquely deterPline the operandi these cases correspond to the
first 3 bits of the operand specifier OPSPEC[0 •• 2] being zero.
Operands are encoded in pairs; if the instruction has an odd
number of operands, an additional dummy operand (e.g. literal
zero) is specified.

The sketch below shows an instruction with 4 operands. Note
that the first two bits of the instruction words are both one
in order to identify that the basic fOrPlat is used. Note also
that the 8-bit OPCODE is found by concatenating bits 2 •. 4 and
bits 16 •• 20 of the first instruction word. The address of
the instruction (e.g. when used as a branch target) is the
address of the first byte of the first word of the instruction.
Note that, in this fOrPlat, the instruction address is a Plultiple
of four.

6-7

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

123
01 234 56789012345 67890 12345678901

+--+----+-----------+-----+-----------+
P ==> 11110PC I OPSPECl I-ODE I OPSPEC2

+--+----+-----------+-----+-----------+
(2) (3) (11) (5) (11)

+-------+-----------+-----+-----------+
P+4==> COMPLl (only if OPSPEC1[0 .• 2]=0)

+-------+-----~-----+-----+-----------+

+-------+-----------+-----+-----------+
P+8==> COHPL2 (only if OPSPEC2[O •• 2]=O) (at P+4 if

+-------+-----------+-----+-----------+ COMPLi absent)

+--+----+-----------+-----+-----------+ (at P+8 if

07/31

P+12=> Plbi I OPSPEC3 I Plb1 I OPSPEC4 COMPLl or COHPL2

P+16=>

P+20=>

+--+----+-----------+-----+-----------+ absent; at P+4
if both absent)

+-------------------------------------+
COMPL3 (only if OPSPEC3[0 .• 2]=O) (etc.)

+-------------------------------------+

+-------------------------------------+
COHPL4 (only if OPSPEC4[0 .. 2]=0)

+-------------------------------------+

Note: Plbl (Plust be ones) denotes a field that should consist
of all ones. It is the responsibility of software to
ensure this; hardware implementations may assume ones
in these fields without having to check this.

6-8

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

6.1.2.2 Dense Instruction Encoding Scheme

This is a variant of the basic encoding scheme that allows some
instructions to be packed two per word.
A subset of 24 instructions are candidates for this more densely
packed scheroe. These instructions are such that OPCODE[O] and
OPCODE[l] are not both one. Instructions in this subset are all
single operand instructions.
If two consecutive instructions are both in this subset, the
pair qualifies. For such a pair, the sequence

OPCODEa OPERANDa OPCODEb OPERANDb;

can be encoded as:

123
01234 56789012345 67890 12345678901

+-----+-----------+-----+-----------+
I opa I OPSPECa I opb I OPSPECb I
+-----+-----------+-----+-----------+

(5) (11) (5) (11)

+-----+-----------+-----+-----------+
COMPLa (if OPSPECa[0 •. 2]=0)

+-----+-----------+-----+-----------+
+-----+-----------+-----+-----------+

COMPLb (if OPSPECb[0 •• 2]=0)
+-----+-----------+-----+-----------+

II
II words of
II increasing
I I address in the
I I code strearo
\I

Note 1: Opa=OPCODEa[3 .• 7] and opb=OPCODEb[3 .• 7].
(i.e. OPCODEa = lEO + opa; OPCODEb = lEO + opb)

Note 2: Bits 0 and 1 of the first instruction word in this
packed forroat are never both one, so the two formats
can be distinguished.

Note 3: The second instruction in such a pair can be a branch
target. The P-value corresponding to the second
instruction in such a pair is taken to be the address
of the byte containing "opb"; this is on an even byte
this is on an even byte boundary. All branch targets
will be even byte addresses.

6-9

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.1.2.3 Secondary Instruction Set Encoding

A few of the 8-bit opcodes act as an escape to a secondary
instruction set. The opcode "SYS" is one of these.
Most operating system support instructions, including the I/O
instruction sets, are in this secondary instruction set.
This section describes their encoding. The instruction "PDDEL"
(delete from page directory) will serve as an exarople.
PDDEL is in the secondary instruction set for "SYS". It has a
single operand "ppn". In the opcode assignment chart PDDEL is
listed as having a secondary opcode of 109 (hexadecimal) or 9.

The instruction:

PDDEL ppn

is encoded as if it were:

SYS 9, ppn

with the "g" encoded as a short literal (see section 6.1.3.11.
In other words, the secondary opcode is treated as an additional
literal operand of the primary escape opcode. Implementations
may differ in their results if the secondary opcode is encoded
as an operand other than a short literal.

6.1.2.4 Code Bounds Violations

The object identified by P is called the current code object.
PB denotes the first byte of the current code object; PL
denotes the first byte beyond the current code object; both are
multiples of four. Hardware checks P against PB and PL on all
transfers of control. Hardware may also check P against PL
when executing instructions not involving transfer of control.
The effect of executing an instruction that starts within the
current code object but has completion words that fall outside
of it may differ across implementations.

6-10

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.1.3 Operand descriptors

An operand descriptor consists of an 11-bit operand specifier
OPSPEC accompanied by a 32-bit operand completion COHPL when
OPSPEC[0 .. 2]=000. The formats of the operand specifiers are
detailed in the sections below. ("mbz" means "must be zero";
hardware may assume an mbz field to be zero without having to
check this.)

6.1.3.1 Short literal

The value of the operand is obtained
from the OPSPEC itself, through sign­
extension of the 8-bit literal field.

6.1.3.2 Long literal

The value of the operand is obtained
from the 32-bit COHPL. For data
types > 4 bytes this value is then
sign-extended.

6.1.3.3 Register operand

The operand is the designated index
register. For data types> 4 bytes,
a pair or quadruple of consecutive
registers is designated.

1
o 123 4 5 678 9 0

+-+-+-+-+-+-+-+-+-+-+-+
10 1 01 literal
+-+-+-+-+-+-+-+-+-+-+-+

1
o 123 4 5 678 9 0

+-+-+-+-+-+-+-+-+-+-+-+
10 0 0 1 11 mbz
+-+-+-+-+-+-+-+-+-+-+-+

1
01234 5 618 9 0

+-+-+-+-+-+-+-+-+-+-+-+
10 0 1 11 Xj I mbz I
+-+-+-+-+-+-+-+-+-+-+-+

6.1.3.4 Memory operand (base+short word displacement)
1

o 1 2 3 4 5 618 9 0
The operand is in memory. The logical +-+-+-+-+-+-+-+-+-+-+-+
address is given by a base register 111 IJORDDISPL IBASEil
to which is added hlORDDISPL*4. +-+-+-+-+-+-+-+-+-+-+-+
Note that IJORDDISPL is zero-extended.

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.1.3.5 Memory operand (base-short word displacement)
1

o 1 2 3 4 5 678 9 0
The operand is in memory. Its logical +-+-+-+-+-+-+-+-+-+-+-+
address is given by a base register 10 1 11hlORDDISPLIBASEil
to which is added the one-extended +-+-+-+-+-+-+-+-+-+-+-+
IJORDDISPL*4.

6.1.3.6 Memory operand (base+long displacement)
1

o 1 2 3 4 5 618 9 0
The operand is in memory. Its logical +-+-+-+-+-+-+-+-+-+-+-+
address is given by a base register 10 0 0 1 01 mbz IBASEil
to which is added the two's complement +-+-+-+-+-+-+-+-+-+-+-+
byte displacement found in the 32-bit
COHPL.

6.1.3.7 Memory operand (base+index)

The operand is in memory. Its logical
address is given by a base register
to which is added the two's complement
32-bit value found in the designated
index register.

1
o 1 2 3 4 5 618 9 0

+-+-+-+-+-+-+-+-+-+-+-+
10 0 1 01 Xj I BASEil
+-+-+-+-+-+-+-+-+-+-+-+

6.1.3.8 Memory operand (base+index+displacement)

The operand is in memory. Its logical
address is given by a base register
to which is added the two's complement
32-bit value found in the designated
index register and also the two's
complement 32-bit displacement value
found in the 32-bit COMPL in the
instruction itself.

1
o 1 2 3 4 5 678 9 0

+-+-+-+-+-+-+-+-+-+-+-+
10 0 0 01 Xj IBASEil
+-+-+-+-+-+-+-+-+-+-+-+

6-11 6-12

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.1.4 Opcode Assignments

The follo~ing chart sho~s the association of opcodes ~ith the
instruction name (~ne~onic). The 8-bit encoding of the opcode
is found by adding the hexadec~al ~ber in the ro~ of the
instruction to the hexadec~al nu~ber in its col~n.

OPCODE
+!OO +!01 +!02 +!03 +!04 +!05 +!06

100 ERROR Nap EXIT SEXIT TESTA TESTB TESTOV
!08 * * * * PSEB PSDB DISP
! 10 DISABLE ENABLE INTERRUPT UNTRY EXTEND DELETE CHECKA
! 18 TESTSTRI P* * * * BRX *
!20 * * QUAD4 * POP8 * *
!28 PUSHl PUSH2 PUSH8 * TESTDOlJN UP DOlJN
!30 POP1 POP2 * * * TEST REF *
!38 * TEST2 TEST8 TEST4F TEST4D TEST8D TESTaF
!40 AND4 * * MPY4F MPY8 * MPY8F
!48 NOT4 * DIV4 DIV4F DIva * DIV8F
!50 OR4 REM4 NEG4 NEG4F NEG8 REM8 NEG8F
!58 XOR4 MOD4 ABS4 ABS4F ABS8 MOD8 ABS8F
160 CMPl CMP2 CMP4 CMP4F CMP8 BCMP8 CMP8F
!68 MOVEl MOVE2 MOVE4 * MOVE8 BSET8 *
!70 TESTBIT ISC42 ADD4 ADD4F ADD8 BGET4 ADD8F
!78 * MPY4 SUB4 SUB4F SUB8 BSET4 SUB8F
!80 MOVEADR BMOVEADR* * * * *
!88 * * MOVEfSP4 MOVEfSP8 TESTSEMA* *
!90 * * MOVEtSP4 MOVEtSP8 MOVESEMA* *
!98 CHECKLO CHECKHI DUP OVPUNCH CVID CMP4D CMP8D
!AO LSL4 ASL4 BCMP4 GETSIGN CVDI ADD4D ADDaD
!A8 LSR4 ASR4 BADD4 VALN CVAD SUB4D SUB8D
!BO LSL8 ASL8 BSUB4 VALD CVDA MPY4D MPY8D
!B8 LSR8 ASR8 * * * DIV4D DIV8D

07/31

+!07
BREAK
TRY
CHECKB
*
POP16
PUSH16
TEST16D
TEST16F
MPY16F
DIV16F
NEG16F
ABS16F
CMP16F
MOVE16
ADD16F
SUB16F
*
*
*
CMP16D
ADD16D
SUB16D
MPY16D
DIV16D

!CO PROBE * MOVEBIT MOVEC SRD MOVED MOVEBLR CMPB
!C8 DPF * REP CMPC SLD TRANSL MOVEBRL CMPT
!DO POLY4F POLY8F POLY16F SCANUNTIL* * * *
!D8 * * * * * VECTOR SYS

@!EO BRG BRGE BRGL BRNU PUSH4 PUSHADR POP4
@!E8 BRGU BRNL BRNE BR TESTLSB TESTl TEST4
@!FO BRN BRE BRL BRLE CALL CALLX *

!F8 BRU BREU BRLU BRNG * * *

Note 1: the ro~s lIlarked ~ith "@" contain the instructions that
can be packed t~o per ~ord.

Note 2: the instructions VECTOR and SYS are escapes to a
secondary set of opcodes.

6-13

CONVERT
BPOP8
BTEST8
BREAK
ERROR

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

The follo~ing chart sho~s opcode assignments for instructions in
the secondary instruction set in the escape group for "SYS".

SYS
OPCODE

+!OO +!01 +!02 +!03 +!04 +!05 +!06 +!07
!OO IEXIT SIJITCH * RSlJITCH IDLE STOP * *
108 PDINS PDDEL SYNCOD GROIdGDO * * * *
! 10 SYNCTCB SYNCIB CVLAtVA HASH CVV A tPP LAUNCH * *
!18 * * * * * * * *

*!20 laId lOR laC * * * * *
!28 * * * * * * * *
!30 * * * * * * * *

$138 IFC IdCMD lJBYTE RBYTE * * * *
$140 CHNOP RCL PRD PDA PAR RDP lJDP RIS
$!48 CIS SIS * * * * * *

!50 * * * * * * * *
! 58 MOVEtCSP* * * * * * *
--- * * * * * * * *
!Fa * * * * * * * *

Note 1: the I/O instructions in the ro~s lIlarked "I" are defined
for MPB-based iIllpl~entations. On any other
~plelllentation these instructions ~ill cause a trap.

Note 2: the I/O instructions in the rOTlJs ~arked "$" are defined
for PICMB-based ~plelllentations. On any other
iIllplelllentation these instructions ~ill cause a trap.

6-14

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

The chart given belom shoms the association betmeen vector
instructions and their opcodes. All these are secondary
opcodes in the "VECTOR" escape group.

VECTOR
OPCODE

+100 +101 +102 +103 +104 +!05 +106 +107
100 VMOVE2* VMOVE4 * VMOVE8 * VMOVE16 *
108 VABS * VABS4 VABS4F VABS8 VABS8F * VABS16F
110 * * VNEG4 VNEG4F VNEG8 VNEGSF * VNEG16F
118 * * VLSL4 * VLSL8 * * *
120 * * VLSR4 * VLSR8 * * *
128 * * VASL4 * VASL8 * * *
130 * * VASR4 * VASR8 * * *
138 * * * * * * * *
140 * * * * * * * *
148 * * * * * * * *
150 * * VCMPRS4 * VCMPRS8 * VCMPRS16*
158 * * VEXPND4 * VEXPND8 * VEXPNDl6*
160 * * VACC4 VACC4F VACC8 VACC8F * VACC16F
!68 * * * VACCD4F * VACCD8F * *
170 * * VMAXL4 VMAXL4F VMAXL8 VMAXL8F * VMAXL16F
!78 * * VMINL4 VMINL4F VMINL8 VMINL8F * VMINL16F
180 * * VADD4 VADD4F VADD8 VADD8F * VADD16F
!88 * * VSUB4 VSUB4F VSUB8 VSUB8F * VSUB16F
190 * * VMPY4 VMPY4F VMPY8 VMPY8F * VMPY16F
198 * * VDIV4 VDIV4F VDIV4F VDIV8F * VDIV16F
lAO * * VAND4 VOR4 VAND8 VOR8 * *
lA8 * * VXOR4 * VXOR8 * * *
lBO * * VGATH4 VSCAT4 VGATH8 VSCAT8 VGATH16 VSCAT16
lB8 * * VEXT4 VINS4 VEXT8 VINS8 VEXT16 VINS16
!CO * * VREM4 * VREM8 * * *
!C8 * * VMOD4 * VMOD8 * * *
100 * * VCMP4 VCMP4F VCMP8 VCMP8F * VCMP16F
lD8 * * * * * * * *
! EO CLRMR STMR LDMR MRNOT MRAND MROR MRXOR *
IE8 LDVLR STVLR RVLRT * * * * *
!FO UVCSA PUVCSAIVB LVB VINVAL * * *
!F8 * * * * * * VCONVERT*

6-15

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.1.5 Attributes

Attributes can be associated mith operands or mith instructions.

6.1.5.1 Operand Attributes

Each instruction has an i.JIlplied nuJIlber of operands and for each
operand of the instruction there is an i.JIlplied attribute.
For eKarople, section 6.2.2 shoms the ADD4 instruction in the
folloming may:

ADD4 term.r4, sum.rm4

Here" tem" and "SUIll" are lIlerely sy!llbolic names for the tmo
operands; ".r4" and ".rm4" are the operand attributes.
These attributes are cOJllposed of individual ele!llents like "r",
"m", and "4".

The "r" attribute indicates that the operand lIlust allom reading
frolll; hence it can be a literal, a register or a lIle!llory operand
mith appropriate read access rights.

The "m" attribute indicates that the operand lIlust allom mriting
to; hence it lIlust not be a literal, but lIlust be a register or a
lIle!llory operand with appropriate write access rights.

The "4" attribute indicates that the operand is a 4-byte entity;
this has obvious iIIlplications for lIle!llory operands mith respect
to lIlelllory access and bounds checking.

operand I stands I
attribute I for: I LITERAL REGISTER MEMORY
----------+--------+---------+----------+----------------

r I read ok ok
m I mrite illegal ok
III I lIlelllory illegal illegal
b I base illegal illegal
c I code illegal illegal
v I vector (1) (1)
1 I 1-byte (2) (2)
2 I 2-byte (2) (2)
4 I 4-byte (2) (2)
8 I 8-byte (2) (2)

16 I 16-byte (2) (2)

Notes: (1):
(2):

see section 6.4.
see sections 6.1.6 and 6.1.7.

6-16

check OD.TYP&AR
check 00. TYP&AR

ok
ok

if OD.TYP=code
(1)

check ml OD.UB
check ml OD.UB-l
check wi OD.UB-3
check wi OD.UB-7
check wi OD.UB-15

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

5.1.5.2 Instruction Attributes

Instruction attributes include the data type of the operation
to be perfor~ed. For example, in:

ADD4F X3, X5

the suffix "4F" indicates that addition is to be perfomed on a
4-byte Floating point number according to the rules of floating
point arithmetic on 32-bit numbers.

A list of data types follohlS:

instructionl
attribute I

interpretation

-----------+--
1 8-bit unsigned integer, or any i-byte entity
2 16-bit thlO'S comple~ent integer/any 2-byte entity

4
8

16

4F
8F

16F

4D
8D

16D

32-bit thlO'S complement integer/any 4-byte entity
54-bit thlO'S co~plement integer/any 8-byte entity

128-bit entity of any type

32-bit IEEE floating point
64-bit IEEE floating point

128-bit IEEE floating point

32-bit packed decimal
54-bit packed deci~al

128-bit packed decimal

07/31

5.1.5 Sources

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

A source is a value derived from an operand that is of the right
size to be used in the instruction. This section ~akes explicit
the actions to be performed on read operands to turn them into
a source. For example, in the instruction:

ADD8 1, K3

the literal "1" is sign-extended to form a 54-bit source; the
register X3 is paired hlith the register K4 to for~ a 54-bit
register pair acting as a 54-bit source; both 54-bit nu~bers
are then added together in thlo's complement arithmetic. (The
result is then stored according to the rules in section 5.1.7.)

The follohling chart makes this all explicIt.

source (in bytes)
operand descr. 1 2 4 8 16
---------------+---
short literal as is SE15 SE32 SE64 SE128

long literal TR8 TR16 as is SE64 SE128

register opnd TR8 TR16 as is pair quad

memory operand Rl R2 R4 R8 R16

hlhere:

SEn = sign-extend to n bits. This alhlays means replicating the
IOhlest numbered bit regardless of data type.

TRn truncate. This alhlays means discarding all but the n
rightmost bits.

pair pair hlith follohling register. KO follohls K15.

quad pair hlith follohling 3 registers.

Rn Read n consecutive bytes from memory starting at the
effective logical address. Check the object type in the
OD for the logical object; check the read access rights
at the current privilege level; check bound LB and UB-n+l
(both inclusive).

5-17 6-18

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.1.7 Destinations

The result of an operation may have to be massaged before it
can be stored a~ay. This section ~akes these operations
explicit.

operand descr. 1
destination (in bytes)
248 16

---------------+---
short literal illegal illegal

illegal illegal

illegal illegal

illegal illegal

illegal

long literal illegal

register opnd ZE32 SE32 as is pair quad

memory operand Wi W2 W4 W8 W16

~here:

illegal a literal operand ~ust not occur in this context.

ZE32

SE32

right-justify and zero-extend to 32 bits

sign-extend, i.e. replicating the lo~est numbered
bit, to 32 bits.

pair pair ~ith following register. XO follows X15.

quad

TJn

pair with follo~ing 3 registers.

~rite n consecutive bytes to ~e~ory starting at the
effective logical address. Use the OD of the object
to check type and write access rights. Use the bounds
in the OD for bounds checking: LB and UB-n+l. (both
inclusive)

6-19

07/31

6.1.8 Traps

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

Traps are described in detail in chapter 7. Chapter 6 shows
the conditions under ~hich traps occur as the necessary result
of instruction execution, but it does not sho~ the parameters
passed to the trap handler, nor does it sho~ the pervasive
traps and conditions such as po~er-fail, page fault, etc.
In particular, it does not sho~ any of the traps in the list
below under the heading of "Opnd" that can occur on operand
accessing.

~: can be any of OPSPECV
DATATYPV
DATAODTV
DATAARV
DATABNDSV

AddressingV: can be any of the above, but in accesses other
than those involving explicit operands

Arith: can be any of INTOVF
INTDVDZ

FlAri th: can be any of FLINV
FLDVDZ
FLOVF
FLUNF
FLINX

DecArith: can be any of DECINVL
DECOVF
DECDVDZ
DECINVDG

6-20

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2 Base Instruction Set

6.2.1 Data Movement Instructions

6.2.1.1 MOVEt source.r, destination.~

Move data elelllent. The value of "source" is copied to
"destination". The I1UJTlber of bytes lIloved is illlplied
by the type "t". Partial overlap of the areas
containing source and destination lIlay give results that
differ across implementations.

destination := source;

includes: MOVE 1 MOVE2 MOVE4 MOVE8 MOVE16

6.2.1.2 MOVEADR operand. Ill, destination.~8

Move logical address. The 64-bit logical address of "operand"
is cOlllputed and the result stored in "destination".
"Operand" must be a memory operand. The byte that is
addressed by "operand" requires neither legal read nor
~rite access, nor need it be ~ithin the logical object
bounds. This instruction lIlakes the operand-addressing
hard~are available to soft~are, e.g. for building
reference arguments. This instruction also doubles
as a ~ay to obtain the value in a given base register;
for this usage the assembly language alias "BGET8" is
provided.

destination '= logical_address_of(operand)j

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.2.1.3 PUSHt source.r

Push data elelllent. The value of "source" is copied into a
temporary register of length 4 bytes (for PUSH1, PUSH2,
PUSH4)i of length 8 bytes (for PUSH8) or 16 bytes (for
PUSH16). For PUSH1, "source" is zero-extended to 32
bits; for PUSH2, "source" is sign-extended to 32 bits.
The telllporary is then pushed onto the stack. After
PUSHt, the top-of-stack register S ~ill point to the
first byte beyond the data that ~as lIloved. On stack
overflo~, S ~ill be restored to the value it had before
the instruction.

Temp[O .. k] .= source;
{zero-extend for t=l
sign-extend for t=2i

S := S + Ill'
(S-IIl)[O .. k] := Temp[O .. k)j

{Here for t = 1, 2, 4, 8, 16
use k =31,31,31,63,127
and III = 4, 4, 4, 8, 16}

PUSH 1 PUSH2 PUSH4 PUSH8 PUSH16
Traps: STKOVF STKOVF STKOVF STKOVF STKOVF

6.2.1.4 PUSHADR operand.m

Push logical address. The 64-bit logical address of "operand"
is computed and pushed onto the stack. "Operand" lIlust
be a memory operand.
PUSHADR also doubles as a ~ay to push the value of a
base register onto the staCk; for this usage the
assembly language alias "BPUSH8" is provided.

MOVEADR operand, Temp;
PUSH8 Temp;

Traps: STKOVF

6-21 6-22

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.1.5 POPt destination.lIT

Pop data elel1lent. A mlI1lber of bytes given by "t" are popped
off the stack and stored in "destination". In case
less than 4 bytes are popped, the top-of-stack register
S is further decrel1lented so as to rel1lain lITord-aligned.
On stack underflollT, S is restored to the value it had
before the instruction.

destination '= (S-t)[O •• p];
S := S - 111;

{Here for t 1, 2, 4, 8, 16
use p 7,15,31,63,127
and 111 4, 4, 4, 8, 16}

POPl POP2 POP4 POP8 POP16
Traps: STKUNF STKUNF STKUNF STKUNF STKUNF

6.2.1.6 DPF value.r4, shiftcount.rl, l1lask.r4, target.rllT4

Deposit Field. "Value" is deposited in a field of "target"
identified by "shiftcount" and "l1lask". "Mask" is
assul1led to be of the forl1l

2A 31 - (2A fieldsize - 1) * 2A shiftcount
but if it is not, the following definition still
applies. HOllTever, il1lplel1lentations l1lay substitute
a circular shift for the logical shift indicated.

MOVE4
LSL4
MOVE4
AND4
OR4
MOVE4

value, Val;
shiftcount, Val;
target, Tgti

111 ask , Tgtj
Val, Tgt;
Tgt, target

6-23

{see 6.2.3)

{see 6.2.3)
{see 6.2.3}

07/31 VISION ARCHITECURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.1.7 MOVEC length. r4, source.l1lr, destination.l1lllT

Counted l1love of bytes. This instruction l1loves a string of
contiguous bytes starting at the logical address
given by the specifier for "source" and of length
"length" to the area of equal length starting at

Traps:

the logical address given by the specifier for
"destination". If "length" is negative or zero,
no bytes are l1loved. If conditions (a) or (b) are
violated, il1lplel1lentations l1lay yield different
results; hOllTever, in no case should reads or lITrites
to l1lel1lory be perforl1led in violation of access rights.

a) the source and destination area l1lust not overlap
b) "length" l1lust not be in the destination area

The MOVEC instruction is interruptible, at intervals
deterl1lined by each il1lplel1lentation.

if lIP = 0 then C '= 0
else POP4 C;
lIP := 0;
MOVEADR source, Frol1lla;
MOVEA~~ destinationj :Ol~; Lgth .- length[0 •• 31 1,
lIThile C < Lgth do
begin

Byte := (Frol1lla + C)[0 •• 7];
(Tola + C) [0 •• 7] := Byte;
C : = C + 1;
{if il1lplel1lentation chooses to acknollTledge
external interrupts here, then
PUSH4 C and set lIP := 1}

end;

AddressingV

6-24

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.1.8 MOVEBIT bitindex.r4, source.r1, bitarray.mrm

Move a bit. The least significant bit of "source" is stored
in the array of bits (whose first byte is addressed
by "bitarray") at the index "bitindex". All other
bits of "source" are ignored. "Bitindex" is an
arbitrary two's complement integer. Only the address
of the byte in which the bit is actually stored need
be within the bounds of the logical object. No other
bits in the byte are disturbed. Memory interlock is
not guaranteed (see TESTSEMA).

MOVEADR bitarray, Addr;
Source_byte[0 .. 7] := source;
Bit := Source_byte[7];
Byte offset := bitindex[0 •. 28] {sign-extended};
AddrT32 .. 63] := Addr[32 .. 63] + Byte_offset;
Bit number := bitindex[29 •• 31];
Byte [0 .. 7] : = (Addr)[O .. 7];
Byte [Bit_number] := Bit;
(Addr)[0 .. 7] .= Byte;

Traps: AddressingV

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.2.1.9 MOVEBLR fillchar, srcl, src, destl, dest

MOVEBLR fillchar.r1, srcl.r4, src.mr, destl.r4, dest.mm

Move bytes left-to-right. This instruction moves a string of
contiguous bytes starting at the logical address given
by "src" and of length "srcl" to the logical address
given by "dest" and of length "destl". If "destl" is
<=0, nothing is moved. If "srcl" > "destl", the string
is truncated on the right. If "srcl" < "destl", the
string is padded on the right mith "fillchar". Overlap
betmeen "src" and "dest" areas is explicitly allomed:
the algorithm belom defines the intended effect.

if lIP = ° then C °
else POP4 Cj
lIP := 0;
MOVEADR src, Lfrom;
MOVEADR dest, Lto;
Sl := srcl; Dl:= destl; F:= fillchar;
mhile C < DI do begin

if C < Sl
then (Lto+C) [0 •• 7] : = (Lfrom+C) [..7]
else (Lto+C)[0 •. 7] := F;
C : = C + 1;
{ if implementation chooses to acknomledge

an external interrupt here,
then PUSH4 C and set lIP := 1 }

end;

Traps: AddressingV

6-25 6-26

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.1.10 MOVEBRL fiIIchar, srcl, src, destl, dest

MOVEBRL fillchar.r1, srcl.r4, src.~r, destl.r4, dest.~w

Move bytes right-to-left. This instruction rooves a string of
contiguous bytes starting at the logical address given
by "src" and of length "srcl" to the logical address
given by "dest" and of length "destl". If "destl"
<=0, nothing is ~oved. If "srcl" < "destl", the string
is padded on the left with "fillchar". If "srcl" >
"dstl", the string is truncated on the left. Overlap
between "src" and "dest" areas is explicitly allowed:
the algorit~ below defines the intended effect.

if lIP = 0 then C .= 0
else POP4 C;
lIP := 0;
MOVEADR src, Lfro~;
MOVEADR dest, Lto;
Sl := srcl; Dl:= destl; F:= fillchar;
while C < Dl do begin

if C < Sl
then (Lto+C)[O .. 7]·= (Lfroro+C)[O .• 7]
else (Lfro~+C) [0 •• 7] • = F;
C : = C + 1;
{ if irop1eroentation chooses to acknowledge

an external interrupt here,
then PUSH4 C, and set lIP := 1 }

end;

Traps: AddressingV

6-27

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.1.11 TRANSL table.~r, length.r4, source.~r, dest.~w

Translate. Contiguous bytes fro~ "source" are ~oved to "dest"
one at a tIDe by using the byte fro~ "source" to
index into "table" and the byte found in "table" is
stored at "dest".
Ii count of "length" bytes is ~oved; if "length" is
not positive, no bytes are ~oved.

if lIP = 0 then C·= 0
else POP4 C;
lIP := 0;
MOVEADR source, Lfro~;
MOVEADR dest, Lto;
MOVEADR table, Ltable;
while C < length do begin

Byte := (Lfro~+C)[O .. 7];
Byte := (Ltable+Byte)[O •• 7];
(Lto+C) : = Byte;
C : = C + 1;
{if IDple~entation chooses to acknowledge an
external interrupt here,
then PUSH4 C, and set lIP := 1 }

end;

Traps: AddressingV

6-28

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.1.12 DUP roordcount.r4, value.r4

Duplicate. The 32-bit value "value" is pushed onto the stack
a "roordcount" flUIIlber of times. This instruction must
be interruptible.

if lIP = 0 then C '= 1
else POP4 Cj

lIP := OJ
rohile C (= roordcount[0 .• 31] do begin

PUSH4 value;
C : = C + 1;
{if implementation chooses to acknoroledge
interrupts here,
then PUSH4 C and set lIP '= 1}

end;

Traps: STKOVF

6.2.1.13 REP roordcount.r4, value.r4, operand.mro

Replicate. The 32-bit value "value" is stored in "roordcount"
consecutive roords of mel'lory starting at the address
of "operand". If the buffer to be initialized roith
"value" overlaps roith either "roordcount" or "value",
implelllentations may produce different results.
This instruction IIlUSt be interruptible.

if lIP = 0 then C'= 1
else POP4 Cj
lIP := OJ
MOVEADR operand, Toaddrj
rohile C (= roordcount[0 .. 31] do begin

(Toaddr + 4*C)[0 .. 31] := value;
C : = C + 1;
{if implementation chooses to acknoroledge
interrupts here,
then PUSH4 C and set lIP := 1}

endj

Traps: AddressingV

6-29

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.1.14 EXTEND roordcount.r4

EKtend top-of-stack. Base register "S" is increl'lented by four
til'les the value of "roordcount", rohich must be positive.
On stack overfloro S roill be restored to its original
value and a trap taken. Ring level 1 is required.

if XL>l then Trap"INSPRIV"j
if roordcount < 0 then Trap"STKDEKTV"j
if S + 4 * roordcount (= SL then Trap"STKOVF" j
S : = S + 4 * roordcountj

Traps: INSPRIV
STKDEKTV
STKOVF

6.2.1.15 DELETE roordcount.r4

Delete from top-of-stack. Base register "S" is decrel'lented by
four times the value of "roordcount", rohich IIlUSt be
positive. If the nero S roould end up beloro Q, the
original S roill be restored and a trap taken.

if roordcount < 0 then Trap"STKDEKTVj
if S - 4 * roordcount < Q then Trap"STKUNF";
S := S - 4 * roordcountj

Traps: STKDEKTV
STKUNF

6-30

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.2.2 Arithmetic Instructions

This section includes instructions for arithmetic operations on
the integer and floating point scalar data types. Decimal
arithmetic is covered in section 6.3, vector arithmetic is
covered in section 6.4.

6.2.2.1 ADDt term.r, su~.rw

Add. "Term" is added to "su~" and the result is stored in
"SUl1l". In case of integer overflow, "SUl1l" is set to
the least significant bits of the correct ~ath~atical
result.

Status:
Traps:

ADD4
Ovfl
Arith

ADD8
Ovfl
Arith

ADD4F ADD8F ADD16F
Flflags Flflags Flflags
FlArith FLArith FLArith

6.2.2.2 SUBt term.r, difference.rw

Subtract. "Term" is subtracted fro~ "difference" and the result
is stored in "difference". In case of integer overflow
"difference" is set to the least significant bits of
the correct ~athe~atical result.

Status:
Traps:

SUB4
Ovfl
Arith

SUB8
Ovfl
Arith

SUB4F SUB8F SUB16F
Flflags Flflags Flflags
FlArith FLArith FlArith

6.2.2.3 MPYt factor.r, product.rw

Multiply. "Factor" is ~ultiplied by "product" and the result
is stored in "product". In case of integer overflOW,
"product" is set to the least significant bits of the
correct ~athe~atical result.

Status:
Traps:

MPY4
Ovfl
Arith

MPY8
Ovfl
Arith

MPY4F MPY8F MPY16F
Flflags Flflags Flflags
FLArith FLArith FLArith

6-31

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.2.2.4 DIVt divisor.r, dividend.rw

Divide. "Dividend" is divided by "divisor" and the result
stored in "dividend". On integer divide with "divisor"
zero, the new value of "dividend" is indeterI1linate;
however, the sign of "dividend" should not be changed.
For integer divide, the algebraic result is truncated
towards zero. On integer overflow, "dividend" is left
as zero.

DIV4 DIV8
Status: Ovflow Ovflow
Traps: Arith Arith

INTDVDZ INTDVDZ

DIV4F
FlFlags
FlArith

DIV8F
FlFlags
FlArith

DIV16F
FlFlags
FlArith

6.2.2.5 NEGt source.r, destination.w

Negate. "source" is negated (subtracted froN zero) and the
result is stored in "destination". On integer
overflOW, "destination" is left as the largest
negative value.

Status:
Traps:

NEG4
Ovflow
Arith

NEG8
Ovflow
Arith

NEG4F NEG8F NEG16F
FIFlags FIFlags FIFlags
FLArith FLArith FLArith

6.2.2.6 ABSt source.r, destination.w

Absolute value. The absolute value of "source" is co~puted
and the result is stored in "destination". On
integer overflOW, "destination" is left as the
largest negative value.

Status:
Traps:

if source < 0 then destination'= 0 - source
else destination:= source;

ABS4
Ovflow
Arith

ABS8 ABS4F ABS8F ABS16F
Ovflow FIFlags FIFlags FIFlags
Arith FlArith FlArith FlArith

6-32

07/31

VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY HP PRIVATE INFORMATION

6.2.2.7 REMt divisor.r, dividend.rw

Remainder. The algebraic remainder of the division of "dividend"
by "divisor" is computed and the result stored in
"dividend". The relllainder has the sallle sign as the
old value of "dividend", and is less in absolute value
than "divisor". The equation

Status:
Traps:

divisor * quotient + relllainder = dividend
always holds. If "divisor" is zero, the magnitude of
"dividend" will be indeteminate.

REM4
OVflow
Arith
INTDVDZ

REM8
OVflow
Arith
INTDVDZ

6.2.2.8 MOOt divisor.r, dividend.rw

Modulus. The modulus of "dividend" and "divisor" is computed
and the result is stored back into "dividend".

Status:
Traps:

The modulus is defined to be the quantity that is
positive (or zero) and less than the absolute value
of "divisor", and such that the difference of Mdulus
and "dividend" is a whole multiple of "divisor".
This definition deterlllines the lIlodulus uniquely, except
when "divisor" has the value zero, in which case the
magnitude of "dividend" will be indeteminate.
Note that the equation

divisor * quotient + modulus = dividend
will not always hold.

MOD4 MOD8
OVflow OVflow
Arith Arith
INTDVDZ INTDVDZ

6-33

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.2.9 POLYt degree.rl, polyn.mr, operand.rw

Polynomial evaluation. This instruction computes the value of
a polynolllial evaluated for the value of "operand",
storing the result back into "operand". The polynomial
is defined by degree "degree" (interpreted as an
unsigned integer) and a table of coefficients, "polyn".
The coefficient of the highest order tem of the
polynolllial is addressed by "polyn". All coefficients
are stored consecutively in meAory. The algorithm
below is intended to define the value desired, not
the precise sequence in which the calculations are
actually performed.

Status:
Traps:

X := operand; Y:= 0; C:= 0;
MOVEADR polyn, Lcoeff;
while C < degree do

Y := Y * X + (Lcoeff+C*t)[0 .. 8*t-1];
operand : = Y;

POLY4F POLY8F POLY16F
FIFlags FlFlags FlFlags
AddressingV AddressingV AddressingV
FlArith FlArith FlArith

6-34

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.3 Logical Operations and Shifts

6.2.3.1 AND4 ~ask.r4, operand.rw4

Logical AND. The bit-wise logical AND of "~ask" and "operand"
is computed and the result is stored in "operand".

6.2.3.2 NOT4 source.r4, destination.w4

Logical NOT. The bit-wise logical NOT (one's complement) of
"source" is computed and the result is stored in
"destination".

6.2.3.3 OR4 mask.r4, operand.rw4

Logical OR. The bit-wise (inclusive) OR of "mask" and "operand"
is computed and the result is stored in "operand".

6.2.3.4 XOR4 mask.r4, operand.rw4

Exclusive OR. The bit-wise exclusive OR of "mask" and "operand"
is computed and the result is stored in "operand".

6.2.3.5 LSLt shiftcount.rl, bitfield.rw

Logical shift left. "Bitfield" is shifted left by "shiftcount"
bits and the result is stored back in "bi tfield" •
Zeros are shifted into the least significant bit; bits
shifted out of the most significant bits are lost.
"Shiftcount" is unsigned; only the right~ost 5 bits
(for LSL4) or 6 bits (for LSL8) are significant.

includes: LSL4 LSL8

6-35

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.3.6 LSRt shiftcount.r1, bitfield.~

07/31

Logical shift right. "Bitfield" is shifted right by "shiftcount"
bits and the result is stored back in "bitfield".
Zeros are shifted into the ~ost significant bit; bits
shifted out of the least significant bits are lost.
For interpretation of "shiftcount", see LSLt.

includes: LSR4 LSR8

6.2.3.7 ASLt shiftcount.r1, operand.~

ArithPletic shift left. "Operand" is shifted left by "shiftcount"
bits and the result is stored back into "operand".
Zeros are shifted into the least significant bit; bits
shifted out of the most significant bit are lost.
Overflow occurs if the new sign bit or any of the bits
shifted out are different fro~ the original sign bit.
For interpretation of "shiftcount", see LSLt.

ASL4
Traps: Ovfl

ASL8
Ovfl

6.2.3.8 QUAD4 source.r4, destination.w4

Quadruple. "dest" is given the value of "source" times four.

Traps: Ovfl

MOVE4 source, destination;
ASL4 2, destination;

6.2.3.9 ASRt shiftcount.r1, operand.rw

ArithPletic shift right. Divide the integer value of "operand"
by 2**shiftcount, truncating toward zero and store
the result back into "operand". See LSLt for
interpretation of "shiftcount".
Note: for negative values of "operand" this is not
the same as a straight sign-propagating right shift.

includes: ASR4 ASR8

6-36

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.4 Compares and Tests

6.2.4.1 CHPt source1.r, source2.r

Compare. The condition code CC is set depending on the result 0
the comparison of the values of "source1" and "source2".
For CMP2, CMP4 and CMP8 a two's complement compare is
performed; for CHPl an unsigned integer compare is
performed. For CHP4F, CMP8F and CMP16F comparison is
performed according to the IEEE floating point standard;
note that this can result in "unordered".
condition codes are set as follows:

CCG, if source1 > source2
CCE, if source1 source2
eeL, if source1 < source2
ecu, if sources are "unordered" (IEEE only)

CMP1 CMP2 CMP4 CMP8 CMP4F CMP8F CMP16F
Status: ce CC cc ec CC ec cc

FlFlags FlFlags FlFlags
Traps: FlArith FlArith FlArith

6.2.4.2 TESTt source.r

Compare to zero. This instruction is merely a short form of
'CMPt source, 0'.

TEST1 TEST2 TEST4 TEST8 TEST4F TEST8F TESI16F
Status: CC CC CC CC CC CC CC

FlFlags FlFlags FlFlags
Traps: FlArith FlArith FlArith

6-37

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

6.2.4.3 CMPC length.r4, stringa.m, stringb.m, index.~4

Counted Compare. This instruction compares two streams of bytes
"stringa" and "stringb" until the first non-equal byte
has been encountered or until "length" bytes have been
compared. The condition code in STATUSB is set depending
on the unsigned compare of the last pair of bytes examined.
"Index" is set to the I1IJIIlber of the first non-equal byte.
If interrupted, the I1IJIIlber of bytes left to compare is
pushed onto the stack and the instruction-in-progress
flag is set.

MOVEADR stringa, Ala;
MOVEADR stringb, Bla;
if lIP = 0 then C .= 0
else POP4 C;
!IP := 0;
while C < length and

(Ala+C)[0 .. 7] = (Bla+C)[0 •• 7]
do begin

e : = C + 1;
{if implementation chooses to ackno~ledge
external interrupts here, then
PUSH4 C and set lIP := 1 }

• end;
1f C >= length then ce := CCE
else if (Ala+C)[0 •• 7] > (Bla+C)[0 •• 7] then CC '= CCG
else ec := CCL;
index := C;

Status: ec
AddressingV Traps:

6-38

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.4.4 TESTLSB source.r1

Test least significant bit. The condition code is set to CCG
if the least significant bit of "source" is 1,
otherwise the condition code is set to CCE.

Status: CC

6.2.4.5 TESTOV

Byte[0 .. 7] := source;
if byte[7) = 1 then CC '= CCG
else CC := CCE;

Test overflow. The condition code is set to CCG if the overflow
exception flag is set, else the condition code is set
to CCE. The overflow flag is left clear.

if STATUSB.OVF = 1 then CC ;= CCG
else CC := CCE;
STATUSB.OVF := 0;

Status: CC
OVerflow

6. 2.4. 6 TESTA

Test conditional break enable. If the "CBA" trap is enabled,
set the condition code to CCG, otherwise to CCE.

Status: CC

6.2.4.7 TESTB

if STATUSB.CBA 1 then CC := CCG
else CC := CCE;

Test conditional break enable. If the "CBB" trap is enabled,
set the condition code to CCG, otherwise to CCE.

Status: CC

if STATUSB.CBB 1 then CC := CCG
else CC := CCE;

6-39

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.4.8 TESTBIT bitindex.r4, bitarray.mr

Test a bit. The condition code is set depending on the value of
a bit in a bit array at the index "bitindex". The bit
array must be in memory (it cannot be in a register) and
its first byte must be addressed by "bitarray". If the
bit is found set, the condition code is set to CCG, else
it is set to CCE.

Status:
Traps:

MOVEADR bitarray, Addrj
Bytela[0 •. 31) := Addr[0 .• 31]j
Byte index[0 .. 31] := bitindex[0 •• 28]; {sign-extend}
Bytela[32 •• 63] := Addr[32 .. 63] + Byte_index;
Byte := (By tela) [0 .. 7);
Bit_num := bitindex[29 .. 31];
if Byte[Bit_nuro] = 1 then CC := CCG else CC := CCE;

CC
AddressingV

6.2.4.9 SCANUNTIL charset.mr, string.mr, index.rw4

07/31

Scan string until condition satisfied. The string of characters
(bytes) pointed to by "string" is scanned for a character
that satisfies a particular condition. "Index" must be
initialized by software; SCANUNTIL increments "index"
(ignoring any overflow) continually as the search proceeds.
The condition to be satisfied by the character is encoded
as a 256-bit bit array (similar to a Pascal set).
Bits found set in the bit array "charset" signify that
the corresponding character satisfies the condition.
If the logical address of "charset" is at or within 32
bytes of the object's upper bound, an addressing violation
trap is raised. This instruction must be interruptible;
"index" contains sufficient infomation to restart.

MOVEADR string, St;
index := index - 1;
repeat index:= index + l'

Char := (St+index)[o •• 7j; {zero-extend}
{implementations may choose to
acknowledge an interrupt here}

TESTBIT Char, charset; {charset[Char]
until CC = CCG; {= 1

Status: CC NOT affected
Traps: AddressingV

6-40

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.4.10 CMPB fillchar, 19 tha , srca, 19thb, srcb, index

CMPB fillchar.r1, 19tha.r4, srca.mr, 19thb.r4, srcb.mr, index.w4

COJ1lpare bytes. "Srca" is compared to "srcb" and the condition
code set. The shorted string is considered padded with
"fillchar". "Index" identifies the offset where bytes
started to differ. CCG and CCL refer to the unsigned
compare fa the bytes at that location.

Status:
Traps:

C := OJ Flag;= 1;
MOVEADR arca, Laj
MOVEADR srcb, Lbj
while (C < 19tha or

C < 19thb and
Flag = 1) do begin

A := fillcharj B:= fillchar'
if C < 19tha then A := (La+C)to .• 7]j
if C < 19thb then B := (Lb+C)[0 •• 7]j
if A <> B then begin

if A) B then CC := CCG
else CC '= CCL;
Flag: = OJ
end;

end;
if Flag = 1 then CC '= CCE;
index := C;

CC
AddressingV

6.2.4.11 CMPT table, fillchar, 19tha, srca, 19thb, srcb, index

CMPT table.mr, fillchar.r1, 19tha.r4, srca.mr, 19thb.r4,
srcb.mr, index.w4

Compare bytes, translated. This instruction resembles CMPB
except in that COJ1lpares are J1lade of the bytes in
"table" indexed by the data bytes in the strings
rather than of the actual data bytes themselves.

Status:
Traps:

CC
AddressingV

6-41

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy HP PRIVATE INFORMATION

6.2.5 Base Register Instructions

6.2.5.1 BGET8 source.b, destination.w8

Get address in base register. See under "MOVEADR".

6.2.5.2 BSET8 source.ra, dest.b

Set base register to logical address. Load the 64-bit logical
address froJ1l "source" into the designated base register.
The logical object id of the logical address must be
valid. The logical offset of the logical address need
not be within object bounds.

j := base_reg_designator_of(dest);
if j >= 6 then Trap"Opnd'"
Bj[0 •. 63] ;= source[0 .• 63j;
Group := source[0 •• 2]·
Object:= source[3 .. 31jj
if Object*16 > length of ODT of (Group)

then Trap"AddressirigViTj -

Traps: AddressingV

6.2.5.3 BMOVEADR source.m, dest.b

Move logical address to base register. This instruction is like
MOVEADR, but the result is stored in the base register
designated by "dest". This instruction doubles as a
base-register-to-base-register J1love. An asseJ1lbler
language alias "BMOVE8" is provided for this usage.

MOVEADR source ,Temp;
BSET8 Temp, dest;

Traps: AddressingV

6-42

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.5.4 BMOVE8 source.b, dest.b

Move base to base register. See under "BMOVEADR".

6.2.5.5 BGET4 source.b, dest.w4

Get offset of base register. Store 32-bit logical offset of the
base register designated by "source" into "dest".
"Source" IllUSt be a IlleIllory operand, according to the ".b"
attribute.

j := base reg designator of(source)j
dest := BI[32~.63J; -

6.2.5.6 BSET4 source.r4, dest.b

Set offset of base register. Load "source" into the 32-bit
logical offset of the designated base register.

j := base_reg_designator_of(dest);
if j)= 6 then Trap" Opnd" j
Bj[32 .. 63] := source[O .. 31];

6.2.5.7 BPUSH8 source.b

Push a base register. See under "PUSHADR".

6.2.5.8 BPOP8 dest.b

Pop into a base register. Eight bytes are popped off the stack
and loaded into the designated base register.

POP8 TeIllpj
BSET8 TeJIlp, dest;

Traps: AddressingV

6-43

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.5.9 BADD4 term.r4, dest.b

Add to offset of base register. The 32-bit value "term" is
added to the logical address in the base register
designated by "dest" using lIJrap-around 32-bit
arithmetic. OVerflollJ and carry is ignored.

j := base reg designator of(dest);
if j)= 6-then Trap"Opndi'i;
Bj[32 •• 63] := Bj[32 •• 63] + term;

6.2.5.10 BSUB4 term.r4, dest.b

Subtract froJll offset of base register. The 32-bit value "terIll"
is subtracted froIll the logical address in the base
register designated by "dest" using wrap-around 32-bit
arithmetic. OVerflollJ and carry is ignored.

NEG4 term, TeJIlp;
BADD4 TeIllp, dest;

6.2.5.11 BCMP4 sourcea.b, sourceb.r4

COJllpare offset of base register. The 32-bit offset of the base
register designated by "sourcea" is cOIllpared using tllJO'S
cOIllpleIllent arithmetic with the value of "sourceb".
Condition codes are set to reflect the result of the
cOIllparison. No overflollJ can occur.

Status:

j := base~reg_designator_of(sourcea);
if BJ[32 .. 63]) sourceb then CC '= CCG
else if Bj[32 •. 63] = sourceb then CC := CCE
else CC := CCL;

CC

6-44

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORtlATION

6.2.5.12 BCMPS sourcea.b, sourceb.rS

eo~pare base register with logical address. The 64-bit logical
address in the base register designated by "sourcea" is
compared for equality with the logical address in
"sourceb". If the two logicl addresses are equal, ceE
is set; otherwise, implementations ~ay set either CCG or
CCL arbitrarely.

j := base_reg_designator_of(sourcea);
if Bj[O .• 63] = sourceb then CC '= eeE
else CC:= eCG {or CCL};

Status: ee

6.2.5.13 BTESTS source.b

Test base register for NIL. The base register designated by
"source" is co~pared to a logical address of all zeros.

BCMPS source, 0;

Status: CC

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORtlATION

6.2.6 Transfer of Control

6.2.6.1 BR{GLEU} target.r4

Branch. Depending on the match between the condition code field
in the status register and the mask comprised of four
bits in the opcode, execution continues with either the
next instruction in sequence or with the instruction
explicitly designated by "target". If a match is found
then the branch is taken. The target address of the
branch is found by adding "target"*2 to the value of P
P at the beginning of the branch instruction itself.
If the branch is not taken, and the target is in any
way illegal, imple~entations ~ay differ in whether an
Opnd trap is raised on "target".

mask [0] := 1- OPCODE[3]; mask [3] := OPCODE[4];
~ask[1 .• 2] := OPCODE[6 .• 7];
if CC=CCU and Unordered trap enabled

and (~ask[O]=l or ~ask 1]=1)
then Trap"Invalid Operation";
if ~ask[O] 1 and CC CCG

or ~ask[l] = 1 and CC eCL
or ~ask[2] = 1 and CC CCE
or ~ask[3] = 1 and CC ccu

then P '= P + target * 2;

Instruction Mnemonic
Branch Never BRN
Branch Unordered BRU
Branch Equal BRE
Branch Equal or Unord BREU
Branch Less BRL
Branch Less or Unord BRLU
Branch Less or Equal BRLE
Branch Not Greater BRNG
Branch Greater BRG
Branch Greater or Unord BRGU
Branch Greater or Equal BRGE
Branch Not Less BRNL
Branch Greater or Less BRGL
Branch Not Equal BRNE
Branch Not Unordered BRNU
Branch Always BR

Traps: CODEBNDSV
FUNV

Assembler aliases

BRZ BREVEN BRNOV
BRZU
BRM

BRMZ
BRLEU
BRP BRODD BROV BRBUSY

BRPZ
BRGEU

BRGLU
BRGLE

6-45 6-46

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.6.2 CALL target.r4

Procedure call. A procedure ~arker is pushed onto the stack
and control is passed to "target", interpreted as
a 32-bit half-mord offset relative to the start of
the CALL instruction. CALL requires the procedure
to be roithin the current code object.

lIP := i-lIP; if IIP=l and PTE=l then Trap"DBCALL"j
S := S + 4; {pushes garbage}
PUSH4 P[32 .. 63]j
PUSH4 Q[32 .. 63];
Q. S;
P := P + target * 2;

Traps: STKOVF
CODEBNDSV
DBCALL

6.2.6.3 CALLX loi.r4

External call. A procedure ~arker is pushed onto the stack and
control is passed to the entry point specified in the
OD for "loi". "Loi" contains the high 32 bits of a
logical address into the target object.

lIP : = 1-IIP; if IIP=l and PTE=l then Trap"DBCALL";
lIP := OJ
PUSH8 Pre turn;
(8-4)[0 .. 6] := STATU8A;
PUSH4 Q[32 .. 63];
Q '= S·
if·OD(loi).TYP <> VisionCode then Trap"CODETYPV";
if STATUSA.XL > OD(loil.PR then Trap"CODERINGV";
STATU8A.XL := OD(loil.XLj
Ptarget[0 .. 31] '= loi;
Ptarget[32 .. 61] '= OD(loi).EPMOj
Ptarget[62 .. 63] .= OJ
P : = Ptarget;

Traps: STKOVF
CODETYPV
CODEBNDSV
CODERNGV
DBCALL

6-47

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.6.4 BRK loi.r4

External Branch. Control is transferred to the target
indicated in the OD for "loi". Loi contains the
high 32 bits of a logical address into the target
code object.

lIP := 1-IIPj if IIP=l and PTE=l then Trap"DBCALL"j
lIP := OJ
Ptarget [0 .• 31] : = loij
Ptarget[32 .• 61] := OD(loi).EPMOj
Ptarget[62 •. 63] := 0;
if OD(loi).TYP <> VisionCode then Trap"CODETYPV"j
if STATUSA.KL > OD(loi).PR

or STATUSA.KL > OD(loi).XL
then Trap"CODERINGV";
if (Q-8) [0] = 0 then begin

(Q-8) [0] := 1;
(Q-8)[l .• 2] := STATU8A.XL;
(Q-12) [0 •• 31] : = P[O •• 31];
end'

P := Ptarget;

Traps: CODETYPV
CODERINGV
CODEBNDSV
DSCALL

6-48

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.6.5 EXIT

Exit from procedure. This instruction can be used to return
from a procedure called with CALL or CALLX. The
procedure marker located at Q contains the necessary
information to restore the context of the caller.
If the caller executed in a different code object
than the current one, a number of checks are made.

Status:
Traps:

if (Q-8)[0] = 1 then begin
{external exit}
Pobject:= (Q-12)[0 .. 31];
Poffset :=.~0-8)[8 .. 31]j.zero-extended;
ST return .- (0-8)[0 .• 7 ,
if-STATUS.XL > OD(Pobject).XL
then Trap" STKCONSI SIV" ;
if ST return.XL > STATUSB.KTL
then Trap"INSKTL";
end

else begin
{internal exit}
Pobject := P[0 .. 31];
Poffset := (0-8)[0 .• 31];
STJeturn : = STATUSA;
end;

Q offset := (0-4)[0 •. 31];
if 0 offset < 0 or 0 offset> 0[32 •• 63] - 12
then-Trap"STKCONSISTV";
if Poffset[31] = 1
and (implementation chooses to detect this)
then Trap" INSODDP" ;
Poffset[31] := 0;
S[32 .. 63] := 0[32 .. 63] - 12;
0[32 •. 63] := ~offset;
P[O •• 31] '= Pobject;
P[32 .. 63] '= Poffset;
STATUSA '= ST_return; {SIT bit not to

take effect until
next instruction}

restored from marker on external exit
INSKTL
STKCONSISIV
CODEBNDSV
INSODDP

6-49

07/31

6.2.6.6 SEXIT

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

SUbroutine exit. This instruction can be used to return from a
subroutine called with a PUSH4; BR combination.
The value of Q is not affected.

POP4 Returnoffs'
if Returnoffs[31] = 1 and {implementation

chooses to detect this condition}
then Trap" INSODDP" ;
Returnoffs[31] := 0;
P[32 •• 63] := Returnoffs;

Traps: STKUNF
CODEBNDSV
INSODDP

6.2.6.7 BREAK pararoeter.r4

Breakpoint, This instruction always causes a breakpoint trap.
The value of STATUSD.DRL has no effect.

Trap"DBBREAKINS";

Traps: DBBREAKINS

6.2.6.8 ERROR

Error. This instruction always causes a trap for all users.

Trap"INSERROR";

Traps: INSERROR

6.2.6.9 NOP

No operation. Continues with the immediately following
instruction.

6-50

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.6.10 CHECKA parameter.r4

Conditional break. If the "CBA" enable bit is set, a trap is
taken. If "CBA" is disabled, no ~ trap should be
raised even if "parameter" is somehow illegal; instead
"parameter" should be ignored.

if STATUSB.CBA = 1 then Trap"DBCHECKA";

Traps: DBCHECKA

6.2.6.11 CHECKB pararneter.r4

Conditonal break. If the "CBB" enable bit is set, a trap is
taken. If "CBB" is disabled, no ~ trap should be
raised even if "parameter" is somehow illegal; instead
"parameter" should be ignored.

if STATUSB.CSS = 1 then Trap"DBCHECKS";

Traps: DBCHECKB

6.2.6.12 CHECKLO source.r4, lobound.r4

Check lower bound. If "source" is less than "lobound", a
bounds check trap occurs. The comparison is a two's
complement 32-bit compare.

if source < lobound then Trap" INSCHKLO" ;

Traps: INSCHKLO

6.2.6.13 CHECKHI source.r4, hibound.r4

Check upper bound. If "source" is greater than "hibound", a
bounds check trap occurs. The comparison is a two's
complement 32-bit compare.

if source > hibound then Trap" INSCHKHI" ;

Traps: I NSCHKHI

6-51

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.7 Interaction with Machine State

6.2.7.1 MOVEfSP4 selector.rl, destination.w4

Move from special register. This selects a certain register
or dedicated memory location based on the value of
"selector". This register or memory location is then
right justified, zero filled and stored in the 32-bit
"destination". An INSMOVSPL violation occurs when
either the value of the selector does not correspond
to any entry in the following list or when the current
execute level does not match the level required for
reading the selected register.

selector #bits

o condition code 2
1 rounding mode 2
2 exit threshold 2
3 execute level 2
4 flpt trap enable 5
5 int trap enable 2
6 dec trap enable 2
7 flpt mode 2
8 STATUSA 32
9 STATUSBl 32

10 STATUSB2 32
11 TRY offset 32
12 cond break A 1
13 cond break B 1
14 task clock enable 1
15 STATUSC1 32
16 Interrupt Mask 16
17 STATUSD 32
22 HASH. PA 32
23 HASH. LENGTH 32
24 PDIR.PA 32
25 PDIR.LENGTH 32

Traps: INSMOVSPL

req'd XL

6-52

3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1

Assembler alias

GetCC
GetRM
GetXTL
GetXL
GetTEFLP
GetTEINT
GetTEDEC
GetFPCMODE
GetSTATA
GetSTATBl
GetSTATB2
GetTRY
GetCBA
GetCBB
GetTCE
GetSTATC1
GetIMR
GetSTATD

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.2.7.2 MOVEtSP4 selector.r1, source.r4

Move to special register. This instruction selects a special
hardware register or dedicated ~e~ory location
based on the value of "selector". The value of
"source" is stored into this register or location.
The least significant bits of "source" are used in
the assig~ent, without any overflow indication.
A trap is taken when the selector does not roatch
any of the entries in the following table or if
the current ring level does not match the required
ring level.

selector ""bits req'd XL

o condition code 2
1 rounding roode 2
2 eHit threshold 2
3 flpt trap enable 5
4 int trap enable 2
5 dec trap enable 2
6 flpt ~ode 3
7 STATUSB2 32
8 Q offset 32
9 task breakrange LOI 32

10 cond break A 1
11 cond break B 1
12 task clock enable 1
13 Interrupt ~ask 16
14 Debug ring level 2
15 sys breakrange LOI 32

Status:
Traps:

depends on selector
depends on selector
Opnd
INSMOVSPL

3
3
< source
3
3
3
3
3
3
3
1
1
o
o
o
o

Asserobler Alias

SetCC
SetRM
SetXTL
SetTEFLP
SetTEINT
SetTEDEC
SetFPCMODE
SetSTATB2
SetQ
SetTBR
SetCBA
SetCBB
SetTCE
SetIMR
SetDRL
SetSBR

STKCONSISTV (if setting Q offset to value
outside SB and S)

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.7.3 MOVEfSP8 selector.rl, destinaiton.w8

Move fro~ special register. This instruction is used to
obtain the contents of a special hardware register
or dedicated ~~ory location identified by the
value of "selector". Values of "selector" not
represented in the following list cause the trap
"INSMOVSPL" to be raised.

selector #bits req'd XL Asse~bler Alias

o progr~ counter 64 3 GetP
1 ODTO.LA 64 1
2 TCB.LA 64 1 GetTCB
3 TCBX.LA 64 1 GetTCBX
4 interval tiroer 64 1
5 task clock 64 1
6 tiroe of century 64 1
7 QLLA 64 1

Traps: INSMOVSPL

6.2.7.4 MOVEtSP8 selector.rl, source.r8

Move to special register. This instruction stores the
value of "source" into the special hardware
register or dedicated m~ory location identified
by "selector".

selector

o TCBX.LA
1 interval tiroer
2 task clock
3 tiroe of century
4 QLLA
5 OST descriptor
6 CST descriptor

#bits req'd XL

64
64
64
64
64
64
64

o
o
o
o
o
o
o

Traps: dependent on selector
INSMOVSPL

Asse~bler Alias

SetTCBX

6-53 6-54

07/31

6.2.7.5 TRY

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

Mark the stack with the TRYoffset. When paired with UNTRY,
TRY supports the try/recover construct of MonCAL.
The old value of TRYoffset is pushed onto the stack
and the current value of S is recorded in TRYoffset
(hence TRY offset points to the location in the stack
where the previous value of TRYoffset is kept).

UNTRY is used to undo this sequence. The back chain
of TRYoffsets is Auch like the back chain of Qoffsets
but under total software control independent of CALL/
CALLX. TRY Aust not be executed on the ICS.

if STATUSC.ICS = 1 then Trap "TRYV";
PUSH4 TRYoffset;
TRYoffset := S[32 .• 63];

Traps: STKOVF
TRYV

6.2.7.6 UNTRY destination.w4

ReAove one TRY Aarker. This instruction undoes the action
perforAed by TRY. This causes the previous value
of TRYoffset to becoAe reestablished. UNTRY Aust
not be executed when on the lCS. Note that the
TRYoffset need not be on top of the stack when
UNTRY is executed, nor is it popped off.

Traps: TRYV

if STATUSC.ICS = 1 then Trap"TRYV"j
TeAp[32 .. 63] := TRYoffset;
destination := TRYoffset - 4;
Temp[O .. 31] -= S[0 .. 31];
TRYoffset '= (TeAp - 4)[0 .. 31];

AddressingV

6-55

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.2.8 Instructions that interact with the address space

6.2.B.1 PROBE ring.rl, access.r1, address.r8) length.r4

Probe access rights. This instruction sets condition codes
dependent on the legality of accessing the address
range given by "address" and "length". PROBE tests
whether in the ring level specified by "ring" the type
of access represented by "access" would be legal
everywhere in the logical address range starting at
"address" and ending at "address"+"length"-l.
Here a negative "length" is treated as O.

Encodings:

o
1
2
3
4

ring access

o AeAOry read
1 AeAory-write
2 instruction_fetch
3

caller's

Values not in the list above will cause an lNSPROBE
trap.

The resulting conditon code settings are as follows:
CCL: the object does not exist or the indicated

access is illegal.

CCE: the indicated access is legal but the indicated
address range is not wholly within the object.

CCG: the indicated access is legal at the indicated
privilege level over the entire address range
specified.

Status: CC
Traps: lNSPROBE

6-56

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.2.8.2 TESTBEF ppn.r4

Test reference bit. Returns the state of the reference bit for
the physical page "ppn" in the condition codes and

07/31

then clears the reference bit. "ppn" gives the physical
page number. If the reference bit in the PPD for the
page is found set, then CCG is returned, otherwise CCE.

The reference bit in the PPD is then cleared.

Any address translation aid (TLS) must synchronize
itself with the contents of the PPD as part of the
execution of TESTREF.
Note that TESTREF only provides a snapshot: ifflfflediately
after executing TESTBEF some other processor ~ay access
the page; this would not be reflected in the condition
codes.
Bing 0 privilege is required.

Status: CC
Traps: INSPRIV

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.8.3 PDINS ppn.r4

07/31

Insert page into PDIR. This instruction takes the Physical Page
Descriptor (PPD) identified by the physical page number
"ppn" and inserts it in the proper Hash chain. The PPD
must be entirely initialized before using this instruction,
except for the link field. The Virtual Page NUNber (VPN)
in the PPD itself is used to CONpute the hash value H that
locates the proper chain. The PPD will be inserted as the
first link in the chain. No other PPDs in the PDIB will
be changed. If the PPD for "ppn" is already linked into

/
I
\

a hash chain before PDINS is executed, the results are
undefined. PDINS requires ring 0 privilege.

if XL > 0 then Trap"INSPRIV";
PPDpa := PDIB.PA + 16 * ppn;
Pp := (PPDpa) [1 .• 20]; {zero-extend}
if ppn <> pp then Trap"ADBPDIB";
VPN := (PPDpa + 4)[0 •. 51];
Bucketpa : = HASH. PA + 4 * hash (VPN);
Link := (Bucketpa) [0 •• 31];
(PPDpa + 12) [0 .• 31] : = Link;
(Bucketpa)[O •• 31] := PPDpa;

Note: the bracketed portion must be synchronized with
other hardware access to the hash bucket in a
shared-memory ~ulti-processor system.
Such a system may use bit 0 of the hash bucket
(Bucketpa)[O] as a semaphore bit.
This bit must be returned to O.
See PDDEL for further detail.

Traps: INSPBIV
ADRPDIR

6-57 6-58

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.8.4 PDDEL ppn.r4

Delete from PDIR. The Physical Page Descriptor PPD for the
physical page with physical page nuIIlber "ppn" is
removed from its hash chain.
Ring 0 privilege is required.

PPDpa := PDIR.PA + 16 * ppn;
VPN := (PPDpa + 4)[0 .. 51];
Linkpa : = HASH. PA + 4 * hash(VPN);
repeat

Oldlinkpa := Linkpa;
Linkpa := (Linkpa + 12)[0 •• 31];
if Linkpa = 0 then Trap"ADRPDIR";
until Linkpa = PPDpaj

(Oldlinkpa+12)[0 .. 31] := (PPDpa+12)[0 .• 31];

Notes: (consult carefully when implementing a VISION machine
capable of running as a shared-memory multi-processor)

1) Address translation aids (TLB) must be synchronized (by
hardware) with the state of the PDIR/HASH before hardware
may execute the instruction following PDDEL.

2) In a shared-memory multi-processor system, implementations
must guarantee that read-write operands never fault on the
write. The burden for ensuring this can be placed entirely
on the implementation of PDDEL. This requires PDDEL to
complete a handshake with all processors in the system
before the instruction following PDDEL executes.

07/31

3) Various functions compete for access to hash bucket and PPDs
and these functions must be carefully synchronized by
hardware. These functions are: address translation; writing
dirty/reference bits; PDINS; TESTREF; PDDEL.
Each hash bucket and each PPD has a bit for semaphore use by
hardware. It is sufficient to lock the appropriate hash
bucket for the entire duration of each function. However,
doing so might add overhead to writing dirty/reference bits.
The following scheme is also sufficient: when writing dirty/
reference bits lock only the PPD; when translating addresses
lock hash bucket and each PPD in the chain and unlock each
immediately after reading its contents; PDINS locks the hash
bucket; PDDEL locks two consecutive links in the chain
(starting with the hash bucket) and unlocks the first one
only after it has obtained the lock for the third one.
Hardware must unlock all semaphores when a trap occurs.

Traps: ADRPDI R

6-59

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.2.8.5 CVLAtVA operand.ml, virtaddr.w8

Convert logical address to virtual address. The virtual
address corresponding to the logical address of
"operand" is computed and stored in "virtaddr".
Level 1 privilege is required. The reference
bit for the page containing "operand" is not
affected.

Traps: INSPRIV

6.2.8.6 HASH virtaddr.r8, hashindex.w4

Hash address. The 64"-bit virtual address "virtaddr" is
converted to a hash index which is stored in
the 32-bit II hash index " . Levell privilege is
required. Bits 52 •. 63 of "virtaddr" are ignored.

Traps: INSPRIV

6.2.8.7 CVVAtPP virtaddr.r8, ppn.w4

Convert virtual address to physical page nuIIlber. The 64-bit
"virtaddr" is translated to find the physical page
on which it resides. It returns a 20-bit physical
page nuIIlber, right justified and zero-extended.
However, if the page is absent, "ppn" is set to -1.
Level 0 privilege is required. The reference bit
for the addressed page is not affected.

Traps:

VPN := virtaddr[O •. 51];
if page VPN is currently present then

ppn := physical-page_nuIIlber_of_(VPN)
else

ppn .= -1;

INSPRIV

6-60

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.2.8.8 Gro~GDO ne~length.r4

Gro~ group zero ODT. This instruction inforns hard~are that
the length of the Object Descriptor Table for group zero
has been increased. The Group Descriptor for group zero
is updated to reflect this, in all processors in a
shared-~e~ory ~ulti-processor syste~. Ring 0 privilege
is required. It is the responsibility of operating
syste~ soft~are to ensure that the ne~ly addressable ODs
in group zero are properly initialized.

if STATUSA. XL > 0 then Trap" INSPRIV";
if GDO.UB < GDO.LB + ne~length
then GDO.UB .= GDO.LB + ne~lengthj

Traps: INSPRIV

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.2.9 Instructions for Tasking and Synchronization

6.2.9.1 DISABLE oldi.~l

Disable interrupts.

Traps:

if STATUSA.XL > 1 then Trap;
oldi := STATUSC.IE;
STATUSC. IE· = 0;

INSPRIV

6.2.9.2 ENABLE oldi.r1

Enable interrupts.

Traps:

if STATUSA.XL > 1 then Trap;
STATUSC.IE .= oldi;

INSPRIV

6.2.9.3 INTERRUPT pr.r4

Cause processor interrupt at priority "pr".

if STATUSA. XL > 0 then Trap;
pri := pr[28 •• 31]j
IPR[pri,processor] := set;

Traps: INSPRIV

6-61 6-62

07/31

6.2.9.4 PSDB

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Pseudo Interrupt Disable. The Dispatcher Disable Count (DDC) is
incre~ented. This inhibits dispatching of new tasks.
It does not disable external interrupts. The PSDB/PSEB
pair can be used as a very efficient way to protect
critical regions in a uni-processor syste~. PSDB/PSEB
pairs can be nested. Ring 1 privilege is required.

if XL > 1 then Trap" INSPRIV";
if DDC < 0 then Trap"INSDDCV";
if DDC > 2**27-1 then Trap"INSDDCV";
DDC : = DDC + 1;

Traps: INSPRIV
INSDDCV

6.2.9.5 PSEB

07/31

Pseudo Interrupt Enable. This instruction re~oves one inhibition
on dispatching new tasks and so undoes the effect of the
~ost recent PSDB. PSEB requires ring 1 privilege.
If a dispatch request is pending (DRF = 1), conditions
for entering the dispatcher are checked and an att~pt
is roade to enter the dispatcher. These conditions ~ust
be satiSfied before the dispatcher can be entered:

STATUSC. DDC 0
STATUSC.XM 0
STATUSC.ICS 0
STATUSC. DRF 1
STATUSC.IE 1

The PSDB/PSEB can also be used to protect regions within
the dispatcher code itself; in this case the DPF flag
roust be ignored.

if XL > 1 then Trap" INSPRIV" j
if DDC <= 0 then Trap"INSDDCV"j
DDC : = DDC - 1;
if STATUSC = 3 then DISP
else if STATUSC = 7 then begin

if STATUSB.DISP 1 then DRF'= OJ
end

Traps: INSPRIV
INSDDCV

6-63

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.9.6 DISP

Dispatch. This instruction is used to enter the dispatcher as
soon as is practicable. The only way to enter the
dispatcher is through this instruction.
If the dispatcher cannot be entered right away, the
Dispatch Request Flag is set. Ring 1 privilege is
required. The following conditions ~ust hold before
the dispatcher can be entered:

/ STATUSC.DDC 0
I STATUSC.XM 0
I STATUSC.ICS 0
\ STATUSC.IE 1

if XL > 1 then Trap"INSPRIV"j
if STATUSCl = 1 or STATUSCl = 3 then begin

PUSH_INTERRUPT_MARKER; TCB. SN . = S;
STATUSC.ICS := 1; STATUSC.DRF·= 0;
execute_case_2_of_IEXITj
end

else
STATUSC.DRF := 1;

Status: either unchanged or loaded fro~ Dispatcher ~arker
Traps: INSPRIV

STKOVF

6.2.9.7 LAUNCH tcbla.r8, tcbva.r8

Launch a task. This instruction is used by the dispatcher to
start execution of the task identified by "tcbla" and
"tcbva". The new current TCB is located at "tcbla" in
logical address space and at "tcbva" in virtual address
space. It is the responsibility of operating syst~
software to ensure that "tcbla" and "tcbva" are indeed
logical and virtual address to one and the saroe task
control block. Level 0 privilege is required.

if STATUSC.ICS=O then Trap"INSPRIV";
if Q < > QI then Trap"STKCONSISTV";
TCB.LA := tcblaj TCB.VA:= tcbva;
GDl := TCB.GD1;

GD7 : = TCB.GD7j
execute_case_1_of_IEXIT;

Traps: INSPRIV
STKCONSISTV

6-64

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.9.8 IEXIT

Interrupt Exit. This is used at co~pletion of an interrupt
handler (either external or internal). A trap occurs
if the instruction is executed other than on the ICS.

07/31

Q l1lust either point to the dispatcher ~arker or to an
interrupt ~arker, otherwise results are unpredictable.
If any of the pages of the ICS are absent, results are
unpredictable. If IEXlT returns control to a task, the
TCB of that task ~ust be resident. If any pages on the
task's stack containing the interrupt ~arker are absent,
or if that stack is in a stack overflow condition, the
appropriate trap is taken which runs as the bottOI1l
routine on the ICS (at aI). Neither TCB nor the task
stack object are ~odified in any way. There are three
cases of lEXIT which are sorted as follows:

Case 1: lEXIT should return control to a task without
involving the dispatcher.
This case obtains if Q=QI, mhile DRF=O or dispatching
is otherwise disabled.

Case 2: lEXIT should run the dispatcher to have it select
a task to LAUNCH.
This case obtains if DRF=l (dispatchE~r request flag),
dispatching is not disabled, and no interrupt handler
is pending. Note that it is possiblE~ for the dispatcher
to pree~pt itself.

Case 3: lEXIT should reSU11le whatever codH was running prior
to the interrupt handler. This l1lay be a lower priority
interrupt handler that was pending or the dispatcher.

The IEXIT description uses these uninterruptible sequences:

RESTORE_RETURN:

RESTORE_HP3000:

begin POP8B 85; .. POP8B BO;
POP4 X15; •• POP4 XO; POP8 STATUSB;
end

begin S·= Q + 120;
EXIT;
end

begin 'POP2' Dela;
'POP8' STATUSBj
'POP2' DL.OFFSET;
'POP2' DB.DST;
end

6-65

Q := S - DelQ;
'POP2' Z.OFFSET;
'POP2' DB. OFFSET;

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

IEXIT: if STATUSC.ICS = 0 then Trap"INSPRIV";
if Q = QI and STATUSC1 <> 7 then begin

case_1: {return to task}
STATUSC.ICS := 0; XM:= TCB.XM;
STATUSC.lE := 1;
if XM = 0 then begin

{return to Vision ~ode}
S := TCB.SN[0 •• 63]; Q:= S - 120;
if TCB. stJI P = 0 then RESTORE RETURN
else P: = IstJITCHN" trap label;
TCB.stJIP := 0;
end

else begin
{return to HP3000 11l0de}
S := TCB.SC[0 .• 63];
RESTORE_HP3000; \ don't allow
if TCB.stJIP = 0 then 'EXIT 0' / interrupts
else P: = IstJITCHC" trap label;
TCB.stJIP := 0;
end

end
else if a=aI or (STATUSC1=7 and (Q)[4]=1) then begin

case_2: {start dispatcher}
Q : = aI; DRF: = 0;
STATUSB := DispatcherStatusBInit;
EXIT «but leave S at Q» {a doesn't change}
end

else
case_3: {reSU11le code running before interrupted}

RESTORE_RETURN;

Note 1: ~pl~entations ~ay substitute for the test Q = QI the
test (Q-4) [0 .• 31] = QI[32 •• 63].

Note 2: "STATUSC1 = 7" SUlIllIlarizes the condition that dispatching
is both desired (DRF=l) and possible (DDC=O, etc).

Status:
Traps:

restored frol1l ~arker
INSPRIV
STKUNF
STKCONSISTV
stJITCHN
SlJITCHC
AddressingV on all base register loads

6-66

07/31

VISION ARCHITECTURE DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.9.9 SlJITCH

SllJitch to HP3000 mode. See chapter 10.5.2.3.

6.2.9.10 RSlJITCH

Reverse SllJitch. See chapter 10.5.2.4.

6.2.9.11 IDLE

Idle loop. This instruction will cause no activity visible to
software to occur until an external interrupt is
raised. In a shared-memory multi-processor, no
memory bandwidth should be consumed by this processor
when in IDLE. This requires ring 0 privilege.

Traps: INSPRIV

6.2.9.12 STOP

Stop. This instruction will cause the hardware to save all its
cached values into their home locations in main memory,
then release the memory bus and to wait for a hardware
reset or some other condition not defined by this
document. The intended use is for stop after power-fail.
This instruction requires ring 0 privilege.

Traps: INSPRIV

6-67

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

6.2.9.13 SYNCOD loi.r4

Synchronize changes to an 00. This instruction serves to warn
hardware that the Object Descriptor corresponding to
the logical object "loi" in the address space of the
currently executing task on the processor executing the
SYNCOD instruction has been changed. Hardware behavior
of all processors in a shared-memory multi-processor
system will reflect the new value of the 00 no earlier
than when the 00 is changed in memory and no later than
at the completion of the SYNCOD instruction, at the
discretion of the hardware implementation.
However, if the logical object whose 00 is being affected
matches the logical object id of any of the logical
addresses in the following list, the effect of SYNCOD is
undefined:

P; Q,S; BO, ••. ,B5; TCB.LA; QI;

these reflect operating system errors. Similarly, if
the OD change modifies the address or length of the TCB
or ICS(QI) of a task currently executing on another
processor in the saroe shared-memory multi-processor
system, the effect of SYNCOD is undefined.
SYNCOD requires all other processors in a shared-memory
multi-processor system to re-Ioad their current values
of P,Q,S,BO .. B5 and for them to transfer control to a
trap handler if their values are now invalid.
SYNCOD requires ring 0 privilege.

Traps: INSPRIV
AddressingV

6-68

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.9.14 SYNCTCB tcb.rS

Synchronize task control block. This instruction warns hardware
that some Group Descriptors in the Task Control Block
at logical address "tcb" have changed. The behavior of
address translation hardware will reflect the changes
in the Group Descriptors no earlier than when the
changes occur in memory and no later than when SYNCTCB
is executed mith the proper value of "tcb", the exact
time being implementation dependent.

Traps: INSPRIV
AddressingV

6.2.9.15 SYNCIB operand.mc, length.r4

Synchronize instruction buffer. This instruction must be used
to synchronize hardware whenever code is modified or
when code comes into or goes out of existence through
ODT modification. "Operand" identifies the first byte
affected; "length" (in bytes; if negative, zero is used)
indicates how many consecutive bytes are affected.
Ring 0 privilege and code access to "operand" is
required.

Traps: INSPRIV
CODEODTV
CODEBNDSV

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.9.16 TESTSEMA sema.mrw4, result.w4

Semaphore test. This instruction is used for synchronization
with other processors in a shared-memory multi-processor
system. It is essentially a "test and set". The old
value of "sema" is copied into "result". Then bit 0
of "sema" is set to 1. Reading the most significant
byte of "sema" and storing back the modified value is
all done in a single uninterruptible operation. No
memory access on behalf of any processor is allowed to
intervene between the read of "sema" and the write of
the modified value of "sema".
The other three bytes of "sema" can be fetched either
simultaneously to fetching the first byte or later
(jointly, or individually) but not before. Condition
code CCE is set mhen bit 0 of "saa" mas found clear,
CCG is set when bit 0 was found set.
Note: for any res tar tab Ie trap detected after the
first byte has been modified, hardmare must restore
the first byte to its original value before passing
control to the trap handler.

Byte[0 .. 7] := sema[0 •. 7];
sema [0] : = 1;
if Byte[O] = 1
then CC : = CCG
else CC := CCE;
result[0 •. 7] := Byte;
result[S •. 31] := sema[8 •• 31);

Status: CC

6.2.9.17 MOVESEMA source.r4, sema.mw4

\ uninterruptible by
/ other processors.

Move semaphore. This instruction copies the value of "source"
into "sema" in one indivisible memory operation. No
other hardware activity is allowed to cause any part
of "sema" to change until MOVESEMA has completed.

sema . = source;

6-69 6-70

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.9.18 DOWN seroa.mrw4

Down semaphore (Pl. This instruction performs the fast path of
the Down semaphore operation (also known as 'P') or
else traps out to the trap handler for the slow path.
"sellla" contains a bit for locking out other processors
in a shared-melllory lIlulti-processor systelll; it also
contains a 31-bit signed integer count. The address
of the next instruction and the address of "seIlla"
are passed to the SEMADOWN handler.

Label: TESTSEMA seroa, Teropj \ busy-wait for

Status:
Traps:

BRBUSY Label; / hardware seroaphore
Count := Temp[1 .. 31]; {sign-extended}
if Count = -2**30 then Trap"SEMAOVF"
else begin

Count := Count - 1;
MOVESEMA Count, sema
if Count < 0 then Trap"SEMADOWN"
end;

CC NOT affected
SEMAOVF
SEMADOWN

6.2.9.19 TESTDOWN sema.lIlrw4

07/31

Test and Down selllaphore. This instruction atteropts a DOWN, but
rather than trap out to software for the slow path, it
sets a condition code to reflect this fact and continues.

Label: TESTSEMA sema, Temp; \ busy-wait for
BRBUSY Label; / hardware semaphore
Count := Terop[1 •. 31]; {sign-extended}
if Count = -2**30 then Trap"SEMAOVF"
else begin

TEST4 Count;
if Count> 0 then Count '= Count - 1;
Count [0] : = 0;
MOVESEMA Count, seroa;
end;

Status: CC
Traps: SEMAOVF

6-71

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE DOCUMENTATION

6.2.9.20 UP seroa.mrw4

UP seIllaphore (V). This instruction performs the fast path of
the Up seIllaphore operation (also known as 'V'l and
traps to software for the slow path. "Seroa" is a
32-bit quantity in memory that contains a 'hardware­
semaphore' bit and a 31-bit signed integer count.
UP increments the count. Yhen the count remains
negative, the slow path is taken. The trap handler
presumably launches the first task on the queue of
tasks waiting for this semaphore.
Note: for any restartable trap detected after the
seIllaphore word "seIlla" has been modified, hardware
must restore its original value before passing
control to the trap handler. The seroaphore word
is NOT restored when taking the "SEMAUP" trap.

Label: TESTSEMA sema, TeIIlp; \ busy-wait for
BRBUSY Label' / hardware seroaphore
Count := Teropt1 •. 31] {sign-extended};
if Count = 2**30-1 then Trap"SEMAOVF"
else begin

Count := Count + 1;
if Count <= 0 then begin

Count [0] := 1; {NOT superfluous!}
MOVESEMA Count, seroa;
Trap"SEMAUP"
end

else MOVESEMA Count, seIlla
end;

Status: CC NOT affected
Traps: SEMAOVF

SEMAUP

6-72

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.10 Arithmetic Conversion

6.2.10.1 ISC42 source.r4, destination.~2

Integer size check. The 16 least significant bits of "source"
are IIloved to "destination". If the 17 IIlost significant
bits are not all the saIlle, overflo~ is raised.

destination[0 •• 15] := source[16 •• 31];
if source > 2A 15-1 or source < -2A 15
then raise integer overflo~;

Traps: Ovflo~

6.2.10.2 CONVERT subopcode.rl, source.r, destination.~

07/31

Convert types. "CONVERT" uses a subopcode to deterIlline froro ~hat
type to what type conversion is desired. The subopcode
also controls rounding behavior ~hen any floating point
arithmetic is involved.

+-+-+-+-+-+-+-+-+

subopcode IRndISrc-TIDst_TI
+-+-+-+-+-+-+-+-+

"Source" is interpreted to be of type "Src T" and converted
to the "Dst_T" type and stored in "destination".

Rnd IIleaning
o round to~ards nearest unit, (if tie, round to even)
1 round towards negative infinity
2 round towards zero
3 round according to STATUSB.FPC.RM

Src_T, Dst T
o
1
2
3
4

Conversion to

Status: Ovfl
Unfl

Traps: Ar ith
FlArith

IIleaning
32-bit integer
64-bit integer
32-bit IEEE floating point
64-bit IEEE floating point

128-bit IEEE floating point
and froro decilllal data is covered

6-73

in 6.3.

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.3 Decilllal Instructions

6.3.1 Packed Decilllal Numbers

07/31

The packed decilllal rJUlIlber fOrIllat used in IIlany of the instructions
in the cobol and decilllal group is described here. External
rJUlIleric forIllat is described later in this introduction. In packed
decilllal fOrIllat, a decilllal digit is encoded in a nibble, using bit
patterns 0000-1001 to encode 0-9. Two decimal digits are packed
to a byte; the least significant decilllal digit is packed in a byte
together ~ith a nibble encoding the sign. Packed deciIllal rJUlIlbers
roay contain 0-31 digits. This aIIIounts to 1-32 nibbles (counting
the sign nibble), or 1-16 bytes. Packed decimal rJUlIlbers al~ays
occupy an integral rJUlIlber of bytes, even if the rJUlIlber of decimal
digits is even and therefore the rJUlIlber of nibbles is odd. A
packed decilllal rJUlIlber ~ith an even rJUlIlber of digits IIlust have a
OOOO-nibble as its IIlost significant nibble such as to fill out the
byte. The address of the packed decilllal rJUlIlber is the address of
the byte containing the roost significant digit. The standard sign
nibble has the value 1100 for positive and 1101 for negative. Any
other value for the sign nibble roay produce unexpected results in
packed decilllal arithmetic. Ho~ever, VALD (validate decilllal)
accepts sign nibbles 0000-1011, 1110 and 1111 as alternatives for
positive and ~ill change theIll to 1100. By soft~are convention,
1111 roay be regarded as "unsigned". Decimal arithmetic on packed
decimal rJUlIlbers ~ill al~ays produce results ~ith a standard sign
nibble. Negative zero (i.e. a packed decilllal rJUlIlber 0 ~ith a
negative sign nibble) is not produced by packed decilllal arithmetic.
Using negative zero in packed decilllal arithIlletic IIlay produce
unexpected results. H~ever, VALD accepts negative zero and ~ill
change it to positive zero.

6-74

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

The following comments apply equally to all packed decimal
instructions described in sections 6.3.3.1 through 6.3.3.12.

a) It is the responsibility of software to ensure that the
"fill-out" nibble in a packed decilllal with an even number of
digits does indeed have the value zero. Hardware may treat
this nibble as a normal significant decilllal digit in a source
operand. It is the responsibility of the hardware never to
introduce a non-zero value in the "fill-out" nibble as a
consequence of decimal arithmetic. It is the responsibility
of hardware to set the overflow bit (or take the overflow
trap) based on whether the resulting packed decimal number
fits in the number of decilllal digits specified in the
instruction. Hardware must never overflow into the "fill­
out" nibble.

07/31

b) Yhen decimal overflow occurs with the overflow trap enabled,
the source operands will be left unchanged by the instruction.
A destination operand may receive a value that differs across
hardware implementations (unless it coincides with a source
operand) •

c) It is the responsibility of software to ensure that there is
no partial overlap between source operands and destination
operands in the same instruction. It is the responsibility
of hardware to ensure that total identity between source and
destination operand is handled "correctly" (defined as
producing the same result as would be obtained by completely
pre-reading the source operand into a processor-private
temporary area).

d) The length of a packed decimal operand is expressed by giving
the number of decimal digits; in other words, the sign nibble
is not counted, nor the "fill-out" nibble. SOllle packed
decilllal instructions include an explicit operand specifying
the length of the packed decilllal value; in others the length
is iIIlplied by the opcode: for these, the length is either 7,
15 or 31 digits, which corresponds to 4, 8 and 16 bytes.
On loading decilllal values in registers, they are always left­
filled with zeros to reach 7, 15 or 31 digits.
Explicit length operands must be checked by hardware to
ensure they are between 0 and 31. The "DECINVL" trap is
taken for invalid length operands.

6-75

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.3.2 External Decimal NUmbers

The external numeric format uses a decimal representation of a
nuNber with one digit per byte. each digit is encoded in ASCII
(48-57 corresponds to '0' - '9'). The sign is encoded by an
"overpunch" in the least significant digit. An external nuNeric
number consists of zero or more leading ASCII blanks followed
by zero or more ASCII digits followed by an overpunched ASCII
digit. Overpunched digits follows the conventions in the table
below:

digit
value

o
1
2
3
4
5
6
7
8
9
o

positive
overpunch

'{ ,
'A'
'B'
'c'
'D'
'E'
'F'
'G'
'H'
'I'

negative
overpunch

'}'
'J'
'K'
'L'
'M'
'N'
'0'
'P'
'Q'
'R'

unsigned

'0'
'1'
'2'
'3'
'4'
'5'
'6'
'7'
'8'
'9' , ,

The CVAD instruction recognizes a number in this external format
and converts it to a number in packed decimal representation.
The CVDA instruction converts a nuNber in packed decimal format
to external numeric format as described here.
VISION does not directly support some decimal formats known as
external numeric with leading overpunched sign, external numeric
with trailing separate sign, external numeric with leading
separate sign and unsignedexternal numeric. However, three
special instructions TESTSTRIP, GETSIGN and OVPUNCH allow these
other external numeric formats tobe converted to external
numeric with trailing overpunched sign.
TESTSTIP will strip the overpunched sign while recording the
original sign information in the condition code. GETSIGN will
extract the sign information from an overpunched sign digit and
format it as an ASCII sign digit. OVPUNCH combines an unsigned
digit and an ASCII sign digit and will produce from them the
the corresponding sign-overpunched ASCII character.

6-76

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.3.3 Decimal Instruction Set

6.3.3.1 ADDtD terro.r, Sliro.rm

Add decimal. "Term" is added to "SUJll" and the result is stored
in "SUJIl". The operands l1lust be in the standard packed
decimal forJllat (such as produced by VALD) , othermise
results JIlay differ across impleJllentations. A decimal
overflom occurs if all of the digits of the result do
not fit in "SUJIl"j if overflom is disabled, the left­
truncated result is stored in "SUJIl", else "SUJIl" is
left unchanged.

ADD4D
Status: Ovfl
Traps: Opnd

DECOVF

ADD8D
Ovfl
Opnd
DECOVF

ADD16D
Ovfl
Opnd
DECOVF

6.3.3.2 SUBtD term.r, difference.rm

SUbtract deciroal. "Term" is subtracted froJll "difference" and
the result is stored in "difference". The operands
JIlust be in the standard packed decimal format (such as
produced by VALD) , othermise results l1lay differ across
impleJllentations. A deciJllal overflom occurs if all of
the digits of the result do not fit in "difference";
if overflom is disabled, the left-truncated result is
stored in "difference", else "difference" is left
unchanged.

SUB4D SUB8D SUB16D
Status: Ovf1 Ovf1 Ovf1
Traps: Opnd Opnd Opnd

DECOVF DECOVF DECOVF

6-77

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.3.3.3 MPYtD factor.r, product.rm

Multiply decimal. "Factor" is multiplied by "product" and the
result is stored in "product". The operands roust be
the standard packed decimal format (such as produced
by VALD) , othermise the results may differ across
implementations. A decimal overflom occurs if all of
the digits of the result do not fit in "product"; if
overflom is disabled, the left-truncated product is
stored in "product", else "product" is left unchanged.

MPY4D
Status: Ovfl
Traps: Opnd

DECOVF

MPY8D
Ovf1
Opnd
DECOVF

MPY16D
Ovf1
Opnd
DECOVF

6.3.3.4 DIVtD divisor.r, quotient.rm

Divide decimal. "Quotient" is divided by "divisor" and the
result is stored in "quotient". The operands Illust
be in the standard packed decimal format (such as
produced by VALD) , othermise the results Illay differ
across i11lplelllentations. DIVD truncates, i.e. it
rounds tomards zero. Decimal overflom occurs if all
of the digits of the result do not fit in "quotient";

07/31

if overflom is disabled, the left-truncated result is
stored in "quotient", else "quotient" is left unchanged.
If "divisor" is zero, the result is indeterminate.

DIV4D DIV8D DIV16D
Status: Ovf1 Ovf1 Ovf1
Traps: Opnd Opnd Opnd

DECDVDZ DECDVDZ DECDVDZ

6-78

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.3.3.5 CMPtD sourcea.r, sourceb.r

COlllpare decmal. The condition code in the status lIIord is set
depending on the result of the cOl1lparison of the

07/31

decilllal values of "sourcea" and "sourceb". Both
operands lIlust be in the standard packed decil1lal forlllat
(such as produced by VALD) , otherlllise results l1lay differ
across iI1lplel1lentations.
The condition code is set to:

CCG, if sourcea > sourceb,
CCL, if sourcea < sourceb,
CCE, if sourcea sourceb.

CMP4D
Status: CC
Traps: Opnd

CMP8D
CC
Opnd

6.3.3.6 TESTtD source.r

CMP16D
CC
Opnd

Test decil1lal. This is a short fOrlll of CMPtD source, O.

TEST4D
Status: CC
Traps: Opnd

TEST8D
CC
Opnd

TEST16D
CC
Opnd

6-79

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.3.3.7 SLD count.rl, length.rl, source.r, dest.w

Shift left dec mal. The packed dec mal value in "source" is
shifted left by "count" decmal places and the result
is stored in "dest". Both "source" and "dest" have
"length" digits. This is equivalent to a MOVED frolll
"source" to "dest" follollled by a MPYD of "dest" by a
pOlller of ten.

Status: OVfl

6.3.3.8 SRD count.r1, length.r1, source.r, dest.lII

Shift right dec mal. The packed decil1lal value in "source" is
shifted right by "count" decil1lal places and the result
is stored in "dest". Both "source" and "dest" have
"length" digits. This is equivalent to a MOVED frol1l
"source" to "dest" follollled by a DIVD of "dest" by a
pOlller of ten.

Status: OVfl

6.3.3.9 MOVED length.rl, source.r, dest.lII

Move decil1lal. The packed decil1lal "source" IlJith "length" decil1lal
digits is lIloved to "destination" of the sal1le length.
If "source" is in a register, only the least significant
"length" digits are lIloved, lJJith overflolll indication if
any of the lIlost significant digits in the register
(register pair, quad) are non-zero.
If "dest" is in a register, the decil1lal l1UlIlber is padded
lJJith zero digits to fill up either 1,2 or 4 registers.

6-80

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.3.3.10 VALD length.rl, operand.rw

Validate decilllalo The packed decilllal string "operand" is
checked for validity as a deci~al number. If
"length" is even, the "fill-out" nibble is ~ade
zero. Each digit is checked to be in the range
0000-1001. The sign nibble is ~ade standard by
replacing 0000-1001 , 1110 or 1111 with the value
1100. If all digits are zero, but the sign is
negative, the sign is changed to positive.
"Length" indicates the length in digits of the
packed decilllal number.

Traps: DECINVL
DECINVDG

6.3.3.11 CVDI length.rl, source.r, dest.w8

Convert packed dec~al to integer. The packed dec~al number in
"source", with "length" dec~al digits, is converted
to a two's co~ple~ent 64-bit integer. The result is
stored in "dest". "Source" ~ust be in standard packed
dec~al fo~at (such as produced by VALD) , otherwise
results ~ay differ across ~ple~entations.

Traps: OVfl

6.3.3.12 CVIO length.rl, source.r8, dest.w

Convert integer to packed dec~al. The 64-bit two's co~pl~ent
integer value in "source" is converted to a number in
packed dec~al fo~at and padded or truncated to fit
"length" decilllal digits. The result is stored in
"dest". If "dest" is in a register, the result is
further padded to occupy 4,8, or 16 bytes.

Traps: OVfl

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.3.3.13 TESTSTRIP operand.rw1

Test and strip sign fro~ overpunched ASCII digit. The ASCII

07/31

digit "operand" is changed to an unsigned digit according
to the table below. The condition code is set to CCG if
the digit is found in the positive column, to CCL if the
digit is found in the negative column and to CCE if it
is found in the unsigned column. If "operand" is not in
the table, an invalid digit trap occurs.

positive negative unsigned

. { ,
'A'
'B'
'c'
'D'
'E'
'F'
'G'
'H'
'I'

Status: CC

'}'
, J'
'K'
'L'
'H'
'N'
'0'
'P'
'Q'

'R'

'0'
, l'
'2'
'3'
'4'
'5'
, 6'
'7'
'8'
, 9'
, ,

6.3.3.14 GETSIGN operand.r1, sign.w1

all beco~e:

'0'
, l'
'2'
'3'
'4'
, 5'
, 6'
'7'
'8'
, 9'
'0'

Get sign. The sign-overpunched ASCII digit "operand" is exadned
and its sign (according to the table above) is recorded
in "sign", using ASCII '+' for positive, '-' for negative
and ' , for unsigned. Invalid values for "operand" will
generate an invalid digit trap.

Traps: DECINVDG

6.3.3.15 OVPUNCH sign.ri, operand.rwl

Create digit with overpunched sign. "Sign" ~ust be ASCII '+',
'-' or ' , (blank). "Operand" ~ust be one of the
ASCII digits fro~ '0' to '9'. "Operand" is changed
into the corresponding el~ent of the positive column
or the negative column of the table above, depending
on "sign". If "sign" is ' " no change occurs.
Invalid values for "sign" or "operand" generate an
invalid digit trap.

Traps: OECINVDG
6-81 6-82

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.3.3.16 VALN length.rl, operand.rw

Validate external numeric decimal. This instruction checks to
see if the external nuJlleric decimal "operand" obeys

07/31

the following forJllat: zero or more ASCII blanks
folloMed by zero or more ASCII encoded digits the last
one of which is optionally overpunched Mith a sign
according to the table on the previous page. "Length"
indicates the length of "operand" in bytes. All leading
blanks are converted into ASCII '0'. Negative zero is
converted to positive zero.

Traps: DECINVDG

6.3.3.17 CVAD length.rl, source.r, dest.M

Convert external numeric decimal to packed decimal. The "source"
of "length" bytes is interpreted as an external numeric
deciJllal number with trailing overpunched sign and
converted to packed decimal format. The packed decimal
result is padded to 4,8 or 16 bytes (no more than needed
given "length") and stored in "dest". If source does
not obey the forJllat checked for and produced by VALN,
indeterminate results occur.

6.3.3.18 CVDA length.rl, source.f, dest.M

Convert packed deciInal to external numeric decimal. The "source"
is interpreted as a packed decimal number. The "dest"
is an external numeric decimal of "length" bytes.
The length of "source" is 4,8 or 16 bytes, as derived
from "length". If "source" does not obey the format
checked for and produced by VALD, indeterminate results
occur.

6-83

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

6.4 Vector Instruction Set

This section describes the vector instruction set. Vector
Registers and the vector context save area are described in
chapter 5.

Vector instructions are all in a secondary instruction set, in
the "VECTOR" escape group. Opcode assignments are shOMn in
section 6.1.4.

A memory vector is an array of values that are evenly spaced in
memory. An eXaJllple Mould be a rOM or a column of a matrix in
a Fortran prograJll. Vector instructions can perform operations
(such as addition) on entire Jllemory vectors, at speeds higher
than a corresponding software sequence. Vector instructions
can also perform operations betMeen Jllemory vectors and scalars
(e.g. multiplying all elements of a memory vector by tMO).
MeJllory vectors are therefore characterized by their starting
address, their number of elements, and the distance betMeen
consecutive elements. This distance between elements (in bytes)
is called the stride of the vector. A memory vector Mith a
stride of zero degenerates to a scalar.

A Jllajor feature of the VISION architecture is the inclusion of
vector registers. A vector register can be loaded Mith all or
part of a memory vector, offering the potential of eliminating
even memory access speed as a limit on vector perforJllance.

Most vector instructions operate on vector operands, Mhich are
either vector registers or memory vectors or scalar registers
(XO •. X15). Vector operands are indicated by the vector
attribute(".v"). Under the vector attribute, an operand
descriptor for a literal (short or long) is given a different
meaning: the least significant 3 bits of the literal are
interpreted as a vector register numbef, selecting VRO •. VR7.
Under the vector attribute, a memory operand is re-interpreted
as a memory vector, as detailed beloM. A register operand is
interpreted as a scalar.

To encode a memory vector, either one or two operand descriptors
are needed. The second operand descriptor is needed Mhen a
meJllory vector has a stride different from the default value.
The default stride is such that the Jllemory vector is entirely
contiguous in (virtual) memory.
The first operand descriptor of a memory vector (treated as a
".m" operand) designates the starting address of the vector.

6-84

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

The vector opcode of a vector instruction does not uniquely
determine ho~ many operand descriptors participate in the
instruction. A special first operand, called vector qualifier,
contains the necessary information. This operand must be
encoded as a short literal. Its value is interpreted as
follo~s:

° 234 567
+--------+--+--+--+----+

res. IS11S21D I MR I
+--------+--+--+--+----+

~here:

Sl -- first source stride. If one, the first source operand
uses an explicit stride. This implies that t~o
operand descriptors are involved in this source
operand.

S2 -- second source stride. If one, the second source
operand uses an explicit stride.

D destination stride. If one, the destination operand
uses an explicit stride.

MR -- mask register. Selects one of four mask registers.
Their function is detailed belo~.

res -- reserved. Hard~are masks out this field.

The vector qualifier determines ~hich operands carry explicit
strides. These strides are encoded as ".r4" operands that
follo~ all other operands in the vector instruction.

An explicit stride is only meaningful if the corresponding
operand is indeed a memory operand, indicating a memory vector.
A vector register specifier or a scalar cannot make use of an
explicit stride; in this case the bit in the vector qualifier
is ignored.

6-85

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.4.1 Boundary conditions

a) Any overlap bet~een source and destination ~ill produce
results that may differ across implementations. Total
identity of source and destination operands is allo~ed.
For eK~ple, soft~are may expect

VADD4 B5.0, B5.0, B5.0

to result in all values of the array at B5 to get doubled.
Ho~ever, soft~are should not expect

MOVE4 1, B5.0
MOVE4 1, B5.4
VADD4 B5.0, B5.4, B5.8

to compute the Fibonacci series.

b) Any overlap ~ithin the destination vector itself due to
small values of the stride ~ill produce results that may
differ across implementations.

c) All vector operations are interruptible. Chapter 5 provides
more detail.

d) For vector operations that have corresponding operations on
scalars in the base instruction set, the values returned on
e.g. overflo~ are the s~e as in the base instruction set
~ith overflo~ trap disabled. If the trap is enabled, the
vector operation stops as soon as the condition occurs on
an element, and identifying information is passed to the
trap handler.

6-86

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.4.2 Vector Arithmetic Operations

6.4.2.1 VMOVEt vqual.r1, source.vr, dest.vw

Vector lIIove.

includes: VMOVE2 VMOVE4 VMOVE8 VMOVE16

6.4.2.2 VADDt vqual.r1, terllla.vr, terlllb.vr, SUJII.VW

Vector add. Elelllents of "SUJII" are set to the SUJII of elements
of "terllla" and "terlllb".

includes: VADD4 VADD8 VADD4F VADD8F VADD16F

6.4.2.3 VSUBt vqual.r1, terllla.vr, terlllb.vr, diff.vw

Vector subtract. Elelllent-wise difference of "terllla" and
"terlllb" is stored in "diff" vector.

includes: VSUB4 VSUBS VSUB4F VSUB8F VSUB16F

6.4.2.4 VMPYt vqual.rl, facta.vr, factb.vr, prod.vw

Vector multiply. Elelllent-TIJise product of "facta" and "factb"
is stored in "prod" vector.

includes: VMPY4 VMPY8 VMPY4F VMPY8F VMPY16F

6.4.2.5 VDIVt vqual.rl, divd.vr, divsr.vr, quot.vw

Vector divide. Elelllent-TIJise division of "divd" by "divsr"
T1Ji th the result being stored in "quot".

includes: VDIV4 VDIV8 VDIV4F VDIV8F VDIV16F

6-S7

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.4.2.6 VNEGt vqual.r1, source.vr, neg.vw

Vector Negate. Element-wise subtract of "source" from zero,
storing the result in the vector "neg".

includes: VNEG4 VNEGS VNEG4F VNEGSF VNEG16F

6.4.2.7 VABSt vqual.r1, source.vr, abs.vw

Vector Absolute. Elelllent-wise absolute value (negate if
negative), storing the result in the vector "abs".

includes: VABS4 VABS8 VABS4F VABS8F VABS16F

6.4.2.S VREMt vqual.r1, divd.vr, divsr.vr, relll.vw

Vector relllainder. Elelllent-wise relllainder of division of "divd"
by"divsr" is stored in "relll".

includes: VREM4 VREM8

6.4.2.9 VMODt vqual.r1, divd.vr, divsr.vr, lIIod.vw

Vector lIIodulus. Elelllent-TlJise lIIodulus of division of "divd" by
"divsr" is stored in "lIIod".

includes: VMOD4 VMODS

6.4.2.10 VLSLt vqual.r1, shiftcount.vr, target.vrTJJ

Vector logical shift left. Element-TIJise left shift of the
vector "target", leaving the result in "target".
Note that the shiftcount itself is a vector.

includes: VLSL4 VLSLS

6-88

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.4.2.11 VLSRt vqual.r1, shiftcount.vr, target.vrm

Vector logical shift right. Element-mise right shift of the
vector "target", leaving the result in "target".
Note that the shiftcount itself is a vector.

includes: VLSR4 VLSR8

6.4.2.12 VASLt vqual.rl, shiftcount.vr, target.vm

Vector arithmetic left shift. Element-mise arithmetic left
shift of the vector "target", leaving the result in
"target". "Shiftcount" is itself a vector.

6.4.2.13 VASRt vqual.rl, shiftcount.vr, target.vm

Vector arithmetic right shift. Element-mise arithmetic right
shift of the vector "target", leaving the result in
"target" . "Shiftcount" is itself a vector.

6.4.3 Vector Logical Operations

6.4.3.1 VAND4 vqual.r1, facta.vr, factb.vr, and.vm

Vector "AND". Computes element-mise and bit-mise "AND" of the
vectors "facta" and "factb" and stores the result in
the vector "and".

6.4.3.2 VOR4 vqual.r1, terma.vr, termb.vr, or.vm

Vector "OR". Computes element-mise and bit-mise "OR" of the
vectors "tema" and "termb" and stores the result in
the vector "or".

6.4.3.3 VKOR4 vqual.rl, terma.vr, termb.vr, xor.vm

Vector "KOR". Computes element-mise and bit-mise exclusive
"OR" of the vectors "terma" and "termb" and stores
the result in the vector "xor".

6-89

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.4.4 Vector Compare and Vector/Scalar Hybrids

6.4.4.1 VCMPt vqual.r1, field.r1, srca.vr, srcb.vr, mrsel.r1

Vector Compare. "Field" indicates the type of compare (>, >=,
etc.) to be performed. The four least significant
bits of "field" indicate G,L,E,U respectively. All
elements of "srca" are compared mith the corresponding
elements of "srcb" and the corresponding bit of the
mask register (selected by the mask register selector
"mrsel" is set to one if the comparison holds.

includes: VCMP4 VCMP8 VCMP4F VCMP8F VCMP16F

6.4.4.2 VACCt vqual.r1, terms.vr, sum.rm

Vector Accumulate. Adds all elements of "terns" to the old
value of "sum".

includes: VACC4 VACC8 VACC4F VACC8F VACC16F

6.4.4.3 VACCDt vqual.r1, terms.vr, sum.rm

Vector Accumulate (Double Precision). Adds all elements of
"terms" to the old value of "sum". "SUm" has double
the l1UlIlber of bytes of "terms".

includes: VACCD4F VACCD8F

6-90

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.4.4.4 VMAXELt vqual.r1, terms.vr, maxind.w4

Find maximum elel1lent of vector. "Maxind" is set to the index
of the maximum element of the vector "terms". In
case of ties, the index of the earliest is chosen.

includes: VMAXEL4 VMAXEL8 VMAXEL4F VMAXEL8F VMAXEL16F

6.4.4.5 VMINELt vqual.r1, terms.vr, JIlinind.w4

Find minimum elel1lent of vector. "Minind" is set to the index
of the minimUJll eleroent of the vector "terl1ls". In
case of ties, the index of the earliest is chosen.

includes: VMINEL4 VMINEL8 VMINEL4F VMINEL8F VMINEL16F

6.4.4.6 VEXTt vqual.r1, terms.vr, index.r, value.w

Extract element from vector. The elel1lent of "terms" at index
"index" is fetched and stored into the scalar "value".

includes: VEXT4 VEXT8 VEXT16

6.4.4.7 VINSt vqual.r1, terms. vw , index.r, newval.r

Insert elel1lent into vector. The elel1lent of "terl1ls" at index
"index" is l1lodified to reflect the value "newval".

includes: VINS4 VINS8 VINS16

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.4.4.S VCOMPRSt vqual.r1, terros.vr, compressed.vw

Compress vector. The mask register indicated in "vqual" governs
which elements of "terms" to keep and which to discard.
The kept elel1lents are collected in "colll.pressed".
VCOMPRS will work correctly in place, Le. when "terms"
and "coJllpressed" are JIlel1lory vectors with identical
starting address and identical stride.

includes: VCOMPRS4 VCOMPRS8 VCOMPRS16

6.4.4.9 VEXPNDt vqual.r1, terJlls.vr, expanded.vw

Expand vector. The l1lask register indicated in "vqual" governs
which elel1lents of "expanded" are set to eleroents of
"terms" and which to set to zero. The order of the
eleJllents of "terms" is preserved. If VEXPND is used
in place, results are indeterminate.

includes: VEXPND4 VEXPNDS VEXPND16

6.4.4.10 VGATHt vqual.r1, source.vr, index.vr, destination.vw

Vector Gather. Contiguous elements of "destination" are set to
to those eleJllents of "source" indexed by the contiguous
elel1lents of "index". The mask register indicated by
"vqual" applies to "destination" and "index". "Index"
is in units of bytes.

includes: VGATH4 VGATH8 VGATH16

6.4.4.11 VSCATt vqual.r1, source.vr, index.vr, destination.vw

Vector Scatter. Contiguous elelllents of "source" are put in
those elel1lents of "destination" indexed by the
contiguous eleroents of "index". The JIlask register
indicated by "vqual" applies to "source" and" index".
"Index" is in units of bytes. Those eleroents of
"destination" not indexed are left unchanged.

includes: VSCAT4 VSCAT8 VSCAT16

6-91 6-92

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.4.5 Vector Housekeeping

6.4.5.1 RVLR

Reduce Vector Length Register. The vector length register VLR
is reduced by the current segment length. Condition
codes are set to reflect the ne~ value of VLR.
See section 5.KK for details.

Status: CC

6.4.5.2 LDVLR source.r4

Load vector length register.

6.4.5.3 STVLR dest.~4

Store vector length register.

6.4.5.4 VINVAL vrmask.r1

Vector invalidate. The Vector Registers corresponding to ones
in the 8-bit "vrmask" have their active lengths set
to zero.

6.4.5.5 UVCSA

Update vector context save area. The values of the vector
registers are stored in the Vector Context Save Area.

6.4.5.6 PUVCSA tcb.mr

Privileged update of VCSA. The values of the vector registers
are stored in the Vecor Context Save Area of the
designated task ("tcb" points to the Task Control Block
of this task). PUCSVA requires ring 0 privilege.

Traps: INSPRIV

6-93

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.4.5.7 IVB tcb.mr

Invalidate vector bank. Invalidates vector bank belonging to
the designated task. Ring 0 privilege required.

6.4.5.8 LVB tcb.mr

Load vector bank. Load the vector bank corresponding to the
designated task from its VCSA. Ring 0 privilege
required.

6.4.6 Operations on Mask Registers

In the follo~ing instructions, "mrselect" is an operand that
selects one of the four Vector Mask Registers. Only bits
mrselect[6 •• 7] are relevant. Bits mrselect[O •• 5] are ignored.
Note that the Mask Registers are at most 256 bits long.

6.4.6.1 CLRMR mrselect.rl

Clear mask register. Set selected mask register to all zeros.

6.4.6.2 STMR mrselect.r1, destination.~16

Store mask register. Store selected mask register in
"destination".

6.4.6.3 LDMR mrselect.r1, source.r16

Load mask register. Load selected mask register from the value
in "source".

6.4.6.4 MRNOT mrselect.rl

Complement mask register. Change all zeros in the selected mask
register to ones and vice versa.

6-94

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.4.6.5 MRAND mrasleect.rl, mrbselect.rl

"AND" mask registers. Zero out all bits in mask register "mrb"
that have zeros in the corresponding location in mask
register "lIlra".

6.4.6.6 MROR mraselect.r1, mrbselect.r1

"OR" mask registers. Set all bits in mask register "mrb" to
one that have ones in the corresponding location in
mask register "mra".

6.4.6.7 MRXOR mraselect.r1, mrbselect.rl

"XOR" mask registers. COlllplement all bits in mask register
"mrb" that have a one in the corresponding location
in mask register "mra".

6.4.7 Vector Conversion

6.4.7.1 VCONVERT vqual.r1, typer.r1, source.vr, dest.vw

Vector Conversion and Round. This instruction allo~s vector
conversion frolll one type to another as specified in
"typer". The vector "source" is converted and the
result is stored in the vector "dest".
Bits typer[2 .. 4] determine the type of "source",
bits typer[5 .. 7] determine the type of "dest".
Bits typer[0 .. 1] are ignored.
Data types are encoded in "typer" as follows:

o 4-byte integer
1 8-byte integer
2 4-byte IEEE floating point
3 8-byte IEEE floating point
4 16-byte IEEE floating point

5-7 illegal

All conversions, including conversions from floating
point numbers to integers, obey the rounding mode in
STATUSB. FPC. RH.

6-95

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.5 I/O Instructions

This sections details the instructions that deal with the I/O
backplane and the I/O channels.

6.5.1 PICMB-based VISION systems

The PICMB instruction set can be broken down into t~o levels,
primitives (level 1) and functions (level 2). These classes
correspond to the PICMB protocol as defined in the PICMB ERS.
The primitives represent the lowest level of activity on the
PICMBj hence routines ~hich make use of these must perform
all bus protocols themselves. The function level instructions
represent various functional combination of primitives. This
level performs some of the PICMB protocol for the programmer,
while retaining maximum flexibility. These t~o levels provide
cOlllplete functionality for communicating ~ith external devices.
Each of these levels ~ill be described in detail. The notation
used in the follo~ing descriptions is intended to reflect the
actual operation of the various data and control lines.

6.5.1.1 PICMB Primitives

6.5.1.1.1 IFC

Interface Clear. Causes hard~are to assert the Interface Clear
Line for one bus cycle.

if STATUSA.XL > 0 then Trap"INSPRIV";
IFC := true;

6.5.1.1.2 UCMD command.r1

Write command. Send a command byte to the channel adapter.

if STATUSA.XL > 0 then Trap"INSPRIV";
cobegin

CDF := true;
PICMB.CB.DATA '= command[O •• 7];
coend;

6-96

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.5.1.1.3 hlBYTE data.r1, end.r1

hlrite byte. Causes hard~are to ~rite a byte to the channel
adapter. If "end" has a non-zero value, then the END
line ~ill also be asserted. If the channel does not
assert the SRI line ~ithin x milliseconds, the byte
~ill not be transfered and a timeout condition ~ill be
indicated by setting the condition code to CCL.
A successful transfer ~ill be indicated by CCE.

Status: CC

if STATUSA.XL > 0 then Trap"INSPRIV"j
if not SRI then CC '= CCL
else begin

CC : = CCEj
cobegin

if end <> 0 then END := true;
PICMB.CB.DATA '= data
coend

end;

6.5.1.1.4 RBYTE data.w1

Read byte. Causes hardMare to read a byte froN the channel
adapter into "data". If the channel does not assert
the SRI line within x Nilliseconds the data Mill not
be read and a timeout condition Mill be indicated by
setting the condition code to CCL. A successful
transfer Mill be indicated by CCE. A successful
transfer Mhen the END signal is asserted Mill be
indicated by CCG.

Status: CC

if STATUSA. XL > 0 then Trap" INSPRIV" ;
if not SRI then CC := CCL
else begin

data := PICMB.CB.DATA;
if END then CC '= CCG
else CC := CCE
end;

6-97

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.5.1.2 Functional PICMB Instructions

The level 2 instructions correspond to the PICMB.CB cOJlllllands as
specified in the PICMB ERS. SONe of these cOJlllllands are global

07/31

in nature and others are local. The global commands affect all
channels in a systeN and require no channel address. The local
cOJlllllands are directed to a specific channel and require a channel
address operand. hlhen a local cOJllllland is executed, all channels
in the systeN ~hich are not addressed ~ill go into an idle state
until a global cOJllllland is issued or until they are locally
addressed. Global commands often return an 8-bit vector; the
PICMB supports up to 8 channels.

6.5.1.2.1 CHNOP

Channel no operation. A NOP cOJllllland is issued to all channels.

if STATUSA.XL > 0 then Trap"INSPRIV";
hlCMD 0;

6.5.1.2.2 RCL response.w1

Roll Call. This cOJllllland is issued to all channels.

if STATUSA.XL > 0 then TrapIINSPRIV"j
hlCMD ! 10;

6.5.1.2.3 PRD response.M1

Poll Ready for Data. This cOJllllland is issued to all channels.

if STATUSA.XL > 0 then Trap"INSPRIV"j
hlCMD !20;
RBYlE response; «no timeout»

Status: CC

6-98

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.5.1.2.4 PDA response.w1

Poll Data Available. This command is sent to all channels.

if STATUSA. XL > 0 then Trap" INSPRIV" ;
lJCMD 130;
RBYTE response; «no timeout»

Status: CC

6.5.1.2.5 PAR response. wi

Poll Attention Requests. This command is sent to all channels.

if STATUSA.XL > 0 then Trap"INSPRIV";
lJCMD 140;
RBYTE response; «no timeout»

Status: CC

6.5.1.2.6 RDP channel.rl, dest.w16, length.wl

Read Data Packet. This command is sent to the designated
channel and the data packet received is stored in
"dest". "length" will be set to the nurnber of bytes
in the data packet; if this is less than 16, the
reJllainder of "dest" will not be changed.

Status: CC

if STATUSA. XL > 0 then Trap" INSPRIV" ;
PDA TeJllp[O .. 7];
Ch : = channel AND 7;
if TeJllp[Ch] = 0 then CC '= CCL
else begin

CJIld := 150 + Ch;
lJCMD CJIld;
C : = 0;
repeat

RBYTE (dest+C) [0 •• 7];
C : = C + 1;
until CCL or CCG or C>15;

length: = C;
end; ,

6-99

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

6.5.1.2.7 lJDP channel.r1, data.r16, length.~l

lJrite Data Packet. This command is sent to the specifically
designated channel. The first "length" bytes of
"data" is sent to the channel.

if STATUSA. XL > 0 then Trap" INSPRIV" ;
Ch : = channel AND 7;
PRD TeJllp[O .. 7];
if TeJllp[Ch] = 0 then CC '= CCL
else begin

Status: CC

CJIld : = 1 60 + Ch;
lJCMD CJIld;
C := 0;
repeat

cobegin
if C = length then END '= true;
lJBYTE (data+C) [0 •• 7];
coend;

C : = C + 1;
until C>=length or C>15 or CCL;

if CCL then length := C;

6.5.1.2.8 RIS channel.rl, status.wl

Read Immediate Status. This command is sent to the specifically
designated channel. Its status is returned and stored
in "status".

if STATUSA.XL > 0 then Trap"INSPRIV";
Ch : = channel AND 7;
CJIld : = ! 70 + Ch;
lJCMD CJIld;
RBYTE status;

Status: CC

6-100

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.5.1.2.9 CIS channel.r1, status.r1

Clear I~ediate Status. This command is sent to the designated
channel. The 8-bit status byte of the addressed
channel is cleared in· all bit positions corresponding
to a zero in "status".

if STATUSA.XL > 0 then Trap"INSPRIV";
Ch : = channel AND 7;
Cmd := !80 + Ch;
lJCMD Cmdj
lJBYTE status;

Status: CC

6.5.1.2.10 SIS channel.r1, statu9.r1

Set I~ediate Status. This command is sent to the designated
channel. The a-bit status byte of the addressed
channel is set in all bit positions corresponding
to a one in "status".

if STATUSA.XL > 0 then Trap"INSPRIV";
Ch : = channel AND 7;
Cmd : = ! 90 + Ch;
lJCMD Cmdj
lJBYTE status;

Status: CC

6-101

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.5.2 MPB-based systems

The MPB is the memory-processor-bus defined and designed by
SIO in Colorado.

All I/O instructions for MPB based systems are "local": they
address a specific channel by specifying the channel number.
The channel number is mapped at configuration time to a slot
number on the MPB backplane. This ranges from 0 .. 7.
Though the MPB backplane and the lOP channel were designed
as a pair, the Vision I/O instructions for the MPB are
designed to allow channels other than the lOP to connect to
the MPB.

6.5.2.1 MPB-based Instructions

6.5.2.1.1 IOlJ channel.r4, control.r4, data.r4

I/O lJrite. This writes the data word "data" to the channel
designated by "channel". "Control" is a 1Il0difier
interpreted by the channel.

if STATUSA.KL > 0 then Trap"INSPRIV";
Ch : = channel AND 7;
Cntr := control;
Cntr[0 .. 5] := 0;
Cntr[19 •• 21] := MPB channel number of

-originating_CPU; -
lJrite Ch, Cntr, Data {to MPB};

6.5.2.1.2 lOR channel.r4, control.r4, data.w4

I/O Read. This reads the data word "data" from the channel
designated by "channel". "Control" is a modifier
interpreted by the channel.

if STATUSA.XL > 0 then Trap"INSPRIV";
Ch : = channel AND 7;
Cntr : = control;
Cntr[0 .. 5] := 0;
Cntr[19 •. 21] := MPB channel number of

-originating_Cpu; -
Read Ch, Cntr, Data {from MPB};

6-102

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.5.2.1.3 laC channel.r4, control.r4

I/O Control. This performs a control function on the channel
designated by "channel". "Control" is a JIlodifier
interpreted by the channel.

if STATUSA.XL > 0 then Trap"INSPRIV";
Ch : = channel AND 7;
Cntr : = control;
Cntr[0 •• 5] := OJ
Cntr[19 .. 21] ;= MPB channel nUJIlber of

-originating_CPU; -
Control Ch, Cntr {on MPB};

6.5.2.2 Interpretation of the control word on the lOP

The control word detailed in the previous section has a
well-defined JIleaning when used with the lOP channel.
This is sketched below. More detail is available froJll
the FOCUS I/O ERS.

o
1 1

568 9 2 3
112 222
8 9 124 5

3
1

+------+---+----+------+---+---+-------+
I res. IPA I IC I res. 10CNIresi 10 OPCI Control

word +------+---+----+------+---+---+-------+

Here:

res. reserved

PA either subchannel nUJllber or device adapter nUJIlber.
The 10 opcode "10 OPC" will decide which.

IC interface contrOl. This four bit field allows for
control of the HPIO lines shown below:
IC1 -) BP[O] HPIO bus priPlitive/interface control
IC2 -) CEND HPIO channel end
IC3 -) CBYT HPIO channel byte
IC4 -) BP[l] HPIO bus priPlitive/interface control

OCN channel nUJIlber of cpu originating the cOJllJlland

10 ope= 10 opcode. This 7-bit value is defined as shown
in the following section.

6-103

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.5.2.3 lOP Opcodes

6.5.2.3.1 Read cOl1U1lands

NaIIle Mnelllonics HexadeciPlal
=========================== ========= ===========
Read DMA Current Address RDA 7
Read DMA Current Count

Be Status RDCS 8
Read DMA Mask RDMK B
Read Interrupt Mask RIMK 16
Read Interrupt Request RIRQ 1C
Interface Poll IFPL 27
Read DMAPA RDPA 2D
Read Data Buffer RDB 2E
Read lOP Revision RIRV 2F
Read Interface Status Be Flag RISF 3F
Read Interface Status RIST 43
Read Interface Flag RIFG 44
Read DMA TerJllination Field RDTF 45
Read lOP registers Be SUspend RIRS 48
Read Interface Device End

Be Burst Request RDEB 4E
Read Interface FRn RIF n (8*n + 1)

6.5.2.3.2 Wr i te COJllJllands

NaIIle Mnelllonics HexadeciPlal
=========================== ========= ===========
ldrite DMA Status ldDS 3
Write DMA Count WDC 4
Write DMA Start Address WDA 5
ldrite DMA Termination Field WDTF 6
Write Interrupt Mask WIM!{ 15
ldrite Interrupt Message ldIMG 1B
Set Interrupt Level SIL 1D
Write DMAPA WDPA 2C
Write MPB Channel NUJIlber TJMCN 30
Write Attention Poll Mask WAMK 46
Write lOP Registers Be ReSUllle WIRR 4B
Write Interface FRn WIF n (8*n + 2)

6-104

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

6.5.2.3.3 Control Commands

NaI1Ie Mneroonics Hexadecmal
=========================== ========= ===========
Clear DMA Mask CDM!{ C
Enable DMA EDMA D
Disable DMA DDMA E
Start DMA, Enable Interrupt

& Clear IRQ SDEC F
Start DMA & Clear IRQ SDC 10
Start DMA SD 13
Start RAH!), Clear IRQ SRC 14
Request Interrupt RINT 17
Clear Interrupt Request CIRQ 18
Enable Interrupt EINT lE
Disable Interrupt DINT 1F
Reset I/O Bus RIOB 28
Reset lOP RlOP 2B
Clear Address Lockout Mode CALM 33
Set Address Lockout Mode SALM 34
Initiate ~d Exec fro~

Interrupt ICEI 38
Disable lOP Command Execution DCE 3B
Disable Co~~and Execution &

Enable Interrupt DCEI 3C
Turn LED On LON 3D
Turn LED Off LOrr 3E
Clear Attention Acknowl. Bit CAAK 47

6,5.2.3.4 lOP Co~and Execution

NaI1Ie Mn~onics Hexadecimal

Incre~ent And Branch
Skip on Status False
Skip on Flag False
Yrite RIF Result to M~ory
Yrite Count & Status to

Me~ory

YRIF

YCSM

6-105

35
36
37
4C

4D

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.6 Diagnostics Interface

6.6.1 MOVEtCSP messlen.r4, messpa.r4, replylen.r4, replypa.r4,
error.wl

07/31

Move message to CSP. Send to the CSP (Control and SUpport
Processor) a message consisting of a string of bytes,
"~esslen" long, starting at physical address "~esspa".
An area in physical m~ory is reserved for a reply, if
there is one, of length "replylen" (in bytes), starting
at physical address "replypa". Message and reply format
~ay differ across VISION impl~entations. Refer to the
"Protocol of the Control and SUpport Processor for VCF60
and VCF50" document. Receipt of a reply from the CSP

will generate an internal interrupt IICSPREPLY. Actual
transmission of the message and the reply may occur at
any time between execution of the MOVEtCSP instruction
and the IICSPREPLY. During this interval, the message
and reply areas in physical m~ory ~ust not be accessed
by software. This isntruction requires Ring 0 privilege.
"Error" can have the following values:

o = Instruction accepted, trarJSl1liss'ion beginning
* 1 = This VISION impl~entation has no CSP
* 2 CSP busy, cannot accept a message
* 3 = Requested operation not impl~ented by CSP
* 4 = message or reply area wrong physical address

or length
5-255 = reserved values, will not be returned

Note: "*" ~eans that the instruction was not
accepted and no trarJSl1lission was initiated.

Traps: INSPRIV

6-106

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

+---+----------------+
INTERRUPTS AND TRAPS CHAPTER 7

+---+----------------+

7.1 Introduction

Interrupts and traps are examples of a broad set of conditions
called "exceptions" that redirect the norlllal flow of lIlachine
instructions. Generally, instructions are divided into a
sequence of smaller actions referred to as "steps". Steps are
defined for either of two reasons:

1) The execution of an instruction step results in a change in
the lIlachine state (e.g., a byte of lIle!llory lIlodified, a
register lIlodified). In this case a step may not be
repeatable. That is, if the lIlachine state that resulted
frolll a step were used as the input state to the same step,
a different output machine state might result.

2) The step represents a large ~ount of processing. In this
case if the instruction were interrupted, too lIluch
processing would be lost. Even though the machine state
hasn't been lIlodified (as part of the instruction execution
so far) it is still desirable to define an intermediate
state for the instruction.

Each instruction step is cOlllposed of one or lIlore "sub-steps".
A sub-step represents an uninterruptible sequence of operations.
All steps are architecturally defined. The instruction
descriptions define the intermediate state of all instructions
that have lIlultiple steps. No other steps or intermediate states
are allowed. Instructions which execute very quickly (short in
tillle) have only a single step while other instructions, such as
MOVEC (lIlove character), are cOlllposed of lIlany steps. The
following diagram illustrates this concept of an instruction:

1(---- an instruction ------>1 I (-an instruction - > I
v v v v

Pcurrent Pnext
+------+ +------+ +------+ +------+ +------+

Sequence I I I I I I I I I I
of I step 11 Istep 21 1 step JIll 1 step 11 1 step nl

Steps I 1 I I 1 I I I I I
+------+ +------+ +------+ +------+ +------+

7-1

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

07/31

There are multiple conditions that can occur during the execution
of an instruction that cause the normal flow of control to be
altered. In the previous illustration the normal flow of control
is to execute the instruction located at Pcurrent and then to
execute the instruction at Pnext. The diagr~ above shows the
steps normally executed for these instructions in the absence of
an exception. This diagram is independent of the existence of
multiple execution paths that are data dependent. However, if an
exception condition(s) is detected during the execution of
Pcurrent, the next instruction to be executed by the CPU will be
the handler for the condition. Some exception conditions (such as
page fault) are specified to be transparent to the current
instruction execution. For these conditions the current
instruction is resumed after the exception handler completes so
that the net effect of the exception is as though it did not occur
at all. Other exception conditions (such as overflow) arise as a
direct consequence of executing the current instructions. For
these exceptions the specific exception defines whether Pcurrent
or Pnext is the location to resume instruction execution.

Exceptions are classified into three general categories:

1) external interrupts

2) internal interrupts

3) traps

7-2

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.1.1 External Interrupts Overview

07/31

External interrupts are generally service requests from I/O devices.
External interrupts are polled for between the execution of
instruction steps. The following diagram illustrates this:

1<-----­
V

Pcurrent
+------+

Sequence 1 1
of 1 step 11

Steps 1 1

Trap and
Interrupt
Poll
Sequence

+------+

an

I
X

instruction ------>1

+------+

1 I
Istep 21
1 1
+------+

1

X

v

+------+

I 1
Istep ml
1 1
+------+

where X = external interrupt poll

1 <-an instruction- > 1
v

Pnext
+------+

1

X

1 1
I step 11
1 1
+------+

1

X

v

+------+

I I
1 step nl
1 I
+------+

When multiple external interrupts are pending, one is selected
(based on the interrupt mask and on priority). The other
external interrupts are left pending and are allowed to cause an

external interrupt later (when no longer masked).
External interrupts generally are unrelated to the current
instruction being executed. The architecture requires that the
effect of processing external interrupts be transparent to the
current instruction. Therefore, the execution of the current
instruction can be suspended between any two steps as long as
execution resumes at the next step (technically, execution can
resume at any previous step as long as the effects of the
intermediate steps can be undone or rolled back). The normal
processing sequence for external interrupts is to "cap off" the
current stack with an interrupt marker (preserving the current
machine context) and to transfer control to the exception handler
executing on the interrupt control stack.

7.1.2 Internal Interrupts Overview

Internal interrupts normally originate from some type of abnormal
condition occuring within the system not associated with the
execution of the current instruction. Some examples of internal
interrupts are powerfail, parity error and machine checks.
Internal interrupts are polled between the execution of instruction
steps. If an internal interrupt is detected, external interrupts
are not polled.

7-3

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

The following diagram illustrates this sequence:

07/31

1<------ an instruction ------>1 1 <-an instruction- > I
1 1 1 1
v v v v

Pcurrent Pnext
+------+ +------+ +------+ +------+ +------+

Sequence 1 1 1 1 1 1 1 1 1 1
of Istep 11 Istep 21 Istep ml 1 step 11 Istep nl

Steps 1 1 1 1 1 1 1 1 1 1
+------+ +------+ +------+ +------+ +------+

Trap and
Interrupt II II II II
Poll IX IX IX IX
Sequence

where I internal interrupt poll
X external interrupt poll

Internal interrupts are handled by pushing a marker (either an
interrupt marker or a procedure stack marker depending upon the
exception) onto the current stack and then transferring control to
the exception handler. The exceptions that push an interrupt
stack marker execute on the interrupt control stack (ICS). Those
exceptions that push a (procedure) stack marker execute on the
current stack.

Multiple internal interrupts are processed by pushing markers onto
the stack in increasing priority, then continuing execution with
the handler of the latest (highest priority) internal interrupt
pushed (interrupts are processed in reverse order -- last-in­
first-out). Note, the occurrence of an internal interrupt is
remembered by pushing a marker onto the stack so that the handler
will execute. This technique contrasts with external interrupts
which are remembered with status bits. The following diagram
illustrates the stack state(s) following the detection of:

1) an internal interrupt "A" that runs on the current stack,

and

2) two internal interrupts, "B" and "C", respectively, that
execute on the rcs.

7-4

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

current
Stack

+-------------+
I
I
I

I I
I . I
1-------------1
I lIP save areal
1-------------1
I procedure I
Istack I'larker I
I for I
linterrupted I
linstruction I
1-------------1
Ipara!lleters I
I for I
Ihandler "A" I
1-------------1
I interrupt I
Il'larker for I
Ireturning to I
Ihandler "A" I
1-------------1

S-->I I

1.1.3 Traps Overview

Interrupt
Control
Stack

+-------------+
I dispatcher I

QI-->Iinterrupt 1
Istack I'larker I
1-------------1

SI-->Ipara!lleters I
I for I
Ihandler "B" I
1-------------1
1 interrupt 1

Qc-->ll'larker for 1

Ireturning to I
I interrupt "B" I
1-------------1
Ipara!lleters I
I for I
Ihandler "C" I
1-------------1

8c-->1 1<--
I I

Control
transferred
to
handler "C"

01/31

Traps include all exception conditions uhich arise as a direct
consequence of instruction execution. EXa!Ilples include traps for
arith!lletic overflOW, ODT access rights violation, page fault and
breakpoint (debug). Generally, traps are detected by I'licrocode
during the execution of an instruction step. For traps the normal
processing sequence is to push an external procedure stack I'larker
onto the current staCk, push the para!lleters on the current stack
and then execute the handler on the current stack. An external
procedure stack marker is pushed for each different trap detected.
Depending upon the type of trap (see the definition of restartable
and continuable traps), the stack appears as though an explicit
procedure call was I'lade to the trap handler either just before the
Pcurrent instruction or after the Pcurrent instruction.

1-5

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

01/31

Using the current stack for processing traps allous the maximum
degree of concurrency betueen tasks because the handlers the!llselves
run in a general task environment. This is unlike the interrupt
control stack uhich requires a strict adherence to last-in-first­
out processing of events with no option to suspend execution while
using the ICS.

The follouing diagra!ll illustrates the relationship betueen the
polling of internal and external interrupts and the detection of
trap conditions.

1 <------ an instruction ------>1 I <-an instruction- > I
1 I I
v

Pcurrent
v v

+------+
Sequence I I

of Istep 1/
Steps I I

Trap and
Interrupt
Poll
Sequence

+------+

1111
TRIX

+------+

I I
Istep 21
I I
+------+

1111
TRIX

+------+

1 1
Istep I'll
I 1
+------+

where I internal interrupt poll
X external interrupt poll
T trap condition detected

Pnext

1111
TRIX

+------+

I I
I step 1/
I I
+------+

1111
TRIX

I
v

+------+

I 1
Istep nl
1 I
+------+

R trap condition reported (trap handler activated)
\ = part of the step(s) not executed

The specification of each individual trap condition determines the
next instruction step to be executed.

1-6

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

The follo~ing diagram illustrates the stack state follo~ing the
detection of t~o traps) X and Y) in the same step.

CUrrent
Stack

+-------------+
+-------------+
I II P save area I
+-------------+
I procedure
I stack marker
Ifor the
I interrupted
I instruction
+-------------+

QK = > I parameters I
I for handler xl
+-------------+

Sx =>Iprocedure I
Istack marker I
Ifor returning I
Ito handler X I
+-------------+

Qy =>Iparameters I
I for handler YI
+-------------+

Sy =>1

<== Returns to interrupted
instruction

<== Returns to handler X

Traps are divided into five categories:

1) non-recoverable traps
2) recoverable traps

2a) restartable traps
2b) continuable traps
2c) step-restartable traps
2d) step-continuable traps

7-7

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

07/31

1) Non-recoverable traps

A non-recoverable trap catches the occurrence of a machine state
that makes it impossible for the hard~are implementation to be
able to guarantee correct completion of the instruction even if
the trap handler fixes the immediate problem. An example is
overflo~ of the dispatcher disable count or detection of
inconsistent Q and S values on IEXIT. Yhenever a non-recoverable
trap occurs, the simUltaneous occurrence of other types of traps
is irrelevant.

2) Recoverable Traps

The other categories of traps are part of a set of recoverable
exceptions. For these traps it is expected that soft~are can "fix
up" the cause of the trap and can re-execute the instruction or
soft~are can substitute a "reasonable" result for the instruction.

2a) Restartable Traps

A restartable trap is a trap that occurred before the instruction
~as complete and requires that any changes to the machine state
(as part of the current instruction) be undone or "backed out" by
the CPU before transferring control to the trap handler. After
the trap handler has executed and fixed the problem that caused
the trap) the instruction is restarted from the first step. The
follo~ing diagram illustrates this sequence.

1<--- an instruction ------>1
I I

I <-an instruction->I
I I

v
Pcurrent

+------+ +------+
Sequence I I I I

of I step 11 Istep 21
Steps I I I I

" +------+ +------+

I
I +--------+

I I recovery I I
--I block 1<--

Trap and
Interrupt III
Poll RIX
Sequence

+--------+
I
T

7-8

v v v
Pnext

+------+ +------+ +------+

I I I I I I
Istep ml Istep 11 I step nl
I I I I I I
+------+ +------+ +------+

where I
X
T
R
\

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

internal interrupt poll
external interrupt poll
trap condition detected
trap condition reported (trap handler activated)

= part of the step(s) not executed

07/31

On the previous diagr~, a restartable trap could have been detected
as part of step 1 through m. On detecting the trap condition, the
machine would be restored to its value prior to executing step 1 of
the instruction. The program counter value Pcurrent is saved in the
stack marker. Then, Pcurrent will be executed again when the trap
handler EXITs back to the instruction sequence. At entry to the trap
handler the stack state will be:

Stack

+--------------------+

I
+--------------------+
Iprocedure stack 1
Imarker to 1
1 instruction Pcurrentl
+--------------------+

Q==>lpararoeters for trap 1
1 handler I
+--------------------+

S==> I
1

7-9

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

2b) Continuable Traps

07/31

A continuable trap is a trap that serves as an alternate exit point
from the instruction. An example is integer overflow. When overflow
is detected, the remaining steps in the instruction are skipped. The
result of the instruction is the overflow condition. For a continuable
trap, the next instruction, after the trap handler, to be executed is
Pnext. The following diagram illustrates this:

1<------ an instruction ------>1
1 1

1 <-an instruction->1
1 1

v
Pcurrent

v V
Pnext

v

+------+ +------+ +------+
Sequence 1 1 1 \\\1 1\\\\\\1

of 1 step 11 Istep 21 Istep ml
Steps 1 1 1 \\\1 1\\\\\\1

+------+ +------+ +------+ ,..

Trap and
Interrupt
Poll
Sequence

1 III
T RIX

where I internal interrupt poll
X external interrupt poll
T trap condition detected

+------+
1 1
Istep 11
I 1
+------+

+------+
1 1
Istep 21
1 1
+------+

R trap condition reported (trap handler activated)
\ = part of the step(s) not executed

In the case of a continuable trap, the software trap handler has the
option of altering the result of the instruction by modifying (again
from software) the result operand. Then execution can be continued
from Pnext. This case is very similar to the ordinary external proce­
dure call. The hardware is not required to be able to undo any state
changes it has already committed.

7-10

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

At entry to the trap handler, the stack state will be:

Stack

+-------------------+

+-------------------+
Iprocedure stack
IPlarker to
I instruction Pnext
+-------------------+

Q==>lpararneters for the I
I trap handler I
+-------------------+

S==> I
I

2c and 2d) Step-Restartable and Step-Continuable Traps

07/31

The step-restartable and step-continuable traps are very similar to
the restartable and continuable traps respectively, but they arise
in the context of certain instructions, such as MOVEC, that consist
of certain steps repeated a nuPlber of times. These instructions have
an architecturally defined interrupt state froPl which they can reSUPle
execution safely. A bit in the Plachine register STATUSA (lIP -­
"instruction in progress") allows a decision at instruction fetch time
as to whether the instruction has already executed certain steps. If
so, the paraPleters to restart the instruction's execution are popped
froPl the stack and then the instruction is cOPlpleted. This SaPle
PlechaniSPl ~hich allo~s external interrupts to occur in the Pliddle of
an instruction also allo~s internal interrupts and recoverable traps
to occur in the Pliddle of the execution of a step without having to
back out of Plore than the last (current) step.

The following diagraPl illustrates the step-restartable and
step-continuable concepts:

7-11

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Step-Restartable:

1<------ an instruction -------->1
I I

I <an instruction> I
I I

v
Pcurrent

v v
Pnext

v

+------+ +------+ +------+ +------+ +------+
Sequence I I I I I 1

Istep 21 •• lstep Pli
I 1 I 1

of Istep 11
Steps I I

Trap and
Interrupt
Poll
Sequence

+------+'" +------+ +------+
1

+--------+ 1

1 I recovery I I
+-1 block 1<-

+--------+

III
RIX

1
T

internal interrupt poll
external interrupt poll
trap condition detected

1 1 I I
Istep 11 •. lstep nl
I I 1 I
+------+ +------+

where I
X
T
R
\

trap condition reported (trap handler activated)
part of the step(s) not executed

07/31

At entry to the trap handler, the stack state will be (except for the
top of stack page fault which is handled like an internal interrupt):

Stack

+--------------------+
I

+--------------------+
IIIP information I
+--------------------+
Iprocedure stack
IPlarker to reSUPle 1

I instruction Pcurrentl
+--------------------+

Q==>lparaPleters for the
I trap handler
+--------------------+

S==> I
1

6-12

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Step-Continuable:

07/31

1<------
1

an instruction ------>1 I <-an instruction- > I

v
Pcurrent

+------+
Sequence I \ \ I

of Istep 11
Steps I \\1

Trap and
Interrupt
Poll
Sequence

+------+""

+---+
I
T

III
RIX

1
v

+------+ +------+
I I I I
Istep 21 Istep III I
I I I I
+------+ +------+

internal interrupt poll
external interrupt poll
trap condition detected

1 1
v v

Pnext
+------+ +------+
I I I I
I step 11 Istep nl
I I I I
+------+ +------+

where I
X
T
R
\

trap condition reported (trap handler activated)
part of the step(s) not executed

At entry to the trap handler, the stack state will be:

Stack

+--------------------+
+--------------------+
I IIP infornation
+--------------------+
Iprocedure stack
Imarker to reSUllle I
I instruction Pcurrentl
+--------------------+

Q==>lpara!lleters for the
I trap handler
+--------------------+

s==> 1
1

7-13

Debug Traps:

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

The debug traps are a special case of traps. If during the execution
of an instruction, lIlicrocode detects that the instruction is lIlodifying
a location covered by a data breakrange then the DBP (debug breakpoint
pending) flag in STATUSA is set to remember that the breakpoint was
encountered. Then, the instruction execution is continued with the
setting of the breakpoint flag being somewhat transparent. Then, at
the end of the instruction execution, the breakpoint handler is
activated. By handling the trap at the end of the instruction, the
architecture guarantees to report a breakpoint to software only once
per instruction. The following diagra!ll illustrates this sequence:

1<------
1
v

Pcurrent
+------+

Sequence I I
of Istep 11

Steps I I

Trap and
Interrupt
Poll
Sequence

+------+

an instruction ------>1

+------+
I I
I step 21
I I
+------+

I
T " IX

I
v

+------+
I I
Istep III I
I 1

+------+

where I internal interrupt poll
X external interrupt poll
T trap condition detected

1 <-an instruction->1
I
v

Pnext

III
RIX

+------+
1 I
Istep 11
I I
+------+

I
v

+------+
I I
Istep nl
I I
+------+

R trap condition reported (trap handler activated)
\ part of the step(s) not executed

At entry to the debug traps, the stack state will be:

Stack

+--------------------+
+--------------------+
Iprocedure stack 1

Imarker to return to I
I instruction Pnext I
+--------------------+

Q==>lpara!lleters for the
I trap handler
+--------------------+

s==> I
1

7-14

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

7.1.3.1 Special Programming Notes

STATUSB Handling

07/31

When control is transferred to exception handlers that execute
on the current stack, an external procedure call roarker is pushed
onto the stack. This roarker includes the STATUSA register, but
not the STATUSB register. In order not to have any side effects
on the suspended instruction, software roust save STATUSB at entry
to the handler. Then, iroroediately prior to EXITing back to the
suspended instruction, the handler should restore STATUSB to its
value when the trap was detected.

Hardware versus Software Recoverability

The classification of the recoverability of a trap condition is
based upon whether or not software can reroove the condition that
caused the trap and can then allow the hardware to proceed with
instruction execution. Instruction execution can proceed froro
either the instruction that caused the trap or the instruction
following. This criterion for classification is roore perroissive
than one based strictly on whether roachine state has been
roodified. As an exarople, if a MOVE8 froro location A to location B
were to get a bounds violation on B, part of B roight have been
roodified before the bounds violation was detected. If the trap
handler increases the upper bound of the object containing B such
that the MOVE8 no longer causes a bounds violation, the net effect
is that the trap did not occur. This exarople illustrates a case
where the hardware could not restore the contents of location B
but software could fix the problero. So froro a hardware perspective
the input state of the instruction cannot be recreated. Froro a
software perspective the instruction is restartable. Using the
classification criterion, this bounds violation is recoverable.

7-15

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

7.2 Detail Description of External Interrupts

7.2.1 Processor context for interrupts

07/31

Three iteros of processor context define the interaction between
processor and interrupts. There is an Interrupt Enable/Disable
bit in STATUSC, called STATUSC.IE or "IE" for short. This bit
controls whether any interrupts are allowed to cause a change in
the sequence of execution of roacro-instructions. There is a 16-
bit Interrupt Mask Register in STATUSC, called STATUSC.IMR or
"IMR" for short. This roask controls which interrupts are allowed
to cause a change in the sequence of execution and which are not,
subject to STATUSC.IE. Finally, there is an Interrupt Pending
Register, which is not directly accessible to software; hence
iropleroentations have a large aroount of freedoro in how to iropleroent
it. It need not even exist as a separate entity in the roachine,
as long as the behavior that is here ascribed to it can be
reproduced. The Interrupt Pending Register looks like an array
as in Pascal:

TYPE
pr_Ievel: 0 .. 15;
source: (i_channel, i-processor)j
state: (clear, set);

VAR
IPR: ARRAY[pr_Ievel, source] OF state;

The IPR is processor-local. Details on roultiprocessor aspects of the
interrupt systero follow in section 7.2.7.

7.2.2 General operation

Interrupts cause bits to get set in IPR (eleroents of IPR to
becoroe 1). The state of the Interrupt Mask Register and the
state of the Interrupt Enable/Disable bit control whether the
processor is notified or wether the interrupt is held off.
Interrupts can be caused by channels or by a processor itself
under software control.

7-16

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.2.3 Channel Interrupts

Each hardware channel is configured at a specific priority

pr : pr_Ievelj

07/31

If the channel wants to raise an interruPt, it does so by setting
the appropriate bit in IPR:

IPR[pr, i_channel] :=set;

If STATUSC.IE = 1 and IMR[pr] = 1, the processor is interrupted at
the first convenient opportunity (e.g. between instructions),
otherwise the interrupt is held off. The channel must be prepared
to inform the processor of details concerning the interrupt when
the interrupt is acknowledged. To this end, the channel may use
an area of the processor's melllory (called "channel overflow area")
to store any information needed to avoid overflowing its internal
lIlelllory capacity. Use of such an interrupt queueing lIlechaniSlll is
an optional hardware illlplelllentation and not required by the
architecture. SOllie channels lIlay have restrictions that guarantee
that no 1Il0re than a single interrupt lIlay be outstanding, or the
channel lIlay have enough internal buffering so that processor's
lIlelllory is not needed. Any such use of the processor's lIlelllory is
transparent except perhaps for initialization of the channel
overflow area at configuration tillle.

7.2.4 Processor-caused Interrupts

The processor raises an interrupt by setting a bit in the IPR
through the "INTERRUPT" instruction. The processor will typically
hold off this interrupti when the processor later acknowledges the
interrupt, hardware does not report to software any information
regarding the interrupt other than the priority level at which the
interrupt occurred. Software is responsible for any queueing that
is required to entangle the course of events in case of lIlultiple
software interrupts. Such queueing lIlust be done before executing
the INTERRUPT instruction.
"INTERRUPT pr" sets the appropriate bit in IPR:

IPR[pr, i_processor] := set;

7-17

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.2.5 When is the Processor Interrupted?

At the end of an instruction, or at appropriate places in the
middle of a long instruction, the processor checks to see if
interrupts should be acknowledged. Interrupts are to be
acknowledged if the IPR is left "set" at a priority level pr
that is currently enabled. The algorithm can be sketched in
Pascal as follows:

if STATUSC.IE = 1 then
for pr := 0 to pr levels-1 do

if STATUSC.IMRTpr] = 1 then
for src := i channel to i-processor do

if IPR[pr,src] = set then
begin

IPR[pr,src] := clear;
GO_ACKNOULEDGE_INTERRUPT(pr,src);
end

7.2.6 Acknowledging Interrupts

07/31

Section 7.2.5 sketched the algorithm that defines which interrupt,
if any, lIlust be acknowledged. The algorithm ends either in a
GO ACKNOULEDGE INTERRUPT(pr,src) or it indicates that the flow of
control should-not be changed at all. Detailed below are the steps
that lIlust be taken when acknowledging the interrupt.
Note that software arrives at the interrupt handler with values in
the registers XO .. X15 and BO •• B5 that are indeterminate.

GO_ACKNOULEDGE_INTERRUPT(pr,src)
begin

STATUSC. IE : = 0;
PUSH_INTERRUPT_MARKER;
if STATUSC.ICS = 0 then {a task was interrupted}
begin

save S in TCB;
Q := QI; S·= Q;
STATUSC.ICS := 1;
end;

STATUSA.XL := 0; {go to privileged 1Il0de}
if src = i channel then

push channel dependent information identifying
the interrupt;

PUSH4 prj
{all registers XO •• X15, BO •• B5 will be indeterminate}
if src i channel then BBX 2 else BBX 3
endj -

7-18

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.2.7 Shared-memory Multiprocessor Considerations

07/31

The interrupt Nask register is processor-local, as is the interrupt
enable/disable bit. More surprising, perhaps, is the fact that the
interrupt pending register is processor-local. For this to work,
the following notes apply.

Note 1: A channel interrupt causes the pending bit to get set in
the IPR of all processors sharing Neroory.

Note 2: The INTERRUPT instruction Nust likewise broadcast to all
processors in order to get the pending bit set in their
own IPR.

Note 3: More than one processor may have a particular priority
level enabled at anyone tiNe. In this situation, Nore
than one processor will be interrupted. In case of a
channel interrupt, the data structure that identifies the
interrupt is shared aroong all processors; this allows
only one processor to acknowledge the channel interrupt,
all other processors will resuroe their norNal instruction
sequence without ever pushing an interrupt marker. In
case of a processor interrupt, all enabled processors
will run the interrupt handler.

Note 4: hlhen a processor acknowledges an interrupt, it clears
the pending bit in its own IPR only. This will not
be broadcast. -

7-19

7.3 Clocks

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

There are three clocks supported. Each clock is scaled to give
results in nanoseconds. However, the actual resolution of the
clock is iNpleroentation dependent and Nay be Nuch larger than 1
nanosecond. For exarople, internally the hardware may count every
100 nanoseconds but when software reads the clock, the count will
be scaled to read in nanoseconds. These clocks, when read, return
a 64-bit 2's compleroent count.

7.3.1 TiNe of Day Clock

This clock will be used by the system for Naintaining the current
tiNe of day. It runs continuously without interruption and will
maintain the correct tiNe even across power failure. Ideally,
this clock will be set only once and from that point onwards it
will continuallY count up.

Since 1 January 1972 there has been an internationally accepted
tiNe scale based on the International TiNe Bureau (BIH) standards
for atONic clocks. The Vision TiNe of Day Clock will be based on
this standard.

The origin (tiNe zero) of this clock is the saroe as the or~g~n for
the international reference scale of atomic tiNe (TAl), that is,
1 January 1958 at 0 hours GMT (also known as the UTC Reference
Zone). The value of this clock is the nurober of nanoseconds since
the TAl origin as defined by Coordinated Universal TiNe (UTC).
TIrus, as an exarople, if it is 4 AM PST then it is 12 Noon UTC as
there is an eight hour tiNe difference between California and
Greenwich. For details of this tiNe standard see NBS Special
Publication 559, "TiNe and Frequency Users' Manual". Not that it
is not intended that all Vision computers be as accurate as atONic
clocks but Nerely that they agree on what tiNe it is.

The following functions are provided to support this clock.

- SET CLOCK (value passed is 64 bits)
- READ CLOCK (return value is 64 bits)

7-20

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.3.2 Task Clock

07/31

This clock will be used by the system for accounting purposes.
This clock counts up and is put in the hold mode whenever control
is transferred to the Interrupt Control Stack (ICS). It may also
be disabled by software by placing it in hold mode. On return
from the ICS, it resumes counting.

The following functions are provided to support this clock.

- SET CLOCK (value passed is 64 bits)
- READ CLOCK (return value is 64 bits)
- HOLD CLOCK
- RESUME CLOCK

7.3.3 Interval Clock

This 54-bit two's-complement clock interrupts the CPU after a
programmable interval has elapsed. It is used by the system for
device time-outs, time slicing of processes, etc. The interrupt
is treated like any other I/O interrupt in the system and is
therefore subject to being Aasked off by software. The clock is
set by loading it with the desired interval, in nanoseconds.
(It should be a positive interval. A negative interval will load
zero into the clock and cause an imAediate interrupt.) From there
on, it counts down until it becomes negative at which time the
interrupt is generated. The interrupt is signalled to all
processors in a shared-Aemory Aultiprocessor system at a priority
level that can be configured by software.

On power-up, the interval clock shall be set to its largest
positive value. This should prevent any unexpected interrupts
frOA being generated by this clock for at least 292 years.

The following functions are provided to support this clock.

- SET CLOCK (value passed is 64 bits)
- READ CLOCK (return value is 54 bits)

7-21

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

7.4 SUmary of Traps and Internal Interrupts

07/31

The following table is a summary of the internal interrupts and
traps. Detailed descriptions of each internal interrupt and
follows in this chapter. For this table, the following notation
will be used:

1. ENV Execution environment of handler
a) CS = current stack
b) ICS = interrupt control stack

2. E/D Control -- Enable/Disable Control. This indicates
the control that software has over the
transfer of control to the handler.
a) PE = permanently enabled
b) The status word and flag(s) that control

the handler (eg. B2.INTOVFE for fixed
point overflow)

3. Paral1leters -- Paral1leters passed to handler
a) Pcurrent=Pc = logical address of offending

instruction.
b) Pnext=Pn = logical address of the instruc­

tion following the offending instruction.
c) Preturn=Pr = the return address in the

stack marker.

4. Type Type of exception
a) II Internal interrupt
b) NR non-recoverable trap
c) R restartable trap (Pr=Pc)
d) C = continuable trap (Pr=Pn)
e) SR step restartable (Pr=Pc)
f) SC = step continuable (Pr=Pn)

7-22

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Table of Internal Interrupts and Traps

+-------------+-----+---+-----------+----+---------------------+
I MneAonic ITrap#IENVIE/D Control I Type I Parameters I
1-------------+-----+---+-----------+----+---------------------1
IIIMEMPAR I 1 IICSIPE I II IAddress,Pc,l I
IPOhlERFAIL I 2 IICSIPE I II 12
I I IPhlRRCV I 3 IICSIPE I II 13
I I ICPUCHK I 4 IICSIPE I II IVariable,Pc,4
I I IeSPREPLY I 5 IICslc1.IE I II I Status, 5
ICODEBNDSV I 6 ICS IPE I R IPc,6
leODEODTV I 7 ICS IPE I R IPc,7
ICODETYPV I 8 ICS IPE I R IPc,8
ICODERINGV I 9 les IPE I R IPc,9
IINSPRIV I 10 les IPE I R IPc,10
IINSOPSPEC 11 ICS IPE I R IPe,11
IINSERROR 12 ICS IPE I C IPe,12
I I NSCHKLO 13 ICS IPE I C IPc,13
IINSCHKHI 14 ICS IPE I C IPc,14
IINSUNDEF 15 ICS IPE I R IPe,15
IINSXTL 16 ICS IPE I C IPe,16
IINSODDP 17 les IPE I NR IPc,17
IINSPROBE 18 les IPE I R IPc,18
IINSMOVSPL 19 ICS IPE I R IPc,19
IINSSYITCH 20 les IPE I R IPc,20
IINSVPPERM 21 les IB1.VPP I R IPe,21
IINSVPICS 22 ICS IPE NR IPc,22
ISTKCONSISTV 23 ICS IPE R IPe,23
ISTKOVF 24 IIeslPE R IPc,24
ISTKUNF 25 les IPE R IPc,25
ISTKDEXTV 26 les IPE R IPc,26
IDATABNDSV 27 ICS IPE R IPc,27
IDATAODTV 28 ICS IPE NR IAddress,Pe,28
IDATATYPV 29 ICS IPE R IAddress,Pc,29
IDATAARV 30 ICS IPE R IAddress,Pe,30
IFL-INV 31 les IB2.FLINVE C IOp1,[0p2],Pc,31
IFL-DVDZ 32 les IB2.FLDVDZE e IOpl,0p2,Pc,32
IFL-OVF 33 ICS IB2.FLOVFE C IResult,Status,Pc,33
IFL-UNF 34 ICS IB2.FLUNFE C I Result,Status,Pc,34
IFL-INK 35 ICS IB2.FLINKE C I Result, Status,Pc, 35
IINTDVDZ 36 les IB2.INTDVDZEI C IPc,36
IINTOVF 37 Ics IB2.INTOVFE I C IPc,37
+-------------+-----+---+-----------+----+---------------------+

7-23

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

+-------------+-----+---+-----------+----+---------------------+
I Mnernonic ITrap#IENVIE/D Control I Type I Parameters I
I-------------+-----+---+-----------+----+-~-------------------1
IDECDVDZ I 38 Ics IB2.DECDVDZEI C IPc,38 I
IDECOVF I 39 ICS IB2.DECOVFE I C IPc,39 I
IDECINVL I 40 Ics IPE I R IPc,40
IDECINVDG I 41 ICS IPE I R IPc,41
IDBBREAK I 42 ICS IPE I C IOperand,Pc,42
IDBCALL I 43 ICS IB1.PTE I SC IPc,43
IDBCHECKA I 44 Ics IB2.CB.CBA I C I Operand,Pc,44
IDBCHECKB I 45 ICS IB2.CB.CBB I C I Operand,Pc,45
IDBSIT I 46 Ics ISTATUSA.SITI C IPc,46
ISEMAOVF I 47 ICS IPE I R ISeAaphore,Pc,47
ISEMADOhlN I 48 ICS IPE I C ISernaphore,Pc,48
ISEMAUP I 49 ICS IPE I C ISernaphore,Pc,49
ISYITCHN (*1) I 50 les IPE I e IPc,50
ITRYV I 51 les IPE I R I Trypointer, Pc, 51
IADRPDIRBND I 52 ICS IPE I R IEntry address,Pc,52
IADRPDIR I 53 les IPE I R IPage nuAber,Pc,53
IADRPAGEABS I 54 les IPE I R IByte offset,VPN,
I I I I I I Logical address,
I I I I I IPc,54
IADRPAGETOS I 55 IICslPE I R IUser stack data,
I I I I I I Byte offset, VPN,
I I I I IlLogical address,
I I I I I IPc,55
+-------------+-----+---+-----------+----+---------------------+
Notes:

07/31

*1: This handler runs on the current stack, but it switches from the
cOApatibility Aode part of the stack to the native Aode part.

7-24

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.5 Detail Description of Internal Interrupts

7.5.1 Architectural Interface

When an internal interrupt is detected, control is transferred
to the corresponding internal interrupt service routine. The
methods of transferring control and accessing the interrupt
service routines are consistent (identical) across all models of
the Vision family. The following sections describe the details
of the architectural interface between hardware and software
(the interrupt service routine).

7.5.2 EKecution Environment

All internal interrupt handlers eKecute on the ICS.

7.5.3 Sequence of Events

When an internal interrupt is detected, hardware performs the
following sequence:

1) EKternal interrups are disabled.

07/31

2) In case the currently eKecuting instruction is interrupted
in an intermediate state, intermediate state information
is pushed onto the stack and the lIP bit in STATUSA is set.
Otherwise, the step is skipped. (See the description of
individual instructions for details on interruptible steps).

3) The current eKecution stack is capped with an interrupt stack
marker.

7-25

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

4) The following status fields are given standard values:

~ 0 (native mode)
lIP 0
TeE 0 (hold task clock)
DISP 0
SIT 0
DBP 0
ICS 1
~L 3

5) The target location is the entry point in the OD for LOI

6) A parameter list is pushed onto the interrupt control
stack. The description of each internal interrupt
describes the parameters. The parameters are pushed
onto the stack as shown in the following diagram:

+-------------+ --+
Q==> I parameter 1 I \

+-------------+ \
I parameter 2 I \
+-------------+ \ Parameter list

> for internal
+-------------+ / interrupt

/ handlers
+-------------+ /
I parameter n I /
+-------------+ --+

S==>

In all cases the last parameter is the 32-bit Trap •.

7) The eKecution environment is set up for eKecuting the
internal interrupt handler. This involves the following:

a) The environment registers (Q, S, etc.) are set up
appropriately for eKecuting code on the ICS.
All other registers XO •• X15, BO .• B5 are left with
indeterminate values.

b) The eKecution privilege level is set to the minimum
eKecution level described in the OD corresponding to
LOI = 1.

c) A branch (BRX) is performed to the destination
defined by the logical object id = 1.

8) Steps 3 through 7 are repeated for each internal interrupt
detected.

7-26

1.

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.5.4 Multiple Internal Interrupts

07/31

Multiple internal interrupts are processed by pushing multiple
interrupt stack markers onto the rcs. Interrupt markers are
pushed in increasing order of priority. Then execution continues
by transferring control to the handler for the latest (highest
priority) internal interrupt.

Internal interrupts in order of increasing priority are:

1) any internal interrupt except power fail and power recovery.

2) power recovery

3) power fail

7.5.5 Internal Interrupts Descriptions

7.5.5.1 Melllory Parity Error

This internal interrupt is caused when hardware detects a "hard"
melllory error that it cannot resolve without involving software.

The physical address involved in the access that incurred the error
is pushed onto the rcs.

In a shared Illelllory Illultiprocessor configuration, the parity error
may not be uniquely attributable to any particular processor's
Illelllory traffic. Therefore, the parity error may be reported to
any processor in the configuration.

Mnemonic:
Parameters:

Enabling:

lIMEMPAR
1. 32-bit physical byte address of the

location with the parity error
2. Pcurrent
3. trap *
perlllanently enabled

7-27

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.4.5.2 Power Fail

Yhen the power system detects a power failure, the power fail
interrupt is taken. In a shared-meroory multi-processor
configuration, all processors must receive this interrupt.

Mnelllonic:
Parameter:
Enabling:

IIPlJRFAIL
trap *
permanently enabled

7.5.5.3 Power Recovery

07/31

When power is initially applied to the systelll, a test of Illeroory
contents is perforllled to deterllline if it contains valid
information and data. If so, the hardware is initialized
(including writeable control store) and the power recovery
interrupt is taken (warm start). If Illemory contents are invalid,
the Illachine will perform a cold start. The test for valid memory
contents is i!llplementation dependent but there will be a finite
probability of Illistaking an invalid Illeroory content as being valid.
In a shared Illelllory Illultiprocessor configuration, all processors
must receive this interrupt. As much as possible, implementations
must save the machine state across power fail/recovery.

Mnemonic:
Parameter:
Enabling:

I IPldRRCV
trap.
perlllanently enabled

7.5.5.4 CPU Machine Check

This trap is defined for the i!llpleroentation dependent errors that
a CPU implementation can detect about itself. The information
reported under this trap classification is specific to each CPU
i!llp lelllentat ion. The first parameter is variable in size. Its
third word is the Illachine check 10 OUIllber; this defines how much
additional inforlllation is present.

Mneroonic:
Parameter:

Enabling:

I ICPUCHK
1. Illachine check id
2. Pcurrent
3. trap *
permanently enabled

7-28

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.5.5.5 CSP reply is complete

When hardware has completed receiving the reply from the CSP to
the message sent through the MOVEtCSP instruction, this internal
interrupt is generated.

Mnemonic: I ICSPREPLY
Parameters: 1. 32-bit status (implementation dependent)

2. trap.
Enabling: individually enabled (STATUSC.IE)

7.6 Detail Description of Traps

7.6.1 Architectural Interface

When a trap is detected by the hardware, control is transferred
to its corresponding trap service routine. The ~ethod of
transferring control and accessing the trap service routines is
consistent (identical) across all models of the Vision family.

Traps provided are also consistent across all models of the
Vision family.

The following sections describe the details of the architectural
interface between the hardware (or ~icrocode) and the software
(the trap service routines).

7.6.2 Execution Enviro~ent

All trap handlers execute on the current stack except the top of
stack page fault handler (ADRPAGETOS) which executes on the ICS.

7.6.3 Common Conventions for Traps

7.6.3.1 Parameter Passing to Trap Handlers

07/31

All traps push their parameters after pushing the procedure stack

7-29

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

markers. The diagram below shows how parameters are pushed:

+-------------+ --+
Q==>I parameter 1 1 \

1-------------1
1 parameter 2 1
1-------------1
1 • 1
1-------------1
1 • 1
1-------------1
1 parameter n 1 /
+-------------+ --+

S==>I

\
\
\

/
/

/

>
Parameter list
for trap
handlers

In all cases the last two parameters are the 64-bit program
counter Pcurrent, and the 32-bit Trap ••

7.6.3.2 Determining Privilege of the Handler

07/31

The trap handler is a procedure in the Trap object (object 1 in
group 0). The access rights of the trap object indicate the
no~inal privilege level at which the handler will run. However,
privilege is never reduced (will never become numerically greater)
in going to a trap handler. This corresponds to the normal
procedure calling conventions.

7.6.3.3 Determining the address of a Trap Handler

The address of the trap handler is defined by code object 1 in
group O.

7.6.4 Sequence of Events

The following sections describe the sequence of events involved in
transferring control to the trap handler. The descriptions rely on
the conventions set out in the previous section. External and
internal interrupts are held off during these sequences.

7-30

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

7.6.4.1 A Non-recoverable Trap on the CUrrent Stack

07/31

When a non-recoverable trap is detected whose trap handler executes
on 'the current stack, the following events take place.

1) The SIT bit in STATUSA is cleared.

2) An external procedure stack marker is pushed on the stack.

3) The following status fields are given standard values:
XM 0 (native mode)
DBP = 0

4) Q and S are set as expected on a procedure call.

5) Parameters to the trap handler are pushed on the stack.

6) P is set to the entry point address of the trap handler
identified by the trap code object.

7) STATUSA.XL is set to the privilege level at which the
handler should run.

8) Control is passed to the trap handler at P.

7.6.4.2 A Non-recoverable Trap on the ICS

When a non-recoverable trap is detected whose handler executes
on the ICS, the sequence of events is identical to that for an
internal interrupt.

7.6.4.3 One Res tar tab Ie Trap on the CUrrent Stack

(or a step-restartable trap)

When a single ~estartable trap is detected whose handler runs
on the current stack, the sequence of events is the following:

1) For an interrupted instruction, the intermediate state
inforroation is pushed, and the lIP bit in STATUSA set.
Otherwise, this step is skipped.

2) A stack marker is pushed onto the stack.

7-31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

3) The following status fields are given standard values:
lIP 0
SIT 0
XM 0 (native Node)

4) Q and S are set as expected on a procedure call.

5) Parameters for the trap handler are pushed onto the stack.

6) P is set to the entry point address of the trap handler
identified by trap code object.

07/31

7) STATUSA.XL is set to the privilege level at which the handler
should execute.

8) Control is passed to the trap handler at P.

7.6.4.4 One Restartable Trap on the ICS

(or a step-restartable trap)

This follows the sequence for an internal interrupt; except the P
value reported corresponds to the current instruction, not the next.

7.6.4.5 Top-of-stack Page Fault and Stack OVerflow

These follow the sequence for an internal interrupt. Note that these
faults can occur at any tiroe when pushing stack markers and parameters
for trap handlers. A description of the sequence of events in this
case is given in section 7.7.

7.6.4.6 Multiple Restartable Traps

(or step-restartable traps)

When more than one restartable trap is detected, hardware selects one
and ignores the others. The sequence followed is therefore given by
one of the sections above.

7-32

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

7.6.4.7 Continuable traps

(or step-continuable traps)

Continuable traps can only be detected after restartable traps
have already been resolved, so continuable traps occur either
alone or in combination ~ith other continuable traps. Note that
the breakpoint trap and the single instruction trace trap are
classified as continuable traps. In addition to these t~o, only
one continuable trap can occur in an instruction.

Sequence of Events:

1) Remember the state of the SIT bit in STATUSA.

2) Clear the SIT bit in STATUSA (SIT=O).

3) If no other continuable traps except SIT or breakpoint then
go to step 11.

4) If the instruction is step continuable and ~as interrupted
at an intermediate step, push intermediate state information
onto the current stack and set the lIP bit.

5) Push an external procedure marker.

6) Clear the lIP flag in STATUSA.

7) Set Q and S as expected for a procedure call.

8) Push parameters for the one continuable trap other than SIT or
breakpoint.

9) Set P to the entry point address of object 1 in group O.

10) Set STATUSA.XL to the privilege level of object 1 in group O.

11) If the DBP bit is clear, go to step (18).

12) Push an external procedure marker.

13) Set Q and S as expected in a procedure call.

14) Push parameters for the breakpoint table trap onto the stack.

15) Set P to the entry point address of object 1 in group O.

16) Set STATUSA.XL to the privilege level of object 1 in group O.

17) Reset the DSP bit.

7-33

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

18) If the SIT bit ~as found in step (1) above, go to step (24).

19) Push an external procedure marker.

20) Set Q and S as expected in a procedure call.

21) Push paraIlleters for the Single Instruction Trace trap.

22) Set P to the entry point address of object 1 in group O.

07/31

23) Set STATUSA.XL at the privilege level of object 1 in group O.

24) Execute the trap handler at P.

Note: this sequence may give a DSP trap and an SIT trap before a
step continuable instruction ~ill have fully completed. These
trap handlers can either choose to run at this time or they can
set the SIT bit in the stack marker for the interrupted
instruction so that the handlers can release control and yet
regain control back at the end of the instruction.

7.6.5 System Error

Certain error conditions are non-recoverable and they cause the
processor to enter in a special system error state. The
follo~ing conditions cause the processor to enter the 'system
error' state.

1) Any trap, such as DDT Length violation, that occurs ~hile
hard~are executes the transfer of control to the trap handler.

2) Cases like overflo~ or underflo~ of the dispatcher disable count.
In these cases, there is a soft~are error in privileged code.

3) Bounds violations on the IeS.

4) TOS page faults ~hen executing on the ICS.

7-34

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

7.6.6 Enabling/Disabling Traps

Traps lIlay be eKPlicitly enabled and disabled individually or in
groups. Traps fall in the following categories.

1) Perillanently Enabled

These traps are always enabled when the systeJll is up and the
software is running. These traps cannot be eKPlicitly disabled.

2) Individually Enabled

These traps can be eKPlicitly enabled/disabled individually by
setting/resetting a bit in the SIATUSB register. Setting of
the bit (=1) enables the trap. Resetting the bit (=0) disables
the trap.

7.6.7 Transfer of Control Traps

For the descriptions of the transfer of control traps, these
notes are applicable:

1) The Lower Bound (LB) of the object is obtained frolll the OD
for the object (third word).

2) The Upper Bound (UB) of the object is obtained frolll the OD
for the object (fourth word).

3) The Object Length is cOlllputed frolll the 00 for the object:

Object Length = UB - LB + 1

4) LB and UB are 32-bit 2's cOlllpleJllent signed integers; their
values, however, lIlust be positive.

5) The Virtual Address of the target location is calculated
according to the description in chapter 3. Generally,
the Virtual Offset is cOlllputed frolll the logical offset
by the calculation: VOFF = LB + LOFF

6)

7)

For instructions BR and CALL, the target code object is always
the executing code object because these instructions can only
cause internal transfers.

For instructions BRX, CALLX and EXIT, the target code object
lIlay be either the executing code object of a different code
object because these instructions allow both internal and
external transfers.

7-35

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

8) For BRX and CALLX, the target location is obtained fro~ the
object descriptor of the target code object.

9) For EXIT, the target location is obtained fro~ the procedure
stack lIlarker.

7.6.7.1 Code Object Bounds Violation

This trap is caused when P points outside the bounds of the code
object. For instructions that change flow of control, such as
BR, CALL, CALLX, EXIT, this trap is detected before the next
instruction is fetched, so that the Pcurrent of the offending
instruction can be reported to software.

07/31

IlIlplelllentations need not detect a Code Object Bounds Violation on
sequential instruction execution (instructions other than BR, BRX,
CALL, CALLX, SEXIT, EXIT, IEXIT). It is the responsibility of
operating systeJll software to guarantee that software cannot "run
out of theend of a code object". For eXaJIlple, code objects can
be padded with BREAK instructions. If P is increJllented so as to
becoille greater than PL on sequential instruction execution, the
effects lIlay differ across iIIlplelllentations; however, these effects
will reJllain lilllited to the currently executing task.

HneJ1lonic:
ParaJlleters:

Trap Type:
Enabling:

CODEBNDSV
1. Pcurrent
2. trap *
restartable
perillanently enabled

7.6.7.2 Code ODT Length Violation

This trap is detected for the instructions BRX, CALLX, and EXIT.
It occurs when an atteJllpt is lIlade to transfer control to an object
that does not exist; i.e., the object nuIIlber is greater than the
nuIIlber of entries in the ODT of the group selected by the group
selector in the target logical address.

Hneillonic:
ParaJlleters:

Trap Type:
Enabling:

CODEODTV
1. Pcurrent
2. trap *
restartable
perillanently enabled

7-36

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.6.7.3 Code Object Type Violation

07/31

This trap is detected for instructions BRX, CALLX, EXIT and IEXIT
when an attempt is made to transfer control to an object that is
not a code object.

Mnemonic:
ParaIlleters:

Trap Type:
Enabling:

CODETYPV
1. Pcurrent
2. trap #
restartable
perNanently enabled

7.6.7.4 Code Privilege Level (Ring) Violation

This trap is caused for the following cases:

1) This trap is caused in the EXIT instruction when an attempt
is Plade to exit to a privilege level mhich is Plore privileged
than the processor's current privilege level (contained in
the STATUSB register).

2) This trap is detected for BRX and CALLX when an attempt is
made to transfer control to a target code object mhose
'prerequisite privilege level' is Plore privileged than the
current privilege level. The 'prerequisite privilege level'
of a procedure entry point is contained in the OD of the
target object describing the procedure entry point.

Mnemonic:
ParaIlleters:

Trap Type:
Enabling:

CODER I NGV
1. Pcurrent
2. trap #
restartable
perNanently enabled

7-37

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.6.8 Instruction Traps

7.6.8.1 Privileged Instruction Violation

07/31

This trap is caused when an attelllpt is Plade to execute an instruction
at a privilege level which is less privileged than that required by
the instruction.

Mnelllonic:
ParaIlleters:

Trap Type:
Enabling:

INSPRIV
1. Pcurrent
2. trap #
restartable
perNanently enabled

7.6.8.2 Error Instruction

This trap is caused by executing the ERROR instruction. This is
likely to occur when an error causes P to point to data instead of
code, i.e., trying to execute data.

Mnelllonic :
ParaIlleters:

Trap Type:
Enabling:

INSERROR
1. Pcurrent
2. trap #
continuable
perPlanently enabled

7.6.8.3 CHECKLO Violation

This trap is caused mhen, for the instruction CHECKLO, the first
operand is smaller than the second operand.

Mnemonic:
ParaIlleters:

Trap Type:
Enabling:

INSCHKLO
1. Pcurrent
2. trap #
continuable
perPlanently enabled

7-38

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

7.6.8.4 CHECKHI Violation

This trap is caused uhen, for the instruction CHECKHI, the first
operand is larger than the second operand.

MneJllonic:
ParaJlleters:

Trap Type:
Enabling:

I NSCHKH I
1. Pcurrent
2. trap #
continuable
perJllanently enabled

7.6.8.5 Undefined Instruction

07/31

This trap is caused for all opcodes that are not defined as part of
the VISION architecture.

MneJllonic:
ParaJlleters:

Trap Type:
Enabling:

INSUNDEF
1. Pcurrent
2. trap #
continuable
per1llanently enabled

7.6.8.6 Exit Threshold Trap

This trap is caused uhen the current execution privilege level is
reduced to a level that is less privileged than the level in the
'KIL' field in STATUSB.

Mn9Jllonic:
Par~eters:

Trap Type:
Enabling:

INSKTL
1. Pcurrent
2. trap #
continuable
perJllanently enabled

7-39

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.6.8.7 Misaligned Progr~ Counter

This trap occurs uhen the return address in EXIT, SEXIT or IEXIT
is not even, so that P uould not be on a half-uord boundary.

07/31

NOTE: This condition JIIay not cause a trap in all mpleIllentations;
instead, i1IIpleIllentations Nay force P[63]:=O and continue.

MneJllonic:
Par~eters:

Trap Type:
Enabling:

INSODDP
1. Pcurrent
2. trap #
restartable
per1llanently enabled

7.6.8.8 Probe Violation

This trap is caused for instruction PROBE, uhen the value of the
first operand and/or that of the second operand is/are illegal.

MneIllonic:
ParaJlleters:

Trap Type:
Enabling:

INSPROBE
1. Pcurrent
2. trap #
restartable
per1llanently enabled

7.6.8.9 Operand specifier Violation

This trap is caused uhen an operand specifier in an instruction is
incoNpatible uith the operand attribute expected by the opcode.
EK~ple: an operand specifier specifying a literal as a destination
in a MOVE instruction.

MneIllonic :
ParaJlleters:

Trap Type:
Enabling:

I NSOPSPEC
1. Pcurrent
2. Trap #
non-recoverable
per1llanently enabled

7-40

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.6.S.10 Move Special Violation

07/31

This trap is caused for the instructions, MOVEfSP4, MOVEfSPS,
MOVEtSP4, and MOVEtSP8, hlhen the value of the selector is illegal
and/or hlhen the current privilege level of the processor does not
Aatch the required privilege level for that value of the selector.

MneAonic:
ParaAeters:

Trap Type:
Enabling:

INSMOVSPL
1. Pcurrent
2. trap #
restartable
perAanently enabled

7.6.8.11 SWitch Violation

This trap is detected by all variants of SWITCH hlhen the execution
environAent does not allohl a task Shlitch.

MneAonic:
ParaAeters:

Trap Type:
Enabling:

INSSWITCH
1. Pcurrent
2. trap *
restartable
perAanently enabled

7.6.S.12 VP perAission control

This trap is detected by all vector instructions hlhen a vector
operation is decoded and the vector perAission bits (STATUSB.VPP)
are zero. That is, the current status does not allow access to the
vector instructions because the software environroent (vector context
save area) has not been initialized.

MneAonic:
ParaAeters:

Trap Type:
Enabling:

INSVPPERM
1. Pcurrent
2. trap #
restartable
individually enabled
(STATUSB1. VPP)

7-41

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

7.6.S.13 Vector Operation on the ICS

07/31

This trap occurs hlhen a vector operation is atteApted that uses vector
registers hlhile executing on the Ies.

MneAonic:
ParaAeters:

Trap Type:
Enabling:

INSVPICS
1. Pcurrent
2. trap *
non-recoverable
perAanently enabled

7.6.9 Stack Traps

7.6.9.1 Stack Consistency Violation

The instruction EXIT is used to restore the caller's environment.
The registers S, Q are changed to point to nehl AeAOry locations on
executing the EXIT instruction. Prior to executing the EXIT instruc­
tion, checks are Aade to ensure that the registers SB, Q, S, and SL
at the end of executing the EXIT instruction hlould still Aaintain
the follohling stack consistency relationship:

SB =< Q =< S =< SL

The Stack Consistency Violation trap is taken hlhen this relationship
is violated. The IEXI! instruction includes the SaAe checks.

MneAonic:
ParaAeters:

Trap Type:
Enabling:

STKCONSISTV
1. Pcurrent
2. trap #
restartable
perAanently enabled

7.6.9.2 Stack Overflohl

This trap is caused hlhen atteApting to execute an instruction that
hlill result in S pointing at or beyond SL. Note: processing of
the trap condition follohls the sequence of events for internal
interrupts. The trap handler is executed on the ICS. Yhen this
exception is detected, S is set according to the following rules:

7-42

VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY HP PRIVATE INFORMATION

1) If the offending instruction is 'restartable' (see below), the
is restored to its value prior to the offending instruction.

2) If the offending instruction is one for which this trap is
'step restartable', S is restored to its value prior to the
offending instruction step.

In either of the above cases, S is rolled back to the appropriate
position so that the offending instruction can be appropriately
'restarted' or 'step restarted'. Then the interrupt marker is
pushed onto the stack according to the rules given in section 7.&&
(TOS page faults). The overflow part of the marker will go on the
ICS. At the end of this sequence, S[32 .• 63] in the TCB will point
to where it would have pointed had the entire interrupt marker been
pushed onto the user's stack.

Mnemonic:
Par81lleters:

Trap Types:

Enabling:

STKOVF
1. Pcurrent
2. trap it
step restartable for instruction DUP
restartable for other offending instructions
permanently enabled

7.6.9.3 Stack Underflow

This trap is caused when an attempt is made to move S below Q
(i.e. attempt to violate Q[32 •• 63] <= 8[32 •• 63])

Mnemonic:
Par81lleters:

Trap Type:
Enabling:

STKUNF
1. Pcurrent
2. trap #
restartable
permanently enabled

7.6.9.4 Delete/Extend Negative Yordcount

The trap is caused when, for instructions DELETE and EXTEND, the
wordcount given is negative.

Mnemonic:
Parameters:

Trap Type:
Enabling:

STKDEXTV
1. Pcurrent
2. trap it
restartable
permanently enabled

7-43

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.6.10 Data Object Traps

For data traps the following terminology is used:

1) An e~!ict operand is an ope:~d whose lo~ical ad~ress is
speclfled by an operand speclfler of the lnstructlon.

07/31

2) A data access is non-explicit when its logical address is
not directly specified by an operand specifier. The logical
address of a non-explicit operand is either specified indirectly
by an explict operand (as in VGATHt, VSCATt) or is obtained
obtained by modifying/indexing the logical address of an
explicit operand (as in MOVEC).

3) The Virtual Address of a byte of any operand is computed
according to the algorithms in chapter 3.

7.6.10.1 Data Object Bounds Violation

This trap is caused when the computed (effective) virtual offset
for an operand (explicit or implicit) is less than the Lower Bound
LB in the aD for the object or the computed virtual offset is
greater than the Upper Bound UB minus the size of the data item.

Mnemonic:
Parameters:

Trap Type:
Enabling:

DATABNDSV
1. Offending logical address (64 bits)
2. Pcurrent
3. trap it
restartable
permanently enabled

7.6.10.2 Data ODT Length Violation

This trap is caused when a data access uses a logical address with
with an object number greater than the number of entries contained
in the ODT for the selected group.

Mnemonic:
Parameters:

Trap Types:

Enabling:

DATAODTV
1. Offending logical address (64 bits)
2. Pcurrent
3. trap *
non-recoverable for instructions that modify the
most significant 32 bits of a base register,
restartable for IEXIT
permanently enabled

7-44

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

7.6.10.3 Data Object Type Violation

07/31

This trap is caused lIJhen an attelllpt is Illade to access, through a l.lIJ"
or ".rllJ" attribute, an object that is not a native Illode data object.

Mnelllonic:
Para!lleters:

Trap Type:
Enabling:

DATATYPV
1. Offending logical address
2. Pcurrent
3. trap it
restartable
permanently enabled

7.6.10.4 Data Access Rights Violation

This trap is detected lIJhen an attelllpt is Illade to access an object
lIJhile running less privileged than required by the access rights
field in the OD for the object.

Mnelllonic:
Para!lleters:

Trap Type:
Enabling:

DATAARV
1. Offending logical address (64 bits)
2. Pcurrent
3. trap #
restartable
perlllanently enabled

7.6.11 Floating Point Traps

These traps are detected for Floating Point operations. Their
i!llplelllentation is in accordance lIJith IEEE Floating Point Standard.
(Refer to "A Proposed Standard for Binary Floating Point Arithllletic"
draft 9.3.3 of IEEE task P754.) Each trap can be individually
enabled or disabled lIJith the appropriate bit in STATUSB. Mhen the
trap condition is detected, the destination operand is set according
to the following rules:

1) If the trap is enabled, then the contents of the destination
operand are not changed (i.e., relllain the Sa!lle as prior to
eKecuting the offending instruction).

2) If the trap is disabled, then the contents of the destination
operand are set as specified in the IEEE standards.

7-45

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

7.6.11.1 Floating Point Invalid Operation

07/31

This trap is caused for Floating Point Invalid Operations as defined
in IEEE Floating Point Standard. The operand(s) of the offending
instruction is (are) pushed.

Mne!llonic:
Para!lleters:

Trap Type:
Enabling:

FL-INV
1. Operandi

(2. Operand2)
3. Pcurrent
4. Trap.
continuable
individually enabled
(STATUSB2.FLINVE)

7.6.11.2 Floating Point Divide By Zero

This trap is caused lIJhen the divisor in a floating divide is zero.
The operands are pushed.

Mnelllonic:
Para!lleters:

Trap Type:
Enabling:

FL-DVDZ
1. Operandi
2. Operand2
3. Pcurrent
4. Trap #
continuable
individually enabled
(STATUSB2.FLDVDZE)

7.6.11.3 Floating Point OVerflollJ

This trap is caused lIJhen the Illagnitude of the result of a floating
point arithllletic operation is greater than the largest representable
floating point value in the indicated precision. The unrounded
lIJrapped result is pushed. The round status is 0 for ROUND=O and
STICKY=O, 1 for ROUND=O and STICKY=l, 2 for ROUND=l and STICKY=O, and
3 for ROUND=l and STICKY=l.

Mne!llonic:
Para!lleters:

Trap Type:
Enabling:

FL-OVF
1. lJrapped result
2. Round status
3. Pcurrent
4. trap #
continuable
individually enabled
(STATUSB2.FLOVFE)

7-46

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.6.11.4 Floating Point Underfloro

07/31

This trap is caused for Floating Point Underfloro as defined in IEEE
Floating Point Standard. The wrapped result and round status are
computed as they are in the overfloro case.

tlnemonic:
Parameters:

Trap Type:
Enabling:

FL-UNF
1. Wrapped result
2. Round status
3. Pcurrent
4. trap #
continuable
individually enabled
(STATUSB2.FLUNFE)

7.6.11.5 Floating Point Inexact Result

This trap is caused when the result of a floating point operation is
inexact as defined by the IEEE Floating Point Standard. The result
pushed is the rounded or overfloroed result. The Round status is as
in overfloro and underfloro.

tlnemonic:
Parameters:

Trap Type:
Enabling:

FL-INX
1. Rounded or OVerflowed result
2. Round status
3. Pcurrent
4. Trap #
continuable
individually enabled
(STATUSB2.FLINXE)

7-47

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.6.12 Integer Traps

7.6.12.1 Fixed Point Divide By Zero

07/31

This trap is caused rohen an attempt is made to divide an integer by
zero. When divide by zero is detected, the destination is unchanged.

tlnel1lonic:
Pararoe ters:

Trap Type:
Enabling:

INTDVDZ
1. Pcurrent
2. trap #
continuable
individually enabled
(STATUSB2.INTDVDZE)

7.6.12.2 Fixed Point OVerflow

This trap is caused when the result value is outside the allowable
range of integer values for the destination operand. On overflow in
ADDt, SUBt, NEGt, ABSt, ASLt, and MPYt, the loroer t bytes of the
result is returned. For CONVERT the largest positive integer if the
source roas positive and the largest negative integer if the source roas
negative is returned.

tlnemonic:
Parameters:

Trap Type:
Enabling:

INTOVF
1. Pcurrent
2. trap *
continuable
individually enabled
(STATUSB2.INTOVFE)

7-48

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.6.13 Decimal Traps

7.6.13.1 Decimal Divide By Zero

07/31

This trap is detected when the divisor is zero in a decimal divide.
When the divide by zero is detected, the destination operand is not
changed.

Mnemonic:
Parameters:

Trap Type:
Enabling:

DECDVDZ
1. Pcurrent
2. trap #
continuable
individually enabled
(STATUSB2.DECDVDZE)

7.6.13.2 Deciroal Overflow

This trap is detected for deciroal operations when the result is larger
than can fit in the destination operand. When the overflow is
detected) the destination is affected in the following ways:

1) If the trap is enabled, the destination operand is not changed.

2) If the trap is disabled, the result is stored left truncated into
the destination operand.

Mnemonic:
ParaIlleters:

Trap Type:
Enabling:

DECOVF
1. Pcurrent
2. trap #
continuable
individually enabled
(STATUSB2.DECOVFE)

7.6.13.3 Decimal Invalid Length

This trap is detected when the value of the length operand is either
less than zero or greater than 31.

Mnemonic:
Parameters:

Trap Type:
Enabling:

DECINVL
1. Pcurrent
2. trap #
restartable
permanently enabled

7-49

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.6.13.4 Invalid Decimal Digit

07/31

This trap is detected for some decimal operations when an invalid
decimal digit is found. See the description of each decimal instruc­
tion listed below for a list of which characters/digits are invalid
for that instruction.

Mnemonic:
Parameters:

Trap Type:
Enabling:

DECINVDG
1. Pcurrent
2. trap #
res tar table
permanently enabled

7.6.14 Debug Trap conditions

7.6.14.1 Break Instruction

This trap is caused when executing the BREAK instruction.

Mnemonic:
Parameters:

Trap Type:
Enabling:

DBBRKINS
1. Operand
2. Pcurrent
3. trap '*
continuable
permanently enabled

7.6.14.2 Procedure Trace Trap

This trap is caused at the start of BRK, CALL, or CALLK instructions
when the PTE bit in STATUSB is found set.

Mnemonic:
ParaIlleters:

Trap Type:
Enabling:

DBCALL
1. Pcurrent
2. trap '*
step continuable
individually enabled
(STATUSBl. PTE)

7-50

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.6.14.3 CHECKA Instruction

07/31

This trap is caused Mhen executing the CHECKA instruction if the bit
CBA in STATUSB register is set.

MneNonic:
ParaIlleters:

Trap Type:
Enabling:

DBCHECKA
1. Instruction operand
2. Pcurrent
3. trap '*
continuable
individually enabled
(STATUSB.CB.CBA)

7.6.14.4 CHECKB Instruction

This trap is caused Mhen executing the CHECKB instruction if the bit
eBB in STATUSB register is set.

MneNonic:
ParaJlleters:

Trap Type:
Enabling;

DBCHECKB
1. Instruction operand
2. Pcurrent
3. trap '*
continuable
individually enabled
(STAIUSB.CB.CBB)

7.6.14.5 Single Instruction Trace

This trap is caused at the end of executing an instruction Mhen the
single instruction trace bit (SIT) in the STATUSA register is found
set.

The SIT bit is alMays cleared as part of trap initiation. SoftMare
NUSt explicitly reenable the single instruction trace by setting
the SIT value to one in the stack Narker in order to continue single
instruction execution.

MneNonic:
ParaIlleters:

Trap Type:
Enabling:

DBSIT
1. Pcurrent
2. trap '*
continuable
individually enabled
(STATUSA.SIT)

7-51

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

7.6.15 SeNaphore Traps

7.6.15.1 SeNaphore OVerfloM

07/31

This trap is caused for the instructions UP, DOYN, and TESTDOYN Mhen
increNenting or decreNenting the 31-bit seNaphore value causes a
31-bit overfloM.

MneNonic:
ParaIlleters:

Trap Type:
Enabling:

SEMAOVF
1. Logical address of the first operand (seNaphore)
2. Pcurrent
3. Trap '*
res tar table
perNanently enabled

7.6.15.2 DOMn SeNaphore

This trap is caused for the instruction DOYN, Mhen decreNenting the
31-bit 2's cONpleNent seNaphore value of the operand causes it to
drop beloM zero.

MneNonic:
ParaIlle ters :

Trap Type:
Enabling:

SEMADOYN
1. Logical address of the operand (seNaphore)
2. Pcurrent
3. trap '*
continuable
perNanently enabled

7.6.15.3 Up SeNaphore

This trap is caused for the instruction UP, Mhen increNenting the
31-bit 2's cONpleNent seNaphore value of the operand leaves it at
or beloM zero.

MneNonic:
ParaIlle ters :

Trap Type:
Enabling:

SEMAUP
1. Logical address of the operand (seNaphore)
2. Pcurrent
3. trap '*
continuable
perNanently enabled

7-52

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.6.16 Vision Mode SWitch

This trap is the entry point for a switch from HP3000 mode to
Vision mode. See section 10.5.1.2 for details.

Mnemonic:
ParaIlleters:

Trap Type:
Enabling:

SlJITCHN
1. trap *
2. Pcurrent
continuable
permanently enabled

7.6.17 TRY/UNTRY Traps

7.6.17.1 TRY or UNTRY Violation

This trap is caused for an illegal TRY or UNTRY instruction.
This will happen if TRY or UNTRY is used on the ICS.

Mnemonic:
ParaIlleters:

Trap Type:
Enabling:

TRYV
1. TRYoffset
2. Pcurrent
3. trap *
restartable
permanently enabled

7.6.18 Virtual Addressing Traps

7.6.18.1 PDINSERT Inconsistent Page Number

07/31

This trap is caused for the instruction PDINSERT when the physical
page number provided by the instruction does not equal the
physical page number contained in the corresponding PDIR entry.

MneAonic:
ParaIlleters:

Trap Type:
Enabling:

ADRPDIR
1. Physical Page number in PDIR
2. Pcurrent
3. trap #
restartable
perAanently enabled

7-53

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

7.6.19 Page Absent Traps

7.6.19.1 Page Absent

07/31

This trap is caused when a page containing the byte being accessed is
not present in physical memory. This trap is used for all absent
pages except the page on top of the stack; the ADRPAGETOS fault is
used for that. ADRPAGEABS is in all respects, including handling
of paraIlleters, a normal trap.

Mnemonic:
ParaJlleters:

Trap Type:
Enabling:

ADRPAGEABS
1. Byte Offset
2. Virtual Page Number
3. Logical Address
4. Pcurrent
5. trap #
restartable
permanently enabled

7.6.19.2 Top of Stack Page Absent

(POFF)
(VPN)
(LA)

This trap is caused when the top of stack page is referenced and is
not present in physical memory.
This trap is very special in that all other traps use the current
stack to push a Aarker. The sequence of events for internal
interrupts is therefore used. The top of stack page absent handler
executes on the interrupt control stack.
More inforAation can be found in section 7.7.

MneAonic:
ParaIlleters:

Trap Type:
Enabling:

ADRPAGETOS
{O. OVerflow InforAation}
1. Byte Offset
2. Virtual Page Number
3. Logical Address of S
4. Pcurrent
5. trap *
restartable
perAanently enabled

7-54

(Porr)
(VPN)
(LA)

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.7 Top of Stack Page Faults

All stack objects, except the interrupt control stack, are paged
objects. Some activities involve pushing information onto the
stack, including:

1) an instruction explicitly references the stack as an
operand; e.g. PUSH, CALL and SMITCH for the Vision mode
stack and many instructions for the HP3000 mode stack.

2) an instruction encounters a page absent condition and the
intermediate state information for the instruction must be
put on the stack. The instruction in progress (lIP) bit
described in chapter 4 refers to this case.

3) an instruction execution results in some conditions that
are handled as user traps. In this case the instruction
pushes stack markers as well as parameters for these
conditions onto the stack.

4) a condition such as an external interrupt causes a transfer
of control from the user's stack onto the interrupt control
stack. In this case an interrupt marker is pushed onto
the stack.

However, two obstacles could prevent information from being
pushed onto the stack:

1) the page containing the byte pointed to by S is not present
in physical memory (ADRPAGETOS)

07/31

2) the logical offset S[32 .. 63] attains the length of the stack
object (UB-LB). This is the stack overflo~ condition
(STKOVF).

In either case the information normally saved on the stack must
be saved in a different location. The VISION architecture
specifies the Interrupt Control Stack of the executing processor
as the location to store the context ~hen the stack page absent
condition is detected. In general, the information to be saved
can be divided into two parts. The illustration on the next
page shows this:

7-55

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

+------------------------+
temporary information
for the resumption of
execution of the
instruction

+------------------------+
I interrupt stack marker I
I I
+------------------------+

07/31

The VISION architecture does not define at which point during an
instruction a top of stack page absent condition is detected.
That is, if during pushing any information onto the stack the page
absent condition is detected, implementations are free to place
any part of the above information onto the user's stack at S or
onto the Interrupt Control Stack. In particular, implementations
are free to push all the above information onto the ICS when it
detects that not all of it fits onto the user's stack.

VISION specifies the following to be the same for all hard~are
implementations:

1) The value of S stored in the TCB is the saroe independent
of ~here the information is actually saved. In all cases
the S value is updated as though the information were
placed on the user's stack.

2) The amount of overflow information pushed onto the Interrupt
Control Stack can be computed as follows: subtract from the
value of S (pointing into the Interrupt Control Stack) the
value of QI, and further subtract the length of the argument
list of the page fault trap handler.

3) This information must be moved immediately by software from
the Interrupt Control Stack to some memory resident area so
that the handler can IEXIT from the ICS. The move can be
accomplished by a MOVEC instruction using the following
operands:

ARGLEN:
SRC:
RES:

L:

length of argument list for trap handler (32 bytes)
starting address of source information (=QI)
starting address of some resident destination area
big enough to receive the information
length of move, computed as: S-QI-ARGLEN

MOVEC L, SRC, RES

After the page(s) missing from the user's stack have been

7-56

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy HP PRIVATE INFORMATION

brought into physical NeNory, the inforNation can be Noved
froN the NeNory resident page to the user's stack by MOVEC
using these operands:

RES; address of the Nemory resdient page

07/31

DST: destination area, computed as the S value in the
TCB minus (Si-QI-LA) where si is the value of S
(pointing into the ICS) on entry to the trap handler

L: same as above

MOVEC L, RES, DST

After this move has completed, the user's stack will appear
as though the absent page condition had never occurred.

4) For all of the user's stack markers that were pushed onto
the ICS, the value of the Qold[32 .• 63] in the stack marker
is relative to the user's stack and not the ICS. In other
words, those markers are treated as raw data; they must
never be used in EXIT or IEXIT when still on the ICS.

Three cases are sketched with respect to the saving of inforNation.
The following notation is used in these examples:

indicates a page boundary
indicates the boundary value of the base register

Pre indicates a virtual page present in physical memory
Abs indicates a virtual page absent from physical memory
St indicates the value of S stored in the TCB after the

interrupt marker is pushed
TEMP temporary inforNation left on the stack as part of the

execution of the previous instruction
1M denotes the Interrupt Marker
Si indicates the value of S after entry to the trap handler

(points into the lCS)

7-57

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

Case 1 -- The stack pages are present in N9lIlory.

Page
Status

PrefAbs

Stack
Object

+--------+

+- - - - +

Q==>I
Pre I

I
+- - - - +

I I
Pre s==>I========1

I I
+- - - - +

I
Pre I

I
+- - - - +

I

BEFORE
INTERRUPT

MARKER

Stack
Object

+--------+

+- - - - +

+- - - - +

I I
1========1
I TEMP I
+- - - - +
I INFO I
++++++++++

1M I
+- +

St=> I I

ICS
+--------+
I disp. I
I Narker I
+- - - - +

QI = > I parns I
Ifor trap I
I handler I

Si==>+========+
I I
+- - - - +
I

AFTER
INTERRUPT

MARKER

07/31

Note that in this case the inforNation to restart the interrupted
instruction and the task's interrupt marker fit onto resident
pages in the task's stack and the only information pushed onto
the lCS is parameters for the page fault handler.

7-58

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

Case 2 -- The current S page is present but the next virtual page
is absent. In this case the architecture does not
define hOM much information is pushed onto the current
S page before information is pushed onto the ICS. This
results in the possibility of the information being
saved in tMO parts as shOMn beloM.

Case 2A -- part of the information is pushed onto the user's stack

Page
Status

PrefAbs

Pre

Pre

Abs

Stack
Object

+--------+

I
I
1

+- +

Q==>I I
I 1
I I
+- - - - +

S==>I========I
I I
I I
+- +

I
I
1

+- - - - +

BEFORE
INTERRUPT
MARKER

Stack
Object

+--------+

+- - - - +

+- - - - +

1========1
I Part 1 1
1 of 1M I
+- - - - +

1///11/111
+========+

St=> 1
+- - - - +

ICS
+--------+
I disp. I
I marker 1
+- - - - +

QI=>I part 2
1 of 1M
I
+- - - - +
I parms I
I for trap 1
I handler I
+- - - - +

Si=>1

AFTER
INTERRUPT

MARKER

The stack page fault handler gets control after the interrupt
marker part 2 has been pushed onto the ICS. The size of part
2 can be determined from calculating Si-QI-LA at the entry to
the page fault handler.

7-59

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Case 2B -- The current S page is absent. This case includes
bothwhen the folloMing page is present or absent.

Page
Status

PrefAbs

Stack
Object

+--------+

+- - - - +

Q==> I
Pre I

I
+- - - - +

s==>I========1
Abs I I

I 1
+- +

I 1
PrefAbs 1 1

I I

BEFORE
INTERRUPT

MARKER

Stack
Object

+--------+

+- - - - +

+- - - - +
1========1
I I
1 I
+- - - - +
1========1

St=>1 1

ICS
+--------+
I disp. I
I marker 1
+- - - - +

QI=>I TEMP
I INFO
1
++++++++++
+- - - - +

1 1M 1
1========1

Si=> I I
+- - - - +

AFTER
INTERRUPT

MARKER

In this case all of the information is pushed onto the ICS.
As in Case 2A the amount of information on the ICS can be
computed from (Si-Qi-LA) at entry to the page fault handler
on the ICS.

7-60

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

7.8 rcs Mechanism

07/31

The Interrupt Control Stack (ICS) is a fixed size, memory resident
structure. The location of the rcs is kept in a processor register.
This location can only be changed through the MOVEtSP8 instruction.

All Vision mode external and internal interrupts execute on the
rcs. A feM Vision roode traps, such as Page Absent, Top of Stack
Page Absent and Stack overfloM, also execute on the rcs. The
reroaining traps are handled on the current task's stack.

All HP3000 roode internal interrupts as Mell as HP3000 roode page
fault traps and stack overfloM traps are directed to the Vision
roode environroent to execute on the ICS. The rest of the HP3000
roode traps are handled on the task'S HP3000 roode stack.
(See the Architectural Control Docuroent for HP3000 Mode for a
list of the traps supported on VISION.)

The dispatcher also executes on the ICS. There is a special stack
roarker perroanently located at the bottoro of the res, knoMn as the
dispatcher marker. It contains the information necessary to locate
the dispatcher code and begin execution of the dispatcher.

Yhile executing on the ICS, the rcs flag in STATUSC is set. The
flag is set Mhen the ICS environroent is established for executing
the dispatcher or an interrupt service routine. It is cleared by
the Interrupt Exit Instruction (rEKrT) Mhen it deterroines that the
exit is to a procedure that does not execute on the ICS. The
STATUSC.ICS flag is not directly accessible by any instruction.

There is a separate ICS for each processor in a shared-meroory roulti­
processor configuration.

7-61

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

7-62

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

+---+---------------+
INPUT/OUTPUT DATA STRUCTURES CHAPTER 8

+---+---------------+

This chapter will eventually describe the data structures that
must be understood jointly by processor hardware and by I/O
hardware.

8-1

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

8-2

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

+---+----------------+

SYSTEM INITIALIZATION CHAPTER 9

+---+----------------+

9.1 Virtual Object Initialization

Virtual address space is organized as 2A 32 virtual objects
of 2A 32 bytes each (see section 2.2).

Virtual Objects 1 through 5 are reserved for special
areas which are allocated in physical memory and mapped into
virtual space during system initialization.

Virtual Object

o
1
2
3
4
5

SYSCOH

HASH
PDIR
PMEBUF

(reserved)
The System Communications Area
(reserved)
The Hash Table
The Physical Page Directory
The Primary Macro Environroent Buffer

9.2 The System Cororounications Area

The System Cororounications Area (SYSCOM) is a meroory resident
buffer used by hardware and for communications with the Control
Support Processor (CSP) , if aVailable.

SYSCOM is page aligned in virtual space as virtual object 1.

The SYSCOM.LENGTH field (+!OO) records the total length in bytes
of SYSCOH. The SYSCOM buffer is organized into sections. The
number of sections is recorded in the SYSCOM.NUMBER OF SECTIONS
field (+!04). Each section is a physically and virtually
contiguous subset of SYSCOH, and can be located through a
descriptor which defines the offset within SYSCOM to the start
of the section, and the length in bytes of the section.

Section descriptors are located by fixed section numbers. The
section number * 8 is the offset in SYSCOH to the section
descriptor. Once a section is defined in SYSCOM a fixed section
number is assigned. New iropleroentations may add sections to
SYSCOM, but they cannot reroove sections.

9-1

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

The Systero Coromunications Area is partitioned into at least six
main sections identified below:

1
2
3
4
5
6

SYSCOH.ENV SECTION
SYSCOH.ID SECTION
SYSCOM.DIAG SECTION
SYSCOM.HARD-SECTION
SYSCOM.LOAD-SECTION
SYSCOH.DUMP=SECTION

Environroental Section
Identification Section
Diagnostics Section
Harware Reserved Section
Load Section
Dump Section

To locate the hardware reserved section of SYSCOM, for example,
multiply section number 3 * 8 bytes = !18 bytes offset to the
section descriptor.

+-)

1

2

3

4

5

The Systero Coromunications Area
+--------------------------------------+
I SYSCOM. LENGTH
I SYSCOM.NUMBER_OF_SECTIONS

(4) I +!OO
(4) I +!04

+--------------------------------------+
I SYSCOM.ENV SECTION.OFFSET (4) I +108
I SYSCOH.ENV:SECTION.LENGTH (4) I +10C
+--------------------------------------+
I SYSCOM.ID SECTION.OFFSET (4) I +!10
I SYSCOM.ID=SECTION.LENGTH (4) I +!14
+--------------------------------------+
I SYSCOM.HARD SECTION. OFFSET (4) I +118
I SYSCOM.HARD=SECTION.LENGTH (4) I +!1C
+--------------------------------------+
I SYSCOH.DIAG SECTION.OFFSET (4) I +!20
I SYSCOM.DIAG=SECTION.LENGTH (4) I +!24
+--------------------------------------+
I SYSCOM.LOAD SECTION. OFFSET (4) I +!28
I SYSCOM. LOAD=SECTION. LENGTH (4) I +12C
+--------------------------------------+

6 I SYSCOM.DUMP SECTION. OFFSET (4) I +!30
I SYSCOM.DUMP:SECTION.LENGTH (4) I +!34
+--------------------------------------+

9.2.1 The Environment Section of SYSCOM

The Environroent Section of SYSCOM is defined as section number 1
of SYSCOM and can be located through the section descriptor
found at an offset of +!08 bytes into SYSCOM.

9-2

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

+--------------------------------------+
SYSCOM.ENV_SECTION

Number of Processors (4)
Number of Physical Pages (4)
Max CSP error log (bytes) (4)
Max CSP message log (bytes) (4)
Max CSP display message (bytes) (4)

+--------------------------------------+
bytes

9.2.2 The Identification Section of SYSCOM

+!OO
+!04
+!08
+!OC
+!10

The Identification Section of SYSCOM is defined as section
number 2 of SYSCOM and can be located through the section
descriptor found at an offset of +!10 bytes into SYSCOM.

+--------------------------------------+
SYSCOM.ID_SECTION

Firmware 10 (8) +!OO
Firmware Version (8) +108
CSP ID (8) +110
CSP Version (8) +!18
CSP Software ID (8) +!20
CSP Software Version (8) +!28
HPE Software 10 (8) +!30
HPE Software Version (8) +138
Software ID Object.LA (8) +!40

+--------------------------------------+
bytes I

I
Offset in Identification Section ---------+

9-3

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

9.2.3 The Hardware Reserved Section of SYSCOM

The Hardware Reserved Section of SYSCOM is defined as section
number 3 of SYSCOM and can be located through the section
descriptor found at an offset of +!18 bytes into SYSCOM.

+--------------------------------------+
SYSCOM. HARD_SECT I ON

CSP-area.OFFSE'I
CSP-area.LENGl'H

(4)
(4)

+--------------------------------------+
bytes

+!OO
+!04

Offset in Hard_section of SYSCOM -------+

9.2.4 The Diagnostics Section

The Diagnostics Section of SYSCOM is defined as section number 4
of SYSCOM and can be located through the section descriptor
found at an offset of +120 bytes into SYSCOM.

+--------------------------------------+
I SYSCOM.DIAG SECTION
I -
+--------------------------------------+

9.2.5 The Load Section of SYSCOM

The Load Section of SYSCOM is defined as section number 5
of SYSCOM and can be located through the section descriptor
found at an offset of +128 bytes into SYSCOM.

+--------------------------------------+
SYSCOM.LOAD_SECTION

Load Option
Load Device Specification
Load ParaIlleters
Dump Option
Dump Device Specification
Dump Parameters

+--------------------------------------+

9-4

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

9.2.6 The Dump Section of SYSCOM

The Dump Section of SYSCOM is defined as section number 6 of
SYSCOM and can be located through the section descriptor found
at an offset of +130 bytes into SYSCOM.

All Vision processors, when not running, can be made to save
their current register state into the Dump Section of SYSCOM
by means not defined in this document.
Global computer context is deposited into fixed locations.

+--------------------------------------+
SYSCOM.DUMP_SECTION

HASH.PA (4) +!OO
HASH. LENGTH (4) +104
PDIR.PA (4) +!08
PDIR.LENGTH (4) +!OC
Group 0 Descriptor (GOO) (16) +!10
STATUSD (4) +!20
System Breakrange Descriptor (16) +!24
Time of Century Clock (8) +134
SYSCOM.PA (4) +!3C
Implementation Dependent.OFFSET (4) +!40
Implementation Dependent.LENGTH (4) +!44
Processor Arch Record.OFFSET (4) +!48
Processor Arch Record.LENGTH (4) +!4C

+--------------------------------------+
bytes

Offset in Dump Section of SYSCOM ------+

The Dump Section also contains space for a processor
architectural dump record for each processor in the computer.
The first processor record can be located through the offset and
length pair located in the dump section (+!44). Additional
processor records are linked together through the next processor
field in the processor record (+!D4). A length of 0 bytes is
used to indicate that no further records follow.

9-5

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

+--------------------------------------+
Processor Architectural Record

+--------------------------------------+
STATUSA (4) +100
STATUSBl (4) +104
STATUSB2 (4) +108
STATUSCl (4) +10C
STATUSC2 (4) +!10
Ql (8) +! 14
TCB. LA (8) + ! lC
TCBX.LA (8) +!24
XO X15 (64) +130
BO .• B5 (48) + ! 70
Q (8) +!AO
S (8) +1A8
PrograJII Counter (8) + 1 BO
Task Clock (8) + 1 B8
Interval Timer (8) +1CO
Processor Serial Number (*) (8) +!C8
Processor Dependent Record. OFFSET (4) +!CC
Processor Dependent Record. LENGTH (4) +100
Next Processor Record. OFFSET (4) + 1 D4
Next Processor Record.LENGTH (4) +108

+--------------------------------------+
bytes I

I
Offset in Processor Architectural Record -+

(*): if supported

Optional resident contiguous buffers for dumping implementation
dependent information can be allocated and linked to either the
global record or to any processor architectural record. A
length of 0 bytes can be used to skip this option.

9-6

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
00 NOT COPY -- HP PRIVATE INFORMATION

9.3 The Hash Table and Physical Page Directory

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

9.4 The Prilllary Macro Enviroment Buffer

Virtual Object A Prilllary Macro Enviroment (PME) is a pre-built, bootable,
~acro code illlage.

3

4

+--------------------------------------+ <-- HASH.PA
HASH The Hash Table

(physically contiguous)

+--------------------------------------+

+--------------------------------------+ <-- PDIR.PA
POIR The Physical Page Directory

(physically contiguous)

+--------------------------------------+

During syste~ initialization all soft~are addressable ~~ory is
~apped into virtual space by hard~are. The size and physical
location of the hash table and the physical page directory are
co~itted at this point.

The hash table (HASH) ~ust be contiguous in physical ~e~ory and
is initially ~apped as virtual object 3. The size of HASH is a
function of ~~ory size and load options.

The physical page directory (PDIR) ~ust be contiguous in
physical ~e~ory and is initially ~apped as virtual object 4.
The size of PDIR is a function of ~e~ory size.

Hard~are ~ay choose to not associate certain phyical pages ~ith
virtual pages. The virtual page ~ber (VPN) field in POIB
entries Mill be set to 0 by convention to indicate that no virtual
page association has been made,

9-7

The Prilllary Macro Enviroment Buffer (PMEBUF) is a pre-~apped
~e~ory resident buffer ~hich ~ill be loaded ~ith a bootable
~acro code illlage.

Virtual Object

5
+----------------~---------------------+
I PME I
I The Prilllary Macro Enviroment Buffer I
I I
+--------------------------------------+

PMEBUF is contiguous in virtual space and is initially ~apped
as virtual object 5.

During syste~ initialization hard~are allocates a fe~ physical
pages fOr SYSCOM, PDIR, and HASH as described in sections 9.2
and 9.3. Then the re~aining physical pages are ~apped into the
PME buffer.

In contrast to SYSCOM, PDIR and HASH, the PME buffer need not
remain resident in physical memory once soft~are executes.

9-8

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

9.4.1 Loading the Primary Macro Enviro~ent Buffer

Virtual Object

5
+--------------------------------------+
I PME I
I The Primary ~ro Enviro~ent Buffer I
I I
+--------------------------------------+

PME.LENGTH (4) I
PME Check~ (4) I
Group 0 Descriptor (GDO) (16) I
TCB.LA (8) I
TCB. VA (8) I
QI.LA (8)
QI.VA (8)
CST descriptor (8)
DST descriptor (8)

I
reserved for eKPansion I

+--------------------------------------+
I Macro Code I~age I

+100
+104
+!08
+!18
+)20
+!28
+!30
+!38
+140
+!48

+!100

The first 256 bytes of each Primary Macro Enviro~ent serve as a
descriptor of the PME.

The PME.LENGTH field (10) defines the length of the image in
bytes and can be used to ensure that the entire image ~ill fit
into the pre-~apped buffer. The PME Check~ (14) can be used
to insure that the image has been properly loaded.

The group 0 descriptor (GDO +108) defines the location of ODTO
~ithin the PME. Since the PME is constructed to be loaded into
PMEBUF, GDO.VON ~ill al~ays be virtual object 5. GDO.LB ~ust be
page aligned in v irtual space. GDO • UB is equal to PME. LENGTH 1.
GDO.LON ~ill vary fro~ PME to PME.

The TCB.LA field (118) contains the logical address of a
pre-built Task Control Block ~ithin the PME. TCB.VA (+120)
contains the virtual address of the TCB.

The QI.LA field (+128) contains a logical pointer to the
dispatcher ~arker on the Interrupt Control Stack. The QI.VA
field (+!30) contains the virtual address of the dispatcher
~arker.

The CST descriptor (+138) defines the object number in group 0
~here the CST starts, and the length in bytes of the CST.

The DST descriptor (+!40) defines the object number in group 0
~here the DST starts, and the length in bytes of the DST.

9-9

07/31

9.5

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

The ~ro Code Launch

The follo~ing sequence of steps are taken for ~acro code launch.

1)

2)

3)

4)

Allocate physical pages for PDIR, HASH, SYSCOM, and
PMEBUF, and ~ap these virtual objects.

Load the PME into the PMEBUF in ~~ory.

Using the PME descriptor do:

Set the ODIO registers. No~ logical addressing is
defined.

Find the logical and physical address of the TCB.

Set QI to point into the ICS object.

Locate the CSTs and the DSTs.

Set the initial state of the processor such that it ~ill
run uninterrupted at the highest privilege level. See
section 9.7 for a summary of the initial state.

The cold load hard~are then eHecutes the algorithm described
under the LAUNCH instruction to initiate the launching of
soft~are. The task pointed to by the TCB is launched.

9-10

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

9.6 Initial State ~ary

o 12 3 4 5 6 7 8
3
1

+-+--+---+---+---+---+ +- - - - - - - - - - -+
STATUSA I IKLlsITIIIPIDBPI I I

STATUSBl

1110 I 0 I 0 10 I I I
+-+--+---+---+---+---+ +- - - - - - - - - - -+

02345
1 1 111
o 1 234

3
1

+---+---+----+-------+---+---+---------------+
IPTEIDISpl vectorlTCEIKTLI
10101 0 I 0 I 3 I

+---+---+----+-------+---+---+---------------+

1 1 111
o 3 4 2 3 459

22 33
89 01

+----+---------+---+---+-----+---------+--+--+
STATUSB2 I FPC I

I 0 I
TE I CBAI CBBI EF I
o I 0 I 0 I 0 I

Icci
10 I

+----+---------+---+---+-----+---------+--+--+

o
22233
7 8 9 0 1

+-------------------------------+--+---+---+-+
STATUSCl DOC IXMIICSIDPFIII

STATUSC2

o I 01 0 I 0 101
+-------------------------------+--+---+---+-+

o
1 1
5 6

3
1

+--------------------+-----------------------+
urn
o

+--------------------+-----------------------+

o 123
3
1

+-+---+--------------------------------------+
STATUSD I I DRL I

I I 0 I
REVCODE

+-+---+--------------------------------------+

9-11

07/31 VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

9-12

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

+---+--------------------+
HP/3000 MODE CHAPTER 10

+---+--------------------+

10.1 INTRODUCTION

A ~ode of execution is available which provides the software
architectural environAent of the HP/3000 syst~. This is called
(HP/3000) COMPATIBILITY Node to distinguish it frON the no~al
NATIVE ~ode of the VISION architecture.

The co~plete architectural definition of Co~patibility Node is
divided into two parts:

01/31

First, Chapter 10 describes the relationship between Co~patibility
and Native Node architectures. The purpose is to identify the
specific features required of the VISION architecture to allow the
existence of Co~patibility ~ode in a ~anner which does not affect
the inherent integrity of Native ~ode operations. Discussions
progress frON a generalized overview of the CONpatibility and
Native Node environAents to the actual detail descriptions of the
Nanner by which SysteN and Task control structures of Co~patibility
~ode are iAple~ented and ~anaged using the VISION architecture.

Second, the addend~ to the ACD titled 'HP/3000 Co~patibility Mode'
continues the description of Co~patibility Mode but froN a different
viewpoint. It provides the cONplete details of CONpatibility ~ode
fro~ the perspective of both User and Privileged ~ode progr~ers.
The instruction sets, data structure fo~ats, addressing ~odes,
traps, and environAental concepts are described.

10-1

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

10.2 ENVIRONMENTAL OVERVIEW

The two Nodes, Native and CONpatibility, are very distinct even
though they coexist and share access to physical resources.
Instruction for~ats, data for~ats, and addressing ~odes are
different. In particular, the Native ~ode architecture supports
arbitrary byte alignAent, a very large address space, and a nONinal
four-byte word size, while the CONpatibility Node architecture
requires word alignAent, has aAoderate size address space, and
uses a two-byte word size.

The differences are so extensive that each Node is considered to be
an independent architectural Nodel designed to support and execute
User prograAS in a particular Nanner. This results in the task
(process) ~odel being different in each ~ode. To switch execution
fro~ one ~ode to the other is conceptually equivalent to a process
switch.

The priAary objective of CONpatibility Node is to provide an
execution environment for User Node prograAs identical to that on the
HP/3000 syst~. A secondary objective is to provide an execution
environAent for Privileged Node code subject to the condition that
there is guaranteed protection against Native Node structures being
accessed directly fro~ Co~patability ~ode code. To achieve this
level of security could mean that the privileged ~ode set of
instructions available in CONpatibility Node are a subset of that
in the HP/3000 syst~. These objectives are acco~odated as follows:

On HP/3000 syst~ two types of addressing are provided:

* Addressing into segAented code and data structures is the Nost
co~on fo~. In User Node it is the only type and is fully
bounds checked. In Privileged ~ode it is not always bounds
checked.

* Absolute addressing is allowed only in Privileged Node with
absolutely (l) no checks.

Co~patibility Node provides both types of addressing but does so
with full protection against unwarranted access into Native ~ode
by encapsulating the CONpatibility Node environAent (address space)
using the Native Node ODT structures. The fo~ats of CONpatibility
Node ODT descriptors are identical to Native Node ODT fOrNats.
Consider the two addressing types:

10-2

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

* Segment adddressing - all code and data segments are Native
objects. The ODT entry contains a type field rohich specifies
certain Compatibility segment types. The management of these
ODTs (CST and DST) is done by Native mode code and (trusted)
microcode only. Compatibility code accesses the CST and DST
only through microcode, never directly.

* Absolute addressing - emulated using a special Native object
accessible through microcode. Vieroed by Native mode it is a
logical address space. To Compatibility privileged users it
still looks like the 'real' absolute memory. There is no
correspondence betroeen the absolute addresses used by 3000
Compatibility mode and the real main memory addresses.

So noro, instructions can be executed safely, but horo are the
Native task and Compatibility process environments related?
hlithin a logical task domain, there may exist the need to execute
in both execution modes(in a serial manner, not in parallel).
In such a case, troo physical tasks/processes are apparent? one
for each mode having unique code and data (stack included)
structures. The common shareable element is the single Hardroare
Task Control Block (TCB). Switch mode instructions are provided
in both modes to alloro an environment sroitch to occur to the
other mode. Even though execution sroitches back and forth betroeen
modes, each mode in execution is still an instance of executing a
single logical task. There is one Dispatcher and one Interrupt
Control Stack (ICS) in the architecture rohich exist only in Native
mode and it is capable of launching either task into the appropriate
mode.

Launching a task/process into Compatibility mode means establishing
the Registers rohich are specifically used by the Compatibility
instruction sets. The precise mode of execution is determined at
any time by the XM field of the STATUSC register.

STATUSC. XM = 0
STATUSC. XM = 1

Native mode
Compatibility mode

In summary, Compatibility mode is completely and safely emulated
under Native architectural control to provide an environment for
Compatibility mode Users rohich is almost an exact replica of the
HP/3000 environment. Certainly, normal (User mode) users do not
notice any difference.

10-3

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

10.3 SYSTEM CONTROL STRUCTURES

07/31

The folloroing Native mode data structures are required to manage
and control Code segments, Data segments, and Absolute memory for
Compatibility mode operations:

* CST - Code Segment Table

* DST - Data Segment Table

* ABS - Absolute Memory Object

These basic tables cannot be accessed directly by Compatibility
mode Users, they are only accessed by hardroare to execute the
appropriate instructions.

10.3.1 CST - Code Segment Table

The CST is a contiguous block of entries in the ODT for group O.
The QDT entries are of type 4 or 5 'HP3000 mode code object'.

A CST number from Compatibility mode is converted into the
appropriate QDT entry by locating the base of the CST block in QDT
(group 0) and indexing through the DDT entries using the CST number.

The Base and Length of the CST are defined at system initialization
time and passed to the microcode using the MOVEtSP8 instruction.

Base - 29 bit object number pointing to the entry in the DDT
for group 0 corresponding to CST O.

Length - 32 bit integer specifying the length of the CST in bytes
(0<=Length<=192*16). A zero Length implies the absence
of a CST.

They are noro protected in dedicated memory from unwarranted softroare
access. Microcode uses them to locate the CST and perform bounds
checking on the CST index. The legal range of the CST index is:

1 <= CST index <= 191

An explicit reference to CST 0 roill cause a 'CST Violation' trap
to occur.

10-4

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

10.3.2 OS! - Data Segment Table

The DST is a contiguous block of entries in the ODT for group O.
The DDT entries are of type 3 'Data' object.

A DST number fro~ Co~patibility ~ode is converted into the
appropriate ODT entry by locating the base of the OST block in ODT
(group 0) and indexing through the ODT entries using the DS! number.

The Base and Length of the DST are defined at system initialization
t~e and passed to hardware using the MOVEtSP8 instruction.

Base - 29 bit object number pointing to the entry in the ODT
for group 0 corresponding to DST O.

Length - 32 bit integer specifying the length of the CST in bytes.
A zero length ~plies the absence of a DST.

They are now protected in dedicated ~e~ory fro~ unwarranted
software access. Hardware uses the~ to locate the DS! and perfo~
bounds checking on the OST index. An explicit reference to OS! 0
will cause a 'DS! Violation' to occur.

10.3.3 ABS - Absolute Memory Object

The ABS is a special object in group 0 which provides a logical
representation of Absolute ~e~ory to Co~patibility ~ode instructions.

The ABS is defined at syste~ initialization time and the ODT entry
used is the ODT entry equivalent to OS! 0 which is inaccessible to
instructions but readily available to hardware. The absence of a
DS! will cause all absolute addressing to fail and generate an
'Absolute Address Violation' trap.

It is now protected in dedicated ~e~ory fro~ unwarranted software
access and used only by hardware for all absolute memory references.
The legal size of the ABS is defined to be:

o <= ABS size < 128KB

Several instructions require Systero Global Region type of access
i.e. through Absolute address 1000 octal. As for all absolute
addressing, the ABS is used by hardware for such accesses.

10-5

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

10.4 TASK CONTROL STRUCTURES

10.4.1 CSTX - Code Segment Table Extension

The local code do~ain defined by the CSTX concept in HP3000
Co~patibility ~ode is emulated in Native mode as follows:

The CSTX is a contiguous block of entries in the ODT for group 0
which have been assigned to a given task. The TCB contains a
descriptor of the CSTX to define the base of the CSTX and the
length of CSTX, to allow conversion of the CST index to the
corresponding DDT entry (see Section 4.10).

The CSTX contains the CST indices in the range

192 <= CST index <= 255

where the first legal entry in the CSTX is CST 193.
An explicit reference to CST 192 will cause a 'Not Code Segment'
trap to occur.

10-6

07/31

10.4.2.

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Interrupt Stack Marker

07/31

The interrupt stack marker is used to mark the upper limit of the
stack on external interrupts, traps, transfers to the Dispatcher,
and the Switch operation.

The interrupt marker generated in Compatibility mode is presented
below. The one for Native mode is presented in Section 5.1.2.

+---------------------------+
X register (16)

+---------------------------+
P-PB (16)

+---------------------------+
STATUS (16)

+---------------------------+
Q. INT-- > I DELTA Q I (16)

+---------------------------+
I I
I compatibility/ I

native mode
mailbox

+---------------------------+
DB.DST I (16)

+---------------------------+
DB. OFFSET I (16)

+---------------------------+
DL.OFFSET I (16)

+---------------------------+
Z.OFFSET I (16)

+---------------------------+
STATUSB I (64)

+---------------------------+
S.INT-->I (S.INT - Q.INT) I (16)

+---------------------------+

10-7

Notes:

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

1) The number in parenthesis following each box reflects the
appropriate number of bits of specification.

2) X register, P-PB, STATUS, DELTA Q are the normal contents of
a Compatibility mode procedural stack marker.

3) DB.DST = 0 if DB set to ABS (absolute memory)
<> 0 if DB set to stack or data segment

DB. OFFSET defines the displacement (in units of 16 bits)
into the corresponding object.

4) DL.OFFSET, Z.OFFSET are the current values of the DL and Z
registers given as displacements into the stack object.

5) STATUSB is the current STATUSB register contents.

07/31

6) S.INT is the interrupted S value stored into TCB.SC. The value
of Q can be calculated from the contents (S.INT-Q.INT).

10-8

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31

10.4.3 TCB contents kno~n to Hard~are

The additional information required in the TCB by the hard~are
to support Co~patibility ~ode instructions and the special
instructions in Native roode to interface ~ith Coropatibility roode
are specified belo~.
See Section 5.8 for co~plete TCB details.

CSTX - CSTX descriptor (see 10.4.1)

XM

SN

SC

SMIP

- ~ode of execution of the task
= 0 Nathe mode
= 1 Co~patibility ~ode
1 bit)

- logical address of top-of-stack of Native stack
~hen capped by an interrupt stack marker - it
points to the next byte follo~ing the interrupt
marker.
(64 bits)

- logical address of top-of-stack of Compatibility

stack ~hen capped by an interrupt stack ~arker -
- it points to the last 16-bit ~ord of the

interrupt stack ~arker.
(64 bits)

- switch in progress flag.
(1 bit)

10-9

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

10.5 MODE SMITCHING

07/31

Mode switching refers to the operations mhich affect the execution
~ode flag XM in the STATUSC register.

STATUSC. XM = 0
STATUSC. XM = 1

Native ~ode
Co~patibility ~ode

Native mode instructions and/or operations mhich can initiate a
smitch to Compatibility mode are:

IEXIT
SMITCH
RSlJITCH

Compatibility mode instructions and/or operations which can cause
a switch to Native ~ode are:

SYT
RSldT
DISP
External Interrupts
ICS Internal Interrupts

The following operations cause a transfer of execution to the ICS,
in Native ~ode, fro~ both Native and Compatibility ~odes.

DISP
External Interrupts
ICS Internal Interrupts

The impact of the t~o modes, Native and Compatibility, on the above
declared instructions is discussed belo~.

10-10

,-----------~---.------- - - -~---------.- -- - - -- - - - - - - - - - - - - - - - -.- -- - - - - - - - -- --­

~--~:----------------

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

10.5.1 COApatibility Mode Instructions

10.5.1.1 DISP

This instruction is used to enter the Dispatcher directly froA

07/31

the COApatibility Aode process environment. If external interrupts
are disabled then the Dispatcher pending flag is set and execution
continues with no switch taking place.

This is a privileged instruction.

if STATUSC.IE = 0
then STATUSC.DRF '= 1
else

begin
'PUSH2' X;
'PUSH2' P-PB;
• PUSH2' STATUS'
• PUSH2' (S-Q+2) [0 .. 14]
Q '= S'
'PUSH2~ DB.DST;
'PUSH2' DB.OFFSETj
'PUSH2' DL.OFFSETj
'PUSH2' Z.OFFSET;

PUSH8 STATUSB j
'PUSH2' S-Q+2;
TCB.SC := S;
STATUSC.ICS := 1;
STATUSC.DPF := 0;
execute_case_2_of_IEXITj
end;

10-10

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

10.5.1.2 SIdT

07/31

The SUI instruction provides a switch of the execution environment
of a process frOA COApatibility Node directly to Native Aode.
The COApatibility Aode stack is capped with an Interrupt Stack
Marker, the appropriate Aode flags changed, and control passed to
the Native ShlITCH trap routine on the Native Aode stack which
executes above the previous interrupt stack Aarker. Any
interferences, such as Page Faults, aborts the operation after
setting the 'switch in progress' flag which then takes effect on
the subsequent IEXIT to the process.

This is a privileged instruction.

if STATUSC.IE = 0
then Trap"INSShlITCH"
else

begin
'PUSH2' X;
'PUSH2' P-PB;
• PUSH2' STATIJS'
'PUSH2' (S-Q+2i [0 •• 14];
Q := S;
'PUSH2' DB.DST;
'PUSH2' DB. OFFSET;
'PUSH2' DL.OFFSET;
'PUSH2' Z.OFFSET;

PUSH8 STATIJSB;
'PUSH2' S-Q+2;
TCB.SC := S;
TCB.XM := 0;
TCB.ShlIP := 1;
execute_case_1_of_IEXITj
end;

10-12

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

10 . 5.1. 3 RstJI

07/31

The RstJI is the reverse operation to a corresponding SWITCH
instruction ~hich occurred from Native mode and basically returns
execution control back onto the Native mode stack environment.
The Compatibility mode stack is capped with a register save to
build the interrupt stack marker, the process mode flag is set
to Native mode, and a relaunch of the Native mode process occurs.

This is a privileged instruction.

if STATUSC.IE = 0
then TrapIINSSWITCH"
else

begin
'PUSH2' DB.DST;
'PUSH2' DB. OFFSET;
'PUSH2' DL.OFFSET;
'PUSH2' Z.OFFSET;

PUSH8 STATUSB;
'PUSH2' S-Q+2;
TCB SC . = s·
TCB:XM ;= 0;
execute_case_1_of_IEXIT;
end;

10-13

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

10.5.2 Native Mode Instructions

10.5.2.1 DISP

The DISP instruction is described in Section 6.2.9.6.

10.5.2.2 IEXIT

The IEXIT instruction is described in Section 6.2.9.8. The
execution environment of a process is determined first by the
PM flag, indicating Native or Compatibility mode, and then by
the SWIP 'switch in progress' flag to either trap to the SWITCH
Trap routine or just perform a normal launch of the process by
by reestablishing the registers from the interrupt stack marker.

10-14

07/31

•
VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

10.5.2.3 SWITCH

The SWITCH instruction provides a switch of the execution
environment of a process fro~ Native ~ode directly to
Co~patibility roode. The Native roode stack is capped with an
Interrupt Stack Marker, the appropriate ~ode flags changed, and
control passed to the Co~patibility SWITCH trap routine on the
Coropatibility roode stack which executes above the previous
interrupt stack ~arker. Any interference, such as Page Faults,
aborts the operation after setting the 'switch in progress'
flag which then takes effect on the subsequent IEXIT to the
process.

This instruction requires Ring level 1.

if STATUSC.ICS = 1 or STATUSC.IE 0
then Trap" INSS'lJITCH"
else

begin
PUSH_INTERRUPT_MARKER;
TCB.SN : = S;
TCB.XM := 1;
TCB.SWIP := 1;
execute_case_1_of_IEXIT;
end;

10-15

•
07/31 VISION ARCHITECTURE CONTROL DOCUMENT

DO NOT COPY -- HP PRIVATE INFORMATION

10.5.2.4 RSWITCH

•
07/31

The RSWITCH is the reverse operation to a corresponding SWT
instruction which occured fro~ Co~patibility ~ode and basically
returns execution control back onto the Coropatibility roode stack
environment. The Native ~ode stack is flushed to leave the old
interrupt stack ~arker, the process ~ode flag set to Co~patibility
roode, and a relaunch of the Coropatibility roode process occurs.

This instruction requires Ring level 1.

if STATUSC.ICS = 1 or STATUSC.IE 0
then Trap"INSS'lJITCH"
else

begin
S := Q+120;
TCB.SN : = S;
TCB.XM := 1;
execute_case_1_of_IEXIT;
end;

10-16

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

10.6 PROTECTION

The details of protection are integrated ~ith those of Native

07/31

mode objects in Chapter 2. In particular, refer to the discussion
on object types and object access rights.

10.7 IMPLEMENTATION NOTES

1. All Compatibility mode objects, code and data segroents, are
assumed by hard~are to be aligned on an even byte boundary.

10-17

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

+------------------------------~--------------+----------------+

SORTED LIST OF INSTRUCTIONS APPENDIX

+-------------":"-------------------------------+----------------+

Section Inst.ruction

ABSt source.r, destination.~
ADDt tern. r, SUIIl. ru
ADDtD tern.r, sum.ru
AND4 roask.r4, operand.ru4
ASLt shiftcount.rl, operand.ru
ASRt shiftcount.rl, operand.ru
BADD4 tern.r4, dest.b
BCMP4 sourcea.b, sourceb.r4
BCMP8 sourcea.b, sourceb.r8
BGET4 source.b, dest.m4
BGET8 source.b, destination.m8
BMOVE8 souree.b, dest.b
BMOVEADR sQurce.ro, dest.b
BPOP8 .. dest.b
BPUSH8. source. b
BREAK pararoeter.r4
BRX loi.r4
BR{GLEU} target.r4
BSET4 source.r4, dest.b
BSET8 source.ra, dest.b
BSUB4 tern.r4, dest.b
BTEST8 source.b
CALL target.r4
CALLX loi;r4
CHECKA pararoeter.r4
CHECKB pararoeter.r4
CHECKHI source.r4, hibound.r4
CHECKLO source.r4, lobound.r4
CHNOP
CIS channel.rl, status.rl
CLRMR rorseleet.rl
CMPB fillchar, 19tha, srea, 19thb, srcb, index
CMPC length.r4, stringa.ro, stringb.ro, index.m4

07/31

6.2.2.6
6.2.2.1
6.3.3.1
6.2.3.1
6.2.3.7,
6.2.3.9
6.2.5.9
6.2.5.11
~.2.5.12
6.2.5.5
6.2.5.1
6.2.5.4
6.2.5.3
6.2.5.8
6.2.5.7
6.2.6.7
6.2.6.4
6.2.6.1
6.2.5.6
6.2.5;2
6.2.5.10
6.2.5.13
6.2.6.2
6.2.6.3
6.2.6.10
6,.2.6.11
6.2.6.13
6.2.6.12
6.5.1.2.1
6.5.1.2.9
6.4.6.1
6.2.4.10
6.2.4.3
6.2.4.11
6.2.4.1
6.3.3.5
6.3.3.17
6.3.3.18
6.3.3.11
6.3.3.12

CMPT table, fillehar, 19tha, srea, 19thb, sreb, index
CMPt souree1.r, source2.r
CMPtD soureea.r, sourceb.r
evAD length.rl, source.r, dest.m
evDA length.rl, souree.r, dest.~
evDI length.rl, source.r, dest.m8
evID length.rl, source.r8, dest.m

al

6.2.S.5
6.2.S.7
6.2.1.15
6.2.9.1
6.2.9.6
6.2.2.4
6.3.3.4
6.2.9.1S
6.2.1.6
6.2.1.12
6.2.9.2
6.2.6.S
6.2.6.5
6.2.1.14
6.3.3.14
6.2.S.8
6.2.8.6
6.2.9.11
6.2.9.S
6.5.1.1.1
6.2.9.3
6.5.2.1.3
6.5.2.1.2
6.5.2.1.1
6.4.5.7
6.2.9.7
6.4.6.3
6.4.5.2
6.2.3.5
6.2.3.6
6.4.5.S
6.2.2.8
6.2.1.2
6.2.1.8
6.2.1.9
6.2.1.10
6.2.1.7
6.3.3.9
6.2.9.17
6.2.7.1
6.2.7.3
6.2.7.2
6.2.7.4
6.2.2.3
6.3.3.3
6.4.6.5
6.4.6.4
6.4.6.6
6.4.6.7
6.2.2.5

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COpy -- HP PRIVATE INFORMATION

CVLAtVA operand.rol, virtaddr.wS
CVVAtPP virtaddr.rS, ppn.w4
DELETE wordcount.r4
DISABLE oldi.wl
DISP
DIVt divisor.r, dividend.rw
DIVtD divisor.r, quotient.rw
DOlJN seroa.rorw4
DPF value.r4, shiftcount.rl, mask.r4, target.rw4
DUP wordcount.r4, value.r4
ENABLE oidi. r1
ERROR
EXIT
EXTEND wordcount.r4
GETSIGN operand.rl, sign.w1
GrowGDO newlength.r4
HASH virtaddr.rS, hashindex.w4
IDLE
IEX!T
IFC
INTERRUPT pr.r4
IOC channel.r4, control.r4
lOR channel.r4, control.r4, data.w4
IOU channel.r4, control.r4, data.r4
IVB tcb.mr
LAUNCH tcbla.r8, tcbva.r8
LDMR mrselect.r1, source.r16
LDVLR source.r4
LSLt shiftcount.r1, bitfield.rw
LSRt shiftcount.rl, bitfield.rw
LVB tcb.mr
MODt divisor.r, dividend.rw
MOVEADR operand.ro, destination.wS
MOVEBIT bitindex.r4, source.r1, bitarray.mrw
MOVEBLR fillchar, srcl, src, destl, dest
MOVEBRL fillchar, srcl, src, destl, dest
MOVEC length.r4, source. ror , destination.mw
MOVED Iength.rl, source.r, dest.w
MOVESEMA source.r4, seroa.row4
MOVEfSP4 selector.r1, destination.w4
MOVEfSP8 selector.r1, destination.w8
MOVEtSP4 selector.r1, source.r4
MOVEtSPS selector.rl, source.r8
MPYt factor.r, product.rw
MPYtD factor.r, product.rw
MRAND mrasleect.r1, mrbselect.r1
MRNOT rorselect.r1
MROR mraselect.r1, mrbselect.r1
MRXOR roraselect.r1, rorbselect.r1
NEGt source.r, destination.w

a2

07/31

6.2.6.9
6.2.3.2
6.2.3.3
6.3.3.15
6.5.1.2.5
6.5.1.2.4
6.2.8.4
6.2.8.3
6.2.2.9
6.2.1.5
6.5.1.2.3
6.2.8.1
6.2.9.4
6.2.9.5
6.2.1.4
6.2.1.3
6.4.5.6
6.2.3.8
6~5.1.1.4
6~ 5.1.2.2
6.5.1.2.6
6.2.2.7
6~2.1.13
6.5.1.2.8
6.2.9.-10
6.4.5'.1
6.2.4.9
6.2.6.6
6.5.1.2.10
6.3.3.7
6.3.3.8
6.4.6.2
6.2.9.12
6.4.5.3
6.2.2.2
6.3.3.2
6.2.9.9
6.2.9.15
6.2.9.13
6.2.9.14
6.2.4.6
6.2.4.7
6.2.4.8
6.2.9.19
6.2.4.4
6.2.4.5
6.2~8.2
6.2.9.16
6.3.3.13
6,2.4.2
6.3.3.6

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

NOP
NOT4 source.r4, destination.w4
OR4 mask.r4, operand.rw4
OVPUNCH sign.r1, operand.rw1
PAR response. wi
PDA response.w1
PDDEL ppn.r4
PDINS ppn.r4
POLYt degree.r1, polyn.mr, operand.rw
POPt destination.w
PRD response.w1
PROBE ring.r1, access.r1, address.ra, length.r4
PSDB
PSEB
PUSHADR operand. m '
PUSHt source.r
PUVCSA tcb.Ar
QUAD4 source.r4,destlnation.w4
RBYTE data.w1
RCL response.w1
RDP, channel.rl, dest,w16, length.wI
REMt divisor.r, dividend.rw
REP wordcount.r4, value.r4, operand.Rw
RIS channel.rl, status.wI
RSUITCH
RVLR
SCANUNTIL charset.mr, string.mr, index.rw4
SEXIT
SIS channel.r1, status.rl
SLD 90unt.r1, length.r1, source.r, dest.w
SRDcount.r1, lenght.rl, source.r, dest.w
STMR'mrselect.r1, destination.w16
STOP
STVLR dest.w4
~Bt terA.r, difference.rw
SUBtD terA.r, difference.rw
SUITCH
SYNCIB operand.mc, length.r4
SYNCOD loi. r4
SYNCTCB tcb.rS
TESTA
TESTB
TESTBIT bitindex.r4, bitarray.mr
TESTDOlJN sema.mrw4
IESTLSB source.r1
TOOP\'
TESTREF va.rS
TESTSEMA sema.mrw4, result.w4
TESTSTRIP operand.rwl
TESTt source. r
TESTtD source.r

.'.~

07/31

6;2.1.11
6'.2.7.5
6.2.7.6
6.2.9.20
6;4.5.5 .'
'6.4.2.7'
0.4.4.3
6.4.4.2
6:4.2.2
6.3.3.10
6.3.3.16
6.4.3.1
6.4.2.12
6.4.2.13
6.4.4.1
6.4.4.8
6.4.7.1
6.4.2.5
6.4.4 •. 9,
6.4.4.6
6.4'04.10
6.4;4.7
6.4.5.4
6.4.2.10
6.4.2.11
6.4.4.4
6.4.4.5
6.4.2.9
6.4,;2.~
6.4.2,.4
6.4.2.6
6.4,3.2
6.4.2.8
6.4.'l.li
6.4~2.3
6.4.3.3
6.5.1.1.3
6.5.1.1.2
6.5.1.2.7
6.2~3.4

VISIoN ARCHITECTURE CONTROLbO~
DO Ncr! COpy -- tip PRIVATE INFORMATION

TRANSL table. lIlr , length.r4, source.lIlr, dest.lIlw
TRY
UNTRY destination.w4
UP sellla.lIlru4
UVCSA
VABSt vqual.r1, souree.vr, .abs.w
VACCDt vqual. r1, tel11ls.vr, SUlIlrtl1

VACCt vqua1.r1, te~s.vr, SUlIl.rw

VADDt vql.lal.rl, terllla.vr, ternb.vr; SUl'Il.VIII
VALD length.r1, operand.rw
VALN length.r1, open~nd.ru
VAND4 vqual.r1, facta.v!, factb.vr, and.VIII
VASLt vqual.r1, shiftcount.vr, target.vw

07/31

VASRt vqual.rl, shiftcount.vr, target.VIII
VCMPt,vqual.r1, field.rl, srea.vr, srcb.vr, Plrsel.rl
VCOMPRSt vqual.rl, te~~.vr, eo~pressed.vw
VCONVERT vqual.rl, typer.rl, source.vr, dest.vw
VDIVt vqual.rl, divd.vr,divsr.vr, quot.w
VEKPNDt vqual. r 1, tetlllS. vr ~ expanded. VIII

VEKTt vqual.rl, tel11ls.vr, lndex.r"value.1IJ ,
VGATHt vqual. rl, s~urce. vr, index. VI', destination.'vtiJ,
VINSt vqual.rl, terllls.vw, indeK.r,newal.r

'VINVAL vrl1lask.r1
VLSL t vqual. rl, shlrtcount. vr, target. vru
VLSRt vqual.rl, shifteount.vr, target.vr.1lJ
VMAKELt vqual.rl, terRs.vr, l1laxind.w4
VMINELt vquaLrl, terllls.vr, l1linind.w4
VMODt vqual.ri, divd.vr, divsr.vr, lIlod.vw
VMOVEt vqual.rl, source. vr, dest,. vw .
VMPYt "qual. rl', facta. v.r, faetb ,'vr, prod~ vw
VNEGt vqual. rl, source. vr, neg.w
VOR:4 . vqual.rl, terRa.yr, terRb.vr, or.w
'IeEMt vqual.rl, divd,vr, divsr.vr, relll.vw
VSCATt vqual.rl, souree.vr, index.vr, destination.vw
ySUBt vq\lal.rl, terJlla. vr, ternb. vr, diff. VIII
YXOR4 vq\lal~rl, terna.vr, ternb.vr, xar.W
~BYTE data.tl, end.rl
tJCMD CO~a.hd.rl
TJPP ch$.nnel.rl,:9ata.r16, length.ru1
XOR4 lIlask. r4, operand. ru4

a4

