
general systems users group

ABSTRACTS &
PROCEEDINGS - 78



PROCEEDINGS OF THE

HP GENERAL SYSTEMS USERS GROUP

SEVENTH INTERNATIONAL MEETING

October 30 thru November 3, 1978
Denver, Colorado

~/l-7{,t~

1t1·/'~t'/9. /1 '-1/I! ,I I

',,/"' ~~Iv) /
( ,. /'
! I :





TABLE OF CONTENTS
=================

I. Introduction and Organization

II. Paper / Presentation Indices

A. By Session Code / Topic

B. By Author Name

C. By Author Company

III. Papers / Presentations

A. Computer Applications ............ Series· IIA"

B. Data Management •••••••••••••••••• Series liB"

C. Machine Utilization •••••••••••••• Series "C"

D. Installation Management •••••••••• Series "0 11

E. Programming Languages •••••••••••• Series IIE"

F. Data Communications •••••••••••••• Series "F"

G. System Development

H. System Peripherals

...............

...............
Series "G"

Series "H II

I. Special 'Round Table' Sessions ••• Series "I"

J. Keynote Address

IV. Session Reviews

v. Conference Attendee Name List

VI. Exhibitor Name List



/



Introduction to the Proceedings

WELCOME ! ! !

Welcome to the proceedings of the seventh international meeting of
users of the HP3000 computer system. This meeting was the first in
a new era for our organization. We had formalized our structure and
incorporated as a nonprofit organization, the HP General Systems
Users Group (HPGSUG). This is to reflect our changing needs and
also to more fully address the needs of the users of the HP General
Systems Division computer products family.

The HPGSUG is an organization of individuals with the common
interest and goal of maximizing the benefit they can obtain from the
use of HP General Systems Division computer products. These
benefits are realized through the contributed efforts of the members
themselves, specifically through the contributed program library and
meetings which provide the opportunity to 'interface and educate'.

MEETING

The Goal of the 1978 meeting was to provide such opportunities.
The format of this meeting was established with the foremost
objective being to provide a flexible framework for users to benefit
through the collective user experience. The schedule was set to run
five days and the sessions to be mirrored in each half of the week
with the vendor exhibit and special sessions on Wednesday.

PROCEEDINGS

That brings us to this document. One goal of the meeting committee
was to be able to provide the attendees with the printed proceedings
at the time of registration. The result was a Ipreprintl of this
volume. We believe that the proceedings of the meetings provide a
valuable source of information. It was with this in mind that we
undertook the post conference task of assembling these materials. We
hope this document will provide you with a guide by which to extract
the utmost from this meeting and provide a reference to you in the
times to come.



The Papers / Presentation section of the proceedings is organized
around the Iseries l classification by major topic. There are nine
of these major topic series which include:

Series A
B
C
o
E
F
G
H
I

Computer Applications
Data Management
Machine Utilization
Installation Management
Programming Languages
Data Communications
System Development
System Peripherals
Special IRound Table l Sessions

Within each series the papers are numbered sequentially. Pagination
follows the same organization •••

A-II.03
* * *
* * ***

*** paper within this series or topic classification
*
*
*

*
page number within this paper

*** series id or major topic classification

Please note that not all sequence numbers were used and that there
may be gaps. For example Series H has papers HOI, H03, HOS and HOl.



ACKNOWLEDGEMENTS

The planning and organization of this conference has been an immense
task which, without the support, effort and committment of all
involved, might not have come to fruition. The papers contained
herein and the sessions presented at the meeting are the volunteer
efforts of that special breed of person, willing to share what they
have learned with those who seek to learn. To these people, A very
special 'Thank You! " for without your efforts the best organized
meeting would have no basis.

Thank you Hewlett Packard and specifically
Gardner for your committment, encouragement
beyond the call of duty, in helping us
together.

Ralph Manies and Lynn
and support above and
to pull this meeting

As anyone who participates in the execution of such a 'special
assignment' soon realizes, the support provided by one's family and
employer is crucial to the success with which the completion may be
measured. Our sincere appreciation to all.

Respectfully,

The HP General Systems Users Group
7th International Meeting Committee

Joyce B. Pleasants
Aurora Public Schools
International Meeting Director

David Appel
Information Resources Ltd.
Publications

Chuck Green
Adams County Schools
Vendor Exhibits

Don Phelps
Colorado Department of Highways
Activities

Bob Rice
Adams County Schools
Registration

C.R. Van Ausdall
Commercial Office Products Company
Program





Index to Papers by Session Code / Topic

Series A: Computer Applications
================================

Computer Aided Instruction on the HP3000 ••••••••••••••••••••• A-Ol
Diane Christopherson and Beverly Sheperd
Western Wisconsin Academic Computing Consortium

Computer Assisted Residential Energy Audit ••••••••••••••••••• A-02
Dr. Neal H. Prochnow and Marlys Nelson
University of Wisconsin - River Falls

Decision SUBPort System/Containerboard Logistics Management •• A-04
Peter lGiammarino and Richard Schwartz
American Management Systems, Inc.

Corporate Modeling-Financial Planning Systems •••••••••••••••• A-06
J. Gewecke
United Computing Systems

IDIMS - HP3000 Based Digital Image Processing •••••••••••••••• A-lO
Paul Polk
E.S.L., Inc, Sunnyvale, CA.

Econonmetric Modelling on an HP3000 •••••••••••••••••••••••••• A-ll
John Eaton
London Business School

CWF/3000: Computer Assisted Instruction and Training •••••••• A-12
Harold J. Peters
Educational Software Products

Statistical Inquiry and Retrieval with IMAGE ••••••••••••••••• A-13
Martin D. Jewel
National Spinal Cord Injury Data Research Center

On-Line Marketing Information •••••••••••••••••••••••••••••••• A-14
George J. Neibergs
E.S.B. Exide Industrial Batteries

Computerized Word Processing ••••••••••••••••••••••••••••••••• A-15
. MartiD Gorfinkel

Los Altos Research Center
Dollar-Flow: Financial Planning on the HP3000 ••••••••••••••• A-16

Jack Damm
The Palo Alto Group

Typist Oriented Fully Integrated Wordprocessing System ••••••• A-18
Daryl A. Frame and Roger M. Goldmann
Comarco, Inc.

Graph i cs in Bu s i ness ••••••••••••••••••••••••••••••••••••••••• A- 19
Paul Cooper
Hewlett-Packard - Tulsa, Oklahoma

Experiences with MFG/3000 •••••••••••••••••••••••••••••••••••• A-20
Ivan M. RO$enberg and John Doyle
S~stem Deslgn AsSociates and Yetter Corporation

SPSS/HP-An UQdate •••••••••••••••••••••••••••••••••••••••••••• A-21
Marlys Nelson and Nicholas Elliott
Unlversity Of Wisconsin-Rlver Falls

1



Series B: Data Management
==========================

Adopting a Transaction Processor ••••••••••••••••••••••••••••• B-Ol
Rooin C. Wheeler
Domtar Construction Materials t Montreal t Quebec

IMAGE Data Base Design and Performance Measurement ••••••••••• B-02
Orland J. Larson
Hewlett-Packard General Systems Division

IMAGE's Coming of Age: Data-Base Transformations ••••••••••••• B-03
F. Alfreoo Rego
Instituto de Informatica y Ciencias de Computacion

Faster with Fast KSAM •••••••••••••••••••••••••••••••••••••••• B-04
Stephen M. Butler
Paradise Valley Hospital

Information Management: An Investme~t for the Future •••••••• B-08
David C. Dummer
D.C. Dummer & Associates Limited

Sigma-Generalized Information System •••.••••••••••••••••••••• B-09
Marcos A. X. de Carvalho
Promon Engenharia S.A.

Data Dictionary/Directory Driven Clinical Data System •••••••• B-IO
Eric S. Herbel
Hoechst-Roussel Pharmaceuticals t Inc.

HP VIEW/3000-A Source Data Entry System •••••••••••••••••••••• B-12
Jutta Kernke
Hewlett-Packard General Systems Division

Factory Data Collection •••••••••••••••••••••••••••••••••••••• B-13
Llnda Siener
Hewlett-Packard Data Systems Division

ASK/3000-A Necessary Complement to IMAGE/QUERV ••••••••••••••• B-14
Vann Cordelle
COGELOG

Series C: Machine Utilization------------------------------------------------------------

MPE Object Code Formats-USL and Program Files •••••••••••••••• C-02
Matthew J. Balander
The B & B Computer Company

HP3000/0ptimizing On-Line Programs ••••••••••••••••••••••••••• C-03
Robert M. Green
Robelle Consulting Ltd.

On-Line TaQe Library ••••••••••••••••••••••••••••••••••••••••• C-07
Pete Fratus
Futura ~ystems, Inc.

System Performance Measurement and Optimization •••••••••••••• C-lO
Jim Sguires and Ed Splinter
Hewlett-Packard Fullerton and Los Angeles

Using Extra Data Segments: Safe and Efficient ••••••••••••••• C-ll
Rick Ehrhart
Hughes Aircraft Company-El Segundo

2



Series 0: Installation Management
==================================

Installation Design and Operation Considerations ••••••••••••• D-Ol
Bill Gates
Longs Drug Stores, Inc.

Extended Operating Environment for App-lications Programs ••••• D-02
Richard A. Bergquist and Steven M. Cooper
American Management Systems, Inc.

Beacon/Guardian: Solutions in Search of Problems •••••••••••• D-12
Wayne E. Holt
Whltman College

Series E: Programming Languages
================================

The Changing World of COBOL •••••••••••••••••••••••••••••••••• E-04
Greg Gloss
Hewlett-Packard General Systems Division

Tips on Converting IBM FORTRAN Programs to the HP3000 •••••••• E-08
Gary Anderson and Deepak Sinha
McMaster University

Writing SPL Routines Which Are Callable from BASIC ••••••••••• E-09
Warren Kuehner
Hewlett-Packard - Englewood, Colorado

DEC/3000-An Example of Special-Purpose Language Design ••••••• E-lO
Matthew J. Balander
The B & B Computer Company

Series F: Data Communications
==============================

Cutting Communications Costs with Statistical Multiplexors ••• F-03
Roger L. Evans
Micom Systems, Inc. Chatsworth, CA.

3



Series G: System Development
=============================

Programming for Surviva1 ••••••••••••••••••••••••••••••••••••• G-03
Gera1a T. Wade
Hewlett-Packard - Englewood, Colorado

Software Duality Contro1 ••••••••••••••••••••••••••••••••••••• G-07
C. Edward McVaney
J. D. Edwards & Company

An Approach to On-Line Applications Management ••••••••••••••• G-09
Dennis Dinan and Glenn Entis
Morgan Guaranty Trust Company of New York

A Guide to Systems Deve1opment ••••••••••••••••••••••••••••••• G-IO
John M. Gri1los
American Management Systems, Inc.

Decision Tables - An Effective Programming Too1 •••••••••••••• G-11
Daniel f. Langenwa1ter
Integrated Business Systems, Inc.

Microsrocessor Based Product Design on an HP3000 ••••••••••••• G-12
ack C. Armstrong

Los Altos Research Center

Series H: System Peripherals
=============================

UT200 RJE Subsystem •••••••••••••••••••••••••••••••••••••••••• H-Ol
Donald Klett
Sangamon State University, Springfield, IL.

HP3000/IBM1403 Coupling Extends System Utilization ••••••••••• H-03
Ray Lorenz
Spur Products Corporation

Real-Time Instrument Interface System for the HP3000 ••••••••• H-05
Gordon R. Symonds
Environmental Health Centre, Ottawa, Ontario

Disk Subsystems Software Considerations •••••••••••••••••••••• H-07
R. Brecht1ein
CALCOMP

Series I: Special 'Round Tables'
=================================

Organizing a Local Group of Computer Users ••••••••••••••••••• I-13
Douglas J. Mecham
Hugfies Aircraft Company - Fullerton

4



Anderson, G.
Armstrong, J. C.
Ba1ander, M. J.
Balander, M. J.
Bergquist, R. A.
Brechtlein, R.
Butler, S. M.
Carvalho, M.
Christopherson, D.
Cooper, P.
Cooper, S. M.
Corde11 e, Y.
Damm, J.
DiGiammarino, P.
Dinan, D.
Doyle, J.
Dummer, D.C.
Eaton, J.
Ehrhart, R.
Elliott, N.
Entis, G.
Evans, R. L.
Frame, D. A.
Fratus, P.
Gates, W.
Gewecke, J.
Gloss, G.
Goldmann, R. M.
Garfinkel, M.
Green, R. M.
Gril10s, J. M.
Herbel, E. S.
Holt, W. E.
Jewel, M. D.
Kernke, J.
Kuehner, W.
Langenwalter, D. F.
Larson, O. J.
Lorenz, R.
McVaney, C. E.
Mecham, D.
Neibergs, G. J.
Nelson, M.
Nelson, M.
Peters, H. J.
Po1k, P.
Prochnow, Dr. N. H.
Rego, F. A.
Rosenberg, I. M.
Schwartz, R.
Sheperd, B.
Siener, L.
Sinha, D.
Splinter, E.
Squires, J.
Symonds, G. R.
Wade, G. T.
Wheeler, R. C.

INDEX BY AUTHOR

Tips on Converting IBM FORTRAN Programs to the HP3000••••••••• E08
Microprocessor Based Product Design on an HP3000•••••••••••••• G12
MPE Object Code Fonmats-USL and Program Files••••••••••••••••• C02
DEC/3000-An Example of Special-Purpose Language Design•••••••• E10
Extended Operating Environment for Applications Programs •••••• D02
Disk Subsystems Software Considerations ••••••••••••••••••••••• H07
Faster with Fast KSAM ••••••••••••••••••••••••••••••••••••••••• B04
Sigma-Generalized Information System•••••••••••••••••••••••••• B09
Computer Aided Instruction on the HP3000••••••••••••••••••••••A01
Graphics in Business •••••••••••••••••••••••••••••••••••••••••• A19
Extended Operating Environment for Applications Programs •••••• D02
ASK/3000-A Necessary Complement to IMAGE/QUERY •••••••••••••••• B14
Dollar-Flow: Financial Planning on the HP3000•••••••••••••••• A16
Decision Support System/Containerboard Logistics Management ••• A04
An Approach to On-Line Applications Management •••••••••••••••• G09
Experiences with MFG/3000 ••••••••••••••••••••••••••••••••••••• A20
Information Management: An Investment for the Future••••••••• B08
Econonmetric Modelling on an HP3000 ••••••••••••••••••••••••••• Al1
Using Extra Data Segments: Safe and Efficient •••••••••••••••• C11
SPSS/HP-An Update ••••••••••••••••••••••••••••••••••••••••••••• A21
An Approach to On-Line Applications Management •••••••••••••••• G09
Cutting Communications Costs With Statistical Multiplexors •••• F03
Typist Oriented Fully Integrated Wordprocessing System•••••••• A18
On-Line Tape Library•••••••••••••••••••••••••••••••••••••••••• C07
Installation Design and Operation Considerations•••••••••••••• DOl
Corporate Modeling-Financial Planning Systems ••••••••••••••••• A06
The Changing World of COBOL ••••••••••••••••••••••••••••••••••• E04
Typist Oriented Fully Integrated Wordprocessing System•••••••• A18
Computerized Word Processing•••••••••••••••••••••••••••••••••• A15
HP3000/0ptimizing On-Line Programs •••••••••••••••••••••••••••• C03
A Guide to Systems Development ••••••••••••••••••••••••••••••••G10
Data Dictionary/Directory Driven Clinical Data System••••••••• B10
Beacon/Guardian: Solutions in Search of Problems ••••••••••••• D12
Statistical Inquiry and Retrieval with IMAGE •••••••••••••••••• A13
HP VIEW/3000-A Source Data Entry System••••••••••••••••••••••• B12
Writing SPL Routines Which Are Callable from BASIC •••••••••••• E09
Decision Tables - An Effective Programming Too1 •••••••••••••••G11
IMAGE Data Base Design and Performance Measurement •••••••••••• B02
HP3000/IBM1403 Coupling Extends System Utilization•••••••••••• H03
Software Quality Contro1 •••••••••••••••••••••••••••••••••••••• G07
Organizing a Local Group of Computer Users •••••••••••••••••••• 113
On-Line Marketing Information••••••••••••••••••••••••••••••••• A14
Computer Assisted Residential Energy Audit •••••••••••••••••••• A02
SPSS/HP-An Update ••••••••••••••••••••••••••••••••••••••••••••• A21
CWF/3000: Computer Assisted Instruction and Training•••••••••A12
IDIMS - HP3000 Based Digital Image Processing •••••••••••••••••A10
Computer Assisted Residential Energy Audit •••••••••••••••••••• A02
IMAGE's Coming of Age: Data-Base Transformations•••••••••••••• B03
Experiences with MFG/3000 ••••••••••••••••••••••••••••••••••••• A20
Decision Support System/Containerboard Logistics Management ••• A04
Computer Aided Instruction on the HP3000•••••••••••••••••••••• A01
Factory Data Collection••••••••••••••••••••••••••••••••••••••• B13
Tips on Converting IBM FORTRAN Programs to the HP3000 ••••••••• E08
System Performance Measurement and Optimization••••••••••••••• C10
System Performance Measurement and Optimization••••••••••••••• ClO
Real-Time Instrument Interface System for the HP3000 •••••••••• H05
Programming for Survival ••••••••••••••••••••••••••••••••••••••G03
Adopting a Transaction Processor•••••••••••••••••••••••••••••• BOl



Index by Author's Employer

American Kanigeaent SYstems, Inc.
American ~agement SYstems, Inc.
Alerican ",nagement SYstems, Inc.
CAlcmtP
COGEl.OG
Comarco, Inc.
D.C. Dummer ~ Associates Limited
Domtar Construction Katerials, Montreal, Quebec
E.S.B. Exide Industrial Batteries
E.S.L., Inc, SunnYVale, CA.
Educational Soft~re Products
Environmental Health Centre, Ottawa, Ontario
Futura SYstems, Inc.
He~lett-Packard - Engle~ood, Colorado
He~lett-Packard - Englewood, Colorado
Heulett-Packard - Tulsa, Oklahoma
Hewlett-Packard Data SYstems Division
~lett-Packard Fullerton and Los Angeles
He~lett-Packard General SYstems Division
Heulett-Packard General SYstems Division
Hewlett-Packard General SYstems Division
Hoechst-Roussel Pharmaceuticals, Inc.
Hughes Aircraft Company - Fullerton
Hughes Aircraft Company-El Segundo
Instituto de Informatica y Ciencias de Computacion
Integrated Business SYstems, Inc.
J. D. Edwards ~ CORPany
London Business School
Longs Drug Stores, Inc.
Los Altos Research Center
Los Altos Research Center
"cKaster University
"icom SYstems, Inc. Chatsworth, CA.
"organ Guaranty Trust Company of Ne~ York
National Spinal Cord Injury Data Research Center
Paradise Valley Hospital
Promon Engenharia S.A.
Robelle Consulting Ltd.
Sangamon State University, Springfield, IL.
Spur Products Corporation
SYstem Design Associates and Vetter Corporation
The B&BComputer Company
The B, BComputer Company
The Palo Alto Group
United Computing SYstems
University of Wisconsin - River Falls
University of Wisconsin-River Falls
Western Wisconsin Academic Computing Consortium
Whitman Co11ege

Peter DiGiammarino and Richard Schuartz
Richard A. Bergquist and Steven ". Cooper
John 1'1. Gri 110s
R. Brechtlein
Yann Corde 11e
Daryl A. Frame and R0ger 1'1. Goldmann
David C. DURlIBer
Robin C. Wheeler
George J. Neibergs
Paul Polk
Harold J. Peters
Gordon R. SYmonds
Pete Fratus
Warren Kuehner
Gerald T. Wade
Paul Cooper
Linda Siener
Jim Squires and Ed Splinter
Orland J. Larson
Jutta Kernke
Greg Gloss
Eric S. Herbel
Douglas J. I1echam
Rick Ehrhart
F. Alfredo Rego
Daniel f. Langenwalter
C. Edward "cVaneY
John Eaton
Bill Gates
I1artin Gorfinkel
Jack C. Armstrong
Gary Anderson and Deepak Sinha
Roser L. Evans
Dennis Dinan and Glenn Entis
I1artin D. JellJe1
Stephen ". Butler
Karcos A. X. de carvalho
Robert M. Green
Donald Klett
Ray Lorenz
Ivan M. Rosenberg and John Doyle
Matthew J. 8alander
Matthe~ J. Balander
Jack Damm
J. Gelilecke
Dr. Neal H. Prochnou and MarlYS Nelson
Marlys Nelson and Nicholas Elliott
Diane Christopherson and Beverly Sheperd
Wayne E. Holt

AM
D02
610
007
B14
A18
Boa
BOl
A14
AIO
A12
H05
C07
E09
003
A19
813
CI0
802
812
E04
BI0
113
Cl1
803
611
007
AU
DOl
A15
612
E08
F03
009
A13
B04
B09
C03
HOI
003
A20
CO2
EI0
A16
006
A02
A21
AOI
012



COMPUTER APPLICATIONS

Series "A II





COMPUTER AIDED INSTRUCTION ON THE HP3000

Diane Christopherson
Western Wisconsin Academic Computing Consortium

University of Wisconsin-River Falls
River Falls, Wisconsin 54022

Beverly Shepherd
Western Wisconsin Academic Computing Consortium

University of Wisconsin-River Falls
River Falls, Wisconsin 54022

A-01.1



The original CAl package was delivered with the installation
or our HP3000 cx machine in August ·of 1975. An attached note
from the sales representative said it would be a trivial task to
convert the package to run on our machine. After three years of
trial, error and much frustration, CAl is now running on an HP3000
Series II.

A good Computer Aided Instruction package should have three
main goals. First, it should be an instructional tool to be used
by educators as well as a learning. experience for the students
interacting with it. Secondly, good "courseware" must be available
to allow for optimal utilization. Lastly, and most importantly,
it must be easy to use for a person unfamiliar with computers.
Thus, the teacher generates text for students without concerning
himself with programming details. We feel that this CAl package meets
these goals.

The CAl instructional package consists of three inter-related
parts: IDF, IMF and Math Drill and Practice. A short description
or each follows:

Lesson material is prepared through the Instructional Dialogue
. Facility (IDF) by the teacher who specifies the components of a
course. These components include the questions to be asked with
correct and incorrect anticipated answers, and the hints and clues
that might be given -- together with the circumstances under which
they are to be given.

The Instructional Management Facility (IMF) is a set of pro­
grams and files used to maintain Computer Assisted Instruction
courses and make them available to the terminal user. The number
or courses made available and the number of groups and students
entered are limited only by the amount of storage available on a
particular system.

The Mathematics Drill and Practice Program provides drill
and practice in arithmetic fundamentals to supplement classroom
instruction. Comprehensive records of all students using the
program are maintained, permitting automatic individualized pacing
of' each student through the curriculum. The curriculum consists
of six consecutive years of material -- with each year's material
arranged in 24 consecutive blocks. A stUdent's interaction with
the course contains pretests, post-tests and review lessens in
addition to the regular lesson. Depending on a student's progress,
he/she is allowed to advance or review required material.

A-01.2



STRUCTURAL ORGANIZATION OF THE CAl PACKAGE

I 0 F 1M F

I
I
I.
I

R fi
I

E I

'\7 Recorcl I
p l'

j I

0 M9rY\-t·
I
II

U,
R ~

I

T

S

Proctor'

I "t..e.r()Ci;O('\5

1- - - - - - - -,- - - - - -

I REP S i. Re.cord.
I ORT M9fV\t.
I

.... - - - - - - - - - - - - -. --

'DF

Courses

~~9" off--- .....
I
I
I

I

I Math
I
I Courses
I,
IStud.en~ I,
IlntQrQ.ctiOt\sl
1 I

S t LA d t2.ni:'

Rec.orcl

t·/ a. int~na.nce
t---------....cE+--------~

1
IAuthor I

:Inte.ro.d:ion :

I I

'MATH'
1 I,

I
I
I

A-01.3



IDF

The Instructional Dialogue Facility (IDF) enables educators to create
and present computer assisted instruction (CAl) lessons without learning
a programming language. The lDF guides them through each stage of the
lesson creation, allowing the educators to concentrate on the instruc­
tional content of the lesson.

The program records student responses and compiles statistics to assist
in evaluating and improving course material. Using these reports, the
educator is able to immediately assess the effectiveness of the lesson
that he has written and, if necessary, to modifY the lesson using the
editing facilities of the IDF. The educator can analyze the lesson
either on a student-by-student basis (in which case he sees essentially
a reconstruction of each student's interaction with the lesson) or on
a group basis (where he sees statistical information of student per­
formance) •

Some other important features of IDF are:

1. The educator may allow the student to exit from an lDF lesson to
use a simulated calculator capability or to use or write programs in
BASIC. The student is then returned to his lesson exit point.

2. The educator and students are able to interact with IDF in English,
German, French, Italian, Portugese, Spanish and Swahili.

3. Key word searches of two different types may be specified by the
educator for answer processing: ordinary key word and context-sensitive
(delimited) key word searches.

4. String or numerical answe~s are allowed; ranges may be specified
for numerical answers, and there is an automatic provision for handling
numerically-equivalent answers.

5. Students may request hints for problems if the educator has provided
them.

6. Time limits and the number of times a student can try to answer a
question may be specified.

7. A more sophisticated capability of IDF is in the use of as many as
12 counters. These counters can be incremented when a student's
response matches a correct or wrong answer. The values of these
counters can be used to provide branching to different IDF lessons.

A table showing how IDF guides an educator in lesson creation follows.

A-01.4



PROMPT

Text

Question

Correct Answer Group )
)
)
)

Wrong Answer Group )

or

Correot Answer Range )
)
)
)
)

Wrong Answer Range )

Reply To Correct
(Or Wrong) Answer
Group (Or Range)

Reply to Unexpected Answer

Failure Message

Hint

(1)

(1)

DEFINITION

Noninterrogative inrorrnation
displayed to the student berore
a question is asked.

A request ror a student response.

A collection of one or more
answers the author considers
correct.

A collection of one or more
ans-w:ers which the author regards
as incorrect but which he suspects
that a student may try.

A range of numbers the author
considers correct. If the student's
answer is within this range, it is
correct.

The author considers numbers in
this range to be incorrect.

·The message the author wishes to
have displayed to any student
whose answer falls in a correct or
wrong answer group or range.

The message the author wishes to
have displayed to any student whose
answer was not anticipated.

The message the author wishes to
have displayed to a student who
has exhausted his permitted number
of trials.

A hint to be given to students who
request it.

(1) Any number or groups or ranges is allowed.

(2) One reply is allowed for each group or range.

(3) Any number of hints are allowed.

1\-01.5



IDF has the following editing capabilities:

1. Inserting, deleting, moving and appendinR sections;

2. Inserting, deleting or changing lines within a section;

3. Changing lesson branching;

4. Changing options.

The In~tructional Management Facility (IMF) is a set of programs
and files used to present Computer Assisted Instruction, record
student progress and provide a variety of reports for the teacher
and the course author. The number of courses made available and
the number of groups and students entered are limited only by the
amount of storage available on a particular system.

Following is a list of the programs and a short description of what
they do:

Program

ADMIN

PUPIL

START

OUTCOM

CHEWS

Description

Used to enter:

1. Each course in the IMF files;
2. School name, code word, group names;
3. Messages to be displayed to students;
4. Changes in the language.

Used to:

1. Enter students' names in the Ir~ files;
2. Enroll students in the CAl courses;
3. Change group assignments and session

lengths;
4. Drop students from courses;
5. Obtain the Course Usage Report.

Asks students to sign in by typing their first
name and identification number and the name
of the course they wish to take. The course
is then presented to the student.

Used to:

1. Obtain IDF Statistics Reports;
2. View the IDF Response File;
3. Clear the Statistics and Response Files.

Used to:

1. List the News file;
2. Clear the News file. This file contains

comments to authors from the IDSF.

A-01.6



HPMATH

HPMATH is a package that provides drill and practice in arithmetic fun­
damentals to supplement classroom instruction for elementary· students.
Lessons are drawn from a pool of problem types (blocks) that cover
such concepts as counting, addition, subtraction, multiplication,
division, decimals, fractions and measurement. The students are assigned
a starting year by their teacher; then they proceed through the course
at their own skill level and pace.

The curriculum consists of six consecutive years of material -- with
each year's material arranged in 24 consecutive concept blocks. Each
block consists of a pretest, five drill lessons, and a post-test. The
teacher enrolls a student at the beginning of any block in any year.
If the student scores 100 per cent in the pretest of that block, then
he will skip to the next block. Otherwise, he proceeds with the first
lesson i~ the current block. His score on the pretest determines the
level of difficulty at which he takes the first lesson. Within the
curricUlum block, the stUdent's score on a main lesson determines the
level of difficulty at which he takes the next main lesson. His score
is determined by the number of correct answers he gives. The student's
post-test score is recorded and used to determine whether he should
review a curriculum block.

The system generates reports which keep the teacher informed of each
stUdent's progress. The following reports are available to the teacher:

1. Daily Report

This shows the following exceptional conditions:

i. Performance of a student below 60 per cent at level 1;
ii. A student skipping consecutive blocks;

iii. A student reaching a new concept block;
iv. Absences -- a student not taking the course.

2. Student Report

This contains post-test scores on blocks completed by the stUdent, plus
the number of times the block was reviewed.

3. Progress Report

This lists each student in the group, his exact position in the
curriculum, and how many blocks he has completed to date.

4. Course History Report

This presents a statistical summary for the year (primarily of interest
to school curriculum specialists) showing average and standard deviation
of pre- and post-test scores.

5. Lesson Report

This provides the teacher with a sample lesson for any year, block and
level.



6. Usage Report

This lists the students in alphabetical order with their identification
numbers and the number of hours they spent using the math course.

T. Roster Report

This provides a permanent reference listing of students their ident­
ification numbers and their' time limits.

A-01.8



IDF: A SAMPLE RUN

An example of a lesson created using the Instructional Dialogue
Facility is shown below. The computer prompts the author for
all of the structural elements in the natural order. For clarity,
entries typed by the author are underlined.

SECTION # 1

OPTIONS? KEYWORD cr

OPTIONS? cr

TEXT:

? RECALL FRO~1 OUR PREVIOUS LESSON THAT GEORGE II cr
1 RULED GREAT BRITAIN FROM 1727 TO 1760, AND cr
'. THAT DURING HIS REIGN BRITAIN HAD A SERIES cr

? OF WHIG PRIME MINISTERS. cr
1 cr

QUESTION:

? WHO WAS THE FIRST PRIME MINISTER TO SERVE cr
? UNDER GEORGE II? cr
? cr

CORRECT ANSWER GROUP:

1 WALPOLE cr
1 cr

REPLY FOR THIS GROUP:

? THAT'S CORRECT: ROBERT \VALPOLE \VAS PRIME cr
? MINISTER UNDER GEORGE I FRO~'1 1714 TO 1727; \VHEN cr
1 GEORGE II ASCENDED TO THE THRONE IN 1727, \VALPOLE cr
? BECAME THE FIRST PRIME MINISTER UNDER HIS REIGN. cr
? cr

WRONG ANSWER GROUP # 1

1 COMPTON cr
? cr

REPLY FOR THIS GROUP:

? NO-COMPTON WAS THE SECOND PRIl\1E MINISTER TO cr
? SERVE UNDER GEORGE II; PLEASE TRY AGAIN. cr
? cr

A-01.9



WRONG ANSWER GROUP # 2

? PELHAMcr
? HOLLES cr
? CAVENDISH cr
? cr

REPLY FOR THIS GROUP:

? NO-HE DID IN FACT SERVE AS PRIME MINISTER UNDER cr
? GEORGE II, BUT \VELL AFTER THE ~lAN I'M THINKINGcr
? OF. PLEASE TRY AGAIN. cr
? cr

WRONG ANSWER GROUP # 3

? WALPcr
? cr

REPLY FOR THIS GROUP:

? I THINK YOU HAVE THE RIGHT ANS\VER. BUT YOUR cr
? SPELLING IS \VRONG; PLEASE TRY AGAIN. cr
? cr

WRONG ANSWER GROUP # 4

? cr

REPLY TO UNEXPECTED ANS\VER:

? NOW STOP PLAYING AROUND: NO ONE BY THAT NA~IE cr
? EVER SERVED AS PRHvlE ~HNISTER IN GEORGE II'Scr
? TIME. PLEASE TRY AGAIN. cr
? cr

FAILURE MESSAGE:

? WELL. IT DOESN'T LOOK LIKE YOU'RE GOING TO GET cr
? THE RIGHT ANS\VER ON THIS ONE, SO I'LL TELL YOU. CT

? THE i\1AN I'M THINKING OF WAS ROBERT \VALPOLE: HE CT

? SERVED AS PRI~1E ~nNISTER UNDER GEORGE I FROi\'Y CT

? 1714 TO 1727, AND \VHEN GEORGE II ASCENDED TO THE CT

? THRONE IN 1727. \VALPOLE BECAME THE FIRST PRIl\IE CT

? MINISTER UNDER HIS REIGN. CT

?cr

H1NT#!

? THE MAN I'M THINKING OF ALSO SERVED AS PRIME CT

? MINISTER UNDER GEORGE I. NO\V TRY AGAIN. CT
? Ocr

A-01.10



IMF: A SAMPLE RUN

An example of using the Instructional Management Facility appears
below. It shows how to enter a school, group, course and student
names into the IMF files.

ADMIN
COItE?f.JNMMl·tM
COMMAND?/./HELF'
TYPE CODE~ SCHOOL, GROUP, COURSE, MESSAGE, RESET, LANGUAGE, OR PUPIL.
COMMAND~~SCHDO!...

SCHOOL NAME?CAI HIGH
SCHOOL NAME IS NOW CAl HIGH.

COMMAND'fGPOUP
GROUP COMMAND?//HELP
TYPE ENTER, CHANGEv REMOVE, OR LIST.
GROUP COMMAND1ENTER

NEW GF, 0UF' NI~ /1E '? GI:~ 0 1...1 P :J.
GROUPl IS NOW ENTERED AS A GROUP.

NEW GROUP NAME1GROUP2
GROUP2 IS NOW ENTERED AS A GROUP.

NEt~ GHOUP NAME?
GROUP COMMAND?

COMMAND.O? CDUF~ SE
COURSE COMMAND?!/HELP
TYPE ENTER, CHANGE, REMOVE, OR LIST.
COURSE COMMAND'?.1l!TEF;~

cOUr~:SE NAME'j'l-! I STOF~Y
COIlE /,oJ 0 I:;: II "r1:!.L
DOES I r HI~ljE A DEMO i'10DE 'j'.J:EJi
SF'ECI(.~L COURSE TYPE'rLQf.
HISTORY IS NOW ENTERED AS A COURSE.

COURSE NAME?MATH,PUB.CAI
CODE WDRDTMf~TH

DOES IT HAVE A DEMO MODE?~

SPECIAL COURSE TYPE1MATH
MATH.PUB.CAI IS NOW ENTERED AS A COURSE.

COURSE NAME'?
COURSE COMMAND'i)

COMMAND'?PUP I L

A-01.11



PUPIL

COMMAND?//HEI...P
TYPE ENTER, CHANGE, REMOVE, RESET, ADMIN, ENROLL, ALTER, DROP, OR LIST.
COMMANIt 'i> 1=;'NTE!:~

FIRST NAt1E'fDI(.~NE

LAST NAME1CHRISTOPHERSON
ENTERED WITH ID NUMBER 1000.

COURSE NAME?MATH.PUB~CAI

Gr~OUp NAME?G!:~DI...IP:t

STAr~TI NG YEAI:;~'i~.\~

ENROLLMENT COMPLETED.

FIRST NAME?BEVERLY
LAST NAME?SHEPHERD
ENTERED WITH ID NUMBER 1001.

COURSE NAME?HISTORY
GROUP NAME?GROUP2
ENROLLMENT COMPLETED.

FIRST NAME'"t
COMMAND"~LI ST

LIST BY ID, NAME, OR COURSE?ID-F'AG I NATE'?ND
ID RANGE?1000~,:I.00 1

CAl HIGH

III LISTING

6 OCT. 19:78

PAGE 1

8:55 AM F'OI~T NO. 13

PREFERRED TYPING ENF:OLLED USAGE
ID NAME LANGUAGE MULT. COUI~SE (HRS)

1000 CHf~ISTOPI-fERSON, DIANE ENG 1 MATH.PUB.CAI .0
1001 SHEF'HEF~D, BEVERLY ENG 1 HISTORY .0

-----

ID RANGE1
LIST BY ID, NAME, OR COURSE?

COMMAND'? //STDP

A-~1.12



HPMATH: A· SAMPLE RUN

>STAI~T

Upper case onl~1YES

Please t~pe' wour ID number and first name: 1000 DIANE

Is ~our last name CHRISTOPHERSON1YES

6 October 1978

HELLO DIANEf WE HOPE YOU ENJOY rODAY'S PROBLEMS.

M 6061

********** HERE WE GO !!! f! *~********

90
+ 5

95

Port 13



16
+ 2

18

18
+ 10

28

69
+ 20

89

25
-2

23

36
- 2

34

39
- 20

8
WRONG, TRY AGAIN

39
- 20

19

28
- 15

13

ENTER < OR = ·OR >

6 + 1 -::: 3 + 5

. A-01.14



8 + 6 ;:. 1 + 3

2'"'2 = 4

6'"'2 = 36

42
X 1

42

3/2 4
248

o

3 X 8 = 24

LESSON OVER, YOU ANSWERED 26 OUT OF 27 QUESTIONS CORRECTLY.
GOOIlBYE DIANE.

Please type ~our ID number and first name: //STOP
>EXIT

A-01.15



COMPUTER ASSISTED RESIDENTIAL ENERGY AUDIT

DR. NEAL H. PROCHNOW
PHYSICS DEPARTMENT
UNIVERSITY OF WISCONSIN-RIVER FALLS
RIVER FALLS, WI 54022

MARLYS NELSON
WESTERN WISCONSIN ACADEMIC COMPUTING CONSORTIUM
UNIVERSITY OF WISCONSIN-RIVER FALLS
RIVER FALLS, WI - 54022

The 1973 oil embargo focused this Nation1s attention on its energy
resources and precipitated increased costs for energy. The increased
costs for energy resulted in monthly fuel bills for home owners which
were twice that of previous years. A study in 1974 by the Department
of Health Education and Welfare in cooperation with the Federal Energy
Administration indicated that those hardest hit by the rising prices
of home heating fuel were the poor who lived in single-family homes
in the colder parts of the country and heated their homes with fuel
oil. As a result the Community Services Administration (CSA) initiated
in 1974 an energy conservation program via weatherization of homes.
This program was del ivered to low-income home owners by local communi­
ty Action Agencies (CAA). It became apparent as a function of time
that this program would be more effective if technical assistance
could be provided to the weatherization crews, education to the
home owners and management capabilities to the administrators of
the program. As a result CSA provided funds for the development of
~ computer assisted energy audit management program. The program
described in this paper is a spin-off of the program developed for
CSA. The authors wish to thank Miriam Charnow at CSA National and
Carl Saueressig at West CAP for their assistance and the personnel
at West CAP for their cooperation in the development of the program.

A-fl'2.1



The energy conservation awareness created by the 1973 oil embargo has
somewhat dissipated. There are no long lines at service stations
and there appears to be ample fuel for heating homes. The severe
winter of 1976-77 is long forgotten and to some extent the glamour
of solar energy and other alternate energy sources has attracted
the general publics' interest instead of something as mundane as
insulating a home. However, energy conservation must still remain
as one of the most important objectives of any energy program for
this country. The problem is to keep the concept of energy conser­
vation in focus. Energy conservation requires a conscious effort
and it seems as though the majority of adults react to it only via
a catastrophe or a series of catastrophies; OPEC embargo, severe
1976-77 winter, etc. This is a difficult and traumatic way to
maintain energy conservation awareness. Perhaps a more rationale
way is to build the awareness in from the very beginning.

The United States has in place an elaborate education system and
this system can be used to create an energy ethic. However, this
mechanism still presents some problems. The energy problem is
a social-cultural problem as well as a technical problem. Most
teachers do not have the necessary information base to
effectively build an energy ethic into their students. An even
more important consideration is that most teachers are so overburdened
with the existing curriculum that there may be little or no room for
energy to be added. This is further compounded by the back to the
basic demands currently being placed upon school curriculums. The
time element also becomes a factor. It is perhaps most rationale
to begin at the beginning, kindergarten, and create a process
such that the ultimate result at grade 12 would be an energy con­
scious responsive individual. However, the developmental time and
implementation time is too long for immediate results and may be
too long to be sustained. Subsequently, there may be more cycles of
energy catastrophe, reaction, etc. With all these factors in mind,
it seemed apparent that if something was going to be done in the
energy conservation area .via students, it would have to compensate
for all the factors indicated above. The interactive audit is a mecha­
nism to do just that.

The audit is designed for use by students, grades 7-12. However, it
can be used with college students and adults. Students using the
audit are required to perform a series of activities. These activi­
ties can be coordinated very easily with the existing curriculum or
can be done totally independent of the curriculum. The first acti­
vity requires the student to perform a structural assessment of his
home with respect to energy efficiency. This assessment requires
either a booklet or a data sheet as an explanatory device. West CAP
is using the audit as a part of a youth energy conservation program
and has developed a booklet and summary data sheet. Appendix A is a
copy of the data sheet used by West CAP. The audit can be described
most efficiently via a discussion of the questions involved in the

A-02.2



assessment. Note that the fact that the student is required to perform
an assessment of his home builds in an opportunity for parent-student­
teacher interaction with respect to energy conservation.

The program can be used in a no instruction or instruction mode for
data entry. In the instruction mode the entire question is printed
by the computer t while in the no instruction mode only the 1ine number
and a question mark is printed. For all inputs the number entered is
checked to see if it corresponds to reality where possible. Items
two and three of Appendix A show sample data entries in each mode.

Question 1.: Date
As has been indicated some mechanism is needed to create awareness
with respect to energy conservation. The mechanism in this case is
the interactive capability of the audit. However t even the use of
a computer is insufficient to maintain interest if the time to get
results is too long. The time to enter the data and get a complete
output ranges from 10 minutes for very few system users to 20 plus
minutes if the system is saturated and the no instruction mode is
used. Of this time t 3 to 5 minutes are required to enter the data.
In order to increase the flexibility the management portion of the
program contains a file to temporarily store the answers needed to
print the output. The status of this file is indicated when the
user elects to use the audit program. If the file is not full (50
jobs currently allowed)t the user can elect to enter the data and
obtain his output up to 3 days later. If the file is full the user
must obtain his output immediately after the data is entered. If
this is impossible for him he need not initiate the program. The
file is checked daily as a part of system back up and any data stored
in excess of the three day limit is purged. The data is automatically
purged after an output is obtained. The date is required to incorporate
this feature.

Question 2.: YOU 1.0. Number
The program is designed to store the energy conservation results of
all the audits performed. In order to identify' the audits performed
by users on an individual basis a unique number can be assigned to
identify their data. If this is not essential or desired the YOU
1.0. number can be any number the user elects to enter.

Question 3.: House Number
The house number is computer assigned. This number is used to keep
track of the total audits as well as allow the user to obtain his
data at a later date.

Question 4.: Number of Home Occupants
The number of occupants is used to obtain an estimate of the hot
water requirements.

A-02.3



Question 5.: Age of Home
This data is useful to State and Federal Agencies.

Question 6: Roof Condition
The condition of the roof is critical with respect to adding insulation
to the attic.

Question 7.: Heating System Condition
The condition of the heating system is critical with respect to energy
efficiency. Most if not all students do not have the skills to assess
the condition of the heating system. However, the students can make
the homeowner (their parents) aware of the fact that it should be
checked. If the heating system has been serviced recently (2 to 3
years), it is considered to be in good condition; if not repairs may
be needed. If it doesn't work it needs to be replaced.

Question 8.: Home Temperature-Day and Night
The average temperature of the home is needed in order to obtain
the heatloss. The average temperature is computed assuming a
weighted average of the day and night temperatures; 1/3 for ni'ght
and 2/3 for day. The design temperature of home is assumed to be
lOoF and the heat loss is adjusted at 3% per degree. The temperatures
input can be determined by asking the homeowner or by measurement.

Question 9.: Degree Day Zone
The heatloss is determined on an annual basis using degree days. In
most states degree day data is available as a function of geographi­
cal area. For example, the State of Wisconsin is divided into 11
degree day zones. Usually the degree day data is available for a
650 F base. Recent data from the National Bureau of Standards (NBS)
indicates that a 550 F base may be more appropriate. This is consis­
tent with UW River Falls fuel bill analysis and hence the 65 base
data has been adjusted to 55 base data. All degree day data used
should be adjusted to the 55 base. In addition a 242 day, September
15 to May 15, heating season is assumed.

Question 10.: Type of Fuel and Fuel Cost
Nine types of fuel are allowed; gallons of #1 oil, gallons of #2
oil, kilowatt-hours of electricity, cubic feet of gas, therms of gas,
gallons of LP, tons of coal, gallons of kerosene, and full cords of
wood. The energy content of the fuels and efficiencies assumed are
documented in the program and are consistent with latest NBS data.
The fuel cost can be input or if it is unknown an average value is
assigned by the computer. The average values used for the cost of
fuel as well as all other standards must be determined regionally
and periodically updated by systems staff. The rationale on the
design is to place responsibility for parameters on a systems
individual rather than on a sub routine built for all regions for

A-02.4



all time. That is, decisions on prices, standards, etc. are best
made by an informed individual rather than by a complex subroutine
designed to guess the future.

Questions 11. to 14.: House Structure
The program has been field tested for 1,2 and 3 story homes. The
data entered for these questions is used in the heat loss calculations
as well as to provide checks on reality. For example, the wall area
is calculated from the data of questions 12. to 14. and is used to
check the data entered in questions 27. and 28. to ensure a reason­
able value for the wall area. In addition, the first floor area is
used to check the ceiling area and floor area for the attic and
basement heatloss calculations.

Questions 15. to 17. and 20. and 21.: Basement Heatloss
An explanation of the methodology of how the basement heatloss is
calculated is beyond the scope of this paper. What is needed is
the type of basement and associated dimensions such as the floor
area (from question 12.), perimeter, amount exposed above ground
and composition of the floor with respect to R-value. The R-value
of a material is ~ necessary concept and either the user must have
a working knowledge of it or obtain it by reading accompanying ma­
terial. It is a simple concept and poses no problem if a small
amount of time is devoted to it. The program is most accurate for
homes with basements followed by homes with crawl spaces and then
walkout basement homes. The answers obtained for trailer homes
skirted and unskirted are very crude. This is because there is very
little data available to check the methodology for trailers.

Questions 18. and 26.: Infiltration-Foundation and Walls.
Infiltration is an important consideration in heatloss. What is
required is to assess the extent of air leakage into or out of the
home. This is usually done by rating the structural components
1,2 or 3; that is good, med~cre, or bad. The resulting heatloss
is then computed by using infiltration functions for the various
components. In this program infiltration functions have been
derived for the foundation, crack length, the wall crack length and
the window and door crack lengths. The wall crack length refers
to the crack length associated with the window and door frames
where they join the wall siding. The rationale is that the crack
lengths to be considered must correspond to those places that leak
and are caulked, weatherstripped or sealed in some fashion. A
major source of infiltration is associated with opening and closing
windows and doors and/or leaving them open. There is no way to
account for this in this model and this loss is not related to
the structure but to the occupants behavior.

Questions 22. and 23.: Ceiling Area and R-Value
The program allows for two types of ceiling areas. The rationale
is that a reasonably large number of homes have an addition which

A-02.5



has a different ceiling R-Value. In all cases the R-Va1ues entered
are for structural components only and R-Va1ues for air films, etc.
are assigned internally in the program.

Questions 19., 24. and 25.: Windows and Doors
The windows and doors of a home can represent a large heat loss.
What is required is the direction, area, an infiltration judgement
and whether or not there is a storm. The direction is not critical
because it is used only to identify the window or door. The degree
day concept contains the heat gain or loss due to sunshine. The
window and door areas are computed from length and width measurements.
The criteria for judging the infiltration are included in the data
summary sheet. The window or door either has a good tight fitting
storm or it is considered not to have a storm. An allowance is made
for windows of the same size, direction and condition. The infiltration
functions have been designed for double hung windows and are approximate
for other types of windows. Question 25. requires the user to indicate
whether or not the windows are double hung. This information is used
to check the validity of the infiltration functions.

Questions 27. and 28.: Wall Area and R-Value
As 'in the ceiling case, two wall areas are allowed to account for the
fact that a large number of homes may have a part of the home with
insulated walls and a part of the home with uninsulated walls. The
area to be entered is the area associated with the living space.
The program checks this entered area against the area computed from
the earlier structural data. The R-values entered are for the wall
materials only.

As can be seen from the brief description of the questions, the
assessment activity can be used to enhance the existing curriculums
in both the mathematics and science areas. In addition, energy
concepts such as R-values can be added with a minimum of time.

The second activity of the audit consists of entering the data either
via the instruction or no instruction mode. This can be an enhancing
activity for a class which does not have usual access to a terminal
or it can be just another program execution. Item four of Appendix
A contains an example of the output. The output is reasonably
self-explanatory and need not be discussed with the exception of
the opening paragraph. While the computer community has the utmost
confidence in output, the general public does not necessarily share
this confidence, particularly if energy is involved. Therefore,
a check on reality is built in via the total fuel bill. That is, the
homeowners faith in the results increases as the computer guesses
more accurately his total heating bill. This mechanism provides a
reality check on the output.

A-02.6



The third activity can consist of the interaction of the student and
the homeowner via the audit output. This interaction can be kept
minimal or expanded depending upon the use of the audit and the
time and energy of the participants.

The audit has the potential to be very useful depending upon its
implementation. The program including" the management aspects is
reasonably large. It consists of 15 segments written in HP-3000
Basic and 1 segment written in HP-3000 SPL. All segments are less
than 8K words. The temporary output file with a 50 job limit re­
quires 4500 sectors. The management file on school use has a 100
sector I imit and the information from the audit which is stored
permanently occupi~s 1/2 a sector per job. The correct time to run
the program ranges from 10 to 20 minutes plus depending upon the
volume of users. The CPU time is about 5 seconds.

The program currently stores permanently the following information:

YOU 1.0. Number
Age of the Home
Type of Fuel
Attic Insulation Standard
Total Floor Area and Volume of Home
Average Temperature of the Home
Total Ceil ing Area and Weighted R-Value
Total Wall Area and Weighted R-Value
Infiltration Judgement for the Walls and Foundation
Average Infiltration Judgement for the Doors and Windows
Window and Door Area
Heatloss in Fuel Units and Dollars
Potential Heat Savings in Fuel Units and Dollars
Percent of the Heatloss Due to Infiltration and Conduction

While the implementation of the program would require very 1ittle
effort from one HP-3000 to another, some training with respect to the
energy and heat loss aspects would greatly enhance the effectiveness
of the audit. Because the audit can generate data related to resi­
dential energy use, there is a possibility that Federal funds can be
obtained to provide some training. If you are interested in imple­
menting the audit please contact one of the authors of this paper.

A-02.7



APPENDIX A

A sample data summary sheet is included to illustrate the technique
used to increase the efficiency of data entry. This sample data
sheet consists of one folded piece of paper but is displayed here
as four separate sheets.

Sample data entries are enclosed in both the no instruction and
instruction modes. For some entries errors have been made to
illustrate the kinds of data checks built into the program.

A copy of the output is enclosed. Note the narrative form of
the output. This enhances the ability of the homeowner to read
and understand the results. The sample data entry in the
instruction mode and the output required 22 minutes of connect
time and 7 seconds of CPU time. There were 23 users and the
data entry and output were obtained via DSLINE communication.
In the no instruction mode with no DSLINE the typical data
in output out connect time is less than 15 minutes with a
CPU time of 4 to 5 seconds.

A-02.8



NAME OF HOMEOWNER:...- Telephone /I _

Housing & Energy
West CAP
525 Second Street
Glenwood City, WI 54731

VISll'
ill

112

19. ---
DATA ON BACK

20.

1.· DATE: MONTH, DAY, YEAR (E.G. 1,10,78)

2. Y.O.U. ID NUMBER

1. _,_,_ 21. _

2. _

3.

4.

(computer assigned, if you wish
Assigned House Number to recall program record here)

Number of Individuals Occupying Hom~

3. _

4. _

22.

23.
--'--

--'--
5. AGE OF HOME (YEARS)

6. CONDITION OF ROOF?
l=Tight Roof - no leaks, good condition
2~Needs Minor Repair - missing shingles, cracks,

possible leaks
3=Needs Replacing - bad condition, major leaks

5. _

6. _
24. ,

DATA'ON BACK

25.
DAT-~A-O--N-BA-C-K-

27. __,

7. 26. _7. CONDITION OF HEATING SYSTEM?
1a serviced within I year
2a serviced 1-5 years - owner can recollect it's

having worked better
3=can't recollect last date of service

8. AVERAGE HOME TEMPERATURE (FARENHEIT)
Day Time Night Time _

8. __,
28. --'

9. DEGREE DAY ZONE (SEE PAGE 2) 9.

--'

--'--

10.

11. TO CONDUCTION

12.1st FLOOR AREA (SQ.FT.), AVG. WALL HT. (FT.)

FUEL NUMBER AND COST (SEE PAGE 2)

NUMBER OF STORIES IN HOME

10.

11.

12.

13. 2nd FLOOR AREA (SQ. FT.), AVG. WALL HT. (FT.) 13. __, __------

17. AMOUNT FOUNDATION EXPOSED ABOVE GROUND (inches)? 17. _

16. FOUNDATION PERIMETER (FT)

18. FOUNDATION CONDITION NUMBER
lano cracks or settling, very clean
2aminor cracks, loose Morter
3=major cracks and settling

--'--

-----I--'--

14.

15. _

16. _

18. _

3rd FLOOR AREA (SQ.FT.), AVG. WALL HT. (FT.)

FLOOR EXPOSURE FACTOR
1a Basement
2a Craw1 Space
3=Walkout
4c Skirted Trailer/Building on posts
5=Unskirted Trailer/Building on posts

Are the basement walls insulated? leYes 2eNo
Walkout wall area (sq. ft.) and R-value

14.

15.

A-02.9



FUEL FUEL COST
(circle one or more, enter major fuel on item 10).

If fuel cost is unknown, computer will

1= til Fuel Oil
2= 02 Fuel Oil
3= Electricity
4= Natural Gas by Cu. Ft.
5- Natural Gas by Therm
6a Bottled Gas (LP Propane)
7m Coal, Coke
81'8 Kerosene
9= Wood

COUNTY DEGREE DAY ZONES

(cents per gallon)
(cents per gallon)
(cents per kwhr)
(cents per cubic foot)
(cents per therm)

_____ (cents per gallon)
_____ (dollars per ton)
_____ (cents per gallon)

(dollars per fu1t
cord, 4x4x8 Ft.)

assign an average cost.

Enter on item 9

Chippewa, Barron, Polk = 4
St. Croix, Dunn, Pierce, Pepin = 7

CRITERIA FOR DETERMINING THE CONDITION OF DOORS, WIDOWS
AND WALLS

Condition 1= ~, WINDOWS- good fit, no draft is felt,
caulk and weatherstripping are in good shape.
WALLS- finish in good shape. •

Condition 2= DOORS- loose or missing weatherstripping.
WINDOWS- loose fit, no weatherstripping, caulk
and glazing cracked and missing in sections,
storm open or cracked.
HAL1[- caulking between wall and frames is
cracked, shrunk or nonexistant.
WALL EDGE AT FOUNDATION- shows minor deterioration.

Condition 3= DOORS- large gaps between door and jamb.
Door cracked, sagging on hinges.
WINPOWS- very loose, window glass broken or
missing. Frame shows rotted areas.
WALLS- rotted areas, large gaps between wall
and frames.
WALL EDGE AT FOUNPATION- show deterioration, missing
siding and holes. Foundation has many cracks or
holes.

A-02.10



19. BASEMENT WINDOWS: HOW MANY LINES FILLED IN~

ENtER BASEMENT WINDOW DATA FROM REVERSE SIDE

20. CARPETED FIRST FLOOR AREA (SQ.FT)
INSULATED 1=Yes 2e No
R-Value if Yes

21. First Floor Area NOT CARPETED (SQ.FT.)
Insulated l=Yes 2e No
R-Value if Yes

22. UNINSULATED CEILING AREA (SQ. FT.) AND R-VALUE

23. INSULATED CEILING AREA (SQ.FT.) AND R-VALUE
MATERIAL DEPTH~ _

24. WINDOWS: HOW MANY -LINES FILLED IN?
DOUBLE HUNG l=Yes 2e No
ENTER WINDOW DATA FROM THE REVERSE SIDE

25. DOORS: HOW MANY LINES FILLED IN?
ENTER DOOR DATA FROM THE REVERSE SIDE

26. WALL CONDITION NUMBER (1, 2 or 3)

27. TOTAL OUTSIDE WALL AREA INSULATED (SQ.FT.) AND R-VALUE
MATERIAL __

28. TOTAL OUTSIDE WALL AREA UNINSULATED (SQ.FT.) AND R-VALUE

COMPUTER OUTPUT

19. ~ ___
DATA ON BACK

20. _

21. _

22. __, __

23. __, __

24. ,
DATA ON BACK

25. _
DATA ON BACK

26. _

27. __, __

28. __, __

BEAT LOSS _

__% DUE TO INFILTRATION

POTENTIAL SAVINGS
HEAT LOSS _

SQ.FT. _

COMPUTATION SPACE

A-02.11

FUEL COST _

_ % DUE TO CONDUCTION

FUEL COST

VOLUHE _



BASEMENT WINDOW DATA

See second page to determine condition number for windows and doors.

lDirection Width Peight Condition Good Storm Number of
~.S.E.W Inches Inches 1.2 or 3 1=Yes. 2=No Windows

WINDOW DATA

lDirection Width Height Condition Good Storm Number of
IN,s,E~w Inches Inches 1~2 or 3 1=Yes. 2=No Windows

DOOR DATA

lDirection Width Height Condition Good Storm
N,S,E.W. Inches Inches 1,2 or 3 .1=Yes, 2=No

A-02.12



UW - River Falls HEATLOSS Pro~ram : TUE, OCT 3,' 1978, 11:16 AM

Enter two (2) disit code for desired option:
01 Home enersy audit 02 Output stored audit information
99 StO?

1.01

StoraSe space on file is available at this time, YOU may be able to
store your audit information and receive output at a later time.

NEED INSTRUCTIONS (1=YES OR 2=NO) 1 2

1. 1 10,3,78
2. 1 2
3. 100013
4~ ? 1
5. ? 25
6. 1 1
7. ? 1
8. 1 68,66
'9. ? 4

10. ? 1
11,100
BAD INPUT-.-RETYPE FROM ITEM 1
111,100

* * ENTRY NOT REALISTIC * * FUEL COST FOR TYPE OF FUEL INDICATED MUST
BE BETWEEN 30. AND 65 CENTS INCLUSIVE. PLEASE REENTER DATA.

Ita YOU KNOW
11. ,. 1
12. ? 543,8
15. 1 1

INSULATED
16. ? 94
17. ? 6
18. 1 1
19. ..~ 0
20. ? 1.80

INSUL(.lTED
21. ? 363

INSULATED
22. ,. 0,0
23. 1 5.(t.57 24
24. ? 0,1

THE APPROPRIATE FUEL COST (l=YES OR 2=NO) ? 2

,. 2

(l=YES OR 2=NO) ? 2

(l=YES OR 2=NO) ? 2

* * ENTRY NOT REALISTIC * *A HOME MUST HAVE AT LEAST ONE (1) WINDOW.
P~EASE REENTER DATA.

A-02.13



24. WINDOWS: NUMBER OF lINES FIllED IN (1-45) AND DOUBLE HUNG (1=YES
OR 2=NO) l' 3i11
l' W,30,50,1,2,1
l' S,30,50,1,1,3
l' W,30,60,1,2,1

25. l' 1
l' E,31,84,1,1

26. l' 3
27. l' 0,0
28. l' 752,3

DO YOU WISH TO STORE INFORMATION UNTil LATER (1=YES 2=NO) l' 1

Enter two (2) di~it code for desired option :
01 Home enerS~ audit 02 Output stored audit information
99 Stop

7.99

HEATLOSS RUN TERMINATED.

READY
tBYE'
CPU=3. CONNECT=10. TUE, OCT 3, 1978, 11:24 AM
* * * GOOD-BYE FROM WACC I * * * A SERVICE OF UW-RIVER FALLS * * *
END OF SESSION
0:

:BYE

CPU=3. CONNECT=11. TUE, OCT 3, 1978, 11:25 AM
* * * GOOD-BYE FROM WACC II * * * A SERVICE OF UW~RIVER FAllS * * *
ENII OF SESSION

A-02.14



UW - River Falls HEATLOSS Pro~ram : TUE, OCT 3, 1978, 10:47 AM

E~ter two (2) di~it code for desired o?tio~ :
01 Home enerSY audit 02 Output stored audit information
99 Stop

7.01

Stora~e space on file is available at this time, YOU may be able to
store your audit information and r~ceive output at a later time.

NEED INSTRUCTIONS (l=YES OR 2=NO) ? 1

THIS PROGRAM IS DESIGNED TO SAVE COMPUTER TIME. THEREFORE ANSWER
THE QUESTIONS AS ACCURATELY AS POSSIBLE. PLEASE READ THE BOO~LET CARE­
FULLY AND USE THE DATA SUMMARY SHEET. IF YOU DO NOT KNOW AN ANSWER, DO
NOT GUESS THE ANSWER. IF YOU ARE UNSURE AND HAVE A CHANCE TO ANSWER NO,
THE COMPUTER WILL ASSIGN A REASONABLE VALUE WHERE POSSIBLE. YOU WILL BE
GIVEN ONLY 4 CHANCES TO ENTER THE CORRECT INFORMATION (WITH HINTS) BE­
FORE BEING TERMINATED.

1. DATE (MONTH, DAY, YEAR) ? 10,3,78
2. Y.O.U. I.D. NUMBER 1 2
3. HOUSE NUMBER : 100012
4. NUMBER OF INDIVIDUALS OCCUPYING HOME ? 1
S. AGE OF HOME (YEARS) ? 25
6. CONDITION OF ROOF : 1 = TIGHT ROOF 2 = MINOR REPAIRS NEEDED

3 = NEW ROOF NEEDED ? 1
7. CONDITION OF HEATING SYSTEM : 1 = GOOD CONDITION 2 = NEEDS REPAIR

3 = NEEDS REPLACEMENT ? 1
8. AVERAGE HOME TEMPERATURE (FAHRENHEIT) : DAYTIME AND NIGHTTIME.

SEPARATE EACH ENTRY WITH A COMMA. FOR ~XAMPLE: 68,66 ? 70,70
9. ENTER THE ZONE NUMBER WHERE HOME IS LOCATED ? 7

10. ENTER FUEL NUMBER ? 5
DO YOU KNOW THE FUEL COST (1=YES OR 2=NO) ? 1
ENTER FUEL COST ? 25

11. ENTER NUMBER OF STORIES? 1
12. ENTER FIRST FLOOR AREA (SQ.FT.) AND AVERAGE WALL HEIGHT

(FT.) ? 543,8
15. ENTER FLOOR EXPOSURE FACTOR ? 1

ARE THE BASEMENT WALLS INSULATED (l=YES OR 2=NO) ? 2
16. ENTER FOUNDATION PERIMETER IN FEET? 94
17. ENTER AMOUNT FOUNDATION IS EXPOS~D IN INCHES ? 6
18. ENTER FOUNDATION CONDITION NUMBER? 2
19. HOW MANY LINES FILLED IN FOR BASEMENT WINDOWS ? 2

ENTER BASEMENT WINDOW DATA AS FOLLOWS : ENTER DIRECTION (N, S, E OR
W), WIDTH (INCHES), HEIGHT (INCHES), CONDITION (1, 2 OR 3), GOOD
STORMS (l=YES OR 2=NO), NUMBER OF WINDOWS OF SAME DIRECTION, CONDITION,
ETC. SEPARATE EACH ENTRY BY A COMMA. FOR EXAMPLE: N,24,16,1,1,2
? E,30,12,1,2,1
? N,30,12,1,2,1

A-02.15



20. IS ANY OF THE FIRST FLOOR AREA CARPETED (1=YES OR 2=NO) 1 1
ENTER CARPETED FIRST FLOOR AREA IN sa. FT. 1 180

INSULATED (1=YES OR 2=NO) ? 2
21. IS ANY OF THE FIRST FLOOR NOT CARPETED (l=YES OR 2=NO) 1 1

ENTER FIRST FLOOR AREA NOT CARPETED IN SQ. FT. ? 363
INSULATED (l=YES OR 2=NO) 1 2

22. ENTER UNINSULATED CEILING AREA (Sa.FT.) AND R-VALUE. SEPARATE EACH
NUMBER BY A COMMA. IF THERE IS NO UNINSULATED CEILING AREA, ENTER
A 0 FOR THE CEILING AREA AND A 0 FOR THE R-VALUE 1 0,0

23. ENTER INSULATED CEILING AREA (Sa.FT.) AND R-VALUE. SEPARATE EACH
NUMBER BY A COMMA. IF THERE IS NO INSULATED CEILING AREA, ENTER A
o FOR THE CEILING AREA AND A 0 FOR THE R-VALUE ? 643,24

* * ENTRY NOT REALISTIC * *TOTAL CEILING AREA DOES NOT EQUAL INSULATED
PLUS UNINSULATED CEILING AREA (WITHIN lOX). PLEASE REENTER DATA.

22. ENTER UNINSULATED CEILING AREA (Sa.FT.) AND R-VALUE. SEPARATE EACH
NUMBER BY A COMMA. IF THERE IS NO UNINSULATED CEILING AREA, ENTER
A 0 FOR THE CEILING AREA AND A 0 FOR THE R-VALUE ? 0,0

23. ENTER INSULATED CEILING AREA (Sa.FT.) AND R-VALUE. SEPARATE EACH
NUMBER BY A COMMA. IF THERE IS NO INSULATED CEILING AREA, ENTER A
o FOR THE CEILING AREA AND A 0 FOR THE R-VALUE ? 543,24

24. WINDOWS: NUMBER OF LINES FILLED IN (1-45) AND DOUBLE HUNG (1=YES
OR 2=NO) ? 7,1
ENTER WINDOW DATA AS FOLLOWS: ENTER DIRECTION (N, 5, E OR W), WIDTH
(INCHES), HEIGHT (INCHES), CONDITION (1, 2 OR 3), GOOD STORMS (1=YES
OR 2=NO), NUMBER OF SAME DIRECTION, CONDITION, ETC. SEPARATE EACH
ENTRY WITH A COMMA. FOR EXAMPLE: N,28,53,2,1,3
1 5,63,51,1,2,1
1 N,2

36,33,3,1,1
? N,48,33,1,1,j
1 N,48,33,1,1,2
? E,54,33,1,1,1
? W,48,36,1,1,1
? W,39,33,2,2,1

25. DOOR DATA : HOW MANY LINES FILLED IN 1 2
ENTER DOOR DATA AS FOLLOWS: DIRECTION (N, B, E OR W), WIDTH (IN
CHES), HEIGHT (INCHES), CONDITION (1, 2 OR 3), STORMS (l=YES
OR 2=NO). SEPARATE EACH ENTRY WITH A COMMA. FOR EXAMPLE: N,36,
84,1,1
1 8,36,84,2,2
? W,72,84,1,1

26. WALL CONDITION NUMBER? 1
27. ENTER TOTAL OUTSIDE WALL AREA INSULATED AND R-VALUE ? 0,0
28. ENTER TOTAL OUTSIDE WALL AREA UN INSULATED AND R-VALUE ? 752,3

DO YOU WISH TO STORE INFORMATION UNTIL LATER (1=YES 2=NO) 1 2

A-02.16



TO DETERMINE THE ACCURACY OF THE COMPUTER RESULTS, COMPARE THE COMPUTED
FUEL BILL TO THE ACTUAL FUEL BILL. THE CLOSER THE MATCH THE MORE ACCU­
RATE THE RESULTS. THE POTENTIAL SAIJINGS INDICATED ARE FOR THE FIRST
COMPLETE HEATING SEASON. POTENTIAL DOLLAR SAVINGS ASSUME THAT THE PRICE
OF FUEL REMAINS THE SAME. MATERIAL COSTS VARY A GREAt DEAL AND SHOULD
BE CHECKED LOCALLY.

* * * SURVEY QUESTION 8. * * *
AVERAGE HOME TEMPERATURE IS 70

YOU SHOULD LIVE AT A LOWER TEMPERATURE, 68 DEGREES FAHRENHEIT OR LESS.

* * * SURVEY QUESTION 7. * * *
HEATING EFFICIENCIES ASSUMED ARE 65~ OIL, LP AND NATURAL GAS, 100~

ELECTRIC, 60~ COAL AND 50~ WOOD.

YOUR FURNACE IS IN GOOD CONDITION - YOUR EFFICIENCY IS PROBABLY "AS
STATED.

YOUR HEATLOSS IS 1111.7 THERMS GAS
ASSUMING THAT YOUR FUEL COSTS ARE 25.00 CENTS PER THERM YOUR
FUEL BILL SHOULD BE ABOUT $ 277.91.
OF THIS HEATLOSS 26 ~ IS DUE TO INFILTRATION LOSSES

74 ~ IS DUE TO CONDUCTION LOSSES.

* * * INFILTRATION LOSSES SHOULD BE CONSIDERED FIRST * * *
* * * SURVEY QUESTIONS 19. & 24. * * *
WINnow DATA :
t iti:jJ::II::II::1I: :Il:~~:lJ::jJ::ft:

HEATLOSS =
HEATLOSS =
HEATLOSS =
HEATLOSS =

ONLY WINDOWS NEEDING
SAVINGS GREATER THAN

12.1 THERMS GAS
1.4 THERMS GAS

177.1 THERMS GAS
80.1 THERMS GAS

WORK OR WITH TRIPLE GLAZED
$2 AF~E LISTED

$ 3.03 (CONDUCTION) - BASEMENT
$ .36 (INFILTRATION) - BASEMENT
$ 44.28 (CONDUCTION)
$ 20.02 (INFILTRATION)

POTENTIAL POTENTIAL
SAVINGS SAVINGS

WEATHER IF WEATHER IF WEATHER
WIDTH HEIGHT STORM STRIPPING STRIPPED STRIPPED

DIRECTION INCHES INCHES NEEDED NEEDED (ONLY) AND STORM

POTENTIAL
SAVINGS
IF WEATHER
STRIPPED
AND TRIPLE
GLAZED

B-EAST 30 12 YES NO $ .01 $ .64 $ .94
B-NORTH 30 12 YES NO $ .01 $ .64 $ .94

SOUTH 63 51 YES NO $ .12 $ 7.24 $ 9.94
NORTH 36 33 NO YES $ 4.72 $ 4.72 $ 5.72
WEST 39 33 YES YES $ 1.56 $ 4.4J. $ 5.49

-_._----------------------------
TOTALS $ 6.43 $ 17.65 $ 30.00

2 BASEMENT STORM WINDOWS NEE[lED
USING ALUMINUM STORMS AVG. r~ETAIL PRICE -- $ 24.00

29 LINEAR FEET OF WEATHERSTRIPPING
NEEDED FOr~ WINDOWS AVG. RETAIL PRICE = $ 2.97

2 STORM WINDOWS NEEDED
USING ALUMINUM STORMS AVG. RETAIL PRICE = $ 100.00

A-9J2.17



* * * SURVEY QUESTION 25. * * *
DOOR DATA : ONLY DOORS NEEDING WORK ARE LISTED.
~tl••tttt
HEATLOSS - 119.4 THERMS GAS $ 29.86 (CONDUCTION)
HEATLOSS = 101.8 THERMS GAS $ 25.44 (INFILTRATION)

POTENTIAL POTENTIAL
SAVINGS SAVINGS

WEATHER IF WEATHER IF WEATHER
WIDTH HEIGHT STORM STRIPPING STRIPPED STRIPPED

DIRECTION INCHES INCHES NEEDED NEEDED (ONLY) AND STORM

SOUTH 36 84 YES YES $ 16.70 $ 23.06

TOTALS $ 16.71 $ 23.07

20 LINEAR FEET OF WEATHERSTRIPPING
NEEDED FOR DOORS AVG. RETAIL PRICE = $ 2.00

1 STORM DOORS NEEDED
USING ALUMINUM STORMS AVG. RETAIL PRICE - $ 75.00

* * * SURVEY QUESTION 18. * * *
FOUNDATION INFILTRATION DATA:
iiiiiittlititititilltilltltil
HEATLOSS = 30.~ THERMS GAS $ 7.57 (INFILTRATION)

FOUNDATION NEEDS SOME WORK, PARTICULARLY CAULKING
CRACK LENGTH ASSOCIATED WITH SILL AND FOUNDATION IS 94 LINEAR FEET

9 TUBES OF CAULKING MAY BE NEEDED *** AVG. RETAIL PRICE = $ 13.50

POTENTIAL SAVINGS: 20.6 THERMS GAS $ 5.14

* * * SURVEY QUESTION 26. * * *
WALL INFILTRATION DATA:
tiiiiiiOilttltillllltli
HEATLOSS = 59.8 THERMS GAS $ 14.94 (INFILTRATION)

WALL CONDITION IS GOOD, NO WORK NEEDED; NO POTENTIAL SAVINGS.

CONDUCTION LOSSES SHOULD BE CONSIDEP~D SECOND.

A-02.18



* * * SURVEY QUESTIONS 6.,22. & 23. * * *
CEILING DATA:
iiiDtt~lllllt

HEAl LOSS =
HEAT LOSS =

.0
55.8

THERMS GAS
THERMS GAS

$ .00 (UNINSULATED)
$ 13.96 (INSULATED)

INSULATED CEILING AREA ~ 543 SQUARE FEET CURRENT R-VALUE = 24.0
ADDITIONAL INSULATION NEEDED TO ACHIEVE AN R-VALUE OF ABOUT R= 33

2 SETTLED INCHES OF BLOWN CELLULOSE R=3.7/IN.
8 30 LB BAGS OF CELLULOSE AVG. RETAIL PRICE = $ 40.00

***** OR *****
ASSUME ONLY 3 AND 6 INCH BATTS ARE EASILY AVAILABLE

6 ROLLS OF 6.0 X 23 FIBER GLASS BATTS AVG. RETAIL PRICE = $ 173.76

WITH THIS FIBER GLASS ADDED TOTAL R-VALUE = 43.0

VENTILATION REQUIREMENTS (ASSUMES NO VAPOR BARRIER EXISTS)
ABOUT 1.8 SQ.FT. INLET AVG. RETAIL PRICE - $ 3.75 USING ATTIC VENTS
ABOUT 1.8 SQ.FT. OUTLET AVG. RETAIL PRICE = $ 12.00 USING ROOF VENTS

POTENTIAL SAVINGS: 16.0 THERMS GAS $

* * * SURVEY QUESTIONS 27. & 28. * * *
WALL DATA:
tlltlililt

* * * WALL INSULATION STANDARD USED IS R-l1* * ** * * TOTAL WALL R-VALUE STANDARD IS R-15 * * *
HEATLOSS = 287.4 THERMS GAS $ 71.85 (CONDUCTION)

TOTAL WALL AREA = 752 SQUARE FEET
TOTAL WINDOW AND DOO~ AREA = 159 SQUARE FEET
NET WALL AREA = 592 SQUARE FEET

100 Z OF THE NET WALL AREA IS NOT INSULATED R-VALUE = 3.0
ADDITIONAL INSULATION NEEDED TO ACHIEVE AN R-VALUE OF ABOUT R=15
3.5 INCHES OF BLOWN CELLULOSE R=3.7/IN.
19 30 LB BAGS OF CELLULOSE AUG. RETAIL PRICE = $ 94.00

POTENTIAL SAVINGS UNINSULATED WALLS:

A-02.19

204.4 THERMS GAS $ 51.11



* * * SURVEY QUESTIONS 12.,15.,16.,17.,20. & 21. * * *
BASEMENT DATA :
ttlilillltttttttl
HEATLOSS = 186.4 THEF,MS GAS $ 46.60 (CONDUCTION)

OF THE HEAT LOST TO YOUR BASEMENT 72% IS LOST THROUGHTHE EXPOSED PART
OF THE BASEMENT WALL, 18% IS LOST THROUGH THE PART NOT EXPOSED AND 9%
IS LOST THROUGH THE BASEMENT FLOOR.

IF YOU INSULATE THE BASEMENT WALLS, ]HE HEAT LOST TO THE BASEMENT IS :

INSULATION lYPE CALCULATED HEATLOSS
THERMS GAS DOLLARS

POTENTIAL SAVINGS
THERMS GAS DOLLARS

R- 4 WALL
R-11 WALL

HOT WATER DATA:
tiii:jJ::jJ:it-i:ft:f.:IJ::I=lJ::Jl:

134.0
115.0

$ 33.51
$ 28.75

52.4
71.4

$ 13.10
$ 17.85

FOR THE 1 INDIVIDUALS OCCUPYING THE HOME
THE HOT WATER COSTS PER YEAR ARE ABOUT

$ 63
$ 20
$ 35
$ 28

IF ELECTRIC AT $.03/KWHR
IF NATURAL GAS AT $.25/THERM
IF LP AT $.40/GALLON
IF OIL AT $.47/GALLON

IF YOU WISH ADDITIONAL INFORMATION CONTACT:
WESTCAP HOUSING AND ENERGYv GLENWOOD CITY, WI. 715-265-4271.
UW RIVER FALLS, PHYSICS/ENERGY, RIVER FALLS, WI. 715-425-3196.
WISCONSIN OFFICE OF STATE PLANNING AND ENERGY
MADISON, WI. 608-266-6850.

TOTAL POTENTIAL SAVINGS: 475.2 THEF~MS GAS $118.80

Enter two (2) di~it codR for desired option :
01 Home enerS~ audit 02 Output stored audit information
99 StO?

r.a9

HEATLOSS RUN TERMINATED.

A-02.20



A DECISION SUPPORT SYSTEM TO ASSIST
IN CONTAINERBOARD LOGISTICS MANAGEMENT

PETER DIGIAMMARINO AND RICHARD SCHWARTZ
AMERICAN MANAGEMENT SYSTEMS, INC.

SAN MATEO, CALIFORNIA

ABSTRACT

Management decision-making must be responsive to changing
economic conditions, dynamic internal business circum­
stances, and an expanding set of operational and strategic
issues relevant to business policy-making. Decision-making
in this environment requires timely access to accurate and
complete information pertinent to specific business s'itu­
ations. Meeting this requirement is complicated by a nar­
rowing time frame in which highly volatile data must be
organized and analyzed before it can be assimilated into
the decision-making process. Effective management of
containerboard production and distribution requires an
information system that supports decision-making in all
phases of business activity: operational control, manage­
ment control and strategic planning. The Brownboard Order
And Rollstock Distribution System (BOARDS) integrates manage­
ment science and operations research with advanced computer
technology and human decision-making to support demand-based
production planning in the corrugated shipping container
industry.

American Management Systems, Inc., a management consulting
and system development firm, developed BOARDS for the Shipping
Container and Containerboard Marketing Division of Weyerhaeuser,
a company principally engaged in the manufacture, distribution'
and sale of forest products. BOARDS operates on a dedicated
Hewlett-Packard 3000 Series II computer with SI2K bytes of main
memory. Nine dist.inct IMAGE data bases constitute the system's
foundation. Over one hundred BOARDS functions written in COBOL,
SPL and FORTRAN have been aggregated into six integrated sub­
systems. Most of the system was installed in the fall of 1978;
further development is underway and will be installed early in
1979.

A-04.l



INTRODUCTION

The corrugated shipping container industry is highly sensitive to
dynamic market and economic conditions. Increased competition, tech­
nological advances that have yielded attractive substitutes, and
tightening environmental regulations are factors contributing to the
rising production costs and unstable demand facing the industry. When
the lumber business is prospering, the integrated forest products manu­
facturers (those companies that make lumber, brownboard and boxes) run
their containerboard mills at full capacity in order to consume prodigious
quantities of wood chips. Flooding the market with containerboard in
periods of depressed box demand results in excess containerboard inven­
tories and narrowing profit margins. Containerboard inventory distri­
bution, in addition to supply considerations, is also an integral part
of sales and profit performance.

The corrugated shipping container producers have every incentive to
adjust operating policies and planning strategies to meet the challenge
of achieving production capacity and improving profit margins. Alterna­
tive means of adjusting the market conditions are to control production
of containerboard at the mill; discover ways to increase demand; or
institute mechanisms for supply planning, demand forecasting, and mill
scheduling which result in inventory levels that are responsive to actual
consumer demand and that are economically justified.

EXAMINING THE ALTERNATIVES

Mill production of containerboard typically runs in cycles; production
of light-weight grades followed by heavy-weights and back to light-weights.
Gradual increments in grade/basis weight production maintain an efficient
cycle whereas irregular changes require substantial machine set up time,
are disruptive, and drive up production costs. Extreme fluctuations in
box demand do not coincide with an orderly, efficient production cycle.
Satisfying uneven fluctuations in demand by increasing or decreasing pro­
duction volume, while maintaining an efficient grade cycle, adds to the
high operating cost of containerboard production. Therefore, production
control mechanisms are expensive and undesirable. Even if production is
responsive to demand, situations may still occur such that it would be
cost effective to slow or shut down the mill; but generally only as a
last resort.

Shipping container manufacturers have campaigned vigorously to in­
crease demand for their product. As evidence of this, the integrated
companies have chosen to enter markets for low volume, specialty containers.
New foreign markets are also being explored. The continuous growth in
demand for corrugated boxes that prevailed during the 1960's at 5.6% per
year slowed to about 3% per year in the early 1970's and is optimistically
expected to equal the growth of the U.S. economy in the long run (Business
Week March 13, 1978). Efforts to generate increased demand for shipping
containers continue, but are not a practical long-term solution to pro­
blems associated with containerboard inventory management under volatile
market conditions.



A practical long-term strategy is to achieve improved management of
existing facilities in response to consumer demand. The objectives are
to minimize inventory stockpiling and to avoid lost sales due to poor
inventory distribution. This is accomplished if each corrugated box shop
is supplied with, or has access· to, sufficient and specific quantities of
brownboard needed to satisfy existing and forecasted customer orders. Container­
board Logistics Management is responsible for achieving this demand/supply
balance. The difficulty associated with establishing demand-based pro-
duction and planning policy is that large quantities of information must
be assimilated into the logistics management decision-making process.
Fluctuations in demand must be accurately monitored for each box shop and
market region; up-to-date inventory levels at the box shops and the mills,
and quantities in-transit must be known at all times; and mechanisms to pro­
cess, track and assess the status of containerboard orders must be in place.

A system that provides this information must support containerboard
logistics decision-making in all phases of management activity: operational
control, management control and strategic planning. Within each type of
activity, the system must support decision-making that ranges from struc­
tured (such as order entry, inventory control, consumption forecasting, and
pricing) to semi-structured (such as mill scheduling, simulating policy
decisions to set target weeks of containerboard inventory at the box shops,
and demand/supply planning analysis).

A FRAMEWORK FOR CONTAINERBOARD LOGISTICS DECISION MAKING

The usefulness of such a system extends beyond the realm of management
control. Day-to-day operational support to the box shops and containerboard
mills is also achieved. Order entry, containerboa.rd production, shipment,
invoice and receipt transaction processing facilitate ongoing activities at
distributed sites while simultaneously supplying a central pool of management
information. Decisions to contract for additional containerboard orders or
to purchase additional containerboard are based on better and more complete
information by providing box shops direct access to the system.

A system to manage a demand-based production strategy must be capable
of accurately capturing and monitoring consumption forecasts and converting
those forecasts into orders that can be filled economically. Access to
weekly box shop consumption forecasts, current on-hand and in-transit quan­
ities, and outstanding orders provides containerboard logistics management
with the information required to determine the grade and quantity of brown­
board to order for each box shop in the upcoming weeks. Mill production
rates, warehouse inventory levels, and trade agreement balances provided by
the system are also used by management to help make economical decisions
when placing orders.



A system to capture, store, process, and report information in a
timely and usable manner must be responsive to dynamic market conditions
to justify its use in any market. It is intuitively appealing to posit
that a well organized demand-based production strategy will function well
under any market conditions, although it is especially cost effective in
tight markets. Using the system to simulate alternative supply planning
strategies in accordance with projected economic circumstances further
contributes to its usefulness in diverse market situations.

American Management Systems, Inc., a management consulting and systems
development firm, has developed the Brownboard Order And Rollstock Distri­
bution System (BOARDS) for the Shipping Container and Containerboard
Marketing Division of Weyerhaeuser, a company principally engaged in the
manufacture, distribution, and sale of forest products. BOARDS provides
information services for all phases of containerboard logistics management
activity: operational control, management control, and strategic planning.
The functions of BOARDS map well into the Framework for Management Infor­
mation Systems developed by Gorry and Scott Morton (Gorry and Scott Morton
1971) from Anthony's taxonomy of management activity (Anthony 1965) and
Simon's continuum of managements' approach to decision-making (Simon 1960).
Figure 1 shows the array of decision-making activity supported by BOARDS
within this framework.

To the extent that BOARDS handles routine processing needs (e.g., order
entry, inquiry and update, and inventory control) it is a conventional
management information system. These functions are structured in the sense
that they are based upon well understood, easily automated processes and
require limited human intervention. The rest of BOARDS supports decision­
making that is much less mechanical. Order sourcing, mill scheduling, box
shop inventory replenishment and demand/supply planning are examples of
functions that require relevant information to be processed and acted upon
differently depending upon conditions that are so dynamic and diverse that
they cannot be effectively automated. In these cases, BOARDS is designed
to assist the decision-maker by providing rapid access to timely information
in the format most appropriate to the situation at hand. As the first two
columns in Figure 1 depict, some BOARDS functions assist institutional
decision-making; i.e., decision-making required to manage everyday business
situations. Conversely, some BOARDS functions aid in ad-hoc decision-making
as shown in the third column of Figure 1 (Donovan and Madnick 1977). BOARDS
is, therefore, more than a conventional management information system and
is appropriately termed a Decision Support System (Keen and Scott Morton 1977).

BOARDS OVERVIEW

The distribution of containerboard is illustrated as a cyclical flow
in Figure 2. Contemporary containerboard distribution systems are driven
by mill production and containerboard supply capabilities. With BOARDS,
however, the cycle starts with consumption forecasts provided by the box
shops. This input is based upon actual sales agreements, outstanding orders,
seasonal trends, and prevailing market conditions. Containerboard logistics
(ell) management has the option of scaling forecasts up or down, either
across all box shops and products or by individual box shop, based upon its

A-04.4



Operational Control I Management Control I Strategic Planning
I I •

Structured Order Entry, Inquiry, I Consumption Forecasting I Pricing Decisions
Update I I
Master Table Maintenance I I

I Production Planning I Product Reclassification

Inventory Control I I
I I

Order Tracking I Order Sour.c1ng I Setting target weeks of supply
» and minimum inventory levels
I

os I I~ Plan/Actual Analysis.
c.n Semi- I IStructured Mill Scheduling Box Shop Replenishment Demand/Supply Material Balance

I I

Figure 1

BOARDS-supported Decision Making Activity



Cust

elL
Mgmt.

---.. Physical Flow
---->~ Information Flow
-----~ Data. Inflow

Figure 2
COnta1nerboard Distribution System

and Information Flo~



perception of market trends and prevailing or projected economic circum­
stances. Based upon these forecasts, and knowledge of unfilled orders and
current inventory levels, C/l generates mill orders for containerboard.
Taking into account current mill production schedules, in-transit times,
and production capacities, these orders are then sourced and scheduled at
the mills. Mills produce what is ordered, accumulating inventories until
shipments are made. The containerboard is then in-transit until it is re­
ceived by the box shop where it is stored and utlimately consumed.

BOARDS serves two fundamental purposes in this distribution cycle, also
shown in Figure 2. Each activity in the cycle is recorded by BOARDS as it
compiles a reservoir of information and assists in reconciling operational
discrepancies. Correspondingly, BOARDS is a source of information. The
mills may examine their production backlog, and the box shops can determine
how much brownboard is in-transit, how much is yet to be scheduled, and so
forth. C/l may request aggregate or detailed information concerning the
current status of containerboard flowing through the system.

BOARDS operates on a dedicated Hewlett-Packard 3000 series II computer
with S12K bytes of main memory. Nine distinct IMAGE (Hewlett-Packard1s data
base management system) data bases constitute the system1s foundation. Over
one hundred BOARDS functions are aggregated into six integrated subsystems:
Order Processing, Production Planning and Mill Scheduling, Inventory Control,
Trade Tracking, Planning and Material Balance, and Mill Price Difference
Reporting as depicted in Figure 3. BOARDS supports management decision-
making at Weyerhaeuser headquarters in Federal Way, Washington, and at 31
box shops and four mills located across the country. BOARDS has added flex­
ibility since it interfaces directly with various computer systems located at
the four mills and indirectly via magnetic tape transfer with existing computer
systems running on Honeywell equipment at company headquarters. Figure 4 shows
an overview of BOARDS hardware configuration and telecommunications network~

A detailed example of two integrated BOARDS functions, Box Shop
Replenishment and Mill Scheduling, illustrates the system1s potential to
monitor and control demand-based production.

BOX SHOP REPLENISHMENT

The Box Shop Replenishment (BOXREP) function, as shown in Figure 5,
retrieves weekly consumption forecasts from the Planning Data Base, current
on-hand and in-transit quantities from the Inventory Data Base, and out­
standing orders from the Order Master Data Base. This data is used to
automatically determine the grade and quantity 'of containe~board to order for
each Box Shop in the upcoming weeks. The C/l Box Shop Service Representative
interactively specifies input parameters which include whether to use
economic adjustment factors that account for recent changes in 'the market,
whether to use target or minimum inventory levels, and report specifications.
In-transit times between the mills and the box shops are also used in com­
puting order quantities and shipment dates. Default parameters are supplied
from the BOARDS Master Table Data Base upon user request. The results of
the computations are stored on the Want-to-Ship Data Base. Quantities stored
in this data base represent the amount of containerboard that should be
placed on order by box shop and week for the next six weeks in order to
meet projected consumer demand.

A-04.7



ria; 11 Pri ce
Difference
Subsystem

-

Order
Processing
Subsystem

I

Planning
I----------~ Data

Base

Inventory
Data t--------J','---- _
Base

I
Inventory
Control
Subsystem

Order
10-----------1 Ma stel'"

Data
BOase

Production
Planning,
('';.11 Scheduling
Subsystem

rC

Mill 'Trim
Data
Ba~e,

Planning and
Naterial1------------.. Oa1ance
Subsystem

1
Trade
Tracking
Subsystem

f--....-__~~

Trade
Data
Base

---"Figure 3
BOARDS Subsystems and Data Bases

(four auxiliary and system data bases not shown)



31 Box Plants

Other
\~eyerhaeuser

Computer
Systems

-----

Nine
Image
Data
Bases

High Speed
I..---f L; ne Pr; nters

Figure 4
Overview of BOARDS

Trendwriter Hardware and Telecomrnunic~tions

Configuration

Oatapoint
Printer

Mill Computer
Systems

Four
~ti 11s

H?2631
Local
Pri nters

HP2645 CRT's

Containerboard
Logistics Management

Datapoint
2200



MASTER
TABLE
DATA
BASE

Default Run
Parameters

Consumption
Forecasts

PLANNING
DATA
BASE

PLJ\NNING
SUBSYSTEM

ORDER
r~ASTER

DAiA
BASE

Open Orders BOX SHOP
REPLENISHMENT
(BOXREP)
FUNCTiON

Current Inventory Levels
And In-transit Quantities

INVENTORY
DATA

BASE

INVENTORY
CONTROL

SUBSYSTEM

WANT-TO-SHIP
DATA
BASE

CEPTION REPORT
DETAIL BACK UP

WANT SuritMARY

WANT LIST
ORDER

PROCESSING
SUBSYSiEM

--'
o

BOXREP ORDER ENTRY

. WANT LIST INQUIRY

Input
Parameters



BOXREP results can be examined in any of three ways. The first out-
. put is in the form of standard reports. The reports show Want-to-Ship
quantities in varying levels of detail and aggregation. BOXREP also
produces an exception report that shows current and projected crisis con­
ditions by week for each box shop and product (for example; inventory levels
are projected to fall below minimum, or expected receipts are greater than
capacity). The second mechanism for inspecting Want-to-Ship quantities
shows a box shop's proposed shipments in the form of a purchase order on a
CRT. The information is displayed, can be revised and, optionally, con­
verted into an open purchase order. The quantities stored on the Want-to­
Ship Data Base are automatically adjusted to account for containerboard
that is placed on order. lastly, GIL management or users at the box shops
can examine the current contents of the Want-to-Ship Data Base. A BOARDS
inquiry function interactively displays the proposed shipment quantities
by box shop, product and ship week, adjusted for orders already placed.

Proposed shipments are never automatically converted to open orders,
since many non-quantifiable factors affect the decision to place an order.
Surrounding economic conditions can drastically alter the usefulness of
proposed shipments. Therefore, manual involvement is critical. Support
for this sort of semi-structured decision-making is what distinguishes
BOARDS from conventional management information systems. The utility
of BOXREP is in assisting order generation rather than in automating it.

While BOXREP is engaged in information retrieval, calculations and
reporting, the user is free to execute other BOARDS functions since the
BOXREP processing is performed in batch mode. BOXREP can also be run
iteratively to test the impact of alternate consumption and inventory
adjustment factors, policy variables or target inventory levels without
interfering with the active contents of the Want-to-Ship Data Base. When
a desirable set of calculations has been achieved the data base can then
be updated. BOX REP logic is configured such that several BOXREP processes
can be under way simultaneously as long as only one is updating the data
base. This flexibility has been provided to enhance BOXREP's utility as
a planning facility in addition to its use as a production system.

MIll SCHEDULING

Mill scheduling, as shown in Figure 6, consists of three functions:
Trim Input, Trimming, and Mill Order Maintenance. Containerboard logistics·
mill schedulers use these functions to specify the quantity, sequence, and
date in which ordered containerboard is to be produced at each mill.
Their objectives are to maximize production efficiency and minimize trimming
loss. The scheduler uses the Trim Input function to interactively select
unscheduled purchase orders from the Order Master Data Base for production
at the mills. The retrieved orders are displayed on a CRT as a "Trim Input".
The scheduler can modify the input as desired to obtain a tentative set of
orders to be scheduled together at a mill. Once satisfied with the Trim
Input, the scheduler specifies a trim algorithm, either the linear programming

A-04.11



ORDER
l-'''';STER
DATA
BASE

TRIM SETS

Figure 6
BOARDS MILL SCHEDULING

MILL ORDERS

TRIM'SHEET

ORDER
flASTER
DATA
BASE

HILL



model or the heuristic program, and the Trim Input is passed to the Trimming
function via a temporary file. The Trimming function executes the selected
trim algorithm, stores the results in the Mill/Trim Order Data Base, and
prints the results, referred to as a Trim Set. The Trim Set shows the near
optimum positions in which to place cutting knives in order to trim the
maximum number of ordered widths per containerboard roll and minimize the
trim loss.

The Mill Order Maintenance function converts a Trim Set into a Mill
Order. If the Trim Set is satisfactory, the scheduler can interactively
convert it by assigning a production date and sequence number, and requesting
that the production schedule be forwarded automatically to the mill. Alter­
natively, the scheduler can manually adjust the Trim Set to account for factors
not considered by the trim algorithm. Lastly, the scheduler can discard the
Trim Set altogether. In this case, the scheduler either modifies the
original selection criteria or compiles an entirely new set of criteria to
construct a new Trim Input and begin the trim cycle again. Note, once more,
the critical role of human involvement in BOARDS supported decision-making.
The scheduler is better prepared than a totally automated process to deal with
day-to-day peculiarities and priorities. Therefore, the Trim Set is never
automatically converted into a Mill Order.

It may require several iterations before the scheduler arrives at a
satisfactory production schedule. Although the objectives are well defined,
it is technically infeasible to completely automate the scheduling process.
BOARDS provides utility in that it enables several input combinations to be
analyzed in the form of production schedules. The limiting factor is time.
To examine every possible set of input combinations is tedious, time con­
suming, and costly. BOARDS facilitates this complicated decision-making
process by enabling more alternatives to be considered through functions
that are efficient, fast, and easy to use.

CONCLUSION

BOARDS provides decision support in all phases of containerboard
logistics management: operational control, management control, and
strategic planning. BOARDS is distinguished from conventional management
information systems in that it integrates automated processes of manage­
ment science and operations research with routine data processing and
human decision-making. Advanced technologies, in the form of data base
management and distributed on-line user access, are brought together to
form a system that satisfies the long term information processing needs
of Weyerhaeuser's containerboard logistics management. Its goal is to
control containerboard inventories and to improve inventory distribution
by supporting demand-based production planninq in an industry hiqhly
sensitive to market conditions and economic circumstances.

A-04.l3



REFERENCES

Anthony, R. N. Planning and Control Systems: A Framework for Analysis,
Harvard University Graduate School of Business Administration,
Boston, 1965.

Donovan, John J. and Madn;ck, Stuart E. IIInstitutional and Ad-hoc Decision
Support Systems," Data Base, Vol 8, No.3, Winter, 1977.

Gorry, A. and Scott Morton, M.S. "A Framework for Management Information
Systems," Sloan" Management Review, Fall, 1971.

Keen, Peter G. W. and Scott Morton, M.S. Decision Support Systems: An
Organizational Perspective, Addison Wessley, Boston, 1978.

Simon, H. A. The New Science of Management Decision, Harper &Row,
New York, 1960.

A-04.14



CORPORATE MODELING
DESIGN & IMPLEMENTATION

OF FINANCIAL PLANNING SYSTEMS
FOR THE HP 3000

FORESIGHT is a computerized financial analysis, planning and modeling language
that addresses the numerous problems faced by managers. It was the first
User-oriented interactive financial planning language to be placed on a computer
system. It has been in use for over a decade and has been continually upgraded
and modified in responce to changing business trends and computer technology.

FORESIGHT is a part of United Computing Systems, Inc., Business Information
Products and is backed by its parent company, United Telecommunications, Inc.
with assets of $3.5 Billion. As a consulting oriented firm, UCS-BIP has extensive
technical, training and consulting staff to assist the user through numerous
regional offices - Atlanta, Houston, Kansas City, Los Angeles, Minneapolis,
New York City, San Diego and San Francisco.

FORESIGHT's command vocabulary is based on everyday business language. Data
entry is simple and previous computer experience is not required. Your attention
is focused on the report, not the computer.

In addition, FORESIGHT can be used at any origanizational level, from the smallest
cost center to the largest multi-national corporations. It was developed for
business people by business people. It readily adopts to your particular require­
ments and can accommodate each departments unique operation. Management reports
or financial models can be easily adjusted to reflect changing business conditions
or or.ganizational evolutions.

FORESIGHT can be purchased or leased for your HP 3000.



Planning for the future, whether that future is the next quarter, year

or 5 or 10 year period, is a basic concern of every business manager.

Management has to make decisions on corporate analyses, planning and

control. All within limited time periods. And - not only is the manager

expectedto have access to the required information, but he is expected

to be able to report on it, and present it in an understandable form.

Management has need to test assumptions in relation to planning,

control or financial models without risking capital or resources.

The ability to explore alternatives, to ask "What if?" is more

important today than ever before.

-What if my sales should increase by 15% ?

-What if material costs should rise 5% ?

-What if I should have to make a substantial capital
outlay in the third quarter?

Before we look at an example, let's take a minute to understand how

information is handled using Foresight. Foresight is based on the concept

of a matrix. A matrix being made by the intersection of a series of

lines and columns (both variable). The intersection of which houses a

data element (either directly input of calculated). The intersection of

a line and column we call a cell.

A-a6.2



Specifications 5500 cells
100 colunms
1000 lines

! ! T
!

To this matrix, a number of descriptive fields are added:

January 1, 1977

1977 Planned Product Sales
Cost of ~oods Manufactured
Profit and L.oss Statement

Month end
January

1977

Eastern Division

Total
Fis cal Y:ear

1977

~

I I

\ •I I

I I - - -- - ,
I

I
1
, I

t

I
I iI

A-06.3



Page 2

Let's look at an example which will illustrate some of these needs.

To help with the illustration, we will look at the Willett Manufacturing

Company which has two product lines (we'll call them A and B). Willett

markets these products to both the commercial and residential housing

markets. With the exception of sales which is segmented into two

geographical divisions, all functions are centralized within the company

(attached).

The three individuals involved in this planning cycle are the:

- Director of Marketing

- Manager of Production

- Director of Finance

As a marketing driven company, the director of marketing has developed

a sales forecast which is submitted on a monthly basis for the period

January to December.

Eastern Region

District 1

Product A 135 175 225 265 310 310
265 225 225 225 175 135

Product B 105 95 93 95 115 125
135 135 135 120 115 155

District 2

Product A 180 180 180 180 180 180
180 180 180 180 180 180

Product B Incrementing by 5% per month based on a 1976 year
end average of 100 units per month.



WILLETTS MANUFACTURING COMPANY

Marketing

Eastern Reg:f,.on

District 1
District 2

Western Region

District 1
District 2

Corporate..

\.
Manufacturing

A-06.5

Financial



Page 3

In addition, marketing has determined the price per unit for

product A will be $1475 per unit; for product B - $1700 per unit with

a price increase to $1800 per unit starting in July.

The first statement we need to look at is planned product sales

(Exhibit 1). We have taken input from the Director of Marketing and

produced a report based on the various line items and calculations he

wished to see.

Based on these results the Manager of Manufacturing determined the

necessary lead time for production. The Director ofuFinance concurred

for the indirect cost and overhead. From this input, a cost of goods

manufactured report was produced (Exhibit 2).

At the Finance Director's level, most of the detailed information

is not required. So his profit and loss report is produced (Exhibit 2)

using only those totals he wishes to see and including additional

corporate level items of interest (Depreciation, General and Adminis-

trative expenses, Bonuses).

Now that we have a full set of basic reports for the Eastern Division,

what about the Western Division? As both divisions have the same

organizational structure, the only change from the Eastern division is

in the sales estimates

District 1

Product A

Product B

160
320

100
130

210
270

90
125

270
270

90
130

A-06.6

320
270

90
110

370
210

105
110

370
160

120
145



Page 4

District 2

Product A 190
235

190
275

195
275

195
260

195
260

225
250

Product B Incrementing by 10% per month based on a 1976 year
end average of 100 units per month.

A similar set of reports is produced (Exhibits 4-8).

From these two sets of divisional outputs, a series of higher level

reports can be easily attained.By the use of the Foresight conm.lidate

and merge command a consolidated profit and loss in statement produced

(Exhibit 9).

At higher corporate levels a variety of additional reports may be

required using the existing data base of information. A comparative

profit and loss statement is produced using the consolidate and select

command (Exhibit 10). At each higher level, additional logic an be

added to specified results extracted from the original data base

utilizing· Foresight's format file capability.

For the final presentation to the President of the Willett

Manufacturing Company, the Finance Director decided to use Fbresight's

andvanced report writer capability to produce a more finished report

(Exhibit 11).

A-06.7



PRESENTATION TITLE: IDIMS - HP3000 Based Digital Image Processing

INDIVIDUAL(S) NM-1E (S) : Paul Polk

ADDRESS: ESL Inc.
P.O. Box 6000
Sunnyvale, CA 94086

ABSTRACI':

The field of digital image processing has grown dramatically in the last
six years, largely due to the increasing use of NASA's I.J.\NDSTAT satellite
for resource inventories, mineral and petroleum exploration, and urban
plarming use. This presentation will describe ESL IS HP3000 based image
processing system - IDIMS; sane of the above nentioned applications areas
ESL has been involved with; and the special purpose peripherals ESL has
interfaced to the HP3000. The special peripherals include an interactive
color display, an array processor, 300 Mbyte disks, electrostatic printer/
plotters, and high speed, high density tape drives (1600/6250 bpi, 75 ips).

A-10.01



ECONOMETRIC MODELLING ON AN HP 3000

John Eaton
London Business School

INTRODUCTION

Econometric modelling, particularly of national economies, has become
something of a growth industry during the 1970s. The current pub1i­
cally available models of national economies grew out of research
projects in universities and other research - based organizations in
the late 1960s and early 1970s. This development was made possible
by several factors, of which one of undoubted significance was the
advent of the electronic computer in the social sciences. For econo­
metric modellers, computers removed the tedium and effort in storing
and manipulating the data required, in estimating the relationships
that make up the model, and in solving the model for forecasting and
simulation purposes.

This paper discussed the implementation of a large econometric model
of the UK economy on the HP 3000 system at the London Business School.
Though the discussion in this paper is entirely in terms of modelling
national economies, modelling techniques such as these are finding
increasing application in many large organizations. Thus many large
corporations maintain econometric models of the market environment
in which they operate, in most cases taking as input the outputs from
the large national models of the type discussed in this paper. The
purpose of such models from the corporations· view is to enable them
to evaluate alternative strategies in the simulated environmen~with

respect to factors determined by their decisions, and those determined
externally by government or their competitors.

A-ll.l



The next section provides a general introduction to econometric
modelling, and the one following introduces the LBS model of the
UK economy. The remaining three sections then discuss the implemen­
tation of this model on the HP 3000, in terms of, an on-line data­
base of macro-economic variables;the model estimation process; and the
model solution process for forecasting and simulation purposes.

ECONOMETRIC MODELLING OF ANATIONAL ECONOMY

Econometric models, like any other mathematical models, are intended
as mathematical repreentations of the significant characteristics of
the system being modelled. In the case of a model of a national
economy, the relationships that go to make up the model represent
the flows or levels of real and financial resources within the economy,
and between it and other economies. The relationships may be of three
types. Accounting identities, which are of little technical interest,
but which are necessary to com~lete the system; technical relation­
ships, which usually represent institutional or administrative activites
(for example, computation of tax yield, given information as to rates,
income groups, etc); and finally, behavioural equations, which repre­
sent the behaviour of some specific economic activity (for example,
the level of imports of fuel, or the rate of inflation). In general,
it is these behavioural equations which require the modellers time,
effort and skill, though in the majority of current models they comprise
less than half of the equations in the model.

Within each behavioural equation in the model the variables appearing
on the right-hand side of the equation (the independent or explanatory
variables) determine the systematic variation in the variable on the
left-hand side of the equation (the dependent variable). It is axiomatic
that in a behavioural equation there will be some residual, random
variation in the dependent variable which cannot be explained by any
combination of systematic variables which have a meaningful economic
interpretation. Thus an econometric model is composed of stochastic,
statistical relationships; it is not an exact model (though for fore­
casting and simulation purposes it is usually treated as though it were).

A-ll.2



A variable which appears as the dependent variable of one equation
may well appear as an independent variable in another equation in
the model. Econometric models are usually therefore systems of
simultaneous equations, though often they may be broken down into
one or more blocks of simultaneous and recursive equations.

Furthermore, it is highly likely that some of the equations will
be non-linear in the variables, so that for forecasting and simu­
lation purposes we are faced with the solution of a system of non­
linear simultaneous equations. It is impossible to model the entire
economic environment; some factors are not modelable (for example,
determination of government policy variables), or are infeasible
for modelling by an individual group (for example, the world economY,
though I will return to this example later). The basic aim is to
model those factors which are significant in terms of the movement or
management of the national economy. In order to be able to solve
the model for future periods, we must have values of these variables
determined outside the model, and of the parameters of the equations
that go to make up the model. The variables whose values are deter­
mined by solution of the model are known as variables endogenous to
the system. Those variables whose value must be known in order that
the system may be solved are known as exogenous. The exogenous
variables may be further sub-divided into those that are purely
exogenous (typically government policy variables), and those, known
as predetermined variables, which are defined as equal to the value
of endogenous variables in periods previous to that for which the
model is currently being solved.

The original, and still the major purpose in constructing models of
a national economy is to facilitate the evaluation of alternative
government policies for the management of the economy. Forecasting
initially entered the picture as a means of model validation; that
is, to demonstrate that the model is capable of accurately replicating
the systematic behaviour of the real economy that it purports to
represent. In an on-going context, forecasting has a crucial role
to play in keeping the model on track. But the rationale for econometric

A-ll.3



modelling as opposed to other forecasting methods is that it enables
us to consider and assess alternative government policies on a
consistent, rigourous basis. Thus, although the public face of the
major modelling groups appears in the regular forecasts produced by
their models, in practice, much more effort and interest will be
found in the alternative strategies for government policy that are
evaluated.

Building a model in the first place is relatively simple as compared
with the challenge of keeping it operational on an on-going basis,
learning from it, and developing it as the economy itself and
economists' understanding of it change. In an important sense,
modelling a national economy can be viewed as a continuous exercise
in learning by doing. And it is an important part of the make-up
of a modeller that he is able to learn from the environment he is
modelling, and adapt his perception of the workings of the economy
and his model of it accordingly. Some would argue that there was
a time at the beginning of the 1970's when econometric modellers
were in danger of being swept away by their use of computer technology,
and of becoming over confident in the capabilities of themselves and
their models. However, the oil-crisis and resultant world inflation
provided a salutory shock to modellers everywhere, not only about the
tru capabilities of their models, but also about some of the perhaps
overlooked characteristics of the environment they were attempting to
model.

THE LBS MODEL OF THE UK ECONOMY

The parentage of the LBS model goes back to the mid-1950's, when
one of the leading American modellers, Professor Lawrence Klien of
the University of Pennsylvania, visited Oxford University. Klien
gathered together a small team of British graduate students, with
whom he constructed the first econometric model of the UK economy,
using annual data. Valuable though this first model was as a
research exercise, possibly its greatest contribution lay in high­
lighting what needed to be done in order to construct a fully

A-ll.4



operational model of the UK econ~. One of Klien's team on this
first model was Jim Ball, who in 1965, was appointed Professor of
Economics at the then newly founded London Business School (in 1971
becoming Principal of the School). Since that first exercise, he
had focussed his research efforts on assembling the basic building
blocks for an operational UK model based on quarterly data.

Shortly after joining the LBS he assembled a new model, from which
the first forecasts were published towards the end of 1966. Since
this time the LBS model has been continuously maintained and
developed, and has been used to produce forecasts of the UK economy
on a regular basis. The project received a major boost in 1967,
when it was funded for the first time by the Social Science Research
Council, whose generous support has continued to the present day.
In 1976 a consortium of twelve major UK organizations was formed
to support the Centre for Economic Forecasting at the LBS, which
took over responsibility for the model, with Terry Burns as its
first director. In addition to participation in forecast meetings
with members of the staff of the Centre, members of the consortium
also gained access to the data base, estimation programs and forecasting
system maintained by the Centre. Thus, in addition to the ten full­
time and four part-time staff of the Centre, who are engaged in
maintaining the data-bank and the model, production of the basic
control forecasts, and a range of research studies using the model,
there is also a group of practising econoRists and forecasters making
use of the system within their own organizations.

The LBS model from which the first forecasts were published in 1966,
comprised only 25 equations; the current model is made up of over
300 equations. Although this is not as large as some of the models
of the US econofflY, size is not necessarily a criteria of excellence.
An operational model of a national economy does have to grow to a
considerable size, simply in order to be able to adequately represent
the detail of government policy options (i.e. detailed tax rates,
expenditure patterns, financial behaviour. and so on). But increasing
size brings with it problems of comprehension and management of the
model. as the larger the model, the more unlikely it is that any

A-ll.5



single person is able to understand all the interactions of the
complete model.

The computer system requirements of an econometric model can be
considered in three parts. A data base containing the historical
data from which the relationships in the model are to be estimated,
and two software packages, a statistical estimation program and a
model solution/simulation program. Originally, the LBS system was
implemented on a large-scale batch-processing machine (an IBM 360/65,
located at University College, London University), and accessed by
means of an rje terminal. However, this did not provide ideal
support for either modellers or forecasters. In addition to the rje
link to the 360/65, the LBS has operated an HP 2000 timesharing
system since 1972 primarily providing a student computing service.
In the mid-1970s a simple forecasting system was implemented on
this system, with two objectives in mind. First, to examine to what
extent on-line access and interactive processing might better support
the mode11ers and forecasters needs. And second, to aid in the
determination of the true computer system needs of the modelling
and forecasting system. Nevertheless, although it was clear that
the system was more supportive of the modellers and forecasters needs
than a batch system, the HP 2000 could not cope with the workload.
In 1977, the LBS installed an HP 3000 Series II to provide computing
services to all its research activities, including the Centre for
Economic Forecasting. The entire modelling and forecasting system
has now been implemented on the 3000, exploiting the on-line interactive
capabilities of the system.

THE MACRO-ECONOMIC DATA BANK

The macro-economic data base provides modellers and forecasters with
access to the basic raw material for their studies; the time-series
recording the detailed movements in the national economy. At its
simplest such an on-line data-bank is a source of data for information
purposes, providing the answers to queries as to the level or movement
in particula.r variables, or the input for tabular or graphic reports.
However, its crucial role is to provide the raw material for the
modelling and forecasting .processes, for which it must be interfaced

A-ll.6



with the estimation and solution/simulation systems.

Three macro-economic data-banks are implemented on the HP 3000 at the
LBS the major one being that containing quarterly data from the mid­
1950s to date on slightly more than 1000 economic variables relating
to both the UK and world economy. In addition there are smaller
data-banks containing annual and monthly data respectively on the
major variables. These data banks are structured as KSAM files
with a standard structure applied to other data-banks at the LBS,
in particular, a data bank containing stock market data on all UK
quoted companies since the mid-1950s. The detailed structure of the
LBS KSAM data banks is set out in Appendix A.

The main data bank is updated on-line as new data is released by
government and other agencies. Unfortunately, in the UK the govern­
ment's statistical service is unable to provide data immediately
in machine-readable form (only about a month late), so that the
majority of the data is entered manually from press releases. A
small suite of programs has been developed (in Fortran, using the
KSAM intrinsics) to carry out the standard data management functions
on-line or in batch as appropriate. Thus, functions to enter update,
modify, and list specific variables may be carried out on-line; whilst
functions such as to copy, list or transform the entire data bank are
carried out as batch jobs. The variables that are used in the equations
of an econometric model are rarely published in that form. Instead
they are formed as functions of published variables, in some cases
very simple ones (such as products or ratios), in other cases much
more complex. However, these functions are programmable, so that
the updating of a particular published variable, may in turn lead to
the automatic updating of several other variables in the data bank
which are specified functions of the original variable.

ESTIMATING THE RELATIONSHIPS OF THE MODEL

As discussed earlier, an econometric model is made up of a large number
of economic relationships. The process of initially estimating and
then maintaining these relationships is a continuous one, since the
economy itself, the model1ers and other economists' perception of

A-ll.7



its behaviour, and the statistical tools available to the modeller
are continuously changing, albeit slowly in most instances. Given
the size and complexity of the national economy, most successful
models have begun as top-down exercises, starting simply in order to
find out where a more detailed understanding would be most useful.
But ultimately the models grow to a considerable size through the
necessity to model in detail the impact of government policy variables,
so that alternative policy strategies can be evaluated. In general,
the modeller will begin with relatively simple relationships, and then
incrementally introduce more detail and complexity in order to try
to cope with its observed inadequacies; it is a classical example
of a man-machine interactive system.

Current economic theory will provide the modeller with initial ideas
as to which variables might enter the relationship, but gives much
less guidance as to the precise functional form of the relationship,
and, in particular, to the distribution of the effects of the in­
dependent variables over time. There are relatively few instances
where it is believed that the effect of a change in an independent
variable on the dependent variable in an equation is totally complete
within the current time period. It is usually suggested that there
will be carry-over effects over several time periods, and indeed, one
of the major reasons for constructing econometric models is to examine
in detail the time path of the response of the economy to changes in
gOVernment policy variables. Thus, for example, the effects on
consumption patterns of a change in the rate of a sales tax will not
be seen solely in the period in which the change is made, but will be
distributed over several subsequent time periods (hence the technical
name of distributed lags to refer to this generic problem). Clearly,
the significance and magnitude of these carry-over effects dependents
on the unit time period of the data used in the model. Thus, if
the relationships in the model were estimated using annual data, then
we would expect that there would be only relatively small carry-over
effects, as compared with a model estimated using monthly data. Most
macro-econometric models of national economies are estimated using
quarterly data.

A-ll.8



The basic model-building process is dependent on a high degree of
man-machine interaction. which is provided much more successfully
on the HP 3000 than on the previous batch system. The model­
buildin~estimation process is both iterative and highly suitable
for interactive processing. It is iterative in that the modeller
will begin with his initial relationship. which he will then refine.
develop and evaluate by estimating many more equations. the precise
format of each successive equation being heavily influenced by the
results obtained from the estimation of previous equations. It is
interactive in that interspersed with the actual estimation of the
parameters of an equation. the modeller is likely to manipulate
the variables in a variety of ways. and to want varying amounts of
detail presented to him. An interactive econometric estimation
program (ISEA. Interactive Software for Econometric Analysis) has
been implemented on the HP 3000 to provide powerful and detailed
support to the modeller. ISEA interfaces with the LBS KSAM data
banks to allow the modeller to interactively load data for analysis.
to which a wide range of specific data transformations may be
applied prior to the estimation process. The relationships in an
econometric model are typically estimated using classical regression
techniques. which the modeller can apply using ISEA. with interactive
control over the specification of the model to be estimated (including
specific options tailored to econometric applications. such as
estimation subject to polynomial (Almon) distributed lags. first­
order autoregressive error terms, linear restrictions on the
coefficients, and so on). and over the content and volume of output
from the estimation process presented at the terminal. Optionally,
large volumes of output may be directed to a lineprinter. It is also
possible to interactively estimate the parameters of a Box-Jenkins
ARIMA time-series model using ISEA. The objective in the design
of ISEA has been to enable the modeller as far as possible to maintain
a continuous meaningful man-machine dialogue, in terms that the
econometrician can readily comprehend. A brief description of the
capabilities of ISEA is given in Appendix B.

A-ll.9



MODEL SOLUTION AND SIMULATION

As indicated earlier, in general econometric models will comprise a
system of non-linear simultaneous equations, which have to be solved
for the endogenous variables in each forecast or simulation period.
In order to be able to solve the model in the future, values will
be required for those variables which are purely exogenous to the
model- (values for the predetermined variables will either be the
appropriate historical value of the relevant endogenous variable,
or its forecast value for a previous period). There are commonly
two categories of variables which are likely to be purely exogenous
to a model: those whose value is determined either directly or
indirectly by the government, central bank, or some other economic
regulatory agency; and those measuring the overall economic envir­
onment, such as world output, trade, prices and so on. The major
models for each country now tend to explicitly model those variables
which directly influence their interaction with the economies of
other countries (typically, domestic prices, trade prices, money
supply, interest and exchange rates). Indeed, there is a project
in existence (project LINK, based with Klien at the University of
Pennsylvania, and funded by the IMF, NSF and other agencies), to
put together on a consistent basis econometric models for individual
countries and major regional groupings, and to solve them simultaneously
to produce consistent forecasts of the current and capital account
trade items, output, inflation interest and exchange rates for the
world as a whole. This system is now operational, and the LBS model
provides the UK model for the project.

Prior to commencing a forecast or simulation exercise with an
econometric model, it is standard practice to adjust it, if necessary,
for a variety of potential disturbance factors. First, the indivi­
dual equations are examined in order to see if the estimated values
of the error term (the. residuals) over the recent past exhibit any
significant systematic behaviour. Although according to statistical
theory the expected value of the error term is zero, in practice it
is often the case that for a variety of reasons examination of any

A-l1.10



specific period will demonstrate a significant discrepancy from
this expected value. It may well be thought that any observed
.systematic pattern will continue into the future forecast period,
and should be explicitly allowed for. Second, even in the best
model, there are some systematic factors whose influence is in­
adequately accounted for by the structure of the model, but
concerning which some reasonable ad-hoc estimate may be made for
the future. Finally, it is often the case that the modeller has
prior knowledge of some significant event that will occur in the
forecast period, but which is not explicitly included in the
model. For any or all of these reasons it is usual for the
modeller to make adjustments to the structure of the model in
the forecast period. This is done by making adjustments to the
intercept or constant term of the behavioural equation determining
the value of the endogenous variable that it is desired to adjust
(hence they are known as constant adjustments). Values for any
non-zero constant adjustments must then be specified before
forecasting can commence. In practice there tends to be more
uncertainty over the appropriate values for the constant adjust­
ments since they are more influenced by the subjective assessment
of the modeller.

Given values for the exogenous variables and the constant adjust­
ments for the forecast period, then the model may be solved for
the values of the endogenous variables for each forecast period.
As the model is usually a system of non-linear simultaneous equations
it is not possible to compute an analytic solution to the model,
and it is necessary to adopt an iterative numerical procedure,
starting with an initial estimate of the solution for the forecast
period, then hopefully converging to a solution. In general, the
solution of systems of non-linear simultaneous equations can pose
considerable problems in terms of successful convergance to a
consistent solution. However, these problems do not arise in
practice in the solution of econometric models, for two reasons.
First, most econometric models are only mildly non-linear, with
only a few exponential equations being the norm. Second, it is
always the case with econometric models that we possess a good

A-ll.ll



initial estimate to the solution for the current period with which
to begin the iterative sequence (at worst, we can use the solution
for the previous time period; in practice, we often have an
existing solution for the present period from a previous forecast
run, with only slightly different values for exogenous variables
or constant adjustments). Thus it is a general experience of
econometric modellers that the computationally simple Gauss-Siedel
algorithm will always generate a solution to such a model, normally
in less than 20 iterations per period.

Forecasting, or simulating alternative policy strategies, is a
highly iterative process. The forecaster will set his initial
estimates of the exogenous forecasts and constant adjustments,
compute the forecast, evaluate it in some way, modify the exogenous
forecasts and/or constant adjustments, compute another forecast,
and so on. Because of the simultaneous nature of the models being
used, it is normal practice to only make one or two changes each
forecast run, so that their effect can be clearly seen (if many
changes were made in one run it would not be possible to infer
the effects of an individual change). To some extent this process
is open-ended and continuous in that the adequacy or otherwise of
a particular forecast is ultimately largely dependent upon the
subjective assessment of the forecaster. In the context of the LBS
model, major forecasts are published three times a year (in January,
May and October), with short monthly ones in the intervening months.

The actual implementation of the Gauss-Siedel algorithm for solving
th~ model is as a batch job, as there is nothing to be gained from
the forecaster's point of view in interacting with the algorithm.
However, from forecast run to forecast run, the forecaster wishes
to make a series of small usually incremental changes to the
exogenous forecasts and/or constant adjustments. A set of initial
exogenous forecasts and constant adjustments is agreed by the staff
of the Centre as a 'control' set; the forecaster then creates an
Editor file on-line which records his changes to the basic control
files (which are structured as KSAM files). He then 'streams' a

A-l1.12



job which solves the model. using the control exogenous forecasts
and constant adjustments modified by the contents of his Editor
file. The options available in the processing of the Editor file
not only include simple one-for-one changes in value. but also more
complex operations such as incrementing all values from a certain
date by a constant absolute or percentage factor. The forecast
values for the endogenous variables are placed in a KSAM file for
future reference; in theory. the forecaster could interrogate this
file on-line to see if it was worth printing full forecast details.
In practices the amount of data that most forecasters want to see
before they are able to make such a decision is rather large. so
the usual option is to print a standard set of national accounts
tables on the lineprinter. A typical five year (20 period)
forecast takes about 100 cpu seconds on the HP 3000.

In addition to the standard forecasting and simulation operations.
the solution system is also used for more research-orientated
applications to determine characteristics of the system as a
whole. Typical applications of this type would be, solution of
the model for within-sample periods to determine the inherent error
characteristics; computation of the dynamic multipliers for the
major government policy variables. both singly and in combination
(the multipliers give the proportionate change in endogenous
variables for an appropriate unit change in one or more policy
variables. all else being held constant); and computation of
stochastic rather than deterministic forecasts. in order to
evaluate the likely error bounds for the forecast (this involves
setting the error terms in the model to a random value drawn from
an appropriate probability distribution). Further, a major
exercise is now underway to attempt to compute optimal policy
strategies given some desired pattern of activity in the economy
for future periods. using optimal control techniques drawn from
control engineering.

A-l1 •13



APPENDIX A

KSAM file structure used at LBS for time-series data-bases:

Bytes

1-8
9-44

45-46
47-50
51-54
55-56
57-62
63-64
65-66
67-68
69-70
71-72
73-76
77-80
81-800

Description

Variable code
Variable title
Frequency of measurement per year
Start date
End date
Number of observations
Variable type
Code number
Lag length
Transformation number
1st transformation parameter
2nd transformation parameter
3rd transformation parameter
Not used at present
Up to 180 observations
(or multiple thereof)

A-11.14

Vari ab 1e type

character*8
character*72
integer
i nteger*4
integer*4
integer
character*6
integer
integer
integer
integer
integer
real

real



APPENDIX B

ISEA commands (version 6.4, 2 October 1978):

autocorrelation coefficients
the parameters of a seasonal Box-Jenkins ARIMA

options:
autocorrelation coefficients of residuals
partial autocorrelation coefficients of residuals
print actual, fitted, residuals and percent error
save, in the ISEA data matrix, the fitted, ratio
of actual/fitted, or the fitted + and - one or
two standard errors
plots residuals or actual and fitted at terminal
variance-covariance matrix of estimated
coefficients
correlation matrix of the estimated coefficients
compute a forecast, and (optionally) save in
the ISEA data matrix

MODl: prints standard output on the lineprinter
Computes simple correlation coefficients
Enters data into the ISEA data matrix,
T: from the terminal
K: from an lBS KSAM file
F: from a file 'kept ' by ISEA
E: from an Editor file
Re-dimensions the ISEA data matrix (the default is 300

observations on 20 variables; this may be increased to
500 observations and 50 variables, so long as the product
of the two does not exceed 8000).
Edits the data in the ISEA data-matrix:
ACOl: adds a column
CCOl: changes a column
AROW: adds a row
CROW: changes a row
COBS: changes an observation
AFOR: adds date from a CEF KSAM forecast file

BCOR:
FORE:

GRAF:
VCOV:

Computes
Computes
model:
Output
AUTO:
PAUT:
PRES:
SRES:

EDIT:

DIM:

CORR:
DATA:

AUTO
BOXJ:

A-ll.15



GRAF: Plots a variable at the terminal, either across or down
the page.

KEEP: Keeps the ISEA data matrix in a private sequential file
LPNT: Prints the contents of the ISEA data matrix on the lineprinter
MEAN: Computes means and standard deviations of variables
MISS: Specifies a value to indicate missing observations
NAME: .Prints the names of the variables currently in the ISEA

data matrix
PAUT: Computes the partial-autocorrelation coefficients
PLOT: Plots up to three series on an HP 7203 graph-plotter
PRNT: Prints the contents of the ISEA data matrix
REG: Specifies a regression equation (default is OLS) , options:

OLS: Ordinary Least Squares
TSLS: Two-stage Least Squares
RSLS: OLS subject to linear restrictions
ALMN: Almon distributed lags
AUTO: Include 1st order-autoregressive term
NCON: Supress constant term
LOG: Print true statistics for a log equation
WGHT: Weighted least squares
DSCT: Discounted least squares
STRT: Start date for sub-sample
END: End date for sub-sample
Output options:
AUTO: autocorrelation coefficients of residuals
PAUT: partial autocorrelation coefficients of residuals
PRES: print actual, fitted, residuals and percent error
SRES: save, in the ISEA data matrix, the fitted, ratio

of actual/fitted, or the fitted + and - one or
two standard errors

GRAF: plots residuals or actual and fitted at terminal
VCOV: variance-covariance matrix of estimated

coefficients
BCOR: correlation matrix of the estimated coefficients
FORE: compute a forecast, and (optionally) save in

the ISEA data matrix
MODL: prints standard output on the lineprinter

A-l'.l6



SMTH: Exponential smoothing (Winters method)
TRAN: Compute any of the following transformations:

LAG: lag the observations on a variable
LOG: natural logs
DIFF: differencing
MSUM: moving sum
MAVE: moving average
ADD: sum two variables
SUBT: subtract one variable from another
MULT: multiply two variables
DIVI: divide one variable by another
RECP: reciprocal of a variable
POWR: raise to a power
EXP: e to the power of a variable
CSUM: cumulative sum
TIME: time trend
MULC: multiply by a constant
ADDC: add a constant
SUBC: subtract from a constant
ABS: absolute value
SUMV: sum several variables
EXS: simple exponential smoothing
DEV: positive, negative (or both) deviations from

zero, mean or a specified value
DUMY: form a dummY variable
SDUM: form seasonal dummy variables

A-ll.17



CWF/3000: A COMPLETE SYSTEM FOR COMPUTER

ASSISTED INSTRUCTION AND TRAINING

HAROLD J. PETERS

EDUCATIONAL SOFTWARE PRODUCTS

9 GEORGETOWN CIRCLE

IOWA CITY, IOWA

What is CW?

CW stands for "coursewriter", which is an authoring language

for computer-assisted instruction (CAl). Figure 1 shows a sample

of student interaction with a CAl lesson that was written with CW.

While the subject matter can of course vary greatly, this example

is typical of the sort of tutorial dialogue that can readily be

written with the CW language.

Figure 2 shows the CW code corresponding to the sample student

interaction in Figure 1. The two letter "op-codes" are almost self­

explanatory; QU: question, CA: correct answer, TY: type, WA: wrong

answer, UN: reply for unexpected answer. This example illustrates

the principal advantage that CW, or any other CAl authoring language,

offers over a general purpose programming language -- that is: implicit

branching. If the student's answer does not match the argument of the

CA, then processing automatically branches around the TV associated

with the CA and on to the next implied comparison, the first WA.

A-12.1



FIGURE 1

Most nouns ending in "ch" form plurals

by adding "es ".

For example,

"church" becomes "churches",

"1 unch" becomes "1 unches"', etc.

What ;s the plural of "torch"?

torchs

"torch" ends in "ch". Please try again.

terches

I think you've spelled "torch ll wrong.

torches

Good! Try another.

Figure 1. A sample of student interaction with a CAl course

written in CWo

A-12.2



FIGURE 2

No, "torch ends in "ch". Try again.

t&ches

I think you've spelled "torch" wrong.

Please try again.

No. The answer is "torches". The ending lies"

is added for the plural because "torch" ends

in "ch". Try another one.

PRBR

UN

CA

TV

WA

TV

WA(L)

TV

QU Most nouns ending in "ch" form plurals

by adding "es ".

For example,

"church" becomes "churches",

"l unchll becomes "l unches", etc.

What is the plural of "torch"?

torches

Good! Try another.

torchs

Figure 2. CW code for the sample student interaction given in

Figure 1.

A-12.3



Again, if there is no match a branch is made automatically to the

next implied comparison, etc. If on the other hand, the student's

answer does match the argument at one of the implied comparisons,

then the corresponding TY (and/or other so-called "minor" op-codes)

is executed and all further comparisons are skipped over in an

automatic branch to the next question.

All this implicit branching does save a lot of busy work on the

part of the author and lets him concentrate on the higher-level

structure of the lesson. It clearly does not absolve the author

of all programming tasks but it does make his job a lot less tedious.

First appearing in the early 1960's, CW has to be considered

one of the authentic pioneering languages for CAl. Many CAl

languages have come along since the introduction of the first version

of CWo And this leads to legitimate speculation as to why this "old"

language still manages to survive. Two reasons appear most prominent.

First, CW is extensible: the short-comings in its original design

can be circumvented by the use of its user-written function feature.

Any programming function within the capabilities of the underlying

software system can in principle be invoked by a CW course through

use of the user-written function feature. Within a CW course, the

function call is simply

FN MYPROG

where MYPROG is the name of the user-written function to be invoked.

More will be said regarding user-written functions in a later section.

A-12.4



The second factor contributing to the longevity of CW is that because

of its early existence on the most popular equipment, i.e., IBM,

a great deal of courseware has been created in CW over the years,

and the easiest way for newcomers to CAl to get off to a running

start has been to tap into that large reservoir of courseware by

getting a CW system themselves. They then in turn create more

courseware and so the bandwagon goes on. It was precisely this

second attractive feature of CW -- the large accumulated base of

courseware -- that originally drew the interest. of Hewlett Packard

and leads to the next question:

What is CWF?

CWF stands for Course Writing Facility, Hewlett Packard's name

for its emulation in BASIC of IBM's CWIII (the version of CW current

in the early 1970's). CWF was originally developed for the HP2000

timesharing system, and some 15-20 CWF systems were sold prior to

HP's withdrawing it from the market, at least partly in anticipation

of the obsolescence of the HP2000 itself. Essentially all features

of CWF in its HP2000 implementation have been retained in the

HP3000 version, so the description of those features is deferred

to the next section.

What is CWF/3000?

Building upon its HP2000 predecessor, CWF/3000 provides on the

HP3000 essentially all the course authoring, course presentation,

and student-keeping capabilities of IBM's Coursewriter III, version

3 (CWIII), plus a significant additional feature not offered by

CWIII. In CWIII, the extensibility described earlier ;s achieved

A-12.5



through user-written functions programmed in IBM that such functions

can be written directly in BASIC.

CWF/3000 consists of four major subsystems: course authoring,

course translation, student usage, and record keeping/reporting,

each described in turn below.

Course Authoring

CWF/3000 authors use a set of programs headed by CWEDIT to enter,

revise and edit new course material, using the ~W language op-codes

such as shown earlier in Figure 2. Some thirty op-codes, many of

which may· be modified in several ways, offer wide flexibility to

the author. For example, the CA op-code in simplest fonm accepts

exactly one correct answer:

CA torches

~Jith an "L" modifier, a variety of answers can be accepted through

usage of lldon1t care" characters. For example,

CA(L) t&ches

will accept "torches", "touches" or IItxyzches ll or any other

"wordll beginning with .. ·ll t ll and ending' with II ches",· as correct.

Another modifier,IIW", allows more specific alternative correct

answers. For example,

CA(W) torches lamps candles

accepts these three and only these three as alternative correct

answers. And if all this flexibility is not enough, the author can

resort to a user written function, e.g.,

FN ANSWER

and rely on his own BASIC program, ANSWER, to achieve ~ type

A-l2.6



of answer processing he may desire that can be implemented within

the broad generality of BASIC. The experienced CWF/3000 author

moves flexibly between CW and BASIC, taking advantage of the

best features of each as the occasion demands. Very roughly, CW

is superior in dialog-intensive work such as in tutorials, and

BASIC is superior in computation-intensive tasks such as simulations.

Course Translation

In principle, any CWIII course developed on IBM equipment can be

converted via CWF/3000 conversion programs to CWF/3000 compatible

form and then used, revised and edited just like any other CWF/3000

course. In practice, virtually every conversion we have seen

attempted has succeeded -- eventually. The biggest problem -- when

there have been problems -- arises with courses that make extensive

use of special display characteristics. The special display

features available on the system on which the course was originally

offered may not be available on the target system. And even if they

are, they are likely to be implemented differently so that con­

siderable conversion attention may be necessary. But whatever effort

may be required, it is almost invariably true that starting with

someone else's courseware and modifying it in whatever ways necessary

to meet onels own needs remains a far superior method for getting

usable courseware up and running than by starting from scratch on

one's own. So it remains the case that the principal source of

attraction in CWF/3000, as in its predecessors, is the ability it

gives the user to most easily tap into a large existing base of CW

A-12.7



courseware. The 1978 Index to Computer-Based Learning1 lists 311

instructional modules developed in CWIII that in principle should

be readily convertible to CWF/3000. In addition, the Index lists

720 modules written ~n BASIC, which are compatible with CWF/3000

in important ways, as described in a later section.

Student Usage

CWF/3000 incorporates HP's Instructional Management Facility,

1MF, to handle student sign-on, sign-off and some of the student

record keeping. Hence a student taking a CWF/3000 course enters

through the IMF program START in the following standard fashion:

RUN START.PUB

What is your 10 number and first name? 1000,Jimmy

Is your last name Carter? Yes

Course name? ENG4

30 September 1978 14:49 Port 7

Welcome, Jimmy to session number 3 of English 4.

In our last session ....

Whenever the student signs off by typing //STOP or //SIGN OFF, or

is signed off automatically by the instructional program, the

CWF/3000 system saves his restart information so that he may

begin his next session where he left off in the last one, or

wherever else the author may wish to designate.

Record-Keeping/Reporting

In addition to student restart information, as already described,

A-12.8



many other types of information relating to student usage of a

CW course can be recorded and later reported. Information con­

cerning essentially any aspect of student interaction with the

course material can be saved by one means or another.

Perhaps most common is simply keeping track of correct answers

in a session, reporting this to the student at sign-6ff time, and

possibly recording the number for reporting to the instructor later,

or maintaining a cumulative day-to-day record of scores for benefit

of both the instructor and student. Another common type of information

saved is the number of times each registered student has accessed a

course and how much cumulative time the student has spent on the

course.

During the development phase of a course it is especially im­

portant to accumulate all unanticipated student answers, i~e., all

answers for which no tailored replies had been prepared and for

which only the "reply to unanticipated answer" (the argument of

the UN op-code) is displayed to the student. Frequently, these

unanticipated student answers will suggest that parts of the course

need further development work, including perhaps new explanatory

passages, or at least a broader array of model answers and

corresponding tailored replies. Most of the record keeping and

reporting functions that have been mentioned require that students

be registered for courses, and that the courses themselves first

be entered into the IMF record keeping system. Some examples of

instructor or proctor interaction with the IMF programs are shown

in Figure 3.

A-12.9



FIGURE 3

A. Entering a course

RUN ADMIN.PUB

CODE?MMMMMM

COMMAND?COURSE

COURSE COMMAND?ENTER

COURSE NAME?REX

CODE WORD?Rl

DOES IT HAVE A DEMO MODE?YES

SPECIAL COURSE TYPE?CW

REX IS NOW ENTERED AS A·COURSE.

COURSE NAME?//STOP

DONE

B. Enrolling a student

RUN PUPIL.PUB

CODE?MMMMMM

COMMAND?ENTER

FIRST NAME?JOE

LAST NAME?SWARTZ

ENTERED WITH ID NUMBER 1018.

COURSE NAME?REX

GROUP NAME?MS NOEL

HISTORY FILE OF REX INITIALIZED TO 9 STUDENTS.

AREA NUMBER?1

USER GROUP NUMBER?1

ENROLLMENT COMPLETED.

FIRST NAME?//STOP

DONE

Figure 3. Some examples of instructor or proctor interaction with

IMF record keeping programs under CWF/3000.
A-12.10



As a final note regarding recording keeping, we should point out

that the CWF/3000 record keeping facilities are available for BASIC

language courses as well as CW courses. It is typically the case

-that computer-based instructional materials written in BASIC have

not used ~ kind of student record keeping functions. Typically

instructors have no information as to which students have used the

modules nor as to how well they have performed. It is certainly

difficult to assess the instructional value of CAl materials in

this case. And refinement of the modules, or development of new

materials must be based on guesswork rather than hard data. Once

again, the record keeping and report facilities of CWF/3000 provide

a ready solution to these problems for both BASIC and CW courses.

Some Technical Considerations

CWF/3000 has not been optimized for the HP3000. As of September,

1978, only the student driver programs have been compiled so that

they can run as object code rather than under the BASIC interpreter.

This provides good performance for up to 15-20 students running

most CW materials.

Some technical problems have delayed compilation of the

authoring programs, which means that some authoring functions

execute much more slowly than desired.

Beyond simple compilation of the various programs com­

prising CWF/3000, it is clear that substantial further optimi­

zation could be achieved through redesign of the file structures,

which still suffer from design constraints imposed by the early

A-12.ll



HP2000 series time sharing systems. These and other refinements

to CWF/3000 await the indication of further interest in the

system by HP3000 users.

Availability

CWF/3000 has been developed by and is available from (under a

license agreement) Educational Software Products. Requests for

further information should be directed to the author, at that

organization.

A-12.l2



STATISTICAL INQUIRY & RETRIEYAL
an I"AGE application

"ARTIN O. JEWEL
NATIONAL SPINAL CORD INJURV DATA RESEARCH CENTER

BACKGROUND

The N~t;on~l Spin~l Cord Injury Data Research Center
(NSCIDRC) - a division of Cood SaAaritan Hospital in
PhoeniX, Arizona - is supported in part by a grant frOft the
U.S. DepartAent of Health, Education' Welfare through the
Rehabilitation S~rvices Adftinistration. HSCIORC's goal is
to prOVide access to a national repository of data relative
to spinal cord injured persons for the purpose of i~proving

the c~re Qnd treatftent thereof, and reducing the length of
hospital stay and Qssociated costs.

Since spinal cord injury is a sudden traUftQtic shock Qnd
extreAely expensive, the costs are often borne by Societ~ in
the forA or taxes and insurance preRiUAS. Helping a patient
to achieve hiS Rost productive status as qUickly as POSSible
gives hiA Q psychological boost, reduces the drain on fa"ily
and personal resources, and d~creases the cost to societ~.

SVSTE" FLO~

The source of patient data is the eleven Regional "odel SCI
SysteRs (see appendiX 1). Data is extracted fro~ hospital
records, phySiCians' stateAents, patient interViews and
bills for various t~pes of equipAent and services. This
infor~4tion is COftpiled by ~edic~l record personn@l and
transcribed onto pre-printed forRs. The forAS are asseftbled
into batches upon cOftpletionJ logged, and then forwarded to
PhoeniX. Generally, a batch represents a weeks work. (see
Figure 1).

After receiving the batched forAS at HSCIDRC, the forRs are
logged in on the HP3000 and sorted by new entries and
updates (see Figure 2). The new entry dat~ is ke~ed into
the cOAputer via an HP2645 video ter~inal USing a general
purpose data entry prograA deSigned to create 4 transaction
file. We do not use DELI haVing found it inQdequate for our
needs.

A-13.1



Processing at the Regional SCI Center

Data

Collection

Entry

Forms

Batch finished

forms and log

Mail to
NSCIDRC

Figure 1.

A-13.2



New
Entries

Processing at NSCIDRC

Receive batch,

Date stamp

each form

Log each

form into

computer

Updates

Figure 2.

A-13.3



At ~ppropriate periods, usually tWice a day, a data bose
posting prograft is executed ~s ~ b~tch job stre~~ to ~dd the
data to the data base (see Figure 3). We do not enter data
directly to the data bose.

Twice Ronthl~, a data quality audit progroA is run to
produce ~ discrepancy list which is forwarded to the
Regional SCI Centers for corrective "easures. Resultant
updates ore then sent to HSCIDRC ~s described above. The
updates ~re posted to the data base on-line. Data
verification is done after entry/posting and updating.

Other data base ftanageftent tools are sho~n in Figure 4. The
selective dURp prOVides a hardcopy of patient data as it
eXists in the dQta bose. The Forft 2 Follow-up produces a
tickler report of those forfts which are due during the next
quarter, and an expediting list of in-process and past-due
forAs.

We have grown increaSingly confident of the relative
cleanliness of the data base. We now overage fewer thon 2
discrepancies per 100 for~s. With the ~any checks for
validity and logical interrelationships between variables,
the error rate is apprOXi~Qtely 1 in 40,000.

Patient inforftation CORes to NSCIDRC at the cOApletion of
the initial hospitalization and rehabilitation period, and
again at each SUbsequent anniv~rsary of injUry. Ther~ Aay
be 4 lag tiRe of up to three Aonths while data is extracted
froft case records and various profeSSionals respond to
requests for inforftation. Typically, after three to six
Ronths after the end of a calendar year the data for that
year is coftplete, clean and ready to be analyzed.

The for~, on which the initial data is subRitted, is
referred to as For" 1 and is cOAplete in itself. The annual
follow-up data is reported on Q For" 2. Each For~ 2 ftQY
have one or Rore Hospitalization forfts (Forft H) attached, if
the patient was odRitted to a hospital during that year.
Thusl a particular patient will have 0 Single For" 1, and,
d.pending on the nuftber of years after injUry, one or ~ore

ForR 2'5. Each Forft 2 ~QY, in turn, have one or Rore Forft
H's attached.

DATA BASE ftAHAGE"ENT BACKGROUND

Initially, data was stored on an IBM SysteR/32 which had
ftany hardware and software liftitations. It was liRited to
prodUCing RPG reports and hod no data base capabilities. In
addition, the voluRe of data was not sufficient for

A-13.4



New

Entries

Data Entry and Updating

Key Entry

Updates

-----
Key Entry

Data Entry

Program

Posting
Update

Program

Ledger
National

Data

Base

Figure 3.

A-13.5



Data Base Management Tools

Selective Quality

National

Data

Base

Form 2 Variable

Dump

Monthly

Dumps

Audit

Discrepancy

List

Follow-up

Follow-up

Tickler

Check

Summary
of

Unknowns

Figure 4.



~n~lysiS. As d result, there were no useful precedents for
st~tistic~l inquiry ~nd analysiS.

With the growth in d~t~ voluAeJ ~s well as the desire to
perfor~ statistical analyses and to "ake the data available
for anal~sis via reftote terMinal, a hardware and software
ev~luation was conducted of available s~steAs in the
$100-150K price range. The HP3000 was selected as the best
s~steA in that price range. Selection was based on ease of
use, ~ulti-lingual cap~bilities, and data base ManageAent
software in a tifte-shared and batch oriented systeA.
HSCIDRC's data proceSSing faCilities are outlined in
AppendiX 2.

We elected to use I"AGE and, at least initially, QUERV. For
our beginning efforts at inquiry into the data base and to
check our conversion, QUERY was, to say the least, very
handy to have. Hoyever, in establishing HSCIORC's data
bases under the HP-3000 IMAGE data ManageMent f~cil ity, it
was obVious that the HP QUERY prograA, although a good
general appro~ch to on-line inqUiry, w~s not adequate for
our needs. As Q result, HSCIDRC COAputer SerVices undertook
to deSign and iftple~ent Q full function prograA that would
serve all of our data b~ses and p~ovide efficient
interactive access to the data With our speCial needs for
security, ease of use, and statistical analySiS in Rind.
INQUIRY is the result of that effort.

In order to better cOftprehend HSCIDRC's data base ftanageftent
needsl let's exa~ine the data base structure.

DATA BASE ORGANIZATION

HSCIDRC's data base structure was deSigned to antiCipate the
need for Q variety of pOSSible access ~odes. The present
scheAa structure is outlined in Figures 5 ~ 6. Bec~us~ the
scheAa was deSigned to allow use of QUERV, certain
inefficiencies (which fta~ be obViOUS to the experienced
HP3000 user) were introduced. We will address these ~spects

at a later pOint.

We utilized Autoftatic "asters because we anticip~ted access
to the data base froft Q variety of directions: patient
nUftber, center, nUAber of hospitalizations, anniversary
year, etc. We have learned fro~ experience that the only
"asters we need are File-ke~ (center, patient nu~ber and
anniversary year, cORbined) and Center. The reason for thiS
is that data is generally selected on the basis of ~

COftbination of logic~l selection criteria applied to several
different variables or data iteAs.

A-13.7



Master File-key
Patient­

Number

Data Base Structure

Center
Anniversary

Year
Number-of­
Hospitali­

zations

):a
I

--'
W.

Detail Other Form 1 Common

Figure 5.

Form 2 Hospital



THE NATIONAL DATA BASE

FORM t
*

I COMMON OTHER

* primary datasets

*
FORM 2

FORM 1 REPORTING FORMS

Figure 6.

FORM 2



At HSCIDRC, the data bases are accessed in one of the
folloWing waysl

• Seri~l, by priftar~ dat~set

• Chained re~d, by Center
• CalculGt~d read, by File-key.

INQUIRV utilizes the three Aethods above, plus directed read.

RETRIEYAL REQUIRE"ENTS VERSUS QUERV

A brief look at the features of HP's QUERV prograA is
appropriate here. These features ore as follows:

• Interactive English-language coftftands, like FIND
and LIST

* Single datu set access

• COftftand features such ast
Find cOftRond accesses Qn~ Single data set for
selection of data by logical cOAparisons
List cORAund, ~ith access Siftilar to Find,
produces coluftnar listings of deSired
yariablesJ SOAe coluRn headings will be
truncated
Report cOA~ond allows fleXible output report
forAats, Including sorted detailsl coluAn
tot~lsl and register Aanipulation (calculate
averages, etc.)
Report cOAAonds Aay be repeated to display
other variables (but List AOy not)

* Update coftAand features:
Direct access to a particular variable by naAe
Add, replace or delete d data record
Glob~l replaceAent of a speCific variable

• Execute pre-written procedures for data selection,
reports, etc.

White we liked QUERY's English-like coftftand-driven style, we
reqUired ftultiple-d~taset access. We wanted to be able to
relate the entry forRs and variables to the datQsets so that
the user need not be concerned With data base structure.

We wanted Q List cOAftand that did softe si~ple, autOftatic
forAQtting, Without lOSing Vital header inforAQtion. Since
we were interested in statistical inqUiry, we wanted
eleAentQry statistics on all listed nUAeric fields.
Further, we wanted to be able to save d selected population
and to extract frOA the dAte bAse QS Q.sep~rQte file deSired
vQriables based on the subset popul~tion.

A-13.10



Uhile QUERY Aust create nn internnl "tag" file of painters
to selected dnta, it is probnbly in an extra. do.tn segftent.
I n any cQ.se lit ca.nnot be sa.ved I nor is it a.ccess i b 1e to the
user.

In addition, QUERY provides no siRple Rea.ns of crenting nn
output disk file of selected variables froA the subset
populntion. The listing file co.n be equntedl but th~t is 0.

ftessy o.nd undesirQble worka.round, po.rticulnrly for the
unsophisticnted user.

DESIGN OF THE INQUIRY PROGRAM

The following outline SUR"arizes the fentures of the INQUIRY
progrcu.. :

* "ultiple data. set nccess

* EDITable directory file conta.ins indices to relate
do.ta sets, forRs, and groups of vo.rinblesJ output
forfta.ts for the List function; field type a.nd
position for the Find function

* Selection of vo.riables by nURber as on the do.to.
entry for",s

* CORRand features such o.S:
Find coftfto.nd o.ccesses 0.11 dntn sets in the
speCified forA
Find co.n pseudo-cho.in across forA bounda.riesl
tho. tis, it co.n o.ccess both ForA 2 Clnd its
corresponding ForA 1.
Find co.n loco.te cases of Aultiple occurrences
of 0. vo.lue (e.g. those po.tients With 2 SpinQl
fusion operations)
Find o.llows use of parenthetic notQtionJ
F HATLt Yl04 < 7 AND &

(Y120=- 030" oce 2 OR Y130=" 030" OCC 2)
Teftporary To.g files creo.ted by the Find coft"nnd
define the popul~tion and "ay be so.ved nnd
later reco.lled o.s r~quired; both POSitive o.nd
optiOno.l negative togfiles co.n be created
List cOR~o.ndl With o.ccess si~ilQr to Find,
produces neo.t coluMnnr listings of desired
variQbl.sJ for nu~eric variablesl produces
ele",ento.r~ statistics o.t the end of the list;
deto.ils Ro.y optiono.ll~ be sorted, or
suppressed; variables "Q~ be decoded thru
autofto.tic tabular look-Up for Rore readable
listings
List o.nd Output File cO~"Qnds "Qy be repented
to disploy other v4ri~bles froA the sa"e
population, o.nd subsets froR the populo.tion "ay

A-13.11



be List&d or Output to a File vin the IF option
which allows further selection froft the
-tagged- population
Output File Any contoin up to 20 vQriables and
is COApatible ~ith the input require~ents of
SPSS and LISA, statistical packages available
on the systeA
Frequency cOA~Qnd produces Q table of
frequenCies, cUAulative frequencies, and cell
counts, olong with statistical totals.
TransforA function allows creation of a
pseudo-variable for use in List, Frequency, ~nd

Output File cOAAands .

• Execute froft a cOAAond file

The relating of datasets, forfts Gnd variables was solved by
the use of a driver directory fi Ie. All access to the data
bases uses the directory file indices which are
core-resident, except for the variable descriptors' portion
which, because of its size, is accessed by a binary-senrch
routine.

The use of a private directory file as a driver has ftany
iftportant i"plications. The data base Aay utilize
Single-byte fields, odd-length fields, ftultiple-occurring
fields. Fields ~QY be redefined. Thus Q date ~QY be
accessed in its entirety as VVMHDD, or just the year QS VV,
while occupying only 6 b~tes of sp~ce. The onl~ liftitation
on redefinition is th~t search-keys Rust be uniquel~

defined, ~lthough even they A~Y be rede~ined for purposes of
data Aanipulation wi~hin the progr4~. The directory file is
not Q priVileged file and is qUite separate froA the d~ta

bose. Therefore, it Ray be edited and "odified as reqUired
Without necess~rily affecting the data base or its scheftQ.

Because INQUIRY is deSigned for use by relatively
unsophisticated users who are faftiliar With the forfts and
the patient data - but not data bases or progrnAs - it
aSSUftes ~ set of operational def~utts. These defaults "ay
be over-ridden by a siRple cOft~and. ARong the defaulted
options are: choice of single- or dOUble-spaced listings,
-nOiSy- or -qUiet- Rode (in which various ftessages are
suppressed for the experienced user), and a lookup feature
in whiCh coded data is decoded for "ore re~dable listings
(e.g. sex code of 2 becoRes QFeftale-).

All co""ands are accepted in both full English as well as
shorthand, e.g. -FIND- or SiAply 8F-. SiRple error ftessoges
and help ftessag.s are prOVided. Syntax is entirely
fr.e-forR, With continuation lines and Rultiple co""ands on
a Single line allowed.

A-13.12



A CLOSER LOOK AT THE INQUIRY PROGRAM

INQUIRY is written in ftodular fashion in COBOL. While not
strictly structured, it is function~lly top-down in design.
Although a large prograAI it has been carefully designed to
AiniAize swapping Qnd ftQxiftize execution efficiency. Its
stack size of 3000 is necessary priftarily because of an
integral sort stateftent. PrograA segMents responsible for
the d~ta base 1/0 are self-contained so that no segnent
transfer t~kes place until it has cOftpteted its task. As ~n

exaftple, the Find coftftand is set up in one segnent and
executed in a second s~gftent Which retains cOAplete control
until that coftAand is finished.

Data base 1/0 transfers are perforfted in ·oll-iteAs· (i.e.
full record) ftode. The extraction of bytes is perforRed
entirely by the prograR rather than by IMAGE intrinsics.
This is the key to the odd-length field accessJ and the
ability to handle Auttiple occurrences.

USING INQUIRY IN THE ANALYTICAL PROCESS

In practice, INQUIRY con be used to peruse the data base or
to extroct 0 dota Aatrix to test a tentative hypotheSiS.
The user Will usually save his tag file which contains
binary record pOinters to the population selected. These
pOinters dre used to perforA dir~cted reads in I"AGE. If
the user should deCide to extract a second group of dQtn
iteRsl the tag file previousl~ created provides rapid access
to the SQfte populotion. Figure 7 outlines the basic inqUiry
ond Qnalysis flow.

INQUIRY can be used interactively, although it is often "ore
appropriate to create a StreQA file for batch execution and
return later for the results. ThiS is because the tiRe
between responses to user cOAftQnds "Qy range froA a few
seconds to several Ainutes, depending upon the ~ccess Rode,
nuftber of datasets and records accessed, ond the overall
systeA lood at the tifte.

A sQftple Job streoR With annotations is shown in Figure 8.
A sQAple listing and frequency table are shown in Figures 9
and 10.

Our user base is spread over the United States ond thus
connect tiRe and telephone chorges con be expensive for SORe
users. We have established alternote ftethods for the user
With locol analytical capabilities. The user can run
INQUIRY and create a dota Rotrix of selected vQriables frOA
o tagged population. He AOy then elect to use SPSS or LISA
on the HSCIDRC HP3000.

A-13.13



Inquiry .and Analysis

SPSS or

LISA

National

Data

Base

INQUIRY

Program

Data

Matrix

Selected

Graphics

Analysis

Results

Figure 7.

A- 13.14

§
OL__L..OI.

..... ~r.l~'"

... :.:z;:11'."':r..·.r-7·

1 t , , ~



!dOB "ARTV.JEWEL/PASS
!RUH IHQUIRV."ARTY.dEHEL
B HATl;" A TJM QUI;OL

specify which dnt~ ba,se; ~ccess

a.ll da.ta.; creCLte a. ta.g file;
use -quieta node; output to the
line printer

F HATlI YI03=1 AHD Y132D<5 (Y119=7070 OR V129=7070)
in ForA 1, select p~tients Aeeting
certain criteri~

FR VI07 IS'S SORETAG
creCLte CL frequency ta.ble of vCLria.ble
YI07 (uge) in 15-year groups;
suve the tag file CLS SORETAG

T COST77
recCLll a previously saved ta.g file

TRAN Y161+Y166T
estCLblish an equCLtion for a.
ps.udo-v~riCLble (tra.nsforMa.tion)

LT YI61 VI6'T TRAN
List tota.ls only for the va.ria.bles
shown, including the pseudo­
YCLria.ble, TRAN

TRAN VI60+Y164+Yt6'T+Y170T
LT Y160 Y164 Vt6'T Y170T TRAN Y172
OF CST"ATRX Y161 Y162 V163 Y166T VI67T &

Yl68T TRAN V172 Y132D VI03
creCLte CLn Output File ca.Iled
CST"ATRX contdining 10 Vdria.bles
Q.s coluRnsl ea.ch pa.t.ient being
represented Q.S d rowJ froA the
POpulCLtion given by ta.g file
COST77, -,- ftea.ns continua.tion

E
!EOJ

Figure 8.

If the user has Q. terftinQ.l with Q. loca.l stora.ge ca.pa.bility
(i .e. ta.pe cartridge, diskette, etc.), the user ca.n siAply
use FCOPV to transfer the dat~ Aatrix to his terAina.l
storage AediuR. Then the user can di~l hiS loca.1 CORputing
faCility and feed in the d4ta for sta.tistic41 a.nnlysis.

For the user whose tiRe constra.ints a.re ftore fleXible, or
who requires Q. large qua.ntity of dotQ, the data. ftatrix (or
the entire RegiOnQI Center data) can be duftped to a ftagnetic
tQ.pe and Roiled to the Center.

A-13.15



SELECTED CASES
AS AN EXAI1PLE

132D 108 109 131
NEUR I"PAIR SEX RACE DAVS I NJ URY

DISCH

Para Co ftp 1 Feftale Caucasian 96
Paro. Coftpl Fe"ale Latin AAer. 111
Pa.ro. Coftpl "a 1e After. Indio.n 112
Para COI'lP 1 Male Caucasian 58
Paro. Co ftP 1 "ate Co.uCo.sian 69
Paro. COApt Mo.le Co.uCo.sia.n 97
Paro. Co "p 1 "a 1e Co.uCo.sio.n 99
Po.ro. Coftpl "ale Co.ucasian 157
Para Coftpl "o.le Co.ucasian 167
Paro. COftp I "ale Lo.tin After. 126
Paro. Incoftp Fefto.le Caucasian 90
Para Incoftp Fe"o.le Caucasian 135
Paro. Incoftp "0.119 Caucasian 111
Para IncoAp Mate Latin After. 132
Quo.d COAp 1 FePaale APaer. IndiCLn 153
Quad Co "p 1 Fe"ale After. Indian 216
Quad Coftpl "CLle Apter. Indio.n 132
Quo.d Co ftp 1 "o.le Co.ucQ,s CLn 154
Quad Co ftp I "ale Co.UCClS an 176
Quo.d Co ftp 1 Male Ca.UCo.s an 179
Quo.d COftp 1 Male Co.UCo.s an 189
Quo.d COftp 1 Male Cauco.s an 238
Quad Incoftp Fefto.le Ca.ucas o.n 127
Guo.d IncoAp Male AAer. ndian 133

READ =
19.2

SELECTED:
24

SUMS:
3257

"INI"U":
58

"AXIPlU":
238

RANGE:
180

"EAN:
135.70

srI> DEY:
43.89

SU" OF SQUARES:
486305

Figure 9.

A-13.16



AGE AT INJURY
IN IS-YEAR GROUPS

107
AGE

COUNT =
31

CELL VALUE

0 TO 14
15 TO 29
30 TO 44
45 TO 59
60 TO 74
75 TO 89

SUMS:
973

"INItlU":
5

75
RANGE:

70
MEAN:

31.38
STI> DEY:

19.57
SUM OF SQUARES:

42031.00

110DE:

FREQUENCY

16.13
41.94
12.90
12.90
12.90
3.23

CUM. FREQ CELL COUNT

16.13 5
58.07 13
70.97 4
83.87 4
96.77 4

100.00 1

15 TO 29
MEDIAN:

26

Figure 10.

A-13.17



THE FUTURE OF THE DATA BAS£

In the near future, we plan to reorganize the data base in
order to eliAinate the undesir~ble space-wasting aspects
Rentioned earlier. We esti"ate that the reorganization,
while lOSing SORe Coftpatibility With QUERV, will save
approXiAatet~ 13~ of the disk space currently used. In
addition, etiftinating the Coftfton dataset will reduce the
nuftber of accesses by 25 to 50 percent, depending upon the
variables accessed.

The reorganization wilt take into account:
• Odd-length fields
• Multiple-occurring fields
• Redefinition of fields, including search keys
• Eliftination of the COARon dataset bV

expansion of the ForR 1 and "ForA 2 datasets

Just how do we ptan to iRpteAent the reorganization? A
conversion progroA wilt write consolidated records to a
tape, eliAinating the CORRon dataset and the unnecessary
b~tes in various fields. Then we will purge the old data
base, create the new root fit@ and data base allocation. We
witt then sort the tape by file-kev and utilize nnother
specinl prograR to lo~d the datn base fro" ·the sorted tape.

Since we are dlso Aodif~ing the data base s~11abus

(definitions) and Qdding SOAe new variables, the converSion
prograft will have to translate softe data to new values.
This Will result in a sORewhdt Aore co~plex progra~J but
will dllow us to do the Job in Q Single pass.

The structure of the planned data base is shown in Figures
11 and 12 (coApare ~ith Figu~es 5 dnd 6).

Spinal cord injured p4tient ddta frOM eleven Regional SCI
Centers is SubAitted to the National Spinal Cord Injury DQta
Research Center in PhoenixJ Arizona. The dat~ is entered
into an I"AGE data base on HSCIDRC's Hewlett-Packard 3000
using custoft-designed software. The use of CYstOA software
for inqUiry and retrieval was necessnry in order to access
Aultiple datasets at one tiAe. It was 4150 needed to relate
entry forAS and variables to the data base structure for
user ease and convenience.

The INQUIRY progrQft prOVides eleftentary statistics as well
as the ability to save Q subset populdtion for later recall.
It Ray also be used to create nn data ftatrix as an output
file for further analYSiS. "

A-13.18



An added Qdvant~ge of the INQUIRV prograA is the spdce
sav"ings which result froft freedoA froM the usu~\ liAitations
of the HP QUERY/3000 progrQA.

A-13.19



File-Key

Planned Data Base Structure

Center

:>
I......

W.
N
o

Other Form 1

Figure 11.

Form 2 Hospital



THE NATIONAL DATA BASE

:::­
I

.....I

W.
N
.....I

Form 1

Form 1

Other

Figure 12.

Form 2 Hospital



AppendiX 1

The National Spinal Cord Injury Model Systefts' Project is
sponsored in part by the Rehabilitation Services
Adftinistrationl Departftent of health, Education Qnd Welfare.
The following are participating institutionSI

University of AlabaRQJ BirAingha~1 AL

Good SaftOritan Hospital - St. Joseph's Hospital;
Phoenix, AZ

Craig HospitalJ Denver, CO

Northwestern "eftoriol Hospital - Rehabilitation
Institute of Chicage; Chicago, IL

Boston UniverSity "edical Center; Boston, MA

UniverSity of "innesot~ Hospital' ",nneapolis, "H

Institute of Rehabilitation "edicin., New York
UniverSity; Hew York, NY

Texas Institute for Rehabilitation and Research,
Baylor UniverSity; Houston, TX

Woodrow Wilson Rehabilitation CenterJ FisherSVille, VA

UniverSity of Virginia; Charlottesville, VA

UniverSity of WashingtonJ Seattle, WA

A-13.22



Appendix 2

N SCI D R C

The National Spinal Cord Injury Data Center

Data Processing Facilities

Console

200 LPM
Printer

HP-3000
Series II

Model 5
256 Kbytes

.
User Terminals

(up to 15)

Software Support:

Languages: COBOL, FORTRAN, BASIC, SPL (extended ALGOL)

Data Base Facilities: IMAGE (data management system)
QUERY (inquiry and reporting)

Libraries: DEL (Data Entry Library)
Scientific Library

Operating System: MPE III (Multi-Processing
Executive III)

A-l3.23



ON-LINE MARKETING INFORMATION
GEORGE J. NEIBERGS

E.S.8. EXIDE INDUSTRIAL BATTERIES

BACKGROUND

Exide Industrial Battery is a division of ES8 Ray-O-Vac which is a
wholly owned subsidiary of INCa Corporation of Canada. ES8 was founded
in 1888 to supply batteries to Philadelphia Electric. The Industrial
Battery Division has its headquarters in Horsham, Pa., just outside
Philadelphia, and manufacturing plants located in Sumter, S.C.,
Richmond, KY. and Raleigh, N.C ••

The primary products we manufacture include industrial batteries
for lift trucks and uninterrupted power supplies with batteries for large
computer installations and process control industry where backup power is
required. In Raleigh, we manufacture the chargers for batteries and
uninterrupted power supplies. The products are sold by our own sales
force from 18 locations in the U.S. There are 34 Service Centers where
the field inventory is kept.

In the past five years, there have been major changes in this
Division. New products have been introduced and an old plant was closed
in Philadelphia. Essentially, the Division has been undergoing change
and revitalization.

One of the areas identified as requiring substantial change was in
the development of new operations and systems at the Division. The old
systems were primarily oriented toward accounting applications and were
run in batch mode resulting in data that tended to be rather stale ­
showing what happened, rather than allowing anticipation of problems and
opportunities.

Division Management decided that large benefits would be realized in
the development of a Marketing Information System. A task force of users
was then formed to define the detail system requirements. All major
functional areas of the Company participated in this task force. Their
efforts gave birth to a system we call Direct Order Entry System or UDOES".
"DOES" encompasses the ESB-Exide Data Collection and Order Management
System. It was the intent of Management to improve the order process from
closing of the sale to customer delivery. The by-product of "DOES" is
improved information flow to management as well as reduction in adminis­
trative costs.

The end product of the task force was a designed requirement document
which delineated all the elements a Marketing InfoMmation System should
contain. This document was written by the Systems Department and extensive­
ly reviewed by the user task force.

A-14.1



It was detenmined that in-house expertise was insufficient for the
installation of a major on-line order entry system. 80th software and
hardware proposals were solicited from outside vendors. The proposal
was sent to about 12 vendors which included software and hardware combina­
tions such as DEC, Data General, Hewlett-Packard, and Corporate Computer
Center - the latter consisting of NCR and Data General. The major
determinant in the selection of HP as the vendor was the availability of
the high level languages COBOL, RPG, FORTRAN, and their IMAGE data base
software.

The design and development phase began in June 1976 with delivery of
the ex System to the software house for development. The project was
scheduled for completion by the end of 1976. However, the project began
slowly due to changes in personnel at the software house. and because of
changes that we were making. After several setbacks, the project finally
took off in November, 1976, and the system was delivered to our Horsham
location in August, 1977.

Within two weeks of the system's delivery, we began entering orders
on the system and started printing our invoices for a small segment of our
business. Within a couple of months, it became obvious that the ex could
not handle the workload nor could it perform all the functions we desired
of the system. An upgrade was made to the Series II in February, 1978.

We currently have the HP-3000 Series II with 512 k memory, (1) HP7905
15 megabyte disk. (l) HP7920, 50 megabyte disk and (1) 47 megabyte disk.
There are 14 on-line order entry and inquiry terminals. 4 terminals for
system development and one on-line terminal printer. We also have a 600
line per minute printer and a card reader. This upgrade improved the CRT
response time to an acceptable level.

SCOPE

Marketing Infonnation System "DOES" controls the order from initial
receipt to final invoicing of the product.

1. The order entry covers three distinct products and
meets the order entry needs of multiple market places.
It can be as simple as entering a catalog number or as
complex as actuallly designing the final configuration
of a total battery installation.

2. Reservations can be made against batteries and chargers
located in one of the 34 Service Centers or in transit
to the Service Centers. The salesmen can inquire of product
availability at the plants in transit, and at all the service
stations, by calling the Customer Service Center in Horsham.

3. Assignments of finn customer orders are made against stock
orders that are being produced at our plants. This is not
an automatic function. An operator has to review the CRT
display and then select the order she wants assigned

A-14.2



based on its need date and availability.

4. Shipments are entered and invoices are requested
each" day. In addition. each order is checked on the
CRT against the customer purchase orders.

5. Customers can call and make inquiries on the status of
their orders. Multiple keys are used for simplifying
the order search. Since this is the most frequently used
function, we designed it two ways; one is part of the
lanOES Ii system; the other is a stand-alone inquiry routine.
Since nOOES" requires heavy overhead to run, we hope to
reduce the resources required.

6. Each day operational reports such as invoices, acknowledge­
ments and shipping documents are printed for mailing the
next day. In addition, various documents are printed to
control paper flow at the Division. We have reduced the
number of internal copy order distributions from 48 to 12.

7. End of the week reports are prepared on gross profit re­
garding orders received, discount analysis and freight
allowances given.

8. Monthly reports consist of a sales backlog. Future plans
include a profit backlog.

9. The users are writing their own QUERY programs for on-line
inquiry of backlogs, order assignments and the amount of
business generated from a given customer. The QUERY is used
to make ad-hoc reports for management. The only complaint is
that they can't cross data sets.

DESIGN CONCEPT

The system is divided in two major parts; the on-line, which is
available from 8:30 a.m. to 5:00 p.m. and the batch phase, which is
run from 5:30 p.m. to about 8:00 p.m. We would not start the on-line
function unless there has been a successful completion of the batch
process the night before. This separation of f~nctions insures that
we do not have problems with cut-off dates.

There are three data bases on the system: Open Order, Product and
Customer. The Open Order data base duplicates all the products and
customer information for each order. The Customer data base, 1n addition
to containing customer information, contains reservations and avafJabil1ty
of orders at the plants. The product data base consists of all the
product information and freight rate tables. These data bases were selected
in order to prevent excessive contention on one data base due to the
requirement of locking at the data base level. Therefore, there's no
contention between entering orders and product availability inquiries.

A-14.3



The languages used are FORTRAN for the on-line application, COBOL
to extract information from the data base and RPG to prepare various
reports on the extracted program. } special screen monitor is used to
control the writer and reach to and tram CRT's, and to call application
routines. Block mode (page) is used to transfer data from the screen
to the computer at 2400 bd. All transactions that update the data
bases are logged on a single transaction file. A special recovery
program is used to rebuild the data base by applying the logged transactions
to the most recent back-ups. The on-line module consists of 62 code
segments. The largest is 6700 words, the average is 2000 words. The
total size of the on-line module is 124k words. The data stack is
approximately 8k words of which approximately 5.3k words are the global
area (FORTRAN common).

Communication with the CRT's, updating of data bases, and editing
of input data are centralized in three of the 62 segments of the /lODES"
manipulation~ As a result, more than 90~ of the time required to process
a transaction is spent in one of these three segments. Since we are
dealing with a re-entrant (or code-sharing) system in the HP-3000, this
allows a great deal of efficiency to be gained as these three segments
tend to remain in memory. Thus, we have decreased the amount of memory
we would normally require, and decreased the terminal response time.

The batch program consists of about 40 different programs and each
program performs a specific function. No attempt was made to utilize
one program for multiple functions. This concept has allowed us to make
changes to extract and report with minimum impact on other programs.

SPECIAL FEATURES

1. Every night we notify 18 sales offices of the number of orders we
have received from them, any reschedules and special shipments that
are authorized on their location. The achieved objective was to
reduce the incoming phone calls since all the information was
available at the sales offices.

2. In addition, each of the CRT operators can transmit administrative
messages to respective sales offices or a general message to all of
the sales offices over the TWX network by utilizing a "DOES" function.

3. A special subroutine was written to estimate freight which is based
on Ship to Zip Code, weight and FOB point. If the customer requests
the freight invoice, we utilize this subroutine to prepare him an
invoice at t1me of shipment.

4. Our field offices have the capability to TWX orders into a central
TWX machine where a paper tape is generated for subsequent batch update
of the data base.

A-14.4



COMMUNICATIONS

1. Every night we transmit shipping documents and bill of ladings
to Data Point to our plants using IBM 3780 protocol.

2. Every night a specially formated file is transmitted using IBM
3780 protocol to Western Union Data Center in Virginia for
distribution of daily newspaper over the Western Union TWX
network.

3. The HP is also used for transmission of information to our IBM
148. The protocol used is 2780.

FUTURE PLANS

We are currently in a phase where we are building our data bases by
order only. The next phase will be to utilize this information for
management reports.

ACKNOWLEDGEMENTS

lid especially like to thank Chuck Aigen, now of R. Schriver
Associates, for his many novel design concepts and almost all the on-line
programming, and also Paul Schatschneider, the User Project Manager, who
implemented "DOES" making it a reality.

BIOGRAPHY

George J. Neibergs is Manager, Information Systems for ESB-Exide in
Horsham, Pa. Mr. Neibergs was formerly with Eaton Corporation as Materials
Manager. Prior to this, he was with GTE Sylvania where he held various
managerial positions in Manufacturing.

A graduate of Rensselser Polytechnic Institute, Mr. Ne1bergs holds
a B.S. in Mechanical Engineering and a M.S. in Management Engineering.

A-14.5



Computerized Word Processing
a Presentation for the

7th International Meeting of the
HP General Systems Users Group

Denver Colorado, November 1978

by
Martin Gorfinkel

Los Altos Research Center
339 South San Antonio Road

Los Altos, California, 94022 USA

Description
A Computerized Word Processing System captures documents in machine
readable form as they are first typed. The machine readable form
allows changes to be made in a document without retyping.
Formatting instructions are stored with the document or can be
changed after input of the document to allow output in various
formats - again without retyping.

Capabilities vary greatly from one system to another. Some key items
are: ease of handling large documents; ease of integrating the word
processing with other computerized functions; the variety of output
and input devices available for use with the system; and the ease of
use of the system.

Advantages
Material is typed manually only once; the time and errors involved
in retyping is eliminated. Reports from other computerized systems
can be automatically integrated into the word processing product.
(Financial tables and mailing addresses from a data base are two
examples.) A greater variety of format between documents and
consistency within documents is easier to attain. Collaboration in
writing and editing among several authors is facilitated,
particularly when the authors are in different locations with access
to the same computer.

The dis-incentive to make last minute corrections or improvments to
a document is removed. The final copy is produced quickly, neat~y,

and without introduction of new errors.

A well designed system will be easy for clerical and secretarial
staff to learn and to use. The system should adapt well to both
intensive and casual use.

Features
Features which can provide additional benefits to the user include:
incorporation of one document within another; formatting of numeric
tables and calculation of totals on those tables (saves proof
reading the numbers); inclusion of the current date as a document is
printed; flagging lines changed or inserted; automatic generation of
an index and/or table of contents; and an encryption scheme to
protect the confidentiality of sensitive documents.

Sample Applications
Program Development and Documentation
Technical Documentation
Proposal and Contract Writing
Letter Writing and Mass ~milings

Financial Report Writing
A-15.1



DOLLAR-FLOW: FINANCIAL PLANNING ON THE HP3000
(users write their own programs)

By Jack Damm, Principal, The Palo Alto Group, Sunnyvale, Calif. (408) 735-8490

Good afternoon. I am going to talk about financial planning on the
HP3000 with the Dollar-Flow planning language. My discussion will focus
on three areas: 1) What financial planning is, and why there is a need for
computerized planning; 2) Design considerations for Ifriend1y" user­
oriented applications; and 3) How the language Dollar-Flow is used for
applications like profit planning.

THE NEED FOR FINANCIAL PLANNING

First, let's start with two questions: What is financial planning?
And why is it necessary? Financial planning is making decisions about allo­
cating the scarce resources of an organization so as to best achieve its
goals. In the private sector, this usually means how best to allocate money
and people to achieve profitability goals. In the public sector, it may mean
how best to allocate people and dollars to provide a desired level of service.
The main idea here is that the resource is scarce and, as a manager, hard
decisions have to be made about how to use it. More specifically, financial
planning is setting budgets, making pricing decisions, and estimating future
demand for products and services, in order to achieve profit and/or perfor­
mance goals.

Why is formal planning necessary? First, of course, because a scarce
resource (typically money) is involved. If we had enough money for everything,
then we could simply raise our salaries and retire early. Secondly, it is very
important to have general agreement within an organization about how goals
are to be achieved. No assumptions should be made without clearly stating
and documenting them. With a good financial plan, trouble signs can be
spotted earlier and corrective action taken sooner. Businesses which fail
to plan effectively are the best illustration of the need for planning.

Let me offer one last reason why planning is important. For many
companies, planning is a necessity because of the complexity of their opera­
tions. A typical manufacturing company may purchase thousands of parts for
use in a vast array of products, and assemble them in many different locations.
They cannot wait until there is no money in the till to decide that its time
to raise prices. And our current rate of inflation makes this an even more
important consideration.

THE TYPICAL PLANNING PROCESS

Okay, let's assume that you accept the need for financial planning.
So what's the big deal? Well let's look at the typical planning process and
I'll sho\'1 you.

First, planning involves lots of numbers. And these numbers change
often. Financial planning involves projections into the future and is
a very uncertain process. When you're uncertain, then you have to do contin­
gency planning. Play "what if II games. What if sales are 20'; higher than

A-16.01



planned? What if the cost estimates are too optimistic? What if our product
sales mix is different? Because of uncertainty, alternative plans are neces­
sary, increasing the amount of work required to plan several times over.

And that's not all. The attempt to reach a targeted objective such as
profit adds to the work. It may take several passes before all of the budgets
combined with the sales estimates, cost estimates, and so forth, sum up to the
desired results. The task soon becomes monumental.

The following is not an uncommon occurrence: You work many hours pre­
paring budgets and doing sales forecasts. With a board meeting just a few days
away, you finish your plan. The company president takes one look at the re­
sults of the combined numbers and gives it back, requesting a 15% cut in the
budget. You prepare a revised budget, repeat all of the calculations, this time
under increasing pressure to get the job done fast. The day before the board
meeting, marketing revises the forecast. All of the budgets must be revised
again. And now it is getting late into the evening the day before the meeting.
Everybody is getting tired. After a few more iterations, exhaustion sets in.
The planning process finally ends. With a good plan? No, with exhaustion.
Does this seem like a doomsday tale? Itls not. live see this happen many
times. No wonder people dread budgeting time.

Combine the sheer effort required to effectively plan with the require­
ments for a good plan: It must be TIMELY. In a dynamic, growing company, a
plan must reflect todays expectations, not yesterday's. It must be ERROR FREE.
Late-night, reworked plans suffer from simple calculation errors. Errors due
to using the wrong set of estimates, because they keep on changing. Imagine
the embarrassment of a summation error. And with all this, the plan must remain
FLEXIBLE. I worked on a profit plan for a company a few years ago which added
an entire product line between iterations of the plan. And finally, when you
are all done, a good plan must be WELL DOCUMENTED. What factors were used for
overhead? What was the basis for the final sales figure? How was a particular
number calculated? All too often, there is little documentation on how a plan
was actually prepared.

To summarize: A typical financial plan involves lots of numbers, which
change often. The need for many iterations makes this process time consuming
and exhausting. At the same time, the plan must be timely, error free and
well documented. In short, good financial planning is not easy.

WHAT IS THE BEST WAY TO PLAN?

Given that this is the nature of planning, what is the best way to
plan? How can it be done with a minimum of difficulty? Traditionally, there
have been two ways of planning. Planning by hand (and calculator) and planning
using the computer. Let's take a look at both of these methods and evaluate the
pluses and minuses of each.

Preparation of plans manually has several drawbacks. First, because of
the amount of data involved and the number of iterations, it is slow and time
consuming. After many iterations, accuracy becomes a problem. The wrong es­
timates may be used, particularly if they keep changing. Calculation errors
seem to increase with each iteration. And documentation is usually not very
good.

A-16."-I2



On the other hand we have financial planning on the computer using the
traditional programming languages like BASIC, FORTRAN, or COBOL. Once set up,
a model written in one of these languages will run on the computer in a matter
of minutes or seconds. Great! But here's the catch. The model will run very
quickly once it has been set up, but it may take months to get it developed.
And you need a programmer. Let's see what can happen. You start your plan
well in advance of the next budgeting cycle. With six months lead time you give
a precise set of specifications to an enthusiastic programmer who dutifully sets
about coding your model. At the end of the first three months, he comes back
to you with his first try. You patiently point out where the model is not
consistent with the specifications, settle on a set of revisions, and the .
model is reprogrammed to your satisfaction. All set, right? No. As you begin
using the model, the company president starts to change his mind (even though
he reviewed the original specifications). Add a decimal place here, another
line item there. Why aren't all twelve columns of data on the first page?
Frustration.

What is the moral of our story? Programming a planning application
with the traditional programming languages lacks flexibility. The programmer
needs lead time to set up the application and has difficulty in reacting to
short term changes. How about adding another division to a multi-divisional
company? Try changing every format statement in the model in an hour. And
add to that the bother of documentation.

To summarize, manually prepared plans can be flexible, but they take
a long time to do and lots of effort, especially if several passes are done.
They often lack documentation. Planning with traditional programming lan­
guages takes too long to set up, is inflexible, and requires the services of
a programmer.

PROBLEM ORIENTED LANGUAGES

. Let me digress for a moment. For severa1 decades novl, computer sc ien­
tists have been searching for a "un iversal" programming language. ALGOL?
PL/I? APL? The search goes on. Each has its merits, each its disadvantages.
But these "procedure oriented" languages have one thing in common: You have
to be a programmer to use them. And it is altogether too easy to include bugs
in even the simplest of programs. As long as there is a programmer acting as
middleman between the user (or analyst) and the computer there are going to be
communication problems. Maintenance problems. Resource and priority problems.

What's the answer? A planning oriented application language which
incorporates the good aspects of traditional programming, but eliminates the
problems. Where plans can be set up and revised easily, without having to be
a programmer. What I am describing here is one example of another class of
programming languages, "problem oriented" languages. Languages which have been
designed to provide solutions in a general way to classes of problems. Simple
enough to be used by non-programmers. Easier to debug. Self-documenting.
QUERY is an example of a problem oriented language. It provides'access to
IMAGE data bases in a fashion simple enough to be used by non-programmers.
Dollar-Flow is a problem oriented language, designed as a tool for non-program­
mers who want to set up tabular planning reports.

A-16.B3



Financial planning is an area well suited to problem oriented languages.
There is a considerable amount of generality in what planners do, although no
two plans are the same. A financial plan typically involves mathematical
operations on rows and columns of numbers. With well defined rules for the
€alculations. And the burden of planning in any other way give the financial
planner considerable incentive to try new approaches.

This is a good start. But we still have to get the planner onto the
terminal and communicating with the computer. How is this done? By giving him
an effective tool. One which is both friendly and enables him to get the job
done in a way that he understands.

DESIGNING FRIENDLY SYSTEMS
-~------------------------

This leads us to the next point: What makes a system "friendly"?
How can a system be designed so the novice or non-computer type feels com­
fortable with it? I offer here a few of my ideas and techniques for develop­
ing friendly systems.

SIMPLICITY

Keep the system simple at all cost. Do not let the internal struc-
ture on the computer dictate how a system looks to the user. Let him express
his ideas in his own terms. For example, the original design for the Dollar­
Flow language was based on a set of documentation which I prepared for a group
of accounting types. This documentation described the workings of a particular
customized model on a line by line basis. I figured: What could be a better
sct of design specifications for a language than actual documentation? As you
document your model you are also writing your program! Another example.
Dollar-Flow re-orders calculation rules automatically. Thus, line 1 on a report
can reference data on line 10, which, in turn, can reference data on line 20.
Dollar-Flow automatically figures out the prcper sequence for calculations
(calculate 20, then 10, then 1) without any intervention by the user.

It is important that the application be self documenting. For example,
Dollar-Flow ;s a menu driven system. At each step of operation, the user knows
his alternatives. There is little need for a "pocket guide ll to the language.
This is not to say that there is no need for manuals. A good manual is impor­
tant. But it is a fact that few people actually read manuals. The less a sys­
tem forces a user to read the manual, the more usable it will be.

Not only should the user be told what his alternatives are, the syst~T1

should also help him to choose the proper response. Throughout the Dollar-Flow
prompts, the most likely response is shown in brackets as the "default" res­
ponse. In some cases, he can use the default response without bothering to
even understand the question! For example, the prompt:

USE STANDARD OVERALL REPORT FORMAT «Y>,N,W-WIDE PAGE)?

In one brief prompt, the user can see his options and pick one. A simple car­
riage return will cause the system to use the default response. And his entire
report format is set up. No PRINT USING or FORMAT statements. Very simple.
And it can be changed easily. As the user becomes more familiar with the

A-16.04



language, he can begin to exercise more options. With an 'N' response, Dollar­
Flow leads the user through a review of the many fonnatting alternatives.
Report fornlatting can even be done on a trial and error basis. Start off with
the standard format, then change the column width or number of decimal places
shown as needs require.

As I already mentioned, the design for the Dollar-Flow calculation
rules was based on a set of user oriented documentation. Ask a user to describe
how the values on the report are to be calculated in his own terms. With the
addition of a few quote marks here and there, he has already written a program
in the Dollar-Flow language. Self-documenting languages not only save the
effort required for documentation, but make debugging much easier.

One last comment about simplicity. Save the user concerns about
internal structure through structure independent (or data base) approaches
to data relationships. One of the beauties of QUERY is that the user doesn't
have to concern himself with all of the details of the data base to get a sim­
ple report. In Dollar-Flow, all reports are programs, all saved programs are
files, and all save files contain reports. To reference data on a saved
Dollar-Flow report, simply indicate the line name and the report save file
name:

MARKETING BUDGET = 'BUDGET' OF 'MKTG';

There is no need for the user to know how the data is stored or even which
line on the 'MKTG' report is the 'BUDGET' line which he is using.

ERROR HANDLING

Okay, so let's say you have implemented a simple system. Does this mean
that users won't make mistakes? Of course not. In fact, the friendlier a
system is, the greater the likelihood that the users will not be computer types.
So, keep in mind that lito err is human, to forgive is good systems design."
Of course, you must edit all inputs. But then use a friendly approach when
the user has made an error. Because Dollar-Flow is menu driven, simple typing
errors cause the system to repeat the prompt. Errors of a more complex nature,
such as where a report is referenced but does not exist, generate intelligible
error messages. Along with each error message give a message number. And
provide a glossary with the documentation which gives even greater detail on
the possible cause of the problem.

At the same time that it is informative, a system should help the user
to work around problems. For example, in the case of an invalid report refer­
ence in Dollar-Flow, the user can interactively specify a different report
name, or values, or zeroes. He can also indicate that computation should cease
after a scan for further errors. Again, unless a particular error is extremely
serious, warn the user and proceed (with his permission). Another example.
As far as the mathematician is concerned, division by zero gives unworkable
results. In Dollar-Flow, division by zero yields 'invalid' numbers (which
pri nt as asteri sks), but doesn't stop computat ion. It's amazi ng ho\" much more
satisfying a user finds a report filled with asterisks than just a list of
error messages. At least he can look at the format to see if it's to his lik­
ing.

A-16.fJ5



If you must tell the user that he has made an error, tell him as early
as possible. One of the most enlightened things done by the MPE operating
system is to edit the job card image \"Ihen a job is being streamed from an inter­
active session. It sure is better to find out right away than waiting for
the job to begin execution to find out that a simple error has been made on
the JOB statement. Report development in Dollar-Flow is completely interactive.
If a user is setting up a report and he enters a calculation rule with invalid
syntax, the system responds with a message immediately, and pennits him to edit
his error (not unlike the BASIC interpreter). It is not necessary to go into
the computation step to find many errors.

MAINTENANCE AND SUPPORT

Let us assume that as an enlightened designer of friendly systems you
have now designed and implemented your masterpiece. Are you done? Of course
not. This is only the first step. There are two more important aspects which
are critical for good, friendly systems: Continuing improvement and good sup­
port. Let me talk about continuing development first. No system is great on
the first try. I am a believer in the iterative approach to systems develop­
ment, if you can afford it. I am not talking about sloppy design. I am talking
about the tremendous wealth of ideas that you can get from your users, AFTER
you have implemented a system. Try to be receptive to the suggestions of your
users (even if they are infeasible). Never give a critical user the impression
that you think he has just offered a bad idea. Go out of your way to solicit
ideas from your users. If the situation merits it, get involved in several of
their applications. You can learn about ways the system is being used that you
never thought about. Ways in which its use may be awkward. Which messages are
more annoying than useful. Which features are badly needed. I send periodic
questionnaires to my users (some of them even respond). This helps to priori­
tize new features. And users group meetings are a great boon to infonnation
flow.

How should this wealth of new ideas be integrated into an already deve­
loped system? Carefully. Do not rush a new version of a system out to users
just because they need a particular feature. You must let a new version of a
system be "burned in u first by a test site. Softv/are bugs cost you credibil ity.
Once lost, credibility is very difficult to reestablish, so reliability is
extremely important. After all, would a user prefer a system with the bells
and whistles he wants but doesn't work, or one which works with a few less fea­
tures?

Speaking of bugs and user suggestions leads me to the question of sup­
port. There is nothing more frustrating to a user than to get 95% of the way
to his computer solution only to be stopped by the application package he is
using. For any reason. If you can afford to do it, good support pays great
dividends. Dollar-Flow is supported in an "on-line" fashion. This means that
if a user has a problem, he picks up the telephone and calls. If his problem
is with an existing report, I may even log onto his system and take a look at
that report. This kind of support not only helps to find and eliminate system
problems quickly, but I also find out about areas where the documentation may
be confusing (or incorrect). Where another feature might simplify the users
application. In short, on-line support can be another source of good ideas
from users.

A-16.06



Let me summarize these techniques for creating friendly systems. First,
KEEP IT SIMPLE. Try to think like the user instead of a computer expert. Use
his terms. Assume that he won't read the manual. Try to make it self-explana­
tory. Second, be INFORMATIVE but FORGIVING with your error handling. Edit all
inputs, but don't bother the user with minor errors. When the application
merits, CONTINUING ENHANCEMENT will make a much more usable system. Respond to
user suggestions. But exercise good judgment in the trade-off between adding
new features and degrading SYSTEM RELIABILITY.

PROFIT PLANNING

I am not going to take too much time on the last part of my talk. I
am just going to show you a few sample reports prepared using Dollar-Flow. At
the risk of violating my agreement not to make a sales pitch, I invite you to
visit the PALO ALTO GROUP's booth on Wednesday for a demonstration of Dollar­
Flo\'/ in action.

Let me first describe to you the typical company profit planning cycle
and the environment in which a planning tool like Dollar-Flow is used. The
typical Dollar-Flow user is the accountant or company controller who is respon­
sible for preparing the reports. Not a programmer. Most users are working on
in-house HP3000 systems. With access to CRT's and a system line printer nearby.
Reports are written interactively, and manual inputs are also entered via the
terminal. Usually, reports are printed on the CRT for review then saved when
the user is satisfied with the report. If hard copy is desired, the reports can
be routed to the line printer. For generating large numbers of reports, the
"batch command mode" is used, where with very little terminal input a large
number of reports can be generated.

Profit planning typically begins with a preliminary sales forecast.
Preliminary. Sales forecasts always change. And at the last minute, too.
Often the sales forecast is done on a product-by-product basis for the first
year or so, then combined with overall dollar sales projections further in the
future. The near term unit forecasts are sometimes adjusted based on an over­
all dollar figure. The forecast is iterated several times. To make a change,
the product manager just runs Dollar-Flow, inputs whichever figures have chang­
ed, pushes a few buttons, and the new sales forecast is ready. Since many
parts of the profit plan depend on this sales forecast, the typical plan is
usually set up with reports referencing the sales forecast report. If the
figures are changed on the sales forecast, these changes will be automatically
reflected on the other reports the next time they are run. Some manufacturing
companies even use a multi-level sales forecast step, where a build plan (or
production plan) is generated from the sales forecast.

Meanwhile, departmental budgets are prepared. Some Dollar-Flow users
centralize the budgeting function and only distribute budget worksheets to each
department or location. This is usually done if there are only one or two
budget iterations. On the other hand, some of my customers distribute the bud­
get preparation, with each location setting up its own budget in Dollar-Flow.
In this case, figures can be input to Dollar-Flow, changes can be made, and
several iterations of the budget can be done all in a matter of minutes. And
budget consolidations are fun! With a few simple commands to Dollar-Flow, a
whole series of budgets can be consolidated into a departmental or divisional

A-16.97



budget. When changes are made to the low level budgets t they automatically are
reflected on the consolidated budget the next time its run.

The profit/loss projection is next. Using the data from the sales fore­
cast t the build plant and the budgets, and adding factors for items like sales

-discounts and returns, a pro forma operating statement is prepared. Often, the
bottom line (profit) on this report determines what (if any) changes need to be
made to the budgets. With a flexible tool like Dollar-Flow, a financial execu­
tive can even do sensitivity analysis: What if sales are 20% lower than fore­
cast? What if our discount schedule is more aggressive and our volume is
1arger?

Some companies that rely on substantial amounts of debt to finance their
operations combine the profit/loss projection with a cash flow projection.
This is because interest paid (an item of expense on the profit/loss statement)
has an impact on the amount of money required to run the business. This deter­
mines the level of borrowing, which, in turn, affects the amount of interest
which is paid. Dollar-Flow, and most good financial planning languages, can
solve the "simultaneous equations" this circular logic represents, and determine
a level of debt and debt service which are consistent with each other. This
is far more difficult when done manually.

Another procedure which is laborious when done by hand is the aging of
accounts receivable and accounts payable projections. Using Dollar-Flow, once
the rules for aging have been set up, a change in the sales forecast or the
build plan will automatically be reflected in new receipts and payables pro­
jections.

And, finally, some companies prepare pro fonna balance sheets as the
last step in their profit planning cycle. This is not necessarily the way all
companies plan. Or even the way all Dollar-Flow users plan. In fact, many
Dollar-Flow users are not even responsible for profit planning. Instead, the
system is used for a wide variety of ad hoc applications involving calcula­
tions on rows and columns of numbers. It is even used as a design tool for
systems which will later be hard-cod~d in COBOL, FORTRAN, or BASIC.

Some of the other applications of Dollar-Flow that I am aware of in-
cl ud~:

Product pricing. Comparing alternative prices for a single product
(the plotting capability is great for comparisons). Or comparing profit per­
centage across an entire product line. Financial ratio analysis. Comparing
selected financial ratios against industry standards or company objectives.
Capital budgeting. Rates of return and discounted cash flows can be calculated
easily using built-in financial functions.

Performance reporting. Variance reports showing actual budgets or
profits versus plan. How sales are doing against target. (One Dollar-Flow user
generates 500 graphs every quarter showing product line sales performance for
every branch of every distributor who markets his products!)

sur'4MARY

A-16.08



Let me leave you wish a few parting thoughts. Financial planning is
not an easy process. Figures change. The whole approach to a plan may change.
And you need your results yesterday. Traditional systems design and program­
ming methods are not going to be effective in this kind of situation. Use a
better approach. With a friendly, problem oriented planning language like
Dollar-Flow, applications nightmares can become applications successes.



Considerations for a Typist Oriented,
Fully Integrated Wordprocessing System

by

DARYL A. FRAME
and

ROGER M. GOLDMANN

COMARCO. Inc.
227 W. Hueneme Rd.

Oxnard, California 93030
(805) 488-6441

Wordprocessing systems are the glamour products in today's office equipment market.
However, until very recently, Wordprocessing has for the most part been ignored by Data
Processing managers and personnel because they did not recognize that they could offer service
to departments which by nature perform labor intensive, repetitive tasks. Typical departments
which have seemed unlikely candidates for Data Processing services are Office Administration
and Office Services.'

It is extremely doubtful that this situation can continue much longer. Without the help of
today's latest computer technology, these formerly non-Data Processing departments will
become buried in the avalanche of paperwork which now passes through them (Fig. I). In some
organizations, Data Processing personnel are already being called upon to assist in selecting
Wordprocessing equipment or software. This really should not be too surprising, since the
technologies used in Data Processing and Wordprocessing are too similar to ignore.

A few years ago, the typical office accounted for only a fraction of the total company
budget, however. this is no longer true. Greater demands are being placed on office personnel
and therefore higher wages are required. This has a tendency to increase the cost of all office
services (Fig. 2). Without new methods. the future prospects reveal more increases in cost
without any appreciable increase in producti vity (Fig. 3).

On the other hand. costs within the Data Processing field appear to be declining
(Fig. 4).2 The needs of formerly non-Data Processing departments cannot be ignored. As more
and more demands are placed on them. the need to apply technological expertise will be
mandatory.

However. there is a significant problem. Based on a qualitative survey conducted by
Starch INRA Hooper. Inc. during May and June of 1977. "corporate decision-makers are neither
sufficiently knowledgeable nor comfortable" with the concept and application of
Wordprocessing and they feel that "while the industry talks the system concept, it actually
sells pieces of equipment. "3

A-18.1



THE PROBLEM

EVOLUTION REVOLUTION

EFFICIENCY.__________________________ --------_~_~__ I

1870 1900
Fig. 1

1940 1980

OFFICE COSTS

• WERE 20% TO 30% OF TOTAL

• NOW 400k TO 50%

DEMANDS FOR MORE INFORMATION

PAPER EXPLOSION

RISING SALARIES

• AVERAGE SECRETARIAL SALARY 68% HIGHER

• AVERAGE LETTER COST 40% MORE THAN 10 YEARS AGO

Fig. 2

A-18.2



FUTURE TREND

Productivity
I

60 70 80

Attrition

PaperWork

Document Cost

Clerical Personnel

40 50
Fig. 3

301920

$

PEOPLE UP 6%/YR

COMMUNICATIONS
DOWN 11%/YR

COMPUTER LOGIC
~~--'DOWN2~YR

~~;.,. COMPUTER MEMEORY
DOWN 4O%/YR

CHANGING COSTS OVER
THE NEXT DECADE

Fig. 4

A-18.3



When you consider that there is not even an industry accepted definition for
"Wordprocessing", it comes as no surprise that management level personnel would be somewhat
bewildered. At the risk of being presumptuous, I will attempt to define Wordprocessing as a
"Work Cycle". This work cycle includes dictation, formatting, typing, text manipulation,
proofing, revising, and printing. Based on this definition, Wordprocessing or the processing of
words, exists in every office, whether it is automated or not.

Automated Wordprocessing, though, has a number of distinct advantages over the
manual method. Cost saving is perhaps the most important and obvious need. It has been
demonstrated time and again that Wordprocessing can return a substantial savings. One recent
example appeared in the September 1978 issue of Datamation magazine.4 The cost per page
using the manual approach was listed at $11.24, whereas, with automated W ordprocessing, the
cost was $6.42. This represents a savings of $4.82 per page or nearly 43%. In addition to these
savings, there are real savings in time when using automated Wordprocessing. Typewriter
prepared documents were estimated at 75 minutes per page to produce the first draft,
coordination draft, and final copy.4 With Wordprocessing, however, the same steps required
only 27 and one half minutes per page, a savings of 47 and one half minutes per page or 63%.
With today's higher paid office personnel, such savings in time represent significant savings in
money. As a result, the need to hire additional personnel may be deferred due to greater
individual productivity (Fig. 5).

You can appreciate that while Dataprocessing costs in 1973 were $26 billion, those of
office administration processing were $42 billion.5 This indicates that a great deal of work can be
done to automate the modern office.

THE SOLUTION

EVOLUTION REVOLUTION

EFFICIENCY

1870 1900
Fig. 5

A-18.4

1940 1980



Consider also the quality and speed of a good Wordprocessing system. Not only does it
produce error-free originals. but every character is captured and stored. preserving the
document for future use and thereby shortening the turn-around time for revisions. Every
revision cycle is apt to require progressively less and less time with every output copy being
flawless.

Today's Wordprocessing marketplace has every imaginable type of product available.
These range from simple standalone hardware units to massive software systems which run on
the largest of main-frame computers. The technology is such that whether you are generating
single page letters or complex technical publications. systems are available. 6 Your organization
mayor may not already be involved with one or more of these systems. but in choosing a future
system. it is essential that it be an extension of techniques with which the users are already
familiar.

The fact is. there are only four (4) basic types of Wordprocessing systems available
today.7 An understanding of these categories will help in evaluating the pros and cons of your
existingA'uture systems.

I. Standalone Hardcopy-
This includes all types of automatic typing devices that use magnetic media to
capture and store what has been typed. Although the single-unit cost is modest.
these systems cannot be integrated for several operators to share resources. Their
capacity is limited and they are very inflexible. These units are generally used for
short documents.

2. Standalone Video Display-
This equipment possesses a video display capability ranging from part of a line to a
full 66-line legal-size page. At times this type of equipment has text editing
capabilities and may include some Data Processing capabilities. A number of
products in this category are direct crossovers from the intelligent terminal portion
of the Data Processing industry. Again. while the capabilities of this type of
equipment is greater than for standalone hardcopy units. it is by nature
non-shareable between users and still limited in capacity and flexibility.

3. Time-Shared Services-
This is an arrangement in which one or more terminals (which may be owned or
leased) are hooked into a service company's computer to provide an economical
alternative for users who occasionally require sophisticated capabilities. or who are
taking a tenative first step toward Wordprocessing technology.

4. Shared-Logic Processing-
Several independent stations are linked to a single central processing unit for
increased capability and storage at a lower cost per station. This is the type of
system we might envision with an HP 3000 at the hub.

Few organizations set out to procure a computer based on their Wordprocessing needs.
Instead. they quite often have an established Data Processing department running payroll.
general ledger. cost accounting or other "standard" computer applications. Lees examine the
benefits of adding a Wordprocessing system to this already existing hardware.

First of all. Wordprocessing allows greater use of existing equipment. which may be idle
part of the time anyway. Because we are very cost conscious, this type of extra duty from
hardware already in place rarely meets with criticism. And since few. if any, equipment changes
would be required. no interface problems are encountered in dealing with another hardware

A-18.5



vendor either. A great deal of time and effort is generally consumed just familiarizing with new
equipment. So. it is a real asset if the end users do not have to be retrained on a new piece of
equipment when a Wordprocessing system is installed and they are more likely to respond
favorably to new sys tems implemented on existing equipment.

When looking at Wordprocessing then. what are important considerations? Two main
areas of concern are paramount:

I. It must be typist oriented.
2. It must be fully integrated.

At Comarco. we have been producing text editing software for the U. S. Navy for a
number of years. When we undertook development of WORDWRIGHT ©. our general purpose
commercial Wordprocessing system. we placed these two items at the top of our list of
requirements. Data Processing personnel can get along fine with "computer" terminology.
Secretaties and typists though do not (and do not need to) speak ··computerese". They simply do
not respond well to such systems. In terms of being fully integrated. we felt that it was
important that the user not always be changing gears. so to speak. You no doubt have
experienced the frustration of constantly skipping around from one "sub-system" to another.
Because this situation is common. some corporate decision-makers apparently have remained
cautious about Wordprocessing.

This is not to say that systems which are not typist oriented or fully integrated cannot be
forced upon them. but in all fairness. wouldn't it be best to allow the dictates of the end user to
determine which product will be selected? This process begins with defining the task to be
performed by the equipment and software.7 Second. consideration should be given to the
organization's internal operations and established procedures. "Because of the normal resistance
to change. any new technology introduced should. where possible. be an extension of techniques
the user is already familiar with."6 Not just the managers. but the people who will actually be
using the system should be consulted and their views explored in depth.

Only after the above steps have been completed should an investigation of what is
available be made or a design for an in-house developed system started. I f you are looking at
purchasing or leasing. bear in mind that special features. not available on all Wordprocessing
packages. may be required to provide properly composed technical reports. For instance.
automatic alignment of decimal points for tabular data. right-hand justification or automatic
hyphenation. You might also require a dual pitch feature for ten or twelve characters per typed
line inch.

Does the system provide for true document management? The ability of a
Wordprocessing system to track existing documents and catalog names. dates and current status
eliminates the associated manual bookkeeping. So. in evaluating whet~er the system is truly
integrated. this is one area not to be overlooked. Some organizations maintain a very large text
base including many documents not frequently referenced. Due to a limited amount of on-line
storage. it is essential that the Wordprocessing system include some sort of archival and
retrieval capability. Again. this feature may not be available on all systems.

All documents require formating. Formatting includes the setting of margins. tab
positions. indentation. page lengths. etc. A big asset in a Wordprocessing system is the ability to
create a standard set of formats-formats which are flexible. easy to define and use. Once
defined. these formats insure style uniformity from document to document. Some Data
Processing oriented systems do not allow for stored formats. Instead. the user must embed
formatting directives directly into the text. This may be acceptable for some applications. but

A-18.6



you will find that non-dataprocessing oriented secretaries and typists will not be able to achieve
the speed in inputting text for which they are being paid. A system which provides the ability to
utilize stored formats reduces operator keystrokes, detail coding of text and formatting errors. It
is at the user level that a typist oriented Wordprocessing system must work well.

Since many organizations produce "form" letters, at least two features must be
considered. I) Does the sys tern provide an integrated name and address directory which can be
incorporated into the body of the text? In providing this capability, is text composed around
variable length inserts? 2) Are user definable prompts available for a fill-in-the-blank effect?
Both of these items are valuable options which can speed form letter preparation and at the
same time eliminate the need for the user to browse through the text looking for the locations of
the changes.

In addition to the ability to input text with efficiency and speed, is the need for rapid
error free original hard-copy. A system should provide for output on various devices. For those
who require high quality character printing the system should interface to daisywheel or cup
type terminal printers. When such quality is not required, such as preliminary drafts, the system
should be able to drive a high speed line printer. Some users of Wordprocessing are interested in
producing high quality camera ready copy. This requires the addition of a photocomposer to the
basic system configuration. However, as you can see from this paper, the quality far surpasses
anything which can be produced on the standard daisywheel printer or even the system line
printer. The ability of a Wordprocessing system to prepare text for output to a photocomposer is
quite rare on' a hardware configuration like the HP 3000. If your organization's requirements
include this feature, you will be able to take advantage of such things as variable character
spacing and a choice of multiple character fonts and sizes.

Automated Wordprocessing has remained relatively simple to use. Systems have been
introduced which vary from basic editors to WORDWRIGHT <[, which is sophisticated and
comprehensive. Which one you choose will be a matter your organization will have to consider
carefully. One thing is for sure-Wordprocessing is a very dynamic field. The time is right for
automated Wordprocessing!

REFERENCES

l. Wohl, Amy D.,"What's Happening in Word Processing",DATAMATION,April 1977,
pp.65-74.

2. Bums, J. Christopher,"The Evolution of Office Information", DATAMATION,April
I977,pp.6Q-64.

3. WORDPROCESSING-A Survey of Perceptions and Attitudes of Top Management by
Philip F. Shannon,NEWSWEEK,New York,1977.

4. Carls,C. B.,"Getting Ready for Word Processing's Second Generation",
DATAMATION ,September 1978,pp.139-144.

5. Strassman, Paul A.,"Stages of Growth ",DATAMATION ,October 1976,pp,46-50.
6. SURVEY OF COMPUTER-ASSISTED WRITING AND EDITING SYSTEMS by P.I.

Burnam, Technical Editing and Reproduction Ltd.,London,1977,pp.48.
7. Winkler, Michael W., ..A Framework for Selecting the 'Right' Word-Processing

System",Technical Communication,First Quarter 1978,pp.14-17.

A-18.7



GRAPHICS IN BUSINESS

PAUL COOPER
SYSTEMS ENGINEER

TULSA", OKLAHOMA

Although there is no graphics software language

currently supported on the HP3000, many products are

offered to give the 3000 user excellent business

graphics capability. One of these products, the

HP2648A, especially lends itself to business graphics

because of the terminal oriented nature of the HP3000.

My purpose here is to explore some ways of applying

graphics to business applications. In the past,

graphics have been primarily used in scientific and

engineering applications because graphics technology was

developed for those kinds of jobs. The business data

processing area is on the brink of a new era in data

reporting through the use of graphics.

Looking at the users of information output from

business systems, a hierarchy of job positions can be

seen as shown in the following chart:

A-19.01



TOP MGMT.

MIDDLE MANAGERS

DEPT. MANAGERS

FIRST LINE
SUPERVISORS

PLANNERS
EXPEDITORS

MANAGEMENT REPORTING

STAIRSTEPS

A-19.92



This hierarchy will be referred to throughout this

presentation as possibilities for graphics applic­

ations are explored.

Of prime consideration for a planner/expeditor

type person is "How is the output of my department

doing with respect to schedule?". In the past, re­

ports have been available to show at any given instant,

what the schedule number of output units are versus

actual output. Typically, there have been time lags be­

tween reported data and actual output data. These time

lags make scheduling very difficult. In addition, data

of this type ignores the time continuum needed to know

where one stands with respect to remaining schedule and

time.

With a simple graph, one can easily tell at a

glance not only where one stands today but also over a

time continuum. The fact that the output is coming

from a terminal oriented system allows the user the

ability of reporting this information on a "pseudo-real­

time" basis, thus eliminating the confusing time lags

between reported and actual.

Figure 1 would be a good example of a planner's

tool from a batch type system. The planner should expect

to get this type of information the day after the output

actually takes place. The list would point out that

181 units were output as of the end of M-Day 13, but it

A-19.03



would not indicate how the production line is doing so

far during the current day.

It may also be a good example of a planner's tool

from an online system. In this case, the information

would be much more timely and therefore much more useable.

The information should be expected to be available at any

hour of any M-Day, and should be expected to reflect out­

put already finished during the current day.

Graph 1 shows this same planner's tool graphically.

Note that not only does the graph indicate production to

date, but also gives an excellent trend line to let the

planner know what needs to be done between now and the

end of the production period. It answers questions like,

"00 I need to recommend overtime to management", or "Do

I have a problem with material flow?".

Notice also, that during the current day an indication

is given as to whether the ahead/behind trend is being

impacted by the current day's production. This indication

is given by the slope of the graph line during the current

day.

While this type of detail information is important to

the planner, the first level supervision may well be more

interested in more long-term type information. Again the

same progression of data reporting can be seen at this

level. Figure 2 is an example of year to date type infor­

mation. The same kind of "timely information" parameters

A-19.94



apply to this reporting level.

In addition, some modelling is in order at this level

to indicate to management what the year end production

will be if projected at current production levels. There

are a number of good forecasting methods which may be

used to extend the production line out through the end of

the year or beyond. This kind of information is essential

for good manpower planning and for good material control.

Another topic of great importance to first line super­

vision and also to department managers is that of product­

ivity. One measure of productivity is "dollars per manhour".

The method I've chosen to work with here is number of

dollars transferred from a production department versus the

amound of labor applied. Going back to our earlier example,

I've applied an arbitrary price to the units in the graph.

In addition, I've established an arbitrary standard time

for producing one of the units. This new data is represent­

ed in chart form in figure 3. Although this is a very sim­

plified example of productivity measurement, the following

conclusion can easily be reached: Data of this type can be

understood much more simply and easily when it is presented

graphically. Again, the graph which results from this

data shows a trend over a time continuum. This trend cannot

be readily gleaned from the same data presented in the trad­

itional columnar form.

A-19.95



Efficiency is another topic of importance to manage­

ment at this level. Efficiency is derived by comparing

actual time spent on a unit to a predetermined standard

time. Efficiency is usually shown as a percentage, which

is easily understood as a number and does not need to be

depicted graphically. But managing efficiency cannot be

accomplished by a snapshot of anyone particular time

period. Here again, a group of percentages spread over

time is needed to spot trends. With a computer, the cur­

rent day's efficiency can be reported with respect to past

days" and probably more important, a moving average can be

derived and displayed quickly. This kind of information

is very useful for spotting trends in efficiency to enable

management to be responsive to developing problems. Figure

4 shows data of this type.

Middle and top level management are interested in

more long-term information. Managers at this level are

interested in topics like "What are my projected sales

over the next 24 months?" or "How is my business doing

compared to others in this industry?". Using forecasting

algorithms, the computer can easily be made to project

future trends based upon past performance and expected

future trends in the market place. Adding graphics to

these projections produces a pictoral view of future

trends, making the data very easy to understand. The

A-19.06



whole idea of making projections (modelling) is to

enable management to set a direction for future bus­

iness. Questions about manpower, material, and fin­

ancial requirements can be answered in this manner.

It is incumbent upon data processing systems to report

this information in any easy to understand and readily

useable form. Graphics capabilities make this require­

ment easy to fulfill.

Figure 5 is an example of forecasted sales in the

form one might expect to see from conventional systems.

The corresponding graph makes the data much more digest­

able and easier to comprehend at a glance.

Figure 6 is an example of trend analysis. This type

of data answers the question about how my business is

doing with respect to the rest of the industry. Industry

data is available from Dunn and Bradstreet or the Sec­

urities and Exchange Commission. A manager can place

his company in perspective over time to see how the com­

pany is performing and whether the performance is improving

or degrading over time.

To this point we've looked at reporting to all five

levels of management through the use of linear graphs. A

short mention should be given to the ease of generating

these graphs on an HP2648. The fact is that the HP2648

has an autoplot function imbedded in firmware within

A-19.87



the terminal. The autoplot function is complete with

a menu to describe the X and Y axes. Once the axes

are described, the terminal will draw the graph, with

tic marks and an optional grid. Data for the graph

can be obtained either from the display or from the

HP3000. With this versatility, linear graphs become

very easy to generate.

The next area of importance to business graphics

is generating other types of general purpose report

forms. One example of this type of report is a pie

chart. Unlike linear graphs, there is no firmware

driven menu to generate a pie chart. However, with a

little imagination, a simple program can be written

to accomplish this feat. Appendix 1 to this report is

a source listing of a Fortran program which generates

a pie chart. Going through the program, one can see

that the terminal graphics are controlled through the

use of "escape sequences". The sequences are easily

edited into a source program or data file through the

use of the editor. This program is included here to

demonstrate the relative ease of generating business

graphics, and is intended to stimulate the imagination.

Over the past few years, the data processing in­

dustry has seen a migration of trends. From batch sys­

tems to interactive systems; from main frame processing

A-19.0S



to distributed processing. The industry has also seen

a shift in the way people think about computers. The

computer is losing its.' shroud of mystery and is becoming

a tool to aid businessmen accomplish goals and plan for

the future. Data reporting through graphics is a natural

extension to these trends and opens a whole new method­

ology for data reporting.

A-19.B9



FIGURE 1

NOV. '78 ABC PRODUCTION TOTAL SCHEDULE: 330

M-DAY SCHEDULED CUM. ACTUAL CUM. OUT

1 15 15 14 14
2 15 30 18 32
3 15 45 13 45
4 15 60 12 57
5 15 75 15 72
6 15 90 8 80
7 15 105 10 90
8 15 120 8 98
9 15 135 10 108

10 15 150 5 113
11 15 165 14 127
12 15 180 16 143
13 15 195 8 151
14 15 210
15 15 225
16 15 240
17 15 255
18 15 270
19 15 285
20 15 300
21 15 315
22 15 330



10 11 12 13 14 15 16 17 18 19 20 21 2298765432

· . . . . . . . . . .. .
·'P:RLl(7~~7/LW'';'}J2/9'EJ7~ZL:F ~ '}~Ir:;'" 'W~72'%'7L'r""" ~ r" T······ ~ r.: ';;.'

: : : : : : : : : ; : : : : : : : : : ., ~:
• •••• " •••••• -.- ••••••••••••• , •••••• -.' •••••• ~ •••••• , •••••• '.- •••••• , ••••••••••••• -.' •••••• , ••••••••••••• "' ••••••• , ••••••••••••• " •••••• '.' •••••..",•••••• 1\' •••••· . . . . . . . . . . . . . . . . ..,. .

: : : : : : : : : : : : : : : : : ~ : :
..... ~ ~ : ~ ~ : ; ~ : : ~ : : ; : : J.~..~.~ : ; .

: : . : . : : . : : : : :,.,.,: . : :
•• •• •• • • • ¥. ••

: : . : . : . . . : . : : : :""; : . : :..... ,~ : : ~ : ~ ~ : ~ : : ~ : ~ ~ ." ~ -: ; : ~ .· . . . . . . . . . . . . . . . . .
: : : : : : : : : : : : : .. ~ : : : : : :

• , •••••.•:••••••. i •. · ••• : •.•....:.•••••. ;0 •••••• , •••• ·C·.' ·S·· ,'U······ : ~ I': :~" •• , •••• _•• ; •••••• ; ••• , •• ", •••••:••••••• ;., •••• , •••• -: : : : : : :S .H :D LE: ;"".: : : : : : : :
• • • • • • • • II • • • • • • • •

· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .:,;.~,...":':.. ~ ~ ~ ~ ~ ~ ~ ~ ~ .
- • - • • • • , • • J' • • • • • • • • •

..... i ; ~ i ~ i l ~ ~..~..1 ;.... : ~ i i ~ 1 ~ ~ 1 .· . . . . . . . -' . . . . . . . . . . .: :' ':: ~:~: : :nc~unL: . : : : . :
: : . '. _ : : ",,: : . :r-t: I . r-t: . : : : . :..... ,. _ -.- - _.. ,.. -_.. -,_ , .., ,.",., , ,.. . -,_ ,.,.,. -_.. _ ,. ,- ,. " - ,-" ' , ,-, ,· . . . . ..".,,. ,..... .· , . . . . , . ..
; : : : :.,~ :: ::::.:::.::

• ••••••••••••" •••• - •••••••••••••• •,.-1. • • • • - , , •••• • • ••••••••• • •••••• • •••• • • • •••••••••••••• • • • ., •••••: : : .~. :::::.:::.:::.· ,. . ..,.. ... ...· .. . ..... . _. .,.· . . . . . . , . . . . . . . . . . . .· ~ :- ., --: : : ~ :- ~ : ~ : : ,:' : : ~ :- : ~ ... .... ..· . . . . . . , . . . . .. .... ... . . . . . . . . . . - , . . . , . .
•••••• -••••••••••••••• ,. _ ••••••••••••• , ••• ". , ••••••••••••••• , •••••••••• ," ' •••••••• , ••••••• _ ••••• , ••••••• # ••••••••••••• , ••••• , ••, •• , •••••••••• , ••••••· . , - . . . . , . , , , . .. ..· . . . . . . , , . . . . . .. ..· . . . . . . . . . . . . . .. ,.· . . , . . . . , . , . , . ,. ,.

360

330

300

279
)If
I.... 240

\D
• :>-....

210....
I-
~ 180
I-
Z 150
CI
::t 120

OS
99

60

30

e
1

DR ..... S



FIGURE 2

1978 ABC PRODUCTION TOTAL SCHEDULE: 3960

MONTH SCHEDULED CUM. ACTUAL CUM. OUT

1 330 330 325 325
2 330 660 340 665
3 330 990 298 963
4 330 1320 308 1271
5 330 1650 240 1511
6 330 1980 290 1801
7 330 2310 270 2071
8 330 2640 310 2381
9 330 2970 288 2669

10 330 3300
11 330 3630
12 330 3960

A-19.12



3960 ,.----r.---'-.---r.---..-----r---,---.....----r----r---,---,,---,
: : : : : ,.",

PRLWL'~/t./LW~~.JL::i¥~;L'~~ .fr~f~~ A'~/f2'@L ~ , ~ ,· . . . . . . . . "" .·....•.•.... :•.....•... •.. ;..•......••..?••.•••....•.. ~ ..•••.••...•. ~ .....•.....•.~ .•.•.... •..•. ~ •. ••••••• •.•.: .•..•. •••• 'JI' .~. • ••• • ••• • • ':' ••••••••••••

: . : : : : . :.,,;' : :
: :: : " : :
: : : ,:::
: : :.:,.,,':':

·.. " j.. ,, , ~ ,.. ,.. ,.. '[., .. ·S'. ·C··.'H'~ 'E".'D'.·U··.·U·[ 'Eo , 00.. 00 .. 0.[ ;:.;<.'..:7 ~ .. 0.•• 0.0 •••.~.•. 0.. 0. 0 .

· .. .. - .
: : : . . ~ : : : :· .· .
: ::. J :::· . . . : ,.", . . , . ,

• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ¥- • • • • • • • • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

: : : : ,..... : ~ : : : :· .. .....
~ ~ ~ ~ i=lCtUt=lL ~ ~ ; ;· .. .· . . . . . . . . .

· ; ; ~ - ~ ~ ~ ~ ~ : : .
: . ~~: : : : : : : :· . .. .· . .. .· . .. . .· . .. . .· . .. . .· . .. . .· . .. . .. . . . . . . ., .66e ., .... . : : ~ ~ ~ : ~ : :- .· . .. .· . .. .· . .. .· . .. .· .. ..· .. .· .. .· .. .· .. .· .. .

1980

1320

3390

2640
>
I....

\D
•
I-'
W

1211108765432

01oo.-o.----a..-_~__00100-_ __"'''"-_ __a..__--..L..-__..a.-_ _..JL.-_ ___1...__.....J__ _..J

1

t10NTHS



STANDARD COST PER UNIT: $200.00

STANDARD TIME PER UNIT: 7.5 HOURS

FIGURE 3

S·TD. ACTUAL STD. ACTUAL STD. ACTUAL
SCHEDULED ACTUAL TIME TIME $ $ $/ $/

MONTH OUTPUT OUTPUT APPLIED APPLIED OUT OUT HOUR HOUR

1 330 325 2475 2480 66000 65000 26.67 26.2
2 330 340 2475 2510 66000 68000 26.67 27.1

)It 3 330 298 2475 2540 66000 59600 26.67 23.5
I 4 330 308 2475 2540 66000 61600 26.67 24.3~

\0 5 330 240 2475 2470 66000 48000 26.67 19.4•
~ 6 330 290 2475 2462 66000 58000 26.67 23.6
~

7 330 270 2475 2470 66000 54000 26.67 21.9
8 330 310 2475 2520 66000 62000 26.67 24.6
9 330 288 2475 2536 66000 57600 26.67 22.7

10 330 2475 66000 26.67
11 330 2475 66000 26.67
12 330 2475 66000 26.67



121110987, 65432

·· .· .· .· . . . . . . . . .· . . . . . . . .· . . . . . . . .· . . . . . . . .· . . . . . . . .· . . . . . . . . ........................................., , , , , , .· . . . . . . . . .· . . . . . . . . .
: ; ~ ~ ~ ST t=I ND~RRD ~$ / HO~UR ~·........ . " , , , , , , '.- -.- .· . . . . . .-----------------· . . . . . . .· . . . . . . .· . . . . . . . . .

· .....•.•.•. i . •• . i ..••••••••.•• ~ ••...•••••••• ; ••••••••.•... ~ .•••..••..••. ; ••••••••.•.•• ; •..•••••..' •.. ~ .•.••..••••..:.........••••.:...••••••.•••· . .'. .· . . . .· . . . ... . ... .· . . . . . . . . .
•.•..•...••. ! ••. , .•..•... ! ....•..••....: .......•.•.••:.••....•....•.: ...........•. :- ......•....•.:..•.•.•.....•. : : a ••••••••••: ••••••••••••· . . . . . . . . .· a... ...· . . . .. '.'· . . . . . . . . .· .
•.••...•.... ! ...••.•••••. ! .. a.... • •• :••••• a ••• a .••• ~.'. a •••••••••• :•••••••••••••• :- •••••••••••• : •••••••••••• ~ •••••••••••••:. a ••••••••••••:•••••••••••••· . . . . . . . . .· . .. .· .. .· . . . . . . . . .· . . . . . . . . .
• ••••••••••• : ••• , ••••••• 0' • ~ •••• • • , •••••• ~ •• • ••• a ••• a .: • • • • • • • • • •• • ~ • • • • ••••••• ~ • • • • • • a •••• ~ ••••••••• , • ~ •••••••••••••: ••••••••••••••:a • a •••• a •••••· . . . . .. ..· .· .· .· . . . . . . . . .· ~ ~ ~ ..... . ~ ....... . ~ ............ . ~ : : : .· . . . . . . . . .

~ ~ ~ ~ ~ t=I~C TUt=I~L $ /~H 0 UR~ ~
• ••••••••••• : ••••••••••••• : ••••••••••••• ~ • • • • • • •• • ••• ~ • • •• • ••••••• : ••••••••••••• ~ ••••••••••••• ~ ••••••••• a ••• : •••••••• a ••••:•••••••••••• a .:. a •• a a • a a ••••· . . . . . . . . .· . .. .· . .. .· . .. .· . . . . . . . . .
• ••••••••••••••••••••••••••••• a • • • • • • • • •• • • • • • • • • • •• ••• • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••· . . . . . . . . ... . ... . .· . . . . . .· . . . . . .

30

29

28
):lI
I I=t.... 27

\0 LaJ•.... :z 26U1

~

a: 25
I.&J

24
(.t)

et:: 23
0:
-l 22
--I
0 21
I=t

29

19
1

t10NTHS



FIGURE 4

NOV. '78 ABC EFFICIENCY

HOURS HOURS % MOVING
M-DAY EXPENDED EARNED EFFICIENCY AVERAGE

1 104 105 100.9 100.9
2 112 135 120.5 111.1
3 108 98 90.7 101.2
4 102 90 88.2 100.4
5 112 112 100.0 100.3
6 88 60 68.2 95.8
7 80 75 93.8 95.6
8 88 60 68.2 92.6
9 88 75 85.2 91.8

10 48 38 79.2 91.2
11 104 105 100.9 92.2
12 108 120 111.1 94.0
13 72 60 83.3 93.3
14
15
16
17
18
19
20
21
22

A-19.16



/ \ . ... .. ".
• • . . . . . • . . • . /~"L1. l' r-r'r-T --SFr-LZ ~{;/

I ~ ~ ; ; ~ ~ ; ; ; : ~ ~ h"~Z ~..t=,=r J:~J;:e;//? /:
110 , .\ , , , ······,·············1······,·············,·······,···· , , .

l ;3; ; ~ ; ; ; ; ; ; /;\ ; ; ; ; ~ ; ; ; ;: : : : : : : : : I: : : : : : : : : :
tee i \..~ : : ~ ~ 1. t ~ : ~..\ l ~ i ~ ~ l ~ ~ l. .

~ \; ! l ! 1 ! ; j 11 j \. ~ ~ ~ ~ ~ ; ~. ~ ~
: : : :\ . . : : : : : : : : : : : : : :
: : :/: : ~ : : : : . . : : : : : : : :

90 i ~ ; i. 'X' ~ 'l~' ..·..; ; ~ ../ : ; \.~ ~ i ~ ~ l ~ .. · : i .
~ ~ 'f ~ 1 j\ j i j ~ 1 \ iii 1 j ~ j
~ ~ ~ j \ jll~\ 1/0 / ~ ~ i ~ ~ ~ ~ 1 ~ ~90 , \ .•, •..••, \" •••.... ~ ~ , , .

1 j ~ ~ \~ I ~ \~ / ~ ~ 1 ~oJ I ~G 1RV~ERbGk ~ ~ ~: : : : l:I : :/: : : : : : : : : : : : :
7e ;' T..· ; '1' y' ~ " ~ ; ~ ~ ~ ; '1" '; .'.' ; r ';' ; '1' .

; ~ ~ ~ : ~ ~ ~ ~+--Dt=lILy e:FF~IC~IENcY ~ ~· .. .· .. .· .. .

w
(!J

a:
J­
:z:
w
u
Ct::
w
a..

60 '---'--..-...--.....a-~-.....--.-.-.L_&.-...a..---"--...-.a.- -...---'---.l_.a---~--'----'-----"----'

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1S 19 20 21 22

t'1-DRYS



FIGURE 5

FORECASTED SALES AS A FUNCTION OF INVENTORY

YEAR SALES INVENTORY--
1973 50,000 22,000
1974 100,000 24,000
1975 150,000 26,QOO
1976 200,000 28,000
1977 250,000 30,000
1978 300,000 32,000
1979 350,000 34,000
1980 400,000 36,000
1981 450,000 38,000
1982 500,000 40,000

A-19.18



· . .. . .· . .. . .· . .. . .
• • . • • . . • •• • •••••••.•.:...••.••••••:. • • • • • • • • •• ••.••.••... .....••.... ..••.••...• . ...••••••.:. . • • . • . • • •• . •••••.•••• i ••••..• • ..• : ••••••••••• ; •.. • •••• • .· . . . .· . . . .· . . . .· . .. . .
· . . . . . . . .. . :. · · · ':' . . . . . . . . .. . ':' · . . .. .·····1~83 · ~ · ?••••••••••· . . . . . .· . . . . . .· . . . . . ......................: : ; : : : .· . . . .· . . . .· . . . .· . . . . . .
• • • •• ••• •• • ••••••••••:••••••••••••:. • • •• • • • • •• ••••••••••• ••••••••••• • •••••••••••••••••••••:•••••••• • • ••: ••••••••••• f • • ••••••••• ! ••••• • .•••• : .•••..•...· . .· . .· . .· . . . . . . .·......... . : :- .......... . ~ : ,:' : : : .· . . . . . . .· . . . . . . ... .
••....• ••• •.••.•.. ,. I:' .•.•..••.• 1:1 •.••.• •I.. ....••...... . -t.9-7-e ;.•..... •.,.': ··•.•..... :..•.•..•..•:•...•.•... •:......•.. ·.;. ... .., I......... .......-
•••• •••••• •••••••••••:•••• •••• •••.:. •••. •••.• . •••. 1'9-7~ ;. •••••.••..•:- •.•••••••••:..••••••• ••: •••.•• ••.•• : ••• •••.•••. : •••.•••.•• ';' .•. •••• I ••· . . . . . . . . . .· . . . . . . . . . .· . . . . . . . . . .
· ·· .. . :. . . . . . . . . .. : ! 9 7'~' .• •. •..•.. : •..••.. · ~ · •..•••.... ~ · .•. •.•: •••.•. ~ •.. · .. • : . · ..•...... : •...•... ~ . • .· . . . . . . . . . .

• • • • • • I • _ • •· . . . - . - . . . .......................... ·191'&·········· .: ! •••••.•..•. :- .••...•..•. :•.•••••.••••:•.•••••••••.:••••••••••• ! •.•.•.•..•. i·········· .: .
~ ~ ~ ~ ~~7../EZY£; .IWL&:'" ~ ~.......... '1.. 4.914;.....•....•.:..........•.:......•.... ! : : e: II ~ I.! ! ; .
.. ... .

· 1·9·1a : : ~ ; ~ ~ : ·~ : ; ~ .· . . . . . .· . . . . . .· . . . . . .· . . . . . . . . . . .
• ••• I ••••• : •••••••••••: ••••••••••••: ••••••••••• ~••••••••••• ~ ••••••••••• ~ ••••••••••• ~ •••••• " ••••: ••••••••••• ~ ••••••••••• : ••••••••••• : ••••••••••• ~ ••••••••••· . . . . . . . . . . .· . . . . . . . . . . .· . . . . . . . . . . .

44000

42000

> 40000

•.- 38000\0
•.- 36000\0 (,1

I.&J 34000
I-t

Ct:: 32000

0
30900I-

:z: 28000
W
:> 26000

:z
240001-4

22000

20000

18000 '''-'-..a..-&-'-.L-&...a--................-'-........--a....................--'-''''--''.......I....&.o...............&...Io-a.............-'--II...-&-..a-a.........a...&......&.....II-.t-........-'-................................ ..a-.a.........................~........,

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000 550000 600000 650000 700000

SRLES



FIGURE 6

TREND ANALYSIS

Sales as a % Return
of 1965 Current on
Sales Ratio Net Worth

ABC INDUSTRY ABC INDUSTRY ABC INDUSTRY

1965 100 100 2.60 2.40 18.0 15.0
1966 103 100 2.59 2.44 18.0 15.0
1967 106 101 2.55 2.40 17.8 14.0
1968 106 100 2.55 2.45 17.7 14.9
1967 109 101 2.57 2.41 17.7 13.9
1970 112 103 2.61 2.38 17.7 14.9
1971 III 105 2.59 2.42 17.8 13.9
1972 113 108 2.54 2.38 17.7 14.5
1973 116 110 2.52 2.32 17.9 13.5
1974 119 III 2.41 2.45 17.9 14.5
1975 116 113 2.36 2.45 15.1 14.1
1976 114 114 2.30 2.50 12.0 15.2
1977

A-19.28



19761975197419731972197119701969196819671966

.. .., ... .·........................................ .............. .............. .............. .... ....... ............. . .· . . . . . .· . . . . . .· . . . . . .
o 0 0 • 0 • 0 • •• 0 0 ~ 0 • • 0 • 0 0 0 • 0 0 • 0 : • 0 •••• 0 0 ••• 0 0 ~ 0 • 0 • • 0 • 0 • •• 0 .; 0 • 0 • 0 0 0 •••• • i!-.°BC' 0 •• C·'0' 0 0 •••• 0; 0 0 • 0 •• 0 • 0 • •• 0 0 • 0 • 0 • 0 ••• 0 0 0:. 0 ••• 0 0 •••• 0 °:... 0 •••••• '0

= : : : r1 '.: : : :· . . . . . . . . ......................................................., , , , .
• • • 0 • 0 • • • • ..,..,.,.

: : : : :: ::".«-'
· : : ~ ~ ............' ~ ..... . ~ ~ : ~ : .

: : : : : : : : ~ :
o • 0 • 0 • 0 0"""- • 0

• ••••• 0 0 • 0 • 0 : ••••••••••••• : •• 0 •••• 0 •••• ': ° • 0 ••••••• 0 • ': • 0 • 0 •• 0 ••• ': •• 0 0 0 0 •••• 0 0 • : •• 0 0 ••••• 0 •• 0: •••••• 0 • o?:.~ 0 0 •••• 0: •••• 0 0 ••• 0 •• 0: • 0 0 •••• 0 ••••

: : : 0 : : :.".,.",: : :............ -I············ -I········_ :- - : : : ·T··········· ": ": ":.""." .
: : : : : : /': : : :

00 ••• o' 0 •••• ~ •••••••• 0 •••• : : o. 0" 0 0 0 o... ~ o. 0 0 •• 0000. 0 o~. o. 0" o. 0 ••••7. 0
•• °I'~'DU'S tOR yo .. 0 ';'" 0 0 0 ••••••••~o. 0 0 ••• o. 0 •••

• • • • 0 ~. 0 • 0.. "...• "!."",, .•.• ,,""" ":."""" •.• ".".,, .: "."." ••. ".•:.,,~. """" "!""."."" .. ".. ":." .. "." .~ :.• ".•••• ".. ".. ":"" " ";" •. " "
· : : : ~ : : : : :".".... ".. !".""."" ".! " ~." "..: ~ ": " " :" ".. """ .. "~,, ~ :." "" : " .
: ---~~ :.,--~ : : : : : :

._,,~.~" : ~.~ ~ ; ~ " ~ ~ : : "· . . .. .. .- . . .. _. .· . . .. .. .· " : " : ; ~ ~ ; ~ ~ : : .· . . . . . . " . .· . . . . . . . . .· . . . . . . . . .· . . . . . . . . .
•••••••••••••••••••••••••••••••••••••••• ~ ••••••••••••• , # ••••••••••••• , ••••••••••••• , ••••••••••••• , ••••••••••••••••••••••••••••••••••••••••••· . . . . . . . . .· . . . . . . . . .

: : : : f~~~f" ~1":# AIII;. 6'~ o~ I~~''''~ .~~k!:1.,• ••••••••••• • ••••• , • • ••••• • ••• " " •••• • " • " " ••• " • " •••••• I • J' • • ~ 'I" •• - • • :J" • • • • •••~ , •• " h ....,. . .¥"~ ~.•••• T • -... •~ ••••••
: : : ~ ~ s. : ;, : . _, s.::s.- .:s.-· . . . . . . . . .· . . . . . . " . .· : " , : : : " : :' - : : .. - " :- .- " " -" .. -: - .· . . . . . . . . .· . . . - . . . . .90 ~__--a. --'- ....... """-- "'- ~__~ ~

1965

120

118

116
:b'
I 114....,

V?\0

t\J 1.LJ 112
....,

..J 110
a: lea(.1

106
U)

104
...0
(1\ 102
.....

100

La.. 98

0 96

~. 94

92

..... ERRS



3.e ,...---..-----...,---.,-----,---..,.----.----...,----,.---....,-----,-----,

. .
~:;{4PRE#7R#7/L/ 7RE#.P. ~............. : : : : : : : ............. . : : .· . .· . .· .. .· .. .o. •o. .· .· .

; .. 11 Bfc cO~ • . ~
... ... : ...........•. i · ...•..••:.......•..... a:........ . at. . : : .· .. .· . .. .. ..· .· .· . .· .
---~-- : ....,....~--. . . : :-- . -- .~ . ---~ . ~ . .•••••••••••• i···o •••••~ ••••••••••••• : •••••••• 0.0 •• : •••~.'~".:,,;..;JJ'~.:••••••~•••• : ••••••••••••• : •••••••

: • : 0 : ~~:/
': :' ~. .. .

. . : . : . ~ I ND~USTR~'" ........................................., , , , , , .. . . . . . . . . ... .. .· .. .· .. .· .. .· .. . .· .. . .· ..· ..· .· .· .· .

2.8

2.6

2.4

2.2

0
> ~,
..... t-\D
• a:N
tv Ct::

t-
Z
LLI

'"Q!

=-(.J

19761975197419731972197119701969196819671966

2.e r....-__a.--__""""-__0010-__"""-__~__...a.-.__......L-__-'--__-L-__--'-__---a

1965

..... EARS



20 ,...---..----r-----r---...,---...,..----r----r---,r-----,---.,-----,

19761975197419731972197119701969196819671966

· .· . . .1, ! · : ': : · : : : ............. . : : .
· . . . . .. ..

RE7Z~#~U/#E7 tf;ZZP7# 7REA/.P ~ ;;1a .,. : ,. .: : ~ ~ .,. ~ 411 • • • .. • • • • ••••••••••••: ••••••••••••••: •••••••••••••.. . ... . .
.. ..

17· .· . •.•• ••. ••: .. •· •· .. •·•.. : . • · : · .. · .. •. •. •. ·~ •.? .·.. · ~ ~ : • ':- .. . : .
: ::: n B:C CO: : : :: . : : : M: :. : : :

16 ! ! : : ~ ! : : : : .
· . . . . . . . . .· . . . . . . . . .. . .. .. . .. .

15

10 '--__"--__.-..-..__~ -.a.__---..I"""'--__"'-__...&.-...._--'

1966

.. .
--~ .

: '-. : /' : /:'- : : : : :./
: ,: : "'- : -f :,: ~ : ~ :".-
: ~ / : ~:,,- : ~ : ~: '- : /. : ~....y

14 ····· ..·····r····.. ·· .. ··: ·1····· "T' ! 'r" ! '"""~'7' ·····T··· ·········T··· .
· .. .· .13 " : :.. · : : : .. " : " : ~ - a;••.•••••••••• a:. • • • • •• •• . ••· .
~ . ~ ~ ; ; ; I ND;U STR~Y ;

12 ..... •· ... · . : · · · ... · .. · .. · : . · . · .. · ..... III ~ •••••• • •••••• : ••••••• III ••••• ~ ••••••••••••• ~ •• III ••••• III •••• ~ •••••••••••• III: •••••••• III •• - ':' ••••• III ••••• III ':' ••••• III ••••••

• ••••• III'· ..... ..
• III... _ ••· ..... ..· . . . . . . . , .11 ! ! ':" III ••••••••••• :••••••••••• _ •• :•••••••••••••• :11I ••••••••••••• :•••••••••••••• ~ III ••••• III ••••••: ••••••• III ••••••: ••••• III •••••• III

• •• III •
III ••• •· .· .

:I:...
)I' IX•~ 0\0
• ::a:
~
w

t-
LaJ
:z
:z:
0

:z
~
:::).-
w
Ct::

YERRS



HP3eee
GRRPHICS DOLLRR DISTRIBUTION

16.74% GENERRL RND RDMIN.

12.13% DEPRECIATION

10.59% MISCELLANEOUS

34.75~ COST OF GOODS SOLD

12.99% NET INCOME

12.90% TAXES

MON, OCT 30, 1978, 3 : 54 P~1



THIS PROGRAM GENERATES A PIE CHART FROM DEFAULT DATACR
HARDCODED' IN THE PROGRAM, OR FROM DATA INPUT FROM THE~

OPERATOR'S TERMINAL.CR

CCCCR
C BEGIN NOW TO INITIALIZE CHARACTER STRINGS AND VARIABLES.~

CCR
HP=" HP3000 IICR
GR=uGRAPHICSII~

ALPOF="Et*dF"~

IBLK1=" nCR
LAB(1)="DOLLAR DISTRIBUTION IICR
LAB(2)="COST OF GOODS SOLD "~

LAB(3)="GENERAL AND ADMIN. t1CR
LAB(4)="DEPRECIATION "~

LAB(S)="MISCELLANEOUS "~

LAB (6) ="TAXES .t~

LAB(7)=uNET INCOME .. ~
LAB(B)=" II~

LAB(9)=" A-19.25"~

OCTOBER, 1978~

DEVELOPED FOR SSR'S CONTRIBUTION TO THE~

HP3000 USER'S GROUP IN DENVER, COLORADO.~

PAUL COOPER~

SYSTEMS ENGINEER~

HEWLETT PACKARD COMPANYCR
TULSA, OKLAHOMACR
(918) 66S-3300~

WRITTEN:

$CONTROL USLINIT~

PROGRAM PIE<R
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC~

CCCCCCR
CCCCR
C
C
C
CCR
C
C
C
CCR
C
C
C
C
C
CCR
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC~

SYSTEM INTRINSIC DATELINECR
CHARACTER*a HP,GR~

CHARACTER*2 IYES,IBLK1~

CHARACTER*20 LAB(11)~

DIMENSION IDUMY<10,11)~

CHARACTER*27 DATE~

DIMENSION NUMCHARS(11),POSLAB(11)~

DIMENSION VALUES(11»)ANGLE(11»IBLK2(1»PERCT(11)~

CHARACTER*S CLEAR,SIZE1,SIZE2CR
CHARACTER*4 INIT,GRTXON)GRTXOF,ALPOF~

CHARACTER*S COMP~

REAL THETA,RADCR
EQUIVALENCE (IDUMY,LAB)~

EQUIVALENCE (IBLKi,IBLK2)CR

L 1/S0CR
't 1
.,. 2
.,. 3
't 4
't 5
~ 6
't 7
't a
't 9
't 10
't 11
't 12
't 13
't 14
't 15
., 16
'r 17
'r 18
't 19
T 20
't 21
~ 22
't 23
't 24
't 25
't 26
~ 27
-r 28
't 29
't 30
't 31
't 32
't 33
't 34
't 35
't 36
't 37
't 38
't 39
't 40
't 41
't 42
.,. 43
't 44
'r 45
't 46
't 47
't 48
't 49
.,. 50
L. /n



LS1/100CR
't S1
't S2
't 53
't 54
't 5S
't S6
., 57
't S8
.,. S9
., 60
't 61
.,. 62
't 63
't 64
't 65
't 66
't 67
't 68
.,. 69
't 70
't 71
.,. 72
~. 73
't 74
., 7S
.,. 76
't 77
't 78
't 79
't 80
.,. 81
.,. 82
.,. 83
.,. 84
't 8S
't 86
't 87
.,. 88
.,. 89
't 90
.,. 91
't 92
.,. 93
't 94
.,. 9S
'I:- 96
.,. 97
.,. 98
't 99
.,. 100
'tID,

LAB(10)=U
LAB(11)="
VALUES(1)=2210·CR
VALUES(2)=768.CR
VALUES(3)=370·CR
VALUES(4)=268.~

VALUES(S)=234·CR
VALUES(6)=28S·CR
VALUES(7)=28S·CR
VALUES(S)=O·CR
VALUES(9)=O,CR
VALUES(10)=O,CR
VALUES(11)=O.~

CLEAR=Itet:*daZ"CR
INIT=nEt*MR"'R
COMP="et:*M3A uCR
SIZE1="'l:*M1M"~

SIZE2="-=e*M2M u CR
GRTXON="Et*dS"~

GRTXOF="Et*dTuCR
CCCCR
CCR
C THE NEXT TWO VARIABLES ARE THE X AND Y CENTER OF THE PIECR
CCR

IXCTR=360'R
IYCTR=1B0'R
RAD=130.'R
RRAD=140,~

INUM=6CR
CCC~

C INITIALIZE TERMINAL AND SET COMPLIMENT MODE.~

CCR
WRITE(6~1)CLEAR,INIT)COMP~

1 FORMAT(iX,3(AS»CR
CCCCR
C PROMPT OPERATOR FOR VALUE OVERRIDECR
CCR

WRITE(6,21)~

21 FORMAT(1X~IIVALUES FOR SALES, COSTS, ETC, WILL BE DEFAULTED")
WRITE(6~22)CR

22 FORMAT(iX,UDO YOU WANT TO OVERRIDE THESE DEFAULTS?")CR
READ(S,23)IYESCR

23 FORMAT(A2)~

IF(IYES.NE,"YEU)GO TO 2SCR
CCCCR
C IF WE'RE HERE WE NEED NEW LABELS FOR THE PIE CHART~

C AS WELL AS NEW NUMBERS FOR THE SUBPARTS (PIECES),~

CCR
DISPLAY "INPUT THE LABELS PROMPTED FOR:"CR
DO 49 I=1,iiCR

A-19.26



DISPLAY II EthEtJ"CR

ANGLE(1)=O.~

DO 28 I=2,INUM+1'R
ANGLE(I)=(360*VALUES(I»/VALUES(1)+ANGLE(I-1)~

POSLAB(I)=«ANGLE(I)-ANGLE(I-1»/2)+ANGLE(I-1)~

PERCT(I)={VALUES(I>*iOO)/VALUES(1>'R
CONTINUECR

DO 110 I=1,11CR
ICNT=O~

DO 109 J"=1,10'R
IF(IDUMY(J,I).EQ.IBLK2(1»ICNT=iCR
IF(ICNT.EQ.O)GO TO 109'R
NUMCHARS(I)=J-1~

GO TO 110'R
CONTINUE~

NUMCHARS(I)=10'R
CONTINUE~

LAB(I)="
VALUES(I)=O.~

FORMAT(A20)~

DISPLAY "INPUT NUMBER OF PIECES IN WHOLEII~

DISPLAY "(NOT MORE THAN 10)"~

READ(S,*)INUM~

IF(INUM.LE.10)GO TO 90~

DISPLAY "GIMME A BREAK! THE NUMBER CAN'T BE MORE THAN 10"'R
GO TO 91'R
WRITE(6,S3)'R
FORMAT(" INPUT TITLE FOR PIE CHART:")~

READ(S,SO)LAB(1)~

DO 60 I=2,INUM+1~

JJ=I-1'R
WRITE(6,51)JJ'R
FORMAT(/," INPUT CHARACTER STRING FOR LABEL",I3,": II)'R
READ(S,SO)LAB(I)'R
WRITE(6,S2)JJ'R
FORMAT (/ , II INPUT VALUE FOR LABEL", 13, II : ") 'R
READ(S,*)VALUES(I)'R
CONTINUE~

DO 61 I=2,INUM+1'R
VALUES(1)=VALUES{1)+VALUES(I)'R

28
CCC'R
C DRAW THE CIRCLE USING POLAR COORDINATES!~

C'R

109

110
CCCCR
C COMPUTE THE ANGLES FOR THE PIE CUTS HERE.~

C THE FORMULA IS THE RATIO X IS TO.360 AS PART IS TO TOTAL.~

C'R

S2

51

60

61
CCC~

C FIND OUT THE ~ OF CHARACTERS IN EACH LABEL~

C'R
2S

49
SO
91

90
53

L101/1S°tR
It 101
't 102
.,. 103
't 104
't 105
't 106
.,. 107
't 108
.,. 109
.,. 110
't 111
't 112
't 113
.,. 114
.,. 115
't 116
.,. 117
'F- 118
It 119
't 120
'Fe 121
't 122
't 123
't 124
't 125
't 126
.,. 127
't 128
T 129
't 130
't 131
't 132
T 133
't 134
.,. 135
't 136
T 137
't 138
.,. 139
T 140
'r 141
't 142
't 143
't 144
T 145
.,. 146
't 147
-r- 148
.,. 149
.,. 150
't/Di

A-19.27



CfR
C DRAW THE PIE CUTCR
C~

CCC'R
C POSITION THE PENCR
CCR

WRITE(6,2)CR
FORMAT(1X,"~*pQ")~

DO 4 I=0,360,S~

THETA=I/S7.29S779CR
IX=IXCTR+RAD*COS(THETA)~

IY=IYCTR+RAD*SIN(THETA)~

WRITE(6,3)IX,IY~

FORMAT(1H+,I4,1X,I4," ")~

CONTINUECR

WRITE(6,203)IX,IYCR
IF(POSLAB(I).LE.90.0R.POSLAB(I).GE.270)WRITE(6,201)~

IF(POSLAB(I).GT.90.AND.POSLAB(I).LT.270)WRITE(6,202)CR
FORMAT(1H+,uEt*M1Q")~

FORMAT(lH+,"Et*M7QU)CR
KK=NUMCHARS(I)'R
WRITE(6,20S)PERCT(!),(IDUMY(J,I),J=1,KK)'R
FORMAT(lX)"~*lu,F5.2,n%n,1x,10A2)CR

FORMAT(1H+)A4)~

FORMAT(lH+,nll:*plJ.lI,I3,",II,I3,IlZU)~

CALL DATELINE(DATE)~

IX=360CR
IY=10 CR
WRITE(o,203)IX,IY'R
WRITE(6,207)SIZE2CR
FORMAT(lX,AS)'R

DO 3S I=1,INUMfR
THETA=ANGLE(I)/S7.29S779~

IX=IXCTR+RAD*COS(THETA)~

IY=IYCTR+RAD*SIN(THETA)~

WRITE(6,31)IXCTR,IYCTR,IX,IYfR
FORMAT(iX,u'l:*pa",I4,n,uI4," ",I4,",",I4,UZU)CR
CONTINUECR

WRITE(6,204)GRTXON~

DO 200 I=2,INUM+iCR
THETA=POSLAB(I)/S7.29S779~

IX=IXCTR+RRAD*COS(THETA)CR
IY=IYCTR+RRAD*SIN(THETA)CR

2

207

3
4

CCC~

C~

C COMPUTE AND DRAW THE PIE CUTS FOR THE VALUES~

CCR

201
202

200
205
204
203

31
35
CCC~

C DRAW LABELSCR
CCR

L1S1/20°tR
't 151
',. 1S2
't 1S3
't 1S4
't 1SS
't 156
't 157
" 158
't 159
't 160
'Fa 161
'r 162
'Fa 163
't 164
't 165
'r 166
'Fa 167
'r 168
., 169
't 170
't 171
't 172
't 173
't 174
't 175
'Fe 176
't 177
'Fe 178
't 179
't 180
't 181
't 182
't 183
't 184
't 18S
't 186
't 187
't 188
't 189
't 190
't 191
't 192
't 193
't 194
't 19S
't 196
't 197
't 198
't 199
't 200
't/o~

A-19.28 .



L201/LAST~

.,. 201
't 202 208
'F' 203
.,. 204
'F' 205
., 206
'F' 207
.,. 208
't 209 209
.,. 210 206
'F' 211
't 212
't 213
't 214
't 215 301
't 216
't 217
't 218
't 219
'tID, ttZ

WRITE(6)208)~

FORMAT(1H+,uEt*M4QU)~

WRITE(6)206)DATE~

IY=339~

WRITE(6,203)IX)IY~

J=1~

KK=NUMCHARS(1)~

WRITECo,209)CIDUMYCI,J),I=1,KK)i
FORMAT(1X)"~*lu,10A2)~

FORMAT(1H+,"~*lu)A27)~

IX=61Cft
WRITE(6,20J)IX,IYi
WRITE(6)301)HP~

WRITE(6,J01)GRi
FORMAT(1H+)"~*1")A8,/)'R

WRITE(6)204)GRTXOF~

DISPLAY " ~hEt*dF"~

STOPCR
END~

A-19.29



EXPERIENCES WITH THE

MANUFACTURING PACKAGE MFG/3000

By

Ivan M. Rosenberg
General Partner
Systems Design Associates
P.O. Box 1144
San Luis Obispo, CA, 93406

John Doyle
Plant Manager
Vetter Corporation
1150 Laurel Lane
San Luis Obispo, CA, 93401

A paper presented to the 7th International Meeting of
the HP General Systems Users Group, October 30 - November
2, 1978, Denver, Colorado.

A-20.l



Abstract

TABLE OF CONTENTS

Page

• ii

I. Introduction. . . • • . . • • • • • • • . • •• 1

II. System Installation • . • • • • 3

III. MFG/3000 From A User Point of View • • • •• 4

IV. MFG/3000 From A System Administrator Point of View • 10

v. Implementation of An Order Processing System • • • • 24

VI. Potential and Recommended Enhancements • • • • • • • 28

VII. Conclusion • • •• .• • • • • • .• 30

Acknowledgments • •• • ••••.•• • • 31

Figures . • • • .•• • • . • • • • • • .•• 32

-A-20.2



EXPERIENCES WITH THE
MANUFACTURING PACKAGE MFG/3000

I. Introduct"i"on

MFG/3000 is a collection of three software modules that form

an integrated MRP-based manufacturing support package. It is ori-

ented to manufacturers who manufacture and assemble discrete parts,

where a primary goal is to minimize inventory investment, yet main-

tain adequate and timely supplies for production and customer orders.

On-line use is encouraged through the use of highly simple menu and

data entry screens on CRT terminals, although batch input is avail-

able.

MFG/3000 is structured on lMAGE/3000 data bases, and permits

the use of QUERY for ad hoc and customized reports, as well as

some emergency data base "fixing." The on-line programs utilize

DEL/300a, thus requiring HP 264X terminals.

The relation between the three software modules is shown in

Figure 1. Engineering Data Control (EDC) maintains descriptive,

cost, and planning information about all parts, and bill-of-material

workcenter, and routing information about the manufacturing opera-

tion. In addition, engineering change information regarding future

changes in a bill-of-material and miscellaneous remarks about a

part or bill-of-material may be stored. The Inventory and Order

Status (IDS) module maintains records of planned and actual in-

ventory issues and receipts. Work and purchase orders are entered

directly into the system. Upon request, lOS traces through the

relevant bills to determine and allocate all needed parts for a

A-20.3



work order (which can refer to only one fabricated part). At

this time the user can determine if all needed parts are or will

be available. At the proper time, based on specified lead times,

pick lists are generated. The input resulting from the actual pick

operation creates a reduction in inventory level and a stock ac­

tivity record. Likewise, receipts create a historical stock activ­

ity record. Such records can be accessed on-line and are purged

on a periodic basis.

Finally, the Material Requirements Planning (MRP) module is a

planning tool to help management balance current and anticipated

demand for a part with current and anticipated supply for the

same part.

HP recommends that there be at least two management positions

associated with the implementation and operation of MFG/3000. The

User Trainer is responsible for educating users as to the proper

procedures for using the system, including on-line transactions,

management policies, and use of printed reports. The System Ad­

ministrator is responsible for the proper operation of MFG/3000

itself, including data base integrity and security, maintenance,

back-up, and modifications as required.

This paper will discuss the experiences of one of the earliest

users of MFG/3000, first from a user point of view (Section III),

and then from a System Administrator view point (Section IV). Per­

ceptions gained during implementation of an order processing system

are shared in Section V. Enhancements, potential and recommended,

are discussed in Section VI.

A-20.4



II. System Installation

Vetter Corporation is a manufacturer of motorcycle accessories

and employs approximately 250 people at an Illinois facility and

approximately 125 at a west coast California plant. It has ex­

perienced a high growth rate over the last few years and has had

a continuing problem relative to materials required for the pro­

duction and support of its products. In order to solve these

problems, a program of investigating computer systems for inven­

tory management was begun during the summer of 1977.

In the fall of that year, Systems Design Associates (SDA), a

computer consulting firm, was engaged to perform a market survey

and analysis and to make recommendations regarding feasible com­

puter systems. Among the criteria for the system were:

1. Reasonably powerful data base management system software

2. On-line query capability into the data base

3. Ability to handle multiple data bases

4. Ability to handle up to 24 on-line CRT terminals simul­

taneously, with at least three background batch streams

5. Availability of adequate maintenance and vendor support

6. Availability of a reasonably powerful MRP application

package

7. Capacity for future expansion

Primarily because of the on-line data base query capability, there

were few feasible systems to consider.

The HP 3000 and MFG/3000 were studied during the first months

of 1978, followed by a purchase of an HP 3000 Series II Model 6 on

March 22. Besides MFG/3000, this system included 320K of main

A-20.5



memory, two 50 MB discs, a 600 LPM line printer, a 1600bpi tape

drive, the MPE-II operating system, the IMAGE data base system,

QUERY, DEL for terminal management, and COBOL. The 3000 arrived

on May 2 and was installed on May 10. The industry specialist

from the Los Angeles office installed the EDC package on May 12,

and the following week on May 19, he installed the lOS package.

On June 9, the MRP package was installed. The system has been

in continuous operation since that date. During the fall of 1978

an upgrade was made to a Series III with one megabyte of main mem­

ory and a 120 MB disc was ordered. In addition, the new operating

system MPE-III was installed in September, 1978. A 9600 baud lease

line connects the Illinois plant with the California computer

facility.

After system selection, SDA was contracted to perform facili­

ties management and MFG/3000 administration during installation and

until system operation stabilized and Vetter personnel could be

properly trained. Turnover of system management was completed

during the latter part of summer, 1978. Currently, SDA is design­

ing and supervising the implementation of a com~rehensive Order Pro­

cessing System--including order entry, accounts receivable, warranty

picking, shipping, and inventory allocation--which is discussed in

Section V.

III. MFG/3000 From A User Point of View

The EDC package is somewhat of a misnomer for production de­

scription. It could be more accurately described as a definition

module, and more specifically, the definitions are all defined in

A-20.6



terms of manufacturing or production criteria. It is broken down

into three primary divisions:

1. Part definition--Data elements directly tied to a part

number. Structure definition, which is the relationship between

a number of parts which describe a finished product or sub-component.

2. Planning and control function for purchased parts as well

as fabricated goods.

3. Routing and work center section to describe work centers

and activities which occur at the work centers to produce finished

goods and sub-assemblies.

The lOS package handles inventory, including stock locations,

quantities on hand, and other essential elements necessary to track

and maintain accurate inventory records. The second portion of

this relates to orders--purchase orders and their associated vendor

information, and work orders, which are essentially in-house pur­

chase orders and associated pick lists and materials requisitions

to drive the work order system.

The MRP package is very complete, allowing multi-purpose poli­

cies and scheduling techniques. It is a re-generative type in that

it is a batch type program which is run once a week in our plant.

It is essentially driven by the lOS and EDC packages; and if those

two have been brought up in a complete manner, the MRP package

simply strips data from both and produces a series of reports which

control and schedule both in-house work orders and out-of-house

purchases.

Implementation from the standpoint of the users is reasonably

defined by the structure of the system. The EDC package must be

A-2B.7



brought up first and item data entered so that it may be trans­

ferred in a batch job to lOS in order to allow the warehousing

people to begin to work on their inventory counts. We have found

that at our site, with the item data set complete and outstanding

purchase orders entered on the IDS data base, the warehousing

functions can begin by receiving the outstanding purchase orders

and by commencing cycle counts which are provided by the system.

This will allow purchasing people to begin to become familiar

with entering purchase orders on the system which have been ini­

tiated by their old manual inventory control system.

Essentially, this allows a small step toward bringing them

out of their old system into an automated one and reduces the

trauma of grossly exposing them to all its facets at the same time.

The warehousing people at this point are simply exposed to receiv­

ing goods on the computer and cycle counts. At this point, two

parallel lines develop--the warehousing group can do physical in­

ventory and load the counts on the computer and verify the inven­

tory by additional cycle counts to guarantee the accuracy of their

data, and the person responsible for developing the EDe structure

information can now begin to load the structure data required to

define the assemblies and sub-assemblies required in the plant

operation. This data is necessary prior to the development of any

internal work order situations. At this point, the purchasing

people have been exposed to the system and are loading their pur­

chase orders. The receiving department is receiving goods acquired

from those purchase orders. Incoming inspection of those goods

may be implemented at any point in this cycle, depending on the

A-20.8



local needs. At the same time, the warehousing people are becoming

familiar with the cycle counts and details of the system necessary

to maintain their inventories.

The final step in the process is--with the structure informa­

tion loaded--a final review is required of the EDC information

necessary to define inventory control and purchase part definition.

This information relates to lot sizes, lead times, and policies,

etc. It is extremely important that they be related to the real

situations in this plant and that they be applied with good inven­

tory management goals in mind and good purchase policies. This is

important because of the fact that the MRP program uses this item

data in calculating inventory purchases and demand. The system

simply emulates the buying decisions and the manufacturing deci­

sions which have been attached to their component part. In es­

sence, poor purchasing information will be followed by the computer

and implemented just as effectively by the computer as it would by

an individual.

If the EDC control portion has been implemented properly and

with all due regard for economy and control and the lOS portion

implemented with accurate inventories and outstanding purchase

orders, the final step is to load a master schedule useable by MRP

to create the materials requirement plan for the plant. The key

in developing a master schedule is, of course, to weigh the needs

of the sales forecast with the inventory and cash goals provided

by a finance group to provide a realistic schedule within the capa­

bilities of the physical plant which the MRP program can implement

to drive purchase order and work order requirements.

A-28.9



One final issue is that the operational departments of the

company be structured for control and economy with the master

schedule with its inputs from sales forecasting and finance driv-

ing the MRP, which provides further specific direction for purchas­

ing and production. It is necessary that the operational departments

of the plant be structured so that a scheduling department or pro­

duction inventory control department be intimately tied to the fore­

casts, etc. The computer and the MFG/3000 package will take the

master schedule demand and provide information which may be directly

inputted into purchasing and production scheduling. Conflicts in

the schedule and the master plan must be resolved by the scheduling,

purchasing, and production departments. In some cases, the master

schedule must be revised due to the inability of purchasing and

production to accomplish the goals. On the other hand, the system

also provides quantitative feedback to anticipate and measure ca­

pacity limitations. These limitations, if pointed out in advance,

may, at the option of management, be resolved to meet the master

schedule if its requirements are paramount to these defined limi­

tations.

Our feeling after using the package for approximately six

months .is that it provides extremely useful and flexible tools for

purchasing, warehousing, and production to accomplish their objec­

tives. It provides qualitative tools for management to evaluate

operational departments in terms of inventory value, inventory

turns, back order analysis, shortage analysis, and materials re­

quirements. These may be used by the operational departments to

evaluate their own members and by management to evaluate their

A-20.1a



operating departments. The MFG/3000 package is entirely materials­

oriented, and its biggest limitation is simply that it encompasses

the materials portion of the manufacturing plant's operational sys­

tem. It provides only slight support for labor and routing informa­

tion and provides little or no support for the financial department.

The package may be enhanced best by further development of product

costing, job costing for the materials area, and the development

of a master schedule system to ease the development of master sched­

ules and inventory control. Obviously, to encompass all the ele­

ments of the manufacturing plant, an accounts payable package tied

to the purchase order portion of the lOS package is desirable; and

on the other side of the master schedule module, an order entry

and accounts receivable package would greatly round out the whole

system. Of course, standard accounting functions, such as general

ledger, etc., should be provided to tie the whole system together.

In summary, the package has been found to be extremely "easy

to use and is easily implemented by the operational departments.

The design is relatively simple and straight forward so that it

solves a large number of the operational problems of the manufac­

turing plant without embroiling the departments in embellishments

which detract from the objective of this system--which is to in­

crease the efficiency and operational effectiveness of the manu­

facturing plant.

In many MRP-oriented systems, the goal of increased efficiency

is obscured by "bells and whistles," which reduce the effectiveness

of the computer-oriented system. The MFG/3000 package, in a simple,

A-20.ll



straightforward approach, has addressed the materials problems of

the manufacturing plant in a very successful manner. We strongly

recommend that Hewlett-Packard continue with this approach and en­

compass the above-mentioned additional areas to provide an inclus­

ive package for the manufacturing plant.

IV. MFG/3000 From The System Administrator Point of View

A. Installation. As discussed in the previous section, in­

stallation was a fairly non-traumatic process. Vetter had the ad­

vantage of implementing first at the California plant which was in

the process of being established and is considerably smaller than

the Illinois plant. In addition, since the computer system was

on-site, communications problems were not involved. Implementation

of each package for the Illinois plant followed California installa­

tion by about one month. Both installations pointed out the need

for careful planning, particularly during the loading of the EDC

data base. For the System Administrator, early establishment of

the default values for the various data items associated with parts

is very important. Although direct use of QUERY can be used for

some simple changes to large numbers of parts, such updates must

be done extremely carefully. Later, QUERY was used indirectly for

massive updates by using it to create a transaction file contain-

ing all needed changes for EDCMAINT. Such a technique can also

be used to more easily request reports pertaining to large numbers

of parts, instead of requesting the report for each individual part

number through EDC. For example, one can request a bill-of-material

for all parts meeting certain criteria. It is recommended that forms

similar to the EDC screens be designed to simplify and control initial

data entry.

A-2~.l2



As is typical, most errors are discovered during system use,

so one can expect to detect most of the errors in EDC during the

early months of lOS use.

Another problem was encountered during the installation of

the Illinois plant. Although MFG/3000 is installed by HP assum­

ing a MGR.MFG3000 user and account, with two plants two different

accounts are needed (each plant has its own MFG/3000 data base) •

In addition, to save disc space and CST's, we decided that only

one copy of MFG/3000 programs would be stored for use by both

plants. With all programs stored in one plant's accounts, the

other plant needs the work files, its own data base, the forms

files, and its own copy of the JCL (or STREAM) files. These files

are modified as follows:

1. The PGM= parameter of the EDC3000 and 1083000 screens

(the first screens of the modules) must be changed to a fully

qualified program name in the "program" account. This is easily

done through FORMAINT.

2. All JOB user and account names must be changed to that

of the plant.

3. All RUN statements in JCL and those of on-line users

must be changed to fully qualified program names.

4. The access security on the program groups must be changed

to ANY for execute. A similar change may have to be made in the

account in which the programs reside.

Adequate security between plants is maintained since file

references default to the log-on account, and this also causes

A-20.13



our recommendation that these courses be attended only by people

who were already educated regarding computers and manufacturing,

thus reducing the chance they would degenerate into introductory

courses.

We found the quality of the courses, instructors, course ma­

terials, and documentation to be very high. Each course lasts two

to three days, and much material of practical worth is covered.

We had an advantage in that the implementation of each module was

actually accomplished before the corresponding course was attended,

but that just increased its worth to us since problems we had en­

countered and "tuning" issues could be discussed. There was con­

siderable lab work, although some was simply rote. There is a

significant advantage in having a "live" terminal in frontof each

student to test functions as they are discussed.

The system specialists in MFG were also (and continue to be)

invaluable, as problems occur particular to our installation. Tele­

phone calls average one or two a week, and we are visited at least

once a month. This frequency is expected to diminish over the

next half-year.

C. Customization. Vetter purchased the object code version

of MFG. The source code version costs considerably more and is

not maintained by HP. Despite this, MFG offers some customization

abilities.

Screens may be modified under certain conditions. Alternatives

may be added to menu screens, including branching to user-written

routines. Fields that exist in the standard MFG data base may be

A-20.14



added to data entry (FMT) screens and non-key fields may be de­

leted from those screens. The order of existing fields may not

be changed. Fields added to the data base by the user may not

be added to the screens.

Data retrieval (RET) screens, for all practical purposes,

may not be modified except to move fields (maintaining the same

order) and to change protected fields.

The new user may become somewhat confused by MFG's use of

the NEXT= parameter of a DEL screen, which usually indicates the

next screen in a sequence. In MFG it indicates the previous

screen, and is used to "back up."

Field editing may be changed within the different alternatives

offered by MFG (such as alphanumeric, numeric, etc.) as long as the

new editing is more restrictive. The size of fields may be dimin­

ished.

We have modified the JCL streams often, particularly with the

MRP module. Up to 15 levels of planning are available; Vetter uses

only seven. Since the analysis routines are performed by chained

STREAM commands, one need only change the last STREAMs of the last

level desired, e.g., MRP2007J, to chain instead to the last jobs

of the MRP process (MRP2100J and MRP2400J). In addition, MRP2400J

must be modified to turn the FILE and SORT statements for unused

levels into comments. Finally, the FILE statements in the last

MERGE are likewise deleted. Thus, to add another level of planning

is a relatively simple process of removing comment indicators.

A-2~.l5



It is difficult, if not impossible, to modify MFG off-line

reports. QUERY has proved to be an invaluable tool in this regard.

In addition to the technique of producing a transaction file de­

scribed above, QUERY is extensively used directly for producing a

multitude of periodic and ad hoc reports. Purchasers should be

cautioned, however, not to permit any except trained technical

personnel to use QUERY for updates. It is very easy to get the

data base in such a state that the pointers, etc., are in very

bad shape. Additionally, updates lock the data base for a long

time. In general, avoid using QUERY for anything except retrieval.

D. Security. Probably one of the weakest aspects of MFG is

its security provisions. There are essentially four levels of

security: the MPE account structure, file lockwords, MFG origina­

tor numbers, and data base passwords.

The MPE password security is of limited value since it must

be known by large numbers of plant personnel to enable them to

use the system. Lockwords on user programs suffer from the same

problem, although all our System Administrator routines are so

protected.

Originator numbers must be entered by the MFG user before

access to most on-line functions. Some data retrieval and report

requests do not require originator numbers. These numbers, rang­

ing from 0 to 99, are assigned to individuals and groups and are

used for distributing the Transaction Register Report of EDCMAINT

and for controlling the functions that may be performed using each

screen. An originator may have any of three capability levels:

A-20.16



1. None

2. Modify

3. Add/Delete (which includes Modify)

Although access rights are assigned through MFG by fields,

we have found it more practical to regard the capabilities to be

attached to screens since to effectively use a screen, one must

have the same capability for all fields on that screen. Any par­

ticular originator must have Add/Delete capabiljty for all fields

associated with him, not just a subset.

Originator numbers do have some limited value in protecting

against inadvertent but unauthorized behavior, but they have almost

no value in protecting against intentional misuse. Originator

numbers are restricted to only 100 alternatives and are printed on

so many reports that acquiring one seems a very easy process. We

have recommended to HP that the originator number be alphanumeric.

Although we were told that we could have 100 originators as long as

we had only 20 variations of capabilities, we discovered that only

20 originators are allowed, regardless of capabilities.

The system is installed with a system administrator originator

number with complete capability (in fact, there are numerous origi­

nators existing on the originally installed system which might be

deleted). It may be best not to have any originator with such capa­

bility, and only create it when needed. At the very least, the

standard administrator number should be changed since it is pub­

lished in HP documentation.

A-20.17



A major criticism of the security is the data base protection.

Any user with the logon password and the data base password can

easily access (and update) the data base using QUERY. Unfortunately,

there is one master password for write access to all fields in the

data base. This password is common to all three MFG data bases, is

the same for all MFG installations, is not at all cryptic, and even

worse is published in some HP literature! For the purchaser with

dial-up capability, a major vulnerability exists with regard to

the security of the data base. We have recommended to HP that a

unique password be established for each installation.

E. Production Operation. There are many batch jobs that must

be STREAMed to maintain the system. Data entry in EDC does not

directly update the "data base, but rather appends a record to a

transaction file which is later used by the batch job, EDCMAINT,

to perform the updating~ EDCMAINT also produces the off-line re­

ports. IOS0400J strips certain information from the EDC data base

and updates part information in the lOS data base. Other batch

jobs update the Edit Tables (which define screen field editing and

originators), delete parts from the lOS data base, etc. In addition,

we have created job streams for some QUERY reports.

Most of these batch streams require exclusive access to the

data base for correct operation. EDCMAINT is particularly tricky,

since it repeatedly requests and gives up exclusive access. If

someone logs in"to EDC between such a"ccesses, EDCMAINT can abort in

the middle. It is not a big problem to restart it in the aborted

place, but it must be done with care and is an inconvenience. In

·A-20.l8



general, all batch jobs are run after working hours and/or during

lunch. There is a slight modification to the EDCMAINT jobstream

that will prevent logons during its execution; but this poses some

additional problems if an abort occurs for other reasons. And,

since the MFG programs are shared by both data bases, this pre­

vents users of the other data base from running EDC. One then

tries to insure that all users of MFG are logged off prior to

STREAMing EDCMAINT. A potential solution is to create two users,

e.g., USREDC and USRIOS, one for each module. Another simpler

alternative is to ask users to append their name and module in

the HELLO command, e.g., :HELLO IVANEDC, MGR.MFG3000. A :SHOWJOB

then indicates who is logged on. Without this additional informa­

tion, one only has the QUIET indication on the SHOWJOB as a guide.

It was originally intended that EDCMAINT would be run only

once a day. However, during the first few months after installa­

tion, changes were so frequent that four runs in a day was not

uncommon. With more users on now and a more stable data base,

there are two EDCMAINT runs per day, at Noon and after 5:00 p.m.,

for each plant. There is a time zone difference between the two

plants. Thus, because of the extensive nature of EDCMAINT, users

at one plant can experience a noticeable degradation in response

time when EDCMAINT is being run for the other plant.

To reduce such degradation, one may remove from EDCMAINT the

job steps which update data sets for which the System Administrator

is certain no transactions exist. For example, Vetter does not yet

use the workcenter or routing data sets. Clearly, such a modifi­

cation must be done with care.

A-20.19



In addition, STREAMing IOS0400J (which updates the lOS part

information from EDC) has been appended to the end of the EDCMAINT

jobstream so the lOS data base is always current with the EDC data

base. All scheduled off-line reports are then run after the com­

pletion of EDCMAINT.

It is very important that the System Administrator monitor

the EDCMAINT runs since we experienced frequent aborts and erron­

eous data entries during the first months of operation. The aborts

were not due to program bugs, but rather to something wrong with

the input data or data base. The JCL comments and abort messages

are very extensive and helpful. However, it is important to in­

sure that EDCMAINT runs to completion before permitting users to

initiate EDC again. The Transaction Registers should be distributed

promptly to the originators after being reviewed by the System Ad­

ministrator for serious or frequent errors. We tried to insure

that all users completely understood how to interpret the Trans­

action Register Report and that they kept all copies on file.

In particular, during the initial months of use, the System

Administrator should monitor the sizes of the data sets of each

data base. This may be easily accomplished using the DBSTATS

routine. Capacities should be adjusted so the data sets are ap­

proximately 70% full (or less).

Periodic DBUNLOAD and DBLOAD of a data base can also contri­

bute to improved response times. In a multiple disc installation,

it is preferable to place the root file on one disc and the data

sets on the other, thus reducing disc contention.

A-20.20



F. Multi-Plant Operation. The modifications necessary to

the JCL, etc., to maintain only one copy of the programs in a

multi-plant environment has been discussed in Section IV.A. Three

problems remain for the remote plant:

1. To direct printed output to the remote line printer

2. To be able to defer the printing of certain reports for

the loading of special forms, for large reports, etc.

3. To be able to view the JCL listings resulting from a

STREAMed job to check on the occurrence and reason for an abort, etc.

Initially, we installed a "minispooler" provided informally by

HP. This routine solved the first problem, but not the other two.

Understandably, frustration was high at the remote site.

In the fall of 1978, the minispooler was replaced with the

RSPOOL package of DataCon of Oregon, resulting in the solution of

all three problems indicated above.

The JCL for the remote site's MFG system must be modified in

the following manner:

1. Add the OUTCLASS = LP,I,l clause to all JOB statements.

This specifies 1 copy and an OUTPRI of 1.

2. After the FILE statement for the report file, a set of

about 10 lines must be added to initiate and control the execution

of the routine SPOOLCOM. This connects the report file to the

remote printer, specifies the number of copies, and permits the

report file to be held after printing.

3. After each execution of SPOOLCOM, there must be inserted

a set of lines which initiate and control the execution of RPOOL.

This sets such parameters as lines/form, number of lines between

forms, etc.

A-20.21



If the OUTFENCE of the system is set to 1 or greater, the

JCL of the remote plant will not print on the system printer, but

will be held in the spool files. The remote plant then uses SPOOK

to look at the JCL files for a solution to the third problem indi­

cated above. Since SPOOK permits access only to the JCL of the

logon account, such users do not have access to the JCL of other

accounts. SPOOK permits the user to list the job numbers of the

JCL currently in the spool file, which then may be used to display

the JCL of the job.. The users must periodically purge the JCL

files in the spooler so that it does not fill.

If the parameters of the RSPOOL and SPOOLCOM executions are

set appropriately, the printing of a report at the remote site

may be deferred. SPOOLCOM may then be used on-line to alter file

specifications in order to initiate printing when ready or to

delete a report file.

We have experienced great satisfaction with this arrangement.

Essentially, it grants to the remote site all the power (and then

some) of the on-site installation.

G. Backup. One of the most important jobs of the System Ad­

ministrator is scheduling and supervising backup procedures.

Vetter does a partial backup each night, with a full system

backup once a week. Currently, the MFG data bases are not sep­

arately backed up using the DBSTORE program, although this will

probably be implemented shortly since restoring from the SYSDUMP

tape is less reliable and slower.

The transaction file of EDC provides some roll-forward capa­

bility, since the last five transaction files are automatically

A-20.22



saved. However, this requires that a copy of the data base cor­

responding to its state prior to the EDCMAINT run be available.

If EDCMAINT is run twice a day and backup is performed only

once, roll forward can be done from only two or three backup

copies, not five. However, it is possible to modify the EDCMAINT

JCL so that more than five transaction files are saved.

105 automatically provides a journaling of all transactions

which affect the data base. The documentation is very unclear as

to how to control this capability. In summary, the logging in

105 is always running. The only control the user has is to which

device the logging is directed, disc or tape. Normally, we log

to disc. Twice a day, STARTLOG is run to dump the current con­

tents of the disc log file to tape, which also directs any future

log transactions to the tape. After the disc file has been dumped,

STOPLOG is run to direct future logging to the disc. We insure

that no one is logged into IDS during the time STOPLOG is run.

Besides insuring that the log file is large enough to contain the

number of transactions likely to be entered between tape dumps,

that is all there is to it. There is a utility to display the

current number of log entries in the file so that it can be moni­

tored. Our volume is easily accommodated on a 1200' reel.

At the current time, IMAGE does not provide any journaling

capability; thus roll-forward and roll-backward are not available

outside of the MFG facilities.

Another backup capability may be provided by the HP 2645A

terminals themselves if they have the tape option installed. If

A-20.23



the computer system is unavailable, or data entry takes place

over a slow speed data line, the data may be loaded off-line

through the terminal onto a tape cassette, then dumped to MFG

in a rapid fashion. In order to prepare for this process, store

the MFG screens on a tape cassette, (by displaying a screen, then

in local mode copying to tape). Later, in LOCAL mode, display

the selected MFG data entry screen by copying from tape to the

screen. Put the terminal in format mode using CTRL f 4 . Enter

the data normally. Pressing the ENTER key will copy the unpro­

tected fields to the tape and clear the screen. Data entry may

then continue in a similar fashion. Conclude by releasing format

mode using CTRL f S .

In order to enter the stored data, log on to MFG and display

the appropriate data entry screen. Copying a record from tape to

the screen and then pressing ENTER will cause MFG to read the

screen in the normal manner.

A-20.24



V. Implementation of an Order Processing System

SDA and Vetter are currently implementing a comprehensive

order processing system (OPS) to interface with MFG/3000. The

overall structure of the system is shown in Figure 2. It con­

sists of the following elements:

1. Part Element--To maintain descriptive and availability

information about each part that may be sold.

2. Dealer Element--To maintain information about each

customer.

3. Order Entry Element--For the entry, review, modification,

and reporting of information about orders.

4. Pick List Element--To produce pick lists on a selected

basis.

5. Shipping Element--To produce invoices and other shipping

documents.

6. Accounts Receivable Element--To maintain accounts re­

ceivable information relative to orders and dealers.

7. Warranty Element--To maintain information about the

product and the end purchasers.

The Part Element operates much like lOS in that it strips

relevant information from the EDC and lOS data bases and puts it

into the OPS data base. This continues the MFG policy of main­

taining data base separation between major functions. Because

IMAGE permits locking only at the data base level (but see Sec­

tion VI), separate data bases permit an acceptable response time

in a multiple user, on-line updating environment at a cost of du­

plication of data and increased storage requirements.

A-20.25



In addition to the obvious on-line functions, there will be

n~erous reports (well over 20) provided.

The major contribution of this system will be timely indica­

tions of the ship date of an order through consideration of planned

receipts of finished goods and shipping rate limitations. We ex­

pect to be able to predict ship dates within a day's accuracy at

the time of order acceptance. Information concerning planned re­

ceipts will be acquired directly from the master production sched­

ule driving MRP or from the work orders and purchase orders of IDS.

Thus, any change in production schedules will be immediately re­

flected in changed order ship dates.

During this implementation, we realized that although MFG and

IMAGE will permit the user to add data fields to the end of data

sets, this was a dangerous practice. Future versions of MFG could

very well expand the number and size of data fields. The addition

of custom data fields could prevent the easy updating of MFG, re­

quiring special programs to unload and load the data base (since

the new HP fields would" have to be "inserted" between the standard

and the custom fields), and the custom programs would also have to

be changed. This was another major reason that we decided to imple­

ment a separate OPS data base.

There are four interfaces between the two systems:

1. Moving part and inventory information from MFG to OPS

2. Acquiring the master production schedule (MPS)

3. Acquiring the shop calendar

4. Updating the inventory counts as a result of shipments

A-20.26



Acquiring part information is a very easy task. The Part

Element has produced the side benefit of insuring that the EDC

data bases of the two plants contain the same information about

the same part number.

We have not yet finalized the method of acquiring the MPS.

This is relatively difficult to acquire directly from lOS. We

considered having each plant manager create an EDITOR file, from

which we would generate appropriate transactions to lOS for MRP

to OPS. However, this seems too complicated. Our judgment now

is to simply scan the lOS data base for work orders for finished

goods and create corresponding allocation data records in the OPS

data base. Since the factory works directly from these work orders,

we would be using the best information available. This would free

the plant manager to use the input of a MPS to lOS as a planning

and "what if" tool. Finally, it encourages the plant managers to

plan their production schedule out to the horizon of shipment

planning.

MRP generates a ship calendar which we plan to use directly

for assigning order ship dates. In this manner, we can easily

take into account holidays and weekends.

Finally, since lOS provides no method (other than stock ad­

justments) for drawing down finished goods inventory, the OPS

system must create a transaction file of stock adjustment requests

that a MFG batch job uses to update the inventory levels in lOS.

In addition, OPS generates an Issued Goods Report for cross-check­

ing ros stock activity records.

A-20.27



All of these interfaces have been relatively simple and easy

to implement. It appears that MFG lends itself very well to sup­

porting user-written custom programs. The required MFG documenta­

tion is very adequate and clear.

We have experienced two problems with the use of DEL in this

implementation. Since DEL does not permit field-level reads and

writes, the entire contents of the unprotected fields must be

transmitted, even if only a subset of the fields is desired. In

a remote terminal environment, this tends to radically increase

communications line load, and if the terminal is slow, response

time can suffer. Our only current solution is careful design of

screens.

The other limitation appears to be in FORMAINT. The OPS em­

ploys a few screens where there are a considerable number of en­

hanced, unprotected fields. We have discovered that FORMAINT (and

DEL) will accept a maximum of 1920 characters, including the ESCAPE

sequences for the fields. Since there may be as many as 10 charac­

ters associated with a field just for the enhancements, this limit

can rapidly be reached. Although the 2645A terminal may support

a form, FORMAINT may not. Our only current solution is to give

in and reduce the number of fields.

A-20.28



VI. Potential and Recommended Enhancements

Enhancements from the user point of view have been discussed

in Section III. This section will focus on improvements from a

System Administrator view.

with the announcement of the new IMAGE with record-level lock­

ing, we can expect the merging of the three MFG data bases into one.

This should produce significant improvements in storage require­

ments and some improvement in user response time (since interactive

programs will no longer be locking the entire data base). Some op­

erational problems (such as exclusive access aborts) may be reduced.

The batch programs that move information from one data base to

another will be eliminated. EDC may be converted to an on-line

updating system.

Because of the problems associated with MFG updating, we plan

to maintain a separate OPS data base, but record-level locking will

produce very significant operating improvements in order processing.

The impact of VIEW/3000 as a substitute for DEL is unknown at this

time due to the lack of documentation. However, the ability to do

field level read/write would reduce communication loads considera­

bly. We would also like the size limit on forms to be at least

increased, if not eliminated. A significant improvement to DEL

would permit the selective modification of a form, without re­

entering all the edit specifications. In addition, it would be

nice to simply state that no edit specs existed for the entire

form, thus skipping laborious entering of X·s.

A-20.29



Although MFG provides some journaling, we would like to see

the logging from lOS and EDC better coordinated and similar. Roll­

back abilities would be nice. Eventually, it would be best to have

such recovery facilities built into IMAGE so user-written programs

could take advantage of them.

The OPS would benefit by a better method of entering the

master production schedule than as a series of work orders.

However, the two major limitations of MFG/3000 are its secur­

ity provisions and the high number of CSTs it demands. The secur­

ity provisions were discussed in Section IV. Despite the large

size of the Vetter system, it frequently runs out of CSTs, par­

ticularly during a COBOL compile. This is because both COBOL and

MFG make high demands on this limited resource. In a multi-plant

environment, we have doubts that we could oerate if a copy of the

MFG programs were required for each plant. This limitation has

forced us to violate the generally accepted HP3000 practice of

small routines in the implementation of the OPS, with its attend­

ant problems of long compiles and decreased system performance.

We expect that MFG's high use of CSTs will be alleviated in

future updates.

A-20.30



VII. Conclusion

Both as user and system administrator, we have found MFG/3000

to be a well-designed, reliable, well-documented, and "friendly"

system, with a few relatively minor limitations. Installation

proceeded remarkably smoothly and rapidly. Users became quickly

familiar with the system. The addition of custom systems that

interface with MFG is straightforward. And, lest we forget, it

also has resulted in improved plant operation and customer service.

A-20.31



ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance of many

HP and Vetter personnel who have contributed their creativity

and knowledge to the running of MFG/3000 and the ideas in this

paper. In particular, we thank Margie Coolidge, DP Manager, and

Mark Laslo, Operator, both of Vetter Corporation in California,

and John Scribner and Dave Hesser of Hewlett-Packard.

A-20.32



........

"
EDC IDS

l./ .........

" ,.

~V "V

MRP

FIGURE 1. MFG/3000

A-20.33



EDC

------ ---I
I
I

I_______ J.

DEALER
ELEMENT

PART
ELEMENT

ORDER
ENTRY

ELEMENT

PICK LIST
ELEMENT

SHIPPING
ELEMENT

ACCOUNTS
RECEIVABLE

WARRANTY
ELEMENT

.- - - - - - - - -I
I I

-: lOS I
I I
I J
----f!\

FIGURE 2. THE ORDER PROCESSING SYSTEM (OPS.)

A-20.34



SPSS/JfP
Statistical Package

For The Social Science
Hewlett-Packard Version

An Update

Marlys A~Nelson"

Western Wisconsin Academic Computing Consortium
University of Wisconsin-River Falls

River Falls, Wisconsin "54022

Nicholas Elliott
Political Science Department

University of Wisconsin-River Falls
River Falls, Wisconsin 54022

A-21 . 1 "



SPSS/HP, an acronym meaning "Statistical Package for the
Social Sciences"/Hewlett-Packard version, encompasses a variety
of routines whose function it is to perform statistical analysis
of large amounts of data. Also included are easy data entry,
selection and modification facilities.

Development of SPSS/HP began in 1974 at DePaul University
in Chicago, Illinois for the HP 2000 C'/F time-sharing system.
This development was begun due to a growing need by their users
for a meaningful statistical analysis system capable of being
run on a small time-sharing system. The result was SPSS/HP, an
authorized version of SPSS, the well-known package of statistical
programs commonly used for research and instruction in the social
sciences.

Two years later, the University of Wisconsin-River Falls
became interested in the package and converted SPSS/HP to the
HP 3000 computer system, expanding upon the HP2000 version to
make efficient use of HP3000 system resources. Both sites are
continuing to improve and enhance the package.

In designing such a system, the aim was to develop a package
which would be familiar to experienced SPSS users but would also
take full advantage of the time-sharing features and resources of
the HP systems. A user who has gained experience with SPSS at
another institution and/or involving another computer system can,
with little effort, use the SPSS/HP package •.

SPSS/HP is a fully interactive system. All a potential user
is required to know is the proper log on. More sophisticated
SPSS/HP users may take advantage of HP3000 features, such as the
STREAM facility to operate SPSS/HP in a batch mode.

There are· four (4) major areas in statistical analysis with
which SPSS/HP is concerned. These areas are:

1. Data entry,
2. Data modification,
3. Data selection, and
4. Statistical analysis.

One of the more time consuming, if not tedious, tasks involved
in statistical analysis is that of data entry. In an attempt to
make this task less burdensome, several methods have been incor­
porated into SPSS/HP to accomodate several possible data forms and
methods of data entry. In the most straightforward, simplest
method, data may be entered directly into a SPSS/HP disc file from
a terminal keyboard. Such an example is shown in Appendix A.
Alternate data entry methods include reading from magnetic tape,
punched cards, optical mark cards or existing disc files. Data
may also be entered in peveral forms, such as the traditional 80
'column' card format, BASIC data files (BASD type) or the
traditional keyboard entry where each data element is separated
by a comma. All these data entry options were designed to give
the researcher flexibility in setting up his analysis.

A-21.2



Once all the necessary data has been entered, the user may
begin to work with the data. Several facilities are included 'in
SPSS/HP to allow data editing to correct erroneously entered data
values, the modification of existing data and the creation of new
data through standard mathematical operations. Existing data may
be modified by performing an arithmetic operation, such as adding
10 to all data values for one variable, or by editing values
individually, such as adding two existing variables, or by using
one of the several SPSS/HP functions. The functions include
routines which will create various statistical distributions, such
as NORMAL, CHI, T or F distributions. Also, new data items may
be created through the use of a mathematical-type formula of the
form 'NEWAR=SQRT (4*VARl) , •

Facilities have also been included to allow the user to
select for analysis at a given time only a subset of the entire
data file. This selection may be done by selecting only cases
where one of the variables involved takes on a specified value.
For example, suppose a variable called SEX is coded to indicate
l=MALE respondent and 2=FEMALE respondent. In one specific
instance, let us assume we wish to analyze only the MALE responses.
This could be accomplished by selecting for analysis only the
cases where the variable SEX has the value 1. Subgroups of the
total data file may be devised in such ways.

The last step is then the statistical an~lysis itself.
SPSS/HP currently includes 15 different statistical routines.
See Appendix A for a list and brief description of the function
of each. Also included in Appendix A is a sample run of the
newest statistic, ANOVAU, which performs an analysis of variance
for designs which have an unequal number of subjects per cell.

In developing, converting and expanding a package of this
nature, problems do occur which may -- depending upon the method
undertaken to correct the problem -- affect the overall design
of the package. Three such problems encountered during the work
on SPSS/HP for the HP3000 will be described below. Hopefully,
this will serve a dual purpose. First, to illustrate some of
the considerations dealt with specifically when SPSS/HP was
developed, and secondly, these same problems and solutions may
apply to any type of work in the area of statistics or the
conversion of large program packages.

One major concern an 'interactive program package must face
is that of execution speed. A user does not want to sit in
front of a terminal keyboard for endless periods of time waiting
for calculations to be performed. Ideally, the user hopes to
press a few keys and have the answer flash on his screen. He can
then examine the results and decide upon his next course of action.
Two programming concerns contribute towards execution speed --
the amount of time spent reading and manipulating the data file
to obtain the necessary information and the size of each program
segment.

The first factor, the amount of time necessary to read and
manipulate the data file, is obviously best if minimized. This

A-21.3



idea has been followed in SPSS/HP where, with minor exceptions,
the data file is never read more than once for any given statistic.
In a few instances, this concept was not followed in the attempt
to allow the program to determine from the data several factors
which otherwise the user would be required to supply. One such
example is the routine which performs an analysis of variance for
balanced designs, ANOVA. SPSS/HP requires two passes over the
data file in this instance. The first pass identifies the
specifications of the design, such as the number of levels within
each factor in the design and the number of subjects per cell in
the design, while the second pass reads the data to perform the
actual statistical calculations. If only one pass had been made
over the data, the ANOVA user would have been reqUired to supply
the routine with the specifications of the design. By compromising
in this instance on the number of times the data file is read, the
use of ANOVA was simplified.

The second factor playing a role in determining program
execution time, the size of each program segment, proved to be
a double-edged sword. Again, ideally, the smaller a program
segment, the faster execution time obtained. The computer is
able to spend less time swapping program segments in and out of
main memory since smaller segments force less displacement of other
program segments already memory resident. Striving for a small
program segment size creates another problem. The actual number
of program segments is then increased, one large segment split into
two smaller segments for example. The actual number of program
segments in anyone program has a finite upper limit of 63, however.
Faced with such a problem, it appears that the only solution lies
in a larger program segment size with the hope that execution time
does not degrade to a substantial degree. Upon closer examination,
however, another solution beco~es apparent. While it is true each
program may contain at most 63 program. segments, there seems to be
an unlimited number of programs which may be linked together thru
the concept of Process Handling. In process handling, program A,
termed the father process, begins execution. When condition I
occurs, it is directed to activate program Bl for execution.
Program BI becomes the son process and runs to completion at which
time program A, the father, again begins execution at the point
following the request to activate and execute the son. This
linkage of programs can be extended further whereby the father
process may activate different son processes and each son may
become a father and activate another son. By using this technique,
response time did not differ drastically and the various segments
within the SPSS/HP package can remain small -- yet the total
package remains highly expandabie.

A major concern faced when dealing with any mathematical
formula to be calculated by computer is the problem of precision.
Currently, standard precision of six (6) digits on internal compu­
tations is employed. Output values may often be less accurate,
however, such as four (4) digit accuracy. Extended precision,
type LONG in BASIC, would provide accuracy up to fourteen (14)
digits but was not implemented for several reasons. The initial
data is entered in standard precision. The entry of data accurate
to fourteen (14) digits is rather ridiculous. The need for pre­
cision arises in the calculations required for a given statistic~

A-21.4



In this case, a statistical routine would need to read the data
in standa:d precision and convert it to double precision for use
in calculations. In an attempt to do this on a limited scale in
routines such as REGRESSION, it was found that internal' BASIC
system routines controlling the conversion and formatting of
numeric output could not handle such tasks precisely. Beyond the
4th or 5th digit, accuracy was lost which meant the conversion
to LONG served no purpose. An alternative method would be the
storage of all data in LONG form initially, eliminating the need
for conversion; but this would double the storage necessary for
all data files, an unhappy thought for. systems constrained by
on-line disc storage. At present, it was felt that all calcu­
lations were precise enough to delay any efforts at further
solutions.

The final problem encountered evolved slowly. One basic
design goal set at DePaul University was to avoid the use of
scratch disc files. Some programming technique, similar to using
scratch files, was necessary, however, to handle situations in
which data was deleted or added from an existing data file. The
use of the original data file twice within a routine was developed
as a solution to this problem. The original data file was assigned
as two separate files within a given routine, for example, as
files #1 and #2 in a BASIC program. The old information would be
read from file #1, the addition or deletion or modification of the
data would be made; and then the information would be printed on
file #2. This was a nice technique for the HP2000, which can
handle the file buffering to avoid reading on file ·#1 the infor­
mation just printed on file #2. It was discovered, however, that
the HP3000 was not designed to handle such file manipulation.
Overlapping of the file information began to occur after a certain
number of file reads and prints. Faced with the failure of this
technique, the only feasible alternative was the use of scratch
disc files, a task easier on the HP3000 than on the HP2000.
Temporary disc files may be built and used without any user being
aware of the existence of such files. The only restriction imposed
by the use of scratch files is that sufficient disc space must
exist so that a temporary file identical in size to the original
data file may be created---a restriction which has not shown itself
to be a hardship as of yet.

Several enhancements of SPSS/HP have been developed in the
past few months. The first such enhancement increased the maximum
number of variables which may be contained in an SPSS/HP data file.
Previous versions have had an upper limit of 108 variables, but
this limit has now been raised to allow 500 variables. As before,
the number of cases is limited only by the amount of available disc
space.

A second recent enhancement is the capability to enter variable
labels. This feature allows each variable declared on a SPSS/HP
data file to be given a 1 to 40 character description intended to
explain the purpose of the variable. These variable labels may be
added, edited, or deleted at any time. Variable labels will be
printed by each statistical routine. In the future, it is planned
to include value labels, which would allow up to 10 values per
variable to be given a I to 20 character description. This des­
cription would also be printed by each statistical routine.

A-21.5



The last major enhancement to SPSS/HP has been the addition
of a new statistical routine. This routine, ANOVAU, performs a
fixed effects factorial analysis of variance for a design in which
there exists an unequal number of subjects per cell. ANOVAU allows
for either a two-way or three-way analysis of variance and no
factor within the design may contain more than 40 levels. The
routine provides the experimentor with four (4) models with which
he may test his hypothesis. These models are: 1) The complete
linear model; 2) the method of fitting constants; 3) hierarchical
analysis; and 4) the unadjusted main effects analysis. A complete
table of cell means and variances is also printed along with the
analysis of variance summary table. ANOVAU will also handle a
design which may contain up to five (5) covariates.

A-21.6



APPENDIX A

Included in the appendix is a sample run showing data entry
from a terminal keyboard into a SPSS/HP data file.

Also included is a table listing all the statistical routines
currently available through SPSS/HP and a brief description of
the function of each of these routines.

The output produced by the newest statistical routine, ANOVAU,
is enclosed. This serves to show the form of the statistical
output and to illustrate the routine itself.

A-21.7



~FSSHP I \"EP.~IO;.J 4. 04 5/31/78
SFSSHF ~E\:~ LA~T CHA\JC:J£t O~ 5/31/78
VED OCT 4, 1978 8116 A'S

TYPE N E\.'~ FOF. N Et.! FEATUPE~ A\J 0 lOJO l..~ FP.Q EL Df S IN ~PSSHF.
TYFE IN STReCT FO P. BAS I C CI F.ECT ION S fO F. US Il'J G ~F S~HF.

FILE SUCCE5~Ft'l..LY CREATED - CSE 'fILE NA'1E!CATA00' TO \.UP.K
VITH THIS NE\.' fILE.

NEXT? FILE NA'1E!DATA00

NEXT ? VARI AELE LIST! REA C, YEAR" ACT I V

NEXT? N Of CASES! 24

NEXT? READ INFUT tATA

ENTER DATA O;.J F. CASE AT A Tl:1 E.
TYPE 'FRO;'!PT' OR 'NOFF.Q:1PT' TO TCF!-J FRO:1FTS ON OR Ofr RESFECTIVELY.
'STOP' \.TILL INTEF.RUPT tATA ENTRY~

CASE I, READ TO ACTIV
? I .. I .. 8
CASE 21 READ TO ACT1V
? I .. 2, 5
CASE 3, READ TO ACTIV
? I" 2" 8
CASE 4, READ TO ACT1\'
? 1,3,2
CASE S.. READ TO ACilV

? I" 3" 7
CASE 6" READ TO ACTIV
, I" 3, 7
CASE 7" REAr. TO ACTI\'
? I" 3,,9
CASE 8" READ TO ACTIV
? I"~,, S
CASE 9" READ TO ACTIV

'I" 4.17
CASE 10, READ TO ACTIV

,'"4,, 7

•••.-- .~ .
READ TO AC" I VCASE 24..

'2,,~,,2

DATA INTRY CO~FLETEt.

A-21.8



STATISTIC NAME

CONDESCRIPrIVE

FREQUENCIES

BREAKDOWN

CROSSTABS

T-TEST

PEARSON CORR

SCATTERGRAM

REGRESSION

RESIDUAL

ANOVA

ANOVAU

DISTRIBUTIONS

SPEARMAN CORR

T-SQUARE

U-TEST

FUNCTION

Computes ten descriptive statistics for
interval level data, including the mean,
variance and standard deviation.

Computes frequency distributions for
categorized data. Histograms may be
requested.

Computes descriptive statistics for sub­
groups of cases. A one-way analysis of
variance can also be performed.

Computes contingency tables from cate­
gorized data. Four non-parametric
statistics may be requested.

Computes the t statistic employing one
of three user defined parameters of
difference of means.

Computes Pearson product-moment cor­
relations.

Performs bivariate regression and prints
scatter diagrams.

Performs multiple regression. A backward
stepwise procedure is available.

Performs residual analysis. Durban­
Watson statistics and a plot of auto­
correlation functions of residuals and
residuals against time may be plotted.

Performs a factorial analysis of variance
for balanced designs.

Performs a fixed effects factorial analy­
sis of variance for unbalanced designs.

Computes frequency distribution for con­
tinuous data. Histogram option is
available.

Computes Spearman's rank-order correlations.

Computes Hotelling's T(2) statistic

Performs Mann-Whitnet tests.

A-21.9



NEXT ? A~OVACrACTIV BY READ6YEAP.

NEXT ? OFTIO~ ~ 13

NEXT? EXECCTE

STATI STI CAL FACKAUE: FO P. THE: !O CI AL SCI~ CES - HF VEP. SIO~ ~. 0~

rILE: I DATA00

(CREATION DATE. \'EO" OCT ~ 1978" 8t 18 A'1 )

ANALYSI! o F VARIANCE

ACTIV
BY READ

YEAR

!TUCEN T ACTI VI :.'i
STUDENT P.EADING LE\'EL
YEAR IN SCHOOL

----------------_..--.----------------_...------------------------------
MEA'J "" 0 VARI A~ CE TAm. E

VARIABLES READ YEAR MUH VARIA'lCE

rOR FACTOR I READ

LEVEL 1.00 .00 6.500 ~.056

LEVEL 2.0e • "0 3.351 2.863

rOR FACTOR I YEAR

LEVa • 00 1.00 ~. 333 6e 667
LEVa .00 2. 00 ~.600 7.300
LEVEL .00 3.00 ~. 875 6.696
LEVEL ."" ~~ 00 ~.800 5.200

rOR FACTOR. READ X YEAR

CELL 1.00 Ie 00 B.000 .000
CELL Ie 00 2.00 6. 500 ~. 500
cal.. 1.00 3.00 6.250 B.917
CELL 1.00 ~. 00 6.333 1. 333
CELL 2.00 Ie 00 3. 600 ~. 3~0

CELL 2. ClJ0 2.00 3.333 6.333
CELL 2.00 3. e0 3. see 1. 667
caL 2.00 ~. 0e 2.500 .500

GRAND MEA'J • 4.667

A-21 .10



ANALY~IS or VARI~CE a METHOt or FITTING CON5TA.'JTS

SU1MARY TABLE

SOURCE 0 F VARI AN CE
st..~ or DEGREES MEAN
50UARE~ FREEOO:i 5Q UAP.E~ F

PROB.
or r

--._---~--------------------------------------.-------------~-----------MAIN EfFECTS 60.091 4
READ 58.966 1 58.966 13.62 .0000
YEAR 2.412 3 .824 • 19 .985Ja

TVO-\'AY INTERACTION S 1.959 3
·P.EAD X YEAR 1.959 3 .653 .15 .9908

ERROR 69.283 16 4.330
..------------------------------------------------
TOTAL

NEXT '1 FINI SH

RW fllDED

131.333

A-21.11

23





DATA MANAGEMENT

Series "B II





PRESENTATION TITLE: Adopting a Transaction Processor - getting sophisti­
cated becomes Easier

INDIVIDUAL (S) NAME (S) : Robin c. ~Vheeler

ADDRESS: Domtar Construction ~~terials

2001 University Ave.
Montreal, Quebec

ABSTRAcr:

OUtline

A. Selection of Transaction Processor

1. Hardware Efficiency Objectives
2. Organizational Objectives
3. Standards
4. Transaction Processor Selected - OVerview

(Terminal Application Processing System)

B. Application Considerations

1. Objective of the Application
2 . Cost/Benefit
3. Design OVerview

C. Considerations of a Distributed Network

1. Linking three HP300's (Montreal, '!bronto, Calgcu:y)
2. Conmunications ItFutureslt, X.25

D. Distributed Data Bases

B-01.01



HEWLETTS PACI\AHl'

IMAGE DATA BASE DESIGN
AND

PERFORMANCE MEASUREMENT

Presented To:

HP GENERAL SYSTEMS USERS GROUP
7th International Meeting

October 30th - November 3rd 1978

Denver Hilton
Denver, Colorado

BY

Orland J. Larson
lMAGE/3000 P~oduct Manag~

General Systems Division
HEWLETT-PACKARD COMPANY

B-02.01



OUTLINE

I. INTRODUCTION

A. OVERVIEW

B. CONCERNS OF THE DATA BASE DESIGNER

C. LOGICAL DATA BASE DESIGN

D. PHYSiCAL DATA BASE DESIGN

II. DATA BASE DESIGN METHODOLOGY

A. OVERVIEW OF DESIGN AIDS

B. DATA BASE DESIGN AIDS

1. DATA BASE ENVIRONMENT

2. USER FUNCTION FLOW DIAGRAM

3. USER FUNCTIONS AND REQUIREMENTS

4. ITEM/FUNCTION MATRIX

6. DATA BASE MODEL

6. DATA BASE DIRECTORY

7. DETAILED TRANSACTION ANALYSIS

III. IDEA - A PERFORMANCE MEASUREMENT TOOL

A. OVERVIEW OF IDEA

B. REQUIREMENTS

C. OPERATION

D. SAMPLE SCRIPT CREATION

E. SAMPLE OUTPUT OF IDEA RUN

F. GRAPHS GENERATED FROM IDEA RESULTS

G. DISADVANTAGES OF PERFORMANCE MEASUREMENT

H. ADVANTAGESOFPERFORMANCEMEASUREMENT

IV. SUMMARY

B-02.02



8-02.03



.------------------------ HEWLETTlpACKARD ----.

CONCERNS OF THE DATA BASE DESIGNER

• MUST FULFILL TWO MAIN OBJECTIVES
• PROVIDE A STABLE DESIGN TO SATISFY NEEDS OF CURRENT AND FUTURE USERS

• PROVIDE COST/PERFORMANCE TRADEOFF INFORMATION TO MANAGEMENT

• CHANGEABILITY OF USER REQUIREMENTS
• OUTPUT FORMATS (RAPIDLY)

• "POLICI ES (MODERATELY)

• MANUAL PROCEDURES AND INPUT REQUI REMENTS (SLOWLY)

DATA INTEGRITY
• MAKING "ALL DATA" AVAILABLE TO "ALL APPROPRIATE USERS"

FLEXIBILITY
• CHANGING STRUCTURE WITH MINIMUM IMPACT ON EXISTING USERS

• DATA INDEPENDENCE

PROCEDURESMACHINESPEOPLEDATA•
• COMPLEXITY OF INTERACTIONS

•
•
• LACK OF A DATA BASE DESIGN METHODOLOGY

• LACK OF PERFORMANCE. MEASUREMENT TOOLS
• THROUGHPUT ESTIMATES

• RESPONSE TIME ESTIMATES



IS)

U1

~----------------------- HEWLETTRpACKARD ------.......

LOGICAL DATA BASE DESIGN

• INVOLVES THE BUSINESS ENVIRONMENT
• CURRENT AND FUTURE INFORMATION REQUIREMENTS

• OVERALL OPERATIONAL PLANS AND POLICIES

• ANALYSIS OF FUNCTIONS AND INTERACTIONS (INTERVIEWS)

- TOP MANAGEMENT VIEW

- FUNCTIONAL MANAGEMENT VIEW

- OPERATIONAL PERSONNEL VIEW

• IDENTIFICATION OF DATA ELEMENTS
• DATA ELEMENTS USED BY EACH FUNCTION

- DEFINITION

- SIZE AND DATA TYPE

- VALUES

- SECURITY SPECIFICATIONS

• DATA ELEMENTS SHARED BETWEEN FUNCTIONS

• IDENTIFICATION OF LOGICAL DESIGN COMPONENTS
- KEYS

- ATTRIBUTES

- RELATIONSHIPS



~---------------------- HEWLETT'PACKARD ------......

PHYSICAL DATA BASE DESIGN

• INVOLVES THE TECHNICAL ENVIRONMENT

• PROVIDES STRUCTURES AND ACCESS METHODS NECCESSARY
TO IMPLEMENT THE LOGICAL" DATA BASE DESIGN

• CONCERNED WITH:
• CAPABILITIES AND LIMITATIONS OF A SPECIFIC DBMS

• COMPUTER HARDWARE UTILIZED

• USER REQUIREMENTS OF EACH APPLICATION

• PERFORMANCE REQUIREMENTS OF EACH APPLICATION

• PERFORMANCE MEASUREMENT

• BACKUP AND RECOVERY PROCEDURES

• DATA BASE IMPLEMENTATION

• DATA BASE MONITORING

• SECURITY

• DATA BASE DESIGN DECISIONS



HEWLETT~PACKARD

DATA BASE DESIGN AIDS OVERVIEW·)

OTHER NON-DATA
BASE USERS

BATCH USERS

"I'
,II

;11

i" III
II 'II JI

·F -..JII. .-
~r . -'~-~~I~~I

HARDWARE
CONFIGURATION

,

DESIGN AID #1
COMPUTER/DATA BASE ENVIRONMENT

OBJECTIVES

Reduce Costs
Increase Business
Make A Profit
Improve Services
New Products

BUSINESS
FUNCTIONS

Services Provided
Products Manufactured

PRELIMINARY INVESTIGATIONS
STRUCTURE - FUNCTIONS - OBJECTIVES

OF THE COMPANY

ORGANIZATIONAL
STRUCTURE

DATA BASE
APPLICATION

DESIGN AID #3
USER FUNCTIONS AND REQUIREMENTS

( NO. OF TERMINALS)

( BATCH USERS)

REPORTS

READ ONLY
USERS

BATCH
USERS

DESIGN AID #2
FUNCTION/ACTIVITY/FLOW DIAGRAM

TRANSACTIONS

ADD AND UPDATE
USERS



HEWLETT~PACKARD

DATA BASE DESIGN AIDS OVERVIEW
DESIGN AI D #4

ITEM/FUNCTION MATRIX
FUNCTIONS

ITEMS TYPE/ SEARCH SORT UFPRDEAaT.EIIIIII
SIZE ITEM ITEM

(ADDITIONAL DATA USAGE STATISTICS MAY
BE APPROPRIATE)

DESIGN AID #6
DATA BASE DIRECTORY

SETS ITEMS TYPEI SECURITY KEY SORT PIC CAP DESC.
SIZE

DESIGN AID #5
DATA BASE MODEL

DESIGN AID #7
DETAILED ACTIVITY ANALYSIS AGAINST THE DATA BASE

TIME NO.
USER TRANS NO. TO I/O DB OPEN SET CALL KEY ARG

ID TERMS ENTER CHAR NAME MODE NAME



DESIGN AI D #1

DATA BASE ENVIRONMENT

CAPACITY _

B.P.1. _

L.P.M. _

MAKE, MODEL
& BAUD RATE _

COMPANY NAME: _

TYPE OF BUSINESS: _

ADDRESS: _

DATA BASE ADMINISTRATOR: _

TELEPHONE NUMBER: _

HARDWARE ENVIRONMENT

COMPUTER MODEL _

MEMORY SIZE _

DISCS _

TAPES _

PRINTERS _

NO. TERMINALS _

NO. NO. NO. NO.ADD SUBSYS.
BATCH ONLINE READ ONLY & UPDATE OR LANG.

MAJOR ACTIVITIES OR APPLICATIONS USERS USERS USERS USERS USED PRIORITY

B-02.09



DESIGN AID #1

DATA BASE ENVIRONMENT

HARDWARE ENVIRONMENT

COMPANY NAME:~emf WI D6-i'T5 COMPUTER tI P 3000 S.t:Il~~JrMODEL 8~__
TYPE OF BUSINESS: WID &:(1' DkSTg.J a"'tTD( MEMORY SIZE ,r:--.::J....;;.d.,~";...;",,aJ3IL.- _

ADDRESS: C&A."JIlT.%NO.C"'LIF. DISCS (:I.) 7?~o CAPACITy..{Q.!)O£AC4

DATA BASE ADMINISTRATOR: 0 J. L AR.50Al TAPES W 7' 70 B.P.1. _/...,zb;""",oO O _

TELEPHONE NUMBER: <...~O 8) ~ $3 - 1~.3'" PRINTERS 3 0 • 3" A L.P.M. __,~o...;::O:....-. _
NO. TERMINALS~ MAKE, MODEL

& BAUD RATE HP 2",,$,I" St&.J+J

NO. NO. NO. NO. ADD SUBSYS.
BATCH ONLINE READ ONLY & UPDATE OR LANG.

MAJOR ACTIVITIES OR APPLICATIONS USERS USERS USERS USERS USED PRIORITY

OR DE~ PRoc£'.55 :J.N(; , 13 1 •• Co G 01./
Q&A~tl>,

I tJ tJ c rV TTJ~ Y c..,ON ~o L , S 3 2 eo GoL

A c..~o tLIV T.s REGE'xv1f&£..f I 3 I ~ ~O'D1.

1+ c.GOt.t",r,S PII-YIIBLE I ~ J. / e..o 80).

f~Y(l..OLL J. ~ JI 1 ~o8ol.

f E 'lS ONN E J. / ", D", rNa 1 " 'I J- e.oacn.

Co GOl PR o~e1lm De II. :l- 10 (,0 SOL

I

L_
B-02.10



DESIGN AID #2

USER FUNCTION FLOW DIAGRAM

INDICATE, WITH SYMBOLS, THE DATA FLOW AND
ACTIVITY AGAINST THE DATA BASE.

DATA BASE

B-02.11



HEWLETTS PACKARD

DESIGN AID #2

USER FUNCTION FLOW DIAGRAM

INDICATE, WITH SYMBOLS, THE DATA FLOW AND
ACTIVITY AGAINST THE DATA BASE.

AC(.O(.("'T~

R e-"e%",,&)..t:
S"T"L.'f)

I\'c.c""",,.s
PAy" I&L €

(altTC.'"

DATA BASE

l> lit C> E ~ E14JT-'Y
c..l.E'tk'~ Clo)o RDF~S

PRJ-t..E (,.nA.'f$,
.....

R£~~~" Rf~j

8-02.12



DESIGN AID #3

USER FUNCTIONS AND REQUIREMENTS

DATA BASE APPLICATION: _

OBJECTIVES:

USER NAME DATA BASE NO.OF KEY INFOR· ESTIMATED HOURLY RESPONSE
OR BATCH FUNCTION OR NO. ONLINE I/O MATION TIME TO THRUPUT TIME

PROGRAM ACTIVITY TERMINALS CHAR. IDENTIFIER ENTER DATA TARGET TARGET

, B-" 2,_ 13



DESIGN AID #3

USER FUNCTIONS AND REQUIREMENTS

DATA BASE APPLICATION: Q R DE"~ P~oc..ess71f1(;I:rNII. ~oAJTttOI./If-C.C.T!J eAy.IlEC,.,

OBJECTIVES: E. N TE R. D ~DE125 is rE ~ ::tJlJ lJ PVT'O ~ y CA' Dlfre"p

ttAw»Lf (JI/f)-'E %"NQc.l~'J.ES DIL e.z~L~I'1~ (A-CGT,S RfGG'Z""Sl..E)

KE ~ l' fJl% e [S errAlIIB!'P~V ~"~~f'I1T ,q.. c. Co r s P 11 t If B 1 t
•

USER NAME DATA BASE NO. OF KEY INFOR· ESTIMATED HOURLY RESPONSE
OR BATCH FUNCTION OR NO. ONLINE I/O MATION TIME TO THRUPUT TIME
PROGRAM ACTIVITY TERMINALS CHAR. IDENTIFIER ENTER DATA TARGET TARGET

0.'. S ",PEfI. e,.,uc C'. OflS I I Do O.D'.a -~f) ,S· ttlS ,e's Leu... "'''''-''''&! 2. -4 ~C'S.Y'
,,,'"1". %. D

O.E. eL~IlW-J ".a/"'MT£ 10 , 50 (> Iloe4-410 35- S"D s~~. '0/ "DCA" 1-3.s c c.S
DltDea.s .~ Elf''''

c,o,.,,, -~D

\J""~t REJtP/CA.'~ , ~TE'" -AJO I S'-.aSScu ... ,,&1/ ".1".., :!-5 $C'S
6&o\'~fl 100

RE(.~.%"~"''''' LA.' 0 "1"£ :l ;CTf:"") • ~ 0 25 .... 1/0 Icc.l (" D11+-",( 1-3 .s~,-.s
~j.nl(.s % 1If1.."./ty

100 e"'11

DE"'. • "" S
eoit' $",,.,, ":r/V rill ", ~oo t.O"'~-%O", 15 -1/' $&" .1,.0'" 1101."_" .:l - 5 sc.,,~

R E 'C't-r S DC DEll ..-'0.

~H%of' , ~JI ", V EUtr-y 'AItr~ J.. I DO I. TDP7-AJO 15- 30 ~C~j ,() /HOwfl. .2 - 5' oS c. c,~

(,L.6JflK.s .5 H~"fD eHe.H

Ace-,S RP p 1rfIIp -Rf'(,.PMILf" Pttu~ ez&~~ - - U,,'P·Ip t3 ItT(.H

:r:: 111 F1ll..",..TNaJ
(r ~ lJ o3,e:S)

/tcc.rs pttW; c."e"". ~D -- 8 "T~f1 --- -PAy4el..f '-It t'C-t< 5

8-02.14



DESIGN AID #4 FUNCTIONS

B 02.15

ITEM/FUNCTION MATRIX III
!Ij!SEARCH SORT UPDATE 7

ITEM NAME TYPE/SIZE ITEM ITEM? FREQUENCY

-



DESIGN AID #4 FUNCTIONS

ITEM/FUNCTION MATRIX ~ ""
ce, ~t«, ~ t"
,~ ...l~4 ~oJ" i<J ~14J~ ~ .w Jf '1 .v L •

., ,,~ t "I f; ~ ~ '~ i,~
SEARCH SORT UPDATE fct II 'to"~ u

i41
-oJ tJ" ~ ",,"..., ..l'v\

ITEM NAME TYPE/SIZE JTEM ITEM? FREQUENCY /0 Olq~.. 'I r:' of.. t.,~ uj;/1
C.DmP-I. D Xe .x X )( X

XSO ~ X X
eo -N'/t""t A
vAL. X L x

rIO t+z ",.

X L x
A-m,-J-O rIO H%.,..

OAO-ND )(S X X X X

"L-Tm - ttl D XB x x "l- X X x

e..e.t~ - c1J r -c-" I"tX (r1'4 '< )( 'v
~pJT-C.S-r i!-" H~~H X "
,-" x e'=' ;A x

... .J. .....

~ E~ - "DE x 1./ X

fJA-c.. - C.Dr )(&i )(

6Hf'"c..DE XJ...
~

5L5-PIJe, ~c.
x

DOL-LD rID H~(,.'" x

OR D- OT~ xl, X x

RtL .. OTE" xl? x

x
oRf\-~T rio

£> ..... -r-- x ~ x X
riP-~ .t:

NO - I7 /Y1 :r \V )(

B-02.16



DESIGN AID #5
MASTER DATA SETS DATA BASE MODEL DETAIL DATA SETS

8-02.17



MASTER DATA SETS

V
DESIGN AID #5

DATA BASE MODEL DETAIL DATA SETS

B-02.18



DESIGN AID #6

Data Base Directory
DATA BASE NAME _

PAGE_OF_

DATA SET NAME ITEM TYPE READIWRITE

/ ...
> a: c.,) ~
LU Q c:r:# MASTER DETAIL NAME DESIG SECURITY ~ - DESCRIPTIONen ~ c.,)

I I I
I
I i
I

,
I
I
!

8-02.19



DESIGN AID #6

Data Base Directory
DATA BASE NAME__"_O.=....::R..:.=D:.,.=EN:.::..,:T=--" _

PAGE_' OF_'_

DATA SET NAME ITEM TYPE READIWRITE

/ t-> a:
Co) ~

# # w C etMASTER DETAIL NAME DESIG SECURITY ~ - DESCRIPTIONCI) ~ Co)

1 MNAME M In? Customer Name File

1 COMP·ID X8 X 1 Truncated Company Name

2 CO·NAME X50 Full Company Name

3 VAL Z10 Value Current Orders

4 AMT·LD Z10 Account Receivables

2 MORDER A 10e ORDERS OUTSTANDING

5 ORO-NO X8 X 2 Order Number

3 MINV EN M lCX INVENTORY FILE

6 ITM-NO X8 X 0 Item Number

7 CUR·CNT Z6 No. of Items on Hand

8 UNT-CST 26 Unit Cost of Item

9 TAX 26 Total Tax on Item

10 REC-CDE X4 Reception by Inventory

11 PAC·CDE X4 Packing Code

12 SHP-CDE X2 Shipping Code

13 SLS-PRC 26 Itern Sales Price

14 DOL-LD 210 Item Dollar Load

4 DORDER 2 1()( CUSTOMER'S ORDERS CHAINS

1 COMP·ID X8 X Truncated Company Name

5 ORD·NO X8 X2 Order Number

15 ORD·DTE X6 S2 Date Order Placed

16 REC-DTE X6 Date Order Received

17 ORD·AMT Z10 Amount of Order

5 DITEM 1 1()( ITEMS CURRENTLY ON ORDER

5 ORO-NO X8 X Order Number

6 ITM·NO X8 Item NoN umber

18 SHP·DTE X6 S Item Shipping Date

19 NO-ITM J Number of Items 011 0" j.

!
I
:

I
!

I
I
I

I I I

~ I
;

:

I

! VI·16

B-02.20



DESIGN AID #7
DETAILED ACTIVITY AGAINST THE DATA BASE

(IDEA SCRIPT FILES)
WORKSHEET

TRANSACT IO!J_.! N.r.O~ ~AT IOi I TRANSACTION STEPS

SCRIPT USER NO ! PAUSE NO. DATA DATA INITIAL NO.
USER FILE °fRAtJS PROCS NO. I/O STACK ~TEP BASE OPEN SET CALL GET KEY ARGUMENT OF

NAME NO. (TERMS) r.u N• MAX. ITERATIO~S .CHARS SIZE NO • NAME ~1ODE NAME TYPE MODE NAME VALUE GETS..

o:J,
IS

'".
'"1-0-1

I
i ;

I
I

I
I
I

I



DESIGN AID #7
DETAILED ACTIVITY AGAINST THE DATA BASE

(IDEA SCRIPT FILES)
WORKSHEET

TRANSACTION INFORMATION TRANSACTION STEPS

: SCRIPT I.USER NO I NO. DATA DATA INITIAL NOI PAUSE
USERl FILE ;TRANS PROCS I I NO. I/O STACK STEP BASE OPEN SET CALL GET KEY ARGUMENT 01

I NAME . NO. (TERMS) I MIN. MAX. ITERATIONS .CHARS SIZE NO. NAME MODE NAME TYPE MODE NAME VALUE GE"
!

66 ...5'0 /5'0 l/ J o~o~.s'" I PlHllmE L oc k'DE .cLt'l"i CJ~OS' f\t'r 10 i 35 So -~ - - -
I J.. ,., W,.",~ puT - co",,-JD c..o,"'C,h', ---
i c. o,.,P-.IO c.o""'~""" -
I .:3 .. DORDe~ P tA.-r"

I l/ p~-r
O~D-HD oRO ""b -

i OLTE'1"'I
! 5 - ·0 UNL.k: - -- - -

I

~C_Uf~ 77 .2 ,;5" "/0 SO OR DroST I mXII"f" L 0'" te: - - I-

I
/00 1.1 ,

7 Erm.HD I-Tm 177
_0

I'tI~NI)EJI 6ETLC.
I I I

2 _. - -
s 3 .- uNL.K . -

I'V I
I

__ 0

.
i I

I'V

II'V

5 II P-<:.lDeKI I IS 30 SO I (JO LJ ,
O~DT!.T I LoCo t.' .. . --

,,,:"- D1~'"

I G-ET"CA.. 5 otlJ)-1I0 ORr>888 .5
.2 DrTEM

I

I UNLK3 .-
I

!

I I
I

I i,
i I

I II
I
I
I

I :

I I

I

!
I II
I 1



....---------------- HEWLETTlpACKARD -----.....

IMAGE DATA -BASE EVALUATIVE ANALYZER

A DATA BASE PERFORMANCE MEASUREMENT TOOL



.".-------------------- HEWLETT' PACKARD ----...

OVERVIEW OF IDEA

• ESTIMATES DATA BASE:
• LOAD TIME

• RESPONSE TIME

• THROUGHPUT

• PROVIDES INITIAL DESIGN FEEDBACK

• PROVIDES FUTURE CHANGE IMPACT
OJ
I •tSl INTERACTIVELY PROMPTS YOU TO CREATE SCRIPT FILEStv.
tv
~ • GENERATES OVVN TEST DATA

• EXECUTES FROM A SINGLE TERMINAL OR MULTIPLE TERMINALS

• PRODUCES SUMMARY OR DETAILED REPORTS
• THROUGHPUT RATES

• RESPONSE TIMES

• RESIDES IN THE HEWLETT-PACKARD CONTRIBUTED LIBRARY

• RUNS ON THE HP 3000 SERIES 1.1 11.1 AND III COMPUTERS



~----------------- HEWLETT'PACKARD ---~

IDEA REQUIREMENTS

• DESIGN MUST BE COMPLETE

• DATA BASE MUST BE CREATED (EMPTY)

• UNDERSTANDING OF THE DATA BASE APPLICATION

• UNDERSTANDING OF IMAGE CALL PROCEDURES

• DETAILED ACTIVITY DETERMINED AGAINST THE DATA BASE (SCRIPT FILES)



~-------------------------- HEWLETT'PACKARD

DATA BASE DESIGN IMAGE DATA-BASE EVALUATIVE ANALYZER

(lDEA/3000)

SUMMARY

FULL

REPORT
I
I
t___ ..J

TERM 64

DATA
REDUCER L......:~--.,

~ ~

~
~

TERM 3

PROGRAM

IDEA1.PUB

ESTIMATES
RUN

TERM 2

' -
I
I
I
I
I
I
I

I I

~... .,.
r-----~---

J
I

SCRIPT
CREATOR

TERM 1

r------------------------,
I PROGRAM IDEA.PUB I
I I
I
I

•••

FIG 1

TRANS ••
IMAGE TX

1. PUT
2. GET
3. UPDATE

DB2

USER}
TRANX

EMPTY DATA BASE(S)

oBp...;N ..........

DB3



SAMPLE SCRIPT CREATION

:~UN lUt::A

S~LECl:(lUlA, Verslo~ 3, ~ay 197~J

1 = C~lATE SCRl~1

~ = LOAl" Jo<U:,
j = 11::: b 'I l-lll I.

4 = 'J I ~I 1Nl, ;.. Ui J

5 = ~f.."'lJkl

b = ~Sll~A1E LLAU 11~l

J = ~kA~E DATA bA~l

~ = LU:>! SC"'l~!S

EXiT
(i)
Rt.CUHU tdJ~~hf:.t~ 1
o 1 'J to< AN~Aell lJ J', N lJ ,., Ht: .... l LI <N<':I I J ? @
U2 ~UM~E~ (J~ F t<uCt.&S~,~·f @
o3 ,... I I'. 1 t·j u~ .., A l!~ E. t c::G>
04 MAX.1!\i u i'" PAlJS~ 'f~
u~ f'4 U t·~ cI:. t, (J i' 1 I t. ~ A 11 u,\, S:~
00 ~U~~~~ UY l/u-CHA~~t ~o

01 ~IACK SlZf..(u fa 16~)t q

"'ti.1CI1 LiNt. IS IN("lJRkr..C IlNUNt..-CRJ? @
k to: CU k 0 1'- Ur-: ~ ~ t< ,
o1 J ~ I,,~ SAC 1 1 l.J N 1'4 lJ ,.,. h t:.. t< 6 6
S1 r; P NlJ i-' HEt'l \) 1
O:l l)A'lA-bA.:)~ ~A"'·~.lHt:.r) = ~? _
O~ I)Ar.p-bAS~ NA:J;",l~t.t') =(ORDTSy
o3 uP ~, ~ - fA II r F t CD .
04 1JA.l ASt.',1 r-. Ai" t-~~ .;;-t__

(; 4 1I A1 A~F J r.. AU 1:, =Gr. A .<U
u:> <.it:. J , G(-~ IlJ , G~ i tJ, tJu f , LuC 1\ 0.... l....~Lr\:' ~ci59
LtthlCH LJNI' IS }i,.(IIPtd·.. C'J l'HJfo4l:,-Lt:)t@9

£6
tt I:.C G~ V t.t.,: b t. " 3
v1 l~t:.. S"l.lllH. C'4uhct.h
S 1~ t ;4u,· "-. to... L I..
\; L 1J A II· - h {:..:J 'r :, A'" ~_ l ~ t.,}- J =
v t. l;~ I /J - t d\ ~) j" :... ~ ~.. r, l t l".. t J =

ORC-1ST

@)

~ t.L U t U ;, L' .'," t." -i

v1 lr< ... ·.~,f·l I )"f, '.llhlll'.I' h')
b 1 t:. to' I,,' .. " ~. ~

\)2 l;A!,.-t~.: ...,i (',t'l.t- J':' t " .. 1. I

V i l. :d ;. - t ,;. d. :, ..~ . 'I l I r_ t J ~ ( L:..'0
U <l ;) A 'J ;. ~ r. 1 r,,. r ':..:. ! ..' .' ,,,,,,, L

:,).:.1 l.JA!~~t'.l '~~:·r.=G:il:I\:'LI;,>
(J ~ (, I:. 1 , t; to, 'j L , ~ ~ 1 t.. , .... l , , J.. Lll r. l ; ~. LJ •d." t S
~"/ "t. k "J A'" 1:. '! (CU,,; t' - j L!)
\J ~ 1 '" 11 1 1\ L VA Lu t:. l A J ,. U.j '1 ~ t; C rt Ah ~ ) 't @ MPb b ()0
~ H l LH L JN1:. 1 S j,~Cu to< KI:.C 1 U" lJ I ~ 1:. -C t< ) @

B-02.27



66100~3~nO~OOOOOl~

66000000nouooooOOO
66000000nOuOOOOOO~

660000000000000000
66000000nouoooonOo
7702002~o04000nOl~

7700000000LOOOOOOO
7700000oo0~OOOOO~o

770000000000000000
8802001~n03000rnl~

tt8000000000000nO(lu
88000t'OOOo",OQo"nOO
8 dO 0 0 n 0 0 nOli 0 0 ('\ ,... " II r;

O~DT~T

O... UT<;T
O~UT5T

OL~'D Tc; T

Oi.#OTC\T
UIoJOT~T

O~DTC:;T

U~OTC\T

U~CTC:;T

U~CT~T

SAMPLE SCRIPT FILE

OOXA(;T
OILUCKMNAME
01PUT MNAME
OlPUT DOROER
OlPUT DITEM
OOX~(;T

OILOCKMINVEN
Olut.TUMINVEN
OlUNLKMINVEN
ooXAeT
OILOCKDITEM
OlGt.TUOITEM
nlUNLKDITEM

COMP.IO
COMt'.IO
O~D';'NO

ORO-NO

0.·····.··············015001····················0001·01COMP6666 0001
OlCOMP6666 0001
010R06666 0001
0.····················010001····················000101ITM111 0001
01..···.··············00010.····················010001····················0001OSORD888 0005
01····················0001



SAMPLE OF IDEA OPTION 5

: RUI~ IDeA

S~LECI:lIDEA, ~ers1on 3, May 1~7b)

1 = ~kEAT~ bCklPI
"J. = LOAU ~Ui..
3 = '1 t::S! td... f\,

4 = 11 t-i I NG k LJ N
~ = ~l:i.f'uRT

b = ~S11MA1l LUAU I1M~

1 = l~AS~ UA1A dAS~

ij = LISl ~C~]F'lS

lXII
@
SCHIPJ flL~ ~A~~f(QRDSCRPi)
SlAkl1hG MAS1E~ LUAD PkUClSS
S'l AH'1' 111 G 0 I:. -r AILL0 Al) f t< OC £:. SS
LOAD 1 r..<' CUM", LE I ~

S~LEl1:l1UlA, ~erslon 3, May 1~)~)

1 = CHlATl SC~lP1

J. = LOAD JiLIN
.3 = lESt }JliN

4 = 'J 1M,1f~ (, ~UN

~ = tt!::t"ukl
b = ~Sll~A1~ LOAD TIMl
1 = ~~ASE DA1'A BA~~

~ = Ll~J ~C~lrlS

e,t.J r
(1)

SCklt-'I ~ Ii.t-. N/J.fiE? U.h)~(f<PT

IHAN~~CIIe~ 00 CHlC~~U

'I RAI~ ~ AC j J UN 17 Crt lC y. l:.I1
'i k A N~ AC'j Juh ij tj C"U:.Cl' t 1}

'l ~ ~ 1 k lJ i~ tJ. t< • IJ lJ 11) U " A.-- 1 :, J 1 ~: 1 t, (,; h LlI~ l ~ / !" ) t ®

~ t L t. C 1 : l J iJ"';"" Ve r ~ 10 n j, i': ~ y' 1 oJ I (j )

J =. ..' ~ I' 1"\ '1 c ~> C ~ 1 ~ J

L = 1,-: " u •
.3 = 1 r .: ii".

4 = ll.'··l~·'\= rl·"
~ = t(t.~lJ~·1

b = ~ ~ J 1~ l\ '1~, l, I : :'\ l; iII" t:.

I = t. to( A~ t:. IJ ~ ]:\ [) A:, r..

H = L 1~ J SL 1"\ ] ~ I:..;
t.All

CD
~c H J.' I ~ 1 Lt: j·.d\~' 1" t (Oi<D~~m.!

1 q t' tJ UCr...; ~ f" ~ ~ to 'OL' t! 1 :d- l 1

1 L j -I :> 0 I ~ 'oJ lJ 1 , j ,~

L> 1 A~ ! 11,. \0, J J ,..~ I (II (, .. d;~

t.1~ lJ (J f 1 .11\' 1 ,,, ~ ~ lJ I"
SUt< J J N(j 1 DLALUG
blA~llNG ~~PO~l B-02.29



SAMPLE OF IDEA OPTIONS (Cont.)

1

S~L~Cl:l1D~A, ~eIslon 3, May l~lbJ

1 = CFEATE SC~lPl
'J = LUAu HUN
j = 'j E~d RU t~

4 = '11MJ.~u ruN
~ = HE~(jf<'I

b = ~&llMAIE LOAU TJM~

1 = ~~A~~ UAIA ~A~~

~ = LIS'I Sc ~ I PIS
lXll

(f)
~HICM uAfA BAS~?~DTSj)

AP~~UX. LOAD/ObLOAO llM~ = v HkS

NU'lE: 1nis 1s au estimatea time
basea on 0.15 sec/PlJl ana tI.l sec
per update per cnain 10 a UEIAIL.
cnain sorting ti~es are excluded.

S~LEC1:lIUEA, Version j, May 1~1~}

1 = (~~Ar~ SCf<lPl
l = LuAU P L ;.~

j = '1i:.~1 ~Uli

4 = 11 t'= I iH'; to< lJ :\~

~ = Kt.PtJkI
b = ~~i!AAll L~A~ 11~~

1 = iRAS~ LA1A bAS~

t:s =LJ.::>l SC~JP1S

~Xlr

CD
~H lCM U;\ 1~ ~A~E l @OTSi')
I:.~ASt:li

~rLrLl:\II:l:i'\, 'veI~l()!1 .i, ".6\- l'j/~J

1 : \...' r- r ~. J l ~C.d ... I
i = J' t-t,:,

j :. J t.. ~ 1 ~; , .. ;.~

4 = 1 1:: 1 I. ( . "t, 14

:> = tel:. ... u t·' 1

b = ~ t> '1 1 to\ J' J r. L l ~ U J l hi ~
1 = t. to< A~ 10_ LJ j.. 'I M t\ Aut:
ij = L 1.:-» ~l'" J P 1~
I:. XI'J
~

LI::dl(~u (J ..

j

SCt<ll-"l r JLt' l'4k M t.! Ut,U0Ct~P'J

lkAN~ACl1n~ bb CM~C~iU

a-02.30



SAMPLE IDEA OUTPUT

"'UN. nrT 16, 11;/('4. H:'l? A~ SUMMARY REPORT PAGE 1
IOF A v.o JERII (AVERAGES)

)("rTI NO Ot- ~"r"'ROIN~ THINK-rIME TOTAL-DELAY RESPONSE CyCLE-TIME TRANSACTIONS
p~(lrF..S' TI"'t~ r I ~F (A~ (R) TIME (C) (A+a+c) PER HOUR

~"'I
, 2'+~ .n Sr:Ce 43.1 st.(;S 43.9 SECC; .9 SEeS 44.9 SECS 80

f,hl '? 2f'\ ." SE.Cc: 41.~ c:t:.~s 41.8 SECC; .5 SECS 42.4 SECS 85

"hl ~ 24 ." SECc: 43.H c;t.<.,s 44.3 SEcs 1.0 SEes 45.- SECS 79

OJ 6t't1 4 25 .n SECr- 42.1 ~t:.~5 42.3 SECS .6 SEes 43.0 SECS 84
I 66/ " 2~ .n Sf.C~ 42.~ c:;t.l.S 43.3 SECS .8 SECS 44.2 SECS 81
s f.:,hl f- 2~ .n SECc: 42.~ C;l:CS 42.6 SECc; .9 SECS 43.5 SECS 83IV.

""'1 7 2~ .n !'o;fCc: 42.t! c;t.l.S 42.4 SEes 1.7 SECS 4 4 .2 SEes 81
w..... ,.,f.:il ~ c~ .0 C;f:Cc: 41.' ~t.(;S 42.4 SECt; .6 SECS 43.1 SECS 84

"61 c ?~ ." SFC~ 42.~ ~t.('s 43.2 SEcs .9 sics 44.3 SEes 81
(,h 11 ,. l:'~ .n srcc: 42.J ~t.CS 42.1 SECS .8 st.cs 43.6 SECS 83
17/ 1 ~r • n SF-.Cc: 32.b c:t.l.S 32.8 SEC~ .9 SECS 3 3 • 8 SECS 107
771 ;.:> Jf.' .'" ~~eC" 32.d ~t.(;s 33.0 SEcc; .8 SEes ~3.9 SEes 106
1jHI ,

'. 7 ." SF"Cc: 21.'" c:t.l,;S 22.0 SECt; .9 SECS 23.0 SEes IS1
~HI ? 4~ .n SFCc- 23.3 ~t:.l.S 23.7 SECS 1.0 SEeS 24.8 SEes 145

--------.--
f\VG Pr.-sPON~F.-TII14~ FOR TERMINAL MI~ .9 SEes

--_.-.----
TI)TAL ~UUfo<LY THRU-tJlJT f-OH T"'E MIX 1336



~--------------------------- HEWLETT'PACKARD

512K HP 3000 SERIES II

= 1875 TRANS/HR

WITH COBOL COMPILES IN BACKGROUND

TARGET = 15,000 TRANS/DAY
8 HRS/DAY

--------------------- -

TOTAL THROUGHPUT
RELATED TO NUMBER OF TERMINALS

MACHINE DEDICATED TO TERMINALS

'-_--0-... .......
.",-- ......

P' ......
/ '"/ "'0

/
/

/
/

.,-/
",,",",/

,/
/

/
/

/

//,JI'
--------T

/

~
/

/
/

/
/

/
~

5100
4900

4700
4500

4300

4100

3900
3700

TOTAL 3500
THRU- 3300
PUT 3100

2900
2700
2500
2300
2100

TRANS 1900
PER

HOUR 1700
1500

1300.
1100

900
700
500

300
100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

NUMBER OF TERMINALS



~--------------------------- HEWLETT'PACKARD

512K HP 3000 SERIES II

WITH COBOL COMPILES
IN BACKGROUND

DEDICATED TERMINAL,
I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
/

/'-------------;r----'------
" TARGET RESPONSE = 2.5__ -0-----...... ...-. SECONDS OR LESS

.".,D-------~- -----­
o-----~-------

RESPONSE TIME RELATED TO
NUMBER OF TERMINALS

15

14

13

12
R
E 11
S
P 10
0
N 9
S

o:J E 8I
lS)

N T. 7w I
w M

E 6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22-23 24 25 26 27 28 29 30 31 32

NO. OF TERMINALS



~------------------ HEWLETTlpACKARD ---........

DISADVANTAGES OF PERFORMANCE MEASUREMENT

• DOES NOT TAKE INTO CONSIDERATION
THE APPLICATION OVERHEAD SUCH AS:
• APPLICATION PROGRAM SOURCE LANGUAGE

• DATA EDITING ROUTINES

• NUMBER CRUNCHING

• DATA BASE IS USUALLY NOT FULLY LOADED

• DATA BASE ACTIVITY IS USUALLY "BEST GUESS" SITUATION



~----------------- HEWLETTlpACKARD ---1IlIIo...-

ADVANTAGES OF PERFORMANCE MEASUREMENT

• NOT A SIMULATION - PERFORMS THE ACTUAL DISK 110

• FEASIBILITY OF DESIGN MAY BE DETERMINED WITHOUT

WRITING APPLICATION PROGRAMS

ESTIMATES "BEST CASE" THROUGHPUT AND RESPONSE TIME

AIDS IN DETERMINING HARDWARE CONFIGURATION REQUIREMENTS

.
MAY BE USED TO MODEL CURRENT DATA BASE ACTIVITY AND

• DEDICATED COMPUTER SYSTEM NOT REQUIRED

•••

w
V1

THEN THE IMPACT OF FUTURE DESIGN CHANGES



CD
I

c:g
IV
•

~--------------------------- HEWLETT'PACKARD

SUMMARY

• DATA BASE DESIGNER COULD BENEFIT FROM A COMMON DATA BASE DESIGN

METHODOLOGY

• DATA BASE DESIGNERS NEED A TOOL TO MEASURE PERFORMANCE BEFORE

APPLICATION IMPLEMENTATION

• HEWLETT-PACKARD HAS BOTH!



IMAGE DATA BASE DESIGN AIDS

INTRODUCTION

One of the concerns of the data base designer is the lack of a
data base design methodology. The following data base design aids have been
developed to provide some direction and a logical approach to assist the
data base designer in this most important phase in the implementation of
a data base.

The approach taken here is by no means the only way to design a
data base. It is simply a logical approach starting by gathering the general
overall information about the host computer system and the data base appli­
cations and then working down to the detail of the actual DBMS calls against
the data base. The main benefit of using these design aids is that they force
the designer to gather the pertinent information related to the data base
application so intelligent design decisions can be made.

It is assumed that the users of these design aids have a good
understanding of IMAGE.

DATA BASE DESIGN AIDS

Preliminary Investigations

Before beginning the data base design process, the data base designer
should first become familiar with the organizational structure, business func­
tions, and objectives of the company and the specific group for whom the data
base is being designed. This is very important especially if this data base
will be used by upper or functional management to assist in the day to day
decision making process.

Design Aid #1 - Computer/Data Base Environment

The purpose of this design aid is to get anoverall picture of the
environment in which the data base will be residing. This aid provides infor­
mation on the company, the computer hardware, and the major activities or
applications that will be using the computer system and the data base.

Design Aid #2 - User Function Flow Diagram

The purpose of ~his design aid is to identify the data base users
and their respective functional activities relating to a specific data base.
The forms used and the number of users invovled in each type of function are
shown on a flow diagram. This design aid is useful because it provides an
indication of the overall activities being applied against a data base.



The key point to remember here is that each arrow touching the
side of the data base symbol represents a transaction against the data base.
This transaction may consist of a single DBMS call or a series of DBMS calls.
There will be an opportunity to identify these specific calls later, in
design aid number 7, after the data base design has been established.

Design Aid #3 - User Functions and Requirements

The purpose of this design aid is to describe the data base func­
tions in more detail. The objectives of the data base should be listed to
remind the designer of what the data base is to provide.

Each of the arrows (functions) touching the side of the data base
symbol in design aid #2 should now be described further. This includes
identifying each user or batch program and describing the data base function
or activity, the number of online terminals, the number of I/O characters
transmitted to and from the terminals, the key information identifier (the
major search item that a data base user will utilize to identify or locate a
data base record, e.g., order number, part number, etc.), the estimated
time to enter the data, the hourly throughput target, and the response time
target.

Design Aid #4 - Item/Function Matrix

The primary purpose of this design aid is to identify all the items
in the data base and then relate them to the functions described in the
preceding design aids.

In addition, the item type and size are included because these are
useful later in the data base directory. Also, indicating whether the
item is a search item (key) is important because the search item is the basis
for a manual or automatic master data set. Furthermore, indicating that an
item is a sort item assumes a detail data set chain will be sorted by that
item. The update frequency of an item can be useful to identify the high
activity items which can affect the design of the data base by possibly
locating those high activity items together in the same data set.

This is the last design aid before the actual data base design
decisions are made. Additional data usage statistics may be appropriate
before the final design decisions are made.

Design Aid #5 - Data Base Model

The purpose of,this design aid is to provide a visual represen­
tation of the data base by showing the data set relationships. This is
where the design decisions are made! The data base designer must now
"earn his keep" by assimilating all the information gathered in the previous
design aids as well as drawing on prior data processing experience to come
up with a design that satisfie~ the needs of the data base users.

If there are any words of wisdom to assist the designer in
making these important design decisions, they are, "There is no perfect
design!". The data base designer is usually well aware of the fact that
the needs and objectives of a company or organization within a company
are constantly changing.

B-92.38



Design Aid #6 - Data Base Directory

The purpose of this design aid is to provide a means of writing down
the structure of the data base. Later, this structure can easily be trans­
lated into the data base SCHEMA using the TEXT EDITOR.

The information requested is self explanatory.

Design Aid #7 - Detailed Activity Against the Data Base

The purpose of this design aid is to indicate the detailed activity
against the data base for the purpose of identifying the DBMS calls required
to complete a transaction. This information alone may help the experienced
designer to estimate the load on the system. This design aid is primarily
used as a worksheet for a performance measurement tool called IDEA which
is an acronym for IMAGE Database Evaluative Analyzer.

Two versions of IDEA (Series I and Series II) which were written by
HP System Engineers are currently available in the Contributed Library (the
Series II version will work with the Series III). A new enhanced version of
IDEA has been made available to our field system engineers who specialize in
performance measurement consulting.

8-02.39



NEW FEATURES AND LIMITATIONS OF
IDEA VERSION #3

1. Each transaction can reference more than 1 data base.

2. Keys must be of type U or Xwith a maximum length of 254 bytes.

3. Within any transaction, the product of NUMBER OF ITERATIONS and NUMBERS
of PROCESSES must be less than 32768.

4. IDEA permits simulation of up to 60 terminals. The actual limit may
be less due to the number of data bases and data sets involved and
to the system configuration.

5. The maximum record size is 512 words.

6. Modifying the script file must be done under the EDITOR. Remember
to KEEP the modified file UNNUMBERED.

7. TIMING RUN processes do not "give up" at the first functional failure.
They perform "retries" designed to force success so that they may
continue with minimal impact on performance. If, for example, a
directed GET fails, the data set is "rewound" and a serial GET performed.
This fails only if the data set is empty, in which case the TIMING
RUN is terminated.

NOTE: These "retries" are logged and appear on the REPORT.

8. For each directed GET, a random number between 1 and 100 is used as the
address of an entry to be a read. The probability that a "retry" will
be required depends, in this case, on the capacity and fullness of the
data set being accessed.

9. The processing which handle a transaction are created with a user
specified stack size.

10. IDEA can be run remotely.

11. Multiple data bases may be accessed within a single transaction.

12. Key lengths can exceed 20 characters.

13. Mode 2,4, and 5 "GETS" (with or without update or delete) can be
multiple GETS.

14. No longer necessary to always perform a data base load.

15. The loading is about 7 times as fast.

16. Data bases can be erased by IDEA.

B-02.40



1,7. The only "files" the user has to IIbui1d ll are the data bases.

18. A test run can be made to check the script.

:19. A "firsttime" pass through the script is also perfonned by each process
prior to proceeding to the timing portion of the timing run. Puts and
deletes are bypassed during this pass. IDEA monitors this on the
screen by displaying one of the digits 1,2,3,4,5,6,7,8,9,0 cyclically,
and in that order, each time a newly activated process completes this
first-time pass. It only creates and activates another one after the
preceeding one has performed successfully.

20. IDEA handles all files and data bases so that none of them are left
lying around. If the program should abort for any reason, this will
generally not be true.

21. The timing processes all terminate when anyone of them terminates. They
do this without logging any more timing records.

22. An impatient user can also force early termination by entering Control-Y
at any time after the timing run has begun. The response to the Contro1-Y
may be quite slow due to the resource cleanup which transpires.

23. The logging file (IDEALOG) is sorted only once into the sort file (IDEASORT)/
Both files have 108 byte records with a blocking factor of 7.

24. The timing processes all close the input script file to release the system
resources tied up by leaving them open.

25. The timing processes append share the IDEALOG file in multi-access mode.
This minimizes the number of resources needed to support the logging
function.

26. IDEA and the timing processes communicate via a job control word (JCW).
Local rins are used to control access to the user's terminal, and the
JCW when writing II.

27. A local rin is also used to queue up each timing process until they
all have been successfully activated.

28. The timing process does not give up at the first functional
failure; it perfonms recovery style retries suitable to the function.
Directed gets, for example, are implemented by the generation of a
random number between 1 and 100 which is used as the address of the
record to be read. If this fails, for any reason, the data set
is "rewound" and a serial get is perfonned. This will succeed
unless the data set is empty, in which case the timing run is terminated.

8-02.41



Helpful Hints

1. It is best to run IDEA stand-alone. This permits you to obtain timing
data not impacted by other processes. It also maximizes the probability
that the system resources required for a given TIMING RUN will be
avaiable.

2. If you wish to test a given script with a varying number of processes,
start with the maximum and modify the script for lower values on
subsequent runs. In this manner, the starting script can be used to
LOAD the data base once so that all subsequent runs can be performed with­
out reloading.

3. Scripts with PUTs and/or DELETEs are likely to encounter problems during
TIMING RUNs which may lead to early termination. For PUT scripts, pro­
blems include full data sets, duplicate masters, absence of a required
chain head.

4. For DELETE scripts, problems include empty data sets or attempting
to delete a master with related detail entries.

5. Processes are launched for each transaction in the same order as the
transactions are defined in the script. By entering the transactions
with the slowest cycle time (including THINK time) first, all processes
will get into playas early as possible. This will make the resulting
statistics most meaningful and with a minimum number of iterations.



IMAGE's COMING OF AGE: Breaking free from restrictions to

Data-Base transformations.

F. ALFREDO REGO

Chairman, Software Department
Instituto de Informatica y Ciencias de Computacion
Universidad Francisco Marroquin
6a. Avenida 0-28, zona 10
Guatemala, GUATEMALA.

ABSTRACT

A computerized data base should reflect an organization's
way of behaving. As real-world circumstancies change, forcing
the organization to adopt new ways and abandon old ones, the
data base should also adapt itself.

Hewlett-Packard provides tools, such as DBUNLOAD and
DBLOAD, which allow a limited set of transformations to
IMAGE/3000 data bases. But these tools do not lend themselves
to the easy implementation of the radical transformations that
are sometimes necessary. The restrictions of these tools, we
feel, are analogous to the do's and don'ts imposed on children
by loving parents.

Taking into consideration that children (just like computer
users) eventually come of age and will do their own thing
despite formidable restrictions, we have developed a software
system called "DATABASE.UTILITylf to help IMAGE/3000 users out of
their data-base transformation predicaments.

"DATABASE. UTILITY" is an MPE 'group.account' that contains
a set of software modules designed specifically to allow a large
selection of transformations to IMAGE/3000 data bases without
having to mess around with magnetic tapes or schema recompilations.
And, in good parental fashion, this system also keeps a watchful
eye for any possible difficulties that might potentially upset
the health, consistency "and integrity of the Ifadolescent" data
base.



Concurrent data-base operation and evolution, data-base
adaptability, data-base consistency, data-base conversion,
data-base design, data-base integrity, data-base redesign,
data-base restructuring, data-base management systems, DBMS's,
data-base transformation, Hewlett-Packard's lMAGE/3000 Data-Base
Management System, root file transformation, schema changes.

How can I be ABSOLUTELY sure that my data-base design is perfect?
How can I GUARANTEE that I will NEVER have to change it to meet
unexpected shifts in my organization's way of doing things?

If I can not answer these questions to my satisfaction, then
what type of tuning (and fine-tuning) tools do I need to
facilitate the constant and inevitable evolution of my data base?

What type of questions worry me about the tools I have
currently available to me? And what type of questions linger in
my mind as I dream of better and more effective ways to do what
I have to do anyway?

Why do I have to COMPLETELY STOP the operation of my live data
base, even when I only want to make very slight changes like
password reassignments? Could I maintain concurrent data-base
access while I do certain non-radical transformations or while
I radically transform data sets that are not being currently
accessed? ("DATABASE.UTILITY" ANSWERS: yes.)

Why do I have to spend (a sometimes very long) time to DBUNLOAD
my WHOLE data base to magnetic tape before I transform my
schema (assuming, of course, that I do not want to lose the
live data I presently have!)? Could I skip the whole DBUNLOAD
trip? ("DATABASE.UTILITY" ANSWERS: yes.)

Why do I have to spend (a sometimes even longer) time to
DBLOAD my previous data base, even though I merely want to
optimize the storage locations of a primary path's entries?
Could I simply reshuffle these entries without having to think
and worry about the consequences of having to reshuffle the
whole data base as well? ("DATABASE.UTILITY" ANSWERS: yes.)

Why do I have to PURGE my entire data base, when all I want is
to change the name of a data item? Could I simply make changes
such as this without having to kill (and then re-issue life to)
my data base? ("DATABASE.UTILITY" ANSWERS: yes.)

B-03.2



- Why do I have to EDIT and recompile my schema, when I simply
want to change the read/write capabilities of a user class?
Could I dinamically do this while the data base continues to
earn its living? ("DATABASE.UTILITY" ANSWERS: yes.)

Why do I have to CREATE, from the newly produced root file,
a brand-new data base, if the old one was just fine except
for the capacity of a data set? Could I change the capacity
of a data set without having to go through this process once
more? ("DATABASE.UTILITY" ANSWERS: yes.)

Why am I at the mercy of subtle schema changes that CAN cause
very unpleasant surprises, even after my previous data base
has apparently been successfully DBLOADed to my new data base?
Could I have some 'editor' which would make sure I do not
clobber my schema? Could I know, before I ruin anything, that
my data-base transformation request is illegal? Could I have
a dialogue with the system to "discuss" the possible consequen­
ces of subtle changes in transformation requests? ("DATABASE.
UTILITY" ANSWERS: yes.)

Why do I have to write special application programs whenever I
need to transform my data base in ways that are not supported
by IMAGE/3000's transformation utilities? Could I have a
flexible, non-procedural system that would even assemble data
entries from bits and pieces taken from other data entries
from the same data base, or from other data bases, or even from
good old MPE files? Could I do data-type conversions (from
integer to byte, from integer to double-integer, from byte to
real, from integer to logical, from floating-point to byte with
decimal-point suppression and decimal-place right-justification,
etc ••• ) if the source data type does not match the destination
data type? ("DATABASE. UTILITY" ANSWERS: yes.)

"DATABASE. UTILITY" is an MPE 'group.account' with privileged
capabilities assigned to it by the computer installation's system
manager.

All our design trade-offs have one main objective: to
preserve data-base consistency and integrity. We strongly feel
the same way about preserving other user's domains and, of course,
about preserving the operating system itself! Therefore, all
privileged instructions in "DATABASE. UTILITY" are executed in
bracketed fashion (that is to say, the programs execute in user,
non-privileged mode 99% of the time; whenever it is imperative
that privileged instructions be executed, a dynamic call to the

8-03.3



GETPRIVMODE system intrinsic is made immediately BEFORE the
privileged instruction; then, a dynamic call to the GETUSERMODE
system intrinsic is made immediately AFTER the privileged
instruction.)

A good 90% of all module axecution times is spent in making
reasonably sure that the requested transformations are legal and
will not produce unpleasant results. Complete log-on subsystems,
analogous to MPE's, check to see that only authorized users
access the programs. An IMAGE/3000 data base (of course!) is
kept for all programs, users and transformations as applied to the
various data bases in an installation.

At the least sigh of trouble, the target data base or data
set is purged and the old one can be salvaged.

When necessary, the root file is appropriately "updated";
MPE files are created or purged as needed; data sets are re­
organized to include or exclude structural information; data sets
and data items are re-numbered if any intermediate elements have
been eliminated, etc.

The Data Base Administrator (DBA) can easily obtain an
up-to-date picture of the transformed data base by means of
QUERY's "FORM" command and our own "PASSES" program. "FORM" lists
data sets, data items and paths as defined within the data base's
structure. "PASSES" lists passwords and user read/write classes.

1) NON-TRANSFORMATIONAL

ASSEMBLE: Assembles data entries ("records") for master or
detail data sets from one or more data sets or MPE

files. The source data sets may be mixed from several data
bases and may be either details or masters. The source MPE
files may be accessed sequentially or directly by key.

The program asks all relevant questions, such as data-item
types (integer, byte, logical, etc.), beginning byte or word
in the source entry/record, etc. If it detects inconsistencies
(for instance, if the source data-item type is byte and the
target data-item type is double-integer), it explains them and
requests instructions to perform one of several possible
actions, depending on the particular circumstances: ignore and
re-try? do data conversion? ••.

B-9J3.4



2) GLOBAL DATA-BASE TRANSFORMATIONS

COPY: Copies a data base from a source 'group.account'
to a destination 'group.account'. The data-base

creator MUST RELEASE the data base beforehand.

RELEASE: Releases the root file and all MPE privileged files
assigned to a data base, so it may be copied from

another 'group.account' (or accessed through QUERY or other
application programs when running from other 'group.account')

SECURE:

RENAME:

Reverses the effect of "RELEASE", securing the data
base from access through other "group.account'.

Assigns a new name to a data base. Changes MPE
file names as well as internally-kept IMAGE names.

PASSES: Reports, lists, modifies, assigns, re-assigns, takes
away, etc., maintenance passwords and read/write

passwords and class numbers.

PURGE: Purges the root file and all MPE files assigned to
a data base. Loops around asking for other data

bases to be purged, instead of ending after having purged a
data base as "DBUTIL, PURGE" currently does.

AUDIT: Produces a report of the usage of "DATABASE. UTILITY"
programs by user, program, data base, etc.

3) TRANSFORMATIONS OF DETAIL DATA SETS

NEWDTAIL: Adds new detail data sets to the data base (with the
appropriate new data items, if needed.)

CAPDTAIL: Modifies the capacity of a detail data set, preserving
all current chains and making sure, in the case of a

decrease in capacity, that the target capacity is at lease equal
to the lowest permissible capacity for the given set's status.

B-03.5



KILLDET: Deletes a detail data set, making sure that it is
safe to do so. It optionally dumps the entire set

to an MPE file in the format specified by the user (or dumps
only those data entries within the data set that meet the
boolean specifications given by the user.)

4) TRANSFORMATIONS OF MASTER DATA SETS

NE~TR: Adds new automatic or manual master data sets to the
data base (with the appropriate new data items, if

needed.)

CAPMASTR: Modifies the capacity of a master data set,
preserving hashing properties for calculated access

and chain-head structural information. Reduces synonYm
occurrences by suggesting program-calculated prime-number
capacities in the neighborhood of the user-specified capacity.

KILLMAST: Deletes a master data set, making sure that it is
safe to do so and that no chains will be left hanging

without chain heads. It optionally dumps the entire set to an
MPE file in the format specified by the user (or dumps only
those data entries within the data set that meet the boolean
specifications given by the user.)

5) TRANSFORMATIONS OF DATA ITEMS

NEWITEM: Adds new items to existing data sets.

KILLITEM: Deletes a data item from an existing data set. If
all data-set references to a given data item have

been deleted, the item is also deleted from the root's item
table.

RDEFITEM: Re-defines the type of a data item (from integer to
byte, for instance), and does all the appropriate

data conversions if necessary. If the new data type has a dif­
ferent word-length count, all data sets that reference the
given item are re-organized to reflect the new structure.

8-03.6



6) TRANSFORMATIONS OF ELEMENT REFERENCES

NEWNAME: Assigns a new name to a data item or a data set.

Checks non-duplicity and legality of new name.

7) TRANSFORMATIONS OF ACCESS PATHS

NEWPATH: Defines a new path connecting an existing master
data set to an existing detail data set by means

of an existing data item (i.e., it upgrades non-key data items
to the status of key data items or SEARCH ITEMS.)

CLOSPATH: Deletes a path between a master data set and a detail
data set. (i.e., it downgrades key data-items or

SEARCH ITEMS to the status of non-key data items.)

SORT:

UNSORT:

Upgrades non-sort data items to the status of sort
data items for a given path.

Downgrades sort data items for a given path to the
status of non-sort data items.

PRIMARY: The path most frequently accessed in chained mode
should be specified by the Data Base Administrator as

the primary path for a detail data set. Should this state of
affairs change, the DBA can specify that another path become
the primary path for the detail data set by means of this program.

PAVEPATH: Reshuffles the entries of a detail data set so that
the entries of each chain within the primary path will be in
contiguous storage locations (for efficiency's sake in chained
retrieval.)

8-03.7



CONCLUSIONS

A) PARTICULAR:

"DATABASE.UTILITY" worries and keeps track of all IMAGE/3000
internal housekeeping, while the data base evolves.

The user is, then, free to concentrate his/her energies on the
ONLY housekeeping task that really matters to him/her: THE
DATA BASE'S ACCURATE REFLECTION OF THE ORGANIZATION'S WAY OF
DOING BUSINESS.

The user can, now, specify WHAT he wants to have in his data
base, knowing that tomorrow he can easily re-specify his
requirements without having to fear lack of compatibility. HOW
this is accomplished is the responsibility of "DATABASE.UTILITY".

B) GENERAL:

Our research and development team has concentrated its efforts
on helping users of Data Base Management Systems realize the
tremendous potential of this emerging computer technology.

In this report we mention only some of the projects that keep
us busy and happy in the Land of Eternal Spring, Guatemala.
Currently, we have software systems in various stages of
development. The wide range of status is illustrated by the
fact that some have been successfully installed at customer
sites after alpha, beta and gamma tests and some others have
just been dreamed up (such as our data dictionary project.)

To widen the scope of our activities, we would appreciate
hearing from those researchers, developers, users and friends
of Data-Base Management technology who share our enthusiasm.
We will carefully examine and consider all suggestions and
criticisms as well as any proposals for cooperation.

---------------ACKNOWLEDGMENTS

We wish to express our appreciation to all our associates and
friends who, directly or indirectly, made our software projects
possible. In particular, we are indebted to: Jon Bale, Gabriel
Buzzetti, Enrique Castillo, Alex Dengo, Pablo Gutierrez, Lissa
Hanckel, Max Holzheu, Jerry Johnson, Einar Klanderud, Orly Larson,
Jose Miron, Felix Montes, Manuel Ponciano, Clara Maria Ramirez,
Patricia Springmuhl de Rego, Simon Sibony, Sergio Tenenbaum,
John R. Trudeau, Fred White, Rene Woe.

R-03.8



Faster wltn FAST KSA~

by
Stephen M. Butler

Director of Data Processing
Paradise Valley Hospital

National City, CA

Being a hospital, we maintained a manual index to patient numoers. The

mecnanlcal device was overloaded (2dO,OOO in a 250,000 capacity Die­

bold), and the repair bills were worse.

During the analysis at the HP-3000 a prototype computerized Medlcdl

Index using IMAGE was written; but ALPHA or NUMERIC sequence searches

could not be used--who wants a sorted chain of 280,000+ entries. A

pnonetic search was implemented but the chain had cases of 2000+

entries. A generic key capability for the phonetlc-birtndate search

mechanism was needed.

The prototype index qave us the impetus to acquire the 3000. As the

conversion from a Honeywell 115 neared completion, KSAM became avaIl­

able. It had the capabilitIes needed:

1. Multiple keyed ISAM.

2. ~eneric Keys.

We claim to be the GAM~A test site tor ~SAM--if such exists. It seems

tnere -ere updates every other weeK-eat least we saw our SE! Finally

ttlere was a ve r s ion 0 f t< SA,., .Clean en 0 ug t") to at t empta loa d 0 f t ne

2bO,OOO+ records. It took 5 days for the disK drives to survive the

Sllal(e out test; but one of the other systems started acting funny. 500n

we ~ere ifl the GA~MA test pnase again. After several attempts to fix

tne bug, the SE took our test proqr~m and disappeared. (He claimed he

wouldn't CORle baCK until there was a version of KSA~ that would work on

h 1 S md c tl i ne ~ )

Toe next ~eeK hp lal~ the update tape on OUT aeSK; we hao become past

masters of doinq KSAM updates. The s~'s parting comment was, "That 5

day load should be faster." "Did we get FAST KSAM?" "Can't say; but

don't tell anybody else."

The reload took 2-1/2 days. Not the 1000% improvement expected, and

tllece were more DUgS. So, we wranqled a day at the lab to find out wny

a particular DUg nad so many tacets and why it wab tAking upwards of a

month to fix a prOblem we felt was critical. A lot of information was

passed in botn directions, and thP. lab thanKPd us for being a Bf.TA test

site. ~lshed some~ody had told us soon~r!



faster with FAST KSAM

Toe new version ot KSAM WnS quoted to be the pr~-release version tnatwould follo~ the ~lT tollo~lng 1814. That was Feb. 9, 1978. It passedall our tests and 1s no~ on the 1814 M.l.l.

follo~lnq tips fro~ the lab, the load took 20 nours. ~ot bad for2~O,OOO records. In retrospect we are nappy to have piCKed KSAM.

KEXEXL.E

An understand1ng of toe KE~FILE w1l1 help 1n knowing ~hY the tollowinqtips work. A close reading of the new Appendix B in the KSAM manualwlll be useful.

First, the ~EYFILE record size Is one sector (128 words: 25b bytes).
Tne ca~L block Is described In FIGUR~ 1. The number of keys perrecord is the ~aln 1tem of interest.

CONTROL BLOCK (first bicd< in each key file)

Total file accr.ss
counts, used by
VERIFY command

4.------- specifies number of
keys defined for file

.------ identifies data file
associated with
key file

Oat::J File N"me

DatcfTime

Ver~i(lIl/f=i"

:: Reeol us in D~·llcJ File
;;[3'ocks in Of'lt;) File

:; Words in L;;st ihta File Block
D<:ta File Bk~ckin!1 Factor

Data File (,{'cord Sile

Intrinsic Calls
(each a nou!>!e word)

Ke'{ Blv~k f1!:~d Count£:r
Key block Wriu! 'Counter
Key Block Sr.,I;! Counter

~ <)

t
;; :(e'!'i

~

77

4·15

128

25·58

59-60
61-62
63-64

16;17

18-19
20-21

22
23
24

Word
0-3

fIGURE 1. CONTHOL 3S0CK lauout. N tzoe word 77.

8-04.2



Faster with FAST KSAM

Tne ~Lw::scauuaa bloCK n-3S one entry of B ~ords for each detined
key. The detailed layout Is in FIGURE 2. The most usetul items right
now are tne pointers to toe ~OOT KEY ~NTRY bloCK tor eaCh of the defined
keys.

bits = 0 1 3 4 7 8
\'/ord

15

Allernate
Key 1

prim.)ry
key

128

9

o
1

2
3

14
15
16

2
3
4

5
6

7

8

~ Disc Addrcss of noot Bloc:':
1

kcytype T key SilC

.. kcy sliJrtillq location

Df key hlochll1 filctor

lc key flag) :# of trl;e levcls I
reserved

• 1

T 1

• 1

T 1

I

r
additional t>ntrics for up rto 15 altcrnate keys

pointci to primary -­
key root block

(D=Duplica

locction in dilta r('cord --­
of primary kc'y'

location in d.HJ record --­
of ht alternJ~e key

pointer to 1st a!ternate --­
key root b:ock

FIGU~~~. KEY D~~~K!PTOR BLOCK. Each entry con-
si~:s of q words. The RESERVF.D area Is a
~ointer to the free list chain for this
Key.

The ~~IB~ blocks contain the Key values and pointers used to make
KSAM do its thing. A QuiCk look at f"IGURF. 3 ~11l show that a Key entry
is composed of:

1. DOUble-word relative record number of the KEY ENTRY
block that sequentially comes before this entry.

2. KEY value as it is in the Data Record. A
byte is at the end if the key length is odd.
slacK byte IS NOT initialized.

slack
This

B-04.3



Faster with FAST KSAM

3. Double-word relative record number of the data
record 1n the data file.

4. Double-word relative record number of the KEY ENTRY
block that sequentially comes after this entry.

FlGURC-' 3. K~V~ ~~ E~TRY. $ee text for description of
numbered items.

With two or more keys item 4 becomes item 1 for the next Key in that KEY
ENTRY bloCK, see Figure 4. Thus there is 1 more ~EY ENTRY pointer than
the number of active keys in that block. Since each KEY ENTRY has a
data pointer also, the number of double word pointers can be written as

2N + 1

wnere N is tne number of keys per KEY ENTRY bloCK.

Eacn KE~ ENTRY bloCK starts out with a double-word inteQer whose value
is the relative record number of that bloCK. The next wora nas a count
ot the number of active keys 1n this KEY ENTkY block. Subsequent
records within the same KEY ENTRY block do not have this information.
Tne key value within a KEY ENTR~ block can be split across the physical
blocks of the KEYf'ILE. Using reOPY to dump the KEYFIL~ with ·:~OKSAM;

OCTAL:CHAp· options wl11 allo~ a person to inspect the actual layout for
a particular file. Thus a person could simulate conditions that would
normally be hidden deep inside a large file. Unce you know the general
layout you will quiCkly piCK up tne specific pieces of information
neeaed to navigate through the KEYFILL.



f'aster ~itn fAST KSA~

FIG U? ~ 4. KEY I::: ~J TRY RL0 Cf\ • W0 r d s 1 & 2 con t a i nthe
relntive record number' for this block.
~·,ord 3' contains the number of acti ve
K-?"/5. ~iot ice how i terns 4 and 1 are
shdred by adjacent K~Y ENTRYs.

we nave sppnt upwards of two days at a time sifting through a KEY~'IL~ in
tnis manner in order to pin point KSAM bugs. On one occasion a bug
seemed to occur only on our 280,000 record KSA~ file. ~y DOSS bet a
milKsnake that I couldn-t simulate it with less than JOO records. I did
it with ~--but I first knew exactly what ~as happeninq.

F!GuR~ ~ can be followed to calculate the blocking tactor (BF) tor each
key. A specified BF is used as a minimum and Is adJusted upwards to
make full use of any remaining area in the last sector. The default SF
1s cnosen so that the ~EY EN~RY bloCK ~i11 span b sectors--l024 ~ords

(2048 bytes). If the KEY ENTH} block spans mor~ than 16 sectors (2048
wordS or 40~b Dyles), the BF is rpducea so a maximum of 16 sectors is
usee.

Wltn multiple keys the largest KEY ~NTRY bloCK sJze Is used to calculate
the SF for a 11 keys. Thus all KEY f:NTRY blocks occupy the same number
Dt sectors. Tnis along ~1th thp 16 sector maximum are by-products of
requirements tor using the KSAM extra data segment.

8-9)4.5



ICS a key size in bvtn
ES • key entry size in words
IF • blocking flCtor Cnumber of key entries per block)
IS • key block lize
FL· .... file limit in records
NB III number of seeton per key block
FS - key file ,ize in Hctors
r 1 - round up LJ. round down

eScl02~

(def2Ji~~

N

ES· LeKS + 1) /2J+4 4 2 words/pointer

.. 1~ fewest # words that contain key entry

BF specified?

Iv N
r F -= ~v:m n,J~b£'r? ----... error

Iv
as a (ES X BF) + 5 ••----3control words +2·word pointer

1
NB E' r 85/1281

1t ,"words in 5CCtor

BS c N3)( 128 41-----optimum block Jize

1
BF c r (L (B5-5) /ESJ -1) /21 x 2· 4---- adjusted SF

I '

I
~ # key entries in block

1 ~ rounded to nearest even whole #"

N
FL s()ecifi~d? ----1
1V FL· 10~4 (dpfaultl

.....

Fs-crFl/BFl x2)xNB

t double # of "blocks fOI block splitting

FIGURE 5. C~lculatlng blocking factor (8F) and filesize (rS) for one key.

8-04.6



Assume a rile with 2 keys defined as:

KE\,· 0.1.53,12
KEY • 8.54,13.20

For Key 1:

KS:-53
FLa 1024 (default)
BF c 12

Calculation of FS:

ES=- L(53+11/2J+4 c 21+4 -= 31

BS=(31x12)+5 c 317

NB=r377/1281= f2.91c 3 sectOi'S

BS- 3x128 :: ~S4

-S F- r CL(384-5)i3 j J-H/21x2

- r( L12.2J-~) /21,..2

• r(12-1)/21~.2

• rS.Slx2 t= ex:! • 12

FS=( rl024/121 >:2) x3

a( r85.31x2;:'t3

• 516 sectors

For Kev 2:

KSc 13
FL-l024 (default)
BF::20

ES=L(13+1)I2J+ 4 c 7+4 =: 11

SS= (11x20) +S c 225

NB=r225/1281= rl.751= 2 sectors

BS= 2x128 I:: 256

-SF= f(L(256-S)/l1J -1)/21 x2

c r( L22.8J-1) 121 x2

c f(22-1) /21 x2

• fl0.S1 x2 a 1,)(2 c 22

FS=( rl024/221 )(2) x2

.( f 46.S1 x2) x2

• 188 sectors
1----------------------------------------4

Since key 1 has t'le largest block si7.e (384 words in 3 sectors), its blocking factor is unchanged_ The blocking
factor for key ') is ~dj:.'~ted so it ha~ thE: same block size. The following values are used:

ESc 11 ...---- ~~t!'y size calculated for key 2
BS~384 .. b~ock !tile I)f key 1 (now used for key 2, also)
FLc l024 .. default file size in words
NB~3 .. number of sectors needed for each block of 384 words

Calculate the new blocking factor for key 2:

-BF:: f(L(384-5/11J -1)/21x2
I: r( L34.4J ..1)/21x2
c f16.5 1x2 -= 17x2 c 34

FS=( r,024!341x2) x3
c( r30.11 x2) x3 ;: 186 $actors

SUln:ni":i ~l, •• ~\·.O filp. sizes and &Stirling tV'!" sectors for control "net key descriptor information, the total file

size in sectors is:

~16 + 1EtC) + 2 :; 70·\ sp.cturs

·The .algorithm to calculate OF can be explcsscd more simply if the result can be checked for an even
numlJcr:

BF;:LBS-5/ESJ If BF is an odd number, set UF=Uf-l

FIGURE 6. Calculating file size (FS) for roultlple
keys.

B-04.7



Faster with FAST KSAM

FIGURE 6 shows how the size Of the KEYFILE is calculated. Since eachblock can be a mlnlmun of half fUll, twice as many KEY ENTRt blocks areassigned as would be needed if each block were full.

KSAM
Extra Data Segment

Data used
by VERIFY

Current data record, .......
& key comparison area

Current dato bl~c~ ----+

~1 key block PH b:.;ffer

~

STATISTICS
CONTROL BLOCK

&
KEY DESCRIPTOR

BLOCK

Working Storage

Data Block
Buffer

Key Block
Buffer

Key Block
Buffer

•••
up to 20

Key Block
8uffer~

A (approx. 1~K bytes)

B (maximum 4K words)

C # of key block buffers
x kcy block buffer sizc
(maximum size per blC'ck
=4K bytcs)

Total Extra Data Segment sizc = A + B +C (maximum 32K byte!;)

FIGURE 7. KSA~ XDS.

8-04.8



Faster with FAST KSAM

The new features of FAST KSAM can now be put to use. An extra data
segment (XDS) Is used to handle all I/O to the KSAM file. The size of
this XDS is limited to t6~ words. Approxiametly 1-1/2~ are used for
overhead and control information. Only one buffer Is used tor the
DATAFIL~: it has a maxlmuro of 4K words ana Is the size of one bloCK from
the DATAFILE. We use a program that calculates the best BF that w11l
fit in 8 or fewer sectors so the data buffer will be lK or less. The
rest of the XDS can be used for KEY ENTRY buffers.

To find how many Duffers could be used (all calculations in words):

1. Subtract the J-l/2K of overhead.

2. SUbtract the size of the data buffer. Lets assume
IK.

3. Divide what's left by the size of a KEY ENTRY
block--default is IK.

4. Round the answer down to the next integer.

So, (16K - 1-1/2~ - lK) / lK = 13 buffers.

To get them:

:FILE ksamfile;DEV=,,13

It this would cause the XDS to be larger than 16K words, KSAM will auto­
matically decrease the number of buffers.

Since KSAM does have a fairly good algorithm for choosing the default
numoer at key buffers (see FIGURE 8), once the file has stablized you
may wisn to restrict the use of the FIL~ equation to loading or other­
wise maKing large numbers of changes to the file. If the tile Is empty,
KSAM will default to the minimal number of buffers for the type ot open
specifIed. For this reason you should specify the number of buffers you
will actually need as K5A~ will not allocate more buffers as the file is
fllJ.ed.

Eacn process that opens the KSAM file gets its own XDS. The number ot
bufters in tnese lOSs are dependent upon thp. type of open specified and
tne numoer of keys In the file at the time of opening. Therefore, these
XOSs could nave diftering numbers of key buffers.

R-04.9



Faster with FAST KSAM

Access Type Buffers Assignc:':

Read Only Access 1 buffer per level in prim3ry key structure

Write Only A::.:ss 3 buffers per primary key + 3 buffers per alternate key + 3 buffers

Other Access
1 buffer per level in + 1 b~lffer per level 3 buffers

(Rcad/\Vrit~or +

Update)
primary key structure in alternate key stl'uctll/e

(up to a maximum of 20 buffers)

FIGURE il. Default key buffers allocated at FOPEN.

1)11 PI· J cAtES

Toe other ISA~ packages that 1 am familiar with do not allo~ for dupli­
cate keys. At first glance, one would think it is a blessing that KSAM
does; but to paraphrase the LAB: If there are more than 10 duplicates
for a particular key, then don·t have this key or make it unique.

wnenever a key is added to the file it is added after any duplicates
tnat eXist for that value. KSAM must search the KEYFILE to find that
Idst entry. A START causes a search tor the first entry.

Two ot tne most common ways at maKinq duplicates unique are:

1. ~ut a time stamp (HR:M~:SS) after each key. for
calls less than 1 sec. apart, this ~ould still
leave tnem duplicates.

2. Put a copy ot the primary key after the other keys.

In CO~UL the primary Key must be unique. In the ~edical Index case it
was 7 bytes lonQ so we were not any worse otf than using the tl~e stamp.
Another method will be proposed in the E~HA~CEMEN" s~ct10n.

8-04.10



F" as t e r IN it tl ~','\ ST 1\ SAM

A stand-alone environment 1s not reddily available on our system. The
following tlmlnqs snow notra CPU seconds and WALL TIME to load 1u,000
records into an emoty ~SA~ tile.

Default Buffers 13 Buffers

KSAM expected duplicate
keys and duplicate keys 1111/5333 533/1010
were loaded.

KSAM expected duplicate
keys; but all keys loaded 870/4627 326/484
were unique.

KSAM expected unique
keys and unique keys 1183/5992 389/567
were loaded.

FIGURE 9. This shows the CPU seconds/WALL seconds
to load 10,000 records into an empty KSAM
file. Three keys were used--7 bytes, 20
bytes, and 43 bytes. The BAS1C 1J}"ocedures
were used to load the file.

By correctly specifyinq the numoer of Key buffers and utilizing unique
Keys there ~11l be a marked improvement in throughput. But the other
benefits even out~eigh this.

An example please: two users will access a KSAM file that has 4 records
1n it. we will assume t defined key and a Kf.Y EN'r~~ blocking factor of
4. Therefore, the ROOT K~Y ENTRY block 15 full. Any new records added
to the file will cause a key-block-spllt. we proceed:

1. Both users open the file for shared access.

2. User A LOCKs the file and reads the first two
logical records.

B-04.11



3. User A UNL,JCf<.s tt1e flle -3nd User ~ I,()C~s it.

4. user f.\ ~ritps ~ lecord whose loqical value places
it. IIi •

.> • ' ; s € r H I It. L 1..1 CK5 t h ~ f 1 1e an 11 post 5 t: t~ e l. ~.' c: d t ~ ~

L,)Ulfer~.

o. Tne tile now has 1 K~~ ENTHY in the RUOT bloc~.

this points to two other bloCKS. fhe first OlOCK
contdlns the keys User A just redrl. The second
UlOCK contains the two keys User A expects to see.
In actual practice he should get the record that
user B just posted.

7. User A LOCKs tne file again and calls for the next
RF.AD (sequential ot course).

8. The next KEY E~TPY that User A would previously
have used would have been t3 in the ROUT. At ledst
that is all that KSAM knows. ~ut the kOOT now has
only one entry. Since the 3rd entry no longer
exists we are at the end of the tile, so return an
EOF condition.

User A was lucky. If there had been many KEY ENTRY blocks and User A
had been aown several levels, tne following possibilities could have
happened (we have seen results to indicate they have happened to us):

1. The current blOCK would no longer be included In
the key structure; but tne process Is not aware
that is has been placed in a tree buffer list, so
the process uses it.

2. The same for a previous level; ie, the ROUT or one
of the intermediate levels was moved away from
where we expected it atter the last access.

3. The current or a higher level was reshuffled. All
blOCKS are active; but not necessarily in the same
tree structure as before.

we turned this In as a bug--and promptly got lauqned at. Th1s is one of
those dubious features we all enjoy. KSAM will not keep track of any
reorqanization that may occur while the tile Is unlocked. The butfers
ace re~reshed by the physical blocks that were last used 1n the XDS.
K~AM ~~__QQL check to be sure that these contain the logical values
lciSt used. So, you QUlS.t. reposition the pointer yours.elf. You can do
tnat by using the STARt procedure with a relop of strictly greater than
tn~ Key tnat was returned In the last read even though a number of
Cndllqes may have occurred to the point of deleting the record last read.
Trd s 1 s a mul tl-user online envl ronment, r i9ht! Again:

8-9)4.12



Faster with FAST K~AM

1. LOCK the file.

2. Do a START using last key read and greater than
relation.

3. Now do that sequential READ.

4. If you were going to do a REAOBYKEY or a REWRITE in
random/dynamic mode, then items 2 & 3 are not
needed.

5. UNLOCK wnen done.

Tnat process can't be done witn duplicate keys. If the last READ was in
the middle of a duplicate key, the START would bypass the dUPlicates not
read. Unique keys are a MUST In order to do the above.

In the case of uPdates to the tile, one more item 1s needed--RECORD
LOCKING. Set aside one byte In the record to be a locked/unlocked flag.
Wnen a record is read prior to updating it:

1. CheCK that field--lf it is locked, then report it
as being lockea or work out a mechanism to hang
until it frees up. we don't like hanging up, since
a process might abort and leave a record flagged as
lOCked. It hasn't happened in 6 months at our
site, but? If unlocKPd, then continue.

2. Set the flaq for lOCK.

3. REwRITE the record.

Now you can UNLOCK the file and KNO~ that when you're rearty to update
tnat record it ~ILL BE the SAME. P.S. Be sure to reset that tlag!

If "e f 1nd t Ilfle bet we P. n this wrItIng and the ] n t Prna t 10 na I me e tIn q , we
may have a set of COBOL copylibS to simulate this. We want KSA~ to do a
lot of the dIrty work for us, so:

1. It should automatically call thp LOCK for us if ~e

failed to. Of course, only we know ~hen to UNLOCK,
so this 15 only a oneslded benefit. It ~oula still
be useful.

l. The first call followinq a LOCK (~hether directly
or by 11) should cause a call to tne STA~T to
reposition the poInter, unless this Is a PEAOtjYKEY
or START or K~w~lTl 1n random/aynamlc mode.



Fast~r with FAST KSAM

J. force all keys to b~ unique by:
A. Assignloo a aouble-~ord integer as the primary

key.
b. Appen11nQ this inteqer (4 bytes) to the ena ot

~very key. (Uf course, if one Key ends at the
place the primary key takes off, then 1ust
increase tn~ lenQth ot that key.)

4. AIlo* record lockinQ (1f necessary, set aside one
byte) ie, a read with lock option.

11 everything else 1n KSA~ ~orked tne same, we ~oulo th~~ dptinp a next
step that would reuse space left by del~t~d recoras.

1 • The
two
A.

I::S.

record with a primary key of zero shoulr1 nolo
pointers:
lhe next 1nteqer to be usPd for thE' pr1mary key
(ie, EOF pointer).
The primary key value of th~ most recent rp~ord

deleted.

2. The alternate keys for primary key ot zero and all
deleted records should be set to HIGH-V~(,IIES except
for tne last 4 bytes ~hich would be a copy of the
primary tt:ey.

3. An E0F pointer ~ould be returneo UPO" reao1na d

record with HIGH-VALUES 1n all bytes except tne
last 4 of any key.

4. ~very delet~d record would havp the priffidry kE'y
value ot the previously deleted record. (~puSh

dOAn stacK or tree list Chain.)

~. whenever a R~~~ITT~ occur~ it woul~ ~e keyed ott Of
the primary K~y.

tl • ~"R1Tr: ~ 0 'J 1ci t 1r stu s e UP t ue t r e r 11s t cr. n i n
(, p tor e inc r ~ IT; en t 1ng the p r 1m a r y key.

You will notIce ttl'? ~novp haS be€ln sper1t1 p ej in su~:' ("4 n,dnner that "
user 01 t nP. cur r ~ n t "SA'" co u1d ~ r 1tea set n t J.; roc f' 'lll res to mn" e t\ ~ A ;0'

function dS suqgested. No~ for the bomt'srlell. "'~4'" dlreony at pf'nos d

c1~uole-*ord inteoer to ~ I(.E-Ys. It is f'or p ['ro~erly callE-d tr,e (1otn
recoro rOlnt~r.

III fl e J a l> fI/ 0 u 11 cot hp abo VPo, t h (' yeo II J ~: ~ 0 1tnt c1 fT; 0res i n. pIp I pve J
(ie, they wOIJldn't n~pn to use the ~'rll!ldry KE'Y).

1 • 1 hey co u1,., us f' t 11 Eo t:: U: t· 0 i n t Era s n(\ .., •

8-04.14



Faster ~ith fAS1 KSA~

2. They would neea to set UP a free list chain for the
DATAFILE (they already have one for the KEYFILE;).

3. they would have to keep tracK of the Key and record
number of the l~st logical record read. Then auto·
matically reposition according to the first set of
proposed enhancements.

4. They already append the record pointer to the keys
so no physical change would be necessary--as would
be it one of us users was to try.

5. In short, th~ lab nas all the information necessary
to do the jOb except for the free Chain list in the
DA1AFILE.

Whether or not the lab does this enhancement, we already do somethinq
similar by using the prImary key to append to all others; but ~e intend
to «rite the procedures necessary to make KSAM lOOK like our proposal.
Anyoody interested?

Tnere are some enh~ncements that only the lab can do:

1. A central XDS similar to the recent IMAGE update.
Only one XDS per tile no matter how many users are
using that same file. A small XOS may be needed
tor each process to keep track of the last logical
key value and other local data.

2. Implement la LOCKing similar to IMAG~s.

3. OK, let·s go for it! USE lH~ IMAGE CALLS TO HA~DLE

KSA~. This means:
A. A schema processor to look for data sets type ~

or KSAM.
8. ~e could have FAST sorted chains.
C. In fact ~e could now have sorted ~aster tiles

(just a KEYFIL~ to point to the Master set
entries).

u. n6~1~D would also tunctlon as STAHT tor k5A~

tiles.
E. DBGET would take over as:

the current calculated DBGET would WOlk for
READBYK~Y.

a new mode for se4uential renus as opposed
to serial.

F. Tne DaLOC~ would give th~ same type of lockinq
sCheme for KSAM as is now being enhanced tor
IMAGE.

8-04.15



Faster wIth fAST KSAM

Tnese ideas w1l1 be implemented in our shop as far as possible. ~e plan
to ~rlte a set of routines that will handle both the KSAM and IMAGE
ploceaures. If the lab Deats us, we shall be very happy to conceed the
race!

8-04.16



INFORMATION MANAGEMENT: AN INVESTMENT FOR THE FUTURE

DAVID C. DUMMER

D.C. DUMMER & ASSOCIATES LIMITED

We are all wi~nesses to the current information explosion that affects
every aspect of our lives. Some of us may wonder if this explosion can
be contained and controlled.

Computer technology has nurtured the evolution of devices that perform
data storage and manipulation functions at reasonable cost. Government,
industry and commerce have rapidly made use of such devices in an effort
to improve information systems for decision-making processes. The better
the quality and timeliness of information, the more powerful and competi­
tive the user can become.

Unfortunately, the technologies that support the effective utilization
of information systems have trailed the dramatic advances in computer
hardware and software. There is still not a general awareness that data
is an organizational resource that requires management control, admin­
istration and involvement. The first illustration draws an analogy to
other resource management areas in that good data management will direct­
ly benefit information systems needed for decision-making. Data manage­
ment is, however, a far less developed area than either financial or per­
sonnel management. Very few organizations that have attempted to esta­
blish a corporate data base resource have been completely successful.
The history of integrated management information systems contains many
failures, and indeed, the downfall of several organizations.

Like many technological advances, those related to information handling
are full of promise, yet also hide many dangers. Failures can generally
be attributed to two major causes: the incomplete and incorrect applica­
tion of the technologies and resulting information handling facilities;
and the lack of necessary changes to organizational structure to comple­
ment the integrated information structure.

It is relatively easy for senior executives to decide upon a data re­
source management strategy, but it is a far different matter to under­
stand all of the different components necessary for strategy success.
These problems are compounded by the fact that there are very few pro­
fessionals in this area with adequate levels of experience.

The second illustration highlights the resistance that corporate manage­
ment typically meets in the introduction of data base technology. Re-



RESOURCE MANAGEMENT

FINANCES - FINANCIAL
MANAGEMENT ~--~-~ FINANCIAL RETURN

EMPLOYEES ---l~-.t
PERSONNEL
MANAGEMENT

. MOTIVATION &
PRODUCTIVITY

DECISION-MAKINGDATA
_J DATAl MANAGEMENT

INFORMATION FOR•

B-08.02



INTRODUCING DATA BASE TECHNOLOGY TO AN ORGANIZATION

RESISTANCE TO:

- CHANGE IN METHODS AND
PROCEDURES

- LOSS OF DATA OWNERSHIP

- LOSS OF DATA CONTROL

- CHANGE IN THE POWER
STRUCTURE

- CHANGE IN THE STATUS
OF DP USERS

- CHANGE IN STAFF
REQUIREMENTS

B-08.03

CORPORATE OPPORTUNITIES:

- IMPROVED METHODS AND
PROCEDURES

- CORPORATE DATA
MANAGEMENT

- CORPORATE CONTROL
STANDARDS

- PROFESSIONAL DATA
MANAGEMENT

- IMPROVED DATA
UTILIZATION

- REDUCED COST AND
ABILITY TO CONTROL



sistance can occur in both data processing and user departments as the
need for new responsibilities and procedures becomes evident. Few exec­
utives are equipped with all of the correct rebuttals to the criticisms
that result from the resistance. So intense can the resistance become
that often the data base approach is introduced in a compromised manner
and one that is far from beneficial to the organization.

Corporate opportunities that can be realized by the data base approach
are immeasurable and there is an ever increasing responsibility on the
data processing profession to ensure that the approach is fully under­
stood and supported. The second illustration also enumerates the re­
spective benefits that can accrue to the organization, but, in order to
achieve these benefits, the organization must be willing to invest the
necessary developmental resources into the data base approach.

Once the data base approach has been adopted as a means to achieve data
resource management, it is important to realize that a data sharing
concept has been introduced within the organization. That is, the com­
mon data in the corporate data base is to be shared by all those in the
organization that have a right and need to access the data. The major
technical facility that supports data sharing is a data base management
system (dbms). A dbms is often presented as the solution to the pro­
blem of data sharing, but, in reality, it is just one of the facilities
needed to achieve data sharing in a resource management environment.
Crucial to the success of data sharing is data administration, some­
times referred to as data base administration. Data administration en­
compasses the other facilities, procedures and tools needed to manage
the data base. The third illustration shows the major aspects of data
administration. The degree to which an organization addresses and im­
plements facilities in these areas depends on the complexity, integra­
tion and value of the data together with limitations imposed by the
budget available for data management.

First and foremost of the required administration facilities is a data
dictionary and directory (DD&D). The DD&D is essentialy an information
system about the data and data processing systems used in the organiza­
tion. To the person or persons responsible for data administration, it
represents a tool to document and control the data base facility. If
the data base driven information systems are an integral part of the
operations of the organization, then the data base will normally have
to be flexible and changeable, to reflect and support business dynam­
ics. The DD&D should be designed and organized to provide for this
type of environment.

For some organizations, the DD&D will evolve into the hub, or nerve­
center, of their data processing facilities. It will control, monitor
and service the corporate data base together with the associated in­
formation systems.

B-es.04



DATA SHARING REQUIREMENTS

DATA SHARING

!
--.....;>. DATA BASE MANAGEMENT SYSTEM

DATA ADMINISTRATION ~ - DATA DICTIONARY & DIRECTORY

- BACKUP & RECOVERY

- SECURITY CONSIDERATIONS

- MAINTENANCE CONSIDERATIONS

- EFFICIENCY CONSIDERATIONS

- AUDITING CONSIDERATIONS

- USAGE STATISTICS



There are other data administration facilities which complement the
DD&D, many of which are still in the evolutionary stage. These facili­
ties are aimed at such considerations as ensuring that the corporate
data base is always organized in the most efficient manner, and is nor­
mally available, and is recoverable in the event of system failures.

Another important aspect of information systems concerns auditability
and performance measurement. These are typically topics that are con­
sidered only at system implementation, but a data administration func­
tion can ensure that system audit becomes a design parameter during
analysis and development.

The fourth illustration shows the responsibilities of the person (Data
Administrator) or persons performing the data administration function.
Like other resource managers, the Data Administrator (DA) must be
placed in an organizational structure such that he or she can coordin­
ate and be held responsible for all of the technical and administrative
components needed to effect data sharing. The DA is responsible to the
corporate executives to inform them of requirements and situations
which demand their participation and decision-making; and then to enact
and administer the resulting policies and data control measures. The
DA is responsible to data processing users in the response to queries
and requests and in the provision of facilities that ~ke data more ac­
cessible to those with the right to access it. The DA interfaces with
the systems group in order to obtain the hardware and software which is
required to provide and support the data base and processing environ­
ment for which he or she is responsible. The final interface within
the organization is to the corporate data ~anagement system which e~

bodies all of the facilities needed to provide control and administra­
tion of the corporate data base.

With a perception of the data administration requirements, the specifi­
cation of a suitable DD&D can be detailed. The fifth illustration
lists the major components of a DD&D. Again, the complexity and con­
tents of the DD&D should match the requirements and budget of the or­
ganization. The components cover the documentation of how data is per­
ceived in the organization (documents, forms, used by department,
etc.); how data is structured in the data base designs; and how data is
used in the data processing systems. Supporting these directories are
dictionary and directory entries which document data items and their
attributes, data validation rules, data security measures and data item
synonyms and associates.

The sixth illustration depicts the role of the DD&D in an organization.
It is the method by which the DA documents, controls and administers
the corporate data base and information systems. It is a source of in­
formation and a design capture device for data base and information
system designers. It is a source of information and a change capture

B-08.06



ROLE OF THE DATA ADMINISTRATOR

POLICIES
& CONTROLS

DATA
DICTIONARY

&
DIRECTORY

CORPORATE
DATA
BASE

CONTROL

SPECS

INFORMATION
& INTERPRETATION

SYSTEMS
& TOOLS

a-08.07



DATA DICTIONARY & DIRECTORY CONTENTS

- DICTIONARY & DIRECTORY OF THE NATURAL DATA ITEMS
AND DATA ITEM GROUPINGS IN AN ORGANIZATION

- DICTIONARY & DIRECTORY OF THE DATA STRUCTURES
DESIGNED FOR THE CORPORATE DATA BASE(S)

- DICTIONARY OF DATA ITEM ATTRIBUTES

- DICTIONARY OF DATA ITEM VALIDATION RULES

- DIRECTORY OF DATA ITEM SECURITY MEASURES

- DIRECTORY OF DATA ITEM SYNONYMS AND ASSOCIATES

- DIRECTORY & CROSS-REFERENCE OF DATA ITEMS TO
PROGRAMS AND TO DOCUMENTS



ROLE OF THE DATA DICTIONARY & DIRECTORY

B-08.09



device for the maintenance group, as existing data bases and informa­
tion systems are modified and enhanced. It is a source of information
to users who can discover what data is available without the need to
contact the DA or associated staff. This is particularly true in the
case of an online DD&D which can support information queries from the
users.

One data administration topic that is currently receiving a lot of at­
tention concerns data security. The seventh illustration contains a
list of items needing protection consideration and a list of events
that can constitute a threat to the data and system security. The
first list identifies that security measures applied to data files and
data bases are of little value if security measures are not applied
to: the computer memory and storage devices during data processing;
the hard copy data listings and reports distributed in the organiza­
tion; the data transmission lines where remote terminals, workstations
or satellite computers are involved; and the security measures them­
selves. In a similar manner to security provided by lock and key,
data base and processing security is only a deterrent and each extra
level of security will typically involve exponential increases in the
cost and time of the security measure implementation and practice.
These extra measures of security protection should be applied only
where sensitivity of the information involved warrants it.

The second list covers the major threats to the security and availa­
bility of data. These are important considerations in a data sharing
environment since the data has been organized in a logically or phys­
ically central location and it is collectively more vulnerable to
security violation. One of the most important tasks for the DA in an
organization is to achieve the correct balance between data accessi­
bility and privacy.

The challenge that faces most organizations at this time is the ef­
fective creation of a data sharing environment. It requires an in­
vestment in terms of people, funds and organizational change; but the
future benefits of a well Eanaged data resource to aid and make pos­
sible decision-making are immeasurable.

The presentation of the paper will enlarge upon these topics and sug­
gest various methods of evaluating and implementing data administra­
tion facilities and procedures.

8-08.10



DATA SECURITY

WHAT TO PROTECT?

PROTECT FROM WHAT?

- DATA ITEMS AND DATA FILES

- COMPUTER MEMORY AND DATA
STORAGE DEVICES

- DATA LISTINGS AND
INFORMATION REPORTS

- DATA TRANSMISSION

- SECURITY SYSTEM{S)
AND PROCEDURE{S)

- HUMAN AND SYSTEM ERRORS

- ENVIRONMENTAL ACCIDENTS
OR CATASTROPHES

- MISCHIEVIOUSNESS AND
FRAUDULENCE

- INDUSTRIAL AND POLITICAL
ESPIONAGE

B-~8.11



SIGMA - GENERALIZEV INFORMATION SYSTEM

by MaJLc.o.6 A. X. de CaJtval.ho
S y.6 .tem.6 Anal.tj.6.t
PJtoman EngenhaJL~a S.A.
BJtaz~l.

B-09.01



TABLE OF CONTENTS

1• INTROVUCTI0N

2 • SYSTEM VESCRIPTION

2. 1 Vata StJtuc.tuJte

2. 1• 1 StJtuc.tuJte OveJtv..i..ew
2 • 1• 2 Vata Ba~e StJtuc.tuJte
2 • 1• 3 L..i..nkage among Vata Ba~e~

2 • 2 Vata Ba~e Handl..i..ng

2 • 2 • 1 Vata B~e Updat..i..ng
2 • 2 • 1 In60JtmaUon RetJt..i..eval

2 • 3 Re.poJtt~

2 • 3. 1 Ve.6..i..n..i..Uon
2.3.2 Se.lec.t..i..on
2.3.3 Ed..i..t..i..on

2 • 4 Add..i..t..i..anal Re.~ouJtc.e~

2.4.1 Vata Editing
2 • 4. 2 Handl..i..ng 06 Vate.~ and Moneta.Jty Va.lue.6

3. SYSTEM PERFORMANCE

B-09.02



1.
INTRODUCTION

SIGMA (Generalized Information System) is a system for information handling,
which provides the user with the following capabilities:

· Batch and interative data entry

· Selection of information through key-words and pre-defined coditions
· Report generation defined by the user
· Storage of data in more than one data base so that hyerarchical structures'

can be processed.

SIGMA was developed by the Systems Division of Promon Engenharia S.A. to assist
Project Management in:

• Project Control
· Resources Control
· Development of Interim-Systems
· Budgeti ng
· Information Control

2.
SYSTEM VESCRIPTION

SIGMA is a system composed of a set of programs operating on a predefined data
base structure under IMAGE. The information stored in the data bas2s is defined
according to the user's application and it can be selected and editeo in a
report form by means of an oriented language.

In this section we will show:

· Data Base Structure
• Reports Available
· Additional Resources

2. 1
Data Base Structure

2.1.1
Structure Overview

In the structure handled by SIGMA, the information can be grouped in more than
one Data Base.

The data bases can be interconnected to form a hyerarchical structure.

To illustrate SIGMA structure, consider the following example:

We are controlling a set of information about equipments specified in a project.
This control begins with the specification of equipment by the engineering
department up to its purchase by the purchasing department. Control is executed
through four documents:

8-09.03



· Equipment List
• Requisition
• Inqui ry
· Purchase Order

To each document there is associated a set of information as follows:

Equipment List

Code
Descripti on
Cost
Scheduled delivery date
Importation flag

(Tag Number)
(Techni ca1 Characteri s ti cs)

J .. Requisition code I ~ LINK INFORMATION

Requi s i ti on

Code
Scheduled issue date
Issue date
Date received by purchasing
Note

I·· Purchase order code + LINK INFORMATION
I •• In ui ry code

Inqui ry

Code
Scheduled issue date
Issue date
Supp1ier 1

2
3

.• Note

Purchase Order

Code
Supplier
Issue date
Order value
Note

8-09.04



To each document there corresponds an IMAGE DATA BASE t which are linked each
other as shown in the picture below.

VBEQ

TAG
NUMBER

REQUISITION
COVE

RELATEV
INfORMATION

REQUISITION PURCHASE
COVE ORVER

COVE
INQUIRY
COVE

RELATEV
INFORMATION

VBIN

PURCHASE
ORVER
COVE

RELATEV
INFORMATION

INQUIRY
COVE

RELATEV
INFORMATION

· VBEQ - Equ1..pmen:t da.ta. baoe

• VBREQ - Requihition da.ta. ba6e

VBPO - PWtchaoe oJtdeJL da.ta. baoe

· VBIN - Inquiny da.ta. baoe



This data stored have the following hyerarchy:

. PWtC.hM e. Oftde.Jt

Pn

E1

. Equipment

r---~_--.E 6
.----.:.__..::;E5

r---"--_.......E4
r-=---_....:iE3

~L.......-- .....E2

• Re.qui.6i:ti..on

.----.:.__....,RV
RC-.;......-....,

----:=---_--.RB
RA

11

• Inqubty
;...-....--....,

B-09.06



2.1.2
Data Base Structure

SIGMA data bases have their own structure and they are dimensioned according
to user's requirement.

There is no 1 i mi ta ti on to the number of IMAGE data bases used in the
applications of SIGMA, this being ind.icated by the nature and complexity of
the infonmation under control.

In the definition of the SIGMA data structure, we shall use the following
concepts:

· ITEM (CODE)
· DATUM(MNEMONIC)
· INFORMATION UNIT

· KEY WORD

· ITEM

Is a set of information identified by a CODE. The SIGMA data base is
constituted by the set of all ITEMS.

· DATUM

Is an information identified by a mnemonic and associated to an ITEM.
The ITEM is constituted by a set of DATA.

· INFORMATION UNIT

Is the triple:
CODE (of the ITEM)
MNEMONIC (of the DATUM)
DATUM

KEY WORD

Is the double MNEMONIC + DATUM especially chosen by the retrieval of ITEMS.

In the next figure we have a graphic representation of these concepts.

8-09.07



ITEM 1

Mnemonic 2

Mnemonic m

Mnemo.u.c 2

Mnemonic m

Mnemo.u.c. m

Mnemonic. 1

Mnemonic.

MnemorUc. 1

Mnemonic 2
I

•
: K!fJ!!J.E"-E :

ITEM 2

ITEM n

COVE n

COVE 1

-- - - - - - - . -- I

•,
I
I,

.- - - - - . - ...
I

: In 6oJr.ma.ti.on I
I UrU.,t .
, I

SIGMA
VATA BASE

NOTES: 1.
2.
3.
4.

~ mea.n6 "il. 1..6 comp0-6 ed 06"
- mean6 "il. 1..6 a.6-6oci..a.ted ~o"

n = numbvz. 06 ITEMS; m = numbeJt 06 mnemo.u.C6
The UNI T 1NFORMATION i.A c.omp0-6 ed 06

I COVE -i H MNEMONIC f IVATA -if I

8-09.08



In the next figure we have an example of the data base DBEQ, which contains the
EQUIPMENT LIST.

ITEM 010 - B - 006A

18000

QUENCH 01 L DUMP

ETHANE PREHEATER

08/11/78

90000

7500

04/05/78

05/02/78

PHOSPHATE IN]. DUMP

011-P-013

011-B-002A

011-B-002A

010-B-006A

011-P-013

VBEQ

B-rtl9.09



SIGMA uses IMAGE's data bases with a structure as is shown in figure below:

M::OD Ml'fEM r-:NREF ~~r

DTEXTO~
'7

I
I D?TNV

The detail data sets have the following characteristics:

· Code data set (DCOD)
In this detail data set are stored the CODES of the ITEMS. The elements of the
data set are:

the code (COD)
the atualization flag (FLAG)
the internal number of the item generated by the system (NITEM)

· Text data set (DTEXTO)
In this detail data set are stored the information unities. The elements of
the data set are:

the number of the item (NITEM)
the mnemonic of the DATUM
the DATUM

· Inverted search data set (DPINV)
In this detail data set are stored the association: number of item (NITEM) ­
number of keyword (NREF).

· Keyword data set (DREF)
In this detail data set are stored the keywords. The elements of data set are:

Keyword (REF)
Number associated to keyword (NREF)

This structure is handled by 10 programs, seven in SPL and three in FORTRAN.
The programs are funcionally distributed as follows:

· SIGMA01 DATA ENTRY
SIGMA02~

· SIGMA03~ REPORT SELECTION
SIGMA04~

· SIGMA05 REPORT EDITING
· SIGMA06 REPORT DEFINITION
· SIGMA07
SIGMA08~ AUXILIARY PROGRAMS
SIGMAO~/
SI G1AlOB -f{) 9•10



2. 1. 3
Data Base Linkage

SIGMA data bases are independent among themselves regarding creation
and updating.

In the process of information retrieval however, it is possible to agree with
various data bases, since there are linkage elements among the data bases.

A linkage element between two data bases is a data element common to two data
bases. In one of them it is necessarily a code.

The figure below shows the linkages among data bases DBEQ, DBREQ, DBIN, DBPO.

VBEQ

TAG
NUMBER

REQUISI TI ON
CODE

INFORMATION

REQUISITION PURCHASE
CODE ORVER

COVE

PURCHASE
ORDER INFORMATION
COVE

INQUIRY
COVE

,

INQUIRY
COVE

B-09.11

INFORMATION

VBIN

INFORMATION



2.2
Data Base Handling

2.2. 1
Data Base Updating

Data base updating is performed through four commands:

· ADD
• REPLACE

• DELETE

• EQUI VALENCE

• AVV

A c.ode1 [/c.ode2J,mnemonic., "data"

A 011 - 8 - 011A,CST,"4000"

A 011 - 8 - 011A/Oll - B - 011A,ESV, "01/06/78"

• REPLACE

R c.ode1 [/c.ode2] , mnemonic., "data"

ROll - f - 012,CST,"700000"

ROll - F - 012/011 - f - 013, ESV, "06/03/78"

• VELETE

V 011 - B - 002A

V 011 - B - 002A/Ol1 - B - 002B

V 011 - B - 002A/CST

V 011 - 8 - 002A/Ol1 - B - 0028,CST

For batch processes~ it is possible to update the data base through records, with
pre-defined lay-outs. The next figure shows this alternative.

8-09.12



PROGEM - lISTA DE EQUIPAMC:NTOS Ficho 01

) ( SUB ·iREA CLASSE ) [APAOVAOO POR I )

I C;OilIGO OA R[/)ul'iI'AO
-TAG-IWYE>EA- ICL,t.P.1E I

,.> .... !:~; T:::: \0,.-, r.J I l:~::. 1M .... C·.... !,...... Il...
OESCPIC10 SU"ARI~

.-

.

.

.

.

.

. . . .

.

.

.

. .

.

.

.
.

.

. . ..

.

I

.

~ .
. ·

·
.- ·

· ·· .- · ·
· ·.- · ·.

.

• , J .1, .1, t~"'~JJ••'
_.~-'-' .~

£-.U-.:I__~ -lli~
~~i'l.- I~. -~_~_

IfJii
1 = P '4J..1~

.
.·

~ _ ...~ --'-'- -l-l- ,_ -l-~~'~.I--I._.L...I..-l-.L-l-J......L...-.JL..L.....L-.L......L....r.....&.-.l.~..........L...o............Jo.-,I-J-....L-~ ........J.....o--"--L--...-'-~'-l-f-

·
.... ' .&... ~I. .1..1.. ~

ObSlRVI.,OES. 1. O. co... po. ,oo''';)f)"de"'n '0' ,ol"no, 17. 'I." t 74

de.,'oO w, p.. ,",n,dO' OlledecI"do ""'0 do, "9.""'1' ooc;on .

,,1'0 A - "'(hnaO "e 0 no.o ""o"..o,cio
Itl,O R - AII"oeoo de o '"'0''''0,00 CI ••I."t,
1,1'0 0 - Ea,h.sOo d, .."'O ''''0'1110,00 ..'"tnl,

2· 0"0"10'0 0"13'''' do lo,nlc ....,nlo p'••"Cht' ocampo co"upond..." conf.,. ...e "',erllo 01'0'"0

rE' [ou.pO "IO i",PO,Iodo

BE, (0"'00 "10 "'O'lonol
SR - Eou'po""nto 1I0CIO,,01 co'" "'01."0 p"...o ,,,,poolodo
00 - Con,o,,&nc,o ,nl.,nOI;,o..ol

2.2.2
Information Retrieval

We have three types of information retrieval:

· Through the CODE

· Through the KEY WORDS

· From the ITEMS which were updated

Retrieval through CODE:
Retrieval through the CODE is executed by the command:

L code1 ~code21,[ml'lemoMcJJ

=>L 011- 6 -002A,DES
* 011- B -002A

DES QUENCH OIL PUMF
=>L 011- B -002A
* 011- B -002A

CS'I 90000
DES QUENCH OIL PUMF

.'ESD 02/05/,8
REO PR-011-31-001
TI p lloriP

=>L 011- B -002A/011­
* 011- E -002A

DES OU£~CH OIL PU~P

* 011- B -0028
DES CUE~CH OIL PU~f

-002B,D£S

a-09.13



In this type of retrieval we have:

all information must be in the same DATA BASE
the retrieved information can only be edited in a standard form

Retrieval through KEYWORDS

The KEY WORDS can be combined through Boolean operators (OR,ANO,NOT) making
logical expressions which will be used in the selection of a sub set of ITEMS.

Example

LOGICAL EXPRESSION

The retrieved ITEMS can be edited by a user pre-defined report.
Retrieval through ITEMS

The third type of retrieval is that where only the ITEMS which were updated
in a gi yen peri od are retri eved.

We will see in more detail these two last types of retrieval in the next
section.

2.3
Reports

The printing of reports requires three phases or steps:

· Defini tion

· Selection

· Edition

2.3 . 1
Report Definition

The reports are defined through an oriented language:

The following elements are supplied in the definition of a report:

· Report title
· Selection specification
· Heading specification
· Column specification
· Sort specification

In the next figure we show the definition of three reports.



· REPORT 1

The characteristics are:

· All information is in the same data base
· ALL ITEMS are selected

1 BEGIN "REP1",
2 FLAG'=" ~,

3 cc SELfCTION SPECIFICATION ~>

4 A.="$$SIAlL rQUIPMENTS",
5 cc HEAOLINE SPECIFICATION»
6 CA8EC.= R EQUIPMENT LIST REPORT",
7 CAA f. C1:1 II PRO .7 EeTC 0 DEI PSOl " ,
8 CASf.er: • REPORT CODEt RFP1",
9 ~< COLUMN SPECIFICATION»

10 eOLUNAa=cOD," EQUIPMENT COOE",14,
1t COLUNA'~DF.3,"EQUIPMENT DESCRIPTIO~"135,

la COLUNAI=ESD,"SC~EOULEOOELIVERV",q,

13 COLUNAlcTIP,"IMP",3,
1~ COLUNA'=CST,· CQST",10,(M),
15 cc SORT SPECIFICATION ~>

16 SCO~TROLEI=COO,(1,4),AJ

11 ~CO~T~OLEI=COO,(7,3),A,

18 SCONTROLEa=cOO,(5,2),A,
tq SCONTROLEI;COD,Ctl,4),A,
20 END.

· REPORT 2

In this report we have:
The information is in three data bases

· Only the imported equipments (A:=TIP:IMP) are selected.

I BEGIN -A[P2 W,

Z "LAG'.- ",
J cc SELEtTIO~ SPEC!FIC4TJON .~

4 A,.WTIP.I~P·,

§ cc H'AOLINE SPECIFtCATION ~>

, CAREC •• - RfQUrSITION REPORT. ONLY THE !QUIPMENTI TO 8E IMPORTEO',
T CA8[el~ W PROJECT CODE' P501-,
8 CAREC'. • R!PO~T COO~. RIPZ-,
• cc COLUMN SPEel'ICATtON.~
10 COLU~l,.REQ,· REQUISITION CeD£",IJ,
II COLUNA'.COD,· EQUIPMFNT CODE-,14,
12 COLUNA,aO!S,-EQUIPMENT DESCRIPTION-,IZ,
IJ COLUNA,aRsr,-scHEOULED ISSUE",q,
II COLUNA,aRID,- ISSUE DATE-,e,
19 COLUNA,.RRP,·RECIVEO PURCH,-,8,
,. cc 80AT SPECI'ICATION ~.

17 ICONTAOLE,.REQ,(I,IJ),I,A,
Ie SCONTROLE.aCOD,Cl,4),A,
I' ICO~TAOLE'.COO,CT,J),A,

20 SCONT AOLE'.COO,C5,2),A,
21 SCONTROL£'.COO,Cll,.),A,
Ii E:ND~

B-09.15



. REPORT 3

In this report we have:

. The information in the three data ~ases

. Only the; terns that \>/ere updated in the last period (FLAG: :"*") are
se 1eeted.

NOTE: This period is defined by the user of the SYSTEM.

I BEGI~ 'AEP}',
l 'L. l :,.·.·,
J cc !£lECTIO~ ,PECJfJC1TtO~ ••
a .,.·,1J'&ll fCUIPUE~T!',

S cc ~~LCLt~f SP£CJ'tC&Tro~ ••
~ CIREC.- • PU~C~&SE OA~E~ REPORT.
, T 2b 'OhlY TWE ITE~S THAT ftA8 UPOATfO AFTE~ 10/0S/11',
a C1BEC •• • PAOJFCT COOEI '50t',
o C&A~CI. • REPOqT CODfl REP}',
10 CC CCLUw~ 5P!Cl'JC'TtO~ ••
st COLU~'I.POC,·PUACwI5' OAOE~ COOE',a,
s2 COLV~4,.AEQ,' RECuI'tTIn~ COOE',tl,
SJ COLU~'I.CC~,· EOVIP~fNT COOf',tO,
sa COLU~ll.~ES,·EcutP~ENT DfaC~IPTIO~',12r

SS CCLV~11·TIP,·Iug·,3,

16 co~u~al.C!T,·COST (S)',9,(~)f

.' COLU~&I'SUp,·SJPPLIER·,t4r
se cc S:;T 5P£CIFICATION ••
SO SCO~T;CLEI.PC~,(1,6"t,T,A,

20 JCO~TACLEI.;EO,(l,tl),t,T,Ar

21 SCO~TA:LEI·COO,(1,4'",

12 SCC~TAOL£'·COO,(7,]),A,

2J SCO~TQOLE'·C~O,(S,2"A'

24 SCO~TA~LE'.COO,(11,4),A,

25 TOTILl c C5T,
2' HiO.

B-09.16



2.3.2
Se lecti on

SIGMA allows the following types of selections in the report edition:

· Through KEY WORDS (Logical expression)

· Through CONDITIONS

Only the ITElt1S that we updated in one period (FLAG:="*").

2.3.3
Edition

Edition is done in the final phase of the report issuing so that it is
possible to use the same selection to issue various types of teports.

SIGMA possesses the following capabilities for edition:

· classification of columns

· inhibition of columns
• totalization of columns
· generation of columns as linear combination of previous columns.

In the next figures we show three typical reports.

"AG
lllUflt'U8 sun MORAS

EO;; I ~ .. !. '.f ltCJT DEPn~T

p" ": Jf r. T CC':.fl P51)1
Ir·I)QT CIJ!)EI !IF"

•......................•........•...•.......•••••...•..•••....•.•.•......••
lOUIP"C"" (QuI""'t .. , OUCAIPTIO~ AC"[OUl2D II14P cCln

COOl Ot'-IVERY•......•....•...........................•.............•.•....•..•...•..•...
010- I -00.' P~(UPHAU lNJ!CTION pu'" llluns IMP 7,500

01 0- It -00'8 p"'08,,~nE INJlCTlON PUMP U/OI/18 I"" 7,SOO

011- B -OOl' QU!~C" 01'- PUMP 02/05/18 IMP '0,000

011- I -0028 QU[tocC.c 01'- PUM' 0ll0!/18 IMP '0,000

011- I -oUt QU[NCM OIL PUN' 02/05/78 1M' '0,000.
011- I -0020 Qut",C" OIL Puwp 02105/18 1M" '0,000

011- B -0048 NIOO~E OIL O~h.OF' I'u"P OJ/lon8 INP Z,OOO

011- I _OOIU 'U[L OIL 'UMI' 02105/11 IMP 1,000

011- I -Olla .. a-Hfa 'E[O PUMP Ol/UnO I'" 1,000

011- I -0 II A ~'''Hr4 HrD "UM' Ol/Unl '''I' 1,000

011- , -Oil HIG" I'R[S8U D [ SHAM au'!:- H[U!A U/OJ179 800,000
I

011- , -Ou Hl<;'" PA(SSUQ[ ,TU" aUPER H(lT[ll O'/OJ/1' 800,000

011- I' -Oil ('M''of '''[w[I£HA 0'/0417& 11,000

Oil- , -OIS' OI)£"C'" OIL COOLEA 01109l7a I"'P sa,ooo
011- " -OI~e CUE"C'" OIL COOLllI OJ/n/H I"" ,a,OOo

011- " -015C OU[-'C'" OIL COOLEA OJ/OQ/78 'MP 50,000

011- I' -OI~O our .. cl't OIL COOLEA OJ/n/u I"''' ,a,ooo

Dil- l' -OISt: OU[-.C .. OIL COOL£A OJ/0'/1I '104' ,a,ooo

011- " -01" gU["fC~ OIL COOLlA 01/09/71 IMP ,a,OOO

011- I' -0." 'un. OIL COOLfA 07/07118 I'" n,ooo

011- , -01.8 'U(L OIL COOLlA 01/01lU I'" n,oeo

011- " -oue -U(I. aJI. COOI.!1I 0"0"" ,.." n,ooo•..............................••.. .....................
8-09.17 cOlon -. ... f' ...



'''G21/!1fTIlQ'& 11.. '5b Horus
~~-.. !~I·:"·· :U ='1)1;' • C"L" THE EQUJP~ENTS TO BE IMPORTED
F"-;~ C' c-:n P5 J 1
IH I): ~ r . C':-:>F I D[P2

•.....•••..-..............•......•..•.....•.•.•.....••.••••.•••...•......•.•..•......••••
"[alfJaP 10" [QUl· .. (toll [QIJIP"[JilT DE8C R IPU.,,, SCHEDULED IAAIJ[ R[C[J VED

cODr coor: ISSUE OAH 'U~C..........................•..............•••.•...••..•..•••••..••..•.•..•...•.•.......•...•.
PA.OI0·}1-001 010· B • OOU PHOS,.UTE INJ£CTJON PU",p 01/01177 01/02111 01/0QI11

010- B .0OtlQ PHOSPHATE I ..JHUON PU",p oI/OJI11 01/02/11 01/04/71

PR.Oll·J\-OOl Otl· B -002' QU(~CH OJL PUMP 01/01l17 01/0'/11 01/05/17

011- B .00lB QUE,.CH OJL PUMP Oi/OUn 01/01117 01/05/71

011· B .OOle QUENCH OIL PUNIIt 01/02177 01/05117 01/0!/."

01 I- S .0020 QUENCH OIL 'UI4P Ol/OUn 01/05177 01/0517'

011· B -0049 MIDDLE OIL OR1w·O~' flU"" 01/0i111 01/05/71 01/05/17

Otl. • .oos_ 'un OIL 'U"" Ol/Ol/n Oi/U/n OiloSln

Otl- B -OlU NAPHT' HfO PUM' 01/01177 01/05171 01/05171

011- 8 .01IB NAP",,, HED PUMP 01/02111 01/0511' 01/05111

PP·Oll-lIZ·001 011· , .ou HIGH PP£UUA[ au,,,, 8UPr;R H[UER 01/10/77 01/11117 0llUl17

IH1- , -Oll HIGH P"U8U~E STUM IUPE" HUTU 01110ln Ol/li/n OilUln

,r..Oll·li}-OOI Otl· , -01) !TH'~[ PR!HfA[T(R 01/Ul11 01/0./77 OI/IO/TY

011· , -01·' 'U[L OIL COOl.(A 0610'"'' 0"1017., Ob/lun

&lI- P .OUB ,un OIL CDOLU 06/01ln Ob/lGIT' Ob/un7

01 I. p -016e 'un OIL CDOUA 06/07111 06/1011' U/U/71

011- , -OlttD 'UEL OIL COOL[A 06107111 06110117 U/U/n

PP.011-al·001 011- , .0tS, OUE,.CH OIL eOOLfR U/07/TT 06/10/17 06112'"

Otl- p .OUR QU£~CH OIL COOLER U/OT/n U/IO/n Ob/IUT?

011- P -015C QUE,.CH OIL COOLI:R 06/01111 06/10111 0./U117

011- , -0150 QUE,.CH on COOLfR 0&/01111 0.'10177 Oft/U/77

011· ,
.Ol~! QU[NCH DIL COOLER 06/07111 0./10/71 Oft/sun

ou· p .015' QUENCH OIL COOLfR 06/07111 06110'" 0./11/77...........................................•..•.•......••.................•••............
........................•...............•..••.•...........•..••.........•..••......•.....

B-09.18



PAlO
11/!'T/lq,~ IT. 2 ~OP'S

Pw~~~:'f ~~~'Q '[PO'" • ~~lY ,"! IT£~a THAT NAS U'OAT[O "TER 10/05118
p;~JlCT C~~f' P!OI
~fPCg, CO?!. AfPl

•...................•.•.•.•.....•..••..•..•...•••.•.••..........•........•..~..•..•................
-""C"'Sf "EOlll~I'II)~ fQIIIP"E"T EQUIPMENT O[~CRIPTlt)~ I". COAT (I) SUPPl.lEA

O'lO£R COOf COO!:
c~l)r•....................................•••••..•.••...•.•.•; ...•...•.•...........•..........._ .

JI-OOI PP-OIO-31-001 010- e -OOb& PHO'P""E JroIJECTION PU/04P 1104' 7,"00 "'CPTHIN"O"

010- ft -OOfoe PMOSPHATf I'-iJECTION Pu"" 1'4' ',500 ~ CAT M : p. CTO,.
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• e •••• a •••••••••••

• 15,000
••••••••••••••••••••••••••••••••••&•••••••••••••••••••••••••••••••••••••••••••••••• c •••••••••••••••

'.-011-JI-00I 011- e _OOlA QUfNCIo4 OIL PU"'IP tN' .0,000 lIfOATHINC;TO..

011- B -0028 QU[NCN OIL ,U.., IH' 00,000 NOATHI~'TO"

011- e .00lC QU(~CN OIL pu"" I"" 00,000 "'CATI4I"GTO~

011- B .0020 QUENCH OIL PU"'IP 1M' 90,000 ",OUH!N"O,.

OU- " .OOAII MIOO~[ Ol~ ouw_o" PUHII IMP 1,000 "OIUHI ~r;TO"

011- B _00." 'u!L OIL PUNII 1M' 1,000 "ORTMI~OTO~

011- e _OllA HAPHT' nro IIUM, I"" '1,000 ~OATIo4I~(iTON

011- 8 .011B HAPH'& 'lED PUHP 1M' A,OOO ~OR'1041Nr;TO~
•••••••••••••••••••••••••••••D•••• ~ ••••••••a •••••••••••••••••••••••••••••••••••••••••••••• c ••••••••

Jll,OOO
•••••••••••••••• c ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
In,OOO......... : ...•..........•..••••.•....•.•..........•...................•••.•....•..........•.•.....•

PA-OI1-el-OOl 01,- , -Oil NIGN PRElaUAf ITfAH IU'!:A NEATER 800, 000 co~,.a

011- , -01] HIGH PRESSUR! STEAN SUPER HE'TfR 800,000 CON' All
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• =~a••• ~ •••••••••••••

l,f10G,OOO
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••c ••••••••• : •••••••••

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
• 1,600,000.....•.......................................•.•..•.••..............•..•••.................. ~ .•..••.••....•...•-....~.........•...••....•••..•....••...••...••....•...•............•.......•....•

CONTINUh

B-09.19



2.4
Additional Resources

2.4. 1
Data edi ti ng

SIGMA does the following editing checks:
. CODE of ITEM

. Date

• Monetary Values

2.4.2
Handling of Dates and Monetary Values

· Da tes

(Date l - Date2) = running days

(Qatel + Running Days) = Date2

· Monetary
+ + +.. COST = COSTo{-lKlCOST1{-1 ... {-lKn.COSTn

{Kl ,K2, ... Kn1.E R

B-09.20



3.
SYSTEM PERFORMANCE

SIGMA performance has been kept high, considering its generality. In the
figure below we show some results of SIGMA application .

. VATA STORAGE

VATA BASE # ITEMS # VATA PER # KEY WORDS VISC SPACE
ITEM PER ITEM (# SECTORS)

1 2700 23 4 5012
2 8000 19 4 11142

3 3500 4 0 2426

. VATA BASE UPDATING

1000 information (no key-word) = $ 25.00

1000 keY-\'Jords = $ 37.00

. REPORT WITH 1000 LINES

All information are in the same data base = $ 15.00
The information are in two data bases = $ 60.00

NOTE: Reference values used in costs calculations:

· Elapsed time = $ 12.00 per hour
· CPU time = $ 160.00 per hour
· 1000 Disc Access = $ 1.50
· 1000 Printed Lines = $ 2.75

· 1000 Card Read = $ 2.00

. LIMITATIONS

Maximum Number of UNIT INFORMATION per IMAGE data base = 64000
Maximum Number of DATA per ITEM = 100
Maximum Number of KEYWORDS per ITEM = 24
Maximum Number of Characters per CODE = 14
Maximum Number of Characters per DATUM = 56
Maximum Number of Characters per KEYWORD = 25 .
Maximun Number of IMAGE data base in a report = 9
Maximum Number of Columns on a report = 14
Maximum Number of headlines = 3

000

B-09.21



A lJ ATAD I CT I (J ta:. RY/ LJ 1PI:; CTL F Y lJ B. I VENe LIN I CAL DATA ~: ANAG El'~ E~ l' SYST t: M

ERIC S. HERBEL
HCh~Ch ST- FUL .s SEL PH Ak "1 ACr..lJ TIC .l\ L S , INC.

h3STPACT

A clinic~l researcn catc ~ona~e~ent system ~as developed which is
jri~:en by a nier~rchical cata base form of a data dictionary usin~

v~rianle lengtn record KS~M files. Tne actual structure of the data
dictionary (the nierarchical data v3se approach, and variable 1en~tn

1 i s t s i ~.~, 1e !"I e n ted i n 1\ SA,.~ va ria b1e len ~ t n r ecor d f i 1e s ) i s
e ·1;)!;~si:::e1. lne system incluaes data entry, editing, on-line
correctjons, a variety of I~M/370 resident intertaces, and 3

9 ~ L E' r 2. 1 i zed I i· PG~ cat a bas esc he :n a ..,,~ r i t e / loa de r • A11 0 t the s y s t e TI

~od~les ~re driven by the data ciictionary. Details of the IM4G~

i~terf~ce are also e~~nasized•

• Tne Data Dictionary/Lirectory concept in general
• and the HP imp1enentation in detail

• Overview ot tne clinical data manage~ent system
• Data Entry - key to disk emUlation
• DCita Preparation - editing, corrections, listing, etc.
• Ddta Dictionary - definition, mOdification, reporting
• Uata ~anag€ment - Image sche~a writer/loader, interfaces

to IBM/370 D8MSs.

IMAGE/30ao schema writer/loader in depth.

DE.SCF<lPTlot·J Uf DATA DICTI(:t~ARY/DIR~CTOf{Y

C0 Ifl i Ie r cia 11 y a v c:: i 1a ole 0a taD i c t ion a r y / Direc tor y s y 5 t e tTl 5

are typically c~aracterized by:
identification of each element or field (name, aliases,
description)
ty~e specifications for each element (numeric/character, etc.),
field size nnd otoer pnys1cal descriptions

B-10.01



•

rep 0 r tin q s p e C i f i c <?: t ion s for t;) e tie 1 d (:> u t P I.~ t t ') r ;, at,
And nefault la~el)

data editing criteria - a ran~e or tabl~ ot ~ccept~ole values
aa:ninistrative information s~cn as ~no C3n access various
e len: e n t s, and i n for n, a t ion 0 n Ii ~ i c h a ? p lie a t ion 5 use s p e c i f i c
e 1 efi·en t s
and r. a i fa ten an c ere s po nSib iIi t y for the e I e 'I. en t •

A data directory is ar. extension of the data dictionary concept
intenaed pri~arl1y for machine processing of tne n:eta data(d3ta
~hich defines data). Gn toe other hand, 3 data dictio~ary is
i~tended to Aid in numan und~rstanding of the data. AP9lications of
toe oirectory concept rave included auto~atic generation of data
de fin i t ion s (s c t; e ma ) for i nput t 0 va rio us D~ l'~ S •

I~PLE~E~TATION OF A DATA CICTIONARY/DIHECTOHY ON TBE HP3000
------~------- ~~ - ~-~- --~-~-----~----~-~~- -- --~ ----~-
Most data dictionary slstems currently in use app~ar pri~arily

concerned with aiding t~e DA1A BASE AD~INIS!RATOR and other HU~AN

data dictionary users. ~e ~ere certainly concerned ~itn this aspect
of the use of the data dictionary, out placed more em~hasis on the
DIR~CTORY side of the concept. The net result of this e~phasls soift
is that the majority of application programs in the system are
DRIVEN oy the central Data Dictionary/ Directory.

tne Data nictionary/Oirectory implemented on the HP contains rr.ost of
tne traditional elements nientioned above, but it does not presently
c~ntoin security information or pointers to ap9lication rro~ra~s.

rlo~ever so~e significant additions were made.

First at the element or field level a numoer of modifications
\I. ere r, a de.

• i\ i:: Y fie 1ds are not e d ~ t his will c au sean I f·j AGF aut 0 lTi a tic
master to be created for it

• On-line as well as background edit specificatiOns were 3dded
facilitating editing during data entry or later in back~round

• A link to a decode table for the field was included,e.Q. the
decode file taole entry name(used as a prefix for its KSA~ <ey).

• Should the field be verified during data entry?
• Should the field ~e automatically duplicated from a previous

record in the data entry form(set of defined records)?

The secone and most in.portant set of additions center of the
masterfile's structure. This structuring information includes
pnysical RECORD definitions, logical UNIT definition, and ~hen thes~

UNITs occur, or the E~COUhTER definition.

RECORD content, i.e. ~hich elements nake up each 80 byte masterfile
record ( this is tne data entry ~edlum); also where each field
starts on the record, and ~nether it's repeated as a conti~uous

block or array.

B-10.02



Logical UNIT structure, i.e. which 80 byte records make up a logical
UNIT of information (later used as the entity equivalent to an IMAGE
data set). These logical units are generally entered together
during data entry ( called a FORM at data entry). Various ~ey

fields appearing on every record aid in the logical connection of
records in a UNIT.

These structuring entities are SUfficient in most cases to process
the data, i.e. define the data entry form, define specifications for
the batch editor, and define the schema for an IMAGE data base.
However, we've gone one step further in the structure progression ­
adding the element of time, i.e. when a group of logical UNITs are
to occur. This is called an ENCOUNTER definition, corresponding to
a clinical visit encounter between a subject and physician. During
each visit, various UNITs of logically related data are to be
collected, so an encounter consists of a list of logical UNITs. Tb
facilitate automatic assignment of UNITs to a given encounter, an
ENCOUNTER CLASSIFICATION EQUATION is included which defines
membership criteria, e.g. VISIT NUMBER=5 or Days into study is
between 4 and 7. This structure actually captures the final
dimension necessary to fully define a clinical study to application
programs which will categorize, inventory and even analyze the body
of data.

ACTUAL DATA DICTIONARY/DIRECTORY FILE STRUCTURE
-------------------- ---------

To facilitate most efficient use of the entire system - a true
network structure was chosen. As a reSUlt, individuals defining a
new data dictionary/directory can "point" to any entity already
defined, at either the UNIT, RECORD or FiELD level. This automatic
GLOBAL capability has greatly enhanced the use of the system. Tnis
has also encouraged use of STANDARD UNITs or RECORDs across stUdies.

The data dictionary/directory system is implemented in a set of
variable length record binary KSAM files(except the field level file
which is fixed length). Each KSAM file in the set corresponds to a
level in the structural hierarchy.

The linkage between the various files in the hierarchy is maintained
by a variable length array of pointers with associated information
pointing to the next lower level file. The pointers are in the form
of KSAM keys into the appropriate SUbordinate file. Selected
information belonging to a SUbordinate file is often stored along
with the pointer to the record(i.e., the Field start column is
stored at the RECORD fil~ level). This convention was adopted to
facilitate use of glObal information, i.e. information used by manv
studies or recordS, and information thought to change most
frequently was stored at a higher level in the hierarChy. As an
example, the length, edit specs, label, etc. would prObably not
Change for the field blood pressure between stUdies. The startinq
position on the 80 byte record prObably would change from study to
study, so the starting column was stored at the RECORD level In the

a-10.03



--------------------------------------------------------------------
--------------------
I STUDY Subtile

r-------~----------
*

r-----------~------I UNIT SUbflle I

** *
*

*

I FORM Subfile

*

*

*

*

*

*

-----------------
-----------------

*
*

*

**
*
*

--------------------
*

*
*

* --------------------
* I ENCOUNTER Subfilel

* --------------------

*

* *
* *

**

---------------------
I RECORD SUbfile
---------------------

I
v

----------~~------_.-
I FIELD SUbfile

--------------------~

--------------------------------------------------------------------
Figure 1. Illustration of the data dictionary hierarchy.

hierarchy, so many RECORDs can "point" to the same common blood
pressure definition.

The STUDY level file records contain descriptive fixed len~th

information about a clinical study(masterfile), as well as three
variable length pointer stacKS. These three stacKs contain
character type keys to the attached UNITs, the ENCOUNTERs and the
data entry FORMs. The three stacks share contiguous space in the
record - with the base of the FORM pointer stacK just after the UNIT
stack and so on. The Data Dictionary/Directory is generally
accessed from FORTRAN, so, the fIxed length elements of the record
can be accessed after a record is read(using FREADBYKEY) simply by
an EQUIVALENCE of the items to the LOGICAL type buffer. The stacKs
are accessed by actually moving a LOGICAL word at a time into a
LOGICAL typed TRANSFER buffer Which has been equivalenced to a
Character variable.

B-10.04



The ENCOUNTER file records contain a fixed length portion which
includes the primary key, the ENCOUNTER CLASSIFICATION EQUATION and
the top of stacK counter, followed by a variable portion containing
the member UNIT stack. Each entry in the member UNIT stack contains
a PL/I like structure (heterogeneous typed structure) containing the
UNIT Key (character type) and the number of that type UNIT required
in the ENCOUNTER(integer type). Each entry in the stacK Is accessed
by moving a word at a time from the appropriate address In the
record buffer to a logical type transfer buffer. The character
variable followed by an integer variable are equivalenced to the
transfer buffer. Note that the encounter classification equation 1s
later parsed then interpreted bY various application programs.

The UNIT file records are very similar to the previous level
records, i.e. a fixed length portion for UNIT description followed
by a variable portion for the attached RECORD stacK (also containing
the number of each RECORD type required in UNIT). A new value is
added to the fixed length portion of the record - the global counter
- to aid in controlling use of the global facility. This Is present
also at the RECORD and FIELD level. The counter is set to 1 if the
UNIT record is local, i.e. not pointed to by any other study, out
It·s incremented every time it·s pointed to. This allows detection
of its global status(to provide for a warning on the effects of
modifying it), as well as providing for local deletes. If an entity
is global, and it·s to be "deleted", the global counter Is
decremented, and the pointer to it is removed(the actual record is
not removed). If the counter is 1 and it's being deleted - tnen
actually FREMOVE it.

The data entry FORM file is almost identical.

The RECORD file record is basically the same, except that each entry
in its member FIELD stack contains a larger neterogeneous typed
structure. The structure includes the FIELO·s key(character), its
starting column (integer), the member of contiguous repeats of the
field on the record(integer) and whether it·s required (for editing
purposes).

The FIELD file record is
containing all the basic
descrlptionClabel), etc.

REASONS FOR USING KSAM/3000

the simplest - fixed
information such as

length binary ­
type, len-gth,

._-.,--- ----- .--------
The Data Dictionary/Directory could have been implemented using a
set of direct access files, with an index into the top most level
(study level) providing a table of contents. Pointers to
subordinate entities, e.g. pointers to all attached RECORDs in any
UNIT, could have been the actual record address in the SUbordinate
file. This approach would have been very efficient in tree
traversal time(data dictionary hierarchy traversal). Problems
associated with this approach are:

B-10.95



•

•

•

•

MPE presentlY doesn't support direct access variable length
records (variable length records being very important for
efficient implementation of the overall structure)
broken pointers, i.e. bad record addresses are very difficult
to fix - probably requiring a dual pointer structure (pointer
to son from father and vice versa)
a garbage collection mechanism was needed - would have been
necessary to explicitly set this up
the global use of UNITs, RECORDs or FIELDs would have become
extremely difficult to implement - one would need a separate
list of availabe entities with their record addresses.

1~AGE/3000 itself could have been used to implement the data
dictionary (something occassionally done in commercial systems). The
straight hierarchical structure of any single LOCAL data dictionary
would have been implemented satisfactorilY as illustrated in Figure
3.

The global entity concept would have been very difficult(impossible)
to implement using this structure, though. Also, information SUCh
as Field start column couldn't have easily or efficiently been
stored at the RECORD level (no variable length records in IMAGE, or
compound items as chain heads).

The Data Dictionary/Directory was implemented In KSAM/3000 because:

•

•

•

variable length keyed-access records are supported, so
variable length pointer lists with associated information
is possible.
using keys as pointers rather than actual record addresses
greatly simplifies implementation of global entities and
security/accuracy of pointers.
KSAM takes care of garbage collection automatically.

Traversing the tree structure using keys into SUbordinate files is
not as fast as direct access using a record address - but it's close
(KSAM takes care of that). More importantlY though, this small
disadvantage in speed is considerably offset by all other
capabilities gained (as stated above).

OVERVIEW OF THE SYSTEM DRIVEN BY THE DATA DICTIONARY/DIRECTORY--- ------ ------ ---- --------------------
The clinical data management system implemented on the HP3000
includes:

•
•

•

a key-to-disK emulating DATA ENTRY system
a set of DATA PREPARATION modules, including a batch editor,
on-line error corrections, a masterfile inventory procedure
and various listing/reporting utilities
the DATA DICTIONARY/DIRECTORY subsystem it~elf - containing
an interactive.:for~attedscreen definition/modification
procedure, along· With many reporting and auxiliary use

a-16.06



utilities
~nd the D i'~ '1' A lit Aj'J AGI:.. f\i ENT SUO 5 Y5 t em wrl i c h cOr) t a ins s e9 rr e n t s for
m~stertile trackinq(orimary residencellb~ vs HP), stat1sti:s,
etc • ), Rt ns t e r f i 1 e n,o ve Ell e nt, and an J i·\ AGl=; s c hem a \\ r {t e r / I 0 d d e r •
(Interfaces to Ib~ resident DB~bS also exist).

All elements of the syste~1 are generalized and function tor 3nv
stu ct Y b~ sed 0 n in tor mat ion 9 a i ned p rIm a r i 1. Y t r 0 III t n eo u ~ t ~

DictionarVI l)irectorY(so~e modules are implemented using otner
similarly constructed central files, such as toe masterfile tracKinJ
tile).

DATA ~NT~1 SUHSYST~M------ -~-_ ...._..-
1nis is a key to disk emulating "keyouncn" ooeration which supoorts
an input/verify data entry cycle. Data is keyed on a
micro-processor controlleo data entry terminal(tne standara HP2645A)
uti 1i z i ngami c r 0 pro9 ran. dow n10 c:l aedt rom the t-I P3000 • Tn e d a t a i 5

keyed in 80 column card images using c~rd masks or ~U~~s ~nicn ~re

constructed trom information contained in tne 01ta
Dictionary/Oirectory. The microprogram allows for auto~atic taobin)
from field to field, automatic as well as manual duplication of
fields (from the previous record in the fOP~) ana auto~atl=

insertion of RECOHD identification information. the microprogra~

cOrtlr'lunicates with tne HP3000 in d bacl<grouno rnode with oUfterin~ ~nd

accepts keying in foreground mode. This results in instantaneous
response at the keyboard independent of loaa on tne HP3000 ~ 3n~

also reduces the orocessing drain d~ta entry ~ould normally place on
the HP. During on-line verification , the record oeing i<eyec is
matched aqainst tOe corresponding recora previously key€o duriD~

input. Any discrepancies are resolved t.hen.

Co~oleted data entrY oatches are autoffiatically routeo to the
aoprooriate masterfile basea on information containea in the
:~asterfile Tracking tile (this includes automatic SUbmission of Ib v

bound Jobs:for tnose masterfiles resident on the IbM).

D l\ TAP Po ~p ARATI ON SUoS i STF';JY'

---~~---~~- ----~----

1he Dat~ Preparation SUbsystem supports oackgrouno ed1tinq and
inventory of masterfiles, interactive error corrections ana various
listing utilities. All modules of tne SUbsystem gain inforUlatio~

frOM the Oata DictionarY/Directory and the Masterfile TracKin~

Control file.

toe batch E;DITU~ \\orks on· a complete masterfile or a selected
SUbset, sorts the tile by record id and other key tielas, t~en

produces a formatted report. Tne report is constructed usinc tie11
names as colllmn neaders ~nd edit specifications (acceotaole a~t3

ranoe) for flagging of data errors - botn fronl the data dictionary.
Toe ~OITOR Knows wnere to pick up e3ch tielo on a record oasea o~

the field start column and length information, also in the D~t~

B-10.~7



Dictionary. A similar version of the EDITOR exists on the Ib~/37U ,
written in PL/I, also running off of the Data Dictionary. fhe I~~

resident version is run by joos automatically submitted froffi tne HP
if the ~asterfile tracking file says the file's primary residence 1s
toe IfH~.

Ine interactive ~kROR CORRECTION procedure is a for~atted screen
oriented proqram which directly updates an H~ resident masterfile.
M3sterfiles ar~ maintained as KSAM tiles on tne HP, so a particular
record to oe corrected can be located very rapidly using f'R~Au8YK~Y

or fFINUBYKEY. Once desired modifications are made to the recora,
it's f'lJPi)ATt:d on toe KSA~' tile. A log ot corrections is malntainej
tor oacKino them out, or reaoplying them in tne case ot systeTt
tails.

r~e batcn IHV~NtUrl~ orocedure takes a masterfile, sorts the file oy
q~tient nun,oer, then oerfor~s an inventory ot oata records co~parin~

tne data or~sent to tne e~pectea data structure. Inis expected dat3
strl1cture - '.·;nich records comprise n unit, and when/ho ... many units
are to occur - is constructed based on the uata Diction~ry fNCOU~rE~

a n (j I Jt'J 11 5 t r u c t uri n g r ecor d s • The I NVE NT0 RY proc e d u r e run s i ')
eiti)er a total inventory listing mode or in an exception rrlOde ­
listing o~ly ratients witD missing records.

10is SUbsystem also includes maintenance ana reporting facilities
tor ~ Dec01e file - a KSAM/3000 baserl data aecoding taole. An lSA~

version of this decode file is maintained on the IB~/370 through tne
HP resident maintenance system - any updates made to the HP file
c~use a 10n to oe automatically suomitted to tne IbM for identi:al
Ui)(iCltes to ne made there.

D t\ TA I) leT 1(I ", AHY/ () I K f:; C l' 0 HY SUBSYST ~; fil

--~------~---~-----~ -~~------

Tne Data l)ictionarY/Directory suosystern includes an interactivfl
forrlatted screen orier-ted uU/Dir definition and modification
proard~, aUlom~tlc codirg manual ~eneration, a aata entry FJR~

detinition intertace, various reportinq utilities and a translate/
export mooule to translate the Uata Dictionary into its IB~/310

version and export a copy of it automatically.

'fne definition/modification program uses a tormatted screen (not in
block mode out under program control) which is set up with an
i~oente~ tlier~rchy corres~onding to that of the data dictionary. The
torillatted screen is traversed In a manner corresponding to the tree
structure of the data dictionary. When changes are to be nade, the
user simply defines toe' path down tne tree to the item to oe
cnanged, then eIlters the information to be modified.

Renorting utilities eXist which produce a comprehensive list of anv
Data Dictionary's content, study encounter structure, as ~ell as a
codinq ffianual to aid data coding (prior to data entry).

B-10.08



The translate/export modUle traverses any data dictionary, produces
a sequential version of it and ships this to the IBM/370 where it's
used by nlany IBM resident DBMS interfaces (as well as the batCh
editor).

DATA MANAGEMENT SUBSYSTEM
---~ ---------- ---------
The Data Management subsystem includes the Masterfile Tracking
control file maintenance/report utilities, masterfile movement
utilities and an IMAGE schema writer/loader. The entire system is
controlled by a top level program in the Data Manage~ent system ­
called the utility controller - which runs as a very high level
language interpreter.

The Utility controller program of the subsystem accepts English like
commands, parses them, and takes action on them by calling one of
many proqrams in the system (using the MAIL intrinsics to pass
information to the called programs).

The Masterfile Tracking control file contains information on the
primary residence of all lliasterfiles, predicted numoer of rec~rds in
the masterfile, and a variety of other accounting/security types of
information. In addition, information on the existence of an IMAGE
data base, or any other IBM resident DBMS, and the date that it was
last loaded, Is contained in this file. This information is very
useful, not only to tell how current a data base is, but also,
Whether it already exists, and should be purged before Deing
created(recreated).

Masterfile movement utilities are also available as a part of the
Utility controller. The command MOVE HPO<masterfile> TO OS<dsname>
is SUfficient to prompt the system to automatically submit a job to
move the masterfile namea to an IBM/370 resident data set (building
it if necessary). The reverse command is possible, and in fact,
movement between any of 4 logical origins/destinations is possible.
The jobs to move the roasterfiles in any direction are submitted
automatically to MRJE/3000.

The system includes interfaces to many IBM/370 resident DBMS
packages, and to the IMAGE/3000 system. The IBM resident DBMS
interfaces all use the Data Dictionary to create the equivalent of
an IMAGE schema, then later in the same jOb, actually load the
masterfile desired into the DBMS. The IMAGE/3000 interface SUbmits
a background jOb to run 2 programs (with standalone sorts between)
which write a schema, then actually load the data into the created
database. The detailS of this set of programs are covered below.

IMAGE/3000 SCHEMA WRITER/LOADER
---------- ------ .------------
The IMAGE Schema writer 1s an interface program which reads the data
dictionary, and primarily constructs appropriate schema definition
statements from the data FIELD types. The procedure will create a

a-10.09



scnema containing all LwiTs of a study or only selected UNlfs
depenning the request ~ace to tne front end 9rogra~ (run by utility
cJntrol1er).

Iotdl output from the prooram includes tne corupleted schema readv
for proCe s sin q b 'I () bSCH~ t·~ A• PUB. SYS, a de taIl loa d f11 a p, 3 nd a s U 11 III ~ r y
oroat;=j set loa d £11 a p • The s c he 1\a i s pro duCed by bu i 1a i n ~ t ~ :>
internediRte files - one tor the SET part ana one for the l1EMS part
of tne scherr.d. As tne {lata dictionary is traversed - accuroulatin::J
all ~IELDs belonging to each UNIT, the sChema ITE~ cart for e~cn

field is ~'rltten (Kno'lfin~ :,;hat type the f'I£Ll) is, its size, etc.).
At the san! e time, d post i nq tot ne S[-; T 0 art is tiad e for t ne FIt: L[I •

i3ctl Data Dictionary UNIT is considered to oe equivalent to an I~AGE

Oata set, so whenever a new UNIT is started in the traversal
ooeration, the a9propriate S~~T defir)ition is written, tollowea oy
its FIELD or item entries. the outfer position for the Loader
procedure is also calculated for eaCh field in each aata set. rne
detail load map file qenelated by the schema writer pro~ra~ consists
ot a record for each r'leld in the data dictionary containinq the
fiela's input bufter dodress, tne IMAGi data tyoe, the field's
parent Recore Id, starting column, lengtn, and deCOdinQ information.
I'rai::; inforl;lation is sufficient for lRter postina ot the rjata to tlie
odta base. Tne summary load map produced contains an entry tor eaCh
data set being created, ~ith the numoer ot fields in the data set,
tne total bufter size (used for acquiring the proper si7.e extra d3ta
seYl:lent in the Loaaer prccedure), and the name and sequence nU(T&;:,er
of toe data set.

Aftpr the Schema '~riter produces the Schema, Detail load map 3nd
summary or data set load map, the DBSCHEMA.PUB.SYS proqr3m is
invoked to process tne new schema(FILE equation beinq issued by the
schema writer) • At t e r t t, e root file is created, the DbUT ll, • PUt) • S 'i. S
prouram is executed, to create the new data base. Finally the detail
load map is sorted by Record id, then start column and the
masterfile is sorted bY patient id, then record date, then recora
in. The Loader procedure is now ready to run.

1he Loader program reacts the sorted Oetal1 Load map, and constructs
a tree structure containing all information to convert/decode frou
the rllasterfile records into a logical oufter to be pasSPd to the
[~AGE data base. Tne procedure also reaas the Data Set loaa m~p,

and creates an extra oata segment of proper size to act as data
accumulation areas for each of tne Data Sets. Tne proqrarn tnen
begins reading the masterfile and converting/movinq the data to tne
appropriate extra data segment location. ~hen a logical oreakpoint
in tile data occurs(ctlange of patient, or cnange of date), all extra
data seg:"l~nts which have been posted, are accessed, posting tne'ir
contents to the I~IAG~ data base. Various satety cheeks are built in
to prevent overwriting of the extra data segment buffers, i.e., if a
record memoer of a buffer has already oeen posted, and it's about to
be posted again, the Duffer is cleared first (this should not happen
normally due to tne U~IT structure of the Data Dictionary).

B-l~.l~



Durinq the loadin~ process, blanK or missing data 1s noted, by
posting a bit in a Ml~SING field{a field which is automatically
qenerated for each data set) which corresponds to the sequence
numc>er of tne tield in the data set. This MISSING bit is to be used
oy various application ~rograffls accessing the data base to ensure
proper statistical treat~ent of missinq data. Each UNIT occurrence
Is also categorized into one of the ~NCOUNTERs at the Data
Dictionary, witn the categorization being also posted to an
t: ;.J C{J Ur~ Tt: R fie 1dIn ea enda t a set ( t his a los in da tar e t r 1e valla t e r ) •
03td ~nich is to oe oecoded for reporting purposes, is decoded
during the load operation - tne Decode taole field name and field
vallIe (or encode) are concatenated, then used as a KSAM key into the
decode file - retrieving the text to oe inserted into the oata base.

a-10.11



~------------------------------------ HEWLETT~PACKARD

HP VIEW/3000

A SOURCE DATA ENTRY SYSTEM

Presented to:

HP GENERAL SYSTEMS USERS GROUP
7TH INTERNATIONAL MEETING

October 30 - November 3, 1978

Denver Hilton
Denver, Colorado

By:

Ju;t;ta KeJr.nke.
Product Manager

General Systems Division
Hewlett-Packard Company

B-12.1



CON TEN TS

VIEW/3000

AVAILABLE RESOURCES ON THE HP3000
VIEW PRODUCT DESCRIPTION

COMPARE VIEW VS DEL

STAND-ALONE SOURCE DATA ENTRY

FRONT-END TO TRANSACTION PROCESSING

MAIN COMPONENTS

FORt1S DES IGN

COMPREHENSIVE EDITING

SOURCE DATA ENTRY

PROGRAM INTERFACE

REFORMATTING CAPABILITY

SUMMARY

8-12.2

PAGE

2

3

4

5

6

7

8

13
17
21
25

32



~------- HEWLETTlpACKARD ----.......

VIE Y3000



HEWLETT~PACKARD

AVAILABLE RESOURCES FOR A

TRANSACTION PROCESSING SYSTEM ON THE HP3000

to FORMS DESIGNER
I

I-'

"".

*~~

*~
*~END USERS REPORTS

~T02MV
"..--------~

... ' ........MEMORY , ..........'4-:::: --""--
,.,.--------::,:::--

~~~--------~,~',---------- ...,-; ........
~, .,- ........'_-------_..-.",

~--------~,..,' ,

DATA FILES



~----------------- HEWLETT'PACKARD ---........

PRODUCT DESCRIPTION
a 0 a a a a a a a a a a a a a a a a

VIEWI3000
o:J
I

~ IS A SOFTWARE PACKAGE THAT PROVIDES
U1

TWO MAJOR CAPABILITIES:
o A SELF-CONTAI N·ED DATA

ENTRY SYSTEM ..•
can be implemented with no
programming effort, and a

FORMS SPECIFICATION UTILITY
for drawing forms, defining
simple and advanoed editing-

o A FRONT-END TO TRANSACTION
PROCESSING APPLICATIONS ...
using the FORMSPEC utility
and an extensive library of
high-level procedures to
facilitate terminal-oriented
and user-written applications.



.""..---------------------- HEWLETTb¥PACJ{AJlD ---..-..-....

HOW DOES VIEW COMPARE TO DEL???

• DEL AND VIEW ARE "NOT" COMPATIBLE

• VIEW IS A CAPABILITIES ENHANCEMENT

• VIEW IS NOT A PERFORMANCE ENHANCEMENT

• VIEW SHOULD BE FOCUSED ON AS A "NEW" DATA

ENTRY PRODUCT "NOT" AS AN ENHANCEMENT OF DEL.



HEWLETTii PACKARD

VI EW/3000

"STAND-ALONE SOURCE DATA ENTRY PACKAGE"

NO PROGRAMMING EFFORT

FILL-IN-THE-BLANKS DESIGN

FREE FORM DRAWING

START ENTERING DATA IMMEDIATELY

REFORMATTING CAPABILITY

PRE-SET FUNCTION KEYS

B-12.7



VIEW/3000

"FRONT-END TO TRANSACTION PROCESSING"

COBOL} RPG} BASIC} FORTRAN AND SPL INTERFACE

SIMPLE DESIGN} TEST} IMPLEMENTATION} AND
MAl NTENJ1.NCE

PROGRAMMER PRODUCTIVITY INCREASES

8-12.8



~-..--_-_._-__~-_-__':::::-'::--:'---__-__-.._-_._-._-_...-._-.-._._-__::::::.----- HEWLETTiffPACKARD ---..........

VIEW/3000 - main components

I

l )



HEWLETT~PACKARD

Forms File Harne

Key File Harne lORD~~Y~.·J (only if new)



HEWLETT~PACKARD

~ Enter Selection

A--Add a form
S--Add a Save field
G--Go to GLOBALS Menu, OR Go to form

L--List Forms File, OR List form •••

l ' ':" ~"L :. . . . '.' - ~ '. .' : J.

[ . '. '. : ]

field

C--Copy new form name .•...•....•.••
from form ...•..••......••..
from Forms File (opt) ..••••

D--Delete Save
Form

fie Id . [ ]

(~~ ..: ....<:~:;.. -::...:.... ,:.. ' ;: ]

X--Compile Forms File
Optional: Fast Forms File

Key File ...•.•



HEWLETT~PACKARD

Form Hame

0'
I.....,

N.
.....,
N

Repeat Option UWD
H--Ho Repeat
A--Repeat, appending
R--Repeat, overlaying

Next Form ~ Name
C--Clear before Next Form
A--Append Next Form
F--Freeze, then append Next Form

Comments



HEWLETT~PACKARD

• • • ENTER A HEW PURCHASE ORDER • • •
DATE: [date ]

SHIP TO: [name ]

[addr1 ]

[addr2 ] ZIP [zip ]

ttl
I......
~.
......
w

ORDER , DTY. PART , PRICE
[ordernum ] [qty ] [partnum ] [price ]



HEWLETT~PACKARD

* * * ENTER A HEW PURCHASE ORDER * • •

DATE: [date
A

]

Hum II!I!II Len
Initial Value

0'
I

......
I'.J.

••• Processing Specifications •••
IHIT

SET TO STODAY

FIELD
IN !1/1/78! !1/1/79! "Must be a valid date in 1978"



_.._------ -------- H£WL£TTlpACKARD -----......

Comprehensive
i Data Editing & FormattingI
(
J I-ligh-Ievel language for editing/formatting
I

tx:I I specification:
I I

~ t
Length check Pattern match..... C! I:JU1

,., Range check~

C Field moves

:J Table check
C! Logical/conditional

C Comparison for < = > (if-then-else)

[J Justify
C Modulus 10/11

rJ Fill check digits

rJ Arithmetic expressions a Custom error messages



~---------------------- HEWLETr'PACKARD ---..........

P HAS ES

INIT

FIELD

FINISH

PERFORMS STATEMENTS DURING THE INITIALIZATION PHASE.
FOR EXAMPLE: SET TO 100.00

PERFORMS THE STATEMENTS DURING THE FIELD PHASE UNTIL
DATA IS ERROR FREE.
FOR EXAMPLE: IN 20:200; IF IN 100:200 THEN JUSTIFY RIGHT

PERFORMS STATEMENTS DURING THE WRAP-UP.
FOR EXAMPLE: SET TO SFIELD1; CHANGE NFROM TO $END



HEWLETT'PACKARD

~ Enter Selection

A--Add a form
S--Add a Save field
6--60 to GLOBALS Menu, DR Go to form

L--List Forms File, OR List form ...

( . . ]
..... \,j •

.[ . . ]

field

C--Copy new form name .
from form .
from Forms File (opt) .

D--Delete Save
Form

field .
.....................

l ]
(... :: '. : : ," ::"':::. ~ : \ :....:.: .:. : ._:~ J

X--Compile Forms File
Optional: Fast Forms File

Key File .



tD
I.....

I\J.
.....
ex>

"...--------------------- HEWLETTlffPACKARD ---.-.....

VIEW/3000 - main components

I

~--------------------

I

)



~-------~----- HEWLETTlpACKARD --.......

Friendly, Ready-To-Run
Data Entry Program

• Provides standard data entry features via
special function keys

• "Browse" through already entered data

• Modify and/or delete already entered data

• Resume to prior point of data collection

• Allows immediate execution of data entry
formats and editing without use of compilers

• Stores data records in MPE sequential files



~---------------------------- HEWLETT'PACKARD

:RUH EHTRY.PUB.SYS

HP32209X.OS.OO ENTRY (C) HEWLETT-PACKARD CD. 1978

Enter Forms File name and press RETURN: ORDFORM
Enter Batch File name and press RETURH: BATCHFL



~---------------------------- HEWLETT'PACKARD

• •• ENTER A HEW PURCHASE ORDER • • •

SH IP TO: [ name
{addr1
{addr2

DATE: [date

]

]

] ZIP [zip ]

]

ORDER ,
[ordernum ]

GTY.
[qty ]

PART #

[partnum ]
PRICE

[price ]



HEWLETT'PACKARD

• •• EHTER A HEW PURCHASE ORDER • • •

DATE:

SHIP TO: lAP E X ~la n u fa c t uri n 9 Co. .1
[21019 Main street ]
[M~~~,t.E!rf:~~.';;~i.~~ 1.:J.1,.or.~n,.1~~.~·''''·4'~.1 ZIP~

ORDER , GTY.
IIEII

PART , PRICE



,------------------ HEWLETTlpACKARD ----.....

USER-WRITTEN PROGP~MS

111]1 INTERFACES WITH 5 LANGUAGES: RPG J COBOLJ FORTRAN J BASICJ SPL.

1(2]1 MANAGES INTERFACE BETWEEN PROGRAM AND TERMINALJ FORMS FILE} AND
ENTERED DATA~

~1I PHYSICAL ORDER OR LOCATION OF THE DATA FIELDS ON THE SCREEN IS
IRRELEVANT TO THE APPLICATION PROGRAM.



VI EW/3000 INTR INSles

HEWLETT~PACKARD

,....---I·:·,/~i::::;(t~{}{:::',;,\//:\<Jwi.~.b6w .!:C::\:.::L:L':;::;;:::-:· ,., ::: ". M&--_
VGETNEXTFORM

FORMS
FilE

VERRMSG

VOPENFORMF
VCLOSEFORMF

VPUTWINDOW

VFIELDEDITS

FORM DEFINITION

{;i\~{~·~,i~~E~t~fl;;~{:i,lil~i:·-Ef~
VSETERROR

VINITFORM

VREADFIELDS

VOPENTERM
VCLOSETERM

0'
I

......
I'J.

VOPENBATCH
VCLOSEBA TCH

BATCH
FILE

VGETF.~

~ VPUTF.••
~~~~~~~ ...-.~~-L_

.!r;~:.·{;-!:;;:L·.\{J?.Af:A:.~gf..f¢...~;.I::(}:d!:!;:X!::(i\t:-;:;i:::··
'--...... -.. ~ ~I

Y

PROGRAM
DATA

-VWRITEBA TCH
VREADBATCH

-.

~

XGETBUFFER
XPUTBUFFER



~------------------ HEWLETTIpACKARD ---........

)-

~
~
\J
---\l
\l
---tn ~I.....,

I\J.
I\J "2U1

\9-
'"\U
~

," .. ", 1 ~. .~: ~.'.

J



",...-------------------- HEWLETT@PACKARD ----.....

VIEW/3000 - main components

I

l~ -...-.-_.- ----)



Flexible Reformatting Utility

A separate batch program to:
II Meet data. format requirements of existing programs
a Perform batch-type formatting

• Combine data from several forms into a single record
• Split data from a single form into two or more records
• Rearrange data within a record
• Adjust data within a field (e.g., "justify" or "fill")

'------------_._-_...•_ ------- -- .- --_ _ -



HEWLETT~PACKARD

Enter Selection ~

A--Add a reformat
X--Compile Reformat File
G--Go to GLOBALS Menu
F--Go to FORMS FILE Menu

G--Go to
L--List
D--Delete

reformat id
reformat id

output field

reformat id



HEWLETT~PACKARD

Output Record Format ~
F--Fixed length records
V--Variable length records
U--Undefined length records

Record Length~ (bytes)

Upshift?
Convert to EBCDIC?

Record Terminator String

Field Separator 'String

Yes/Ho
Yes/No



HEWLETT~PACKARD

w
CSl

Forms in Input Sequence: l SH I PTO_. . '1.. ' •.. 1

l . . '.. ' ' .. : . J

[ :- .. ". . :' 1

L " '.' .' . .J
. • • ft, :: .. • , • ~.. J'.

[. ". ": ".: "., :'. ' ]

L.".' . :.' " ." .' 1

l .. :" ",:.. ".. ,:. .' .....:. ;'. J

(Reformat identifier)



HEWLETT'PACKARD

Field Hame

INPUT

Substring Form Hame
Strt Len

Field Hame

OUTPUT

Strt Len
Col

Strt
Rec

DATE •
~ HAME 20
I ADDR2.....

N DATE DATE1.
w ORDERHUM.....

PARTHUM
QTY
PRICE



~-------------------------- HEWLETT'PACKARD

..RE.F ~ ~.E. (;'" X..4•.05 • 00 0 u t put f 1 e 1d ~e n u!:; .;.. :." ~.' .: ·.;;.{~\ol ..:t:I- ,:~! :.: REF 0~MA..T,::·),.l..D;N)).F;. ~ Ef(:..~~SH 1..~J..Q.

INPUT Field:

OUTPUT Field:

DATE '0";'

DAJ E '..:.~\:~ ~ ~:., t.

Start: DIll Length: DmII Form:

Start: D!!II Length: DElI Data Type: ~

STRIP All Leading Trailing

):II,
~ DIGIT _
I\J INSERT CHECK 10/11
•
w
I\J

JUSTIFY • SIGH IB PLUS SIGN? • YIN

L--Left F--Float
R--Right L--Left
C--Center R--Right

Z--Zoned
N--Ho sign

FILL All. Leading. Trailing l1li



REFORMAT

SPEC FILE

BATCH

FILE

REFORMAT

REFORMATTED

DATA-­

PRINTS

ERROR

~1ESSAGES

OUTPUT

FILE

A-12.33



------ ..._-

1:1 What is it?

Summary

. , l; ~ i" ( . 1'~ \ I. {I ~ .... "---

• Stand-alone source data entry
• Front-end to transaction processing systems

a Major features!

• Simple forms design
• Comprehensive editing
• Data entry without progran"1111ing
• Reformatting to meet existing requirements
• Adaptable language interfnce

(BASIC, COBOL, FORTn/\~·I, RPG, SPL)

~--------_.--.. __._...~.._-" .--- . ..._. ....._.·1 "' . ._._ ....... __...__._~._........--.-" .. -



10/16/78

FACTORY DATA COLLECTION

by

LINDA SIENER
HEWLETT-PACKARD COMPANY

DATA SYSTEMS DIVISION

One of the most challenging aspects of manufacturing control is the collection
of timely and accurate factory data. The quality of this data largely determines
the effectiveness of today's modern control systems. Late or inaccurate data can
only produce low quality information. Timely shop information is, therefore, essen­
tial to the control of manufacturing processes. This same information is also import­
ant to the accountability of direct labor records in the financial system.

Typically, the shop floor environment is the most difficult area from which to
extract information. The factory workers are primarily concerned with manufacturing
items and accurately reporting their work is incidental to their job. What is needed
is a factory data collection system that can help make the data collected from the
workers more accurate and timely and, at the same time, easily blend into the cur­
rent operating methodology.

Advances in electronic technology have now mage it possible to cost-effectively
introduce factory data collection terminals directly into the manufacturing area.
No longer does data have to be written down, keypunched, checked for accuracy and
corrected days after it was written down. By using the factory data collection ter­
minals, the data can be collected and validated at its source, i.e., the factory
worker. But what about the major programming effort necessary to monitor all these
factory data collection terminals as well as validate the data as it is entered? And
once that is done, how about the task of maintaining these programs? As everyone
involved in designing or implementing computer systems knows, the cost of software
is steadily increasing and the trend in industry is toward application packages.
Because of this, Hewlett-Packard offers Datacap/1000, on the HP 1000, which assists
the programmer in quickly and easily implementing data collection with these factory
data collection terminals. Also, Datacap makes modification to the data collection
system very simple. Datacap helps meet the challenge of collecting timely and accu-·
rate data in the factory.

B-13.1



(CGELCG

ASK / 3000

THE NECESSARY COMPLEMENT TO IMAGE/QUERY

• ASK/3000 may access and report any information from

an IMAGE/3000 data base

• Like QUERY, it enables you to:

-read,add,modify,delete information

-select entries

-generate reports

but almost every limitation you have met using QUERY

has disappeared

• With ASK/3000 you can:

-FIND and REPORT items from different data-sets

-Access sub-items in any command

-Call user procedures for solving a problem that

cannot be solved with standard parameters

-Use new report statements as IF, TRAILER or exis­

ting statements with greater capacities as HEADER

DETAIL •••

-Use registers associated to Detail, Group or

Total statements to perform any calculation

-Call ASK/3000 from a user program

-Etc ••••

a-14.1



(CGELCCi

QUESTIONS AND ANSWERS ON ....ASK/3000.

1. Is ASK COMPATIBLE WITH QUERY?

Yes, all reports written with QUERY may be run with ASK
without any modification.

2. IS IT POSSIBLE TO SELECT RECORDS FROM A DETAIL DATA SET ACCORDING
TO THE VALUE OF AN ITEM LOCATED IN A MASTER ?

Yes. The FIND command accepts multidata set criterions and this is
true for any type of data set.

3. IS ASK HANDLING SUB-ITEMS?

Yes. ASK allows you to .write and modify sub-items. In all commands
a sub-item may replace an item.

4. MAY I SELECT RECORDS ON THE VALUE OF THE FIRST CHARACTER OF AN ITEM ?

Yes. You can mask any non significant character by a "\" and select
records on the value of the other;
example : FIND NUMBER = "\2\3 \ \U

5. CAN ASK SORT ON THE FIRST CHARACTER OF AN ITEM?

Yes. Sorts can be performed on any substring inside an item
(or sub-item). Overlapped keys are allowed.

6. MAY I REPORT ITEMS FROM DIF:f'ERENT DATA SETS ?

Yes. You only have to specify to which data set belongs the desired
item.

7. IF A PROBLEM CANNOT BE SOLVED BY ASK/3000 , AM I OBLIGED TO RE-WRITE
THE WHOLE REPORT IN STANDARD PROGRAMMING ?

No. You can write a user procedure and call it in any HEADER,TRAILER,
DETAIL, GROUP, or TOTAL statement.

8. MAY I EXECUTE CONDITIONALLY A REPORT STATEMENT?

Yes. A new statement "IF" enables you to manage flags. Any report
statement can be conditionally executed according to one of these
flags.

B-14.2



(CCiELCCi

9. CAN ASK BE CALLED FROM A USER PROGRAM ?

Yes, You can use ASK's functions in your own program by creating an
ASK process, and sending to it the name of an XEQ-file to be executed.

IO.MAY I SAVE A VALUE COMPUTED IN A REPORT ?

Yes, You can use the UPDATE function in a register statement to store
a register content in an item. For any other storage, you have to
write a user procedure.

II.IF SUCCESSIVE REPORTS NEED THE SAME SORTS ON THE SAME DATA SET,
CAN ASK SORT THIS SET ONLY ONCE ?

Yes. ASK keeps sort parameters in the select file, and the select-file
can be saved as permanent.
ASK knows when it has to perform the sort or not.

12.WHAT ELSE CAN I DO WITH ASK?

Many things, such as :

ROUND results of divisions in packed decimal format.
• Print dates in EUROPEAN format.
• Prevent DETAIL, GROUP, TOTAL lines to be spread on 2 pages.
• Manage ASK output files.
• Generate TRAILER lines at bottom of pages.

Execute registers functions only in GROUP or TOTAL lines.
• Send messages to the operator.
• Etc •••

Moreover, you can use ASK as a frame for any batch program, by
writing a pseudo-report containing sorts, and register statements.
You only have to write the code of your application as user
procedures.

You will find a summary of ASK capabilities and a detailed example
in the next p~ges.

This example is a typical supplier accounting report. You will find
a schema of the data-base, the text of the report and the listing
generated by ASK.

B-14.3



13.HOW CAN I BUY ASK?
First, you can get more information about ASK.If you request it,we will send yo~ free of charge, the reference manual and/or ademo tape (valid two months) to test it on your own site.

14~WHEN CAN I GET ASK ?
ASK is immediately orderable from

COGELOG
1 res des Quinconces
91190 GIF SUR YVETTE
FRANCE

IS.HOW IS ASK MAINTAINED?
If you happen to find a bug in ASK, send us a detailed "bug-report".When the bug is corrected, every ASK installation will receivea new tape to load on its system. Moreover, a "bug-status-report"will be sent per~odically with temporary turn-arounds for yetuncorrected bugs.

16.WHAT WILL HAPPEN IF H.P. MODIFIES ITS SOFTWARE?
ASK is an SPL-written application program which directly callsIMAGE intrinsics (like any of your data-base application programs) .More than 700 sites use the IMAGE subsystem allover the world.This is why HP CANNOT modify IMAGE external' specifications.Therefore; ASK will run 'as -long as !t·'1AGE does~'

B-14.4



••• DATA BASE SCHf~A EXAMPLE ***

SCONTROL NOI.I ST, ERPORS= 2, TABLE
STITLE "DATA BASl OEfl~ITION"

«
*** DATA BASE SCHF.MA ***

»
BEGIN DATA BASE 5B:

PASSWORDS:

4 COMPTA:
5 FOURNI:

I 1'Et-1S :

« A C C 0 U N TIN G E N T R I E: S »

DAY , 11 (/4) « ENTRY DAY»
MONTH, 11 (/4) « ENTBY MONTH »
YEAR , 11 (/4) « ENTRY YEAR »
NEf'tTRY, 11 (/4) « [NTRY NUMBER »
VALUE, P12 (/4) « ENTRY VALUE »
CO~MENT, U16 (/4) « COMMENT »

« 5 U P P LIE R S »

$PAGE
SETS:

«

NSUPP ,
SNAME ,
STP.EET,
ZIPCODE ,

U6 J« SUPPLIER NUMBER »
U34 J« SUPPLIER NAME »
U34 «STREET NAME AND NUMBER »
U34 «ZIPCODE AND CITY NAME »

** MSUPP: 5 U P P LIE R

»
NAMl: MSUPP,AUTOMATIC (is):

MAS T E R

ENTRY:
NSUPP(l):

CAPACITY: 1011:

«

« SUPPLIER NUMB~R »

** DECR~ : A C C 0 U N TIN G ~ N T R I E 5 o t" THE M .0 NTH
--------~---------~--------------------

»
NAME: DECRM,DETAIL (4,5/4,5) :

ENTHYz
DAY,

B-14.5



••• DATA "ASE SCHEMA E~AMPL~ ••• CUNT ••

MONTH,
YEAR,
NSUPP,
NENT~Y,

COMMENT,
VALUE,

CAPACITY: 2~001

«

« ENTRY MONTH »
« ENTRY YEAR »
« SUPPLIER NUMBER »
« ENTRY NUMBER »
« COMMENT »
« ENTRY VALUE »

*. OSUpp •• 5 U P P LIE R o ETA I L

»
NAME: DSUPP,DETAIL (4,5/4,5)1 «SUPPLIER DETAIL »

ENTRY:
NSUPP(~SUPP),

SNAME,
STREET,
ZIPCODE,

CAPACITY: 550;
END.

B-14.6



.*~ kEPORT SOURCE EXAMPLE ***

RI::PORT
******************************************************
* SUPPLIERS ACCOUNTING PEPORT *
********************.****************~****************
• OUTPUT CONTROL WORDS· --------.----~-~---.LINES=56
EUROPE
NOSPLITGFOUP
NOSPLITTOTAL
DYNAMICTRAILER
OUT=LP,"~OUNT SUPPLIER FORM ON LP PLS."

*
• M~ANING OF REGISTI::RS:
* -~-~---~--.~---~-.---
* Rl : SUB TOTAL FUR EACH SUPPLIER
• R2 : GENERAL TOTAL
** PERMANENT HEADER
.'FULLDATE' IS AN USER PROCEDURE THAT PRINTS THF MONTH Ih FULL LETTERS
•

CONDITIONAL HEADER : THESE STATEMENTS ARE THE SAM~ AS
THf: GROUP STATEMENTS. THEY REPEAT THE GROUP LINES IF A
PAGE EJECT OCCURS BETWEEN A GROUP AND A TOTAL STATEM~NT

Hl,PAGENO,69,SPACE Al
Hl,"PAGE-NUMBER",65
H2,"SUPPLIERS ENTRIES
H2,FULLDATE(65),X
H3,48("-"),65

*
*
*
*
*

.
• PAGE",65

COtJ.MENT
CREDIT

I",35,IF r4
I",69,If F4

",30,IF f4

: ",30,IF F4ADDRESS

I

H4,68("-"),69,SPACE Bl,IF F4
H5,"1 SUpp • : NAME
H5,NSUPP,18,IF F4
H5,DSUPP.SNAME,66,IF F4
HS,"I",69,IF F4
H6,"I
H6,"!",69,IF F4
Hb,DSUPP.STREET,66,lF F4
H7,"I",2,IF F4
H7,"I",69,IF f'4
H7,DSUPP.ZIPCODE,b6,IF F4
H9,68("-~),69,If F4
HI0,"1 DATE I
Hl0," DEBIT
Hl1,68("·"),69,IF F4
•

ADDRESS: ",30

NAME

* GROUP: BEGINNING OF FRAME

*
G28,68("-"),69,SPACE Bl
G27,"1 SUPP • :
G27,NSUPP,18
~27,DSUPP.SNAME,66

G27,"I",69
G26,"I
G26,"I",69

: ",30

8-14.7



••• REPORT SOURCE EXA~PLl •••

G26,DSUPP.STREET,b6
G25,"I",2
G25,"I",69
G25,DSUPP.ZIPCODl,66
G23,68("-"),69
G22,"I DATE I COMMENT
G22," DEBIT 1 CREDIT
G21,68("-"),69
G21,SET F4

*Sl,DAY
S2,NSUPP
53, DSUPP.ZIPCODE..

1",35
1",69

CUNT •••

* MEANING OF THE FLAGS:

* F'1 SET = POSITIVI:: VALUE, CLEAR = NEGATIVE VALUE

* F2 · SET = POSITIVE SUB-TOTAL, CLEAR = NEGATI VEo: SUB-TOTAL·.. F3 • SET = POSe GENERAL TOTAL, CLEAR = NEG. GENERAL TOTAL•

* F4 • SET = BETWEEN GROUP 11'OTAL, CLEAR = NOT BETwEEN•
*IF,VALUE > "0" THEN SET Fl ELSE CLEA~ Fl
IF,Rl > "0" THEN SET f2 ELSE CLEAR F2
IF,R2 > "0" THEN SET F3 ELSE CLEAR F3
01,"1 1 118 1",13
Dl,"1 1 1",69
01,DAY ,5
Dl,MONTH,8
01,COMMENT,31
Dl,VALUE,67,El,If NOT fl
Dl,VALUE,50,El,IF Fl
Rl,ADD,VALUE
R2,ADO,Rl,l2

** SUB-TOTAL •• END Of FRAME

T20,68("-"),69
T21,Rl,67,El,IF NOT F2
T21,Rl,SO,El,If F2
T21,"1 BALAhCE •••••••••••••••• :",35
T21,"I",69
T22,68("-"),69
T22,CLEAR F4
T2,Rl

** TRAILER: THIS STATEMENT CLOSES A FRAME IF A PAGE EJECT OCCURS
* BETWEEN A GROUP AND A TOTAL

*Zl,b8("-"),69,IF Y4

** GENERAL TOTAL
*
TFt, "TOTAl. BALANCE ••••••••••••• :
Tfl,R2,67,El,lF NOT F3
TFt,R2,SO,El,IF F3
El,"ZZZ,ZZZ,ZZ9.99"
END.

",36,SPACE 82

8-14.8



••• USER PROCEDURE EXAMPLE ***

lJOB JOBUSER,USER.GROUP
lSPL,USLUSER
SCONTROL SUBPROGRAM,SEGMENT=USER,LIST,AOR
BEGIN
«

THIS PROCEDURE PRINTS THE CURRENT DATE IN FULL LETT~RS

THE PRINT POSITION IS PASSED THROUGH TH~ OPTIONAL PARAMETER '
»
PROCEDURE fULLDATE(DBNAME,ISORT,LINEBUF,REGISTERS,SrORAGE,FLAGS,·PARAM)J
INTEGER ARRAY D8NAME,ISORT,tINEBUf',REGISTERS,STORAG~;

LOGICAL ARPAY FLAGS: '
INTEGER PARAM,

BEGIN
INTEGER N,O,INDEX,DAY,YEAR:
BYTE ARRAY OUTPUT(*) = LINEBUF:
INTEGER ARRAY MONTH'TABLE(O:ll):
INTEGER ARRAY H1C*) = MONTH'TABLE, M2(*l = MONTH'TABLE(l),

M3(*) = ~ONTH'TABLE(2), M4(*) = HONTH'TABLE(]),
M5(*) = MONTH'TABLE(4), M6(*) = MONTH'TABLE(S),
M7(*) = MONTH~TABLE(o), Ma(*) = MONTH~TABLE(7),

M9(*) = MONTH'TABLE(8), Ml0(*> = MONTH'TABLE(9),
MlI(*) = MONTH'TABLE(lO), MI2(*) = MONTH'TABLE(11)i

BYTE ARPAY STRING(0:107) = PB :=" JANUARY"," F~BRUARY","

" AP~IL"," MAY"," JUNE"," JULY","
"SEPTEMBER"," OCTOBER"," NOV~MBER"," D~CEMBER":

INTRINSIC ASCII,CALENDAR:

Ml:=M3:=M5:=M7:=M8:=M10:=MI2:=31: «INIT. MONT'TABLE»
M4:=M6:=M9:=Ml1:=30;
o := CALENDA~:

DAY := 0.(7:9):
YEAR := 0.(0:7);
IF YEAR/4*4 =YEAR THEN M2 := 29 ELSE M2 := 28:
INDEX := 0:
DO BEGIN

N := MONTH'TABLECINDEX):
IF DAY-N < 0 THEN GOTO MONTH'FOUNO:
DAY := DAY - N;
INDEX := INDEX + lJ
END UNTIL ItlDEX = 12;
RETURN;

MON'fH'FOUND:
MOVE OUTPUT(PARA~-15) := STRING(INDEX*9),(91,2:
MOVE * :=." 19":
ASCII(YEA~,10,OUTPUT(PARAM-2»:

END:
END.
lSEGMENTER
SL SL
PURGESL SEGMENT,USEP.
USL USLUSER
ADDSL USER,PMAP
EXIT
!EOJ

8-14.9



*** REPORT EXAMPLE ***

• PAGE-NUMBER 1

SUPPLIERS ENTFIES OCTOBER 1978

------~~----~~----~-~-~-~~--~----._-~.--~-------

--_._------~~~-----_.-------------~--~--------~~-------------_..----
I
I
I

SUpp .: 190399 NAME
ADDRESS

·•
••

PUB SHARK
37 RUE DE LA REPUBLIQUE
54140 JAFVILLE MALGRANGE

1
I
I

-.~------.~-----.~~-----------~--~---~-------~~-----.- --------------J

1 DATE I COMMENT I DEBIT 1 CREDIT I

---------------_.------~----------------~------------- ---------.----
I 21/10/78 I
I 22/10/78 I

RECRUTEMENT
RECRUTEMENT

1
I

1
228.00 1

228.00 I
1

---------~~-~.------------~~-----~-------------~---_.----~----------
I BALANCE •••••••••••••••• : 0.00 1

---------------------~---------------------~--~------~ --------------

--~-------------~-----~~----~-~--~-~~---~~---.-~--------~--~~-------
I
I
I

SUpp .: 200099 NAME
ADDRESS ·•

THANSWORLD
17 RUE CHILDEBERT
69002 LYON

I
1
I

--------~.-------------~----~------~~------------~-.~.---------~----
1 DATE. I COMMENT I DEBIT I CREDIT 1

-.----------------~---~--------~----~------~---~-.-.~- --------------
1 19/10/78 I
1 22/10/78 I
I 22/10/78 I

78/TH/08/129/Z
78/TH/OB/129/Z
78/TH/08/129/Z

I
I
I

334.40 1
I

1,900.00 I

I
2,234.40 1

I

-------------------------~---.~--------------------_.--------~------
I BALANCE •••••••••••••••• : 0.00 1

---------.------------~--------.-----~-._--~--------~. --------------

I
1
I

supp I: 2008 NAME
ADDRESS

•• JOJO INC
1 RUE DE LA GRANDE TRUANDERIE
75004 PARIS

I
I
1

--------.--------~--~------~---------------------~----~------~--_._--
] DATE I COMMENT I DEBIT I CREDIT I

----~-----~-------~---~~~---~-----------------------~~-~------------
I 22/10/78 I POT DE VIN 1 4,380.05 I I
1 22/10/18 1 11024 I I 29,396.41 I
I 25/10/78 1 11024 I 25,016.36 1 I
----------------~-----~-----~--~~-----~-----------------~--~--------I BALANCE •••••••••••••••• : 0.00 1

---~----------------------~------~---------------------~------------

---------~--~-----~---~-----------~---~--------~------ --------------
I
I
I

AND SONS
RUE F'ERRUS

PARIS

VENUS
16
75014

•·
··NAME

ADDPESS
1908supp II:I

I
1

.--------~------------~---------~----~--~~----------~.----~.---~----
I DATE I COMMEt-lT I DEBIT I CREDIT I

------------~~---~-------------._--------------------- --------------I 12/10118 I
1 13/10/78 I

TEST1
TE5T2

I
I

13.00 I
3.00 I

1
I

----------------.--------_._-----~------------~------. --------------

8-14.10



••• MEPOPT EXAMPL[ .*. CONT •• 0.

PAGE-NUMBER 2

SUPPLIERS ENTRIES OCTOBER 18
--~~~-~-~-~-----~~----------~--~~------~-----~-~

---~~----~-~~---~---------------~~-----------~._--------~~--~---~---
I
1
1

supp #: 1908 NAME
ADDRESS

••·•
VENUS AND SONS
16 RUE FERRUS
75014 PARIS

1
1
I

ICREDITIDEBITICOMMENT1DATEI
-----------------.~----~---------~-----~---~-------.------------~-~-J

---------------------~---.~----------------------~-.--~-------_._.--
I 13/10/78 I TEST3 I 2.00 I 1
I 14/10/78 I TEST4 ] 1.00 1 I
1 17/10/78 I TESTS J 105.00 1 I
1 18/10/78 I 460118 I 3,785.76 1 I
I 19/10/78 I 460178 I 1 3,785.16 1

-------~--~------------------.--------------------------~-----------
I BALANCE •••••••••••••••• : 124.00 I

---~---------~---------------.---~~---------------~--.~-~-------~._-

I
I
1

SUPP Il: 180199 NAME
ADDRESS

·· BILLY THE KID BANK
37 RU~ DE VAUVENARGUES
75018 PARIS

1
1
1

~---~------.~----~-------~------~~~~----------~~-~-------------~----
1 DATE 1 COt~MEr~T J DEBIT 1 CREDIT I

-----------~-~----~---~-----------._-----~------~~---------~-.----~-
I 22/10/78 I
I 22/10/18 I
I 22/10/78 I

1496/78
1496/78
1496/78

I
I
I

14,736.84 I
2,593.68 1

1

I
I

17,330.52 I

I BAI,ANCE •••••••••••••••• : 0.00 I

----~~~---------~-----------------~-~--.-.----------~- --------------

---.----------~--------------------------------------~ --------------
I
I
I

supp #: 1909 NAME
ADDRESS

·• OUT OF SPACE
23 AVENUE DU CHATEAU
18000 VERSAILLES

I
1
I

----------~-----------~~---~----~---.-------------------------_.----
1 DATE I COMMENT 1 D~BIT I CREDIT I

-~----~--------~-~-~-~--------------~--------~-------~------.--~---.
I 22/20/78 I
I 22/10/78 I
I 22/10/7B I

37021
31021
37021

I
I
I

6.S8 1
I

31.42 1

I
44.00 1

)

-----.-----------~----~-------~~~-~----~-------~-~--~--------~~~-~~-
I BALANCE •••••••••••••••• : 0.00 I

---~-----~-.----------------------~-------~-------_.~- --------------

TOTAL BALANCE .
• • • • • • • • • • • • • • 124.00

B-14.11



MACHINE UTILIZATION·

Series "e"





MPE OHJ~C'" COOt; t-°Ur'MATS
A;~ I N TR()Due TIn N TU 1I SlJ AND P}{ () GHAj'\ ~ I i.. r: s

Matthe~ J. Balander
The H ~ b Computer Company

ABS1HAcr: The format and ~anagement of USL an~ PHUGHAM files
under the MPE 111 operating system, running on Hewlett
PacKard 3000/11 and 300()/III computer systems, are presented
in this paper. USL tiles dre used to store relocatable
binary modules, and P~OGkAM tiles to store fully ~re~ared

proqrams. Tne presentation is ai~ed at programmers
implementinQ compilers on riP30vO systems. The reaaer is
assumed to oe familiar with the arChitecture ot these
systems, and to understand basic concepts of relocatable
code, linK erlitinq, and so on. The scope of the presentation
is intended to provide the reader an ddequate bac~ground wlth
whiCh to successfully pursue a compiler-writi~q project.

CIJN'I'ENTS

1. Introduction
1.1 Overview
1.2 Conventions

2. PROGRAM files
?. t Contents of PRUGkAt., files
2.2 Tne fixed area
2.3 The global DB part
2.4 The seqments list
2.5 The externals list
2.6 The entry points list

3. USL
3.1
3.2
3.3
3.4

3.5

files
Contents ot USL files
File addressing
Record zero
'rhe d ire c tor y
3.4.1 Directory lists
3.4.2 Directory entries
3.4.3 Header intormation blocKs
The information arp.a
3.5.1 Code modules
3.5.2 Information neaders

(e) Copyright 197H by Tne B&B Computer COfupany

C-02.01



1. Introduction

1.1. Overview---_ ...._-----.-
All operating systems adopt conventions concernlng tne
torlliats of object code files. tnese files must be in
correct formats to be processed by system seglllenters,
linkage eaitors, and loaders. Tne MP~ operatinq system
defines tour types, or tormats, of object coae files, as
follows: user subprogram libraries lUSL's), relocatable
libraries (RL's), segmented libraries (SL's), and program
files (PHUGRAM's). Of these, RL's and SL's have rather
speclalized uses, and their tormats are of little interest
to the compiler writer. The formats of USL and P~U~RAM

files, on the other hand, are of qredt interest. If a
compiler is to produce absolute code, it ~ill generate
PAOGHAM tiles. It it is to produce relocatable cOde, it
will generate USL files.

'I' his pap e r pre sen t san 0 ve r vie W 0 f the for mat s 0 f tJ SI, and
PROGkAM file formats used oy MP~ III, on HP300U/JI and
HP3000/II1 computer systems. It is neither exnaustive nor
scrupulously detailed. Readers with some experience 1n
object code formats will not find it ditficult to fill in
aetails not included here by examining USL and PRUGRAM
files.

A word of caution to the reader is appropriate at this
point. Hewlett Packard is unco-operative, and seems quite
indifferent to the needs of its users to unaerstana MPE
conventions. Because ot this, all the information in this
paper had to be deduced trom examination ot USL and PRUGKAM
files. In consequence, although the author believes the
information inclUded here to be fully accurate as ot tne
date of this writing, the reader should keep In mind that it
may nonetheless include some errors. For the most part,
tho uqh , it",a y be use d 'II i t h con f 1denc e • 'I'he aut h0 r has
written a compiler which generates USL files based on
section three of this paper, and a PROGRAM file decompiler
based on section two. Both are operating satisfactorily.

1.2. Conventions

A numoer of conventions are adopted to enable concise
explanations and illustrations. These conventions are
applied consistently, but occassional, well-marKed
oeviations do occur. The conv.entlons are as follows:

C-02.02



o SPL/jOUO notation is used in all cases where
illustrative code is provided.

o uP" represents d variable ot type integer pointer. In
all taoles, illustrations, and examples it 1S assumed
to point to the first word of the entity under
discussion.

o In the Cdse of sinyle bit fields, "1" is the "on ll

state, and "Oil is the 1I 0 ft" state. SimIlarly, the on
state is the true state, ana the off state is toe
talse state.

o hames in P~OGHAH and USL files, such as procedure or
seqment names, are d variable number of words in
length. The first byte ot d name is always in the
P.l&:~J field, tne length at the name in bytes in
P.(4:4), and various context-dPpendent information in
P.{O:4). The nnme continues in as many consecutive
bytes as needed, beginning with P.(8:8). A name field
is dlways an integral number of words in length. rne
last byte is thus wasted it tOe name is an even numoer
of bytes long. In illustrations, the P.(O:~) field
will be diagrammed explicitly, but the remainder of
the name will be shown simply as a large undivided
area. The reader Should Keep in mind that this
represents a variable length field. In the text of the
oaper, trtis entire group of fieldS is referred to as a
"name field," and the various parts are not
explicitly mentioned unless necessary for the
discussion.

o In illustrations, when
indicated otherwise, it
niobles. Because of
indications are given
nibble aligned fields.

a word is diVided, unless
is divided into bytes, or into
this, no explicit bit tiela

in illustrations for byte or

C-02.03



2. ~~UGkAM files

The loader in MPE processes PR()G~AM tiles. In a proqram
tile, all relocatable r~ferences have been resolvea, globdl
storage laid out and initialized, and seymentation
completed. The only linK editing remaining to be done is to
estat.>lish linKayes witn external proqram units to De found
in SL's. This last linKing step involves only tne
completion of segment transter taDles. Particular STT
entries nave alreadY been assign~d to particular externals,
so no relocation per se need be performed dt load time.

PROGkAM files have ttle following file chdracteristics:

o I tl e 1r r ecordIe ng t h 1 5 12B w0 r ds •

o Tney are identified by a file coae of lOl9.

o fne tile lenyth is between 4 and 32127 records,
inclusive

o The records are fixed length, binary, without carriage
control.

o tne file consists ot only a single extent.

All tnese restrictions are imposed by the MPE segmenter and
loader. Other tile configurations are not acceptaole.

2.1. Contents of PkUGHAM tiles

---------~---~-----------------

A program tile lS logically divided into five parts, each ot
which must begin on a record boundary. The parts are as
tollows:

1. A "fixed area" containing pointers to the rest of
the file, and other miscellaneous information

2. An image of the initial glObal DB area tor the
program, already tully initialized

3. The code segments comprising the program

4. A list ot externals reterenced by the program

5. A list of entry points to the program.



lhese five parts will occur in a PkU~RAM file in the oraer
listed. If a proqranl uses no qlobnl DB storage, the global
DB area part of tne tile will be omitted. ~ince dll tive
parts ot proqrarn files neqin on record Doundaries, record
addresses are used throuyhout toe tile for indlcatlnq tne
location of needed intormation. All record aOdresses used
in pro~ram tiles are single *ord inteoers.

2.2. The tixea area

The fixed area occupies the first one or two records of tne
file. The length ot the area, one or two records, depends on
li he t ne r 0 r no t a 11 the in tor mat i on t 0 De inc 1uoed in ttl e
area tits in a sinqle record. It will alwdYs fit in two.
Table 2.2A lists the contents of the fixed area in order.

Table 2.2A -- Fixed Area Contents

fiela Contents

~--------~ --~-----------------_.------~----------

P.(O:l) program contains fatal error

P.(1:1) program contains non-fatal error

P.(2:1) zero the D~ area prior to startlnq
execution of the program

P.(3:1) program contains
privileged segment

at least one

P.(4:2)

P.(b:1)

P.(?:1)

P.(H:l)

P.(9:1)

P.(IO:1)

P.(11:1)

(use undetermined, only zero observed)

program nas NS capaoility

program has BA cdPability

program nas IA capability

program has PM capability

program has CR capability

program has RT capabillty



Table 2.2A -- Fixed Area Contents (cont.)

fiela Contents

~-~------- -------------------------------~-------

P.(12:1) program has MR capability

P.(13:!) (use undetermined, only zero observed)

P.(14:1) program has OS capaoility

P.(15:1) program has PH capability

pel) the number of segments in the program

P(2) the number of words in the global DH
area of the program·s run-time stacK

P(3) beginning record number of the image of
the global DH area of the stacK (Should
be ignored if P(2)=O)

P(4) beginning record number of the segments
list

pes)

PC?)

P(8)

P(9)

P(IO)

P(ll)

P(12)

the initial stack size (";STACK=" Of
prep command)

the initial DL size (";DL=" of prep
command, zero if ";DL=" not specified)

the maxdata specification (";MAXDATA="
of prep command, -1 If ";MAXDATA=" not
specified)

beginning record number of entry points
list

logical segment number of the entry
points to the program

PB relative address of primary entry
point

execution time DB relative address of a
table used by TRACg/3000 (-1 it table
not used)

execution time DB relative address of
the .FORTRAN logical units table, the
FLUT (-1 it FLUT not used)

----------------------~----------------------------



'rable 2.2A -- fixed Area Contents (cont.)
-~----~----~~~-~~----~-~----~--~.--~~~-----~---~-~-

field Contents
~~----~~-- ~~---------------------~--~~-----~-----

P(13) beq1nning record
externals list

number ot the

P(14)

P{16J
to

P{27)

STr number ot primary entry point

execution time DR relative address of
TRAPCUM·, a common block used tor
interfacing to user trap rOutines

tnese locations have been ooserved only
with the value zero--they are probably
reserved, and should always be zero

Following P(21) are two variable length sUbareas of the
fixed area. The first begins in P(28), and is P(l) bytes
in length. That is, there is one byte for each segment in
the program. This subarea is always an integral numbel of
words in length, so a byte is sometimes waSted on tne end.
It is oelleved tnat the loader uses tnis SUbarea tor
mapping logical segments to actual segments. After a
program has been prepared, but before it has ever been
loaded, tnis subarea will contain all zeros.

The second subarea begins in the word immediately followinq
the last word of the first subarea. The second SUbarea
inclUdes a one-word segment descriptor tor each segment in
the program. These segment descriptors are in the same
order as tne segments tnemselves in the file. The tormat
ot a segment descriptor is given In table 2.28.

Table 2.2B -- Segment Descriptor format

field Contents
---------- -----------~--~~------------~---------

P.(O:l} seqment is privileged

~.(1:1) (use undetermined, only zero Observed)

P.(2:14) the length at the seqment, 1n words

--------------------------------------------------

C-02.07



2.3. the global DB part

-----------------------~

The Qlobal DB part is simply an image of all DB and
secondary DB which is to oe allocated when the program
beqins execution. As many recordS as necessary are used to
hold the needed number of words. Unused words at the end
of the last record, if any, are ignored. It the number of
words of OB is given in the fixed area as zero, then this
area may be omitted trom the file altogether, and the
record pointer to this area in the fixed area may be set to
one (one is the only value tor this pointer yet observed in
this context).

This DB area image is fully initialized. It includes
TRACE/3000 tables, the FLUT table, common blocks, DB and
secondary DB arrays and simple variables, and anything else
whicn must be placed in the DB area. There is no
opportunity to add to the D8 glObal area once the progranl
oeqins execution, since it will De delimited by Dtl and the
initial Q register setting. Allowance must be made for all
global run-time storage at the time the PROGRAM tile is
generated.

2.4. The segments list

~-----------------------

The code segments which comprise the program are placed,
one after another, 1n the segments list. Eacn segment
oegins on a record boundary, and occupies an integral
number ot recordS. The actual length of each segment, in
~ordS, is given in the segment descriptor words in tile
fixed area ot the P~OGRAM tile. Unused words at the end ot
the last record ot a segment, if any, are ignored.

The code seqments ot a program are otten referred to by
their logical segment numbers. A logical segment number
simply gives the position of the segment In the segments
list. the first segment in the segments list Is logical
segment number zero, the next is loqical segment number
one, and so on. Actual segment numbers, which will be used
in the xeST for the program, are assigned by the loader
when the program is loaded. Seqment transfer taoles will
contain the actUal segment numpers used when the program
was last loadea.

Tnere 1s a one-to-one correspondence between the entries in
the segment descriptor words in the secon. SUbarea of the
tixed area, and the seqments in the segments list. The
first descriptor applies to the' tirst segment, the second
to the second, and so on. The record number of any

C-02.08



particular segment 1n the file must be deduced (rom ttle
seqment oescriptor woras. If, tor examole, it were aesirea
to find the second segment, the first seoment descriptor
word would be used to calculate the numbPr of recoras
oc cup i e d 0 Y the t irs t seq 01 en t • This numbe r w0 u 1d be au d eo
tother e cor d numoe r oft. 11 e beq inn i nqat t ne seq hi e n t s 1i s t
given In the fixed area. tne resulting recore number is
the first record of the oeslrerl spqment.

2.5. The externals list

The externals list includes entries for all externals
reterenced by tne program. for eacn external it gives the
segment and STT numoers of tne program seqments to oe
patcned with the actual segment and STr numoers ot the
external. In addition, a parameter information block is
incluaed in eaCh entry, ~;tlicn indicdtes ttle callinq
sequence which the program uses to cdll the external. lnis
list is orqanized as a simple linear list. The list is
termindted by an "entry" ~ith zero in its first word.

II!ustration 2.5 ShOWS the format ot entries on the
externdls list. Each entry begins with a name field. The
P.(O:4) tield of tne name field is unused, and should De
set to zero. following the name field is a word witn tnree
tlelds. ~.(O:4) of this ~ora should oe set to zero. It is
unused. The use of P.(4:4) is not tully known, but it
appedrs to be used by the loader to indicate no'", the
externdl reference was satisflea. Woen generdtinq tne
program file, it should be set to zero. P.(8:8) yives toe
number of! references to this external by the proqram.
(This number shoula never exceed the maximum numoer of code
seqments allowed for d sinqle program, since a given
external Should occur only once in any given seqrnent
transter table.)

Following the word giving the number of reterences, there
is a one-~ord reference descriptor tor each reference.
This field is thus variable in lenqth. P.(O:~) ot eacn
descriptor yives the segment transfer table entry number
for tois external in a referencing proqram segment, ana
P.(8:8) gives the logical segment number of the reterencinq
program segment. This entire area is shown as a single
undivided drea in illustration ~.5, but the reader Shoula
keep in mind that it is a variable lenqth field.

After tne reterence descrIptors is a parameter information
blocK. This parameter intorruation olock is in the same
tormat used in USL files.

C-02.09



-~--~--~~~~~~~~--~-~~-~--------~---~-~~~~~-----~~~--~--~-~~--

0 IName Length I
Name ot ~xternal

0 I Satisfier I Number of References

Reference Descriptors

Pardmeter Information Rlock

Illustration 2.5 -- format of ~xternals List Members

2.b. The entry points list

The entry points list gives all entries to the program. At
least the name of the outer clock is included in tnis list.
All entrY points to the program must ot course oe in the
same seqment as the primary entry point. rhe logical
segment n~mber of this segment is indicated 1n the fixea
area 1n the beginning of the program file. This list is a
simple linear list. It is terminated by a list "member"
With zero in lts first word.

Members ot tne entry points list all consist of a name
fiela followed by exactly t~o words. The P.{O:4) field of
the ndme field is unused and Should be set to zero. The
tirst of the t~o words follo~ing the name gives the pa
relative address of the entry point. The second gives the
seyment transfer table numoer of the entry point.

Tne format of entry points list members is shown in
illustration 2.6.

C-02.10



0 IName Length I
Name ot Entry Point

Ph Rp.lative Address ot I:.:ntry Point

S'C'f Numoer of Entry Point

------~-~-~---~~--------~~--~---~---~------~~~-~------~~---~-
I,
I
I
I
I
I
I
I
t
I
I

--~--~--~---~~~---------~----~------~--~--~----------~-------

Illustration 2.b -- Format ot ~ntry Points List Members

3. USL tiles
.. __ .._--- ..----

USL tlles are the principal torm of input to the MPE
se~menter. From a USL tile ~ith the appropriate contents
the segmenter can qenerate SL, kL, and PROGRAM tiles.
"Pelocatable binary mOdules" are stored in USL·s.
Segmentation, global ana secondary O~ address assignments,
external procedure reterences, PB relative reterences, and
the °1 ike have not yPt been resol ved in these tiles.
Altnouqh USL files constitute the most complex torm of
compiler output on HP3000 computer systems, they are also
the ffiOSt tlexible, giving the user tne most options.

USL files have the following file characteristics:

o Their record length is 128 woras.

o Tney are identifiea by a file code of 1024.

o Tne file length must be from 4 to 32121 records,
inclusive.

a Records must be tixea-length binary, without carriage
control.

These restrictions are
UnliKe program tiles,
number ot ex~ents.

imposed by tne
lJSL files may be

C-02.11

MPE segmenter.
composed of any



3.1. Contents of USL files

---~-~-~~------------------

A US., tile is logicdlly divided into three major parts,
each of which ffiuSt beqin on a record boundary. The parts
are as follows:

1. "record zero" containing pointers to the rest ot
the tile, list heads, and other miscellaneous
informdtion

2. the "directory" containing one entry for every kbM,
seqment, ana entry point in the tile

3. the "information blOCk" containing all information
headers and code modules.

Tnese toree parts al~ays occur in the order specitied, and
are of a tixed length in any given file. Tois length may
vary trom file to file, but within anyone file, the
boundaries are clearly detined by Information in record
zero. Hecord zero is dlways simply the first record in tOe
USL file.

The directory always beqins with the second record of the
USL tile, at tile address 00001 000 (see 3.2 for a
discussion of tile adaressinqJ. The information blOCK
always beqins at a tile -address specified 1n record zero.
In both the directory and the information block,
information is placed in successive contiquous locations.
Record boundaries are not recognized. It any entries or
neaaers are deletea from either ot these t*o areas, the
space they formerly occupied Is not recovered. It is
referred to as "qarbaqe," and is never used again.
Never-used airectory space is referred to as "dvailable"
directory, and never-used information blOCK space as
"available" information.

An intrinsic named ADJlJSTUSLr, documented in the MPE
segmenter reference manual, may be used to expand the
directory or the information blocK as desirea. TOe
directory, nowever, may not exceed 32K words, and the file
may not exceed a total ot 32K-l records.

A USL file may be initialized to the empty state via the
intrinsic INITUSL. Tnis intrinsic is documented 1n the MPE:
segmenter reterence manual.

In total, tnen, a USL file consists of the following five
parts, in this order: record zero, in-use directory,
available directory, in-use information, and available
information. These areas are delimited by pointers and
length values kept in record zero.

C-02.12



3.2. ~ile addressinq

It is appropriate at this point to discuss tJSL tile
addressing. Locations witrlin a USl, file are ldentitied by
s pee i f yinq the W0 r d wit tl i nthe til e wh i c n i sot i n t ere st.
The tirst word In tne tile is Nord number zero. Seven oits
are required to specify tne otfset of a word from tOe
beqinninq at a record. Up to 15 bits rudY be required to
s pecit y r e cor d wit h in til e • f U 1 1 f i 1e a a d res s e s are ttl us
normdlly storeo In double words, in whlCh strictly speaking
only tne low oreier '2.2 oits are siqnlficant.

File addressing ~ithin the oirectory is somewnat aifterent.
Single word addresses are used. P.(Y:7) is still ~ wora
offset into a particular record, but P.(l:B) IS no~ the
record number.

Unusea t1i~n-order bits ir hoth dOuble and single word file
addresses snould be set to zero. lhis will urovide
cornpat i 0 iIi t Y 'N i tnt 11 e fl.1 PE. s e gmen t e r •

the niqh order bit ot a tile address often nas special
siqniticance. It may be used to inaicate that tne aodress
is a thread link insteAd of a normal linK. It may oe used
to indicate the end of a list. It has various uses, whiCh
snould oe carefully considered when interpretinq any file
address.

the address zero has special significance. It is the null
address. NO pointer ever points to record zero.

1-'lle addresses are often relative to some location in the
file. The starting adoress ot tne information block is
normally used as tne base address. The value at a relative
address (even if it is zero) is added to tne base adaress
toob t a inan act ua I f i 1e add res s. Ttl e h i q h- 0 r de r [) ito t d n
aadress Should not be involved in this calculation, since
it nas special interpretations. It should be set to zero
in both the base and the offset hefore adainq. It is
essential always to consider Whether an address is aosolute
or relative. This ae~ends on the context in ~hlCh the
dddress occurs.

In symbolic torm, tile addresses are represented by two
octal numoers. The first is five digits in lenqth, ana
specifies the record num~er. The secone is three dlqits in
length, and specifies the oftset to the desired word in the
record. These two numbers are separated by a blank. If
tne high-order oit of an dddress 1s on, then '(1)' is
prepencJed to the five-digit record number. (If in the
given context toe high-order bit has no signiticance, tne
'(I)' may be omitted.)

C-02.13



3.3. Record zero
~---~~--~--~-~--~

~ecord zero occupies the first record of a USL tile. It
contains pointers and counters essential to interpreting
the reffiainder of the file. Table 3.3 lists tne contents of
record zero 1n oroer. A name is given to each field which
is used as a convenience in referring to the field.

Table 3.3 -- USL File Record Zero Contents

Wordls) Name Contents
---~~~- ------ ---------------------------------~

u the constant #1# apparently
identifies the file as a valid USL
file

1 NDE number of entries in the directory

DL the directory
(number of
already been
garbage)

length, in ~ords

words whiCh have
allocated; includes

list head for the blOCK data list

list head for the segments list

length ot the entire USL file, in
words

number of words of DL whiCh are
'garbage'

garbage

available
be equal

the interrupt

directoryof

list head for
procedure list

number
entries

start address of
directory space (should
to 00001 000 + DL)

3 DG

4 NDGE

5 BOL

b IPL

7 SL

ij,9 FL

10 SAAD

11 ADL available
words

directory length, in

--------~~--------------------------------------~--

c-a2.14



table 3.3 -- USL File ~ecord Zero Contents (cant.)
-~--~~~--~~----------~-~---------~~----------------
~ordls) Ndme Contents

t 2 , 1 3 SAIB start
block
AUI,J

address ot the Intormatlon
(should be equal to SAAD t

14,1~

1b , 1 7 SAAIH

18,19 AIBL

20,21 IBG

22 N IHGf:

23-3~

33-127

lenqtn ot the information olocK,
in woras (number of words which
have alreaoy been allocated;
incluoes garbage)

startinq address at the availaole
Infornlation block space

lenqth in words of the available
intormation blocK

number at words of IBL which are
'garbage'

number of Qarbage information
olock entries

apparently reserved; should always
be set to zero

hash list heads

--~-----------~-~-_.--~------------~------~--------

The use at many of these fields will be explained in
subsequent sections of this paper. The use of others is
indicated In illustration 3.3. This illustration labels
various locations and areas In a USL file with the names
assi~ned to the fields ot record zero which refer to those
portions of the USL file.

C-02.1S



~~-~-~-~~.-----~~~~~-----~-----~---------~-~~--~~~~--~--~~---

00001 000 -->

SAAU· -->

SAIB -->

SAAIB -->

Record 2ero

In-use and
Garoaqe

Directory

&\vailaole
Directory

Space

In-use ana
GarDa~e

Information
elOCK

Available
Information
BloCK Space

129 \.lIordS

DL words

ADL words

IBL words

AlnL words

fL -->

~----------~.------------------~---~------------~-----~------

Illustration 3.3 -- Use of Record Zero Fields

3.4. The directory
---~----~------~~--

The USIJ file directory contains all information needed to
process and manipulate information contained in the
information block. A qreat variety of items dre found in
the directory, but they are edsily classifiea into distinct
groups. Tne elementary airectory data item is the -entry.­
the ddta structures tormed trom entries are familiar sorts
of trees and linked lists. Several implementation aspects
of the directory, ~hich dO not conveniently tall into any
other section, are listed Delo~:

1. the directory begins at file location 00001 000.



2. Each directory entry consists ot some number of
contiquous words. ~:rlt r ies are not, tlo~ever,

necessarily cortiguous within the rlirectory. That
is, there may be some unused space bet~een entrles.

3. file recoro Dounaaries are
the directory. Entries may
freely.

not recoqniZet1 wltllin
span record [)oundaries

4. All pointers to entries in the directory are
absolute pointers. It the pointer is contained
v; i t h i n r ec.o r d ze r 0, 0 r wit n i nthe air e c tor y itself ,
it is a single ~ord, and not a douole ~ord,

pointer. (See section 3.2.)

5 • A11 poi n t e r s tot ne 1n for ill;:) t ion 0 10c k. ~ hi c n are
contained in tne directory are douole worn
pointers. All SUCh pointers arp. rel~tive to ~Alb.

(See sections 3.2 dnd 3.3.J

The entries contained in the directory are reldted on
lists. lhp.re dre only eiqht types of entries, and only tour
types of lists, allot wnich are descrined in aetail in the
following SUbsections.

3.4.1. Directory lists

The four types ot lists in the airectory are as tollows:
tne interrupt procedure list, the segment list, the oioCK
data list, and the hash lists. Eacn of these tour is
discussed in a separat~ sUbsection belolf.'. with eacn
subsection is provided an illustration of the list
discussed.

For every list in the directory, tner~ is a certain type ot
entry, or there are certain types ot entries, whicn are
inclUded on that list. with the exception ot the hash
lists, only entry types appropriate to the list may be
placed on tne list. All entry types dre appropriate to tne
nash lists. Entries may be included only on lists tor
~hich they are appropriate.

Every entry is on exactly two directory lists. It is on
one, ana only one, ot the block data list, the interrupt
procedure list, and the segment list. It is also on one,
and onlY one, of the hash lists.

C-02.17



3.1.1.1. Tne interrupt procedures list
-~-~-~~--~-~-~--~~~------~~-~------~~-~-

The lnterrupt proceaure 11st (·IPL·) is a linear linKed
list. Its list head is IPL in record zero lsee 3.3J. All
interrupt procedure directory entries are on tnis list.
~ntries are linkea together oy their orother pointers, with
a linK of zero termlnating the list. As of tnis writinq,
no further information is available about tne IPL directory
list.

Record
~ero

IIPL

, Int. Peac.
Entry

I b 1

,. Int. Prac.
Entry

I b 1

" Int. Proc.
Entry

I 0

I
I
I

-~----~-----~---~-----~---------------------~-~~---~---------

Illustration 3.4.1.1 -- Interrupt Procedures List

C-02.18



3.4.1.1. rne bloCK data list
---~---~~-----~----~-------~-

fhe clocK data list ('~DL') is a linear linKed 11st. Its
list nedd is BDL in record zero (see 3.2). BLoCK data
suoprogrdms qen~rdte block data ~HM·S. All blocK odta
directory entries are on the 6&L directory list. They are
linKed toqetner by their brother pointers, with a linK of
zero terminatinq the 11st.

Hecord
Zero

IBL>L

BlK. Data,
Entry

I nl

,
Blk. Data

Entry

I bl

,
Blk. Data

EntrY

I 0

t,
I
I

•,
I
t

------------~~---~-----~-~-----~--~---~-------------------~~~

Illustration 3.4.1.~ -- Block Data List

C-02.19



3.4.1.3. The segment list
~--~-----------~-~-----~-~

The segment list is really a tree. The pointer to the root
of the tree is SL in record zero (see 3.2J. The following
three types of entries are found in the tree: segment
entries, KHM entries (whicn may be either primary outer
bloCK or primary procedure type entries), and secondary
entry point entries (which may be secondary outer block,
secondary procedure with parameters, or secondary proceaure
~itnout parameters type entries).

The segment entries do actually form a linear linked list,
with SL in record zero as the list head. They are linked
bY their brother pointers, witn a link equal to zero
terminating tne list.

A segment entry may have zero or more sons. The immediate
sons of a segment entry must oe RBM entrles. The son
pointer of a segment entry points to the segment entry·s
tirst son. All the sons of a given segment are linKed in a
linear list by their brother pointers. This family list is
terminated by a link with its nigh-order bit turned on, and
",hich points back to the parent segment entry. for
example, it a segment entry is located at 00033 027, then
the link terminating the tamily list would be (1)00033 027.
If this seqmerlt entry had no sons, then the segment entry's
son pointer would be (1)00033 027.

Each RBM entry may also have zero or more sons. The sons
of an HBM entry are secondary entry point entries. The son
pointer ot an RBM entry is analogous to tne son pointer ot
a segment entry. It points to the first son, and other
sons are linKed into the family by their orotner pointers.
Aqain, the tamily list is terminated by a link with its
high-order bit turned on, and ~hicn points back to the
parent RBM entry. If an H~M entry has no sons, then its
son pointer points to itselt, just as in the case ot
segment entries with no sons.

fhe links terminating family lists in the segment list are
referreo to as 'thread' links, since they reter oack to the
root of the SUbtree in wnich a node is located. The son
relationship is defined only from segment to RbM entries,
and trom RHM to secondary entry point entries. The brother
relationship is defined from segment to segment, from HaM
to RBM, and from secondary entry point to secondary entry
point entries. The tather relationShip is defineo from RHM
to segment, and from secondary entry point to RH~ entries.
Tne tree is thus a lett-son/right-siblinq, threaded tree
data structure.

C-~2. 20



Hecord
Zero

I SL

,
, Segment

t:ntry

bl 1 rs 1 *

~

Seg:nent,
~ntry

0 I r 5 1

,
, k8t-1

intrv

h1 1 I 51*

,
,

kB~'

Entry

01*1 I s 1

Secondary,
Entry Pt.

·51- = son linK h1* I
·01- = orother link

t
I
I
I

•,
•,
I
I,,
I,
I
I
I

-*- = link. is d

threao linl<

-~------~-----~----~-----~~~-------------~--~--------------~-

Illustration 3.4.1.3 -- Segment List

C-02.21



3.4.1.4. The hash lists
---~--------~--.-----~--

To facilitate quick access to directory entries by name,
every directory entry is also placed on a hash list. USL
tiles use ~5 hash lists, the list heads of ~hich are in
record zero (see 3.2). EaCh list head is a sinqle word
absolute pointer into the directory. Directory entries
~hich hasn to the same list are linked to each other by
their hash links (see 3.4.~). Each of the 95 hash l1sts is
thus a linear linKed list. A zero linK terminates a nash
list. Hashing a name produces an inteyer between 0 and 94,
inclusive, ~hich is used as an index into the 95 naSh list
heads to access the hash list on which the entry referred
to by toe name is located.

entry should always be added to a hash list nearest to
hash list head. That is, the hash list head should be

to point to the entry, and the entry's hasn linK to
to the entry formerly pointed to by the nash list

An
the
maae
point
head.

The MPE segmenter refers to the 'index' ot an RBM, or
directory entry. This is a reference to how recently the
entry was added to its hash list. The most-recently added
is indexed one, the next-most-recently is indexed two, and
so on. "Least-recent" on any given list refers to the entry
on the list with a hash link equal to zero. When the MPE
segmenter refers to the index of an entry, only the entries
of a given name are considered. The entire list is not
relevant. The index zero nas a special meaning. It refers
to the most-recent active entry having the given name on
the hash list (active/inactive entries are discussed in
the MP~ segmenter reference manual).

C-02.22



---~._~~-~------~-----~~--~~~~-~-~----~----~-~-~-~~~-~~--~---

~aSh List Hea~s in Hecora Zero

Entrv

t
I
I
I
I

•

Entry

HLH••

o

•

~:n t r V

Entrv

Entry

(]

EntrY

Entry

-ni- = nash linK
-HLH- = Odsh list heaa

o

~-~--~---~--~~---~-------~--~~-~--.--------------~---~-----~-

Illustration 3.4.1.4 -- Hasn Lists

C-02.23



3.4.2. Directory entries

In this section, all eight entry types found in the
airectory are presented. All entries have some tields in
common, which together torm a standard directory entry
prefix. Included in this prefix is a name field, giving
the name associated with the entry. 'PI' Is used to denote
an integer pointer whicn points to tne word immediately
tollo~ing tne last word used by tne name field.
Illustration 3.4.l shOWS the layout ot the pretix. The
contents of the prefix are described in table 3.4.2A.

Table 3.4.2A -- Directory ~ntry Prefix Contents
~-----~~-~~~~--~---~~~---~---~~--~----~-------~----
Field Contents
----------- -~~~--~-~----------------------------~

P(O).(1:10) number of words in this entry

P(O).(11:5) type of this entry; types have
following designations:
1 segment entry
2 primary outer blocK entry
3 secondary outer block entry
4 primary procedure entry
5 secondary procedure entry, without

parameters
6 interrupt procedure entries
7 bloCK aata entry
8 secondary procedure entry, with

parameters
Other entry types are undefined

pel) the entry's hash link (see 3.4.1.4)

P(~) tne entry's name field

PI(O) the entry's brother link

-------~----~--------------------------------------



1
o I Number ot ~.. ordS in ~.. n t ry I t::ntrv Type

it d S tl LinK

* Ir~ arne Lenqtnl

Name of Entry

firother LinK

* See Table 3.4.2B

--~~-----~---~~-~~~-~---~----~~----------~------~~----------~

Illustration 3.4.2 -- Stdndard Pretix

The ~(~).(O:4) field (that is, tne first nibble of the name
field) has important uses. The interpretation at this
tiela oepenas on entry type. fhese interpretations dre
given in taole 3.4.~A.

Taole 3.4.28 -- Interpretation of P(2).(O:4)

Entry Field Interpretation
----- ---~- ---~--------~--~---~--~---~--------~-

1 0:1 shows whether entry is active or not
( " '=inacti ve)

1:3 reserved; should be set to zero

2 0:1 shows whether entry is active or not
C'1'=inactive)

1:1 shows whether entry is callable
('1'=uncallable)

2:1 sho~s whether proqram unit must
execute in privileged mOde

3:1 reserved; snoulo be set to zero

C-02.25



Table 3.4.2B - Interpretation of P(2).(O:4J (cont.)
-----~-~~~-~-~-~-~---~--~~---~----~----------~-----
Entry Fie!d Interpretation
-~-~~ ~---~ ------~----------------~---~---------

j 0:1 shows whether entry is active or not
(-l-=lnactive)

1:1 shows whether entry is callable
(-l-=uncallable)

2:2 reserved; snould be set to zero

4 0:1 shows whether entry is active or not
(-l-=inactive)

1:1 shows whetner entry Is callaole
(-1-=uncallable)

2:1 shows Nhetner program unit must
execute in privileged mode

3:1 shows whether entry is nidden

5 0: 1 Shows whether entry Is active or not
(-l-=inactive)

1:1 shows whetner entry is callaole
(-t-=uncallable)

2:1 reserved; should be set to zero

3:1 shows whether entry is hidden

b 0:1 shows whether entry is active or not
(-t-=inactive)

1:2 apparently an interrupt procedure
type number

3:1 reserved; should be set to zero

-----~~----------------~------------------~---~----

C-02.26



I'aole 3.4.2B - Interpretation of P(2).(O:4) lcont.)
~--------~----~--~--~--~--~------~-~-~-~---------~-
~nt[y field lnter~retation

----- ~~--- -----------~---~-----~---~-----------

u:1 shows wnether entry is dctive or not
(·l·=inactive)

1:1 set if fatdl error in bloCK data RuM

2:1 set if non-fatal error in bloCK data
J-<tiM

3:1 reserved; should be set to zero

0:1 ShOWS ~hether entry is active or not
(·l·=inactive)

1:1 shows whether entry is callable
(·I·=uncallable)

2:1 reserved; should be set to zero

3:1 shows whether entry is hidden

In the sUbsections of this section all entry types are
expldlned. A dlagrarn ot most types is presented to
illustrate the format of the entry. Mention will often oe
marte of "parameter information blocks," "header
information blOCKS," and "hedder information sets" (·~lb·,

·H18·, ana ·HI5·, respectively). HIB and hIS are described
in 3.4.3, and so are not further discussed nere. A ~lB

provides the calling sequence of a proqram unit. It will
always in illustrations be drawn as a single large area,
but tne reader should keep in mind that it is really
comprised of one or more words, ana is thus a variable
length tield. ·P2· is used to denote dn inteqer pointer
pointing to the word immediately following the PId.

3.4.2.1. Seqment entries
-------~~-~~-~------~----

for segment type directory entries, only a single word is
appended to the standard prefix. Tnat Nord contains the
son link at the entry. (The significance of a son link is
discussed in 3.4.1.)

C-02.27



Standaro Directory Entry Prefix

Son LinK

-~-~--~~----~---~-------~--.--~~-~-~-------------~---~--~----

Illustration 3.4.2.1 -- Segment Entry

3.4.2.2. Primary outer bloCK entries
--~-------~---------~----~--------~-~

A numoer at fields follow the standard prefix in primary
outer bloCK type directory entries. They are described in
t~ble 3.4.2.2. In this table, 'p' is assumed to be an
integer poirlter to the word at tne entry immediately
following the standard prefix. Each field 1s given a name
to simplify reference to tne field in this paper.

TaDle 3.4.2.2 -- Primary Outer BloCK Fields

field Name Contents
----------~ -------- ---~---~--~-------~~-------~--

P(O) SOHL son link of the entry

PCl) PUSA program unit starting address
(address wjthin the code
module ot the entry point)

P(2),P(3) SAC starting information bloCk
file address of the code
module (this address 1s
relative to SAIA; see section
3.3)

P(4).(u:l) ~RROR set if program unit contains a
fatal error

P(4).(1:1) WAHN set if proqram unit contains a
non-tatal error

-~~--~~~--------~--~--~-------~--~----------~-~----

C-02.28



faole i.4.~.) -- Primary Uuter KloCk F"ielrls (cont.)

~ield Name Contents
---~~-~-~-- --~----~ ---~--~-~------~~~-~--------~-

Pl 4 ) • ( 1. : 14) CUu .. (,~: r~ n lA fP 0 erot ,. n r <1 s 1 n t n e 0 b i e c t
code mooule

S1AC~~Sl an estim~te of
\'words of striCK

PIOqram unit

t r, e rllJ IT, b €I rot
nee <i e <1 n y t t) e

P("1) SDh

TRe Lt':~

t rle n lJ IIIC erot w0 r"; sot p r i nla r y
LJ t.~ all 0 c r=t ted by t tl i s pro a ram
unit

the nu~npr of warns ot
secondary UK allocdtea oy tnis
program unit

r. u mher 0 f W0 r d sin d t ~ t) 1e
IJ s e (j t; Y T t< ACE / 30 (I 0

P(y)

pll0) to
end of entry

DArAL~_:N numoer ot words in secondi1ry
Db reserved oy nATA (l-'iJHj'H~"')

or UWN (SPL) declarations

heaaer inform~tion bloCK tor
tne prO\.lram unit

SOH a noD A'f AL 1:: N are not t tl e s anI e ttl i nq • t) ATAL E: N ret e r 5 t 0

the number of woras in a "secondary Db arr-iY. Assoclateu
with eact, program unit is an dred ot secondary Ub S~dce.

T his are a inc 1 udes 5 U C h t t) i ngsa s t ne F (J HT k Ar~ loy i Cd 1 lJ nIt 5

taole, format strinqs (tnose referenced if} a rer=to stdtempnt
and con t a i n i n q , H' s p ecit i Cd t ion 5 fl. U s t bey lob a I 1 Y I 0 C d ted ,

to retain tneir values), own/data variaoles, ClntJ the liKe.
Jncluaed in OATALEr.. is ollly that amount ot stordae to ne
allocated for own/data variahles--this portion of the
sec 0 ndar y l) H S tor aye a 11 0 cat e d by apr 0 q r d 01 un i tis
referred to as the secondary DB array. (he followinq are
not included in DATAL~~~ or SDd: the ~'ORTRAN logical units
tab 1e , TRAe E/ j 0 0 0 tab 1e s , and coni m0 n a r ray s • SLJ H doe s
include the number of ~oros used by globally located tormat
strings.

C-02.29



Son Link

Program Unit Starting Address

Start Address of Code Module- (Flel.ative SAlb) -to

* 1** I "'u:nber \'4ords in Code ~'Odu le

StacK ~stimate

Number iPvords lJrimary Db

N\Jmoer .... ords Secondary DJ.\

TkACl::/J\lOu Table Length

Numoer words of Own/Data

• Error ** .~arning

-~~~~~--~~---~--~~~-~~---~-~---------~-------------~~~ -------

Illustration 3.4.2.2A - U.h. and Proc. £ntries dody

fhe first ten ~ords ot this entry are shown 1n illustration
3.4.2.2A. Tne format ot primary block entries as a ~hole

is sno~n in illustration 3.4.2.2b.

------~~---~-----------~-~-~----~---~-~-~~--~--~~-~-~--------

Standard Directory Entry Prefix

Outer BloCK Entry ~ody

(see Illustration 3.4.2.2A)

Header lnformat i.on Block

-------~-------~---~----------~-~----~---------~~------~-----

111ustrdt1on 3.4.2.2h -- Primary Outer HloCK Entry

C-02.30



3.~.2.j. ~econdary outer bloCK entries

unly a single word is appended to the standard prefix for
seconddry outer olock ty~e directory entries. This ~ord

inOlcates the location of the entry point in toe code
mOdule dssociated witn the parent directory entry. Ihe
~ord is given as a ~ord-ottset trom the beqinning ot the
code ·module, ana so fs analoqol1s to PlISA, described in
J.4.2.:l.

-~-~~----~--------------~--~--~-----------~-----------~----~-

St~ndarn uirpctory Entry ~r~tlx

Pro~ram ~nlt Startinq Address

---------~----~--~-----~--~~---~-----~~-~-~~-~---~---~-~-----

Illustration 3.~.2.j -- ~econdary Uuter BLoCK ~ntry

C-02.31



s tanddr ~J Jirectary ~ntry prE'flX

Primary Procedure Entry body
(see Illustration 3.4.2.2A)

Parameter Intormation BloCK

Header Intorm~tlon BloCK

3.4.2.4. primary procedure entries

~riffidry procedure type directory entries appena to the
standard prefix exactly the same information as is appendea
by primary outer blOCK entries, ~ith one exception.
aet~een UATAL~N and the neader information block, a
parameter intormation bloCK is inserted.

3.4.2.5. Secondary proceoure ~ithout parameters entries
~~-~-~~--~----~-~-~-~~~----------~-~----~------~~-~~--~-

The secondary procedure without parameters directory entry
type appends to tne standard prefix only a single ~ord.

This ~ord contains the aodress of tne entry point to the
code module associated with the Pdrent entry. l'he address
is a ~ord-offset tram the beginninq of the code mOdule, and
so js analogous to ~USA, described in 3.4.2.2.

•,
I
I
I
I
f,,,,
t
I
t

J.
I
I
I
t
I
I
I

-~----~-~-~--_.~-~-~---------~--~~--~---~---~~~---~----~----~

Illustration 3.4.2.4 -- Primary ~rocedure EntrY

C-02.32



---~-~-----~~----~-~~~-----~--~--~-~----~~--~~-------~--~~-~~

Stand~rd Directory ~ntry ~r~tix

Program Unit Starting Address

-~~------~-~--~---~-~-~--~----~~---~-~-----------------------

Illustration 3.4.2.5 -- Sec. Procedure, No Parms., Entry

3.4.2.b. Interrupt procedure entries

------~-------------~------~------~--

After the standard prefix, interrupt procedure type
directory entries append tive wordS. Tnese five words are
followed by a header infornlal1on block. Ihe proper
interpretation of the five waras has not yet oeen
determined.

3.4.2.1. ~lOCK data entries

-------------~--------------

A DlOCK data type directory entry appends after tne
standard prefix d number Of SUbentries. ~ach subentry
contains information for one blOCK of common. (As far as
the seqmenter is concerned, every olocK ot common is named.
The name "CUM-" Is used to refer to olanK common.) there is
no explicit indication of the number of sUbentries present.
This must be deaucea trom tne SUbentries themselves, and
from tne number of words in the entry as a Whole.

The first ~ord of a subentry gives tne numoer of words in
the common block. following this is a name field qivinq
the ndme of tne com~on blOCK. beqinninq in the word
immediately following the name tield, tnere is a header
information blOCK for the SUbentry. Thus, in d manner ot
speaKing, the common OIOCK name and length are prepended to
the relevant header information blOCK.

C-02.33



~~~---~-~-----~--~----~~--~~--~---~~-------~-~--~---~--------,,
t

Number ot ~oras in. Com;non BloCK

0 I Name Len I
Name of Common bloCK

Header Information Block

---~~-~~-~-~-~----~-----------~~----~-----~-----~--~---~--~--

Illustration 3.~.4.7A -- BloCK Data Subentry format

----~---------------.------------~-_._---~~----------~~----~-

Standdrd Directory Entry Prefix

~locK Data Suoentrv

Block Data SUbentry

•
•
•

---~~------~-------------------~-------------~-~--~--~-------

Illustration 3.2.4.7B -- block Data Entry format

C-02.34



-----~-----~---~------~~------~------------~--~--~-~-------~-

Standard Directory Entry Pretix

Program Unit Starting Address

Parameter loformation Bloc~

----~-----~----------~~--------~-..----~----~----~----~-~--~-
Illustration 3.4.2.8 -- Sec. Procedure, with Parms. Entry

3.4.2.a. secondary procedure with parameters entries

-----------------------~-------~----------~-----~----

One word, and then a parameter information blocK, are
appended to the standara prefix in secondary proceaure with
parameters type directory entries. The word placed between
the prefix and tne PIB contains tne address ot the entry
point to the COde module associated ~itn the parent entry.
th1s address is given as a word-oftset from the beginntng
of the code module.

3.4.3. Header information blOCKS

-------------~------~------------

In a USL tlle in MP~, a -header- is an entry in the
1ntormation blocK of toe file which provides information
necess~ry for relocating a program unit, and for binding it
with other proqram units. The various types ot headers
whicn are possible are discussed in section 3.5. In this
section, tne neader intormation blOCKS tound in directory
entries are oiscussed. HIR-s are used to provide
information about the number, ty~es, and lengths ot headers
associated with a directory entry.

A neader information blOCK is divided into header
1ntormat1on sets. Eacn HIH is a ~ore or less distinct
entity. Any number ot header intormatlon sets (including
zero) may be included 1n any header information block.
There 1s no explic1t Inaication Of the numcer of header

C-02.35



information sets are in a header information block. this
must be deduced from the HIB itself, and from the number ot
~ords in the airectory entry as a whole. A •• 15 begins with
a word which specifies In its (1:15) field the number at
'hedder descriptor words' that are present in the HIS. The
(0:1) tield at this word is set to zero unless tnis HIS Is
the last HIS of the rll~. In this case, (0:1) 1s set to
one. This word is tollowed by a double word file address
which is relative to SAIH (see 3.3). This address points
to the tirst word of the ot the first of the actual headers
corresponding to the hIS. (All headers corresponding to a
yiven rllS ffitist be contiguous in the intormation bloCK. See
section 3.~.)

In the tnird and tollowing words of a HIS are header
descriptor words. There is one descriptor word for each
neaaer associated with the HIS, and tne descriptors are in
the same order as the neaders themselves in the intormation
bloCK. A header descriptor has only tnree flelds. Tne
first, (0:1), is unused, and should be set to zero. roe
second, (1:10), gives the lengtn of the associated header
in ~ords. (The lengtn of headers is tnus limited to a
maximum of 1023 words.) The third, (11:5), gives the
number of the type ot th~ header. Header type numbers are
presented in section 3.S.

3.5. The information area

The intormation bloCK in a USL file contains all header
entries. All addresses in the directory which refer to the
information blOCK are relative to SAIB (see 3.3). Because
of thiS, the entire information blOCK may be moved up and
down in the file, changinq only a few fields of recora
zero. Record boundaries are not recognized in the
information blOCK, but it Should nonetheless begin on a
record boundary.

3.~.1. Code modules

A code module is a special sort of header. It has no
associated header descriptor word, it may be lonqer than
the normal maximum of 1023 words, and it is never
explicitly included 1n any HIS (see 3.4.3). It may,
however, oe placed any~here within the headers associated
*ith a HIS. The starting address ot the code mOdule, SAC

C-02.36



(see 3.4.2) must be used to detect the presence of the code
while sequentially processing tne headers. It tne coae
mooule is not needed ~nen detected, it may simply be
SKipped. It is, as are all neaders of d sinqle HIS,
c on t i y u0 uS 'N i t h tl 0 t h the prec edin g l i fan y) dna toll 0 Ii 1 nq
(it any) headers.

The code module contains for tne most part finished code,
reddy to be placed into a progrdm. Tnere can be many
exceptions to this, however, depenaing on otner neaders
associated with directory entries associatea ~ith tne code
module. There are varlOUS linear lists dnd relocatdole
addresses 1n the code module itself which are used by these
other headers. the relevant lists and addresses will be
discussed oelow together wltn the appropriate neaders.

3.5.2. Information headers

-----~~-~------------------

There are twelve types ot information headers. They are
numbered as tollows:

o null (d garbage header)
1 peAL, LLBL, or program unit PB address
2 PB address
3 own/data variable (for address correction)
4 secondary DB initializations
5 a taole for TRACl/3000
6 variables declared GLOBAL
7 variables declareo ~XTERNAL

8 primary DB declarations and initializations
9 common (accomplishes only address correction)

10 FO~TRAN logical units
11 glObally located formats

These numbers are used in header descriptor words. (Header
descriptor words ~ere introauc~d In section 3.4.3.) ~very

header begins with a header descriptor word ~hich descrlbes
it. The tormat of these descriptors is as follows:

(0:1) reserved, should be set to zero
(1:10) the length ot the neader in tfords
(11:5) the number of the neader type

Although all headers begin with a descriptor word, each is
thereafter highly indiVidual. Each type is describea in a
separate sUbsection below.

All of the headers associated with a qiven HIS must be
contiguous within the intormation blocK. The directory
gives only the tile address of the first word ot the tirst
header of any HIS. It the neaders are not contiguous, it
~ill not be possible to locate them in the tile.

C-02.37



3.5.2.0. Null headers
~-~--~~~------~--~--~-

A null neader is a garbage entry. It simply taKes up as much
space as indicated in the header descriptor word. It has no
siqniticance to the program unit with ~hich it is associated.

3.5.2.1. PCAL headers

---------------------~

peAL headers provide all information needed to link the
prOqrdm unit to external program units. It actually has
tnree functions, as follows: to make PCAL patches, to maKe
LLBL patches, and to make procedure PB relative adaress
patches. It is structured as indicated in table 3.5.2.1.

Table 3.5.2.1 -- PCAL Headers

---~----------~-----------------------------~---~--Field Contents

----------~ -----------------------------~--------

P(O) header aescriptor word

P(l) word otfset into code module to the
first word of a linked list ot
references to the program unit
described in the header; each word in
tne list in the code mOdule has the
following format:
.(0:1) O=patch In a PCAL instruction,

l=patch in an LLBL instruction
.(1:1) O=patch as indicated by .(0:1)

l=patch in PB relative address
ot the proqram unit

.(2:14) link to next list item (this
is a self-relative backwards
pointer; the list terminates
with a zero pointer)

P(2) a name field, giving the name of the
external program unit (P(2).(O:4) is
unuse~, and Should be set to zero)

PI tOlloW~9 the name field
parameter information block

is a

------------~--------------------------------------

C-02.38



3.5.2.2. PB address headers
~~--~----------.-~--~--~----

This header provides a means of patching words in the
program unlt which contain PH relative addresses. After
the header descriptor ~ord, the neader is simply a series
of pointers, each ot which is a word-offset into the code
modUle. (The number ot tnese pointers must be deouced from
the lengtn of tne header as a wnole.) In each word in the
code module thus pointed to, the compiler must place a Pti
relative address. This address will be corrected by the
MPE segmenter at prepare time by adding to it the PB
relative address of the tirst word of the program unit.

3.5.2.3. Uwn/data head~rs

--------~--------~_.~-----

At compile time, the run time address of an own or data
variaDle is not known. It is assiqned at prepare time.
l'heM PI:: seqmen t e r sol ve s t his prob I em by r e qui r ing ttl e
compiler to place in the COde module a pointer to tne
variaole. This pointer ~ill ot course then be part ot tne
code at run time. The compiler initializes tnis pointer to
the otfset into tne program unit's secondary Drl array
assigned oy the compiler to tne variable. At prepare time,
the segmenter will ddd to this value the DB offset ot ttH~

program unit's secondary 08 array, thereby providing the
code at run time ~itn the correct pointer value.

After the header descriptor word, the entire header
consists of pointers edch of whiCh is d word-offset into
the code module. (The number of pointers must. be deduced
trom the lenqth of the header.) ~ach points to a location
whiCh is to De patched at prepare time. The high oroer bit
of the pointer determin~s whether a byte or a word pointer
is being initialized. If .(0:1)=1, then the contents ot
the code module word specified by the word offset in
.(1:15), and the correction added at prepare time, are byte
offsets. If .(0:1)=0, they are word offsets. (It is
believed that the high order bit of the code module word
pointed to Is also lnterpreted in this way. That is, it
either niqh order bit is on, either in the header pOlnter
or in the cooe module word, then the address is to be a
byte address.)

C-02.39



3.5.2.4. Secondary DB initial values heaoers
~--~--~--~~~-~--~----~-~-~-~-~------~--------

This neader may be used to place initial values into the
program unit's secondary DB array. The word which tollows
the neader descriptor word gives the otfset into the
seconaary DH array at WhiCh the tirst of the given initial
values is to be placed.

The third word of tne header nas two fields. The .(0:1)
field determines ~hether a byte initialization or a word
initialization is to oe performed. It .(0:1)=1, tnen the
second word ot the header 1s a byte offset, and the fourth
wora ot the header is a byte count giving the length of the
initial values in the header. In this case, the initial
values beyin in tne fifth word of the header and continue
for as many bytes dS the fourth woro indicates. It
.(0:1)=0, then the second word of the header is a word
otfset. In this case, the initial values beqin in the
fourth word, ana continue to the end of the header.

The .(t:1~) tield ot the third word gives a replication
factor. The initial values specifiea in the header will be
placed in successive locations in the secondary DB array as
many times as indicated by this field. Thus, if the
initial values are "xxyxx" and the replication factor is 2,
tnen I'xXyxxxxyxx" will be placed into tne secondary D~

array, beginning at the location specified in toe second
word of the header.

3.~.2.5. TRACE/3000 header

This header prOVides lntormation for use at run time by
TRACEI3000. After the neader descriptor word, tnere is a
word pointing to a linked list in the code module. After
tois, beqinning in the third word of the neader, and
continuing to the end of the header, is data which is
believed to be initial values ot some sort. No further
information is available as of this writing aoout this
header type.

C-02.40



3.~.L.b. Global variable headers

1tis po S Sib let 0 dec 1n red vd riab leGJ, 0 b ALi non e pro 9 rani
uni t, E,XTERNAIJ in another, separately compiled program
unit, and have thp. MPE segmenter resolve all reterences to
tne variable. (SPL/jOOO is the only Hewlett Ydckaro
1an 9 uage allow in y ex pI i cit aeel a rat i on 0 t GL 0 ~ A I.. 0 r
I:. X l' E. H~ AI, a t t rib ute 5 • ) ~. 0 11 0 win9 t t\ e ne a de r de 5 c rio tor ~ 0 r d
is d data descriptor word, whlCh qives the type and
structure of tne variable. The fields of tois data
descr1ptor are as follows:

.(0:4) the mOde ot tne variable (O=null, 1=
value, ~=reference)

.(4:bJ the variacle's structure (O=simple
variable, l=pointer, 2=array)

.(10:6) the type ot the variable (0=nu11, 1=
loqical, ~=inteqer, 3=byte, 4=real,
5=aouole, b=lonq, 7=complex, R=ldbel
(J,Jassed :->PI, fashion), Y=chdracter (as
in f' URf HA .\1 I 3 0 ("I 0 ), 10=1db e 1 ( pas sed in
i n fOR T!-{ ANI 3(J (n) f ash ion ), 1 1 =any)

In tne left byte ot the third word ot the neader is tne run
time UB relative dddress of tne vari~ble. (Global storage
adaress assiqnments for primary DH are normally made by a
compiler wnile compiling an outer olock, and are not in any
way relocated by the seymenter.) The .(B:4J tield of the
third word is reserved and should be set to zero. .(lL:4)
contains the lenqth ot the name ot the variable, in oytes.
fhe name itselt beqlns in the lett hyte of the fourtn word,
ana continues for as many -bytes as necessary. Tne name is
alNays an integral number of words in lenqth, ana so a byte
is sometimes wasted.

3.5.l.7. External variable headers

A var1aole declared EXTERNAL is to be matched at prepare
time with a variable declared GLO~AL in some other program
unit. Tne first word ot the header 15 of course a header
descriptor word. The secona word IS a data descriptor
word, wnich has the format aescribed in section 3.5.2.6.
I"ollowinq the second wora is a name tie!<1. The. to: 1) bit
of the first word of the name tield is a 'trace' bit. It
it is on, it indicates that the variable may be traced by
THACE/3000 at run time •• (1:3) is reserved, and should be
set to zero.

It the trace bit 1s on, -then in tne word immediately
following the name tield is an offset into the TRACE/3000
symbol table. If the trace bit is ott, this otfset is not
present.

C-02.41



~'ollowinq tIle name field, and the THACE/3000 symbol table
offset, if present, is d series ot pointers, each ot which
is an offset into the code mOdule. Each points to the
first ot d list at instructions to be patcned witn tne
address of the appropriate GL08AL variable. ~ach of the
lnstructions to oe patcned must be a memory reterence
instruction, since GlJUhAl, variables will al'llays reside in
the prImary C~ area. The address fields ot the
instructIons to bP patched (the right oyte in memory
reterence instructions) serves as the link tield for the
list. Ttle links are self-relative bncKward pointers. EaCh
list is terminated by a zero pointer.

lhele js no explicit indicdtion of the number of pointers
in the hearier. This must be deduced trom the length ot the
neader.

3.5.l.B. Primary DH headers

for the purposes ot the MP~ segmenter, primary Db words are
clnssified into word pointers, byte pointers, and aata.
After the descriptor word in this header tnere is a series
of words, each of which is divided into eight two-bit
fields. All tnese fields, in order ot occurance,
correspond to primary DB locations. The first it tor 08+0,
tne second for DBt!, ana so on. The values of the fields
are interpreted as follows:

o the initial value is not an address
1 tne initial value Is not an address
2 the initial value is a word address which

points to the secondary Dtl area
3 the initial value Is a byte address Which

points to the secondary D~ area
Initial values in the header that are addresses are
relative to the beginninq of the program unit's secondary
US area. The entry, after the array ot two-bit-field
words, contains initial values. There must oe POB (see
section 3.4.2.2) two-bit fields, and PUB initial values.

There may be a slacK word
and the initial values.
values should dlways oe
header. That is, it P is
word of toe header, then
initial value.

between the two-bit-field array
Because of this, the initial

accessed from the end ot the
an integer pointer to the last
P(-(PDH-l}) accesses.the first

~ormally, only an outer block program unit would make use
of this header type. ~on-outer blOCK program units Should
not be allocating primary 08 storage, and the value ot PUrl
for tnem should be zero.

·C-02.42



3.S.2.9. Common variable neaders

The ~p~ seqmenter allocates secondary DB storage for all
common OlOCKS. In order tor a proqram unit to access a
variaole in common, it must use this header. for eacn
common variable referenced in one of these heaoers, the MP~

s e g",en t e r 1ft i 11 a 11 acat e a po 1nt e r i n the p rip!dry Di1 are d ,

ann properly initialize it to point to tne common variable.
~pecitied instructions will be patched with toe address ot
tnis pointer.

Followinq the header descriptor word is an integer which
gives the length in words ot the common blocK to whiCh the
neader applies. Heginning in tne third word is a name
tield, qivinq the name ot the common blOCK to whicn the
he ad er d P P 1 i e s ( b I an I< c 0 rr' rnani snitme d " COM • II ) • The. ( 0 : 4 )
field ot the name tiela is r~served and should oe set to
zero.

He q 1nn i nq in the W0 r dim IT: e d i ate 1y follow i ng the na If. e tie 1d
is a series at variable descriPtors. There is no explicit
indication of the numoer ot variable descriptors in the
neader. This must be deduced from the header's lengtn and
contents. Table 3.S.~.9 gives the format of variable
descriptors.

It must be notp.d that if the trace bit (P(O).(1:1» is not
on, then the displacement into the T~ACE/3000 array (P(2»
is not included. It is simply omitted, and the list hedOS
move up to fill in its place.

C-02.43



Table 3.5.2.9 -- Variable Descriptor ~ormats

~---~---~~---------~~-----~-.--------~~-----~------
fielo Contpnts

~-------~---- ------------------------~------~-~~-

P(O).(O:l) O=D~ pointer 15 to ue ot type worn,
1=01:\ pOlnter is to bP of ty~e byt.e

~(O).(l:l) 'trace bit'; O=varidhle ~ill not be
trac~d oy TRAC~:/3000 Cit run t irne,
l=variable may oe traced

P ( 0 ) • ( '2 : 1 4 ) the nunl b e r 0 f lis t 5 0 fin 5 t rue t ion s
which are to be corrected (there dre
t hIs 0' d n y lis t tH~ dd 5 1ate r i n t tl e
varible oescriptor)

P(l)

P(j)
to

P('2+P.(2:14)}
-or-

P(2)
to

P(1+P.(2:14»

the displacement witnin the common
block of the variable

displacement within a TRACE/JUOO
array ot information about the
variable (NOTt:;: tnis field is
present only if tne trace oit
(P(O).(1:1» is set; otherwise it is
completely omItted)

tne list heads ot the lists of
instructions to be patched; eacn
list head is an offset into the code
module to the tirst word ot a list
(the lists are formed the same as
the code mOdule lists useo by
EXTEPNAL variable headers, descrioeo
in section 3.5.2.7)

~-----~-~~~-~----------------------------~---~-~---

3.S.~.lO. FORTRAN logical units table headers

~---~--------~----~--~--------------~--~------

This header indicates wnich FORTRAN logical units are
referenced by the program unit. The MP~ segmenter will
construct the FURTRAN logical units table trom tne
information contained in FLUT headers. After the header
descriptor word there are exactly seven words. These words
contain a bit map, in which the first bit corresponds to
logical unit numoer zero, the second to logical unit 1, the
third to LU 2, and so on. If a bit is on, the
corresponding logical unit will be included in tne FLur
table at run time. The bits are numbered from left to

C-02.44



rig n t • Tt1 e • 1e t t -III 0 st' Vi 0 r ci i s
nearest to the header descripto[
from 1 to 99, inclusive.

-~~~-~~~-~----~------~---

the
\Norri.

one which occurs
LeeJd 1 LU' s r iHlgC

For n. d t 5 wh i Chi nC 1ude an· H- s pecit i c ~ t ion, and a r ~
ret ere nc e c:t i n d ~ EAu s tat e rr. e nt, nl U S t [) e CJ 100 d 11 y 1 0 C d t. e <1 t a
retain between calls to tne proqram unit values red~ irlto
the -t-t- specification. Tnis header allOws tnat. It
contrlins a formdt striny wnich is to be placed in tne
secondary IJH area.

At t e r the he d de r des c rip tor W0 r ci i s .d W0 r d #i h i C rI ':1 i ve s n
woro otfset into the COde ffiodul~. lhe COde ~ooule ~or~

t tl usind i Cn ted i s ttl e fir s tot d 1 i s t 0 f w0 r d ~ tooe
inItialized at prepare tiffie with the Db relative aadress or
the tor md t s t r i nq. ~.. itt' i ntheli s t 1nthe cod e m0 C1 U 1 e, t f) ~

.(2:14) tield of eaCh me~ber ot tne list is d

s e 1 t - rei a t. i ve , b a CK war d poi n t e r tot n ~ next 1 i s tel P. III f> n t •
A link of zero telminales tne list. It thp .(u:ll tlel~ ot
s U Chac0 d e mod u 1e W0 r dis set 0 n, t ne f' t tl e LJ B reI a t i v f:!

pointer placed into that word is to be a oyte aaaress; it
.(0:1)=0, then the DH relative pointer placed into the cooe
in 0 (J u 1e ~ 0 r dis t 0 ben w0 r d a (1 d res s • Ttl e p u i n t e r p 1d Ce (J

i n tothe \If 0 r d 'Ii ill poi n tat run t i ill e tot hen e q 1nn i nq 0 t
the format strinq.

Tn e ttl i r (1 .... 0 r ci 0 f the ned Cl ~ r q i v~ s the 1e n~ t h, in 0 y t e 5, () t
the tor (f\ a t 5 t: r i n g • The t 0 lJ r t han d f 0 11 () ~ i ng 'II 0 r (15, d S rd d n y
as necessary, contain ttle format string itself.

: ~o~· :

C-02.45



TITLE: HP 3000/0PTIMIZING ON-LINE PROGRAMS

AUTHOR: ROBERT M. GREEN
ROBELLE CONSULTING LTD.
1130-5421 10TH AVENUE
DELTA, B.C. V4M 3T9
CANADA (604)943-8021

I have identified five general principles which help in
optimizing the performance of on-line programs:

* Make each disc access count.

* Maximize the value of each terminal input.

* Minimize the run-time program size.

* Avoid constant demands for execution.

* Optimize for the common events.

FIRST PRINCIPLE: MAKE EACH DISC ACCESS COUNT

Disc accesses are the most critical resource on the HP 3000.
The sYstem is capable of performing about 30 disc transfers
per second, and theY must be shared by sYstem processes
(spooling, console operator, etc.), memory management and
user programs. (This rate can be increased to 58 per second
under the best circumstances, and can degrade to 24 per
second when randomly accessing a large file.) Another
interesting fact is that a 4096-word transfer takes about
the same overhead as a 128-word transfer. Therefore, it is
better to read 4096 words in one transfer than to read 128
words 32 times. Another point to remember is that IMAGE
database transactions reGuire a lot of immediate disc
accesses (from a DBUPDATE, which does one disc write, to a
multi-keY DBPUT that may reGuire ten or more disc
reads/writes).



OPTIMIZE

Some of the operations that consume extra disc accesses on
the HP 3000 are:

Increasing the number of keys in a detail dataset, thus
causing IMAGE to access an extra master dataset on
each DBPUT. Also, making a field a keY value means
that a DBDELETE/DBPUT is reGuired to change it <which
is 10 times slower than a DBUPDATE).

Increasing the program stack size b~ 8,000 b~tes, thus
causing the MPE memory manager to perform extra
swapping disc accesses to find room in memory for the
larger stack.

Improperly segmenting an active program, causing many
absence traps to the memor~ manaSer to brins the code
segments into main memory.

Defining a database or KSAM file with overlw large
blocksize, thus forcing each user terminal to access
a large extra data segment that must be swapped in
and out of main memory. (Note: the trade-ofts will
change when [if?] IMAGE is revised to use shared
buffers.>

NOBUF Disc Accesses

When designing your next on-line apPlication, see if there
is some way that a random disc file can be used instead of
an IMAGE dataset or a KSAM file; Then open that file with
NOBUF and access it via directed reads and writes to
specific blocks. Normally, when YOU open a file, the
program is assigned an extra data se~ment to hold the buffer
space for the file. Transfers between the file and the
program are always done through this extra data sesment.
When the program reauires a record, MPE first checks to see
if the record is already in the extra data segment buffers;
if so, it is merely transferred from the extra data segment
to the user stack. If the block containing the desired
record is not in the buffers, MPE issues a read against the
disc to bring the block into main memory.

Although this sounds very clever and efficient, it has one
major flaw: the extra data segment itself can be swapped.
This means that in order to do any file access on a busy
sYstem, it may be necessary to read the extra data seSment
into memory before accessing the data in the disc file. On
a heavily loaded sYstem, this could cause a larSe number of
unnecessary disc transfers. NOBUF access does away with all
this bY providinS a direct interface between the user
proSram and the disc files. Blocks are transferred to and
from the user stack and the disc without anw interveninS
buffer area. NOBUF is the fastest way to use random disc
storaSe from a user program.

C-03.2



OPTIMIZE

The user pro~ram must provide its own buffer space in the
stack and call for transfers of data via the block number
within the file. When multi-record access is used, it is
possible to transfer multiple blocks at a tiffie. The user is
responsible for determinin~ which block contains the record
that he desires and where within the block the record is
located. Simple subroutines can be written to handle this
transformation.

A twpical use for this kind of file is as a data entrY
transaction file. As the operator enters the data, it is
buffered in the stack until a block is full; then the entire
block is written to the disc in one operation. For even
better throuShput and response time, ~ou might trY writing
the blocks to the disc with the NO-WAIT option; when this is
used, MPE overlaps the write operation to the disc with your
next print and read from the terminal. Without NO-WAIT¥
wour pro~ram would be suspended until the disc write could
be completed bw MPE.

(Warnin~: Be certain that wou know when the end-of-file is
uPdated; otherwise, wou mi~ht find that YOU have an empty
transaction file when the swstem crashes. I suggest that
YOU move the end-of-file to the limit of the file at the
start of the day by writing a null entrY in the last record
position and then closing the file.) When the transaction
file is full (or the day ends)¥ a batch proSram is used to
put th~ transactions into the final IMAGE dataset or KSAM
file. This Job can be done in low priority or after hours.

SECOND PRINCIPLE: MAXIMIZE THE VALUE OF EACH TERMINAL READ

Each time a program reads from the terminal, it is suspended
and may be swapped out of memory. When the operator hits
the carria~e return key, the input operation is terminated,
and the process must be dispatched a~ain. In order to
dispatch a process, MPE must ensure that the data stack and
at least one code segment are resident in main memory. If
the process is ~oin~ to access the disc, it may be necessary
to make an extra data se~ment resident also. Unless the
computer has enoush main memory so that no user segments are
ever swapped out, it is desirable to have the process set as
much work done as possible before it suspends for the next
terminal input (and is swapped out a~ain).

The simplest way to program data entrY applications is by
promptin~ for and acceptin~ only one field of data at a
time. This is also the least efficient way to do it. The
user data stack must be made resident every time the user
hits 'return'. (Therefore, the less often the user hits
'return', the lar~er your stack can afford to be.) Since it
is inefficient, fast response time cannot be guaranteed, and
the resulting delays are very irritating to operators. They



OPTIMIZE

can never work UP any input speed, because theY never ~now

when the computer is ready for the next input line. If
response time and throushput are the onlY considerations, it
is alwa~s preferable to keep the operator typinS as lon~ as
possible before hittin~ the 'return' key. Multiple
transactions should be allowed per line, with suitable
separators, and multiple lines should be allowed without a
'return'.

THIRD PRINCIPLE: MINIMIZE THE RUN-TIME PROGRAM SIZE

The HP 3000 is an ideal machine for optimizin~ because of
the many hardware features available at run-time to minimize
the effective size of the pro~ram. Even Quite lar~e

application sYstems (6000 lines of code) can be or~anized to
consume only a small amount of main memory at anyone time.
Each executin~ process on the HP 3000 consists of a single
data sesment called the Dstack a

, and one or more extra data
seSments for sYstem stora~e, such as file buffers. Althoush
a process is always executing some code in a code segment,
the code does not properlw belons to the process, since one
copy is shared b~ all processes in the system. If a program
is to be executed bw several terminals, most optimizing
should be directed to the data areas (which are duplicated
for each user).

Lar~e programs which are not logically segmented make it
harder for the memory manager to do its Job, and thus cause
man~ disc accesses to be consumed in swappins. In an
extreme case, the sYstem can almost be brou~ht to a complete
standstill b~ a very large pro~ram executins on manw
terminals at the same time. The articles listed in Appendix
A provide strate~ies and examples for code segmentation. To
simplifY a complex problem, follow these suidelines: 1) put
initializatio~, termination and error handling in separate
code se~ments; 2) minimize the number of calls across
segment boundaries at run-time; 3) remain in a segment as
lon~ as possible; 4) keep segments small (2K-8K words), but
don't use too man~ segments (MPE has a limited overall code
'segment capacity).

Man~ more terminals can be supported on a ~iven sYstem if
data stack sizes are kept modest (ex: less than 6000 bytes
on a 192K-bwte machine), and if the code is properly
segmented. The simplest waw to keep the stack small is to
make all data variables local (DYNAMIC in COBOL) and to use
global storase onlw for buffers and control values that must
be accessed bw all subroutines. The reason that this is so
effective is that dwnamic local stora~e is allocated on the
top of the stack when the subroutine is entered and is
released automaticall~ when the subroutine is left. This
means that if the main program calls 3 large subroutines in
succession, thew all reuse the same space in the stack. The



OPTIMIZE

stack need onl~ be large enough for the deepest nesting
situation.

Since the amount of d~namic stack space that will be
reauired bY the pro~ram is not known at the start of
execution, the 3000 provides methods (both automatic and
pro~rammatic) to expand the d~namic area. Whenever a stack
overflow occurs, MPE automaticall~ allocates more space (up
to a MAXDATA limit). Unfortunatel~, there is no automatic
mechanism for reducing the stack size when that additional
space is no lonser needed. The user application program can
include a check in the mainline and shrink the stack back
down to the desired size after returning from an oversize
subroutine. (See Appendix B for an example.)

The other major wa~ to reduce the size of a data stack is to
ensure that constant data items <such as error messages,
screen displa~s) are stored in the code segment instead of
the data segment. Since the~ are never to be modified,
there is no logical reason that the~ must be in the data
stack. B~ moving them to the code sesment, one cop~ of them
can be shared b~ all users running the program. In SPL,
this is done by including =PB in a local arra~ declaration
or MOVE'ing a literal string into a buffer. In COBOL,
constants can be moved to the code segment b~ DISPLAY'ing
literal strinss in place of declared data items. In
FORTRAN, both FORMAT statements and DISPLAY'ed literals are
stored in the code.

FOURTH PRINCIPLE: AVOID CONSTANT DEMANDS FOR EXECUTION

The HP 3000 is a multiproSramming, virtual memor~ machine
that depends for its effectivenss on a suitable mix of
processes to execute. Although the sizes of the sesments to
be swapped have an effect on performance, this is dependent
upon the freauenc~ with which memo,\~ residenc~ is demanded.
Given the same overall confisuration and application program
sizes, the s~stem supports man~ more terminals if each one
only executes for 5 seconds ever~ 30 seconds than if each
~ne must execute for 60 seconds at a time. Each additional
terminal that is demandins continuous execution (in high
priorit~) makes it harder for the operatinS s~stem to
provide proper response time to all other terminals.

Here are some examples of the kind of operation that can
destro~ response time if performed in hish priority:

EDIT/3000, a GATHER ALL of a 3000-line source file.

QUERY, serial read of 100,000 records

SORT, sorting 50,000 records.

C-03.5



OPTIMIZE

COBOL, compilinS on 4 terminals at once.

All of these operations should be done in low priorit~ in
batch STREAM Jobs. These Jobs can even be created
d~namically bY on-line programs. In this way, the on-line
user still reQuests the high-overhead operation, but the
s~stem fulfills the reQuest when it has the time.

FIFTH PRINCIPLE: OPTIMIZE FOR THE COMMON EVENTS

In any application where there is a lar~e variation between
the minimum and maximum load that a transaction can cause,
the program should be optimized around the most common size
of transaction. In an~ application with a large number of
on-line functions, it is likely that a small number of
functions are used most of the time. In this case, all
optimization efforts should be aimed at the commonl~ used
functions and other functions left as is. This is
especiall~ feasible on the HP 3000 because of code
segmentation and dynamic stacks.

If N is the average number of records in a transaction (i.e,
the number of lines on a customer order, maximum is 500),
then allow room in your stack for N records. If YOU only
allowed for one record, then there would be unneeded disc
thrashing. Alternatively, if YOU provide room for the
maximum number, then the data stack is much larger than
actually needed most of the time. Having a larger data
stack may cause the sYstem to overload, eliminating the
benefits of keeping the records in your stack. It is
recommended that room in the stack be allowed for slightly
more than the average number, and that a NOBUF disc file be
used to ·page- this area on very large transactions.



OPTIMIZE

OPTIMIZING CASE STUDY 11: QEDIT

QEDIT is a high-speed, low-overhead source program editor
developed b~ Robelle Consulting Ltd. The primar~ objective
of QEDIT is to provide the fastest possible editing with the
minimum possible s~stem load. Other objectives include
conservation of disc space, similaritw to EDIT/3000 in
command s~ntax, abilit~ to recover the workfile following a
s~stem crash or proSram abort, and increased pro~rammer

productivit~.

QEDIT and the First Principle: Disc Accesses

In order to reduce disc accesses, QEDIT had to eliminate the
overheads of the TEXT, KEEP and GATHER ALL commands of
EDIT/3000. These three operations have the most drastic
impact upon the response time of the other users. QEDIT
attacks the problem of KEEPs b~ providing an interface
librar~ that fools the HP compilers into thinking that a
QEDIT workfile is reall~ a ·card image· file. As a result,
it is never necessar~ to KEEP a workfile before compilins
it. Since KEEPs are rarel~ used, most TEXTs are elinlinated.
TEXT is onl~ needed when ~ou want to make a backup or
duplicate cop~ of an existing file. It was anticipated that
most users would maintain their source files exclusivel~ in
workfile format, so the TEXT'ing of workfiles was optimized
(b~ usinS NOBUF, multi-record techniQues) to be at least 4
times faster than a normal TEXT of a card imaSe file. The
GATHER ALL operation is slow because it makes a cop~ of the
entire workfile in another file. QEDIT renumbers UP to 12
times faster b~ doins without the file coP~.

Disc accesses during interactive editing (add, delete,
change, etc.) were minimized b~ packing as man~ contiguous
lines as possible into each disc block. The resulting
workfile is seldom over 50~ of the size of a normal KEEP
file or 25~ of the size of an EDIT/3000 K-file (workfile).
Most DEDIT users maintain all of their source programs in
workfile form, since this saves disc space, simplifies
operations (there need onl~ be one cop~ of each version of a
source program), and provides optimum on-line performance.

QEDIT alwa~s accesses its workfile in NOBUF mode and buffers
all new lines in the stack until a block is full before
writins to the disc. Wherever possible in the codins of
QEDIT, unnecessar~ disc transfers have been eliminated. For
example, the workfile maintains onl~ forward direction
linkage pointers, which reduces the amount of disc I/O
substantiall~. Results of a loggins test show that reducins
the size of the workfile and eliminating the need for
TEXT/KEEP reduces disc accesses and CPU time b~ 70-90~.

C-03.7



DPTlriIZE

GEDIT and the Second Principle: Terminal Accesses

GEDIT allows multiple commands per line, plus multiple data
lines per data line input (i.e, YOU can enter 7 lines of
text without hittin~ 'return'). All interaction with the
terminal is done directly throu~h the READ X and PRINT
instrinsics.

GEDIT and the Third Principle: Prosram Size

GEDIT is a completely new proSram, written in hishl~

s t r u c t u red and proc e d IJ r i zed SPL.. The r e su I tin £t P T' 0 9 l'a III f:i 1e
consists of 7 code sesments of 1780 words <decimal) each.
Only two code seSments are reQuired for most editinS
commands, while the most common function <addinS new lines)
reQuires only one code sesment most of the time.

GEDIT uses a minimum data stack and no extra data segments.
All error messaSes are contained in the code, isolated in a
separate code segment that need not be resident if YOU make
no errc)rs.

QEDIT and the Fourth Principle: Constant Demands

Most GEDIT commands are so fast that the~ are over before a
s e rio IJsst r a i n has been p I a c f~don the h () s t mac h :i. rH:~ • F0 T'

example, a 2000-line source pro~ram can be searched for a
strins in four seconds. For those operations which still
are too much load, QEDIT provides the abilit~ to switch
priority subQueues dynamically. In fact, the sYstem manager
can dictate a maximum priority for certain operations such
as compiles or TEXT and KEEP commands.

QEDIT and the Fifth Principle: Common Events

The enti re desi~Jn of QEDIT is based on thE:' ObsE'l'vation that
proSram editins is not completely random. When a programmeI'
chanses line 250, he is more likely to reQuire access to
line s 245 t h r 0 IJ ~Jh 265 n (~ }.~ t t han he i r.; t () :I. :i. n e s b ? 0 t h T- 0 U ~~~ h
710. This observation dictated the design of the indexinS
scheme for the QEDIT workfile.

There are many examples of optimizins for the most common
events in GEDIT: the blocksize will hold about a screenful
of data lines, built-in compiler, fast renumberin~ command
(600 lines per second) in place of a GATHER command, faster
TEXT'ins of workfiles than KEEP files (4 to 7 times faster).

Results of Applyin~ the Principles to QEDIT

In less than 7 seconds, Q[DIT can text 1000 lines, renumber
them and search for a strins. Commands are 80% to 1200%
faster than EDIT/3000, proSram size is cut in half, and disc
I/O and CPU time are reduced by UP to 90%.

C-03.8



OPTIMIZE

In order to measure performance, an editor-callable
·procedure" was written that calculates the elapsed time
<using TIMER intrinsic> and the processor time (PROCTIME
intrinsic) between events. QEDIT measured faster than
EDIT/3000 bw these percenta~es:

Renumber
List to printer
Find string
Chan~e

Keep
Text from keepfile
Text from workfile

1204% faster
115% faster
6137. faster
645% faster

827. faster
44% faster

7337. faster

The more efficient the pro~ramming of an operation, the less
swstem resources it consumes. MPE provides a "logging"
facilitw to record the resource usa~e of programs for later
anal~sis. Both GEDIT and EDIT/3000 were used to perfor", a
typical program maintenance change (edit, compile, correct
errors). According to the logging statistics, QEDIT reduced
overhead b~ these percentages:

Physical disc transfers
Disc space reQuired
cpu time
Pro~ram size
Total data space
Data stack size

93% reduction
87% reduction
727. reduction
63% reduction
537. reduction
437. reduction

Programming of QEDIT began in March 1977 and user-site
testing in September 1977. At the present time (September
1978), there are 20 GEDIT user installations. GEDIT shows
what can be accomplished by applying all of these optimizing
principles in the design of one swstem. In anw given
application swstem, it maw not be possible to take advantage
of all five principles; but to whatever extent theY can be
applied, the resulting swstem will provide better service
than it would have.

For more information on GEDIT, contact me directl~:

Robert M. Green
Robelle Consulting Ltd.
1130-5421 10th Ave.
Delta, B. C. Canada
V4M 3T9
Phone: (604) 943-8021

C-03.9



OPTIMIZE

OPTIMIZING CASE STUDY i2: APPLYING PAYMENTS

In this accounts receivable s~stem, 24,000 invoices per
month are posted to 10,000 customer accounts. The number of
unpaid items per customer varies from one or two (a lot of
accounts) to 500 (a few major accounts). The AIR are
maintained on an open-item basis. That is, the invoices
appear on the customer's statement each month until theY are
matched UP with a payment and considered reconciled. About
200-300 cheGues are posted to the database each day. The
problem is to allow the AIR clerks to uapplym the payments
to the proper invoices in the cheapest possible manner.
Certain other constraints exist: the machine is a Series I,
onl~ dumb terminals are to be used, and the swstem is
already supportin~ about 17 terminals and seems fully
loaded.

The computer s~stem cannot tolerate the overhead to scan
down the chain of records for each account (DBGETs) and
print them on the screen. There is too heavw a load
already. In addition, the software would have to skip over
(i.e., ~et and i~nore) a lar~e number of paid invoices to
find the unpaid ones.

AIR and the First Principle: Disc Accesses

AIR uses a database to index entries by account and sort
them by date, but allows no on-line updates to the database.
They are too slow and too hard to control (recover/balance).
Updates are only allowed by seQuential batch prOSrams.

Each clerk is provided with a transaction disc file for her
DledSer·, containins copies of her active accounts (14
entries/block>. She also has a printout that shows each
account and gives its location in the file. The disc file
and associated lineprinter report are prepared in batch.
The user accesses this file in on-line mode and converts the
entries into database transactions.

The transaction file is accessed in NOBUF mode and contains
only unpaid invoices. All on-line activity is done into
this file, then, at night, those entries which have been
marked in the file for application are retrieved from the
database and UPdated.

AIR and the Second Principle: Terminal Accesses

The user input syntax allows (but does not reGuire) many
individual instructions to be entered in each input line.
This example applies a pa~ment to seven invoices and writes
a small adjustment against one invoice:

I1ABDEFGH,A(1010-1010,7.50,C)



OPTIMIZE

A major desi~n problem was how to refer to the items that
are on the customer's account •. The invoice number is too
lon~ for efficient data entr~ (and subject to errors). A
seQuence number could have been assi~ned to each entr~ on an
account. However, invoices are not paid in seQuence;
eventuall~, the seQuence numbers would be as larSe as the
invoice numbers. A Quick calculation showed that the time
reGuired to assi~n new seQuence numbers was prohibitive
(because of DB inefficiencies). The scheme settled upon
a5si~ned relative position numbers to each unpaid item on a
d~namic basis, but these numbers are not actually stored in
the database. In order to shorten input, an alphanumeric
code was used (A,B,C ••• Z,Al, ••• ). In retrospect, a pure
numeric seQuence number mi~ht have been better because of
the input speed of numeric keypads.

A/R and the Third Principle: Pro~ram Size

A/R is written entirely in SPL/3000. Stack sizes are modest
(2K-3K decimal or less)y and onl~ one disc block is kept in
the stack. SPL procedures were created to simulate a mini­
file s~stem for the transaction files. The procedures do
all deblockin~ and disc input/output. This simplified
codin~ of the three major proSrams.

A/R and the Fourth Principle: Constant Demands

There are a few special transactions that can take UP to a
minute, but the~ are very rare and can be iSnored. Most
transactions are ver~ short, and all data is available in
memor~, or is one disc read awa~.

A/R and the Fifth Principle: Common Events

This principle was apPlied heavil~ to AIR. The most common
event is to appl~ a pa~ment that came in ~esterda~ to an old
invoice(s). Also, most accounts have less than 10
outstandin~ items. Therefore, this sYstem anticipates the
next da~/s reQuests b~ creatin~ the batch-file/printout of
all the accounts with an unapPlied payment. For those
accounts that reGuire attention, but have no paYment, the
clerk loads them into her batch file on-line (rare). The
blocksize was picked so that most accounts could fit in one
block.

The transaction to appl~ a pa~ment is:

>10117A67/1AGH
~Invoice lines

~Pa~ment number
~Disc location of the account (from printout)

~Account number
~Prompt Character

C-03.11



OPTIMIZE

Since starting production, we have discovered that usuall~

the account i and location t entered is Just the one that
seQuentiall~ follows the last one. Thereforev the ssstem
will someda~ be chansed to allow entr~ of * for next
account.

When convertins from the manual sYstem to a pure on-line
computer s~stem, the abilit~ to write notes on the
cus tome T' I S account ca T'd was los t. Aft(·:·~ f' a f(':~l"" mc>nth~:; II t,..J(~~

found ourselves under heavy pressure to create new types of
transactions in the s~stem to handle the many special cases
that arose (paid twice, overpaid, short-paid, toc>k credit
note twice, etc.). The oriSinal desisn onl~ allowed for
fou T' t~pe5 of transact ions: i nvc> i (~(-:~ II pa~IITl(·~n t, ad";us tlllPn"l.

and J 0 urna lent r ~ (a I a T' ~i (.:~ ad jus tITle n t, ...J i t h a un i C~ u (;~ n U III b I'·:~ l"

assisned for control pl.JrpOSf:~~'). RatheI' than cll..l'ttel' I.H·'" tJ·H·?
desisn, we added the ability to write multi-line comments
for an~ Journal entry. With these comments, the AIR clerk
can now communicate directl~ with the custollier's accounts
P a ~a b 1e c I e r k toeNp I a i nthe p T' 0 b I (~m :i. n En ~.:.i 1 :i s; h • S :i. n c' (.:~ t h (.:.,
comments a re kept ina ~)eparate datasl~~t, :i ndE~~<E:'d t... ~., th(·:·~

un i Que J 0 urna len t l'~ nU ITI beT" the T' e i s n 0 (;~ d "'.i :i. t i <:> n a 1 0 'v' E' r' he a (1
on ordinar~ transactions.

Basis for future eNPansion: since most accounts pas in a
5 i IT.pIe pattel' n 51 the co ITIput co? T' wi 11 (i n bat c h) F' 1" (.:~ .... a p P 1 ~J thE'
pa~ments when creatins the transaction file. Then the
op €~ rat 0 r need () n ], ~:I t a ke act i. <:; n :i. f the C () III P 1..1 t (o:~ '"' has s (.:~ :I. f:~ C t (.;.~ d
incoT're(.'tl~.

Results of Appl~ins the Principles to AIR

The application maintains 10,000 accounts with 2411000
invoices per month, usin~ two ADM-3 terminals on a eX-3000
with 15-19 other terminals doins less optimized ttlinss. AIR
staff has been reduced f rom seven PE.lOP Ie t.o two + At thp
same time, the three terminals used for proSram development
were switched to QEDIT. Response time has actuall~ improved
on 0 I d a P pI i. cat ions • At the s a IT, e t i ITt e 51 2 t €.q' lTd. na :I.~:; ha 'v' e
been added to the system.

For more information on this example of appl~ing optimizin~

principles, contact the user site directly:

Gar~ Nordman, Manaser of S~steffis Development
Malkin & Pinton Industrial Supplies
325 East Fifth Avenue
Vancouver, B.C. Canada
V5T lH6

C-03.12



APPENDIX A: REFERENCES ON HP 3000 OPTIMIZING

[1J Transaction Processins on the HP 3000 Series III.
Some HP field SYstem En~ineers have this
internal HP document which describes the internal
workin~s of these software products:

IMAGE
KSAM
FILE SYSTEM
COBOL
FORTRAN

[2] COMMUNICATOR No. 14.
Page 87v Block/Pase mode problems.

[3] COMMUNICATOR No. 12.
SeSmentation in COBOL

[4] COMMUNICATOR No.5.
SeSmentation for Maximum Efficiency

of System-Type ProSrams.

[5] JOURNAL-3000 Vol 1v No.6.
KSAM vs. IMAGE
HP 3000 with Front-End Processor
FORTRAN Optimization

(6] JOURNAL-3000 Vol. 1v No.5.
QEDIT, Quick ProSram Editins,

Small Appetite for Computer Time.

[7J JOURNAL-3000 VOL. 1, No.4.
Using Extra Data SeSments.
Common Prosramming Errors with IMAGE/3000.

(8J CONTRIBUTED LIBRARY, Vol 1/11.
IDEA ProSram
IDEAII Prosram
RESP Prosram
IDLE Program
PROGSTAT PROGRAM

(9] CONTRIBUTED LIBRARY, Vol III.
sao Program
DBREBILD Program

(10J CONTRIBUTED LIBRARY, ·Vol IV·.
DBSTAT Program
DBCHANGE Program

C-03.13

OPTIMIZE



Cl1] SCRUG MEETING LIBRARY, March 1978.
FASTER - An essa~ on writins proSrams for

~reater efficienc~.

OVERLORD (See also SOD.)
DBSTAT - Internal efficiency of master

datasets.
SHOWVM - Shows virtual memroy.
STACKOPT - Stack optimizing routines.

[12J SCRUG MEETING NOTESv March 1978.
Extra Data SeSments and Process Handlin~

Operator Utilities

[13J INTERNATIONAL USERS MEETING, 1977.
KSAM (see extra data segment size, load times)
IMAGE for the advanced User
Optimizin~ FORTRAN IV/3000
RPG/3000 ProSrammins Optimization
Data Entry Techniaues'
Se~mentation

MPE II Measurement and Optimization
MPE C Measurement and Optimization

[14] INTERNATIONAL USERS MEETING, February 1975.
Software Optimization Throu~h Sesmentation

[15] INTERNATIONAL USERS MEETING, Ma~ 1974.
ProSram Performance

[16] CCRUG MEETING MINUTES, May 9, 1978.
IDEA Pro~ram

DBDRIVER Pro~ram

[17] PERFORMANCE GUIDELINES/SERIES III (HP 5953-0533).
Note the extra load of synchronous terminals(p.9)
and the dramatic increase in the number of
terminals supported when a simple file is used
instead of IMAGE/DEL/COBOL.

[18] SPL/3000 FOR COMMERCIAL APPLICATIONS,
EFFICIENCY WITH EASE OF MAINTENANCE.

Report available from Robelle Consulting Ltd.

C-03.14

OPTIMIZE



OPTIMIZE

APPENDIX B: SHRINKING THE STACK SIZE

The following SPL code can be added to an~ program
that calls a lot of procedures (or subproSrams in COBOL)
in order to d~namicall~ optimize the size of the data
stack.

CHECKSTACK LIBRARY SUBROUTINES

1.Checks for excessive d~namic stack space after
subroutine calls and adjusts the stack size; consists
of three routines that are intended to be called
from the mainline of an application proSram that
uses man~ subprograms with var~inS data reGuirements.

2.Contents: CHECKSTACK1, CHECKSTACK2, CHECKSTACK3.

3.Parameters: WORKSPACE, 20 b~tes of global data in the
calling program. The proper COBOL definition is:

01 CHECK-STACK-SPACE •
05 PRINT-RESULTS-FLAG PIC S9(3) COMP VALUE N.

* N=O(NO PRINTOUT),1(ON TERMINAL),
* 2(ON CONSOLE),3(ON BOTH).

05 FILLER PIC X(18).

HOW TO USE CHECKSTAK:

1. Add the WORKSPACE to the data division of ~our program
and set the desired PRINT/FLAG value(see step 4).

2. At the start of proSram execution:

CALL ·CHECKSTACK1· USING CHECK-STACK-SPACE.

This call should occur once at the start of the
mainline. The purpose is to record the size of
the d~namic stack area before an~ subprograms are
called. This size is determined b~ STACK=XXXX in the
:PREP or :RUN commands.

3. After returning from each subprogram call:

CALL ·CHECKSTACK2 D USING CHECK-STACK-SPACE.

This call compares the current d~namic stack area
with the initial size and if it is over 512 words
larger (1024 b~tes), reduces it back to the initial.

C-03.15



OPTIMIZE

4. At the end of pro~ram execution:

CALL ·CHECKSTACK3- USING CHECK-SlACK-SPACE.

This call prints statistics on stack usa~e on
either $STDLIST or the console or both. Format is:

GLOB99 STK99 iOK99 AVG99 tADJ99 SIZ99

~ Global stack size in decimal words
~ Initial d~namic stack size

~ Number of ·OK- subpro~ram calls
Avera~e stack size per -OK- call~

Number of times stack was adjusted ~

Avera~e stack size per adjusted call ~

Start with the default value for STACK= (about 800)
and a lar~e value for MAXDATA (20000). If all of the
subpro~ram calls are adjusted (i.e., OK=O), increase the
STACK= value. Tr~ to find a value where most of the
subprosram calls execute without havinS to shrink the
stack afterwards, but not so larse that there are no larse
subprosrams left ot adjust.

INSTALLATION OF CHECKSTAK:

1. T~pe the followin~ SPL source code into the
s~stem usin~ GEDIT or EDIT/3000 and
create a source file.

2. Compile the source file and make corrections
until there are no errors:

:SPL SOURCE

3. When ~ou have a successful compile, save the
USL file, usins this command:

:SAVE $OLDPASS,USLSPL

4. Either COpy the segment called -LIBSEG1- into
the USL file of ~our application proSram
(usin~ the :SEGMENTER commands AUXUSL and COpy)
or add it to an SL <:SEGMENTER or :SYSDUMP).



$CONTROL LIST,SUBPROGRAM,MAIN=LIBSEG1,ERRORS=9
BEGIN

OPTIMIZE

PROCEDURE CHECKSTACKI ( BUF ) ;
INTEGER ARRAY aUF;

BEGIN
« DEFINE STRUCTURE/USE OF BUF »
DOUBLE ARRAY DBUF <*) = aUF;
DEFINE

PRINT/FLAG = BUFi ,INITIAL/SPACE
,SHRINK/COUNT = BUF(2)i ,OK/COUNT
,OK/SPACE = DBUF(2)i ,SHRINK/SPACE
;

INTEGER Z,Q;

IF NOT ( O<=PRINT/FLAG<=3 ) THEN
PRINT/FLAG := 1; «DEF»

PUSH (Z,Q); Z:=TOS; O:=TOS;

INITIAL/SPACE := Z - a;
BUF (2) : = 0;
MOVE BUF(3) := BUF(2),(7);

END; «CHECKSTACKI »

PROCEDURE CHECKSTACK2 ( BUF ) ;
INTEGER ARRAY BUF;

BEGIN
« DEFINE STRUCTURE/USE OF BUF »
DOUBLE ARRAY DBUF <*) = aUF;
DEFINE

PRINT/FLAG = BUF. ,INITIAL/SPACE
,SHRINK'COUNT = BUF(2)t ,OK/COUNT
,OK/SPACE = DBUF(2)t ,SHRINK/SPACE
;

INTEGER Z, Q, STACKSIZE;
INTRINSIC ZSIZE;

= BUF(1)i
= BUF(3)i
= DBUF(3):IJ:

= BUF(1)t
= BUF(3)i
= DBUF(3)t

PUSH ( Z,Q ); Z:=TOS; Q:=TOS;
STACKSIZE := Z - Q;
IF STACKSIZE > (INITIAL/SPACE + 512) THEN BEGIN

ZSIZE ( Q +INITIAL'SPACE );
SHRINK/COUNT := SHRINK'COUNT + 1;
SHRINK'SPACE := SHRINK/SPACE + DOUBLE<STACKSIZE);
END

ELSE BEGIN
OK'COUNT := OK/COUNT + 1;
OK'SPACE := OK'SPACE + DOUBLE(STACKSIZE);
END;

END; «CHECKSTACK2»

C-9}3.17



PROCEDURE CHECKSTACK3 ( aUF) ;
INTEGER ARRAY BUF;

BEGIN
« DEFINE STRUCTURE/USE OF BUF »
DOUBLE ARRAY DBUF C*) = aUF;
DEFINE

PRINT/FLAG = BUFi ,INITIAL/SPACE
,SHRINK/COUNT = BUF(2)i ,OK'COUNT
,OK'SPACE = DBUF(2)i ,SHRINK'SPACE

= BUF(1)i
= BUF(3).
= DBUF(3)i

OPTIMIZE

V
INTEGER ARRAY P(O:38);
BYTE ARRAY P'(*)=P;
INTEGER TERMINAL;
INTEGER GLOBAL'SPACE;
INTRINSIC PRINT,PRINTOP, ASCII,DASCII,WHO,DATELINE;

IF PRINT'FLAG = 0 THEN RETURN;

IF PRINT'FLAG=2 OR PRINT'FLAG=3 THEN BEGIN
« PRINT IDENTIFYING MESSAGE ON THE CONSOLE »
p:=n u; MOVE P(1):=P,C38);
MOVE P :="CHECK-STACK: D;
WHOC"?P'(12),P'C21),P'C30),,TERMINAL);
MOVE P/(39) := nON°;
ASCII(TERMINAL,10,P'(42»;
P'(20):=P'C29):=".n;
PRINTOP(P,-46,O);
END;

P:=" "; MOVE P(1):=P,(38);
MOVE P:=uGLOB n ;

PUSH (Q);
GLOBAL'SPACE := TOS;
ASCII(GLOBAL'SPACE,10,P'(4»;
MOVE P'(10):=nSTKD;
ASCII(INITIAL'SPACE,10,P'(13»;
MOVE P'(19):=DiOKD;
ASCII(OK'COUNT,10,P'(22»;
MOVE P'(28):=IAVG P ;

DASCII(OK'SPACE/DOUBLE(OK'COUNT),10,P'(31»;
MOVE P'(37):=DiADJ a

;

ASCII(SHRINK'COUNT,10,P'(41»;
MOVE P'(47):=DSIZB;
DASCII(SHRINK'SPACE/DOUBLE(SHRINK'COUNT),10,P'(50»;

IF PRINT'FLAG=2 OR PRINT'FLAG=3 THEN
PRINTOP(P,-56,O);

IF PRINT'FLAG=1 OR PRINT'FLAG=3 THEN
PRINT(P,-56,O);

END; « CHECKSTACK3 »
END «LIBRARY» •

C-03.18



PETE FRATUS
FUTURA SYSTEMS, INC.

CN-LINB TAPE LIBRABY

I. OVERVIEW

TAPELIB provideE interactive acces~ to inforrnation on
an site's tape library. It was written to he simple, easy­
to-use and lew in reEource usage. Normally, the program
would be run as a jor to provide the operator with access
through the REPLY command. It can also be run in a session
by System or Account Managers. Information on the single
sequential file can r.e read and updated. The Console
Operatcr and System ~anager have access to all commands;
Account ~anagers use a subset of the commands. ~ass

chanqes can be made ~ith EDITOR and listings in different
sequences can be made with SeRT.

Commands allow the user to find tapes by number,
account, account and group, or tape label. The operator
can find scratches tc be used and can update the library
to reflect the use. The user can scratch tapes by number
or find it first by account then scratch it. The Operator
and System Manager can scratch any tape. Account Managers
can only scratch taPfS t~lon9ing to thei~ accounts.

TAPELIB was designed to be used on a system with 300
to 4no small and large reels which are used to backup the
system and store files off-line. The features of TAPELIB
reflect this desi9D but allow tailoring to any ty~e of
system.

Three of four digit tape numbers can be used. The
first character of the tape number can designate the reel
size by using different ranges of numbers for each size or
different letters foT. each size. For example, we use 100
and 200 reel numbers for seven inch reels. Eleven inch
reels are numbered 4CO and 500. This system viII handlp.
a large variety of numberino schemes such as:

a. Large reels are 0001 thru 1999, small reels
are 2000 thru 3999.

b. Large reels are three digits with first digit
even, small reels are three digits with
the first digit odd.

c. Laroe reels only, three digits, ~any different
ranges ( use 4 digit tape numbers with a lead-

C-07.1



ing zerc ).

Accounts and grcups are eight characters each. Tap~

labels can be up to sixteen characters. Each tap~ has an
associated creation date and sequential reel number,
i.e. 1 of 3, 2 of 3, 3 of 3.

When a tape is scratched, a scratch code and scratch
date are added to thE entry. The data file is ASCII with
no integer or packed fields, so editing can he done easily.

II. THE DATA FILE

The file is fixed, ASCII and 64 bytes. The fields ar~:

FIELD POSe LEN. CONTEN'l'S

TAP:~O 0 4 TAPE ~UMBE.R, LEFT JUSTIFIED
ACCT 6 8 ACCOUNT NAME
GRP 15 B GROUP NAME
1.BL 24 16 TAPE LABEL
CREATEDATE 41 6 TAPE CREATION DATE
REELNO 49 2 REEL NU MEER OF TAPE IN SET

( 12 = REEL 1 OF 2 )

SORN 55 1 SCRATCH TAPE ( S OR BLANK )

SCRATCHDATE f3.7 6 SCRATCH DATE ( or bLANK )

The data file i~ created with EDITOR. SET LfNGTH=64.

III. OPERATING PRCCEDURES

SESSION MODE:

The r.rogram is initiated with :P.UN TAPELIB.
Commands available to the user are

ALPHA(AL)
EXIT(EX)
HELP(HE)
LABEL EQUALS(LE)
NUMBER(NU)
SCR ATCH (SC)

JOB MODE:

- LISTS TAPES BY ACCOUNT AND GROUP
- TERMINATES THE PROGRA~

- LISTS COMMANDS AND DeSCRIPTIONS
- LISTS ALL TAPES WITH GIVEN LABEL
- LISTS A TAPE BY ITS NUMBE~

- SCRATCHES A TAPE

The CP entry point must he used to provide a console
request, so :RUN TAPELIB,OP.
Commands availahle to the Console Operator or System

C-07.2



Manager are

lAPGE SCRATCH(lS) - LISTS 4 LARGE SCRATCH TAPES
S~ALL SCRATCH(~S) - LISTS 4 SMALL SCFATCH TAPES
USECUS) - SAVES SCRATCH WITH NEW LABEL

IV. CHANGES WITH EDITOR

When a large nurrher or changes are necessary the ASCII
file can he TEXTED ~ith EDITeR, even while TAPElIE is run­
ning in JOB mode. A sample EDrTOR session would look like
this:

:EDITOR (Note: lines shortened to fit page.)

FULL-DUMP
tAlLY STORE

DAILY STORE

PUE 780601

ITEXT TAPELIB.DATA,UNN
IFIND "123";MCDIFY

24 123 SYS
MODIFY 24
123 SIS PUB

R~'UTURA TYPE
123 FUTUF:A TYPE

FULL-DUMP

780601
780624

780624

12 S 780620

12 S 780620

IFIND "448":M
221 448 HABAND M~IL EAST-LIST 780522

MODIFY 221
448 HABAND HAIL EAST-LIST 780522

448 HABAND MAIL EAST-LIST 780522
RS 780624
S 780624

IFQ1
IF "400"

180 400 NESTER
IGO 180/LAST TO 1000
leo FIRST/179 TO 2000
IGO 2000/lAST TO 100
IGO 1000/LAST TO 400
II,IST 400.

400 400 NESTER
ILIST 123

123 123 FUTURA
IK TAPELIB.DATA,UNN

IEXlT

END OF SUBSYSTEM

PUB

PUB

TYPE

780413

780413

DAILY STORE 780624

The above EDITOR was used to find a few tapes by num­
ber and change them. Then the tapes were renumbered with

C-07.3



the GATHER command. Since our tapes are numbered 100-188
and 400-490, each grcup was aathered high and Qathered
aaain low to make th~ lin~ number and tape number match.
A U~~ file ccntainin~ these commands helps the operator
text, renumber, and list a few lin~s to verify the IDatch.
From that point, modifyin9 a tape by number will get the
needed line for that tape: see LIST 123 above.

v. USING SORT TO GET LISTINGS

It has b~en he1tful to have alphabetic and numeric
listing of the tape library file each day. We use two
s~qu€:nces:

1 • SORN - major.
ACCOUNT
GROUP
LABEL
DATE
REEL - minor

/ . TAPENO

~he first sequence places all scratches at the end of the
list then groups the rest of the list by account, group,
etc. The second provides a numeric list by tape number
for verifying the library. Output from the sort gees
directly to th@ printer. The SORT parameters are:

1. !FILE TAPELIBA;rEV=LP
IRUN SORT.PUB.SYS
>INPUT TAPELIB.tATA
>OUTPUT *TAPFLlbA
>KEY 55,1,BYTEi6,45,BYTE
>END

2. tFILE TAPELIBN;fEV=LF
IRUN SORT.PUB.SIS
>INPUT TAPE1IB.[ATA
>OUTPUT *TAFELIEN
>]<EY 1,4,BYTE
>END

VI. INSTALLING TAFfLIB

To install TAPEIIB use this procedure:

Number yeur tapp. library with three or four digit numbers.
Using EDITOR, kEY in on~ ~ntry for each tape; use the format
in Section II.

C-07.4



VII.

Use GETFILE to rEtrieve TAPELIB.PUB and TAPELIB.JCB from the
contributed library.
Do any of the tailoring listed in Section VII.
Run the program or stream the job.

TAILORING TAPELIB

The current but changable limitations of TAPELIB are:

name of the ta~e library file
length of the tape number
number of scratch tape numbers

in scrted array
starting number for small reels
starting number for large reels

"TAPELIB.DATA.LIB3"
= 3

= 100
"1" and
"4" afid

tach of these parameters Can be changed by altering the
DEFINES and EQUATES in the source file. Thp. imposed limits
are:

name of tape library file
length of tap~ number
number of scratches
starting number for small

or large reels

limited only by MPE
3 or 4
unlimited

up to 5 different digits

To make changes, find the block of EQUATES and DEFINES in
the source.

Replace the existing lIBNAME with your library file name.

Replace the existing contents of LARGENO and SMALLNO with
the starting digits cf your library.

If your library uses ~ di9it tape numbers, equate TAPENO­
LEN to 4, TAPENODATEIEN to 10, and SCBSIZE to 10 times
the equated value of NOSeR.

If 100 scratches is too large or too small, equate NOSeR
to the desired number.

Series I users need to set the conditional compile switch
X1=ON to replace CLOCK and CALENDAR with CHRONOS.

C-07.5



SYSTEM PERFOR"~HCE "EASUREMENT AND OPTIMIZATION
-~~-----~----~------------~--~----~~-----------

JIM SQUIRES, H-P Syst••• Engine.r, Fullerton, Ca.
ED SPLINTER, H-P Syst••• Engineer, los Angele., C~.

Obtaining optimu. parfor.ance from a computer systea is often
critic~l to the success of ~n In.t.ll~'ion. This is p~rticularly

true today when data processing .an~g8rs ~re being ask to product
~ore with little or no increase in their budget.

Whan .ost users co.ment about a syst•• 's performance they art
really stating how well the syst•••••ts their expectations. This
means that what is felt to be • performance proble•• ight wall
turn out to be an expectation probl ••• If users fail to consider
the strengths ~nd limitations or the systa. while designing
application prograMs great dis~ppointm.nt can r ••ult.

Fortunately parfor.anca ••~sure.tnt tools for.arly used only
at the factory have matured and are now being distributed to the
field for SE usa. With these tools now ~v~ilable at ~ point closer
to the custo.ar, perfor.anc. problems ~r. being addrassed .ora
quickly and in .any c~sas with i.pre•• iva results.

On the following p~ge. i •• representative report based on
one of the .achinas where p.~'or••nce W~. judged by the u~ars to
be unsatisfactory. The raport is presented to the customer during
a .eeting that usually lasts in the neighborhood of two hours. At
that ti •• attention is focused on the areas where t.prove.ants in
p8rfor.~ncQ can ba re~li%.d as quickly as possible. At all times
it .ust ba ra.asbared that the object is to optiaiz8 the
combin~tion of the coaputar sy.t.. and it. u••rs not just the
syst••.

C-10.l



--------~-----------~------~-------------------------~------------

INTRODUCTION SECTION I

~-~---------------~---------------------~------~~--~----------~---

INTRODUCTION

The purpose of this raport is to pra.ent ~n ~n~lysi. of tha
performance of your HPJOOO. This inforMation should help in
answering quastions such ~.,

1. Is syste. response ti •• baing restricted by CPU 1 ••aory
or disc contantion?

2. Are ~ny programs unexpectedly do.in~tin9 the .ix?
3. Can ~ddltional appltc~tlons and/or users ba ~ddad to the

syste. without ~dvQrs.ly ~ffecting response?
4. What .ight be dona to i.prove systa. parfor.~nca?

The dat~ presentad hare w~. obt~ln.d fro. ~ trace ot syst••
~ctivity collected with the avent .onltor(ng facility,

A record ot each occur.nce of .elected
events is written to t~pe tor sub.equent .nalysis. For this report
the pri.~ry events .onitorad ~r. ~ssoci~ted with •••ory .anagament
activity, process dispatchin9 and 10 device activity.

Since data is collected with a aonitor using soltw~re traps,
the monitoring ~ctivity n.c.s.~~ily has an .flect on the
perforaance of the systea. E~peri.nce indic~t.s, however, that the
results are skewed only .ligh~ly ~nd in mo.t cases is
und8tac~able. In ~ny case the intor••tion obt~ined 9iv•• ona a far
greater insight into the syst•• 's activity than is obtainable in
~ny other way currently available.

Raw data is usually collected for a pariod ot tl.e much
longer than that chosen for datailed analysis. On a he~vily loaded
syst•• about 500,000 avents are recorded on the tape .~ch hour
activity i. monitored. Since det~tled an~lysis is quit. ti.e
consu.ing the tape is scanned for a ;eneral picture of the
~ctivity recorded. A 15-30 .tnute 'window' is then chosen for

. detailed .nalysi•.

The operating syste. or any co.puter 1s designed to manage
the systc.'. re.ource., principally, the processor, .ain .a.ory
and disc resolving conflicts arising fro. competition a.oung the
com.unity ot users. When de.and tor any resource approach•• the
c~paclty, the .anagaaent t~.k beco... difficult causing syst••
efficiency to decline.

C-IO.2



Perfor.~nc. of a syste. has to be discus.ed in the context ofthe syst•• workload. Tha progra.s which m~k. up this workload canbe characterized by the type and .~ount of syste. resourcesrequired 'or their axecutton.

In the folloWing sactlons this report moves fro. the generalto the specific in its investigation of the utilization of thethree principal resources mentioned above. First, utilization fro.an over~ll point of view is discussed. Then ~ sum.ary ofinfor.ation by prograa ·for ~11 jobs and sessions is presented.Next is a detailed report for each program that was found to be asignificant resource user. The ••ction on conclusions andreco••end~tions provide. a su•••ry ot the sivntficant bottlenecksin the systea and suggests ways to i.prove systeM pertor••nee.

DATA COLLECTION

Pariod Monitorads Mon, Jun 26, 1978 1132 - 2123pm

Total nu_bar of event. recorded. 461,301

Window cho••n for analysi •• 1.53 - 2.13p.

-----------------~------~-Unless otherwise noted
ALL TI"ES IN SECONDS
ALL LENGTHS IN BVTES

-------~---~---~-----~----

C-IO.3

(1200 secs)



------~-----------~--~----~-~--~-----------~--~~---~----~-~-~-----

OYERALL RESOURCE UTILIZATION SECTION II

---~-----~--~------------~-----------~-------~--------~---~-~-----

OYERALl CENTRAL PROCESSOR UTILIZATION
-----------~----------------~--------

A fairly good first ~pproxi.~tion of how well a systa. is
perfor.ing is given by noting the ~.ount of ti•• the CPU spends in
e~ch of four stat.sa

1. CPU bUsy - the ti.e during which .o~e procQss was
executingJ

2. W~iting for swaps - the ti •• during which the me.ory
.~n.9ar (MA") is w.iting for. disc 110 to complete ~nd

no other process h.s sufficient .emory resources to runJ
3. W.iting for disc 1/0 - the time during which a process

other than "A" is w~iting for a disc 1/0 to complete .nd
no other process is requesting the CPU,

4. Idle - the time during which no process is requesting
the CPU and no process is waiting for 1/0 to ter.in~t.r

---------------~--~----------------------------------------~-----

14.9
3. 1
1 .6
O.S

74.57
1S,.31
7.87
2.25

Busy
W~iting 'or swaps
Waiting for disc
Idle wait

I Percent
CPU STATE I 0' Window Tot.l "ins

I-------~---~------------~-I------------------I~----------------1
I
I
I
I
I
I

------------~----------------------------------------------------FIGURE 1-1. CPU us~ge during the window. The average CPU busy
interval was 14 •• and the average idle tiMe w~. 5 ms. These two
figures ware distorted by the progra. IDLE.

The CPU bUSy tl •• c~n ba
"••ory aanager
Other "PE process••
The progra. IDLE
Othar user process••

broken down as follows.
10.3'"
2.00

~30.S2
31 .6'

Nota that the CPU was being used by tha •••ory .~n~ger or was
baing held for swapping 2S.67X 0' the tt ••• This indicate. that
the meaory .an~ger is having consider.bl. difficulty ••ating the
requests for .atn ••mory.

C-lO. 4



OYERALL ME"ORV UTILIZATION
--~--~-~------~---------~-

As your syst•• is prQsently configured the residant portion
of MPE uses 94 1 464 byte. of aemory l.~ving 439 1 824 byte. of
'linked' .e.ory for swapping. Tha size o~ rQ~ident meMory iS I to
so~e extent l controlled by responses to configuration qUQstions
while doing a SVSDUMP.

In analyzing the utilization of a••ory it is useful to note
whether the allocation was for code or data and if for cod.
whQther it cam. fro. a progra. file or a sag.anted library (SL).

-------------~---~--~----~-------------~-~~-------------~---------

SeglDent Percent Average Average Nu. of Qverl4lys
Type "a.ory Alloe Pr.sence SClaps p.r Swap

--~------.-- ----------- --------- ----------- -------- --------------
DATA 30.75 3679 8.13 4912 0.741

SL 44.23 S272 12.47 3331 1 .412

PROGRAM 8.46 4393 18.02 550 0.391

Totals 83.44 4327 10.41 8793 0.973

~-----~-----------~~-~---------~---~--------------~------~~-------
FIGURE 2-1. MeMory ~lloc~tion inforaation. This data ~pplies only
to linked .emory and does not include any sag.ants allocated prior
to tne start of aonitorina.

The principal concern here 1s how .ucn swapping went on and
how .~ny segments currently 1n .a.ory had to ba overlayed to .aka
roo. for the new ona. The nuabQr of swaps shown hera indicate. a
higher th.n desirable r~t. or .w~pping. There wer. over 7 swaps
per second. It is possible to .v.raga about 30 disc II0s par
sQcond on the HP3000. This ••ans th.t about 25X of the .axi.u.
possible disc activity was used for swapping.

C-10.5



OVERALL DISC ACTIVITV

For bast performance, disc I/O raqu.sts should be evenly
distributed over the av~ilabl. drives to reduce ~rm contention ~nd

seek tilles.

--~~-~~--------~~---------~------------~----~---------~----------
Seconds

Request Parcant Transfer ~ Between
Drive Count of Tot~l Langth Busy RequQst~

------------ ----------- ----------- ---------- ----- --.-,.._------
1 R 111 71 40.1 2924 2S.65 0,107
1 W 6613 23.7 3100 15.52 0, 181

2 R 1228 4.4 2816 2.80 0.974
2 W 871 3.1 1887 1 .54 1.318

3 R 1596 5.7 2261 3.57 0.752
J ltI 808 2.9 1169 t •S5 1 .483

4 R 1146 4.1 2244 2.19 1 .04S
4 III 901 3.2 2003 1 .65 1 .330

12 R 10'94 3.9 3044 2.62 1.093
12 W 607 2.2 1673 0.99 1 .973

13 R 1164 4.2 1632 2.15 1 .027
13 W 661 2.4 1388 0.93 1 .809

27860

---~---------------------------------------------------~-~-------FIGURE 2-2. Glob~l disc activity. The top line for each device
applies to reads, bottOM line to writ••. During the window 74.35
.fllion bytes of dat~ were transferred betwaan disc and ~e.ory.

Swapping traffic accountad for 57.04 .illion bytes or 76.7X of the
tot~l. Each second ~n avarag_ of 23.22 disc 1/0 requests were
Clade.

C-IO.6



OPERATING SYSTEM DISC REQUESTS

Cert~in user activities caus. the syste. to access discstorage. It is useful to id~ntify these .ctivities ~nd t.bul.tetheir respectiva 1/0 loads. Th••••ory m.n.ger is aI.ost ~lw_y.the system process ~hich uses disc .ost heavily. All "A" requestsare associated with sw_pping. Tha LOADER accesses progra. fil ••and SL files to resolve external refarencQs when the :RUH commandis issued. Other system processe. which access disc memory includeDEVREC (to verify signon information) .nd lOG (for syste. logging,if enabled).

DRIYE
SVSTE" PROCESSES

MA" I LOADER I OTHER
USER
PROeS TOTAL

1 R 7862 953 72 2384 111711 W 5466 43 2 1102 6613

2 R 65 1 123 1039 12282 U 2 43 826 871

3 R 480 9S 12 1009 15963 tal 2 5 801 808

4 R 168 74 31 873 11464 W 6~ 6 830 901,
I
I
I
I
I
I
I
I

12 R
12 W

13 R
13 W

1 11

1 08

14260
51.18X

26
24

1185
4.7~"

15
29

338
1 • 21X

9S7
583

1 041
632

12077
43.J5~

1 094
607

1164
661

27860

~----~------~-~--~--------------~--~--~--------~--~------~---~---FIGURE 2-3. Operating ~y~t•• disc access requests. The top linafor each device applies to read. and the botto. line is forwrites.

C-10.7



~~------------------~-------------------------------~~------------

SVSTE" WORKLOAD BV JOB/SESSION SECTION III

------~---~-~---~-----~------------------------------~---~~-~-----

During the aonitoring window of ~ .ystam it is possible for
each user to run one or sore progra... Figura 3-2 shows which
progra.s were run by 8~ch user. Also shown .re tho~a progra.s u~Qd

by the operating systam. Included for .~ch user's progra. is the
CPU 1 me.ory and disc r.sources us.d. Figura 3-1 cont~ins

information to help identify user•.

The syste. programs listad ~r. run on bah~lf of users without
their knowledge or intervention. Normally, all of these program~

make s.all da.ands on syst•• r.sources. Since .ost of these
progra.s art run at ~ much higher priority than user prograas l

their i.p~ct i. qUickly faIt when they beco.. heavily used. The
fact that MA" used over lOX of the CPU is an immediate indication
that the oper~ting syst•• is haye trouble ••ating th. de.~nd for
mamory. There is not enough r.~l .e.ory to efficiantly h~ndl. ~ll

the request•.

Hote the impact th~t the COBOL compile ('J~) had on the
syste.. The co.binad co.pil••nd prep used 21X of the CPU ~nd 28~

of the aa.ory during tha , .inut•• th.t the operation took. When
rQsponse times are a proble., COBOL coapiles should be kept to an
absolute .inimu••

The data clearly show~ the i.p~ct th.t the A4000 processes
hava. With only a couple of exceptions, those processes with mora
than 190 sw~p. ~r. associat.d with your application pro9r~.. Tha
exceptions are signiric~nt since they include COBOL and the
EDITOR. The EDITOR process during S••• ion 41 ran 18 minutas using
over 7X of the available .eaory and over 4X of the CPU during this
time.

C-lO.8



~-----~----~--~-~--~---~-----------------~-----------------~----
JOBNUM JIN INTRODUCED JOB NAME------ ---------- --------
IS29 20 MON 1133P "AHAGER.SVS
1534 S2 MON 1 : 35P A40,ROH.Fr1S
IS35 40 MON 1 : 35P OSSUSER.Fr1S
IS36 23 MON '137P A40,OSSUSER.FMS
IS37 27 MON 1 : 37P A40,OSSUSER.FMS
1538 26 MaN 1: 37P A40,OSSUSET.FI1S
1839 28 MON 1138P A4 0,..OSSUSER. FlitS
IS40 2S MON 1:40P A40,OSSUSER.Fr1S
1541 53 MON 1142P GEORGE,FMS
1548 32 MaN 1147P A40,OSSUSER.FI1S
IS50 31 MON 1 : 49P A40,OSSUSER.FMS
IS52 30 MON 1 : SOP A40,OSSUSER.FMS
1853 34 MON 1150P A40,OSSUSER.FMS
IS55 22 MON la52P A40,OSSUSER.FMS
IS56 51 MON 1 : 56P ANHIE.FMS
ISS7 23 1'1 ON 1 : 57P A40,OSSU5ER,F"S
IS58 21 MON 1 : 37P OP.FMS
.560 21 110N 1 : 59P A40,OSSUSER.FMS
#561 46 I10N 1 : 39P A40,OSSUSER,FMS
.564 33 MON 2:02P A40,OSSUSER.FMS
1565 40 110N 2:0JP OSSUSER.FI1S
.567 50 110N 2,04P ROHK.Ft1S
IS68 41 I10N 2:04P A40,OSSUSER.FI1S
1571 ~~ "ON 2: 12P TO".Ff1S

IJ 1 1 0 "ON 1 : 34P IDLE1DAN.F"S
IJ S 10 "ON 1.50P WCO"PILE,AHNIE.F"S
IJ 6 1 0 110N 1 : 56P "ANAGER.SYS

---------~------------------------------------------------------FIGURE 3-1. Session ~nd job identification.

Figure 3-2 on the next two p.ge. contains sum.ary information
~bout e~ch pro9r~. th~t W~. running ~nyti~. durin9 the 1200 second
window. The number of seconds that the progra. was observed is
shown in coluMn two. CPU us~g. t. shown ~$ • percentage of the
seconds observed. MeMory used is a parcantage of ma_ory
~vailable during the ti.. ob••rved. Colu.n fiva indicate. the
.v.r~g. size of all seg.ents (code and d~t.) .1Ioc~t.d for the
progra.. The disc 10 count in colUMn .ix .pplies only to lOs
associated with '118$ opened by the progra.. The sw~p count
include. ~ll •••ory man~ger lOs caused by this pro9ra. including
tha initial allocation of each sag.ant. Overlays indicate how many
sagmants already in •••ory had to give up •••ory when the Average
sagaent for this prograa was _ad. present.

C--IO.9



-----------------------------------------~---------~--------------
I I SEes I XCPUI I AYG I DISC I I OYER I
I JISt PROG I SEEN 1 USEDI :("~" I SEG 1 1/0. I SWAPSI LAYS I
~-----~-----~--------~------~----~------~-~-----------------------
1

SESSIONS

29 CO"'"ANDS 1197 • 061 .37 3607 11 81 . 19
34 SEGDYR 182 .331 1 .21 2237 2 1OS .13

SEGPROC 183 3.781 2.78 3698 6S7 78 .69
COr1I1ANDS 1117 .. 47 .91 3080 300 281 .30

35 A4000 585 3.02 12.67 4769 260 535 1 .39
CO""ANDS 617 .03 .1 S 3128 16 24 .00

36 A4004 241 1 .26 3.00 4570 98 114 .32
COI1I1ANDS 259 · 11 .53 3015 16 32 .00

37 COMMANDS 338 .26 .41 2957 18 36 .34
A4000 338 J.16 12.09 4830 224 456 1 .40

38 A4004 1195 1 .39 3.4S 6177 528 278 1 .66
39 A4002 1197 2.62 9.68 5304 1124 S59 1 .3S
40 A4003 1200 .53 1 .94 5154 113 179 1 .55
41 EDITOR 1119 4.14 7.35 3722 1601 538 .40

CO""AHDS 1143 .04 .06 3241 14 39 .33
EDITOR 54 2.59 9.38 4214 68 49 .63

48 A4000 1188 .66 4.67 5898 1J4 352 1 .63
50 A4001 1196 .98 4.49 5403 405 J08 1 .24
S2 A4000 1165 .93 4.37 5402 299 346 1 .62
53 CO""AHDS 1200 • 11 .34 3227 70 79 .22

A4004 1197 .01 .03 2841 0 13 . 1S
54 CO""ANDS 20S .30 .69 2691 24 60 .23
55 CO""AHDS 4 1 .86 4.29 1130 3 4 .00

A4003 626 .90 3.38 4404 247 196 1 .14
56 FCOPY 106 .56 2.96 3688 7 48 .90

FCOPY 301 .65 4.56 3890 15 122 .52
COf1I'1AHDS 852 .35 .34 2673 98 127 .40

57 COf1I1AHDS 29 1 .22 4. 11 2695 24 2S .24
A4004 892 .32 .41 3437 138 61 1 .02

58 COPYOP 195 1 .33 3.67 3602 93 72 .47
COf1"AHDS 262 .52 1 • 17 3150 42 59 .85

59 COtfMAHDS 15 3.01 1 .93 2445 28 16 .56
60 A4000 737 2.96 9.81 5219 116S 357 1 .96

COf1I1AHDS 108 .35 1 .00 2634 24 27 .04
61 A4004 30 3.1S 11 • 09 3207 12 43 .46

COIlfI'tAHDS 75 .78 2.08 2542 36 32 .53
A4004 64 4.29 8.00 4270 139 58 1 .00

62 COf1MAHDS 16 2.76 4.97 2395 28 26 .65
63 CO"'"AHDS 13 3.29 5.23 2402 28 30 .27
64 A4003 611 1 .27 4.76 4896 298 211 1 .21

COMMANDS 26 1 •SO 3.47 2727 24 16 .19
65 CO""ANDS 37 1 .1' 9.31 248S 22 27 .22

A4000 522 2.09 5.S1 4041 272 323 .80
66 COMMANDS 26 2.02 1 .68 2634 28 31 1 • 00

----~---------------------------------~------------------------~--FIGURE J-2A. Su~s.ry infor.ation of each pr09r~••••n during the
window. COtf"AHDS r.f.r~ to the co••and interpreter.



-~---------------------------~-~-------~----~--------------------~
I 1 SEes 1 :l.CPUI 1 AYG I DISC I I OVER
I JISt PROC I SEEN I USEDI "ME" I SEC I 1/0. I SWAPSI LAVS
--------------------~--------------~--~--~-~----------------~---67 EDITOR 219 10.131 4.701 4067 391 81 .32

COMMANDS 302 .37J .81 I 3146 46 65 .31
EDITOR 215 10.631 6. S1 I 3948 437 1 01 .26

68 CO"MAHDS 29 1 . 141 2.931 2799 24 16 • 1J
A400J 316 2.771 8.871 4925 278 196 1 .31

69 QUERY 275 2.131 S.J41 ~16~4 179 148 .97
COrlf"ANDS 399 .331 1 .421 3013 70 1 10 .18

70 COIlfMAHDS 136 .541 2.031 2990 31 56 .50
FCOPV 69 6.1' I 6.591 3438 65 43 .93

71 CO""AHDS 20 1 .671 4.191 2813 26 25 .68
EDITOR 41 4.091 4.901 4158 67 48 .83

JOBS

1 IDLE I 1143 30.521 1 .381 2421 9 26 .00
5 COBOL I 299 16.471 19.931 8650 493 224 2.98

CO""AHDS I 358 .261 .441 3060 48 40 1 .17
SEGPROC I 69 4.441 7.601 3436 202 57 .91

6 CO"MAHDS I 33 4.481 6.071 3297 58 42 .J3
8 FORTRAN I 86 10.811 9.161 3938 440 89 .58

CO"I'tAHDS 1 179 .601 3.121 3053 43 81 .44
FORTRAN I 197 4.301 9.791 4313 426 69 1 .28

SYSTEM

PROGEH 287 .271 .471 4210 16 20 1 .03
"AM 1200 10.361 .001 0 14260 0 .00
IOSVS 1199 .061 .201 2014 0 76 • 0 t
IO"SG 116S .041 .271 1980 0 133 .02
LOC 1198 .021 .2SI 2415 63 91 .07
UCOP 1200 · 151 .521 1945 4 174 .10
DEYREC 1198 · 11 I .471 2424 68 121 .OS
PRII'ISG 1197 .021 •os 1 1196 0 29 .00
LOAD 1132 1 .521 .291 4870 118S 45 .73
SPOOLER 443 · 171 .271 3117 14 14 1 .36
SPOOLER 1061 .721 1 . 131 4424 173 1 01 .S2

~------~------~--~-~-~--~---~------------------~------------------
FICURE 3-28. Sulftll~ry information ot aach program saen during the
window. CO"MAHDS rafers to th. cO.!I~nd intarprater for the Job or
session.

C-IO.ll



------------~--~---~-~--------~-~-------~~-------~-----~-----~-~--

SECTION IYINDIYIDUAL PROGRA" ANALYSIS
I
I
I
--~~-----------------~-------~---------------~--~---------------~-

Progr~.5 nor.~11y spend very little ti •• actually using the
CPU. ~ost of the tia.· is spant waiting for so.e event to
tarainata. Thre. avents usually ~ccount for the m~jority of tha
w~it tiae.

(1) User requested 1/0,
(2) Absant code or dat~ .eg.ent,
(3) HUMan think ti •• at a tar.inal.

Of course the third itam usually doesn't apply to batch programs.
In this c~s. waiting for a higher priority process to giva up the
CPU is the third significant avent.

Interactive progra.s .~y also ba hald up waiting for terminal
output. This is causad by writing large a.ounts of information
(i.e. l.rga (oras) to the scr••n in block .ode. Adding .ora
tarminal buffers to the syste. conflgur~tion will soaeti.as halp.
Occasionally progra.s ~re s.en with si9nific~nt wait due to
database or file locking.

Once the avants do.ina~ing the wait time have been identified
it may be possible to i~prove performance of individual prograa.
~nd thus the sy.tea a. a whole. When the CPU is the li.tting
r ••ource l the solution is usually an additional co.puter or
~noth.r _ora powerful.

When absent sag.ants .re responsible for most of the wait,
parforaanc8 C~n be iMproved by adding _ore rQ~l .a.ory to the
system. This condition can be causad by segments which are
excessively l~rga ( over 10,000 bytes). In this case reducing
sag_ant sizes say iMprove per'oraanC8 to a satisfactory leval. The
cost of modifying progra•• to acco.polish this sust ba balanced
against the cost of the raquir.d additional •••ory. Frequently
adding .e.ory is the .ost cost-effective solution.

User disc 1/0 wat~ tt.e can nor.ally ba reduced only through
'red~ction of 1/0 requa.ts by the progra.. In a few instanc.s
.oving files b~twa.n drive. to bal~nc. ar. contention .~y help.

locking walts can often ba reduced by c~re'ully rethinking
where and when lock requests .re issued. Applications locking
multiple filas (or dat~ba.es) can .ake reduction of locking
contantion very difficult.

C-10.12



----~-------~----------~-------~~~~------------~---------~--------
PROCESSI

SESSION
SECONDS
OBSERVED

USING
CPU

A8SEtfT USER
SEGMENT DISC 10

FILE
LOCK

A4000/35
37
48
52
60
65

A4001/~O

A4002/39
A400J/40

55
64
68

A4004/36
38
53
57
61
61

585
338

1188
1165

737
522

1196
1197
1200

626
61 1
316
241

1195
1197

892
30
64

"3.0
3.2
0.7
0.9
2.9
2.0
1 .0
2.7
0.5
0.9
1 .3
2.7
1 .3
1 .4
0.0
0.3
3.2
4.4

i:
21 . 1
30 .. 3
6.4
6.2

13,9
19,2
3.2
9,6
3.5
6.5
8.1

13.9
9.8
3.3
O. 1
1 • 0

27.9
33.2

"1 .6
2.4
0.6
1 .0
5.7
1 .5
1 .6
3.S
0.4
1 .6
1 .6
2.9
1 .5
2.3
0.0
0.4
1 .4
5.9

"2.3
14.8
17.4
17.4
1 0.5
1S.2
13.4
22.3

0.7
13.8
9.6

15.3
0.0

1 0.7
0.0
0.0
0.0
0.0

"66.9
45.7
74.4
70.7
53.0
58.6
66.3
49.8
78.2
74.7
78.5
52.4
83.5
72.5
99.0
97.8
27.2
42.8

FICURE 4-1. Progr~. wall-time distribution. This ch~rt shows wh~t

w.s h.p~Qnin9 to prGgr ••• during tha ti •• a.ch was baing obs~r~.d.

For instanc8 1 during the 58S seconds that prograa A4000 <ISS3)
w~s visible within the window it spant JX 01 that ti •• exacuting,
21.1X of the ti •• waiting for ~ sag.ant to ba .ada present bafore
axecution could continuRI 1.6X of the ti_. waiting for file I/Os
to co.plate l 2.3X of the ti •• for • data-b~s. lock and 6'.eX of
tha ti•• w~itin9 for respon•• fro. a ter.inal read.

The lollowin9 process•• spent a significant amount of time
w~iting for 'blocked I/O'. This is caused by writing to a tarMinal
when tarmbufs ~rQ unavailable or by nobuf 1/0. The large»t factor
in this c~sa is probably due to the nabuf 1/0 calls issued by
II'1AGE.

A4000/60
A4001/50
A4002/39
A4003/40
A4003/68

13.64:'.
11 .70
16.57
14.41
10.06

C-IO.13



----------------~~-~--------------------~--~------~------~-----~--Prograa, A4000
Observed.

1535 OSSUSER.FMS
13,36.40 - 14.02.45 585.4 .acs

--------------------~---~------------------~~----------~-~------OCCURREHCES ISEes BETWEEN I AYERAGE I CPU
WAITING FOR. I PRCHT COUNT I OCCURENCES I WAIT IBETWEEN
------~~--------I-------~-------I------------I---------1--------

ABSENT SEC 45 . 15 521 1 • 123 I .237 I O. 034
DISC I/O 22 . 70 262 2.233 I . 033 I O. 067
TER" READ 16.90 195 2.'96 I 2.00S I 0.087
HIGHER PRI 12.31 142 4.120 J .021 I 0.124
I'IPE RESOURCE 1 .47 17 34.240 I .390 I 0.994
TER" WRITE 1.21 14 41.522 I 1.480 I 1.204
DATA BASE LOCK .26 3 180.617 I 4.562 I 5.281

--------------~----~------------------~-------------------------MEMORY AND SWAPPING LOAD.

MEMORV USED
PRCHT Aye SIZE

TIME IN "E"ORV
AYERAGE TOTAL

OVER
SWAPS LAYS

STACK97
OSEC100

l t'SEGI01
DSEG104
DSEC94
DSEG74
OSEG99
DSEG84

1 .008
.002
.002
.006
.004
• 120
• 18~
• 177

7816
7872
7640
7552
5440
5026
2216
,.64

1~.099

•701
."8

2.149
t .9JS
6.621
7.9S8

10.385

332.1
.7
.6

2. 1
1 .9

59.S
214.8
311 •S

22 1.772
1 2.000
1 5.000.
1 3.000
1 2.000
9 .333

27 • 000
30 .000

Avg. 'or 28
dat. segs 2.015

Avg. 'or 44
SL sags 10.643

Avgs 'or 1
prog sag .011

2J~3

6714

3904

6.655

13.472

7.357

238

296

1

.256

2.311

.000

-------~-------------~-~------------------------------------------FIGURE 4-2. Process det.il. This illustrate. the level at detailed
inforMation ~v~il~bl. for a~ch process active within the window.
Events which c~us.d the process to wait are li.tad at the top in
.order of number 0' occurrence•. Not. that this proce•• used only
67 as of CPU tl.e betw.en .ach disc 1/0 which occurrad on the
average evary 2.2 second•.

While the d~t~ hara indic.tes a ~.r.in~l "' ••pon.. ti.. ot
991 •• <ti.e betwQen reads .Inus wait for read) .ctu~l re.pon••
ti •• was ~round 1S ••cs. The ditterence i. c~u.ed by .ultiple
reads being issued tor a 'or••tted scraan.

C-IO.14



----------------~-~---------------~~----~------~--~~--~~-~--------

CONCLUSIONS AND RECOMMENDATIONS SECTION V

couple of
aanager is

shown by
window. A

----~---------~--~--~~------------~-------~--~~------~------------

The d~t~ pres.nted in this report indicate. ~

reasons for your reduced response ti~e. The &8~ory

having trouble .eating demand for .ain memory. This is
the fact that "AM used over 10X of the CPU during the
swap rate of over 7 per second is ~noth.r indication.

Tha a••ory contention proble. c~n be reduced to so.. extent
by reducing the siz8 of the five large SL seg.ants used by you
application progra•. You should be able to identify these using
the individual progra. d~t. sheets in Section IV.

Tha second proble. is datab••• locking contention. D~ta In
Section IV shows that most ex.cutions of your application spent
about 15X of the time waiting to lock d~tabases. This problea was
particularly savara for A4002 (1939) which sp.nt over 22X of the
tie. w~iting for d~tab~se ~ceess. No suggestions c~n be .ad. here
since _ solution, if ~v_il~bl., would r.quira inti_ata knowledge
of the ~pplication.

Tha infor.ation presented in Section III shows the i.p~ct of
progra. davelop.ant activity. Note the CPU and .a.ory usage during
executions of EDITOR, FCOPV and COBOL. ~hen response ti••s beco••
unba~rable, it a.y ba naces.ary to curt~il on-lin. progra.
develop.ant.

During the 50 .inuta. that d~ta was baing coll.cted ~4

log-ons occurred. Sine. tha log-on process places a ha~vy load on
the syste., even though for a short time, ~n att••pt should b•
• ~d. to reduce this activity. At least 29 ••ssions l~st8d less
than on•• inuta.

An effort
should be .ada to keap at la~.t 20,000 free ••ctors on the systa.
disc. At least 12-1S~ of the total disc spac. should be fra. ~t

all ti.as. Theory and experience both show that when tha aver.ga
utiliz~tion of any resource approaches the capacity, ~ large
perfor.anca degr~dation results.

Data in Saction IV s •••• to indicate that wh.n the .e.ory and
locking bottlenack. are r ••ovad, it is unlikely th~t anoth.r

"bottleneckH will be uncovered. AI.ost c.rt~inly the CPU will not
restrict you for the foreseaabl. future. Disc ~ctivity laval is
low enough to sugge.t no probl•• will occur her. either.

C-IO.lS



----~~--~----~-~--~------~------------~~-------~~-~--~---~-----~--

PERFOR"AHCE OPTIMIZATION TOOLS APPENDIX A

-----~-~~----~-----~~~---------------~-------------~-~---~--------

There ~rQ sav.r~l. progr~.s .ore or la.s ~v~ilable that in
so~a w~y provide inform~tton p.rt~inin9 to parfor.~nca. Many ~r.

contributed and thus .~y or may not axecute properly with the
lastest release or MPE. The progra•••~r'ed as contributed are in
general circul~tion but h~vc not bean ror.~11y placed in the
contributed libr~ry.

1. MONITOR

2. SA"PLE~

the combination or • software monitor built into
MPE and a data reduction progra•. This is the ~ost

co.plete parfor.ancc tool avail~ble. Output fro.
the reduction progra. requires careful
interpretation. Dedicated tape controller and drive
required. Av~ilabla only to SEse

used to identify thosa sactions of code which art
executed most frequently. Raquires install.tion of
~n ~ddition.l clock board on the syste. to be
sa.pled. Dedicatad tape controller ~nd drive
required. Ay~ilabla only to SESe

3. TRACER* .aasure. seg••nt
which sag.ants
not ba used with
controller ~nd

SEse

boundary crossings to deter.ina
~re referenced and how often. Can

COBOL program.. Oedicated tape
drive required. Avail~ble only to

4. TUNER2

S. OVERLORD

6. SHOWY"

7. SHOWQ

shows currant and ••xi~u. us. of several systao
tables. Used to deter.ina whether configuration
p~r••etQrs h~va bean correctly chosen. Contributed.

useful in datar.inlng who 1. executing what progr.Q
~nd the corresponding stack size. SOO (Son of
Overlord) provide. the same functions. In tha
contributed library.

indicates, at ~ gross level, how real and virtual
me.ory is being usad. Helpful in deter.ining how
much aeaory a particul.r progr~. usas. In
contributed library.

a syst•• co•••nd which displays in~or••tton aboutt
process scheduling subquaues. If the right.ost of
the three colu.ns displayed grow. longer th~n the
center colu.n, then the syste. has insufficient
real memory tor the current lo.d.

* General availab;~ity currently scheduled for early 1979.

C-lO.16



8. FREE2

9. SYSIHFO

displays the a.aunt of free .p~c. on ~11 syste.
disc packs ~nd ind1c.t•• how fractured the space
is. Badly fractured disc gp~ce c~n c~use ~

consider~ble perfor.~nce de9rad~tion. HP supported
systeM utility.

prints syst.. configuration infor.ation without
doing ~ SYSDU"P. Contributed.

10. PROGINFO prints .t~ck size, 5.~••nt size and extarnal
refarQnce infor.ation about proQr~. files. An
~xtended version of PROGSTAT. Contributed.

11. KS~MUTIL displays blocking factors ~nd intrinsic c~ll counts
associated with KSA" rile.. HP supported utility
delivarad with KSA".

12. LOC FILES contain inforaation aS$ociated with log-ons, file
closes and ItO transfer counts by process. So.e
contributed progra.. available to reduce
inforaation in the•• MPE g.nar~ted files.

13. LISTFXX used to carefully track us. ot disc space.
Indic~tes 10c~tion of first extent of .ach fll. and
date of last ace••s in addition to othar
information. When used in conjunction with FREE2
the amount of racover~bl. lost disc space c~n b.
calculatad. In the contributed library.

14. DBDRIVER us.d to quickly obtain infor.~tion about ~n I"AGE
database such as the size of the DaCS and
individu~l tr~n.action tim.s for • single user.
Distributed with I"AGE but is unsupported,

1~. IDEA halps dateraina p.~rormance eharacta~istlcs of an
I"ACE based application. C~n .e~.ura the .ffact of
aultipla user., Ti.ings apply only to the IMAGE
response ti ••• , not application processing ti.as.
Contributed.

16. DBSTAT determinas length 0' .ynony. ch~ins in IMAGE ~ast.r

d~ta-set •. Long synony. chains can c~us. dreadful
p8rfor~anc. d.g~ad~tion. Contributed.

17. LISTDIR2 used to detar.lne location of the first extent of
disc fil ••• HP supported sy.t•• utility.

18. LISTF The ·-1· option dlspl~y. the file l~b.l which
contains the address or .~ch extent of the tile.
Output can be written to ~ disc fll. for subsequant
progra.atlc p~oc.s.in9' HP suppo~t.d "PE co••~nd.

C-IO.17



---------------------~-----~-----------~------~--~----------------

MPE USE OF "AIN MEMORV APPENDIX B

-------~-----------------------------------------~---------------~

The ~.ount of me.ory reserved exclusively for "PE is referred
to ~s fixed •••ory ~. oppos.d to linked •••ory for which ~11

processe. COMpete. The size of fixed •••ory c~n h.ve ~ sub.t~ntial

effect on pcrf'or • .ancc of' .•achinas with lass than 512kb of _allory.

Driver linkage tabla
CST block tabla
Bank table
Job process count table
Systa. glob.l area
D.t~ segment tabla
Code segment table
Code segment t.bla extension
Process control block table
Interrupt control stack
Tarainal buffers
1/0 queue
Interrupt link~ga/Device info table
Systa. buff'ars
Working set table
"amory manage.ant table
Virtual bit .ap
Virtual disc space locator
logical-physical devica t.ble
Timer request list
Job cutoff table
Systa. internal resource table
Breakpoint tabl.
"emory manage.ant code
"iscellaneous systea routin••
Systea clock' timer req list code
Residant 10 code
Internal interrupt handler coda
Dispatcher coda
Disc driver code
Tape label input buffer
"iscellaneous ~rea.

SIZE
BYTES

256
132 •
192
88

768
3072 III

1536 III

4000 ,.
4096 •
1088 III

4112 III

2832 *
6520
4664 •
4464 *
3840 III

512
768
528
456 •
424
440
520 •

10200
3272
3304

12064
1880
1376
2424

552
SOOO

ITEM

30

4
2
3
5

1 0
7
6

8
30

9

12

13

----~---------~~--.-----------------~----------------------------
FIGURE B-1. Ite•• in fixed .eaory of the 2"b syste.
Fullarton HP Technic~l Centar listed in approxi.ately the
they actually appear in •••ory. Lin.. with asterisks
sag.ants whose size is directly .tfected by respons.s
SYSDU"P ti.e. The ite. nUMbers .re raference. to Appendix
Syste. "anager "~nual.

C-IO.18

~t the
sequence
indic~t.

given 41t
C ot the



SEMI-RESIDENT SYSTEM CODE

In ~ddition to the 60-90kb 0' fixed .amory several "PE
segments ~re rafarQnced so frequently th~t they tend to sp.nd much
of the tima in me.ory. On tha aver_g_ 3000, MPE is prob~bly

holding at laas\ 1S0kb of •••ory at ~ll tie••. Sine. this is not.
affected by the total a.ount of •••ory on the .yst.. adding ~or•
••mory to syste•• in the 256-512kb .l%.~can substantially improve
perforllance.

The following syst•• code sag_ants tand to spend at least 7SX
of the tt.a in me.orYI

FILESVS1 S9S2 FREAD, FWRITE
FILESYS1A 5400 FILESYS support routine.
FILESYS2 5624 FPOIHT, FCOHTROL, FUPDATE

FILESYSS 4208 FILESVS support routina.
FILESVS6 3472 FILESVS support routinas

Oth.r coda seg.ents which spend over 60 percent ot the ti ••
present I

ALLOCUTJL
PINT
OATASEG
CHECKER
UTILITV1
IOTER"O

3848
3048
3040
1536
3208
5128

23808

Oevice ~llocation utilit.s
CALENDAR, CLOCK, Process support
Data sag_ant handling rou~ine.

CETPRIYMODE, Intrinsic errors
ASCII, BINARV, WHO, REAO, PRINT
T.r.tn~l d~iv.r

Tot.. : ,ytes

So.a "PE dat~ sagmants which nd to stay in •••ory are
listed below with .. typical size in 4ords.

UCOP requ.st queue
LOE'I table
Disc directory .eg
Job .aster table
Yolu•• table
F"AYT
Process/job xr.'

C-IO.19

208
2928
2056
1024
200
528
264

7208 Tot.. l byt••



~---------------------~-~---------~-----~--~~---------------------

Prograa
Total Hu. Global
Words Sags DB-QI

STACK
QI-21

"A~ Sl
DATA S.9S

Sl Tot
Words S.9-

APL
BASIC
BASICOtfP
COBOL
EDITOR
FCOPV
FORMAIHT
FORTRAN
FREE2
LISTDIR2
LISTEQ2
MERCE
MPMOH
I1RJE
"RJE"ON
I1RJEOUT
QUERY
RESTORE
RJE
RPC
SEGDYR
SEGPROC
SORT
SPl
SPOOk
SVSDUMP

138520
41564
33184
84892
33380
16080
7088

45188
696

8936
1012
28~'

2956
20488

1860
1816

42820
1948
5400

55396
1028

12676
2976

40628
1404

16092

49
24
19
35
15

5
2

21
1
4
1
1
1
7
2
2

20
1
8

22
1

1 0
1

30
3
5

6883 .
496

1146
3953

99S
4893
1122
1101
4112
19'

2487
2

5524
3221

394
2306
4174
2413

927
3146

369
90S

1
3290
1191
3425

1024
800
800

2000
4600

900
800

2S00
800
800
800
800
800
800

1100
1024
1300

800
1000
800
800

1000
800

2500
800

1 000

31000
31000
30000
32000

8000
31000
~20000

32761
DFALT

8192
15000
15000
DFALT
DFALT

3200
DFALT
11000
DFALT
DFALT
32000
DFALT
24000
15000
32767
30000
16000

21
24
15
18
17
19
1 0
16
1 0
16

5
13
15
19
23
12
28

9
24
15

5
19
14
16
17
22

48012
S3344
37756
41212
39680
50304
23199
36124
23048
42460
12800

42S40
52208
29352
62684
20404

37604
1 04188
41828
36026
36124

70
48
33
S3
32
24
12
37
1 1
20

6
16
16
26
25
14
48

9
32
37

6
29
13
46
20
27

626884 299

~--------~~--------~~-----~-----~~------~~-~~------------~------~-
FIGURE 8-1. Listing of HP softwara showing the siza of the progra.
in words and tha number of sagaants in the progr•• file. The size
of the initial stack is shown along with the .~xi.u. size it .ay
grow to. SL segs refars to the number of SL sagmants th~t ~r.

directly referenced by tha progr~. fila. Thase sagmQnts .~y in
turn raference other sag.ants. The sua of the length of ~11

directly refarenced SL sag.ants is included under the he~ding SL
words. Total sag.ants is simply the SUM of the progra. sag.ants
and the SL ,segments.

C-10.20



-~---~--~~---~-------~---~~-------~-------~-----~----------~--~---

"PE USE OF SYSTEM DISC APPENDIX C

-~---------------~----~----~-------------------------------------~

SYSTEM DISC LAVOUT

(configurabla)
(configurable.)

USE OF DISC SPACE

Disc label
Defective tracks table
Cold load infor.ation
Free space tabla
System directory
Virtual me.ory swapping
System files and tables
User file area

area

ApPROX
SECTORS

1
4

22
32

384-6000
1024-32767

7500
149,000 - 187,000 (7920)

Systam software uses about 1S,OOO sectors of the usar ~rea.

On non-syst•• discs (other than private volumes) the only
ovarhead is for the disc label, th. defective tacks t~ble and the
free sp~ce table. All other space is ~vailabl. for user files.
"aster volu.es of private volu••••ts will have ~ fila directory
using 1000 - 4000 sectors.

Drive type Tracks Sector. Byte.

7906 1,600 76,800 19,660,800
7920 4,075 195,600 50,073,600
7925 7,335 469,440 120,176,640

PUB.SVS DISC SPACE
------------------

FILE SECTORS FILE SECTORS FILE SECTORS

------------------ -~----~----------- -------~---~--~-~-
APL 1201 FORTRAN 384 QUERV 383
BASIC 349 FREE2 43 RESTORE 40
BASICO"P 281 INITIAL 400 RJE "CICAT 2785 LISTDIR2 84 RPC 472
COBOL 718 LISTEQ2 32 SEGDYR l'COMMAND 501 MERGE 29 SEGPROC 118
DPAH2 297 I1P"OH 73 SL 5001
EDITOR 284 "RJE 19S SORT 30
FCOPV 174 "RJE"ON 24 SPL 362
FOR"AIHT 76 "RJEOUT 40 SPOOK 79

SVSDU"P 162

C-IO.21



----------------------------~------~~~~---------------------------

1/0 PERFORMANCE CONSIDERATIONS APPENDIX 0

--------~---------~----~~~------------------------~---------------

DISC I/O CONSIDERATIONS

All HP7900 f~.ily drive. have a 937.S kb/sec d~t~ transfer
r~t. and all have identi~.l ••ek ti ••• of 5 ms track-tra~k, 25 ms
~v.rag. random .nd 45 .s typic~l t~ll stroke. The 7906 and 7920
aach have 48 sectors/track with a 8.3 •• av.r~g. rotation~l d.l~y.

The 7925 has 64 sectors/tr~ck with an average rot~tional delay ot
11 • 1 as ,

On the average, the HP3000 is cap.bl. of co_pleting about 30
disc transfers per second. If ~ progra. has exclusivQ us. of the
syst•• and is reading sequential .ectors without burfering, ~.

many as 38 transfers per second a.y be ~chi.v.d. A progra.
rando.ly writing sector .ize blocks to a large (11S,OOO .ector)
file might sae a transfer rate on the order of 20-24 transrers per
second. Sw~pping activity .ust be considered since it will use
so•• of the 30 transfars avail.ble each .econd.

When a user reads ~ record, the d~t~ will be returned in
about, .il1i.econd. it the logical record is already In a butfer,~

ffle mOf"i'1'

TER"IHAL 1/0 CONSIDERATIONS

---------~-----------------

Every charact.r passing to or fro. a ter.inal connected to
the 3000 through the ATC (asynchronous ter.in~l controller) causa.
a CPU interrupt. This is true whethe~ the tar.in~l is strapped for
character, line or block mode. This can cause pertoraance probla••
when the aggreg~t. character rate approaches 2000 per second.
While this indic~tes only 8 ter.inal. can ba simultaneously
~ransferring a constant 240 characters per .econd, this i. in fact
vary difficult to ~chieve 'or .or. than one or two seconds at ~

time.

C-IO.22



--------~--~-~---~---~--------~--~-~--~--~~----------------------~

APPENDIX E

-----------~---------------------~-------------------------------~

t. Reduce unnecQss~ry logon•.

2. Allocate often used pr09r~. file ••

3. Keep seg.ent sizes under ~,OOO words.
Are any process st~cks larger than n.cass~ry1

4. Check for fila or d~tabas8 locking conflicts.

5. Will pri~ary paths help database access?
Are their long sort ch~ins?

Art there long synony. ch~ins?

Ara ~ny •••tar data-.ets .or. than SOX filled?
Ara all IMAGE DSeB. a•••a1l as pr~ctic~l?

Use -.- in Image it•• lists whenever possible.

6. On-lina progra. davelop.ant t.~. should use the taxtfile­
••sterfit.' technique to reduce Text and Keep overhead.

7. Maintain sufficient tree di.c spac•.
Is there at least 15~OOO free sectors on the systa. disc?
Is at least 10~ of the tot~l disc space free?

8. Sorts invoked frOG inside programs may run slower because
lass stack space is ~v~ilable for workspace. The st~ck

.~y be laft Much l~rg.r th~n n.cass~ry for the rest of the
progr~. exacution ti.e.

9. Dat~ files with high access r~tQs should ba evenly
distributed over available drives. Progr~. fila. with high
swaps rates should reside on fast drive•.

13. Are too .~ny batch Jobs exacuting concurrently?

14. Do any processes have .ore '11 •• open than nace.sary?

16. Art any program. a.king exc••• ive use 0' DEL edit.?

C-IO.23



USING EXTRA DATA SEGMENTS: SAFE AND EFFI CIENT

Rick Ehrhart
Hughes Aircraft Company, E1 Segundo

M/S 335/510
P.O. Box 92426

Los Angeles, CA 90009
(213) 648-0755

Abstract

Handling extra data segments on the HP 3000 has given rise to
numerous lectures, papers and classes. The methodology has always been
to use the data segment "DS" intrinsics with the extra data segment
"DS" capability. The purpose of this paper is to demonstrate a new
methodology, one using the privileged "Rvr' capability.

Introduction

There are two types of data segments on the HP 3000: the stack and
the extra data segment. There is one and only one stack for each
process to utilize the data in a predefined structure. The extra
data segment,on the other hand, can be utilized by one or more processes
in a user defined structure. It may be used as a table or an area for
process-to-process communication.

For most applications, the "DS" instrinsics are quite adequate,
but when the programmer is dealing with system level processes, the over­
head of the "DS" intrinsics is urmecessary. This paper will show how
to use three very powerful and privileged assembly level instructions
that work on data segments: Jo.ITDS, MFDS, MDS.

Techniques

To acquire an extra data segment, the programmer still must use
the GETDSEG intrinsic. In non-privileged mode, GETDSEG returns a
logical index; but in privileged mode, GETDSEG returns the Data Segment
Table Index or "DSTX". This value is the unique index for the extra
data segment that the process acquires. All data segments, whether a
stack or an extra data segment, have a unique DSTX. The DSTX must be
saved for all further operations.

C-ll.l



To move data into the extra data segment from the stack, the
progrannner uses the "DS" intrinsic Th-l0VOlIT. IMOvour checks the
bOtmdaries of both the stack and the extra data segment and then moves·
the data out from the stack to the extra data segment. However, in
privileged mode, the programmer doesn't have to use IMOVOUf, he/she
may use the assembly instruction MfDS, Move To Data Segment. This
one instruction moves words from a DB-relative location to the extra
data segment starting at a specified offset for a count. Usage is
straightforward and simple. Example One has a procedure that shows how
to use the MTDS assembly instruction. Basicly, the following items are
pushed onto the top of the stack: target DSTX, the one returned from
GETDSEG, the target offset, the source DB-relative address, where the data
is in the stack, and a positive count of the number of words to be moved.
The one drawback is the fact that the programmer has to make sure that the
DSTX, the offset, the DB-relative address, and the count, are all valid.

To move data into the stack, the programmer used to call DMOVIN;
but now the programmer may use the second privileged assembly instruction
MFDS, Move From Data Segment. This instruction expects the following
values on the top of the stack: the target DB-relative address, the
source DSTX, the source offset in the DSTX, and a positive count. To
see how to use the MfDS instruction, please see Example Two.

The third privileged assembly instruction is ~1DS, Move using Data
Segments. It moves data from one data segment to another. This instruction
requires the following values on the stack: the target DSTX, the target
offset, the source DSTX, the source offset, and a positive or negative
count. Please see Example Three for usage.

To release the extra data segment, the progrannner uses the FREEDSEG
intrinsic. The Dsrx returned from GEfDSEG is used as the index. The
process has to be in privileged mode to call FREEDSEG.

Conclusion

It is highly recommended that the programmer read the HP 3000
SERIES 2 MACHINE INSTRUCTION SET REFERENCE ~~AL, Part. No. 30000-90022
before attempting to use these privileged assembly instructions, since
with these instructions, the programmer has a chance to destroy the system's
integrity in one swift blow. For example, if the DSTX is invalid, the
system will come to a halt with system failure 16; or if the DSTX is
wrong, the instruction could overlay another user's stack or even a system
table.

The above techniques do cut down on overhead when working with extra
data segments. This is very useful for critical systems like a cOIJummi­
cations system, on-line monitor, or where processes have to communicate
very quickly. These techniques have been used at Hughes Aircraft Company
quite successfully, and the benefits are well worth the dangers.

C-ll.2



«----.-----.--~----~-~~~-_. __ .-~------~._-----------------~~-~-»
«» PRuCtDuR~ MOVEITO'XUS(TAkGET'DST~,'ARGETIOFFSET,SOURCE,COUNT),

VALU~ TAkG~T'DSTX,TA~GtTIOFFSET,SOURCE,COUNT'.
l~TEGEk TARGETIOSlX,TARGETIOFf~ET,SOURCE,COUNT'

Of 1ION PRIVILEGED'
BEGIN

lOS :~ TARGET'OSTX,
105 ;= T~RGETIOFFSE',

TOS ;= SUU~CE,

lOS := CUUNTi
ASSEMb~ElM1US 4),
END, «·MOVE'TOIXDS»

«**» EXAMPLE TwO «~*»

«--_.~-----~_.~-------~-----~----------.~---._-~-~---~----~----»
«» PRUC~DuRE MOVE1fROMIXDSCTARGET,SOURCE'DSTX,SOURCE'OFfSET,CQUNT)'

V~LUE lARGET,SOURCE'OSTX;SOURCE'OffSET,COUNTI -
IN1EGEA TARGET,SOURCE'USTX,SOUWCE 1 0FFSET,COUNTI
opiION P~lVILEGED' -

BEGIN -
lOS ;= TARbET;
lOS := SOUkCEIDSTX,
10S ;= SUukCE'UFFSETJ
lOS := COUN11
ASSEMbLE(MFDS 4),
END, «MOVE'fROM'XDS»

<~------_._~--------~-------_._--_._----"--------~-~----~---~~~-»
«» P~UCEOuRE MOVE'XDS(lARGETIDS1X,TARuET'OFFS~T,SOURCf'DSTX,

SOUNC~IOFFS~T,COUNTJ'
VALU~ TA~GET'DSTX,TARGtT'QFF·SET,SOuRCE'OSTX,SOURCEIOFFSET,COUNT'

I~lEGER lARGET'OSTX,TARG~T'OFF~ET,SOURCEIDSTX,SOURCEIOFfSET,COUNT,

OPTION PKIVILEGEOJ
8EGIN

lOS := l~RbET'DSTXI

- TO& := '~~b~lluFFSET'

TO~ := SOuRCE'OSlXi
- 10S := SOU~CEIOFFSET'

TUS ;= COUhTJ
ASSEM8LElMDS 5)1
EN~1 «·MOV~'XDS»

C-ll.3



« •• ~~~-~---._-~-~------~~~~-~-~----------------.--------~------»
«» PRuCtDuR~ MOVEITOIXUS(TAKG~T'DSTX,'ARGET'OFFSET,SOURCE,COUNT),

V~LU~ TAkG~T'DSTX,TAkG~T'OFFSE1,SOURCE,COUNT'

l~TtGEk TARGET'DSlX,TARG~T'OFF~ET,SOURCE,COUNT'
OrTION PRIVILEGEO,

BEGIN -
lOS :~ TARGET'CSTX,
lOS ;= TARG~T'OFFSE1'

lOS ;= SOURCE'
lOS := CUUNT;
AS~EMblElM'US 4)1
END, «MovEITO'XDS»

«--~------~-_._--~--~-~-~~-~--------~-~--------~------~--------»
«» PRUCtDU~~ MOVE'FROM'XDSCTA~GET,SOUWCE'OSTX,SOURCE'QFFSET,CQUNT)'

V~LUE TARGET,50URCE'DSTX;SOU~CE'OffSET,COUNTI. .
IN1EGER TA~GET,SOU~CE'USTX,SOU~CE'OFFSET,COUNT;

OP;ION PRIVILEGED' -
BEGIN -

lOS ;= TAR~ET;

lOS := SOUkCE I OSTXJ
lOS ;= S~ukCE'UFFSETJ

105 ;= COUN1,
ASSEMbLElhFDS 4),
END, «·M.OVEIFROM'~DS»

«-~-~--~._--"------~--~--~-.~--~-------~--------.-~--~~----~~~-»
«» PRUCED~RE MOVEIXDS('ARGET'DS1X,TAP.uET'OFFS~T,SOURCE'DSTX,

SOU~C~'OFFS~T,COUNTJ'
VALUt TA~GET'D~TX,T~RG~T'OfFSE1,SDuRCE10STX,SOURCE'OFfSET,COUNT,

I~lEGE~ lARGETIOSTX,TARGET'Off~ET,SOURCE'DSTX,SOURCE'OFfSET,COUNT,
OPTION PkIVILEGEO, .

BEGIN
105 :: '~R~ET'DSTXI

- TO& := 'A~b~TIUFFSE"

lOS ;: SOuRCE'OSiXi
- lOS := SOU~CE'OFFSET'

lUS ;: COu~T'

ASSEMbLElMDS 5)1
EN~1 «-MOVE'XDS»

C-ll.4





INSTALLATION MANAGEMENT

Series 110"





N S TAL L A T ION DES I G N
----------------------------------------------------------------------------

AN 0

OPE RAT ION CON S I 0 ERA T ION S
================================================

Longs Drug Stores: an example

by: Bill Gates

0-01.01



LONGS DRUG STORES) INC.

- 114 STORES LOCATED IN CALIFORNIA) HAWAII) ALASKA AND ARIZONA

- $550 MILLION SALES IN FISCAL '78

- 5200 EMPLOYEES

- DECENTRALIZED OPERATION - NO CENTRAL WAREHOUSES

0-01.02



HARD\'IARE CONFIGURATION

ONE HP3000 SERIES II MODEL 9 WITH:

512 BYTES MAIN MEMORY
ONE HP7905 SYSTEM DISC
ONE HP7905 SPOOLER DISC
THREE 47M BYTE ISS DISCS
TWO 223M BYTE TELEFILE (AMPEX) DISCS
THREE 1600 BPI TAPE DRIVES
ONE 1250 LPM LINE PRINTER
TWO 200 LPM LINE PRINTERS
ONE HP2635 SYSTEM CONSOLE
TWO TI 743 HARD COpy TERMINALS
ONE DIABLO HARD COpy TER~INAL

24 HP26LlO (44) CRT TERMINALS
TWO SELECTOR CHANNELS

TWO HP2100 DOS-TCS SYSTEMS WITH:

ONE 4M BYTE DISC (EACH)
14 HP2640 CRT-TERMINALS (EACH)
ONE 1600 BPI TAPE DRIVE

TWELVE DATAPOINT 1500 DISKETTE TERMINALS

0-01.03



APPLICATIONS

ACCOUNTS PAYABLE - 7000 INVOICES/DAY

PAYROLL - 5200 EMPLOYEES PAID WEEKLY

ACCOUNTS RECEIVABLE - 4000 TRANSACTIONS/DAY

GENERAL LEDGER

FINANCIAL REPORTING

CASH RECEIPTS

INTER-STORE TRANSFERS

INVENTORY

PHARMACY DRUG INFORMATION

ASSETS/DEPRECIATION

WORK PROCESSING

COM (MICROFICHE)

D-01.04



OPERATING SCHEDULE/MIX

3 SHIFTS - 5 DAYS/WEEK

DAY SHIFT - ALL TERMINAL WORK
- TYPICAL 12 - 20 SESSIONS J ONE-TWO JOBS

NIGHT SHIFT - HEAVY BATCH 3 - 4 JOBS

GRAVE SHIFT - LIGHT - MODERATE BATC~~ - "CLEAN-UP"

D-01.05



SOFTWARE IfJ USE

- 95% COBOL

- 5% SPL AUD BASIC

- MOST DATA STRUCTURED WITII lli8.G£ DATA-BASE SYSTEr"

- HEAVY USE OF QUERY LAfJGUAGE .

- BY PROGRAf.i11ERS FOR TESTIDEBUG

- BY USERS FOR REPORTI:JG AND LIflITED UPDATIr1G

0-01.06



o
I

tg

......

- TWO HA IUACCOUi~TS:

- PRODUCTU (PRODUCTION)

. PROGDEV (PROGRftl-i DEVELOPHEi~T)

OTHERS: SYS
SUPPORT
ACCO{j;~T 1

PLAYLAiJD



'='I
IS»...,.

PROGDEV - PROGRAM DEVELOPMENT

GROUPS

- BY APPLICATION SYSTEM

ACfJ MYJ ETC.

ACP~ - CONTAINS WORKING SOURCE
AND OBJECT FILES

ACP - CONTAINS ACCOUNTS PAYABLE
TEST DATA

USERS

PROGRAMMERS (NO HOME GROUP)

SECURIlL

ACCOUNT PASSWORD



o,
IS)

I-'.

PRODUCTIJ (PRODUCTIOr~)

PUB - ALL OBJECT PROGRANS
- ERQDUCTif STRE.AJl FILE

- DATA BASE SCH8iA FILES
! :\'["("'1 ; .....~ -. rr"Ef"S TO f\r!v)- \ ~~_:.U.t ~, \., l, ::> tlliL

- (OTHER ACCESS TO AL~ ~1)

ALL PRODUCT IOl~ SOURCE

- (OTHER ACCESS TO ALI AH)

x:.~ ALL QUERY XEQ FILES

APPLICATIO;~ GROUPS

MGR - USED IHFREQUEHTLY

AL - RUi~S nOST JOBS

STANDARD USERS (OUTSIDE EDP DEPT)

EXCEPTI DalAL USERS (PROGRA;·};ERS)

,)~ v l/'P c-TC
,_"_., J ~, L_ • ALL DATA FILES HOTE: ALI p... ",.. ....'\A,.("' nl" ,--"" ••

I t{UI"l~ 'i'l' Wi' J r-l...;i:,
... " " OJ. loJ .\ .... 11 ,1.I""j

A:JD QUERY PROC. FI C=S APPLICATIOiJ GROLPS, ACCESSL~i~

Or'LY D"TA U I..... ~ T ; I .... l-: ~ G~.'. :-.' ::, n. N 1 • .1,.111-.,. .\·."L.. -

(EXCEpT F'" Rcr r"TA •. , . ! - ...
I V \ t.l\ ',1,. JJr.in

BASES ALLOw I ~~G Rr ';D ACCESS

TO &.



A. PHYSICAL SECURITY

o
I

s
~.

B. DATA SECURITY

C. DISASTER COfJTliJGErJCY PLArUlIHG

D. AUDIT FUNCTION



BACKlli:

- DONE BY SIQRE RATHER THAN SYSlillMe

REASONS:
- STORE MAY BF SElECTIVE
- STORE MAY BE RUN DURING OTHER PROCESSING

- MOST BACKUP DONE BY APPLICATION
- USES SET of GENERATION BACKUP TAPES

lOlACP J l02ACP 120ACP +- VOLUME ID'S
- ONL.Y FIlES NECESSARY FOR RECOVERY (IN CASE OF

CRASH) ARE STORED.
- FRE0UENCY DEPENDS UPON CHARACTFRISTICS OF APPLICATION

GROUP

- "SYSTEM" BACKUP DONF EACH EVENING AT 6:00 P.M.
- FUTURE DATE SYSnUMP
- STORE OF @.PUB~SYS

- STORE OF @. PUB. PRODlJCTN" @ XEQ. PRODUCTN.J @SOURCE ~

PRODUCTN.
- STORF OF MISC.. INTERACTIVE GROUPS

0-01.11



CONSOLE OPERATIONS PROGRAM

- READS JOB STREAMS TO TEMP FILE

- ALLOWS CONSOLE OPERATOR TO ENTER PROGRAM
"PARAMETER CARDS"

- STREAMS FROM TEMP FILE

D-01.12



SYSIEM MAI~TENANCE

- "GOLD" BOOK KEPT

- SYSTEM PROBLEM LOG
- MAINTENANCE LOG
- COpy OF SERVICE CONTRACT (S)
- CURRENT CONFIGURATION

- "SYSDATA" JOB

- RUN EACH MONDAY MORNING
- CONTAINS:

1) FREE 2 LISTING
2) REPORT @.@ (+ RESET ACCT.)
3) LISTF @.PROGDEV~ 2
4) LISTF @.PRODUCTN~ 2
5) MEMLOGAN. LISTING
6) DUMMY SYSDUMP
7) DATABASE UTILITY LISTING

- REVIEWED AT DEPARTMENT MEETING

- COLD LOAD DONE EACH FRIDAY EVENING AFTER SYSDUMP
- RELOAD DONE AFTER P.M.
- WEEKLY COMPUTER SCHEDULE PREPARED

D-01.13



- USE "EXCESSIVE" BACKUP AT BEGINNING

- WORK WITH CUSTOMER ENGINEER - LEARN YOUR HARDWARE I

- LEARN SYSTEM UTILITIES

- MAKE FREQUENT CONTACTS WITH OTHER SITES

- SET UP COMMUNICATION METHOD TO USERS
(IN CASE OF SYSTEM CRASH OR DOWN TIME)

- "MANAGE" SYSTEM

- USE SECURITY FROM BEGINNING

0-01.14



D8IA PROCESSING SECURIIY

I. PHYSICAL SECURITY

II. DATA SECURITY

I. PROTECTION AGAINST DISASTER

II. EDP OPERATION AFTER DISASTER

0-01.15



- RESTRICTED ACCESS TO COMPUTER ROOM

I. STANDARD APPLICATION DESIGN CONTROLS
A. DIVISION OF RESPONSIBILITY
B. EXTERNAL INPUT AND OUTPUT BALA~CING (BY USERS)
C. USER APPROVAL OF PROGR.~M CHP.~IGES

II. ACCESS TO DATA RESTRICTED
A. PASS~JORDS

B. USER CAPABILITIES
C. EDP DEPT. RESTRICTIO~S

III. DATA ACCESS "AUDITABLE"
A. EDP AUDITOR
B. JOBS MUST "TIE TOGETHER"

1. JOB REQUEST SHEET
2. $STDLIST
3. CONSOLE LOG
4. SYSTEr·1 LOG

0-01.16



I. PROTECTION AGAI~ST DISASTER

A. HALON FIRE PREVENTIO~ SYSTEM

B. OFF SITE BACK-UP OF FILES

II. EDP OPERATION AFTER DISASTER

A. BACK-UP SITES FOR COMPUTER

B. BACK-UP LOCATION FOR USERS

0-01.17



HOW SECURITY WAS "INSTALLED"

EHYSICAL

- WAS WIDE OPEN) GRADUALLY CLOSED IT OFF

- PHYSICAL ALTERATIONS

- INCREASED OPERATIONS PERSONNEL

- SET UP FORMAL PROGRAM TESTING PROCEDURES

STEPS IN CHRONOLOGICAL ORDER:

- SET UP "OPEN II PASSWORD SYSTEr1
(EVERYONE KNEW PASSWORDS)

- STARTED SYSTEM LOGGING

- JOB CONTROL TIGHTENED

- SET UP MECHANIS~1 FOR PASSWORD MAINTENA~lCE

(BUT KEPT PASSWORDS "0PE~)

- SET UP FOREMAL PROGRAMMER "SIGN-OUT" OF PRODUCTION
DATi~ FO~ T STI~G - INCLUDED AUDIT

- CLOSED OFF PRODUCTION PASSWORDS TO PROGRAMMERS AND
USERS (EXCEPTING THEIR OWN).

0-01.18



- DEVELOPED CQi'1S0LE OPEPATOR PROGRAM WH ICH "I ~·ISERTS

CORRECT PP.SSWORDS INTO JOB STREftJ~S - (LOSED OFF

PASSWORDS TO OPERATIONS (EXCEPT FOR CONSOLE
OPERATOR PASSWORD)

- OBTAI~ED ENOUGH DISC SPACE TO GIVE PROGRAMMERS
SEPARATE "TEST" DATA BASES.
IN PROGRAr1 DEVELOPMENT ACCOU~IT - DEVELOPED
UTILITIES TO HELP.

RE~1AIaI~JG "HOLES" IUECURIIY

- TEST FILES MAY HOLD CONFIDE~TIAL DATA

- LOG RECORDS DO NOT ItlDICl\TE IF A FILE HAS BEEN
~10DI FlED.

- LACK OF LOG INFORMATION FOR STORE/RESTORE UTILITY

0-01.19



COSTS OF COMPUTER SECURITY

100%

DEGREE
OF

SECURITY

O~~---------------

COST OF SECURITY

D-01.20



SUGGEST IO~·~S FOR IMPLEr·1ENT ING SECUR IT~

1) liSE GR~nU,l1L PH:~SES

2) INVOLVE EDP AND lISEP. PERSOf'JNEL

- EXPLAI~ "TRADE-OFFS"

- CHALLENGE PE~SO~'NEL Tn DEVELOP GfJOfl

COMPROMISES BETWEEN SECURITY REnUI~EME~TS

AND EFFICIENT OPERATIO~S.

- EXPLAIM THAT LARGE "LOOP-HOLES" WILL
EXIST DURING IMPLEMENTATION.

3) EXPECT VARYING DEGREES QF PERSON~EL RESISTA~CE~

RIDICULE~ AND HOSTILITY. THIS SHOULD DEC~EASE

OVER TI r·1E.

0-01.21



PERSO~L OBJEClIONS TO SECURI~

OBJECTIO~: "THIS WHOLE SECURITY SET-UP IS ASHAM BECAUSE
OF (A~Y LOOPHOLElI IT IS ~OT PERFECT J SO IT
IS ~!ORTHLESS. It

A~!SVlER: r·10ST EDP I~~ST.~LLATI(l~lS ARE WIDE OPE~~ PS FIl.R
AS SECURITY. EXPERIENCED COMPUTER CRIMINALS
ARE LOGICAl. PE~SONS AND WOULD PREY ON THESE
SHOPS RATHER THAN ONE WITH EVEN A MODEST
ATTEMPT AT SECURITY. I~EXPERIENCED COMPUTER
CRIMINALS CAN BE INTI~1IDATED BY LESS-THAN
PERFECT SECURITY PRECAUTIONS.

OBJECTION: "THESE SECURITY PROVISIONS WILL MAKE MY WORK
LESS CO~VENIE~T AND INEFFICIENT."

i~NSWER : TRUE - HOWEVER J OUR CQMPA~Y HAS CHOSEN TO ACCEPT
THE COSTS I!·IVOLVED ~JITH ~1~.KING OUR. INSTA.LLP,TION
SECURE. IT'S UP TO US TO MINIr~IZE THOSE COSTS.

0-01.22



AN EXTENDED OPERATING ENVIRONMENT FOR THE SUPPORT OF
APPLICATION PROGRAMS

RICHARD A. BERGQUIST AND STEVEN M. COOPER
AMERICAN MANAGEMENT SYSTEMS, INC.

The Brownboard Order and Rollstock Distribution System (BOARDS)
supports order processing, invoicing, inventory control, and planning
for the Shipping Container and Containerboard Marketing Division (SCD)
of the Weyerhaeuser Company. The function of BOARDS is described more
fully in the paper, "Decision Support System for the Management of
Containerboard Logistics" by P. DiGiammarino and R. Schwartz. 1

American Management Systems, a management consulting and system
development firm, began work on BOARDS with Weyerhaeuser in September,
1976. Several subsystems are in production use; the system will be
f~lly operational in early 1979.

BOARDS is written in COBOL, SPL, and FORTRAN, in order to utilize
the advantages of each language. COBOL was chosen for the majority of
the system because of its widespread use and report generating abilities.
SPL was chosen for its effi ci ency and abi 1i ty to interface wi th a11
aspects of the Operating System. FORTRAN was chosen for number process­
ing routines such as those that employ linear programming techniques.

In order to provide an enhanced environment for the programmer without
the need of becoming familiar with all aspects of the system, sets of
common routines were developed. These routines also insure consistency
and compatiability across the system and allow for easy maintenance of
these technical functions.

Sets of common routines have been provided that extend the services
provided by MPE, KSAM, IMAGE, and DEL. These sets of routines are sum­
marized in Figure I and are described in more detail in the remainder of
this paper.

BATCH JOB SUBMISSION COMMON ROUTINES

MPE provides a convenient method of introducing batch jobs through the
use of the STREAM command. However, one problem associated with STREAMing
jobs is security. To be STREAMed, the User 10 must be provided along with
all appropriate passwords. The problem here is that either the user must



COMr-DN ROUTINES

BATCH JOB SUBMISSION

FORMS

VERSION NUMBERS

DATA BASE ACCESS

FIGURE I

0-02.2

FUNCTION

Handles User ID's and passwords.
Parameter subs ti tuti on.
Prov; des ; nteracti ve fron t-en d fo r

batch job submission.

Replacement for DEL, enhancements
include:

- Protected variable data.
- Dynamic screens with multiple

forms and repetitions.
- Mixed line and page mode trans­

fer.

Solves concurrent update problem with­
out locking data base for entire
transaction.

Identifies transactions that failed
during data base modification
either because of program failure
or system failture.

Extends data base lock across process
boundries.

Perfonms IMAGE calls.
Performs 'before' logging to protect

against program aborts.
Performs 'after' logging to protect

against file system errors.
Prevents 'Deadly Embraces'.



be prompted for the passwor'd, the password must be hardcoded into a program,
or passwords must be kept within the jobstreams on disc. Prompting the user
is unacceptable for human engineering reasons, hardcoding does not allow
for changing of User 1d's or passwords, and leaving passwords on disc leaves
them accessible to anyone who can STREAM the file. Finding none of these
alternatives acceptable, a common routine to stream batch programs was
designed. The common routine is passed the name of a template file, job
parameters, and a parameter string~

The common routine creates a jobstream from a JOB statement which it
creates and the statements contained in the template file. The JOB state­
rrent is based on the user running the program and includes all needed pass­
words. The User 1D and passwords are kept in a table in a separate, hidden
SL procedure. This allows passwords to be changed by simply modifying an
SL segment, while allowing only legitimate procedures to access the pass­
words. As a further security measure, the User 10 which is used does not
have interactive capability -- i.e., it is restricted to batch access.

The remainder of the jobstream comes from the template file. The
streaming procedure substitutes the run parameters which where passed to
it into the jobstream wherever an ampersand occurs as the first character.
This allows an interactive program to prompt the user for parameters and
to then substitute the parameters into the batch system.

HP2645A COMMON ROUTINES

The BOARDS terminal network consists of HP2645A terminals with 12K
memory connected at 2400 baud via multiplexers (one time-division mux and
one statistical mux), as well as various other. ASCII devices that dial
into standard BELL-103 type modems. Early in our design phase, we
determined the needs of programs that would use the HP2645A's in Forms
Mode, and evaluated the Hewlett Packard product, DEL/3000 2, in iight of
these requirements. This analysis resulted in two observations: 1) We
needed certain features not provided by DEL/30DD; and 2) DEL/3000 had
features we did not need or want to pay for in terms of processing time.
We therefore developed a set of COBOL-callable, SPL common routines,
that are used as a total replacement for DEL/3000. Some of the differences
between DEL/3000 and the BOARDS routines are described below.

A DEL form is made up of protected fields, whose contents are fully
defined when the form is created, and unprotected fields, whose contents
are alterable by the user and are read back to the computer whenever the
form is read. In addition to these field types, we have defined variable­
data protected fields. These fields may be filled by the program at run­
time, but are protected on the screen so that they are unalterable and are
not transmitted when the form is read. Three examples where these fields
proved useful are:

0-02.3



• The user specifies that {s)he would like to enter an order for
customer code 'ABC'. The name and address for this customer
are then retrieved from the data base and displayed on the
screen in variable-data, protected fields, for visual­
verification by and information for the terminal user.

• Whenever an unprotected field is found to be in error, it is
set blinking and a two-character error code is written to a
variable-data, protected field at the beginning of the line
that contains the field in error.

• The second line of every screen in the system is called the
Message Line. It is an BO-byte variable-data, protected
field in which the application program can inform the user
as to the status of the processing and inform the user as to
what is next expected of him/her.

DEL/30aO allows only one form to be on the screen at one time. Forms
may be chained together, but this means that after one form has been dis­
played and processed, the screen will be cleared and the next form will
be displayed. The BOARDS form routines allow multiple forms and multiple
repetitions of forms to be displayed on the screen (and in terminal memory)
at one time. This feature has 'given us the capability of having dynamically
sized screens whose length is determined at run-time. It has also given
us the ability to produce composite screens where each piece is sel~cted at
run-time from the form file. Similarly, the same form may be used as part
of more than one screen.

The BOARDS common routines allow for the programatic control of the
memory-lock feature of the HP2645A. All of the form routines function
correctly whether or not memory-lock is set.

All screens in BOARDS have a similar first line containing, among
other things, a one-byte unprotected field, called the Control Field.
Various values may be entered by the user into this field in order to
alter the normal flow of a program. Sev~ral of these values are process­
ed by the common routines and the application program is not aware that
this processing occurred. For instance, IE' means exit, IR ' means redis­
play the data in the unprotected fields. In several of 'these cases, once
the Control Field is read, there is no need to read the rest of the
screen. So when the ENTER key is depressed, the computer addresses the
cursor to the Control Field and triggers a field read. If a value has
been entered, it is processed and the rest of the screen is not read.
If a value is not found, the terminal is programatically strapped-for­
page, and a page read is triggered. This allows us to minimize terminal
I/O's which can become important since some of our screens contain several
thousand bytes of unprotected data.

D-02.4



Another Control Field value that is automatically handled by the
common routines is 'P'. Whenever this value is entered, a hardcopy
printer listing of the screen is produced. If the terminal is equipped
with an HP2631/240 character printer, the terminal is instructed to
copy the contents of terminal memory to the printer. For terminals
without attached printers, the contents of the screen (unprotected,
protected, and variable-data, protected fields) are written line-by­
line into a printer spool file.

Many program functions must operate in ·inquiry mode on both HP2645A
and other, non-screen mode, terminals. We therefore developed common
routines to allow the same application program to operate on a variety
of different terminal types for display only functions. When a program
is run from a non-HP2645A terminal, the escape-sequences are stripped out
and the unprotected, protected, and variable-data fields are combined
on a line-by-line basis and printed, in character-mode, to the terminal.

Finally, I/O error recovery is attempted in the common routines.
This is especially useful in dealing with the multiplexers, since
saturation conditions can arise that would result in lost data. When
an input error is detected, the read is re-initiated repetitively until
it is either successful or the maximum retry value is reached. If
none of the retries succeed, the screen is blanked and the form is re­
written to the terminal under the assumption that either an output
error occurred while writing the screen or the terminal user inadvert­
ently damaged or erased the screen.

VERSION NUMBER ROUTINES

The version number routines serve three purposes. First, they pro­
tect against concurrent update of a data base without locking the entire
data base throughout the transaction. Second, they allow detection of
incomplete transactions caused by system or program failures. Third,
they extend a data base lock across process boundries.

Within a data base, a logical data path is formed by data which
are logically grouped together but which may physically cross data set
boundries. An example of this is a purchase order contained in a header
record and line items which reside in a detail data set. The logical
path in this case would consist of the header record and all of the line
items.

If two users were to update the same path concurrently, some changes
might be lost. Figure II shows how two users concurrently changing a
path might 'lose' a change.

D-02.5



Time

1

2

3

FIGURE II

User A

User A gets purchase
orde r XV Z i n 0 rde r to
update it

User A adds two bo1ts
to the purchase order
and updates the data
base.

Us·er B

User B also gets pur­
chase order XVZ in
order to update it.

User B adds three nails
to the purchase order
and updates the data
~ase. However, User B
is unaware that the pur­
chase order has changed
since it was originally
obtained.

4 At this point the purchase order does not reflect the
changes that User A applied. That change was lost when
User B applied his change using the data base record
retrieved before User A's change was made.

0-02.6



To protect against concurrently updating the same path, one must
lock the data base when one begins the transaction and unlock it when the
transaction is completed. If there are many users trying to update
records in the same data base, this method is unacceptable; one user might
not finish a transaction in a timely manner and the data base will be
tied up for an extended period of ti me.

The version number routines use a data item (version number) for each
logical data path. When a transaction begins, the version number is
saved. When the user has completed all of his or her modifications and
is ready to update the data base, the data base is locked, the version
number is re-read and compared with the original version number. If the
version number has not changed, then the path has not been modified and
the program may continue with the user's modifications. At the end of the
transaction, the version number is incremented. If the version number
that was re-read has changed, the user must begin the transaction again
because the record~ within the path have changed since the transaction
began. The use of version numbers allows the data base to be locked only
when modifications are in progress while still protecting against concurrent
updates.

To detect if a transaction was only partially completed, an entry
is made in a table (called the Integrity Table) whenever a modification
begins and removed when the transaction completes. The Version Number
routines add the table entry when the version number is re-read and found
to be unchanged. The entry is deleted at the end of the transaction when
the version number is incremented. By examining the Integrity Table while
the system is quiesced, transactions which were only partially completed
can be identified.

Under IMAGE, a data base is locked by a process. If the process that
has a data base locked is aborted, the data base is unlocked. To extend
a path lock across process boundries (used for backing out of incomplete
transactions as described in the next section) the Version Number routines
examine the Integri ty Table whenever a version number is read. If an
entry is found in the table, then the path is currently locked or a trans­
action was only partially completed. In either case, the path is inacces­
sible and modifications are not allowed.

DATA BASE ACCESS COMMON ROUTINES

From a programmer's point of view, the data base routines are functional
equivalents to their IMAGE counterparts. While performing as their IMAGE
counterparts-, the access routines are also performing 'before' and 'after'
logging of all transactions as well as protecting against deadlocks when
the data bases are locked.

0-02.7



Protection against deadlocks was accomplished by requiring that all
data bases be locked at the same time (i .e., one call). The Data Base
Access routine then locks the data bases in lexicographical order.

Two types of logging take place; 'before' and 'after'. 'Before' logging
consists of saving a copy of all records associated with the transaction
before any modifications are done. The 'before' log is essentially a
snapshot of the data base before the transaction took place. 'After'
logging consists of saving a copy of all records associated with the trans­
action after modifications are done. The 'after' log is essentially a
snapshot of the data base after the transaction takes place.

'BEFORE LOGGING'

The 'before' log is used to restore the data base to its original state
should the transaction process complete abnormally. 'Before' logging is
done to Extra Data Segments to improve performance.

Since IMAGE requires a call to the GET procedure before a recond can
be updated or deleted, all GETs are logged as they 'are performed. If the
retrieved record is later updated or deleted, we record that information
in the Extra Data segment. Likewise, all PUTs to the data base are also
recorded in the EDS. Because the order of modifications is important,
each individual data base modification is assigned a sequence number which
is saved along with its buffer. If the transaction completes successfully,
the 'before' log is purged. If the program does not complete successfully,
the log remains which allows the data base to be restored to its state
before the transaction began.

THE DRIVER PROGRAM AND TRANSACTION BACKOUT

The operating system, MPE, provides for mUltiple processes to communi­
cate via the Job Control Word (JCW) facility. The JCW is set to an error
value by MPE whenever a program terminates in an error state. A program
may also set the Jew to a particular value indicating an unsuccessful trans­
action. By examining the JCW, a father process can tell if a son process
completed successfully, was aborted by MPE, or terminated due to an error
condition. This facility is used by a program known as the Driver to
oversee the operation of all programs within BOARDS.

All programs within BOARDS are son processes of the Driver. It is
the Driver's function to prompt the user for the function (s)he wishes
to perform and then inltiate the correct program to handle the user's
function. The Driver then sleeps, waiting for the program to complete.
If the program does not complete successfully, the Driver initiates a
program known as Automatic Backout whose function is to restore the data
base to its original state. Figure III shows the control and data flow in
the case that a program aborts.

0-02.8



FIGURE III

Trans­
action
Program

DB Acces
Routines

Control Flow..
Data Flow..

1. . The driver ini ti ates a transacti on program on Request from user.
2. The program through the Data Base Access routines retrieves and updatesthe data base. Logging takes place to extra data segments.
3. The program aborts. MPE or the program sets a JCW to an error value.
4. The Automatic Backout program is initiated to restore the data baseto its initial state.

5. Automatic Backout restores the data base.

6. Control is returned to the driver and it is ready to process nextusers request.

0-02.9



Automatic Backout retrieves the Extra Data segments which contain
the before record and applies the opposite operation as the aborted
program applied. Figure IV summarizes the required operations.
All transactions are done in the reverse order that they were done by
the aborted program. This is necessary to insure that updates are done
in the correct order and that IMAGE master/detail constraints are
satisfied.

'AFTER LOGGING'

'After' logging is used to protect against data base transactions
beging lost because of some error which makes the data base unusable.
In such a case, an old version of the data base must be restored. If
transactions were not logged, then all transactions that were entered
since the time of the backup must be re-entered by the user. By logging
the transactions as they occur to a tape, a program can be run to perform
the data bases transactions which are recorded on the tape. In this
manner, users need not re-enter data in order to recover from the loss
of a data base.

The Data Base Access routines call upon the Malkin and Pinton
transaction 10gging3 system to perform the lafter l logging.

CONCLUSION

Through the use of common routines, the features of MPE and other
HP-supplied system software have been expanded and utilized in COBOL
application programs, without requiring that the programmers become
familiar with MPE or SPL. These common routines serve as an Extended
Operating Environment for the application programs within BOARDS.

D-02.10



FIGURE IV

DATA BASE
OPERATION PERFORMED FIXUP OPERATION COMMENTS

PUT DELETE

UPDATE UPDATE with 'before' record

DELETE PUT

D-02.11



REFERENCES

1) DiGiammarino, P. and Schwartz, R., Decision Support System for the
Management of Containerboard Logistics, 1978.

2) Data Entry Library Reference Manual, Hewlett Packard, Santa Clara
California, 1977.

3) Malkin and Pinton Industrial Supplies, Transaction Logging System for
the HP3000 Computer System, Vancouver, British Colombia,
Canada, 1977.

0-02.12



BEACON/GUARDIAN: INSTALLATION MANAGEMENT SOLUTIONS
IN SEARCH OF ELUSIVE PROBLEMS

WAYNE E. HOLT
WHITMAN COLLEGE

SYNOPSIS

Solutions in search of problems? It sounds odd but really isn't.

These two software modules are solutions to a very specific type of

installation management problem, and frankly would not be useful to

most shops.

Guardian is a security module designed to increase the security

provisions on both data files and program files in an environment

where multiple users work in the same group and account, yet each

have varying, overlapping, and often contradictory responsibilities.

It is especially designed for the type of site where Users are totally

responsible for data entry and report generation, both on-l ine and

batch, rather than a site where the central DP shop handles everything.

BEACON (~atch ~ntry ~ccess COUtrol) is a companion module to Guardian.

If the site allows Users to stream jobs at will, someone or something

has to play policeman and handle the traffic according to pre-defined

rules (or in-flight instructions) in order to prevent the system from

becoming clogged and dying. BEACON handles all job schedules, both

regular cyclic and demand-mode jobs; it controls the number of jobs

allowed to run simultaneously based upon system load and time of day;

it modifies quantum, tpri, cpri, and dpri based upon time of day; it

provides the DP Center with a concise monitor of all computer activity

in a convenient format on any designated terminal; and it provides an

easy to use method of rescheduling or expediting jobs.

D-12.1



These software modules are designed to operate in a User-oriented

data processing center. The application packages that are used are

specifically designed to enable a non-sophisticated User to very

quickly learn to operate the terminals and become productive. Smart

terminals (2645A's) with softkeys provide the tools needed to allow

this type of user to request jobs with little or no understanding

of the events set in motion by the request. Without BEACON/Guardian,

such a shop would be difficult to manage successfully.

I I DATA PROCESSING PHILOSOPHY

Whitman College is typical of many of the current wave of "emerging"

computer users. It had enjoyed a very modest degree of involvement

with data processing for many years, primarily for business and

financial uses. Such involvement called for few resources to be

expended since the needs were correspondingly few. The times changed

and it found itself unprepared to compete with those colleges that

were using modern information technology to pursue a diminishing

supply of student applicants.

Because of its size, it would be quite difficult to create and staff

a large Data Processing Center, complete with both Systems and Operations

personnel. The only viable alternative was to establish a Center whose

philosophy was oriented toward total control by the User of the actual

"data processing" function. The systems design and programming functions

were retained by the Center, with the User required to know little more

than :HELLO and :BYE in order to be fully effective.

A smart terminal, the HP2645A, is the hardware link that allows the

User-oriented software to function smoothly. Application programs

using either DEL or VIEW enable sophisticated screen techniques to

facilitate data entry by non-DP personnel. These programs download

the terminal softkeys with run instructions in such a manner that the

User needs only to press a single key to initiate a job.

D-12.2



The actual technique is relatively simple (refer to Figure 1). After

fi rst loadi ng the softkeys by means of a cassette tape or computer

program, the User presses the key that best describes the type of

work needed to be performed. This causes a program to be initiated

that presents the User with a menu (Figure 2). The User selects the

job function to be performed by keying an "X" in the appropriate box.

Note that the menu lists items in plain English, using phrases that

the User understands. The menu program then downloads a softkey

with the necessary :RUN or :STREAM command, along with generating

any required :FILE statements. The User then presses that key when

ready to begin work.

The drawbacks to implementation of this type of philosophy is that it

causes problems in two major areas: security and system performance.

For these reasons, Guardian and BEACON were designed. They are the

software tools that make this kind of environment manageable.

I I I THE GUARDIAN SYSTEM

The MPE file management system provides levels of security that perform

quite well in most situations, particularly where a central organization

is responsible for production job set-up and related processing. It

still functions in a user-controlled environment, but not with the

same degree of effectiveness.

Consider, for example, a Registrars Office. This type of office usually

has a mixture of regular and part-time staff, each with varying degrees

of responsibility. Even among the regular staff, certain functions

such as grade adjustments can only be performed by specific individuals

within the office. When this office is automated in a manner described

earlier, the traditional approach of adding lockwords can cause more

security breaches than it prevents. Requiring a User to learn multiple

passwords usually tends to promote a casual attitude toward such things.

D-12.3



Some Users, when faced with such an array of mumbo-jumbo, have

actually been known to post the passwords on the Terminal itself!!

A User should only be required to know his/her own unique Log-on,

and it should NOT be shared with anyone else or known by anyone else

except, of course, the System Manager.

The approach taken by Guardian is very simple. The Security File

contains an entry for every valid User and the corresponding programs

that he/she is allowed to run. All production software calls Guardian

to validate each request to run a program. Guardian also checks the

authorized run time and User terminal number as well, treating any

violations as potential security breaches.

Further, all important data files are lockworded. Users do NOT know

these lockwords; rather, they are known only by Guardian, which

supplies them when the files are opened. This implies that Users

have no access to their data except through approved software that

interfaces with Guardian. Unfortunately, this also provides an obvious

path for security breaches, since only a single password is needed to

run any particular program to which a given User has access. On the

other hand, all approved production software creates standard audit

trails that can be analyzed for irregularities. Thus, the "most obvious

path" is also the most dangerous for any potential security violator.

This software technique, oriented toward the specific User, is coupled

with normal MPE methods to provide a high level of security for all

situations. There are two program modules in the Guardian system. Refer

to Figure 3 for the interrelationships with the BEACON system.

Guardian. This module is a called subroutine, executed by any program

in production mode. it is responsible for

o Authorizing a specific User to have access to a given
program,

o Verifying the time of day of use of the program,
o Verifying the location of the terminal being used, and
o Opening all required files for the calling program.

It returns status flags and file buffers to the calling program upon

successful termination.

D-12.4



Sentinel. This module is a stand alone program that is used to build

entries in the Security File. It is used to create and modify the records

that provide Guardian with the information it uses to verify log-on

requests by Users. Using prompt-answer techniques, it presents all

known programs and jobs to the Manager for yes-no responses in relationship

to a User's capabilities. It uses the Activity File in the BEACON system

as a source for this information.

IV THE BEACON SYSTEM

When Users have the capability of performing almost any task (data entry,

report generation, file maintenance, etc.) whenever they choose to do so,

the computer system is not going to perform well. The Computer Center

could set the system limits down to ensure good response time in a FIFO

(First In First Out) situation, but overall throughput would suffer at

the hands of such arbitrary measures. Constant operator intervention

would be required to manage such a situation, thus defeating the

whole purpose.

BEACON is designed to remedy this situation. Fundamentally, its primary

purpose is to take a batch job request from a User and run it at the

appropriate time in an efficient manner. In order to do this, BEACON

actually performs a wide variety of tasks. These tasks are split between

various program modules. Please refer to Figure 3.

Gopher. This module is a called subroutine, executed by any program

that requests a job to be launched. The calling program passes the name

of the job to be launched and any associated run time parameters to

Gopher, which in turn builds a Job Request Record in the Activity File.

It builds the record based on the contents of a Priority Record permanently

resident in the Activity Fi Ie, which includes

o Execution priority on a scale of I (high) to 9 (low),
o Literal Description of the Job,
o Normal start time (HH:MM), and
o Average run duration in minutes.

The Job Request Record is built as a "one time" record and will eventually

0-12.5



be deleted when launched by BEACON. A Wizard number is assigned to

each Job Request Record and is returned to the calling program by

Gopher.

Wizard. This module is a stand-alone program that should be run by

the operator or account manager. It is designed to perform a wide

variety of tasks associated with running the BEACON module.

It is the tool that is used to modify the contents of the Job Request

Records in the Activity File when responding to spot requests by the Users.

Any key field can be altered -- date, time, or priority of launch. Also,

hot jobs can be placed in a demand-mode launch priority regardless of the

System load if the priority is altered to "0 11
•

One of its most important functions is to build a Job Request Record for

IIpermanent" or " cyc lic" jobs. These records are identical to the

lIone-time" Job Request Records except that the run interval prevents them

from being deleted by BEACON after launching.

Wizard also maintains the Clock Records on the Activity File. These 24

records control various parameters that affect system performance:

o Default execution priority for batch jobs,
o Maximum execution priority for both batch and sessions,
o Quantum, tpri, cpri, dpri,
o BEACON delay interval,
o Video monitor LDEV number assignment, and
o BEACON status flag.

Wizard can modify any of these items; BEACON will implement them

automatically. This allows an unmanned system to "tune" itself as

the workload shifts during the 24-hour day.

Snoopy. This module is designed to be run by the User as well as

the operator. It produces a formatted display (on either the terminal

or the line printer) of all jobs waiting to be launched and their expected

launch times. Snoopy takes into account the average run times as well

as the System Job limits from the various Clock records in order to

create as accurate a forecast as possible.

D-12.6



BEACON. The BEACON module itself is actually quite simple and very

efficient in terms of system resource utilization. It is designed to

be constantly " Up" as a streamed job although it is normally in a

"s leep ll mode. It could be run in an interactive session if there were

an unused port, but this is not likely. It can be started and stopped

by Wizard, which also controls the frequency of waking up.

Upon waking up, BEACON checks the System clock and reads the appropriate

Clock Record in the Activity File. It then adjusts any system

parameters that may have been changed since the last time that it was

awake.

Next, it reads the Job Request Records on the Activity File in a

sequential mode and determines if a job is ready to be launched by

comparing the time fields. If there is a priority "0" (demand-mode)

job in the queue it will be launched immediately. BEACON will continue

searching the Job Request Records until they are all examined or a

Ill aunch ready" status is determined for one of them. If no job is

ready to launch, BEACON wi 11 skip on to the next step. Otherwise,

it checks the system load and determines whether to launch or not.

If a job is launched, BEACON will then log the System Job number and the

exact launch time in the Job Request Record and do a KSAM delete.

Note that this only "flags" the record for deletion and renders it

invisible to BEACON. It will also regenerate any 'Ipermanent'l Job

Request Record with the new launch date/time.

The next step is optional, depending upon a flag set in the current

Clock Record. If a valid LDEV has been specified, BEACON will output

a current system status display, showing important system performance

data. This display could easi ly be connected to a large video monitor

for informational display purposes.

BEACON then goes to sleep for the period of time specified in the

current Clock Record.

D-12.7



Reporter. This module is used to generate an Activity Summary report

that analyzes BEACON's performance. It is run prior to the daily

FCOPY "cleanup" of the deleted records on the Activity File. It finds

the Job Request Records of all launched jobs and compares expected

launch time with actual launch time and calculates various statistics.

Such a report is valuable in setting the values in the Clock Records

in the Activity File. It also matches the Wizard number with the final

Job number, as an aid in tracking down "lost" jobs.

0-12.8



Tape with Soft Keys

Manual load when the
terminal is turned on

•.•• (OR) ..•.
1: RUN KEY LOADI

v

SCREEN SCREEN PRINTED BULK

I fl f2 i ( f3 I I f4 Soft Key Assignments

REPO~T INPUT REPORT INPUT Depending on which key
the User selects, a job

f5 f6 I J f7 I I f8 wi II be initiated.

HELP SYS1EM RUN COpy

/
User Selects a choice from the
menu and enters an "X".

The f7[RUN] key is then pressed •~[ Men:]
........1-f 7-

~/RUN

r------__ ...-------_

Menu

Generator

: STREAM

(Batch)

:RUN

(I nteract ive~

Figure 1

D-12.9



?
.......
I\).
.......
o

I BATCH REPORT MENU I
Master Admissions Candidate List 0 Specialized Candidate List 0
Area Admissions Candidate List 0 Alphabetic Masterfile List D

Completed Applicant List 0 Specialized Applicant List 0
School Geographic List 0 Paid Applicant List 0
Final Annual Admissions Report 0 CEEB Information Report 0
Admission Inquiry Labels 0 High School Labels 0
Completed Applicant Medians 0 Inquiry Methods Performance Chart 0
High School Acknowledgements 0 Masterfile Totals List Ii

~ .

I Student Admissions System I

Figure 2



App 1i ca t ion
Prop ram

I

c=='J 0 Security ~ : II Guardian II~
-. 0 Fi le Opens ..ctI---....1Il"'"

USER

Figure 3





LANGUAGES

Series "Ell





THE CHANGING WORLD OF COBOL

GREG GLOSS

HP GENERAL SYSTEMS

This talk will cover some of the differences between COBOL/3000 and ANSI
COBOL-74 along with how HP users will be able to convert. There will also
be a brief discussion of the directions the ANSI COBOL Committee is taking
with the next version of the COBOL Standard.

NEW FEATURES IN COBOL-74

1. Indexed I/O
2. Relative I/O
3. Enhanced SORT/MERGE Facility
4. File Status
5. STRING/UNSTRING
6. Multiple COPYLIB Files

CONVERSION CONSIDERATIONS

1. Conversion Guide/Program
2. FIPS Pub 43
3. New Reserved Words
4. EXAMINE vs. INSPECT
5. Microcode Support
6. COPYLIB Editor
7. REMARKS/NOTE Paragraphs deleted

COBOL-BO DIRECTIONS (NOT FINAL)

I. NEW FEATURES

A. CODASYL Data Base Facility
B. Reference Modification
C. 4B Levels of Subscripting
D. USAGE BIT

E-04.1



II. FEATURES TO BE PHASED OUT OR DELETED

A. 77 &66 Level Data items
B~ LABEL RECORDS Clause/VALUE OF Clause
C. ADD/SUBTRACT CORRESPONDING
D. ALTER Statement
E. PICTURE Character A
F. Most IDENTIFICATION DIVISION Paragraphs
G. File related clauses moved
H. INSPECT TALLYING...REPLACING

E-04.2



THE CHANGING WORLD OF COBOL

• NEW FEATURES IN COBOL-74

• CONVERSION CONSIDERATIONS

• COBOL-80

E-04.3



NEW FEATURES

• INDEXED I/O

• RELATIVE I/O

• ENHANCED SORT/MERGE FACILITY

• FILE STATUS

• STRING/UNSTRING

• MULTIPLE COYPLIB FILES

E-B4.4



S 0 RT S TAT EMEN T

SORT FILE-NAME-l ON {ASCENDING } KEY DATA-NAME-l GATA-NAME-~ I I I

DESCENDING

ON {;ASCEND ING ;} KEY DATA-NAME-3 ~ATA-NAME-~DESCENDING • I I • I •

~OLLATING SEQUENCE IS ALPHABET-NAM~

INPUT PROCEDURE IS SECTION-NAME-l [{±~~~UGHJ SECTION-NAME-~
US ING FILE-NAME-2 [ FILE-NAME-~ ..• •

OUTPUT PROCEDURE IS SECTION-NAME-3 [(~~~~UGHJ SECTION-NAME-~
GIVING FILE-NAME-4



MER GEST ATE MEN T

MERGE FILE-NAME-l ON ~SCENDING ~ KEY DATA-NAME-l [DATA-NAME-~ • • •..D..ESCEND ING

ON ASCENDING ~ KEY DATA-NAME-3 [DATA-NAME-~
DESCENDING • • • • • •

[COLLATING SEQUENCE IS ALPHABET-NAM~

USING FILE-NAME-2, FILE-NAME-3 [FILE-NAME-~ •• ,

OUTPUT PROCEDURE IS SECTION-NAME-l [Ci~:~UGH) SECTION-NAME-2]

GIVING FILE-NAME-5



S T RI NG S TAT EMEN T

STRING ~DENTIFIER-i\
~ITERAL-l J

~DENTIFIER-4}
J~ITERAL-4

[ ~ e
lDENTI FI ER-3}

JIDENTIFIER-2 ... DELIMITED BY LITERAL-3
JLITERAL-2 SIZE

[ 5J C
I DENT IFIER-6}

JIDENTIFIER- . I • DELIMITED BY LITERAL-6 I ••

JLITERAL-5 SIZE

INTO IDENTIFIER-7 [WITH POINTER IDENTIFIER-a]

GON OVERFLOW IMPERATIVE-STATEMENT]



UNS T R I NG

UNSTRING IDENTIFIER-l

S TAT E MEN T

DELIMITED BY rAL~ rIDENTIFIER-2} ~OR fALL] rIDENTIFIER-3}
L \:ITERAL-I L ~LITERAL-2

• • •

INTO IDENTIFIER-4 [DELIMITER IN IDENTIFIER-S] [COUNT IN IDENTIFIER-6]

[IDENTIFIER-7 [DELIMITER IN IDENTIFIER-~ [COUNT IN IDENTIFIER-~ J, . ,
[WITH POINTER IDENTIFIER-IO] [rALLYING IN IDENTIFIER-I~

[!ON OVERFLOW IMPERATIVE-STATEMENT]



CONVERSION CONSIDERATIONS

• CONVERSION GUIDE/PROGRAM

• FIPS PUB 43

• NEW RESERVED WORDS

• EXAMINE/INSPECT

• MICROCODE SUPPORT

• COPYLIB EDITOR

• REMARKS/NOTE PARAGRAPH

E-04.9



FEDERAL INFORMATION
PROCESSING STANDARD~ PUBLICATION

1975 DECEMBER 1

FIPS
.-.. , ......

•. ' oJ

f'?
" " ..

-----_. ----~--

AIDS FOR
COBOL PROGRAM

CONVERSION
(FIPS PUB 21 to FIPS PUB 21-1)

CATEGORY: SOFTWARE
SUBCATEGORY: PROGRAMMING LANGUAGE

L
For ••Ie by the SUPf'rina..ndent or Document.. U.S. Gonrnment Printinll O"'~. Wuhintton. D.c.. totO% • Prire 11.10

Stork Number 003-003-o14R3-4 C.l.lo~ t\umber C U.~2:43



The following Reserved Words have been added to ANSI COBOL in the
1974 standard:

ALSO
BOTTOM
CANCEL
CD
CHARACTER
CODE-SET
COLLATING
COMMUNICATION
COUNT
DATE
DAY
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-l
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING
DELETE
DELIMITED
DELIMITER
DESTINATION
DISABLE
DUPLICATES
DYNAMIC
EGI
EMI
ENABLE
END-OF-PAGE
EOP
ESI
EXCEPTION
EXTEND
INITIAL
INSPECT

LENGTH
LINAGE
LINAGE-COUNTER
~~ERGE

t1ESSAGE
NATIVE
ORGANIZATION
OVERFLOl~

POINTER
PRINTING
PROCEDURES
QUEUE
RECEIVE
REFERENCES
RELATIVE
REMOVAL
REURITE
SEGMENT
SEND
SEPARATE
SEQUENCE
SORT-~4ERGE
STANDARD-1
START
STRING
SUB-QUEUE-l
SUB-OUEUE-2
SUB-QUEUE-3
SUPPRESS
SYt4BOLIC
TABLE
TERMINAL
TEXT
TIt1E
TRAILING
UNSTRING

E-04.11



The following words are tentatively planned for HP extensions
to COBOL at a future date. This list is subject to change.

COl
C02
C03
C04
COS
C06
C07
COB
C09
C10
Cll
C12
CC
CONDITIONALLY
EBCDIC
EXCLUSIVE
EXDATE
FREE

INTRINSIC
LABELS
NOlIST
SEQ
S\~O

SWl
SW2
SW3
SW4
SW5
SU6
SI~7

S\~8

S\~9

UN-EXCLUSIVE
VOL
WHEN-COMPILED

E-e4.12



EXAMIN E

EXAMINE IDENTIFIER

S TAT E MEN T

UNTIL FIRST}
TALLYING ALL LITERAL-l [REPLACING BY LITERAL-2]

LEADING

ALL
REPLACING LEADING LITERAL-3 BY LITERAL-4

[UNTIL] FIRST



INSPECT STATEMENT

Forma t 1

INSPECT identifier-l TALLYING

Format 2

INSPECT identifier-l REPLACING

!identifier-6} [!BEFORE} INITIAL {ldentifier-7}]
CHARACTERS BY \11teral-4 'AFTER I1teral-5

{ {
All J{ 'identifier-5J BY {ident1fie r-6} [{BEFORE) INITIAL

• ~ • \11teral-3 -- I1teral-4 AfTER JFIRST --
(ident Hler-7}1} r:7':1} r:7:l111 teral-5 L:...:..:J ~

Format 3

INSPECT identifier-l TALLYING

{ { {
{ ALL 1{lident1fler-)1~ ~{BEfOR[l INITIAL {ltdletnert~fl_le2r-4)]}r-:l... Jo..• identifler-2 FOR • LEADINC lteral-l J AFTER _ ~
CHARACTERS --

REPLACING

CHARACTERS BY {ldent1fler-6} [{BEFORE}
=~~= - l1teral-4 AFTER

{. {~~lNCl {. {identifier-5} BYl 1FIRST l1teul-)-

INITIAL {tdentifler-7Jl
l1ural-S

E-04.14

INlTlAL {
i dent if ler-7J]J r;-:-:'I] r.7'l
llteul-S "-'-" ~



NEW FEATURES FOR COBOL-80

• CODASYL DATA BASE FACILITY

• REFERENCE MODIFICATION

• 48-LEVEL SUBSCRIPTING

• USAGE BIT



FEATURES TO BE PHASED OUT IN COBOL-80

--
• 77 AND 66 LEVEL DATA ITEMS

• LABEL RECORDS CLAUSE/VALUE OF CLAUSE

• ADD/SUBTRACT CORRESPONDING

• ALTER STATEMENT

• PICTURE CHARACTER "A"

• MOST IDENTIFICATION DIVISION PARAGRAPHS

• FILE RELATED CLAUSES MOVED BETWEEN
ENVIRONMENT AND DATA DIVISIONS

• INSPECT TALLYING ...REPLACING

E-04.16



TIPS ON CONVERTING IBM FORTRAN PROGRAMS

TO THE

HP 3000

BY

GARY ANDERSON AND DEEPAK SINHA

McMASTER UNIVERSITY

A. INTRODUCTION

This paper will be useful to anyone wishing to embark
on the task of converting IBM FORTRAN software'to the HP
3000 Series II or Series III computers. It should also be
helpful to anyone who wishes to consider the general
question of program portability to the HP 3000.

The material presented here is based primarily on the
experience of the authors resulting from the successful
conversion of the BMDP and SPSS statistical systems to HP
3000 Series II.

The problems encountered during these projects arose
largely from the following four sources:

1) Incompatibilities
3000/FORTRAN.

between IBM/FORTRAN and HP

2) Architectural features of HP 3000 Series II
computer which impose certain restrictions on
programs it can run.

3) Difference between the EBCDIC and ASCII character
sets.

4) Difficulties with some library functions on the
HP 3000.

The following sections attempt to cover the above
problem areas and our proposed solutions in detail.

E-8.1



B. FORTRAN incompatibilities between IBM and the HP
3000

B.l) Type declaration order:

The order in which type declarations can be made is
more restrictive on the HP 3000 than on IBM. All type
declarations must be made before any DATA statements on
the HP 3000. Further, the data declarations cannot be
interspersed with type spe~ifications. For example,
consider the following FORTRAN code for IBM and its
equivalent on the HP 3000:

IBM

SUBROUTINE EXl
.

REAL B( 3 ) 11 • ,2. ,3. I , A, D
INTEGER*2 I, J/9/,K
DATA K/5/,A/4.5/
INTEGER*4 INTI, INT2

END

HP 3000

SUBROUTINE EXl

REAL B(3), A,D
INTEGER*2 I,J,K
INTEGER*4 INTI, INT2
DATA Bf 1. ,2. , 3 • f
DATA J/9/, K/5/, A/4.51

END

B.2) REAL and INTEGER specifications:

IBM FORTRAN allows REAL*8 and REAL*4 type
specifications. On the HP 3000 REAL*8 must be replaced by
DOUBLE PRECISION and REAL*4 simply by REAL wherever they
occur.

The use of INTEGER*4 and INTEGER*2 specification on
IBM is compatible with the HP 3000 and needs no change.

It must be pointed out that the default integer size
on IBM is 32 bits, i.e. any variable specified as
INTEGER*4, INTEGER, or any integer constant (e.g. 1,2,99,
etc.) has a length of 32 bits. On the HP 3000, the default
integer length is 16 bits. This incompatibility can be
easily removed, however, by including the $INTEGER*4
command ahead of the source-code before compilation.
Consider the following equivalent examples on the two
machines.

E-B.2



The lengths of the REAL and DOUBLE PRECISION
variables on both the machines are 32 bits and 64 bits
respectively.. (Remember, though, that the length of
DOUBLE PRECISION variables on the HP 3000 CX machine is 48
bits).

B.3) Mixed specifications:

IBM FORTRAN allows double preclslon and real
variables to be declared in the same statement by
appending *2 or *4 to the variable name. The IBM
convention of appending *(number) to a variable or
function name is totally unacceptable on HP 3000.
Consider the following equivalent examples:

E-8.3



IBM

REAL FUNCTION EX3*8(N)
REAL *8 A,B*4,C
INTEGER I,J*2,K*4

END
INTEGER FUNCTION INT*2(I)

END

B.4) Logical variables:

HP 3000

FUNCTION EX3(N)
DOUBLE PRECISION A,C,EX3
REAL B
INTEGER*4 I,K
INTEGER*2 J

END
FUNCTION INT(I)
INTEGER*2 INT

END

There are two kinds of logical variables in IBM
FORTRAN; One byte logical variables, which are typed using
the LOGICAL*1 declaration, and 4 byte logical variables,
which are typed using the LOGICAL declaration. All
logical variables in HP 3000 FORTRAN have a length of 2
bytes.

LOGICAL*l variables or arrays in IBM programs are
often used to store character strings only, and logical
tests are not performed on them. In this case, these
variables or arrays can simply be typed as CHARACTER*1 on
HP 3000 and they become exactly equivalent.

When LOGICAL*' and LOGICAL variables or arrays are
being used in the logical context (i.e. logical tests are
being performed on them and they are set to TRUE or FALSE,
etc.) then there are clearly two options:-

a) Declare them as LOGICAL on HP 3000, but with
caution. What if those variables or arrays are
equivalenced with some other arrays? Or, what if
they are a part of some other big array, the
starting address being passed through a
subroutine .call? Clearly, the IBM calculations
for the space required by the array will need
readjustment in HP 3000 programs. Also, since
the lengths of IBM LOGICAL, REAL and INTEGER
words are the same, an array declared as REAL or
INTEGER in one subroutine can be declared as
LOGICAL and interpreted logically in another
subroutine and vice-versa. This operation is

E-8.4



obviously invalid on the HP 3000 because of thelength difference of a logical variable.

b) Declare a LOGICAL*1 variable as CHARACTER*1 and aLOGICAL variable as an INTEGER or REAL. All thelogical tests, initializations and assignmentstatements will then have to be changed.Consider the following equivalent examples forthis case:

IBM HP 3000

PROGRAM EX4
LOGICAL*1 A,B
LOGICAL X,Y
IF (A) G=G+1
IF (X) Y=FALSE
B = FALSE

END

PROGRAM EX4
CHARACTER A,B,CTRUE, CFALSE
INTEGER X,Y,ITRUE, IFALSE
DATA CTRUE/%1C/, CFALSE/$OCI
DATA TRUE/1/, IFALSE/O/
IF (A.EO. CTRUE) G = G + 1
IF (X. EO. ITRUE) Y = IFALSE
B = CFALSE

END

Another fact to note is that the bit representationfor the constant TRUE is different on the two machines:

Bit

IBM HP 3000

Bit 0 1 14 15

6,- --1· ". q.... '1· 1"' " OJ =-1 )J= L__ ._~--.... °-0 I 6-r:-.. 0 : 0 ( =0 )
••_ - < 1_ ..••• _ I . I.. ..-

In view of the above facts it is not possible to givea pat solution for every problem arising out of the use ofLOGICALs but it is recommended that every situationinvolving these variables should be examined carefully.
B.5) Hexadecimal constants:

IBM FORTRAN allows initialization of variables usinghexadecimal constants (e.g. Z18005024 etc.). They are notallowed in HP 3000 FORTRAN and must, therefore, bereplaced by octal or some other equivalent constant.
B.6) Branching control in subroutine calls:

The character n&" in an IBM subroutine call statementis used to control branching on return from the

E-8.5



subroutine. It must be replaced by "$" on HP 3000.
Consider the examples:

IBM

PROGRAM EX5
DATA A/Z123456781
CALL SUB (A,B, &10)

HP 3000

PROGRAM EX5
DATA A/%0221505317R/
CALL SUB (A,B, $10)

10 I = I + 1

.
END

10 I = I + 1

END

B.1) Type incompatibilities:

IBM FORTRAN allows incompatibility between the types
of the actual arguments (those provided in a CALL
statement) and the dummy arguments (those within a
subroutine). For example, a REAL argument can be passed
to a subroutine whose corresponding dummy argument is
INTEGER. The HP 3000 allows such incompatibilities only
if a $CONTROL CHECK=2 statement has been included ahead of
the subroutine before compilation. The following
equivalent examples further clarify this point.

IBM HP 3000

PROGRAM EX6 PROGRAM EX6
REAL A REAL A
CALL SUB (A) CALL SUB (A)

END END
SUBROUTINE SUB (I) $CONTROL CHECK = 2
1NTEGER*4 I SUBROUTINE SUB (I)

INTEGER*4 I

.
END END

8.8) Array bound s:

A dynamic array bound must be a dummy argument of the
subroutine statement in HP 3000 FORTRAN. Two equivalent
examples are given below and some comments are made:

E-8.6



IBM

SUBROUTINE EX7 (A,B)
REAL A(N), B(M), C(L)
COMMON/ABC/M,N
READ (5,10) A
WRITE (6,11) B

ENTRY DUMB (C,L)

.
END
SUBROUTINE XYZ (P,I)
REAL P(l)..
END

HP 3000

SUBROUTINE EX1 (A,B)
REAL A(1), B(1), C(1)
COMMON/ABC/M,N
READ (5,10) (A(I), I=1,N)
WRITE (6,11) (B(I), I:1,M)

ENTRY DUMB (C,L)

END
SUBROUTINE XYZ (P,I)
REAL P(I)

END

It should be noted in the above examples that
subroutine XYZ needed no modification because I, the
dynamic bound of array P, is a dummy argument of
subroutine XYZ; but M, Nand L were not dummy arguments of
subroutine EX7 and hence could not be used for
dimensioning A, B, and C. Note that L is a dummy argument
of entry DUMB but that is not sufficient. The implicit
length of the arrays A, B, and C was changed to 1 but this
required the modification of all the READs, WRITEs or any
other statements using the implicit length of the arrays.

\

B.9) Basic external functions:

All
FORTRAN,
require
must be
but this

the basic external functions in the HP 3000
particularly the double precision functions,

explicit typing in a program. For example, DSQRT
declared as DOUBLE PRECISION in the HP program,

is not necessary in an IBM program.

B.10} Scientific subroutine library functions:

Certain IBM scientific subroutine library routines
like GAMA, DGAMA, LGAMA and DLGAMA are available on HP
3000 but under the names GAMMA, DGAMMA, LGAMMA and DLGAMMA
respectively. (Note the two Mis in the spellings).

B.11) Length of common blocks:

IBM FORTRAN allows the length of a labelled (or
named) common block to vary from one subroutine to
another. HP 3000 FORTRAN permits this phenomenon only for

E-8.7



a single blank (or unnamed) common block. All the
labelled common blocks must be of the same length in every
sUbprogram or else a segmenter error results. The
following equivalent examples contain one proposed
solution.

IBM

PROGRAM EX9
COMMON/A/A,B,C(10)

END
SUBROUTINE ONE (I,J,K)
COMMON/A/P

END
SUBROUTINE TWO (X)
COMMON/A/A,Y,Z(100)

END

HP 3000

PROGRAM EX9
COMMON/A/A,B,C(10), PAD (90)

.
END
~UBROUTINE ONE (I,J,K)
COMMON/A/P, PAD (101)

END
SUBROUTINE TWO (X)
COMMON/A/A,Y,Z(100)

END

In order to determine the maximum length of a common
block, the source should be compiled with the $CONTROL
MAP, CROSSREF ALL option. This enables one to know which
surbroutines use a particular common block and what the
lengths are of the common blocks in those subroutines.

C. RESTRICTIONS DUE TO HP 3000 SYSTEM ARCHITECTURE

C.1) Variables in COMMON or DATA:

The total number of variables declared in different
COMMON blocks or DATA statements must not exceed 255 on HP
3000. The reason for this is that the compiler places the
address of each such variable or array in the primary DB
area of the stack and the DB relative addressing is not
allowed to exceed 255 words by the system.

The problems imposed by this restriction have proven
to be extremely difficult, especially in the conversion of
a big system like SPSS.

One solution is:

a) Eliminate a common block by including all or some
of its variables in the argument list of the
affected subroutines.

E-B.B



b) Eliminate a DATA declaration by initializing its
variables using assigment statements in the code.
This process, however, cannot be carried out
indiscriminately. There is one very important
consideration to keep in mind when comtemplating
this change. A DATA variable is like a global
variable, in other words it retains its value
throughout the program execution. For example,
suppose that a subroutine, when entered once, set
the value of some variable A; now, when it was
entered again, if A was not a global variable,
its value would be indefinite. By being removed
from a DATA declaration, the status of a variable
is changed from global to local. Hence, before
removing a variable from a DATA statement one
needs to understand the program logic to
ascertain whether or not this particular variable
needs to be global. Only those DATA variables,
not required to be global, may be initialized by
assignment statements.

It is the experience of the authors that this process
can be tedious, time consuming and has the potential for
introducing an unending string of "bugs" in a program.

A new capability likely to be available in the future
version of the FORTRAN compiler may remove this
restriction, at the expense of execution time, by
providing the $MORECOM compiler option.

C.2) Subroutine arguments:

The maximum number of arguments in a single
subroutine on HP 3000 cannot exceed 54. The reason for
this limitation is that whenever a subroutine or function
is called, the address or values of the actual arguments
and a four word stack marker are placed on the stack and
Q-minus addresses are assigned to them. Q-minus
addressing cannot exceed 63 words, hence the limit.

C.3) Local variables:

On an IBM machine, the local variables within a
subprogram retain their values between calls to this
subprogram, unless this subprogram happens to be overlaid
with another subprogram. In particular, programs with
only one overlay always retain the values for local
variables throughout a run of the program. This is never
true on HP 3000 because the system stack is dynamically
increased when a subroutine is called and decreased when

E-8.9



the subroutine is exited. Consequently, all the local
variables are lost with the updating of Q register.

The only solution to this problem is to understand
the program logic so as to determine which variables need
to be removed from the list of local variables and be made
global. Once identified, these variables must be placed
in a common block.

C.4) Addressing:

IBM and many other machines use a byte oriented
addressing scheme. This means that given an address, the
system can identify the proper byte in memory which mayor
may not be at a word boundary. HP 3000 system uses
related .but different addressing schemes for words and
bytes. The right most bit of a byte address indicates
whether it is the left or the right byte of the word whose
address is given by the remaining bits. The implication
is that given an address, the system also has to know
whether it is a word or byte address.

The HP 3000 FORTRAN compiler generates word addresses
for REAL, INTEGER, DOUBLE PRECISION or LOGICAL variables
but byte addresses for CHARACTER type variables or
strings. For this reason, it is not possible in HP 3000
FORTRAN, as opposed to IBM FORTRAN, to pass a character
string or variable in a subroutine CALL statement when the
corresponding dummy argument is not of a CHARACTER type.
The converse also holds true.

One can use equivalencing of variables to solve this
problem but a more innovative solution, and one that has
been used in the SPSS and BMDP-71 conversion projects, is
to use an SPL program to modify the address in question
and pass this modified address to the called subroutine.
The following examples should clarify this concept.

E-8.10



IBM

PROGRAM EX10
REAL A
CALL SUB1 (A)

END
SUBROUTINE SUB1 (B)
LOGICAL*1 B(1)

.
END

HP 3000

PROGRAM EX10
REAL A
CALL SUBIM(A)

END
SUBROUTINE SUB1(B)
CHARACTER B(1)

END
$CONTROL SUBPROGRAM
BEGIN
PROCEDURE SUB1(B);
BYTE ARRAY B;
OPTION EXTERNAL;
PROCEDURE SUBIM(B)j
REAL Bj
BEGIN TOS:= @ B & LSL(1);
SUB1(*); END;
END.

Conversion of a word address to a byte address is
straight forward but while converting a byte address to a
word address one must note that if the byte address is not
at a word boundary then there is no way it can be
converted to a word address. However, such a situation
rarely arises.

C.5) Code se~mentation:

As opposed to specifying overlays on an IBM system,
one needs to define code segments on HP 3000. All the
code must belong to some code segment. There is an
allowed maximum size and an allowed maximum number of code
segments which are fixed at the time of system
configuration.

The implication is that there is a limit to how large
a program that runs on HP 3000 can be and how large a
subprogram can be. If a subroutine, or any other
subprogram cannot fit within one code segment then it must
be split up into two or more subprograms. The task of
splitting subroutines is a difficult one and genera~ly

introduces "bugs" in the program. We have found that a
code segment size of 8K bytes will generally handle the
largest of FORTRAN subroutines or programs.

E-8.11



C.6) Data stack iimitation:

The entire data stack used by a HP 3000 program must
not exceed 32,767 words. This restricts the size of
scratch areas and other arrays in a program. In order to
use the stack judiciously, one must have as few global
variables and arrays as possible so that there is more
space available for local variables. There is a permanent
allocation of stack for the global variables but a dynamic
allocation for the local variables. This is one reason
why a lot of DATA declarations in SPSS had to be
eliminated.

It
stack
STACK
32767.

may be
size, the
parameter

noted that in order to use the maximum
program should be prepped or run with

set to 819 and MAXDATA parameter set to

C.7) Real word configuration:

The exponent and fraction parts of a real word on the
two machines are as shown here:

In add i tion, on tile HP 3000, ali s al ways impl ied to
left of the binary point. Real 0 is the only exception to
this rule.

It should be obvious that the range of magnitude for
the real numbers is more on HP but the precision is
smaller by one bit compared to IBM.

C.8) Distinction between BLANK and ZERO:

The IBM formatter upon detecting blanks in a field
being read using Fw.d specification, turns the left most
bit of the real word ON (the remaining bits are 0). This
real word, while being distinct from +0, has an arithmetic
value equal to O. The HP 3000 formatter returns a +0 upon
detecting blanks under the same conditions. Hence there is
no way of distinguishing between blanks and zeroes while
reading a field under Fw.d specification.

E-8.12



It may be noted that even if one, somehow, manages to
turn the left most bit ON, the value of the real word will
not be -0, it will be -.863617 E-77 because of the biased
exponent and an implied 1 to the left of the binary point.

D. INCOMPATIBILITIES DUE TO EBCDIC & ASCII CHARACTER
SETS

D.1) Alphabetic and numeric tests:

Very often, in order to determine whether a character
is alphabetic or numeric, its numerical value is tested.
As one would expect, the numerical values for the EBCDIC
character set used by IBM are different from those for the
ASCII character set used by the HP 3000. The following
table compares some of the values assuming that the
character in question occupies the right most byte of the
word.

EBCDIC ASCII
A - Z 193 - 233 65 - 90
0-9 240 - 249 48 - 57
BLANK 64 32

The following equivalent
instance of such a test.

examples include one

IBM

PROGRAM EX11
LOGICAL *1 A(4)
INTEGER *4 I
EQUIVALENCE (I,A)
DATA I/4Hbbb9/
IF (I.GE.240 AND
I.LE.249) GO TO 10

10 INUM = I - 240

END

D.2) Alphabetic sorting:

HP 3000

PROGRAM EX11
CHARACTER A(4)
INTEGER *4 I
EQUIVALENCE (I,A)
DATA I/4Hbbb9/
IF (I.GE.48 AND
I.LE.57) GO TO 10

10 INUM = I - 48

END

Imagine a real or double precision array which needs
to be sorted in alphabetic order. One method is to
compare the numerical values of the words and take the
appropriate action. The left most bit of every EBCDIC
alphabet or numeral is 1, which in the position of a sign

E-C.13



bit makes a number negati ve .. The impl ication is tha t the
value of A is greater than the value of B etc. In ASCII
character set the left most bit of alphabets and numerals
is 0 which implies that the numerical value of A is less
than the numerical value of B etc. Hence, the logic of
all the tests, performed on EBCDIC character strings to
sort them in an ascending alphabetical order, will have to
be reversed to sort ASCII character strings in the same
order.

E. PROBLEMS WITH HP 3000 SCIENTIFIC SUBROUTINE LIBRARY
FUNCTIONS

E.1) DFLOAT:

This double preclslon function, on HP 3000, always
returns a zero regardless of the input. One has to supply
his or her own DFLOAT function in the program or replace
DFLOAT(I) by DBLE(FLOAT(I)) type of conversion.

E.2) LGAMMA:

This function on HP 3000 aborts when the input is
smaller than 1.0. One way to get around this problem is
to use DLGAMMA which seems to work correctly.

E.3) Initialization of DOUBLE PRECISION words:

As the HP 3000 FORTRAN manual suggests, it is not
possible to initialize a double preclslon word using
%"ABCDEFGH"D form. Only the first four characters of the
string are stored. To get around this problem, one has to
equivalence the double precision word with real words and
initialize the real words.

F. CONCLUSION

Although there are many potential areas of
incompatibilities between IBM FORTRAN code and that on the
HP 3000, the potential gains from converted software can
make the effort well worthwhile. There is a great wealth
of well written and thoroughly debugged software on IBM
systems which will run on the HP 3000 once converted. We
feel that our effort in converting the SPSS and BMDP-71
systems, for example, has been an extremely successful
one. In fact, we are actively pursuing other FORTRAN
software packages to convert to the HP 3000 as we have
found that programs compiled from FORTRAN seem to run
surprisingly efficiently on the HP 3000 computer system.

E-B.14



G. ACKNOWLEDGMENTS

The authors would like to acknowledge thecontributions of the members of the software group in theComputation Services Unit at McMaster and their assistancein finding solutions to the conversion problems describedin this document. Their general support role in makingthese two rather massive conversion projects successful isalso greatfully acknowledged. Dr. Khursheed Ahmed'sassistance in the initial assessment of the projects andin the conversion design as well as his ongoing supporthave been most helpful. Mr. Kim Clark has proved to be arich source of useful suggestions. Maria Wong hasprovided valuable input all through the projects with userinterfacing problems and with testing and improving thefinal products.

Lastly, the authors would like to acknowledge thesupport of Hewlett Packard, SPSS Inc. and the personnel ofthe Hea~th Sciences Computing Facility at UCLA.

H. REFERENCES

1) Anderson, G. D., "Converting IBM 360 and 370FORTRAN to the HP 3000 Series II" Journal on theHP 3000 Users Group, Vol 1, #3, Sept.IOct. 1977.
2) Anderson, G. D., "BMOP Program Conversion to theHewlett Packard System 3000 Computer" Internaldocument available from Department of C.E.B.,McMaster University, Hamilton, Ontario, L8S 4J9.

3) HP 3000 Series II Computer System, FORTRANReference Manual.

4) IBM System/360 and System/370 FORTRAN IV LanguageReference Manual.

E-8.15



WRITING SPL ROUTINES WHICH
ARE CALLABLE FROM BASIC

BY

WARREN KUEHNER
SYSTEMS ENGINEERING SUPERVISOR

HEWLETT-PACKARD
NEELY SALES REGION

ENGLEWOOD, CO.

"

E-09.1



This paper discusses programming techniques involved in

the creation of SPL routines to be called from BASIC. It

specifically covers both trivial and more complex programming

examples, and consideration, for putting these routines

into operation with BASIC programs. This paper assumes a

good knowledge of both SPL and BASIC.

HOW BASIC CALLS A SUBROUTINE:

The key to understanding the possibilities for BASIC callable

SPL routines is to understand what additional information (other

than that which is normally passed) BASIC provides with a call.

In addition to the passed parameters and the stack marker,

BASIC places two other pieces of information on the stack

ahead of the passed parameters. One is the number of parameters

passed. The other(s) are a code word for each passed parameter

indicating what data type it is and whether it is a simple

variable or an array. (Refer to Appendix F of the BASIC/3000

manual for information on the codes and the passed parameters).

This information can be used by the SPL routine to verify

the correctness of passed parameters. Another use is to allow

the passage of a variable number of parameters to the SPL

routine.

When BASIC calls an external routine, the stack is as illustrated

on the following page.

E-09.2



number of parameters

parameter 1 parameter 2 I parameter 3

parameter 4

parameter 1

parameter 2

parameter 3

parameter 4

stack
marker

IOld Stack Marker

OLDQ+1

}Code Words

Parameter
Addresses

Q.4

Q

BASIC first calls a routine (which generates a stack marker)

which places an integer indicating the number of parameters,

the parameter codes, and the addresses of the passed parameters

(in that order) on the top of the stack, and then calls the

desired external routine.

THE TRIVIAL PROGRAMMING CASE:

Given the foregoing background information, it should be

obvious that in the trivial case, SPL routines can be written

in the normal way and called from BASIC. For "quick and

dirties" this could be adequate. It should be noted that

BASIC does no passed parameter checking of any kind and

this approach is potentially risky.



@CODES: = (@DELTAQ + 2) - DELTAQ:

THE MORE COMPLEX CASE:

It has been pointed out that the additional information on

the stack can be useful for at least two reasons; parameter

checking and variable parameter passing. The following

program example illustrates how to get at this information:

INTEGER DELTAQ = Q - ~; « THIS VARIABLE, WHICH IS LOCATED AT

Q (WHICH CONTAINS THE DISTANCE BACK

TO THE LAST LOCATION OF Q) ALLOWS

US TO FIND OUR WAY AROUND))

INTEGER POINTER NUMPARM;« POINTERS TO THE VARIABLES CON-

CODES, TAINING THE NUMBER OF PARAMETERS,

PLIST; THE PARAMETER CODES, AND THE BASE

OF THE PARAMETER ADDRESSES))

@NUMPARMS: = (@DELTAQ + 1) - DELTAQ; « NUMPARMS MUST POINT

TO THE ADDRESS OF "Q"

PLUS 1 LESS THE VALUE

OF DELTAQ))

« SEE ABOVE))

@PLIST: = @CODES + (NUMPARMS + 2)/3; « THIS CALCULATION WILL

CAUSE PLIST TO POINT

TO THE ADDRESS THE

FIRST PASSED PARAMETER))

E-09.4



By indexing through PLIST and equating its contents to other

pointers, one can locate any of the passed parameters. For

example, to locate the third passed parameter which is a string

(byte array) the following is necessary:

BYTE POINTER STRING;

@ STRING: = PLIST (2)

Obviously, the problem of checking parameters can be solved,

being able to get at the number of parameters and their types.

The variable parameter passing problem can also be solved with

this information.

The idea of variable parameter passing can be very useful.

Good examples are the Basic callable Image routines. DBGET

can, for example, be passed a variable number of strings to

receive the buffer of data from the data base. This gets

around the limitation on string length as well as allows the

placement of logical pieces of the data in the data base in

strings dimensioned to contain them.

It should also be noted that information about the length

of a string variable (and also about array dimensions) is

available to the SPL programmer, and that ·this too can be

quite useful.

For example, if STRING is a string variable (byte array),

then STRING (-1) contains its length as dimensioned in the

BASIC program. (Refer again to Appendix F of the BASIC/3000

manual for more information.)

E-09.5



NOW I WROTE IT---HOW CAN I MAKE IT RUN?

If one is running his BASIC programs from the interpreter,

the external routine called must be located in an SL file,

either in his group, in his account's PUB group, or in the

system SL. The interpreter automatically searches all three.

To place the routine in the SL, one must use the SEGMENTER,

and the procedure is as follows:

SPL MYPROG, MYUSL

$ CONTROL SEGMENT = MYSEG

E~.

SEGMENTER

- USL MYUSL

- SL SL «BUILD AN SL IF YOU DON'T HAVE ONE))

- ADDSL MYSEG

- EXIT

----NOW RUN~

To use the routine from a compiled program, the steps are

the same as for a compiled program in any language, that

is, the routine may be either:

- Compiled into the same USL file as the BASIC program

and then that USL PREPED.

- Put into an RL file (with the SEGMENTER) against

which the USL can be PREPED

: PREP MYUSL, MYPROG; RL = MYRL

E-09.6



- Called from an SL. Remember if the SL is in your group

to use the appropriate LIB = parameter, that is:

RUN MYPROG; LIB = G.

The purpose of this paper was to present the tools to write

BASIC callable SPL routines. I would enjoy your comments,

criticisms, or to hear what you've been able to do with these

ideas.

E-09.7



Dt:C/3000

AN EXA~1PLF UFo SPECIAL-PURPUSE
LAN GUAc; E I)~:s 1ChAN D 1 ~ PL ~~ M~N l' A 11 UN

Mat t hPo ~ lJ. Hal an <i e r
The ~ & ~ Computer Company

ABSTRACT: Special-purpose prooramminq lanQuaqes are often an
excellent method ot reducina costs ana improving
productivity. This paper discusses some ot tne factors
influencinq the decision to develop and emplOY a
specidl-purpose lanquaqe, and presents an example of such a
language. The languaqe presented, DI::("/3UOO, provit1es
powerful data-entry capabilitip.s tor proqrammers prOducinq
applications In host languaqes. In tests, the use ot tnls
special-puroose language has indeed reduced costs and
improved programmer productivity.

t. wny another lanquage?

Despite the (quite proper) effort to develop good qeneral
purpose programminq lanquaqes in the discipline of computer
science, there are nonetheless still prOblems for which
special-purpose languages should be emphasized regardless of
considerations Of universal applicability or portability.
Factors which motivate the effort to design and implement
such languaqes, to adopt them for use in applications, and to
educate programmers in their use include cost effectiveness,
9rogrammer productivity, proqram reliability, and
maintainability of the final product.

Languages should not of course be implemented to meet every
Whim of each programmer. Problem areas for which languages
should be provided must be very carefully defined, it the
language to be provided is to fulfill its goals of lowered
software production costs anrl improved programmer
productivity. An appropriate prOblem area may be identified
as fOllows:

o It must be possible to clearly define the prOblem
area. It is, for examplp, an inadequate isolation ot
the problem area to state, "A language is needed to
help with data entry tasks." The problem area must be
carefully, clearly, and fully specified. The

E-10.1



construction of a "language" is under conslderation.
It is critical to understand fully eXnctly ;,.-nat. tIle
proposed languaqe is supposed to be ahle to "t-3lK'''
about.

o The programming of solutions in the problem area,
using available languages, is tedious, complex, and
error-prone. ~xistlnq lanquages, in other worns, are
not well suited t.o the pxpression 01 sollltions to
tasKs in the problem area. The deqree ot difficult.y
witn which ~olutions are provided in existing
languages is a measure of the cost of solvin~ oronlems
in those lanquages, and, in oeneral, an indIcation ot
the future costs ot reliability and maintaindhility of
the software. (The cost ot the oroposed languaqe may
thus be measured relativp to the cost ot existinq
languagps by notinq the reduction in comrlexity of
solutions provided in the special-purpose lanquaqe.)

o An area is a candidate for a special-purpose language
if proqrams are frequently producer! to meet needs in
the area, or such proqrams are heavily used. The
ettort involved in designing and implementing a
special-purpose languaqe cannot oe jlJstitiea if the
lanquaqe produced ~ill rarely be llsed.

The decision to proauce a special-purpose language is thus
largely governed by economic factors. If a special lanquage
will reduce costs SUfficiently, it will provide a
cost-effective means ot providing solutions to data
processinq problems. I,anquages achieve cost reductions in
the sottware development cycle In several ways. Some of the
more straight-forward are as follows:

o ~v increasing the power of thp language being used by
programmers (defining "power" loosely as the amount of
work done for the programmer by a line of code) the
size of programs, measured in lines of COde, is
reduced. Given a fixed cost per line of finished COde
regardless of language, there is a direct savings in
proqram development cost in using a powerful
special-purpose language.

o A well-designed language is easy to use. Its idioms
and methods of expression are "natural" for expressing
solutions to the cateqory of problems for which it was
designed. This reduces the complexity of solutions to
prOblems. Complexity ot a orogram varies inversely
with reliability of the program. The less complex a
program is, the more reliable it is. Greater
reliability means lower costs for software
development. As a result of reduced complexity,
testing is simplified, and debugging is both easier
and less time consuming.

E-10.2



o lhe increased power and reduced complexity of a
s ~'ecia 1- r ur r 0 S e 1an quaqe s (:l r vet 0 red uc e s 0 f twa r e
maintenance costs. Adjustments and mOditications of
prooralfiS will re-quire less programmer time, affect
te~er lines ot COde, and mnY with qreater contidence
De undertaken by proarammers who did not originally
~rite the soft~are oeinq modified. ~roqram

mo~itication ifl addition enjoys tn~ s~me benefits from
incr~nSP(l power and reduced complexity thnt are
exnerienced during original sOftware development.

from all these remarks it is plain that the use of
soeclal-purpose proQramming lanquaqes can be very
beneticial. It is nlso plain that tne benefits received
~eoena tleavily on the language design and implementation.

2. HOW is n sppcial-purpose language desiqned?

Once d problem area has oeen defined tor which a
speclal-purpose lanquaqe is beinq considered, the lanQuage
JTl US t t> e de 5 i 9ned. The des i 9not a I an q 11 a qe i san art, not a
technology. It will always remain so, since lanquaqe is an
intensely human activity, and is tundamp.ntally alien to
mechanical processing. It is tar beyond the scope of this
p~per to discuss lan~Udae desiqn in detail, but some central
considerations $hould be mentionerl.

The lanql1iioe designer must know the prOblem area. This
involves not just a ~assing aCQuaintance, but an intimate
familiarity. SUCh knowlectge usually i5 a result only of much
~ork in the field. rhe languaqe desiQner must be tamiliar
with the prohlems of the prOblem area, and with the sorts ot
solutions ~itn Which thP.y are best met. He must be aware of
the limitations of avaIlable lanqllaqeS when applied to
proo!ems in the field, and nave some experience with trying
to "maKe do" witn these languages.

'tne lanqlJdge designed must be powerful. It it is not
sufficiently powerful, many ot the benefits of implementing
the lanqudqe will be lost. IJanguage constructs and idioms
must ue provided which allow the programmer to express as
concisely and unambiguously as possible his intentions.
~riet constructs are preferred to wordy ones, and one line
of COdP to two or more. On the other hand, the APL-ish,
mystical, "does-it-all" one-liner type of language is most
certainly not desirable. Readability should always be
m~intalned.

when providing power, it is necessary to be cautious that
flexibility is not unduly limited. Regardless of the power
of the languaqe, it will not be used by programmers if they
are unable to express solutions to all relevant problems
with It. In zeal for makinq the programmer's life easier, ny

E-10.3



"doing all the worK tor him," care must be taKen not to make
it ditficult or impossible tor him to solve atypical or
unanticipated problems using th~ languaoe.

The lanquage designed must be "natural." that is, it must
express proqrams in much tne same way ttlat the programmer
thinKS, or should thinK, aoout them. A jUdicious compromise
oet~een macnine efficiency and proqrammer comtort must oe
touna. It is here that the art of the lanqunqe desiqner
will be most needed.

3. ho~ is the lanquage to be implemented?

while lanquaae design Is the most critical phase of the
production of a lanauage, implementation is by no means less
important. A good, reliable, easy-to-use implementation of
the language must be provided to proqrammers. It must taKe
Into account their needs dnd work. An implement~tion wnich
is difficult to use, or which is unpredictable or unreliable
in its operation, will not be used. The documentat.ion, not
only ot the language, but also of the implementation of the
language, must be comprehensive, clear and concise. It is
an integral part of the implementation as a whole.

There are three very viable options for implementation of a
language: a pre-processor, an interpreter, and a compiler.
The simplest of these is to implement a pre-processor tor
some existing language. The special-purpose language then
takes the torm of statements embedded in a program text
ultimately intended for some existinq orocessor. Tnis text
is first fed throuqh the pre-processor, whiCh converts the
special-purpose language statements into source statements
of the language in which the special-purpose statements are
embedded, and outputs a program text whiCh may be submitted
to the existing processor. SUCh a concept is familiar and
has been used successtully in such systems as RATrO~, a
pre-processor for fORTBAN programs providing while,
do-until, and similar constructs.

If all existing languages are so unsuited to tne prOblem
area that it is not wise to pre-process special-purpose
lanQuaqe statements into one of them, then the
implementation must provide all the functions of a
source-lanQuage processor. One way in wnich tnis is often
accomplished is to implement an interpreter tor the
language. Interpreters ~ave many tamiliar advantaqes, and
are not as diffiCUlt to implement as most other options. In
addition, the technology of interpreters is well docum~nted

in the literature, and good advice may be found there to
assist In writing the interpreter itself.

Although interpreters have many well known advantages, they
also have many well know disadvantages. They are slOW,

E-10.4



often bulKy, and usually have no convenient mechanism for
accessing the full capabilities ot the operating system and
allied subsystems in which they are used. It tIle
disadvantages of an interpreter weiqh heavily in a
particular situation against its use, the next alternative
is to implement a full compiler. lmplementino a comoller is
undoubtedly the most difficult and time-consuminq ot the
options, but possesses most ot the advantages ot the other
options, as well as some unique to thP use of a compiler. A
well written compiler provides access to all system
capaoilities (assuming the language design has been done
well enough to allow the language itself to express access
to these capabilities). It provides much more efficiency
than an interpreter, and is more congenial to a varip.ty ot
environments, both batch and interactive.

The type of implementation to be used depends on the nature
of the problem area itself, on the time and resources
available for implementation, and the ways in wnich it is
desired to use the finished processor. Pre-processors are
the easiest to write, port, and maintain, compilers the most
difficult, and interpreters are somewhere in oetween. ]n
some cases hybrid implementations are most appropriate.
Here the craftsmanship of the programmer implementinq the
language Is of great importance. It the available
programmers are not skilled in compiler writing, or have no
experience In compiler writing, it may be unwise to ask them
to implement a production compiler. On the other hand, the
concepts and engineering of pre-orocessors are not of qreat
difficulty, and most programmers with some experience in
text processing can implement pre-processors in a reasonable
amount of time. Interpreters, as compilers, require some
special SKills, and Should not be undertaken by a staff
without some prior experience in the area.

4. Can you give me an example?

The author has written a number ot data entry programs, each
of whiCh was a portion of a larger nata processinq systenl.
In each case, interactive terminals witn forms and block
mode capabilities were used. These proQrams were
implemented in fORTRAN, COBOL, and SPL, as appropriate to
the data processing system tor which the data entry proqram
was being written. Tne specificdtions tor the programs
indicated that the forms/blOCK mode capabilities of tne
terminals were to be used whenever possible to assist
terminal operators In entering data correctly.

In preparing to write these programs, it was necessary to
learn a great deal about the terminals to oe used (HP~b4X

terminals were used tor these particular orojects). Not
only ~as it incumbent on the programmer to be tully

E-10.5



conversant with the application, but also to be an expert on
the terminal~ themselves. Programming terminals sucn as
HP2b4X terminals is in fact a form of low-level machine
programming, and as sUCh is quite prone to errors. No
special software tools were available to assist in managing
the terminals: all functions had to be explicitly provided
by the applications proqrams.

In one case, eighty lines of SPL code were needed tor the
"DEFINEs" used to code the declaration of a single form in a
fashion which was at least partially readable. In one
FORTRAN program approximately two hundred lines of code were
devoted exclusively to terminal management. In general, it
was found that approximately one third of each of these
programs were devoted to terminal management, with
approximately one hunrired lines per program devoted to
detining and manaqing forms for display on the terminals.

Not only were terminal and form management lengthy, they
were also difficult to code. The escape sequences used with
HP2b4X terminals are meaningless In and of themselves. They
dre simply details which must be coded precisely in order
for the terminal to behave as desired. Programmers who are
not the original author of these programs will find it
difficult to modify the forms involved when data needs
change; the original author himself will find changes
difficult.

A search was of course made for alternative methods of
coping with the problem of managing these types of terminals
during data entry. The only software available at the time
was Hewlett Packard's D~L/3000. It was evaluated, ann
rejected for several reasons. First, it did not relieve tne
programmer of the necessity of being an expert on the
terminals. To declare a form in DEL/3000 the programmer
must actually produce the form from ·the Keyboard of an
HP264X terminal. He must still be familiar with all
appropriate escape sequences. Second, DEL/3000 had to be
used from an HP264X terminal. Not all terminals used for
program development at the installation where this work was
beinq accomplished were HP terminals. Also, because of this
restriction, work on the forms and terminal management had
to be done on-line instead of in (less expensive) batCh.
Third, DEL/3000 held out no hope of ever supporting any but
Hewlett Packard terminals. Other forms/blOCK mOde
capability terminals are available, and it is not wise to
write one's software so that one is locked into a single
vendor. other Objections, such as the "un-aesthetical"
nature of DEL/30UO, were raised, but could not be related to
clearly definable, measurable problems.

The rejection of DEL/3000 was the rejection ot the only
available software tool for forms/blOCK mode data entry with
sufficient power to be considered. The remainder of this

E-10.6



paper discusses the alternatives which we considered, and
aescrioes the solution we reached. We turned to consider
what sort ot tools we should implement ourselves. (In the
mednwhile, the writinq ot data entry programs was undertaken
using the various available languages, since it was not
teasiDl~ to delay their production till more powerful tools
~ere available.) What ever we came up with had to meet the
tollowinq goals:

o The tool produced must perform virtually all terminal
and form management during data entry.

o fhe tool must relieve the applications programmer of
the necessity of understanding the programming of the
terminal being used. The programmer should never need
to Know what escape sequences are used to perform
terminal functions.

o It must not be necessary to have one ot the data entry
terminals available tor the programmer-s use during
COdin1 of the application.

o The tool must provide for adequate documentation of
torms. It is not considered SUfficient for forms to
oe simply entered at the Keyooard; there must be a
permanent, off-line record ot eacn form clearly
showing all protected/unprotected tields, display
enhancements, and so on.

o The tool must allow for future use of non-HP terminals
with a minimal conversion effort. It is acceptable to
need to rework the tool itself, but minimal Changes
snould be necessary in applications programs.

o The tool must dovetail with existing applications, and
existinq dpplication languages, so that a conversion
~rocess may be unoertaken, ann so that programmers and
analysts are not restricted in their choice of
lanquaQe.

Clearly a new programming language was called for. A
carefully designed language, together with a comprehensive
run-time support library, is capable of meeting all these
goals. Implementation method was decided immediately. A
pre-processor is not feasible because ot the last goal. The
new lanquaqe must dovetail with a number of existing
languages (at the least with COBOL, SPL, and FORTRAN), but
pre-processors are oriented to a single application
language. The difficulty of implementing several
pre-processors, and the maintenance nightmares arising from
having three or more programs that do the "same" thing,
caused the firm rejection of a pre-processor. An
interpreter was rejected for the same reasons that tne
pre-processor was rejected. (It is possible to construct an

E-10.7



interpreter wnich is invoKed by a program when needed, but
sucn constructs are difficUlt on the HP3000 under MP~.

Also, the use ot such a ~vstem is burdensome on the
programmer, and is not conceptually straiqht-forward.) we
settled on implementing a compiler.

Since it is desirahle to use the data entry tool with a
variety of applications coded in a variety of languages, a
"host language" concept was adopted. That is, program units
coded in the new, special-purpose language would be used
together with program units coded in some "host language."
It w~s agreed that only the tollowinq restrictions should be
placed on the choice of host language: the host must be
able to call external program units, and to pass simple
integer and integer array parameters by reterence to these
external program units. In this way, the special-purpose
language program units would be accessable from at least
COBOL, BASTC, SPL, and FORTRAN. Since no other potential
hosts were in use at the time, tois was considered to be
sufficient.

The name "DEC" was adopted for the compiler and associated
language. It is an acronym for "Data Entry Compiler." Since
all DEC programs were to be used together with a host
program, DEC could be devoted to solely the data
entry/terminal management tasks which motivated it in tne
first olace. Access to data bases and other files, complex
data checking, and complex program logic could be left to
the host. The following scope for the DEC language was
defined:

DEC is a special-purpose programming language in
which data entry forms and activities utilizing
forms/block mode terminals may be expressed. This
is to inclUde the definition and documentation of
forms, the specification of elementary data editinq
and checking, the specification of type
conversions, and the specification of the
correspondence of data record fields with form
fields.

This definition guided language design. The language
designed, which is described in separate documentation, is
primarily declarative in nature; it inclUdes no explicit
verbs. Actions are implied by the declarations (for
example, type conversion actions are implied by the
declaration of data types), but no actions are explicitly
coded by the programmer. A sample DEC program is included
at the end of this paper. It is heavily commented to
explain the features of the language. •

Terminal management tasks are shared between the compiler
and the run-time support library, "D~CLIB". All terminal
manipulation may be performed via library procedures, and

E-l~.8



DEC-generated procedures. There is a single entry point to
DECL!B for all functions, regardless of terminal type. The
O~CLIB procedures are internally structured in such a way
that additional types of terminals may be easily
accomodated, while requiring norn,ally only a sIngle line in
each apPlication program to be chanqed to taKe advantage of
these additional tyoes.

Since D~C Is a compiler, it inputs a source language file,
and outputs RBM's in a USL tile, and thus may be used
dUring coding and program entry from any sort ot terminal.
It may be used either interactively or in oatch.

The DEC language has been desiqned so that it documents
forms very well, as may be seen by examining the sample at
the end of this paper. All features ot the display are
evident from even a rapid examination of a source program.
In addition, the proqrammer has great flexibility in
placing comments in a DEC program. This encourages gOOd
documentation.

5. what have the results been?

The six goals for the DEC language nave substantially been
met. A six hundred line FOkTHAN program has been reduced to
two nundred lines of FURT~AN and about one hundred lines of
DEC. Again defininq "power" loosely, since one line of DEC
replaced in this application four. of FORTRAN, D~C may oe
said to be roughly four times more powerful than FORTRAN.
This implies that DEC programs cost about one fourth as
much to write as equivalent FORTRAN programs, and this has
indeed neen our experience. All proQrams converted to use
DEC, regardless of language, were substantially reduced in
size.

As an additional benefit, unintended but very welcome, all
converted data entry programs now worK on all our HP2b4X
terminals. This is despite the fact that indiVidual
programs were originally implemented for a particular
model, such as the HP2645A, or the HP2640B. In addition,
there is now complete freedom to use page or line mOde.
The programs were formerly hard-coded to use one mode or
the other.

Programmers have learned DEC in a very short time. A
single afternoon is sufficient to read the manual and begin
applying DEC to actual prOblems. Since VEC is
straignt-torward, concise, and "natural," programmers find
it easy to use.

Changes to a form, and to its associated da~a entry
program, can now be made In a single afternoon, and in many

E-10.9



cases in much less that an afternoon. Formerly one or two
days or more could be consumed 1n such changes, depending
on the extent of the change. Using DEC, a form can be
entirely reorganized, and be back in service the same day.

6. Can you summarize all this?

In general, there are circumstances in whiCh
special-purpose programming languages can be used to good
advantage. The design, implementation, and adoption of
such a language can otten be justified on a cost basis.
while language design is a difficult art, analysts and many
programmers with appropriate experience should be able to
construct a language which would provide tne desired cost
benefits. Several options are available for implementing
the language. The cost effectiveness of these options
depends in part on the experience of the programming staff,
and in part on the expected cost savings from use of the
language.

An example has been presented for which available software
products were unable to fill a well-defined need. Goals
were established Which upon examination indicated that a
special-purpose programming language would be a viable
method of obtaininq a satisfactory software product to fill
the identified need. An appropriate lanquage was desiqned
and implemented using a compiler and host language
arrangement. The result was that the goals which had been
established were SUbstantiallY met, and In fact the cost of
producing software using the new language is significantly
lower than the cost of similar software produced without
this tool.

E-10.10



* <--- LIN~S BEGINNING wITH "*" ARE CUMMENTS
« CDro\MENTS MA Y ALSO BE ENCLOSED I N Ar~GLJLAR BRACKETS »

SCONTHOL USLINIT,LIST,SOURCE,MAP,CODE
* Note that co~piler control is similar to HP compilers. This
* specifies that a listing is to be prOduced, that it should
* include the source images, a symbol map, and code. Code output
* Is in an assembly-like format for readability.

******************************************************************* A DEC program consists of a declaration of a form, tollowed *
* by one or more "data entry," or "DE," sections which declare *
* data entry information associated with the most recently *
* declared form. *
******************************************************************
-FORM FORMP~UC «name of procedure will be FORMPROC »

« You could call this procedure in CUBOL with 'CALL fOkMPROC »
« USING ••• or 1n fORTRAN wi th CAI.L rOHMPROC ( ••• ) »

O,O,"THIS IS A SAMPLE FOHM"
* This statment says, beqinnlng in row 0, column 0, place the
* following data: "THIS IS A SAMPLE FORM"

2,0,"* '"
* This statement says, beqinning in row 2, column 0, place a
* two Character unprotected field. The initial contents of
* this field are to be" ".

3,O,"'XX'"
* Same as last statement, except row 3, and initial contents "XX".

4,O,"!B·XX·"
* Same as last, except ro~ 4, and the "XX" is to be in inverse
* video (display enhancement B).

5,4,"\CiDTHIS WILL BE IN ALTERNATE CHAR SET C, ENHANCEM~NT 0"
* At row 5, column 4, place the specitied data using alternate
* Character set C, display enhancement D.

LABEL: 12 , 12,"OATE: !B' 'I' '/' '"
* The terminal operator will see "DATE: / / ", the last eight
* Characters of Which will be in inverse video (display enhancement
* Bl. Note that there are only six unprotected characters. Even
* though these siX unprotected characters are in three separate
* unprotected fields, the fact that the field has a label ("LABEL")
* indicates to DEC that all siX Characters should be considered
* a single data field. The label also allows reference to this
* field in a later data entry section.

-MROF «end of declaration of this form »

E-10.11



-DE IN=IN~UTPROC, OK=OKPROC
« Declare data entry information associated ~ith FORMPROC »
« Can later in host program CALL· INPUTPROC( ••• ), etc. »

« We can reference fields defined in the form section FORMPROC »
« only by referring to labels declared there. "LABEL" is the »
« only SUCh label in this example. »

O,4,P,LAB~I,; VERIfY NUM~RIC-NO-BLANKS; SAVE
« Beginning in byte zero of a data record, there is a 4-byte »
« long, packed decimal field. Its data source is the form »
« field labeled LABEL. Verify that the data input by the user »
« on the form is all numeric, with no blanks. After data has »
« been successfully input, and you go back to erase all the »
« unprotected fields in the form, do not erase this one, SAVE »
« it. »

* In addition, data editing (including justifying, blanK and zero* filling, and the like) can all be specified. Constants may also
* be specified as a data source, instead of a field declared in a* form section. Totaling of fields and auto incrementing or* decrementing of field contents may all be specified.

-ED «ends the data entry section »

********************************************************************* The host language program would be similar to the following: *
* ** OPENDETERM(CBUF, ••• ); «OPEN THE TERMINAL FILE (DECLIB») *
* FORMPROC(C~UF); «DISPLA~ THE FORM » *
* INPUTPROC(CBUF, ••• ); «INPUT DATA FROM THE FORM » *
* « USER MAY HERE DO ANY DATA MANIPULATION DESIRED. IF NOT *
* SATISFIED WITH DATA ENTERED, RE-EXECUTE THE INPUTPROC *
* STATEMENT AFTER GIVING USER A DIAGNOSTIC. IF ALL IS OK, THEN *
* CONTINUE.» ** OKPROC(CBUF, ••• ); «ERASE SCREEN EXCEPT "SAVE" FIELDS » *
* « REP~AT THE INPUTPROC/OKPROC SEQUENCE UNTIL ALL DATA IS IN » *
* CLOSEDETERM{CBUF, •• • )i « WHEN ALL DONE CLOSE FIL~ (OECLIB) » *
*****************************************************'**************
-END «ENDS DEC PROGRAM »

E-10.12



DATA COMMUNICATIONS

Series "F"





PRESENTATION TITLE: Cutting Comnunications COsts with Statistical
Multiplexors

INDIVIDUAL (S) NAME (S) : Roger L. Evans

ADDRESS: Micom Systems, Inc.
9551 Irondale Avenue
Chatsworth,CA 91311

ABSTRACT:

M::>st HP users use Teletype or teletype-oompatible tenninals. Such tenninals
carmot be "multidropped II to allow several to share one telephone line. Neither
do they incol:pOrate retransmission-on-error, so high-speed operation (above
1200 bps) is often subject to unacceptable error rates caused by nomal
telephone network noise. But high speed is desirable to mini.rnize operator
wait ti..ne during interaction with the system.

In the past, minicomputer users wishing to support several CRr I S and a printer
at a location renote from the oomputer have had to use several phone lines
(each equipped with rrodems) or use time-division multiplexors (TDM). The

weaknesses of the TDM are that it is inefficient and provides no retransrnission­
on-error.

The microcomputer has pennitted irnplerrentation of a new generation of concen­
trator or "statistical multiplexor" which provides end-to-end error control
and dynamic bandwidth assigrunent on the shared telephone line. The MICOM
Micro800 Data COncentrator is the first statistical multiplexor to be designed
specifically to rreet the needs of the minicomputer user. It costs no llOre than
a TIM. As a result it can be used in a cost-effective manner on the relatively
short-distance telephone lines which are characteristic of the minicomputer
system user rather than the large col:pOrate network.

F-03.01





I
, -.-

..

SYSTEM DEVELOPMENT

Series "G"





Programming For Survival

by

Gerald T. Wade
Product Specialist

Hewlett-Packard
Neeley Sales Region
Englewood, Colorado

ABSTRACT

This article deals with programming techniques to
generate maintainable programs which will survive the loss
of their author. It is geared priroarily for the individual
programmer rather than the leader of a programming team but
it should be useful to both. The techniques described apply
both to the creation of an entire program or only to the
creation of one subsystem, as is the case in a team effort.
One of the desires of the author is to promote ULgoless
Programming" with overall program quality rather than
individual programmer mystique as the end result.

G-03.1



FORWARD:

The purpose of this article is to discuss programming
techniques which will aid in the maintainability, hence the
ultimate survival, of programs. I take as a basic premise
that few if any programs are ever written such that they
never require modification. This modification may be
necessary due to changes in program requirements, operating
systems, host computer, etc. or to 'Bugs' found in the
program. Whatever the reason, very few programs escape the
need for maintence. As a corollary I purpose that in many
cases the modification of a program will be made by someone
other than the original programmer. In general programs
tend to be written to satisfy the needs of a particular
site and thus tend to remain at that site even after their
original programmer has left in search of a better
position. The conclusion that must be drawn is that in
general a program will have to be modified and that such
modification may be done by other than the original
programmer.

If I may digress a moment into historical speculation: In
the early days of computer programming the prime constraint
on the programmer was his hardware. Hardware tended to be
bulky and extremely expensive. As a result an installation
would have to operate on the least amount it possibly
could. One of the main hardware restrictions was the amount
of real memory available in the computer. virtual memory
systems came along later to ease the situation but they
brought with them penalties in program speed and
complexity. As a result much emphasis was placed on coding
a program such that it required the least amount of memory
possible. Programming techniques developed with this goal
in mind~ For example: Variable locations might be reused
for several purposes as the program progressed. This saved
using a separate location for each use but made it
difficult to determine the exact contents of that location
as the program ran. Sections of code were often overwritten
with data arrays after they had been executed. This
technique saved much memory but could be very confusing if
a modification tried to use the overwritten code. A
similiar technique was to modify a section of code in order
to configure it to perform various functions as the program
progressed. This was done primarily in assembly or machine
language but it too could cause much difficulty for someone
not aware of what was being done.

All of the difficulties mentioned were dismissed by the
programmers by explaining that they were smart enough not
to do anything like that. While this might seem to be a
valid argument I shall draw on my speculative history to
discredit it. Hindsite shows us two basic occurences.



First, as I have mentioned, these programs were oftenrequired to be maintained by other programmers after theoriginal author left. This means that someone else wouldhave to learn what tricks had been used in order to avoiderrors. If the programs were well documented and told justwhat had been done then this would be no serious problem.This was generally not the case. Program documentation wasskimpy and often even misleading. I attribute this fact tothe programmers ego and his sense of survival. Rememberingthat the prime method for determining a good from a badprogram, and by association a good from a bad programmer,was how little mereory was used, the programmer wasnaturally reluctant to reveal all the tricks he used toachieve this objective. By keeping these techniques tohimself he would be better able to stay one step ahead ofhis competitors and boost his own eqo or 'mystique'.Extensive documentation was often omitted as a timeconsuming task with little reward for the programmer. Thusthe program documentation was not sufficient to allowanother programmer to modify or maintain the program.Second, even if a programmer was modifying his own programat a later date he might have forgotten all the tricks hehad originally used and thus fall into the same traps asthe outside programmer.

The result of these types of problems often was thatprograms became ineptly patched, slower to execute, andunreliable. As an end result they would have to be thrownout and a new program written in their place, even when thechanges to the original program were all small ones. Wehave set the stage for much duplication of programmingeffort and a bad reputation for the computer industry dueto the unreliability of its programs.

What of the present and future? While technology has beenadvancing at a blinding rate and removing most if not allof the original constraints on the programmers, they havefailed to update their techniques to keep pace. Memory costand bulk has been so reduced that most installations cannow afford to buy essentially all they need. with theadvent of high speed secondary storage devices, (drum,disc, and soon magnetic bubbles), virtual memory systemsbecome much more viable. What we have then is a totally newenvironment for the programmer. In the past he had toconserve memory by whatever means possible but today he cansacrifice some program size for clarity andmaintainibi1ity.

The rest of this article will deal with methods to writeprograms such that they will (1) accomplish theirobjectives reliably (2) be as simple as possible to



maintain and modify, even by a programmer other than the
original author (3) possibly survive and remain in use long
after the original author has gone. It is my contention
that the ability to write simple to understand, reliable
programs that remain in use is a far better goal than to be
thought a 'magic man' for the ability to write programs
that no one else can understand.

The first sections of the article deal with general
techniques that reight be applied to any computer system.
The remainder of the article deals with special techniques
that may be used in order to write programs for the HP-3000
system.



PROGRAM STRUCTURE

The term STRUCTURED PROGRAMMING has become a popular buzz
word in todays society. As such its definition has become
so twisted as to make it almost a useless term. Let me
define what I mean when I say that a program should be
properly structured.

A program may be thought of as existing at several
different levels. The outermost level is the grossest look
at the program and answers the question. Just what is this
program going to do ? or Why was this program written? The
next level breaks the program into major functions or
'blocks'. For example, there might be an initialization
block, a function selection block (if the program has
multiple functions), a block to perform each function, a
block to deal with anticipated error handling, and a block
to handle any finishing housekeeping, such as closing
files, printing summaries etc.

Each block within the program may then be further
divided into smaller sub-blocks. A sub block might contain
the code to read the input file, or to perform a sort on
the data etc. The key thing about a sub-block is that it
must be small enough to be fully comprehended by someone
reading the program. This means, in practical terms that it
should absoultely be no longer than one page of source
code, preferable about one half page in length. One and
only one operation should be preformed in the sub-block.
Thus it would be i~proper to create a sub-block that reads
and sorts the input file if indeed those are two separate
operations. The beginning of each sub-block should have a
comment that describes the operation to be performed and
the person reading the program should be able to verify
that the code in the sub-block does indeed perform just
that operation.

This approach to structuring a program is also known as
the "Top Down" programming method or the method of
"sucessive redefinition. 1t Many papers and books have been
written about these methods and I will not elaborate
further here except to say that I normally only follow the
methods in gross structure but not in actual
implementation. Some of them involve large amounts of
formal structuring that I see as time consuming and
appropriate only for the largest of programming tasks. For
most programs it is only necessary to keep the concepts in
mind during the programming, not to generate large amounts
of paperwor k.

(1-03.5



THE PROGRAM DLFINITION STATEMENT

At the start of each program there should be a comment
that states the exact purpose of the program. It should
answer the questions "Why was this program written ? ~hat

does it do "? The answers to these questions ~ight seem all
to obvious at first but their answers must be fully
understood in order to direct any further development of
the program. I was surprised to find the large number of
programs that were written and actually being used without
stopping to ask just what it was that they were trying to
accomplish. An exa~ple might be a program that was written
to "analyze the system log files". Khile this wight sound
like an admirable objective, it leaves many questions
unanswered. v#ill this program allow me to print a report
showing the number of power failures loggeo on a given day
of the week? Can it tell me how many lines each of the
system users have printed on the line printer? Depending
on the answers to this type of question, the program wight
be a small task or a major programming effort. No program
should be attempted with so skimpy a definiticn. A better
statement of program function might be: "This program was
written to read the system log files and to produce a
summary file. The summary file will be one record for every
job or session run and contain the total number or records
transferred to each I/O device by that job." with this
definition it is easier to tell just what the program will
or will not do.

The program should adhere rigorously to its stated
objectives. This is a means of avoiding the program that
starts out to do a simple task and ends up growing in to a
monsterous 'klugde' that attempts more than its modest
original ~ramework can support. The temptation is great to
take a program that does 'almost exactly' what you want and
add to it until it can perform both the old and the new
function. The problem with this is that the ground rules
for the program are being changed. For example, a program
that was designed to read the system log files and print
out a summary of power fails might be a candidate to be
built into one that can also produce a summary of I/O
errors by device. Then it might be modified to create job
summaries and print histograms of system usage (CPU or
CONNECT TIME). This sounds like a viable thing to do since
the original program already has the code necessary to read
the log files and extract some of the information. It seems
that a lot of time might be saved by avoiding the
duplication of that code. I do hereby put it to you that
you should avoid this pitfall like the plague! "Why"? you
might ask. The problem arises in the fact that at the time
the original program was written certain decisions had to
be made as to the best way to handle the task. These
decisions were made based on the original design objectives

G-9}3.6



of the program. By allowing the design objectives of the
program to change after the fact, you may have locked
yourself into some no longer valid decisions. For instance,
when the original decision as to how to handle reading the
logfiles (whether to read record at a time utilizing the
file system or to invest the time necessary to write a
special internal deblocker) was decided, the size of the
task at hand could not justify the time spend in. writing an
internal deblocker vs the time lost in reading the few
powerfail records. Thus the slower file system was used to
read the records. In the later version of the program it
would make a great deal of sense to do internal deblocking
of the log records since the volume of records read was now
very great. At this point, the program is already locked
into the record at a time scheme of reading the log files
and could not be easily converted into a new scheme. Thus,
by revising the design objectives of a program you might
have ended up with a program that has a much poorer
performance than desired, or you will end up spending far
more time to convert the old program to a more efficient
scheme than if you had just started from scratch.

A further effect of allowing the design objectives to
change after the program is written is that the program
will end up looking' 'LUMPY". By lumpy, I mean that you will
be able to see that the original program shell is here, and
a 'LUMP' has been added here for this function, another one
here, one there and so forth. In the end the program may be
so lumpy ano consist of so many different internal
techniques, variable names, that it will be almost
impossible to find and fix any bugs that it has. Indeed if
allowed to continue, the program modifications will
eventually create a program that is non functional and non
maintainable, in short, totally useless.

If there is any question as to how much the initial
program definition statement should encompass, I suggest
the following guideline. Make the original program
definition cover as large an area as the program will ever
be allowed to perform. You may add qualifiers to the effect
that it is envisioned that the program will perform these
functions at a later time and that they are not completed
at the present time. You may then plan the program such
that these non-implemented functions will be possible, even
to the point of including dummy program blocks to mark the
places they will be added. In this way the initial
decisions on the methods used by the program will be valid
even if the program is expanded to its maximum.

The program definition statement serves two functions:
First, it informs the person reading the program source as

G-9J3.7



to just what to expect this program to do (and conversly
what to expect it not to do). Second, it serves as a guide
as to what modifications fall into the original concept of
the program, and thus are vaild changes to it, and what
functions are outside the original concept and should best
be handled in another manner. The program definition
state~ent should always reflect the current status of the
program but should be changed only after a great deal of
thought and soul searching.

r,-03.8



MAJOR PROGRAM BLOCKS

The structure of a program should be broken down into
major blocks, each block responsible for a certain
function. A function might be best described as that
section of the program which performs a logically related
set of tasks. An example might be for a program that is
designed to read the system log files and then either print
a summary of powerfailures or write a summary of the I/O
written for each job or session run on the system. A
possible division into functions might include the
following functional blocks:

Initialization and selection of the desired function.

Extraction of the powerfail records from the log files
and the accumulation of summaries.

Printing the powerfail summary.

Extracting the I/O records from the log files and the
accumulation of summaries.

Printing the I/O summary.

Handling any internal errors or file errors encountered.

Closing the files and finishing up.

Notice that not all functions need be performed for each
execution of the program.

At the beginning of each block should be comments that
describe exactly what function that block is to perform.
This is similiar to the program definition statement at the
beginning of the program. The same rules apply to the block
definition statement as applied to the program definition.
That means that the block definition statement should
rigorously define the function of that block. No deviations
to the block's function should be allowed without verifing
that the statement will still be valid. Also at this point
any interconnections, common files, etc. between this block
and any other block should be stated.

This structuring by functional blocks will make the
program easier to modify and maintain. Thus if the program
is having trouble in the selection of a function, only the
block containing that function need be examined. If you
desire to change the format of the powerfail summary
report, you again need to modify only one block. A
necessary feature of the program blocks then is that they

G-03.9



must be relatively independent. This 'will allow you to make
a change in one block without affecting the function of the
other blocks.

In certain cases it is necessary that two or more blocks
will have to have a certain amount of interconnection. In
the above example, for instance, the block that reads the
logfile records and accumulates summaries must pass those
summaries to the block that prints them. Also, if any block
encounters an error that is being handled by the errors
block then certain information about that error must be
passed. In this case the functional blocks can not be 100%
independent. In order to maintain the desired degree of
maintainability to the program all that need be done is to
ridgidly define the interface between the blocks. This
might take the form of describing the parameters passed
between subroutines or the layout of the program common
areas. It becomes important to also include a description
of just what values each block can modify in these
communications areas. Careful attention to detail in
defining the use of these interconnection areas will save
untold problems later in the .program life. I strongly
suggest that this documentation take the form of comments
within that actual source code rather than as a separate
document whenever possible. This will insure that it is
always carried with the program and not misplaced or lost.
Once the usage of the interconnection areas has been
defined and the program written, it should be strongly
discouraged that any programmer be allowed to redefine them
without carefully examining the entire program for
consequences. Any such redefinitions should also be noted
alongside, not in place of, the original definitions. In
this way any problems of interconnection areas being wrong
can easily ge traced to the offending block.

G-03.1D



PROGRAM SUB-BLOCKS

Within a program block the program should be broken up
into sub-blocks. Each sub-block should be a single entity
that performs only one operation. The size of the sub-block
should be such that it can be easily comprehended without a
great deal of effort. The ideal situation is where a
sub-block can be quickly scanned and verified that the
operation is actually performed correctly. From practical
experience this relates to from one half to one page of
source code.

The sub-block should begin with a comment that states the
operation to be performed. Again, this sub-block definition
statement is important in that is serves as the guiding
rule for the sub-block. The function of the block should be
reflected by simply reading the sub-block definition
statements.

G-03.11



THE RULES OF BLOCKS

The block or sub-block is a special animal. In order to
be useful several rules must be rigidly followed. Failure
to do so may result in a program that only has the illusion
of being properly structured. The rules are:

1). The only place for entry into the block's code is at
its beginning.

2). The only place for exit from a block's code is at its
ending. (The only exception should be an error exit
ESCAPE)

3). Only certain easily recoginzable programming
constructs will be allowed within a block. This list
includes but is not limited to:
a). straight line code (statement follows statement)
b). if then else
c). looping (DO UNTIL, DO WHILE, WHILE DO,

REPEAT n TIMES, DO FOREVER, etc.).
d). case (execute exactly one of the following)
e). escape (escape a loop prematurely or error exit)

4). Certain programming constructs are to avoided
whenever possible. These include but are not limited
to:

a). III defined or ambiguous branches (FORTRAN'S
ASSIGNED GO TO, certain cases of COBOL'S PERFORM,
FORTRAN'S COMPUTED GO TO while not as bad as an
ASSIGNED GO TO should still be avoided)

b). Backward branches. The major program flow should
be strictly from top to bottom. Any backward
branching should always be a part of one of the
constructs in rule 3 and should be easily
recognizable as such. (For example, FORTRAN will
not support the DO FOREVER statement but it can
be simulated by a single backward branch (GO TO).
In this case comment statements should be used to
clearly mark the code as a DO FOREVER.

These rules are not all encompassing nor are they
inviolable but they do represent a collection of guidelines
that I have found lead to programs that will survive the
test of time and maintenance. Not all rules can be
implemented in all languages but the concepts should apply
to any language where the user has central of the program's
flow. In cases where the syntax of the language used does
not support a construct, the construct can usually be
simulated using other features of the language. Always make
sure that it is obvious which construct is being used. I

G-03.12



recomment sticking to those constructs listed since that
comprise the most commonly understood constructs. One of
the objectives of structuring your programs is to make them
readable by others.

The reasons for avoiding such constructs as FORTRAN'S
ASSIGNED GO TO is that they make it very difficult to
interpret the program flow. The destination of an ASSIGNED
GO TO is not known until actual program execution time.
This makes it very difficult for someone reading your code
to determine how your program functions without actually
simulating its execution thru exhaustive cases in order to
find all possible values of the assigned variable at this
point in the program. FORTRAN'S COMPUTED GO TO has some of
the same problems in that it is a multidirectional branch
but at least the possible targets of the branch are listed
in the statement. This statement may be used to construct a
CASE statement but it should be clearly marked that this is
so. Also note that all CASE statements will eventually
return to the same point in order to properly terminate the
statement. COBOL'S PERFORM verb can cause much the same
confusion as FORTRAN'S ASSIGNED GO TO when it is used to
perform different subsets of the same set of paragraphs.
This makes it very difficult to determine if execution of
the paragraphs will have the desired result. This also
violates the rule of always entering a block at the top and
exiting at the bottom or it confuses the definition of the
blocks.

G-03.13



PROGRAM DESIGN VERIFICATION

The program definition statement should state just what
the program is to accomplish. By reading the block
definition statements it should be possible to see just
what blocks should be involved in any subset of the
programs operation. It should be possible, then, to verify
if the blocks within the program are capable or satisfying
the prograro definition statement. You should also be able
to single out any block that is nct necessary to the
programs operations.

~cw that the program definition can be seen to be
satisfied by the block definitions it is necessary to
deterI':line if the blocks actually do what the ir def ini tions
say they do. This is accomplished by reviewing the
sub-block definitions. You should be able to follow the
blocks structure thru each of the sub-blocks, reme~bering

that all entry into the block is at its top and all exit
from its bottom, thus all branching must be between blocks.
If the rules of blocks have been followed it should be a
simple matter to follow the program thru each sub-block,
accepting the sub-block definition as oescribing properly
the action of that block.

Once each block is verified to perform properly, given
that its sub-blocks perform properly, all that is necessary
is to verify that each sub-block will satisfy its
definition statement. This is the first time that we must
actually read the source code in the task of determining a
programs correctness. If the code within the sub-blocks
follow the rules of blocks and is of sufficiently small
size then it should be a simple matter to verify that each
one properly performs its function.

At this point the program will have a very good chance of
performing the program definition as stated at the
beginning of the program. If there are any problems then it
should be easier to isolate them by placing debugging
statements at first the interfaces between the blocks, then
at the interfaces between the sub-blocks and finally within
the sub-blocks if necessary. In this manner, you can
eliminate the majority of code, simply by eliminating the
functions and operations that are not in error. If the
program has been properly structured then isolating a
problem can be the easiest rather than the hardest part of
debugging.

G-03.14



By the same token, program modification has alsc become
much easier. In order to change a programs operation follow
the following steps:

-1). Cxa~ine the desired change to determine if it fits
within the program definition stateffient. If not then
seriously consider not waking the change but rather
writing a new program as any such change will have
major ramifications.

2). Deterroine which block performs the function that needs
to be changed. Alsc consider at this time if the
change is in reality a new function, in which case it
should have its own block.

3). Locate the sub-block within the block that is
perfor~ing the operation to be modified or determine
where in the blocKS program flow a new sub-block
should be located.

4). Make sure that the changes will not alter the block
definition statement. If so then the entire program
structure will have to be exa~ineri. If not, then you
will only be concerned with this block.

5). If the changes are within a sub-block, make sure that
the sub-block definition is still valid after the
changes.

6). If you have altered the program flow within the block
then make sure that the sub-blocks and program flow
will still satisfy the block definition.

7). At this point, if the definition staterrents are still
valid, the program flow is still good, and the rules
governing the interconnecting areas have nct been
violated, the modification should be properly
installed. Now go back and exercise the program
thoroughly in and around the affected functions to
verify proper operation and to verify that the
modification functions properly.

G-03.15



COMMENTS AND DOCUMENTATION

A few words need to be said about commenting and
aocumenting a program. In the past this task was ccnsidered
as separate from writing the program. Indeed, in many
cases, the person writing the documentation was not the one
that wrote the program. There are times when this approach
is not bad, especially when the documentation in question
takes the form of an extensive users manual. It would be a
misapplication of talent to have a good programmer tied
down for six months after each program, writing a book on
how to turn cn the system etc. The thing to bear in mind in
the case of documentation is that there may be various
levels of.it. Some levels of documentation are best handled
by full tiroe docuffientors as in the case above, but there is
a level of docurrentation that is the responsicility of the
programmer anc should always be done by them. This
documentation consists ef the comments within the program
source, and a besic functional description of the program.
The main use of this documentation will be by these persons
that will hnve to rnaintaic and modify the program. This
~eans that the task of documenting should not have to be an
exhaustive effort as the persons using it will at least be
experienced programmers. All that iE necessary is to
explain the baEic flow of the program and the major
decisions about the program's design.

In many cases, documentation by the programmer has been
put aside until the end of the program developement cycle.
This was often justified by citing tight schedules,
uncertainty in the programs final state etc. Documenting
after the fact leads to skimpy or inaccurate documentation
at best and possibly even to no documentaticn if the
schedules are in reality tight.

It is imperitive that the programs internal documentation
be written as the program is written. This will insure that
it truly reflects the actual state of the program. In
attempting to go back after a program is in use and
document it, the reasons a certain technique was used is
often forgotten. The reasons for choosing one technique
over another is one of the most important things to know if
you are contern?lating a modification to that technique. It
would take little actual time for the programmer to add a
few comments at the top of a block or sub-block explaining
how the block functions and either why the technique was
chosen or a brief notice as to under what circumstances it
would not be appropriate. This accomplishes a dual
function: It informs the next programmer, or indeed
yourself if you corne back to this program at a later date,
as to when to consider modifying the technique. It also

G-03.16



forces you to consider such questions as applicability at
the tiwe you are writing the program rather after a
technique is already locked into the program. It is far
better to discover that a technique will not work in all
cases before it is installed rather that having to remove
and replace it after a program is finished.

The time to write the internal program documentation,
then, is while the program is being written. The place to
put the it is as comments in the program source code. This
makes sure that whoever is responsible for maintaining the
program will always have accurate documentation at hand. At
first it might seem that by documenting as the progra~ is
written will take too much tirrie. Upon closer examination
and by actual trials it can be determined that just the
opposite is true. The exercise of docurrenting as you go
will force you into thinking out just what you are doing
and consequently keep you from following too many incorrect
paths. 'I'he end re£ult will be that in the time that you
could have written but not documented a program, you can
have written and documented a program that has a much
better chance of being correct. At the very least the
program will be much more maintainable.

What constitutes good commenting within a program?
Contrary to the beliefs of a lot of progra~Qers, the more
comments does not imply the better the documentatiop. It is
the quality of the comments not the quantity that
determines the quality of documentation. In fact, good
documentation can be ruined by adding a lot of unnecessary
corements and making it difficult to weed out the essential
information. I offer to you the following ~odel. It has
proven to be useful to me in the progranls I wr i te.

1). Variable and Program Names:

Variables, SUbroutines, and programs should be nareed in
such a way as to make their use as obvious as possible.
Thus it might be easier to relate to CUSTOMCR(I~CEX) in a
program rather than to C(I). I realize that certain
languages place restrictions on names. These restrictions
are being lifted as the languages grow, for instance
HP-3000 fortran new allows names to be fifteen characters
long rather than the old five character rnaxiffium. In any
case try to avoid the naming of items within a program by
arbitrary or cryptic names. The best way I know to ~ake a
program almost unmaintainable is to go thru it and replace
all the variable names with a sequence of meaningless
names. The names used become an important part of your
docu~entation. If they are chosen properly then you should
have little commenting to do within your sub-blocks. By the

G-03.17







serVCE as ~ore or less a roadmap to find the block
responsitle for the function yeu are interested in. At the
very least yeu should include the basic progra~ flow thru
the blocks, a brief description of each blocks function
and hew to loc~te it in the source code (subroutine name,
etc. ) •

8}. Program Modification History:

A short running history of the modific~tions to the
program should be included next. It's this history that
will tell you what changes have been ~ade for each
revision of the ~rogram. Items to be included are:

revision code after the changes
date the changes were completed
a brief description of the changes
the narre of the person doing the modifications if other than
the original author.

9}. Author and Modifier ,Names:

A short description of the author(s} and of those persons
responsible for ffiaking modifications to the program
should be listed. This might include the address and/or
phone number of the persons or any other information
necessary to identify them.

IO}. Data Definition sections:

The usage of any data arrays or block interconnection
areas should be set off and commented in such a way as to
make their intended use clear. This might be as simple as
identifying which array is used to buffer data into and
out of the program or as complex as to describe in detail
the format of an internal communications array. Cowment
blocking should be used in order to separate the data
definition areas for the various operations into blocks,
much as the program cede areas are blocked. It is easier
to understand the data structures in a program if you can
concentrate on only the desired subset of them. For
example, if the format of the output records needs to be
modified then it should be a simple matter to locate the
definitions dealing with it and to be assured that all
definitions in that area are strictly for that purpose.
This will allow changes to be made without affecting other
areas of the program and allow no longer needed variables
to be discarded.

G-9)3.20



11). Block Definition Statements:

Each block within a program should begin with a comment
describing the operation to be performed within that
block. The format of the statement and of its data
definitions should be similiar to those for the main
program.

12). sut-block Definition Statements:

Each sub-block should begin with a very short statement of
what that sub-block is to perform. For example "This
section sorts the input array into ascending order by
customer name". Very little additional commenting should
need to be done within the sub-block except maybe for a
simple clarification comment here and there. If the
variable names are properly chosen and the proper code
constructs are being used then the sub-block can be almost
self documenting.

If a program is internally documented well then ~ost

prograffi maintenance and modification can be accomplished
with little more than a source listing. If an additional
document is desired it can often be created by excerpting
the comments directly from the program, block and sub-block
headers.

A word to the modifiers: Once the program has been
written following all these guidelines, it is your
responsibility to insure that by modifying it you don't
invalidate the original program concepts or documentation.
A good rule of thumb should be to try to make any
modifications such that, in the future, you couldn't tell
your code from the original unless it is so marked. This
means that you should not force your own programming
peculiarities into the program unless they match those
already in use. Use the same variable naming scheme as the
original author, even if you can think of a better one.
This prevents confusion later with having to follow several
conventions within the same program. Also try to make your
code look like the original. This might mean doing the same
indenting and following the same commenting scheme. You
should also be responsible for updating any internal
documentation that is affected by your changes. This is a
good exercise in that it will force you to examine all the
areas that your changes might affect. Also can't forget to
add a line to the program history records to indicate the
changes you have made.

G-03.21







and ttl·~r. rc.:sun,c execution. Again, this is a relatively fast
operDticn (~aybe 40 microseconds). If the required segment
is not in liefiior y then r·pe will sus [Jenc the pr og r ar.' and r;ake
u rc(;ucst tc the If,Cn:ory manager in order to have it n~ace

r-resE:nt. 'fhir procez£ invclves reading the segrr1ent from
disc inte ~e~cry and might invclve swa~ping some other
s€gr"cr;t cut cf r.'errcry to Ii-Ia~~e roar:- fer it. Disc transfer
ti~c on the ~P-3UOO is fast but is still orders of
iiCj<jnituc;e slower trlan direct rr-er..ory access. SWDpping a
scgrr'ent froIT. ti1e cisc into Ircfi:ory fiiight take G;r~roxiJrately

500 to 2000 microseconds. If this operation is required
i r. f r ~ (~ Ue n t 1Y t be nit i s not a 9 rea t bur 0e n but if i t mu s t
occur a great nueber of ti~e5 then it can cause a local
t hr as t, in 9 c end i t i Ol"l for t his pr 09 r a ITi •

!-lo\1 ~o ycu centrol local thrG.shing? 'l'he T:"·ain r.-ethoc] is to
reduce the nu~ber of intersegrnent subroutine calls to the
ji-inirr.uli. Lets take the rrogram exan"cple 9 iven above. In the
case of the functicn involving su~routine A, there is one
intersegJi:ent c(jll at tbe: beginning of the functicn and then
one at the e~~ in order to return to the rnain program. This
fits nicely in cur Suidclines. In the second function,
however, cubrcutine u calls subroutine C a great many
tirr~s. If these two subroutines are in cifferent seg~ents

then we G"light enci ufo in the local thrashing situation. It
~akes sense, then, to put subroutine Band C into the saThC
segrr,ent. 'fhat Se~1njent \-Jill be a little larger than if they
wcre in ~iffcrent seg~er.ts but the tine necessary to call
b2Ck and forth has been greatly reduced.

Let~ sumr..arize vlhat we've learnec, sc far. It is good to
reduce the size of our code segments by making a greater
number of smaller segments. this reduces the total real
meroory requirements for the systen:. I f we place two
routines that call each other a lot into separate segments
then we can cause a local thrashing that wastes time and
resources. This means that we have SOllie tradeoffs to
evaluate in the segrrentation of progra~s.

here are sane time tested guidelines for the segmentation
of program code:

1). Try to make the program Eegffients as sroall as possible.
(4000 words is a good size to shoot for).

2). ~ini~ize inter segment calls between routines even at
the ex~ense of larger segments. (Don't worry about
nu~bers as small as 10-20 calls per function but
concentrate on those that might be called huncreds of
tirr:es) •

G-03.24



3). O~ce ycu enter ~ segroent, try to rerrain in that segment
for as long as possible. This might mean making a copy
of a small sucroutine that is used by severul segwents
an~ adding it (under 0 slightly different na~e) to each
segment that requires heavy use of it.

4). Once you leave a segrrent, try to remain out of it fer
as long as possible.

5). Place large and seldo~ used sections of code into their
own routines and their own segments. Error handling
routines that contain a large number of error messages
are prime candidetes (Ascii strings occupy a great ceal
of code space as ccre~ared to machine code).
Initialization and light user interaction sections that
require messages to be written and read are also good
candidates. It is possible that these large sections of
necessary code ffiight only be calleG once, or in the
case of error routines, not at all in the program
execution. This reeans thet they will not often need to
te present in real memory.

HO\-l is the best way to segment our sample progrsrr ? First
of all, we have cetermined that subroutine A can be a
separate segment. Subroutines 8 and C should be in the same
segment since they Cull each other a lot. Subroutine D is
the error handling segment so it can be in its own segment.
The main program is rarely executed and could be in its own
segment. The final segmentation would then be:

S EGr·l1:UT 1:
SCGt·, CL~T 2:
S E::; ~-1 £ i~'r 3:
SEG"'lEN'!l 4 :

!"lP.IN
Sl;~ A
SUB 13 and SLiB C
SUL D

Data segments

!·iPC currently has the restriction that a ~rogrC:lI!iS

modifiable area ~ust be in a data segment called a 'stack'.
It does not currently allow the data stack to be split into
separate data sesments. This means that the only control we
have over duta stacks is in their size. A certain amount of
data stack will be required for the progra~ to execute. The
areas we can control have to do with data arrays and
storage and with dynamic storage.

The storage necessary for data arrays declared in the
main program or in the golbal or COI:'llTLon areas of a program
is always ~lloc~ted in the data stack. Anything we can GO
to reduce the size of this storage area will nake for a

6-9)3.25







In SUnHi1ary, t!1e main point I arr. trying to get across is
that the days are gene when programroing could be considered
a strictly solitary project. A program may be written by
only one person, tut if it is to survive, it must be
written in such a way as to allow others to maintain and
r.todify it. This means that a programmer IT;UEt give sorrle
thou;ht to the basic structure of the program and to
organizing its internals in such a way as to rrake its
operation cbvious to other programmers.

I have outlined several techniques that might help to
achieve this objective. There are probably other techniques
that would also be useful. You might, for instance, make it
a practice to have another programreer try to 'read' your
programs in order to deterffiine if they are properly
commented and written. This would accomplish yet another
benefit in that it will be a method to share programming
techniques and expertise. By having an experienced
program~er read the novice's program, he could hel~ the
novice to develope the proper standards and techniques. The
experienced programmer might also learn a few new
techniques from the novice if he keeps his eyes open. By
having the novice read the expert's programs, he could
learn what techniques should be used in a given situation.
The expert will be able to sharpen his documentation
techniques by having the novice identify any areas of the
program are difficult to follow.

A major point of this whole procedure is to combat the
feeling that a program is the exclusive property of one
programmer. It should be thought of as belonging to the
entire group or to the company. In this way the programmers
will not code cryptic r:-rograrns in order to promote the ir
own mystique. They will instead be writing prorams that
will be understandable by others and as such can survive
long after they are gone. A side benefit of writing
programs that survive should be the writing of more
reliable code and raising the standard of data processing
in general.

G-03.28



SOFTWARE QUALITY CONTROL

C. EDWARD McVANEY
J. D. EDWARDS & COMPANY

The Predicament

Computers have brought space age technology to the
ordinary businessman. Their potential seems boundless; the
electronic equipment (hardware) is usually superlative; but
the computer programs (software) can bring a plague to your
organization.

The hardware side of the computer industry seems to
be far more advanced than its software counterpart. The gripes
and groans about computer failures are not all without sub­
stance, and ninety-nine times out of a hundred it seems it is
the software that is at fault.

You have to have software! The computer won't work
without it! But what do you do? How do you protect yourself?
How do you assure a high quality result?

Knowing what to look for, and how to judge quality
software, need not be a great mystery. You don't have to be
a computer technician to make meaningful value judgments.
Your common sense will serve you well if you're willing to do
some research.

Before we go much further, we should make a clear dis­
tinction between "systems" and "applications" software.
Applications software is the term computer specialists use to
identify major business systems on a computer. For example:

· Payroll Systems
· Inventory Systems
· Billing Systems, and
· Accounting Systems

Applications software is sometimes referred to as a
software system, a software package or just a system. In ad­
dition to the individual computer programs (usually ranging
from 10 to 100 programs), it would include all the supporting
documentation and related professional services including
training and on-going maintenance.

Systems software, on the other hand, is a term used
to describe the family of computer programs that are used by
the computer to do its own work. For example:

· Operating System
· Compilers
· Utility Programs, and
· Communication Monitors

G-07.1



! • ~

: I •





2. Systems Documentation - Documentation is to a
computer system what a shop manual is to a mechanic - it is
not very important until you need it. Systems documentation
should consist of:

· Samples of Each Report
· Illustrations of each Video Display
· Copies of Forms and Documents
· A Glossary of Terms and Codes
· Clerical Procedures
· Computer Operating Instructions
· Program Descriptions
· Data Base Descriptions, and
· Other Appropriate Material

If these items are not readily available and profes­
sionally packaged so that they are easy to understand, you've
noted a serious weakness in the system. Vou will be vulnerable
to turnover of personnel and empire building if you don't have
good documentation.

3. Clerical Procedures - Computer specialists have
been known to forget about the people who have to use the
system. Check the clerical operating procedures including the
video terminal operating instructions to see if they are simple
and effective. There's no need to explain the mundane, but at
the very least, the unusual aspects of the system should be
explained.

Of course, checking for voids goes beyond the parti­
culars we've noted here - video displays, operating reports,
input journals, forms, data bank, accounting controls and so on.

(b) Fitness to Your Needs

In their eagerness to sell computer hardware, sales­
men have been known to recommend a software system that didn't
quite fit. Major misfits are not uncommon.

If you are told that your organization can be changed
or adapted to fit the software, make sure· you know what will
have to be changed. A good software package should provide de­
finable improvements to the flow of work within your business
with a minimum of organizational or procedural changes. It
had better, because modification costs dearly, not only in
terms of time and money but, more importantly, because vital
management data often will not be available while the modifi­
cation is being done. The "data gap" can be filled, of course,
by keeping a manual or semi-automated system running parallel
with the computer, but we can't imagine any business owner want­
ing to do that for very long.

G-07.4



(c) Maintenance Costs

Good software packages, like good automobiles don't
require much maintenance. If a computer programmel· ha~ to de­
vote a significant part of his time to maintaining a software
system, you can bet it is poorly designed or poorly programmed.
Conversely, if little or no maintenance is required, you
should be encouraged.

The maintenance cost of an acquired software package·
can often be determined by consulting with other users whose
names the vendor has given you as references.

(d) Feature Comparisons

Another effective technique for judging software
quality is feature comparisons between comparable systems.
This is basic consumerism. These features include:

· Processing Capacity
· Hardware Requirements
· Management Accounting Techniques
· Data Base Concepts
· Timeliness of Reports
· Video Screen Features
· Audit Controls, and
· Others, as appropriate

Many of the little "extras" in a software system are
well worth having.

(e) Operating Costs

If a software package does not reduce operating costs
(clerical salaries, etc.) or provide significant intangible
benefits such as improved management information or better cus­
tomer service, then something is wrong.

Innumberable software systems have been installed with
the anticipation of reduced operating cost and significant in­
tangible benefits only to have just the opposite come true.

Therefore, you should check the "track record" or re­
ferences of a software system to see if it has performed as
promised. While you're checking references, ask about program­
mer maintenance costs.

(f) Real Response

Video terminal computer systems should provide for·
almost instantaneous entry of data, updating of records and
redisplay of updated· records. Many software packages fall far
short of this capability. It is not uncommon to find video
terminal packages that do nothing more than conventional "key­
punching" into the video terminals and then process the data
in the off hours. If this is the case, computer records might
not be updated until the next morning even though video
terminals were used for data entry.

G-07.5



(g) Technical Support

Behind every good computer system there should be
good'people to provide the technical support that, from time
to time, you may need to rely on.

Do these people know and understand your business?
Are they competent enough to get things done? What is their
track record? Where will they be a year from now when you
need them? Is this a one man show or a profes::;ional team of
computer specialists? You should answer these questions and
assure yourself of proper support.

Technical support personnel are all important to the
success of your system.

(h) Conventional Technology

More often than you might expect, computer systems
are developed u::;ing non-standard technology, i.e. offbeat
programming languages, homemade systems software, and mix 'n'
match equipment. Beware of these approaches because they in­
variably create inflexibility, overdependence on ::;upport
personnel, and early obsolesence.

(i) Data Controls

Precise control features are essentj,al to the success
of any software package. Check to see that edit controls
are installed to check the accuracy, reasonableness and inter­
relationship of all input transactions. Also check to see
that input balancing controls are in effect. The system should
have provision for a complete audit trail of all sensitive
transactions,. This audi t trai 1 ShOll] d balance to master file
control totals and reference back to the originating entrie~.

(j) Predefined Standards

A very effective way to evaluate the quality of a soft­
ware system is to compare it to independent standards of
excellence.

J. D. Edwards & Company has developed sueh standards,
establishing criteria for, among other items:

· Systems Documentation
· Input Controls
· Accounting Controls
· Data Base Design
· Computer Processing
· Report Design
· Programming Structure
· Programming Efficiency, and
· Numerous other items.

G-07.6



· TY
· MB
• OV
· TY DB

Some Classic Examples

We have said that you don't have to be a computer
expert to judge the quality of a software package. Let's
illustrate how you may judge software quality with simple
examples of a computer report and an input document.

(a) Report Quality

Illustration Number 1 represents a construction loan
status report for Mr. Charles Louis who is building a new
home. This report is a classic example of computerized
goobledygook. Note the following deficiencies which could be
readily detected by a non-technician.

1. The name and address were typed rather than print­
ed by the computer.

2. The following columnar headings are unintelligible:

· BR
· WM
· TEL
· TY
· CD

3. Note that there are three columns labeled TY.

4. Even if you understood what the codes mean, how
would you understand the data? What, for example, does "I"
mean in the MB column?

Illustration No. 1

..,. C"o,lu LouIS
1820: N. tooodO, 'a'
L" 1I.'on. Colo,ooo 00120 C &ll80 r.Rrr~ ",-!\ nitl., .."t Wit COlOluQO

-------- -----

PA"
IIfl1!!Ll!.!.!r. ,,,./,.

.00

Mr. Charles Louis was somewhat perplexed. He felt
insecure because he didn't understand what the report said.
So he took the report to his CPA and asked him to explain it
he was equally baffled.

G-07.7



You should not tolerate this kind of poor report
design in any software package. In almost all cases, com­
puter reports can be made clear, concise and easy to interpret.

(b) Input Forms Quality

Illustration Number 2 represents a form used to cor­
rect a worksheet in a real estate management system. (This
form has also reached the status of classic gobbledygook).
Note the deficiencies which can be readily detected by a non­
technician:

1. What do the arrows mean?

2. What are:

· OIT#
· NC
· J#
· RES Code
· Fld Code?

3. What do you enter in the four digit date field?

Illustration No.2

COHHECTIN(i ENTity WOltKSIIEET

u 'u

[" I. I I I I I "] ,-LJ]
"':C.OV"IT It

en,;]· - (dash) ovel' di~1t for net;l1live

The point is that neither computer input nor output
forms need be as complex as many computer people make them.
Look at Illustrat~on Number 3, for example, the "Account
Master Revisions" form reproduced on the next page. All col­
umn headings are in plain English - not computerese. Codes
are plainly defined at the bottom of the sheet. There is
plenty of room to write, and there are no mysterious arrows
or slash marks.

G-07.8



ACCOUNT MASTER REVISIONS

------------------------ ----

Illustration No.3

l"rO"T1NG COOII

:: ~CJ~:'."~ .~ ~t;: DUCT lullS.OIA"Y --":':0=::" ~~. DirT ~~~: ~~t
ACCOU"T O••CIUfTION

L _!£!!~!:!!!!!!
A I ADO NEW ACCOUNT

C 2 CHANGE OLD ACCOUNT

0 J DElETE OLD ACCOUNT

I INOUIRY

.t
OHl.AN'lAI'ON NAME

FUNDNAMi

COST CkNlEH NAME

MAJUH ACCOUNTS

MINOH ACl;IlUN IS WI III sUllSII.,AIUL S

MeNUH ACCUUNI S W,IIlUUT !>UIlS,O,AtIILS

SUIlS,O,AHY Ar.COUN1S

UA 1E _ .._ .. __.•.

I'R[PARED
KY

,.------------------_. ------_. --_._-_._-------------------....,

CO!il "CCUllNI WSCI\It'11UH
ACC'

00100 "'HOCK um "Nlfl S

I.,\hllk tet:" AN;.& t!ilH

••••••••••• 1.111•••11 •••••••••••
Illh",.1 lin IIHI " ",nlllllli

I) III 1'1\11
IIII!. WI-

Illustration No.4

•••.••••••••• (.1.111...1............ • •• I'kU_Ilt:TLI' .IHt.l ••
1111",. I liN I I .• A/'Ioutll t· ttl" r.NtUN I GA I H' LOSS

~:. 100.0
U

02001 fltl£ '''AI'l: WALLS-rIGS· II,.S

02002 F IHE C.RAl![ 61.1'111 ON GRAlIE

02003 FINE: G"AlIE: SU'EYALKG

02004 llAHlI UCAlJA'IOH-AI.L IIkEAli

16d41 !i.

4.3YO III

1 Itl

.11

.1.1

..I.... I I' l'r.11 ;', I.I;~

1111:; '11\ 0

.!.O...U III 1.... 11 14,1"1
IIII!. "" 0

~"I \II 1'1\1"
11I1l; ,,1\

1.10'/ 1/1 ...\11
IlIll. WI-

.".!16

.1110

6 .. 4 ltlO.O
o

1.612 lUO.O
o

U 16.0
o

1.0i. 1110.0
o

644

1.612

o

606

486

57l

503

0200~ IlACKF ILL - ALL A"EAS

02006 Urc"VEI UHlIEre G. O. ,.

03001 CAISSOHS

03002 '''''liE .EllItS .. WAUS

03003 CAISStlN CAl'S

03004 COIUIWl8 1ST" 2Hl! fLOOR

03005 COLUIt/IS 3"[1 .. 4TH fLOtlrc

03006 8LAB OH CltcAr,,£

03007 SUB OM COflkUfOfcft

03008 "AN SLAII lSI .. 2Mb F1.00l.;S

03009 PAN 6&.... 31c.. .. 4TH fLOO'd.

03010 10f'E-IHO - ALI. fLOOkS

03011 ELEVATOk WALLI>

10100 CT :!.1I11

20:1 CT ;!.:.O

J60 U 4.00

lUI t:'f :l.OO

tT ••1)0

:'3 Cv 7.00

:!8 CT Y.14

206 tv 2.00

6J Cy ~.~~

614 CV 1.7:'

337 ty ;'.04

174 (;'1' ;'.00

:.:.:':00 III 1,.\11
llIlli "1(

~o:. III 1..\11
1II1!; .,...

1 ...1:: III I'AII
IIII!> .,...

JtIo2 ", Itroll
1II111 "I(

d 111 "/\If
fillS N'"

.Ill lIJ I'('U.
IIlll• .,1\

256 III-I'I\Il'.
IfIIlI "iii

412 '11 hAlt::
IllIti " ...

H:! III h•.I.
1II1!' WI.

1.07~ III l.foIl:
1II1!; Wl\

,YO 10 ...... r.
lUI!• .,t.

J40 III 1''''lf
!l1I!i .,1\

:'UII III , ••"If
1I1l!.i ,",

:'0;' 6.UJ9
o

.\t.lI .70Y
o

III' J.IOI
o

:,J 12.'14
o

:.!II 1.491
o

206 3.:)11
I)

6.1 3.892
U

tol.. .1.110
o

HI 3.3~7

o

III 6.JI"
o

1.!1i J.400
o

4.211 '10.0
o

I.Jb:· lUO.O
o

2'10 100.0
o

~61 100.0
o

o 100.0
o

614 lUO.U
o

42 100.0
o

736 100.0
o

245 100.0
o

1.'146 100.0
o

1.121 100.0
o

S49 SO.O
o

435 100.0
o

4.679

1.382

290

561

o

674

42

736

245

1.946

1.121

1.099

435

2.479-

877-

1.182

199"

B

303-'

214

324-

103-

871'

4:11-

7:n ..

147-

G-9)7.9



The "Labor Cost Analysis," Illustration Number 4,
shows that computer output needn't be gobbledygoo};. ('.ither.
This weekly report on a construction project can be easily
read by a non-expert. It keeps jargon and confusing abbrevi­
ations to a minimum.

The Make versus Buy Decision

In theory, buying a software package should offer
the advantages of having:

· Lower start-up costs, and
· Shorter stal·t-up intervals.

In practice, things don't often work out that way.
Many experienced data processors are skeptical of these sup­
posed advantages - particularly when modification or changes
to the software packages are required. Indeed, the more ac­
complished computer user often steers clear of purchased soft­
ware packages all together.

On the other hand, custom designed and programmed
software supposedly offers the advantages of being:

· Better suited to your operation needs,
· More flexible,
· Easier to maintain, and
· Less expensive to operate.

But custom designed and programmed software systems
are not without peril. If you don't have access to a highly
qualified team of systems analysts and computer programmers
(either as in-house employees or outside contractors), you
shouldn't try to develop a custom system.

A well designed custom system is, in the long run,
usually more effective than a purchased system. If your
needs are unique in any way, and you can afford to do it 'righ t
the first time, you should seriously consider custom designed
and programmed software packages. After all, you've probably
custom fit every other aspect of your business, so why not do
the same with you computer software.

What It Should Cost

If software were cheap, the big, experienced users of
computers would have known it long ago. Experienced computer
users may invest nearly as much (sometimes even more) in soft­
ware as hardware.

It would be nice if one or two thousand dollars of
software were all you needed, but unless your business fits an
available ready-made package very closely, you should plan on
spending anywhere from 40% to 100% of the computer purchase
price on software, depending on your needs.

G-'/J7.10



Once More From The Beginning

When it's all said and done, what you really want is:

· Better Management Information
· Reduced Operating Costs
· More Flexible Business Systems, and a
· Decent Return on Your Investment.

Today's computers have the potential to do all of
that in a most pleasing way - but be careful!

Software - particularly applications software - can
be the fly in the ointment.

· Check out each component of the system
· Use common sense and be critical
· Ask for professional help in technical areas
· Follow a sound evaluation methodology
· Look for voids, fitness for your needs, mainten­

ance headaehes, effective features and operating
eeonomics.

· Be very careful about technical support personnel,
and

· Use predefined standards or evaluation criteria if
you have access to them.

Finally, don't be tempted by low-cost or no-cost soft­
ware purely because of price - or rule out a custom-design
purely because of high start-up cost. But you're not likely
to do either if you've been thorough up to the point of cost
considerations. Remember that old saying .

The bitterness of poor quality remains long after
the sweetness of low price is forgotten.

G-07.11



DENNIS DINAN
GLENN ENTIS

MORGAN GUARANTY TRUST COMPANY OF NEW YORK

AN APPROACH TO ON-LINE APPLICATIONS MANAGEMENT

PRESENTED AT THE
HEWLETT-PACKARD GENERAL SYSTEMS USERS GROUP

7th INTERNATIONAL MEETING

OCTOBER 30 - NOVEMBER 3, 1978

G-09.1

DENVER, COLORADO



TERMINAL AND APPLICATIONS MANAGEMENT SYSTEM

TAMP (for Terminal and Applications Management System) is an

integrated system of processes and subprograms which are used to

define and manage an on-line application system. Each application

to be run under TAMP includes one TAMPFILE, which is a multi-key,

variable-length KSAM file designed to provide a compact, flexible,

and easy-to-use interface to the applications environment. This

TAMPFILE, which will be discussed below, defines all processing to

be done within the mon~tor, and includes TAMP terminal configuration,

user/function security matrix, and all data files to be managed by

the system.

The first step in implementing an application under TAMP is the

creation of the TAMP KSAM file. Here the user is asked questions

about the size of his application, such as the maximum number of

functions which he expects to include in the system. If the user

miscalculates the dimensions of his application, he also has the option

of later expanding his TAMPFILE, without affecting its data. The user

also enters the Security Manager's name and password, and in so doing,

restricts all further modification of the file to the bearer of that

password.

The next stage in preparing a TAMPFILE for use is the definition

of the application. This data is entered through a terminal interactive

program and is grouped in logical records which represent the resources

managed by TAMP. These resources are user functions, system utilities,

data files, terminals, and users. A brief description of each of these

records, their relationships to each other, and their use in on-line

processing may be found below.

G-09.2



Although the following outline of TAMP record types greatly

simplifies their structure, it does provide the essential content

and purpose of each type of record.

FUNCTION - There is one function record for each

callable application entry point. Each

function may be one of several types

(program subprogram, SL subprogram,

independent process, MPE stream) and is

invoked accordingly. If the function

expects data file numbers or data from

the terminal as parameters, that is also

included here.

UTILITY - Utility records are almost identical to

function records. However, those functions

which are designated as utilities are

initiated automatically by the TAMP software

and may not receive parameters or be called

by users.

FILE - This record contains a filename qualified by

group and account. The file which this

record represents may be of any type,

including MPE, KSAM, IMAGE, and SMOG (described

elsewhere in this paper). Once defined on a

TAMP record, a file may be opened by the

TAMP software and passed as a parameter to

one or more functions.

G-09.3



TERMINAL - This record contains the logical device

number of a terminal to be included in

on-line TAMP. For each active terminal

TAMP record, a process will be created by

the on-line software which opens and

allocates the corresponding logical device.

USER - The user's record includes his name, encoded

password, processing values, and maps indicating

which functions he may display on his menu and

which functions he may actually call (these

two types of function access are completely

independent). Also included in this record

are the assignments by which a user can expect

each of four terminal soft-keys to call for

him a selected function.

The program which defines a TAMPFILE also serves as the TAMPFILE

maintenance program, and is where the Security Manager really does

his job. As each user (and user password) is added to the system,

the SecQrity Manager also enters which functions that user may see on

his menu and/or actually call. The Security Manager may also assign

for each user two application-defined processing values, which are

handy for such things as data-base user class codes, maximum dollar

amount which may be entered by the user, or whatever else fits the

application.

Other features of the TAMPFILE maintenance program include

terminal configuration, assignment of data-files to functions (the

filenumbers or file-tables of these files will be passed as parameters

to their assigned functions during on-line processing), and definition

G-09.4



of system utilities, such as start-up, batch processing or logging

routines.

The on-line portion of TAMP is the "outer block" within which

all application programs will run. The TAMP software will call

application defined start-up routines, open and allocate terminals,

display sign-on screens, provide all first-level menus, and call

requested application functions. This is accomplished through the

use of a set of related processes which communicate with each other

through a commonly held extra data segment.

On-line TAMP is actually a simple, two-level process tree

consisting of a father process (FATHER'TAMP), and his various kinds of

sons. FATHER'TAMP is the process which is created upon running TAMP.

His first duties include initiating start-of-day application processing,

which may also include restart and recovery procedures, and creating

the extra data segment which will be used as the common communication

area between processes. FATHER'TAMP next reads all terminal records

from the TAMPFILE, and for each creates a terminal sign-on process.

FATHER'TAMP also creates a process whose sole responsibility is

communication with the system console, which here becomes the TAMP

console as well. At this point, FATHER'TAMP suspends himself, and is

reactivated only by sons with specific requests. All further processing

depends on input from the user and console terminals.

The role of the common communication area in the extra data segment,

as well as the orderly regulation of processes through use of Resource

Identification Numbers (RINS) is a vital component of the on-line TAMP

software. However, this processing is invisible to the user and beyond

the scope of this paper. It should just be considered here that

'processes do not haphazardly suspend, terminate, and activate one another.

G-09.5



The task of the terminal sign-on processes is simple. Each

displays a user sign-on screen, and ~hen validates, by user name and

password, attempted entries into the system. Upon a successful

sign-on by a user, the terminal sign-on process for that user's

terminal activates FATHER'TAMP with the appropriate message and then

terminates.

Upon notice that a user has signed-on successfully, FATHER'TAMP

creates a new process for that user. This process displays a welcome

screen for the user, and, depending on the user's response, may display

a menu of those functions which the Security Manager has permitted this

user to see. The user may now request entry into a function in one of

several ways, including selection by menu position, function name, or

the user's own soft-key assignments.

The user's process calls the selected function in the manner

specified in the function's record (e.g., if the selected function's

type indicates that the function is a subprogram in one of the Segmented

Libraries, the user's process will find, load, and jump to this

subprogram). Also, if the function's record indicates that it expects

data files and/or data from the terminal, the user process will open

the appropriate files (if not already open) and pass the necessary data

as parameters to the function.

When a user signs-off, control of his terminal is passed back to a

terminal sign-on process. At the end of the day, FATHER'TAMP again

takes control, signs remaining users off of the system, initiates

application-defined end-of-day processing, and terminates.

G-09.6



SMOG

SMOG is a HP2645A terminal interface and screen processing sub­

system. It provides a convenient access to local and remote terminal

devices using a wide range of the HP2645A terminal capabilities while

keeping necessary terminal knowledge to a minimum.

SMOG makes very few demands on the application programmer. De­

veloping screen images requires no knowledge of escape sequence char­

acters. There are no stringent programming requirements necessary for

accessing terminals in an interactive mode. All housekeeping, work

areas, buffers and data transfers are handled transparently within the

subsystem.

Screens exist in the system as logical records in a KSAM file.

These records consist of the screen image in displayable form, control

data and reporting data. Each record has an associated screen name

which is used as the "key" when adding a s.creen record to a file or

recalling an existing screen within a file. Also, there is a control

record in the file. This contains global file information and sizing

requirements necessary for allocating buffer space for screen records.

Working with screens, it is entirely up to the user how they will

be designed. Then a screen file maintenance program assists the user in

defining and entering the screen. The user must supply the row and

column numbers of the start of each field, their lengths, their field

type: protected or unprotected, any display enhancements and edit

checking, plus any data which is to be used to initialize the fields.

The maintenance program then interprets and assembles this data into a

displayable character string with all appropriate escape sequences.

G-09.7



Counters and indexes are kept internally to accumulate read and write

counts, field descriptions and status information about a screen.

Once entered, a screen may be easily modified, deleted, displayed,

duplicated or renamed. Several reports are available including one

containing a reproduction of the screen image. This report also contains

a description of each field along with entry numbers which are used to

address fields in subsequent screen maintenance or to programmatically

access these fields for changing their enhancements, protection, or

modifying their data content.

Screens in one file may be copied in entirety or selectively to new

screen files. They may also be merged in the same manner with screens

in other existing screen files. Provisions are included for both

keeping and deleting another version of the same screen found during a

merge.

Programmatically, SMOG has many useful features. One call to an

initialization program sets up everything necessary to process. It is

even smart enough to know how its process was started so that a terminal

can be initialized properly. If a user father process was responsible

for its creation, it expects that he also assigns a terminal to use,

otherwise, it defaults to using the logon terminal. Also at this time,

the caller's screen file is opened, the break key is disabled, buffer

areas are dYnamically allocated and a global work area is set up to

maintain file numbers and status information which is necessary for on­

line processing. None of this is ever seen by the programmer.

The programmer can now interact with the terminal using the screens

from the screen file. Intrinsics are available to locate screens, to

modify protected and unprotected data, display enhancements, and protection,

to output a screen image, to read a screen's unprotected data, and to

f,-09.8



dynamically create and read from individual fields on a screen. The

outputting of a screen can optionally include the field at which the

cursor is to be positioned; all reads from the terminal can be armed

with a function key interrupt feature which returns an indicator to the

program, or can optionally be timed out. The programmer has the res­

ponsibility of calling an intrinsic to reset the terminal before exiting

from a program.

SMOG is very versatile. It can alternate the use of both block and

character mode of I/O. It is callable from COBOL, FORTRAN, and SPL. In

each of these languages, it allows a simple approach to screen processing.

G-09.9



KEDS

Keyed Extra Data Segments (KEDS) is a method of organizing

ordered sets of tables within extra data segments. A set consists

of one or more tables. A table is comprised of one or more elements.

Access to these tables is permitted by table element within table

within set.

This access method allows an application to keep all necessary

tables "virtually" memory resident while permitting them to be shared by

several processes within the same job or session. It allows for elements

to be deposited into a table by a relative element number and retrieved

by the same element number or by searching for a table element with a

specific key value.

KEDS is relatively simple to use. Initially, table space must

be allocated. This is done by an intrinsic call with which the

program must supply a set name, the size of the data segments to be

used, the number of tables in the set and a list containing each

table description. Each table in a set must be assigned a name, an

element size, and a maximum number of elements.

Using this information, KEDS calculates the total amount of

memory needed and creates as many extra data segments necessary to

contain all of the user's tables. A parent segment is also created

through which the tables will be accessed. Therefore, by accessing the

parent segment, one can determine if an element exists in a table, the

segment in which it exists, its location within the segment, plus its

length. Once created, the programmer must load table elements in the

order in which they are to be used.

G-09.10



Elements can be deposited and retrieved very efficiently by KEDS,

using relative numbers, but, this is not always the easiest or best way

of accessing tables. If a programmer so desires, KEDS will search a

table for an element with a specific key value. Keys are not restricted

to any size or location within the element. Tables can exist which have

several keys and the choice of which will be used in the search is made

by the calling program. Tables can be ordered in ascending or random

key sequence.

Data transfers are very flexible. One can specify that all, part

or none of an element is to be transferred if it is found during a

search. This is a powerful tool for validation tables or tables whose

elements are suited for mul~iple purposes.

The complete capabilities available to the programmer are: crea~e

tables, append element, update "element, read element, read element by

key (random or sequential), and delete tables. Combined, they provide a

simplified approach to me~ory resident table management.

G-09.11



~ Morgan Guaranty Trust Company
•.....
I\J

·ofNew York



G)
I

s
U).
.....
w

• Automated Banking System

• Euro·currency Automation

• Global Exposure System

• N.Y. Profitability System



ENVIRONMENT

• HP 3000 Series 11/111
G")
I
~

~ • On-line & Batch
~

• Multi -user



REQUIREMENTS

• Self ·contained system

• .Computer management
G),
IS)

\0

~ • User & function oriented
security

• Terminal management

• Full screen support



TERMINAL.·

ApPLICATION

MANAG·EMENT

PROGRAM



®CREEN

~ANAGEMENT

@FF-LINE

@ENERATION



~EYED

~ XTRA

[Q) ATA

®EGMENTS



Appl ications environment

APPLICATION
PROGRAMS

home terminal

stdlist

stdin
MPE
disc
files



TAMP

~ t ~t
J l.

~ KEDS
APPLICATION ~

PROGRAMS

~t"SMOG •
~ ~

,
"~I disc

\ \1

..... -------------~

stdlist or terminal assigned
by father process



Tampfile

TAMPFILE

USERS

fUNCTION.S

FILES

TERMINALS

UTILITIES



U.SER

• name

• password
G1

• function (view)IS •\D.
II..)
I\)

•• function (call )

• processing values

• softkeys



FUNCTION

• name·

• type·.·

• ent ry point

• segmented library

• run priority

• description

• data files



FILE

• name

• type

.• multi ·access



TERM1NAL

• name

• logical device no.

• hardware data



UTILITY]

• name

• type
Gl

•s • entry point\D.
'"m

• segmented library

• run priority



:RUN TAMP

FATHER
TAMP

..._-_ ....
I

T·UP I KEDS TAMP
I CONSOLE• I---_.

Initialize
communication "area

)

,-----

.,.----
I
I STAR
I ?
I



FATHER
TAMP

t I 1
G)
i

CS)

\0

terminal terminal terminal.
I\J
CD no. 1 no. 2 no. n

Terminal •sign· on processes



suspended

FATHER
TAMP

G).
JOE

EDS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Terminal
•sign-on

act ivate!



GJ
f

CS)

\0.
USER
SON

FATHER
TAMP

terminate



USER MENU

99/99/99
USERNAME

C) 1 ADDCUST Add a customer
I
~

\0

2 FUNCNAME This is a function description. sk1w.....

3 CHNGCUST Change a customer

sk2 4 REPTCUST Report on a customer

5 DELCUST Delete -a customer



• Block mode transfers

• Modify protected &
unprotected fields

• Modify & reset display
enhancements

• Cursor positioning

• Cancel notification

• Field level 1/0



Build files

Add screens

SMOG Display ~ ,

G) Modify ~ ,
•~

"".
Deletew ,,

w

Report ' ,

KSAM



Smogfile

j~

" e Copies screens

- Duplicates screensG1,
SMOGUTIL

~

Renames screens
\0 -.
w
~

I - Merges files

Smogfile



open
terminal

INITERM

allocate
buffers

open
screen

file

t initialize
communication

area



!
i

GETSCREEN



MOVEDATA & ENHANCE

G)
t

\D.
W
-.J

11 02 78

for demos

program data

+

screen buffer

--
11/02/78

a good screen
for demos

final screen



PUTERM

w
co

SCREEN BUFFER display screen TERMINAL DISPLAY
&

position cursor



GETERM

III
I II

1

1IIIIIIIIIfllllllllllllllllllllmllllll.lIIl!lllllmllll!III!II!11IIIWI!li'II"I'
II Il11/02 I 78:' I'

i I 1111111 li!111111 lin!!' liili!llill!ll! Il!llliilii!!!jjii!iii illi liill!!I!11 illlllill
a user enters 'I!IIIII!

j
1111

'111' 'III 1111'''' Ii ,I "II !rsome data :ili'il!i'!!!!'I:'!!
1 11111;11!'!'IIIIIIIIIIII'III!!I!!Illl'~~llill'!Iillll'll!~lI'!I!~::!I;m,!:!:i:':Ill!:!!:.!:!:!~.:.

111 1111111"';I"I~lllillill"'III 1··I'lIlll1ltil;'I".",.II""I"'III"I"
t I 111 11'1"11 I: Ill, 1,1111'"::1"'1:"1:;,1 01 :,:11 1'1':1,,:::11 .. , ul kt....~ ~..~."I ,iu.1.

PROGRAM DATA
FIELD

CANCEL! a user enters
some data

reset
enhancements

TERMINAL SCREEN
BUFFER

W
\0



GETLINE & PUTLINE

I getline >
<putline

hello

what?

TERMINAL SCREEN PROGRAM DATA



• MANAGES
VIRTUAL

TABLES IN
MEMORY

o Builds tables

__ Shares tables

e Reads elements

fa Writesl updates elements

e Reads elements by keyvalues

e Purges tables



, ,

data element 1

table 2

n
table 3 0

1 ' ,
2
•

•
n

table 1

global

~ .

\ ~ getabykey
i.

~ :

r· ;:: ..: ..t.. :z:- .~ .::::; m:--;.:4'#.. t¥§"1
~ ..,.:

H
t: ~4" r- ~.. , ..~

L~" .' ~I' ~ ~"" ",.. ., ~

~': ~:. '" '..I~· .. ;'-~

Program
Interface

Parent EDS Children EDS



A GUIDE TO SYSTEMS DEVELOPMENT
JOHN M. GRILLOS

AMERICAN MANAGEMENT SYSTEMS, INC.

INTRODUCTION

Developing a large scale computer application is an expensive effort,
requiring careful, planned coordination of many different activities to be
successful. This paper outlines the overall approach and key activities
essential to the orderly development of a large system.

Not all management problems require computer-based solutions; careful
analysis can sometimes yield significant improvements simply through new
policies or procedures. However, if the problem is regular and recurring,
involves large amounts of data, or requires special monitoring and control,
automation shoul d be cons i dered.

This paper segments the -development of a new system into three major
phases:

System Concept (Phase I)

System Design (Phase II)

System Implementation (Phase III)

These phases reflect the idea that development is a learning and refining
process, in which a few good ideas are expanded and detailed as more infor­
mation becomes available to the point where millions of orderly pulses
racing around ina computer perform the few functions intended when the
development process began.

Good planning is essential to the whole process. Each project requires
a carefully designed plan, giving consideration to task dependencies, avail­
able resources, non-system constraints, and management requirements. The
guidelines presented here are a starting point for a task plan and a measure
of task compl eti on and project status. The lIli 1es tones def; ned in thi s
paper are usua11 y accorrpl i shed rega rdl ess of the size of the sys tern.
However, smaller systems quite often allow collapsing of two phases or sub­
phases of development. These are individual considerations which go into
developing a plan.

G-10.1



Good documentation standards are also critical to the development
process. Each project task must be documented. Documentation reduces
potential confusion in verbal communication, broadens exposure to and
makes explicit decisions, and allows measurement of successful completion
of most non-programming tasks. This paper gives an indication of the type
of information to document. Other areas in which standards are useJul
include: Naming conventions for data elements, segments, files, data bases,
data glossary, and so on; Programming techniques for structure, frequency
of comments, and naming of COBOL paragraphs; Formatting for reports,
forms layouts and so on; and Environmental considerations such as operating
standards, turnover standards, programming languages, use of data base, and
so on.

A procedure for review and revision of all task documentation by both
technical project management and concerned users should be in place. This
is supplemented by substantive progress briefings periodically delivered
to management. Disagreements and misunderstandings which persist through
system development because of poor review procedures are very expensive to
resolve in an operational system.

Beyond the process and ideas above are the following considerations
which are also keys to the total success of a system development.

1. Personnel Assignments -- Beyond quality of people assigned
is their orientation and training. Generally, business
analysis skills are most useful in doing concept and general
design work, and of course technically qualified professionals
dominate staffing of detail design and implementation phases
-- with business types once again involved in training and
installation. However, involvement of technical talent in
early project phases can head off problems caused by bad
technical assumptions upon which important application
functions may depend. Involvement of business-oriented
personnel in late stages of development provides project
can ti nu; ty and, the reby, ins ures tha t user req ui remen ts
stated duri ng General Des; gn are fa; thfully adhered to in
subsequent project phases.

2. User Involvement -- System projects have little hope of achiev­
ing intended benefits without adequate user involvement.
Users must be the primary definers of system functionality,
and must be involved in critical review processes that occur
at poi nts throughout the development cycle. These requi rements
mean two things -- users must be actively interested in the
project so that they are willing to spend the time to stay
involved, and project planning must deal explicitly with user
level of effort and timing considerations so that users can
schedule project involvement into their routines.

G-10.2



3. Budgeting Process -- With good planning it is reasonable to expect
reliable cost estimates for one phase beyond the current phase
(e.g., reliable Detail Design costs can be prepared at the end of
General Design). However, budgeting for an entire development
cycle in advance or budgeting two phases into the future cannot
be done with much reliability. Vagaries in staff productivity
or costs, need to do tasks not foreseen in plans, personnel
turnover, and a variety of other unforeseen problems seem to
always overtake project cost estimates. Since full project
budgets cannot be made accurately in advance, two things should
be done -- budget estimates should be revised after each phase
for management go/no-go decision making, and projects should not
be hamstrung by attempted enforcement of premature and inadequate
budgets. Such enforcement can result in no system or a system
which does not meet important project objectives.

The following ·discussion breaks each development phase into several
types of tasks. Those tasks that would be repeated during the same phase
for each of several subsystems comprising a larger overall system are
indicated by an asterisk (*),

PHASE I -- SYSTEM CONCEPT

The purpose of the System Concept is to analyze a problem, define its
cause, and create an economic solution, which may utilize the computer. The
emphasis is on economic feasibility, but technical considerations are
recognized in order to analyze the cost of any solution. However, these
considerations are only examined in enough detail to derive rough measures.
This phase is the first pass at a complete design.

A. Define Scope and Effort

The first task is to make estimates of the level of effort to be
expended in examining the problem. A plan must be developed scheduling
the tasks described in the remainder of this section.

B. Review of Current System

The current system should be examined to provide a base line against
which the value of a new system can be measured. The current system
includes all manual and computer systems considered for chanqe. Some
necessary information to be documented includes a description of process­
ing, inputs, outputs, processing volumes, personnel utilization, computer
utilization, and costs.

G-10.3



User review of all documentation should be done. Documentation should
be reviewed quickly, yet in detail. The outputs and functions defined here
provide the base line for measurement and minimum requirments of any new
system.

c. Determine Analysis Areas

Based on the above review, several key areas usually stand out as
being points where additional analysis is critical for system success.
These "leverage points" may have any of the following characteristics to
distinguish them from other potential concerns:

1. High Volume Processes -- where small improvement can yield high
return.

2. Simple Clerical Tasks -- are usually easy to mechanize.

3. Timelines and Quality of Input Data -- the cost of processing
bad data for correction is usually excessive.

4. Cash Management Benefit -- earlier billing and later payment
have measurable savings.

5. Timelines of Reports -- untimely reports usually force a
secondary system to be created for control.

6. Reduction of Codes -- several codes used to define the same
characteristic are very frustrating to users.

7. Management Interest -- any point where a concern has been
specially expressed should be analyzed.

D. Analysis

Analysis is the key step. The areas defined in the previous task
are 'inves ti ga ted in detai 1 and a1ternati ves for provi di ng the requi red
service in an efficient manner are considered. Analysis content will
vary widely from project to project, and the process must be documented.
The goal is to define a feasible solution which is economically superior
to the present system and other alternatives. Each alternative must -be
described in functional terms, stressing the comparison with the present
system and other alternatives. The cost of operating the system once it
is in place and operating must be determined. The level of detail shouid
not be too great; if the economic feasibility of an alternative is so
marginal that it hinges on a very detailed analysis, the alternative should
be avoided. All benefits should be quantified if possible. Personnel
reductions, cash flow, and inventory reductions are obvious examples.

G-10.4



Reports can be evaluated in terms of the action that could be taken if
the information were available. However, it is usually best not to
attempt to quantify their value. Any future benefit possibilities should
be assigned an expected value. Cost avoidance should also be quantified
and stressed.

E. New System Concept

The results of the analysis areas are integrated into a new total
system concept which also incorporates the definition and analysis of
common system components which serve the entire system, such as report
generators or data bases which were not explicitly considered before.
Other elements of the concept are a system flowchart, narrative descrip­
tion which emphasizes the flow of data and processing of major exceptions,
a list of features, a list of remaining issues and criteria for resolving
them, and a system operating cost/benefit summary.

F. Phase II Task List

The next task is to create a task list for the design of the system.
Depending upon the size of the project, the task list may include General
Design or both General and Detail Design. The task list includes the
amount of resources required for completion.

G. System Development Cost and Schedule

Development cost for the second phase is derived from the task list
by assigning a cost to the resources required. In order to estimate the
cost of later phases, an estimating procedure based on the number of major
files, programs, reports and forms can be used. Table 1 shows some plan­
ning factors which may be adjusted by experience to the personnel actually
involved. The resources required for Phases IlIa and IIIC can only be
estimated by personnel familiar with the user's environment.

Since the system is very sketchy at this time, the number of files,
programs, reports and forms -may not be accurately estimated. To correlate
the costs developed this way, Table 2 can be used as a rough measure. If
results generated from Table 1 differ greatly, well-defined reasons should
be required.

G-10.5



TABLE 1

Development Cost Estimation
(Man-Days)

Reports
Projectl'Major Major ~1inor and

Files Programs Programs Forms Management

General Task List Expansion 20%Design .

Detailed 15 10 5 3 20%Design

Programming
and Unit 35 12 20%
Test

To correlate the estimate generated from the "bottom up" approach,
the following guidelines can be used as indicators of distribution of
cost between phases.

TABLE 2

Phase I 5%

Phase IIA 10%

Phase lIB 20%

Phase IlIA 35%

Phase IIIB 15%

Phase IIIC 15%

11 Project Management is calculated as a percent of man-days on other
tasks. As the size of the project grows above 20-25 personnel
assigned, extra management above this may also be required.

G-10.6



Schedule should be defined at this time. The development sequence of
each subsystem including precedences and implementation priorities can be
illustrated by a staging chart. A required implementation date, a limit on
the maximum personnel assigned to a project, or a known team are possible
constraints to the schedule. The goal is a rough schedule for initial
planning purposes.

Finally, return on investment or other financial viability measures
should be computed using quantified system benefits, operating costs and
development cost schedule.

H. Management Presentation

As stated earlier, user involvement and management review is critical.
The review at the end of the system concept is the key to beginning the
actual design project.

PHASE II -- SYSTEM DESIGN

The goal of the design phase is to devise the most effective and
efficient means to provide the services which were earlier defined as
economically desirable. Where the System Concept analyzed economic
feasibility within wide limits of technical capacity, the System Design
phase analyzes technical feasibility of alternative methods to provide
the desirable features. If the project is large, the design phase is
broken into two subphases: General and Detailed Design.

A. General Design (Phase IIA)

The General Design phase is user oriented. All user issues should be
resolved. Manual interfaces and processes, code types to be used and
reporting needs are defined. The end product of the General Design is
a specification of user requirements and interfaces, and a defined solu­
tion to the major technical problems of the system. The technical
feasibility of the design must be thoroughly analyzed and alternative
technical approaches devised and evaluated. The following tasks are
usually requi red:

G-10.7



1. Pl anni ng

The task list from System Concept must be expanded into a work­
ing plan for this phase. Personnel must be matched to tasks, tasks grouped
and assigned for effective continuity, and task interdependencies consider­
ed. Since integration of the subsystems is a primary goal of General Design,
significant time must be reserved for analysts to review each other's
work. Review procedures for both users and technical analysts should be
precisely defined here, as well as procedures for resolving stalemates.

2. Issue Analysis

The issues to be resolved were defined in the System Concept
phase. This analysis is quantified as much as possible, though these
lssues are generally harder to assign dollar values. A mechanism for
resolving issues must be defined. Usually, a specific person is desig­
nated to approve issue resolutions. It is also critical to impose
and document deadlines for issue resolution.

*3. Define Inputs and Outputs

The problem of which functions must be defined first (input,
output or process) continually arises. It is often a restatement of the
"chicken or the egg" riddle. The key here is to pick a sequence, and
proceed with efficient timely analysis. In general though, a firm
grasp of user reporting needs serves as a good starting point.

Codes to be used in the system must be defined as the design
progresses. This task is completely overlapped with file design, and
is also sometimes a major issue. There must be some explicit addressing
of the use and purpose of each major code.

Report definitions should include: narrative descriptions,
contents, purpose, users, frequency, and media. Files (both computer
and manual) must be adequately described, including:

• Type of file.

System Master Files. Most of the subsystems
use these files, though they are normally built
and maintained in a separate subsystem. Designers
of master file subsystems are often key personnel
who insure system integration and finalize code
definition. Master file definition is especially
difficult to schedule since master file require­
ments may change several times during the design
stage because of issues arising in processing
subsystem design or technical problems which
surface during the design.

G-10.8



Subsystem Master Files. Used totally within a
single subsystem; and contain relatively stable
information to be updated and maintained by the
subsystem.

Input Files. Infonmation from other subsystems
is defined by the subsystem requiring the informa­
tion, except, of course, at the initial entry of
a source document.

• Description of files.

Description of Use. Narrative format.

Data Elements. Description, rough size estimate
and frequency.

Records. Groupi ng of e1emen ts .

Processing Intent. A description of what the
file is used for and how it is to be processed
(e.g., direct or sequential).

Organization. Definition of how the file may be
organized, e.g., IMAGE, KSAM.

Input documents must be described. The level of detail varies
with importance to the system, and the system operating environment.
Critical input documents should be roughed out and approved by the user.
Occasionally, field testing is required, but usually critical documents
should not be finalized in this phase.

Communciations requirements should be defined. Aspects to be
considened and documented include rough estimates of line loading, loca­
tion and types of terminals, transmission rates, recovery feasibility,
fall back procedures, and alternative approaches.

*4. Computer Processing

Computer processing is described in tenns of subsystem functions,
not programs. The division of these functions into programs does not
take place until Detail Design.

Subsystem flowchart definitions describe process functions con­
necting inputs and outputs. The functions are simply logical groupings of
data manipulation, and definition of these is the key talent of a system
designer.

G-10.9



Function definitions are detailed narrative descriptions of what
each function will do. This does not mean a decision block level of flow­
chart or description. It must be in terms understandable to a non­
technical system user.

Computer resource estimates based on the frequency of processing
cycle and a profile of the inputs should be made. If technical feasibility
of any alternative appears uncertain as a result of this analysis, further
refinement by the use of simulation, emulation or more detailed analysis
may be required. Establishment of technical feasibility is a requirement
of thi s stage.

*5. Manual Procedures

Manual procedures related to system function should be documented.
A processing flowchart should be prepared depicting operations to be per­
formed and organizations which will handle inputs and outputs. Detailed
narrative descriptions should be used to describe coding information on
fonms, balancing needs, error correction, data entry and verification or
validation. Personnel requirements over daily and monthly cycles, including
profiles of activity over time (peaks and averages) should be defined.

6. Environmental Conditions (System Configuration)

The tasks in this area are concerned with technical support for
the development and operation of the system.

• Software Environment -- or system support utilities as
well as more general installation support is analyzed here.
Alternatives must be considered when differences in cost
or maintainability exist. Objects of analysis may include:
data base approach, use of a report generator, inquiry
facilities, use of a test data generator, and programming
1anguages.

• Training -- of programmers and analysts for later develop­
ment phases should be planned and begun, if possible.

• Hardware Environment Analysis -- should be performed at
the end of the General Design since it requires evaluation
of all subsystems. If alternative hardware is under con­
sideration, system resources or needs must be analyzed,
including on-line storage, CPU utilization, (total hours
required per processing cycle), I/O elapsed time, order
lead time, and communications support needs.

G-10.10



7. System Flowchart

This is a key ouput from the phase. It should be understand­
able to both user and computer personnel, and provide an interface for
discussion purposes. Two levels should be produced. A summary level
chart reworks the Phase I flowchart, with the same features, issues,
descriptions, etc. An integrated detail chart links subsystem flowcharts
and is used to check for integration. All detail subsystem charts are
included on this consolidated version.

8. Cost Benefit

This is reworking of operating cost and benefits in light of
new detail to insure continued economic feasibility.

9. Phase lIB Task List

A detailed task list and resource estimate is now required.
This task list may still be in terms of process functions rather than
detail components, depending upon staffing uncertainties, start date
for next phase, etc. If so, the list will be expanded early in Detailed
Design, as discussed later.

10. Priorities for Develppment and Implementation

This is a refinement of the initial discussions with user groups,
and must be reviewed with them. Precedences may be clearer and costs of
partial implementation can now be considered. Priorities may not indicate
a rigid scheduling procedure, due to alternative distributions of project
resources (e.g., if one subsystem can only use four analysts and six are
available, then a second subsystem can be worked on). Priorities act as
guidelines in assigning scarce resources to the project. Some factors
to consider are extra bridge (or conversion) programs, revision to high
priority programs when the full system is in place, early realization of
benefits and progress visibility.

11. Development Cost and Scqedule

The development cost can now be re-evaluated with the detailed
Phase lIB task list. A further refinement of Phase III costs is also
possible since a firmer estimate of computer programs is possible. A
rough schedule must also be defined utilizing the priorities and pre­
cedences known.

12. Management Review

The management review process has only to cover changes in scope,
technique or benefits from the Phase I presentation. A progress report
may be all that is required if changes are minimal. However, technical
feasibility must be firmly established at this stage and should not be
in doubt upon management review.

G-10.11



B. _Detailed Design (Phase lIB)

The Detailed Design phase of a systems development project develops
system specifications in sufficient detail to accomplish the programming
and implementation tasks. If the system is small, then separating the
design into two sub-phases may not be necessary. In any case the outputs
should be the same. If the implementation plan places development
priorities on the various subsystems, the higher priority subsystems
should have their designs completed before the lower priority subsystems.

In this phase, process functions are grouped into programs, and
detailed specifications are developed for these programs. Rough report
formats are developed into report layout specifications, and all reports,
including activity lists, are specified. Input forms are finalized.
File contents are refined to detailed file specifications, and layouts are
prepared for all files. Manual procedures are further detailed to the
level of detailed job specifications.

Non-application activites of this phase include making final arrage­
ments to insure the availability of hardware and software (including
communications facilities) to provide a testing and implemention environ­
ment. Also, a series of final volumes are prepared which serve as the
system documentation for implementation and later maintenance.

The key aspect of Phase lIB then is a further refinement of design
and planning work done up to this point.

The level of detail required for a detailed program specification
is determined by two things:

The level of qualification of the programmers who will have
to program from these specifications; the more senior, the
less detail required.

The staff continuity between Phase II and III. That is, if
the same people who are designing the subsystem will also be
programming the subsystem there is a reduced need for detail.

The following sections discuss the items to be accomplished during
Detailed Design.

1. Detailed Project Plan

A detailed project plan must be prepared to control the
Detailed Design Phase. This plan is based on the task list prepared
at the end of Phase IIA, and reflects the priorities of subsystem
development.

2. Resolve Remaining Issues

There will surely be some issues remalnlng from Phase IIA. These
should receive the highest priority for resolution before proceeding, and
be settled very rapidly.

G-10.12



3. Codes

It is necessary to define what new codes will represent. Con­
sideration may have to be given to alternative coding types (structured
codes and random coding values), specifying the length and composition
of each alternative. Give consideration to the integration of new codes;
that is, if a similar code is used elsewhere in the same business, try
to maintain a consistency of the structure, and assigned values.

4. Detai 1 Data Base Des i gn

Al though thi s section is primari ly devoted to consi dera ti ons
of a data base system, some of the concepts are useful and should be
consi dered even when not in a "formal II data base system:

• Produce a glossary of terms for data elements for the pro­
ject. This glossary will be constantly maintained through­
out the project (and possibly throughout the use of the
facility). It should include the element name, a description,
its "picture ll

, the source of the element, (eventually) which
files it is in, and where its (subsystem) maintenance respon-
s i bi 1i ty 1i es.

• For large projects, data base des; gn ;s a further (but not
final) refinement of the concepts and data needs studied
in Phase IIA, and includes developing an overall data base
design, examining data relationships both inside and outside
the project, and developing initial data base size estimates.
Consideration should be given to redundancy and efficiency
tradeoffs and integration wi th other sys tern DB requi rements.
Size estimates should attempt to deal with overhead storage
for system flags and pointers.

• The final data base design is done later in Phase lIB,
and should include finalized physical and logical layouts
of the data base, access methods, estimates of the frequency
and timings for backing-up, recovery, and reorganizing the
data base, and an outline of recovery procedures.

• If necessary, select SYSGEN options to optimize the perform­
ance of the data base facility for your project or system.
TOTAL has relatively few SYSGEN options, whereas IMS has
many.



*5. Detailed Subsystem Flowchart

The starting point for all detailed design work is a detailed
subsystem flowchart, showing all inputs, programs, files, reports and
other outputs of the subsystem, and how they connect. There must be
firm agreement between technical staff and the users regarding this sub­
system flowchart before proceeding with Detailed Design.

*6. Inputs/Outputs

For each subsystem, the inputs and outputs must be fully speci­
fied in detail -- this includes reports, files (data bases). and input
(source) documents. Each of these are treated below:

• Reports must be specified in detail. Such things as a
detailed report layout (with descriptions of the contents
of each field on the report), a general description of
the contents and purpose of each report, an estimate of
the volume and frequency of generation, output medium,
and special code values (e.g., error codes) should be
indicated in detail.

• File specifications (layouts) consist of at least the
details of the data elements and their groupings (e.g.,
COBOL-like layout or data base layout). The data element
lengths, type relative positions, and frequency (of
specific groupings or record types) should be given,
along with record lengths and blocking factors.

• Input (source) document formats should be finalized at this
point. Besides form layouts, keying formats, revised
volume and timing estimates, and a chart which cross-checks
the data elements with the source documents to insure that
all data required is being captured should be prepared.

• Communications steps include revising volume estimates,
and other data, determining detailed back-up and recovery
procedures, and, if there are dedicated facilities, de­
tailing the entire communications network (lines, their
locations, line type, conditioning, maximum transmission
rates, modem requirements, multiplexing facilities, and
any other data communciations control equipment requirements).
A detailed cost analysis should be performed on this plan­
ned network, if not already done.

G-10.14



*7. Computer Processing

The initial task plan for Phase lIB which was prepared at the
end of Phase IIA was process function oriented. However, the system is
really program oriented. The relationships between these process func­
tions and the programs to be specified have been given in #5 above. Now,
detailed program specifications must be prepared, including:

I The program name, program identification, subsystem, inputs,
and outputs.

I A brief description of the purpose of each program.

• Frequency of runni ng and the es ti rna ted liS tand-alone II run
time .

e Recovery in the event of an external malfunction.

• A detailed program specification and corresponding detailed
description should be prepared. As noted previously, the
level of detail is primarily determined by the skills of
intended implementors. Flowcharts will serve as the
principal documentation of the programs for maintenance
purpose. Therefore, accuracy is vital. A written
narrative should be keyed to each box on each flowchart
to elaborate on the meaning of that step.

*8. Manual Procedures

The need to have clear, workable manual procedures at the design
stage cannot be overemphasized. General ideas of the manual procedures
have been specified during Phase IIA, but these must be reviewed and
detailed at this time. These procedures must be thoroughly reviewed and
approved by the users. If possible, field tests of these procedures should
be accomplished before their finalization.

9. Envi ronmenta1 Condi ti ons

Technical support and planning must be provided in the software
and hardware areas to insure that the necessary facilities are available
for impl ementa ti on of the system.

• Software support must be provided as indicated below:

Software decisions made in Phase IIA (e.g., data
base management systems, reporting packages, etc.)
must be reviewed and finalized. If they are no
longer adequate, specific alternatives must be
analyzed and recommendations made.

The software to support testing and implementation
must be purchased and made available. The detailed
implementation plan should be a guide as to
when the various pieces of software must be available.

G-10.15



Basic technical support must be provided to the
implementation, e.g., test data generators,
standard error handling routines, program generators,
data dictionaries, or special purpose routines.
Because these utilities need to be available prior
to programming, their development or installation
should be started as soon as possible to insure that
they are available when needed.

Test plans for the system software should be evolved
and executed.

A detailed training program should be developed for
the programmers, which would include familiarization
not only with the new software systems (e.g., data
base management systems), but also with the use of
the software support utilities being developed.

• Hardware support must also be provided as follows:

The system resource requirements must be redone with
the availability of the detailed design, and the CPU
utilization, channel requirements, disks, tapes,
terminals, and communications needs must be detailed.
An order or modification of previous orders must be
made. The delivery of hardware should be in phase
with the needs for a testing, then an implementation
environment.

Detailed plans for the physical facilities for the
hardware (e.g., electricity, air conditioning, floor
space, false flooring) must be made.

10. System Flowchart

Final subsystem documentation must be tied together to provide
for easy availability for programming and maintenance. The items to be
prepared are:

• A detail flowchart at the individual program level must
be prepared for the entire system. This should be a com­
bination of the flowcharts for the individual subsystem as
done in #5 above. This flowchart should be backed up by
a descriptive narrative, and supporting tables of programs
and files. This flowchart is also very useful in ascertain­
ing whether all subsystems interfaces are covered.

G-10.16



Final subsystem volumes (one per subsystem) should be pre­
pared at the end of Phase lIB. These will serve as the
final documentation for the subsystem~ and should be a
compendium of all files, programs, reports~ and procedures
previously prepared. Any later changes made during pro­
gramming and conversion should be reflected in these
volumes so that they can also be used to support mainten­
ance.

11. System Implementation Project Plan Task List

A detailed task list must be prepared to cover the programming~

systems testing, and conversion and training phases of the system
development. The items to be covered in this· plan are acceptance and
performance criteria, coding and unit testing tasks~ a detailed plan
for program and system testing, and implementation phasing.

12. Management Revi ew

A system overview presentation should be made to higher-level
management and the users at the end of Phase lIB to gain specific approval
to proceed to Phase I I I •

PHASE· 111- SYSTEM IMPLEMENTATION

Phases I and II accomplish the key tasks of definition and detailed
specification of system scope, functions, and components. Phase III
proceeds with these specifications to develop an integrated system of
computer programs and manual procedures which is ready for installation
ina producti on envi ronmen t. .

System Implementation consists of programming and unit testing~

system testing, and conversion and training.

A. Phase IlIA -- Programming and Unit Testing

During this phase, detailed program specifications are analyzed, and
individual programs are coded, compiled and tested.

1. Revise the Project Plan and Specify Detail Personnel Allocations
and Work Schedules

G-10.17



2. Familiarize Programming Personnel with the Project

To ensure smooth project continuity, it is important to instruct
programmers on system functions and components before they begin detailed
coding. This is done by having them review detail specifications including
relevant charts, file layouts and functional narratives, and then having
programmers attend any formal training sessions planned for in Phase lIB
(e.g., data base training courses).

*3. Program Coding

Detailed program specifications must be interpreted and translated
into computer programs.

• Review detail program specifications.

I Where necessary, elaborate on program specifications in order
to transform them into the working documents needed for
program coding. At this point, it is useful to analyze
input files, output files, processes, detailed calculations,
and error conditions for correctness, consistency and
potential use in program testing.

• Produce and compi 1e program source :code.

• Develop a p1an for tes ti ng i ndi vi dua1 programs.

*4. Unit Testing

Individual computer programs are tested to insure that they meet
program specifications.

• Install and checkout unit test software. This software,
including utilities and aids to facilitate program testing,
was defined and specified during system design.

• Generate unit test data. Files needed for program testing
can be produced by both programmers, who generate files for
a single program and a central technical support staff which
crea tes sys tern tes t mas ter fi les used by groups of programs.

• Test programs and revise where necessary.

• Evaluate initial test volumes and timings in relation to
the estimates developed during system design.

• Review unit test results and certify programs as ready for
system tes ti ng.

G-10.18



B. Phase IIIB -- System Testing

Phase IlIA produces individual working computer programs which meet
detail program specifications. System testing ensures that these pro­
grams and manual procedures operate together in the integrated manner
necessary to accomplish system functions.

*1. Develop system acceptance criteria and test plan. The test plan
normally covers such areas as input data to be used, expected
outputs, interaction between computer system and manual pro­
cedures, sys tern acceptance cri teri a, tes t pl ans for log ical
group programs, and a plan for phased, integrated system test.

2. Install system test software. These programs including utilities
and aids to facilitate system testing were defined and specified
during system design.

*3. Generate necessary input, master and intermediate system test
data fi 1es.

*4. Conduct system test and revise programs where necessary.

• Analyze known inputs, resultant outputs, and the interaction
between computer programs and manual procedures.

• Compare system test volumes and timings with benchmarks
developed during system design and unit testing.

• Update system and programming documentation.

• Review system test in relation to system acceptance criteria,
and obtain user approval for final implementation.

C. Phase IIIC-- Conversion and Training

1. Convers ion

• Complete systems, operations and user documentation.

• Convert requi red mas ter and systems fi 1es .

• Conduct pi lot tes t as the fi rs t step of the phased sys tern
implementation plan. Steps include completing training
of user personnel, installing any necessary pilot hardware
of software, running the pilot test as a parallel run
against an existing system (if applicable)!' and evaluating
the pilot test in light of systems acceptance criteria.
If necessary, revise programs, procedures, documentation
and manuals based on results of the pilot run.

8-10.19



I Obtain system acceptance and begin full scale system
implementation.

I Final implementation and signoff.

2. Training

• Develop a plan for training users, operations personnel
and systems maintenance personnel.

• Conduct training sessions for users, operations personnel
and systems maintenance personnel.

G-10.20



DECISION TABLES - AN EFFECTIVE PROGRAMMING TOOL

DANIEL F. LANGENWALTER

INTEGRATED BUSINESS SYSTEMS, INC.

Manufacturing businesses have many information processing
problems such as the rules for ordering materials, the
rules for granting credit, the logic of what to build to
meet a customers requirements, the rules for union dues,
deductions for savings and pension plans, tax reauirements,
etc.

Decision Tables have been used to express the logic in a
m~nner which people can understand and also can be used
as a computer program. Both General Electric and B. F.
Goodrich Chemical have reported a three-to-one increase
in programming productivity when using Decision Tables.
Here are some examples of applications which illustrate
the power and simplicity of Decision Tables.

Turbine blades are up to five feet long and must be ma­
chined to airfoil shapes. A FORTRAN program produced the
magnetic tape necessary to control the Excello contour
milling machines. Unfortunately, some bug caused the
milling cutter to gouge a blade once in a while.

The decision was made to do the program over using Decision
Tables along with calculations. The analysis and tables
were completed in five weeks. The subroutines were com­
pleted in two more weeks. The program was independently
checked and debugged in three weeks and has been running
successfully for ten years. The people involved say that
this success in solving a difficult logical problem is due
to the use of Decision Tables.

He started using Decision Tables when we were challenged
to automate an entire business.

G- 11 •1



The business chosen for this work built electric indicating
instruments for industrial panels. These included D.C. volt­
meters and ammeters and AC voltmeters, ammeters, wattmeters,
frequency meters and power factor meters. To get a bill of
materials for each instrument we decided to use Decision
Tables to generate the bills. One of the Decision Tables
is like TABLE 1000 - ARMATURE ASSEMBLY, Figure 1, next page.

r,-'l.2



1000 TABLE - ARMATURE ASSEMBLY
lalaC FREQ- APPLICA- RATI ~,!G r,IO OF SCt~LE TYPE OF flllAf'1 ARf'lI', •. .,l .. ,~.

l020C UENCY TION UNITS P111~SES DIST. ARM COl LS D~!G

1030C
10LiO FRQ 0 APPL & RU &HD & SD # TA= &QAC= &AD= 8, GOTO tut dl

1050 EQ 0 &EQ DC &EQ -- &EQ -- &EQ -- # DCMC & 1. &17614 & 1210 :Y-

1060 I'JE 0 & RECT & & -- & #DCr\1C & 1 & 17614 &1210 #

1070 & DC~1R & Af,1PS & 1 & # IV & a &17617 &1310 #

1080 EQ 60 & AC & Ai,'PS & 1 & # IV & 0 &27617 &1310 #

~ 1090 60 & I~C & VOLTS & 1 & REG # IV & 0 &17617 g, 1310 #
I if:
--'
--' 1100 GE 25 & AC & VOLTS & 1 & EXP # ED & 1 &17615 &1310 #.
w

1110 25 & l,f & ~'I!\TTS
n 1 ~ # ED & 1 &17615 &1220 #r; ell

1120 25 & V & VARS & 1 ~ # ED & 1 & 17615 &1220 #
\

1130 25 0 'il & HATTS &LE 3 & # ED & 2 &17616 &1220 #Of .1

1140 25 & V & V:~RS 0 3 & # ED & ') &17616 &1220 #Of L

1150 25 & FREQ & HZ &EQ 1 & # ED & 1 &17615 &1220 #

1160 EQ 60 & PF & PA &LE 3 & # PV & 0 &17618 e 1310 #

1170 ENDT

FIGURE I.



The Decision Tables expressed very complex product logic.
As a result we were able to generate the bill of materials
for anyone of several million instruments. The cost of
storing and processing bills of material was reduced by
10 to 1. We proceeded to try using Decision Tables on
many other product lines and found considerable success
if:

1. The product was made up of a variety of parts and
assemblies used in different combinations.

2. There was a large variety of final products.

The work of capturing the logic would not be justified for
a simple product line or for a single one-of-a-kind product.

After this success in the order entry - bill of materials
application, we looked at the manufacturing instructions
for making parts and inspection.

A business making industrial controls made extensive use
of Decision Tables to convert a panel layout into the
factory instructions for shearing, punching, and bending
sheet metal. The enclosure design was captured in TABLE
2100 - BACK DIMENSION and TABLE 3010 - HOLE SPACING - VS
on next page, Figure 2.

The system required a very large amount of logic for bend
allowances, tool designation, etc. The logic was done in
Decision Tables and then programmed. This system has been
up and running successfully for over ten years.

r,-11.4



2100 TABLE - BACK DIMENSIONS
2110C MATERIAL BACK BACK FLANGE MTG ASSM
2120C ENCLOSURE HEIGHT THICK ~~IDTH HEIGHT \~IDTH HOLE HOLE
2130 PH & PH # MT= & B\~= & BH= & BA= & BB= & BG= & GOTO #

2140 GE 10.00 &LT 28.00 # 0.090 &PW-0.16 &PH-0.J6 &1.36 &1.11 &3.42 &3010 #

2150 28.00 &LE 56.00 # 0.120 &PW-0.25 &PH-0.25 &1.42 &1.07 &3.38 &3010 #

2160 -- & -- # -- & -- &. -- & -- & -- & -- &2120 #

2110 ENDT
2120 PRINT: ERROR IN ENCLOSURE HEIGHT

3010 TABLE - HOLE SPACING - VS
3020C NUMBER
3030C ENCLOSURE HEIGHT OF HOLES
3040 PH & PH # BD= #

3050 GE 10.00 &LT 15.00 # 2 #

3060 15.00 & 31.00 # 3 #

3070 31.00 & 45.00 # 4 #

3080 45.00 &LE 56.00 # 5 #

3100 ENDT

FIGURE 2.



In a computer business, the quality control people had
set up a punched card system for recording the type of
defect on a circuit board, but found that manual analysis
of the data required extensive time and had many errors.
They used Decision Tables like TABLE 4100 - OPERATOR ERROR,
Figure 3, next page.

Their comments were that the program runs and is easily
expandable, if necessary.

Thus, we have a number of cases where complex logic was
expressed in Decision Tables and used to control a computer.

In several businesses as diverse as an insurance company,
a construction company and a builder of nuclear power plants,
payroll and labor cost analysis logic has been done in Deci­
sion Tables. One such table selects the correct tax table
depending on marital status (M=married; S=Sing1e), and pay
requency.

WK = weekly

BW = bi-weekly

SM = semi monthly

MN = monthly

TABLE 2880 - MARITAL STATUS, PAY FREQUENCY, Figure 4, shows
the Decision Table.

The single monthly federal tax table would be like TABLE
4380 - SINGLE MONTHLY FEDERAL TAX, Figure 5., where:

FED is the federal withholding tax

TXGR is the taxable gross income

FE is the number of exemptions

G-ll.6



4100 TABLE - OPERATOR ERROR
4110C DEFECT
4120C CODE TYPE OF OPERATOR ERROR
4130 DEFC # ND & NE= & MF= &NG= &NX= &GOTO #

4140 EQ 28 # ND+1 & -- & -- & -- &NX+1 &4200 #

4150 29 # -- &NE+1 & -- & -- &NX+1 & 4200 #

4160 30 # -- & -- &NF+1 & -- &NX+1 &4220 #

4170 40 # -- & -- & -- &NG+1& NX+1 &4200 #

4180 ENDT

FIGURE 3.



co

2880 TABLE - MARITAL STATUS} PAY FREQUENCY
2890C MARITAL PAY
2900C STATUS FREQ
2910 MST & PF # GOTO #
2920 EQ M & WK # 3010 #
2930 M & BW # 3180 #
2940 M & SM # 3320 #
2950 M & MN # 3510 #
2960 S & WK # 3770 #
2970 S & BW # 4020 #
2980 S & SM # 4200 #
2990 S & MN # 4370 #
3000 ENDT

FIGURE 4.



4370 FINC=TXGR-62.50*FE
4380 TABLE - SINGLE MONTHLY FEDERAL TAX
4390C FEDERAL BASE DEDUCT PERCENT-
4400C TAXABLE TAX AMOU~JT (~GE

lJ410C INCO~1E
4420 FINC # BT= & DAr'1T= & PRCT= #

4LI30 LE 142.00 # 0.00 & 0.00 & 0.00 #-

4440 329.00 # 0.00 & 142.00 & 0.16 JJ
t,l.

Ci)

4450 621.00 # 29.92 & 329.00 0.18 #I &~

~

'-0 4460 788.00 # 82.48 & 621.00 & 0.22 #

4470 954.00 # 119.22 & 788.00 & 0.24 #

4480 1288.00 # 159.06 & 954.00 & 0.23 -}1
I'

4490 1538.00 # 252.58 &1288.00 0 0.32 #.~

4500 # 332.58 &1538.00 $ 0.36 #I.

4510 ENDT
4520 FED= (F INC-DAr1T) *PRCT+BT

FIGURE 5.



Another problem is the different union deductions. A table
can be written giving each deduction depending on the union
involved. These tables show the logical relationship so
clearly that changes are easy to make.

The conclusion, from the twenty years of experience with
Decision Tables, is that they are very useful in writing
complex logical relationships. They are, in effect, a
powerful programming language which is useful in many
functions of a business. Several users have reported
a doubling or tripling in the productivity of their
programmers.

Based on this experience, MUSCL - a Decision Table language
was developed. The best ideas from five other languages
were used, READ and WRITE commands for file processing
and a REPORT writer to format reports, were included.

MUSCL has been implemented on a Hewlett-Packard 3000 to do
payroll, order entry, and executive compensation system.

G- 11 .10



Microprocessor Based Product Design ~ ~ HP3000
a Presentation for the

7th International Heeting of the
HP General Systems Users Group

Denver Colorado, November 1978

by
Jack C. Armstrong

Los Altos Research Center

Hardly a day passes without the announcement of a new product or new
application based on micro-processors. Concurrent with these announce­
ments are constantly reducing prices for microprocessor hardware. Un­
fortunately, as applications become more complex, the cost of software
development has soared. 1

Hicroprocessor manufacturers were quick to respond to complaints about
the high cost of developing products around their devices, by introduc­
ing microprocessor development systems. 2 These systems, which were
valuable in debugging both software and hardware, were immediately
placed into ,~ide-spread use. Not unreasonably, microprocessor vendors
offered development systems tailored very specifically to their own
products, which as a not-coincidental side effect locked their customers
into using their chips to the inclusion of other vendors. This effect
increased as the cost of the development systems increased. Recently, a
few development systems have been introduced (.!l2!. by microprocessor
vendors!) which accommodate several manufacturers lines, but these sys­
tems often lack features available in the vendor's custom systems. 3

Another response to the need for software development aids was the
development of so-called "cross software", which allowed the use of a
larger, or at least different~ computer to compose and assemble/compile
programs for microprocessors. This software was made available on all
major commercial time sharing services, and organizations with in-house
computer systems purchased cross assemblers and cross compilers for use
on their own machines. The trend towards cross software has been
accelerated by the rapid acceptance of higher level programming
languages with the need for larger compiler~. The use of another
machine for software development has much to recommend it, includ ing
freedom to choose from many different microprocessors at minimal in­
cremental expense, use of a common, and usually better, text-editor,
etc. The snag in this process comes when the software is written and
compiled without syntax errors •••now comes actual debugging of the pro­
gram logic. This, in addition to check-out of the prototype hardware,

G-12.1



generally requires transferring the software to a microprocessor devel­
opment system, with its capabilities for in circuit emulation, hardware
break-points, single stepping thru instructions, etc.

Using the cross software approach frequently means a cost savings in the
purchase of development systems, both because fewer of them will be
necessary, and the less sophisticated models (without text editors,
assemblers, compilers, etc.) may be used. However, it is rare that
development systems of some sort will not be required.

One company which found themselves involved in developing a product
around a microprocessor chose to stand back and look at the entire
process of developing the product, and all that that entailed. 5 This
was Scientific Hicro Systems, of ~ountain View, California. The
following steps were identified in the complete proj ect of developing,
testing, and supporting a new microprocessor based product:

1. System specification and functional descriptions.

2. Detail design specifications.

3. System implementation, (hardware and software), including con-
struction of prototypes, coding software, etc.

4. System test and evaluation.

5. System documentation, includine technical reference manuals,
user's guides, manufacturing instructions, sales literature, etc.

6. Product support and maintenance.

The system which evolved at SMS utilized an HPJOOO, several micro­
processor development systems, and a prom burner, all integrated in one
system for the development of a microprocessor based produc t. 6 The
total system involved the use of a sophisticated text editor and word
processing system (LARC EDITOR/SCRIBE) which included features designed
to aid program development, documentation, and tracking changes in both
source programs and associated literature. 7 Cross assemblers and cross
compilers were implemented on the same system, which produced obj ec t
code files on the system disc. These files were then "down loaded" onto
either the microprocessor development system (for testing) or onto a
prom burner to fuse proms for the completed system.

As consultants to SMS, we developed two programs, one for interfacing to
the development system, and the other to interface directly to a prom
burner. These devices were plugged in to HP3000 RS232 terminal ports,
and interface programs written in SPL. Once developed, the interface
programs were not terribly complex, but the thought and design took
considerable effort.

G-12.2



Two approaches were considered in attaching the development system to
the HP3000. The first would be to connect an RS232 port on the develop­
ment system to a terminal port on the HP3000. This would require soft­
ware in the development system which would allow a user on the develop­
ment system console to talk "through" the development system to the
HP3000, which would then be tricked in to thinking tha t the developmen t
system is a user terminal. A user could then log on to the HP3000 and
run software to access the object files created by the cross software
and transmit then back to the development system. At SHS, the develop­
ment system being used had its entire operating system in firmware, so
no r.1odification was possible. Instead, \-le chose to fool the development
system rather than the HP3000. This ,.,as done by connecting the develop­
ment system console line to a dedicated terminal port on the HP3000.
Users may utilize any terminal to log onto the HP3000, and then run an
interface program which reads the terminal, looks for a few spec ial
commands, and otherwise sends any line typed directly to the development
system. The special commands cause disc files (of object code) to be
transmitted as though they were being entered by hand directly intn the
development system. Thus, the development system thinks it is talking
to a user console, not an HP3000. (A user who always types at 240
characters per second!).

In other, more flexible development systems, either technique could be
used, and each have some advantages. In the case of the prom burner, we
again made the device think it was attached to a termi.nal, not a COl:1­

puter. This program is actually more complex than the interface to tht:'
development system, as the prom burner may be both read or written, and
we incorporated a facility to compare two blocks of object code, compute
check sums, fill unused addresses with a user selectable constant, etc.
Also, the program must deal \-lith pror.1s of several different SiZl:>S ;1nd
types.

The success of this installation led to another company acquiring an
HF3000 for similar purposes. Caere Corporation, also of ~ountain View
California, interfaced not only development systems, but single board
computers (SBCs) to terminal ports on their HP3000. The SHCs ac tua lly
have very simple operating systems in firmware which allow down loading
via an RS232 port, so programs on the HP3000 can load and run test prc)­
grams on prototype devices, which then transmit hack test results for
later analysis on the larger machine. They are llsing the same text
editor and word processing system as SHS, and for similar pur?oses.
They also use cross software, but have a rather unique twist to their
use of a development system. One high level microprocessor language
currently has a more efficient compiler implemented as a resident com­
piler on the development system than those available as cross compilers
on larger systems. Caere intends to use the HP3000 for text editing and
compost ion of source programs, but will then ship the source to the
development system for compilation!. The resulting object code will
then be transferred back to the HP3000's disc, for subsequent down load­
ing onto SBC's connected to other ports. Thus, the development system

G-12.3



becomes a "compiling box", and rarely if ever will be used for anything
else.

The advantages of directly interfacing to microprocessor devices, via
standard RS232 interfaces, are that each component of the complete
system is doing whatever it is best at, with a maximum of flexibility
for future changes. The major improvement in this scheme would be to
upgrade the cross compilers available. Ideaily, one should be able to
chose from several high level languages to develop software with, and
then select the optimum microprocessor for the application. This
selection would be considerably aided by a choice of code emitters all
working off the same compiler, so code density and instruction counts
could be compared. Finally, a direct interface to a development system
would allow final testing of the competed system. The HP3000 has proven
to be an ideal nucleus for such a total system, and most of the software
is available today.

1 HCDermott, Jim, "Experts Tell How to Hold Down the High Cost of
Hicroprocessor Programs", Electronic Design 26, vol. 23, (Dec. 20, 1975)
pp20-26.

2 Bursky, Dave, "It's Getting Easier to Program Nicroprocessors l.Jith
the New Software Design Aids", Electronic Design 2, vol. 25, (Jan. 18,
1977) pp20-26.

3 Snigier, Paul, "Nicroprocessor Development Systems - Which One is
'B~st''', ED I-; , vol. 27, no. 5, (Mar. 5, 1977) pp68-78.

Nauful, Eli S., "Software Support for Hicroprocessors Poses New
Design Choices", Computer Design, vol. 15, no. 10, (Oct. 1976) pp93-98.

5 Ivie, Evan L., "The Programmer's \o!orkbench -- A Hachine for
Software Development", Communications of the ACt'! vol. 20, no. 10, (Oct.
1977) pp746-753.

6 Auclair, Dan, "A Ninicomputer-Based tUcroprocessor Development
System", Compcon 78 Spring, 1&!h IEEE Conputer Society International
Conference, pp334-337.

7 Rochkind, N. J., "The Source Code Control System", IEEE
Transactions on Software Engineering, 5E-1, 4 (Dec. 1975) pp364-369.

G-12.4





SYSTEM PERIPHALS

Series "H"





PRESENTATION TITLE: ur200 RJE Subsystem

INDIVIDUAL (S) NAME (S) : Donald Klett

ADDRESS: Sanganon State University
Springfield, Illinois 62708

ABSTRAcr:

A 200 User Terminal (ur200) simulator has been developed for the HP3000
Series II that supports rerrote job entry service to large Control Data
Corrputer systems. The design and irrplementation of the subsystem will be
presented. Input/output options and the user interface will also be
discussed.

H-01.01



HP 3000/IBM 1403 COUPLING EXTENDS SYSTEM UTILIZATION
RAY LORENZ

SPUR PRODUCTS COPR.

The HP series 33 gives the user the option of a 180­
characters-per-second or 400-lines-per-minute dot matrix
printer. Series II and III give choices of solid-character
printers with speeds of 300, 600 or 1250 lines per minute.
Being solid character printers they have advantages over
dot matrix printers. However, all three are drum printers
which lack operating features and options inherent in chain
or train printers.

In fact, a chain or train printer can greatly expand the
utilization of any data processing system compared with a
drum printer. For example, an operator using a chain or train
printer can quickly interchange character sets, and even in­
dividual characters, so that a number of fonts (even custom­
designed type faces), special symbols, numbers and letters
can be selected. Furthermore, printing quality is greatly
improved, a factor that also makes it usable for some func­
tions not desirable for a drum printer.

Spur Products Corp. has developed a controller that
makes an IBM 1403 printer plug-compatible with the series II
and III computers. (Figure 1) It replaces any of the three
drum printers offered by H.P. The IBM 1403-2, or -3 or -Nl
can be driven. Rated print speed of the -3 and -Nl is 1100
lines per minute, and that of the -2 is 600 lines per minute.
Of the five models of 1403 printers available, we selected
these three for use with the HP 3000 because they have 132
print positions.

The l403-series printer was selected for this marriage
because it can correctly be called the best item of electro­
mechanical equipment ever produced. As such, dependability
and versatility also are among its attributes.

A comparson of the operating features can best be under­
stood by comparing the mechanical features of the drum and
the chain or train printer:

In the drum printer a cylinder rotating at constant
speed has a complete set of printing characters embossed
around it at each print position. Hammers strike the desired
characters as they rotate into print posltion. (Figure 2)

H-03.1



While a limited selection of fonts on the drum is avail­
able from the manufacturer, the drums cannot normally be
changed by the operator. Furthermore, individual characters
cannot be changed under any conditions. This not only com­
pletely takes away an option available with train or chain
printers, but makes it necessary to replace the entire drum
if a single letter is worn or broken.

Furthermore, no drum printer has been able to time the
impact on the rotating drum at the precise moment that the
character is in position. The result is that printed lines
are wavy across the page. The HP printers, which actually
are made by Dataproducts, are not as bad as some in this
regard, but they also will go out of adjustment. Wavy lines
discourage the use of the printer for sales solicitation
letters or most printed communications that reach the public.
Printed communications are often the only media on which the
company is judged, so they should have the highest quality
possible. It is natural that the 1403 is the standard of the
direct marketing industry.

In such applications two other characteristics of the
1403 are definite economic advantages:

1. Paper is slewed from the bottom of one form to the
beginning of the next at approximately 80 inches per second.

2. A vertical format unit can enable the paper to be
advanced to any pre-selected position, such as slewing from
the bottom of one form to the top of the next. The carriage
control commands are punched into a paper forms control tape
built into the printer.

In a chain or train printer an array of character slugs
moves horizontally at constant speed past a set of hammers-­
one hammer for each print position. In chain printers the
slugs are connected and pull each other around a track. In
train printers the slugs are not connected and push each
other around the track. (Figure 3) The model 1403-2 uses
a chain and the 1403-3 and 1403-Nl use trains.

Our respect for the l403-series printer is so great that
we chose it as the printer to be driven by the Spur con­
troller even though it has two marketing disadvantages for
us:

1. It has been out of production since 1970. There
still are hundreds of thousands around, but the market ob­
viously is not growing, and any manufacturer likes a growing
market.

2. Model 1403 printers cost as much as $30,000, which

H-03.2



is only about $8,000 less than it cost when it was new. Its
cost per printed line is about the same as the latest model
IBM printer. Still, you have to wait at least three months
for delivery of a reconditioned 1403 that may be 20 years
old.

Whenever there is an unusual computer printing job it
invariably is done with a 1403. One company uses it to print
on mylar for labeling products stored outdoors. The Atomic
Energy Commission uses it to print its Nuclear Science
Abstracts because it has the print quality. that allows the
copy to be read after it is reduced photographically and
printed by offset lithography. Both the AEC and Stanford
Research Institute use it because special chemical and math­
ematical symbols can quickly be added to the print train. SRI
even creates Greek and other foreign letters by overprinting
standard characters. In all of these ap~lications, inciden­
tally, the IBM 1403 printer is used with a computer other
than an IBM.

The Spur controller is software-compatible with pro­
grams supporting the HP 3000 series II or III. To accomp­
lish this while making it possible to permit the operator
quickly to interchange character sets it was necessary to
incorporate a memory in the controller that makes the for­
matting adjustments necessary for each type train.

A random access memory enables the operator to table
load the memory. To make reprogramming as easy as possible
when a single character is changed, the Spur controller mem­
ory has positions for 240 characters. Each has a direct
relationship to the 240 character positions on the train
(normally 48 characters repeated five times around the track
for speed in aligning the chracter with the print position) .

Optionally, the program can be permanently stored at the
factory in programmable read-only memories. When this option
is selected three PROMs are included with the controller, one
for each of three print trains selected by the user. A front­
panel switch enables the operator to change the program when
the train is changed. Any number of additional PROMs can be
ordered for as many trains as the user plans to use.

Naturally if PROMs are requested the operator is re­
lieved of the problem of programming, but does not have the
option of changing the computer language at a later date,
which would be possible with table loading.

Even without considering the increased use of the sys­
tem made possible, costs of a 1403 printer and Spur con­
troller system are competitive with similar HP equipment. An
HP 2618A printer with a speed of 1250 Ipm has a list price of

H-03.3



$35,400, and the HP controller adds $1,275 to the total
price. An IBM l403-Nl printer costs somewhere between $20,000
and $30,000 and the Spur controller costs $17,500.

When comparing costs it is important to recognize that
an increase in utility affects the comparable economics. If,
for example, sales letters now can be printed with a 1403
printer while they previously could not and had to be sent to
a service bureau, the comparative costs would have to be re­
done, especially if the additional printing job can be done
when the computer otherwise would be idle.

CONCLUSION

Just as it can truthfully be said that the HP 3000 "ends
the computer compromise," so the Spur controller ends the
printer compromise. In some ways the printer is the most
critical part of the data processing system. It produces the
final product of the system. Therefore, its printing quality
is the standard by which some unsympathetic boss, not to men­
tion the public, may judge your entire effort. And most im­
portant, the printer can be a limiting factor in the variety
of jobs that can be done. For these reasons some operators
of HP 3000 general systems have welcomed this new product,
and many more are expected to join them.

H-03.4



Spur Controller IBM 1403 Printer

FIGURE 1

H-03.5



64 CHARACTERS AROUND PERIMETER OF DRUM l
CHARACTERS ACROSS DRUM ~-_ ..-............

........... '.J_;J • ..~

-/- ~~"'..,.", ~.~~.~,-/. .;J'" -;
"' .. t't/ ~."
".-~, ".1"
",,;: ....,... ~"

A o'/h'"
o~~ ?,~

4~
c ~.,:

"r .~~.

RIBBON

PAPER

MAGNETS

DRUM PRINT MECHANISM

FIGURE 2

H-03.6



ONE SECTION OF TRAIN
( 48 CHARACTERS)

:~PAPER

IBM TRAIN PRINTER MECHANISM

FIGURE 3

H-03.7



PRESENTATION TITLE:

INDIVIDUAL (S) NAME (S) :

ADDRESS:

ABSTRACT:

A Real-Time Instrument Interface System for the HP3000

Gordon R. Syrronds

Envirorunental Health Centre
Ttmneys Pasture, Ottawa, Ontario

A real-ti..ne, tenninal-oriented interface which pennits acquisition of data
from laboratory instrtlITEIlts and other real-time devices is described. The
tenninal/interface system can be used with any device having a serial ASCII
output port, either RS232 or 20 rna current loop. It performs <x>ntrol functions,
baud rate <X>nversion, etc; in addition to s~rving as a nomal session node
tenninal. Current applications include automatic thenroluminescent dosimeter
(TID) readers, blood analysis equipnent and an animal weighing system.

The system has been used in production for over one year, and has proven to
be a ION oost, easy-to-use solution to interfacing instrum:mtation to the
HP3000.

H-05.0I



DISK·

SUB.SYSTEMS

SOFTWARE

CONSIDERATIONS

H.;..j17.1



-Foreign trade" enhances the quality of life of any

nation. In similar fashion, "foreign devices" attached to a

computer's central processor unit (CPU) can often enhance the

performance and cost effectiveness of the computer installa­

tion.

In both cases, protectionist attitudes can limit the

potential benefits. In the world of computers, the first in­

stinct of the user is to protect his system software. The con­

cern is legitimate. Investment in software can easily exceed

the value of computer hardware.

System software has been designed, in most cases, to oper­

ate within the context of a specific hardware configuration.

Even minor alterations in the hardware characteristics can have

far-reaching and often unpredictable effects on the operating

software.

Yet the fact is that nearly every computer installation is

limited not by the capabilities of its CPU, but by the throughput

and capacity of the input/output and mass-storage devices attached

to the CPU. The performance of nearly every computer installation



- 2 -

can be enhanced, therefore, by taking advantage of state-of-the­

art advances in the design of these peripheral elements.

But this is acceptable only if the new equipment is "trans­

parent" to the existing softward. Neither the CPU (for tech­

nical reasons) nor the user (for emotional reasons) should be

disturbed by the switch to a new type of I/O or mass-storage

device.

Software Transparency

These comments apply to any type of equipment attached to

a computer--including terminals, printers, tape transports,

data-communication lines, and disks.

This paper will concentrate, however, on disk drives--for

several reasons. Disks represent the most economical method

for providing fast-access mass storage. Moreover, since disks

are usually treated as an extension of main memory, they are

intimately linked to the CPU and its operating softward. And

if these facts were not enough to give pause, disk technology

has been progressing at a very rapid rate during the past few

years •

. The challenge, then, is to realize the potential of the new

technology (e.g., the new 3330 and Winchester drives) and still

remain "software transparent." Techniques must be found to



- 3 -

attach an advanced (but "foreign") drive, without altering a

single instruction in the operating system software or appli­

cation programs.

Three different methods have been developed to accomplish

this objective:

a) Fixed plug-compatibility

b) Dynamic plug-compatibility

c) Virtual transparency

As one of the industry's leading suppliers of disk systems

for computer enhancement, CalComp uses all three techniques for

achieving software transparency. Each method has its place

depending on the type of system and the volatility of the hard­

ware and software.

Fixed Plug-Compatibility

The original technique was fixed plug-compatibility--dating

back to the 1960's. It was, in fact, the basis for the first

effective penetration by independent disk suppliers, such as

CalComp, into the monolithic IBM marketplace.

Small but significant changes in the mechanical design of

disk drives provided major improvements in reliability and ease

of maintenance--plus a modest increase in system throughput.

H-~7.4



- 4 -

Despite these advantages, however, the new products could not

have found a market unless they appeared (to the CPU) to be

Identical to equivalent products offered by IBM.

The "foreign" drives were provided with cables that could

be plugg~d directly into the IBM mainframe. They also had

electronic logic circuits that could respond, with absolute

fidelity, to IBM's disk~drive commands.

But the fixed nature of the interface was a severe handi­

cap. Independent disc suppliers were inhibited from developing

performance characteristics beyond those that could be controlled

by the mre1 disk prgtocol. They would be" by definition, I1trans­

parent"--and of no practical value. Suppliers had to wait for

IBM to make the improvements, and were therefore in a constant

state of catch-up.

or much greater concern was the fact that IBM could J at any

time, make minor changes in its own operating software. These

could render" overnight, all "foreign" disks inoperative. Some­

times the changes could be anticipated and allowances m~de in

the control circuitry. Just as often, the only· solution ~:az an

emergency retrofit of eXisting units 1n the field.

Despite these difficUlties, the cost savings and perfo~nance

benefits were sufficient to create a Viable plug-compatible



- 5 -

market for independent disk suppliers. Their sales grew at an

accelerating pace and soon extended beyond IBM to systems pro­

duced by other mainframe and minicomputer manufacturers. But

the vulnerability to change has remained as a constant threat

to both users and suppliers.

Dynamic Pl~g Compatibility

One solution to this problem is what can be referred to as

dynamic plug-compatibility. This is the capability of "mapping"

or making one type of disk look like another type which is

recognized by the host system.

Two factors have contributed to the development of this

concept. Of major importance, of course, has been the intro­

duction of LSI. and microprocessor circuitry. A microprocessor

can be readily adapted to the type of control functions required

in a disk interface. Equally important has been the expanding

role of mass storage facilities as the principal method for

enhancing the efficiency and throughput of computer installa­

tions. Disk storage facilities, taking advantage of new, high­

capacity drives, have grown to the billion-byte level--as a

starting point.

In addition to size, there is also a new emphasis on variety.

Disk facilities may include drives with removable or non-removable

media with fixed or moving heads. Small-capacity units may be

added for private files, while maximum-capacity units serve as



- 6 -

basic storage to provide a minimum average cost per byte.

The configuration of the facility may, in fact, change from

month to month, or even hour to hour.

with the new emphasis on size and capacity, the additional

cost of a dynamic, microprocessor-based disk interface can be

easily justified. And as an added bonus, the interface can be

easily altered to meet any changes in the disk hardware or

operating system software.

The functions of a dynamic plug-compatible interface are

dictated by the microprocessor program--stored in easily inter­

changed PROMs or floppy disks attached directly to the interface

controller. Or the operating system itself can define its own

plug-compatibility by downloading a suitable interface program

at the time of system generation. Response to changes can be,

for all practical purposes, instantaneous.

virtual Transparency

Fixed plug-compatibility is still the most direct method

for achieving software transparency in applications where the

system software is static and little advantage can be gained by

changing the mass storage facilities. Dynamic plug-compatibility

can be justified when the storage facilities are large, or when

there is a high degree of volatility in the system software and

physical makeup of the storage facility.



- 7 -

In both of these cases, an assumption is made that the

"plug-compatible" device is recognized by the existing system

software. But this leaves a third situation in which neither

technique is truly applicable. For example, the system software

may have been written without any provision for the newer types

of disk drives (e.g., 300 MB drives with a 1.2 MB/second trans­

fer rate). There is, therefore, no "plug" to be compatible

with. Situations could also exist in which the hardware and

software are evolving at a rapid rate, yet the scope of the

mass storage facility cannot justify the use of a dynamic, micro­

processor-based "mapping" approach.

In both of these instances, a technique which can be referred

to as "virtual transparencyU can be an effective SOlution. CalComp

is using this method to interface a variety of different capacity

Trident disk drives to CPU's produced by many different mini­

computer manufacturers, some offering many distinctly different

operating systems. All of this is accomplished, moreover, with

a microprocessor-based disk-controller design--produced in volume

and thoroushly tested by hundreds of successful applications in

the field.

A Logical Answer

Virtual transparency can best be understood in terms of its

origin: Virtual memory. Originated by IBM and now adopted by

H-}17.8



- 8 -

most minicomputer and mainframe operating systems, virtual

memory was developed as a way to free programmers from any

need to allocate and keep track of the computer's memory

resources. Application programs could be written in abstract

terms. The computer's operating system would translate

Illogical" virtual-memory addresses into physical addresses-­

taking advantage of any memory space available.

As programs grew in size and larger volumes of infcrmation

were processed, much of the data (including application programs

and portions of the operating system itself) were transferred

to mass-storage devices like magnetic tapes and disks. But

these were treated~as I/O peripherals, and soon the computers

wer.e spending a majority of their time on the transfer of files

between mass-storage and memory.

The virtual-memory concept again came to the rescue. Just

as the use of logical addresses, independent of physical loc~­

tions, simplified the life of the progra~~er, an extension of

the virtual memory technique to mass storage devices served to

relieve the main operating software from an equivalent concern

tor the physical configuration of the system. Subsidiary

modules could accomplish the necessary mapping and address

translations.

The benefits are manifold. The programmer and his applica­

tion program can ask for data stored at a logical loc3t1on. The



- 9 -

executive portion of the operating system passes the request

along to the appropriate memory-management module. The subsid­

iary software determines whether the requested data is in main

memory--immediately accessible to the application program--or

is remotely stored on disk or tape. If the latter is the case,

the transfer can be initiated by the lower-level software while

the operating-system executive moves on to other, more demand­

ing tasks.

Device Handler

The first step in the transfer operation would be for the

memory-management module to pass the physical address along to

an even more subsidiary software unit: the dev~ce handler for'

a specific disk-drive controller. Only now,. three steps re­

moved from the application program and two steps removed from

the main body of the operating-system software, would the ad­

dress request take a form that relates to a specific, physical

device.

Virtual transparency takes advantage of the fact that there

are, in truth, two interfaces between the disk storage and the

system software. One is the physical interface at the plug con­

necting the disk-drive controller with the CPU hardware. The

second is the software transition between the virtual addresses

of the system software and the physical location of the stored

data.



- 10 -

Either one of the interfaces can be used to maintain

"software transparency." The plug-compatible techniques use

the physical interface. CalComp's virtual-transparency method

takes advantage of the modular structure of nearly all operat­

ing systems. When the memory-management module IIcalls " for a

specific device-handler module, it can just as easily invoke

a CalComp-supplied segment of software as one supplied by the

computer manufacturer. In neither case is the main body of

the system software affected. Not a single line of the exist­

ing application programming must be changed. Yet the user has

the advantage of the latest technology disks, with capacities

that far exceed those of the largest disks anticipated by the

designers of the original software.

System Generation

The simplicity of the virtual-transparency concept is

evident each time the operator "generates" the computer system

for a specific group of application programs. The complete set

of operating-system modules is rarely used. Instead, to con­

serve main-memory space, the operator invokes a system-genera­

tion program that allows him to specify only the modulas required

for the particular applications.

A CalComp-supplied module is included in his choice of

options. The software itself is supplied on t~pe or disk, depend­

ing on the system configuration. The operator also has a sheet



- 11 -

of load instructions, written in exactly the same format as

that used by the compute~ manufacturer. At an appropriate time

in the system-generation procedure, the operator loads the

CalComp device-handler module--or leaves it out. Moreover, if

~ere is ever a problem with the CalComp disk hardware or soft­

ware, the disk-controller cable can be simply unplugged and the

system regenerated without the CalComp module.

Summary

The true tes~ of "transparency" is whether a foreign device

can be added to a computer system to enhance its performance and

capabilities without affecting, in any way, the user's investment

and confidence in his operating software and application program­

ming.

At least three different methods can be used to achieve this

result. CalComp has used all three techniques to enhance both

exis~q andne~ com~uter installations.



l



SPECIAL

Series tllll





ORGANIZING A LOCAL GROUP OF COMPUTER USERS

Douglas J. Mecham
Hughes Aircraft Company t Ground Systems Group

P.O. Box 3310 t Fullerton t California 92634

Abstract

This presentation concerns itself with the organization t development, and
management of local/regional user groups in support of communication
among computer system users. Additionally t considerations for the
relationship among RUGs t with the HP General Systems Users Group t and
with Hewlett-Packard is also presented. The objective of a local users
group is to promote the active interchange of ideas t techniques, and soft­
ware among the users. This interchange can take place with only two
people. The topics discussed below are some ideas that may be used to
promote the success of users in a local group.

A Simple Approach

Undoubtedly you have one or more friends that you confer with regarding
your computer system problems. If you and your computer friends have
met over lunch to discuss a computer technique you have the beginnings
of a local users group. Most likely you will return to work with a new
piece of software or computer technique to try out. Let us identify the
basic aspects of such a users' meeting:

Meeting Arrangements--one of the group called the others and invited them
to join him for lunch.

Meeting Opening--The objective of getting together was, in some fashion,
stated and any new persons were introduced.

Technical Discussion--One of the group explained how he had solved a
system problem and discussed associated software used. As the
discussion progressed questions were asked and comments made by
the others in the group. During the discussion reproduced copies of
the software listing were handed to the group.

Computer Products--Since each day a new product for the computer
market is introduced, one of the group discussed his research of the
new product that may be useful to the others.

Social Hour--After all the involved technical material the group relaxed
over coffee.

Next Time--Because members of this group had several other computer
problems they decided to meet again to share more information.

As you cap tell by the description a local users group meeting took place-­
simply and easily.

1-13.01



Needless to say with more and more users becoming involved with HP
systems such a small meeting could rapidly grow. The basic meeting
elements will not change but a little more planning and organizing is re­
quired. A meeting of computer users need not constitute an official group;
but it is useful to have a spokesman to convene the group and communi­
cate with the larger users group. The following paragraphs present the
considerations involved in organizing a group of local computer users.

Orientation

The object of such a computer users meeting is to share one's own know­
ledge and experiences of computer systems with others who may not yet
understand the system. This, of course, provides self-esteem, a key
psychological requirement in a group. Also, such sharing certainly
provokes others to share their knowledge and experiences. Additionally
the presentation of two items of information often times results in a
synthesis providing a third and different item of information. For
example, development of a file handling routine by one user may be put
with another user's indexing routine to form a data management module.
Through the users meeting, a user may discover a simple solution during
a brief discussion with another user that he had been battling with for a
week.

The collective of computer users can often provide the resources necessary
to solve a problem not easily solved by an individual. For instance,
comparison of tests performed with different data communication equipment
or under different situations may yield enough data to solve a difficult
problem. Or, you may just need the ideas from several other users to
formulate a solution to your problem.

-+ [A users group does not make sense without user involvement]

Likewise, individuals in the group may be able to contribute a mail listing
program for distribution of mail to the group members. Economically, the
formation of a group of users makes sense because software, an expensive
item to develop, may be shared. An objective of a group may include one
or more services such as publication and distribution of a newsletter and/or
maintenance of a software library. In particular, a formalized users group
can often arrange for technical experts to make presentations to the
group as well as sponsor training seminars.

When a local group of users relates to a larger group such as RUGs to
HPGSUG, it is important frequent communication take place between them.
The larger group may be able to find solutions for users in your group
who have problems. Certainly the larger group provides a larger base" for
sharing software. Such a relationship is a two way street, however, and
contribution by your local group to the larger group is necessary. For
instance, a local group could sponsor a technical session at an international
meeting. By spreading such a work load the larger task is accomplished
without over burdening any individual.

Thus, the formal orientation of a group of users is any objective which, by
definition, must meet their needs. Before describing the technical aspects of
organizing a group of users consider the individual user who would

1-13.02



make up such a group.

The User

The objective for most users of computer systems is to solve their
problems and enhance their software/hardware to perform more efficiently
with greater capability to do their job. The success of a users group is
dependent upon understanding the memberuser's perspective; the perspec­
tive is to solve his problem in a simple expedient fashion. If a users group
Can meet this requirement both the user and the group will be a success.

The contribution a user makes to a users group depends upon his partici­
pation. Certainly a user's expertese and experience will allow him to
participate easily in technical functions. For the inexperienced user
participation may be in the areas of administration and support of the group
functions, such as maintaining mailing lists. Together a users group can
function. The inexperienced users will advance to the experienced levels,
the experienced to more sophisticated problems, and new users will join at
the inexperienced stage. As professionals we have an obligation to
contribute; each user taking a smaIl responsibility can produce a useful
benefit for all users.

The most important user attribute to pay attention to in a group is the user's
attitude. Since most groups of users depend upon volunteers to keep the
group active particular attention needs to be paid to keeping the atmosphere
around the user's involvement positive and self-satisfying. The dedication
of a user varies over a wide range as does his sensibilities. Recognizing
these traits and managing them can be an asset. For the most part this
involves common sense, responsiveness, common courtesy, being observant,
and giving recognition.

A user's expectation is easier to meet in a volunteer organization than in a
commercial organization. In the former the user is usually intimately involved
and the destiny of his expectations is a function of his own effort. In the
latter the user always expects more when he is paying money and is not
involved in the "product".

Watch out for users who promise a great deal but contribute little. It is
difficult to prevent users from taking advantage of a volunteer group for
their own ends; on the other hand, there are most likely a few individuals
who contribute a great deal. While it is impossible to satisfy the latter's
desires or repay them, pUblic recognition is most fulfilling. Psychological
satisfaction is often an important and satisfying reward.

--+-[Apathy is the worse enemy of a volunteer group.
Enthusiasm is a group's greatest asset. ]

Who should be included? Too often with larger computer systems only the
computer center specialists get involved. While they have an indepth
enthusiasm the users at the terminals should not be overlooked. A special
local users group program for clerical personnel who interface with the
computer might help dispel "computer fears." The "upper" management who

1-13.03



must make key decisions regarding your system might be interested in a
limited involvement to better educate themselves in the way of the computer
syst~m as well as meet other managers making- similar decisions.

Now that some awareness of individual users has been brought out and
objectives made clear where does one start to organize a group of computer
users?

Where /How to Start

Why organize? It would be nice if the interface of all people just fit together
to arrive at the desired goal. Since this is not the case in the real world
Someone needs to plan the sequence of events to arrive at that goal. Any
organization is predicated on an agreed-upon group objective. This may
come about through an informal conversation with a few friends with a
common product or application interest who decide to interface among them­
selves in the future. The user interface may manifest itself through a
meeting, newsletter, software library, or a combination of each. The user
meeting is one of the easiest to start with since people like to socialize. The
particular subject matter may be around a special interest such as word
processing or a particular vendor product, or both.

An effective method is to get a few "key" friends involved who you can count
on to at least carry out an initial meeting of users. Make sure the communi­
cations between the key group is free and easy since a time lag and a
hinderance of communicatiions can postpone activity and dampen any
enthusiasm. The next item of business is to establish communications with
other users.

A first meeting at your company or local hotel facilitates easy arrangements
and control. By organizing the basic meeting aspects described in the
opening of this presentation your meeting will be a success. Depending upon
how ambitious the key group is the meeting advertisement may be by word of
mouth or a formal, mailed, invitation.

----+-[Frequent user meetings over lunch are easy and effective. ]

If the meeting sparks some interest and a definable need to interface among
users in the future exists then a more formal group may be organized;
although, several meetings may take place prior to serious organization of a
group. A key to a successful first meeting is to arrange for all attendees to
return home a "winner," that is, make a contribution to the user's future
success. Such a "prize" may be a software program or inside information on
a vendor's product. Before the first meeting has adjourned the next
meeting or user interface mechanism needs to be planned and volunteers
designated who will implement it, thus the next "key group 1f is formed. Note,
if there are no volunteers either abort the group organization or be pre­
pared to perform a GREAT deal of work.

For the first meeting keep expenditures and meeting operations to a minimum.
To offset any dollar costs collect a donation at the door. An alternative is to
find a sponsor such as a product manufacturer or user company whose
interests are served by such a meeting. Most likely both clerical assistance

I-13.liJ4



and operations support, such as reproduction of notices and mailing, for
the first meeting will come from the "key" group companies. Thereafter a
more formal mechanism for funding and incentive for manpower needs to be
found. Some ideas will be discussed later.

User Education

One of the most attractive elements of a users group is its capability to
educate users. Informal education is done through user meetings and techni­
cal publications; while this is rewarding the more organized I formal technical
seminar is popular. Corporations seem to support the specific seminar since
managers can easily relate specific seminar topics to their projects. Both
the area of special application interest and computer system (or subsystem)
product have their "gurus" who are willing to speak. The vendor usually
has specialists who can present such a seminar. A users group could make
the necessary arrangements while charging each attendee a required fee to
pay the specialist for his preparation and any handouts. For example, a RUG
on the West Coast sponsored a very successful seminar on HP 3000 peripheral
user maintenance given by Hewlett-Packard. This is a win-win seminar
since HP benefits from more knowledgeable users and users can solve their
problems faster. Such a seminar is an easy success.

Note that computer professions are hungry for computer knowledge. This
need makes it easy for a users group to establish an educational objective.
It just remains to focus in on a topic.

Communications

During the formation and subsequent operation of a users group the most
important element is communication. If those in the key group do not relate
their problems and successes then plans are difficult to make, let alone adhere
to. Likewise constitutants of the group probably will not respond if they do not
receive some form of communication from the key g-roup. In fact users who
have contributed to the group who do not receive communication when
expected can become bitter to the detriment of the group. If advice is
requested in the communication then accepted when it is received individual
cooperation is increased.

---. [Communication is a terrific professional pacifier. 1

Individual cooperation in a volunteer group is valuable; the greater the
individual member communication the greater chance for group success.

The information that must flow in a technical organization is tips, techniques,
hints, kinks, along with meeting times and places. Communication needs to
take place as often as necessary. This means if you communicate while you
are thinking about it the link is made and progress can take the next step.
A number of simple and easy acts of communication can build an effective
network.

--'[Lack of effective communication has been the downfall of many groups. 1

1-13.05



Different requirements dictate different methods. For instance, the post
Card or note is easy and quick especially if mailing labels are already printed.
Letters are more formal but do show more thought for a professional
approach and they serve as a good audit trail so .new ideas can build on past
actions. A good secretary can make all the difference in the world in
getting communication out.

The newsletter of course is a more formal but easy way to communicate with
a number of users. However, a newsletter requires a dedicated volunteer
and considerable user contribution. Special publications are very useful
since they are specific in nature and usually treat technical material in­
depth. Such a pUblication results from the dedication of a very few users
but unlike the periodic newsletter it is usually a one-time task. Both of
these methods of communication can be very effective and simple to produce.
These pUblications may, however, be quite formal and require a complex
publishing operation. The most effective newsletter Ipublication is not
necessarily the "slickest," easy and simple techniques for production of
these items is found in the literature [1].

The telephone is quick and easy for most users. While it is difficult to
communicate many details over the telephone this instrument is very effec­
tive for directing a group of users by the key group and receiving status
on activity. An automatic answering device can provide an easy method to
communicate to the members and collect brief comments; such a device can
be made available for communication 24 hours a day, unattended.

If the espectations of member users are to be met then mechanisms for user
feedback need to be devised. This may take the form of a questionnaire
or telephone campaign. Keep in mind that talleying responses and perform­
ing an analysis on the results may overwhelm the uninitiated; so keep
responses very simple. Also, keep in mind that the number and accuracy
of responses is directly related to the complexity of the questionnaire.
Again, keep the questionnaire short and simple. It is better to have several
short questionnaires than one long one.

If your group warrants it, effective communication may be supported by
clerical assistance; it is well worth hiring a professional secretary part time
for typing tasks. Of course, micro computers, simple printers, and an
elementary text editing program can serve well as a secretary (except for
spelling) .

Handling the information flow and keeping it moving is imp·ortant since
newsletter editors thrive on new items and the key group needs the in­
formation to formulate plans to support the group. A central address and
desk is useful for this purpose. Information must be appropriately re­
distributed in a timely fashion as well as just accepted. The formal infor­
mation flow by mass mailings requires some serious thought. The key
member responsible for such mailings needs to be aware of the considerable
effort required to stuff, seal, address, stamp, and mail a large set of
letters, not to mention printing. The cost of mailing can be optimized by
planning the weight just below a postage price break and by using photo
reduction techniques.

1-13.06



With the advent of word Itext processing- on micro computers the tasks of
producing mailing labels, letters, etc. are easy. Even simple FORTRAN
programs and simple text files on the HP 3000 computer system can effectively
support these tasks. Multiple, personalized letters, can easily be printed.
Also, computer data communications can be used most effectively to get
users to contribute articles; it is easy for a computer system editor to "type"
an article. For instance, many HP 3000 computer installations have a
terminal dial-up facility. Thus, a newsletter editor could dial up such a
system and copy the contributor's text file to a terminal tape cartridF:e
or printer for sUbsequent use in producing a newsletter.

The local users group can perform a real service to its members by communi­
cating with other local users groups and the international groups; the
communication is two ways. You might consider exchange of newsletters
and notices as well as software. Good seminar speakers can also be found
this way.

The Users Meeting

Computer users need to g-et together to discuss their successes and problems
of their systems. In most instances a local group can have a very success­
ful but simple meeting by considering the items discussed in the intro­
duction of this presentation. Consider the aspects of a more organized
meeting, although these aspects also apply to the small simple meeting
where appropriate.

There needs to be a central managing committee to insure consistency
and follow-through before and after the users meeting. Be very aware of
the effort required by each committee member; each member should commit
themselves in a formal manner as a warantee on dedication to complete the
job. Make sure the meeting tasks are well defined and assigned. The
magnitude of each task needs to be evaluated in light of the coinmittment
made by the committee member to perform it; the work effort is double
that of any reasonable estimate.

~[Large meetings supported by weak committees
can turn a meeting into chaos. ]

Smaller informal user meetings can take place often at convenient times such
as over lunch or in the evening. However, the larger full day meetings
require planning a day when there is a minimum of conflicts with member
users. Multiple day meetings should be avoided due to accommodation
problems, competition for a member's time, and user saturation levels. The
location of a meeting should be central to the group; however, special
locations are attractive. Depending upon the budget and nature of the
gathering meetings are easily arranged at hotels, schools, homes, or
vendor facilities. The city to hold a users meeting is most likely obvious
for a local group of users ... except in Los Angeles.

Economics are always difficult for local groups since "seed" money is
often lacking; asking for pre-registration fees or vendor contributions can
be helpful. Group projects to raise money are also helpful. The larg-er the
meeting the more difficult to budget since all cost factors must be analyzed

1-13.07



and scrutinized since profit margins are very narrow. A simple meeting
fee is to have each member contribute a fixed amount towards a single
budget item such as a meal/refreshments.

Since the computer field is expanding at a phenomenal rate there are a
great number of resources for technical presentations. The simplest and
easiest is· the group membership; many computer professionals have a
speciality topic he / she could discuss. The meeting committee can be very
helpful in encouraging a user speaker and helping him prepare. Vendors
of audio visual equipment often have booklets on making technical
presentations. Vendors and universities are also two good sources for
speakers. Keep in mind any audio visual support required by speakers.
It is often enlightning and fun to have a special speaker during the meeting
talk about a non-computer related topic; it relaxes the minds of the listeners.
Be sure to recognize the speakers in some manner; a free meal ticket is
Usually easy while a speaker's gift is nice. In any case send a letter to
each speaker before and after the meeting to give him meeting particulars
and thank him. A key to a successful meeting- is to give sufficient lead
time for users to plan to come and speakers to prepare; plenty of mailings
help. Each potential attendee should be made to feel that if he/she comes
to the meeting- they will return home a winner and a greater success.

Proceedings and technical papers require a definite dedication on the part of
a meeting committee. Remember each submittal needs to be edited and
evaluated not to mention all the mechanics necessary to publish them.
There are some techniques and guidelines, however, that make this choice
easier. For local group meetings a simple Xerox reproduction or offset
printing will suffice for handouts at the meeting. Attendees seem to like
even the briefest of descriptions on paper.

Vendors can often be a great source of support for a users meeting! They
may even be willing to sponsor or underwire costs, refreshments, facilities, ...
provided they can display their wares. This approach works even on a
small scale by contacting a vendor salesman.

Don't forget to have some fun at user meetings by having a drawing for a
"crazy" door prize. If funds permit a more serious door prize
is good and/or a small gift for the meeting host, presented before the
whole group. Kudos for all who cont~ibuted to and participated in the
meeting is a necessity. Then, end the meeting on a high note with the
attendees thinking about the next "great" meeting.

Software Library

All computer users like to get a hold of another user's software contribution
but often does not have time to contribute himself. An easy rule for this
situation is, tit-for-tat, only those who contribute have access to the
other contributions.

The form and format of a software contribution must be simple and easy
but consistent so a user can easily compare, search for and retrieve
entries. The quality of contributions is difficult to maintain but if the user
has documented his source code well, and provided a working example and

1-13.08



a simple user's guide then the recipient should be delighted. Assuringquality is very time consuming but a minimum quality can be maintainedif the thoroug'h examples can easily be proven to work.

Collection and distribution of software library entries needs seriousthought. The media is the first consideration (floppy, paper tape, etc.),Organization of supplementary documentation second, and third (but mostdifficult) how to get the job of reproduction/distribution done. There aremany approaches but the more the contributing user does in formatting andtesting his contribution the easier collecting and organizing the softwarebecomes. Indexing a software library is not easy but a permuted titleindex is one easy method, provided each title is meaningful.

Managing and Administration

For small local groups this aspect is relatively easy since the atmosphereis informal and activities are minimum. As the group grows a serious efforton the part of the leaders needs to be put towards the business aspects,i.e., the transition from a "club" to a "business" is considerable. Consider,
1. How to best meet the needs and expectations of the users.
2. Volunteerism and getting the tasks done.

When computer professionals become involved and passionate towards agroup they may tend to show emotion and be sensitive to· personal reactions.That is, leaders need to pay attention and be sensitive to personal politicsenough to make most of the users successful most of' the time.

~[Cater to active enthusiasts since they are
t he heart of a users group]

Only volunteers who are responsive and serious about contributing can beasked to perform a task. The task requested to be completed must bewell defined and feasible within the necessary time frame. Keep in mindthat such a volunteer type task is probably low on the volunteer'spriority list. Thus, be generous in designating a time frame but bedefinite about the required completion date. Make sure the volunteerknows when he is done, i. e., recognizes an end point. Do not be vaguenor overwhelm the contributor if you wish the task completed.

Unfortunately the family related to the enthusiastic professional maysuffer and account should be taken of this fact. There needs to be somerecognition or activity planned to involve them. An individual's contributionto the group can be adversely effected by his family and vice versa.

Administration of a larger users group requires establishing well-definedobjectives, a guideline for operation, and specification of particularservices to users for particular costs.

Vendor Interface

If a users group is focussed on a particular vendor product such as theHP3000 computer system establishing an interface with the vendor is

1-13.09



important. Such a relationship is mutually beneficial since the vendor
has an indepth knowledge about how his product works and a successful
user assists in promoting vendor sales and provides valuable feedback for
the vendor.

It is important to recognize that a vendor company is made up of indivi­
duals, each giving a different response to a users group. Recognize
also that the vendor's priorities may not be the same as yours. A users
group, however, can assist the vendor in clarifying items of common
interest to users that merit priority consideration. Clearly a users group,
as a group, could possibly provide alternative solutions. An example
might be support of a user who maintains a particularly useful utility
program.

Since the vendor is in business to make a profit users g-roup activities
that promote sales are more easily supported by the vendor. Thus user
meetings open to vendor sales prospects are a success. Successful
vendor customers support sales and thus vendors tend to support software
libraries and technical communication media such as journals.

A good, friendly working relationship between the users group and the
vendor is necessary if both are to be successful. Caution, however,
only a minimum of requests should be made of the vendor; if the users
group is a success the vendor should volunteer more than adequate support.
If the users group remains independent from the vendor the group has
a freedom needed by enthusiastic computer system users and the users
group need only moderate eccentrics to keep progress in motion.

Business Approach

If a group of users can function as 8:n informal group and accomplish their
objectives then that is the easy and simple club approach. When the group
grows to a state where a significant amount of organization is required,
People are hired, and considerable money is processed. The club needs
to become a business.

This transformation is considerable and requires a business plan, legal
status, financing, and the like. There is legal counsel available that
will assist in such preparation. Of course, when a users group becomes
a "business" the user services, operations, and resources, along with
costs and expenses need to be well defined. The "official" users group
needs to plan for carrying on each day, for a directorship to make decisions,
and a plan for passing the group on to the future. At this level the users
group must be run as a business and not the informal club if it is to be
a success.

Structure

The more formal structure of a users group is not required unless it is
needed. The need comes when the key group cannot administrate the group
easily and lor it is necessary to form a consolidation of communication
channels. For volunteer groups this threshold is very low. In a volunteer

1-13.1"



group each subgroup can more easily complete a clear limited task. The
sum of such efforts if coordinated well t can produce useful results.

The subgroups formed may be around the group's operational tasks such as
meetings and publications. Other subgroups may form around application
areas t vendor products or geographical areas. The important point here is
that each subgroup must have a specific task to perform with a definable
end point; the subgroup must commit to accomplishing that task. Continual
follow-up, encouragement t and assistance is required by users group manage­
ment. If this effort cannot be put forth then just lists of committees are
a burden and the subgroup should be dissolved.

Conclusion

Becoming involved in a users group is a learning experience. You must
realize that while you will gain a great deal of information your rewards will
never match your contributions. There is, however t a great latitude for
self satisfaction. The alternative to involvement is stag-nation t an un­
challenging position. If you do not belong to a g-roup of users then" join
one or form your own t it is easy and simple.

Acknowledgements

Several key people have assisted my development with computer groups. The
first is Alan Mitchell of Tandem Computer Corporation who was co-founder
of the HP3000 Users Group. Bill Bryden of Inland Systems Engineering
has assisted me in developing several users group meetinflS t local and inter­
national. A great deal of reflection upon my ideas was done by Richard
Nelson t Editor t PPC Journal. My thanks to them for supporting my efforts.
The most effective support I have had for my user group involvement has
come from my very talented secretary t Lynda Schenet.

References

1. Nelson t Richard J.; Editing' and Publishing a Technical Newsletter t
Proceeding's of the Southern California Regional Users Group
Meeting, March 1978.

2. After Proposition 13 t Volunteers Needed t Timet Au(:?;Ust 7 t 1978 t
p. 34.

3. Proceedings t Southern California Regional Users Group Meeting t
March 1 and 2t 1978 t Douglas J. Mecham t Chairman.

4. Mecham t Douglas «T. t Founder and First President, HP 3000 Users
Groupt 1974-1976.

1-13.11





KE YNOTE ADDRESS

and
SESSION REVIEWS





Keynote address: "Future Possibilities--Hardware, Software and People".
CPT Grace Murray Hopper, USN

The outstanding event of the conference was a memorable keynote

address by Captain Grace M. Hopper of the U S Navy. Before an audience

of 500 conferees in the ballroom of the Denver Hilton, CPT Hopper gave

a one hour and forty minute talk during which no one was seen leaving

and a pin drop would have been clearly heard (except during the many

applauses).

The address is difficult to summarize because of its substantial

content, but could possibly be best described as "an eyewitness account

of the evolution of electronic computers, plus advice and predictions

concerning their future".

The entire speech was recorded on videotape by the Users Group and

will soon be made available to members. Some highlights are:

CPT Hopper's involvement in the development of COBOL - the several

deaths of COBOL, including a tombstone.

The first computer "bug".

Why we in the computer profession must begin considering the value

of the information we're processing rather than only its quantity

or cost.

What a nanosecond looks like.

Why the future will be in distributed computer systems based on

mini's and micro's rather than large centralized systems.

Viewing a videotape of the address or seeing CPT Hopper in person

is very highly recommended.

-Bill Gates

Note: Further information regarding the videotape will be forthcoming
in an edition of the Newsletter.



A 01

CCMPUTER AIDED INSTRUCTION

Diane Christopherson of the university of Wisconin, River Falls discusSErl the work
they have been doing to convert the Computer Aided Instruction package designed for
liP 2000 for use on the liP 3000. After sane comments of the difficulties they have had
they she went into a full discussion of how- the user takes advantage of the various
features of the CAl program.

canputer Aided Instruction is divided into three sections: The Instructional
DialCX]Ue Facility (IDF), the Math Drill and Practice section, and the Instructional
Managanent Facility (lMF).

within the IDF the teacher can defien any lesson desired in alnost any subject
imaginable in anyone of seven languages including Portugese, swahili, and the other
nodern European languages. Also included in the language menu is Concise an
abbreviated fonn of English. Lesson preparation does not required that the teacher
know or understand a proramming language because the Author is led through the
lesson preparation by a series of pranpts which give a choice of selections such
as the text to precede the lesson, questions to be asked and };X)ssihle correct and
inoorrect answers with progranmed reSIX>nses to each. The teacher can insert a number
of hints which the students may request as they progress through the lesson. The
author can even insert a response for the tmexpecta:1 answer. By specifying the
number of tries the stOOent may make on any given question the teacher can decide
when the student has failed the lesson and needs to return to other review material
before going forward with the lesson. For this puq:ose failure messages are prepared
within each lesson.

'!he correct and wrong answers can be specified within ranges as well as specific
numeric or literal strings. Here again the progranmed res};X)nse can tell the student
he is close to the right answer, give it another try. There is even a provision to
accept a misspelled answer called the 'don't care character' •

As the student works through a program lesson he is penni.ttErl to branch to other
functions, call up the calculator program for arithmetic steps, skip ahead in the
lesson or back to a previous step. The author can specify how long the student is
permitted to work on a geven question or lesson or may leave it open. In either
case the computer gathers statistics on the students' perfonnance. These statistics
when produced through the lMF aid in charting the students' progress and in determining
the students' grades.

It was esti.rcatErl that the instructional lessons require about 15 hours of teacher
preparation time per hour of student use but since the preparation only has to be done
once and the students can use the progranmed lesson for an indefinite time it does
become an effective too. At any time after creating the lesson the author can go
into n !OF function which penni.ts changes in the questions, answers, repsonses or
cx:mplete rearranganent of the sections or sequence of the lessons.

The Math Drill and Practice is set up on two levels. m is designed as 6 grades
of 24 blocks each. Each block is nade up of a pretest,S lessons, and a final test.
If the student scores a 100% on the pretest he is skipped ahead to the next lesson in
the block. The 1'12 level is designed for jtmior high or ranErlial senior high school
nath work up to the begirming level of algebra.

In addition to the instructional programs above the CAl also has the IMF through
which the student logs on and off the system, which keeps track of student records of
participation and if you like school enrollment. It is this facility which prepares
the rel;X)rts as requested by the teacher or school administration.

C. Mallette - Student
Metropolitan state College



A 02

m1PUTER AIDED DFSIGN
Residential Energy Audit

In view of the worsening oil shortage the work being done at the
University of Wisconsin, River Falls, by Dr. N. H. Prochnow and his
associates, to aid in evaluating home energy uses becomes more and more
valid. with oil consumption mear an all time peak conservation of the
energy we have is the only means of postponing the time of complete
depletion of our resourses. Marlys Nelson described how, with the
state Health and Energy agency the University is conducting surveys
of low income housing and then bringing these homes up to an acceptable
level for heat conservation purposes.

Young people in the youth opportunity corps are used to take
measurements of the building and report the data to a central location
where it is entered into the computer and run through the analysis
program. The program then prints an output with recommendations for
upgrading, the approximate cost of the improvements and the amount
that the improvement should save the home owner on his heating bill.
This can be calculated on the basis of anyone of nine feating fuels
and their current retail prices.

The data collected consists of building size, condition of walls,
windows, ceilings, and roof, some calculated R values which the
investigator can easily get from the tables in the guide, and the
condition of the foundation walls. The style of building is also
considered because the existence of basement, crawl space, and additional
floors effects the heat loss patterns for the house. Using a degree
day determined for the zone of the state the computer approximated the
homeowner's heating bill which he can compare with what he has actually
been paying to see if the computer's heat loss estimate is accurate.

Since education of the young is the only way we can begin to train
people to conserve what energy we have this program has also been
extended to the 45 high schools who are connected with the University
computer so that Social Issues classes, general math and general
science classes can use it. In addition to teaching the conservation
of energy and the related course material needed to collect the data
it also begins to teach the student something about computer applications
and has created interest in learning to program the computer as well.

C. Mallette
Student
Metropolitan State College



A-06

Corporate Modeling

Design and Implementation of
Financial Planning Systems for the HP 3000

Using a hypothetical manufacturing company, Mr. John Gewecke presented an
overview of a Financial Planning System which may be purchased or leased to

V$~ft,.,

the HP 3000,A. !'"ORESIGHT is a computerized financial analysis, planning and
modeling language developed by United Computing Systems, Inc., Business
Information Products, a subsidiary of United Telecommunications, Inc. In use
for over a decade, it was the first user-oriented interactive financial
planning language to be placed on a computer system and has been continually
upgraded and modified in response to changing business trends and computer
technology.

FORESIGHr is based on the concept of a matrix. The matrix is made by the
intersections of a series of lines and columns (both variable) which each
house a data element. For example, a monthly sales forecast by marketing
might be developed into the matrix with the sales forecast for each product
for each of twelve months as the data elements •.A number of descriptive
fields are added to this matrix such as the date, sales division, report
title, and descriptions tmique to the report. With a price per unit for
each product determined Qy marketing, a Planned Product Sales report may be
produced. This report. will show the forecast number of units sold and gross
sales by product for the division on a monthly and annual basis.

Based on these results the manufacturing department may determine the
necessary lead time for production and indirect cost and overhead may be
forecast. From this input, a Cost of Goods Manufactured report. is produced.
At the Finance Director's level, most of the detailed information is not
required so a Profit and Loss report is produced using only those totals he
wishes to see and including additional corporate level items of interest
(Depreciation, General and Administrative expenses, Bonuses).

A similar set of reports is produced for each division. From divisional
outputs, a series of higher level reports can be easily attained. By the
use of the FORESIGHr "consolidate and merge" command a Consolidated Profit
and Loss statement is produced. At higher corporate levels a variety of
additional reports may be required using the exiting data base of infor­
mation. A Comparative Profit and Loss statement is produced using the
"consolidate and select" command.

At each higher level, additional logic can be added to specified results
extracted from the original data base utilizing FORESIGHT's format file
capability• For the final presentation to the President, the advanced
report writer capability may be called on to produce a more finished report
in a format designed by the user.

Ann Minzer
Metropolitan State College Student



A-7

FINANCIAL MANAGEMENT SYSTEM DESIGN

The scope of the design of a financial management sys­
tem should not stop with general accounting applications,
according to C.E. McVaney of J.D. Edwards & Company, but
should encompass all facets of financial management reporting
in such a way that each level of management is provided with
the most timely and appropriate reports for decision-making.

The system designer should begin with the general ledger
accounts, then using the top-down approach, determine what
data is necessary to "beef-up" the qeneral ledger to create
an accounting report data base. Main components of this
data base should includes the general ledger, the cost ledger,
the chart of accounts, the general journal, sample trial bal­
ances, and audit lead schedules.

Three basic report types should be generated by the sys­
teme 1) general accounting reports for the accountin9 and
budgeting levels of management, 2) budget plans and 3) vari­
ous management summaries Which shOUld be set up so that the
lower the level of management, the higher the amount of detail
in the report.

Reports qenerated by a complete financial management sys­
tem ideally would include most of the following a Key Variable
Reports, Heturn on Investment analyses, Responsibility Reports,
Planned vs Actual Reports, :Pr~or Year Comparisons, Prior Month
Comparisons, Financial Ratios, Per ~ent of Completion I~eports,
Analysis of Seasonal Fluctuations and Cost and PrOfit Center
Reports in addition to<the common general accounting reports.
The system desiqner should also consider including applicable
statistical analyses and exception reports which would aid
management.

In summary, a financial management system designer shOUld
strive to meet management's needs for timely information
through enhanced reporting which will serve both manaaement
and operations. ~

Mary Farris
Metropolitan State

College Student



A-19

A P P L I CAT ION S

GRAPHICS IN BUSINESS APPLICATIONS

The use of graphics in scientific applications has long been an
accepted way of showing information pictorially. Mr. Cooper
suggests that graphics in business can also have more impact than
common rows of numbers and statistical data.

Graphics is a better way of reporting because it more clearly
illustrates both good and bad points which numerical data alone
obscures. Another reason to increase use in business applications
is the relative ease of programming a graphics problem (I.E. a pie
chart fortran program accepting up to ten variables with approxi­
mately two hundred statements).

Two CRT terminals are presently available from H-P with graphic
capabilities. These are the models 2647A and 2648A. They feature
A 32K bit memory (A bit for each dot on the matrix screen). These
can stand alone or be used with a computer. The autoplot feature
;s available which allows the user to make graphs by simply entering
parameters for the X and Y axis. Columnar data can come from three
sources; (1) typed in; (2) computer; (3) cassette. Loading the plot
takes less than one escape sequence.

Graphic software is now available for the 2647A.

J. A. Vuletich
Student
Metropolitan State College



Al9

GRAPHICS IN BUSINESS APPLICATIONS

Mr. Paul Cooper, an HP Systems Engineer from Tulsa, Oklahoma,
started with a slide presentation on the graphic applications
available with the 2648 terminal. He pointed out that graphics
have been used for some years in scientific and engineering work
but are just beginning to be used in the business world. with
the growth of distributed data processing putting more terminals
at the disposal of more managers some of the mystery is being stripped
from data processing and managers are finding there are better
tools at their disposal than ever before. Speaking of five
principle levels of managers, Mr. Cooper showed how data normally
presented in tabular form to each could be quickly translated
into a line graph showing actual production levels, or efficiency
levels or net worth figures on a comparative basis. Through
use of interactive terminals throughout a manufacturing facility
management has the capability of accessing timely data shown on
a time continurn from any terminal as soon as the production data
has been generated by the manufacturing unit. There is no longer
any need to wait for the analysis of a weekly production report.
They have the picture NOW. In this manner trends can be diagnosed
quickly, forecasts projected and corrective action taken if
necessary before the major problem has time to develop.

The Autoplot Menu leads the user through the steps one
by one to build the graphic display he needs. It is a function
imbedded in the firmware of the terminal, inclutles eight diff­
erent text sizes, and will create the appropriate grid with
increments designed as specified by the user when he supplies
the maximum and minimum values for each axes. When supplied
with the data required the line graph is produced on the
terminal screen but hard copy can be obtained by using the
2648 to drive the 4 pen plotter, Plot 21 or a matrix printer.

Mr. Cooper has also included in his paper which will be
published with the proceedings the source listing of the 200
statement FORTRAN program which will generate a pie chart.

At this point I~. Cooper feels that the technology of
computer graphic representation has outrun the imagination
of business to utilize what could be produced, and they are
looking for input from users in business to show them direction
for further development in this field.

C. Mallette
Student
Metropolitan State College



OAT A

8-01

MAN AGE MEN T

Transaction Processing

In the development of new methods of transaction processing,
Decision Strategy Corporation of New York has developed a new
processor intended for use with HP hardware.

The new processor is called a Terminal Application Processing
System (TAPS). Some business objectives of TAPS are listed below:

1) To replace manual processing of orders
2) To cut the invoice to shipment response time
3) To provide order management tools
4) To standardize proceedures in processing
5) To create a vehicle for decentralization

In a typical manufacturing operation, TAPS allows many opera­
tional areas within the firm to initiate inquiry and update func­
tions with a main computer, typically the HP-3000.

Management benefits include information by-products and informa­
tion summaries stemming from automated transactional analysis.

Operationally, TAPS is sub-divided into three main functional
areas:

1) TAPS/CM - the communications monitor
2) TAPS/AM - the applications manager
3) TAPS/OM - the data manager

As basically a table driven system, TAPS offers many unique
benefis over manual and other automated processing systems. Some
basic features include increased data security, accelerated
transaction processing, and an inquiry/update function. Other
important and unique features warrant more complete explanation.

TAPS assigns a numeric value to variables which enables it to
become language independant. This will allow TAPS to become
compatible with virtually any hardware and software packages. In
addition, TAPS is also format and device independant allowing the
user to define new areas of data and not have to rewrite the program.
Independance from language and device restrictions will allow TAPS
to be adaptable to different applications; a must for future
developments in hardware and software. In application development,
TAPS will reduce changeover from 95% required under normal cir­
cumstances to 5%; generally only input/output changes.

The Terminal Application Processing System can be a valuable
tool if your business organization utilizes large amounts of
transactional data. TAPS, as an aggregate tool, replaces 30% of
a typical transaction system and tabulizes 25% of the development
work. In addition, statistics indicate that 30% of the devel­
opment effort can be saved. Savings on maintenance exceed 50%,
because the nature of most maintenance is simply a table change
to TAPS. An orientation meeting with a representative of
Decision Strategy Corporation may well be time well spent for an
organization with large transactional requirements to process.

Richard Rehm
Student
Metropolitan State College



B02

IMAGE DATA BASE DESIGN
AND PERFORMANCE MEASUREMENT

Mr. Orland J. Larsen, IMAGE 3000 Product Manager,
addressed this session on IMAGE. IMAGE 3000 and IDEA were the
topics discussed.

The steps to design a data base inoluded determination
of the information needed to make deoisions, the actual design,
the data base dictionary and activity against the data base.
This last step 1s where IDEA comes in. IDEA stands for IMAGB
Data Base Evaluation Analyzer. The service that this software
provides include:

1. A calculation ot the estimated load time

2. Response time

3. Throughput

4. Provides initial design feedback

S. Provides tuture change impaot

IDEA is now available tor Series 1 and II. Series III
is expected to be announced soon. The main conoern i8 that
IDEA. does not always work with MP3 III. HP 1s currently work­
tag on th1s prob1~ BP also expressed the desire ror input
trom users as to its usetullness to determine the future
ot IDEA.

IMAGE 3000 has been named to the Data Pro Software Honor
Ro11. It has received the highest user ratings in all
categories ot aQ1 other data base. This included a 3.8
overall satisfaction rating.

][e11,. J. Patterson
Metropolitan state Oollege
Student



B-08

!l3.ta r'anagement

Mr. D.C. Dummer of D.C. Dummer and Associates, Calgary, AB spoke on
"rata 11anagement - Infonna'tiotl Management - An Investment for the Future. tt

He discussed the problems and advantages of using the data base approach.

Th.s definition of data base, often a misued tem according to Dummer,
is an accumulation of raw data which you can use for decision malting. In
decision making you do not make the right decision, you make the best
decision.

In introducing a data base management system (DBMS) to an organization,
there may be resistance to change in methods and procedures, loss of data
ownership and data control, change in power structure, change in the status
of EDP users and in staff requireallents. However, there are corporate
opportunities which off set the resistance to change. These include
improved data utiliza.tion, methods and procedures, reduction in cost and
improved control.

Information must be brought together from different departments to
form a centralized information system. Benefits derived from centralized
record files include improved training facilities, controlled introduction
of new technology, protective mechanisms and procedures for data resources
and easier transition from system to system.

Some practical requirements of data sharing that must be considered
area
1) Data Integrity

-accuracy of data
-currency of data
-usability of data

2) La ta Security
What to Protect?
-data i terns and data files
-computer memory and data storage devices
-ciata li.stings and informa.tion reports
-data transmissions
-security system (5) and procedures
Protecting from what?
-human and system errors
-environmental accidents and catastrophes
-mischievousness and fraudulence
-industrial and political espionage

3) Data Dictionary and Directory
They are used to define data and structures. '!he data dictionary
and directory should reflect the relationship between data administra­
tion, maintenance group, systems group and the user.

4) Backup and Becovery Procedures
Backup is .a utility that restores the database or some portion of it
to a particular state after a situation oc~urs that causes the data base
to lose its integrity. A recovery procedure uses the backup copy of
the database at the checkpoint plus the system journals to genera~e
a new copy of the data base to the point just prior to the failure.



Iata. Management (con • t )

5) Audit Trail
'!he design of the system so that any transaction, total, or resulting
output may be traced back to the original source.

Before selecting a data base management system there are several inital
considerations. One important point to consider - is a DBMS really
necessary? Other considerations are: Avoid home built DBMS. concentrate
on the immediate payoffs, and access risks involved in committing to a
partial DBMS. Also you should compare the record of the vendor and the
data. base with other users.

'!he ability to access a data base by an individual within an organiza­
tion offers great potential for the efficient management of a business
organization. rata base management systems will play an increasingly
greater role in system design because of the advantages they offer in terms
of cost, control. and the ability to store and access data.

Beverly Kelman
Metropolitan state College



DATA MANAGEMENT
IMAGE
TIPS AND TECHNIQUES FOR THE NEW USER
B-11

THIS SEMINAR WAS DESIGNED FOR USERS WHO HAVE PURCHASED THE
HP IMAGE DATA BASE.

ONE PARTICULAR TIP WAS TO AVOID THE USE OF SORTED CHAINS
WHERE THERE ARE A NUMBERS OF "PUTS" AND "DELETES". SINCE
QUERY ONLY REPORTS 136 RECORD SIZE POSITIONS SOME USERS RELATED
THE NEED FOR MORE. ONE POSSIBLE SOLUTIONS WAS TO USE THE EDITOR
AND ADD ONE FILE TO THE OTHER.

QUESTIONS CONCERNING MANUAL AND AUTOMATIC MASTER WERE BROUGHT
UP. IN AN AUTOMATIC MASTER IT IS IMPOSSIBLE FOR VALUES TO BE V
VERIFIED SINCE IT IS AUTOMATICALLY ASSUMED TO BE CHECKED. A
MANUAL MASTER IS NOT SO VOLATILE. IT CREATES A TABLE OF LEGITIMATE
VALUES. IF A VALUE IS NOT FOUND IN THE TABLE OF LEGITIMATE VALUES
IT IS DISCARDED.

STAND-ALONE DETAILS GIVE THE IMPRESSION OF A MPE FILE SO
QUERY CAN BE USED AND SOME SECURITY CAN BE ASSIGNED. STAND-ALONE
DETAILS ARE USED FOR TRANSACTION LOGGING.

IF A USER HAS A REQUIREMENT FOR MORE THAN 255 FIELDS (THE FIELD
LIMITATION FOR THE DATA BASE) EVERY EFFORT SHOULD BE MADE TO DISCUSS
WITH THE USER THE REASON WHY THE THINK THEY NEED MORE FIELDS AND
WHAT EXACTLY WHY THEY WANT TO USE QUERY.

FOR LISTING PURPOSES IT WAS SUGGESTED TO USE "**" INSTEAD OF "@".
THE FORMER IS SEVEN TO NINE TIME FASTER FOR EACH DATA SET. THE
LATTER WILL LIST ALL ITEMS. ANOTHER ADVANTAGE OF "**" IS THAT IT
USES THE PREVIOUS LIST THAT HAS BEEN PROCESSED AND KEPT RATHER THAN
CHECKING THE ALGORITHM.

THE QUERY COMMAND "NUMBERS" WAS SUGGESTED TO FIND AND SELECTIVELYY
GO DOWN AND COMPARE THE QSLIST TO A DISK FILE. "NUMBERS" WILL SET
UP A QSLIST FILE THAT CAN BE BROKEN DOWN.

NANCY L. YELLOTT
METROPOLITAN STATE COLLEGE
DENVER, COLORADO



B12

VIEW/3000: A NEW TOOL

THE VIEW/3000 SYSTEM, AS PRESENTED BY JUTTA KERNKE OF HEWLETT­
PACKARD'S GENERAL SYSTEMS DIVISION, IS A VERSATILE NEW SOFTWARE PACKAGE
FOR DATA ENTRY. VIEW/3000 CONSISTS OF FOUR MAJOR FACILITIES: FORMS
DESIGN, SOURCE DATA ENTRY, DATA REFORMATTING, AND PROGRAM INTERFACE. THE
FACILITIES ALLOW THE USER TO CREATE INTERACTIVE DATA ENTRY SCREENS IN A
"FILL-IN-THE-BLANKS" MANNER WITHOUT COMPLICATED PROGRAMMING EFFORT. THE
FORMS DESIGN FACILITY WILL ALLOW THE USER TO INCLUDE DATA EDITING SUCH
AS LENGTH CHECKS, RANGE CHECKS, TABLE CHECKS, EQUALITY CHECKS, PATTERN
MATCH, AND CHECK DIGIT VERIFICATION. VIEW/3000 WILL ALSO JUSTIFY, FILL,
UPSHIFT, AND STRIP DATA INTO A PRE-DEFINED FORMATTED FORM. VIEW/3000
WILL ALSO ALLOW DATA TO BE MOVED BETWEEN FIELDS ON A SINGLE FORM OR
BETWEEN SEVERAL FORMS. ARITHMETIC AND CONDITIONAL PROCESSING ON THIS
SYSTEM CAN BE USED TO TRIGGER CUSTOM ERROR MESSAGES AND LINK SEVERAL
FORMS TOGETHER. MS. KERNKE POINTED OUT THAT VERY SOPHISTICATED FORMS
COULD BE CREATED VERY EASILY. MODIFICATIONS TO EXISTING FORMS ARE ALSO
VERY SIMPLE PROCESSES.

VIEW/3000 CAN BE USED INTERACTIVELY WITH AN APPLICATION PROGRAM
OR IT CAN ACT AS A STAND-ALONE DATA ENTRY FACILITY. USERS CAN USE THE
SYSTEM TO CREATE EDITED AND FORMATTED FILES OF DATA. THE DATA ENTRY
OPERATOR CAN "BRnWSE" EXISTING DATA FILES AND VERIFY THEIR CONTENTS.
THESE DATA FILES CAN ALSO BE REFORMATTED TO MEET THE APPLICATION
PROGRAM'S REQUIREMENTS. FOR EXAMPLE, DATA FROM SEVERAL FORMS CAN BE
COMBINED INTO ONE BATCH FILE. THE REFORMATTING IS A BATCH PROCESS WHICH
CAN BE DONE AFTER ALL THE DATA HAS BEEN ENTERED.

MS. KERNKE NOTED THAT VIEW/3000 MUST BE USED ON AN HP/3000 SERIES
COMPUTER WITH AT LEAST 256KB OF MEMORY AND OPERATING UNDER THE MPE-III
OPERATING SYSTEM. ALSO, THE KSAM (KEYED SEQUENTIAL ACCESS METHOD)
SOFTWARE MUST BE AVAILABLE FOR VIEW/3000'S USE. THIS SYSTEM IS DESIGNED
FOR USE WITH THE HP264X SERIES OF CRT TERMINALS AND AT LEAST 4K OF
TERMINAL MEMORY IS ADVISED. GIVEN ITS VERSATILITY AND SOPHISTICATION,
VIEW/3000 SHOULD PROVIDE ITS USERS WITH A GREAT DATA ENTRY TOOL.

WILLIAM L. BLANKENSHIP
STUDENT
METROPOLITAN STATE COLLEGE
DENVER, COLORADO



C-03

Process Optimization - On-Line Programs

Optimizing on-line programs is an important issue for all users of

any computer system. This view is clearly one Robert M. Green of

Robelle Consulting LTD. took in the formation of his firm. The

goal of optimization is to get the most productivity from your

system's resources. This is a rather broad statement and goal

to achieve, it also requires a broad perspective to deal with it.

To aid in this goal, Mr. Green has outlined five basic ideas or

principles for on-line programs. They area

1) Make each disc access count

2) Maximize the value of each terminal input

3) Minimize the run-time program size

4) Avoid constant demands for execution

5) Optimize for the common event

These are general rules which should be kept in mind in designing

a program or the structure in which the program will work. The key

to optimization is make the system resources open for all users of

the system and not to overload the system by doing so. Consquently,

the user should establish a priority system to do jobs and in that

priority system optimize for the common event in a particular job.

This sorting process should be rational in that optimizing a h1gh

priority job that doesn't occur frequently would in essence be

a waste of resources.

Perhaps the effectiveness or usefulness of any of these basic

principles must be weighed on a cost vs. benifit analysis. An

arguement against optimization or more precisely one against dele­

gating much time to it, is that optimization is a fuction of memory.

What I mean here is that a system will be suitable for the user's

need if there is enough memory. This belief is furthered by the fact

that memory will get cheaper as time passes. I believe this view

will cause a tangled mess as poor documentation does. Optimization

intergrates processes with the computer as well as within the computer

enhancing throughput and reliability. In a burgeoning data and

data processing env:Lromment opt4mt.zatd:on is stUI an important isaue.

John L. Fong
Metro State College



INSTALLATION MANAGEMENT
SYSTEM SECURITY
D-08

BILL GATES, WHO GAVE THE SPEECH, IS ASSOCIATED WITH LONG DRUG
STORES, INCORPORATED LOCATED ON THE WEST COAST.

LONGS IS UNIQUE IN THAT ITS OPERATIONS ARE DECENTRALIZED AND IT
HAS NO CENTRAL WAREHOUSE OR SYSTEM. LONGS LACKED A GOOD SECURITY
SYSTEM UNTIL THEY HAD A DATA PROCESSING AUDIT A FEW YEASRS AGO. THE
AUDITORS SUGGESTED THAT LONGS MAKE CHANGES TO THEIR EDP OPERATIONS.

ALL PROGRAMS ARE RUN FROM APPLICATIONS GROUPS. THEY CAN ONLY
ACCESS DATA WITHIN THE GROUP EXCEPT FOR CERTAIN DATA BASES.

FOR THE BACK-UP PROCEDURE LONGS ELECTED TO USE "STORE" RATHER
THAN "SYSDUMP". THE REASONS FOR THIS IS THAT "STORE" MAY BE SELECTIVE
THAT IS, ONLY FILES THAT ARE NECESSARY IN CASE OF DISASTEER ARE STORED.
"SYSDUMP" HAS THE DISADVANTAGE OF NOT DUMPING FILES THAT ARE CURRENTLY
IN USE. "STORE" MAY BE RUN DURING OTHER PROCESSING.

MOST BACKUP IS DONE BY THE APPLICATION GROUP. ONLY FILES
NECESSARY FOR RE~OVERY, IN CASE OF CRASH, ARE STORED. THE FREQUENCY
OF SYSTEM DUMPS DEPENDS ON THE APPLICATION GROUP. A COMPLETE SYSTEM
BACK-UP IS DONE EACH EVENING AT 6 P.M.

A "CONSOLE OPERATIONS PROGRAM" CAN ACCESS THE PRODUCTION JCL FI
FILE. IT READS JOB STREAMS INTO A TEMPORARY FILE AND ALLOWS THE
CONSOLE OPERATOR TO ENTER PROGRAM "PARAMETER CARDS". IT THEN STREAMS
FROM THE TEMPORARY FILE. THE PROGRAM DOES AN INTRINSIC CALL RIGHT
INTO THE DIRECTORY TO FIND THE APPROPRIATE PASSWORD AND INSERTS IT
IN THE JOB RECORD.

FOR SYSTEM MAINTENANCE THE "GOLD BOOK" IS KEPT UP TO DATE.
THIS LOG CONTAINS THE SYSTEM FAILURE LOG, MAINTENANCE LOG, COpy OF
SERVICE CONTRACTS AND A COPY OF THE CURRENT CONFIGURATION.

A "SYSDATA" JOB IS RUN EACH MONDAY MORNING. THIS JOB HAS
NUMEROUS LISTINGS OF FILES, FILE SPACE, AND A DATA. BASE UTILITY
LISTING. THESE ARE ALL REVIEWED AT DEPARTMENT MEETINGS.

THE CURRENT PHYSICAL SECURITY AT LONGS IS SIMPLY RESTRICTED
ACCESS TO THE COMPUTER ROOM. STANDARD APPLICATIONS CONTROLS IN­
CLUDES DIVISION OF RESPONSIBILITY, EXTERNAL INPUT AND OUTPUT
BALANCING BY USERS, AND USER APPROVAL OF PROGRAM CHANGES. ACCESS
TO THE DATA IS RESTRICTED BY THE USE OF PASSWORDS, USER CAPABILITIES
WITH SOME USERS ONLY ABLE TO "READ", AND EDP DEPARTMENT RESTRICTIONS
WITH PROGRAMMERS ACCESS LIMITED.

DATA ACCESS IS AUDITABLE. THE AUDITOR REVIEWS EVERYTHING
THAT GOES ON. WHEN A JOB IS TO BE RUN THINGS MUST BE TIED TOGETHER
WITH A JOB REQUEST SHEET, $STLIST, CONSOLE AND SYSTEM LOG.

DISASTER CONTINGENCY PLANS HAVE BEEN IMPLEMENTED. A HALON FIRE
PREVENTION HAS BEEN INSTALLED. THERE IS ALSO OFF-SITE BACK-UP OF
FILES. AFTER A DISASTER HAS OCCURED AN EXPENSIVE AND TIME CONSUMING
SOLUTION WAS INSTIGATED: BACK-UP SITES FOR THE COMPUTER AND A BACK-UP
LOCATION FOR USERS.

MR. GATES STRESSED THAT SECURITY IMPLEMENTATION IS A GRADUAL
PROCESS. THE COMPUTER ROOM WAS AT FIRST WIDE OPEN AND IT WAS THEN
GENERALLY CLOSED OFF. PASSWORDS ARE CHANGED WEEKLY AND THE SYSTEM
MANAGER PASSWORD IS KNOWN ONLY BY THREE PEOPLE. THIS PASSWORD IS
CHANGED AFTER IT IS GIVEN OUT.

ANOTHER POINT BROUGHT OUT WAS TO INVOLVE EDP AND USER PERSONNEL



IN THE SECURITY PROCESS. EXPLAIN THE TRADE-OFFS, CHALLENGE PERSONNEL
TO DEVELOP GOOD SECURITY REQUIREMENTS AND EFFICIENT PROGRAMMING
TECHNIQUES. ALSO VARYING DEGREES OF COMPLIANCE WITH SECURITY
MEASURES ARE FELT BE PERSONNEL. THESE SHOULD DECREASE OVER TIME
AND FAMILIARITY WITH THE NEW PROCEDURES.

NANCY L. YELLOTT
METROPOLITAN STATE COLLEGE
DENVER, COLORADO



E04

~mAT'S AHEAD IN COBOL

Mr. Greg Gloss of HP's General Systems Divsion conducted this
session on the changing world of COBOL using three main topics to guide
the presentation and discussion. First he discussed some of the new
features proposed for the '74 COBOL followed by suggestions for the
conversion from '68 COBOL and finally a few comments on '80 COBOL.

Users were urged to start programming now with the conversion
in mind so that the transition will cause a minimum of disruption
to the operation. The major changes in programming '74 COBOL will
involve changes in some COBOL statements, changes in the reserved
word list and changes in the treatment of comments. These changes
are covered in detail in the Conversion Guide which was available in
a preliminary form.

New in the standard '74 COBOL include indexed I/O, relative
I/O, which checks for the presence of data on the file record, enhanced
SORT and MERGE, STRING and UNSTRING verbs to concatinate data with
delimiters and unconcatinate fields, and Multiple Copylib Files.
MERGE becomes a part of the language and the SORT verb will permit
multiple input files. The EXAMINE verb is replaced by INSPECT and
REMARKS and NOTE paragraphs are eliminated to be replaced by the * in
column 7.

There is now a conversion guide program available which will flag
any COBOL statement in a program of '68 COBOL if that statement requires
reprogramming before the program can be used after the conversion. It
does not make the correction it just shows what will have to be changed
giving the user a chance to plan the stages of hs conversion.

Improvements in the COBOL language standards are attempting to
eliminate some of the error prone statements, making programs faster
to debug and more reliable to run. The changes are being aimed not at
improving compilation time but in shortening runtime once the program
is compiled. This makes for greater efficiency in the production
environment and it is hoped will allow production to run 30 to 40
percent faster.

As a member of the ANSI COBOL committee, HP is seeking input from
users about what they would like to see in the next version of COBOL,
currently being called COBOL 80. So far suggestions include:
CODASYL DATA BASE FACILITY, reference modification, 48 levels of
subscripting and a USAGE BIT. Plans include gradual phasing out of
77 and 66 level data items, Label Records clauses, Value of clauses,
Add/Subtract Corresponding, Alter statements, the picture character 'A',
most of the Identification Division paragraph and the INSPECT TALLYING
•.• REPLACING verb which is coming in as part of '74 COBOL. Some file
related clauses would be moved from the environment to the data division.

During the question period questions included the ability to use
SET for a condition value, a method of tying nexted IF's to their own
ELSE's, debugging features and the creation of permanent files.

C. Mallette
Student
Metropolitan State College



E06

SPL/3000: SYSTEM PROGRAMMING LANGUAGE
PART I OF II

R. SCROGGS, OF NOEISIS IN SAN FRANCISCO, PRESENTED AN INTRODUCTION
TO SPL/3000. SPL/3000 IS THE IMPLEMENTATION LANGUAGE ON THE HEWLETT­
PACKARD SERIES 3000 COMPUTERS. IT IS A HIGH LEVEL LANGUAGE OF MUCH
VERSATILITY. THE LANGUAGE ALLOWS THE USER TO CREATE PROCEDURES,
TO UTILIZE SUBROUTINES, TO PERFORM LOGIC UNDER CONDITIONS, TO CODE
NESTED IF-THEN-ELSE SEQUENCES, AND MANY OTHER SOPHISTICATED LOGIC
SEQUENCES. WHILE SPL/3000 INCORPORATES MANY HIGH LEVEL LANGUAGE
FACILITIES, IT ALSO ALLOWS THE USER TO DIRECTLY MANIPULATE THE
HARDWARE REGISTERS, TEST HARDWARE CONDITIONS, PERFORM BIT MANIPULATION,
AND GENERATE MACHINE INSTRUCTIONS.

MR. SCROGGS DEVOTED THE FIRST OF HIS TWO PART PRESENTATION TO
THE GENERAL SYNTAX OF SPL/3000 AND THE HP/3000 ENVIRONMENT. SPECIFIC
TOPICS COVERED INCLUDED THE FOLLOWING:

1 )
2)
3)

4)
5)
6 )
7 )
8)
9)
10)

DISTINCTION BETWEEN GLOBAL, LOCAL, LITERAL, AND PARAMETRIC· DATA
DEFINITION OF THE STACK OR DATA SEGMENT
THE VARIOUS FORMS OF SCALAR VARIABLE STORAGE--I.E. BYTE, INTEGER,
LOGICAL, DOUBLE, REAL, AND LONG
THE USE OF ARRAYS
THE GENERAL FORMAT OF AN SPL PROGRAM
ARITHMETIC AND LOGICAL OPERATORS
THE EQUATE AND DEFINE STATEMENTS
ASSIGNMENT STATEMENTS
IF-THEN-ELSE STATEMENTS
THE VARIOUS FORMS OF THE DO STATEMENT

MR. SCROGGS SAID VARIOUS UNFOUNDED FEARS OF SPL/3000 HAVE CAUSED
IT TO BE IGNORED BY MANY USERS. HE SUGGESTED THAT GIVEN THE INTRODUCTION
AND THE REFERENCE MANUAL, MOST APPLICATION PROGRAMMERS SHOULD BE ABLE TO
CODE IN SPL. MR. SCROGGS SUGGESTED THAT THE BEGINNER START BY CONVERTING
SOME SIMPLE BASIC OR FORTRAN PROGRAMS TO SPL/3000.

WILLIAM L. BLANKENSHIP
STUDENT
METROPOLITAN STATE COLLEGE
DENVER, COLORADO



ADVANCED BASIC

E-09

Mr. Warren Kuehner, HP Systems Engineering Supervisor, gave his presentation

on various techniques of interfacing SPL with basic to overcome slight misrep­

resentations and design flaws in the HP 3000. However extreme flexibility in

calling SPL routines within a HP 3000 made correction easier.

Some unique characteristics of Basic called SPL routines were also presented.

The stack marker retains information relating to the state of the machine

when the subroutine is called. On top of the stack, information is also kept

pertaining to the parameters passed to the subroutine in the order they are

passed. The number of parameters passed is totaled and codes are developed to

determine the type of parameter passed, both features of use in diagnostics

and both unique to Basic. It was suggested that these features be used as a

"Cookbook" in developing subroutines.

Other important characteristics of Basic were:

1.) Basic calls an intermediate routine· which in turn calls the SPL routine.

2.) Basic calls by reference, not by value.

To actually run the routines it is necessary to use a segmenter built SL file.

If a error is detected it was suggested that the SL file be purged by use of

the procedure call.

Specific routines discussed were:

1.) To overcome a flaw in DEL which limited its formated display screen for

data entry to 255 characters. The routine would provide for longer strings.

2.) To increase double-precision accuracy on the HP 3000 seryes 1 to 48 digits.

3.) To obtain the MPE file number by just giving the Basic number.

Comments:

It was pointed out that even though Basic is a beginners language that it is

second only to SPL in data base application code efficiency.

Craig Morris
Metropolitan State College



E-IO

SPECIAL PURPOSE LANGUAGES

Mr. M.J. Badlander of B & B Computer Company addressed
this session on the design and implementation of special
purpose languages. His presentation covered the following:

1. How to determine when a special purpose language is
needed. If (a) the problem area can be well-defined, and
(b) existing langua~es are unsatisfactory, and (c) there will
be frequent usage of the special language, design and imple­
mentation of a special purpose language should be considered.

2. Considerations in designing a special purpose lan­
guage. These include power, flexibility and naturalness of
the language, as well as an awareness that designing a spe­
cial purpose language is an art, not merely a technical job.

3. Alternate methods of implementation. A special pur­
pose language can be implemented as (a) a preprocessor: this
method is the least difficult as well as the least costly,
but offers limited applications and power; (b) an interpre~er:

a medium difficulty factor is involved, the cost is moderate .
to high, and applications are limited; or (c) a compiler:
the most complex and usually the most costly method, but pro­
vides the most flexibility and power.

4. Advantages of a special purpose language. The in­
creased power of the language should result in a need for
fewer and less complex programs. Reduced complexity would
lead to greater reliability. Both the increased power and
reduced complexity should simplify program maintenance.
All three factors should result in lowered software costs.

Mr. Badlander then presented a case involving the de­
sign of a special purpose language - DEC/3000 - to solve
the\follOwing needs for a user: 1) terminal and form man­
agem~nt, 2) off-line batch development, 3) hide te~inal
detaXis from programmers, 4) provide adequate documentation,
5) support non-HP terminals and 6) dovetail with existing
software. DEC!3000 was implemented through a compiler, sim­
plifying the language, compiles into USL files, and uses a
host language concept. It provides terminal management,
data editting, checking and conversion~ and handles input/
output as part of solving the user's problem.

Mary Fartis
Metropolitan State

College Student



E-13

A P P L I CAT ION S D EVE LOP MEN T

PAST PRESENT AND FUTURE

Due to the increasing technological improvements occurring in
the computer industry the use of compilers in the future will
change making applications programming the direction of develop­
ment according to Mr. Couch.

There are basically two types of compilers; algorythmic and
specification. Algorythmic languages provide step by step pro­
cedures to break down a job into several individual and specific
procedures (I.E. FORTRAN and COBOL). Specification languages are
not interested in a major breakdown of a problem. They deal with
a more general subject area leaving the user free of minute details
such as specific input and output definitions (I.E. RPG).

Historically, this is what has occurred. From 1955 - 65 a rapid
development of algorythmic languages came about. In 1965 and up
to 1970 high level algorythmic languages found wide acceptance.
This was due largely to a strong push from the government and
everyone else getting on the IIband wagon ll

• Also applications
programming was being pushed in FORTRAN and COBOL. From 1970 and
up until today, high level algorythmic languages are still prevelent.
Also most applications are being written in high level languages.

Mr. Couch sees that for the future algorythmic languages will
still be used but specification languages will also be in wide use.
The reason for this being the increasing disparity between hardware
and software prices. The small user can now afford a computer but
can't afford the software. In this way, a non-programmer can carry
out most needs without technical expertise.

Applications programs could provide users with packages for
inputting, outputting and accessing data. The major characteristics
of this system are:

* INTEGRATION OF EDP FUNCTIONS
* PROVIDE ADDITIONAL FUNCTIONS FOR THE NON-PROGRAMMER
* USE INTERACTIVE POTENTIAL OF CRT

The environment that applications programs should be used in
is described as follows:

* FORM/DOCUMENT ORIENTED
* SCRIPT AND INTERACTIVE DIALOG MODES
* KEYSTROKE RESPONSIVE
* LIMITED PURPOSE - TRANSACTION/BUSINESS PROGRAMMING
* INFORMATION USERS SYSTEM

J. A. Vu1et i ch
Student
Metropolitan State College



F-06

DATA COMMUNICATIONS

Eric Pennala presented this seminar on data communications developing,
from a management viewpoint, a planning and problem soLVing guiae.
I PLANNING .

A. The first step in sele~ting a communications system is to define the
volume.
B. Contact Hewlett-Packard salesman and S.E. once you have a basic layout.

1. When making a selection, layout the total needs and let the sales­
man propose a solution and let him back his proposal.

C. Determine if you are capable of handling the system, if not, secure
the services of someone who does know the system.

1. If you do not have someone who can debug the syatemhave someone
trained.
D. Determine the terminal you will need and the specifications of it.
E. Select a vendor, one that is reputable, can offer full service and
as fast as possible. Stay with one vendor for the entire system if pos­
sible.
F. Set up a .eeting for everyone involved.

1 • The primary comcem here 1s to get everyone to sgree.
2. Determine the HP CPU configuration.
J. Determine and write down the proper strapping functions.
4. Deteraine the cable arangellents and electrical needs.

A. Site preparation is important and a good area to look for
ways to cut costs. Put pressure on the building inspectors
to eli.inate waste.

5. Have a clear cost understanding covering all aspects of your
comaunica~ion system.
6. Draw up a formal installation plan including dates and. times.
7. Put the results of the meetings on paper and send copies to
the appropriate people. a precoution that aight prove valuable
when someone tries to do a little backsliding.

II PROBLEMS
A. HP system configured incorrectly.
B. COlUDunlcation system is configured incorrectly.
C. Expect everything to be wrong, expect it1

1. Suggestions to overcome these problems.
A. When they install boxes and lines, label thea! Include
vendor and. repair phone nabers on label.
B. Develope counmication book- label cabiles, ports and.
record clrcuit numbers. Write down recoaaended trouble­
shooting procedures.
C. Have & testout planned.

1. Have everyoue on hand for testout, .ake sure they
bring their data scopes and data &Il&lysls machines the
first tilll81

D. No cooperation or no solution.
1. Go through normal channels first.



2. After you have exausted every other altemative.
A. Get MAD, Be MEAN!
B. Work your way up through supervisors until you reach
the person that viII make something happen. Let them know
exactly what your feelings are, chances are that person
does not like problems and does not want to be bothered.
You will get results.

E. Every way to get system up fails.
1. Get the DAYTECH Division of Bell Systems on the job, they
have the reputation of being the elite of the communications
field.

III SUMMARY FOR MANAGEMENT
A. Put pressure on Hewlett-Packard.
B. Willingness to get consultant, know and accept you will have
problems.
C. Planning and Knowledse are the key words in communication systems.

Michael L. Hooks
MSC Student
DENVER, CO



F-09

DATA COMMUNICATIONS ON THE HP 3000

The first session of a two-session series of presentations by Charles J.
Villa Jr. from Alter*Ability of San Francisco, addressed the rudiments of data
communications. Even so, the session was, due to time constraints, limited to
what Mr. Villa called "a cram course in HP 3000 Datacom". So, a limited back­
ground in the datacom field was a necessary prerequisite for a professional und­
erstanding of the material. At one point during the discussion, Mr. Villa
queried the group as to how many present had basic knowledge of datacom funda­
mentals. Suprisingly, about half of the audience held up their hands.

At the outset, it was said that the field of datacom was one that was fas­
cinating and rapidly changing.

An adequate datacom network can gather data on personnel very quickly and
efficiently. Also, development of safeguards to deter invasion of privacy of
data has advanced considerably in recent times.

A basic concept of datacom is that data transmission is accomodated over
voice networks that are modified in that the data signals (digital) are converted
to analog signals (voice) before transmission. This process of modification is
done by a modem, or a modulator-demodulator.

Certain communications disciplines called protocols are used to provide a
set of procedures for establishing and controlling transmissions in datacom.
The HP 3000 recognizes three asynchrnolls line disciplines:

1. Hardwired, using no modem; the HP 3000 provides no control signals
whatsoever, whereby control characters are inserted into a data stream for
signalling the receiving station to perform a function or to identify the
structure of the message.

2. 10; protocol, full-duplex; a communications link is established that
performs a prescribed sequence of events each time a mainframe calls a

terminal or vice-versa. Communications is allowed in both directions at the
same time.

;. 202 protocol, half-duplex, reverse-channel; communications is allowed
in one direction at a time here. But, FSK-type modulation (frequency shift
keying), is normally used with this protocol; FSK is a form of modulation
using two separate frequencies to represent the two binary digits (0 and 1).

The state of the art in modems is presently the Dataphone Data Set 212A
produced by the Bell System, Mr. Villa stated. When the terminal operator
dials the computer, communications is established between the modem and the
computer, when the 212A modem is utilized.

A discussion of pin numbers, which are used in interface curcuitry in
modems when connecting cables ensued, in which a series of questions from
the user portion of the audience arose. The technicality of this concept
appeared to be above that of the rudiments of datacom.

1.

/



DATA COMMUNICATIONS ON THE HP 3000

A hand-out entitled ttTerm Typg Table" depicted in tabular form the individ­
ual characteristics of 14 kinds of communications terminals applicable for use
with the HP 3000 computer. A significant portion of the table was devoted to the
requirement or lack thereof that the terminals have sync characters and how many
were required for each terminal. A sYnc character is a character of a defined
bit pattern that is used by the receiving terminal to adjust its clock and ach­
ieve synchronization. Other characteristics listed were response to delete
function and forms feed, line feed and carriage return options, and speed in
characters per second.

A noteworthy statement from the handout was "the definition of the remote
terminal's function determines the desired speed of the terminal and the volume
of data to be handled, which determines the type of datacom line and equipment
needed, which determines not only the required hardware for the HP 3000, but
also the configured terminal subtype. And, we must not forget the log-on term­
inal type, which determines the control characteristics for the log-on terminal
for the duration of the current datacom link".

Leased lines have the aspects of a hardwired connection to the HP 3000,
and no real documentation available.

In datacom jargon, a signal that is "high" is one that is on.

The second session covered the equipment and elements required in setting
up a datacom network. Three major types of equipment contribute to a datacom
network. Datasets (modems), data distributors, and data convertors.

Probably the most dollars can be saved in network structures by chnosing
the proper dataset. Factors such as operational distance, minimum speed, type
of line service (leased or switched), line discipline, and configuration are all
to be considered in determining cost/effectiveness of a given dataset.

Operational distance was expounded upon as folloH:.. :

1. line drivers are not des~gned to work on phone lines (5 to 10 miles);
also, they require a dc continuity from end to end. If two points are
within the same wire center, a modified 3002 circuit is achieved.

2. short haul modems work over a 3002 circuit (10 to 50 miles).

3. long haul modems work over voice grade lines with DAA interface.

Data distributors can also reduce network costs by choosing wisely. Data
distributors are more widely known as multiplexers, which are devices that
allow the use of one facility for two or more simultaneous data paths. FDM
(frequency division multiplexing) works at low speeds and costs less. TDM (time
division multiplexing) works at high speeds and costs more.



DATA COMI'nJNICATIONS ON THE HP 3000

statistical multiplexers are the state of the art, and more efficient
use of communications lines is realized through their use.

Data convertors are devices that convert asynchronous signals to synchro­
nous signals.

As to types of line services, it was mentioned that switched lines experi­
ence more noise but cost less, while leased lines have a fixed cost (higher)
but noise is not a significant factor to contend with.

Another new concept in networks is the value Added Network. An example of
this concept is Telenet, which uses packet switching. In Telenet, a call can be
made to long distances at local call rates. In packet switching, the terminal
delivers up to 128 characters to the network; the network takes the packet and
sends it through the most efficient routing. Term type 13 supports packet
switching on the Telenet network.

The last concept covered was digital circuits, which regenerate and
amplify signals instead of converting them to analog signals for transmission.
The signal stays in a digital state and provides for low-bid circuits.

Presentation by: Charles J. Villa Jr.

Summarized by: Patrick G. nul~kv

MetronoTitan State College Student



G-04
Program Scripting for Custom Transaction Entry

Mr. D. D. Brown of the Nice Corporation in Ogden, Utah addressed this
session on System Design. He discussed how his company developed SPICE/
3000 (System Processor Instant Consumer Exchange on a HP 3000 computer).

The software used is COBOL for transferability. The programs are
modular, that is they are transaction driven. This was necessary because
when the company started development, they didn't know what the software
would be required to do.

The data file system is composed of a master file, stat file, procs
file. and a utility file.

1. Master file: each record is 256 bytes long. It was stressed
the buffers should end on even multiples. If not, if the computer is
being shared, the system will assume that there are no buffers and this
multiples the time needed by the number of users.

2. Stat file: provides pointers for each item. It also shows the
first transaction to take place each day.

3. Procs file: provides all the dialogue thnt comes out on the CRT
screens. This file contains All the routines and subroutines that are
used.

4. Utili.ty file: contai.ns all the embellishments that are in the
system: messages like "Good Morning" and messages telling the people
that are operating the CRT's what to look out for.

The features of SPICE/3000 are: total modulability, on-line evalu­
ation, security, data base integrity is continuously tested, and t~ere is
Mag tape backup. Also, if the system goes do~m, the most that would be
lost is one transaction.

The Nice Corporation handles 20 to 25% of all calls in response to
television commercials advertisi~~ products such as record albums in the
country. They presently have 28 phone/CRT operetors and are planning to
expand to 45 by the first of next year.

Bill Brunson
Met~opolitan State College Student



G-07

SYSTEMS DEVELOPMENT
System Testing &Reliability

Software Quality Control

Mr. C. E. McVaney of J. D. Edwards &Co. addressed this session on
"Computer Systems Software Quality" and described in his presentation what
might be called the three phases of data software.

First, there was the "age of survival" and in this time period programs
were written just to get the job done with no foresightedness as to modifica­
tion or changing perimeters. There was no such thing as documentation and if
there was, it was of a very poor quality. Do everything for today and let
tomorrow take care of itself.

Next there came the "age of high quality". In this second phase the ori­
ginal program had proven themselves to a certain extent and now comes the time
for modification as well as an extensive look as to the maintenance cost in
keeping this system of starting from scratch. There is now more foresight as to
what the future will hold for these programs and documentation is being upgraded.
A new word is introduced-standards. With the introduction of standards every
programmer is able to write a program that is structural and uninformal so that
someone else may work on it and understand it after he has left that to converse
about some data element and everybody knows what the other person is talking
about.

The third phase is where we are today, "The EI Cheapo Software". The
time and money invested in developing your own software may be less profitable
due to the fact that there are so many firms today who can or have produced the
systems that you may need. Watch out for what looks extremely cheap today may
cause you extensiVE headaches and high maintenance cost tomorrow. As with any
commodity, shop around for the best deal that will not only benefit you today
but will require less work and money to modify it in the future.

Programs today are written with seventy-five percent "grunt work" and
twenty-five percent genius. The term "grunt worktt refers to the fact that
there is only a certain number of ways in writing particulars types of soft­
ware for a system. i.e.-Accounts Receivable-there is only a limited number
of ways to write a program to do an add, deletion or an updating. The twenty­
five percent genius comes into play when adapting the program to an user's
system and in doing, use the least amount of storage and maintain data integrity.

By not taking advantage as to what program and services are being offered,
management may view the problem as one concerning itself with the hardware. If
this happens, management may acquire more hardware than is re~ly needed and
this is referred to as the "Iceberg Effect", The problem appears to be one of
hardware but upon a closer look, the real problem or problems may be deep down.
Such things to look at are: computer programs, system documentation, input con­
trol, procedures-both operating and clerical, data bank information and lastly
the reports for both management and operating systems. So by only seeing the
top of the iceberg more hardware was added on and the pDoblem went away. You
were just able to bury it deeper into the system and given time it will raise
it's ugly head again only this time much higher than ever before.



-~

From the age of survival, through the search for quality and lastly the
el cheapo phase, the software reliance and capability has grown at an ever
increasing rate. It is up to management to properly use this computer tool
to its fullest extent and not look so much at the tip of the iceberg by acquiring
mOre hardware but by evaluating the whole system for its merits or demerits and
there openly make its judgements after all the data has been gathered.

Walter Anderson Jr.
Metropoltan State College



G09

OB-LINE APPLICATION MANAGEMENT

Hr. Dennis DinaJll and Mr. Glenn Entis,trom Morgan
Guaranty and Trust Company ot New York addressed this
session on Soreen Management Ott-line Generation package
(SMOG). They discussed the needs, development and use
of this system.

The system was designed to work in an HP 3000
Series II~ on-l~e and some batch and a Multiuser environ­
ment. Morgan Guaranty and Tztust Company comprises four
bankiDg functions:

1. Automated Banking System

2. IUra-currency Automation

3. Global Exposure System

4. Hew York Profitability S7stem

The requirements of the system were:

1. Selt contained system

2. Computer Management

3. User and function Oriented Security

4. Terminal Management

s. PUll screen Support

!be system that was developed to meet all of the above
conditions was SHOO. It helps the Hi 2645A Interactive
Display Te~al to oreate and maintain tiles ot formated
data. It 1s extremel,. useful in instanoes where soreens
are changed frequently. All procedures are written in
SPL but are acoessed through COBOL, FORTRAN and SPL.

The Term'nal Applioation Mmagement Program (TAMP).
a part of this 87stem. generall,. defines the application
enviroDlllent.

Another component ot the package 1s K()'1 Extra Data
Sesments (KEDS). Th87 felt KSAM was too slow tor a S7st8m
that contaiDed man,. table valuatiOll8. KEnS was the aDswer
and 1s similar to KSAH and manages tables in virtual
memoZ7.



Page 2

The design ot the package has taken about two years
at Morgan Guaranty and Trust. It 1s a system tor the
management and deYelopment ot on-line uses and not direct­
ly tor the end user.

Kell,. J. Patterson
Metropolitan State College
Student



GlO

The Software Development Cycle

Mr. J.M. Grillo of HP's Genenral System Division addressed this
session on 'The Software Development Cycle." He discussed the problems
an the keys to success in the Development System.

Key Problems in Development System:
A. Implementing new management and system processes
B. Skill problems

1. Common problems
Lack of communication between technicians and users

2. The use of outsiders
The risk is that the outsider might not know the Business

3. Expertise problems
C. User involvement
D. Cost overruns
E. Lack of detailed requirement

1. Constant changes that the user will run into, because it
is hard to tell when you are done.

2. Inefficiency in programs and decumentation

Keys to
A.

B.

C.

successeful system development
User involvement
1. Interest and support
2. Involvement in all phases
3. Develop acceptance test
Personnel utilization
1. Business analysts

a. Define system with user
b. Install and train
c. Review design for conformance

what the system should do and what the user is asking
for.

Technical Personnal
1. Define and implement

the technicians in business study should go over
requirements with user.

2. Review definitions for feasability
3. Define/Develop technical environment

How to structure Data Base Management

Standards
A. Documentation

1. What must be documented and thought through
2. Exposure decisions for people to make judgment on.

B. Naming
Standarized the vocabilary

C. Programming techniques
difficulty of language selection

D. Formats for printed media
E. Environmental standard



Keys to success
A. Review and Revision Procedures
B. Phase to phase budgeting
C. Phased development

1. System concept phase (5% of costs of the project)
a. Define scope and effort
b. Review current system
c. Identify leverage/risk areas
d. Perform analysis
e. Develop new system concept
f. Task & cost estimate for General Design (cost & task

timin~)

g. Estimate system development costs
2. General design phase (10% of cost)

a. Develp & detailed work pro~ram

b. Resolve remaining issues
c. Define inputs & outputs
d. Define processin~ function
e. Define manual procedure, personnel requirement

& volumes
f. Define technical support requirements
g. Define an integrated system flowchart
h. Refine cost/benefit analysis
i. Order development priorities
j. Develop task list and costs for detailed design

k. Refine estimate of system deve1pemebt cost
3. Detailed Design Phase (20% of cost)

a. Develop detailed work program task allocation
b. Resolve remaining issues
c. Define & desing codes
d. Design data base
e. Develop detailed subsystem flowcharts
f. Specify inputs & outputs
g. Develop pro~ram specifications
h. Develop manual procedures

4. Programming and unit testing (35% of cost)
5. System testing (15% of cost)
6. Conversion & training (15% of cost)

Ann Sawaged
Metropolitan State College

2



G-12

ABSTRACT

Microprocessors: Product Design Using Microprocessors

Presented by: J. C. Armstrong, Los Altos Research

Presented at: Hewlett-Packard Users' Meeting,
Denver, Coiorado,
October, 1978

A discussion of useage of trie HP 3000 for development
of software for microprocessor product design.

Tae technique ofusln6 the HP 3000 in develop1[~

software in various developmental systems was presented

along with the proolems encountered and tne so~utlons

developed.

fne use of tae HP 3000 as a large, full-scale eaitor

overrides the cost of setting it up. fae auvantages are

a large editor, sophisticated editing tools, cross-reference

facilities and multiple users. The development system oox

can oe selected after programmlno. Efficiencies are ootained

as only one editor is learned--not a different one for each

development s/stem. Tile program documentation, reference

manuals and user manuals can alao be aone on the HP 5000

rather than the microprocessor.



One user writes microprocessor software on tne liP 3000,

1ncluding program entry, cross-assemolies, deougging and

ouputs Intel hex to the development system. A CRT input of

assembler language to the liP 3000 goes througn a SPL pro6ram

and out to a Z80 development system. The HP 3000 is

''lnv1s101e tl 1n this appl1cat10n.

Another development uses tne HP 3000 edi~or with p~

language and tells the development system tna~ the liP 3000

1s a teletype.



H-05

A Real-Time Instrument Interface

Mr. G. R. Symonds of Env. Health Directorate, ottowa, has developed

a viable real-time interface with H. P. 3000 computers. His 'black box'

is an alternative to the H. P. 1000, which he considers to be overpriced.

In his development of this interface, Mr. Symonds determinded that certain

characteristics would be necessary. They are: immediate response, event

driven, asynchronous, implied data lost or disaster, immediate acceptance

or rejection, something controlling something, and subject to the vagaries

of Murphy's Law. He concluded that this interface was similar to a data

entry clerk and has referred to it as a impersonal one. With these

requirements Mr. Symonds went on to try to interface with the H. P.

3000. His first step in this approach was to determine where to branch

into the system • Almost by default he choose the Asynchronous terminal

multiplexer. Frequency restrictions and hampered flexibility were some

of the problems this outdated multiplexer has. But these problems were

nothing compared with a Selector channel or Multiplexer channel choice.

The H. P. configuration and channel choice acts like a modem, therefore

anything that interfaces with it must be or appear to be a terminal. The

t black box t is set in line between the terminal and the H. P. 3000. As

a backup, ~1r Symonds recommends that a printer be hooked up in parallel

with his •black box'. Because the 'black box t is not a terminal certain

dialogue characteristics that the H. P. 3000 has with a terminal must be

turned off. In general there must be some customizing of hardware and

software to make this interface work.

Opinions are varied for this hardware solution. Microprogramming

of the terminal is possible and can achieve the same results. Costs

are probably the biggest factor in choosing the 'black box' solution.

Mr. Symonds calculates aromld $ 800 for design and manufacture of his

interface. This is compared with a programmer working five days at

$ 325. There was considerable skepticism whether this goal could be

accomplished in that time. Mr. Symonds' hardwire approach is cost

effective and available in a otherwise limited area of data processing

John L. Fong

Metro State College



I-02

Data Management on the HP 3000
MPE File System

Four panelists, led by Mr. John Couch, recently appointed Project Director
of the MPE File System, held a ''Round Table" discussion with HP 3000 users.
There was no formal presentation and the emphasis was placed on interaction,
as members of the panel answered specific questions pertaining to the MPE
File System.

Users felt that KSAM reliability should be increased and that the manual
should be changed to properly describe its use. It was specifically
suggested that the manual should have an improved description of carriage
control. When it was suggested that ordinary MPE utilities should work on
IMAGE files, the Project Director for KSAM and IMAGE commented that he felt
that IMAGE and KSAM should not be separate entities.

In response to a question concerning the difficulties encountered with
KSAM when a crash occurs, one of the panelists said that HP is aware of the
problems and has identified a number of things that might be done. Among
those considered is the possibility of a pointer to the area at the crash
point.

John Couch encouraged users to send their suggestions concerning MPE to him.
When he asked how many of those present hesitated to turn in SMR's because
they felt it went into the "bit bucket", two-thirds answered affirmatively.
He then assured them that all suggestions were filed by classification and
scrutinized carefully when appropriate changes were being considered. A
member of the User's Group Interface Committee encouraged the users to
contribute input to HP by filling out the annual questionnaires they receive.

As a wrap-up to the discussion, Mr. Couch outlined the objectives and
strategy he is following in his new position.

1. Reliability I Isolate as many bugs as possible (200 I-tPE problems
have been identified) and assign the personnel to solve them.

2. Performance. Double the performance of the operating system.
1970 decisions led to scarce memory and as this is changed, so
should the performance.

3. Increase capabilities.

4. Form an MPE 3 group responsible for enhancements to the present
MPE File System.

5. Form an MPE 4 group responsible for "look ahead" projects such
as re-writing the file system and restructuring the operating
system.

Ann Minzer
Metropolitan State College Student



DATA COMMUNICATIONS

I-07

Mr. J. Alderete, a HP Project Manager, identified three specific areas of data

communications currently being developed by HP. He also made note that the

projects he would be discussing are not in production but are in the develop­

mental stage only.

The three general areas are:

1.) An intelligent controller program

2.) IBM data communications

3.) HP networks

The first concerns a mirco-processor based, intelligent data communications

controller, specific benefits of the input/output subsystem would be:

1.) Reduce CPU overhead

2.) Simple extension

3.) Supportability

4.) Diagnostic capabilities

New IBM system support was the second announcement. Interactive communication

with the IBM host are to be improved by:

1.) Improving console message handling

2.) Making job submission more flexible

3.) Expanding output

Benefits of these efforts are to be realized in the area of distributed data

base management, especially inventory control.

The third area invloves standardization of the data communications within HP

networks. Extensive polling of HP users and HP management will be necessary

to develop such a system. Three specific advantages of the above efforts were

mentioned.

1.) Packet switching

2.) Use of A,T and T's Advanced Communication Service

3.) Satillite communication



-2-

Questions were mostly on IBM data communications. Remote Job Entry and

MUltiple Remote Job Entry were discussed extensively. RJE through an IBM

2780 Data Transmission Terminal or 3780 Data Communication Terminal was

compared to MRJE.

One-way protocall, limited compression, and limited console features were some

of the drawbacks of RJE. MRJE, a more powerful full duplex line, offers a

possible line cost advantage, has high compression, and a live console.

In response to other questions:

1.) MRJE is to be enhanced later through the CLP (6 months to a year).

2.) MRJE is a high overhead feature as compared to a RJE system.

3.) Data Systems Inc. is working on a dial up line for transmission within
an HP group.

4.) MRJE will not, support RES efficiently.

5.) The CLP will eliminate 10 percent of CPU overhead.

6.) Asynchronous transmission is not yet being developed.

7.) X-25 status is currently being developed in Europe.

8.) MTS currently supports 14 terminals on one site. Possible release soon.

9.) Nothing is currently being done to adapt peripherals to new HP 3000
system 3.

Comments:

Content of the round table soon became too envolved for over half of partici­

pants who left at various times throughout the block. Definition of the subjects

to be covered were wholly misunderstood as beneficiaries of the discussion

were confined to those with an extremely advanced knowledge of the material.

Craig Morris
Metropolitan State College



1-15

This is a swmnary of the special "Round Tables" session,
Machine Utilization: System Monitoring and Tuning Performance
Measurement Tools, held on November 2, 1978, at the 7th
International Meeting of the Hewlett Packard General System
Users Group.

The session was moderated by Tom Rawson of the University
of Washington. Two HP lab perso~ Roy Clifton and Ken Spalding
were in attendance, and addressed questions and topics which
were brought up.

The purpose of the session was to give feedback to HP as
to what kinds of things are available, mainly in the Contributed
Library, that the users would like to see HP produce.

Reference was made to the paper in the proceedings by
Jim Squires and Ed Splinter, System Performance Measurement and
Optimization, and the following tools were mentioned and
described:

1) MONITOR

2) TUNER2

3) SOO
(SON OF

OVERLORD)

4) SHOWVM

5) SHOWPIE

6) SHOWQ

A major tool provided by HP which is part of
the operating system of the Series I, II,
and III HP3000. The system activities are
recorded and a window of that period is
chosen for analysis which provides
information concerning resource utilization,
system workload and the programs used.
Available only to SEs.

Provides a display of what the CST is doing,
For use with MPEII and MPEIII. In the
Contributed Library.

For use with MPEII. Has a bug when used
with MPEIII. To correct it, one must set
the define statement with PCB entries to
what is needed. In the Contributed Library.

,,\
Gives a snapshot\virtual mem~ry to show
how much memory the MPE is using. In the
Contributed Library.

Shows processes and what the system is
doing. In the Contributed Libary.

An MPE command provided by HP which lists
all processes in the system as dormant,
waiting or running.

-1-



7) IDLE/IDLE
PRINT

8) OVERLORD

9) DREEACTG

Used to show how busy the CPU is hourly.
Some problem exists in that it gets
itself in EM and should be in priority
254. In the Contributed Library.

For use with MPEIII. Does not give CPU
percentage as doesSOO.

Thirty to forty programs in FORTRAN
and SPL which analyze the log file to give
information concerning system use. In the
Contributed Library.

Additional tools that were addressed were SAMPLER and
TRACER, which will probably be available late next year and
are expected to provide more evaluation at the application
level than MONITOR, such as sagment histograms.
SAMPLER presently will require the use of an additional
clock board.

It was stated that one of HP's objectives is to produce
tools to be sold to users which the users can use themselves,
and thatHP wants to know what information the users need.
The following user desires were expressed:

1) That each district office should have a clockboard
to rent to users who wish to use SAMPLER.

2) Tools that the user can use without having to go to
his SE every time.

3) User does not want an SE in his system because of
classified material.

4) Would like to see something from HP like 500, and
does not want to have to go to an SE every time something
goes wrong.

5) Would like to see a CPU utilization guage in the
HP3000.

6) A set of tools to measure user running time to give
him a histogram of what the user is doing.

7) Wants MONITOR to be broken down into separate tools
so that he can choose what~information he needs.

8l A need to give the operator better control of the system:

a) The ability to suspend sessions in order to get
the system out of thrash.

b) The ability to change the subqueues.
c) The ability to alter priorities.

-2-



9) A tool to tune an application program when developing
a system:

a) To determine how the program is written affects
usage time.

b) To determine what is affecting performance.
c) To give information on segmentation vs. design

efficiency.

10) To be able to change queues according to the time of
day because certain users use the system at the same
times each day.

11) Wants segmentation information provided for FORTRAN
programmers to improve program performance.

12) Wants to see who is running what, how much CPU time
is being used, and where a job is in the system.

13) Wants snapshots of memory over periods of time.

14) Wants HP to provide some configuration guidelines.

The most generally agreed upon desires of the users seemed
to be for tools that the users can use themselves which will not
require any additional hardware, and for the provision of some
basic configuration guidelines.

By David Schwaab
Metropolitan State College

-3-



'".;','.

'--
.'. "-- ... ~~.- -:.: .

ATTENDEE AND EXHIBITOR

NAME LISTS

.' --.':





CONFERENCE ATTENDEE LISTING INDEXED BY ATTENDEE NAKE

NAME TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

BOX 3310 BLDG 607/B329

POBOX 166
880 WMAUDE AVENUE

39 BROADWAY 32ND FL
2640 PINE STREET
COLUMBIA RD
395 DE MAISONNEUVE BLVD

1515 SUHHER ST
10 BROOK ST
5303 STEVENS CREEK
ROUTE 41 ~ STARR RD
777 BOUL LAURENTlEN
POBOX 16529
SOUTH OYSTER BAY ROAD

NEW WESTKINST BC CANADA
SUNNYVALE CA 94086 USA
LAHONI IA 50140 USA
LOS ANGELES CA 90061 USA
WAYNE HJ 07410 USA
QUERETARO QR 591 MEXICO
SANTA ClARA CA 95050 USA
TAMPA FL 33607 USA
BAY HARBOR IS Fl 33154 USA
DENVER CO 80205 USA
MEXICO DF 13 MEXICO
LOVELAND CO 80531 USA
SAN JOSE CA 95112 USA
TACOHA WA 98402 USA
HAMILTON ON L8S4J9 CANADA
NORFOLK VA 23505 USA
MEXICALI BAJA MEXICO
PISO SABANA G VENEZU
LOS ALTOS CA 94022 USA
CALGARY AL T2P2M7 CANADA
BROOKPARK OH 44142 USA
SAN BRUNO CA 94066 USA
DENVER CO 80204 USA
SYRACUSE NY 13202 USA
NEW ORLEANS LA 70125 USA
NEW YORK NY 10006 USA
ST LOUIS KG 631B3 USA
HORRISTOWN HJ 01960 USA
MONTREAL QU J6K2E6 CANADA
CLEVELAND OH 44115 USA
STAMFORD CT 06905 US~

LONDON W1Y2HN ENGLAN
SANTA CLARA CA 95050 USA
AVONDALE PA 19311 USA
SAINT-LAURENT QU H4"2H7 CANADA
COLUMBUS OH 43216 USA
BETHPAGE NY USA
ANDERSON IN 46011 USA
FUlLERTON CA 92634 USA
YELLOWKNIFE NW XOE1HO CANADA
RICHARDSON TX 15081 USA
CLEARWATER FL USA
ST ANDREWS NB EOG2XO CANADA
ENGLEWOOD CO 80111 USA
ARLINGTON VA 22209 USA
CAMBRIDGE MA 02138 USA
BURLINGTON ttA 01803 USA
MIAMI Fl 33133 USA
NEY YORK NY 10086 USA

ADAttS BOB SYSTEKS EDP MANAGER SCOTT PAPER LTD
ADAKS KEARNEY A sR PROCRAHttER ANALYST sKITH KLINE INST
ADAMS RAY CONTROLLER GRACELAND COLLEGE
ADDIS JOHN MGR CONSULTING sves UNITED COKPUTING SYS 1901 AVE OF STARS 1585
AGRUSTI RAYMOND J WAYNE BOARD OF ED 50 NELLIS DRIVE
AlBARRAN RAUL F GTE DE PROCESAMIENTO CARDANEs) SA APARTADO POSTAL 591
ALDERETE JOHN R PROJECT MANAGER HEVLETT-PACKARD 5303 STEVENS CREEK
ALEXANDER BYRON L CONSULTANT COLLIER-JACKSON ASSOC 1805 NWESTSHORE BLVD
ALEXY MICHAEl J DATA SYSTEKS STAFF STORER BROADCASTING 1177 KANE CONCOURSE
AlLAN WILLIAM D INFO SERVICES MANAGER KAISER FOUNDATION 2005 FRANKLIN ST
AlVAREZ HANUEL A COORDINATOR UNIVERSITY IDAKETROPOLITAN APDO POSTAL 55-503
AHBLER BURT HEWLETT-PACKARD 815 14 SY
ANDERSEN SUEND EBI COMPANIES 1290 NORTH FIRST ST
ANDERSON EDWARD W SR SYSTEMS SPECIALIST WEYERHAEUSER CO AFB 4
ANDERSON GARY D ASSOC PROf OF BIOSTAT KC MASTER UNIVERSITY 1200 HAIN ST WEST
ANKERS) JR ALFRED H HANAGER DATA PROCESSING MRIlIME TERMINALS 1731 HAMPTON BLVD
ARANDA JORGE A SYSTEMS ENGINEER UNIVERSIDAD BAJA CAL OBREGON YF
ARCAYA PEDRO H MANAGER PROCESASEG) SA TORRE LA PREVISORA
ARMSTRONG JACK C PARTNER LOS ALTOS RESEARCH CENTER 339 S SAN ANTONIO ROAD
ARNOlD PAT SYSTEM ENGINEER PETRO CANADA POBOX 2844
ARTHOFER ROBERT J DATA PRGCESSING MANAGER FOSECO INC 20200 SHELDON ROAD
AUSLANDER RICHARD C DB DC TECH SPECIALIST THE GAP STORES INC 900 CHERRY AVE
AUSTIN DAVID J ACTING DATA CENT COORD DENVER EMPLOY ~ TRAIN 1421 ELATI STREET
AUSTIN DONALD (CANCEL)HGR SYSTEMS ~ OPERATIONS SYRACUSE BOARD OF EDUC 409 WGENESEE ST
BADGER PATRICK S DIRECTOR ACADEMIC COM XAVIER UNIVERSITY
BAKST LAWRENCE E SENIOR CONSUlTANT SOFTWARE SYSTEMS TECH
BALANDER MATTHEW J SYSTEM PROGRAMHER CCSC
BAMBACH THOHAS H PROJECT LEADER ALLIED CHEMICAL COPR)
BANDI DENNIS TECHNICAL ANALYST DOKTAR INC
BANSAl AK SOHIO
BARKER DAVID A MANAGER SYSTEMS &PROG PURITAN INSURANCE CO
BARKER RONALD E MANAGING DIRECTOR CLAYBROOK COMPUTING
BARItAN HARC DEVELOPHENT ENGINEER HEWLETT-PACKARD
8ARTOlI JR CHESTER T OPERATIONS SUPERVISOR HP AVONDALE DIV
8ASSELlIER JEAN-PAUL DIRECTEUR INFORKATIQUE VILLE SAINT-LAURENT
~EACH JOHN R HEAD OF OPERATIONS ADRIA LABORATORIES
~, 11 RAY SR SYSTEMS ANALYST GRUKKAN AEROSPACE
~ASlEY DAVID R ANDERSON COLLEGE
~CHER ANTHONY H HEAD CIA.K. ENG HUGHES AIRCRAFT CO
~ET ROB GOV'T OF NWTERRITORIES
~EHElER ANN F PROJECTS MANAGER ROCKWELL INTL-COLlINS 1200 NALHA RD
~EHNKEN HPAUL SUPVR DATA PROCESSING SHITHS INDUSTRIES POBOX 5389
JELLIS STEPHEN PROGRAHMER DEPT OF FISHERIES ~ OCEANS BRANDY COVE
~ ROGER VP HARKETING INFORHATION RESOURCES 7935 EPRENTICE
lENJAHIN ROBERT A SR SYSTEttS PROGRAMMER KEYDATA CORP 1406 WILSON BLVD
~ENNETT WALTER W DEV INFO COORDINATOR HARVARD HOLYOKE
(NOIT WAYNE F MANAGER PRODUCT DEV EPSILON DATA HGHT 24 NE EXECUTIVE PK
IERAM ALFRED J EXECUTIVE VICE PRESIDENT FINANCIAL DATA PLANNING 2670 TIGERTAll AVENUE
IERGER ROBERHCANCEU ASSISTANT VICE PRESIDENT BANKERS TRUST CO 1 BANKERS TRUST PLAZA

NAHE-1



ATTENDEE BY NAME

HAKE TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

BERGOLD THEODORE A "ANAGER INFO-SYSTEMS GATX LEASING ONE EMBARCADERO CNTR SAN FRANCISCO CA 94111 USA
BERND UAL.TER ASSISTANT SYSTEM OFF BANKERS TRUST CO 1 BANKERS TRUST PLAZA NYC NY 10006 USA
BHUTA KEHENDRA HGR SYSTEMS PLANNING ALLIED CHEMICAL CORP COLUMBIA RD KORRISTOWN NJ 07960 USA
BILLS DANIEL e PRESIDENT GRANVILLE-PHILLIPS CO 5675 ARAPAHOE BOllDER CO 80393 USA
BIUlER )EARL DOMTAR INC 395 DE MAISONNEUVE BLVD KONTREAL QU J6K2E6 CANADA
BINDEWALD THOMAS L SR TECHNICAL ANALYST eTE DATA SERVICES FIRST FINANCIAL TOWER TAliPA FL 33611 USA
BIRKWOOD ILENE M S EMANACER HEWLEn-PACKARD 5303 STEVENS CREEK BLVD SANTA CLARA CA 95050 USA
BISHOP LARRY DIRECTOR SYSTEMS DEVELOP NPD RESEARCH) INC 15 VERBENA AVENUE FLORAL PARK NY 11091 USA
BIVENS FREDERICK(CANC)DATA SPECIALIST STANDARD OIL COMPANY 101 WPROSPECT AVENUE CLEVELAND OH 44115 USA
BLACK DAVID T SYSTEMS ANALYST JOHN HENRY COKPANY POBOX 17099 LANSING HI 48981 USA
BLAHD JOHN J SYSTEH DP ANALYST BROOKEHAVEN NATL LABOR 32 BROOKEHAVEN AVE UPTON NY 11973 USA
BLIESHER ROBERT G SYSTEMS ANALYST BCS PO BOX 24346 SEATTLE WA 98124 USA
BOOTH BUD PRESIDENT AUTOMATED ANALYSIS 3105 DONA SOFIA DRIVE STUDIO CITY CA 91604 USA
BORDEN JOHN (CANCELED)SYSTEM MANAGER BALTIMORE GAS & ELEC BOX 1475 BALTIMORE HD 21203 USA
BORG CHARLES J SYSTEMS PROGRAMMER HEWLETT-PACKARD SRD 1400 FOUNTAIN GROVE PK SANTA ROSA CA 95404 USA
BOSCO SUSAN M PROJECT HANAGER THE GAP STORES INC 900 CHERRY AVE SAN BRUNO CA 94066 USA
BOTTEGAL THOMAS M GEORGE WASHINGTON UNIVERSI 125 23 STREET NY WASHINGTON DC 20052 USA
DOWNES GORDON SYSTEMS ANALYST SYNCRUDE CANADA LTD 10030 107TH ST 7TH ST PLAZA EDMoNTON AL 1513E5 CANADA
BOYER CONNIE Y PRDGRAKKER/ANALYST MARY WASHINGTON CLC POBOX 1081 CLG STAT FREDERICKSBUR VA 22401 USA
BRAUM GUENTHER K DIRECTOR DATA PROC SPRECKELS SUGAR DIV 50 CALIFORNIA ST SAN FRANCISCO eA 94111 US~

BRICKER HARLEY G SUPT MATERIALS SYNCRUDE CANADA LTD P0 BAG 4009 FT MC HURRAY AL T9H2Ll CANADA
BRINDLE l1H BRANT COMPUTER SERVICES 615 BRANT STREET BURLINGTON ON L7R2G6 CANADA
BRODOWSKI RICHARD E DIRECTOR INFO SYSTEMS IND PRESS-TELEGRAH 604 PINE AVE LONG BEACH CA USA
BRODKE ROGER G HGR SUPPORT SERVICE WESTINGHOUSE £lEC CORP POBOX 8839 PITTSBURGH PA 15221 USA
BROOKS ROY SYNCRUDE CANADA LIMITED 10030 107TH STREET EDMONTON AL 15J3E5 CANADA
BROUN DDAVID PRESIDENT NICE CORPORATION 4357 AIRPORT PARK PLAZA ODeEM UT 84403 USA
BROWN DALE A DIR OF INST RESEARCH MARY WASHINGTON CLG POBOX 1081 CLG STAT FREDERICKSBUR VA 22401 USA
BROlIN DANA ADHINISTRATOR INFO Ell COItPANIES 1290 NORTH FIRST ST SAN JOSE CA 95112 USA
BROWN EDWIN J PRESIDENT WOOD)BROWN &ASSOCIATES 1673 CARLING AVE onAWA ON K2A1C4 CANADA
BROWN ROBERT A DATA PROCESSING SYSTEH MB.K. SWEENEY 11AH. CO. 6300 STAPLETON S. DR. DENVER CO 80216 USA
BRUCE CLIFF DPASST MANAGER SAN JOSE MERCURY-NEWS 750 RIDDER PARK DR SAN JOSE CA 95190 USA
BRUNK GREGG A ADHINSTRATIVE ASSISTANT HOUSTON INSTRUttENT 8500 CAHERON ROAD AUSTIN TX 18153 USA
BRYDEN WILLIAH PRESIDENT INLAND SYSTEMS ENGINEERING REDLANDS CA USA
BRYSON GARY J CONSUlTANT SYSTEM HOUSE 560 ROCHESTER onAWA ON KIB3B8 CANADA
BUEll DlAME ANALYSTIPROGRAHKER AURORA PUBlIC SCHOOLS 1085 PEORIA STREET AURORA CO 80011 USA
BUTLER KEITH C ENGINEER H£ULm-PACKARD RT 41 .. STAR ROAD AVONDALE PA 19311 US,.
BUTLER STEPHEN M DIRECTOR DATA PROCESSING PARADISE VALLEY HOSPITAL 2400 E4TH STREET NATIONAL CITY CA 92050 USA
BYFORD WENDY K SYSTEHS ENGINEER HP 275 HYMUS BLVD PTE CLAIRE QU CANADA
CALLANAN BILL SESUPERVISOR HEVLETT-PACKARD LTD KING ST LANE WINNERSH WOKINGHAM BER ENGLAN
CAMARILLO HARIO R DIR DE SISTEttAS INFORItATICA DESC) SC THIERS 248 ANZUREZ IEXICO DF ItEXICO
CAMERON LOUISE PROGRA""ER DEPT REG ECO EXPANSION 200 RUE PRINCIPAL HULL QU K1AOH4 CANADA
CANllIELL FRANK E DIRECTOR PRODUCT DEV EPSILON DATA KGMT 24 HE EXECUTIVE PK BURLINGTON ItA 01803 USA
CARLSON LEE A PROF HATH &COKP SCIENCE VALPARAISO UNIVERSITY ACADEMIC COMPUTER CENTER VALPARAISO IN 46J8J USA
CARR CHARLES E HAN ANALYST PROG II SANGAKON STATE UNIVERSITY SHEPHERD ROAD SPRINGFIELD IL 62188 USA
CARRUTHERS ALEX R SYSTEMS ENGINEER HEWLEn-PACKARD 210 1220 FISHER ST CALGARY AL T2H2HB CANADA
CAR'JAl.HO ItARCOS AX SYSTEMS ANALYST PROKON ENGENHARIA SA NOVE DE JUlHO 4939 SAO PAULO SP 91401 BRAZIL
CASEY CHRIS 1 SYSTEttS SUPPORT MGR HEWLETT-PACKARD 1501 PAGE HILL RD PALO AlTO CA 94314 USA
CAYLOR LARRY W DATA PROCESSING MANAGER JOHANSON DIElECTRICS 2210 SCREENLAHD DRIVE BURBANK CA 91595 USA
CElLI JOHH BUS &KTING DEV HGR HEUlETT-pACKARD S303 STEVENS CREEK SANTA CLARA CA 95050 USA
CHADWICK GRAHM D COItPUTER HANAGER DE ZOETE DBEVAN THROGHORTON STREETS LOHDON ENGLAN
CHARD HILES H DATA PROCESSING ItAHAGER CLA-VAl. co POBOX 1325 NEWPORT BEACH CA 92663 USA
CHASE LARRY " SUPU SYS & PRUGM KULTNOttAH COUNTY ESD 220 SE 102 PORTLAND OR 97216 USA

NAME-2



ATTENDEE BY NAME

NAttE TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

CHATFIELD DENNIS C SYSTEH MANAGER R1 FRISBY 1500 CHASE ELK GROVE IL 60007 USA
CHEN CHANG L SYSTEM ANALYST HP AVONDALE DIV ROUTE 41 &STARR RD AVONDALE PA 19311 USA
CHITWOOD RICK L ASST VP INFO SYS UNITED PRESIDENTIAL LIFE 217 SOUTHWAY BLVD E KOKOHO IN 46901 USA
CHIU YUYAN PROIECT ENGINEER BOEING CO"" AIRPLANE CO POBOX 3707 36-02 SEATTLE UA 98124 USA
CHRISTOPHERSON DIANE UNIVERSITY OF WISCONSIN RIVER fALLS WI 54022 USA
CLABORN GEORGE H PROGRAMMER ANALYST ENVIRONMENTAL ELEMENTS 3700 KOPPERS ST BALTIMORE HD 21227 USA
CLARK KIM HC HASTER UNIVERSITY 1200 HAIN STREET WEST HAMILTON ON LBS4J9 CANADA
CLEEVER KAREN J SYSTEMS PROGRAttHER DEPT REGIONAL ECONOMIC EXP 601 SPADINA CRES E SASKATOON SA 57K3GB CANADA
CLEJtEHT RUBY J DIRECTOR OF DP UMPQUA COM" COLLEGE POBOX 967 ROSEBURG OR 97470 USA
CLEHENTSON GERHARDT CDIR OF ACAD COMP CNTR METROPOLITAN ST COLLEGE 1006 11TH STREET DENVER CO 80204 USA
CLEVELAND UAtTER UNITED COMPUTING SYS 2S25 WASHINGTON KANSAS CITY HO 64108 USA
CLInON ROY A HPE SUPPORT MANAGER HE"LEn-PACKARD 972 BUCKEYE CT SUNNYVALE CA 94086 USA
COLDREN J DAVID ASSOCIATE DIRECTOR IL LAW ENFORCEMENT CO 120 S RIVERSIDE PLAZA CHICAGO IL 60606 USA
CONNOR JACK SR CONSULTANT SYSTEMS &COMP TECH 7 N5 POINT RD WEST CHESTER PA 19380 USA
COOK LINDA L DATA PROC SPEC/PRCHR ALLEGHENY INTER UNIT SUITE 300 TWO ALLEGH CENTER PITTSBURGH PA 15212 USA
COOKSEY WILLIAM P PROGRAKHER/ANALYST copen 4905 LIMA STREET DENVER CO 80239 USA
COOPER PAUL D SYSTEMS ENGINEER HEWLETT-PACKARD 4110 S 100 EAVE TULSA OK 74145 USA
COOPER STEVEN M CONSUlTANT AMERICAN MANAGEMENT SYSTEM 561 PILGRIM DRIVE SUITE D SAN HATED CA 94404 USA
COPLIN ROBERT G DPDIRECTOR CITY OF KENNEWICK 210 W6TH KENNEWICK WA 99336 USA
CORDW.E YAHN ENGINEER COGaOG 1 QUINCONCES GIF 91190 FRANCE
CORRELl STEVEN ENGINEER HEVLETT-PACKARD RT 41 &STAR ROAD AVONDALE PA 19311 USA
COUCH JOHN D SECTION MANAGER HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95858 USA
COVIn HARC L TECHNICAL SVCS HGR HEWLETT-PACKARD SDD 16399 WBERNARDO DR SAN DIEGO CA 92127 USA
COX " PHIL SYSTEHS ANALYST PROCTOR &REDFERN 15 EGLINTON AVE E TORONTO ON It4P1H3 CANADA
CRAWFORD JEFFREY D PRESIDENT OHEGA SYSTEMS, INC. 3120 SO ROCKWELL ST CHICAGO IL 60632 USA
CROCKETT DAVID PRG HGR HP300 SYS HEVlETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
CROW WILLIAM M MGR TECHNICAL SYSTEMS AUSTIN INFORMATION SYS 450 WEST 1ST AVENUE ROSELLE NJ 07203 USA
CULPEPPER BRInON B SYSTEMS ANALYST UNION CAMP CORP FRANKLIN VA 23851 USA
CURBao RALPH COST ANALYST NEW YORK TELEPHONE CO 1095 AVE OF THE AHERlCAS NEW YORK NY 10036 USA
CURRERI JOSEPH A 9142 EDMONSTON CT 202 GREENBELT ttD 20770 USA
CURTIS LINDA ANALYST/PROGRAtfttER PETRO CANADA POBOX 2844 CALGARY AL T2P2H7 CANADA
D'ANGELO RICHARD J SYSTEHS ENGINEER HEWLETT-PACKARD co 32 HARTWELL AVE LEXINGTON MA 02173 USA
DAILEY JOSEPH D MANAGER DATA PROCESSING HASTERCRAFT INB 4881 IRONTON ST DENVER CO 80239 USA
DAM 1ACI A PRINCIPAL/OVNER THE PALO AlTO GROUP 790 LUCERNE DRIVE SUNNYVALE CA 94086 USA
DAUGHERTY ROGER DIRECTOR DATA PROCESSING AHERICAN SUBSRIPT TV 8383 WILSHIRE BLVD BEVERLY HILLS CA 90211 USA
DAVISON GERALD " PR01ECT IlANAGER ARGONNE NATIONAL LAB 9700 SOUTH CASS AVENUE ARGONNE IL 60439 USA
DAVY CHRIS MANAGER KEYDATA CORP 1400 WILSON BLVD ARLINGTON VA 22209 USA
DAVY CHRISTOPHER PRODUCT MNAGER KEYDATA CORP 1400 WILSON BLVD ARLINGTON VA 22209 USA
OK LOWELL W PROGRAtfttER/ANALYST MITCKEU. BROS TRUCK 3841 NCOL BlVD PORTlAND OR 97217 USA
DEUIAGE AR(CANCELED) COV'T OF NWTERRITORIES YELLOUKNIFE NY XOE1HO CANADA
DELONG DAII G PROGRAItttER FEDERAL HUHE LOAN BANI 600 STEWART ST SEATTlE WA 98101 USA
DEllEVSY 11" SILTON DATA INC 2487 E38TH STREET VERNON CA 9D858 USA
DINAN DENNIS M SENIOR PROGRAKHER ANALYS HORGAN GUARANTY TRUST 23 WAlL STREET NEW YORK NY 10015 USA
DOLAN JR 00UblAS C SPECIAl PROJECTS ItGR VICTOR 0 SCHIHNERER 5028 "ISCONSIN AVE NW UASHINGTON DC 20116 USA
DONHAHDAN SYSTEHS ENGINEER HEWLETT-PACKARD 5600 DTC PKUY ENGlEWOOD CO 80UO USA
DOUGLAS GORDON R FACILITY INFO SYS ItGR HEWlETT-PACKARD 11000 WOLFE ROAD ClJERTINO CA 95&14 USA
DOllING INtES F DP OPERATIONS ItANAGER BOSE CORPORATION 100 MOUNTAIN ROAD FRAMINGHAH HA 01701 USA
DREILING CHERYL B COMPUTER SCIENTIST LAWRENCE LIUERItORE LABOR POBOX 808 LlUERHORE CA 94558 USA
DROBNY RONALD G SYSTEIt ItANAGER GATES &SUHS 90 SOUTH FOX DENVER CO 88226 USA
aYNAN GILBERT W SYSTEttS DEV ItAHAGER BOEING AEROSPACE co PO BOX 3999 SEATTLE WA 98124 USA
MIS ROBERT J MRKETING SUPPORT SYSTEttS RESEARCH INC 240B SCIENCE PARKWAY OKEttOS "I 48864 USA
MJIItER DAVI) C PRESIDENT DCDUJtItER &ASSOCIATES 49 LK LUCERNE CL SE CAlGARY AI. T2J'3HS CANADA

NAME-3



ATTENDEE BY NAME

NAttE TITLE COHPANY ADDRESS CITY STATE ZIP COUNTRY

DUltMER SHEILA T MANAGER FINANCIAL SYSTEM QUKE CORP 2323 INDUSTRIAL PARKWAY HAYWARD CA 94545 USA
DUNCAN HANNAH F 1681 LEHHB£RG BlVD COlORADO SPRI CO 80915 USA
DUNCAN JAJtES J MANAGER OEM SALES KAPPA SYSTEHS INC 1409 POTIER DR COLORADO SPRI CD 80909 USA
DUNCOKBE BRIAN C MOHAWK COlLEGE POBOX 2034 HAltILTON ON LBN3T2 CANAD~

DURHAH PAUl H SYSTEHS ANALYST PROG PETRO CANADA INC 400 4 AVE SY CALGARY AL T2P2M7 CANADA
EARLS JOHN D STAFF ENGINEER ARTHUR ACOLLINS INC 13601 PRESTON ROAD DALLAS TX 75240 USA
EATON JOHN DIR COMPUTER SERVICES LONDON BUS SCH GRAD STUDIES LONDON EN ENGLAN
ECCLES SHARON L DATA PROCESSING MANAGER ECKANXAR 120 SCOTT DRIVE KEHLO PARK CA USA
ECKARD DAVID L SYSTEM ANALYST WESTINGHOUSE ELEC C POBOX 9175 PHILADELPHIA PA 19113 USA
EDWARDS BENJAMIN E ASST HGR DATA PROCESSING UNION CAMP CORP FRANKLIN VA 23851 USA
EDWARDS BETH INFO SYSTEltS ADM GENERAL TELEPHONE-HI 455 EELLIS ROAD MUSKEGON HI 49443 USA
EDWARDS CONSTANCE E HANAGER CottPUTER CTR ST FRANCIS XAVIER UNIV PO BOX 67 ST.F.X.U. ANTIGONISH NS B2G1CO CANAD~

EDWARDS JON L JENNISON ASSOCIATES 270 PARK NEW YORK NY 10017 USA
EDWARDS ROBERT H SPEC ASST FOR DP NATL CONF ST LEGISLATURES 444 NCAPITOL ST NY WASHINGTON DC 20001 USA
ELLIOn HARRY A MANAGER HIS DEPARTMENT THE CANADA STARCH CD 1 PLACE DU CoHKERCE NUNSI ISLAND QU K3EIA7 CANADA
ENGBERG TONY I SYSTEMS ENGINEER HBILETI-PACKARD 19855 GIESEHDORFER RD COLFAX CA 95713 USA
ENGLANDER ALICE DPCONSUlTANT ALICE ENGLANDER 1966 TITUS STREET SAN DIEGO CA 92110 USA
ENGLANDER .,ILLIAM R DPCONSULTANT WILLIAM RENGLANDER 1966 TITUS STREET SAN DIEGO CA 92110 USA
ENGLEBRECHT MICHAEL LRESEARCH ENGINEER ARKCO INC 703 CURTIS STREET HIDDLETOWN OH 45043 USA
ENTIS GLENN M PROGRAHMER ANALYST T tmRGAH GUARANTY TRUST 23 WALL STREET NEW YORK NY 10015 USA
ERICSCON GORDY 0 ANALYST 3tt CO 3H CENTER BLDG 224-4N ST PAUL HN 55101 USA
EXCOFFON HARGOT M PROJECT LEADER LYNES UNITED SERVICES 309 2ND AVE SW CALGARY AL T2POCS CANADA
FAIRCHILD JAMES B SUPERVISOR OPERATIONS DOHTAR INC CHEM GROUP BP 7212 MONTREAL QU H3C3M3 CANADA
FAIRFIELD STEVE INFO SYSTEMS ANALYST GENERAL TELEPHONE 455 EELLIS ROAD HUSKEGON HI 49443 USA
FARIA JOHN MGR COMPUTER SERVICES PRUDENTIAL REINSURANCE 213 WASHINGTON ST NEWARK HJ 07101 USA
FARKAS GEORGE J SYSTEMS ANALYST CHRYSLER CORPORATION PO BOX 1919 CIMS:4162725 DETROIT ttl 48288 USA
FARRAGHER MICHAEL J PROG SUPERVISOR HEWLETT-PACKARD 175 WYttAN STREET WALTHAtt HA 02154 USA
FARRELL JIH G DIRECTOR ttARKET RESEARCH Utt CBROWN PUB CO 2460 KERPER BLVD DUBUQUE IA 52001 USA
FAWKES GERALD PROGRAMMER DEPT OF FISHERIES &OCEANS BRANDY COVE ST ANDREWS HB EOG2XO CANADA
FEHR GENE I DP MANAGER COHEN FURNITURE CO 336 SY ADAMS STREET PEORIA IL 61602 USA
FELDHAN DAN KEYDATA CORP 108 WATER ST WATERTOWN HA 02172 USA
FERENSEN DANIEL E SYSTEHS ANAlYST ADRIA LABORATORIES POBOX 16529 COLUMBUS OH 43216 USA
FIELDS JAMES A VICE PRESIDENT APEX DATA PROCESSING 950 SO EASTERN AVE LOS ANGELES CA 90022 USA
FIGUEROA LUIS V GTE DE PROCESAttIENTO EJES TRACTlUOS SA APARTADO POSTAL 14820 HEXICO DF 14820 MEXICO
FINE BRIAN T TECH STAFF ESL INC 495 JAVA DR SUNNYVALE CA 94086 USA
FINNEY BILLIANNA H PROGRAHHER SANTABARBARA RESEARCH 75 COROHAR DRIVE COLETA CA 93017 USA
FISCHER LEE H MANAGER DATA PROCESSING QUHE CORP 2323 INDUSTRIAL PARKWAY HAYWARD CA 94545 USA
FISHER MROGER HANAGER COHPUTER SERV ENVIRONMENTAl ElEMENTS 3700 KOPPERS 5T BALTIMORE HD 21227 USA
flEET VICTOR W CONTROLLER B&S FINANCIAL SERVICES NCOUNTY ROAD 25A PIQUA OH 45356 USA
FLOWERS CURTIS J DP ANALYST II SANCAMON STATE UNIV SHEPHERD ROAD SPRINGFIELD IL 62108 USA
FLOYD TERRY H ACCNT SYSTEMS ANALYST THERMON 100 THERMON DR SAN HARCOS TX 78666 USA
FLYNN DOUGLAS C DP MANAGER LEXINGTON HERALD LEAD 239 WEST SHORT ST LEXINGTON KY 40507 USA
FORSEE ANN T INSTRUCTOR ANDERSON COLLEGE ANDERSON IN 46011 USA
FOSTER RICHARD H MANAGER SYSTEM S/W SYSTEM DEVELOPMENT CORP 2500 COLORADO AVENUE SANTA MONICA CA 90406 USA
FRAGH EDWARD A SYSTEHS &PROG SUPVSR CITY OF SANTA MONICA 1685 HAIN STREET SANTA HONICA CA 90401 USA
FRAME DARYL A SYSTEH KANAGER COKARCO INC 227 " HUENEItE ROAD OXNARD CA 93030 USA
FRANSEN CRAIG S SYSTEM ANALYST REICHHOLD CHEH 2340 TAYLOR TACOHA WA 98401 USA
FRASER TOM SYSTEMS RESEARCH INC 2400 SCIENCE PARKWAY OKEHOS HI 48864 USA
FRATUS WILLIAM P FUTURA INC 1714 S CONGRESS AUSTIN TX 78704 USA
FRECH JOHN J MANAGER OF STIC ADRIA LABORATORIES PO BOX 16529 COLUttBUS 0" 43216 USA
FREDRICKSON GUNNARD APROJECT LEADER RELIANCE ELECTRIC 150 CANTERBURY DR ATHENS GA USA
FREDRICKSON STEVE DISTRICT SALES HGR UNITED COMPUTING SYS 4544 POST OAK PL 1146 HOUSTON TX 77027 USA

NAHE-4



ATIENDEE BY NAttE

MAttE TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

FREED JAKES F INFO SYSTEMS MANAGER HEWLETT-PACKARD ROUTE 41 AVONDALE PA 19311 USA
FRENCH DEBORAH J PROGRAKItER/AHALYST HEULETI-PACKARD 3400 EHARKONY ROAD FORT COllINS CO 80525 USA
FRYER WILLIA" R PRESIDENT S.B.D.P. 4208 AIRPORT ROAD CINCINNATI OH 45226 USA
FUNK CHRISTOPHER " PRESIDENT C" FUNK &CO INC 22 N2ND STREET BOX 1249 LAFAYETTE IN 47992 USA
GALLARDO PEDRO A SYSTEM ENGINEER UNIUERSIDDO BAJA CAL OBREGON YFCCALCOLO KEXICALI HAJA MEXICO
mUSKY DIANE M SUPERVISOR APPL DEV HUGHES AIRCRAFT CO POBOX 3310 607/E331 FULLERTON CA 92634 USA
GARDINER JAKES A HIS MANAGER PILKINGTON BROS 685 WARDEN AVE SCARBOROUGH ON KIL3Z8 CANADA
GARDNER LYNN CUSTOHER RELATIONS HEWLETT-PACKARD 5303 STEVENS CREEK BLVD SANTA CLARA CA 95050 USA
GATES BILL DATA PROCESSING HGR LONGS DRUG STORES, INC 141 NORTH CIVIC DR WALNUT CREEK CA 94596 USA
GEER ROSS E DIRECOTR OF SYS ENGR TEXAS HUN POWER AGENCY 2225 ERANDOL "ILL RD ARLINGTON TX 76011 USA
GENTRY THOHAS L HGR ENGIG COKPUTER CTR HICROWAVE ASSOCIATES SOUTH AVE BURLINGTON HA 01803 USA
GEWECKE JOHN W DISTRICT SALES ttGR UNITED COMPUTING SYS 1901 AVE OF STARS 1585 LOS ANGELES CA 90067 usa
GEYER SANFORD A SYSTEM MANAGER ROLH CORP 4900 OLD IRONSIDES DR SANTA CLARA CA 95050 USA
GILCHRIST DON He HASTER UNIVERSITY 1200 HAIN ST VEST HAHILTON ON LBS4J9 CANADA
GILL RICK SYSTEMS ANALYST VANDERBILT UNIVERSITY 521 KIRKLAND HALL NASHVILLE TN 37235 USA
GIttPLE BILL R&D HGR HP300 PRG HEWLETI-PACKARD 5303 STEVENS CREEK SAHTA CLARA CA 95850 USA
GLOSS GREGORY C COBOL PROJECT HANAGER HEWLETI-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
GOJENOLABEN SR SOFTWARE DESIGNER WEYERHAEUSER CO 10TH &ASTREETS R"B-2 TACOMA UA 98401 USA
GOLDBERG MICHAEL C PRESIDENT FINANCIAL DATA PLANNING 2670 TIGERTAIL AVENUE HIAttl FL 33133 USA
GOLDttANN ROGER M SYSTEMS ANALYST COHARCO INC 227 WHUENEME ROAD OXNARD CA 93030 USA
GOttEZ VICTOR SYSTEH ENGINEER ELECTRONIC DATA SYS ONE WAYNE "ALL WAYNE NJ 07470 USA
GOODttAN ROBERT A PRESIDENT PROF COHP SERV 2821 E28TH STREET LONG BEACH CA 9264B USA
GOOLSBY HONTY P SYSTEHS HANAGER UNION CAMP CORP POBOX 570 SAVANNAH GA 31402 USA
GORFINKEL HARTIN PARTNER LOS ALTON RESEARCH CENTER 339 S SAN ANTONIO ROAD LOS ALTOS CA 94022 USA
GOSSELIN JEANNINE G EDP HANAGER DOHTAR INC CHEH GROUP BP 7212 MONTREAL QU H3C3M3 CANADA
GOT TERRENCE DP MANAGER SAN JOSE KERCURY-NEWS 750 RIDDER PARK DR SAN JOSE CA 95190 USA
GRACE JAYNIA UNITED COMPUTING SYS 252S WASHINGTON KANSAS CITY KO 64108 USA
GRADY HICHAEL K SYSTEMS CONSULTANT ILLINOIS DEPT LAW ~ ORDER 200 WWASHINGTON SPRINGFIELD IL US~

GREEN ANNABRLE H SECRETARY/TREASURER RODELLE CONSULTING LTD 1130-5421 10TH AVENUE DELTA BC V4H3T9 CANADA
GREEN CHARLES R DATA PROCESSING MANAGER ADAHS COUNTY SCHOOLS 602 E64TH AVE DENVER CO 80229 USA
GREEN ROBERT H PRESIDENT ROBELLE CONSULTING LTD 1130-5421 10TH AVENUE DELTA BC V4H3T9 CANADA
GREENE MARK l SUPERVISOR 3" CO 3H CENTER BLDG 224-4N ST PAUL HN 55101 USA
GREGORY KENT A ACTUARYIPROGRAMttER ZISCHKE ORGANIZATION 1 POST STREET SAN FRANCISCO CA 94104 USA
GRICE FRANK H PRESIDENT INTERTEC 2625 PARK BLVD PALO ALTO CA 94306 US~

GRIFFIN HARY MARKETING ENGINEER HEWlETT-PACKARD 5303 STEVENS CREEK BLVD SANTA CLARA CA USA
GRIFFIN RICK PRESIDENT I CSSERVICES, INC 2131 WEULESS BLVD EULESS TX USA
GRILLOS JOHN H VICE PRESIDENT AMERICAN MGHT SYSTEHS 561 PILGRI" DRIVE SUITE D SAN HATED CA 94404 USA
GROFF JAKES R PRODUCT "ANAGER HEWLETT-PACKARD 1342 STAYNER RD SAN JOSE CA 95121 USA
GROSSCUP LORIN PROGRAHMER HERCHANDISING METHODS 274 BRANNAN STREET SAN FRANCISCO CA 94107 USA
GRUBER DIANNE HEWLETI-PACKARD 1900 GARDEN GODS ROAD COLORADO SPRI CO 80967 USA
GUERRERO JORGE S EINSTRUCTOR HEWLETT-PACKARD 4 CHOKE CHERRY RD ROCKVILLE HD 20850 USA
GUISINGER ERIC L PROGRAMMER/ANALYST SR KAISER FOUNDATION 2005 FRANKLIN ST DENVER CO 80205 USA
GULICK LLOYD R COKPUTING SPECIALIST HUGHES AIRCRAFT CO POBOX 3310 607/E331 FULLERTON CA 92634 USA
GUNBY Dl (CANCELED) SUPV SYSTEM DESIGN &PRO BONAR &BEHIS LTD 2380 HC DOWELL ROAD BURLINGTON ON l7R4A1 CANADA
GUPTA RAKESH SYSTEHS &OR CONSULTANT DDHTAR INC CHEH GROUP BP 7212 MONTREAL QU HJC3H3 CANADA
GURUPRASAD CHDULGERE DIRECTOR CORP SYSTEHS DEPT OF SUPPLY CANADA 11 LAURIER HULL QU CANADA
GWALTHNEY DAVID L DIRECTOR-CCIS RUTGERS UNIVERSITY 311 NFIFTH STREET CAttDEN NJ 08102 USA
HACKHAN LINFORD B ADMIN SOFTWARE HGR VYDEC INC 9 VREELAND ROAD FLORHAM PARK NJ 07932 USA
HAINES OLIN R DATA PROCESSING HANAGER WICHITA EAGLE &BEACON 825 EDOUGLAS WICHITA KS 67202 USA
HAISCH KEN R PRESIDENT CASCADE COMPUTER SYSTEMS I POBOX 1666 LONGVIEW WA 98632 USA
HALL CRAIG T PRESIDENT INFO TRONIC SYSTEHS 449 HOWARD AVE HOLLAND HI 49423 USA
HAlLOCK 111t HEWLETI-PACKARD 815 14 SW LOVELAND CO 80S37 USA

NAt1E-5



ATTENDEE BY NAME

MAttE TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

HALSEY GREGG SYSTEtt ANALYST BOEING COMPUTER SERVICE POBOX 24346 SEATTLE WA 98124 USA
HAMAN VINCE J DIRECTOR DP JOHNSON COUNTY POBOX 2510 IOWA CITY IA 52240 US~

HAMPTON JEAN K PROGRAMMER WM CBROUN PUB COMPANY 2460 KERPER BlVD DUBUQUE IA 52001 USA
HANSEN WILLIAM R SR SYSTEIt CONSULTANT 5560 CAttERFORD DR DAYTON OH 45424 USA
HANSON FRITZ M LOGISTICS SYSTEM ENGINEE BOEING AERO SPACE CD PO BOX 3999 SEATTLE WA 98124 USA
HARBAUGH JERRY E MGR DATA PROCESSING ELFAB 4200 WYLEY POST ADDISSON TX 75GOI USA
HARBRON THOMAS R CHi COMPUTER SCIENCE ANDERSON COLLEGE ANDERSON IN 46011 USA
HARMAN LAWRENCE K GRQUP LEADER LAWRENCE LIVERMORE LAB POBOX 808 HC L-389 LIVERMORE CA 94550 US~

HARRIS DAVID W MANAGER NBS FINANCIAL SERVICES 500 WWILSON BDG RD COLUMBUS OH 43285 USA
HATCH JAMES L DIRECTOR GH SAGINAW DATA CENTER 3900 HOlLAND ROAD SAGINAW MI 48605 USA
HATCHER BETH HEWLETT-PACKARD 5301 STEVENS CREEK BLVD SANTA CLARA CA 95050 USA
HAUDERT GERARD A OPERATIONS SUPERVISOR BROOKEHAUEH HAll LABOR 32 BROOKEHAVEN AVE UPTON NY 11973 USA
HAYS CARRY R SR DATA COMMUNICATION UNION OIL CO 461 SBOYLSTON ST LOS ANGELES CA 90017 USA
lOA SHARAD I1ANAGER ADH SYS VYDEC INC 9 VREELAND ROAD FLORHAH PARK NJ USA
HEIN NORM MANAGER INFO SERVICES Wtt CBROUN PUB COttPANY 2460 KERPER BLVD DUBUQUE IA 52001 USA
HEINEN TERRY tt EDP MANAGER ST CLOUD HOSPITAL 1406 6TH AVENUE NO ST CLOUD HN 56301 USA
HELLAItS CAROLE DP PROG ANALYST WHARTON CO JR COLLEGE 911 BOLING HIGHWAY WHARTON TX 71488 USA
HENRY WENDELL A HEHEBERT OF TECH STAFF HEWLm-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
HERBEL ERIC S MEDICAL SYS ANALYST HOECHST-ROUSSEL PHARM RT 202-206 NORTH SOMERVILLE NJ 08876 USA
HICKS DAVID L PROGRAHHER ANALYST PACIFIC MUTUAL 700 NEWPORT CENTER DRIVE NEWPORT BEACH CA 92660 USA
HINES RELLA M EXECUTIVE DIRECTOR HP GEN SYS USERS GROUP POBOX 18813 BALTIMORE HD 21240 USA
HISKES GEORGE J DATA PROCESSING MANAGER BEALL'S DEPARTMENT ST 3923 MANATEE AVE W BRADENTON FL 33505 USA
HODSON DICK DP MANAGER VALTEC BOX 2200 SPRINGVILLE UT 84663 USA
HOKE ROBERT D MARKETING MANAGER HEWLETT-PACKARD DISC KEKORY DIVISION BOISE 11) 83107 USA
HOLLING ERNEST(CANCEl) DIRECTOR-DATA SYSTEHS STORER BROADCASTING 1177 KANE CONCOURSE BAY HARBOR IS FL 33154 USA
HOlHAN JAMES R HEAD STATISTICS LAB OHIO AGRIC R&D CENTER WOOSTER OH 44691 USA
HOLT WAYNE E DIRECTOR OR DP WHITHAN COLLEGE 345 BOYER AVE WALLA WALLA WA 99362 USA
HOUY DAVID J FINANCIAl SYSTEHS HCR SHITH INTERNATIONAL 4343 WN KARHAN AVE NEWPORT BEACH CA 92660 USA
HUDSON HEl SYSTEMS ANALYST COLO DEPT OF EDUC 201 ECOLFAX DENVER CO 80203 USA
HUNTER JOHN C SYSTEMS SUPERVISOR OKANAGAN HElICOPTERS 4391 AGAR DRIVE VANCOUVER BC V7BIA5 CANADA
HUTCHINSON PHILIP L PRODUCT ENGINEER HEWLETT-PACKARD FCD 3400 EHARMONY RD FORT COLLINS CO 80525 USA
HUTTUNEN HEIKKI J ADP HANAGER HElSINKI SCHOOL OF ECON RUNEBERGINK 14-16 HElSINKI 00100S FINLAI
HUXHAIt BASIL C HANAGER DATA PROCESSING PORT OF VANCOUVER 1300 STEUART ST VANCOUVER BC V5L4X5 CANADA
HUXHDlD PHIL W DP MANAGER MERCHANDISING 1tETH0DS 274 BRANNAN STREET SAN FRANCISCO CA 94107 USA
HVA CHIH S PRESIDENT COKPUSYS INC 789 SHERMAN 560 DENVER CO 80203 USA
ICKLER AL SENIOR PROGRAm COlO DEPT OF £DUC 201 ECOLFAX DEH'JER co 80203 USA
IHBEAU ANDRE ACTING CHIEF DEPT REG ECO EXPANSION 200 RUE PRINCIPAL HULL QU KIAOH4 CANADA
IRlYE DICK SYSTEMS ANALYST BOETTCHER &co 828 17TH STREET DENVER CO 80202 USA
IZETT CRAIG N DIRECTOR TECHNOLOGY HARTIN HARIETTA 300 EAST JOPPA RD BALTIMORE MD 21204 USA
JACKSON CHARLES W PRESIDENT COllIER-JACKSON ASSOe 1805 NWESTSHORE BLVD TAltPA Fl 33607 USA
JACKSON ElAINE T MINICOMPUTER ANALYST HARTFORD INSURANCE HARTFORD PLAZA HARTFORD CT 06033 USA
JACKSON JOHN A SYSTEttS ANALYST DOMINION COMSTRUCTION 3100 3 BENTALl CENTRE VANCOUVER BC V7XiBl CAMADh
JACOB HARRY 0 "" DISTRIBUTED SYSTEHS GH SAGINAW DATA CENTER 3900 HOllAND ROAD SAGINAW HI 48605 USA
JAKES ROBERT " ANAlYSTIPRDbRAMER SANDIA LABS POBOX 5800 ALBUQUERQUE NH 87185 USA
JA"ISOH CARL L DATA PROCESSING MANAGER CRAIG HOSP RESEARCH OFFC 3460 SO ClARKSON ENGLEWOOD CO 80110 USA
JARAtlILlO JR NARCISO DB AD"IN BtlURNS 120BCOLUltBIA AVE RIVERSIDE CA 92507 USA
JARVIS RAY D PRUGRAIfttER WtPQUA DATA FACTORY 727 SE CASS ROSEBURG OR 97470 USA
.JEANS KEHHETH E ASST ItGR OF DATA PROC HOOTER CORP POBOX 451 ST LOUIS ItO 63166 USA
JEFFRIES UILLIAtt F COORDINATOR ICS STARK COUHTY DEPT ED 7800 COLUHBUS RD LOUISVILLE OH 44641 USA
JELLIFFE ARLENE " lEAl ENGINEER BOEING COtDI AIRPLANE co BOX 3707 SEATTLE VA 98124 USA
JENSEH HAROlD E SYSTBtS ANAlYST UILLAItETTER VALLEY co 668 HC KINlEY EUCEHE OR 974B2 USA
JESSEN TIH D COttPUTER SCIENTIST LAWREHCE LlVERItORE lAB POBOX BOB L-414 LIVERItORE CA 94551 USA

NAttE-6



ATTENDEE BY NAME

NAttE TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

JEWEL "ARTIN D MGR COMPUTER SERVICES NATL SCI DATA CENTER 1130 EHC DOWELL RD PHOENIX AZ 85006 USA
JOERGER STEVEN G ARMAMENT SYSTEMS INC 712-F NVALLEY ST ANAHEIH CA 92801 USA
JOHNSON BOB COVIT OF NYTERRITORIES YElLOWKNIFE NY XOEiHO CANADA
JOHNSON GARY L INFO SYSTEHS HGR HEWlETT-PACKARD 3800 HARKONY ROAD fORT COLLINS CO 80524 USA
JOHNSON PAMELA SYSTEH ANALYST BOEING COMPUTER SERVICE POBOX 24346 SEATTLE WA 98124 USA
JOHNSON RAYHOND E HP 3000 PRGM SERV HGR HEWLETT-PACKARD GSD 5303 STEVENS CRK BLVD SANTA CLARA CA USA
JOHNSON RON H DISTRICT SALES HGR HEWLETT-PACKARD 5600 DTC PKWY ENGLEUOOD CO 80110 USA
JOHNSTON CHARLES F DATA PROCESSING HANAGER FERRIS BSSCHER LOHMA 339 E1bTH STREET HOLLAND HI 49423 USA
JOHNSTON FRANK H DIRECTOR DATA PROCESS HACON TELEGRAPH PUB CO POBOX 4167 KACON GA 31288 USA
JOHNSTONE SHIRLEY J SOFTWARE RELIABILITY ENG HEWLETT-PACKARD 19400A HOMESTEAD RD CUPERTINO CA 95014 USA
JONES DANNY A COMPUTER PROGRAMMER LAWRENCE LIVERMORE LABOR POBOX 808 LIVERMORE CA 94550 USA
JONES HORGAN TYMDATA CORP 44 WJEFFERSON ST BROWNSVILLE TX 78520 USA
JONES THOMS 0 EXEC VP EPSILON DATA MGMT 24 HE EXECTIVE PK BURLINGTON "A 01803 USA
JORGENSON DANIEl It PRODUCT SUPPORT HGR HEWlETT-PACKARD 5303 STEVENS CREEK BLVD SANATA CLARA CA 95050 USA
KAti POlLY PROGRAKKER/ANAlYST HEWLETT-PACKARD 5301 STEVENS CREEK BLVD SANTA CLARA CA 95058 USA
KANAGA HIKE SYSTEM ANALYST BOEING COMPUTER SERVICE POBOX 24346 SEATTLE "A 98124 USA
KASUN ElLEN HEULETI-PACKARD 815 14 SW LOVELAND CO 80537 USA
KELLY KENT FUTURA INC 1714 S CONGRESS AUSTIN TX 78704 USA
KENDALL JOHN SYSTEMS PROGRAHMER SO MISSIONARY COLLEGE COlLEGEDALE TN 37315 USA
KENFIELD JOHN E INFO SYS MANAGER H-P SANTA ROSA DIV 1400 FOUNTAIN GROUE PK SANTA ROSA CA 95404 USA
KENNEDY DOUGLAS VICE PRESIDENT FINANCIAL DATA PLANNING 2670 TIGERTAIL AVENUE MIAttI FL 33133] USA
KENNEDY JACK MANAGER SYS ,. PROG AGBECKER 55 WATER STREET NEW YORK NY 10041 USA
KERNIE JUTIA C PRODUCT HANAGER HEWlETI-PACKARD 5303 STEVENS CREEK BLVD SANTA CLARA CA US~

KESSEL JI" (CANCELED) INDIVIDUAL POBOX 124 CHAGRIN FALLS OH USA
KILLCDttttONS PETER F GENERAL COST SUPV NEW YORK TELEPHONE CO 1095 AVE OF THE AMERICAS NEW YORK NY 10036 USA
KIUtOH JR LIN E SENIOR ENGINEER WESTERN ELECTRIC CO 2500 BRUENING HWY BALTIMORE MD 21224 USA
KING GAIL PROJECT ItANAGER BOEING COMPUTER SERVICE POBOX 24346 SEATTLE UA 98124 USA
KING NEIL R PROGRAMMING SUPV SCOTT PAPER lTD POBOX 760 NEW UESTHINST BC CANADA
KING STEPH£H E PROGRAKKER/ANAlYST USA F LOS ANGELES AIR FORCE STA El SEGUNDO CA USA
KIRK TIM L DIRECTOR INfO SYSTEMS SACRED HEART GEN HOSP POBOX 10905 EUGENE OR 97401 USA
KLEIN JAMES D SYSTEttS PROGRAMMER INfORMATION TERMINALS 323 SOQUEL WAY SUNNYVALE CA 94086 USA
KLEIN THOMS C HGR INfO SYSTEMS HOOVER-NSK BEARING 5400 S STATE RD ANN ARBOR HI 48106 USA
KLETT DONAlD S DIRECTOR UNIVERSITY LAB SANGAttON STATE UNIVERSITY SHEPHERD ROAD SPRINGFIELD IL 62708 USA
KLEVER JOHN ANAlYST/PROGRAHttER AURORA PUBLIC SCHOOLS 1085 PEORIA STREET AURORA CO 80011 USA
KNIGHT 11 WILLIAM J HAHAGER INFDRItATION IWlTIUEST INC 6452 NFEDERAl H1IY n LAUDERDALE FL JJJ08 USA
KomI KENT K PROJECT SUPERVISOR BECHTEL CORP POBOX 3965 SAN FRANCISCO CA 94119 USA
KOLSTO ELLIOT L ttAHAGEttEHT ENGINEER ARGOHME NATIONAL LAB 9700 SOUTH CASS AVENU£ ARGONNE IL 60439 USA
KOttAR JAMES V DIRECTOR DATA PROCESSING THE HWWILSON CO. 950 UNIVERSITY AVENUE BRONX NY 10452 USA
KORNEK KEN COMPUTER SERVICE DIVISION 19310 PRUNERIDGE AVE CUPERTINO CA 95814 USA
KRIGER WINSTON A HGR TECHNICAL SALES HOUSTON INSTRUMENT 8500 CAHERON ROAD AUSTIN TX 78753 USA
KROESEN JACOBUS A ItANAGER 0 & A ttAKRO INTl CHUiCHILL LAAN 11 3525 CVUTRECH NETHER
KROPP "ICHAEL E SYSTEHS PROGRAMMER NORUCH-EATON PHARK 13-17 EATOM AVENUE NORWICH NY 13815 USA
KUEHNER YARREN SEDISTRICT MeR HEULETT-PACKARD 5610 DTC PKYY ENGLEVOOD co 88111 USA
KUKUDA I JR. JOHN VICE PRESIDENT BUSINESS CmtPUTER CONCEPTS RD 11 BOX 131-B BURGETTSTOWN PA 15021 USA
KUAVHICK tr1ER ttONTREAL CHILDRENS HOSPITA 2300 TUPPER ttOMTREAL QU H3H1P3 CANADA
LACY LEROY P COMPUTER SCIENTIST LAWRENCE lIUERttORE LAB POBOX 808 tIC L-J89 LIVERMORE CA 94550 USA
LAIR STEVE SEDSITRICT ttGR KEULETT-PACKARD 19310 PRUNERIDGE RD CUPERTINO CA 95014 USA
LANCASTER HENRY C VP ENG DEV &COttP SCI ENVIRONMENTAL ElEHENTS 3700 KOPPERS 5T BALTIMORE HD 21227 USA
LANGE JOHN M PROGRAIUtER AtW.YST THE TORD COttPANY 5825 JASMINE STREET RIVERSIDE CA 92504 USA
LARSON ORLAND J ItIAGE PRODUCT ItAHAGER HEULETT-PACKARD 5J03 STEVEHS CREEK BLUD SANTA CLARA CA 95050 USA
LARsmt TERRY PROJECT LEADER LYNES UNITEJ) SERUlCES 309 2ND AVE SU CAlLARY At T2PBCS CANADA
LASLEY MICHAEl A MIS ItAHAGER HINDERLITER 1240 NHARVARD TUlSA OK 74115 USA

NAME-7



ATTENDEE BY NAME

HAHE TITLE COttPANY ADDRESS CITY STATE ZIP COUNTRY

LAVIOLA ANTHONY SYSTEttS HANAGER NYTELEPHONE CO 375 PEARL ST NEW YORK NY 10038 USA
LAW JACK DATABASE ADHINSTRATOR HEWLETT-PACKARD SDD 16399 WBERNARDO DR SAN DIEGO CA 92127 USA
LEE HAROLD FAIRFAX CNTY PUBLIC SCHOOL DATA SERVICES DIVISION SPRINGFIELD VA 22151 USA
LEE LANCE SENIOR PROGRAMMER GEORGE WIMPEY CANADA 80 NORTH QUEEN ST TORONTO ON HSZ2C9 ~ANADA

LEIGHT BETSY(CANCELED)DIRECTOR LEIGHT AND ASSOCIATES 14200 SHOLES COURT LOS ALTOSHILL CA 94022 USA
LEMLEY JOHN HEWLETT-PACKARD 815 14 SW LOVELAND CO 80537 USA
LESSEY KEN W ASSOCIATE DATACOH 50 WEST STREET ST HELENS OR 97651 USIJ
LEVIN GREGG B DESIGN ENGINEER HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
LEWIN ROBERT E THIRD PARTY PGH KGR HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
LEWIS GERAlD VICE PRESIDENT APPLIED ANALYSIS INC 615 SOUTH FLOWER STREET LOS ANGELES CA 90017 USA
LEWIS KERHON UP DATA PROCESSING ROBERT JMES CO BIRMINGHAM AL USA
LIENARD JAItES B PROGRAIfttER NATL SCI DATA CENTER 1130 EMC DOWELL RD PHOENIX AZ 85006 USA
LIGHTHEART TED H ANALYSTIPROGRMItER THE WIllAttETTE VAlLEY CD 660 MC KINlGY ST EUGENE OR 97402 USA
LINDSTROM EDWARD R DIRECTOR-AGRI DATA CT UNIUERITY OF KENTUCKY 5107 AG SCI CTR N LEXINGTON KY 40506 USA
LOCHNER CHRIS SYSTEtt ttANAGER FORD BOX 1599B SOUTHFIELD AT ROTUNDA DEARBORN HI 48121 USA
LOCKHEED AlLAN H EXXON KINERAL CO USA 601 JEFFERSON HOUSTON TX 77601 USA
LONG LYNDA J DPMANAGER EST 765 CALIFORNIA STREET SAN FRANCISCO CA 94108 USA
LOWRY GlEN H INFO SYS MANAGER HEWLETT-PACKARD POBOX 15 BOISE ID 83707 USA
LUFT HARKUS F SYSTEHS &PROG SUPRV DOKTAR CONSTRUCTION KIRLS 2001 UNIVERSITY ST MONTREAL QU HSA2A6 CANADA
LUISI WILLIAM F SOFTWARE ANALYST UNION CAMP CORP 1600 VALLEY RD WAYNE NJ 07470 USA
LUITHlE WILLIARD H COMPUTER OPS SUPU KAISER FOUNDATION 2005 FRANKLIN DENVER CO 802DS USA
LULICH LED J PROGRAMMER NORTHERN SPECIALTY 6635 NBALTIMORE PORTLAND OR 97203 USA
LUIm ARTHUR C CONSULTANT PROCTER ~ GAHBLE CO 7162 READING RD CINCINNATI OH 45208 USA
LUNDBERG ERIK SCIENTIFIC PROGRAMMER CASS UNIV OF WASH 1107 NE 45TH ROOM 530 SEATTLE WA 98105 USA
LYNN DEAN E COMPUTER SCIENTIST LAWRENCE LIVERMORE LABOR POBOX 808 LIVERMORE CA 94550 USA
MACHIN JOHN MANAGING PARTNER INTERCOMP SERVICES 459 COLLINS STREET MELBOURNE VI 3000 AUSTRA
HAGDALENO JESUS GTE DE PROYECTOS INFORMATICA DESC1 SC THIERS 248 ANZUREZ MEXICO DF MEXICO
MAGNUS ANH M SUPV COMPUTER OPER HULTNOMAH COUNTY ESD 220 SE 102 PORTLAND OR 97216 USA
HAHONEY LARRY SUPERVISOR SEATTLE COMP RWBECK ~ ASSOCIATES 200 TOWER BUILDING SEATTLE WA 98181 USA
HAlER EDWARD F INFO SYSTEMS EXECUTIVE IL LAW ENFORCEMENT CO 120 S RIVERSIDE PLAZA CHICAGO IL 60606 USA
tlALACHOWSKI ERNEST S CONTROLLER GRANVILLE-PHILLIPS CO 5675 ARAPAHOE BOULDER CO 80383 USA
itALUS JOSEPH T SENIOR PROGRAHHER ANALYS KORGAN GUARANTY TRUST 37 WALL STREET NEW YORK NY 10015 USA
HAHEWAL SANDRA S SYSTEMS MANAGER LIBERTY COMIWNICATIOHS INC 2225 COBURG ROAD EUGENE OR 97491 USA
MANIES RALPH G CUSTOMER RELATIONS HEWLETT-PACKARD GSD 5303 STEVENS CREEK BLVD SANTA CLARA CA 95050 USA
MARCHESE BUZZ SYSTEtt MANAGER COMPUTER COMPOSITION SALES 2640 PINE ST ST LOUIS MO 63103 USA
MARQUEZ HATEO(CANCEL) FIELD ENGINEER HEWLETT-PACKARD MEXICO AVENIDA PERIFERICO SUR 6501 TEPEPAN XO 22 MEXICO
II\RSICEK RG BOEING COMPUTER SERVICE PO BOX 24346 SEATTLE WA 98124 USA
AARTIN STEVE T SYSTEMS ANALYST SANDIA LABORATORIES DIVISION 2627 ALBUQUERQUE NM 87185 USA
MASSllNGER BOB SYSTEM ANALYST BOEING COMPUTER SERVICE POBOX 24346 SEATTLE WA 98124 USA
MATHIAS TIMOTHY E ANDERSON COLLEGE ANDERSON IN 46011 USA
HATT RICHARD G HARDWARE PLANNER GENERAL HILLS INC 9200 WAYZATA BLVD HINNEAPOlIS KN 55426 USA
HAUS JOHN A SYSTEHS ANALYST H,H, GOLDEN CO 123 CAMINO DE LA REINA SAN DIEGO CA 92108 USA
tfAY NORMAN F SR SYSTEMS ANALYST IL LAW ENFORCEMENT CO 120 S RIVERSIDE PLAZA CHICAGO IL 60686 USA
MAYHEW JOHN AMERICAN SUBSRIP TV 8383 WILSHIRE BLVD BEVERLY HILLS CA 96211 USA
He AFEE WILLIAM K PRESIDENT FUTURA INC 1714 S CONGRESS AUSTIN TX 78704 USA
HC CLAIN MALCOLM E MANAGER DATA PROCESSING NORTH IDAHO COLLEGE 1000 WGARDEN AVENUE COEUR D' ALEN ID 83814 USA
ftC CLURE HERSCHEL D HGR SYSTEMS DEPT UNION eMP CORP FRANKLIN VA 23851 USA
ftC CORMICK DOUGLAS B HeR INFORMATION SYS REPUBLIC GEOTHERMAL 11823 ESLAUSON 11 SANTA FE SPRI CA 90670 USA
ftC CRACKEN ED GENMGRGSD HEWlETI-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
ftC CREA ROBERT B CHIEF FINANCIAL OFFICER PORT OF VANCOUVER 1300 STEWART ST VANCOUVER BC V5L4X5 CANADA
HC GEOY JOHN G MGR DATA SERVICES WESTINGHOUSE ELEC CORP POBOX 8839 PITTSBURGH PA t5221 USA
HC GRATH JOSEPH TYMDATA CORP 44 WJEFFERSON ST BROWNSVILLE TX 78520 USA

NAHE-8



MAttE TITLE COMPANY ADDRESS

ATTENDEE BY NAME

CITY STATE ZIP COUNTRY

HC INNIS, JR. AMARVI HINI/MICRO SYSTEMS INC 3315 NSHARTEl AVE OKLAHOMA CITY OK 73118 USA
HC lEftORE JIH SYSTEMS MANAGER DEPT OF ENERGY 1330 BROADWAY OAKLAND CA USA
MC LEOD PAT PROGRAMKER seon PAPER LTD POBOX 760 NEW WESTtUNST BC CANADt\
He KURRAY JACK H DP MANAGER DOHINION CONSTRUCTION 3100 3 BENTAlL CENTRE VANCOUVER BC V7XIB1 CANADA
HC SHANE MICHAEL G ASSOC DIRECTOR COMPUTING ASseC AMERICAN KED COlLEGE ONE DUPONT CIRCLE SUITE 200 WASHINGTON DC 20036 USA
MECHAM DOUGLAS J SYSTEMS COORDINATOR HUGHES AIRCRAFT CO POBOX 3310 601-4219 FULLERTON CA 92634 USA
KEDD RANDY HP3000 SYSTEMS HCR BOETTCHER &CO 828 17TH STREET DENVER CO 80212 USA
HEINZ HICHAEL J SUPERVISOR,TECH SERVS GENERAL HILLS, INC PO BOX 1113 HINNEAPOLIS HN 55440 USA
~VIN PETER S DIRECTOR OF KARKETING CHC ASSOCIATES 3 MARGARET ST BOSTON HA 02821 USA
HENOLD BEN SEDISTRICT HGR HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
MERSHON ROBERT C PROJECT MANAGER ITT FINANCIAL POBOX 250 CHIPPEWA FALL WI 54729 USA
HETZNER BERNIE OPERATIONS HGR PILKINGTON GLASS LTD 685 WARDEN AVE TORONTO ON HIL3X7 CANADA
KEVER DIANNE M OPERATIONS COORDINATOR PROCTER &GAMBLE CO 6105 CENTER HILL RD CINCINNATI OH 45220 USA
HEYER JAKES J COMPUTER OPERATIONS COPCO 4905 LIHA STREET DENVER CO 80239 USA
KEYERS BARRY NATIONAL SALES KGR UNITED COMPUTING SYS 1901 AVE OF STARS 1585 LOS ANGELES CA 90067 USA
"EYERS LAWRENCE DIRECTOR OF MARKETING SYSTEHS RESEARCH INC 2400 SCIENCE PARKWAY OKEMOS HI 48864 USA
HILLARD HICHAEL J PROGRAMMING SUPERVISOR OKANAGAN HELICOPTERS 4391 AGAR DRIVE VANCOUVER BC U7B1A5 CANADA
HILlER DANIEL J SYSTEHS ANALYST ENVIRONMENTAL ELEMENTS 3700 KOPPERS ST BALTIKORE HD 21227 USA
MILLER LEROY H DP MANAGER NORTHERN SPECIALTY SALES 6635 NBALTIMORE PORTLAND OR 97283 USA
HILLER STEPHEN L COHP PROD SUPVR II IL DEPT OF CORRECTION 200 WWASHINGTON SPRINGFIELD IL USA
MILLER WILLIAM J HGR CORP SYS PLANNING THE BOVAIRD SUPPLY CO 823 S DETROIT TULSA OK 74102 USA
HINOR TERRY SYSTEHS HGR DONNELLY MIRRORS INC 49 W3RD ST HOLLAND HI 49423 USA
HOCK HADISON 0 MGR INFO SYS BAG DIV UNION CAMP CORP POBOX 1825 SAVANNAH GA 31402 US~

HOIRAO DAVID E PROGRAMMING HANAGER LONGS DRUG STORES, INC 141 NORTH CIVIC DR WALNUT CREEK CA 94596 USA
KONAHAN WILLIAM DEVELOPMENT MGR 3 M 3M CTR 223-5N ST PAUL HN 55001 USA
HOODY JERRY R SYSTEMS SUP DEPT OF ARMY BLDG 12500 ATTN DXRHC-C-C FORT LEE VA 23801 USA
HOORE GEORGE E OPERATIONS MANAGER INTERACTIVE APPL INC 505 HAMILTON AVE 1103 PALO ALTO CA 94301 USA
MOORE ROBERT E PRESIDENT EDUCATIONAL COMPUTER SYS 1313 KEMPER RD CINCINNATI OH 45246 USA
KORAIN OLEN COMPUTER SERVICES DIV HEWLETT-PACKARD 19310 PRUNERIDGE AVE CUPERTINO CA 95014 USA
HORRISON JAHES C MANAGER DP SUN HYDRAULICS CORP 1817 57TH STREET SARASOTA FL 33580 USA
KOVER HONTE J SYSTEM MANAGER . PROVO SCHOOL DISTRICT 280 WEST 880 NORTH PROVO UT 84601 USA
HULLER MEREDITH A PROGRAMMER/ANALYST BOEING POBOX 3707 M5 3N-OJ SEATTLE WA 98124 USA
MULVIHILL GARY RSHRIVER ASSOCIATES 1530 CHESTNUT SUITE 714 PHILADELPHIA PA 19102 USA
MURPHY DONALD C SYSTEM MANAGER BOEING COMPUTER SERVICES POBOX 3107 M/536-01 SEATTLE WA 98124 USA
KURPHY JR ROBERT DIRECTOR ADMINISTRATION TEXAS MUNICIPAL POWER 600 ARLINGTON DOWNS ARLINGTON TX 76011 USA
NAGEL PATRICK M SYSTEMS PROGRAMMER UNION OIL COMPANY 135TH ST &NEW AVE LEMONT IL 60439 USA
NEAL RANDOLPH H PRESIDENT AUTOMATED BUSINESS SV 1649 U BROAD ST RICHMOND VA USA
NEIBERGS GEORGE J IS HANAGER ESB-EXIDE 101 GIBRALTOR RD HORSHAM PA 19044 USA
NELSON MARLYS UNIVERSITY OF WISCONSIN RIVER FALLS WI 54622 USA
NEMETH LOUIS E DIRECTOR ENG COMP CTR PHILA WATER DEPT 1210 KSB PHILADELPHIA PA 19107 USA
NEUKYER RICHARD D SENIOR ENGINEER WESTERN ELECTRIC CO 2500 BRUENING HWY BAlTIMORE HD 21224 USA
NEWELL RUSSELL L SYSTEMS ANALYST UOFH-DEARBORN 4901 EVERGREEN DEARBORN HI 48128 USA
HEUMAN ALAN T INFO SERVICES HGR TOWER MANAGEMENT 1779 TRIBUTE ROAD tH SACRAMENTO CA 95815 USA
NICHOLS HARTIN D TECHNICAL ANALYST UNION CAMP CORP 1600 VALLEY RD WAYNE NJ 07470 USA
NOlAN VINCENT UNITED HC GILL CORP 2400 FAIRWOOD AVE COlUKBUS OH 43207 USA
NONAHAKER LAURA 5 PROGRAHHER/ANALYST UNION OIL COHPANY 461 BOYLSTON RM K327 LOS ANGELES CA 90017 USA
NORRIS BOB PROGRAMKER ANALYST SAN JOSE MERCURY-NEWS 750 RIDDER PARK DR SAN JOSE CA 95190 USA
NORTH CARL H DIRECTOR COMPUTER CTR THOMAS NELSON COM COL PO BOX 9407 HAMPTON VA 23670 USA
OCHI YOSHIAKI EDP HAHAGER MATSUSHITA ELEC INDUST CO 12 MATSUSHITA HACHI KORIGUCHI-SHI OS JAPAN
OLSEN HARY ANN(CANCEL)PROGRAHHER MITCHELL BROS TRUCK 3841 NCOLUMBIA BLVD PORTLAND OR 97217 USA
OLSON BRIAN SENIOR ANALYST APPLIED ANALYSIS INC 615 SOUTH FLOWER STREET LOS ANGELES CA 90017 usa
OMI GKEVIN MANAGER WELLS FARGO BANK 420 MONTGOMERY ST SAN FRANCISCO CA 94111 USA

NAHE-9



ATTENDEE BY NAKE

MAtIE TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

ONEY lAMES B DATA PROCESSING MANAGER ReM OHE HARKET PLAZA 3910 SAN FRANCISCO CA 94105 USA
ONIZUKA SANDRA " SYSTEtt _GER CANCER CENTER Of HI 1150 SOUTH KING ST HOHOLULU HA 9&814 USA
ONYX ROBERT P DP OPER ItANAGER FOSECO INC 20208 SHELDON ROAD BROOKPARK OH 44142 USA
OSBORNE LEE K DEVElOPtIENT ENGINEER HalLETT-PACKARD 1046 S WINCHESTER .9 SAN JOSE CA95128 US
OSCARSSON HANS 0 MANAGER AI TRAU OCH GAlOPP BOX 1733 STOCKHOLM SM 11187 SWEDEN
OUElLETTE tlARC E SOFTEUARE SPECIALIST INCO LIMITED 1 FIRST CANADIAN PL TORONTO ON KSXIC4 CANADA
PACHAlY FRED A PROGRAlfttER PURITAN INSURANCE co 1515 SUMHER ST STAMFORD CT 06905 USA
PAGE JOHN PROJECT fWUtGER HEWlETI-PACKARD 5303 STEVEN CREEK SANTA ClARA CA 95050 USA
PAPPAS STEVE AttERlCAN SUBSCRIP TV 8383 WILSHIRE BLUD BEVERLY HILLS CA 90211 USA
PAREllA HIKE PRESIDENT DECISION STRATEGY 708 THIRD AVENUE NEV YORK NY 10011 USA
PARKER KENNETH DIRECTOR E DP PARISIAN INC 1101 26TH STREET N BIRMINGHAM AL 35234 USA
PASHAK JAttES " cmtPUTER SPECIAlIST DEPT OF ENERGY 1333 BROADWAY OAKLAND CA 94161 USA
PENNAlA ERIC " ItANAGER PROC & OPS SPRECKELS SUGAR DIU 50 CAlIfORNIA ST SAN FRANCISCO CA 94111 USA
PERKINS AlAN L SYSTEMS It'RIPGttR WHITE HOUSE CO"" THE WHITE HOUSE WASHINGTON DC 22010 USA
PETERS HAROLD J PRESIDENT EDUCATIONAL SOFTWARE PRODU 9 GEORGETOWN CIRClE IOWA CITY lA 52240 USA
PETERSON DOH SYSTEMS PROGRAKKER us CIUll SERU COHH 4685 LOG CABIN DR HACON GA 31210 USA
PETERSON DONAlD C HGR SYSTEKS ANALYST COLO DEPT OF HIGHWAYS 4201 E ARKANSAS DENVER co 80222 USA
PETERSON IfERRILl A STAfF ENGINEER JEFFERSON CHEKICAL POBOX 847 PORT NECHES TX 77651 USA
PETIERCHAK JOHN J INFO SYST EXECUTIUE IL DEPT Of CORRECTION 200 N WASHINGTON SPRINGfIElD IL USA
PHILLIPS TERRY DEVELOPtOT ttAHAGER SACRED HEART GEM HOSP P 0 10905 EUGENE OR 97401 USA
PICK V"ICHAEl RESEARCH COHPUTER HGR GRlJtIMAN AERO SPACE CORP A 08-35 BETHPAGE NY 11714 USA
PIEKARSKI DAVID H SUPVR cmtPUTER UTILIZ CHRYSlER CORPORATION PO BOX 1919 CIKS:4162725 DETROIT "I 48288 USA
PIERCE ANTHONY 51 SYSTEMS ANALYST BOtING AEROSPACE POBOX 3999 SEATTlE WA 98124 USA
PIPER "ICHAEL 19601 NOIDHOFFF NO RIDGE CA USA
PLEASANTS JOYCE B DIRECTOR DATA PROCESSING AURORA PUBLIC SCHOOLS 1085 PEORIA STREET AURORA co 86811 USA
POLAKOUSKI KEN GRP KGR SOFTVARE SUPPORT VYDEC INC 9 UREELAND RD FLORHA" PARK NJ' USA
POl.HEItUS JAN R MGR BUSINESS SYSTEttS AUST.lN INFORMATION SYS 890 511 16TH STREET RENTON WA 98855 USA
POlO fRANK SYSTEKS SPECIAlIST NORTHROP CORP 2301 WEST 128 STREET HAWTHORNE Cit 98258 USA
PORTERFIELD STEPHEN T HP3880 SYSTEM ItANAGER BECHTEl CORPORATION POBOX 3965 SAN FRANCISCO CA 94119 USA
POIIERS DENNIS D DIRECTOR INFO SERUICE Utt CBROWH PUB COKPANY 2461 KERPER BLVD DUBUQUE IA 52011 USA
PREDKDRE LIONEL A INFORItATION SYSTEttS SUPU CITY OF DE 31 E FIFTH BOX 5002 TEJtPE AI 8S281 USA
PRaLE JEAN PROfESSOR ECOlE StJPERIEURE DE COllIER 23 ROUTE DE DARDILlY ECtR..LY FRANCE
PRICE RICHARD J HGR TECH SUPPORT NATIONWIDE FINAMCE 780 OFFICE PARKIIAY CRM COEUR HO&J141 USA
PRICE ROGER Sysms ANAlYST THE BOVAIRD SUPPLY co 823 S DElRon TUlSA OK 74112 USA
PRILL BOB (CANCELED) OPERATIOHS ItMAGER HEWLETT-PACKARD SDD 16399 'I BERNARDO DR SAN DIEGO CA 92127 USA
PRITCHARD GBRIAN 51 PROCRAtRtER CANADA BlDG ItATERIM.S 55 INDUSTRIAL ST TORONTO OM 114G3U9 CANADA
PROCHNUV U UNIVERSITY OF WISCONSIN RIVER FALLS WI 54022 USA
PUTEGNAT "ICHAEL(CANC)PRESIDEHT CONTROL sysms 44 II JEFFERSON ST BROWHSVILlE TX 78520 USA
RADOFf IRVING SUPVR SYS/PROG 'lSI CORPORATION 8463 HIGUERA ST CUlVER CITY CA 99230 USA
RAS_EN BENT UICE PRESIDENT RSHRIVER ASSOCIATES 121 LITILETDH ROAD PARSIPPANY NJ D7I54 USA
RAUH JOSEPH E TECHNICAl SHINItAH ISSCO 4186 SORRENTO UAI.lEY BLVD SAN DIEGO CIt 92121 USA
RAUSOH TO" SYSTEItS PROGRAItHER CASS UHIU OF WASH I1B7 HE 45TH ROOft 531 SEATTLE lilt 98115 USA
REGO f AlFREDO PROFESSOR UNIU F KARROQUIH 6A AUE 0-28 ZONA 10 GUATEMAlA GUATEH
REITHNER JR ROBERT" JWIAGER H.E.R.A. 80 BROAD STREET NEW YORK NY 18104 USA
RICE ROBERT J SYSTEttS ANAlYST ADAtIS COUNTY SCHOOlS 682 E 64TH AVE DENVER co 81229 USA
RICKARD CALLEN HGR SYSTEKS DEUELOPIDT NATIONWIDE FINANCE 700 OfFICE PARKWAY CREVE COEUR lID 63141 USA
RIEGER DENNIS E PR_T IWfAGER - ItPE HallETT-PACKARD S303 STEVENS caEEK BlVD SANTA ClARA CA 95851 USA
RITCHIE CLIFFORD E DP ItAMGER BEN£FIT TECHNOlOGY 910 LAfAYETTE mEET SANTA CLARA CA MI USA
ROBERTS RICHARD A KGR SYSTEIt & PROGRMltING B&S F1HMCIAL SERUICES NCOUNTY ROAD 2SA PIQUA 011 45356 USA
ROBERTSON DENNIS L IIGR DIST PROC TECH SP UEYERHttEUSER co 11TH & A STREETS RO-l TACOM IIA 98411 USA
ROBINSON JOEL H "CIt INFORMATION SYS GEORGE WllfEr CANADA 80 NORTH QUEEN ST TORONTO ON tt8Z2C9 CANADA
RODGER JOHM D NORTIERH TEL£COIt 8200 .DIXIE RD BRAltPTON ON L6V21t6 CANADA

RODRICtEZ DAM R PROJECT LDR SUPPLY STANDMD OIL co 1090 GUIlDHALL Bl.DC ClE'JEI.MJ) OH 44115 USA

twfE-18



ATIENDEE BY HAM:

NAME TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

ROGERS TKnMAS D ASSISTANT DIRECTOR NORFOlK STATE COlLEGE 2401 CORPREY AVE NORFOlK VA 23504 USA
ROSENBERG IVAN It GEN£RAL PARTNER SYSTEMS DESIGN ASSOC POBOX 1144 SAN LUIS OBIS CA 93406 USA
ROSS PATRICK D SR IDBER TECHNICAl STAF BSl INC 495 JAVA SUHNYVALE CA 94086 USA
ROUSSEAU ALLEN F UP PRODUCT DEV KEYDATA CORP 1GB WATER ST WATERTOWN HA 92172 USA
ROUE THOMAS C UP SYSTEHS NATIONWIDE FINANCE 700 OFFICE PARKWAY CREVE COEUR "S 63141 USA
RUSSElL BRIAN G PROGRAMMER/AHAlYST WEST FRASER HIllS BOX 6008 QUESNEl. Be V2J3JS CANADA
RUSSEll JIlt PRESIDENT COttPUTER SERVICES CORP 7S MHHATTAH DR 1107 BOULDER CO 88303 USA
RUSSElL KENT A PRESIDENT NATIONAL COMPUTER CORP 3000 34TH ST ttETAIRIE LA 78001 USA
RUTHERFORD CLYDE R SUPV ttSs CottPUTING BOEING COKKERCIAL AIR POBOX 3707 "IS SF-09 SEATTLE VA 98124 USA
RYAN GEOFFREY CONTROL SYSTEMS 44 'I JEFFERSON ST BROWNSVIllE TX 18520 USA
SAliNS GARY E DATA PROCESSING HANAGER DARE PAFCO1 INC 11353 REED HARTttAN HY CINCINNATI OH 45046 USA
SARBAUGH JAY C VICE PRESIDENT SMALL BUSINESS DATA PROC 4208 AIRPORT ROAD CINCINNATI OH 45226 USA
SCHICK JOHN A PROGRAMER WIt CBROUN PUB COMPANY 2460 KERPER BLVD DUBUQUE IA 52081 USA
SCHlOSSER 11 ROBERT 1 COItPUTER SCIEHTIST PEPCO 1900 PENNA AVE WASHINGTON DC 20069 USA
SCHUlER KURT J DIR I COftP SERVICES UNIVERSITY OF DALLAS IRVING TX 15961 USt&
SCHWARTZ RICHARD T PRINCIPAL AMERICAN HANAGEKENT SYSTEM 561 PIlGRl" DRIVE SUITE D SAN HATED CA 94404 USA
SCtftIARTZ RICK A D1ST CE ItAHAGER HEWlETT-PACKARD 6ffJ1 GOREWAY DRIVE HISSI5SAUGA OM L4VIH8 CANADA
SCHWARZ RAYItOND T MINI-oPERATIOHS MGR HEWLETT-PACKARD 1501 PACE HILL RD PALO ALTO CA 94304 USA
SCOTT GEORGE B MANAGER REICHHOLA CHEIt 2J4D TAYLOR WAY TACOKA 'fA 98401 USA
SCROGGS ROSS E ALTER'ABILITY 534 ROSAL AVENUE OAKLAND CA 94610 USA
SEIFRIED II BRIAN SUPERVISOR SYSTEMS APPL BOMAR &BE"IS LTD 2380 ftC DOWELL ROAD BURLINGTON ON L7R4Al CANADA
SEllERS HARRY P ADM DP ItAHAGER VA WESTERN COM COL 3095 COLONIAl AVE ROANOKE VA 24015 USA
SEV£BORG KARL E CIVIL ENGINEER AD BOFORS BOX 50B BOfORS 569828 SWEDEN
SEWElL DAVID DIRECTOR OF DATA PROCESS SII SERVCO PO BOX 888 GARDENA CA 98247 USA
SHAtA.IS MICHAEL FAIRFAX CNTY PUBlIC SCHOOL DATA SERVICES DIVISION SPRINGFIELD VA 22151 USA
SHEFFIELD REBECCA L STUDENT ANDERSON COlLEGE ANDERSON IN 46011 USA
SHEllEY NANCY SYSTEMS PROGRAKID SCOTT PAPER LTD POBOX 761 NEW WESlltlNST Be CANADA
SHOUP BRYAN DATA PROCESSINC IteR SII DYNA-DRILL 1771 »mE AVENUE IRVINE CA 92713 USA
HOADS) JR JM£S C DIRECTOR cottP OPER HPI REASEARCH) INC 15 VERBENA AVENUE flORAL PARK NY 11181 USA
SHUftATE DCRAIG ttMAGER CSD WARREN &VAN PRAAG 1276 NORTH WARSON RI ST LOUIS ItO 63132 USA
SILVER GAYE L SYSTEMS ANALYST TRY COLORADO ELECT 3450 NNEVADA AVE COLORADO SPRI CO 80907 USA
SIMONSEN SLAURENCE COItPUTER SYSTEttS EHGR YALTEK INC KOUHTAIN SPRINGS PRKUY SPRINGVILLE UT 84663 USA
SItts RICH EXEC VP AT I 3532 SHIllCREST DR 13 DENVER co USA
SINHA DEEPAK PRQt;RAItttER ~ KASTER UNIVERSITY 1208 MAIN ST W IWtILTON ON L8S419 CANADA
SISOIS HIKES N DIRECTOR INfO Sysms UNIU Of SAHTA CLARA BANNAN HAlL 113 SANTA CLARA CA 9S05J USA
SJOGREN DAVID R SYSTEM SPECIALIST GENERAL MILLS PO BOX 1113 MINNEAPOLIS HN 55440 USA
SLATER TED SALES REP t£VlETT-PACKARD U691 SHELLBIIDGE WAY RICHtUIND Be V6X2W1 CANADA
SlOAN DAVID L CONSUlTANT COlLIER-1ACKSON ASSOC 1805 MIESTSHORE BlVD TAttPA FL 33687 USA
SHART JOHN E VICE PRESlDOO SILTON DATA INC 2417 E 38TH sTlm UERNON CA 91858 USA
SHElSER LINDA C ASST GENERAL MGR STATE COHTRDllERS OFFICE 504 E HUSSER CARSON CITY IN 89781 USA
SMITH BARRY PRUDENTIAl INSURANCE 213 IMSHINGTON ST NEllARK HJ 07111 USA
SMITH KOVAl» 1 LABMIAGER HEWlETT-PACKARD 5303 STEVENS CREEK SAMTA ClARA CA 95050 USA
SHITH 11 HARRY R DIRECTOR) COItPUTER CTR HOWARD COttJWNITY COllEGE LITTlE PATUXEHT PKUY ctlUDIA ltD 21144 USA
SltITH RAYMO E DATA PROCESSING MNAGER POIIERS REGULATOR RI .1 BEETON ON LOCiAO CANADA
SJtITH ROGER DP MNAGER IONNELLY HIRRORS INC 49 " JAD ST HIlLAND "I 49423 USA
SIIITH TERRY B CHIEF OF DATA PROCESSING HILO BEMJTY SUPPLY co 4670 ALLEN ROAD STOll 011 44224 USA
SNEED SAtES E CORPORATE IIGR DP RElIANCE ElECTRIC POBOX 5865 STATION B GREENVIu.E SC 29616 USA
SNELLINGS FRANK II PROJECTS DEV MNAGER KEDIA GENERAL INC 301 E GRACE ST RICHttOND VA 23219 USA
SMESRUD IMRGMET 1 PIOJECT DIRECTOR 1M CBROWN PUB COItPANY 2461 KERPER BLVD DUBtHlU£ IA 52001 USA
SHESRUD IMLLY" PROGRAMER Utt CBROlIN PUB CMPANY 2461 KERPER BLVD DUBUQUE IA 52001 USA
SOCIE LAlRY 1 PROGRAIID HOOVO-MSI BEARING 5488 SSTATE II • ARBOR III 48116 USA
smtI.E ROIfALD C ItGR COftPUTING SERVICES REGIONAl ECONOMIC EXPANSIO 601 SPADINA CRESCENT SASKATOON SA S7K3G8 CANADA

twtE-11



ATTENDEE BY NAHE

NAME TITlE COttPANY ADDRESS CITY STATE ZIP COUNTRY

SOKERS PETER CAPE ISLAND MAR INA OCEAN DRIVE CAPE MY NJ 082D4 USA
SPAHN CARL P DIRECTOR ADSS US DEPT AGR-APHIS 6525 BElCREST RD 1853 HYAnSVILLE tID 28782 USA
SPAlDING KENNETH G DEUELOPt£NT ENGIHm HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
SPERLE GLENN It COttPUTER SPECIAlIST US DEPT OF AGR-APHIS 6525 BElCREST RD 1853 HYATTSVILLE lID 20782 USA
SPIElER CHARLES " DIRECTOR "IS SIlteD 21081 CABOT BLVD HAYWARD CA 94545 USA
SPORKEN HEIH P NOVA AUTOItATION CONS 30 NOOEIND NIEUWEGEIN NETHER
SQUIRES JIlt SYSTEMS ENCR HEVlETT-PACKARD 1430 EORANGETHORPE FULLERTON CA 92631 USA
ST PIERRE JEAN DP KANAGER EMD scon PAPER LTD POBOX 760 CRABTREE PQ CANADA
STA"BAUGH JAN R DIRECTOR DP KULTNOKAH COUHTY ESD 229 SE 102 PORTLAND OR 97216 USA
STARCK RICHARD E PRESIDENT BUSINESS COKPUTER CONCEPTS RD 11 BOX 131-B BURGEnSTOUN PA 15021 USA
STARK JOHN A SYSTEMS ENGINEER HEWLETT"'PACKARD 1283 114TH SE BB.lEVUE WA 98004 USA
STEIN SALLYSUE PARTNER T.O.A.D. 19855 GIESENDORFER RD COlFAX CA 95113 USA
STOCKDAlE WAlLACE L DP ttANAGER PORT OF OAKLAND 66 JACK LONDON SQ OAKLAND eft 94606 USA
STOVER DAVID U DIR OF INFO SERVICES TELEPHONE EKPLOYEES CO 639 S NEW HAHPSHIRE LOS ANGELES CA 90005 USA
STOVER RAY J INFoRHATION RESOURCES 4905 LIMA DENVER CO USA
STRANDHAGEH DEBRA A SYSTEtt CONTROL WILLI~ It KElCER INC 489 GRISWOLD DETROIT "I 48226 USA
STUttP DAlE K DATA PROCESSING ttGR STATE CONTROLLERS OFFICE 504 EttUSSER CARSON CITY NV 89701 USA
SULLIVAN DENNIS J "GR DP OPERATIONS NATIONWIDE FINANCE 100 OFFICE PARKWAY CREVE COEUR KO 63141 USA
SULlIVAN EARlENE DATA COORDINATOR CITY OF KENNEWICK 210 W6TH KENNEWICK IIA 99336 USA
SURR T BOEING C~UTER SERVICE PO BOX 24346 SEATTLE WA 98124 USA
SWEARER DALE F SYSTEMS ANALYST EHVIROHttENTAt ELEKEMTS 3709 KOPPERS ST BAlTIttORE "D 21227 USA
SYMONDS GORDON R HEAD CattPUTER APPLIC ENVIRONMENTAL HEALTH TUNNElS PASTURE onAWA ON KIAOL2 CANADA
SYNOlD PRISCIllA J MANAGER TECHNICAL SPT ISSCO 4186 SORRENTO VALLEY BLVD SAN DIEGO CA 92121 USA
TANKERSlEY JAtlES J SR SYSTEMS ANALYST PROCTER &GAMBlE POBOX 599 CINCINNATI OM 45201 USA
TANTZEN ROBERT G CHIEF PROGRAMMING 658 5TH. TEST GROUP/AD HOLLOttAN AFB "Ii 88330 USIc
TARENS MICHAEL R REGIONAl HKTG ENGINEER HEWLETT..pACKARD 19400 HOMESTEAD RD CUPERTINO CA 95014 USA
TATHAN PAUL E SYSTEMS MANAGER HMO SYSTEMS INC 1235 RIVERSIDE FT COLLINS CO 80521 USA
TAYLOR DAVID W SYSTEMS ANALYST BOEING COMPUTER SERVICES POBOX 24346 SEATTLE 'fA 98124 USA
TAYLOR MIKE PROGRAMER ATI 3532 S HILLCREST DR 13 DENVER co USA
TAYLOR PAUL " COKPUTER SPECIALIST US DEPT AGRICULTURE 652S BElCREST RD 1853 HYATTSVILLE ltD 20782 USA
TEARE ROBERT F ASST DIR BIBL SERV THE CLAREttOHT COllEGES HONNOLD LIBiARY DARTMOUTH AT CA 91711 USA
TEKLITS ROBERT S DATA HANAGEKEHT SUPUR COLORADO DEPT EDUC 201 ECOlfAX DENVER co 80203 USA
TEttBROCT JOE R DP ItANAGER HEULETT-PACKARD 5301 STEVENS CREEK SANTA CLARA CA 95050 USA
TETI FRANK A sysm ANALYST HORGAN GUARANTY TRUST 23 WALL STREET NEW YORK NY 10015 USA
THEISSEN WILHELM 1 MANAGER BUSINESS SYST HUGHES AIRCRAFT CO POBOX 3310 607/8318 FUlLERTON CA 92634 USA
THotiASSON GAlY FAC INFO SYS MANAGER HEWLETT-PACKARD POBOX 16 BOISE ID 83107 USA
THOKPSON JI" GOV'T OF NII TERRITORIES YELLOWKNIFE NY XOE1HO CANADA
THOKPSON JR CHARLES HINFORKATIOH "GHT CHF SPACE &HSL SYS DIU 2805 HAPLE AVENUE MANHATTAN BEA CA 90266 USA
THOMPSON RANDY(CANCEL)ANAlYST It TI 3532 S HILLCREST DR 13 DENVER co USA
THOMSON RON DATA PROCESSING HGR THE BOVAIRD SUPPLY CO 823 S DETROIT TULSA OK 14102 USA
THORMAN BEN ASST DP~R FLINT INDUSTRIES INC POBOX 490 TULSA OK 74101 USA
THORNTON WILLIAM L PROGRAMMER/ANALYST HASTERCRAFT IND 4881 IRONTON ST DENVER co 80239 USA
TICHAUER MARIO FW ENGINEER PROHON ENGENHARIA SA NOVE DE JULHO 4939 SAO PAUlO SP 01407 BRAZIL
TIER PAUL MARKETING MANAGER DCDUMMER &ASSOCIATES 40 LK LUCERNE CL SE CALGARY AL T2J3H8 CANADA
TICElMAN ROBERT J DATA PROCESSING MGR BEACON JOURNAL PUBl 44 EEXCHANGE ST AKRON OH 44328 USA
TONNESEN LARRY D SYSTEtIS MANAGER GUARDSttAH LIFE INS 1025 ASHWORTH ROAD WEST DESHOINE IA 50265 USA
ToUNSEHD RICHARD PROGRAMMER/ANALYST UNITED PRESIDENTIAL LIFE 217 SOUTHWAY BLVD E KOKOItD IN 46901 USA
TRAPP ROBERT E TEST ENGINEER HUGHES AIRCRAFT CO 1901 WKALVERN AVE FULLERTON CA 92634 USA
TRAPPE CLARENCE J SYSTEMS PROGRAKKER BECHTEL CORP 350 "ISSION STREET SAN FRANCISCO CA 94185 USA
TROWBRIDGE UERN H HGR DATA PROCESSING TIDEWATER CO"" COlL RT 135 PORTSMOUTH VA 23101 USA
TRUE 10HN F DIR COMPUTING SERVICE UNIU OF TENNESSEE 615 HC CALLIE AVENUE CHATTANOOGA TN 37492 USA
TSUKISHIHA LLOYD " PROGRAMMER/ANALYST WEST FRASER MILLS POBOX 6000 QUESNEl Be V2J3J5 CANADA

NAME-12



ATTENDEE BY NAME

HA"E TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

TURNER WILLIAM A PROF ASSOCIATE "IULIA KKERCER INC 409 GRISWOlD DETROIT MI 48226 USA
TW'fltAN DONALD R DIRECTOR INFO SYSTEMS AMERICAN RED CROSS 100 EHACK DETROIT til 48201 USA
UTTER ROGER S COMPUTER APPLICATIONS EXXON NUCLEAR CO 711-106 TH AVE HE BELLEVUE WA 98009 USA
VAlERIO HARC N GENERAL ttANAGER DIVERSIFIED COHP SYS PO BOX 1098 GREELEY CO 80631 USA
VAN AUSDAlL C. R. MANAGER DATA PROCESSING COPCO 4905 LIMA STREET DENVER CO 80239 USA
VAM BUITENEN PETER SYSTEMS DEDHAN MAKRO INTL CHURCHILL LAAN 11 352F GUUTRECH NETHER
VAN DEN KIEBOOH AAD HEWLETT-PACKARD 90- EPHARTL 121 AMSTER»AM NETHER
VAN KURAN PETER PRODUCT KANAGER HEWLETT-PACKARD 5393 STEVENS CREEK BLVD SANTA CLARA CA 95050 USA
UEEHEHAN WILLIAM E SYSTEMS ANALYST PROCTER ~ GAMBLE CO 6105 CENTER HILL RD CINCINNATI OH 45220 USA
VELLANKI RAO C SR PROGR/ANALYST HEWLm-PACKARD 5383 STEVENS CREEK SAHTA CLARA CA 95050 USA
VILLA lR CHARLES J PRESIDENT PANTECHNIC 58g5 OCEAN VIEW DR OAKLAND CA 94618 USA
VILLARREAL RAMON V TYKWARE CORP 44 UJEFFERSON ST BROWNSVILLE TX 18520 USA
VIOHL KEN SATELLITE COMPUTING, INC PO BOX 2015 NORFOLK VA 23501 USA
VOILES DUANE A SR SYSTEMS ANALYST ITT FINANCIAL POBOX 2'iO CHIPPEWA FALL WI 54729 USA
WADE GERRY T PRODUCT SPECIALIST HEWLEn-PACKARD 5600 S DTC PARKWAY ENGLEWOOD CO 86110 USA
WADE RON SYSTEMS ANALYST INFORMATION RESOURCES 1935 EPRENTICE AVE ENGLEwotlD CO 80111 USA
WAGNER DAVID L HANAGER DATA PROCESSING KOORE ~ CO 300 ESPEER BLVD DENVER CO 80203 USA
WAlESKl JR VALl ER l DIR INFO SYSTEMS MEDIA GENERAl INC 301 EGRACE 5T RICHMOND VA 23219 USA
WALLACE DARL l DIR EDUC COKP CTR WALLA VALlA COLLEGE COLLEGE PLACE WA 99324 USA
WANDERKAN KENNETH A MANAGER COMPUTER SYS ITEL CORP 1 EMBARCADERO SAN FRANCISCO CA 94114 USA
WARP CRAIG SHUGART ASS 435 OAKKEAD PARKWAY SUNNYVALE CA 94086 USA
WATERS FRED INFO SYSTEMS "ANAGER HEWLETT-PACKARD SDD 16399 WBERNARDO DR SAN DIEGO CA 92127 USA
WATSON DAVID J(CANCEL) ARMAMENT SYSTEMS INC 112-F NVALLEY ST ANAHEIK CA 92632 USA
WEBER WILLIA" SYSTEMS ANALYST HPD RESEARCH, INC 15 VERBENA AVENUE FLORAL PARK NY 11001 USA
WEBSTER THAD N MARKETING ENGINEER HEWLETT-PACKARD 2104 SUNSET AVE BOISE ID 83102 USA
WEISMAN JOE MGR SYSTEM DEVElOPMENT COMPUTERS FOR MARKETING 215 MARKET SAN FRANCISCO CA 94105 USA
WEISS JAHES R VICE PRESIDENT EMKLEIN ~ ASSOC 1000 SUPERIOR BLDG CLEVELAND OH 44114 USA
WELSH ROD R SYSTEMS ANALYST DOMINION CONSTRUCTION 3100 3 BENTALL CENTRE VANCOUVER BC V7X1B1 CANADA
WETIER WAYKE ALUM ROCK SCHOOL DIST 2930 GAY AVENUE SAN lOSE CA 95i27 USA
WHEELER 1 LADD DATA PROCESSING MANAGER CMFUNK ~ CD INC 22 N2ND STREET BOX 1249 LAFAYETTE IN 47902 USA
WHEELER ROBIN C EDP MANAGER DOMTAR CONSTRUCTION HTRL 2001 UNIVERSITY ST MONTREAL QU HJA2A6 CANADA
WHIDDON ROY L SPECIALIST SOFTWARE NORTHERN TELECOtt LTD 33 CITY CENTRE DRIVE HISSISSAUGA ON LSB2N5 CANADA
WHITE RUSS PRESIDENT RSHRIVER ASSOCIATES 126 LITTLETON ROAD PARSIPPANY HJ 01054 USA
WICKHAM GAIL 0 KGR KARKETING SERVICES SYSTEMS RESEARCH INC 2400 SCIENCE PARKWAY OKEMOS HI 48864 USA
WILKINSON 11M L GENERAL PARTNER UMPQUA DATA FACTORY 222 E11 EUGENE OR 97401 USA
WILLARD JIK HEWLElT-PACKARD 815 14 SY LOVELAND CO 80537 USA
WILLIAMS RITA 'I SUPPORT ENGINEER HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
UILLIAKSON ROBERT M KFG DATA SYSTEMS MGR BOEING AEROSPACE CO PO BOX 3999 M1S 8M69 SEATTLE WA 98124 USA
WIU}CK JAMES H SYSTEMS ANALYST FORD BOX 1599B SOUTHFIELD AT ROTUNDA DEARBORN HI 48121 USA
WILSON ROBERT L SALES MGR RSHRIVER ASSOCIATES 120 LITTLETOtf ROAD PARSITPANY NJ 07054 USA
WINTON HUGH DP MANAGER HOERBIGER CORP 35 LUMBER ROAD ROSLYN NY 11516 USA
WOMBACHER ERNEST 1 CLERK OF DISTRICT COURT JOHNSON COUNTY IOWA 400 S ClINTON STREET IOWA CITY IA 52240 USA
WONG DY-YEE DIRECTOR PROGRAMMING AUTOMATED ANALYSIS 3105 DONA SOFIA DR STUDIO CITY CA 91604 USA
VOODGLENR KANUF SYS PROJECT LDR BOSE CORPORATION 100 MOUNTAIN ROAD FRAMINGHAM itA 01161 USA
WOOD WALTER A VICE PRESIDENT WOOD BROWN &ASSOCIATES 1673 CARLING SUITE 105 onAWA ON K2A1C4 CANADA
WOLPERT BRUCE II PRODUCT MANAGER HEWLETT-PACKARD 1&399 WBERNARDO DR SAN DIEGO CA 92127 USA
WRIGHT DAlE PANTECHNIC 5805 OCEAN VIEW DR OAKLAND CA 94618 USA
WRIGHT JAMES C ELECTRICAL ENGINEER TEXAS HUN POWER AGENCY 2225 ERANDOL MILL RD ARLINGTON TX 76011 USA
WRIGHT NORMAN B EXAMINING SYSTEMS COORD US CIVIL SERVICE COMH 4685 LOG CABIN DR HACON GA 31206 USA
WRIGHT STEVE T MANAGER HOKE OFFICE REPUBLIC MORTGAGE INS POBOX 2514 WINSTON SALEH Nt 27102 USA
YARBROUGH CHARLES VICE PRESIDENT COMPUTERS FOR MARKETING 215 MARKET SAN FRANCISCO CA 94105 USA
YEO MRGE HEWlETT-PACKARD 5301 STEVENS CREEK BLVD SANTA CLARA CA 95050 USA

NAHE-13



IWIE

YOUNG CHUCK W
lABOR ELIAS

TITLE

PROGRAMMER/ANALYST
CUSTOItER RElATIONS

cmtPANY

ASARCO INC
HEWlETT-PACKARD

ADDRESS

POBOX 98
SJOJ STEVENS CREEK

ATTENDEE BY NAME

CITY STATE ZIP COUNTRY

HAYDEN AZ 85235 USA
SANTA CLARA CA 95050 USA

NAI£-14 -



CONFERENCE ATTENDEE LISTING INDEXED BY ATTENDEE COMPANY

NAKE TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

KESSEL JIK (CANCELED) INDIVIDUAL POBOX 124 CHAGRIN FALLS OH USA
DUNCAN HANNAH F 1601 LEHKBERG BLVD COLORADO SPRI CO 80915 USA
HANSEN WILLIAM R SR SYSTEM CONSUlTANT 5560 CAHERFORD DR DAYTOM OM 45424 USA
CURRERI JOSEPH A 9142 EDMONSTON CT 202 GREENBELT HD 20710 USA
TANTZEN ROBERT G CHIEF PROGRAMMING 658 5TH TEST GROUP/AD HOLLOHAN AFB NJ1 88330 USA
PIPER MICHAEL 19601 NORDHOFFF NO RIDGE CA USA
KONAHAN WILLIAK DEVELOPMENT MGR

3 " 3" CTR 223-5N ST PAUL KN 55001 US"
ERICSCON GORDY 0 ANAlYST 3" CO 3M CENTER BLDG 224-4N ST PAUL tIN 55101 USA
GREENE MARK L SUPERVISOR JJt CO 3" CENTER BlDG 224-4N ST PAUL tiN 55101 USA
KENNEDY JACK MANAGER SYS &PROG AGBECKER 55 WATER STREET NEW YORK NY 10041 USA
SIHS RICH EXEC VP ATI 3532 S HIllCREST DR t3 DENVER CO USA
TAYLOR HIKE PROGRAMER ATI 3532 SHILLCREST DR 13 DENVER CO USA
THOMPSON RANDY(CANCEUANALYST ATI 3532 S HILLCREST DR t3 DENVER CO USA
SEVEBORG KARL E CIVIL ENGINEER AB BOFORS BOX 500 BOFORS S69020 SWEDEN
OSCARSSON HANS 0 IfANAGER AB TRAV OCH GALOPP BOX 1733 STOCKHOlM SW 11187 SWEDEN
GREEN CHARLES R DATA PROCESSING MANAGER ADAMS COUNTY SCHOOLS 602 E64TH AVE DENVER CO 80229 USA
RICE ROBERT J SYSTEMS ANALYST ADAMS COUNTY SCHOOlS 602 E64TH AVE DENVER CO 80229 USA
BEACH JOHN R HEAD OF OPERATIONS ADRIA LABORATORIES POBOX 16529 COLUMBUS OH 43216 USA
FERENSEN DANIEL E SYSTEMS ANAlYST ADRIA LABORATORIES POBOX 16529 COLUttBUS OH 43216 USA
FRECH JOHN J MANAGER OF STIC ADRIA LABORATORIES PO BOX 16529 COLUMBUS OH 43216 USA
ENGlANDER ALICE DPCONSULTANT AlICE ENGLANDER 1966 TITUS STREET SAN DIEGO CA 92110 USA
COOK LINDA L DATA PROC SPEC/PRGHR ALLEGHENY INTER UNIT SUITE 300 TWO ALLEGH CENTER PITTSBURGH PA 15212 USA
BAKBACH THOMAS H PROJECT LEADER ALLIED CHEMICAL COPRl COlUMBIA RD HURRISTOWN NI 07960 USA
BHUTA MEMENDRA MGR SYSTEMS PLANNING ALLIED CHEMICAL CORP COLUMBIA RD HORRISTOWN NJ 07960 USA
SCROGGS ROSS E ALTER.ABILITY 534 ROSAL AVENUE OAKLAND CA 94610 USA
WETTER WAYNE ALUM ROCK SCHOOL DIST 2930 GAY AVENUE SAN JOSE CA 95121 USA
COOPER STEVEN M CONSUlTANT AMERICAN ItAHAGEKEHT SYSTEH 561 PILGRIM DRIVE SUITE D SAN HATED CA 94484 USA
SCHWARTZ RICHARD T PRINCIPAL AMERICAN ItANAGEltEHT SYSTEM 561 PILGRIM DRIVE SUITE D SAN HATED CA 94404 USA
GRILlOS JOHN It VICE PRESIDENT AMERICAN MGMT SYSTEKS 561 PILGRIM DRIVE SUITE D SAN HATED CA 94404 USA
TWY"AN DONALD R DIRECTOR INFO SYSTEItS AKERICAN RED CROSS 100 EMACK DETROIT ttl 48201 USA
PAPPAS STEVE AMERICAN SUBSCRIP TV 8383 WILSHIRE BLVD BEVERLY HILLS CA 90211 USA
MYHEU JOHN AItERICAN SUBSRIP TV . 8J83 WILSHIRE BLVD BEVERLY HILLS CA 90211 USA
DAUGHERTY RObER DIRECTOR DATA PROCESSING AItERICAN SUBSRIPT TV 8383 WILSHIRE BLVD BEVERLY HILLS CA 90211 USA
BEASLEY DAVID R ANDERSON COLLEGE ANDERSON IN 46011 USA
FORSEE ANN T INSTRUCTOR ANDERSON COLlEGE ANDERSON IN 46011 USA
HARBRON THOMAS R CHR COMPUTER SCIENCE ANDERSON COllEGE ANDERSON IN 46011 USA
ItATHIAS TIMOTHY E ANDERSON COLlEGE ANDERSON IN 46011 USA
SHEFFIELD REBECCA L STUDENT ANDERSON COllEGE ANDERSON IN 46011 USA
FIELDS JAtlES A VICE PRESIDENT APEX DATA PROCESSING 950 SO EASTERN AVE LOS ANGElES CA 90022 USA
LEWIS GERALD VICE PRESIDENT APPLIED ANALYSIS INC 615 SOUTH FLOWER STREET LOS ANGElES CA 90017 USA
OLSON BRIAN SENIOR ANALYST APPLIED ANALYSIS INC 615 SOUTH FLOWER STREET LOS ANGELES CA 90017 USA
DAVISDH GERALD W PROJECT MANAGER ARGONNE NATIONAL LAB 9700 SOUTH CASS AVENUE ARGONNE IL 60439 USA
KDLSTO ELlIOT L ItANAGEJtOO ENGINEER ARGOHHE NATIOHAl LAB 9700 SOOTH CASS AVENUE ARGONNE IL 60439 USA
JOERGER STEVEN G ARIWDT SYSTEMS INC 712-F NVALlEY ST ANAHEIM CA 92801 USA
WATSON DAVID J(CAHCElJ ARIWtENT SYSTEItS INC 712-F NVALLEY ST ANAHEIM CA 92632 USA
ENGtEBRECHT ItICHAEL LRESEARCH ENGINEER ARKCO INC 703 CURTIS STREET ItIDDLETOWH OH 45043 USA
EARLS JOHN D STAFF ENGINEER ARTHUR ACOlLINS INC 13681 PRESTON ROAD DALLAS TX 75240 USA
YOUHG CHUCK W PROGR~ER/ANALYST ASARCO INC POBOX98 HAYDEN Al 85235 USA
KC SHANE KICHAEl G ASSOC DIRECTOR COMPUTING ASSOC AMERICAN KED COLlEGE ONE DUPONT CIRCLE SUITE 210 WASHINGTON DC 20036 USA
BUaL DIANE ANALYSTIPROGRAKKER AURORA PUBLIC SCHOOLS 1885 PEORIA STREET AURORA CO 81011 USA

COIfAMY-J



ATTENDEE BY COMPANY

KI.E\JER JOHN ANALYST/PROGRAMMER AURORA PUBLIC SCHOOLS . 1085 PEORIA STREET AURORA CO 80011 USA
PLEASANTS JOYCE B DIRECTOR DATA PROCESSING AURORA PUBLIC SCHOOLS 1085 PEORIA STREET AURORA CD 80011 USA
PnLHEHUS JAN R MGR BUSINESS SYSTEMS AUSTIN INFORMATION SYS 800 SW 16TH STREET RENTON W. 98055 USA
CROY WILLIAM H MGR TECHNICAL SYSTEHS AUSTIN INFORMATION SYS 450 WEST 1ST AVENUE ROSELLE NJ 07203 USA
BOOTH BUD PRESIDENT AUTOMATED ANALYSIS 3105 DONA SOfIA DRIVE STUD10 CITY CA 91684 USA
WONG DY-YEE DIRECTOR PROGRAMMING AUTOMATED ANALYSIS 3105 DONA SOFIA DR STUDIO CITY CA 91604 USA
NEAL RANDOlPH H PRESIDENT AUTOttATED BUSINESS SV 1649 WBROAD ST RICHMOND VA USA
FLEET VICTOR " CONTROUER B&S FINANCIAL SERVICES NCOUNTY ROAD 25A PIQUA OH 45356 USA
ROBERTS RICHARD A KGR SYSTEM & PROGRAMMING B&S FINANCIAl SERVICES NCOUNTY ROAD 25A PIQUA OM 453S6 USA
BROUN ROBERT A DATA PROCESSING SYSTEH HB.K. SWEENEY MAN. CO. 6300 STAPLETON S. DR. DENVER CO 80216 USA
BORDEN JOHN (CANCELED)SYSTEM MANAGER BALTIMORE GAS &ELEC BOX 1475 BALTIMORE tID 21203 USA
BERGER ROBERT(CANCEL) ASSISTANT VICE PRESIDENT BANKERS TRUST CO 1 BANKERS TRUST PLAZA NEW YORK NY 10006 USA
BERND YAI.TER ASSISTANT SYSTEM OFF BANKERS TRUST CO 1 BANKERS TRUST PLAZA NYC NY 10016 USA
BlIESNER ROBERT G SYSTEHS ANALYST BeS PO BOX 24346 SEATTLE WA 98124 USA
TIGElHAN ROBERT J DATA PROCESSING MGR BEACON JOURNAL PUBL 44 EEXCHANGE ST AKRON OH 44328 USA
HISlES GEORGE J DATA PROCESSING MANAGER BEALLIS DEPARTMENT ST 3923 HANATEE AVE W BRADENTON FL 33505 USA
KOBUCHI KENT K PROJECT SUPERVISOR BEOITEL CORP POBOX 3965 SAN FRANCISCO CA 94119 USA
TRAPPE CLARENCE J SYSTEMS PROGRAMMER BECHTEL CORP 350 MISSION STREET SAN FRANCISCO CA 94105 USA
PORTERFIELD STEPHEN THP3000 SYSTEH MANAGER BECHTEL CORPORATION POBOX 3965 SAN FRANCISCO CA 94119 USA
RITCHIE CLIFFORD E DPMANAGER BENEFIT TECHNOLOGY 900 LAFAYETTE STREET SANTA CLARA CA 95050 USA
MULLER ItEREDITH A PROGRAItKER/ANALYST BOEING POBOX 3707 tiS 3N-03 SEATTLE WA 98124 USA
HANSON FRITZ It LOGISTICS SYSTEH ENGINEE BOEING AERO SPACE CO PO BOX 3999 SEATTLE WA 98124 USA
PIERCE ANTHONY SR SYSTEMS ANALYST BOEING AEROSPACE CO PO BOX 3999 SEATTLE Wit 98124 USA
DRYNAN GILBERT " SYSTEHS DEV MANAGER BOEING AEROSPACE CO POBOX 313 WOODINVILLE WA 98072 USA
WILLIAMSON ROBERT H MFG DATA SYSTEMS MGR BOEING AEROSPACE CO PO BOX 3999 M1S 8M69 SEATTLE WA 98124 USA
CHIU WUYAN PROJECT ENGINEER BOEING COMM AIRPLANE CO POBOX 3701 36-02 SEATTLE WA 98124 USA
JELLIFFE ARLENE M LEAD ENGINEER BOEING COMH AIRPLANE CO BOX 3707 SEATTLE VA 98124 USA
RUTHERFORD CLYDE R SUPV "SS COMPUTING BOEING COHMERCIAL AIR POBOX 3707 H/S 5F-09 SEATTLE WA 98124 USA
HALSEY GREGG SYSTEM ANALYST BOEING COMPUTER SERVICE POBOX 24346 SEATTLE WA 98124 USA
JOHNSON PAMELA SYSTEIt ANALYST BOEING COHPUTER SERVICE POBOX 24346 SEATTLE WA 98124 USA
KANACA HIKE SYSTEH ANALYST BOEING COMPUTER SERVICE POBOX 24346 SEATTLE WA 98124 USA
KING GAIL PROJECT MANAGER BOEING COMPUTER SERVICE POBOX 24346 SEATTLE triA 98124 USA
HARSICEK RG BOEING COMPUTER SERVICE PO BOX 24346 SEATTLE WA 98124 USA
HASSLINGER BOB SYSTEM ANALYST BOEING COMPUTER SERVICE POBOX 24346 SEATTLE WA 98124 USA
SURR T BOEING COMPUTER SERVICE PO BOX 24346 SEATTLE UA 98124 USA
KURPHY DONALD C SYSTEH ItAHAGER BOEING COMPUTER SERVICES POBOX 3701 M/S36-01 SEATILE WA 98124 USA
TAYLOR DAVID " SYSTEHS ANALYST BOEING COttPUTER SERVICES POBOX 24346 SEATTLE VA 98124 USA
IRIYE DICK SYSTEHS ANALYST BOETTCHER &CO 828 11TH STREET DENVER CO 80202 USA
KEDD RANDY HP3000 SYSTEMS HGR BOETTCHER &CO 828 17TH STREET DENVER CO 80202 USA
GUNBY DL(CANCELED) SUPV SYSTEM DESIGN &PRO BONAR &BEHIS LTD 2380 HC DOWELL ROAD BURLINGTON ON L1R4Al CANADA
SEIFRIED " BRIAN SUPERVISOR SYSTEMS APPL BONAR &BEMIS LTD 2380 MC DOWELL ROAD BURLINGTON ON L1R4A1 CANADA
DOWLING JAKES F DP OPERATIONS MANAGER BOSE CORPORATION 100 MOUNTAIN ROAD FRAHINGHAM HA 01701 USA
WOOD GLEN R MANUF SYS PROJECT LDR BOSE CORPORATION 100 MOUNTAIN ROAD FRAMINGHAM ItA 01781 USA
JARAMILLO JR NARCISO DB ADHIN BOURNS 1200 COLUKBIA AVE RIVERSIDE CA 92507 USA
BRINDLE JIM BRANT COItPUTER SERVICES 615 BRANT STREET BURLINGTON ON L7R2G6 CANADA
BLAND JOHN J SYSTEM DP ANALYST BROOKEHAVEN NATL LABOR 32 BROOKEHAVEN AVE UPTON NY 11973 USA
HAUDERT GERARD A OPERATIONS SUPERVISOR BROOKEHAVEN NATL LABOR 32 BROOKEHAVEH AVE UPTON NY 11973 USA
ROSS PATRICK D SR HEMBER TECHNICAL STAF BSL INC 495 JAVA SUNNYVALE CA 94086 USA
KUKUDA, JR. JOHN VICE PRESIDENT BUSINESS COHPUTER CONCEPTS RD 11 BOX 131-B BURGETTSTOWN PA 15021 USA
STARCK RICHARD E PRESIDENT BUSINESS COMPUTER CONCEPTS RD 11 BOX 131-B BURGETTSTOWN PA 15021 USA
FUNK CHRISTOPHER M PRESIDENT CIt FUNK & CO INC 22 N2ND STREET BOX 1249 LAFAYETIE IN 47902 USA

COHPANY-2



ATTENDEE BY COMPANY

NAttE TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

WHEElER J LADD DATA PROCESSING MANAGER CHFUNK &CO INC 22 N2ND STREET BOX 1249 LAFAYETTE IN 47902 USA
PRITCHARD GBRIAN SR PROGRAMMER CANADA BLDG KATERIALS 55 INDUSTRIAL ST TORONTO ON H4G3U9 CANADA
ONIZUKA SANDRA H SYSTEM MANAGER CANCER CENTER OF HI 1150 SOUTH KING ST HONOLULU HA 96814 USA
SOMERS PETER CAPE ISLAND MARINA OCEAN DRIVE CAPE HAY HJ 08204 USA
ALBARRAN RAUL F GTE DE PROCESAHIENTO CARDANES, SA APARTADO POSTAL 591 QUERETARO QR 591 MEXICO
HAISCH KEN R PRESIDENT CASCADE COMPUTER SYSTEMS I POBOX 1666 LONGVIEW VA 98632 USA
LUNDBERG ERIK SCIENTIFIC PROGRAHHER CASS UNIV OF WASH 1107 HE 45TH ROOH 530 SEATTLE WA 98105 USA
RAWSOH TOM SYSTEMS PROGRAMHER CASS UNIV OF WASH 1107 NE 45TH ROOM 530 SEATTLE WA 98105 USA
BALANDER ttATTHEW J SYSTEH PROGRAMMER CCSC 2640 PINE STREET ST LOUIS HO 63103 USA
FARKAS GEORGE J SYSTEMS ANALYST CHRYSLER CORPORATION PO BOX 1919 CIHS:4162725 DETROIT HI 48288 USA
PIEKARSKI DAVID H SUPUR COMPUTER UTILIZ CHRYSLER CORPORATION PO BOX 1919 CIHS:4162725 DETROIT HI 48288 USA
COPLIN ROBERT G DP DIRECTOR CITY OF KENNEWICK 210 W6TH KENNEWICK VA 99336 USA
SUllIVAN EARLENE DATA COORDINATOR CITY OF KENNEWICK 210 W6TH KENNEWICK WA 99336 USA
FRACH EDVARD A SYSTEHS &PROG SUPVSR CITY OF SANTA HONICA 1685 MAIN STREET SANTA HONICA CA 90401 USA
PREDMORE LIONEL A INFORMATION SYSTEHS SUPV CITY OF TEHPE 31 EFIFTH BOX 5002 TEHPE AZ 85281 USA
CHARD HILES It DATA PROCESSING MANAGER CLA-VAL CO POBOX 1325 NEWPORT BEACH CA 92663 USA
BARKER RONALD E MANAGING DIRECTOR CLAYBROOK COMPUTING 70 BROOK ST LONDON WIY2HN ENGLAN
HELVIN PETER S DIRECTOR OF MARKETING CHC ASSOCIATES 3 MARGARET ST BOSTON HA 02021 USA
CORDELLE YANN ENGINEER COGELOG 1 QUINCONCES GIF 91190 FRANCE
FEHR GENE I DP MANAGER COHEN FURNITURE CO 336 SY ADAMS STREET PEORIA IL 61602 USA
ALEXANDER BYRON L CONSULTANT COLLIER-JACKSON ASSOC 1805 NWESTSHORE BLVD TAHPA FL 33607 USA
JACKSON CHARLES" PRESIDENT COLLIER-JACKSON ASSOC 1805 NWESTSHORE BLVD TAMPA FL 33607 USA
SLOAN DAVID L CONSULTANT COLLIER-JACKSON ASSOC 1805 NWESTSHORE BLVD TAMPA FL 33607 USA
HUDSON MEL SYSTEMS ANALYST COLO DEPT OF EDUC 201 ECOLFAX DENVER CO 80203 USA
ICKLER AL SENIOR PROGRAMMER COLO DEPT OF EDUC 201 ECOLFAX DENVER CO 80203 USA
PETERSON DONALD C HeR SYSTEMS ANALYST COLO DEPT OF HIGHWAYS 4201 EARKANSAS DENVER CO 80222 USA
TEKLITS ROBERT S DATA MANAGEMENT SUPVR COLORADO DEPT EDUC 201 ECOLFAX DENVER CO 80203 USA
FRAttE DARYL A SYSTEM MANAGER COKARCO INC 227 WHUENEME ROAD OXNARD CA 93030 USA
GOlDMNN ROGER M SYSTEMS ANALYST COMARCO INC 227 WHUENEME ROAD OXNARD CA 93030 USA
HWA CHIH S PRESIDENT COMPUSYS INC 789 SHERMAN 560 DENVER CO 80293 USA
MARCHESE BUZZ SYSTEM MANAGER COMPUTER COMPOSITION SALES 2640 PINE ST ST LOUIS MO 63103 USA
KORNEK KEN COMPUTER SERVICE DIVISION 19310 PRUHERIDGE AVE CUPERTINO CA 95014 USA
RUSSELL JIlt PRESIDENT COMPUTER SERVICES CORP 75 HANHATTAN DR 1107 BOULDER CO 80303 USA
YEISHAN JOE HGR SYSTEM DEVELOPMENT COMPUTERS FOR MARKETING 215 HARKET SAN FRANCISCO CA 94105 USA
YARBROUGH CHARLES VICE PRESIDENT COHPUTERS FOR MARKETING 215 HARKET SAN FRANCISCO CA 94105 USA
PUTEGHAT HICHAEL(CANC)PRESIDENT CONTROL SYSTEMS 44 WJEFFERSON ST BROWNSVILLE TX 78520 USti
RYAN GEOFFREY CONTROL SYSTEMS 44 UJEFFERSON ST BROWNSVILLE TX 78520 USA
DDOKSEY WILLIAM P PROGRAMMER/ANALYST COPCO 4905 LIMA STREET DENVER CO 80239 USA
MEYER JAMES J COMPUTER OPERATIONS COPCO 4905 LIHA STREET DENVER CO 80239 USA
UAN AUSDAlL C. R. MANAGER DATA PROCESSING COPCO 4905 LIMA STREET DENVER CO 80239 USA
JAMISON CARL L DATA PROCESSING MANAGER CRAIG HOSP RESEARCH OFFC 3460 SO CLARKSON ENGLEWOOD CO 80110 USA
DUHH£R DAVID C PRESIDENT DCDUHHER &ASSOCIATES 40 LK LUCERNE CL SE CALGARY AL T2JJHS CANADA
TIER PAUL MARKETING MANAGER DCDUMMER &ASSOCIATES 40 LK LUCERNE CL SE CALGARY AL T2J3H8 CANADA
SAlINS GARY E DATA PROCESSING MANAGER DARE PAFCO, INC 11353 REED HARTMAN HY CINCINNATI OH 45040 USA
LESSEY KEN W ASSOCIATE DATACOM 50 WEST STREET ST HELENS OR 97051 USA
CHADWICK GRAHAM D COMPUTER MANAGER DE ZOETE DBEVAN THROGMORTON STREETS LONDON ENGLAN
PARELLA HIKE PRESIDENT DECISION STRATEGY 708 THIRD AVENUE NEW YORK NY 10017 USA
~USTIN DAVID J ACTING DATA CENT COORD DENVER EMPLOY & TRAIN 1421 ELATI STREET DENVER CO 80204 USA
~OODY JERRY R SYSTEMS SUP DEPT OF ARMY BLDG 12500 ATTN DXRMC-C-C FORT LEE VA 23801 USA
~C LEKORE JIlt SYSTEMS MANAGER DEPT OF ENERGY 1330 BROADWAY OAKLAND CA USA
~ASHAK JAttES W COHPUTER SPECIALIST DEPT OF ENERGY 1333 BROADWAY OAKLAND CA 94161 USA
BEllIS STEPHEN PROGRAMMER DEPT OF FISHERIES & OCEANS BRANDY COVE ST ANDREWS NB EOG2XO CANADA

COHPANY-3



ATTENDEE BY COMPANY

NAHE TITLE COHPANY ADDRESS CITY STATE ZIP COUNTRY

FAWKES GERALD PROGRAMMER DEPT OF FISHERIES ~ OCEANS BRANDY COVE ST ANDREWS NB EOG2XO CANADA
GURUPRASAD CHOUlGERE DIRECTOR CORP SYSTEMS DEPT OF SUPPLY CANADA 11 LAURIER HULL QU CANADA
CAMERON LOUISE PROGRAMMER DEPT REG ECO EXPANSION 200 RUE PRINCIPAL HULL QU K1AOM4 CANADA
IMBEAU ANDRE ACTING CHIEF DEPT REG ECO EXPANSION 200 RUE PRINCIPAL HULL QU KIAOM4 CANADA
ClEEVER KAREN J SYSTEMS PROGRAMMER DEPT REGIONAL ECONOMIC EXP 601 SPADINA CRES E SASKATOON SA S7K3G8 CANADA
VALERIO HARC N GENERAL MANAGER DIVERSIFIED COMP SYS PO BOX 1098 GREElEY CO 80631 USA
JACKSON JOHN A SYSTEMS ANALYST DOHINION CONSTRUCTION 3100 3 BENTALL CENTRE VANCOUVER BC V7XIBl CANADA
MC HURRAY JACK M DP MANAGER DOMINION CONSTRUCTION 3100 3 BENTALL CENTRE VANCOUVER BC V7XIB1 CANADA
WELSH ROD R SYSTEMS ANALYST DOMINION CONSTRUCTION 3100 3 BENTAll CENTRE VANCOUVER BC V7XIBI CANADA
WHEElER ROBIN C EDP MANAGER DOHTAR CONSTRUCTION MTRL 2001 UNIVERSITY ST I«lNTREAL QU H3A2A6 CANADA
LUFT MARKUS F SYSTEMS ~ PROG SUPRV DOMTAR CONSTRUCTION MTRLS 2001 UNIVERSITY ST "ONTREAL QU HSA2A6 CANADA
BANDI DENNIS TECHNICAL ANALYST DOMTAR INC 395 DE MAISONNEUVE BLVD MONTREAL QU J6K2E6 CANADA
BIUlER,EARL DDMTAR INC 395 DE MAISONNEUVE BLVD MONTREAL QU J6K2E6 CANADA
FAIRCHILD JAKES B SUPERVISOR OPERATIONS DDHTAR INC CHEM GROUP BP 7212 HONTREAL QU H3C3H3 CANADA
GOSSElIN JEANNINE G EDP MANAGER DOMTAR INC CHEM GROUP BP 7212 MONTREAL QU H3C3H3 CANADA
GUPTA RAHESH SYSTEMS ~ OR CONSULTANT DOMTAR INC CHEM GROUP BP 7212 HONTREAL QU H3C3M3 CANADA
HINOR TERRY SYSTEMS HGR DONNELLY HIRRORS INC 49 lrI 3RD ST HOLLAND HI 49423 USA
SHITH ROGER DP MANAGER DONNElLY HIRRORS INC 49 W3RD ST HOlLAND HI 49423 USA
WEISS JAKES R VICE PRESIDENT EKKLEIN &ASSOC 1000 SUPERIOR BLDG CLEVELAND OH 44114 USA
LONG LYNDA J DPMANAGER EST 765 CAlIFORNIA STREET SAN FRANCISCO CA 94108 USA
ANDERSEN SVEND EBI COMPANIES 1290 NORTH FIRST ST SAN JOSE CA 95112 USA
BROWN DANA ADMINISTRATOR INFO EBI COMPANIES 1290 NORTH FIRST ST SAN JOSE CA 95112 USA
ECCLES SHARON L DATA PROCESSING HANAGER ECKANKAR 120 SCOTT DRIVE HENLO PARK CA USA
PRELLE JEAN PROFESSOR ECOLE SUPERIEURE DE COMMER 23 ROUTE DE DARDILLY ECULLY FRANCE
HOORE ROBERT E PRESIDENT EDUCATIONAL COMPUTER SYS 1313 KEMPER RD CINCINNATI OH 45246 USA
PETERS HAROLD J PRESIDENT EDUCATIONAL SOFTWARE PRODU 9 GEORGETOWN CIRCLE IOWA CITY IA 52240 USA
FIGUEROA LUIS V GTE DE PROCESAHIENTO EJES TRACTIVOS SA APARTADO POSTAL 14820 MEXICO DF 14820 MEXICO
GOHEZ VICTOR SYSTEM ENGINEER ELECTRONIC DATA SYS ONE WAYNE HALL WAYNE NJ 07470 USA
HARBAUGH JERRY E HGR DATA PROCESSING ELFAB 4200 WYLEY POST ADDISSON TX 15001 USA
CLABORN GEORGE H PROGRAMHER ANALYST ENVIRONMENTAL ELEHENTS 3700 KOPPERS ST BAlTIMORE HD 21227 USA
FISHER MROGER MANAGER COMPUTER SERV ENVIRONMENTAL ELEMENTS 3700 KOPPERS ST BALTIMORE MD 21227 USA
LANCASTER HENRY C VPENG DEV &COMP SCI ENVIRONMENTAL ELEMENTS 3700 KOPPERS ST BALTIMORE HD 21227 USA
HIUER DANIEL J SYSTEMS ANALYST ENVIRONMENTAL ELEMENTS 3700 KOPPERS ST BALTIMORE tm 21227 USA
SWEARER DALE F SYSTEHS ANALYST ENVIRONMENTAL ELEMENTS 3100 KOPPERS ST BALTIMORE 1m 21227 USA
SYHONDS GORDON R HEAD COHPUTER APPLIC ENUIRONHENTAL HEALTH TUNNEYS PASTURE OTTAWA ON KIAOL2 CANADA
BENOIT VAYNE F "ANAGER PRODUCT DEV EPSILON DATA MGHT 24 HE EXECUTIVE PK BURLINGTON HA 01803 USA
CANTWElL FRANK E DIRECTOR PRODUCT DEV EPSILON DATA MGttT 24 ME EXECUTIVE PK BURLINGTON HA 01803 USA
JONES THOttAS 0 EXEC VP EPSILON DATA MGHT 24 HE EXECTIVE PK BURLINGTON ItA 01803 USA
NEIBERGS GEORGE J IS MANAGER ESB-EXIDE 101 GIBRALTOR RD HORSHAM PA 19044 USA
FINE BRIAN T TECH STAFF ESt INC 495 JAVA DR SUNNYVALE CA 94086 USA
LOCKHEED AllAH H EXXOM HINERAl CO USA 601 JEFFERSON HOUSTON TX 11601 USA
UTTER ROGER S COItPUTER APPLICATIONS EXXON NUCLEAR CO 777-106 TH AVE HE BaLEVUE VA 98009 USA
LEE HAlOLD FAIRFAX CNTY PUBLIC SCHOOL DATA SERVICES DIVISION SPRINGFIELD VA 22151 USA
SHAULIS KICHAEL FAIRFAX cm PUBlIC SCHOOl.. DATA SERVICES DIVISION SPRINGFIELD VA 22151 USA
DELONG DAN G PROGRAMER FEDERAL HOltE LOAN BANK 600 STEUART ST SEATTLE VA 98101 USA
JOHNSTON CHARLES F DATA PROCESSING ItANAGER FERRIS BSSCHER LOHttA 339 E16TH STREET HOLLAND HI 49423 USA
BERAII ALFRED J EXECUTIVE VICE PRESIDENT FINANCIAl DATA PLANNING 2670 TIGERTAIL AVENUE KIA"1 FL 33133 USA
GOlDBERG MICHAEL C PRESIDENT FINANCIAl DATA PLAMNIN& 2670 TlGERTAIL AVENUE MIAMI FL 33133 USA
KENHEDY DOUGlAS VICE PRESIDENT FINANCIAL DATA PLANNING 2670 TIGERTAIL AVENUE HIA"I FL 33133] USA
THDRIWI BEN ASST DP ttGR FLINT INDUSTRIES INC POBOX 490 TULSA OK 74181 USA
LOCHHER CHRIS SYSTEtt ttMAGER FORD BOX 1599B SOUTHFIELD AT ROTUNDA DEARBORN ttl 48121 USA
UlLOCK JAMES K SYSTEttS ANALYST FORD BOX 1599B SOUTHFIELD AT ROTUNDA DEARBORN "I 48121 USA

CO"PANY-4



ATTENDEE BY COMPANY

NAKE TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

ARTHOFER ROBERT J DATA PROCESSING MANAGER FOSECO INC 20200 SHELDON ROAD BROOKPARK OH 44142 USA
ONYX ROBERT P DPOPER MANAGER FOSECO INC 20200 SHELDON ROAD BROOKPARK OH 44142 USA
FRATUS WILLIM P FUTURA INC 1714 S CONGRESS AUSTIN TX 78784 USA
KELLY KENT FUTURA INC 1714 S CONGRESS AUSTIN TX 78704 USA
MC AFEE WILLIAM K PRESIDENT FUTURA INC 1714 S CONGRESS AUSTIN TX 78704 USA
DROBNY RONALD G SYSTEM HANAGER GATES &SONS 90 SOUTH FOX DENVER CO 80226 USA
BERGOLD THEODORE A MANAGER INFO-SYSTEMS GATX LEASING ONE EMBARCADERO CNTR SAN FRANCISCO CA 94111 USA
SJOGREN DAVID R SYSTEM SPECIALIST GENERAL MILLS PO BOX 1113 MINNEAPOLIS HN 55440 USA
HATI RICHARD G HARDWARE PLAHHER GENERAL MILLS INC 9200 WAYZATA BLVD MINNEAPOlIS MN 55426 USA
HEINZ MICHAEl J SUPERUISOR)TECH SERUS GENERAL KILLS) INC PO BOX 1113 MINNEAPOLIS KN 55440 USA
FAIRFIElD STEVE INFO SYSTEMS ANALYST GENERAL TELEPHONE 455 EELLIS ROAD KUSKEGON HI 49443 USA
EDWARDS BETH INFO SYSTEMS ADM GENERAL TELEPHONE-HI 455 EELLIS ROAD MUSKEGON MI 49443 USA
BOTTECAL THOMS M GEORGE WASHINGTON UNIUERSI 725 23 STREET NY WASHINGTON DC 20852 USA
LEE LANCE SENIOR PROGRAMMER GEORGE WIMPEY CANADA 80 NORTH QUEEN ST TORONTO ON H8Z2C9 CANADA
ROBINSON JOEl H KGR INFORMATION SYS GEORGE WIMPEY CANADA 80 NORTH QUEEN ST TORONTO ON M8Z2C9 CANADA
HATCH JAKES L DIRECTOR GM SAGINAW DATA CENTER 3900 HOLLAND ROAD SAGINAW HI 48605 USA
JACOB HARRY 0 KGR DISTRIBUTED SYSTEMS GIt SAGINAW DATA CENTER 3900 HOLLAND ROAD SAGINAW HI 48605 USA
BEDET ROB GOU'T OF NWTERRITORIES YELLOWKNIFE NY XOE1HO CANADA
DElKAGE AR(CANCELED) GOV'T OF NWTERRITORIES YELLOWKNIFE NW X8EIHO CANADA
JOHNSON BOB GOV'T OF NWTERRITORIES YElLOWKNIFE NY XOEiHO CANADA
THOttPSON JIlt GOU'T OF HWTERRITORIES YELLOWKNIFE NW XOE1HO CANAD~

ADMS RAY CONTROlLER GRACElAND COLLEGE LAMONI IA 58148 USA
BILLS DANIEL G PRESIDENT GRANVIlLE-PHILLIPS CO 5675 ARAPAHO£ BOULDER CO 80303 USA
HALACHOWSKI ERNEST S CONTROLLER GRANVILLE-PHILLIPS CO 5675 ARAPAHOE BnULDER CO 80303 USA
PICK UHICHAEl RESEARCH COMPUTER HeR GRUHHAN AERO SPACE CORP A08-35 BETHPAGE NY 11114 USA
BEADLE) JR RAY 51 SYSTEMS ANALYST GRUHKAH AEROSPACE SOUTH OYSTER BAY ROAD BETHPAGE NY USA
BIHDEVALD THOItAS L SR TECHNICAL ANALYST GTE DATA SERVICES FIRST FINANCIAL TOWER TMPA Fl 33611 USA
TOHHESEN LARRY D SYSTEttS ttAHAGER GUARDSHAN LIFE INS 1025 ASHWORTH ROAD WEST DESMOINE IA 50265 USA
BYFORD WENDY K SYSTEHS ENGINEER HP 275 HYMUS BLVD PTE CLAIRE QU CANADA
KENFIELD JOHN E INFO SYS MANAGER H-P SANTA ROSA DIV 1400 FOUNTAIN GROVE PK SANTA ROSA CA 95404 USA
JACKSON ELAINE T HINlCOMPUTER ANALYST HARTFORD INSURANCE HARTFORD PLAZA HARTFORD CT 06033 USA
BENHETT WAlTER U DEV INFO COORDINATOR HARVARD HOLYOKE CAMBRIDGE HA 02138 USA
HUT1UNEN HEIKKI J ADP MANAGER HELSINKI SCHOOL OF ECON RUNEBERGINK 14-16 HELSINKI 00100S FINLAM
UAN DEN KIEBOOK AttD HEWlETT-PACKARD 90- EPHARTL 121 AMSTERDA" NETHER
BUTlER KEITH C ENGINEER HEWlETT-PACKARD RT 41 & STAR ROAD AUONDALE PA 19311 USA
CORRELl STEVEN ENGINEER HEWlETT-PACKARD RT 41 & STAR ROAD AVONDAlE PA 19311 USA
FREED JAltES F INFO SYSTEMS MANAGER HEWlETT-PACKARD ROUTE 41 AVONDALE PA 19311 USA
STARK JOHN A SYSTEMS ENGINEER HEWLETT-PACKARD 1203 114TH SE BELLEVUE WA 98004 USA
~DXE ROBERT D MARKETING KANAGER HEWlETT-PACKARD DISC "EHoRY DIVISION BOISE ID 83107 USA
LOWRY GlEN H INFO SYS ItANAGER HEULrn-PACKARD POBOX 15 BOISE ID 83707 USA
THOItASSON GARY FAC INfO SYS MNAGER HEWlETT-PACKARD POBOX 16 BOISE ID 83707 USA
esTER TIfAD N HARKETING ENGINEER HEWlETT-PACKARD 2104 SUNSET AUE BOISE ID 83782 USA
~RUTHERS AlEX R SYSTEKS ENGINEER HEWlETT-PACKARD 210 7229 FISHER ST CAlGARY AL T2H2H8 CANADA
ENGBERG TONY I SYSTEItS ENGINEER OETT-PACKARD 19855 GIESENDORFER RD COlFAX CA 95713 USA
~UBER DIANNE HEWlETT-PACKARD 1900 GARDEN GODS ROAD COLORADO SPRI CO 80907 USA
DOUGLAS GORDON R FACILITY INFO SYS MGR HEWLETT-PACKARD 11000 WOLFE ROAD CUPERTINO CA 95014 USA
JOHHSTOIE SHIRLEY J somARE RELIABILITY ENG HEWlETT-PACKARD 19480A HOttESTEAD RD CtfERTINO CA 95814 USA
LAIR STEVE S EDSITRICT ttGR HEWlETT-PACKARD 19318 PRUNERIDGE RD CUPERTINO CA 95814 USA
OAIN OLEN COftPUTER SERVICES DIV HEWlETT-PACKARD 19310 PRUNERIDGE AVE ClI'ERTINO CA 95814 USA
fARENS MICHAEL R REGIONAL ItKTG ENGINEER HEWLETT-PACKARD 19400 HOKESTEAD RD CUPERTINO CA 95014 USA
DOMHAK DAM SYSTEItS EHGINEER HEWLETT-PACKARD 5609 DTC PKIIY ENGLEWOOD CO 88118 USA
JOlfHSON ROM H DISTRICT SALES tIGR HEWlETT-PACKARD 5600 DTC PKWY ENGLEWOOD CO 89110 USA

COtIPANY-1



ATIENDEE BY COttPANY

NAttE TITLE COHPANY ADtRESS CITY STATE ZIP COUNTRY

KUEHNER WARREN SEDISTRICT ItGR HEWLETT-PACKARD 5600 DTC PKUY ENGLEWOOD CO 80111 USA
WADE GERRY T PRODUCT SPECIALIST HEUlETT-PACKARD 5608 S DTC PARKWAY EtG.EWOD CO 80110 USA
FREHtH DEBORAH J PROGRAKKER/ANALYST HEWLETT-PACKARD 3400 EHARttONY ROAD FORT COLLINS CO 88525 USA
JOHNSON GARY L INFO SYSTEttS HGR HEVLETT-PACKARD 3800 HARHONY ROAD FORT COLLINS CO 80524 USA
SQUIRES JIH SYSTEttS ENGR HEWLETT-PACKARD 1430 EORANGETHORPE FULLERTON CA 92631 USA
AItBlER BURT HEWlETT-PACKARD 815 14 SII LOVElAND CO 88531 USA
HAlLOCK JIlt HEWLETT-PACKARD 815 14 SU LOVELAND CO 80537 USA
KASUN ELLEN HEWLETT-PACKARD 815 14 SU LOVELAND CO 80531 USA
LEHLEY JOHN HEWlETT-PACKARD 815 14 SU LOVELAND CO 80537 USA
WILLARD IIH HEWLETT-PACKARD 815 14 SU LOVELAND CO 80537 USA
SCHWARTZ RICK A DIST CE MANAGER HEWlETT-PACKARD 6871 GOREUAY DRIVE ItISSISSAUGA ON L4lJ1tt8 CANADA
CASEY CHRIS J SYSTEMS SUPPORT HGR HEWLETT-PACKARD 1501 PAGE MILL RD PALO AlTO CA 94304 USA
SCHWARZ RAYMOND T ItINI-OPERATIONS ItGR HEWLETT-PACKARD 1501 PAGE HILL RD PAlO ALTO CA 94384 USA
SLATER TED SALES REP HEWLETT-PACKARD 10691 SHELLBRIDGE WAY RICHHOND BC V6X2U7 CANADA
GUERRERO JORGE SEINSTRUCTOR HEUlETT-PACKARD 4 CHOKE CHERRY RD ROCKVIllE ltD 28850 USA
WOOLPERT BRUCE W PRODUCT MANAGER HEWLETT-PACKARD 16399 WBERNARDO DR SAN DIEGO CA 92127 USA
GROFF JAJtES R PRODUCT IWMGER HEWLETT-PACKARD 1342 STAYNER RD SAN JOSE CA 95121 USA
OSBORNE LEE K DEVELOPKENT ENGINEER HEWLETT-PACKARD 1046 S WINCHESTER 19 SAN JOSE CA 95128 USA
JORGENSON DANIEL It PRODUCT SUPPORT HGR HEVLETI-PACKARD 5303 STEVENS CREEK BLVD SAHATA CLARA CA 95050 USA
ALDERETE JOHN R PROJECT MANAGER HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 950S0 USA
BARttAN HARC DEUELOPttOO ENGINEER HEVLETI-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 9S850 USA
BIRKVDOD ILENE It S EMANAGER HEWLETT-PACKARD 5303 STEVENS CREEK BLVD SANTA CLARA CA 95050 USA
CEllI JOHN BUS &KKTING ItGR HEWLETT-PACKARD S303 STEVENS CREEK SANTA CLARA CA 9S0S0 USA
COUCH JOHN D SECTION HANAGER HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
CROCKETT DAVID PRC HGR HP300 SYS HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
GARDNER LYNN CUSTOHER RELATIONS HEWLEn-PACKARD S303 STEVENS 'CREEK BLVD SANTA CLARA CA 950S0 USA
GlttPLE BILL R&D HGR HP300 PRG HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 950S0 USA
GLOSS GREGORY C COBOL PROJECT HANAGER HEWLETT-PACKARD S303 STEVENS CREEK SANTA CLARA CA 9SDSO USA
GRIFFIN HARY HARKETING ENGINEER HEWLETT-PACKARD 5303 STEVENS CREEK BLVD SANTA CLARA CA 950S0 USA
HATCHER BETH HEULEn-PACKARD S301 STEVENS CREEK BLVD SANTA CLARA CA 950S0 USA
HENRY WENDELL A ttEKEBERT OF TECH STAFF HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 9S0S0 USA
KAH POllY PROGRAHHER/ANALYST HEWLETT-PACKARD 5301 STEVENS CREEK BLVD SANTA CLARA CA 950S0 USA
KERMKE JUTTAC PRODUCT ttANAGER HEWLETT-PACKARD 5303 STEVENS CREEK BLVD SANTA CLARA CA 95050 USA
LARSON ORLAND J IttAGE PRODUCT HANAGER HEWI.ETT-PACKARD 5383 STEVENS CREEK BLVD SANTA CLARA CA 95050 USA
LEVIN GREGG B DESIGN ENGINEER HEWLETT-PACKARD 5393 STEVENS CREEK SANTA CLARA CA 950S0 USA
LEWIN ROBERT E THIRD PARTY PGH HGR HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
MC CRACKEN ED GEN HGR GSD HEWLETI-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
ItENOLD BEN SEDISTRICT ttGR HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
PAGE JOHN PROJECT ItANAGER HEWLETT-PACKARD 5303 STEVEN CREEK SANTA CLARA CA 9S050 USA
RIEGER DENNIS E PRODUCT "ANAGER - KPE HEWLETT-PACKARD 5303 STEVENS CREEK BLVD SANTA CLARA CA 95050 USA
SHITH HOWARD 1 LAB MANAGER HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95350 USA
SPALDING KENNETH G DEVELOPHENT ENGINEER HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 950S0 USA
TEItBRoCT JOE R DP MANAGER HEWLETT-PACKARD 5301 STEVENS CREEK SANTA ClARA CA 9S050 USA
VAN KURAN PETER PRODUCT MANAGER HEWLETT-PACKARD 5303 STEVENS CREEK BLVD SANTA CLARA CA 95050 USA
VELLANKI RAO C SR PROGR/ANALYST HEVLm-P'ACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
WILLIAMS RITA W SUPPORT ENGINEER HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 95050 USA
YEO "ARGE HEWLETI-PACKARD 5301 STEVENS CREEK BLVD SANTA ClARA CA 950S0 USA
lABOR ELIAS CUSTOMER RELATIONS HEWLETT-PACKARD 5303 STEVENS CREEK SANTA CLARA CA 9S050 USA
CLInON ROY A KPE SUPPORT tMNACER HEWLETT-PACKARD 972 BUCKEYE CT SUHHYVALE CA 94886 USA
COOPER PAUL D SYSTEttS ENGINEER HEWLETT-PACKARD 4110 S 100 EAVE TULSA OK 7414S USA
FARRAGHER ItICHAEL J PROG SUPERVISOR HEWLETT-PACKARD 17S WYltAN STREET WAlTHAM ItA 02154 USA
D'ANGELO RICHARD 1 SYSTEMS ENGINEER HEWLETT-PACKARD CO 32 HARTWELL AVE LEXINGTON HA 02173 USA
HUTCHISON PHILIP L PRODUCT ENGINEER HHEUlETT-PACKARD 3400 EHARtIOHY RD FORT COLLINS CO 80525 USA

COIfPANY-6



ATTENDEE BY COMPANY

MAIlE TITlE COttPANY ADDRESS CITY STATE ZIP COUNTRY

JOHNSON RAYtIOND E HP 3000 PRGM SERV MGR HEWLETT-PACKARD GSD 5303 STEVENS CRK BLVD SANTA CLARA CA USA
MANIES RALPH G CUSTOMER RELATIONS HEWLETT-PACKARD GSD 5303 STEVENS CREEK BLVD SANTA CLARA CA 95050 USA
CALlAHAN BILL SESUPERVISOR HEWlETT-PACKARD LTD KING ST LANE WINNERSH WoKiNGHAM BER ENCLAN
MRQUEZ HATEO(CAHCEU FIELD ENGINEER HEWLETT-PACKARD MEXICO AVENIDA PERIFERICO SUR 6501 TEPEPAN XO 22 MEXICO
COVIn HARC L TECHNICAl sues MGR HEVLETT-PACKARD SDD 16399 WBERNARDO DR SAN DIEGO CA 92127 USA
LAW JACK DATABASE ADHINSTRATOR HEWLETT-PACKARD SDD 16399 WBERNARDO DR SAN DIEGO CA 92127 USA
PRILL BOB (CANCElED) OPERATIONS MANAGER HENlETT-PACKARD SDD 16399 WBERNARDO DR SAN DIEGO CA 92127 USA
WATERS FRED INFO SYSTEMS MANAGER HEWLETT-PACKARD SDD 16399 WBERNARDO DR SAN DIEGO CA 92127 USA
BORG CHARLES J SYSTEMS PROGRAMMER HEWLETT-PACKARD SRD 1400 FOUNTAIN GROVE PK SANTA ROSA CA 95404 USA
LASLEY MICHAEL A MIS MANAGER HINDERLITER 1240 NHARVARD TULSA OK 74115 USA
TATItAN PAUl E SYSTEMS ttANAGER HMO SYSTEMS INC 1235 RIVERSIDE n COLLINS co 80521 USA
HERBEl ERIC S MEDICAL SYS ANALYST HOECHST-ROUSSEL PHARM RT 202-206 HORTH SOMERVILLE NJ 08876 USA
WINTON HUGH DP MANAGER HOERBlCER CORP 35 LUMBER ROAD ROSLYN NY 11576 USA
KLEIN THOMS C HGR INFO SYSTEHS HOOVER-NSK BEARING 5400 S STATE RD ANN ARBOR HI 48106 USA
SUCIE LARRY J PROGRAMMER HOOVER-NSK BEARING 5400 S STATE RD ANN ARBOR In 48106 USA
BRUNK GREGG A ADMINSTRATIVE ASSISTANT HOUSTON INSTRUMENT 8500 CAMERON ROAD AUSTIN TX 78153 USA
KRIGER WINSTON A ItCR TECHNICAL SALES HOUSTON INSTRUMENT 8500 CAMERON ROAD AUSTIN TX 18153 USA
SMITH JR HARRY R DIRECTOR, COMPUTER CTR HDUARD COMMUNITY COLLEGE LITTLE PATUXENT PKWY COLUMBIA HD 21044 USA
BARTOlI JR CHESTER T OPERATIONS SUPERVISOR HP AVONDALE DIV ROUTE 41 &STARR RD AVONDALE PA 19311 USA
CHEN CHANG L SYSTEH ANALYST HP AVONDALE DIV ROUTE 41 &STARR RD AVONDALE PA 19311 USA
HINES RELLA H EXECUTIVE DIRECTOR HP GEM SYS USERS GROUP POBOX 18813 BALTIMORE HD 21240 USA
BECHER ANTHONY H HEAD C.A.M. ENG HUGHES AIRCRAFT CO BOX 3310 BlDG 601/B329 FULLERTON CA 92634 USA
GALUSKY DIANE M SUPERVISOR APPL DEV HUGHES AIRCRAFT CO POBOX 3310 607/E331 FULLERTON CA 92634 USA
GULICK LLOYD R COMPUTING SPECIALIST HUGHES AIRCRAFT CO POBOX 3310 607/E331 FULLERTON CA 92634 USA
KECHAIt DOUGLAS J SYSTEMS COORDINATOR HUGHES AIRCRAFT CO POBOX 3310 601-4219 FULLERTON CA 92634 USA
THEISSEN UILHELM J MANAGER BUSINESS SYST HUGHES AIRCRAFT CO POBOX 3310 607/B319 FULLERTON CA 92634 USA
TRAPP ROBERT E TEST ENGINEER HUGHES AIRCRAFT CO 1901 WHALVERN AVE FUllERTON CA 92634 USA
GRIFFIN RICK PRESIDENT I CS SERVICES, INC 2131 WEULESS BLVD EULESS TX USA
MILLER STEPHEN L COMP PROD SUPVR II IL DEPT OF CORRECTION 200 UWASHINGTON SPRINGFIELD IL USA
PETTERCHAK JOHN J INFO SYST EXECUTIVE IL DEPT OF CORRECTION 200 NWASHINGTON SPRINGFIELD IL USA
COLDREN J DAVID ASSOCIATE DIRECTOR IL LAW ENFORCEMENT CO 120 S RIVERSIDE PLAZA CHICAGO IL 60606 USA
HAlER EDWARD F INFO SYSTEMS EXECUTIVE IL LAW ENFORCEMENT CO 120 S RIVERSIDE PLAZA CHICAGO IL 60606 USA
HAY NORMAN F SR SYSTEMS ANALYST IL LAW ENFORCEMENT CO 120 S RIVERSIDE PLAZA CHICAGO IL 60606 USA
GRADY MICHAEL K SYSTEMS CONSULTANT ILLINOIS DEPT LAW &ORDER 200 WWASHINGTON SPRINGFIELD IL USA
OUEU.ETIE HARC E SOFTEWARE SPECIALIST INCO LIHITED 1 FIRST CANADIAN PL TORONTO ON HSX1C4 CANADA
BRODOVSKI RICHARD E DIRECTOR INFO SYSTEMS IND PRESS-TELEGRAH 604 PINE AVE LONG BEACH CA USA
HALL CRAIG T PRESIDENT INFO TRONIC SYSTEMS 449 HOWARD AVE HOLLAND HI 49423 USA
CAMARILLO HARIO R DIR DE SISTEMAS INFORMATICA DESC, SC THIERS 248 ANZUREZ MEXICO DF MEXICO
MAGDALENO JESUS GTE DE PRDYECTOS INFORMATICA DESC) SC THIERS 248 ANZUREZ KEXICO DF MEXICO
STOVER RAY J INFORMATION RESOURCES 4905 LIMA DENVER CO USA
BEHAN ROGER VP MARKETING INFORKATION RESOURCES 1935 EPRENTICE ENGLEWOOD CO 80111 US~

WADE RON SYSTEMS ANALYST INFORMATION RESOURCES 1935 EPRENTICE AVE ENGLEWOOD CO 80111 USA
KLEIN JA"fS D SYSTEMS PROGRAHKER INFORKATION TERMINALS 323 SOQUEL WAY SUNNYVALE CA 94086 USA
BRYDEN WILLIAM PRESIDENT INlAND SYSTEMS ENGR 424 BEVERLY DR REDLANDS CA 92313 USA
ItOORE GEORGE E OPERATIONS MANAGER INTERACTIVE APPL INC 505 HAHILTON AVE 1103 PALO ALTO CA 94301 USA
MACHIN JOHN MANAGING PARTNER INTERCOMP SERVICES 459 COLLINS STREET MELBOURNE VI 3000 AUSTRA
GRICE FRANK H PRESIDENT INTERTEC 2625 PARK BLVD PALO ALTO CA 94306 USA
RAUH JOSEPH E TECHNICAL SHOWMAN ISSCO 4186 SORRENTO VALLEY BLVD SAN DIEGO CA 92121 USA
SYNOLD PRISCILLA J MANAGER TECHNICAL SPT ISSCO 4186 SORRENTO VALLEY BLVD SAN DIEGO CA 92121 USA
WANDERMAN KENNETH A MANAGER COMPUTER SYS ITEL CORP 1 EMBARCADERO SAN FRANCISCO CA 94114 USA
MERSHON ROBERT C PROJECT MANAGER In FINANCIAL POBOX 250 CHIPPEWA FALL WI 54129 USA
VOILES DUANE A SR SYSTEHS ANALYST ITT FINANCIAL POBOX 250 CHIPPEWA FALL WI 54129 USA

COHPANY-B



ATTENDEE BY COMPANY

NAME TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

PETERSON KERRILL A STAFF ENGINEER JEFFERSON CHEMICAL POBOX 847 PORT NECHES TX 77651 USA
EDWARDS JON L JENNISON ASSOCIATES 270 PARK NEW YORK NY 10817 USA
CAYLOR LARRY II DATA PROCESSING MANAGER JOHANSON DIELECTRICS 2210 SCREENLAND DRIVE BURBANK CA 91505 USA
BlACK DAVID T SYSTEMS ANALYST JOHN HENRY COMPANY POBOX 17099 LANSING ttl 48901 USA
HAMAN VINCE J DIRECTOR DP JOHNSON COUNTY POBOX 2510 IOWA CITY IA 52240 USA
WOttBACHER ERNEST J CLERK OF DISTRICT COURT JOHNSON COUNTY IOWA 400 S CLINTON STREET IOWA CITY IA 52240 USA
AlLAN WIUIAM D INFO SERVICES MGER KAISER FOUNDATION 2005 FRANKLIN ST DENVER CO 80205 USA
GUISINGER ERIC L PROGRAKHER/ANAlYST SR KAISER FOUNDATION 2005 FRANKLIN ST DENVER CO 80205 USA
LUITHLE WILLIARD H COKPUTER OPS SUPV KAISER FOUNDATION 2005 FRANKLIN DENVER CO 80205 USA
DUNCAN JAMES J MANAGER OEM SAlES KAPPA SYSTEMS INC 1409 POTTER DR COLORADO SPRI CO 80909 USA
BENJAMIN ROBERT A SR SYSTEMS PROGRAMMER KEYDATA CORP 1400 WILSON BLVD ARLINGTON VA 22209 USA
DAVY CHRIS "ANAGER KEYDATA CORP 1400 WILSON BLVD ARLINGTON VA 22209 US~

DAVY CHRISTOPHER PRODUCT MANAGER KEYDATA CORP 1400 WILSON BLVD ARLINGTON VA 22209 USA
FELDttAN DAN KEYDATA CORP lOB WATER ST WATERTOWN ItA 02172 USA
ROUSSEAU ALLEN F VP PRODUCT DEV KEYDATA CORP lOB WATER ST WATERTOWN HA 02172 USA
MARItAN LAWENCE K GROUP LEADER LAWRENCE LIVERMORE LAB POBOX 808 Itt L-389 LIVERMORE CA 94550 USA
JESSEN TIlt D COKPUTER SCIENTIST LAURENCE LIVERHORE LAB POBOX 808 L-414 LIVERMORE CA 94550 USA
LACY LEROY P COMPUTER SCIENTIST LAWRENCE LIVERHORE LAB POBOX BOB HC L-389 LIVERMORE CA 94550 USA
DREILING CHERYL B COItPUTER SCIENTIST LAWRENCE LIVERHORE LABOR POBOX 80B LIVERMORE CA 94550 USA
JONES DANNY A COtfPUTER PROGRAttJtER LAWRENCE LIVERHORE LABOR POBOX B08 LIVERHORE CA 94550 USA
LYMH DEAN E COItPUTER SCIENTIST LAWRENCE LIVERKDRE LABOR POBOX 808 LIVERHORE CA 94550 USA
LEIGHT BETSY(CANCElED)DIRECTOR LEIGHT AND ASSOCIATES 14200 SHOLES COURT lOS AtTOSHILL CA 94022 USA
FLYNH DOUGLAS C DPHANAGER LEXINGTON HERALD LEAD 239 WEST SHORT ST LEXINGTON KY 40507 USA
ItANEVAL SANDRA S SYSTEMS HANAGER LIBERTY CO""UNICATIONS INC 2225 COBURG ROAD EUGENE OR 97401 USA
EATON JOHN DIR COHPUTER SERVICES LONDON GRAD SCH OF BUS REGENPS PARK LONDON N"14SA ENGLAN
GATES BILL DATA PROCESSING MGR LONGS DRUG STORES1 INC 141 NORTH CIVIC DR WAlNUT CREEK CA 94596 USA
IUJIRAO DAUID E PROGRAHttINC HANAGER LONGS DRUG STORES, INC 141 NORTH CIVIC DR WALNUT CREEK CA 94596 USA
GORFINKEL HARTIN PARTNER LOS AlTON RESEARCH CENTER 339 S SAN ANTONIO ROAD LOS ALTOS CA 94022 USA
ARttSTRONG JACK C PARTNER LOS ALTOS RESEARCH CENTER 339 S SAN ANTONIO ROAD LOS ALTOS CA 94022 USA
EXCOFfON "ARGOT K PROJECT lEADER LYNES UNITED SERVICES 309 2ND AVE SU CALGARY AL T2POC5 CANADA
LARSON TERRY PROJECT LEADER LYNES UNITED SERVICES 309 2ND AVE SW CAlLARY AL T2POCS CANADA
MUS JOHN A SYSTEMS ANAlYST M.H. GOlDEN CO 123 CAtlINO DE LA REINA SAN DIEGO CA 92108 USA
JOHNSTON FRANK H DIRECTOR DATA PROCESS ItACON TELEGRAPH PUB CO POBOX 4167 "AeON GA 31208 USA
KROESEN JACOBUS A MNAGER 0 &A KAKRO INTL CHURCHILL LMN 11 352S GWTRECH NETHER
VAN BUITENEH PETER SYSTEttS DEDJtAN WRO INTl CHURCHILL LAAN 11 352F CUUTRECH NETHER

. AHlERS1 1R ALFRED H ItAHAGER DATA PROCESSING HARITItt£ TERKINALS 7737 HAlWTON BlVD NORFOlK VA 23505 USA
- IZETT CRAIG N DIRECTOR TECHNOLOGY HARTIN tlARlmA 300 EAST JOPPA RD BALTIMORE tID 21204 USA

BOYER COMMIE Y PROGRAIfttER/ANALYST "ARY WASHINGTON CLC POBOX 1081 CLC STAT FREDERICKSBUR VA 22481 USA
BROWN DALE A DIR OF INST RESEARCH HARY WASHINGTON eLC POBOX lOBI CLG STAT FREDERICKSBUR VA 22401 USA
DAILEY JOSEPH D ItANAGER DATA PROCESSING ttASTERCRAFT IND 48Bl IRONTON ST DENVER CO 80239 USA
THORNTON WILLIAM L PROGRAHKER/ANALYST ItASTERCRAFT IND 4881 IRONTON ST DENVER CO 80239 USA
OCHI YOSHIAKI EDP tfANACER MTSUSHITA ELEC INDUST CO 12 ItATSUSHITA tfACHI KORIGUCHI-SHI OS JAPAI
ANDERSON GARY D ASSOC PROF OF BlOSTAT Me ttASTER UNIVERSITY 1200 HAlN ST VEST HAMILTON ON L8S4J9 CANADA
CLARK KIM HC ItASTER UNIVERSITY 1208 KAIN STREET WEST HAKILTON ON L8S4J9 CANADA
GILCHRIST DOH ItC KASTER UNIVERSITY 1208 HAIH ST WEST HAttILTON OH L8S4J9 CAHADA
SINHA DEEPAI PROGIAIftD ItC MSTER UNIVERSITY 1200 HAIN ST U IWtILTOH ON L8SU9 CANADA
SHElLIHGS FRANK W PROJECTS lEV ItAHAGER tIE))IA GENERAl INC 301 EGRACE ST RICHtUJND VA 23219 USA
UALESlI 1R UAl.TEl L DIR INFO SYSTEMS ttEDIA GEH£RAl INC 301 EGRACE 51 IICHtIOND VA 23219 USA
GROSSCUP LORIN PROGRAltttER ItERCHANDISlNG ttETHQDS 274 BRANNAN STREET SAN FRANCISCO CA 94187 USA
HUXHOlJ PHIL" DP ItAHAGER ItERCHANDISING tIETHODS 274 BRANNAN STREET SAN FRAHCISCO CA 94117 USA
CLElfEHTSOH GERHARDT CDIR OF ACAD cotIP CNTR KETRQPOLITAH ST COLLEGE 1006 11TH STREET DENVER CO 80204 USA
camy THOttAS L IteR ENG'GCOMPUTER CTI KICROUAVE ASSOCIATES SOUTH AVE BURLINGTON "A 018t3 USA

COIfAHY-9



HAKE TITLE COHPANY ADDRESS

ATTENDEE BY COMPANY

CITY STATE ZIP COUNTRY

4391 AGAR DRIVE
4391 AGAR DRIVE
3728 SO ROCKWELL ST
700 NEWPORT CENTER DRIVE
sa9S OCEAN UIEW DR
5805 OCEAN VIEW DR
24D8 E4TH STREET
1181 26TH STREET N
1981 PEMMA AVE

SHITH TERRY B CHIEF OF DATA PROCESSING HILO BEAUTY SUPPLY CO 4670 ALLEN ROAD
HC INNIS, 1R. AMARUI HINIIttICRO SYSTEttS INC 3315 HSHARTEL AVE
DEBOK LOWELL W PROGRAMHER/ANAlYST HITCHELL BROS TRUCK 3841 NCOL BLUD
OLSEN KARY ANN(CANCEL)PROCRAKKER HITCHELL BROS TRUCK 3841 NCOlUKBIA BLVD
DUNCOHBE BRIAN C "OHAWK COlLEGE POBOX 2034
KWAVNICK ttYER HONTREAL CHILDRENS HOSPITA 2300 TUPPER
WAGNER DAVID L HANAGER DATA PROCESSING HOORE &CO 300 ESPEER BLUD
DINAH DENNIS " SENIOR PROGRAMER ANALYS KORGAN GUARANTY TRUST 23 WALL STREET
ENTIS GlENN H PROGRAMMER ANAlYST T HORGAN GUARANTY TRUST 23 WALl STREET
HALUS JOSEPH T SENIOR PROGRAttftER ANALYS HORGAN GUARANTY TRUST 37 WALL STREET
TETI FRANK A SYSTEtt ANALYST HORGAN GUARANTY TRUST 23 WAlL STREET
KNIGHT 1R WILLIAft J MANAGER INFORItATION KUlTIUEST INC 6452 NFEDERAl HWY
CHASE LARRY " SUPV SYS & PRUCtI HULTNOHAH COUNTY ESD 220 SE 102
MGNUS ANN H SUPU COttPUTER OPER IflJLTNOMAH COUNTY ESD 220 SE 102
STAKBAUGH IAN R DIRECTOR DP "ULTNOHAH COUNTY ESD 220 SE 102
LAUIOlA ANTHONY SYSTEHS ttANAGER NYTELEPHONE CO 375 PEARL ST
REITHNER JR ROBERT" HAHAGER N. E.R.A. 80 BROAD STREET
RUSSELL KENT A PRESIDENT NATIONAL COMPUTER CORP 3000 34TH ST
PRICE RICHARD 1 HCR TECH SUPPORT NATIONWIDE FINANCE 700 OFFICE PARKWAY
RICKARD CAlLEN HGR SYSTEttS D£VElOPKENT NATIONWIDE FINANCE 708 OFFICE PARKWAY
ROWE THOMAS C VPSYSTE"S NATIONWIDE FINANCE 700 OFFICE PARKWAY
SULLIVAN DENNIS J HGR DP OPERATIONS NATIONWIDE FINANCE 700 OfFICE PARKWAY
EDWARDS ROBERT " SPEC ASST FOR DP NATL CONf ST LEGISLATURES 444 NCAPITOL ST NY
JEVEl. HARTIN D ttGR COIWUTER SERVICES NATL SCI DATA CENTER 1130 EKC DOVELL RD
LIENAID IAKES B PROGRAMMER NATL SCI DATA CENTER 1130 E"C DOWELL RD
HARRIS DAVID W MANAGER NBS FINANCIAL SERVICES 500 WWILSON BDG RD
CURBELO RAlPH COST ANALYST NEW YORK TREPHONE CO 1095 AVE OF THE AMERICAS
K1UCOlOtONS PETER F GENERAL COST SUPV to YORK TELEPHONE CO 1095 AVE OF THE AttERICAS
BROUN DDAVID PRESIDENT NICE CORPORATION 4357 AIRPORT PARK PLAZA
JEANS KENNETH E ASST ttGR OF DATA PROC HOOTER CORP POBOX 451
ROGERS TKOItAS D ASSISTANT DIRECTOR NORFOLK STATE COLLEGE 2401 CORPREY AVE
IIC CLAIM ItALCOUt E ItAHAGER DATA PROCESSING NtJRTH IDAHO COlLEGE iD09 WGARDEN AVENUE
LUlICH LEO 1 PRUGRAKMER NORTHERN SPECIALTY 6635 NBALTIKORE
"ILLER LEROY It DP ItANAGER NORTHERN SPECIAlTY SAlES 6635 NBAlTIKORE
iODGER IOHN D NORTHERN TELECOII 8200 DIXIE RD
IIIDDnM ROY L SPECIAlIST SOFTWARE NORTHERN TElECOIt LTD 33 CITY CENTRE DRIVE
~OLO FRANK SYSTEMS SPECIAlIST NORTHROP CORP 2301 WEST 120 STREET
~ROPP "ICHAEL E SYSTEItS PROGRAMER NORWCH-EATOH PHAR" 13-17 EATOM AVENUE
;PORKEN HEIN P NOVA AUTOttATION CONS 30 NEDEREIND
ROADS, JR JAMES C DIRECTOR COIf OPER HPD REASEARCH, INC 15 VERBENA AVENUE
8ISHOP LARRY DIRECTOR SYSTEItS DEVELOP HPD RESEARCH, INC 15 lJ£RBENA AVENUE
DR UIUIAII SYSTEItS ANAlYST HPD RESEARCH, INC 15 VERBENA AVENUE
mAN JAII£S R HEAD STATISTICS LAB OHIO AeRIC R&D CENTER
UTER JOHN C SYSTEKS SUPERVISOR OKAHAGM H£LlCOPTERS
UUARD 1t1CHAEl. J PROGRAMltIHG SUPERVISOR OKANAGAN HELICOPTERS
~MlFORD JEFFREY D PRESIDENT MGA SYSTEttS, INC.
~ICKS DAVID L PRDGRAJDtER ANAlYST PACIFIC ItUTUAl
nLLA JR CHARLES J PRESIDENT PAMTECHNIC
BIGHT DAlE PANTECHMIC
IlUTL£R STEPHEN It DIRECTOR DATA PROCESSING PARADISE UM.LEY HOSPITAl
JARIER KENHETH DIRECTOR EDP PARISIAN INC
!iCIlDSSER JR ROBERT J COIfUTER SCIENTIST PEPCO

STOW OH 44224 USA
OKLAHDHA CITY OK 73118 USA
PORTLAND OR 97217 USA
PORTLAND OR 97217 USA
HA"ILTON ON LBNJT2 CANADA
MONTREAL QU HJHIP3 CANADA
DENVER CO 80203 USA
NEW YORK NY 10015 USA
NEW YORK NY 10015 USA
NEY YORK NY 10015 USA
NEW YORK NY 10015 USA
n LAUDERDALE FL 33398 USA
PORTLAND OR 97216 USA
PORTLAND DR 91216 USA
PORTLAND OR 97216 USA
NEW YORK NY 10038 USA
NEW YORK NY 10004 USA
METAIRIE LA 70101 USA
CREVE COEUR ttO 63141 USA
CREVE COEUR "0 63141 USA
CREVE COEUR HS 63141 USA
CREVE COEUR ItO 63141 USA
WASHINGTON DC 28001 USA
PHOENIX AZ 85006 USA
PHOENIX AZ 85006 USA
COluttBUS OH 43285 USA
NEW YORK NY 10036 USA
NEY YORK NY 10836 USA
ODGEN UT 84403 USA
ST LOUIS ItO 63166 USA
NORFOLK VA 23504 USA
COEUR D' ALEN ID 83814 USA
PORTLAND OR 97203 USA
PORTlAND OR 97203 USA
BRAHPTON ON L6U2H6 CANADA
"ISSISSAUCA ON L5B2N5 CANADA
HAWTHORNE CA 90250 USA
NORWICH NY 13815 USA
NIEUVEGEIN NETHER
flORAL PARK NY 11811 USA
FLORAl PARK NY 11001 USA
flORAl PARK NY 11081 USA
WOOSTER 011 44691 USA
VANCOUVER Be V7BIA5 CANADA
VANCOUVER Be V7B1A5 CANADA
CHICAGO IL 6B632 USA
NEWPORT BEACH CA 92660 USA
OAiLAND CA 94618 USA
OAKLAND CA 94618 USA
NATIONAl CITY CIt 92850 USA
BIR"IMGHAIt At 35234 USA
UASHINGTOH DC 21068 USA

COftPMY-U



ATIENDEE BY cmtPAHY

NAME TITlE COttPANY ADDRESS CITY STATE ZIP COUNTRY

ARNOlD PAT SYSTEIt ENGINEER PETROCAHADA POBOX 2844 CALGARY AL T2P2I17 CANADA
CURTIS LINDA ANALYSTIPROGRAttHER PETRO CANADA POBOX 2844 CALGARY At T2P21t7 CANADA
DURHAM PAUl H SYSTEItS ANALYST PRne PETRO CANADA INC 400 4 AVE SY CALGARY Al T2P2H7 CANADA
NEItETH lOUIS E DIRECTOR ENG COKP CTR PHILA WATER DEPT 1270 ItSB PHILADELPHIA PA 19107 USA
GARDINER JAItES A "IS ttANAGER PILKINGTON BROS 685 VARDEN AVE SCARBOR6UGH ON "il3Z8 CANADA
METZNER BERNIE OPERATIONS ItGR PILKINGTON GLASS lTD 685 WARDEN AVE TORONTO ON ItlL3X7 CANADA
STOCKDALE WALLACE L DP ItANAGER PORT OF OAKLAHD 66 JACK LONDON SQ OAKLAHD CA 94686 USA
KUXHAtt BASIL C ItANAGER DATA PROCESSING PORT OF VANCOUVER 1300 STEWART 5T VANCOUVER BC V5L4X5 CANADA
HC CREA ROBERT B CHIEF FINANCIAL OFFICER PORT OF VANCOUVER 1300 STEUART ST VANCOUVER BC V5l4X5 CANADA
S"ITH RAYItOND E DATA PROCESSING ItANAGER POWERS REGUlATOR RR 11 BEETON ON LOGlAO CANADA
ARCAYA PEDRO It MANAGER PROCESASEG) SA TORRE LA PREVISORA PISO SABANA G VENEZU
TANKERSLEY JAHES J SR SYSTEHS ANALYST PROCTER &GAltBLE POBOX 599 CINCINNATI OH 45201 USA
LUMB ARTHUR C CONSUlTANT PROCTER & GAttBlE CO 7162 READING RD CINCINNATI OH 45208 USA
HEYER DIANNE H OPERATIONS COORDINATOR PROCTER & GAMBLE CO 6105 CENTER HILL RD CINCINNATI OH 45220 USA
VEENEKAN WILLIAM E SYSTEKS ANAlYST PROCTER &GAMBLE CO 6105 CENTER HILL RD CINCINNATI OH 45220 USA
COX UPHIL SYSTEKS ANALYST PROCTOR &REDFERN 75 EGLINTON AVE E TORONTO ON H4P1H3 CANADA
GOODMAN ROBERT A PRESIDENT PROF COIW SERV 2821 E28TH STREET LONG BEACH CA 92648 USA
CARVALHO HARCOS AX SYSTEItS ANALYST PROMON ENGENHARIA SA NOVE DE JULHO 4939 SAO PAULO SP 01407 BRAZIL
TICHAUER ItARIO F" ENGINEER PROKON ENGENHARIA SA NOVE DE JULHO 4939 SAO PAULO SP 01407 BRAZIL
HOWER HONTE J SYSTEK HANAGER PROVO SCHOOL DISTRICT 280 WEST 800 NORTH PROVO UT 84601 USA
SMITH BARRY PRUDENTIAL INSURANCE 213 WASHINGTON ST NEWARK NJ 07101 USA
FARIA JOHN HGR COMPUTER SERVICES PRUDENTIAL REINSURANCE 213 WASHINGTON ST NEWARK NJ 07101 USA
BARKER DAVID A MANAGER SYSTEMS &PROG PURITAN INSURANCE CO 1515 SlOOtER 5T STAMFORD CT 06905 USIt
PACHALY FRED A PROGRAMMER PURITAN INSURANCE CO 1515 SUHMER 5T STAHFORD CT 06905 USA
DUm SHEILA T HANAGER FINANCIAL SYSTEM QUME CORP 2J23 INDUSTRIAl PARKWAY HAYWARD CA 94545 USA
FISCHER LEE H HANAGER DATA PROCESSING QUME CORP 2323 INDUSTRIAl PARKWAY HAYWARD CA 94545 USA
CHATFIELD DENNIS C SYSTEJt MANAGER RJ FRISBY 1500 CHASE ELK GROVE Il 60007 USA
RASKUSSEN BENT VICE PRESIDENT RSHRIVER ASSOCIATES 120 LITTLETON ROAD PARSIPPANY NJ 07854 USA
WHITE RUSS PRESIDENT RSHRIVER ASSOCIATES 120 LITTLETON ROAD PARSIPPANY HJ 07154 USA
WILSON ROBERT L SALES HCR RSHRIVER ASSOCIATES 120 LITTlETON ROAD PARSITPANY NJ 07854 USA
MULVIHIll GARY RSHRIVER ASSOCIATES 1530 CHESTNUT SUITE 714 PHILADELPHIA PA 19102 USh
MAHONEY LARRY SUPERVISOR SEATTLE COMP RWBECK &ASSOCIATES 200 TOWER BUILDING SEATTLE WA 98101 USA
om JAMES B DATA PROCESSING MANAGER RCM ONE HARKEY PLAZA 3910 SAN FRANCISCO CA 94105 USA
SOHNLE RONALD C MGR COMPUTING SERVICES REGIONAL ECONOMIC EXPANSIO 601 SPADINA CRESCENT SASKATOON SA S7K3GB CANADA
SCOTI GEORGE B MANAGER REICHHOlA CHEM 2340 TAYLOR WAY TACOHA WA 98401 USA
FRANSEN CRAIG S SYSTEH ANALYST REICHHOLD CHEft 2340 TAYLOR TACOHA WA 98401 USA
FREDRICKSON GUNNARD APROJECT LEADER RELIANCE ElECTRIC 150 CANTERBURY DR ATHENS SA USA
SNEED JAKES E CORPORATE MGR DP RELIANCE ElECTRIC POBOX 5065 STATION B GREENVILLE se 29606 USA
HC CORMICK DOUGLAS B HGR INFORMATION SYS REPUBLIC GEOTHERMAL 11823 ESlAUSON 11 SANTA FE SPRI CA 90670 USA
WRIGHT STEVE T HANAGER HOltE OFFICE REPUBlIC MORTGAGE INS POBOX 2514 "INSTON SALEH NC 27102 USA
GREEN ANNABELLE H SECRETARYITREASURER ROBELlE CONSUlTING lTD 1138-5421 10TH AVENUE DELTA BC V4H3T9 CANADA
GREEN ROBERT H PRESIDENT ROBElLE CONSULTING LTD 1130-5421 10TH AVENUE DaTA Be V4M3T9 CANADA
lEWIS KERHDN VPDATA PROCESSING ROBERT JAMES CO BIRMINGHAK AL USA
BEHELER ANN F PROJECTS HANAGER ROCKWELL INTL-COllINS 1200 NALMA RD RICHARDSON TX 75081 USA
GEYER SANFORD A SYSTEM MANAGER ROLM CORP 4900 OLD IRONSIDES DR SANTA CLARA CA 95050 USA
GWALTHNEY DAVID l DIRECTOR-CCIS RUTGERS UNIVERSITY 311 NFIFTH STREET CAMDEN NJ 08102 USA
FRYER WILLIAM R PRESIDENT S.B.D.P. 4208 AIRPORT ROAD CINCINNATI OH 45226 USA
KIRK TIM L DIRECTOR INFO SYSTEKS SACRED HEART GEM HOSP POBOX 10905 EUGENE OR 97401 USA
PHILLIPS TERRY DEVELOPKENT MANAGER SACRED HEART GEM HOSP P0 10905 EUGENE OR 97401 USA
BRUCE CLIFF DP ASST HANAGER SAN JOSE KERCURY-NEVS 750 RIDDER PARK DR SAN JOSE CA 95190 USA
COT TERRENCE DPItANAGER SAN JOSE tlERCURY-NEUS 750 RIDDER PARK DR SAN JOSE CA 95190 USA
NORRIS BOB PROGRAltKER ANALYST SAN JOSE MERCURY-NEWS 750 RIDDER PARK DR SAN JOSE CA 95190 USA

COMPANy-it



ATTENDEE BY COMPANY

NAttE TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

MARTIN STEVE T SYSTEHS ANALYST SANDIA LABORATORIES DIVISION 2627 ALBUQUERQUE Nit 87185 USA
JAttES ROBERT M ANALYST/PROGRAMR SANDIA LABS POBOX 58DO ALBUQUERQUE NH 87185 USA
FLOWERS CURTIS J DP ANALYST II SANGAKON STATE UNIV SHEPHERD ROAD SPRINGFIELD IL 62788 USA
CARR CHARLES E ItAN ANALYST PROG II SAHGAItON STATE UNIVERSITY SHEPHERD ROAD SPRIHGFIElD IL 62718 USA
KLm DONALD S DIRECTOR UNIVERSITY LAB SANCAHON STATE UNIVERSITY SHEPHERD ROAD SPRINGFIELD IL 62798 USA
FINNEY BILlIANNA H PROGRMKER SANTABARBARA RESEARCH 75 COROKAR DRIVE GOLETA CA 93017 USA
VIOHL KEN SATElLITE COMPUTING, INC PO BOX 2015 NORFOLK VA 23501 USA
ST PIERRE JEAN DP MANAGER EtO) SCOTT PAPER LTD POBOX 768 CRABTREE PQ CANADA
ADAtiS BOB SYSTEMS EDP MANAGER SCOTT PAPER LTD POBOX 760 NEW VESTHINST BC CANADA
KING NEIL R PROGRAHHING SUPV SCOTT PAPER LTD POBOX 760 NEW WESTMINST Be CANADA
tIC LEOD PAT PROGRAMMER SCOTT PAPER LTD POBOX 760 NEW WESTMINST BC CANADA
SHElLEY NANCY SYSTEHS PROGRAKM£R SCOTT PAPER LTD POBOX 760 NEW WESTHINST BC CANADA
WARP'. CRAIG SHUGART ASS 435 OAKMEAD PARKWAY SUNNYUALE CA 94086 USA
SHOUP BRYAN DATA PROCESSING tIGR 511 DYNA-DRILl 1771 DEERE AVENUE IRUINE CA 92713 USA
SEWW. DAVID DIRECTOR OF DATA PROCESS 511 SERVCO PO BOX 880 GARDENA CA 90247 USA
DEHEVSY 11M SILToN DATA INC 2407 E38TH STREET VERNON CA 90858 USA
SItART JOHN E VICE PRESIDENT SILTON DATA INC 2407 E38TH STREET VERNON CA 90059 USA
SPIELER CHARLES W DIRECTOR HIS SIKCO 21001 CABOT BlVD HAYWARD CA 94545 USA
&ARBAUGH JAY C VICE PRESIDENT SHAlL BUSINESS DATA PROC 4208 AIRPORT ROAD CINCINNATI OH 45226 USA
HOUY DAVID J FINANCIAL SYSTEttS ItCR SHITH INTERNATIONAL 4343 VON KARIWf AVE DORT BEACH CIt 92660 USA
ADAMS KEARNEY A SR PROGRAMMER ANALYST SHITH KLINE INST 880 WKAUDE AVENUE SUNNYVALE CA 94086 USA
BEHNKEN HPAUL SUPVR DATA PROCESSING SMITHS INDUSTRIES POBOX 5389 ClEARWATER FL USA
KENDALL 10HN SYSTEMS PROGRAMMER SO MISSIONARY COLLEGE COLLEGEDALE TN 37315 USA
BAKST LAWRENCE E SENIOR CONSULTANT SOFTWARE SYSTEHS TECH 39 BROADWAY 32MD FL NEW YORK NY 10006 USA
BANSAL AK SOHIO CLEVELAND OH 44115 USA
THOIWSON JR CHARLES HINFORMATION KGItT CHF SPACE &ItSL SYS DIU 2B05 KAPLE AVENUE KAKHATTAN BEA CA 90266 USA
BRAUN GUENTHER K DIRECTOR DATA PROC SPRECKELS SUGAR DIV 50 CAlIFORNIA ST SAN FRANCISCO CA 94111 USA
PENNALA ERIC H MANAGER PROG &UPS SPRECKELS SUGAR DIV 50 CALIFORNIA ST SAN FRANCISCO CA 94111 USA
HEINEN TERRY H EDP MANAGER ST CLOUD HOSPITAL 1406 6TH AVENUE NO ST CLOUD HN 56301 USA
EDWARDS CONSTANCE E MANAGER COftPUTER CTR ST FRANCIS XAVIER UNIV PO BOX 67 ST.F.X.U. ANTIGONISH NS B2G1CO CANADA
RODRIGUEZ DAH R PROJECT LDR SUPPLY STANDARD OIL CO 1090 GUILDHALL BLDG CLEVELAND OH 44115 USA
BIVENS FREDERICK(CANC)DATA SPECIALIST STANDARD OIL COMPANY 101 WPROSPECT AVENUE CLEVELAND OH 44115 USA
JEFFRIES UILLIAtt F COORDINATOR ICS STARK COUNTY DEPT ED 7800 COLUMBUS RD LOUISVILLE OH 44641 USA
SMELSER LINDA C ASST GENERAl ttGR STATE CONTROLLERS OFFICE 504 EKUSSER CARSON CITY NV 89701 USA
STUHP DALE K DATA PROCESSING HGR STATE CONTROLLERS OFFICE 504 EHUSSER CARSON CITY NlJ 89101 USA
ALEXY MICHAEL 1 DATA SYSTEMS STAFF STORER BROADCASTING 1177 KANE CONtOURSE BAY HARBOR IS FL 33154 USA
HOlLING ERNEST(CANCEL)DIRECTOR-DATA SYSTEMS STORER BROADCASTING 1177 KANE CONCOURSE BAY HARBOR IS FL 33154 USA
HORRISON JAKES C MANAGER DP SUN HYDRAUlICS CORP 1817 57TH STREET SARASOTA FL 33580 USA
BROOKS ROY SYNCRUDE CANADA LIMITED 10030 107TH STREET EDMONTON AL T513E5 CANADA
BOWNES CORDON SYSTEMS ANAlYST SYNCRUDE CANADA LTD 10930 107TH S1 7TH ST PLAZA EDMoNTON At T513E5 CANADA
BRICKER HARLEY G SUPT HATERIALS SYNCRUDE CANADA LTD P0 BAG 4009 FT HC HURRAY AL T9H2L1 CANADA
AUSTIN DONALD (CANCEUHGR SYSTEHS &OPERATIONS SYRACUSE BOARD OF EDUC 409 WGENESEE ST SYRACUSE NY 13202 USA
FOSTER RICHARD H MANAGER SYSTEM S/W SYSTEM DEVELOPMENT CORP 2500 COLORADO AVENUE SANTA HONICA CA 90406 USA
BRYSON CARY J CONSULTANT SYSTEH HOUSE 560 ROCHESTER OTTAWA ON UBDB CANADA
CONNOR JACK 5R CONSUlTANT SYSTEMS &CoMP TECH 7 N5 POINT RD WEST CHESTER PA 19390 USA
ROSENBERG IVAN H GENERAL PARTNER SYSTEIS DESIGN ASSOC POBOX 1144 SAN LUIS OBIS CA 93406 USA
DUHAS ROBERT J HARKETING SUPPORT SYSTEttS RESEARCH INC 2400 SCIENCE PARKWAY OKEMOS MI 48864 USA
FRASER TOM SYSTEMS RESEARCH INC 2400 SCIENCE PARKWAY OKEMOS In 48864 USA
tfEYERS LAURENCE DIRECTOR OF MARKETING SYSTEttS RESEARCH INC 2400 SCIENCE PARKWAY OKEKOS HI 48864 USA
WICKHAM GAIL 0 ttGR MARKETING SERVICES SYSTEMS RESEARCH INC 2400 SCIENCE PARKWAY OKEMOS Itl 48864 USA
STEIN SAliYSUE PARTNER T,O.A.D. 19855 GIESENDORFER RD COLFAX CA 9511J USA
STOVER DAVID \I DIR OF INFO SERVICES TELEPHONE a.PLOYEES co 639 S NEW HAMPSHIRE LOS ANGElES CA 90085 USA

COHPANY-12



ATTENDEE BY CQHPANY

NAttE TITLE COttPANY ADDRESS CITY STATE ZIP COUNTRY

CEER ROSS E DIRECOTR OF SYS ENCR TEXAS HUN POWER AGENCY 2225 E RANDOl HIll RI ARLINGTON TX 76011 USA
WRIGHT JAKES C ELECTRICAl ENGINEER TEXAS IWH PotIER AGENCY 2225 E RANDOl ItILL RD ARLINGTON TX 76811 USA
MURPHY JR ROBERT DIRECTOR ADMINISTRATION TEXAS MUNICIPAL POWER 600 ARLINGTON DOWNS ARLINGTON TX 76011 USA
HILLER UIllI~ J ItGR CORP SYS PLANNING THE BOVAIRD SUPPLY CO 823 S DETROIT TtA..SA OK 74102 USA
PRICE ROGER SYSTEItS ANALYST THE BOUAIRD SUPPLY CO 823 S DETROIT TULSA OK 74182 USA
THUKSONROH DATA PROCESSING ttGR THE BOUAIRD SUPPLY CO 823 S DETROIT TllSA OK 74182 USA
aUOTT HARRY A HAHAGER "IS DEPARlltENT THE CANADA STARCH CO 1 PLACE DU COItKERCE NUNS) ISLAND QU H3EIA7 CANADA
TEARE ROBERT F ASST DIR BIBL SERV THE ClAREMONT COllEGES HONNOlD LIBRARY DARTHOUTH AT CA 91711 USA
AUSlANDER RICHARD C DB DC TECH SPECIAlIST THE GAP STORES INC 900 CHERRY AVE SAN BRUNO CA 94066 USA

BOSCO SUSAN " PROJECT HANAGER THE GAP STORES INC 980 CHERRY AVE SAN BRUNO CA 94066 USA
KOHAR JAKES V DIRECTOR DATA PROCESSING THE HII WILSON CO. 950 UNIVERSITY AVENUE BRONX NY 10452 USA
DAKft JACK A PRINCIPAl/OWNER THE PAlO ALTO GROUP 790 LUCERNE DRIVE SUNNYVAlE CA 94086 USA

LANGE JOHN " PROGRA"KER ANALYST THE TORO COMPANY 5825 JASMINE STREET RIVERSIDE CA 92504 USA

LIGHTHEART TED " AHAlYSTIPROGRAIftO TH£ UIllAtIETTE UAU.EY CO 660 tIC KINLGY ST EUGENE OR 97402 USA
flOYD TERRY H ACCNT SYSTEHS ANALYST THERItON 100 THERMON DR SAN HARCOS TX 78666 USA
NORTH CARL H DIRECTOR COHPUTER CTR THOMS NELSON COM COL PO BOX 9407 HAttPTON VA 23670 USA
TROWBRIDGE VERN H ItGR DATA PROCESSING TIDEWATER CO"" COlL RT 135 PORTSMOUTH VA 23701 USA
tOtAH ALAH T INFO SERVICES HCR TOWER ItANAGEItEHT 1719 TRIBUTE ROAD IH SACRAttENTO CA 95815 USA
SILVER GAYE L SYSTEttS ANALYST TRW COLORADO ELECT 3450 NNEVADA AVE COLORADO SPRI CO 80907 USA
JONES HORGAN TYItDATA CORP 44 " JEFFERSON ST BROWNSVILLE TX 78520 USA
ftC GRATH JOSEPH TYItDATA CORP 44 " JEFFERSON· ST BROWNSVILLE TX 78520 USA
VILLARREAL RAitON V TYttVARE CORP 44 " JEFFERSON ST BROWNSVILLE TX 78520 USA
KING STEPHEN E PROGRAMMER/ANALYST USA F LOS AHGB.ES AIR FORCE STA EL SEGUNDO CA USA
CLEltENT RUBY J DIRECTIlI OF DP UMPQUA COllI COLLEGE POBOX 967 ROSEBURG OR 97470 USA
WILKINSON JI" L GENERAL PARTNER UMPQUA DATA FACTORY 222 E 11 EUGENE OR 97401 USA
JARVIS RAY D PROGRAMER UMPQUA DATA FACTORY 727 SE CASS ROSEBURG OR 97470 USA
CULPEPPER BRITTON B SYSTEHS ANALYST UNION CAMP CORP FRANKLIN VA 23851 USA
EDWARDS BENJAMIN E ASST ItCR DATA PROCESSING UNION CAItP CORP FRANKLIN VA 23851 USA
He CLURE HERSCHEl D KGR SYSTEttS DEPT UNION CAMP CORP FRANKLIN VA 23851 USA
GOOLSBY ItONTY P SYSTEM ItANAGER UNION CAttP CORP POBOX 570 SAVANNAH GA 31402 USA
HOCK "ADISON 0 KGR INFO SYS BAG DIV UNION CAKP CORP POBOX 1825 SAVANNAH GA 31402 USA
LUISI WIllIAM F SOnUARE ANAl.YST UNION CAMP CORP 1600 VALLEY RD WAYNE NJ 0747B USA
NICHOLS ItARTIN D TECHNICAL ANAl.YST UNION CAMP CORP 1600 VAllEY RD WAYNE NI 07470 USA
HAYS GARRY R SR DATA COH1WNICATION UHION OIL CO 461 S BOYLSTON ST LOS ANGElES CA 98017 USA
NAGEL PATRICK " SYSTEItS PROGRAIUtER UNION OIL COKPANY 135TH ST & NEW AVE LEMONT IL 60439 USA
NOIWIAKER LAURA S PROGRAItItER/ANALYST UNION OIL COItPAHY 461 BOYLSTOH R" tt327 LOS ANGELES CA 90817 USA
FREDRICKSON STEVE DISTRICT SALES HCR UNITED COIfUTING SYS 4544 POST OAK PL 1146 HOUSTON TX 770" USA
CLEVELAIID UALTEl UNITED COtfUTING SYS 2525 UASHINGTON KANSAS CITY "0 64108 USA
GRACE JAYMIA UNITED CUltUTING SYS 2525 WASHINGTON KANSAS CITY ItO 64108 USA
ADDIS JOHN iteR CONSUlTING SVCS UNITED COMPUTING SYS 1901 AVE OF STARS 1585 LOS ANGELES CA 90867 USA
GEUECKE JOHN " DISTRICT SAlES ttGR UNITED COttPUTING SYS 1901 AVE OF STARS 1585 LOS ANGELES CA 90067 USA
IlEYERS BARRY NATIONAl SALES ItGR UNITED COtIPUTING SYS 1981 AVE OF STARS 1585 LOS ANG£LES CA 90867 USA
NOLAH VINCENT UNITED tIC GIll CORP 2400 FAIRWOOD AVE COLUttBUS OH 432B7 USA
CHInHJOD RICK L ASST VP ItfO SYS UNITED PRESIDENTIAl UFE 217 SOUTIHIAY BlVD E KOKOIIO IN 46901 USA
TOWHSEMD RICHARD PROGRAlDtER/ANAlYST UNITED PRESIDENTIAL LIFE 217 SOUllIIAY BlVD E KOKOHO 1M 46901 USA
REGO F ALFREDO PROFESSOR UHIV F ItARRIHIUIN 6A AVE 0-28 ZONA 11 GUATEI1AlA GUATEH
SISOIS HIlES N DIRECTDtt INFO SYSTEItS UNIV OF SAHTA CLARA BANNAN HALL 113 SANTA CLARA CA 95053 USA
TRUE JOlIN F DII COItPUTING SERVICE UMIV OF TENNESSEE 615 tIC CALLIE tWENUE CHATTAHOOGA TN 37402 USA
L1NDSTROI EDWARD R DIRECTOR-AGRI DATA CT UMIVERITY OF KENTUCKY 5107 AI; SCI CTR N LEXINGTON KY 49596 USA
ARANDA JORGE A SYSTEtIS ENGINEER UNIUERSIDAD BAJA CAl OBREGON YF tlEXlCALI BAJA ItEXICQ
GALLARDO PEDRO A SYSTElt ENGINEER UMlUERSIDDO BAJA CAL OBREGON YF CCAlCOLO ItEXICAlI "AJA IlEXICO
AlVAREZ IWAJEL A COORDINATOR UNlVERSm IDMETROPOlITAH AIIDO POSTAl 55-583 ItEXICO DF 13 IEXICO

COItPANY-13



ATTENDEE BY cotWANY

MAttE TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

SCHULER KURT J DIR / COHP SERVICES UNIVERSITY OF DALLAS IRVING TX 75061 USA
CHRISTOPHERSON DIANE UNIVERSITY OF WISCONSIN RIVER FALLS III 54822 US,.
NElSON HARLYS UNIVERSITY OF WISCONSIN RIVER FALLS WI 54022 USA
PROCHNOW NEAL UNIVERSITY OF WISCONSIN RIVER FALLS III 54822 USA
PETERSON DON SYSTEMS PROGRAMMER US CIVIL SERV CO"" 4685 LOG CABIN DR ttACON GA 31210 USA
WRIGHT NORttAN B EXAMINING SYSTEMS COORD US CIVIL SERVICE COMtt 4685 LOG CABIN DR 1tAC0H GA 31286 USA
SPAHN CARL P DIRECTOR ADSS US DEPT AGR-APHIS 6525 BELCREST RD IB53 HYATTSVILLE HD 20782 USA
TAYLOR PAUL tt COKPUTER SPECiAlIST US DEPT AGRICULTURE 6525 BELCREST RD t853 HYATTSVILLE to) 20782 USA
SPERLE GLENN H COMPUTER SPECIALIST US DEPT OF AGR-APHIS 6525 BELCREST RD 1853 HYATTSVILLE HD 20782 USA
SELLERS HARRY P ADtt DP MANAGER VA WESTERN COtt COL 3095 COLONIAl AVE ROANOKE VA 24815 USA
CARLSON LEE A PROF MATH & COMP SCIENCE VALPARAISO UNIVERSITY ACADEKIC COMPUTER CENTER VALPARAISO IN 46383 USA
HODSON DICK DP ttANAGER VALTEe BOX 2280 SPRINGVILLE UT 84663 USA
SIMONSEN J LAWRENCE COKPUTER SYSTEMS ENGR VALTEK INC MOUNTAIN SPRINGS PRKWY SPRINGVILLE UT 84663 USA
GILL RICK SYSTEMS ANAlYST VANDERBILT UNIVERSITY 521 KIRKLAND HAll NASHVILLE TN 37235 USA
DOLAN JR DOUGLAS C SPECIAL PROJECTS ttCR VICTOR 0 SCHINNERER 5028 WISCONSIN AVE NW WASHINGTON DC 20016 USA
BASSELLIER JEAN-PAUL DIRECTEUR INFORttATIQUE VILLE SAINT-LAURENT 777 BOUL LAURENTlEN SAINT-LAURENT QU H4K2H7 CANADA
NEWELL RUSSELL L SYSTEMS ANALYST VOFH-DEARBORN 4901 EVERGREEN DEARBORN HI -48128 USA
RADOFF IRVING SUPVR SYS/PROG VSI CORPORATION 8463 HIGUERA ST ctlVER CITY CA 90230 USA
HACKMAN LINFORD B AOKIN SOFTWARE HGR VYDEC INC 9 VREELAND ROAD FLORHAH PARK NJ 07932 USA
HEDA SHARAn ttANAGER AD" SYS VYDEC INC 9 VREELAND ROAD FLORHA" PARK HJ USA
POLAKOWSKI KEN GRP HGR SOFTWARE SUPPORT VYDEC INC 9 VREELAND RD FLORHAtt PARK NJ USA
WAlLACE DARL L DIR £Due cottP CTR WALlA WALLA COLLEGE CtlLEGE PLACE 1M 99324 USA
SHUMATE DCRAIG MANAGER CSD WARREN &VAN PRAAC 1276 NORTH WARSON RD ST LOUIS KO 63132 USA
AGRUSTI RAYtlOND 1 WAYNE BOARD OF ED 50 NallS DRIVE WAYNE HJ 07470 USA
OKI GKEVIN MANAGER WELLS FARGO BANK 420 MONTGOMERY ST SAN FRANCISCO CA 94111 USA
RUSSEll BRIAN G PROGRAMttER/ANALYST WEST FRASER MILLS BOX 6080 QUESNEL BC U213JS CANADA
TSUKISHI"A LLOYD It PROGRAMMER/ANAlYST WEST FRASER MILLS POBOX 6000 QUESNEL Be V2J3J5 CANADA
KILttON JR LIN E SENIOR ENGINEER WESTERN ELEcnIC CO 2508 BROENING HWY BAl.TIttORE ltD 21224 USA
NEUltYER RICHARD D SENIOR ENGINEER WESTERN ELECTRIC CO 2500 BROENING HWY BALTIttORE ltD 21224 USA
ECKARD DAVID L SYSTEM ANAlYST WESTINGHOUSE £lEC C POBOX 9175 PHILADELPHIA PA 19113 USA
BROOKE ROGER G KGR SUPPORT SERVICE WESTINGHOUSE ELEC CORP P0 BOX·8839 PITTSBURGH PA 15221 USA
HC SEOY 10HN G IteR DATA SERVICES WESTINGHOUSE ELEC CORP POBOX 8839 PITTSBURGH PA 15221 USA
ANDERSON EDWARD II SR SYSTEHS SPECIALIST WEYERHAEUSER CO AFB4 TACOHA IIA 98402 USA
GOJENOLA BEN SR SOFTWARE DESIGNER WEYERHAEUSER co 10TH & ASTREETS RMB-2 TACottA WA 98481 USA
ROBERTSON DENNIS L ttGR DIST PROC TECH SP WEYERHAEUSER CO 10TH & ASTREETS RKB-l TACOMA WA 98401 USA
HELLAMS CAROlE DPPROG ANALYST WHARTON CO JR COLLEGE 911 BOLING HIGHWAY MToN TX 77488 USA
PERKINS ALAN L SYSTEttS tlGRlPGttR WHITE HOUSE COtItt THE IIHITE HOUSE WASHINGTON DC 22078 USA
HOLT WAYNE E DIRECTOR OR DP WHITttAN COLLEGE 345 BOYER AVE VAlLA WALLA UA 99362 USA
HAINES OLIN R DATA PROCESSING HANAGER WICHITA EAGLE &BEACON 825 EDOUGLAS WICHITA KS 67202 USA
JENSEN HAROLD E sysms ANALYST WILlAItETTER VALlEY CO 660 HC KINLEY EmE OR 97402 USA
TURNER WILLIAtt A PROF ASSOCIATE UILLIA " MERCER INC 409 GRISWLD DETROIT "I 48226 USA
STRANDHAGEH DEBRA A SYSTEJt CONTROl WIllIAM " KElCER INC 409 GRISWlD DETROIT III 48226 USA
ENGlANDER WILLIAM R DPCONSUlTANT WILLIAM RENGLANDER 1966 TITUS STREET SAN DIEGO CA 92110 USA
FARRELL J'I" G DIRECTOR HARKEY RESEARCH WK CBROUN PUB co 2460 KERPER BlVD DUBUQUE IA 52011 US"
HAMPTON JEAN K PROGRAtlttER ~ CBROWN PUB COMPANY 2460 KERPER BLVD DUBUQUE IA 52001 USA
HEIN NOR" ItANAGER INFO SERVICES "" CBRDWH PUB COMPANY 2460 KERPER BLVD DUBUQUE IA 52101 USA
POWERS DENHIS D DIRECTOR INFO SERVICE WK CBROWN PUB COKPAHY 2460 KERPER BlVD DUBUQUE IA 52001 USA
SCHICK JOHN A PROGRMttER "" CBROWN PUB COKPAHY 2460 KERPER BLVD DUBUQU£ IA 52001 USA
SNESRUD ItARGARET 1 PROJECT DIRECTOR "" CBRDVN PUB COttPANY 2460 KERPER BLVD DUBUQUE IA 52801 USA
SHESRUD IIALLY" PROGRAtDiER UtI CBROWH PUB COftPANY 2468 KERPER BlVD DUBUQUE IA 5208i USA
IIOOD IlALTER A VICE PRESIDENT WOOD BROWN & ASSOCIATES 1673 CARLING SUITE 105 OTTAWA ON K2AIC4 CANADA
BR11VM EMlIH J PRESIDENT UOOD JBROUN & ASSOCIATES 1673 CARLING AIJE OTTAUA ON K2A1C4 C~

COKPANY-14



NAttE

BADGER PATRICK S
GREGORY KENT A

TITlE COKPANY

DIRECTOR ACADEMIC COM XAVIER UNIVERSITY
ACTUARY/PROGRAMMER ZISCHKE ORGANIZATION

ADDRESS

1 POST STREET

ATTENDEE BY COMPANY

CITY STATE ZIP COUNTRY

NEW ORLEANS LA 10125 USA
SAN FRANCISCO CA 94184 USA

COJtPANY-1S



CONFERENCE VENDOR LISTING INDEXED BY COMPANY

NAKE TITLE COMPANY ADDRESS CITY STATE ZIP COUNTRY

BEVERLY SHEPHERD OPERATIONS SUPERVISOR ACADEHIC COMP CENTER UNIVERSITY OF WISCONSIN RIVER FALLS WI 54022 USA
ROSS SCROGGS ALTER.ABILITY 534 ROSAL AVE OAKLAND CA 94610 USA
JOHN HGRIUOS VICE PRESIDENT AKERICAH HANAGEttENT SYSTE 561 PILGRI" DRIVE, SUITE D SAN HATED CA 94414 USA
J RDAUGHERTY DIR DATA PROCESSING A"ERICAN SUBSCRIPTION TV 8383 WILSHIRE BLVD-SUlTE900 BEVERLY HILLS CA 90211 USA
BUD BOOTH PRESIDENT AUTOMATED ANALYSIS 3105 DONA SOFIA DR STUDIO CITY CA 91684 USA
HARK ROBBINS SALES REPRESENTATIVE BARNHILL THREE INC 1980 S QUEBEC - UNIT 4 DENVER CO 80231 USA
DONNA CALDWEll BUSINESS MANAGER BOEING COMPUTER SERVICES 871 SO NASH ST - SUIT£ 101 EL SEGUNDO CA 90245 USA
DRDAVIDSON HARKETING PROMOTION MGR CALCOHP 1270 NKRAEMER ANAHEIM CA 92806 USA
ANDREW JAKES MARKETING KANAGER CARROLL "FG CO 1212 HAGAN CHAMPAIGN IL 61820 USA
PETER KELVIN HARKETING DIRECTOR CKC ASSOCIATES INC 755 BOYLSTON ST BOSTON ttA 02021 USA
CHARLES WJACKSON PRESIDENT COLLIER-JACKSON &ASSOC 1805 NWESTSHORE BLVD - SUI TAKPA FL 33607 USA
ROGER GOLDKAN SYSTEMS ANALYST COHARCO INC 227 WHUENEME RD OXNARD CA 93030 USA
ED ST AItOUR NATIONAl SALES I1ANAGER COMPUTER PERIPHERAL SUS 3187 eFe AIRWAY AVE COSTA I1£SA Cit 92626 USA
CHARLES YARBROUGH VICE PRESIDENT COMPUTERS FOR HARKETING 215 HARKET ST - SUITE 1212 SAN FRANCISCO CA 94105 USA
DAVID CDUHHER PRESIDENT DCDUMMER &ASSOCIATES 40 LAKE LUCERNE CLOSE SE CALGARY AL T2JJHB CANADA
KEN LESSEY ASSOCIATE DATACON OF ST HELENS 50 WEST STREET ST HELENS OR 97051 USA
DOUGLAS LMURRAY SALES ENGINEER GANDALF DATA INC 8821 RUTGERS ST WESTMINSTER CO 80030 USA
RELLA HINES EXECUTIVE DIRECTOR HP GENERAL SYSTEHS USERS P.O. BOX 18313, BUI BR. BALTIMORE HD 21240 USA
RICK GRIFFIN PRESIDENT I CSSERVICES INC 2131 WEULESS BLVD EUlESS TX USA
JOSEPH RAUH TECHNICAL SHOWHAN INTEGRATED SOFTWARE SYSTE 4186 SORRENTO VALLEY BLVD SAN DIEGO CA 92121 USA
CHRISTOPHER DAVY HANAGER GOVERNKENT SERV KEYDATA CORPORATION 1400 WILSON BLVD-SUITE 100 ARLINGTON VA 22209 USA
KARTIN GORFINKEL PARTNER LOS ALTOS RESEARCH CENTER 339 SOUTH SAN ANTONIO ROAD LOS ALTOS CA 94022 USA
GARY DANDERSON ASSOC PROF OF BIOSTAT MC MASTER UNIVERSITY 1200 MAIN ST WEST HAMILTON ON L8S4J9 CANAD~

MANAGER HINI PERIPHERAL PRGRHS HEKOREX CORP, BUS SYS DIV 3015 DAIMLER STREET SANTA ANA CA 92785 USA
DAVID " PIDWELL VICE PRESIDENT, SALES MINICOMPUTER ACCESSORIES 130 S WOLFE RD PO BOX 9004 SUNNYVALE CA 94086 USA
SUSAN FEINBERG VICE PRESIDENT NICHOLS AND COMPANY 1900 AVENUE OF THE STARS ST LOS ANGELES CA 90067 USA
CHARLES J VILLA JR PRESIDENT PANTECHNIC 5805 OCEAN VIEW DR OAKLAND CA 94618 USA
LARRY GRESS PRESIDENT PROGRESSIVE COMMUNICATION 310 I ALAMO 128 S TEJON COLORADO SPRI CO USA
WIllIAtt EKOORE HARKETING MANAGER RSHRIVER ASSOCIATES 1530 CHESTNUT ST-SUITE 714 PHILADELHIA PA 19182 USA
ROBERT HGREEN PRESIDENT RODELLE CONSULTING LTD 1130-5421 10TH AVE DELTA DC V4M3T9 CANADA
DONALD SKLETT DIR UNIV LAB SANGAHON STATE UNIVERSITY SHEPHERD ROAD SPRINGFIELD IL 62708 USA
STEVE JAMISON KANAGER/KARKETING SUPP SATEllITE COKPUTING INC 4530 PROFESSIONAL CIRCLE VA BEACH VA 23455 USA
LAWRENCE ttEYERS JR SYSTEMS RESEARCH INC 241 ESAGINAW ST ELANSING HI 48823 USA
PHIllIP GBEGICH APPLICATIONS ENGINEER TELEFILE COMPUTER PRODUCTS 17131 DAIMLER ST IRVINE CA 92714 USA
MICHAEL BKARFES ACCOUNT REPRESENTATIVE TEXAS INSTRUIfENTS 9725 EHAMPDEN AVE DENVER CO 80231 USA
JOHN ADAHH JR PRINCIPAL THE PALO ALTO GROUP 790 LUCERNE DR SUNNYVALE CA 94086 USA
JACK KENNEY DISTRICT "ANAGER UARCO 1805 SOUTH BELLAIRE ST - DENVER CO 80222 USA
JAYNIA LYNN GRACE MARKETING MANAGER UNITED COHPUTING SYSTEMS 2525 WASHINGTON KANSAS CITY "0 64108 USA
RRHURRAY MANAGER, KARKETING CO"M VERSATEC INC 2805 BOWERS AVE SANTA CLARA CA 95051 USA
ROBERT AVASCONCELLOS OWNER WHERE ENDS HEET 5926 WHITNEY ST OAKLAND CA 94609 USA

VENDOR 1




	Table of Contents
	Introduction to the Proceedings
	Paper / Presentation Indices
	By Session Code / Topic
	By Author Name
	By Author Company

	Papers / Presentations
	Computer Applications
	Computer Aided Instruction on the HP3000
	Computer Assisted Residential Energy Audit
	A Decision Support System to Assist in Containerboard Logistics Management
	Corporate Modeling Design & Implementation of Financial Planning Systems for the HP 3000
	IDIMS - HP3000 Based Digital Image Processing
	Econometric Modelling on an HP 3000
	CWF/3000: A Complete System for Computer Assisted Instruction and Training
	Statistical Inquiry & Retrieval, an IMAGE application
	On-line Marketing Information
	Computerized Word Processing
	Dollar-Flow: Financial Planning on the HP3000
	Considerations for a Typist Oriented, Fully Integrated Wordprocessing System
	Graphics in Business
	Experiences with the Manufacturing Package MFG/3000
	SPSS/HP Statistical Package For The Social Science Hewlett-Packard Version, An Update

	Data Management
	Adopting a Transaction Processor - getting sophisticated becomes Easier
	IMAGE Data Base Design and Performance Measurement
	IMAGE's Coming of Age: Breaking free from restrictions to Data-Base transformations
	Faster with Fast KSAM
	Information Management: An Investment for the Future
	Sigma - Generalized Information System
	A Data Dictionary/Directory Driven Clinical Data Management System
	HP VIEW/3000,  a Source Data Entry System
	Factory Data Collection
	ASK/3000 The Necessary Complement to IMAGE/QUERY

	Machine Utilization
	MPE Object Code Formats An Introduction to USL and Program Files
	HP 3000/Optimizing On-line Programs
	On-line Tape Library
	System Performance Measurement and Optimization
	Using Extra Data Segments: Safe and Efficient

	Installation Management
	Installation Design and Operation Considerations, Longs Drug Stores: an example
	An Extended Operating Environment for the Support of Application Programs
	BEACON/GUARDIAN: Installation Management Solutions In Search Of Elusive Problems

	Languages
	The Changing World of COBOL
	Tips on Converting IBM FORTRAN Programs to the HP 3000
	Writing SPL Routines Which Are Callable From BASIC
	DEC/3000 An Example of Special-Purpose Language Design and Implementation

	Data Communications
	Cutting Communications Costs with Statistical Multiplexors

	System Development
	Programming For Survival
	Software Quality Control
	An Approach to On-line Applications Management
	A Guide to Systems Development
	Decision Tables - An Effective Programming Tool
	Microprocessor Based Product Design on an HP3000

	System Periphals
	UT200 RJE Subsystem
	HP 3000/IBM 1403 Coupling Extends System Utilization
	A Real-Time Instrument Interface System for the HP3000
	Disk Subsystems Software Considerations

	Special
	Organizing a Local Group of Computer Users

	Keynote Address and Session Reviews
	Keynote Address: Future Possibilities--Hardware, Software, and People
	A 01: Computer Aided Instruction
	A 02: Computer Aided Design
	A 06: Corporate Modeling
	A-7: Financial Management System Design
	A-19: Applications: Graphics in Business Applications
	A19: Graphics in Business Applications
	B-01: Data Management: Transaction Processing
	B02: IMAGE Data Base Design and Performance Measurement
	B-08: Data Management
	Data Management: IMAGE: Tips and Techniques for the New User: B-11
	B12: VIEW/3000: A New Tool
	C-03: Process Optimization - On-Line Programs
	Installation Management: System Security: D-08
	E04: What's Ahead in COBOL
	E06: SPL/3000: System Programming Language: Part I of II
	Advanced BASIC E-09
	E-10: Special Purpose Languages
	E-13: Applications Development: Past Present and Future
	F-06: Data Communications
	F-09: Data Communications on the HP 3000
	G-04: Program Scripting for Custom Transaction Entry
	G-07: Systems Development: System Testing & Reliability: Software Quality Control
	G09: On-line Application Management
	G10: The Software Development Cycle
	G-12: Microprocessors: Product Design Using Microprocessors
	H-05: A Real-Time Instrument interface
	I-02: Data Management on the HP 3000: MPE File System
	Data Communications I-07
	I-15: Machine Utilization: System Monitoring and Tuning Performance


	Attendee and Exibitor Name Lists
	Conference Attendee Listing Indexed by Attendee Name
	Conference Attendee Listing Indexed by Attendee Company
	Conference Vendor Listing Indexed by Company


