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From: Alan Heuwer Date: August 19, 1982
Jim Miller
Dave Salomaki
Bert Speelpenning
To: ACD Distribution Subject: VISION Architecture
Control Document,
Version 5

Ue are proud to announce the release of Version 5 of the VISION ACD.
Version 5 incorporates all changes and clarifications that have
previously been transmitted only through memos. This single document
provides a stable, self-consistent and complete description of the
VISION processor architecture including 1/0 instructions. A version
of the companion document "HP/3000 Compatibility Mode" incorporating
the extended CST structure will be available in October.

Version 5 of the ACD replaces version 3, and the copy of version 3 in
your possession must be shredded or returned to Bert Speelpenning at
CSY. If you wonder what happened to version 4: there is no version 4
nor will there be. The designation “version 5" for the next major
release of the ACD somehow gained currency within CSY, and it didn’t
geem particularly fruitful to buck that trend.

The organization of the architecture description has been thoroughly
overhauled in order to improve clarity of exposition. These changes
wvere sufficiently extensive that it was decided not to retain page or
section numbers from version 3; change bars were also abandoned.
Rather, version 5 is a stand-alone description of the architecture that
should be read in full by implementors of VISION-specific products.

Turning to content, the architecture described in version 5 differs from
that of version 3 in ways described in earlier memos published by us,

as well as in other minor ways. These changes are summarized below.
Their net effect is to make the VISION architecture more streamlined
and easier to implement codt-effectively in hardware while minimizing
the impact on softuare.

It is a pleasure to acknowledge the help and cooperation we have received
in getting the architecture and its description to its current state; the
implementation teams have been remarkably patient in helping us evaluate
the effect of proposed changes as well as in accomodating those changes
we decided to adopt.

Our main efforts will become focussed on monitoring the progress of
VISION implementations; we remain committed to resolve problems in the
present definition of the VISION architecture that these implementations
Ray uncover.

Summary of significant changes between version 3 and version 5

1. Virtual address space has been cut back from 74 to 64 bits,

2. The number of privilege levels has been reduced froam 8 to 4.

3. Object Descriptors have been streamlined to a 4-word format.

4, Procedure linkage has been simplified: the STT-mechanism is no
longer required in Vision mode.

Procedure stack markers have been reduced to three words instead
of four; EXIT can distinguish between markers laid down by CALL
and CALLX, this significantly streamlines exit from CALL.

5. Some STATUS bits and other machine state (such as the TCB) have
been rearranged to allow faster updates to the addressing
environment, such as EXIT or IEXIT.

6. Synchronization of caches and TLBs when making changes to the
addressing tables has been made the explicit responsibility of
operating system software.

7. The encoding of instructions has changed, Instructions or pairs
of instructions now occupy a word or a multiple of words.
Orthogonality of opcodes and operands has been retained.

8. 8 General registers have been added.

9. Instructions dealing with base registers have been separated out.
Base registers are no longer treated as general operands.

10, Several instructions that were marginal in terms of speed-up over
their software equivalents were deleted.

All 16-bit arithmetic and all 12-byte packed decimal arithmetic
has been deleted from the architecture.

11, Opcode assignments have been updated.

12. Several definitions of individual instructions have been streamlined.
13. Arguments for trap handlers are pushed in the reverse order. The
trap identification number is now always on top of the stack.

14. The interrupt structure for I/0 and inter-processor communication
has been defined and included.

1/0 instructions for PICMB-based systems and for MPB-based systems
have been defined and included.

The interface to the Control and Support Processor (CSP) has been
defined and included.

Not vet included in the Architecture Control Document are:

1. Inmstructions to support diagnostic capabilities.

2. Description of the data structures to support 1/0.
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4 PROCESSOR REGISTERS AND MACHINE STATE 5 MACHINE MODEL
4.1 General/Index Registers 5.1 The Vision Stack
4,2 Base Registers 5.1.1 Procedure Stack Marker
4,3 Program Counter 5.1.1.1 External Procedure Stack Marker
4.4 Status Registers 5.1.1.2 Local Procedure Marker
4.4,1 STATUSA Register 5.1.2 Interrupt Marker
4,4,1,1 Format 5.1.3 Dispatcher Marker
4,4,1,2 Summary 5.2 Procedure Linkage
4.4,1,3 XL - Execution Privilege Level 5.2.1 Entry Point Evaluation
4,4,1.4 SIT -- Single Instruction Trace 5.2.2 Multiple Entry Points in a Code Object
4,4,1.5 1IP -- Instruction In Progress 5.3 Debug Support
4.4.1.6 DBP -- Debug Breakpoint Pending 5.3.1 Code Breakpoints
4.4,2 STATUSB -- Task/Interrupt Status 5.3.2 Breakranges
4.4,2,1 Format 5.3.3 Single Instruction Trace
4.4.2.2 Summary 5.3.4 Procedure Trace
4.4,2.3 PTE -- Procedure Trace Enable 5.3.5 Object Trace
4.4,2.4 DISP -- Dispatcher Running Flag 5.3.6 Ring Crossing Trap
4.4.2.5 vector -- vector register status 5.4 List of Supported Data Types
4.4,2.6 TCE -- Task Clock Enable 5.4.1 Integers
4.4.2.7 XTL -- EXIT Threshold Level 5.4.2 Floating Point
4.4.2.8 FPC -- IEEE Floating Point Control 5.4.3 Decimal
4,4,2.9 TE & EF -- Trap & Exception Flags 5.4.4 Logical
4.4,2,10 CBA & CBB -- Condition Break Enable Flags 5.4.5 Bit
4.4,2,11 CC -- Condition Code 5.4.6 Fields
4,4.3 STATUSC -- CPU Status 5.4.7 Byte strings
4.4.3.1 Format
4.4,3,2 Summary 6 - VISION INSTRUCTION SET
4.4.3.3 DDC -- Dispatcher Disable Count 6.1 Preliminaries
4.4.3.4 XM -- Excecution Mode 6.1.1 Operands
4.4,3.5 ICS -- On the Interrupt Control Stack 6.1.1.1 Register Operands
4.4,3.6 DRF ~-- Dispatcher Request Flag 6.1.1.2 Literal Operands
4.4.3,7 IE & IMR -- Interrupt Enable & Mask Register 6.1.1.3 Memory Operands
4.4.4 STATUSD -- Computer Status 6.1.1.3.1 Computing the effective logical address
4.4.4,1 Format 6.1.1.3.2 Base register operands
4.4.4.2 Summary 6.1.2 Instruction Encoding
4.4,4,3 DRL -- Debug Ring Level 6.1.2.1 Bagic instruction encoding scheme
4,4.4.4 REVCODE -- SPU Revision Code 6.1.2.2 Dense Instruction Encoding Scheme
4.5 Group Descriptors 6.1.2.3 Secondary Instruction Set Encoding
4.6 Virtual Address Translation Registers 6.1.2.4 Code bounds violations
4.7 Task Control Block 6.1,3 Operand descriptors
4.8 Breakranges (System and Task) 6.1.3.1 Short literal
4.9 Interrupt Control Stack location 6.1.3.2 Long literal
4,10 CST and DST descriptors 6.1.3.3 Register operand
4,11 Vector Processing 6.1.3.4 Memory operand (base+short word displacement)
4,11.1 Vector Registers 6.1.3.5 Memory operand (base-short word displacement)
4,11.2 Vector Mask Registers 6.1.3.6 Memory operand (base+long displacement)
4.11.3 Vector Length Register 6.1.3.7 Memory operand (base+index)
4,.11.4 Vector Context Save Area 6.1.3.8 Memory operand (base+index+displacement)
4,11.5 Vector Processing: Operation 6.1.4 Opcode Assigrments
4,11.6 VP Management - Vector Context Save Area 6.1.5 Attributes
6.1.5.1 Operand Attributes
6.1.5.2 Instruction Attributes
ii iii
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6.1.6 Sources 6.2.5 Base Register Instructions
6.1.7 Destinations 6.2,5.1 BGET8 source.b, destination.uw8
6.1.8 Traps 6.2.5.2 BSET8 source.r8, dest.b
6.2 Base Instruction Set 6.2.5.3 BMOVEADR source.m, dest.b
6.2.1 Data Movement Instructions 6.2.5.4 BMOVES source.b, dest.b
6.2.1.1 MOVEt source.r, destination.u 6.2.5.5 BGET4 source.b, dest.w4
6.2.1.2 MOVEADR operand.m, destination.u8 6.2.5.6 BSET4 source.r4, dest.b
6.2.1.3 PUSHt source.r 6.2.5.7 BPUSH8 source.b
6.2.1.4 PUSHADR operand.m 6.2.5.8 BPOP8 dest.b
6.2.1.5 POPt destination.u 6.2.5.9 BADD4 term.r4, dest.b
6.2.1.6 DPF value.r4, shiftcount.rl, mask.r4, target.ru4 6.2.5.10 BSUB4 term.r4, dest.b
6.2.1.7 MOVEC 1length.r4, source.mr, destination.mw 6.2.5.11 BCMP4 sourcea.b, sourceb.r4
6.2.1.8 MOVEBIT bitindex.r4, source.rl, bitarray.mrw 6.2.5.12 BCMP8 sourcea.b, sourceb,r8
6.2.1.9 MOVEBLR fillchar, srcl, src, destl, dest 6.2.5.13 BTEST8 source.b
6.2.1.10 MOVEBRL fillchar, srcl, src, destl, dest 6.2.6 Transfer of Control
6.2.1.11 TRANSL table.mr, length.r4, source.mr, dest.mw 6.2.6.1 BR{GLEU} target.r4
6.2.1.12 DUP wordcount.r4, value.r4 6.2.6.2 CALL target.r4
6.2.1.13 REP wordcount.r4, value.r4, operand.mw 6.2.6.3 CALLX loi.r4
6.2.1.14 EXTEND wordcount.r4 6.2.6.4 BRX loi.r4
6.2.1.15 DELETE wordcount,r4 6.2.6.5 EXIT
6.2.2 Arithmetic Instructions 6.2.6.6 SEXIT
6.2.2.1 ADDt  term.r, sum.ruy 6.2.6.7 BREAK parameter.r4
6.2.2.2 SUBt term.r, difference.rw 6.2.6.8 ERROR
6.2.2.3 MPYt factor.r, product.ru 6.2.6.9 NOP
6.2.2.4 DIVt divisor.r, dividend.rw 6.2.6.10 CHECKA parameter.r4
6.2.2.5 NEGt source.r, destination.w 6.2.6.11 CHECKB parameter.r4
6.2.2.6 ABSt source,r, destination.w 6.2.6.12 CHECKLO source,r4, lobound.r4
6.2.2.7 REMt divisor,r, dividend.ruw 6.2.6.13 CHECKHI source,r4, hibound.r4
6.2,2.8 MODt divisor.r, dividend.rw 6.2,7 Interaction with Machine State
6.2.2.9 POLYt degree.rl, polyn.mr, operand.ru 6.2.7.1 MOVEfSP4 selector.rl, destination.w4
6.2.3 Logical Operations and Shifts 6.2.7.2 MOVEtSP4 selector.rl, source.ré
6.2.3.1 AND4 mask.r4, operand.ru4 6.2.7.3 MOVEfSP8 selector.rl, destination.u8
6.2.3.2 NOT4 source.r4, destination.uw4 6.2.7.4 MOVEtSP8 selector.rl, source.r8
6.2.3.3 OR4 mask.r4, operand.ru4 6.2.7.5 TRY
6.2.3.4 XOR4 mask.r4, operand.ru4 6.2.7.6 UNTRY destination.uw4
6.2.3.5 LSLt shiftcount,rl, bitfield.rw 6.2.8 Instructions that Interact with the Address Space
6.2.3.6 LSRt shiftcount.rl, bitfield.ru 6.2.8.1 PROBE ring.rl, access.rl, address.r8, length.r4
6.2.3.7 ASLt shiftcount.rl, operand.rw 6.2.8.2 TESTREF va.r8
6.2.3.8 QUAD4 source.r4, destination.uw4 6.2.8.3 PDINS . ppn.r4
6.2.3.9 ASRt shiftcount.rl, operand.ru 6.2.8.4 PDDEL ppn.ré4
6.2.4 Compares and Tests 6.2.8.5 CVLAtVA operand.ml, virtaddr.u8
6.2.4.1 CMPt sourcel.r, source2.r 6.2.8.6 HASH virtaddr.r8, hashindex.u4
6.2.4.2 TESTt source.r 6.2.8.7 CVVAtPP virtaddr.r8, ppn.u4
6.2.4.3 CMPC length.r4, stringa.m, stringb.m, index.u4 6.2.8.8 GrowGDO newlength.r4
6.2.4.4 TESTLSB source.rl
6.2.4.5 TESTOV
6.2.4.6 TESTA
6.2.4.7 TESTB
6.2.4.8 TESTBIT bitindex.r4, bvitarray.mr
6.2.4.9 SCANUNTIL charset.mr, string.mr, index.ru4
6.2.4.10 CMPB fillchar, lgtha, srca, lgthb, srcb, index
6.2.4.11 CMPT table, fillchar, lgtha, srca, lgthb, srcb, inx

iv v
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Instructions for Tasking and Synchronization
DISABLE oldi.uwl
ENABLE oldi.rl
INTERRUPT pr.r4
PSDB
PSEB
DISP
LAUNCH tcbla.r8, tcbva.r8
IEXIT
SWITCH
RSWITCH
IDLE
STOP
SYNCOD 1loi.r4
SYNCICB tcb.r8
SYNCIB operand.mc, length.r4
TESISEMA sema.mru4, result.uwéd
MOVESEMA source.r4, sema,mu4
DOUN sema.mruéd
TESTDOWN sema.mrué
UP sema.mruwéd
Arithmetic Conversion
ISC42 source.r4, destination.u2
CONVERT subopcode.rl, source.r, destination.w
Decimal Instructions
Packed Decimal Numbers
External Decimal Numbers
Decimal Instruction Set
ADDtD term.r, sum.ru
SUBtD term.r, difference.rw
MPYtD factor.r, product.ru
DIVtD divisor.r, quotient.ru
CMPtD sourcea.r, sourceb.r
TESTtD source.r
SLD count.rl, length.rl, source.r, dest.uw
SRD count.rl, lenght.rl, source.r, dest.u
MOVED length.rl, source.r, dest.w
VALD length.rl, operand.ru
CVDI 1length.rl, source.r, dest.u8
CVID length.rl, source.r8, dest.u
TESTSTRIP operand.rul
GETSIGN operand.rl, sign.ul
OVPUNCH sign.rl, operand,rul
VAIN 1length.rl, operand.ru
CVAD length.rl, source.r, dest.u
CVDA length.rl, source.r, dest.uw

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.4 Vector Instruction Set

6.4.1 Boundary conditions

6.4.2 Vector Arithmetic Operations

6.4.2.1 VMOVEt wvqual.rl, source,vr, dest.vu

6.4.2.2 VADDt vqual,rl, terma.vr, termb.vr, sum,vu
6.4.2.3 VSUBt vqual.rl, terma.vr, termb,vr, diff.vw
6.4.2.4 VMPYt wvqual.rl, facta.vr, factb.vr, prod.vw
6.4.2,5 VDIVt wvqual.rl, divd.vr, divsr.vr, quot.vw
6.4.2.6 VNEGt wvqual.rl, source.vr, neg.vu

6.4.2.7 VABSt wvqual.rl, source.vr, abs.vu

6.4.2.8 VREMt vqual.rl, divd,vr, divsr.vr, rem.vu
6.4.2.9 VMODt vqual,rl, divd.vr, divsr.vr, mod.vw
6.4.2.10 VLSLt vqual.ri, shiftcount.vr, target.vru
6.4.2.11 VLSRt vqual.rl, shiftcount.vr, target.vru
6.4.2.12 VASLt wvqual.rl, shiftcount.vr, target.vw
6.4.2.13 VASRt wvqual.rl, shiftcount.vr, target.vu
6.4.3 Vector Logical Operations

6.4.3.1 VAND4 wvqual.rl, facta.vr, factb,vr, and,vw
6.4.3.2 VOR4 wvqual.rl, terma.vr, termb.vr, or.vu
6.4.3.3 VXOR4 wvqual.rl, terma.vr, termb.vr, xor.vu
6.4.4 Vector Compare and Vector/Scalar Hybrids
6.4.4.1 VCMPt vqual.rl, field.rl, srca.vr, srcb.vr, mrsel.rl
6.4.4.2 VACCt vqual.rl, terms.vr, sum.rw

6.4.4.3 VACCDt vqual.rl, terms.vr, sumru

6.4.4.4 VMAXELt vqual.rl, terms.vr, maxind.u4
6.4.4.5 VMINELt vqual.ri, terms.vr, minind.w4
6.4.4.6 VEXTt vqual.rl, terms.vr, index.r, value.uw
6.4.4.7 VINSt vqual.rl, terms.vw, index.r, newval.r
6.4.4.8 VCOMPRSt wvqual.rl, terms.vr, compressed.vy
6.4.4.9 VEXPNDt wvqual.ri, terms.vr, expanded.vu
6.4.4.10 VGATHt wvqual.rl, source.vr, index.vr, destination.vw
6.4.4.11 VSCATt vqual.rl, source.vr, index.vr, destination.vu
6.4.5 Vector Housekeeping

6.4.5.1 RVLR

6.4.5.2 LDVLR source.r4

6.4.5.3 SIVLR dest.u4

6.4.5.4 VINVAL vrmask.rl

6.4.5.5 uvcsa

6.4.5.6 PUVCSA tcb.mr

6.4.5.7 IVB tcb.mr

6.4.5.8 LVB tcb.mr

6.4.6 Operations on Mask Registers

6.4.6.1 CLRMR nrselect.rl

6.4.6.2 STMR nmrselect.rl, destination.wlé

6.4.6.3 LDMR mrselect.rl, source.rlé

6.4.6.4 MRNOT nmrselect.rl

6.4.6.5 MRAND mrasleect.rl, mrbselect.rl

6.4.6.6 MROR mraselect.rl, mrbselect.rl

6.4.6.7 MRXOR mraselect.rl, mrbselect.rl

6.4.7 Vector Conversion

6.4.7.1 VCONVERT wvqual.rl, typer.rl, source.vr, dest.vw

vii
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6.5 1/0 Instructions 7.5 Detail Description of Internal Interrupts
6.5.1 PICMB-based VISION systems 7.5.1 Architectural Interface
6.5.1.1 PICMB Primitives 7.5.2 Erecution Enviromment
6.5.1.1.1 IFC 7.5.3 Sequence of Events
6.5.1.1.2 WCMD command.ril 7.5.4 Multiple Internal Interrupts
6.5.1.1.3  UBYIE data.rl, end.rl 7.5.5 Internal Interrupts Descriptions
6.5.1.1.4 RBYTE data.wl 7.5.5.1 Memory Parity Error
6.5.1.2 Functional PICMB Instructions 7.4.5.2 Power Fail
6.5.1.2.1 CHNOP 7.5.5.3 Power Recovery
6.5.1.2.2 RCL response.ul 7.5.5.4 CPU Machine Check
6.5.1,2.3 PRD response,ul 7.5.5.5 CSP Reply is Complete
6.5.1.2.4 PDA response.ul 7.6 Detail Description of Traps
6.5.1.2.5 PAR response.ul 7.6.1 Architectural Interface
6.5.1.2.6 RDP channel.rl, dest,wl6, length.ul 7.6.2 Execution Enviromment
6.5.1.2,7 WDP channel.rl, data.rl6, length.ruwl 7.6.3 Common Coventions for Traps
6.5.1.2.8 RIS channel.rl, status.uwl 7.6.3.1 Parameter Passing to Trap Handlers
6.5.1.2.9 CIS channel.rl, status.rl 7.6.3.2 Determining Privilege of the Handler
6.5.1.2.10 SIS channel.rl, status.rl 7.6.3.3 Determining the address of a Trap Handler
6.5.2 MPB-based systems 7.6.4 Sequence of Events
6.5.2.1 MPB-based Instructions 7.6.4.1 A Non-Recoverable Trap on the Current Stack
6.5.2.1.1 10U channel.r4, control.r4, data.r4 7.6.4.2 A Non-Recoverable Trap on the ICS
6.5.2.1.2 IOR channel.r4, control.r4, data.uw4 7.6.4.3 One Restartable Trap on the Current Stack
6.5.2.1.3 I0C channel.r4, control.r4 7.6.4.4 One restartable trap on the ICS
6.5.2.2 Interpretation of the control word on the IOP 7.6.4.5 Top-of-Stack Page Fault and Stack Overflow
6.5.2.3 I0P Opcodes 7.6.4.6 Multiple Restartable Traps
6.5.2.3.1 Read commands 7.6.4.7 Continuable Traps
6.5.2.3.2 Urite Commands 7.6.5 System Error
6.5.2.3.3 Control Commands 7.6.6 Enabling/Disabling Traps
6.5.2.3.4 I0P Command Execution 7.6.7 Transfer of Control Traps
6.6 Diagnostic Interface 7.6.7.1 Code Object Bounds Violation
6.6,1 MOVEtCSP 7.6.7.2 Code ODT Length Violation
7.6.7.3 Code Object Type Violation
7 INTERRUPTS AND TRAPS 7.6.7.4 Code Privilege Level Violation
7.1 Introduction 7.6.8 Instruction Traps
7.1.1 External Interrupts Overvieu 7.6.8.1 Privileged Instruction Violation
7.1.2 Internal Interrupts Overvieuw 7.6.8.2 Error Instruction
7.1.3 Traps Overvieuw 7.6.8.3 CHECKLO Violation
7.1.3.1 Special Programming Notes 7.6.8.4 CHECKHI Violation
7.2 Detail Description of External Interrupts 7.6.8.5 Undefined Instruction
7.2.1 Processor Context for Interrupts 7.6.8.6 Exit Threshold Trap
7.2.2 General Operation 7.6.8.7 Misaligned Program Counter
7.2.3 Channel Interrupts 7.6.8.8 Probe Violation
7.2.4 Processor-caused Interrupts 7.6.8.9 Operand Specifier Violation
7.2.5 Uhen is the Processor Interrupted? 7.6.8.10 Move Special Violation
7.2.6 Acknowledging Processor Interrupts 7.6.8.11 Switch Violation
7.2.7 Shared-Memory Multiprocessor Considerations 7.6.8.12 VP Permission Control
7.3 Clocks 7.6.8.13 Vector Operation on the ICS
7.3.1 Time of Day Clock
7.3.2 Task Clock
7.3.3 Interval Clock
7.4 Summary of Traps and Internal Interrupts
viii ix
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Stack Traps
Stack Consistency Violation
Stack Overflow
Stack Underflouw
Delete/Extend Negative Wordcount
Data Object Traps
Data Object Bounds Violation
Data ODT Length Violation
Data Object Type Violation
Data Access Rights Violation
Floating Point Traps
Floating Point Invalid Operation
Floating Point Divide By Zero
Floating Point Overflow
Floating Point Underflow
Floating Point Inexact Result
Integer Traps
Fixed Point Divide by Zero
Fixed Point Overflouw
Decimal Traps
Decimal Divide By Zero
Decimal Gverflow
Decimal Invalid Length
Invalid Decimal Digit
Debug Trap Conditions
Break Instruction
Procedure Trace Trap
CHECKA Instruction
CHECKB Instruction
Single Instruction Trace
Semaphore Traps
Semaphore Overflouw
Down Semaphore
Up Semaphore
Vision Mode Switch
TRY/UNTRY Traps
Try or UNTRY Violation
Virtual Addressing Traps
PDINS Inconsistent Page Number
Page Absent Traps
Page Absent
Top of Stack Page Absent
Top of Stack Page Faults
1CS Mechanisn

PWM P

o
.
PN

.
.

DB WN e

.

N =

.

e .
B B
PO

ABWN e

P .
. S
. .

W N ==

B2 B 1S R R e S B B e R B R R b e R e S 3 e e 3 R e e e 3 4 e 1 (O O O O ©

CWOWOOIONNOCTONOITANPPLPEEDPDPWUWWOWOWLOONNONNNPRPRPRPRPOOCOOO.
IRy N Py . . Pl

[y

.

[ RN RO RO Ro RO Eo R RO Ro N NN Bo R R oo RO o Ro R No. e No N oo Ro R N RO RO N Re le We) Wo le W) ]

.
[

N =

.

[RRCER IR P RRENPXEN PR PR PRRCPEER PR BN B ECER PR PR PR PR PR P EREXPREUEC PP R IR PE BRI PR P PP

«©

INPUT/OUTPUT DATA STRUCTURES

07/31

© W OOWO OO O

o e e e

DN WM

e
.

-

B

.

OB BLWNNONNNNNONMON

VISION ARCHITECTURE CONTROL DOCUMENT v 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

SYSTEM INITIALIZATION

Virtual Object Initialization

The System Communiation Area

The Envirorment Section

The Identification Section

The Hardware-Reserved Section

The Diagnostics Section

The Load Section

The Dump Section

The Hash Table and Physical Page Directory
The Primary Macro Envirorment Buffer
Loading the Primary Macro Environment Buffer
The Macro Code Launch

Initial State Summary

10 HP/3000 MODE

[y
(=]

Pl
[NV

.

.

W

e .

o e e e . R o e
DR .
NNV R P

P e e e e e N el ol ol
OO0 OCOOOOOODOOOOOOO

.

Introduction
Environmental Overview
System Control Structures
CST - Code Segment Table
DST - Data Segment Table
ABS - Absolute Memory Object
Task Control Structures
CSTX - Code Segment Table Extension
Interrupt Stack Marker
TCB Contents Knoun to Harduware
Mode Switching
Compatibility Mode Instructions
DISP
ST
RSUT
Native Mode Instructions
DISP
IEXIT
SUITCH
RSWITCH
Protection
Implementation Notes

App SORTED LIST OF INSTRUCTIONS




VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

|
INTRODUCTION | CHAPTER 1
|

- ———

+ —— 4

1.1 VISION Architecture Control Dgoument

This document provides, for reference purposes, the detailed and
rigorous definition of the machine functions performed by VISION
compatible computer systems., VISION provides the basis for a
multitude of fully compatible systems over time which cover a
broad spectrun of price and performance, benefiting from the
exploitation of new or evolving technologies and machine
organizations,

This is the only authoritative specification of the VISION
architecture, It provides machine designers and programmers a
complete description of the machine model which will transcend
all implementations.

1.2 Architecture Overview

The VISION architecture is a product of the experience gained
with the HP3000, HP300 and FOCUS systems. It provides two
execution modes. One mode is highly compatible with the HP3000
and allows execution of HP3000 user level object programs. The
Vision mode provides advanced information processing capability.
The Vision mode is designed to retain the general purpose nature
of its predecessors, but with enhanced ability to effectively
address both business and technical applications, Vision mode
is characterized by a powerful and complete basic instruction
set, a wide range of data types, a stack for data allocation and
procedure linkage information, data registers to support
expression evaluation and addressing registers to support an
extremely large task and system address space, paged memory
management, a hierarchical protection system, and vector
processing facilities.

VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

1.3 Architecture Control

The term "architecture" as used in this document refers to the
characteristics of the software/harduware interface of compatible
VISION machines, "Hardware" refers to any combination of
electronics, electro-mechanics and microcode.

The notion of Architecture Control has been created at HP to aid
in the preservation of the investments it and its customers make
in harduare and software with VISION based products. This
architectural control document attempts to completely and
unambiguously describe the features of any model claiming VISION
compatibility.

To be successful, the following attributes of the architectural
control process are stipulated:

1. This document is the only authoritative specification of the
VISION architecture,

2. All models will be monitored for compliance with the
architure specification.

3. Deviations from the architecture will be corrected. In the

rare case uhen the cost to change the design or to retrofit

installed machines is excessive in relation to the practical
value of compliance on that model, deviations are permitted
when approval is obtained from all affected group managers,
and appropriate provision is made for the exception in the

Architectural Control Document.

Implementers are instructed to question any doubtful point in

the architectural definition rather than make assumptions.

The specification occasionally leaves out some aspect of the

operation, or the wording may not be clear. In these cases

the document should be updated to resolve the point.

5, Continual maintenance and updating of the architecture
specification are essential,

6. At any point in time, the management will entrust maintenance
of the architecture control document to a person or small
group. They will be responsible for resolving conflicts,
creating and reviewing document revisions, stopping debate on
some issue, etc, through the use of technical and business
analysis or executive decision making.

-

1-2
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1.4 Intended Audience

This document is intended primarily as reference material for
implementors of VISION-compatible products; specifically,
implementors of hardware and microcode, implementors of core
operating system modules and implementors of Vision compilers,
The first five chapters can be used as a stand-alone introduction
to the main VISION features; they cover the VISION addressing
structure, which is the most distinguishing characteristic with
respect to its predecessors and current competition in the market.
To this end these chapters are written in a more tutorial style,

This document must not be shown to and must not be read by non-
HP employees.

1.5 Related Documents

“HP/3000 Compatibility Mode", internal, January 1982.
"PICMB ERS", internal.
"MPB ERS", internal.

“Interface Protocols for the Control Support Processor for
VCF60 and VCF50", internal, to appear.

"A Proposed Standard for Binary Floating Point Arithmetic”,
draft 9.3.3 of IEEE task P754,

“Time and Frequency Users®’ Manual", NBS Special Publication 559.

i-3
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1.6 Notations and Conventions

Algorithms in this document are described in a pidgin PASCAL.
In these algorithms:
NAMES in capital letters denote processor registers;
Names with only the first letter capitalized denote
temporary or scratchpad values;
names in lower case denote parameters or operands.

The notation R[0..5] denotes a 6-bit field consisting of bits
0 through 5 of register “R".

The notation (R)[0..31] denotes the 32-bit word found at the
byte address contained in register "R".

The numbering of bits and bytes is such that the lowest numbered
bit (byte) contains the most significant information.

Numbers are given in decimal (default) or in hexadecimal notation
(when preceded with an "!", e.g. !1A denotes the rumber 26).

1.7 Implementation Guidelines

Experience related to cost-effective implementation of VISION
hardware and softuare will be disseminated to other VISION
implementors when such experience becomes available, Emphasis

-will be on the more subtle implications of the architectural

specification; in particular, performance implications.
Recommended software practices, if sufficiently important to
the performance of at least one VISION implementation, will be
included also.

As an example, all VISION hardware will allow data to be addessed
on arbitrary byte boundaries. Yet performance will be degraded
significantly if data is not aligned on its natural boundaries:
half words on half-word boundaries, words on word boundaries, etc.
This effect will be felt on any VISION implementation, to varying
degrees.

This document includes some implementation guidelines when it
was deemed that their inclusion would clarify the issue at hand.

1-4
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ADDRESS SPACES CHAPTER 2

—_——
+ ——
4 mm—— 4

2.1 Physical Address Space

Physical memory is organized in bytes. A byte is a collection of
8 bits, Each byte in physical memory has its own unique rnumber
called its physical address. A byte is the smallest addressable
unit. A physical address is represented by a 32-bit quantity.
Physical memory is the lowest type of memory in the memory
hierarchy that is visible to software. Implementations may choose
to organize physical memory in words (4-byte quantities) instead
of bytes; they may employ caches to reduce average access time,
but this must remain transparent to software,

Input/Output is performed using physical addresses, Software uses
"logical addresses" (section 2.3) to access memory; these logical
addresses are translated by address translation hardware {chapter
3) into the corresponding physical addresses.

Representation of physical memory:

01234567 01234567 01234567 01234567 01234567 01234567
+ + + + + + = = = = ey
| 83 | to9 | BT | t6a | IFF | | 13 |

+ + + —+ = = = = em———————¢

0 1 2 37 |l 4 MB

Il (physical
Il menory
[ size)
Il

0 31 I

e o0l

| 3 | - +

e i + || (byte access)

11

physical address

\/
01234567
R +
| 16a |
b ————— +

In this example, the physical address is 3, and therefore the byte
with identifying number 3 is being addressed. Its contents is
16A (01101010).

2-1

po—

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

Addresses are also used to access entities larger than a byte,
(This will apply similarly to logical and virtual addresses),
In this case, the address reflects the lowest numbered byte.
The following example shouws the result of a 16-bit access using
physical address "2":

01234567 01234567 01234567 01234567 01234567 01234567
183 | 109 | !BL | 6o | IFF | | 3B |
0 1 2° |l 3 4 MB
b1l
P
0 31 1 i
A e + | |](16-bit access)
| 2 |-+ ||
e + 1
physical address \/ 1

01234567 89012345

| | B16A |

+

Physical address space is used for four separate purposes. The
first purpose is to provide physical pages (see section 2.1.1)
that support virtual memory (section 2.2}, The second is to
provide a location for the physical page directory (section 2,2.2)
and hash table (section 3,4) that constitute the foundation for
the address translation algorithm and therefore must reside at a
physical address known to hardvare. The third is to provide a
"scratch area" for each processor, transparent to software (see
chapter 9). This scratch area is used to hold data for which use
of processor registers would be too expensive; it is also used by
the 1/0 channels when they need to communicate with the processor.
The fourth is to provide addressability for 1/0 buffers. VISION
1/0 channels only access memory through physical addresses.

2.1.1 Pages

Physical memory is divided into physical pages of 4096 bytes each,
partitioning physical addresses into a 20-bit physical page number
(PPN) and a 12-bit page offset (POFF), as follous;

0 19 20 31

+

physical page number | page offset

+ —
+ — +

physical address

2-2
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2.2 Virtual Address Space

In VISION, the virtual address space is extremely large,

Its size i1s 2764 bytes. This address space is so large that
it frees software for the most part from having to reclaim and
repack virtual space no longer in use. Uhole data bases can
reside in virtual space, if so desired.

Virtual space allows programs to run that require address space
in excess of the amount of physical memory available on the
machine, This is accomplished through "demand paging": a mode
of operation in which part of virtual memory is kept in physical
memory and the rest kept on secondary storage; if a request for
access to virtual memory cannot be satisfied out of physical
menory, the page containing the virtual address is read in from
secondary storage (another page may have to be written to
secondary storage in order to make place for it in physical
memory) .

Operating system software policy determines the precise details
of where virtual pages are kept on secondary storage and where in
physical memory a new virtual page is read in, Hardware is only
responsible for detecting "page fault"s: the condition where an
access to virtual memory cannot be satisfied out of main memory.
On detecting a page fault, hardware will transfer control to the
page fault trap handler {section 7.xx). The operating systen
nust then resolve the page fault and transfer control back to
the user program in a way that makes the occurrence of the page
fault totally transparent to the user program (except perhaps
for a noticeable delay).

Demand paging in a large virtual space frees writers of software
from stringent and inescapable limits on programs due to size of
physical memory. Instead, writers of software for a demand paged
machine face a concern for “locality of reference". Basically,
one program’s locality of reference is better than another’s if it
accesses fever different virtual pages in a comparable time span.
Programs with better locality of reference will require less page
swapping and therefore will perform better, other things being
equal,

Details on how a virtual address is translated to a physical
address in VISION are deferred until chapter 3. -

2-3
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Two different views of virtual address space are given here:
one from the perspective of address arithmetic and allocation,
the other from the perspective of paging and memory management,

2.2.1 Virtual Address Space: Virtual Objects
Virtual address space is organized as 2°32 "virtual objects"

of 2°32 bytes each:

virtual offset

4 e >
I + + ~
| | | |
| | | |
virtual | | | |
object | | | |
rumber | ] | |
| | | |
| + +—+ + |
v | bl | |
+ + |
| | |
| | |
| | 2732
| | virtual
| | objects
| | |
| | |
| | |
| | |
+ + v
< 2°32 bytes >
2-4
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This organization of virtual address space corresponds to a
partitioning of a virtual address as follous:

0 31 32 63

+———= + +

| VON - virtual object rumber| VOFF - virtual offset|

virtual address

The significance of this subdivision is that all address
arithmetic on a virtual address is performed on the 32-bit
virtual offset without ever carrying into the virtual object
number, The virtual object number is never altered by address
arithmetic, The virtual offset is regarded as a two’s complement
quantity; overflow on address arithmetic is ignored.

Address arithmetic on virtual addresses occurs during
translation of logical addresses as described in chapter 3.

Example:
0 31 32 63
| 13 | 151 |  wvirtual address
+ + +
0 31
D e L L +
| 2732 - 100 |  value to be added
+
0 31 32 63
+ + +
| 13 | 51 | effective
+ -4 + virtual address

Hence address arithmetic, even if nominally involving 64-bit
quantities, can be implemented in hardware with 32-bit ALUs.

2-5
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2.2.2 Virtual Address Space: Paging

From a paging perspective, a virtual address (VA) is split into
a 52-bit virtual page number (VPN) and a 12-bit page offset
(POEF), as sketched below. (Some VISION documentation refers to

VA and VPN by the names GSVA and GSVP, respectively.)
51 52 63

+—+ O

VPN - virtual page rumber | page offset |

virtual address

A physical page is associated with a virtual page; this will
typically change over time as pages get swapped in and out, i.e.
read and written to secondary storage (usually disk storage).

At each moment, the state of the association is contained in the
physical page descriptor (PPD}, as follows:

22 2233
01 01 8901
1/ peN (20)1////1R1/1D]
| VPN - virtual v ' (3&)[

PPD: + page b +
I number  (20)1///////7///]

V1111111101110110111011111111117)

wvhere:
PPN - physical page number (20 bits).

VPN - virtual page number (52 bits); the number of the
virtual page currently associated with page PPN.

D - dirty bit (1 bit): set to one by hardvare if the
contents of the physical page has been changed by
the processor since it was read in from secondary
storage, i.e. when the page on secondary storage
is no longer up to date.

R - reference bit (1 bit): set to one by hardware if
the physical page has been accessed since the
last time software caused the reference bit to
get reset.

The PPD has additional fields that are described in section 3.4.

2-6
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2.2.3 The Physical Page Directory (PDIR)

Each physical page has its oun physical page descriptor; all
PPDs are collected in the physical page directory (PDIR].

PDIR.PA >+
1 |
I I
M | physical address of
1 | PPD for physical

PPN || | page PPN is found

H | as:
I |
I} } PDIR,PA + 16 * PPN
1 |
\/ T

PPD

§ o e e e e o e s e e e

physical page directory {(PDIR)
The physical address PDIR.PA is kept in a processor register.

Note that the PPN field contained in the PPD is redundant with
the position of the PPD within the PDIR.

2.3 Logical Address Space

Logical address space provides the third and highest level of
addressing in the VISION architecture. Logical address space
serves to insulate and protect programs from each other. At
the sane time, logical address space allows operating system
software full control over arbitrary patterns of sharing and
of access protection betueen user progranms.

All programs run in logical address space. All addresses
that are directly constructed by a user program are logical
addresses; these are presented to hardware for address
translation. Hardware translates logical addresses {via virtual
addresses) to physical addresses as detailed in chapter 3.

2-7
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A logical address is a 64-bit quantity. The first 32 bits
identify a “logical object"; logical objects are defined in
section 2.3.1. The second 32 bits of the logical address contain
a "logical offset", i.e. a byte offset relative to the beginning
of the logical object. Below is a depiction of a logical address:

0 31 32 63

LOI - logical object id | LOFF - logical offset

+ — +
+ — 4

logical address

2.3.1 Logical Objects

A logical object is a slice of a virtual object that can only be
accessed through an Object Descriptor, which enforces access
rights and bounds protection. Object descriptors are detailed
in section 2.3.2.

| > 2°31-1
| > UB
| > LB
> -2°31
a + + +
virtual | | logical object | |
object + + + +
| |
v v
R e B S +
| logical object |
o ———————————— +
>0
e > LOFF
| mmmmm e > UB-LB

The figure above shous how two virtual offsets (LB and UB, lower
and upper bound) are used to delineate a slice of a virtual object.
Such a slice is called a Virtual Range. The Virtual Range, under
protection of access rights, constitutes a logical object.

The bytes in the logical object are numbered from 0 to UB-LB;

it is this numbering, relative to LB, that is used by the logical
offset LOFF in a logical address.
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2.3.2 Object Descriptor Format

Object Descriptors are 16 bytes in size. The format is as
sketched below:

2 33
0123 45 6 7 g 01
| AR |TYPE| EPWO |PRY
o m e —————— -\
| VON - Virtual Object Number | |
0D: R - + |
| 1B - Lower Bound | > Virtual Range
+ + |
| UB - Upper Bound I
+ —+ /
where
AR = access rights. This field encodes the access

rights to the object allowed at each of the
protection levels, as detailed in section 2.3.2.2.
TYPE= object type. The encoding of this field is
detailed in section 2.3.2.1.
EPUO= entry point word offset. This field is meaningful
only for Vision mode code objects. It is detailed
in section 5.2.

PR = prerequisite level. This field is meaningful
only for Vision mode code objects. It is detailed
in section 5.2.

VON = virtual object rumber, Identifies the virtual
object of which this Object Descriptor defines
a slice.

LB = lower bound. See section 2,3,2.3,

UB = upper bound. See section 2.3.2.3.

2.3.2.1 Object Types

Object types are encoded in a 3-bit field in the OD as follows:

0 - Vision mode code object 4 - HP3000 mode code object
1 - Reserved object type 5 - HP3000 mode code object,

subject to PCAL trace
2 - Vision mode stack object 6 - HP3000 mode stack object
3 - data object 7 - Reserved object type

07/31
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The object type "HP3000 code object subject to PCAL trace" is
explained in more detail in the "VISION HP3000 mode document".
The reserved object types will block access to the object; one

of these types may become defined in later versions of the VISION
architecture,

All other object types are explained fully in this document.

2.3.2.2 Access Rights

At each moment, the processor runs in one of two execution
modes (Vision mode or HP3000 mode) as indicated by the one-bit
processor state “XM". In Vision mode, four levels of privilege
are supported, ranging from 0 (most privileged) to 3 (least
privileged); and the processor will run at one of these four
privilege levels, as indicated by the two-bit processor state
"XL". In HP3000 mode, the processor runs in either “User state"
(vhich is identified with XL=3) or in "Privileged state" (which
is identified with XL=1).

For purposes of protection, accesses are characterized as either
"read", "write" or “"execute", The following chart defines the
conditions for legal access. Illegal accesses cause a trap as
defined in chapter 7.

TYPE (from OD) | read | write | erecute
Vision code object |XL <= AR[0..1] | illegal |XL <= AR[2..3]
| | | & XM=0
Vision stack object:XL <= AR[0..1] |XL <= aR[2..3] | illegal
| |
data object |XL <= AR[0..1] |XL <= AR[2..3] | illegal
| | |
HP3000 code object |XL <= AR[0,.1] | illegal |XL <= AR[2..3]
(w/ or w/o trace)| | | & XM=1
HP3000 stack object|XL <= AR[0..1] |XL <= AR[2..3] | illegal
| | |
reserved obj type | illegal | illegal | illegal

Noteg: "<=" means less than or equal in an unsigned 2-bit compare.
The objects pointed to by special registers P and Q require
special treatment, as detailed in sections 2,3.5 and 2.3.6.

2-10
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2.3.2.3 Lover and Upper Bounds
Logical objects are slices of virtual objects protected by a

lower bound and an upper bound, as sketched belouw:

oD virtual address space

UB

L ——

| S |
R R |
| S |
VON | ###4#Guard zone####de| :

|

|

|

|

|

i

|

v

|
|
| +
|
|
!

| of $HhHEE |
| #4444 invalid  ##ae|
| #4444 virtual 4|
| ####addresses ##H###] :
[ R |
| St A S |

—— e ———— )

2732
virtual
objects

—_——— +

| RS | | log. obj.

+ — 4

| R
| S8 |

F—N——F —F — e —— . —

|
|
]
]
VA z Z
|4 | |
+ v

+ +

{mmmmmm 2732 bytes

v

Both lower and upper bound are 32-bit two’s complement quantities
that delineate the logical object; both bounds are inclusive.

Any address arithmetic (e.g. indexing) involving a logical object
that causes the virtual offset to stray outside the bounds given
in the Object Descriptor will result in a trap. (This applies
only to addresses actually used in accesses, not to preparatory
address calculations.)

Though lower and upper bound are two’s complement quantities,
their values must always be positive. It is the responsibility
of operating softuare to ensure this, The size of logical objects
is therefore limited to 231 bytes. Note that zero-length objects
can be supported by having UB = LB -1 in the Object Descriptor.
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2.3.3 Object Groups

Object Descriptors belong to the program that is erecuting;

more precisely, they are associated with a task.

It is the responsibility of operating system software to implement
a policy of protection and security, by setting up only such
Object Descriptors on behalf of each task as are needed by the
task to perform its rightful function,

It is the responsibility of hardware to enforce the access rights
and bounds protection as contained in the Object Descriptor.

Object Descriptors are organized in groups in order to facilitate
sharing of objects among tasks. The VISION architecture provides
for eight object groups per task, Each group has a data structure
(Object Descriptor Table, see section 2.3.4) that maps a logical
object id onto an Object Descriptor. Tasks that share all objects
in a group can therefore share the Object Descriptor Table for
that group as well, resulting in reduced duplication of Object
Descriptors and (as an important side effect) faster task creation.

Group zero is the same for all tasks, i.e. logical addresses
with a zero group selector translate to the same virtual address
regardless of which task is translating it.

Groups one through seven are either shared or task-specific,
completely under operating system software control.

The 32-bit logical object id (LOI) serves to locate the Object
Descriptor for the logical object. For this purpose, LOI is split
into a 3-bit group selector (zero through seven) and a 29-bit
logical object number (LON) interpreted relative to the selected
group:

012 3 31

LON - log object number |

+

G

+ —
+ — +

logical object id
where

G = group selector { 3 bits);
LON = 1logical object mumber (29 bits).
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The format of a logical address can therefore be depicted as:

012 3 3132 63

dm——m——

! G| LON - log object rnumber

LOFF - logical offset

+ — 4
+ — 4

2.3.4 Object Descriptor Table

Each object group has an Object Descriptor Table (ODT) which is
a linear collection of Object Descriptors indexed by the logical
object number. The Object Descriptor Table is itself an object
in virtual and logical address space and its location is known
to hardware, as detailed in section 2.3.8 and chapter 4.

Both virtual lower bound and virtual upper bound of an ODT must
be multiples of 16.

012 3 31 32 63
" + +
logical address | 4 | LON----- + LOFF ]
= | | + +
| |
+ | ++
I/ A\
0DTO ODT1 0DT2 ODT3 | ODT4 0DT5 0DT6 oDp17
e TR et S S A it T et SR R L L S
| [ o I [ I I P |
| [ (. I I . (. |1 |
| |1 bl |4 ] (. | | 4=t
| [ (. | 1 (. I |
| | Am—t ] | | #mmmmt et et
| | | | v | oD |
| | Fo——— s 1
P I
| |
O

Virtual address of 0D =

virtual address of selected ODT + 16 * LON
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2.3.5 Current Code Object

In Vision mode, there is a 64-bit Program Counter P that holds
the logical address of the instruction currently executing.

Bits P[0..31] contain the logical object id of the object knoun
as the current code object. In VISION documentation, PB is used
as shorthand for the (logical address of the) lower bound of the
current code object; similarly, PL is used to point to the first
byte beyond the current code object.

Hm———t \
PB==> | | |

| b

| | |

| | > current code object
P==> | | |

| | |

| | |

+————4 /
PL==> | |

Read access to the current code object is allowed; this overrides
the access right field in the OD. Both LB and UB in the OD for
the current code object must be multiples of 4. The size of the
current code object must be no more than 2724 bytes. It is the
responsibility of operating system software to ensure LB and UB
meet these requirements, P will always be even ( P[63]1=0 }; this
is ensured by hardware checks in the EXIT and SEXIT instructions.

2-14
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2.3.6 Current Stack Object

Tuo Vision mode registers Q and S both hold logical addresses.
Bits Q[0..31] are at all times identical to bits S[0..31]; these
identify the logical object known as the current stack object.

The significance and the use of Q, S and the stack object is
detailed more fully in chapter 5. In VISION documentation, SB is
used as shorthand for the (logical address of the) lowest numbered
byte of the current stack object; SL denotes the first byte beyond
the current stack object.

-t \
SB==> | { |
| | |
] I |
B \ |
Q==> : | | local stack frame > current stack object

b %
S==> | | \ |
: l } } undefined area !
tememr ] /

SL==> | |

Read and write access at any privilege level to the current stack
object is allowed; this overrides the access rights field in the
0D for the current stack object. All accesses to the stack object
must fall within the bounds SB (inclusive) and S {exclusive); this
overrides the upper bound in the OD for the current stack object.
Both LB and UB in the OD for the current stack object must be
multiples of 4. In addition, UB must satisfy UB < 2°31-4. It is
the responsibility of operating system software to ensure that LB
and UB meet these requirements,
All changes to Q and S must satisfy SB <= Q <= S <= SL.
(Q and S only change as a side effect of certain instructions
such as CALL and EXIT, See chapter 6 for detail.)

2.3.7 Nil Object

Logical object zero in group zero (logical object id = 0) is
inaccessible to all software. Operating system software is
responsible for maintaining the 0D for LOI=0 such that no
accesses are legal. To do so, it suffices to set UB = LB - 1.
This allows the nil pointer to be represented conveniently by
a logical address consisting of 64 zeros.
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2.3.8 Group Descriptors

A Group Descriptor (GD) serves to locate an Object Descriptor
Table for a particular group. The Group Descriptor for the ODT
for group 0 is kept in processor registers: it is machine state.
Group Descriptors for groups 1 through 7 are contained in the
Task Control Block (see section 2.3.9). GDs occupy 16 bytes
and have the format as shoun:

0 31
V/1111001100100171110017011007)

VON -- virtual object rumber |

GD:

i
| LB -- lower bound
|

UB -- upper bound

The first word of the Group Descriptor will be detailed in
section 4.5. The remainder of the Group Descriptor contains a
Virtual Range, as in an Object Descriptor. The Virtual Range
locates the ODT in virtual space.

Operating system software is responsible for ensuring that LB
and UB are multiples of 16, so that all ODs in the ODT will be
aligned on 16-byte boundaries.

2.3.9 Task Control Block .

The Task Control Block (ICB) of the currently executing task is
a software data structure whose location and layout is known

to hardware. The 64-bit virtual address of the ICB is kept in a
processor register TCB.VA. The value of this virtual address
can be changed by the "LAUNCH" instruction when performing a
tagk switch.

Operating software must ensure that the TCB of the currently
executing task is resident in physical memory. TCBs for tasks
not currently executing are not in any way constrained by the
VISION architecture. The full layout of the ICB is given in
section 4.7, Only the part of the ICB involved in defining
logical address space is shown here.
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V170117077777717717)
VLL17117117717777)
L/70771017177777777}
1/77171717177777771

TCB.VA ==>

+16 | GD |
| for |
| group !
| one |
B e D T P +
+32 | |
| for |
| |
| |

o ————— +

| : |

I
+112 }
|
I

——— g —
[y
[=]
~ .

+128 |/7//7777117777777)

The TCB virtual address TCB.VA must be a multiple of 16.
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ADDRESS TRANSLATION CHAPTER 3

+ ————
& ———— 4
4 ————

Software running on the VISION architecture interacts with
memory continually. Software is made up of instructions that
must be fetched from memory; memory is read, the data examined,
processed, and the results stored back into memory.

To perform these memory accesses, hardware computes logical
addresses that are then translated to physical addresses.
Computing logical addresses can be as simple as incrementing
the program counter (P) on each instruction fetch, or it may
involve adding together the displacement value out of an
instruction with the contents of the offset part of a base
register in order to form what is called the “effective logical
address". Logical address computation is detailed in chapter 6.
This chapter explains address translation in VISION. Address
translation always accompanies a request for access to the
memory system; hence it proves convenient to explain address
translation in the context of such an access.

3.1 An Access -- its characteristics

A memory access in Vision mode has these three characteristics:

a) a logical address, LA
b) a length in bytes, 1L
c) a type of access, read/urite/execute/semaphore-read

Read and write accesses can be performed on entities that vary
in length from 1 through 16 bytes. Execute access (instruction
fetch) can be performed on multiples of 4 bytes.

Semaphore-read is a special type of access that can be performed
only on 4-byte quantities; it consists of a read followed
indivisibly by a uwrite of all ones. For purposes of address
translation, the indivisible nature of semaphore-read is of no
import; we can treat it in this chapter simply as a read
followed by a write to the same address.

A multi-byte read (L>1) is implemented as if it were a sequence
of single byte reads at addresses LA, LA+1, .. , La+L-1, the
results of which are collected into a hardware buffer area. If
any of the single-byte reads fails (e.g. bounds violation or
page fault) the single-byte reads that did succeed are non-
destructive: as far as software can tell, no machine state is
modified,

3-1

VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

A multi-byte write is implemented as if it were a series of
single-byte writes at addresses LA, LA+1, ., , LA+L-1, with the
proviso that hardware implementations are free to perform the
single-byte uwrites in any order. This means that if any of the
single-byte urites fails (e.g. bounds violation or page fault},
softuare cannot make any assumptions about the state of the
addressed memory,

Note: an instruction that has a read-uwrite operand {(an operand
that is both read and written as part of the same instruction)
must never uwrite any bytes of the operand unless it can
guarantee that writing all bytes of the operand will be
completed. ({This accomplished trivially on single-processor
systems by prefetching the operand; on shared-memory multi-
procesor systems it requires that the PDDEL instruction allow
any on-going instructions to first complete.)

Instruction fetch is like read in that its effect can be viewed
as a sequence of byte-reads into a hardware buffer area,
transparently to software.

Uithout loss of generality it is then possible to describe
address translation in terms of single-byte accesses only.

3.2 Access Algorithm

Accessing a byte at logical address LA can be described by an
algorithm, developed in detail over the next few sections,
that requires the following items of machine state as input:

XL - execution level of the hardware

TCB.VA -~ virtual address to the TCB of the currently
running task

PDIR.PA - physical address of the PDIR, the physical
page directory

HASH,.PA - physical address of the Hash Table

3.2.1 Schematic overview

The next page shows an overview of address translation for
accessing a single byte at logical address LA.
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|
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|
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3.2.2 Hardware Shortcuts in Address Translation

The architectural definition of address translation should by
no means be read as a precise indication of all the steps
performed by harduare in their precise order.

In order to be cost-effective, hardware "must cheat but not

get caught". Just as a cache holds recent memory accesses in
a faster but smaller type of memory, so can harduware employ
various types of devices to speed up address translation by
setting aside recent results of address translation. The most
trivial example would be locating the eight ODTs. Hardware may
do this only once after a task switch and keep the virtual range
of each ODT for the current task in some internal register.
This involves a trade-off between the speed of the task switch
itself and the speed of all subsequent address translations,
Hardware may also choose to keep recent pairs of

(logical address, physical address) around, or recent pairs of
(Lor, op) and/or recent pairs of (VPN PPN)

Any such association of recent pairs that are presumably useful
in bypassing parts of the address translation algorithm is
referred to in this document by the name "TLB", short for
"Translation Look-aside Buffer",

Address translation is effected through address translation
tables that are in part task-specific, in part system-uide.
Changes in address translation are relatively infrequent, e.g.
(VPN,PPN) associations become outdated only on page suaps,

(LOI, OD) associations become outdated only on task switches and
on expllclt changes to ODTs brought about by the object
management facility in VISION operating system software.

Because these changes are relatively infrequent, and because the
situations in which they arise are under explicit operating
system software control, it is partlcularly cost-effective to
recognize archltecturally the existence of some kind of TLB,
while leaving the exact nature of the TLB to the dlscretlon of
the harduvare implementation.

The existence of the TLB is recognized architecturally in VISION
by requiring operating software to issue explicit instructions
that warn hardware of the fact that the conditions for address
translation have changed and that information in the TLB may no
longer be up to date. Address translation look-aside in VISION
hardvare therefore need not be completely transparent with
respect to changes in addressing tables.

3-4
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3.3 Logical to Virtual Address Translation

Logical to virtual address translation for logical addresses in
groups one through seven is similar, but not identical, to
translation of logical addresses in group zero. The differences
are limited to the way the ODT for the group is located.

In actual hardware implementation, even these differences may be
absorbed in the work performed on a task switch after which the
logical to virtual translation is done in the same way for all
groups,

3.3.1 Locating the ODT in Virtual Space

Starting out with a logical address:

012 3 31 32 63

I G| LON f LOFF

+ — +

it is first necessary to locate the ODT for group G in virtual
space,

3.3.1.1 Locating the ODT for Group Zero.

Locating the ODT for group 0 is very simple: the Group
Descriptor for group 0 (GDO) is kept in a processor register.
This Group Descriptor includes a Virtual Range that delineates
ODTO in virtual space. See section 4.5 for more detail.

3.3.1,2 Locating the ODT for a Group Other than Zero

Locating the ODT for group G, where G>0, requires accessing
the TCB of the currently executing task in order to obtain
the Group Descriptor for group G, The ICB is acces31b1e to
hardware through the TCB.VA virtual address; TCB.VA is kept
in a processor register,
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In practice, hardware implementations may ¢hoose to access
the TCB once on IEXIT and copy the seven Group Descriptors
into processor registers,

3.3.2 Locating the OD for the Logical Object

Having located the ODT in virtual space through the Group
Descriptor GD, the Object Descriptor OD of the logical
object can now be found by computing:

VON(from GD) | LB(from GD) + 16 * LON |

+ — 4+

virtual address of OD

This OD can now be accessed in virtual space using the procedure
described in section 3.4, Note: a harduare implementation may
choose to cache recent pairs of (LOI, OD).

I Gl LON | LOFF |
-+ | + +
| logical address
|
|
oDT |
m————t |
| | ]
o i
} } | // | AR ITYPEI////////////I
v +
Fommd e /| VON - v1rt obj nr I
{ oD | + +
et RS L S \ | 1B - lower bound |
| \ o+ +
\'| UB- upper bound |
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3.3.3 Computing the Virtual Offset

Having located the OD for the logical object, type checks and
access right checks can now be performed. Software must be
informed of any violation uncovered in these checks (through
the trap mechanism detailed in chapter 7)

Fron this OD and the logical offset LOFF, the virtual address

VON VOFF

+ — +
+ — +
+ —

can nov be computed as: VOFF = LB + LOFF (in wrap-around 32-
bit two’s complement arithmetic). However, software must be
alerted of a bounds violation if LB <= VOFF <= UB does not hold.

3.4 Virtual to Physical Address Translation

Translating a virtual address (64 bits) to a physical address
(32 bits) means translating a 52-bit virtual page number (VPN)
into a 20-bit physical page number (PPN) and carrying the 12-
bit page offset (POFF) along, as indicated in the sketch,

0 51 B2 63
+ + +
| VPN | POFF | wvirtual address
I
0 19 20 31 11
[P R + \/
| PPN | POFF | physical address
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3.4.1 Physical Page Directory Search

The translation of a virtual page rumber VPN into a physical
page number PPN may give different results over time as pages
are swapped in and out of physical memory. It is the
responsibility of operating system software to maintain the
page directory PDIR (see section 2.2.3) with the help of the
instructions PDINS and PDDEL, The page directory PDIR gives
the current association of physical pages with virtual pages.
For each physical page PPN there is a physical page descriptor
PPD (see section 2,2.2) that describes the VPN currently
associated with it. In principle, it is therefore sufficient
to do a linear scan over the PDIR looking for a PPD that has
the correct VPN in it; this identifies the proper PPN or else
it establishes that no physical page is associated with this
VPN and a page fault is thereby indicated.

However, a linear scan would be unacceptably slow even when
hardvare keeps enough recent pairs (VPN,PPN) around in a TLB
to produce an excellent hit rate, The entire PDIR would have
to be scanned in order to establish, for instance, that the
virtual page is nowhere in physical memory (page fault trap).
The VISION architecture therefore defines a hashing technique
in order to speed up the search for the right virtual page
number and to speed up detecting a page fault condition.

3.4,2 Overview of Hash Table and Hash Chain

In order to avoid having to scan large parts of the PDIR on
a virtual page to physical page translation, a hash value
is computed from the VPN:

H = hash( VPN );

where the hash function "hash" is described in section 3.4.5.
All PPDs in the PDIR of virtual pages that have the same hash
value H are chained together and the beginning of the chain
can be found in the hash table HASH. These chains and the
hash table HASH are maintained with the help of the PDINS and
PDDEL instructions,

The number of entries in the HASH table (which must be a power
of two) should be at least of the same order as the rumber of
entries in the PDIR in order toc Keep the chains acceptably
short. The number of entries in the PDIR is determined by the
rmumber of physical pages in the hardware configuration.
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Note that by its very nature the pages that make up the PDIR
itself must never be absent and the entire PDIR must be
contiguous in physical memory. The VISION architecture
places the same constraints on the HASH table, Both PDIR
and HASH are located through processor registers HASH.PA and
PDIR.PA that contain the physical address of each table.
0 51
| VPN |
O | +
|
v
e +
| hash |
Jalgorithm|
R et
|
Hommmmmm o + | HASH table
| HASH.PA |------- I + +
4mmmmmne + | | l
| | |
f | |
| o —————— +
H +-s—cmmmo—- >| PPD addr |------ + hash
Hmmmmmmmemee + | bucket
| | |
| | |
| | |
D + |
|
|
Fm———————e + | PDIR
| PDIR.PA | I + +
#ommm oo + | | I
| P +
head of +------- >|VPN|next PPD|------ + ====2=>PPN
hash chain Ao + |
| | | hash
| | | chain
Fmm e ———— + |
lvpnl 0 | ¢===~- +
R e T +
| |
| l
o +

Overview of virtual to physical page translation
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Note that the only actions ever performed on a 52-bit VPN are:
a) computing the hash function
b) comparing for equality against a field in the PPD.

The latter can be implemented by two 32-bit compares. The VPN
acts purely as a tag and never participates in 52-bit arithmetic.

3.4.3 The Hash Table

The Hash Table is a collection of “"hash buckets", each 32 bits

long. The physical address of the hash bucket is calculated as
HASH.PA + 4 * H, where H = hash{ VPN ),

as degcribed in section 3.4.5.

The format of a hash bucket is:

01 31

|18} PPD locator | ¢<---- bucket for H.

PPD locator : this value is the physical byte address of
one of the PPDs associated with a virtual page that
hashes to the value H. There may be more than one
such PPD, in which case the locator will simply
point to the head of a linked list; or there may
be none, in which case the PPD locator will be zero.
A zero value for the PPD locator will indicate a
page fault.

S = semaphore bit. Available for use by PDINS and PDDEL
to synchronize changes in the HASH and PDIR tables
in a shared-memory multiprocessor system. Outside
such use, harduare may assume that its value is zero.

Note: To avoid ambiguity in the definitions shown above, the
PDIR must reside in the first half of physical address
gpace. The PDIR must not start at physical page zero.
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3.4.4 PPD Format to support Hashing and Related Functions

Each PPD

is a 16-byte entity whose physical address is related

to the physical page mumber PPN through the formula

physical address of PPD = PDIR.PA + 16 * PPN.

The PPD format is detailed below:

where

VPN

next

PPN

22 2 2 233
01 01 7 8 901
(K] PPN (20) {MBZ |DBE|R{C{DI
| VPN - virtual page number (32)]
+ o —— e +
! (20) | MBZ l
| next PPD locator |

= virtual page number. This is the virtual page
currently associated with the physical page PPN.
If this field matches the VPN of the virtual address
being translated, the right physical page has been
found. If no match occurs, the PPD at the "next PPD
locator” should be checked for a match.

PPD locator: a physical byte address used to locate
the next PPD that contains a virtual page number that
hashes to the same HASH value as VPN. This field is
consulted only if the VPN in the current PPD does not
produce a match. If the entry is then found to be
zero, it means that the end of the chain has been
encountered, and a page fault trap is indicated.

= physical page rumber. This field is redundant as it
can be easily derived from the physical address of
the PPD, but it is available for hardware use.
It is the responsibility of operating system software
to ensure that PPN is at all times consistent with
the PPD address.

dirty bit. Set to one by the processor on each write
access to the page. To be cleared by operating syste
software when the page is uwritten out to secondary
storage. D is not affected by I/0 traffic.
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C = checkpoint dirty bit. Set to one by the processor on
- each write access to the page. To be cleared by
operating system softuare. It may be used at the
discretion of the operating systenm.

R = reference bit. Set to one by the processor on each
access to the page, Operating system software will
clear this bit on a periodic basis such that finding
the reference bit set can be interpreted to mean that
the page was referenced recently (either explicitly
by the program or implicitly by certain prefetch
hardvare). R is not affected by 1/0.

DBE = debug breakrange enabled. Set to one by operating
system software whenever the page contains any part
of the system or local breakrange. Hardware bypasses
the breakrange checks when accessing a page with
DBE zero. See section 5.3.2 for more detail.

w
]

semaphore bit. For hardware use in synchronizing
write access to the reference and dirty bits in a
shared-memory multiprocessor configuration. Before
and after such use, S must be zero.

MBZ = must be zero. It is the responsibility of operating
system software never to introduce a non-zero value
into this entry. Hardware may assume the field is
zero and it need not check this.

SPECIAL NOTES:

1)

2

~

3)

To avoid ambiguity in the above definition, the PDIR must
reside in the first half of physical address space, yet must
not start at physical address zero. The physical address
PDIR.PA must be a multiple of 16.

Software must not access (read or write) the PPDs, but must
instead rely on special instructions to deal with them:

PDDEL - remove a PPD from its hash chain
PDINS - insert a PPD in its hash chain
TESTREF - read and reset reference bit

Only a PPD not currently in a hash chain (e.g. after PDDEL
has extracted it) may be accessed by software.
These restrictions gimplify hardware synchronization,

Shared-memory multiprocessor implementations that use
write-to TLBs may use the MBZ field as a semaphore area in
order to synchronize writing out dirty and reference bits.

3-12
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3.4.5 The Hash Algorithm

The purpose of the hash algorithm is to break up the long list
of physical page descriptors PDIR into a large rnumber of short
chains so that, in order to find the physical page corresponding
to a given virtual page, only the physical page descriptors in a
gingle short chain need be scanned. In order to keep the chains
short, the hash algorithm must succeed at producing different
hash values for those virtual pages that are likely to be in use
simultaneously. The hash algorithm used in VISION accomplishes
that by producing different hash values for those virtual pages
that are allocated by the operating system closely together in
time. The VISION hash algorithm cannot succeed in doing so
without some minimum cooperation from operating system software.
In partlcular allocation of virtual memory is assumed to be
done either contlguously within the same virtual object or else
in units of an entire virtual object., The hash algorithm can be
defeated by the operating system allocating virtual memory in
2725 byte slots, for instance.

The hash algorithm presented here is really a family of hash
algorithms, parameterized by the single quantity K. It takes
a virtual page number as input and produces a 32-bit number:

H[0..31-K] := 0;
H[32-K..31] := hash( VPN )3

The number of hash buckets in the HASH table must be a power
of two: 2°K. The HASH table length is therefore 4*2°K bytes.

The hash algorithm is sketched below. A PASCAL version of the
hash algorithm is given on the next page.

| Virtual Page Number (VPN) |
0 1 2 3 4 5
0123456783012345678901234567890123456789012345678801
| 11 |
Jemmm] [ ¢mmmm e fle——=lltmmmmmmmm- }
/ K bits / K bits
/ / .
/ Field 3 / Field 1
/
K-min(20-K,K) nin(20-K,K)
bits bits
Field 2 MSB Field 2 LSB
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a) Field 1 is defined to go from bit 52-K to bit 51,

b) Field 2 is divided into two parts. The most significant bits
are defined to start at bit 32-2*K+min(K,20-K) and go to bit
31-K. Note that this part is empty for K<10.

The least significant bits are defined to start at bit 32 or
52-2%K, whichever mumber is the greatest, and go to bit 51-K.

c) Field_3 is defined to go from bit 32-K to bit 31.

d

—

Field_1R is defined to be Field_1 with the bits collected
in reverse order.

—

e) The K-bit hash value is obtained from taking the bit-uise

exclusive-OR of the fields Field 1R, Field 2 and Field_ 3.

Here is the PASCAL definition:

const K = {value between 5 and 17};
type bitfield: array{0..31] of 0..1;
virtpageno: array[0..51] of 0..1;

function hash(VPN: virtpageno): bitfield;
var i,j,m,n: integer; F1,F2,F3,H: bitfield;
begln

j := 51-K; m := 31-K; n := 52-K;

for i := 31 downto 32—K do

begin
F1[i] := VPN[n];
n:=n+1;
F3[i] := VAN[il;
if j»=32
then begin
F2[i] := PN[]
Joe= -1
end
else begin
F2[i] := VPN[n];
m = m-1;
end;
end;
for i := 0 to 31-K do H[i] := 0;
for i := 32 K to 31 do H[i] := F1[i] mor F2[i] ®or F3[il];
hash := H;
end {hash};
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3.4.6 Page Faults

The virtual to physical address translation either succeeds in
finding the physical location corresponding to the virtual
location, or it fails. Failure gets reported to software as

a page fault trap. Operating system software is responsible
for making room in physical memory and bringing in the virtual
page from secondary storage and returning control so that the
instruction originally causing the page fault can now make
progress, It is the responsibility of operating system
software to maintain data structures that allow it to locate
virtual pages on secondary storage. It is the responsibility
of hardvare to recover the machine state, on detecting a page
fault, that allows the current instruction to be restarted

(or "step-restarted”, see chapter 7) transparently to the

user program after the page fault has been resolved by
operating system software.

Certain programs that make up the operating system softuware
cannot themselves sustain page faults during their execution
either for inherently logical reasons (e.g. the driver for the
paging device must always remain in physical memory), or for
timing-dependent reasons. Guaranteeing that all virtual pages
accessed by such operating system software are present in
physical memory ("resident") is itself the responsibility of
operating system software. There are ho architecturally defined
data structures that prevent physical pages from being swapped
out.
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PROCESSOR REGISTERS AND MACHINE STATE CHAPTER 4

F ——— 4
+ ———
+ ——+

This chapter describes the various registers that are available
for use by Vision software and also the processor registers that
support the VISION addressing structure.

Vision offers 16 programmable registers of 32 bits for general
program use and 8 registers of 64 bits specifically to hold
logical addresses. VISION’s vector processing capability is
supported through 8 vector registers, each capable of holding up
to 256 elements, each element being capable of holding a 128-bit
IEEE floating point number or any smaller data type.

Various status registers record conditions or modify behavior of
instruction execution.

The processor registers described below all exist outside the
address space. Registers do not have addresses. No "normal-
looking" writes to memory will in fact write to a register.

All changes to register values are explicit, i.e. through use of
instructions such as MOVEf/tSP or as side-effects of instruction
execution as explicitly provided for in chapter 6.

This allows low-end VISION hardware implementations to implement
some of the less frequently used processor registers by using
harduware-reserved memory locations: locations in physical memory
that are not mapped into virtual or logical address space.
Chapter 9 provides details on where hardware-reserved memory
should be located.

4,1 General/Index Registers

In Vision mode, software has access to 16 registers X0, X1,..,
X15, each of which is 32-bits wide. These registers can be used
for general expression evaluation, for passing parameters to
procedures, for allocation of local variables in a procedure and
for holding index values in address calculations.

Registers can be used singly, in pairs or quads to hold values
comprising 32, 64 or 128 bits.

The registers are not typed, Their contents are interpreted
according to the type of operation being performed.
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4.2 Base Registers

In Vision mode, software has access to 8 registers B0, Bl,..,B7,
each 64 bits wide and capable of holding a logical address.
Registers B6 and B7 are better knoun as Q and S, respectively;
Q and S support stack addressing and the calling mechanism
described in chapter 5. The base registers can be loaded and
manipulated as detailed in section 6,2.5,

4.3 Program Counter

The Vision program counter is a 64-bit register P, It contains
a 64-bit logical address that points to an instruction in the
current code object. The value of P changes as instructions are
egecuted; normally, P is incremented to point at the next
instruction in sequence. Branches and other transfer of control
instructions will cause P to change explicitly. External events
such as external interrupts may preempt the currently exrecuting
progran and force execution to contirue at a well-defined place.
Transfers of control other than branches will leave a record of
the old value of P; this is detailed in chapter 5.

4.4 Status Registers

The status registers combine various fields of machine state in
a convenient and compact form. There are six 32-bit words of
status, divided into four logical groups:

1) STATUSA -- The STATUSA register represents the part of
the machine state that is local to the execution of the
current code object. STATUSA is shown as an 8-bit
register left-justified in a 32-bit word. STATUSA[0..7]
is stored in the procedure marker for an external
procedure call and restored on the corresponding EXIT.
Similarly, STATUSA is stored in an interrupt marker on
an interrupt (external or internal), and restored on the
corresponding IEXIT.
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2) STATUSB -- The STATUSB register represents the part of -3
the machine state that is local to a task activation or 012 3 4 5 67 8 - 1
the activation of an interrupt handler. For tasks not B et e e T N N +
currently active (suspended by an interrupt or by the STATUSA  |1|XL{SIT|I1P|DBP| I |
DISP instruction) the value of STATUSB is stored in the D +

interrupt marker for that task. STATUSB is restored from
the interrupt marker on IEXIT (or LAUNCH). STATUSB is
initialized to a known value on an external interrupt and
on entering the dispatcher.

. 11111 3
3) STATUSC ~- The STATUSC register represents the part of 012 3 4 5 0 1 234 1
the machine state that is local to a CPU/processor, s et & + et +
This means that the STATUSC register is replicated for STATUSB1 | | PTE| DISP|vector | TCE| XTL!| |
each processor in a shared-memory multi-processor system ) e pommdmmmt +
and its values are specific to each processor in that
systen,
11 11 12 2 22 33
4) STATUSD -- The STATUSD register represent the most 0134 2 3 4 5 90 7 89 01
global of all status information. This status is shared bt T G- + FURT—
among all CPUs/processors in a shared-memory multi- STATUSB2 | |FPC| TE |CBA|CBB| EF | fcel
processor system. This implies that a change to STATUSD e s + -
must be communicated synchronously to all processors.
The next page shous an overview of all status registers with ‘
their constituent fields. 22 2 3 3
0 78 9 0 1
STATUSC1 | DDC | XM| ICS| DRF| IE|
11 3
0 56 1
STATUSC2 | ! IMR |
3
0123 1

STATUSD | |DRL]| REVCODE

+-+

+ — 4

4-3  4-s
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4,4,1 STATUSA Register

4,4,1,1 Format

012 3 4 5 67 8 1

B et T e B T i T +

STATUSA | 1|XL|SIT|1IP|DBP| | | |

e + Fm e — = e - e = = e = oa - +

STATUSA -- Procedure Status

4.4.1.2 Summary

Field Name Bit Positions
XL - Execution Privilege Level 1-2

SIT- Single Instruction Trace 3

I1IP- Instruction In Progress 4

DBP- Debug Breakpoint Pending 5

4,4,1,3 XL - Erecution Privilege Level

This specifies in which of the four protection rings the
processor is currently executing. Ring (or Level) 0 is
nost privileged and ring 3 is least privileged,

Change of execution privilege level is accomplished by one
of three instructions. The CALLX instruction can grant
extra privilege or leave it the same, but will never take
privilege away, The EXIT instruction (or IEXIT) may take
privilege away or leave it the same, but will never grant
extra privilege.

The CALLX instruction determines the privilege level of the
target code object from the execute access right field in
the OD for the code object. This field identifies the least
privileged level at which code within that object may
execute, Calls to that object automatically begin execution
at that level, or the level of the caller, whichever is more
privileged.
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The EXIT instruction restores the privilege level of the caller
if caller and called procedure reside in different code objects.
It does this by extracting the privilege level of the caller
from the procedure stack marker after applying a consistency
check on it. EXIT may never grant the caller more privilege
than the current privilege level.

4.4,1.4 SIT -- Single Instruction Trace

This bit can only be set as a side effect of an external EXIT.
Uhen this bit is found set at the completion of an instruction,
a trap is taken, This allows tracing the execution of software
one instruction at a time, The SIT bit is automatically cleared
as part of the trap initiation.

4,4.,1.5 IIP -- Instruction In Progress

Some instructions can be interrupted before they are completed,
These instructions are composed of "steps", as detailed in
chapter 6. Uhen such an instruction is in fact interrupted, the
IIP bit is set and certain information is pushed onto the stack.
Uhen the instruction is resumed after an IEXIT, finding IIP set
indicates to hardware that the instruction is being resumed
rather than restarted, and hardware acts accordingly. A similar
situation arises when a "step-restartable" trap occurs in an
interruptible instruction. The EXIT instruction that concludes
the trap handler will restore the IIP bit and this indicates to
hardware that some instruction steps have already been completed.

4.4,1.6 DBP -- Debug Breakpoint Pending

DBP is set to one by hardware whenever an instruction modifies
one of the bytes in the system breakrange or the task breakrange
{subject to the Debug Ring Level described in section 4.4.4.3).
If the DBP bit is found set at the completion of an instruction,
a debug trap is taken.

The DBP bit is cleared as part of the debug trap initiation,

See section 4.8 for more detail.
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4.4,2 STATUSB -- Task/Interrupt Status

4.,4,2,1 Format
11111
012 3 4 5 0 1 234 1
B R ettt Tt +

STATUSB1 | { PTE| DISP|vector|TCE|XTL|

+ — 4

STATUSB -- Task/Interrupt Status - Privileged

ol

11 1 12 222 33
0134 2 3 4 90 7 89 01
—— N

+ + + +
STATUSB2 | |FPC| TE |CBA|CBB{ EF | fcel |

+ + + + + Riadnd Satel 4

STATUSB -- Task/Interrupt Status - User Accessible

4.4.2.2 Summary

Field name Word Bit Positions
PTE -- Procedure Trace Enable Bl 3
DISP -- Dispatcher Running Flag Bl 4
vector-- Vector Register Control Bl 5-10
TCE -- Task Clock Enable Bl 11
XTL  -- EXIT threshold level B1 12-13
FPC -- IEEE Floating Point Control:
Projective/Affine Mode B2 1
RM - rounding mode B2 2-3
TE -~ Trap enables:
Floating Point Operations:
FLDVDZE -- Divide by zero B2 4
FLOVFE -- Overflow B2 5
FLINVE -- Invalid Operation B2 6
FLUNFE -- Underflouw B2 7
FLINKE -- Ineract Result B2 8
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Field name Word Bit positions
Integer Operations:
INTDVDZE-- Divide by zero B2 ]
INTOVFE -- Overflow B2 10
Decimal Operations:
DECDVDZE-- Divide by zero B2 11
DECOVFE -- Overflouw B2 12
CBA -- Conditional Break Enable, & B2 13
CBB -- Conditional Break Enable, B B2 14
EF -- Exception Flags:
OVE -- Overflow B2 15
DVDZ -- Divide by zero B2 16

Floating Point Operations:
FLINV -- Invalid Operation B2 17

FLUNF -- Underflouw B2 18
FLINX -- Inexact Result B2 19
CC =-- Condition Code B2 28-29

4.4,2.3 PTE -- Procedure Trace Enable

When PTE has the value one, all procedure calls (CALL, CALLX
and BRX) will cause a restartable trap, subject to the value
in the DRL field in STATUSD.

4.4,2.4 DISP -- Dispatcher Running Flag

DISP is one when the dispatcher is running. The dispatcher runs
on the bottom of the Interrupt Control Stack., Because DISP is
part of STATUSB, it gets saved in the Interrupt Marker (and then
cleared). This makes it possible for IEXIT to determine, as it
is removing an interrupt marker, whether to return to another
interrupt handler or whether to resume or restart the dispatcher.
The DISP bit in the Interrupt Marker must not be modified by

sof tware.

4,4,2,5 vector -- vector register status

The vector capability of the VISION architecture is described
in section 4.11.
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4.4.2.6 TCE -- Task Clock Enable

Uhen this flag is set to one, the task clock will be rumning.
This means that the task clock value will be incrementing
itself at a fixed rate. UWhen TICE is clear, the value of the
task clock will not change unless explicitly changed by program
control. See section 7.2.

4,4,2,7 XIL -- EXIT Threshold Level

On executing the EXIT instruction, hardware checks to see if
the execution privilege level is being changed to a privilege
level less privileged than the value in the XTL field. If so,
EXIT will instead trap out and transfer control to the INSXTL
trap handler. See section 5.3.6,

4,4,2,8 FPC -- IEEE Floating Point Control

The IEEE floating point standard govens floating point operation
in Vision mode. Refer to that publication for further detail,

Projective/Affine mode:
0: Projective mode
1: Affine mode
This affects the way infinity is treated.

Rounding mode:
0: round to nearest unit (breaking ties by rounding to
even value)
1: round toward plus infinity
2: round toward zero
3: round toward mirus infinity

4.4,2,9 TE & EF -- Trap & Exception Flags

The TE (trap enable) and EF (exception flags) fields are for a
number of conditions which can occur during the execution of an
instruction which may require special handling by the user
program. Five of these relate to floating point operations
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and are defined by the IEEE standard. Integer data types follouw
the normal rules for 2’s complement arithmetic whereas decimal
data types are described in section 6,3.

When an exception condition occurs, the trap enable bit is
consulted to determine whether the exception should result in a
trap. If the trap is disabled, the corresponding exeption flag
is set, The exception flags act as "sticky bits" that record
the occurrence of exception conditions at any time during which
traps were disabled. Hardware never resets the exception flags;
nor will an exception flag, when set, cause a trap when the trap
is subsequently re-enabled.

4,4,2,10 CBA & CBB -- Condition Break Enable Flags

The CBA and CBB fields control the operation of the CHECKA and
CHECKB instruction, respectively. CHECKA causes a trap when CBA
is found set, and acts as a NOP when CBA is clear. In addition,
instructions are provided to set or test the value of the CBA
and CBB fields.

4,4,2,11 CC -- Condition Code

The condition code field in the STATUSB register reflects the
result of the most recent test or compare operation.

The four values of CC are indicated in this document mostly
through mnemonics (CCG,CCE,CCL,CCU) as follows:

cc mnemonic stands for:

0 CCG condition code "greater"

1 CCL condition code "less"

2 CCE condition code "equal®

3 ccu condition code "unordered"

On a Compare instruction, CC is given the value "CCG" if the
first operand is greater than the second operand. With a Test
instruction, CC is given the value "CCG" if the first (only)
operand is greater than zero. Similarly for CCL and CCE.

CC is given the value CCU only on floating point compare or
floating point test when the two values being compared are
"unordered” with respect to each other according to the IEEE
floating point standard.
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Some instructions other than Tests and Compares cause CC to get
set. These instructions are explicitly designated in chapter 6.
All other instructions leave the condition code field unaltered.

4.4,3 STATUSC -- CPU Status

4.4,.3.1 Format

22 2 3 3
0 78 9 0 1
STATUSC1 | ppC | M| 1CS| DRF| IE|
11 3
0 56 1
STATUSC2 | | MR |
4.,4,3.2 Summary
Field name Word Bit Positions
DDC -- Dispatcher Disable Count C1 0-27
XM -- Execution Mode c1 28
ICS -- On Interrupt Control Stack C1 29
DRF -- Dispatcher Request Flag Cc1 30
IE ~- Interrupt Enable/Disable Cc1 31
IMR -- Interrupt Mask Register c2 16-31

4,.4,3.3 DDC -- Dispatcher Disable Count

The value of DDC is incremented by the PSDB instruction and
decremented by the PSEB instruction. The function of DDC is to
monitor when it is appropriate to enter the dispatcher. As long
as DDC is non-zero, the dispatcher is not permitted to run,

07/31

VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

4.4,3.4 XM -- Excecution Mode

XM defines the current mode of execution. Uhen XM has the value
zero, hardware executes in Vision mode. Uhen XM has the value
one, harduare executes in HP3000 mode. The value of XM changes
as a consequence of executing any of the variants of SWITCH.
Also, any transfer of control to the Interrupt Control Stack
from HP3000 mode will cause XM to be zero.

4.4,3,5 ICS -- On the Interrupt Control Stack

This flag is set to one when execution switches to the Interrupt
Control Stack, e.g. on an external interrupt. This flag is
cleared on an IEXIT that returns control to a task.

4.4.3.6 DRF -- Dispatcher Request Flag

This flag is set to one by the DISP instruction if access to
the dispatcher is temporarily deferred. In order to enter the
dispatcher, the following conditions must be simultaneously
satisfied:

a) STATUSC.DDC
b) STATUSC. XM
c) STATUSC.ICS
d) STATUSC.IE

oW on N
POOO

Uhen DRF is one, any action that causes either condition (a)
or {b) or (c) or (d) to become satisfied will reexamine all
four conditions; if all four are now found satisfied, the
dispatcher will be entered.

4,4,3,7 1E & IMR -- Interrupt Enable/Disable & Mask Register

The IMR field determines which external interrupts are allowed
to alter the flow of control, If IE=0, no interrupts can alter
flou of control, overriding the value of IMR. See section 7.2
for more detail.
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4.4,4 STATUSD -- Computer Status

4.4,4,1 Format

0123 31
+=+
STATUSD | |DRL]| REVCODE

Fb———t

b—

4.4.4,2 Summary

Field name Bit positions
DRL -- Debug Ring Level 1-2
REVCODE -- SPU Revision code 3-31

4,.4,4,3 DRL -- Debug Ring Level

This field defines which execution ring levels are subjected to
the debug breakrange traps. Specifically, the System Breakrange
trap and the Task Breakrange trap as well as the procedure trace
trap are enabled only at ring level DRL and less privileged
rings. Typically, DRL equals 1 in order to allow I/0 to proceed
at full speed even while debugging at all other privilege levels.
However, highest privilege code can be debugged too, by setting
DRL to zero.

4.4,4,4 REVCODE -- SPU Revision Code

This is a unique number assigned at the factory for each SPU or
version of an SPU which differs significantly from a prior
version. The most significant 13 bits are unique for each SPU;
bits 16-31 identify each significant revision of the SPU,

This is NOT a serial rumber; it is not unique for each unit.
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4,5 Group Descriptors

Address translation of logical addresses to virtual addresses
requires the hardware to be able to locate the eight Object
Descriptor Tables, Eight Group Descriptors (GD) serve to locate
these ODTs. The Group Descriptor for group zero is kept in a
processor register; it can be thought of as an extension of the
STATUSD register. The Group Descriptors for groups one through
seven exist in the Task Control Block (ICB) of the currently
executing task. All eight Group Descriptors have the same
format, which is described below. The TCB is located by
harduare through the TCB.VA virtual address; TCB.VA is kept in
a processor register that can be concsidered as an extension of
STATUSC. The format of the TCB is described in section 4.7.

——— m——
| |
N || |
012 3 31 oo |
+ + + Vo te———t\
| 0 | LON--logical object number] 177771 1}
+o—mt et |
| VON -- virtual object rumber | <===> |VON | |
GD: + + +---—=+ > 0D
| LB -- lower bound | <¢===> |LB | |
+ |
| UB -- upper bound | <===> |UB | |
+ + tmmat /
| |
| |
| |
fm———t
ODTO

The last three words of the Group Descriptor contain the Virtual
Range that locates the ODT in virtual space. The first word of
the Group Descriptor contains the Logical Object Id of an object
in Group 0, This LOI exists for the purpose of allowing certain
hardware TLB organizations.

Operating system software must ensure that the Virtual Range
contained in the OD identified by LOI is identical to the virtual
range contained explicitly in the GD.
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4.6 Virtual address translation registers

Hardware must be able to locate the Hash table and the Page
Directory in physical memory; this is necessary for being able
to do virtual to physical addrees translation.

Two processor registers serve this purpose; they can be thought
of as an extension of STATUSD.

0 19 20 31

+ +-- -+

HASH.PA |physical page rumber of Hash |000000000000 |
0 27 28 31

PDIR.PA | page directory locator 10000}
Ty POV ————

HASH.PA contains the physical address of the Hash table; this
address must be page aligned.

PDIR.PA contains the physical address of the Page Directory
PDIR; this address must be aligned on a 16-byte boundary,

4-15
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4.7 Task Control Block

Harduare needs a certain amount of information in order to
exrecute the current task. This information is stored in the
Task Control Block (ICB), located by a register TCB.VA,

This TCB.VA register can be thought of as an extension of
STATUSC. TCB.VA must be a multiple of 16. The length of the
ICB is 176 bytes. Also, the ICB must be memory resident.

A 64-bit register TCB.LA accompanies TCB.VA; operating system
softuare is responsible for ensuring that the logical address
TCB.1A does in fact translate into the virtual address TCB.VA.
Moreover, the logical address TCB.LA must have a zero group
selector. Hardware implementations are free to use either
TCB.LA or ICB,VA to locate the TCB.

A task swit¢h is accomplished by Dispatcher software through
simultaneously changing the TCB.VA and TCB.lA registers.

0 1 2 31
/ICB,.LA =t + +
\ICB.VA ==> |XM|SWIP| reserved |

Fm—tm——— for +
+4 | hardware |
+8 | TCBX.LA -- logical addr|
+12 | of TCB extension |
+16 | |
+20 | GD1 -- group descriptor|
+24 | for group 1 |
+28 | |
+32 | |
+108 | ) [
+112 | |
+116 | GD7 -- group descriptor|
+120 | for group 7 |
+124 | I
+128 | |
+132 | Task Breakrange |
+136 | Descriptor |
+140 | |
+144 | |

4-16
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|
+ 0\
TCB.VA +144 | SC - HP3000 mode |
+148 | Stack Pointer b
+ + > HP3000 mode
+152 | CSTX | | information
+156 | descriptor b
+ + /
+160 | SN - Vision mode oA
+164 | Stack Pointer | |
|
+168 | logobjid of VCSA | > vision mode
+ + | information
+172 | TRYOFFSET P
+ + /
+176 | I
M  -- execution mode of the task. On IEXIT to this task,

execution mode STATUSA.XM is set to this value,

SUIP -- switch in progress. This bit is used by IEXIT when a
mode switch could not be completed.

TCBX.LA- The logical address of a TCB extension for use by
softuware,

GDi ~-- Group Descriptors. The format of a Group Descriptor is
described in section 4.5,

Task Breakrange Descriptor,
This descriptor is described in section 4.9,

sC -- Logical address of top-of-stack of the HP3000 mode
stack used to initialize S on IEXIT,

CSTX Descriptor.
The descriptor locates the CSIX used in HP3000 mode.
Its format is the same as described in section 4.10.

SN -- Logical address of top-of-stack of the Vision mode
stack used to initialize S on IEXIT.

logobjid of VCSA.
The logical object id of the logical object in use as
the Vector Context Save Area, See section 4,11,

TRYOFFSET.
The stack offset saved by the TRY instruction,
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4.8 Breakranges (System and Task)

The VISION architecture supports two breakranges: a System
Breakrange and a Task Breakrange. A breakranges involves a
range of virtual addresses., Uhen properly enabled, the
breakrange will cause a trap to occur at the completion of any
instruction that overurites any byte within the breakrange.
This debug aid is discussed in more detail in section 5,3.

The Descriptor for the System Breakrange can be thought of as an
extension of STATUSD: once installed and properly enabled, the
Systen Breakrange will cause a trap whenever any task on any
processor in a shared-memory multi-processor urites to any byte
within that Breakrange. The Task Breakrange Descriptor can be
thought of as an extension of STATUSB; it is located in the Task
Control Block. Uhen properly enabled, the Task Breakrange will
cause a trap when this particular task writes to any byte within
this Breakrange.

A Breakrange Descriptor is a 16-byte descriptor with the format
shoun below. :

reserved for hardware

Breakrange
Descriptor:

VON - virtual object nr

1B - lower bound

—_— . — — 4 — 4+

UB - upper bound

— = —+ — 4

4.9 Interrupt Control Stack location

The Interrupt Control Stack (ICS) is the envirorment in which
hardware interrupt handlers run. Several trap handlers also
run on the ICS. This enviromment is described more fully in
section 7.6,

The ICS is a logical object in group 0., Uhen an interrupt is
acknouledged, Q is made to point to a location on the ICS just
beyond the Dispatcher Marker (see 7.2), This location is
called QI. The logical address of QI is kept in a processor
register that can be thought of as an extension of STATUSC.
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4,10 CST and DST descriptors

HP3000 mode requires a Code Segment Table (CST) as uwell as a
Data Segment Table (DST) to complete its addressing envirorment,
Both CST and DST are tables of ODs. These tables are actually
contained within the ODT for group zero. Both CST and DST are
found through processor registers containing 64-bit descriptors
as indicated belou:

012 3 31
A e e + \
| 0 | object number where CST/DST starts | |
+ + > CST or DST
| length of CST/DST in bytes ] } Descriptor
—4=  m———
RN
[ |
Hmmmmem e + | v | |
| index [==mms co | \
Homomm oo + | | |
| length [----+ I | | csT
Hmmm + | | > or
CST or DST | | | | DST
descriptor | | | |
v | | /
| |
| |
I |
| |
| |
| |
| |
| |
| |
| |
tmm——t
ODTO0
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4,11 Vector Processing

VISION offers rich support for vector operations in order to

- significantly increase performance on common array and matrix

operations in technical applications.
This section should be read in conjunction with section 6.4.

4,11.1 Vector Registers

A task can address 8 vector registers VRO, VR1,.., VR7. Each
VR consists of N elements, numbered 0 through N-1, where N is

an implementation-dependent quantity no greater than 256,

Each element is 128 bits wide, and can contain values of data

types comprising 32, 64 or 128 bits.

Not all N elements in a Vector Register need be filled with
data; software may load vectors with fewer elements into a VR.

Vector processing hardware may support up to 15 banks of eight
vector registers each, Only one bank is addressable by a task
at any time, Multiple banks allow multiprogramming of tasks
using vector registers without excessive performance penalty
in saving vector register contents on a task switch.

4,11.2 Vector Mask Registers

A task can address 4 vector mask registers, VMRO,.,,VMR3. Each
contains 256 bits. A bit in a vector mask register corresponds
to an element in a vector register.

Each vector instruction designates a vector mask register to
govern execution of that instruction. Elements in the vector
register corresponding to clear bite in the mask register do not
participate in the vector instruction; no results are stored in
the vector register element, the original value of the element
does not change, and under no circumstance can traps occur for
that element.

The values in the mask registers can be created and manipulated
through special instructions including vector compare,

4-20
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4,11.3 Vector Length Register

Various means exist for software to let hardware know how many
elements in a vector register should be regarded as meaningful
and how many elements should be operated on in a given vector

instruction,

4,11.4 Vector Context Save Area

Because vector registers contain a large amount of information,
it is not desireable to save all this state on an external
interrupt. Interrupt handlers must therefore refrain from using
vector instructions.

Vector Registers (and vector mask registers) are saved either
explicitly by operating system software or automatically when
another task executes a vector instruction that uses the same
vector register bank. When vector registers are saved, they
are saved on behalf of the task that last used them. Part of
the task’s contert includes the Vector Context Save Area (VCSA),
located through the task’s TCB, memory resident, and large
enough to receive all vector register values.

4.11.5 Vector Processing: Operation

Operating system software may allow any task or any rumber of
tasks to execute vector instructions. VISION implementations
nay have special purpose hardware, referred to as a Vector
Processor (VP), which will improve the performance of the
vector operations,

The VP will contain some amount of memory, organized as one or
more banks. A bank generally contains all of one task’s vector
related context, including vector registers, vector mask
registers, vector length register, etc. This context is quite
large, and requires attention in order to maintain fast
interrupt response, ability to multiprogram, and minimal impact
on pure scalar tasks.

A task must be assigned a special region of main memory called
the Vector Context Save Area (VCSA) before it can execute any
vector instructions. Additionally, a task must be assigned a
bank in order to use the VP. A task may be denied access to
the VP, in which case all of its vector activity occurs through
its VCSA; this limits the speed of vector instructions to the
speed of memory access,
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More than one task may be assigned the same bank. If this occurs,
harduare is responsible for saving/restoring the context when a
vector task enters execution and a different task’s context is

in the first task’s assigned bank, The hardware will save the
first task’s vector context into its VCSA, and reload the bank
from the new task’s VCSA.

Note that if a task which does not use the VP {a scalar task)
starts to run, the interrupted vector task’s VP context will be
protected but remain in the hardware registers. If control
returns to the same vector task, the VP context switch will have
been avoided entirely, If control returns to a different vector
task which has been assigned the same bank, the context switch
will occur when the new vector task attempts to execute its
first vector instruction,

The vector processor may contain 0 to 15 banks of context. The
operating system will designate which bank (if any) a task is
allowed to use. A group of tasks assigned the same bank will
only compete among themselves for that VP context.

4.11.6 VP Management - Vector Context Save Area

Use of the vector processor by a task is controlled by six bits
in STATUSB, altered only by operating system software, Four of
these bits specify the bank number, and two specify permission
level.

If the bank number is not 0, the number specifies which hardware
bank of VP context is to be used by this task.

If the bank number is 0, all vector activity takes place through
the VCSA instead of the vector registers. The hardware context
consumed is effectively zero, but all operand/result (including
VR) accesses proceed at memory speeds. The performance in this
mode will be degraded, but will normally be faster than equivalent
scalar code. Through this feature operating system software can
allow a low priority vector task to execute, while reserving

the vector hardware for some very important task.

The permission bits must be made non-zero by operating system
software if a task is to be allowed use of the vector processor.
Before operating system software grants permission, a portion of
the VCSA must be locked into memory. This is to:
a) prevent phantom page faults,
b) ensure that a place exists in which to save context should
pouer fail,
¢) provide a place to simulate VRs should the implemented hardware
be insufficient.
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Since the VCSA is quite large, levels of permission exist to
restrict a task to using only certain ranges of precision and
thus permit operating system software to only lock in a portion
of the VCSA. See table below,

Permission | Meaning
bits value |
00 No VP uge allowed by this task.

!

01 | VP usage restricted to vector data types

| <= 32 bits; harduare assumes that parts

| A & B of the VCSA are locked into

| memnory.
10 | VP usage restricted to <= 64 bits of vector
{ data; hardware assumes that parts A, B
| & C of the VCSA are locked into memory.
} VP usage unrestricted; hardware assumes

the entire VCSA is locked into memory.

11

If insufficient permission has been granted when the task attempts
to execute a vector processing instruction, the INSVPPERM trap
occurs, Operating system software will typically lock in the
additional portion of the VCSA and then redispatch the task.

If the permission bits are not 0, the VCSA logical object id
in the ICB identifies the VCSA for that task. The entire VCSA
is a 1/4 + 8*(VR len*4/1024) page area. (For 128-element VRs,
this is 4 1/4 pages.) Conceptually, the contents of the VCSA
at the time of an interrupt are as sketched below.

Vector Context Save Area

| First 32 bits of each
| element of VRO..VR7

0| Part A |

| State Information |
1024 | Part B |
|

|

51201 Part C |
| Second 32 bits of each |
| element of VRO..VR7 ]
R +

9216] Part D
| Last 64 bits of each
| element of VRO..VR7

—_— ——

17408 |
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Note that the VCSA is sketched assuming 128 element VRs.
The State Information in Part A is detailed below:

State Information

0| VMRO..VMR3 |
128 | VLR |
132 | VR descriptors |
148 | information |
| on partially |

|  completed |

: vector :

| - operation |

1024 | |

Only the portion of a VR save area corresponding to the VR’s
active length is meaningful. Bytes 0-127 of State Information
contain the VMRs as they exist at the time of interrupt or
task switch; bytes 128-131 contain the VLR, Bytes 132-147
describe the width and active length of each VR.

A vector instruction may be interrupted before it is complete.
In this case, information sufficient to transparently resume the
partially completed operation is stored in bytes 148-1023 of the
State Information area.

As explained above, when an interrupt occurs the VCSA is not
immediately updated, Two instructions are available to force
immediate updating of the VCSA. The first is UVCSA (Update
Vector Context Save Area). This is a non-privileged instruction,
and contains a two-bit option field to force saving of either
VRs, State Information, or both. UVCSA may be used by a trap
handler to isolate the elements and operation causing the
vector trap. The second instruction, PUVCSA (Privileged Update
of Vector Context Save Area) allows specification of the vector
bank to be saved, independent of the vector bank in use by the
current task, Operating system software may issue this
instruction if it is waiting to transfer control to a vector
task and wishes to minimize that task’s startup time.
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MACHINE MODEL CHAPTER 5

 ———
b
 ———

This chapter discusses several topics relevant to the operation
of Vision mode brought together under the heading “machine model"
because they contribute to a more coherent picture of the model
than might be gleaned from the detailed description of individual
instructions in chapter 6.

These topics are:

a) stack and stack markers

b) procedure linkage

¢) debug support

d) list of supported data types

5.1 The Vision Stack

The Vision mode stack is primarily used for procedure linkage,
parameter passing and allocation of local and temporary variables
for procedures, to the extent that the registers X0..X15 do not
suffice for this. The stack is also used as an implied place to
store things, such as parameters when traps are taken or when
internal and external interrupts occur.

The registers Q and S always point to the stack. The upper 32
bits of Q and S are identical; they identify the current stack.
object, Refer to section 2.3.6,

The stack is totally word-oriented: the stack object is word-
aligned in virtual address space, and the logical addresses Q
and S are both at all times multiples of four., The length of
the stack object is a multiple of four as well.

S points to what is called top of stack. Q points to what is
called the local stackframe.

8 changes under the effect of explicit PUSH and POP instructions
and their variants (e.g, DUP, EXTEND, DELETE), and implicitly
on traps and interrupts,

Q changes only on procedure calls {(CALL, CALLX), on procedure
returns (EXIT), through a MOVEtSP, and implicitly on traps.
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current stack object

storage for
variables and
temporaries
for

outer blocks
of programs

|

|

!

|

|

|

|

|

I

|

!

| local storage
] for

i currently
| active

} procedure
|
|

|

|

|

|

|

|

|

the values in
this area are
indeterminate

s e e e e e e o i e e . e i it e < S o e . S st .t i

The logical address corresponding to the first byte in the stack
object is denoted by SB; similarly, SL denotes the first byte
beyond the stack object. The following relationship among these
registers is always guaranteed:

SB <= Q <= 8§ <= SL

The necessary checks to guarantee this are performed when S or Q
change. The area between S and SL is indeterminate. This means
that its contents cannot be predicted. Stack bounds checking is
more restrictive than bounds checking on ordinary objects. All
memory accesses through logical addresses with an LOI equal to
that of current Q are checked against S as the upper bound rather
than against SL. The EXTEND instruction will increase S without
explicitly initializing the area between the previous S and the
new S; the newly accessible part of the stack will have contents

' that are umnpredictable.
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5.1.1 Procedure Stack Marker

The procedure stack marker is a 3 ¥ 32 bit entity that is pushed
on the stack as part of procedure call (CALL, CALLX); at this
time a new stack frame is created by setting Q to point to the
area in the stack immediately beyond the marker. The marker
preserves the information neceessary for EXIT to restore the old
environment, specifically, the old value of Q.

5.1.1,1 External Procedure Stack Marker
External procedure calls (CALLX) push a 3-word marker as shown:

Sold==>| |
4+=zz=ss=zzssSzzz==s=cSoS====4

@-12 | p[0..31] !
Q-8  |STATUSA| P([40..63] |

-4 | Qold[32..63] |

+
Q=Qnew=Snew==>|

The value of P in the marker is the logical address of the
instruction following the CALLX. The size of code objects is
restricted to 2*¥¥24 bytes so that P[32..38] = 0.

The value of STATUSA contains the privilege level at which the
caller ran, STATUSA[0] = 1. Bits STATUSA[1..7] will always be
clear when executing CALLX.

Traps and external interrupts also push an external procedure
marker. Here the value of P in the marker is the logical
address of the instruction that needs to be egecuted after
returning from the handler, The IIP bit and the DBP bit in
STATUSA may be set.

An SIT value of one must never be pushed as part of STATUSA in
the external procedure marker., Instead, it may only be set in
the marker explicitly by software. Such software will use EXIT
to cause the SIT flag to get set in the calling program.
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5.1.1.2 Local Procedure Marker

The local procedure call (CALL) never causes the execution level
to change, nor can it change the current code object. The stack
marker for a local call can therefore be simpler than for an
external procedure call:

| |
4====cc=sx=zz=sszcsE=z=4
Q-12 | hardware reserved |
Q-8 | P[32..63] |
-4 | Qo1d[32.,63] |
=ss=ZsSI==4

|

Q=Qnew=Snew==>|

Note that EXIT can unambiguously distinguish between a local
procedure marker and an external procedure marker: (Q-8)[0]
has the value 0 for a local marker and the value 1 for an

-external marker, The bits P[32,.39] are zero.

Note that both markers occupy the same amount of space.

5.1.2 Interrupt Marker

An interrupt marker is pushed on the stack as part of servicing
(acknowledging) an interrupt (external or internal), or when a
task transfers control to the dispatcher (with the DISP, PSEB or
ENABLE instruction), or upon executing SWITCH,

The marker contains the following information (see IEXIT):

1, the information in an external procedure marker
2. STATUSB

3. general registers X0-X15

4, base registers BO-B5
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S old ==> | |
+========ss====+4

Q-12 | p |
o + +

Q-8 | STATUSA| |
o ———— om——————

Q-4 | Qo1d[32..63] |
+==s==s====c===z==+

Q ===> | (B1) [
+- STATUSB ~+

Q+4 (B2) |
e ——————————— +

Q+8 | X0 |
o —————— +

| |

| |

Fmr e ——————— +

Q+68 | K15 |
o —— +

Q+72 | |
+- BO -+

Q+76 | |
o ——————— +

| |

i i

e ——————— +

Q+112 | |
+- BS -

Q+116 | |
Frm e —————— +

8 === | |

(Q+120)
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5.1.3 Dispatcher Marker

The Dispatcher is a piece of operating system softuare that
selects the next task to run, in preparation for a task switch.
The dispatcher is entered automatically under certain conditions
carefully controlled by the DISP, PSDB, PSEB, ENABLE and DISABLE
instructions, The dispatcher code is entered through a special
procedure marker called the Dispatcher Marker, which is at the
base of each Interrupt Control Stack (ICS). This marker is
never removed, in contrast to all other stack markers. Entering
the Dispatcher is similar but not identical to an EXIT through
the Dispatcher Marker: Q will not change, S will get set to Q.

The Dispatcher Marker contains:

1. Program counter for entry point of Dispatcher

2. STATUSA
4m==szazszssszzzas==sszzas4
Qr-12 | P (entry point |
Fm—————e + of +
QI-8  |STATUSA| dispatcher) |
QI-4 | Qold[32.,63]=QI[32..63]|
4+==s=sSsSSsSSs=ssSsSz====:STS4

QI ==> | |

Just before the Dispatcher starts running, the IEXIT instruction
will initialize STATUSB to the value DispatcherStatusBInit,
which has the following fields:

Field Value Full name of field

DISP =1 Dispatcher running flag

PIE =0 Procedure Trace Enable

vector =0 vector control

XTL =3 EXIT threshold level

FPC =0 IEEE floating point control

TE =0 Trap Enables (none enabled)

EF =0 Exception Flags (none detected)
CBA =0 Conditional Break Enable, A
CBB =0 Conditional Break Enable, B

cc =0 Condition Code
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5.2 Procedure Linkage

The Vision instruction set provides several forms of procedure
call. Their detailed description is given in chapter 6.

The instructions CALL and CALLX both create a new stackframe by
pushing a procedure marker and then updating Q and S. CALL and
CALLX differ primarily in the way they arrive at the target
address. This is detailed in section 5.2.1., They also lay doun
a different marker because EXIT must be able to return to the
appropriate enviromment in each case.

A procedure must be wholly contained in a code object; it cannot
span several code objects. Conversely, a code object may have
many procedures in it, Procedures within the same code object
may call each other using the CALL instruction; this is the
fastest procedure call. Code objects are paged, their maximum
size is 2°24 bytes; hence there is opportunity to group large
nunbers of procedures into a single code object. The following
reasons may limit in practice the number of procedures that are
combined into a single code object:

a) procedures in a code object run at the same privilege

b) if a procedure in a code object is recompiled, all of
the code object must typically be relinked

c) the procedures in a code object are not protected from
one another; a procedure may jump in the middle of
another procedure without being caught

d) often-used procedures can be put in a separate code
object and shared among many user programs; this trades
off space and link time versus CALLX overhead

Code objects can have multiple external entry points; however,
this requires the approach outlined in section 5.2.2.

5.2.1 Entry Point Evaluation

The external procedure call CALLX has as its single operand the
logical object id (LOI) of the target code object. This LOI is
sufficient to determine the location of the target procedure.
The LOI uniquely identifies an Object Descriptor (OD) which has
the format described in section 2.3.2. The first word of this
0D is included on the next page.

5-7
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2 33
012345678 9 01
tombmm bt +--+ first word of
|XL|RL|TYPE| O] EPUO |PR] 0D of target
b + +--+ of CALLX LOI

vhere:
TYP - should indicate a Vision mode code object

PR - indicates the prerequisite level: the privilege level
the caller must already possess before being allowed
to complete the procedure linkage

XL - indicates the privilege level at which the target
procedure will run

RL - indicates the privilege level required for reading
the contents of the code object as data

EPUC - the entry point word offset; indicates the location
of the starting point of the target procedure,
expressed as a word offset relative to the start of
the code object

The new program counter P is constructed from this information
as follous:

33 34 6 66
0 12 90 123
P: | LOI | o | EPUO fool

5.2.2 Multiple Entry Points in a Code Object

It is possible to have multiple external entry points per code
object, but only by duplicating Object Descriptors. This means
that each external entry point must be associated with a unique
logical object id. This is not the same as stating that each
external entry point corresponds to a single code object, for
these Object Descriptors will share the identical Virtual Range
contained in their last three words. These procedures can still
call each other freely using CALL instead of CALLK, thus keeping
all characteristice of being in a single code object.
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5.3 Debug Support

The VISION architecture is rich in features to support debug of
software. This section collects these features in one place;
however, pervasive object bounds checking has already been
covered in chapter 3 as has checking of access rights.

5.3.1 Code Breakpoints

The following instructions are provided and can be inserted into
the code stream either at compile .time or at run time:

a) BREAK
b) CHECKA
¢) CHECKB

Each is capable of generating a trap: BREAK unconditionally,
CHECKA and CHECKB conditionally on the setting of an appropriate
bit in STATUSB {STATUSB.CBA and STATUSB.CBB respectively).

Debug software can use these instructions to provide code
breakpoints, code tracing, etc.

'5.3.2 Breakranges

The VISION architecture provides two Breakranges that can be
used to protect an area from accidental or malicious writes and
to trap any software that changes any data anywhere within the
Breakrange. The format of these Breakranges is discussed in
section 4.8,

The System Breakrange is a Virtual Range kept in a processor
register and set by a MOVEtSP instruction. Any write within the
Virtual Range causes a breakrange trap when properly enabled.
The Task Breakrange is a Virtual Range kept in the Task Control
Block. Any write by that task within the Virtual Range causes a
breakrange trap when properly enabled.

Tuo ways exist to disable the breakranges and totally eliminate
their performance impact:

a) setting the DRL field in STATUSD to a non-zero privilege
level, This will disable the breakrange for all code at
level DRL or more privileged.

b) clearing the "DBE" bit in the PDIR for a particular VPN,
Only accesses to pages with the DBE bit set are checked
for breakrange traps.
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The VISION architecture does not require hardware to run at
"normal" speed when accessing an enabled page at an enabled
privilege level., Software should anticipate some performance
degradation in this situation.

5.3.3 Single Instruction Trace

Software can cause hardware to sequence through user code a
single instruction at a time. This is accomplished through the
SIT bit in STATUSA. The only way to set this bit is to modify
an external procedure marker and then execute EXIT (or IEXIT),
EXIT will restore STATUSA with the SIT bit set. This will not
have any effect until the next instruction has completed, Any
instruction that has SIT set at its beginning will on completion
transfer control to the DBSIT trap handler. As part of the trap
initiation, SIT will be cleared. In order to determine whether
to take the DBSIT trap, hardware only needs to check the SIT bit
at the completlon of an instruction, provided it delays setting
the SIT bit in an external EXIT so as to avoid trapplng out on
the EXIT instruction itself,

5.3.4 Procedure Trace

If the PTE bit in STATUSB is set and the current privilege level
XL is numerically greater (less privileged) than DRL, any
execution of CALL, CALLX or BRX will cause the restartable trap
DBCALL to be taken.

5.3.5 Object Trace

In the VISION architecture, an access rights violation causes a
restartable trap, cf. chapter 7, This trap can be fashioned by
software into an object trace capablllty Operating system
software can manipulate the access rights in the OD of an object
such as to cause access rights violations when code attempts to
access the object with current privilege level XL numerically
greater than DRL. Since this trap is recoverable, execution
can resume normally after the debugger has restored the original
access rights, The Single Instruction Trace mechanism can be
used to regain control at the completion of the instruction in
order to reingtate the object trace. .
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Code object tracing can be performed in a similar manner; here
it is the TYPE field in the 0D that can be replaced by one
specifying a data object. This too is a recoverable trap.

5.3.6 Ring Crossing Trap

This trap is detailed in chapter 6 under EXIT. The STATUSB,XTL
{exit threshold level) field can be set to a certain privilege
level under operating software control, This allous delaying a
certain activity until the task has exited back to sufficiently
low privilege on its oun accord. Any EXIT (or IEXIT) that drops
the current privilege level below (numerically greater) than XTL
will cause the Ring Crossing Trap to be taken,

5.4 List of Supported Data Types

Vision mode softuare supports various data types. Some are
supported through a full complement of instructions, some are
represented by a few key instructions and/or conversions into
fully supported data types. A brief summary follows:

| data types
# bytes I integer floating decimal
1 | 1 - -
2 | 2 - -
4 | 4 4F 4D
8 ] 8 8F 8D
16 | ~ 16F 16D

5.4.1 Integers

Vision mode supports both 32-bit two’s complement integers and
64-bit two’s complement integers with full arithmetic capability
including shifts.

16-Bit 2’s complement integers are supported through conversion
to and from 32-bit integers and by fast detection of 16-bit
overflow on 32-bit arithmetic, These conversions are done
automatically on loading a 16-bit integer into a 32-bit register
or storing a 32-bit register into a 16-bit memory location.
8-Bit unsigned integers are supported through conversion to and
from 32-bit integers. The conversion is implied in loads and
stores to and from 32-bit registers.
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5.4,2 Floating Point

Vision mode performs floating point operations exactly as
descrived in the IEEE floating point standard ("A Proposed
Standard for Binary Floating Point Arithmetic", IEEE Task P754).

The standard allows some features to be defined by implementors.
These options are defined for Vision mode as follous:

Formats: The formats supported are Single, Double, Quad. These
occupy 32 bits, 64 bits and 128 bits, respectively.
Quad is defined in the manner provided for “Double
Extended” by the Standard.

The 32-bit single precision floating point format has
a 1-bit sign, an 8-bit biased exponent and a 23-bit
fraction field.

The 64-bit double precision floating point format has
a 1-bit sign, an 11-bit biased exponent and a 52-bit
fraction field.

The 128-bit quad precision floating point format has
a 1-bit sign, a 15-bit biased exponent a 1-bit integer
part and a 111-bit fraction field.

Modes: Normalizing mode is provided. All five traps are
supported, with individual enable/disable.

Underflou:
Underflow is always checked after rounding.

Operations:
Add, subtract, multiply, divide and conversions
between all data types are fully supported by Vision
instructions. Remainder, square root, integerize,
as well as binary -- decimal conversions must be
supported in softuware.

5.4.3 Decimal

Vision supports packed decimal data types of size 4,8 and 16
bytes. These formats are described in detail in chapter 6.3.
Vision also supports conversion to and from packed decimal
data of any number of bytes betueen 1 and 31. External mumeric
decimal formats are supported through conversion to and from
packed decimal,
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5.4,4 Logical

Various bit-wise operations are supported on 32-bit quantities.
The most significant bit and the least significant bit of a word
can be tested individually.

5.4.5 Bit

Instructions to set bits and test bits in arbitrary locations in
an object are provided.

5.4.6 Fields

An instruction to deposit a value of an arbitrary number of bits
into a 32-bit word is provided.

5.4.7 Byte strings

Various instructions to support operations on strings of bytes
are provided: move, compare, translate, translate and test.

5-13

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

5-14

07/31




VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

VISION INSTRUCTION SET CHAPTER 6

fo——— 4
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This chapter describes the instruction set available in Vigion
mode to the programmer who needs to write software in assembly
language. Vision compilers will compile standard programming
languages to this instruction get.

6.1 Preliminaries

The register P (program counter) contains a 64-bit logical
address that points to a variable length entity called an
instruction. The instruction is interpreted by hardware and
executed; this changes the machine state and/or memory.

The program counter P is among the machine state that changes
as a consequence of instruction execution; the default is to
advance (increment) P to point to the next instruction in
sequence.

cee | D202 91| 98| D4

+ — 4
.

~

P B +

In the sketch above, the pattern !D2029198 is the encoding of
a 32-bit instruction that will be rendered here as:

ADD4 2, X3

This instruction instructs the hardware to perform a 4-byte ADD
(32-bit integer addition) on 2 and X3, leaving the result in X3.
After executing this instruction, changes will have occurred

to X3, to P and to the reference bit "R" in the physical page
descriptor for the page containing the instruction. No other
machine state nor memory will be affected. In this example,

the value of X3 will have been incremented by 2; the value of

P will have been incremented by 4 (to skip over the current
instruction which occupied 4 bytes).

6-1

07/31

- VISION ARCHITECTURE CONTROL DOCUMENT
_ DO NOT COPY -- HP PRIVATE INFORMATION

The situation after executing the "ADD4" instruction will hence
be as follous:

cee | D2l 02191]98)|D4]| ...

+ + + +
~

| I e +

The Architecture Control Document does not describe how this
effect on the machine state is achieved; different hardware
implementations may use quite different means.

In this chapter only the intended effect of an instruction on
the machine state and/or memory is given, in a mixture of
running text and a Pascal-like algorithm.

Several aspects of instruction execution are so pervasive that
they will be described once rather than repeatedly for each
instruction.

The most important of these is the way operands are dealt with.
Operands are described in section 6.1.1 and their encoding is
dealt with in sections 6.1.2 and 6.1.3.

Other such pervasive actions are:

incrementing the program counter at the end of executing
an instruction

fielding external interrupts at the end of executing
an instruction

detecting page fault on fetching the instruction

detecting page fault on fetching operands

setting dirty and reference bits as part of accessing
memory

serving debug traps at the end of an instruction that
urite into a breakrange;

checking access rights/bounds violation on any memory
access

trapping on a mismatch of operand and operand attribute

Several of these pervasive actions involve reporting urusual
or illegal conditions; refer to section 6.1.8 for more detail.
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6.1.1 Operands

In the previous example, "ADD4 2, X3" is an instruction with
two operands, The first operand, "2" is called a literal, or

a literal operand. This means that the value of the operand
can be found right there in the instruction itself.

The second operand, "K3" is called a register operand. The
value of this operand is the value currently in the X3 register.
The operation called for by the instruction, "ADD4", is an
addition; this involves storing the result somewhere, The
description for "ADD4" specifies that the result be stored back
into the second operand. This means that X3 is not only used
to obtain one of the values to be added together, X3 is also
designated as the destination for the result.

Note that a register can be a destination for a result, but a
literal cannot: the instruction itself must not be changed as
a consequence of instruction execution.

There is a third type of operand, called memory operand, which
will be detailed in section 6.1.1.3.

In general, a two-operand instruction such as "CMP4" (compare)
can have any combination of operand types:

CMP4 literal, literal
CMP4 literal, register
CMP4 literal, memory
CMP4 register, literal
CMP4 register register
CMP4 register, memory
CMP4 memory, literal
CMP4 memory, register
CMP4 memory, memory

Each instruction, such as ADD4, determines what combinations
of operand types is legal. This is done through attributes
as described in section 6.1.5. Illegal combinations are only
illegal because of the logic of the situation, such as the
inadmissibility of storing into a literal,

The encoding of instructions and their operands is orthogonal,
as detailed in section 6.1.2. This means that the encoding
places no restrictions on the selection of operand types.
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6.1.1.1 Register Operands

Registers X0..X15 are 32-bit entities each. They can be used
singly, in pairs, or in quads. A pair of registers can be
used as a single 64-bit operand, as follouws:

singly 012.. ..31 o012.. 31

| X3 1 X4 |
paired 012 .. 31 3233.. 63
(X31%4)

Register pairs aluays involve consecutive registers Xi and

Xi+l; register X15 can form a pair with X0. Register pairs are
encoded in an instruction by encoding the first register in the
pair,

Register quads can be used to form a single 128-bit operand.
Such a quad always involves consecutive registers Xi, Xi+1, Xi+2
and Xi+3; again, register numbers wrap around, such that X0
comes after X15. A register quad is encoded in an instruction
by encoding its first register.

A (single) register can also be used to hold operands smaller
than 32 bits. Sections 6.1.6 and 6.1.7 go into more detail,

6.1.1.2 Literal Operands

Literal Operands of up to 32 bits long can be encoded in an
instruction. UWhen used in instructions that involve data types
bigger than 32 bits, such a literal value will be extended to
the right size by replicating the "left-most" (most-significant)
bit, If the literal represents a two’s complement integer this
corresponds to sign extension. If the literal is anything else,
this may not correspond to sign extension, Literal processing
in the VISION architecture does not depend on the data type,
Uhen used in instructions that involve data types smaller than
32 bits, the literal value will be left-truncated to the deslred,
number of bits without overflow indication.
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6.1.1.3 Memory Operands

Memory operands are operands that have a logical address,

This logical address is found in one of the base registers
B0..B7 (B6 is better known as Q; B7 as S) and modified through
adding an index and/or a displacement. The rules for address
arithmetic on memory operands are detailed below. In any case,
the result will be a logical address, called the effective
logical address. The use of this effective logical address is
under control of the instruction,

Typically, the effective logical address is used in a memory
access, For example,

ADD4 Q, B4

will use the address in base register Q to read a 4-byte value
from memory in order to add this to the 4-byte value read from
memory at the logical address in B4. The result of the addition
will be written back as a 4-byte value to memory at the logical
address in B4,

The effective logical address is occasionally needed for other
purposes. During string moves, the logical addresses of source
and target areas are incremented such as to sweep through the
areas in memory. In the MOVEADR instruction, the effective
logical address of the first operand is itself the value stored
in the second operand; thus making the address arithmetic logic
available to software, e.g. in building reference parameters.
These other uses are the ones where register operands are not
suitable; registers cannot be addressed. The set of registers
X0..X15 exist outside logical address space.

Base register operands night be regarded as a final way to
use what looks like a memory operand. See section 6.1.1.3.2,

6-5
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6.1,1.3.1 Computing the effective logical address

A memory operand designates a base register, a displacement
and an optional index register. The base register is one of
B0..B5, Q, S; the index register is one of X0..X15 and the
displacenent is much like a literal in that it is contained
in the instruction itself. The displacement is up to 32 bits
in length,

The designated base regigter contains a logical object id and
a logical offset. The effective logical address will have the
same logical object id as the designated base register: the
address computation does not carry into the object portion of
the base register. Effective logical address computation
consists of the two’s complement addition of the 32-bit logical
offset of the base register, the 32-bit displacement and the
32-bit index (if present) and ignoring overflow and/or carry.

Note that this allows implementations to perform the additions
in any order.

6.1.1.3.2 Base register operands

Several instructions expect a base register as an operand,

This is indicated through the "b" attribute as described in
section 6.1.5. A base register operand is encoded like a
memory operand; but no memory access is implied and the result
of the effective address computation, if performed at all, is
irrelevant, For a base register operand, the only relevant
field is the base register field in the encoding for the memory
operand.

6-6
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6.1.2 Instruction Encoding

Instructions consist of an opcode and a list of descriptors for
each operand.

The opcode identifies uniquely which operation to perform, the
data type involved and the mumber of operands,

The Vision instruction set is "operand-modular”: that is, each
operand individually and independently can be chosen to be a
register, a literal or a memory operand.

The encoding scheme presented here is such that hardware can
efficiently decode and execute instructions, code generators
can conveniently emit Vision object code in this format, and
the scheme is reasonably space efficient.

In the basic scheme instructions are multiples of 4 bytes in
length and word-aligned in logical address space {also in
virtual address space). This scheme is described in section
6.1.2.1. A variant of this scheme allous denser packing of
instructions; it is described in section 6,1.2,2.

6.1.2.1 Basic instruction encoding scheme

Opcodes are encoded in 8 bits, An operand descriptor consists
of an 11-bit operand specifier OPSPEC optionally accompanied
by a 32-bit operand completion COMPL. The completion is used
when the 11 bits of the operand specifier do not suffice to
uniquely determine the operand; these cases correspond to the
first 3 bits of the operand specifier OPSPEC[0..2] being zero.
Operands are encoded in pairs; if the instruction has an odd
number of operands, an additional dummy operand (e.g. literal
zero) is specified.

The sketch below shous an instruction with 4 operands. Note
that the first two bits of the instruction words are both one

in order to identify that the basic format is used. Note also
that the 8-bit OPCODE is found by concatenating bits 2..4 and
bits 16..20 of the first instruction word. The address of

the instruction (e.g. when used as a branch target) is the
address of the first byte of the first word of the instruction.
Note that, in this format, the instruction address is a multiple
of four,

P+4==>

P+8==>

P+12=>

P+16=>

P+20=>

Note:

VISION ARCHITECTURE CONTROL DOCUMENT : 07/31
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1 2 3
01 234 56789012345 67890 12345678901

|11|0PC | OPSPEC1 |~ODE | OPSPEC2
—_—— + + +
(2) (3) (11) (5) (11)

+ — +

COMPL1 (only if OPSPEC1[0..2]=0)

—_—
+ -+

+

| COMPL2 (only if OPSPEC2[0..2]=0) | (at P+4 if

+ + + + + COMPL1 absent)

+ + + + + (at P+8 if

| mbl | OPSPEC3 | mbl | OPSPEC4 | COMPL1 or COMPL2
+ + + + absent; at P+4

if both absent)

COMPL3 (only if OPSPEC3[0..2]=0) | (etc.)

+ — +

COMPL4 (only if OPSPEC4[0..2]=0)

+ — 4

mbl (must be ones) denotes a field that should consist
of all ones. It is the responsibility of software to
ensure thig; hardware implementations may asgume ones
in these fields without having to check this.
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6.1.2.2 Dense Instruction Encoding Scheme

This is a variant of the basic encoding scheme that allows some
instructions to be packed two per word.

A subset of 24 instructions are candidates for this more densely
packed scheme. These instructions are such that OPCODE[0] and
OPCODE[1] are not both one, Instructions in this subset are all
single operand instructions.

If two consecutive instructions are both in this subset, the
pair qualifies. For such a pair, the sequence

OPCODEa OPERANDa ; OPCODEb OPERANDD;

can be encoded as:

1 2 3
01234 56789012345 67890 12345678901

+ +

OPSPECa | opb T OPSPECb
(5) (11) (5 (11)

+ — 4+

opa

+ -+

words of
increasing
address in the
code stream

| cOMPLa (if OPSPECa[0..2]=0) |

[,
[ QR ——

+

b 4

COMPLb (if OPSPECDH[0..2]=0)

+ — 4+

Note 1: Opa=OPCODEa[3..7] and opb=OPCODEb[3..7].
(i.e. OPCODEa = !E0 + opa; OPCODEb = !E0 + opb)

Note 2: Bits 0 and 1 of the first instruction word in this
packed format are never both one, so the two formats
can be distinguished,

Note 3: The second instruction in such a pair can be a branch
target. The P-value corresponding to the second
instruction in such a pair is taken to be the address
of the byte containing "opb"; this is on an even byte
this is on an even byte boundary. All branch targets
will be even byte addresses.
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6.1,2.3 Secondary Instruction Set Encoding

A few of the 8-bit opcodes act as an escape to a secondary
instruction set. The opcode “SYS" is one of these,

Most operating system support instructions, including the I/0
instruction sets, are in this secondary instruction set.

This section describes their encoding. The instruction "PDDEL"
(delete from page directory) will serve as an example,

PDDEL is in the secondary instruction set for "SYS"., It has a
single operand "ppn". In the opcode assignment chart PDDEL is -
listed as having a secondary opcode of 109 (hexadecimal) or 9,

The instruction:

PDDEL ppn
is encoded as if it were:

SYS 9, ppn

with the "9" encoded as a short literal (see section 6.1.3.1).
In other words, the secondary opcode is treated as an additional
literal operand of the primary escape opcode, Implementations
may differ in their results if the secondary opcode is encoded
ag an operand other than a short literal.

6.1.2.4 Code Bounds Violations

The object identified by P is called the current code object.
PB denotes the first byte of the current code object; PL
denotes the first byte beyond the current code object; both are
multiples of four., Hardware checks P against PB and PL on all
transfers of control. Hardware may also check P against PL
when executing instructions not involving transfer of control.
The effect of executing an instruction that starts within the
current code object but has completion words that fall outside
of it may differ across implementations.

6-10
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6.1.3 Operand descriptors

An operand descriptor consists of an 11-bit operand specifier
OPSPEC accompanied by a 32-bit operand completion COMPL when
OPSPEC{0..2]1=000. The formats of the operand specifiers are
detailed in the sections below. ("mbz" means “must be zero";
harduare may assume an mbz field to be zero without having to
check this.)

6,1.3.1 Short literal

1
01234567880

The value of the operand is obtained dobmdbmd bbb oottt
from the OPSPEC itself, through sign- [0 1 0] literal |
extension of the 8-bit literal field. b=+

6.1.3.2 Long literal
1
01234567880

The value of the operand is obtained + PO
from the 32-bit COMPL. For data 10001 1] mbz ]
types > 4 bytes this value is then Rt St +=+—+

sign-extended.

6.1.3.3 Register operand

1
01234567880
The operand is the designated index e e e s S et
register. For data types > 4 bytes, Joo11] Xj | mbz |
a pair or quadruple of consecutive Bt e R el S g
registers is designated.
6.1.3.4 Memory operand (base+short word displacement)
1

0123456789°90
The operand is in memory. The 10gical  +-+—+-4—+—d-dodudadtus
address is given by a base register |1| UORDDISPL |BASEil|
to which is added WORDDISPL*4, D e
Note that WORDDISPL is zero-extended,
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6.1.3.5 Memory operand (base-short word displacement)

1
01234567890
The operand is in memory. Its logical  +-+-+-4=t=t—t=t—t—t—4-+

address is given by a base register |10 1 1|UORDDISPL|BASEi]|
to which is added the one-extended R e e e B DL St Tl
" WORDDISPL*4,

6.1.3.6 Memory operand (base+long displacement)
1

01234567890
The operand is in memory. Its 10g8ical  +-+—+—+—t—t—t—d—d—t—t—+
address is given by a base register {0 00 10| mbz |BASEil
to vhich is added the two’s complement  +-+—+-—t—t—d—t-t—d=d—t-+
byte displacement found in the 32-bit
COMPL,

6.1.3.7 Memory operand (base+index)

1
01234567890

The operand is in memory. 1Its logical  +—+—+—4—t—t—t—t—t—t—+—+
address is given by a base register jo 010 Xj |IBASEi|
to which is added the two’s complement  +=+—+=-+-t=d=t—t=t=t—+ +

32-bit value found in the designated
index register.

6.1.3.8 Memory operand (base+index+displacement)

1
01234567880

The operand is in memory. Its 1ogical — +—+-+—+—+—t-t—t—t—t-+
address is given by a base register 1o 000 Xj | BASEi|

to which ig added the two’s complement  +=+-+=t-t=tmdedoi=dot=t
32-bit value found in the designated

indexr register and also the two’s

complement 32-bit displacement value

found in the 32-bit COMPL in the

instruction itself,
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6.1.4 Opcode Assigmments The following chart shous opcode assignments for instructions in
the secondary instruction set in the escape group for "SYS".

The following chart shouws the association of opcodes with the

instruction name (mnemonic). The 8-bit encoding of the opcode SYS
is found by adding the hexadecimal number in the row of the ) OPCODE
instruction to the hexadecimal number in its column, +100 +101  +102 +103 +104 +105 +106  +107
100 IEXIT SWITCH * RSWITCH IDLE STOP * *
108 PDINS PDDEL SYNCOD GROWGDO * * * *
OPCODE 110 SYNCTCB SYNCIB CVLAtVA HASH CVVAtPP LAUNCH * *
+100 +101 +102 +103 +104 +105 +106 +107 118 * * * * * * * *
100 ERROR NoP EXIT SEXIT TESTA TESTB TESTOV BREAK #120 10U I0R 10C * * * * *
108 * * * * PSEB PSDB DISP TRY l2g ¥ * * * * * * *
110 DISABLE ENABLE INTERRUPT UNTRY EXTEND DELETE CHECKA CHECKB 130 * * * * * * * *
118 TESTSTRIP* * * * BRX * * $138 IFC WCMD WBYTE RBYTE * * * *
120 * * QUAD4 * POP8 * * POP16 $!40 CHNOP RCL PRD PDA PAR RDP wop RIS
128 PUSH1 PUSH2 PUSH8 * TESTDOUN UP DOUN PUSH16 $148 CIS SIS * * * * * *
130 POP1 POP2 * * * TESTREF * TEST16D 150 % * * * * * * *
138 * TEST2 TEST8 TESTAF TESTAD TEST8D TESTS8F TEST16F . 158 MOVEtCSP* * * * * * *
140 AND4 * * MPYAF MPY8 * MPYS8F MPY16F . -— ¥ * * * * * * *
148 NOT4 * DIv4 DIVAF pIvs * DIVSF DIVi6F ’ 1F8 * * * * * * * *
{50 OR4 REM4 NEG4 NEGA4F NEG8 REM8 NEGBF  NEG16F
158 XOR4 MOD4 ABS4 ABSAF ABS8 MOD8 ABSS8F  ABS16F . :
160 CMP1 P2 CMP4 CMP4F CMP8 BCMP8 CMPS8F CMP16F Note 1: the I/0 instructions in the rouws marked "#" are defined
168 MOVE1 MOVE2 MOVE4 * MOVE8 BSET8 * MOVE16 for MPB-based implementations, On any other
170 TESTBIT 1SC42 ADD4 ADDAF ADD8 BGET4 ADDSF  ADD16F implementation these instructions will cause a trap.
178 * MPY4 SUB4 SUB4F SUB8 BSET4 SUBSBF  SUB16F
180 MOVEADR BMOVEADR* * * * * * Note 2: the I/0 instructions in the rous marked "$" are defined
188 * * MOVEfSP4 MOVEfSPS TESTSEMA* * * for PICMB-based implementations. On any other
190 * * MOVEtSP4 MOVEtSPS MOVESEMA* * * implementation these instructions will cause a trap.
198 CHECKLO CHECKHI DUP OVPUNCH CVID CMP4D CMP8D CMP16D )

1A0 LSL4 ASL4 BCMP4 GETSIGN CVDI ADDAD ADDS8D ADD16D
{A8 LSR4 ASR4 BADD4 VALN CVAD SUB4D SUBSD  SUB16D
{B0 LSL8 ASL8 BSUB4 VALD CvDA MPY4D MPYS8D MPY16D
!B8 LSR8 ASR8 * * * DIV4D DIV8D DIV16D

{CO PROBE * MOVEBIT MOVEC SRD MOVED MOVEBLR CMPB

!C8 DPF * REP CMPC SLD TRANSL MOVEBRL CMPT

!D0 POLYAF POLYSF POLY16F SCANUNTIL* * * *

ipg * * * * * VECIOR SYS CONVERT
@!E0 BRG BRGE BRGL BRNU PUSH4  PUSHADR PCP4 BPOP8
@!E8 BRGU BRNL BRNE BR TESTLSB TEST1 TEST4 BTESTS
@!F0 BRN BRE BRL BRLE CALL CALLX * BREAK

{F8 BRU BREU BRLU BRNG * * * ERROR

Note 1: the rows marked with "@' contain the instructions that
can be packed two per word.

Note 2: the instructions VECTOR and SYS are escapes to a
secondary set of opcodes. '
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The chart given below shows the association between vector
ingtructions and their opcodes.
opcodes in the "VECTOR" escape group.

VECTOR
OPCODE

100
108
110
118
120
128
130
138
140
148
150
158
160
168
170
178
180
188
190
198
1A0
148
B0
!B8
1CO
ics
'DO
‘D8
{E0
E8
{F0
\F8

+100 +101
VMOVE2¥*
VABS *

%k ok dk ook ok vk ok sk ok ok ok dk ok sk k k k k k k k %k k >k *k %k
k ok ok k %k ok dk %k ok 5k k dk %k dk *k %k k k k %k k *k *k *k k %

CLRMR STMR
LDVLR STVL

UVCSA PUVC
* *

+102
VMOVE4
VABS4
VNEG4
VLSL4
VLSR4
VASL4
VASR4
*

*
*

VCMPRS4
VEXPND4
VACC4
*
VMAXLA
VMINL4
VADD4
VSUB4
VMPY4
VDIV4
VAND4
VXOR4
VGATH4
VEXT4
VREM4
YMOD4
VCMP4
*

LDMR

R RVLRT

SAIVB
*

+103

*

VABSAF
VNEGAF

sk sk sk ok dk %k k %k %k

VACC4F
VACCD4F
VMAXLAF
VMINLAF
VADD4AF
VSUB4F
VMPY4F
VDIV4F
VOR4

*
VSCATS

VINS4
*

*
VCMP4F
*

MRNOT
*

LVB
*

All these are secondary

+104
VMOVES
VABS8
VNEG8
VLSL8
VLSR8
VASLS8
VASR8
*

*
*

VCMPRS8
VEXPND8
VACC8
*
VMAXL8
VMINL8
VADD8
VSUB8
VMPY8
VDIV4F
VANDS
VXOR8
VGATHS
VEXI8
VREM8
VMOD8
VCMP8
*

MRAND
*

VINVAL
*

6-15

+105

VABSSF
VNEGSF

%k Kk ke dk k Kk k Kk %k

VACCSF
VACCDSF
VMAXLSF
VMINLSF
VADDSF
VSUBBF
VMPY8F
VDIVSF
VOR8S

*
VSCAT8
VINSS
*

*
VCMPST
*

MROR
*

*
*

+106 +107
VMOVE16 *
VABS16F
VNEGL16F

*

VEXPND16%
VACC16F
*

VMAXL16F
VMINL16F
VADD16F
VSUB16F
VMPY16F

VDIV16F
*

*
VGATH16 VSCAT16
VEKT16 VINS16
* *

* ok d ok ok %k %k ok ok k

* *
* VCMP16F
* *
MRXOR ¥
* *
* *
VCONVERT*
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6.1.5 Attributes
Attributes can be associated with operands or with instructions,
6.1.5.1 Operand Attributes

Each instruction has an implied mumber of operands and for each
operand of the instruction there is an implied attribute,

For example, section 6.2.2 shows the ADD4 instruction in the
following way:

ADD4 term.r4, sum.rud

Here "term” and "sum" are merely symbolic names for the tuwo
operands; ".r4" and ".rw4" are the operand attributes,

These attributes are composed of individual elements like "r",
"y, and "4".

The "r" attribute indicates that the operand must allow reading
from; hence it can be a literal, a register or a memory operand
with appropriate read access rights.

The "u” attribute indicates that the operand must allow writing
to; hence it must not be a literal, but must be a register or a
memory operand with appropriate write access rights.

The "4" attribute indicates that the operand is a 4-byte entity;
this has obvious implications for memory operands with respect
to memory access and bounds checking.

operand | stands | | |

attribute | for: | LITERAL | REGISTER | MEMORY
r | read | ok | ok | check OD.TYP3AR
u | write | illegal | ok | check OD,TYP3AR
n | memory | illegal | illegal | ok
b | base | illegal | illegal | ok
c | code | illegal | illegal | if OD.TYP=code
v | vector | (1) | (1) I (1)
1 | 1-byte | (2) I (2) | check w/ 0D.UB
2 | 2-byte | {2) I (2) | check w/ 0OD.UB-1
4 | 4-byte | (2) I (2) | check w/ 0D.UB-3
8 | 8-byte | {2) P (2 | check w/ OD.UB-7
16 |16-byte | {2) 1 (2) | check w/ OD.UB-15

see section 6.4,

Notes: (1):
: see sections 6.1.6 and 6.1.7.

1
(2)
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6.1.5.2 Instruction Attributes
Instruction attributes include the data type of the operation
to be performed. For example, in:

ADD4F X3, X5
the suffix "4F" indicates that addition is to be performed on a
4-byte Floating point number according to the rules of floating
point arithmetic on 32-bit numbers.

A list of data types follous:

instruction| " interpretation
attribute |
1 | 8-bit unsigned integer, or any 1-byte entity
2 | 16-bit two’s complement integer/any 2-byte entity
|
4 | 32-bit two’s complement integer/any 4-byte entity
8 | 64-bit two’s complement integer/any 8-byte entity
16 | 128-bit entity of any type
|
4F | 32-bit IEEE floating point
8F | 64-bit IEEE floating point
16F | 128-bit IEEE floating point
|
4D | 32-bit packed decimal
8D | 64-bit packed decimal
16D | 128-bit packed decimal

6-17
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6.1.6 Sources

A source is a value derived from an operand that is of the right
size to be used in the instruction. This section makes explicit
the actions to be performed on read operands to turn them into
a source. For example, in the instruction:

ADD8 1, X3

the literal "1" is sign-extended to form a 64-bit source; the
register X3 is paired with the register X4 to form a 64-bit
register pair acting as a 64-bit source; both 64-bit numbers
are then added together in two’s complement arithmetic. (The
result is then stored according to the rules in section 6,1.7.)

The following chart makes this all expliclt.

source (in bytes)
operand descr, 2 4 8 16

short literal SE16 SE32 SE64 SE128

1

as is
long literal TR8 TR16 as is SE64 SE128
register opnd TRS TR16 as is pair quad

memory operand | Rl R2 R4 R8 R16

I
|
!
|
|
|
|
|
I
|
where:

SEn = sign-extend to n bits, This aluays means replicating the
lowest numbered bit regardless of data type.

TRn = truncate. This alvays means discarding all but the n
rightmost bits.

pair = pair with following register. X0 follows X15.

quad = pair with following 3 registers.

Bn = Read n consecutive bytes from memory starting at the
effective logical address. Check the object type in the
OD for the logical object; check the read access rights

at the current privilege level; check bound LB and UB-n+l
(both inclusive).
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6.1.7 Destinations

The result of an operation may have to be massaged before it
can be stored away. This section makes these operations
explicit.

destination (in bytes)
1 2 4 8 16

short literal illegal illegal illegal illegal illegal

long literal illegal illegal illegal illegal illegal
register opnd ZE32 SE32 as is pair quad

nemory operand | Wil w2 U4 U8 Y16

where:
illegal = a literal operand must not occur in this context.
ZE32 = right-justify and zero-extend to 32 bits

SE32 = sign-extend, i.e. replicating the lowest numbered
bit, to 32 bits.

pair = pair with following register. X0 follows X15.
quad = pair with following 3 registers.
Un = yrite n consecutive bytes to memory starting at the

effective logical address., Use the OD of the object
to check type and write access rights. Use the bounds
in the OD for bounds checking: LB and UB-n+1. (both
inclusive)
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6.1.8 Traps

Traps are described in detail in chapter 7. Chapter 6 shous
the conditions under which traps occur as the necessary result
of instruction execution, but it does not show the parameters
passed to the trap handler, nor does it show the pervasive
traps and conditions such as power-fail, page fault, etc,

In particular, it does not show any of the traps in the list
below under the heading of "Opnd” that can occur on operand
accessing.

Opnd: can be any of OPSPECV
DATATYPV
DATAODTV
DATAARV
DATABNDSV

AddressingV: can be any of the above, but in accesses other
than those involving explicit operands

Arith: can be any of INTOVF
INTDVDZ

FlArith: can be any of FLINV
FLDVDZ
FLOVF
FLUNF
FLINX

DecArith: can be any of DECINVL
DECOVF
DECDVDZ
DECINVDG
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6.2 Base Instruction Set

6.2.1 Data Movement Instructions

6.2.1.1 MOVEt source.r, destination.u

Move data element. The value of "source" is copied to
“destination". The number of bytes moved is implied
by the type "t". Partial overlap of the areas
containing source and destination may give results that
differ across implementations.

destination := source;

includes: MOVE1 MOVE2 MOVE4 MOVES MOVEL6

6.2.1.2 MOVEADR operand.m, destination.u8

Move logical address., The 64-bit logical address of "operand"
is computed and the result stored in "destination",
“Operand” must be a memory operand. The byte that is
addressed by "operand" requires neither legal read nor
write access, nor need it be within the logical object
bounds. This instruction makes the operand-addressing
hardware available to software, e.g, for building
reference arguments, This instruction also doubles
as a way to obtain the value in a given base register;
for this usage the assembly language alias "BGET8" is
provided,

destination := logical address_of (operand);
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6.2.1.3 PUSHt source.r

Push data element. The value of "source" is copied into a

temporary register of length 4 bytes (for PUSH1, PUSH2,
R PUSH4); of length 8 bytes (for PUSH8) or 16 bytes (for

PUSHlSi. For PUSH1, "source" is zero-extended to 32
bits; for PUSH2, "source" is sign-extended to 32 bits.
The temporary is then pushed onto the stack., After
PUSHt, the top-of-stack register S will point to the
first byte beyond the data that was moved. On stack
overflow, S will be restored to the value it had before
the instruction,

Temp{0..k] := source;
{zero-extend for t=1
sign-extend for t=25
S =8 +m
(s-m)[0..k] := Temp[0..k];
{Here for t =1, 2, 4, 8, 16
use k =31,31,31,63,127
and n = 4, 4, 4, 8, 16}

PUSH1 PUSH2 PUSH4 PUSH8 PUSH16
Traps: STKOVF STKOVF STKOVF STKOVF STKOVF

6.2.1.4 PUSHADR operand.n

Push logical address. The 64-bit logical address of "operand"
is computed and pushed onto the stack, "Operand" must
be a memory operand.

PUSHADR also doubles as a way to push the value of a
base register onto the stack; for this usage the
assembly language alias "BPUSH8" is provided.

MOVEADR operand, Temp;
PUSHS8 Tenp;

Traps: STKOVF

6-22

07/31




VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

6.2,1.5 POPt destination,w

Pop data element. A number of bytes given by "t" are popped

off the stack and stored in "destination". In case
less than 4 bytes are popped, the top-of-stack register
S is further decremented so as to remain word-aligned.
On stack underflow, S is restored to the value it had
before the instruction.

destination := (8-t)[0..p];

S :=8-m
{Here for t = 1, 2, 4, 8, 16
use p = 7,15,31,63,127
and m = 4, 4, 4, 8, 16}

POP1 POP2 POP4 POP8 POP16

Traps: STKUNF STKUNF STKUNF STKUNF STKUNF

6.2.1.6 DPF value.r4, shiftcount.rl, mask.r4, target.ru4

Deposit Field. "Value" is deposited in a field of "target"

identified by "shiftcount" and “"mask”, "Mask" is
assumed to be of the form

2°31 - ( 2"fieldsize - 1 ) * 2"shiftcount
but if it is not, the following definition still
applies. Houwever, implementations may substitute
a circular shift for the logical shift indicated.

MOVE4 value, Val;

LSL4 shiftcount, Val; {see 6.2.3)
MOVE4 target, Tgt;

AND4  mask, Tgt; {see 6.2.3)
OR4  Val, Tgt; {see 6.2.3)

MOVE4 Tgt, target ;
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6.2.1.7 MOVEC length.r4, source.mr, destination.mw

Counted m

Traps:

ove of bytes. This instruction moves a string of
contiguous bytes starting at the logical address
given by the specifier for "source" and of length
"length" to the area of equal length starting at

the logical address given by the specifier for
"destination". If "length" is negative or zero,

no bytes are moved. If conditions (a) or (b) are
violated, implementations may yield different
results; however, in no case should reads or urites
to memory be performed in viclation of access rights.

a) the source and destination area must not overlap
b) "length" must not be in the destination area

The MOVEC instruction is interruptible, at intervals
determined by each implementation.

if IIP = 0 then C := 0
else POP4 C;

IIP := 0;

MOVEADR source, Fromla,
MOVEADR destination, Tola;
Lgth := length[0..31] - 1;
vhile C < Lgth do

begin

Byte := (Fromla + C)[0..7];
{Tola + C)[0..7] := Byte;

C:=C+ 1,

{if implementation chooses to acknowledge
external interrupts here, then
PUSH4 C and set IIP := 1}

end;

AddressingV
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6.2.1,8 MOVEBIT bitindex.r4, source.rl, bitarray.mru 6.2.1.9 MOVEBLR fillchar, srcl, src, destl, dest

Move a bit. The least significant bit of "source" is stored MOVEBLR fillchar.rl, srcl.r4, src.mr, destl.r4, dest.mu
in the array of bits (whose first byte is addressed
by "bitarray") at the index "bitindex"., All other Move bytes left-to-right. This instruction moves a string of
bits of "source" are ignored. "Bitindex" is an contiguous bytes starting at the logical address given
arbitrary two’s complement integer, Only the address by "src” and of length "srcl" to the logical address
of the byte in which the bit is actually stored need given by "dest" and of length "destl". If "destl" is
be within the bounds of the logical object. No other <=0, nothing is moved, If "srcl" > "destl", the string
bits in the byte are disturbed, Memory interlock is is truncated on the right. If "srcl" < "destl", the
not guaranteed (see TESISEMA). string is padded on the right with “fillchar". Overlap

between "src" and "dest" areas is explicitly allowed:
the algorithm below defines the intended effect.
MOVEADR bitarray, Addr;
Source_byte[0..7] := source;

Bit := Source_byte[7]; if IIP = 0 thenC := 0
Byte offset := bitindex[0..28] {sign-extended}; else POP4 C;
Addr[32..63] := Addr[32..63] + Byte_offset; IIP := 0;
Bit_number := bitindex[29,.31]; MOVEADR src, Lfrom;
Byte[0..7] := {Addr)[0..7}; MOVEADR dest, Lto;
Byte[Bit_rumber] := Bit; 81 := srcl; D1 := destl; F := fillchar;
(Addr) [0..7] := Byte; while C < D1 do begin
ifc <8l
then (Lto+C)[0..7] := (Lfrom+C)[..7]
Traps: AddressingV else (Lto+C)[0..7] := F;
C:=C+ 1;

{ if implementation chooses to acknowledge
an external interrupt here,
then PUSH4 C and set IIP := 1 }

end;

Traps: AddressingV
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6.2.1.10 MOVEBRL fillchar, srcl, src, destl, dest
MOVEBRL fillchar,rl, srcl.r4, src.mr, destl.r4, dest.mw

Move bytes right-to-left. This instruction moves a string of
contiguous bytes starting at the logical address given
by "src" and of length "srcl" to the logical address
given by "dest" and of length "destl", If "destl"
<=0, nothing is moved. If "srcl" < "destl", the string
is padded on the left with "fillchar". If "srcl" >
"dstl", the string is truncated on the left. Overlap
between "src" and "dest" areas is explicitly allowed:
the algorithm below defines the intended effect,

if IIP = 0 then C := 0
else POP4 C;
IIP := 03
MOVEADR src, Lfrom;
MOVEADR dest, Lto;
81 := srcl; D1 := destl; F := fillchar;
vhile C < D1 do begin
if c<s1
then (Lto+C)[0..7] := (Lfrom+C)[0..7]
else (Lfrom+C)[0..7] := F;
C:=C+ 1
{ if implementation chooses to acknowledge
an external interrupt here,
then PUSH4 C, and set IIP := 1 }
end;

Traps: AddressingV
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6.2.1.11 TRANSL table.mr, length.r4, source.mr, dest.mu

Translate,

Contiguous bytes from "source" are moved to "dest"

one at a time by using the byte from "source" to
index into "table" and the byte found in "table" is
stored at "dest”.

A count of "length" bytes is moved; if “length” is
not positive, no bytes are moved.

Traps:

if IIP=0 then C ;=0
else POP4 Cj
IIP := 0;
MOVEADR source, Lfrom;
MOVEADR dest, Lto;
MOVEADR table, Ltable;
wvhile C < length do begin
Byte := (Lfrom+C)[0..7];
Byte := (Ltable+Byte)}[0..7];
(Lto+C) := Byte;
C:=C+ 1;
{if implementation chooses to acknowledge an
external interrupt here,
then PUSH4 C, and set IIP := 1 }
end;

AddressingV
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6.2.1,12 DUP wordcount.r4, value.r4

Duplicate. The 32-bit value "value" is pushed onto the stack
a "wordcount” number of times, This instruction must
be interruptible.

if IIP = 0 then C := 1
else POP4 C;
1P := 0;
wvhile C <= wordcount[0,,31] do begin
PUSH4 value;
C:=C+1;
{if implementation chooses to acknowledge
interrupts here,
then PUSH4 C and set IIP := 1}
end;

Traps: STKOVF

6.2.1,13 REP wordcount.r4, value.r4, operand.mw

Replicate. The 32-bit value "value" is stored in "wordcount"
consecutive words of memory starting at the address
of “operand”. If the buffer to be initialized with
"value" overlaps with either "wordcount" or "value”,
implementations may produce different results,

This instruction must be interruptible.

if IIP = 0 then C := 1
else POP4 C;
IIP := 0;
MOVEADR operand, Toaddr;
while C <= wordcount[0..31] do begin
(Toaddr + 4*C )[0..31] := value;
C:=C+ 1
{if implementation chooses to acknowledge
interrupts here,
then PUSH4 C and set IIP := 1}
end;

Traps: AddressingV
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6.2,1.14 EXTEND wordcount.r4

Extend top-of-stack, Base register "S" is incremented by four

times the value of "wordcount”, which must be positive,
On stack overflow S will be restored to its original
value and a trap taken. Ring level 1 is required.

if XL>1 then Trap"INSPRIV";

if wordcount < 0 then Trap"STKDEXIV";

if S + 4 * yordcount <= SL then Trap"STKOVF";
S : = 8 + 4 * yordcount;

Traps: INSPRIV
STKDEXTV
STKOVF

6.2.1.15 DELETE wuwordcount.r4

Delete from top-of-stack. Base register "S" is decremented by

four times the value of "wordcount", which must be
positive, If the new S would end up below Q, the
original S will be restored and a trap taken.

if wordcount < 0 then Trap"STKDEXIV;
if S - 4 ¥ yordcount ¢ Q then Trap"STKUNEF";
S := 8 - 4 * yordcount;

Traps: STKDEXTV
STKUNF
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6.2.2 Arithmetic Instructions

This section includes instructions for arithmetic operations on
the integer and floating point scalar data types. Decimal
arithmetic is covered in section 6.3, vector arithmetic is
covered in section 6.4.

6.2.2.1 ADDt term.r, sum.ru

Add. "Tern” is added to "sum" and the result is stored in
“sum". In case of integer overflow, "sum" is set to
the least significant bits of the correct mathematical
result,

ADD4 ADD8 ADD4F  ADDS8F  ADD16F
Status: Ovfl ovfl Flflags Flflags Flflags
Traps: Arith Arith FlArith FlArith Flarith

6.2.2.2 SUBt term.r, difference.rw

Subtract. "Term" is subtracted from "difference" and the result
is stored in "difference”. In case of integer overflou
"difference” is set to the least significant bits of
the correct mathematical result.

SUB4 SUB8 SUB4F SUB8F  SUB16F
Status: Ovfl Ovfl Flflags Flflags Flflags
Traps: Arith Arith FlArith Flarith FlArith

6.2.2.3 MPYt factor.r, product.ru

Multiply. “Factor" is multiplied by "product" and the result
is stored in "product", In case of integer overflow,
“product” is set to the least significant bits of the
correct mathematical result.

MPY4 MPY8 MPY4F MPYS8F MPY16F
Status: Ovfl ovfl Fiflags Flflags Flflags
Traps: Arith Arith Flarith FlArith FlArith
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6.2.2.4 DIVt divisor.r, dividend.ruw

Divide., "Dividend" is divided by "divisor" and the result
stored in "dividend". On integer divide with "divisor"
zero, the new value of "dividend" is indeterminate;
however, the sign of "dividend" should not be changed.
For integer divide, the algebraic result is truncated
towards zero, On integer overflow, "dividend" is left
as zero.

DIV4 DIve DIV4F DIVSF DIV16F
Status: Ovflow Ovflow FlFlags FlFlags [FlFlags
Traps: Arith Arith FlArith FlArith FlArith
INTDVDZ INIDVDZ

6.2.2.5 NEGt source.r, destination.w

Negate, “source" is negated (subtracted from zero) and the
result is stored in "destination". On integer
overflow, "destination" is left as the largest
negative value.

NEG4 NEG8 NEG4F NEGSF NEG16F
Status: Ovflow Ovflow FlFlags F1Flags FlFlags
Traps: Arith Arith Flarith FlArith FlArith

6.2.2.6 ABSt source.r, destination.u

Absolute value. The absolute value of "source" is computed
and the result is stored in “"destination”. On
integer overflow, "destination" is left as the
largest negative value.

if source < 0 then destination := 0 - source

else destination := source;

ABS4 ABS8 ABS4F ABSSF  ABS16F
Status: Ovflow Ovflow FlFlags FlFlags FlFlags
Traps: Arith Arith FlArith Flarith FlArith
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6.2,2,7 REMt divisor,r, dividend.ru

Remainder.

Status:
Traps:

The algebraic remainder of the division of "dividend"
by "divisor” is computed and the result stored in
"dividend”. The remainder has the same sign as the
old value of "dividend”, and is less in absolute value
than “divisor". The equation

divisor * quotient + remainder = dividend
always holds, If “"divisor" is zero, the magnitude of
"dividend" will be indeterminate,

REM4 REM8
Ovflow Ovflouw
Arith Arith

INTDVDZ INTDVDZ

6.2.2.8 MODt divisor.r, dividend.ru

Modulus.

Status:
Traps:

The modulus of “dividend" and "divisor" is computed
and the result is stored back into "dividend“.
The modulus is defined to be the quantity that is
positive (or zero) and less than the absolute value
of "divisor", and such that the difference of modulus
and “dividend" is a whole multiple of "divisor",
This definition determines the modulus uniquely, except
when "divisor" has the value zero, in which case the
magnitude of "dividend" will be indeterminate.
Note that the equation

divisor ¥ quotient + modulus = dividend
will not always hold.

MOD4 MOD8
Ovflow Ovflow
Arith Arith
INTDVDZ INTDVDZ
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6.2.2.9 POLYt degree.rl, polyn.mr, operand.ruw

Polynomial evaluation. This instruction computes the value of

a polynomial evaluated for the value of “"operand",
storing the result back into "operand”. The polynomial
is defined by degree "degree" ({interpreted as an
unsigned integer) and a table of coefficients, "polyn".
The coefficient of the highest order term of the
polynomial is addressed by "polyn". All coefficients
are stored consecutively in memory. The algorithm
below is intended to define the value desired, not

the precise sequence in which the calculations are
actually performed.

X := operand; Y := 0; C := 0;
MOVEADR polyn, Lcoeff;
wvhile C < degree do

Y := ¥ ¥ X+ (Lcoeff+C¥t) [0..8%t-1];
operand :

=Y;
POLY4F POLYSF POLY16F
Status: FiFlags FlFlags FlFlags

Traps: AddressingV AddressingV AddressingV

Flarith Flarith Flarith
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6.2.3 Logical Operations and Shifts

6.2.3.1 AND4 mask.r4, operand.ru4

Logical AND, The bit-wise logical AND of "mask" and "operand"
is computed and the result is stored in "operand”.

6.2.3.2 NOT4 source.r4, destination.uw4
Logical NOT. The bit-wise logical NOT (one’s complement) of

"source” is computed and the result is stored in
"destination",

6.2.3.3 OR4 mask.r4, operand.rw4

Logical OR, The bit-wise (inclusive) OR of "mask" and "operand"
is computed and the result is stored in "operand".

6.2.3.4 XOR4 mask.r4, operand.ru4

Exclusive OR, The bit-uwise exclusive OR of "mask” and "operand"
is computed and the result is stored in “operand".

6,2.3.5 LSLt shiftcount.rl, bitfield.rw

Logical shift left. "Bitfield" is shifted left by "shiftcount"
bits and the result is stored back in "bitfield".
Zeros are shifted into the least significant bit; bits
shifted out of the most significant bits are lost.
"Shiftcount” is unsigned; only the rightmost 5 bits
(for LSL4) or 6 bits (for LSL8) are significant.

includes: LSL4 LSL8
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6.2.3.6 LSRt shiftcount.rl, bitfield.rw

Logical shift right. "Bitfield" is shifted right by "shiftcount”
bits and the result is stored back in "bitfield".
Zeros are shifted into the most significant bit; bits
shifted out of the least significant bits are lost.
For interpretation of "shiftcount", see LSLt.

includes: LSR4 LSR8

6.2.3.7 ASLt shiftcount.rl, operand.ru

Arithmetic shift left., "Operand" is shifted left by "shiftcount"”
bits and the result is stored back into "operand".
Zeros are shifted into the least significant bit; bits
shifted out of the most significant bit are lost.
Overflow occurs if the new sign bit or any of the bits
shifted out are different from the original sign bit.
For interpretation of "shiftcount", see LSLt.

ASL4 ASL8
Traps: Ovfl Ovfl

6.2.3.8 QUAD4 source.r4, destination.u4
Quadruple, “dest" is given the value of "source" times four.

MOVE4 source, destination;
ASL4 2, destination;

Traps: Ovfl

6.2.3.9 ASRt shiftcount,rl, operand.ru

Arithmetic shift right, Divide the integer value of "operand"
by 2¥¥ghiftcount, truncating toward zero and store
the result back into "operand". See LSLt for
interpretation of "shiftcount".

Note: for negative values of "operand" this is not
the same as a straight sign-propagating right shift.

includes: ASR4 ASRS
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6.2,4 Compares and Tests

6.2.4,1 CMPt sourcel.r, source2.r

Compare. The condition code CC is set depending on the result o
the comparison of the values of "sourcel" and “source2".
For CMP2, CMP4 and CMP8 a two’s complement compare is
performed; for CMP1 an unsigned integer compare is
performed. For CMP4F, CMPSF and CMP16F comparison is
performed according to the IEEE floating point standard;
note that this can result in "unordered”.
Condition codes are set as follous:

CCG, if sourcel > source2
CCE, if sourcel = source2
CCL, if sourcel < source2
CCU, if sources are "unordered” (IEEE only)

CMP1 CMP2 CMP4 CMP8 CMPAF CMPSF CMP16F

Status: CC cC cC cc cc cC cc
F1Flags F1Flags FlFlags
Traps: FlArith FlArith FlArith

6.2.4,2 TESTt source.r

Compare to zero. This instruction is merely a short form of
*CMPt source, 0°.

TEST1 TEST2 TEST4 TEST8 TEST4F TESTS8F TEST16F

Status: CC cC cC cC cc cc ccC
F1Flags F1Flags FlFlags
Traps: FlArith FlArith FlArith
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6.2.4.3 CMPC 1length.r4, stringa.m, stringb.m, index,u4

Counted Compare. This instruction compares two streams of bytes
"stringa" and "stringb" until the first non-equal byte
has been encountered or until “length" bytes have been
compared. The condition code in STATUSB is set depending
on the unsigned compare of the last pair of bytes examined.
"Index" is set to the number of the first non-equal byte.
If interrupted, the number of bytes left to compare is
pushed onto the stack and the instruction-in-progress
flag is set.

MOVEADR stringa, Ala;
MOVEADR stringb, Bla;
if IIP = 0 then C := 0
else POP4 C;
IIP := 03
wvhile C < length and
(Ala+C)[0..7] = (Bla+C)[0..7]
do begin
C:=C+1;
{if implementation chooses to acknowledge
external interrupts here, then
PUSH4 C and set IIP := 1 }
end;
if C >= length then CC := CCE
else if (Ala+C)[0..7] > (Bla+C)[0..7] then CC := CCG
else CC := CCL;
indexr := C;

Status: CC
Traps: AddressingV
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6.2.4.4 TESTLSB source.rl

Test least significant bit. The condition code is set to CCG
if the least significant bit of "source” is 1,
otherwise the condition code is set to CCE.

Byte[0..7] := source;
if byte[7] = 1 then CC := CCG
else CC := CCE;

Status: CC

6.2.4.5 TESTOV

Test overflow. The condition code is set to CCG if the overflow
exception flag is set, else the condition code is set
to CCE. The overflow flag is left clear.

if STATUSB.OVF = 1 then CC := CCG
else CC := CCE;
STATUSB.OVF := 0;

Status: CC
Overflow
6.2.4.6 TESTA

Test conditional break enable, If the "CBA" trap is enabled,
set the condition code to CCG, otherwise to CCE.

if STATUSB.CBA = 1 then CC := CCG
else CC := CCE;

Status: CC

6.2.4.7 TESIB

Test conditional break enable, If the "CBB" trap is enabled,
set the condition code to CCG, otherwise to CCE,

if STATUSB.CBB = 1 then CC := CCG
else CC := CCE;

Status; CC
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6.2.4.8 TESTBIT bitindex.r4, bitarray.mr

Test a bit, The condition code is set depending on the value of
a bit in a bit array at the index "bitindex". The bit
array must be in memory (it cannot be in a register) and
ite first byte must be addressed by "bitarray". If the
bit is found set, the condition code is set to CCG, else
it is set to CCE.

MOVEADR bitarray, Addr;

Bytela[0..31] := Addr([0..31];

Byte_index[0..31] := bitindex[0..28]; {sign-extend}
Bytela[32..63] := Addr[32..63] + Byte index;

Byte := (Bytela)[0..7];

Bit_num := bitindex([29,.31];

if Byte[Bit_rum] = 1 then CC := CCG else CC := CCE;

Status: CC
Traps: AddressingV

6.2.4.9 SCANUNTIL charset.nr, string.mr, index.ru4

Scan string until condition satisfied. The string of characters
(bytes) pointed to by "string" is scanned for a character
that satisfies a particular condition. "Index" must be
initialized by software; SCANUNTIL increments "index"
(ignoring any overflow) continually as the search proceeds.
The condition to be satisfied by the character is encoded
as a 256-bit bit array (similar to a Pascal set).

Bits found set in the bit array "charset" signify that

the corresponding character satisfies the condition.

If the logical address of "charset" is at or within 32
bytes of the object’s upper bound, an addressing violation
trap is raised. This instruction must be interruptible;
“index" contains sufficient information to restart.

MOVEADR string, St;

index := index - 1;

repeat index := index + 1;
Char := (St+index)[0..7j; {zero-exrtend}
{implementations may choose to

acknowledge an interrupt here}

TESTBIT Char, charset; {charset[Char] }
until CC = CCG; { = 1 }

Status: CC NOT affected
Traps: AddressingV
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6.2.4.10 CMPB fillchar, lgtha, srca, 1gthb, srcb, index 6.2.5 Base Register Instructions

CMPB fillchar.rl, lgtha.r4, srca.mr, lgthb.r4, srcb.mr, index.u4

Compare bytes., "“Srca" is compared to "srcb" and the condition 6.2.5.1 BGEI8 source.b, destination.uw8
code get. The shorted string is considered padded with
"fillchar". "Index" identifies the offset where bytes Get address in base register. See under "MOVEADR",

started to differ. CCG and CCL refer to the unsigned
compare fo the bytes at that location.

6.2.5.2 BSEI8 source.r8, dest.b
C :=0; TFlag := 1;

MOVEADR srca, La; Set base register to logical address. Load the 64-bit logical
MOVEADR srcb, Lb; address from “"source” into the designated base register.
while { C < 1gtha or The logical object id of the logical address must be
C < 1gthb and valid. The logical offset of the logical address need
Flag = 1 ) do begin not be within object bounds.
A := fillchar; B := fillchar;
if C < 1gtha then A := (La+C)t0..7]; :
if C < lgtnb then B := (Lb+C)[0..7]; . j := base_reg_designator_of (dest);
if A <> B then begin if j >= 6 then Trap"Opnd";
if A > B then CC := CCG Bj[0..63] := source[0..63];
else CC := CCL; : Group := source[0..2];
Flag := 0; Object:= source[3..31i;
end; if Object*16 > length_of_ODT_of (Group)
end; then Trap"AddressingV";

if Flag = 1 then CC := CCE;
index := C;

Traps: AddressingV
Status: CC

Traps: AddressingV
6.2.5.3 BMOVEADR source.m, dest.b

Move logical address to base register. This instruction is like

6.2.4,11 CMPT table, fillchar, lgtha, srca, lgthb, srcb, index MOVEADR, but the result is stored in the base register
designated by "dest”. This instruction doubles as a
CMPT table.mr, fillchar.rl, lgtha.r4, srca.mr, lgthb.r4, base-register-to-base-register move, An assembler
srcb.mr, index.w4 language alias "BMOVES" is provided for this usage.
Compare bytes, translated. This instruction resembles CMPB
except in that compares are made of the bytes in MOVEADR source,Tenmp;
“table" indeged by the data bytes in the strings BSET8  Temp, dest;

rather than of the actual data bytes themselves.

Traps: AddressingV
Status: CC

Traps: AddressingV
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6.2.5.4 BMOVES8 source.b, dest.b

Move base to base register. See under “BMOVEADR",

6.2.5.5 BGET4 source.b, dest.uwd
Get offset of base register. Store 32-bit logical offset of the
base register designated by "source" into “dest".

"Source” must be a memory operand, according to the “.b*
attribute,

j := base_reg_designator_of (source);
dest := BJ[32..63];

6.2.5.6 BSET4 source.r4, dest.b

Set offset of base register. Load "source" into the 32-bit
logical offset of the designated base register.

j := base_reg_designator of(dest);
if j »= 6 then Trap"Opnd";
Bj{32..63] := source(0..31];

6.2.5.7 BPUSH8 source.b

Push a base register. See under "PUSHADR".

6.2.5.8 BPOP8 dest.b
Pop into a base register. Eight bytes are popped off the stack
and loaded into the designated base register.

POP8  Tenmp;
BSET8 Temp, dest;

Traps: AddressingV
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6.2.5.9 BADD4 term.r4, dest.d

Add to offset of base register. The 32-bit value “term" is
added to the logical address in the base register
designated by "dest" using wrap-around 32-bit
arithmetic. Overflow and carry is ignored.

j := base_reg_designator_of (dest);
if j »= 6 then Trap"Opnd";
Bj[32..63] := Bj[32..63] + ternm;

6.2.5.10 BSUB4 term.r4, dest.b

Subtract from offset of base register. The 32-bit value "term"
is subtracted from the logical address in the base
register designated by "dest" using wrap-around 32-bit
arithmetic. Overflow and carry is ignored.

NEG4 term, Temp;
BADD4 Temp, dest;

6.2.5.11 BCMP4 sourcea,b, sourceb.r4

Compare offset of base register. The 32-bit offset of the base
register designated by "sourcea" is compared using two’s
complement arithmetic with the value of "sourceb".
Condition codes are set to reflect the result of the
comparison. No overflow can occur,

j := base_reg designator_of (sourcea);
if Bj[32..63] > sourceb then CC :
else if Bj[32..63] = sourceb then CC :
else CC := CCL;

= CCG
= CCE

Status: CC
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6.2.5.12 BCMP8 sourcea.b, sourceb.r8
Compare base register with logical address. The 64-bit logical
address in the base register designated by "sourcea” is
compared for equality with the logical address in
"sourceb”. If the two logicl addresses are equal, CCE

is set; otherwise, implementations may set either CCG or
CCL arbitrarely.

j := base_reg_designator_of (sourcea);
if Bj[0..63] = sourceb then CC := CCE
else CC := CCG {or CCL};

Status; CC

6.2.5.13 BTIEST8 source.b

Test base register for NIL, The base register designated by
"source" is compared to a logical address of all zeros.

BCMP8 source, 0;

Status: CC
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6.2.6 Transfer of Control

6.2.6.1 BR{GLEU} target.r4

Branch., Depending on the match between the condition code field
in the status register and the mask comprised of four
bits in the opcode, execution contimues with either the
next instruction in sequence or with the instruction
explicitly designated by "target". If a match is found
then the branch is taken. The target address of the
branch is found by adding "target"¥2 to the value of P
P at the beginning of the branch instruction itself.

If the branch is not taken, and the target is in any
vay illegal, implementations may differ in whether an
Opnd trap is raised on “target".

mask[0] := 1~ OPCODE{3]; mask([3] := OPCODE[4];
mask[1..2] := OPCODE[6..7];
if CC=CCU and Unordered_trap enabled
and { mask[0]=1 or mask_1]=1 )
then Trap”Invalid Operation";

if  mask(0] = 1 and CC = CCG

or mask[1] = 1 and CC = CCL

or mask[2] = 1 and CC = CCE

or mask([3] = 1 and CC = CCU

then P := P + target ¥ 2;

Instruction Mnemonic Assembler aliases
Branch Never BRN
Branch Unordered BRU
Branch Equal BRE BRZ BREVEN BRNOV
Branch Equal or Unord BREU BRZU
Branch Less BRL BRM
Branch Less or Unord . BRLU
Branch Less or Equal BRLE BRMZ
Branch Not Greater BRNG BRLEU
Branch Greater BRG BRP BRODD BROV BRBUSY
Branch Greater or Unord BRGU .
Branch Greater or Equal BRGE BRPZ
Branch Not Less BRNL BRGEU
Branch Greater or Less BRGL
Branch Not Equal BRNE BRGLU
Branch Not Unordered BRNU BRGLE
Branch Aluays BR

Traps: CODEBNDSV
FLINV
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6.2.6.2 CALL target.r4

Procedure call, A procedure marker is pushed onto the stack
and control is passed to "target", interpreted as
a 32-bit half-word offset relative to the start of
the CALL instruction. CALL requires the procedure
to be within the current code object.

IIP ;= 1-1IP; if IIP=1 and PTE=1 then Trap"DBCALL";
S := S + 4; {pushes garbage}

PUSH4 P[32..63];

PUSH4 Q[32..63];

Q:
P

8;
P + target ¥ 2;

Traps: STKOVF
CODEBNDSV
DBCALL

6.2.6.3 CALLX loi.r4

External call. A procedure marker is pushed onto the stack and
control is passed to the entry point specified in the
0D for "loi”. "Loi" contains the high 32 bits of a
logical address into the target object.

IIP := 1-1IP; if IIP=1 and PTE=1 then Trap"DBCALL";
IIP := 0;

PUSH8 Preturn;

(s-4)[0..6] := STATUSA;

PUSH4 Q[32..63];

Q:=8;

if 0D(loi).TYP <> VisionCode then Trap"CODETYPV";
if STATUSA.XL > 0D(loi).PR then Trap"CODERINGV";
STATUSA.XL := OD(loi}.XL;

Ptarget[ 0..31] := loi;

Ptarget[32..61] 0D(loi).EPUO;

Ptarget[62..63] 0;

P ;= Ptarget;

Traps: STKOVE
CODETYPV
CODEBNDSV
CODERNGV
DBCALL
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6.2.6.4 BRX loi.r4

External Branch, Control is transferred to the target
indicated in the OD for “"loi", Loi contains the
high 32 bits of a logical address into the target
code object.

1IP := 1-1IP; if I1IP=1 and PTE=1 then Trap"DBCALL";
1IP := 0;
Ptarget[0..31] := loi;
Ptarget[32..61] := OD(loi).EPWO;
Ptarget[62..63] := 0;
if OD(1oi).TYP <> VisionCode then Trap"CODETYPV";
if  STATUSA.XL > OD(loi).PR
or STATUSA.XL > 0D(loi).XL
then Trap"CODERINGV";
if (@-8)[0] = 0 then begin
(a-8)[0] := 1;
(a-8)[1..2] := STATUSA.XL;
(@-12)[0..31] := P[0..31];
end;
P := Ptarget;

Traps: CODETYPV
CODERINGV
CODEBNDSY
DBCALL
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6.2.6.5 EXIT 6.2.6.6 SEXIT
Exit from procedure. This instruction can be used to return Subroutine exit. This instruction can be used to return from a
from a procedure called with CALL or CALLX, The subroutine called with a PUSH4; BR comb.mauon
procedure marker located at Q contains the necessary The value of Q is not affected.
information to restore the context of the caller.
If the caller executed in a different code object POP4 Returnoffs;
than the current one, a number of checks are made. if Returnoffs[Slj = 1 and {implementation

chooses to detect this condition}
then Trap"INSODDP";
if {@-8)[0] = 1 then begin Returnoffs(31] := 0'

{external exit} P[32..63] := Returnoffs;

Pobject := (Q-12)[0..31];

Poffset := (Q-8)[8..31], zero-extended;

ST return := (a-8)[0..7]; Traps: STKUNE
if STATUS.XL > OD(Pobject).XL CODEBNDSV
then Trap"STKCONSISTV"; INSODDP

if ST return.XL > STATUSB.XIL
then Trap"INSXTL";

end
else begin 6.2.6.7 BREAK parameter.r4
{internal exit}
Pobject := P[0.,31]; Breakpoint. This instruction always causes a breakpoint trap.
Poffset := (Q-8)[0..31]; . The value of STATUSD.DRL has no effect,
ST_return := STATUSA;
end
Q_ offset := (a-4)[0..31]; Trap"DBBREAKINS";

if Q_offset < 0 or Q ¢ offset > Q[32..63] - 12
then Trap"SIKCONSIS’IV" 3

if Poffset[31] = : Traps: DBBREAKINS
and (mplementation chooses to detect this)
then 'Irap"INSDDDP"

Poffset[31] :=

s[32..63] = 0[32 .63] - 12 6.2.6.8 ERROR

0[32..63] 1= Q_offset;

p{0..31] = Pobject; Error, This inetruction always cauges a trap for all users.
P[32..63] := Poffset; .

STATUSA = ST return' {SIT bit not to

take effect until Trap"INSERROR";
next instruction}

Traps: INSERROR

Status: restored from marker on external exit
Traps: INSKTL

STKCONSISTV 6.2.6.9 NOP
CODEBNDSV
INSODDP i No operation., Contirues with the immediately following

instruction,
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6.2.6,10 CHECKA parameter.r4
Conditional break, If the "CBA" enable bit is set, a trap is
taken., If "CBA" is disabled, no Opnd trap should be
raised even if "parameter” is somehow illegal; instead
"parameter" should be ignored.

if STATUSB.CBA = 1 then Trap"DBCHECKA";
Traps: DBCHECKA

6.2.6.11 CHECKB parameter.ré4
Conditonal break. If the “CBB" enable bit is set, a trap is
taken., If "CBB" is disabled, no Opnd trap should be
raised even if "parameter" is somehow illegal; instead
"parameter" should be ignored.
if STATUSB.CBB = 1 then Trap“DBCHECKB";

Traps: DBCHECKB

6.2.6.12 CHECKLO source.r4, lobound.r4

Check lower bound. If "source” is less than "lobound", a
bounds check trap occurs, The comparison is a two’s
complement 32-bit compare.

if source < lobound then Trap"INSCHKLO";
Traps: INSCHKLO

6.2.6.13 CHECKHI source.r4, hibound.r4
Check upper bound. If "source" is greater than "hibound", a
bounds check trap occurs. The comparison is a two’s
complement 32-bit compare.
if source > hibound then Trap"INSCHKHI";
Traps: INSCHKHI
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6.2.7 Interaction with Machine State

6.2.7.1 MOVEfSP4 selector.rl, destination.u4

Move from special register. This selects a certain register
or dedicated memory location based on the value of
"gelector”. This register or memory location is then
right justified, zero filled and stored in the 32-bit
"destination”. An INSMOVSPL violation occurs when
either the value of the selector does not correspond
to any entry in the following list or when the current
execute level does not match the level required for
reading the selected register.

selector #bits req’d XL Assembler alias
0 condition code 2 3 GetCC
1 rounding mode 2 3 GetRM
2 exit threshold 2 3 GetXTL
3 exrecute level 2 3 GetXL
4 flpt trap enable 5 3 GetTEFLP
5 int trap enable 2 3 GetTEINT
6 dec trap enable 2 3 GetTEDEC
7 flpt mode 2 3 GetFPCMODE
8 STATUSA 32 3 GetSTATA
9 STATUSB1 32 3 GetSTATB1
10 STATUSB2 32 3 GetSTATB2
11 TRYoffset 32 3 GetTRY
12 cond break A 1 1 GetCBA
13 cond break B 1 1 GetCBB
14 task clock enable 1 1 GetTCE
15 STATUSC1 32 1 GetSTATC1
16 Interrupt Mask 16 1 GetIMR
17 STATUSD 32 1 GetSTATD
22 HASH.PA 32 1
23 HASH.LENGTH 32 1
24 PDIR.PA 32 1
25 PDIR.LENGTH 32 1

Traps: INSMOVSPL
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6.2.7,2 MOVEtSP4 selector.rl, source.r4

Move to special register. Thig instruction selects a special
hardvare register or dedicated memory location
based on the value of "selector”, The value of
"source" is stored into this register or location.
The least significant bits of "source" are used in
the assigrment, without any overflow indication.

A trap is taken when the selector does not match
any of the entries in the following table or if
the current ring level does not match the required

ring level,

selector #bite req’d XL Agsembler Alias
0 condition code 2 3 SetCC

1 rounding mode 2 3 SetRM

2 exit threshold 2 < source SetXTL

3 fipt trap enable 5 3 SetTEFLP

4 int trap enable 2 3 SetTEINT

5 dec trap enable 2 3 SetTEDEC

6 flpt mode 3 3 SetFPCMODE
7 STATUSB2 32 3 SetSTATB2
8 Q_offset 32 3 SetQ

9 task breakrange LOI 32 3 SetTBR
10 cond break A 1 1 SetCBA

11 cond break B 1 1 SetCBB

12 task clock enable 1 0 SetICE

13 Interrupt mask 16 0 SetIMR
14 Debug ring level 2 0 SetDRL

15 sys breakrange LOI 32 0 SetSBR

Status: depends on selector
Traps: depends on selector
Opnd
INSMOVSPL
STKCONSISIV (if setting Q offset to value
outside SB and S)
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6.2.7.3 MOVEfSP8 selector.rl, destinaiton.w8

Move from special register., This instruction is used to
obtain the contents of a special hardware register
or dedicated memory location identified by the
value of "selector". Values of "selector" not
represented in the following list cause the trap
"INSMOVSPL" to be raised.

selector #bits  req’d XL Assembler Alias
0 program counter 64 3 GetP

1 ODTC.LA 64 1

2 TCB.1A 64 1 GetICB

3 TCBX.LA 64 1 GetTCBX

4 interval timer 64 1

5 task clock 64 1

6 time of century 64 1

7 QI.LA 64 1

Traps: INSMOVSPL

6.2.7.4 MOVEtSP8 selector.rl, source.r8

Move to special register. This instruction stores the
value of "source" into the special hardware
register or dedicated memory location identified
by "selector".

selector #bits req’d XL Assembler Alias
0 TCBX.LA 64 . 0 SetICBX

1 interval timer 64 0

2 task clock 64 0

3 time of century 64 0

4 QI.LA 64 0

5 DST descriptor 64 0

6 CST descriptor 64 0

Traps: dependent on selector
INSMOVSPL
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6.2.7.5 TRY

Mark the stack with the TRYoffset, Uhen paired with UNTRY,
TRY supports the try/recover construct of MODCAL.
The old value of TRYoffset is pushed onto the stack
and the current value of S is recorded in IRYoffset
(hence TRYoffset points to the location in the stack
where the previous value of TRYoffset is kept),
UNTRY is used to undo this sequence. The back chain
of TRYoffsets is much like the back chain of Qoffsets
but under total software control independent of CALL/
CALLX. TRY must not be executed on the ICS.

if STATUSC.ICS = 1 then Trap "TRYV";
PUSH4 TRYoffset;
TRYoffset := S[32..63];

Traps; STKOVF
TRYV

6.2.7.6 UNTRY destination.uw4

Remove one TRY marker. This instruction undoes the action
performed by TRY. This causes the previous value
of TRYoffset to become reestablished, UNTRY must
not be executed when on the ICS. Note that the
TRYoffset need not be on top of the stack when
UNTRY is executed, nor is it popped off.

if STATUSC.ICS = 1 then Trap"TRYV";
Temp[32..63] := TRYoffset,

destination := TRYoffset - 4;
Tenp[0..31} := S[0..31];
TRYoffset  := (Temp - 4)[0..31];
Traps: TRYV
AddressingV
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6.2.8 Instructions that interact with the address space

6.2.8.1 PROBE ring.ri, access.rl, address.r8, length.r4

Probe access rights, This instruction sets condition codes
dependent on the legality of accessing the address
range given by "address" and "length". PROBE tests
whether in the ring level specified by "ring" the type
of access represented by "access” would be legal
everywhere in the logical address range starting at
"address” and ending at "address"+"length"-1,

Here a negative "length" is treated as 0.

Encodings: ring access
0 0 memory_read
1 1 memory_write
2 2 instruction_fetch
3 3
4 caller’s

Values not in the list above will cause an INSPROBE
trap.

The resulting conditon code settings are as follows:
CCL: the object does not exist or the indicated
access is illegal.

CCE: the indicated access is legal but the indicated
address range iz not wholly within the object.

CCG: the indicated access is legal at the indicated

privilege level over the entire address range
specified.

Status: CC
Traps: INSPROBE
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6.2,8.2 TESTREF ppn.r4

Test refer

Status:
Traps:

ence bit, Returns the state of the reference bit for
the physical page "ppn" in the condition codes and

then clears the reference bit, “Ppn" gives the physical
page number, If the reference bit in the PPD for the
page is found set, then CCG is returned, otherwise CCE.

The reference bit in the PPD is then cleared.

Any address translation aid (TLB) must synchronize
itself with the contents of the PPD as part of the
execution of TESTREF.

Note that TESTREF only provides a snapshot: immediately
after executing TESTREF some other processor may access
the page; this would not be reflected in the condition
codes,

Ring 0 privilege is required.

cC
INSPRIV

6.2.8.3
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PDINS ppn.ré4

Insert page into PDIR. This instruction takes the Physical Page

Descriptor (PPD) identified by the physical page rumber
“ppn" and inserts it in the proper Hash chain, The PPD
must be entirely initialized before using this instruction,
except for the link field. The Virtual Page Number (VPN)
in the PPD itself is used to compute the hash value H that
locates the proper chain. The PPD will be inserted as the
first link in the chain, No other PPDs in the PDIR will
be changed. If the PPD for "ppn" is already linked into

a hash chain before PDINS is erecuted, the results are
undefined, PDINS requires ring 0 privilege.

if XL > 0 then Trap"INSPRIV";

PPDpa := PDIR,PA + 16 * ppn;

Pp := (PPDpa)[1..20]; {zero-extend}
if ppn <> Pp then Trap"ADRPDIR";

VPN := (PPDpa + 4 )[0..51];

Bucketpa := HASH.PA + 4 * hash( VPN };
Link := (Bucketpa)[0..31];

(PPDpa + 12)[0..31] := Link;

(Bucketpa) [0..31] := PPDpa;

Note: the bracketed portion must be synchronized with

Traps:

other hardware access to the hash bucket in a
shared-memory multi-processor system.

Such a system may use bit 0 of the hash bucket
(Bucketpa) [0] as a semaphore bit.

This bit must be returned to 0.

See PDDEL for further detail.

INSPRIV
ADRPDIR
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6.2.8.4 PDDEL ppn.r4

Delete from PDIR. The Physical Page Descriptor PPD for the
physical page with physical page rumber "ppn” is
removed from its hash chain.

Ring 0 privilege is required.

PPDpa := PDIR.PA + 16 * ppn;
VPN := {PPDpa + 4)[0..51];
Linkpa := HASH.PA + 4 * hash( VPN );
repeat
Oldlinkpa := Linkpa;
Linkpa := (Linkpa + 12)[0..31];
if Linkpa = 0 then Trap"ADRPDIR";
until Linkpa = PPDpa;
(01d1inkpa+12) [0..31] := (PPDpa+12}[0..31];

Notes: (consult carefully when implementing a VISION machine
capable of running as a shared-memory multi-processor)

1) Address translation aids (TLB) must be synchronized (by
harduware) with the state of the PDIR/HASH before hardware
may execute the instruction following PDDEL.

2) In a shared-memory multi-processor system, implementations
must guarantee that read-write operands never fault on the
urite. The burden for ensuring this can be placed entirely
on the implementation of PDDEL. This requires PDDEL to
complete a handshake with all processors in the system
before the instruction following PDDEL executes.

3) Various functions compete for access to hash bucket and PPDs
and these functions must be carefully synchronized by
hardware. These functions are: address translation; writing
dirty/reference bits; PDINS; TESTREF; PDDEL.

Each hash bucket and each PPD has a bit for semaphore use by
hardware. It is sufficient to lock the appropriate hash
bucket for the entire duration of each function. However,
doing so might add overhead to writing dirty/reference bits.
The following scheme is also sufficient: when writing dirty/
reference bits lock only the PPD; when translating addresses
lock hash bucket and each PPD in the chain and unlock each
immediately after reading its contents; PDINS locks the hash
bucket; PDDEL locks two consecutive links in the chain
(starting with the hash bucket) and unlocks the first one
only after it has obtained the lock for the third one.
Hardware must unlock all semaphores when a trap occurs.

Traps: ADRPDIR
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6.2.8.5 CVLAtVA operand.ml, virtaddr.u8

Convert logical address to virtual address. The virtual
address corresponding to the logical address of
“operand" is computed and stored in "virtaddr".
Level 1 privilege is required. The reference
bit for the page containing "operand" is not
affected.

Traps: INSPRIV

6.2.8.6 HASH virtaddr.r8, hashindex.u4

Hash address. The 64-bit virtual address "virtaddr" is
converted to a hash index vhich is stored in
the 32-bit "hashindex". Level 1 privilege is
required. Bits 52..63 of "virtaddr" are ignored.

Traps: INSPRIV

6.2.8.7 CVVAtPP virtaddr.r8, ppn.u4

Convert virtual address to physical page number. The 64-bit
"virtaddr" is translated to find the physical page
on which it resides. It returns a 20-bit physical
page number, right justified and zero-extended.
However, if the page is absent, "ppn" is set to -1,
Level 0 privilege is required. The reference bit
for the addressed page is not affected.

VPN := virtaddr[0..51];
if page VPN is currently present then
ppn := physical_page number_of_(VPN)
else
ppn := -1;

Traps: INSPRIV
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6.2.8.8 GrowGD0 newlength.r4 6.2.9 Instructions for Tasking and Synchronization

Grow group zero ODT. This instruction informs hardware that
the length of the Object Descriptor Table for group zero

has been increased. The Group Descriptor for group zero 6.2.9.1 DISABLE o0ldi.uwl

is updated to reflect this, in all processors in a

ghared-memory multi-processor system. Ring 0 privilege Disable interrupts,

is required. It is the responsibility of operating

system software to ensure that the newly addressable ODs if STATUSA.XL > 1 then Trap;
in group zero are properly initialized. 0ldi := STATUSC.IE;

STATUSC.IE := 04
if STATUSA.XL > O then Trap"INSPRIV";
if GDO.UB < GDO.LB + newlength Traps:  INSPRIV
then GDO,UB := GDO.LB + newlength;

Traps: INSPRIV 6.2.9,2 ENABLE oldi.rl

Enable interrupts.

if STATUSA.XL > 1 then Trap;
STATUSC. IE := oldi;

Traps: INSPRIV

6.2.9.3 INTERRUPT pr.r4d
Cause processor interrupt at priority “pr".
if STATUSA.XL > 0 then Trap;

pri := pr[28..31];
IPR[ pri,processor ] := set;

Traps: INSPRIV
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6.2.9.4 PSDB

Pseudo Interrupt Disable. The Dispatcher Disable Count (DDC) is
incremented, This inhibits dispatching of new tasks.
It does not disable external interrupts. The PSDB/PSEB
pair can be used as a very efficient way to protect
critical regions in a uni-processor system. PSDB/PSEB
pairs can be nested. Ring 1 privilege is required.

if XL > 1 then Trap"INSPRIV";

if DDC < 0 then Trap"INSDDCV";

if DDC > 2%¥27-1 then Trap"INSDDCV";
DDC := DDC + 1;

Traps: INSPRIV
INSDDCV

6.2.9.5 PSEB

Pseudo Interrupt Enable. This instruction removes one inhibition

on dispatching new tasks and s¢ undoes the effect of the
most recent PSDB. PSEB requires ring 1 privilege.
If a dispatch request is pending (DRF = 1), conditions
for entering the dispatcher are checked and an attempt
is made to enter the dispatcher. These conditions must
be satisfied before the dispatcher can be entered:

STATUSC. DDC
STATUSC. XM
STATUSC. ICS
STATUSC. DRF
STATUSC. IE

[ T O T 1}
R PO OoO

The PSDB/PSEB can also be used to protect regions within
the dispatcher code itself; in this case the DPF flag
nust be ignored.

if XL > 1 then Trap"INSPRIV";

if DDC <= 0 then Trap"INSDDCV";

DDC := DDC - 1;

if STATUSC = 3 then DISP

else if STATUSC = 7 then begin
if STATUSB.DISP = 1 then DRF := 0;
end

Traps: INSPRIV
INSDDCV
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6.2.9.6 DISP

Dispatch. This instruction is used to enter the dispatcher as
soon as is practicable. The only way to enter the
dispatcher is through this instruction.

If the dispatcher cannot be entered right away, the
Dispatch Request Flag is set. Ring 1 privilege is
required. The following conditions must hold before
the dispatcher can be entered:

/ STATUSC.DDC = 0
| STATUSC.XM =0
| STATUSC.ICS = 0
\ STATUSC.IE =1

if XL > 1 then Trap"INSPRIV";

if STATUSCL = 1 or STATUSC1 = 3 then begin
PUSH_INTERRUPT_MARKER; TCB.SN := §;
STATUSC.ICS := 1; STATUSC.DRF := 0;
execute_case 2 of IEXIT;
end

else
STATUSC.DRF := 1;

Status: either unchanged or loaded from Dispatcher marker
Traps: INSPRIV
STKOVF

6.2.9.7 LAUNCH tcbla.r8, tcbva.r8

Launch a task., This instruction is used by the dispatcher to
start execution of the task identified by "tcbla" and
"tcbva", The new current TCB is located at "tcbla" in
logical address space and at "tcbva" in virtual address
space. It is the responsibility of operating system
software to ensure that "tcbla" and “tcbva" are indeed
logical and virtual address to one and the same task
control block. Level 0 privilege is required.

if STATUSC.ICS=0 then Trap"INSPRIV";
if @ <> QI then Trap"STKCONSISIV";
TCB.LA := tcbla; TICB.VA := tcbva;
GD1 := TCB.GD1;

GD7 := TCB.GD7;
execute_case_1_of IEXIT;

Traps: INSPRIV
STKCONSISTV
6-64

07/31




VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.9.8 IEXIT

Interrupt Exit., This is used at completion of an interrupt
handler (either external or internal). A trap occurs
if the instruction is executed other than on the ICS.

Q must either point to the dispatcher marker or to an
interrupt marker, otherwise results are unpredictable,
If any of the pages of the ICS are absent, results are
unpredictable, If IEXIT returns control to a task, the
TCB of that task must be resident., If any pages on the
task’s stack containing the interrupt marker are absent,
or if that stack is in a stack overflow condition, the
appropriate trap is taken which runs as the bottom
routine on the ICS (at QI). Neither TCB nor the task
stack object are modified in any way, There are three
cases of IEXIT which are sorted as follous:

Case 1: IEXIT should return control to a task without
involving the dispatcher.
This case obtains if Q=QI, while DRF=0 or dispatching
is otheruise disabled.

Case 2: IEXIT should run the dispatcher to have it select
a task to LAUNCH.
This case obtains if DRF=1 (dispatcher request flag),
dispatching is not disabled, and no interrupt handler
is pending. Note that it is possible for the dispatcher
to preempt itself.

Case 3: IEXIT should resume whatever code wag running prior

to the interrupt handler. This may be a lower priority
interrupt handler that was pending or the dispatcher.

The IEXIT description uses these uninterruptible sequences:

RESTORE_REGS: begin POP8B B5; .. POP8B BO;
POP4 X15; .. POP4 X0; POP8 STATUSB;
end

RESTORE_RETURN: begin § ;= Q + 120; RESTORE REGS;
EXIT;
end

RESTORE_HP3000: begin °POP2’ DelQ; Q := § - DelQ;
“POP8’ STATUSB;  “POP2’ Z.OFFSET;
“POP2’ DL.OFFSET; “POP2’ DB.OFFSET;
*POP2° DB.DST;
end

6-65

VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

IEXIT: 1if STATUSC.ICS = 0 then Trap"INSPRIV";
if Q = QI and STATUSC1 <> 7 then begin
case_1: {return to task}
STATUSC.ICS := 0; XM := TCB.XM;
STATUSC.IE := 1;
if ¥ = 0 then begin
{return to Vision mode}
S := TCB.SN[0..63]; Q := § - 120;
if TCB.SUIP = 0 then RESTORE_RETURN
else P := "SUITCHN" trap label;
TCB,SUIP := 0;
end
else begin
{return to HP3000 mode}
S := TCB.SC[0..63];
RESTORE_HP3000; \ don’t allow
if TCB.SWIP = 0 then “EXIT 0’ / interrupts
else P := "SYUITCHC" trap label;
TCB.SUIP := 0; :
end
end
elge if Q=QI or (STATUSC1=7 and {Q){4]=1) then begin
case_2: {start dispatcher}
Q := QI; DRF := 0;
STATUSB := DispatcherStatusBInit;
EXIT <<but leave S at Q>> {Q doesn’t change}
end
else
case_3: {resume code running before interrupted}
RESTORE_RETURN;

Note 1: implementations may substitute for the test Q = QI the
test (Q-4)[0..31] = QI1{32,.63].

Note 2: "STATUSC1 = 7" summarizes the condition that dispatching
is both desired (DRF=1) and possible (DDC=0, etc).

Status: restored from marker
TIraps: INSPRIV
STKUNF
STKCONSISIV
SWITCHN
SWITCHC
AddressingV on all base register loads
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6.2.9.9 SWUITCH

Switch to HP3000 mode., See chapter 10,5.2.3,

6.2.9.10 RSWITCH

Reverse switch. See chapter 10.5.2.4.

6.2.9.11 IDLE

Idle loop. This instruction will cause no activity visible to
software to occur until an external interrupt is
raised. In a shared-memory multi-processor, no
memory bandwidth should be consumed by this processor
when in IDLE. This requires ring 0 privilege.

Traps: INSPRIV

6.2.9.12 STOP

Stop. This instruction will cause the harduare to save all its
cached values into their home locations in main memory,
then release the memory bus and to wait for a harduare
reset or some other condition not defined by this
document, The intended use is for stop after power-fail,
This instruction requires ring 0 privilege.

Traps: INSPRIV

VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

6.2.9.13 SYNCOD 1loi.r4

Synchronize changes to an 0D, This instruction serves to warn
hardware that the Object Descriptor corresponding to
the logical object "1loi" in the address space of the
currently executing task on the processor executing the
SYNCOD instruction has been changed. Hardware behavior
of all processors in a shared-memory multi-processor
systen will reflect the new value of the OD no earlier
than when the 0D is changed in memory and no later than
at the completion of the SYNCOD instruction, at the
discretion of the hardware implementation,
However, if the logical object whose 0D is being affected
matches the logical object id of any of the logical
addresses in the following 1list, the effect of SYNCOD is
undefined:

P; Q,S; BO,...,B5; TCB.LA; QI;

these reflect operating system errors. Similarly, if
the OD change modifies the address or length of the ICB
or ICS(QI) of a task currently executing on another
processor in the same shared-memory multi-processor
system, the effect of SYNCOD is undefined.

SYNCOD requires all other processors in a shared-memory
multi-processor system to re-load their current values
of P,Q,5,B0..B5 and for them to transfer control to a
trap handler if their values are now invalid.

SYNCOD requires ring 0 privilege.

Traps: INSPRIV
AddressingV
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6.2.9.14 SYNCICB tcb.r8

Synchronize task control block, This instruction warns hardvare
that some Group Descriptors in the Task Control Block
at logical address "tcb" have changed. The behavior of
address translation hardware will reflect the changes
in the Group Descriptors no earlier than when the
changes occur in memory and no later than when SYNCICB
is exrecuted with the proper value of “"tcb", the exact
time being implementation dependent.

Traps: INSPRIV
Addressingv

6.2.9,15 SYNCIB operand.mc, length.r4

Synchronize instruction buffer. This instruction must be used
to synchronize hardware whenever code is modified or
when code comes into or goes out of existence through
ODT modification. "Operand" identifies the first byte
affected; "length"(in bytes; if negative, zero is used)
indicates how many consecutive bytes are affected.

Ring 0 privilege and code access to “operand" is
required,

Traps: INSPRIV
CODEQODTV
CODEBNDSV
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6.2.9,16 TESTSEMA sema.mrw4, result.u4

Semaphore test. This instruction is used for synchronization
with other processors in a shared-memory multi-processor
system, It is essentially a "test and set". The old
value of "sema" is copied into "result". Then bit 0
of "sema" is set to 1. Reading the most significant
byte of "sema" and storing back the modified value is
all done in a single uninterruptible operation. No
memory access on behalf of any processor is allowed to
intervene betueen the read of "sema" and the urite of
the modified value of “sema".

The other three bytes of "sema" can be fetched either
simultaneously to fetching the first byte or later
(jointly, or individually) but not before. Condition
code CCE is set when bit 0 of “"sema" was found clear,
CCG is set vhen bit 0 was found set.

Note: for any restartable trap detected after the
first byte has been modified, hardware must restore
the first byte to its original value before passing
control to the trap handler.

Byte[0..7] := semal0..7]; \ uninterruptible by
sema[0] := 1; / other processors.
if Byte[0] = 1

then CC := CCG

else CC := CCE;

result{0..7] := Byte;

result(8..31] := sema[8..31];

Status: CC

6.2.9.17 MOVESEMA source.r4, sena.mu4

Move semaphore, This instruction copies the value of "source"
into "sema" in one indivisible memory operation., No
other hardware activity is allowed to cause any part
of "sema" to change until MOVESEMA has completed.

sema := source;
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6.2,.9.18 DOUN sema.mru4

Down semaphore (P). This instruction performs the fast path of
the Doun_semaphore operation (also known as "P’} or
else traps out to the trap handier for the slow path.
"sema" contains a bit for locking out other processors
in a shared-memory multi-processor system; it also
contains a 31-bit signed integer count. The address
of the next instruction and the address of "gema"
are passed to the SEMADOUN handler,

Label: TESTSEMA sema, Temp; \ busy-wait for
BRBUSY Label; / hardware semaphore
Count := Temp[1..31]; {sign-extended}
if Count = -2%¥30 then Trap"SEMAOVE"
else begin
Count := Count - 1;
MOVESEMA Count, sema
if Count < 0 then Trap"SEMADOUN"
end;

Status: CC NOT affected
Traps: SEMAOVF
SEMADOWN

6.2.9,19 TESTDOUN sema.mrué4

Test and Doun semaphore, This instruction attempts a DOUN, but
rather than trap out to software for the slow path, it
sete a condition code to reflect this fact and continues.

Label: TESTSEMA sema, Temp; \ busy-uwait for
BRBUSY Label; / hardware semaphore
Count := Temp[1..31]; {sign-extended}
if Count = -2¥¥30 then Trap"SEMAQVE"
else begin
TEST4 Count;
if Count > 0 then Count := Count - 1;
Count[0] := 0;
MOVESEMA Count, sema;
end;

Status: CC
Traps:  SEMAOVF
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6.2.9.20 UP sema.mru4

UP semaphore (V). This instruction performs the fast path of
the Up_semaphore operation (also known as “V’) and
traps to software for the slow path., "Sema" is a
32-bit quantity in memory that contains a “hardware-
semaphore’ bit and a 31-bit signed integer count.

UP increments the count, Uhen the count remains
negative, the slow path is taken. The trap handler
presumably launches the first task on the queue of
tasks waiting for this semaphore.

Note: for any restartable trap detected after the
semaphore word "sema" has been modified, harduare
must restore its original value before passing
control to the trap handler., The semaphore word
is NOT restored when taking the "SEMAUP" trap.

Label: TESTSEMA sema, Temp; \ busy-wait for
BRBUSY Label; / hardware semaphore
Count := Temptl..31] {sign-extended};
if Count = 2¥¥30-1 then Trap"SEMAOVF"
else begin

Count := Count + 1;
if Count <= 0 then begin
Count[0] := 1; {NOT superfluous!}
MOVESEMA Count, sema;
Trap" SEMAUP"
end
else MOVESEMA Count, sema
end;

Status: CC NOT affected
Traps. SEMAOVF
SEMAUP
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6.2.10 Arithmetic Conversion

6.2,10,1 1I8C42 source,r4, destination,w2

Integer size check. The 16 least significant bits of “source"
are moved to "destination"., If the 17 most significant
bits are not all the same, overflow is raised.

destination[0,.15] := source[16,.31];
if source > 2°15-1 or source < -2"1%
then raise integer overflou;

Traps: Ovflow

6.2.10.2 CONVERT subopcode.rl, source.r, destination.u

Convert types. “CONVERT" uses a subopcode to determine from what
type to what type conversion is decired. The subopcode
also controls rounding behavior when any floating point
arithmetic is involved,

B e e e et L
subopcode |Rnd|Src-T|Dst_T|

B e b SRR

"Source" is interpreted to be of type "Src_T" and converted
to the "Dst_T" type and stored in "destination".

BRnd meaning

0 round towards nearest unit, (if tie, round to even)
1 round towards negative infinity

2 round towards zero

3 round according to STATUSB.FPC.RM

Src_T, Dst_ T meaning
0 32-bit integer
64-bit integer
32-bit IEEE floating point
64-bit IEEE floating point
128-bit IEEE floating point
Conversion to and from decimal data is covered in 6.3..

P WN -

Status: Ovfl
Unfl

Traps: Arith
FlArith
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6.3 Decimal Instructions

6.3.1 Packed Decimal Numbers

The packed decimal rnumber format used in many of the instructions
in the cobol and decimal group is described here. External
numeric format is described later in this introduction. In packed
decimal format, a decimal digit is encoded in a nibble, using bit
patterns 0000-1001 to encode 0-9, Tuo decimal digits are packed
to a byte; the least significant decimal digit is packed in a byte
together with a nibble encoding the sign. Packed decimal numbers
may contain 0-31 digits. This amounts to 1-32 nibbles (counting
the sign nibble), or 1-16 bytes. Packed decimal numbers alvays
occupy an integral mumber of bytes, even if the number of decimal
digits is even and therefore the mumber of nibbles is odd., A
packed decimal rumber with an even number of digits must have a
0000-nibble as its most significant nibble such as to fill out the
byte. The address of the packed decimal number is the address of
the byte containing the most significant digit. The standard sign
nibble has the value 1100 for positive and 1101 for negative. Any
other value for the sign nibble may produce unexpected results in
packed decimal arithmetic. However, VALD (validate decimal)
accepts sign nibbles 0000-1011, 1110 and 1111 as alternatives for
positive and will change them to 1100. By software convention,
1111 may be regarded as "“unsigned”". Decimal arithmetic on packed
decimal numbers will always produce results with a standard sign
nibble. Negative zero (i.e. a packed decimal number 0 with a
negative sign nibble) is not produced by packed decimal arithmetic.
Using negative zero in packed decimal arithmetic may produce
unexpected results. However, VALD accepts negative zero and will
change it to positive zero.
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The following comments apply equally to all packed decimal
instructions described in sections 6.3.3.1 through 6.3.3.12,

a) It is the responsibility of software to ensure that the
"fill-out" nibble in a packed decimal with an even number of
digits does indeed have the value zero, Hardware may treat
this nibble as a normal significant decimal digit in a source
operand. It is the responsibility of the hardware never to
introduce a non-zero value in the "fill-out” nibble as a
consequence of decimal arithmetic. It is the responsibility
of hardware to set the overflow bit (or take the overflow
trap) based on whether the resulting packed decimal number
fite in the rumber of decimal digits specified in the
instruction, Hardware must never overflow into the "fill-
out" nibble,

b) Uhen decimal overflou occurs with the overflow trap enabled,
the source operands will be left unchanged by the instruction.
A destination operand may receive a value that differs across
hardware implementations (unless it ceincides with a source
operand) .

c) It is the responsibility of software to ensure that there is
no partial overlap between source operands and destination
operands in the same instruction. It is the responsibility
of harduare to ensure that total identity between source and
destination operand is handled “correctly” (defined as
producing the same result as would be obtained by completely
pre-reading the source operand into a processor-private
temporary area),

d) The length of a packed decimal operand is expressed by giving
the rnumber of decimal digits; in other words, the sign nibble
is not counted, nor the “fill-out” nibble. Some packed
decimal instructions include an explicit operand specifying
the length of the packed decimal value; in others the length
is implied by the opcode: for these, the length is either 7,
15 or 31 digits, which corresponds to 4, 8 and 16 bytes.

On loading decimal values in registers, they are always left-
filled with zeros to reach 7, 15 or 31 digits.

Explicit length operands must be checked by harduare to
ensure they are between 0 and 31. The "DECINVL" trap is
taken for invalid length operands.
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6.3.2 External Decimal Numbers

The external rumeric format uses a decimal representation of a
number with one digit per byte. each digit is encoded in ASCII
(48-57 corresponds to ’0’ - ’9’), The sign is encoded by an
"overpunch" in the least significant digit. An external rumeric
rumber consists of zero or more leading ASCII blanks followed
by zero or more ASCII digits followed by an overpunched ASCII
digit. Overpunched digits follows the conventions in the table
belou:

digit positive negative unsigned
value overpunch overpunch
0 ){1 )}’ ’0°
1 Y L ’1?
2 78’ 7K’ 72’
3 )C) )Li 73)
4 ’D) )M’ 74)
5 ’E’ ’N’ ’57
6 ’F’ )0’ )6’
7 7G’ )P) ’7’
8 ’H) )Q) ’8)
g )I’ )R) )g)
(o v

The CVAD instruction recognizes a number in this external format
and converts it to a mumber in packed decimal representation.
The CVDA instruction converts a number in packed decimal format
to external numeric format as described here.

VISION does not directly support some decimal formats known as
external numeric with leading overpunched sign, external numeric
vith trailing separate sign, external numeric with leading
separate sign and unsignedexternal rumeric. However, three
special instructions TESTSTRIP, GETSIGN and OVPUNCH allow these
other external mumeric formats tobe converted to erternal
numeric with trailing overpunched sign.

TESTSTIP will strip the overpunched sign while recording the
original sign information in the condition code. GETSIGN will
extract the sign information from an overpunched sign digit and
format it as an ASCII sign digit. OVPUNCH combines an unsigned
digit and an ASCII sign digit and will produce from them the

the corresponding sign-overpunched ASCII character.
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6.3.3 Decimal Instruction Set

6.3.3.1

ADDtD term.r, sum.ru

Add decimal, “Term" is added to "sum" and the result is stored

in "sum". The operands must be in the standard packed
decimal format (such as produced by VALD), otheruise
results may differ across implementations., A decimal
overflow occurs if all of the digits of the result do
not fit in “sum"; if overflow is disabled, the left-
truncated result is stored in "sum”, else "sum" is
left unchanged.

ADD4D ADDSD ADD16D

Status: Ovfl Oovfl Oovfl

Traps:

6.3.3.2

Subtract

Opnd Opnd Opnd
DECOVF  DECOVF DECOVF

SUBtD term.r, difference.ru

decimal. "Term" is subtracted from “"difference" and
the result is stored in “difference”. The operands
must be in the standard packed decimal format (such as
produced by VALD), otherwise results may differ across
implementations. A decimal overflow occurs if all of
the digits of the result do not fit in "difference";
if overflow is disabled, the left-truncated result is
stored in "difference", else "difference" is left
unchanged,

SUB4D SUBSD SUBL16D

Status: Ovfl Ovfl Ovfl

Traps:

Opnd Opnd Opnd
DECOVF  DECOVF DECOVF
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MPYtD factor.r, product.ry

decimal., “Factor" is multiplied by "product" and the
result is stored in "product", The operands must be
the standard packed decimal format (such as produced
by VALD}, otherwise the results may differ across
implementations, A decimal overflow occurs if all of
the digits of the result do not fit in “product"; if
overflow is disabled, the left-truncated product is
stored in "product", else “product” is left unchanged.

MPY4D MPYSD MPY16D
Status: Ovfl ovfl ovfl
Traps: Opnd Opnd Opnd
DECOVFE DECOVF DECQVF
6.3.3.4 DIVtD divisor.r, quotient.ru

Divide decimal. "Quotient" is divided by "divisor" and the

result is stored in "quotient”. The operands must

be in the standard packed decimal format (such as
produced by VALD), otherwise the results may differ
across implementations. DIVD truncates, i.e. it

rounds towards zero. Decimal overflow occurs if all

of the digits of the result do not fit in “"quotient";

if overflow is disabled, the left-truncated result is
stored in "quotient”, else "quotient" is left unchanged.
If “divisor" is zero, the result is indeterminate,

DIV4D DIV8D DIV16D
Status: Ovfl Ovfl ovfl
Traps: Opnd Opnd Opnd

DECDVDZ  DECDVDZ DECDVDZ
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6.3.3.5 CMPtD sourcea.r, sourceb.r

Compare decimal. The condition code in the status word is set
depending on the result of the comparison of the
decimal values of “sourcea" and "“sourceb"., Both
operands must be in the standard packed decimal format
(such as produced by VALD), otherwise results may differ
across implementations,

The condition code is set to:

CCa, if sourcea > sourceb,
ccL, if sourcea < sourceb,
CCE, if sourcea = sourceb.

CMP4D CMP8D CMP16D
Status: CC cc cc
Traps: Opnd Opnd Opnd

6.3.3.6 TESTtD source.r

Test decimal, This is a short form of CMPtD source, 0.

TEST4D TEST8D TEST16D
Statug: CC cc cC
Traps: Opnd Opnd Opnd
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6.3.3.7 SLD count.rl, length.rl, source.r, dest.u

Shift left decimal. The packed decimal value in “source" is
shifted left by "count" decimal places and the result
is stored in "dest". Both "source" and "dest" have
"length" digits. This is equivalent to a MOVED from
"source" to "dest" followed by a MPYD of "dest" by a
pouwer of ten.

Status: Ovfl

6.3.3.8 SRD count.rl, length.rl, source.r, dest.u

Shift right decimal. The packed decimal value in "source" is
shifted right by "count" decimal places and the result
is stored in "dest". Both "source" and "“dest" have
"length" digits. This is equivalent to a MOVED from
“source" to "dest" followed by a DIVD of "dest" by a -
power of ten,

Status: Ovfl

6.3.3.9 MOVED length.rl, source.r, dest.u

Move decimal, The packed decimal "source" with "length" decimal
digits is moved to "destination" of the same length.
If “source" is in a register, only the least significant
"length" digits are moved, with overflow indication if
any of the most significant digits in the register
(register pair, quad) are non-zero.
If "dest” is in a register, the decimal number is padded
with zero digits to fill up either 1,2 or 4 registers.
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6.3.3.10 VALD length.rl, operand.ru 6.3.3.13 TESTSTRIP operand.rwl
Validate decimal, The packed decimal string "operand" is Test and strip sign from overpunched ASCII digit. The ASCII
checked for validity as a decimal rumber, If digit "operand" is changed to an unsigned digit according
"length" is even, the "fill-out" nibble is made to the table below. The condition code is set to CCG if
zero. Each digit is checked to be in the range the digit is found in the positive column, to CCL if the
0000-1001. The sign nibble is made standard by digit is found in the negative column and to CCE if it
replacing 0000-1001 , 1110 or 1111 with the value is found in the unsigned column, If “operand" is not in
1100, If all digits are zero, but the sign is the table, an irnvalid digit trap occurs.
negative, the sign is changed to positive.
"Length” indicates the length in digits of the positive negative unsigned all become:
packed decimal number.
‘{) ‘}’ ‘o’ ‘03
‘A) ‘J’ ‘1) ‘1’
‘B’ ‘K’ ‘2) ‘2’
Traps: DECINVL e ‘L 3 3
DECINVDG D’ W 4 4
‘E’ ‘N’ ‘5’ ‘5’
‘F’ ‘07 ‘5) ‘67
‘G) ‘P) ‘7’ ‘7)
*H) *Q) ‘8’ ‘8’
6.3.3.11 CVDI length.rl, source.r, dest.u8 v “R? @ t9?

(2 0 )

Convert packed decimal to integer. The packed decimal number in )
"source", with "length" decimal digits, is converted Status: CC
to a two’s complement 64-bit integer. The result is
stored in "dest". "Source" must be in standard packed
decimal format (such as produced by VALD), otheruise
results may differ across implementations. 6.3.3.14 GETSIGN operand.rl, sign.ul

Traps: Ovfl Get sign. The sign-overpunched ASCII digit "operand" is examined
and its sign {according to the table above) is recorded
in "sign", using ASCII “+’ for positive, *-’ for negative
and * ’ for unsigned. Invalid values for "operand" will
generate an invalid digit trap.
6.3.3.12 CVID length.rl, source.r8, dest.u
Traps: DECINVDG
Convert integer to packed decimal. The 64-bit two’s complement
integer value in "source" is converted to a number in
packed decimal format and padded or truncated to fit

“length" decimal digits. The result is stored in 6.3.3.15 OVPUNCH sign.rl, operand.rul
"dest". If "dest" is in a register, the result is
further padded to occupy 4,8, or 16 bytes. Create digit with overpunched sign, "Sign" must be ASCII “+’,
*-? or ° ? (blank). "Operand" must be one of the
Traps: Ovfl ASCII digits from "0’ to “9’, “Operand" is changed

into the corresponding element of the positive column
or the negative column of the table above, depending
on "sign". If "sign" is ° ?, no change occurs.
Invalid values for "sign" or "operand” generate an
invalid digit trap.

Traps: DECINVDG
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6.3.3.16 VAILN length,rl, operand.ru

Validate external rumeric decimal, This instruction checks to
see if the external numeric decimal “operand” obeys
the following format: zero or more ASCII blanks
followed by zero or more ASCII encoded digits the last
one of which is optionally overpunched with a sign
according to the table on the previous page. “Length"
indicates the length of "operand" in bytes. All leading
blanks are converted into ASCII “0’, Negative zero is
converted to positive zero.

Traps: DECINVDG

6.3.3.17 CVAD length.rl, source.r, dest.uw

Convert external numeric decimal to packed decimal. The "source"
of "length" bytes is interpreted as an external numeric
decimal rmumber with trailing overpunched sign and
converted to packed decimal format. The packed decimal
result is padded to 4,8 or 16 bytes {no more than needed
given "length") and stored in "dest". If source does
not obey the format checked for and produced by VALN,
indeterminate results occur.

6.3.3.18 CVDA length.rl, source.r, dest.u

Convert packed decimal to external numeric decimal. The "“source"
is interpreted as a packed decimal number. The "dest"
is an external mumeric decimal of "length" bytes,

The length of "source" is 4,8 or 16 bytes, as derived
from “length". If "source" does hot obey the format
checked for and produced by VALD, indeterminate results
occur,
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6.4 Vector Instruction Set

This section describes the vector instruction set. Vector
Registers and the vector context save area are described in
chapter 5.

Vector instructions are all in a secondary instruction set, in
the "VECTOR" escape group. Opcode assigrments are shown in
section 6.1.4,

A memory vector is an array of values that are evenly spaced in
menory. An erample would be a row or a column of a matrix in
a Fortran program. Vector instructions can perform operations
(such as addition) on entire memory vectors, at speeds higher
than a corresponding software sequence, Vector instructions
can also perform operations betuween memory vectors and scalars
(e.g. multiplying all elements of a memory vector by two).
Memory vectors are therefore characterized by their starting
address, their number of elements, and the distance between
consecutive elements. This distance between elements (in bytes)
is called the stride of the vector. 4 memory vector with a
stride of zero degenerates to a scalar.

A major feature of the VISION architecture is the inclusion of
vector registers. A vector register can be loaded with all or
part of a memory vector, offering the potential of eliminating
even memory access speed ag a limit on vector performance,

Most vector instructions operate on vector operands, which are
either vector registers or memory vectors or scalar registers
(X0..X15). Vector operands are indicated by the vector
attribute(”.v"). Under the vector attribute, an operand
descriptor for a literal (short or long) is given a different
meaning: the least significant 3 bits of the literal are
interpreted as a vector register number, selecting VRO..VR7.
Under the vector attribute, a memory operand is re-interpreted
as a memory vector, as detailed below. A register operand is
interpreted as a scalar.

To encode a memory vector, either one or two operand descriptors
are needed. The second operand descriptor is needed when a
memory vector has a stride different from the default value,

The default stride is such that the memory vector is entirely
contiguous in (virtual) memory.

The first operand descriptor of a memory vector (treated as a
“.m" operand) designates the starting address of the vector.
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The vector opcode of a vector instruction does not uniquely
deternine how many operand descriptors participate in the
instruction. A special first operand, called vector qualifier,
contains the necessary information. This operand must be
encoded as a short literal. Its value is interpreted as
follous:

0 2 3 4 5 6 7

| res. ls1ls2(D | MR |
.

-------- do—bo—bm—p————t

where:

S§1 -- first source stride. If one, the first source operand
uses an erplicit stride, This implies that two
operand descriptors are involved in this source
operand.

S2 -- second source stride. If one, the second source
operand uses an explicit stride.

D -- destination stride. If one, the destination operand
uses an explicit stride,

MR -- mask register. Selects one of four mask registers.

Their function is detailed below.

res -- reserved. Hardware masks out this field.

The vector qualifier determines which operands carry explicit
strides. These strides are encoded as ".r4" operands that
follow all other operands in the vector instruction.

An expllcit stride is only meaningful if the corresponding
operand is indeed a memory operand, indicating a memory vector.
A vector register specifier or a scalar cannot make use of an
explicit stride; in this case the bit in the vector qualifier
is ignored.
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6.4.1 Boundary conditions
a) Any overlap between source and destination will produce
results that may differ across implementations, Total
identity of source and destination operands is allowed.
For example, software may expect
vADD4 B5.0, B5.0, B5.0

to result in all values of the array at BS to get doubled,
- However, software should not expect

MOVE4 1, B5.0
MOVE4 1, B5.4
VADD4 B5.0, B5.4, B5.8

to compute the Fibonacci series.

b

~

Any overlap within the destination vector itself due to
small values of the stride will produce results that may
differ across implementations,

~—

All vector operations are interruptible, Chapter 5 provides
more detail.

o

For vector operations that have corresponding operations on
scalars in the base instruction set, the values returned on
e.g. overflow are the same as in the base instruction set
with overflouw trap disabled. If the trap is enabled, the
vector operation stops as soon as the condition occurs on
an element, and 1dent1fy1ng information is passed to the
trap handler.

d

—
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6.4.2 Vector Arithmetic Operations

6.4.2,1 VMOVEt wvqual.rl, source.vr, dest.vu
Vector move.

includes: VMOVE2 VMOVE4 VMOVES VMOVEL6

6.4.2.2 VADDt vqual.rl, terma.vr, termb.vr, sum.vuy

Vector add. Elements of "sum" are set to the sum of elements
of "terma" and "termb",

includes: VADD4 VADD8 VADD4F VADDSE VADD16F

6.4.2.3 VSUBt vqual.rl, terma.vr, termb.vr, diff.vw

Vector subtract., Element-wise difference of “terma" and
"termb” is stored in "diff" vector,

includes: VSUB4 VSUB8 VSUB4F VSUBSF VSUB16F

6.4.2.4 VMPYt vqual.rl, facta.vr, factb.vr, prod.vu

Vector multiply. Element-wise product of "facta" and "factb"
is stored in "prod" vector.

includes: VMPY4 VMPY8 VMPY4F VMPYS8F VMPY16F

6.4.2.5 VDIVt wvqual.rl, divd,vr, divsr.vr, quot.vu

Vector divide. Element-wise division of "divd" by "divsr"
with the result being stored in "quot".

includes: VDIV4 VDIV8 VDIV4F VDIVSF VDIV16F
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6.4.2.6 VNEGt vqual.ri, source,vr, neg.vu

Vector Negate. Element-uise subtract of "source" from zero,
storing the result in the vector "neg".

includes: VNEG4 VNEG8 VNEG4F VNEGSF VNEG16F

6.4.2,7 VABSt wvqual.rl, source.vr, abs.vu

Vector Absolute. Element-wise absolute value (negate if
negative), storing the result in the vector "abs".

includes: VABS4 VABS8 VABS4F VABSSF VABS16F

6.4,2.8 VREMt vqual.ri, divd.vr, divsr.vr, rem.vw

Vector remainder, Element-wise remainder of division of "divd"
by "divsr" is stored in "rem".

includes: VREM4 VREMS

6.4.2,9 VMODt vqual.rl, divd.vr, diver.vr, mod.vw

Vector modulus. Element-wise modulus of division of "divd" by
"diver" is stored in "mod",

includes: VMOD4 VMODS

6.4.2.10 VLSLt vqual.rl, shiftcount.vr, target.vrw

Vector logical shift left, Element-uise left shift of the
vector "target", leaving the result in "target".
Note that the shiftcount itself is a vector.

includes: VLSL4 VLSLS
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6.4.2.11 VISRt vqual.rl, shiftcount.vr, target.vruy
Vector logical shift right. Element-wise right shift of the
vector "target", leaving the result in "target".

Note that the shiftcount itself is a vector,

includes: VLSR4 VLSR8

6.4.2.12 VASLt vqual.rl, shiftcount.vr, target.,vu

Vector arithmetic left shift. Element-wise arithmetic left
shift of the vector “target", leaving the result in
"target". "Shiftcount" is itself a vector.

6.4.2.13 VASRt vqual.rl, shiftcount.vr, target.vu

Vector arithmetic right shift. Element-uise arithmetic right

shift of the vector "target", leaving the result in
“target". "Shiftcount” is itself a vector.

6.4.3 Vector Logical Operations

6.4.3.1 VAND4 vqual.rl, facta.vr, factb.vr, and.vu
Vector "AND", Computes element-wise and bit-wise "AND" of the

vectors "facta" and "factb" and stores the result in
the vector "and".

6.4.3.2 VOR4 vqual.rl, terma.vr, termb.vr, or.vy
Vector "OR". Computes element-uise and bit-wise "OR" of the

vectors "terma" and “termb" and stores the result in
the vector "or".

6.4,3.3 VXOR4 vqual.rl, terma.vr, termb.vr, xor.vu
Vector “XOR". Computes element-wise and bit-wise exclusive

"OR" of the vectors "terma" and "termb" and stores
the result in the vector “xor".

6-89

VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

6.4.4 Vector Compare and Vector/Scalar Hybrids

6.4.4.1 VCMPt vqual.rl, field.rl, srca.vr, srcb.vr, mrsel.rl

Vector Compare. "Field" indicates the type of compare (>, >=,
etc.) to be performed. The four least significant
bits of "field” indicate G,L,E,U respectively. All
elements of "srca" are compared with the corresponding
elements of “srcb" and the corresponding bit of the
magk register (selected by the mask register selector
"mreel" is set to one if the comparison holds.

includes: VCMP4 VCMP8 VCMP4F VCMPSF VCMP16F

6.4.4.2 VACCt vqual.ril, terms.vr, sum.ru

Vector Accumulate, Adds all elements of "terms" to the old
value of "sum",

includes: VACC4 VACC8 VACCAF VACCSF VACCI16F

6.4.4.3 VACCDt vaqual.rl, terms.vr, sum.ru

Vector Accumulate (Double Precision). Adds all elements of
"terms" to the old value of "sum"., "Sum" has double
the number of bytes of "terms".

includes: VACCD4F VACCDSF
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6.4.4.4 VMAXELt wvqual.rl, terms.vr, maxind.w4
Find maximum element of vector, "Marind" is set to the index
of the maximum element of the vector "terms", In

case of ties, the index of the earliest is chosen,

includes: VMAXEL4 VMAXELS VMAXELAF VMAXELSF VMAXEL16F

6.4.4.5 VMINELt vqual.rl, terms.vr, minind.w4

Find minimun element of vector. "Minind" is set to the index
of the minimum element of the vector "terms". In
case of ties, the index of the earliest is chosen.

includes: VMINEL4 VMINELS VMINEL4F VMINELSF VMINEL16F

6.4.4.6 VEXTt vqual.rl, terms.vr, index.r, value.w

Extract element from vector. The element of “terms" at index
"indeg" is fetched and stored into the scalar "value",

includes: VEXT4 VEXTS8 VEXT16

6.4.4.7 VINSt vqual.rl, terms.vw, index.r, newval.r

Insert element into vector. The element of "terms" at index
"index" is modified to reflect the value "newval".

includes: VINS4 VINS8 VINS16
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6.4.4.8 VCOMPRSt wvqual.rl, terms.vr, compressed.vy

Compress vector, The mask register indicated in "vqual" governs
which elements of "terms" to keep and which to discard.
The kept elements are collected in "compressed".
VCOMPRS will work correctly in place, i.e. when "terms"
and "compressed" are memory vectors with identical
starting address and identical stride.

includes: VCOMPRS4 VCOMPRS8 VCOMPRS16

6.4,4.9 VEXPNDt vqual.rl, terms.vr, expanded.vuw

Expand vector, The mask register indicated in "vqual" governs
which elements of "expanded" are set to elements of
"terms" and which to set to zero., The order of the
elements of “terms" is preserved, If VEXPND is used
in place, results are indeterminate,

includes: VEXPND4 VEXPND8 VEXPND16

6.4.4.10 VGATHt wvqual.rl, source.vr, index.vr, destination.vw

Vector Gather, Contiguous elements of "destination" are set to
to those elements of "source" indexed by the contiguous
elements of "index". The mask register indicated by
"vqual" applies to "destination" and "index". "Index"
is in units of bytes.

includes: VGATH4 VGATH8 VGATH16

6.4.4.11 VSCATt vqual.ri, source.vr, index.vr, destination.vw

Vector Scatter. Contiguous elements of "source" are put in
those elements of "destination" indexed by the
contiguous elements of "index". The mask register
indicated by "vqual" applies to "source" and "index".
"Index" is in units of bytes. Those elements of
"destination" not indexed are left unchanged.

includes; VSCAT4 VSCAT8 VSCAT16
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6.4.5 Vector Housekeeping

6.4.5.1 RVLR

Reduce Vector Length Register. The vector length register VLR
is reduced by the current segment length. Condition
codes are set to reflect the new value of VLR.
See section 5.3x for details,

Status: CC

6.4,5.2 LDVLR source.r4

Load vector length register.

6,4.5.3 SIVLR dest.u4

Store vector length register.

6.4.5.4 VINVAL vrmask.rl

Vector invalidate. The Vector Registers corresponding to ones
in the 8-bit "vrmask" have their active lengths set
to zero.,

6.4,5.5 UVCSA

Update vector context save area. The values of the vector
registers are stored in the Vector Context Save Area.

6.4.5.6 PUVCSA tcb.mr

Privileged update of VCSA. The values of the vector registers
are stored in the Vecor Contert Save Area of the
designated task ("tcb” points to the Task Control Block
of this task). PUCSVA requires ring 0 privilege.

Traps: INSPRIV

6-93

VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION
6.4,5.7 IVB tcb.mr

Invalidate vector bank, Invalidates vector bank belonging to
the designated task. Ring 0 privilege required.

6.4.5.8 LVB tcb.mr
Load vector bank, Load the vector bank corresponding to the

designated task from its VCSA. Ring 0 privilege
required.

6.4.6 Operations on Mask Registers

In the following instructions, "mrselect" is an operand that
selects one of the four Vector Mask Registers. Only bits
mrselect[6..7] are relevant. Bits mreselect[0..5] are ignored.
Note that the Mask Registers are at most 256 bits long.

6.4.6.1 CLRMR mrselect.rl

Clear mask register. Set selected mask register to all zeros.

6.4.6.2 SIMR nrselect.rl, destination.ul6

Store mask register. Store selected mask register in
"destination",

6.4.6.3 LDMR mrselect.rl, source.rl6

Load mask register. Load selected mask register from the value
in "source". ’

6.4.6.4 MRNOT mrselect.rl

Complement mask register, Change all zeros in the selected mask
register to ones and vice versa.
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6.4.6.5 MRAND mrasleect.rl, mrbselect.rl

“AND" mask registers. Zero out all bits in mask register "mrb"
that have zeros in the corresponding location in mask
register “mra".

6.4,6.6 MROR mraselect.rl, mrbselect.rl

"OR" mask registers. Set all bits in mask register "mrb" to
one that have ones in the corresponding location in
mask register "mra".

6.4.6.7 MRXOR mraselect.rl, mrbselect.rl

"XOR" mask registers, Complement all bits in mask register
"mrb" that have a one in the corresponding location
in mask register "mra".

6.4,7 Vector Conversion

6.4.7.1 VCONVERT vqual.rl, typer.rl, source.vr, dest.vu

Vector Conversion and Round. This instruction allows vector
conversion from one type to another as specified in
"typer". The vector "source" is converted and the
result is stored in the vector "dest".
Bits typer[2..4] determine the type of "source",
bits typer[5..7] determine the type of “dest".
Bits typer[0..1] are ignored.
Data types are encoded in "typer" as follous:

0 4-byte integer

1 8-byte integer

2 4-byte IEEE floating point
3 8-byte IEEE floating point
4  16-byte 1EEE floating point
5-7  illegal

A1l conversions, including conversions from floating

point numbers to integers, obey the rounding mode in
STATUSB.FPC.RM,
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6.5 I/0 Instructions

This sections details the instructions that deal with the I/0
backplane and the I/0 channels.

6.5.1 PICMB-based VISION systems

The PICMB instruction set can be broken down into two levels,
primitives (level 1) and functions (level 2). These classes
correspond to the PICMB protocol as defined in the PICMB ERS.
The primitives represent the lowest level of activity on the
PICMB; hence routines which make use of these must perform

all bus protocols themselves, The function level instructions
represent various functional combination of primitives, This
level performs some of the PICMB protocol for the programmer,
wvhile retaining maximum flexibility. These two levels provide
complete functionality for communicating with external devices.
Each of these levels will be described in detail. The notation
used in the following descriptions is intended to reflect the
actual operation of the various data and control lines.

6.5.1.1 PICMB Primitives

6.5.1.1.1 IFC

Interface Clear, Causes hardware to assert the Interface Clear
Line for one bus cycle.

if STATUSA.XL > 0 then Trap"INSPRIV";
IFC := true;

6.5.1,1.2 UCMD command.rl
Write command. Send a command byte to the channel adapter.

if STATUSA.XL > 0 then Trap"INSPRIV";
cobegin
CDF := true;
PICMB.CB.DATA := command[0..7];
coend;
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6.5.1.1.3 UBYTE data.rl, end.rl

Urite byte. Causes hardware to write a byte to the channel
adapter. If "end" has a non-zero value, then the END
line will also be asserted, If the channel does not
assert the SRT line within x milliseconds, the byte
will not be transfered and a timeout condition will be
indicated by setting the condition code to CCL.

A successful transfer will be indicated by CCE,

if STATUSA.XL > 0 then Trap"INSPRIV";
if not SRT then CC := CCL
else begin
CC := CCE;
cobegin
if end <> ¢ then END := true;
PICMB.CB.DATA := data
coend
end;

Status: CC

6.5.1.1.4 RBYTE data.ul

Read byte. Causes harduare to read a byte from the channel
adapter into "data". If the channel does not assert
the SRT line within x milliseconds the data will not
be read and a timeout condition will be indicated by
getting the condition code to CCL. A successful
transfer will be indicated by CCE. A successful
transfer when the END signal is asserted will be
indicated by CCG,

if STATUSA.XL > 0 then Trap"INSPRIV";
if not SRT then CC := CCL
else begin

data := PICMB.CB.DATA;

if END then CC := CCG

else CC := CCE

end;

Status: CC
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6.5.1.2 Functional PICMB Instructions

The level 2 instructions correspond to the PICMB.CB commands as
specified in the PICMB ERS, Some of these commands are global

in nature and others are local, The global commands affect all
channels in a system and require no channel address. The local
commands are directed to a specific channel and require a channel
address operand, Uhen a local command is executed, all channels
in the system which are not addressed will go into an idle state
until a global command is issued or until they are locally
addressed. Global commands often return an 8-bit vector; the
PICMB supports up to 8 channels,

6.5.1.2.1 CHNOP
Channel no operation. A NOP command is issued to all channels.

if STATUSA.XL > 0 then Trap"INSPRIV";
uam  o;

6.5.1.2.2 RCL response.ul
Roll Call. This command is issued to all channels.

if STATUSA.XL > 0 then Trap"INSPRIV";
oM 110;

6.5.1.2.3 PRD response.wl
Poll Ready for Data. This command ig issued to all channels.

if STATUSA.XL > 0 then Trap"INSPRIV";
UCMD 120
RBYTE response; <<no timeout>>

Status: CC
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6.5.1.2.4 PDA response.wl
Poll Data Available, This command is sent to all channels.

if STATUSA.XL > 0 then Trap"INSPRIV";
WeMD 130
RBYIE response; <<no timeout>>

Status: CC

6.5.1.2.5 PAR response.,ul

Poll Attention Requests. This command is sent to all channels,

if STATUSA.XL > 0 then Trap"INSPRIV";
UCMD  !140;
RBYTE response; <<no timeout>>

Status: CC

6.5.1.2.6 RDP channel.rl, dest.wl6, length.ul

Read Data Packet. This command is sent to the designated
channel and the data packet received is stored in
"dest"., “length" will be set to the number of bytes
in the data packet; if this is less than 16, the
remainder of "dest” will not be changed.

if STATUSA.XL > 0 then Trap"INSPRIV";
PDA Temp[0..7];
Ch := channel AND 7;
if Temp[Ch] = 0 then CC := CCL
else begin
Cmd := 150 + Ch;
WCMD Cmd;
C:=0;
repeat
RBYTE (dest+C)[0..7];
C:=C+ 1;
until CCL or CCG or C>15;
length := C;
end; °

Status: CC
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6.5.1.2.7 UWDP channel.rl, data.rl6, length.rul

Urite Data Packet. This command is sent to the specifically
designated channel. The first "length" bytes of
“data" is sent to the channel,

if STATUSA.XL > 0 then Trap"INSPRIV";
Ch := channel AND 7;
PRD Temp[0..7};
if Temp[Ch] = 0 then CC := CCL
else begin
Cmd := 160 + Ch;
UCMD Cnmd;
C:=0;
repeat
cobegin
if C = length then END := true;
UBYIE (data+C)[0..71;
coend;
C:=C+ 1;
until C>=length or C»>15 or CCL;
if CCL then length := C;

Status: CC

6.5.1.2.8 RIS channel.rl, status.ul

Read Immediate Status. This command is sent to the specifically
designated channel. Its status is returned and stored
in "status".

if STATUSA.XL > 0 then Trap"INSPRIV";
Ch := channel AND 7;

Cmd := 170 + Ch;

UCMD Cnmd;

RBYTE status;

Status: CC
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6.5.1.2.9 CIS channel.rl, status.rl

Clear Immediate Status. This command is sent to the designated
channel, The 8-bit status byte of the addressed
channel is cleared in all bit pogitions corresponding
to a zero in "“status",

if STATUSA.XL > 0 then Trap"INSPRIV";
Ch := channel AND 7;

Cmd := !80 + Ch;

WCMD Cmd;

UBYIE status;

Status: CC

6.5.1.2,10 SIS channel.rl, status.rl

Set Immediate Status, This command is sent to the designated
channel. The 8-bit status byte of the addressed
channel is set in all bit positions corresponding
to a one in "status",

if STATUSA.XL > 0 then Trap"INSPRIV";
Ch := channel AND 7,

Cmd := 190 + Ch;

UCMD Cmd;

WBYTE status;

Status: CC
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6.5.2 MPB-based systems

The MPB is the memory-processor-bus defined and designed by
ST0 in Colorado.

" All 1/0 instructions for MPB based systems are "local”: they

address a specific channel by specifying the channel number.
The channel number is mapped at configuration time to a slot
number on the MPB backplane. This ranges from 0..7.

Though the MPB backplane and the IOP channel were designed
as a pair, the Vision I/0 instructions for the MPB are
designed to allouw channels other than the IOP to connect to
the MPB.

6.5.2,1 MPB-based Instructions

6.5.2.1.1 10U channel.r4, control.r4, data.r4

1/0 Urite. This urites the data word "data" to the channel
designated by “channel", "Control" is a modifier
interpreted by the channel.

if STATUSA.XL > 0 then Trap"INSPRIV";

Ch := channel AND 7;

Cntr := control;

Cntr[0..5] := 0;

Cntr[19..21] := MPB_channel rumber of_
originating CPU;

Urite Ch, Cntr, Data {to MPB};

6.5.2.1.2 IOR channel.r4, control.r4, data.ud

1/0 Read. This reads the data word “data” from the chammel
designated by "channel”. '"Control" is a modifier
interpreted by the channel,

if STATUSA.XL > 0 then Trap"INSPRIV";

Ch := channel AND 7;

Cntr := control;

Cntr{0,.5] := 0;

Cntr{19..21] := MPB_channel number_of_
originating CPU;

Read Ch, Cntr, Data {from MPB};
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6.5.2.1.3 I0C channel.r4, control.r4

1/0 Control. This performs a control function on the channel
designated by "channel*, “Control" is a modifier
interpreted by the channel.

if STATUSA.XL > 0 then Trap“INSPRIV";

Ch := channel AND 7;

Cntr := control;

Cntr(0..5] ;= 0;

Cntr(19..21] := MPB_channel number_of_
originating CPU;

Control Ch, Cntr {on MPB};

6.5.2.2 Interpretation of the control word on the IOP

The control word detailed in the previous section has a
vell-defined meaning when used with the IOP channel.
This is sketched below., More detail is available from
the FOCUS I/0 ERS.

- N

11 112222 3
0 5689 23 891245 1

| res. |PA | IC | res. |OCN|res| 10 OPC| Control
. + - + + word
Here:
res., = reserved
PA = either subchannel number or device adapter number.

The 10 opcode "I0 OPC" will decide which.

IC

interface control., This four bit field allows for
control of the HPIO lines shown below:

IC1 -> BP[0] HPIO bus primitive/interface control
IC2 -> CEND HPIO channel end

IC3 ~> CBYT HPIO channel byte

I1C4 -> BP[1] HPIO bus primitive/interface control

OCN = channel number of cpu originating the command
10 OPC= 10 opcode. This 7-bit value is defined as shoun

in the following section.
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6.5.2.3 I0P Opcodes

6.5.2.3.1 Read commands

Nanme Mnemonics Hexadecimal
Read DMA Current Address RDA 7
Read DMA Current Count

& Status RDCS 8
Read DMA Mask RDMK B
Read Interrupt Mask RIMK 16
Read Interrupt Request RIRQ i1c
Interface Poll ) IFPL 27
Read DMAPA RDPA 2D
Read Data Buffer RDB 2E
Read IOP Revision RIRV 2F
Read Interface Status & Flag RISF 3F
Read Interface Status RIST 43
Read Interface Flag RIFG 44
Read DMA Termination Field RDTF 45
Read IOP registers & Suspend RIRS 48
Read Interface Device End

& Burst Request RDEB 4E
Read Interface FRn : RIF n (8%n + 1)

6.5.2.3.2 Urite Commands

Name Mnemonics Hexadecimal
Urite DMA Status uDs 3
Urite DMA Count unc . 4
Urite DMA Start Address WDA 5
Urite DMA Termination Field  WDTF 6
Urite Interrupt Mask UIMK 15
Urite Interrupt Message WIMG 1B
Set Interrupt Level SIL 1D
Urite DMAPA WDPA 2C
Urite MPB Channel Number WMCN 30
Urite Attention Poll Mask UAMK 46
Urite IOP Registers & Resume UIRR 4B
Urite Interface FRn UIF n (8%*n + 2)
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6.5.2.3.3 Control Commands

Clear DMA Mask

Enable DMA

Disable DMA

Start DMA, Enable Interrupt
& Clear IRQ

Start DMA & Clear IRQ

Start DMA

Start RAMD, Clear IRQ

Request Interrupt

Clear Interrupt Request

Enable Interrupt

Disable Interrupt

Reset 1/0 Bus

Reset IOP

Clear Address Lockout Mode

Set Address Lockout Mode

Initiate Cmd Exec from
Interrupt

Mnemonics Hexadecimal

Disable I0P Command Execution DCE

Disable Command Execution &
Enable Interrupt

Turn LED On

Turn LED Off

Clear Attention Acknowl. Bit

6.5.2.3.4 1I0OP Command Execu

Increment And Branch

Skip on Status False

Skip on Flag False

Urite RIF Result to Memory

Urite Count & Status to
Memory

tion

Mnemonics Hexadecimal

WRIF
wCcsM
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6.6 Diagnostics Interface

6.6.1 MOVEtCSP nmesslen.r4, messpa.r4, replylen.r4, replypa.r4,
error.ul

Move message to CSP. Send to the CSP (Control and Support
Procesgor) a message consisting of a string of bytes,
"messlen” long, starting at physical address "messpa’”.
An area in physical memory is reserved for a reply, if
there is one, of length "replylen" (in bytes), starting
at physical address "replypa". Message and reply format
may differ across VISION implementations. Refer to the
“"Protocol of the Control and Support Processor for VCE60

and VCF50" document, Receipt of a reply from the CSP
will generate an internal interrupt IICSPREPLY. Actual
transmission of the message and the reply may occur at
any time between execution of the MOVEtCSP instruction
and the IICSPREPLY. During this interval, the message
and reply areas in physical memory must not be accessed
by softuare. This isntruction requires Ring 0 privilege.
"Error" can have the following values:

Instruction accepted, transmission beginning
This VISION implementation has no CSP

CSP busy, cannot accept a message

Requested operation not implemented by CSP
message or reply area wrong physical address
or length

5-255 = reserved values, will not be returned

* ¥ k k
E-WAN\VE )
H 0 H 6N

Note: "¥" means that the instruction was not
accepted and no transmission was initiated.

Traps: INSPRIV
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b+

[
INTERRUPTS AND TRAPS | CHAPTER 7
!

+ ———

7.1 Introduction

Interrupts and traps are examples of a broad set of conditions
called "exceptions" that redirect the normal flow of machine
instructions. Generally, instructions are divided into a
sequence of smaller actions referred to as "steps". Steps are
defined for either of two reasons:

1) The execution of an instruction step results in a change in
the machine state (e.g., a byte of memory modified, a
register modified). In this case a step may not be
repeatable. That is, if the machine state that resulted
from a step were used as the input state to the same step,
a different output machine state might result.

2) The step represents a large amount of processing. In this
case if the instruction were interrupted, too much
processing would be lost. Even though the machine state
hasn’t been modified (as part of the instruction execution
so far) it is still desirable to define an intermediate
state for the instruction,

Each instruction step is composed of one or more "sub-steps".

A sub-step represents an uninterruptible sequence of operations,
All steps are architecturally defined. The instruction
descriptions define the intermediate state of all instructions
that have multiple steps. No other steps or intermediate states
are allowed. Instructions which execute very quickly (short in
time) have only a single step while other instructions, such as
MOVEC {move character), are composed of many steps. The
following diagram 111ustrates this concept of an instruction:

|¢=--- an instruction ------ >| |<-an instruction ->|

v v v . v
Pcurrent Pnext

Sequence | | | | [ i | |

of |step 1| Istep 21 ... |stepm| Istep 1| ... |step n|

Steps | [ | | I | | |
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There are multlple conditions that can occur during the execution
of an instruction that cause the normal flow of control to be
altered. In the previous illustration the normal flow of control
is to execute the instruction located at Pcurrent and then to
egecute the instruction at Pnext., The diagram above shouws the
steps normally executed for these instructions in the absence of
an exception. This diagram is independent of the existence of
multiple execution paths that are data dependent. However, if an
exception condition(s) is detected during the execution of
Pcurrent, the next instruction to be executed by the CPU will be
the handler for the condition. Some exception conditions (such as
page fault) are specified to be transparent to the current
instruction execution. For these conditions the current
instruction is resumed after the exception handler completes so
that the net effect of the exception is as though it did not occur
at all. Other exception conditions (such as overflou) arise as a
direct consequence of executing the current instructions. For
these exceptions the specific exception defines whether Pcurrent
or Pnext is the location to resume instruction execution.

Exceptions are classified into three general categories:
1) external interrupts
2) internal interrupts

3) traps
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7.1.1 External Interrupts Overview

External interrupts are generally service requests from 1/0 devices.
External interrupts are polled for between the execution of
instruction steps. The following diagram illustrates this:

[P — an instruction ------ >) |<-an ingtruction->|
v v v v
Pcurrent Pnext
o + tom———— + m— - + + + + +
Sequence | | | | | | ! | | |
of |step 1| |step 2| .. |step m} |step 1| .. |step n|
Steps | | | ] | | |
Trap and ~ ~ ~ °
Interrupt | ] | |
Poll X X X X
Sequence

wvhere X = external interrupt poll

Uhen multiple external interrupts are pending, one is selected
{baged on the interrupt mask and on priority). The other
external interrupts are left pending and are allowed to cause an

external interrupt later (when no longer masked).

External interrupts generally are unrelated to the current
instruction being executed. The architecture requires that the
effect of processing external interrupts be transparent to the
current instruction. Therefore, the execution of the current
instruction can be suspended between any two steps as long as
execution resumes at the next step (technically, execution can
resume at any previous step as long as the effects of the
intermediate steps can be undone or rolled back). The normal
processing sequence for external interrupts is to “cap off" the
current stack with an interrupt marker (preserving the current
machine context} and to transfer control to the exception handler
executing on the interrupt control stack.

7.1.2 Internal Interrupts Overvieuw

Internal interrupts normally originate from some type of abnormal
condition occuring within the system not associated with the
execution of the current instruction. Some examples of internal
interrupts are powerfail, parity error and machine checks.
Internal interrupts are polled between the execution of instruction
steps. If an internal interrupt is detected, external interrupts
are not polled,
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The following diagram illustrates this sequence:

| ¢mmmmmm an instruction ------ >| |<-an instruction->|
| | |
v v v v
Pcurrent Pnext
Sequence | | | | | | | | | |
of |step 1| |step 2| .. Istep m| |step 1| .. |step n|
Steps | | | | | | | |
Trap and AN ° AN AN AN
Interrupt Il [ Il I
Poll IX IX IX IX
Sequence
where I = internal interrupt poll

X = external interrupt poll

Internal interrupts are handled by pushing a marker (either an
interrupt marker or a procedure stack marker depending upon the
exception) onto the current stack and then transferring control to
the exception handler. The exceptions that push an interrupt
stack marker execute on the interrupt control stack (ICS). Those
exceptions that push a (procedure) stack marker execute on the
current stack.

Multiple internal interrupts are processed by pushing markers onto
the stack in increasing priority, then continuing execution with
the handler of the latest (highest priority) internal interrupt
pushed (interrupts are processed in reverse order -- last-in-
first-out). Note, the occurrence of an internal interrupt is
remenbered by pushing a marker onto the stack so that the handler
will execute. This technique contrasts with external interrupts
which are remembered with status bits, The following diagram
illustrates the stack state(s) following the detection of:

1) an internal interrupt "A" that runs on the current stack,
and

2) two internal interrupts, "B" and "C", respectively, that
execute on the ICS.
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) Interrupt
Current Control
Stack Stack
Bt + Fomm +
| . | |dispatcher |
| . | QI-->|interrupt |
{ . l |stack marker |
| . | 8I-->|parameters |
[ === | | for |
|I1IP save areal |handler "B" |
__________________________ |
|procedure | | interrupt |
|stack marker | Qc-->|marker for |
jfor | |returning to |
|interrupted | | interrupt "B"|
linstruction | = |---mmmmmmmoeo |
Jommmm e | |parameters |
|parameters | | for |
for | |handler "C" |
|handler "a" | |ommm e |
I e | Sc--3] | <-- Control
|interrupt | | | transferred
|Imarker for | to
|returning to | handler "C"
|handler "a" |
e |
§-->| i

7.1.3 Traps Overview

Traps include all exception conditions which arise as a direct
consequence of instruction execution. Examples include traps for
arithmetic overflow, ODT access rights violation, page fault and
breakpoint (debug). Generally, traps are detected by microcode
during the execution of an instruction step, For traps the normal
processing sequence is to push an external procedure stack marker
onto the current stack, push the parameters on the current stack
and then erecute the handler on the current stack. An external
procedure stack marker is pushed for each different trap detected,
Depending upon the type of trap (see the definition of restartable
and continuable traps), the stack appears as though an explicit
procedure call was made to the trap handler either just before the
Pcurrent instruction or after the Pcurrent instruction.
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Using the current stack for processing traps allows the maximum
degree of concurrency between tasks because the handlers themselves
run in a general task envirormment. This is unlike the interrupt
control stack which requires a strict adherence to last-in-first-
out processing of events with no option to suspend execution while
uging the ICS,

The following diagram illustrates the relationship between the
polling of internal and external interrupts and the detection of
trap conditions.

J ¢mmmmem an instruction ------ >| |<-an instruction->|
| |
v v v v
Pcurrent Pnext
Sequence | | | | | | | | | |
of |step 11 |step 2| .. {step m| |step 1| .. |step nl
Steps | | | | | | | | | |
Trap and AAAA AAAA AAAA . AAAA
Interrupt 111 HT 1111 I
Poll TRIX TRIX TRIX TRIX
Sequence
wvhere I = internal interrupt poll
X = external interrupt poll
T = trap condition detected
R = trap condition reported (trap handler activated)
\ = part of the step(s) not executed

The specification of each individual trap condition determines the
next instruction step to be executed.
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The following diagram illustrates the stack state following the
detection of two traps, X and Y, in the same step.

| procedure |

|stack marker | <== Returns to interrupted
| for the ] instruction
|interrupted |

| instruction

Qx =>|parameters |
| for handler x|

Sx =>|procedure |
|stack marker | <== Returns to handler X
| for returning|
| to handler X |

Qy =>|parameters |
| for handler Y|

Traps are divided into five categories:

1) non-recoverable traps
2) recoverable traps
2a) restartable traps
2b) continuable traps
2c) step-restartable traps
2d) step-continuable traps

07/31
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1) Non-recoverable traps

A non-recoverable trap catches the occurrence of a machine state
that makes it impossible for the hardware implementation to be
able to guarantee correct completion of the instruction even if
the trap handler fixes the immediate problem. An example is
overflow of the dispatcher disable count or detection of
inconsistent Q and S values on IEXIT. Uhenever a non-recoverable
trap occurs, the simultaneous occurrence of other types of traps
is irrelevant,

2) Recoverable Traps

The other categories of traps are part of a set of recoverable
exceptions. For these traps it is expected that software can "fix
up" the cause of the trap and can re-execute the instruction or
software can substitute a "reasonable" result for the instruction.

2a) Restartable Traps

A restartable trap is a trap that occurred before the instruction
was complete and requires that any changes to the machine state
(as part of the current instruction) be undone or "backed out” by
the CPU before transferring control to the trap handler. After
the trap handler has executed and fixed the problem that caused
the trap, the instruction is restarted from the first step. The
following diagram illustrates this sequence.

=<—-— an instruction —----- >} |<-an instruction—>:
v v v v
Pcurrent Pnext
+ + o+ + + + - + + +
Sequence | I | | [ | | |
of |etep 1] Istep 2| .. |step m| |step 1| .. |step n|
Steps N I | | I | |
| |
| #mmmeeeee + |
| lrecovery| |
--} block |<--
PR +
Trap and “** ~
Interrupt ||| |
Poll RIX : T
Sequence

7-8
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where I = internal interrupt poll
= external interrupt poll
trap condition detected
trap condition reported (trap handler activated)

part of the step(s) not executed

P ]

On the previous diagram, a restartable trap could have been detected
as part of step 1 through m, On detecting the trap condition, the
machine would be restored to its value prior to executing step 1 of
the instruction. The program counter value Pcurrent is saved in the
stack marker. Then, Pcurrent will be executed again when the trap
handler EXITs back to the instruction sequence. At entry to the trap
handler the stack state will be:

Stack

——
|procedure stack
{marker to

| instruction Pcurrent

Q==>|parameters for trap
| handler

—— ——  ———— —

S==>|
I
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2b) Continuable Traps

A continuable trap is a trap that serves as an alternate exit point
from the instruction. An example is integer overflow. Uhen overflouw
is detected, the remaining steps in the instruction are skipped. The
result of the instruction is the overflouw condition. For a continuable
trap, the next instruction, after the trap handler, to be executed is
Pnext. The following diagram illustrates this:

[REEEEE an instruction ------ M| |<-an instruction->|
| | |
v v v v
Pcurrent Pnext
tmm——— + dm————— + B e + $om———— + o +
Sequence | | [ IANNY TNV | | | |
of |step 1{ |step 2| .. |step m| |step 1l .. |step 2|
Steps | | ANNY INVWW | | |
| |
Trap and ~ e
Interrupt | 111
Poll T RIX
Sequence
where internal interrupt poll

external interrupt poll

trap condition detected

trap condition reported {trap handler activated)
part of the step(s) not executed

I
X
T
R
\

In the case of a continuable trap, the software trap handler has the
option of altering the result of the instruction by modifying (again
from software) the result operand. Then execution can be continued
from Pnext. This case is very similar to the ordinary external proce-
dure call. The hardwuare is not required to be able to undo any state
changes it has already committed.

7-10
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At entry to the trap handler, the stack state will be:

Stack

| . |

|procedure stack
|marker to
| instruction Pnext

|

|

|
Q==>|parameters for the

|

|

|

| trap handler

S==>|
[

2¢c and 2d) Step-Restartable and Step-Continuable Traps

The step-restartable and step-continuable traps are very similar to
the restartable and continuable traps respectively, but they arise

in the context of certain instructions, such as MOVEC, that consist
of certain steps repeated a number of times, These instructions have
an architecturally defined interrupt state from which they can resume
execution safely. A bit in the machine register STATUSA (IIP --
“instruction in progress") allows a decision at instruction fetch time
as to whether the instruction has already executed certain steps. If
80, the parameters to restart the instruction’s erecution are popped
from the stack and then the instruction is completed. This same
mechanism which allows external interrupts to occur in the middle of
an instruction also allows internal interrupts and recoverable traps
to occur in the middle of the egecution of a step without having to
back out of more than the last (current) step.

The following diagram illustrates the step-restartable and
step-continuable concepts:

7-11
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Step-Restartable:

[RCEEE an instruction -~------- >| l<an instruction>|
| |
v v v v
Pcurrent Pnext
e + + + o+ + o+ +
Sequence | | | [ | [ |
of |step 1] |step 21..|step m| |step 1|..|step n|
Steps | | | [ bl I |
tm———— +° + + o+ + o+ + e +
| |
| #mmmmeeee + |
| {recovery| | r
+-| block |<-
Fom—m———— +
Trap and ans .
Interrupt [ |
Poll RIX T
Sequence
where internal interrupt poll

I =

X = external interrupt poll

T = trap condition detected

R = trap condition reported {trap handler activated)
\ = part of the step(s) not egecuted

At entry to the trap handler, the stack state will be (except for the
top of stack page fault which is handled like an internal interrupt):

Stack

.

1IP information

+ ot — 4

|procedure stack
|Imarker to resume
| instruction Pcurrent

+

Q==>|parameters for the
| trap handler

—— e e -

S==>|
|
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Step-Continuable: Debug Traps:
[RESEEES an instruction ------ >| | <-an instruction->| The debug traps are a special case of traps. If during the execution
| | | | of an instruction, microcode detects that the instruction is modifying
v v v v a location covered by a data breakrange then the DBP (debug breakpoint
Pcurrent Pnext pending) flag in STATUSA is set to remember that the breakpoint was
oo + oo + + + + + + + - encountered. Then, the instruction execution is contimued with the
Sequence | A\ | | | | | | | | setting of the breakpoint flag being somewhat transparent. Then, at
of |step 1| |step 2| .. |step ml |step 1] .. lstep n| the end of the instruction execution, the breakpoint handler is
Steps | \ | | | | | | | activated, By handling the trap at the end of the instruction, the
o Rt + Ao + Ao + oo + architecture guarantees to report a breakpoint to software only once
] | per instruction., The following diagram illustrates this sequence:
———
Trap and - e
Interrupt | Il
Poll T RIX [EEEEESSY an instruction ------ > | <-an instruction->|
Sequence | | |
v ) v v v
where I = internal interrupt poll Pcurrent Pnext
X = external interrupt poll + + + + + pom————— + B +
T = trap condition detected Sequence | | | | | | | | |
R = trap condition reported (trap handler activated) of |step 1| |step 2| .. |step n| |step 1| .. lstep nl
\ = part of the step(s) not executed Steps | | | ] | I | |
At entry to the trap handler, the stack state will be: Trap and ~ ~ ~nn
Interrupt | I I
Poll T IX RIX
Stack Sequence
e + ~ vhere I = internal interrupt poll
| : X = external interrupt poll
+ - T = trap condition detected
|IIP information R = trap condition reported (trap handler activated)
\ = part of the step(s) not executed

|procedure stack
|marker to resume
| instruction Pcurrent

|

+

|
e +

| At entry to the debug traps, the stack state will be:;

|

|

Stack

Q==>|parameters for the
| trap handler

—_

|procedure stack
|marker to return to
|instruction Pnext

5=
!

==>|parameters for the
| trap handler

S=:>|
: |
7-13 , 7-14
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7.1,3.1 Special Programming Notes

STATUSB Handling

WUhen control is transferred to exception handlers that execute
on the current stack, an external procedure call marker is pushed
onto the stack, This marker includes the STATUSA register, but
not the STATUSB register. In order not to have any side effects
on the suspended instruction, software must save STATUSB at entry
to the handler. Then, immediately prior to EXITing back to the
suspended instruction, the handler should restore STATUSB to its
value when the trap was detected.

Hardware versus Software Recoverability

The classification of the recoverability of a trap condition is
based upon uhether or not software can remove the condition that
caused the trap and can then allow the hardware to proceed with
instruction execution. Instruction execution can proceed from
either the instruction that caused the trap or the instruction
following, This criterion for classification is more permissive
than one based strictly on whether machine state has been
modified. As an example, if a MOVES from location A to location B
were to get a bounds violation on B, part of B might have been
modified before the bounds violation was detected. If the trap
handler increases the upper bound of the object containing B such
that the MOVE8 no longer causes a bounds violation, the net effect
is that the trap did not occur. This example illustrates a case
where the hardware could not restore the contents of location B
but software could fix the problem, So from a harduware perspective
the input state of the instruction cannot be recreated. From a
software perspective the instruction is restartable, Using the
classification criterion, this bounds violation is recoverable,

7-15
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7.2 Detail Description of External Interrupts

7.2.1 Processor context for interrupts

Three items of processor context define the interaction between
processor and interrupts, There is an Interrupt Enable/Disable
bit in STATUSC, called STATUSC.IE or "IE" for short. This bit
controls whether any interrupts are allowed to cause a change in
the sequence of execution of macro-instructions. There is a 16-
bit Interrupt Mask Register in STATUSC, called STATUSC.IMR or
“IMR" for short. This mask controls which interrupts are allowed
to cause a change in the sequence of execution and which are not,
subject to STATUSC.IE. Finally, there is an Interrupt Pending
Register, which is not directly accessible to software; hence
implementations have a large amount of freedom in how to implement
it. It need not even exist as a separate entity in the machine,
as long as the behavior that is here ascribed to it can be
reproduced, The Interrupt Pending Register looks like an array
as in Pascal:

TYPE
pr_level: 0..15;
source: (i_channel, i_processor);
state: (clear, set);

VAR

IPR: ARRAY([pr_level, source] OF state;

The IPR is processor-local. Details on multiprocessor aspects of the
interrupt system follow in section 7.2.7.

7.2.2 General operation

Interrupts cause bits to get set in IPR (elements of IPR to
become 1). The state of the Interrupt Mask Register and the
state of the Interrupt Enable/Disable bit control whether the
processor is notified or wether the interrupt is held off.
Interrupte can be caused by channels or by a processor itself
under software control,
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7.2.3 Channel Interrupts

Each hardware channel is configured at a specific priority
pr @ pr_level;

1f the channel wants to raise an interrupt, it does so by setting
the appropriate bit in IPR:

IPR[ pr, i_chamnel ] :=set;

1f STATUSC.IE = 1 and IMR[pr] = 1, the processor is interrupted at
the first convenient opportunity (e.g. between instructions),
otherwise the interrupt is held off. The channel must be prepared
to inform the processor of details concerning the interrupt when
the interrupt is acknouwledged. To this end, the channel may use
an area of the processor’s memory (called "channel overflow area")
to store any information needed to avoid overflowing its internal
memory capacity. Use of such an interrupt queueing mechanism is
an optional harduare implementation and not required by the
architecture. Some channels may have restrictions that guarantee
that no more than a single interrupt may be outstanding, or the
channel may have enough internal buffering so that processor’s
memory is not needed. Any such use of the processor’s memory is
transparent except perhaps for initialization of the channel
overflow area at configuration time,

7.2.4 Processor-caused Interrupts

The processor raises an interrupt by setting a bit in the IPR
through the "INTERRUPT" instruction. The processor will typically
hold off this interrupt; when the processor later acknowledges the
interrupt, harduare does not report to software any information
regarding the interrupt other than the priority level at which the
interrupt occurred. Software is responsible for any queueing that
is required to entangle the course of events in case of multiple
software interrupts. Such queueing must be done before erecuting
the INTERRUPT instruction,

"INTERRUPT pr" sets the appropriate bit in IPR:

IPR[ pr, i processor ] := set;

7-17
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7.2.5 Uhen is the Processor Interrupted?

At the end of an instruction, or at appropriate places in the
middle of a long instruction, the processor checks to see if
interrupts should be acknowledged. Interrupts are to be
acknouledged if the IPR is left "set" at a priority level pr
that is currently enabled, The algorithm can be sketched in
Pascal as follouws:

if STATUSC.IE = 1 then
for pr := 0 to pr levels-1 do
if STATUSC.IMRTpr] = 1 then
for src := i_channel to i_processor do
if IPR[ pr,src ] = set then
begin
IPR[ pr,src ] := clear;
GO_ACKNOWLEDGE_INTERRUPT (pr,src);
end

7.2.6 Acknouledging Interrupts

Section 7.2.5 sketched the algorithm that defines which interrupt,
if any, must be acknowledged. The algorithm ends either in a
GO_ACKNOWLEDGE_INTERRUPT (pr,src) or it indicates that the flow of
control should not be changed at all, Detailed below are the steps
that must be taken when acknowledging the interrupt.

Note that software arrives at the interrupt handler with values in
the registers X0..X15 and B0..B5 that are indeterminate.

GO_ACKNOWLEDGE_INTERRUPT (pr,src) :
begin
STATUSC.IE := 0;
PUSH_INTERRUPT_MARKER;
if STATUSC.ICS = 0 then ({a task was interrupted}

begin
save S in TCB;
Q:=QI; 8 :=Q; N
STATUSC.ICS := 1;
end;

STATUSA.XL := 0; {go to privileged mode}

if src = i_channel then
push channel dependent information identifying
the interrupt;

PUSH4 pr;

{all registers X0..X15, B0..B5 will be indeterminate}

if src = i channel then BRX 2 else BRX 3

end;
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7.2.7 Shared-memory Multiprocessor Considerations

The interrupt mask register is processor-local, as is the interrupt
enable/disable bit. More surprising, perhaps, is the fact that the
interrupt pending register is processor-local. For this to work,
the following notes apply.

Note 1:

Note 2:

Note 3:

Note 4:

A channel interrupt causes the pending bit to get set in
the IPR of all processors sharing memory.

The INTERRUPT instruction must likewise broadcast to all
processors in order to get the pending bit set in their
oun IPR,

More than one processor may have a particular priority
level enabled at any one time, In this situation, more
than one processor will be interrupted. In case of a
channel interrupt, the data structure that identifies the
interrupt is shared among all processors; this allouws
only one processor to acknowledge the channel interrupt,
all other processors will resume their normal instruction
sequence without ever pushing an interrupt marker. 1In
case of a processor interrupt, all enabled processors
will run the interrupt handler.

Uhen a processor acknowledges an interrupt, it clears
the pending bit in its own IPR only. This will not
be broadcast.
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7.3 Clocks

There are three clocks supported, Each clock is scaled to give
results in nanoseconds. However, the actual resclution of the
clock is implementation dependent and may be much larger than 1
nanosecond, For example, internally the hardware may count every
100 nanoseconds but when software reads the clock, the count will
be scaled to read in nanoseconds. These clocks, when read, return
a 64-bit 2’s complement count,

7.3.1 Time of Day Clock

This clock will be used by the system for maintaining the current
time of day. It runs continuously without interruption and will
maintain the correct time even across power failure. Ideally,
this clock will be set only once and from that point orwards it
will continually count up.

Since 1 Jaruary 1972 there has been an internationally accepted
time scale based on the International Time Bureau (BIH) standards
for atomic clocks., The Vision Time of Day Clock will be based on
this standard. :

The origin (time zero) of this clock is the same as the origin for
the international reference scale of atomic time (TAI), that is,

1 Jaruary 1958 at 0 hours GMI (also known as the UIC Reference
Zone). The value of this clock is the number of nanoseconds since
the TAI origin as defined by Coordinated Universal Time (UIC).
Thus, as an example, if it is 4 AM PST then it is 12 Noon UIC as
there is an eight hour time difference between California and
Greerwich. For details of this time standard see NBS Special
Publication 559, "Time and Frequency Users’ Mamual". Not that it
is not intended that all Vision computers be as accurate as atomic
clocks but merely that they agree on what time it is.

The following functions are provided to support this clock.

- SET CLOCK (value passed is 64 bits)
- READ CLOCK (return value is 64 bits)
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7.3.2 Task Clock

This clock will be used by the system for accounting purposes.
This clock counts up and is put in the hold mode whenever control
is transferred to the Interrupt Control Stack (ICS), It may also
be disabled by software by placing it in hold mode., On return
from the ICS, it resumes counting.

The following functions are provided to support this clock.

- SET CLOCK (value passed is 64 bits)
- READ CLOCK (return value is 64 bits)
- HOLD CLOCK

- RESUME CLOCK

7.3.3 Interval Clock

This 64-bit two’s-complement clock interrupts the CPU after a
programmable interval has elapsed. It is used by the system for
device time-outs, time slicing of processes, etc. The interrupt
is treated like any other I/0 interrupt in the system and is
therefore subject to being masked off by software. The clock is
set by loading it with the desired interval, in nanoseconds.

(It should be a positive interval., A negative interval will load
zero into the clock and cause an immediate interrupt.} From there
on, it counts down until it becomes negative at which time the
interrupt is generated. The interrupt is signalled to all
processors in a shared-memory multiprocessor system at a priority
level that can be configured by softuware.

On power-up, the interval clock shall be set to its largest
positive value. This should prevent any unexpected interrupts
from being generated by this clock for at least 292 years,

The following functions are provided to support this clock.

- SET CLOCK (value passed is 64 bits)
- READ CLOCK (return value is 64 bits)
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7.4 Summary of Traps and Internal Interrupts

The following table is a summary of the internal interrupts and
traps, Detailed descriptions of each internal interrupt and
follows in this chapter, For this table, the following notation
will be used:

1. ENV -- Egecution enviromment of handler
a) CS = current stack
b) ICS = interrupt control stack

2, E/D Control

- Enable/Disable Control. This indicates
the control that software has over the
transfer of control to the handler.
a) PE = permanently enabled
b) The status word and flag(s) that control
the handler (eg. B2.INTOVFE for fixed
point overflow)

3. Parameters -- Parameters passed to handler
a) Pcurrent=Pc = logical address of offending
instruction,

b) Pnext=Pn = logical address of the instruc-
tion following the offending instruction.

c) Preturn=Pr = the return address in the
gtack marker.

4, Type -- Type of exrception
a) 1II = Internal interrupt
b) NR = non-recoverable trap
¢} R = restartable trap (Pr=Pc)
d) € = contimuable trap (Pr=Pn)
e) SR = step restartable (Pr=Pc)
f) SC = step contimuable (Pr=Pn)
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Table of Internal Interrupts and Traps

| Mnemonic

| Trap#| ENV

+ +

Paranmeters

| TIMEMPAR
| POUERFAIL
| TIPURRCV
| 1ICPUCHK
| TICSPREPLY
| CODEBNDSV
| CODEODTV
| CODETYPV
| CODERINGV
| INSPRIV

| INSOPSPEC
| INSERROR
| INSCHKLO
| INSCHKHI

| INSUNDEF
| INSXTL

| INSODDP

| INSPROBE
| INSMOVSPL
| INSSWITCH
| INSVPPERM
| INSVPICS
| STKCONSISTV
| STKOVF

| STKUNF

| STKDEXTV
| DATABNDSV
| DATAODTV
| DATATYPV

| DATAARV
|FL-INV

| FL-DVDZ

| FL-OVF

| FL-UNF

| FL-INX

| INTDVDZ

| INTOVF

| B2. INTOVFE

II
11
II
II
11

QOOQOQOOOAUTZWVTVTZV VD ZQUAOAQQ D0

|E/D Control|Typel
| 1 |ICSIPE |
| 2 |ICS|PE |
| 3 |ICSIPE |
| 4 |ICSIPE |
| 5 |Icsici.IE |
{ 6 |CS |PE |
| 7 |CS |PE |
| 8 |CS |PE |
| g |cs |PE I
| 10 |Cs |PE I
{ 11 Ics |PE |
| 12 |cs |PE |
| 13 |CS |PE |
| 14 |CS |PE |
| 15 |cs |PE |
| 16 |CS |PE |
| 17 |cS |PE |
| 18 |CS |PE |
| 19 |[Cs |PE |
| 20 |Cs |PE |
| 21 |CS |B1.VPP |
| 22 |cs |PE f
| 23 |Cs |PE |
| 24 |ICS|PE |
| 25 |CS |PE |
| 26 |CS |PE |
| 27 |cS |PE |
| 28 |CS |PE |
| 28 |cS |PE |
| 30 |CS |PE |
| 31 |CS |B2.FLINVE |
| 32 |CS |B2.FLDVDZE |
{ 33 |CS |B2.FLOVFE |
| 34 |CS |B2.FLUNFE |
| 35 |CS |B2.FLINKE |
| 36 |CS |B2,INTDVDZE|
| 37 |cs |

|Address, Pc, 1

|2

I3
|Variable,Pc,4
|Status,5

{Pc,6

|Pc,7

|Pc,8

|Pc,9

|Pc, 10

|Pc,11

|Pc,12

|Pc,13

{Pc,14

|Pc,15

|Pc,16

|Pe, 17

|Pc,18

[Pc,19

{Pc,20

|Pc,21

|Pc,22

|Pc,23

|Pc,24

|Pc,25

|Pc,26

|Pc,27
|Address,Pc,28

| Address,Pc,29
|Address, Pc, 30
jop1, [0p2],Pc,31
|0p1,0p2, Pc,32
|Result,Status,Pc,33
| Result,Status,Pc,34
|Result,Status,Pc,35
|Pc,36

{Pc,37

e e e e e e e o 2 i e . e S e s e o o . i e o e et . o e e e e e s e e
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| Mnemonic |Trap#|ENV|E/D Control|Typel Parameters I
| + S e

| DECDVDZ | 38 |CS |B2.DECDVDZE| C |[Pc,38 |
| DECOVF | 39 |Cs |B2.DECOVEE | C |Pc,39 |
| DECINVL | 40 [CS |PE | R |Pc,40 ]
| DECINVDG | 41 |Cs {PE | R |Pc,41 !
| DBBREAK | 42 |cs |PE | C |Operand,Pc,42 |
| DBCALL | 43 |CS |B1.PTE | sC |Pc,43 ]
| DBCHECKA | 44 |Cs |B2.CB.CBA | C |Operand,Pc,44 |
| DBCHECKB | 45 |CS |B2.CB.CBB | C |Operand,Pc,45 |
|DBSIT | 46 |CS |STATUSA.SIT| C |Pc,46 |
| SEMAOVF | 47 |Ccs |PE | R |Semaphore,Pc,47 |
| SEMADOUN | 48 |cs |PE | C |Semaphore,Pc,48 I
| SEMAUP | 43 |cs |PE | C |Semaphore,Pc,49 I
|SUITCHN (*1) | 50 |CS |PE I C |Pc,50 |
| TRYV | 81 |cs |PE | R |Trypointer,Pc,51 |
|ADRPDIRBND | 52 |CS |PE | R |Entry address,Pc,52

| ADRPDIR | 53 [C8 |PE | R |Page mumber,Pc,53 |
|ADRPAGEABS | 54 |CS |PE | R |Byte offset,VPN, |
| | [ | |Logical address, |
| | o | |Pc,54 |
|ADRPAGETOS | 55 |ICS|PE | R |User stack data, |
[ | [ ! |Byte offset, VPN, i
| | I | |Logical address, |
! | [ | |Pc,55 |
Notes:

*1: This handler runs on the current stack, but it switches from the
compatibility mode part of the stack to the native mode part.
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7.5 Detail Description of Internal Interrupts

7.5.1 Architectural Interface

Uhen an internal interrupt is detected, control is transferred
to the corresponding internal interrupt service routine. The
methods of transferring control and accessing the interrupt
service routines are consistent (identical) across all models of
the Vigion family. The following sections describe the details
of the architectural interface between harduare and softuare
(the interrupt service routine).

7.5.2 Execution Envirorment

All internal interrupt handlers execute on the ICS,

7.5.3 Sequence of Events

WUhen an internal interrupt is detected, hardware performs the
following sequence:

1) External interrups are disabled.

2) In case the currently executing instruction is interrupted
in an intermediate state, intermediate state information
is pushed onto the stack and the IIP bit in STATUSA is set.
Otherwise, the step is skipped. (See the description of
individual instructions for details on interruptible steps).

3) The current execution stack is capped with an interrupt stack
marker,
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The following status fields are given standard values:

M
IIP
ICE
DIsP
SIT
DBP
1Cs
XTL

(native mode)

(hold task clock)

LI N T B T ]

WRPrOOOOOOo

The target location is the entry point in the 0D for 1OI =

A parameter list is pushed onto the interrupt control
stack. The description of each internal interrupt
describes the parameters. The parameters are pushed
onto the stack as shown in the following diagranm:

B S S + ——+
Q==> | parameter 1 | \
e + \
| parameter 2 | \
#ommmmmmmmm e + \ Parameter list
| . | > for internal
e + /  interrupt
| . | / handlers
o ——————— + /
| parameter n | /

S==)>
In all cases the last parameter is the 32-bit Trap#.

The execution enviromment is set up for executing the
internal interrupt handler. This involves the following:

a) The envirorment registers (Q, S, etc.) are set up
appropriately for emecuting code on the ICS.
All other registers X0..X15, B0..B5 are left with
indeterminate values,

b) The execution privilege level is set to the minimum
execution level described in the OD corresponding to
LOI = 1,

c) A branch (BRX) is performed to the destination
defined by the logical object id = 1.

Steps 3 through 7 are repeated for each internal interrupt
detected.
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7.5.4 Multiple Internal Interrupts

Multiple internal interrupts are processed by pushing multiple
interrupt stack markers onto the ICS. Interrupt markers are
pushed in increasing order of priority. Then execution continues
by transferring control to the handler for the latest (highest
priority) internal interrupt.

Internal interrupts in order of increasing priority are:
1) any internal interrupt except power fail and power recovery.

2) power recovery

3] power fail

7.5.5 Internal Interrupts Descriptions

7.5.5.1 Memory Parity Error

This internal interrupt is caused when hardware detects a '"hard"
memory error that it cannot resolve without involving software.

The physical address involved in the access that incurred the error
is pushed onto the ICS.

In a shared memory multiprocessor configuration, the parity error
may not be uniquely attributable to any particular processor’s
memory traffic, Therefore, the parity error may be reported to
any processor in the configuration.

Mnemonic: IIMEMPAR
Parameters: 1. 32-bit physical byte address of the
location with the parity error
2. Pcurrent
3. trap #
Enabling: permanently enabled
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7.4,5.2 Power Fail

Uhen the pouwer system detects a power failure, the power fail
interrupt is taken. In a shared-memory multi-processor

configuration, all processors must receive this interrupt.

Mnemonic: IIPURFAIL
Parameter: trap #
Enabling: permanently enabled

7.5.5.3 Pouwer Recovery

Uhen power is initially applied to the system, a test of memory
contents is performed to determine if it contains valid
information and data. If so, the hardware is initialized
{including writeable control store) and the power recovery
interrupt is taken (warm start). If memory contents are invalid,
the machine will perform a cold start, The test for valid memory
contents is implementation dependent but there will be a finite
probability of mistaking an invalid memory content as being valid.
In a shared memory multiprocessor configuration, all processors
must receive this interrupt. As much as possible, implementations
must save the machine state across power fail/recovery.

Mnemonic: IIPURRCV
Parameter: trap #
Enabling: permanently enabled

7.5.5.4 CPU Machine Check

This trap is defined for the implementation dependent errors that
a CPU implementation can detect about itself. The information
reported under this trap classification is specific to each CPU
implementation, The first parameter is variable in size. Its
third word is the machine check ID number; this defines how much
additional information is present.

Mnemonic: IICPUCHK

Parameter: 1, machine check id
2. Pcurrent
3. trap #

Enabling: permanently enabled

7-28




VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY ~- HP PRIVATE INFORMATION

7.5.5.5 CSP reply is complete

When hardware has completed receiving the reply from the CSP to
the message sent through the MOVEtCSP instruction, this internal
interrupt is generated.

Mnemonic:  IICSPREPLY

Parameters: 1. 32-bit status (implementation dependent)

2. trap#
Enabling:  individually enabled (STATUSC.IE)

7.6 Detail Description of Traps

7.6.1 Architectural Interface

Uhen a trap is detected by the hardware, control is transferred
to its corresponding trap service routine, The method of
transferring control and accessing the trap service routines is
congistent (identical) across all models of the Vigion family.

Traps provided are also consistent across all models of the
Vision family.

The following sections describe the details of the architectural
interface betueen the hardware (or microcode) and the software
(the trap service routines),

7.6.2 Execution Enviromment

All trap handlers execute on the current stack except the top of
stack page fault handler (ADRPAGETOS) which executes on the ICS.

7.6.3 Common Conventions for Traps

7.6.3.1 Parameter Passing to Trap Handlers

All traps push their parameters after pushing the procedure stack
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markers, The diagram below shous how parameters are pushed:

. + ——+
Q==>| parameter 1 | \
| parameter 2 | \
[ | \ Parameter list
| . | > for trap
[ | / handlers
| | /
et | /
| parameter n | /
O + -
§==>| |

In all cases the last two parameters are the 64-bit program
counter Pcurrent, and the 32-bit Trap #.

7.6.3.2 Determining Privilege of the Handler

The trap handler is a procedure in the Trap object (object 1 in
group 0). The access rights of the trap object indicate the
nominal privilege level at which the handler will run. Houever,
privilege is never reduced (will never become rumerically greater)
in going to a trap handler. This corresponds to the normal
procedure calling conventions.

7.6.3.3 Determining the address of a Trap Handler

The address of the trap handler is defined by code object 1 in
group 0.

7.6.4 Sequence of Events

The following sections describe the sequence of events involved in
transferring control to the trap handler. The descriptions rely on
the conventions set out in the previous section. External and
internal interrupts are held off during these sequences.
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7.6.4.1 A Non-recoverable Trap on the Current Stack
Uhen a non-recoverable trap is detected whose trap handler executes
on the current stack, the following events take place.
1) The SIT bit in STATUSA is cleared.
2) An external procedure stack marker is pushed on the stack.
3) The following status fields are given standard values:
™M =0 (native mode)
DBP = 0
4) Q and S are set as expected on a procedure call,
5) Parameters to the trap handler are pushed on the stack.

6) P is set to the entry point address of the trap handler
identified by the trap code object.

7) STATUSA.XL is set to the privilege level at which the
handler should run.

8) Control ig passed to the trap handler at P.

7.6.4.2 A Non-recoverable Trap on the ICS

Uhen a non-recoverable trap is detected whose handler executes
on the ICS, the sequence of events is identical to that for an
internal interrupt.

7.6.4.3 One Restartable Trap on the Current Stack
(or a step-restartable trap)
Uhen a single restartable trap is detected whose handler runs
on the current stack, the sequence of events is the following:
1) For an interrupted instruction, the intermediate state
information is pushed, and the IIP bit in STATUSA set.

Othervise, this step is skipped.

2) A stack marker is pushed onto the stack.
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3) The following status fields are given standard values:

IIP = 0
SIT = 0
™M =0 (native mode)

4) Q and S are set as expected on a procedure call.
5) Parameters for the trap handler are pushed onto the stack.

6) P is set to the entry point address of the trap handler
identified by trap code object.

7) STATUSA.XL is set to the privilege level at which the handler
should egecute.

8) Control is passed to the trap handler at P.

7.6.4.4 One Restartable Trap on the ICS
(or a step-restartable trap)

This follows the sequence for an internal interrupt; except the P
value reported corresponds to the current instruction, not the next.

7.6.4.5 Top-of-stack Page Fault and Stack Overflouw

These follow the sequence for an internal interrupt. Note that these
faults can occur at any time when pushing stack markers and parameters
for trap handlers, A description of the sequence of events in this
case is given in section 7.7.

7.6.4.6 Multiple Restartable Traps
(or step-restartable traps)

When more than one restartable trap is detected, harduvare selects one
and ignores the others. The sequence followed is therefore given by
one of the sections above.
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7.6.4.7 Continuable traps

(or step-continuable traps)

Contiruable traps can only be detected after restartable traps
have already been resolved, so continuable traps occur either
alone or in combination with other continuable traps. Note that
the breakpoint trap and the single instruction trace trap are
classified as continuable traps, In addition to these two, only
one continuable trap can occur in an instruction.
Sequence of Events:
1) Remember the state of the SIT bit in STATUSA.
2) Clear the SIT bit in STATUSA (SIT=0).

3) If no other continuable traps except SIT or breakpoint then
g0 to step 11.

4) If the instruction is step contirnuable and was interrupted
at an intermediate step, push intermediate state information
onto the current stack and set the IIP bit,

5) Push an external procedure marker.

6) Clear the IIP flag in STATUSA.

7) Set Q and S as expected for a procedure call.

8) Push parameters for the one contimuable trap other than SIT or
breakpoint.

9) Set P to the entry point address of object 1 in group 0.
10) Set STATUSA.XL to the privilege level of object 1 in group 0.
11

~

If the DBP bit is clear, go to step (18).

12) Push an erternal procedure marker.

13) Set Q and S as expected in a procedure call,

14) Push parameters for the breakpoint table trap onto.the stack.
15) Set P to the entry point address of object 1 in group O.

16) Set STATUSA.XL to the privilege level of object 1 in group 0.
17) Reset the DBP bit,
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18) If the SIT bit was found in step (1) above, go to step (24).
19) Push an external procedure marker.
20) Set Q and S as expected in a procedure call,
21) Push parameters for the Single Instruction Trace trap.
22) Set P to the entry point address of object 1 in group 0.
23) Set STATUSA.XL at the privilege level of object 1 in group 0.
24) Execute the trap handler at P,
Note: this sequence may give a DBP trap and an SIT trap before a
step continuable instruction will have fully completed., These
trap handlers can either choose to run at this time or they can
set the SIT bit in the stack marker for the interrupted

instruction so that the handlers can release control and yet
regain control back at the end of the instruction.

7.6.5 System Error

Certain error conditions are non-recoverable and they cause the
processor to enter in a special system error state. The
following conditions cause the processor to enter the ’system
error’ state.

1) Any trap, such as ODT Length violation, that occurs while
hardware executes the transfer of control to the trap handler.

2} Cases like overflow or underflow of the dispatcher disable count.
In these cases, there is a software error in privileged code.

3) Bounds violations on the ICS.

4) TOS page faults when executing on the ICS.
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7.6.6 Enabling/Disabling Traps

Traps may be explicitly enabled and disabled individually or in
groups, Traps fall in the following categories.

1)

2)

Permanently Enabled

These traps are always enabled when the system is up and the
software is running. These traps cannot be explicitly disabled.

Individually Enabled

These traps can be explicitly enabled/disabled individually by
setting/resetting a bit in the STATUSB register. Setting of
the bit (=1) enables the trap. Resetting the bit (=0) disables
the trap.

7.6.7 Transfer of Control Traps

For the descriptions of the transfer of control traps, these
notes are applicable:

1)

2)

3)

4)

5)

6)

7)

The Lower Bound (LB) of the object is obtained from the OD
for the object (third word).

The Upper Bound (UB) of the object is obtained from the OD
for the object (fourth word).

The Object Length is computed from the OD for the object:
Object Length = UB - 1B + 1

LB and UB are 32-bit 2’s complement signed integers; their
values, however, must be positive.

The Virtual Address of the target location is calculated
according to the description in chapter 3. Generally,
the Virtual Offset is computed from the logical offset
by the calculation: VOFF = LB + LOFF

For instructions BR and CALL, the target code object is always
the executing code object because these instructions can only
cause internal transfers,

For instructions BRX, CALLX and EXIT, the target code object
nay be either the executing code object of a different code
object because these instructions allow both internal and
external transfers.
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8) For BRX and CALLX, the target location is obtained from the
object descriptor of the target code object,

9) For EXIT, the target location is obtained from the procedure
stack marker,

7.6.7.1 Code Object Bounds Violation

This trap is caused when P points outside the bounds of the code
object. For instructions that change flow of control, such as
BR, CALL, CALLX, EXIT, this trap is detected before the next
instruction is fetched, so that the Pcurrent of the offending
instruction can be reported to softuare.

Inplementations need not detect a Code Object Bounds Violation on
sequential instruction execution (instructions other than BR, BRX,
CALL, CALLX, SEXIT, EXIT, IEXIT). It is the responsibility of
operating system software to guarantee that software cannot "run
out of theend of a code object". For example, code objects can
be padded with BREAK instructions. If P is incremented so as to
become greater than PL on sequential instruction egecution, the
effects may differ across implementations; however, these effects
will remain limited to the currently executing task.

Mnemonic: CODEBNDSV
Parameters: 1, Pcurrent

2, trap #
Trap Type: restartable
Enabling: permanently enabled

7.6.7.2 Code ODT Length Violation

This trap is detected for the instructions BRX, CALLX, and EXIT.
It occurs when an attempt is made to transfer control to an object
that does not erist; i.e., the object number is greater than the
number of entries in the ODT of the group selected by the group
selector in the target logical address.

Mnemonic: CODEODTV
Parameters; 1, Pcurrent

2. trap #
Trap Type: restartable
Enabling: permanently enabled
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7.6.7.3 Code Object Type Violation

This trap is detected for instructions BRX, CALLX, EXIT and IEXIT
vhen an attempt is made to transfer control to an object that is
not a code object.

Mnemonic: CODETYPV
Parameters: 1. Pcurrent

2. trap #
Trap Type: restartable
Enabling: permanently enabled

7.6.7.4 Code Privilege Level (Ring) Violation

This trap is caused for the following cases:

1) This trap is caused in the EXIT instruction when an attempt
is made to exit to a privilege level which is more privileged
than the processor’s current privilege level (contained in
the STATUSB register).

2) This trap is detected for BRX and CALLX when an attempt is
made to transfer control to a target code object whose
“prerequisite privilege level’ is more privileged than the
current privilege level. The “prerequisite privilege level’
of a procedure entry point is contained in the OD of the
target object describing the procedure entry point.

Mnemonic: CODERINGV
Parameters: 1. Pcurrent

2. trap #
Trap Type: restartable
Enabling: permanently enabled
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7.6.8 Instruction Traps

7.6.8.1 Privileged Instruction Violation

This trap is caused when an attempt is made to execute an instruction
at a privilege level vhich is less privileged than that required by
the instruction,

Mnemonic: INSPRIV
Parameters: 1. Pcurrent
2. trap #
Trap Type: restartable
Enabling: permanently enabled

7.6.8.2 Error Instruction

This trap is caused by executing the ERROR instruction. This is
likely to occur when an error causes P to point to data instead of
code, i.e., trying to execute data.

Mnemonic: INSERROR
Parameters: ‘1, Pcurrent

2. trap #
Trap Type: - continuable
Enabling: permanently enabled

7.6.8.3 CHECKLO Violation

This trap is caused when, for the instruction CHECKLO, the first
operand is smaller than the second operand.

Mnemonic: INSCHKLO
Parameters: 1. Pcurrent

2. trap #
Trap Type: continuable
Enabling: permanently enabled
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7.6.8.4 CHECKHI Violation

This trap is caused when, for the instruction CHECKHI, the first
operand is larger than the second operand.

Mnemonic: INSCHKHI
Parameters: 1. Pcurrent

2, trap #
Trap Type: continuable
Enabling: permanently enabled

7.6.8.5 Undefined Instruction
This trap is caused for all opcodes that are not defined as part of
the VISION architecture,

Mnenonic: INSUNDEF
Parameters: 1. Pcurrent

2. trap #
Trap Type: continuable
Enabling: permanently enabled

7.6.8.6 Exit Threshold Trap

This trap is caused when the current execution privilege level is
reduced to a level that is less privileged than the level in the
Y¥TL’> field in STATUSB,

Mnemonic: INSXTL
Parameters: 1. Pcurrent
2. trap #
Trap Type: continuable
Enabling: permanently enabled
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7.6.8.7 Misaligned Program Counter

This trap occurs when the return address in EXIT, SEXIT or IEXIT
is not even, so that P would not be on a half-word boundary.

NOTE: This condition may not cause a trap in all implementations;
instead, implementations may force P[63]:=0 and continue.

Mnemonic: INSODDP
Parameters: 1. Pcurrent

2. trap #
Trap Type: restartable
Enabling: permanently enabled

7.6.8.8 Probe Violation
This trap is caused for instruction PROBE, when the value of the
first operand and/or that of the second operand is/are illegal.

Mnemonic: INSPROBE
Parameters: 1. Pcurrent

2. trap #
Trap Type: restartable
Enabling: permanently enabled

7.6.8.9 Operand Specifier Violation

This trap is caused when an operand specifier in an instruction is
incompatible with the operand attribute expected by the opcode,
Example: an operand specifier specifying a literal as a destination
in a MOVE instruction,

Mnemonic: INSOPSPEC
Parameters: 1. Pcurrent
2. Trap #

Trap Type: non-recoverable
Enabling: permanently enabled
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7.6.8,10 Move Special Violation

This trap is caused for the instructions, MOVEfSP4, MOVEfSP8,

MOVEtSP4, and MOVEtSP8, when the value of the selector is illegal
and/or when the current privilege level of the processor does not
match the required privilege level for that value of the selector.

Mnemonic: INSMOVSPL
Parameters: 1. Pcurrent

2. trap #
Trap Type: restartable
Enabling: permanently enhabled

7.6.8,11 Switch Violation
This trap is detected by all variants of SWITCH when the execution
enviromment does not allow a task switch.

Mnemonic: INSSUITCH
Parameters: 1. Pcurrent

2, trap #
Trap Type: restartable
Enabling: permanently enabled

7.6.8.12 VP permission control

This trap is detected by all vector instructions when a vector
operation is decoded and the vector permission bits (STATUSB.VPP)
are zero, That is, the current status does not allow access to the
vector ingtructions because the software enviromment (vector context
save area) has not been initialized.

Mnemonic: INSVPPERM
Parameters: 1. Pcurrent
2., trap #
Trap Type: restartable
Enabling: individually enabled
(STATUSB1,VPP)
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7.6.8.13 Vector Operation on the ICS

This trap occurs when a vector operation is attempted that uses vector
registers while egecuting on the ICS,

Mnemonic: INSVPICS
Parameters: 1, Pcurrent

2. trap #
Trap Type: non-recoverable
Enabling: permanently enabled

7.6.9 Stack Traps

7.6.9.1 Stack Consistency Violation

The instruction EXIT is used to restore the caller’s envirorment.
The registers S, Q are changed to point to new memory locations on
exgecuting the EXIT instruction. Prior to executing the EXIT instruc-
tion, checks are made to ensure that the registers SB, Q, S, and SL
at the end of executing the EXIT instruction would still maintain
the following stack consistency relationship:

SB =¢ Q =< S =¢ SL

The Stack Consistency Violation trap is taken when this relationship
is violated. The IEXIT instruction includes the same checks,

Mnemonic: STKCONSISTV
Parameters: 1, Pcurrent

2. trap #
Trap Type: restartable
Enabling: permanently enabled

7.6.9.2 Stack Overflow

This trap is caused when attempting to execute an instruction that
will result in S pointing at or beyond SL. Note: processing of
the trap condition follows the sequence of events for internal
interrupts. The trap handler is executed on the ICS. Uhen this
exception is detected, S is set according to the following rules:

7-42




VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

1) If the offending instruction is ’restartable’ (see below), the
is restored to its value prior to the offending instruction.

2) If the offending instruction is one for which this trap is
’step restartable’, S is restored to its value prior to the
offending instruction step.

In either of the above cases, S is rolled back to the appropriate
position so that the offending instruction can be appropriately
’restarted’ or ’step restarted’. Then the interrupt marker is
pushed onto the stack according to the rules given in section 7.xx
(TOS page faults). The overflow part of the marker will go on the
ICS. At the end of this sequence, S[32..63] in the TCB will point
to where it would have pointed had the entire interrupt marker been
pushed onto the user’s stack.

Mnemonic: STKOVE
Parameters: 1., Pcurrent
2. trap #
Trap Types: step restartable for instruction DUP
restartable for other offending instructions
Enabling: permanently enabled

7.6.9.3 Stack Underflou

This trap is caused when an attempt is made to move S below Q
(i.e. attempt to violate Q[32..63] <= S[32..63])

Mnemonic: STKUNF
Parameters: 1. Pcurrent
2. trap #

Trap Type: restartable
Enabling: permanently enabled

7.6.9.4 Delete/Extend Negative Wordcount

The trap is caused when, for instructions DELEIE and EXTEND, the
wordcount given is negative,

Mnemonic: STKDEXTV
Parameters: 1. Pcurrent

2. trap #
Trap Type: restartable
Enabling: permanently enabled
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7.6.10 Data Object Traps

For data traps the following terminology is used:

1) An egglict operand is an operand whose logical address is
specified by an operand specifier of the instruction.

2) A data access is non-explicit when its logical address is
not directly specified by an operand specifier. The logical
address of a non-explicit operand is either specified indirectly
by an explict operand (as in VGATHt, VSCATt) or is obtained
obtained by modifying/indexing the logical address of an
explicit operand (as in MOVEC).

3) The Virtual Address of a byte of any operand is computed
according to the algorithms in chapter 3.

7.6.10.1 Data Object Bounds Violation

This trap is caused when the computed (effective) virtual offset
for an operand (explicit or implicit) is less than the Lower Bound
LB in the OD for the object or the computed virtual offset is
greater than the Upper Bound UB minus the size of the data item.

Mnemonic: DATABNDSV

Parameters: 1. Offending logical address (64 bits)
2. Pcurrent
3, trap #

Trap Type: restartable

Enabling: permanently enabled

7.6.10.2 Data ODT Length Violation

This trap is caused when a data access uses a logical address with
with an object number greater than the mumber of entries contained
in the ODT for the selected group.

Mnemonic: DATAODTV

Parameters: 1, Offending logical address (64 bits)
2. Pcurrent
3. trap #

Trap Types: non-recoverable for instructions that modify the
most significant 32 bits of a base register,
restartable for IEXIT

Enabling: permanently enabled
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7.6.10.3 Data Object Type Violation

This trap is caused when an attempt is made to access, through a ".u"
or ".ru" attribute, an object that is not a native mode data object.

Mnemonic: DATATYPV

Parameters: 1., Offending logical address
2. Pcurrent
3. trap #

Trap Type: restartable

Enabling: permanently enabled

7.6.10.4 Data Access Rights Violation

This trap is detected when an attempt is made to access an object
while running less privileged than required by the access rights
field in the OD for the object.

Mnemonic: DATAARV

Parameters: 1. Offending logical address (64 bits)
2. Pcurrent
3. trap #

Trap Type: restartable

Enabling: permanently enabled

7.6.11 Floating Point Traps

These traps are detected for Floating Point operations. Their
implementation is in accordance with IEEE Floating Point Standard.
(Refer to "A Proposed Standard for Binary Floating Point Arithmetic”
draft 9.3.3 of IEEE task P754.) Each trap can be individually
enabled or disabled with the appropriate bit in STATUSB., When the
trap condition is detected, the destination operand is set according
to the following rules:

1) If the trap is enabled, then the contents of the destination
operand are not changed (i.e., remain the same as prior to
executing the offending instruction).

2) If the trap is disabled, then the contents of the destination
operand are set as specified in the IEEE standards.
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7.6,11.1 Floating Point Invalid Operation

This trap is caused for Floating Point Invalid Operations as defined
in IEEE Floating Point Standard. The operand(s) of the offending
instruction is (are) pushed.

Mnemonic: FL-INV
Parameters: 1. Operandl
(2. Operand2)
3. Pcurrent
4, Trap #
Trap Type: continuable
Enabling: individually enabled
(STATUSB2.FLINVE)

7.6.11.2 Floating Point Divide By Zero

This trap is caused when the divisor in a floating divide is zero.
The operands are pushed.

Mnemonic: FL-DVDZ
Parameters: 1. Operandl
2. Operand2
3. Pcurrent
4, Trap #
Trap Type: continuable
Enabling: individually enabled
(STATUSB2, FLDVDZE)

7.6.11.3 Floating Point Overflow

This trap is caused when the magnitude of the result of a floating
point arittmetic operation is greater than the largest representable
floating point value in the indicated precision. The unrounded
urapped result is pushed., The round status is 0 for ROUND=0 and
STICKY=0, 1 for ROUND=0 and STICKY=1, 2 for ROUND=1 and STICKY=0, and
3 for ROUND=1 and STICKY=1,

Mnemonic: FL-OVF
Parameters: 1. Urapped result
2. Round status
3. Pcurrent
4, trap #
Trap Type: contimuable
Enabling: individually enabled
(STATUSB2. FLOVEE)
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7.6.11.4 Floating Point Underflow

This trap is caused for Floating Point Underflouw as defined in IEEE
Floating Point Standard. The wrapped result and round status are
computed as they are in the overflow case.

Mnemonic: FL-UNF
Parameters: 1. Wrapped result
2. Round status
3. Pcurrent
4. trap #
Trap Type: contimuable
Enabling: individually enabled
(STATUSB2, FLUNFE)

7.6.11.5 Floating Point Inexact Result

This trap is caused when the result of a floating point operation is
inexact as defined by the IEEE Floating Point Standard. The result

pushed is the rounded or overflowed result. The Round status is as

in overflow and underflow,

Mnemonic: FL-INX

Parameters: 1. Rounded or Overflowed result
2. Round status
3. Pcurrent

4, Trap #
Trap Type: continuable
Enabling: individually enabled

(STATUSB2. FLINXE)
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7.6.12 Integer Traps

7.6.12.1 Fixed Point Divide By Zero

This trap is caused when an attempt is made to divide an integer by
zero. Uhen divide by zero is detected, the destination is unchanged.

Mnemonic: INTDVDZ
Parameters: 1. Pcurrent

2. trap #
Trap Type: continuable
Enabling: individually enabled

(STATUSB2, INTDVDZE)

7.6.12.2 Fixed Point Overflow

This trap is caused when the result value is outside the allowable
range of integer values for the destination operand. On overflow in
ADDt, SUBt, NEGt, ABSt, ASLt, and MPYt, the lower t bytes of the
result is returned. For CONVERT the largest positive integer if the
source was positive and the largest negative integer if the source was
negative is returned,

Mnenonic: INTOVF
Parameters: 1. Pcurrent
2. trap #
Trap Type: continuable
Enabling: individually enabled
(STATUSB2, INTOVFE)
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7.6.13 Decimal Traps

7.6.13.1 Decimal Divide By Zero

This trap is detected when the divisor is zero in a decimal divide.
Uhen the divide by zero is detected, the destination operand is not
changed.

Mnenmonic: DECDVDZ
Parameters:; 1. Pcurrent

2. trap #
Trap Type: continuable
Enabling: individually enabled

(STATUSB2., DECDVDZE)

7.6.13.2 Decimal Overflow

This trap is detected for decimal operations when the result is larger
than can fit in the destination operand. Uhen the overflow is
detected, the destination is affected in the following ways:

1) If the trap is enabled, the destination operand is not changed.

2) If the trap is disabled, the result is stored left truncated into
the destination operand,

Mnemonic: DECOVF
Parameters; 1. Pcurrent

2. trap #
Trap Type: continuable
Enabling: individually enabled

{STATUSB2, DECOVFE)

7.6.13.3 Decimal Invalid Length
This trap is detected when the value of the length operand is either
less than zero or greater than 31.

Mnemonic: DECINVL
Parameters: 1. Pcurrent

2. trap #
Trap Type: restartable
Enabling: permanently enabled
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7.6.13.4 Invalid Decimal Digit

This trap is detected for some decimal operations when an invalid
decimal digit is found. See the description of each decimal instruc-
tion listed below for a list of which characters/digits are invalid
for that instruction.

Mnemonic: DECINVDG
Parameters: 1. Pcurrent
2. trap #

Trap Type: restartable
Enabling: permanently enabled

7.6.14 Debug Trap Conditions

7.6.14.1 Break Instruction

This trap is caused when executing the BREAK instruction.

Mnemonic: DBBRKINS
Parameters: 1, Operand

2. Pcurrent

3. trap #
Trap Type: continuable
Enabling: permanently enabled

7.6.14.2 Procedure Trace Trap

This trap is caused at the start of BRX, CALL, or CALLX instructions
when the PIE bit in STATUSB is found set,

Mnemonic: DBCALL
Parameters: 1. Pcurrent

2. trap #
Trap Type: step continuable
Enabling; individually enabled

(STATUSB1.PTE)
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7.6.14.3 CHECKA Instruction

This trap is caused when executing the CHECKA instruction if the bit
CBA in STATUSB register is set.

Mnemonic: DBCHECKA

Parameters: 1. Instruction operand
2. Pcurrent
3. trap #

Trap Type: contimuable

Enabling: individually enabled
(STATUSB.CB.CBA)

7.6.14.4 CHECKB Instruction

This trap is caused when executing the CHECKB instruction if the bit
CBB in STATUSB register is set.

Mnemonic: DBCHECKB

Parameters: 1. Instruction operand
2. Pcurrent
3. trap #

Trap Type: contimuable

Enabling: individually enabled
(STATUSB.CB.CBB)

7.6.14.5 8ingle Instruction Trace

This trap is caused at the end of executing an instruction when the
single instruction trace bit (SIT} in the STATUSA register is found
set,

The SIT bit is aluays cleared as part of trap initiation, Softuware
must explicitly reenable the single instruction trace by setting

the SIT value to one in the stack marker in order to continue single
instruction execution.

Mnemonic: DBSIT
Parameters: 1., Pcurrent
2. trap #
Trap Type: contiruable
Enabling: individually enabled
(STATUSA.SIT)
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7.6.15 Semaphore Traps

7.6.15.1 Semaphore Overflouw

This trap is caused for the instructions UP, DOUN, and TESTDOUN when
incrementing or decrementing the 31-bit semaphore value causes a
31-bit overflow.

Mnemonic: SEMAOVE

Parameters: 1. Logical address of the first operand (semaphore)

2. Pcurrent .

3. Trap #
Trap Type: restartable
Enabling: permanently enabled

7.6.15.2 Douwn Semaphore

This trap is caused for the instruction DOUN, when decrementing the
31-bit 2’s complement semaphore value of the operand causes it to
drop below zero, ’

Mnemonic: SEMADOUN

Parameters: 1. Logical address of the operand (semaphore)
2. Pcurrent
3. trap #

Trap Type: contirnuable

Enabling: permanently enabled

7.6.15.3 Up Semaphore

This trap is caused for the instruction UP, when incrementing the
31-bit 2’s complement semaphore value of the operand leaves it at
or below zero.

Mnemonic: SEMAUP

Parameters: 1. Logical address of the operand (semaphore)
2. Pcurrent
3. trap #

Trap Type: continuable

Enabling: permanently enabled
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7.6.16 Vision Mode Switch

This trap is the entry point for a switch from HP3000 mode to
Vision mode. See section 10.5.1.2 for details,

Mnemonic: SYITCHN
Parameters: 1, trap #
2. Pcurrent
Trap Type: contimnuable
Enabling: permanently enabled

7.6.17 TRY/UNTRY Traps

7.6.17.1 TRY or UNTRY Violation

This trap is caused for an illegal TRY or UNTRY instruction.
This will happen if TRY or UNIRY is used on the ICS.

Mnemonic: TRYV
Parameters: 1. TRYoffset
2. Pcurrent

3. trap #
Trap Type: restartable
Enabling: permanently enabled

7.6.18 Virtual Addressing Traps

7.6.18.1 PDINSERT Inconsistent Page Number

This trap is caused for the instruction PDINSERT when the physical
page number provided by the instruction does not equal the
physical page number contained in the corresponding PDIR entry.

Mnemonic: ADRPDIR
Parameters: 1, Physical Page number in PDIR
2. Pcurrent

3. trap #
Trap Type: restartable
Enabling: permanently enabled
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7.6.13 Page Absent Traps

7.6.19,1 Page Absent

This trap is caused when a page containing the byte being accessed is
not present in physical memory, This trap is used for all absent )
pages except the page on top of the stack; the ADRPAGETOS fault is
used for that. ADRPAGEABS is in all respects, including handling

of parameters, a normal trap.

Mnemonic: ADRPAGEABS

Parameters: 1. Byte Offset (POFF)
2. Virtual Page Number (VPN)
3. Logical Address (La)
4. Pcurrent
5. trap #

Trap Type: restartable

Enabling: permanently enabled

7.6.19.2 Top of Stack Page Absent

This trap is caused when the top of stack page is referenced and is
not present in physical memory.

This trap is very special in that all other traps use the current
stack to push a marker. The sequence of events for internal
interrupts is therefore used. The top of stack page absent handler
executes on the interrupt control stack.

More information can be found in section 7.7.

Mnemonic: ADRPAGETQS

Parameters: {0. Overflow Information}
1. Byte Offset (POFF)
2. Virtual Page Number . (VPN)
3. Logical Address of S (L&)
4. Pcurrent
5. trap #

Trap Type; restartable

Enabling: permanently enabled
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7.7 Top of Stack Page Faults

All stack objects, except the interrupt control stack, are paged
objects, Some activities involve pushing information onto the
stack, including:

1) an instruction explicitly references the stack as an
operand; e.g. PUSH, CALL and SWITCH for the Vision mode
stack and many instructions for the HP3000 mode stack,

2) an instruction encounters a page absent condition and the
intermediate state information for the instruction must be
put on the stack. The instruction in progress (IIP) bit
described in chapter 4 refers to this case.

3) an instruction erecution results in some conditions that
are handled as user traps. In this case the instruction
pushes stack markers as vell as parameters for these
conditions onto the stack.

4) a condition such as an external interrupt causes a transfer
of control from the user’s stack onto the interrupt control
stack. In this case an interrupt marker is pushed onto
the stack.

However, two obstacles could prevent information from being
pushed onto the stack:

1) the page containing the byte pointed to by S is not present
in physical memory (ADRPAGETOS)

2) the logical offset S[32..63] attains the length of the stack
object (UB-LB). This is the stack overflow condition
(STKOVE).

In either case the information normally saved on the stack must
be saved in a different location., The VISION architecture
specifies the Interrupt Control Stack of the executing processor
as the location to store the context when the stack page absgent
condition is detected. In general, the information to be saved
can be divided into two parts. The illustration on the next
page shows this:
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temporary information
for the resumption of
execution of the
instruction

interrupt stack marker

o —————
—— —_

The VISION architecture does not define at which point during an
instruction a top of stack page absent condition is detected.

That is, if during pushing any information onto the stack the page
absent condition is detected, implementations are free to place
any part of the above information onto the user’s stack at S or
onto the Interrupt Control Stack. In particular, implementations
are free to push all the above information onto the ICS when it
detects that not all of it fits onto the user’s stack.

VISION specifies the following to be the same for all harduare
inplementations:

1) The value of S stored in the ICB is the same independent
of where the information is actually saved, In all cases
the S value is updated as though the information were
placed on the user’s stack.

2) The amount of overflow information pushed onto the Interrupt
Control Stack can be computed as follows: subtract from the
value of S (pointing into the Interrupt Control Stack) the
value of QI, and further subtract the length of the argument
list of the page fault trap handler.

3

—

This information must be moved immediately by software from
the Interrupt Control Stack to some memory resident area so
that the handler can IEXIT from the ICS. The move can be
accomplished by a MOVEC instruction using the following
operands:

ARGLEN: length of argument list for trap handler {32 bytes)
SRC: starting address of source information (=QI)
RES: starting address of some resident destination area

big enough to receive the information
L: length of move, computed as: S-QI-ARGLEN

MOVEC 1L, SRC, RES
After the page(s) missing from the user’s stack have been
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brought into physical memory, the information can be moved
from the memory resident page to the user’s stack by MOVEC
using these operands:

RES: address of the memory resdient page

DST: destination area, computed as the S value in the
TCB minus (Si-QI-LA) where Si is the value of S
(pointing into the ICS) on entry to the trap handler

L: same as above

MOVEC L, RES, DST
After this move has completed, the user’s stack will appear
as though the absent page condition had never occurred,
For all of the user’s stack markers that were pushed onto

the ICS, the value of the Qold[32..63] in the stack marker
is relative to the user’s stack and not the ICS. In other

words, those markers are treated as raw data; they must

never be used in EXIT or IEXIT when still on the ICS.

Three cases are sketched with respect to the saving of information.
The following notation is used in these exramples:

Pre
Abs

St
TEMP

M
si

indicates a page boundary

indicates the boundary value of the base register
indicates a virtual page present in physical memory
indicates a virtual page absent from physical memory
indicates the value of S stored in the ICB after the
interrupt marker is pushed

temporary information left on the stack as part of the
execution of the previous instruction

denotes the Interrupt Marker

indicates the value of S after entry to the trap handler
{points into the ICS)
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Case 1 -- The stack pages are present in memory.

Page Stack

Status Object
| |
Pre/Abs | |
| |
= - = = ¥
Q==>| |
Pre | |
| |
= - - - &
| |
Pre S==>|====z====|
| |
B s
| |
Pre | |
| |
- - = -+
| |

BEFORE
INTERRUPT
MARKER

Stack ICS
Object 4mmmmmeme +
bomem———— + | disp. |
| | | marker |
| | -
| | QI=>] parms |
- - - - |for trapl
| | | handler]
| l Si==)+=s==3====4
| | | ]
- - - - 4 = - - - 4
| | | ]
'========I
| TEMP |
L |
| INFO |
P
| M !
L
St=>| |
AFTER
INTERRUPT
MARKER
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Note that in this case the information to restart the interrupted

instruction and the task’s interrupt marker fit onto resident
pages in the task’s stack and the only information pushed onto

the ICS is parameters for the page fault handler.
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Case 2 -- The current S page is present but the next virtual page
is absent. In this case the architecture does not
define how much information is pushed onto the current
S page before information is pushed onto the ICS, This
results in the possibility of the information being
saved in two parts as shoun below,

Case 24 -- part of the information is pushed onto the user’s stack

VISION ARCHITECTURE CONTROL DOCUMENT
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Cage 2B -- The current S page is absent.

bothwhen the following page

This case includes

is present or absent.

Page Stack . Stack ICS
Status Object Object o mm e +
+ + tmm————— + | disp. |
| | ] | | marker |
Pre/AbS l l I I - - = 4
| | | | Ql=>| TEMP |
b Ll 4 | INFO |
Q==>| | | | | |
Pre | | | | bbbt
] | | | - - - ¥
- - - -+ - - - -+ | M |
S==>|=s==z=2x| J—— [JR—
Abs | | [ | 8i=»] ]
] | | ] - - -4
b - = = - - - - 4 | 1
| | [======z=|
Pre/Abs } } st=>] |
BEFORE AFTER
INTERRUPT INTERRUPT
MARKER MARKER

Page Stack Stack ICs
Status Object Object O, +
+ + Hmmmmmm e + | disp. |
| | | | | marker |
Pre/Abs | | | i —— - - 4
I ! | | QI=>] part 2 |
- i | of IM |
Q==>| | | | | ]
Pre | | f I - - - -
| | ! | | parms |
- - - -4 - - - =+ | for trapl
S==>|= ==| |=======s] | handler]
Pre I | | part 1 | - - = 4
| | | of IM | 8i=>| |
d= = - = = = = - +
| | 1/7/7/1171
Abs | | 4=======z=4
| | St=>} |
+= - - =+ - - - -
| | | I
BEFORE AFTER
INTERRUPT INTERRUPT
MARKER MARKER

The stack page fault handler gets control after the interrupt
marker part 2 has been pushed onto the ICS. The size of part
2 can be determined from calculating Si-QI-LA at the entry to
the page fault handler.
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In this case all of the information is pushed onto the ICS.
As in Case 2A the amount of information on the ICS can be
computed from (Si-Qi-LA) at entry to the page fault handler
on the ICS.
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7.8 ICS Mechanism

The Interrupt Control Stack (ICS) is a fixed size, memory resident
structure, The location of the ICS is kept in a processor register,
This location can only be changed through the MOVEtSP8 instruction.

All Vision mode external and internal interrupts execute on the
ICS. A few Vision mode traps, such as Page Absent, Top of Stack
Page Absent and Stack overflow, also execute on the ICS. The
remaining traps are handled on the current task’s stack.

All HP3000 mode internal interrupts as well as HP3000 mode page
fault traps and stack overflouw traps are directed to the Vision
mode enviromment to execute on the ICS. The rest of the HP3000
node traps are handled on the task’s HP3000 mode stack.

(See the Architectural Control Document for HP3000 Mode for a
list of the traps supported on VISION,)

The dispatcher also executes on the ICS. There is a special stack
marker permanently located at the bottom of the ICS, knoun as the
dispatcher marker. It contains the information necessary to locate
the dispatcher code and begin execution of the dispatcher,

Uhile executing on the ICS, the ICS flag in STATUSC is set, The
flag is set when the ICS erviromment is established for executing
the dispatcher or an interrupt service routine. It is cleared by
the Interrupt Exit Instruction (IEXIT) when it determines that the
erit is to a procedure that does not execute on the ICS. The
STATUSC.ICS flag is not directly accessible by any instruction,

There is a separate ICS for each processor in a shared-memory multi-
processor configuration.
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INPUT/OUTPUT DATA STRUCTURES CHAPTER 8

$ ——— 4
———

b o — +

This chapter will eventually describe the data structures that
must be understood jointly by processor hardware and by 1/0
harduare,

07/31

VISION ARCHITECTURE CONTROL DOCUMENT
DO NOT COPY -- HP PRIVATE INFORMATION

07/31




VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

SYSTEM INITIALIZATION CHAPTER §

4 ————
——— %
b o———

9.1 Virtual Object Initialization

Virtual address space is organized as 2732 virtual objects
of 2732 bytes each (see section 2.2).

Virtual Objects 1 through 5 are reserved for special

areas vhich are allocated in physical memory and mapped into

virtual gpace during system initialization.

Virtual Object

0 {reserved)

1 syscoM The System Communications Area

2 (reserved)

3 HASH The Hash Table

4 PDIR The Physical Page Directory

5 PMEBUF The Primary Macro Envirorment Buffer

9.2 The System Communications Area

The System Communications Area (SYSCOM) is a memory resident
buffer used by hardware and for communications with the Control
Support Processor (CSP), if available.

SYSCOM is page aligned in virtual space as virtual object 1.

The SYSCOM.LENGTH field {+!00) records the total length in bytes
of SYSCOM. The SYSCOM buffer is organized into sections. The
number of sections is recorded in the SYSCOM.NUMBER_OF SECTIONS
field (+!04). Each section is a physically and virtually
contiguous subset of SYSCOM, and can be located through a
descriptor which defines the offset within SYSCOM to the start
of the section, and the length in bytes of the section,

Section descriptors are located by fired section numbers, The
section number ¥ 8 ig the offset in SYSCOM to the section
descriptor. Once a section is defined in SYSCOM a fixed section
number is assigned. New implementations may add sections to
SYSCOM, but they cannot remove sections.

9-1
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The System Communications Area is partitioned into at least six
main sections identified below:

1 SYSCOM.ENV_SECTION Environmental Section

2  SYSCOM.ID_SECTION Identification Section
3 SYSCOM. DIAG_SECTION Diagnostics Section

4  SYSCOM.HARD_SECTION Haruare Reserved Section
5 SYSCOM. LOAD_SECTION Load Section

6  SYSCOM.DUMP_SECTION Dump Section

To locate the hardware reserved section of SYSCOM, for example,
multiply section number 3 * 8 bytes = 118 bytes offset to the
section descriptor.

The System Communications Area

| | SYSCOM.LENGTH (4) | +100

| | syscoM.NUMBER_OF_SECTIONS (4) | +to4
| + +

| 1 | SYSCOM.ENV_SECTION.OFFSET (4) | +i08

! | SYSCOM.ENV_SECTION. LENGIH (4) | +toc
| + +

| 2 | SYSCOM.ID SECTION.OFFSET (4) | +t20

| | SYSCOM.ID_SECTION.LENGTH (4) | +114
| + - +

+-> 3 | SYSCOM.HARD SECTION.OFFSET (4) | +i18

| SYSCOM.HARD_SECTION. LENGTH (4) | +11C

4 | sYSCOM.DIAG SECTION.OFFSET (4) | +120

| SYSCOM.DIAG_SECTION.LENGTH (4) | +124

5 | SYSCOM.LOAD SECTION,OFFSET (4) | +i28

| SYSCOM.LOAD SECTION,LENGIH (4) | +l2C

6 | SYSCOM.DUMP_SECTION.OFFSET (4) 1 +130

| SYSCOM.DUMP_SECTION.LENGTH (4) | +t34

9.2.1 The Enviromment Section of SYSCOM

The Envirorment Section of SYSCOM is defined as section mumber 1
of SYSCOM and can be located through the section descriptor
found at an offset of +!08 bytes into SYSCOM.

9-2
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SYSCOM. ENV_SECTION

Number of Processors (4) +100
Number of Physical Pages (4) +104
Max CSP error log {bytes) (4) +108
Max CSP message log (bytes) (4) +10C
Max CSP display message (bytes) (4) +110

o e e e e 4
o ————— e 4

bytes

9.2.2 The Identification Section of SYSCOM

The Identification Section of SYSCOM is defined as section
number 2 of SYSCOM and can be located through the section
descriptor found at an offset of +!10 bytes into SYSCOM.

SYSCOM. ID_SECTION

| |
| |
| Firmware ID (8) | +1o00
| Firmware Version (8) | +108
| CsP ID (8) | +110
| CSP Version (8) | +i18
| CSP Software 1D (8) 1 +t20
| CSP Software Vergion (8) | +i28
| HPE Software 1D (8) 1 +130
| HPE Software Version (8) | +i38
2 Software ID Object.LA (8) : +140
bytes |
|
Offset in Identification Section --------- +

9-3
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9.2.3 The Harduare Reserved Section of SYSCOM

The Hardware Reserved Section of SYSCOM is defined as section
number 3 of SYSCOM and can be located through the section
descriptor found at an offset of +!18 bytes into SYSCOM.

+

| SYSCOM.HARD SECTION

|
|
| CSP-area.OFFSET (4) | +100
| CSP-area.LENGTH (4) | +lo4
| !
bytes |
|
Offset in Hard_section of SYSCOM  ------- +

9.2.4 The Diagnostics Section

The Diagnostics Section of SYSCOM is defined as section rnumber 4

of SYSCOM and can be located through the section descriptor
found at an offset of +120 bytes into SYSCOM.

| SYSCOM.DIAG_SECTION
!

b o——

9.2.5 The Load Section of SYSCOM

The Load Section of SYSCOM is defined as section number 5
of SYSCOM and can be located through the section descriptor
found at an offset of +!28 bytes into SYSCOM.

SYSCOM. LOAD_SECTION

Load Option

Load Device Specification
Load Parameters

Dump Option

Dump Device Specification
Dump Parameters

b o e o e e e . s e
§ e e e e e e
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9.2.6 The Dump Section of SYSCOM

The Dump. Section of SYSCOM is defined as section number 6 of
SYSCOM and can be located through the section descriptor found
at an offset of +!30 bytes into SYSCOM.

All Vision processors, when not running, can be made to save
their current register state into the Dump Section of SYSCOM
by means not defined in this document,

Global computer context is deposited into fiwed locations,

| SYsCoM.DuMP_SECTION {
|
| HASH,PA (4) | +l00
| HASH.LENGTH (4) | +104
| PDIR.PA (4) | +108
| PDIR.LENGTH (4) | +10C
| Group 0 Descriptor (GDO) (16) | +!10
| STATUSD (4) 1 +120
| System Breakrange Descriptor (16) | +i24
| Time of Century Clock (8 | +134
| syscoM.pa (4) | +i3C
| Implementation Dependent,OFFSET (4) | +!40
| Implementation Dependent.LENGTH (4) | +!44
| Processor Arch Record.QOFFSET (4) | +148
| Processor Arch Record.LENGTH (4) | +i4C
bytes |
|
Offset in Dump Section of SYSCOM  ------ +

The Dump Section also contains space for a processor
architectural dump record for each processor in the computer.
The first processor record can be located through the offset and
length pair located in the dump section (+i44), Additional
processor records are linked together through the next processor
field in the processor record (+!D4). A length of 0 bytes is
used to indicate that no further records follow.
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Processor Architectural Record

| |

| STATUSA , (4) 1 +100
| STATUSB1 (4) | +t04
| STATUSB2 (4) | +108
| STATUSC1 (4) | +10C
| STATUSC2 (4) | +i10
| a1 . (8) | +!14
| TCB.1a (8) | +!11C
| TCBX.LA (8) | +i24
| X0 .. X15 (64) | +130
| BO .. BS (48) | +170
| Q (8) | +1a0
| s (8) | +1a8
| Program Counter (8) | +1!BO
| Task Clock (8) | +iB8
| Interval Timer (8) | +iCO
| Processor Serial Number (*) (8) | +ic8
| Processor Dependent Record.OFFSET(4) | +!CC
| Processor Dependent Record,LENGTH(4) | +iDO
| Next Processor Record.OFFSET (4) | +i1D4
| Next Procesgor Record,LENGTH (4) | +1D8

bytes |
|

Offset in Processor Architectural Record -+
(*}: if supported

Optional resident contiguous buffers for dumping implementation
dependent information can be allocated and linked to either the
global record or to any processor architectural record. A
length of 0 bytes can be used to skip this option,

9-6
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9.3 The Hash Table and Physical Page Directory

Virtual Object

<-- HASH.PA
HASH The Hash Table
(physically contiguous)

w
+ ——— 4
+ ————

——
| PDIR The Physical Page Directory
4 | (physically contiguous)

<-- PDIR.PA

b 4

During system initialization all software addressable memory is
mapped into virtual space by hardware. The size and physical
location of the hash table and the physical page directory are
committed at this point.

The hash table (HASH) must be contiguous in physical memory and
is initially mapped as virtual object 3. The size of HASH is a
function of memory size and load options,

The physical page directory (PDIR) must be contiguous in
physical memory and is initially mapped as virtual object 4.
The size of PDIR is a function of memory size,

Hardware may choose to not associate certain phyical pages with
virtual pages. The virtual page number (VPN) field in PDIR
entries will be set to 0 by convention to indicate that no virtual
page association has been made,
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9.4 The Primary Macro Enviromment Buffer

A Primary Macro Enviromment (PME) is a pre-built, bootable,
macro code image.

" The Primary Macro Environment Buffer (PMEBUF) is a pre-mapped

menory resident buffer which will be loaded with a bootable
macro code image.

Virtual Object

5 | PME
I The Primary Macro Envirorment Buffer

+ ———

PMEBUF is contiguous in virtual space and is initially mapped
as virtual object 5.

During system initialization hardware allocates a few physical
pages for SYSCOM, PDIR, and HASH as described in sections 9,2
and 9.3. Then the remaining physical pages are mapped into the
PME buffer.

In contrast to SYSCOM, PDIR and HASH, the PME buffer need not
remain resident in physical memory once softuare executes.

9-8
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4) Set the initial state of the processor such that it will
+1100 run uninterrupted at the highest privilege level. See
section 9.7 for a summary of the initial state.
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9.4,1 Loading the Primary Macro Enviromment Buffer 9.5 The Macro Code Launch
Virtual Object The following sequence of steps are taken for macro code launch,
+ 1) Allocate physical pages for PDIR, HASH, SYSCOM, and
5 | PME | PMEBUF, and map these virtual objects.
| The Primary Macro Enviromment Buffer |
| | 2) Load the PME into the PMEBUF in memory.
| PME,LENGTH (4) | +100 3) Using the PME descriptor do:
| PME Checksun (4) | +l04
| Group 0 Descriptor (GDO) (16) | +!08 Set the ODI0 registers. Now logical addressing is
| TCB.LA (8) | +118 defined.
| TCB.vA (8) | +120
| QI.LA (8) + +128 Find the logical and physical address of the TCB.
| Qr.va (8) 1 +130 :
| CST descriptor (8) | +138 Set QI to point into the ICS object.
| DST descriptor (8) t +140
| | +t48 Locate the CSTs and the DSTs.
| reserved for exgpansion |
|

| Macro Code Image

The first 256 bytes of each Primary Macro Enviromment serve as a
descriptor of the PME.

The cold load hardware then executes the algorithm described
The PME.LENGIH field (!0) defines the length of the image in under the LAUNCH instruction to initiate the launching of
bytes and can be used to ensure that the entire image will fit softuare., The task pointed to by the ICB is launched.

into the pre-mapped buffer. The PME Checksum (!4) can be used
to insure that the image has been properly loaded.

The group 0 descriptor (GDO +!08) defines the location of ODI0
within the PME. Since the PME is constructed to be loaded into
PMEBUF, GDO.VON will alvays be virtual object 5, GDO.LB must be
page aligned in virtual space. GD0.UB is equal to PME,LENGTH 1.
GDO.LON will vary from PME to PME.

The TCB.LA field {!18) contains the logical address of a
_ pre-built Task Control Block within the PME., TCB.VA (+!20)
containg the virtual address of the TCB.

The QI.LA field (+!28) contains a logical pointer to the
dispatcher marker on the Interrupt Control Stack., The QI.VA
field (+130) contains the virtual address of the dispatcher
marker.

The CST descriptor (+!38) defines the object mumber in group 0
vhere the CST starts, and the length in bytes of the CST.

The DST descriptor (+!40) defines the object number in group 0
vhere the DST starts, and the length in bytes of the DST, : :
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9.6 Initial State Summary

STATUSA

STATUSB1

STATUSB2

STATUSC1

STATUSC2

STATUSD

3

012 3 4 5 67 8 1
R e e e D e e A Do +
| IXLIsITiIIP|DBR} | | |
flzlototlodfo | || |
e mmd e m e —dened = - — = = = = = -~ - +
11 111 3

02 3 4 5 0 1 234 1
===+ + + =+t + +
] |PTE|DISP| vector|TCE|XTL| |
I lofto | o |olz3] |
11 11 1 22 33

0 34 2 3 45 9 89 01
|EPC | TE |CBA|CBB| EF | jcet |
o | 0 fololo | fof |
22 2 3 3

0 78 9 0 1
| DDC | XM| ICS|DPF|I|
| 0 ol o] olol
11 3

0 56 1
| | IMR |
| | 0 |
3

0123 1
| IDRL| REVCODE |
I |

fol

+ +
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CHAPTER 10

I
|  HP/3000 MODE
I

4 o —
—_———+

10.1 INTRODUCTION

A mode of execution is available which provides the software
architectural enviromment of the HP/3000 system. This is called
{HP/3000) COMPATIBILITY mode to distinguish it from the normal
NATIVE mode of the VISION architecture.

The complete architectural definition of Compatibility mode is
divided into two parts:

First, Chapter 10 describes the relationship between Compatibility
and Native mode architectures. The purpose is to identify the
gpecific features required of the VISION architecture to allow the
existence of Compatibility mode in a manner which does not affect
the inherent integrity of Native mode operations., Discussions
progress from a generalized overview of the Compatibility and
Native mode enviromments to the actual detail descriptions of the
manner by which System and Task control structures of Compatibility
node are implemented and managed using the VISION architecture.

Second, the addendum to the ACD titled ’HP/3000 Compatibility Mode’
continues the description of Compatibility Mode but from a different
viewpoint., It provides the complete details of Compatibility mode
from the perspective of both User and Privileged mode programmers,
The instruction sets, data structure formats, addressing modes,
traps, and envirormental concepts are described.
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10.2 ENVIRONMENTAL OVERVIEU

The two modes, Native and Compatibility, are very distinct even
though they coexist and share access to physical resources,
Instruction formats, data formats, and addressing modes are
different. In particular, the Native mode architecture supports
arbitrary byte aligrment, a very large address space, and a nominal
four-byte word size, while the Compatibility mode architecture
requires word aligmment, has amoderate size address space, and
uses a two-byte word size.

The differences are so extensive that each mode is considered to be
an independent architectural model designed to support and execute
User programs in a particular manner. This results in the task
{process) model being different in each mode. To switch erecution
from one mode to the other is conceptually equivalent to a process
suitch.

The primary objective of Compatibility mode is to provide an
execution enviromment for User mode programs identical to that on the
HP/3000 system. A secondary objective is to provide an execution
enviromment for Privileged mode code subject to the condition that
there is guaranteed protection against Native mode structures being
accessed directly from Compatability mode code. To achieve this
level of security could mean that the privileged mode set of
instructions available in Compatibility mode are a subset of that

in the HP/3000 system. These objectives are accommodated as follows:

On HP/3000 system tuo types of addressing are provided:

* Addressing into segmented code and data structures is the most
common form. In User mode it is the only type and is fully
bounds checked. In Privileged mode it is not always bounds
checked. -

¥ Absolute addressing is allowed only in Privileged mode with
absolutely (!) no checks,

Compatibility mode provides both types of addressing but does so
with full protection against unwarranted access into Native mode
by encapsulating the Compatibility mode envirorment (address space)
using the Native mode ODT structures, The formats of Compatibility
mode ODT descriptors are identical to Native mode ODT formats.
Congider the two addressing types:
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* Segment adddressing - all code and data segments are Native
objects. The ODT entry contains a type field which specifies
certain Compatibility segment types. The management of these
ODTs (CST and DST) is done by Native mode code and (trusted)
microcode only, Compatibility code accesses the CST and DST
only through microcode, never directly.

* Absolute addressing - emulated using a special Native object
accessible through microcode. Viewed by Native mode it is a
logical address space. To Compatibility privileged users it
still looks like the “real’ absolute memory, There is no
correspondence between the absolute addresses used by 3000
Compatibility mode and the real main memory addresses.

So now, instructions can be erecuted safely, but how are the
Native task and Compatibility process envirorments related?
Within a logical task domain, there may exist the need to execute
in both erecution modes(in a serial manner, not in parallel),

In such a case, two physical tasks/processes are apparent, one
for each mode having unique code and data {stack includedi
structures. The common shareable element is the single Hardware
Task Control Block (TCB). Suitch mode instructions are provided

in both modes to allow an environment switch to occur to the

other mode., Even though execution switches back and forth between
modes, each mode in execution is still an instance of executing a
single logical task. There is one Dispatcher and one Interrupt
Control Stack (ICS) in the architecture which exist only in Native
mode and it is capable of launching either task into the appropriate
mode.

Launching a task/process into Compatibility mode means establishing
the Registers which are specifically used by the Compatibility
instruction sets, The precise mode of execution is determined at
any time by the XM field of the STATUSC register,

STATUSC. XM
STATUSC. X

= 0 Native mode

=1 Compatibility mode

In sumnary, Compatibility mode is completely and safely emulated
under Native architectural control to provide an envirorment for
Compatibility mode Users which is almost an exact replica of the
HP/3000 envirorment. Certainly, normal (User mode) users do not
notice any difference.
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10.3 SYSTEM CONTROL STRUCTURES

The following Native mode data structures are required to manage
and control Code segments, Data segments, and Absolute memory for
Compatibility mode operations;

* (ST - Code Segment Table

* DST -~ Data Segment Table

* ABS - Absolute Memory Object
These basic tables cannot be accessed directly by Compatibility

mode Users, they are only accessed by hardware to execute the
appropriate instructions,

10.3.1 CST - Code Segment Table

The CST is a contiguous block of entries in the ODT for group 0,
The ODT entries are of type 4 or 5 *HP3000 mode code object?’.

A CST rmumber from Compatibility mode is converted into the
appropriate ODT entry by locating the base of the CST block in ODT
(group 0) and indexing through the ODT entries using the CST number.

The Base and Length of the CST are defined at system initialization
time and passed to the microcode using the MOVEtSP8 instruction.

Base - 29 bit object number pointing to the entry in the ODT
for group 0 corresponding to CST 0.

Length - 32 bit integer specifying the length of the CST in bytes
(0<=Length<=192%16), A zero Length implies the absence
of a CST.
They are now protected in dedicated memory from unwarranted softuware
access. Microcode uses them to locate the CST and perform bounds
checking on the CST ‘index. The legal range of the CST index is:
1 <= CST index <= 191

An explicit reference to CST 0 will cause a ’CST Violation’ trap
to occur,
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10.3.2 DST - Data Segment Table

The DST is a contiguous block of entries in the ODT for group 0.
The ODT entries are of type 3 ’Data’ object.

A DST rumber from Compatibility mode is converted into the
appropriate ODT entry by locating the base of the DST block in ODT
(group 0) and indexing through the ODT entries using the DST number.

The Base and Length of the DST are defined at system initialization
time and passed to hardware using the MOVEtSP8 instruction,

Base - 29 bit object number pointing to the entry in the ODT
for group 0 corresponding to DST 0.

Length - 32 bit integer specifying the length of the CST in bytes.
A zero length implies the absence of a DST,

They are now protected in dedicated memory from unwarranted
softuare access. Hardware uses them to locate the DST and perform
bounds checking on the DST index. An explicit reference to DST 0
will cause a ’DST Violation’ to occur,

10.3.3 ABS - Absolute Memory Object

The ABS is a special object in group 0 which provides a logical
representation of Absolute memory to Compatibility mode instructions.

The ABS is defined at system initialization time and the ODT entry
used is the ODT entry equivalent to DST 0 which is inaccessible to
instructions but readily available to hardware, The absence of a
DST will cause all absolute addressing to fail and generate an
“Absolute Address Violation’ trap.

It is now protected in dedicated memory from unwarranted software
access and used only by hardware for all absolute memory references.
The legal size of the ABS is defined to be:

0 <= ABS size < 128KB
Several instructions require System Global Region type of access

i.e. through Absolute address 1000 octal. As for all absolute
addressing, the ABS is used by hardware for such accesses.
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10.4 TASK CONTROL STRUCTURES

10.4.1 CSTX - Code Segment Table Extension

The local code domain defined by the CSTX concept in HP3000
Compatibility mode is emulated in Native mode as follous:

The CSTX is a contiguous block of entries in the ODT for group 0
uhich have been assigned to a given task. The TCB contains a
descriptor of the CSTX to define the base of the CSTX and the
length of CSTX, to allow conversion of the CST index to the
corresponding ODT entry (see Section 4.10).

The CSTX containg the CST indices in the range
192 <= CST index <= 255
where the first legal entry in the CSTX is CST 193.

An explicit reference to CST 192 will cause a "Not Code Segment’
trap to occur,

10-6
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10.4.2. Interrupt Stack Marker

The interrupt stack marker is used to mark the upper limit of the
stack on external interrupts, traps, transfers to the Dispatcher,
and the Switch operation,

The interrupt marker generated in Compatibility mode is presented
below. The one for Native mode is presented in Section 5.1.2.

—_— — —
— — 4 —

X register (16)
P-PB (16)
| STATUS | (16)
Q. INT—->] DELTA Q | (18)
| |
| compatibility/ |
~ native mode ~
~ mailbox ~
| !
| DB.DST I (16)
| DB. OFFSET i (16)
I DL.OFFSET | (16)
T Z.0FFSET T (16)
| STATUSB T (64)
s.mr-—>i (S.INT - Q.INT) f (16)
1 1
10-7
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Notes:

1)

2)

3)

4)

5)
6)

The number in parenthesis following each box reflects the
appropriate rumber of bits of specification.

X register, P-PB, STATUS, DELTA Q are the normal contents of
a Compatibility mode procedural stack marker.

DB.DST = 0 if DB set to ABS (absolute memory)
<> 0 if DB set to stack or data segment
DB.OFFSET defines the displacement (in units of 16 bits)
into the corresponding object.

DL.OFFSET, Z.OFFSET are the current values of the DL and Z
registers given as displacements into the stack object.

STATUSB is the current STATUSB register contents.

S.INT is the interrupted S value stored into TCB,SC, The value
of Q can be calculated from the contents (S.INT-Q.INT).
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10.4,3 TICB contents known to Hardware

The additional information required in the TCB by the hardware
to support Compatibility mode instructions and the special
instructions in Native mode to interface with Compatibility mode
are specified below.

See Section 5.8 for complete TCB details,

CSTX - CSTX descriptor (see 10.4.1)

p:tvt - mode of execution of the task
= 0 Native mode
= 1 Compatibility mode
( 1bit)

SN - logical address of top-of-stack of Native stack
when capped by an interrupt stack marker - it
points to the next byte following the interrupt
marker.

{ 64 bits )

sC - logical address of top-of-stack of Compatibility

stack when capped by an interrupt stack marker -
- it points to the last 16-bit word of the

interrupt stack marker,

( 64 bits )

SUipP - switch in progress flag,
( 1vit)
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10.5 MODE SWITCHING

Mode switching refers to the operations which affect the execution
mode flag XM in the STATUSC register.

0 Native mode
1 Compatibility mode

STATUSC. XM
STATUSC. XM

L 1}

Native mode instructions and/or operations which can initiate a
suwitch to Compatibility mode are:

IEXIT
SUITCH
RSWITCH

Compatibility mode instructions and/or operations which can cause
a suitch to Native mode are:

SUT

RSUT

DISP

External Interrupts

ICS Internal Interrupts

The following operations cause a transfer of execution to the ICS,
in Native mode, from both Native and Compatibility modes.

DISP
External Interrupts
ICS Internal Interrupts

The impact of the two modes, Native and Compatibility, on the above
declared instructions is discussed below,

10-10
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10,5.1 Compatibility Mode Instructions
10,5.1.1 DIsp

This instruction is used to enter the Dispatcher directly from

the Compatibility mode process envirorment, If external interrupts
are disabled then the Dispatcher pending flag is set and execution
continues with no switch taking place.

This is a privileged instruction,

if STATUSC.IE = O
then STATUSC.DRF := 1
else
begin
“PUSH2? X;
“PUSH2’ P-PB;
“PUSH2’ STATUS;
“PUSH2? (S-a+2) [0..14]
Q :=S;
“PUSH2’ DB.DST;
“PUSH2’ DB.OFFSET;
*PUSH2’ DL.OFFSET;
“PUSH2’> Z,OFFSET;

PUSH8 STATUSB;
“PUSH2’ S-Q+2;
ICB.SC := S;
STATUSC,ICS := 1
STATUSC.DPF := 0
execute case 2 o
end;

)
t_1EXIT;

10-10
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10.5.1.,2  SWT

The SUT instruction provides a switch of the execution environment
of a process from Compatibility mode directly to Native mode.

The Compatibility mode stack ig capped with an Interrupt Stack
Marker, the appropriate mode flags changed, and control passed to
the Native SUITCH trap routine on the Native mode stack which
executes above the previous interrupt stack marker. Any
interferences, such as Page Faults, aborts the operation after
setting the “switch in progress’ flag which then takes effect on
the subsequent IEXIT to the process.

This is a privileged instruction,

if STATUSC.IE = 0
then Trap"INSSUITCH"
else .
begin
“PUSH2’ X;
“PUSH2® P-PB;
. "PUSH2’ STATUS;
“PUSH2? (S-Q+2) [0..14];
Q :=8;
*PUSH2’ DB,DST;
“PUSH2’ DB.OFFSET;
“PUSH2’ DL.OFESET;
“PUSH2’ Z.OFFSET;
PUSH8 STATUSB;
“PUSH2? $-Q+2;
TCB.SC := §;
TCB.XM := 0;
TCB.SUIP := 1;
execute_case 1 of IEXIT;
end;
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10.5.1.3  RSUT

The RSUT is the reverse operation to a corresponding SWITCH
instruction which occurred from Native mode and basically returns
execution control back onto the Native mode stack envirorment.
The Compatibility mode stack is capped with a register save to
build the interrupt stack marker, the process mode flag is set

to Native mode, and a relaunch of the Native mode process occurs,

This is a privileged instruction,

if STATUSC.IE = 0
then Trap" INSSWITCH"
else
begin
“PUSH2’ DB.DST;
“PUSH2’ DB.OFFSET;
“PUSH2’ DL.OFFSET;
“PUSH2’ Z.OFFSET;
PUSH8 STATUSB;
“PUSH2’ S-Q+2;

TCB.SC := S;

TCB.XM := 0;
execute_case_1 of IEXIT;
end;

10-13
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10.5.2 Native Mode Instructions

10.5.2.1 DISP

The DISP instruction is described in Section 6.2.9.6.

10.5.2.2  IEXIT

The IEXIT instruction is described in Section 6.2.9.8. The
execution enviromment of a process is determined first by the
PM flag, indicating Native or Compatibility mode, and then by
the SUIP “switch in progress’ flag to either trap to the SUITCH
Trap routine or just perform a normal launch of the process by
by reestablishing the registers from the interrupt stack marker.

10-14
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10.5.2.3 SWITCH

The SUITCH instruction provides a switch of the execution
enviromment of a process from Native mode directly to
Compatibility mode. The Native mode stack is capped with an
Interrupt Stack Marker, the appropriate mode flags changed, and
control passed to the Compatibility SWITCH trap routine on the
Compatibility mode stack which executes above the previous
interrupt stack marker. Any interference, such as Page Faults,
aborts the operation after setting the “switch in progress’
flag which then takes effect on the subsequent IEXIT to the
process.

This instruction requires Ring level 1.

~

if STATUSC.ICS = 1 or STATUSC.IE = 0
then Trap"INSSWUITCH"

else
begin
PUSH_INTERRUPT MARKER;
TCB.SN := S;
TCB.XM := 1;

TICB.SWIP := 1;
execute_case_1 of IEXIT;
end;

10-15

VISION ARCHITECTURE CONTROL DOCUMENT 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

10.5.2.4 RSWITCH

The RSWITCH is the reverse operation to a corresponding SUT
instruction which occured from Compatibility mode and basically
returns execution control back onto the Compatibility mode stack
environment. The Native mode stack is flushed to leave the old
interrupt stack marker, the process mode flag set to Compatibility
mode, and a relaunch of the Compatibility mode process occurs,

This instruction requires Ring level 1.

if STATUSC.ICS = 1 or STATUSC.IE = 0
- then Trap"INSSUITCH"
else
begin
S 1= Q+120;
TICB.SN := 8;

ICB.XM := 1;
execute_case_1 of_ IEXIT;
end;
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10.6  PROTECTION

——
—— ot e

| 3
|  SORTED LIST OF INSTRUCTIONS APPENDIX
The details of protection are integrated with those of Native | . 3
mode objects in Chapter 2. In particular, refer to the discussion +
on object types and object access rights.
Section Instruction
EII==Z=S PR R A R e L i it s Tt s T 1 ¢ 1)

10.7  IMPLEMENTATION NOTES ABSt source.r, destination.w
ADDt = term.r, sum.ru :
ADDtD term.r, sum.rv

AND4 mask.r4, operand,rué

ASLt shiftcount,rl, operand.rw
ASRt shiftcount.rl, operand.rw
BADD4 term.r4, dest.b

BCMP4 sourcea.b, sourceb.rd

BCMP8 sourcea.b, sourceb.r8

BGET4 source.b, dest.ud

BGEI8 source,b, destination.u8
BMOVE8 source.b, dest.b

BMOVEADR source.m, dest.b

BPOP8. dest.b

BPUSHS. - source.b

BREAK parameter.r4

BRX 1loi.r4

BR{GLEU} target.r4

BSET4 source,r4, dest.b

BSET8 source.r8, dest.b

BSUB4 term.r4, dest.b

BTESI8 source.b

CALL target.r4

CALLX loi.r4

CHECKA parameter.r4

CHECKB parameter.r4

CHECKHI source.r4, hibound.r4
CHECKLO source.r4, lobound.r4
CHNOP

CIS channel.rl, status.rl

CLRMR nmrselect.rl

CMPB fillchar, lgtha, srca, lgthb, srcb, index
CMPC length,r4, stringa.m, stringb.m, index.u4
CMPT table, fillchar, lgtha, srca, lgthb, srcb, index
CMPt sourcel.r, source2.r

CMPtD sourcea.r, sourceb.r

CVAD length.rl, source.r, dest.w
CVDA length.rl, source.r, dest.u
CVDI length,rl, source.r, dest.u8
CVID 1length.rl, source.r8, dest.u

.

¢
.
.

Py
o

1. All Compatibility mode objects, code and data segments, are
assumed by hardware to be aligned on an even byte boundary.
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CVLAtVA operand.ml, virtaddr.u8

CVVAtPP virtaddr.r8, ppn.u4

DELETE wordcount,r4

DISABLE oldi.wl

DISP

DIVt divisor.r, dividend.ru

DIVtD divisor.r, quotient.ru

DOUN sema.nmruéd

DPF value,r4, shiftcount.rl, mask.r4, target.ru4
DUP  wordcount. r4, value. r4’

ENABLE oldi.rl

ERROR

EXIT

EXTEND wordcount.ré4

GETSIGN operand.rl, sign.uwl

GrowGDO newlength.r4

HASH virtaddr.r8, hashindex.u4

IDLE

IEXIT

IFC

INTERRUPT pr.r4

I0C channel,r4, control.r4

IOR channel.r4, control.r4, data.ué

I0J channel.r4, control.r4, data.r4

IVB tcb.nr

LAUNCH tcbla.r8, tcbva.r8

LDMR mrselect.rl, source.rl6

LDVIR source.r4

LSLt shiftcount.ri, bitfield.rw

LSRt shiftcount.rl, bitfield.rw

LVB tcb.mr

MODt divisor.r, dividend.ru

MOVEADR operand.m, destination.u8
MOVEBIT bitindexr.r4, source.rl, bitarray.mru
MOVEBLR fillchar, srcl src, destl dest
MOVEBRL flllchar srcl src, destl, dest
MOVEC length.r4, source nr, destlnatlon ny
MOVED length, rl source.r, dest.w
MOVESEMA  source. r4 sema, w4

MOVEfSP4 selector. r1 destination.uw4
MOVEfSP8 selector. r1 destination.u8
MOVEtSP4 selector.rl, source.r4
MOVEtSP8 selector.rl, source.r8

MPYt factor.r, product.rw

MPYtD factor.r, product.ru :

MRAND mrasleect.rl, mrbselect.rl

MRNOT mreselect.ril -

MROR mraselect.rl, mrbselect.rl

MRXOR mraselect. r1 mrbselect.rl

.NEGt  source.r, destlnatlon ©

N
o .
Pttt
(8]

.

DIy
o
S 0

.
.

.
.

-

.
.

W

.
.
.

o .
b

.
.

PR
o .
. .

.
.
.

.
.

.
.
.

DN D

.
.

.
.
.

w

4]

by
.
.

.

[SN\CEARVEEVEMVVEVEVIVE VR AN BNV RO RA RO INVEL R S AVECEVIES EURU EVEC R VI E RV EU IV VLIV RS RO R VN N

By

.

.
.

.

.
.
.

s
(=]

.
.
H
-

)
.
.

B
B
o

.
B
.

N

.
.
.

.
.

.
.
-

-

.
.
.

o
.
h
PO

.

.
.

¥
.
.

.
.
o

w

.
.
.

.
-
.

.

w o

.
.

o
.
.

WAWEOPPOPPPOOCOOWNIOVOIWVWWRIRJNIORPNNPRFPRPOIRPPOOORPRNVNOIFPPLOWWDOD
OVRPRPNOPROVIORPPPONNWRERNOINOORPVRIVNNFRPOOQPAPRPNRIOWENNE WOWN®

.
.

VISION ARCHITECTURE CONTROL DOCUMENT S 07/31
DO NOT COPY -- HP PRIVATE INFORMATION

NOP

NOT4 - source.r4, destination.u4

OR4 mask.r4, operand.rué

OVPUNCH sign.rl, operand.rul

PAR response.wl

PDA response.ul

PDDEL ppn.ré

PDINS ppn.ré

POLYt degree.rl, polyn.mr, operand.rw
POPt destination.u

PRD response. wl

PROBE ring.rl, access,rl, address.r8, length. r4
PSDB

PSEB

- PUSHADR operand. m

PUSHt source.r
PUVCSA tcb.mr

. QUAD4 source.r4, destxnation w4

RBYTIE data.wl

RCL response.wl

RDP channel,.rl, dest,ul6, length,ul
REMt divisor, r, d1v1dend re

REP wordcount. r4 value.r4, operand.mw
RIS channel. rl status wl .
RSUITCH |

- RVLR ;
SCANUNTIL ~charset. nr, string.mr, index w4

SEXIT

SIS channel.rl, status.rl

SLD gount.rl, length.rl, source.r, dest.uw
SRD count, rl lenght. rl source, r, dest.u
SIMR - mrselect rl, destlnatlon wie

STOP

- SIVLR dest.uw4

SUBt term.r, difference.ru
SUBtD term.r, difference.ru
SWITCH

SYNCIB operand nc, length r4
SYNCOD loi,r4

SYNCICB tcb.r8

TESTA

TESTB

TESIBIT. bitindex.r4, bitarray.mr:
TESTDOUN sema.mrué

TESTLSB source.rl

TESTOV

TESTREF va.r8

TESTSEMA sema.mru4, result.w4
TESTSTRIP operand.rul

TESTt source.r

TESTtD source.r

e
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TRANSL table. mr, 1ength r4, source.mr, dest.my
TRY

" UNTRY destmatlon w4
‘"UP sema,mrué

uvesa

VABSt wvqual.ril, source. vr, abs.vu

VACCDt vqual, r1 terns.vr, sunrw

VACCt wvqual.rl, terms vr, sum.rw . - .

VADDt vqual. r1 terna. vr, termb. vr, sun. vu

VALD length, r1 operand. ru

VALN length, rl operand.ru

VAND4 wvqual. rl facta.vr, factb.vr, and vu

VASLt vqual.rl shlftcount vr, target Vi

VASRt vqual.rl, shiftcount,vr, tafget,vw.-

VCMPt .vqual. r1 field.r1, srca.vr, srch.vr, mrsel, rl
VCOMPRSt vqual rl, terms vr, compressed.vu

VCONVERT vqual. r1z typer. r1 source.vr, dest.vu
VDIVt wvqual.rl, divd.vr,. diver. vr, quot,vu

VEXPNDt wvqual. r1 terms.vr, expanded,vu

VEXTt vqual.rl, tems vr, index.r, value.w

VGATHt wvqual. rl source.vr, index.vr, destination, Vi
VINSt wvqual.rl, tems vy, index.r, newval.r

‘VINVAL vrmask. rl

VLSLt vqual.rl, shi'ftcount.vr, target.vru
VLSRt wvqual.rl, shiftcount.vr, target vru
VMAXELt wvqual. rl terms,vr, maxind.w4
VMINELt wvqual. r1 terms,vr, ninind.u4
VMODt wvqual. rl, led vr, divsr.vr, mod. v
VMOVEt vqual. rl, source.vr, dest, o

VMPYt wqual.rl, facta,vr, factb,vr, prod.vu
VNEGt  vqual.rl, source.vr, neg.vu

- VOR4 wqual.rl, terma.vr, termb.vr, or.vu

VREMt vqual. rl divd,vr, divsr. vr, rem.vy .
VSCATt vqual. r1 source.vr, index.vr, destinatjon.vu

AVSUBt vqual., rl terma.vr, termb,vr, "aift.vw

VXOR4 vqual. rl terma.vr, termb.vr, xor.vi
UBYTE data.rl, end.ri

UeMD  command. r1

UDP channel.rl, data.ri, length.rul

XOR4 mask.r4, Operand. ru4

a4




