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We are proud to announce the release of Version 5 of the VISION ACD. 
Version 5 incorporates all changes and clarifications that have 
previously been transmitted only through PlePlos. This single docUPIent 
provides a stable, self-consistent and cOPlplete description of the 
VISION processor architecture including I/O instructions. A version 
of the cOlllpanion docuPlent "HP/3000 COlllpatibility Mode" incorporating 
the eKtended CST structure will be available in October. 

Version 5 of the ACD replaces version 3, and the copy of version 3 in 
your possession Plust be shredded or returned to Bert Speelpenning at 
CSY. If you wonder what happened to version 4: there is no version 4 
nor will there be. The designation "version 5" for the neKt Plajor 
release of the ACD sOPlehow gained currency within CSY, and it didn't 
seeR particularly fruitful to buck that trend. 

The organization of the architecture description has been thoroughly 
overhauled in order to iJllprove clarity of exposition. These changes 
were sufficiently extensive that it was decided not to retain page or 
section nuJIIbers frOR version 3; change bars were also abandoned. 
Rather, version 5 is a stand-alone description of the architecture that 
should be read in full by iRpleaentors of VISION-specific products. 

Turning to content, the arChitecture described in version 5 differs frOR 
that of version 3 in ways described in earlier PlePlOS published by us, 
as well as in other JIIinor ways. These changes are ~arized below. 
Their net effect is to Plake the VISION architecture 1II0re streaPIlined 
and easier to iPlplePlent coSt-effectively in hardware while JliniPIizing 
the iRpact on software. 

It is a pleasure to acknowledge the help and cooperation we have received 
in getting the architecture and its description to its current statej the 
iJlplePIentation teaPIs have been reJlarkably patient in helping us evaluate 
the effect of proposed chanies as well as in accOJlodating those changes 
we decided to adopt. 
Our Plain efforts will becOJle focussed on Ronitoring the progress of 
VISION illlpleRentationsj we r~ain cORJIIitted to resolve probleRs in the 
present definition of the VISION architecture that these iRpleJIentations 
Ray uncover. 

SUPIPIary of significant chanies between version 3 and version 5 

1. Virtual address space has been cut back frOR 74 to 64 bits. 

2. The I'llJIber of privileee levels has been reduced froa 8 to 4. 

3. Object Descriptors have been streulined to a 4-word foraat. 

4. Procedure linkage has been smplified: the STr-JlechaniSll is no 
longer required in Vision Rode. 
Procedure stack Jlarkers have been reduced to three words instead 
of four; EXIT can distinguish between Jlarkers laid down by CALL 
and CALLX, this aignificantly streaJllines exit frca CALL. 

5. SOlIle STATUS bits and other Jlachine state (such as the TCB) have 
been rearranQ8d to allow faster updates to the addressing 
enviroraent, such as EXIT or IEXIT. 

6. Synchronization of caches and TLBs when Rakilli charlies to the 
addressing tables has been .ade the explicit responsibility of 
operatini systeR software. 

7. The encoding of instructions has changed. Instructions or pairs 
of instructions now occupy a word or a Jlultiple of words. 
OrthoQonality of opcodes and operands has been retained. 

8. 8 General reQisters have been added. 

9. Instructions dealing with base reQisters have been separated out. 
Base reQisters are no longer treated as Qeneral operands. 

10. Several instructions that were Jlarginal in terRS of speed-up over 
their software equivalents were deleted. 
All 16-bit arithJletic and all 12-byte packed deciJlal arithPletic 
has been deleted frOR the architecture. 

11. Opcode assigMents have been updated. 

12. Several definitions of individual instructions have been streaJIlined. 

13. Arguaents for trap handlers are pushed in the reverse order. The 
trap identification nuJlber is now always on top of the stack. 

14. The interrupt structure for I/O and inter-processor cOJlAunication 
has been defined and included. 
I/O instructions for PICMB-based systeJIS and for MfB-based syst~s 
have been defined and included. 
The interface to the Control and Support Processor (CSP) has been 
defined and included. 

Not yet included in the Architecture Control DocUJlent are: 

1. Instructions to support diaanostic capabilities. 

2. Description of the data structures to support I/O. 
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srea, 19thb, sreb, index 
19tha, srca, 19thb, srcb, inK 

iv 

6.2.5 
6.2.5.1 
6.2.5.2 
6.2.5.3 
6.2.5.4 
6.2.5.5 
6.2.5.6 
6.2.5.7 
6.2.5.B 
6.2.5.9 
6.2.5.10 
6.2.5.11 
6.2.5.12 
6.2.5.13 
6.2.6 
6.2.6.1 
6.2.6.2 
6.2.6.3 
6.2.6.4 
6.2.6.5 
6.2.6.6 
6.2.6.1 
6.2.6.8 
6.2.6.9 
6.2.6.10 
6.2.6.11 
6.2.6.12 
6.2.6.13 
6.2.7 
6.2.7.1 
6.2.7.2 
6.2.7.3 
6.2.7.4 
6.2.7.5 
6.2.7.6 
6.2.8 
6.2.B.1 
6.2.8.2 
6.2.B.3 
6.2.8.4 
6.2.B.5 
6.2.8.6 
6.2.B.7 
6.2.8.8 

VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COPY -- HP PRIVATE INFORMATION 

Base Register Instructions 
BGET8 source.b, destination.wB 
BSET8 source.rB, dest.b 
BMOVEADR source. rn , dest.b 
BMOVE8 source.b, dest.b 
BGET4 source.b, dest.w4 
BSET4 source.r4, dest.b 
BPUSHB source.b 
BPOP8 dest.b 
BADD4 te~.r4, dest.b 
BSUB4 te~.r4, dest.b 
BCMP4 sourcea.b, sourceb.r4 
BCMP8 sourcea.b, sourceb.r8 
BTEST8 source.b 

Transfer of Control 
BR{GLEU} target.r4 
CALL target.r4 
CALLX loi.r4 
BRX loi.r4 
EXIT 
SEXIT 
BREAK pararneter.r4 
ERROR 
NOP 
CHECKA pararneter.r4 
CHECKB pararneter.r4 
CHECKLO source.r4, lobound.r4 
CHECKHI source.r4, hibound.r4 

Interaction roith Machine State 
MOVEfSP4 selector.r1, destination.w4 
MOVEtSP4 selector.r1, source.r4 
MOVEfSP8 selector.r1, destination.wB 
MOVEtSP8 selector.r1, source.r8 
TRY 
UNTRY destination.ro4 

Instructions that Interact roith the Address Space 
PROBE ring.r1, access.r1, address.r8, length.r4 
TESTREF va.r8 
PDINS. ppn.r4 
PDDEL ppn.r4 
CVLAtVA operand.~l, virtaddr.w8 
HASH virtaddr.r8, hashindex.w4 
CVVAtPP virtaddr.r8, ppn.ro4 
GrowGDO newlength.r4 
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Instructions for Tasking and Synchronization 
DISABLE oldi.wl 
ENABLE oldi.rl 
INTERRUPT pr.r4 
PSDB 
PSEB 
DISP 
LAUNCH tcbla.r8, tcbva.r8 
IEXIT 
SlJITCH 
RSlJITCH 
IDLE 
STOP 
SYNCOD loi. r4 
SYNCTCB tcb. r8 
SYNCrB operand.~c, length.r4 
TESTSEMA sel1la.~rw4, result.w4 
MOVESEMA source.r4, se~a.~w4 
DOlJN se~a.~rw4 

TESTDOlJN sel1la.l1lrw4 
UP se~a.~rw4 

Arithmetic Conversion 
ISC42 source.r4, destination.w2 
CONVERT subopcode.r1, source.r, destination.w 

Decimal Instructions 
Packed Decimal Numbers 
External Decimal Numbers 
Deci~al Instruction Set 

ADDtD term.r, ~.rw 
SUBtD ter~.r, difference.rw 
MPYtD factor.r, product.rw 
DIVtD divisor.r, quotient.rw 
CMPtD sourcea.r, sourceb.r 
TESTtD source.r 
SLD count.r1, length.r1, source.r, dest.m 
SRD count.r1, lenght.rl, source.r, dest.w 
MOVED length.r1, source.r, dest.w 
VALD length.r1, operand.rw 
CVDI length.r1, source.r, dest.w8 
CVID length.r1, source.r8, dest.w 
TESTSTRIP operand.rw1 
GETSIGN operand.r1, sign.w1 
OVPUNCH sign.rl, operand.rw1 
VALN length.r1, operand.rw 
CVAD length.rl, source.r, dest.w 
CVDA length.rl, source.r, dest.w 
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Vector Instruction Set 
Boundary conditions 
Vector Arithmetic Operations 

VMOVEt vqual.r1, source.vr, dest.vw 
VADDt vqual.rl, ter~a.vr, te~b.vr, ~.vw 
VSUBt vqual.rl, ter~a.vr, ter~b.vr, diff.vw 
VMPYt vqual.r1, facta.vr, factb.vr, prod.vw 
VDIVt vqual.r1, divd.vr, divsr.vr, quot.vw 
VNEGt vqual.rl, source.vr, neg.vw 
VABSt vqual.rl, source.vr, abs.vw 
VREMt vqual.r1, divd.vr, divsr.vr, re~.vw 
VMODt vqual.rl, divd.vr, divsr.vr, ~od.vw 
VLSLt vqual.rl, shiftcount.vr, target.vrw 
VLSRt vqual.r1, shiftcount.vr, target.vrw 
VASLt vqual.r1, shiftcount.vr, target.vw 
VASRt vqual.r1, shiftcount.vr, target.vw 

Vector Logical Operations 
VAND4 vqual.rl, facta.vr, factb.vr, and.vw 
VOR4 vqual.r1, ter~a.vr, te~b.vr, or.vw 
VKOR4 vqual.rl, ter~a.vr, te~b.vr, xor.vw 

Vector Co~pare and Vector/Scalar Hybrids 
VCMPt vqual.r1, field.r1, srca.vr, srcb.vr, mrsel.r1 
VACCt vqual.rl, te~s.vr, sum.rw 
VACCDt vqual.rl, ter~s.vr, ~rw 
VMAKELt vqual.r1, ter~s.vr, ~aKind.w4 
VMINELt vqual.r1, ter~s.vr, ~inind.w4 
VEKTt vqual.rl, terms.vr, index.r, value.w 
VINSt vqual.r1, te~s.vw, index.r, newval.r 
VCOMPRSt vqual.rl, terms.vr, compressed.vw 
VEKPNDt vqual.rl, ter~s.vr, expanded.vw 
VGATHt vqual.rl, source.vr, index.vr, destination.vw 
VSCATt vqual.r1, source.vr, index.vr, destination.vw 

Vector Housekeeping 
RVLR 
LDVLR source.r4 
STVLR dest.w4 
VINVAL vr~ask.rl 
UVCSA 
PUVCSA tcb.l1lr 
IVB tcb.l1lr 
LVB tcb.~r 

Operations on Mask Registers 
CLRMR ~rselect.rl 
STMR l1lrselect.r1, destination.w16 
LDMB ~rselect.r1, source.r16 
MRNOT l1lrselect.rl 
MRAND ~rasleect.r1, l1lrbselect.rl 
MBOR l1lraselect.r1, mrbselect.r1 
MRKOR l1lraselect.rl, mrbselect.rl 

Vector Conversion 
VCONVERT vqual.r1, typer.r1, source.vr, dest.vw 
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+---------------------------------------------+----------------+ 
INTRODUCTION CHAPTER 1 

+---------------------------------------------+----------------+ 

1.1 VISION Architecture Control Document 

This document provides, for reference purposes, the detailed and 
rigorous definition of the machine functions perfor~ed by VISION 
compatible computer syste~s. VISION provides the basis for a 
~ultitude of fully co~patible syste~s over time which cover a 
broad spectrum of price and perfor~ance, benefiting fro~ the 
exploitation of new or evolving technologies and ~achine 
organizations. 

This is the only authoritative specification of the VISION 
arChitecture. It provides machine designers and programmers a 
complete description of the machine model which will transcend 
all implementations. 

1.2 Architecture Overview 

The VISION architecture is a product of the experience gained 
with the HP3000, HP300 and FOCUS syste~s. It provides two 
execution modes. One mode is highly co~patible with the HP3000 
and allows execution of HP3000 user level object programs. The 
Vision mode provides advanced information processing capability. 
The Vision mode is designed to retain the general purpose nature 
of its predecessors, but with enhanced ability to effectively 
address both business and technical applications. Vision mode 
is characterized by a powerful and complete basic instruction 
set, a wide range of data types, a stack for data allocation and 
procedure linkage information, data registers to support 
expression evaluation and addressing registers to support an 
extremely large task and system address space, paged memory 
management, a hierarchical protection system, and vector 
processing facilities. 
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1.3 Architecture Control 

The tern "architecture" as used in this document refers to the 
characteristics of the software/hardware interface of compatible 
VISION machines. "Hardware" refers to any combination of 
electronics, electro-mechanics and microcode. 

The notion of Architecture Control has been created at HP to aid 
in the preservation of the investments it and its customers make 
in hardware and software with VISION based products. This 
architectural control document attempts to completely and 
unambiguously describe the features of any model claiming VISION 
compa tibili ty. 

To be successful, the following attributes of the arChitectural 
control process are stipulated: 

1. This document is the only authoritative specification of the 
VISION architecture. 

2. All models will be monitored for compliance with the 
architure specification. 

3. Deviations from the architecture will be corrected. In the 
rare case when the cost to change the design or to retrofit 
installed machines is excessive in relation to the practical 
value of compliance on that model, deviations are permitted 
when approval is obtained from all affected group managers, 
and appropriate provision is made for the exception in the 
Architectural Control Document. 

4. Implementers are instructed to question any doubtful point in 
the architectural definition rather than make assumptions. 
The specification occasionally leaves out some aspect of the 
operation, or the wording may not be clear. In these cases 
the document should be updated to resolve the point. 

5. Continual maintenance and updating of the architecture 
specification are essential. 

6. At any point in time, the management will entrust maintenance 
of the architecture control document to a person or small 
group. They will be responsible for resolving conflicts, 
creating and reviewing document revisions, stopping debate on 
some issue, etc, through the use of technical and business 
analysis or executive decision making. 
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1.4 Intended Audience 

This document is intended primarily as reference material for 
implementors of VISION-compatible products; specifically, 
implementors of hardware and microcode, implementors of core 
operating system modules and implementors of Vision compilers. 
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The first five chapters can be used as a stand-alone intrOduction 
to the main VISION features; they cover the VISION addressing 
structure, which is the most distinguishing characteristic with 
respect to its predecessors and current competition in the market. 
To this end these chapters are written in a more tutorial style. 

This document must not be shown to and must not be read by non­
HP employees. 

1.5 Related Documents 

"HP/3000 Compatibility Mode", internal, January 1982. 

"PICMB ERS", internal. 

"MPB ERS", internal. 

"Interface Protocols for the Control SUpport Processor for 
VCF60 and VCF50", internal, to appear. 

"A Proposed Standard for Binary Floating Point Arithmetic", 
draft 9.3.3 of IEEE task P754. 

"Time and Frequency Users' Manual", NBS Special Publication 559. 
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1.6 Notations and Conventions 

Algorithms in this document are described in a pidgin PASCAL. 
In these algorithms: 

NAMES in capital letters denote processor registers; 
Names with only the first letter capitalized denote 

temporary or scratchpad values; 
names in lower case denote parameters or operands. 

The notation R[O •. 5] denotes a 6-bit field consisting of bits 
o through 5 of register "R". 

The notation (R)[O .• 31] denotes the 32-bit word found at the 
byte address contained in register "R". 

The numbering of bits and bytes is such that the lowest numbered 
bit (byte) contains the most significant information. 
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Numbers are given in decimal (default) or in hexadecimal notation 
(when preceded with an "!", e.g. ! 1A denotes the l1\ll1lber 26). 

1.7 Implementation Guidelines 

Experience related to cost-effective implementation of VISION 
hardware and software will be disseminated to other VISION 
implementors when such experience becomes available. Emphasis 
will be on the more subtle implications of the architectural 
specification; in particular, performance implications. 
Recol1lrnended software practices, if sufficiently important to 
the performance of at least one VISION implementation, will be 
included also. 

As an example, all VISION hardware will allow data to be addessed 
on arbitrary byte boundaries. Yet performance will be degraded 
significantly if data is not aligned on its natural boundaries: 
half words on half-word boundaries, words on word boundaries, etc. 
This effect will be felt on any VISION implementation, to varying 
degrees. 

This document includes some implementation guidelines when it 
was deemed that their inclusion would clarify the issue at hand. 
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+-----------------------------------------------+---------------+ 
ADDRESS SPACES CHAPTER 2 

+-----------------------------------------------+---------------+ 

2.1 Physical Address Space 

Physical memory is organized in bytes. A byte is a collection of 
8 bits. Each byte in physical memory has its own unique number 
called its physical address. A byte is the smallest addressable 
unit. A physical address is represented by a 32-bit quantity. 
Physical memory is the lowest type of memory in the memory 
hierarchy that is visible to software. Implementations may choose 
to organize physical memory in words (4-byte quantities) instead 
of bytes; they may employ caches to reduce average access tiAe, 
but this must remain transparent to software. 
Input/OUtput is performed using physical addresses. Software uses 
"logical addresses" (section 2.3) to access memory; these logical 
addresses are translated by address translation hardware (chapter 
3) into the corresponding physical addresses. 

Representation of physical memory: 

01234567 01234567 01234567 01234567 01234567 01234567 
+--------+--------+--------+--------+--------+ - - - - -+--------+ 

183 109 lBl 16A lFF 
+--------+--------+--------+--------+--------+ 
o 1 2 

o 31 
+--------------------+ 

3 
+--------------------+ 

physical address 

3" " 4 

" " " " II 

" -----+ I 1 
I I (byte 

" \I 
01234567 

+--------+ 
!6A 

+--------+ 

access) 

13B 
- - -+--------+ 

ME 
(physical 
memory 
size) 

In this example, the physical address is 3, and therefore the byte 
with identifying number 3 is being addressed. Its contents is 
!6A (01101010). 
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Addresses are also used to access entities larger than a byte. 
(This will apply siAilarly to logical and virtual addresses). 
In this case, the address reflects the lowest numbered byte. 
The following example shows the result of a 16-bit access using 
physical address "2": 

01234567 01234567 01234567 01234567 01234567 01234567 
+--------+--------+--------+--------+--------+- - - - -+--------+ 

!83 !09 !Bl !6A !FF !3B 
+--------+--------+--------+--------+--------+- - - - -+--------+ 
o 12'" 

I 
I 

o 31 I 
+----------------+ I 

2 1-+ 
+----------------+ 
physical address 

II 3 4 ME 
II 
II 
II 
I I (16-bit access) 

" " \I 1 
01234567 89012345 

+--------+--------+ 
!B16A 

+--------+--------+ 
Physical address space is used for four separate purposes. The 
first purpose is to provide physical pages (see section 2.1.1) 
that support virtual memory (section 2.2). The second is to 
provide a location for the h sical a e director (section 2.2.2) 
and hash table (section 3.4 that constltute the foundation for 
the address translation algorithm and therefore must reside at a 
physical address known to hardware. The third is to provide a 
"scratch area" for each processor, transparent to software (see 
chapter 9). This scratch area is used to hold data for which use 
of processor registers would be too expensive; it is also used by 
the I/O channels when they need to communicate with the processor. 
The fourth is to provide addressability for I/O buffers. VISION 
I/O channels only access memory through physical addresses. 

2.1.1 Pages 

Physical memory is divided into physical pages of 4096 bytes each, 
partitioning physical addresses into a 20-bit physical page number 
(PPN) and a 12-bit page offset (POFF), as follows: 

o 19 20 31 
+----------------------+-------------+ 
I physical page number I page offset I 
+----------------------+-------------+ 

physical address 
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2.2 Virtual Address Space 

In VISION, the virtual address space is extremely large. 
Its size is 2"64 bytes. This address space is so large that 
it frees software for the most part from having to reclaim and 
repack virtual space no longer in use. Whole data bases can 
reside in virtual space, if so desired. 

Virtual space allows programs to run that require address space 
in eKcess of the amount of physical memory available on the 
machine. This is acco!1lplished through "de!1land paging": a !1lode 
of operation in which part of virtual !1lemory is kept in physical 
memory and the rest kept on secondary storage; if a request for 
access to virtual !1le!1lory cannot be satisfied out of physical 
!1lemory, the page containing the virtual address is read in from 
secondary storage (another page !1lay have to be written to 
secondary storage in order to !1lake place for it in physical 
!1le!1lory) . 

Operating system software policy deter!1lines the precise details 
of where virtual pages are kept on secondary storage and where in 
physical memory a new virtual page is read in. Hardware is only 
responsible for detecting "page fault"s: the condition where an 
access to virtual memory cannot be satisfied out of !1lain !1le!1lory. 
On detecting a page fault, hardware will transfer control to the 
page fault trap handler (section 7.KK). The operating syste!1l 
must then resolve the page fault and transfer control back to 
the user program in a way that makes the occurrence of the page 
fault totally transparent to the user program (eKcept perhaps 
for a noticeable delay). 

Demand paging in a large virtual space frees writers of software 
fro!1l stringent and inescapable limits on programs due to size of 
physical memory. Instead, writers of software for a demand paged 
!1lachine face a concern for "locality of reference". Basically, 
one program's locality of reference is better than another's if it 
accesses fewer different virtual pages in a cO!1lparable time span. 
Programs with better locality of reference will require less page 
swapping and therefore will perform better, other things being 
equal. 

Details on how a virtual address is translated to a physical 
address in VISION are deferred until chapter 3. 
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Two different views of virtual address space are given here: 
one from the perspective of address arithmetic and allocation, 
the other from the perspective of paging and memory management. 

2.2.1 Virtual Address Space: Virtual Objects 

Virtual address space is organized as 2"32 "virtual objects" 
of 2"32 bytes each: 

virtual 
object 
l1UlIlber 

virtual offset 
+ ----------------> 

v 

+-------------------------------+ 
I 
I 
I 
I 
I 
I 

+--------------+-+--------------+ 
I I I 

+--------------+-+--------------+ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

2"32 
virtual 
objects 

I 
I 
I 
I 

+-------------------------------+ v 

<-----------2"32 bytes---------> 
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This organization of virtual address space corresponds to a 
partitioning of a virtual address as follows: 

o 31 32 63 
+----------------------------+----------------------+ 
I VON - virtual object number I VOFF - virtual offset I 
+----------------------------+----------------------+ 

virtual address 

The significance of this subdivision is that all address 
arithmetic on a virtual address is performed on the 32-bit 
virtual offset without ever carrying into the virtual object 
nu~ber. The virtual object number is never altered by address 
arithmetic. The virtual offset is regarded as a troo's co~pl~ent 
quantity; overfloro on address arithmetic is ignored. 
Address arithmetic on virtual addresses occurs during 
translation of logical addresses as described in chapter 3. 

EK~ple: 

o 31 32 63 
+----------------------+------------------+ 

13 151 virtual address 
+----------------------+------------------+ 

o 31 
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2.2.2 Virtual Address Space: Paging 

From a paging perspective, a virtual address (VA) is split into 
a 52-bit virtual page number (VPN) and a 12-bit page offset 
(POFF), as sketched below. (Some VISION documentation refers to 

VA and VPN by the names GSVA and GSVP, respectively.) 

o 51 52 63 
+--------------------------------+--------------+ 
I VPN - virtual page number I page offset 
+--------------------------------+--------------+ 

virtual address 

A physical page is associated with a virtual page; this will 
typically change over t~e as pages get sroapped in and out, i.e. 
read and written to secondary storage (usually disk storage). 
At each ~o~ent, the state of the association is contained in the 
physical page descriptor (PPD), as follows: 

PPD: 

o 1 
2 2 2 2 3 3 
o 1 890 1 

+-+-------------------+----+-+-+-+ 
1/1 PPN (20}1////IRI/IDI 
+-+-------------------+----+-+-+-+ 

VPN - virtual (32)1 
+ page +-----------+ 
I number (20)1///////////1 
+--------------------+-----------+ 
1////////////////////////////////1 

+------------------+ +--------------------------------+ 
2A 32 - 100 value to be added 

+------------------+ where: 

a 31 32 63 
+----------------------+------------------+ 

13 51 
+----------------------+------------------+ 

+ 

effective 
virtual address 

Hence address arithmetic, even if no~inally involving 64-bit 
quantities, can be ~ple~ented in hardware with 32-bit ALUs. 
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PPN - physical page number (20 bits). 

VPN - virtual page number (52 bits); the number of the 
virtual page currently associated with page PPN. 

D - dirty bit (1 bit): set to one by hardware if the 
contents of the physical page has been changed by 
the processor since it was read in fro~ secondary 
storage, i.e. when the page on secondary storage 
is no longer up to date. 

R - reference bit (1 bit): set to one by hardware if 
the physical page has been accessed since the 
last t~e software caused the reference bit to 
get reset. 

The PPD has additional fields that are described in section 3.4. 
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2.2.3 The Physical Page Directory (PDIR) 

Each physical page has its o~n physical page descriptor? all 
PPDs are collected in the physical page directory (PDIB). 

PDIB.PA -------) +-------------------+ 
II 

" " " PPN II 
II 
II 

" II 

" \/ +-------------------+ 
I PPD 
+-------------------+ 
I 
I 
I 
I 
I 
+-------------------+ 

physical page directory (PDIB) 

physical address of 
PPD for physical 
page PPN is found 
as: 

PDIR.PA + 16 * PPN 

The physical address PDIR.PA is kept in a processor register. 

Note that the PPN field contained in the PPD is redundant ~ith 
the position of the PPD ~ithin the PDIR. 

2.3 Logical Address Space 

Logical address space provides the third and highest level of 
addressing in the VISION architecture. Logical address space 
serves to insulate and protect progr~s from each other. At 
the same tiroe, logical address space allo~s operating systero 
soft~are full control over arbitrary patterns of sharing and 
of access protection bet~een user progr~s. 
All progr~s run in logical address space. All addresses 
that are directly constructed by a user progr~ are logical 
addresses; these are presented to hard~are for address 
translation. Hard~are translates logical addresses (via virtual 
addresses) to physical addresses as detailed in chapter 3. 
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A logical address is a 64-bit quantity. The first 32 bits 
identify a "logical object"; logical objects are defined in 
section 2.3.1. The second 32 bits of the logical address contain 
a "logical offset", i.e. a byte offset relative to the beginning 
of the logical object. Belo~ is a depiction of a logical address: 

o 31 32 63 
+-------------------------+-----------------------+ 
I LOl - logical object id I LOFF - logical offset I 
+-------------------------+-----------------------+ 

logical address 

2.3.1 Logical Objects 

A logical object is a slice of a virtual object that can only be 
accessed through an Object Descriptor, ~hich enforces access 
rights and bounds protection. Object descriptors are detailed 
in section 2.3.2. 

1--------------------------------------------------> 2
A

31-1 
1--------------------------------------> UB 
1----------------------> LB 
I> -2A 31 

a +---------------------+----------------+-----------+ 
virtual 1 logical object 1 
object +---------------------+----------------+-----------+ 

v v 

+----------------+ 
1 logical object 1 
+----------------+ 

I> 0 
1-------> LOFF 
1----------------> UB-LB 

The figure above sho~s ho~ t~o virtual offsets (LB and UB, lo~er 
and upper bound) are used to delineate a slice of a virtual object. 
Such a slice is called a Virtual Bange. The Virtual Range, under 
protection of access rights, constitutes a logical object. 
The bytes in the logical object are numbered froro 0 to UB-LB; 
it is this numbering, relative to LB, that is used by the logical 
offset LOFF in a logical address. 
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2.3.2 Object Descriptor Format 

Object Descriptors are 16 bytes in size. 
sketched belolll: 

The format is as 

0123 45 6 7 
2 33 
9 01 

+----+----+----------------+--+ 
I AR ITYPEI EPlJO IPRI 
+----+----+----------------+--+ \ 
I VON - Virtual Object NUlIlber I I 

OD: +-----------------------------+ I 
LB - LOlller Bound > Virtual Range 

+-----------------------------+ I 
UB - Upper Bound I I 

+-----------------------------+ / 
where 

AR access rights. This field encodes the access 
rights to the object allowed at each of the 
protection levels, as detailed in section 2.3.2.2. 

TYPE= object type. The encoding of this field is 
detailed in section 2.3.2.1. 

EPlJO= entry point lIIord offset. This field is l11eaningful 
only for Vision l110de code objects. It is detailed 
in section 5.2. 

PR prerequisite level. This field is l11eaningful 
only for Vision 1110de code objects. It is detailed 
in section 5.2. 

VON virtual object nul11ber. Identifies the virtual 
object of IIIhich this Object Descriptor defines 
a slice. 

LB lOlller bound. See section 2.3.2.3. 
UB = upper bound. See section 2.3.2.3. 

2.3.2.1 Object Types 

Object types are encoded in a 3-bit field in the OD as follows: 

o - Vision l110de code object 
1 - Reserved object type 

2 - Vision l110de stack object 
3 - data object 
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4 - HP3000 l110de code object 
5 - HP3000 l110de code object, 

subject to PCAL trace 
6 - HP3000 1110de stack object 
7 - Reserved object type 
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The object type "HP3000 code object subject to PCAL trace" is 
explained in l110re detail in the "VISION HP3000 l110de docUlllent". 
The reserved object types lIIill block access to the objectj one 
of these types l11ay becol11e defined in later versions of the VISION 
arChitecture. 
All other object types are explained fully in this docUlllent. 

2.3.2.2 Access Rights 

At each l11ol11ent, the processor runs in one of tlllO execution 
1110des (Vision l110de or HP3000 l11ode) as indicated by the one-bit 
processor state "XM". In Vision l11ode, four levels of privilege 
are supported, ranging frol11 0 (l11ost privileged) to 3 (least 
privilegedl; and the processor will run at one of these four 
privilege levels, as indicated by the two-bit processor state 
"XL". In HP3000 l11ode, the processor runs in either "User state" 
(which is identified with XL=3) or in "Privileged state" (which 
is identified with XL=1). 
For purposes of protection, accesses are characterized as either 
"read", "write" or "execute". The following chart defines the 
conditions for legal access. Illegal accesses cause a trap as 
defined in chapter 7. 

TYPE (frol11 00) read I write I execute 
-------------------+---------------+---------------+--------------
Vision code object IXL <= AR[0 .• 1] I illegal IXL <= AR[2 •. 3] 

I I I & XM=O 
Vision stack objectlXL <= AR[0 •• 1] IXL <= AR[2 •• 3] I illegal 

I I I 
data object IXL <= AR[O •• 1] IXL <= AR[2 •• 3] I illegal 

I I I 
HP3000 code object IXL <= AR[O •. l] I illegal IXL <= AR[2 .. 3] 

(111/ or w/o trace) I I I & XM=l 
HP3000 stack objectlXL <= AR[0 .. 1] IXL <= AR[2 •• 3] I illegal 

I I I 
reserved obj type I illegal I illegal I illegal 
-------------------+---------------+---------------+--------------

Notes: "<=" l11eans less than or equal in an unsigned 2-bit COl11pare. 
The objects pointed to by special registers P and Q require 
special treatl11ent, as detailed in sections 2.3.5 and 2.3.6, 
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2.3.2.3 Lower and Upper Bounds 

Logical objects are slices of virtual objects protected by a 
lower bound and an upper bound, as sketched below: 

OD virtual address space 
+--------+ 

1-------------------------------------+ UB 
I 1-------------------------+ LB I 
+---1----+ 1 1 

1 v v 
I +--------------------+-+-----------+--------+ 
1 

1 

1 
VON 

1 

1 

1 

1 

1 

1 

1 

1####################1 
1####################1 
1####################1 
1####Guard zone######1 
1#### of ######1 
1#### invalid ######1 
1#### virtual ######1 
I####addresses ######1 
1####################1 
1####################1 
+----------------------+-----------+--------+ 

v 1####################1 1 log. obj. 1 
+----------------------+-----------+--------+ 
1####################1 1 
1 #################### 1 1 
z z z 
1####################1 1 
+--------------------+----------------------+ 
<----------------2"32 bytes-----------------> 

1 

1 

1 

1 

1 

1 

1 
2"32 

virtual 
objects 

1 

1 
I 
I 
1 
z 
1 
v 

Both lower and upper bound are 32-bit two's complement quantities 
that delineate the logical object; both bounds are inclusive. 
Any address aritrn~etic (e.g. indexing) involving a logical object 
that causes the virtual offset to stray outside the bounds given 
in the Object Descriptor will result in a trap. (This applies 
only to addresses actually used in accesses, not to preparatory 
address calculations.) 

Though lower and upper bound are two's complement quantities, 
their values must always be positive. It is the responsibility 
of operating software to ensure this. The size of logical objects 
is therefore limited to 2"31 bytes. Note that zero-length objects 
can be supported by having UB = LB -1 in the Object Descriptor. 
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2.3.3 Object Groups 

Object Descriptors belong to the program that is executing; 
more precisely, they are associated with a task. 
It is the responsibility of operating system software to implement 
a policy of protection and security, by setting up only such 
Object Descriptors on behalf of each task as are needed by the 
task to perform its rightful function. 
It is the responsibility of hardware to enforce the access rights 
and bounds protection as contained in the Object Descriptor. 

07/31 

Object Descriptors are organized in groups in order to facilitate 
sharing of objects among tasks. The VISION arChitecture provides 
for eight object groups per task. Each group has a data structure 
(Object Descriptor Table, see section 2.3.4) that maps a logical 
object id onto an Object Descriptor. Tasks that share all objects 
in a group can therefore share the Object Descriptor Table for 
that group as well, resulting in reduced duplication of Object 
Descriptors and (as an important side effect) faster task creation. 

Group zero is the same for all tasks, i.e. logical addresses 
with a zero group selector translate to the same virtual address 
regardless of which task is translating it. 
Groups one through seven are either shared or task-specific, 
completely under operating system software control. 

The 32-bit logical object id (LOI) serves to locate the Object 
Descriptor for the logical object. For this purpose, LOI is split 
into a 3-bit group selector (zero through seven) and a 29-bit 
logical object number (LON) interpreted relative to the selected 
group: 

012 3 31 
+---+-------------------------+ 
1 G 1 LON - log object number 1 
+---+-------------------------+ 

logical object id 

where 

G group selector ( 3 bits); 
LON logical object number (29 bits). 
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The format of a logical address can therefore be depicted as: 

012 3 31 32 63 
+---+-------------------------+-------------------------+ 
1 G 1 LON - log object number 1 LOFF - logical offset 
+---+-------------------------+-------------------------+ 

2.3.4 Object Descriptor Table 

Each object group has an Object Descriptor Table (ODT) Mhich is 
a linear collection of Object Descriptors indexed by the logical 
object number. The Object Descriptor Table is itself an object 
in virtual and logical address space and its location is known 
to hardware, as detailed in section 2.3.8 and chapter 4. 
Both virtual laMer bound and virtual upper bound of an ODT must 
be multiples of 16. 

012 3 31 32 63 
+---+---------------+----------------+ 

logical address I 4 I LON-----+ I LOFE I 
+-1-+-----------1---+----------------+ 

1 I 
+-------------1---++ 

1 / \ 

ODTO ODT1 ODT2 ODT3 I ODT4 ODT5 ODT6 ODT7 
+----+ +----+ +----+ +----+ 1 +----+ +----+ +----+ +----+ 

1 I 
I I 

+----+ I I +----+ 
I I I 

+----+ I +----+ +----+ +----+ 
v 1 00 1 

+----+ +----+ 
+----+ 

+----+ 

Virtual address of 00 = 

virtual address of selected ODT + 16 * LON 
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2.3.5 CUrrent Code Object 

In Vision mode, there is a 64-bit Program Counter P that holds 
the logical address of the instruction currently executing. 
Bits P[0 .. 31] contain the logical object id of the object known 
as the current code object. In VISION documentation, PB is used 
as shorthand for the (logical address of the) lOMer bound of the 
current code object; similarly, PL is used to point to the first 
byte beyond the current code object. 

+----+ \ 
PB::> 1 

1 
1 
> current code object 

P==> 1 
1 
I 

+----+ / 
PL=:> 

Read access to the current code object is allowed; this overrides 
the access right field in the 00. Both LB and UB in the 00 for 
the current code object must be multiples of 4. The size of the 
current code object must be no more than 2A24 bytes. It is the 
responsibility of operating system software to ensure LB and UB 
meet these requirements. P will always be even ( P[63]=O l; this 
is ensured by hardMare checks in the EXIT and SEXIT instructions. 
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2.3.6 Current Stack Object 

Two Vision Aode registers Q and S both hold logical addresses. 
Bits Q[O .• 31] are at all tiNes identical to bits S[0 .. 31]; these 
identify the logical object known as the current stack object. 
The significance and the use of Q, S and the stack object is 
detailed Aore fully in chapter 5. In VISION docuAentation, SB is 
used as shorthand for the (logical address of the) lowest numbered 
byte of the current stack object; SL denotes the first byte beyond 
the current stack object. 

+----+ \ 
SB==> I 

I 
I 

+----+ \ I 
Q==> I local stack frame > current stack object 

/ I 
+----+ I 

S==> I \ I 
I I undefined area I 
I I I 
+----+ / / 

SL==> I 

Read and write access at any privilege level to the current stack 
object is allowed; this overrides the access rights field in the 
OD for the current stack object. All accesses to the stack object 
Aust fall within the bounds SB (inclusive) and S (exclusive); this 
overrides the upper bound in the OD for the current stack object. 
Both LB and UB in the OD for the current stack object must be 
multiples of 4. In addition, UB must satisfy UB < 2A 31-4. It is 
the responsibility of operating systero software to ensure that LB 
and UB Aeet these requireroents. 
All changes to Q and S Aust satisfy SB <= Q <= S (= SL. 
(Q and S only change as a side effect of certain instructions 
such as CALL and EXIT. See chapter 6 for detail.) 

2.3.7 Nil Object 

Logical object zero in group zero (logical object id = 0) is 
inaccessible to all software. Operating systeA software is 
responsible for Aaintaining the OD for LOI=O such that no 
accesses are legal. To do so, it suffices to set UB = LB - 1. 
This allows the nil pointer to be represented conveniently by 
a logical address consisting of 64 zeros. 
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2.3.8 Group Descriptors 

A Group Descriptor (GD) serves to locate an Object Descriptor 
Table for a particular group. The Group Descriptor for the ODT 
for group 0 is kept in processor registers: it is Aachine state. 
Group Descriptors for groups 1 through 7 are contained in the 
Task Control Block (see section 2.3.9), GDs occupy 16 bytes 
and have the fomat as shown: 

o 31 
+------------------------------+ 
1//////////////////////////////1 
+------------------------------+ 
I VON -- virtual object number 1 

GD: +------------------------------+ 
LB -- lower bound I 

+------------------------------+ 
UB -- upper bound 1 

+------------------------------+ 

The first word of the Group Descriptor will be detailed in 
section 4.5. The reroainder of the Group Descriptor contains a 
Virtual Range, as in an Object Descriptor. The Virtual Range 
locates the ODT in virtual space. 
Operating systero software is responsible for ensuring that LB 
and UB are Aultiples of 16, so that all ODs in the ODT will be 
aligned on 16-byte boundaries. 

2.3.9 Task Control Block 

The Task Control Block (TCB) of the currently executing task is 
a software data structure whose location and layout is known 
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to hardware. The 64-bit virtual address of the TCB is kept in a 
processor register TCB.VA. The value of this virtual address 
can be changed by the "LAUNCH" instruction when perfoming a 
task switch. 

Operating software Aust ensure that the TCB of the currently 
executing task is resident in physical meroory. TCBs for tasks 
not currently executing are not in any way constrained by the 
VISION arChitecture. The full layout of the TCB is given in 
section 4.7. Only the part of the TCB involved in defining 
loeical address space is shown here. 
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+-----------------+ 
TCB.VA ==) 1111111111111111111 

1111111111111/11111 
1111111111111111111 
1111//111/111111111 
+-----------------+ 

+16 GD I 
for I 
group I 
one I 

+-----------------+ 
+32 GD 

for 
group 
two 

+-----------------+ 
I 

I 
+-----------------+ 

+112 I GD 
I for 
I group 
I seven 
+-----------------+ 

+128 1111111111111111111 

The TCB virtual address TeB.VA must be a multiple of 16. 
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+-----------------------------------------------+--------------+ 

ADDRESS TRANSLATION CHAPTER 3 

+-----------------------------------------------+--------------+ 

Softuare running on the VISION architecture interacts uith 
memory continually. Softuare is made up of instructions that 
must be fetched from memory; memory is read, the data examined, 
processed, and the results stored back into memory. 
To perform these memony accesses, harduare computes logical 
addresses that are then translated to physical addresses. 
Computing logical addresses can be as simple as incrementing 
the program counter (P) on each instruction fetch, or it may 
involve adding together the displacement value out of an 
instruction uith the contents of the offset part of a base 
register in order to form uhat is called the "effective logical 
address". Logical address computation is detailed in chapter 6. 
This chapter explains address translation in VISION. Address 
translation aluays accompanies a request for access to the 
memory system; hence it proves convenient to explain address 
translation in the context of such an access. 

3.1 An Access -- its Characteristics 

A memory access in Vision mode has these three characteristics: 

a) a logical address, 
b) a length in bytes, 
c) a type of access, 

LA 
L 
read/urite/execute/semaphore-read 

Read and urite accesses can be performed on entities that vary 
in length from 1 through 16 bytes. Execute access (instruction 
fetch) can be performed on multiples of 4 bytes. 
Semaphore-read is a special type of access that can be performed 
only on 4-byte quantities; it consists of a read folloued 
indivisibly by a urite of all ones. For purposes of address 
translation, the indivisible nature of semaphore-read is of no 
import; ue can treat it in this chapter simply as a read 
folloued by a urite to the same address. 

A multi-byte read (L>l) is implemented as if it uere a sequence 
of single byte reads at addresses LA, LA+1, .• , LA+L-l, the 
results of uhich are collected into a harduare buffer area. If 
any of the single-byte reads fails (e.g. bounds violation or 
page fault) the single-byte reads that did succeed are non­
destructive: as far as softuare can tell, no machine state is 
modified. 
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A multi-byte urite is implemented as if it uere a series of 
single-byte urites at addresses LA, LA+1, •. , LA+L-1, uith the 
proviso that harduare implementations are free to perform the 
single-byte urites in any order. This means that if any of the 
single-byte urites fails (e.g. bounds violation or page fault), 
softuare cannot make any assumptions about the state of the 
addressed memory. 

Note: an instruction that has a read-urite operand (an operand 
that is both read and uritten as part of the same instruction) 
must never urite any bytes of the operand unless it can 
guarantee that uriting all bytes of the operand uill be 
completed. (This accomplished trivially on single-processor 
systems by pre fetching the operand; on shared-memory mUlti­
procesor systems it requires that the PDDEL instruction allou 
anyon-going instructions to first complete.) 

Instruction fetch is like read in that its effect can be vieued 
as a sequence of byte-reads into a harduare buffer area, 
transparently to softuare. 

hlithout loss of generality it is then possible to describe 
address translation in terms of single-byte accesses only. 

3.2 Access Algorithm 

Accessing a byte at logical address LA can be described by an 
algorithm, developed in detail over the next feu sections, 
that requires the follouing items of machine state as input: 

XL - execution level of the harduare 
TCB.VA - virtual address to the TCB of the currently 

running task 
PDIR.PA - physical address of 

page directory 
the PDIR, the physical 

HASH.PA - physical address of the Hash Table 

3.2.1 SCheroatic overvieu 

The next page shous an overvieu of address translation for 
accessing a single byte at logical address LA. 
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LA [G I LON I LOFF ] 

v 
I locate ODT frolll 
I GO for group G 

I 
v 

I locate OD for LON 
I in this ODT 

I 
v 

/TYPE and access \ 
/ rights OK for \ no 

< desired access >----------> access violation 
\ at level XL? / 
\ / 

yes 
v 

Icolllpute virtual address 
IVA = [VON I VOFF ] 
Iwhere VOFF LB + LOFF 
I ________ r-______ _ 

v no 
/LB <= LOFF <= UB \------------> bounds violation 
\ ? / 

I yes 
v 

lextract VPN=VA[O .. 51] 
land POFF=VA[52 .• 63] 
1--__ ---.-__ --

v 
/search for VPN \ no 

< in POIR. Found? >-----------> page fault 
\ / 

yes 
v 

IpPN 1S 1ndex 1n PDIR 
Iwhere VPN was found 

,------~-------
v 

/PA [ PPN I POFF 

,-------.-----
v 

laccess byte at PA 

,-------------
3-3 
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3.2.2 Hardware Shortcuts in Address Translation 

The architectural definition of address translation should by 
no lIleans be read as a precise indication of all the steps 
perforllled by hardware in their precise order. 
In order to be cost-effective, hardware "lIlust cheat but not 
get caught". Just as a cache holds recent 1Il9lllory accesses in 
a faster but SIIlaller type of lIlelllory, so can hardware e!Ilploy 
various types of devices to speed up address translation by 
setting aside recent results of address translation. The lIlost 
trivial eXa!Ilple would be locating the eight ODIs. Hardware lIlay 
do this only once after a task switCh and keep the virtual range 
of each ODT for the current task in sOllle internal register. 
This involves a trade-off between the speed of the task switch 
itself and the speed of all subsequent address translations. 
Hardware lIlay also choose to keep recent pairs of 
(logical address, physical address) around, or recent pairs of 
(LOI, aD) and/or recent pairs of (VPN,PPN). 
Any such association of recent pairs that are preSUlllably useful 
in bypassing parts of the address translation algorithlll is 
referred to in this docUlllent by the na!Ile "TLB", short for 
"Translation Look-aside Buffer". 

Address translation is effected through address translation 
tables that are in part task-specific, in part syste!ll-wide. 
Changes in address translation are relatively infrequent, e.g. 
(VPN,PPN) associations becollle outdated only on page swaps, 
(LOI, 00) associations becollle outdated only on task switches and 
on explicit changes to ODTs brought about by the object 
lIlanag9lllent facility in VISION operating systelll software. 
Because these changes are relatively infrequent, and because the 
situations in which they arise are under explicit operating 
systelll software control, it is particularly cost-effective to 
recognize architecturally the existence of sOllle kind of TLB, 
while leaving the exact nature of the TtB to the discretion of 
the hardware iIIlplelllentatron:--

The existence of the TLB is recognized architecturally in VISION 
by requiring operating software to issue explicit instructions 
that warn hardware of the fact that the conditions for address 
translation have changed and that infornation in the TtB lIlay no 
longer be up to date. Address translation look-aside in VISION 
hardware therefore need not be cOlllpletely transparent with 
respect to changes in addressing tables. 
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3.3 Logical to Virtual Address Translation 

Logical to virtual address translation for logical addresses in 
groups one through seven is similar, but not identical, to 
translation of logical addresses in group zero. The differences 
are limited to the May the ODT for the group is located. 
In actual hardMare implementation, even these differences may be 
absorbed in the Mork performed on a task SMitch after Mhich the 
logical to virtual translation is done in the SaAe May for all 
groups. 

3.3.1 Locating the ODT in Virtual Space 

Starting out Mith a logical address: 

012 3 31 32 63 
+---+-------------+------------------+ 
1 G 1 LON LOFF 
+---+-------------+------------------+ 

it is first necessary to locate the ODT for group G in virtual 
space. 

3.3.1.1 Locating the ODT for Group Zero. 

Locating the ODT for group 0 is very simple: the Group 
Descriptor for group 0 (GDO) is kept in a processor register. 
This Group Descriptor includes a Virtual Range that delineates 
ODTO in virtual space. See section 4.5 for more detail. 

3.3.1.2 Locating the ODT for a Group Other than Zero 

Locating the ODT for group G, Mhere G>O, requires accessing 
the TCB of the currently executing task in order to obtain 
the Group Descriptor for group G. The TCB is accessible to 
hardMare through the TCB.VA virtual address; TCB.VA is kept 
in a processor register. 
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In practice, hardMare impl~entations may choose to access 
the TCB once on IEXIT and copy the seven Group Descriptors 
into processor registers. 

3.3.2 Locating the aD for the Logical Object 

Having located the ODT in virtual space through the Group 
Descriptor GD, the Object Descriptor OD of the logical 
object can nOM be found by computing: 

+--------------------+------------------------+ 
VON(from GD) 1 LB(from GD) + 16 * LON 1 

+--------------------+------------------------+ 
virtual address of OD 

This OD can nOM be accessed in virtual space using the procedure 
described in section 3.4. Note: a hardMare implementation may 
choose to cache recent pairs of (LOI, aD). 

+---+------------+-----------------+ 1 G 1 LON 1 LOrr 1 
+---+----1-------+-----------------+ 

I logical address 
1 

I 
ODT 1 

+----+ I 
1 

1 

I +----+----+------------+ 
1 / 1 AR ITYPEI////////////I 
v / +----+----+------------+ 

+----+ ----------/ VON - virt obj nr I 
I OD 1 +----------------------+ 
+----+ ----------\ 1 LB - lOMer bound 1 

\ +----------------------+ 
\ 1 UB - upper bound 

+----------------------+ 

+----+ 
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3.3.3 CONputing the Virtual Offset 

Having located the aD for the logical object, type checks and 
access right checks can nom be perforNed. Softmare Nust be 
inforNed of any violation uncovered in these checks (through 
the trap NechaniSN detailed in chapter 7) 

FroN this aD and the logical offset LOFF, the virtual address 

+----------------+-----------------+ 
VON VOFF 

+----------------+-----------------+ 

can nom be cONputed as: VOFF = LB + LOFF (in mrap-around 32-
bit tmo's cONpleroent arithroetic). Homever, softmare roust be 
alerted of a bounds violation if LB (= VOFF (= UB does not hold. 

3.4 Virtual to Physical Address Translation 

Translating a virtual address (64 bits) to a physical address 
(32 bits) Neans translating a 52-bit virtual page number (VPN) 
into a 20-bit physical page number (PPN) and carrying the 12-
bit page offset (POFF) along, as indicated in the sketch. 

o 51 52 63 
+------------------+---------+ 

VPN POFF 
+------------------+---------+ 

o 19 20 31 
+----------+---------+ 

PPN POFF 
+----------+---------+ 
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3.4.1 Physical Page Directory Search 

The translation of a virtual page number VPN into a physical 
page number PPN Nay give different results over tiNe as pages 
are smapped in and out of physical NeNory. It is the 
responsibility of operating systeN softmare to Naintain the 
page directory PDIR (see section 2.2.3) mith the help of the 
instructions PDINS and PDDEL. The page directory PDIR gives 
the current association of physical pages mith virtual pages. 
For each physical page PPN there is a physical page descriptor 
PPD (see section 2.2.2) that describes the VPN currently 
associated mith it. In principle, it is therefore sufficient 
to do a linear scan over the PDIR looking for a PPD that has 
the correct VPN in it; this identifies the proper PPN or else 
it establishes that no physical page is associated mith this 
VPN and a page fault is thereby indicated. 
Homever, a linear scan mould be unacceptably slom even mhen 
hardmare keeps enough recent pairs (VPN,PPN) around in a TLB 
to produce an excellent hit rate. The entire PDIR mould have 
to be scanned in order to establish, for instance, that the 
virtual page is nowhere in physical NeNOry (page fault trap). 
The VISION architecture therefore defines a hashing teChnique 
in order to speed up the search for the right virtual page 
nUNber and to speed up detecting a page fault condition. 

3.4.2 OVerviem of Hash Table and Hash Chain 

In order to avoid having to scan large parts of the PDIR on 
a virtual page to physical page translation, a hash value 
is cONputed froN the VPN: 

H = hash ( VPN ); 

mhere the hash function "hash" is described in section 3.4.5. 
All PPDs in the PDIR of virtual pages that have the SaNe hash 
value H are chained together and the beginning of the chain 
can be found in the hash table HASH. These chains and the 
hash table HASH are Naintained mith the help of the PDINS and 
PDDEL instructions. 

The number of entries in the HASH table (mhich roust be a pomer 
of tmo) should be at least of the SaNe order as the number of 
entries in the PDIB in order to keep the chains acceptably 
short. The number of entries in the PDrR is deterNined by the 
number of physical pages in the hardmare configuration. 
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Note that by its very nature the pages that make up the PDIR 
itself must never be absent and the entire PDIR must be 
contiguous in physical memory. The VISION architecture 
places the same constraints on the HASH table. Both POIR 
and HASH are located through processor registers HASH.PA and 
POIR.PA that contain the physical address of each table. 

o 51 
+------------------+ 
1 VPN 1 
+-------1----------+ 

1 
v 

+---------+ 
1 hash I 
lalgorithrol 
+----1----+ 

1 

+---------+ 1 HASH table 
1 HASH.PA 1-------1------------->+------------+ 
+---------+ I 1 1 

1 1 1 
1 1 1 
1 +------------+ 

H +------------->1 PPO addr 1------+ hash 
+------------+ 1 bucket 

I 
1 

1 
+------------+ 1 

1 

+----------------------------+ 
I 

+---------+ 1 PDIR 
I PDIR.PA 1-------------1------->+------------+ 
+---------+ 1 I I 

1 +------------+ 
head of +------->IVPNlnext PPDI------+ =====>PPN 
hash chain +------------+ 1 

1 hash 
1 chain 

+---+--------+ 1 
Ivpnl 0 1<-----+ 
+---+--------+ 

+------------+ 

Overview of virtual to physical page translation 
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Note that the only actions ever performed on a 52-bit VPN are: 

a) computing the hash function 

b) comparing for equality against a field in the PPD. 

The latter can be implemented by two 32-bit compares. The VPN 
acts purely as a tag and never participates in 52-bit arithroetic. 

3.4.3 The Hash Table 

The Hash Table is a collection of "hash buckets", each 32 bits 
long. The physical address of the hash bucket is calculated as 

HASH.PA + 4 * H, where H = hash ( VPN ), 

as described in section 3.4.5. 

The format of a hash bucket is: 

o 1 31 
+-+-------------------------------+ 
lSI PPD locator (---- bucket for H. 
+-+-------------------------------+ 

PPD locator: this value is the physical byte address of 
one of the PPDs associated with a virtual page that 
hashes to the value H. There may be more than one 
such PPD, in which case the locator will simply 
point to the head of a linked list; or there may 
be none, in which case the PPO locator will be zero. 
A zero value for the PPD locator will indicate a 
page fault. 

S semaphore bit. Available for use by POINS and POOEL 
to synchronize changes in the HASH and POIR tables 
in a shared-memory multiprocessor system. Outside 
such use, hardware may assume that its value is zero. 

Note: To avoid ambiguity in the definitions shown above, the 
PDIR must reside in the first half of physical address 
space. The PDIR must not start at physical page zero. 
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3.4.4 PPD Format to support Hashing and Related Functions 

Each PPD is a 16-byte entity whose physical address is related 
to the physical page nuMber PPN through the formula 

physical address of PPD = PDIR.PA + 16 * PPN. 

The PPD forNat is detailed below: 

where 

VPN 

o 1 
2 2 2 2 233 
0178901 

+-+----------------+----+---+-+-+-+ 
lSI PPN (20)IMBZ IDBEIRlclDI 
+-+----------------+----+---+-+-+-+ 

VPN - virtual page nuMber (32) I 
+ +---------------+ 

(20)1 MBZ I 
+-----------------+---------------+ 

next PPD locator I 
+---------------------------------+ 

virtual page nuMber. This is the virtual page 
currently associated with the physical page PPN. 
If this field Natches the VPN of the virtual address 
being tranSlated, the right physical page has been 
found. If no Natch occurs, the PPD at the "next PPD 
locator" should be checked for a Natch. 

next PPD locator: a physical byte address used to locate 
the next PPD that contains a virtual page nUNber that 
hashes to the SaNe HASH value as VPN. This field is 
consulted only if the VPN in the current PPD does not 
produce a Natch. If the entry is then found to be 
zero, it means that the end of the chain has been 
encountered, and a page fault trap is indicated. 

PPN physical page nuMber. This field is redundant as it 
can be easily derived frON the physical address of 
the PPD, but it is available for hardware use. 
It is the responsibility of operating systeN software 
to ensure that PPN is at all tiNes consistent with 
the PPD address. 

D dirty bit. Set to one by the processor on each write 
access to the page. To be cleared by operating syste 
software when the page is written out to secondary 
storage. D is not affected by I/O traffic. 
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checkpoint dirty bit. Set to one by the processor on 
each write access to the page. To be cleared by 
operating systeN software. It Nay be used at the 
discretion of the operating systeN. 

reference bit. Set to one by the processor on each 
access to the page. Operating systeN software will 
clear this bit on a periodic basis such that finding 
the reference bit set can be interpreted to Nean that 
the page was referenced recently (either explicitly 
by the progr~ or iNplicitly by certain prefetch 
hardware). R is not affected by I/O. 

DBE debug breakrange enabled. Set to one by operating 
system software whenever the page contains any part 
of the systeN or local breakrange. Hardware bypasses 
the breakrange checks when accessing a page with 
DBE zero. See section 5.3.2 for more detail. 

S seNaphore bit. For hardware use in synchronizing 
write access to the reference and dirty bits in a 
shared-memory Nultiprocessor configuration. Before 
and after such use, S NUSt be zero. 

MBZ must be zero. It is the responsibility of operating 
systeN software never to introduce a non-zero value 
into this entry. Hardware Nay assume the field is 
zero and it need not check this. 

SPECIAL NOTES: 

1) To avoid ambiguity in the above definition, the PDIR Nust 
reside in the first half of physical address space, yet NUst 
not start at physical address zero. The physical address 
PDIR.PA NUSt be a Nultiple of 16. 

2) Software must not access (read or write) the PPDs, but must 
instead rely on special instructions to deal with theN: 

PDDEL - reNove a PPD frON its hash chain 
PDINS - insert a PPD in its hash chain 
TESTREF - read and reset reference bit 

Only a PPD not currently in a hash chain (e.g. after PDDEL 
has extracted it) Nay be accessed by software. 
These restrictions siNplify hardware synchronization. 

3) Shared-NeNory Nultiprocessor iNpleNentations that use 
write-to TLBs Nay use the MBZ field as a seNaphore area in 
order to synchronize writing out dirty and reference bits. 
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3.4.5 The Hash Algorithm 

The purpose of the hash algorithm is to break up the long list 
of physical page descriptors PDIR into a large nu~ber of short 
chains so that, in order to find the physical page corresponding 
to a given virtual page, only the physical page descriptors in a 
single short chain need be scanned. In order to keep the chains 
short, the hash algorithm ~ust succeed at producing different 
hash values for those virtual pages that are likely to be in use 
si~ultaneously. The hash algorit~ used in VISION acco~plishes 
that by producing different hash values for those virtual pages 
that are allocated by the operating syste~ closely together in 
ti~e. The VISION hash algorit~ cannot succeed in doing so 
without so~e ~ini~~ cooperation fro~ operating syste~ software. 
In particular, allocation of virtual ~e~ory is as~ed to be 
done either contiguously within the s~e virtual object or else 
in units of an entire virtual object. The hash algorit~ can be 
defeated by the operating syste~ allocating virtual m~ory in 
2A25 byte slots, for instance. 

The hash algorithm presented here is really a family of hash 
algorithms, parameterized by the single quantity K. It takes 
a virtual page n~ber as input and produces a 32-bit number: 

H[0 .. 31-K] := 0; 
H[32-K .. 31] := hash( VPN ); 

The n~ber of hash buckets in the HASH table ~ust be a power 
of two: 2AK. The HASH table length is therefore 4*2AK bytes. 

The hash algorithm is sketched below. A PASCAL version of the 
hash algorithm is given on the next page. 

+----------------------------------------------------+ 
Virtual Page N~ber (VPN) 

+----------------------------------------------------+ 
0 1 2 3 4 5 
0123456789012345678901234567890123456789012345678901 

1 II II II 1 
1<---11<----------11<----11<----------1 

/ K bits / K bits 
/ / 

/ Field_3 / Field_l 
/ / 

K-~in(20-K,K) ~in(20-K,K) 
bits bits 
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a) Field 1 is defined to go from bit 52-K to bit 51. 

b) Field 2 is divided into two parts. The most significant bits 
are defined to start at bit 32-2*K+~in(K,20-K) and go to bit 
31-K. Note that this part is empty for K<10. 
The least significant bits are defined to start at bit 32 or 
52-2*K, whichever number is the greatest, and go to bit 51-K. 

c) Field_3 is defined to go fro~ bit 32-K to bit 31. 

d) Field 1R is defined to be Field_1 with the bits collected 
in reverse order. 

e) The K-bit hash value is obtained from taking the bit-wise 
exclusive-OR of the fields Field_1R, Field_2 and Field_3. 

Here is the PASCAL definition: 

const K = {value between 5 and 17}; 
type bitfield: array[0 •. 31] of 0 •• 1; 

virtpageno: array[0 .. 51] of 0 •• 1; 
function hash(VPN: virtpageno): bitfield; 
var i,j,~,n: integer; Fl,F2,F3,H: bitfield; 
begin 

j := 51-K; ~:= 31-K; n:= 52-K; 
for i := 31 downto 32-K do 
begin 

F1[i] : = VPN[n]; 
n:=n+1' 

F3[i] : = VPN[ij; 
if j >= 32 
then begin 

F2[i] := VPN[j]; 
j : = j-1; 

end 
else begin 

F2[i] :=VPN[~]; 
~ : = m-l; 

end; 
end; • 
for 1 := 0 to 31-K do H[i] .= 0; 

07/31 

for i '= 32-K to 31 do H[i] .= Fl[i] xor F2[i] xor F3[i]; 
hash := H; 

end {hash}; 
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3.4.6 Page Faults 

The virtual to physical address translation either succeeds in 
finding the physical location corresponding to the virtual 
location, or it fails. Failure gets reported to software as 
a page fault trap. Operating system software is responsible 
for making room in physical memory and bringing in the virtual 
page from secondary storage and returning control so that the 
instruction originally causing the page fault can now make 
progress. It is the responsibility of operating system 
software to maintain data structures that allow it to locate 
virtual pages on secondary storage. It is the responsibility 
of hardware to recover the machine state, on detecting a page 
fault, that allows the current instruction to be restarted 
(or "step-restarted", see chapter 7) transparently to the 
user program after the page fault has been resolved by 
operating system software. 

Certain programs that make up the operating system software 
cannot themselves sustain page faults during their execution 
either for inherently logical reasons (e.g. the driver for the 
paging device must always remain in physical memory), or for 
timing-dependent reasons. Guaranteeing that all virtual pages 
accessed by such operating system software are present in 
physical memory ("resident") is itself the responsibility of 
operating system software. There are no architecturally defined 
data structures that prevent physical pages from being swapped 
out. 
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+---------------------------------------------+----------------+ 
PROCESSOR REGISTERS AND MACHINE STATE CHAPTER 4 

+---------------------------------------------+----------------+ 

This chapter describes the various registers that are available 
for use by Vision software and also the processor registers that 
support the VISION addressing structure. 

Vision offers 16 programmable registers of 32 bits for general 
program use and 8 registers of 64 bits specifically to hold 
logical addresses. VISION's vector processing capability is 
supported through 8 vector registers, each capable of holding up 
to 256 elements, each element being capable of holding a 128-bit 
IEEE floating point number or any smaller data type. 
Various status registers record conditions or modify behavior of 
instruction execution. 

The processor registers described below all exist outside the 
address space. Registers do not have addresses. No "normal­
looking" writes to memory will in fact write to a register. 
All changes to register values are explicit, i.e. through use of 
instructions such as MOVEf/tSP or as side-effects of instruction 
execution as explicitly provided for in chapter 6. 
This allows low-end VISION hardware implementations to implement 
some of the less frequently used processor registers by using 
hardware-reserved memory locations: locations in physical memory 
that are not mapped into virtual or logical address space. 
Chapter 9 provides details on where hardware-reserved memory 
should be located. 

4.1 General/Index Registers 

In Vision mode, software has access to 16 registers KO, Xl, •. , 
K15, each of which is 32-bits wide. These registers can be used 
for general expression evaluation, for passing parameters to 
procedures, for allocation of local variables in a procedure and 
for holding index values in address calCUlations. 
Registers can be used singly, in pairs or quads to hold values 
comprising 32, 64 or 128 bits. 
The registers are not typed. Their contents are interpreted 
according to the type of operation being performed. 
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4.2 Base Registers 

In Vision mode, software has access to 8 registers BO, Bl, •• ,B7, 
each 64 bits wide and capable of holding a logical address. 
Registers B6 and B7 are better known as Q and S, respectively; 
Q and S support stack addressing and the calling mechanism 
described in chapter 5. The base registers can be loaded and 
manipulated as detailed in section 6.2.5. 

4.3 Program Counter 

The Vision program counter is a 64-bit register P. It contains 
a 64-bit logical address that points to an instruction in the 
current code object. The value of P changes as instructions are 
executed; normally, P is incremented to point at the next 
instruction in sequence. Branches and other transfer of control 
instructions will cause P to change explicitly. External events 
such as external interrupts may preempt the currently executing 
program and force execution to continue at a well-defined place. 
Transfers of control other than branches will leave a record of 
the old value of P; this is detailed in chapter 5. 

4.4 Status Registers 

The status registers combine various fields of machine state in 
a convenient and compact form. There are six 32-bit words of 
status, divided into four logical groups: 

1) STATUSA -- The STATUSA register represents the part of 
the machine state that is local to the execution of the 
current code object. STATUSA is shown as an 8-bit 
register left-justified in a 32-bit word. STATUSA[0 •• 7] 
is stored in the procedure marker for an external 
procedure call and restored on the corresponding EXIT. 
Similarly, STATUSA is stored in an interrupt marker on 
an interrupt (external or internal), and restored on the 
corresponding IEXIT. 
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2) SIATUSB -- The SIATUSB register represents the part of 
the ~achine state that is local to a task activation or 
the activation of an interrupt handler. For tasks not 
currently active (suspended by an interrupt or by the STATUSA 
DISP instruction) the value of SIATUSB is stored in the 
interrupt ~arker for that task. SIATUSB is restored from 
the interrupt ~arker on IEXIT (or LAUNCH). SIATUSB is 
initialized to a kno~n value on an external interrupt and 
on entering the dispatcher. 

3) STATUSC -- The STATUSC register represents the part of 
the machine state that is local to a CPU/processor. 
This ~eans that the SIATUSC register is replicated for 
each processor in a shared-memory ~ulti-processor syste~ 
and its values are specific to each processor in that 
syste~. 

4) SIATUSD -- The SIATUSD register represent the ~ost 
global of all status information. This status is shared 
~ong all CPUs/processors in a shared-~e~ory ~ulti­
processor syste~. This ~plies that a change to STATUSD 
must be communicated synchronously to all processors. 

The next page shoros an overviero of all status registers ~ith 
their constituent fields. 
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o 12 3 4 5 6 7 8 
+-+--+---+---+---+---+ +-
!1!XL!SIT!IIP!DBP! !! 
+-+--+---+---+---+---+ +-

012 3 4 5 
1 1 111 
o 1 234 

3 
1 
-+ 

-+ 

3 
1 

+---+---+----+------+---+---+----------------+ 
IPTEIDISplvectorlTCEIXTLI 

+---+---+----+------+---+---+----------------+ 

o 134 
1 1 1 1 1 2 
2 3 4 5 9 0 

2 22 33 
7 89 01 

+-+---+---------+---+---+-----+--------+--+--+ 
I IFPcl TE ICBAICBBI EF ICCI "I 
+-+---+---------+---+---+-----+--------+--+--+ 

o 
22233 
7 8 901 

+------------------------------+--+---+---+--+ 
DDC IXMIICSIDRFIIEI 

+------------------------------+--+---+---+--+ 

o 
1 1 
5 6 

3 
1 

+--------------------+-----------------------+ 
I~ 

+--------------------+-----------------------+ 

o 123 
3 
1 

+-+---+--------------------------------------+ 
I IDRLI REVCODE 
+-+---+--------------------------------------+ 
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4.4.1 STATUSA Register 

4.4.1.1 F0rI11at 

o 12 3 4 5 6 7 8 
3 
1 

+-+--+---+---+---+---+ +- - -+ 
STATUSA 111XLISITIIIPIDBPI I I 

+-+--+---+---+---+---+ +- - -

STATUSA -- Procedure Status 

4.4.1.2 SUmmary 

Field N~e Bit Positions 

XL -
SIT­
IIP­
DBP-

Execution Privilege Level 
Single Instruction Trace 
Instruction In Progress 
Debug Breakpoint Pending 

1-2 
3 
4 
5 

4.4.1.3 XL - Execution Privilege Level 

- - -+ 

This specifies in Mhich of the four protection rings the 
processor is currently executing. Ring (or Level) 0 is 
most privileged and ring 3 is least privileged. 

Change of execution privilege level is accomplished by one 
of three instructions. The CALLX instruction can grant 
extra privilege or leave it the s~e, but Mill never take 
privilege away. The EXIT instruction (or IEXIT) may take 
privilege aMay or leave it the s~e, but Mill never grant 
extra privilege. 

The CALLX instruction deter~ines the privilege level of the 
target code object fro~ the execute access right field in 
the OD for the code object. This field identifies the least 
privileged level at Mhich code Mithin that object ~ay 
execute. Calls to that object auto~atically begin execution 
at that level, or the level of the caller, Mhichever is ~ore 
privileged. 
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The EXIT instruction restores the privilege level of the caller 
if caller and called procedure reside in different code objects. 
It does this by extracting the privilege level of the caller 
from the procedure stack marker after applying a consistency 
check on it. EXIT ~ay never grant the caller ~ore privilege 
than the current privilege level. 

4.4.1.4 SIT -- Single Instruction Trace 

This bit can only be set as a side effect of an external EXIT. 
Yhen this bit is found set at the co~pletion of an instruction, 
a trap is taken. This allows tracing the execution of software 
one instruction at a time. The SIT bit is automatically cleared 
as part of the trap initiation. 

4.4.1.5 lIP -- Instruction In Progress 

07/31 

So~e instructions can be interrupted before they are co~pleted. 
These instructions are co~posed of "steps", as detailed in 
chapter 6. Yhen such an instruction is in fact interrupted, the 
lIP bit is set and certain info~ation is pushed onto the stack. 
Yhen the instruction is re~ed after an IEXIT, finding lIP set 
indicates to hardware that the instruction is being re~ed 
rather than restarted, and hardMare acts accordingly. A similar 
situation arises Mhen a "step-restartable" trap occurs in an 
interruptible instruction. The EXIT instruction that concludes 
the trap handler Mill restore the lIP bit and this indicates to 
hardMare that so~e instruction steps have already been c~pleted. 

4.4.1.6 DBP -- Debug Breakpoint Pending 

DBP is set to one by hardware whenever an instruction modifies 
one of the bytes in the syst~ breakrange or the task breakrange 
(subject to the Debug Ring Level described in section 4.4.4.3). 
If the DBP bit is found set at the completion of an instruction, 
a debug trap is taken. 
The DBP bit is cleared as part of the debug trap initiation. 
See section 4.8 for more detail. 
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4.4.2 STATUSB -- Task/Interrupt Status 

4.4.2.1 Fomat 

012 3 4 5 
1 1 111 
o 1 234 

3 
1 

+---+---+----+------+---+---+----------------+ 
STATUSBl I PTEIDISPlvectorlTCEI XTLI 

+---+---+----+------+---+---+----------------+ 
STATUSB -- Task/Interrupt Status - Privileged 

o 134 
1 1 1 1 1 2 
2 3 4 5 9 0 

2 22 33 
7 89 01 

+-+---+---------+---+---+-----+--------+--+--+ 
STATUSB2 I IFPCI TE I CBAI CBBI EF Icci 

+-+---+---------+---+---+-----+--------+--+--+ 

STATUSB -- Task/Interrupt Status - User Accessible 

4.4.2.2 SUmmary 

Field naJlle 

PTE -- Procedure Trace Enable 
DISP -- Dispatcher Running Flag 
vector-- Vector Register Control 
TCE -- Task Clock Enable 
XTL EXIT threshold level 
FPC -- IEEE Floating Point Control: 

Projective/Affine Mode 
RM - rounding mode 

TE -- Trap enables: 
Floating Point Operations: 

FLDVDZE -- Divide by zero 
FLOVFE -- Overflow 
FLINVE -- Invalid Operation 
FLUNFE -- Underflow 
FLINXE -- Inexact Result 
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Yord Bit Positions 
-------------

B1 3 
B1 4 
B1 5-10 
B1 11 
B1 12-13 

B2 1 
B2 2-3 

B2 4 
B2 5 
B2 6 
B2 7 
B2 8 
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Field naJlle 

CBA 
CBB 
EF 

CC 

Integer Operations: 
INTDVDZE-- Divide by zero 
INTOVFE -- Overflow 

Decimal Operations: 
DECDVDZE-- Divide by zero 
DECOVFE -- Overflow 

Conditional Break Enable, A 
Conditional Break Enable, B 
Exception Flags: 

aVF -- Overflow 
DVDZ -- Divide by zero 
Floating Point Operations: 

FLINV -- Invalid Operation 
FLUNF -- Underflow 
FLINX -- Inexact Result 

Condition Code 

4.4.2.3 PTE -- Procedure Trace Enable 

Yord Bit positions 

B2 9 
B2 10 

B2 11 
B2 12 
B2 13 
B2 14 

B2 15 
B2 16 

B2 17 
B2 18 
B2 19 
B2 28-29 

lJhen PTE has the value one, all procedure calls (CALL, CALLX 
and BRX) will cause a restartable trap, subject to the value 
in the DRL field in STATUSD. 

4.4.2.4 DISP -- Dispatcher Running Flag 

07/31 

DISP is one when the dispatcher is running. The dispatcher runs 
on the bottom of the Interrupt Control Stack. Because DISP is 
part of STATUSB, it gets saved in the Interrupt Marker (and then 
cleared). This makes it possible for IEXIT to determine, as it 
is removing an interrupt marker, whether to return to another 
interrupt handler or whether to resume or restart the dispatcher. 
The DISP bit in the Interrupt Marker must not be modified by 
software. 

4.4.2.5 vector -- vector register status 

The vector capability of the VISION architecture is described 
in section 4.11. 
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4.4.2.6 TCE -- Task Clock Enable 

When this flag is set to one, the task clock will be running. 
This ~eans that the task clock value will be incrementing 
itself at a fixed rate. When TCE is clear, the value of the 
task clock will not change unless explicitly changed by progr~ 
control. See section 7.2. 

4.4.2.7 KIL -- EXIT Threshold Level 

On executing the EXIT instruction, hardware checks to see if 
the execution privilege level is being changed to a privilege 
level less privileged than the value in the KIL field. If so, 
EXIT will instead trap out and transfer control to the INSKIL 
trap handler. See section 5.3.6. 

4.4.2.8 FPC -- IEEE Floating Point Control 

The IEEE floating point standard govens floating point operation 
in Vision ~ode. Refer to that publication for further detail. 

Projective/Affine ~ode: 
0: Projective ~ode 
1: Affine ~ode 
This affects the way infinity is treated. 

Rounding ~ode: 
0: round to nearest unit (breaking ties by rounding to 

even value) 
1: round toward plus infinity 
2: round toward zero 
3: round toward ~inus infinity 

4.4.2.9 TE & EF -- Trap & Exception Flags 

The TE (trap enable) and EF (exception flags) fields are for a 
~ber of conditions which can occur during the execution of an 
instruction which ~ay require special handling by the user 
progr~. Five of these relate to floating point operations 
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and are defined by the IEEE standard. Integer data types follow 
the nor~al rules for 2's co~ple~ent arithmetic whereas decimal 
data types are described in section 6.3. 
When an exception condition occurs, the trap enable bit is 
consulted to dete~ine whether the exception should result in a 
trap. If the trap is disabled, the corresponding exeption flag 
is set. The exception flags act as "sticky bits" that record 
the occurrence of exception conditions at any time during which 
traps were disabled. Hardware never resets the exception flags; 
nor will an exception flag, when set, cause a trap when the trap 
is subsequently re-enabled~ 

4.4.2.10 CBA & CBB -- Condition Break Enable Flags 

The CBA and CBB fields control the operation of the CHECKA and 
CHECKB instruction, respectively. CHECKA causes a trap when CBA 
is found set, and acts as a NOP when CBA is clear. In addition, 
instructions are provided to set or test the value of the CBA 
and eBB fields. 

4.4.2.11 CC -- Condition Code 

The condition code field in the STATUSB registe~ reflects the 
result of the ~ost recent test or co~pare operation. 
The four values of CC are indicated in this document ~ostly 
through mn~onics (CCG,CCE,CCL,CCU) as follows: 

CC ~n~onic stands for: 
-------- --------------------------

0 CCG condition code "greater" 
1 CCL condition code "less" 
2 CCE condition code "equal" 
3 CCU condition code "unordered" 

On a Co~pare instruction, CC is given the value "CCG" if the 
first operand is greater than the second operand. With a Test 
instruction, CC is given the value "CCG" if the first (only) 
operand is greater than zero. Similarly for CCL and CCE. 
CC is given the value CCU only on floating point co~pare or 
floating point test when the two values being co~pared are 
"unordered" with respect to each other according to the IEEE 
floating point standard. 
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So~e instructions other than Tests and Co~pares cause CC to get 
set. These instructions are eKPlicitly designated in chapter 6. 
All other instructions leave the condition code field unaltered. 

4.4.3 STATUSC -- CPU Status 

4.4.3.1 Forl1lat 

o 
22233 
1 8 9 0 1 

+--------------------------+--+---+---+--+ 
STATUSC1 DDC I XM I I CS I DRF I I E I 

+--------------------------+--+---+---+--+ 

o 
1 1 
5 6 

3 
1 

+-------------------+--------------------+ 
STATUSC2 1MB 

+-------------------+--------------------+ 

4.4.3.2 SumlIlary 

Field n~e Yord 

DDC 
XM -­
ICS -­
DRF -­
IE 
1MB --

Dispatcher Disable Count C1 
Execution Mode C1 
On Interrupt Control Stack C1 
Dispatcher Request Flag C1 
Interrupt Enable/Disable C1 
Interrupt Mask Register C2 

4.4.3.3 DDC -- Dispatcher Disable Count 

Bit Positions 

0-27 
28 
29 
30 
31 

16-31 

The value of DOC is incre~ented by the PSDB instruction and 
decre~ented by the PSEB instruction. The function of DDC is to 
~onitor when it is appropriate to enter the dispatcher. As long 
as DOC is non-zero) the dispatcher is not per~itted to run. 
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4.4.3.4 XM -- Excecution Mode 

XM defines the current ~ode of execution. Yhen XM has the value 
zero) hardware executes in Vision ~ode. Yhen XM has the value 
one) hardWare executes in HP3000 ~ode. The value of XM changes 
as a consequence of executing any of the variants of SlJITCH. 
Also) any transfer of control to the Interrupt Control Stack 
fro~ HP3000 ~ode will cause XM to be zero. 

4.4.3.5 ICS -- On the Interrupt Control Stack 

This flag is set to one when execution switches to the Interrupt 
Control StaCk) e.g. on an external interrupt. This flag is 
cleared on an IEXIT that returns control to a task. 

4.4.3.6 DRF -- Dispatcher Request Flag 

This flag is set to one by the DISP instruction if access to 
the dispatcher is t~porarily deferred. In order to enter the 
dispatcher) the following conditions ~ust be s~ultaneously 
satisfied: 

a) STATUSC.DDC 0 
b) STATUSC. XM 0 
c) STATUSC.ICS 0 
d) STATUSC.IE 1 

Yhen DRF is one) any action that causes either condition (a) 
or (b) or (c) or (d) to beco~e satisfied will reex~ine all 
four conditions; if all four are now found satisfied) the 
dispatcher will be entered. 

4.4.3.7 IE & 1MB -- Interrupt Enable/Disable & Mask Register 

The 1MB field deter~ines which external interrupts are allowed 
to alter the flow of control. If IE=O) no interrupts can alter 
flow of control) overriding the value of 1MB. See section 7.2 
for ~ore detail. 
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4.4.4 STATUSD -- Computer Status 

4.4.4.1 Format 

o 123 31 
+-+---+--------------------------+ 

STATUSD I IDRLI REVCODE 
+-+---+--------------------------+ 

4.4.4.2 Summary 

Field naroe 

DRL Debug Ring Level 
REVCODE -- SPU Revision code 

4.4.4.3 DRL -- Debug Ring Level 

Bit positions 

1-2 
3-31 

07/31 

This field defines Mhich execution ring levels are subjected to 
the debug breakrange traps. Specifically, the System Breakrange 
trap and the Task Breakrange trap as Mell as the procedure trace 
trap are enabled only at ring level DRL and less privileged 
rings. Typically, DRL equals 1 in order to alloM I/O to proceed 
at full speed even Mhile debugging at all other privilege levels. 
HOMever, highest privilege code can be debugged too, by setting 
DRL to zero. 

4.4.4.4 REVCODE SPU Revision Code 

This is a unique number assigned at the factory for each SPU or 
version of an SPU which differs significantly from a prior 
version. The most significant 13 bits are unique for each SPU; 
bits 16-31 identify each significant revision of the SPU. 
This is NOT a serial number: it is not unique for each unit. 
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4.5 Group Descriptors 

Address translation of logical addresses to virtual addresses 
requires the hardMare to be able to locate the eight Object 
Descriptor Tables. Eight Group Descriptors (GO) serve to locate 
these ODTs. The Group Descriptor for group zero is kept in a 
processor register; it can be thought of as an extension of the 
STATUSD register. The Group Descriptors for groups one through 
seven exist in the Task Control Block (TCB) of the currently 
executing task. All eight Group Descriptors have the same 
format, Mhich is described beloM. The TCB is located by 
hardMare through the TCB.VA virtual address; TCB.VA is kept in 
a processor register that can be considered as an extension of 
STATUSC. The format of the TCB is described in section 4.7. 

GO: 

I 
LON I 

012 3 31 I 
+---+---------------------------+ V 
I 0 I LON--Iogical object number I 
+---+---------------------------+ 
I VON -- virtual object number I <===> 
+-------------------------------+ 
I LB -- lOMer bound <===> 
+-------------------------------+ 

UB -- upper bound <===> 
+-------------------------------+ 

+----+ 

+----+ \ 
1////1 I 
+----+ I 
I VON I I 
+----+ > OD 
ILB I 
+----+ I 
IUB I 
+----+ / 

+----+ 
ODTO 

07/31 

The last three Mords of the Group Descriptor contain the Virtual 
Range that locates the ODT in virtual space. The first word of 
the Group Descriptor contains the Logical Object Id of an object 
in Group O. This LOl exists for the purpose of allowing certain 
hardMare TLB organizations. 
Operating system software must ensure that the Virtual Range 
contained in the OD identified by LOl is identical to the virtual 
range contained explicitly in the GO. 
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4.6 Virtual address translation registers 

Hardroare must be able to locate the Hash table and the Page 
Directory in physical memory; this is necessary for being able 
to do virtual to physical address translation. 
Troo processor registers serve this purpose; they can be thought 
of as an extension of srAWSD. 

o 19 20 31 
+-----------------------------+------------+ 

HASH.PA Iphysical page number of Hash 10000000000001 
+-----------------------------+------------+ 

o 27 28 31 
+-------------------------------------+----+ 

PDIR.PA page directory locator 100001 
+-------------------------------------+----+ 

HASH.PA contains the physical address of the Hash table; this 
address must be page aligned. 

PDIR.PA contains the physical address of the Page Directory 
PDIR; this address must be aligned on a 16-byte boundary. 
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4.7 Task Control Block 

Hard~are needs a certain aroount of information in order to 
execute the current task. This information is stored in the 
Task Control Block (TCB), located by a register TCB.VA. 
This TCB.VA register can be thought of as an extension of 
srAWSC. TCB.VA must be a multiple of 16. The length of the 
TCB is 176 bytes. Also, the TCB must be memory resident. 

A 64-bit register TCB.LA accompanies TCB.VA; operating system 
soft~are is responsible for ensuring that the logical address 
TCB.LA does in fact translate into the virtual address TCB.VA. 
Moreover, the logical address TCB.LA must have a zero group 
selector. Hardroare implementations are free to use either 
TCB.LA or TCB.VA to locate the TCB. 
A task sroitch is accomplished by Dispatcher softroare through 
simultaneously changing the TCB.VA and TCB.LA registers. 

/TCB.LA 
\TCB.VA ==) 

+4 

+8 
+12 

+16 
+20 
+24 
+28 

+32 

+108 

o 1 2 31 
+--+----+----------------+ 
IXMIShlIPI reserved 
+--+----+ for + 

hardware 
+------------------------+ 
1 TCBK.LA -- logical addrl 
1 of TCB extension 1 
+------------------------+ 

1 
GD1 -- group descriptor 1 

for group 1 1 
1 

+------------------------+ 

+------------------------+ 
+112 1 1 
+116 1 GD7 -- group descriptor 1 
+120 1 for group 7 1 
+124 1 1 

+------------------------+ 
+128 
+132 Task Breakrange 
+136 Descriptor 
+140 

+------------------------+ 
+144 I 
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+------------------------+ \ 
I SC - HP3000 l1lode I 
I Stack Pointer I 
+------------------------+ > HP3000 mode 

CSTX I information 
descriptor I 

+------------------------+ / 
I SN - Vision l1lode I \ 
I Stack Pointer I I 
+------------------------+ I 
I logobjid of VCSA I > Vision l1lode 
+------------------------+ I information 

TRY OFFSET I 
+------------------------+ / 

execution l1lode of the task. On IEXIT to this task, 
execution l1lode STATUSA.XM is set to this value. 

SWIP -- switch in progress. This bit is used by IEXIT when a 
mode switch could not be cOl1lpleted. 

TCBX.LA- The logical address of a TCB extension for use by 
software. 

GDi -- Group Descriptors. The format of a Group Descriptor is 
described in section 4.5. 

Task Breakrange Descriptor. 
This descriptor is described in section 4.9. 

SC -- Logical address of top-of-stack of the HP3000 l1lode 
stack used to initialize S on IEXIT. 

CSTX Descriptor. 
The descriptor locates the CSTX used in HP3000 l1lode. 
Its forl1lat is the Sa!1le as described in section 4.10. 

SN Logical address of top-of-stack of the Vision l1lode 
stack used to initialize S on IEXIT. 

logobjid of VCSA. 
The logical object id of the logical object in use as 
the Vector Context Save Area. See section 4.11. 

TRYOFFSET. 
The stack offset saved by the TRY instruction. 
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4.8 Breakranges (SysteJll and Task) 

07/31 

The VISION architecture supports two breakranges: a SysteJll 
Breakrange and a Task Breakrange. A breakranges involves a 
range of virtual addresses. When properly enabled, the 
breakrange will cause a trap to occur at the cOl1lpletion of any 
instruction that overwrites any byte within the breakrange. 
This debug aid is discussed in more detail in section 5.3. 

The Descr iptor for the SysteJll Breakrange can be thought of as an 
extension of STATUSD: once installed and properly enabled, the 
Systel1l Breakrange will cause a trap whenever any task on any 
processor in a shared-meJllory l1lulti-processor writes to any byte 
within that Breakrange. The Task Breakrange Descriptor can be 
thought of as an extension of STATUSB; it is located in the Task 
Control Block. When properly enabled, the Task Breakrange will 
cause a trap when this particular task writes to any byte within 
this Breakrange. 

A Breakrange Descriptor is a 16-byte descriptor with the fornat 
shown below. 

+-------------------------+ 
I reserved for hardware 
+-------------------------+ 

Breakrange I VON - virtual object nr I 
Descriptor: +-------------------------+ 

L8 - lower bound I 
+-------------------------+ 

UB - upper bound I 
+-------------------------+ 

4.9 Interrupt Control Stack location 

The Interrupt Control Stack (ICS) is the environl1lent in which 
hardware interrupt handlers run. Several trap handlers also 
run on the ICS. This environl1lent is described l1lore fully in 
section 7.6. 
The ICS is a logical object in group 0, When an interrupt is 
acknowledged, Q is l1lade to point to a location on the ICS just 
beyond the Dispatcher Marker (see 7.2), This location is 
called QI. The logical address of QI is kept in a processor 
register that can be thought of as an extension of STATUSC. 
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4.10 CST and DST descriptors 

HP3000 roode requires a Code Segroent Table (CST) as ~ell as a 
Data Segroent Table (DST) to coroplete its addressing environroent. 
Both CST and DST are tables of ODs. These tables are actually 
contained ~ithin the DDT for group zero. Both CST and DST are 
found through processor registers containing 64-bit descriptors 
as indicated belo~: 

012 3 31 
+---+-------------------------------------+ \ 
1 0 1 object number ~here CST/DST starts 1 
+---+-------------------------------------+ > CST or DST 

length of CST/DST in bytes 1 Descriptor 
+-----------------------------------------+ / 

-+- +----+ 

I 
+-----------+ 1 v 

index 1----+ \ 
+-----------+ 1 

length 1----+ 1 CST 
+-----------+ 1 > or 

CST or DST 1 DST 
descriptor I 

v / 

+----+ 
ODTO 
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4.11 Vector Processing 

VISION offers rich support for vector operations in order to 
significantly increase performance on common array and matrix 
operations in technical applications. 
This section should be read in conjunction ~ith section 6.4. 

4.11.1 Vector Registers 

A task can address 8 vector registers VRO, VR1, •. , VR7. Each 
VR consists of N eleroents, numbered 0 through N-1, ~here N is 
an iropleroentation-dependent quantity no greater than 256. 
Each eleroent is 128 bits ~ide, and can contain values of data 
types comprising 32, 64 or 128 bits. 

Not all N elements in a Vector Register need be filled ~ith 
data; soft~are roay load vectors ~ith fe~er eleroents into a VR. 

Vector processing hard~are may support up to 15 banks of eight 
vector registers each. Only one bank is addressable by a task 
at any tiroe. Multiple banks allo~ roultiprogr~ing of tasks 
using vector registers ~ithout excessive performance penalty 
in saving vector register contents on a task ~itch. 

4.11.2 Vector Mask Registers 

A task can address 4 vector roask registers, VMRO, •• ,VMR3. Each 
contains 256 bits. A bit in a vector roask register corresponds 
to an eleroent in a vector register. 
Each vector instruction designates a vector mask register to 
govern execution of that instruction. Elements in the vector 
register corresponding to clear bits in the roask register do not 
participate in the vector instruction; no results are stored in 
the vector register element, the original value of the element 
does not change, and under no circurostance can traps occur for 
that element. 
The values in the mask registers can be created and manipulated 
through special instructions including vector compare. 
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4.11.3 Vector Length Register 

Various means exist for software to let hardware know how many 
elements in a vector register should be regarded as meaningful 
and how many elements should be operated on in a given vee tot 
instruction. 

4.11.4 Vector Context Save Area 

Because vector registers contain a large amount of information, 
it is not desireable to save all this state on an external 
interrupt. Interrupt handlers must therefore refrain from using 
vector instructions. 
Vector Registers (and vector mask registers) are saved either 
eKPlicitly by operating system soft~are or automatically ~hen 
another task executes a vector instruction that uses the same 
vector register bank. Yhen vector registers are saved, they 
are saved on behalf of the task that last used them. Part of 
the task's context includes the Vector Context Save Area (VCSA), 
located through the task's TCB, memory resident, and large 
enough to receive all vector register values. 

4.11.5 Vector Processing: Operation 

Operating system software may allow any task or any number of 
tasks to execute vector instructions. VISION implementations 
may have special purpose hard~are, referred to as a Vector 
Processor (VP), which will improve the performance of the 
vector operations. 

The VP ~ill contain some amount of memory, organized as one or 
more banks. A bank generally contains all of one task's vector 
related context, including vector registers, vector mask 
registers, vector length register, etc. This context is quite 
large, and requires attention in order to maintain fast 
interrupt response, ability to multiprogram, and minimal impact 
on pure scalar tasks. 

A task must be assigned a special region of main memory called 
the Vector Context Save Area (VCSA) before it can execute any 
vector instructions. Additionally, a task must be assigned a 
bank in order to use the VP. A task may be denied access to 
the VP, in ~hich case all of its vector activity occurs through 
its VCSA; this limits the speed of vector instructions to the 
speed of memory access. 
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More than one task may be assigned the same bank. If this occurs, 
hardware is responsible for saving/restoring the context when a 
vector task enters execution and a different task's context is 
in the first task's assigned bank. The hardware will save the 
first task's vector context into its VCSA, and reload the bank 
from the new task's VCSA. 

Note that if a task which does not use the VP (a scalar task) 
starts to run, the interrupted vector task's VP context will be 
protected but remain in the hardware registers. If control 
returns to the same vector task, the VP context switCh will have 
been avoided entirely. If control returns to a different vector 
task which has been assigned the same bank, the context switch 
will occur when the new vector task attempts to execute its 
first vector instruction. 

The vector processor may contain 0 to 15 banks of context. The 
operating system ~ill designate which bank (if any) a task is 
allo~ed to use. A group of tasks assigned the same bank ~ill 
only compete among themselves for that VP context. 

4.11.6 VP Management - Vector Context Save Area 

Use of the vector processor by a task is controlled by six bits 
in STATUSB, altered only by operating system software. Four of 
these bits specify the bank number, and two specify permission 
level. 

If the bank number is not 0, the number specifies which hardware 
bank of VP context is to be used by this task. 

If the bank number is 0, all vector activity takes place through 
the VCSA instead of the vector registers. The hard~are context 
consumed is effectively zero, but all operand/result (including 
VR) accesses proceed at memory speeds. The performance in this 
mode will be degraded, but will normally be faster than equivalent 
scalar code. Through this feature operating system software can 
allo~ a lo~ priority vector task to execute, ~hile reserving 
the vector hardware for some very important task. 

The permission bits must be made non-zero by operating system 
software if a task is to be allowed use of the vector processor. 
Before operating system software grants permission, a portion of 
the VCSA must be locked into memory. This is to: 
a) prevent phantom page faults, 
b) ensure that a place exists in which to save context should 

po~er fail, 
c) provide a place to simulate VRs should the implemented hardWare 

be insufficient. 
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since the VCSA is quite large, levels of permission exist to 
restrict a task to using only certain ranges of precision and 
thus permit operating system software to only lock in a portion 
of the VCSA. See table below. 

Permission 
bits value 

00 
01 

10 

11 

Meaning 

No VP use allowed by this task. 
VP usage restricted to vector data types 

< = 32 bits; hardware assumes that parts 
A & B of the VCSA are locked into 
memory. 

VP usage restricted to <= 64 bits of vector 
da ta; hardware assumes that par ts A, B 
& C of the VCSA are locked into memory. 

VP usage unrestricted; hardware assumes 
the entire VCSA is locked into memory. 
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If insufficient permission has been granted when the task attempts 
to execute a vector processing instruction, the INSVPPERM trap 
occurs. Operating system software will typically lock in the 
additional portion of the VCSA and then redispatch the task. 

If the permission bits are not 0, the VCSA logical object id 
in the TCB identifies the VCSA for that task. The entire VCSA 
is a 1/4 + 8*(VR len*4/1024) page area. (For 128-element VRs, 
this is 4 1/4 pages.) Conceptually, the contents of the VCSA 
at the time of an interrupt are as sketched below. 

Vector Context Save Area 
+------------------------+ 

o Part A 
State Information 

+------------------------+ 
10241 Part B I 

I First 32 bits of each I 
I element of VRO •• VR7 1 
+------------------------+ 

51201 Part C 1 
1 Second 32 bits of each 1 
1 element of VRO .• VR7 1 
+------------------------+ 

92161 Part D I 
I Last 64 bits of each 1 
1 element of VRO .• VR7 1 
+------------------------+ 

17408 1 
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Note that the VCSA is sketched assuming 128 element VRs. 
The State Information in Part A is detailed below: 

State Information 
+-----------------+ 

o VMRO .. VMR3 1 
+-----------------+ 

128 VLR 1 
+-----------------+ 

132 1 VR descriptors 1 
+-----------------+ 

148 information 1 
on partially I 
completed 1 

vector 
operation 1 

+-----------------+ 
1024 1 

Only the portion of a VR save area corresponding to the VR's 
active length is meaningful. Bytes 0-127 of State Information 
contain the VMRs as they exist at the time of interrupt or 
task SlIJitch; bytes 128-131 contain the VLR. Bytes 132-147 
describe the width and active length of each VR. 

A vector instruction may be interrupted before it is complete. 
In this case, information sufficient to transparently resume the 
partially completed operation is stored in bytes 148-1023 of the 
State Information area. 

07/31 

As explained above, when an interrupt occurs the VCSA is not 
immediately updated. Two instructions are available to force 
immediate updating of the VCSA. The first is UVCSA (Update 
Vector Context Save Area). This is a non-privileged instruction, 
and contains a two-bit option field to force saving of either 
VRs, State Information, or both. UVCSA may be used by a trap 
handler to isolate the elements and operation causing the 
vector trap. The second instruction, PUVCSA (Privileged Update 
of Vector Context Save Area) allows specification of the vector 
bank to be saved, independent of the vector bank in use by the 
current task. Operating system software may issue this 
instruction if it is waiting to transfer control to a vector 
task and wishes to minimize that task's startup time. 
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+---------------------------------------------+----------------+ 
MACHINE HODEL CHAPTER 5 

+---------------------------------------------+----------------+ 
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This chapter discusses several topics relevant to the operation 
of Vision JIlode brought together under the heading "JIlachine JIlodel" 
because they contribute to a JIlore coherent picture of the JIlodel 
than might be gleaned from the detailed description of individual 
instructions in chapter 6. 

These topics are: 

a) stack and stack markers 
b) procedure linkage 
c) debug support 
d) list of supported data types 

5.1 The Vision Stack 

The Vision JIlode stack is prilllarily used for procedure linkage, 
paraJlleter passing and allocation of local and teJllporary variables 
for procedures, to the extent that the registers XO .. X15 do not 
suffice for this. The stack is also used as an iIllplied place to 
store things, such as paraJlleters when traps are taken or when 
internal and external interrupts occur. 
The registers Q and S always point to the stack. The upper 32 
bits of Q and S are identical; they identify the current stack 
object. Refer to section 2.3.6. 
The stack is totally word-oriented: the stack object is word­
aligned in virtual address space, and the logical addresses Q 
and S are both at all tillles JIlultiples of four. The length of 
the stack object is a lIlultiple of four as well. 

S points to what is called top of stack. Q points to what is 
called the local stackfraroe. 
S changes under the effect of explicit PUSH and POP instructions 
and their variants (e.g. DUP, EXTEND, DELETE), and iIllplicitly 
on traps and interrupts. 
Q changes only on procedure calls (CALL, CALLX), on procedure 
returns (EXIT), through a MOVEtSP, and iIllplicitly on traps. 
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current stack object 
+-----+-----+-----+-----+ 

storage for 
variables and 
telllporaries 
for 
outer blocks 
of prograJlls 

+-----------------------+ 
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Q ==) I 
I 

local storage I 
for I 
currently I 
active I 
procedure I 

I 
I 

+-----------------------+ 
S ==> I 

SL ==> 

I 
the values in I 
this area are I 
indeterJllinate I 

I 
I 

+-----------------------+ 

The logical address corresponding to the first byte in the stack 
object is denoted by S8; silllilarly, SL denotes the first byte 
beyond the stack object. The following relationship aJIlong these 
registers is always guaranteed: 

S8 <= Q <= S <= SL 

The necessary checks to guarantee this are perforllled when S or Q 
change. The area between Sand SL is indeterminate. This means 
that its contents cannot be predicted. Stack bounds checking is 
1Il0re restrictive than bounds checking on ordinary objects. All 
JIlemory accesses through logical addresses with an LOI equal to 
that of current Q are checked against S as the upper bound rather 
than against SL. The EXTEND instruction will increase S without 
explicitly initializing the area between the previous S and the 
new S; the newly accessible part of the stack will have contents 
that are unpredictable. 
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5.1.1 Procedure Stack Marker 

The procedure stack marker is a 3 * 32 bit entity that is pushed 
on the stack as part of procedure call (CALL, CALLX); at this 
time a new stack frame is created by setting Q to point to the 
area in the stack Lmroediately beyond the marker. The marker 
preserves the information necessary for EXIT to restore the old 
environment, specifically, the old value of Q. 
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5.1.1.2 Local Procedure Marker 

The local procedure call (CALL) never causes the execution level 
to change, nor can it change the current code object. The stack 
marker for a local call can therefore be simpler than for an 
external procedure call: 

I 
+=====================+ 

Q-12 I hardware reserved I 
5.1.1.1 External Procedure Stack Marker +---------------------+ 

External procedure calls (CALLX) push a 3-word marker as shown: 

Sold==> I 
+=========================+ 

Q-12 p[o .• 31J 
+-------+ + 

Q-8 ISTATUSAI P[40 .. 63] 
+-------+-----------------+ 

Q-4 Qold[32 .. 63] 
+=========================+ 

Q= Qnew = Snew = = > I 

The value of P in the marker is the logical address of the 
instruction following the CALLX. The size of code objects is 
restricted to 2**24 bytes so that P[32 .. 39] = O. 
The value of STATUSA contains the privilege level at which the 
caller ran. STATUSA[O] = 1. Bits STATUSA[1 .• 7] will always be 
clear when executing CALLX. 

Traps and external interrupts also push an external procedure 
marker. Here the value of P in the marker is the logical 
address of the instruction that needs to be executed after 
returning from the handler. The lIP bit and the DBP bit in 
STATUSA may be set. 

An SIT value of one must never be pushed as part of STATUSA in 
the external procedure marker. Instead, it may only be set in 
the marker explicitly by software. Such software will use EXIT 
to cause the SIT flag to get set in the calling program. 

5-3 

Q-8 P[32 .• 63] 
+---------------------+ 

Q-4 Qold[32 .• 63] I 
+=====================+ 

Q=Qnew =Snew = = > I I 

Note that EXIT can unambiguously distinguish between a local 
procedure marker and an external procedure marker: (Q-8)[0] 
has the value 0 for a local marker and the value 1 for an 
external marker. The bits P[32 •. 39] are zero. 
Note that both markers occupy the same amount of space. 

5.1.2 I nterrupt Marker 

An interrupt marker is pushed on the stack as part of servlclng 
(acknowledging) an interrupt (external or internal), or when a 
task transfers control to the dispatcher (with the DISP, PSEB or 
ENABLE instruction), or upon executing SUITCH. 
The marker contains the following information (see IEXIT): 

1. the information in an external procedure marker 
2. STATUSB 
3. general registers XO-X15 
4. base registers BO-85 
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S_old ==) I 
+==============+ 

Q-12 I P 
+-------+ + 

Q-8 I STAIUSAI 
+-------+-------

Q-4 I Qold[32 .. 63] I 
+==============+ 

Q ===) I (Bl) I 
+- STAIUSB -+ 

Q+4 I (B2) I 
+--------------+ 

Q+8 I XO 
+--------------+ 

I 
+--------------+ 

Q+68 X15 I 
+--------------+ 

Q+72 I 
+- BO -+ 

Q+76 I 
+--------------+ 
I 

I 
+--------------+ 

Q+112 I 
+- B5 -+ 

Q+116 
+--------------+ 

S ===) I 
(Q+120) 
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5.1.3 Dispatcher Marker 

The Dispatcher is a piece of operating system soft~are that 
selects the next task to run, in preparation for a task ~itch. 
The dispatcher is entered automatically under certain conditions 
carefully controlled by the DISP, PSDB, PSEB, ENABLE and DISABLE 
instructions. The dispatcher code is entered through a special 
procedure marker called the Dispatcher Marker, which is at the 
base of each Interrupt Control Stack (ICS). This marker is 
never removed, in contrast to all other stack markers. Entering 
the Dispatcher is similar but not identical to an EXIT through 
the Dispatcher Marker: Q ~ill not change, S will get set to Q. 

The Dispatcher Marker contains: 

1. Progr~ counter for entry point of Dispatcher 
2. SIAIUSA 

+========================+ 
QI-12 P (entry point 

+-------+ of + 
QI-8 I SIAIUSA I dispatcher) 

+-------+----------------+ 
QI-4 I Qold[32 •• 63]=QI[32 •. 63]I 

+========================+ 
QI ==) 
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Just before the Dispatcher starts running, the IEXIT instruction 
will initialize STAIUSB to the value DispatcherStatusBInit, 
~hich has the following fields: 

Field Value Full name of field 
-----------------------

DISP 1 Dispatcher running flag 
PIE 0 Procedure Trace Enable 
vector 0 vector control 
KIL 3 EXIT threshold level 
FPC 0 IEEE floating point control 
TE 0 Trap Enables (none enabled) 
EF 0 Exception Flags (none detected) 
CBA 0 Conditional Break Enable, A 
CBB 0 Conditional Break Enable, B 
CC 0 Condition Code 
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5.2 Procedure Linkage 

The Vision instruction set provides several forms of procedure 
call. Their detailed description is given in chapter 6. 
The instructions CALL and CALLX both create a new stackframe by 
pushing a procedure marker and then updating Q and S. CALL and 
CALLX differ primarily in the way they arrive at the target 
address. This is detailed in section 5.2.1. They also lay down 
a different marker because EXIT must be able to return to the 
appropriate envirol1lllent in each case. 

A procedure must be wholly contained in a code object; it cannot 
span several code objects. Conversely, a code object may have 
many procedures in it. Procedures within the same code object 
may call each other using the CALL instruction; this is the 
fastest procedure call. Code objects are paged, their maximum 
size is 2A24 bytes; hence there is opportunity to group large 
numbers of procedures into a single code object. The following 
reasons may limit in practice the number of procedures that are 
combined into a single code object: 

a) procedures in a code object run at the same privilege 

b) if a procedure in a code object is recompiled, all of 
the code object must typically be relinked 

c) the procedures in a code object are not protected from 
one another; a procedure may jump in the middle of 
another procedure without being caught 

d) often-used procedures can be put in a separate code 
object and shared among many user programs; this trades 
off space and link time versus CALLX overhead 

Code objects can have multiple external entry points; however, 
this requires the approach outlined in'section 5.2.2. 

5.2.1 Entry Point Evaluation 

The external procedure call CALLX has as its single operand the 
logical object id (LOI) of the target code object. This LOl is 
sufficient to determine the location of the target procedure. 
The LOl uniquely identifies an Object Descriptor (OD) which has 
the format described in section 2.3.2. The first word of this 
OD is included on the next page. 
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01 23 45 6 7 8 
2 33 
9 01 

+--+--+----+-+--------------------+--+ first word of 
IXLIRLITYPElol EPYO IPRI OD of target 
+--+--+----+-+--------------------+--+ of CALLX LOI 

where: 

TYP - should indicate a Vision mode code object 

PR - indicates the prerequisite level: the privilege level 
the caller must already possess before being allowed 
to complete the procedure linkage 

XL - indicates the privilege level at which the target 
procedure will run 

RL - indicates the privilege level required for reading 
the contents of the code object as data 

EPYO - the entry point word offset: indicates the location 
of the starting point of the target procedure, 
expressed as a word offset relative to the start of 
the code object 

The new program counter P is constructed from this information 
as follows: 

P: 

o 
3 3 3 4 
1 2 9 0 

6 66 
1 23 

+---------------------+-----+--------------+--+ 
LOI o EPYO 1001 

+---------------------+-----+--------------+--+ 

5.2.2 Multiple Entry Points in a Code Object 

It is possible to have multiple external entry points per code 
object, but only by duplicating Object Descriptors. This means 
that each external entry point must be associated with a unique 
logical object id. This is not the same as stating that each 
external entry point corresponds to a single code object, for 
these Object Descriptors will share the identical Virtual Range 
contained in their last three words. These procedures can still 
call each other freely using CALL instead of CALLX, thus keeping 
all characteristics of being in a single code object. 
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5.3 Debug SUpport 

The VISION arChitecture is rich in features to support debug of 
software. This section collects these features in one place; 
however, pervasive object bounds checking has already been 
covered in chapter 3 as has checking of access rights. 

5.3.1 Code Breakpoints 

The following instructions are provided and can be inserted into 
the code stream either at cornpile tiNe or at run tiNe: 

a) BREAK 
b) CHECKA 
c) CHECKB 

Each is capable of generating a trap: BREAK unconditionally, 
CHECKA and CHECKB conditionally on the setting of an appropriate 
bit in STATUSB (STATUSB.CBA and STATUSB.CBB respectively). 
Debug software can use these instructions to provide code 
breakpoints, code tracing, etc. 

5.3.2 Breakranges 

The VISION architecture provides two Breakranges that can be 
used to protect an area frorn accidental or roalicious writes and 
to trap any software that changes any data anywhere within the 
Breakrange. The format of these Breakranges is discussed in 
section 4.8. 
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The Systero Breakrange is a Virtual Range kept in a processor 
register and set by a MOVEtSP instruction. Any write within the 
Virtual Range causes a breakrange trap when properly enabled. 
The Task Breakrange is a Virtual Range kept in the Task Control 
Block. Any write by that task within the Virtual Range causes a 
breakrange trap when properly enabled. 
Two ways exist to disable the breakranges and totally eliNinate 
their performance iNpact: 

a) setting the DRL field in STATUSD to a non-zero privilege 
level. This will disable the breakrange for all code at 
level DRL or more privileged. 

b) clearing the "DBE" bit in the PDIR for a particular VPN. 
Only accesses to pages with the DBE bit set are checked 
for breakrange traps. 
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The VISION architecture does not require hardware to run at 
"nomal" speed when accessing an enabled page at an enabled 
privilege level. Software should anticipate some performance 
degradation in this situation. 

5. 3.3 Single I nstruction Trace 

Software can cause hardware to sequence through user code a 
single instruction at a tiNe. This is accoroplished through the 
SIT bit in STATUSA. The only way to set this bit is to roodify 
an external procedure marker and then execute EXIT (or IEXIT). 
EXIT will restore STATUSA with the SIT bit set. This will not 
have any effect until the next instruction has coropleted. Any 
instruction that has SIT set at its beginning will on completion 
transfer control to the naSIT trap handler. As part of the trap 
initiation, SIT will be cleared. In order to deterroine whether 
to take the DBSIT trap, hardware only needs to check the SIT bit 
at the coropletion of an instruction, provided it delays setting 
the SIT bit in an external EXIT so as to avoid trapping out on 
the EXIT instruction itself. 

5.3.4 Procedure Trace 

If the PTE bit in STATUSB is set and the current privilege level 
XL is nuroerically greater (less privileged) than DRL, any 
execution of CALL, CALLX or BRX will cause the restartable trap 
DBCALL to be taken. 

5.3.5 Object Trace 

In the VISION arChitecture, an access rights violation causes a 
restartable trap, cf. chapter 7. This trap can be fashioned by 
software into an object trace capability. Operating systero 
software can roanipulate the access rights in the 00 of an object 
such as to cause access rights violations when code atternpts to 
access the object with current privilege level XL nuroerically 
greater than DRL. Since this trap is recoverable, execution 
can resuroe norroally after the debugger has restored the original 
access rights. The Single Instruction Trace rnechanism can be 
used to regain control at the completion of the instruction in 
order to reinstate the object trace. 
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Code object tracing can be performed in a similar manner; here 
it is the TYPE field in the OD that can be replaced by one 
specifying a data ~bject. This too is a recoverable trap. 

5.3.6 Ring Crossing Trap 

This trap is detailed in chapter 6 under EXIT. The STATUSB. XTL 
(exit threshold level) field can be set to a certain privilege 
level under operating softuare control. This allous delaying a 
certain activity until the task has exited back to sufficiently 
low privilege on its oun accord. Any EXIT (or IEXIT) that drops 
the current privilege level belou (numerically greater) than XTL 
uill cause the Ring Crossing Trap to be taken. 

5.4 List of Supported Data Types 

Vision mode softuare supports various data types. Some are 
supported through a full complement of instructions, some are 
represented by a feu key instructions and/or conversions into 
fully supported data types. A brief summary follows: 

1 data types * bytes 1 integer floating decimal 
========1=================================== 

1 1 1 
212 
4 1 4 4F 4D 
8 1 8 8F 8D 

16 1 16F 16D 

5.4.1 Integers 

Vision mode supports both 32-bit tuo's complement integers and 
64-bit two's complement integers uith full arith11letic capability 
including shifts. 
16-Bit 2's complement integers are supported through conversion 
to and from 32-bit integers and by fast detection of 16-bit 
overflou on 32-bit arith11letic. These conversions are done 
automatically on loading a 16-bit integer into a 32-bit register 
or storing a 32-bit register into a 16-bit memory location. 
8-Bit unsigned integers are supported through conversion to and 
from 32-bit integers. The conversion is implied in loads and 
stores to and from 32-bit registers. 

5-11 

07/31 VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COPY -- HP PRIVATE INFORMATION 

5.4.2 Floating Point 

Vision mode performs floating point operations exactly as 
described in the IEEE floating point standard (OIA Proposed 
Standard for Binary Floating Point Arith11letic", IEEE Task P754). 

The standard allous some features to be defined by implementors. 
These options are defined for Vision mode as folIous: 

Formats: The formats supported are Single, Double, Quad. These 
occupy 32 bits, 64 bits and 128 bits, respectively. 
Quad is defined in the manner provided for "Double 
Extended" by the Standard. 
The 32-bit single precision floating point format has 
a 1-bit sign, an 8-bit biased exponent and a 23-bit 
fraction field. 
The 64-bit double precision floating point format has 
a 1-bit sign, an ii-bit biased exponent and a 52-bit 
fraction field. 
The 128-bit quad precision floating point format has 
a 1-bit sign, a 15-bit biased exponent a 1-bit integer 
part and a 111-bit fraction field. 

Modes: Normalizing mode is provided. All five traps are 
supported, with individual enable/disable. 

Underflou: 
Underflou is aluays checked after rounding. 

Operations: 
Add, subtract, multiply, divide and conversions 
betueen all data types are fully supported by Vision 
instructions. Remainder, square root, integerize, 
as uell as binary -- decimal conversions must be 
supported in softuare. 

5.4.3 Decimal 

Vision supports packed decimal data types of size 4,8 and 16 
bytes. These formats are described in detail in chapter 6.3. 
Vision also supports conversion to and from packed decimal 
data of any number of bytes betueen 1 and 31. External numeric 
decimal formats are supported through conversion to and from 
packed decimal. 
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5.4.4 Logical 

Various bit-wise operations are supported on 32-bit quantities. 
The roost significant bit and the least significant bit of a word 
can be tested individually. 

5.4.5 Bit 

Instructions to set bits and test bits in arbitrary locations in 
an object are provided. 

5.4.6 Fields 

An instruction to deposit a value of an arbitrary number of bits 
into a 32-bit word is provided. 

5.4.7 Byte strings 

Various instructions to support operations on strings of bytes 
are provided: move, compare, translate, translate and test. 
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+---------------------------------------------+----------------+ 
VISION INSTRUCTION SET CHAPTER 6 

+---------------------------------------------+----------------+ 

This chapter describes the instruction set available in Vision 
mode to the programmer who needs to write software in assembly 
language. Vision compilers will compile standard programming 
languages to this instruction set. 

5.1 Preliminaries 

The register P (program counter) contains a 54-bit logical 
address that points to a variable length entity called an 
instruction. The instruction is interpreted by hardware and 
executed; this changes the machine state and/or memory. 
The program counter P is among the machine state that changes 
as a consequence of instruction execution; the default is to 
advance (increment) P to point to the next instruction in 
sequence. 

-------+----+----+----+----+----+-----
I D2 I 02 I 91 I 98 I D4 I 

-------+----+----+----+----+----+-----
P +--------+ 

K3 13 
+--------+ 

In the sketch above, the pattern !D2029198 is the encoding of 
a 32-bit instruction that will be rendered here as: 

ADD4 2, K3 

This instruction instructs the hardware to perform a 4-byte ADD 
(32-bit integer addition) on 2 and K3, leaving the result in X3. 
After executing this instruction, changes will have occurred 
to X3, to P and to the reference bit "R" in the physical page 
descriptor for the page containing the instruction. No other 
machine state nor memory will be affected. In this example, 
the value of X3 will have been incremented by 2; the value of 
P will have been incremented by 4 (to skip over the current 
instruction which occupied 4 bytes). 
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The situation after executing the IADD4" instruction will hence 
be as follows: 

-------+----+----+----+----+----+-----
I D2 I 02 I 91 I 98 I D4 I 

-------+----+----+----+----+----+-----
P +-------+ 

X3 15 
+-------+ 

The Architecture Control Document does not describe how this 
effect on the machine state is achieved; different hardware 
implementations may use quite different means. 
In this chapter only the intended effect of an instruction on 
the machine state and/or memory is given, in a mixture of 
running text and a Pascal-like algorithm. 
Several aspects of instruction execution are so pervasive that 
they ~ill be described once rather than repeatedly for each 
instruction. 
The most important of these is the way operands are dealt with. 
Operands are described in section 6.1.1 and their encoding is 
dealt with in sections 6.1.2 and 6.1.3. 
Other such pervasive actions are: 

incrementing the proirarn counter at the end of executing 
an instruction 

fielding external interrupts at the end of executing 
an instruction 

detecting page fault on fetching the instruction 
detecting page fault on fetching operands 
setting dirty and reference bits as part of accessing 

memory 
serving debug traps at the end of an instruction that 

write into a breakrangej 
checking access rights/bounds violation on any memory 

access 
trapping on a mi~atch of operand and operand attribute 

Several of these pervasive actions involve reporting unusual 
or illegal conditions; refer to section 6.1.8 for more detail. 

6-2 

07/31 



VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COPY -- HP PRIVATE INFORMATION 

6. 1. 1 Operands 

In the previous eXaIllple, "ADD4 2, X3" is an instruction with 
two operands. The first operand, "2" is called a li teral, or 
a literal operand. This Neans that the value of the operand 
can be found right there in the instruction itself. 
The second operand, "X3" is called a register operand. The 
value of this operand is the value currently in the X3 register. 
The operation called for by the instruction, "ADD4", is an 
addition; this involves storing the result sONewhere. The 
description for "ADD4" specifies that the result be stored back 
into the second operand. This Neans that X3 is not only used 
to obtain one of the values to be added together, X3 is also 
designated as the destination for the result. 
Note that a register can be a destination for a result, but a 
literal cannot: the instruction itself Nust not be changed as 
a consequence of instruction execution. 
There is a third type of operand, called NeNory operand, which 
will be detailed in section 6.1.1.3. 

In general, a two-operand instruction such as "CMP4" (coNpare) 
can have any cONbination of operand types: 

CMP4 literal, literal 
CMP4 literal, register 
CMP4 literal, NeNOry 
CMP4 register, literal 
CMP4 register, register 
CMP4 register, NeNory 
CMP4 NeNOry, literal 
CMP4 NeNory, register 
CMP4 NeNory, NeNory 

Each instruction, such as ADD4, deterNines what cONbinations 
of operand types is legal. This is done through attributes 
as described in section 6.1.5. Illegal cONbinations are only 
illegal because of the logic of the situation, such as the 
inadNissibility of storing into a literal. 

The encoding of instructions and their operands is orthogonal, 
as detailed in section 6.1.2. This Neans that the encoding 
places no restrictions on the selection of operand types. 
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6.1.1.1 Register Operands 

Registers XO •• X15 are 32-bit entities each. They can be used 
singly, in pairs, or in quads. A pair of registers can be 
used as a single 64-bit operand, as follows: 

singly 0 1 2 •• •• 31 0 1 2 •• 31 
+-----------------------+ +-----------------------+ 

X3 I I X4 
+-----------------------+ +-----------------------+ 

paired 0 1 2 .• 
(x3Ix4) 

31 32 33 •• 63 

Register pairs always involve consecutive registers xi and 
Xi+1; register X15 can fOrN a pair with XO. Register pairs are 
encoded in an instruction by encoding the first register in the 
pair. 

Register quads can be used to fOrN a single 128-bit operand. 
Such a quad always involves consecutive registers Xi, Xi+l, Xi+2 
and Xi+3; again, register numbers wrap around, such that XO 
CONes after X15. A register quad is encoded in an instruction 
by encoding its first register. 

A (single) register can also be used to hold operands SNa11er 
than 32 bits. Sections 6.1.6 and 6.1.7 go into Nore detail. 

6.1.1.2 Literal Operands 

Literal Operands of up to 32 bits long can be encoded in an 
instruction. Yhen used in instructions that involve data types 
bigger than 32 bits, such a literal value will be extended to 
the right size by replicating the "left-Nost" (Nost-significant) 
bit. If the literal represents a two's cONpleNent integer this 
corresponds to sign extension. If the literal is anything else, 
this Nay not correspond to slgn extension. Literal processing 
in the VISION architecture does not depend on the data type. 
Yhen used in instructions that involve data types SNaller than 
32 bits, the literal value will be left-truncated to the desired 
number of bits without overflow indication. 
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6.1.1.3 Memory Operands 

Memory operands are operands that have a logical address. 
This logical address is found in one of the base registers 
BO .• B7 (B6 is better knomn as Qj B7 as S) and modified through 
adding an indeK and/or a displacement. The rules for address 
arithmetic on memory operands are detailed belom. In any case, 
the result mill be a logical address, called the effective 
logical address. The use of this effective logical address is 
under control of the instruction. 

Typically, the effective logical address is used in a memory 
access. For example, 

ADD4 Q, 84 
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mill use the address in base register Q to read a 4-byte value 
from memory in order to add this to the 4-byte value read from 
memory at the logical address in 84. The result of the addition 
mill be mritten back as a 4-byte value to memory at the logical 
address in B4. 

The effective logical address is occasionally needed for other 
purposes. During string moves, the logical addresses of source 
and target areas are incremented such as to sweep through the 
areas in memory. In the MOVEADR instruction, the effective 
logical address of the first operand is itself the value stored 
in the second operand; thus making the address arithmetic logic 
available to softmare, e.g. in building reference parameters. 
These other uses are the ones where register operands are not 
suitable; registers cannot be addressed. The set of registers 
XO .. X15 eKist outside logical address space. 

Base register operands might be regarded as a final may to 
use mhat looks like a memory operand. See section 6.1.1.3.2. 
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6.1.1.3.1 Computing the effective logical address 

A memory operand designates a base register, a displacement 
and an optional indeK register. The base register is one of 
80 .• 85, Q, S; the indeK register is one of XO .• X15 and the 
displacement is much like a literal in that it is contained 
in the instruction itself. The displacement is up to 32 bits 
in length. 

The designated base register contains a logical object id and 
a logical offset. The effective logical address will have the 
same logical object id as the designated base register: the 
address computation does not carry into the object portion of 
the base register. Effective logical address computation 
consists of the tmo's complement addition of the 32-bit logical 
offset of the base register, the 32-bit displacement and the 
32-bit indeK (if present) and ignoring overflom and/or carry. 

Note that this alloms implementations to perform the additions 
in any order. 

6.1.1.3.2 Base register operands 

Several instructions expect a base register as an operand. 
This is indicated through the "b" attribute as described in 
section 6.1.5. A base register operand is encoded like a 
memory operand; but no memory access is implied and the result 
of the effective address computation, if performed at all, is 
irrelevant. For a base register operand, the only relevant 
field is the base register field in the encoding for the memory 
operand. 
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6.1.2 Instruction Encoding 

Instructions consist of an opcode and a list of descriptors for 
each operand. 
The opcode identifies uniquely which operation to perform, the 
data type involved and the number of operands. 

The Vision instruction set is "operand-Plodular": that is, each 
operand individually and independently can be chosen to be a 
register, a literal or a PlePlory operand. 
The encoding scheme presented here is such that hardware can 
efficiently decode and execute instructions, code generators 
can conveniently ePlit Vision object code in this fOrPlat, and 
the scheme is reasonably space efficient. 

In the basic schePle instructions are Plultiples of 4 bytes in 
length and word-aligned in logical address space (also in 
virtual address space). This schePle is described in section 
6.1.2.1. A variant of this schePle allows denser packing of 
instructions; it is described in section 6.1. 2. 2. 

6.1.2.1 Basic instruction encoding scheme 

Opcodes are encoded in 8 bits. An operand descriptor consists 
of an ii-bit operand specifier OPSPEC optionally accoPlpanied 
by a 32-bit operand cOPlpletion COHPL. The cOPlpletion is used 
when the 11 bits of the operand specifier do not suffice to 
uniquely deterPline the operandi these cases correspond to the 
first 3 bits of the operand specifier OPSPEC[0 •• 2] being zero. 
Operands are encoded in pairs; if the instruction has an odd 
number of operands, an additional dummy operand (e.g. literal 
zero) is specified. 

The sketch below shows an instruction with 4 operands. Note 
that the first two bits of the instruction words are both one 
in order to identify that the basic fOrPlat is used. Note also 
that the 8-bit OPCODE is found by concatenating bits 2 •. 4 and 
bits 16 •• 20 of the first instruction word. The address of 
the instruction (e.g. when used as a branch target) is the 
address of the first byte of the first word of the instruction. 
Note that, in this fOrPlat, the instruction address is a Plultiple 
of four. 
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123 
01 234 56789012345 67890 12345678901 

+--+----+-----------+-----+-----------+ 
P ==> 11110PC I OPSPECl I-ODE I OPSPEC2 

+--+----+-----------+-----+-----------+ 
(2) (3) (11) (5) (11) 

+-------+-----------+-----+-----------+ 
P+4==> COMPLl (only if OPSPEC1[0 .• 2]=0) 

+-------+-----~-----+-----+-----------+ 

+-------+-----------+-----+-----------+ 
P+8==> COHPL2 (only if OPSPEC2[O •• 2]=O) (at P+4 if 

+-------+-----------+-----+-----------+ COMPLi absent) 

+--+----+-----------+-----+-----------+ (at P+8 if 

07/31 

P+12=> Plbi I OPSPEC3 I Plb1 I OPSPEC4 COMPLl or COHPL2 

P+16=> 

P+20=> 

+--+----+-----------+-----+-----------+ absent; at P+4 
if both absent) 

+-------------------------------------+ 
COMPL3 (only if OPSPEC3[0 .• 2]=O) (etc. ) 

+-------------------------------------+ 

+-------------------------------------+ 
COHPL4 (only if OPSPEC4[0 .. 2]=0) 

+-------------------------------------+ 

Note: Plbl (Plust be ones) denotes a field that should consist 
of all ones. It is the responsibility of software to 
ensure this; hardware implementations may assume ones 
in these fields without having to check this. 
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6.1.2.2 Dense Instruction Encoding Scheme 

This is a variant of the basic encoding scheme that allows some 
instructions to be packed two per word. 
A subset of 24 instructions are candidates for this more densely 
packed scheroe. These instructions are such that OPCODE[O] and 
OPCODE[l] are not both one. Instructions in this subset are all 
single operand instructions. 
If two consecutive instructions are both in this subset, the 
pair qualifies. For such a pair, the sequence 

OPCODEa OPERANDa OPCODEb OPERANDb; 

can be encoded as: 

123 
01234 56789012345 67890 12345678901 

+-----+-----------+-----+-----------+ 
I opa I OPSPECa I opb I OPSPECb I 
+-----+-----------+-----+-----------+ 

(5) (11) (5) (11) 

+-----+-----------+-----+-----------+ 
COMPLa (if OPSPECa[0 •. 2]=0) 

+-----+-----------+-----+-----------+ 
+-----+-----------+-----+-----------+ 

COMPLb (if OPSPECb[0 •• 2]=0) 
+-----+-----------+-----+-----------+ 

II 
II words of 
II increasing 
I I address in the 
I I code strearo 
\I 

Note 1: Opa=OPCODEa[3 .• 7] and opb=OPCODEb[3 .• 7]. 
(i.e. OPCODEa = lEO + opa; OPCODEb = lEO + opb) 

Note 2: Bits 0 and 1 of the first instruction word in this 
packed forroat are never both one, so the two formats 
can be distinguished. 

Note 3: The second instruction in such a pair can be a branch 
target. The P-value corresponding to the second 
instruction in such a pair is taken to be the address 
of the byte containing "opb"; this is on an even byte 
this is on an even byte boundary. All branch targets 
will be even byte addresses. 
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6.1.2.3 Secondary Instruction Set Encoding 

A few of the 8-bit opcodes act as an escape to a secondary 
instruction set. The opcode "SYS" is one of these. 
Most operating system support instructions, including the I/O 
instruction sets, are in this secondary instruction set. 
This section describes their encoding. The instruction "PDDEL" 
(delete from page directory) will serve as an exarople. 
PDDEL is in the secondary instruction set for "SYS". It has a 
single operand "ppn". In the opcode assignment chart PDDEL is 
listed as having a secondary opcode of 109 (hexadecimal) or 9. 

The instruction: 

PDDEL ppn 

is encoded as if it were: 

SYS 9, ppn 

with the "g" encoded as a short literal (see section 6.1.3.11. 
In other words, the secondary opcode is treated as an additional 
literal operand of the primary escape opcode. Implementations 
may differ in their results if the secondary opcode is encoded 
as an operand other than a short literal. 

6.1.2.4 Code Bounds Violations 

The object identified by P is called the current code object. 
PB denotes the first byte of the current code object; PL 
denotes the first byte beyond the current code object; both are 
multiples of four. Hardware checks P against PB and PL on all 
transfers of control. Hardware may also check P against PL 
when executing instructions not involving transfer of control. 
The effect of executing an instruction that starts within the 
current code object but has completion words that fall outside 
of it may differ across implementations. 

6-10 
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6.1.3 Operand descriptors 

An operand descriptor consists of an 11-bit operand specifier 
OPSPEC accompanied by a 32-bit operand completion COHPL when 
OPSPEC[0 .. 2]=000. The formats of the operand specifiers are 
detailed in the sections below. ("mbz" means "must be zero"; 
hardware may assume an mbz field to be zero without having to 
check this.) 

6.1.3.1 Short literal 

The value of the operand is obtained 
from the OPSPEC itself, through sign­
extension of the 8-bit literal field. 

6.1.3.2 Long literal 

The value of the operand is obtained 
from the 32-bit COHPL. For data 
types > 4 bytes this value is then 
sign-extended. 

6.1.3.3 Register operand 

The operand is the designated index 
register. For data types> 4 bytes, 
a pair or quadruple of consecutive 
registers is designated. 

1 
o 123 4 5 678 9 0 

+-+-+-+-+-+-+-+-+-+-+-+ 
10 1 01 literal 
+-+-+-+-+-+-+-+-+-+-+-+ 

1 
o 123 4 5 678 9 0 

+-+-+-+-+-+-+-+-+-+-+-+ 
10 0 0 1 11 mbz 
+-+-+-+-+-+-+-+-+-+-+-+ 

1 
01234 5 618 9 0 

+-+-+-+-+-+-+-+-+-+-+-+ 
10 0 1 11 Xj I mbz I 
+-+-+-+-+-+-+-+-+-+-+-+ 

6.1.3.4 Memory operand (base+short word displacement) 
1 

o 1 2 3 4 5 618 9 0 
The operand is in memory. The logical +-+-+-+-+-+-+-+-+-+-+-+ 
address is given by a base register 111 IJORDDISPL IBASEil 
to which is added hlORDDISPL*4. +-+-+-+-+-+-+-+-+-+-+-+ 
Note that IJORDDISPL is zero-extended. 
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6.1.3.5 Memory operand (base-short word displacement) 
1 

o 1 2 3 4 5 678 9 0 
The operand is in memory. Its logical +-+-+-+-+-+-+-+-+-+-+-+ 
address is given by a base register 10 1 11hlORDDISPLIBASEil 
to which is added the one-extended +-+-+-+-+-+-+-+-+-+-+-+ 
IJORDDISPL*4. 

6.1.3.6 Memory operand (base+long displacement) 
1 

o 1 2 3 4 5 618 9 0 
The operand is in memory. Its logical +-+-+-+-+-+-+-+-+-+-+-+ 
address is given by a base register 10 0 0 1 01 mbz IBASEil 
to which is added the two's complement +-+-+-+-+-+-+-+-+-+-+-+ 
byte displacement found in the 32-bit 
COHPL. 

6.1.3.7 Memory operand (base+index) 

The operand is in memory. Its logical 
address is given by a base register 
to which is added the two's complement 
32-bit value found in the designated 
index register. 

1 
o 1 2 3 4 5 618 9 0 

+-+-+-+-+-+-+-+-+-+-+-+ 
10 0 1 01 Xj I BASEil 
+-+-+-+-+-+-+-+-+-+-+-+ 

6.1.3.8 Memory operand (base+index+displacement) 

The operand is in memory. Its logical 
address is given by a base register 
to which is added the two's complement 
32-bit value found in the designated 
index register and also the two's 
complement 32-bit displacement value 
found in the 32-bit COMPL in the 
instruction itself. 

1 
o 1 2 3 4 5 678 9 0 

+-+-+-+-+-+-+-+-+-+-+-+ 
10 0 0 01 Xj IBASEil 
+-+-+-+-+-+-+-+-+-+-+-+ 

6-11 6-12 
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6.1.4 Opcode Assignments 

The follo~ing chart sho~s the association of opcodes ~ith the 
instruction name (~ne~onic). The 8-bit encoding of the opcode 
is found by adding the hexadec~al ~ber in the ro~ of the 
instruction to the hexadec~al nu~ber in its col~n. 

OPCODE 
+!OO +!01 +!02 +!03 +!04 +!05 +!06 

100 ERROR Nap EXIT SEXIT TESTA TESTB TESTOV 
!08 * * * * PSEB PSDB DISP 
! 10 DISABLE ENABLE INTERRUPT UNTRY EXTEND DELETE CHECKA 
! 18 TESTSTRI P* * * * BRX * 
!20 * * QUAD4 * POP8 * * 
!28 PUSHl PUSH2 PUSH8 * TESTDOlJN UP DOlJN 
!30 POP1 POP2 * * * TEST REF * 
!38 * TEST2 TEST8 TEST4F TEST4D TEST8D TESTaF 
!40 AND4 * * MPY4F MPY8 * MPY8F 
!48 NOT4 * DIV4 DIV4F DIva * DIV8F 
!50 OR4 REM4 NEG4 NEG4F NEG8 REM8 NEG8F 
!58 XOR4 MOD4 ABS4 ABS4F ABS8 MOD8 ABS8F 
160 CMPl CMP2 CMP4 CMP4F CMP8 BCMP8 CMP8F 
!68 MOVEl MOVE2 MOVE4 * MOVE8 BSET8 * 
!70 TESTBIT ISC42 ADD4 ADD4F ADD8 BGET4 ADD8F 
!78 * MPY4 SUB4 SUB4F SUB8 BSET4 SUB8F 
!80 MOVEADR BMOVEADR* * * * * 
!88 * * MOVEfSP4 MOVEfSP8 TESTSEMA* * 
!90 * * MOVEtSP4 MOVEtSP8 MOVESEMA* * 
!98 CHECKLO CHECKHI DUP OVPUNCH CVID CMP4D CMP8D 
!AO LSL4 ASL4 BCMP4 GETSIGN CVDI ADD4D ADDaD 
!A8 LSR4 ASR4 BADD4 VALN CVAD SUB4D SUB8D 
!BO LSL8 ASL8 BSUB4 VALD CVDA MPY4D MPY8D 
!B8 LSR8 ASR8 * * * DIV4D DIV8D 
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+!07 
BREAK 
TRY 
CHECKB 
* 
POP16 
PUSH16 
TEST16D 
TEST16F 
MPY16F 
DIV16F 
NEG16F 
ABS16F 
CMP16F 
MOVE16 
ADD16F 
SUB16F 
* 
* 
* 
CMP16D 
ADD16D 
SUB16D 
MPY16D 
DIV16D 

!CO PROBE * MOVEBIT MOVEC SRD MOVED MOVEBLR CMPB 
!C8 DPF * REP CMPC SLD TRANSL MOVEBRL CMPT 
!DO POLY4F POLY8F POLY16F SCANUNTIL* * * * 
!D8 * * * * * VECTOR SYS 

@!EO BRG BRGE BRGL BRNU PUSH4 PUSHADR POP4 
@!E8 BRGU BRNL BRNE BR TESTLSB TESTl TEST4 
@!FO BRN BRE BRL BRLE CALL CALLX * 

!F8 BRU BREU BRLU BRNG * * * 

Note 1: the ro~s lIlarked ~ith "@" contain the instructions that 
can be packed t~o per ~ord. 

Note 2: the instructions VECTOR and SYS are escapes to a 
secondary set of opcodes. 
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CONVERT 
BPOP8 
BTEST8 
BREAK 
ERROR 
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The follo~ing chart sho~s opcode assignments for instructions in 
the secondary instruction set in the escape group for "SYS". 

SYS 
OPCODE 

+!OO +!01 +!02 +!03 +!04 +!05 +!06 +!07 
!OO IEXIT SIJITCH * RSlJITCH IDLE STOP * * 
108 PDINS PDDEL SYNCOD GROIdGDO * * * * 
! 10 SYNCTCB SYNCIB CVLAtVA HASH CVV A tPP LAUNCH * * 
!18 * * * * * * * * 

*!20 laId lOR laC * * * * * 
!28 * * * * * * * * 
!30 * * * * * * * * 

$138 IFC IdCMD lJBYTE RBYTE * * * * 
$140 CHNOP RCL PRD PDA PAR RDP lJDP RIS 
$!48 CIS SIS * * * * * * 

!50 * * * * * * * * 
! 58 MOVEtCSP* * * * * * * 
--- * * * * * * * * 
!Fa * * * * * * * * 

Note 1: the I/O instructions in the ro~s lIlarked "I" are defined 
for MPB-based iIllpl~entations. On any other 
~plelllentation these instructions ~ill cause a trap. 

Note 2: the I/O instructions in the rOTlJs ~arked "$" are defined 
for PICMB-based ~plelllentations. On any other 
iIllplelllentation these instructions ~ill cause a trap. 
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The chart given belom shoms the association betmeen vector 
instructions and their opcodes. All these are secondary 
opcodes in the "VECTOR" escape group. 

VECTOR 
OPCODE 

+100 +101 +102 +103 +104 +!05 +106 +107 
100 VMOVE2* VMOVE4 * VMOVE8 * VMOVE16 * 
108 VABS * VABS4 VABS4F VABS8 VABS8F * VABS16F 
110 * * VNEG4 VNEG4F VNEG8 VNEGSF * VNEG16F 
118 * * VLSL4 * VLSL8 * * * 
120 * * VLSR4 * VLSR8 * * * 
128 * * VASL4 * VASL8 * * * 
130 * * VASR4 * VASR8 * * * 
138 * * * * * * * * 
140 * * * * * * * * 
148 * * * * * * * * 
150 * * VCMPRS4 * VCMPRS8 * VCMPRS16* 
158 * * VEXPND4 * VEXPND8 * VEXPNDl6* 
160 * * VACC4 VACC4F VACC8 VACC8F * VACC16F 
!68 * * * VACCD4F * VACCD8F * * 
170 * * VMAXL4 VMAXL4F VMAXL8 VMAXL8F * VMAXL16F 
!78 * * VMINL4 VMINL4F VMINL8 VMINL8F * VMINL16F 
180 * * VADD4 VADD4F VADD8 VADD8F * VADD16F 
!88 * * VSUB4 VSUB4F VSUB8 VSUB8F * VSUB16F 
190 * * VMPY4 VMPY4F VMPY8 VMPY8F * VMPY16F 
198 * * VDIV4 VDIV4F VDIV4F VDIV8F * VDIV16F 
lAO * * VAND4 VOR4 VAND8 VOR8 * * 
lA8 * * VXOR4 * VXOR8 * * * 
lBO * * VGATH4 VSCAT4 VGATH8 VSCAT8 VGATH16 VSCAT16 
lB8 * * VEXT4 VINS4 VEXT8 VINS8 VEXT16 VINS16 
!CO * * VREM4 * VREM8 * * * 
!C8 * * VMOD4 * VMOD8 * * * 
100 * * VCMP4 VCMP4F VCMP8 VCMP8F * VCMP16F 
lD8 * * * * * * * * 
! EO CLRMR STMR LDMR MRNOT MRAND MROR MRXOR * 
IE8 LDVLR STVLR RVLRT * * * * * 
!FO UVCSA PUVCSAIVB LVB VINVAL * * * 
!F8 * * * * * * VCONVERT* 
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6.1.5 Attributes 

Attributes can be associated mith operands or mith instructions. 

6.1.5.1 Operand Attributes 

Each instruction has an i.JIlplied nuJIlber of operands and for each 
operand of the instruction there is an i.JIlplied attribute. 
For eKarople, section 6.2.2 shoms the ADD4 instruction in the 
folloming may: 

ADD4 term.r4, sum.rm4 

Here" tem" and "SUIll" are lIlerely sy!llbolic names for the tmo 
operands; ".r4" and ".rm4" are the operand attributes. 
These attributes are cOJllposed of individual ele!llents like "r", 
"m", and "4". 

The "r" attribute indicates that the operand lIlust allom reading 
frolll; hence it can be a literal, a register or a lIle!llory operand 
mith appropriate read access rights. 

The "m" attribute indicates that the operand lIlust allom mriting 
to; hence it lIlust not be a literal, but lIlust be a register or a 
lIle!llory operand with appropriate write access rights. 

The "4" attribute indicates that the operand is a 4-byte entity; 
this has obvious iIIlplications for lIle!llory operands mith respect 
to lIlelllory access and bounds checking. 

operand I stands I 
attribute I for: I LITERAL REGISTER MEMORY 
----------+--------+---------+----------+----------------

r I read ok ok 
m I mrite illegal ok 
III I lIlelllory illegal illegal 
b I base illegal illegal 
c I code illegal illegal 
v I vector (1) (1) 
1 I 1-byte (2) (2) 
2 I 2-byte (2) (2) 
4 I 4-byte (2) (2) 
8 I 8-byte (2) (2) 

16 I 16-byte (2) (2) 

Notes: (1): 
(2): 

see section 6.4. 
see sections 6.1.6 and 6.1.7. 
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check OD.TYP&AR 
check 00. TYP&AR 

ok 
ok 

if OD.TYP=code 
(1) 

check ml OD.UB 
check ml OD.UB-l 
check wi OD.UB-3 
check wi OD.UB-7 
check wi OD.UB-15 
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5.1.5.2 Instruction Attributes 

Instruction attributes include the data type of the operation 
to be perfor~ed. For example, in: 

ADD4F X3, X5 

the suffix "4F" indicates that addition is to be perfomed on a 
4-byte Floating point number according to the rules of floating 
point arithmetic on 32-bit numbers. 

A list of data types follohlS: 

instructionl 
attribute I 

interpretation 

-----------+----------------------------------------------------
1 8-bit unsigned integer, or any i-byte entity 
2 16-bit thlO'S comple~ent integer/any 2-byte entity 

4 
8 

16 

4F 
8F 

16F 

4D 
8D 

16D 

32-bit thlO'S complement integer/any 4-byte entity 
54-bit thlO'S co~plement integer/any 8-byte entity 

128-bit entity of any type 

32-bit IEEE floating point 
64-bit IEEE floating point 

128-bit IEEE floating point 

32-bit packed decimal 
54-bit packed deci~al 

128-bit packed decimal 
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A source is a value derived from an operand that is of the right 
size to be used in the instruction. This section ~akes explicit 
the actions to be performed on read operands to turn them into 
a source. For example, in the instruction: 

ADD8 1, K3 

the literal "1" is sign-extended to form a 54-bit source; the 
register X3 is paired hlith the register K4 to for~ a 54-bit 
register pair acting as a 54-bit source; both 54-bit nu~bers 
are then added together in thlo's complement arithmetic. (The 
result is then stored according to the rules in section 5.1.7.) 

The follohling chart makes this all explicIt. 

source (in bytes) 
operand descr. 1 2 4 8 16 
---------------+-----------------------------------------------
short literal as is SE15 SE32 SE64 SE128 

long literal TR8 TR16 as is SE64 SE128 

register opnd TR8 TR16 as is pair quad 

memory operand Rl R2 R4 R8 R16 

hlhere: 

SEn = sign-extend to n bits. This alhlays means replicating the 
IOhlest numbered bit regardless of data type. 

TRn truncate. This alhlays means discarding all but the n 
rightmost bits. 

pair pair hlith follohling register. KO follohls K15. 

quad pair hlith follohling 3 registers. 

Rn Read n consecutive bytes from memory starting at the 
effective logical address. Check the object type in the 
OD for the logical object; check the read access rights 
at the current privilege level; check bound LB and UB-n+l 
(both inclusive). 
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6.1.7 Destinations 

The result of an operation may have to be massaged before it 
can be stored a~ay. This section ~akes these operations 
explicit. 

operand descr. 1 
destination (in bytes) 
248 16 

---------------+-----------------------------------------------
short literal illegal illegal 

illegal illegal 

illegal illegal 

illegal illegal 

illegal 

long literal illegal 

register opnd ZE32 SE32 as is pair quad 

memory operand Wi W2 W4 W8 W16 

~here: 

illegal a literal operand ~ust not occur in this context. 

ZE32 

SE32 

right-justify and zero-extend to 32 bits 

sign-extend, i.e. replicating the lo~est numbered 
bit, to 32 bits. 

pair pair ~ith following register. XO follows X15. 

quad 

TJn 

pair with follo~ing 3 registers. 

~rite n consecutive bytes to ~e~ory starting at the 
effective logical address. Use the OD of the object 
to check type and write access rights. Use the bounds 
in the OD for bounds checking: LB and UB-n+l. (both 
inclusive) 

6-19 
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Traps are described in detail in chapter 7. Chapter 6 shows 
the conditions under ~hich traps occur as the necessary result 
of instruction execution, but it does not sho~ the parameters 
passed to the trap handler, nor does it sho~ the pervasive 
traps and conditions such as po~er-fail, page fault, etc. 
In particular, it does not sho~ any of the traps in the list 
below under the heading of "Opnd" that can occur on operand 
accessing. 

~: can be any of OPSPECV 
DATATYPV 
DATAODTV 
DATAARV 
DATABNDSV 

AddressingV: can be any of the above, but in accesses other 
than those involving explicit operands 

Arith: can be any of INTOVF 
INTDVDZ 

FlAri th: can be any of FLINV 
FLDVDZ 
FLOVF 
FLUNF 
FLINX 

DecArith: can be any of DECINVL 
DECOVF 
DECDVDZ 
DECINVDG 
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6.2 Base Instruction Set 

6.2.1 Data Movement Instructions 

6.2.1.1 MOVEt source.r, destination.~ 

Move data elelllent. The value of "source" is copied to 
"destination". The I1UJTlber of bytes lIloved is illlplied 
by the type "t". Partial overlap of the areas 
containing source and destination lIlay give results that 
differ across implementations. 

destination := source; 

includes: MOVE 1 MOVE2 MOVE4 MOVE8 MOVE16 

6.2.1.2 MOVEADR operand. Ill, destination.~8 

Move logical address. The 64-bit logical address of "operand" 
is cOlllputed and the result stored in "destination". 
"Operand" must be a memory operand. The byte that is 
addressed by "operand" requires neither legal read nor 
~rite access, nor need it be ~ithin the logical object 
bounds. This instruction lIlakes the operand-addressing 
hard~are available to soft~are, e.g. for building 
reference arguments. This instruction also doubles 
as a ~ay to obtain the value in a given base register; 
for this usage the assembly language alias "BGET8" is 
provided. 

destination '= logical_address_of(operand)j 
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6.2.1.3 PUSHt source.r 

Push data elelllent. The value of "source" is copied into a 
temporary register of length 4 bytes (for PUSH1, PUSH2, 
PUSH4)i of length 8 bytes (for PUSH8) or 16 bytes (for 
PUSH16). For PUSH1, "source" is zero-extended to 32 
bits; for PUSH2, "source" is sign-extended to 32 bits. 
The telllporary is then pushed onto the stack. After 
PUSHt, the top-of-stack register S ~ill point to the 
first byte beyond the data that ~as lIloved. On stack 
overflo~, S ~ill be restored to the value it had before 
the instruction. 

Temp[O .. k] .= source; 
{zero-extend for t=l 
sign-extend for t=2i 

S := S + Ill' 
(S-IIl)[O .. k] := Temp[O .. k)j 

{Here for t = 1, 2, 4, 8, 16 
use k =31,31,31,63,127 
and III = 4, 4, 4, 8, 16} 

PUSH 1 PUSH2 PUSH4 PUSH8 PUSH16 
Traps: STKOVF STKOVF STKOVF STKOVF STKOVF 

6.2.1.4 PUSHADR operand.m 

Push logical address. The 64-bit logical address of "operand" 
is computed and pushed onto the stack. "Operand" lIlust 
be a memory operand. 
PUSHADR also doubles as a ~ay to push the value of a 
base register onto the staCk; for this usage the 
assembly language alias "BPUSH8" is provided. 

MOVEADR operand, Temp; 
PUSH8 Temp; 

Traps: STKOVF 
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6.2.1.5 POPt destination.lIT 

Pop data elel1lent. A mlI1lber of bytes given by "t" are popped 
off the stack and stored in "destination". In case 
less than 4 bytes are popped, the top-of-stack register 
S is further decrel1lented so as to rel1lain lITord-aligned. 
On stack underflollT, S is restored to the value it had 
before the instruction. 

destination '= (S-t)[O •• p]; 
S := S - 111; 

{Here for t 1, 2, 4, 8, 16 
use p 7,15,31,63,127 
and 111 4, 4, 4, 8, 16} 

POPl POP2 POP4 POP8 POP16 
Traps: STKUNF STKUNF STKUNF STKUNF STKUNF 

6.2.1.6 DPF value.r4, shiftcount.rl, l1lask.r4, target.rllT4 

Deposit Field. "Value" is deposited in a field of "target" 
identified by "shiftcount" and "l1lask". "Mask" is 
assul1led to be of the forl1l 

2A 31 - ( 2A fieldsize - 1 ) * 2A shiftcount 
but if it is not, the following definition still 
applies. HOllTever, il1lplel1lentations l1lay substitute 
a circular shift for the logical shift indicated. 

MOVE4 
LSL4 
MOVE4 
AND4 
OR4 
MOVE4 

value, Val; 
shiftcount, Val; 
target, Tgti 

111 ask , Tgtj 
Val, Tgt; 
Tgt, target 
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6.2.1.7 MOVEC length. r4, source.l1lr, destination.l1lllT 

Counted l1love of bytes. This instruction l1loves a string of 
contiguous bytes starting at the logical address 
given by the specifier for "source" and of length 
"length" to the area of equal length starting at 

Traps: 

the logical address given by the specifier for 
"destination". If "length" is negative or zero, 
no bytes are l1loved. If conditions (a) or (b) are 
violated, il1lplel1lentations l1lay yield different 
results; hOllTever, in no case should reads or lITrites 
to l1lel1lory be perforl1led in violation of access rights. 

a) the source and destination area l1lust not overlap 
b) "length" l1lust not be in the destination area 

The MOVEC instruction is interruptible, at intervals 
deterl1lined by each il1lplel1lentation. 

if lIP = 0 then C '= 0 
else POP4 C; 
lIP := 0; 
MOVEADR source, Frol1lla; 
MOVEA~~ destinationj :Ol~; Lgth .- length[0 •• 31 1, 
lIThile C < Lgth do 
begin 

Byte := (Frol1lla + C)[0 •• 7]; 
(Tola + C) [0 •• 7] := Byte; 
C : = C + 1; 
{if il1lplel1lentation chooses to acknollTledge 
external interrupts here, then 
PUSH4 C and set lIP := 1} 

end; 

AddressingV 
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6.2.1.8 MOVEBIT bitindex.r4, source.r1, bitarray.mrm 

Move a bit. The least significant bit of "source" is stored 
in the array of bits (whose first byte is addressed 
by "bitarray") at the index "bitindex". All other 
bits of "source" are ignored. "Bitindex" is an 
arbitrary two's complement integer. Only the address 
of the byte in which the bit is actually stored need 
be within the bounds of the logical object. No other 
bits in the byte are disturbed. Memory interlock is 
not guaranteed (see TESTSEMA). 

MOVEADR bitarray, Addr; 
Source_byte[0 .. 7] := source; 
Bit := Source_byte[7]; 
Byte offset := bitindex[0 •. 28] {sign-extended}; 
AddrT32 .. 63] := Addr[32 .. 63] + Byte_offset; 
Bit number := bitindex[29 •• 31]; 
Byte [0 .. 7] : = (Addr)[O .. 7]; 
Byte [Bit_number] := Bit; 
(Addr)[0 .. 7] .= Byte; 

Traps: AddressingV 
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6.2.1.9 MOVEBLR fillchar, srcl, src, destl, dest 

MOVEBLR fillchar.r1, srcl.r4, src.mr, destl.r4, dest.mm 

Move bytes left-to-right. This instruction moves a string of 
contiguous bytes starting at the logical address given 
by "src" and of length "srcl" to the logical address 
given by "dest" and of length "destl". If "destl" is 
<=0, nothing is moved. If "srcl" > "destl", the string 
is truncated on the right. If "srcl" < "destl", the 
string is padded on the right mith "fillchar". Overlap 
betmeen "src" and "dest" areas is explicitly allomed: 
the algorithm belom defines the intended effect. 

if lIP = ° then C ° 
else POP4 Cj 
lIP := 0; 
MOVEADR src, Lfrom; 
MOVEADR dest, Lto; 
Sl := srcl; Dl:= destl; F:= fillchar; 
mhile C < DI do begin 

if C < Sl 
then (Lto+C) [0 •• 7] : = (Lfrom+C) [..7] 
else (Lto+C)[0 •. 7] := F; 
C : = C + 1; 
{ if implementation chooses to acknomledge 

an external interrupt here, 
then PUSH4 C and set lIP := 1 } 

end; 

Traps: AddressingV 
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6.2.1.10 MOVEBRL fiIIchar, srcl, src, destl, dest 

MOVEBRL fillchar.r1, srcl.r4, src.~r, destl.r4, dest.~w 

Move bytes right-to-left. This instruction rooves a string of 
contiguous bytes starting at the logical address given 
by "src" and of length "srcl" to the logical address 
given by "dest" and of length "destl". If "destl" 
<=0, nothing is ~oved. If "srcl" < "destl", the string 
is padded on the left with "fillchar". If "srcl" > 
"dstl", the string is truncated on the left. Overlap 
between "src" and "dest" areas is explicitly allowed: 
the algorit~ below defines the intended effect. 

if lIP = 0 then C .= 0 
else POP4 C; 
lIP := 0; 
MOVEADR src, Lfro~; 
MOVEADR dest, Lto; 
Sl := srcl; Dl:= destl; F:= fillchar; 
while C < Dl do begin 

if C < Sl 
then (Lto+C)[O .. 7]·= (Lfroro+C)[O .• 7] 
else (Lfro~+C) [0 •• 7] • = F; 
C : = C + 1; 
{ if irop1eroentation chooses to acknowledge 

an external interrupt here, 
then PUSH4 C, and set lIP := 1 } 

end; 

Traps: AddressingV 
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6.2.1.11 TRANSL table.~r, length.r4, source.~r, dest.~w 

Translate. Contiguous bytes fro~ "source" are ~oved to "dest" 
one at a tIDe by using the byte fro~ "source" to 
index into "table" and the byte found in "table" is 
stored at "dest". 
Ii count of "length" bytes is ~oved; if "length" is 
not positive, no bytes are ~oved. 

if lIP = 0 then C·= 0 
else POP4 C; 
lIP := 0; 
MOVEADR source, Lfro~; 
MOVEADR dest, Lto; 
MOVEADR table, Ltable; 
while C < length do begin 

Byte := (Lfro~+C)[O .. 7]; 
Byte := (Ltable+Byte)[O •• 7]; 
(Lto+C) : = Byte; 
C : = C + 1; 
{if IDple~entation chooses to acknowledge an 
external interrupt here, 
then PUSH4 C, and set lIP := 1 } 

end; 

Traps: AddressingV 
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6.2.1.12 DUP roordcount.r4, value.r4 

Duplicate. The 32-bit value "value" is pushed onto the stack 
a "roordcount" flUIIlber of times. This instruction must 
be interruptible. 

if lIP = 0 then C '= 1 
else POP4 Cj 

lIP := OJ 
rohile C (= roordcount[0 .• 31] do begin 

PUSH4 value; 
C : = C + 1; 
{if implementation chooses to acknoroledge 
interrupts here, 
then PUSH4 C and set lIP '= 1} 

end; 

Traps: STKOVF 

6.2.1.13 REP roordcount.r4, value.r4, operand.mro 

Replicate. The 32-bit value "value" is stored in "roordcount" 
consecutive roords of mel'lory starting at the address 
of "operand". If the buffer to be initialized roith 
"value" overlaps roith either "roordcount" or "value", 
implelllentations may produce different results. 
This instruction IIlUSt be interruptible. 

if lIP = 0 then C'= 1 
else POP4 Cj 
lIP := OJ 
MOVEADR operand, Toaddrj 
rohile C (= roordcount[0 .. 31] do begin 

(Toaddr + 4*C )[0 .. 31] := value; 
C : = C + 1; 
{if implementation chooses to acknoroledge 
interrupts here, 
then PUSH4 C and set lIP := 1} 

endj 

Traps: AddressingV 
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6.2.1.14 EXTEND roordcount.r4 

EKtend top-of-stack. Base register "S" is increl'lented by four 
til'les the value of "roordcount", rohich must be positive. 
On stack overfloro S roill be restored to its original 
value and a trap taken. Ring level 1 is required. 

if XL>l then Trap"INSPRIV"j 
if roordcount < 0 then Trap"STKDEKTV"j 
if S + 4 * roordcount (= SL then Trap"STKOVF" j 
S : = S + 4 * roordcountj 

Traps: INSPRIV 
STKDEKTV 
STKOVF 

6.2.1.15 DELETE roordcount.r4 

Delete from top-of-stack. Base register "S" is decrel'lented by 
four times the value of "roordcount", rohich IIlUSt be 
positive. If the nero S roould end up beloro Q, the 
original S roill be restored and a trap taken. 

if roordcount < 0 then Trap"STKDEKTVj 
if S - 4 * roordcount < Q then Trap"STKUNF"; 
S := S - 4 * roordcountj 

Traps: STKDEKTV 
STKUNF 
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6.2.2 Arithmetic Instructions 

This section includes instructions for arithmetic operations on 
the integer and floating point scalar data types. Decimal 
arithmetic is covered in section 6.3, vector arithmetic is 
covered in section 6.4. 

6.2.2.1 ADDt term.r, su~.rw 

Add. "Term" is added to "su~" and the result is stored in 
"SUl1l". In case of integer overflow, "SUl1l" is set to 
the least significant bits of the correct ~ath~atical 
result. 

Status: 
Traps: 

ADD4 
Ovfl 
Arith 

ADD8 
Ovfl 
Arith 

ADD4F ADD8F ADD16F 
Flflags Flflags Flflags 
FlArith FLArith FLArith 

6.2.2.2 SUBt term.r, difference.rw 

Subtract. "Term" is subtracted fro~ "difference" and the result 
is stored in "difference". In case of integer overflow 
"difference" is set to the least significant bits of 
the correct ~athe~atical result. 

Status: 
Traps: 

SUB4 
Ovfl 
Arith 

SUB8 
Ovfl 
Arith 

SUB4F SUB8F SUB16F 
Flflags Flflags Flflags 
FlArith FLArith FlArith 

6.2.2.3 MPYt factor.r, product.rw 

Multiply. "Factor" is ~ultiplied by "product" and the result 
is stored in "product". In case of integer overflOW, 
"product" is set to the least significant bits of the 
correct ~athe~atical result. 

Status: 
Traps: 

MPY4 
Ovfl 
Arith 

MPY8 
Ovfl 
Arith 

MPY4F MPY8F MPY16F 
Flflags Flflags Flflags 
FLArith FLArith FLArith 
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6.2.2.4 DIVt divisor.r, dividend.rw 

Divide. "Dividend" is divided by "divisor" and the result 
stored in "dividend". On integer divide with "divisor" 
zero, the new value of "dividend" is indeterI1linate; 
however, the sign of "dividend" should not be changed. 
For integer divide, the algebraic result is truncated 
towards zero. On integer overflow, "dividend" is left 
as zero. 

DIV4 DIV8 
Status: Ovflow Ovflow 
Traps: Arith Arith 

INTDVDZ INTDVDZ 

DIV4F 
FlFlags 
FlArith 

DIV8F 
FlFlags 
FlArith 

DIV16F 
FlFlags 
FlArith 

6.2.2.5 NEGt source.r, destination.w 

Negate. "source" is negated (subtracted froN zero) and the 
result is stored in "destination". On integer 
overflOW, "destination" is left as the largest 
negative value. 

Status: 
Traps: 

NEG4 
Ovflow 
Arith 

NEG8 
Ovflow 
Arith 

NEG4F NEG8F NEG16F 
FIFlags FIFlags FIFlags 
FLArith FLArith FLArith 

6.2.2.6 ABSt source.r, destination.w 

Absolute value. The absolute value of "source" is co~puted 
and the result is stored in "destination". On 
integer overflOW, "destination" is left as the 
largest negative value. 

Status: 
Traps: 

if source < 0 then destination'= 0 - source 
else destination:= source; 

ABS4 
Ovflow 
Arith 

ABS8 ABS4F ABS8F ABS16F 
Ovflow FIFlags FIFlags FIFlags 
Arith FlArith FlArith FlArith 
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6.2.2.7 REMt divisor.r, dividend.rw 

Remainder. The algebraic remainder of the division of "dividend" 
by "divisor" is computed and the result stored in 
"dividend". The relllainder has the sallle sign as the 
old value of "dividend", and is less in absolute value 
than "divisor". The equation 

Status: 
Traps: 

divisor * quotient + relllainder = dividend 
always holds. If "divisor" is zero, the magnitude of 
"dividend" will be indeteminate. 

REM4 
OVflow 
Arith 
INTDVDZ 

REM8 
OVflow 
Arith 
INTDVDZ 

6.2.2.8 MOOt divisor.r, dividend.rw 

Modulus. The modulus of "dividend" and "divisor" is computed 
and the result is stored back into "dividend". 

Status: 
Traps: 

The modulus is defined to be the quantity that is 
positive (or zero) and less than the absolute value 
of "divisor", and such that the difference of Mdulus 
and "dividend" is a whole multiple of "divisor". 
This definition deterlllines the lIlodulus uniquely, except 
when "divisor" has the value zero, in which case the 
magnitude of "dividend" will be indeteminate. 
Note that the equation 

divisor * quotient + modulus = dividend 
will not always hold. 

MOD4 MOD8 
OVflow OVflow 
Arith Arith 
INTDVDZ INTDVDZ 
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6.2.2.9 POLYt degree.rl, polyn.mr, operand.rw 

Polynomial evaluation. This instruction computes the value of 
a polynolllial evaluated for the value of "operand", 
storing the result back into "operand". The polynomial 
is defined by degree "degree" (interpreted as an 
unsigned integer) and a table of coefficients, "polyn". 
The coefficient of the highest order tem of the 
polynolllial is addressed by "polyn". All coefficients 
are stored consecutively in meAory. The algorithm 
below is intended to define the value desired, not 
the precise sequence in which the calculations are 
actually performed. 

Status: 
Traps: 

X := operand; Y:= 0; C:= 0; 
MOVEADR polyn, Lcoeff; 
while C < degree do 

Y := Y * X + (Lcoeff+C*t)[0 .. 8*t-1]; 
operand : = Y; 

POLY4F POLY8F POLY16F 
FIFlags FlFlags FlFlags 
AddressingV AddressingV AddressingV 
FlArith FlArith FlArith 
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6.2.3 Logical Operations and Shifts 

6.2.3.1 AND4 ~ask.r4, operand.rw4 

Logical AND. The bit-wise logical AND of "~ask" and "operand" 
is computed and the result is stored in "operand". 

6.2.3.2 NOT4 source.r4, destination.w4 

Logical NOT. The bit-wise logical NOT (one's complement) of 
"source" is computed and the result is stored in 
"destination". 

6.2.3.3 OR4 mask.r4, operand.rw4 

Logical OR. The bit-wise (inclusive) OR of "mask" and "operand" 
is computed and the result is stored in "operand". 

6.2.3.4 XOR4 mask.r4, operand.rw4 

Exclusive OR. The bit-wise exclusive OR of "mask" and "operand" 
is computed and the result is stored in "operand". 

6.2.3.5 LSLt shiftcount.rl, bitfield.rw 

Logical shift left. "Bitfield" is shifted left by "shiftcount" 
bits and the result is stored back in "bi tfield" • 
Zeros are shifted into the least significant bit; bits 
shifted out of the most significant bits are lost. 
"Shiftcount" is unsigned; only the right~ost 5 bits 
(for LSL4) or 6 bits (for LSL8) are significant. 

includes: LSL4 LSL8 
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6.2.3.6 LSRt shiftcount.r1, bitfield.~ 

07/31 

Logical shift right. "Bitfield" is shifted right by "shiftcount" 
bits and the result is stored back in "bitfield". 
Zeros are shifted into the ~ost significant bit; bits 
shifted out of the least significant bits are lost. 
For interpretation of "shiftcount", see LSLt. 

includes: LSR4 LSR8 

6.2.3.7 ASLt shiftcount.r1, operand.~ 

ArithPletic shift left. "Operand" is shifted left by "shiftcount" 
bits and the result is stored back into "operand". 
Zeros are shifted into the least significant bit; bits 
shifted out of the most significant bit are lost. 
Overflow occurs if the new sign bit or any of the bits 
shifted out are different fro~ the original sign bit. 
For interpretation of "shiftcount", see LSLt. 

ASL4 
Traps: Ovfl 

ASL8 
Ovfl 

6.2.3.8 QUAD4 source.r4, destination.w4 

Quadruple. "dest" is given the value of "source" times four. 

Traps: Ovfl 

MOVE4 source, destination; 
ASL4 2, destination; 

6.2.3.9 ASRt shiftcount.r1, operand.rw 

ArithPletic shift right. Divide the integer value of "operand" 
by 2**shiftcount, truncating toward zero and store 
the result back into "operand". See LSLt for 
interpretation of "shiftcount". 
Note: for negative values of "operand" this is not 
the same as a straight sign-propagating right shift. 

includes: ASR4 ASR8 
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6.2.4 Compares and Tests 

6.2.4.1 CHPt source1.r, source2.r 

Compare. The condition code CC is set depending on the result 0 
the comparison of the values of "source1" and "source2". 
For CMP2, CMP4 and CMP8 a two's complement compare is 
performed; for CHPl an unsigned integer compare is 
performed. For CHP4F, CMP8F and CMP16F comparison is 
performed according to the IEEE floating point standard; 
note that this can result in "unordered". 
condition codes are set as follows: 

CCG, if source1 > source2 
CCE, if source1 source2 
eeL, if source1 < source2 
ecu, if sources are "unordered" (IEEE only) 

CMP1 CMP2 CMP4 CMP8 CMP4F CMP8F CMP16F 
Status: ce CC cc ec CC ec cc 

FlFlags FlFlags FlFlags 
Traps: FlArith FlArith FlArith 

6.2.4.2 TESTt source.r 

Compare to zero. This instruction is merely a short form of 
'CMPt source, 0'. 

TEST1 TEST2 TEST4 TEST8 TEST4F TEST8F TESI16F 
Status: CC CC CC CC CC CC CC 

FlFlags FlFlags FlFlags 
Traps: FlArith FlArith FlArith 
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6.2.4.3 CMPC length.r4, stringa.m, stringb.m, index.~4 

Counted Compare. This instruction compares two streams of bytes 
"stringa" and "stringb" until the first non-equal byte 
has been encountered or until "length" bytes have been 
compared. The condition code in STATUSB is set depending 
on the unsigned compare of the last pair of bytes examined. 
"Index" is set to the I1IJIIlber of the first non-equal byte. 
If interrupted, the I1IJIIlber of bytes left to compare is 
pushed onto the stack and the instruction-in-progress 
flag is set. 

MOVEADR stringa, Ala; 
MOVEADR stringb, Bla; 
if lIP = 0 then C .= 0 
else POP4 C; 
!IP := 0; 
while C < length and 

(Ala+C)[0 .. 7] = (Bla+C)[0 •• 7] 
do begin 

e : = C + 1; 
{if implementation chooses to ackno~ledge 
external interrupts here, then 
PUSH4 C and set lIP := 1 } 

• end; 
1f C >= length then ce := CCE 
else if (Ala+C)[0 •• 7] > (Bla+C)[0 •• 7] then CC '= CCG 
else ec := CCL; 
index := C; 

Status: ec 
AddressingV Traps: 

6-38 



VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COPY -- HP PRIVATE INFORMATION 

6.2.4.4 TESTLSB source.r1 

Test least significant bit. The condition code is set to CCG 
if the least significant bit of "source" is 1, 
otherwise the condition code is set to CCE. 

Status: CC 

6.2.4.5 TESTOV 

Byte[0 .. 7] := source; 
if byte[7) = 1 then CC '= CCG 
else CC := CCE; 

Test overflow. The condition code is set to CCG if the overflow 
exception flag is set, else the condition code is set 
to CCE. The overflow flag is left clear. 

if STATUSB.OVF = 1 then CC ;= CCG 
else CC := CCE; 
STATUSB.OVF := 0; 

Status: CC 
OVerflow 

6. 2.4. 6 TESTA 

Test conditional break enable. If the "CBA" trap is enabled, 
set the condition code to CCG, otherwise to CCE. 

Status: CC 

6.2.4.7 TESTB 

if STATUSB.CBA 1 then CC := CCG 
else CC := CCE; 

Test conditional break enable. If the "CBB" trap is enabled, 
set the condition code to CCG, otherwise to CCE. 

Status: CC 

if STATUSB.CBB 1 then CC := CCG 
else CC := CCE; 
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6.2.4.8 TESTBIT bitindex.r4, bitarray.mr 

Test a bit. The condition code is set depending on the value of 
a bit in a bit array at the index "bitindex". The bit 
array must be in memory (it cannot be in a register) and 
its first byte must be addressed by "bitarray". If the 
bit is found set, the condition code is set to CCG, else 
it is set to CCE. 

Status: 
Traps: 

MOVEADR bitarray, Addrj 
Bytela[0 •. 31) := Addr[0 .• 31]j 
Byte index[0 .. 31] := bitindex[0 •• 28]; {sign-extend} 
Bytela[32 •• 63] := Addr[32 .. 63] + Byte_index; 
Byte := (By tela) [0 .. 7); 
Bit_num := bitindex[29 .. 31]; 
if Byte[Bit_nuro] = 1 then CC := CCG else CC := CCE; 

CC 
AddressingV 

6.2.4.9 SCANUNTIL charset.mr, string.mr, index.rw4 

07/31 

Scan string until condition satisfied. The string of characters 
(bytes) pointed to by "string" is scanned for a character 
that satisfies a particular condition. "Index" must be 
initialized by software; SCANUNTIL increments "index" 
(ignoring any overflow) continually as the search proceeds. 
The condition to be satisfied by the character is encoded 
as a 256-bit bit array (similar to a Pascal set). 
Bits found set in the bit array "charset" signify that 
the corresponding character satisfies the condition. 
If the logical address of "charset" is at or within 32 
bytes of the object's upper bound, an addressing violation 
trap is raised. This instruction must be interruptible; 
"index" contains sufficient infomation to restart. 

MOVEADR string, St; 
index := index - 1; 
repeat index:= index + l' 

Char := (St+index)[o •• 7j; {zero-extend} 
{implementations may choose to 
acknowledge an interrupt here} 

TESTBIT Char, charset; {charset[Char] 
until CC = CCG; {= 1 

Status: CC NOT affected 
Traps: AddressingV 
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6.2.4.10 CMPB fillchar, 19 tha , srca, 19thb, srcb, index 

CMPB fillchar.r1, 19tha.r4, srca.mr, 19thb.r4, srcb.mr, index.w4 

COJ1lpare bytes. "Srca" is compared to "srcb" and the condition 
code set. The shorted string is considered padded with 
"fillchar". "Index" identifies the offset where bytes 
started to differ. CCG and CCL refer to the unsigned 
compare fa the bytes at that location. 

Status: 
Traps: 

C := OJ Flag;= 1; 
MOVEADR arca, Laj 
MOVEADR srcb, Lbj 
while ( C < 19tha or 

C < 19thb and 
Flag = 1 ) do begin 

A := fillcharj B:= fillchar' 
if C < 19tha then A := (La+C)to .• 7]j 
if C < 19thb then B := (Lb+C)[0 •• 7]j 
if A <> B then begin 

if A ) B then CC := CCG 
else CC '= CCL; 
Flag: = OJ 
end; 

end; 
if Flag = 1 then CC '= CCE; 
index := C; 

CC 
AddressingV 

6.2.4.11 CMPT table, fillchar, 19tha, srca, 19thb, srcb, index 

CMPT table.mr, fillchar.r1, 19tha.r4, srca.mr, 19thb.r4, 
srcb.mr, index.w4 

Compare bytes, translated. This instruction resembles CMPB 
except in that COJ1lpares are J1lade of the bytes in 
"table" indexed by the data bytes in the strings 
rather than of the actual data bytes themselves. 

Status: 
Traps: 

CC 
AddressingV 
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6.2.5 Base Register Instructions 

6.2.5.1 BGET8 source.b, destination.w8 

Get address in base register. See under "MOVEADR". 

6.2.5.2 BSET8 source.ra, dest.b 

Set base register to logical address. Load the 64-bit logical 
address froJ1l "source" into the designated base register. 
The logical object id of the logical address must be 
valid. The logical offset of the logical address need 
not be within object bounds. 

j := base_reg_designator_of(dest); 
if j >= 6 then Trap"Opnd'" 
Bj[0 •. 63] ;= source[0 .• 63j; 
Group := source[0 •• 2]· 
Object:= source[3 .. 31jj 
if Object*16 > length of ODT of (Group) 

then Trap"AddressirigViTj -

Traps: AddressingV 

6.2.5.3 BMOVEADR source.m, dest.b 

Move logical address to base register. This instruction is like 
MOVEADR, but the result is stored in the base register 
designated by "dest". This instruction doubles as a 
base-register-to-base-register J1love. An asseJ1lbler 
language alias "BMOVE8" is provided for this usage. 

MOVEADR source ,Temp; 
BSET8 Temp, dest; 

Traps: AddressingV 
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6.2.5.4 BMOVE8 source.b, dest.b 

Move base to base register. See under "BMOVEADR". 

6.2.5.5 BGET4 source.b, dest.w4 

Get offset of base register. Store 32-bit logical offset of the 
base register designated by "source" into "dest". 
"Source" IllUSt be a IlleIllory operand, according to the ".b" 
attribute. 

j := base reg designator of(source)j 
dest := BI[32~.63J; -

6.2.5.6 BSET4 source.r4, dest.b 

Set offset of base register. Load "source" into the 32-bit 
logical offset of the designated base register. 

j := base_reg_designator_of(dest); 
if j )= 6 then Trap" Opnd" j 
Bj[32 .. 63] := source[O .. 31]; 

6.2.5.7 BPUSH8 source.b 

Push a base register. See under "PUSHADR". 

6.2.5.8 BPOP8 dest.b 

Pop into a base register. Eight bytes are popped off the stack 
and loaded into the designated base register. 

POP8 TeIllpj 
BSET8 TeJIlp, dest; 

Traps: AddressingV 
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6.2.5.9 BADD4 term.r4, dest.b 

Add to offset of base register. The 32-bit value "term" is 
added to the logical address in the base register 
designated by "dest" using lIJrap-around 32-bit 
arithmetic. OVerflollJ and carry is ignored. 

j := base reg designator of(dest); 
if j )= 6-then Trap"Opndi'i; 
Bj[32 •• 63] := Bj[32 •• 63] + term; 

6.2.5.10 BSUB4 term.r4, dest.b 

Subtract froJll offset of base register. The 32-bit value "terIll" 
is subtracted froIll the logical address in the base 
register designated by "dest" using wrap-around 32-bit 
arithmetic. OVerflollJ and carry is ignored. 

NEG4 term, TeJIlp; 
BADD4 TeIllp, dest; 

6.2.5.11 BCMP4 sourcea.b, sourceb.r4 

COJllpare offset of base register. The 32-bit offset of the base 
register designated by "sourcea" is cOIllpared using tllJO'S 
cOIllpleIllent arithmetic with the value of "sourceb". 
Condition codes are set to reflect the result of the 
cOIllparison. No overflollJ can occur. 

Status: 

j := base~reg_designator_of(sourcea); 
if BJ[32 .. 63] ) sourceb then CC '= CCG 
else if Bj[32 •. 63] = sourceb then CC := CCE 
else CC := CCL; 

CC 
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6.2.5.12 BCMPS sourcea.b, sourceb.rS 

eo~pare base register with logical address. The 64-bit logical 
address in the base register designated by "sourcea" is 
compared for equality with the logical address in 
"sourceb". If the two logicl addresses are equal, ceE 
is set; otherwise, implementations ~ay set either CCG or 
CCL arbitrarely. 

j := base_reg_designator_of(sourcea); 
if Bj[O .• 63] = sourceb then CC '= eeE 
else CC:= eCG {or CCL}; 

Status: ee 

6.2.5.13 BTESTS source.b 

Test base register for NIL. The base register designated by 
"source" is co~pared to a logical address of all zeros. 

BCMPS source, 0; 

Status: CC 
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6.2.6 Transfer of Control 

6.2.6.1 BR{GLEU} target.r4 

Branch. Depending on the match between the condition code field 
in the status register and the mask comprised of four 
bits in the opcode, execution continues with either the 
next instruction in sequence or with the instruction 
explicitly designated by "target". If a match is found 
then the branch is taken. The target address of the 
branch is found by adding "target"*2 to the value of P 
P at the beginning of the branch instruction itself. 
If the branch is not taken, and the target is in any 
way illegal, imple~entations ~ay differ in whether an 
Opnd trap is raised on "target". 

mask [0] := 1- OPCODE[3]; mask [3] := OPCODE[4]; 
~ask[1 .• 2] := OPCODE[6 .• 7]; 
if CC=CCU and Unordered trap enabled 

and ( ~ask[O]=l or ~ask 1]=1 ) 
then Trap"Invalid Operation"; 
if ~ask[O] 1 and CC CCG 

or ~ask[l] = 1 and CC eCL 
or ~ask[2] = 1 and CC CCE 
or ~ask[3] = 1 and CC ccu 

then P '= P + target * 2; 

Instruction Mnemonic 
Branch Never BRN 
Branch Unordered BRU 
Branch Equal BRE 
Branch Equal or Unord BREU 
Branch Less BRL 
Branch Less or Unord BRLU 
Branch Less or Equal BRLE 
Branch Not Greater BRNG 
Branch Greater BRG 
Branch Greater or Unord BRGU 
Branch Greater or Equal BRGE 
Branch Not Less BRNL 
Branch Greater or Less BRGL 
Branch Not Equal BRNE 
Branch Not Unordered BRNU 
Branch Always BR 

Traps: CODEBNDSV 
FUNV 

Assembler aliases 

BRZ BREVEN BRNOV 
BRZU 
BRM 

BRMZ 
BRLEU 
BRP BRODD BROV BRBUSY 

BRPZ 
BRGEU 

BRGLU 
BRGLE 
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6.2.6.2 CALL target.r4 

Procedure call. A procedure ~arker is pushed onto the stack 
and control is passed to "target", interpreted as 
a 32-bit half-mord offset relative to the start of 
the CALL instruction. CALL requires the procedure 
to be roithin the current code object. 

lIP := i-lIP; if IIP=l and PTE=l then Trap"DBCALL"j 
S := S + 4; {pushes garbage} 
PUSH4 P[32 .. 63]j 
PUSH4 Q[32 .. 63]; 
Q. S; 
P := P + target * 2; 

Traps: STKOVF 
CODEBNDSV 
DBCALL 

6.2.6.3 CALLX loi.r4 

External call. A procedure ~arker is pushed onto the stack and 
control is passed to the entry point specified in the 
OD for "loi". "Loi" contains the high 32 bits of a 
logical address into the target object. 

lIP : = 1-IIP; if IIP=l and PTE=l then Trap"DBCALL"; 
lIP := OJ 
PUSH8 Pre turn; 
(8-4)[0 .. 6] := STATU8A; 
PUSH4 Q[32 .. 63]; 
Q '= S· 
if·OD(loi).TYP <> VisionCode then Trap"CODETYPV"; 
if STATUSA.XL > OD(loil.PR then Trap"CODERINGV"; 
STATU8A.XL := OD(loil.XLj 
Ptarget[ 0 .. 31] '= loi; 
Ptarget[32 .. 61] '= OD(loi).EPMOj 
Ptarget[62 .. 63] .= OJ 
P : = Ptarget; 

Traps: STKOVF 
CODETYPV 
CODEBNDSV 
CODERNGV 
DBCALL 
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6.2.6.4 BRK loi.r4 

External Branch. Control is transferred to the target 
indicated in the OD for "loi". Loi contains the 
high 32 bits of a logical address into the target 
code object. 

lIP := 1-IIPj if IIP=l and PTE=l then Trap"DBCALL"j 
lIP := OJ 
Ptarget [0 .• 31] : = loij 
Ptarget[32 .• 61] := OD(loi).EPMOj 
Ptarget[62 •. 63] := 0; 
if OD(loi).TYP <> VisionCode then Trap"CODETYPV"j 
if STATUSA.KL > OD(loi).PR 

or STATUSA.KL > OD(loi).XL 
then Trap"CODERINGV"; 
if (Q-8) [0] = 0 then begin 

(Q-8) [0] := 1; 
(Q-8)[l .• 2] := STATU8A.XL; 
(Q-12) [0 •• 31] : = P[O •• 31]; 
end' 

P := Ptarget; 

Traps: CODETYPV 
CODERINGV 
CODEBNDSV 
DSCALL 
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6.2.6.5 EXIT 

Exit from procedure. This instruction can be used to return 
from a procedure called with CALL or CALLX. The 
procedure marker located at Q contains the necessary 
information to restore the context of the caller. 
If the caller executed in a different code object 
than the current one, a number of checks are made. 

Status: 
Traps: 

if (Q-8)[0] = 1 then begin 
{external exit} 
Pobject:= (Q-12)[0 .. 31]; 
Poffset :=.~0-8)[8 .. 31]j.zero-extended; 
ST return .- (0-8)[0 .• 7 , 
if-STATUS.XL > OD(Pobject).XL 
then Trap" STKCONSI SIV" ; 
if ST return.XL > STATUSB.KTL 
then Trap"INSKTL"; 
end 

else begin 
{internal exit} 
Pobject := P[0 .. 31]; 
Poffset := (0-8)[0 .• 31]; 
STJeturn : = STATUSA; 
end; 

Q offset := (0-4)[0 •. 31]; 
if 0 offset < 0 or 0 offset> 0[32 •• 63] - 12 
then-Trap"STKCONSISTV"; 
if Poffset[31] = 1 
and (implementation chooses to detect this) 
then Trap" INSODDP" ; 
Poffset[31] := 0; 
S[32 .. 63] := 0[32 .. 63] - 12; 
0[32 •. 63] := ~offset; 
P[O •• 31] '= Pobject; 
P[32 .. 63] '= Poffset; 
STATUSA '= ST_return; {SIT bit not to 

take effect until 
next instruction} 

restored from marker on external exit 
INSKTL 
STKCONSISIV 
CODEBNDSV 
INSODDP 
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SUbroutine exit. This instruction can be used to return from a 
subroutine called with a PUSH4; BR combination. 
The value of Q is not affected. 

POP4 Returnoffs' 
if Returnoffs[31] = 1 and {implementation 

chooses to detect this condition} 
then Trap" INSODDP" ; 
Returnoffs[31] := 0; 
P[32 •• 63] := Returnoffs; 

Traps: STKUNF 
CODEBNDSV 
INSODDP 

6.2.6.7 BREAK pararoeter.r4 

Breakpoint, This instruction always causes a breakpoint trap. 
The value of STATUSD.DRL has no effect. 

Trap"DBBREAKINS"; 

Traps: DBBREAKINS 

6.2.6.8 ERROR 

Error. This instruction always causes a trap for all users. 

Trap"INSERROR"; 

Traps: INSERROR 

6.2.6.9 NOP 

No operation. Continues with the immediately following 
instruction. 
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6.2.6.10 CHECKA parameter.r4 

Conditional break. If the "CBA" enable bit is set, a trap is 
taken. If "CBA" is disabled, no ~ trap should be 
raised even if "parameter" is somehow illegal; instead 
"parameter" should be ignored. 

if STATUSB.CBA = 1 then Trap"DBCHECKA"; 

Traps: DBCHECKA 

6.2.6.11 CHECKB pararneter.r4 

Conditonal break. If the "CBB" enable bit is set, a trap is 
taken. If "CBB" is disabled, no ~ trap should be 
raised even if "parameter" is somehow illegal; instead 
"parameter" should be ignored. 

if STATUSB.CSS = 1 then Trap"DBCHECKS"; 

Traps: DBCHECKB 

6.2.6.12 CHECKLO source.r4, lobound.r4 

Check lower bound. If "source" is less than "lobound", a 
bounds check trap occurs. The comparison is a two's 
complement 32-bit compare. 

if source < lobound then Trap" INSCHKLO" ; 

Traps: INSCHKLO 

6.2.6.13 CHECKHI source.r4, hibound.r4 

Check upper bound. If "source" is greater than "hibound", a 
bounds check trap occurs. The comparison is a two's 
complement 32-bit compare. 

if source > hibound then Trap" INSCHKHI" ; 

Traps: I NSCHKHI 
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6.2.7 Interaction with Machine State 

6.2.7.1 MOVEfSP4 selector.rl, destination.w4 

Move from special register. This selects a certain register 
or dedicated memory location based on the value of 
"selector". This register or memory location is then 
right justified, zero filled and stored in the 32-bit 
"destination". An INSMOVSPL violation occurs when 
either the value of the selector does not correspond 
to any entry in the following list or when the current 
execute level does not match the level required for 
reading the selected register. 

selector #bits 

o condition code 2 
1 rounding mode 2 
2 exit threshold 2 
3 execute level 2 
4 flpt trap enable 5 
5 int trap enable 2 
6 dec trap enable 2 
7 flpt mode 2 
8 STATUSA 32 
9 STATUSBl 32 

10 STATUSB2 32 
11 TRY offset 32 
12 cond break A 1 
13 cond break B 1 
14 task clock enable 1 
15 STATUSC1 32 
16 Interrupt Mask 16 
17 STATUSD 32 
22 HASH. PA 32 
23 HASH. LENGTH 32 
24 PDIR.PA 32 
25 PDIR.LENGTH 32 

Traps: INSMOVSPL 

req'd XL 
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3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Assembler alias 

GetCC 
GetRM 
GetXTL 
GetXL 
GetTEFLP 
GetTEINT 
GetTEDEC 
GetFPCMODE 
GetSTATA 
GetSTATBl 
GetSTATB2 
GetTRY 
GetCBA 
GetCBB 
GetTCE 
GetSTATC1 
GetIMR 
GetSTATD 
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6.2.7.2 MOVEtSP4 selector.r1, source.r4 

Move to special register. This instruction selects a special 
hardware register or dedicated ~e~ory location 
based on the value of "selector". The value of 
"source" is stored into this register or location. 
The least significant bits of "source" are used in 
the assig~ent, without any overflow indication. 
A trap is taken when the selector does not roatch 
any of the entries in the following table or if 
the current ring level does not match the required 
ring level. 

selector ""bits req'd XL 

o condition code 2 
1 rounding roode 2 
2 eHit threshold 2 
3 flpt trap enable 5 
4 int trap enable 2 
5 dec trap enable 2 
6 flpt ~ode 3 
7 STATUSB2 32 
8 Q offset 32 
9 task breakrange LOI 32 

10 cond break A 1 
11 cond break B 1 
12 task clock enable 1 
13 Interrupt ~ask 16 
14 Debug ring level 2 
15 sys breakrange LOI 32 

Status: 
Traps: 

depends on selector 
depends on selector 
Opnd 
INSMOVSPL 

3 
3 
< source 
3 
3 
3 
3 
3 
3 
3 
1 
1 
o 
o 
o 
o 

Asserobler Alias 

SetCC 
SetRM 
SetXTL 
SetTEFLP 
SetTEINT 
SetTEDEC 
SetFPCMODE 
SetSTATB2 
SetQ 
SetTBR 
SetCBA 
SetCBB 
SetTCE 
SetIMR 
SetDRL 
SetSBR 

STKCONSISTV (if setting Q offset to value 
outside SB and S) 
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6.2.7.3 MOVEfSP8 selector.rl, destinaiton.w8 

Move fro~ special register. This instruction is used to 
obtain the contents of a special hardware register 
or dedicated ~~ory location identified by the 
value of "selector". Values of "selector" not 
represented in the following list cause the trap 
"INSMOVSPL" to be raised. 

selector #bits req'd XL Asse~bler Alias 

o progr~ counter 64 3 GetP 
1 ODTO.LA 64 1 
2 TCB.LA 64 1 GetTCB 
3 TCBX.LA 64 1 GetTCBX 
4 interval tiroer 64 1 
5 task clock 64 1 
6 tiroe of century 64 1 
7 QLLA 64 1 

Traps: INSMOVSPL 

6.2.7.4 MOVEtSP8 selector.rl, source.r8 

Move to special register. This instruction stores the 
value of "source" into the special hardware 
register or dedicated m~ory location identified 
by "selector". 

selector 

o TCBX.LA 
1 interval tiroer 
2 task clock 
3 tiroe of century 
4 QLLA 
5 OST descriptor 
6 CST descriptor 

#bits req'd XL 

64 
64 
64 
64 
64 
64 
64 

o 
o 
o 
o 
o 
o 
o 

Traps: dependent on selector 
INSMOVSPL 

Asse~bler Alias 

SetTCBX 
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Mark the stack with the TRYoffset. When paired with UNTRY, 
TRY supports the try/recover construct of MonCAL. 
The old value of TRYoffset is pushed onto the stack 
and the current value of S is recorded in TRYoffset 
(hence TRY offset points to the location in the stack 
where the previous value of TRYoffset is kept). 

UNTRY is used to undo this sequence. The back chain 
of TRYoffsets is Auch like the back chain of Qoffsets 
but under total software control independent of CALL/ 
CALLX. TRY Aust not be executed on the ICS. 

if STATUSC.ICS = 1 then Trap "TRYV"; 
PUSH4 TRYoffset; 
TRYoffset := S[32 .• 63]; 

Traps: STKOVF 
TRYV 

6.2.7.6 UNTRY destination.w4 

ReAove one TRY Aarker. This instruction undoes the action 
perforAed by TRY. This causes the previous value 
of TRYoffset to becoAe reestablished. UNTRY Aust 
not be executed when on the lCS. Note that the 
TRYoffset need not be on top of the stack when 
UNTRY is executed, nor is it popped off. 

Traps: TRYV 

if STATUSC.ICS = 1 then Trap"TRYV"j 
TeAp[32 .. 63] := TRYoffset; 
destination := TRYoffset - 4; 
Temp[O .. 31] -= S[0 .. 31]; 
TRYoffset '= (TeAp - 4)[0 .. 31]; 

AddressingV 
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6.2.8 Instructions that interact with the address space 

6.2.B.1 PROBE ring.rl, access.r1, address.r8) length.r4 

Probe access rights. This instruction sets condition codes 
dependent on the legality of accessing the address 
range given by "address" and "length". PROBE tests 
whether in the ring level specified by "ring" the type 
of access represented by "access" would be legal 
everywhere in the logical address range starting at 
"address" and ending at "address"+"length"-l. 
Here a negative "length" is treated as O. 

Encodings: 

o 
1 
2 
3 
4 

ring access 

o AeAOry read 
1 AeAory-write 
2 instruction_fetch 
3 

caller's 

Values not in the list above will cause an lNSPROBE 
trap. 

The resulting conditon code settings are as follows: 
CCL: the object does not exist or the indicated 

access is illegal. 

CCE: the indicated access is legal but the indicated 
address range is not wholly within the object. 

CCG: the indicated access is legal at the indicated 
privilege level over the entire address range 
specified. 

Status: CC 
Traps: lNSPROBE 
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6.2.8.2 TESTBEF ppn.r4 

Test reference bit. Returns the state of the reference bit for 
the physical page "ppn" in the condition codes and 

07/31 

then clears the reference bit. "ppn" gives the physical 
page number. If the reference bit in the PPD for the 
page is found set, then CCG is returned, otherwise CCE. 

The reference bit in the PPD is then cleared. 

Any address translation aid (TLS) must synchronize 
itself with the contents of the PPD as part of the 
execution of TESTREF. 
Note that TESTREF only provides a snapshot: ifflfflediately 
after executing TESTBEF some other processor ~ay access 
the page; this would not be reflected in the condition 
codes. 
Bing 0 privilege is required. 

Status: CC 
Traps: INSPRIV 
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6.2.8.3 PDINS ppn.r4 
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Insert page into PDIR. This instruction takes the Physical Page 
Descriptor (PPD) identified by the physical page number 
"ppn" and inserts it in the proper Hash chain. The PPD 
must be entirely initialized before using this instruction, 
except for the link field. The Virtual Page NUNber (VPN) 
in the PPD itself is used to CONpute the hash value H that 
locates the proper chain. The PPD will be inserted as the 
first link in the chain. No other PPDs in the PDIB will 
be changed. If the PPD for "ppn" is already linked into 

/ 
I 
\ 

a hash chain before PDINS is executed, the results are 
undefined. PDINS requires ring 0 privilege. 

if XL > 0 then Trap"INSPRIV"; 
PPDpa := PDIB.PA + 16 * ppn; 
Pp := (PPDpa) [1 .• 20]; {zero-extend} 
if ppn <> pp then Trap"ADBPDIB"; 
VPN := (PPDpa + 4 )[0 •. 51]; 
Bucketpa : = HASH. PA + 4 * hash ( VPN ); 
Link := (Bucketpa) [0 •• 31]; 
(PPDpa + 12) [0 .• 31] : = Link; 
(Bucketpa)[O •• 31] := PPDpa; 

Note: the bracketed portion must be synchronized with 
other hardware access to the hash bucket in a 
shared-memory ~ulti-processor system. 
Such a system may use bit 0 of the hash bucket 
(Bucketpa)[O] as a semaphore bit. 
This bit must be returned to O. 
See PDDEL for further detail. 

Traps: INSPBIV 
ADRPDIR 
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6.2.8.4 PDDEL ppn.r4 

Delete from PDIR. The Physical Page Descriptor PPD for the 
physical page with physical page nuIIlber "ppn" is 
removed from its hash chain. 
Ring 0 privilege is required. 

PPDpa := PDIR.PA + 16 * ppn; 
VPN := (PPDpa + 4)[0 .. 51]; 
Linkpa : = HASH. PA + 4 * hash( VPN ); 
repeat 

Oldlinkpa := Linkpa; 
Linkpa := (Linkpa + 12)[0 •• 31]; 
if Linkpa = 0 then Trap"ADRPDIR"; 
until Linkpa = PPDpaj 

(Oldlinkpa+12)[0 .. 31] := (PPDpa+12)[0 .• 31]; 

Notes: (consult carefully when implementing a VISION machine 
capable of running as a shared-memory multi-processor) 

1) Address translation aids (TLB) must be synchronized (by 
hardware) with the state of the PDIR/HASH before hardware 
may execute the instruction following PDDEL. 

2) In a shared-memory multi-processor system, implementations 
must guarantee that read-write operands never fault on the 
write. The burden for ensuring this can be placed entirely 
on the implementation of PDDEL. This requires PDDEL to 
complete a handshake with all processors in the system 
before the instruction following PDDEL executes. 
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3) Various functions compete for access to hash bucket and PPDs 
and these functions must be carefully synchronized by 
hardware. These functions are: address translation; writing 
dirty/reference bits; PDINS; TESTREF; PDDEL. 
Each hash bucket and each PPD has a bit for semaphore use by 
hardware. It is sufficient to lock the appropriate hash 
bucket for the entire duration of each function. However, 
doing so might add overhead to writing dirty/reference bits. 
The following scheme is also sufficient: when writing dirty/ 
reference bits lock only the PPD; when translating addresses 
lock hash bucket and each PPD in the chain and unlock each 
immediately after reading its contents; PDINS locks the hash 
bucket; PDDEL locks two consecutive links in the chain 
(starting with the hash bucket) and unlocks the first one 
only after it has obtained the lock for the third one. 
Hardware must unlock all semaphores when a trap occurs. 

Traps: ADRPDI R 

6-59 

VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COpy -- HP PRIVATE INFORMATION 

6.2.8.5 CVLAtVA operand.ml, virtaddr.w8 

Convert logical address to virtual address. The virtual 
address corresponding to the logical address of 
"operand" is computed and stored in "virtaddr". 
Level 1 privilege is required. The reference 
bit for the page containing "operand" is not 
affected. 

Traps: INSPRIV 

6.2.8.6 HASH virtaddr.r8, hashindex.w4 

Hash address. The 64"-bit virtual address "virtaddr" is 
converted to a hash index which is stored in 
the 32-bit II hash index " . Levell privilege is 
required. Bits 52 •. 63 of "virtaddr" are ignored. 

Traps: INSPRIV 

6.2.8.7 CVVAtPP virtaddr.r8, ppn.w4 

Convert virtual address to physical page nuIIlber. The 64-bit 
"virtaddr" is translated to find the physical page 
on which it resides. It returns a 20-bit physical 
page nuIIlber, right justified and zero-extended. 
However, if the page is absent, "ppn" is set to -1. 
Level 0 privilege is required. The reference bit 
for the addressed page is not affected. 

Traps: 

VPN := virtaddr[O •. 51]; 
if page VPN is currently present then 

ppn := physical-page_nuIIlber_of_(VPN) 
else 

ppn .= -1; 

INSPRIV 
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6.2.8.8 Gro~GDO ne~length.r4 

Gro~ group zero ODT. This instruction inforns hard~are that 
the length of the Object Descriptor Table for group zero 
has been increased. The Group Descriptor for group zero 
is updated to reflect this, in all processors in a 
shared-~e~ory ~ulti-processor syste~. Ring 0 privilege 
is required. It is the responsibility of operating 
syste~ soft~are to ensure that the ne~ly addressable ODs 
in group zero are properly initialized. 

if STATUSA. XL > 0 then Trap" INSPRIV"; 
if GDO.UB < GDO.LB + ne~length 
then GDO.UB .= GDO.LB + ne~lengthj 

Traps: INSPRIV 
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6.2.9 Instructions for Tasking and Synchronization 

6.2.9.1 DISABLE oldi.~l 

Disable interrupts. 

Traps: 

if STATUSA.XL > 1 then Trap; 
oldi := STATUSC.IE; 
STATUSC. IE· = 0; 

INSPRIV 

6.2.9.2 ENABLE oldi.r1 

Enable interrupts. 

Traps: 

if STATUSA.XL > 1 then Trap; 
STATUSC.IE .= oldi; 

INSPRIV 

6.2.9.3 INTERRUPT pr.r4 

Cause processor interrupt at priority "pr". 

if STATUSA. XL > 0 then Trap; 
pri := pr[28 •• 31]j 
IPR[ pri,processor ] := set; 

Traps: INSPRIV 
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Pseudo Interrupt Disable. The Dispatcher Disable Count (DDC) is 
incre~ented. This inhibits dispatching of new tasks. 
It does not disable external interrupts. The PSDB/PSEB 
pair can be used as a very efficient way to protect 
critical regions in a uni-processor syste~. PSDB/PSEB 
pairs can be nested. Ring 1 privilege is required. 

if XL > 1 then Trap" INSPRIV"; 
if DDC < 0 then Trap"INSDDCV"; 
if DDC > 2**27-1 then Trap"INSDDCV"; 
DDC : = DDC + 1; 

Traps: INSPRIV 
INSDDCV 

6.2.9.5 PSEB 
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Pseudo Interrupt Enable. This instruction re~oves one inhibition 
on dispatching new tasks and so undoes the effect of the 
~ost recent PSDB. PSEB requires ring 1 privilege. 
If a dispatch request is pending (DRF = 1), conditions 
for entering the dispatcher are checked and an att~pt 
is roade to enter the dispatcher. These conditions ~ust 
be satiSfied before the dispatcher can be entered: 

STATUSC. DDC 0 
STATUSC.XM 0 
STATUSC.ICS 0 
STATUSC. DRF 1 
STATUSC.IE 1 

The PSDB/PSEB can also be used to protect regions within 
the dispatcher code itself; in this case the DPF flag 
roust be ignored. 

if XL > 1 then Trap" INSPRIV" j 
if DDC <= 0 then Trap"INSDDCV"j 
DDC : = DDC - 1; 
if STATUSC = 3 then DISP 
else if STATUSC = 7 then begin 

if STATUSB.DISP 1 then DRF'= OJ 
end 

Traps: INSPRIV 
INSDDCV 
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6.2.9.6 DISP 

Dispatch. This instruction is used to enter the dispatcher as 
soon as is practicable. The only way to enter the 
dispatcher is through this instruction. 
If the dispatcher cannot be entered right away, the 
Dispatch Request Flag is set. Ring 1 privilege is 
required. The following conditions ~ust hold before 
the dispatcher can be entered: 

/ STATUSC.DDC 0 
I STATUSC.XM 0 
I STATUSC.ICS 0 
\ STATUSC.IE 1 

if XL > 1 then Trap"INSPRIV"j 
if STATUSCl = 1 or STATUSCl = 3 then begin 

PUSH_INTERRUPT_MARKER; TCB. SN . = S; 
STATUSC.ICS := 1; STATUSC.DRF·= 0; 
execute_case_2_of_IEXITj 
end 

else 
STATUSC.DRF := 1; 

Status: either unchanged or loaded fro~ Dispatcher ~arker 
Traps: INSPRIV 

STKOVF 

6.2.9.7 LAUNCH tcbla.r8, tcbva.r8 

Launch a task. This instruction is used by the dispatcher to 
start execution of the task identified by "tcbla" and 
"tcbva". The new current TCB is located at "tcbla" in 
logical address space and at "tcbva" in virtual address 
space. It is the responsibility of operating syst~ 
software to ensure that "tcbla" and "tcbva" are indeed 
logical and virtual address to one and the saroe task 
control block. Level 0 privilege is required. 

if STATUSC.ICS=O then Trap"INSPRIV"; 
if Q < > QI then Trap"STKCONSISTV"; 
TCB.LA := tcblaj TCB.VA:= tcbva; 
GDl := TCB.GD1; 

GD7 : = TCB.GD7j 
execute_case_1_of_IEXIT; 

Traps: INSPRIV 
STKCONSISTV 
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6.2.9.8 IEXIT 

Interrupt Exit. This is used at co~pletion of an interrupt 
handler (either external or internal). A trap occurs 
if the instruction is executed other than on the ICS. 

07/31 

Q l1lust either point to the dispatcher ~arker or to an 
interrupt ~arker, otherwise results are unpredictable. 
If any of the pages of the ICS are absent, results are 
unpredictable. If IEXlT returns control to a task, the 
TCB of that task ~ust be resident. If any pages on the 
task's stack containing the interrupt ~arker are absent, 
or if that stack is in a stack overflow condition, the 
appropriate trap is taken which runs as the bottOI1l 
routine on the ICS (at aI). Neither TCB nor the task 
stack object are ~odified in any way. There are three 
cases of lEXIT which are sorted as follows: 

Case 1: lEXIT should return control to a task without 
involving the dispatcher. 
This case obtains if Q=QI, mhile DRF=O or dispatching 
is otherwise disabled. 

Case 2: lEXIT should run the dispatcher to have it select 
a task to LAUNCH. 
This case obtains if DRF=l (dispatchE~r request flag), 
dispatching is not disabled, and no interrupt handler 
is pending. Note that it is possiblE~ for the dispatcher 
to pree~pt itself. 

Case 3: lEXIT should reSU11le whatever codH was running prior 
to the interrupt handler. This l1lay be a lower priority 
interrupt handler that was pending or the dispatcher. 

The IEXIT description uses these uninterruptible sequences: 

RESTORE_RETURN: 

RESTORE_HP3000: 

begin POP8B 85; .. POP8B BO; 
POP4 X15; •• POP4 XO; POP8 STATUSB; 
end 

begin S·= Q + 120; 
EXIT; 
end 

begin 'POP2' Dela; 
'POP8' STATUSBj 
'POP2' DL.OFFSET; 
'POP2' DB.DST; 
end 
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IEXIT: if STATUSC.ICS = 0 then Trap"INSPRIV"; 
if Q = QI and STATUSC1 <> 7 then begin 

case_1: {return to task} 
STATUSC.ICS := 0; XM:= TCB.XM; 
STATUSC.lE := 1; 
if XM = 0 then begin 

{return to Vision ~ode} 
S := TCB.SN[0 •• 63]; Q:= S - 120; 
if TCB. stJI P = 0 then RESTORE RETURN 
else P: = IstJITCHN" trap label; 
TCB.stJIP := 0; 
end 

else begin 
{return to HP3000 11l0de} 
S := TCB.SC[0 .• 63]; 
RESTORE_HP3000; \ don't allow 
if TCB.stJIP = 0 then 'EXIT 0' / interrupts 
else P: = IstJITCHC" trap label; 
TCB.stJIP := 0; 
end 

end 
else if a=aI or (STATUSC1=7 and (Q)[4]=1) then begin 

case_2: {start dispatcher} 
Q : = aI; DRF: = 0; 
STATUSB := DispatcherStatusBInit; 
EXIT «but leave S at Q» {a doesn't change} 
end 

else 
case_3: {reSU11le code running before interrupted} 

RESTORE_RETURN; 

Note 1: ~pl~entations ~ay substitute for the test Q = QI the 
test (Q-4) [0 .• 31] = QI[32 •• 63]. 

Note 2: "STATUSC1 = 7" SUlIllIlarizes the condition that dispatching 
is both desired (DRF=l) and possible (DDC=O, etc). 

Status: 
Traps: 

restored frol1l ~arker 
INSPRIV 
STKUNF 
STKCONSISTV 
stJITCHN 
SlJITCHC 
AddressingV on all base register loads 
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6.2.9.9 SlJITCH 

SllJitch to HP3000 mode. See chapter 10.5.2.3. 

6.2.9.10 RSlJITCH 

Reverse SllJitch. See chapter 10.5.2.4. 

6.2.9.11 IDLE 

Idle loop. This instruction will cause no activity visible to 
software to occur until an external interrupt is 
raised. In a shared-memory multi-processor, no 
memory bandwidth should be consumed by this processor 
when in IDLE. This requires ring 0 privilege. 

Traps: INSPRIV 

6.2.9.12 STOP 

Stop. This instruction will cause the hardware to save all its 
cached values into their home locations in main memory, 
then release the memory bus and to wait for a hardware 
reset or some other condition not defined by this 
document. The intended use is for stop after power-fail. 
This instruction requires ring 0 privilege. 

Traps: INSPRIV 
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6.2.9.13 SYNCOD loi.r4 

Synchronize changes to an 00. This instruction serves to warn 
hardware that the Object Descriptor corresponding to 
the logical object "loi" in the address space of the 
currently executing task on the processor executing the 
SYNCOD instruction has been changed. Hardware behavior 
of all processors in a shared-memory multi-processor 
system will reflect the new value of the 00 no earlier 
than when the 00 is changed in memory and no later than 
at the completion of the SYNCOD instruction, at the 
discretion of the hardware implementation. 
However, if the logical object whose 00 is being affected 
matches the logical object id of any of the logical 
addresses in the following list, the effect of SYNCOD is 
undefined: 

P; Q,S; BO, ••. ,B5; TCB.LA; QI; 

these reflect operating system errors. Similarly, if 
the OD change modifies the address or length of the TCB 
or ICS(QI) of a task currently executing on another 
processor in the saroe shared-memory multi-processor 
system, the effect of SYNCOD is undefined. 
SYNCOD requires all other processors in a shared-memory 
multi-processor system to re-Ioad their current values 
of P,Q,S,BO .. B5 and for them to transfer control to a 
trap handler if their values are now invalid. 
SYNCOD requires ring 0 privilege. 

Traps: INSPRIV 
AddressingV 
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6.2.9.14 SYNCTCB tcb.rS 

Synchronize task control block. This instruction warns hardware 
that some Group Descriptors in the Task Control Block 
at logical address "tcb" have changed. The behavior of 
address translation hardware will reflect the changes 
in the Group Descriptors no earlier than when the 
changes occur in memory and no later than when SYNCTCB 
is executed mith the proper value of "tcb", the exact 
time being implementation dependent. 

Traps: INSPRIV 
AddressingV 

6.2.9.15 SYNCIB operand.mc, length.r4 

Synchronize instruction buffer. This instruction must be used 
to synchronize hardware whenever code is modified or 
when code comes into or goes out of existence through 
ODT modification. "Operand" identifies the first byte 
affected; "length" (in bytes; if negative, zero is used) 
indicates how many consecutive bytes are affected. 
Ring 0 privilege and code access to "operand" is 
required. 

Traps: INSPRIV 
CODEODTV 
CODEBNDSV 
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6.2.9.16 TESTSEMA sema.mrw4, result.w4 

Semaphore test. This instruction is used for synchronization 
with other processors in a shared-memory multi-processor 
system. It is essentially a "test and set". The old 
value of "sema" is copied into "result". Then bit 0 
of "sema" is set to 1. Reading the most significant 
byte of "sema" and storing back the modified value is 
all done in a single uninterruptible operation. No 
memory access on behalf of any processor is allowed to 
intervene between the read of "sema" and the write of 
the modified value of "sema". 
The other three bytes of "sema" can be fetched either 
simultaneously to fetching the first byte or later 
(jointly, or individually) but not before. Condition 
code CCE is set mhen bit 0 of "saa" mas found clear, 
CCG is set when bit 0 was found set. 
Note: for any res tar tab Ie trap detected after the 
first byte has been modified, hardmare must restore 
the first byte to its original value before passing 
control to the trap handler. 

Byte[0 .. 7] := sema[0 •. 7]; 
sema [0] : = 1; 
if Byte[O] = 1 
then CC : = CCG 
else CC := CCE; 
result[0 •. 7] := Byte; 
result[S •. 31] := sema[8 •• 31); 

Status: CC 

6.2.9.17 MOVESEMA source.r4, sema.mw4 

\ uninterruptible by 
/ other processors. 

Move semaphore. This instruction copies the value of "source" 
into "sema" in one indivisible memory operation. No 
other hardware activity is allowed to cause any part 
of "sema" to change until MOVESEMA has completed. 

sema . = source; 

6-69 6-70 

07/31 



VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COPY -- HP PRIVATE INFORMATION 

6.2.9.18 DOWN seroa.mrw4 

Down semaphore (Pl. This instruction performs the fast path of 
the Down semaphore operation (also known as 'P') or 
else traps out to the trap handler for the slow path. 
"sellla" contains a bit for locking out other processors 
in a shared-melllory lIlulti-processor systelll; it also 
contains a 31-bit signed integer count. The address 
of the next instruction and the address of "seIlla" 
are passed to the SEMADOWN handler. 

Label: TESTSEMA seroa, Teropj \ busy-wait for 

Status: 
Traps: 

BRBUSY Label; / hardware seroaphore 
Count := Temp[1 .. 31]; {sign-extended} 
if Count = -2**30 then Trap"SEMAOVF" 
else begin 

Count := Count - 1; 
MOVESEMA Count, sema 
if Count < 0 then Trap"SEMADOWN" 
end; 

CC NOT affected 
SEMAOVF 
SEMADOWN 

6.2.9.19 TESTDOWN sema.lIlrw4 
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Test and Down selllaphore. This instruction atteropts a DOWN, but 
rather than trap out to software for the slow path, it 
sets a condition code to reflect this fact and continues. 

Label: TESTSEMA sema, Temp; \ busy-wait for 
BRBUSY Label; / hardware semaphore 
Count := Terop[1 •. 31]; {sign-extended} 
if Count = -2**30 then Trap"SEMAOVF" 
else begin 

TEST4 Count; 
if Count> 0 then Count '= Count - 1; 
Count [0] : = 0; 
MOVESEMA Count, seroa; 
end; 

Status: CC 
Traps: SEMAOVF 
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6.2.9.20 UP seroa.mrw4 

UP seIllaphore (V). This instruction performs the fast path of 
the Up seIllaphore operation (also known as 'V'l and 
traps to software for the slow path. "Seroa" is a 
32-bit quantity in memory that contains a 'hardware­
semaphore' bit and a 31-bit signed integer count. 
UP increments the count. Yhen the count remains 
negative, the slow path is taken. The trap handler 
presumably launches the first task on the queue of 
tasks waiting for this semaphore. 
Note: for any restartable trap detected after the 
seIllaphore word "seIlla" has been modified, hardware 
must restore its original value before passing 
control to the trap handler. The seroaphore word 
is NOT restored when taking the "SEMAUP" trap. 

Label: TESTSEMA sema, TeIIlp; \ busy-wait for 
BRBUSY Label' / hardware seroaphore 
Count := Teropt1 •. 31] {sign-extended}; 
if Count = 2**30-1 then Trap"SEMAOVF" 
else begin 

Count := Count + 1; 
if Count <= 0 then begin 

Count [0] := 1; {NOT superfluous!} 
MOVESEMA Count, seroa; 
Trap"SEMAUP" 
end 

else MOVESEMA Count, seIlla 
end; 

Status: CC NOT affected 
Traps: SEMAOVF 

SEMAUP 
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6.2.10 Arithmetic Conversion 

6.2.10.1 ISC42 source.r4, destination.~2 

Integer size check. The 16 least significant bits of "source" 
are IIloved to "destination". If the 17 IIlost significant 
bits are not all the saIlle, overflo~ is raised. 

destination[0 •• 15] := source[16 •• 31]; 
if source > 2A 15-1 or source < -2A 15 
then raise integer overflo~; 

Traps: Ovflo~ 

6.2.10.2 CONVERT subopcode.rl, source.r, destination.~ 
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Convert types. "CONVERT" uses a subopcode to deterIlline froro ~hat 
type to what type conversion is desired. The subopcode 
also controls rounding behavior ~hen any floating point 
arithmetic is involved. 

+-+-+-+-+-+-+-+-+ 

subopcode IRndISrc-TIDst_TI 
+-+-+-+-+-+-+-+-+ 

"Source" is interpreted to be of type "Src T" and converted 
to the "Dst_T" type and stored in "destination". 

Rnd IIleaning 
o round to~ards nearest unit, (if tie, round to even) 
1 round towards negative infinity 
2 round towards zero 
3 round according to STATUSB.FPC.RM 

Src_T, Dst T 
o 
1 
2 
3 
4 

Conversion to 

Status: Ovfl 
Unfl 

Traps: Ar ith 
FlArith 

IIleaning 
32-bit integer 
64-bit integer 
32-bit IEEE floating point 
64-bit IEEE floating point 

128-bit IEEE floating point 
and froro decilllal data is covered 
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6.3 Decilllal Instructions 

6.3.1 Packed Decilllal Numbers 
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The packed decilllal rJUlIlber fOrIllat used in IIlany of the instructions 
in the cobol and decilllal group is described here. External 
rJUlIleric forIllat is described later in this introduction. In packed 
decilllal fOrIllat, a decilllal digit is encoded in a nibble, using bit 
patterns 0000-1001 to encode 0-9. Two decimal digits are packed 
to a byte; the least significant decilllal digit is packed in a byte 
together ~ith a nibble encoding the sign. Packed deciIllal rJUlIlbers 
roay contain 0-31 digits. This aIIIounts to 1-32 nibbles (counting 
the sign nibble), or 1-16 bytes. Packed decimal rJUlIlbers al~ays 
occupy an integral rJUlIlber of bytes, even if the rJUlIlber of decimal 
digits is even and therefore the rJUlIlber of nibbles is odd. A 
packed decilllal rJUlIlber ~ith an even rJUlIlber of digits IIlust have a 
OOOO-nibble as its IIlost significant nibble such as to fill out the 
byte. The address of the packed decilllal rJUlIlber is the address of 
the byte containing the roost significant digit. The standard sign 
nibble has the value 1100 for positive and 1101 for negative. Any 
other value for the sign nibble roay produce unexpected results in 
packed decilllal arithmetic. Ho~ever, VALD (validate decilllal) 
accepts sign nibbles 0000-1011, 1110 and 1111 as alternatives for 
positive and ~ill change theIll to 1100. By soft~are convention, 
1111 roay be regarded as "unsigned". Decimal arithmetic on packed 
decimal rJUlIlbers ~ill al~ays produce results ~ith a standard sign 
nibble. Negative zero (i.e. a packed decilllal rJUlIlber 0 ~ith a 
negative sign nibble) is not produced by packed decilllal arithmetic. 
Using negative zero in packed decilllal arithIlletic IIlay produce 
unexpected results. H~ever, VALD accepts negative zero and ~ill 
change it to positive zero. 
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The following comments apply equally to all packed decimal 
instructions described in sections 6.3.3.1 through 6.3.3.12. 

a) It is the responsibility of software to ensure that the 
"fill-out" nibble in a packed decilllal with an even number of 
digits does indeed have the value zero. Hardware may treat 
this nibble as a normal significant decilllal digit in a source 
operand. It is the responsibility of the hardware never to 
introduce a non-zero value in the "fill-out" nibble as a 
consequence of decimal arithmetic. It is the responsibility 
of hardware to set the overflow bit (or take the overflow 
trap) based on whether the resulting packed decimal number 
fits in the number of decilllal digits specified in the 
instruction. Hardware must never overflow into the "fill­
out" nibble. 

07/31 

b) Yhen decimal overflow occurs with the overflow trap enabled, 
the source operands will be left unchanged by the instruction. 
A destination operand may receive a value that differs across 
hardware implementations (unless it coincides with a source 
operand) • 

c) It is the responsibility of software to ensure that there is 
no partial overlap between source operands and destination 
operands in the same instruction. It is the responsibility 
of hardware to ensure that total identity between source and 
destination operand is handled "correctly" (defined as 
producing the same result as would be obtained by completely 
pre-reading the source operand into a processor-private 
temporary area). 

d) The length of a packed decimal operand is expressed by giving 
the number of decimal digits; in other words, the sign nibble 
is not counted, nor the "fill-out" nibble. SOllle packed 
decilllal instructions include an explicit operand specifying 
the length of the packed decilllal value; in others the length 
is iIIlplied by the opcode: for these, the length is either 7, 
15 or 31 digits, which corresponds to 4, 8 and 16 bytes. 
On loading decilllal values in registers, they are always left­
filled with zeros to reach 7, 15 or 31 digits. 
Explicit length operands must be checked by hardware to 
ensure they are between 0 and 31. The "DECINVL" trap is 
taken for invalid length operands. 
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6.3.2 External Decimal NUmbers 

The external numeric format uses a decimal representation of a 
nuNber with one digit per byte. each digit is encoded in ASCII 
(48-57 corresponds to '0' - '9'). The sign is encoded by an 
"overpunch" in the least significant digit. An external nuNeric 
number consists of zero or more leading ASCII blanks followed 
by zero or more ASCII digits followed by an overpunched ASCII 
digit. Overpunched digits follows the conventions in the table 
below: 

digit 
value 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
o 

positive 
overpunch 

'{ , 
'A' 
'B' 
'c' 
'D' 
'E' 
'F' 
'G' 
'H' 
'I' 

negative 
overpunch 

'}' 
'J' 
'K' 
'L' 
'M' 
'N' 
'0' 
'P' 
'Q' 
'R' 

unsigned 

'0' 
'1' 
'2' 
'3' 
'4' 
'5' 
'6' 
'7' 
'8' 
'9' , , 

The CVAD instruction recognizes a number in this external format 
and converts it to a number in packed decimal representation. 
The CVDA instruction converts a nuNber in packed decimal format 
to external numeric format as described here. 
VISION does not directly support some decimal formats known as 
external numeric with leading overpunched sign, external numeric 
with trailing separate sign, external numeric with leading 
separate sign and unsignedexternal numeric. However, three 
special instructions TESTSTRIP, GETSIGN and OVPUNCH allow these 
other external numeric formats tobe converted to external 
numeric with trailing overpunched sign. 
TESTSTIP will strip the overpunched sign while recording the 
original sign information in the condition code. GETSIGN will 
extract the sign information from an overpunched sign digit and 
format it as an ASCII sign digit. OVPUNCH combines an unsigned 
digit and an ASCII sign digit and will produce from them the 
the corresponding sign-overpunched ASCII character. 
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6.3.3 Decimal Instruction Set 

6.3.3.1 ADDtD terro.r, Sliro.rm 

Add decimal. "Term" is added to "SUJll" and the result is stored 
in "SUJIl". The operands l1lust be in the standard packed 
decimal forJllat (such as produced by VALD) , othermise 
results JIlay differ across impleJllentations. A decimal 
overflom occurs if all of the digits of the result do 
not fit in "SUJIl"j if overflom is disabled, the left­
truncated result is stored in "SUJIl", else "SUJIl" is 
left unchanged. 

ADD4D 
Status: Ovfl 
Traps: Opnd 

DECOVF 

ADD8D 
Ovfl 
Opnd 
DECOVF 

ADD16D 
Ovfl 
Opnd 
DECOVF 

6.3.3.2 SUBtD term.r, difference.rm 

SUbtract deciroal. "Term" is subtracted froJll "difference" and 
the result is stored in "difference". The operands 
JIlust be in the standard packed decimal format (such as 
produced by VALD) , othermise results l1lay differ across 
impleJllentations. A deciJllal overflom occurs if all of 
the digits of the result do not fit in "difference"; 
if overflom is disabled, the left-truncated result is 
stored in "difference", else "difference" is left 
unchanged. 

SUB4D SUB8D SUB16D 
Status: Ovf1 Ovf1 Ovf1 
Traps: Opnd Opnd Opnd 

DECOVF DECOVF DECOVF 
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6.3.3.3 MPYtD factor.r, product.rm 

Multiply decimal. "Factor" is multiplied by "product" and the 
result is stored in "product". The operands roust be 
the standard packed decimal format (such as produced 
by VALD) , othermise the results may differ across 
implementations. A decimal overflom occurs if all of 
the digits of the result do not fit in "product"; if 
overflom is disabled, the left-truncated product is 
stored in "product", else "product" is left unchanged. 

MPY4D 
Status: Ovfl 
Traps: Opnd 

DECOVF 

MPY8D 
Ovf1 
Opnd 
DECOVF 

MPY16D 
Ovf1 
Opnd 
DECOVF 

6.3.3.4 DIVtD divisor.r, quotient.rm 

Divide decimal. "Quotient" is divided by "divisor" and the 
result is stored in "quotient". The operands Illust 
be in the standard packed decimal format (such as 
produced by VALD) , othermise the results Illay differ 
across i11lplelllentations. DIVD truncates, i.e. it 
rounds tomards zero. Decimal overflom occurs if all 
of the digits of the result do not fit in "quotient"; 
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if overflom is disabled, the left-truncated result is 
stored in "quotient", else "quotient" is left unchanged. 
If "divisor" is zero, the result is indeterminate. 

DIV4D DIV8D DIV16D 
Status: Ovf1 Ovf1 Ovf1 
Traps: Opnd Opnd Opnd 

DECDVDZ DECDVDZ DECDVDZ 
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6.3.3.5 CMPtD sourcea.r, sourceb.r 

COlllpare decmal. The condition code in the status lIIord is set 
depending on the result of the cOl1lparison of the 
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decilllal values of "sourcea" and "sourceb". Both 
operands lIlust be in the standard packed decil1lal forlllat 
(such as produced by VALD) , otherlllise results l1lay differ 
across iI1lplel1lentations. 
The condition code is set to: 

CCG, if sourcea > sourceb, 
CCL, if sourcea < sourceb, 
CCE, if sourcea sourceb. 

CMP4D 
Status: CC 
Traps: Opnd 

CMP8D 
CC 
Opnd 

6.3.3.6 TESTtD source.r 

CMP16D 
CC 
Opnd 

Test decil1lal. This is a short fOrlll of CMPtD source, O. 

TEST4D 
Status: CC 
Traps: Opnd 

TEST8D 
CC 
Opnd 

TEST16D 
CC 
Opnd 
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6.3.3.7 SLD count.rl, length.rl, source.r, dest.w 

Shift left dec mal. The packed dec mal value in "source" is 
shifted left by "count" decmal places and the result 
is stored in "dest". Both "source" and "dest" have 
"length" digits. This is equivalent to a MOVED frolll 
"source" to "dest" follollled by a MPYD of "dest" by a 
pOlller of ten. 

Status: OVfl 

6.3.3.8 SRD count.r1, length.r1, source.r, dest.lII 

Shift right dec mal. The packed decil1lal value in "source" is 
shifted right by "count" decil1lal places and the result 
is stored in "dest". Both "source" and "dest" have 
"length" digits. This is equivalent to a MOVED frol1l 
"source" to "dest" follollled by a DIVD of "dest" by a 
pOlller of ten. 

Status: OVfl 

6.3.3.9 MOVED length.rl, source.r, dest.lII 

Move decil1lal. The packed decil1lal "source" IlJith "length" decil1lal 
digits is lIloved to "destination" of the sal1le length. 
If "source" is in a register, only the least significant 
"length" digits are lIloved, lJJith overflolll indication if 
any of the lIlost significant digits in the register 
(register pair, quad) are non-zero. 
If "dest" is in a register, the decil1lal l1UlIlber is padded 
lJJith zero digits to fill up either 1,2 or 4 registers. 
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6.3.3.10 VALD length.rl, operand.rw 

Validate decilllalo The packed decilllal string "operand" is 
checked for validity as a deci~al number. If 
"length" is even, the "fill-out" nibble is ~ade 
zero. Each digit is checked to be in the range 
0000-1001. The sign nibble is ~ade standard by 
replacing 0000-1001 , 1110 or 1111 with the value 
1100. If all digits are zero, but the sign is 
negative, the sign is changed to positive. 
"Length" indicates the length in digits of the 
packed decilllal number. 

Traps: DECINVL 
DECINVDG 

6.3.3.11 CVDI length.rl, source.r, dest.w8 

Convert packed dec~al to integer. The packed dec~al number in 
"source", with "length" dec~al digits, is converted 
to a two's co~ple~ent 64-bit integer. The result is 
stored in "dest". "Source" ~ust be in standard packed 
dec~al fo~at (such as produced by VALD) , otherwise 
results ~ay differ across ~ple~entations. 

Traps: OVfl 

6.3.3.12 CVIO length.rl, source.r8, dest.w 

Convert integer to packed dec~al. The 64-bit two's co~pl~ent 
integer value in "source" is converted to a number in 
packed dec~al fo~at and padded or truncated to fit 
"length" decilllal digits. The result is stored in 
"dest". If "dest" is in a register, the result is 
further padded to occupy 4,8, or 16 bytes. 

Traps: OVfl 
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6.3.3.13 TESTSTRIP operand.rw1 

Test and strip sign fro~ overpunched ASCII digit. The ASCII 
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digit "operand" is changed to an unsigned digit according 
to the table below. The condition code is set to CCG if 
the digit is found in the positive column, to CCL if the 
digit is found in the negative column and to CCE if it 
is found in the unsigned column. If "operand" is not in 
the table, an invalid digit trap occurs. 

positive negative unsigned 

. { , 
'A' 
'B' 
'c' 
'D' 
'E' 
'F' 
'G' 
'H' 
'I' 

Status: CC 

'}' 
, J' 
'K' 
'L' 
'H' 
'N' 
'0' 
'P' 
'Q' 

'R' 

'0' 
, l' 
'2' 
'3' 
'4' 
'5' 
, 6' 
'7' 
'8' 
, 9' 
, , 

6.3.3.14 GETSIGN operand.r1, sign.w1 

all beco~e: 

'0' 
, l' 
'2' 
'3' 
'4' 
, 5' 
, 6' 
'7' 
'8' 
, 9' 
'0' 

Get sign. The sign-overpunched ASCII digit "operand" is exadned 
and its sign (according to the table above) is recorded 
in "sign", using ASCII '+' for positive, '-' for negative 
and ' , for unsigned. Invalid values for "operand" will 
generate an invalid digit trap. 

Traps: DECINVDG 

6.3.3.15 OVPUNCH sign.ri, operand.rwl 

Create digit with overpunched sign. "Sign" ~ust be ASCII '+', 
'-' or ' , (blank). "Operand" ~ust be one of the 
ASCII digits fro~ '0' to '9'. "Operand" is changed 
into the corresponding el~ent of the positive column 
or the negative column of the table above, depending 
on "sign". If "sign" is ' " no change occurs. 
Invalid values for "sign" or "operand" generate an 
invalid digit trap. 

Traps: OECINVDG 
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6.3.3.16 VALN length.rl, operand.rw 

Validate external numeric decimal. This instruction checks to 
see if the external nuJlleric decimal "operand" obeys 
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the following forJllat: zero or more ASCII blanks 
folloMed by zero or more ASCII encoded digits the last 
one of which is optionally overpunched Mith a sign 
according to the table on the previous page. "Length" 
indicates the length of "operand" in bytes. All leading 
blanks are converted into ASCII '0'. Negative zero is 
converted to positive zero. 

Traps: DECINVDG 

6.3.3.17 CVAD length.rl, source.r, dest.M 

Convert external numeric decimal to packed decimal. The "source" 
of "length" bytes is interpreted as an external numeric 
deciJllal number with trailing overpunched sign and 
converted to packed decimal format. The packed decimal 
result is padded to 4,8 or 16 bytes (no more than needed 
given "length") and stored in "dest". If source does 
not obey the forJllat checked for and produced by VALN, 
indeterminate results occur. 

6.3.3.18 CVDA length.rl, source.f, dest.M 

Convert packed deciInal to external numeric decimal. The "source" 
is interpreted as a packed decimal number. The "dest" 
is an external numeric decimal of "length" bytes. 
The length of "source" is 4,8 or 16 bytes, as derived 
from "length". If "source" does not obey the format 
checked for and produced by VALD, indeterminate results 
occur. 
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6.4 Vector Instruction Set 

This section describes the vector instruction set. Vector 
Registers and the vector context save area are described in 
chapter 5. 

Vector instructions are all in a secondary instruction set, in 
the "VECTOR" escape group. Opcode assignments are shOMn in 
section 6.1.4. 

A memory vector is an array of values that are evenly spaced in 
memory. An eXaJllple Mould be a rOM or a column of a matrix in 
a Fortran prograJll. Vector instructions can perform operations 
(such as addition) on entire Jllemory vectors, at speeds higher 
than a corresponding software sequence. Vector instructions 
can also perform operations betMeen Jllemory vectors and scalars 
(e.g. multiplying all elements of a memory vector by tMO). 
MeJllory vectors are therefore characterized by their starting 
address, their number of elements, and the distance betMeen 
consecutive elements. This distance between elements (in bytes) 
is called the stride of the vector. A memory vector Mith a 
stride of zero degenerates to a scalar. 

A Jllajor feature of the VISION architecture is the inclusion of 
vector registers. A vector register can be loaded Mith all or 
part of a memory vector, offering the potential of eliminating 
even memory access speed as a limit on vector perforJllance. 

Most vector instructions operate on vector operands, Mhich are 
either vector registers or memory vectors or scalar registers 
(XO •. X15). Vector operands are indicated by the vector 
attribute(".v"). Under the vector attribute, an operand 
descriptor for a literal (short or long) is given a different 
meaning: the least significant 3 bits of the literal are 
interpreted as a vector register numbef, selecting VRO •. VR7. 
Under the vector attribute, a memory operand is re-interpreted 
as a memory vector, as detailed beloM. A register operand is 
interpreted as a scalar. 

To encode a memory vector, either one or two operand descriptors 
are needed. The second operand descriptor is needed Mhen a 
meJllory vector has a stride different from the default value. 
The default stride is such that the Jllemory vector is entirely 
contiguous in (virtual) memory. 
The first operand descriptor of a memory vector (treated as a 
".m" operand) designates the starting address of the vector. 
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The vector opcode of a vector instruction does not uniquely 
determine ho~ many operand descriptors participate in the 
instruction. A special first operand, called vector qualifier, 
contains the necessary information. This operand must be 
encoded as a short literal. Its value is interpreted as 
follo~s: 

° 234 567 
+--------+--+--+--+----+ 

res. IS11S21D I MR I 
+--------+--+--+--+----+ 

~here: 

Sl -- first source stride. If one, the first source operand 
uses an explicit stride. This implies that t~o 
operand descriptors are involved in this source 
operand. 

S2 -- second source stride. If one, the second source 
operand uses an explicit stride. 

D destination stride. If one, the destination operand 
uses an explicit stride. 

MR -- mask register. Selects one of four mask registers. 
Their function is detailed belo~. 

res -- reserved. Hard~are masks out this field. 

The vector qualifier determines ~hich operands carry explicit 
strides. These strides are encoded as ".r4" operands that 
follo~ all other operands in the vector instruction. 

An explicit stride is only meaningful if the corresponding 
operand is indeed a memory operand, indicating a memory vector. 
A vector register specifier or a scalar cannot make use of an 
explicit stride; in this case the bit in the vector qualifier 
is ignored. 
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6.4.1 Boundary conditions 

a) Any overlap bet~een source and destination ~ill produce 
results that may differ across implementations. Total 
identity of source and destination operands is allo~ed. 
For eK~ple, soft~are may expect 

VADD4 B5.0, B5.0, B5.0 

to result in all values of the array at B5 to get doubled. 
Ho~ever, soft~are should not expect 

MOVE4 1, B5.0 
MOVE4 1, B5.4 
VADD4 B5.0, B5.4, B5.8 

to compute the Fibonacci series. 

b) Any overlap ~ithin the destination vector itself due to 
small values of the stride ~ill produce results that may 
differ across implementations. 

c) All vector operations are interruptible. Chapter 5 provides 
more detail. 

d) For vector operations that have corresponding operations on 
scalars in the base instruction set, the values returned on 
e.g. overflo~ are the s~e as in the base instruction set 
~ith overflo~ trap disabled. If the trap is enabled, the 
vector operation stops as soon as the condition occurs on 
an element, and identifying information is passed to the 
trap handler. 
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6.4.2 Vector Arithmetic Operations 

6.4.2.1 VMOVEt vqual.r1, source.vr, dest.vw 

Vector lIIove. 

includes: VMOVE2 VMOVE4 VMOVE8 VMOVE16 

6.4.2.2 VADDt vqual.r1, terllla.vr, terlllb.vr, SUJII.VW 

Vector add. Elelllents of "SUJII" are set to the SUJII of elements 
of "terllla" and "terlllb". 

includes: VADD4 VADD8 VADD4F VADD8F VADD16F 

6.4.2.3 VSUBt vqual.r1, terllla.vr, terlllb.vr, diff.vw 

Vector subtract. Elelllent-wise difference of "terllla" and 
"terlllb" is stored in "diff" vector. 

includes: VSUB4 VSUBS VSUB4F VSUB8F VSUB16F 

6.4.2.4 VMPYt vqual.rl, facta.vr, factb.vr, prod.vw 

Vector multiply. Elelllent-TIJise product of "facta" and "factb" 
is stored in "prod" vector. 

includes: VMPY4 VMPY8 VMPY4F VMPY8F VMPY16F 

6.4.2.5 VDIVt vqual.rl, divd.vr, divsr.vr, quot.vw 

Vector divide. Elelllent-TIJise division of "divd" by "divsr" 
T1Ji th the result being stored in "quot". 

includes: VDIV4 VDIV8 VDIV4F VDIV8F VDIV16F 
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6.4.2.6 VNEGt vqual.r1, source.vr, neg.vw 

Vector Negate. Element-wise subtract of "source" from zero, 
storing the result in the vector "neg". 

includes: VNEG4 VNEGS VNEG4F VNEGSF VNEG16F 

6.4.2.7 VABSt vqual.r1, source.vr, abs.vw 

Vector Absolute. Elelllent-wise absolute value (negate if 
negative), storing the result in the vector "abs". 

includes: VABS4 VABS8 VABS4F VABS8F VABS16F 

6.4.2.S VREMt vqual.r1, divd.vr, divsr.vr, relll.vw 

Vector relllainder. Elelllent-wise relllainder of division of "divd" 
by"divsr" is stored in "relll". 

includes: VREM4 VREM8 

6.4.2.9 VMODt vqual.r1, divd.vr, divsr.vr, lIIod.vw 

Vector lIIodulus. Elelllent-TlJise lIIodulus of division of "divd" by 
"divsr" is stored in "lIIod". 

includes: VMOD4 VMODS 

6.4.2.10 VLSLt vqual.r1, shiftcount.vr, target.vrTJJ 

Vector logical shift left. Element-TIJise left shift of the 
vector "target", leaving the result in "target". 
Note that the shiftcount itself is a vector. 

includes: VLSL4 VLSLS 

6-88 

07/31 



VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COpy -- HP PRIVATE INFORMATION 

6.4.2.11 VLSRt vqual.r1, shiftcount.vr, target.vrm 

Vector logical shift right. Element-mise right shift of the 
vector "target", leaving the result in "target". 
Note that the shiftcount itself is a vector. 

includes: VLSR4 VLSR8 

6.4.2.12 VASLt vqual.rl, shiftcount.vr, target.vm 

Vector arithmetic left shift. Element-mise arithmetic left 
shift of the vector "target", leaving the result in 
"target". "Shiftcount" is itself a vector. 

6.4.2.13 VASRt vqual.rl, shiftcount.vr, target.vm 

Vector arithmetic right shift. Element-mise arithmetic right 
shift of the vector "target", leaving the result in 
"target" . "Shiftcount" is itself a vector. 

6.4.3 Vector Logical Operations 

6.4.3.1 VAND4 vqual.r1, facta.vr, factb.vr, and.vm 

Vector "AND". Computes element-mise and bit-mise "AND" of the 
vectors "facta" and "factb" and stores the result in 
the vector "and". 

6.4.3.2 VOR4 vqual.r1, terma.vr, termb.vr, or.vm 

Vector "OR". Computes element-mise and bit-mise "OR" of the 
vectors "tema" and "termb" and stores the result in 
the vector "or". 

6.4.3.3 VKOR4 vqual.rl, terma.vr, termb.vr, xor.vm 

Vector "KOR". Computes element-mise and bit-mise exclusive 
"OR" of the vectors "terma" and "termb" and stores 
the result in the vector "xor". 
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6.4.4 Vector Compare and Vector/Scalar Hybrids 

6.4.4.1 VCMPt vqual.r1, field.r1, srca.vr, srcb.vr, mrsel.r1 

Vector Compare. "Field" indicates the type of compare (>, >=, 
etc.) to be performed. The four least significant 
bits of "field" indicate G,L,E,U respectively. All 
elements of "srca" are compared mith the corresponding 
elements of "srcb" and the corresponding bit of the 
mask register (selected by the mask register selector 
"mrsel" is set to one if the comparison holds. 

includes: VCMP4 VCMP8 VCMP4F VCMP8F VCMP16F 

6.4.4.2 VACCt vqual.r1, terms.vr, sum.rm 

Vector Accumulate. Adds all elements of "terns" to the old 
value of "sum". 

includes: VACC4 VACC8 VACC4F VACC8F VACC16F 

6.4.4.3 VACCDt vqual.r1, terms.vr, sum.rm 

Vector Accumulate (Double Precision). Adds all elements of 
"terms" to the old value of "sum". "SUm" has double 
the l1UlIlber of bytes of "terms". 

includes: VACCD4F VACCD8F 
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6.4.4.4 VMAXELt vqual.r1, terms.vr, maxind.w4 

Find maximum elel1lent of vector. "Maxind" is set to the index 
of the maximum element of the vector "terms". In 
case of ties, the index of the earliest is chosen. 

includes: VMAXEL4 VMAXEL8 VMAXEL4F VMAXEL8F VMAXEL16F 

6.4.4.5 VMINELt vqual.r1, terms.vr, JIlinind.w4 

Find minimum elel1lent of vector. "Minind" is set to the index 
of the minimUJll eleroent of the vector "terl1ls". In 
case of ties, the index of the earliest is chosen. 

includes: VMINEL4 VMINEL8 VMINEL4F VMINEL8F VMINEL16F 

6.4.4.6 VEXTt vqual.r1, terms.vr, index.r, value.w 

Extract element from vector. The elel1lent of "terms" at index 
"index" is fetched and stored into the scalar "value". 

includes: VEXT4 VEXT8 VEXT16 

6.4.4.7 VINSt vqual.r1, terms. vw , index.r, newval.r 

Insert elel1lent into vector. The elel1lent of "terl1ls" at index 
"index" is l1lodified to reflect the value "newval". 

includes: VINS4 VINS8 VINS16 
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6.4.4.S VCOMPRSt vqual.r1, terros.vr, compressed.vw 

Compress vector. The mask register indicated in "vqual" governs 
which elements of "terms" to keep and which to discard. 
The kept elel1lents are collected in "colll.pressed". 
VCOMPRS will work correctly in place, Le. when "terms" 
and "coJllpressed" are JIlel1lory vectors with identical 
starting address and identical stride. 

includes: VCOMPRS4 VCOMPRS8 VCOMPRS16 

6.4.4.9 VEXPNDt vqual.r1, terJlls.vr, expanded.vw 

Expand vector. The l1lask register indicated in "vqual" governs 
which elel1lents of "expanded" are set to eleroents of 
"terms" and which to set to zero. The order of the 
eleJllents of "terms" is preserved. If VEXPND is used 
in place, results are indeterminate. 

includes: VEXPND4 VEXPNDS VEXPND16 

6.4.4.10 VGATHt vqual.r1, source.vr, index.vr, destination.vw 

Vector Gather. Contiguous elements of "destination" are set to 
to those eleJllents of "source" indexed by the contiguous 
elel1lents of "index". The mask register indicated by 
"vqual" applies to "destination" and "index". "Index" 
is in units of bytes. 

includes: VGATH4 VGATH8 VGATH16 

6.4.4.11 VSCATt vqual.r1, source.vr, index.vr, destination.vw 

Vector Scatter. Contiguous elelllents of "source" are put in 
those elel1lents of "destination" indexed by the 
contiguous eleroents of "index". The JIlask register 
indicated by "vqual" applies to "source" and" index". 
"Index" is in units of bytes. Those eleroents of 
"destination" not indexed are left unchanged. 

includes: VSCAT4 VSCAT8 VSCAT16 
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6.4.5 Vector Housekeeping 

6.4.5.1 RVLR 

Reduce Vector Length Register. The vector length register VLR 
is reduced by the current segment length. Condition 
codes are set to reflect the ne~ value of VLR. 
See section 5.KK for details. 

Status: CC 

6.4.5.2 LDVLR source.r4 

Load vector length register. 

6.4.5.3 STVLR dest.~4 

Store vector length register. 

6.4.5.4 VINVAL vrmask.r1 

Vector invalidate. The Vector Registers corresponding to ones 
in the 8-bit "vrmask" have their active lengths set 
to zero. 

6.4.5.5 UVCSA 

Update vector context save area. The values of the vector 
registers are stored in the Vector Context Save Area. 

6.4.5.6 PUVCSA tcb.mr 

Privileged update of VCSA. The values of the vector registers 
are stored in the Vecor Context Save Area of the 
designated task ("tcb" points to the Task Control Block 
of this task). PUCSVA requires ring 0 privilege. 

Traps: INSPRIV 
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6.4.5.7 IVB tcb.mr 

Invalidate vector bank. Invalidates vector bank belonging to 
the designated task. Ring 0 privilege required. 

6.4.5.8 LVB tcb.mr 

Load vector bank. Load the vector bank corresponding to the 
designated task from its VCSA. Ring 0 privilege 
required. 

6.4.6 Operations on Mask Registers 

In the follo~ing instructions, "mrselect" is an operand that 
selects one of the four Vector Mask Registers. Only bits 
mrselect[6 •• 7] are relevant. Bits mrselect[O •• 5] are ignored. 
Note that the Mask Registers are at most 256 bits long. 

6.4.6.1 CLRMR mrselect.rl 

Clear mask register. Set selected mask register to all zeros. 

6.4.6.2 STMR mrselect.r1, destination.~16 

Store mask register. Store selected mask register in 
"destination". 

6.4.6.3 LDMR mrselect.r1, source.r16 

Load mask register. Load selected mask register from the value 
in "source". 

6.4.6.4 MRNOT mrselect.rl 

Complement mask register. Change all zeros in the selected mask 
register to ones and vice versa. 
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6.4.6.5 MRAND mrasleect.rl, mrbselect.rl 

"AND" mask registers. Zero out all bits in mask register "mrb" 
that have zeros in the corresponding location in mask 
register "lIlra". 

6.4.6.6 MROR mraselect.r1, mrbselect.r1 

"OR" mask registers. Set all bits in mask register "mrb" to 
one that have ones in the corresponding location in 
mask register "mra". 

6.4.6.7 MRXOR mraselect.r1, mrbselect.rl 

"XOR" mask registers. COlllplement all bits in mask register 
"mrb" that have a one in the corresponding location 
in mask register "mra". 

6.4.7 Vector Conversion 

6.4.7.1 VCONVERT vqual.r1, typer.r1, source.vr, dest.vw 

Vector Conversion and Round. This instruction allo~s vector 
conversion frolll one type to another as specified in 
"typer". The vector "source" is converted and the 
result is stored in the vector "dest". 
Bits typer[2 .. 4] determine the type of "source", 
bits typer[5 .. 7] determine the type of "dest". 
Bits typer[0 .. 1] are ignored. 
Data types are encoded in "typer" as follows: 

o 4-byte integer 
1 8-byte integer 
2 4-byte IEEE floating point 
3 8-byte IEEE floating point 
4 16-byte IEEE floating point 

5-7 illegal 

All conversions, including conversions from floating 
point numbers to integers, obey the rounding mode in 
STATUSB. FPC. RH. 
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6.5 I/O Instructions 

This sections details the instructions that deal with the I/O 
backplane and the I/O channels. 

6.5.1 PICMB-based VISION systems 

The PICMB instruction set can be broken down into t~o levels, 
primitives (level 1) and functions (level 2). These classes 
correspond to the PICMB protocol as defined in the PICMB ERS. 
The primitives represent the lowest level of activity on the 
PICMBj hence routines ~hich make use of these must perform 
all bus protocols themselves. The function level instructions 
represent various functional combination of primitives. This 
level performs some of the PICMB protocol for the programmer, 
while retaining maximum flexibility. These t~o levels provide 
cOlllplete functionality for communicating ~ith external devices. 
Each of these levels ~ill be described in detail. The notation 
used in the follo~ing descriptions is intended to reflect the 
actual operation of the various data and control lines. 

6.5.1.1 PICMB Primitives 

6.5.1.1.1 IFC 

Interface Clear. Causes hard~are to assert the Interface Clear 
Line for one bus cycle. 

if STATUSA.XL > 0 then Trap"INSPRIV"; 
IFC := true; 

6.5.1.1.2 UCMD command.r1 

Write command. Send a command byte to the channel adapter. 

if STATUSA.XL > 0 then Trap"INSPRIV"; 
cobegin 

CDF := true; 
PICMB.CB.DATA '= command[O •• 7]; 
coend; 
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6.5.1.1.3 hlBYTE data.r1, end.r1 

hlrite byte. Causes hard~are to ~rite a byte to the channel 
adapter. If "end" has a non-zero value, then the END 
line ~ill also be asserted. If the channel does not 
assert the SRI line ~ithin x milliseconds, the byte 
~ill not be transfered and a timeout condition ~ill be 
indicated by setting the condition code to CCL. 
A successful transfer ~ill be indicated by CCE. 

Status: CC 

if STATUSA.XL > 0 then Trap"INSPRIV"j 
if not SRI then CC '= CCL 
else begin 

CC : = CCEj 
cobegin 

if end <> 0 then END := true; 
PICMB.CB.DATA '= data 
coend 

end; 

6.5.1.1.4 RBYTE data.w1 

Read byte. Causes hardMare to read a byte froN the channel 
adapter into "data". If the channel does not assert 
the SRI line within x Nilliseconds the data Mill not 
be read and a timeout condition Mill be indicated by 
setting the condition code to CCL. A successful 
transfer Mill be indicated by CCE. A successful 
transfer Mhen the END signal is asserted Mill be 
indicated by CCG. 

Status: CC 

if STATUSA. XL > 0 then Trap" INSPRIV" ; 
if not SRI then CC := CCL 
else begin 

data := PICMB.CB.DATA; 
if END then CC '= CCG 
else CC := CCE 
end; 
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6.5.1.2 Functional PICMB Instructions 

The level 2 instructions correspond to the PICMB.CB cOJlllllands as 
specified in the PICMB ERS. SONe of these cOJlllllands are global 

07/31 

in nature and others are local. The global commands affect all 
channels in a systeN and require no channel address. The local 
cOJlllllands are directed to a specific channel and require a channel 
address operand. hlhen a local cOJllllland is executed, all channels 
in the systeN ~hich are not addressed ~ill go into an idle state 
until a global cOJllllland is issued or until they are locally 
addressed. Global commands often return an 8-bit vector; the 
PICMB supports up to 8 channels. 

6.5.1.2.1 CHNOP 

Channel no operation. A NOP cOJllllland is issued to all channels. 

if STATUSA.XL > 0 then Trap"INSPRIV"; 
hlCMD 0; 

6.5.1.2.2 RCL response.w1 

Roll Call. This cOJllllland is issued to all channels. 

if STATUSA.XL > 0 then TrapIINSPRIV"j 
hlCMD ! 10; 

6.5.1.2.3 PRD response.M1 

Poll Ready for Data. This cOJllllland is issued to all channels. 

if STATUSA.XL > 0 then Trap"INSPRIV"j 
hlCMD !20; 
RBYlE response; «no timeout» 

Status: CC 
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6.5.1.2.4 PDA response.w1 

Poll Data Available. This command is sent to all channels. 

if STATUSA. XL > 0 then Trap" INSPRIV" ; 
lJCMD 130; 
RBYTE response; «no timeout» 

Status: CC 

6.5.1.2.5 PAR response. wi 

Poll Attention Requests. This command is sent to all channels. 

if STATUSA.XL > 0 then Trap"INSPRIV"; 
lJCMD 140; 
RBYTE response; «no timeout» 

Status: CC 

6.5.1.2.6 RDP channel.rl, dest.w16, length.wl 

Read Data Packet. This command is sent to the designated 
channel and the data packet received is stored in 
"dest". "length" will be set to the nurnber of bytes 
in the data packet; if this is less than 16, the 
reJllainder of "dest" will not be changed. 

Status: CC 

if STATUSA. XL > 0 then Trap" INSPRIV" ; 
PDA TeJllp[O .. 7]; 
Ch : = channel AND 7; 
if TeJllp[Ch] = 0 then CC '= CCL 
else begin 

CJIld := 150 + Ch; 
lJCMD CJIld; 
C : = 0; 
repeat 

RBYTE (dest+C) [0 •• 7]; 
C : = C + 1; 
until CCL or CCG or C>15; 

length: = C; 
end; , 
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6.5.1.2.7 lJDP channel.r1, data.r16, length.~l 

lJrite Data Packet. This command is sent to the specifically 
designated channel. The first "length" bytes of 
"data" is sent to the channel. 

if STATUSA. XL > 0 then Trap" INSPRIV" ; 
Ch : = channel AND 7; 
PRD TeJllp[O .. 7]; 
if TeJllp[Ch] = 0 then CC '= CCL 
else begin 

Status: CC 

CJIld : = 1 60 + Ch; 
lJCMD CJIld; 
C := 0; 
repeat 

cobegin 
if C = length then END '= true; 
lJBYTE (data+C) [0 •• 7]; 
coend; 

C : = C + 1; 
until C>=length or C>15 or CCL; 

if CCL then length := C; 

6.5.1.2.8 RIS channel.rl, status.wl 

Read Immediate Status. This command is sent to the specifically 
designated channel. Its status is returned and stored 
in "status". 

if STATUSA.XL > 0 then Trap"INSPRIV"; 
Ch : = channel AND 7; 
CJIld : = ! 70 + Ch; 
lJCMD CJIld; 
RBYTE status; 

Status: CC 
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6.5.1.2.9 CIS channel.r1, status.r1 

Clear I~ediate Status. This command is sent to the designated 
channel. The 8-bit status byte of the addressed 
channel is cleared in· all bit positions corresponding 
to a zero in "status". 

if STATUSA.XL > 0 then Trap"INSPRIV"; 
Ch : = channel AND 7; 
Cmd := !80 + Ch; 
lJCMD Cmdj 
lJBYTE status; 

Status: CC 

6.5.1.2.10 SIS channel.r1, statu9.r1 

Set I~ediate Status. This command is sent to the designated 
channel. The a-bit status byte of the addressed 
channel is set in all bit positions corresponding 
to a one in "status". 

if STATUSA.XL > 0 then Trap"INSPRIV"; 
Ch : = channel AND 7; 
Cmd : = ! 90 + Ch; 
lJCMD Cmdj 
lJBYTE status; 

Status: CC 
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6.5.2 MPB-based systems 

The MPB is the memory-processor-bus defined and designed by 
SIO in Colorado. 

All I/O instructions for MPB based systems are "local": they 
address a specific channel by specifying the channel number. 
The channel number is mapped at configuration time to a slot 
number on the MPB backplane. This ranges from 0 .. 7. 
Though the MPB backplane and the lOP channel were designed 
as a pair, the Vision I/O instructions for the MPB are 
designed to allow channels other than the lOP to connect to 
the MPB. 

6.5.2.1 MPB-based Instructions 

6.5.2.1.1 IOlJ channel.r4, control.r4, data.r4 

I/O lJrite. This writes the data word "data" to the channel 
designated by "channel". "Control" is a 1Il0difier 
interpreted by the channel. 

if STATUSA.KL > 0 then Trap"INSPRIV"; 
Ch : = channel AND 7; 
Cntr := control; 
Cntr[0 .. 5] := 0; 
Cntr[19 •• 21] := MPB channel number of 

-originating_CPU; -
lJrite Ch, Cntr, Data {to MPB}; 

6.5.2.1.2 lOR channel.r4, control.r4, data.w4 

I/O Read. This reads the data word "data" from the channel 
designated by "channel". "Control" is a modifier 
interpreted by the channel. 

if STATUSA.XL > 0 then Trap"INSPRIV"; 
Ch : = channel AND 7; 
Cntr : = control; 
Cntr[0 .. 5] := 0; 
Cntr[19 •. 21] := MPB channel number of 

-originating_Cpu; -
Read Ch, Cntr, Data {from MPB}; 
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6.5.2.1.3 laC channel.r4, control.r4 

I/O Control. This performs a control function on the channel 
designated by "channel". "Control" is a JIlodifier 
interpreted by the channel. 

if STATUSA.XL > 0 then Trap"INSPRIV"; 
Ch : = channel AND 7; 
Cntr : = control; 
Cntr[0 •• 5] := OJ 
Cntr[19 .. 21] ;= MPB channel nUJIlber of 

-originating_CPU; -
Control Ch, Cntr {on MPB}; 

6.5.2.2 Interpretation of the control word on the lOP 

The control word detailed in the previous section has a 
well-defined JIleaning when used with the lOP channel. 
This is sketched below. More detail is available froJll 
the FOCUS I/O ERS. 

o 
1 1 

568 9 2 3 
112 222 
8 9 124 5 

3 
1 

+------+---+----+------+---+---+-------+ 
I res. IPA I IC I res. 10CNIresi 10 OPCI Control 

word +------+---+----+------+---+---+-------+ 

Here: 

res. reserved 

PA either subchannel nUJllber or device adapter nUJIlber. 
The 10 opcode "10 OPC" will decide which. 

IC interface contrOl. This four bit field allows for 
control of the HPIO lines shown below: 
IC1 -) BP[O] HPIO bus priPlitive/interface control 
IC2 -) CEND HPIO channel end 
IC3 -) CBYT HPIO channel byte 
IC4 -) BP[l] HPIO bus priPlitive/interface control 

OCN channel nUJIlber of cpu originating the cOJllJlland 

10 ope= 10 opcode. This 7-bit value is defined as shown 
in the following section. 
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6.5.2.3 lOP Opcodes 

6.5.2.3.1 Read cOl1U1lands 

NaIIle Mnelllonics HexadeciPlal 
=========================== ========= =========== 
Read DMA Current Address RDA 7 
Read DMA Current Count 

Be Status RDCS 8 
Read DMA Mask RDMK B 
Read Interrupt Mask RIMK 16 
Read Interrupt Request RIRQ 1C 
Interface Poll IFPL 27 
Read DMAPA RDPA 2D 
Read Data Buffer RDB 2E 
Read lOP Revision RIRV 2F 
Read Interface Status Be Flag RISF 3F 
Read Interface Status RIST 43 
Read Interface Flag RIFG 44 
Read DMA TerJllination Field RDTF 45 
Read lOP registers Be SUspend RIRS 48 
Read Interface Device End 

Be Burst Request RDEB 4E 
Read Interface FRn RIF n (8*n + 1) 

6.5.2.3.2 Wr i te COJllJllands 

NaIIle Mnelllonics HexadeciPlal 
=========================== ========= =========== 
ldrite DMA Status ldDS 3 
Write DMA Count WDC 4 
Write DMA Start Address WDA 5 
ldrite DMA Termination Field WDTF 6 
Write Interrupt Mask WIM!{ 15 
ldrite Interrupt Message ldIMG 1B 
Set Interrupt Level SIL 1D 
Write DMAPA WDPA 2C 
Write MPB Channel NUJIlber TJMCN 30 
Write Attention Poll Mask WAMK 46 
Write lOP Registers Be ReSUllle WIRR 4B 
Write Interface FRn WIF n (8*n + 2) 
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6.5.2.3.3 Control Commands 

NaI1Ie Mneroonics Hexadecmal 
=========================== ========= =========== 
Clear DMA Mask CDM!{ C 
Enable DMA EDMA D 
Disable DMA DDMA E 
Start DMA, Enable Interrupt 

& Clear IRQ SDEC F 
Start DMA & Clear IRQ SDC 10 
Start DMA SD 13 
Start RAH!), Clear IRQ SRC 14 
Request Interrupt RINT 17 
Clear Interrupt Request CIRQ 18 
Enable Interrupt EINT lE 
Disable Interrupt DINT 1F 
Reset I/O Bus RIOB 28 
Reset lOP RlOP 2B 
Clear Address Lockout Mode CALM 33 
Set Address Lockout Mode SALM 34 
Initiate ~d Exec fro~ 

Interrupt ICEI 38 
Disable lOP Command Execution DCE 3B 
Disable Co~~and Execution & 

Enable Interrupt DCEI 3C 
Turn LED On LON 3D 
Turn LED Off LOrr 3E 
Clear Attention Acknowl. Bit CAAK 47 

6,5.2.3.4 lOP Co~and Execution 

NaI1Ie Mn~onics Hexadecimal 

Incre~ent And Branch 
Skip on Status False 
Skip on Flag False 
Yrite RIF Result to M~ory 
Yrite Count & Status to 

Me~ory 

YRIF 

YCSM 
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6.6 Diagnostics Interface 

6.6.1 MOVEtCSP messlen.r4, messpa.r4, replylen.r4, replypa.r4, 
error.wl 
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Move message to CSP. Send to the CSP (Control and SUpport 
Processor) a message consisting of a string of bytes, 
"~esslen" long, starting at physical address "~esspa". 
An area in physical m~ory is reserved for a reply, if 
there is one, of length "replylen" (in bytes), starting 
at physical address "replypa". Message and reply format 
~ay differ across VISION impl~entations. Refer to the 
"Protocol of the Control and SUpport Processor for VCF60 
and VCF50" document. Receipt of a reply from the CSP 

will generate an internal interrupt IICSPREPLY. Actual 
transmission of the message and the reply may occur at 
any time between execution of the MOVEtCSP instruction 
and the IICSPREPLY. During this interval, the message 
and reply areas in physical m~ory ~ust not be accessed 
by software. This isntruction requires Ring 0 privilege. 
"Error" can have the following values: 

o = Instruction accepted, trarJSl1liss'ion beginning 
* 1 = This VISION impl~entation has no CSP 
* 2 CSP busy, cannot accept a message 
* 3 = Requested operation not impl~ented by CSP 
* 4 = message or reply area wrong physical address 

or length 
5-255 = reserved values, will not be returned 

Note: "*" ~eans that the instruction was not 
accepted and no trarJSl1lission was initiated. 

Traps: INSPRIV 
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+---------------------------------------------+----------------+ 
INTERRUPTS AND TRAPS CHAPTER 7 

+---------------------------------------------+----------------+ 

7.1 Introduction 

Interrupts and traps are examples of a broad set of conditions 
called "exceptions" that redirect the norlllal flow of lIlachine 
instructions. Generally, instructions are divided into a 
sequence of smaller actions referred to as "steps". Steps are 
defined for either of two reasons: 

1) The execution of an instruction step results in a change in 
the lIlachine state (e.g., a byte of lIle!llory lIlodified, a 
register lIlodified). In this case a step may not be 
repeatable. That is, if the lIlachine state that resulted 
frolll a step were used as the input state to the same step, 
a different output machine state might result. 

2) The step represents a large ~ount of processing. In this 
case if the instruction were interrupted, too lIluch 
processing would be lost. Even though the machine state 
hasn't been lIlodified (as part of the instruction execution 
so far) it is still desirable to define an intermediate 
state for the instruction. 

Each instruction step is cOlllposed of one or lIlore "sub-steps". 
A sub-step represents an uninterruptible sequence of operations. 
All steps are architecturally defined. The instruction 
descriptions define the intermediate state of all instructions 
that have lIlultiple steps. No other steps or intermediate states 
are allowed. Instructions which execute very quickly (short in 
tillle) have only a single step while other instructions, such as 
MOVEC (lIlove character), are cOlllposed of lIlany steps. The 
following diagram illustrates this concept of an instruction: 

1(---- an instruction ------>1 I (-an instruction - > I 
v v v v 

Pcurrent Pnext 
+------+ +------+ +------+ +------+ +------+ 

Sequence I I I I I I I I I I 
of I step 11 Istep 21 1 step JIll 1 step 11 1 step nl 

Steps I 1 I I 1 I I I I I 
+------+ +------+ +------+ +------+ +------+ 

7-1 

07/31 VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COpy -- HP PRIVATE INFORMATION 

07/31 

There are multiple conditions that can occur during the execution 
of an instruction that cause the normal flow of control to be 
altered. In the previous illustration the normal flow of control 
is to execute the instruction located at Pcurrent and then to 
execute the instruction at Pnext. The diagr~ above shows the 
steps normally executed for these instructions in the absence of 
an exception. This diagram is independent of the existence of 
multiple execution paths that are data dependent. However, if an 
exception condition(s) is detected during the execution of 
Pcurrent, the next instruction to be executed by the CPU will be 
the handler for the condition. Some exception conditions (such as 
page fault) are specified to be transparent to the current 
instruction execution. For these conditions the current 
instruction is resumed after the exception handler completes so 
that the net effect of the exception is as though it did not occur 
at all. Other exception conditions (such as overflow) arise as a 
direct consequence of executing the current instructions. For 
these exceptions the specific exception defines whether Pcurrent 
or Pnext is the location to resume instruction execution. 

Exceptions are classified into three general categories: 

1) external interrupts 

2) internal interrupts 

3) traps 
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7.1.1 External Interrupts Overview 
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External interrupts are generally service requests from I/O devices. 
External interrupts are polled for between the execution of 
instruction steps. The following diagram illustrates this: 

1<-----­
V 

Pcurrent 
+------+ 

Sequence 1 1 
of 1 step 11 

Steps 1 1 

Trap and 
Interrupt 
Poll 
Sequence 

+------+ 

an 

I 
X 

instruction ------>1 

+------+ 

1 I 
Istep 21 
1 1 
+------+ 

1 

X 

v 

+------+ 

I 1 
Istep ml 
1 1 
+------+ 

where X = external interrupt poll 

1 <-an instruction- > 1 
v 

Pnext 
+------+ 

1 

X 

1 1 
I step 11 
1 1 
+------+ 

1 

X 

v 

+------+ 

I I 
1 step nl 
1 I 
+------+ 

When multiple external interrupts are pending, one is selected 
(based on the interrupt mask and on priority). The other 
external interrupts are left pending and are allowed to cause an 

external interrupt later (when no longer masked). 
External interrupts generally are unrelated to the current 
instruction being executed. The architecture requires that the 
effect of processing external interrupts be transparent to the 
current instruction. Therefore, the execution of the current 
instruction can be suspended between any two steps as long as 
execution resumes at the next step (technically, execution can 
resume at any previous step as long as the effects of the 
intermediate steps can be undone or rolled back). The normal 
processing sequence for external interrupts is to "cap off" the 
current stack with an interrupt marker (preserving the current 
machine context) and to transfer control to the exception handler 
executing on the interrupt control stack. 

7.1.2 Internal Interrupts Overview 

Internal interrupts normally originate from some type of abnormal 
condition occuring within the system not associated with the 
execution of the current instruction. Some examples of internal 
interrupts are powerfail, parity error and machine checks. 
Internal interrupts are polled between the execution of instruction 
steps. If an internal interrupt is detected, external interrupts 
are not polled. 
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The following diagram illustrates this sequence: 
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1<------ an instruction ------>1 1 <-an instruction- > I 
1 1 1 1 
v v v v 

Pcurrent Pnext 
+------+ +------+ +------+ +------+ +------+ 

Sequence 1 1 1 1 1 1 1 1 1 1 
of Istep 11 Istep 21 Istep ml 1 step 11 Istep nl 

Steps 1 1 1 1 1 1 1 1 1 1 
+------+ +------+ +------+ +------+ +------+ 

Trap and 
Interrupt II II II II 
Poll IX IX IX IX 
Sequence 

where I internal interrupt poll 
X external interrupt poll 

Internal interrupts are handled by pushing a marker (either an 
interrupt marker or a procedure stack marker depending upon the 
exception) onto the current stack and then transferring control to 
the exception handler. The exceptions that push an interrupt 
stack marker execute on the interrupt control stack (ICS). Those 
exceptions that push a (procedure) stack marker execute on the 
current stack. 

Multiple internal interrupts are processed by pushing markers onto 
the stack in increasing priority, then continuing execution with 
the handler of the latest (highest priority) internal interrupt 
pushed (interrupts are processed in reverse order -- last-in­
first-out). Note, the occurrence of an internal interrupt is 
remembered by pushing a marker onto the stack so that the handler 
will execute. This technique contrasts with external interrupts 
which are remembered with status bits. The following diagram 
illustrates the stack state(s) following the detection of: 

1) an internal interrupt "A" that runs on the current stack, 

and 

2) two internal interrupts, "B" and "C", respectively, that 
execute on the rcs. 
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current 
Stack 

+-------------+ 
I 
I 
I 

I I 
I . I 
1-------------1 
I lIP save areal 
1-------------1 
I procedure I 
Istack I'larker I 
I for I 
linterrupted I 
linstruction I 
1-------------1 
Ipara!lleters I 
I for I 
Ihandler "A" I 
1-------------1 
I interrupt I 
Il'larker for I 
Ireturning to I 
Ihandler "A" I 
1-------------1 

S-->I I 

1.1.3 Traps Overview 

Interrupt 
Control 
Stack 

+-------------+ 
I dispatcher I 

QI-->Iinterrupt 1 
Istack I'larker I 
1-------------1 

SI-->Ipara!lleters I 
I for I 
Ihandler "B" I 
1-------------1 
1 interrupt 1 

Qc-->ll'larker for 1 

Ireturning to I 
I interrupt "B" I 
1-------------1 
Ipara!lleters I 
I for I 
Ihandler "C" I 
1-------------1 

8c-->1 1<--
I I 

Control 
transferred 
to 
handler "C" 
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Traps include all exception conditions uhich arise as a direct 
consequence of instruction execution. EXa!Ilples include traps for 
arith!lletic overflOW, ODT access rights violation, page fault and 
breakpoint (debug). Generally, traps are detected by I'licrocode 
during the execution of an instruction step. For traps the normal 
processing sequence is to push an external procedure stack I'larker 
onto the current staCk, push the para!lleters on the current stack 
and then execute the handler on the current stack. An external 
procedure stack marker is pushed for each different trap detected. 
Depending upon the type of trap (see the definition of restartable 
and continuable traps), the stack appears as though an explicit 
procedure call was I'lade to the trap handler either just before the 
Pcurrent instruction or after the Pcurrent instruction. 
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Using the current stack for processing traps allous the maximum 
degree of concurrency betueen tasks because the handlers the!llselves 
run in a general task environment. This is unlike the interrupt 
control stack uhich requires a strict adherence to last-in-first­
out processing of events with no option to suspend execution while 
using the ICS. 

The follouing diagra!ll illustrates the relationship betueen the 
polling of internal and external interrupts and the detection of 
trap conditions. 

1 <------ an instruction ------>1 I <-an instruction- > I 
1 I I 
v 

Pcurrent 
v v 

+------+ 
Sequence I I 

of Istep 1/ 
Steps I I 

Trap and 
Interrupt 
Poll 
Sequence 

+------+ 

1111 
TRIX 

+------+ 

I I 
Istep 21 
I I 
+------+ 

1111 
TRIX 

+------+ 

1 1 
Istep I'll 
I 1 
+------+ 

where I internal interrupt poll 
X external interrupt poll 
T trap condition detected 

Pnext 

1111 
TRIX 

+------+ 

I I 
I step 1/ 
I I 
+------+ 

1111 
TRIX 

I 
v 

+------+ 

I 1 
Istep nl 
1 I 
+------+ 

R trap condition reported (trap handler activated) 
\ = part of the step(s) not executed 

The specification of each individual trap condition determines the 
next instruction step to be executed. 
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The follo~ing diagram illustrates the stack state follo~ing the 
detection of t~o traps) X and Y) in the same step. 

CUrrent 
Stack 

+-------------+ 
+-------------+ 
I II P save area I 
+-------------+ 
I procedure 
I stack marker 
Ifor the 
I interrupted 
I instruction 
+-------------+ 

QK = > I parameters I 
I for handler xl 
+-------------+ 

Sx =>Iprocedure I 
Istack marker I 
Ifor returning I 
Ito handler X I 
+-------------+ 

Qy =>Iparameters I 
I for handler YI 
+-------------+ 

Sy =>1 

<== Returns to interrupted 
instruction 

<== Returns to handler X 

Traps are divided into five categories: 

1) non-recoverable traps 
2) recoverable traps 

2a) restartable traps 
2b) continuable traps 
2c) step-restartable traps 
2d) step-continuable traps 
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1) Non-recoverable traps 

A non-recoverable trap catches the occurrence of a machine state 
that makes it impossible for the hard~are implementation to be 
able to guarantee correct completion of the instruction even if 
the trap handler fixes the immediate problem. An example is 
overflo~ of the dispatcher disable count or detection of 
inconsistent Q and S values on IEXIT. Yhenever a non-recoverable 
trap occurs, the simUltaneous occurrence of other types of traps 
is irrelevant. 

2) Recoverable Traps 

The other categories of traps are part of a set of recoverable 
exceptions. For these traps it is expected that soft~are can "fix 
up" the cause of the trap and can re-execute the instruction or 
soft~are can substitute a "reasonable" result for the instruction. 

2a) Restartable Traps 

A restartable trap is a trap that occurred before the instruction 
~as complete and requires that any changes to the machine state 
(as part of the current instruction) be undone or "backed out" by 
the CPU before transferring control to the trap handler. After 
the trap handler has executed and fixed the problem that caused 
the trap) the instruction is restarted from the first step. The 
follo~ing diagram illustrates this sequence. 

1<--- an instruction ------>1 
I I 

I <-an instruction->I 
I I 

v 
Pcurrent 

+------+ +------+ 
Sequence I I I I 

of I step 11 Istep 21 
Steps I I I I 

" +------+ +------+ 

I 
I +--------+ 

I I recovery I I 
--I block 1<--

Trap and 
Interrupt III 
Poll RIX 
Sequence 

+--------+ 
I 
T 

7-8 

v v v 
Pnext 

+------+ +------+ +------+ 

I I I I I I 
Istep ml Istep 11 I step nl 
I I I I I I 
+------+ +------+ +------+ 



where I 
X 
T 
R 
\ 
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internal interrupt poll 
external interrupt poll 
trap condition detected 
trap condition reported (trap handler activated) 

= part of the step(s) not executed 

07/31 

On the previous diagr~, a restartable trap could have been detected 
as part of step 1 through m. On detecting the trap condition, the 
machine would be restored to its value prior to executing step 1 of 
the instruction. The program counter value Pcurrent is saved in the 
stack marker. Then, Pcurrent will be executed again when the trap 
handler EXITs back to the instruction sequence. At entry to the trap 
handler the stack state will be: 

Stack 

+--------------------+ 

I 
+--------------------+ 
Iprocedure stack 1 
Imarker to 1 
1 instruction Pcurrentl 
+--------------------+ 

Q==>lpararoeters for trap 1 
1 handler I 
+--------------------+ 

S==> I 
1 
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2b) Continuable Traps 

07/31 

A continuable trap is a trap that serves as an alternate exit point 
from the instruction. An example is integer overflow. When overflow 
is detected, the remaining steps in the instruction are skipped. The 
result of the instruction is the overflow condition. For a continuable 
trap, the next instruction, after the trap handler, to be executed is 
Pnext. The following diagram illustrates this: 

1<------ an instruction ------>1 
1 1 

1 <-an instruction->1 
1 1 

v 
Pcurrent 

v V 
Pnext 

v 

+------+ +------+ +------+ 
Sequence 1 1 1 \\\1 1\\\\\\1 

of 1 step 11 Istep 21 Istep ml 
Steps 1 1 1 \\\1 1\\\\\\1 

+------+ +------+ +------+ ,.. 

Trap and 
Interrupt 
Poll 
Sequence 

1 III 
T RIX 

where I internal interrupt poll 
X external interrupt poll 
T trap condition detected 

+------+ 
1 1 
Istep 11 
I 1 
+------+ 

+------+ 
1 1 
Istep 21 
1 1 
+------+ 

R trap condition reported (trap handler activated) 
\ = part of the step(s) not executed 

In the case of a continuable trap, the software trap handler has the 
option of altering the result of the instruction by modifying (again 
from software) the result operand. Then execution can be continued 
from Pnext. This case is very similar to the ordinary external proce­
dure call. The hardware is not required to be able to undo any state 
changes it has already committed. 
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VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COPY -- HP PRIVATE INFORMATION 

At entry to the trap handler, the stack state will be: 

Stack 

+-------------------+ 

+-------------------+ 
Iprocedure stack 
IPlarker to 
I instruction Pnext 
+-------------------+ 

Q==>lpararneters for the I 
I trap handler I 
+-------------------+ 

S==> I 
I 

2c and 2d) Step-Restartable and Step-Continuable Traps 

07/31 

The step-restartable and step-continuable traps are very similar to 
the restartable and continuable traps respectively, but they arise 
in the context of certain instructions, such as MOVEC, that consist 
of certain steps repeated a nuPlber of times. These instructions have 
an architecturally defined interrupt state froPl which they can reSUPle 
execution safely. A bit in the Plachine register STATUSA (lIP -­
"instruction in progress") allows a decision at instruction fetch time 
as to whether the instruction has already executed certain steps. If 
so, the paraPleters to restart the instruction's execution are popped 
froPl the stack and then the instruction is cOPlpleted. This SaPle 
PlechaniSPl ~hich allo~s external interrupts to occur in the Pliddle of 
an instruction also allo~s internal interrupts and recoverable traps 
to occur in the Pliddle of the execution of a step without having to 
back out of Plore than the last (current) step. 

The following diagraPl illustrates the step-restartable and 
step-continuable concepts: 
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Step-Restartable: 

1<------ an instruction -------->1 
I I 

I <an instruction> I 
I I 

v 
Pcurrent 

v v 
Pnext 

v 

+------+ +------+ +------+ +------+ +------+ 
Sequence I I I I I 1 

Istep 21 •• lstep Pli 
I 1 I 1 

of Istep 11 
Steps I I 

Trap and 
Interrupt 
Poll 
Sequence 

+------+'" +------+ +------+ 
1 

+--------+ 1 

1 I recovery I I 
+-1 block 1<-

+--------+ 

III 
RIX 

1 
T 

internal interrupt poll 
external interrupt poll 
trap condition detected 

1 1 I I 
Istep 11 •. lstep nl 
I I 1 I 
+------+ +------+ 

where I 
X 
T 
R 
\ 

trap condition reported (trap handler activated) 
part of the step(s) not executed 

07/31 

At entry to the trap handler, the stack state will be (except for the 
top of stack page fault which is handled like an internal interrupt): 

Stack 

+--------------------+ 
I 

+--------------------+ 
IIIP information I 
+--------------------+ 
Iprocedure stack 
IPlarker to reSUPle 1 

I instruction Pcurrentl 
+--------------------+ 

Q==>lparaPleters for the 
I trap handler 
+--------------------+ 

S==> I 
1 
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Step-Continuable: 

07/31 

1<------
1 

an instruction ------>1 I <-an instruction- > I 

v 
Pcurrent 

+------+ 
Sequence I \ \ I 

of Istep 11 
Steps I \\1 

Trap and 
Interrupt 
Poll 
Sequence 

+------+"" 

+---+ 
I 
T 

III 
RIX 

1 
v 

+------+ +------+ 
I I I I 
Istep 21 Istep III I 
I I I I 
+------+ +------+ 

internal interrupt poll 
external interrupt poll 
trap condition detected 

1 1 
v v 

Pnext 
+------+ +------+ 
I I I I 
I step 11 Istep nl 
I I I I 
+------+ +------+ 

where I 
X 
T 
R 
\ 

trap condition reported (trap handler activated) 
part of the step(s) not executed 

At entry to the trap handler, the stack state will be: 

Stack 

+--------------------+ 
+--------------------+ 
I IIP infornation 
+--------------------+ 
Iprocedure stack 
Imarker to reSUllle I 
I instruction Pcurrentl 
+--------------------+ 

Q==>lpara!lleters for the 
I trap handler 
+--------------------+ 

s==> 1 
1 
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The debug traps are a special case of traps. If during the execution 
of an instruction, lIlicrocode detects that the instruction is lIlodifying 
a location covered by a data breakrange then the DBP (debug breakpoint 
pending) flag in STATUSA is set to remember that the breakpoint was 
encountered. Then, the instruction execution is continued with the 
setting of the breakpoint flag being somewhat transparent. Then, at 
the end of the instruction execution, the breakpoint handler is 
activated. By handling the trap at the end of the instruction, the 
architecture guarantees to report a breakpoint to software only once 
per instruction. The following diagra!ll illustrates this sequence: 

1<------
1 
v 

Pcurrent 
+------+ 

Sequence I I 
of Istep 11 

Steps I I 

Trap and 
Interrupt 
Poll 
Sequence 

+------+ 

an instruction ------>1 

+------+ 
I I 
I step 21 
I I 
+------+ 

I 
T " IX 

I 
v 

+------+ 
I I 
Istep III I 
I 1 

+------+ 

where I internal interrupt poll 
X external interrupt poll 
T trap condition detected 

1 <-an instruction->1 
I 
v 

Pnext 

III 
RIX 

+------+ 
1 I 
Istep 11 
I I 
+------+ 

I 
v 

+------+ 
I I 
Istep nl 
I I 
+------+ 

R trap condition reported (trap handler activated) 
\ part of the step(s) not executed 

At entry to the debug traps, the stack state will be: 

Stack 

+--------------------+ 
+--------------------+ 
Iprocedure stack 1 

Imarker to return to I 
I instruction Pnext I 
+--------------------+ 

Q==>lpara!lleters for the 
I trap handler 
+--------------------+ 

s==> I 
1 
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7.1.3.1 Special Programming Notes 

STATUSB Handling 

07/31 

When control is transferred to exception handlers that execute 
on the current stack, an external procedure call roarker is pushed 
onto the stack. This roarker includes the STATUSA register, but 
not the STATUSB register. In order not to have any side effects 
on the suspended instruction, software roust save STATUSB at entry 
to the handler. Then, iroroediately prior to EXITing back to the 
suspended instruction, the handler should restore STATUSB to its 
value when the trap was detected. 

Hardware versus Software Recoverability 

The classification of the recoverability of a trap condition is 
based upon whether or not software can reroove the condition that 
caused the trap and can then allow the hardware to proceed with 
instruction execution. Instruction execution can proceed froro 
either the instruction that caused the trap or the instruction 
following. This criterion for classification is roore perroissive 
than one based strictly on whether roachine state has been 
roodified. As an exarople, if a MOVE8 froro location A to location B 
were to get a bounds violation on B, part of B roight have been 
roodified before the bounds violation was detected. If the trap 
handler increases the upper bound of the object containing B such 
that the MOVE8 no longer causes a bounds violation, the net effect 
is that the trap did not occur. This exarople illustrates a case 
where the hardware could not restore the contents of location B 
but software could fix the problero. So froro a hardware perspective 
the input state of the instruction cannot be recreated. Froro a 
software perspective the instruction is restartable. Using the 
classification criterion, this bounds violation is recoverable. 
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7.2 Detail Description of External Interrupts 

7.2.1 Processor context for interrupts 

07/31 

Three iteros of processor context define the interaction between 
processor and interrupts. There is an Interrupt Enable/Disable 
bit in STATUSC, called STATUSC.IE or "IE" for short. This bit 
controls whether any interrupts are allowed to cause a change in 
the sequence of execution of roacro-instructions. There is a 16-
bit Interrupt Mask Register in STATUSC, called STATUSC.IMR or 
"IMR" for short. This roask controls which interrupts are allowed 
to cause a change in the sequence of execution and which are not, 
subject to STATUSC.IE. Finally, there is an Interrupt Pending 
Register, which is not directly accessible to software; hence 
iropleroentations have a large aroount of freedoro in how to iropleroent 
it. It need not even exist as a separate entity in the roachine, 
as long as the behavior that is here ascribed to it can be 
reproduced. The Interrupt Pending Register looks like an array 
as in Pascal: 

TYPE 
pr_Ievel: 0 .. 15; 
source: (i_channel, i-processor)j 
state: (clear, set); 

VAR 
IPR: ARRAY[pr_Ievel, source] OF state; 

The IPR is processor-local. Details on roultiprocessor aspects of the 
interrupt systero follow in section 7.2.7. 

7.2.2 General operation 

Interrupts cause bits to get set in IPR (eleroents of IPR to 
becoroe 1). The state of the Interrupt Mask Register and the 
state of the Interrupt Enable/Disable bit control whether the 
processor is notified or wether the interrupt is held off. 
Interrupts can be caused by channels or by a processor itself 
under software control. 
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7.2.3 Channel Interrupts 

Each hardware channel is configured at a specific priority 

pr : pr_Ievelj 

07/31 

If the channel wants to raise an interruPt, it does so by setting 
the appropriate bit in IPR: 

IPR[ pr, i_channel] :=set; 

If STATUSC.IE = 1 and IMR[pr] = 1, the processor is interrupted at 
the first convenient opportunity (e.g. between instructions), 
otherwise the interrupt is held off. The channel must be prepared 
to inform the processor of details concerning the interrupt when 
the interrupt is acknowledged. To this end, the channel may use 
an area of the processor's melllory (called "channel overflow area") 
to store any information needed to avoid overflowing its internal 
lIlelllory capacity. Use of such an interrupt queueing lIlechaniSlll is 
an optional hardware illlplelllentation and not required by the 
architecture. SOllie channels lIlay have restrictions that guarantee 
that no 1Il0re than a single interrupt lIlay be outstanding, or the 
channel lIlay have enough internal buffering so that processor's 
lIlelllory is not needed. Any such use of the processor's lIlelllory is 
transparent except perhaps for initialization of the channel 
overflow area at configuration tillle. 

7.2.4 Processor-caused Interrupts 

The processor raises an interrupt by setting a bit in the IPR 
through the "INTERRUPT" instruction. The processor will typically 
hold off this interrupti when the processor later acknowledges the 
interrupt, hardware does not report to software any information 
regarding the interrupt other than the priority level at which the 
interrupt occurred. Software is responsible for any queueing that 
is required to entangle the course of events in case of lIlultiple 
software interrupts. Such queueing lIlust be done before executing 
the INTERRUPT instruction. 
"INTERRUPT pr" sets the appropriate bit in IPR: 

IPR[ pr, i_processor] := set; 
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7.2.5 When is the Processor Interrupted? 

At the end of an instruction, or at appropriate places in the 
middle of a long instruction, the processor checks to see if 
interrupts should be acknowledged. Interrupts are to be 
acknowledged if the IPR is left "set" at a priority level pr 
that is currently enabled. The algorithm can be sketched in 
Pascal as follows: 

if STATUSC.IE = 1 then 
for pr := 0 to pr levels-1 do 

if STATUSC.IMRTpr] = 1 then 
for src := i channel to i-processor do 

if IPR[ pr,src ] = set then 
begin 

IPR[ pr,src ] := clear; 
GO_ACKNOULEDGE_INTERRUPT(pr,src); 
end 

7.2.6 Acknowledging Interrupts 

07/31 

Section 7.2.5 sketched the algorithm that defines which interrupt, 
if any, lIlust be acknowledged. The algorithm ends either in a 
GO ACKNOULEDGE INTERRUPT(pr,src) or it indicates that the flow of 
control should-not be changed at all. Detailed below are the steps 
that lIlust be taken when acknowledging the interrupt. 
Note that software arrives at the interrupt handler with values in 
the registers XO .. X15 and BO •• B5 that are indeterminate. 

GO_ACKNOULEDGE_INTERRUPT(pr,src) 
begin 

STATUSC. IE : = 0; 
PUSH_INTERRUPT_MARKER; 
if STATUSC.ICS = 0 then {a task was interrupted} 
begin 

save S in TCB; 
Q := QI; S·= Q; 
STATUSC.ICS := 1; 
end; 

STATUSA.XL := 0; {go to privileged 1Il0de} 
if src = i channel then 

push channel dependent information identifying 
the interrupt; 

PUSH4 prj 
{all registers XO •• X15, BO •• B5 will be indeterminate} 
if src i channel then BBX 2 else BBX 3 
endj -
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7.2.7 Shared-memory Multiprocessor Considerations 

07/31 

The interrupt Nask register is processor-local, as is the interrupt 
enable/disable bit. More surprising, perhaps, is the fact that the 
interrupt pending register is processor-local. For this to work, 
the following notes apply. 

Note 1: A channel interrupt causes the pending bit to get set in 
the IPR of all processors sharing Neroory. 

Note 2: The INTERRUPT instruction Nust likewise broadcast to all 
processors in order to get the pending bit set in their 
own IPR. 

Note 3: More than one processor may have a particular priority 
level enabled at anyone tiNe. In this situation, Nore 
than one processor will be interrupted. In case of a 
channel interrupt, the data structure that identifies the 
interrupt is shared aroong all processors; this allows 
only one processor to acknowledge the channel interrupt, 
all other processors will resuroe their norNal instruction 
sequence without ever pushing an interrupt marker. In 
case of a processor interrupt, all enabled processors 
will run the interrupt handler. 

Note 4: hlhen a processor acknowledges an interrupt, it clears 
the pending bit in its own IPR only. This will not 
be broadcast. -
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There are three clocks supported. Each clock is scaled to give 
results in nanoseconds. However, the actual resolution of the 
clock is iNpleroentation dependent and Nay be Nuch larger than 1 
nanosecond. For exarople, internally the hardware may count every 
100 nanoseconds but when software reads the clock, the count will 
be scaled to read in nanoseconds. These clocks, when read, return 
a 64-bit 2's compleroent count. 

7.3.1 TiNe of Day Clock 

This clock will be used by the system for Naintaining the current 
tiNe of day. It runs continuously without interruption and will 
maintain the correct tiNe even across power failure. Ideally, 
this clock will be set only once and from that point onwards it 
will continuallY count up. 

Since 1 January 1972 there has been an internationally accepted 
tiNe scale based on the International TiNe Bureau (BIH) standards 
for atONic clocks. The Vision TiNe of Day Clock will be based on 
this standard. 

The origin (tiNe zero) of this clock is the saroe as the or~g~n for 
the international reference scale of atomic tiNe (TAl), that is, 
1 January 1958 at 0 hours GMT (also known as the UTC Reference 
Zone). The value of this clock is the nurober of nanoseconds since 
the TAl origin as defined by Coordinated Universal TiNe (UTC). 
TIrus, as an exarople, if it is 4 AM PST then it is 12 Noon UTC as 
there is an eight hour tiNe difference between California and 
Greenwich. For details of this tiNe standard see NBS Special 
Publication 559, "TiNe and Frequency Users' Manual". Not that it 
is not intended that all Vision computers be as accurate as atONic 
clocks but Nerely that they agree on what tiNe it is. 

The following functions are provided to support this clock. 

- SET CLOCK (value passed is 64 bits) 
- READ CLOCK (return value is 64 bits) 
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7.3.2 Task Clock 

07/31 

This clock will be used by the system for accounting purposes. 
This clock counts up and is put in the hold mode whenever control 
is transferred to the Interrupt Control Stack (ICS). It may also 
be disabled by software by placing it in hold mode. On return 
from the ICS, it resumes counting. 

The following functions are provided to support this clock. 

- SET CLOCK (value passed is 64 bits) 
- READ CLOCK (return value is 64 bits) 
- HOLD CLOCK 
- RESUME CLOCK 

7.3.3 Interval Clock 

This 54-bit two's-complement clock interrupts the CPU after a 
programmable interval has elapsed. It is used by the system for 
device time-outs, time slicing of processes, etc. The interrupt 
is treated like any other I/O interrupt in the system and is 
therefore subject to being Aasked off by software. The clock is 
set by loading it with the desired interval, in nanoseconds. 
(It should be a positive interval. A negative interval will load 
zero into the clock and cause an imAediate interrupt.) From there 
on, it counts down until it becomes negative at which time the 
interrupt is generated. The interrupt is signalled to all 
processors in a shared-Aemory Aultiprocessor system at a priority 
level that can be configured by software. 

On power-up, the interval clock shall be set to its largest 
positive value. This should prevent any unexpected interrupts 
frOA being generated by this clock for at least 292 years. 

The following functions are provided to support this clock. 

- SET CLOCK (value passed is 64 bits) 
- READ CLOCK (return value is 54 bits) 
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7.4 SUmary of Traps and Internal Interrupts 

07/31 

The following table is a summary of the internal interrupts and 
traps. Detailed descriptions of each internal interrupt and 
follows in this chapter. For this table, the following notation 
will be used: 

1. ENV Execution environment of handler 
a) CS = current stack 
b) ICS = interrupt control stack 

2. E/D Control -- Enable/Disable Control. This indicates 
the control that software has over the 
transfer of control to the handler. 
a) PE = permanently enabled 
b) The status word and flag(s) that control 

the handler (eg. B2.INTOVFE for fixed 
point overflow) 

3. Paral1leters -- Paral1leters passed to handler 
a) Pcurrent=Pc = logical address of offending 

instruction. 
b) Pnext=Pn = logical address of the instruc­

tion following the offending instruction. 
c) Preturn=Pr = the return address in the 

stack marker. 

4. Type Type of exception 
a) II Internal interrupt 
b) NR non-recoverable trap 
c) R restartable trap (Pr=Pc) 
d) C = continuable trap (Pr=Pn) 
e) SR step restartable (Pr=Pc) 
f) SC = step continuable (Pr=Pn) 
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Table of Internal Interrupts and Traps 

+-------------+-----+---+-----------+----+---------------------+ 
I MneAonic ITrap#IENVIE/D Control I Type I Parameters I 
1-------------+-----+---+-----------+----+---------------------1 
IIIMEMPAR I 1 IICSIPE I II IAddress,Pc,l I 
IPOhlERFAIL I 2 IICSIPE I II 12 
I I IPhlRRCV I 3 IICSIPE I II 13 
I I ICPUCHK I 4 IICSIPE I II IVariable,Pc,4 
I I IeSPREPLY I 5 IICslc1.IE I II I Status, 5 
ICODEBNDSV I 6 ICS IPE I R IPc,6 
leODEODTV I 7 ICS IPE I R IPc,7 
ICODETYPV I 8 ICS IPE I R IPc,8 
ICODERINGV I 9 les IPE I R IPc,9 
IINSPRIV I 10 les IPE I R IPc,10 
IINSOPSPEC 11 ICS IPE I R IPe,11 
IINSERROR 12 ICS IPE I C IPe,12 
I I NSCHKLO 13 ICS IPE I C IPc,13 
IINSCHKHI 14 ICS IPE I C IPc,14 
IINSUNDEF 15 ICS IPE I R IPe,15 
IINSXTL 16 ICS IPE I C IPe,16 
IINSODDP 17 les IPE I NR IPc,17 
IINSPROBE 18 les IPE I R IPc,18 
IINSMOVSPL 19 ICS IPE I R IPc,19 
IINSSYITCH 20 les IPE I R IPc,20 
IINSVPPERM 21 les IB1.VPP I R IPe,21 
IINSVPICS 22 ICS IPE NR IPc,22 
ISTKCONSISTV 23 ICS IPE R IPe,23 
ISTKOVF 24 IIeslPE R IPc,24 
ISTKUNF 25 les IPE R IPc,25 
ISTKDEXTV 26 les IPE R IPc,26 
IDATABNDSV 27 ICS IPE R IPc,27 
IDATAODTV 28 ICS IPE NR IAddress,Pe,28 
IDATATYPV 29 ICS IPE R IAddress,Pc,29 
IDATAARV 30 ICS IPE R IAddress,Pe,30 
IFL-INV 31 les IB2.FLINVE C IOp1,[0p2],Pc,31 
IFL-DVDZ 32 les IB2.FLDVDZE e IOpl,0p2,Pc,32 
IFL-OVF 33 ICS IB2.FLOVFE C IResult,Status,Pc,33 
IFL-UNF 34 ICS IB2.FLUNFE C I Result,Status,Pc,34 
IFL-INK 35 ICS IB2.FLINKE C I Result, Status,Pc, 35 
IINTDVDZ 36 les IB2.INTDVDZEI C IPc,36 
IINTOVF 37 Ics IB2.INTOVFE I C IPc,37 
+-------------+-----+---+-----------+----+---------------------+ 
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+-------------+-----+---+-----------+----+---------------------+ 
I Mnernonic ITrap#IENVIE/D Control I Type I Parameters I 
I-------------+-----+---+-----------+----+-~-------------------1 
IDECDVDZ I 38 Ics IB2.DECDVDZEI C IPc,38 I 
IDECOVF I 39 ICS IB2.DECOVFE I C IPc,39 I 
IDECINVL I 40 Ics IPE I R IPc,40 
IDECINVDG I 41 ICS IPE I R IPc,41 
IDBBREAK I 42 ICS IPE I C IOperand,Pc,42 
IDBCALL I 43 ICS IB1.PTE I SC IPc,43 
IDBCHECKA I 44 Ics IB2.CB.CBA I C I Operand,Pc,44 
IDBCHECKB I 45 ICS IB2.CB.CBB I C I Operand,Pc,45 
IDBSIT I 46 Ics ISTATUSA.SITI C IPc,46 
ISEMAOVF I 47 ICS IPE I R ISeAaphore,Pc,47 
ISEMADOhlN I 48 ICS IPE I C ISernaphore,Pc,48 
ISEMAUP I 49 ICS IPE I C ISernaphore,Pc,49 
ISYITCHN (*1) I 50 les IPE I e IPc,50 
ITRYV I 51 les IPE I R I Trypointer, Pc, 51 
IADRPDIRBND I 52 ICS IPE I R IEntry address,Pc,52 
IADRPDIR I 53 les IPE I R IPage nuAber,Pc,53 
IADRPAGEABS I 54 les IPE I R IByte offset,VPN, 
I I I I I I Logical address, 
I I I I I IPc,54 
IADRPAGETOS I 55 IICslPE I R IUser stack data, 
I I I I I I Byte offset, VPN, 
I I I I IlLogical address, 
I I I I I IPc,55 
+-------------+-----+---+-----------+----+---------------------+ 
Notes: 

07/31 

*1: This handler runs on the current stack, but it switches from the 
cOApatibility Aode part of the stack to the native Aode part. 
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7.5 Detail Description of Internal Interrupts 

7.5.1 Architectural Interface 

When an internal interrupt is detected, control is transferred 
to the corresponding internal interrupt service routine. The 
methods of transferring control and accessing the interrupt 
service routines are consistent (identical) across all models of 
the Vision family. The following sections describe the details 
of the architectural interface between hardware and software 
(the interrupt service routine). 

7.5.2 EKecution Environment 

All internal interrupt handlers eKecute on the ICS. 

7.5.3 Sequence of Events 

When an internal interrupt is detected, hardware performs the 
following sequence: 

1) EKternal interrups are disabled. 

07/31 

2) In case the currently eKecuting instruction is interrupted 
in an intermediate state, intermediate state information 
is pushed onto the stack and the lIP bit in STATUSA is set. 
Otherwise, the step is skipped. (See the description of 
individual instructions for details on interruptible steps). 

3) The current eKecution stack is capped with an interrupt stack 
marker. 
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4) The following status fields are given standard values: 

~ 0 (native mode) 
lIP 0 
TeE 0 (hold task clock) 
DISP 0 
SIT 0 
DBP 0 
ICS 1 
~L 3 

5) The target location is the entry point in the OD for LOI 

6) A parameter list is pushed onto the interrupt control 
stack. The description of each internal interrupt 
describes the parameters. The parameters are pushed 
onto the stack as shown in the following diagram: 

+-------------+ --+ 
Q==> I parameter 1 I \ 

+-------------+ \ 
I parameter 2 I \ 
+-------------+ \ Parameter list 

> for internal 
+-------------+ / interrupt 

/ handlers 
+-------------+ / 
I parameter n I / 
+-------------+ --+ 

S==> 

In all cases the last parameter is the 32-bit Trap •. 

7) The eKecution environment is set up for eKecuting the 
internal interrupt handler. This involves the following: 

a) The environment registers (Q, S, etc.) are set up 
appropriately for eKecuting code on the ICS. 
All other registers XO •• X15, BO .• B5 are left with 
indeterminate values. 

b) The eKecution privilege level is set to the minimum 
eKecution level described in the OD corresponding to 
LOI = 1. 

c) A branch (BRX) is performed to the destination 
defined by the logical object id = 1. 

8) Steps 3 through 7 are repeated for each internal interrupt 
detected. 
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7.5.4 Multiple Internal Interrupts 

07/31 

Multiple internal interrupts are processed by pushing multiple 
interrupt stack markers onto the rcs. Interrupt markers are 
pushed in increasing order of priority. Then execution continues 
by transferring control to the handler for the latest (highest 
priority) internal interrupt. 

Internal interrupts in order of increasing priority are: 

1) any internal interrupt except power fail and power recovery. 

2) power recovery 

3) power fail 

7.5.5 Internal Interrupts Descriptions 

7.5.5.1 Melllory Parity Error 

This internal interrupt is caused when hardware detects a "hard" 
melllory error that it cannot resolve without involving software. 

The physical address involved in the access that incurred the error 
is pushed onto the rcs. 

In a shared Illelllory Illultiprocessor configuration, the parity error 
may not be uniquely attributable to any particular processor's 
Illelllory traffic. Therefore, the parity error may be reported to 
any processor in the configuration. 

Mnemonic: 
Parameters: 

Enabling: 

lIMEMPAR 
1. 32-bit physical byte address of the 

location with the parity error 
2. Pcurrent 
3. trap * 
perlllanently enabled 
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7.4.5.2 Power Fail 

Yhen the power system detects a power failure, the power fail 
interrupt is taken. In a shared-meroory multi-processor 
configuration, all processors must receive this interrupt. 

Mnelllonic: 
Parameter: 
Enabling: 

IIPlJRFAIL 
trap * 
permanently enabled 

7.5.5.3 Power Recovery 

07/31 

When power is initially applied to the systelll, a test of Illeroory 
contents is perforllled to deterllline if it contains valid 
information and data. If so, the hardware is initialized 
(including writeable control store) and the power recovery 
interrupt is taken (warm start). If Illemory contents are invalid, 
the Illachine will perform a cold start. The test for valid memory 
contents is i!llplementation dependent but there will be a finite 
probability of Illistaking an invalid Illeroory content as being valid. 
In a shared Illelllory Illultiprocessor configuration, all processors 
must receive this interrupt. As much as possible, implementations 
must save the machine state across power fail/recovery. 

Mnemonic: 
Parameter: 
Enabling: 

I IPldRRCV 
trap. 
perlllanently enabled 

7.5.5.4 CPU Machine Check 

This trap is defined for the i!llpleroentation dependent errors that 
a CPU implementation can detect about itself. The information 
reported under this trap classification is specific to each CPU 
i!llp lelllentat ion. The first parameter is variable in size. Its 
third word is the Illachine check 10 OUIllber; this defines how much 
additional inforlllation is present. 

Mneroonic: 
Parameter: 

Enabling: 

I ICPUCHK 
1. Illachine check id 
2. Pcurrent 
3. trap * 
permanently enabled 
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7.5.5.5 CSP reply is complete 

When hardware has completed receiving the reply from the CSP to 
the message sent through the MOVEtCSP instruction, this internal 
interrupt is generated. 

Mnemonic: I ICSPREPLY 
Parameters: 1. 32-bit status (implementation dependent) 

2. trap. 
Enabling: individually enabled (STATUSC.IE) 

7.6 Detail Description of Traps 

7.6.1 Architectural Interface 

When a trap is detected by the hardware, control is transferred 
to its corresponding trap service routine. The ~ethod of 
transferring control and accessing the trap service routines is 
consistent (identical) across all models of the Vision family. 

Traps provided are also consistent across all models of the 
Vision family. 

The following sections describe the details of the architectural 
interface between the hardware (or ~icrocode) and the software 
(the trap service routines). 

7.6.2 Execution Enviro~ent 

All trap handlers execute on the current stack except the top of 
stack page fault handler (ADRPAGETOS) which executes on the ICS. 

7.6.3 Common Conventions for Traps 

7.6.3.1 Parameter Passing to Trap Handlers 
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All traps push their parameters after pushing the procedure stack 
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markers. The diagram below shows how parameters are pushed: 

+-------------+ --+ 
Q==>I parameter 1 1 \ 

1-------------1 
1 parameter 2 1 
1-------------1 
1 • 1 
1-------------1 
1 • 1 
1-------------1 
1 parameter n 1 / 
+-------------+ --+ 

S==>I 

\ 
\ 
\ 

/ 
/ 

/ 

> 
Parameter list 
for trap 
handlers 

In all cases the last two parameters are the 64-bit program 
counter Pcurrent, and the 32-bit Trap •• 

7.6.3.2 Determining Privilege of the Handler 

07/31 

The trap handler is a procedure in the Trap object (object 1 in 
group 0). The access rights of the trap object indicate the 
no~inal privilege level at which the handler will run. However, 
privilege is never reduced (will never become numerically greater) 
in going to a trap handler. This corresponds to the normal 
procedure calling conventions. 

7.6.3.3 Determining the address of a Trap Handler 

The address of the trap handler is defined by code object 1 in 
group O. 

7.6.4 Sequence of Events 

The following sections describe the sequence of events involved in 
transferring control to the trap handler. The descriptions rely on 
the conventions set out in the previous section. External and 
internal interrupts are held off during these sequences. 
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7.6.4.1 A Non-recoverable Trap on the CUrrent Stack 

07/31 

When a non-recoverable trap is detected whose trap handler executes 
on 'the current stack, the following events take place. 

1) The SIT bit in STATUSA is cleared. 

2) An external procedure stack marker is pushed on the stack. 

3) The following status fields are given standard values: 
XM 0 (native mode) 
DBP = 0 

4) Q and S are set as expected on a procedure call. 

5) Parameters to the trap handler are pushed on the stack. 

6) P is set to the entry point address of the trap handler 
identified by the trap code object. 

7) STATUSA.XL is set to the privilege level at which the 
handler should run. 

8) Control is passed to the trap handler at P. 

7.6.4.2 A Non-recoverable Trap on the ICS 

When a non-recoverable trap is detected whose handler executes 
on the ICS, the sequence of events is identical to that for an 
internal interrupt. 

7.6.4.3 One Res tar tab Ie Trap on the CUrrent Stack 

(or a step-restartable trap) 

When a single ~estartable trap is detected whose handler runs 
on the current stack, the sequence of events is the following: 

1) For an interrupted instruction, the intermediate state 
inforroation is pushed, and the lIP bit in STATUSA set. 
Otherwise, this step is skipped. 

2) A stack marker is pushed onto the stack. 
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3) The following status fields are given standard values: 
lIP 0 
SIT 0 
XM 0 (native Node) 

4) Q and S are set as expected on a procedure call. 

5) Parameters for the trap handler are pushed onto the stack. 

6) P is set to the entry point address of the trap handler 
identified by trap code object. 

07/31 

7) STATUSA.XL is set to the privilege level at which the handler 
should execute. 

8) Control is passed to the trap handler at P. 

7.6.4.4 One Restartable Trap on the ICS 

(or a step-restartable trap) 

This follows the sequence for an internal interrupt; except the P 
value reported corresponds to the current instruction, not the next. 

7.6.4.5 Top-of-stack Page Fault and Stack OVerflow 

These follow the sequence for an internal interrupt. Note that these 
faults can occur at any tiroe when pushing stack markers and parameters 
for trap handlers. A description of the sequence of events in this 
case is given in section 7.7. 

7.6.4.6 Multiple Restartable Traps 

(or step-restartable traps) 

When more than one restartable trap is detected, hardware selects one 
and ignores the others. The sequence followed is therefore given by 
one of the sections above. 
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7.6.4.7 Continuable traps 

(or step-continuable traps) 

Continuable traps can only be detected after restartable traps 
have already been resolved, so continuable traps occur either 
alone or in combination ~ith other continuable traps. Note that 
the breakpoint trap and the single instruction trace trap are 
classified as continuable traps. In addition to these t~o, only 
one continuable trap can occur in an instruction. 

Sequence of Events: 

1) Remember the state of the SIT bit in STATUSA. 

2) Clear the SIT bit in STATUSA (SIT=O). 

3) If no other continuable traps except SIT or breakpoint then 
go to step 11. 

4) If the instruction is step continuable and ~as interrupted 
at an intermediate step, push intermediate state information 
onto the current stack and set the lIP bit. 

5) Push an external procedure marker. 

6) Clear the lIP flag in STATUSA. 

7) Set Q and S as expected for a procedure call. 

8) Push parameters for the one continuable trap other than SIT or 
breakpoint. 

9) Set P to the entry point address of object 1 in group O. 

10) Set STATUSA.XL to the privilege level of object 1 in group O. 

11) If the DBP bit is clear, go to step (18). 

12) Push an external procedure marker. 

13) Set Q and S as expected in a procedure call. 

14) Push parameters for the breakpoint table trap onto the stack. 

15) Set P to the entry point address of object 1 in group O. 

16) Set STATUSA.XL to the privilege level of object 1 in group O. 

17) Reset the DSP bit. 
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18) If the SIT bit ~as found in step (1) above, go to step (24). 

19) Push an external procedure marker. 

20) Set Q and S as expected in a procedure call. 

21) Push paraIlleters for the Single Instruction Trace trap. 

22) Set P to the entry point address of object 1 in group O. 

07/31 

23) Set STATUSA.XL at the privilege level of object 1 in group O. 

24) Execute the trap handler at P. 

Note: this sequence may give a DSP trap and an SIT trap before a 
step continuable instruction ~ill have fully completed. These 
trap handlers can either choose to run at this time or they can 
set the SIT bit in the stack marker for the interrupted 
instruction so that the handlers can release control and yet 
regain control back at the end of the instruction. 

7.6.5 System Error 

Certain error conditions are non-recoverable and they cause the 
processor to enter in a special system error state. The 
follo~ing conditions cause the processor to enter the 'system 
error' state. 

1) Any trap, such as DDT Length violation, that occurs ~hile 
hard~are executes the transfer of control to the trap handler. 

2) Cases like overflo~ or underflo~ of the dispatcher disable count. 
In these cases, there is a soft~are error in privileged code. 

3) Bounds violations on the IeS. 

4) TOS page faults ~hen executing on the ICS. 
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7.6.6 Enabling/Disabling Traps 

Traps lIlay be eKPlicitly enabled and disabled individually or in 
groups. Traps fall in the following categories. 

1) Perillanently Enabled 

These traps are always enabled when the systeJll is up and the 
software is running. These traps cannot be eKPlicitly disabled. 

2) Individually Enabled 

These traps can be eKPlicitly enabled/disabled individually by 
setting/resetting a bit in the SIATUSB register. Setting of 
the bit (=1) enables the trap. Resetting the bit (=0) disables 
the trap. 

7.6.7 Transfer of Control Traps 

For the descriptions of the transfer of control traps, these 
notes are applicable: 

1) The Lower Bound (LB) of the object is obtained frolll the OD 
for the object (third word). 

2) The Upper Bound (UB) of the object is obtained frolll the OD 
for the object (fourth word). 

3) The Object Length is cOlllputed frolll the 00 for the object: 

Object Length = UB - LB + 1 

4) LB and UB are 32-bit 2's cOlllpleJllent signed integers; their 
values, however, lIlust be positive. 

5) The Virtual Address of the target location is calculated 
according to the description in chapter 3. Generally, 
the Virtual Offset is cOlllputed frolll the logical offset 
by the calculation: VOFF = LB + LOFF 

6) 

7) 

For instructions BR and CALL, the target code object is always 
the executing code object because these instructions can only 
cause internal transfers. 

For instructions BRX, CALLX and EXIT, the target code object 
lIlay be either the executing code object of a different code 
object because these instructions allow both internal and 
external transfers. 
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8) For BRX and CALLX, the target location is obtained fro~ the 
object descriptor of the target code object. 

9) For EXIT, the target location is obtained fro~ the procedure 
stack lIlarker. 

7.6.7.1 Code Object Bounds Violation 

This trap is caused when P points outside the bounds of the code 
object. For instructions that change flow of control, such as 
BR, CALL, CALLX, EXIT, this trap is detected before the next 
instruction is fetched, so that the Pcurrent of the offending 
instruction can be reported to software. 

07/31 

IlIlplelllentations need not detect a Code Object Bounds Violation on 
sequential instruction execution (instructions other than BR, BRX, 
CALL, CALLX, SEXIT, EXIT, IEXIT). It is the responsibility of 
operating systeJll software to guarantee that software cannot "run 
out of theend of a code object". For eXaJIlple, code objects can 
be padded with BREAK instructions. If P is increJllented so as to 
becoille greater than PL on sequential instruction execution, the 
effects lIlay differ across iIIlplelllentations; however, these effects 
will reJllain lilllited to the currently executing task. 

HneJ1lonic: 
ParaJlleters: 

Trap Type: 
Enabling: 

CODEBNDSV 
1. Pcurrent 
2. trap * 
restartable 
perillanently enabled 

7.6.7.2 Code ODT Length Violation 

This trap is detected for the instructions BRX, CALLX, and EXIT. 
It occurs when an atteJllpt is lIlade to transfer control to an object 
that does not exist; i.e., the object nuIIlber is greater than the 
nuIIlber of entries in the ODT of the group selected by the group 
selector in the target logical address. 

Hneillonic: 
ParaJlleters: 

Trap Type: 
Enabling: 

CODEODTV 
1. Pcurrent 
2. trap * 
restartable 
perillanently enabled 
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7.6.7.3 Code Object Type Violation 

07/31 

This trap is detected for instructions BRX, CALLX, EXIT and IEXIT 
when an attempt is made to transfer control to an object that is 
not a code object. 

Mnemonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

CODETYPV 
1. Pcurrent 
2. trap # 
restartable 
perNanently enabled 

7.6.7.4 Code Privilege Level (Ring) Violation 

This trap is caused for the following cases: 

1) This trap is caused in the EXIT instruction when an attempt 
is Plade to exit to a privilege level mhich is Plore privileged 
than the processor's current privilege level (contained in 
the STATUSB register). 

2) This trap is detected for BRX and CALLX when an attempt is 
made to transfer control to a target code object mhose 
'prerequisite privilege level' is Plore privileged than the 
current privilege level. The 'prerequisite privilege level' 
of a procedure entry point is contained in the OD of the 
target object describing the procedure entry point. 

Mnemonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

CODER I NGV 
1. Pcurrent 
2. trap # 
restartable 
perNanently enabled 
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7.6.8 Instruction Traps 

7.6.8.1 Privileged Instruction Violation 

07/31 

This trap is caused when an attelllpt is Plade to execute an instruction 
at a privilege level which is less privileged than that required by 
the instruction. 

Mnelllonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

INSPRIV 
1. Pcurrent 
2. trap # 
restartable 
perNanently enabled 

7.6.8.2 Error Instruction 

This trap is caused by executing the ERROR instruction. This is 
likely to occur when an error causes P to point to data instead of 
code, i.e., trying to execute data. 

Mnelllonic : 
ParaIlleters: 

Trap Type: 
Enabling: 

INSERROR 
1. Pcurrent 
2. trap # 
continuable 
perPlanently enabled 

7.6.8.3 CHECKLO Violation 

This trap is caused mhen, for the instruction CHECKLO, the first 
operand is smaller than the second operand. 

Mnemonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

INSCHKLO 
1. Pcurrent 
2. trap # 
continuable 
perPlanently enabled 
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7.6.8.4 CHECKHI Violation 

This trap is caused uhen, for the instruction CHECKHI, the first 
operand is larger than the second operand. 

MneJllonic: 
ParaJlleters: 

Trap Type: 
Enabling: 

I NSCHKH I 
1. Pcurrent 
2. trap # 
continuable 
perJllanently enabled 

7.6.8.5 Undefined Instruction 

07/31 

This trap is caused for all opcodes that are not defined as part of 
the VISION architecture. 

MneJllonic: 
ParaJlleters: 

Trap Type: 
Enabling: 

INSUNDEF 
1. Pcurrent 
2. trap # 
continuable 
per1llanently enabled 

7.6.8.6 Exit Threshold Trap 

This trap is caused uhen the current execution privilege level is 
reduced to a level that is less privileged than the level in the 
'KIL' field in STATUSB. 

Mn9Jllonic: 
Par~eters: 

Trap Type: 
Enabling: 

INSKTL 
1. Pcurrent 
2. trap # 
continuable 
perJllanently enabled 
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7.6.8.7 Misaligned Progr~ Counter 

This trap occurs uhen the return address in EXIT, SEXIT or IEXIT 
is not even, so that P uould not be on a half-uord boundary. 

07/31 

NOTE: This condition JIIay not cause a trap in all mpleIllentations; 
instead, i1IIpleIllentations Nay force P[63]:=O and continue. 

MneJllonic: 
Par~eters: 

Trap Type: 
Enabling: 

INSODDP 
1. Pcurrent 
2. trap # 
restartable 
per1llanently enabled 

7.6.8.8 Probe Violation 

This trap is caused for instruction PROBE, uhen the value of the 
first operand and/or that of the second operand is/are illegal. 

MneIllonic: 
ParaJlleters: 

Trap Type: 
Enabling: 

INSPROBE 
1. Pcurrent 
2. trap # 
restartable 
per1llanently enabled 

7.6.8.9 Operand specifier Violation 

This trap is caused uhen an operand specifier in an instruction is 
incoNpatible uith the operand attribute expected by the opcode. 
EK~ple: an operand specifier specifying a literal as a destination 
in a MOVE instruction. 

MneIllonic : 
ParaJlleters: 

Trap Type: 
Enabling: 

I NSOPSPEC 
1. Pcurrent 
2. Trap # 
non-recoverable 
per1llanently enabled 
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7.6.S.10 Move Special Violation 
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This trap is caused for the instructions, MOVEfSP4, MOVEfSPS, 
MOVEtSP4, and MOVEtSP8, hlhen the value of the selector is illegal 
and/or hlhen the current privilege level of the processor does not 
Aatch the required privilege level for that value of the selector. 

MneAonic: 
ParaAeters: 

Trap Type: 
Enabling: 

INSMOVSPL 
1. Pcurrent 
2. trap # 
restartable 
perAanently enabled 

7.6.8.11 SWitch Violation 

This trap is detected by all variants of SWITCH hlhen the execution 
environAent does not allohl a task Shlitch. 

MneAonic: 
ParaAeters: 

Trap Type: 
Enabling: 

INSSWITCH 
1. Pcurrent 
2. trap * 
restartable 
perAanently enabled 

7.6.S.12 VP perAission control 

This trap is detected by all vector instructions hlhen a vector 
operation is decoded and the vector perAission bits (STATUSB.VPP) 
are zero. That is, the current status does not allow access to the 
vector instructions because the software environroent (vector context 
save area) has not been initialized. 

MneAonic: 
ParaAeters: 

Trap Type: 
Enabling: 

INSVPPERM 
1. Pcurrent 
2. trap # 
restartable 
individually enabled 
(STATUSB1. VPP) 
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7.6.S.13 Vector Operation on the ICS 
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This trap occurs hlhen a vector operation is atteApted that uses vector 
registers hlhile executing on the Ies. 

MneAonic: 
ParaAeters: 

Trap Type: 
Enabling: 

INSVPICS 
1. Pcurrent 
2. trap * 
non-recoverable 
perAanently enabled 

7.6.9 Stack Traps 

7.6.9.1 Stack Consistency Violation 

The instruction EXIT is used to restore the caller's environment. 
The registers S, Q are changed to point to nehl AeAOry locations on 
executing the EXIT instruction. Prior to executing the EXIT instruc­
tion, checks are Aade to ensure that the registers SB, Q, S, and SL 
at the end of executing the EXIT instruction hlould still Aaintain 
the follohling stack consistency relationship: 

SB =< Q =< S =< SL 

The Stack Consistency Violation trap is taken hlhen this relationship 
is violated. The IEXI! instruction includes the SaAe checks. 

MneAonic: 
ParaAeters: 

Trap Type: 
Enabling: 

STKCONSISTV 
1. Pcurrent 
2. trap # 
restartable 
perAanently enabled 

7.6.9.2 Stack Overflohl 

This trap is caused hlhen atteApting to execute an instruction that 
hlill result in S pointing at or beyond SL. Note: processing of 
the trap condition follohls the sequence of events for internal 
interrupts. The trap handler is executed on the ICS. Yhen this 
exception is detected, S is set according to the following rules: 
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1) If the offending instruction is 'restartable' (see below), the 
is restored to its value prior to the offending instruction. 

2) If the offending instruction is one for which this trap is 
'step restartable', S is restored to its value prior to the 
offending instruction step. 

In either of the above cases, S is rolled back to the appropriate 
position so that the offending instruction can be appropriately 
'restarted' or 'step restarted'. Then the interrupt marker is 
pushed onto the stack according to the rules given in section 7.&& 
(TOS page faults). The overflow part of the marker will go on the 
ICS. At the end of this sequence, S[32 .• 63] in the TCB will point 
to where it would have pointed had the entire interrupt marker been 
pushed onto the user's stack. 

Mnemonic: 
Par81lleters: 

Trap Types: 

Enabling: 

STKOVF 
1. Pcurrent 
2. trap it 
step restartable for instruction DUP 
restartable for other offending instructions 
permanently enabled 

7.6.9.3 Stack Underflow 

This trap is caused when an attempt is made to move S below Q 
(i.e. attempt to violate Q[32 •• 63] <= 8[32 •• 63]) 

Mnemonic: 
Par81lleters: 

Trap Type: 
Enabling: 

STKUNF 
1. Pcurrent 
2. trap # 
restartable 
permanently enabled 

7.6.9.4 Delete/Extend Negative Yordcount 

The trap is caused when, for instructions DELETE and EXTEND, the 
wordcount given is negative. 

Mnemonic: 
Parameters: 

Trap Type: 
Enabling: 

STKDEXTV 
1. Pcurrent 
2. trap it 
restartable 
permanently enabled 
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7.6.10 Data Object Traps 

For data traps the following terminology is used: 

1) An e~!ict operand is an ope:~d whose lo~ical ad~ress is 
speclfled by an operand speclfler of the lnstructlon. 

07/31 

2) A data access is non-explicit when its logical address is 
not directly specified by an operand specifier. The logical 
address of a non-explicit operand is either specified indirectly 
by an explict operand (as in VGATHt, VSCATt) or is obtained 
obtained by modifying/indexing the logical address of an 
explicit operand (as in MOVEC). 

3) The Virtual Address of a byte of any operand is computed 
according to the algorithms in chapter 3. 

7.6.10.1 Data Object Bounds Violation 

This trap is caused when the computed (effective) virtual offset 
for an operand (explicit or implicit) is less than the Lower Bound 
LB in the aD for the object or the computed virtual offset is 
greater than the Upper Bound UB minus the size of the data item. 

Mnemonic: 
Parameters: 

Trap Type: 
Enabling: 

DATABNDSV 
1. Offending logical address (64 bits) 
2. Pcurrent 
3. trap it 
restartable 
permanently enabled 

7.6.10.2 Data ODT Length Violation 

This trap is caused when a data access uses a logical address with 
with an object number greater than the number of entries contained 
in the ODT for the selected group. 

Mnemonic: 
Parameters: 

Trap Types: 

Enabling: 

DATAODTV 
1. Offending logical address (64 bits) 
2. Pcurrent 
3. trap * 
non-recoverable for instructions that modify the 
most significant 32 bits of a base register, 
restartable for IEXIT 
permanently enabled 
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7.6.10.3 Data Object Type Violation 
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This trap is caused lIJhen an attelllpt is Illade to access, through a l.lIJ" 
or ".rllJ" attribute, an object that is not a native Illode data object. 

Mnelllonic: 
Para!lleters: 

Trap Type: 
Enabling: 

DATATYPV 
1. Offending logical address 
2. Pcurrent 
3. trap it 
restartable 
permanently enabled 

7.6.10.4 Data Access Rights Violation 

This trap is detected lIJhen an attelllpt is Illade to access an object 
lIJhile running less privileged than required by the access rights 
field in the OD for the object. 

Mnelllonic: 
Para!lleters: 

Trap Type: 
Enabling: 

DATAARV 
1. Offending logical address (64 bits) 
2. Pcurrent 
3. trap # 
restartable 
perlllanently enabled 

7.6.11 Floating Point Traps 

These traps are detected for Floating Point operations. Their 
i!llplelllentation is in accordance lIJith IEEE Floating Point Standard. 
(Refer to "A Proposed Standard for Binary Floating Point Arithllletic" 
draft 9.3.3 of IEEE task P754.) Each trap can be individually 
enabled or disabled lIJith the appropriate bit in STATUSB. Mhen the 
trap condition is detected, the destination operand is set according 
to the following rules: 

1) If the trap is enabled, then the contents of the destination 
operand are not changed (i.e., relllain the Sa!lle as prior to 
eKecuting the offending instruction). 

2) If the trap is disabled, then the contents of the destination 
operand are set as specified in the IEEE standards. 
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7.6.11.1 Floating Point Invalid Operation 
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This trap is caused for Floating Point Invalid Operations as defined 
in IEEE Floating Point Standard. The operand(s) of the offending 
instruction is (are) pushed. 

Mne!llonic: 
Para!lleters: 

Trap Type: 
Enabling: 

FL-INV 
1. Operandi 

(2. Operand2) 
3. Pcurrent 
4. Trap. 
continuable 
individually enabled 
(STATUSB2.FLINVE) 

7.6.11.2 Floating Point Divide By Zero 

This trap is caused lIJhen the divisor in a floating divide is zero. 
The operands are pushed. 

Mnelllonic: 
Para!lleters: 

Trap Type: 
Enabling: 

FL-DVDZ 
1. Operandi 
2. Operand2 
3. Pcurrent 
4. Trap # 
continuable 
individually enabled 
(STATUSB2.FLDVDZE) 

7.6.11.3 Floating Point OVerflollJ 

This trap is caused lIJhen the Illagnitude of the result of a floating 
point arithllletic operation is greater than the largest representable 
floating point value in the indicated precision. The unrounded 
lIJrapped result is pushed. The round status is 0 for ROUND=O and 
STICKY=O, 1 for ROUND=O and STICKY=l, 2 for ROUND=l and STICKY=O, and 
3 for ROUND=l and STICKY=l. 

Mne!llonic: 
Para!lleters: 

Trap Type: 
Enabling: 

FL-OVF 
1. lJrapped result 
2. Round status 
3. Pcurrent 
4. trap # 
continuable 
individually enabled 
(STATUSB2.FLOVFE) 
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7.6.11.4 Floating Point Underfloro 
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This trap is caused for Floating Point Underfloro as defined in IEEE 
Floating Point Standard. The wrapped result and round status are 
computed as they are in the overfloro case. 

tlnemonic: 
Parameters: 

Trap Type: 
Enabling: 

FL-UNF 
1. Wrapped result 
2. Round status 
3. Pcurrent 
4. trap # 
continuable 
individually enabled 
(STATUSB2.FLUNFE) 

7.6.11.5 Floating Point Inexact Result 

This trap is caused when the result of a floating point operation is 
inexact as defined by the IEEE Floating Point Standard. The result 
pushed is the rounded or overfloroed result. The Round status is as 
in overfloro and underfloro. 

tlnemonic: 
Parameters: 

Trap Type: 
Enabling: 

FL-INX 
1. Rounded or OVerflowed result 
2. Round status 
3. Pcurrent 
4. Trap # 
continuable 
individually enabled 
(STATUSB2.FLINXE) 
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7.6.12 Integer Traps 

7.6.12.1 Fixed Point Divide By Zero 
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This trap is caused rohen an attempt is made to divide an integer by 
zero. When divide by zero is detected, the destination is unchanged. 

tlnel1lonic: 
Pararoe ters: 

Trap Type: 
Enabling: 

INTDVDZ 
1. Pcurrent 
2. trap # 
continuable 
individually enabled 
(STATUSB2.INTDVDZE) 

7.6.12.2 Fixed Point OVerflow 

This trap is caused when the result value is outside the allowable 
range of integer values for the destination operand. On overflow in 
ADDt, SUBt, NEGt, ABSt, ASLt, and MPYt, the loroer t bytes of the 
result is returned. For CONVERT the largest positive integer if the 
source roas positive and the largest negative integer if the source roas 
negative is returned. 

tlnemonic: 
Parameters: 

Trap Type: 
Enabling: 

INTOVF 
1. Pcurrent 
2. trap * 
continuable 
individually enabled 
(STATUSB2.INTOVFE) 
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7.6.13 Decimal Traps 

7.6.13.1 Decimal Divide By Zero 
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This trap is detected when the divisor is zero in a decimal divide. 
When the divide by zero is detected, the destination operand is not 
changed. 

Mnemonic: 
Parameters: 

Trap Type: 
Enabling: 

DECDVDZ 
1. Pcurrent 
2. trap # 
continuable 
individually enabled 
(STATUSB2.DECDVDZE) 

7.6.13.2 Deciroal Overflow 

This trap is detected for deciroal operations when the result is larger 
than can fit in the destination operand. When the overflow is 
detected) the destination is affected in the following ways: 

1) If the trap is enabled, the destination operand is not changed. 

2) If the trap is disabled, the result is stored left truncated into 
the destination operand. 

Mnemonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

DECOVF 
1. Pcurrent 
2. trap # 
continuable 
individually enabled 
(STATUSB2.DECOVFE) 

7.6.13.3 Decimal Invalid Length 

This trap is detected when the value of the length operand is either 
less than zero or greater than 31. 

Mnemonic: 
Parameters: 

Trap Type: 
Enabling: 

DECINVL 
1. Pcurrent 
2. trap # 
restartable 
permanently enabled 
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7.6.13.4 Invalid Decimal Digit 
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This trap is detected for some decimal operations when an invalid 
decimal digit is found. See the description of each decimal instruc­
tion listed below for a list of which characters/digits are invalid 
for that instruction. 

Mnemonic: 
Parameters: 

Trap Type: 
Enabling: 

DECINVDG 
1. Pcurrent 
2. trap # 
res tar table 
permanently enabled 

7.6.14 Debug Trap conditions 

7.6.14.1 Break Instruction 

This trap is caused when executing the BREAK instruction. 

Mnemonic: 
Parameters: 

Trap Type: 
Enabling: 

DBBRKINS 
1. Operand 
2. Pcurrent 
3. trap '* 
continuable 
permanently enabled 

7.6.14.2 Procedure Trace Trap 

This trap is caused at the start of BRK, CALL, or CALLK instructions 
when the PTE bit in STATUSB is found set. 

Mnemonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

DBCALL 
1. Pcurrent 
2. trap '* 
step continuable 
individually enabled 
(STATUSBl. PTE) 

7-50 



VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COPY -- HP PRIVATE INFORMATION 

7.6.14.3 CHECKA Instruction 
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This trap is caused Mhen executing the CHECKA instruction if the bit 
CBA in STATUSB register is set. 

MneNonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

DBCHECKA 
1. Instruction operand 
2. Pcurrent 
3. trap '* 
continuable 
individually enabled 
(STATUSB.CB.CBA) 

7.6.14.4 CHECKB Instruction 

This trap is caused Mhen executing the CHECKB instruction if the bit 
eBB in STATUSB register is set. 

MneNonic: 
ParaJlleters: 

Trap Type: 
Enabling; 

DBCHECKB 
1. Instruction operand 
2. Pcurrent 
3. trap '* 
continuable 
individually enabled 
(STAIUSB.CB.CBB) 

7.6.14.5 Single Instruction Trace 

This trap is caused at the end of executing an instruction Mhen the 
single instruction trace bit (SIT) in the STATUSA register is found 
set. 

The SIT bit is alMays cleared as part of trap initiation. SoftMare 
NUSt explicitly reenable the single instruction trace by setting 
the SIT value to one in the stack Narker in order to continue single 
instruction execution. 

MneNonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

DBSIT 
1. Pcurrent 
2. trap '* 
continuable 
individually enabled 
(STATUSA.SIT) 
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7.6.15 SeNaphore Traps 

7.6.15.1 SeNaphore OVerfloM 
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This trap is caused for the instructions UP, DOYN, and TESTDOYN Mhen 
increNenting or decreNenting the 31-bit seNaphore value causes a 
31-bit overfloM. 

MneNonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

SEMAOVF 
1. Logical address of the first operand (seNaphore) 
2. Pcurrent 
3. Trap '* 
res tar table 
perNanently enabled 

7.6.15.2 DOMn SeNaphore 

This trap is caused for the instruction DOYN, Mhen decreNenting the 
31-bit 2's cONpleNent seNaphore value of the operand causes it to 
drop beloM zero. 

MneNonic: 
ParaIlle ters : 

Trap Type: 
Enabling: 

SEMADOYN 
1. Logical address of the operand (seNaphore) 
2. Pcurrent 
3. trap '* 
continuable 
perNanently enabled 

7.6.15.3 Up SeNaphore 

This trap is caused for the instruction UP, Mhen increNenting the 
31-bit 2's cONpleNent seNaphore value of the operand leaves it at 
or beloM zero. 

MneNonic: 
ParaIlle ters : 

Trap Type: 
Enabling: 

SEMAUP 
1. Logical address of the operand (seNaphore) 
2. Pcurrent 
3. trap '* 
continuable 
perNanently enabled 
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7.6.16 Vision Mode SWitch 

This trap is the entry point for a switch from HP3000 mode to 
Vision mode. See section 10.5.1.2 for details. 

Mnemonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

SlJITCHN 
1. trap * 
2. Pcurrent 
continuable 
permanently enabled 

7.6.17 TRY/UNTRY Traps 

7.6.17.1 TRY or UNTRY Violation 

This trap is caused for an illegal TRY or UNTRY instruction. 
This will happen if TRY or UNTRY is used on the ICS. 

Mnemonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

TRYV 
1. TRYoffset 
2. Pcurrent 
3. trap * 
restartable 
permanently enabled 

7.6.18 Virtual Addressing Traps 

7.6.18.1 PDINSERT Inconsistent Page Number 
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This trap is caused for the instruction PDINSERT when the physical 
page number provided by the instruction does not equal the 
physical page number contained in the corresponding PDIR entry. 

MneAonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

ADRPDIR 
1. Physical Page number in PDIR 
2. Pcurrent 
3. trap # 
restartable 
perAanently enabled 
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7.6.19 Page Absent Traps 

7.6.19.1 Page Absent 
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This trap is caused when a page containing the byte being accessed is 
not present in physical memory. This trap is used for all absent 
pages except the page on top of the stack; the ADRPAGETOS fault is 
used for that. ADRPAGEABS is in all respects, including handling 
of paraIlleters, a normal trap. 

Mnemonic: 
ParaJlleters: 

Trap Type: 
Enabling: 

ADRPAGEABS 
1. Byte Offset 
2. Virtual Page Number 
3. Logical Address 
4. Pcurrent 
5. trap # 
restartable 
permanently enabled 

7.6.19.2 Top of Stack Page Absent 

(POFF) 
(VPN) 
(LA) 

This trap is caused when the top of stack page is referenced and is 
not present in physical memory. 
This trap is very special in that all other traps use the current 
stack to push a Aarker. The sequence of events for internal 
interrupts is therefore used. The top of stack page absent handler 
executes on the interrupt control stack. 
More inforAation can be found in section 7.7. 

MneAonic: 
ParaIlleters: 

Trap Type: 
Enabling: 

ADRPAGETOS 
{O. OVerflow InforAation} 
1. Byte Offset 
2. Virtual Page Number 
3. Logical Address of S 
4. Pcurrent 
5. trap * 
restartable 
perAanently enabled 
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7.7 Top of Stack Page Faults 

All stack objects, except the interrupt control stack, are paged 
objects. Some activities involve pushing information onto the 
stack, including: 

1) an instruction explicitly references the stack as an 
operand; e.g. PUSH, CALL and SMITCH for the Vision mode 
stack and many instructions for the HP3000 mode stack. 

2) an instruction encounters a page absent condition and the 
intermediate state information for the instruction must be 
put on the stack. The instruction in progress (lIP) bit 
described in chapter 4 refers to this case. 

3) an instruction execution results in some conditions that 
are handled as user traps. In this case the instruction 
pushes stack markers as well as parameters for these 
conditions onto the stack. 

4) a condition such as an external interrupt causes a transfer 
of control from the user's stack onto the interrupt control 
stack. In this case an interrupt marker is pushed onto 
the stack. 

However, two obstacles could prevent information from being 
pushed onto the stack: 

1) the page containing the byte pointed to by S is not present 
in physical memory (ADRPAGETOS) 

07/31 

2) the logical offset S[32 .. 63] attains the length of the stack 
object (UB-LB). This is the stack overflo~ condition 
(STKOVF). 

In either case the information normally saved on the stack must 
be saved in a different location. The VISION architecture 
specifies the Interrupt Control Stack of the executing processor 
as the location to store the context ~hen the stack page absent 
condition is detected. In general, the information to be saved 
can be divided into two parts. The illustration on the next 
page shows this: 
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+------------------------+ 
temporary information 
for the resumption of 
execution of the 
instruction 

+------------------------+ 
I interrupt stack marker I 
I I 
+------------------------+ 

07/31 

The VISION architecture does not define at which point during an 
instruction a top of stack page absent condition is detected. 
That is, if during pushing any information onto the stack the page 
absent condition is detected, implementations are free to place 
any part of the above information onto the user's stack at S or 
onto the Interrupt Control Stack. In particular, implementations 
are free to push all the above information onto the ICS when it 
detects that not all of it fits onto the user's stack. 

VISION specifies the following to be the same for all hard~are 
implementations: 

1) The value of S stored in the TCB is the saroe independent 
of ~here the information is actually saved. In all cases 
the S value is updated as though the information were 
placed on the user's stack. 

2) The amount of overflow information pushed onto the Interrupt 
Control Stack can be computed as follows: subtract from the 
value of S (pointing into the Interrupt Control Stack) the 
value of QI, and further subtract the length of the argument 
list of the page fault trap handler. 

3) This information must be moved immediately by software from 
the Interrupt Control Stack to some memory resident area so 
that the handler can IEXIT from the ICS. The move can be 
accomplished by a MOVEC instruction using the following 
operands: 

ARGLEN: 
SRC: 
RES: 

L: 

length of argument list for trap handler (32 bytes) 
starting address of source information (=QI) 
starting address of some resident destination area 
big enough to receive the information 
length of move, computed as: S-QI-ARGLEN 

MOVEC L, SRC, RES 

After the page(s) missing from the user's stack have been 
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brought into physical NeNory, the inforNation can be Noved 
froN the NeNory resident page to the user's stack by MOVEC 
using these operands: 

RES; address of the Nemory resdient page 

07/31 

DST: destination area, computed as the S value in the 
TCB minus (Si-QI-LA) where si is the value of S 
(pointing into the ICS) on entry to the trap handler 

L: same as above 

MOVEC L, RES, DST 

After this move has completed, the user's stack will appear 
as though the absent page condition had never occurred. 

4) For all of the user's stack markers that were pushed onto 
the ICS, the value of the Qold[32 .• 63] in the stack marker 
is relative to the user's stack and not the ICS. In other 
words, those markers are treated as raw data; they must 
never be used in EXIT or IEXIT when still on the ICS. 

Three cases are sketched with respect to the saving of inforNation. 
The following notation is used in these examples: 

indicates a page boundary 
indicates the boundary value of the base register 

Pre indicates a virtual page present in physical memory 
Abs indicates a virtual page absent from physical memory 
St indicates the value of S stored in the TCB after the 

interrupt marker is pushed 
TEMP temporary inforNation left on the stack as part of the 

execution of the previous instruction 
1M denotes the Interrupt Marker 
Si indicates the value of S after entry to the trap handler 

(points into the lCS) 

7-57 

VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COpy -- HP PRIVATE INFORMATION 

Case 1 -- The stack pages are present in N9lIlory. 

Page 
Status 

PrefAbs 

Stack 
Object 

+--------+ 

+- - - - + 

Q==>I 
Pre I 

I 
+- - - - + 

I I 
Pre s==>I========1 

I I 
+- - - - + 

I 
Pre I 

I 
+- - - - + 

I 

BEFORE 
INTERRUPT 

MARKER 

Stack 
Object 

+--------+ 

+- - - - + 

+- - - - + 

I I 
1========1 
I TEMP I 
+- - - - + 
I INFO I 
++++++++++ 

1M I 
+- + 

St=> I I 

ICS 
+--------+ 
I disp. I 
I Narker I 
+- - - - + 

QI = > I parns I 
Ifor trap I 
I handler I 

Si==>+========+ 
I I 
+- - - - + 
I 

AFTER 
INTERRUPT 

MARKER 

07/31 

Note that in this case the inforNation to restart the interrupted 
instruction and the task's interrupt marker fit onto resident 
pages in the task's stack and the only information pushed onto 
the lCS is parameters for the page fault handler. 
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07/31 

Case 2 -- The current S page is present but the next virtual page 
is absent. In this case the architecture does not 
define hOM much information is pushed onto the current 
S page before information is pushed onto the ICS. This 
results in the possibility of the information being 
saved in tMO parts as shOMn beloM. 

Case 2A -- part of the information is pushed onto the user's stack 

Page 
Status 

PrefAbs 

Pre 

Pre 

Abs 

Stack 
Object 

+--------+ 

I 
I 
1 

+- + 

Q==>I I 
I 1 
I I 
+- - - - + 

S==>I========I 
I I 
I I 
+- + 

I 
I 
1 

+- - - - + 

BEFORE 
INTERRUPT 
MARKER 

Stack 
Object 

+--------+ 

+- - - - + 

+- - - - + 

1========1 
I Part 1 1 
1 of 1M I 
+- - - - + 

1///11/111 
+========+ 

St=> 1 
+- - - - + 

ICS 
+--------+ 
I disp. I 
I marker 1 
+- - - - + 

QI=>I part 2 
1 of 1M 
I 
+- - - - + 
I parms I 
I for trap 1 
I handler I 
+- - - - + 

Si=>1 

AFTER 
INTERRUPT 

MARKER 

The stack page fault handler gets control after the interrupt 
marker part 2 has been pushed onto the ICS. The size of part 
2 can be determined from calculating Si-QI-LA at the entry to 
the page fault handler. 
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Case 2B -- The current S page is absent. This case includes 
bothwhen the folloMing page is present or absent. 

Page 
Status 

PrefAbs 

Stack 
Object 

+--------+ 

+- - - - + 

Q==> I 
Pre I 

I 
+- - - - + 

s==>I========1 
Abs I I 

I 1 
+- + 

I 1 
PrefAbs 1 1 

I I 

BEFORE 
INTERRUPT 

MARKER 

Stack 
Object 

+--------+ 

+- - - - + 

+- - - - + 
1========1 
I I 
1 I 
+- - - - + 
1========1 

St=>1 1 

ICS 
+--------+ 
I disp. I 
I marker 1 
+- - - - + 

QI=>I TEMP 
I INFO 
1 
++++++++++ 
+- - - - + 

1 1M 1 
1========1 

Si=> I I 
+- - - - + 

AFTER 
INTERRUPT 

MARKER 

In this case all of the information is pushed onto the ICS. 
As in Case 2A the amount of information on the ICS can be 
computed from (Si-Qi-LA) at entry to the page fault handler 
on the ICS. 
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7.8 rcs Mechanism 

07/31 

The Interrupt Control Stack (ICS) is a fixed size, memory resident 
structure. The location of the rcs is kept in a processor register. 
This location can only be changed through the MOVEtSP8 instruction. 

All Vision mode external and internal interrupts execute on the 
rcs. A feM Vision roode traps, such as Page Absent, Top of Stack 
Page Absent and Stack overfloM, also execute on the rcs. The 
reroaining traps are handled on the current task's stack. 

All HP3000 roode internal interrupts as Mell as HP3000 roode page 
fault traps and stack overfloM traps are directed to the Vision 
roode environroent to execute on the ICS. The rest of the HP3000 
roode traps are handled on the task'S HP3000 roode stack. 
(See the Architectural Control Docuroent for HP3000 Mode for a 
list of the traps supported on VISION.) 

The dispatcher also executes on the ICS. There is a special stack 
roarker perroanently located at the bottoro of the res, knoMn as the 
dispatcher marker. It contains the information necessary to locate 
the dispatcher code and begin execution of the dispatcher. 

Yhile executing on the ICS, the rcs flag in STATUSC is set. The 
flag is set Mhen the ICS environroent is established for executing 
the dispatcher or an interrupt service routine. It is cleared by 
the Interrupt Exit Instruction (rEKrT) Mhen it deterroines that the 
exit is to a procedure that does not execute on the ICS. The 
STATUSC.ICS flag is not directly accessible by any instruction. 

There is a separate ICS for each processor in a shared-meroory roulti­
processor configuration. 
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+-----------------------------------------------+---------------+ 
INPUT/OUTPUT DATA STRUCTURES CHAPTER 8 

+-----------------------------------------------+---------------+ 

This chapter will eventually describe the data structures that 
must be understood jointly by processor hardware and by I/O 
hardware. 
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+---------------------------------------------+----------------+ 

SYSTEM INITIALIZATION CHAPTER 9 

+---------------------------------------------+----------------+ 

9.1 Virtual Object Initialization 

Virtual address space is organized as 2A 32 virtual objects 
of 2A 32 bytes each (see section 2.2). 

Virtual Objects 1 through 5 are reserved for special 
areas which are allocated in physical memory and mapped into 
virtual space during system initialization. 

Virtual Object 

o 
1 
2 
3 
4 
5 

SYSCOH 

HASH 
PDIR 
PMEBUF 

(reserved) 
The System Communications Area 
(reserved) 
The Hash Table 
The Physical Page Directory 
The Primary Macro Environroent Buffer 

9.2 The System Cororounications Area 

The System Cororounications Area (SYSCOM) is a meroory resident 
buffer used by hardware and for communications with the Control 
Support Processor (CSP) , if aVailable. 

SYSCOM is page aligned in virtual space as virtual object 1. 

The SYSCOM.LENGTH field (+!OO) records the total length in bytes 
of SYSCOH. The SYSCOM buffer is organized into sections. The 
number of sections is recorded in the SYSCOM.NUMBER OF SECTIONS 
field (+!04). Each section is a physically and virtually 
contiguous subset of SYSCOH, and can be located through a 
descriptor which defines the offset within SYSCOM to the start 
of the section, and the length in bytes of the section. 

Section descriptors are located by fixed section numbers. The 
section number * 8 is the offset in SYSCOH to the section 
descriptor. Once a section is defined in SYSCOM a fixed section 
number is assigned. New iropleroentations may add sections to 
SYSCOM, but they cannot reroove sections. 
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The Systero Coromunications Area is partitioned into at least six 
main sections identified below: 

1 
2 
3 
4 
5 
6 

SYSCOH.ENV SECTION 
SYSCOH.ID SECTION 
SYSCOM.DIAG SECTION 
SYSCOM.HARD-SECTION 
SYSCOM.LOAD-SECTION 
SYSCOH.DUMP=SECTION 

Environroental Section 
Identification Section 
Diagnostics Section 
Harware Reserved Section 
Load Section 
Dump Section 

To locate the hardware reserved section of SYSCOM, for example, 
multiply section number 3 * 8 bytes = !18 bytes offset to the 
section descriptor. 

+-) 

1 

2 

3 

4 

5 

The Systero Coromunications Area 
+--------------------------------------+ 
I SYSCOM. LENGTH 
I SYSCOM.NUMBER_OF_SECTIONS 

(4) I +!OO 
(4) I +!04 

+--------------------------------------+ 
I SYSCOM.ENV SECTION.OFFSET (4) I +108 
I SYSCOH.ENV:SECTION.LENGTH (4) I +10C 
+--------------------------------------+ 
I SYSCOM.ID SECTION.OFFSET (4) I +!10 
I SYSCOM.ID=SECTION.LENGTH (4) I +!14 
+--------------------------------------+ 
I SYSCOM.HARD SECTION. OFFSET (4) I +118 
I SYSCOM.HARD=SECTION.LENGTH (4) I +!1C 
+--------------------------------------+ 
I SYSCOH.DIAG SECTION.OFFSET (4) I +!20 
I SYSCOM.DIAG=SECTION.LENGTH (4) I +!24 
+--------------------------------------+ 
I SYSCOM.LOAD SECTION. OFFSET (4) I +!28 
I SYSCOM. LOAD=SECTION. LENGTH (4) I +12C 
+--------------------------------------+ 

6 I SYSCOM.DUMP SECTION. OFFSET (4) I +!30 
I SYSCOM.DUMP:SECTION.LENGTH (4) I +!34 
+--------------------------------------+ 

9.2.1 The Environment Section of SYSCOM 

The Environroent Section of SYSCOM is defined as section number 1 
of SYSCOM and can be located through the section descriptor 
found at an offset of +!08 bytes into SYSCOM. 
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+--------------------------------------+ 
SYSCOM.ENV_SECTION 

Number of Processors (4) 
Number of Physical Pages (4) 
Max CSP error log (bytes) (4) 
Max CSP message log (bytes) (4) 
Max CSP display message (bytes) (4) 

+--------------------------------------+ 
bytes 

9.2.2 The Identification Section of SYSCOM 

+!OO 
+!04 
+!08 
+!OC 
+!10 

The Identification Section of SYSCOM is defined as section 
number 2 of SYSCOM and can be located through the section 
descriptor found at an offset of +!10 bytes into SYSCOM. 

+--------------------------------------+ 
SYSCOM.ID_SECTION 

Firmware 10 (8) +!OO 
Firmware Version (8) +108 
CSP ID (8) +110 
CSP Version (8) +!18 
CSP Software ID (8) +!20 
CSP Software Version (8) +!28 
HPE Software 10 (8) +!30 
HPE Software Version (8) +138 
Software ID Object.LA (8) +!40 

+--------------------------------------+ 
bytes I 

I 
Offset in Identification Section ---------+ 
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9.2.3 The Hardware Reserved Section of SYSCOM 

The Hardware Reserved Section of SYSCOM is defined as section 
number 3 of SYSCOM and can be located through the section 
descriptor found at an offset of +!18 bytes into SYSCOM. 

+--------------------------------------+ 
SYSCOM. HARD_SECT I ON 

CSP-area.OFFSE'I 
CSP-area.LENGl'H 

(4) 
(4) 

+--------------------------------------+ 
bytes 

+!OO 
+!04 

Offset in Hard_section of SYSCOM -------+ 

9.2.4 The Diagnostics Section 

The Diagnostics Section of SYSCOM is defined as section number 4 
of SYSCOM and can be located through the section descriptor 
found at an offset of +120 bytes into SYSCOM. 

+--------------------------------------+ 
I SYSCOM.DIAG SECTION 
I -
+--------------------------------------+ 

9.2.5 The Load Section of SYSCOM 

The Load Section of SYSCOM is defined as section number 5 
of SYSCOM and can be located through the section descriptor 
found at an offset of +128 bytes into SYSCOM. 

+--------------------------------------+ 
SYSCOM.LOAD_SECTION 

Load Option 
Load Device Specification 
Load ParaIlleters 
Dump Option 
Dump Device Specification 
Dump Parameters 

+--------------------------------------+ 

9-4 

07/31 



VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COPY -- HP PRIVATE INFORMATION 

9.2.6 The Dump Section of SYSCOM 

The Dump Section of SYSCOM is defined as section number 6 of 
SYSCOM and can be located through the section descriptor found 
at an offset of +130 bytes into SYSCOM. 

All Vision processors, when not running, can be made to save 
their current register state into the Dump Section of SYSCOM 
by means not defined in this document. 
Global computer context is deposited into fixed locations. 

+--------------------------------------+ 
SYSCOM.DUMP_SECTION 

HASH.PA (4) +!OO 
HASH. LENGTH (4) +104 
PDIR.PA (4) +!08 
PDIR.LENGTH (4) +!OC 
Group 0 Descriptor (GOO) (16) +!10 
STATUSD (4) +!20 
System Breakrange Descriptor (16) +!24 
Time of Century Clock (8) +134 
SYSCOM.PA (4) +!3C 
Implementation Dependent.OFFSET (4) +!40 
Implementation Dependent.LENGTH (4) +!44 
Processor Arch Record.OFFSET (4) +!48 
Processor Arch Record.LENGTH (4) +!4C 

+--------------------------------------+ 
bytes 

Offset in Dump Section of SYSCOM ------+ 

The Dump Section also contains space for a processor 
architectural dump record for each processor in the computer. 
The first processor record can be located through the offset and 
length pair located in the dump section (+!44). Additional 
processor records are linked together through the next processor 
field in the processor record (+!D4). A length of 0 bytes is 
used to indicate that no further records follow. 
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+--------------------------------------+ 
Processor Architectural Record 

+--------------------------------------+ 
STATUSA (4) +100 
STATUSBl (4) +104 
STATUSB2 (4) +108 
STATUSCl (4) +10C 
STATUSC2 (4) +!10 
Ql (8) +! 14 
TCB. LA (8) + ! lC 
TCBX.LA (8) +!24 
XO X15 (64) +130 
BO .• B5 ( 48) + ! 70 
Q (8) +!AO 
S (8) +1A8 
PrograJII Counter (8) + 1 BO 
Task Clock (8) + 1 B8 
Interval Timer (8) +1CO 
Processor Serial Number (*) (8) +!C8 
Processor Dependent Record. OFFSET (4) +!CC 
Processor Dependent Record. LENGTH (4) +100 
Next Processor Record. OFFSET (4) + 1 D4 
Next Processor Record.LENGTH (4) +108 

+--------------------------------------+ 
bytes I 

I 
Offset in Processor Architectural Record -+ 

(*): if supported 

Optional resident contiguous buffers for dumping implementation 
dependent information can be allocated and linked to either the 
global record or to any processor architectural record. A 
length of 0 bytes can be used to skip this option. 
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9.3 The Hash Table and Physical Page Directory 
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9.4 The Prilllary Macro Enviroment Buffer 

Virtual Object A Prilllary Macro Enviroment (PME) is a pre-built, bootable, 
~acro code illlage. 

3 

4 

+--------------------------------------+ <-- HASH.PA 
HASH The Hash Table 

(physically contiguous) 

+--------------------------------------+ 

+--------------------------------------+ <-- PDIR.PA 
POIR The Physical Page Directory 

(physically contiguous) 

+--------------------------------------+ 

During syste~ initialization all soft~are addressable ~~ory is 
~apped into virtual space by hard~are. The size and physical 
location of the hash table and the physical page directory are 
co~itted at this point. 

The hash table (HASH) ~ust be contiguous in physical ~e~ory and 
is initially ~apped as virtual object 3. The size of HASH is a 
function of ~~ory size and load options. 

The physical page directory (PDIR) ~ust be contiguous in 
physical ~e~ory and is initially ~apped as virtual object 4. 
The size of PDIR is a function of ~e~ory size. 

Hard~are ~ay choose to not associate certain phyical pages ~ith 
virtual pages. The virtual page ~ber (VPN) field in POIB 
entries Mill be set to 0 by convention to indicate that no virtual 
page association has been made, 

9-7 

The Prilllary Macro Enviroment Buffer (PMEBUF) is a pre-~apped 
~e~ory resident buffer ~hich ~ill be loaded ~ith a bootable 
~acro code illlage. 

Virtual Object 

5 
+----------------~---------------------+ 
I PME I 
I The Prilllary Macro Enviroment Buffer I 
I I 
+--------------------------------------+ 

PMEBUF is contiguous in virtual space and is initially ~apped 
as virtual object 5. 

During syste~ initialization hard~are allocates a fe~ physical 
pages fOr SYSCOM, PDIR, and HASH as described in sections 9.2 
and 9.3. Then the re~aining physical pages are ~apped into the 
PME buffer. 

In contrast to SYSCOM, PDIR and HASH, the PME buffer need not 
remain resident in physical memory once soft~are executes. 
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9.4.1 Loading the Primary Macro Enviro~ent Buffer 

Virtual Object 

5 
+--------------------------------------+ 
I PME I 
I The Primary ~ro Enviro~ent Buffer I 
I I 
+--------------------------------------+ 

PME.LENGTH (4) I 
PME Check~ (4) I 
Group 0 Descriptor (GDO) (16) I 
TCB.LA (8) I 
TCB. VA (8) I 
QI.LA (8) 
QI.VA (8) 
CST descriptor (8) 
DST descriptor (8) 

I 
reserved for eKPansion I 

+--------------------------------------+ 
I Macro Code I~age I 

+100 
+104 
+!08 
+!18 
+)20 
+!28 
+!30 
+!38 
+140 
+!48 

+!100 

The first 256 bytes of each Primary Macro Enviro~ent serve as a 
descriptor of the PME. 

The PME.LENGTH field (10) defines the length of the image in 
bytes and can be used to ensure that the entire image ~ill fit 
into the pre-~apped buffer. The PME Check~ (14) can be used 
to insure that the image has been properly loaded. 

The group 0 descriptor (GDO +108) defines the location of ODTO 
~ithin the PME. Since the PME is constructed to be loaded into 
PMEBUF, GDO.VON ~ill al~ays be virtual object 5. GDO.LB ~ust be 
page aligned in v irtual space. GDO • UB is equal to PME. LENGTH 1. 
GDO.LON ~ill vary fro~ PME to PME. 

The TCB.LA field (118) contains the logical address of a 
pre-built Task Control Block ~ithin the PME. TCB.VA (+120) 
contains the virtual address of the TCB. 

The QI.LA field (+128) contains a logical pointer to the 
dispatcher ~arker on the Interrupt Control Stack. The QI.VA 
field (+!30) contains the virtual address of the dispatcher 
~arker. 

The CST descriptor (+138) defines the object number in group 0 
~here the CST starts, and the length in bytes of the CST. 

The DST descriptor (+!40) defines the object number in group 0 
~here the DST starts, and the length in bytes of the DST. 
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The ~ro Code Launch 

The follo~ing sequence of steps are taken for ~acro code launch. 

1) 

2) 

3) 

4) 

Allocate physical pages for PDIR, HASH, SYSCOM, and 
PMEBUF, and ~ap these virtual objects. 

Load the PME into the PMEBUF in ~~ory. 

Using the PME descriptor do: 

Set the ODIO registers. No~ logical addressing is 
defined. 

Find the logical and physical address of the TCB. 

Set QI to point into the ICS object. 

Locate the CSTs and the DSTs. 

Set the initial state of the processor such that it ~ill 
run uninterrupted at the highest privilege level. See 
section 9.7 for a summary of the initial state. 

The cold load hard~are then eHecutes the algorithm described 
under the LAUNCH instruction to initiate the launching of 
soft~are. The task pointed to by the TCB is launched. 
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9.6 Initial State ~ary 

o 12 3 4 5 6 7 8 
3 
1 

+-+--+---+---+---+---+ +- - - - - - - - - - -+ 
STATUSA I IKLlsITIIIPIDBPI I I 

STATUSBl 

1110 I 0 I 0 10 I I I 
+-+--+---+---+---+---+ +- - - - - - - - - - -+ 

02345 
1 1 111 
o 1 234 

3 
1 

+---+---+----+-------+---+---+---------------+ 
IPTEIDISpl vectorlTCEIKTLI 
10101 0 I 0 I 3 I 

+---+---+----+-------+---+---+---------------+ 

1 1 111 
o 3 4 2 3 459 

22 33 
89 01 

+----+---------+---+---+-----+---------+--+--+ 
STATUSB2 I FPC I 

I 0 I 
TE I CBAI CBBI EF I 
o I 0 I 0 I 0 I 

Icci 
10 I 

+----+---------+---+---+-----+---------+--+--+ 

o 
22233 
7 8 9 0 1 

+-------------------------------+--+---+---+-+ 
STATUSCl DOC IXMIICSIDPFIII 

STATUSC2 

o I 01 0 I 0 101 
+-------------------------------+--+---+---+-+ 

o 
1 1 
5 6 

3 
1 

+--------------------+-----------------------+ 
urn 
o 

+--------------------+-----------------------+ 

o 123 
3 
1 

+-+---+--------------------------------------+ 
STATUSD I I DRL I 

I I 0 I 
REVCODE 

+-+---+--------------------------------------+ 
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+-----------------------------------------+--------------------+ 
HP/3000 MODE CHAPTER 10 

+-----------------------------------------+--------------------+ 

10.1 INTRODUCTION 

A ~ode of execution is available which provides the software 
architectural environAent of the HP/3000 syst~. This is called 
(HP/3000) COMPATIBILITY Node to distinguish it frON the no~al 
NATIVE ~ode of the VISION architecture. 

The co~plete architectural definition of Co~patibility Node is 
divided into two parts: 

01/31 

First, Chapter 10 describes the relationship between Co~patibility 
and Native Node architectures. The purpose is to identify the 
specific features required of the VISION architecture to allow the 
existence of Co~patibility ~ode in a ~anner which does not affect 
the inherent integrity of Native ~ode operations. Discussions 
progress frON a generalized overview of the CONpatibility and 
Native Node environAents to the actual detail descriptions of the 
Nanner by which SysteN and Task control structures of Co~patibility 
~ode are iAple~ented and ~anaged using the VISION architecture. 

Second, the addend~ to the ACD titled 'HP/3000 Co~patibility Mode' 
continues the description of Co~patibility Mode but froN a different 
viewpoint. It provides the cONplete details of CONpatibility ~ode 
fro~ the perspective of both User and Privileged ~ode progr~ers. 
The instruction sets, data structure fo~ats, addressing ~odes, 
traps, and environAental concepts are described. 
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10.2 ENVIRONMENTAL OVERVIEW 

The two Nodes, Native and CONpatibility, are very distinct even 
though they coexist and share access to physical resources. 
Instruction for~ats, data for~ats, and addressing ~odes are 
different. In particular, the Native ~ode architecture supports 
arbitrary byte alignAent, a very large address space, and a nONinal 
four-byte word size, while the CONpatibility Node architecture 
requires word alignAent, has aAoderate size address space, and 
uses a two-byte word size. 

The differences are so extensive that each Node is considered to be 
an independent architectural Nodel designed to support and execute 
User prograAS in a particular Nanner. This results in the task 
(process) ~odel being different in each ~ode. To switch execution 
fro~ one ~ode to the other is conceptually equivalent to a process 
switch. 

The priAary objective of CONpatibility Node is to provide an 
execution environment for User Node prograAs identical to that on the 
HP/3000 syst~. A secondary objective is to provide an execution 
environAent for Privileged Node code subject to the condition that 
there is guaranteed protection against Native Node structures being 
accessed directly fro~ Co~patability ~ode code. To achieve this 
level of security could mean that the privileged ~ode set of 
instructions available in CONpatibility Node are a subset of that 
in the HP/3000 syst~. These objectives are acco~odated as follows: 

On HP/3000 syst~ two types of addressing are provided: 

* Addressing into segAented code and data structures is the Nost 
co~on fo~. In User Node it is the only type and is fully 
bounds checked. In Privileged ~ode it is not always bounds 
checked. 

* Absolute addressing is allowed only in Privileged Node with 
absolutely (l) no checks. 

Co~patibility Node provides both types of addressing but does so 
with full protection against unwarranted access into Native ~ode 
by encapsulating the CONpatibility Node environAent (address space) 
using the Native Node ODT structures. The fo~ats of CONpatibility 
Node ODT descriptors are identical to Native Node ODT fOrNats. 
Consider the two addressing types: 
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* Segment adddressing - all code and data segments are Native 
objects. The ODT entry contains a type field rohich specifies 
certain Compatibility segment types. The management of these 
ODTs (CST and DST) is done by Native mode code and (trusted) 
microcode only. Compatibility code accesses the CST and DST 
only through microcode, never directly. 

* Absolute addressing - emulated using a special Native object 
accessible through microcode. Vieroed by Native mode it is a 
logical address space. To Compatibility privileged users it 
still looks like the 'real' absolute memory. There is no 
correspondence betroeen the absolute addresses used by 3000 
Compatibility mode and the real main memory addresses. 

So noro, instructions can be executed safely, but horo are the 
Native task and Compatibility process environments related? 
hlithin a logical task domain, there may exist the need to execute 
in both execution modes(in a serial manner, not in parallel). 
In such a case, troo physical tasks/processes are apparent? one 
for each mode having unique code and data (stack included) 
structures. The common shareable element is the single Hardroare 
Task Control Block (TCB). Switch mode instructions are provided 
in both modes to alloro an environment sroitch to occur to the 
other mode. Even though execution sroitches back and forth betroeen 
modes, each mode in execution is still an instance of executing a 
single logical task. There is one Dispatcher and one Interrupt 
Control Stack (ICS) in the architecture rohich exist only in Native 
mode and it is capable of launching either task into the appropriate 
mode. 

Launching a task/process into Compatibility mode means establishing 
the Registers rohich are specifically used by the Compatibility 
instruction sets. The precise mode of execution is determined at 
any time by the XM field of the STATUSC register. 

STATUSC. XM = 0 
STATUSC. XM = 1 

Native mode 
Compatibility mode 

In summary, Compatibility mode is completely and safely emulated 
under Native architectural control to provide an environment for 
Compatibility mode Users rohich is almost an exact replica of the 
HP/3000 environment. Certainly, normal (User mode) users do not 
notice any difference. 
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10.3 SYSTEM CONTROL STRUCTURES 
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The folloroing Native mode data structures are required to manage 
and control Code segments, Data segments, and Absolute memory for 
Compatibility mode operations: 

* CST - Code Segment Table 

* DST - Data Segment Table 

* ABS - Absolute Memory Object 

These basic tables cannot be accessed directly by Compatibility 
mode Users, they are only accessed by hardroare to execute the 
appropriate instructions. 

10.3.1 CST - Code Segment Table 

The CST is a contiguous block of entries in the ODT for group O. 
The QDT entries are of type 4 or 5 'HP3000 mode code object'. 

A CST number from Compatibility mode is converted into the 
appropriate QDT entry by locating the base of the CST block in QDT 
(group 0) and indexing through the DDT entries using the CST number. 

The Base and Length of the CST are defined at system initialization 
time and passed to the microcode using the MOVEtSP8 instruction. 

Base - 29 bit object number pointing to the entry in the DDT 
for group 0 corresponding to CST O. 

Length - 32 bit integer specifying the length of the CST in bytes 
(0<=Length<=192*16). A zero Length implies the absence 
of a CST. 

They are noro protected in dedicated memory from unwarranted softroare 
access. Microcode uses them to locate the CST and perform bounds 
checking on the CST index. The legal range of the CST index is: 

1 <= CST index <= 191 

An explicit reference to CST 0 roill cause a 'CST Violation' trap 
to occur. 
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10.3.2 OS! - Data Segment Table 

The DST is a contiguous block of entries in the ODT for group O. 
The DDT entries are of type 3 'Data' object. 

A DST number fro~ Co~patibility ~ode is converted into the 
appropriate ODT entry by locating the base of the OST block in ODT 
(group 0) and indexing through the ODT entries using the DS! number. 

The Base and Length of the DST are defined at system initialization 
t~e and passed to hardware using the MOVEtSP8 instruction. 

Base - 29 bit object number pointing to the entry in the ODT 
for group 0 corresponding to DST O. 

Length - 32 bit integer specifying the length of the CST in bytes. 
A zero length ~plies the absence of a DST. 

They are now protected in dedicated ~e~ory fro~ unwarranted 
software access. Hardware uses the~ to locate the DS! and perfo~ 
bounds checking on the OST index. An explicit reference to OS! 0 
will cause a 'DS! Violation' to occur. 

10.3.3 ABS - Absolute Memory Object 

The ABS is a special object in group 0 which provides a logical 
representation of Absolute ~e~ory to Co~patibility ~ode instructions. 

The ABS is defined at syste~ initialization time and the ODT entry 
used is the ODT entry equivalent to OS! 0 which is inaccessible to 
instructions but readily available to hardware. The absence of a 
DS! will cause all absolute addressing to fail and generate an 
'Absolute Address Violation' trap. 

It is now protected in dedicated ~e~ory fro~ unwarranted software 
access and used only by hardware for all absolute memory references. 
The legal size of the ABS is defined to be: 

o <= ABS size < 128KB 

Several instructions require Systero Global Region type of access 
i.e. through Absolute address 1000 octal. As for all absolute 
addressing, the ABS is used by hardware for such accesses. 
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10.4 TASK CONTROL STRUCTURES 

10.4.1 CSTX - Code Segment Table Extension 

The local code do~ain defined by the CSTX concept in HP3000 
Co~patibility ~ode is emulated in Native mode as follows: 

The CSTX is a contiguous block of entries in the ODT for group 0 
which have been assigned to a given task. The TCB contains a 
descriptor of the CSTX to define the base of the CSTX and the 
length of CSTX, to allow conversion of the CST index to the 
corresponding DDT entry (see Section 4.10). 

The CSTX contains the CST indices in the range 

192 <= CST index <= 255 

where the first legal entry in the CSTX is CST 193. 
An explicit reference to CST 192 will cause a 'Not Code Segment' 
trap to occur. 

10-6 

07/31 



10.4.2. 

VISION ARCHITECTURE CONTROL DOCUMENT 
DO NOT COPY -- HP PRIVATE INFORMATION 

Interrupt Stack Marker 
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The interrupt stack marker is used to mark the upper limit of the 
stack on external interrupts, traps, transfers to the Dispatcher, 
and the Switch operation. 

The interrupt marker generated in Compatibility mode is presented 
below. The one for Native mode is presented in Section 5.1.2. 

+---------------------------+ 
X register (16) 

+---------------------------+ 
P-PB (16) 

+---------------------------+ 
STATUS (16) 

+---------------------------+ 
Q. INT-- > I DELTA Q I (16) 

+---------------------------+ 
I I 
I compatibility/ I 

native mode 
mailbox 

+---------------------------+ 
DB.DST I (16) 

+---------------------------+ 
DB. OFFSET I (16) 

+---------------------------+ 
DL.OFFSET I (16) 

+---------------------------+ 
Z.OFFSET I (16) 

+---------------------------+ 
STATUSB I (64) 

+---------------------------+ 
S.INT-->I (S.INT - Q.INT) I (16) 

+---------------------------+ 
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1) The number in parenthesis following each box reflects the 
appropriate number of bits of specification. 

2) X register, P-PB, STATUS, DELTA Q are the normal contents of 
a Compatibility mode procedural stack marker. 

3) DB.DST = 0 if DB set to ABS (absolute memory) 
<> 0 if DB set to stack or data segment 

DB. OFFSET defines the displacement (in units of 16 bits) 
into the corresponding object. 

4) DL.OFFSET, Z.OFFSET are the current values of the DL and Z 
registers given as displacements into the stack object. 

5) STATUSB is the current STATUSB register contents. 

07/31 

6) S.INT is the interrupted S value stored into TCB.SC. The value 
of Q can be calculated from the contents (S.INT-Q.INT). 
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10.4.3 TCB contents kno~n to Hard~are 

The additional information required in the TCB by the hard~are 
to support Co~patibility ~ode instructions and the special 
instructions in Native roode to interface ~ith Coropatibility roode 
are specified belo~. 
See Section 5.8 for co~plete TCB details. 

CSTX - CSTX descriptor (see 10.4.1) 

XM 

SN 

SC 

SMIP 

- ~ode of execution of the task 
= 0 Nathe mode 
= 1 Co~patibility ~ode 
1 bit ) 

- logical address of top-of-stack of Native stack 
~hen capped by an interrupt stack marker - it 
points to the next byte follo~ing the interrupt 
marker. 
( 64 bits ) 

- logical address of top-of-stack of Compatibility 

stack ~hen capped by an interrupt stack ~arker -
- it points to the last 16-bit ~ord of the 

interrupt stack ~arker. 
( 64 bits ) 

- switch in progress flag. 
( 1 bit) 
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10.5 MODE SMITCHING 

07/31 

Mode switching refers to the operations mhich affect the execution 
~ode flag XM in the STATUSC register. 

STATUSC. XM = 0 
STATUSC. XM = 1 

Native ~ode 
Co~patibility ~ode 

Native mode instructions and/or operations mhich can initiate a 
smitch to Compatibility mode are: 

IEXIT 
SMITCH 
RSlJITCH 

Compatibility mode instructions and/or operations which can cause 
a switch to Native ~ode are: 

SYT 
RSldT 
DISP 
External Interrupts 
ICS Internal Interrupts 

The following operations cause a transfer of execution to the ICS, 
in Native ~ode, fro~ both Native and Compatibility ~odes. 

DISP 
External Interrupts 
ICS Internal Interrupts 

The impact of the t~o modes, Native and Compatibility, on the above 
declared instructions is discussed belo~. 
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10.5.1 COApatibility Mode Instructions 

10.5.1.1 DISP 

This instruction is used to enter the Dispatcher directly froA 

07/31 

the COApatibility Aode process environment. If external interrupts 
are disabled then the Dispatcher pending flag is set and execution 
continues with no switch taking place. 

This is a privileged instruction. 

if STATUSC.IE = 0 
then STATUSC.DRF '= 1 
else 

begin 
'PUSH2' X; 
'PUSH2' P-PB; 
• PUSH2' STATUS' 
• PUSH2' (S-Q+2) [0 .. 14] 
Q '= S' 
'PUSH2~ DB.DST; 
'PUSH2' DB.OFFSETj 
'PUSH2' DL.OFFSETj 
'PUSH2' Z.OFFSET; 

PUSH8 STATUSB j 
'PUSH2' S-Q+2; 
TCB.SC := S; 
STATUSC.ICS := 1; 
STATUSC.DPF := 0; 
execute_case_2_of_IEXITj 
end; 
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10.5.1.2 SIdT 
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The SUI instruction provides a switch of the execution environment 
of a process frOA COApatibility Node directly to Native Aode. 
The COApatibility Aode stack is capped with an Interrupt Stack 
Marker, the appropriate Aode flags changed, and control passed to 
the Native ShlITCH trap routine on the Native Aode stack which 
executes above the previous interrupt stack Aarker. Any 
interferences, such as Page Faults, aborts the operation after 
setting the 'switch in progress' flag which then takes effect on 
the subsequent IEXIT to the process. 

This is a privileged instruction. 

if STATUSC.IE = 0 
then Trap"INSShlITCH" 
else 

begin 
'PUSH2' X; 
'PUSH2' P-PB; 
• PUSH2' STATIJS' 
'PUSH2' (S-Q+2i [0 •• 14]; 
Q := S; 
'PUSH2' DB.DST; 
'PUSH2' DB. OFFSET; 
'PUSH2' DL.OFFSET; 
'PUSH2' Z.OFFSET; 

PUSH8 STATIJSB; 
'PUSH2' S-Q+2; 
TCB.SC := S; 
TCB.XM := 0; 
TCB.ShlIP := 1; 
execute_case_1_of_IEXITj 
end; 
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10 . 5.1. 3 RstJI 
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The RstJI is the reverse operation to a corresponding SWITCH 
instruction ~hich occurred from Native mode and basically returns 
execution control back onto the Native mode stack environment. 
The Compatibility mode stack is capped with a register save to 
build the interrupt stack marker, the process mode flag is set 
to Native mode, and a relaunch of the Native mode process occurs. 

This is a privileged instruction. 

if STATUSC.IE = 0 
then TrapIINSSWITCH" 
else 

begin 
'PUSH2' DB.DST; 
'PUSH2' DB. OFFSET; 
'PUSH2' DL.OFFSET; 
'PUSH2' Z.OFFSET; 

PUSH8 STATUSB; 
'PUSH2' S-Q+2; 
TCB SC . = s· 
TCB:XM ;= 0; 
execute_case_1_of_IEXIT; 
end; 
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10.5.2 Native Mode Instructions 

10.5.2.1 DISP 

The DISP instruction is described in Section 6.2.9.6. 

10.5.2.2 IEXIT 

The IEXIT instruction is described in Section 6.2.9.8. The 
execution environment of a process is determined first by the 
PM flag, indicating Native or Compatibility mode, and then by 
the SWIP 'switch in progress' flag to either trap to the SWITCH 
Trap routine or just perform a normal launch of the process by 
by reestablishing the registers from the interrupt stack marker. 

10-14 
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10.5.2.3 SWITCH 

The SWITCH instruction provides a switch of the execution 
environment of a process fro~ Native ~ode directly to 
Co~patibility roode. The Native roode stack is capped with an 
Interrupt Stack Marker, the appropriate ~ode flags changed, and 
control passed to the Co~patibility SWITCH trap routine on the 
Coropatibility roode stack which executes above the previous 
interrupt stack ~arker. Any interference, such as Page Faults, 
aborts the operation after setting the 'switch in progress' 
flag which then takes effect on the subsequent IEXIT to the 
process. 

This instruction requires Ring level 1. 

if STATUSC.ICS = 1 or STATUSC.IE 0 
then Trap" INSS'lJITCH" 
else 

begin 
PUSH_INTERRUPT_MARKER; 
TCB.SN : = S; 
TCB.XM := 1; 
TCB.SWIP := 1; 
execute_case_1_of_IEXIT; 
end; 
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10.5.2.4 RSWITCH 

• 
07/31 

The RSWITCH is the reverse operation to a corresponding SWT 
instruction which occured fro~ Co~patibility ~ode and basically 
returns execution control back onto the Coropatibility roode stack 
environment. The Native ~ode stack is flushed to leave the old 
interrupt stack ~arker, the process ~ode flag set to Co~patibility 
roode, and a relaunch of the Coropatibility roode process occurs. 

This instruction requires Ring level 1. 

if STATUSC.ICS = 1 or STATUSC.IE 0 
then Trap"INSS'lJITCH" 
else 

begin 
S := Q+120; 
TCB.SN : = S; 
TCB.XM := 1; 
execute_case_1_of_IEXIT; 
end; 
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10.6 PROTECTION 

The details of protection are integrated ~ith those of Native 

07/31 

mode objects in Chapter 2. In particular, refer to the discussion 
on object types and object access rights. 

10.7 IMPLEMENTATION NOTES 

1. All Compatibility mode objects, code and data segroents, are 
assumed by hard~are to be aligned on an even byte boundary. 
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+------------------------------~--------------+----------------+ 

SORTED LIST OF INSTRUCTIONS APPENDIX 

+-------------":"-------------------------------+----------------+ 

Section Inst.ruction 

ABSt source.r, destination.~ 
ADDt tern. r, SUIIl. ru 
ADDtD tern.r, sum.ru 
AND4 roask.r4, operand.ru4 
ASLt shiftcount.rl, operand.ru 
ASRt shiftcount.rl, operand.ru 
BADD4 tern.r4, dest.b 
BCMP4 sourcea.b, sourceb.r4 
BCMP8 sourcea.b, sourceb.r8 
BGET4 source.b, dest.m4 
BGET8 source.b, destination.m8 
BMOVE8 souree.b, dest.b 
BMOVEADR sQurce.ro, dest.b 
BPOP8 .. dest.b 
BPUSH8. source. b 
BREAK pararoeter.r4 
BRX loi.r4 
BR{GLEU} target.r4 
BSET4 source.r4, dest.b 
BSET8 source.ra, dest.b 
BSUB4 tern.r4, dest.b 
BTEST8 source.b 
CALL target.r4 
CALLX loi;r4 
CHECKA pararoeter.r4 
CHECKB pararoeter.r4 
CHECKHI source.r4, hibound.r4 
CHECKLO source.r4, lobound.r4 
CHNOP 
CIS channel.rl, status.rl 
CLRMR rorseleet.rl 
CMPB fillchar, 19tha, srea, 19thb, srcb, index 
CMPC length.r4, stringa.ro, stringb.ro, index.m4 
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6.2.2.6 
6.2.2.1 
6.3.3.1 
6.2.3.1 
6.2.3.7, 
6.2.3.9 
6.2.5.9 
6.2.5.11 
~.2.5.12 
6.2.5.5 
6.2.5.1 
6.2.5.4 
6.2.5.3 
6.2.5.8 
6.2.5.7 
6.2.6.7 
6.2.6.4 
6.2.6.1 
6.2.5.6 
6.2.5;2 
6.2.5.10 
6.2.5.13 
6.2.6.2 
6.2.6.3 
6.2.6.10 
6,.2.6.11 
6.2.6.13 
6.2.6.12 
6.5.1.2.1 
6.5.1.2.9 
6.4.6.1 
6.2.4.10 
6.2.4.3 
6.2.4.11 
6.2.4.1 
6.3.3.5 
6.3.3.17 
6.3.3.18 
6.3.3.11 
6.3.3.12 

CMPT table, fillehar, 19tha, srea, 19thb, sreb, index 
CMPt souree1.r, source2.r 
CMPtD soureea.r, sourceb.r 
evAD length.rl, source.r, dest.m 
evDA length.rl, souree.r, dest.~ 
evDI length.rl, source.r, dest.m8 
evID length.rl, source.r8, dest.m 

al 



6.2.S.5 
6.2.S.7 
6.2.1.15 
6.2.9.1 
6.2.9.6 
6.2.2.4 
6.3.3.4 
6.2.9.1S 
6.2.1.6 
6.2.1.12 
6.2.9.2 
6.2.6.S 
6.2.6.5 
6.2.1.14 
6.3.3.14 
6.2.S.8 
6.2.8.6 
6.2.9.11 
6.2.9.S 
6.5.1.1.1 
6.2.9.3 
6.5.2.1.3 
6.5.2.1.2 
6.5.2.1.1 
6.4.5.7 
6.2.9.7 
6.4.6.3 
6.4.5.2 
6.2.3.5 
6.2.3.6 
6.4.5.S 
6.2.2.8 
6.2.1.2 
6.2.1.8 
6.2.1.9 
6.2.1.10 
6.2.1.7 
6.3.3.9 
6.2.9.17 
6.2.7.1 
6.2.7.3 
6.2.7.2 
6.2.7.4 
6.2.2.3 
6.3.3.3 
6.4.6.5 
6.4.6.4 
6.4.6.6 
6.4.6.7 
6.2.2.5 
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CVLAtVA operand.rol, virtaddr.wS 
CVVAtPP virtaddr.rS, ppn.w4 
DELETE wordcount.r4 
DISABLE oldi.wl 
DISP 
DIVt divisor.r, dividend.rw 
DIVtD divisor.r, quotient.rw 
DOlJN seroa.rorw4 
DPF value.r4, shiftcount.rl, mask.r4, target.rw4 
DUP wordcount.r4, value.r4 
ENABLE oidi. r1 
ERROR 
EXIT 
EXTEND wordcount.r4 
GETSIGN operand.rl, sign.w1 
GrowGDO newlength.r4 
HASH virtaddr.rS, hashindex.w4 
IDLE 
IEX!T 
IFC 
INTERRUPT pr.r4 
IOC channel.r4, control.r4 
lOR channel.r4, control.r4, data.w4 
IOU channel.r4, control.r4, data.r4 
IVB tcb.mr 
LAUNCH tcbla.r8, tcbva.r8 
LDMR mrselect.r1, source.r16 
LDVLR source.r4 
LSLt shiftcount.r1, bitfield.rw 
LSRt shiftcount.rl, bitfield.rw 
LVB tcb.mr 
MODt divisor.r, dividend.rw 
MOVEADR operand.ro, destination.wS 
MOVEBIT bitindex.r4, source.r1, bitarray.mrw 
MOVEBLR fillchar, srcl, src, destl, dest 
MOVEBRL fillchar, srcl, src, destl, dest 
MOVEC length.r4, source. ror , destination.mw 
MOVED Iength.rl, source.r, dest.w 
MOVESEMA source.r4, seroa.row4 
MOVEfSP4 selector.r1, destination.w4 
MOVEfSP8 selector.r1, destination.w8 
MOVEtSP4 selector.r1, source.r4 
MOVEtSPS selector.rl, source.r8 
MPYt factor.r, product.rw 
MPYtD factor.r, product.rw 
MRAND mrasleect.r1, mrbselect.r1 
MRNOT rorselect.r1 
MROR mraselect.r1, mrbselect.r1 
MRXOR roraselect.r1, rorbselect.r1 
NEGt source.r, destination.w 

a2 
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6.2.6.9 
6.2.3.2 
6.2.3.3 
6.3.3.15 
6.5.1.2.5 
6.5.1.2.4 
6.2.8.4 
6.2.8.3 
6.2.2.9 
6.2.1.5 
6.5.1.2.3 
6.2.8.1 
6.2.9.4 
6.2.9.5 
6.2.1.4 
6.2.1.3 
6.4.5.6 
6.2.3.8 
6~5.1.1.4 
6~ 5.1.2.2 
6.5.1.2.6 
6.2.2.7 
6~2.1.13 
6.5.1.2.8 
6.2.9.-10 
6.4.5'.1 
6.2.4.9 
6.2.6.6 
6.5.1.2.10 
6.3.3.7 
6.3.3.8 
6.4.6.2 
6.2.9.12 
6.4.5.3 
6.2.2.2 
6.3.3.2 
6.2.9.9 
6.2.9.15 
6.2.9.13 
6.2.9.14 
6.2.4.6 
6.2.4.7 
6.2.4.8 
6.2.9.19 
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NOP 
NOT4 source.r4, destination.w4 
OR4 mask.r4, operand.rw4 
OVPUNCH sign.r1, operand.rw1 
PAR response. wi 
PDA response.w1 
PDDEL ppn.r4 
PDINS ppn.r4 
POLYt degree.r1, polyn.mr, operand.rw 
POPt destination.w 
PRD response.w1 
PROBE ring.r1, access.r1, address.ra, length.r4 
PSDB 
PSEB 
PUSHADR operand. m ' 
PUSHt source.r 
PUVCSA tcb.Ar 
QUAD4 source.r4,destlnation.w4 
RBYTE data.w1 
RCL response.w1 
RDP, channel.rl, dest,w16, length.wI 
REMt divisor.r, dividend.rw 
REP wordcount.r4, value.r4, operand.Rw 
RIS channel.rl, status.wI 
RSUITCH 
RVLR 
SCANUNTIL charset.mr, string.mr, index.rw4 
SEXIT 
SIS channel.r1, status.rl 
SLD 90unt.r1, length.r1, source.r, dest.w 
SRDcount.r1, lenght.rl, source.r, dest.w 
STMR'mrselect.r1, destination.w16 
STOP 
STVLR dest.w4 
~Bt terA.r, difference.rw 
SUBtD terA.r, difference.rw 
SUITCH 
SYNCIB operand.mc, length.r4 
SYNCOD loi. r4 
SYNCTCB tcb.rS 
TESTA 
TESTB 
TESTBIT bitindex.r4, bitarray.mr 
TESTDOlJN sema.mrw4 
IESTLSB source.r1 
TOOP\' 
TESTREF va.rS 
TESTSEMA sema.mrw4, result.w4 
TESTSTRIP operand.rwl 
TESTt source. r 
TESTtD source.r 

.'.~ 
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6'.2.7.5 
6.2.7.6 
6.2.9.20 
6;4.5.5 .' 
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6.4.4.2 
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6.3.3.16 
6.4.3.1 
6.4.2.12 
6.4.2.13 
6.4.4.1 
6.4.4.8 
6.4.7.1 
6.4.2.5 
6.4.4 •. 9, 
6.4.4.6 
6.4'04.10 
6.4;4.7 
6.4.5.4 
6.4.2.10 
6.4.2.11 
6.4.4.4 
6.4.4.5 
6.4.2.9 
6.4,;2.~ 
6.4.2,.4 
6.4.2.6 
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6.4.2.8 
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TRANSL table. lIlr , length.r4, source.lIlr, dest.lIlw 
TRY 
UNTRY destination.w4 
UP sellla.lIlru4 
UVCSA 
VABSt vqual.r1, souree.vr, .abs.w 
VACCDt vqual. r1, tel11ls.vr, SUlIlrtl1 

VACCt vqua1.r1, te~s.vr, SUlIl.rw 

VADDt vql.lal.rl, terllla.vr, ternb.vr; SUl'Il.VIII 
VALD length.r1, operand.rw 
VALN length.r1, open~nd.ru 
VAND4 vqual.r1, facta.v!, factb.vr, and.VIII 
VASLt vqual.r1, shiftcount.vr, target.vw 
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VASRt vqual.rl, shiftcount.vr, target.VIII 
VCMPt,vqual.r1, field.rl, srea.vr, srcb.vr, Plrsel.rl 
VCOMPRSt vqual.rl, te~~.vr, eo~pressed.vw 
VCONVERT vqual.rl, typer.rl, source.vr, dest.vw 
VDIVt vqual.rl, divd.vr,divsr.vr, quot.w 
VEKPNDt vqual. r 1, tetlllS. vr ~ expanded. VIII 

VEKTt vqual.rl, tel11ls.vr, lndex.r"value.1IJ , 
VGATHt vqual. rl, s~urce. vr, index. VI', destination.'vtiJ, 
VINSt vqual.rl, terllls.vw, indeK.r,newal.r 

'VINVAL vrl1lask.r1 
VLSL t vqual. rl, shlrtcount. vr, target. vru 
VLSRt vqual.rl, shifteount.vr, target.vr.1lJ 
VMAKELt vqual.rl, terRs.vr, l1laxind.w4 
VMINELt vquaLrl, terllls.vr, l1linind.w4 
VMODt vqual.ri, divd.vr, divsr.vr, lIlod.vw 
VMOVEt vqual.rl, source. vr, dest,. vw . 
VMPYt "qual. rl', facta. v.r, faetb ,'vr, prod~ vw 
VNEGt vqual. rl, source. vr, neg.w 
VOR:4 . vqual.rl, terRa.yr, terRb.vr, or.w 
'IeEMt vqual.rl, divd,vr, divsr.vr, relll.vw 
VSCATt vqual.rl, souree.vr, index.vr, destination.vw 
ySUBt vq\lal.rl, terJlla. vr, ternb. vr, diff. VIII 
YXOR4 vq\lal~rl, terna.vr, ternb.vr, xar.W 
~BYTE data.tl, end.rl 
tJCMD CO~a.hd.rl 
TJPP ch$.nnel.rl,:9ata.r16, length.ru1 
XOR4 lIlask. r4, operand. ru4 
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