
HEWLETT-PACKARD
~

Vectra System BIOS Technical
Reference Manual

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this niaterial, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall
not be liable for errors contained herein or for incidental or consequential damages in connection with
the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or rehd.bility of its software on equipment that is
not furnished by Hewlett- Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced, or translated to another program language
without the prior written consent of Hewlett-Packard Company.

MS-DOS is a U.S. registered trademark of Microsoft, Incorporated

IBM is a u.S. registered trademark of International Business Machine Corporation.

Intel is a u.s. registered trademark of Intel Corporation.

Copyright 1988 by Hewlett-Packard Co.

Personal Computer Group
974 East Arques Avenue
P.O. Box 486
Sunnyvale, CA 94086, U.S.A.

First Edition - Febuary 1988, Printed in Singapore
Part Number 45945-90012

2 Vectra System alOS Technical Reference Manual

Vectra System BIOS
Technical Reference Manual

For the HP Vectra ES and RS Series
of Personal Computers

Flin- HEWLETT
~a PACKARD

Part Number 45945-90012
First Edition - February 1988

Printed in U.s.A.

HP Vectra System BIOS Technical Reference
Manual

For the HP Vectra Series (ES, as, RS) of Personal Computers

HP Ve~tra System BIOS Technical Reference Manual 1

Contents

Vectra System BIOS Technical Reference Manual

Chapter 1
Introduction

Terms Used In This Manual.. 1-1
System Software. .. 1-1

Application Programs. .. 1-1
Operating System. .. 1-1
ROM BIOS 1-1

Chapter 2
ROM BIOS Overview

Memory Locations 2-1
Interrupts 2-2
ROM BIOS Drivers and Functions 2-5

SID-BIOS Drivers ; 2-5
Calling STD-BIOS Drivers 2-6
EX-BIOS Drivers 2-7

The CALL SYSCALL Routine 2-7
Calling EX-BIOS Drivers 2-7
EX-BIOS Standard Functions 2-8
EX-BIOS Parameter Passing Conventions 2-10
EX-BIOS Return Status Codes 2-10

Data Structures 2-12
STD-BIOS Data Structures 2-12
EX-BIOS Data Structures 2-13
The HP_VECTOR_TABLE 2-13
The HP_ENTRY_CODE 2-13
Driver Data Areas 2-14
EX-BIOS Driver Headers 2-15
EX-BIOS Global Data Area 2-16

Chapter 3
Video

Overview '. .. 3- 1
Data Structures , 3-1
Video Driver (INT lOU) 3-6
Video Driver Function Definitions 3-7

FI0_SET_MODE (AH = OOH) 3-7
FlO_SET _CURSIZE (AU • 0IU) 3-7
FlO_SET _CURPOS (AH = 02H) ' 3-8
FI0_RD_CURPOS (AH =03H) 3-8
FI0_RD_PENPOS (AH = 04H) 0 •••• 0 ••••••••••••••••• 0. 3-8

FI0_SET-:-PAGE (AH =05H) 3-9
FI0_SCROLL_UP (AH -= 06H) 3-9
FI0_SCROLL_DN (AH = 07H) 3-9
FI0_RD _CHARATR (AH =08H) , ' 3-10
FI0_WR _CHARATR (AH =09H) 3-10
FI0_WR _CHARCUR (AH -= OAH) 3-10
FlO_SET _PALLET (AH = OBH)............................. . 3-11
FI0_WR _PIXEL (AH -= OCH) 3-11
FI0_RD _PIXEL (AH = ODH) 3-12
FIO_WR _CHARTEL (AH = OEH) 3-12
FlO_GET _STMODE (AH =OFH) ' 3-13

Write String (AH = 13H) 3-13
FI0_WRS_OO (AX • 1300H) 3-13
FI0_WRS_OI (AX • 130IH) 3-14
FI0_WRS_02 (AX = 1302H) 3-14
FlO_ WRS_03 (AX -= 13°3H) 3-14

HP Extended Video Functions 3-15
FlO_INQUIRE (AX • 6FOOH) 3-15
FlO_GET _INFO (AX = 6FOIH) 3-15
FlO_SET _INFO (AX = 6F02H)................................. .. 3-17
FlO_MOD _INFO (AX -= 6F03H) 3-18
FI0_GET_RES (AX • 6F04H) 3-19
FI0_XSET _MODE (AX • 6F05H) 3-20

Chapter 4
Input System and HP-HIL

Overview 4-1
Application Interface Level 4-1
Overview 4-2
Data Structures 4-3
Logical J)escribe Record , 4-3
Logical J)escribe Record Definitions 4-5
Logical ISR Event Records 4-7
Application Event Drivers 4-8
Logical GID Drivers 4-8
V_LTOUCH Driver (BP· 00C6H) 4-8
Touchscreen Driver Functions Definitions 4-10

F_ISR (AH • OOH) 4-10
SF_INIT (AX -= 0200H) 4-10
SF_START (AX • 0202H) 4-11
SF_REPORT _STATE (AX • 0204H) 4-11
SF_VERSION _DESC (AX • 0206H) 4-11
SF_DEF_ATTR (AX • 0208H) 4-11
SF_GET_ATTR (AX· 020AH) 4-12
SF_SET_ATTR (AX • 020CH) 4-12
SF_TRACK_ON (AX • 0404H) 4-12
SF_TRACK _OFF (AX • 0406H) 4-13
SF_CREATE_EVENT (AX· 0408H) 4-13
SF_EVENT_ON (AX· 040AH) 4-14
SF_EVENT_OFF (AX • 040CH) 4-15
SF_CLIPPING _ON (AX· 040EH) 4-15
SF_CLIPPING _OFF (AX • 0410H) 4-15
F_SAMPLE (AH • 06H).......................................•...................................... 4-16

V_LPOINTER Driver (BP • OOCOH) 4-16
Pointer Driver Function Definitions 4-17

F~ISR (AH • OOH) ' 4-17
SF_INIT (AX :Ill 0200H) 4-18
SF_START (AX • 0202H) 4-18
SF REPORT STATE (AX • 0204H) 4-18
SF_ VERSION--=-DESC (AX • 0206H) 4-18
SF_DEF_AITR (AX • 0208H) 4'-19
SF_GET_AITR (AX z 020AH) 4-19
SF_SET_AITR (AX • 020CH) 4-19
SF_TRACK_ON (AX • 0404H)· 4-20
SF_TRACK_OFF (AX :Ill 0406H) 4-20
SF_CREATE _EVENT (AX • 0408H) 4-20
V_EVENT _POINTER Motion ISR Event Record: 4-21
SF~EVENT_ON (AX • 040AH) 4-22
SF_EVENT_OFF (AX • 040CH) 4-22
SF_CLIPPING _ON (AX • 040EH) 4-23
SF CLIPPING OFF (AX • 04l0H) 4-23
F_SAMPLE (AH· 06H) 4-23

V_LTABLET Driver (BP -= OOBAH) 4-24
Tablet Driver Functions Definition 4-25

F_ISR (AH • OOH) 4-25
SF_INIT (AX • 0200H) 4-26
SF_START (AX • 0202H) 4-26
SF_REPORT _STATE (AX • 0204H) 4-27
SF_VERSION _DESC (AX • 0206H) 4-27
SF_DEF_AITR (AX • 0208H) ; 4-:27
SF_GET_AITR (AX • 020AH) 4-28
SF_SET_AlTR (AX • 020CH) 4-28
SF_TRACK_ON (AX • 0404H) 4-28
SF_TRACK_OFF (AX • 0406H) 4-29
SF_CREATE _EVENT (AX • 0408H) 4-29
SF_EVENT_ON (AX • 040AH) 4-31
SF_EVENT_OFF (AX • 040CH) 4-31
SF_CLIPPING _ON (AX· 040EH) 4-31
SF_CLIPPING _OFF (AX • 0410H) 4-32
F_SAMPLE (AH • 06H) 4-32

Application Event Driver Example 4-32
Hardware Interface Level 4-37
Overview : 4-37
Ilevice Driver Mapping 4-38
Ilevice Emulation 4-39
Data Structures 4-39
Physical I>escribe Record 4-39
Physicalllevice Record Definition 4-41
Physical ISR Event Records 4-42
Hardware Interface Level Driven 4-43
V_S8259 Driver (BP • 00 lEH) 4-43
V_S8259 Driver Function Definitions 4-44

F_ISR (AH • OOH) 4-44
SF_INIT (AX • 02008) 4-44
SF_START (AX • 02028) 4-45
SF_VERSION _DESC (AX • 0206H) 4-45
SF_GET_IRQ (AX • 04148) 4-45

V_"PHIL Driver (BP • 0 114H) 4-45
V_HPHIL Driver Function r>efinitions 4-48

F_ISR (AH • OOH) ~ 4-48
SF_INIT (AX • 0200H) 4-48
SF_REPORT _STATE (AX • 0204H) 4-48
SF_VERSION _DESC (AX • 0206H) 4-49
SF_OPEN (AX • 020EH) 4-49
SF CLOSE (AX • 0210H) 4-50
SF CRY _RECONFIGURE (AX • 0406H) '.. ~ 4-50
SF_CRY_WR _PROMPTS (AX • 0408H) 4-50
SF_CRV_WR _ACK (AX· 040AH) 4-51
SF_CRV _RE.PEAT (AX = 040CH) 4-51
SF_CRV _DISABLE _REPEAT (AX • 040EH) 4-52
SF_CRV_SELF_TEST (AX • 0410H) 4-52
SF_CRV _REPORT _STATUS (AX • 0412H) 4-53
SF_CRV _REPORT_NAME (AX:I 0414H) 4-54
F_PUT_BYTE (AH • 06H) 4-54
F_GET_BYTE (AH =08H) 4-55
F PUT BUFFER (AH • OAH) 4-55
SF GET DEVTBL (AX :I: 0420H) ~. 4-56
SF-SET -DEVTBL (AX = 0422H) 4-57
SF-SET- DEVTBL (AX • 0424H) 4-57

V_SINPUT(BP • 002AH) 4-58
V SINPUT Driver Function Definitions 4-59
-F ISR (AH = OOH) 4-59

SF_INIT (AX • 0200H) 4-59
SF DEF LINKS (AX = 0400H) 4-59
SF GET_LINKS (AX -= 0402H) 4-60
SF_SET_LINKS (AX = 0404H) 4-60
F_INQUIRE (AH = 06H) 4-61
f~_INQUIRE_ALL (AH = 08H) 4-61
F_INQUIRE_FIRST (AH = OAH) 4-62
F REPORT ENTRY (AH = OeH) 4-63

Physical GID Driver '" . '" '" 4-63
Physical GID Driver Function Definitions ~ 4-64

F_ISR (AH = OOH) 4-64
SF_INIT (AX • 0200H) '" 4-64
SF_START (AX = 0202H) 4-64
SF VERSION _DESC (AX = 0206H) 4-65

V PNULL Driver (BP :: OOOCH) 4-65
Hardware Interface Level Services 4-65
V_STRACK Driver (BP = OOSAH) 4-65
V_STRACK Driver Function Definitions 4-66

F_ISR (AH = OOH) 4-66
SF_INIT (AX :I: 0200H) 4-67
SF_START (AX = 0202H) 4-67
F_TRACK_INIT (AH • 04H) 4-67
F_TRACK_ON (AH :I: 06H) 4-67
F_TRACK_OFF (AH = 08H) 4-68
F_DEF_MASKS (AH -= OAH) 4-68
F_SET_LIMITS_..X (AH z OCH) , 4-69
F_SET_LIMITS_Y (AH = OEH) 4-70
F_PUT_SPRITE (AH • 10H) 4-70
F_REMOVE _SPRITE (AH = 12H)..•.......... 4-70

V_SCANI)()()R Driver (BP - 0 16EH) 4-71
V_SCANI)()()R Driver Function Definitions 4-71

F_ISR (AH • OOH) 4-71
SF_INIT (AX • 0200H) 4-72
SF_START (AX • 0202H) 4-72
SF_VERSION (AX • 0206H) 4-73
SF_GET_STATE (AX • 0800H) 4-73

Chapter 5
Keyboard

Overview. 5- 1
Keyooard Drivers 5-3
Overview. .. 5- 3
Data Structures 5-3
STD-BIOS Keyboard ISR (INT 09H) 5-9
STD-BIOS Keyboard Driver (INT 16H) 5-14
Keyooard Driver (INT 16H) Function Definitions 5-16

FI6_GET_KEY (AH - OOH) 5-16
FI6_STATUS (AH • 0IH) 5-16
F16_KEY_STATE (AH - 02H) 5-17
FI6_SET_TYPE_RATE (AH • 03H) 5-17
F16_PUT_KEY (AH • 05H) 5-18
FI6_GET_EXT_KEY (AH • 10H) 5-18
FI6_EXT_STATUS (AH- I1H) 5-18
FI6_EXT_KEY_STATE (AH - 12H) 5-19
F16_INQUIRE (AX • 6FOOH) 5-20
FI6_DEF_ATfR (AX • 6FOIH) · 5-20
FI6_GET_ATfR (AX • 6F02H) 5-21
FI6_SET_ATIR (AX - 6F03H) 5-22
F16_DEF_MAPPING (AX • 6F04H) 5-22
FI6_GET_MAPPING (AX • 6F05H) 5-23
F16_SET_MAPPING (AX • 6F06H) ; 5-23
F16_SET_XLATORS (AX • 6F07H) 5-24
F16_KBD (AX - 6F08H) 5-25
FI6_KBD_RESET (AX • 6F09H) 5-25
FI6_READ_SPEED (AX - 6FOAH) 5-26
FI6_SET_LOW_SPEED (AX - 6FOBH) 5-26
FI6_SET_HIGH_SPEED (AX - 6FOCH) 5-26
FI6_GET_INT_NUMBER (AX - 6FODH) 5-27

Keyboard Layout Identification 5-27
EX-BIOS Keyb<:>ard Drivers for the HP Vectra Keyooard/DIN 5-28
Overview 5- 28
Logical Keyboard Driver · 5-28
Keyboard Translators 5- 28
8042 Interface Driver 5-29
Data Structures 5-29
Logical Keyboard Driver 5-31
Logical Keyboard Driver Function Definitions 5-33

F ISR (AH - OOH) 5-33
SF INIT (AX • 0200H) 5-33
SF-VERSION DESC (AX • 0206H) 5-33

Keyboard Translators ; .' 5,,:,,34

V SOFfKEY (BP • 003CH) 5-34
-F ISR (AH • OOH) 5-35

SF INIT (AX • 0200H) 5-35
SF VERSION_DESC (AX • 0206H) 5-35

V_QWERTY (BP • 0036H) 5-36
F ISR (AH • OOH) 5-36
SF VERSION DESC (AX • 0206H) 5-36

V FUNCTION (BP • 0042H) 5-37
-F ISR (AH • OOH) 5-37

SF VERSION DESC (AX • 0206H) 5-37
V_NUMPAD (BP--: 0048H) 5-38

F_ISR (AH • OOH) 5-38
SF_ VERSION_DESC (AX • 0206H) 5-38

V_CCP (BP • 004EH) 5-39
F_ISR (AH • OOH) L •• 5-39
SF_INIT (AX • 0200H) 5-40
SF_VERSION_DESC (AX • 0206H) 5-40

V OFF Driver (BP • 0009CH) " 5-41
-F_ISR (AH • OOH) ~ 5-41

SF_ VERSION_DESC (AX • 0206H) 5-41
V_RAW Driver (BP • 0090H) 5-42

F_ISR (AH • OOH) 5-42
SF_ VERSION_DESC (AX • 0206H) 5-42

V_CCPNUM (BP • 0096H) 5-43
F_ISR (AH • OOH) 5-43
SF_ VERSION_DESC (AX • 0206H) 5-43

V_CCPCUR (BP • 008AH) : 5-44
F_ISR (AH • OOH) 5-44
SF_VERSION_DESC (AX • 0206H) 5-44

V_SKEY2FK.EY (BP • 00A8H) 5-45
F_ISR (AH • OOH) 5-45
SF_ VERSION_DESC (AX • 0206H) 5-45

V_8042 Driver (BP • OOAEH) 5-46
V_8042 Driver Function Definitions 5-47

F_ISR (AH • OOH) 5-47
SF_INIT (AX • 0200H) 5-47
SF_START (AX • 0202H) 5-47
SF_ VERSION_DESC (AX • 0206H) 5-48
SF_CREAT_INTR (AX • 040AH) 5-48
SF_DELET_INTR (AX • 040CH) 5-48
SF_ENABL_INTR (AX • 040EH) 5-49
SF_DISBL_INTR (AX • 0410H) 5-49
SF_SET_RAMSW (AX • 0412H) 5-49
SF_CLR_RAMSW (AX • 0414H) 5-50
SF_SET_CRTSW (AX • 0416H) 5-50
SF_CLR_CRTSW (AX • 0418H) : 5-50
SF_PASS_THRU (AX • 041AH) 5-50

8042 Keyboard Controller 5-51
Overview 5-51
8042 Controller and Keyboard Commands 5-51

Scancode Set 1 5-59
Scancode Set 2 5-61
Scancode Set 3 5-63

8042 to STD-BIOS Scancodes and Commands 5-66
Logical Keyboard to 8042 Driver Communication 5-67

Chapter 6
Serial and Parallel 1/0

Overview '.' .. 6- I
Serial and Parallel Port Addresses...................... .. 6- 1
Print Screen Driver....................... .. 6-2
Polled and Interrupt Driven Operations 6-2
Data Structures 6-2
Serial Port Driver Data Structures 6- 2
Parallel Port Driver Data Structures 6-3
Print Screen Driver Data Structures 6-4
Serial Port Driver (INT 14H) 6-4
Serial Port Driver Function Definitions 6-5

FI4_INIT (AH = OOH) 6-5
F 14_XMIT (AH = a1H) .. 6- 7
FI4_RECV (AH = 02H) 6-7
FI4_STATUS (AH = 03H) 6-8
FI4_INQUIRE (AX = 6FOOH) 6-8
FI4_EXINIT (AX = 6FOIH) 6-9
FI4_PUT_BUFFER (AX = 6F02H) 6-10
FI4_GET_BUFFER (AX = 6F03H) 6-11
FI4_TRM_BUFFER (AX=6F04H) 6-11

Parallel Port Driver (INT 17H) 6-13
Parallel Port Driver Function Definitions 6-13

F 17_PUT_CHAR (AH = DOH)..•...................... 6-13
F 17_INIT (AH = 0 IH) 6-14
F 17_STATUS (AH = 02H) 6-1 S
F 17_INQUIRE (AX -6FOOH) 6-15
F 17_PUT_BUFFER (AX = 6F02H) 6-15

Print Screen Driver (INT 05H) ~6-16

Chapter 7
Disc

Overview. .. 1-1
Physical Drive Numbers ...•.... 1-1
Flexible Disc Drive Support 1-1
Hard Disc Drive Support•.. 7-1
External Disc Drives 1-2
Data Structures ' 1-2

Flexible Disc Operation Table _ ' 1-1
Flexible Disc Parameter Table.. 7-3
Flexible Disc Status Table '" 1-4
Hard Disc Parameter Table '" 1-5

Disc Driver (INT 13H) 1-6
INT 13H Flexible Disc Driver Functions 1-6
Flexible Disc Driver Function Definitions 1-7

Reset Flexible Disc Subsystem (AH = OOH) __ eo 7-1
Get Status of Last Operation (AH = 01H) 1-1
Read Sectors from Flexible Disc (AH = 02B) 7-1
Write Sector to Flexible Disc (AU = 030) 7-7
Read Verify Sectors on Flexible Disc (AM = 04H} eo __ __ 1-8
Format Track (AH = 05H)•....................................... 1-8
Get Drive Parameters (AH = 08H) eo 1-9

Get DASD Type '(AH = 15H) 4 ••••• '••••••••••••••••••••••••••••• 7-9
Get Disc Change Line Status (AH :I: 16H) 7-10
Set DASD Type for Format (AH • 17H) 7-10
Set Media Type for Format (AH :I: 18H) 7-10

Note 1: Number of sectors (AL): 7-10
Note 2: Sector Number (CL): 7-11
Note 3: Cylinder number (CH): 7-11

INT 13H Hard Disc Driver Functions 7-11
Hard Disc Driver Function Definitions 7-12

Reset Hard and Flexible Disc Subsystem (AH II: DOH) 7-12
Get Status of Last Operation (AH = 0 IH) 7-12
Read Sectors from Hard Disc (AH -= 02H) 7-13
Write Sector to Hard Disc (AH II: 03H) 7-13
Read Verify Sectors on Hard Disc (AH • 04H) 7-13
Format Track (AH =05H) : , 7-14
Get Drive Parameters (AH :I: 08H) 7-14
Set Drive Parameters (AH = 08H) 7-15
Read Sectors and ECC from Hard Disc (Read Long) (AH =OAH) 7-15
Write Sectors and ECC to Hard Disc (Write Long) (AH II: OBH) 7-J 5
Seek to Specified Cylinder (AH =OCH) ~ ~ 7-16
Alternate Disc Reset (AH =ODH) 7-16
Test Drive Ready (AH = 10H) 7-16
Recalibrate Drive (AH • I1H) 7-16
Controller Diagnostics (AH = 14H) 7- 16
Get DASD Type (AH • 15H) 7-17

Chapter 8
System Drivers

Overview ; 8-1
Memory Size And Equipment Determination 8-1
Extended System Support 8-2
EX-BIOS Driver Support 8-2
RAM Allocation 8-2
HP_VECTOR_TABLE Manipulation 8-5
System String Control 8-5
CMOS Memory Control 8-7
System Clock Functions 8-7
Data Structures 8-7
Equipment Determination Driver (lNT 11 H) 8-8
Memory Size Determination Driver (INT 12H) 8-9
System Support Driver (INT 15H) 8-9
System Support Driver Function Definitions 8-10

FlS_DEVICE_OPEN (AH • 80H) 8-10
FlS_DEVICE_CLOSE(AH • 81H) 8-10
FI5_PROO_TERM (AH • 82H) 8-10
FI5_WAIT_EVENT (AH • 83H) 8-11
FlS_JOYSTICK (AH • 84H) ~ ~ 8-11
FI5_SYS_REQ (AH • 85H) ..•............. 8-12
FI5_WAIT (AH· 86H) 8-13
FI5_BLOCK_MOVE (AH :I: 87H) ...•........· 8-14
FlS_GET_XMEM_SIZE (AH • 88H) 8-15
FI5_ENTER_PROT (AH • 89H) 8-16
FlS_DEV_BUSY (AH • 90H) 8-18
FI5_INT_COMPLETE (AH • 91H) 8-19

Time and Date Driver (INT IAH) 8-19
Time and Date Driver Function Definitions or 8-19

F1A_RD_CLK_CNT (AH :8 DOH) 8-19
F1A_SET_CLK_CNT (AH • OIH) 8-20
F1A_GET_RTC (AH • 02H) 8-2Q:
F1A_SET_RTC (AH • 03H) 8-20
F1A_GET_DATE (AH -= 04U) 8-20
F1A_SET_DATE (AH • 05H) 8-21
FIA_SET_ALARM (AU = 06H) 8-21
FIA_RESET_ALARM (AH II: 07H) 8-21

V_SCOPY Driver (BP = OOOOH) 8-22
V_DOLITILE Driver (BP = 0006H) ~ 8-22
V_PNULL Driver (BP = OOOCH) 8-22
V_SYSTEM Driver (BP = 0012H) 8-22
V_SYSTEM Driver Function Definitions 8-24

F_ISR (AH = OOH) 8-24
F_SF_INIT (AX • 0200H) 8-24
F_INS_BASEUPVT (04H) 8-24
F_INS_XCHGFIX (AH = 06U) 8-25
F_INS_XCHGRSVD (AH = 08H) 8-25
F_INS_XCHGFREE (AH = OAH) 8-26
F_INS_FIXOWNDS (AH = OCH) 8-26
F_INS_FIXGETDS (AH = OEH) 8-26
F_INS_FIXGLBDS (AU :8 10H) 8-27
F_INS_FREEOWNDS (AH = 12H) 8-28
F_INS_FREEGETDS (AH -= 14H) 8-28
F_INS_FREEGLBDS (AH = 16H) 8-30
F_INS_FIND (AH = 18H) 8-30
F_RAM_GET (AH = 1EH) 8-31
F_RAM_RET (AH = 20H) 8-32
F_CMOS_GET (AU = 22H) 8-33
F_CMOS_RET (AU = 24H) 8-33
F_YIELD (AH :II: 2AH) 8-34
F_SND_CLICK_ENABLE (AH = 30U) 8-35
F_SND_CLICK_DISABLE (AH = 32H) 8-35
F_SND_CLICK (AU = 34U) 8-35
F_SND_BEEP_ENABLE (AH :I: 36H) 8-35
F_SND_BEEP_DISABLE (AH = 38H) 8-35
F_SND_BEEP (AH = 3AH) 8-36
F_SND_SET_BEEP (AH = 3CH) i •••••••• 8-36
F_SND_TONE (AU I: 3EH) 8-36
F_STR_GET_FREE_INDEX (AU • 40H) 8-37
F_STR_DEL_BUCKET (AH • 42H) 8-37
F_STR_PUT_BUCKET (AH I: 44H) 8-38
F_STR_GET_STRING (AU· 46H) 8-32
F_STR_GET_INDEX (AH :I: 48H) ; 8-40

Chapter 9
System Processes

Reset 9-1
Protected Mode Support ' 9-2

Shutdown Status Byte 9- 2
Power-On Self Test (POST) ~. 9- 3

Table 9-2a and 9-2b Legend: r •••••••••••••••••••••••••••••••••.•••••••• ~ 9-4

System Generation (SYWEN) 9-16
M~mory Allocation 9-1 7
The HP_ VECTOR_TABLE Initialization .. " 9-18
EX-BIOS Driver Initialization 9-18
Adapter and Option ROM Module Integration 9-18
Shadow RAM (HP Vectra RS Series Only) 9-19

Boot Process (INT 19H) 9-19
Booting From a Flexible Disc 9-19
Booting From a Hard Disc 9- 19

Appendix A
BIOS Interrupts

EX-BIOS Drivers and Functions A-8

Appendix B
Memory Map

System Memory Map B-1
STD-BIOS Data Structures B-2

RS-232 Communication Port Addresses B-2
Parallel Printer Port Addresses B-3
Equipment Byte Data Area B-3
Keyooard Data Area B-4
Flexible Disc Data Area , B-6
Video Display Data Area B-7
Option ROM Data Area B-8
Timer Data Area B-8
System Data Flags .. B-8
Hard Disc Data Area , , B-9
Printer Timeout Counters B-9
Keyooard Buffer Pointers '" " B-9
Enhanced Graphics Adapter (EGA) Data Area 8-10
Flexible Disc Data Rate Area 8-10
Extended Hard Disc Data Area 8-10
Extended Flexible Disc Data Area B-ll
Keyooard Mode Indicator 8-11
Real-time Clock Data Area 8-13
Pointer to EGA Data Area B-13
Flexible Disc Expander Adapter Data Area ' 8-13
Intra-application Communications Area 8-14
Print Screen Status B-14
I)()S Data Area B- 14
Reserved Data Areas B- 14

EX-BIOS Data Area Map ...•........... B-15
Option ROM Data Segments B-16
EX-BIOS Global Data Area 8-16

ROM BIOS Memory Map 8-1 7
Product Identification 8-18
Product Identification Definitions 8-18

Processor Clock Rate , .. 8- 18
UP Vectra PC ID B-19
Machine Capability Marker B-1 9
8IOS Version Number B- 20

Year of the ROM BIOS Release (in BCD) B-20
Week of the ROM BIOS Release (in BCD) B-20

Appendix C
CMOS Memory Layout and Real-Time Clock

Real-Time Clock/CMOS Access C-2
Real-Time Clock (CMOS Address OOH-ODH) C-2
Diagnostic Status Byte (CMOS Address OEH) C-4
System Shutdown Byte (CMOS Address OFH) ~ C-4
Flexible Disc Descriptor Byte (CMOS Address 10H) C-5
CMOS Hard Disc Type (CMOS Address 12H) C-6
Equipment Byte (CMOS Address 14H) C-6
System Base Memory Size (CMOS Address 15H-16H) C-6
System Extended Memory Size (CMOS Address 17H-18H) C-7
Extended Hard Disc Type for Drive C: (CMOS Address 19H) C-7
Extended Hard Disc Type for Drive D: (CMOS Address lAB) C-7
STD-BIOS Checksum Word (CMOS Address 2EH-2FH) C-7
Low and High Extended Memory Byte (CMOS Address 30H-31H) C-8
Date Century Byte (CMOS Address 32H) C-8
Test Information Byte (CMOS Address 33H) C-8

Appendix D
I/O Port Map

DMA Channel Controller D-2
I/O Port Addresses for DMA Controllers D-3

8259A Interrupt Controllers D-4
8254 Timer Controller (I/O Ports 40H through 43H) D-6
Keyboard Data Buffer (60H) D-6
SPU Control Port (61 H) D-7
Speaker Control D- 8
Keyboard I/O Ports 0-8
Real-Time Clock Ports D- 8
Hard Reset Enable Port D- 8
NMI Sources and Involved I/O Ports D-9

Appendix E .
Default Device Mapping

Discs E-2
Character I/O I>evices E-2

Appendix F
Driver Writer's Guide

Introouction " F- 1
Installation of I>evice Drivers F-2
Initialization '. F - 2

Proouct Identification F-2
STD-BIOS Extended Functions F-3

Obtaining Memory From the EX-BIOS F- 3
Getting a Free Vector F-4

EX-BIOS Driver Functions F-4

EX-BIOS Driver Function Definitions F-6
F_ISR (AH :II DOH) F-6
F_SYSTEM (AH = 02H1 F-6
SF_INIT (AX = 0200H) F-6
SF_START (AX = 0202H) F-7
SF_REPORT _STATE (AX = 0204H) F-7
SF_VERSION _DESC (AX = 0206H) F-7
SF_DEF_ATTR (AX = 0208H) F-7
SF_GET_ATTR (AX· 020AH) F-8
SF_SET_ATTR (AX = 020CH) F-8
SF_OPEN (AX = 020EH) F-8
SF_CLOSE (AX = 0210H) F-9
SF_TIMEOUT (AX = 0212H) F-9
SF_INTERVAL (AX = 0214H) F-9
SF_TEST (AX 8: 0216H) F-9
F_IO__CONTROL (AH = 04H) F-l 0
SF_LOCK (AX = 0400H) F-IO
SF_UNLOCK (AX :II 0402H) F-IO
F_PUT_BYTE (AH 8: 06H) F-I0
F_GET_BYTE (AH = 08H) F-IO
F_PUT_BUFFER OR F_PUT_BLOCK (AH = OAH). F-Il
F_PUT_BUFFER (AH • OAH) F-II
F_PUT_BLOCK (AH = OAH) F-II

F_GET _BUFFER OR F_GET_BLOCK (AH = OCH) F-II
F_GET_BUFFER (AH = OCH) F-Il
F_GET_BLOCK (AH = OCH) F-12
F_PUT_WORD (AH = OEH) F-12
F_GET_WORD (AH· 10H) F-12

Return Status Codes F-13
Driver Headers F-14

HP_SHEADER Fields F-14
Driver Mapping F-19

Accessing Driver from an Application F-19
Examples of EX-BIOS Drivers F-20

Cursor Pad Scancode To UP Mouse Driver F-20
Application Resident EX-BIOS Driver F- 34
Non-HP-HIL Input I>evices F-34

Glossary

References

1
Introduction

This manual contains a detailed description of the ROM Basic Input/Output System (BIOS) of the HP
Vectra ES, QS, and RS series of personal computers. Entry points, includIng the industry standard ROM
BIOS entry points and function calls, are documented in this manual.

This manual deals extensively with programming and programming concepts. It presumes that the reader
is familiar with the Microsoft Macro Assembler (MASM), and the Intel iAPX 80286 (HP Vectra ES
series) and iAPX 80386 (HP Vectra QS and RS series) processor architecture.

Terms Used In This Manual

In this manual, the term CPU (Central Processing Unit) will be used to refer to both the 80286 and
80386 processors when a function or operation described is exactly the same for both. Other
abbreviations, acronyms, and terms used throughout this volume are listed in a glossary at the back of
this volumn. Related documents which may be of interest to programmers and advanced users are also
listed at the end of this volume in the IIReferences" section.

System Software

Software operating on the system may be viewed as a three-level hierarchy: application programs,
operating system, and ROM BIOS. These three levels are defined as follows:

Application Programs

An application program is the top level of software. It performs application-specific functions (i.e.,
spreadsheet or word processing functions). Application programs rely on either DOS or the ROM BIOS for
system functions such as character or disc I/O.

Operating System

The operating system provides the control and support functions necessary for an application program to
be executed. The operating system provides file-oriented functions, as well as providing basic support for
character I/O.

ROM BIOS

The ROM BIOS provides the interface between operating system ",oftware and the hardware. The ROM
BIOS provides a dual function; it constitutes the low level interface between the hardware and operating
system, as well as providing extended functions to application programs.

Introduction 1-1

The higher the software level, the more powerful the functions provided by the software. However, along
with this power often comes additional overhead which reduces performance and flexibility. A system
programmer should choose the level of software interface required by the individual set of design
constraints. It is good programming practice to use the highest level of system software that gets the job
done. Some system functions can be performed only on the highest level, since only system software
supports the function. However, other system functions may be performed at more than one level. Using a
lower level such as the ROM BIOS provides improved speed of execution and additional flexibility. Using
ROM BIOS routines may affect program portability to future HP products, and to other
industry-standard pes.

The ROM BIOS provides a powerful set of system functions, allowing application programs full access to
the capabilities of the system while maintaining a hardware-independent interface. The ROM BIOS also
allows the programmer or system designer to tailor the system to a specific set of design constraints. Some
of the tailoring methods provided to the programmer are:

• The number of interrupts can logically expand to fit requirements.

• Adapter cards can obtain a limited amount of RAM from the system BIOS without installing device
drivers.

• Applications can expand the features of the keyboard without replacing the industry standard driver
(INT 16H).

These methods maintain application compatibility with minimal effect on system performance.

1-2 Introduction

2
ROM BIOS Overview

The ROM BIOS is divided into two components, the Standard BIOS (STD-BIOS) and the Extended BIOS
(EX-BIOS). The STD-BIOS supports the industry standard set of BIOS functions The EX-BIOS is unique
to the original HP Vectra PC as well as to the HP Vectra series of Pes discussed in this manual. It
provides a wide range of system functions and support for HP peripherals. The STD-BIOS and the
EX-BIOS are contained in the system ROM which resides at the top of system memory.

NOTE

Throughout the remainder of this manual the terms ROM BIOS, STD-BIOS,
and EX-BIOS will be used. STD-BIOS and EX-BIOS are defined above.
The term ROM BIOS will be used to indicate the union of STD-BIOS and
EX-BIOS. As mentioned before, the term CPU (Central Processing Unit)
will refer to both the 80286 and 80386 series of processors.

This chapter contains an overview of the components of the ROM BIOS. These components are the
interrupt (also called "INT") vectors, code modules, and data structures. Interrupt vectors form the link
between the operating system, applications, and the ROM BIOS. The code modules perform the ROM
BIOS functions. Data structures provide the means for the ROM BIOS (and to some extent the
applications) to maintain driver variables, data buffers, etc.

Memory Locations

Code modules are accessed through interrupt vectors. The interrupt vectors reside in the first lKB of
system RAM. Usually a code module has an associated data structure. The data structures for the
STD-BIOS code modules reside in system RAM in absolute memory locations 00400H through 005FFH.
The data structures for the EX-BIOS code module reside at the top of system RAM. The address of the
EX-BIOS data area will vary depending on the particular configuration of the system.

Figure 2-1 shows the components of the ROM BIOS and their location within the system memory. Each
of the ROM BIOS components is discussed in detail in the remainder of this chapter.

ROM BIOS Overview 2-1

Interrupt Vectors

STD-BIOS Data Area

STD-BIOS Data Expansion Area and
Temporary DOS Buffers

Disc Operating System - (DOS)

Application Program Area

EX-BIOS Data Area

Video Display Memory

Video Adapter Card ROM

Adapter Card Option ROM

Processor ROM Extension

BIOS ROM

Extended Memory (Up to 15 MB)

Image of ROM at OEOOOOH - OFFFFFH

OOOOOOH

000400H

OOO6OOH

000700H

Variable·

Top of Available RAM ..

Top of RAM ...

OAcp6bH A DOC> 0

OCQOOOH ~

ocaOOOH C rr
OEOOOOH

OFOOOOH

100000H

FEOOOOH

• The length of the operating system Is revision dependent.
.. The Top of Available RAM is dependent on system configuration;

in a 640 KB system it is usually 09FOOOH. Refer to the corresponding
hardware TAM for more information.

... The Top of RAM Is dependent on system configuration;
in a 640 KB system it is 09FFFFH. Refer to the corresponding
hardware TAM for more information.

Figure 2-1. Memory Map Block Diagram

Interrupts

The interface to the ROM BIOS is through the interrupt structure of the cpu. The system allows for
three types of interrupts.

• Processor Interrupts--These interrupts allow system software to recover from error conditions and
other hardware exceptions.

• Hardware Interrupts--These interrupts are generated by two compatible (8259A) interrupt
controllers integrated into a VLSI chip (P/N 82C206) located on the Processor PCA. Hardware
interrupts indicate that a system hardware coluponent or peripheral requires service.

• Software Interrupts--These interrupts are generated through the software IIINT nil instruction.
Software interrupts allow system functions to be quickly and easily called by any program.

Interrupt vectors for the processor interrupts are defined by the cPU. Interrupt vectors for the hardware
interrupts are mapped by the values programmed into the 8259A interrupt controllers which are
initialized by the ROM BIOS. Processor and/or hardware interrupts may be simulated by a software
interrupt mapped to the same interrupt vector. For example, Interrupt 0 is mapped by the CPU for
Divide-by-O error. The service routine for this error condition may be executed by an INT 0 instruction.

Each interrupt has an interrupt vector associated with it. The interrupt vector contains the Code Segment
and Instruction Pointer of the service routine for that interrupt. Each of these vectors consists of two
words (four bytes). The CPU architedure supports 256 interrupt vectors which occupy the first 1024
bytes (OOOOOH-003FFH) of system memory.

2 - 2 ROM BIOS Overview

The interrupt vectors maintain industry standard compatibility while offering the expanded capabilities of
the HP EX-BIOS functions. Table 2-1 lists the interrupt vector assignments.

In order for the system to function properly, processor and hardware interrupt vectors are initialized to
valid service routines. Most unused vectors point to a null routine in the BIOS, which issues an
End-of-Interrupt (EOI) signal to the 82S9A interrupt controllers (when required) and returns. The
Keyboard Break and Timer Tick software interrupt vectors point to an interrupt return (IRET)
instruction in the BIOS. These vectors are indicated by an IRET in Table 2-1. Several software vectors
are used as pointers to data blocks instead of interrupt service routines. These vectors are indicated by an
interrupt vector used as a pointer to data (PT) in Table 2-1.

Table 2-1. Interrupt Vector Assignments

INT Address Function Type/ Service
Routine·

0 000-003H Divide by Zero PI (1) STD-BIOS
I 004-007H Single Step PI (1) STD-BIOS
2 008-00BH Nonmaskable PI STD-BIOS

Interrupt
3 OOC-OOFH Breakpoint PI (1) STD-BIOS
4 010-013H Arithmetic PI (I) STD-BIOS

Overflow
5 014-017H Print Screen SW (2) STD-BIOS
6 o18-01BH Invalid Opcode PI (1) STD-BIOS
7 OIC-OIFH Reserved PI (l) STD-BIOS
8 020-023H Timer Interrupt HW
9 024-027H Keyboard ISR HW STD-BIOS

(IRQ 1)
A 028-02BH Reserved (IRQ 2) HW STD-BIOS
B 02C-02FH Serial Port 1 HW (1) STD-BIOS

ISR (IRQ 3)
C 030-033H ,1 Serial Port 0 HW (1) STD-BIOS

ISR (IRQ 4)
D '034~037H Printer Port 2 HW (1) STD-BIOS

ISR (IRQ 5)
E 038-03BH Flexible Disc HW STD-BIOS

ISR (IRQ 6)
F 03C-03FH Printer Port 1 HW(I) STD-BIOS

ISR (IRQ 7)
10 040-043H Video SW (2) STD-BIOS
11 044-047H Equipment Check SW (2) STD-BIOS
12 048-04BH Memory Size SW (2) STD-BIOS
13 04C-04FH Flexible DiscI SW (2) STD-BIOS

Hard Disc
14 OSO-053H Serial SW (2) STD-BIOS
IS 054-0S7H System Functions SW (2) STD-BIOS
16 058-05BH Keyboard SW (2) STD-BIOS
17 05C-OSFH Printer SW (2) STD-BIOS
18 060-063H Reserved SW (3) STD-BIOS
19 064-067H Boot SW (2) STD-BIOS

ROM BIOS Overview 2-3

Table 2-1. Interrupt Vector Assignments (Cont.)

INT Address Function Type/ Service
Routine·

lA 068-06BH Time and Date SW (2) STD-BIOS
lB 06C-06FH Keyboard Break SW (3) STD-BIOS
lC 070-073H Timer Tick SW (3) STD-BIOS
lD 074-077H Video Parameter PT STD-BIOS

Table
IE 078-07BH Flexible Disc PT STD-BIOS

Parameter Table
IF 07C-07FH Graphics Character PT STD-BIOS

Table
20 080-083H Program Terminate SW DOS
21 084-087H DOS Function Calls SW DOS
22 088-08BH DOS Terminate PT DOS

Address
23 08C-08FH DOS <CTRL>- SW DOS

<Break> Address
24 090-093H DOS Critical Error SW DOS
25 094-097H DOS Absolute Disc SW DOS

Read
26 098-09BH DOS Absolute Disc SW DOS

Write
27 09C-09FH DOS Terminate SW DOS

Stay Resident
28-32 OAO-OCBH Reserved for DOS SW DOS
33 OCC-OCFH Mouse (RAM SW (2) N/A

driver)
34-3F ODO-OFFH Reserved for ooS SW DOS
40 100-103H Al ternate Flexible SW STD-BIOS

Disc
41 104-107H Hard Disc PT SID-BIOS

Parameter Table
(0)

42-45 108-117H Reserved SW STD-BIOS
46 l18-11BH Hard Disc PT STD-BIOS

Parameter Table
(1)

47-SF IlC-17FH Reserved SW STD-BIOS
60-67 l80-19FH Reserved for User SW N/A

Programs
Programs

68-6E lAO-lBBH Unused SW N/A
6F IBC-IBFH Default EX-BIOS SW (2) EX-BIOS

Entry Point
70 ICO-lC3H Real-time Clock HW STD-BIOS

ISR (IRQ 8)
71 lC4-1C7H SW Redirected HW STD-BIOS

(IRQ 9)
72 IC8-1CBH Reserved (IRQ 10) HW(l) STD-BIOS

2-4 ROM BIOS Overview

Table 2-1. Interrupt Vector Assignments (Cont.)

tNT Address Function Type/ Service
Routine·

73 ICC-ICFH Reserved (IRQ II) HW(I) STO-BIOS
74 100-103H HP-HIL (default HW EX-BIOS

IRQ 12)
75 104-ID7H Coprocessor HW STD-BIOS

(IRQ 13)
76 ID8-IDBH Hard Disc ISR HW STO-BIOS

(IRQ 14)
77 IDC-IDFH Reserved (IRQ IS) HW (1) STD-BIOS
78-7F IEO-IFFH Not Used SW N/A
SO-FO 200-3C3H Reserved SW N/A
FI-FF 3C4-3FFH Not Used SW N/A

*

(1)
(2)
(3)

PI--Processor interrupt
HW--Hardware interrupt
SW--Software interrupt
PT--Interrupt vector used as pointer to data
N/A--Not applicable
UI--Unused interrupt ISR
ORVR--Application callable entry point
IRET--Interrupt return

ROM BIOS Drivers and Functions

The ROM BIOS is comprised of many drivers. For example, there is a driver to perform video functions,
one to perform disc functions, etc. The ROM BIOS drivers are organized into two components. One
component contains the STD-BIOS drivers that support the STD-BIOS functions. The second component
contains EX-BIOS drivers that support unique HP features.

Each driver supports one or more functions. A function can be viewed as a specific task. For example, the
Video Driver supports 22 separate functions that perform tasks such as setting the display mode, moving
the cursor, and displaying characters.

STD-BIOS Drivers

Drivers in the STD-BIOS are accessed through an interrupt. STD-BIOS drivers are accessed through
interrupts 05H and 10H through ICH. Orivers are accessed by performing a software INT n instruction,
where n is the interrupt number assigned to the driver (refer to Table 2-1.)

The function code and any required data are passed in the CPU registers. Data passing conventions for
STD-BIOS drivers vary; however, there are aspects which are common.

ROM BIOS Overview 2 - 5

• Most of the STD-BIOS drivers support more than one function. Therefore, multi-function drivers
must have the desired function code passed as part of the data. The AH register is used on all
multi-function drivers to pass the function code.

• Byte and word data are passed in the internal registers of the CPU. Registers AL, BX, CX, and DX
are \lsually used for this purpose. The register assignments and number of registers used depend on
the driver and driver function.

• If the amount of data cannot fit in the internal registers of the CPU, a data buffer in system
memory is used. This buffer is usually pointed to by ES:BX, ES:BP, or ES:SI.

• Drivers may modify one or more registers. The registers which are maintained and the registers
which are modified vary from driver to driver. The registers which are modified are listed in each
function description.

Calling STD-BIOS Drivers

The following program example demonstrates how a typical STD-BIOS driver is accessed. The function
sets the position of the cursor on display page 0 to row 20, column 10. The function code (02H) is passed
in register AH. The row position, the column position, and the page number are passed respectively in
DH, DL, and BH.

MOV
MOV
MOV
MOV
INT

AH,02H
DH,14H
DL,OAH
BH,OH
10H

;Function number
;Row number (Row 20)
;Column number (Column 10)
; Page number
;Call Video driver

The STD-BIOS drivers support all industry standard BIOS functions. In addition, many of the drivers
have functions that support enhanced features. These functions are referred to as "HP extensions"
throughout the remainder of this manual. These enhancements are accessed through function code
(default 06FH) of their respective driver. Most of these extended functions are further divided into
subfunctions. For example, the HP extended function for the Video driver has six subfunctions which
allow access to the enhanced features of the Multimode Video Display Adapter. The function code
(06FH) is placed in the AH register and the subfunction code is placed in the AL register for all HP
extensions.

The following program example uses HP extensions to turn off the HP cursor control keypad on the
Vectra Keyboard/DIN (this keyboard is available for Vectra ES series computers only).

MOV
MOV
MOV
INT

AH,6FH
AL,07H
BL,02H
16H

HP Function
Switch Keyboard
Disable CCP: Turn Cursor Control Pad Off
Call Keyboard Driver

We suggest you verify that liP extensions to each STD-BIOS driver are available prior to actually calling
them. This is accomplished through subfunction 0 on each driver. An example of this can be found in
Chapter 3 of this manual under the FlO_INQUIRE (AX = 6FOOH) function description.

2-6 ROM BIOS Overview

EX-BIOS Drivers

The EX-BIOS drivers provide a wide range of functions not found in the STD-BIOS drivers. The
EX-BIOS drivers are accessed through a a software interrupt vector called the "HP_ENTRY" interrupt
(default 06FH). Since this interrupt number can change from its default, a routine called "CALL
SYSCALL" should be used in its place. This routine finds and calls the correct UP interrupt number.

Due to the large number of EX-BIOS drivers, it would be impossible to give each driver its own interrupt
vector and still maintain industry standard compatibility. Therefore, each driver is assigned its own
number, which is placed in the BP register.

The CALL SYSCALL Routine

The following shows how the CALL SYSCALL routine works:

;------ SYSCALL

Issue an HP system call. This routine assumes that the EX-BIOS
is enabled.

When first called, this routine will patch the first instruction
"JMP SHORT PATCH" to become "INT XXH" where XXH is the current HP
interrupt number.

SYSCALL PROC
JMP
RET

PATCH:
PUSH
MOV
INT
CMP
JNE
MOV

PATCH2:
MOV
MOV
pop
JMP

SYSCALL ENDP

NEAR
SHORT PATCH

AX
AX,6fODH
16H
AH,2
PATCH2
AH,6fH

AL,OCDH
WORD PTR [SYSCALL],AX
AX
SYSCALL

Patch the jump if first time.

Get current interrupt.
Extended INT 16H call.
Is it unsupported.
No, AH is the interrupt number.
Assume default 6fH.

INT instruction opcode.
Patch JMP SHORT PATCH above.
Recover used register.
Perform the call.

Calling EX-BIOS Drivers

As with the STD-BIOS drivers, each EX-BIOS driver may support one or more functions. A function code
placed in the All register selects the desired function within the driver. In addition, a subfunction code
passed in the AL register is required by many EX-BIOS functions.

ROM BIOS Overview 2-7

The following program example demonstrates access to a typical EX-BIOS driver. The function executes a
"beep" on the speaker.

MOV
MOV
PUSH
CALL
POP

AH,3AH
BP,12H
OS
SYSCALL
OS

Function: F SND BEEP
Driver Name: V SYSTEM

Call EX-BIOS driver

On leaving the EX-BIOS driver the BP and DS registers will be modified while the AH register usually
contains the return status of the driver call.

It is good programming practice to verify that the EX-BIOS is accessible, and to identify the HP interrupt
number (once) prior to actually calling it by using the "CALL SYSCALL" routine.

EX-BIOS Standard Functions

Many EX-BIOS drivers support a standard set of functions and subfunctions as listed in Table 2-2. While
these functions and subfunctions are defined, it is not required that they all be implemented by every
driver. In addition, EX-BIOS drivers may implement functions other than those listed. Most EX-BIOS
drivers use a standard set of return status codes reported in the AH register at the completion of a
driver's function call. Some of these return status codes and their definitions are listed in Table 2-3.
A driver may return status code of RS_UNSUPPORTED (02H) for a given function.

Function codes and return statuses are described in detail in Appendix G.

Table 2-2. EX -BIOS Defined Functions

Function Register
~

Subfunction Definition AHAL

F_ISR Responds to a logical Interrupt Service Request 00
(ISR).

F_SYSTEM Executes one of several standard 8ubfunctions.

SF INIT Starts the initialization of a driver. 02 00

SF START Completes the initialization process of the driver. 02 02

SF REPORT_STATE Reports the state of the driver. 02 04-

SF VERSION DESC Reports the revision number and date code of 02 06
the driver.

SF DEF_ATTR Reports the default configuration of the driver. 02 08

SF_GET ATTR Reports the current configuration of the driver. 020A

SF SET ATTR Overrides the current configuration of the 020C
driver.

2-8 ROM BIOS Overview

Table 2-2. EX -BIOS Defined Functions (Cont.)

Function Register
Subfunction Definition AHAL

SF OPEN Reserves the driver for exclusive access. Requests 020E
any resources required by the driver.

SF CLOSE Releases the driver from exclusive access. 02 10

SF TIMEOUT Reports to the driver that a requested timeout 02 12
has occurred.

SF_INTERVAL Reports to the driver that a requested 60 Hz in- 02 14
terval has expired.

SF_TEST Performs a hardware test. 02 16

F_IO_CONTROL Executes the following subfunctions and any
driver-dependent 8ubfunetions.

SF LOCK Reserves the sub-address device specified for ex- 04 00
elusive access.

SF_UNLOCK Releases the sub-address specified from the ex- 04 02
elusive access.

F_PUT_BYTE Writes a byte of data. 06

F_GET_BYTE Reads a byte of data. 08

F_PUT BUFFER Writes a variable-length buffer of data (support- OA
ed by character devices).

F_PUT_BLOCK Writes a fixed-length buffer of data (supported OB
by block devices).

F_GET_BUFFER Reads a variable-length buffer of data (support- OC
ed by character devices).

F_GET- BLOCK Reads a fixed-length block of data (supported by OC
block devices).

F_PUT_WORD Writes a word of data. OE

F GET_WORD Reads a word of data. 10

ROM BfOS Overview 2-9

EX-BIOS Parameter Passing Conventions

When calling EX-BIOS drivers, the function code is placed in the AH register, and the subfunction code
(if any) is placed in the AL register. Note that the function and subfunction codes are multiples of two
in order to facilitate decoding by the drivers.

The general parameter passing conventions used by the EX-BIOS drivers are also defined. These register
conventions are as follows:

On Entry : BP =
AH =
AL =
ex =

ES:DI =

On Ex it: AH =
ex =

ES:DI =
DS,BP

V DRIVER NAME- -F FUNe CODE
SF FUNe CODE (if required by driver)
On-write: byte count (if required by driver)
On read: max imum permiss ible byte count
(if required by driver)
Buffer pointer or context area (if required by driver)

Return status
On read: byte count (if required by driver)
On write: number of bytes written (if required by driver)
Buffer pointer or context area (if required by driver)
Always modified (unless otherwise indicated)

EX-BIOS Return Status Codes

EX-BIOS drivers are expected to report a Return Status Code upon completion. This code is returned in
the AH register. Several return status codes have. been defined in Table 2-3.

2 ...10 RqM BIOS, Overview

Table 2-3. EX -BIOS Return Status Codes

Return Status Variable Return Status Code Indication

RS,-SUCCESSFUL OOOH The requested function ex-
ecuted correctly.

RS_UNSUPPORTED 002H The requested function or
subfunction is not imple-
mented or is unsuppOrted.

RS_FAIL OFEH (-02H) The driver failed the opera-
tion in an error state.

RS BAD _PARAMETER OFAH (-06H) The driver received a bad
parameter.

RS_BUSY OF8H (-08H) The requested driver is busy.

RS_NO_VECTOR OF6H (-OAH) EX-BIOS Vector table is out
of RAM or room for more
drivers.

RS_OFFLINE OF4H (-OeH) Device is offline.

RS OUT OF_PAPER OF2H (-OEH) Device is out of paper.- -

If additional drivers are installed in the system, they should conform to the defined statuses wherever
possible. However, to maintain coding efficiency and/or functional accuracy, a driver may create a
return status other than those listed in Table 2-3.

NOTE

Return status conditions are always multiples of two. Negative return
status codes indicate error conditions, while positive status codes indicate
exceptional conditions to the caller. For example, the status code
RS_UNSUPPORTED indicates the driver does not support a function
which mayor may not be an error, while RS_OUT_PAPER requires some
kind of response by the caller.

ROM BIO$ Overview 2-11

Data Structures

BIOS drivers require RAM data area to perform their functions. The layout and placement of the data
areas for the STD-BIOS and EX-BIOS drivers differ. This is discussed in the following subsections.

STD-BIOS Data Structures

The data area for the STD-BIOS is in absolute memory locations 00400H through 005FFH, which
conforms to the industry standard. Table 2-4 summarizes the assignments within this block of memory.
Refer to Appendix B for a detailed description of these data fields.

Table 2-4. STD-BIOS Data Area Summary

Address Assigned Function

400H-407H RS-232 Communication Port Addresses
408H-40FH Parallel Printer Port Addresses
410H-416H Equipment Flag
417H-43DH Keyboard Data Area
43Eh-448H Flexible Disc Data Area
449H-466H Video Display Data Area
467H-46BH Option ROM Data Area
46CH-470H Timer Data Area
4 71H-4 73H System Data Flags
474H-4778 Hard Disc Data Area
4 78H-4 7FH Printer Time out Counters
480H-483H Keyboard Buffer Pointers
484H-488H Enhanced Graphics Adapter (EGA) Data Area
489H-48AH Reserved for Display Adapters
48BH-48BH Flexible Disc Data Rate Area
48CH-48FH Extended Hard Disc Data Area
490H-4958 Extended Flexible Disc Data Area
496H-497H Keyboard Mode Indicator/LED Data Area
498H-4AOH Real-Time Clock Data Area
4AIH-4A 7H Reserved for Network Adapter Cards
4A8H-4ABH Pointer to EGA Data Area
4ACH-4EFH Reserved
4FOH-4FFH Intra-application Communication Area
500H-500H Print Screen Status
501H-503H Reserved
504H-504H DOS Data Area
505H-5FFH Reserved

2-12 "R"OM BIOS Overview

EX-BIOS Data Structures

Data structures for the EX-BIOS drivers are located in a block of memory at the top of system RAM.
The address of this block varies depending on the amount of RAM contained in the system and the
hardware configuration.

There are three types of data structures in the EX-BIOS data area. These structures are: the
HP_VECTOR_TABLE and its, associated HP~ENTRY_CODE, the driver data areas, and the EX-BIOS
global data area.

The HP VECTOR TABLE

Each of the CPU interrupt vectors contains the Code Segment default (CS) and Instruction Pointer OP)
of its associated service routine. The HP_ENTRY interrupt vector (default 06FH) contains the CS:IP of
the HP_ENTRY_CODE. This routine uses the value contained in the BP register (an offset into the
HP_VECTOR_TABLE, vector address) to branch to the appropriate EX-BIOS driver. The
HP_VECTOR_TABLE resides at the base of the EX-BIOS data area. The HP_VECTOR__TABLE consists
of an array of 3-word (six bytes) entries, one for each EX-BIOS driver. Each entry consists of the JP, CS,
and Data Segment (OS) of a driver.

Figure 2-2 illustrates the relationship between the CPU interrupt vectors, the HP_VECTOR_TABLE,
HP_ENTRY_CODE, and the EX-BIOS drivers.

The HP ENTRY CODE

The CS:IP in the HP_ENTRY interrupt vector points to a piece of code which branches to the desired
EX-BIOS driver. The vector address passed in BP must be a multiple of six. The code is as follows:

HP ENTRY CODE:
MOV DS,CS:[BP+4]
JMP FAR PTR CS:[BP]

This code resides directly after the last entry in the HP_VECTOR_TABLE. Therefore, the CS:IP entry
in the HP_ENTRY interrupt vector provides two further pieces of information. Cs:o is the starting
address of the HP_VECTOR_TABLE and IP is the length of the HP_ VECTOR__TABLE.

ROM BIOS Overview 2 -13

INTERRUPT
VECTORS

INTOH.._--__
IP
CS

IP
CS

INT 06FH· I----~I
IP
CS

INT OFFH 1------1
IP
CS

HP VECTOR
-TABLE

IP
CS
OS
IP
CS
OS

IP
CS
DS

HP ENTRY
-CODE -

STD-B!OS
DRIVER

EX-BIOS DRIVER

EX-BIOS
DRIVER
CODE

HP DRIVER
_HEADER

EX-BIOS
DRIVER
DATA
AREA

• This value may. change. Refer to "The CAll SYSCAll Routine"
in this chapter to determine the correct value.

Figure 2-2. Interrupt Vectors and HP_VECTOR_TABLE

Driver Data Areas

Each driver has an independently specified data area. Some EX-BIOS drivers share the same data areas.
The data areas for the EX-BIOS drivers are above the HP_VECTOR_TABLE and the
HP_ENTRY_CODE shown in Figure 2-2. Although each driver has its own data area, the OS for each
driver is stored in the HP_VECTOR_TABLE, and its data area must start at DS:O. Each data area must
reside on a paragraph boundary.

The data area for each driver consists of a driver header, followed by an optional variable storage area.
The variable storage area is unique to each driver. Table 2-5 provides a general description of the
contents of an EX-BIOS driver header.

Table 2-5. UP_DRIVER HEADER

Variable Offset Description Offset Type

DH_ATR Driver Attribute Field 0 Word
DH_NAME- INDEX Driver String Index Field 2 Word
DH V DEFAULT Driver's Default Logical Device 4 Word

Vector
DH P CLASS Driver's Parent Class 6 Word
DH_C_CLASS Oriver's Child Class 8 Word
DH_V_PARENT Driver's Parent Vector OAH Word
DH_V_CHILD Driver's Child Vector OC" Word
DH- MAJOR Sub Address Field OE" Byte
DH MINOR Sub Address Field OFH Byte

2-14 ROM BIOS Overview

EX-BIOS Driver Headers

The following defines each of the EX-BIOS driver header fields. Additional information on these fields
can be found in Appendix G.

DH ATR:

DH_NAME_INDEX:

DH_P_CLASS and
DH C CLASS:

Each bit in the DH_ATR field indicates a property of the
driver for device mapping purposes. These bits are defined in
Appendix G.

The DH NAME_INDEX is used to derive the localization
string index of the driver. This string index is given by the
function F_STR_GET_STRING in the V_SYSTEM driver.
See Chapter 8 for additional information.

The DH_V_DEFAULT field contains the driver's default vec
tor address.

In conjunction, these fields indicate which drivers may be
mapped together. DH_P_CLASSand DH_C_CLASSare bit
masks. Each bit position represents a set of drivers. If a bit is
set, then the driver is in that set of drivers. The
DH_P_CLASS field indicates a driver is in from 0 to 16 dif
ferent driver sets. A driver can only map to another driver if
its DH_P_CLASS field matches at least one bit position of
the other driver's DH_C_CLASS field. Furthermore, the
DH_ATR field is another condition of mapping. The bits are
defined in Appendix G.

The DH_V_PARENT field contains a vector to the driver
that is called when the current driver receives an F_ISR func
tion code that it cannot or doesn't know how to process.

The DH_V_CHILD field contains a vector to the driver that
is called if this driver decides it cannot handle the request
function (as long as that function is not F_ISR).

Device bus address information.

ROM BIOS Overview 2 -15

EX-BIOS Global Data Area

The method for locating the EX-BIOS global data area is found in the "EX-BIOS Data Area Map" of
Appendix B. The EX-BIOS global data area is shared between several EX-BIOS drivers. It contains
temporary and permanent variables that are required by the BIOS to function properly. Some of these
variables can be modified by application programs. As with any modification to the STO-BIOS data area,
care should be taken with the EX-BIOS global data area. Table 2-6 defines the contents of this area.

Table 2-6. Definition of Global Data Area Contents

Byte Type Name of Driver Definition

0-10H Reserved

lEH Word T_STR- NEXT - INDEX Next unused string index
number.

20H and up Reserved

2-l6 ROM BIOS Overview

3
Video

The HP Multimode Video Display Adapter provides a wide variety of display modes, resolution, character
attributes, and other features. The purpose of the video driver is to allow programs to access these
features and control the video display.

Overview

In the text mode, the Multimode Video Display Adapter uses an 8 x 16 character cell which generates
high quality characters. Access to the display m.emory is fully synchronized to eliminate the "snow"
problem present in many color display adapters. (Snow occurs when writing a character to display
memory while the video memory is being accessed by the display refresh circuitry.) This full
synchronization makes the INT 10H video driver faster, since there is no need to wait for a vertical
retrace to place characters on the screen.

The Multimode Video Display Adapter provides seven more display modes than the industry standard
color graphics adapter. Four of the modes allow 27 lines of text on the screen. The other three modes
allow graphics modes that double the graphics resolution of the display (320x400 and 640x40Q pixels).
The standard INT 10H video driver has been extended to allow the programmer to set these modes. No
other support is provided to make use of these modes. Refer to HP Vectra Accessories Technical Reference
Manual (for either the Vectra ES or RS) for more information on the Multimode Video Display Adapter.

Data Structures

The Multimode Video Display Adapter has 32KB of video memory starting at address OB8000H. This
allows graphics resolutions of 320x400 in medium resolution modes and 640x400 in high resolution
modes. The following is a discussion of how this memory is organized, depending on the video mode
selected.

In either of the text modes (80x25 or 40x25), memory is organized as sequential pages. Each page
contains character cells that are made up of an 8-bit character code and an 8-bit attribute (see Figure
3-1).

Graphics modes can be of two types: medium resolution (.320x200 or 320x400) and high resolution
(640x200 or 640x400). In the medium resolution mode, each pixel corresponds to two bits of memory, so
four colors can be displayed. In the high resolution modes, each pixel corresponds to one bit of memory,
and only one- color can be displayed (the background color is always black). See Figures 3-2 and 3-3 for
more details.

Video 3-1

Character Cell Organization Color Values

Byte 0 Bvte 1 R G B Color

I~ 0 0 0 0 Black

B.<C~~:=J 0 0 0 1 Blue
0 0 1 0 Green

Blink bit .- 0 0 1 1 Cyan

1. BHnklllg on 0 1 0 0 Red

O. Blinking off 0 1 0 1 Magenta
0 1 1 0 Brown

Background color 0 1 1 1 Ught Grey
1 0 0 0 Dark Grey

Intensity bit 1 0 0 1 Ught Blue

1. High 1 0 1 0 Ught Green

O.Low 1 0 1 1 Ught Cyan
1 1 0 0 Ught Red

Foreground color 1 1 0 1 Ught Magenta
1 1 1 0 YeMow
1 1 1 1 White

80 X 25 Text Memory Page

Gel 0 <Ail 1 Gel 79

Page 0
OB800:0H

Page 1
(OB800<OFAOH)

RewO

Rew1

Rew24

RewO

Rew1

Figure 3-1. Text Display Memory Organization

320 x 200 Graphics Display Memory
SC8nHne

O88OO:OH

08S00:2000H

06S00:4000H

06800:7FFFH

ElyliO I &;tal 19y1I21 I 9ylI79

9ylI°l&;tal18y&2 I T9ylI79

ElyliO I &;tal IElyli2 I I 9ylI79

NolAcc.lible
Wr11ln1l1o 11_ adelre••
IICtually writ.. 10 addr.._
08800:0H I1f019l 08800:3FFFH

Byts I Pixel Organization

76543210

(. I I I

~:. ld'~~c:.
o 1 • Gr..vcy~

1 0 • Aecl.totagenla
1 1 • BrlllWlllUghl Grey

Figure 3-2. 320 x 200 Graphics Display Memory Organization

3-2 Video

640 x 400 Graphics Display Memory
Scan line

OBSOO:OH

OBSOO:2000H

OBSOO:4000H

OBSOO:6000H

Byte 0 Iev- 1 IByte 2 I I Byte 79

Byte 0 Iev- 1 1ev- 2 I I Byte79

Byte 0 I ev- 1 lev- 2 I I Byte79

Byte 0 Iev- 1 IByte 2 I I Byte 79

9

6

10

11

Byte t Pixel Organization

7 6 5 4 3 2 1 0 bit number

~.ql~-
1 - 1 0/16 Foreground Colors

Figure 3-3. 640 x 400 Graphics Display Memory Organization

In all the graphics modes, the memory used for scan lines is not sequential but it is interleaved at fixed
intervals of 8K. In the modes that are 200 scan lines, even scan lines start at offset 0 and odd scan lines
start at offset 2000H. In the modes that are 400 scan lines, the following table can be used to determine
the appropriate offset:

Scan line is multiple of 4
(0,4,8,12 ...) use offset 0

Scan line is multiple of 4 plus 1
(1,5,9,13 ...) use offset 2000H

Scan line is multiple of 4 plus 2
(2,6,10,14 ...) use offset 4000H

Scan line is multiple of 4 plus 3
(3,1,11,15 ...) use offset 6000H

All the scan lines of a particular group are organized sequentially within a particular offset. See Figures
3-2 and 3-3.

Other video driver data structures are locatui in the STD-BIOS data area. They are stored in memory
addresses 449H ~40H:49H) through 466H (,,;-OH:66H). Table 3-1 lists the STD-BIOS Video Driver
memory locations and their definitions.

Video 3-3

Table 3-1. STD-BIOS Video Driver Data Area

Address Type Definition

00449H Byte Current Video Display Mode
0044AH Word Number of columns
0044CH Word Regen Buffer length
0044EH Word Starting address of regen buffer
00450H Word Cursor position for Display Page 0
00452H Word Cursor position for Display Page 1
00454H Word Cursor position for Display Page 2
00456H Word Cursor position for Display Page 3
00458H Word Cursor position for Display Page 4
0045AH Word Cursor position for Display Page 5
0045CH Word Cursor position for Display Page 6
0045EH Word Cursor position for Display Page 7
00460H Word Current cursor mode
00462H Byte Active page number
00463H Word Address of current display adapter
00465H Byte Mode (current setting of status register)
00466H Byte Pallet setting

Video data structures are also maintained in the EX-BIOS data area. These structures are accessible
through the data segment of the EX-BIOS video service routine. The following code sets the ES register to
the EX-BIOS video driver's (V_SVIDEO'S) data segment:

NOTE

The current value of HP_ENTRY must be determined once using the
"CALL SYSCALL" routine.

MOV AX,O ;segment at 0
MOV ES,AX
MOV AX,ES: [HP_ENTRY*4+2] ;read the base address

;of the HP_VECTOR_TABLE
MOV ES,AX
MOV AX,ES: [V_SVIDEO+4] ;read base address of (V_SVIDEO = 54H)
MOV ES,AX ;video parameters

The addresses listed are offsets into this data segment. Table 3-2 gives the data maintained in
V_SVIDEO's (0054H) data segment:

3-4 Video

Variable Name

Driver Header

VID_PRIMARY

VID_FOUND_ROM

VID_IDS

Table 3-2. Video EX -BIOS Data Structures

Definition Offset

Device Header Attributes, 0-5
Name, Index, and Default
Vector

The current primary display: 6
00 - Card at I/O Address 3BOH
01 - Card at I/O Address 3COH
02 - Card at I/O Address 3DOH
03 - Card containing ROM
Code.

If two cards are in the system, 7
same number as
VID__PRIMARY for the second
card.

Flag set to true if ROM code is 8
found in any video adapter card.

of IDs of all cards found. 9-0CH

RAM copies of the status OD-O 10H
register.

RAM copies of the extended 11-014H
status register for each possible
card in the system.

Reserved for saving the video 15-03BH
parameters stored in the stan-
dard BIOS data area when
switching between primary and
secondary video boards.

Type

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Used to detect if a 'rogue' 03CH
program changed the modes
without telling the HP system.

Specifies the current video mode 030H
(0 ... 15).

Byte

Byte

Reserved 03E-03F Byte

Video 3-5

Video Driver (INT 10H)

The video driver functions (summarized in Table 3-3) can be broken down into the following categories.

• Display Control--These functions control the display appearance, cursor and light pen position,
active text memory page, and scrolling through text memory.

• Character Handling Functions--These functions manipulate characters on the screen.

• String Functions--These functions allow placement of strings of text on the screen.

• Graphics Functions--These functions provide an interface to the graphics capabilities of the
machine.

• Extended Video Functions--These functions support extra video capabilities of the Multimode Video
Display Adapter hardware.

Table 3-3. Video Driver Function Code Summary

Equate Value L dnition

OOH FlO SET- MODE Set video mode
OlH FlO_SET_CURSIZE Set cursor size
02H FlO_SET_CURPOS Set cursor position
03H FlO RD_CURPOS Read cursor position
04H FlO- RD_PENPOS Read light pen position
05H FlO SET_PAGE Set active display page
06H FlO SCROLL_UP Scroll rectangle up
07H FlO_SCROLL_DN Scroll rectangle down
08H FlO RD_CHARATR Read character and attribute at cursor position
09H FlO WR_CHARATR Write character and attribute at cursor position
OAH FlO__WR CHARCUR Write character at cursor position
OBH FlO SET_PALLET Set color pallet
OCH FlO WR_PIXEL Write pixel
ODH FlO- RD_PIXEL Read pixel
OEH FlO- WR_CHARTEL Write teletype character
OFH FlO GET_STMODE Get video state and mode

10H-12H Reserved

Write string functions:
1300H FlO WRS_00 Global attribute
1301H FlO--WRS- 01 Global attribute, move cursor
l302H FlO--WRS- 02 Individual attributes
1303H FlO- WRS_03 Individual attributes, move cursor

Extented video functions:
6FOOH FlO ___INQUIRE EX-BIOS present
6FOIH FlO GET-_...INFO Get video parameters
6F02H FlO SET_INFO Sets video parameters
6F03H FlO----MOD_INFO Modifies video parameters
6F04H FlO GET_RES Reports vIdeo resolution
6FOSH FlO- XSET- MODE Sets video resolution

3-6 Video

Video Driver Function Definitions

The following gives a detailed description of each of the functions in the video driver.

F10 SET MODE (AH = OOH)

This function sets the display mode of the video adapter. The new mode is determined by the value passed
in the AL register. Refer to the Vectra Accessories Technical Reference Manual (for either the Vectra ES
or RS) for additional information on the various video display modes available on the Multimode Video
Display Adapter.

On Entry: AH = F10 SET MODE (OOH)
AL = Mode

Data Definition

00 40 x 25 Black and White Alphanumeric
01 40 x 25 Color Alphanumeric
02 80 x 25 Black and White Alphanumeric
03 80 x 25 Color Alphanumeric
04 320 x 200 Color Graphics
05 320 x 200 Black and White Graphics
06 640 x 200 Black and White Graphics
07 Only valid if a monochrome display adapter is present.

On Exit: No values returned

Registers Altered: AX

F10_SET _CURSIZE (AH =01H)

This function sets the size of the cursor displayed in the alphanumeric display modes. Each character cell
in the alphanumeric display modes is eight scan lines high. The cursor size is defined by specifying the
starting and ending scan lines within the character cell. The scan lines are numbered from 0 (top of cell)
to 7 (bottom). The starting and ending scan lines are passed in registers CH and CL. This function
performs no operation if the Multimode Video Display Adapter is in one of the graphics modes.

On Entry: AH = F10 SET CURSIZE (01H)
CH = Starting scan line
CL = Ending scan line

On Exit: No values returned.

Registers Altered: AH

Video 3-7

F10 SET _CURPOS (AH = 02H)

This function sets the row and column address of the cursor to the specified page and moves the cursor to
that address. When the Multimode Video Display Adapter is in one of the graphics modes, a page number
of 0 must be specified.

On Entry: AH = F10 SET CURPOS (02H)
BH =Display-page number
DH =Row address of cursor. (0•.. 24)
DL = Column address of cursor. (0...79)

On Exit: No values returned.

Registers Altered: None

F10_RD_CURPOS (AH = 03H)

This function returns the current address and size of the cursor on the specified page. If the Multimode
Video Display Adapter is in one of the graphics modes, a page number of 0 must be specified. Otherwise,
the values returned for the cursor size in the graphics mode will be invalid.

On Entry: AH = F10 RD CURPOS (03H)
BH = Display page number

On Exit: CH = Starting scan line
CL = Ending scan line
DH = Row address of cursor. (0. . .24)
DL - Column address of cursor. (0. . .79)

Registers Altered: CX, OX

F10_RD_PENPOS (AH = 04H)

This function returns the current state and position of the light pen if it is activated. The position is
reported in both character row/column and graphic pixel formats.

On Exit: AH = Light Pen state

Data Definition:

o Not activated
1~ Activated

BX = Horizontal pixe-l position of light pen
CH = Vertical pixel position of light pen (200 line mode)
DH = Row position of light pen
DL = Column position of light pen

Registers Altered: AH, BX, CH, OX

3-8 Video

F10 SET PAGE (AH =05H)

This function-sets the active display page in the alphanumeric mode. Valid page num-bers are 0 through
1 for- 80 x 25 modes, and 0 through 7 for 40- Xc 25 modes. This- function is not valid for graphics modes.

On Entry: AH = FlO SET PAGE (OSH)
Al = Page number (0 th rough 7}

On Exit: No values returned.

Registers Altered: AX

F10 SCROLL UP (AH =06H)

This function scrolls the contents of a window up a specified number of lines. The window is defined by
the row and column addresses stored in the ex and DX registers. The number of lines to be scrolled is
passed in register AL. If AL is set to 0, the function interprets this as a command to scroll all lines.

On Ent ry: AH =
AL =
BH =
CK =
CL =
DH =
DL =

FlO SCROLL UP (06H)
Number of Tines to scroll (0 = scroll all)
Attribute to place in blanked lines
Row address of upper left corner of window (0 24)
Column address of upper left corner of window (0 79)
Row address of lower right corner of window (0 24)
Column address of lower right corner of window (0 79)

On Exit: No values returned.

Registers Altered: None

F10_SCROLL_DN (AH =07H)

This function scrolls the contents of a window down a specified number of lines. The window is defined
by the row and column addresses stored in the ex and DX registers. The number of lines to be scrolled is
passed in register AL. If AL is set to 0, the function interprets this as a command to scroll all lines. This
function is only valid when the Multimode Video Display Adapter is in one of the alphanumeric modes.

On Ent ry: AH =
AL =
BH =
CH =
CL =
DH =
DL =

FlO SCROLL ON (Q7H)
Number of Tines to scroll (0 = scroll all)
Attribute to place in blanked lines
Row address of upper left corner of window (0 24)
Column address of upper left corner of window (0 79)
Row address of lower right corner of window (0 24)
Column address of lower right corner of window (0 79)

On Exit: No values returned.

Registers Altered: None

Video 3-9

F10 RD CHAR ATR (AH = 08H)

This function returns the character byte and attribute byte at the current cursor location. If the
Multimode Video Display Adapter is in one of the alphanumeric modes, a page number must be specified.
If the video display adapter is in one of the graphics modes, only the character is returned, since
characters do not have attribute bytes in the graphics modes.

On Entry: AH = F10 RD CHARATR (08H)
BH = Page number (a lphanumeric modes only)

On Exit: AH = Attribute byte (valid only in alphanumeric modes)
AL = Character

Registers Altered: AX

F10 WR CHARATR (AH = 09H)

This function writes character and attribute bytes at the current cursor location. If the Multimode Video
Display Adapter is in one of the alphanumeric modes, a page number may be specified. If the Multimode
Video Display Adapter is in one of the graphics modes, only the character is written. More than one
character and attribute can be stored by placing the number of copies desired in CX. This function will
wrap around both line and screen if too many characters are specified. Note that this function makes
copies of a single character/attribute combination; it does not print a string. Refer to the Write String
function for that operation.

On Entry: AH = F10 WR CHARATR (09H)
AL = Character
BH = Page number (alphanumeric modes only)
BL = Attribute byte (valid only in alphanumeric modes)
ex = Number of characters to write

On Exit: No values returned.

Registers Altered: None

F10 WR CHARCUR (AH = OAH)

This function writes a character to the current cursor location, retaining the existing attribute byte. The
function is identical to the FIO_WR_CHARATR function, except that no attribute byte is written.

On Entry: AH = F10_WR_CHARCUR (OAH)
AL = Cha racte r
BH = Page number (alphanumeric modes only)
CX = Number of characters to write

On Exit: No values returned.

Registers Altered: None

3-10 Video

F10 SET PALLET (AH = OBH)

This function allows setting the background color (if BH = 0) or the foreground color pallet (if BH = 1).

On Entry: AH = F10_SET_PALLET (OSH)
BH = Color Select 10

Data Definition

o Set the background color (in medium resolution
modes) or the foreground color (in high resolution
modes) based on the low bits of BL (bits o...3)
to one of 16 colors.

Select color pallet (for medium resolution modes)
based on the least significant bit of BL. If
bit 0 of BL = 0 then select the green, red,
brown pallet. If bit 0 of BL = 1 then select the
cyan, magenta, light gray pallet.

BL = Color select value

On Exit: No values returned

Registers Altered: None

F10_WR _PIXEL (AH =OCH)

This function writes a pixel on the screen. If the Multimode Video Display Adapter is in one of the "Four
colorl! modes (320 x 200) the color of the pixel may be passed in register AL. Bits 0 and 1 of AL are
interpreted as the color bits. If bit 7 of AL is set, bits 0 and 1 are IIXORedl! with the current pixel color
bits, otherwise they replace the current pixel color bits. If the Multimode Video Display Adapter is in the
"Two color" mode (640 x 200), the bit corresponding to the desired pixel is set.

On Entry: AH = F10 WR PIXEL (OCH)
AL = Color

In "four color" mode (320x200):

Bit Data Definition

1 Bits 0 and 1 XORed with
current pixe1.

0 Bits o and 1 replace cu rrent pixel.
0, 1 Color bits.

Video 3-11

In "Two color" mode (640x200):

Bit

7

o

Data

1
o

Definition

Bit 0 XORed with current pixel.
Bit 0 replaces current pixel.
Color bit.

CX = Horizontal pixel address
OX = Vertical pixel address

On Exit: No values returned.

Registers Altered: AX

F10 RD _PIXEL (AH = ODH)

This function returns the color code of the specified pixel.

On Entry: AH = flO RO PIXEL (OOH)
CX = HorIzontal pixel address
OX = Vertical pixel address

On Exit: At = Color value of pixel

Registers Altered-: AX, CX, OX

F10_WR _CHARTEL (AH =OEH)

This function writes a character to the active page, then advances the cutsor one location. At the end of
a line, the cursor will wrap to the. next line; at the end of the screen, the cursor will scroll. In the
alphanumeric modes, this function maintains the current video display attributes. In the graphics modes,
the foreground color is passed in register BL. The ASCII characters Line Feed (OAH), Carriage Return
(DOH), Backspace (08H), Bell (07H), and Tab (09H) are interpreted by this function as ASCII commands
and are executed as such.

On Entry: AH = f10_WR_CHARTEL (OEH)
AL = Character
BL = foreground color (in graphics modes only)

On Exit: No values returned.

Registers Altered: AX

3-12 Video

F10 GET STMODE (AH = OFH)

This function returns the current Multimode Video Display Adapter state. The mode, number of
characters per line, and current display page are returned.

On Ent ry: AH = FlO GET STMODE (OfH)- -
On Exit: AH = Number of characters per line

AL = Current mode
BH = Current display page

Registers Altered: AX, BH

Write String (AH = 13H)

This function writes a string of characters to the screen. This function consists of four separate
subfunctions which control whether each character has its own attribute byte or not, and whether the
cursor is moved or not. Each of the subfunctions is detailed in the following. The ASCII characters Line
Feed (OAH), Carriage Return (ODH), Backspace (08H), Bell (07H), and Tab (09H) are interpreted by
this function as ASCII commands and are executed as such.

F10_WRS_OO (AX = 1300H)

Write string attribute without moving cursor.

On Entry: AX = FlO WRS 00 (1300H)
BH = Display-page number
BL = String attribute byte
CX = Length of string
DH = Row address of first character
DL = Column address of first character

ES:BP = Pointer to start of string. Format of string is:
Char, Char, . . ., Char

On Exit: No values returned.

Registers Altered: None

Video 3-13

F10 WRS 01 (AX = 1301H)

Write string attribute and move cursor.

On Entry: AX = F10 WRS 01 (1301H)
BH = Display-page number
BL =String attribute byte
CX = Length of string
DH = Row address of first character
DL = Column address of first character

ES:BP = Pointer to start of string. Format of string is:
Char, Char, ... , Char

On Exit: No values returned.

Registers Altered: None

F10_WRS_02 (AX = 1302H)

Write character attribute without moving cursor.

On Entry: AX =
BH =
CX =
DH =
DL =

ES:BP =

F10 WRS 02 (1302H)
Display-page number
Length of string
Row address of first character
Column address of first character
Pointer to start of string. Format of string is:
Char, Attr, Char, Attr, ... , Char, Attr

On Exit: No values returned.

Registers Altered: None

F10_WRS_03 (AX = 1303H)

Write character attribute and move cursor.

On Entry: AX = F10 WRS 03 (1303H)
BH = Display-page number
CX = Length of string
DH = Row address of first character
DL = Column address of first character

ES: BP = Pointer to start of string. Format of string is:
Char, Attr, Char, Attr, ... , Char, Attr

On Exit: No values returned.

Registers Altered: None

3-14 Video

HP Extended Video Functions

This set of functions support the features of the Multimode Video Display Adapter which are not covered
using the standard video functions. This function consists of separate subfunctions which support the
various extended capabilities of the Multimode Video Display Adapter (implemented 'through the
EX-BIOS). Each of these subfunctions is defined in the following subsections.

F10_INQUIRE (AX = 6FOOH)

This subfunction determines whether or not the extended HP functions are available. If the extended
video functions are available, the BX register will be set to 48S0H (which is the ASCII characters UHpll).

On Entry: AX = FlO_INQUIRE (6FOOH)
BX = Any value except 4850H ('HP')

On Exit: BX = 'HP' (4850H)

Registers Altered: AX, BX

F10_GET _INFO (AX =6F01H)

This function returns information about the active display adapter.

On Exit: AH = Status register information

Bit Data Definition

o 1
1 1
2 1
3 1
4

o
1

5
o
1

6-7

Display Enabled.
Light Pen Trigger Set.
Light Pen Switch Made.
Vertical Sync.
Monitor Resolution
350 or 400 line monitor
200 line monitor
Display type
Color
Monochrome
Diagnostic Bits

AL = Card Identifier

Video 3-15

Data Definition

OOH Non HP card with ROM and possibly its own INT 10H driver.
41H Multimode Vi-deo Display Adapter
42tt Reserved
43H Rese rved
44H Rese rved
45H Industry Standar~ Monochrome Display Adapter
46H Industry Standard Color Display Adapter
51 H Rese-rved

CL = Current value of Extended Control register. This register
is only valid when the Card Identifier is 41H.

This description applies to data returned when a Multimode Video Display Adapter is in the system.

Bit Data Definition

0 Current screen resolution
0 200 line
1 400 line

1 Underline enable.
0 Blue bit of foreground attribute

interpreted as color blue.
Blue bit of foreground attribute
interpreted as underline.

2 Font Selected.
0 PC-B
1 HP ROMANB

3 Memory disable.
0 Memory enabled for CPU access.
1 Memory disabled for CPU access.

4 16/32K Memory select.
0 Wrap second 16K of RAM into first 16K.
1 Allow access to full 32K of memory .

5 Page select.
0 Select first 16K of memory.
1 Select second 16K of memory.

6-7 Unused

Registers Altered: AX-, CL

3-16 Video

F10_SET _INFO (AX = 6F02H)

This function modifies the value of the Extended Control register port 3DDH on the Multimode Video
Display Adapter. (Refer to the Vectra Accessories Technical Reference Manual - for either the Vectra ES
or RS - for more information about this port.)

On Entry: AX = f10_SET_INfO (6F02H)
BL = Byte of data to be written to

the Extended Control Register.

Bit Data Definition

o Current screen resolution
o 200 line
1 400 line

Underline enable.
o Blue bit of foreground attribute

interpreted as color blue.
Blue bit of foreground attribute
interpreted as underline.

2 font Selected.
o PC-B
1 HP ROMANB

3 Memory disable.
o Memory enabled for CPU access.
1 Memory disabled for CPU access.

4 16/32K Memory select.
o Wrap second 16K of RAM into first 16K.
1 Allow access to full 32K of memory.

5 Page select.
o Select first 16K of memory.
1 Select second 16K of memory.

6-7 Reserved

On Exit: No values returned.

Registers Altered: AX~ BL

Video 3-17

F10 MOD INFO (AX = 6F03H)

This function modifies individual bits in the Extension Control register (port 3DDH) of the Multimode
Video Display Adapter. A mask byte is passed in register BH, which allows individual bits to be modified
without changing the state of other mode bits in the register.

On Entry: AX = F10 MOD INFO (6F03H)
BH = Mask. BIts with a mask value of "1" are not modified; bits

with a mask value of "0" are modified.
BL = Bits to change. The bits indicated by the mask (BH)

take the value of the BL register.

Bit Data Definition

o Current screen resolution
o 200 line
1 400 line

Underline enable.
o Blue bit of foreground attribute

interpreted as color blue.
Blue bit of foreground attribute
interpreted as underline.

2 Font Selected.
o PC-8
1 HP ROMAN8

3 Memory disable.
o Memory enabled for CPU access.
1 Memory disabled for CPU access.

4 16/32K Memory select.
o Wrap second 16K of RAM into first 16K.
1 Allow access to full 32K of memory.

5 Page select.
o Select first 16K of memory.
1 Select second 16K of memory.

6-7 Reserved

On Exit: No values returned.

Registers Altered: AX

Example:

MOV AX, FlO MOD INFO
MOV BL,00000100B
MOV BH,11111011B
INT 10H

3-18 Video

EX-BIOS Function - Modify Ex-Reg (6F03H)
Select Character Font: HP ROMAN8
Only Modify Character Font
Call Video Interrupt

F10 GET RES (AX = 6F04H)

This function returns the current video mode and screen resolution.

On Entry: AX = fl0_GET_RES (6f04H)

On Exit: AL = Current video mode (See Set Mode.)

Data Definition

OOH 40 x 25 Alphanumeric Black and White
01H 40 x 25 Alphanumeric Color
02H 80 x 25 Alphanumeric Black and White
03H 80 x 25 Alphanumeric Color
04H 320 x 200 Graphics Color
05H 320 x 200 Graphics Black and White
06H 640 x 200 Graphics Black and White
07H 80 x 25 Only Valid for Monochrome Cards
08H 80 x 27 Alphanumeric Black and White
09H 80 x 27 Alphanumeric Color
OAH 40 x 27 Alphanumeric Black and White
OBH 40 x 27 Alphanumeric Color
OCH 640 x 400 2 Color
OOH 640 x 400 Graphics Black and White
OEH 320 x 400 Graphics Color
OfH 320 x 400 Grap~ics Black and White

If in one of the graphics modes:

BX = Horizontal resolution in pixels
CX = Vertical resolution in pixels

If in one of the text modes:

ax = Number of characters per row
ex = Number of rows

Registers Altered: AX, BX, CX

Video 3-19,

F10 XSET MODE (AX = 6F05H)

This function places the HP Multimode Video Display Adarter in one of sixteen possible modes of
operation. Modes °through 7 are identical to the modes available with function FI0_SET_MODE of
the video driver. Modes 8 through 15 are unique to the HP Vectra and the Multimode Video Display
Adapter and may only be set using this function.

Programmers must exercise caution when ~tting video modes with both FIO_SET_MODE (OH) and
FI0_XSET_MODE (6F05H). Whenever FI0_XSET_MODE is used to select one of the "HP only"
modes (8-15), FI0_XSET_MODE (not FIO_SET_MODE) must be used to return to one of the
industry standard modes (0-7). This "pairing" of function calls is necessary because FIO_XSET_MODE
modifies an I/O port not normally affected by the industry standard modes. FIO_SET_MODE does not
deal with this I/O port.

On Entry: AX = F10 XSET MODE (6F05H)
BL = Video mode

Data Definition

OOH 40 x 25 Alphanumeric Black and White
01H 40 x 25 Alphanumeric Color
02H 80 x 25 Alphanumeric Black and White
03H 80 x 25 Alphanumeric Color
04H 320 x 200 Graphics Color
05H 320 x 200 Graphics Black and White
06H 640 x 200 Graphics Black and White
07H 80 x 25 Only Valid for Monochrome Cards
08H 80 x 27 Alphanumeric Black and White
09H 80 x 27 Alphanumeric Color
OAH 40 x 27 Alphanumeric Black and White
OBH 40 x 27 Alphanumeric Color
OCH Reserved
ODH 640 x 400 Graphics Black and White
OEH 320 x 400 Graphics Color
OFH 320 x 400 Graphics Black and White

On Exit: No values returned.

Altered Registers: AX, BL

Example:

MOV AX,F10_XSET MODE
MOV BL,ODH
INT INT VIDEO

3-20· Video

Call EX-BIOS function Set mode (6F05H)
Select 640 x 400 line mode
Call video interrupt (10H)

4
Input System and HP-HIL

The Input System is a set of drivers which support the HP-HIL input devices. Up to seven HP-HIL input
devices may be connected at one time. The Input System can support properly integrated non-HP-HIL
devices as well.

Overview

The standard devices that connect to the system via the HP-HIL link are the mouse, touchscreen, and
tablet. The interfaces for simple mouse, touchscreen, and tablet support are described in this Chapter.

The architecture of the Input System is divided into two levels (see Figure 4-1). The application interface
level allows the programmer to communicate with the HP-HIL devices with minimum overhead. The
second level, the hardware interface level, allows programmers to manipulate the internals of the system.
With this interface, support for additional devices can be added or the data path of existing ones
re-directed.

The first portion of this chapter provides an overview of the application interface level, a detailed
description of the actual interfaces, and how to access them. The second portion of this chapter describes
the hardware interface level.

Application Interface Level

Application programs interface with the Input System through a set of logical device drivers. The Input
System has an application interface for the tablet, pointer (simple mouse), and touchscreen input devices.
The Input System device drivers are shown in Figure 4-1.

Input System and HP-HIL 4-1

,'i

Application

I I
Touch Pointer Tablet
Screen (Simple Mouse) Interface

Interface Interface (V_LTABLET)
(V_LTOUCH) (V_LPOINTER)

I I
Application Interface Level

Hardware
Interface
Drivers

Hardware Interface Level

I Physical Input Devices I

Figure 4-1. Input System Block Diagram

The tablet, pointer, and touchscreen application program interface drivers are grouped together in Figure
4-1 as they are all Graphic Input Device (GID) drivers. GID drivers accept relative graphic motion data,
absolute graphics data, and button scancode data from the input rtevices. Data from these devices is
represented in a consistent manner throughout the Input System, making programmatic access to different
Graphic Input Devices a simple task (see the Application Event Driver Example later in this chapter).

Overview

The Input System supports three logical GID drivers; one for each of the standard GID data types. There
is a GID driver for each of the touchscreen, pointer (simple mouse), and tablet devices called
V LTOUCH, V LPOINTER, and V__LTABLET respectively. Each of these drivers has a fixed location
in the HP VECTOR__TABLE. They all share a common code module (i.e., they have the same CS:IP in
the table), but have different data areas.

The GID drivers perform clipping and scaling under certain conditions. Absolute devices like the
touchscreen and tablet are always scaled but clIpping is user selectable. Relative devices like the mouse
can have both scaling and clipping selected by the user.

The logical GID drivers perform two additional tasks. The first is graphics cursor movement (sprite
tracking). This is performed by the EX-BIOS driver V STRACK, which is called by the logical GID
driver if tracking is enabled. The second task is to provide interrupt service to the application. The
application may install a routine to be called by the logical GID driver every time a GID event occurs, as
opposed to the application calling the GID driver repeatedly (polling) to see if an event has occurred.

The following text outlines the actions that occur for touchscreen input, from touching the screen to
applica tion data retrieval.

1. The user touches the screen. This causes the physical device to generate input data and interrupt the
hardware interface level.

4-2 Input System and HP-HIL

2. The hardware interface level processes the interrupt and passes the data (ISR Event Record) to the
logical touchscreen driver (V_LTOUCH).

3. V_LTOUCH scales the event to fit the current dimensions of the screen. At this point two optional
things may happen. First, the data may be clipped. Second, the user defined event driver will be
called if it is installed and enabled.

4. If the user event routine was not installed and enabled, then the application must call (poll)
V_LTOUCH with the F_SAMPLE function (see V__LTOUCH functions) to get the input data.

There are two methods for applications to receive data from the Input System: polled mode and interrupt
mode. In polled mode, the application must continually interrogate the logical GID driver using the
F_SAMPLE function to determine if any input has occurred. In interrupt mode, the application must
first install an ISR event handling routine (application event driver) using SF_CREATE_EVENT to
handle interrupt calls from the logical GID driver. After installation, the application informs the logical
GID driver that it is ready to receive interrupts by calling the SF_EVENT__ON subfunction. After event
interrupts have been enabled, the application will receive an interrupt every time the logical GID driver
receives data from the hardware interface level.

Data Structures

The application interface level uses two major data structures: the Logical Describe Record and the
Logical ISR Event Record(s). These data structures help keep track of the numerous events occurnng in
the Input System.

Logical Describe Record

The Logical Describe Record is used by the logical GID drivers to keep track of the current state of their
respective devices. Each of the logical GID drivers has a Logical Describe Record associated with it, which
is located directly after the driver header starting with memory address DS:OO 10H. Table 4-1 lists the
field types and offsets of the Logical GID Driver Describe Record. An explanation of the Logical GID
Driver Describe Record follows the table.

Table 4-1. Logical GID Driver Describe Record

Field Description Type Offset

Driver Header Driver Header (see Chapter 2) OOH

LD_SOURCE Device GID type BYTE 10H

LD_HPHIL ID Physical device ID BYTE I1H

LD_DEVICE STATE Status bits for the logical device WORD 12H

LD_INDEX Physical device vector number BYTE 14H

LD_MAX_AXIS Maximum number of axes BYTE 15H
reported

Input System and HP-Hll 4-3

Table 4-1. Logical GID Driver Describe Record (Cont.)

Field Description Type Offset

LD_CLASS Device class BYTE 16H

LD PROMPTS Number of button/prompts BYTE 17H

LD- PARAGRAPHS Size of this record in paragraphs BYTE 18H

LD- RESERVED Reserved BYTE 19H-18H

LD_TRANSITION Button transitions BYTE lCH

LD STATE Current state of the buttons BYTE IDH

LD RESOLUTION Logical device resolution WORD IEH

LD SIZE_X Maximum x-axis count WORD 20H

LD SIZE_Y Maximum y-axis count WORD 22H

LD- ABS_X X position data for absolute WORD 24H
devices

LD_ABS Y Y position data for absolute WORD 26H
devices

LD REL X X delta for relative devices WORD 28H

LD REL Y Y delta for relative devices WORD 2AH

LD ACCUM_X X-axis scaling accumulator WORD 2CH

LD ACCUM Y Y-axis scaling accumulator WORD 2EH

LD SIZE_Z Maximum z-axis count WORD 30H

LD ABS Z Z position data for absolute WORD 32H
devices

LD REL_Z Z delta for relative devices WORD 34H

LD_ACCUM_Z Z-axis scaling accumulator WORD 36H

4-4 Input System and HP-HIL

Logical Describe Record Definitions

LD SOURCE This field is divided into nibbles. Bits 7-4 contain the graphics input
device type. This field is loaded with the low order nibble of the ap
propriate logical GID data type (Table 4-S). Bits 3-0 are reserved.

ID byte of the physical device which last reported data. Table 4-2 lists
the HP-HIL device ID bytes.

Table 4-2. HP-HIL Device ID Bytes

Device Type ID Range Device Description

Other 00H-2BH Reserved
2CH-2FH Tone Generator
30H-3FH Reserved

Character Entry 40H-4FH Reserved
SOH-SBH Reserved
SCH-SFH Bar code Reader

Relative Positioners 60H-67H Reserved
68H-6BH Mouse
6CH-6FH Trackball
70H-7FH Reserved

Absolute Positioners 80H-87H Reserved
88H-8BH Touchpad
8CH-8FH Touchscreen
90H-97H Graphics Tablet
98H-9FH Reserved

Other DAOH-OFFH Reserved

Status bits for the logical device:

Bit

OFH-05H
04H
03H
02H
01H
OOH

LD INDEX

Definition

Reserved.
Event enabled when set.
Tracking enabled when set.
Clipping enabled when set.
Button error occurreJ when set.
Interrupt in progresq when set.

This contains the vector address divided by 6 of the last physical device
that reported Jata.

Maximum nUT iber of axes supported by the device. Valid range is 0-2.

Input Sys.tem and HP-HIL 4-5

LD_PARAGRAPHS

LD_TRANSITION

LD_RESOLUTION

LD_SIZE_Y

LD REL Z- -

Device class. Bits 7-4 contain the current class. Bits 3-0 contain the
default class. See Appendix G for more information on device classes.

Number of buttons and prompts supported by the device. Bits 7-4 con
tain the number of prompts. Bits 3-0 contain the number of buttons.

Size of this record in paragraphs: 0 means 3 paragraphs, 1 means 4
paragraphs.

Transitions reported per button, i.e., a set bit indicates that the cor
responding button was either pushed or released. Bit 7 corresponds to
button 7 etc.

Current state of the buttons. I is down, 0 is up. Bit 7 corresponds to
button 7 etc. If LD_STATE is XOR'ed with LD_TRANSITION the
result is the previous button state.

This is the resolution of the logical device. For logical devices this is
typically one.

Maximum count (in units of resolution) for the x-axis.

Maximum count (in units of resolution) for the y-axis.

x position data for devices which report absolute coordinates (absolute
devices).

Y position data for devices which report absolute coordinates.

Latest change in x position for devices which return coordinates relative
to the previous position (relative devices).

Latest change in y position for devices which return coordinates relative
to the previous position.

Accumulator used to sum partial movements when scaling from the
physical device space to the logical device space. The value stored here
represents a fraction of one logical unit for the x-axis.

Accumulator used to sum partial movements when scaling from the
physical device space to the logical device space. The value stored here
represents a fraction of one logical unit for the y-axis.

Maximum count (in units of resolution) for the z-axis.

Z position data for devices which report absolute coordinates.

Latest change in z position for devices which return coordinates relative
to the previous position.

Accumulator used to sum parhal movements when scaling from the
physical device space to the logical device space. The value stored here
represents a fraction of one logical unit for the z-axis.

4-6 Input System and HP-HIL

Logical ISR Event Records

A Logical ISR Event Record is not a data structure in the truest sense, but is a set of register definitions
for inter-driver communication of input events. These definitions apply not only to Input System drivers
but to application event drivers as well. The following define the Logical ISR Event Records.

GID Button ISR Event Record

AH = F ISR (OOH)
DL = Physical device driver's vector address / 6
BX = Button information.

Bit Value

OFH-08H
07H 1

o
06H-OOH

Definition

Reserved
Button up
Button down
Button number (0-7)

DH = Data Type
ES:O =Pointer to Physical device driver

header and Physical Describe Record.

GID Motion ISR Event Record

AH = F ISR (OOH)
DL = Physical device driver's vector address I 6
BX = X axis motion in raw data fOnl.
ex = Y axis motion in raw data fOnl.
SI = Z axis motion in raw data fona.
DH = Data Type

ES:O = Pointer to physical device driver

header and Physical Describe Record.

The button number in the Button information field (BX) denotes which button on the device is reporting
data. Of gpecial interest is button seven (proximity indicator) which is currently used by absolute devices
to indicate that the device measurement field is active. For example, someone is touching the touchscreen,
or the stylus is in contact with the tablet surface.

The Data Type field (DH) contains a code representing the current type of logical GID data stored in the
event record. For button events this value will be T_KC_BUITON. For logical GID motion events,
permissible types are: T_TS, T_POINTER and T_TABLET, which correspond to data originating from
V__LTOUCH, V_LPOINTER, and V_LTADLET respectively. For a complete list of logical GID event
data types see Table 4-3.

Input System and HP-Ha. 4-7

Table 4-3. Logical GID Event Data Types

Type Value Definition

T KC_BUTTON 09H Button data

T TS 45H Specially formed data (80x2 5--default)
generated by V_LTOUCH

T TABLET 46H Specially formed data (640x200 range--default)
generated by V__LTABLET

T POINTER 47H Specially formed data (640x200 range--default)
generated by V_LPOINTER

Application Event Drivers

As previously mentioned, applications may install a routine to handle interrupts from the logical GID
drivers. Three predefined vectors in the HP_VECTOR_TABLE are initialized to the null driver
(V_PNULL). The three vectors are V_EVENT_TOUCH, V_EVENT_POINTER) and
V_EVENT_TABLET which are called by the logical GID drivers V_LTOUCH) V_LPOINTER) and
V_LTABLET respectively when event interrupts are enabled by a call to SF_EVENT_ON. A call to
SF_CREATE_EVENT sets the corresponding event vector to point to the user application event

The application event driver is required to support only one function) F_ISR. The driver should return
RS_UNSUPPORTED for all unimplemented functions.

Logical GID Drivers

The drivers V_LTOUCH) V_LPOINTER) and V_LTABLET represent the application interface to the
Input System. These drivers provide functions to poll for data) enable/disable application event interrupts)
enable/disable tracking) and enable/disable clipping and/or scaling.

V_LTOUCH Driver (BP = OOC6H)

This section contains a detailed description of the touchscreen driver. Table 4-4 is a summary of the
touchscreen driver function code.

4-8 Input System and HP-HIL

Table 4-4. Touchscreen Driver Function Code Summary

Function Function
Value Equate Definition

V LTOUCH Application interface to Touchscreen-

00 F- ISR Logical Interrupt

02 F- SYSTEM System functions

02/00 SF INIT Initialize the driver data area

02/02 SF START Start driver

02/04 SF REPORT STATE Report state of device

02/06 SF- VERSION - DESC Report driver version number

02/08 SF- DEF_ATTR Set default logical scaling attributes

02/0A SF GET_ATTR Get scaling attributes

02/0C SF_SET ATTR Set scaling attributes

04 F_10_CONTROL I/O Control functions

04/00 SF LOCK Unsupported

04/02 SF_UNLOCK Unsupported

04/04 SF_TRACK ON Turn cursor track on

04/06 SF_TRACK OFF Turn cursor track off

04/08 SF CREATE _EVENT Establish a new routine to be called on logical device
events

04/0A SF_EVENT_ON Enable event call to parent driver

04/0C SF_EVENT_OFF Disable event call to parent driver

04/0E SF CLIPPING _ON Enable logical device clipping

04/10 SF_CLIPPING _OFF Disable logical device clipping

06 F_SAMPLE Report absolute position of GID

Input System and HP-Hll 4-9

Touchscreen Driver Functions Definitions

F ISR (AH = OOH)

This function receives an ISR Event record from one of the physical GID drivers. The calling driver has
handled the physical interrupt and updated the Physical Describe Record to reflect the event. This
function translates the physical event into the logical coordinate system and calls its parent,
V_._EVENT__TOUCH, (if EVENT is enabled). In addition, this function passes the event to V_STRACK
so that the sprite can be updated (if TRACK is enabled). This function is a response to a logical hardware
interrupt and not user callable.

On Ent ry: AH =
DH =
DL =

ES:O =
BP =

F ISR (OOH)
Data Type
Physical device driver's vector index.
Pointer to Physical device driver header and Physical
Desc r i be Reco rd.
V_LTOUCH (OOC6H)

For Button Event:
BX = Button information.

Bit Value Definition

OFH-08H Reserved
07H 1 Button up

0 Button down
06H-00H But ton number (0-7)

For Motion Event:
BX = X axis motion in raw data form.
CX = Y axis motion in raw data form.

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Related Functions: Sf CREATE_EVENT, Sf_EVENT_ON, SF TRACK ON

SF INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Chapter 8 for a complete discussion of the
protocol used in data space allocation.

On Entry: AH = F SYSTEM (02H)
AL = Sf INIT (OOH)
BX = "Last used OS" in HP Data Area
BP = V LTOUCH (OOC6H)

On Exit: AH ::: Return Status Code
BX ::: New "last used OS" in HP Da ta Area

Registers Altered: AX, BX, BP, OS

4-10 Input System and HP-Hll

SF_START (AX =0202H)

This subfunction starts the logical touchscreen driver.

On Entry: AH = f SYSTEM (02H)
AL = SF START (02H)
BP = V LTOUCH (OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_REPORT _STATE (AX =0204H)

This subfunction returns the LD_DEVICE_STATE field from the Logical Describe Record.

On Entry: AH = f SYSTEM (02H)
AL = SF REPORT STATE (04H)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code
OX = LD DEVICE STATE from Logical Describe Record

Registers Altered: AX, OX, BP, OS

SF_VERSION _DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = f SYSTEM (02H)
AL = sf VERSION OESC (06H)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, ex, 01, ES, BP, OS

SF DEF ATTR (AX =0208H)

This subfunction sets the attributes of the logical touchscreen driver to their default values. The default
attributes for the touch screen driver are: LD_SIZE_X • 79 and LD_SIZE_Y • 24.

Input System and HP-HIL 4 -II

On Entry: AH = f SYSTEM (02H)
AL = SF OEf ATTR (OSH)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF GET ATTR (AX =020AH)

This subfunction returns the current scaling attributes, LD_SIZE_X and LD_SIZE_Y.

On Entry: AH = f SYSTEM (02H)
AL = Sf GET ATTR (OAH)
BP = V LTOUCH (OOC6H)

On Exit: AH = Return Status Code
BX = LO SIZE X (logical size along X axis)- -CX = LO SIZE Y (logical size along Y axis)- -

Registers Altered: AX, BX, CX, BP, OS

SF_SET_ATTR (AX =020CH)

This subfunction sets the scaling attributes, LD SIZE._X, and LD_SIZE_Y, in the Logical Describe
Record.

On Entry: AH = f_SYSTEM (02H)
AL = Sf SET ATTR (OCH)
BX = LO SIZE X (logical size along X axis)- -CX = LO SIZE Y (logical size along Y axis)- -BP = V LTOUCH (OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_TRACK_ON (AX = 0404H)

This subfunction turns tracking on. For each movement of the logical device, V_STRACK will be called
to update the graphics cursor (sprite) position.

On Entry: AH = f 10 CONTROL (04H)
AL = SF TRACK ON (04H)
BP = V_LTOUCH-(OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

4-12 Input System and HP-HIL

SF TRACK OFF (AX = 0406H)

This subfunction turns tracking off.

On Entry: AH = F 10 CONTROL (04H)
AL = SF TRACK OFF (06H)
BP = V_LTOUCH-(OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_CREATE_EVENT (AX = 0408H)

This subfunction establishes the routine to be called on logical device events. The IP, CS, and DS of the
routine are passed to this subfunction. These values are exchanged with the vector entry of the
V_EVENT_TOUCH driver in the HP_VECTOR_TABLE, V_EVENT_TOUCH being the parent of the
logical touchscreen driver. The IP, CS, and DS of the previous routine are returned to the caller. Note
that this subfunction does not enable the event call to the parent routine; this must be done explicitly
using SF_EVENT_ON.

The ISR event records passed to the V_EVENT_TOUCH driver will have one of the following two
formats, depending on the Data Type stored in DL.

V EVENT TOUCH Button ISR Event Record:

AH = F_ISR (OOH)
DL = Physical device drivers vector address / 6
BX = Button information.

Bit Value Definition

OFH-08H
07H
06H-OOH

Reserved
Button up
Button number (0-7)

DH = Data Type
E5:0 = Pointer to V LTOUCH device driver.

header and Logical Describe Record.

V EVENT TOUCH Motion ISR Event Record:

AH
DL
BX
CX
DH

ES-: 0

= F ISR (OOH)
= Physical device driver's vector address
= A number between 0 and LD SIZE X- -= A number between 0 a,d LD SIZE Y
= Data Type
= Pointer to V LTOUCH 1evice driver

header and Logical u:'!scribe Record.

/ 6

Input System and HP-HIL 4-13

On Entry: AH = F 10 CONTROL (04H)
AL = sf CREATE EVENT (OSH)
BP = V_LTOUCH (OOC6H)
OX = OS of new V EVENT TOUCH routine- -SI = IP of new V EVENT TOUCH routine- -ES = CS of new V EVENT TOUCH routine

On Exit: AH =
OX =
SI =
ES =

Return Status Code
OS of previous V_EVENT_TOUCH routine
IP of previous V_EVENT_TOUCH routine
CS of previous V EVENT TOUCH routine

Registers Altered: AX, OX, SI, BP, ES, OS

Related Functions: SF EVENT ON

The following example shows how to use the SF CREATE EVENT' function. The routine EVENT will- -
be the event procedure that is called when events are enabled.

EVENT PROC FAR
CMP AH,F_ISR ;only support function F ISR
JE PROCESS EVENT
MOV AH, RS UNSUPPORTED
lRET -

PROCESS EVENT:

MOV AH, RS SUCCESSFUL
IRET

EVENT ENDP

code to process data
(see touchscreen
even t reco rd)
return successful completion

want to use the current data segment for event OS

current CS also segment of event routine
get the IP of the event routine
save current OS
call extended BIOS driver

F 10 CONTROL
SF CREATE EVENT
V LTOUCH
OS

MOV AH,
MOV AL,
MOV BP,
MOV OX,
PUSH CS
POP ES
LEA SI,CS:EVENT
PUSH OS
CALL SYSCAlL
POP OS

SF EVENT ON (AX = 040AH)

This subfunction enables the event (parent) call to the touchscreen event routine (V_EVENT_TOUCH).
The link to the touchscreen event routine must have already been established using
SF CREATE EVENT.- -

4-14 Input System and HP-HIL

On Entry: AH = F 10 CONTROL (04H)
AL = SF EVENT ON (OAH)
BP = V_LTOUCH-(OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Related Functions: SF_CREATE_EVENT,
SF EVENT OFF

SF EVENT OFF (AX =040CH)

This subfunction disables the call to the touchscreen event routine.

On Entry: AH = F 10 CONTROL (04H)
AL = SF EVENT OFF (OCH)
BP = V_LTOUCH-(OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF CLIPPING ON (AX = 040EH)

This subfunction enables logical device clipping. Physical device motion will be scaled to logical space and
will be clipped to avoid overflow or underflow. Clipping is activated for both absolute and relative
motion.

When there is a relative device mapped to this device driver, clipping works the best. It will make sure
that the new position always falls within the logical space.

On Entry: AH = F 10 CONTROL (04H)
AL = SF CLIPPING ON (OEH)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_CLIPPING _OFF (AX = 0410H)

This subfunctioniisables logical device clipping. Physical device motion will be scaled to logical space, but
overfl0w or underflow may occur.

On Entry: AH - F 10 CONTROL (04H)
AL - SF CLIPPING OFF (10~)

BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Input System and HP-HIL 4 -15

F SAMPLE (AH = 06H)

This function allows an application to poll the touchscreen device. This function reports the current
absolute position of the logical device in a form similar to a Logical ISR Event Record.

On Entry: AH = F SAMPLE (06H)
BP = V LTOUCH (00C6H)

On Ex it: AH =
BX =
CX =
OL =
OH =

ES:O =

Return Status Code
Current logical position along X axis
Current logical position along Y axis
LO_TRANSITION field of Logical Describe Record
LO STATE field of Logical Describe Record
PoInter to logical device header and Describe Record

Registers Altered: AX, BX, ex, ox, BP, OS, ES

The following is an example of how to call the F_SAMPLE function.

MOV AH, F SAMPLE
MOV BP, V LTOUCH
PUSH OS
CALL SYSCALL
POP OS

load function code
; load vector address

save the current OS
call extended BIOS driver
restore OS

V LPOINTER Driver (BP =OOCOH)

This section contains a detailed description of the pointer driver. Table 4-5 summarizes the functions
supported by the pointer driver.

Table 4-5. Pointer Driver Function Code Summary

Function Vector Func.
Equate Definition Address Value

V LPOINTER Application interface to OOeOH
Pointer /Mouse

F_ISR Logical Interrupt OOeOH 00
F SYSTEM System functions OOeOH 02
SF INIT Initialize the driver data area OOeOH 02/00
SF START Start driver OOeOH 02/02
SF- REPORT STATE Report state of device OOeOH 02/04
SF VERSION - DESC Report driver version number ooeOH 02/06
SF DEF _ATTR Set default logical scaling OOeOH 02/08

attributes
SF GET - ATTR Get scaling attributes OOeOH 02/0A
SF SET - ATTR Set scaling attributes OOeOH 02/0e
F- 10 CONTROL I/O Control Functions OOCOH 04
SF LOCK Unsupported OOeOH 04/00
SF- UNLOCK Unsupported OOeOH 04/02

4-16 Input System and HP-HIL

Table 4-5. Pointer Driver Function Code Summary (Cont.)

Function Vector Func.
Equate Definition Address Value

SF- TRACK _ON Turn cursor track on OOeOH 04/04
SF TRACK OFF Turn cursor track off OOeOH 04/06
SF CREATE - EVENT Establish a new routine to be OOCOH 04/08

called on logical device events
SF EVENT ON Enable event call to parent OOeOH 04/0A

driver
SF EVENT _OFF Disable event call to parent OOeOH 04/0e

driver
SF__CLIPPING _ON Enable logical device clipping OOeOH 04/0E
SF CLIPPING _OFF Disable logical device clipping OOeOH 04/10
F SAMPLE Report absolute position of GID OOeOH 06

Pointer Driver Function Definitions

F_ISR (AH =OOH)

This function receives an ISR Event record from one of the physical GID drivers. The calling driver has
handled the physical interrupt and updated the Physical Describe Record to reflect the event. This
function translates the physical event into the logical coordinate system and calls its parent,
V__EVENT_POINTER, (if EVENT is enabled). In addition, this function passes the event to
V_STRACK 80 that the sprite can be updated (if TRACK is enabled). This function is a response to a
logical hardware interrupt and not user callable.

On Entry: AH =
DH =
DL =

ES:O =

BP =

f_ISR (OOH)
Data Type
Physical device drivers vector index.
Pointer to physical device driver
header and Physical Describe Record.
V LPOINTER (OOeOH)

for Button Event:
BX = Button information.

Bit Value Definition

OfH-08H Reserved
07H 1 Button up

0 Button down
06H-OOH Button number (0-7)

for Motion Event:
ex = X axis motion in raw data form.
ex = y axis motion in raw data form.
SI = Z axis motion in raw data form.

Input System and HP-HIL 4 -17

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Related Functions: SF CREATE_EVENT, SF_EVENT_ON, SF TRACK ON

SF INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Chapter 8 for a complete discussion of the
protocol used in data space allocation.

On Entry: AH = F SYSTEM (02H)
AL = SF INIT (OOH)
BX = "Last used OS" in HP Data Area
BP = V LPOINTER (OOCOH)

On Exit: AH = Return Status Code
ax = New "last used DS" in HP Data Area

Registers Altered: AX, BX, BP, OS

SF ST ART (AX = 0202H)

This subfunction starts the logical pointer driver.

On Entry: AH = F SYSTEM (02H)
AL = SF START (02H)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF REPORT STATE (AX = 0204H)

This subfunction returns the LD_DEVICE_STATE field from the Logical Describe Record.

On Entry: AH = F SYSTEM (02H)
AL = SF REPORT STATE (04H)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code
OX = LD DEVICE STATE from Logical Describe Record

Registers Altered: AX, DX, BP, DS

SF VERSION DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer h' the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. 'J ne BL register
contaIns the number of years since 1960 and the BH registf"' cortains the week of the year.

4-18 Input System and HP-Hll

On Entry: AH = F SYSTEM (02H)
AL = SF VERSION OESC (OSH)
BP = V_LPOINTER-(OOCOH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:OI = Pointer to the current version number

Registers Altered: AX, BX, CX, 01, ES, BP, OS

SF DEF ATTR (AX = 0208H)

This subfunction sets the attributes of the logical pointer driver to their default values. The default
attributes for the pointer driver are: LO_SIZE_X = 639, LD_SIZE_Y • 199 and LO_SIZE_Z = 100.

On Entry: AH = F SYSTEM (02H)
AL = SF OEF ATTR (OSH)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_GET_ATTR (AX =020AH)

This subfunction returns the current scaling attributes, LO_SIZE_X, LO_SIZE_Y and LD_SIZE_Z.

On Entry: AH = F SYSTEM (02H)
AL = SF GET ATTR (OAH)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code
BX = LO SIZE X (logical size along X axis)
CX = LO-SIZE-Y (logical size along Y axis)
SI = LO-SIZE-Z (logical size along Z axis)

Registers Altered: AX, BX, CX, BP, OS

SF SET ATTR (AX =020CH)

This subfunction sets the scaling attributes, LO_SIZE_X, LD_SIZE_Y and LD_SIZE_Z in the Logical
Describe Record.

Input System and HP-Hll 4 -19

On Entry: AH = F SYSTEM (02H)
AL = Sf SET ATTR (OCH)
BX = LO=SIZE_X (logical size along X axis)
CX = LO_SIZE_Y (logical size along Y axis)
SI = LO_SIZE_Z (logical size along Z axis)
BP = V LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF TRACK ON (AX =0404H)

This subfunction turns tracking on. For each movement of the logical device, V_STRACK will be called
to update the graphics cursor (sprite) position.

On Entry: AH = F 10 CONTROL (04H)
AL = Sf TRACK ON (04H)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF TRACK OFF (AX = 0406H)

This subfunction turns tracking off.

On Entry: AH = F 10 CONTROL (04H)
AL = Sf TRACK OFf (06H)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF CREATE EVENT (AX =0408H)

This subfunction establishes the routine to be called on logical device events. The IP, CS, and DS of the
routine are passed to this subfunction. These values are exchanged with the vector entry of the
V_EVENT_POINTER driver in the HP__VECTOR_TABLE, V_EVENT_POINTER being the parent of
the logical pointer driver. The IP, CS, and DS of the previous routine are returned to the caller. Note
that this subfunction does not enable the event call to the parent routine; this must be done explicitly
using SF_EVENT_ON.

The ISR event records passed to the V_EVENT_._POINTER driver will have one of the following two
formats depending on the Data Type stored in DL.

4-20 Input System and HP-HIL

V EVENT POINTER Button ISR Event Record:
- AH = F ISR (OOH)

Dl = Physical device driver's vector address / 6
BX = Button information.

Bit Value Definition

OFH-08H Reserved
07H 1 Button up

0 Button down
06H-00H Button number (0-7)

DH = Data Type
ES:O = Pointer to V lPOINTER device driver

header and logical Describe Record.

V EVENT POINTER Motion ISR Event Record:

AH = F ISR (OOH)
Dl = Physical device driver's vector address / 6
BX = Relative movement in the X direction

(Positive number indicates movement to the
ex = Relative movement in the Y direct ion

(Positive number indicates movement down)
DH = Data Type

ES:O = Pointer to V lPOINTER device driver header
logical Describe Record.

right)

and

On Entry: AH :: F 10 CONTROL (04H)
Al = sf CREATE EVENT (08H)
BP = V_LPOINTER (OOCOH)
OX = OS of new V EVENT POINTER routine- -SI = IP of new V EVENT POINTER routine- -E5 = CS of new V EVENT POINTER routine

On Exit: AH = Return Status Code
OX = OS of previous V_EVENT_POINTER routine
51 = IP of previous V_EVENT_POINTER routine
ES = C5 of previous V EVENT POINTER routine

Registers Altered: AX, OX, SI, BP, ES, 05

Related Functions: SF EVENT ON

This example shows how to use the SF_CREATE EVENT function. The routine EVENT will be the
event procedure that is called when events are enabled.

Input System and HP-HIL 4-21

EVENT PROC FAR
CMP AH, F_ISR only support function F ISR
JE PROCESS EVENT
MOV AH, RS_UNSUPPORTEO
IRET

PROCESS EVENT:
code to process data (see
pointer event record)

MOV AH, RS SUCCESSFUL
IRET

EVENT ENOP

return successful completion

want to use the current. data segment for event OS

current CS is also segment of event routine
get the IP of the event routine
save current OS
call extended BIOS drIver

F 10 CONTROL
SF CREATE EVENT- -V LPOINTER
OS

AH,
AL,
BP,
OX,
CS
ES
SI, CS:EVENT
OS
SYSCALL
OS

MOV
MOV
MOV
MOV
PUSH
POP
LEA
PUSH
CALL
POP

SF EVENT ON (AX =040AH)

This subfunction enables the event (parent) call to the pointer event routine (V_EVENT_POINTER).
The link to the pointer event routine must have already been established using SF_CREATE_EVENT.

On Entry: AH = F 10 CONTROL (04H)
AL = SF EVENT ON (OAH)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Related Functions: SF CREATE_EVENT, SF EVENT OFF

SF EVENT OFF (AX = 040CH)

This subfunction disables the call to the pointer event routine.

On Entry: AH = F 10 CONTROL (04H)
AL = SF EVENT OFF (OCH)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

4-22 Input System and HP-HIL

SF CLIPPING ON (AX = 040EH)

This subfunction enables logical device clipping. Physical device motion will be scaled to logical space and
will be clipped to avoid overflow or underflow. Clipping is activated for both absolute and relative
motion.

When there is a relative device mapped to this device driver, clipping works the best. It will make sure
that the new position always falls within the logical space.

On Entry: AH = F 10 CONTROL (04H)
AL = SF CLIPPING ON (OEH)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF CLIPPING OFF (AX = 0410H)

This subfunction disables logical device clipping. Physical device motion will be scaled to logical space, but
overflow or underflow may occur.

On Entry: AH = F 10 CONTROL (04H)
AL = SF CLIPPING OFF (10H)
B~ = V_LPOINTER (OCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

F_SAMPLE (AH = 06H)

This function allows an application to poll the pointer device. This function reports the current absolute
position of the logical device in a form similar to a Logical ISR Event Record.

On Entry: AH = F SAMPLE (06H)
BP = V=LPOINTER (OOCOH)

On Exit: AH = Return Status Code
BX = Current logical position along X axis
CX = Current logical position along Y axis
SI = Current logical position along Z axis
OL = LO_TRANSITION field of Logical Describe Record
DH = LD_STATE field of Logical Describe Record

ES:O = Pointer to logical device header and Describe Record

Registers Altered: AX, BX, CX, OX, 3P, OS, ES

Input System and HP-HIL 4-23

MOV AH, F SAMPLE
MOV BP, V LPOINTER
PUSH OS
CALL SYSCALL
POP OS

load function code
load vector address
save the current OS
call extended BIOS driver
restore OS

V LTABLET Driver (BP = OOBAH)

This section contains a detailed description of the tablet driver. See Table 4-6 for a summary of
functions supported by the tablet driver.

Table 4-6. Tablet Driver Function Code Summary

Vector Function Function
Address Value Equate Definition

OOBAH V_LTABLET Application interface
to Tablet

OOHAH 00 F_ISR Logical Interrupt

OOBAH 02 F_SYSTEM System functions

OOBAH 02/00 SF_INIT Initialize the driver
data area

OOBAH 02/02 SF_START Start driver

OOBAH 02/04 SF_REPORT Report state of device
_STATE

OOBAH 02/06 SF VERSION _DESC Report driver version
number

OOBAH 02/08 SF_DEF ATTR Set default logical
scaling attributes

OOBAH 02/0A SF GET ATTR Get scaling attributes

OOBAH 02/0C SF SET - ATTR Set scaling attributes

OOBAH 04 F_10 CONTROL I/O Control Functions

OOBAH 04/00 F_SF LOCK Unsupported

OOBAH 04/02 F SF UNLOCK Unsupported

4-24 Input System and HP-HIL

Table 4-6. Tablet Driver Function Code Summary (Cont.)

Vector Function Function
Address Value Equate Definition

OOBAH 04/04 F SF _TRACK ON Turn cursor track on

OOBAH 04/06 F SF _TRACK Turn cursor track off
_OFF

OOBAH 04/08 F SF CREATE Establish a new
EVENT routine to be called on

logical device events

OOBAH 04/0A F_SF _EVENT ON Enable event call to
parent driver

OOBAH 04/0C F SF _EVENT Disable event call to
OFF parent driver

OOBAH 04/0E F SF _CLIPPING Enable logical device
ON clipping

OOBAH 04/10 F_SF _CLIPPING Disable logical device
_OFF clipping

OOBAH 06 F_SAMPLE Report absolute posi-
tion of GID

Tablet Driver Functions Definition

F ISR (AH =OOH)

This function receives an ISR Event record from one of the physical GID drivers. The calling driver has
handled the physical interrupt and updated the Physical Describe Record to reflect the event. This
function translates the physical event into the logical coordinate system and calls its parent,
V_EVENT_TABLET, (if EVENT is enabled). In addition, this function passes the event to V_STRACK
so that the sprite can be updated (if TRACK is enabled). This function is a response to a logical hardware
interrupt and not user callable.

On Ent ry: AH =
DH =
DL =

E5:0 =

BP =

f_I5R (OOH)
Data Type
Physical device driver's vector index.
Pointer to physical device driver header
and Physical Describe Record.
V_LTABLET (OOBAH)

for Button Event:
BX = Button information.

'nput System and HP-HIL 4-25

Bit Value Definition

OFH-08H Reserved
1 Button up
0 Button down

06H-00H Button number (0-7)

For Motion Event:
BX = X axis motion in raw data form.
CX = Y axis motion in raw data form.
S1 = Z axis motion in raw data form.

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Related Functions: SF CREATE_EVENT, SF_EVENT_ON, SF TRACK ON

SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Chapter 8 for a complete discussion of the
protocol used in data space allocation.

On Entry: AH = F SYSTEM (02H)
AL = SF 1N1T(00H)
BX = "Last used OS" in HP Data Area
BP = V LTABLET (OOBAH)

On Exit: AH = Return Status Code
BX = New IIlast used OSII in HP Data Area

Registers Altered: AX, BX, BP, OS

SF START (AX = 0202H)

This subfunction starts the logical tablet driver.

On Entry: AH = F SYSTEM (02H)
AL = SF START (02H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

4-26 Input System and HP-HIL

SF_REPORT _STATE (AX = 0204H)

This subfunction returns the LD_DEVICE_STATE field from the Logical Describe Record.

On Entry: AH = F SYSTEM (02H)
AL = Sf REPORT STATE (04H)
BP = V_LTABLET-(OOBAH)

On Exit: AH = Return Status Code
OX = LD DEVICE STATE from Logical Describe Record

Registers Altered: AX, OX, BP, OS

SF_VERSION _DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = F SYSTEM (02H)
AL = Sf VERSION DESC (OSH)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, OJ, ES, BP, OS

SF_DEF_ATTR (AX = 0208H)

This subfunction sets the attributes of the logical tablet driver to their default values. The default
attributes for the tablet driver are: LD_SIZE_X • 639, LD_SIZE_Y = 199 and LD_SIZE_Z • 100.

On Entry: AH = F SYSTEM (02H)
AL = Sf DEF ATTR (OBH)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Input System and HP-HIL 4-27

SF GET ATTR (AX =020AH)

This subfunction returns the current scaling attributes, LD_SIZE_X,LD_SIZE_Y and LD_SIZE_Z.

On Ent ry: AH = F_SYSTEM (02H)
AL = SF GET ATTR (OAH)
BP = V LTABLET (OOBAH)

On Exit: AH = Return Status Code
BX = LD_SIZE_X (logical size along X axis)
CX = LD_SIZE_Y (logical size along Y axis)
SI = LO SIZE Z (logical size along Z axis)

Registers Altered: AX., BX., CX, BP, OS

SF SET ATTR (AX = 020CH)

This subfunction sets the scaling attributes, LD_SIZE_X, LD_SIZE__Y and LD_SIZE_Z in the Logical
Describe Record.

On Entry: AH = F_SYSTEM (02H)
AL = Sf SET ATTR (OCH)
BX = LD SIZE X (logical size along X axis)- -CX = LD SIZE Y (logical size along Y axis)- -SI = LD SIZE Z (logical size along Z axis)- -BP = V LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP., OS

SF TRACK ON (AX = 0404H)

This subfunction turns tracking on. For each movement of the logical device, V_STRACK will be called
to update the graphics cursor (sprite) location.

On Entry: AH = F 10 CONTROL (04H)
AL = Sf TRACK ON (04H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP., OS

4-28 Input System and HP-HIL

SF TRACK OFF (AX = 0406H)

This subfunction turns tracking off.

On Entry: AH = F 10 CONTROL (04H)
AL = sf TRACK OFF (06H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF CREATE EVENT (AX = 0408H)

This subfunction establishes the routine to be called on logical device events. The IP, CS, and OS of the
routine are passed to this subfunction. These values are exchanged with the vector entry of the
V_EVENT_TABLET driver in the HP_VECTOR_TABLE, V_EVENT_TABLET being the parent of
the logical tablet driver. The IP, CS, and OS of the previous routine are returned to the caller. Note that
this subfunction does not enable the event call to the parent routine; this must be done explicitly using
SF_EVENT_ON.

The ISR event records passed to the V_EVENT_TABLET driver will have one of the following two
formats depending on the data type stored in OL.

Format 1:
V EVENT TABLET Button ISR Event Record:

AH = F ISR (OOH)
DL = Physical device driver's vector address / 6
BX = Button information.

Bit Value Definition

OFH-08H Reserved
07H 1 Button up

0 Button down
06H-OOH Button number(0-7)

DH = Data Type
E5:0 = Pointer to V LTABLET device driver header

and Logical Describe Record.

Input System and HP-HIL 4-29

Format 2:
V EVENT TABLET Motion ISR Event Record:

AH = F ISR (OOH)
DL = Physical device driver's vector address / 6
BX = A number between 0 and LD SIZE X- -CX = A number between 0 and LD SIZE Y- -SI = A number between 0 and LD SIZE Z
DH = Data Type

ES:O = Pointer to V TABLET device driver header and Logical
Describe Record.

On Entry: AH = F 10 CONTROL (04H)
AL = sf CREATE EVENT (OSH)
BP = V_LTABLET-(OOBAH)
OX = OS of new V EVENT TABLET routine- -SI = IP of new V EVENT TABLET routine- -ES = CS of new V EVENT TABLET routine

On Exit: AH =
OX =
SI =
ES =

Return Status Code
OS of previous V_EVENT_TABLET routine
IP of previous V_EVENT_TABLET routine
CS of previous V EVENT TABLET routine

Registers Altered: AX, OX, SI, BP, ES, OS

Related Functions: SF EVENT ON

This example shows how to use the SF_CREATE_EVENT function. The routine EVENT will be the
event procedure that is called when events are enabled.

EVENT PROC FAR
CMP AH, f ISR only support function F ISR
JE PROCESS EVENT
MOV AH, RS UNSUPPORTED
I RET

PROCESS EVENT:
code to process data (see
tablet event record)

MOV AH, RS SUCCESSFUL return successful completion
IRET

EVENT ENOP

MOV AH, F 10 CONTROL
MOV AL, sf CREATE EVENT
MOV BP, V LTABLET-
MOV OX, OS want to use the current data segment

segment for event OS
PUSH CS
POP ES
LEA 51, CS:EVENT
PUSH OS
CALL SYSCALL
POP OS

4-30 Input System and HP-HIL

current CS is also segment of event routine
get the IP of the event routine
save current OS
call extended BIOS driver

SF EVENT ON (AX = 040AH)

This subfunction enables the event (parent) call to the tablet event routine (V_EVENT_TABLET). The
link to the tablet event routine must have already been established using SF_CREATE_EVENT.

On Entry: AH = F 10 CONTROL (04H)
AL = SF EVENT ON (OAH)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Related Functions: SF CREATE_EVENT, SF EVENT OFF

SF EVENT OFF (AX = 040CH)

This subfunction disables the call to the tablet event routine.

On Entry: AH = F 10 CONTROL (04H)
AL = SF EVENT OFF (OCH)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_CLIPPING _ON (AX = 040EH)

This subfunction enables logical device clipping. Physical device motion will be scaled to logical space and
will be clipped to avoid overflow or underflow. Clipping is activated for both absolute and relative
motion.·

When there is a relative device mapped to this device driver, clipping works the best. It will make sure
that the new position always falls within the logical space.

On Entry: AH = f 10 CONTROL (04H)
AL = sf CLIPPING ON (OEH)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Input System and HP-HIL 4-31

SF_CLIPPING _OFF (AX = 0410H)

This subfunction disables logical device clipping. Physical device motion will be scaled to logical space, but
overflow or underflow may occur.

On Entry: AH = F 10 CONTROL (04H)
AL = SF CLIPPING OFF (10H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

F_SAMPLE (AH = 06H)

This function allows an application to poll the tablet device. This function reports the current absolute
position of the logical device in a form similar to a Logical ISR Event Record.

On Entry: AH = F SAMPLE (06H)
BP = V=LTABLET (OOBAH)

On Exit: AH = Return Status Code
BX = Current logical position along X axis
CX = Current logical position along y axis
SI = Current logical position along Z axis
OL = LO_TRANSITION field of Logical Describe Record
OH = LO STATE field of Logical Describe Record

ES:O = PoInter to logical device header and Describe Record

Registers Altered: AX, BX, CX, OX, BP, OS, ES

The following is an example of how to call the F_SAMPLE function.

PUSH BP, V LTABLET
MOV AH, F_SAMPLE
MOV BP, V LTABLET
PUSH OS -
CALL SYSCALL
POP OS

load function code
load vector address
save the current OS
call extended BIOS driver
restore OS

Application Event Driver Example

The following program is an example of how to input touchscreen data using application event interrupts.
The program installs an application event driver using the SF_CREATE_EVENT function and enables
event interrupts using the SF_EVENT_ON function. The event handler supports only the F_ISR
function which processes both button and motion Logical ISR Event Records.

4-32 Input System and HP-Hll

NOTE

Since the HP interrupt number can change, all "int HP_ENTRY" lines in
the following example should be replaced with "CALL SYSCALL" (this
routine finds and uses the current .HP interrupt number).

Touch Example

28Sc
page 59,132
title TOUCH Example

···DRIVER HEADER ••

NAME TOUCH Example

DESCRIPTION Thil program demonltratel how touch works

LIST OF SECTIONS

, •..•...•.•..•..••.••.••.•..•..••.•..•..•.•.•..•........................

page

HP SHEADER Itruc
0000 0000 DH-ATR dw 0
0002 0000 DH-NAME INDEX dw 0
0004 0000 DH-V DEF'AUlT dw 0
0006 0000 DH-P-ClASS dw 0
0008 0000 DH-C-ClASS dw 0
OOOA 0000 DH-V-PARENT dw 0
OOOC 0000 DH-V-CHIlD dw 0
OOOE 00 DH-MI'JOR db 0
OOOF 00 DH-MINOR db 0
0010 HP-SHEADER end I
• 006F HP-ENTRY equ OSFH

SYSCAll macro vector
ifnb <vector>

mov bp,v.ctor
endi f

int HP_ENTRY
endm· 8000 ATR HP equ BOOOH

• 0000 CL NULL equ OOOOH
• 0000 F ISR equ OOOOH
• 0004 F-IO CONTROL equ 0004H
• 0008 SF' CIfEATE EVENT equ 0008H
• OOOC SF-EVENT OFF .qu OOOCH
• OOOA SF-EVE NT-ON equ OOOAH
• 0000 RS-SUCCESSFUL equ OOOOH
• 0002 RS-UNSUPPORTED equ 0002H

0009 TJC_BUTTON equ 09H
PG~Dr:~:n~Ia:~: ~h~~lI~: ~~lT·~CtBU}~ON1~~~c1il~~~~·
any other Icancode out of the-daTa stream

• 0045 T TS equ 45H Sp.cially formed data (0 80 x 0 25 rang. - d.ta
• 0006 V-DOL ITTLE .qu OOOSH
• 00C6 V-lTOUCH .qu OOCSH
• 0060 V-EVENT TOUCH equ OOSOH
• 0001 RrAD CH1'R ECHO equ 01H
• 0080 MAKCBREAR' BIT equ 100000008
• 004C TERMINATE_'ROC equ 4CH

0000 TS EVENT HEADR legm.nt
EX~M_HP_~TTR

SHEAD~~u
ATR HP

0000 8000 HP <EXJ:M HP ATTR,V_EVENT_TOUCH/S,V_EVENT_TOUCH,CL_NULL ,CL_NULl,V
TLE, V_DOlITTLE>

0002 0010
0004 0060
0006 0000
0008 0000
OOOA 0006
OOOC 0006
OOOE 00
OOOF 00

0010 TS EVENT HEADR endl
0000 DATA_SEO- I.gm.nt

Input System and HP-HIL 4-33

Touch Example (cant.)

?1?1
????
?11?

50
11??

SAVE CS
SAVCIP
SAVE-OS
STACK

dw
dw
dw
dw o dup (?)

cs :COOE SEG,ds DATA SEQ,ss DATA SEG
aX,OATA-SEG - ;Load up the ds register with the data segment
dS,ax -
lI,ax ;The stack segment 11 also in the code segment
~gu~~Kt~2~LE ;Point to the top of the stack
ah,RE~D CHAR ECHO ;Read a character w/echo until
2lH
al, ,,~. ,Is this the exit character?
INPUT LOOP
TOUCWRESTORE
ah,TERMINATE PROC ;Exit
2lH -

,Start accepting calls

;Save the old event values

;Move my touch event handler into the HP vector tab

,Logical interrupt?
, yes, cont inue
,set return code

:i:v~h!~lat~~s~~y~~t~~:ort or a make/break report

ah,F ISR
PROCtSS ISR
ah,RS_URSUPPORTED

dh,T TS
shorf POS REPORT
dh, T_KC_BUTTON

ah,F IO_CONTROL

al,SF CREATE EVENT
bx,cs- -
eS,bx
li,TOUCH HANDLER
dX,TS EVtNT HEAOR
V LTOUCH

T~t ~~'~R~~~UCH
ax, es -
word ptr SAVE_CS,ax
word ptrSAVE_IP,si
:~~~ ~~rC~~¥~O~S,dX
al,SF' EVENT ON
V LTOUCH -
mov bp,V LTOUCH
int HP_ERTRY

ret
endp

mov
mov
mov
lea
mov
syscall

mov
mov
mov
mov
mov
mov
syscall

dw
ends
segment
assume
mov
mov
mov
mov
call
mov
int
cmp
j ne
call
mov
int
proc
mov

proc
cmp
je
mov
iret
pusha
cmp
je
cmp

INPUT LOOP:

STK TOP
OAT~ SEG
CODE:::SEG

BEGIN:

TOUCH_ENABLE

TOUCH_HANDLER

+
+

+
+

11?1

88 uu R
8E 08
8E DO
88 26 OOA6 R
E8 0010 R
B4 01
CD 21
3C 5E
75 F8
E8 0084
84 4C
CO 21

B4 04

BO 08
8C CB
8E C3
80 36 0048 R
BA R

SO 00C6
CO 6F
8C CO
A3 0000 R
89 36 0002
89 16 0004
B4 04
80 OA

SO 00C6
CD 6F
C3

80 FC 00
74 03
84 02
CF
60
80 FE 45
74 07
80 FE 09

4-34 Input System and HP-HIL

Touch Example (cant.)

0059
005B
0050
005F
0061
0063
0065
0067
0069
006C
OOH
0070
0072
0074
0076
0078
007A
007C
007E
0080
0081
0083
0084
0084
0084
0086

0088
008B
0080
008F
0091
0095
0097
009B

009F
00A2
00A4
00A5
00A5

74 OE
fB 23
B4 02
8A F1
8A D3
B7 00
CD 10
EB 17
F6 C3 80
74 OA
B5 OE
B1 OF
B4 01
CD 10
EB 08
B5 00
B1 OF
B4 01
CD 10
61
B4 00
CF

B4 04
BO OC

BD 00C6
CD 6F
B4 04
BO 08
8B 1E 0000 R
8E C3
8D 36 0002 R
8B 16 0004 R

BD 00C6
CD 6F
C3

TOUCH HANDLER
TOUCH::::RESTORE

TOUCH RESTORE
CODE_SEQ

Je
J mp
mOil
mOil
mOil
mOil
1 n t

l:~ t
J Z
mOil
mOil
mOil
in t
J mp
mOil
mOil
mOil
in t
popa
mOil
ire t
endp
p roc
mOil
mOil
IYlc.ll

mOil
mOil
mOil
mOil
lea
mOil
IYlcall

ret
endp
endl
end

short BUTTON REPORT
short EXIT TOUCH
ah,02H -
d h , c 1
dl, b 1
b h, 0
10H
short EXIT TOUCH
b1,MAKE BRrAK BIT
short BOTTON ~USH
ch,OEH
cl,OFH
ah, 1
10H
Ihort EXIT TOUCH
ch,O
cl,Ofh
ah,l
10H

ah,RS SUCCESSFUL

ah,F 10 CONTROL
.1,St E'VENT OFF
V LTOOCH -

T~t ~~'~R~~$UCH
ah,F 10 CONTROL
al,St CREATE EVENT
bX,word ptr SAVE CS
es , b x
s1,word ptr SAVE IP
dX,word ptr SAVE-OS
V LTOUCH -
mOil bp,V LTOUCH
int HP_EATRY

BEQIN

,Molle the cursor to the recielled position
,us1ng the standard IBM BIOS 1nt 10

,That f1nishes that ISR
,See if this lS a touch or a release

,On a rel.ase make the cursor back into
,a llne

,That f1nishel a releale ISR
,Make the cursor 1nto a box on touch

:~:;t~~: ~~tu~~esr:~~:ters
,Return from the ISR

,Stop accepting calli

,Reltore the old ellent handler

Input System and HP-HIL 4-35

Touch Example (cant.)

Macro.·

N a m e Lengt h

SYSCALL. 0002

St ruct urea and record. :

N a III e Width • f hld.
ShU t Widt h M..k In1 t hl

HP SHEADEIt 0010 0001
OH ATR 0000
OH-NAME . I NDE)(: 0002
OH-V OEYAULT 0004
OH-P-CLASS 0008
OH-C-CLASS . 0001
OH-V-PARENT. OOOA
OH-V-CHILO OOOC
OH-~JOR OOOE
OH:=MINOR OOOF

Segment. and Group. :

N a III e Sin AUgn Combine Cl...

COOE SEG 00A5 PARA NONE
OATA-SEQ

HEADR
OOAI PARA NONE

TS_EVENT- 0010 PARA NONE

Symboh:

N a III e Type Value Attr

ATR HP NUlllber 1000
BEQTN L NEAR 0000 COOE SEQ
BUTTON PUSH: L NEAR 0071 CODE-SEQ
BUTTON-REPOn: L NEAR 00811 CODCSEQ
CL NUL(Numbe r 0000
EXJ:M HP ATT~ AU.. ATR HP
EXIT-PROQ. L NEAR 0011 CODE SEQ
EXIT-TOUCH L NEAR 0010 CODE:=SEQ
FlO-CONTROL Number 0004
F-ISIL Number 0000
Hl' ENTRY Numbe r oon
INl'UT LOOP : . L NEAR OOOE CODE_SEQ
MAKE BREAK BIT Number 0010
POS IfE POR T- . L NEAR 0050 COOE SEQ
PROCESS ISR. L NEAR 0050 CODCSEQ
READ CHJ:R ECHO Number 0001
RS SUCCESSFUL. Number 0000
RS-UNSUPPORTED Number 0002
SAVE CS L WORO 0000 DATA SEQ
SAVCDS L WORO 0004 OATA-SEQ
SAVCIP L WORO 0002 DATA:=SEQ
SF _CJ{EATE_EVENT. Number 0001

SF EVENT OFF Number OOOC
SF-EVENT::::ON Number OOOA
S;~CK L WORD 0006 DATA SEQ Length -0050
STK TOP L WORD 00A8 DATA::::SEG
TER~INATE PROC Number 004C
TOUCH ENABLE N PROC 0010 CODE SEG Length -002BTOUCH""HANDLER N PROC 0048 CODCSEG Length -003C
TOUCH-·RESTORE N PROC 0084 CODCSEG Length -0021
T KC BUTTON Number 0009
T-TS Number 0045
V-DOLITTLE Numbe r 0008
V-EVENT TOUCH Number 0080
V::::LTOUcR Number ooce

48576 Bytes free

Warning Severe
Errors Errors
0 0

4-36 Input System and HP-HIL

Hardware Interface Level

The hardware interface of the Input System is composed of a set of drivers to respond to hardware
interrupts and to process physical data from the input devices into a form usable by the application
interface drivers. These hardware interface level drivers are shown in Figure 4-2.

Overview

This section describes the drivers, data structures, and interrupt service routine (ISR) event processing
that takes place below the application interface level. The following data flow expands on step 2 of the
data flow presented previously. A detailed explanation of each step is presented after the data flow.

1. The user touches the screen. This causes a hardware interrupt which is managed by the 8259A's
interrupt controller service (V_S8259). V_S8259 responds to the interrupt controller chip and
transfers control to the HP-HIL driver.

2. The HP-HIL driver (V_HPHIL) services the HP-HIL controller chip, retrieving the input device
data. V_HPHIL processes the input data and transfers control to the Input System dispatch service.

3. The dispatch service (V_SINPUT) transfers control to the appropriate physical device driver based
on the source of the input data (in this case the physical touchscreen driver).

4. The physical touchscreen driver builds the Physical Describe Record and transfers control to the
application interface driver V_LTOUCH.

V_S8259 provides a funnel point for managing HP specific hardware. The Input System hardware
communicates with the hardware interface drivers via two interrupts: the 8042 service request (SVC) and
the HP-HIL controller interrupt. The HP-HIL controller interrupt is chained to the HP-HIL driver
(V_HPHIL); i.e., when V_S8259 receives an HP-HIL controller interrupt it generates an HP_ENTRY
software interrupt to transfer control to V_HPHIL.

The HP-HIL driver services the HP-HIL controller and generates the appropriate Physical ISR Event
Record(s). After processing the input data, V_"PHIL chains to V_SINPUT.

Input System and HP-Hll 4-37

Application

Application
Interface
Drivers

Application Interface Level

I 1
Touch Screen Pointer Tablet
Physical GID Physical GID Physical GID

Driver Driver Driver

I I

Input Dispatch
Service

(V_SINPUT)

HP-HIL Controller
Driver

(V_HPHIL)

8259A Interrupt
Controller Driver

(V_S8259)

Hardware Interface level

I Physical Input Devices I

Figure 4-2. Hardware Interface Level Driven

V_SINPUT chains to the appropriate physical device driver based on the vector index (vector address
divided by six) stored in the Physical ISR Event Record (DL register). It provides an entry point into the
Input System for non-HP-HIL devices. V_SINPUT also provides driver mapping functions that will be
discussed later in this chapter.

Two physical drivers will be discussed later in this chapter. The first is the physical GID driver (PGID),
which handles both absolute and relative data. Because PGID can handle both types of GID data, it can
chain to any logical GID driver; this forms the basis for Input System device driver mapping. The second
physical driver is the null device driver (V_PNULL), which serves as a handler for unsupported devices.

Device Driver Mapping

Each driver in the Input System has a vector in the HP_ VECTOR_TABLE, and a driver header. Each
driver header has two fields which determine the mapping of the driver. One field contains the vector of
the driver's parent driver, and the other contains the vector of the driver's child driver. Refer to Chapter
2 and Appendix G for a detailed description of driver headers.

Calls are made to the vector address contained in the parent field to pass the interrupt on to the next
driver in the device driver chain, moving the data from the hardware toward the application via the
desired logical GID driver. Hardware commands from the application are passed down the device driver
chain to the device via the vector address contained in the child vector field. By changing the value of
the parent or child vector field, the sequence of drivers called to handle an interrupt or function request
is changed. In general, an application may re-map a driver by changing the driver header directly.
Functions are provided by the V__SINPUT service to map the physical GID drivers to the logical GID
drivers.

4-38 Input System and HP-HIL

Device Emulation

Device emulation occurs when one or more physical devices are mapped to a logical device that does not
represent the original source of the data. For example, mapping a physical mouse driver to a logical
touchscreen driver allows the mouse to look like a touchscreen to the application. The key requirement
for a logical device driver to emulate other devices is that it accept both absolute and relative data. The
logical touchscreen driver which reports ~bsolute data must accept both absolute (touch) data and relative
(mouse) data.

An example of device mapping and emulation occurring in the system is the translation of mouse input to
Cursor Control keypad (CCP) input. Since standard DOS processes keyboard input only, (not mouse
input), the physical GID driver which processes mouse input is mapped, in its default state, to a driver
called V_PGID_CCP. This driver causes mouse input to emulate input from the CCP. For an application
which processes industry standard mouse input (INT 33H) to use the HP Mouse, the mouse physical GID
driver should be mapped to the installable HP-HIL Mouse Driver (V_LHPMOUSE), using the HP-HIL
mouse driver's F33_INSTALL function. (Note that the HP-HIL Mouse Driver is shipped on a separate
disc with all ES, QS, and RS Vectra series computers)

Data Structures

The hardware interface level uses two major data structures: the Physical Describe Record and the
Physical ISR Event Record(s). These data structures help keep track of the numerous events occurring in
the Input System.

Physical Describe Record

The Physical Describe Record is used by the physical GID drivers to keep track of the current state of
their respective devices. Each of the physical GID drivers has a Physical Describe Record located directly
after the driver header, starting with memory address DS: 0010H. Table 4-7 gives the field types and
offsets of the Physical GID Device Describe Record. An explanation of the Physical Describe Record
fields follows

Table 4-7. Physical GID Device Describe Record

Field Description Type Offset
Driver Header Driver Header OOH

D_SOURC Input type and device BYTE 10H
address

D_HPHIL ID Device ID BYTE IlH

D_DESC_MASK Describe header byte BYTE 12H

D_IO~ASK Device I/O descriptor byte BYTE 13H

D_XDESC_MASK Extended describe header BYTE 14H
byte

Input System and HP-HIL 4-39

Table 4-7. Physical GID Device Describe Record (Cont.)

Field Description Type Offset
Driver Header Driver Header OOH

D_MAX_AXIS Maximum number of axes BYTE ISH

D_CLASS Device class BYTE 16H

D_PROMPTS Number of button/prompts BYTE 17H

D_PARAGRAPHS This record size in BYTE 18H
paragraphs

D_BURST_LEN Maximum output burst BYTE 19H
length

D_WR_REG Number of write registers BYTE 1AH

D_RD_REG Number of read registers BYTE 1BH

D_TRANSITION Button transitions BYTE 1CH

D_STATE Current state of the BYTE 1DH
buttons

D_RESOLUTION Physical device resolution WORD 1EH

D_SIZE_X Maximum x-axis count WORD 20H

D_SIZE_Y Maximum y-axis count WORD 22H

D_ABS_X X position data for absolute WORD 24H
devices

D_ABS Y Y position data for absolute WORD 26H
devices

D_REL_X X delta for relative devices WORD 28H

D_REL_Y Y delta for relative devices WORD 2AH

D_ACCUM_X Reserved WORD 2CH

D_ACCUM_Y Reserved WORD 2EH

D_SIZE_Z Maximum Z-axis count WORD 30H

D_ABS_Z Z position data for absolute WORD 321-1
devices

D_REL_Z Z delta for relative devices WORD 34H

D_ACCUM- Z Reserved WORD 36H

4 -40 Input System and HP-HIl

Physical Device Record Definition

D SOURCE

D_HPHIL_ID

D_XDESC_MASK

D_TRANSITION

This field is divided into nibbles. Bits 7-4 contain the graphics input
device type. This field is loaded with the low order nibble of the ap
propriate physical GID data type. (See Table 4-8.) Bits 3-0 are the link
address of the physical device.

ID byte of the physical device which last reported data. See Table 4-2
for a list of HP-HIL ID bytes.

Physical device describe byte. This byte contains information about the
physical device characteristics. See the HP-HIL Technical Reference
Manual for more information.

Physical device I/O descriptor byte. This byte contains information on
the number of prompts and acknowledges the device supports. See the
HP-HIL Technical Reference Manual for more information.

Physical device extended describe byte. This byte contains additional
device characteristics. See HP-HIL Technical Reference Manual for more
information.

Maximum number of axes supported by the device. Valid range is 0-2.

Device class. Bits 7-4 contain the current class. Bits 3-0 contain the
default class. See Appendix G for more information on device classes.

Number of buttons and prompts supported by the device. Bits 7-4 is the
number of prompts. Bits 3-0 is the number of buttons.

Indicates size of this record in paragraphs: 0 means 3 paragraphs,
means 4 paragraphs.

Maximum number of bytes that can be output to the device using a
single write command.

Number of write registers supported by the device.

Number of read registers supported by the device.

Transitions reported per button; i.e. a set bit indicates that the cor
responding button was either pushed or released. Bit 7 corresponds to
button 7, etc.

Current state of the buttons. 0 is down, 1 is up. Bit 7 corresponds to
button 7, etc. If D_STATE is XOR'ed with D_TRANSITION the result
is the previous button state.

This is the resolution of the physical device. The resolution is in counts
per meter for devices that report 8 bits of data. For devices that report
16 bits of data, the resolution is in counts per centimeter.

Maximum count (in units of resolution) for the x-axis.

Maximum count (in units of resolution) for the y-axis.

Input System and HP-Hll 4-41

D_SIZE_Z

D_ABS_Z

D_REL_Z

x position data for devices which report absolute coordinates (absolute
devices).

Y position data for devices which report absolute coordinates.

Latest change in x position for devices which return coordinates relative
to the previous position (relative devices).

Latest change in y position for devices which return coordinates relative
to the previous position.

Maximum count (in units of resolution) for the z-axis.

Z position data for devices which report absolute coordinates.

Latest change in z position for devices which return coordinates relative
to the previous position (relative devices).

Physical ISR Event Records

A Physical ISR Event Record is not a data structure in the truest sense, but is a set of register definitions
for inter-driver communication of input events. The following define the Physical ISR Event Records.

GID Button ISR Event Record

AH = F ISR (OOH)
DL = Physical device driver's vector address / 6
BX = Button information.

Bit Value Definition

OFH-08H Reserved
07H 1 Button up

0 Button down
06H-OOH But ton numbe r (0-7)

DH = Data Type
ES:O = Pointer to physical device driver

header and Physical Describe Record.

GID Motion ISR Event Record

AH = F ISR (OOH)
DL = Physical device driver's vector address / 6
BX = X axis motion in raw data form.
ex = Y axis motion in raw data form.
SI = Z axis motion in raw data form.
DH = Data Type

ES:O = Pointer to physical device driver
header and Physical Describe Record.

4-42 Input System and HP-HIL

The button number in the Button Transition Information fiel<;l (BX) denotes which button on the device
is reporting data. Of special interest is button seven (proximity indicator), which is currently used by
absolute devices to indicate that the device measurement field is active; ie., someone is touching the
touchscreen, or the stylus is in contact with the tablet surface.

The Data Type field (DH) contains a code representing the current type of physical GID data stored in
the event record. For button events, this value will be T_KC_BUTTON. For a complete list of physical
GID event data types see Table 4-8.

Table 4-8. Physical GID Event Data Types

Type Value Definition

T- KC_BUTTON 09H Button data.

T REL08 40H Signed 8 bit relative data

T REL16 41H Signed 16 bit relative data

T ABS08 42H Unsigned 8 bit absolute data

T ABS16 43H Unsigned 16 bit absolute data

Hardware Interface Level Drivers

This section describes the hardware interface level drivers in detail.

V 58259 Driver (BP = 001EH)

The V_S8259 driver services the HP interrupt. Three interrupt sources will genterate this interrupt: the
8042 SVC (Service port) service request, the HP-HIL controller, and the 8042 SCAN interrupt.

When an HP interrupt occurs, the V_S8259 driver will determine the source of the interrupt and
perform an F ISR call to one of the three drivers:

• the V_8042 driver for an 8042 SVC interrupt,
• the V_HPHIL driver for an HP-HIL controller interrupt,
• the V_SCANDOOR driver for a SCAN interrupt.

In addition to initiating response to the hardware interrupts, the 8259A driver has other functions which
initialize the interrupt vectors and program the proper parameters into the 825 9A interrupt controllers.

'nput System and HP-Hll 4 -43

V 88259 Driver Function Definitions

A summary of the V_S8259 function codes is provided in Table 4-9.

Table 4-9. V_S8259 Function Code Summary

Function Vector Func.
Equate Definition Address Value

V_S8259 8259 interrupt controller 001EH
support

F_SYSTEM System functions 001EH 02

SF_INIT Initialize HP-HIL IRQ 001EH 02/00

SF_START Enable HP-HIL interrupts 001EH 02/02

SF_VERSION _DESC Report HP version number 001EH 02/06

SF_GET_IRQ Get HP IRQ number 001EH 04/14

F ISR (AH = OOH)

Because this driver directly services hardware interrupts from an 8259A interrupt controller, this
function is not applicable. If called, this function will return a Return Status Code of
RS_UNSUPPORTED.

SF INIT (AX = 0200H)

This 8ubfunction sets the interrupt vectors for the HP-HIL IRQ (default IRQ 12). This subfunction leaves
interrupts disabled. They must be enabled with the SF_START subfunction.

On Entry: AH = f SYSTEM (02H)
AL = SF INIT (OOH)
BP = V_S8259 (001EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

4-44 Input System and HP-HIL

SF START (AX = 0202H)

This subfunction enables the HP-HIL interrupts.

On Entry: AH = f SYSTEM (02H)
AL = SF START (02H)
BP = V_S8259 (001EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_VERSION _DESC (AX =0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the yea.r and week of release. The BL register
contains the number of years since 1960, and the BH register contains the week of the year.

On Entry: AH = f_SYSTEM (02H)
AL = Sf VERSION DESC (06H)
BP = V_S8259 (001EH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, ax, CX, 01, ES, BP, OS

SF_GET_IRQ (AX = 0414H)

This function gets the current IRQ number associated with the SCAN/STATE/HIL/SVC interrupts.

On Entry: AH = f_IO_CONTROL (04H)
AL = Sf_GET_IRQ (14H)
BP = V_S8259 (OO1EH)

On Exit: AH = RS SUCCESSfUL (OOH)
BL ::: Current IRQ

Registers Altered: AX, ax, BP, os

V_HPHIL Driver (BP = 0114H)

The HP-HIL driver retrieves input data from the HP-HIL controller and builds an ISR Event Record to
pass to V_SINPUT.

A summary of the V_HPHIL driver function codes is provided in Table 4-10.

Input System and HP-HIL 4 -45

Table 4-10. V_HPHIL Driver Function Code Summary

Function Vector Func.
Equate Definition Address Value

V_HPHIL Set up HP-HIL to 0114H
INPUT driver
linkage

F ISR Logical Interrupt 0114H 00

F_SYSTEM System Functions 0114" 02

SF_INIT Initializes the driver 0114H 02/00
data area.

SF_REPORT Reports state of 0114H 02/04
_STATE device

SF_VERSION Reports driver ver- 0114H 02/06
_DESC sion number.

SF_OPEN Put driver in open 0114H 02/0E
state.

SF_CLOSE Put driver in closed 0114H 02/10
state.

F_10_CONTROL I/O control to 0114H 04
driver

SF_CRY_CRY Reserved 0114H 04/04
_MAJ_MIN

SF_CRY Forces HP-HIL to 0114H 04/06
_RECONFIGURE reconfigure all

devices.

SF_CRY_WR Writes a prompt to 0114H 04/08
_PROMPTS a device

SF_CRY_WR Writes an acknow- 0114H 04/0A
_ACK ledge to a device

SF_CRY Sets either 30Hz or 0114H 04/0C
_REPEAT 60Hz repeat rate

SF CRY Cancels keyboard 0114" 04/0E
_DISABLE repeat rate
_REPEAT

4-46 Input System and HP-HIL

Table 4-10. V_"PHIL Driver Function Code Summary (Cont.)

Function Vector Func.
Equate Definition Address Value

SF CRY Issues self-test 0114H 04/10
_SELF TEST command to physi-

cal device.

SF CRY Gets status from 0114H 04/12
_REPORT any HP-HIL device
_STATUS that needs to report

SF CRY Returns the ASCII 0114H 04/14
REPORT--NAME name for a device

SF_GET Gets physical device 0114H 04/20
_DEVTBL table address

SF SET DEVTBL Sets physical device 0114H 04/22
table address

SF DEF Sets default physical 0114H 04/24
_DEVTBL device table

F_PUT_BYTE Writes one byte to 0114H 06
specified HP-HIL
device.

F GET BYTE Reads one byte 0114H 08- -
from specified
HP-HIL device.

F_PUT_BUFFER Writes a string of 0114H OA
bytes to HP-HIL
device.

Input System and HP-HIL 4-47

V HPHIL Driver Function Definitions

F_'SR (AH = OOH)

This function is called by the V_S8259 driver to initiate processing of an interrupt from the HP-HIL
controller. This function reads input device data from the HP-HIL controller, generates one or more ISR
Event Records, and chains to V_SINPUT. THIS FUNCTION SHOULD ONLY BE CALLED BY THE
V_S8259 DRIVER.

On Entry: AH = F ISR (OOH)
BP = V=HPHIl (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX~ BP, OS

SF .NIT (AX = 0200H)

This subfunction initializes th~ driver and HP-HIL controller. Refer to Chapter 8 for a complete
discussion of the protocol utilized in data space allocation ("last used DS" passed in register BX).

On Entry: AH = F SYSTEM (02H)
Al = SF INIT (OOH)
BX = "Last used OS" in HP Data Area
BP = V_H PH I l (011 4H)

On Exit: AH = Return Status Code
BX = New "last used OS" in

HP Data Area

Registers Al tered: AX, BX, BP, OS

SF REPORT STATE (AX = 0204H)

This subfunction returns the current status of V_HPHIL.

On Entry: AH = F SYSTEM (02H)
Al = SF REPORT STATE (04H)
BP = V HPH I l (0'11 4H)-

On Exit: AH = Return Status Code
BX = Status word

4-48 Input System and HP-HIL

Bit Value

OFH
OEH 1

o
OOH
OCH
OBH
OAH
09H
OSH
07H
OSH 1

o
05H-04H
03H
02H
01H
OOH

Definition

Reserved
HP-HIL is OFF
HP-HIL is ON
Reserved
Timeout has occurred
Output request has completed
Reserved
Error during output request
HP-HIL link has been reconfigured
Reserved
HP-HIL driver is open
HP-HIL driver is closed
Reserved
General failure
No devices attached.
Reserved
Link configuration in progress

Registers Altered: AX, BX, BP, OS

SF VERSION DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = F SYSTEM (02H)
AL = sf VERSION DESC (OSH)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, 01, ES, BP t OS

SF_OPEN (AX = 020EH)

This subfunction puts the HP-HIL driver in the open state. When the driver has been placed in the open
state, output to the HP-HIL devices is allowed.

On Entry: AH =F SYSTEM (02H)
AL = sf OPEN (OEH)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Input System and HP-HIL 4 -49

SF CLOSE (AX = 0210H)

This subfunction puts the HP-HIL driver in the closed state. When the driver has been placed in the
closed state, output to the HP-HIL devices is not allowed.

On Entry: AH = F SYSTEM (02H)
AL = Sf CLOSE (10H)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF CRY RECONFIGURE (AX =0406H)

This subfunction instructs the HP-HIL controller to reconfigure the link.

On Entry: AH =f 10 CONTROL (04H)
AL = Sf CRY RECONFIGURE (06H)
BP =V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF CRY WR PROMPTS (AX = 0408H)

This subfunction issues a prompt command to a device on the HP-HIL link. The prompt command is
either specific (prompt number 1-7) or generic (a prompt number other than 1-7).

On Entry: AH = f 10 CONTROL (04H)
AL = Sf CRV WR PROMPTS (OSH)
BX = Device-address indicator

Bit Value Definition

OFH-OEH
OOH

OCH
OBH-OOH

Reserved
1 Valid address is present in OH
o Reserved for future enhancement,

currently returns RS fAIL
Valid register is present in DL
Reserved

DH = HP-HIL device address
OL = Prompt number
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

4-50 Input System and HP-HIL

SF CRY WR ACK (AX = 040AH)

This subfunction issues an acknowledge command to a device on the HP-HIL link. The acknowledge
command is either specific (acknowledge number 1-7) or generic (an acknowledge number other than
1-7).

On Entry: AH = f 10 CONTROL (04H)
AL = sf CRY WR ACK (OAH)
BX = Device-address indicator

Bit Value Definition

OfH-OEH
OOH

OCH
OBH-OOH

1
o

Reserved
Valid address is present in OH
Reserved for future enhancement,
currently returns RS fAIL
Valid register is present in OL
Reserved

OH = HP-HIL device address (major address)
OL = Acknowledge number
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF CRY REPEAT (AX =040CH)

This subfunction sets the key repeat rate of a specific HP-HIL device. A repeat rate of 30 or 60 times a
second may be specified. This subfunction will operate only if the HP-HIL driver is in the open state.

On Entry: AH = f 10 CONTROL (04H)
AL = Sf CRY REPEAT (OCH)
BX = Device-address indicator

Bit Value

OfH-OEH
OOH 1

o

OCH
OBH-OOH

Definition

Reserved.
Valid address is present in OH.
Reserved for future enhancement,
currently returns RS FAIL.
Valid register is present in OL.
Reserved.

CL = 0 for a repeat rate of 30 Hz, 1 for 60 Hz
OH = HP-HIL device address (major address)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Input System and HP-HIL 4 - 51

SF_CRY _DISABLE _REPEAT (AX = 040EH)

This subfunction disables the key repeat of a specified HP-HIL device. This subfunction will operate only
if the UP-HIL driver is in the open state.

On Entry: AH = f 10 CONTROL (04H)
AL = sf CRV DISABLE REPEAT (OEH)
BX = Device-address-indicator

Bit Value

OfH-OEH
ODH 1

o

OCH
OBH-OOH

Definition

Reserved
Valid address is present in DH.

Reserved for future enhancement,
currently returns RS fAIL.
Valid register is present in DL.
Reserved

DH = HP-HIL device address (major address)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF CRY SELF TEST (AX = 0410H)

This subfunction initiates device self-test on the specified HP-HIL device. The HP-HIL device will
respond with a one byte status code indicating the result of the test. This subfunction should not be called
with an HP-HIL device address of zero (all devices), as the test could then take up to 1.5 seconds to
execute. Also, if one of the devices fails, there would be no way to determine which device reported a
failure .

.On exit, the buffer has the return status of the self-test done on the physical device.

On Entry: AH = f 10 CONTROL (04H)
AL = sf CRV SELf TEST (10H)
BX = Device-address indicator

Bit Value

OFH-OEH
ODH 1

o

OCH
OSH-OOH

Definition

Reserved
Valid address is present in DH
Reserved for future enhancement,
currently returns RS FAIL
Valid register is present in DL
Reserved

DH = HP-HIL device address (major address)
BP = V HPHIL (0114H)

ES:SI = Pointer to a buffer area

4-52 Input System and HP-HIL

On Exit: AH = Return Status Code
ES:SI = Pointer to buffer area

CX = Number of bytes in buffer

Registers Altered: AX, CX, BP, OS

SF CRY REPORT STATUS (AX =0412H)

This subfunction issues a send status command to a specified HP-HIL device. The returned status
information ranges from 1 to 15 bytes in length. A pointer to a 15 byte buffer must be passed to the
subfunction. This subfunction will operate only if the HP-HIL driver is in the open state.

On Entry: AH = F 10 CONTROL (04H)
AL ; SF CRY REPORT STATUS (12H)
BX = Device-address indicator

Bit Value

OFH-OEH
OOH 1

o

OCH
OBH-OOH

Definition

Reserved
Valid address is present in DH.
Reserved for future enhancement,
currently returns RS FAIL.
Valid register is present in DL.
Reserved

DH = HP-HIL device address (major address)
BP = V_HPHIL (0114H)

ES:SI = Pointer to a buffer area

On Exit: AH = Return Status Code
ES:SI = Pointer to buffer area

CX = Number of bytes in buffer

Registers Altered: AX, CX, BP, OS

Input System and HP-HIL 4-53

SF CRY REPORT NAME (AX =0414H)

This subfunction issues a report name command to a specified HP-HIL device. The returned name
information ranges from 1 to 15 bytes in length. A pointer to a 15 byte buffer must be passed to the
subfunction. This subfunction will operate only if the HP-HIL driver is in the open state.

On Entry: AH = f 10 CONTROL (04H)
AL = SF CRV REPORT NAME (14H)
BX = Device-address indicator

Bit Value

OfH-OEH
OOH 1

o

OCH
OBH-OOH

Definition

Reserved
Valid address is present in OH.
Reserved for future enhancement,
currently returns RS fAIL.
Valid register is present in OL.
Reserved

OH = HP-HIL device add~ess (major address)
BP = V HPHIL (0114H)

ES:SI = Pointer to a buffer area

On Exit: AH =Return Status Code
ES:SI = Pointer to buffer area

CX = Number of bytes in buffer

Registers Altered: AX, CX, BP, OS

F_PUT_BYTE (AH =06H)

This function outputs a byte of data to a specific HP-HIL device register. This function will operate only
if the HP-HIL driver is in the open state.

On Entry: AH = f PUT BYTE (06H)
AL = Byte to output
BX = Device address indicator

Bit Value

OFH-OEH
OOH 1

o

OCH
OBH-OOH

Definition

Reserved
Valid address is present in OH.
Reserved for future enhancement,
currently returns RS FAIL.
Valid register is present in OL.
Reserved

OH = HP-HIL device address
OL = HP-HIL device register (0-127)
BP = V HPHIL (0114H)

On Exit: AH = Return Status Code

4-54 Input System and HP-Hll

Registers Altered: AX, BP, OS

F GET BYTE (AH = 08H)

This function returns the contents of a specific HP-HIL device register. This function will operate only if
the HP-HIL driver is in the open state.

On Entry: AH = F_GET_BYTE (08H)
BX = Device address indicator

Bit

OfH-OEH
ODH

OCH
OBH-OOH

Value Definition

Reserved
1 Valid address is present in OH.
o Reserved for future enhancement,

currently returns RS FAIL.
Valid register is present in DL.
Reserved

OH = HP-HIL device address
DL = HP-HIL device register (0-127)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code
AL =Contents of specified register

Registers Altered: AX, BP, OS

F_PUT_BUFFER (AH = OAH)

This function outputs a buffer to a specific HP-HIL device register. The HP-HIL controller and devices
are capable of data transfer at rates up to 6500 bytes per second. If the number of bytes in the buffer is
greater than the number the HP-HIL device can handle, this function will transfer as many bytes as
possible to the device, and adjust the value in ex to reflect the number of bytes left in the buffer (not
sent to the device).

On Entry: AH = F PUT BUFFER (OAH)
BX = Device address indicator

Bit

OFH-OEH
OOH

OCH
OBH-OOH

Value Definition

Reserved
1 Valid address is present in DH.
o Reserved for future enhancement,

currently returns RS fAIL.
Valid register is present in DL.
Reserved

CX = Number of bytes in buffer
DH = HP-HIL device address
OL = HP-HIL device register (0-127)
BP = V HPHIL (0114H)

Input System and HP-HIL 4-55

ES:SI = Pointer to buffer containing data to output

On Exit: AH = Return Status Code
CX = 0 means all the data in buffer is transferred,

otherwise the number of bytes left in buffer.

Registers Altered: AX, CX, BP, OS

SF_GET_DEVTBL (AX =0420H)

This function returns the address and size of the physical device table (listed in Table 4-1 J).

On Entry: AH = F 10 CONTROL (04H)
AL = SF GET OEVTBL (20H)
BP = V_HPHIL (Ol14H)

On Exit: AH = RS_SUCCESSFUL (DOH)
OS:SI = Address of current physical device table
CX = Number of table entries

Registers Altered: AX, ex, SI, BP, OS

Table 4-11. Physical Device Table

Field Type Offset Size Description

P_ID_LOWER Byte OOH 1 HPHIL ID lower
bound

P_ID_UPPER Byte 01H 1 HPHIL ID up-
per bound

P_OFFSET Word 02H 1 Offset of driver
entry point

P_CS Word 04H 1 Segment of
driver entry
point

P HEADER Byte 06H 16 Header for
physical driver

P_CLASS Byte 16H 1 Device driver
claSs:
Bits 7-4 current
class
Bits 3-0 default
class

4-56 Input System and HP-Hll

Table 4-11. Physical Device Table (Cont.)

Field Type Offset Size Description

P TYPE Byte 17H 1 ISR event
record type

P- EXTRA- OS Word 18H 1 Pointer to Extra
OS maintained
by the device
driver

Both the SF_GET_OEVTBL and SF_SET_OEVTBL are intended to be used by installable HP-HIL
device drivers that need to provide their own physical describe record. For the HP Vectra series of
computers, the installable HP-HIL device driver can request the address and function, copy the table to
local RAM, add any special entries it needs to the table, and then set the new table's address by issuing
the SF_SET_DEVTBL function. The advantage of this is that once the HP-HIL device driver is installed,
and its new entries added into the table, it will always be recognized by the system even during a loop
reconfiguration.

The P_EXTRA_OS is for the device dnvers use. It should hold the segment address of any additional
data area. that the device may require. This field (P_EXTRA_DS) will not be altered by the system
when reconfiguring the HP-HIL loop.

SF SET DEVTBL (AX = 0422H)

This function sets the new address and size of the physical device table.

On Entry: AH = F 10 CONTROL (04H)
AL = SF SET DEVTBL (20H)
BP = V_HPHIL (Ol14H)
ES:Ol = Address of a physical device tuble
CX = Number of entries in table

On Exit: AH = RS_SUCCESSFUL (OOH)

Registers Altered: AX, CX, SI, BP., OS

SF SET DEVTBL (AX = 0424H)

This function resets the physical device table to default power-on values.

On Entry: AH = F 10 CONTROL (04H)
AL = SF DEF DEVTBL (24H)
BP = V HPHIL (0114H)-

On Ex it: AH = RS SUCCESSFUL (OOH)-

Registers Altered: AX, BP, DS

Input System and HP-HIL 4-57

V_SINPUT (BP = 002AH)

The V_SINPUT driver dispatches ISR events generated by the HP-HIL controller to the appropriate
physical driver, thus providing an entry point into the Input System for non-HP-HIL devices (i.e.,
RS-232 mice, tablets, etc.). It also provides a number of functions which support device mapping.

A summary of the V_SINPUT driver function codes is provided in Table 4-12.

Table 4-12. V_SINPUT Driver Function Code Summary

Function Vector Func.
Equate Definition Address Value

V_SINPUT Inquire Commands 002AH

F_ISR Pass ISR event record to 002AH 00
physical driver

F_SYSTEM System Functions 002AH 02/

SF_INIT Initialize driver 002AH 02/00

F 10 _CONTROL Entry point to 10 control 002AH 04
functions

SF DEF _LINKS Set header link fields to 002AH 04/00
system defaults

SF_GET LINKS Return device header link 002AH 04/02
field entries

SF_SET _LINKS Set device header link field 002AH 04/04
entries

F_INQUIRE Return describe record for 002AH 06
an HP-HIL device.

F_INQUIRE _ALL Return device IDs for all 002AH 08
HP-HIL devices present

F_INQUIRE _FIRST Return vector address of 002AH OA
first HP-HIL device driver.

F_REPORT _ENTRY Report entry point of PGID 002AH OC

4-58 Input System and HP-HIL

V_SINPUT Driver Function Definitions

F ISR (AH = OOH)

This function passes an ISR Event Record to the appropriate physical device driver based on the value in
DL. Non-HP-HIL devices which call V_SINPUT must provide the physical device driver that will handle
the ISR event record, and must place its vector index (vector address divided by six) in DL. (See Chapter
_8, V_SYSTEM functions, to obtain a valid vector address).

On Entry: AH = f_ISR (OOH)
BP = V SINPUT
(See tables 4-6 and 4-7 for other register values)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF INIT (AX = 0200H)

This subfunction initializes the driver.

On Entry: AH = f SYSTEM (02H)
AL =sf INIT (OOH)
BP = V_SINPUT (002AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_DEF _LINKS (AX =0400H)

This subfunction sets the parent vecton in the HP-HIL physical device driver headen to the system
defaults shown in Table 4-13. The child vector entries are set to the null device driver (V_PNULL) by
default (see Appendix F).

Table 4-13. Default Physical Device Driver Parents

Device Parent

Mouse V_PGID_CCP
Tablet V_LTABLET
Touchscreen V_LTOUCH
Barcode Reader V_PNULL
Rotary Knob V_PGID_CCP

Input System and HP-HIL 4-59

On Entry: AH = F 10 CONTROL (04H)
AL = SF OEF LINKS (OOH)
BP = V_SINPUr(002AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_GET_LINKS (AX = 0402H)

This subfunction returns the current parent and child vectors in the HP-HIL physical device driver
headers. The address of a seven word (14 byte) table is passed to the subfunction. When the subfunction
returns, the buffer will contain the current vectors. See Table 4-14 for the mapping buffer format.

Table 4-14. Mapping Buffer Format

Word Parent Vector Child Vector HP - HIL Device

0 High byte Low byte Device # 1
1 2
2 3
3 4
4 5
5 6
6 7

On Entry: AH = F 10 CONTROL (04H)
AL = SF GET LINKS (02H)
BP = V_SINPUr (OO2AH)

ES:SI = Pointer to table

On Ex it: AH = Return Status Code
ES:SI = Pointer to table

Registers Altered: AX, BP, OS

SF SET LINKS (AX = 0404H)

This subfunction sets the parent and child vectors in the HP-HIL physical device driver headers. The
address of a seven word (14 byte) table is passed to the subfunction. The table contains the new parent
and child vectors for the drivers. The format of the buffer is shown in Table 4-14.

On Entry: AH = F 10 CONTROL (04H)
AL = SF SET LINKS (04H)
BP = V SINPUT (002AH)

ES:SI = Pointer to table

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

4-60 Input System and HP-HIL

The following example is how to use the SF_SET__LINKS function. It is presumed that a call to
F_INQUIRE_ALL has been made, and that the device is a tablet. The tablet is going to be mapped to
the installable HP-HIL Mouse driver (V_LHPMOUSE). The BX register already has the offset into the
buffer of tablet mappings.

BUFFER OW 7 OUP (1)
MOV CX, BUFFER[BX]
MOV CH, V LHPMOUSE / 6
MOV BUFfER[BX], CX
MOV AH, F_I0_CONTROL
MOV AL, SF_SET_LINKS
MOV BP, V_SINPUT
LEA SI, BUfFER
PUSH OS
POP ES
PUSH OS
CALL SYSCALL
pop OS

F INQUIRE (AH = 06H)

get the current mapping of the tablet
change tablet to HP Mouse
save the new mapping
load function code
load subfunc. code
load vector address
get the offset of the buffer

ES = OS
save current OS
call extended BIOS driver

This function returns a pointer to the Physical Describe Record of the specified HP-HIL physical device
driver.

WARNING

The Physical Describe Record should not be modified in any way.

On Entry: AH = f INQUIRE (06H)
AL = HP-HIL Device Number (1-7)
BP = V SINPUT (OO2AH)

On Exit: AH = Return Status Code
ES:51 = Pointer to Physical Describe Record

Registers Altered: AX, BP, 51, OS, ES

F_INQUIRE_ALL (AH =OSH)

This subfunction is used to determine which HP-HIL devices are present on the loop. The address of a
seven-word table is passed to the subfunction. When the subfunction returns, the table will contain the
current status of all HP-HIL devices. The format of the Device Inquire buffer is shown in Table 4-15.

Input System and HP-HIL 4-61

Table 4-15. Device Inquire Buffer Format

UP-UIL
Word Device to Device Status. UP - HIL Device

0 High byte Low byte Device # I
1 .. 2
2 II 3
3 II 4
4 .. 5
5 .. 6
6 II 7

* Bit 0 • 1 if device present, 0 if no device at this address.
Bits 2 - 7 are reserved.

On Entry: AH = F INQUIRE ALL (08H)
BP = V-SINPUT (OO2AH)

ES:SI = Pointer to table

On Exit: AH = Return Status Code
ES:SI = Pointer to table

Registers Altered: AX, BP, OS

The following example shows how to use the F_INQUIRE_ALL function.

BUFFER OW 7 OUP (?)
MOV AH, F_INQUIRE_ALL
MOV BP, V SINPUT
LEA SI, BUFFER
PUSH OS
POP ES
PUSH OS
CALL SYSCALL
POP OS

load function code
load vector address
get offset of buffer

ES = OS
save current OS
call EX-BIOS driver
restore OS

F_INQUIRE_FIRST (AH = OAH)

This function returns the vector address of the first HP-HIL physical device driver (HP-HIL address 1).
This address allows the vector address of all HP-HIL physical device drivers to be easily calculated since
the vectors are contiguous in the HP_VECTOR_TABLE (see Table 4-16).

On Entry: AH = F INQUIRE FIRST (OAH)
BP = V=SINPUT (002AH)

On Exit: AH = Return Status Code
BX = Vector address of first HP-HIl physical device driver

Registers Altered: AX, BX, BP, OS

4-G. lnput System and HP-HIL

F_REPORT _ENTRY (AH = OCH)

This function is used to get the CS:IP of the physical GID driver.

On Entry: AH = F REPORT ENTRY (OCH)- -BP = V SINPUT (OO2AH)

On Exit: AH = Return Status Code
BX = offset of physical GID driver
ES = segment of physical GID driver

Registers Altered: AX, BX, BP, OS, ES

Physical GID Driver

The physical GID driver is responsible for updating the Physical Describe Record. Two types of graphics
input devices are defined in the input system, absolute (touchscreen and tabletl, and relative (mouse). An
instance of this driver (same code module, different data area) is installed for each graphic input device
present.

A summary of the PGID function codes is provided in Table 4-16.

Table 4-16. Physical GID Driver Function Code Summary

Func. Function
Value Equate Definition

xxxH HP-lUL driver vector 1 through UP-UIL
driver vector 7. Physical UP-HIL driver
vectors (these vectors do not have fixed
UP_ VECTOR_TABLE add~)

00 F_ISR Logical Interrupt

02 F_SYSTEM System functions

02/00 SF_INIT Initialize driver

02/02 SF_START Start driver

02/04 SF_REPORT _STATE Unsupported

02/06 SF_VERSION _DESC Report UP version number

Input System and HP-t-a. 4-63

Physical GID Driver Function Definitions

F_ISR (AH = OOH)

This function processes ISR Event Records, updates the fields in its Physical Describe Record, and then
calls its parent driver. HP-HIL devices report upward relative motion with a positive sign and downward
relative motion with a negative sign. The industry standard representation is the opposite of this.

On Entry: AH =
DH =
DL =
BP =

F_ISR (OOH)
Data Type
Physical device driver's vector address / 6
HP-HIL device n vector address

For Button Event:

BX = Button information.

Bit Value Definition

OFH-OBH Reserved
07H 1 Button up

0 Button down
06H-00H But ton number (0-7)

For Motion Event:

BX =X axis motion in raw data form.
CX = Y axis motion in raw data form.

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF INIT (AX = 0200H)

This subfunction is called to initialize the driver.

On Entry: AH = F SYSTEM (02H)
AL =sf INIT (OOH)
BP = H~~HIL device n vector address

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF START (AX = 0202H)

This subfunction starts the driver.

4-64 Input System and HP-HIL

On Entry: AH = F SYSTEM (02H)
AL = SF_START (02H)
BP = HP-HIL device n vector address

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_VERSION _DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes wntaining the year and week of release. The BL register
contains the number of years since 1960, and the BH register contains the week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_VERSION_OESC (OSH)
BP = HP-HIL device n vector address

On Exit: AH = Return status code
BX = Release date code
CX = Number of byte in current version number

ES:OI = Pointer to the current version number

Registers Altered: AX, BX, ex, 01, ES, BP, OS

V_PNULL Driver (BP = OOOCH)

The null device driver is the default event driver routine. It is used when the physical device is not
recognized or the user event handler is not installed. It sets the AH register to RS_SUCCESSFUL and
does an fRET.

Hardware Interface Level Services

Service drivers are provided as useful subroutines available to any driver. Currently the hardware
interface level has only one service, the tracking sprite, V_STRACK.

V_STRACK Driver (BP = 005AH)

V_STRACK is called by the logical GID drivers to move the graphics cursor (sprite) on the display
screen. V_STRACK provides functions that allow the parameters of the sprite to be defined, and move
the sprite around the display.

A summary of the V_STRACK function codes is provided in Table 4-17.

Input System and HP-Hll 4 -65

Table 4-17. V_STRACK Driver Function Code Summary

Function Vector Function
Equate Definition Address Value

V_STRACK Sprite control OOSAH

F_SYSTEM System functions OOSAH 02

SF_INIT Initialize driver OOSAH 02/00

SF_START Start driver OaSAH 02/02

F TRACK_INIT Sets tracking to default OaSAH 04-
state

F_TRACK_ON Enables tracking oaSAH 06

F_TRACK_OFF Disables tracking OOSAH 08

F_DEF_MASKS Define sprite masks OOSAH OA

F_SET_LIMITS_X Set max/min horizontal aaSAH OC
values

F_SET_LIMITS_Y Set max/min vertical OaSA" OE
values

F_PUT_SPRITE Display sprite OaSAH 10

F_REMOVE _SPRITE Remove sprite from display aaSAH 12

V STRACK Driver Function Definitions

F ISR (AH = OOH)

This function is called to move the sprite to a new location. The display under the sprite is restored, and
the sprite is redisplayed in its new location. The hot spot of the sprite is placed at the coordinates passed
in BX and CX.

On Entry: AH = f ISR (OOH)
BX = X-coordinate of sprite
CX = Y coordinate of sprite
DL = Source vector index
BP = V_STRACK (005AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

4 -66 Input System and HP-Hll

SF INIT (AX =0200H)

This subfunction is called to initialize the driver. Refer to Chapter 8 for a complete discussion of the
protocol utilized in data space allocation ("last used DS" passed in register BX).

On Ent ry: AH = f SYSTEM (02H)
AL = Sf INIT (OOH)
BX = "Last used OS" in HP Data Area
BP = V STRACK (OO5AH)

On Exit: AH = Return Status Code
BX = New "last used OS" in HP Data Area

Registers Altered: AX, BX, BP, OS

SF START (AX = 0202H)

This subfunction is called to start the tracking driver.

On Entry: AH = f SYSTEM (02H)
AL = sf START (02H)
BP = V STRACK (005AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

F_TRACK_INIT (AH = 04H)

This function sets the tracking driver to its default state. It determines the current video mode and
initializes the tracking parameters.

On Entry: AH = f TRACK INIT (04H)
BP = V:STRACK (005AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

F TRACK ON (AH = 06H)

This function enables tracking. The sprite is displayed on the screen.

On Entry: AH = f TRACK ON (06H)
BP = V=STRACK (005AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Input System and HP-HtL 4-67

F TRACK OFF (AH = OSH)

This function disables tracking. The sprite is removed from the screen.

On Entry: AH = F TRACK OFF (08H)
BP = V=STRACK (OOSAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

F DEF MASKS (AH = OAH)

This function is called to define the sprite and screen masks used by the driver. If tracking is enabled, the
sprite is erased and the new sprite is displayed in its place. The size of the sprite (its width in bytes
multiplied by its height) is limited to a total of 144 bytes. The width of the save area is one byte greater
than the width of the sprite.

On Entry: AH = F OEF MASKS (OAH)
BH = WIdth-of the save area (in bytes)
BL = Hot Spot X coordinate
CH = Height of sprite (in scan lines)
CL = Hot Spot Y coordinate
BP = V_STRACK (OOSAH)
ES:SI = Pointer to sprite mask

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

The following example shows how to use the F .DEV MASKS function provided by the tracking driver.

SPRITE OW OF9FFH
OW OFOfFH
OW OE07FH
OW OE07FH
OW OC03FH
OW OC03FH
OW 0801FH
OW 0801FH
OW OOOOFH
OW OOOOFH
OW OFOFFH
OW OFOFFH
OW OFOFFH
OW OFOFFH
OW OFOFFH
OW OFOFFH

1111100111111111" marks
11110*0011111111 the Hot
1110000001111111 Spot
1110000001111111
1100000000111111
1100000000111111
1000000000011111
1000000000011111
0000000000001111
0000000000001111
1111000011111111
1111000011111111
1111000011111111
1111000011111111
1111000011111111
1111000011111111

4-68 Input System and HP-HIL

ow OOOOOH
ow 00600H
OW OOfOOH
ow OOfOOH
OW 01f80H
OW 01f80H
OW 03fCOH
ow 03fCOH
ow 07fEOH
OW 00600H
OW 00600H
OW 00600H
OW 00600H
OW 00600H
OW 00600H
OW OOOOOH

Define the XOR mask

0000000000000000 * marks
00000*1000000000 the Hot
0000111100000000 Spot
0000111100000000
0001111110000000
0001111110000000
0011111111000000
0011111111000000
0111111111100000
0000011000000000
0000011000000000
0000011000000000
0000011000000000
0000011000000000
0000011000000000
0000000000000000

MOV AH, f OEf MASKS
LEA SI, SPRITE
PUSH OS
pop ES
MOV CH, 10H
MOV BH, 3
MOV BL, 5
MOV CL, 1
MOV BP, V STRACK
PUSH OS
CALL SYSCALL
POP OS

load function code
get the offset of the sprite

ES = OS of sprite
height of sprite
number of bytes wide of the save area
hot spot x
hot spot y
load vector address
save current OS

; 'call EX-BIOS DRIVER
; restore OS

F_SET_LIMITS_X (AH =OCH)

This function sets the minimum and maximum horizontal position of the sprite on the screen. The default
minimum and maximum values are the same as the current screen mode.

On Entry: AH = F SET LIMITS X (OCH)
CX = MInimum X coordinate
OX = Maximum X coordinate
BP = V_STRACK (005AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Input System and HP-HIL 4-69

F_SET_LIMITS_Y (AH =OEH)

This function sets the minimum and maximum vertical position of the sprite on the screen. The default
minimum and maximum values are the same as the current screen· mode.

On Entry: AH = F SET LIMITS Y (OEH)
CX = MInimum Y coordinate
OX = Maximum Y coordinate
BP = V_STRACK (OOSAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

F_PUT_SPRITE (AH = 10H)

This function is called to put the sprite on the display.

On Entry: AH = F PUT SPRITE (10H)
BX = X-coordinate of sprite
CX = Y coordinate of sprite
BP = V_STRACK (005AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

F_REMOVE _SPRITE (AH =12H)

This function removes the sprite from the display.

On Entry: AH = F REMOVE SPRITE (12H)
BP = V=STRACK-(005AH)

On Exit: AH = Return Status Code.

Registers Altered: AX, BP, OS

4~70 Input System and HP-HIL

V_SCANDOOR Driver (BP = 016EH)

The V_SCANDOOR driver allows scancodes from the keyboard to be routed to the EX-BIOS before
being sent to the 8042 data port (60H). A summary of the SCANDOOR driver function codes is
provided in Table 4-18.

Table 4-18. V_SCANDOOR Driver Function Code Summary

Function Vector Function
Equate Definition Address Value

V_SCANDOOR SCANDOOR Driver 016EH

F_ISR Process SCANDOOR 016EH 00
interrupt

F_SYSTEM System function 016EH 02

SF INIT Initialize driver 016EH 02/00

SF_START Driver start-up 016EH 02/02

SF_VERSION_DESC Reports HP version number 016EH 02/06

F_STATE_IOCTL STATE functions 016EH 08

SF_GET_STATE Get a STATE byte 016EH 08/00

V_SCANDOOR Driver Function Definitions

F_ISR (AH =OOH)

This function is called by the V_S8259 driver to initiate processing of a hardware interrupt from the
8042.

CAUTION

This function should not be called directly by an application program.

Input System and HP-HIL 4-71

On Entry: AH = F' ISR (OOH)
BP = V=SCANDOOR (016EH)

On Exit: AH = Return status

Registers Altered: AX, BP, OS

SF INIT (AX = 0200H)

This subfunction initializes the driver. The driver will allocate and initialize local and global memory
that belongs to it and prepare itself for start-up.

CAUTION

This function should not be called directly by an application program.

On Ent ry: AH = F' SYSTEM (02H)
AL = SF_INIT(OOH)
BX = Last used OS
BP = V SCAN DOOR (016EH)

On Exit: AH = Return status
BS = New last used OS

Registers Altered: AX, BX, BP, OS

SF START (AX = 0202H)

This subfunction starts the driver.

CAUTION

This function should not be called directly by an application program.

On Entry: AH = F' SYSTEM (02H)
AL = SF_INIT (OOH)
BP = V SCAN DOOR (016EH)

On Exit: AH = Return status

Registers Altered: AX, BP, OS

4-72 Input System and HP-HIl

SF VERSION (AX = 0206H)

This subfunction will return the release code and a pointer to the current version number.

On Entry: AH = f SYSTEM (02H)
AL = SF VERSION OESC (06H)
BP = V_SCANDOOR-(016EH)

On Exit: AH = Return status
BX = Release code
CX = Number of bytes in version number
ES:OI = Address of current version number string

Registers Altered: AX, BX, BP, CX, 01, BP, ES, OS

SF GET STATE (AX = 0800H)

This subfunction will return one of the STATE bytes maintained by the V_SCANDOOR driver. The
STATE byte number requested is passed to the driver in BL;

On Entry: AH = f STATE IOCTL (OSH)
AL = SF_GET_STATE (OOH)
BL = State byte numbe r
BP = V SCANDOOR (016EH)

On Exit: AH = Return status
BH = STATE bits

State Byte

o

2

3

Bit Meaning

0 Reserved
1 Reserved
2 SCAN DOOR OPEN- -
3 SVC DOOR OPEN

0 BEEP ENABLE
1 SPEED PARSE ENABLE- -2 CLICK ENABLE
3 CLICK PARSE ENABLE

0 SCANDOR STATE INTS ON- - -1 SCANDOR CERB INTS ON- - -2 SCANDOR SCAN INTS ON- - -
3 SCANDOR SVC INTS ON

0 Reserved
1 LOW CPU SPEED
2 Reserved
3 Reserved

Registers Altered: AX, BX, BP, OS

(In the above, "CERB" refers to the HP-HIL controller.)

Input System and HP-Hll 4 -7'}

5
Keyboard

Overview

The Keyboard Input System for two keyboards'are discussed in this chapter:

• The UP Vectra Keyboard/DIN (shown in Figure 5-2) which is used with the HP Vectra ES series of
personal computers.

• The UP Vectra Enhanced Keyboard (shown in Figure 5-3) which is used with the HP Vectra. series
of personal computers.

Information presented in this chapter will apply to both keyboards except when speclfied as
Keyboard/DIN only (for the HP Vectra keyboard/DIN) or £nhancecl keyboard only (for the HP
Vectra Enhanced keyboard).

The Keyboard Input System consists of four components: the input device drivers, STD-BIOS keyboard
drivers, 8042 keyboard controller chip and the EX-BIOS keyboard drivers (see Figure 5-1). The input
device drivers are discussed in Chapter 4. The other three components are discussed in this chapter.

The industry standard INT 16H and INT 09H handlers make up the STD-BIOS keyboard drivers. INT
16H is used by applications to get characters from the keyboard buffer. INT 09H responds to interrupts
from the 8042 controller and places characters in the keyboard buffer.

The 8042 controller chip provides an industry standard hardware interface to the INT 09H driver. It also
provides timers and other services to the Input System.

The EX-BIOS drivers allow applications to redefine the scancodes generated by certain groups of keys on
the HP Vectra Kt!ybOard/OIN only.

Keyboard 5-1

Standard Application nter ace

STD-BIOS Drivers

Input Drivers

STD-BIOS
Interrupt
Handler
INT09H

8042
Controller

Chip

STD-BIOS
... Application

.......--..- Interface

INT16H

Keyboard

Logical
Touch-Screen
(V_LTOUCH)

Logical
Tablet

(V_LTABLET)

Logical
Pointer

(V_LPOINTER) 8042
Interface

Driver
(V_8041)

EX-BIOS Drivers
Keyboard/DIN only

Typewriter
Keypad

Translator
(V_QWERTY)

Physical
GID Driver

Abs/Rel
Logical

Keyboard
Driver

Compatibility
Function

Key Translator
(V_FUNCTION)

Dispatch
Driver

(V_SIN PUT)

HP Function Key
to Compatibility 14

Function Key
(V_SKEY2FKET)

Numeric
Pad

Translator
(V_NUMPAD)

HP-HIL
Driver

(V_HPHIL)

I I I
I TS I r TAB I IMSE I

Byte Bucket
(V_OFF)

Pass Thru
(V_RAW)

1+

~ HP Function
Key Translator
(V_SOFTKEY)

Physical Devices

.'igure 5-1. Keyboard Block Diagram

5 - 2 Keyboard

Cursor to +
Numeric

(V_CCPNUM)

Cursor Always ---1

(V_CCPCUR)

Cursor Control
Keypad

Translator
(V_CCP)

Keyboard Drivers

The STO-BIOS component consists of two drivers: the keyboard ISR routine (INT 09H), and the keyboard
interface driver (INT 16H).

Overview

The INT 09H driver responds to the 8042 OBF interrupt and reads in a scancode from the 8042
controller. If the scancode is from one of the keyboard modifier keys, the appropriate state bits are
updated. The scancode is then placed in the STD-BIOS keyboard buffer along with its corresponding
ASCII character (keycode) or a null byte (OH).

The INT 16H driver provides functions to allow the application to interrogate and manipulate the
keyboard input system. Applications may check for keycodes in the STO-BIOS keyboard buffer, remove
keycodes from it, retrieve the state of the keyboard modifiers, and put keycodes into the STD-BIOS
keyboard buffer. Applications may also inquire about and/or change the typematic rate and delay values
for the keyboard.

Extended functions (supported with the :~~Y.~~·~.,l~~~···.qn~~)are provided by the INT 16H driver to
give the application additional control over the keyboard and to facilitate keyboard driver mapping.
Extended functions allow the application to turn off or change the default translations performed on the
HP Function keypads and Cursor Control keypads (see Figure 5-2). Functions are also provided to aid
applications that install keypad translator services of their own.

Data Structures

The INT 16H and INT 09H driver data structures are located in the STD-BIOS data area. They are
stored in memory addresses 417H (40:17H) through 430H (40:30H), 496H (40:96H) and 497H
(40:97H). Table 5-1 lists these memory locations and their definitions.

Keyboard 5 - 3

, 2

3 4

F5 6

8

II '0

HP Function Keys Numeric Keypad

.......

Hone t ",Up... ...
End

,
"'On

Inl DEL

Mode Indicator
LEOs

~I
lock

Ie ...",., l:;crLek Sys
lock &elk req

7 8 9 IPrt Sc

4 5 6

, 2 3 +

10

Compatibility
Function Keys

Typewriter
Key Pad

Cursor Control Keypad

70 65

7' 66

72 67

73 68

74 69

Figure 5-2. UP Vectra Keyboard/DIN Keyboard Layout

'5 IlO 115 100 'OS

II" 116' '0" 111 116 '0' '06

112' liT 102' 112 W 102 '07

113' 116' '03' lI3 115 '03

'06
Ill' 104' llIl '04

5-4 Keyboard

Function Keys Mode Indicator
LEOs

Typewriter
Key Pad

Cursor
Control
Keypad

Numeric
Keypad

~ 110 8 112 1'13111~ 1 115 ~ 11611171118 1119 ~ 120 1 121 I1221 123 ~ 124 125 126 ~ ~

1 I 2 I 3 I ~ 1 5 I 6 1 71 a 1 9 I 10 111 112 113 1 15 75 1lO 85 90 95 100 105

16 I 17 I 18 I 19 I 20 I ~ I 22 1 23 1 24 I 25 126 1 27 I ~ I 29
76 81 86 91 Il6 101

1 31 I 32 I 33 I ~ I 35 I 36 1 37 I 38 I 38 I~ I ~1 I
106

30 a 1I2 97 102

«IQI~I~I~I~ 1~1331~IMI
-

~ Sf llO 113 9lI 103

5& I (58) 1lO I I 62 I(&3) 164

108
61 711 lJ4 1II \Ill 1~

Figure 5-3. HPVectra Enhanced Keyboard Layout

Keyboard 5 - 5

Table 5-1. STD-BIOS Keyboard Driver Data Area

Length
Address Bytes Definition

00417H 2 Keyboard Flags

00419H I Alt/Numpad accumulator

0041AH 2 Keyboard buffer head pointer

0041CH 2 Keyboard buffer tail pointer

0041EH 32 Keyboard buffer

00496H 1 Extended keyboard flags

00497H 1 Keyboard LED and data flags

The keyboard buffer can store up to 16 entries. Each buffer entry consists of two bytes: an ASCII
character (keycode) and a scancode. The keycode and the scancode are placed in the keyboard buffer by
the INT 09H driver, and the keyboard head pointer is adjusted accordingly. They are retrieved from the
buffer by the INT 16H driver, and the keyboard tail pointer is adjusted.

The keyboard flags are maintained by the INT 09H driver. These flags indicate the state of the keyboard
modifier keys and their respective modes. The byte at memory location 417H indicates the mode, the byte
at 418H reflects the actual state of the keys themselves, the byte at 496H indicates the state of the
extended keyboard processing, and the byte at 497H gives keyboard LED status and data received from
the keyboard. Tables 5-2 through 5-5 list these flags and their meaning.

Table 5 -2. Keyboard Shift Flags (Address 4178)

Bit Data Definition

07H <Ins> key state
1 Insert mode is active

06H <Caps lock> key state
1 Caps lock mode is active

05H <Num lock> key state
1 Num lock mode is active

04H <Scroll lock> key state
1 Scroll lock mode is active

03H <Alt> key state
1 <A1t> key is pressed

S -6 Keyboard

Table 5-2. Keyboard Shift Flags (Address 4178) (Cont.)

Bit Data Definition

02H <Ctrl> key state
1 <Ctrl> key is pressed

01H Left <Shift> key state
1 Left <Shift> key is pressed

OOH Right <Shift> key state
I Right <Shift:> key pressed

Table 5-3. Keyboard Secondary Shift Flags (Address 4188)

Bit Data Definition

07H <Ins> key state
I <Ins> key is pressed

06H <Caps lock> key state
I <Caps lock> key is pressed

05H <Num lock> key state
I <Num lock> key is pressed

04H <Scroll lock> key state
I <Scroll lock> key is pressed

03H Pause State
I Indicates the <Ctrl>-<Num lock> pause state is active

02H <System request> key state
I <System request> key is pressed

01H Left <A1t> key state
1 Left <A1t> key is pressed

OOH Left <Ctrl> key state
1 Left <Ctrl> key is pressed

Keyboard 5 -7

Bit

07H

06H

05H

04H

03H

02H

01H

OOH

Data

Table 5-4. IOI-key Keyboard Flags (Address 4968)

Definition

Read ID bytes in progress

First of ID bytes was last

Force Num Lock if 10 I-key keyboard is attached. This is when
DOS is loaded or reloaded. ~~n!~~~~~~~·~~~~.. q~~~

10 I-key keyboard attached. ~~~.~~~~~'-Y~~~····~~·~l

Right <Alt> key status
Right <Alt> key is pressed

Right <Ctrl> key status
Right <Ctrl> key is pressed

EO was last

EI was last

Table 5-5. Keyboard LED and Flags Data Area (Address 497H)

Bit Data Definition

07H I Used for a flag to indicate 3 failures of sending data to keyboard

06H 1 LED update in progress

05H I Resend received from keyboard

04H I Acknowledge received from keyboard

03H 0 Reserved (set to 0)

02H Caps Lock LED status
1 Caps Lock LED on

01H Num Lock LED status
1 Num Lock LED on

OOH Scroll Lock LED status
1 Scroll Lock LED on

Note: Applications which modify these bytes may experience difficulty in maintaining synchronization
between the Cursor Control keypad and the Numeric keypad on the HP Vectra ~!~~~.~~l~~~:,:!~~l~.

5 - 8 Keyboard

STD-BIOS Keyboard ISR (lNT 09H)

The keyboard interrupt service routine is responsible for retrieving scancodes from the 8042 controller,
generating the associated keycodes, and placing them into the STD-BIOS keyboard buffer. Certain keys
and key combinations do not generate a standard ASCII character code. In these cases a keycode equal to
o indicates that an application program should examine the scancode byte to determine the "extended"
ASCII code. Tables 5-6a through 5-6c contains the scancode to keycode translation assignments.

TABLE 5-6a. SCANCODE TRANSLATION TABLE

Enhancd. KeybdlDlN
keybd. keybd.
Key Key AT HP Unshlfted Shifted Ctrl All
Number Number Scancode Scancode Key Cap ASCII Hex ASCII Hex

110 90 76H 01H Esc esc 100 esc 1BH 1BH 00/01H
02 02 16H 02H 1 1 31H ! 21H - 00178H
03 03 1EH 03H 2 2 32H @ 40H ooH 00179H
04 04 26H 04H 3 3 33H # 23H - ool7AH
05 05 25H 05H 4 4 34H $ 24H - ool7BH
06 06 2EH 06H 5 5 35H DID 25H - OOI7CH
07 07 36H 07H 6 6 36H " 5EH 1EH ool7DH
08 08 30H OSH 7 7 37H & 26H - OOI7EH
09 09 3EH 0911 8 8 38H . 2AH - ool7FH
10 10 46H OAH 9 9 39H (28H - 00/80H
11 11 45H OBH 0 0 30H) 29H - 00/81H
12 12 4EH OCH - - 20H - 5FH 1FH OO/82H
13 13 55H OOH = = 30H + 2BH - 00/83H
15 15 66H OEH BkSp bs OSH bs OSH 7FH oo/OEH
16 16 OOH OFH Tab tab 09H Nul ooH 00/94H 00/A5H
17 17 15H 10H a q 71H a 51H 11H 00/10H
18 18 10H 11H W w 77H W 57H 17H 00/11H
19 19 24H 12H E e 65H E 45H 05H 00/12H
20 20 20H 13H R r 72H R 52H 12H 00/13H
21 21 2CH 14H T t 74H T 54H 14H 00/14H
22 22 35H 15H Y Y 79H Y 59H 1911 00/15H
23 23 3CH 16H U u 75H U 55H 15H 00/16H
24 24 43H 17H I i 69H I 4911 0911 00/171rt
25 25 44H 1SH 0 a 6FH 0 4FH OFH 00/18H
26 26 40H 1911 P P 70H P SOH 10H 00/19H
27 27 54H 1AH [[500 { 7BH 1BH 00/1AH
28 28 5BH 1BH]] 50H } 70H 10H 00/1BH
43 43 5AH 1CH Enter cr OOH cr OOH OAH 00I1CH
58 30 14H 10H CTRL - - - - - -
31 31 1CH 1EH A a 61H A 41H 01H 00/1 EH
32 32 1BH 1FH S s 73H S 53H 13H 0011 FH
33 33 23H 20H D d 64H D 44H 04H 00120H
34 34 2BH 21H F f 66H F 46H 06H 00121H
35 35 34H 22H G g 67H G 47H 07H 00122H
36 36 33H 23H H h 68H H 48H 08H 00123H
37 37 3BH 24H J j 6AH J 4AH OAH 00124H
38 38 42H 25H K k 6BH K 48H OSH 00125H
39 39 4BH 26H L I OCH L 4CH OCH 00126H
40 40 4CH 27H ; ; 300 3AH - OO127H
41 41 52H 2SH 27H . 22H - OO128H
01 01 OEH 29H 60H - 7EH - OO129H
44 44 12H 2AH LShift - - - - - -
29 14 50H 2BH \ \ SCH I 7CH lCH ool2BH
46 46 1AH 2CH Z z 7AH Z 5AH 1AH OOI2CH
47 47 22H 20H X x 7SH X 58H 18H OOI2DH
48 48 21H 2EH C c 63H C 43H 03H OO/2EH
49 49 2AH 2FH V v 76H V 56H 16H OOI2FH
50 50 32H 30H B b 62H B 42H 02H OO/30H
51 51 31H 31H N n 6EH N 4EH OEH OO/31H
52 52 3AH 32H M m 60H M 40H OOH OO/32H
53 53 41H 33H 2CH < JeH - 00/33H
54 54 4911 34H 2EH > 3EH - 00/34H
55 55 4AH 35H I I 2FH ? 3FH - OO/35H
57 57 5911 36H RShift - - - - _. .-
60 58 11H 38H Alt - - .- "- - -
61 61 29H 3911 Space sp 20H sp 20H 20H 20H
30 64 58H 3AH Caps lock - - - - - --

(Cant.)

Keyboard 5-9

5-10

TABLE 5-6a. SCANCODE TRANSLATION TABLE (cont.)

Enhancd. KeybdfDIN
keybd. keybd.
Key Key AT HP Unshifted Shifted Ctrl Alt
Number Number Scancode Scancode Key Cap ASCII Hex ASCII Hex

112 70 05H 3BH F1 - OOf3BH - 00f54H 00f5EH OOf68H
113 65 06H 3CH F2 - OOf3CH - 00f55H 00f5FH OOf69H
114 71 04H 3DH F3 - OOf3DH - 00f56H 00f60H OOf6AH
115 66 OCH 3EH F4 - 00f3EH - 00f57H 00f61H OOf6BH
116 72 03H 3FH F5 - OOf3FH - 00f58H 00f62H OOf6CH
117 67 OBH 40H F6 - OOf40H - 00f59H 00f63H OOf6DH
118 73 83H 41H F7 - 00f41H - 00f5AH 00f64H 00f6EH
119 68 OAH 42H F8 - 00f42H - 00f5BH 00f65H 00f6FH
120 74 01H 43H F9 - OOf43H - 00f5CH 00f66H 00170H
121 69 09H 44H F10 - OOf44H - 00f5DH 00f67H 00171 H

Enhancd. KeybdfDIN
keybd. keybd. NumLock None or
Key Key AT HP or Shift NumLock
Number Number Scancode Scancode Key Cap ASCII Hex and Shift CTRL Alt

90 95 77H 45H Num Lod< - 45H - - -
125 100 7EH 46H ScrLd< - 46H - OOfOOH -
91 91 6CH 47H Home 7 37H 00f47H 00f77H -
96 96 75H 48H 8 38H OOf48H 00f8DH -
101 101 7DH 49H Pg Up 9 39H 00f49H 00f84H -
105 107 7BH 4AH - 2DH 2DH 00f8EH OOf4AH
92 92 6BH 4BH 4 34H 00f4BH OO173H -
97 97 73H 4CH 5 5 35H OOf4CH 00f8FH -
102 102 74H 4DH 6 36H OOf4DH 00174H -
106 108 79H 4EH + + 2BH 2BH OOf90H OOf4EH
93 93 69H 4FH End 1 31H OOf4FH 00175H -
98 98 72H 50H 2 32H 00f50H 00f91H -
103 103 7AH 51H Pg On 3 33H 00f51H 00176H -
99 99 70H 52H Ins 0 30H 00f52H 00f92H -
104 104 71H 53H DEL 2EH 00f53H 00f93H -

Keyboard

TABLE 5·6b. KEYBOARD/DIN KEYBOARD SPECIFIC KEYS

Key AT HP
Number Scancode Scancode Key Cap Unshifted Shifted CTRL Ait

106 7CH 37H * (NmPd) 2AH (Prt Sc) 00172H 00/37H
105 84H 54H Sysreq - - - -
- 55H -undef.
- 56H - undef.
- 57H -undef.
- 58H - undef.
- 59H - undef.
- 5AH - undef.
- 5BH - undef.
- SCH -undef.
- 50H - undef.
59 5EH Unlabeled-L OO/07H OO/BOH OO/A3H OO/89H
62 5FH Unlabeled-R OO/08H OO/BEH OO/A4H OO/8AH
113 SOH CCP-Up OO/D9H OO/BFH OO/A5H OO/8BH
111 61H CCP-Lft OO/OAH OO/COH OO/A6H OO/8CH
115 62H CCP-On OOIOBH OO/C1H OO/A7H OO/80H
118 63H CCP-Rht OO/DCH OO/C2H OO/A8H OO/8EH
110 64H CCP-Horne OO/ODH OO/C3H OO/A9H OO/8FH
117 65H CCP-PgUp OO/DEH 00/C4H OO/AAH OO/90H
112 66H CCP-End OO/DFH OO/C5H OO/ABH OO/91H
119 67H CCP-PgDn OO/EOH OO/C6H OO/ACH OO/92H
116 68H CCP-Ins OO/E1H OO/C7H OO/AOH OO/93H
120 69H CCP-Del OO/E2H OO/C8H OO/AEH OO/94H
114 6AH CCP-CNTR OO/E3H OO/C9H OO/AFH OO/95H

6BH - undef. OO/E4H OO/CAH OO/BOH OO/96H
6CH - undef. OO/E5H OO/CBH OO/B1H OO/97H
SOH - undef. OO/E6H oo/CCH OO/B2H OO/98H
6EH - undef. OO/E7H OO/COH OO/B3H OO/99H
6FH -undef. OO/E8H OO/CEH OO/B4H OO/9AH

121 70H f1 OO/E9H OO/CFH OO/B5H OO/9BH
122 71H f2 OO/EAH OO/DOH OO/B6H OO/9CH
123 72H f3 OO/EBH OO/01H OO/B7H OO/90H
124 73H f4 OOiECH OO/D2H OO/BaH OO/9EH
125 74H f5 OOIEDH OO/D3H OO/B9H OO/9FH
126 75H f6 OO/EEH OO/D4H OO/BAH OO/AOH
127 76H f7 OOlEFH OOlO5H OO/BBH OO/A1H
128 77H f8 OOIFOH OO/D6H OO/BCH OO/A2H

78H
through - undef.
7FH

Keyboard 5 -11

5-12

TABLE 5-6c. ENHANCED KEYBOARD . SPECIFIC KEYS

Key AT HP Key Unshlfted Shifted CTRL Alt
Number Scancode Scancode Cap ASCII Hex ASCII Hex

100 7CH 37H • (NmPd) - 2AH 2AH OO/96H 00/37H
122 78H 57H F11 00/85H OO/87H OO/89H 00/8BH
123 07H 58H F12 OO/86H OO/88H OO/8AH 00/8CH
124 EOH,12H, EOH,2AH, PrtScrn OO172H
w/oAlt EOH,7CH EOH,37H (w/oAlt)
124 84H 54H SysReq
w/Alt (w/Alt)
126 E1H,14H, E1H,1DH, Pause
w/o Cntrl 77H, E1H, 4SH, E1H, (w/o Cntrl)

FOH,14H, 9DH,CSH
FOH,77H

126 EOH,7EH, EOH, 46H, Break
w/Cntrl EOH, FOH, EOH,C6H (w/Cntrl)

7EH

Duplicate Keys

64 EOH,14H EOH,1DH MCntrl
108 EOH,5AH EOH,1CH NmPd Ent - OD/EOH OD/EOH OAlEOH OO/A6H
95 EOH,4AH EOH,35H NmPdl 2F/EOH 2F/EOH OO/95H OO/A4H
62 EOH,11H EOH,38H RtAlt
80 EOH,12H, EOH,2AH, Home EO/47H EO/47H E0177H OO/97H
(wi NmLk) EOH,6CH EOH,47H (WI NmLk)
80 EOH,6CH, EOH,47H . Home EO/47H EO/47H E0177H 00/97H
(w/o NmLk) (w/o NmLk)
89 EOH,12H, EOH,2AH, Left Arrow - EO/4BH EO/4BH E0173H 00/9BH
(wi NmLk) EOH,6BH EOH,4BH (wi NmLk)
89 EOH,6BH, EOH,4BH, Left Arrow - EO/4BH EO/4BH E0173H OO/9BH
(w/o NmLk) (w/o NmLk)
81 EOH,12H, EOH,2AH, End EO/4FH EO/4FH E0175H OO/9FH
(wi NmLk) EOH,69H EOH,4FH (wi NmLk)
81 EOH,69H, EOH,4FH, End EO/4FH EO/4FH E0175H 00/9FH
(w/o NmLk) (w/o NmLk)
83 EOH,12H, EOH,2AH, Up ArraN EO/48H EO/48H EOI8DH OO/98H
(wi NmLk) EOH,7SH EOH,48H (wi NmLk)
83 EOH,75H, EOH, 48H, Up ArraN EO/48H EO/48H EO/8DH OO/98H
(w/o NmLk) (w/o NmLk)
84 EOH,12H, EOH,2AH, OwnArrow - EO/50H EO/SOH EO/91H OO/AOH
(wi NmLk) EOH,72H EOH,50H (wi NmLk)
84 EOH,72H, EOH,50H, Own Arrow - EO/50H EO/50H EO/91H OO/AOH
(w/o NmLk) (w/o NmLk)
75 EOH,12H, EOH,2AH, Insert EO/52H EO/52H EO/92H OO/A2H
(wi NmLk) EOH,70H EOH,S2H (wi NmLk)
75 EOH,70H, EOH,52H, Insert EO/52H EO/52H EO/92H OO/A2H
(w/o NmLk) (w/o NmLk)
85 EOH,12H, EOH,2AH, Page Up EO/49H EO/49H EO/84H OO/99H
(wi NmLk) EOH,7oo EOH,49H (wi NmLk)
85 EOH,7DH, EOH, 49H, Page Up EO/49H EO/49H EO/84H OO/99H
(w/o NmLk) (w/o NmLk)
89 EOH,12H, EOH,2AH, Right Arrow - EO/4DH EO/4DH E0174H OO/9DH
(wi NmLk) EOH,74H EOH,4DH (wi NmLk)
89 EOH,74H, EOH,4DH, Right Arrow - EO/4DH EO/4DH E0174H OO/9DH
(w/o NmLk) (w/o NmLk)
86 EOH,12H, EOH,2AH, Page Own EO/S1H EO/S1H E0176H OO/A1H
(wi NmLk) EOH,7AH EOH,51H (wi NmLk)
86 EOH,7AH, EOH,51H, Page Own EO/51H EO/S1H E0176H OO/A1H
(w/o NmLk) (w/o NmLk)
76 EOH,12H, EOH,2AH, Delete EO/53H EO/S3H EO/93H OO/A3H
(wi NmLk) EOH,71H EOH,53H (wi NmLk)
76 EOH,71H, EOH,53H, Delete EO/53H EO/S3H E0I93H OO/A3H
(w/o NmLk) (W/O NmLk)

Hidden Key.

14 SAH 7[l-f

42 SOH 2BH SCH 7CH 1C/2BH OO/2BH
45 61H 56H SCH 7CH 7C/56H 7C/56H
56 51H 73H
59 SEH OO/D7H OO/BDH OO/A3H OO/89H
63 SFH OO/D8H OO/BEH OO/A4H OO/8AH
94 68H 7a-i
107 SOH 7EH
109 63H 78H

Keyboafd

The INT 09H driver tracks the state of the keyboard modifiers presented in Tables 5-2 through 5-5 as
well as processing the special key sequences in Table 5-7.

Table 5-7. INT 098 Special Key Sequences

Key Combinations

<Pause>

<Ctrl>-<Num lock>

<Ctrl>-<Alt>-<+>

<Ctrl>-<Alt>-<->

<Ctrl>-<Alt>-< >

<Ctrl>-<Break>

<Ctrl>-<Alt>-

<Print Screen>

<Shift>-<Print Screen>

<System request>

<Alt>-nnn

Action

Stops execution until any non-shift key on the keyboard is
struck.

Stops execution until any non-shift key on the keyboard is
struck.

This key sequence enables the key click feature. The longer
the these keys are held down together, the louder the key
click. After maximum volume is achieved the key click
volume will wrap around to low volume. This is done in the
8042

This key sequence reduces the key click volume until it is off.
This is done in the 8042.

This key sequence toggles the computer speed. (On the Vectra
ES, this is handled by the 8042. On the Vectra RS this is
handled by the system BIOS.)

This key sequence is interpreted as a program break request.
When this key sequence is detected, the INT 09H driver will
execute an INT IBH instruction. The vector for this interrupt
is initialized during the boot process to point to a routine
within MS-DOS which sets a flag then performs an IRET in
struction. This vector may be modified to point to an alternate
routine to handle a <Ctrl>-<Break>.

This key sequence is interpreted as a system reset command.
When this key sequence is detected, control is transferred to .
the BIOS Reset routine.

This key is interpreted as a print screen command. When this
key is detected, an INT 05H instruction is executed.
~~!~~~~..lll~'~·~~·~.:··:~~·~)i

This key sequence is interpreted as a print screen command.
When this key sequence is detected, an INT 05H instruction is
executed.

This key is interpreted as a system request for multi-tasking.

Where nnn represents a three digit decimal number entered on
tl}e numeric keypad which yields the associated ASCII charac
ters, i.e., <Alt>-122 yields the character liZ".

Keyboard 5 -13

STD-BIOS Keyboard Driver (lNT 16H)

The INT 16H driver acts as the interface between applications and the keyboard. This driver has two sets
of functions. One set provides functions to return keycodes and keyboard status. The other set of
functions allows the application to change the translation algorithms of the scancodes and to vary the
repeat rates of the keys on the r'~~~[9l~~~ptiJ~. Table 5-8 is a summary of this driver's function
codes.

Table 5-8. Keyboard Driver (INT 168) Function Code Summary

Function
Equate

INT_KBD

FI6_STATUS

FI6_SET
_TYPE_RATE

F16 PUT KEY- -

F16_EXT_STATUS

F16 EXT
_KEY_STATE

F16 DEF ATTR- -

F16 DEF _MAPPING

5 -14 Keyboard

Function
Definition

Keyboard

Read keycode from keyboard buffer

Report Status of keyboard buffer

Get Key Modifier Status

Set typematic rates

Put data into keyboard buffer

Read keycode from buffer (Vectra ES and
RS keycodes)

Report keyboard status (including new
Vectra ES and RS keycodes)

Get extended key modifier status

EX-BIOS present

Report default values for repeat rates and
delay time before repeat

f:r~Y~~.r~I~~~...qg.~~
Report current repeat rates and delay time
~~)'.~~r9l~t~•••••9g.~)i
Replaces current repeat rates and delay
time ~~),~~f~ZP.t~9riJl

Reports default HP-system vector entries
for keyboard translator drivers
Key bCJ;!r~l[) I~pri.~l

OOH

OIH

02H

03H

05H

10H

IIH

12H

6FOOH

6FOIH

6F02H

6F03H

6F04H

Hex
Value

Table 5-8. Keyboard Driver (INT 16H) Function Code Summary (Cont.)

Function
Equate

F 16 GET MAPPING

F 16 SET MAPPING

F16 SET XLATORS

F16_READ_SPEED

F16_SET_LOW
SPEED

F16_SET_HIGH
SPEED

F16_GET_INT
NUMBER

Function
Definition

Reports current HP-system vector entries
for keyboard translator drivers
~'),lJoan:J/DINODJ~

Replaces current HP-system vector entries
for keyboard translator drivers
~~),IJo2lrellDIM on~y

Switches either the cursor controlpad trans
lator or the HP Function keypad translator
functions of the keyboard

~.YP9'rfgl~~~~n~Y

Reports keyboard identification
~t!YIJo••r-c:ilP~~.·q ... ~y
Reset logical keyboard structure to defaults

~~Y.P9~.n:J/P~"'...9r"~)-
Read current speed

Selects the low speed for the computer

Selects the high speed for the computer

Returns the current HPENTRY interrupt
number

Hex
Value

6F05H

6F06H

6F07H

6F08H

6F09H

6FOAH

6FOBH

6FOCH

6FODH

Keyboard 5 -15

Keyboard Driver (INT 16H) Function Definitions

F16_GET_KEY (AH =OOH)

This function returns the next keycode from the keyboard buffer. If no keycode is ready, this function
waits for one. This function does not return all keycodes available on the UPVectra ES and RS series
computers. It returns those keycodes that are available on the original UP Vectra PC. The new keycodes
are thrown away.

On Entry: AH = F16 GET KEY (OOH)

On Exit: AH = Scancode
AL = ASCII keycode or extended keycode

Registers Altered: AX

F16_STATUS (AH = 01H)

This function returns the status of the keyboard buffer. The Zero flag is cleared if a keycode is available,
or set if there is no keycode in the buffer. If a keycode is ready, the scancode and keycode are returned
in the AU and AL registers respectively. Even though the scancode and keycode are returned with this
function, they must be read with F16_GET_KEY to remove them from the keyboard buffer. This
function does not return all keycodes available on the UP Vectra ES and RS series of computers. I~

returns those keycodes that are available on the original UP Vectra PC. The new keycodes are thrown
away.

On Ent ry: AH = F16 STATUS (01H)

On Exit: Z = 1 if no keycode is ready.
Z = 0 if a keycode is ready.

and

AH = Scan code
AL = Keycode or extended keycode.

Registers Altered: AX

5-16 Keyboard

The INT 09H driver tracks the state of the keyboard modifiers presented in Tables 5-2 through 5-5 as
well as processing the special key sequences in Table 5-7.

Table 5-7. INT 098 Special Key Sequences

Key Combinations

<Pause>

<Ctrl>-<Num lock>

<Ctrl>-<Alt>-<+>

<Ctrl>-<Alt>-<->

<Ctrl>-<Alt>-<\>

<Ctrl>-<Break>

<Ctrl>-<Alt>-

<Print Screen>

<Shift>-<Print Screen>

<System request>

<Alt>-nnn

Action

Stops execution until any non-shift key on the keyboard is
struck.
Enh~~~~9.·~~¥~i·~g··••·p~~J
Stops execution until any non-shift key on the keyboard is
struck.
K~~.PR~.r9lt.JJ~••::~~~~
This key sequence enables the key click feature. The longer
the these keys are held down together, the louder the key
click. After maximum volume is achieved the key click
volume will wrap around to low volume. This is done in the
8042

This key sequence reduces the key click volume until it is off.
This is done in the 8042.

This key sequence toggles the computer speed. (On the Vectra
ES, this is handled by the 8042. On the Vectra QS and RS this
is handled by the system BIOS.)

This key sequence is interpreted as a program break request.
When this key sequence is detected, the INT 09H driver will
execute an INT IBH instruction. The vector for this interrupt
is initialized during the boot process to point to a routine
within MS-DOS which sets a flag then performs an IRET in
struction. This vector may be modified to point to an alternate
routine to handle a <Ctrl>-<Break>.

This key sequence is interpreted as a system reset command.
When this key sequence is detected, control is transferred to
the BIOS Reset routine.

This key is interpreted as a print screen command. When this
key is detected, an INT OSH instruction is executed.
~~n~n~~~.·~~¥.~~.~qm.~~·~¥

This key sequence is interpreted as a print screen command.
When this key sequence is detected, an INT OSH instruction is
executed.

~~)ibo~·l+qt~~~.·m~~.~~

This key is interpreted as a system request for multi-tasking.

Where nnn represents a three digit decimal number entered on
the numeric keypad which yields the associated ASCII charac
ters, i.e., <Alt> -122 yields the character liZ".

Keyboard 5-13

STD-BIOS Keyboard Driver (lNT 16H)

The INT 16" driver acts as the interface between applications and the keyboard. This driver has two sets
of functions. One set provides functions to return keycodes and keyboard status. The other set of
functions allows the application to change the translation algorithms of the scancodes and to vary the
repeat rates of the keys on the K~)'~~tcllP+~9n.~)I'. Table 5-8 is a summary of this driver's function
codes.

Table 5-8. Keyboard Driver (INT 168) Function Code Summary

Function
Equate

INT KBD

F16 STATUS

F16 KEY STATE- -

F16 SET
_TYPE_RATE

F16 GET EXT KEY- - -

F16 EXT STATUS- -

F16 EXT
_KEY_STATE

F16 DEF ATTR- -

F16 GET ATTR- -

F16 SET ATTR- -

F16 DEF MAPPING

5 -14 Keyboard

Function
Definition

Keyboard

Read keycode from keyboard buffer

Report Status of keyboard buffer

Get Key Modifier Status

Set typematic rates

Put data into keyboard buffer

Read keycode from buffer (including new
Vectra ES, QS, and RS keycodes)

Report keyboard status (including new
Vectra ES, QS, and RS keycodes)

Get extended key modifier status

EX- BIOS present

Report default values for repeat rates and
delay time before repeat
.. ·····........1············.. ···· .. ··· ······

JK~~.P9~·F<:I,P~,. ••·.PI'J.~i

Report current repeat rates and delay time
t<eilX)~rCJlt}~~C:)~~~

Replaces current repeat rates and delay
time Keyb()ardjot~.. ()n.~~

Reports default HP-system vector entries
for keyboard translator drivers
Key bQard!DlttoJ1 1y

OOH

01H

02H

03H

05H

10H

11H

12"

6FOOH

6F01H

6F02H

6F03H

6F04H

Hex
Value

Table 5-8. Keyboard Driver (INT 16H) Function Code Summary (Cont.)

Function
Equate

F16 GET MAPPING

F16 SET MAPPING

F 16 SET XLATORS

FI6_KBD_RESET

F 16 READ SPEED- -

F16 SET LO\V- -
SPEED

F16 SET HIGH- -
_SPEED

F16 GET INT- -
NUMBER

Function
Definition

Reports current HP-system vector entries
for keyboard translator drivers
~~¥.~~.r~:MQ~~•. pnOO~
Replaces current HP-system vector entries
for keyboard translator drivers
~~¥·~~.~lQ~~..pnOO~
Switches either the cursor controlpad trans
lator or the HP Function keypad translator
functions of the keyboard

~~¥~~.[~t~+~·..pn·~~
Reports keyboard identification
~~¥·PO~rq/~tN.·p~OO)i

Reset logical keyboard structure to defaults
~~¥PP~~gl~~~·,P~.~~

Read current speed

Selects the low speed for the computer

Selects the high speed for the computer

Returns the current HPENTRY interrupt
number

Hex
Value

6F05H

6F06H

6F07H

6F08H

6F09H

6FOAH

6FOBH

6FOCH

6FODH

Keyboard 5-15

Keyboard Driver (lNT 16H) Function Definitions

F16 GET KEY (AH = OOH)

This functIon returns the next keycode from the keyboard buffer. If no keycode is ready, this function
waits for one. This function does not return all keycodes aval1able on the HP Vectra series of computers.
It returns those keycodes that are available on the original HP Vectra pc. The new keycodes are thrown
away.

On Entry: AH = F16 GET KEY (OOH)

On Exit: AH = Scancode
AL = ASCII keycode or extended keycode

Registers Altered: AX

F16_STATUS (AH = 01H)

This function returns the status of the keyboard buffer. The Zero flag is cleared if a keycode is available,
or set if there is no keycode in the buffer. If a keycode is ready, the scancode and keycode are returned
in the AH and AL registers respectively. Even though the scancode and keycode are returned with this
function, they must be read with F16_GET_KEY to remove them from the keyboard buffer. This
function does not return all keycodes available on the HP Vectra series of computers. It returns those
keycodes that are available on the original HP Vectra pc. The new keycodes are thrown away.

On Entry: AH = F16_STATUS (01H)

On Exit: Z = 1 if no keycode is ready.
Z = a if a keycode is ready.

and

AH = Scancode
AL = Keycode or extended keycode.

Registers Altered: AX

5-16 Keyboard

F16 KEY STATE (AH = 02H)

This function returns the state of the various keyboard modifiers that were availble on the original HP
Vectra PC. The status byte returned is a copy of the keyboard modifier status byte stored at memory
location 417H.

On Entry: AH = F16_KEY_STATE (02H)

On Exit: AL = Modifier Status Byte

Bit Data Definition

07H 1 Insert mode active
0 Insert mode inactive

06H 1 Caps lock mode active
0 Caps lock mode inactive

OSH 1 Num lock mode active
0 Num lock mode inactive

04H 1 Scroll lock mode active
0 Scroll lock mode inactive

03H 1 <Alt> key pressed
0 <Alt> key released

02H 1 <Ctrl> key pressed
0 <Ctrl> key released

01H 1 Left <Shift> key pressed
0 Left <Shift> key released

OOH 1 Right <Shift> key pressed
0 Right <Shift> key released

Registers Altered: AL

F16 SET TYPE RA TE (AH = 03H)

This command sets the values for the typematic rate and delay. The typematic rate is the number of
make scancodes per second sent in the typematic (repeat) mode. The delay is the amount of time a key
must be held down until it enters the typematic mode.

On Entry: AH = F16_SET_TYPE_RATE (03H)
AL = 05
BH = Typematic Delay (OO-03H)
BL = Typematic Rate (OO-1FH)

On Exit: None

Registers Altered: AX

Keyboard 5 -17

F16_PUT_KEY (AH = OSH)

This command puts a scancode and a keycode in the keyboard buffer. When this is done, it looks just
like INT 9 placed the scancode and keycode there. It may be read with INT 16 functions 0, 1, 10 and
11.

On Entry: AH = f16 PUT KEY (OSH)
CX = Data to-place in keyboard buffer

CH = Scancode
CL = Keycode or extended keycode

On Exit: AL = 00 if store successful AL = 01 if not

Registers Altered: AX

F16 GET EXT KEY (AH = 10H)

This function returns the next keycode fromthe keyboard buffer. If no keycode is ready, this function
waits for one. All keycodes are returned; none are thrown away

On Entry: AH = f 16 GET EXT KEY (10H)

On Exit: AH = Scancode
AL = Keycode or extended keycode

Registers Altered: AX

F16 EXT ST ATUS (AH = 11H)

This function returns the status of the keyboard buffer. The Zero flag is cleared if a keycode is available,
or set if there is no keycode in the buffer. If a keycode is ready, the scacode and keycode are returned in
the AH and AL registers respectively. Enen though the scancode and keycode are returned with this
function, they must be read with FI6_GET_EXT_KEY to remove them from the keyboard buffer. All
keycodes are returned; none are thrown away.

On Entry: AH = f16 EXT STATUS (11H)

On Exit: AH = Scancode
AL = Keycode or extended keycode

Z = 1 if no keycode is ready
Z = 0 if a keycode is ready

Registers Altered: AX, flag

5-18 Keyboard

F16 EXT KEY STATE (AH = 12H)

This function returns the state of various keyboard modifiers, including the new states available on the
HP Vectra series of computers. AL is a copy of the keyboard modifier status byte stored at memory
location 417H. AH is a combination of some of the bits stored in memory location 418H and 496H.

On Entry: AH = F16 EXT KEY STATE (12H)

On Exit: AH = Extended Modifier Status
AL = Modifier Status Byte

Al: Bit Data Definition

07H 1 Insert mode active
0 Insert mode inactive

06H 1 Caps lock mode active
0 Caps lock mode inactive

OSH 1 Num lock mode active
0 Num lock mode inactive

04H 1 Scroll lock mode active
0 Scroll lock mode inactive

03H 1 <Alt> key pressed
0 <Alt> key released

02H 1 <Ctrl> key pressed
0 <Ctrl> key released

01H 1 left <Shift> key pressed
0 left <Shift> key released

OOH 1 Right <Shift> key pressed
0 Right <Shift> key released

AH: Bit Data Definition Concatenated From

07H 1 <System request> key pressed bit 2 418H
0 <System request> key released

06H 1 <Caps lock> key pressed bit 6 418H
0 <Caps lock> key released

OSH 1 <Num lock> key pressed bit 5 418H
0 <Num lock> key released

04H 1 <Scroll lock> key pressed bit 4 418H
0 <Scroll lock> key released

03H 1 Right <Alt> key pressed bit 3 496H
0 Right <Alt> key released

02H 1 Right <Ctrl> key pressed bit 2 496H
0 Right <Ctrl> key released

01H 1 Left <Alt> key pressed bit 1 418H
0 left <Alt> key released

OOH 1 Left <Ctrl> key pressed bit o 418H
0 Left <Ctrl> key released

Registers Al tered: AX

Keyboard 5 -19

F16 INQUIRE (AX = 6FOOH)

This subfunction determines whether or not the extended HP functions are available. If the HP functions
are available, the BX register will be set to 48 SOH (which is the ASCII characters 'HP').

On Entry: AX = F16_INQUIRE (6FOOH)
BX = Any value except 4850H, 'HP'.

On Exit: BX = 'HP'

Registers Altered: BX

F16 DEF ATTR (AX = 6F01H)

This subfunction reports the default typematic rate and delay values for the keyboard. A pointer to a
four-byte buffer is returned, but the last 2 bytes in that buffer are ignored. The bytes in the buffer are
defined in Table 5-9.

Table 5-9. INT 168 Typematic Buffer Format

Byte Function

0 Delay before repeat action starts for all keys.

1 Typematic Repeat rate for all keys.

Table 5-10 summarizes the typematic rate and delay values defined for each data byte accepted in the
typematic buffer by the INT 16H driver.

Table 5-10. INT 168 Typematic Rates and Delays

Byte 1 Byte 0
Repeat Number of Milli-

Data Byte Rate* seconds Delayed**
OOH (30.00) [0.250]
oHI (30.00) [0.250]
02H (20.00) [0.250]
03H (15.00) [0.250]
04H (12.00) [0.250]
05H (l0.00) [0.250]
06H (9.20) [0.250]
07H (7.50) [0.500]
08H (6.70) [0.500]
09H (6.00) [0.500]

.-

5-20 Keyboard

Table 5-10. INT 160 Typernatic Rates and Delays (Cont.)

Byte 1 Byte 0
Repeat Number of Milli-

Data Byte Rate* seconds Delayed**

OAH (5.50) [0.500]
OBH (5.00) [0.750]
OCH (4.60) [0.750]
ODH (4.30) [0.750]
OEH (4.00) [0.750]
OFH (2.00) [0.750]

*

**

Numbers in parentheses () indicate the approximate number of repeated characters per
second.
Numbers in brackets [] indicate the approximate length of delay prior to the first
repeated scancode report.

On Entry: AX = F16_DEF_ATTR (6F01H)

On Exit: AH = OOH (Successful operation)
ES:SI = Pointer to buffer

ex = 4 (Number of entries in table)

Registers Altered: AX, ex, 51, ES

F16 GET ATTR (AX = 6F02H)

This subfunction reports the current typematic rate and delay values for the keyboard. A pointer to a
four-byte buffer is returned, but the last two bytes are ignored. The bytes in the buffer are interpreted
as shown in Table 5-9 and 5-10.

On Entry: AX = F16_GET_ATTR (6F02H)

On Exit: AH = OOH (Successful operation)
ES:SI = Pointer to buffer

ex = 4 (Number of entries in table)

Registers Altered: AX, ex, 51, E5

Keyboard 5-21

F16_SET_ATTR (AX = 6F03H)

This subfunction sets the current typematic rate and delay values for the keyboard. A pointer to a
two-byte buffer is passed, but the second byte is ignored. The bytes in the buffer are interpreted as
shown in Table 5-9 and 5-10. Note that the values passed for the rest of the keyboard are also applied
to the Cursor Control keypad.

On Entry: AX = F16_SET_ATTR (6F03H)
ES:SI = Pointer to buffer

On Exit: AH = OOH (Successful operation)

Registers Altered: AX

F16 DEF MAPPING (AX = 6F04H)

This subfunction reports the default keyboard translator mappings. A pointer to a buffer of lEH bytes is
supplied by the caller to be filled in by the ROM-BIOS. The table will contain the default
HP_ VECTOR_TABLE entries for each of the five translator drivers. Each of five entries in the table
will contain the IP, CS, and OS for each translator driver.

CAUTION

An application should restore the translator drivers to their original
condition upon termination. If an application replaces one of these drivers,
the programmer should be aware that the EX-BIOS keyboard driver
functions 6F07H may no longer function properly.

The format of the buffer is given in Table 5-11.

Table 5-11. INT 168 Mapping Buffer Format

Offset Translator

DOH Entry for V_QWERTY driver
06H Entry for V_SOFTKEY driver
OCH Entry for V_FUNCTION driver
12H Entry for V_NUMPAO driver
18H Entry for V_CCP driver

In the above table, note that QWERTY refers to the typewriter keypad, SOFTKEY refers to the lIP
Function keypad, FUNCTION refers to the Compatibility Function keypad, NUMPAO refers to the

5-22 Keyboard

Numeric keypad, CCP refers to the Cursor Control keypad (the location of keypads on the
Keyboard/DIN are shown in Figure 5-2.)

On Entry: AX = F16_DEF_MAPPING (6F04H)
ES:SI - Pointer to buffer

On Exit: AH = OOH (Successful)
ES:SI = Pointer to buffer of lEH bytes

ex - lEH (Size of buffer)

Registers Altered: AX, ex

F16 GET MAPPING (AX = 6F05H)

This subfunction reports the current keyboard translator mappings. A pointer to a buffer 1EH bytes in
length is supplied by the caller to be filled in by the ROM-BIOS. The buffer will contain the current
HP_ VECTOR__.TABLE entries for each of the five translator drivers (IP, CS, and DS for each driver).
The format of the buffer is given in Table 5·-11.

On Entry: AX = F16_GET_MAPPING (6FOSH)
ES:SI = Pointer to buffer

On Exit: AH = OOH (Successful)
ES:SI = Pointer to buffer

ex = lEH (Size of table)

Registers Altered: AX, ex

F16 SET MAPPING (AX = 6F06H)

This subfunction sets the current keyboard translator mapPIngs. A pointer to a buffer containing the
entries to be written into the HP_ VECTOR .. T ABLE is passed in. The format of the buffer is give.n in
Table 5-11.

A driver that replaces a scancode translator can expect to handle a Keyboard ISR Event Record Cfable
5-13). If the translator wishes to remove the passed in scancode t rom the scancode stream, it returns a
status of RS_DONE. Otherwise. a return status of RS_SUCCESSfllL should be set and an appropnate
ISR EVENT record returned. The ISR Event Record WIll then be passed on to the next dnver in the
chain. The driver can depend on 10H bytes of stack.

On Entry: AX = F16_SET_~APPING (6F06H)
ES:SI = Pointer to table.

ex = 01EH (size of table in bytes)

On Exit: AH = OOH (Successful)

Registers Altered: AX

Keyboard 5 -23

F16 SET XLATORS (AX =6F07H)

This subfunction sets the current mappings of the HP Function keypad (V_SOFTKEY) and Cursor
Control keypad (V_CCP) translators. Note that only one translator may be set with each call to this
subfunction. (Figure 5-2 shows the possible mappings for these two HP proprietary keypads.)

On Entry: AX = F16 SET XLATORS (6F07H)
BL =Translation

Data Definition

OOH Maps V CCP to V CCPCUR which forces the Cursor Control keypad
to generate Numeric keypad cursor key scancodes, regardless of
state of <Num lock>. (Default mapping)

01H Maps V CCP to V CCPNUM which forces the Cursor Control keypad to
generate Numeric keypad or cursor key scancodes, depending on
state of <Num lock>.

02H Maps V CCP to V OFF which disables the Cursor Control keypad.

03H Maps V CCP to V CCPGID (if installed) which converts Cursor
Control keypad data to GID data.

04H Maps V CCP to V RAW which passes Cursor Control keypad scancodes
untranslated to-the INT 09H driver.

OSH Maps V SOfTKEY to V SKEY2FKEY which translates HP Function
keypad-scancodes into equivalent industry standard Compatibility
Function keypad scancodes (default mapping).

OSH Maps V_SOfTKEY to V_RAW which passes HP Function keypad
scancodes untranslated to INT 09H driver.

07H Maps V SOfTKEY to V OFF which disables HP Function keypad.

On Exit: AH = 00 (Successful)

Registers Altered: AX

5-24 Keyboard

F16 KBD (AX =6F08H)

This subfunction returns the ID of the keyboard.

On Entry: AX = f16_KBD (6fOBH)

On Exit: AH = OOH (Successful)
or 02H (Unsupported) if a non-HP keyboard is attached

BL = Language of the attached keyboard (see below)

Registers Altered: AX, BX

Keyboard Identification:

Register BL Language Register BL Language

00 Reserved 10 Chinese (PRC)
01 Arabic-french 11 Chinese (Taiwan)
02 Kanji 12 Swiss (french ii)
03 Swiss-French 13 Spanish
04 Portugese 14 Swiss (German ii)
05 Arabic 15 Belgian (Flemish)
06 Hebrew 16 finish
07 Canadian-English 17 United Kingdom
08 Turkish 18 french-Canadian
09 Greek 19 french-German
OA Thai 1A Norwegian
OB Italian 18 french
OC Hangul (Korean) 1C Danish
00 Dutch 10 Katakana
OE Swedish 1E Latin American Spanish
OF German 1F United States-American

OFfH non-HP keyboard (IBM AT keyboard and IBM Enhanced keyboard)
All others are reserved.

F16_KBD_RESET (AX = 6F09H)

This subfunction resets all keyboard mappings to their default translators and resets all keyboard
typematic rates and delays to their default values.

On Entry: AX = F16_KBD_RESET (6F09H)

On Exit: AH = OOH (Successful)

Registers Altered: AX

Keyboard 5-25

F16_READ_SPEED (AX = 6FOAH)

This subfunction returns a code for the current speed of the computer. Computer speeds for the Vectra
series of computers are shown in Table 5-12.

On Entry: AX = F16_READ_SPEED (6FOAH)

On Exit: AH = OOH (Successful)
BX = OBH for low speed (see following table)

12H for medium speed (see following table)
OCH for high speed (see following table)

Registers Altered: AX, BX

Table 5 -12. Speeds for HP Vectra Series of Computers

Vectra High Medium Low

ES 8 MHz - 8 MHz
ES/12 12 MHz - 8 MHz
QS/16,RS/16 16 MHz - 8 MHz
QS/20,RS/20 20 MHz - 8 MHz
RS/20C 20 MHz 10 MHz 5 MHz
RS/25C 25 MHz 12.5 MHz 5 MHz

F16 SET LOW SPEED (AX = 6FOBH)

This subfunction sets the speed of the computer to low.

On Entry: AX = F16 SET LOW SPEED (6FOBH)

On Exit: AH = OOH (Successful)

Registers Altered: AX

F16 SET HIGH SPEED (AX = 6FOCH)

This subfunction sets the speed of the computer to high.

On Entry: AX = F16 SET HIGH SPEED (6FOCH)

On Exit: AH = OOH (Successful)

Registers Altered: AX

5 - 26 Keyboard

F16 GET INT NUMBER (AX = 6FODH)

In the original HP Vectra PC, the HPENTRY vector is INT 6FH. On the HP Vectra series of computers,
the default vector is INT 6FH, but it can be moved to another interrupt by the system. If an application
programmer wants to use the HPENTRY interrupt, they should do an INT 16 6FODH function to get the
interrupt number in use.

On Entry: AX = F16 GET INT NUMBER (6FODH)
On Exit: AH = Interrupt Number (except when AH = 2, then the

interrupt number is 6FH)
Registers Altered: AX

F16__SET__CACHE__ON (AX =6FOFH) -- This subfunction enables memory caching.
On Entry: AX = f16 SET CACHE ON (6fOFH)
On Exit: AH = OOH-(Successful)

= fEH (Cache subsystem is bad)
Registers Altered: AX

F16__SET__CACHE__OFF (AX =6FlOH) -- This subfunction disables memory caching.
On Entry: AX = f16 SET CACHE Off (AX = 6F10H)
On Exit: AH = OOH--(Successful--)
Registers Altered: AX

F16_GET_CACHE_STATE (AX = 6FllH)
This subfunction returns the memory cache subsystem's state.
On Entry: AX = F16 GET CACHE STATE (AX = 6F11H)
On Exit: AH = OOH--(Successful--)

AL bit 0 = 0 (Cache Disabled)
= 1 (Cache Enabled)

Registers Altered: AX

F16_SET_MEDIUM_SPEED (AX = 6Fl2H)
This subfunction sets the computer's speed to medium.
On Entry: AX = f16 SET MEDIUM SPEED (6F12H)
On Exit: AH = OOH--(Successful)
Registers Altered: AX

Keyboard Layout Identification

Applications often need to know the layout of the keyboard attached to the system. The following is the
recommended algorithm:

1. Check bit 4 in byte 496H. If the bit is one, the keyboard is a HP Vectra Enhanced keyboard layout,
or an industry-standard IOI-key keyboard layout. If the bit is zero, the keyboard is an HP Vectra
Keyboard/DIN layout, or an industry-standard 84-key keyboard layout.

2. If bit 4 above equals zero, use function 6FOO to determine if the extended functions are present. If
not, assume that the keyboard is a non-HP, 84-key keyboard layout. -

3. If extended functions are present, use function 6F08 to determine whether the keyboard is an HP
Vectra keyboard or some other third party keyboard.

Keyboard 5-27

EX-BIOS Keyboard Drivers for the HP Vectra Keyboard/DIN

This section discusses Vectra Keyboard/DIN information related to ISR events and ISR Event Recordr
device driver chains, and HP-HIL device data input; these concepts were introduced in Chapter 4.

Overview

The following applies to the ~!)i~~:rrq.l~~~'9~:~~- and only when an INT 16H 6F06 and 6F07
function has been called or when one of these functions is called directly.

The EX-BIOS keyboard component consists of the logical keyboard driver, the keyboard translator
services, and the V_8042 interface driver.

Logical Keyboard Driver

The logical keyboard driver is the primary interface for the physical keyboard and controls the process of
scancode translation. Based on the keypad, the scancode is passed to one of five translator services:
V_QWERTY, V_SOFTKEY, V--:-FUNCTION, V_CCP and V_NUMPAD. Figure 5-2 shows the layout of
the different keypad groups. This driver also maintains the state of the following keyboard modifier keys:
<Ctrl>, left and right <Shift>, <Alt>, <Caps lock>, and <Num lock>. This state information is passed
to the V_CCP, V_NUMPAD and V_QWERTY translator services.

Keyboard Translators

The keyboard translators act as subroutines for the logical keyboard driver. There are five translators
corresponding to the keyboard keypads (see Figure 5-2). The five translators are:

V_QWERTY handles the Typewriter keypad.
V_FUNCTION handles the Compatibility Function keypad (FI - FlO).
V_NUMPAD handles the Numeric keypad (and its cursor keys).
V_SOFTKEY handles the HP Function keypad (fl - flO)
V_ CCP handles the Cursor Control keypad.

The translators for the HP Function keypad and Cursor Control keypad are special cases.

The V_SOFTKEY translator can translate its scancodes in the following ways:

1. Map function keys fl thru f8 into function keys FI thru F8 (V_SKEY2FKEY).

2. Throwaway fl thru f8 function keys (V_OFF).

3. Pass back f 1 thru f8 function keys untranslated to the logical keyboard driver (V_RA'V).

5 - 28 Keyboard

The V_CCP translator can translate its scancodes in the following ways:

1. Map Cursor Control keys to Numeric keypad cursor control scancodes (V_CCPCUR).

2. Map Cursor Control keys to Numeric keypad scancodes (V_CCPNUM).

3. Pass Cursor Control keys as untranslated scancodes to the logical keyboard driver (V_RAW).

4. Throwaway all Cursor Control (CCP) keys (V_OFF).

Functions are provided by the STD-BIOS INT 16H driver to select any of the above mappings.

8042 Interface Driver

The 8042 interface driver (V_8042) sends translated scancodes to the 8042 controller chip. If the 8042
controller is busy this driver queues the scancode to be sent later when the 8042 controller is ready. In
addition to passing scancodes from the keyboard to the 8042 controller, V_8042 processes keyboard
controller commands to set keyboard LEOs and change keyboard typematic rates.

Data Structures

The EX-BIOS keyboard input system uses one data structure. The Keyboard ISR Event Record is a set of
register definitions for inter-driver communication of input events. The following shows the Keyboard
ISR Event Record definition.

On Entry: AH = f ISR (OOH)
BH = Keyboard State (Only if state

bit set in Data Type)

Bit Data Definition

07H 1
06H 1
OSH 1
04H 1
03H 1
02H 1
01H 1
OOH 1

Left Unlabeled key pressed
Right Unlabeled key pressed
<Hum lock> state active
<Caps lock> state active
<Ctrl> key pressed
Right <Shift> key pressed
Left <Shift> key pressed
<Alt> key pressed

BL = Scancode

Bit Data Definition

07H 1 Break indicator
0 Make indicator

06H-OOH Scancode

Keyboard 5 - 29

ex =
DH =
DL =
BP =

ES:SI =

Number of bytes in buffer (scancode strings only)
Data Type
Logical keyboard drivers vector address / 6
HP-HIL device n vector address
Pointer to buffer (scancode strings only)

* These keys are located to the immediate left and right of the space bar. They are only
available on some international keyboards.

The Data Type field (DH) contains a code representing the current type of scancode contained in the ISR
Event Record. When the logical keyboard driver calls a translator service, the Data Type will match the
keypad group from which the scancode originated. After translation, the Data Type for the ISR Event
Record returned to the logical keyboard driver should be T_KC_IBM_PC. See Table 5-13 for a
complete list of keyboard event data types.

Table 5 -13. Keyboard Event Data Types

Type Definition Value

T_KC_RO Reserved OOH

T_KC_Rl Reserved 01H

T_KC_ASCII ASCII data 02H

T_KC_R3 Reserved 03H

T_KC_ITF HP 150 keyboard (ITF) scancode 04H

T_KC_R5 Reserved 05H

T_KC_WILD Device definable type 06H

T_KC_ENVOY HP Vectra Keyboard set 07H

T_KC_IBM_AT IBM- AT scancode set 08H

T_KC_BUTTON Button data type 09H

T_KC_IBM_PC IBM- PC scancode set OAH

T_KC_HP_SOFTKEY HP Function keypad (fl-f8) OBH

T_KC_IS_FUNCTION Compatibility Function keypad (FI-FI0) OCH

T_KC_HP_CCP HP's Cursor Control keypad DOH

T_KC_QWERTY Typewriter keypad OEH

5-30 Keyboard

Table 5-13. Keyboard Event Data Types (Cont.)

Type Definition Value

T KC_NUMPAD Numeric keypad OFH-

T STRING This is not a data type but an indicator bit for 10H
the keyboard data types only. If bit 4 is set, then
the ISR Event record is for a string of scancodes
pointed to by ES:SI and enumerated in CX; i.e.,
OOx 1 ttttB
indicates a string of data bytes of type defined
by the' lower nibble 'tttt'.

T STATE This is not a data type but an indicator bit for 20H
the keyboard data types only. If bit 5 is set, it
indicates that the corresponding ISR Event
record contains the current state in BH.

Logical Keyboard Driver

The logical keyboard driver determines the keypad group the scancode belongs to and sets the Data Type
field in the ISR event record. Based on the Data Type a translator service is called to handle the
scancode. For example, if the "Q" key scancode comes through, the logical keyboard driver determines the
data type to be T_KC_QWERTY and calls the V_QWERTY translator. If the translator called by the
logical keyboard driver is responsible for any of the keyboard modifier keys thecurrent state variable is
placed in the ISR Event Record and the state indicator bit is set in the Data Type field. Table 5-14
contains the scancode range to translator service assignments.

Table 5-14. Scancode Range to Translator Service Assignments

Driver Name Scancode Range Translation Performed

V_QWERTY 00H-36H None

38H-3AH

55H-5FH

6BH-6FH

78H-7FH

V_SOFfKEY 70H-77H 3BH--42H (FI--F8)

Keyboard 5 ...31

Table 5-14. Scancode Range to Translator Service Assignments (Cont.)

Driver Name Scancode Range Translation Performed

V_FUNCTION 38H-44H None

V_NUMPAD 37H, 45H-54H None

V_CCP 60H-6AH Cursor Always - Regardless of state of the
<Num lock> and <Shift> keys.

If the translation was successful, the returned ISR Event Record is passed to the logical keyboard drivers
parent (V_8042).

Before passing a successful translation to its parent (V_8042) the logical keyboard driver performs two
conditional tasks. First, it checks the state bit in the returned Data Type, if set the master copy of the
keyboard state variable is updated with the copy returned in the ISR Event Record. Second, if the ISR
event went to the V_CCP translator the logical keyboard driver takes the necessary steps to insure that
cursor control keys are generated regardless of the <Num lock> and <Shift> key states.

If a translator wants to remove the scancode from the scancode stream it must return a status code of
RS_DONE to the logical keyboard driver (See the CCP2GID driver in Appendix G).

Table 5-15 contains a summary of the logical keyboard driver functions.

Table 5-15. Logical Keyboard Driver Function Code Summary

Function Function
Value Equate Definition

F_Keyboard Driver (This driver does not have a fixed
HP_VECTOR_TABLE address)

00 F_ISR Logical Interrupt

02 F_SYSTEM System Intrinsics

02/00 SF_INIT Driver initialization

02/06 SF_VERSION_DESC Reports HP version number

5-32 Keyboard

Logical Keyboard Driver Function Definitions

F ISR (AH = OOH)

This function processes the Keyboard ISR Event Record. It determines the range of the scancode, then
calls the appropriate translation service.

On Entry: AH = F_ISR (OOH)
BH = Keyboard State (only if state bit set in Date type)
BL = Scancode
CX = Number of bytes in buffer (scancode strings only)
OW = Scan code type
DL = Vector address of keyboard / 6
BP = HP-HIL device n vector address

ES:SI = Pointer to buffer (scancode strings only)

On Exit: AH = Return Status Code

Registers Altered: AX, BX, CX, OX, SI,
BP, ES, OS

SF INIT (AX =0200H)

This subfunction is called to initialize the driver. Refer to Chapter 8 for a complete discussion of the
protocol utilized in data space allocation ("last used DS" passed in register BX).

On Entry: AH = F SYSTEM (02H)
AL = sf INIT (OOH)
BX = "Last used OS" in HP Data Area
BP = HP-HIL device n vector address

On Exit: AH = Return Status Code
BX = New "last used OS" is

HP Data Area

Registers Altered: AX, BX, BP, OS

SF VERSION DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the'week of the year.

Keyboard 5 - 33

On Exit: AH =
BX =
CX =

ES:DI =

On Entry: AH = F_SYSTEM (02H)
AL = SF VERSION DESC (06H)
BP = HP~HIL devIce n vector address

Return Status Code
Release date code
Number of bytes in current
version number
Pointer to the current version·
number

Registers Altered: AX, BX, CX, 01, ES, BP, OS

Keyboard Translators

There is one keyboard translator service for each of the five keypad groups on the k.eyboard (see Figure
5-2). Two of the five services are special cases in that they are actually chains of translators to facilitate
keyboard mapping. Figure 5-1 shows the translators and their mapping possibilities.

Applications may install routines to replace (or chain to) anyone or all of the translators presented here.
The INT l6H driver provides three functions to get the current UP_VECTOR_TABLE entries for the
five keypad translators, to set these same values, and to reset them to their default values. The
V_SYSTEM driver in Chapter 8 provides functions to get or set any fixed HP_ VECTOR_TABLE entry
(all EX-BIOS translators presented in this section have fixed entries). The V_SYSTEM functions allow
replacement of translators other than the main five called by the logical keyboard driver (those in
translator chains).

Applications that do not overlay existing translators, may install entirely new translators instead and map
themselves into the UP Function and Cursor Control keypad translator chains as the parent drivers of the
V SOFTKEY and V CCP services respectively. This method only works for the HP proprietary keypads.- -

V_SOFTKEY (BP =003CH)

This translator service verifies the Data Type is T_KC_HP_SOFfKEY and then passes the ISR Event
Record to its parent. By default, this translator is mapped to the V_SKEY2FKEY service; alternative
mappings are presented in Table 5-16.

Table 5-16. V_SOFrKEY Dl"iver Mapping Alternatives

Dl"iver Name Function

V_OFF Discards the ISR event.

V RAW Returns the scancode untranslated.

V SKEY2FKEY Translates the UP Function keys into their respective Compatibility
Function key equivalents.

5 - 34 Keybpard

F ISR (AH = OOH)

This function verifies the, passed in Data Type and passes the ISR event on to its parent.

On Entry: AH = F_ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scancode type (T KC HP SOFTKEY = OBH)
DL = Source vector address 76
BP = V_SOFTKEY (OO3CH)

On Exit: AH = Return Status Code
BL = Translated scancode
BH = New keyboard state (only if state bit set in type)
DH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BX, DH, BP, OS

SF INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Chapter 8 for a complete discussion of the
protocol utilized in data space allocation ("last used DS" passed in register BX).

On Entry: AH = F SYSTEM (02H)
AL = SF INIT (OOH)
BX = IILast used OSII in HP Data Area
BP = V SOFTKEY (OO3CH)

On Exit: AH = Return Status Code
BX = IINew last used OSII in HP Data Area

Registers Altered: AX, BX, BP, OS

SF VERSION DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = F SYSTEM (02H)
AL =Sf VERSION DESC (06H)
BP = V_SOFTKEY (003CH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, ex, 01, ES, BP, OS

Keyboard 5-35

V_QWERTY (BP =0036H)

The V_ QWERTY service verifies the correct Data Type. This service also maintains the state of the left
and right <Shift> keys, the <Ctrl> key, the <Alt> key, the left and right unlabeled keys and the <Caps
lock> key.

F_ISR (AH = OOH)

This function verifies the Data Type, updates the keyboard state variable, and returns.

On Ent ry: AH = F ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scancode type (T_KC_QWERTY = OEH)
DL = Source vector address / 6
BP = V_QWERTY (OO36H)

On Exit: AH = Return Status Code
BH = New keyboard state (only if state bit set type)
DH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BH, DH, BP, OS

SF_VERSION_DESC (AX =0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = F SYSTEM (02H)
AL = Sf VERSION DESC (06H)
BP = V_QWERTY (0036H)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:OI = Pointer to the current version number

Registers Altered: AX, BX, ex, 01, ES, BP~ os

5-36 Keyboard

V_FUNCTION (BP = 0042H)

This service verifies the Data Type, sets a new Data Type and returns.

F ISR (AH = OOH)

This function verifies the Data Type, and sets the new one.

On Entry: AH = F ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
OH = Scancode type (T_KC_IS_fUNCTION = OCH)
OL = Source vector address
BP = V_fUNCTION (OO42H)

On Exit: AH = Return status code
OH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, OH, BP, OS

SF VERSION DESC (AX =0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = F SYSTEM (02H)
AL =SF VERSION OESC (06H)
BP = V_FUNCTION-(0042H)

On Exit: AH =
BX =
CX =

ES:OI =

Return Status Code
Release date code
Number of bytes in current version number
Pointer to the current version number

Registers Altered: AX, BX, CX, 01, ES,BP, OS

Keyboard 5-37

V_NUMPAD (BP =0048H)

The V_NUMPAD service is the scancode translator for the numeric keypad. It verifies the Data Type is
correct and maintains the state of the <Num lock> and <ScrLck> keys.

F ISR (AH = OOH)

Verify Data Type and update state variable.

On Entry: AH = F ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
OH = Scancode type (T_KC_NUMPAO = OfH)
OL = Source vector address / 6
BP = V_NUMPAO (OO48H)

On Exit: AH = Return status code
BH = New keyboard state (only if state bit set in type)
OH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BH, OH, BP, OS

SF_VERSION_DESC (AX = 020GH)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = F SYSTEM (02H)
AL = Sf VERSION DESC (06H)
BP = V_NUMPAO (0048H)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX,BX, CX, 01, ES, BP, OS

5 -38 Keyboard

V_CCP (BP =004EH)

This translator service verifies the Data Type is T_KC_HP_CCP and then passes the ISR Event Record
to its parent. By default this translator is mapped to the V_CCPCUR service, alternative mappings are
presented in Table 5-17.

Table 5 -17. V_CCP Driver Mapping Alternatives

Driver Name Function

V OFF Discards the ISR event.

V RAW Returns the scancode untranslated.

V CCPNUM Translates the cursor control pad scancodes into cursor or numeric key pad
scancodes, depending on the <Num Lock> and <Shift> states.

V CCPCUR Translates the cursor control pad scancodes into cursor scancodes, regardless of
the <Num Lock> and <Shift> states.

F ISR (AH = OOH)

This function verifies the Data Type and passes the event to its parent.

On Entry: AH = F ISR (DOH)
BH = Keyboard state (only if state bit set in type)
BL = Scan code
OH = Scancode type (T KC HP CCP = OOH)
OL = Source vector address 7 6
BP = V CCP (004EH)

On Exit: AH = Return Status Code
BL =Translated scancode
BH = New keyboard state (only if state bit set in type)
OH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BX, OH, BP, OS

Keyboard 5-39

SF_INIT (AX =0200H)

This subfunction is called to initialize the driver. Refer to Chapter 8 for a complete discussion of the
protocol utilized in data space allocation (!llast used OS" passed in register BX).

On Entry: AH = F SYSTEM (02H)
AL = SF INIT (OOH)
BX = "Last used OS" in HP Data Are~

BP = V CCP (OO4EH)

On Exit: AH = Return Status Code
BX = New "last used OS" in HP Data Area

Registers Altered: AX, BX, BP, OS

SF VERSION DESC (AX =0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF VERSION OESC (06H)
BP = V CCP (004EH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:OI = Pointer to the current version number

Registers Altered: AX, BX, CX, 01, ES, BP, OS

5-40 Keyboard

V_OFF Driver (BP =0009CH)

The V_OFF driver effectively turns off any translator mapped to it. It returns a Return Status Code of
RS_DONE, this indicates to the driver which called that all processing is complete, and to return.
Returning this status code effectively terminates processing of the scancode.

F ISR (AH = OOH)

This function sets a return status of RS_DONE and exits.

On Entry: AH = F ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scan code type (any type accepted)
DL = Source vector address / 6
BP = V OFF (OO9CH)

On Exit: AH = RS DONE

Registers Altered: AX, BP, OS

SF VERSION OESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF VERSION OESC (06H)
BP = V OFF (009CH)

On Exit: AH =
BX =
CX =

ES:DI =

Return Status Code
Release date code
Number of bytes in current version (number
Pointer to the current version number

Registers Altered: AX, BX, CX, 01, ES, BP, OS

Keyboard 5-41

V_RAW Driver (BP = 0090H)

The V_RAW driver sets the data type to T_KC_IBM_PC (DAH) and returns, leaving the scancode
untranslated.

F_ISR (AH = OOH)

This function sets a Data Type of T_KC_IBM_PC and a return status of RS_SUCCESSFUL.

On Entry: AH = F ISR (DOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scancode type (any accepted)
DL = Source vector address / 6
BP = V RAW (OO90H)

On Exit: AH = Return Status Code
DH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, DH, BP, OS

SF VERSION OESC (AX =0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF VERSION DESC (06H)
BP = V RAW (0090H)

On Exit: AH = Return Status Code
BX = Release date code
ex = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, ex, 01, ES, BP, os

5-42 Keyboard

I V_CCPNUM (BP =0096H)

The V_ CCPNUM driver converts scancodes from the UP cursor control keypad to their respective
Numeric keypad equivalents. The resultant scancodes will be either numeric or cursor scancodes,
depending on the state of the <Num Lock> and <Shift> keys.

F_ISR (AH =OOH)

This function translates the scancode, sets a new Data Type and exits.

On Entry: AH = f_ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
OH = Scancode type (T_KC_HP_CCP = OOH)
OL = Source vector address / 6
BP = V_CCPNUM (OO96H)

On Exit: AH = Return Status Code
BH = New keyboard state (only if state bit set in type)
BL = Translated scancode
OH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BX, OH, BP, OS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH =f SYSTEM (02H)
AL = sf VERSION DESC (06H)
BP =V_CCPNUM (0096H)

On Exit: AH =
BX =
CX =

ES:OI =

Return Status Code
Release date code
Number of bytes in current version number
Pointer to the current version number

Registers Altered: AX, BX, CX, 01, ES, BP, OS

Keyboard 5-43

V_CCPCUR (BP = 008AH)

The V_CCPCUR service converts scancodes from the Cursor Control Keypad to their respective numpad
or cursor control equivalents. The <Shift> key states in the keyboard state variable are adjusted to cancel
the effect of the <Num lock> key and force the Numeric keypad to operate in cursor mode. Upon return
from this translator chain, the logical keyboard driver generates the appropriate <Shift> scancodes to
account for the change to the keyboard state variable.

F ISR (AH =OOH)

This function translates the scancode to its Numeric keypad equivalent, changes the Data Type to
T_KC_IBM_PC, and adjusts the keyboard state variable to force the Numeric keypad into cursor mode.

On Entry: AH = F ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
OH = Scancode type (T_KC_HP_CCP = OOH)
OL = Source vector address / 6
BP = V_CCPCUR (OO8AH)

On Exit: AH = Return Status Code
BH = New keyboard state (only if state bit set in type)
BL =Translated scancode
OH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BX, OH, BP, OS

SF VERSION DESC (AX =0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of yean since 1960 and the BH register contains the week of the year.

On Entry: AH = F SYSTEM (02H)
AL = SF VERSION OESC (06H)
BP = V_CCPCUR (008AH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:OI = Pointer to the current version number

Registers Altered: AX, BX, CX, Ot, ES, BP t OS

5-44 Keyboard

V_SKEY2FKEY (BP = OOA8H)

The V_SKEY2FKEY service translates HP Function key scancodes into their industry standard function
key equivalents. The driver makes no attempt to verify that the scancode passed is in the range for an HP
Function key.

F_ISR (AH = OOH)

This function translates the scancode, sets the Data Type to T_KC_IBM_PC and returns.

On Entry: AH = F ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
OH = Scancode type (T_KC_HP_SOfTKEY = OBH)
OL = Source vector address / 6
BP = V_SKEY2FKEY (OOABH)

On Exit: AH = Return Status Code
BL = Translated scancode
OH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BL, OH, BP, OS

SF VERSION OESC (AX =0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists. of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = F SYSTEM (02H)
AL =SF VERSION DESC (06H)
BP =V_SKEY2FKEY (OOABH)

On Exit: AH =
BX =
CX =

ES:OI =

Return Status Code
Release date code
Number of bytes in current version number
Pointer to the current version number

Registers Altered: AX, BX, CX, 01, ES, BP, OS

Keyboard 5~45

V_8042 Driver (BP = OOAEH)

This driver provides an interface to the 8042 keyboard controller chip. It responds to 8042 service
requests and Input System logical interrupt requests (F_ISR's) to output scancodes to the 8042 chip. It
also provides an application interface to 8042 timer services and switch settings. Table 5-18 contains a
function code summary for this driver.

Table 5 -18. V_8042 Driver Function Code Summary

Func.
Value

00

02

02/00

02/02

02/06

04

04/00-0

04/0A

04/0C

04/0E

04/10

04/12

04/14

04/16

04/18

04/1A

5 -46 Keyboard

Function
Equate

SF_ENABL ~NTR

SF_DISBL _INTR

SF_SET _RAMSW

Definition

. 8042/keyboard interface. provides HP extemions to
INT 16H

Processes ISR event record

System functions

Initialize driver

Driver start-up

Report HP version number

Driver dependent functions

Reserved

Create interval entry

Delete interval entry

Enable interval

Disable interval

set RAM switch to one (1)

set RAM switch to zero (0)

set CRT switch to one (l)

set CRT switch to zero (0)

Pass data byte to 8042

V 8042 Driver Function Definitions

F ISR (AH = OOH)

This function processes a Keyboard ISR Event Record. It checks to see if the 8042 will accept another
scancode. If not, the scancode is placed in a queue. If the 8042 can accept a scancode, it writes the
scancode out. The scancode queue has room for 127 entries plus one overrun character.

On Entry: AH = f ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
CX = Number of scancodes in buffer (string type only)
DH = Scancode type
DL = Source vector address I 6
BP = V 8042 (OOAEH)

ES:SI = Pointer to buffer (st ring type only)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF INIT (AX =0200H)

This subfunction is called to initialize the driver. Refer to Chapter 8 for a complete discussion of the
protocol utilized in data space allocation ("last used DS" passed in register BX).

On Entry: AH = f SYSTEM (02H)
AL = SF INIT (OOH)
BX = "Last used 0s" in HP Data Area
BP = V_8042 (OOAEH)

On Exit: AH = Return Status Code
BX = New "last used 0s" in HP Data Area

Registers Altered: AX, BX, BP, OS

SF START (AX =0202H)

This lubfunction starts the 8042 driver.

On Entry: AH = f SYSTEM (02H)
AL = SF START (02H)
BP = V_B042 (OOAEH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Keyboard 5-47

SF_VERSION_DESC (AX =0206H)

This subfunction returns the release date code and a double word pointer to the current version number.
The date code consists of two BCD coded bytes containing the year and week of release. The BL register
contains the number of years since 1960 and the BH register contains the week of the year.

On Entry: AH = f SYSTEM (02H)
AL = SF VERSION OESC (06H)
BP =V_8042 (OOAEH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:OI = Pointer to the current version number

Registers Altered: AX, BX, CX, 01, ES, BP, OS

SF_CREAT_INTR (AX =040AH)

The 8042 driver will call up to eight drivers at 1/60 second intervals. This subfunction creates an entry
in the table of driver vectors which are called. Note that this subfunction only creates the entry; it does
not enable the interval service. This is accomplished with the SF_ENABL_INTR subfunction.

On Entry: AH = f 10 CONTROL (04H)
AL = SF CREAT INTR (OAH)
BH = Vector number (vector address divided by six of

driver requesting service
BP = V_8042 (OOAEH)

On Exit: AH = Return Status Code
RS fAIL indicates driver vector table full.

Registers Altered: AX, BP, OS

SF_DELET_INTR (AX = 040CH)

This function removes the passed in vector number from the interval service table.

On Entry: AH = f 10 CONTROL (04H)
AL = SF OELET INTR (OCH)
BH = Vector number (vector address divided by six) of

driver to delete from table
BP = V 8042 (OOAEH)

On Exit: AH = Return Status Code
RS fAIL indicates vector not in table.

Registers Altered: AX, BP, OS

5-48 Keyboard

SF_ENABL_INTR (AX =040EH)

This function enables interrupt service for a driver. The vector number passed is checked against the
table. If an entry with that vector number is found, interval service is enabled. When the interval expires
all enabled drivers in the list will be interrupted with a function code of F_SYSTEM (02H) in AH and a
subfunction code of SF_INTERVAL (14H) in AL.

On Entry: AH = F 10 CONTROL (04H)
AL = sf ENABL INTR (OEH)
BH = Vector number (vector address divided by six) of

driver requesting service
BP = V 8042 (OOAEH)

On Exit: AH = Return Status Code
RS FAIL indicates vector not in table.

Registers Altered: AX, BP, OS

SF_DISBL_INTR (AX = 0410H)

This function disables interrupt service for a driver. The vector number passed is checked against the
table. If an entry with that vector number is found, interval service is disabled.

On Entry: AH = f 10 CONTROL (04H)
AL = sf DISBL INTR (10H)
BH = Vector number (vector address divided by six) of

driver to be disabled
BP = V_8042 (OOAEH)

On Exit: AH = Return Status Code
RS FAIL indicates vector not in table.

Registers Altered: AX, BP, OS

SF_SET_RAMSW (AX =0412H)

This function sets the industry standard extended RAM "switch" in the 8042 status register. This switch
indicates that the second 256K RAM bank on the system board is enabled (default condition).

On Entry: AH = f 10 CONTROL (04H)
AL =sf SET RAMSW (12H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Keyboard 5 -49

SF_CLR_RAMSW (AX =0414H)

This function clears the industry standard extended RAM "switch" in the 8042 status register. When this
switch is off it indicates that the second 256K RAM bank is disabled.

On Entry: AH = f 10 CONTROL (04H)
AL = Sf CLR RAMSW (14H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_SET_CRTSW (AX = 0416H)

This function sets the industry standard primary CRT "switch" in the 8042 status register. When the
switch is set it indicates the primary display is attached to the Multimode graphics adapter (Default
condition). .

On Entry: AH = f 10 CONTROL (04H)
AL = Sf SET CRTSW (16H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF CLR CRTSW (AX =0418H)

This function clears the industry standard primary CRT "switch" in the 8042 status register. When this
switch is clear it indicates the primary display is attached to the monochrome display adapter.

On Entry: AH = f 10 CONTROL (04H)
AL = SF_CLR_CRTSW (18H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF PASS THRU (AX = 041AH)

This function outputs the byte in BL to the 8042 using the pass thru command to prevent the 8042 from
interpreting the data as a scancode or a command.

On Entry: AH = f 10 CONTROL (04H)
AL = Sf_PASS_THRU (1AH)
BL = data byte to pass thru the 8042

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

5 - 50 Keyboard

8042 Keyboard Controller

This section discusses the role of the 8042 keyboard controller. The information presented applies to both
the Vectra Enhanced keyboard and Vectra Keyboard/DIN, unless indicated otherwise.

Overview

The primary function of the 8042 keyboard controller is to manage the industry standard keyboard
interface. (Directly accessing this hardware interface may affect program portability and is not
recommended.) The 8042 keyboard controller also acts as a loopback buffer for the input system to the
STD-BIOS keyboard driver. The 8042 is implemented in such a way as to maintain standard IBM PC/AT
compatibility, while at the same time supporting all of the features of the input system.

The 8042 keyboard controller accepts two sets of industry standard commands from the STD-BIOS
drivers that control the operation of the controller and the keyboard itself. One set is controller
commands, the other is keyboard commands (both sets are listed in Table 5-19). Controller commands
are executed by the 8042 controller while keyboard commands are sent to the keyboard for execution.

8042 Controller and Keyboard Commands

Each of the controller command and keyboard command sets has its own protocol. The 8042 has two
ports: a command port (I/O address 64H), and a data port (I/O address 60H). 8042 controller commands
are written to the command port. If the command has parameters associated with it, the parameters are
written to the data port. Keyboard commands are written to the data port. If the command has
parameters associated with it, they are also written to the data port. All data written to the data port is
interpreted as a keyboard command unless the previous command written to the command or data port
required parameters.

The following code writes a one-byte command to the 8042 controller to disable the keyboard interface.

hpB042_cmd_po rt equ 64h IBM cmd/status port
hpB042_status_port equ 64h IBM cmd/status port
hpB042_data_port equ 60h IBM data port
hpB042_ibf_mask equ 02h Input buffer full mask

hpB042_i face_dis equ OADh Disable interface

dis 8042 proc near
push cx ; save working set of regs
push ax
xor cX,cx loop 64k times (if necessa ry)
cli ints must be off for this loop

Keyboard 5-51

dis 8042 10:
in al,hpB042_status_port
test al,hpB042_ibf_mask
loopnz dis 8042 10

get status and see if 80286
input buffer if full
loop if it is

mov
out
sti

al ,hpB042_iface_dis
hpB042_cmd_port,al

load disable command and
ship it out

dis 8042

pop ax
pop cx
ret
endp

The following code writes a two byte command to the 8042 to turn on all the keyboard LEOs at once.

hpB042_cmd_po rt equ 64h
hpB042_status_port equ 64h
hpB042_da ta_po rt equ 60h
hpB042_set_led equ Oedh

hpB042_ibf_mask equ 02h
led data equ 07h

set 8042 proc near
push cx
push bx
push ax
xor cx,cx
mov bh, led_data
mov bl,hpS042_set_Ied
cli

set 8042 10:
in al,hpB042_status_port
test al,hpS042_ibf_mask
loopnz set 8042 10

mov al,bl
out hpB042_data_port,al
cmp bh,al
Je set 8042 20
mov bl,bh
xor cx,cx
jmp short set 8042 10

HpB042 cmd/status port
HpB042 cmd/status port
HpB042 data port
Set keyboard leds command

Input buffer full mask
Led mask to send out

save working set of regs

loop 64k times (if necessary)
load data for loop
load command
ints must be off for this loop

get status and see if 8042
input buffer if full
loop if it is

load command and
ship it out
did we output both bytes
yes, skip out
set up for next iteration

loop

5 -52 Keyboard

set 8042 20:

set 8042

sti

pop
pop
pop
ret
endp

ax
bx
ex

CHANGE this to restore
int flag to previous state
instead of on (if needed)

Table 5-19 lists the 8042 controller commands. These commands are categorized as READ, SNGL, or
DBL. READ commands cause the 8042 controller to place the indicated data byte in it's output buffer,
input port 60H, to be read by the CPU. SNGL commands are commands written to output port 64H.
DBL byte commands are written to output port 64H with the following data byte being written to output
port 60H.

Table 5-19. 8042 Controller Commands

Command Type Description

020H READ Reads byte zero of the 8042's internal RAM.
This byte is the last keyboard command sent to
the 8042.

021H-03FH READ Reads the byte specified by the lower five bits of
the command in the 8042's internal RAM. E.g.
8042 controller command 34H will report con-
tents of the 14H byte of the 8042's RAM.

060H-07FH DBL Writes the data byte to the address specified in
the low five bits of the command.

OAAH SNGL Initiate Self-Test. This command instructs the
8042 to perform a self test. If no errors are
detected, 55H is returned in the data port.

OABH SNGL Initiate Interface Test. This command instructs
the 8042 to test the interface between itself and
the keyboard. (Always returns 0 =successful)

OACH READ Diagnostic Dump. The contents of the 8042 in-
ternal RAM registers (16 bytes), output port, in-
put port, and status word are sent to the system.
All diagnostic data is sent to the system in the
same manner as scancodes. (Not supported)

OADH I SNGL Disable Keyboard. This command disables the
keyboard. Bit 4 of the current command byte
will be set to 'I' in the 8042. This is equivalent
to issuing a command byte with bit 4 set to 'I '.
Note that this command will have no effect if
bit 3 of the command byte is set to 'I'.

Keyboard 5-53

Table 5-19.8042 Controller Commands (Cont.)

Command

OAEH

OCOH

ODOH

ODIH

ODDH

ODFH

OEOH

OFOH-OFFH

SNGL

READ

READ

DBL

SNGL

SNGL

READ

SNGL

Type Description

Enable Keyboard. This command re-enables the
keyboard. Bit 4 of the current command byte is
cleared in the 8042. This is equivalent to issuing
a command byte with bit 4 set to '0'.

Read Input Port. The current value of the input
port is returned. Bit 7 indicates the status of the
front panel keylock. Bits 0 - 3 will always be
reported as ' 1). Bits 4 - 6 are undefined.

Read Output Port. The current value of the out
put port is returned. See Table 5-21 for bit
definitions.

Write Output Port. The next byte written to the
data port will be written to the 8042 output
port. The bit definitions for this port are given
in Table 5-21. WARNING - The System Reset
bit should not be written low. To reset the sys
tem, use the Pulse Output Port command.

Disable Address Bit 20. Disables the A20 address
of the processor address bit. This is the normal
state of this pin the in real addressing mode.

Enable address Bit 20. Enables the A20 address
of the processor address bit. This state is only
used in protected mode.

Read Test Inputs. This command will output the
current state of the 8042 test inputs, TO and Tl.
The current state of TO is stored in bit 0 and T 1
in bit 1. Both bits will be reported as '1', unless
the keyboard interface is inhibited. Bits 2
through 7 are undefined.

Pulse Output Port. Bits 0 - 3 of the output port
may be pulsed low for approximately 6 micro
seconds. Bits 0 through 3 contain a mask which
is interpreted by the 8042 to determine which
bits are pulsed. A bit is pulsed if its correspond
ing mask bit is '0'; if it is ' l' its current state is
maintained. Note - The System Reset bit is con
nected to bit O. If the system needs to be reset,
this command should be used (i.e., the bit should
be pulsed, not brought low indefinitelY.)

L...-1..-..

5-54 Keyboard

Table 5-20 indicates the format of the data byte written to the 8042 Controller subsequent to the 8042
Command 20U listed in Table 5-19.

Table 5-20. 8042 Command Byte Format

Bit Data Definition

07H 0 Reserved--must always be O.

06H Scancode conversion mode.
1 The scancodes received from the keyboard are converted into PC/XT

scancodes.
0 Convert to AT scancodes.

05H Acts as a NOP (No Operation instruction).

04H Disable Keyboard. Data will not be sent or received by the keyboard.
1 Disables the keyboard.
0 Restore operation.

03H Inhibit override.
I Prevents the keyboard from being disabled via the computer's

Security Keylock.

02H System Flag. The value of this bit is stored as the System Flag Bit.
This bit may be read via port 60H.

01H Reserved--must always be O.
1 Instructs the 8042 to issue an OBF (Output Buffer Full) interrupt

when data is in the output buffer.
0 Disables this feature.

Table 5-21 indicates the format of the data byte written to the 8042 controller subsequent to the 8042
Command Write Output Port OD1H, or read from the 8042 controller subsequent to the 8042 Command
Read Output Port ODOH.

Table 5 -21. 8042 Command Output Port Bit Mask

Bit Data Definition

07H 1 Keyboard data line
06H 1 Keyboard clock line
05H 1 Undefined
04H 1 Output Buffer Full Interrupt (OBF)
03H 1 Undefined
02H 1 Undefined
01U 1 A20 Gate
OOH 1 System Reset

Keyboard 5 - 55

Table 5-22 lists the keyboard commands. These commands are categorized as SNGL or DBL. SNGL
commands are commands written to output port 60H. DBL byte commands are written to output port
60H with the subsequent data byte, also, being written to output port 60H. The coding examples given
for 8042 controller commands is similar to the procedure for writing keyboard commands. The notable
exception being the I/O address 60H is substituted for the I/O address 64H (defined with the equate,
hpB042_cmd_po rt).

Table 5 -22. K~yboardCommands

Command

OEDH

OEEH

OEFH

OFOH

OFlH

OF2H

OF3H

5-56 Keyboard

Type

DBL

SNGL

SNGL

DBL

SNGL

SNGL

DBL

Description

Set/Reset Mode Indicators. The keyboard has thr~ status indicators;
Caps lock, Num lock, and Scroll lock. This command is used to tum
these indicators on and off. After the command is issued, the system
must wait for an ACK (OFAH in Table 5-28) from the keyboard
(see below). When it is received, a second byte is issued to the
keyboard. Bits 0 - 2 represent Scroll lock, Num lock, and Caps lock,
respectively. Setting their respective bits to 1 turns the indicator on,
while a 0 turns it off. Bits 3 - 7 should be set to O. (See Table
5-23)

Echo. This is a diagnostic tool. When this command is issued, the
keyboard returns an EEH.

No Operation (NOP). These codes are reserved for future use. The
keyboard will acknowledge these codes, but no other action will be
performed.

Select Alternate Scancodes. This command instructs the keyboard to
select one of three sets of scancodes. When the keyboard receives this
command it responds with an 'ACK' and clears the output buffer
and the typematic key (if one is active). The system then sends the
option byte to select the appropriate scancode set: 018 selects set 1,
02H selects set 2, 03H selects set 3. The keyboard responds to this
with another 'ACK'. (See Tables 5-24a, 5-24b, and 5-24c).

No Operation (NOP). These codes are reserved for future use. The
keyboard will acknowledge these codes, but no other action will be
performed.

Request Keyboard Identification information. The keyboard responds
with an 'ACK', discontinues scanning and sends the two keyboard ID
bytes. The second byte must follow the first by no more then 500
microseconds. After the output of the second ID byte, the keyboard
resumes scanning.

Set Typematic Rate/Delay. This command sets the values for the
typematic rate and delay.

The typematic rate is the number of make scancodes per second sent
in the typematic (repeat) mode. The delay is the amount of time a
key must be held down until it enters the typematic mode.

Tahle 5-22. Keyboard Commands (Cont:)

Command Type Description

The rate and delay are passed in the next byte after the command.
Bits 0 through 4 contain the rate and bits Sand 6 contain the delay.
Bit 7 is unused.

The 8042 chip accepts STD AT typematic commands which are com-
posed of two bits of delay (6,5) and five bits of rate (4 - 0). The
two low order bits of the rate value are stripped off by the 8042 and
the result translated into the typematic rate. (See Table 5-27.)

OF4H SNGL Enable. This command enables keyboard action. The keyboard will is-
sue an 'ACK'responJe, then ~gin sending scancodes as keys are
pressed.

OF5H SNGL Default Disable. This command sets the keyboard parameten to their
power-on default state and disables the transmission of scancodes.
The keyboard will send an 'ACK' response to this command.

OF6H SNGL Set Default. This command sets the keyboard parameters to their
power-on state and sends an 'ACK' response. the keyboard will con-
tinue to transmit scancodes after receipt of this command.

OF7H SNGL Set All Keys Typematic. When the keyboard receives this command
it responds with an 'ACK', clean output buffen, sets all keys to
typematic and continues scanning. This command can be sent using
any scancode set, but only set 3 is affected.

OF8H SNGL Set All Keys Make/Break. When the keyboard receives this command
it responds with an 'ACK', clean output buffers, sets all keys to
make/break and continues scanning. This command can be sent using
any scancode set, but only set 3 is affected.

OF9H SNGL Set All Keys Make. When the keyboard receives this command it
responds with an 'ACK', clean output buffen, sets all keys to make
and continues scanning. This command can be lent using any scan-
code set, but only set 3 is affected.

OFAH SNGL Set All Keys Typematic/Make/Break. When the keyboard receives
this command it responds with an 'ACK', clean output buffen, sets
all keys to typematic/make/break and continues scanning. This
command can be sent using any scancode set, but only set 3 is
affected.

OFBH DBL Set Key Typematic. When the keyboard receives this command it
clean output buffen to receive key 10. The system identifies each
key by its scancode set 3 value (the only valid means of key iden-
tifieation) . Each identified key is set to typematie.

Keyboard 5-57

Table S-ZZ. Keyboard Commands (Cont.)

Command Type Description

OFCH DBL Set Key Make/Break. When the keyboard receives this command it
clean output buffen to receive key 10. The system identifies each
key by its scancode set 3 value (the only valid means of key iden-
tification). Each identified key is set to make/break.

OFDH DBL Set Key Make. When the keyboard receives this command it clears
output buffen to receive key 10. The system identifies each key by
its scancode set 3 value (the only valid means of key identification).
Each identified key is set to make.

OFEH SNGL Resend. This command may be sent to the keyboard whenever an er-
ror is detected by the system. This command must be sent before the
next scancode is to be transmitted. If the last code sent by the
keyboard was a Resend command, the keyboard will send the prior
code.

OFFH SNGL Reset. This command instructs the keyboard to perform its Power-On
Reset. function. This step takes at least 300 milliseconds, during
which the keyboard is disabled.

Table 5-23 indicates the format of the data byte written to the output port 60H subsequent to the
Keyboard Command 'Set Mode Indicaton' OEDH.

Table 5-23. Set Mode Indicators Data Byte Format

Bit Data Definition

07H-03H Reserved, should be set to zero

02H Caps Lock Mode Indicator
0 Turns off Caps Lock indicator
1 Turns on Caps Lock Indicator

01H Num Lock Mode Indicator
0 Turn off Num Lock indicator
1 Tum on Num Lock indicator

DOH Scroll Lock Mode Indicator
a Tum off Scroll Lock indicator
1 Turn on Scroll Lock indicator

5 - 58 Keyboard

Tables 5-24, 5-25 and 5-26 list the three scancode sets that can be switched to and from by the
keyboard command OFOH (select alternate scancodes). The system defaults to scancode set 2.

Scancode Set 1

In this set, keys are assigned a base scancode (extra codes generate artificial shift states in the system, in
some cases). The typematic scancodes are identical to the base scancode for each key.

In part one of the following table, keys send the codes shown (regardless of any shift states). Refer to
Figures 5-2 and 5-3 for keyboard layouts showing the associated key numbers.

TABLE 5-24a. SCANCOOE SET 1 (PART 1) .

Key Number Make Code Break Code Key Number Make Code Break Code

1 29 A9 49 2F AF
2 02 82 50 30 BO
3 03 83 51 31 B1
4 04 84 52 32 B2
5 05 85 53 33 B3
6 06 86 54 34 B4
7 07 87 55 35 B5
8 08 88 57 36 B6
9 09 89 58 10 90
10 OA 8A 59 *** 5E DE
11 OB 8B 60 38 B8
12 OC 8C 61 39 B9
13 OD 8D 62 EO 38 EO B8
15 OE 8E 63 *** SF OF
16 OF 8F 64 EO 1D E09D
17 10 90 90 45 C5
18 11 91 91 47 C7
19 12 92 92 4B CB
20 13 93 93 4F CF
21 14 94 96 48 C8
22 15 95 97 4C CC
23 16 96 98 50 DO
24 17 97 99 52 02
25 18 98 100 37 B7
26 19 99 101 49 C9
27 1A 9A 102 40 CD
28 1B 9B 103 51 01
29 * 2B AB 104 53 D3
30 3A BA 105 4A CA
31 1E 9E 106 4E CE
32 1F 9F 108 EO 1C E09C
33 20 AO 110 01 81
34 21 A1 112 3B BB
35 22 A2 113 3C BC
36 23 A3 114 3D BO
37 24 A4 115 3E BE
38 25 A5 116 3F BF
39 26 A6 117 40 CO
40 27 A7 118 41 C1
41 28 A8 119 42 C2
42 ** 2B AB 120 43 C3
43 1C 9C 121 44 C4
44 2A AA 122 57 D7
45 ** 56 D6 123 58 D8
46 2C AC 125 46 C6

* 101-key keyboard only.
** 102-key keyboard only (non-US).
*** Asian keyboard only.

Keyboard 5 - 59

The next parts show a series of codes dependent on the state of the keys <Ctrl>, <Alt>, <Shift> and
<Num Lock>. Since the base scancode is the same as that of another key, an extra code (EO hex) has
been added to the base to make it unique.

TABLE 5-24b. SCANCODE .SET 1 (PART 2)

Base Case, or
Key Shift + Num Lock Shift Case Num Lock on
Number Make I Break Make I Break * Make I Break

75 EO 521 EOAA E0521 EO 2A EO 521
EO 02 EO D2 E02A EO D2EOAA

76 E0531 EOAA E0531 EO 2A EO 53 I
EOD3 EO D3 E02A EO D3EOAA

79 EO 4BI EOAA E04BI EO 2AEO 4BI
EOCB EO CBE02A EO CB EOAA

80 EO 47 I EOAA EO 47 I EO 2A EO 47 I
EOC7 EO C7E02A EOC7EOAA

81 E04FI EOAA E04F I EO 2A EO 4F I
EOCF EOCFE02A EOCF EOAA

83 E0481 EOAA EO 481 EO 2A EO 48 I
EOce EO ce E02A EO ce EOAA

84 EO 501 EOAA EO SOl EO 2A EO 50 I
EO DO EO DO E02A EO DO EOAA

85 EO 491 EOAA EO 491 EO 2A EO 49 I
EOC9 EO C9 E02A EO C9EOAA

86 EO 51 I EO AA EO 51 I EO 2A EO 51 I
EOD1 EO D1 E02A EO D1 EOAA

89 E04DI EOAA EO 4D I EO 2A EO 4D I
EO CD EO CD E02A EO CD EOAA

* The AA/2A shift make and break is sent with the other scancodes if the left Shift key
is held down. If the right Shift key is held down, then B6/36 is sent. Both sets of
codes are sent with the other scancode if both Shift keys are held down.

TABLE 5-24c. SCANCODE SET 1 (PART 3)

Key Scancode Shift Case
Number Make I Break Make I Break *

95 EO 351 EOAA E0351
EOB5 EO B5 E02A

* The AA/2A shift make and break is sent with the other scancodes if the left Shift key
is held down. If the right Shift key is held down, then B6/36 is sent. Both sets of
codes are sent with the other scancode if both Shift keys are held down.

TABLE 5-24d. SCANCODE SET 1 (PART 4)

Key Scancode Ctrl Case, Shift Case Alt Case
Number Make I Break Make I Break Make I Break

124 EO 2A EO 37 I EO 37 I EO B7 541 D4
EO B7EOAA

TABLE 5-24e. SCANCODE SET 1 (PART 5)

Key Number Make Code Ctrl Key Pressed

126 * E1 1D 45 E1 9D C5 EO 46 EOC6

* Not a Typematic key. All associated scancodes occur on the make of the key.

5-60 Keyboard

Scancode Set 2

In this set, when a key is pressed, each key is assigned a unique 8-bit make scancode. Each key also sends
a break code when the key is released. The break code is made up of 2 bytes: the first being the break
code prefix (FO hex), and the second being the make scancode for that key.

In part one of the following table, keys send the codes shown (regardless of any shift states). Refer to
Figures 5-2 and 5-3 for keyboard layouts showing the associated key numbers.

TA8LE5-25a. SCANCODE SET 2 (PART 1)

Key Number Make Code 8reakCode Key Number Make Code 8reak Code

1 OE FOOE 48 21 FO 21
2 16 FO 16 49 2A F02A
3 1E FO 1E 50 32 F032
4 26 F026 51 31 F031
5 25 F025 52 3A F03A
6 2E F02E 53 41 F041
7 36 F036 54 49 F049
8 3D F030 55 4A F04A
9 3E F03E 57 59 F059
10 46 F046 58 14 FO 14
11 45 F045 59 *** 5E F05E
12 4E F04E 60 11 FO 11
13 55 F055 61 29 F029
15 66 F066 62 EO 11 EO FO 11
16 00 FOOD 63*** 5F F05F
17 15 FO 15 64 EO 14 EO FO 14
18 10 FO 10 90 77 F077
19 24 F024 91 6C F06C
20 20 F020 92 68 F068
21 2C F02C 93 69 F069
22 35 F035 96 75 F075
23 3C F03C 97 73 F073
24 43 F043 98 72 F072
25 44 F044 99 70 F070
26 40 F040 100 7C F07C
27 54 F054 101 70 F070
28 58 F058 102 74 F074
29 * 50 F050 103 7A F07A
30 58 F058 104 71 F071
31 1C FO 1C 105 78 F078
32 18 FO 18 106 79 F079
33 23 F023 108 E05A EO FO 5A
34 28 F028 110 76 F076
35 34 F034 112 05 F005
36 33 F033 113 06 F006
37 38 F038 114 04 F004
38 42 F042 115 OC FOOC
39 48 F048 116 03 F003
40 4C F04C 117 08 F008
41 52 F052 118 83 F083
42 ** 50 F050 119 OA FOOA
43 5A F05A 120 01 F001
44 12 FO 12 121 09 F009
45 ** 61 F061 122 78 F078
46 1A FO 1A 123 07 F007
47 22 F022 125 ·7E F07E

* 101-key keyboard only.
** 102-key keyboard only (non-US).
*** Asian keyboard only.

Keyboard 5-61

The next parts show a series of codes dependent on the state of the keys <Ctrl>, <Alt>, <Shift> and
<Num Lock>. Since the base scancode is the same as that of another key, an extra code (EO hex) has
been added to the base to make it unique.

TABLE 5-25b. SCANCOOE SET 2 (PART 2)

Key
Number

75

76

79

80

81

83

84

85

86

89

Base Case, or
Shift + Num Lock
Make I Break

EO 701
EO F070

EO 711
EO FO 71

EO 6BI
EO F06B

E06CI
EO F06C

E0691
EO FO 69

EO 751
EO FO 75

EO 721
EO FO 72

EO 701
EO F070

EO 7AI
EO FO 7A

EO 741
EO F074

Shift Case
Make I Break *

EO FO 12 EO 70 I
EO FO 70 EO 12

EO FO 12 EO 71 I
EO F071 E012

EO FO 12 EO 6B I
EO F06B EO 12

EO FO 12 EO 6C I
EO F06C EO 12

EO FO 12 EO 691
EO F069 EO 12

EO FO 12 EO 751
EO FO 75 EO 12

EO FO 12 EO 721
EO FO 72 EO 12

EO FO 12 EO 70 I
EO FO 70 EO 12

EO FO 12 EO 7A I
EO FO 7A EO 12

EO FO 12 EO 741
EO FO 74 EO 12

Num Lock on
Make I Break

EO 12 EO 70 I
EO FO 70 EO FO 12

EO 12 EO 711
EO FO 71 EO FO 12

EO 12 E06BI
EO FO 6B EO FO 12

EO 12 EO 6CI
EO FO 6C EO FO 12

EO 12 EO 691
EO FO 69 EO FO 12

EO 12 EO 751
EO FO 75 EO FO 12

EO 12 EO 721
EO FO 72 EO FO 12

EO 12 EO 701
EO FO 70 EO FO 12

EO 12 EO 7AI
EO FO 7A EO FO 12

EO 12 EO 741
EO FO 74 EO FO 12

5-62

* The FO 12/12 shift make and break is sent with the other scancodes if the left Shift key
is held down. If the right Shift key is held down, then FO 59/59 is sent. Both sets of
codes are sent with the other scancode if both Shift keys are held down.

TABLE 5-25c. SCANCOOE SET 2 (PART 3)

Key Scancode Shift Case
Number Make I Break Make I Break *

95 EO 4AI EO FO 12 4AI
EO F04A EO 12 FO 4A

* The FO 12/12 shift make and break is sent with the other scancodes if the left Shift key
is held down. If the right Shift key is held down, then FO 59/59 is sent. Both sets of
codes are sent with the other scancode if both Shift keys are held down.

TABLE 5-25d. SCANCOOE SET 2 (PART 4)

Key Scancode Ctrl Case, Shift Case Alt Case
Number Make I Break Make I Break Make I Break

124 EO 12 EO 7C/ EO 7C/ EO FO 7C 841 F084
EO FO 7C EO FO 12

TABLE 5-25e. SCANCOOE SET 2 (PART 5)

Key Number Make Code Ctrl Key Pressed

126 * E114 77 E1 FO 14 FO 77 EO 7E EO FO 7E

* Not a Typematic key. All associated scancodes occur on the make of the key.

Keyboard

Scancode Set 3

In this set, when a key is pressed, each key is assigned a unique 8-bit make scancode. Each key also sends
a break code when the key is released. The break code is made up of 2 bytes: the first being the break
code prefix (FO hex), and the second being the make scancode for that key.

In part one of the following table, keys send the codes shown (regardless of any shift states). Refer to
Figures 5,-2 and 5-3 for keyboard layouts showing the associated key numbers.

TABLE 5-26. SCANCOOE TABLE: SET 3

Key Make Break Default Key Make Break Default
Number Code Code Key State Number Code Code Key State

1 OE FOOE Typematic 55 4A F04A Typematic
2 16 F016 Typematic 57 59 F059 Makel8reak
3 1E F01E Typematic 58 11 FO 11 Makel8reak
4 26 F026 Typematic 59*" 18 F018 Typematic
5 25 F025 Typematic 60 19 F019 Make/Break
6 2E F02E Typematic 61 29 F029 Typematic
7 36 F036 Typematic 62 39 F039 Make only
8 3D F03D Typematic 63*" 38 F038 Typematic
9 3E F03E Typematic 64 58 F058 Make only
10 46 F046 Typematic 75 67 F067 Make only
11 45 F045 Typematic 76 64 F064 Typematic
12 4E F04E Typematic 79 61 F061 Typematic
13 55 F055 Typematic 80 6E F06E Make only
15 66 F066 Typematic 81 65 F065 Make only
16 00 FOOD Typematic 83 63 F063 Typematic
17 15 FO 15 Typematic 84 60 F060 Typematic
18 10 FOlO Typematic 85 6F F06F Make only
19 24 F024 Typematic 86 GO F060 Make only
20 20 F020 Typematic 89 6A F06A Typematic
21 2C F02C Typematic 90 76 F076 Make only
22 35 F035 Typematic 91 6C FOGC Make only
23 3C F03C Typematic 92 6B F06B Make only
24 43 F043 Typematic 93 69 F069 Make only
25 44 F044 Typematic 95 n FOn Make only
26 40 F04D Typematic 96 75 F075 Make only
27 54 F054 Typematic 97 73 F073 Make only
28 5B F05B Typematic 98 72 F072 Make only
29* SC FOSC Typematic 99 70 F070 Make only
30 14 FO 14 Make/Break 100 7E F07E Make only
31 1C FO 1C Typematic 101 7D F07D Make only
32 1B F01B Typematic 102 74 F074 Make only
33 23 F023 Typematic 103 7A F07A Make only
34 2B F02B Typematic 104 71 F071 Make only
35 34 F034 Typematic 105 84 F084 Make only
36 33 F033 Typematic 106 7C F07C Typematic
37 3B F03B Typematic 108 79 F079 Make only
38 42 F042 Typematic 110 08 F008 Make only
39 4B F04B Typematic 112 07 F007 Make only
40 4C F04C Typematic 113 OF FOOF Make only
41 52 F052 Typematic 114 17 FO 17 Make only
42 ** 53 F053 Typematic 115 1F FO 1F Make only
43 5A F05A Typematic 116 27 F027 Make only
44 12 FO 12 Make/Break 117 2F F02F Make only
45** 13 FO 13 Typematic 118 37 F037 Make only
46 1A FO 1A Typematic 119 3F F03F Make only
47 22 F022 Typematic 120 47 F047 Make only
48 21 F021 Typematic 121 4F F04F Make only
49 2A F02A Typematic 122 56 F056 Make only
50 32 F032 Typematic 123 5E F05E Make only
51 31 F031 Typematic 124 57 F057 Make only
52 3A F03A Typematic 125 SF F05F Make only
53 41 F041 Typematic 126 62 F062 Make only
54 49 F049 Typematic

* 101-key keyboard only.... 102-key keyboard only (non-US).
..... Asian keyboard only.

Keyboard 5 -63

Table 5-27 lists the range of typematic rate values for the keyboard as set by the OF3H command. The
default values for the keyboard are:

Typematic rate = 10.9 characters per second.±. 20%
Delay = 500 milliseconds.±.. 20%

Table 5-27. Typematic Rate

Bit Typematic Rate.±. 20 Bit Typematic Rate .±.20

00000 30.0 10000 7.5
00001 26.7 10001 6.7
00010 24.0 10010 6.0
00011 21.8 10011 5.5
00100 20.0 10100 5.0
00101 18.5 10101 4.6
00110 17.1 10110 4.3
00111 16.0 10111 4.0
01000 15.0 11000 3.7
01001 13.3 11001 3.3
01010 12.0 11010 3.0
01011 10.9 11011 2.7
01100 10.0 11100 2.5
01101 9.2 11101 2.3
01110 8.6 11110 2.1
01111 8.0 11111 2.0

The typematic rate (make codes per second) is 1 for each period. The period is the interval from one
typematic output to the next as determined by this equation:

Period = (8 + A) X (28) X 0.00417 seconds. Where:

A = binary value of bits 2, 1, and O.
B =binary value of bits 4 and 3.

Note that if the keyboard receives a command other than the rateldelay value byte, the execution of
OF3H is halted without change to the existing rate.

5 -64 Keyboard

Table 5-27 lists the range of typematic rate values for the keyboard as set by the OF3H command. The
default values for the keyboard are:

Typematic rate = 10.9 characters per second.±.. 20%
Delay -= 500 milliseconds.±.. 20%

Table 5-27. Typematic Rate

Bit Typematic Rate.:!:. 20 Bit Typematic Rate.:!:. 20

00000 30.0 10000 7.5
00001 26.7 10001 6.7
00010 24.0 10010 6.0
00011 21.8 10011 5.5
00100 20.0 10100 5.0
00101 18.5 10101 4.6
00110 17.1 10110 4.3
00111 16.0 10111 4.0
01000 15.0 11000 3.7
01001 13.3 11001 3.3
01010 12.0 11010 3.0
01011 10.9 11011 2.7
01100 10.0 11100 2.5
01101 9.2 11101 2.3
01110 8.6 11110 2.1
01111 8.0 11111 2.0

The typematic rate (make codes per second) is 1 for each period. The period is the interval from one
typematic output to the next as determined by this equation:

Period • (8 + A) X (28
) X 0.00417 seconds. Where:

A • binary value of bits 2, 1, and O.
8 • binary value of bits 4 and 3.

Note that if the keyboard receives a command other than the rate/delay value byte, the execution of
OF3H is halted without change to the existing rate.

Keyboard 5 -65

8042 to STD-BIOS Scancodes and Commands

The keyboard sends scancodes and commands to STD-BIOS driver system. The scancodes/commands are
read from the 8042 data port (Input Port 60H). Table 5-28 lists the keyboard codes returned by the
keyboard.

Table 5 -28. 8042 to STD-BIOS Scancodes and Commands

Code/
Command

DOH

01H-77H

OAAH

OEEH

OFOH

OFAH

OFCH

OFDH

OFEH

5-66 Keyboard

Description

OVERRUN. This code indicates that the 16 character keyboard buffer has
overflowed.

Keyboard Scancodes. These represent the keys on the 8IH-OF7H keyboard.
The translations for these scancodes are listed in Table 5-6.

The 8042 controller will report this byte when it completes the 8042 control
ler's Self Test. This test is executed at power-on and, after receiving the
Keyboard Command OFFH, reset. Note: any other byte reported at these
times indicates failure.

ECHO: this code is sent in response to the keyboard ECHO_COMMAND
command, OEEH.

Break Prefix code. This code is sent to indicate a key break. This code is fol
lowed by the scancode of the key being released. This code will be sent only
in the AT scancode set mode.

ACK. this code is sent to acknowledge receipt of a command (except Echo
and Resend).

Keyboard Self Test Failure. This code is sent by the keyboard to indicate a
failure during the keyboard Self Test (Keyboard Command OFFH).

Diagnostic Failure. This code is sent if a keyboard failure is detected.

Resend. This code is sent if the keyboard receives an invalid command or
detects an error in the transmission.

Logical Keyboard to 8042 Driver Communication

The 8042 acts as an intelligent bi-directional buffer between the logical keyboard driver (Input System)
and the INT 09H driver and system software. The INT 09H driver and system software communicate
with the 8042 via the command and data ports (I/O addresses 64H and 60H respectively). The 8042 has
an additional port (I/O address 68H) which is used by the logical keyboard driver to transfer data and
commands to the 8042 without overlapping with the industry standard keyboard commands. Data such as
keyboard scancodes and commands are transmitted in this manner. To verify that the command has been
read, the software can read the IBF bit in the status register of the controller. The HP specific
commands to the 8042 are listed in Table 5-29.

Table 5-29. UP-Specific Commands to the 8042

Keycode
Value

00H-054H

80H-OD4H

055H-077H

OD5H-OF7H

078H

079H

07AH

07BH

07CH

07DH

07EH

07FH

Keycode /Command Definition

Industry standard make scancodes. The data byte is put into an 8042 internal
scancode buffer, then will loopback the scancode buffer when the 8042's out
put port is empty.

Industry standard break scancodes. The data byte is put into an 8042 internal
scancode buffer, then will loopback the scancode buffer when the 8042's out
put port is empty.

HP-enhanced keyboard make scancodes. The data byte is put into an 8042 in
ternal scancode buffer, then will loopback the scancode buffer when the
8042's output port is empty.

HP-enhanced keyboard break scancodes. The data byte is put into an 8042
internal scancode buffer, then will loopback the scancode buffer when the
8042'8 output port is empty.

Reserved

Reserved

Pass through the next data byte written to output port 068H. The data byte
will be put into an 8042 internal scancode buffer, then willioopback the
scancode buffer when the 8042'8 output port is empty.

Set the RAM Switch to '0'.

Set the RAM Switch to ' l' (Default).

CRT_OFF: Set the CRT Switch to '0'. Indicates the primary display adapter
is a IBM Monochrome/Printer or HP Monochrome Plus adapter.

CRT_ON: Set the CRT Switch set to '1'. Indicates the primary display adapt
er is the IBM Color/Graphics or HP Multimode adapter (Default).

HP Reserved

Keyboard 5-67

Keycode
Value

OF8H

OF9H

OFAH-OFEH

OFFH

5 -68 Keyboard

Table 5-29. UP-Specific Commands to the 8042 (Cont.)

Keycode / Command Definition

ENABLE_AUTOPOLL: Enables the SVC Port request AUTOPOlL_EVENT
to be sent to the system. This command allows the CPU to take over the
UP-HIl polling function. The AUTOPOLL_EVENT SVC request is made ap
proximately 60 times a second whenever this command is in effect.

DISABLE AUTOPOLL: Disable the AUTOPOLL_EVENT SVC request.

Reserved

KEYBOARD_OVERRUN: This is passed through as any normal keyboard
scancode. This command is sent from the 8042 driver to the logical keyboard
to the 8042 chip to indicate the logical keyboard's data buffer was overrun.

6
Serial and Parallel I/O

This chapter coven the ROM BIOS support for the system serial and parallel I/O ports. The ROM BIOS
supports up to three parallel ports and up to four serial ports.

Note: HP Vectra systems using MS-DOS 3.1 version A.Ol.04 or greater support three parallel and four
serial ports. MS-DOS 3.1 versions less than A.Ol.04 support three parallel and two serial ports.

Overview

The ROM BIOS provides two SID-BIOS driven that control tne serial (lNT 14H) and parallel (INT 17H)
ports. The functions in these driven provide a means of setting communication parameten and
transmitting data. These drivers have expanded functionality that provide the programmer with the
ability to set higher baud rates and to transfer strings of data. In addition to these driven, the print
screen driver (INT 05H) will be discussed in this chapter.

Serial and Parallel Port Addresses

The STD-BIOS data area contains two tables used by the serial and parallel port driven. The Serial Base
Port Address Table contains the base port addresses for the serial ports. The Parallel Base Port Address
Table contains the base port addresses of the parallel ports. The ROM BIOS checks during SYSGEN for
the presence of serial and parallel adapter cards at the addresses listed in Table 6-1. When a valid port is
found, the base address of that port is placed in the next available entry of the appropriate table.
Application programs may add additional parallel ports or serial ports to the port tables. An application
program can also replace the values in the table with new ones to support non-standard port addresses.
Each table contains space for four entries.

Table 6-1. Serial and Parallel Port Addresses

I/O Address IRQ INT Port Name

3F8H 4 OCH 0 COMl, AUX
2F8H 3 OBH 1 COM2
3E8H 10 72H 2 COM3
2E8H 11 73H 3 COM4
3BCH -- -- 0 LPTl, PRN
378H 7 OFH I LPT2
278H 5 ODH 2 LPT3

Serial and Parallel 110 6-1

Port addresses are added to the base port address tables in the sequence listed in Table 6-1. If the system
has only two parallel I/O ports at addresses 378H and 278H, then 378H becomes the first entry in the
table (Port 0 - LPT1, PRN) and 278" becomes the second (Port I - LPT2). The potential parallel port
at 3BCH would not be Port 0 as it is not present in the system.

The functions supported by the serial and parallel port drivers rely on the values contained in the serial
base port address table and the parallel base port address table. The ports are referenced by indexes to the
.tables (port numbers 0-3).

Print Screen Driver

The print screen driver provides a simple method for application programs and system software to print a
copy of the screen contents to the system printer (port 0). The ROM BIOS print screen driver will only
print the screen if the display adapter is in one of the alphanumeric modes. Support for printing the
screen when in graphics modes is provided by the DOS command GRAPHICS.

Polled and Interrupt Driven' Operations

Both the serial and parallel ports on the system may be operated in either a polled or interrupt mode. The
drivers in the ROM BIOS only support polled operation. Four system interrupts, OBH, OCH, 72H and 73H,
are reserved for system serial ports. Two system interrupts, ODH and OFH, are reserved for system parallel
printers. Application programs and system software may use these interrupts to operate the ports in an
interrupt mode.

Data Structures

The data structures for the serial port, parallel port, and print screen drivers are located in the STD-BIOS
data area. The data structures for each of the drivers are discussed separately.

Serial Port Driver Data Structures

The serial port driver uses two data structures in the STD-BIOS data area; a base port address table, and
a timeout counter table. The addresses of these data structures are listed in Table 6-2. The equipment
word in the STD-BIOS data area (40: 10H), contains the number of serial and parallel ports configured in
the system. The equipment byte can be read by the INT IIH equipment determination function.

6-2 Serial and Parallel 110

Table 6-2. Serial Port Data Structures

Port Port Address Timeout Timeout
Number Table Entry Table Entry (Default)

0 40:00H 40:7CH (OlH)
1 40:02H 40:7DH (OlH)
2 40:04H 40:7EH (OlH)
3 40:06H 40:7FH (OlH)

Each serial port is comprised of eight I/O addresses. The base address of each block of I/O addresses is
stored in the base port address table. For more information, see the HP Vectra Hardware Technical
Reference Manual (for the HP Vectra ES, QS, or RS personal computers). The table consists of 4 words
(8 bytes), one for each of the four possible serial ports. A zero value for any of the words is interpreted
by the driver to mean the port is not present.

The second data structure used by the serial port driver is the timeout table. This data structure consists
of 4 bytes, one for each of the serial ports. Whenever the driver attempts to read or write data or
parameters it reads the status port on the serial port. To prevent an error condition on the serial port
from hanging up the system it uses a timeout loop. If a valid status byte cannot be read within the time
allotted, the driver will return with a timeout error status code. The length of the timeout is determined
by the entries in the timeout table. Each of the four serial ports can be given a different timeout value
by an application program.

Parallel Port Driver Data Structures

The parallel port driver uses two data structures that are similar to those used by the serial port driver:
the base port address table and timeout counter table. Base port addresses and timeout tables for the
parallel port driver are listed in Table 6-3.

Table 6-3. Parallel Port Data Structures

Port Port Address Timeout Timeout
Number Table Entry Table Entry (Default)

0 40:08H 40:78H (14H)
1 40:0AH 40:79H (14H)
2 40:0CH 40:7AH (14H)
3 40:0EH 40:7BH (14H)

Each of the parallel ports occupy four I/O addresses. The base or first address of each is contained in the
base address table. A zero value for any of the words is interpreted by the driver to mean the requested
parallel port adapter is not present.

The parallel printer port driver checks the status of the port before it outputs a character to determine if
the printer is busy. To prevent an error condition on the parallel port from hanging up the system, a
timeout loop is used. The length of the timeout is determined by the values stored in the timeout table.
The timeout values for each of the parallel ports can be set independently of each other.

Serial ant! Parallel I/O 6-3

Print Screen Driver Data Structures

The print screen driver uses a single byte data structure, located at 0040:0 100H (see Appendix B). The
print screen driver places a status byte at this location, indicating whether or not a print screen operation
is underway. The possible values for this status byte are:

Data Definition

0 The print screen driver has not been called or it completed the previous
operation successfully

1 Printing is in progress.
OFFH Error occurred during printing.

If this byte indicates a print screen operation is currently in progress, the driver will return. This prevents
more than one print screen operation from occurring at the same time.

Serial Port Driver (lNT 14H)

The functions supported by the serial port driver can be divided into two groups; those that set and report
communication protocol or status, and those that transmit and receive data. The driver supports nine
functions. Four of these functions implement the features of the industry standard INT 14H driver. The
remaining five functions are EX-BIOS extensions. The ROM BIOS supports several features not found in
the industry standard INT 14H driver. Among these features is the ability to select a communication
speed of up to 19.2 K baud per second and the support of block (multi-byte) data transfer.

Table 6-4 summarizes each of the Serial Port Driver (INT 14H) functions. It is followed by a description
of each function.

Table 6 -4. Serial Port Driver Function Code Summary

Function Function
Equate Definition Value

INT_SERIAL Serial 14H
FI4_INIT Initialize Serial Port Parameters OOH
F14_XMIT Send Out One Character OIH
F14_RECV Receive One Character 02H
F14_STATUS Get Serial Port Status 03H
F14_INQUIRE EX-BIOS present 6FOOH
F14_EXINIT Initialize serial port (19.2 Kbaud) 6FOIH
FI4_PUT_BUFFER Write a buffer of data 6F02H
Fl4 GET_BUFFER Read a buffer of data 6F03H
Fl4_.TRM BUFFER Read a buffer of data, terminate on 6F04H

specified condition

6-4 Serial and Parallel 110

Serial Port Driver Function Definitions

All of the following functions range check (between 0 and 3 inclusive) the requested port number
specified in the DX register. If legal, the function looks up the I/O address contained in the SID-BIOS
data area. If the port table entry is non-zero, the port is assumed to exist. If the port table entry is zero
the function returns without altering any registers.

F14_INIT (AH = OOH)

The initialize function, F 14_INIT, sets the baud rate, number of stop bits, parity and 'character length of
the specified serial port. On return it reports the current contents of the line status register and the
modem status register of the specified port.

On Entry: AH = F14 INIT (OOH)
AL = Port attribute

Bit Data Definition

07H-OSH 111 9600 baud rate
110 4800 baud rate
101 2400 baud rate
100 1200 baud rate
011 600 baud rate
010 300 baud rate
001 150 baud rate
000 110 baud rate

04H-03H xO no parity
11 even parity
01 odd parity

02H 0 1 stop bit
1 2 stop bite

01H-00H 00 5 bite
01 6 bite
10 7 bi t characte r
11 8 bit character

ox = Port number (0, 1, 2, 3)

On Exit: AH = Line etatus (eee Table 6-5)
AL =Mode. statuI (eee Table 6-6)

Registers Altered: AX

Table 6-5 defines the Serial Port Line Status.

Serial and ParalfelllO 6-5

Table 6-5.. Line Status Register Report

Bit Data Definition

7 I Timeout Error (Not applicable on FI4_INIT, F14_EXINIT or
F14_STATUS)

6 I Transmit Shift Register Empty
5 I Transmit Hold Register Empty
4 I Break Received
3 I Character Framing Error
2 I Parity Error
I 1 Overrun Error
0 1 Data Set Ready

Table 6-6 defines the Serial Port Modem Status.

Table 6-6. Modem Status Register Report

Bit Data Definition

7 I Receive Line Signal Detected
6 I Ring Indicator Line State
5 I Data Set Ready Line State
4 I Clear to Send Line State
3 1 Change in Receive Line Detected
2 I Trailing Edge of Ring Detected
1 1 Change in Data Set Ready
0 I Change in Clear to Send State

Example:
MOV AH, F14 INIT
MOV AL, 111P~)~1B

MOV OX, 0
INT INT SERIAL

6-6 Serial and Parallel 110

(AH = OH)
HP LaserJet factory default
9600 baud
No parity
2 stop bits
S bit character
setting
Port 0 specification
Call serial driver (INT 14H)

F14_STATUS (AH =03H)

This subfunction returns the status of the serial port specified by the DX register.

On Entry: AH = F14 STATUS (03H)
OX = Port num be r (0, 1, 2 , 3)

On Exit: AH = Line status (see Table 6-5)
AL = Modem status (see Table 6-6)

Registers Altered: AX

F14_INQUIRE (AX = 6FOOH)

This function determines whether or not the extended EX-BIOS functions are available. If the EX-BIOS
functions are available, the BX register will be set to 4850H (which represents the ASCII characters
'HP').

On Entry: AX = F14_INQUIRE (6FOOH)
BX = Any value except 4850H ('HP')

On Exit: BX = 'HP'

Registers Altered: AX, BX

Example:

MOV AX, F14_INQUIRE
XOR BX, BX
INT INT SERIAL
CMP BX,-'HP'
JNE short ERROR NO EXTENDED FUNCTIONS

6-8 Serial and Parallel 110

(AH = 6FOOH)
Clear out BX
Call serial driver (INT 14H)
Check?

F14 EXINIT (AX = 6F01H)

This function is similar to the SID-BIOS function, FI4_INIT, but provides the ability to set a baud rate
beyond 9600.

On Entry: AX = f14 EXINIT (6f01H)
BX = Port attributes

Bit Data Definition

08H-OSH 1000 19200 baud rate
0111 9600 baud rate
0110 4800 baud rate
0101 2400 baud rate
0100 1200 baud rate
0011 600 baud rate
0010 300 baud rate
0001 lS0 baud rate
0000 110 baud rate

04H-03H xO no parity
11 even parity
01 odd parity

02H 0 1 st~op bit
1 2 stop bits

01H-00H 00 undefined
01 undefined
10 7 bit character
11 8 bit character

ox = Port number (0, 1, 2, 3)

On Exit: AH = Line status (see Table 6-5)
AL = Modem status (see Table 6-6)

Registers Altered: AX

Example:

MOV AX, f14 EXINIT
MOV BX, 0000000100011010B

MOV DX,1
INT INT SERIAL

(AH = 6f01H)
Port attributes
19.2 K baud
parity even
1 stop bit

; 7 bit character
Port 1 specification
Call serial driver (INT 14H)

Serial and Parallel 110 6-9

For each byte, the signal DATA-TERMINAL-READY is enabled in the modem control register indicating
to the remote device that data can be sent. The modem status register signal DATA-SET-READY and the
line status register signal DATA-READY are polled until a data byte is available to read or the timeout
count has expired. After the data byte is read, it is inspected to see if it lies between the two boundary
bytes. If the byte is in between the two bytes, then the transfer is terminated. This function is useful for
transferring logical records.

On Entry: AX = F14 TRM BUFFER (6F04H)- -BL = lower bound of termination character
BH = upper bound of te rm inat ion character
CX = maximum buffer size
OX = Port number (0, 1, 2, 3)

ES:OI = Pointer to a data buffer

On Exit: AH = Line status (see Table 6-5)

Normal Completion Full Transfer:
AL = last byte read
CX = Number of bytes transferred successfully

ES:OI = Base of data buffer

Normal Completion Terminate Character Detected:
AL = last byte read (terminate byte)
CX = Number of bytes transferred successfully

ES:OI = Base of data buffer

Error Completion (bit 7 of AH register non-zero):
AL = 0, the null byte
CX = Number of bytes transferred successfully

ES:OI = pointer to next byte to be transferred

Registers Altered: AX, ex, 01, ES

Example:

IN BUFFER DB 512 OUP (20H)
END BUFFER:
START:

MOV AX, seg IN_BUFFER
MOV ES, AX
LEA 01, offset IN BUFFER
MOV AX, F14_TRM_BUFFER
MOV CX, END BUFFER--IN BUFFER
MOV OX, 0
INT INT SERIAL
TEST AH,-10000000B
JNZ short ERROR PUT STRING
CMP AL, BL
JL NOT BETWEEN
CMP AL, BH
JG NOT BETWEEN

NOT BETWEEN:

6-12 Serial and Parallel I/O

set pointer to string

(AX =6F04H)
length of character string
Port 0 specification
Call serial driver (INT 14H)
test for errors

lower bound?

uppe r bound?

Parallel Port Driver (INT 17H)

The parallel port driver provides several functions that support data transfer on the parallel ports and
return status. These functions implement the features of the industry standard INT 17H driver and the
EX-BIOS extended functions. The EX-BIOS functions implement features not found in the industry
standard functions, such as block (multi-byte) data transfer.

Table 6-7 summarizes the Parallel Port Driver (INT 17H) functions. It is followed by a description of
each function.

Table 6-7. Parallel Port Driver Function Code Summary.

Function Function
Value Equate Definition

17H INT_PRINTER Printer
OOH Fl? PUT_CHAR Send printer one byte
01H FI?_INIT Initialize printer port
02" FI?_STATUS Get printer port status
6FOOH FI?_INQUIRE EX-BIOS present
6F02H FI?_PUT_BUFFER Write a buffer to printer port

Parallel Port Driver Function Definitions

The following functions range check (between 0 and 3, inclusive) the requested port address specified in
the DX register. If legal, the function looks up the I/O address contained in the STD-BIOS data area. If
the port table entry is non-zero, the port is assumed to exist. If the port table entry is zero, the function
returns without altering any registers.

F17 PUT CHAR (AH = OOH)

This function prints a character on the parallel port. Valid data is set up on the printer interface for at
least 900 nanoseconds. If the BUSY signal indicates that the device is busy, it executes an INT ISH
function FI5_DEV_BUSY. When it returns from FI5_DEV_BUSY, the function waits until the BUSY
signal indicates the device is not busy. The function generates a 500 nanosecond data strobe and holds the
data valid for at least 900 nanoseconds. The function returns with the port status in the AH register.

On Entry: AH = f17 PUT CHAR (OOH)
AL = Data byte to be transmitted
OX = Port number (0, 1, 2, 3)

On Exit: AH = Printer port status (see Table 6-8)

Registers Altered: AH

Table 6-8 defines the parallel printer port status byte.

Serial and ParaUelllO 6-13

F17 STATUS (AH = 02H)

This function returns the status of the specified parallel printer port.

On Entry: AH = f17 STATUS (02H)
OX = Port number (0, 1, 2, 3)

On Exit: AH = Printer port status

Registers Altered: AH

F17 INQUIRE (AX = 6FOOH)

This subfunction determines whether or not the extended EX-BIOS functions are available. If the
EX-BIOS functions are available, the BX register will be set to 4850H (which represent the ASCII
characters 'HP').

On Entry: AX = f17_INQUIRE (6fOOH)
BX = Any value except 4850H ('HP')

On Exit: BX = 'HP'

Registers Altered: AX, BX

Example:

MOV AX, f17_INQUIRE
XOR BX,BX
INT INT PRINTER
CMP BX , ..,HP,
JNE short ERROR NO EXTENDED fUNCTIONS

F17 PUT BUFFER (AX = 6F02H)

(AX = 6fOOH)
Clear out BX
Call printer driver (INT 17H)
Check?

This function transmits data from a buffer as long as there is data in the buffer and no error is
encountered. Valid data is set up on the printer interface for at least 900 nanoseconds. If the BUSY signal
indicates that the device is busy, it executes an INT ISH function FI5_DEV_BUSY. \Vhen it returns
from FI5_DEV_BUSY, the function waits until the BUSY signal indicates the device is not busy. The
function generates a 500 nanosecond data strobe and holds the data valid for at least 900 nanoseconds.
The function returns with the port status in the AH register.

On Entry: AX = f17 PUT BUffER (6f02H)
CX = Number of characters in the data buffer
OX = Port number (0, 1, 2, 3)

ES:DI = Pointer to a data buffer of characters

On Exit: AH = Printer port status

Serial and Paral!elllO 6-15

Normal Completion:
CX = Number of bytes transferred successfully

ES:DI = Base of data buffer

Error Completion (bit 0 of AH register non-zero):
CX = Number of bytes transferred successfully

ES:DI = pointer to next byte to be transferred

Registers Altered: AH, CX, 01, ES

Example:

STRING DB 'Hello'
END STRING:
START:

MOV AX, seg STRING
MOV ES, AX
MOV 01, offset STRING
MOV AX, F17 PUT BUFFER
MOV CX, END STRING-STRING
MOV OX, 0
INT INT PRINTER
TEST AH, 00000001B
JNZ short ERROR PUT STRING

set pointer to string

(AX = 6F02H)
length of character string
Port 0 specification
Call printer driver (INT 17H)
test for errors

Print Screen Driver (lNT 05H)

The print screen driver prints the contents of the screen. Each time an INT 05H instruction is executed,
the contents of the screen will be printed on the system printer (Port 0). If a print screen operation is
already in progress the driver returns without printing the contents of the screen. The print screen driver
does not execute functions in the same manner as the other drivers. It performs a single task, and so there
are no functions.

The print screen driver is called by the keyboard driver (INT 9H) when the scancode (06AH) for the
<Print Screen> key is detected. In addition, application programs may execute an INT 05H instruction
any time a copy of the contents of the screen is desired.

The print screen driver can only print the contents of a screen if the display adapter is in one of its
alphanumeric modes.

6-16 Serial and Parallel I/O

7
Disc

This chapter discusses the ROM BIOS disc drivers. The disc driver (INT 13H) provides a set of functions
that control the disc drives and data transfer between the disc drives and the system.

Overview

The disc driver supports four disc types: standard capacity S.2S-inch flexible discs (360 KB),
high-capacity flexible discs (1.2 MB), high capacity 3.S-inch discs (1.44 MB) and hard discs. The
structure of the disc driver allows additional drives to be easily integrated into the system.

Physical Drive Numbers

Each drive in the system has a physical drive number. Physical drive numbers for flexible discs start with
0, while physical drive numbers for the hard disc start with 80H. In a typical system configured with one
high-capacity flexible disc drive, one standard capacity flexible disc drive, and two hard disc drives, the
physical drive numbers would be 0, 1, 80H and 81H respectively.

Flexible Disc Drive Support

The disc driver provides support for both standard and high-capacity flexible disc drives. The disc driver
supports dual format operation (i.e., reading and writing both types of flexible discs) in the high-capacity
disc drive(s). The flexible disc drives are supported with eleven functions that perform read, write, verify,
reset, format, and return status tasks.

Hard Disc Drive Support

The system can be configured with an optional hard disc drive. When an internal hard disc drive is added
to the system, the disc driver is "expanded II to include the functions that support the hard disc.

The hard disc BIOS is integrated into the system during SYSGEN (the System Generation process). Early
in the SYSGEN process, the software interrupt INT 13H is initialized to point to the flexible disc driver
code module.

When an INT 13H is executed the hard disc code is called first. The hard disc code checks the physical
drive number specified. If it is a hard disc drive number (greater than or equal to 80H) the function is
executed by the hard disc driver code module. If the physical drive number indicates a flexible disc drive
(less than 80H), the hard disc code module passes control to the flexible disc driver code module by
executing an INT 40H.

Disc 7-1

External Disc Drives

External disc drives can easily be added to the system. There are two methods for doing this. The external
disc can supply BIOS code in an option ROM to enter the system. As an alternative, the system could use
a DOS installable device driver.

Discs using installable device drivers can not be used as boot devices, since they are loaded in RAM by the
operating system. Further, operating systems other than DOS may not recognize the disc in the system.
For more information on installable device drivers consult the Vectra MS-DOS Programmer's Reference
Manual.

Using the option ROM entry mechanism described in the following section, the external hard disc becomes
an integrated part of the system and is treated as if it were an internal drive. The first physical hard disc
drive, 80H, can then be used as the system boot device.

Data Structures

There are separate data structures for the hard disc and the flexible disc drivers. The flexible disc has
three data structures. The flexible disc parameter table holds information necessary for initializing and
supporting the flexible disc controller chip. The flexible disc status table holds information about the
status of the previous flexible disc operation. The flexible disc operation table contains various disc
operating parameters such as drive status, flexible disc data transfer rate, etc. The hard disc has only one
data structure. However, each hard disc driver maintains its own copy. The hard disc parameter table is
similar to the flexible disc status table. It contains the physical device characteristics for a particular hard
disc attached to the system.

Flexible Disc Operation Table

The flexible disc operation table is located in the STD-BIOS data area starting at memory location
0040:008BH (0048BH). It contains parameters used by the disc driver to perform its functions. Data
stored in this table allow the high-capacity drives to read or write either standard or high-capacity
flexible discs. The contents of the operating parameter table are listed in Table 7-1. For the Vectra RS
system only, support for two additional flexible discs is achieved with a special Flexible Disc Expander
card. (If this card is installed, the contents of the operation table are expanded.) See Tables 7-1 and
7-1a.

Table 7-1. Flexible Disc Operation Table

Length
Offset in Bytes Description ,"

8BH 1 Data transfer rate of previous operation

8FH 1 Drive indicators

90-91H 2 Current media type table for drives 0 and 1

92-93H 2 Work area to generate current media types for drives 0 and 1

94-95H 2 Table of current head positions for drives 0 and 1

7-2 Disc

______________________on _

For Vectra RS systems with a Flexible Disc Expander card installed, the operation table is expanded to
include the following:

Table 7-la. Expanded Flexible Disc Operation Table

Length
Offset in Bytes Description

DSH 1 Drive indicaton for drive 2 and 3

D9-DAH 2 Current media for drives 2 and 3

DB-OCH 2 Work area to generate current media types for drives 2 and 3

DD-DEH 2 Table of current head positions for drives 2 and 3

Flexible Disc Parameter Table

The flexible disc parameter table contains information that controls the overa.ll operation of the flexible
disc controller. This table is pointed to by INT lEH (0:78H). The parameters used to control the flexible
disc controller can be changed by providing a new flexible disc parameter table pointer in INT 1EH
(0:78H), This is detailed in Table 7-2.

Table 7-2. Flexible Disc Parameter Table

Length
Offset in Bytes Description

- --...~.

OOH 1 Specify command byte I: step-rate time and head unload time

01H 1 Specify command byte 2: head load time and DMA (Dire-ct Memory
Access) mode

02H I Motor wait time

03" 1 Bytes per sector; 0-128, 1-256,2-512,3-1024

04" 1 Last lector number on track

05H 1 Read/write gap length between seeton

06H I Data length for read/write operations

07" I Format gap length between sectors

Disc 7-3

Table 7-2. Flexible Disc Parameter Table (Cont.)

Length
Offset in Bytes Description

08H 1 Format filler byte

09H 1 Head settle time after seek command

OAH 1 Motor start time in seconds (1/8 second or 125 ms)

Flexible Disc Status Table

The status table for the internal flexible disc driver begins at memory location 0040:003EH (0043EH) in
the STD-BIOS Data Area. The contents of this table are listed in Table 7-3.

Table 7-3. Flexible Disc Status Table

Length
Offset in Bytes Description

3EH 1 Flag byte

3FH 1 Motor status

40H 1 Motor turn off counter

41H 1 Status of previous flexible disc operation

42H 7 Status bytes returned by the flexible disc controller from the
previous operation

7-4 Disc

Hard Disc Parameter Table

The hard disc drive has a set ofparameters which are quite different from the flexible disc. Therefore,
the contents of the hard disc parameter table are not the same as its flexible disc counterpart.

Interrupt vector 41H contains the address of the first hard disc table while interrupt vector 46H stores
the address of the second hard disc table. The contents of the tables are listed in Table 7-4.

Table 7-4. Hard Disc Parameter Table

Length
Offset in Bytes Description

OOH 2 Total number of cylinders

02H 1 Total number of Read/Write Heads

03H 2 Reserved

05H 2 Starting cylinder for write precompensation

07H 5 Reserved

OCH 2 Cylinder to use as landing zone

OEH 1 Number of sectors per track

OFH 1 Reserved

Disc 7-5

Disc Driver (lNT 13H)

The description of this driver is in two parts: the flexible disc driver functions, and hard disc driver
functions.

INT 13H Flexible Disc Driver Functions

Table 7-5 lists each of the INT 13H driver flexible disc functions. All registers not specified in the exit
parameters are returned unchanged.

Table 7-5. f'lexible Disc Driver (-'unction Code Summary

____•___.....,..,.,..__.....__............... _ ..._·_."""... v_____....

Function I>efinition
All

OOH Reset flexible disc subsystem
OIH Gct status from last operation
02H Rea.d sectors from flexible disc
03H Write sectors to flexible disc
04H Read verify sectors on flexible disc
OSH Format a track on flexible disc

06~07H Reserved
OSH Get. drive parameters

09-14H Reserved
ISH Get DASD (Direct Access Storage Device) type
16H Get disc change line status
17H Set DASD type for format
18B set media type for format

The the status byte returned in AH for the following functions has the following meaning. For the
majOoly of the functions, the carry flag will be set when AH is non-z.ero:

AH Meaning

OOH No errors.
01H Bad command.
02H Address mark not found.
03H Attempt to write on a write protected diskette.
04H Sector not found.
06H Media changed.
08H DMA overrun.
09H 64K boundary violation.
OCH Media type not found.
10H Bad CRC detected.
20H Controller failure.
40H Seek failure.
BOH Time out.

7-6 Disc

Flexible Disc Driver Function Definitions

Reset Flexible Disc Subsystem (AH =OOH)

Entry AH

Exit AH

OOH

Status.

Get Status of Last Operation (AH = 01H)

Entry AH

Exit AH

01H

Status.

Read Sectors from Flexible Disc (AH =02H)

Entry AH
AL
CL
CH
DL
DH
ES: BX

Exit AH
AL

02H
Number of sectors to read. (Note 1)
Starting sector number. (Note 2)
Cylinder number. (see Note 3)
Drive number (0 - 3).
Head number (0 or 1).
Buffer add ress.

Status.
Number of sectors actually read.

Write Sector to Flexible Disc (AH =03H)

Entry AH
AL
CL
CH
DL
DH
ES:.BX

Exit AH
AL

03H
Number of sectors to write (Note 1)
Starting sector number. (Note 2)
Cylinder number. (Note 3)
Drive number (0 - 3).
Head number (0 or 1).
Buffer add ress.

Status.
Number of sectors actually written.

Disc 7-7

Read Verify Sectors on Flexible Disc (AH = 04H)

Entry AH
AL
CL
CH
DL
DH

04H
Number of sectors to read verify. (Note 1)
Starting sector number. (Note 2)
Cylinder number. (Note 3)
Drive number (0 - 3).
Head number (0 or 1).

Exit AH
AL

Status.
Number of sectors actually verified.

Format Track (AH =OSH)

Entry AH
AL
CH
DL
DH
ES:BX

OSH
Sectors per track.
Cylinder number. (Note 3)
Drive number (0, - 3).
Head number (0 or 1).
Points to a S12 byte buffer containing a table
of address fields for the track (C, H, R, N).
Where C is the cylinder number, H is the head
number, R is the record number and N is the
number of bytes per sector (0=128, 1=256,
2=512, 3=1024). There should be as many entries
as there are sectors on the track.

For example, to format track 5 head 0 with 9 sectors of 512 bytes each and an interleave factor of 1 the
table would look like:

C H R N ;Position in track

DB OSH, OOH, 01H, 02H ;1st.
DB OSH, OOH, 02H, 02H ;2nd.
DB OSH, OOH, 03H, 02H ;3rd.
DB OSH, OOH, 04H, 02H ;4th.
DB OSH, OOH, 05H, 02H ;5th.
DB OSH, OOH, 06H, 02H ;6th.
DB OSH, OOH, 07H, 02H ;7th.
DB OSH, OOH, 08H, 02H ;8th.
DB OSH, OOH, 09H, 02H ;9th.

The number of sectors per track argument (AL) should be set as follows:

Drive Media AL

360 320/360 8/9
1.2 320/360 8/9
1.2 1.2 15
720 720 9
1.44 1.44 18

If the drive can support more than one media type, 1.2 MB for example, then the diskette will be
formatted with the lasrgest possible capacity. Use INT 13H, function 17H "Set DASD type" and 18H "Set
media type" to set the diskette type to be formatted.

7-8 Disc

The following parameters in the flexible disc parameter table must be changed before formatting the
corresponding media:

Media
320K
360K
1.2MB
720K
1.44MB

Drive
360K/1.2MB
360K/1.2MB
1.2MB
1.2MB/1.44MB
1. 44MB

GPL
SOH
SOH
S4H
SOH
6CH

EOT
8
9
15
9
18

Where:
GPL
EOT

Gap Length for format.
End Of Track (Last sector on track).

Absoulte address 0:788 contains a pointer to the flexible disc parameter table. GPL is the 8th byte in the
table and the EOT is the 5th.

The original parameters must be restored after format is complete.

Get Drive Parameters (AH =08H)

Entry AH
DL

Exit AX
CL
CH
DL
BL
ES:DI

08H
Drive number (0 - 3).

o
Sectors per track.
Total number of cylinders.
Number of flexible discs in system.
Drive type as stored in CMOS.
Address of drive parameter table.

In case of errors such as calling the function with an invalid drive number or the drive type is not known
and CMOS is not valid then AX,BX,CX,DX,DI and ES will be set to O.

Get DASD Type (AH = iSH)

Entry AH
DL

Exit AH

1SH
Drive number (0 - 3).

o =Drive not installed.
1 = Drive installed, change line not available.
2 = Drive installed, change line available.
3 = Reserved

AU is valid only if carry flag is cleared (no errors).

Disc 7-9

Get Disc Change Line Status (AH = 16H)

Entry AH 16H
DL Drive number (0 - 3).

Exit AH 0 = Disc change line not active.
6 = Disc change line active.

Set DASD Type for Format (AH = 17H)

Entry AH
AL

DL

Exit None.

17H
DASD type to set to:
1 = 320K/360K media in 360K drive.
2 =360K media in 1.2MB drive.
3 = 1.2MB media in 1.2MB drive.
4 = 720K media in 720K drive.
Drive number (0 - 3).

Set Media Type for Format (AH =18H)

Entry AH
CL
CH
DL

Exit ES:DI

18H
Sectors per track.
Total number of cylinders.
Drive number (0 - 3).

Address of drive parameters table for this
Sector per track/Cylinders combination if
carry is clear otherwise ES:DI is same as
was on ent ry .

AH OOh = Sectors per track/Cylinders combination
is supported and the ES:DI pointer is valid.

01h = This funciton is not available.
OCh = Sectors per track/Cylinders combination

is not supported.

Note 1: Number of sectors (AL):

Drive
360
1 .2
1 .2
720
1.44

7-10 Disc

Media
320/360
320/360
1.2
720
1.44

AL
1-8/9
1-8/9
1-15
1-9
1-18

Note 2: Sector Number (CL):

Drive
360
1.2
1.2
720
1.44

Media
320/360
320/360
1.2
720
1.44

Al
1-8/9
1-8/9
1-15
1-9
1-18

Note 3: Cylinder number (CH):

Drive
360
1.2
1.2
720
1.44

Media
320/360
320/360
1.2
720
1.44

CH
,0-39
0-39
0-79
0-79
0-79

INT 13H Hard Disc Driver Functions

Table 7-6. Hard Disc Driver Functions

Function Description
(AH)

OOH Reset hard disc and flexible disc subsystem
01H Get status from last operation
02H Read sectors from hard disc
03H Write secton to hard disc
04H Read verify seeton on hard disc
OSH Format a track on hard disc

06-07H Reserved
08H Get drive parameten
09H Set drive parameten
OAH Read long
OBH Write long
OCH Seek
ODH Alternate hard disc reset

OE-OF" Reserved
10H Get drive ready status
IIH Recalibrate drive

12-13" Reserved
14H Perform controller diagnostics
ISH Get DASD type

Disc 7-11

The status byte returned in AH for the following functions has the following meaning. For the majority
of the functions, the carry flag will be set when AU is non-zero:

AH Meaning

OOH No errors.
01H Bad command.
02H Address mark not found.
04H Sector not found.
OSH Reset failure.
07H Set drive parameters failure.
09H 64K boundary violation on transfer size.
OAH Bad block flag detected.
10H Bad ECC detected.
11H Data was corrected.
20H Controller failure.
40H Seek failure.
80H Time out.
AAH Drive not ready.
BBH undefined error occured.
CCH Write fault.

Hard Disc Driver Function Definitions

Reset Hard and Flexible Disc Subsystem (AH =OOH)

Ent ry AH
DL

Exit AH

OOH
Drive number (80H = C:, 81H = D:)

Status.

Get Status of Last Operation (AH =01H)

Entry AH

Exit AH

7-12 Disc

01H

Status.

Read Sectors from Hard Disc (AH = 02H)

Entry AH
AL
CL

CH

DL
DH
ES: BX

Exit AH

02H
Number of sectors to read. (1-80H)
Low order 6 bits of CL is the starting
sector number. (1-63)
CH will be combined with the high order 2 bits
from CL to form a 10 bit cylinder number with
CH being the low order 8 bits. (0-1023)
Drive number (80H = C: or 81H = D:).
Head number. (0-15)
Buffer address.

Status.

Write Sector to Hard Disc (AH =03H)

Entry AH
AL
CL

CH

DL
DH
ES: BX

Exit AH

03H
Number of sectors to write (1-80H)
Low order 6 bits of CL is the starting
sector number. (1-63)
CH will be combined with the high order 2 bits
from CL to form a 10 bit cylinder number with
CH being the low order 8 bits. (0-1023)
Drive number (80H = C: or 81H = D:).
Head number. (0-15)
Buffer address.

Status.

Read Verify Sectors on Hard Disc (AH =04H)

Entry AH
AL
CL

CH

DL
DH

Exit AH

04H
Number of sectors to read verify. (1-80H)
Low order 6 bits of CL is the starting
sector number. (1-63)
CH will be combined with the high order 2 bits
from CL to form a 10 bit cylinder number with
CH being the low order 8 bits. (0-1023)
Drive number (80H = C: or81H = D:).
Head number. (0-15)

Status.

Disc 7-13

Format Track (AH =OSH)

Entry AH
Al
CH

Dl
DH
ES:BX

05H
Secto rs pe r track.
CH will be combined with the high order 2 bits
from Cl to form a 10 bit cylinder number with
CH being the low order 8 bits. (0-1023)
Drive number (80H = C: or 81H = 0:).
Head number. (0-15)
Pointer to an interleave table for the track.

For every sector on the track there are two bytes in the table that describe the sector. The first byte is a
flag byte that is set to 80H if the sector is to be marked as a bad block otherwise the flag is set to O. The
second byte is the sector number to be given to the sector that this table entry is describing. For example,
a table for a track of 17 sectors with interleave factor of 2 and no bad blocks would look like:

flag Sector Position in track.

DB OOh, 01H ;1st.
DB OOh, OAH ;2nd.
DB OOH, 02H ;3rd.
DB OOH, OBH ;4th.
DB OOH, 03H ;Sth.
DB OOH, OCH ;6th.
DB OOH, 04H ;7th.
DB OOH, ODH ;8th.
DB OOH, OSH ;9th.
DB OOH, OEH ; 10th.
DB OOH, 06H ;11th.
DB OOH, OfH ; 12th.
DB OOH, 07H ; 13th.
DB OOH, 10H ; 14th.
DB OOH, 08H ; 15th.
DB OOH, 11H ; 16th.
DB OOH, 09H ; 17th.

Get Drive Parameters (AH =08H)

Entry

Exit

AH
DL

AX
Cl

CH

Dl
DH
ES:DI

08H
Drive number (80H =C:, 81H = 0:).

o
low order 6 bits is the number of sectors
per track. High order 2 bits are high order
bits of total number of cylinders.
low order 8 bits of cylinder number.
CH will be combined with the high order
2 bits from CL to form a 10 bit cylinder number.
Number of discs in system.
Maximum head number.
Address of drive parameter table.

7-14 Disc

Set Drive Parameters (AH =08H)

Entry AH
DL

08H
Drive number (80H =C:, 81H = 0:).

Exit AH Status.
The drive parameters are intializedfrom
the drive parameters pointed to by INT 41H
vector for drive C: and INT 46H vector for
drive 0:.

Read Sectors and ECC from Hard Disc (Read Long) (AH = OAH)

Entry AH
AL
CL

CH

DL
DH
ES: BX

Exit AH

OAH
Number of sectors to read. (1-7FH)
Low order 6 bits of CL is the starting
sector number. (1-63)
CH will be combined with the high order 2 bits
from CL to form a 10 bit cylinder number with
CH being the low order 8 bits. (0-1023)
Drive number (80H =C: or 81H = 0:).
Head number. (0-15)
Buffer address.

Status.

The read long operation will transfer 512 bytes of data followed by 4 bytes of ECC for each sector.

Write Sectors and ECC to Hard Disc (Write Long) (AH= OSH)

Entry AH
AL
CL

CH

DL
DH
ES: BX

Exit AH

OBH
Number of sectors to write. (1-7FH)
Low order 6 bits of CL is the starting
sector number. (1-63)
CH will be combined with the high order 2 bits
from CL to form a 10 bit cylinder number with
CH being the low order 8 bits. (0-1023)
Drive number (80H = C: or 81H =0:).
Head number. (0-15)
Buffer address.

Status.

The write long operation will transfer 512 bytes of data followed by 4 bytes of ECC for each sector.

Disc 7-15

Seek to Specified Cylinder (AH =OCH)

Entry AH
CL

CH

DL

Exit AH

OCH
High order 2 bits are high order 2 bits of
the cylinder number.
CH will be combined with the high order 2 bits
from CL to form a 10 bit cylinder number with
CH being the low order B bits. (0-1023)
Drive number (BOH = C: or B1H = 0:).

Status.

Alternate Disc Reset (AH =ODH)

Entry AH
DL

ODH
Drive number (BOH = C: or B1H = 0:).

Exit AH Status.

The alternate disc reset function is the same as function OOH except that the flexible disc subsystem is
not affected.

Test Drive Ready (AH =10H)

Entry AH 10H
DL Drive number (BOH = C: or B1H = 0:) .

Exit AH Status.

Recallbrate Drive (AH =11H)

Entry AH 11 H
DL Drive number (BOH = C: or B1H = 0:) •

Exit AH Status.

Controller Diagnostics (AH =14H)

Entry AH

Exit AH

7-16 Disc

14H

Status.

---- ---- -------- -- -- ----- - ------- ----

Get DASD Type (AH =15H)

Entry AH
DL

15H
Drive number (BOH = C: or B1H = D:).

Exit AH 0, Not present.
" flexible disc, change line not available.
2, flexible disc with change line.
3, Hard disc. CX:DX is the number of 512

byte sectors on the media.

Disc 7-17

8
System Drivers

This chapter contains a description of the drivers which control the system functions. The drivers
discussed in previous chapters deal with system peripherals such as the disc drives, keyboard, video display
adapter, etc. The drivers covered in this chapter control the system itself.

Overview

The system drivers are designed to provide program access to system operating parameters and to support
ROM BIOS drivers. These drivers allow programs to determine the system equipment configuration and
amount of memory, provide "hooks" for future multi-tasking capability, control vectors in the
HP_VECTOR_TABLE, allocate RAM in the EX-BIOS data area, control system strings, manage CMOS
memory, and perform system clock functions. An overview of the capabilities of the drivers in each of
these categories follows.

Memory Size And Equipment Determination

The ROM BIOS supports two industry standard drivers that report the current system equipment
configuration and memory size. These tasks are supported by the INT IIH and INT 12H drivers,
respectively.

The equipment determination driver (INT IIH) returns a word (double word on Vectra QS and RS series)
that describes the current system configuration. The definition of each bit or group of bits in the word is
discussed later in this chapter. The number of printer ports, serial ports, presence of a math coprocessor
(80287 or 80387), presence of Weitek math coprocessor (Vectra RS series only), initial video display
mode and number of flexible disc drives are reported by this driver. The default system configuration is
read from a CMOS memory location during power-on. If this information does not match the current
configuration, a power-on error message is issued and the current configuration is saved for the INT IIH
driver.

The memory size driver (INT 12H) returns a word that indicates the number of 1 KB blocks of system
RAM present. The amount of memory reported does not include any extended memory, and is adjusted to
exclude the amount of RAM occupied by the EX-BIOS data area. For example, in a system equipped with
640 KB of system RAM using a 4 KB EX-BIOS data area, the amount of memory reported by this driver
will be 636 KB. The default amount of memory is read from a word of CMOS memory.

System Drivers 8-1

Extended System Support

The extended system support driver (INT 15H) provides support for several advanced system features. It
provides "hooks" that allow programs to be written to support multi-tasking at a future date. In addition,
it allows data to be transferred to and from extended memory, and allows placing the CPU into its
protected mode of operation.

EX-BIOS Driver Support

The V_SYSTEM driver is an EX-BIOS driver that provides support tasks for the EX-BIOS drivers. It
contains functions that allocate RAM in the EX-BIOS data area and manipulate HP_VECTOR_TABLE
entries.

RAM Allocation

The EX-BIOS data area contains three major data structures: the HP__VECTOR_TABLE, the global data
area, and the driver's data area. Within each driver's data area is the driver header, describe record (if
applicable), and variable storage area. Each entry in the HP_VECTOR_TABLE is three words long and
consists of: Driver's IP, CS, and DS in that order. The HP_ENTRY_CODE (default INT 6FH) loads the
appropriate driver's data segment DS and jumps to the address CS:IP.

The global data area is used by system drivers that need to share data. Data structures like the EX-BIOS
stack and memory management pointers are maintained here.

The driver data area for each driver is dynamically allocated by the V_SYSTEM driver. Each driver's
data area is at its data segment (DS) and is generally composed of a standard header followed by any data
particular to the driver. If the driver wishes a data area from the EX-BIOS memory it must follow the
allocation process described below.

Space is allocated starting from the base of the global data area toward the top of the
HP_VECTOR_TABLE as shown in Figure 8-1. When a driver is initialized, the base address of the last
driver data area ("last used DS") is passed to the driver. The driver decrements this value by the number
of paragraphs (16 bytes) it needs for its data area, then returns this value as the new "last used DS".

8-2 System Drivers

HP_VECTOR_TABLE
HP_ENTRY's CS:O

HP_ENTRY_CODE
HP_ENTRY's CS:IP

"Max OS"

"Last used OS"

TOP of RAM

Figure 8-1. Driver Data Area Allocation

HP_VECTOR_TABLE

HP_ENTRY_CODE

"-
EX-BIOS
Memory

Pool

~

EX-BIOS Resident
Driver's Data

Segments
/

EX-BIOS Global
Data Segment

EX-BIOS
Memory
Pool

If a driver needs a particularly large data area) there might not be enough room. The driver must
determine the amount of RAM it requires, then see if that amount is available by comparing its
requirements against the amount of RAM available ("last used DSII - "Max DSII).

If there is an insufficient amount of RAM available, the driver may increase the amount of RAM
allocated to the EX-BIOS data area in the following manner. The memory size stored in CMOS RAM is
the amount of physical RAM less the amount occupied by the EX-BIOS Data Area. When the system is
booted) the boot code determines the amount of physical memory) then subtracts the IItop of memoryll
stored in CMOS RAM to determine how much space to allocate for the EX-BIOS Data Area. Adjusting
the memory size in CMOS RAM downward) then rebooting, will increase the size of the EX-BIOS Data
Area and hence the amount of RAM available to the driver. This technique may be used to create an"
EX-BIOS data area up to 64 KBytes in size. A program listing demonstrating this process follows.
(Functions F_RAM_GET, F_RAM_RET, F_CMOS_GET and F_CMOS_RET are described in detail
later in this chapter).

System Drivers 8-3

Example:
MOV BP, V SYSTEM

MOV AH, F_RAM GET
CALL SYSCALL

DEC BX
DEC BX
DEC BX

CMP BX, OX
JA OK

;
NOT ENOUGH RAM:

MOV BL, 15H

MOV AH, F_CMOS_GET
MOV BP, V_SYSTEM
CALL SYSCALL

DEC AL

PUSHF
MOV BL, 15H
MOV AH, F CMOS_RET
MOV BP, V_SYSTEM
CALL SYSCALL

POPF
JNC RESET PROCESSOR

MOV BL, 16H
MOV AH, F_CMOS_GET
MOV BP, V_SYSTEM
CALL SYSCALL
DEC AL
MOV BL, 16H
MOV AH, F CMOS_RET
MOV BP, V_SYSTEM
CALL SYSCALL

RESET PROCESSOR:

JMP FAR PTR OFOOOH:OFFFOH

OK:
MOV BP, V_SYSTEM
MOV AH, F_RAM_RET
CALL SYSCALL

8-4 System Drivers

How much memory available in
EX-BIOS data area?
F RAM GET returns:
-BX = "last used OS"

OX = "Max OS"

Allocate 3 paragraphs (48 bytes)
application requires 44 bytes but
must allocate in full paragraphs

New "last used OS" - "Max OS"

CMOS bytes 16H, 15H contain
"top of memory" value
value (in 1 KB units)

Get least significant byte

Free up 1KB memory for
EX-BIOS data area

Store new "top of memory" in CMOS

If necessary, decrement most
significant byte

Reboot system.
This time with 1KB more memory
allocated to the EX-BIOS data area

Set new IIlast used OS" and "Max OS"
Memory is allocated

HP_VECTOR_TABLE Manipulation

All drivers in the EX-BIOS code module are accessed through the HP_VECTOR_TABLE. The
V_SYSTEM driver provides a set of functions which allows the entries in the HP_VECTOR_TABLE to
be set and/or modified. There are nine functions, which represent the permutations of three parameters.

The first parameter determines whether a vector is to be inserted or exchanged with values passed in the
CPU registers. Vectors are typically inserted into the HP_VECTOR_TABLE during the boot process,
whereas vector exchanges are used to implement driver mapping. For example, the V_ QWERTY keyboard
translator driver is installed in the HP_VECTOR_TABLE during the boot process. If keyboard scancodes
from the QWERTY keypad were to be mapped to a Dvorak translator (~~¥~!.~l~t~·:~~.~~),the IP, CS,
and DS of the Dvorak translator driver would be exchanged with the existing vector (so the vector could
be restored to its original value at a later time).

The second parameter is the vector type. The HP_VECTOR_TABLE has three types of vectors; fixed,
reserved, and free. Fixed vectors are those assigned to the default EX-BIOS drivers. The first 51 vectors
in the HP_ VECTOR_TABLE are fixed. Reserved vectors are set aside for future expansion. There are 24
reserved vectors, which are located at vector addresses 138H through lC8H inclusive. Free vectors are
provided to allow user-supplied drivers to be added to the system.

The final parameter involves the Data Segment (OS) of the driver. Drivers may allocate their data areas
from the EX-BIOS data area as explained above, they may provide their own, or use the global data area
of the EX-BIOS. The EX-BIOS drivers all use the OS allocation functions, while an external driver (for
example, one installed as an MS-DOS device driver) may supply their own data area external to the
EX-BIOS data area. Drivers supplying their own OS must pass it as a parameter to V_SYSTEM when the
driver has completed initialization.

System String Control

The EX-BIOS provides a centralized and flexible mechanism for accessing and using strings. Each string in
the system has a unique index number associated with it. Drivers and application programs can request
access to a string via these indices. In addition, functions are available to return the index of a given
string, return the next available index, and to add and delete strings from the system.

A string index may be any word value (O--OFFFFH). Certain ranges of indices have predefined meanings
or uses. These predefined ranges are listed below.

0--2K

2--4K

4--32K

32--64K

Any index in this range is reserved for string names of EX-BIOS drivers.

This range is reserved for strings stored in the ROM-BIOS.

This range should be used by application programs to add strings to the system.

These indices are reserved for localized strings. Indices within this range are parti
tioned in the same way as in the lower 32K (i.e., 32--34K for string names of
EX-BIOS drivers, etc.).

System Drivers 8 - 5

This index structure provides a powerful tool for localizing application programs. If an application
program references messages as string indices, the program can easily be localized by loading a localized
set of strings (using a device driver for example), and setting bit 15 of all string indices used.

System strings are grouped into buckets. A bucket is a collection of strings which are grouped together.
There is no fixed limit on the number of strings which may be stored in a bucket. However, strings are
added and deleted in buckets, not individually. Therefore, strings that are likely to be added or deleted
together should be stored in the same bucket.

Each bucket consists of three separate data structures; the bucket header, bucket pointers, and the bucket
itself. These components are illustrated in Figure 8-2. The function of each is described below:

Bucket Header - The bucket header is the top level data structure. All bucket headers are linked together
in a chain. The first two fields in the header contain the offset and segment of the next bucket header in
the chain. If these fields both contain oFFFFH, then this bucket header is the last in the chain. The
highest and lowest string indices contained in the bucket are stored in the next two fields. The following
two fields contain the offset and segment of the bucket pointer. Finally, the last field contains the
segmentof the strings themselves.

Bucket Pointer - The bucket pointer consists of a series of offsets to the strings in the bucket. There must
be one offset for every index in the range specified in the bucket header. The actual address of the string
is determined by the segment (which is stored in the bucket header) and the offset stored in the bucket
pointer. Note that all strings in a bucket must be in the same segment.

Bucket - The bucket contains the actual strings. Each string consists of a byte containing the number of
characters in the string, the string itself, and a null byte (DOH) which serves as a string terminator.

String control is accomplished through the appropriate functions in the V_SYSTEM driver. These
functions provide complete control over system strings.

SEG: OFFSET

BUCKET
HEADER .1

BUCKET
POINTER

STR_NXT_HDR (OFFSETl }- PTRI -D
STR_NXT_HDR (SEGMENT) PTA 2

0 STR_UPPER_BOUNO

0 STR_LOWEA_BOUNO

0
STR_LIST_PTR (OFFSET) }--
STR_LIST_PTR (SEGMENT)

0 STR_SEGMENT -

I BUCKET
HEADER G

~ ~ BUCKET
STA_SEGMENT: PTA 1

BYTE LENGTH 08H

BYTE CHAR'1 'H'

BYTE CHAR 12 'p'

'NOR

'NOR

'NOR

OOUBLEWOA

DOUBLEWOR

BYTE CHAR'3 'Y'

BYTE CHAR'4 'E'

BYTE CHAR.s 'C'

BYTE CHARH T

BYTE CHAR'7 'A'

BYTE CHARM 'A'

BYTE STRING TERMINATOR 0llH

Figure 8-2. System String Data Structures

8-6 System Drivers

CMOS Memory Control

The system contains a CMOS Memory/Clock chip that serves as a real-time clock and provides 128 bytes
of non-volatile memory storage. The CMOS RAM is used to store system parameters. The contents of the
CMOS RAM are listed in Appendix C.

The CMOS Memory / Clock is accessed through two I/O ports. One port selects the clock register or
memory byte to access, and the other is a bidirectional data port. There are a total of 128 addresses in
the CMOS Memory / Clock chip; the first 14 are the clock registers, while the remaining 114 are the
CMOS RAM.

The V_SYSTEM driver contains two functions' which support reading and writing data to the CMOS
Memory /Clock. These functions provide a simple access to the contents of the chip.

System Clock Functions

The system employs two separate clock systems to keep track of the time and date. The first is the CMOS
Memory /Clock. The CMOS clock has a battery back-up which allows it to keep track of the current
time when the system is turned off.

The second clock is a software clock. It uses Channel 1 of the 8254 counter/timer chip (refer to the
Vectra Hardware Technical Reference Manual for additional details). Channell of the 8254 generates a
hardware interrupt (IRQ 0) approximately 18.2 times per second. The ROM BIOS keeps time by
incrementing a software clock each time the interrupt occurs. The software clock is used by the operating
system for such tasks as time and date stamping of files.

The two clocks operate independently except at boot time. During the boot process, the current time and
date maintained by the CMOS clock is read and used to initialize the software clock. Changing the value
of CMOS clock will not affect the software clock until the system is rebooted.

The STD-BIOS clock driver (INT 1AH) provides a convenient way to read or set the time and date from
either of the system clocks. These functions are detailed later in this chapter.

In addition to keeping time, both clocks issue interrupts that call user or application program routines.
The software clock interrupt service routine performs an INT 1CH each clock tick. If this vector is
modified to point to a user routine, the routine will be called on each clock tick.

The CMOS clock has an "alarm clock" feature. It can be programmed to issue an interrupt at a specified
time. The real-time clock hardware issues an INT 4AH each time the alarm timer is done. The interrupt
4AH vector can be modified to point to a user-supplied routine.

Data Structures

The system drivers use several data structures. The data structures for the STD-BIOS system drivers are
contained in the STD-BIOS data area and use four data structures. The memory size and equipment
determination drivers each use a word; the ROM software clock uses five bytes. These data structures are
located at 040: 13H, 040: 10H, and 040:6CH respectively. The extended system support driver uses 9 bytes
starting at location 040:98H. The EX-BIOS drivers are in the EX-BIOS data area and and use the global
data area. These data structures are described in detail in Appendix B.

System Drivers 8-7

Equipment Determination Driver (lNT 11H)

Returns information about the equipment attached to the system.

On Entry: No Inputs.

On Exit: AX = Word with all equipment information:

Bit Value Definition

15, 14 Number of printers attached.
13, 12 Not used.
11 , 10, 9 Number of datacomm cards attached.
8 Not used.
7, 6 Number of diskettes attached:

00 1 drive,
01 2 drives, only if Bit 0 is also a 1

5, 4 Initial video mode selected:
00 Other.
01 40x25 color adapter.
10 80x25 color adapter.
11 80x25 monochrome adapter.

3, 2 Not used.
1 Math coprocessor attached.
0 01 Diskette drives attached.

Registers Altered: AX.

On Entry: No Inputs.

On Exit: EAX = Double word with all equipment information. (* Indicates
for Vectra RS only.)

Bit

24
24
23

23

15, 14
13, 12
11, 10, 9
8
7, 6

8-8 System Drivers

Value

o
1
o

00
01

Definition

Weitek 1167* coprocessor not present
Weitek 1167* coprocessor present
Weitek 1167* coprocessor addressable

by protected mode applications only
Weitek 1167* coprocessor addressable

by real and protected mode applications
Number of printers attached.
Not used.
Number of datacomm cards attached.
Not used.
Number of diskettes attached:
1 drive,
2 drives, only if Bit 0 is also a 1

5, 4

3, 2
1
o

00
01
10
11

01

Initial video mode selected:
Other.
40x25 color adapter.
80x25 color adapter.
80x25 monochrome adapter.
Not used.
80387 math coprocessor attached.
Diskette drives attached.

Registers Altered: EAX.

Memory Size Determination Driver (lNT 12H)

Returns the amount of RAM found in the system during the power-on and initialization routines.

On Entry: No Inputs.

On Exit: AX = Number of 1KB memory blocks found.

Registers Altered: AX

System Support Driver (lNT 15H)

The extended system support driver (lNT 15H) provides functions which allow data to be transferred to
and from extended memory and allow placing the CPU into its protected mode of operation. These
functions are listed in Table 8-1.

Table 8-1. System Support Driver Function Code Summary

Function
Value

0-3
80H
81H
82H
83H
84H
85H
86H
87H
88H

89H
90H
91H

Function
Equate

FI5_DEVICE OPEN
FI5_DEVICE_CLOSE
FI5_PROG_TERM
FI5_WAIT_EVENT
FI5_JOYSTICK
FI5_SYS_REQ
Fl5 WAIT
F 15_BLOCK_MOVE
FI5_GET_XMEM
_SIZE
F 15_ENTER_PROT
Fl5 DEV_BUSY
FI5_INT_COMPLETE

Definition

System Functions Interrupt
Unsupported
Device Open
Device Close
Program Termination
Event Wait
Joystick Support
System Request Key Pressed
Wait Fixed Amount of Time
Move Block of Memory to/from Extended Memory
Get Extended Memory Size

Switch to Protected Mode
Device Busy Hook
Set Interrupt Completed Flag

System Drivers 8-9

System Support Driver Function Definitions

F15_DEVICE_OPEN (AH = 80H)

Open device for I/O. This is a hook for multi-tasking systems. Currently the function just returns.

On Entry: AH = F15 DEVICE OPEN (BOH)
BX = DevIce Identifier
CX = Process Identifier

On Exit: No values returned.

Registers Altered: None.

F15_DEVICE_CLOSE (AH = 81H)

Close device for I/O. This is a hook for multi-tasking systems. Currently the function just returns.

On Entry: AH = F15 DEVICE CLOSE (B1H)
BX = DevIce Identifier
CX = Process Identifier

On Exit: No values returned.

Registers Altered: None

F15_PROG_TERM (AH =82H)

Terminate Program. This is a hook for multi-tasking systems. Currently the function just returns.

On Entry: AH = F15 PROG TERM (82H)
BX = DevIce Identifier.
CX = Process Identifier.

On Exit: No register modified.

Registers Altered: None

8-10 System Drivers

F15 WAIT EVENT (AH = 83H)

Allows a process to wait for at least II X II microseconds before it continues. The process is notified that the
requested amount of time has elapsed when the high bit at ES:BX is set to 111 11 • If another process is
already using this function, the System Support Driver returns with the carry set. If the return status is
successful (carry flag is c1ear) , the process should poll the byte at ES:BX until the high bit is set.

On Entry: AH = F15 WAIT EVENT (83H)
AL = Su brunetTon: '

o = Set the timer with the data passed
in ES, BX, CX and OX registers.

1 = Cancel the current timer.
ES:BX = The byte at this address will

have its high bit set as soon as
possible after the "x"
microseconds.

CX,OX = Minimum number, "x", of microseconds to
wait before setting the high bit of the
address above. CX is the most significant
word.

On Exit: Carry = 1 If there was another process already
waiting.

o If the calling process will be notified
after the time out.

Registers Altered: AX

F15_JOYSTICK (AH =84H)

Read data from the joystick port.

On Entry: AH = F15 JOYSTICK (84H)
OX = Subfunctions

o = Read the switch settings.
1 = Read resistive inputs.

On Exit: Carry Flag = 0 If no errors
1 If invalid OX or no adapter present.

If OX was 0, AL bits 7 •• 4 contain switch positions.

If OX was 1, AX = X position of joystick 1
ax = Y position of joystick 1
CX = X position of joystick 2
OX = Y position of joystick 2

Registers Altered: AX, BX, CX, OX

System Ori,vers 8 -11

Programming Example: To read all the data from the joystick adapter (switches and both joysticks).

MOV AH, F15_JOVSTICK
MOV DX, 00
INT INT SYSTEM
JC HANDLE ERRORS
MOV SWITCH_STATE,AL

MOV AH, F15_JOVSTICK
MOV OX, 01
INT INT SYSTEM
JC HANDLE ERRORS
MOV STICK1_X, AX
MOV STICK1_V, ax
MOV STICK2_X, CX
MOV STICK2_V, ox

HANDLE ERRORS:

Function 84H
Read the switch settings first
Int 15H

Save the state of the switches
Bi ts 7.. 4 in AL.
Call it again for. joystick info

Save x and y position for both
joysticks.

Continues normally here

Error handler here

F1S SYS REQ (AH =8SH)

This subfunction gets called by the keyboard interrupt handler (lNT 9H) whenever the user presses the
<System request> key. Currently the routine just returns, but an application can trap this function to
detect when the user presses this key.

On Entry: AH = F15 SYS REQ (a5H)
AL = 00, If user pressed the <System request> key down (make).

01, If user let go of the <System request> key (break).

On Exit: No values returned.

Registers Altered: None.

Example: Link into the current <System request> handler so that it prints "HELLO" everytime the
<System request> key is pressed.

INITIALIZATION CODE:
MOV AH, 35H
MOV AL, INT_SYSTEM
INT 21H
MOV OLD_SEG, ES
MOV OLD_OFFSET, ax
MOV AH,25H
MOV AL, INT SYSTEM
PUSH CS
POP os

8-12 System Drivers

Get the old INT 15H
Get CS:IP of INT 15H
This MS-DOS Int does the work

Replace old INT 15H
with our routine

MOV OX, offset OUR INT1S
INT 21H

OUR INT1S:
CMP AH, f1S SYS REQ
JNE DO OLD INT
PUSHA
PUSH ES
MOV AX, f10 WRS 01
MOV BL, 01
MOV CX, 05
MOV BH, 00
MOV OX, 00
PUSH CS
POP ES
MOV BP, Offset HELLO STR
INT INT VIDEO
POP ES
POPA
IRET

DO OLD INT:
PUSH OLD OffSET
PUSH OLD-SEG
RET -

HELLO STR DB "HELLO"

F15_WAIT (AH = 86H)

This MS-DOS Int does the work

See if it is function 8SH?

Yes, call video "write string"
function 1301H to write the
string "HELLO"
page 0
row 0, column 0

Video function interrupt 10H

No, just go to regular routine.

Calling this function causes a wait of the specified number of microseconds (eX, DX) before returning to
the caller.

On Entry: AH = f1S WAIT (a6H)
CX,DX =Number of microseconds to wait.

CX is the most significant word.

On Exit: Carry = 1, Some other process already
waiting. So could not wait.

Carry = 0, Waited the amount of microseconds
specified in the CX,DX register pair.

Registers Altered: None.

System Drivers 8-13

Example: Wait 10 milliseconds in a procedure.

MOV AH, F15 WAIT
MOV CX, 0
MOV OX, 10000
INT INT SYSTEM
JC HANDLE ERRORS

HANDLE ERRORS:

a6H function
10 * 1000 microseconds
= 10 milliseconds
INT 15H

At least 10 milliseconds have elapsed

Do what's appropriate here.

F15 BLOCK MOVE (AH =87H)

Moves a block of memory from one location to another anywhere in the addressing space of the CPU.
The number of words to move is passed in CX and the source and destination tables pointers are passed in
a Global Descriptor Table (GDT) pointed to by ES:SI. The following data structure describes a sample
GDT:

a DUP
a DUP
a DUP
8 DUP
a DUP
a DUP

ADDRESS DATA STRUC
RESERVED GOT DB
CALLERS GOT DB
SOURCE GOT DB
DEST GOT DB
BIOS-GOT DB
STACK GOT DB
ADDRESS DATA ENDS

(1)
(1)
(1)
(1)
(1) ;
(1)

Descriptor used during move
Caller's GDTs during move
GOT describing source
GOT describing destination
GOT of the BIOS routines
Stack's GOT.

The eight-byte descriptor for source or destination has the following format:

SAMPLE GOT STRUC
SEG LIMIT OW?
LOW WORD OW 1
HIGH BYTE OW 1
ACCESS RIGHT OW ?
RESERVED WORD OW 1
SAMPLE GOT ENDS

Segment Limit
Low word of 24-bit address
High byte of 24-bit address
Segment access rights should always be 93H
Reserved.

On Entry: AH = f15 BLOCK MOVE (87H)
ES:SI = Pointer to descriptor tables.

CX = Number of words to move.

On Exit: AH = Return Status:
o, If successfu 1.
1, If RAM parity error.
2, If exception interrupt error.
3, If gate address line 20 failed.

Carry Flag = 1, If failure.
Zero flag = 1, If successful.

Registers Altered: AX

8-14 System Drivers

Example: Move the 16KB video buffer to the procedure's buffer.

HOV

HOV
AND
SHR
HOV
SHL
ADD
JNC
INC

SKIP INC:
HOV
HOV
LES
HOV
HOV
INT
JC
JNE

SI, offse~ DEST

BX, seg BUffER
BX, OfOOOH
BX, 12
AX, seg BUffER
AX, 4
AX, offset BUFFER
SKIP INC
BX

BYTE PTR HIGH BYTE[SI], BL
WORD PTR LOW_WORD[SI], AX
SI, ACTUAL TABLE
CX, 8192
AH, f15_MOVE_BLOCK
INT SYSTEH
HANDLE ERRORS
HANDLE-ERRORS

Load table with 24 bit
destination address:
Isolate high nibble of segment

isolate rest of segment

and form 24-bit address

Number of words to move
function 87H.
Int 15H

HANDLE ERRORS:

ACTUAL TABLE:

Continue if
everything OKAY

Do Error processing here
Actual Table of pointers
passed to the routines. They
use the Global descriptor
structure described above.

RESERVED SAMPLE GOT <0,0,0,0,0>
CALLERS SAMPLE GOT <0,0,0,0,0>
SOURCE SAMPLE GOT <16384,8000H,OBH,93H,0>
DEST SAMPLE GOT <16384,0,0,93H,0> The high byte

and low word will be
loaded in the code

BIOS
STACK
BUffER

SAMPLE GOT <0,0,0,0,0>
SAMPLE GOT <0,0,0,0,0>
DB 16384 OUP (1)

Actual destination buffer

F15 GET XMEM SIZE (AH =SSH)

Determine how much RAM there is above the first one megabyte of memory.

On Exit: AX =Total number of 1KB blocks above one megabyte.

Registers Altered: AX.

System Drivers 8-15

F15_ENTER_PROT (AH = 89H)

Allows a routine to enter protected mode. When the BIOS function has executed, the processor will be in
protected mode and the routine specified will be called. The calling program must create a set of
descriptor tables as follows:

Dummy Descriptor Table:

Global Descriptor Table:

Interrupt Descriptor Table:

Data segment Descriptor:

Extra segment Descriptor:

Stack segment Descriptor:

Code segment Descriptor:

BIOS Descriptor Table:

Initialize to zero.

Load program dependent values.

Load program dependent values.

Load program dependent values.

Load program dependent values.

Load program dependent values.

Load program dependent values.

Initialize to zero.

When calling this function, the user should be aware that:

1. The BIOS functions are not available.

2. The interrupt tables must be moved to avoid conflict with the CPU interrupt vectors.

3. The user loaded descriptor tables must not overlap with the BIOS's descriptor tables.

Upon return from protected mode the system BIOS will return control to the return point specified at
40H:67H. The user should recover the stack and continue.

There are a few points of caution that should be observed:

1. Any code which is expected to run mixed mode, that is both protected mode and real mode, must
not make any far references, including far calls.

2. Also, any return addresses put on the stack must have been generated in the same mode in which
the return code executes, or else they must be near returns.

3. The system address line AlO must be forced to 0 when the system is operating in real mode. This
task is performed by the 8042 controller. When the system enters protected mode, AlO must be
released, and when it enters real mode it must be forced to 0 again. It is the program's
responsibility to issue the appropriate command to the 8042 controller before changing modes (see
Chapter 5).

8-16 System Drivers

On Entry: AH = F15 ENTER PROT (89H)
BH = Offset into interrupt table where interrupts

coming from the Master 8259 will go
(Interrupt level 1).

BL = Offset into interrupt table where interrupts
coming from the slave 8259 will go (Interrupt level 2)

ES:SI = Pointer to a set of descriptor tables.
The following descriptors must be passed
by the calling routine:
Dummy Descriptor (DUMMY),
Global Descriptor Table (GOT),
Interrupt Descriptor Table (lOT),
Data Segment Descriptor Table (OS),
Extra Segment Descriptor Table (ES),
Stack Segment Descriptor Table (SS),
Code Segment Descriptor Table (CS) and
BIOS Descriptor Table (BIOS).

On Exit: AH = 0, If successfully entered Protected Mode.

Registers Altered: All.

Example: To enter protected mode and start executing the routine PROTECTED.

Load up descriptor tables with appropriate values. See the
iAPX 80286 or 80386 Programmer's Reference Manual for details.

Load registers for calling INT 15H function.

MOV AH, F15 ENTER PROT; Enter protected mode function 89H
Offset for 8259's must be greater than 32
because CPU uses the first 32 interrupts vectors.

MOV BH, 40 New offset for master 8259.
MOV BL, 48 ; New offset for slave 8259.
MOV ES, seg GLOBAL_TABLE ; Table of descriptors.
MOV SI, offset GLOBAL TABLE
INT INT SYSTEM ; Int 15H

PROTECTED:

Code starts executing here after call to INT 15H
; sets up CS_OT to point to PROTECTED label.

Descriptor tables needed for this function
call. The entries marked by 'F' must be
filled in by the user. Those marked with
'0' are filled by INT 15H. For a definition

System Drivers 8-17

of the SAMPLE GOT structure see the
F15 BLOCK MOVE example. For information as
to how to-fill this table see the iAPX 80286
or 80386 Programmer's Reference Manual.

GLOBAL TABLE:
RESERVED
GLBL DT
lOT DT
OS OT
ES OT
SS OT
CS DT
BIOS DT

SAMPLE GOT <0,0,0,0,0>
SAMPLE GOT <F,F,F,F,F}
SAMPLE GOT <F,F,F,F,F>
SAMPLE GOT <F,F,F,F,F>
SAMPLE GOT <F,F,F,F,F>
SAMPLE GOT <F,F,F,F,F>
SAMPLE GOT <F,F,F,F,F>
SAMPLE GOT <0,0,0,0,0>

F15 DEV BUSY (AH = 90H)

Device busy function. This is a "hook" for multi-tasking systems. Currently the function just clears the
Carry flag and returns.

On Entry: AH = F15 DEV BUSY (90H)
AL = DevIce Type:

o thru 7FH = Device can not be shared.
The operating system handling this "hook"
must serialize access to this device.

80H thru OBFH = Device can be shared among
multiple processes. The operating system
handling this "hook" must use the ES:BX
registers to distinguish between calls.

OCOH thru OFFH = Devices of this type must wait
for a fixed amount of time. This amount of
time is device dependant. Control should be
returned to the device after the fixed amount time

List of Device Types:
OOH = Disc, timeout required
01H = Diskette, timeout required
02H = Keyboard, no timeout required
80H = Network, no timeout required

OFDH = Start diskette motor, timeout required
OFEH = Printer, timeout required.

On Exit: No values returned.

Registers Altered: None.

8-18 System Drivers

F15 INT COMPLETE (AH = 91H)

Signals interrupt completed. This is a "hook" for multitasking systems. Currently the function does an
IRET.

On Entry: AH = F15 INT COMPLETE (91H)
AL = DevIce Type, see list of previous function.

On Exit: No registers used.

Registers Altered: None.

Time and Date Driver (lNT 1AH)

Table 8-2 describes functions provided by the BIOS to manage the CMOS clock and the software clock.

Table 8-2. Time and Date Driver Function Code Summary

Function Function
Value Equate Definition

INT_CLOCK Time and date
DOH FIA_RD_CLK_CNT Read current clock count
OIH FIA_SET_CLK_CNT Set current clock count
02H FIA_GET_RTC Read real-time clock
03H FIA_SET_RTC Set real-time clock
04H FIA_GET_DATE Read date from real-time clock
05H FIA_SET_DATE Set date in real-time clock
06H FIA_SET_ALARM Set alarm
07H FIA_RESET_ALARM Reset alarm

Time and Date Driver Function Definitions

F1A_RD_CLK_CNT (AH =OOH)

Reads the current setting of the software clock. There are 18.2 counts per second.

On Exit: AL = Zero if the timer has not overflowed (not passed 24 hours
since the last read). Nonzero if time has overflowed.

CX = High word of the count. (There are 18.2 counts per second).
OX = Low word of count.

Registers Altered: AX, CX, OX

System Drivers 8-19

F1A_SET_CLK_CNT (AH =01H)

Sets the count in the software clock. And resets the 24 hour overflow bit.

On Entry: AH = f1A SET ClK CNT (01H)
CX = High word of Count.
ox = low word of Count.

On Exit: No values returned.

Registers Altered: None

F1A_GET_RTC (AH =02H)

Gets the time from the real-time clock.

On Entry: AH = f1A_GET_RTC (02H)

On Exit: CH = Hours in BCD.
Cl =Minutes in BCD.
OH =Seconds in BCD.
Carry flag = 1 if real-time clock is not operating.

Registers Altered: AH, CX, DH

F1A_SET_RTC (AH =03H)

Sets the time of the real-time clock.

On Entry: AH = f1A SET RTC (03H)
CH = Hours in BCD.
Cl = Minutes in BCD.
DH =Seconds in BCD.
Dl = 1 if daylight savings time

option. 0 otherwise.

On Exit: No values returned.

Registers Altered: AH.

F1A_GET_DATE (AH =04H)

Gets the date from the real-time clock.

On Entry: AH = f1A GET DATE (04H)

8-20 System Drivers

On Exit: CH = 19 if 20th century or 20 if 21st century.
Cl = Year in BCD.
DH = Month in BCD.
Dl = Day in BCD.
Carry flag set if the real-time clock not operating.

Register Altered: AH, CX, OX.

F1A_SET_DATE (AH = 05H)

Sets the date of the real-time clock.

On Ent ry: AH = f1A SET DATE (OSH)
CH = 19 If 20th century or 20 if 21st century.
Cl = Year in BCD.
DH = Month in BCD.
Dl = Day in BCD.

On Exit: No values returned.

Registers Altered: AH.

F1A_SET_ALARM (AH = 06H)

Sets the alarm to generate an INT 4AH when the specified amount of time has elapsed. The user must
place an appropriate interrupt handling routine in the INT 4AH vector.

On Entry: AH = f1A SET ALARM (06H)
CH = Hours in BCD.
Cl = Minutes in BCD.
DH = Seconds in BCD.

On Exit: Carry flag = 1 if the real-time clock is not operating
or the alarm is already set.

Registers Altered: AH.

F1A_RESET_ALARM (AH =07H)

Clears the current alarm if any was set.

On Entry: AH = f1A_RESET_AlARM (07H)

On Exit: No values returned.

Registers Altered: AH.

System Drivers 8-21

V_SCOPY Driver (BP = OOOOH)

This driver does an IRET for all function calls.

V_DOLITTLE Driver (BP = 0006H)

This driver does an IRET for all function calls.

V_PNULL Driver (BP =OOOCH)

This driver loads AH with RS_SUCCESSFUL and does an IRET for all function calls.

V_SYSTEM Driver (BP = 0012H)

Table 8-3 summarizes the V_SYSTEM driver Functions. A more detailed description follows the table.

Table 8-3. V_SYSTEM Driver Function Code Summary

FUDc.
Value

00
02
0200
04
06
08
OA
OC
OE
10
12
14
16
18
IE

Function
Equate

V_SYSTEM
F_ISR
F_SYSTEM
F_SF_INIT
F_INS_BASEHPVT
F_INS_XCHGFIX
F_INS_XCHGRSVD
F_INS_XCHGFREE
F_INS_FIXOWNOS
F_INS_FIXGETOS
F_INS_FIXGLBDS
F_INS_FREEOWNDS
F_INS_FREEGETDS
F_INS_FREEGLBOS
F_INS FIND
F_RAM_GET

Definition

System Management Functions
Interrupt service routine (unsupported)
Standard Driver Functions
System initialization
Returns HP_VECTOR_TABLE segment
Exchanges fixed table entries
Sets next "reserved" entry in table
Sets next "free" entry in table
Install fixed vector, user supplies DS
Install fixed vector, system supplies OS
Install fixed vector, DS set to global data area
Install next free vector, user supplies DS
Install next free vector, system supplies OS
Install next free vector, DS set to global data area
Search for matching device header
Get EX-BIOS memory pool address and size

8-22 System Drivers

Table 8-3. V_SYSTEM Driver Function Code Summary (Cont.)

Func.
Value

20
22
24
2A
2C
2E
30

32

34
36

38

3A
3C
3E
40

42

44

46
48

Function
Equate

F_RAM_RET
F_CMOS_GET
F_CMOS_RET
F_YIELD

F_SND_CLICK
ENABLE

F_SND CLICK
_DISABLE
F_SND_CLICK
F_SND_BEEP
_ENABLE
F_SND_BEEP
_DISABLE
F_SND_BEEP
F_SND_SET _BEEP
F_SND_TONE
F_STR_GET
_FREE_INDEX
F_STR_DEL
_BUCKET
F_STR_PUT
_BUCKET
F_STR_GET _STRING
F_STR_GET _INDEX

Definition

Set memory pool address and size
Read and verify CMOS memory
Write to CMOS memory
Just returns
Reserved
Reserved
Enable keyclick

Disable keyclick (Default)

Execute keyclick if enabled
Enables beep

Disables beep

Beeps if enabled
Sets beep frequency
Produce tone, user supplied duration and frequency
Return next free string index

Delete bucket string list

Add bucket to current string list

Search the list for index, return string
Search list for a string, return index

Registers Altered: AH, OS, BP, ES

Example: Get the Base address of the HP_ VECTOR_TABLE.

MOV BP, V SYSTEM
MOV AH, F-INS BASEHPVT
PUSH OS
CALL SYSCAll
MOV AX, OS
POP OS
PUSH
MOV GLOBAl_DATA_AREA, AX
MOV AX, ES
MOV VECTOR_TABLE_SEGMENT, AX

HP vector (12H).
function 04H
EX-BIOS destroys OS
Int for EX-BIOS (default 6FH)

Restore OS

The value returned in ES is the segment address of the UP_ VECTOR_TABLE and the value returned in
the DS register is the segment address of the EX-BIOS global data area.

System Drivers 8-23

V_SYSTEM Driver Function Definitions

F_ISR (AH =OOH)

Logical interrupt service routine. Currently, it loads AH with RS_UNSUPPORTED and does an IRET.

On Entry: BP = V SYSTEM (12H)
AH = F=ISR (OOH)

On Exit: AH = RS UNSUPPORTED (02H)

Registers Altered: AH, BP, OS

F_SF_INIT (AX = 0200H)

System functions routines. The only function supported is SF_INIT (DOH). The rest of the routines
return with a status of RS_UNSUPPORTED in AH.

The SF_INIT routine sets up OS and initializes all the variables in the EX-BIOS global data area.

On Ent ry: BP = V SYSTEM (1 2H)
AH = F-SYSTEM (02H)
AL = SF_INIT (aOH)

On Exit: AH = Retu rn Status Code
BX = OS of EX-BIOS global data area

Registers Altered: AH, BX, OS, BP

F_INS_BASEHPVT (04H)

Reports the segment where the HP_VECTOR_TABLE is located. This function can only be called after
the V_SYSTEM driver has been initialized.

On Entry: BP = V_SYSTEM (12H)
AH = FINS BASEHPVT (04H)

On Exit: AH = Return Status Code
ES = Segment address of HP VECTOR TABLE.
OS = Segment of EX-BIOS global data area

8-24 System Drivers

________________ m _

FINS XCHGFIX (AH = 06H)

Exchanges the values in the registers for a particular entry in the HP_VECTOR_TABLE. This function
can be used to replace an existing vector at a fixed location without initialization.

On Entry: BP = V SYSTEM (12H)
AH = FINS XCHGFIX (06H)- -BX = Vector address
OX = OS to be exchanged

ES:OI = CS:IP to be exchanged

On Exit: AH = Return Status Code
o = RS SUCCESSFUL

OX = OS from table
ES:OI = CS:IP from table

Registers Altered: AH, BP, OS, ES, 01, OX

Example: Replace the EX-BIOS V_SVIDEO vector (54H).

MOV BP, V SYSTEM
MOV AH, F_INS_XCHGFIX
MOV BX, V SVIOEO
MOV 01, CS
MOV ES, 01
MOV 01, offset NEW VIDEO ROUTINE
MOV OX, OS
PUSH OS
CALL SYSCALL
POP OS
MOV OLO_CS, ES
MOV OLD IP, 01
MOV OLO=OS, OX

FINS XCHGRSVD (AH = 08H)

HP vector 12H.
Function 06H
HP vector 54H
Get CS, IP and OS of new
video rout ines.

EX-BIOS Destroys OS
Int for EX-BIOS (default 6FH)

Save old CS, IP and OS
Just in case we need to
put them back

Exchanges the values in the registers for the next reserved entry in the HP_VECTOR_TABLE. If a
reserved vector is not available, the function returns the RS_NO_VECTOR error code.

On Entry: BP = V SYSTEM (12H)
AH = F-INS XCHGRSVO (08H)
OX = OS to-be exchanged

ES:OI = CS:IP to be exchanged

On Exit: AH = Return Status Code
o = RS SUCCESSFUL
Of6H = RS-NO VECTOR

BX =Vector address
OX = OS from table

ES:DI = CS:IP to be exchanged

Registers Altered: AH, BP, OS, BX, ES, 01, OX

System Drivers 8-25

FINS XCHGFREE (AH =OAH)

Exchanges the values in the registers for the next free entry in the UP_ VECTOR_TABLE. If a free
vector is not available, the function returns the RS_NO_VECTOR error code.

On Entry: BP = V SYSTEM (12H)
AH =F-INS XCHGFREE (OAH)
OX = OS to-be exchanged

ES:OI = CS:IP to be exchanged

On Exit: AH = Return Status Code
a = RS SUCCESSFUL
OF6H = RS-NO VECTOR

BX = Vector address
OX = OS from table

ES:OI = CS:IP to be exchanged

Registers Altered: AH, BP, OS, BX, ES, 01, OX

F_INS_FIXOWNDS (AH =OCH)

Installs a given vector entry in the UP_VECTOR_TABLE and calls it with an SF_INIT function. Upon
returning from initialization, the routine returns its data segment in the BX register.

WARNING

If the SF_INIT function returns with an error code of as_FAIL (OFEH),
the power -on self test sequence will be executed.

On Entry: BP = V_SYSTEM (12H)
AH = FINS FIXOWNOS (OCH)
BX = Vector address to be installed

ES:OI = CS:IP of the device

On Exit: AH = Return Status Code
o = RS SUCCESSFUL

Registers Altered: AH, BP, OS

F_INS_FIXGETDS (AH = OEH)

Installs a given vector entry in the UP__VECTOR_TABLE and calls it with an SF_INIT function. This
function should be used if the driver needs EX-BIOS RAM for its data segment. F_INS_FIXGETDS calls
the routine to initialize with the "last used DS" in the BX register. The routine's initialization code
decrements the "last used DS" value and returns to F_INS_FIXGETDS with this new value.

8-26 System Drivers

WARNING

If the SF_INIT function returns with an error code of RS_FAIL (OFEH),
the power-on self test sequence will be executed.

On Entry: BP =
AH =
BX =

ES:DI =

V_SYSTEM (12H)
fINS fIXGETDS (OEH)
Vector address to be installed
CS:IP of the routine

On Exit: AH = Return Status Code
o = RS SUCCESSfUL

Registers Altered: AH, BP, OS

F_INS_FIXGLBDS (AH = 10H)

Installs a given vector entry in the HP_VECTOR_TABLE and calls it with an SF_INIT function. When
F_INS_FIXGLBDS calls the initialization routine it passes the data segment of the EX-BIOS global data
area in the BX register.

WARNING

If the SF_INIT function returns with an error code of RS_FAIL (OFEH),
the power-on self test sequence will be executed.

On Entry: BP = V SYSTEM (12H)
AH = f-INS rIXGLBDS (10H)
ax = Vector address to be installed

ES:DI =CS:IP of the routine

On Exit: AH = Return Status Code
o = RS SUCCESSfUL

Registers Altered: AH, BP, OS

System Drivers 8-27

FINS FREEOWNDS (AH = 12H)

Installs a vector in the next free entry of the HP_ VECTOR_TABLE and calls it with an SF_INIT
function. Upon returning from initialization, the routine returns its DS in the BX register.

WARNING

If the SF_INIT function returns with an error code of RS_FAIL (OFEn),
the power-on self test sequence will be executed.

On Ent ry: BP =
AH =
BX =

ES:DI =

V SYSTEM (12H)
f=INS_fREEOWNOS (12H)
Vector address to be installed
CS:IP of the device

On Exit: AH = Return Status Code
o = RS SUCCESSfUL

Registers Altered: AH, BP, OS

F_INS_FREEGETDS (AH =14H)

Installs a vector in the next free entry of the HP_VECTOR_TABLE and calls it with an SF_INIT
function. This function is used if the driver needs EX-BIOS RAM for its data segment.
F_INS._FREEGETDS calls the routine to initialize with the "last used DS" in the BX register. The
routine's initialization code decrements the !llast used DS" value and returns it to F_INS_FREEGETDS.

WARNING

If the SF_INIT function returns with an error code of RS_FAIL (OFEB)
the power-on self test sequence will be executed.

On Ent ry: BP = V SYSTEM (12H)
AH = f-INS fREEGETOS (14H)

ES:DI = CS:IP-of the routine

On Exit: AH = Return Status Code
o = RS SUCCESSfUL

Registers Altered: AH, BP, OS

8-28 System Drivers

Example: Install the ACME_INT vector in the next free vector and allocate two paragraphs of data when
its initialization routine gets called.

EX-BIOS Destroys OS
Int for EX-BIOS (default 6FH)

HP vector 12H for EX-BIOS.
Function 14H
Get CS, IP of ACME_INT routines

V SYSTEM
F-INS FREEGETOS
CS
01
offset ACME INT

MOV BP,
MOV AH,
MOV 01,
MOV ES,
MOV 01,
PUSH OS
CALL SYSCAlL
pop OS
MOV VECTOR_NUMBER, BX Save the vector number

; routines are installed.
ACME INT routine handles initialization and
allocates 2 paragraphs from EX-BIOS RAM for
its data segment.

ACME INT:
CMP AH, F SYSTEM
JNE NOT SUPPORTED
CMP Al, SF_INIT
JE ACME INIT

NOT SUPPORTED:
MOV AH, RS UNSUPPORTED
IRET

Decode F SYSTEM subfunction
SF INIT.

Any unknown functions should
return with RS UNSUPPORTED
in AH.

ACME INT:
-SUB BX, 2

MOV OS, BX

ASSUME OS:NOTHING
MOV ACME ATTR, 55AAH
MOV ACME=NAME_INDEX, 55AAH

Decrement the IIlast used OSII passed
to us. This allocates 2 paragraphs
and makes our data segment the "last
used OSII. Make sure to pass this new
BX back to FINS FREEGETOS code.
Now we can initialize the

; data in our segment.

Put data into Attribute word
Put a dummy index for now.

MOV AH, RS SUCCESSFUL

IRET

Initialize rest
of data segment here.

; Always return this status
; if successful initialization.

Sample segment for this routine

ACME SEG struc
ACME-ATTR dw 0
ACME-NAME INDEX dw 0
ACME-REST-db 28 dupe?)
ACME-SEG ends

; Attribute word of ACME's data segment.
; Index name of ACME routine.
; rest of data segment

System Drivers 8-29

F_INS_FREEGLBDS (AH =16H)

Installs a vector in the next free entry of the HP_VECTOR_TABLE and calls it with an SF_INIT
function. When F_INS_FREEGLBDS calls the initialization routine, it passes the data segment of the
EX-BIOS global data area in the BX register.

WARNING

If the SF_INIT function returns with an error code of RS_FAIL (OFEH),
the power-on self test sequence will be executed.

On Entry: BP = V SYSTEM (12H)
AH = F-INS FREEGLBOS (16H)

ES:DI = CS:IP-of the routine

On Exit: AH = Return Status Code
o = RS SUCCESSFUL

Registers Altered: AH, BP, OS

F_INS_FIND (AH = 18H)

This function is used to search the HP_VECTOR_TABLE for drivers that have equal or similar values in
a specified field of their data segment. Parameters passed to the function specify the location of the
16-bit field, the bits within the field to be compared (and_mask) and the pattern of bits the field is to
be compared with. Given a starting vector address, the function searches the vector table for the next
driver that matches the conditions specified and returns its vector address in SI.

On En try: BP = V SYSTEM (1 2H)
AH = F-INS FIND (18H)
AL = O-then respond on equality to pattern

«field) .AND. (and_mask» = pattern
2 then respond on non equal

«field) .AND. (and=mask» <> pattern
BX = and mask
OX = pattern
SI = vector address to start the search from.
01 = field to be used in the function, this

is the offset into an HP header.

On Exit: AH = Return status
o = RS SUCCESSFUL
OFEH = RS FAIL--No match found

SI = Vector address of the first entry that matched.

Registers Altered: AH, BP, OS, SI

8·w 30 System Drivers

~-~~ --~----~--------------- --- ----~---------------

Example: Find a vector that has the value X5AXH ("X" means allow these digits to take any value) in its
attribute header (the first word of the driver's data segment)

MOV BP, V SYSTEM
MOV AH, F-INS FIND
MOV AL, 0
MOV 01, 0
MOV OX, 05AOH
MOV BX, OFFOH
MOV SI, 0
PUSH OS
CALL SYSCALL
POP OS
CMP AH, RS SUCCESSFUL
JNE VECTOR-NOT FOUND

VECTOR fOUND:
HOV SAVED_VECTOR, SI

HP vector 12H
Function 18H
Return RS SUCCESSFUL when the value is equal
Look in the first word of driver's data segment
Look for value 'SA' in the middle of the word.
Mask off the don't care parts.
Start looking from the first vector position.

; EX-BIOS destroys OS
; Int for EX-BIOS (default 6FH)

See if it found a match?

Yes

VECTOR NOT FOUND: No

F RAM GET (AH = 1EH)

This function gets the segment pointers of the EX-BIOS free RAM area. Two pointers are returned by
this function call. The "last used OS" pointer marks the first paragraph of EX-BIOS RAM that is free for
use. The "max OS" pointer marks the lowest value that "last used OS" can have. Figure 8-1 shows how
the EX-BIOS memory is organized.

See the F_RAM_RET memory function.

On Entry: BP = V SYSTEM (12H)
AH = r=RAM_GET (1EH)

On Exit: AH = RS SUCCESSfUL
BX = "last used OS"
OX = IImax 0s"

Registers Altered: AH, BP, OS, BX, OX

System Drivers 8-31

F_RAM_RET (AH =20H)

Sets the "last used DS" and "max OS" EX-BIOS pointers to the values passed in the BX and DX registers.
This allows the calling routine to reserve a piece of the EX-BIOS memory.

CAUTION

The F INS_FIXGETDS and F_INS_FREEGETDS functions described
above also modify these values. Use caution when allocating memory with
both methods.

On Entry: BP = V_SYSTEM (12H)
AH = f RAM GET (20H)
BX = "last-used 0s"
OX = IImax OS"

On Exit: AH = RS SUCCESSfUL

Registers Altered: AH, BP, OS

Example: The following code allocates five paragraphs (80 bytes) of EX-BIOS memory.

Check Get the memory pointers first.

MOV BP, V SYSTEM
MOV AH, f RAM GET
PUSH OS
CALL SYSCALL
POP OS

; HP vector 12H.
function 1EH
EX-BIOS Destroys OS
Int for EX-BIOS (default 6fH)

Check to see if there is enough memory to allocate 5 paragraphs.

SUB BX, 0005H

CMP BX, OX
JL NO MEMORY LEfT

ENOUGH MEMORY LEfT:
MOV BP, V_SYSTEM
MOV AH, f RAM RET
PUSH OS - -
CALL SYSCALL
POP OS
MOV MEMORY_SEG, BX

8-32 System Drivers

; Create a new IIlast used 0s" by
; moving pointer towards "max os II •

Is IIlast used OS" >= IImax OS"?

; Yes: Allocate 5 paragraphs.
; HP vector 12H

function 20H
EX-BIOS Destroys OS

; Int for EX-BIoS (default 6fH)

Save this new memory pointer for later use

Continue

NO MEMORY LEfT: ; No:

Typical thing to do here is to allocate more
memory for the the EX-BIOS RAM and reboot
system.

F CMOS GET (AH =22H)

Read a byte from CMOS. It verifies the checksum on the industry standard CMOS area and returns
RS_FAIL if the checksum is invalid. \

On Entry: BP = V SYSTEM (12H)
AH = r=CMOS_GET (22H)
BL = address of CMOS byte to read

On Exit: AH = Return Status Code
AL = byte of data from CMOS

Registers Altered: AX, BP, OS.

F CMOS RET (AH =24H)

Write a byte to CMOS. Calculate a new checksum for both the industry standard CMOS area and the UP
CMOS area.

On Entry: BP = V SYSTEM (12H)
AH = r-CMOS RET (24H)
AL = byte of data to be written to CMOS
BL = address of byte to be written to CMOS

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS.

System Drivers 8-33

Example: Make the monochrome display the primary video adapter by setting this information in the
equipment byte of CMOS memory.

Read the equipment byte.

MOV
MOV
MOV
PUSH
CAll
POP
CMP
JE

BP, V SYSTEM
AH, F CMOS GET
Bl, 14H
OS
SYSCAll
OS
AH, RS_FAIl
INVALID CMOS

HP vector 12H.
function 22H
Address of the equipment byte

; EX-BIOS destroys OS
; Int for EX-BIOS (default 6FH)

; See if CMOS is valid

MOV BP, V SYSTEM
MOV AH, F CMOS RET
PUSH OS
CAll SYSCAll
POP OS

Isolate the video and set appropiate video bits.

AND Al, 11001111B
OR Al, 00110000B ; Select monochrome display

Write the equipment byte.

HP vector 12H
function 24H

; EX-BIOS destroys OS
; Int for EX-BIOS (default 6FH)

INVALID CMOS:

F YIELD (AH = 2AH)

Currently loads AU with RS_SUCCESSFUL and does an IRET. This is a "hook" for multi-tasking
systems.

On Entry: BP =V SYSTEM (12H)
AH = r=YIElD (2AH)

On Exit: AH = Return Status Code

Registers Altered: AH, BP, OS

8-34 System Drivers

F SND CLICK ENABLE (AH = 30H)

Enables the keyclick function.

On Entry: BP = V_SYSTEM (12H)
AH = r SND CLICK ENABLE (30H)

On Exit: AH = Return Status Code

Registers Altered: AH t BP t OS.

F_SND_CLICK_DISABLE (AH = 32H)

Disables the keyclick function, sets the EX-BIOS global data area T_SND_CLICK_DURA byte to zero.

On Entry: BP = V SYSTEM (12H)
AH = r-SND CLICK DISABLE (32H)

On Exit: AH = Return Status Code

Registers Altered: AH t BP t OS

F_SND_CLICK (AH = 34H)

This functions issues a keyclick.

On Entry: BP = V SYSTEM (12H)
AH = r-SND CLICK (34H)

- - i

On Exit: AH = Return Status Code

Registers Altered: AH t BP t OS

F_SND_BEEP_ENABLE (AH =36H)

Enables the beep function.

On Entry: BP = V_SYSTEM (12H)
AH = r SND BEEP ENABLE (36H)

On Exit: AH = Return Status Code

Registers Altered: AH t BP t OS

F_SND_BEEP_DISABLE (AH =3SH)

Disables the beep function.

System Drivers 8-35

On Entry: BP = V SYSTEM (12H)
AH = r-SND BEEP DISABLE (38H)

On Exit: AH = Return Status Code

Registers Altered: AH, BP, OS

F_SND_BEEP (AH =3AH)

Makes a sound as defined by the current values of T_SND_BEEP_CYCLE and T_SND_BEEP_DURA
in the EX-BIOS data area.

On Entry: BP = V SYSTEM (12H)
AH = r=SND_BEEP (3AH)

On Exit: AH = Return Status Code

Registers Altered: AH, BP, OS

F_SND_SET_BEEP (AH =3CH)

Defines beep frequency and duration.

On Entry: BP = V SYSTEM (12H)
AH = r-SND SET BEEP (3CH)
BX = rrequency-1 to 25000 hz.

If (BX) = 0 then tone off.
OX = duration of tone in 10 microsecond increments

On Exit: AH = Return Status Code

Registers Altered: AH, OS, BP.

Example: Set beep frequency to 660 Hz for duration of 1/2 second.

MOV BP, V SYSTEM
MOV AH, r-SNO SET BEEP
MOV BX, 660
MOV OX, 50000

PUSH AH, f_SND_SET_BEEP
PUSH OS
CALL SYSCALL
pop OS

F SND TONE (AH = 3EH)

HP vector 12H
function 3CH
frequency in hertz
1/2 a second in 10 microsecond
increments.

EX-BIOS destroys OS
Int for EX-BIOS (default 6fH)

Generates a tone of the given frequency and duration with an approximate 0.5 percent error.

8 - 36 System Drivers

--------_.._----------------------------- --------------- ------------~---------------- - -~---------------

On Entry : BP =
AH =
BX =
OX =

V SYSTEM (12H)
F-SND TONE (3EH)
Frequency 1 to 25000hz. If (BX) = 0 then tone off.
Duration of tone in 10 microsecond increments.

On Exit: AH = Return Status Code

Registers Altered: AH, OS, BP

F_STR_GET_FREE_INDEX (AH =40H)

Returns to caller the next string index that does not conflict with the ROM-based string indices.

On Entry: BP = V SYSTEM (12H)
AH = F-STR GET FREE INDEX (40H)

On Exit: AH = RS SUCCESSFUL
BX = Next free index.

Registers Altered: AH, BX, OS, BP

Example: This example gets the next string index available to the user.

MOV BP, V SYSTEM
MOV AH, F-STR GET FREE INDEX
PUSH OS
PUSH BP, F_STR_GET_FREE_INDEX
CALL SYSCALL
POP OS
MOV FIRST_FREE_INDEX,BX

HP vector 12H
funct. 40H
EX-BIOS destroys OS

; Int for EX-BIOS (default 6FH)

; Save it for later use.

F STR DEL BUCKET (AH = 42H)- - -
Finds a header with the given address and deletes it from the bucket header list.

On Entry: BP = V SYSTEM (12H)'
AH = F=STR_OEL_BUCKET (42H)
01 =offset address of bucket header
ES = segment address of bucket header

On Exit: AH = RS SUCCESSFUL if header found and deleted
RS-FAIL if header not found.

Registers Altered: AH, OS, BP.

System Drivers 8-37

F_STR_PUT_BUCKET (AH =44H)

Takes a header and its corresponding pointers and adds them to the front of the list.

On Entry: BP = V SYSTEM (12H)
AH = F=STR_PUT_BUCKET (44H)
01 = Offset address of header
ES = Segment address of header

On Exit: AH = RS SUCCESSFUL

Registers Altered: AH, BP, OS.

Example: Adds a set of strings and its associated data structures for the ACME_INT driver.

String data structures (see Figure 8-2)

STR HEADER STRUC
STR-NXT HDR DO (1)
STR-UPPER BOUND OW (1)
STR-LOWER-BOUND OW (1)
STR-LIST PTR DO (1)
STR=SEGMENT OW (1)
STR HEADER ENDS

Now build a bucket (set of strings) for the
ACME INT:

First list ACME INT's strings:
size acme name db 1 acme name -
f acme name = $-
acme name db 'Acme Co.' ,OH
I acme name = $
sIze item 1 db 1 item 1 - f item - 1
f item 1 = $-
item 1 db 'Hello World' ,OH
litem 1 = $
sIze item 2 db 1 item 2 - f item 2 - 1
f item 2 = $-
item 2- db 'Widgets' ,OH
I item 2 = $

Now build table of bucket pointers:

acme_ptrs label near
dw offset acme name
dw offset item-1
dw offset item 2

8-38 System Drivers

Now build the bucket header data structure

acme bucket label near
dw OFFFFH
dw OFFFFH
dw 1002H
dw 1000H
dw offset acme ptrs
dw segment acme ptrs
dw segment acme_name

This is the only bucket.

Adding string indexes 1000 .. 1002

address of pointer list

segment of all strings

Do the function call to add bucket.

MOV BP, V SYSTEM
MOV AH, F STR PUT BUCKET
MOV 01, offset acme bucket
MOV ES, segment acme bucket
PUSH OS
CALL SYSCALL
POP OS

HP vector 12H
function 44H

EX-BIOS Destroys OS
Int for EX-BIOS (default 6FH)

F_STR_GET_STRING (AH =46H)

Given an index, this function searches the list of bucket headers for the bucket pointer with the given
index. It returns a pointer to the string.

On Entry: BP = V_SYSTEM (12H)
AH = F STR GET STRING (46H)
BX = String index

On Exit: AH = RS SUCCESSFUL if index found in a bucket
ex = How many characters are in the string exclusive

of the byte count and the zero byte at the end.
DS:SI = Address of header where string was found.
ES:OI = Pointer to first character of the string.

Registers Altered: AH, ex, SI, 01, BP, OS, ES

System Drivers 8 - 39

Example: Search for the name of the ACME_INT routine as index 1000H.

HOV BP, V SYSTEM
MOV AH, f_STR_GET STRING
MOV BX, 1OOOH
PUSH OS
CALL SYSCALL

HP vector 12H
function 46H
Index of ACME INT name string
EX-BIOS destroys OS
Int for EX-BIOS (default 6fH)

Write the string to the screen:

MOV AX, f10 WRS 00
MOV BP, SI- -
PUSH OS
POP ES
MOV OX, 0
MOV BH, 0
MOV BL, 1
INT INT VIDEO
POP OS

Call the write string function.
Offset of string address
Segment of string address
CX is already set
Cursor position at (0,0)
Video page 0
Character attribute

; Video interrupt 10
Recover old OS

F_STR_GET_INDEX (AH =48H)

Given a pointer to a string, it returns the index of the string if it is in the bucket header list.

On Entry: BP = V SYSTEM (12H)
AH = f-STR GET INDEX (48H)

ES:OI = Pointer to first character of
the zero terminated string.

On Exit: AH = RS SUCCESSfUL if index was found.
BX = Index found for the given string.

Registers Altered: AH, BX, BP, OS

Example: Get the index of the ACME_NAME string.

MOV BP, V SYSTEM HP vector 12H
MOV AH, f-STR GET INDEX function 48H- - -MOV 01, seg ACME_NAME Move segment of string
MOV ES, 01 into ES
MOV 01, offset ACME NAME
PUSH OS EX-BIOS destroys OS
PUSH BP,OffSET ACME_NAME
CALL SYSCALL ; Int for EX-BIOS (default 6fH)
POP OS
MOV ACME NAME INDEX, BX ; Save the index.-

8 -40 System Drivers

9
System Processes

This chapter describes system processes contained in the ROM BIOS. System processes are different from
drivers in that they are not readily accessible to application programs and they perform larger tasks than
a typical driver function. The ROM BIOS has five main system processes: reset, power-on self test
(POST), system generation (SYSGEN), booting (BOOT), and return from protected- mode.

Reset

The CPU is reset through a hardware reset signal. This signal sets the CS and IP registers to begin
execution at memory location OFOOO:OFFFOH. The system can be reset by either a hardware reset to the
CPU, or by any software routine that jumps to memory location OFOOO:OFFFOH. There are three events
that initiate a system reset:

• Power-oDe - This reset occurs when power is applied to the system. The power supply resets the CPU
through its reset signal when the system is turned on. POST is initiated and performs a full memory
test.

• Soft Reset. - This reset is initiated by the <Ctrl>-<A1t>- key sequence. This sequence is
interpreted by the INT 09H keyboard interrupt service routine as a reset command. POST is
initiated. A full memory test is not performed.

• Programmatic Reset. - The final reset source is a software initiated hardware reset. A command is
sent to the 8042 controller to pulse the CPU hardware reset line. Once the CPU has been placed in
the Protected Mode, a hardware reset is the only method available to return to the Real Mode (the
80386 can return to Real Mode by using a MOV CRO instruction). POST mayor may not be
performed depending upon the shutdown status byte in CMOS.

Once a reset operation has been initiated by one of the three possible sources, the system must determine
if it is a power-on reset. If it is a power-on reset, bit 2 in the 8042 controller's status port is cleared.
POST is performed. A command is sent to the 8042 to set bit 2. If it is not a power-on reset, bit 2 in the
8042 controller status port is already set. The CMOS shutdown status byte determines whether POST is
performed.

If it is not a power-on reset, the system looks at the shutdown status byte (CMOS address OFH) to
determine whether to perform POST or return from protected mode. If the shutdown status byte is set to
one of the values that indicates the system is returning from protected mode, the reset process will
initiate the return from protected mode process. This process is described next. All other values of the
shutdown status byte are interpreted as reset commands, and the reset process will initiate the power-on
self test process. The reset process has completed its tasks when one of these two processes has been
invoked.

System Processes 9-1

Protected Mode Support

The CPU has two modes of operation: Real mode and Protected mode. Real mode provides a 1 MB address
space and is 8086 compatible. Protected mode provides memory protection, virtual memory addressing,
and either a 16 MB (for the 80286 CPU), or a 4 gigabyte (for the 80386 CPU) physical address space.
The normal mode of operation of the system is real mode. However, a few programs use protected mode,
for example, VDISK.SYS, the MS-DOS virtual disc device driver.

Additionally, the 80386 provides a third mode which is a subset of Protected mode: Virtual 8086 mode.
In Virtual 8086 mode, an application would run as it would on an 8086 machine. This mode allows
multi-tasking with older MS-DOS applications; each application allotted up to I MB of memory address
space.

The system provides some support to the programmer for use of the protected mode features. The INT
15H driver provides two functions that support system operation in protected mode. One of these
functions enables data to be moved to and from extended memory. This function enters protected mode to
perform this task, and returns to real mode. The second function provides a method for programmers to
switch into protected mode. These functions are described in Chapter 8 of this manual.

Shutdown Status Byte

The shutdown status byte is used by the system to determine what action should be taken on reset. Table
9-1 shows how the shutdown status byte is interpreted. Note that any value that does not indicate a
return from protected mode is interpreted by the system as a reset, and will cause the reset process to
invoke POST.

Table 9-1. Shutdown Status Byte

Value Definition

00-04H Perform power-on reset sequence.
05H Flush keyboard and jump via double word stored at 0040:0067H.
06-07H Perform power-on reset sequence.
08H Return from test of extended memory.
09H Return from INT 15H block move function.
OAH Jump via double word stored at 0040:0067H.
OBH-FFH Perform power-on reset sequence.

The values 08H and 09H are used internally by the ROM BIOS. If the return from protected mode
process detects either of these values, it will branch to their respective routines. Values 05H and OAH
should be used by all other programs returning from protected mode.

9-2, System Processes

Power-On ~elf Test (POST)

Each time the system is pow~rpti on, or a reset is performed, the POST process is executed. The purpose of
the POST process is to verify the basic functionality of the system components and to initialize certain
system parameters. The POST process performs the following tasks:

• Test the operation of the CPU.

• Test the system ROM.

• Test and initialize 8254 timer/counter and start the refresh counter.

• Test the first 64 KB of system RAM

• Test memory cache subsystem (Vectra RS/20C and RS/25<"' only.)

• Initialize the video display for diagnostic messages.

• Test and initialize DMA controllers anci DMA page registers.

• Test and initialize the ~259A interrupt controllers.

• Test the 8042 controller and Scandoor.

• Test the HP-HIL controller.

• Test C~10S RAM for integrity.

• Determine if manufacturing electronic tool is present. If so, run manufacturing test.

• Test the- remaining base system RAM (RAM above the first 64 KB).

• Test the extended RAM above memory address 100000H (protected mode RAM.)

• Test the real-time clock portion of the RTC / CMOS chip.

• Test the keyboard interface and the keyboard itself.

• Test the flexible disc controller subsystem.

• Test the coprocessor if present (80287 for Vectra ES series, 80387 for Vectra QS series, and 80387
and Weitek coprocessor for Vectra RS series).

• Test the CPU clock speed.

• Test serial port.

The power-on self test performs tests on various subsystems in the hardware when power is switched on
or when the system is reset. If a problem is detected, a 4 digit hex error code is displayed and four :;hort
beeps are sounded. (In order for all codes to be displayed, the video display adapter must be a ffipltimode,
a monochrome, or a color adaptor.) Thest codes are listed in Tables 9-2a (for Vectra ES series) and 9-2b
(for Vectra QS and RS series).

System Processes 9-3

Table 9-2a and 9-2b Legend:

Error Code is in the form of 4 hex digits; X, Y, Z are hex digits.
x =don't care bit in the hex dIgIt
b = valid bit in the hex digit
CGA = Clock Gate Array chip
kbd =keyboard
MFG = Manufacturing

Table 9-2a. ~e~~~n~? POST Error Code Listing

Code Test Chip Description .
..

OOOF 8r~~6 U810 80286 CPU is bad
0010 ROM U28 Bad checksum on ROM 0
0011 ROM U27 Bad checksum on ROM 1.

OIIX RTC UI08 One of the RTC (Real Time Clock) registers is bad.
Reg H = X (0 - D).

0120 RTC RTC failed to tick.

0240 CMOS UI08 CMOS/RTC has lost power.
0241 CMOS Invalid checksum on IBM CMOS area.
0280 CMOS Invalid checksum on HP CMOS area.
02XY CMOS One of the CMOS registers is bad

Reg H = XY - 40
Example: 024E = reg HE is bad

0301 8042 UI0I0 8042 failed to accept the RESET cmd.
0302 8042 8042 failed to respond to the reset cmd.
0303 8042 8042 failed on RESET.
0311 8042 8042 failed to accept the "WRITE CMD BYTE" cmd.
0312 8042 8042 failed to accept the data of the above cmd.
0321 Scandoor U128 8042 failed to accept scancode from port 68.
0322 Scandoor 8042 failed to respond to the above scancode. (This

will happen when keyboard is locked up.)
0323 Scandoor 8042 responded incorrectly to the above scancode.
0331 Scandoor 8042 failed to accept cmd (command) from port 6A.
0332 Scandoor 8042 failed to generate SVC on port 67.
0333 Scandoor 8042 generate incorrect HPINT type on port 65.
0334 Scandoor 8042 failed the r /w register test on port 69.
0335 Scandoor 8042 failed to generate a HPINT on IRQ 15
0336 Scandoor 8042 failed to generate a HPINT on IRQ 12
0337 Scandoor 8042 failed to generate a HPINT on IRQ 11
0338 Scandoor 8042 failed to generate a HPINT on IRQ 10
0339 Scandoor 8042 failed to generate a HPINT on IRQ 7
033A Scandoor 8042 failed to generate a HPINT on IRQ 5
033B Scandoor 8042 failed to generate a HPINT on IRQ 4
033C Scandoor 8042 failed to generate a HPINT on IRQ 3

9-4 System Processes

Table 9-2a. Y-4!!~tl'ju~S: POST Error Code Listing (Cont.)

Code Test Chip ~'..:ription

0341 Keyboard 8042 failed to accept the kbd interface test cmd.
0342 Keyboard 8042 failed to repsond to the kbd interface test cmd.
0343 Keyboard Kbd interface test failed: kbd clock line stuck low.
0344 Keyboard Kbd interface test failed: kbd clock line stuck high.
0345 Keyboard Kbd interface test failed: kbd data line stuck low.
0346 Keyb0ard Kbd interface test failed: kbd data line stuck high.
0350 Keyboard No acknowledgement from kbd self test cmd.
0351 Keyboard Bad acknowledgement from kbd self test cmd.
0352 Keyboard Kbd is dead or not connected.
0353 Keyboard No result from kbd self test cmd.
0354 Keyboard Kbd self test failed.
06XX Keyboard Kbd has stuck key: XX = scancode of stuck key.
0401 8042 VIOIO 8042 failed to enable Gate A20.
0503 Serial Serial Port dead or non-·existent.

Port

0505 Serial Serial Port fails register tests
Port

0543 Parallel Parallel Port dead or non-existent.
Port

0700 CGA V4I0 Failed to switch to SLOW mode
0701 CGA Failed to switch to DYNAMIC mode
0702 CGA Timer (channel 0) failed to interrupt
0703 CGA Memory cycles too slow in SLOW mode
0704 CGA Memory cycles too fast in SLOW mode
0705 CGA 10 cycles too slow in SLOW mode
0706 CGA 10 cycles too fast in SLOW mode
0707 CGA Memory cycles too slow in DYNAMIC mode
0708 CGA Memory cycles too fast in DYNAMIC mode
0709 CGA 10 cycles too slow in DYNAMIC mode
070A CGA 10 cycles too fast in DYNAMIC mode

110X Timer VI08 One of the timer channels failed register test.
X (0 - 2) = timer channel that failed the test.

1200 Timer Memory Refresh signal stuck high.
1201 Timer Memory Refresh signal stuck low.

211X DMA VI08 DMA # 1 failed on register r Iw (read/write) test.
Reg # = X (0 - 7).

212X DMA DMA #2 failed on register r Iw test.
Reg # = X (0 - 7).

221X DMA DMA page registers bad
X (0 - 7) = bad register

-

System Processes 9 - 5

Table 9-2a. ~~~~"~... ~~ POST Error Code Listing (Cont.)

",-
Code Test Chip Description

300X HP-HIL Vl210 HP-HIL Controller chip failed the self test.
Controller X = xxxi => r/w fail with data = Oda5h

X = xxix => r/w fail with data = Od5ah
X = xlxx => r/w fail with data = Oaa5h
X = Ixxx => r /w fail with data = Oa5ah
Note: the above may be or'ed together to generate
more complex error codes.

3010 HP-HIL HP-HIL device test failed.
Device

4XYZ RAM RAM in lower 640K failed the R/W test.
R/W X = bbbx => bbb (0-7) is # of 128K bank

bbbO => indicate even byte bad
bbbi => indicate odd byte bad

YZ = bbbb bbbb => bits for which b= I are bad.
Follow the procedure below to identify the bad RAM
chip(s) on the processor PCA.

For X = 0, 2, 4, or 6, interpret YZ as follow:
Y <> 0 => V23 is bad
Z <> 0 => VI3 is bad

For X = I, 3, 5, or 7, interpret YZ as follow:
Y <> 0 -> U43 is bad
Z <> 0 => V33 is bad

For X = 8, interpret YZ as follow:
Y <> 0 => U22 is bad
Z <> 0 => UI2 is bad

For X = 9, interpret YZ as follow:
Y <> 0 => V42 is bad
Z <> 0 => U32 is bad

5XYZ RAM RAM in lower 640K failed the marching one test.
Marching X = bbbx => bbb (0-7) is # of 128K bank
Ones bbbO => indicate even byte bad

bbb 1 => indicate odd byte bad
YZ = bbbb bbbb => bits for which b= I are bad.

Vse the same procedure outlined for the 4XYZ error
code to identify bad RAM chip(s) on the processor
peA for the marching ones test.

61XY RAM Some address lines to RAM are stuck to 0 or I.
addr XY = OObb bbbb => RAM address line bbbbbb is stuck.
Indepen- XY = 0 Ibb bbbb => Multiple address lines are stuck.
dence bbbbbb is the first bad one.

9-6 System Processes

Table 9-2a. Vec(raq~S POST Error Code Listing (Cont.)

Code Test Chip Description
-

620X RAM Parity error has occurred during RAM tests on the
Parity lower 640K of RAM.

X = address in 64K bank where parity occurred.

If X = 0 to ", V21 or/and V31 is/are bad.
If X = 8 to 9, V 11 or/and V41 is/are bad.

63XY 10 Parity error has occurred during RAM tests above the
Channel lSt MB (i.e., extended RAM on the I/O channel).
Check XY = address In 64K bank where parity occurred.

6400 Parity V97 The parity generator circuit failed to generate parity
Ckt error when unitialized RAM was read at power up.

71XY Master VI08 Master 8259 failed the r / w test on its mask register.
8259 XY = bbbb bbbb => bits in which b= 1 is bad.
Mask

72XY Slave VI08 Slave 8259 failed the r /w test on its mask register.
8259 XY = bbbb bbbb => bits in which b= 1 is bad.
Mask

7400 Master VI08 f\1aster 8259 failed the interrupt test. Note that this
8259 test uses the interval timer channel 0 to generate the
Interrupt interrupt.

7500 Slave VI08 Slave 8259 failed the interrupt test. Note that this
8259 test uses the RTC to generate the interrupt.
Interrupt

9XYZ Flexible Error in Flexible Disc Controller (FDC) test.
Disc
Subsystem

In POST, flexible disc error is one word, the primary
report format.
In Strife/MFG, the error is two word, primary and
secondary report:

System Processes 9-7

Table 9-2a. J"ii~t~'~S POST Error Code Listing (Cont.)

Code Test Chip Description

Primary
Report
Format:
9XYZ X =flexible drive # (i.e. 0 = A:, 1 = B:)

Y =0 indicates lst level error
For 1st level error,
Z =0 = unsuccessful input from FDC

1 = unsuccessful output to FIX:
2 =error while'executing a seek
3 =error while executing a recalibrate
4 =error while verifying ram buffer
5 =error while resetting FIX:
6 = wrong drive identified
7 = wrong media identified
8 = no interrupt from FIX:
9 = failed to detect track 0
A = failed to detect index pulse

Y > 0 indicates higher level error
1 = read sector error side 0
2 = read sector error side 0
3 = write sector error side 1
4 = write sector error side 0
5 = format sector error side 0
6 = format sector error side 1
7 = read ID error side 0
8 = read ID error side 1

For higher level errors,
Z = 1 = no ID address mark

2 = no data address mark
3 = media is write protected
4 =sector number wrong
5 =cylinder number wrong
6 = bad cylinder
7 = DMA overrun
8 = ID CRC error
9 =Data CRC error
A = End of cylinder
B = Unrecognizable error

Secondary
Report
Format:
9XYZ XY = xbbb bbbb where bbb bbbb is the cylinder

number where failure occurred.
Z ;.: sector # where failure occurred.

",.,

9-8 System Processes

Table 9-2a. Vectra ~S POST Error Code Listing (Cont.)

I Code Test Chip Description
- ..

AOOI 80287 U210 No 80287 is detected. This error code will not be
reported in POST.

A002 80287 80287 failed the R!W test on its stack registers.

AOOC ~O287 80287 failed to generate an zero-divide interrupt.

CXYZ Extended R/W test failure on extended RAM.
RAM X = 0 => even byte is bad. X = 1 => odd byte is

bad.
YZ = address in 64K. bank where RAM failed.

Since there could be many different type of RAM
chips used in the extended memory, we will not
provide the method here to identify the bad RAM
chip(s) on the extended memory board.

CFFF Extended No extended RAM is found. This error code will not
RAM be reported in POST.

EXYZ Extended Marching one test fa.ilure on extended RAM.
RAM X = 0 => even byte is bad.

X = 1 => odd byte is bad.
YZ = addr in 64K bank where RAM failed.

Since there could be many different type of RAM
chips used in the extended memory, we will not
provide the method here to identify the bad RAM
chip(s) on the extended memory board.

System Processes 9-9

Table 9-2b. ~~~~iriQ$·.m~na:i~~POST Error Code Listing

Code Test Description

OOOF 80386 80386 CPU is bad.
0010 ROM Bad checksum on ROM O.
0011 ROM Bad checksum on ROM 1.

011X RTC One of the RTC (Real Time Clock) registers is bad.
Reg H = X (0 - D).

0120 RTC RTC failed to tick.

0240 CMOS CMOS/RTC has lost power.
0241 CMOS Invalid checksum on IBM CMOS area.
0280 CMOS Invalid checksum on HP CMOS area.
02XY CMOS One of the CMOS registers is bad

Reg H = XY - 40
Example: 024E = reg HE is bad

0301 8042 8042 failed to accept the RESET cmd.
0302 8042 8042 failed to respond to the RESET cmd.
0303 8042 8042 failed on RESET.
0311 8042 8042 failed to accept the "WRITE CMD BYTE" cmd.
0312 8042 8042 failed to accept the data of the above cmd.

0321 Scandoor 8042 failed to accept scancode from port 68.
0322 Scandoor 8042 failed to respond to the above scancode. (This will happen

.". when keyboard is locked up.)
0323 Scandoor 8042 responded incorrectly to the above scancode.
0331 Scandoor 8042 failed to accept cmd (command) from port 6A.
0332 Scandoor 8042 failed to generate SVC on port 67.
0333 Scandoor 8042 generate incorrect HPINT type on port 65.
0334 Scandoor 8042 failed the r /w register test on port 69.
0335 Scandoor 8042 failed to generate a HPINT on IRQ 15
0336 Scandoor 8042 failed to generate a HPINT on IRQ 12
0337 Scandoor 8042 failed to generate a HPINT on IRQ 11
0338 Scandoor 8042 failed to generate a HPINT on IRQ 10
0339 Scandoor 8042 failed to generate a HPINT on IRQ 7
033A Scandoor 8042 failed to generate a HPINT on IRQ 5
033B Scandoor 8042 failed to generate a HPINT on IRQ 4
033C Scandoor 8042 failed to generate a HPINT on IRQ 3

0341 Keyboard 8042 failed to accept the kbd interface test cmd.
0342 Keyboard 8042 failed to repsond to the kbd interface test cmd.
0343 Keyboard Kbd interface test failed: kbd clock line stuck low.
0344 Keyboard Kbd interface test failed: kbd clock line stuck high.
0345 Keyboard Kbd interface test failed: kbd data line stuck low.
0346 Keyboard Kbd interface test failed: kbd data line stuck high.
0350 Keyboard No acknowledgement from kbd self test cmd.
0351 Keyboard Bad acknowledgement from kbd self test cmd.

9-10 System Processes

Table 9-2b. ~~~~ri···~~ri~m!~~POST Error Code Listing (Cont.)

Code Test Description

0352 Keyboard Kbd is dead or not connected.
0353 Keyboard No result from kbd self test cmd.
0354 Keyboard Kbd self test failed.
06XX Keyboard Kbd has stuck key: XX = scancode of stuck key.
0401 8042 8042 failed to enable Gate A20.
0503 Serial Port Serial Port dead or non-existent.

0505 Serial Port Serial Port fails register tests.

Clock Speed
Test for:

0700 82C30 1 Failed to switch to SLOW speed
0701 82C30 1 Failed to switch to FAST speed
0702 82C206 Timer failed to interrupt
0703 82C30 1 CPU clock too slow in SLOW speed
0704 82C30l CPU clock too fast in SLOW speed
0707 82C30l CPU clock too slow in FAST speed
0708 82C30l CPU clock too fast in FAST speed
0709 82C30 1 Failed to switch to ATCLK for BUS clock
070B 82C30l CPU clock too slow at MEDIUM speed.
070C 82C30l CPU clock too fast at MEDIUM speed.

110X Timer One of the timer channels failed register test.
X (0 - 2) = timer channel that failed the test.

1200 Timer Memory Refresh signal stuck high.
1201 Timer Memory Refresh signal stuck low.

211X DMA DMA # 1 failed on register r/w (read/write) test.
Reg # = X (0 - 7).

212X DMA DMA #2 failed on register r/w test.
Reg # = X (0 - 7).

22IX DMA DMA page registers bad
X (0 - 7) = bad register

300X HP-HIL HP-HIL Controller chip failed the self test.
Controller X = xxxI => r/w fail with data = Oda5h

X = xxIx => r/w fail with data = Od5ah
X = xlxx => r/w fail with data = Oaa5h
X = lxxx => r /w fail with data = Oa5ah
Note: the above may be or'ed together to generate more com-
plex error codes.

Sy~tem Processes 9-11

Table 9-2b. f~~~!~lm:~ !!~~qlm:~~ POST Error Code Listing (Cont.)

Code Test Description

3010 HP-HIL HP-HIL device test failed.
Device

4XYZ RAM R/W RAM in lower 640K failed the R/W test.
X = bbcc => bb is # of 64K of 32-bit word bank
cc = 00 => byte 0 is bad

o1 => byte I is bad
10 => byte 2 is bad
11 => byte 3 is bad

YZ = bbbb bbbb => bits for which b= 1 are bad.

5XYZ RAM RAM in lower 640K failed the marching one test.
Marching Ones X = bbcc => bb is # of 64K of 32-bit word bank

cc = 00 => byte 0 is bad
o1 => byte 1 is bad
10 => byte 2 is bad
11 => byte 3 is bad

YZ = bbbb bbbb => bits for which b= 1 are bad.

61XY RAM addr Some address lines to RAM are stuck to 0 or 1.
Indepen- dence XY = OObb bbbb => RAM address line bbbbbb is stuck.

XY = 01 bb bbbb => Multiple address lines are stuck.
bbbbbb is the first bad one.

620X RAM Parity Parity error has occurred during RAM tests on the lower 640K
of RAM.
X = address in 64K bank where parity occurred.

63XY 10 Channel Parity error from memory installed in the I/O channel during
Check the above RAM tests.

XY = address in 64K bank where parity occurred.

6500 Shadow RAM Shadow RAM is bad at BIOS segment.

6510 Shadow RAM Shadow RAM is bad at HP EGA segment.

71XY Master 8259 Master 8259 failed the r /w test on its mask register.
Mask XY = bbbb bbbb => bits in which b= 1 is bad.

72XY Slave 8259 Slave 8259 failed the r /w test on its mask register.
Mask XY = bbbb bbbb => bits in which b= 1 is bad.

9-12 System Processes

Table 9-2b. ~~~~·ri;;Q$llil1~..~~ POST Error Code Listing (Cont.)

Code Test Description

7400 Master 8259 Master 8259 failed the interrupt test. Note that this test uses
Interrupt the interval timer channel 0 to generate the interrupt.

7500 Slave 8259 Slave 8259 failed the interrupt test. Note that this test uses
Interrupt the RTC to generate the interrupt.

9XYZ Flexible Disc Error in Flexible Disc Controller (FDC) test.
Subsystem

In POST, flexible diSC error is one word, the primary report
format.
In Strife/MFG, the error is two word, primary and secondary
report:

System Processes 9-13

Table 9-2b. ~~~J:ri::!~:m~~I-m:~~ POST Error Code Listing (Cont.)

Code Test Description

Primary
Report
Format:
9XYZ X = flexible driveN (i.e. 0 =A:, 1 =B:)

Y = 0 indicates 1st level error
For 1st level error,
Z = 0 = unsuccessful input from FDC

1 = unsuccessful output to FDC
2 = error while executing a seek
3 = error while executing a recalibrate
4 = error while verifying ram buffer
5 =error while resetting FDC
6 =wrong drive identified
7 = wrong media identified
8 = no interrupt from FDC
9 = failed to detect track 0
A = failed to detect index pulse

Y > 0 indicates higher level error
1 =read sector error side 0
2 = read sector error side 0
3 = write sector error side 1
4 = write sector error side 0
5 = format sector error side 0
6 =format sector error side 1
7 = read ID error side 0
8 = read ID error side 1

For higher level errors,
Z = I = no ID address mark

2 = no data address mark
3 = media is write protected
4 =sector number wrong
5 = cylinder number wrong
6 = bad cylinder
7 = DMA overrun
8 = ID CRC error
9 = Data CRC error
A = End of cylinder
B = Unrecognizable error

Secondary
Report
Format:
9XYZ XY = xbbb bbbb where bbb bbbb is the cylinder

number where failure occurred.
Z = sector # where failure occurred.

9-14 System Processes'

Table 9-2b. 'Vi~ttiQ$q'~ij~f~~POST Error Code Listing (Cont.)

Code Test

AOOI 80387
A002 80387
AOOC 80387
AFOO Weitek

AFOI Weitek
AF02 Weitek
AF05 Weitek
AF06 Weitek
AFOC Weitek
B300 8042 **

B301- 82385
B307
B400- Main Memory
B7FF **

B800
BBFF

BCOO
BFFF

CXYZ

CFFF
EXYZ

Static RAM

Static RAM

Extended RAM

Extended RAM
Extended RAM

Description

No 80387 detected. POST will not report this error code.
80387 failed the R/W test on its stack registers.
80387 failed to generate an zero-divide interrupt.
Weitek * coprocessor (COP) Test failed to enter Protected Mode.
(* indicates for Vectra RS only.)
Weitek* coprocessor not present (will not be reported in POST.)
Weitek * coprocessor failed Registers Test.
Weitek* coprocessor failed Addition Test.
Weitek* coprocessor failed Multiplication Test.
Weitek* coprocessor failed Interrupt Test.
Failed to switch to protected mode. (...... indicates errors detec
ted by Memory Cache Test.)
General cache subsystem failure.

Read/write test of DRAM locations 60000h-6FFFFh failed.
Decode bits in error code to isolate failing memory module:
BXYZ where
X = 01aa => aa specifies which byte is bad (0 -3)
YZ = bbbb bbbb => b= 1 specifies bad bit
e.g.: aI 00 0010 11:> bits 6 and 1 bad
Read/write test of SRAM failed.
Decode bits in errOr code to isolate failing chips:
BXYZ where
X = 10aa => aa specifies which byte is bad (0 - 3)
YZ = bbbb bbbb => b= 1 specifies bad bit
e.g.: 0100 0010 => bits 6 and 1 bad
Marching ones test of SRAM failed.
Decode bits in error code to isolate failing chips:
BXYZ where
X = 11aa => aa specifies which byte is bad (0 - 3)
YZ = bbbb bbbb => b= 1 specifies bad bit
e.g.: 0100 0010 => bits 6 and 1 bad
R/W test failure on extended RAM.
X = 0 => even byte is bad. X = 1 => odd byte is bad.
YZ = address in 64K bank where RAM failed.
Since there could be many different types of RAM chips used in
the extended memory, we will not provide the method here to
identify the bad RAM chip(s) on the extended memory board.
No extended RAM found. POST will not report this error code.
Marching one test failure on extended RAM.
X = 0 => byte 0 is bad.

I => byte I is bad.
2 => byte 2 is bad.
3 => hyte 3 is bad.

YZ =addr in 64K bank where RAM failed.
Since there could be many different type of RAM chips used in
the extended memory, we will not provide the method here to
identify the bad RAM chip(s) on the extended memory board.

L...- --&- ----'L.-- ~

System Processes 9-15

If the POST process is initiated by a soft reset, the RAM tests and the cache memory test are not
executed. This portion of POST determines the amount of system memory and performs a test of that
memory. In all other aspects, POST executes the same for power-on, hard reset, and soft reset.

SYSGEN then compares the configuration information stored in the CMOS memory with the actual
system. If a discrepancy is found, a message will be displayed instructing the user to run the SETUP
program. For example, if the CMOS memory indicates two flexible disc drives present, but the system
contains only one, the message will be displayed.

System Generation (SYSGEN)

When the POST code module has completed its tasks, it initiates the system generation (SYSGEN) process.
The SYSGEN process initializes the system software, then initiates the boot process. In general, the system
data structures are initialized by the SYSGEN process, whereas the system hardware is initialized by the
POST process. For example, the STD-BIOS and EX-BIOS data areas are initialized by the SYSGEN
process. SYSGEN initializes the following items:

• Interrupt vectors

• STD-BIOS data area

• EX-BIOS data area

The interrupt vectors are initialized to their default values. Processor interrupt vectors are initialized to
their appropriate service routines. Hardware interrupt vectors are initialized to their service routines, or a
null routine if they are unused. The interrupt vectors used to access the STD-BIOS drivers are initialized
to their respective driver entry points.

The STD-BIOS data area fields are initialized to their default values. Configuration dependent fields such
as the base I/O address of the serial and parallel ports, current video mode, etc. are initialized at this
time.

The EX-BIOS data area is set up next in the SYSGEN process. Initializing the EX-BIOS data area
consists of several distinct steps as outlined below.

9-16 System Processes

Memory Allocation

The first step in the process is to allocate system memory for the EX-BIOS data area. This memory
allocation algorithm has two important features. First, by taking the memory size stored in CMOS
memory into consideration, it allows large driver data areas to be allocated in the EX-BIOS data area.
This method of expanding the EX-BIOS data area is explained in Chapter 8. Second, it prevents invalid
CMOS memory size data from preventing the system from booting. If the CMOS memory size is set (using
the SETUP program or writing directly to the CMOS memory) such that there is insufficient room for
the EX-BIOS data area, thIS algorithm will adjust the value and write the new value to CMOS memory.
The EX-BIOS data area is required to support the EX-BIOS extended features.

There are three important variables in this calculation.

• RAM_SIZE--This is the top of actual system memory. It is usually 640 KB (system memory can be
reconfigured as 256 or 512) and will always be an even multiple of 64 KB.

• EX-BIOS_SIZE--This variable is the size of the EX-BIOS data area, which is 4 KB in its default
configuration.

• CMOS_SIZE--This is the memory size stored in CMOS.

The CMOS_SIZE is checked for validity. If it is between 4 KB and 64 KB from RAM_SIZE, this value
is used as the base of the EX-BIOS data area. If CMOS_SIZE is more than 64 KB from RAM_SIZE, the
base of the EX-BIOS data area is located 64 KB below the top of actual system memory. Finally, if
CMOS_SIZE is less than 4 KB from the top of RAM_SIZE (or greater than the top of actual memory),
the base of the EX-BIOS data area is located 4 KB from the top of system memory. The following
formulas show this relationship:

If (RAM_SIZE--CMOS_SIZE) >n 4 KB and < 64 KB,
then EX-BIOS_SIZE • (RAM_SIZE--CMOS_SIZE).

If (RAM_SIZE--CMOS_SIZE) >n 64 KB,
then EX-BIOS_SIZE • 64 KB.

If (RAM_SIZE--CMOS_SIZE) < 4 KB,
then EX-BIOS_SIZE • 4 KB.

The following examples illustrate this relationship:

In a 640 KB system, if CMOS_SIZE is 512 KB, then the EX-BIOS_SIZE data area starts at 576 KB.
This leaves an 64 KB free area between the EX-BIOS_SIZE data area and the memory allocated to DOS.

In a 640 KB system, if CMOS_SIZE is 620 KB, then the EX-BIOS_SIZE data area starts at 620 KB. In
this case the EX-BIOS_SIZE data area occupies all the area between the top of RAM and the memory
allocated to DOS.

System Processes 9 -1 7

The HP VECTOR T ABLE Initialization

Once the EX-BIOS data area has been allocated, and its base address determined, the
HP_ VECTOR_TABLE is constructed. An image of the default HP_ VECTOR_TABLE is stored in the
system ROM. This image is transferred from ROM to the base of the EX-BIOS data area. All free and
reserved vectors are initialized to point at V_DOLITTLE, a null routine. Some of these vectors will be
initialized to other drivers later in the SYSGEN process.

EX-BIOS Driver Initialization

The next step in the SYSGEN process is the initialization of the EX-BIOS drivers. Each driver is called
with the SF_INIT subfunction. Some of the EX-BIOS drivers add vectors to the table when called to
initialize. For example, the V_HPHIL driver initializes the vector addresses reserved for the HP-HIL
physical device drivers. The HP_VECTOR_TABLE is fully initialized to its default state when each
driver has been called in this manner. Additional drivers may be added or substituted by application
programs or system software utilizing the vector maintenance functions of V_SYSTEM (refer to Chapter
8 for a description of these functions).

Adapter and Option ROM Module Integration

The ROM BIOS architecture allows code modules residing on adapter cards to be integrated into the
system. These ROM modules must be in the system address range of OCOOOOH - ODFFFFH. (Note that
only video adapter cards can have base address in the range of OCOOOOH through OC7FFFH). In addition
to ROM modules located on adapter cards, the Processor PCA contains additional sockets for option
ROMs. These option ROMs are addressed from OEOOOOH - OEFFFFH. ROM modules located on adapter
cards or on the Processor PCA are integrated into the system in the same manner.

All ROM modules contain a header and checksum byte. The header format is shown below:

Byte 0--55H
Byte 1--0AAH
Byte 2--Length of ROM module in 512 byte blocks.
Byte 3--Initialization entry point.

Bytes 0 and 1 are signature bytes. All ROM modules must contain this signature at the start of the
header in order to be identified by the SYSGEN process.

Byte 20f the header contains the number of 512 byte blocks in the ROM module, except the ROM
module located on the Processor PCA (memory address OEOOOOH). Byte 2 in that ROM module header is
reserved.

During the boot process, the address range from OCOOOOH to ODFFFFH is scanned in 2 KB blocks looking
for valid option ROM headers. In addition, memory location OEOOOOH is also examined for a valid
header. Since the scan does not proceed past OEOOOOH, only one ROM module can reside in the address
range OEOOOOH to OEFFFFH. The Processor PCA will accept two different size ROMs, 32 KB or 64 KB.
If a 32 KB part is installed, the ROM will appear in the system address space starting at location
OE8000H instead of OEOOOOH. Therefore, the 32 KB ROM will not be integrated into the system by
SYSGEN.

If a valid ROM header is found, a checksum is computed for the ROM module. This is done by summing
each byte in the ROM module. The sum of all the bytes in the ROM, including the checksum byte, must
equal O. For ROM modules located from OeOOOOH to ODFFFFH, the checksum is computed for the

9 -18 System Processes

number of bytes indicated in the length field of the header. For a ROM module located from OEOOOOH
to OEFFFFH, this checksum is calculated on the entire 64 KB of address space.

If the checksum is valid, a FAR call to byte 3 of the module is performed. The ROM module should
perform any initialization required and then execute a RETF instruction.

This integration process allows option ROMs to install vectors in either the HP_VECTOR_TABLE or the
low memory interrupt vectors. This re-vectoring process is the typical method used to integrate ROM
modules into the system.

Shadow RAM (HP Vectra as and RS Series Only)

On the UP Vectra QS and RS series, ROM integration is enhanced by a technique called Shadow RAM
which speeds up system performance. Shadow RAM is a process where ROM is copied into high-speed
32-bit RAM addressed at the same physical location. This provides faster access to ROM-based video
subsystems (such as HP's Enhanced Graphics Adapter) as well as HP Vectra QS and RS system BIOS
firmware. This process is completed by the firmware during the power-up process and is completely
transparent to applications.

Boot Process (tNT 19H)

The boot process loads the operating system. The ROM BIOS INT 19H loads the boot sector from drive
"A:" or "C:". This sector must contain the bootstrap loader for the operating system. Control is then
passed to the code loaded from the boot sector. This code is responsible for loading the operating system.
Refer to the appropriate operating system reference documentation for additional information on its boot
process.

Booting From a Flexible Disc

The INT 19H driver attempts to read the boot sector from Drive "A:" (disc 0). It will retry the read four
times before failing. The boot sector on flexible discs is located on Side 0, Track 0, Sector L Table 9-3
contains a description of the contents of a valid boot sector. If drive "A: II contains a disc that does not
have a valid boot sector, then the system will report the error message:

Non-System disc or disc error
Replace and strike any key when ready.

If a valid boot sector is found, it is read into memory starting at location 07COH:0000H (07COOH) and
control is transferred through a FAR JUMP to location 07COH:0000H. It is the responsibility of this code
to load the rest of the operating system into memory.

Booting From a Hard Disc

If the flexible disc drive does not contain a disc, the system will attempt to boot from the hard disc.
Booting from a hard disc is a two-step process. First, the active partition must be determined, then the
boot record is read from the active partition.

The hard disc can be divided into as many as four partitions. Each parti.tion contains an operating system,
programs, and data. Only one of the partitions can be active at any time. Partitions are added, deleted,
activated, and deactivated using utilities provided with the respective operating systems. Partitions occupy
a specified number of cylinders on the disc. For example, let's sayan optional 20 MB hard disc drive has

System Processes 9-19

606 cylinders. One partition might occupy cylinders 0 through 303, while the second partition occupies
cylinders 304 through 605. If the active partition does not contain an operating system, the system will
report the error message indicating such.

Table 9-3. Boot Record

Offset Size Description

OOOOH 3 Bytes Near JUMP instruction to boot code.
0003H 8 Bytes OEM name and version number.
OOOBH 1 Word Bytes per sector.
OOODH 1 Byte Sectors per allocation unit.
OOOEH 1 Word Reserved sectors.
0011H 1 Byte Number of File Allocation Tables (FATs).
0012H 1 Word Number of root directory entries.
0014H 1 Word Number of sectors in logical image.
0016H 1 Byte Media descriptor.
0017" 1 Word Number of FAT sectors.
0019H 1 Word Sectors per track.
OOIBH 1 Word Number of heads.
OOIDH 1 Word Number of hidden sectors.
OOIFH 478 Bytes Boot code.
OIFEH 1 Word 55AAH signature word.

The first physical sector (cylinder 0, head 0, sector 1) of the hard disc contains the master boot record.
The master boot reco·rd contains a code module and the disc partition table. The disc partition table
contains the starting and ending cylinder of each of the disc partitions, as well as a flag that indicates
whether the partition is active or not. Table 9-4 contains a description of the master boot record.

Table 9-4. Hard Disc Master Boot Record

Offset Size Description

OOOOH 446 Bytes Master boot code.
OIBEH 16 Bytes Partition table entry # 1.
OICEH 16 Bytes Partition table entry #2.
OIDEH 16 Bytes Partition table entry #3.
OIEEH 16 Bytes Partition table entry # 4.
OIFEH 1 Word OAA55H signature word.

A partition entry consists of 16 bytes. It contains information specifying the location of the partition,
type of operating system, and a flag to indicate if the partition is active. Table 9- 5 details the partition
table entry.

9-20 System Processes

number of bytes indicated in the length field of the header. For a ROM module located from OEOOOOH
to OEFFFFH, this checksum is calculated on the entire 64 KB of address space.

If the checksum is valid, a FAR call to byte 3 of the module is performed. The ROM module should
perform any initialization required and then execute a RETF instruction.

This integration process allows option ROMs to install vectors in either the HP_VECTOR__T ABLE or the
low memory interrupt vectors. This re-vectoring process is the typical method used to integrate ROM
modules into the system.

Shadow RAM (HP Vectra RS Series Only)

On the UP Vectra RS series, ROM integration is enhanced by a technique called Shadow RAM which
speeds up system performance. Shadow RAM is a process where ROM is copied into high-speed 32-bit
RAM addressed at the same physical location. This provides faster access to ROM-based video subsystems
(such as HP's Enhanced Graphics Adapter) as well as HP Vectra RS system BIOS firmware. This process
is completed by the firmware during the power-up process and is completely transparent to applications.

Boot Process (INT 19H)

The boot process loads the operating system. The ROM BIOS INT 19H loads the boot sector from drive
tlA:" or tiC:". This sector must contain the bootstrap loader for the operating system. Control is then
passed to the code loaded from the boot sector. This code is responsible for loading the operating system.
Refer to the appropriate operating system reference documentation for additional information on its boot
process.

Booting From a Flexible Disc

The INT 19H driver attempts to read the boot sector from Drive tlA:" (disc 0). It will retry the read four
times before failing. The boot sector on flexible discs is located on Side 0, Track 0, Sector 1. Table 9-3
contains a description of the contents of a valid boot sector. If drive "A: tI contains a disc that does not
have a valid boot sector, then the system will report the error message:

Non-System disc or disc error
Replace and strike any key when ready.

If a valid boot sector is found, it is read into memory starting at location 07COH:OOOOH (07COOH) and
control is transferred through a FAR JUMP to location 07COH:0000H. It is the responsibility of this code
to load the rest of the operating system into memory.

Booting From a Hard Disc

If the flexible disc drive does not contain a disc, the system will attempt to boot from the hard disc.
Booting from a hard disc is a two-step process. First, the active partition must be determined, then the
boot record is read from the active partition.

The hard disc can be divided into as many as four partitions. Each partition contains an operating system,
programs, and data. Only one of the partitions can be active at any time. Partitions are added, deleted,
activated, and deactivated using utilities provided with the respective operating systems. Partitions occupy
a specified number of cylinders on the disc. For example, let's sayan optional 20 MB hard disc drive has
606 cylinders. One partition might occupy cylinders 0 through 303, while the second partition oc~upies

System Processes 9-19

cylinders 304 through 605. If the active partition does not contain an operating system, the system will
report the error message indicating such.

Table 9-3. Boot Record

Offset Size Description

OOOOH 3 Bytes Near. JUMP instruction to boot code.
0003H 8 Bytes OEM name and version number.
OOOBH 1 Word Bytes per sector.
OOODH 1 Byte Sectors per allocation unit.
OOOEH 1 Word Reserved sectors.
OOllH 1 Byte Number of File Allocation Tables (FATs).
0012H 1 Word Number of root directory entries.
0014H 1 Word Number of sectors in logical image.
0016H 1·Byte Media descriptor.
0017H 1 Word Number of FAT sectors.
0019H 1 Word Sectors per track.
001BH 1 Word Number of heads.
001DH I Word Number of hidden ;ectors.
001FH 478 Bytes Boot code.
OIFEH 1 Word 55AAH signature word.

The first physical sector (cylinder 0, head 0, sector 1) of the hard disc contains the master boot record.
The master boot record contains a code module and the disc partition table. The disc partition table
contains the starting and ending cylinder of each of the disc partitions, as well as a flag that indicates
whether the partition is active or not. Table 9-4 contains a description of the master boot record.

Table 9-4. Hard Disc Mastel' Boot Record

Offset Size Description

OOOOH 446 Bytes Master boot code.
OIBEH 16 Bytes Partition table entry # 1.
OICEH 16 Bytes Partition table entry #2.
OlDEH 16 Bytes Partition table entry #3.
OlEEH 16 Bytes Partition table entry #4.
OlFEH 1 Word OAA55H signature word.

A partition entry consists of 16 bytes. It contains information specifying the location of the partition,
type of operating system, and a flag to indicate if the partition is active. Table 9-5 details the partition
table entry.

9-20 System Processes

Table 9-S. Partition Table Entry Record

Size Description

1 Byte Boot indicator.
1 Byte Starting head number.
1 Byte Starting sector number.
1 Byte Starting cylinder number.*
1 Byte System indicator.**
1 Byte Ending head number.
1 Byte Ending sector number.
1 Byte Ending cylinder number.*
2 Words Number of sectors in preceding partitions.
2 Words Total number of sectors in partition.

*

**

The actual cylinder number is a ten-bit value composed of the cylinder byte plus the
two most significant bits of the associated sector byte. These two bits are the most sig
nificant bits of the ten -bit number.

System indicators are:
OOH =-: Unknown operating system
01H • DOS 02-bit FAT)
04H II: DOS (16-bit FAT)

The INT 19H code will load the code module contained in the master boot record into memory, then
transfer control to it. This code scans the data in the disc partition table to determine the active partition
and its starting cylinder. The first sector of the active partition becomes the logical boot sector of the
partition, and it contains a boot record. The boot record has the same format as the boot record contained
on a flexible disc, except that some of the parameters are adjusted for the increased capacity of the hard
disc partition. Refer to Table 9-3 for the format of a typical boot record.

System Processes 9-21

A
BIOS Interrupts

This appendix includes three tables. The first lists the interrupt vector assignments. The second lists each
of the STD-BIOS interrupts with supported functions. The third lists the EX-BIOS drivers; their vector
addresses, functions and subfunctions.

Table A-I. Interrupt Vector Assignments

INT Address Function Type/ Service
Routine·

0 000-003H Divide by Zero PI (1) STD-BIOS
1 004-007H Single Step PI (1) STD-BIOS
2 008-00BH Nonmaskable PI STD-BIOS

Interrupt
3 OOC-OOFH Breakpoint PI (1) STD-BIOS
4 010-013H Arithmetic PI (1) STD-BIOS

Overflow
5 014-017H Print Screen SW (2) STD-BIOS
6 018-01BH Invalid Opcode PI (1) STD-BIOS
7 0IC-OIFH Reserved PI (1) STD-BIOS
8 020-023H Timer Interrupt HW
9 024-027H Keyboard ISR HW STD-BIOS

(IRQ 1)
A 028-02BH Reserved (IRQ 2) HW STD-BIOS
B 02C-02FH Serial Port 1 HW (I) STD-BIOS

ISR (IRQ 3)
C 030-033H Serial Port 0 HW(t) STD-BIOS

ISR (IRQ 4)
D 034-037H Printer Port 1 HW(t) STD-BIOS

ISR (IRQ 5)
E 038-03BH Flexible Disc HW STD-BIOS

ISR (IRQ 6)
F 03C-03FH Printer Port 0 HW (I) STD-BIOS

ISR (IRQ 7)
10 040-043H Video SW (2) STD-BIOS
11 044-047H Equipment Check SW (2) STD-BIOS
12 048-04BH Memory Size SW (2) STD-BIOS
13 04C-04FH Flexible Disc/ SW (2) STD-BIOS

Hard Disc
14 050-053H Serial SW (2) STD-BIOS
15 054-057H System Functions SW (2) STD-BIOS
16 058-05BH Keyboard SW (2) STD-BIOS

BIOS Interrupts A-I

Table A-I. Interrupt Vector Assignments (Cont.)

INT Address Function Type/ Service
Routine·

17 05C-05FH Printer SW (2) SID-BIOS
18 060-063H Reserved SW (3) STD-BIOS
19 064-067" Boot SW (2) STD-BIOS
IA 068-06BH Time and Date SW (2) SID-BIOS
IB 06C-06FH Keyboard Break SW (3) SID-BIOS
IC 070-073H Timer Tick SW (3) STD-BIOS
ID 074-077H Video Parameter PT SID-BIOS

Table
IE 078-07BH Flexible Disc PT STD-BIOS

Parameter Table
IF 07C-07FH Graphics Character PT STD-BIOS

Table
20 080-083H Program Terminate SW DOS
21 084-087H DOS Function Calls SW DOS
22 088-08BH DOS Terminate PT DOS

Address
23 08C-08FH DOS <Ctrl>- SW DOS

<Break> Address
24 090-093H DOS Critical Error SW DOS
25 094-097H DOS Absolute Disc SW DOS

Read
26 098-09BH DOS Absolute Disc SW DOS

Write
27 09C-09FH DOS Terminate SW DOS

Stay Resident
28-32 OAO-OCBH Reserved for DOS SW DOS
33 OCC-OCFH Mouse (RAM SW (2) N/A

driver)
34-3F ODO-OFFH Reserved for DOS SW DOS
40 100-103H Alternate Flexible SW STD-BIOS

Disc
41 104-107H Hard Disc PT STD-BIOS

Parameter Table
(0)

42-45 108-117H Reserved SW SID-BIOS
46 118-11B8 Hard Disc PT STD-BIOS

Parameter Table
(1)

47-5F l1C-17FH Reserved SW STD-BIOS
60-67 180-19FH Reserved for User SW N/A

Programs
Programs

68-6E IAO-IBBH Unused SW N/A
6F IBC-IBFH Default EX-BIOS SW (2) EX-BIOS

Entry Point
70 ICO-IC3H Real-time Clock HW STD-BIOS

ISR (IRQ 8)

A - 2 BIOS Interrupts

Table A -1. Interrupt Vector Assignments (Cont.)

INT Address Function Type/ Service
Routine·

71 lC4-lC7H SW Redirected HW STO-BIOS
(IRQ 9)

72 lC8-lCBH Reserved (IRQ 10) HW(l) STD-BIOS
73 lCC-ICFH Reserved (IRQ 11) HW (1) STO-BIOS
74 100-103H HP-HIL (default HW (1) EX-BIOS

IRQ 12)
75 104-107H Coprocessor HW SID-BIOS

(IRQ 13)
76 108-10BH Hard Oisc ISR HW (1) SID-BIOS

(IRQ 14)
77 IOC-I0FH Reserved (IRQ 15) HW (1) STO-BIOS
78-7F lEO-IFFH Not Used SW N/A
80-FO 200-3C3H Reserved SW N/A
FI-FF 3C4-3FFH Not Used SW N/A

'*

(1)
(2)
(3)

PI--Processor interrupt
HW--Hardware interrupt
SW--Software interrupt
PT--Interrupt vector used as pointer to data
N / A--Not applicable
UI--Unused interrupt ISR
ORVR--Application callable entry point
IRET--Interrupt return

The Table A-2 lists the STO-BIOS interrupt vectors, their usage and, where appropriate, their functions.

BIOS Interrupts A - 3

Table A-2. STD-BIOS Interrupts and Functions

INT Function Function
Hex Value Equate Definition

OOH Divide by zero
01H Single step
02H Non-maskable interrupt
03H Breakpoint
04H Arithmetic overflow
05H Print screen
06H Invalid opcode
07H Reserved
08H Timer interrupt
09H Keyboard ISR
OAH Reserved
OBH Serial port 1 ISR
OCH Serial port 0 ISR
ODH Printer port 1 ISR
OEH Flexible Disc ISR
OFH Printer port 0 ISR
10H INT VIDEO Video

OOH FlO_SET_MODE Set video mode
OIH FlO_SET_CURSIZE Set cursor size
02H FlO_SET_CURPOS Set cursor position
03H FlO_RD_CURPOS Read cursor position
04H FlO_RD PENPOS Read light pen position
05H FlO__SET_PAGE Set active display page
06H FlO_SCROLL UP Scroll rectangle up
07H FlO_SCROLL DN Scroll rectangle down
08H FlO_RD_CHARATR Read character and attribute at

cursor position
09H FIO_WR_CHARATR Write character and attribute at

cursor position
OAH FlO WR_CHARCUR Write character at cursor

position
OBH FlO_SET_PALLET Set color pallet
OCH FlO WR_PIXEL Write pixel
ODH FlO- RD_PIXEL Read pixel
OEH FlO_WR_CHARTEL Write teletype character
OFH FlO_GET_STMODE Get video state and mode
IOH-12H Reserved

Write string functions
1300H FlO_WRS_00 global attribute
1301H FlO_WRS 01 global attribute, move cursor
1302H FlO_WRS_02 individual attributes
1303H FlO_WRS_03 individual attributes, move

cursor
6FOOH FlO_INQUIRE EX-BIOS present
6FOIH FlO GET_INFO Get video paranleters
6F02H FlO_SET INFO Set video parameters
6F03H FlO MOD_INFO Modifies video parameters
6F04H FlO_GET_RES Report video resolution
6F05H FlO_XSET_MODE Set video resolution

A -4 BIOS Interrupts

Table A -2. STD-BIOS Interrupts and Functions (Cont.)

"'.......' ~." .

INT Function Function
Hex Value Equate pefinitiQQ

IlH INT_EQUIPMENT Equipment check
12H INT_MEM_SIZE Memory size

-- NQte; hQth hard and f1~x,iple

discs share interrupt 13H ,.,.,.,.
13H INT_DISC Disc Functions

OOH F13_RESET_DISC Re~t Disc
01H F13 RD_LSTATUS Read status of last operation
02H F13 RD_SECTORS Read sectors
03H F13 WR_SECTORS Write sectors
04H F13 VR_SECTORS Verify sectors
05H F13_FORMAT_FLEX ~ormat flexible di~c;; track
06H aeserved
07H F13_FORMAT_HDISC Format hard disc
08H F13 GET _HPARMS Get hard disc parameters
09H-OBH Reserved
OCH F13 TRACK_SEEK Seek to track
ODH F13 ALT_RESET Alternate hard disc reset
OEH-014 Reserved
ISH F13_GET_DASD Read disc type (DASD)
16H F13_CHG_STATUS Get disc change line status
17H F13_SET_DASD Set disc type for formatting

14H INT SERIAL Serial
OOH F14 INIT Initialize serial port parameters
01H F14_XMIT Send out one character
02H F14 RECV Receive one character
03H F14_STATUS Get serial port status
6FOOH F14_INQUIRE EX- BIOS present
6FOIH F14_EXINIT Initialize serial port (1 9.2

Kbaud)
6F02H F14 PUT_BUFFER Write a buffer of data
6F03H F14_GET_BUFFER Read a buffer of data
6F04H F14 TRM_BUFFER Read a buffer of data, terminate

on specified condition
ISH INT_SYSTEM System functions

OOH Unsupported (turn on cassette
motor)

01B Unsupported (turn off cassette
Illotor)

02H Unsupported (read data blocks)
03H lJnsupported (write data blocks)
80H F15_DEVICE_OPEN Device open
81H F15 DEVICE_CLOSE Device close
82H F15 PROG_TERM Program termination
83H F15_WAIT_EVENT Event wait
84H F15 JOYSTICK Joystick support
85H F15_SYS_REQ System request key pressed
86H F15 WAIT Wait fixed amount of time
87H F15_BLOCK_MOVE Extended memory transfer

BIOS Interrupts A - 5

Table A -2. STD-BIOS Interrupts and Functions (Cont.)

INT
Hex

16H

17H

18H
19H
IAH

Function I
Value

88H
89H
90H
8BH

OOH
01H
02H
03H
05H
10H

IIH
12H

6FOOH
6FOIH
6F02H
6F03H
6F04H

6F05H
6F06H
6F07H
6F08H
6F09H
6FOAH
6FOBH
6FOCH
6FODH

OOH
01H
02H
6FOOH
6FOIH
6F02H
6F03H
6F04H
6FOFH
6FIOH
6FIIH
6F12H

Function
Equate

FI5_GET_XMEM SIZE
FI5_ENTER__PROT
F 15 DEV_BUSY
FI5_INT_COMPLETE
INT_KBD
F16__GET_KEY
F16 STATUS
FI6_KEY_STATE
F 16_SET_TYPE_RATE
F16_PUT_KEY
FI6_GET_EXT

FI6_EXT_STATUS
F16_EXT_KEY STATE

F 16-1NQUIRE
F16_DEF_ATTR
F16_GET_ATTR
FI6_SET_ATTR
F 16 DEF_MAPPING

F16 GET_MAPPING
F16_SET_MAPPING
FI6_SET XLATORS
F16_KBD
F16_KBD_RESET
FI6_READ_SPEED
F16 SET LOW SPEED
FI6_SET HIGH SPEED
F16_GET_INT_NUMBER

INT_PRINTER
F17 PUT_CHAR
FI7_INIT
F17 STATUS
F 17-,-INQUIRE

F16_SET_CACHE ON
F16 SET CACHE OFF
F16 GET_CACHE STATE
F 16 SET MEDIUM SPEED- -

INT BOOT
INT CLOCK

Definition

Get extended memory size
Switch to protected mode
Device busy hook
Set Interrupt Completed Flag
Kevboard
Read keycode from kybd buffer
Report status of keyboard buffer
Get key modifier status
Set typematic rates
Put data into keyboard buffer
Read keycode from buffer (in
cluding extended keycodes)
Report extended keyboard status
Get Extended Key Modifier
status
EX-BIOS present
Report default typematic values
Report typematic values
Set typematic values
Report default translator
assignments
Report translator assignments
Set translator assignments
Set CCP and HP Function keys
Report keyboard information
Reset keyboard to defaults
Read current speed
Select machine's slowest speed
Select machine's fastest speed
Return the current HPENTRY
vector
Printer
Send printer one byte
Initialize printer port
Get printer port status
EX-BIOS present
Reserved
Write a buffer to printer port
Reserved
Reserved
Turn cache on
Turn cache off
Get current cache state
Sets medium speed for cache
machines
Reserved
Boot
Time and date

A -6 BIOS Interrupts

Table A-Z. STD-BIOS Interrupts and Functions (Cont.)

INT Function Function
Hex Value Equate Definition

04H FIA- GET_DATE Read date from real-time clock
05H FIA_SET_DATE Set date in real-time clock
06H FIA_SET_ALARM Set alarm
07H PIA_RESET_ALARM Reset alarm

IBH Keyboard break
ICH Timer tick
IDH Video parameter table
lEH Flexible disc parameter table
IFH Graphics character table
20H Program terminate
21H DOS function calls
22H DOS terminate addr~ss

23H DOS <Ctrl>-<Break>n address
24H DOS critical error
25H DOS absolute disc read
26H DOS absolute disc write
27H DOS terminate stay resident
28H-32H Reserved for DOS
33H INT_HPMOUSE Reserved for Mouse driver
34H-3FH Reserved for DOS
40H Alternate flexible disc
41H Hard disc parameter table (0)
42H-45H Reserved
46H Hard disc parameter table (1)
47H-5FH Reserved
60H-67H Reserved for user programs
68H Reserved
69H Reserved
6AH Reserved
6BH Reserved
6CH Reserved
6DH Reserved
6EH Reserved
6FH HP_ENTRY (default) Default EX-BIOS entry point
70H Real-time Clock ISR (IRQ 8)
71H SW redirected (IRQ 9)
72H Reserved (IRQ 10)
73H Reserved (IRQ 11)
74H Reserved (IRQ 12)
75H Coprocessor (IRQ 13)
76H Hard disc ISR (IRQ 14)
77H Reserved (IRQ 15)
78H-7FH Not used
80H-FDH Reserved
FIH-FFH Not used

810S Interrupts A -7

EX-BIOS Drivers and Functions

Many additional features of the UP system can be accessed through the software interrupt INT 6FH
(EX-BIOS extensions, see Table A- 3). To call the EX-BIOS extensions, the BP register must contain the
vector address of the desired driver, the AU register must contain the function code, and the AL register
must contain the subfunction code. The rest of the registers are available for passing data and returning
data to and from the routine.

In general, the AX, BP and DS registers are not preserved. They must be preserved by the calling routine
if it needs them. See Chapter 2 for an example showing how EX-BIOS drivers are called.

Table A -3. EX -BIOS Drivers and Functions

Vector Func. Function
Address Value Equate Definition

0000" V_SCOPY Copyright notice routine
0006" V_DOLITTLE NOP routine (IRET)
OOOCH V_PNULL Null device driver
0012" V SYSTEM System management functions
0012H 00 F_ISR Interrupt service routine

(unsupported)
0012H 02 F_SYSTEM Standard driver functions
0012H 02/00 SF_INIT System initialization
0012H 04 F_INS _BASEHPVT Return HP_VECTOR_TABLE

segment
0012H 06 F INS _XCHGFIX Exchange fixed table entries
0012H 08 F_INS _XCHGRSVD Set next "reserved" entry in

table
0012H OA F INS _XCHGFREE Set next "free" entry in table
0012" DC F_INS _FIXOWNDS Install fixed vector, user supplied

OS
0012" DE F INS _FIXGETDS Install fixed vector, system sup-

plies DS
0012" 10 F_INS _FIXGLBDS Install fixed vector, DS set to

global data area
0012" 12 F- INS _FREEOWNDS Install next free vector, user

supplies OS
0012H 14 F INS - FREEGETDS Install next free vector, system

supplies DS
0012" 16 F- INS - FREEGLBDS Install next free vector, DS set

to global data area
0012" 18 F INS FIND Search for matching device

header
0012" lA Reserved*
0012" Ie Reserved*
0012H IE F- RAM GET Get EX-BIOS memory pool ad-

dress and size
0012" 20 F RAM- RET Set memory pool address and

size

A - 8 BIOS Interrupts


~~~--~_. --_._----

Table A-3. EX-BIOS Drivers and Functions (Cont.)

Vector
Address

0012H
0012H
0012H
0012H
0012H
0012H
0012H
0012H
0012H
0012H
0012H
0012H
0012H
0012H
0012H

0012H
0012H
0012H
0012H

0012H

0018H
OOlEH

OOlEH
OOlEH
OOlEH
OOlEH
OOlEH
OOlEH

OOIEH
OOlEH
OOlEH

OOIEH
OOlEH
OOIEH
0024H
002AH
002AH

002AH
002AH

Func.
Value

22
24
26
28
2A
2C
2E
30
32
34
36
38
3A
3C
3E

40
42
44
46

48

00
02
02/00
02/02
02/06
04

04/00
04/02
04/04

04/06
04/08
04/0A

00

02
02/00

Function
Equate

F_CMOS_GET
F_CMOS_RET

F_SND_CLICK _ENABLE
F_SND_CLICK _DISABLE
F_SND_CLICK
F_SND_BEEP _ENABLE
F_SND_BEEP _DISABLE
F_SND_BEEP
F_SND_SET _BEEP
F_SND_TONE

F_STR_GET _FREE_INDEX
F_STR_DEL _BUCKET
F_STR_PUT _BUCKET
F_STR_GET _STRING

F_STR_GET _INDEX

F_ISR
F_SYSTEM
SF_INIT
SF_START
SF_VERSION _DESC
F_IO_CONTROL

SF__ENABLE _SVC
SF_DISABLE _SVC
SF_ENABLE _KBD

SF_DISABLE _KBD
SF_ENABLE _HPHIL
SF_DISABLE _HPHIL

F_SY~TEM

SF_INIT

Definition

Read and verify CMOS memory
Write to CMOS memory
Reserved*
Reserved*
Just returns
Reserved*
Reserved*
Enable keyc1ick
Disable keyclick (Default)
Execute keyclick if enabled
Enable beep
Disable beep
Beep if enabled
Set beep frequency
Produce tone, user supplied
duration and frequency
Return next free string index
Dele.te bucket string list
Add bucket to current string list
Search the list for index, return
string
Search list for a string, return
index
Reserved*
8259 interrupt controller
support
Unsupported
System functions
Initialize HP-HIL IRQ
Enable HP-HIL interrupts
Report HP version number
Entry point to I/O control
functions
Unma~k svc/8041 interrupt
Mask svc/804l interrupt
Unmask keyboard INT 9
interrupt
Mask keyboard INT 9 interrupt
Unmask HP-HIL interrupt
Mask HP-HIL interrupt
Reserved*
Inquire Commands
Pass ISR event record to physical
driver
System functions
Supported

BIOS Interrupts A -9



Vector
Address

Func.
Value

Table A-3. EX-BIOS Drivers and Fu.nctions (Cont.)

Function
Equate Definition

002AH

002AH

002AH

002AH

OOlAH

002AH

002AH

002AH
00308
00368
00368
00368
00368
003CH

003CH
003CH
003CH
003CH
0042H

0042H
0042H
0042H
0048H
0048H
0048H
0048H
004EH

004EH
004EH
004EH
0054H
0054H
0054H
0054H

0054H

04

04/00

04/02

04/04

06

08

OA

OC

00
02
02/06

00
02
02/00
02/06

00
02
02/06

00
02
02/06

00
02
02/06

00
02
04

04/00

F_10_CONTROL

SF_DEF _LINKS

SF_SET _LINKS

F_INQUIRE

F_INQUIRE_ALL

F_INQUIRE _FIRST

F_REPORT _ENTRY

V_QWERTY
F_ISR
F_SYSTEM
SF_VERSION _DESC
V_SOFfKEY

F_ISR
F_SYSTEM
SF_INIT
SF_VERSION _DESC
V_FUNCTION

F_ISR
F_SYSTEM
SF_VERSION _DESC
V_NUMPAD
F_ISR
F_SYSTEM
SF_VERSION _DESC
V_CCP

F_ISR
F_SYSTEM
SF_VERSION _DESC
V SVIDEO
F_ISR
F SYSTEM
F 10 CONTROL

Entry point to I/O control
functions
Set header link fields to system
defaults
Return device header link field
entries
Set device header link field
entries
Return describe record for an
HP-HIL device
Return device IDs for all
HP-HIL devices present
Return vector address of first
HP-HIL device driver
Report entry point of PGID
Reserved*
Typewriter keypad translator
Translate to PC scan code.
System functions
Report HP version number
Physical HP function key
translator
Translate to PC scan code
System functions
Driver initialization
HP version number
Compatibility function key
translator
Logical Interrupt
System functions
Report HP version number
Numeric keypad translator
Logical interrupt
System functions
Report HP version number
HP cursor control keypad
translator
Logical interrupt
System functions
Report HP version number
Video Functions
Interrupt service routine
Standard driver functions
Driver dependent control
functions
Returns the value "HP" in BX
register

A-I0 BIOS Interrupts



Vector
Address

Func.
Value

Table A-3. EX-BIOS Drivers and Functions (Cont.)

Function
Equate Definition

0054H

0054H

0054H

0054H

0054H

005AH
005AH
005AH
005AH
005AH
005AH
005AH
005AH
005AH
OOSAH
OOSAH
OOSAH
OOSAH
0060H

0066H

006CH

0072H
-84H
008AH

008AH
008AH
008AH
0090H
0090H
0090H
0090H
0096H

0096H
0096H
0096H
009CH

04/02

04/04

04/06

04/08

04/0A

00
02
02/00
02/02
04
06
08
OA
OC
OE
10
12

00
02
02/06

00
02
02/06

00
02
02/06

SF_VID _GET_INFO

SF_ VID _SET_INFO

SF_ VID _MOD_INFO

SF_VID _GET_RES

SF_ VID _SET_MODE

V_STRACK
F_ISR
F_SYSTEM
SF_INIT
SF_START
F_TRACK_INIT
F_TRACK_ON
F_TRACK_OFF
F_DEF_MASKS
F_SET_LIMITS_X
F_SET_LIMITS_Y
F_PUT_SPRITE
F_REMOVE_SPRITE
V_EVENT_TOUCH

V_EVENT_TABLET

V_EVENT_POINTER

V_CCPCUR

F_ISR
F_SYSTEM
SF_ VERSION_DESC
V_RAW
F_ISR
F_SYSTEM
SF_ VERSION_DESC
V_CCPNUM

F_ISR
F_SYSTEM
SF_VERSION_DESC
V_OFF

Return video display adapter
information
Set info. on extended control
register of the Multimode Video
Adapter
Modify extended control register
of Multimode Video Adapter
Get the resolution of active
video adaptor
Set video mode of active Display
adapter
Sprite control
Update sprite
System functions
Initialize driver
Start driver
Set tracking to default state
Enable tracking
Disable tracking
Define sprite masks
Set max/min horizontal values
Set max/min vertical values
Display sprite
Remove sprite from display
Application access to touch
events
Application access to tablet
events
Application access to pointer
events
Reserved·

HP cursor control keypad
translator
Logical interrupt
System functions
Return HP version number
Return untranslated CCP data
Logical interrupt
System functions
Return HP version number
Translate scancodes from
numeric keypad
Logical interrupt
System functions
Return HP version number
Discard CCP and SOFTKEY
scancodes

BIOS Interrupts A-II



V~tor

Address
Fune.
Value

Table A-3. EX-BIOS Drivers and Functions (Cont.)

Function
Equate Definition

009CH
009CH
009CH
00A2H

00A8H

00A8H
00A8H
00A8H
OOAEH

OOAEH
OOAEH
OOAEH
OOAEH
OOAEH
OOAEH
OOAEH

OOAEH
OOAEH
OOAEH
OOAEH
OOAEH
OOAEH
O'OAEH
OOAEH
OOAEH
OUAEH

00B4H

OOBAH
OOBAH
OOBAH
OOBAH
OOBAH
OOBAH
OOBAH
OOBAH

OOBAH
OOBAH

00
02
02/06

00
02
02/06

00
02
02/00
02/02
02/06
04
04/00
through
04/08
04/0A
04/0C
04/0E
04/10
04/12
04/14
04/16
04/18
04/1A
04/1C
through
04/2E

00
02
02/00
02/02
02/04
02/06
02/08

Ol/OA
Ol/Oe

F_ISR
F_SYSTEM
SF_ VERSION__DESC
V_CCPGID

V__SKEY2FKEY

F_ISR
F_SYSTEM
SF_ VERSION_.DESC
V_8041

F_ISR
F_SYSTEM
SF_INIT
SF_START
SF_VERSION _DESC
F_10_CONTROL

SF_CREAT _INTR
SF_DELET _INTR
SF_ENABL _JNTR
SF_DISBL _INTR
SF_SET _RAMSW
SF_CLR _RAMSW
SF__,SET _CRTSW
SF__CLR _CRTSW
SF_PASS __THRU

V_PGID__CCP

V_.LTABLET
F_ISR
F.__SYSTEM
SF_INIT
SF_START
SF_REPORT STATE
SF_VERSION __DESC
SF_DEF _ATTR

SF_GET _AITR
SF._SET _ATTR

Logical Interrupt.
System functions
Returns HP venion number
Translate CCP data to
T_RELI6 data
HP and compatibility function
key translator
Logical interrupt
System functions
Return HP version number
8041/keyboard interface.
provides HP extensions to INT
16H
Process ISR event record
System functions
Initialize driver
Driver start-up
Report HP version number
Driver Dependant Functions
Reserved*

Create interval entry
Delete interval entry
Enable interval
Disable interval
Set RAM switch to one (1)
Set RAM switch to zero (0)
Set CRT switch to one (1)
Set CRT switch to zero (0)
Pass data byte to 8042
Reserved*

Translate OlD info to cursor
control keypad format
Application interface to tablet
Logical interrupt
System functions
Initialize the driver data area
Start driver
Report state of device
Report driver version number
Set default logical scaling
attributes
Get scaling attributes
Set scaling attributes

A -12 BIOS Interrupts



Vector
Address

Func.
Value

Table A-3. EX-BIOS Drivers and Functions (Cont.)

Function
Equate Definition

OOBAH
OOBAH
OOBAH
OOBAH
OOBAH
OOBAH

OOBAH

OOBAH

OOBAH
OOBAH
OOBAH
OOCOH

OOCOH
OOCOH
OOCOH
OOCOH
OOCOH
OOCOH
OOCOH

OOCOH
OOCOH
OOCOH
OOCOH
OOCOH
OOCOH
OOCOH
OOCOH

OOCOH

OOCOH

OOCOH
OOCOH
OOCOH
00C6H

00C6H
00C6H
00C6H
OOC6H
00C6H

04
04/00
04/02
04/04
04/06
04/08

04/OA

04/OC

04/OE
04/10
06

00
02
02/00
02/02
02/04
02/06
02/08

02/0A
02/0C
04
04/00
04/02
04/04
04/06
04/08

04/0A

04/0C

04/0E
04/10
06

00
02
02/00
02/02
02/04

F_10_CONTROL
SF_LOCK
SF_UNLOCK
SF_TRACK __ON
SF_TRACK _OFF
SF_CREATE _EVENT

SF_EVENT _ON

SF_EVENT _OFF

SF_CLIPPING _ON
SF_CLIPPING _OFF
F_SAMPLE
V_LPOINTER

F_ISR
F_SYSTEM
SF_INIT
SF_START
SF_REPORT _STATE
SF_VERSION _DESC
SF_DEF _ATTR

SF_GET _ATTR
SF_SET _ATTR
F_10_CONTROL
SF_LOCK
SF_UNLOCK
SF_TRACK _ON
SF_TRACK _OFF
SF_CREATE _EVENT

SF EVENT OFF

SF__CLIPPING _ON
SF CLIPPING __OFF
F__SAMPLE
V LTOUCH

F_ISR
F__SYSTEM
SF_INIT
SF START
SF_REPORT STATE

I/O control functions
Unsupported
Unsupported
Tum cursor track on
Turn cursor track off
Establish a new routine to be
called on logical device events
Enable event call to parent
driver
Disable event call to parent
driver
Enable logical device clipping
Disable logical device clipping
Report absolute position of GID
Application interface to
Pointer / Mouse
Logical Interrupt
System functions
Initialize the driver data area
Start driver
Report state of device
Report driver version number
Set default logical scaling
attributes
Get scaling attributes
Set scaling attributes
I/O control functions
Unsupported
Unsupported
Turn cursor track on
Turn cursor track off
Establish a new routine to be
called on logical device events
Enable event call to parent
driver
Disable event call to parent
driver
Enable logical device clipping
Disable logical device clipping
Report absolute position GID
Application interface to
touchscreen
Logical interrupt
System functions
Initialize the driver data area
Start driver
Report state of device

BIOS Interrupts A-I J



Table A-3. EX-BIOS Drivers and Functions (Cont.)

Vector Func. Function
Address Value Equate Definition

00C6H 02/06 SF- VERSION _DESC Report driver version number
00C6H 02/08 SF_DEF _ATIR Set default logical scaling

attributes
00C6H 02/0A SF_GET _ATIR Get scaling attributes
00C6H 02/0C SF_SET - ATIR Set scaling attributes
00C6H 04 F_10_CONTROL I/O control functions
00C6H 04/00 SF- LOCK Unsupported
00C6H 04/02 SF- UNLOCK Unsupported
00C6H 04/04 SF_TRACK _ON Turn cursor track on
00C6H 04/06 SF_TRACK _OFF Turn cursor track off
00C6H 04/08 SF_CREATE _EVENT Establish a new routine to be

called on logical device events
00C6H 04/0A SF_EVENT _ON Enable event call to parent

driver
00C6H 04/0C SF_EVENT _OFF L .)able event call to parent

driver
00C6H 04/0E SF_CLIPPING _ON Enable logical device clipping
00C6H 04/10 SF_CLIPPING _OFF Disable logical device clipping
00C6H 06 F_SAMPLE Report absolute position of GID
0108H V_NULL No driver
010EH Reserved *
0114H V_HPHIL Setup HP-HIL to INPUT driver

linkage
0114H 00 F_ISR Logical interrupt
0114H 02 F_SYSTEM System functions
0114H 02/00 SF- INIT Initialize the driver data area
0114" 02/04 SF- REPORT _STATE Report state of device
0114" 02/06 SF- VERSION _DESC Report driver version number
0114" 02/0E SF_OPEN Driver in open state
0114H 02/10 SF_CLOSE Put driver in closed state
0114H 04 F_10_CONTROL I/O control to driver
0114H 04/06 SF_CRV _RECONFIGURE Force HP-HIL to reconfigure ·all

devices
0114H 04/08 SF_CRV _WR_PROMPTS Write a prompt to a device
0114H 04/0A SF_CRY _WR_ACK Write an acknowledge to a

device
0114H 04/0C SF_CRY - REPEAT Set either 30Hz or 60Hz repeat

rate

A -14 BIOS Interrupts



Vector
Address

Func.
Value

Table A-3. EX-BIOS Drivers and Functions (Cont.)

Function
Equate Definition

0114H
0114H

0114H

0114H

0114H

0114H
0114H
0114H

0114H

011AH-
016DH

016EH
016EH
016EH
016EH
016EH
016EH
016EH
016EH
016EH
016FH-
lC2H
lC8H
228H

xxxH**

xxxH**

04/0E
04/10

04/12

04/14

04/20

04/22
04/24
08

OA

00
02
02/00
02/02
02/06
04
08
08/00

00
02
02/00
02/02
02/04
02/06

SF CRV DISABLE REPEAT-
SF_CRY _SELF_TEST

SF_GET _DEVTBL

SF SET DEVTBL
SF_DEF DEVTBL
F_GET_BYTE

V SCANDOOR
F_ISR
F_SYSTEM
SF_INIT
SF_START
SF_VERSION_DESC
F_IO_CONTROL
F_STATE_IOCTL
SF_GET_STATE

HP-HIL driver vectors 1 thru 7
F_ISR
F_SYSTEM
SF INIT
SF_START
SF REPORT _STATE
SF_VERSION DESC
Available Vectors

Cancel keyboard repeat rate
Issue self-test command to
physical device
Get status from any HP-HIL
device that needs to report
Return the ASCII name for a
device
Gets physical device table
address
Sets physical device table address
Sets default physical device table
Read one byte from specified
HP-HIL device
Write a string of bytes to
HP-HIL device
Reserved*

Process SCANDOOR interrupt
System function
Initialize driver
Driver start-up
Reports HP version number
Driver-dependent function
State functions
Get a STATE byte

Vectors available (1 6)

Physical HP-HIL driver vectors
Logical interrupt
System functions
Initialize driver
Start driver
Unsupported
Report HP version number
Inquiry on availability of free
vector in HP_ VECTOR
_TABLE

*
**

Vectors marked reserved should not be used.
Vectors with addresses xxxH do not have a fixed location. Their location is determined
at power-on, depending on the system's configuration.

BIOS Interrupts A -15





B
Memory Map

System Memory Map

The system maintains ROM and RAM entry point compatibility with the industry standard. Table B-1
provides a memory map of the first megabyte of memory.

Table B-1. Memory Map

Starting Absolute
Description Address Begin/End

Interrupt Vectors OOOO:OOOOH OOOOOH 003FFH
STD-BIOS Data Area 0040:0000H 00400H OOSlDH
Scratch 0050:001EH 005iEH OOSFFH
Bios Stack 0060:0000H 00600H 006FFH
DOS 0070:0000H 00700H
Application OCOO:0050H OCOSOH nFOOOH
EX-BIOS System RAM nFOOOH nFFFFH

n is dependent upon the
amount of memory installed.
The EX-BIOS takes a mini-
mum of 1000 hex bytes.

If Max RAM Equal 256KB OOOOOH 3FFFFH
If Max RAM Equal 512KB OOOOOH 7FFFFH
If Max RAM Equal 640KB OOOOOH 9FFFFH
Boot Address 07CO:0000H 07COOH
Reserved Video Buffer AOOO:OOOOH AOOOOH AFFFFH
Monochrome Video Buffer BOOO:OOOOH BOOOOH B7FFFH
Color Video Buffer B800:0000H B8000H BFFFFH
Video ROM Space COOO:OOOOH COOOOH C 7FFFH
IHV ROM C800:0000H C8000H DFFFFH
SPU IHV ROM Space EOOO:OOOOH EOOOOH EFFFFH
BIOS ROM FOOO:OOOOH FOOOOH FFFFFH
RESET Vector FOOO:FFFOH FFFFOH

Memory Map B-1



STD-BIOS Data Structures

The data area for the STD-BIOS is in absolute memory locations 00400H through 005FFH) which
conforms to the industry standard. Table B-2 summarizes the assignments within this block of memory.
A detailed description of these data fields follows the summary.

Table B-2. STD-BIOS Data Area

Address Function

400H-407H RS-232 Communication Port Addresses
408H-40FH Parallel Printer Port Addresses
410H-416H Equipment Flag
417H-43DH Keyboard Data Area
43Eh-448H Flexible Disc Data Area
449H-466H Video Display Data Area
467H-46BH Option ROM Data Area
46CH-470H Timer Data Area
471H-473H System Data Flags
474H-477H Hard Disc Data Area
478H-47FH Printer Timeout Counters .
480H-483H Keyboard Buffer Pointers
484H-488H Enhanced Graphics Adapter (EGA) Data Area
489H-48AH Reserved for Display Adapters
48BH-48BH Flexible Disc Data Rate Area
48CH-48FH Extended Hard Di3c Data Area
490H-495H Extended Flexible Disc Data Area
496H-497H Keyboard Mode Indicator/LED Data Area
498H-4AOH Real-Time Clock Data Area
4AIH-4A7H Reserved for Network Adapter Cards
4A8H-4ABH Pointer to EGA Data Area
4ACH-4EFH Flexible Disc Expander adapter area (Vectra RS Only)
4FOH-4FFH Intra-application Communications Area
500H-500H Print Screen Status
SO IH-503H Reserved
504H-504H DOS Data Area
505H-5FFH Reserved

RS-232 Communication Port Addresses

The I/O port addresses of up to four serial communication adapter ports are stored in these four words.

40:000H

40:002H

40:004H

40:006H

B-2 Memory Map

02

02

02

02

S40_RS232_PORT3_ADR

port 1

port 2

port 3

port 4



___~ n_

Parallel Printer Port Addresses

The I/O port addresses of up to four parallel printer adapter ports are stored in these four words.

40:008H

40:00AH

40:00CH

40:00EH

02

02

02

02

540_PRINT_PORT2_AOR

540_PRINT_PORT3_AOR

port 1

port 2

port 3

port 4

Equipment Byte Data Area

This data area contains several words describing some of the optional hardware installed in the system.

40:010H 02 540_EQUIPMENT_FLAG Installed devices word (see Table
B-3)

40:012H 01 S40 MFG_INIT Manufacturing initialization / test
byte

40:013H 02 540- MEMORY SIZE Memory size in lk bytes

40:015H 01 S40_MFG_ERR FLAG 1 Manufacturing scratchpad

40:016H 01 S40 MFG_ERR FLAG2 Manufacturing error codes

Table B-3. Equipment Flag (40:0100)

Bit Value Definition

OFH-OEH 0 no printers installed
1 one printer installed
2 two printers installed
3 three printen installed

OOH-OCH reserved
OBH-09H 0 no RS-232 ports installed

1 one RS- 232 port installed
2 two RS- 232 ports installed
3 three RS- 232 ports installed
4 four RS- 232 ports installed

08H reserved

Memory Map B-3



Table B-3. Equipment Flag (40:0108) (Cont.)

Bit Value Definition

07H-06H 0 1 flexible disc drive installed, if bit 0-1
1 2 flexible disc drives installed, if bit 0-1

05H-04H 0 video adapter is not monochrome or color
1 initial video mode of 40-column color
2 initial video mode of 80-column color
3 initial video mode of 80-column monochrome

03H-02H reserved
01H 0 math coprocessor (80287 or 80387) not present

1 math coprocessor (80287 or 80387) present
OOH 0 no disc drives present

1 some number of flexible disc drives present, see
bits 7-6

Keyboard Data Area

This area is used by the keyboard driver to store keyboard states, scancodes and keycodes.

40:017H 01 S40_KBD_STATEI State of special keys: shift, caps,
etc. (see Table B-4).

40:018H 01 S40_KBD_STATE2 Secondary state of special keys (see
Table B-5).

40:0198 01 S40_ALT_INPUT _ACCUM Accumulator for alt/numpad entry

40:01AH 02 S40_KBD_BUF_HEAD Keyboard buffer head pointer

40:01CH 02 S40_KBD_BUF_TAIL Keyboard buffer tail pointer

40:01EH 20 S40_KBD_BUFFER Keyboard buffer, room for 15
entries+overrun

40:096H 01 S40_KBD_EXT_STATE 1 State of extended keyboard process-
ing (see Table B-IO).

40:097H 01 S40_KBD_STATUS Keyboard LED status and data
recieved from keyboard (see Table
B-l1).

8-4 Memory Map



Table B-4. Keyboard State Mask Bytel (40:0l7H)

Bit Data Definition

07H 0 Insert state inactive
1 Insert state active

06H 0 Caps lock state inactive
1 Caps lock state active

05H 0 Num lock state inactive
I Num lock state active

04H 0 Scroll lock state inactive
1 Scroll lock state active

03H 0 <Alt> key not depressed (inactive)
1 <Alt> key depressed (active)

02H 0 <Ctrl> key not depressed (inactive)
1 <Ctrl> key depressed (active)

OIH 0 Left <Shift> key not depressed (inactive)
1 Left <Shift> key depressed (active)

OOH 0 Right <Shift> key not depressed (inactive)
1 Right <Shift> key depressed (active)

Table B-5. Keyboard State Mask Byte2 (40:0188)

Bit Data Definition
,

07H 0 <Ins> key not depressed
1 <Ins> key depressed

06H 0 <Caps lock> key not depressed
1 <Caps lock> key depressed

05H 0 <Num lock> key not depressed
1 <Num lock> key depressed

04H 0 <Scroll lock> key not depressed
1 <Scroll lock> key depressed

03H 0 Pause state «Ctrl>-<Num lock> l inactive
1 Pause state active

02H 0 <System request> key not depressed
1 <System request> key depressed

OlH 0 left <Alt > key not depressed
1 left <Alt> key depressed

OOH 0 left <Ctrl> key not depressed
1 left <Ctrl> key depressed

Memory Map 8 - 5



Flexible Disc Data Area

This area is used by the flexible disc driver to store information about current drive activity.

40:03EH 01 S40_FLOPPY _SEEK_STAT Drive recalibration status (see
Table B-6)

40:03FH 01 S40_FLOPPY _MOTOR_STAT Drive motor status (see Table B-7)

40:040H 01 S40_FLOPPY _TIME_OUT Drive timeout counter (see Table
8-8)

40:041H 01 S40 FLOPPY _RETURN_STAT Drive return code/error status

40:042H 07 S40_FLOPPY _CONTRL_STAT Controller status/hard disc com-
mand / parm port copies

Table B-6. Flexible Disc Seek Status Byte (40:03EH)

Bit Data Definition

07H 1 Disc hardware interrupt occurred
06H-02H Reserved

01H 0 Indicates drive 1 needB recalibration before next seek
1 Indicates drive 1 does not need recalibration before next seek

OOH 0 Indicates drive 0 needs recalibration before next seek
1 Indicates drive 0 does not need recalibration before next seek

Table B-7. Flexible Disc Motor Status Byte (40:03FH)

Bit Data Definition

07H 0 Current operation is not a write
1 Current operation is a write

06H Reserved
05H 0 Drive one is not selected

1 Drive one is selected
04H 0 Drive zero is not selected

1 Drive zero is sele.cted
03H-02H Reserved
01H 0 Drive one motor is not running

1 Drive one motor is running
OOH 0 Drive zero motor is not running

1 Drive zero motor is running_..

8-6 Memory Map



Table 8-8. Flexible Disc Drive Error Status (40:0418)

Bit Data Definition

07H 1 Timeout error; disc failed to respond in time
06H 1 Seek error; seek to track failed
05H 1 Controller error; disc controller chip failed
04H-00H 1 Bad command; invalid command request

2 Address error; address mark on disc not found
3 Write protect error
4 Sector not found; unable to locate sector, disc damaged or

unformatted
6 Media changed; the drive door was opened on a 1.2MB disc drive
8 DMA error; DMA failed to respond in time
9 Segment wrap; attempt to perform DMA across a segment boundary

10H CRC error; CRC check on data failed

Video Display Data Area

This area is used by the video driver to store current screen parameters and cursor positions.

40:049H 01 S40_CRT_MODE Current video mode

40:04AH 02 S40_CRT WIDTH Current # of screen columns

40:04CH 02 S40_CRT LENGTH Current length of screen in bytes

40:04EH 02 S40_CRT_PAGE_ADR Current address of current display
page

40:050H 10 S40_CRT__CURSOR _POS Cursor coordinates (row, column)
up to 8 pages

40:060H 02 S40_CRT_CURSOR _MODE Current cursor mode setting

40:062H 01 S40_CRT DISPLAY _PAGE Current display page

40:063" 02 S40_CRT_PORT_ADR Base I/O port address for active
video controller

40:065H 01 S40_CRT_MODE SEL_REG Mode select register copy

40:066H 01 S40_CRT_PALETIE Color palette register copy

Memory Map 8-7



Option ROM Data Area

This area is used by the POST (SYSGEN) routine.

40:067H

40:069H

40:06BH

02

02

01

Offset address for optional I/O
ROM initialization routine

Segm.ent address for optional I/O
ROM

Flag last interrupt that occurred

Timer Data Area

This area stores the current timer count and flags.

40:06CH

40:06EH

40:070H

02

02

01

Least significant word of timer
count

Most significant word of timer
count

24-hour timer tick rollover
counter

System Data Flags

This area used by the system to flag <Ctrl>-<Break> and <Ctrl>-<Alt>-<DEL> requests.

40:071"

40:072H

01

02

System break request flag

System reset flag

B- 8 Memory Map



Hard Disc Data Area

This area is used by the INT 13H fixed disc driver to store current information about the fixed disc
controller and status.

40:074H 01 S40_FD_STATUS Hard disc status of last Int 13H
operation

40:075H 01 S40_FD_COUNT Number of hard discs present

40:076H 01 S40_FD_CONTROL Copy of hard disc controller
register

40:077H 01 S40_FD_PORT_OFFSET Hard disc port offset

Printer Timeout Counters

These tables contain timeout counts for the parallel and serial ports. The default value is 14H for the
parallel printer port and 01H for the serial port.

40:078H 01 S40_PRINT_TIMEOUT 1 Parallel port 1 timeout count

40:079H 01 S40_PRINT_TIMEOUT2 Parallel port 2 timeout count

40:07AH 01 S40_PRINT_TIMEOUT3 Parallel port 3 timeout count

40:078H 01 S40_PRINT_TIMEOUT4 Parallel port 4 timeout count

40:07CH 01 S40_RS232_TIMEOUT 1 Serial port 1 timeout count

40:07DH 01 S40_RS232_TIMEOUT2 Serial port 2 timeout count

40:07EH 01 S40_RS232_TIMEOUT3 Serial port 3 timeout count

40:07FH 01 S40_RS232_TIMEOUT4 Serial port 4 timeout count

Keyboard Buffer Pointers

These pointers indicate where in memory the keyboard buffer is, as opposed to the current access points
to the buffer stored in the pointers above. This allows an application to move and enlarge the keyboard
buffer.

40:080H

40:082H

02

02

Pointer to physical start of
keyboard buffer

Pointer to physical end of
keyboard buffer

Memory Map 8-9



Enhanced Graphics Adapter (EGA) Data Area

This data area is used by the optional EGA driver when present.

40:084H 01 540_EGA~CRT_ROW CNT Number of CRT rows minus one

40:085H 02 540_EGA_CHAR_5IZE Number of bytes per character in
font table

40:087H 01 540_EGA_INFOI EGA miscellaneous information

40:088H 01 540_EGA_INF02 EGA miscellaneous information

40:089H 02 Reserved

Flexible Disc Data Rate Area

This data area is used by the flexible disc driver to optimize performance on the 1.2 MB drives by
keeping track of the last data rate selected for disc access.

40:08B8 01 Last data rate selected

Extended Hard Disc Data Area

40:08CH

40:08DH

40:08EH

01

01

01

540_AFD_ERROR_REG

540_AFD_INTR_FLAG

Hard disc status reg. copy

Hard disc error reg. copy

Hard disc interrupt flag

8-10 Memory Map



Extended Flexible Disc Data Area

This data area is used by the flexible disc driver to store information about the current media in the
drives and what operations are being performed on it.

40:08FH 01 S40_AFLOPPY_INDICATORS Drive 0 and 1 indicator flags

40:090H 01 S40_AFLOPPY_MEDIA Drive 0 media state (see Table
8-9)

40:091H 01 S40- AFLOPPY_MEDIAl Drive 1 media state

40:092H 01 S40_AFLOPPY_OPERO Drive 0 operation state

40:093H 01 S40- AFLOPPY_OPERI Drive 1 operation state

40:094H 01 S40- AFLOPPY_TRACKO Drive 0 current track

40:095H 01 S40--AFLOPPY_TRACK 1 Drive 1 current track

Table 8-9. Flexible Disc Media Byte (40:0908)

Bit Data Definition

07H-06H 0 Data transfer rate is 500 KB/sec
1 Data transfer rate is 300 KB/sec
2 Data transfer rate is 250 KB/sec

05H 0 Single step all seeks
1 Double step all seeks

04H 0 Type of disc in drive unknown
1 Type of disc in drive known

03H Reserved
02H-00H 0 Attempting 360 KB disc in 360 KB drive

1 Attempting 360 KB disc in 1.2 MB drive
2 Attempting 1.2 MB disc in 1.2 MB drive
3 Determined 360 KB disc in 360 KB drive
4 Determined 360 KB disc in 1.2 MB drive
5 Determined 1.2 MB disc in 1.2 MB drive

Keyboard Mode Indicator

This byte is used by the keyboard driver to store the current state of the keyboard LEOs.

40:096H

40:097H

01

01

S40_KBD_EXT_STATE 1

S40_KBD_STATUS

Keyboard LED flags (see Table
B-I0)
Keyboard LED flags (see Table
B-ll )

Memory Map B -11



Bit

07H

06H

05H

04H

03H

02H

01H

OOH

Data

1
1

1
1

Table B-IO. 101-key Keyboard Flags (40:0968)

Definition

Read ID bytes in progress

First of ID bytes was last

Force Num Lock if 10 I-key keyboard is attached. This is when
DOS is loaded or reloaded. ~6~'"~~~·.·::~'~i~!~.·~ni~~

Right <Alt> key status
Right <Alt> key is pressed

Right <Ctrl> key status
Right <Ctrl> key is pressed

EO was last

EI was last

Table 8-11. Keyboard LED Status and Data Area (40:0978)

Bit Data Definition

07H 1 Used for a flag to indicate 3 failures of sending data to keyboard

06H 1 LED update in progress

05H 1 Resend received from keyboard

04H 1 Acknowledge received from keyboard

03H 0 Reserved (set to 0)

02H Caps Lock LED status
1 Caps Lock LED on

01H Num Lock LED status
1 Num Lock LED on

OOH Scroll Lock LED status
1 Scroll Lock LED on

Note: Applications which modify these bytes may experience difficulty in maintaining synchronization
between the Cursor Control keypad and the Numeric keypad on the UP Vectra ~!~~..:t~lg:~~:::::~":~I.

B-12 Memory Map



Real-time Clock Data Area

This area is used by the RTr driver to store information needed to interrupt an application waiting on an
RTC event.

40:098H 02 S40 RTC_WAIT _OFFSET Offset address of user wait flag

40:09AH 02 S40_RTC_WAIT _SEGMENT Segment address of user wait flag

40:09CH 02 S40_RTC WAIT _CNT_LOW Low word of wait count

40:09EH 02 S40_RTC_WAIT _CNT HIGH High word of wait count

40:0AOH 01 S40_RTC WAIT ACTV_FLG Wait active flag

40:0AIH 07 Reserved

Pointer to EGA Data Area

40:0A8H
40:0ACH

04
2C

Pointer to table of EGA pointers
Reserved

Flexible Disc Expander Adapter Data Area

This applies solely to the Vectra RS systems, and only when the Flexible Disc Expander adapter card is
installed. This data area is used by the flexible disc expander driver to store information about the
current media in the drives and what operations are being performed on it.

40:0D8H 01 S40_AFLOPPY INDICATORS Drive 2 and 3 indicator flags

40:0D9H 01 S40_AFLOPPY MEDIA2 Drive 2 media state (see Table
B-9)

40:0DAH 01 S40_AFLOPPY MEDIA3 Drive 3 media state

40:0DBH 01 S40_AFLOPPY OPER2 Drive 2 operation state

40:0DCH 01 S40_AFLOPPY OPER3 Drive 3 operation state

40:0DDH 01 S40_AFLOPPY_TRACK2 Drive 2 current track

40:0DEH 01 S40_AFLOPPY TRACK3 Drive 3 current track

Memory Map 8-13



Intra-application Communications Area

Used by applications to communicate with each other and with themselves from one work session to
another.

40:0FO 10 S40_INTRA_APPL Available to any application

Print Screen Status

40:100H

40:101H

01

03

S40 PSCRN STATUS- - Flag for print screen in progress
(see Table B-ll)
Reserved

Table B-12. Print Screen Status Byte (40:100H)

Bit Data Definition

07H-00H 0 Print not in progress
1 Print in progress

FFH Error during print

DOS Data Area

The following data areas are used by DOS to provide status information on single-drive systems.

40:104H

40:105H

01

lA

Status of flexible disc for single
drive systems, i.e., currently drive
A: or B:
Reserved

Reserved Data Areas

The following areas are reserved and should not be used under any circumstances:

40:089H
40:0AIH
40:0ACH
40:0DFH
40: 10 IH
40:105H

B-14 Memory Map

02
07
2C
11
03
lA



EX-BIOS Data Area Map

Figure B-1 shows the EX-BIOS RAM space, which contains tht. HP_VECTOR_TABLE, the EX-BIOS
memory pool, and the EX-BIOS global data area.

HP_VECTOR_TABLE
HP_ENTRY's CS:O (a.)

HP_ENTRY_CODE
HP_ENTRY's CS:IP (b.)

"Max DS" (c.)

"Last used DS" (d.)

V_SYSTEM's DS (e.)

TOP of RAM (f.)

Figure B-1. EX -BIOS Data Area Layout

HP_VECTOR_TABLE

HP_ENTRY_COOE

""EX-BIOS
Memory

Pool

-
EX-BIOS Resident

Driver's Data
Segments

1/

EX-BIOS Global
Data Segment

EX-BIOS
Memory
Pool

The following notes correspond to the letters in Figure B-1.

a. This address is the segment (CS) value stored in the second word of the HP_ENTRY interrupt
vector (default 06FH); the HP_VECTOR_TABLE is at offset zero. This value may also be obtained
from the V_SYSTEM driver, using function F_INS_BASEHPVT.

b. This address is the offset (IP) value stored in the first word of the HP_ENTRY interrupt vector
(default 06FH). This address (CS:IP) represents the end of the HP_VECTOR_TABLE and points to
the EX-BIOS's HP ENTRY CODE.- -

C. This address represents the last allocatable data segment (IIMAX DS") value available from the
EX-BIOS memory pool. This address may be obtained as well as allocated from the EX-BIOS
V_SYSTEM driver. See F_RAM_GET and F_RAM_RET in Chapter 8.

d. This address is passed to drivers requesting memory from the EX...,BIOS memory pool. Drivers must
first subtract the size of their data segment from the "last used DS" value to get an addressable data
area. The new "last used DSII is returned to the EX-BIOS using the F_RAM_RET function.

e. This address represents the EX-BIOS global data area used by drivers and services that share data.
This address is the DS value stored in the HP_ VECTOR_TABLE for the V_SYSTEM driver.

f. Top of RAM is the last address in memory. HP Vectra series of computers are shipped with 640KB
of system memory, so this value is 9FFFFH. The data region between Top of RAM and the base of
HP_VECTOR_TABLE is not directly available to applications. In the base system this region is 4KB
long. However, since a user can reconfigure st3 ndard RAM in the Vectra series of computers (to
256KB, or 512KB via a jumper on the Processor PCA of the Vectra ES, and 512KB via a switch on
the Processor PCA of the Vectra QS and RS), this region may need to be lengthened.

Memory Map B-15



Option ROM Data Segments

An option ROM which does not have available on-board RAM can get memory in the manner described
above. However, the problem arises as to how the option ROM is to 'remember' the data segment if it
doesn't have any RAM to save the segment in. This problem usually can be solved since most option
ROMs are accessed through the software interrupt mechanism. The option ROM adapter simply directs its
entry point software interrupt vector to its EX-BIOS RAM data segment, which in turn jumps to the
option ROM's entry point. That is,

CPU INT nn -> EX-BIOS data segment -> option ROM

PUSH CS
POP OS ; Load option ROM OS
JMP FAR ROM ENTRY POINT

EX-BIOS Global Data Area

The EX-BIOS global data area is shared between several EX-BIOS drivers. It contains temporary and
permanent variables required by the EX-BIOS to function properly. Some of these variables can be
modified by application programs. As with the STD-BIOS data area, care should be taken when modifying
the EX-BIOS data area.

The EX-BIOS global data area can be found by calling the V_SYSTEM driver, with the function
F_INS_BASEHPVT. The EX-BIOS global data area segment will be returned in the DS register. Table
B-13 defines the contents of this area.

Table B-13. EX-BIOS Global Data Area

Byte Offset Type Definition

O-IDH Reserved Word

IEH T STR_NEXT Word The next unused
_INDEX string index

number.

20H and up Reserved

B-16 Memory Map



ROM BIOS Memory Map

Table 8-14 lists the compatible ROM entry points. The programmer should not access these entry points
directly.

Table B-14. Rom Entry Points

Int Rom Entry Type Function

2 FOOO:E2C3 code Non-mukable
interrupt

5 FOOO:FF54 code Print screen
10 FOOO:F065 code Video
11 FOOO:F84D code Equipment check
12 FOOO:F841 code Memory size
13 FOOO:EC59 code Flexible / hard disc
14 FOOO:E739 code Serial
15 FOOO:F859 code System functions
16 FOOO:E82E code Keyboard
17 FOOO:EFD2 code Printer
18 FOOO:FF53 code Reserved
19 FOOO:E6F2 code Boot
lA FOOO:FE6E code Time and date
18 FOOO:FF53 code Keyboard break
lC FOOO:FF53 code Timer tick
ID FOOO:FOA4 data Video parameter

table
IE 0000:0522 data Flexible disc param-

eter table
IF FOOO:OOOO data Graphics character

table

Memory Map B-17



Product Identification

The following are Product Identification Strings. Application designers should use the product
identification byte to differentiate among the various HP Vectra family of personal computers. The
machine capability marker can be used to indicate a specific hardware or ROM BIOS capability which
may apply across more than one product identification code.

ROM version independent information:

OFOOO:OOF4H DB High Processor Clock Rate Processor speed in
MHz - exception: the
value OFFH means 8 MHz

OFOOO:OOFSH DB low Processor Clock Rate
OFOOO:OOF8H DB 'HP'
OFOOO:OOFAH DB XXXXXXXXB
OFOOO:OOFBH DB XXXXXXXXB

ROM version dependent information:

OFOOO:OOFCH OW PPSSH
OFOOO:OOFEH DB YYH

OFOOO:OOFFH DB NN

Industry Standard PC ID:

HP Vectra PC 10
Product identification
Machine capability marker

Version number
ROM release year since
1960 stored in BCD
Week of the year stored
in BCD

OFOOO:FFFEH DB OFCH IBM-AT Compatible PC

Product Identification Definitions

Processor Clock Rate

All Vectras (except for the original Vectra PC) set their clock rate bytes to their clock speeds in MHz.
Machines which have a single clock rate should set both the primary and secondary rate bytes to the same
value.

OFOOO:OOF4H • High processor clock rate (primary)
Length • one byte

OFOOO:OOF5H = Low processor clock rate (secondary)
Length =one byte

8-18 Memory Map



Processor Clock Rates for HP Vectra Series of Computers

Computer Clock Rate (High) Clock Rate (Low)

Vectra ES 08H (8 MHz) 08H (8 MHz)
Vectra ES/12 OCH (12 MHz) 08H (8 MHz)
Vectra QS/ 16, RS/16 10H (16 MHz) 08H (8 MHz)
Vectra QS/20, RS/20 14H (20 MHz) 08H (8 MHz)
Vectra RS/20C 14H (20 MHz) 05H (5 MHz)
Vectra RS/25C 19H (25 MHz) 05H (5 MHz)

HP Vectra PC 10

The HP Vectra PC ID flag is used to validate the ROM BIOS Identification Block. The flag should be
tested prior to examining the other bytes of the block.

OFOOO:OOFAH = Product Identification
Length = one byte

Bits:

7 6 5 4 3 2 0
--- --- -------------

1------> 00000 - Original Vectra PC
00001 - Vectra ES/12
00010 - Vectra RS/20
00011 - Portable Vectra CS
00100 - Vectra ES
00101 - Vectra CS
00110 - Vectra RS/16
00111 - Vectra QS/16
01000 - Vectra QS/20
01001 - Vectra RS/20C
01010 - Vectra RS/25C
01011 - Vectra LS/12

01100 th rough 11111 - Reserved

-------------------> 000 - 80286
001 - 8088
010 - 8086
011 - 80386

100 through 111 - Reserved

Memory Map B-19



Machine Capability Marker

OFOOO:OOFBH = Machine'capability marker
Length =one byte

Bits:

7 6 5 432 0

1 1-->
1
1
1
1------------->

BIOS Version Number

1.44 MB flexible discs supported
with automatic media sense
reported via INT 13 function 8H.

Reserved, set to o.

OFOOO:OOFCH = BIOS version number
Length = two bytes

Encoding is as follows:

OW PPSS

Where PP = Primary version number
SS = Secondary version number

For example, BIOS release A.O 1.05 would be expressed as:

OW 0105

Note that when using DEBUG to look at the bytes, the numbers will be reversed (05 01).

B - 20 Memory Map



Year of the ROM BIOS Release (in BCD)

OFOOO:OOFEH = Year of ROM BIOS release in BCD.
Length = one byte

Encoded as follows:

DB VV

Where VV is the difference of the current year and 1960, expressed in
BCD.

For example, if the current year is 1987, the entry would be 1987 minus 1960 which is equal to 27H,
expressed in BCD as:

DB 27H

Week of the ROM BIOS Release (in BCD)

OFOOO:OOFFH = Week of the ROM BIOS release in BCD.
Length =one byte

Encoded as follows:

DB NN

Where NN is the week in which the BIOS ROMs were released to manufacturing.
The range is (OOH - 51H), expressed in BCD.

For example, if the ROMs were released in week 15, the entry would be 15H in BCD, expressed as:

DB 15H

Memory Map B-21





C
CMOS Memory Layout and Real-Time Clock

The real-time clock chip contains 64 bytes of non-volatile (CMOS) memory. Values saved in this
memory area are not destroyed when the system is powered off. Table C-l defines the use of the
Real-time Clock and CMOS memory area.

Table C-l. CMOS Memory and Real-time Clock

CMOS
Address

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
ODH
OEH
OFH
10H
IIH
12H
13H
14H
15H
16H
17H
18H
19H
lAH

IBH-2DH
2E-2FH

Application

* RTC current second
* RTC second alarm value
* RTC current minute
* RTC minute alarm value
* RTC current hour
* RTC hour alarm value
* RTC current day of the week
* RTC current day of the month
* RTC current month
* RTC current year
* RTC status register A
* RTC status register B
* RTC status register C
* RTC status register D
* Diagnostic status byte
* Shutdown status byte
Flexible disc drive type (A: and 8:)
Reserved
Hard Disc Type for drives C: and D: (1 through 14)
Reserved
Equipment byte
Low base memory
High base memory
Extended memory size (low byte)
Extended memory size (high byte)
Extended Hard Disc Type for drive C: (16 through 255)
Extended Hard Disc Type for drive 0: (16 through 255)
Reserved
2-byte industry standard CMOS checksum for bytes 10H to 2DU

CMOS Memory layout and Real-Time Clock C-l



Table C-l. CMOS Memory and Real-time Clock (Cont.)

CMOS Application
Addretl

30H .. Extended memory size (low byte, defined by POST)
31H .. Extended memory size (high byte)
32H .. Date century byte
33H .. Infonnation flags

34-3FH .. Reserved
40H-7FH .. Reserved

.. These bytes are not included in the industry standard CMOS checksum

Real-Time Clock/CMOS Access

Port 70H and port 71 H provide the interface to the real-time clock and CMOS memory controller. Port
70H is used to specify the byte addrell to read or write. Port 71H is. used to pall the data. For example,
to read the equipment byte, the programmer would write 14H to port 70H, then read the data byte from
port 71H. A read or write to port 71H must always be preceeded by a write to port 70H.

Real-Time Clock (CMOS Address OOH-ODH)

The real-time clock (RTC) chip maintains the current date and time, even when the system is powered
off. Four registers are initialized by the SETUP program when the user sets the current date and time.
These registen are detailed in Tables C-2, C-3, C-4 and C-S.

Table C-Z. CMOS_RTC_REGA (CMOS Address OAB)

Bit Data Definition

7 0 The current date and time is available to read
1 The current date and time are not available to read because an up-

date of these values is in progrell

6-4 Time divider selection bits to indicate what time base frequency is
being used. This field is set to 2H to indicate that a 32.768 kHz
crystal is providing the time base.

3-0 Rate selection bits to specify output square wave frequency. ThiJ
field is set to 06H to select a square wave frequency of 1.024 kHz,
or a periodic interrupt rate of 976.562 microseconds.

C-2 CMOS Memory Layout and Real-Time Clock



--- ---------------_.__._-----_._._--

Table C-3. CMOS_RTC_REGB (CMOS Address OBH)

Bit Data Definition

7 0 Update clock normally (default)
1 Suspend clock updates

6 0 Disable periodic interrupts (default)
I Enable periodic interrupts

S 0 Disable alarm interrupts (default)
I Enable alarm interrupts

4 0 Do not generate an interrupt when the current update cycle com-
pletes (default)

1 Generate an interrupt each time a clock update completes

3 0 Disable square wave output (default)
I Enable square wave output

2 0 Store date and time in BCD (Binary Coded Decimal) (default)
1 Store date and time as binary integers

1 0 Places hours byte in 12- hour mode
1 Places hours byte in 24-hour mode (default)

0 0 Disable daylight savings (default)
I Enable daylight savings

Table C-4. CMOS_RTC_REGC (CMOS Address oeH)

Bit Data Definition

7 0 No interrupts are currently asserted
1 The RTC is asserting an interrupt due to either the alarm, periodic

interrupt, or update ended.

6 0 No periodic interrupt has occurred since the last read of this bit.
I A periodic interrupt has occurred, read only and cleared by read.

S 0 No alarm interrupt has occurred since the last read of this bit.
I An alarm interrupt has occurred, read only and cleared by read.

4 0 No update ended interrupt has occurred since the last read of the bit.
I An update ended interrupt has occurred, read only and cleared by

read.

3-0 Reserved

CMOS Memory Layout and Real-Time Clock C-3



Table C-S. CMOS_RTC_REGD (CMOS Address 008)

Bit Data Definition

7 0 Power was lost to the RTC chip since the last read of this bit.
I The RTC chip has not lost power since the last read of this bit.

Read only, set to I after read.

6-0 Reserved

Diagnostic Status Byte (CMOS Address OEH)

This byte is set by the POST routine to flag errors detected during power on. The contents of thisbyte
are detailed in Table C-6.

Table C-6. CMOS~IAGNOSTIC_STATUS(CMOS Address OEH)

Bit Data Definition

7 I Power to RTC failed

6 I Bad industry standard CMOS checksum

5 1 Configuration inconsistency

4 1 Memory size does not match

3 I Hard disc failed initialization

2 I Invalid CMOS

1-0 Reserved

System Shutdown Byte (CMOS Address OFH)

This byte is used by the system power-on sequence to determine what action is to be taken upon return
from protected mode. The details of this byte are shown in Table C-7.

C-4 CMOS Memory La'yout and Real~TimeClock



Table C-7. CMOS_SOlJTDOWN_BYTE (CMOS Address OFH)

--
Bit Data Definition

7-0 0-3 Perform power-on reset sequence

4 INT 19H (reboot)

5 Flush keyboard and jump indirect via double word 40: 67H

6-7 Reserved 0

8 Used by POST during test of protected mode RAM

9 Used for INT 15H support (block move)

A Jump indirect via double word at 40:67H

B-FF (Same as values 0-3)

Flexible Disc Descriptor Byte (CMOS Address 10H)

This byte is initialized by the SETUP program and indicates what types of flexible disc drives are
installed. The details of this byte are shown in Table C-8.

Table C-S. CMOS_FDC_TYPE (CMOS Address 100)

Bit Data Definition

7-4 0 No drive installed as drive A

I 360 KB drive installed as drive A

2 1.2 MB drive installed as drive A

4 3.5-inch drive installed as drive A

3-0 0 No drive installed as drive B

I 360 KB drive installed as drive B

2 1.2 MB drive installed as drive B

4 3.5-inch drive installed as drive B

CMOS Memory layout and Aeal-Time Clock C - 5



CMOS Hard Disc Type (CMOS Address 12H)

CMOS_FIXED__ DISC_TYPE, (CMOS Address 12H), defines the type of the first and second hard disc
drive installed.

00000000 through 00001111 define Hard Disc Drive Types 1 through 14. See Chapter 7 for more
information.

Equipment Byte (CMOS Address 14H)

This byte is used to initialize STD-BIOS RAM location 40:001 OH. This is the value returned by the
STD-BIOS interrupt INT 11· (get current equipment). The details of this byte are shown in Table C-9.

Table C-9.CMOS_EQ_BYTE (CMOS Address 148)

Bit Data Definition

7-6 0 One drive installed

1 Two drives installed

5-4 1 Primary display is 40 column color

2 Primary display is 80 column color

3 Primary display is 80 column monochrome

3-2 Reserved

1 1 80287 or 80387 installed

0 1 At least one flexible disc installed

System Base Memory Size (CMOS Address 15H-16H)

This value represents the amount of base (DOS-addressable) memory installed in the system minus the
amount of RAM used by the EX-BIOS data area. Three base memory configurations are valid:

0100H = 256 KB of base memory installed (Vectra ES series only)
0200H = 5 12 KB of base memory installed
0280H = 640 KB of base memory installed

Note that Vectra series of personal computers are shipped with 640 KB of base memory; however, these
systems may be configured via jumpers or switches to the lower amounts listed.

C-6 CMOS Memory layout and Real- Time Clock



The actual stored value will be adjusted to leave space for the EX-BIOS data area. For example, the value
may be OOFCH instead of 0100H, indicating that the system is configured for 256 KB of base memory
but the EX-BIOS data area is using 4 KB of it.

CMOS_BASE_MEMORY_LSB (CMOS Address • 15H)
CMOS_BASE_MEMORY_MSB (CMOS Address • 16H)

System Extended Memory Size (CMOS Address 17H-18H)

These values are initialized by the SETUP program to the user specified Extended memory size from zero
to 15 MB in 512 KB increments. For example:

0200· 512 KB of Extended memory (0.5 MB)
0400 • 1024 KB of Extended memory (1.0 MB)
0600 • 1536 KB of Extended memory (1.5 MB)
through
3AOO • 14848 KB of Extended memory (14.5 MB)
3COO • 15360 KB of Extended memory (15.0 MB)

Note that Extended memory is memory above one megabyte.

CMOS_EXT_MEMORY_LSB (CMOS Address • 17H)
CMOS_EXT_MEMORY_MSB (CMOS Address • 18H)

Extended Hard Disc Type for Drive C: (CMOS Address 19H)

Bit 7-0 defines the Hard Disc Type of the first hard disc installed (drive C:):

00010000 to 11111111 define types 16 through 255. (The SETUP Program Guide in your computer's
Setting Up Vectra binder contains a table listing hard disc drive type characteristics.)

Extended Hard Disc Type for Drive D: (CMOS Address 1AH)

Bit 7-0 defines the Hard Disc Type of the second hard disc installed (drive 0:):

00010000 to 11111111 define types 16 through 255. (The SETUP Program Guide in your computer's
Setting Up Vectra binder contains a table listing hard disc drive type characteristics.)

STD-BIOS Checksum Word (CMOS Address 2EH-2FH)

This word contains the checksum which is used to verify the contents of the STO-BIOS CMOS data
locations. This checksum is computed each time one of these locations is modified using an EX-BIOS
CMOS function. If the EX-BIOS is not used for CMOS update then it is the programmer's responsibility
to calculate and replace the STD-BIOS checksum.

CMOS_STD_BIOS_CRC· [10]+[11]+[12]+...+[20H]: 16-bit carryout

CMOS Memory Layout and Real- Time Clock C-7



Low and High Extended Memory Byte (CMOS Address 30H-31H)

These bytes reflect the total extended memory above the 1MB address space determined at POST.
Extended memory size can be determined through system INT IS.

Address 30H, Low extended memory size: Bit 7-0.
Address 3 IH, High extended memory size: Bit 7-0.

Valid sizes are:

0200H = 512K of Extended memory. (0.5 MB)
0400H = 1024Kof Extended memory. (1.0 MB)
0600H • 1536K of Extended memory. (1.5 MB)
through
3COOH • 15360 KB of Extended memory (15 MB, maximum)

Date Century Byte (CMOS Address 32H)

This byte reflects the value for the century expressed in the BCD.

BCD value for the century (BIOS interface to read and set): Bit 7-0.

Test Information Byte (CMOS Address 33H)

Bit seven of this byte is initialized by the boot process to indicate that 640 KB of base memory is
installed. The details of this byte are shown in Table C-I O.

Table C-IO. CMOS_TEST_INFO (CMOS Address 338)

Bit Data Definition

7 I Indicates top 128K of base memory is installed

6-0 Reserved

C-8 CMOS Memory Layout and Real-Time Clock



D
I/O Port Map

Appendix D describes the I/O map of the system. Table 0-1 lists the I/O map of all devices integrated
in the System Processing Unit (SPU). Table D-2 lists the recommended I/O port assignments for devices
in adapter cards. Subsequent sections in the appendix describe the SPU built-in devices individually. I/O
devices in adapter cards are described fully in the Vectra Accessories Technical Reference Manual (for
either the Vectra ES or RS series).

Table D-l. SPU I/O Map

I/O Description
Address

OOO-OIFH First OMA Controller (8237A)
020-03FH Master Interrupt Controller (8259A)
040-05FH Timer Controller (8254)
060H Keyboard Buffer Full port
061H SPU Control port
064H Keyboard Output Buffer Full (OBF) port
068H Keyboard Extended Command port
06C-06FH HP-HIL Controller ports
070H RTC address / NMI disable port
071H RTC data
078H Hard Reset NMI enable port
080-09FH OMA Page Registers ports
OAO-OBFH Slave Interrupt Controller (8259A)
OCO-ODFH Second DMA Controller (8237A)
OFOH Clear (80287 or 80387 only) Coprocessor port
OFtH Reset (80287 or 80387 only) Coprocessor port
OF8-0FFH Math (80287 or 80387 only) Coprocessor

I/O Port Map D-l



Table 0-2. Adapter I/O Map

I/O Description
Address

IFO-IF8H Hard Disc controller
200-207H Game I/O adapter
278-27FH Parallel port 2
2E8-2EFH Serial port 3 (COM4)
2F8-2FFH Serial port 1 (COM2)
300-31FH Prototype adapter card
320-323H Reserved
378-37FH Parallel port 1
380-38FH SDLC, bisynch 2
3AO-3AFH Bisynch 1
3BO-3B7H Monochrome display adapter
3BC-3BFH Monochrome display/Parallel adapter
3CO-3CFH Enhanced Graphics adapter (EGA)
3DO-3DFH Color Graphics adapter
3E8-3EFH Serial port 2 (COM3)
3FO-3F7H Flexible Disc controller
3F8-3FFH Serial port 0 (COM 1)

DMA Channel Controller

The SPU supports seven DMA channels using two Intel 8237A compatable DMA controllers in cascade
mode. For each DMA channel there is a page register used to extend the addressing range of the channel
to 16 MB. The only type of DMA transfer allowed is "1/0 to memory". No "I/O to I/O" or "memory to
memory" transfers are allowed due to the way the hardware is configured. For more detailed information
on the 8237A DMA controllers see Intel's The 8086 Family User's Manual. Table D-3 summarizes how
the DMA channels are allocated.

Table 0-3. DMA Channel Allocation

Channel First OMA controller (used for 8 bit transfers):

0 Spare.
1 Usually datacomm.
2 Flexible disc I/O.
3 Spare.

Second DMA controller (used for 16 bit transfers):

4 Cascade from first DMA controller.
S Spare.
6 Spare.
7 Spare.

D-2 I/O Port Map



D
I/O Port Map

Appendix D describes the I/O map of the system. Table D-l lists the I/O map of all devices integrated
in the System Processing Unit (SPU). Table D-2 lists the recommended I/O port assignments for devices
in adapter cards. Subsequent sections in the appendix describe the SPU built-in devices individually. I/O
devices in adapter cards are described fully in the Vectra Accessories Technical Reference Manual.

Table D-1. SPU I/O Map

I/O Description
Address

000-01FH First DMA Controller (8237A)
020-03FH Master Interrupt Controller (8259A)
040-05FH Timer Controller (8254)
060H Keyboard Buffer Full port
061H SPU Control port
064H Keyboard Output Buffer Full (OBF) port
068H Keyboard Extended Command port
06C-06FH HP-HIL Controller ports
070H RTC address / NMI disable port
071H RTC data
078H Hard Reset NMI enable port
080-09FH DMA Page Registers ports
OAO-OBFH Slave Interrupt Controller (8259A)
OCO-ODFH Second DMA Controller (8237A)
OFOH Clear (80287 or 80387 only) Coprocessor port
OFIH Reset (80287 or 80387 only) Coprocessor port
OF8-0FFH Math (80287 or 80387 only) Coprocessor

I/O Port Map D-l



Table D-2. Adapter I/O Map

I/O Description
Address

IFO-IF8H Hard Disc controller
200-207H Game I/O adapter
278-27FH Parallel port 2
2E8-2EFH Serial port 3 (COM4)
2F8-2FFH Serial port 1 (COM2)
300-31FH Prototype adapter card
320-323H Reserved
378-37FH Parallel port 1
380-38FH SDLC, bisynch 2
3AO-3AFH 8isynch 1
380-387H Monochrome display adapter
38C-38FH Monochrome display/Parallel adapter
3CO-3CFH Enhanced Graphics adapter (EGA)
3DO-3DFH Color Graphics adapter
3E8-3EFH Serial port 2 (COM 3)
3FO-3F7H Flexible Disc controller
3F8-3FFH Serial port 0 (COM 1)

DMA Channel Controller

The SPU supports seven DMA channels using two Intel 8237A compatable DMA controllers in cascade
mode. For each DMA channel there is a page register used to extend the addressing range of the channel
to 16 MH. The only type of DMA transfer allowed is "1/0 to memory". No "1/0 to 1/0" or "memory to
memory" transfers are allowed due to the way the hardware is configured. For more detailed information
on the 8237A DMA controllers see Intel's The 8086 Family User's Manual. Table D-3 summarizes how
the DMA channels are allocated.

Table D-3. DMA Channel Allocation

Channel First DMA controller (used for 8 bit transfers):

0 Spare.
1 Usually datacomm.
2 Flexible disc I/O.
3 Spare.

Second DMA controller (used for 16 bit transfers):

4 Cascade from first DMA controller.
5 Spare.
6 Spare.
7 Spare.

D-2 I/O Port Map



1/0 Port Addresses for DMA Controllers

Table D-4 shows the I/O port addresses for the page register and DMA controllers used when writing the
DMA addresses.

Table D-4. I/O Port Addresses and Address Lines

DMA page register I/O Ports:

Channel I/O Port Address Lines

0 087H A23-A 16
1 083H A23-A16 byte transfers
2 081H A23-A16
3 082H A23-A16
4 Not connected
5 08HH A23-A17
6 089H A23-A17 word transfers
7 08AH A23-A17
X 08FH Used for RAM refresh

DMA Controller I/O Ports:

Channel I/O port

0 OOOH address register (AI5-AO)
001H byte count register

1 002H address register (A 15-AO)
003H byte count register

2 004H address register (AI5-AO)
005H byte count register

3 006H address register (A 15-AO)
007H byte count register

4- OCOH address register (A 16-AI)
OC2H word count register

5 OC4H address register (A 16-A 1)
OC6H word count register

6-- OCSH address register (A16-Al)
OCAH word count register

L OCCH address register (A 16-AI)
OCEH word count register

I/O P~ort Map D-J



Notes:

Channel 4 (first channel on the second OMA controller) is used to cascade the first OMA controller and
it must not be programmed for OMA transfers.

Channels 5 through 7 are word-wide channels so the address lines used are A 1 through A23. Address line
AD is always forced to zero. The address register on these channels provides address lines A 16 through AI,
and address lines A23 through A 17 come from bits 7 through 1 of the page register. Bit 0 of the page
register is not used. Care should be taken in making sure that the counts and addresses are in words
rather than bytes.

Table 0-5 lists I/O ports used for writing commands to the OMA controllers.

Table D-5. DMA Controller Command I/O Ports

Contrl. Contrl.
1 2 I/O Write I/O Read

OOOH 008H Command Register Status Register
002H 009H Request 'Register illegal
004H OOAH Single Mask Register illegal
006H OOBH Mode Register illegal
008H OOCH Clear Byte Pointer Flag illegal
OOAH OODH Master Clear Command Temporary Register
OOCH OOEH Clear Mask Command illegal
OOEH OOFH Multi-Mask Register illegal

8259A Interrupt Controllers

The system has two 8259A interrupt controllers. They are arranged as a master interrupt controller and a
slave that is cascaded through the master. Table 0-6 shows the I/O ports for these interrupt controllers
and how they are cascaded.

Table D-6. 8259A Interrupt Controller I/O Ports

Register Name Master Slave

Command Register 20H OAOH
Interrupt Mask 21H OAIH
Register

Table 0-7 shows how the master and slave controllers are connected. The Interrupt Requests (IRQ) are
numbered sequentially starting with the master 8259 controller and followed by the slave.

D-4 I/O Port Map



Table 0-7. 8259A Master to Slave Connections.

Master's IRQ Interrupt Request Description

IRQO(08H) Timer
IRQ1(09H) Keyboard OBF
IRQ2(OAH)<--[Slave IRQ] .-..-... -. . ... '«Reserved

IRQ08( 70H) .. • .~," ___d~~'~"'·~ -- Real Time Clock
IRQ09(71H) -. SW.Redirected
IRQ 1O( 72H}-7'- ------ -SeriatPort 2 (COM3)
IRQl1(73H) Serial Port 3 (COM4)
IRQ12(74H) Reserved
IRQ13(75H) Coprocessor
IRQ14(76H) Hard Disc
IRQ15(77H) Reserved

IRQ3(OBH) Serial Port 1 (COM2)
IRQ4(OCH) Serial Port 0 (COM 1)
IRQ5(ODH) Parallel Port 2
IRQ6(OEH) Flexible Disc
IRQ7(OFH) Parallel Port 1

Note: The numbers in parentheses are the interrupt vector numbers generated by the IRQs.

The following example shows how the 8259A controllers are programmed on initialization:

CLI ; Disable interrupts
PROGRAM MASTER:

MOV AL, 11H ; ICW1: Initialization Command
OUT 20H,AL
JMP $+2
MOV AL,08H ; Interrupt Vector Base at 08H
OUT 21H,AL
JMP $+2
MOV AL,04H ; Define master with slave
OUT 21H,AL at IRQ2
JMP $+2
MOV AL,01H 8086/88 Mode
OUT 21H,AL
JMP $+2

PROGRAM STD SLAVE:
MOV AL: 11H ICW1: Initialization Command
OUT OAOH,AL
JMP $+2
MOV AL,10H ; Interrupt Vector Base at 10H
OUT OA1H,AL·
JMP $+2

I/O Port Map 0 - 5



MOV AL,02H ; Slave 10 number
OUT OA1H,AL
JMP $+2
MOV AL,01H ; 8086/88 Mode
OUT OA1H,AL
JMP $+2
STI Re-enable interrupts

8254 Timer Controller (I/O Ports40H through 43H)

The system contains an Intel Programmable Interval Timer 8254. The timer controller consists of three
separate timer channels; timer channels 0, 1 and 2. Channel 0 provides the BIOS with 'a programmable
time interval. Channell provides the memory refresh signal of the dynamic RAMs in the system.
Channel 2 generates a fixed frequency envelope to the sound generation circuit.

WARNING

Timer channell should not be used. Writing to this channel may cause Joss
of data in system memory.

The timer chip interfaces to the CPU via 4 I/O ports:

I/O Port Function

040" Counter data for timer O.
041" Counter data for timer 1.
042" Counter data for timer 2.
043" The control register for all three timers.

See Intel's The 8086 Family User's Manual for more details of the 8254 timer controller.

Keyboard Data Buffer (60H)

The keyboard data buffer is read by the CPU when the keyboard asserts the OBF interrupt. The OBF
signal is automatically cleared when the data buffer is read. See Chapter 5 for more information about
the keyboard data buffer.

D -6 I/O Port Map



SPU Control Port (61H)

The SPU Control Port (61H) is a bi-directional buffer which latches an assortment of unrelated signals.
Table D-8 describes the bit values contained in this buffer.

Table D-8. PORT 61H Bit Values

When the CPU reads port 61H:

Bit Data SPU Status Port Definition

7 I Parity error in on-board system ram

6 I I/O channel check error has occurred

5 Output from timer channel 2

4 Refresh detect; toggles once per refresh cycle

3 I/O channel check NMI latch (See Figure D-2)
I Disabled
0 I/O channel check is enabled

2 SPU RAM parity error latch (See Figure D-2)
I Disabled
0 Parity error is enabled

I I Speaker data from timer channel 2 is enabled to drive speaker
circuit.

0 I Gate to timer channel 2 is enabled

When the CPU writes port 61H:

Bit Data SPU Control Port Description

7-4 Not used

3 1 Disable and clear I/O channel check.

2 1 Disable and clear on-board parity NMI

1 1 Enable the data from timer channel 2 to drive speaker circuit.

0 1 Enable gate to timer channel 2. (speaker data)

1I0Port Map D-7



Speaker Control

Figure D-l shows the relationship of the timer channel 2 and the rest of the speaker circuit.

I/O port 61h, bit 0 ----I gate

1.190 MHz ----I clock output 1---.....

I/O port 61h, bit 1 -----------'

Figure D-l. Speaker Control Circuit

The sound-related EX-BIOS functions are the recommended method of accessing the speaker functions
(see Chapter 8).

Keyboard I/O Ports

Keyboard Command Port (64H): This port is Used to write commands to the 8042 keyboard controller.

Keyboard Extended Command Port (68H): This port provides a data/command path to the 8042 not
conflicting with the industry standard I/O ports 60H and 64H.

HP-HIL Controller (6CH through 6FH): This set of I/O ports provides the communication mechanism to
the HP-HIL controller. .

Real-Time Clock Ports

Real-Time Clock and CMOS RAM ports 70H and 71H provide the interface to the MC146818 real-time
clock (RTC). See Appendix C for further details.

Hard Reset Enable Port

Hard Reset Enable Register (Port 78H): This write-only port enables the hard reset line from the
HP-HIL controller. Table D-9 shows the bit definitions for this port.

D-8 110 Port Map



Table D-9. Hard Reset Enable Register

Bit Data Description

7 1 Enable hard reset from HP-HIL controller chip.

0 Disable and clear hard reset from HP-HIL controller chip.

6-0 Reserved.

NMI Sources and Involved I/O Ports

The non-maskable interrupt (NMI) of the CPU is attached to circuitry which allows multiple sources to
cause an NMI. Each of these sources can be disabled individually as well as collectively.

Figure D- 2 is a block diagram of the NMI circuit.

(Parity Enable)
Port 61 H ,..-----.

bit 2

Parity
Cheej(

Line

(I/O Channel Check Enable)
Port61H

bit 3

1/0
Channel
Cheej(

(Hard Re.et Enable)
Port 78H ,..---.......

bit 7

HP-HIL II1>Ul
Device

(NMI Enable)
Port 70H

bit 7 -------.;..-,, ..1

Figure D-2. NMI Circuit Block Diagram

I/O Port Map D-9





E
Default Device Mapping

Table E-l describes the device mappings which are set up during SYSGEN. The default mapping device is
listed first. Other mappable devices are listed following the default device.

Table E-l. Input System

Physical Device Logical Device Map})able Driver

Mouse Cursor Control Pad V_PGID_CCP
V_LPOINTER
V_LTOUCH
V_LTABLET

Rotary Knob Cursor Control Pad V_PGID_CCP
V_LPOINTER
V_LTOUCH
V_LTABLET

Touchscreen Touchscreen V_LTOUCH
V_LPOINTER
V_PGID_CCP
V_LTABLET

Tablet Cursor Control Pad V_LTABLET
V_LPOINTER
V_LTOUCH
V_PGID_CCP

Vectra Keyboard/DIN Keyboard Subsystem V- 8042

Compatibility Function keys V_FUNCTION non-mappable

HP Function keys V_SOFfKEY SKEY2FKEY
V_OFF
V_RAW

Default Device Mapping E-l



Table E-l. Input System (Cont.)

Physical Device Logical Device Mappable Driver

Typewriter Keypad V_QWERTY non-mappable

Numeric Keypad V_NUMPAD non-mappable

Cursor Control Keypad V_CCP V_CCPCUR
V_OFF
V_RAW
V_CCPGID
(if installed)

Discs

DISC A:
DISC B:
DISC c:
DISC D:
DISC E:

Flexible Disc 0 Upper Drive
Flexible Disc 1 Lower Drive
Internal Hard Disc
External Disc
RAM disc

Discs on the system are only mappable using the MS-DOS ASSIGN command.

Character I/O Devices

LPTI:
COMl:
COM2:
COM3:
COM4:
LPTl.:
LPT2:
LPT3:

OR PRN:
Serial Port 0
Serial Port 1
Serial Port 2
Serial Port 3
or PRN: Parallel Port 0
Parallel Port 1
Parallel Port 2

These ports are only mappable using the MS-DOS MODE command.

E-2 Default Device Mapping



F
Driver Writer's Guide

This appendix describes how a programmer can add drivers to the ROM BIOS. One of the important
features of the EX-BIOS is the ease with which it can be expanded. This capability allows programmers to
take full advantage of HP system components (such as the HP-HIL touchscreen, mouse, tablet, etc.). In
addition, the EX-BIOS architecture provides a simple, yet powerful way to integrate OEM and
third-party products into the system. This appendix is intended for all programmers and advanced users
who wish to utilize EX-BIOS capabilities not supported by system software. It assumes that the reader is
familiar with the contents of Chapters 1 through 8, iAPX286 or iAPX386 programming, DOS concepts in
general, and DOS installable device drivers in particular. The reader should consult the publications listed
under the References section at the end of this manual for additional information on these topics.

Introduction

This appendix presents two examples of how drivers that interface to the system's EX-BIOS can be
written. All aspects of how a driver gets connected and used through the EX-BIOS are discussed.

The typical steps involved in connecting a driver into the EX-BIOS are:

• A driver added to the system can be one of three types: ROM driver, MS-DOS installable device
driver or MS-DOS command that executes and stays resident.

• The driver gets called to initialize. At this point the driver will determine what machine it is
executing on, obtain memory for its data segment, get an EX-BIOS vector address assigned and be
added to the HP_VECTOR_TABLE.

• Any time after initialization, the driver can respond to service requests in two ways. It responds to a
hardware service request when it is called with its F_ISR (AH = 0) function or it responds to an
application service request when it is called with any other driver-specific function.

The above sequence is a general description of a driver's life cycle. It is not necessary that all drivers
follow the same steps. The sections below outline what are the necessary elements of an EX-BIOS driver.

Note: For a detailed explanation of the calls to V_SYSTEM (i.e., INT V_SYSTEM) used below see
Chapter 8.

Driver Writer's Guide F-l



Installation of Device Drivers

Each type of device driver is installed in a different manner depending on how it is brought into the
system. There are three ways that an EX-BIOS driver can be installed in the system. An I/O adapter card
can have an EX-BIOS driver which can be installed in the system when the adapter's ROM gets called to
initialize during the SYSGEN process. The adapter's initialization routines can use all of the V_SYSTEM
functions to properly connect the driver. Note that because the adapter's code modules are initialized
during the system generation process (SYSGEN), an EX-BIOS driver on an adapter card can not depend
on other EX-BIOS drivers already being present and initialized (V_SYSTEM is the only driver usable at
this point).

An MS-DOS installable device driver can also install an EX-BIOS driver. T4e driver must have two
interfaces, one driver interface for MS-DOS and one driver interface for the EX-BIOS functions. This
type of EX-BIOS driver can use all other EX-BIOS drivers already present in the system.

Finally an MS-DOS command that stays resident can also be used to install an EX-BIOS driver. This
driver can use all previously installed EX-BIOS drivers. This is the preferred method of installing
EX-BIOS drivers since it only requires the EX-BIOS driver interface and functions.

Initialization

This section covers the possible steps the driver must take to insure proper initialization.

Product Identification

This section discusses several methods available through ROM BIOS functions for software to determine
whether its host is an HP Vectra.

HP Vectra Feature/Revision Identification (V_SCOPY):

The V_SCOPY (DOH) vector entry has a data segment (DS) that points to the system's copyright string.
The driver can look at this string to determine if the machine is an HP Vectra. The following example
illustrates how to get this string:

MOV BP, V_SCOPY
PUSH DS
CALL SYSCALL
PUSH OS

POP ES

POP OS

Call the COPYRIGHT
vector which will set
the OS and return
Save OS of copyright
string in ES.
ES:O is address
of string
Recover old OS.

HP Vectra Indicator Word, Revision Word, and Date Codes

At ROM address OFOOF8H, the HP Vectra series of personal computers have the following data.

F-2 Driver Writer's Guide



OfOOO:OOf8
OfOOO:OOfA
OfOOO:OOfB
OfOOO:OOfC
OfOOO:OOfE

DB 'HP'
Product 10 byte (Bits 7-5 =CPU, Bits 4-0 = SPU)
Machine Capability Marker
Version Number
Date Code

for a complete definition of product description code, refer to
the "Product Identification" section in Appendix B.

This code can be used to discern the HP Vectra series of personal computers from other industry-standard
products and thus take advantage of the unique features of the HP Vectra series of personal computers.
(However, this method is not the preferred method.)

STD-BIOS Extended Functions

The STD-BIOS Extended Functions Fnn_INQUIRE (6FOOH) indicate to the calling application that
STD-BIOS extended functions are loaded and have not been replaced. The STD-BIOS drivers listed in
Table F-1 below support this function.

Table F-l. STD-BIOS Drivers that Support Fnn_INQUIRE

Interrupt Function

INT 10 VIDEO
INT 14 SERIAL
INT 16 KEYBOARD
INT 17 PRINTER

To find out if the STD-BIOS extensions for the Video driver are in place, use the following code:

BX, OffrFH

AX, flO INQUIRE

INT VIDEO
BX,-'HP'

MOV

MOV

INT
CMP

Call video
function (6fOO)
Make sure
BX <> ' HP'
Interrupt 10H
Are video
extensions
present?

JE VIDEO EXTENSIONS PRESENT- -VIDEO EXTENSIONS NOT PRESENT:

VIDEO EXTENSIONS PRESENT:

Obtaining Memory From the EX-BIOS

The system allows EX-BIOS drivers to obtain limited amounts of memory independent of the operating
system. This feature is especially important for I/O ROM adapters since their cost can be reduced if they
do not require dedicated RAM. When the I/O ROM module is initialized, it can ask for EX-BIOS
memory.

Driver Writer's Guide F-3



This feature of the EX-BIOS system can also be utilized by application programs and system software.
Any program needing a limited amount of RAM outside the operating system domain can obtain this
from the EX-BIOS system.

The functions F_RAM_GET andF_RAM_RET in the V_SYSTEM driver can be used to manipulate
the EX-BIOS free memory. The driver can also use the installation functions F_INS_FREEGETDS or
F_INS_FIXGETDS to obtain free memory. See Chapter 8 for more details of these functions.

Getting a Free Vector

In order for an application to access an EX-BIOS driver it must call the driver through the
HP_VECTOR_TABLE. Thus, each driver must request a free vector from this table.

To get a free vector from theHP_VECTOR_TABLE, a driver can use the function
F_INS_XCHGFREE, F_INS_FREEOWNDS, F_INS_FREEGETDS or F_INS_FREEGLBDS in the
V_SYSTEM driver. Each of these functions installs the driver at the next available free vector. (See
Table 9-3 "V_SYSTEM Driver Function Code Summary" for the numerical values of the above
functions.

Once the driver has a vector address installed in the table, an application can call the driver by loading
BP with the vector address of the driver and doing a CALL SYSCALL.

EX-BIOS Driver Functions

EX-BIOS drivers support a standard set of functions and subfunctions. Nine standard function codes are
defined, and several of these functions have subfunctions defined within them. These functions and
subfunctions are summarized in Table F-2. A detailed description of each defined function and
subfunction follows.

If a driver receives a function it does not implement, it must return a status code of
RS_UNSUPPORTED (02H) in the AH register. This lets the application know that the driver has not
handled this function, but that it can continue if it is appropriate. This protocol frees the driver from
having to implement all the defined functions and allows applications to call drivers in a consistent way.

If a driver receives a function code that it does not implement, it may also "delegate" the function to
another driver. A driver may be written so that it calls another driver when it receives an
unimplemented function or subfunction request.

Programmers may write drivers that implement functions and subfunctions that are not defined.
However, two guidelines should be observed when defining additional functions or subfunctions. First,
whenever possible, newly defined function or subfunction numbers should not conflict with existing
numbers. Secondly, function and subfunction numbers should be consistent between drivers of the same
class.

F-4 Driver Writer's Guide



Table F-2, EX -BIOS DYiver Function Code Summary

Register
AUAL

00

02 00
02 02
02 04

02 06

02 08
020A
020C
020E

02 10
02 12

02 14

02 16

04 00

04 02

06
08
OA

OA

OC

OC

OE
10

Function (AU) I
Subfunction (AL)

F_ISR
F_SYSTEM
SF_INIT*
SF_START*
SF_REPORT
_STATE
SF_VERSION
_DESC*
SF_DEF _AITR
SF_GET _ATTR
SF_SET _AITR
SF_OPEN

SF_CLOSE
SF_TIMEOUT

SF_TEST
F_10_CONTROL

SF_UNLOCK

F_PUT_BYTE
F_GET_BYTE
F_PUT_BUFFER

F_PUT_BLOCK

F_GET_BUFFER

F_GET_BLOCK

F_PUT_WORD
F_GET_WORD

Definition

Responds to a logical Interrupt Service Request (ISR).
Executes one of several standard subfunctions.
Starts the initialization of a driver.
Completes the initialization process of the driver.
Reports the state of the driver.

Reports the revision number and datecode of the driver.

Reports the default configuration of the driver.
Reports the current configuration of the driver.
Overrides the current C()nfiguration of the driver.
Reserves the driver for exclusive access. Requests any
resources required by the driver.
Releases the driver from exclusive access.
Reports to the driver that a requested timeout has
occurred.
Reports to the driver that a requested 60 Hz interval has
expired.
Performs a hardware test.
Executes the following subfunctions and any driver depen
dant subfunctions.
Reserves the sub-address device specified for exclusive
access.
Releases the sub-address specified from the exclusive
access.
Writes a byte of data.
Reads a byte of data.
Writes a variable length buffer of data (supported by
character devices).
Writes a fixed length buffer of data (supported by block.
devices).
Reads a variable length buffer of data (supported by
character devices).
Reads a fixed length block. of data (supported by block.
devices).
Writes a word of data.
Reads a word of data.

Note: Functions marked with an asterisk (*) should be supported by all drivers. These functions may
perform no useful function. However, they should return a status code of RS_DONE (06H) or
RS_SUCCESSFUL (0) as opposed to RS_UNSUPPORTED (02H).

The following is a list of predefined driver function codes and a brief description of their purpose and
parameters:

Driver Writer's Guide F- 5



EX-BIOS Driver Function Definitions

F_ISR (AH = OOH)

This function processes either a logical or a physical interrupt event. It reports whether or not it handled
the event through ita Return Status Code (see Table F-2). The driver may require the service of ita
parent driver to handle the interrupt.

EX-BIOS drivers do not usually enable interrupts (STI) while processing this function code. Drivers should
service this interrupt within 250 microseconds or maintain interrupts off for no more than 250
microseconds at a time. Drivers should expect 40 bytes of stack when called. If a driver enables interrupts
it must provide 40 bytes of stack for other ISR's.

On Entry: AH = F_ISR (OOH)

On Exit: AH = RS SUCCESSFUL (OOH)
or RS NOT SERVICED (04H)

F_.SYSTEM (AH = 02H)

This function contains a set of subfunctions that execute system-oriented tasks. These Bubfunctions
include driver setup, configuration, and control. The F__SYSTEM subfunctions are described in detail
below.

SF INIT (AX =0200H)

This starts the initialization process of a driver. The function does not return to the caller until the
driver is ready to be called by another driver. All system services (V__SYSTEM) are assumed to be
operational when a driver is called by this function.

The driver is responsible for a brief hardware check and for reporting RS_FAIL it the test failed. A
driver need only execute a test procedure if it directly interfaces to physical hardware.

If the driver requires EX-BIOS RAM, the BX and DX registers can be used to reserve available memory
(see Chapter 8).

On Entry: AH = F SYSTEM (02H)
AL = sf INIT (OOH)
BX = IIlast used OSII
BP = Driver's vector address

On Exit: AH = Return Status Code
BX = New "las t used OSII

Recommended for hardware test failure:

AH = RS fAIL (02H)
ES:DI = poInter to a string of information

about the nature of the error
ex = length of the string pointed to

by ES:DI

F -6 Driver Writer's Guide



SF_START (AX =0202H)

This function notifies a driver that it may call other drivers for any additional setup it may require. All
other ROM drivers and ROM services are present, active and capable of being accessed. This function does
not usually return to the caller until all its internal and external setup is complete.

On Entry: AH = F SYSTEM (02H)
AL =sf START (02H)
BP = DrIver's vector address

On Exit: AH =Return Status Code

SF_REPORT _STATE (AX =0204H)

Reports a word of status or state information to the caller in the DX register. The format of the state
information will be presented bit wise and should be presented in the same format for all drivers of the
sa~cl~. .

On Entry: AH = F_SYSTEM (02H)
AL = SF REPORT STATE (04H)
BP = DrIver's vector address

On Exit: AH = Return Status Code
BX = State of Driver

SF_VERSION _DESC (AX =0206H)

Reports the version number of the driver code and an optional describe record which contains other
driver-dependent information.

On Entry: AH =F SYSTEM (02H)
AL =sf VERSION DESC (06H)
BP =DrIver's vector address

On Exit: AH =Return Status Code
BX = Version number.

YYWW is a BCD number where.
WW is the week of the year
YY is the number of years

since 1960
CX = Number of bytes in data buffer

ES:DI = Pointer to describe record

SF DEF ATTR (AX =0208H)- -
Returns a pointer in ES:DI to a parameter block containing the driver's default configuration values. This
function does not set the defaults; it only reports them.

Driver Writer's GOide F-7



On Entry: AH = F SYSTEM (02H)
AL = Sf DEF ATTR (08H)
BP = Driver's vector address

On Exit: AH = Return Status Code
CX =Number of bytes in data buffer

ES:DI = Pointer to a data buffer

SF GET_ATTR (AX = 020AH)

Reports the configuration values defined by the parameter block. Baud rates, HP-IB addresses, etc. may
be reported by this command.

On Entry: AH = F SYSTEM (02H)
AL = Sf GET ATTR (OAH)
BP = Driver's vector address

On Exit: AH = Return Status Code
CX = Number of bytes i~ data buffer

ES:DI = Pointer to a data buffer

SF SET_ATTR (AX =020CH)

Sets the parameter block defined by ES:DI as the configuration values. Baud rates, HP-m addresses, etc.
may be defined by this command.

On Entry: AH =F SYSTEM (02H)
At =sf SET ATtR (OCtf)
BP = Driver's vector address
CX = Number of bytes in data buffer

ES:DI = Pointer to a data buffer

On Exit: AH =Return Status Code
ES:DI = Pointer to a data buffer

SF OPEN (AX =020EH)

Allows exclusive access to this driver. All resources required for driver operation will be acquired at this
time. This function has special meaning for the the HP-HIL driver, the HP-IB driver and the HP-IL
driver. Since these drivers support shared interfaces, control of the resource HP-HIL (obtained from the
driver V_HPHIL), control of the HP-m (in contention with other Pes on the bus), and control of the
HP-IL (in contention with other PCs on the loop) is requested and obtained. Control should be kept until
a single operation is performed on the resource. A status of RS_BUSY will be reported if the device has
previously been opened. RS_SUCCESSFUL will be reported if the device is available. A busy status does
not prevent access to the driver. All functions will execute (perhaps improperly) whether a driver has
been opened or not~

On Entry: AH = F SYSTEM (02H)
At =sf OPEN (O£H)
BP = DrIVer's vector address

On Exit: AH =Return Status Code

F-S Driver Writer's Guide



SF_CLOSE (AX =0210H)

Closes the requested resource. Again, this function has special meaning for the interface class of devices,
HP-IB, HP-HIL, and HP-IL. The driver goes to a state where control can be obtained by or passed to
another controller.

On Entry: AH =F SYSTEM (02H)
AL =Sf CLOSE (10H)
BP = DrIver's vector address

On Exit: AH =Return Status Code

SF_TIMEOUT (AX = 0212H)

Reports to the driver that its timer event number has occurred.

On Entry: AH =F SYSTEM (02H)
AL =Sf TIMEOUT (12H)
BP =DrIver's vector address

On Exit: AH =Return Status Code

SF_INTERVAL (AX =0214H)

Reports to the driver that its interval event number has occurred.

On Entry: AH =F SYSTEM (02H)
AL =Sf INTERVAL (14H)
BP =DrIver's vector address

On Exit: AH =Return Status Code

SF_TEST (AX =0216H)

The driver performs a hardware test and reports RS_FAIL if the test failed. A driver need only execute
a test procedure if it directly interfaces to physical hardware.

On Entry: AH = F_SYSTEM (02H)
AL = Sf_TEST (16H)
BP = Driver's vector address

On Exit: AH = Return Status Code

On test failure:

CX =The length of the string pointed
to by ES: 01

ES:DI =Pointer to a string of
information about the nature of
the error

Driver Writer's Guide F-9



F_IO_CONTROL (AH = 04H)

This is a collection of driver-dependant control subfunctions. Drivers of the same class should implement
similar subfunctions. The following is a list of predefined driver subfunction codes and a brief description
of their purpose and parameters:

SF_LOCK (AX =0400H)

Reserves the indicated addresses on an already allocated driver for exclusive access.

On Entry: AH = f_IO_CONTROL (04H)
AL = Sf LOCK (OOH)

DH,DL = Major and minor address
(Optional)

BP = Driver's vector address

On Exit: AH = Return Status Code

SF_UNLOCK (AX =0402H)

Releases the indicated address from exclusive access.

On Entry: AH = f 10 CONTROL (04H)
AL = sf UNLOCK (02H)

DH,DL = Major and minor address
(optional)

BP = Driver's vector address

On Exit: AH = Return Status Code

F_PUT_BYTE (AH =06H)

This is a generic put data byte function.

On Entry: AH =f PUT BYTE (06H)
AL = oata byte
BP =Driver's vector address

On Exit: AH = Return Status Code

F_GET_BYTE (AH = OSH)

This is a generic get data byte function.

On Entry: AH = f GET BYTE (OSH)
BP = Driver's vector address

On Exit: AH = Return Status Code
AL = Data byte

F -10 Driver Writer's Guide



F_PUT_BUFFER OR F_PUT_BLOCK (AH =OAH)

Puts a number of bytes to a device. The difference between a buffer device and a block device is that a
buffer device accepts variable length records, while a block device accepts fixed length records. Thus, a
printer is a data buffer device and a disc is a block device. Usually, a block device requires more
parameters than a data buffer device; consequently, there is a different format for parameter passing.

F_PUT_BUFFER (AH = OAH)

This is a generic put data buffer or put data block function. Either a string write or a disc block write
could use this function.

On Entry: AH =
CX =

ES:DI =
BP =

f_PUT_BUffER (OAH)
Data byte count or block count
Pointer to data buffer
Driver's vector address

On Exit: AH = Return Status Code

F_PUT_BLOCK (AH = OAH)

Writes a fixed block of data to a block device.

On Entry: AH = f PUT BLOCK (OAH)
DH = Major-number
DL =Minor number

ES:DI =Command Block

Word 0,1: Data transfer address
Word 0,2: Block count
Word 0,3: Block address LSW
Word 0,4: Block address MSW
(for so.e devices this word
is ignored).

BP =Driver's vector address

On Exit: AH = Return Status Code
BX =Operation status

F_GET _BUFFER OR F_GET_BLOCK (AH = OCH)

F_GET_BUFFER (AH =OCH)

This is a generic get buffer or get block function. Either string reads or disc block reads could use this
function.

Driver Writer's Guide F -11



On Entry: AH = F GET BUrFER (OCH)
CX • Byte count or block count

DS:SI = Pointer to data buffer
BP = Driver's vector address

On Exit: AH • Return Statu8 Code

F_GET_BLOCK (AH =OCH)

Reads a fixed length block of data from a device.

On Entry: AH = F GET BLOCK (OCH)
DH =Major-number
DL = Minor number

ES:DI = Command Block

Word 0,1: Data tran8fer addre88
Word 0,2: Block count
Word 0,3: Block addres8 lSW
Word 0,4: Block addre88 MSW
(For 80me devices this word
i8 ignored).

BP • Driver's vector addre88

On Exit: AH • Return StatuI Code
BX = Operation statu8

F_PUT_WORD (AH =OEH)

This is a generic put word of data function. If the destination device is byte wide, then the byte in the
DL register is written first, followed by the byte in the DH register.

On Entry: AH • F PUT WORD (OEH)
OX • oata word
BP • Driver's vector address

On Exit: AH =Return Statu8 Code

F_GET_WORD (AH =10H)

This is a generic get word of data function. If the source device is byte wide, then the first byte is read
into the DL register, and the second byte is read into the DH register.

On Entry: AH =F GET WORD (10H)
BP =Driver's vector addre8s

On Exit: AH =Return Statu8 Code
OX = Data word

F-12 Driver Writer's Guide



Return Status Codes

The conventions for assigning return status codes are as follows:

If possible, use a return status that has already been defined.

Error conditions should be reported with a negative byte (OFEH--080H).

Status or exceptional conditions "soft erron" should be reported with a positive byte (02--7EH).

Good Status is always reported as OOH.

Table F-3 summarizes the already assigned status codes.

Table F-3. EX -BIOS Assigned Return Status Codes

Return Status

OOOH
002H

004H

006H

OPEH (-02H)

OFCH (-04H)

OFAH (-06H)

OF8H (-08H)
OF6H (-OAH)

OF4" (-OCH)
OF2H (-OEH)

Code

RS_SUCCESSFUL
RS_UNSUPPORTED

RS_NOT_SERVICED

RS_FAIL

RS_TIMEOUT

RS_BAD
_PARAMETER
RS_BUSY
RS_NO_VECTOR

RS_OFFLINE
RS_OUT_OF _PAPER

Indication

The requested function executed correctly.
The requested function or subfunction is
not implemented or is unsupported.
The requested function was not executed by
this driver. Any driven which are chained
on this interrupt vector should be called in
tum until a return status of
RS_SUCCESSFUL or some other error is
reported.
This return status is used by the Input
System translaton to indicate that an ISR
event has been handled and no further
processing should be done.
The driver failed the operation in an error
state.
The device timed out on a physical event in
an error state.
The driver received a bad parameter.

The requested driver is busy.
HP_VECTOR_TABLE is out of RAM or
room for more driven.
Device is offline.
Device is out of paper.

Drlv"Wrl~r·.Quld. .•. F-13



Driver Headers

The EX-BIOS driver header (HP_SHEADER) is a formatted data structure similar to the DOS device
driver's header. It defines the attributes of a driver, defines the linkage of a driver and identifies the
driver. It also allows the programmer to define how the driver links with other drivers.

All EX-BIOS drivers must have an HP_SHEADER. Programmers are not required to provide a complete
HP_SHEADER to use the HP_ VECTOR_TABLE. But, if they choose to take advantage of the advanced
features of the EX-BIOS the programmer must implement a complete HP_SHEADER. Table F-4 shows a
complete driver header and what fields must be present.

Table F-4. Driver Header Table

Offset Type Variable Definition

0 Word DH_ATR* Driver Attribute Field
2 Word DH_NAME_INDEX Driver String Index Field
4 Word DH_V_DEFAULT Driver's Default Logical Device

Vector
6 Word DH_P_CLASS** Driver's Parent Class
8 Word DH_C_CLASS** Driver's Child Class
OAH Word DH_V_PARENT** Driver's Parent Vector
OCH Word DH_V_CHILD** Driver's Child Vector
OEH Byte DH_MAJOR** Subaddress Field
OFH Byte DH_MINOR** Subaddress Field

*This is the only field required for a driver to be in the HP_ VECTOR_TABLE.
* *These fields are only required by drivers that want to do device mapping.

HP_SHEADER Fields

DH_ATR: Each bit in the DH_ATR field indicates a property of the driver for device mapping
purposes. These bits are defined in Table F-S.

Table F-S. Dev~e Attributes Bits

Bit Data ATR Name Description

IS I ATR_HP The following bytes form a
complete driver header.

0 The bytes that follow are not a
driver header.

14 ATR_DEVCFG Reserved.

13 1 ATR_ISR The driver can be mapped with
DH_V_PARENT.

F-14 Driver Writer'. Guide



Table F-5. Device Attributes Bits (Cont.)

Bit Data ATR Name

12 1 ATR_ENTRY

11-9 ATR_TYPE _MASK

000 ATR RSVD
001 ATR_FREE

8

7

6,5

010

all

100

101

110

111

00

01

ATR_IND

ATR_BOT

ATR_NOADDR

Description

The driver can be mapped with
DH_V_CHILD.

These three bits indicate the
driver type.
This is a reserved vector.
This is a free vector. The
V_SYSTEM service allocates
free vectors to new drivers upon
request.
This driver is an EX-BIOS
service.
This is a logical driver. Its map
ping direction is from parent to
child.
This is a mappable driver that
cannot be the last in the chain
of drivers.
This is a mappable driver that is
the last in a chain of drivers.
This driver can only be a child
driver. This driver maps with
ATR_LOG, ATR_IND and
ATR_BOT drivers.
This driver is an input driver
and is mappable.
Reserved

Reserved

This driver's SF_START sub
function should be called when
ever the driver is remapped.

These bits specify what type of
major and minor addresses the
driver requires.
The driver does not require any
address.
This driver requires that a major
address be specified and stored
in the parent driver's
DH_MAJOR header record. The
range of possible major addresses
is a through the contents of this
header's DH_MAJOR.

Driver Writer's Guide F-15



Table F-S. Device Attributes Bits (Cont.)

Bit Data ATR Name Description

10 ATR_MINOR This driver requires that a
minor address be specified and
stored in the parent driver's
DH_MINOR header record. The
range of possible MINOR ad-
dresses is 0 through the contents
of this header's DH_MINOR. A
driver cannot require a minor
addre~ unless it also requires a
major address.

II ATR_MID This driver requires a major ad-
dress, a minor address, and a
mid address. The minor address
field is split into an upper and a
lower nibble, with the upper
nibble indicating the mid address
and the lower nibble indicating
the minor address. The range of
addresses possible is specified by
the child physical driver.

4 0 ATR_PSHARE This driver cannot be shared be-
tween several parent drivers.

3 0 ATR_CSHARE This driver cannot be shared be-
tween several child drivers.

2 I ATR_ROM This driver header is in ROM
and cannot be altered unless
copied to RAM. I Reserved

I ATR_YIELD Reserved.

0 Reserved

DH_NAME_INDEX:

DH_P_CLASS and
DH_C_CLASS:

F -16 Driver Writer's Guide

The DH_NAME_INDEX is used to derive the localization string
index of the driver. This is given by the function
F_STR_GET_STRING in the V_SYSTEM driver. See Chapter 8
for additional information.

TheDH_V_DEFAULT field contains the driver's default vector
address.

In conjunction, these fields indicate which drivers may be mapped
together. DH_P_CLASS and DH_C_CLASS are bit masks. Each
bit position represents a set of drivers. If a bit is set then the driver
is in that set of drivers. The DH_P_CLASS field indicates a driver
is in from 0 to 16 different driver sets. A driver can only map to



another driver if its DH_P_CLASS field matches at least one bit
position of another driver's DH_C_CLASS field. Furthermore,
DH_ATR field is another condition of mapping. The bits are
defined in Table F-6.

Table F-6. Class Bit Positions

Class Definition
Hex Bit Name

8000 OFH CL_KBDFC This set of drivers maps to the
f 1 through f 8 softkeys of the
keyboard.

4000 OEH CL_KBD Keyboard (this is not the device
accessed throu,gh INT 16).

2000 ODH CL_CCP Cursor pad device (for example,
V_CCPCUR, V_CCP NUM,
V_OFF, V_RAW, V_CCP,
V_FUNCTION).

1000 OCH CL_CON This set of devices map to the
console device.

0800 OBH CL_BYTE Serial output device, which may
be capable of limited input.

0400 OAH CL_COMM Reserved
0200 09H CL_INTERFACE An interface class controlling

multiple resources transparent to
the operating system. It provides
major, middle, and minor ad-
dress modes for the calling ap-
plication or driver. Examples are
the HP-HIL driver, the HPIB
driver, and the HPIL driver.

0100 08H CL_FILT Serial output device filter. This
driver can be mapped in be-
tween a logical driver and a
physical driver and it can trans-
late from one character set to
another.

0080 07H CL_BLK Addressed block device.
0040 06H CL_BOOT Logical device used as the

priority boot device. If set on a
physical device, the device is
capable of being a boot device.
Typically a physical driver
would have both the CL_BOOT
bit set and the CL_BLK bit set.

Driver Writer's Guide F -17



Table F-6. Class Bit Positions (Cont.)

Class Definition
Hex Bit Name

0020 05H CL_LGID Logical graphics input device
(for example V_LTABLET,
V__LPOINTER, physical GID
devices and the keyboard
driver). This class maps to logi-
cal devices which are not the
child of another driver.

0010 04H CL_PGID This class of driver can map to a
device which is the child of
another driver.

0008 03H CL_GID This class is reserved for all
drivers which can map to an
event.

0004 02H CL_PTS Physical touch device (for ex-
ample, physical GID drivers or
V- LTOUCH).

0002 OIH CL 01 Reserved
0001 OOH CL_00 Class Extension Bit

Special Group Classes
FFFF - CL_ALL This device maps to all other

devices (V_PNULL).
0000 - CL_NULL This device maps to no other

driver.

DH_MAJOR:
DH_MINOR:

The DH_V_PARENT field contains a vector to the driver that is called
when the current driver receives an F_ISR function code that it cannot
or doesn't know how to process.
The DH_V_CHILD field contains a vector to the driver that is called if
this driver decides it cannot handle the request function (as long as that
function is not F_ISR).
Major address range.
Minor address range.

See the HP_SHEADER macro definition in the equate files listed in Appendix E.

F -18 Driver Writer's Guide



Driver Mapping

Two drivers may be mapped together if the drivers have matching parent and child class records. The
mapping rule for the drivers is defined in Table F-7.

Table F-7 PARENT /CHILD Driver Mapping Rules

Connection Rule

Drivers are not to be connected

Child's DH_V_PARENT <-- parent's vector address
Drivers can not be connected
Child's DH_V_PARENT <-- parent's vector address
Drivers are not connected

..

..

..

..

..

Parent's DH_V_CHILD < -- child's vector address
Parent's DH_V_CHILD <-- child's vector address
Drivers are not connected
Child's DH_V_PARENT <-- parent's vector address
Parent's DH V CHILD <-- child's vector address
Child's DH_V_PARENT <-- parent's vector address and Parent's
DH_V_CHILD <~- child's vector address

Parent Child
EI EI

a 0 a a
a 0 a I
a 0 1 a
a 0 1 1
a 1 00
a 1 a 1
a 1 1 a
a 1 1 1
1 0 a a
1 0 o 1
1 0 1 a
1 0 1 1
1 1 a a
1 1 a 1
1 1 1 a
1 1 1 1

Where,
E = ATR_ENTRY bit state
I = ATR_ISR bit state

Accessing Driver from an Application

When an application needs to access a driver, the following sequence must take place:

MOV BP, driver's vector address

MOV AH, function code
MOV AL, subfunction code

i. e.
V SYSTEM (12H)

PUSH OS
CALL SYSCALL
POP OS

any other data passed
in registers
Saves application's OS

Driver Writer'sGuide F-19



Examples of EX-BIOS Drivers

NOTE

Since the HP interrupt number can change, all "int HP_ENTRY" lines in
the following examples should be replaced with "CALL SYSCALL" (this
routine finds the current HP interrupt number).

Cursor Pad Scancode To HP Mouse Driver

The first example driver is called CPP2GID. This driver implements the V_CCPGID EX-BIOS driver. As
such, it translates from cursor control pad keys into graphics input device data.

The driver is installed into the HP_VECTOR_TABLE. The SF_INIT subroutine of the driver asks for
enough EX-BIOS RAM to store the driver header and describe record. The DH_V_PARENT field of the
V_CCPGID driver header is initialized to the installable HP Mouse driver, V_LHPMOUSE (this driver is
shipped on a separate disc with all Vectra series of personal computers). The DOS driver portion calls
SF_START of the EX-BIOS driver. SF_START initializes the DH_V_PARENT field of the V_CCP
driver header to V_CCPGID. Then the installable V_LHPMOUSE driver is called with the override
function.

The installable driver completes initialization by printing an initialization completed message and
returning to DOS.

Now when the keyboard driver calls V_CCP to process a cursor control pad key, V_CCP calls
V_CCPGID. The F_ISR of V_CCPGID decodes which key was actually pressed. The driver converts the
cursor movement keys (up, down, left, and right) into relative movement data. If the key pressed was an
insert or delete key, it is reported as the left or right button respectively. The driver first changes the
describe record and then reports either a button press or a button release. After the input data is given
to installable V_LHPMOUSE, the data is available thru the INT 33H STD-BIOS driver.

NOTE

As mentioned before, the HP_ENTRY interrupt number is defaulted at
006FH - but this number can change. The following examples show
HP_ENTRY at its default, but when accessing EX-BIOS drivers you should
use a "CALL SYSCALL" in place of "int HP_ENTRY."

F-20 Driver Writer's Gui·1e



CCP_TO_GID_FILTER

0000
0000
0000
0000
0000
0000
0000
00
00

286c

~~f!e5~t~3~O QID FILTER In,tallable driver
.···DRIVER-HE~DER·•• • •• ••••••••••••••••••••••••••••••• •••••••••••••••••

NAME CCP_TO_QID_FILTER In.talled DRIVER

PARAMETEIIS

ON ENTRY In MS-DOS portion e, b. points to

ln HP portlon :~'~~~t:!~~e;~n~;~~~r
code, al u.ually contain,
the output character

ON EXIT In MS-DOS portion statu, 11 returned In

In HP portlon :~'~~~t:!~~e;~eH~:~~~n
statu. code

REGISTERS ALTERED In MS-DOS portion none
In HP portlon a •. b., d1. bp

Thl, 1, an EX-BIOS drlv.r whlch convert. cur.or

I~nl;o~ C~~t~~~'~~ ~~~'v12~~ce~~·vTC~~~~~: ~~~::~n~~d
V"OFF, fl1ler. of the V"CCP tran.l.tor

~~dl~~~:~rb~e~h~e~~~~o~e~:~a~:~on~nm~~~rti~nt~~ed~~~~~~on

~~~t;~~ ~~~.~~n~~n~~~ll~a:a~g~~>t:e~h!.B;a;~;dm~~';h~u~~o~oo>
mou .. but ton

thl, data l' alway, off,et by

equ OSFH

Int HP_ENTRY
endm

macro vector
<vee tor>
mov bp.v8clor

,t rue
dw 0
dw 0
dw 0
dw a
dw a
dw 0
dw 0
db a
db a
end.

equ 0008H
equ 4000H
equ 8000H
equ 2000H
equ 0600H
equ 2000H
equ 0020H

STRUC
,1ze HP SHEAOER dUp 1

'
1

7-4 lhl e h nlbble) contain. the 010 type
3-0 low nlbble) i' the address of the device
~:~~~~b~dh~~~:rr1~~~n~~H~r~~v~~~Il devlce
I/O de,crlptor byte from devlce
e.tended de,crlbe byte from devlce
ma.lmum number of a.l. reported
deVice cia ••
7-4 lhleh nibble) contaln. current cIa.,
3-0 low nibble) conlaln the default cia ••

~~~bi~l~~ ~~~~l~i/~;o~~~'number of prompt,
3-0 (low nibble' 1. the number of button.

Thl. drlver 1. In,talled through the MS-DOS In.talled devlce
drlver .y,tem wlth the command 11ne

devlce.CCP20ID EXE

The drlver 11nk. It.elf into the HP VECTOR TABLE and map,
It.elf to be the parent drlver of tKe V_CCP drlver

The drlver then return, to DOS relea,lng the Inltlallzatlon
code It no longer requlre, back to DOS

OPERATION

DESCRIPTION

HP SHEAOER
OH-AU
OH-NAME INDEX
OH-V DErAULT
OH-P-CLASS
OH-C-ClASS
OH-V-PARENT
DH:::V:::CHIlO
OH MAJOR
DH-MINOR
HP:::SHEAOER

HP_ENTRY

SYSCALL
if nb

endif

ATR CSHARE
ATR-OEVCFG
ATR-HP
ATR-ISR
ATR-lOQ
Cl CCP
Cl:::LOIO

DESCRIBE
db

D_SOURCE db

o HPHIl 10 db
O-DESC RASK db
0"10 MASK db
O"XOE'Sc MASK db
OPMAX AXIS d!l
O:::CLA~S db

O"PROMPTS db

• 0001
• 4000· 1000
• 2000
• 0600
• 2000
• 0020

0000 10 (
17

0010 11

0011 11
0012 11
0013 11
0014 11
0015 17
0018 11

0017 11

0000
0002
0004
ODDS
0001
OOOA
OOOC
OOOE
OOOF
0010

• OOliF

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
58
60
61
62
63
64
65
66
67
68
ea
70
71
72
73
74
75
78
77
78
79
80
11
82
83
84
85
ae
87
18
Ie
90
91
92
93
u

Driver Writer's Guide F-21



CCP_TO_GID_FILTER

·flr,t cover h.ad.r ar••

OB ,number 01 unlt, ,ervlci by th11 driver
OC ,of f .. t of end of code
OE ; segment Iddre .. of Ind of code
12
14 :,eQ olflet of BPB 11,t for unit, attachld
16 ,tella drlver letter of flr.t unlt

,00; structure for acce" to loiS drlvlr cmd'
:g~: ~~1yt~u:~.~m10~nc~~:~dlnc1UdlnQ data, Ind
,02 to_end tode
,03, 11ller wlth completion .tatu, before r.turn

Irea re,.rvea for DOS

,13. moat cmd, havi th1, dlf1nld ln the data ar.a
; 14.
; 18,
; 11,
;20,

OOOOH
0003H
OOOFH
10000001B
000000018

0006H
OOOOH
0002H

0009H
0041H

data reported from devlce
that report, absolute data
dete reported Irom devlce
that 11 reUtlve
the,. are used to accumulate ,cal1nQ
remllnder

,ue OESCRIBE

o STATE +
O-SIlE X
O-ABS X
o'REL 'X
DhACCOM X
gr~~ZEhJ ; offset where buffer beQln,
OOFH
fo~;~wlnQ to acce" the deflned nlbble,

OFOH

OOOEH
0004H
0002H
OOOOH
0002H
0002H

?
?
1
?
1
end,

?
?
?
1
1
1

end,

equ
eQu
e q.u
equ
equ

,t rut
13 dUD I?l

equ
equ
equ

equ
equ

?
?
?
?
?
?
?
?
?
?
?
?
?
ENOS

equ

equ
equ
equ
equ
equ
equ

equ
equ
equ
eqLl
equ
equ
equ
equ

uter tt,e
equ
equ

7
?
?
1

dup (7)

db
dw
dw
dw
dw
db

db

db
db

,t ruc
db
db
db
dw
db

db
db
db
db
dw
dw
dw
dw
dw
dw
dw
dw
dw

db
dw
dw
dw
dw

MSO MEOlA
MSO·':TRANS

MSD COUNT
MSO"START
MSO:REQ,HEADER

MSO_ INIT _CIoI>

MSO REQ HEADER
MSO'CI1)(EN
MSO-UNIT
MSO·CI1)
MSO~STATUS

MSO UNIT COUNT
MSO-END OFFSET
M$O·ENO"SEG
MSO-Spe-'OF FSET
MSO-BPB'SEQ
MSO--1ST"UNIT
MSO: I NIT" CI1)

MSO INIT
MSO'UNKNOWN CIoI>
MSO'IIEM MEOlA
MSO·-ERR-STATUS
MSO.'DONE' _STA TUS

RS DONE
RS-SUCCESSFUL
RS:UNSUPPORTEO

T KC BUTTON
TREU8

,****.*************************************************************************
,*~~:*~~i~~;i;i*~~;~i~~~:~*:;:*~~:~.~~*;ii:~;.=~*~~~*:~i~:;*i~:::;:*~i~~***

MSO HEADER macro ATT,STRATEGY ENTRY,ISR ENTRY,STRING
dd ·1 .. ,mark ai 1•• t drlver in ll,t
dw ATT
dw STRATEGY ENTRY
dw ISR ENTRV
db STR!NG
db 14 dup (1) Pad '0 lt lt paragraph allgned
.ndm

o WR REO
OhIlO-REG
o TRANSITION
O"STATE
O-RESOLUTION
C"SIZE )(
o-S IZCY
O'ABS X
O'ABS"Y
0-IIEL'X
O'REL'Y
O'ACCUMhX
o ACCUM Y
OrSCRIBE'

OESCRIBE SIZE

C> CCP STATE
D'SIZt
DSAHPLE ABSOLUTE
O-SAMPLEhRELATIVE
O-REMAINDEIl ACCUM
DhBUFFER .
O"CLASS CURRENT
D' CLASS OEF AUL T
,'The field LD SOURCE
D ADDR MASK'
D TVPCMASK

FINS FIXOETOS
F'rO CONTROL
Sf MOUSE OVERRIDE
F TSII "
F·SVSTEM
Sf.START

00 [

11
? 11?
1111

?? 11
P11
11

11
111 ?
11??
1111
P11

17
11
11
1111

08

11
11

0000
OOOE
0010
0012
0014
0016
0011

000(';
0003
OOOF
0081
0001

0006
• 0000
• 0002

• 00011
0041

0000

0000
OOOE
0010
0012
OOU
0016

0000
0001
0002
0003
0005

0011
0019

• OOFO
OOOF'

OOOF
• OOFO

• OOOE
• 0004
• 0002
• 0000
• 0002
• 0002

001A
OOlB
OOlC
0010
001£
0020
0022
0024
0028
0021
002A
002C
oon
0030

• 0030

• OOlE

115
lie;7
88
all
100
101
102
103
104
105
lOti
107
101
1011
110
111
112
113
114
11!>
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
1J4
135
136
131
138
13ll
140
141
142
143
144
145
148
147
.148
149
150
151
152
153
154
155
156
157
158
159
180
1e1
162
163
164
185
1811
167
158
169
170
171
172
173
174
175
176
171
178
179
180
181
182
183
184
185
186
187
188

F-22 Driver Writer's Guide



CCP_TO_GID_FILTER

0020 7177
0022 ????
0024 1111
0026 11??
0028 1177

002A
002A 80 FC 00
0020 74 OB
002F 80 FC 02
0032 7S 03
0034 E9 0100
0037
0037 B4 02
0039 CF

003A

....... ~ .....••.••.....•..••...........••••..•...•••.. ................, ,

OOOllH
00A2H
OOCCH
0012H
004EH

100000008 ,Key up or down
OFFH ,All of f
004CH ;Offset of number of button in mouse RAM
48
ATR_HP+ATR_OEVCFG+ATR_ISR+ATR_LOG+ATR_CSHARE

ISR Event Record of type T_REL18 or T KC BUTTON

AH • 0 1F ISR )
BX ••x I ~ v.lue I X .x11 or Col I
cx •• x1s 1 v.lue Y .x1. or Row

group CODE
segment public 'CODE'
assume cs CODE, ds NOTHING

~HEL ~AR

equ
equ
equ
equ
equ

equ
equ
equ
equ
equ

ISR Event Record of type T_KC_HP_CCP
BP • V CCPGID
OS • thi. driver. data .egemnt
AH • 0 ( F_ISR I

CALL PARENT:

T_RH18 :

PARAMETERS

ON ENTIty:

OESCR IPTION:

CCP2GID INSTALLED

NAME: CCP2GIO_ISR

CClROUP
CODE

MS-DOS device drivers start at an offset of 0 rather th.n 100h

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• s •••, ,

Ige
••• DRIVER HEADER·· •• •••••••••••••••••••••••••••••••••••••••••••• ••••••

\I OOLITTLE
V-CCPGID
V-LHPMOUSE
V-SYSTEM
V:::CCP

UP DOWN BIT
INn BuT STATE
MSE NUM BUTTON
CCP~GID-DESC SIZE
CCP2GID:::HP_ATTR

This ls the MS-DOS device driver header It must be the first thing

;~c~h~.~~~~ ;~~m:g~e r~~~~~~tl~~ HPB~e~0~~ ~6uog6NP~oaf~~;fsT~~fer-
HEADER AREA AS AVAILABLE MEMORY, EVEN ON AN ERROR THE SYSTEM WILL
CRASH IF YOU DO
Thil lS the only resident portion of the DOS dr1ver, the rest
of the DOS driver is returned to DOS memory......................................................................

MSO HEADER 08000h,dev_str.tegy,dev int ,. CCP2GIO· ,dev1ce header
- dd -1 ,mirk .1 lalt driver in list

dw 08000h
dw dev_strategy
dw dev 1nt
db • CCP2GIO·
db 14 dup (1) Pad so it is p.ragr.ph aligned

subttl CCP2GIO DRIVER Main entry point

,~:i:******************************************************************,CS Rel.tive O.tl Are. For Driver
,**********************************************************************sav bx dw 7
sav-cx dw?
••v-dx dw?
Slv-el. dw?
top=hp_entry dw ?

,**********************************************************************, Th11 il the EX-BIOS installed driver CCP2GIO

:**********************************************************************CCP2GIO DRIVER PROC FAR
- cmp .h,F ISR ;1, the function F_ISR1

je shorf CCP2GIO_ISR
cmp Ih,F SYSTEM ;Is the function F_SYSTEM1
jn. CCP2CIO_UNSUPPORTEO

CCP2GIO UNSUPPORtEg. CCP2GIO_SYSTEM
mov Ih,RS_UNSUPPORTED 'Th1, driver doesn't lupport
iret ;any other functions.

CCP2GIO_ORIVER ENOP FAR

subttl CCP2GIO isr function

+
+
+
+
+
+

FF FF FF FF
8000
01AB R
0106 R
20 43 43 50 32 47

OE [

0000

0000
0000

0000
0004
0008
0008
OOOA
0012

• 0006
• 00A2
• OOCC
• 0012
• 004E

• 0080
• OOFF
• 004C
• 0030
• E608

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
201
208
209
210
211
212
213
214
215
216
211
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
iJJ
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
280
281
282
2\13
284
285
288
287
281
289
270
271
272
273
274
275
2?8
277
271
279
210
281
282

Driver Writer's Guide F - 23



CCP_TO_GID_FILTER

ON EXIT

l~l

;check for curlor down

.point to the III0UI. i.r

,III0V. rlght on the X-a.il
;no 1II0velllent on the V- •• l1

, •• ve new relatlv. IIIove IX}
;Iave new rel.tlve IIIove V}
,I.V' new .b.olut. pOlition
, •• ve new .b.olute pOlltlon

,button one got pUlh.d

..,V. the keybolrd'. i.r

.tr.nll.te the Ic.ncod. to 010
,check for cur.or up

,ch.ck for curlor 1.ft

;button two got pu.h.d

.recleved .n unlupported key

.check for INS or button

.check for DEL or button

.check for cursor rlght

,no IIIovelllent on the X- •• 11
.indultry .t.nd.rd upw.rd III0V.

.neg.tiv. III0V. on the X- •• l1

.no IIIovelllent on the V- •• l1

.no IIIovelllent on the X- •• il
;lndultry .tandard down 1II0V.

AH • ItS_DON£

•• . bp .nd d I

ne.r

b. 0
c •. - 8
Ihort rel_move

b. , 1
Ihort but_proc •••

b •. O
Ihort but_procell

b. 0
c •. 8
Ihort rel_IIIove

d. 0 !tEL X.b.
d. O--REL--V.ex
d. OHIIBS-X.b.
d.O-ABS-V.c.
dh.T-RELI8
Ihort give_to_p.rent

IM,OOOIH ,get t h. proper bit .. t In O_STAU
c 1, bl
.1, c 1
byte ptr dl:O_TltANSITION,.l ;record In the d.lcribe record

;which button chang.d

~::08
.hort rel_IIIove

bh.bh
b. ,SOH
.hort ccp_up
b •. filH
.hort ccp_left
b •. S2H
Ihort ccp down
b •. 1l3H -
Ihort ccp_right
bl.07FH
b. 118H
Ihort ccp_but 1
b •. 611H
:~oR~ 60~['but2
e.1t_Ilr

OH • 41H ( T REL1S )
ES • de.crIbe record of V_CCPGID
OL • V_CCPGIO/S

:~ : g06HF~IS:r~.k Button
001H - bre.k Button 2
080H - make Button 1
081H - m.ke Button 2

OH • T KC BUTTONex • 0- -
ES this device de.cribe record
OL • V_CCPOIO/S

b.,8
c. ,0
.hort rel_lIIove

••word ptr c•• ,v b•. b.
word ptr c•••v-c.,c.
word ptr c•••v-d.,d.
word ptr c •••v:••.••

d.,dl
e •. d.

1110 v
1110 V
)IIIP

1110 V
JIIIP

1110 V
jlllP

1110""
III°V
JIIIP

1110 v
1110 v
JIIIP

1110 v
1110 v
JIIIP

label

pu.h
1110 v
mov
1110""
1110""

1110,,"
1110,,"

1110 V
1110 V
Ihl
1110 v

.or
cmp
Je
cmp
Je
cmp
Je
ClllP
Je
.nd
ClllP
) e
Clllp
J'
1110 v
JIIIP

1110 v
1110 v
.dd
.dd
1110 v
JIIIP

"£OIST£"S ALTERED

BB 0001
Bll 0000
EB 00

B8 FH8
Bll 0000
EB 10

BB 0001
E8 00

SO
2E U 1E 0020 "
2E 88 OE 0022 "
2E: 18 18 0024 "
2E IC 08 0028 "

8C OA
8£ C2

32 FF
83 F8 80
74 21
83 FB 61
74 24
83 F8 62
74 27
83 FB 83
74 211
80 E3 7F
83 FB 88
74 3E
83 FB 611
74 3E
B4 06
EB 7B 110

BB 0000
£8 OS

8B 0000
Bll FHI
EB 18

B8 0001
III CB
02 EO
A2 001C

811 IE 0021
8ll OE 002A
01 1£ 0024
01 OE 0028
BS 41
E8 3C

8B 0000
B9 0001
EB 08

00311

003A
003B
0040
0045
00411

004F
0051

0053
0055
OOH
00511
0050
005F
0062
0064
0067
00611
006C
006F
0071
0074
0076
0078

0078
0078
oon
0081

0083
0083
0018
00811

0088
0088
008E
0091

00113
0093
0098
00911

0098
0098
009F
00A3
00117
00A8
OOAO

OOAF
OOAF
0082

0084
00B4
0087

0089
0'0811
OOBC
OOBE
OOCO

283
284
285
286
287
288
28g
2110
281
2112
293
294
2115
2g6
2117
2118
21111
300
301
302
303
304
305
306
307
308
3011
310
311
312
313
314
315
316
317
318
3111
320
321
322
323
324
325
326
327
328
3211
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
348
350
351
352
353
354
355
356
357
358
3511
360
361
362
363
364
365
366
367
388
3611
370
371
372
373

F-24 Driver Writer's Guide



CCP_TO_GID_'FILTER

Return Ilatu. a. unlupported

,Record on return

;reltore to keyboard ISR Itat.

. record 1n bx

,get lhe Ican code and check for
pUlh or releale

,Ihow the releale in D STATE by
,letting the bit

load the jump table Inde.
.into bp

'wal button pUlhed or relealed'

.Execute ISR of parenl

.Iource vector il thil dr1ver

.Get my parent' I vector from my header

a. b. d1. bp

~t~i
bh,bh
bp,bx

al.MAX CCP2GIO SYS FN
short ., CCP2GI15,baiI,.y._fn

CI word ptr

~~:~~rgoe~rBi~ lav bx
but_pulh -

al
dl 0 STATE al
IhorT button_done

diD STATE ,al
IhorT Dutton_done

ah, F ISR
d 1, Y-CCPGID/6
bp,dl.DH Y PARENT

int HP _ENTR',

bX,word ptr CI lav bx
cX,word ptr CI lall-cx
dX,word ptr (I lav-dx
el.word ptr cs lall=el
a.
ah,RS_DONE

a •. word ptr CI lav bx
al.080H
b1.al
b h b h
c xc •
oh. T KC BUTTON
I h0 r f g i'v e_ t 0 _.P ar en t

....ord ptr CCP2GID .YI init .SF INIT

....ord ptr CCP2GID-IYI-.tart .SF-START

.... ord ptr CCP2GID-bad-IYI fn ,SF-REPORT STATE
:~~d ptr byte PtrCCP2GID=~$d;.~c;;~ID_lyS~~~~~E~S~~N_DESC

CCP2GID_IYltem function - in1t lubfunctlon

CCPlGID_lystem function

lubttl CCP2GID_lyltem function

mOil
mov
mOI/
mOil
pop
mOI/
Iret

mo"
tel t
j z

or
jmp

not
and
Jmp

mov
mOil
mOil
SYSCALL

mOil
and
0"
xor
• or
mov
Jmp

NAME

PARAMETERS

ON ENTRY

ON EXIT

REGISTERS ALTERED

page
, •••DRIVER HEADER •••• •••••••••••••••••••••••••••••••••••••••••••• ••••••

NAME CCP2GID_.y.tem function - init .ubfunction

DESCRIPTION Initia11z" D•• cribe R.cord and Exitl, allocat1ng a
OS

DESCR~~~~~~t.~e~~g~~n~~!o~~p~~~rIa~~ ~~~iem function
SF-START
SF 'REPORT STATE
SFVE RSI ON.DE SC

page
;···DRJVER HEADER·.·· ••• ••••••••••••••••••••••••••••••••••••••••• ••••••

CCP2GID_SYSTEM label near

cmp
ja

xc h9
mov
xor
xc hg

Jmp

CCP2GID_bad_IYI fn
mOil
1 re t

CCP2GID__IYltem lubfunction jumphble

CCP2GID_'YI_cale
dw
d....
d....
<I ....

MAX_CCP2GID_SYS FN

I ub ttl

0123
0123 0128
0125 0147
0127 0120
0129 0120
• 0006

00C3 2E 8B OE 0020 R
00C8 1'6 Cl 80
OOCB 74 06

OOCD
OOCD 08 06 0010
0001 EB 08

0003
0003 1'6 DO
0005 20 Oll 0010
00011 EB 00

OOOB
OOOB 2E Al 0020 R
0001' 24 80
OOEl OA 08
00E3 32 1'1'
00E5 33 Cll
00E7 Bll 011
00E9 EB 00

OOEe
00E8 B4 00
OOED 82 18
OOEF 88 2E OOOA

001'3 CO llF
OOFS
OaFS 2E 8B lE 0020
OOFA 2E' 8B OE 0022
001'1' 2E 8B 1ll 0024
0104 2E 8E Oll 0026
01011 58
OlOA 84 06
OlOC CF

0100

OlOD 3C 06 90 90
0111 77 OD

0113 87 EB
0115 8A 08
0117 32 FF
0119 87 EB

0118 2E FF All 0123 R

0120
0120 B4 02
0122 CF

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
3Q4
395
396
397
398
399
400
401
402
403
404
405
406
407
408
4011
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
4flO
4fl1
Ill.?
463
4fl4
465

Driver Writer's Guide F-25



CCP_TO_GID_FILTER

0128 CCP2GIO_lys_init hbel near
0128 08 push es
012C 58 push Ii
0120 57 pUlh di
012E 51 pUlh c.
01H 83 E8 03 lub b., (CCP2GID DESC SIZE+15)/11l
0132 8E C3 mov el,b. --
01 )4 8E 0177 mov 11. offset CI CCP2GID_d.. c- headr
0137 FC cld
0138 33 FF .or di ,di
013A 89 0030 mov c.,CCP2GID OESC SIZE
0130 F3/ 2E: A4 rep movi by~e ~tr e. [di] ,CI : [si]0140 59 pop c.
0141 5F pop di
0142 5E pop si0143 07 pop es
0144 84 00 mov ah,RS SUCCESSFUL01411 CF iret

; .....•••........•.•... ~ .................•••.........• .......••...•.•.••

ON EXIT AH. RS_SUCCESSFUl

REGISTERS ALTERED ah, ds, bp

,Def1ne the number of buttons to 2
;Restore the dl

,Get the top of the header for the
,V CCP driver

:~~~: ~.C~~t~0~~~II~~T~:_TA8LE segment

,Point to the top of RAM for the mouse driver

ah, bp, and dl

AH • F SYSTEM
Al • SF' START
8P • VJ:CPGIO

PARAMETERS

ON ENTRY

REGISTERS ALTERED

PARAMETERS

ON ENTRY: Ih. F SYSTEM
11 • SF' INIT
bp • V C"CPGIO
b•• lilt uled data legment

ON EXIT' Ih. RS SUCCESSFUL
b•• la't uled dati legment - thil driverl data legment

, •••0RIV~~gHEADER••••••••••••••••••••••••••••••••••••••••••••••••••••••

NAME CCP2GID_sYltem funct10n - start lubfunction

DESCRIPTION Relinks the II CCP driver to thil driver, V CCPGID,
10 th11 driver lS activated to translate curlor control
pad reports to moule type movementl

CCP2GIO Iyl Itart label near
-pusll a.

push dl
mov a. ,0
mov ds , a.
::: ::~:Spl~4c: ~:=~h:_~~tr~G:: the HP_VECTOR_TA8LE segment
mov ds , a.
mov ".dl [1I_CCP+4]
mov dS,a.

::: ~:,~~~a"~r~R~~Tlo~=~~~~~~ry
mo v d I , a.
mov a.,ds [1I_LHPMOUSE+4]
mov dl,a.
mov byte ptr ds MSE NUM BUTTON,2
pop dl - -
pop a.
mov ah,RS SUCCESSFUL
ire t -

subttl DOS-Inltall Code ( Returned to DOS)

R~~~:N THE FOLLOWING RAM TO DOS label far
; temporary EX-BIOS Reader configuration template

CCP2GID disc h,adr HP_SHEADER <CCP2GID_HP_ATTR,II_CCPGID/8,II_CCPQID,CL_CCP,CL_LGID
LHPMOUSE,II_OOLITT(E>

0147
o1c17 50
0148 IE
01411 88 0000
014C 8E 08
014E Al 018E
0151 2E A3 0028
0155 8E 08
0157 Al 0052
015A 8E D8
015e C7 08 OOOA 00A2
0182 2E Al 0028
0166 8E 08
0168 Al 0000
0168 8E 08
0160 C8 08 004C 02
0172 IF
0173 58
0174 84 00
0171l CF

0177

0177 EIl08
,II

01711 0018
0178 00A2
0170 2000
017F 0020
0181 OOCC
0183 0001l
0185 00
0188 00

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
4811
487
488
489
490
4111
492
493
494
495
498
497
498
499
500
501
502
503
504
505
508
507
508
509
510
511
'.)12
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
548
547
548
5411
550

551
552
553
554
555
5511
557
558

F-26 Driver Writer's Guide



CCP_TO_GID_FILTER

..•••.......•......................................................... ,

•.......•.................•..........................................., '

labll word

,.lv.off .. 1 of r.qu •• t h.ad.r ptr
; .av. Itg,,,,nt of rlqu •• t h.Adlr pt r

,1nllillilAt 10n
, Ill. d 1A chi C k (b 10 c k 0 n1y l
,build bpb (block only
,10c 11 Inpul
;1nput (r.ad)
,non-dlltrucl r.ad lChar only)
,input .tAlu. char only)
:~~f~~tbU~~!~.flU.h chlr only)
;outpul lwrit.l wlth v.rlfy
,output .tat u. lChlr only I
:~~~f~'o~~~~~r flu.h chlr only

:~:~t~: ~~:;.
,r,~ovlbl. ",.dlA

OFH
o
o
o
o
2
o
020 h
o
o
o
o
1
un T BUT_STA TE
200
o
o
o
o
o
o
o
o

FAR

,pr••• rv. ~Achln•• tll.

PROC

c. rh off ,b.
c. rh:::..g,u

db
db
db
db
db
db
db
db
db
db
db
db
db
db
dw
dw
dw
dw
dw
dw
dw
dw
dw

c.
d.

• 1. dwo r d ~ I rd. ( rho f f) ,loAd. .. • 1

~t:~;O(~~tTMSO_CMO - :~:ltf~~cl~::rbr~:n
bAd cIlIa ; low.. t commAnd nu"'b.r
bl.I'1S0 ItEM_MEOlA ,qult 1f hlgher IhAn
bAd_cIlIa , hlgh•• t cO"""And numb.r

1 nit
",.d 1A c h.c k
bulld:::bpb
10 c I lin
Input-
nd Input
In-.tat
In-flu.h
oufput
out_v.rify
out .tat
out-flu.h
locH out

~:~-~~~:.
r.~:::",.d1A

d.
••

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

pu.hf
c1d
pu.hl
pu. h

~~'h
pu.h
pop

le.
~ov

CIll"
JI>
CIll"
Ja

, OS 11

cO"""IIId 1. valid; go do 11

ur bh,bll
.111 bl.l .mlk. ex off •• t 1nlo tlbl.
clll word ptr c. cOMMand_tlbl.(bl]
Jill" 1nt_.. it

......................................................................

CCP2GIo duc

dlv Int

~ov

~ov

r.t
d.v_.trll.gy EHOP FAR
:·~;:1;;·1~;;;;~~;*(;:~:1;:~·;;·~s:oos·j·ij··········· ,
, U" Ih. commAnd fro~ the r.quI.t h.ld.r block I' an Indl.

....... ~:~:.~~:.~:~~:.:~.;~~:~~.~::;:~:~:!.:~~~:~:: .

...••....•••.....••.......•.•...••............•.•••...••..•.......••••
, Thl. co~pl.t•• the MS-DOS d.vlc. drlv.r •• cllon

;.~:~.~~!~~:.~~~.~~.~:~~~:.~~~::~.:~~:.. i~:~~~~:.~~ .
rh off dw ;r.qu•• t h.Ad.r polnl.r off •• t

r:~::! ......•...~~........••....~~:~~:::.~::~:~.~:~=:: :.::!~:=~ ;
: d.vlc •• trlt.gy (r.qulr.d by MS-DOS 31)

· ::~:.:~.~:.i:~~~:::.~!.~:~~:::.~::~:~l.:~~.~:~ ~~~ ,
d.v .trAt.gy PItOC FAit..~•...••....••.•.••..••••.••....•...••...•......•••.. ....•.••.....••• ;

SSll
5110 0117
581 0117 OF
5112 011. 00
5113 01118 00
584 OlSA 00
585 Ollll 00
588 OllC 02
5117 0110 00
511 OlSE 20
511Q OllF 00
570 0180 00
571 0181 00
572 0182 00
573 0183 01
574 01114 FF
575 01115 OOC'
5711 01117 0000
577 011111 0000
57' 019B 0000
57lil 019D 0000
5.0 OlliF 0000
581 OlAl 0000
512 01A3 0000
513 01A5 0000
584
515
Sill
517
Sit
518 OlA7 1111
S80 o1All 1111
581
5112
5113
5114
5115 01All
Sill
5117 OlAB 2E III 1£ OlA7
Sill OlBO 2E .C 01 OlAll
..ill8 01B5 CB
1100 01811
1101
1102
803
1104
1105
1I0e 01B8
S07
801 01BII 0288
1I0a OlB. 0213
1110 OlBA 0213
811 OlBe 0213
1112 018E 0213
1113 OlCO 0213
814 01C2 0213
1115 01C4 0213
1111 OlCII 0213
1117 OlC. 0213
811 OlCA 0213
lila OlCC 0213
820 OlCE 0213
821 0100 0213
lI22 0102 0213
823 0104 0213
824
825
8211 01011
827
821 0101 lilC
12lil 0107 FC
830 0101 10
831 Oloa lE
832 OlOA 011
833
834 0101 OE
835 010C IF
831
837 0100 C4 31 01A7 It
131 OlE 1 21 8A 5C 02
lI3lil 01E5 10 FB 00
840 OlEl 72 11
841 OlEA 10 FB OF
842 OlEO 77 OC
143
8U
145
141 OlEF 32 FF
847 01Fl 01 E3
141 01F3 2E: FFlil7 0111 It
en 01FI fB 10 lilO
e50

Driver Writer's Guide F-27



CCP_TO_GID_FILTER
un~nown commlnd routine

Pul n,.1 .¥Iil.bl, memory locllion in SYII,m R,qu'lt H'lder

,"II • tI'lder addr
;pul nul free loc
;Iddr.. , in header

Put, ItI, drill,r In HP VECTOR TABLE
Ind cIll, to do F_SYSTEM+SF_INIT

FAR

"HP CCP2GID lnltlllilion ,uc"ded",OdH,OIH."S·

"HP CCP2GIO lnlllllilion flU'd",OdH,OIH,"S"

ENOP

b.,dword plr dl Irtl_off] ,relold .. b. wI h'ld,r Iddr
'Idl ,r'llor, III pr'l,rll'd r,gill,r,

ENDP NEAR

db

db

11,dword ptr dl [rh_off] ,r,lold 'I 11 wI tI'ld,r Iddr
11 ,MSO UNKNOWN CMO
Ih,MSD-ERR STATUS ,llltul word now In AX
'I [Ill MSD_STATUS,I. ,plIC' ln r,qu'll tI'ld,r
lnl_'. I

1..
mOil
mOil
mOil
lmp

III f lnlltl,d

1" 11,dword ptr dl Irtl off]
1'1 IM,CI,RETURN THE FO[LOWING RAM TO DOS
mOil .. word ptr hir)o\SD_END_OrFSET.I'i
mo II 1 M , c,
mOil ,,'word ptr ['lJ MSD_ENO_SEG.I.

Put Ih, driller into Ih, HP_VECTOR_TABLE

P UI tI CI
pop ..

inllill (inlt I V_CCPGIO

mOil Ill, FINS FIXGETDS
mOil b., V-CCPGID1,. di. Cep2GIO DRIVER

int .. 11
- 1..

pop
pOp
POPI
~:ff

in1lml;2

~:!: _ .
lnl1 "Iup lI,rilbl'l l 'Itlblllh link in HP VECTOR TABLE................................................•......•..............

inil_mlg db "HP CCP2GID lnltlll,d drill,r ,2 2",OdH,0IH, "S"

.0 r
mOil
1..
mOil
rei

un, uppo rltd

bid C "'d

d'lI 1nI

i~~;····p;OC····~E~R·································· ..•.••.•.•..•••...
•...•...•.••.•..........•.......•...•..••.••••.•..•........••.•...••..

eli

'Aii'Ms:Dos';:~~i~~~;';:~:~i'~~~i':;:':~;:;;~;i:d';~d'd~'~~ih~~;""'"••..•..•.........••.........•.•....•....••••.•.••••..•.........••..•...
unlupport'd PIIOC NEAR.....•.............•....•..•.•.....•..........•...•.....•........•.....
.nedil ch,ck
bUlld-bpb'
10cll-in
lnpul-:
nd_l'nput
in, I I I :
in-flu,h
ouTpul,
out_lI,rif~

out 1111
oUI-flu,tI'
10cT! out'
~:~_.~~~~,
r'm-m'dil'
Ill:::ok:

FA

C4 1£ 011.7 II
07
IF
Sl
110
CB

48 50 20 43 43 50
32 47 49 44 20 69
8E 73 74 81 ec 6C
65 64 20 64 12 69
76 65 72 20 32 2£
32 00 011. 24
48 SO 20 43 43 SO
32 47 49 44 20 611
6E 73 74 81 ec BC
81 14 611 8F 6E 20
86 61 69 8C 85 64
00 011. 24
48 SO 20 43 43 SO
32 47 411 44 20 511
6E 73 74 61 6C 5C
61 74 69 6F 6E 20
73 7S 63 65 6S 64
65 64 OD 011. 24

C4 36 0111.7 R
80 06 0177 R
26 811 44 OE
8C C8
211 all 44 10

32 CO
84 01
C4 38 011.7 R
26 III 44 03
C3

C4 38 011.7 R
BO 03
B4 81
2S 89 44 03
E8 01 110

84 OE
BB 0011.2
8D 3£ 0021.

OE
07

0242

0220

0283

0286

0288

0201.
0201.
020E
020F
0210
0211
0212
0213

0213

0213
0213
0213
0213
0213
0213
0213
0213
0213
0213
0213
0213
0213
0213
0213
0213
0213
021S
0217
0218
021F
0220

0281
028B
028F
0293
0295

021111
02911.

01F8
OlFB
01FF
0201
0203
0207

0298
0290
02AO

6 tH
e52
e53
654
655
sse
657
658
6S11
660
661
662
883
SU
665
ue
867
U8
6811
670
671
672
673
874
875
676
877
678
6711
SlO
61l
882
811
884
885
SIS
687
688
6811
690
691
682
693
U4
611S
6118
6117
8111
8119
700
101
702
103
704
70S
706
707
708
109
710
711
712
113
714
715
716
717
Jl8
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
137
738
739
740
741
742
143

10'-28 Driver Writer's Guide



CCP_TO_GID_FILTER

CODE .nd.
ud

,.11 link.d .0 III flnl.h.d

••yin, drly.r lnll.ll.d

.11 ok

p u." d I
pu.h c.
pop dl
I fII••••'. on dl.pl.y
1.. dM, in1l_"'"
mOil Ih, II
lnt 21H
pop dl
• t 1

~:f
ENOP

; wrlte

, II.rl e08CPQIO
di

"'011 .", F SYSTEM
"'011 11, 51_START
P UI" dl
IYlclll V CCPOIO

T~~ ~~'~N~~~QIO

inll.l~O~P MOU~: Drll1.r w".t".r ~".r. 11 .n HP Moul. or not
mOil .h,F 10 CONTROL
mOil 11,51 MOUSE OVERRIDE
.y.cIll V_LHPROUSE -

T~r ~~~~R~~eMOUSE

in 11

PUI" dl
IYIClll V SYSTEM

- "'011
1 nI

744 02A4 lE
745
746 02A5 BO 0012
747 02A8 CO eF
748 02AA 1F
748
750 02A8 B4 02
751 02AO 80 02
752 02AF 1E
753
754 02BO BO 00A2
755 02B3 CO IF
758 02B5 1F
757
7sa 02B8 B4 04
758 0281 BO 02
780
761 02BA BO OOCC
782 02BO CO SF
783 02BF 1£
784 02CO OE
7115 02C1 lF
788
787 02C2 10 11 0220 "
7111 02C8 B4 08
7811 02CI CO 21
770 02CA IF
771 02CB FB
772 02CC E8 0213
713 02CF C3
774 0200
77S
778 0200
777

M.crol

N • til •

MSO HEADER
SYSCALL

L.n,th

0008
0002

51 ruc I ur .. Ind r.cordl

N I '" • Wldt" • f 1.1d.
Shlfl Wldl" MI.k In 111.1

0030
0010
0011
0012
0013
0014
OOlS
0018
0017
0011
0018
OOlA
0018
OOlC
0010
OOlE
0020
0022
0024
0028
0021
002A
002C
002E
0010
0000
0002
0004
00011
0001
OOOA
OOOC
OOOE
OOOF
0017
0000
OOOE
0010
0012
0014
0011
0011
0000
0001

0011

0001

0007

OOOA

Driver Writer's Guide F-19



CCP_TO_GID_FILTER

Combine Cl ...

MSO Cp.()
MSO-STATUS
MSD-MEDIA
MSD-TRANS
MSD-COUNT
MSD~START

Segments and Groups

N • m e

CGROUP
CODE

0002
0003
0000
OOOE
0012
0014

Sl ze

GROUP
0200

A11gn

PARA PUBLIC CODE'

Symbols

Length -0010

Length .004A

Length -0030

Length -OOOB

At t r

CODE

CODE

CODE

CODE

CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE

CODE

CODE

CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE

CODE
CODE
CODE
CODE
CODE
CODE
COCE
COOE
COOE
CODE
CODE
CODE
CODE

CODE

CODE
CODE
CODE
CODE

V.lue

0213
0008
4000
8000
2000
OSOO
OHB
0213
oooa
00B9
0003
OOCD
0120
0187
0177
0030
002A
E608
0000
003A
0100
0123
012B
0147
0037
OOAF
00B4
008B
0083
0093
007B
2000
0020
01BS
0030
0213
0106
0213
01AB
OOOf
o SIZE
OOlE
OOfO
OOOF
o ACCUM X
O-ABS X
O-REL-X
O-SIZr X
Oo-fO -
OOFS CODE
OOOE
0004
0000
0002
OOEB
OOH
0288
OOFF
0220
OU2
02113
0213
020A
0213
0213
0213
0213
00011
0213
0001
0011
0000
OOOF
0003
004C
0213

Type

L NEAR
Number
Number
Number
Number
Number
L NEAR
L NEAR
L NEAR
L NEAR
l NEAR
L NEAR
L NEAR
l NEAR
L 0010
Number
F PROC
Number
L FAR
L NEAR
L NEAR
L NEAR
L NEAR
L NEAR
l NEAR
L NEAR
L NEAR
L NEAR
L NEAR
L NEAR
L NEAR
Number
Number
L WORO
Number
L NEAR
F PROC
L NEAR
F PROC
Numbe r
Alus
Number
Numbe r
Numbe r
Al111
A1111
A1111
A1111
Number
L NEAR
Number
Number
Numbe r
Numbe r
L NEAR
Number
N PROC
Numbe r
L BYTE
L BYTE
L BYTE
l NEAR
l NEAR
L NEAR
L NEAR
l NEAR
l NEAR
E BYTE
L NEAR
Number
Number
Number
Number
Number
Number
L NEAR

N • rn e

ALL OK
ATR-CSHARE
ATR-DEVCFG
ATR-HP
AT R I SR
ATR Loa
BAD -CM{)
BuILD BPS
BUTTofl OONE
BUT PROCESS
BuT PUSH
BUT RELEASE
CCP~GID BAD SYS FN
CCP2GID -DES!: --
CCP2GID-OESC HEADR
CCP2GIO-OESC-SIZE
CCP2GIO-DRIVER
CCP2GID HP ATTR
CCP2GID-INSTALLEO
CCP2GID- ISR
CCP2GIO- SYSTEM
CCP2GID -SYS CASE
CCP2GID SYS' INIT
CCP2GID-SYS·START
CCP2GIO-UNSOPPORTED
CCP BUTl
CCP BuT2
CCP OOWN
CCP LEn
CCP RIGHT
CCP UP
CL CCP
CL .LGID
COf.4MANO TABLE
CESCRIBr SIZE
DEV CLOSE
OEV INT
DEV OPEN
DU STRATEGY
D AODR MASK
o BUFF[R
o CCP STATE
D CLASS CURRENT
D-CLASS[;EFAULT
D REMAI~DER ACCUM
D SAMPLE ABSOLUTE
D SAMPLE~RELATIVE

D SIZE
DTYPE MASK
EXIT ISR
FINS FIXGETDS
F IO CONTROL
F lSI!
F SYSTEM
GIVE TO PARENT
HP ENTRY
INTT
INIT BUT STATE
INIT MSa
1N1T-MS02
INIT--MSG3
INPuT
1NT EXIT
IN FLUSH
IN-STAT
lOCH IN
lOCH -OUT
MAX CCP2GID SYS FN
MEDIA CHECK- -
MSO DONE STATUS
MSO -ERR STATUS
MSO-UUT
MSO-REM MEOlA
MSO-UNKROWN CI'I>
MSE-NUM BUTTON
NO INPUT

F-30 Driver Writer's Guide



CCP_TO_GID_FILTER
OUTPUl
OUT flUSH
OUT-STAT
OUT-VERIfY
REl-MOVE

:~~~~~Dl~E fOlLOWINQ_RAM_TO_DOS
RH OFf-
RH-SEG
RS-DONE
RS-SUCCESSfUL
RS-UNSUPPORTED
SA"} BX
SAV-CX
SAV-DX
SAV::-:ES
Sf MOUSE OVERRIDE
Sf-START-
TOl' HP ENTRY
T KC BOTTON
T-R([16
UNSUPPORTED
UP DOIo/N BIT
V CCP --
V-CCPGID
V·-DOl ITHE
V-lHPMOUSE
V=SYSTEM

43048 Bytes free

Io/Irnlng Sellere
Error. Error.
o 0

8911
891
70.
71.
72.
731

840
1Sl0
380
381
378
3781

435
560.
488
1991
2471
2001
2091
249
252
442
451
452
251
325
327
320
311
322
318
205

741
75.

205
8081

77_
114.
822
228
821
227

491
53.
581
57.
50.
52.
55_
511
541

10111

NlAIt
NEAR
NEAR
NEAR
NEAR

L NEAR
L fAR
L WORD
L WORD
Number
Number
Number
L NEAR
L NEAR
L NEAR
L NEAR
Numbe r
Numbe r
L NEAR
Number
Number
N PROe
Number
Number
Number
Number
Number
Number

772
200
200
200
200
200

642
11771
385
3115
3821

4441

550.
4811
257
550

3031
4321
4501
4811
5241
2531
3591
3831
341.
3381
3481
3311

550
550
2081
841

112

818.
11281
UII
5851

381
118

0213
0213
0213
0213
008B
0213
0177
01A7
01A9
0008
0000
0002
0020
0022
0024
0028
0002
0002
0028
0009
0041
0213
0080
004E
00A2
00011
ooce
0012

11531

3871
3871

453

491
743

455

208

114

su
SOO

534
354

CODE
eODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE

CODE
CODE
CODE
CODE

CODE

CODE

454

207

length -0000

778

Driver Writer's Guide F-31



CCP__TO_GID_FILTER
o ABS 'I lOa 355
O-ACcDM X 110. 120
O-ACCUM-Y 1111
DhADDR MASK 12~'
O-BUFFE'R 12a
D-BURST LEN 96.
O"CCP STATE I! 61
D'-CLASS 89.
D-CLASS CURRENT 1221
D-CLASS DEFAULT 1~3I

D-DESC MASK 851
DHPHIL 10 841
D-IO MASK 86.
O-MAX AXIS 881
O·PROMPTS ijll
D-RO IlEO 100.
D-RE[ X 1081 1111 352
DREL 'I 109. 353
D-RE~INDf.R ACCUM 120.
D--RESERVED 95.
D-'RE <;0'. UT i ON 1031
D-SAMPLE ABSOLUTE 1181
DSAMPLE~RELATIVE 119.
O'SIZE 111.
D-SIZE '. x 1041 117 121
O-SIZE Y 1051
D-SOUR~E 82.
D-STATE loa lle 37Q 384
D-UANSITION 1011 371
O'TYPE MASK 126.
DWR RE'O Q9.
D~xOE'SC_MASK 871

EXIT ISR 328 4021

F INS I'IXGETDS 1281 74.
FOlD CONTROL 129. 758
F-ISIf 1311 248 3Q7
F~·SYSTEM 132. 2S0 750

GIVE TO PARENT 3S7 3114 3U.

HP ENTRY eOI 401 747 755 782
HP:~SHEADER 481 58 78

INlT 1I0e 722. 774
INIT BUT STATE 197. 574
INIT-MSCr- 703. 787
INIT ·'Msa2 109.
INIT-MSG3 7151
INPuT eL2 ea.
INT ExIT e411 8se 1I8U
lN HUSH 815 8121
IN-STAT 814 8811
IoC'n IN 811 8711
IOCTL~OUT 820 1I8 71

MAX CCP2GID SYS_FN 414 4551
MEDIA CHECK- 8011 6781
MSD 1ST UNIT 1741
MSO 'BPB - OFF SET 1721
MSO -BPS' SEa 1731
MSO-C~·- 1501 838
MSO-C~LEN 148.
MSOCOUNT 1801
MSO·OONE !.TATUS 111. 893
MSO-END OFFSET 1701 730
MSD-END SEa 1711 732
MSOERR"STATUS 1801 eS8
MSO' HEADER Z24
MSO INIT 1771 8311
MSO INIT C~ lUI 175
MSDMEOIA 1571
MSD REM MEOlA 1791 Ul
MSD 'REQ HEADER 1471 Je2
MSO'STAIfT 1811
MSO STATUS 1511 857 U5
MSO TRANS 1511
MSO'· ... NIT 14111
MSD-UNIT COUNT 16QI
MSD UNKNI]wN C~ 1711 ess
MSE=NUMBUTTON lUI S311

NO INPUT 813 810.

OUTPUT 1118 8131
OUT FLUSH 8111 lI8el
OUT "STAT 811 8151
OUT=VERIFY 817 eu.

REL MOVE 334 339 344 348 JSlI
REM ~EOIA 823 8901

F-32 OrjverWriter'sGuide



CCP_TO_GID_FILTER
RETURN THE FOLLOWING RAM TO OOS 5471 72e
RH OFF-. - - SUI S97 837 854 883 8U 728
RH-SEG seol sea
RS-DONE 1831 328 408
RS-SUCCESSFUL lUI 4e7 542
RS:::UNSUPPORTED 1851 254 US

SAV BX 2371 308 374 388 403
SAV-CX 2381 307 404
SAV'-DX 23el. 308 405
SAV-ES 2401 3011 408
SF ~OUSE OVERRIDE: 1301 75e
SF-'START- 1331 751
SV'SCALL 400 745 753 780
TOP MP ENTRY 2411 530 535
T KC: BUTTON. 1871 3113
T-RECl8. 1881 358
UNSUPPORTED 8741 U7
up. DOWN.:..BIT 11161 375

V CCP 1941 532
V·CCPGID 1911 398 534 550 550 742 754
V"DOLITTLE leOi 550
V-LHPMOUSE 1921 537 550 781
V:::SVSTEM 11131 746

158 Symbols

54092 Bytes Free

OriverWriter"s·Guide F-33



Application Resident EX-BIOS Driver

This example demonstrates the use of an application resident EX-BIOS driver. The driver utilizes the
Touchscreen logical device driver V_LTOUCH and its a.ssociated event driver V_EVENT__TOUCH.

The driver utilizes V_LTOUCH to move the cursor around the screen. V_LTOUCH· returns the current
row and column address of the point at which the screen is being touched. The example driver in turn
utilizes the STD-BIOS Video driver (INT 10H) to change to the position of the displayed cursor to match
the screen coordinates returned by V_LTOUCH.

This driver also utilizes the button state data returned by V_LTOUCH. When the screen is touched (a
button make) the driver changes the shape of the cursor from an underline to a box or full character
cell. The shape of the cursor is restored to an underline when the finger is removed (a button break).

Notice in the initialization section of the code that the CS:IP of the driver's service routine
(TOUCH_HANDLER) and the driver's OS are substituted into the V_EVENT_TOUCH vector in the
HP_VECTOR_TABLE. The existing contents of that vector are returned by the function. The driver
stores these values in its data area and restores them when the driver terminates (a II character is typed at
the keyboard). All HP_ VECTOR_TAB:~JE vectors that are replaced with application program resident
drivers should restore the original values in the vector when the application program terminates.

The listing for this driver can be found in Chapter 4.

Non-HP-HIL Input Devices

The next program listing is an example of how to integrate non-HP-HIL input devices into the Input
System. This driver interfaces to an RS-232 mouse. It converts data frames received from the mouse into
GID motion and button ISR Event Records. It integrates itself into the Input System by calling the
V_SINPUT driver once these ISR Event Records have been constructed.

The PGID driver is the physical device driver for all devices inputting graphic motion and button state
data. The initialization code must create a PGID driver for the V_SINPUT to pass the ISR Event Record.
It builds a driver header and physical describe record, allocates a free HP_VECTOR_TABLE vector, and
installs the PGID driver with V_LHPMOUSE as its parent driver.

The driver is structured as a DOS installable device driver. The COM port the mouse is connected to can
be specified in the CONFIG.SYS command line.

F - 34 Driver Writer's Guide



RS-232 Mouse Driver

•••••••••••••••••••••••••• GENERAL EQUATES ••••••••••••••• Ill •••••••••••

'R.v1.lon A 01 01 - 12/02/85 SMM

CHANGE lOG..... * II ••-. II •• * II II ••• II" II •• ,.,. .. ,. ,. ••••• II •• 11 • .1

................... lil ,. ,. ,. ,.

.•••••••••••••••••••••• * ••••••••~~.~~~!~~!~~••••••••••• •••••••••••••..••••

;On lNlT .ntry, polntl to CONFIO SYS
;comm.nd 11n. (1 ••11 .ft.r DEVICE.)

,Inlti.liz.llon R.qu •• t ~.ad.r

, • true t u r. d. f 1n I I 10 n
:b~~?t~o~: R.quest H.ad.r
,Command code
,'''turn.d .t.lul
,R.s.rv.d for MS-DOS
,Un1t count
.Off •• t of .ndlng .ddr.,s

:~;am;~ln~:r·(~~~9u:~~I··1
,Driv. cod. (not ulldl

RS-232 MOUSE DRIVER EXAMPLE

rou 0
EOU NOT FALSE
EOU TRUE

STRUC

DB ?
DB 7
DB 7
OW ?
DO 7
DB ?
OW 7
OW 7
DO 7
DB 7

ENOS

EOU DWORD PTR RH_BPB

'.

FALSE
TRUE
OEBUG

REQ_HEADER

RH lENGTH
RH"UNIT COOE
RH'CMD ~OOE
RH-STATUS
RH-RESERVED
RH" UNIT CNT
RH-END OFF
RH'END-SEQ
RH--BPS
RH='DRIV

REQ_~EADER

R~_CfoI)_LINE

MS-DOS lNSTAlLABlE DEVICE DRIVER EOUATES, RECORDS, AND STRUCTURES

,STRUCTURES

~~1~.~~~~·In;~tu~~:~~~1 1~~l~n~~y~:~I~~p~~r~~n;~~.~~~,~.~~~~I.~n~~_~~i
Inl.rf.c., Iuch .1 the MOUSE SYSTEMS moul' Th. drlv.r 11 Inll.ll.d .,
.n MS-DOS devlc. drlv.r .1 bool t1me

:The command 11n. DEVICE-EXAMPLE SYS [In] Ihould b•• nt.r.d 1n the
CONFIO SVS fl1. In the root dlr.ctorr 01 the boot drlV. If the optional

:~~~.~~~tt~U~~:~il{nt~:~~~I;n~~ug~1 n }~et~~m~·~~O~~l·Co~h·o~~I~~~b:~l~1
,prestnt 1n the command I1n., the drlver wIll .tfempt to 1nsfall the mouse
on that COM porI numb.r Th. drlv.r checkl to make lur. the port 11 pr'l.nl

,and wl11 111U••n .rror m"I.g. If • non-exlll.nt port numb.r 11 Ip.c1fled

, RECORDS

ATTR RECORD DEV 1, IOCTL 1. IBM 1. Xl, OCREM 1. Y 8, SPEC 1, ClK 1. NUL 1, STDO 1. STDI

....................... ~~~~!~~.~~~.~~!~.~!~~~!~~~~ .........................................................................................

286c
LFCOND

PAGE 59,132
TITLE RS-232 MOUSE DRIVER
SUBTTL PREFACE........................................................................

SUSTTl EQUATES. RECO~DS, AND DATA STRUCTURES
PAGE'
••••••••••••••••••••••••••••••••••• 11 ••••••••••••••••••••••••••••••••••••

...... II II II" It llII •••••••• ....................

,DEV - for charact.r d,vlc., 0 for block d.vlce

: I~T~ i ~fl~1~~T~.~1~·~~II~r~0~~~G~r~:~"'.t
;X - Nol uI.d
,OCREM - :1~:.c~:~~~::,d!Vf~.b~~~eo~~~1~:.~.:nd
, r'Movabl. medi.
;Y • Nol UI.d
,SPEC - 1 1f lNT 28H fa.t conlol. I/O 1. inltal1.d
ClK - 1 If d.vic. 11 a clock d.vlc.

,NUL. 1 if d.vlc. 1. a nul d.v1c.
;STDO - 1 1f device 11 the Standard Output d.vice
,STDI - 1 1f d.v1c. 11 the Standard Input device

STATUS ~ECO~D ERROR:1, Z 5, BUSY,l, DONE 1, E~R_TYPE

7 7
11
77
pp
77777777 77 777777
P
P77
77 ??
71717777
77

- 0000
·-0001

0000
0001
0002
0003
0005
0000
OOOE
0010
0012
0016

0017

- 0012

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1 !
19
20
2 j
22
23
24
25
26
27
28
a
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
84
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
14
85
86
17
88
19
90
91
92
93

Driver Writer's Guide F-35



RS-232 Mouse Driver

MSD WR lTE PROT EQU O'OH .wrUe prolecl
MSD UNKNOWN UNIT EQU OIH unknown un I I
MSD NOT RDV EQU 02H .devlce nol ready
MSD UNKNOWN CM[) EQU 03H .unknown command
MSO CRC ERROR EQU 04H CRC error
MSD BAD LENGTH EQU aSH bad driver rtQues I • I rue I urt 1'"9t hMSO SEER' ERROR EQU 06H seek err 0 r
MSD UNKN~N MEDIA fQU 07H unknown media
MSD SEC NOT FOUND EQU 08H uctor not found
MSD PAPE'R 'OUT EQU 09H .paper oul
MSD WR ITf FAULT EQU OAH .wr I I t faul I
MSO READ rAUlT fQU OBH read fault
MSO aEN F'AILURE EQU OCH .gentral fall urt

.Command.

MSD INIT EQU OOH Inltlllize
MSD MEDIA CHK EQU OlH ·Med·la c hee k
MSD BlD BJfB EQU 02H .Bulid BIOS Paramtter BlOCk (BPB)
MSD IOcTL IN EQU 03H , lOCH Inpul
MSD IJolPUT fQU 04H .Input from de"let
MSD IN NOWAIT EQU OSH · Non-de. I rue t I"e no-walt Inpul
MSD IN STATUS fQU OSH · Re I urn I I a Ius of 1 np ut de"lce
MSO IN FLUSH EQU 07H .F1u.h I np uI buf It r
MSD OUTPUT EQU 0811 .Oulpul 1o de"lce
MSO OUT VE RIFV fQU 09H .Oulput wllh "erlfy 10 de"lce
MSD OUT STATUS EQU OAH · Re t u' S I a Ius of oulpul deVIce
MSD OUr-FLUSH fQU OBH ,Flulh oulpul bu fie r
MSD IOen OUT EQU OCH IOCfL oulput
MSD OEV OPEN EQU DOH

:g~:~ed~~~i~tMSO OEV"CLOSE fQU OEH
MSD REM:.:MED I A EQU OFH .Remo"able mtdla c ht c k

, MS - DOS aqua t ..

EX-BIOS DRIVER EQUATES, RECORDS,A~O STRUCTURES ••••••••••

Relurned II parI of slalu. word defined above

ERROR. 1 If error condlllon delected
Z • Nol uled
BUSV' 1 If device busy

.DONE • 1 when command cempleled

.ERR. TYPE. Error Iype See eQuales ne.1

.MS-OOS print 11'lng function number.
MS-DOS lnlerrur,t

,Physical dt.crlbt record

;Upper nlbblt contalnl aID Iypt
;Lowtr nibblt HP-HIL addre,.
,0e"lce 10 byle returntd by HP-HIL devlce.
.1111

:l~?t~~:~r~~:~~i~r~~ ~;~: ~~~~c~i"1Ct.
;Ma.lmum number of axt. repOrltd by dtvlce.
.Oe"1ce clul
:Upper nlbble conlain. currtnt cl •••.
;Lowtr nibble contain default cia ••.
,Numbtr of butlonl/prompll

:~~::~ ~t~~t: ~~~~:t~: ~~~~:~ ~~ C~ti~~::
R.. e r"ed

:M'Mlmum bur,t ltngth
,Number of wrltt reYl.ter, .upported.

:~~:~:rt1~n~e~:p~~Yt~t:~~~~ff~~ttd.
.Currtnt II.tt 0' button,.
,Counts/cm returned by dtvice

.HP Drivtr Htader

:¥~~~=rn~~~~~b~~~'drl"er Ilrlng
?1?1

:Orl"tr par.nl elall
.Ori"er ~hlld ela'l
;Vector number of dri".r'l parant
,Veclor number of dri"er'. Child.
,Malor add res. of de,,1ce
,Minor addre •• of de"ice

EQU 091'1
EQU 21H

STRUC

DB

DB
DB
DB
DB
DB
DB

EQU OAH
EQU ODH

DB
DB
DB
DB
DB
DB
DW

DB

STRUC

OW 0
OW 0
DW 0
OW 0
OW 0
OW 0
DW 0
DB 0
DB 0

ENOS

D PROMPTS

. EQUATES

o RESERVED
D BURST LEN
P WR REO
D RD REa
o TRANSITION
D STATE
o RESOLUTION

.Error codes

DESCRIBE

o SOURCE

D HPHIL 10
O·OESC RASK
D 10 MASK
D XDE'SC MASK
DMU AXIS
o CLASS

PRINT STR
DOS E~TRY

ASCII equal ..

IF
CR

,STRUCTURES

HP .HEAOER

OH ATR
DH NAME INDEX
DH VPErAULT
OH P CLASS
OH C"CLASS
PH V PARENT
01'1 V"CHILO
PH"MAJOR
01'1 MINOR

HP HEADER

0000 0000
0002 0000
OOOA 0000
0006 0000
0008 0000
OOOA 0000
OOOC 0000
OOOE 00
00 OF 00

0010

0000 ?1

0001 11
0002 7?

0003 n
oobA ? ?

00C5 11
0006 ?1

0007 ??

0008 P
0009 11
OCOA ??

OOOB 11
DaDe ??

0000 ? ?

OOOE ??? ?

• 0009
• 0021

• 0000
• 0001
• 0002
• 0003
• 0004
• 0005
• 0006
• 0007
• 0008
• 0009
• OOOA
• OOOB
• OOOC
• 0000
• OOOE
• OOOF

• 0000
• 0001
• 0002
•. 0003
• 0004
• 0005
• 0006
• 0007
• 0008
• 0009
• OOOA
• OOOB
• oooe

• OOOA
• 0000

94
9"
96
97
98
99
100
101
102
103
le4
105
106
107
108
109
! [0
;H
; 1Z
113
114
115
11 e
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
14,
143
144
14S
IH
147
148
IA9
I S I')
I ~ I
1~ 2
IS 3
154
15 S
1.,6
157
IS 8
159
160
161
162
163
Ili4
165
166
167
168
169
170
171
172
173
174
175
17 e
177
)18
179
180
\8 I
18 (
183
184
185
186
187

F-36 Driver Writer's Guide



RS-232 Mouse Driver

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11 ••••

•••••••••••••••••••••• MS-OOS OEVICE D~IVER HEAOER •••••••••••••••••••

CODE SEGMENT
• II II •••• ill ..

; II III III t. t .

,Off •• t of numb.r of button ln mOUI' RAM

,MUlt bl org'd .t 0 to .bl • devlc. drlvIP

,M.xlmum counl .10ng X .xl1 ln ~nltl of r'lolutlon
,M.xlmum counl .long Y .xl1 ln unltl of r'lolutlon,
,Ab,olut. data dtvlc. X motlon
,Ablolute d.ta d.vlc. Y mot 10n
,Rtlatlvt d.t. d.vlc. X motlon
R.l.Ilvt dal. d.vlc. Y mollon

,X axl1 .c.llng .ccumul.tor
,Y .Xl1 .c.llng .ccumul.tor

;8uHoll d.ta type

,1e blt rtl.tlve motlon d.ta type

004CHtqu

ge A~TR(l,O 0,0 0,0 0,o,6LA~.k,~~~~.~n~tLlb~~:tb... I to -1
OW orFSET DEV StRATEGY ,D.vlCI.I "I.gy .nt ry polnt
OW OFFSET DEV-INTERRUPT ,0evlc. lnt.rrupt .nlry polnt
DB ' 232MSE ,-

EX-BIOS O~IVER HEADE~ AND PHYSICAL DESCRIBE ~ECORO

ORO 20H ,M.kl lur. 111 p.r.gr.ph .llgntd

~~~H~:O:~~~t~~~tl.~3~6~6~6~v~L~P~8~E,V_OOLITTLE,0,0)

COOE SEGMENT PUBLIC 'CODE'

ASSUME CS COOE, OS NOTHING
ORG 0

DEV DRIVER PROC FAR

DEV ATTR
OEV::::HEAOER

DRIVERATTR
SUAT rNT
INT ERT
DRIVER NAME

D SIZE X ow
O-SIZE-Y OW
O-ABS X ow
O-ABS-Y OW
O-REL-X OW
O-REL-Y ow
O-ACCUM)(OW
D~ACCUM:Y Ow

DESCRIBE ENOS

MSE_NUM_BUTTON

RECOROS

HP ..ATTR RECORD HP1, DEVCFG 1, ISR 1, ENTRY 1. TYPE 3, STR 1. MAP_CALL 1, A!. SUIIAOO 2, PS

CSHARE 1, ROM 1, B 1

EQUATES

,EX-BIOS drlvtr vlclor .ddr •••••• nd drlvtr funcllon numbtr.

V_DOLITTLE EQU 0006H ,OOLITTLE drlvtr v.ctor .ddr'I' (NUL drlv.r)

V SYSTEM EQU 0012H ,SYSTEM drlVtr vtctor .ddr.,.
F-INS BASEHPVT EQU 04H
F=INS~XCHOFREE EQU OAH

V SINPUT EQU 002AH ,INPUT drlVtr v.ctor .ddrt ••
r-ISR EQU OOH
r-SYSTEM EQU 02H
F:IO_CONTROL EQU 04H

F_INQUIRE_ENTRY EQU OCH ; lnqul PI about paID CS IP

V LHPMOUSE EQU OOCCH ,LHPMOUSE d r 1VIP VtC lor .dd rII I
Sr_MOUSE._OVERRIOE EQU 02M

HP_ENTRY EQU eFH .EX-BIOS inttrrupt numb.r

SUBTTL CODE SEGMENT
PAGE

• II ". III •••••• II •••• It' I; •• II t"" •••••••• II ••••
• ••••••••••• III III. II •••• ,. II II •••• II II • II •• II .

.ISR Ev.nt R.cord d.ta typ ••

T KC IIUTTON EQU OfH
T-R£(OI EQU 40H
T-'RflU £QU 4lH
'-A8S01 EQU 42"
':A8S11 EQU 43H

,EX-BIOS ~.turn StatuI Cod.1

RS SUCCESSFUL EQU OOH
RS-UNSUPPORTEO EQU 02H
RS-DONE EQU oeH
RS-FAIL EQU OFEH
RS:NO_VECT~ EQU OFIH

HARE 1,

0000

0000

0000

0020

• AClI
0020 AC 18
0022 0003
0024 0000
0026 0000
0028 0000
002A OOCC

0000 FF FF FF FF
0004 8000
0006 0265 R
0008 0270 R
OOOA 20 32 33 32 40 13

45 20

0010 111 1
0012 1'1'
0014 11?1
0016 71'1
0018 111?
001A 1117
001C ?111
DOlE 7111

0020

• 004C

• 0006

• 0012
• 0004
• OOOA

• 002A
• 0000
• 0002
• 0004

• OOOC

• OOCC
• 0002

• 006F

• 0000
• 0002
• 0006
• OOFE
• 00F6

• 0009
,. 0040
• 0041
• 0042
• 0043

188
189
190
191
192
193
194
HIS
196
197
198
199
200
201
202
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
23A
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
2'i3
254
255
256
257
258
25Q
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

Driver Writer's Guide F - 3 7

RS-232 Mouse Driver

0124 0000 STACK PTR OW 0 ;Stora;e for •• 1Itln9 • tie k fram•.
0128 0000 STACK:::SEQ DW 0

012. 0000 COM_NUMBER OWO ~~~~~dtatn~g4g~OSgHt bu••dd".. table

012A 0030 INT_TABLE OW OCH 4 ;COMl port lnterrupt.
012C 002C OW OSH 4 ;COM2 port lnterrupt.
012E 0030 ow OCH • 4 ;COM3 port interrupt - ut II appropriate,
0130 002C OW OBH • 4 ;COM4 port interrupt - Itt II appropriate.
0132 FFEF MASK TABLE OW NOT 01H SHL 4 ;COMl interrupt mask IIR04i'
0134 FFF7 OW NOT OlH SHL 3 ;COM2 interrupt ma.k IRQ3
0136 FFEF OW NOT 01H SHL 4 ;COM3 int.rrupt m•• k IRQ•.
0138 FFF7 OW NOT 01H SHL 3 ;COM4 interrupt milk IRQ3.

013A 0000 FRAME COUNT OWO
:~~:::r~~~n~~~f:~rf:~u~:U~:t:.f:c:~:i •.013C 05 TEMP _BUFFER DB 5 OUP (0)

00

0050 0000
0052 0000

0054 52 53 2D 32 33 32
20 49 4E 50 55 54
20 53 59 53 54 45
40 20 40 4F 55 53
45 20 44 52 49 56
45 52 20 20

0076 28 43 29 43 6F 70
79 72 69 67 68 74
20 48 65 77 6C 55
74 74 20 50 81 113
8e 61 72 114 20 31
39 38 35 00 OA

0099 56 liS 72 73 119 llF
6E 20 41 2E 30 31
2E 30 31 00 OA 24

• 0010
OOAB 4D 5F.. 75 73 liS 20

69 5E 73 74 III llC
6C 55 54 20 llF liE
20 43 4F 40

OOCl 30 3A 00 OA 00 OA
24

00C8 53 70 liS 113 119 1111
59 85 U 20 43 4F
40 20 70 5F 72 74
20 5E llF 74 20 70
72 liS 73 liS liE 74
2E 20 20 44 72 119
7e liS 72 20 liE llF
74 20 ell liE 73 74
81 llC llC 115 114 2E
00 OA OD OA 24

0103 55 liE III 112 llC 115
20 74 eF 20 119 liE
73 74 61 6C BC 20
SO 47 49 44 20 84
72 69 76 65 72 2E
00 OA 24

DESCRIBE <2,O,O,O,O,2,0,20H,0,0,0,0,1,OFFH,200D,O,0,O,O,O,O,O,0>

EQU S-VERSION LAB-2
DB 'Moull In.falled on COM'

DB '0:', CR , LF ,CR , LF , ' S '

DB 'Speclfied COM port not pr ..ent. Driver not In.tllled,' ,CR,LF,CR,LF,

DB 'Ver.lon AOI01',CR,LF,'S'

08 'Unable to inltlll POlO dr1ver,',CR,LF,'S'

DB '(CICopyrl;ht Hewlett-Pickard 1985' ,CR,LF

DW 0 ;5tor'7e for off,et of d,vic, ,trltegy helder.
DW 0 ,Stor.ge for .,gment of device .trltegy helder

08 'IIS-232 INPUT SYSTEM MOUSE DIIIVER

......................- _ .
• COOE SEGMENT RELATIVE DATA AREA •
••••••• t ••• ••••• •••••••••••••••••••• .

VERSION LEN
OK_MSG -

DEV_DESCRIBE

COM_MSG

NO_PORT_,",SG

.••••••••••••••••• DATA AREA FOR MS-DOS DRIVER PORTION ••••••••••••••••

REQ HOR OFF
REQ:::HDR:::SEG

SIGN_ON_MSG

0006
00
00

O~
00
00
00
00
O~
00
20
00
00
00
00
01
FF
00C8
0000
0000
0000
0000
0000
0000
0000
0000

OO~C
oon
OO~F

0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
003A
0038
003C
003D
003E
0040
0042
0044
0046
0048
004A
004C
004E

~80

~81

~82
~83
284
285
286
~87

~88

289
~90

291
~92

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
31 ~
313
314
315
316
317
318
319
320
321
32~
32)
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
34~

343
344
345
34e
347
348
349
350
351
352
353
354
355
356
357
358
359
380
361
36~

363
364
365
366
367
368
369
370
371
372
373
374

F-38 Driver Writer's Guide

RS-232 Mouse Driver

;SEND BUTTON ISR EVENT RECORO(S) TO INPUT SYSTEM

PAGE

••• ~............. DATA AREA FOR EX-BIOS DRIVER PORTION ••• ~•••••••••••

MOUSE DR IVE R CODE
: * •• ******** •••• ** •••• * ** •••••••••••••••••• * •• " ••••••••••••

,HP-HIL 'addrell' of moul.
~HP_VECTOR_TABLE vector addre'l of PGID

,Copy of lalt lynch byte

;HP-HIL conf1guration table

;EOI

;Get base addrell of COM port from table.

,Save the regilters

;Get number of characters left in frame
,See 1f we're looking for lynch byte
;Jump if not
:~::: :f~OC~t;:nm:~f: character

:~:~ t~e t~~!gt~ai ~~~~~C~~~ebaCk
:Put character 1n temporary buffer 1f lynch

:~~~:r;!I~~lt~row character away.

,Store character away.
Update the frame counter.

,And sive 1t_
;Is thil the lalt character 1n frame?
;Procesl the frame 1f 10,
,0 the rw 118, I k1P 0 n

;New character count
,St 0 re it
;Get synch byte

:S:~at:Sla:~n~~t:yte.
;See 1f they are the same
;Sk1P on if 10 (no change in button Itate).

.Re-estabI1sh data legment addrel~ib1lity

,Inil1al1ze dr1ver.
;Me d 1a c he c k
,Bu11d BPS
; Iocn 1nput
,Input
,Non-des true t 1ve 1nput.
,Input Itatul
,Flush input buffer
,Output
,Output w1th ver1fy
;Ou t put s tat U I
;Flulh outpul buffer
; IOCn output

:g~~~ed~~~~~e
;Removable med11 check

~~A~E COUNT,BX
AL,TEMP BUFFER[BX)

~~SiA~~~~~~~t
AH,A[
MSI_3

DB 87H

DB 14 DUP (0)

AL,20H
20H .I~L

AX.40H
ES,AX
BX,COM NUMBER
oX,ES TBX)

OS
ES
AX,CS
DS,AX

DB 0
DB 0

MS-DOS bRIVER COMMANDS

DW OFFSET INIT CODE
DW OFFSET UNSU~PORT CMO
DW OFFSET UNSUPPORT-CMO
OW OFFSET UNSUPPORT-CMD
OW OFFSET UNSUPPORT-CMD
DW OFFSET UNSUPPORT CMD
DW OFFSET UNSUPPORT-CMD
DW OFFSET UNSUPPORT-CMD
DW OFFSET UNSUPPORT-CMD
OW OFFSET UNSUPPORT-CMO
DW OFFSET UNSUPPORT-CMD
OW OFFSET UNSUP·PORT-CMD
OW OFFSET UNSUPPORT-CMD
OW OFFSET UNSUPPORT-CMD
DW OFFSET UNSUPPORT-CMD
DW OFFSET UNSUPPORT=CMD

aX,FRAME COUNT
~~tB~ -
AH,J:L
AL,OF8H
AL,80H
AL,AH
MSI_l

"'SI_5

TEMP BUFFERlBX),AL
BX -
FRAME COUNT,BX
ex,s -
MSI 2
MS r::5

MOV
MOV
MOV
MOV

MOV
OUT

MeV
OR
JNZ
MOV
AND
CMP
MOV
JZ

JMP

MOV
INC
MeV
CMP
JZ
JMP

;GET CHARACTER FROM MOUSE

;CHECK FOR A CHANGE IN BUTTON STATE

MSI_2: MeV
MeV
MeV
MOV
MOV
CMP
JZ

;ISSUE END-OF-INTERRUPT TO 8259A

IN AL,DX ,Get character

;STORE IN TEMPORARY BUFFER UNTIL ENTIRE FRAME HAS BEEN RECEIVED

LAST_SYNCH

HPHIL_TABLE

HPHIL ADD
PGID_IlECT NUM

,JUMP TABLE FOR

CJl()_ TABLE

MOUSE_INT

;PRESERVE MACHINE STATE

PUSHF
PUSHA
PUSH
PUSH
MOV
MOV

87

00

BO 20
E6 20

00
00

B8 0040
8E CO
2E 8B lE 0128 R
26 8B 17

EC

DE [

2E 8B lE 013A R
08 DB
75 00
8A EO
24 F 8
3C 80
8A C4
74 03

E9 0260 R

2E: 88 87 Olle
43
2E' 89 IE 013A
83 FB 05
74 03
E9 0280 R

BB 0000
2E 89 lE 013A R
2E 8A 87 013C R
2E 8A 26 0141 R
2E A2 0141 R
3A ED.
74 56

9C
60
lE
06
SC C8
8E D8

02A7 R
0292 R
0292 R
0292 R
0292 R
0292 R
0292 R
0292 R
0292 R
0292 R
0292 R
0292 R
0292 R
0292 R
0292 R
0292 R

0150
0151

0141

0142

01SC
0191
0193
0195
0197
0199
019B
019D

019F

01A2
01A7
01A8
DIAD
01BO
0182

017E
0181
0183
0188

018B

017A
017C

01B5
01B8
OlSO
01C2
01C7
01CB
OICO

0172

0172
0173
0174
0175
0176
0178

0152
0154
0156
0158
015A
015C
015E
0160
0162
0164
0166
0168
OlSA
016C
016E
0170

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
398
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
452
463
464
465
466
467

Driver Writer's Guide F-39

RS-232 Mouse Driver
468
469 01CF 53 PUSH BX .Save frame count e r470 0100 52 PUSH OX .Save471 OlDl 32 EO XOR AH . AL .AH now holds mask of bulton. that halla chanllid .472 0103 B7 01 MOV BH .01H · Mas k 10 r f1 rs t but ton473 OlD5 B9 0003 MOV CX .3 .Number of buttons to proce ..474
475 OlD8 MBUTTON
476 0108 8A DC MOV BL AH

:~:~ ~fc:~Ie~:e~h~~';o~a:~.477 OWA 22 OF ANO B1. BH thl onl t ha t chang.d478 OlDC 74 41 JZ MNEXT BUTTO~ · SUp on 1f no t479 OlDE 84 F8 TEST 8H.AL ;Oelermine I tat e (make or b re ak) of .. lee ted but t
480 OlEO 74 04 JZ MBUTTON~OO\olN
481
482 01E2 MBUTTON UP
483
484 01E2 B3 80 MOV BL,80H .Set bit 7 (make/break bit) to 0 (break)485 01E4 EB 02 JMP SHORT MBUTTON ISR
486
487 01E6 MBUTTON DO\oIN
488
489 01E6 B3 00 MOV BL.OOH .Set bit 7 (mak./break b 1t I to 1 (mak.)
490
491 OlE 8 MBUTTON ISR
492 OlE 8 S3 -PUSH BX
493 01E9 I;B 09 MOV ex. CX
494 01E8 32 FF XOR BH. BH
495 OlED FE C8 DEC BL
496 OlEF 2E 8A 8F 01F7R MOV CL. CS BUTTON_TAB[BX]
497 01F4 58 POP BX
498 01F5 EB 03 JMP SHORT BISR2
499 01 F7 CO 8UTTON TAB 08 a 1eft bu t ton500 a1F 8 02 DB 2 middle button
Sal OlF9 01 OB 1 ngh t bu t ton502 01FA BISR2
503 OlFA OA 09 OR BL. CL
504 OlFC 32 FF XOR BH. BH clear out bh
505
506 OlFE SO PUSH AX ;Salle r.gist.r.
507 OlFF 53 PUSH BX
508 0200 51 PUSH CX
509 0201 IE PUSH OS
510
511

~Sa'rll.nt512 .Cr.ate R.cord
513
514 0202 B6 09 MOV OH. T KC BUTTON Slit d al a type
515 0204 2E 8A 16 0151 R MOV DL.POIO-VECT NUM .Get vee tor number 01 mou •• ·• POID
516 0209 B9 0000 MOV CX,O - - · 8u r! t Hn~t~o (~~~~er517 020C 8C C8 MOV AX.CS Point header
518 020E 40 INC AX
519 02GF 40 INC AX
520 0210 Sf CO MOV ES.AX
521 0212 B4 00 MOV AH.F ISR · Se t ISR funclion
522 0214 BD 002A MOV BP,V:::SINPUT · \ole . r. C al11 ng the INPUT drlv.r
523 0217 FA CLI · Turn 01 f int.rrupt. while w. rl out
524 0218 CD SF INT HP _ENTRY
525 021A FB STI .Re-enabl. int.rrupt.
526
527 021B iF POP OS
528 021C 59 POP CX
529 0210 5B POP BX
530 021E 58 POP AX
531
532 021F MNEXT BUTTON.
533
534 021F 00 E7 SHL BH .1 .Mov. button •• lector milk to n•• t bu t Ion
535 0221 E2 B5 LOOP MBUTTON
536 0223 SA POP OX ;Reatore
537 0224 58 POP BX ;O.t Iram. count.r back
538
539 .CHECK FOR MOTION
540
541 0225 43 ,",SI_3. INC BX . Polnt to 11 r. t d.lta X In buffer .
542 0226 2E 8A 97 013C MOV OL.TEMP BUFFER[BX]
543 022B 43 INC BX .O.t 11 ra t d.UaV.
544 onc 2E 8A B7 013C MOV g~.TEMP_BUFFER[BX]
545 0231 43 INC .Add second d. I ta to 11 r. t .
546 0232 2E 02 97 013C ADD DL.TEMP_BUFFER[BX]
547 0237 43 INC BX .Add .econd d.l ta Y to 11 r. t
548 0238 2E 02 B7 013C ADD DH,TEMP_8UFFER[BX]
5411
550 0230 OB D2 '"'51_4' OR

~~i~~
;Ch.ck lor I.ro mot10n

551 023F 74 IF Jl .Sk1p on 1I non. d. tee t.d .
552
553

MOH~=554 ;SEND ISR EVENT RECORD TO INPUT SVSTEM
555
556 0241 8A C2 MOV AL,DL ;Conv.rt d.lta X to 111 bit value and put
557 0243 III caw ;11 1n 1511 EII.nt lI.cord (BX r.gl.lu).
SS8 0244 8B 08 MOV ex,AX
SSg 0246 8A CII MOV AL,OH ,D1tto lor dllta Y ICX righter)
SilO 02 .. 98 caw
561 0249 8B CI MOV CX,AX

F-40 Driver Writer's Guide

RS-232 Mouse Driver
562
,63 ;Crlltt mo I ion ISR IVlnt rlcord
564 024B B6 41 MOil DH,T- REU6 Sit ISR EVlnt riC 0 rd dltl type to 18 bit
565 r.llt lV. motion
566 024D 2E 8A 16 0151 R MOil DL,PGID_VECT - NUM G.t v.ctor numb. r of moull'l POlO
551 0252 8C C8 MOil AX,CS S.t ES 0 to driv.r h.ld.r
568 0254 40 INC AX
559 0255 8E CO MOil ES,AX
570 0257 B4 00 MOil AH,FISR ;S.lect ISR function
571 0259 BD 002A MOil BP,V:::SINPUT ;W. r. plillng t hll on to t hi INPUT d r i v. r .
572 025e FA CLI ;Int.rruph Irl I u.ppolld 10 b. off
573 025D CD SF INT HP- ENTRY
574 025F FB STI ;Turn int. rruptl bac k on now.
575
576 ;RESTORE MACHINE STATE AND EXIT
577
578 0260 07 MSI- 5 POP ES
579 0251 1F POP OS
580 0262 51 POPA
58: 0263 90 POPF
582 0254 CF IRET
583
584 PAGE
585
585 •••••••••••••••• Jll ** ••• _... ill.*** •••• ** •••••••••••••••••••••••
587 MS-DOS DRIVER CODE
588 ••••••••• **JIl •••• * ** ••••• ** ••••••• **** •• **
589
590 _....................... STRATEGY ENTRY POINT " .. III Ill l'l:" Ill. Ill" * 111" III Ill. III ill Ill"" III

591
592 On5 DEV- STRATEGY PROC FAR
593 0265 2E 89 1E 0050 MOV CS REQ HOR OFF, BX ;S.v. ofh.1 of r.qu.,t h••d.r
594 025A 2E 8C 06 0052 MOV CS REO:::HDR:::SEG,ES :~:~~r~·~~·~~_gbsr.qu.'t head.r
595 025F CB RET
596 0270 DEY_STRATEGY ENDP
597
598 . 1lI.1Il ••••••••••••••• _._ •• INTERRUPT ENTR Y POINT _.... _--
599
600 0270 DEV- INTERRUPT PROC fAR
6C 1
60i ;SAVE MACHINE STATE
603 0270 9C PUSHF
504 0211 FC CLD
68S 0272 60 PUSHA ,SIV'D~·~~'grs.b06 0273 8C CF MOV DI,CS ;S.t
607 0275 8E OF MOV DS,DI
608
609 , FETCH COMMAND FROM REQUEST HEADER
610 0277 2E C4 JE 0050 LE S DI,DWORD PTR REO HDR OFF ,Mov. Iddr ... of requllt h.ad.r into ESDI
51 ! 027C 26 8A ~5 02 MOil

:t:~~D[~~IT
RH_CMO_COO'E ;Get command byte from h.ader

512 0280 JC 00 CMP ;Perform rang. ch.ck on command byte
b13 0282 72 DE JB BAD CMO
614 0284 JC OF CMP AL,~SD REM MEDIA
615 0286 77 OA JA BAD CMO -
616 0238 98 CBW ;Convert c orMlind into jump t Ib 11 off .. t
617 0289 D1 EO SHL AX,l
618 028B 8B D8 MOV BX,AX
619 0280 2E: FF A7 0152 R JMP CKl_TABLE[BX] ;Dispalch to requ.lt.d function
620
621 ; EXIT POINT FOR BAD OR UNSUPPOR TED FUNCTIONS
522
623 0292 BAD CMe.
624 0292 UNSOPPORT_CMO:
625
626 0292 25 81 4D 03 8000 OR ES. 19B RH STATUS, MASK ERROR ;S.t I r ro r fllg in ret urn Ititul word
627 0298 26 81 40 03 0003 OR ES: .RH:::STATUS, MSD_UNKN~N_CMO ;S.t I r ro r cod •.
b28
629 ,COMMON EXIT POINT
620
531 029E 26 81 40 OJ 0100 EXIT ; OR ES [01] RH_STATUS. MASK DONE ,Set r.turn I tit UI 10 doni.
632 02A4 61 POPA ;R.store r.gilt.rs
533 02A5 9D POPF ;Reltore

t~l~~~DOS634 02A6 CB RET ;Return
635
636
h37 III • * * lit " * llE * " ** " " " 111 * 1ft * .'" " * END OF RESIDENT COOE

. .• _._ •• ___ ._. 1Il._ .a
638 PAGE
639

_. ____ 11 •• _._ ••• _._ •• _.-
INITIALIZATION CODE ** ______ *._ lit. ** ". ill"" * ** ". lit

1i40
641 02A.7 INIT __COOE'
542
643 ,SET UP LOCAL STACK
544 02A7 rA CLI ;Dillble inte rrupll while w.' r. milling with I t Ie k
645
646 02A8 BE 0124 R MOV SI,OFfSET STACK- PTR ,Store exilting I tie k I nvir 0 nml n t .
647 02AB 89 24 MOV HI ~,SP
64~ 02AD 83 C5 02 ADD
649 02BO 8C 14 MOil [SiJ,sS
650
65~ 02B2 BC 0511 MOV SP,OFFSET CS' STACK_TOP ;S.t up our 10c al It IC k
652 02B5 8C C8 MOil AX ,CS ; Stac k I.gm.nt is s ami II cod. (CSJ
553 02B7 8E DO MOV SS.AX
654
655 02B9 FB STI ;R.-enlbh inti r ruptl

Driver Writer's Guide F-41

RS-232 Mouse Driver
,PRINl SIGN-ON MESSAGE

MOV DX,OFFSET SIGN ON MSG
MOV AH,PRINT STR - .-
INT DOS_ENTRY

,PARSE CONFIG SYS COMMAND LINE TO DETERMINE WHICH COM PORT THE MOUSE IS ON

;Stt baud ratt dlvllor to 1200 baud

.INITIALIZE SERIAL PORT PARAMETERS

•If we W1nd up here. there were no plrameters

.cg~c~~;~dw~~ ;~:c~~7:~nd ~;~ec~rp~~t1E~~tid
,de f au 1 t .

,Convert offset lnto ASCII COM number 11 4)

.Clear BX It will be used I' index Into
, c 0mm and 11ne
Load ES 01 wltn p01nter to CONFIG SYS command

,11 ne

,Move COM pori table offset Into 01
.Segment Iddress of COM port blse Iddress table

;Oel ba .. add,'''s of COM port out of table
,Make sure port exlltl
;Conllnut w1tn In1l1111zttlon if It do ...
;olnerwUt, go to trror routlne.

::0~::,t~1~;~elc~~~;0;1t~g~~t~~rl~;le+3)

;Otll)'.

,Polnt 10 11nt control regllttr
;Set 11ne cont rol regllter to dlvllor pre>grammlng
.mode

:~~t~r to dlvllor LSB reglsttr (ba.e]
;LSB for 1200 bpI

:~~t~r'to MSB of dlvllor (bl" + 1)
;MSB for 1200 bps

;Oell)'.

Get next charactGr in commlnd 11ne
Check for backslash

,If f 0 und 1 nd i cit II 5 tar t 0 f par ame t e r S
.Check for clrrlage return IInd1cates a bogls
set of parameters)

:~~e~~u~~r ~i~~ ;~:~nl~!n~~~~~~~ ~;n~arameters
,entered in command 11ne
If found. Itop scannlng command 11ne

.Else, polnt to next character,
,and contlnue scanning commlnd 11ne

Get next character Should lnd1cltt COM port
.to use Valid range 1S 1 4
,Convert number 1nto offset from
.Perform range cneck on results

.Polnt to modtm cont rol reglster (bUt + .j
;OTR Ind RTS ,et. OUT2 let to enlblt Interruptl.

,Convert 1nlo offill into STO-BIOS COM port
.base address table It 0040 OOOOH

,Save It for future use

BX,AX
BX,1
BL '1'
CoM_MSQ.BL

OX.S
AL,DX
SHORT $+2

DI AX
AX:40H
ES AX
DX,ES [01)
DX,OX
IC 4A
INTT_NO_PORT

AL BYTE PTR ES [OI+BX)
AL. 'I'
IC 2
AL-:-CR

IC 3
AL-:-LF

IC 3
BX-
IC_l

BX
AL,BYTE PTR ES [OI+BX)
AL . 1 .
IC'3
AL~3
IC_3

OX.2
AL.80H
OX ,AL
SHORT $+2
OX.3
AL.80H
OX,AL
SHORT $+2
OX
AL,OOH
OX,AL
SHORT $+2

ox
Al.OBH

BX,O

01, ES [01 1 RH_O"O_LINE

AX.l
COM NUMBER,AX
SHon IC_4

COM. NUMBER, 0

0)(,2
AL.03H

~~6~~ $+2

INC
MOV

MOV

LES

MOV

SI)8
MOV
OUT
JMP
SUB
MOV
OUT
JMP
INC
MOV
OUT
JMP

ADO
IN
JMP

MOV
SHR
ADD
MOV
CLI

AOO
MOV
OUT
JMP

MOV
MOV
MOV
MOV
OR
JNl
JMP

MOV
CMP
JZ
CMP

JZ
CMP

JZ
INC
JMP

INC
MOV
SUB
JB
CMP
JA
CBW

SHL
MOV
JMP

,Clear tXi,ting trror or characttr

;Inltll11ze modem control rtgilttr

;In1t1a11ze 11ne control rtgl,ttr

IC 2

2E C7 06 0128 R 0000

83 EA 02
BO 80
EE
EB 00
83 EA 03
BO 60
EE
EB 00
42
BO 00
EE
EB 00

83 C2 05
EC
EB 00

8B D8
D1 E8
80 C3 31
2E 88 1E OOCI R
FA

BB 0000

26 C4 70 12

8B F8
88 0040
8E CO
26 8B 15
DB 02
75 03
E9 03B2 ~

BA 0054
B4 09
CD 21

83 C2 U2
BO 03
EE
EB 00

42
BO OB

26 8A 01
3C 2F
74 OB
3C 00

74 lC
3C OA

74 18
43
EB EE

41
26 8A 01
2C 31
72 GD
3C 03
77 09
98

D1 EO
2E A3 0128 R
fB 07

02EF

02D:
OiDJ

0338
0339

C2C8
02C8
CiCD
02U

0330
0333
13335
0336

02el

02C4

0303
0;:)5
03C8
C30A
030D
030F
0311

0314
0317
0318

031A
031D
031F
0320
0322
0325
0327
0328
032A
032B
0320
032E

C~,)5

CLD7
02D8

02~7

02E9
OZED

02DA
02D8
OZUE
02EO
0~E2
r;~E4

0':E6

('2F6
(.12 ~ 8
DiFA
O;:FD
0302

656
557
6 =.2
e~9

660
t 61
6R2
663
664
6';5
656
667
668
669
670
P1
672
673
674
675
6: 6
~ 7 r
6H
679
680
68,
682
683
6e4
585
686
687
f2,8
509
690
631
6n
693
694
695
696
6n
698
699
7GO
701
7G2
7::'c
704
705
706
7')7
708
709
7:0
7L
712
713
714
7 1~

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
73 7
738
739
740
741
742
743
744
745
746
747

F-42 Driver Writer's Guide

RS-232 Mouse Driver

04
02
OOCC

EB 13 90

now to let t~e number of buttonl
V_LHPMOlJSE ""

P r 1 nt err 0 r me S I I ge

Delay

Pr 1nt err 0 r me II age

Set up for t"e dlvlde

II It Instelled ln vector table

,Oet mask from t Ibll
Get current mask

,Delay
,Clelr milk for moule Interrupt
,Set new val lie

,Inltlll1ze vector

See If brule force Ipproac" 11 necellary

Even t"e belt lald planl of mice and men aft
go Iwry r INQUIRE POID 11 not lmplemented ln

,50me elrly ~OM verllonl T"e POlO CS IP mUlt be
hard coded for t""e Iysteml

Move IP lnto 01
Get PGID'I DS
account for ORO 20H

,Exc"lnge fixed vector addrels functlon

,Polnt to lnterrupt enable regl.ter (b •• e + 1)
,Enable Rx Data Ready Interrupt

Get t~ble off let back
,Use It al lndex Into Interrupt vector table
S.t ES to Interrupt vector segment (0)

,Re-enable lnterruptl

,Return CS IP of POID drl~er function

,Conyert to a vector lndex
Saye for ISR Eventl

Now to make lure t"at the V L~PMOUSE

drlver letl up INT 33H

,Set OS blck to proper value

,Print 11gn-on mel,age
,MS-D05 prlnt Itrlng function number

BX ,COM NUMBER
DI,INT=TABLE[BX]
AX, a
ES,AX
AX OFFSET MOUSE_INT

AX,CS

DI, BX
DX, CS
OX, 2
AH,F INS XCHOFRE£
BP V~SYSTEM
DS
HP ENTRY
DS

~~tT~~o~er~~g~OR

AX, BX
BL, e
BL
POIO_VECT NUM, AL

AH, F 10 C,ONTROI.
AL, sr MOUSE OVERRIDE
BP, V_[HPMOUSE
OS
HP ENTRY
OS

AH,F INQUIRE ENTRY
BP V~_SINPUT -
DS
HP ENTRY
Dc.;
~~t~S,UNSUPPORTED

Cs -
ES
BX CS PG!D_DRIVER

CX MASK_TABLE[BX]
Al21H
SHORT IC 10
AL, CL --
21H,AL

ES
AX

AX ,CS
OS,AX
DX,OFFSET OK MSO
~~s~:~~hSTR-

oX,OFFSET NO VECTOR
AH PRINT STR
DOS ENTRY
SHoRT INIT_EXIT

MOV
IN
JMP
AND
OU:

srr
MOV
MOV
PUSH
INT
POP
CMP
JNE
PUSH
POP
LEA

MOV
MOV
ADD
MOV
MOV
PUSH
INT
POP
CMP
JE

MOV
MOV
oIV
MOV

MOV
MOV
MOV
PUSH
INT
POP

OUT
JMP

,Initialize interrupt e~.b1e regllt.r

SUB OX,3
MOV AL, 01
OUT OX, AL

,SET UP COM PORT INTERRUPT VECTOR

MOV
MOV
MOV
MOV
MOV
STOSW
MOV
STOSW

:ENABLE MOUSE INTERRUPT ON 8259A INTERRUPT CONTROLLER

JMP INIT _OK

INIT_NO VECTOR

MOV
MOV
MOV
MOV
INT

INIT EXIT

PUSH
PUSH

MOV
MOV
INT
JMP

INIT_NO._PORT

MOV
MOV
INT
JMP

C3
06
F3

A2 0151 R

8B lE 0128
8B BF 012A

0000
CO
0172

2E 8B 8F 0132 R
E4 21
EB 00
22 Cl
E6 21

FB

B4 OC
Bo 002A
1£
co 6F
1F
80 FC 02
75 06
OE
07
80 lE 03FF R

83 EA 03
BO 01
EE

8B FB
8C CA
83 C2 02
B4 OA
Bo 0012
IE
CO 6F
IF
80 FC Fe
74 18

2E
2E
B8
8E
B8
AB
8C ca
AB

EE
EB 00

08
SO

8B
B3
F6
2E

B4
BO
Bo
1£
CO 6F
1 f

8e C8
SE 08
BA OOAB
84 09
CO 21

BA 0103
84 09
CD 21
[6 14

SA 00C8
B4 09
CD 21
EB OB

035A
035F
0361
0363
0365

0367

0368
036A
0360
036£
0370
0371
0374
0376
0377
0378

037C
037E
0380
0383
0385
0388
0389
038B
038C
038F

0391
0393
0395
0397

039B
0390
039F
03A2
03A3
OJA5

033E
0341
0343

03A6

03A9

,')3A9
03AC
OJAE
03BO

03B2

03B2
0185
03B7
03B9

03BB

03BB
0380
03RF
0.3C2
03C4

03C8

03C8
03C7

03U
0349
034E
0351
0353
0356
0357
0359

033B
033C

748
749
750
751
752
753
75'
75~

7:'/l
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
He
787
788
789
790
791
792
793
7Y4
795
796
797
79d
799
800
801
802
803
804
805
8ce
807
808
S09
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

Driver Writer's Guide F-43

RS-232 Mouse Driver

;.~..,.•••......•..................•............•.....

: "'ain opcode out of range of .POID functions supported
; just return RS_UNSUPPORTED

.ubttl POlO Main entry point
page
:~~~T~ ~~Ig~~tv~=:nothing

NOTE •••• No driver header for POlO ••••
Only 2 functione are .upported: F_ISR. F_SYSTEM -- all other. are unsupported

;Diseble interrupts while working on stack frame
;Get address of old stack storage
,Restore stack pointer

Get old stack segment
And restore 11

;Re-enable interrupts

ah.RS_UNSUPPORTEDmov
ire t

EXIT

ENDP
ENDP

SI.OFFSET STACK_PTR
SP. [SI]
SI ,2

~~:HIl

AX. 0
ES. AX
ES. ES !HP ENTRY • 4 + 2]
ES ES V [HPMeUSE+4]
BytE PT rS:MSENUM BUTTON,3 ;Defi"e the number of button. to 3AX - -
ES

DI.DWORD PTR REQ HDR OFF .Reload ES:DI with addreJl of request header
ES [DII.RH END orF .0rFSET END OF DRIVER ,Return end of resident code to
ES:[DI .RH::::END::::SEG,CS - - ;MS-DOS

STACK FRAME AND EXIT

pgid_driver proc near
cmp ah.F ISR F- ISR?
j ne cheCK f system
call pgid_Isr
i ret

c hec k_f _sy. tim'
cmp ah . F SYSTEM F- SYSTEM?
jne pgid::::opcode_bad
call pgid_Iystem
ire t function hIS .. t ret u rn code

pgid_driver endp

; ••• FUNCTION HEAg~~: ••

NAME POID_ISR

FUNCTIONAL DESCRIPTION

P!Y:t
.•••DRIVER HEADER •• ••••• ••••••••• • ••••••••••••••••••••••••• • •••••••••••

NAME: POlO_DRIVER

DE SCR I p'r ION

LII~h~~eF~~~~f?~~. n~:u~~:t~~ ~~~eN6~ ~~~~ORTED.
F ISR
F::::SYSTEM

PARAMETERS
See function headers for specific values for other entry and exit
pa r ame t e r s

REOISTERS PRESERVED:

DEFINITION MODIFICATION ~ISTORY

VERSION:

DESCRIPTION OF CHANGES:

MeV
MeV
MOV
MeV
MeV
POP
POP

LES
MeV
MeV

.RESTORE OLD

CLI
MeV
MeV
ADO
MeV
MeV
STI

JMP

DEV INTERRUPT
DEV::::ORIVER

03FF
03FF 80 FC 00
0402 75 04
0404 E8 0414 R
0407 CF

0408
0408 80 FC 02
0409 75 04
0400 E8 0496 R
0410 CF

0411
0411 84 02
0413 CF

0414

03C8 88 0000
03C8 8E CO
03CO 26 8E 08 018E
0302 26 8E 06 0000
0307 26 C6 06 004C 03
0300 58
03DE 07

030F 2E C4 3E 0050 R
03E4 26. C7 45 OE 0401
03EA 26: 8C 40 10

03EE FA
03EF BE 0124 R
03F2 88 24
03F4 83 C6 02
03F7 88 04
03F9 8E 00
03F8 FB

03FC E9 029E

03FF
03FF

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
888
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

F-44 Driver Writer's Guide

RS-232 Mouse Driver

0419
0419 80 FE 40
041C 74 3E
041E 80 FE 41
0421 74 39
0423 80 FE 42
0426 74 08
0428 80 FE 43
0428 74 03

042D B4 FE
042F C3

relltlve 8 bit movement

relat ive 16 bl I movement

relurn RS FAIL
return lo-main drlver

D TYPE • T KC BUTTON 7
lajulI D_STATr & D_TRANSITION

Ibsolule 8 bll mo~ement

Ibsolute 18 bil movement

near

dh,T RH08
, h 0 r T rei mo ve
dh, T REUS
s h0 rT rei mo ve
dh, T ASSOI
shorT Ibs move
dh.T ABS1S
Ihorf Ibl_move'

dh T KC BUTTON
.horT button_ilr

page
proc

cmp
je

cmp
J e
cmp
J e
cmp
j e
cmp
je

See if thlS was I butlon event

Ablolute movement

mov Ih,RS_FAIL
re t

...............~=!: .

If none of Ihe Ibove device., then Ihll il I bid inpul devlce

xc h9
sub
neg
mov

PARAMETERS

ON ENTRY
AH • F ISR
DH • D-TYPE
DL • SOURCE Vector Ind.x

For B~~t~n Ev:~~nl~~y~~d:hl~;~:lR~~~~~~h·ig:~Y~~d.d~~~C:~~T~~~lrd
BX. Button tran,itioninformation

bits 0 8 buttonl
bill 7 C up transition

1 down tran.illon
For Mov.m.nt Event IGID Ev.nt Record, D_TYPE • i-:~~g:: ~/~LUS16)

BX. AXIS-O (X) Mov.m.nt in RAW data form-(SIGN EXTENOED, It necessarYl
CX. AXIS-l (Y] Movement in RAW data form 1SIGN EXTENDED, If neceslary

ON EXIT
AH • Return Code (SET BY PARENT Driver)

REGISTERS ALTERED aX,bx,cx

DEFINITION MODIFICATION HISTORY

VERSION

DESCRIPTION OF CHANGES

A movement occurred If IhlS was In absolute device
t ha I mo ved, the n I dIu I I the re 11 I lV e 10 c I I 10 n f le 1d 1nih e d. sc r 1be r ec 0 r d
If il was I relltive devlce, then IdJust the Ibsolute locltlon field
ln Ihe descrlbe record

8X,CX hive X,Y movement relpectively

................................•.•.................•..•.........•.....

We mUll invert the Y l~lS to put into INDUSTRY STANDARD coordlnlte Ipace
Mu. t con vert 'Y' coo r din I t e 'u c h t hI I neg I I i ve mo ve me nt 11 upw ar d (0 PP0111 e

of HP-HIL definition)
-- Set Bll ,CX lx, y ABSOLUTE move",ent) fo r event reco rd when done, I hen p...

event record to plrenl driver

(BX) is 'X' HP-HIL coordinlle
ICX) il 'Y' (ABS Ylltd) • D SIZE Y - ABS_Y(hphil) I.......•....•......•.;...... - -

cause~ ~~a~h~~~ ~~p~~s~evlI~ ~~;D~v~~rS~~:lae~~~:o~a~r~~~~r;~~nWhlCh
the D STATE-and D ~RANSITION fle1ds will be adlulted and the parent
drlver wll1 be called immedlately

If a the event wal a movement, thll functlon will update the
absolyte position field if the device lS a relatlve d,vl~e or wl11

:~1~t:h:~eC;!ta:~:ep~~~~}i~~i~~~1~01~a~~1::~ea~:~~:::td::~~; It
• •• 111 .

NOTE The PGID driver takes HP-HIL Y' axls data and translates
lt lnto INDUSTRY-STANDARD I~ac. data (fllps the Y a~il)

, ~~D~~~R~~~Tgoli~i~~wn~~r~n h. upward direction, whlle
.... * Ill It It III III ••• III lit It

80 FE 09
74 57

87 IE 0014
2B 1E 0014
F7 DB
89 1E 0018

0414

0414
0417

0430
0430
0434
0438
043A

933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Driver Writer's Guide F-45

RS-232 Mouse Driver

0450
0450 89 1£ 0018
0460 F7 09
0462 89 OE 001A

0466 01 1£ 0014
046A 01 OE 0016

046E EB 10

SPACE

~:~~nf~;e~~CI~~R function

relurn to m.ln dr1v.r

STANDARD coordlnate .pac.
movement 1. upw.rd (oppo'lle

record when done, th.n pa ••

, ok to pa'i event 10 parent

~O~eE~;WTO·~ND~~T~Y(~tD
lave new rei, move (Y)

add new X r.lallv. mov.ment
.dd new Y r.l.llve movement

inverl for cl.arlng the bit
clear Ih. button 10 0 (down)

(~~E~~~~ ~~~n~_tju~~r~~~ ~~~"Iary)

, b11 7 i. up (1), down(O) b1t

, g.t button' k.ycod. ln CL for ~hlft

; keep but ton', g.t r ld of up/down f laV
;put l'lnb1100fal
; ,.t approprlate button blt milk

bX,dl DABS X
cX,d,O-ABS-Y
,horl gIve_fo_parenl

cl, bl
cl 011111118
al,000000018
ai, c 1

100000008

al
dl D STATE, al

dl D REL_X, bx
c x
d I D.R ELY, ex

dl DABS X,bx
dl D:-ABS_~V,c x

dl D STATE,al , •• 1 the button. 1 (up)
'horf gIV._to_par.nt ok to pa••• vent to parent

nol
and

mov dl D_TRANSITION,.l note which button ch.nged

tul bl ,UP DO\oIN BIT , [bit 7] Was 11 UP • 1 or down' 0
j: Ihorl-bull~n_down

mov bcdl D- SIZE - Y 'Y' lim1 t
sub b x, c x 1nve r t the ull: bx . (LIMIT y)
xc hg bX,dl DABS Y New ABS Y
lub b x, ds O:::ABS:::Y ~ OLD - NEW)
neg bx elallve move • INEW - OLD)
mov ds D_REL _X, c x s Ive new V rela t ve

mo~

and
mov
Ihl

or
jmp

jmp .hort glve_t,o_parent
p ag.

add
add

mov
n.g
mov

.qu

Assum1ng

fall through to OIVE TO PARENT code
jmp 'giv._to_par.nl
page

ok 10 pais event 10 parent now

Only one bullon can make a tranlitlon .t a tlme

~:·s~~~~:; :~l~u:::~:r.~:·:.~r 1~Xd~:~il~:: ::~~l'ble)
BL 15 number of button thai ch.ng.d

bIt 7 1, the up/down (1/0) flag

Relallve Movemenl

- --------- .. --- ---------_ .. -- .. _------- ---
; ok to pa •• ev.nt to parent

mov
mov
Jmp
page..................•....•..•

Button Pr&sl/Rel&a,. ISR
AdJust the D_TRANSITION and D__ STATE f1eldl of the phYllcal devic.',
desc r lbe ree 0 rd

Call PARENT drl~er to handi& the ISR
NOTE HPHIL drl~ar hll alr.ldy adju.tad D SOURCE field, HPHIL ID and other

rele~ant HPHIL 1nfo before plssing Ihe .vent up 10 here -

GET Ihe X,Y ab,olulecoord~nales for Ihe event record

BX,CX .1111 contaln X,V relatlv. mov.m.nl ~nformal10n for the event r.cord

mov
mov
INT
r.t

p9 I d_lI r end p

.ubtll POIO.SYSTEM function

W. mUlt inv.rt the Y axil to put lnto INDUSTRY
Mu, t con vIf t 'V' coo rd 1na Ie I Uchi ha In. g I t1 ve

of HP-HIL d.flnltion)
-- Set BX,CX (=~~n~E~:J~~~ r~v~=~:~1 ~~rv:~ent

(BX I 11 'X' HP-HIL coo rdlnat e,
.!~~.. ~:.~!~ .. !.~~~;:!:~~! .. -REL_V(hphll1]

but lon __down

buI ton 1s r

UP _DO\oIN_BIT

: Conv&rt button numb.r to b11 malk corr.sponding
to Ih. chang.d bulton

B4 00
8B 2E OODA
CD 6F
03

• 0080

0470

0470 8A OB
0472 80 El 7F
0475 BO 01
0477 02 EO

0479 A2 OOOC

0470 F6 03 80
047F 74 06
0481
0481 08 06 0000
0485 EB 06
0487
0487 F6 DO
0489 20 06 0000

048D
0480
048F
0493
:}495
0496

043E 88 lE 0012
04;42 2B 09
0444 87 lE 0016
0448 2B 1E 0016
0440 F7 OB
044E 89 OE 0018

0452 88 lE 0014
0456 8B OE 0016
045A EB 31

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1[,71
1[; 72
1013
1074
1075
1076
1077
1078
1079
lObO
1081
1082
1083
1084
1085
1086
1887
lC88
1(;89
1090
1G~ 1
1092
10(lJ
1094
1095
1096
1087
lG98
1099
11,;0
1101
1102

103
104
j 05
lG6
107
108
109
110
111
112
11 J
114
115
l16
117

F-46 Driver Writer's Guide

RS-232 Mouse Driver

: POID_SYSTEM subfunct10n Jump table

; check bounds
; out of range 1

; save bx, .. t bp·subfunct10n code (al)

nea r

al,MAX POID SYS FN
short pgid_Iys_Dad

~t~i
bh,bh
bp.bx

cs:word ptr pg1d_sys_case[bp]

ah~RS UNSUPPORTED , bad lubfunct10n code
- . return to maln drlver

word ptr pgld_lnit SF INIT
word ptr pgld_start SF:::START
word ptr pgld Itate ,SF REPORT STATE
word ptr pgld-vers1on : SF-VERSION DESC
byte ptr IS - pgld_.ys_cas. ~ 2) ; mix supported sys fn.

mOil
re t

page
proc

cmp
J a

Me hg
mOil
xo r
xc hg

Jmp

dw
dw
dw
dw
equ
.ndp

This function supports the HP SYSTEM subfunctions r.quested of
the POlO driver The subfunction 1s check.d to make sure that it
is in the appropriate range

NAME:

PARAMETERS

ON ENTRY
AH • F SYSTEM
AL • SYSTEM subfunct10n code

F SYSTEM Subfunct10ns (in hex):
S; INltfUnct10ns not included ar. UNSUPPORTED)

SF-START
SF-REPORT STATE
SF:::VERSIO'CDESC

ON EXIT

~~~u~~~~p6~~:6 ;1!le~eS~~i~~~~ao~~ i~~ ~~~~~~c;!~~r~:dout of range.

REGISTERS PRESERVED:

DEFINITION MODIFICATION HISTORY

VERSION:

DESCRIPTION OF CHANOES:

FUNCTIONAL DESCRIPTION

h.ad.~y:~~md:~~~~~~t~~~o~~~IN~i IS ~~~0~:61f~AihTH~h~~~I~lD~i~~~·HAS
~~~~I~~I~~~o:~Lo~~~R~~~I~~~e~~~? ~~~~~Drnfo ~;la~~:;~;ofli~~db~~ton
Only mUlt .. t d.fault but ton ltat .. (all off (·1) I.

PARAMETERS

ON ENTRY
AH • F SYSTEM
AL • SF"_INIT

ON ~~I~·R.turn Itatul IRS~SUCCESSFUL)

REGISTERS ALTERED: ax

DEFINITION MODIFICATION HISTORY

VERSION:

; ••• FUNCTION HEAgEa~ ••

NAME PGID_SYSTEM

FUNCTIONAL DESCRIPTION

MAX POID SYS FN
pg1"o_sYIT.m -

subttl POID_INIT SYltem Subfunctlon
.••• FUNCTION HEAgEa: ••

0496

0496 3C 06 90 90
049A 77 00

049C 87 EB
049E 8A 08
04AO 32 FF
04A2 87 EB

04A4 2E FF A6 04AC R
04A9
04A9 B4 02
04AB C3

04AC
04AC 0484
04AE 04BC
0480 048F
0482 04C2
• 0006
0484

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1132
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1:;>05
1206
1207
1208
1209
1210

Driver Writer's Guide F-47

RS-232 Mouse Driver

FUNCTIONAL DESCRIPTION
System subfunction SF VERSION DESC R~port the verslon

number of the drivlr (USI-Stlndlra system vlrslon number)

PARAMETERS

ON ENTRY
AH • F SYSTEM
AL • sr. VERSION DESC

III buttons open

Thl1 doel nothlng

OFFh

nelr

nelr
equ

ds-D_STATE,INIT_BUTTON_STATE III off

ah.RS SUCCESSFUL; successful 1n1tl111ZItlon
- ; return to mlln dr1ver

proc

POID_ STATE

mov

proc nelr
mov ah.RS UNSUPPORTED . functlon not lupported
rlt - . return to mlln drlve,

:~gftl POlO_VERSION System Subfunct10n

HEAg:~:••••••••~ •••

POID _VERS ION

NAME

FUNCTIONAL DESCRIPTION

but r~~~~~mw~~~f~~~~0g2E~~re[ART-- start thl driver

PARAMETERS

ON ENTRY
AH • F SYSTEM
AL • Sr_START

ON EXIT
AH • return stltus (RS_SUCCESSFUL)

REGISTERS ALTERED Ih

DEFINITION MODIFICATION HISTORY

VERSION

DESCRIPTION OF CHANOES

FUNCTIONAL DESCRIPTION

Systlm aubfunction PGID_REPORT_STATE -- rlport the stltl of thia
drlver (NOT SUPPORTED)

PARAMETERS

ON ENTRY
AH • F SYSTEM
AL • Sr_REPORT STATE

ON EXIT
AH • return stitul (RS UNSUPPORTED)

REOISTERS ALTERED Ih.d.

DEFINITION MODIFICATION HISTORY

VERSION

DESCRIPTION OF CHANOES:

. • .. FUNCTION

NAME

mov ah,RS~SUCCESSFUL; luccessful atlrt up
rlt return to mlln drlver

P91d_stlrt :~gftl POlO_STATE Systlm Subfunctlon

;···FUNCTION HEAgEI: ••

DESCRIPTION OF CHANGES

mov
ret

:~~ftl POlO_START System Subfunctlon

.••• FUNCTION HEAg~~: ••• ~••

NAME: POlO_START

pgld ln1t proc
INIT:::BUTTON STATE

04BF
04BF B4 02
04Gl C3
04G2

04BG

04BC B4 00
048E C3
04BF

04B4
• OOFF

0484 C6 06 0000 FF

04B9 B4 00
04BB C3
04BC

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
12 J 1
1232
1233
1234
1235
1236
1237
1218
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1278
1277
1278
1279
1280
1281
1282
1283
1284
1285
1288
1287
1288
1289
1290
12'11
12~2

1293
12 9 4
12!lS
: 296
1297
1298
1299
1300
1301
1302
1303
!lCl4

F-48 Driver Writer's Guide

RS-232 Mouse Driver
ON EXIT

AH • RS SUCCESSFUL
lothers) lie hp_IYltem_version functlon

1lII**.-. ••••• ** •••••••• ** •••••• *********.* ••••••• *** ••••••••••••••••••••••••••
END_OF_DRIVER

;LOCAL STACK USED DURING INITIALIZATION

DB 64 DUP (0)

REGISTERS ALTERED ah.es.dl

DEFINITION MODIFICATION HISTORY

VERSION

DESCRIPTION OF CHANGES

nea r
ah. RS SUCCESSFUL
bx. 5215H
ex. VERSION LEN
CI -
el
dl. cs:VERSION LAB

- ; return to paID maln driver

proc
mov
mov
mov
pUlh
pop
lea
re t
endp

STACK TOP
CODE - ENDS

END

13C5
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1315
1317
1318
1319 04C2
1320 04C:: B4 00
1321 04C4 BB 5225
1322 04C7 B9 0010
1323 04CA DE
1324 04CB 07
1325 04CC 80 3E 0099
1326 04DO C3
1327 0401
132 8
1329
1330
1331 0401
1332
1333
1334
1335 0401 40 [
1336 00
1337
1338
1339
1340 0511
1341 0511
1342
1343

• fields
Width Mask Inl t lal

0008
0001 8000 0000
0001 4000 0000
0001 2000 0000
0001 1000 0000
0001 0800 0000
0006 OHO 0000
0001 0010 0000
0001 0008 0000
0001 0004 0000
0001 0002 0000
0001 0001 0000
0017

Structures and records

N a m e Wldth
Shift

0010
OOOF
OOOE
0000
OOOC
DOGS
0005
0004
0003
0002
0001
0000
0020
0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
0008
OOOC
0000
OOOE
0010
0012
0014
0018
0018
OOlA
ODIC
DOlE
0010
OOOF
OOOE
0000
oooe
0009
0008
0007
0008
0004

0000
0001
0001
0001
0001
0003
0001
0001
0001
0002

8000
4000
2000
1000
OEOO
0100
0080
0040
0030

0000
0000
0000
0000
0000
0000
0000
0000
0000

Driver Writer's Guide F-49

RS-232 Mouse Driver
PSHARE
CSHARE
ROt-4
B

HP HEADER
DH ATR
DH--NAME INDEX
DH-V DErAULT
DH-P·CLASS
DH··C CLASS
DH- V--PARENT
DH-VnCHILD
DH-M~JOR

DH-MINOR
REQ READER

RR LENGTH
RH- UNIT CODE
RH CMD CODE
PH STATus
RH RESERVED
RH- UNI T CNT
RH--END OFF
RH--END-SEG
RH BPB
RH DRIV

STATOS
ERROR
Z
BUSY
DONE
ERR TYPE

0003
0002
0001
0000
0010
0000
0002
0004
0006
0008
OOOA
OOOC
OOOE
OOOF
0017
0000
0001
0002
0003
0005
0000
OOOE
0010
0012
0016
0010
OOOF
OOOA
0009
0008
0000

0001
0001
0001
0001
0009

OOOA

0005
0001
0005
0001
0001
0008

0008
0004
0002
0001

8000
7COO
0200
0100
OOFF

0000
0000
0000
0000

0000
0000
0000
0000
0000

Segments and Groups

N a m e

CODE

Symbols

S1 ze

0511

Align

PARA

Combine Clu.

PUBLIC 'COOE'

N a m e

ABS MOVE
BAD CMD
BISIl2
BuTTON DOWN
BUTTON ISR
BUTTON TAB
BUTTON UP
CHECK r SYSTEM
CMD TAB[E
COM MSG
COM- NUMBER
CR
DEBUG
DE'. ATTP
DEV DESCRIBE
DEV-DRIVER
DEV HEADER
DEV_ INTERRUPT

DEV STRATEGY
DOS ENTRY
DRIVER ATTR
DRIVER NAME
E/,;D OF DRIVER
EXIT
FALSE
FRAME COUNT
F INOUIRE ENTRY
F-I/';S BASrHPvf
F-INS XCHGFREE
F-ro CONTROL
F I sP
F StSTEM
GIVE TO PARENT
HPHI[ADD
HPHIL TABLE
HP ENTRY
IC 1
re 10
IC -2
IC"3
rC4
IC 411
INIT 3
INIT BUTTON STATE
IN r T-CODE
INIT EXIT
I/';IT "'0 PORT
I/';IT-NO"VECTOR

Type

NEAR
N~AR

NEAR
NEAR
NEAR
BYTE
NEAR
NEAR
1oI0RO
BYTE

L \oIORD
Number
A11u
Number
L 0020
F PROC
L aGIO
F PROC

F PROC
Nurrber
L \oIORD
L BYTE
L '~f. AR
L NEA.R
Number
L WORD
Number
N~mber

Number
Numb e r
Number
Number
L NEAR
L BYTE
L BYTE
Number
L NEAR
L NEAR
L NE AR
L NEAR
L NEAR
L NEAR
L NEAR
Number
L NEAR
L NEAR
L NEAR
L NEAR

Value

0430
0292
OlFA
0487
0470
01 F 7
0481
0408
0152
OOCI
0128
0000
TRUE
AC18
0030
0000
0020
0210

02~5

C021
0004
OOOA
0401
029E
0000
013A
DOOC
0004
OOOA
0004
0000
0002
0480
0150
0142
DOH
02C8
0363
OZDA
02EF
02F6
0314
037C
OOF F
02A7
03C6
03B2
03A9

At t r

CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
COOE

COOE
COOE
COOE
COOE

CODE

CODE
CODE
CODE
CODE

CODE

CODE
CODE
CODE

CODE
CODE
CODE
CODE
CODE
CODE
COOE

COOE
COOE
CODE
COOE

Length -03FF

Length -018F
Length -0008

Length -OOOE

F-SO Driver Writer's Guide

RS-232 Mouse Driver
INIT OK NioAtl 0388 CODE
INT [NT WORD 0008 CooE
INT~TABLE WORD 012A CODE
LAST" SYNCH L BYTE 0141 CooE
LF Number OOOA
MASK TABLE L WORD 0132 COOE
MAX PGIDSYS FN E BYTE 0006
'·1BUTTON L NEAR 0108 CODE
"'lBUTTON DOWN L NEAR 01E6 CODE
MBUTTON ISR L NEAR OlE8 CODE
MBUTTON UP L NEAR 01E2 CODE
M"'OT BUTTON L NEAR 0211' CODE
MOUSE INT L NE AR 0172 CooE
MOVEMrNT ISR L NEAR 0419 CooE
MSO BAD LENGTH Number 0005
MSO-BLO'BPB Number 0002
MSO 'CRC ERROR Numb e r 0004
MSD'DEV'CLOSE Number OOOE
MSO-DEV OPEN Number DODD
MSO=GEN FAILURE Number OOOC
MSO INIT Number 0000
MSD=INPUT Number 0004
MSO IN FLUSH Number 0007
MSO~'INNOWAIT Number 0005
MSO =IN=STATUS Number 0006

MSO IOCTL IN Numbe, 0003
MSO-IOCTL -OUT Numbe, OOOC
MSO ~MEO IA -CHK Numbe, 0001
MSO-NOT R~Y Number 0002
MSO-OUTPUT Numbe, oooa
MSD~OUT FLUSH Numbe, 0008
MSO-OUT-STATUS Numbe, DaDA
MSO-OUT-VERIFY Numbe, 0009
MSO~PAPrR OUT Numbe, 0009
MSD-REAO F'AULT Number 0008
MSD-REM ~EDIA Numbe, 0001'
MSO-SEC-NOT FOUND Numbe, 0008
MSD-SEER: ERlfOR Numbe r 0006
MSO -UNKNOWN CK> Numbe, 0003
MSO -UNKNOWN~'MED IA Number 0007
MSO -UNKNOWN -UNIT Numbe, 0001
MSO'WRITE F~ULT Number DaDA
MSOWR I TE -PROT Number 0000
MSE-NUM_8UTTON Number 004C
MSI-l L NEAR 01A2 COOE
MSC2 L NEAR 0185 CooE
MSI-3 L NEAR 0225 CooE
MS r::4 L NEAR 0230 COOE
MSI 5 l NEAR 02eO COOE
NO l'ORT MSG l BYTE 00C8 CODE
NO-VECTOR l BYTE 0103 CODE
OK-MSO l BYTE 00A8 CooE
POlO DRIVER N PROC 031'1' CODE Globel .6~3Ith -0015
PGID=INIT N PROC 04B4 CODE length
POID ISR N PROC 0414 CODE Length -0082
PG ID -OPCODE BAD L NEAR 0411 CODE
PGIO'~START N PROC 04BC CODE lang t h -0003
PGID~ STATE N PROC 04BF CODE lengt h -0003
PGIDuSYSTEM N PROC 0496 COOE length -OOlE
PGIDSYS BAD l NEAR 04A9 COOE
PGID'SYS-CASE l NEAR 04AC CODE
PGID'~VE cT NUM l BYTE 0151 CODE
PGID-VERSION N PROC 04C2 CODE length -0001'
PRINT STR Numbe, 0009
REL MOVE l NEAR 045C CODE
REO'-HDR OFF L WORD 0050 CODE
REO - HDR ~ SEG l WORD 00152 CODE
RH CMO UNE E DWORO 0012
RSDONt Number oooe
RS'FAIL Number OOFE
RSuNO VECTOR Number OOfe
RS-SUCCESSFUL Numbe, 0000
RS ~UNSUPPORTED Numbe, 0002
SF-MOUSE OVERRIDE Number 0002
SIGN ON ~SG l BYTE 0054 CODE
STAcR: pTR l WORO 0124 COOE
STACK SEG l WORD 012e Coof
STACK TOP L NEAR as 11 CooE
STRAT~ENT l WORD 0006 COOE
TEMP_BUFFER l BYTE Ol3C CODE length -00015
TRUE Number 0001
T A8S0S Number 0042
T"ABS16 Numbe' 0043
T~KC BUTTON Number 0009
T-RHoa Number 0040
T-RE116 Numbe, 0041
U~SUPPORT CM{) L NEAR 0292 CooE
UP DOWN BIT Number 0080
VERSION-LAB L BYTE 0099 Coof
VERSION'lEN Number 0010
V DOL ITTLE Number 0006
V- LHPMOUSE Number OOCC

Driver Writer's Guide F-51

RS-232 Mouse Driver
v SIN.PUT Number 002A
V:::SYSTEM Number 0012

40380 Bytes free

Warnlng Severe
Erro rs Er ro r $
0 0

A 203.
ABS MOVE 999 1001 10211
ATTll" 76. 263

B 2031
BAD CMD 613 1115 623.
BISll"2 498 502.
BUSY 92.
BUTTON DO'WN 1093 1097.BUTTON--l SR 984 1080.
BUTTON-TAB 496 499.
BUTTON:::UP 1094.

CHECK F SYSTEM 907 9111
CLK 761
CMD TABLE 3871 619
CODr 2531 253 255 898 1341COM MSG 3381 702
COM:::NUMBER 3601 432 691 1194 759
CR 145. 329 332 338 338 348 349 354 873CSHARE 2031

DEBUG SO.
DESCRIBE 166. 197
DEV 76.
DEVCFG 203.
DEV ATTR 2731 274
DEV-DESCRIBE: 284'DEV-DRIVER 2581 866
DEV-HEADER 274.
DEV-INTERRUPT 265 600. 8115
DEV-STRATEGY 264 5921 5Qfl
DH J;TR 153.
DH-C CLASS 157'DH--M}iJOR 160.
DH-MINOR 1611
DH-NAME INDEX 154.
DH·P CL}iSS 1561
DH-V-CHILD 159.
DH-V-DEF AUL T 155.
DH-V-PARENT 1581 1112DoNE- 92. 631
DOS ENTRy 140. 881 819 828 835DRIIJER ATTR 263.
DRIVER-NAME 266.
DABS X 190. 1022 1023 1037 1058D-ABS·Y 191. 1029 1030 1031 1059D-ACCOM X 194.
D--ACCUM-Y 195.
D--BURST:::LEN 182_
D-CLASS 175.
D-DESC MASK_ 1711D-"HPHI[1D 170.
D-1O MASK 172.
D:::MAX_AXIS 1741
D PROMPTS 1781
D-RD REG 184.D-RE[X 1921 1025 1032 1054D--REL""Y 193. 1056
D-RESrRVED 1811
D-RESOLUTlON 187.D·SIZE -- X 188.
D-SIZE Y 189. 1027
D-SOURCE 168.
D-STATE 186. lOllS 101111 1218D-TRANSITION 185. 10110
DWR REG 183.
D:::XDrSC_MASK 173.

END OF_DRIVER 850 13311
ENTll"Y 203.
ERROR 112_ 626
ERR TYPE 112.
EXIT 11311 863

FALSE 48. 49
FRAME COUNT 3711 439 452 460F INQOIRE ENTRY 220. 778
F-INS BASrHPVT 212.
F-INS-XCHGFREE 213. 793
F-IO CONTROL 2181 lOllF-IS!f 2161 521 570 1108 1111F:::SYSTEM 217. 1112

F-S2 Driver Writer's Guide

RS-232 Mouse Driver
GIVE_TO_PARENT 1039 1064 10all 1110.

HP 2031
HPHIL AOO 3821
HPHIL -TABLE 3781
HP ATTR 2031 273
HP-ENTRY 225. 524 573 781 7all 810 843 1113
HP=:HEAOER 1511 163

IBM 7111
IC 1 1170. 1180
IC-I0 772 773.
IC-2 1172 11821
Ie3 1175 1178 885 887 llU.
IC-4 692 61111.
IC-4A 713 7111
INTT 3

STATE
784 790.

INIT-BUTTON 121111 1218
INIT-CooE 387 11411
INIT-EXIT 820 127 137.
INleNO PORT 714 1221
INIT-NO-VECTOR 71111 8151
INIT-OK- 113 12al
INT E'NT 211S1
INT-TABLE 31121 780
IOCTL. 781
ISR. 2031

LAST_SYHCH 3781 482 483
LF lU. 3211 332 331 331 348 348 355 878

MAP CALL 2031
MASK TABLE

FN:
36111 770

MAX 'GIO_SYS 11511 11801
MBUTTON 475. 535
MBUTTON OOwN 480 4871
MBUTTON-I SR 485 4811
MBUTTON-UP 4821
MNEXT BUTTON 478 5321
MOUSE-INT 4121 783
MOVEME'NT ISR 9931
MSO BAD [[NGTH 1091
MSO-BLO-SPB. 1221
MSO-CRC-ERROR: 1011
MSO-OEV-CLOSE. 13U
MSO-OEV-OPEN 133.
MSO-GEN-FAIlURE: 11111
MSO""INIT 1201 812
MSO-INPUT: 12U
MSO-IN FLUSH 1271
MSO-IN-NOWAIT : 1251
MSO-IN-STATUS. 1261
MSO-IOCTL IN 1231
MSO-IOCTL-OUT: 1321
MSO-MEOIA-CHK. 1211
MSO-NOT RDY. 10111
MSO-OUTJJUT 1211
MSO-OUT FLUSH 1311
MSO-OUT-STATUS 1301
MSO-OUT-VERIFY 12111
MSO-PAPE'R OUT 1131
MSO-REAO rAUlT 1151
MSO-REM REDIA. 1351 814
MSO-SEC-NOT FOUND. 1121
MSO-SEEK ERlfOR 110.
MSD-UNKNOWN CMO 1071 827
MSD-UNKNOWN-MEOIA: 1111
MSD-UNKNOWN-UNIT 1051
MSD~RITE F~UlT. lUI
MSDWR ITE-PROT IOU
MSCNUM BUTTON 1991 145
MSI-l - Ul Ull 4501
MSI-2 454 ..591
MSI-3 4115 541.
MSI-4 550.
MSI=:5 UI 455 551 5711

NO PORT MSG 3401 824
NO-VECTOR 3501 817
NuL 781
OCREM 7111
OK __MSG 33U 133

PGIO DRIVER 787 899 11051 1128
PG 10- IN IT 11711 12151 1222
PGIO-ISR 908 9791 1115
PG IO -OPCODE BAD 1113 11221
POlO-START 1177 12521 12511
POlO-STATE 1171 121111 12 III
PGIO-SYSTEM 914 11571 1181
PGIO-SYS BAD 1160 11881
PGIO-SYS-CASE 1167 11751 1180
PGIO-VECT NUM. 3831 515 5118 80..
PGIO-V£RSToN 1179 1319. 1327

Driver Writer's Guide F-53

RS-232 Mouse Driver
PRINT STR 139. 880 818 825 83.
PSHARF: 203.

REL MOVE 995 997 1053.
REQ-HDR OFF 315. 593 610 Ull
REQ-HDR SEG 316. 594
REO-HEADER 56. 69
RH BPB 66. 71
RH-CMD CODE 60. 611
RH-CMD-U NE 71' 667
RH--DR II] 671
RH-ENO OFF 641 850
RH-ENO SEG 65. 851
RH-LENGTH 581
RH-RESERVED 62.
RH-STATUS 611 828 627 831
RH·UNIT CNT 63.
RH-UNIT-CODE 59.
RO~

-
203.

RS DONE 239.
RS-FAIL 240. 1006
RS·NO VECTOR 241' 798
RS-SUCCESSFUL 2371 1220 1254 1320
RS:::UNSUPPOR TED 238. 783 1123 1169 1287

SF MOUSE OVERRIDE 223. 807
SIGN ON ~SG 318. 659
SPEC - 76.
STACK PTR 357. U8 a56
STACK--SEG 358.
STACK-TOP 651 IHOI
STATUS 92'
STOI 76.
STDO 76.
STR 203.
STRAT ENT 264.
SUBADD 203.

TEMP BUFFER 3721 450 461 542 544 546 548
TRUE- 49. 50
TYPE 203.
T ABSOS 232' 998
T ABS16 233. 1000
r-KC BUTTON 229. 514 983
TREl08 230. 99.
T:-RELl6 2311 564 996

UNSUPPORT CMD 388 389 390 391 392 393 394 395 396 397 398 399 400 401
402 6241

UP .DOWN BIT 1078. 1092

VERSION LAB 330. 333 1325
VERSION-LEN 333. 1322
V DOll TTLE 209. 274
V-LHPMOUSE 2221 274 808 844
V-SINPUT 215. 522 571 779
V:::SYSTEM 211' 794

76.

76.

92.

220 Symbols

50960 Bytes Free

F-S4 Driver Writer's Guide

Glossary

ACK - Acknowledge.

Adapter - A circuit board containing electronic circuitry that interfaces a peripheral to the system
processor board.

Adapter Card - See ADAPTER

Alphanumeric Display Mode - One of the Video Display Adapter modes. When this mode is selected, data
is displayed in character cells, organized in rows and columns on the screen.

Application Programs - Software that performs application-specific tasks. Word processors, spreadsheets,
and data bases are examples of application programs.

Barcode Reader - An input device that is used to scan surfaces containing barcodes. The barcode reader
converts barcodes into scancode data format, and transmits the scancodes to an input interface.

Baud Rate - The rate a signal changes state. When used with relationship to RS-232 ports, it is
synonymous with the data transfer rate, expressed in bits per second (BPS).

BCD - Binary Coded Decimal.

BIOS - Basic Input/Output System. The BIOS is the code module that contains the drivers that constitute
the software interface between the hardware, and system software and application programs.

Bootstrap - The process of initializing the system and loading system software after a reset.

BPS - Bits per second.

Bucket - A data structure used by the EX-BIOS string functions for alphanumeric string management.

CALL SYSCALL - Issues an HP·system call. This routine assumes that the EX-BIOS is enabled. When
first called, this routine will patch the first instruction IIJMP SHORT PATCH" to become "INT XXH"
where XXH is the current HP interrupt number.

Character Code - A word returned by the keyboard driver indicating a key stroke. The character code
consists of a keyboard scancode, and either an Extended (DOH) or ASCII character.

Checksum - An error-checking protocol used to verify the integrity of a block of data or code. Each byte
or word in the block is summed, then added to a checksum byte. The block of data or code is presumed
valid if this sum equals a predefined value, usually O.

Checksum Byte - A byte added to the sum of a block of code or data to produce a valid sum.

Child Driver - A child driver is called by another driver when that driver is unable to perform a function
requested of it. Child drivers perform lower level or more hardware-specific tasks than their calling
drivers.

Clipping - The process utilized when dealing with graphics coordinates outside of the logical coordinate
space. The Input System clips coordinates so that they don't exceed the boundaries of the logical
coordinate space.

Glossary 1

CMOS Memory - RAM memory on the Processor Board that is powered by both the system power supply
and battery. When the system power is turned off, the contents of the RAM memory are preserved by the
battery.

Code Module - A group of related processor instructions.

Code Segment (CS) - The segment address of the code module currently being executed.

Compatibility Function Keys - The 10 function keys labeled FI-FI0 on the keyboard. The HP Function
keys (fl-f8) can be mapped to emulate their respective Compatibility Function keys (FI-F8). See also
HP FUNCTION KEYS.

Coprocessor - An add-on processor that works with the CPU (Central Processing Unit) found on the
Processor PCA. The 80287 (Vectra ES), the 80387 (Vectra QS and RS), and the Weitek coprocessor
(Vectra RS only) are examples of specialized coprocessors for floating point arithmetic.

CRC - See CYCLIC REDUNDANCY CHECK CHARACTER.

CS - See CODE SEGMENT.

Cursor Control Keypad - The keypad containing the HP cursor control keys.

Cylinder - A term used with multi-platter disc mechanisms, a cylinder is a group of sectors having the
same track number on each of the platters.

Cyclic Redundancy Check Character - Character used as a redundant character for error detection in
various modified cyclic codes.

Daisy Chain - A method of linking devices together in a serial configuration. Input devices on the
HP-HIL loop are connected in a daisy chain.

DASD - Direct Access Standard Device.

Data Segment (OS) - The segment address of the data currently being accessed.

Data Structures - A related group of data fields.

Describe Record - A data structure utilized by the Input System which contains information
characterizing an input event.

Device - A physical piece of hardware, e.g., a Touchscreen, mouse, keyboard, dot matrix printer,
ThinkJet, or LaserJet.

Disc Partitions - A group of cylinders within a hard disc volume allocated to a specified operating system,
and its associated programs and data.

Disc Volumes - A group of cylinders comprising a logical disc. The optional 20 Mbyte hard disc contains
a single volume. Optional hard discs greater than 32 Mbytes in size must be divided into two or more
volumes of up to 32 Mbytes each.

Divide By Zero Interrupt - The CPU executes this interrupt any time a divide-by-zero operation is
attempted. The vector to the service routine for this interrupt must be stored in memory locations
0000:0000H-0000:0003H.

DMA - Direct Melnory Access.

2 Glossary

DOS - Disc Operating System.

DOS Installable Device Driver - A device driver designed to be dynamically installed by DOS. DOS
installable device drivers may be used to add EX-BIOS drivers to the system.

Driver - Code that interfaces to either a physical device or another driver.

Driver Header - A data structure contained in the data area of each EX-BIOS driver. The driver header
contains data fields that specify the attributes, mapping, and other parameters of the driver.

os - Driver Segment.

EGA - Enhanced Graphics Adapter.

EOJ - End Of Interrupt.

EOT - End Of Track.

EX -BIOS - Extended BIOS. A set of HP proprietary drivers that provide support for various system
features.

Extra Segment (ES) - The segment address of the extra data segment currently being accessed.

FAT - File Allocation Table.

FDC - Flexible Disc Controller.

Functions - Code modules within a driver that perform specific tasks. Individual driver functions are
selected when a driver is called.

Function Keys - The keys (F I-F 12) on the Vectra Enhanced keyboard. See also HP FUNCTION KEYS,
and COMPATIBILITY FUNCTION KEYS.

GOT - Global Descriptor Table.

GID - see GRAPHIC INPUT DEVICE.

Gra.phic Display Mode - A video display adapter mode in which all positions on the screen are addressable
as pixels.

Graphic Input Device - An input device that generates positional and/or button state data. A mouse,
tablet, and touchscreen are examples of graphic input devices.

Graphics Sprite - See SPRITE.

Hardware Interrupts - Requests for interrupt service generated by the hardware components.

Head - The magnetic device that reads and writes data from a disc drive. Disc drives have a head for
each recording surface in the mechanism. A flexible disc has two heads, while a hard disc head count can
vary depending on the drive being used. The optional 20MB disc has two platters and four heads.

Hexadecimal - Numbers expressed in base 16. Hexadecimal notation is used throughout this manual to
represent binary data. Hexadecimal digits are represented with the numbers 0-9 and letters A-F. The
hexadecimal numbers are indicated with an uppercase 'H' as their last character (i.e., 17H).

Glossary 3

UP Extensions - Additional functions added to industry standard drivers that support EX-BIOS features
and/or provide additional flexibility in programming industry standard system capabilities.

UP Function Keys - The function keys labeled fl-f8 on the Vectra Keyboard/DIN. These keys can be
mapped to return their own scancode, or they may emulate their respective Compatibility Function keys
(Fl-F8). See also COMPATIBILITY FUNCTION KEYS.

UP Global Data Area - A data structure located in the EX-BIOS Data Area containing variables common
to two or more EX-BIOS drivers. In addition, the stack used by the EX-BIOS drivers is located here.

UP_ENTRY_CODE - The code module that dispatches the EX-BIOS interrupt (default 6FH) to the
selected driver.

UP_ENTRY - The symbolic reference for the EX-BIOS interrupt (default 6FH). Always use a "CALL
SYSCALL II routine to call the EX-BIOS drivers.

UP-UIL Controller - The hardware that provides the electrical interface to the HP-HIL link and
supervises the communication protocol.

UP-UIL Link - The electrical interface and communication protocol utilized to connect HP-HIL input
devices. .

up-nIL Major Address - The primary address of an HP-HIL device. This is typically the link address of
the device.

UP-UIL Minor Address - The secondary address of an HP-HIL device.

UP-UIL Universal Address - Used to broadcast commands to all HP-HIL devices. The Universal Address
is implemented as Address 0 in the HP-HIL protocol.

UP_VECTOR_TABLE - A data structure containing the IP, CS, and DS of all EX-BIOS drivers. This
data structure is utili7ed by the HP_ENTRY_CODE to branch to the selected EX-BIOS driver.

Input System - A set of EX-BIOS drivers that service the input devices. The Input System supports the
HP Mouse, HP Touchscreen, HP Tablet and other HP-HIL input devices. It can be expanded to encompass
non-HP-HIL input devices.

Instruction Pointer - (IP) The offset from the base of the code segment of the next instruction to be
executed.

Interleave - The number of physical sectors on a disc drive skipped when reading consecutive logical
sectors on the same track. See also STAGGER.

Interrupt Service Routine - A code module, and its associated data structure(s) that responds to a
hardware interrupt.

Interrupt Vector - A data structure used by the CPU to branch to a service routine or an interrupt.
Interrupt vectors are located in the first 1024 bytes of system memory. Each interrupt vector occupies 2
words of memory and contains the IP and CS of the interrupt service routine.

IP - Instruction Pointer.

IRET - Interrupt Return.

IRQ - Interrupt Request.

4 Glossary

IS - Industry Standard. Also see INDUSTRY STANDARD.

ISK Event Record - A data structure used by the Input System which contains information characterizing
an input event~

KB - Kilobytes. 1024 bytes.

Keyboard - The physical keyboard.

Keyboard Controller (8042) - The 8042 keyboard controller. The 8042 provides industry standard
keyboard compatibility and serves as a buffer between the STD-BIOS keyboard drivers and the Input
System.

Keyboard Modifier - One of the special keyboard keys that modifies the interpretation of the other keys.
The keyboard modifiers are the <CTRL>, <A1t>, <Shift>, <Caps lock>, <Num lock>, and <Scroll
Lock> keys.

LED Mode Indicators - The LEOs located on the keyboard that indicate the state of the CAPS LOCK,
NUM LOCK, and SCROLL LOCK keyboard modifiers.

Logical Driver - A driver responsible for interfacing with the Operating System or application.

Logical Keyboard - A set of drivers within the Input System that service the physical keyboard.

MB - MegaByte. 1,048,576 bytes.

MASM - Microsoft Macro Assember.

MICKlES - The number of physical coordinates per inch reported by a mouse or other relative graphics
input device (GID).

Mouse - A graphics input device (GID) device that reports relative motion coordinates based on its
motion. A mouse will also report the state of its buttons.

MS-DOS - Microsoft Disc Operating System. See DOS.

Multi-Tasking - The ability of a CPU to perform multiple jobs or tasks simultaneously. Multi-tasking is
accomplished by dividing CPU execution time between the different tasks. If this task-switching is
performed quickly enough, the illusion of simultaneous execution occurs.

Numeric Keypad - The keypad containing numeric and modifier keys.

NMI - Non-Maskable Interrupt. This is a CPU interrupt line used to report system error conditions. This
interrupt is mapped by the CPU to Interrupt vector 02H.

NOP - No operation. A no-operation instruction causing the computer to do nothing except go to the
next instruction.

OBF - Output buffer full.

Operating System - The system software that provides access to system resources for application programs.
The operating system manages input and output, data and program files, and system memory.

Original Vectra PC - The precursor to the Vectra ES, QS, and RS series of computers. The original
Vectra PC simply had "Vectra" in red letters on its nameplate.

Glossary 5

Palette - The set of all possible colors the Video Display Adapter can produce. The Multimode Video
Display Adapter has a palette of 16 colors.

Parallel Port - An I/O port that transmits and receives data a byte at a time. The parallel ports are
typically used to interface to printers.

Parent Driver - A parent driver is called by another driver when the second is unable to perform a
function requested of it. Parent drivers perform higher level or more system software oriented tasks than
their calling drivers.

Physical Driver - A driver responsible for interfacing with the physical hardware.

Pixel - A dot on the screen in the graphics modes.

Polling - The process of periodically determining the status of a device. Polling is used to determine if
peripheral devices have data or are ready to accept data in non-interrupt driven systems.

POST - Power-On Self Test. The POST process is executed each time the system is powered on.

Processor Interrupts - Interrupts generated by the CPU processor in response to error conditions or
processor exceptions.

Protected Mode - One of the two modes that the CPU can operate in. The Protected mode provides
virtual memory addressing, in-chip memory management and protection, and task switching to support
multi-user, multi-tasking system software.

RAM BIOS - The interface between DOS and the ROM BIOS. It is dynamically loaded at system boot
with DOS.

Real Mode - One of the two modes that the CPU can operate in. The Real mode provides compatibility
with the 8086 family of microprocessors.

Real-Time Clock - A clock circuit that maintains the correct time whether the system is on or off. The
real-time clock is powered by both the system power supply and battery. When the system power is
turned off, the clock continues to operate from the battery.

Return Status Code - A code returned by the EX-BIOS drivers that indicates the status of the function
requested.

ROM BIOS - The set of EX-BIOS and STD-BIOS drivers. These code modules are contained in the base
ROM modules on the Processor PCA.

ROM Module - Code and/or data stored in an EPROM or ROM.

RS-232C - An Electronic Industries Association (EIA) standard for a serial data transmission interface.
Often used as a synonym for serial when referring to system ports.

RTC - Real-Time Clock.

Scaling - The process of adjusting physical graphics coordinates to fit in a proportionately larger or
smaller logical space. The Input System scales the coordinates received from a tablet to fit into its logical
space.

Scancodes - Codes returned by the physical keyboard to indicate key makes and breaks.

SDLC - Synchronous Data Link Controt.

6 Glossary

IS - Industry Standard. Also see INDUSTRY STANDARD.

ISR Event Record - A data structure used by the Input System which contains information characterizing
an input event.

KB - Kilobytes. 1024 bytes.

Keyboard - The physical keyboard.

Keyboard Controller (8042) - The 8042 keyboard controller. The 8042 provides industry standard
keyboard compatibility and serves as a buffer between the STD-BIOS keyboard drivers and the Input
System.

Keyboard Modifier - One of the special keyboard keys that modifies the interpretation of the other keys.
The keyboard modifiers are the <CTRL>, <Alt>, <Shift>, <Caps lock>, <Num lock>, and <Scroll
Lock> keys.

LED Mode Indicators - The LEOs located on the keyboard that indicate the state of the CAPS LOCK,
NUM LOCK, and SCROLL LOCK keyboard modifiers.

Logical Driver - A driver responsible for interfacing with the Operating System or application.

Logical Keyboard - A set of drivers withIn the Input System that service the physical keyboard.

MB - MegaByte. 1,048,576 bytes.

MASM - Microsoft Macro Assember.

MICKlES - The number of physical coordinates per inch reported by a mouse or other relative graphics
input device (GID).

Mouse - A graphics input device (GID) device that reports relative motion coordinates based on its
motion. A mouse will also report the state of its buttons.

MS-DOS - Microsoft Disc Operating System. See DOS.

Multi-Tasking - The ability of a CPU to perform multiple jobs or tasks simultaneously. Multi-tasking is
accomplished by dividing CPU execution time between the different tasks. If this task-switching is
performed quickly enough, the illusion of simultaneous execution occurs.

Numeric Keypad - The keypad containing numeric and modifier keys.

NMI - Non-Maskable Interrupt. This is a CPU interrupt line used to report system error conditions. This
interrupt is mapped by the CPU to Interrupt vector 02H.

NOP - No operation. A no-operation instruction causing the computer to do nothing except go to the
next instruction.

OBF - Output buffer full.

Operating System - The system software that provides access to system resources for application programs.
The operating system manages input and output, data and program files, and system memory.

Original Vectra PC - The precursor to the Vectra ES and RS series of computers. The original Vectra PC
simply had !IVectra" in red letters on its nameplate.

Glossary 5

Palette - The set of all possible colors the Video Display Adapter can produce. The Multimode Video
Display Adapter has a palette of 16 colors.

Parallel Port - An I/O port that transmits and receives data a byte at a time. The parallel ports are
typically used to interface to printers.

Parent Driver - A parent driver is called by another driver when the second is unable to perform a
function requested of it. Parent drivers perform higher level or more system software oriented tasks than
their calling drivers.

Physical Driver - A driver responsible for interfacing with the physical hardware.

Pixel - A dot on the screen in the graphics modes.

Polling - The process of periodically determining the status of a device. Polling is used to determine if
peripheral devices have data or are ready to accept data in non-interrupt driven systems.

POST - Power-On Self Test. The POST process is executed each time the system is powered on.

Processor Interrupts - Interrupts generated by the CPU processor in response to error conditions or
processor exceptions.

Protected Mode - One of the two modes that the CPU can operate in. The Protected mode provides
virtual memory addressing, in-chip memory management and protection, and task switching to support
multi-user, multi-tasking system software.

RAM BIOS - The interface between DOS and the ROM BIOS. It is dynamically loaded at system boot
with DOS.

Real Mode - One of the two modes that the CPU can operate in. The Real mode provides compatibility
with the 8086 family of microprocessors.

Real-Time Clock - A clock circuit that maintains the correct time whether the system is on or off. The
real-time clock is powered by both the system power supply and battery. When the system power is
turned off, the clock continues to operate from the battery.

Return Status Code - A code returned by the EX-BIOS drivers that indicates the status of the function
requested.

ROM BIOS - The set of EX-BIOS and STD-BIOS drivers. These code modules are contained in the base
ROM modules on the Processor PCA.

ROM Module - Code and/or data stored in an EPROM or ROM.

RS-232C - An Electronic Industries Association (EIA) standard for a serial data transmission interface.
Often used as a synonym for serial when referring to system ports.

RTC - Real-Time Clock.

Scaling - The process of adjusting physical graphics coordinates to fit in a proportionately larger or
smaller logical space. The Input System scales the coordinates received from a tablet to fit into its logical
space,.

Scancodes - Codes returned by the physical keyboard to indicate key makes and breaks.

SDLC - Synchronollii Data Link Control.

6 Glossary

Sector - A physical location on the disc where a block of data is stored. Disc surfaces are divided into
concentric rings called tracks. These rings are in turn divided into sectors.

Serial - To transmit data one bit at a time, serially. Used to indicate system ports that transmit data in
this fashion. See also RS-232C.

Single Step Interrupt - A processor interrupt generated after each instruction if the Single Step flag is set.
This interrupt is mapped by the CPU to Interrupt vector OIH.

Software Interrupts - Interrupts generated by the CPU INT 'n' instruction where 'n' is the interrupt
number.

Sprite - A graphics cursor. The sprite is controlled by the Input System V_STRACK driver.

SPU - System Processing Unit.

Stagger - Disc stagger is the track to track offset between logical sectors. Stagger increases disc
performance during sequential read operations by adjusting for track to track access time. See also
INTERLEAVE.

STD-BIOS - The set of drivers that execute the industry standard BIOS functions.

SYSGEN - System generation process.

System Software - See Operating System.

System Strings - Character strings stored in memory. Each EX-BIOS driver has a system string associated
with it. System strings are designed to provide a simple method for system software to access them. In
addition, their implementation provides a simple and effective method of localization.

Tablet - A Graphics Input Device (GID) that generates absolute graphics coordinates.

Timeout - An indication (for example, an interrupt) that indicates that a predetermined time has elapsed
waiting for an event to occur. Timeouts are used to prevent the system from hanging up waiting for an
event to happen that doesn't. For example, a timeout can be used to abort a print operation if the printer
does not return a ready status.

Timer Tick - An interrupt generated by the system timer. It is initialized to produce approximately 18.2
timer ticks per second.

Touch Screen - An HP Graphic Input Device (GID). Allows a user to input data by physically touching
the display screen.

Track - An Input System driver that moves a Sprite on the display screen in response to graphics motion
received from GID devices.

Tracking - The process of moving a Sprite on the display screen in response to graphic motion received
from GID devices.

Typematic Delay - The amount of time a key must remain depressed before the keyboard enters the
typematic or repeat mode.

Typematic Rate - The rate at which make scancodes are transmitted by the keyhoard when it is in the
typematic or repeat mode.

Glossary 7

Video Attributes - Video characteristics of characters displayed on the Video Display Adapter. Video
attributes include reverse video, blinking, underline, and high intensity. Video attributes only apply to
characters displayed in the alphanumeric modes.

8 Glossary

References

HP Vectra MS-DOS User's Reference Manual

HP Vectra MS-DOS Programmer's Reference Manual
--Discusses programming of the CPU using MS-DOS.

HP-HIL Technical Reference Manual
--Discusses the HP-HIL controller.
--Discusses the HP-HIL link.

HP Vectra MS-DOS Macro Assembler
--Reference for the assembler.

INTEL iAPX286 Programmer's Reference Manual
--Reference for CPU instruction set and architecture.
--Reference for the 80287 numeric processor.

INTEL 80386 Programmer's Reference Manual
--Reference for 80386 instruction set and architecture
--Reference for the 80387 numeric processor.

INTEL iAPX286 Hardware Reference Manual
--Discusses the 80286 processor.

INTEL 80386 Hardware Reference Manual
--Discusses the 80386 processor.

INTEL Microsystem Components Handbook, Volume II
--Discusses the 8254 timer chip.
--Discusses the 8042 keyboard controller chip.

INTEL Microprocessor and Peripheral Handbook, Volume I
--Discusses the 8237A DMA controller.
--Discusses the 82284 clock chip.

INTEL the 8086 Family User's Manual

Motorola Single Chip Microcomputer Data, Section C
--Discusses the MC 146818 real time clock/ CMOS chip.

Motorola 8-Bit Microprocessor & Peripheral Data
--Discusses the 6845A video controller chip.

NEC Electronics Microcomputer Products Data Book
--Discusses the 765A flexible disc controller chip.

The Peter Norton Guide to the IBM PC by Peter Norton, Microsoft Press.

Writing MS-DOS Device Drivers by Robert S. Lai, Addison-Wesley Publishing Co.

References 1

Index

8042 Controller 5-1
8042 Drivers 5-67
8042 Driver Function Definitions 5-47
8042 Interface Driver 5-29
8042 Keyboard Controller 5-51
8259A Interrupt Controllrrs D-4
8254 Timer Controller D-6
8259 Driver Functions 4-44
82C206 2-2
Accessing a Driver F-19
Access to CMOS Memory C-2
Adapter ROM Module IntegratIOn 9-18
Addresses, Parallel 6-1
Addresses, Serial 6- 1
Applications Programs 1-1
Application Event Drivers 4-8
Application Resident EX-BIOS Driver F-34
BIOS Drivers 2-5
BIOS Interrupts A-I
BIOS Version Number B-20
Base Memory Size C-6
Booting From a Flexible Disc 9-1 9
Booting From a Hard Disc 9-19
Boot Process 9-19
Boot Record 9-20
Buffer Pointers, Keyboard B-9
CMOS Memory Control 8-7
CMOS Memory Layout C-l
CPU 2-1
Cache 5-27,9-3,9-15,9-16, A-6
Calling Drivers 2- 6
Capability Marker B-19
Century Byte, Date C-8
Channel Controller, DMA D-2
Checksum Word, STD-BIOS C-7
Clock Rate, Processor B-18
Code Modules 2-1
Commands, 8042 Keyboard Controller 5-51
Communication Port Addresses B-2
Control Port, SPU D-7
Cursor 3-7
Cursor Control Keypad 5-4
DIN Keyboard 5-1
DIN Keyboard Drivers 5-28
DMA Channel Controller D-2
DOS Data Area B-14
Data Areas, Reserved B-14
Data Area, DOS B- 14
Data Area, EGA B-I0
Data Area, EGA (pointer to) B-13

Index 1

Data Area, Equipment Byte B-3
Data Area, Extended Flexible Disc B-ll
Data Area, Extended Hard Disc B-I0
Data Area, Flexible Disc B-6
Data Area, Global B-16
Data Area, Hard Disc B-9
Data Area, Keyboard B-4
Data Area, Option ROM B-8
Data Area, Real-Time Clock B-13
Data Area, Timer B-8
Data Area, Video Display B-7
Data Area Map, EX-BIOS B-15
Data ,Buffer, Keyboard D-6
Data Segments, Option ROM B-16
Data Structures, Disc 7-2
Data Structures, HP-HIL 4-39
Data Structures, I/O 6-2
Data Structures, Keyboard 5-3, 5-29
Data Structures, System Drivers 8-7
Data Structures, Video 3-1
Data Structure, STD-BIOS B-2
Data Structures, Overview 2-12
Date Century Byte C-8
Date Driver Functions 8-19
Default Device Mapping E-l
Device Drivers, Installation F-2
Device Driver Mapping 4-38
Device Emulation 4-39
Device Mapping E-l
Diagnostic Status Byte C-4
Display Modes 3-1
Disc Data Structures 7-2
Drivers, 8042 5-67
Drivers, BIOS 2-5
Drivers, System 8-1
Driver, Keyboard 5-14
Driver, Print Screen 6-2
Driver, Video 3-7

,Driver Data Areas 2-14
Driver Functions, EX-BIOS F-4
Driver Headers 2-15, F-14
Driver Mapping F-1 9
Driver Writer's Guide F-l
Drive C: C-7
Drive D: C-7
EGA Data Area B-I0
EX-BIOS 2-1
EX-BIOS Drivers A-8
EX-BIOS Driver Functions F-4
EX-BIOS Driver Initialization 9-18
EX-BIOS Driver Support 8-2
EX-BIOS Functions A-8
EX-BIOS Interrupts A-8
Enhanced Keyboard 5- 1
Equipment Byte C-6

2 Index

Equipment Byte Data Area B-3
Equipment Determination 8-1
Error Codes 9-4
Expander, Flexible Disc Data Area B-13
Extended Flexible Disc Data Area B-ll
Extended Hard Disc Data Area B- 10
Extended Memory Byte C-8
Extended Memory Size C-7
Extended System Support 8-2
Extended Video Functions 3-15
External Disc Drives 7-2
Flexible Disc Descriptor Byte C-5
Flexible Disc Data Rate B-I0
Flexible Disc Driver Functions 7-6
Flexible Disc Drive Support 7-1
Flexible Disc Operation T~hle 7-2
Flexible Disc Parameter Table 7-3
Flexible Disk Data Area B-6
Floppy (see Flexible)
Free Vectors F-4
Functions, BIOS 2-8
Function Keys 5-4
GID Drivers 4-2
Global Data Areas 2-16, B-16
Graphic Input Device 4-2
HP-HIL 4-1
Hardware Interface 4- 37
Hardware Interface Level Drivers 4-43
Hardware Interrupts 2- 2
Hard Disc Data Area B- 9
Hard Disc Driver Functions 7-11
Hard Disc Drive Support 7-1
Hard Disc Parameter Table 7-5
Hard Disc Type C-6
Hard Reset Enable Port D-8
Headers, Driver F- 13
High Extended Memory Byte C-8
I/O 6-1
I/O Data Structures 6-2
I/O Ports, Keyboard D-8
I/O Port Addresses (DMA Controllers) D-3
I/O Port Map D-l
ID, Vectra B-19
INT 10H 3-1
INT 13H 7-1
INT 19H 9-19
ISR, Keyboard 5-9
Identification, Keyboard 5-27
Initialization 9- 16
Initialization of Device Drivers F-2
Input Devices, Non-HP-HIL F-34
Installation of Device Drivers F-2
Interrupts, BIOS A-I
Interrupts, I/O 6-1
Interrupts 2-2

Index 3

Interrupt Controllers, 8259A D-4
Interrupt Vectors 2-1, 2-13, A-I
Intra-application Communications Area B-14
Keyboard 5-1
Keyboard Buffer 5-6
Keyboard Data Area B-4
Keyboard Data Buffer D-6
Keyboard Data Structures 5-3
Keyboard Drivers 5-3, 5-14
Keyboard I/O Ports D-8
Keyboard Interrupt Service Routings 5-9
Keyboard Layout Identification 5-27
Keyboard Mode Indicator B-l1
Keyboard Scancvdes 5-59
Keyboard Shift Flags 5-6
Keyboard Translators 5-34
Keyboard Buffer Pointers B-9
Keyboard Translators 5-28
LED, Keyboard 5-8
Logical Describe Record 4-3
Logical GID Drivers 4-8
Logical ISR Event Records 4-7
Logical Keyboard Driver 5-28, 5-31
Low Extended Memory Byte C-8
Machine Capability Marker B-20
Mapping, Driver F-19
Map, Data Area (EX-BIOS) B-15
Master Boot Record 9-20
Memory Allocation 9-17
Memory Layout, CMOS C-l
Memory Map, ROM BIOS B-17
Memory Map B-1
Memory Size C-6
Memory Size Determination 8-1
Modem Status Register 6-6
Mode Indicator, Keyboard B-l1
Mode Indicator 5-4
Multimode Display Adapter 3-1
NMI Sources D- 9
Non-HP-HIL Input Devices F-34
Numeric Keypad 5-4
Operating System 1- 1
Operation Table, Flexible Disc 7-2
Option ROM Data Area B-8
Option ROM Data Segments B-16
Option ROM Module Integration 9-18
POST 9-3
Pallet 3-11
Parallel Port Driver 6-3
Parallel Addresses 6-1
Parallel I/O 6- 1
Parallel Port Addresses B-3
Parallel Port Driver 6-13
Parameters, EX-BIOS 2-10
Paramt.:ter Table, Flexible Disc 7-3

4 Index

Parameter Table, Hard Disc 7-5
Partition Table Entry Record 9-21
Physical Describe Record 4-39, 4-61
Physical Device Record 4-41
Physical Drive Numbers 7-1
Physical GID Driver 4-63
Physical ISR Event Records 4-42
Pointer Driver 4-16
Polled Interrupts 6-2
Ports, Communications (SenaI) B-2
Ports, Parallel B- 3
Power-on Reset 9-1
Power-on Self Test 9- 3
Printer Status Register 6-14
Printer Timeout Counters B-9
Print Screen Driver 6-2, 6-4, 6-16
Print &.reen Status B-14
Procesor Interrupts 2-2
Processor Clock Rate B-18
Product Identification B-18, F-2
Programmatic Reset 9-1
Protected Mode Support 9-2
RAM Allocation 8-2
RAM Switch 5-49
ROM BIOS 1-1, 2-1
ROM BIOS Memory Map B-17
RS-232 B-2
Real-Time Clock Data Area B-13
Real-Time Clock Ports D-8
Real-Time Clock C-l
Release of BIOS B-20
Reserved Data Areas B- 14
Reset 9-1
Return Status Codes 2-10
Return Status Codes F-13
SPU Control Port D-7
STD-BIOS 2-1
STD-BIOS Data Structure B-2
STD-BIOS Extended Functions F-3
STD-BIOS Interrupts A-4
SYSGEN 9-16
Scancodes 5- 66
Scandoor 4-71
Scroll 3-9
Self Test 9- 3
Serial Addresses 6- 1
Serial I/O 6-1
Serial Port Addresses B-2
Serial Port Driver 6-2, 6-4
Shadow RAM 9-19
Shutdown Status Byte 9-2
Software Interrupts 2-2
Soft Reset 9-1
Speaker Control D-8
Status Byte, Shutdown 9-2

Inde>< 5

Status Codes, Return F-13
SYSCALL 2- 14
System Base Memory Size C-6
System Clock Functions 8-7
System Data Flags B-8
System Drivers 8- 1
System Driver Data Structure 8-7
System Extended Memory Size C-7
System Generation 9-16
System Memory Map B-1
System Processes 9-1
System Shutdown Byte C-4
System String Control 8-5
System Support Driver 8- 10
Tablet Driver Functions 4-25
Testing, Self 9-3
Test Information Byte C-8
Timeout Counters, Printer B-9
Timer Controller, 8254 D-6
Timer Data Area B-8
Time Driver Functions 8-19
Touchscreen Driver 4-8
Translators, Keyboard 5-28
Typematic 5- 65
Vectors, Free F-4
Vectors, Interrupt A-I
Vector Table 8-5
Vectra EX-BIOS Drivers, Keyboard 5-28
Vectra ID B-19
Version, BIOS B-20
Video Data Structures 3-4
Video Display 3-1
Video Display Data Area B-7
Video Driver Functions 3-7
Week of BIOS Release B-21
Writing to the Screen 3-13
Year of BIOS Release B-21

6 Index

Update Notice - March 1989

This package, which updates the original issue of the Vectra System BIOS Technical Reference Manual,
provides BIOS update information for the Vectra QS/ 16, QS/20, RS/20C, and the RS/25C. With the
replacement of the pages given, the Vectra System BIOS Technical Reference Manual is valid for the HP
Vectra ES, QS, and RS series of personal computers. (Changes that have been made are explained.)

All references to the Vectra RS are also valid for the equivalent speed Vectra QS. The only difference
between the BIOS of the Vectra QS and the BIOS of the \' cctra RS is that the QS has a different PC ID
(identification) flag. See Page 8-19 for details.

Product Kit No. (manual and binder): 45945-60031
Manual Part No.: 45945-90012
First Update Part No., 5959-6796
Second Update Part No.: 5959-9816

Personal Computer Group
974 East Arques Avenue
P.O. Box 486
Sunnyvale, CA 94086, U.S.A.

Insert or replace the update pages in this package in the appropriate chapters of your Vectra System BIOS
Technical Reference Manual.

Update Notice - March 1989 1

CHANGE PAGES

Cover Page
Second line, under the bar
Replace: For the HP Vectra Series of Personal Computers
With: For the HP Vectra Series (ES, QS, RS) of Personal Computers

Page 1-1
Paragraph 1, second line
Replace: ES and RS series
With: ES, QS, and RS 8f 'les

Page 1-1
Paragraph 2, third line
Replace: HP Vectra RS series
With: HP Vectra QS and RS series

Page 2-1
Paragraph 1, third line
Replace: as well as the Vectra ES and RS series discussed
With: as well as to the HP Vectra senes of PCs discussed

Page 4-39
Paragraph 2, last line
REPLACE: all Vectra ES and RS series computers.)
or REPLACE: all HP Vectra series computers.)
With: all ES, QS, and RS Vectra series computers.)

Page 4-47
Move the last 3 row items in the table, starting with:
SF GET DEVTBL
SF SET DEVTBL-- --
SF DEF DEVTBL
Between these row items in the table:
SF_CRV_REPORT_NAME and
F PUT_BYTE

Page 4-57
Paragraph I, second and third lines
Replace: For the Vectra ES and RS series computers
With: For the HP Vectra series of computers

2 Update Notice - March 1989

Page 5-1
Paragraph 1, fourth and fifth lines (in the second bulleted item)
Replace: used with both tht' HP Vectra ES and RS series
With: used with the HP Vectra series

Page 5-13
Table 5-7, under <Pause>
Move: tnhaf'l~~~ K~yb§~rd pij~y
To: under "Action," instead of under "Key Combinations"

Page 5-13
Table 5-7, under <Ctrl>-<Alt>-<+>
Move: ~~Yb9~r9/p~~ ~n~Y
To: under "Action", instead of under "Key Combinations"

Page 5-13
Table 5-7, within <Ctr1>-<Alt>-< > (across from "This key sequence toggles the computer speed. lI

)

Add: a backslash (\) to the last part of this "Key Combination. II

Page 5-13
Table 5-7, across from <Ctr1>-<Alt>-< >
Replace: On the Vectra RS this is handled by the system BIOS.
With: On the Vectra QS and RS this is handled by the system BIOS.

Page 5-13
Table 5-7, under <Shift>-<Print Screen>
Move: ~~Ypp~"'qlP~~ ~n'~y
Under: "Action," instead of under "Key Combinationsll

Page 5-14
Table 5-8, across from FI6__GET__EXT_KEY
Replace: buffer (Vectra ES and RS keycodes)
With: buffer (including new Vectra ES, QS, and RS keycodes)

Page 5-14
Table 5-8, across from FI6_EXT_STATUS
Replace: Vectra ES and RS keycodes
With: Vectra ES, QS, and RS keycodes

Page 5-16
Paragraph I, second and third lines
Replace: Vectra ES and RS series computers.
With: Vectra series of computers.

Page 5-16
Paragraph 2 [starting with F16_STATUS (AH=OIH)], fifth line
Replace: HP VEctra ES and RS series
With: HP Vectra series

Update Notice - March 1989 3

Page ~-19

Paragraph 1, second line
Replace: HP Vectra ES and RS series persorldl computers
With. HP Vectra series of computers

Page 5-19
Paragraph that starts with AH
Change spelling of: Concatinated
To: Concatenated

Page 5-22
Within the CAUTION statement
Replace: "it should be aware that STD-BIOS"
With: lithe programmer should be aware that the EX-BIOS"

Page 5-26
Paragraph 1, second line
Replace: ES and RS series computers
With: series of computers

Page 5-26
Paragraph 3 (starting with "On Exit")
After the line: BX = DBH for low speed (see following table)
Add the line: 12H for medium speed (see following table)

Page 5-26
Table 5-12
Replace: table's title, "HP Vectra ES and RS Speeds"
With: new table title, "Speeds for lIP Vectra Series of Computers"

Page 5-26
Table 5-12
Between: the "HighII column heading and the "Low" column heading
Add: a new column heading, "Medium"

Page 5-26
Table 5-12
Under: the new column heading of "Medium"
Add, for the first four entries, dashes: II __ II

4 Update Notice - March 1989

Page 5-26
Table 5-12, under the column for "Vectra"
Replace: RS/16
With: QS/ 16, RS/16

Page 5-26
Table 5-12, under the column for "Vectra"
Replace: RS/20
With: QS/20, RS/20

Page 5-26
Table 5-12
(1) At the end of the column for "Vectra," add a first new row for: RS/20C
(2) At the end of the column for "Vectra," add a second new row for: RS/25C

Page 5-26
Table 5-12
(1) Under the column for "High," and across from RS/20C, add: 20 MHz
(2) Under the column for "High," and across from RS/25C, add: 25 MHz

Page 5-26
Table 5-12
(1) Under the new column for "Medium," and across from RS/20C, add: 10 MHz
(2) Under the new column for "Medium," and across from RS/25C, add: 12.5 MHz

Page 5-26
Table 5-12
(1) Under the column for "Low," and across from RS/20C, add: 5 MHz
(2) Under the column for "Low," and across from RS/25C, add: 5 MHz

Summary of changes to Table 5-12 appear as follows:

Table 5-12. Speeds for HP Vectra Series of Computers

Vectra High Medium Low

ES 8 MHz - 8 MHz
ES/12 12 MHz - 8 MHz
QS/16, RS/16 16 MHz - 8 MHz
QS/20, RS/20 20 MHz - 8 MHz
RS/20C 20 MHz 10 MHz 5 MHz
RS/25C 25 MHz 12.5 MHz 5 MHz

Update Notice - March 1989 5

Page 5-27
Paragraph 1, first line
Replace: HP Vectra ES and RS series
With: HP Vectra series of computers,

Page 5-27
Paragraph 1, starting with F16_GET_INT_NUMBER (AX = 6FODH)
After: the last line, IIRegisters Altered: AXil
Add the following paragraphs:

F16__SET__CACHE__ON (AX =6FOFH) -- This subfunction enables memory caching.
On Entry: AX = F16 SET CACHE ON (6FOFH)
On Exit: AH = OOH-(Successful)

FEH (Cache subsystem is bad)
Registers Altered: AX

F16__SET__CACHE__OFF (AX =6FIOH) -- This subfunction disables memory caching.
On Entry: AX = F16 SET CACHE OFF (AX = 6F10H)
On Exit: AH = OOH--(Successful--)
Registers Altered: AX

F16_GET CACHE_STATE (AX =6F11H)
This subfunction returns the memory cache subsystem's state.
On Entry: AX = F16 GET CACHE STATE (AX = 6F11H)
On Exit: AH = OOH--(Successful--)

AL bit 0 = 0 (Cache Disabled)
= 1 (Cache Enabled)

Registers Altered: AX

F16_SET_MEDIUM_SPEED (AX =6F12H)
This subfunction sets the computer's speed to medium.
On Entry: AX = F16 SET MEDIUM SPEED (6F12H)
On Exit: AH = OOH--(Successful)
Registers Altered: AX

6 Update Notice - March 1989

Page 5-54
Table 5-19, across from ODOH, under "Description," 3rd sentence,
Replace: "See Table 5- 22 for bit definitions."
With: "See Table 5-21 for bit definitions. II

Page 5-54
Table 5-19, across from ODIH, under "Description," 3rd sentence,
Replace: liThe bit definitions for this port are given in Table 5-22."
With: liThe bit definitions for this port are given In Table 5-21."

Page 5-59
Paragraph 3, first and second lines
Replace: Refer to the Vectra Hardware Technical Reference Manual (for the ES or RS series)
With: Refer to Figures 5-2 and 5-3

Page 5-61
Paragraph 2, first and second lines
Replace: Refer to the Vectra Hardware Technical Reference Manual (for the ES or RS series)
With: Refer to Figures 5-2 and 5-3

Page 5-63
Paragraph 2, first and second lines
Replace: Refer to the Vectra Hardware Technical Reference Manual (for the ES or RS series)
With: Refer to Figures 5-2 and 5-3

Page 6-3
Paragraph 1, third line
Replace: (for either the HP Vectra ES, or RS personal computer)
With: (for the HP Vectra ES, QS, or RS personal computers).

Page 6-15
Paragraph 11, which starts with "Example," first line
Replace: (AH = 6FOOH)
With (AX = 6FOOH)

Page 7-2
Paragraph 5, (starting with liThe flexible disc operation"), fourth lines and following
Replace:
For Vectra RS system, support for two additional flexible discs is achieved with a special Flexible Disc
Expander card, if you have such a card installed the contents of the operation table are expanded, see
Tables 7-1 and 7-la.

With:
For the Vectra RS system only, support for two additional flexible discs is achieved with a special Flexible
Disc Expander card. (If this ca rd is installed, the contents of the operation table are expanded.) See
Tables 7-1 and 7-la.

Upd.:lte Notice - March 1989 7

Page 8-1
Paragraph 4, first line
Replace: (double word on Vectra RS series)
With: (double word on Vectra QS and RS series)

Page 8-8
Half-way through page
Replace: r~ ~p ~EctRA ~~ ~ERIEs cbMPUttR.$
With: f:t~·H.~•.~E.¢IR.A·Q$.·AHP •••~~iS~RI.E.S ... GQHe~J"'rtR$

Page 8 8
Two-thirds through page
Replace: On Exit: EAX = Double word with all equipment information.
With: On Exit: EAX = Double word with all equipment information. (* Indicates for Vectra RS only.)

Page 8-8
In: the table under LAX = Double word with all equipment information
Replace throughout: Weitek 1167
With: Weitek 1167*

Page 8-18
3rd line from the bottom
Replace: OFFH = Printer, timeout required.
With: OFEH = Printer, timeout required.

Page 9-3
Second-to-Iast bulleted item
Replace: Test the coprocessor if present (80387 and Weitek coprocessor forVectra RS series).
With: Test the coprocessor if present (80387 for Vectra QS series, and 80387 and Weitek coprocessor for
Vectra RS series).

Page 9-3
After: the sixth bulleted item, "Test the first 64 KB of system RAM."
Include: a new bulleted item, "Test memory cache subsystem (Vectra RS/20C and RS/2SC.)"

Page 9-3
Before: the last bulleted item, "Test serial and parallel port (parallel port not tested in Vectra RS series)."
Include: a new bulleted item, "Test the CPU clock speed. II

Page 9-3
Change: the last bulleted item
From: "Test serial and parallel port (parallel port not tested in Vectra RS series)."
To: "Test serial port. II

Update Notice - March 1989

Reorder the bulleted items so they have the following order:

6. Initialize the video display for diagnostic messages.
1. Test the operation of the CPU.
2. Test the system ROM.
3. Test and initialize 8254 timer/counter and start the refresh counter.
7. Test and initialize DMA controllers and DMA page registers.
4. Test the first 64 KB of system RAM.
5. Test memory cache subsystem (Vectra RS/20C and RS/25C only.)
8. Test and initialize the 8259A interrupt controllers.
9. Test the 8042 controller and Scandoor.
10. Test the HP-HIL controller.
11. Test CMOS RAM for integrity.
12. Determine if manufacturing electronic tool is present. If so, run manufacturing test.
13. Test the remaining base system RAM (RAM above the first 64 KB).
14. Test the extended RAM above memory address 100000H (protected mode RAM.)
15. Test the real-time clock portion of the RTC/CMOS chip.
16. Test the keyboard interface and the keyboard itself.
17. Test the flexible disc controller subsystem.
18. Test the coprocessor if present (80287 for Vectra ES series, 80387 for Vectra QS series, and 80387
and Weitek coprocessor for Vectra RS series). 19. Test the CPU clock speed.
20. Test serial port.

Page 9-3
Summary -- the bulleted items will now appear as follows:

• Test the operation of the CPU.
• Test the system ROM.
• Test and initialize 8254 timer/ counter and start the refresh counter.
• Test the first 64 KB of system RAM.
• Test memory cache subsystem (Vectra RS/20C and RS/25C only.)
• Initialize the video display for diagnostic messages.
• Test and initialize DMA controllers and DMA page registers.
• Test and initialize the 8259A interrupt controllers.
• Test the 8042 controller and Scandoor.
• Test the HP-HIL controller.
• Test CMOS RAM for integrity.
• Determine if manufacturing electronic tool is present. If so, run manufacturing test.
• Test the remaining base system RAM (RAM above the first 64 KB).
• Test the extended RAM above memory address 100000H (protected mode RAM.)
• Test the real-time clock portion of the RTC/CMOS chip.
• Test the keyboard interface and the keyboard itself.
• Test the flexible disc controller subsystem.
• Test the coprocessor if present (80287 for Vectra ES series, 80387 for Vectra QSseries, and 80387

and Weitek coprocessor for Vectra RS series).
• Test the CPU clock speed.
• Test serial port.

Page 9-3
Last line of page
Replace: (for Vectra RS series).
With: (for Vectra QS and RS series).

Update Notice - March 1989 9

Pages 9-4 to 9-9
Title of Table 9-2a
Replace: ~~c~rfa ~~. ~~·ri~$ POST
With: "'~~tr~.t.S POST

Pages 9-10 to 9-15
Title of Table 9-2b
Replace: ~~ct~ ~$ $eri~s POST
With: ~i~~r~ ..~·~ngR.S POST

Pages 9- 10 to 9- 15
Delete: entire column entitled "Chipll and all entries underneath

Page 9-11
Table 9-2b.
After row for: 0709
Include this row information:
Code: 070B
Test: 82C30 1
Description: CPU clock too slow at MEDIUM speed.

Page 9-11
Table 9-2b.
After new row for: 070B
Include this row information:
Code: 070C
Test: 82C30 1
Description: CPU clock too fast at MEDIUM speed.

Page 9-15
Table 9-2b, thoughout, under the IlDescription" column
Replace: Weitek
With: Weitek *
Page 9-15
Across from: "AFOO" and IIWeitek"
Under the column: Description
Change: Weitek coprocessor (COP) Test failed to enter Protected Mode.
To: Weitek* coprocessor (COP) Test failed to enter Protected Mode. (* indicates for Vectra RS only.)

10 Update Notice - March 1989

Page 9-15
Table 9-2b
After: row for AFOC
Add: the following row information for B300 through BFFF:

Code: B300
Test: 8042 **
Description: Failed to switch to protected mode. ("'''' indicates errors detected by the Memory Cache Test.)

Code: B301-B307
Test: 82385
Description: General cache subsystem failure.

Code: B400-B7FF
Test: Main Memory **
Description: Read/write test of DRAM locations 60000h-6FFFFh failed.
Decode bits in error code to isolate failing memory module:
BXYZ where
X = 01 aa => aa specifies which byte is bad (0- 3)
YZ = bbbb bbbb = > b= 1 specifies bad bit
e.g.: 0100 0010 => bits 6 and 1 bad

Code: B800-BBFF
Test: Static RAM
Description: Read/write test of SRAM failed.
Decode bits in error code to isolate failing chips:
BXYZ where
X = 10aa => aa specifies which byte is bad (0 - 3)
YZ = bbbb bbbb => b= 1 specifies bad bit
e.g.: 0100 0010 => bits 6 and 1 bad

Code: BCOO-BFFF
Test: Static RAM
Description: Marching ones test of SRAM failed.
Decode bits in error code to isolate failing chips:
BXYZ where
X = 11aa => aa specifies which byte is bad (0 - 3)
YZ = bbbb bbbb => b= 1 specifies bad bit
e.g.: 0100 0010 => bits 6 and 1 bad

Update Notice - March 1989 11

Page 9-1 5/9-16
First sentence after Table 9-2b, starting with IIIf the POST process is initiated....
Replace: "If the POST process is initiated by a soft reset, the RAM tests are not executed."
With: "If the POST process is initiated by a soft reset, the RAM tests and the cache memory test are not
executed. II

Page 9-19
Paragraph 4, starting with "Shadow RAM." Title, and first and fourth lines
Replace: HP Vectra RS
With: HP Vectra QS and RS

Page A-6
Table A-2
Across from: INT Hex code 16H
Add: the following row information after the row for Function Value 028 --

Function Value: 03H
Function Equate: F 16_SET_TYPE_RATE
Definition: Set typematic rates.

Function Value: 05 H
Function Equate: F16_PUT__KEY
Definition: Put data into keyboard buffer.

Function Value: 10H
Function Equate: F l6__GET__EXT
Definition: Read keycode from buffer (including extended keycodes).

Function Value: IIH
Function Equate: F l6_EXT__STATUS
Definition: Report extended keyboard status

Function Value: 12H
Function Equate: F 16__EXT__KEY__STATE
Definition: Get Extended Key Modifier status.

Page A-6
Table A-2.
Across from: INT Hex code 17H
For: the Function Value 6FOIH
Change: the Function Equate, IIF 17__READ__STATUSII

To: a blank line

12 Update Notice - March 1989

Page A-6
Table A-2.
Across from: INT Hex code 17H
For: the Function Value 6F03H
Change: the Function Equate, ifF 17__GET__BUFFER If

To: a blank line

Page A-6
Table A-2.
Across from: INT Hex code 17H
After: the Function Value 6F04H
Add: the following row information --

Function Value: 6FOFH
Function Equate: FI6__SET__CACHE__ON
Definition: Turn cache on.

Function Value: 6FI0H
Function Equate: FI6__SET__CACHE__OFF
Definition: Turn cache off.

Function Value: 6FIIH
Function Equate: FI6__GET_CACHE__STATE
Definition: Get current cache state.

Function Value: 6F12H
Function Equate: F 16__SET__MEDIUM_SPEED
Definition: Sets medium speed for cache machines.

Page A-IS
Table A-3
Delete the following rows of information:

0114H
0114H
0114H

04/16
04/18
06

SF KEYBOARD REPEAT- -SF KEYBOARD LED
F PUT BYTE

Set typematic values
Set keyboard LED states
Write one byte to specified HP-HIL device

Page A-IS
Table A-3
In the place of the deleted rows above, include the following rows of information:

Vector
Add ress

0114H
0114H
0114H

Func.
Value

04/20
04/22
04/24

Function
Equate

SF GET DEVTBL
SF SET DEVTBL
SF DEF DEVTBL

Definition

Gets physical device table address
Sets physical device table address
Sets default physical device table

Update Notice - March 1989 13

Page B-13
Under: Flexible Disc Expander Adapter Data Area

Replace:
This is only applicable in Vectra RS systems with the Flexible Disc Expander adapter card installed.

With:
This applies solely to the Vectra RS systems, and only when the Flexible Disc Expander adapter card is
installed.

Page B-15
Item f, first line
Replace: HP Vectra ES and RS series computers
With: HP Vectra series of computers

Page B-15
Item f, fourth and fifth lines
Replace: RAM in the Vectra ES and RS computers
With: RAM in the Vectra series of computers

Page B-15
Item f, last line
Replace: of the Vectra RS
With: of the Vectra QS and RS

Page B-19
Top of page
Replace: table title, "Vectra ES and RS Series Processor Clock Rates"
With: new title, "Processor Clock Rates for HP Vectra Series of Computers"

Page B-19
Table at top of page, under the column for "Computer"
Replace: Vectra RS/16
With: Vectra QS/ 16, RS/16

Page B-19
Table at top of page, under the column for "Computer"
Replace: Vectra RS/20
With: Vectra QS/20, RS/20

Page B-19
Table at top of page,
Add: two new rows --

Vectra RSj20C
Vectra RSj25C

14H (20 MHz)
19H (25 MHz)

05H (5 MHz)
05H (5 MHz)

Page B-19
Table at top of page, under the column for "Clock Rate (High)"
Replace: OCH (8 MHz)
With: OCH (12 MHz)

14 Update Notice - March 1989

Summary: New table on page 8-19 appears as follows --

Processor Clock Rates for HP Vectra Series of Computers

Computer Clock Rate (High) Clock Rate (Low)

Vectra ES 08H (8 MHz) 08H (8 MHz)
Vectra ES/12 OCH (12 MHz) 08H (8 MHz)
Vectra QS/ 16, RS/16 10H (16 MHz) 08H (8 MHz)
Vectra QS/20, RS/20 14H (20 MHz) 08H (8 MHz)
Vectra RS/20C 14H (20 MHz) 05H (5 MHz)
Vectra RS/25C 19H (25 MHz) 05H (5 MHz)

Update Notice - March 1989 15

Page B-19

As shown in the update below,
after the PC 10 for the Vectra RS/16 00110

add the PC 10 for the Vectra QS/16 00111
add the PC 10 for the Vectra QS/20 01000
add the PC 10 for the Vectra RS/20C 01001
add the PC 10 for the Vectra RS/25C 01010
add the PC 10 for the Vectxa LS/12 01011

Also, on the next line,
Change: 00111 through 11111 - Reserved
or change: 0 1001 through 11111 - Reserved
To: 01100 through 11111 - Reserved

Bits:

7 6 5 4 3 2 0
--- --- -------------

1------> 00000 - Original Vectra PC
00001 - Vectra ES/12
00010 - Vectra RS/20
00011 - Portable Vectra CS
00100 - Vectra ES
00101 - Vectra CS
00110 - Vectra RS/16
00111 - Vectra 05/16
01000 - Vectra QS/20
01001 - Vectra RS/20C
01010 - Vectra RS/25C
01011 - Vectra LS/12

01100 through 11111 - Reserved

-------------------> 000 - 80286
001 - 8088
010 - 8086
011 - 80386

100 through 111 - Reserved

16 Update Notice - March 1989

Page B-19
Move: Paragraph entitled "Machine Capability Marker"
To: Page B-20

Page B-20
Move: Paragraph entitled "Year of the ROM BIOS Release (in BCD)"
and: Paragraph entitled "Week of the ROM BIOS Release (in BCD)"
To: Page B-21

(ADD: NEW page B-21)

Page C-6
2nd to last line
Replace: Note that Vectra ES and RS series computer
With: Note that Vectra series of personal computers

Page D-l
Paragraph 1, last two lines
Replace: Vectra Accessories Technical Reference Manual (for either the Vectra ES or RS series).
With: Vectra Accessories Technical Reference Manual

Page F-2
Last line
Replace: HP Vectra ES and RS
With: HP Vectra series of personal computers

Page F-3
Paragraph 3 (starting with "This code"), first line
Replace: HP Vectra ES and RS series
With: HP Vectra series of personal computers

Page F-3
Paragraph 3, second and third lines
Replace: unique features of the HP Vectra ES and RS series. This method
With: unique features of the HP Vectra series of personal computers. (However, this method

Page F-20
Paragraph 3 (starting with "The driver is"), fourth line
Replace: all Vectra ES and RS series
With: all Vectra series

Update Notice - March 1989 17

Page Glossary 2
Coprocessor, second line
Replace: The 80287 (Vectra ES), 80387 and Weitek coprocessor (Vectra RS only) are
With: The 80287 (Vectra ES), the 80387 (Vectra QS and RS), and the Weitek coprocessor (Vectra RS
only) are

Page Glossary 5
Original Vectra PC, first line
Replace: Vectra ES and RS series
With: Vectra ES, QS, and RS series

Index

Insert: Cache 5-27, 9-3, 9-15, 9-16, A-6

Delete: "Disk (see Disc)1I

Replace: Machine Capability Marker B-19
With: Machine Capability Marker B-20

Replace: Week of BIOS Release B-20
With: Week of BIOS Release B-21

Replace: Year of BIOS Release B-20
With: Year of BIOS Release B-21

18 Update Notice - March 1989

rli~ HEWLETT
~~ PACKARD

Printed in USA·01/88
Part Number 45945-90012

	Contents
	Chapter 1 Introduction
	Chapter 2 ROM BIOS Overview
	Chapter 3 Video
	Chapter 4 Input System and HP-HIL
	Chapter 5 Keyboard
	Chapter 6 Serial and Parallel I/O
	Chapter 7 Disc
	Chapter 8 System Drivers
	Chapter 9 System Processes
	Appendix A BIOS Interrupts
	Appendix B Memory Map
	Appendix C CMOS Memory Layout and Real-Time Clock
	Appendix D I/O Port Map
	Appendix E Default Device Mapping
	Appendix F Driver Writer's Guide
	Glossary
	References
	Index
	Update Notice - March 1989

